ISYE 6201 Fall 2006                                                                        Homework 6 Solution 


ISyE 6201: Manufacturing Systems

Instructor : Spyros Reveliotis

Solutions for Homework #5

 A.  Questions from Chapter 13

1. Manufacturing systems are generally so big and complex that the overall planning problem must be broken down somehow. Furthermore, it is clear that different types of decisions regarding the design and operation of these systems, have different time spans in terms of their implications, but they require different lead times in order to be put into effect. Finally, it is also true that different decisions require different types of data and a different level of detail regarding the modeling of the system operations, with the longer term decisions typically requiring a more aggregate perspective of the system operations compared to the shorter term ones. A hierarchical planning framework seeks to take advantage of the aforementioned effects while decomposing the overall planning problem to a number of more easily addressed sub-problems.

On the other hand, a non-hierarchical system would be one where all the different decisions under consideration would be addressed through a simple monolithic formulation. In most practical cases, such a model would be unmanageable from a computational standpoint. But even if we assume that the computational difficulties were overcome, the model might still be of limited value to the plant managers, since the underlying complexity might be overwhelming and the amount of detail in it might prevent a good understanding of the prevalent dynamics.

2. In general, the plans developed at the different levels of the hierarchical production planning framework must be revised frequently enough to take into consideration any disruptions occurring on the manufacturing shop floor (this revision introduces the necessary feedback in the planning function and keeps the plans current). Hence, the appropriate regeneration frequency will depend on the stability and the time-constants of the environment. For instance, a firm whose demand profile is stable and cycle times are long does not need to re-plan its master production schedule as frequently as does a firm with volatile demand and short cycle times.

5. Causal forecasting assumes a cause and effect relationship between the forecasted quantity and some other measurable, independent variables, while time series forecasting merely tries to extrapolate past observed trends into the future.

6. If observed data are trending upward, then an exponential smoothing model will tend to undershoot and hence exhibit negative bias (because as we explained in class, a simple exponential smoothing model essentially averages its past observations). Similarly, if the data are trending upward at an increasing rate (i.e., nonlinearly), then an exponential smoothing model with a linear trend will still lag behind and exhibit negative bias; hence, for instance, in the case of a quadratically increasing quantity, one can use a triple exponential smoothing for correcting this lag, but in general, these higher order exponential smoothing models are not used very much in practice, at least in the context of manufacturing-related applications (the book on forecasting by Makridakis is a good reference on these more advanced models).

13. Feedback is important for ensuring that the generated plans are current and feasible, especially in a hierarchical planning framework, where higher-level plans are generated based on a more aggregate / macroscopic view of the system operations. Trying to execute any given plan without feedback – generally known as an open-loop control scheme – is essentially a blind drive, and it can be successful only in (idealistic) environments with minimal stochasticity and disruptions.

B.  Problem Set: 

I.   Chapter 13

1. (a) The forecasts for moving averages with m=5 and m=7 are given below. Notice that the m=7 case tends to lag the actual data more than the m=5 case. This is because the data have an upward trend (and therefore, the selection of a MA model is not a pertinent choice, in the first place!)
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(b) Forecasts from exponential smoothing with  = 0.2 and  = 0.1 are given below. Notice that  = 0.1 fits worse (as judged by MSD) because this model gives more weight to past data and hence lags the upward trend more (again, Single Exponential Smoothing is not a pertinent choice for this set of data!)

[image: image38.emf]Month Sales D(t) L(t)=MA(5) L(t)=MA(7) Er:MA(5) Er:MA(10) Sq Dev (m=5) Sq Dev (m=7)

1 22.00

2 21.00

3 24.00

4 30.00

5 25.00 24.40

6 25.00 25.00 0.60 0.36

7 33.00 27.40 25.71 8.00 64.00

8 40.00 30.60 28.29 12.60 14.29 158.76 204.08

9 36.00 31.80 30.43 5.40 7.71 29.16 59.51

10 39.00 34.60 32.57 7.20 8.57 51.84 73.47

11 50.00 39.60 35.43 15.40 17.43 237.16 303.76

12 55.00 44.00 39.71 15.40 19.57 237.16 383.04

13 44.00 44.80 42.43 0.00 4.29 0.00 18.37

14 48.00 47.20 44.57 3.20 5.57 10.24 31.04

15 55.00 50.40 46.71 7.80 10.43 60.84 108.76

16 47.00 49.80 48.29 3.40 0.29 11.56 0.08

17 61.00 51.00 51.43 11.20 12.71 125.44 161.65

18 58.00 53.80 52.57 7.00 6.57 49.00 43.18

19 55.00 55.20 52.57 1.20 2.43 1.44 5.90

20 60.00 56.20 54.86 4.80 7.43 23.04 55.18

TOTAL 1060.00 1448.02

Mean 70.67 111.39


(c) Using Solver in Excel, we find that  = 0.687 minimizes MSD, but  = 1 minimizes the absolute value of the Bias (it is negative because of the lag behind the data) as shown in the above table.

(d) The following gives forecasts using exponential smoothing with a linear trend with  =0.4 and  = 0.2 (note that we have used F(1)=A(1) and T(2) = A(2) –A(1) as starting points – other reasonable starting points would lead to different results particularly in the first few periods).

[image: image39.emf]Month Sales ES(0.2) ES(0.1) ES(0.687) ES(1) SD(0.2) SD(0.1) SD(0.687) Dev(1)

22.00 22.00 22.00 22.00

1 22 22.00 22.00 22.00 22.00 0.00 0.00 0.00 0.00

2 21 21.80 21.90 21.31 21.00 1.00 1.00 1.00 -1.00

3 24 22.24 22.11 23.16 24.00 4.84 4.41 7.22 3.00

4 30 23.79 22.90 27.86 30.00 60.22 62.25 46.80 6.00

5 25 24.03 23.11 25.89 25.00 1.46 4.41 8.17 -5.00

6 25 24.23 23.30 25.28 25.00 0.93 3.58 0.80 0.00

7 33 25.98 24.27 30.58 33.00 76.97 94.13 59.60 8.00

8 40 28.79 25.84 37.05 40.00 196.52 247.48 88.67 7.00

9 36 30.23 26.86 36.33 36.00 52.05 103.19 1.11 -4.00

10 39 31.98 28.07 38.16 39.00 76.95 147.44 7.13 3.00

11 50 35.59 30.26 46.30 50.00 324.63 480.85 140.09 11.00

12 55 39.47 32.74 52.28 55.00 376.90 611.85 75.77 5.00

13 44 40.38 33.86 46.59 44.00 20.53 126.83 68.48 -11.00

14 48 41.90 35.28 47.56 48.00 58.14 199.82 1.99 4.00

15 55 44.52 37.25 52.67 55.00 171.61 388.96 55.37 7.00

16 47 45.02 38.23 48.77 47.00 6.15 95.06 32.16 -8.00

17 61 48.21 40.50 57.17 61.00 255.49 518.70 149.45 14.00

18 58 50.17 42.25 57.74 58.00 95.79 306.16 0.68 -3.00

19 55 51.14 43.53 55.86 55.00 23.33 162.50 7.51 -3.00

20 60 52.91 45.17 58.70 60.00 78.57 271.36 17.16 5.00

Total 1882.07 3830.00 769.16 38.00

Mean 99.06 201.58 40.48 2.00


. 

3[image: image40.emf]Month Sales Lt(0.4) Tt(0.2) Ft=Lt+Tt SD

22.00 0.00 22.00

1 22 22.00 0.00 22.00

2 21 21.60 -0.08 21.52 1.00

3 24 22.51 0.12 22.63 6.15

4 30 25.58 0.71 26.29 54.31

5 25 25.77 0.61 26.38 1.65

6 25 25.83 0.49 26.32 1.90

7 33 28.99 1.03 30.02 44.61

8 40 34.01 1.83 35.84 99.56

9 36 35.90 1.84 37.74 0.03

10 39 38.25 1.94 40.19 1.58

11 50 44.11 2.73 46.84 96.29

12 55 50.10 3.38 53.48 66.62

13 44 49.69 2.62 52.31 89.90

14 48 50.59 2.28 52.86 18.57

15 55 53.72 2.45 56.16 4.58

16 47 52.50 1.71 54.21 83.96

17 61 56.93 2.26 59.18 46.09

18 58 58.71 2.16 60.87 1.40

19 55 58.52 1.69 60.22 34.48

20 60 60.13 1.67 61.80 0.05

Total 652.70

Mean 34.35

.

There is a discontinuous jump in week 9. Evidently, they started doing something differently. If we use the outdated numbers from before week 9, it skews our forecast low for a long time.

(b) 

[image: image41.emf]Week Sales F(t) T(t) Forecast Dev Abs Dev Sq Dev

1 3500 3500 0

2 3700 3560 18.00 3500 -200 200 40000

3 3400 3525 1.98 3578 178 178 31684

4 3900 3639 35.59 3527 -373 373 139442

5 4100 3802 73.91 3674 -426 426 181311

6 3500 3763 40.08 3876 376 376 141260

7 3600 3742 21.80 3803 203 203 41281

8 4200 3895 61.04 3764 -436 436 190077

9 9300 5559 542.01 3956 -5344 5344 28559921

10 8900 6941 793.91 6101 -2799 2799 7833808

11 9100 8144 916.79 7735 -1365 1365 1864087

12 9200 9103 929.29 9061 -139 139 19302

13 9300 9812 863.41 10032 732 732 535882

14 9000 10173 712.58 10676 1676 1676 2808429

15 9400 10440 578.87 10886 1486 1486 2207214

16 9100 10443 406.18 11019 1919 1919 3681954



0.3 bias MAD MSD



0.3 -301 1177 3218377


Even with the trend, the discontinuous jump in week 9 skews our forecast low for a while. Then it causes it to overshoot for several weeks.

(c) By eyeballing the data, it seems that in general, these weekly sales evolve around a constant mean, but this mean has “jumped” in week 9 to a higher level. Hence, a simple exponential smoothing with a fairly high smoothing constant would be adequate for this situation.

II. From the table in problem 1, the sales estimates for Month 21 are 56.2 and 54.86, respectively, using the MA(5) and MA(7) methods. 

As discussed in class, under the modeling assumptions underlying the MA model, the error 
[image: image42.emf]Week Sales Forecast Dev Abs Dev Sq Dev

1 3500

2 3700 3500 -200 200 40000

3 3400 3560 160 160 25600

4 3900 3512 -388 388 150544

5 4100 3628 -472 472 222407

6 3500 3770 270 270 72835

7 3600 3689 89 89 7906

8 4200 3662 -538 538 289185

9 9300 3824 -5476 5476 29991298

10 8900 5466 -3434 3434 11788935

11 9100 6497 -2603 2603 6777959

12 9200 7278 -1922 1922 3695683

13 9300 7854 -1446 1446 2090023

14 9000 8288 -712 712 506921

15 9400 8502 -898 898 807102

16 9100 8771 -329 329 108157

 

bias MAD MSD

-1193 1262 3771637

 between demand forecast 
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 is normally distributed with mean being zero and variance
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, where 2 is the variance of the disturbance e in the regression model (cf. slides 10-11). Since the normal distribution is symmetric about the mean, the probability of underestimation is 50%.

Let y be the adjustment such that the probability of underestimating the sales equal 10%, i.e. 
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Extending from the Multiple Linear Regression model as suggested in the reading part of this assignment, the quantity 
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has a t-distribution with N-1 degrees of freedom, where N is the order of the Moving Average Model being used. We can make use of this fact to find the required adjustment y. 


[image: image7.wmf](

)

9

.

0

)

(

ˆ

)

1

(

=

+

£

+

y

t

D

t

D

P



[image: image8.wmf]9

.

0

)

/

1

1

(

)

/

1

1

(

)

(

ˆ

)

1

(

=

÷

÷

ø

ö

ç

ç

è

æ

+

£

+

-

+

N

MSE

y

N

MSE

t

D

t

D

P



[image: image9.wmf]1

,

1

.

0

)

/

1

1

(

-

=

+

N

t

N

MSE

y



[image: image10.wmf])

/

1

1

(

1

,

1

.

0

N

MSE

t

y

N

+

=

-


The following table summarizes the computation:
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	MSE
	Adjustment y
	Adjusted Value

	MA(5)
	56.20
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	MA(7)
	54.86
	
[image: image14.wmf]48

.

30

)]

20

(

ˆ

[

1

7

1

2

20

14

=

-

-

å

=

i

i

D

D


	t 0.1, 6∙
[image: image15.wmf]÷

ø

ö

ç

è

æ

+

7

1

1

48

.

30

= 8.50
	63.36


Remark 1: Assuming that modeling assumptions underlying the MA model hold, in practice, the quantity MSE(1+1/N) is frequently approximated by MSD, where MSD is computed according to the formula in Remark 3 in slide 12.

Remark 2: I want also to reiterate that while the above discussion demonstrates the application of the theory of Confidence Intervals for the case of MA models, the particular example is rather shaky, because the underlying data has a linear trend (and as we discussed in the solution of Problem 1, MA should not have been used on this data set, in the first place.). Because of the linear trend in the data, the MSE values computed above contain also systematic variation that is unaccounted by this model, beyond the variability that is due to the disturbance e(t). This effect becomes more prominent when considering the MSD values obtained in the table provided in pg. 2 of this solution set (if there was not linear trend, these MSD values would be closer to the MSE values computed above and to each other.)

III.   

(a) It is clear from the table in slide 19 that the seasonal averages for Years 1, 2 and 3 present a linear increase. Therefore, the seasonal average for Year 4 can be forecasted using double-exponential smoothing on these three past observations. The slope for this forecasting model is initiated to the average difference between each pair of years, i.e., T0 = [(125-100)+(153.75-125)]/2 = 26.875. The initial intercept is set I0 = 100-26.875 = 73.125

	Year
	Seasonal Average
	Lt(0.3)
	Tt(0.2)
	Ft=Lt+Tt

	 
	 
	73.125
	26.875
	100.00

	1
	100.00
	100.00
	26.88
	126.88

	2
	125.00
	126.31
	26.76
	153.08

	3
	153.75
	153.28
	26.80
	180.08


Multiplying the forecasted seasonal average with the seasonal indices given in slide 19, we get the seasonal forecasts for Spring, Summer, Fall and Winter equal to 157, 331, 124 and 108.

(b) Using Winter’s method, as demonstrated below, the seasonal demand forecasts are 149, 324, 125 and 112.


[image: image16.emf]Season

Actual 

Sales I(t) T(t)

Deseason

alized 

Trend c1(t) c2(t) c3(t) c4(t) Forecast

0 85 5 90 0.870 1.840 0.690 0.600 78.3

1 90 94.034 5.807 99.841 0.879 1.840 0.690 0.600 183.7

2 180 99.237 5.686 104.923 0.879 1.837 0.690 0.600 72.4

3 70 103.881 5.478 109.358 0.879 1.837 0.688 0.600 65.6

4 60 106.551 4.916 111.467 0.879 1.837 0.688 0.596 97.9

5 115 117.289 6.080 123.369 0.889 1.837 0.688 0.596 226.7

6 230 123.912 6.189 130.101 0.889 1.839 0.688 0.596 89.6

7 85 128.114 5.792 133.905 0.889 1.839 0.686 0.596 79.8

8 70 128.950 4.801 133.751 0.889 1.839 0.686 0.591 118.9

9 120 134.126 4.876 139.001 0.889 1.839 0.686 0.591 255.7

10 290 144.602 5.996 150.598 0.889 1.856 0.686 0.591 103.3

11 105 151.344 6.145 157.489 0.889 1.856 0.687 0.591 93.1

12 100 161.007 6.849 167.855 0.889 1.856 0.687 0.594 149.3

13 174.704 0.889 1.856 0.687 0.594 324.2

14 181.552 0.889 1.856 0.687 0.594 124.7

15 188.401 0.889 1.856 0.687 0.594 111.9
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C.  Extra credit (20%)

Prove that in the case that we apply a simple exponential smoothing model on a demand series with a constant mean, as t ( ( the mean and the variance of the forecasting error, ((t), converge respectively to the values provided in item 4 of slide 14. [Hint: To get the first (resp., second) result, work with the equation provided at the top of the slide by taking the mean (resp, the variance) of both sides of this equation, and recognizing that for 0<(<1,  (i) (t(0 as t ( (, and (ii) (t=0((t=1/(1-().]

Proof:

For t (1,   
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(c.f. slide 14)
So 
E[
[image: image20.wmf])

(

ˆ

t

D

] = E
[image: image21.wmf]ú

û

ù

ê

ë

é

-

+

-

-

å

-

=

)

0

(

ˆ

)

1

(

)

(

)

1

(

1

0

D

i

t

D

t

t

i

i

a

a

a




   = 
[image: image22.wmf])

0

(

ˆ

)

1

(

)]

(

[

)

1

(

1

0

D

i

t

D

E

t

t

i

i

a

a

a

-

+

-

-

å

-

=




   =
[image: image23.wmf])

0

(

ˆ

)

1

(

)

1

(

1

0

D

D

t

t

i

i

a

a

a

-

+

-

å

-

=


as t ( (, E[
[image: image24.wmf])

(

ˆ

t

D

]  ( 
[image: image25.wmf]0

)

1

(

1

1

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

D

a

a


          
[image: image26.wmf]D

=


Also, var[
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 as desired.
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Chart1

		90		90		78.3

		180		99.8413793103		183.708137931

		70		104.9227706147		72.3967117241

		60		109.3582913343		65.6149748006

		115		111.4668757493		97.9470105656

		230		123.3694154481		226.6770320428

		85		130.1009700152		89.5595531698

		70		133.9054866012		79.8493368392

		120		133.7509091325		118.88945517

		290		139.0012360925		255.6596278508

		105		150.5982194391		103.294368089

		100		157.4892036329		93.0705295599

				167.8554197792		149.3018016691

				174.7039269803		324.2304376141

				181.5524341814		124.6688938207

				188.4009413825		111.905861895



Actual Sales

Deseasonalized Trend

Forecast

Season



Sheet2

		a		0.3

		b		0.2

		g		0.1

		Season		Actual Sales		I(t)		T(t)		Deseasonalized Trend		c1(t)		c2(t)		c3(t)		c4(t)		Forecast

		0				85		5		90		0.870		1.840		0.690		0.600		78.3

		1		90		94.034		5.807		99.841		0.879		1.840		0.690		0.600		183.7

		2		180		99.237		5.686		104.923		0.879		1.837		0.690		0.600		72.4

		3		70		103.881		5.478		109.358		0.879		1.837		0.688		0.600		65.6

		4		60		106.551		4.916		111.467		0.879		1.837		0.688		0.596		97.9

		5		115		117.289		6.080		123.369		0.889		1.837		0.688		0.596		226.7

		6		230		123.912		6.189		130.101		0.889		1.839		0.688		0.596		89.6

		7		85		128.114		5.792		133.905		0.889		1.839		0.686		0.596		79.8

		8		70		128.950		4.801		133.751		0.889		1.839		0.686		0.591		118.9

		9		120		134.126		4.876		139.001		0.889		1.839		0.686		0.591		255.7

		10		290		144.602		5.996		150.598		0.889		1.856		0.686		0.591		103.3

		11		105		151.344		6.145		157.489		0.889		1.856		0.687		0.591		93.1

		12		100		161.007		6.849		167.855		0.889		1.856		0.687		0.594		149.3

		13								174.704		0.889		1.856		0.687		0.594		324.2

		14								181.552		0.889		1.856		0.687		0.594		124.7

		15								188.401		0.889		1.856		0.687		0.594		111.9
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