Problem 7.4

$$k = 4, \lambda(I) = 6$$
 jobs/hour $C_a^2(I) = 3, E[T_S(B)] = 3/5, C_S^2 = 4/5$
 $\lambda(B) = \lambda(I)/k = 6/4$ Batches/hour
 $C_a^2(B) = 3/4$
 $u(B) = u(I) = \lambda(B)E[T_S(B)] = 0.9$
 $CT_S = \frac{(k-1)}{2}E[T_a(I)] + \frac{(C_a^2(B) + C_S^2(B))}{2} \left(\frac{u(B)}{1 - u(B)}\right)E[T_S(B)] + E[T_S(B)]$
 $CT_S = \frac{(4-1)}{2}\frac{3}{5} + \frac{(3/4 + 4/5)}{2} \left(\frac{0.9}{1 - 0.9}\right)\frac{3}{5} + \frac{3}{5} = 5.035$ hours

Number of waiting batches

$$\begin{split} \mathsf{WIP}_S &= \lambda(B) \frac{\left(C_a^2(B) + C_S^2(B)\right)}{2} \left(\frac{u(B)}{1 - u(B)}\right) E[T_S(B)] \\ &= \frac{\left(C_a^2(B) + C_S^2(B)\right)}{2} \left(\frac{u(B)^2}{1 - u(B)}\right) \\ &= \frac{\left(3/4 + 4/5\right)}{2} \left(\frac{0.9^2}{1 - 0.9}\right) = 6.2775 \text{ Batches} \end{split}$$

To find the optimal batch size that minimize the cycle time

$$u(B) = \lambda(B)E[T_S(B)] = \frac{6}{k}\frac{3}{5} = \frac{3.6}{k} \Rightarrow k = \frac{3.6}{u(B)}$$

$$CT_S = \left[\frac{k-1}{2ku} + \frac{C_a^2/k + C_s^2}{2}\frac{u}{1-u}\right]E[T_S(B)] + E[T_S(B)]$$

Then, we replace k in the CT_S equation by 3.6/u, then we got:

$$CT_S = \left[\frac{3.6-u}{7.2u} + \frac{5u+4.8}{12}\frac{u}{1-u}\right]0.6 + 0.6$$

But since the total capacity of the machine is 4, then we need to minimize CT_S with the constraint $k \leq 4 \Rightarrow 3.6/u \leq 4 \Rightarrow u \geq 0.9$.

The following figure shows the plot of CT_S versus u, from this picture you can notice that the value of u that minimizes CT_S is u = 0.9 and therefore, the optimal batch size will be $k^* = \frac{3.6}{0.9} = 4$.

Another way to obtain the last result above is by noticing that for stability $k > \lambda(I)E[T_S(B)] = 6\frac{3}{5} = 3.6$, and therefore, k = 4 is the only feasible solution.

Extra Credit Problem:

Chapter 7

Problem 1

data: $\lambda = 1 / \text{hour}, C_a^2(I) = 1.5, E[T_s(I)] = 0.75, C_s^2(I) = 2.$

cycle time for individual move $CT_{IM} = \frac{\left(C_a^2(I) + C_s^2(I)\right)}{2} \frac{u(I)}{1 - u(I)} E[T_s(I)] + E[T_s(I)]$ $CT_{IM} = \frac{(1.5 + 2)}{2} \frac{0.75}{0.25} 0.75 + 0.75 = 4.6875 \text{ hours}$

cycle time for batch move as a function of batch size k $\begin{pmatrix} l & l \end{pmatrix} = \begin{pmatrix} C^2(B) + C^2(B) \end{pmatrix}$

$$CT_{BM} = \frac{(k-1)}{2} \frac{1}{\lambda(I)} + \frac{\left(C_a^2(B) + C_s^2(B)\right)}{2} \frac{u(B)}{1 - u(B)} E[T_s(B)] + \frac{(k-1)}{2} E[T_s(I)] + E[T_s(I)]$$

$$= \frac{(k-1)}{2} \frac{1}{\lambda(I)} + \frac{\left(\frac{C_a^2(I)}{k} + \frac{C_s^2(I)}{k}\right)}{2} \frac{u(I)}{1 - u(I)} k E[T_s(I)] + \frac{(k-1)}{2} E[T_s(I)] + E[T_s(I)]$$

$$= \frac{(k-1)}{2} \frac{1}{\lambda(I)} + \frac{\left(C_a^2(I) + C_s^2(I)\right)}{2} \frac{u(I)}{1 - u(I)} E[T_s(I)] + \frac{(k-1)}{2} E[T_s(I)] + E[T_s(I)]$$

$$= CT_{IM} + \frac{(k-1)}{2} \frac{1}{\lambda(I)} + \frac{(k-1)}{2} E[T_s(I)]$$

$$k = 2$$

$$CT_{BM} = \frac{1}{2}1 + \frac{1}{2}0.75 + \frac{(1.5+2)}{2}\frac{0.75}{0.25}0.75 + 0.75 = 4.6875 + 0.875 = 5.5625 \text{ hours}$$

$$k = 3$$

$$CT_{BM} = \frac{2}{2}1 + \frac{2}{2}0.75 + \frac{(1.5+2)}{2}\frac{0.75}{0.25}0.75 + 0.75 = 6.4375 \text{ hours}$$

$$k = 4$$

$$CT_{BM} = \frac{3}{2}1 + \frac{3}{2}0.75 + \frac{(1.5+2)}{2}\frac{0.75}{0.25}0.75 + 0.75 = 7.3125 \text{ hours}$$

$$k = 5$$

$$CT_{BM} = \frac{4}{2}1 + \frac{4}{2}0.75 + \frac{(1.5+2)}{2}\frac{0.75}{0.25}0.75 + 0.75 = 8.1875 \text{ hours}$$

Note: as batch size increases, so does the cycle time.

Problem 5

Due to the serial nature of the system: $\lambda_1 = \lambda_2 = \lambda_3 = 0.5$ Workstation 1: $u_1 = \frac{\lambda_1 E[T_1]}{c_1} = \frac{0.5(1.6)}{1} = 0.80$ $CT_s(1) = \left(\frac{2+0.75}{2}\right) \left(\frac{0.80}{0.20}\right) 1.6 + 1.6 = 10.400$ $WIP_s(1) = \lambda_1 CT_s(1) = 0.5(10.400) = 5.200$ $C_d^2(1) = (1 - u_1^2) C_a^2(1) + u_1^2 C_s^2(1) = (1 - 0.80^2) 2 + 0.80^2(0.75) = 1.200$

Workstation 2:

$$u_{2} = \frac{\lambda_{2}E[T_{2}]}{c_{2}} = \frac{0.5(1.5)}{1} = 0.75$$

$$CT_{s}(2) = \left(\frac{1.2 + 1.5}{2}\right) \left(\frac{0.75}{0.25}\right) 1.5 + 1.5 = 7.575$$

$$WIP_{s}(2) = \lambda_{2}CT_{s}(2) = 0.5(7.575) = 3.787$$

$$C_{d}^{2}(2) = \left(1 - u_{2}^{2}\right) C_{a}^{2}(2) + u_{2}^{2}C_{s}^{2}(2) = (1 - 0.75^{2}) 1.2 + 0.75^{2}(1.5) = 1.369$$

Workstation 3:

$$u_{3} = \frac{\lambda_{3}E[T_{3}]}{c_{3}} = \frac{0.5(1.7)}{1} = 0.85$$

$$CT_{s}(3) = \left(\frac{1.369 + 2}{2}\right) \left(\frac{0.85}{0.15}\right) 1.7 + 1.7 = 17.926$$

$$WIP_{s}(3) = \lambda_{3}CT_{s}(3) = 0.5(17.926) = 8.963$$

$$C_{d}^{2}(3) = \left(1 - u_{3}^{2}\right)C_{a}^{2}(3) + u_{3}^{2}C_{s}^{2}(3) = (1 - 0.85^{2}) 1.369 + 0.85^{2}(2) = 1.825$$

System Performance Measures

$$WIP_{sys} = WIP_s(1) + WIP_s(2) + WIP_s(3) = 17.951$$

 $Th_{sys} = \lambda_1 = 0.5$
 $CT_{sys} = \frac{WIP_{sys}}{Th_{sys}} = \frac{17.951}{0.5} = 35.901$

Problem 9

(a)
$$Th_{sys} = 0.51$$
 $WIP_{sys} = 20.247$ $CT_{sys} = 39.699$
 $Th_{sys} = 0.53$ $WIP_{sys} = 26.807$ $CT_{sys} = 50.579$
 $Th_{sys} = 0.55$ $WIP_{sys} = 38.969$ $CT_{sys} = 70.852$
(b) $C_s^2(3) = 1.31 \rightarrow Th_{sys} = 0.51$ $WIP_{sys} = 18.297$ $CT_{sys} = 35.876$
implies a 34.3% reduction
(c) $E[T_3] = 1.7 \rightarrow 1.343 \Rightarrow Th_{sys} = 0.55$ $WIP_{sys} = 19.738$ $CT_{sys} = 35.89$
(d) $VTT_1 = \frac{util}{10} = 0.880$ is the same state of the system of t

(d)
$$E[T_3] = \frac{utu_1}{th} = \frac{0.880}{0.55} = 1.6$$
 hrs, $SR = 1/E[T_3] = 1/1.6 = 0.625/hr$

Workstation 1:

$$C_a^2(1) = 0.75$$
, $E[T_s(1)] = 0.20$, $C_s^2(1) = 2.0$, $u_1 = 0.8$
 $CT_s(1) = \frac{(0.75 + 2.0)}{2} \frac{0.8}{0.2} (0.2) + 0.2 = 1.300$ hrs.
 $C_d^2(1) = (1 - 0.8^2) 0.75 + (0.8^2) 2.0 = 1.550$

Workstation 2:

$$E[T_s(2)] = 0.30, \quad C_s^2(2) = 0.7, \quad u_2 = 0.6$$

$$CT_s(2) = \frac{(1.550 + 0.7)}{2} \frac{(0.6^{\sqrt{6}-1})}{2(0.4)} (0.3) + 0.3 = 0.5012 \text{ hrs.}$$

$$C_d^2(2) = 1 + (1 - 0.6^2)(1.550 - 1) + \frac{0.6^2(0.7 - 1)}{\sqrt{2}} = 1.276$$

Workstation 3:

$$E[T_s(3)] = 0.22, \quad C_s^2(3) = 1.0, \quad u_3 = 0.88$$

 $CT_s(3) = \frac{(1.276 + 1.0)}{2} \frac{0.88}{0.12} (0.22) + 0.22 = 2.056 \text{ hrs.}$

System:

$$WIP_{sys} = 4(1.300 + 0.5012 + 2.0560) = 15.429 \text{ jobs}$$

 $CT_{sys} = \frac{WIP_{sys}}{Th_{sys}} = 15.429 / 4 = 3.857 \text{ hrs.}$
 $Th_{sys} = 4 \text{ jobs / hour}$

1

•

 $(\mathbf{\hat{l}})$

$$Y_{a}$$
 TH U_{1} CT_{1} WIP_{1} CT_{1} WIP_{2} CT_{3} UIP_{3} CT_{358} WIP_{352} 0.5 0.5 0.8 10.4 5.2 1.2 0.75 7.575 3.787 1.369 0.85 17.726 9.963 379.961 17.951 0.51 0.51 0.816 11.356 5.79 1.167 0.745 8.013 4.087 1362 0.877 20.733 10318 39.70 20.747 0.53 0.53 0.848 13.874 7.357 1.101 0.745 9.065 4.805 1.357 0.961 27.624 14.65 50.58 $2C.807$ 0.55 0.55 0.88 17.733 9.753 1.032 0.925 5.744 1.350 0.935 42.667 23.467 10.857 38.969

b) from the above table, the required reduction is

$$A(T_{SYS} = 39.(99 - 35.90) = 3.798$$

The "bottlenech" machine (according to the suggested definition) is
the He 3rd me. The target cycle time for the machine is
 $(T' = 20.33 - 3.748 = 16.532$
The above reduction will be effected by charging the SCV of
processing times at that machine. Let x denote the new value
for the SCV. Then, we need:
 $\frac{1.3(9 + x)}{2} = \frac{0.8(7)}{1-0.8(7)} \cdot 1.7 + 1.7 = 10.532 (=) x = 1.315$

c) (in this case, the requested (7 reduction is:

$$A(7_{5y}) = 30.852 - 35.901 = 34.951$$
and the **tangol(7**, is

$$(7_{3}' - 42.667 - 34.951 = 7.716$$
Setting $x = mow$ mean proceeding for machine 3, we have:

$$\frac{1.3(2+2)}{2} = \frac{0.55. \times}{1-0.55 \times} \times 4 \times = 7.716 \quad (=)$$
($\Rightarrow 0.92455 \times - (7.716 - x)(1-0.55 \times) \quad (=)$
($\Rightarrow 0.37455 \times^{2} + 5.2438 \times - 7.716 = 0 =)$
 $\Rightarrow x = \frac{-5.2439 + \sqrt{5.2438^{2} + 4.0.34455 \cdot 7.716}}{2 \cdot 0.37455} = 1.343$

2

d) The machine will the record highest utilization is machine I, with 4=0.88. Hence, we want: 0.55. x = 0.88 => x= 0.88 = 1.6 hrs (which of conse

Homework 6

Problem 13 (Chapter 5)

Solving a simultaneous system of equations is not necessary for this problem since it can be solved in a straightforward manner:

$$\lambda_{1} = 10$$

$$\lambda_{2} = 0 + \frac{3}{4}\lambda_{1} = 7.5$$

$$\lambda_{3} = 0 + \frac{1}{4}\lambda_{1} + \lambda_{2} = 2.5 + 7.5 = 10$$

Problem 15

The system of equations relating these mean flow rates are:

$$\lambda_1 = 10 + \frac{1}{3}\lambda_2 + \frac{1}{5}\lambda_3$$
$$\lambda_2 = 2 + \frac{3}{4}\lambda_1$$
$$\lambda_3 = 0 + \frac{1}{4}\lambda_1 + \frac{2}{3}\lambda_2$$

and the from/to probability matrix is:

$$\mathbf{P} = \begin{bmatrix} 0 & 3/4 & 1/4 \\ 1/3 & 0 & 2/3 \\ 1/5 & 0 & 0 \end{bmatrix}$$

The system becomes $(I - P^T)\underline{\lambda} = \gamma$

$$\lambda_1 - \frac{1}{3}\lambda_2 - \frac{1}{5}\lambda_3 = 10$$
$$-\frac{3}{4}\lambda_1 + \lambda_2 + 0\lambda_3 = 2$$
$$\frac{1}{4}\lambda_1 + \frac{2}{3}\lambda_2 + \lambda_3 = 0$$

The solution $\underline{\lambda} = (\mathbf{I} - \mathbf{P}^T)^{-1} \underline{\gamma}$ via a compute code is:

Problem 18 Part a

By the solution of Problem 5.13,

$$\lambda_{1} = 10$$

$$\lambda_{2} = 0 + \frac{3}{4} \lambda_{1} = 7.5$$

$$\lambda_{3} = 0 + \frac{1}{4} \lambda_{1} + \lambda_{2} = 2.5 + 7.5 = 10$$

$$u_{1} = 10(0.086) = 0.86,$$

$$u_{2} = 7.5(0.110) = 0.825,$$

$$u_{3} = 10(0.080) = 0.80.$$
Note: $C_{d}^{2} = (1 - u^{2})C_{a}^{2} + u^{2}C_{s}^{2}$

$$C_{a}^{2}(1) = 1.5,$$
Note that the number 1.352
$$C_{d}^{2}(1) = (1 - 0.86^{2}).5 + 0.86^{2}(1.352) = 1.391;$$
should actually read 1.391.
$$C_{a}^{2}(2) = (3/4)(\frac{1.352}{1.293}) + 1/4 = 1.293,$$

$$C_{a}^{2}(3) = (7.5)^{1}(0)(0.975) + (3.6)^{2}(0.826) = 0.975;$$

$$C_{a}^{2}(3) = (7.5)^{1}(0)(0.975) + (3.6)^{2}(0)(\frac{1}{4}.1391 + \frac{3}{4}) = 1.006.$$
Note: $CT_{s}(i) = \frac{(C_{a}^{2}(i) + C_{s}^{2}(i))}{2} \left(\frac{u_{i}}{1 - u_{i}}\right) E[T_{s}(i)] + E[T_{s}(i)]$

$$CT_{s}(1) = \left(\frac{1.5 + 1.352}{2}\right) \left(\frac{0.86}{0.14}\right) 0.086 + 0.086 = 0.839,$$

$$CT_{s}(1) = \left(\frac{1.293 + 0.826}{2}\right) \left(\frac{0.825}{0.175}\right) 0.110 + 0.110 = 0.660,$$

$$CT_{s}(1) = \left(\frac{1.006 + 1.562}{2}\right) \left(\frac{0.80}{0.20}\right) 0.08 + 0.08 = 0.491.$$
Note: by Little's Law $WIP_{s}(i) = \lambda_{i}CT_{s}(i)$

$$WIP_{s}(1) = 10(0.8394) = 8.394,$$

$$WIP_{s}(2) = 7.5(0.660) = 4.946,$$

$$WIP_{s}(3) = 10(0.491) = 4.910,$$

$$WIP_{sys} = \sum_{i=1}^{3} WIP_{s}(i)$$

$$WIP_{sys} = 18.25 \text{ jobs}$$
TH = 10 jobs / hour
$$CT_{sys} = \frac{WIP_{sys}}{TH} = 18.25 / 10 = 1.825 \text{ hours.}$$

Problem 18 Part b (availability < 1)

This problem proceeds as Part a except that E[S] and $C^2[S]$ are adjusted to account for breakdowns. These adjusted values are denoted herein as $E[S_e]$ and $C^2[S_e]$. The adjusts are in terms of the machine availability *a*, the mean and SCV of the repair time E[R] and $C^2[R]$, all of this is given data (or computable data from given data) with:

$$E[S_e] = E[S] / a;$$

$$C^2[S_e] = C^2[S] + (1 + C^2[R])a(1 - a)E[R] / E[S].$$

For this problem:

 $\underline{a} = (0.95, 0.93, 0.87),$ $E[R_1] = 0.2, C^2[R_1] = 1,$ $E[R_2] = 0.3, C^2[R_1] = 1,$ $E[R_3] = 0.4, C^2[R_1] = 1.$

Thus, the adjusted service characteristics are:

$$\begin{split} E[S_{e1}] &= 0.086 / 0.95 = 0.0905, \\ E[S_{e2}] &= 0.110 / 0.93 = 0.1183, \\ E[S_{e3}] &= 0.080 / 0.87 = 0.0920, \\ \text{and} \\ C^2[S_{e1}] &= 1.352 + (1+1)0.95(0.05)0.2 / 0.086 = 1.573, \\ C^2[S_{e2}] &= 0.862 + (1+1)0.93(0.07)0.3 / 0.110 = 1.181, \\ C^2[S_{e3}] &= 1.5625 + (1+1)0.87(0.13)0.4 / 0.080 = 2.693. \end{split}$$

This of course leads to increased utilizations for the machines which are:

u = (0.905, 0.887, 0.920).

numprod = 1; numstat = 3;maxnumsteps = 3;[* inflow rates for each product by step *] Print["External Arrival Stream Mean Rates : G"]; $G = \{\{10, 0, 0\}\};\$ Print["External Arrival Streams Squared Coef. Var. by step: Cao"]; Cao = { $\{1.5, 0, 0, 0\}$ }; [* product routing probabilities: a matrix for each product *] [* these are given as leaving probabilities (from - to) *] $P = \{\{0, 3/4, 1/4\}, \{0, 0, 1\}, \{0, 0, 0\}\};\$ [* number of machines in stations *] $m = \{1, 1, 1\};$ [* special workstations - batching size fixed *] $BatchWS = \{1, 1, 1\};$ [* prod serv time means and variances by step *] $ProdMeans = \{\{0.086, 0.110, 0.080\}\};\$ $ProdSCV = \{\{1.3521, 0.8264, 1.5625\}\};$ [* MACHINE AVAILABILITY DUE TO BREAKDOWNS AND REPAIRS *] [* used only if avail < 1, and applies to each machine of a group *] [* avail is the fraction of the time that the machine is operational *] $avail = \{0.95, 0.93, 0.87\};$ [* repair time data not used unless avail < 1 *] ERTime = $\{0.2, 0.3, 0.4\};$ $C2RTime = \{1, 1, 1\};$ [* ========= end of user input data ========= *]

CaKorqK: 0 CdApprox: 1 CaApprox: 1 maxciter: 10 prtciter: 1 CaPrt: 0 External Arrival Stream Mean Rates : G external inflow by product to Steps $1 \{ 10, 0, 0 \}$ External Arrival Streams Squared Coef. Var. by step: Cao $1 \{ 1.500, 0, 0, 0,$ 0} Steps to WorkStations Conversion 1 2 3 Routing Step Matrix by Product: QPRP 0.750 0.250 0.000 0.000 0.000 1.000 0.000 0.000 0.000 Prod mean times 0.086 0.110 0.080 Prod Serv Vars 0.010 0.010 0.010 External Inflow by Product to WorkStations $1 \{ 10.000, 0.000, 0.000 \}$ External Arrival Squared Coef. Var. by WorkStation: Caows uses asymptotic weighted Cao of steps into workstations $1 \{ 1.500, 0.000, 0.000 \}$ S - Serv Time Sq. Coef. Var. by Product 1.352 0.826 1.563 OPRP 1 0.000 0.750 0.250 0.000 1.000 0.000 0.000 0.000 0.000 G[i] by step: { 10, 0, Lam: 1 = { 10.000, 0} 7.500, 10.000} Lam by Product per Step 10.000 7.500 10.000 Lam by Product and WorkStation 10.000 7.500 10.000 Total wslam by WorkStation 10.000 7.500 10.000 Branching Probabilities by Workstation: Qws 0.000 0.750 0.250 0.000 0.000 1.000 0.000 0.000 0.000 Gam Inflow by Workstation and Product: Gws 10.000 0.000 0.000 wsgam: { 10.000, 0.000, 0.000} total gam: 10 mean proc times at WorkStations mtws: { 0.086, 0.110, 0.080} Sq. Coef Serv Times at WorkStations Csws: { 1.352, 0.826, 1.562} mean proc times at WorkStations adjusted for avail

mtws: { 0.091, 0.118, 0.092Sq. Coef Serv Times at WorkStations adjusted for avail Csws: { 1.573, 1.181, 2.693} station loads util: { 0.905, 0.887, 0.920num machs at stations m: { 1, $1, 1\}$ external arriv sq coef var to stations: asymptotic method Caosws: { 1.500, 0.000, $0.000\}$ 0 Ca: { 1.000, 1.000, 1.000citer: citer: 1 Ca: { 1.500, 1.352, 1.136Cd: { 1.470, 1.143, 1.000Cda: { 1.117, 1.143, 1.000} 1.198} citer: 2 Ca: { 1.500, 1.420, Cd: { 1.560, 1.218, 1.000} Cda: { 1.140, 1.218, $1.000\}$ 3 Ca: { 1.500, 1.420, 1.209citer: 1.232, 1.000Cd: { 1.560, Cda: { 1.140, 1.232, 1.0001.209} citer: 4 Ca: { 1.500, 1.420, Cd: { 1.560, 1.232, $1.000\}$ Cda: { 1.140, 1.0001.232, asymptotic method - Ca: { 1.500, 1.420, 1.209 $1.000\}$ Cd: { 1.560, 1.232, Cda: { 1.140, 1.232, 1.000rho: { 0.905, 0.887, 0.920} mtws: { 0.091, 0.118, 0.092Results by WorkStation 1 CTqi: WSi: 1.329 WIPqi: 13.291 1.420 CTsi: WIPsi: 14.197 WSi: 1.209 2 CTqi: WIPqi: 9.066 CTsi: 1.327 WIPsi: 9.953 WSi: 3 CTqi: 2.051 WIPqi: 20.507 CTsi: 2.143 WIPsi: 21.426 total system inflow (tgam): 10.000 WIPsys: 45.576 CTsys: 4.558

Problem 19 Part a

This problem must assume two machines per workstation. in order to have
$$u_1 < \Delta \lambda_1 = 10 + \frac{1}{3}\lambda_2 + \frac{1}{5}\lambda_3$$
 With two machines and the computed λ values, we have the following utilizations:
 $\lambda_2 = 2 + \frac{3}{4}\lambda_1$
 $\lambda_3 = 0 + \frac{1}{4}\lambda_1 + \frac{2}{3}\lambda_2$
 $\lambda_4 = \{18.22\overline{2}, 15.66\overline{6}, 15\}$ Using $u_1 = \lambda_1 \cdot ([T_5(3)]/2 = 18.222 \cdot 0.086/2 = 0.7835)$
 $u_2 = \lambda_2 \in [T_5(2)]/2 = 15.6(6 \cdot 0.11/2 = 0.8617)$
 $u_3 = \lambda_3 \in [T_5(3)]/2 = 15.6(6 \cdot 0.11/2 = 0.8617)$
Using $u_3 = \lambda_3 \in [T_5(3)]/2 = 15.6(6 \cdot 0.11/2 = 0.8617)$
 $u_4 = \lambda_4 \cdot ([T_5(3)]/2 = 15.6(6 \cdot 0.11/2 = 0.8617)$
 $u_5 = \lambda_5 \cdot 0.08/2 = 0.6$

$$C_{a}^{2}(1) = \frac{10(1.5)}{18.222} + \frac{15(1/5)}{18.222} \left[\frac{4}{5} + \frac{1}{5} \left\{ 1 + (1 - 0.6^{2})(C_{a}^{2}(3) - 1) + \frac{0.6^{2}(1.563 - 1)}{\sqrt{2}} \right\} \right] + \frac{15.667(1/3)}{18.222} \left[\frac{2}{3} + \frac{1}{3} \left\{ 1 + (1 - 0.8617^{2})(C_{a}^{2}(2) - 1) + \frac{0.8617^{2}(0.8264 - 1)}{\sqrt{2}} \right\} \right],$$

$$C_a^2(2) = \frac{2(1.5)}{15.667} + \frac{18.222(3/4)}{15.667} \left[\frac{1}{4} + \frac{3}{4} \left\{ 1 + (1 - 0.7835^2)(C_a^2(1) - 1) + \frac{0.7835^2(1.3521 - 1)}{\sqrt{2}} \right\} \right],$$

$$C_{a}^{2}(3) = \frac{0(1.5)}{15} + \frac{18.222(1/4)}{15} \left[\frac{3}{4} + \frac{1}{4} \left\{ 1 + (1 - 0.7835^{2})(C_{a}^{2}(1) - 1) + \frac{0.7835^{2}(1.3521 - 1)}{\sqrt{2}} \right\} \right] + \frac{15.667(2/3)}{15} \left[\frac{1}{3} + \frac{2}{3} \left\{ 1 + (1 - 0.8617^{2})(C_{a}^{2}(2) - 1) + \frac{0.8617^{2}(0.8264 - 1)}{\sqrt{2}} \right\} \right].$$

$$\underline{C}_{a}^{2}(iter \ 0) = \{1.0, 1.0, 1.0\}$$

$$\underline{C}_{a}^{2}(iter \ 1) = \{1.274, 1.232, 0.997\}$$

$$\underline{C}_{a}^{2}(iter \ 2) = \{1.276, 1.233, 1.005\}$$

$$\underline{C}_{a}^{2}(iter \ 3) = \{1.276, 1.234, 1.005\}$$

$$\underline{C}_{a}^{2}(iter \ 4) = \{1.276, 1.234, 1.005\}$$

$$\underline{C}_{a}^{2} = \{1.276, 1.234, 1.005\}$$

Workstation Performance Measures

$$CT_{s}(1) = \left(\frac{1.276 + 1.352}{2}\right) \frac{0.784^{\sqrt{2(2)+2}-1}}{2(1-0.784)} 0.086 + 0.086 = 0.269$$
$$TH_{s}(1) = 18.222$$
$$WIP_{s}(1) = 0.269 * 18.222 = 4.902$$

$$CT_{s}(2) = \left(\frac{1.234 + 0.826}{2}\right) \frac{0.862^{\sqrt{2(2)+2}-1}}{2(1 - 0.862)} 0.110 + 0.110 = 0.440$$
$$TH_{s}(2) = 15.667$$
$$WIP_{s}(2) = 0.440 * 15.667 = 6.893$$

$$CT_{s}(3) = \left(\frac{1.005 + 1.563}{2}\right) \frac{0.6^{\sqrt{2(2)+2}-1}}{2(1-0.6)} 0.110 + 0.110 = 0.141$$
$$TH_{s}(3) = 15$$
$$WIP_{s}(3) = 0.141*15 = 2.118$$

Factory Performance Measures

$$TH_{sys} = 10 + 2 + 0 = 12 \text{ jobs / hour}$$
$$WIP_{sys} = WIP_s(1) + WIP_s(2) + WIP_s(3) = 4.908 + 6.894 + 2.118 = 13.920 \text{ jobs}$$
$$CT_{sys} = \frac{13.920}{12} = 1.160 \text{ hours}$$

Computer Model Data and Solution (non-perfect machines)

```
0023: [* ======= start of user input data ======== *]
0024: numprod = 1;
0025: numstat = 3;
0026: maxnumsteps = 3;
0027: [* product titles *]
0028: ProdTitles = {"HW5_17b"};
0029: Print["Products: ",ProdTitles];
0030: [* time units for all model data *]
0031: TimeUnit = "hours";
0032: UnitConv = 24;
0033: TimeConv = "days";
0034: Print["------ model analysis in: ",TimeUnit];
0035:
0036: [* inflow rates for each product by step *]
0037: Print["External Arrival Stream Mean Rates : G"];
0038: G = 1.0 {{10,2,0}};
```

```
0039:
   0040: Print["external inflow by product to Steps"];
   0041: For[i=1,i<=numprod,i++,
   0042:
          Print[i," ",G[[i]] ];
   0043: ];
   0044:
   0045: Print["External Arrival Streams Squared Coef. Var. by step: Cao"];
   0046: Cao = {{1.5,1.5,0.0}};
   0047: For[i=1, i<=numprod, i++,
   0048:
         Print[i," ",Cao[[i]] ];
   0049: ];
   0050: [* steps to work station conversion *]
   0051: StoWS = Table[{}, {i, numprod}];
   0052: StoWS[[1]] = \{1, 2, 3\};
   0053: Print[" "];
   0054: Print["Steps to WorkStations Conversion"];
   0055: MatrixPrint[StoWS];
   0056:
   0057: [* workstation processing titles *]
   0058: WSTitles = {"one","two","three"};
   0059: Print["Workstations:",WSTitles];
   0060:
   0061: [* product routing probabilities: a matrix for each product *]
   0062: [* these are given as leaving probabilities (from - to) *]
   0063: OPRP = Table[{}, {i,numprod}];
   0064:
   0065: QPRP[[1]] = { { 0, 3/4, 1/4 }, { 1/3, 0, 2/3 }, { 1/5, 0, 0 } };
   0066:
   0067: Print["Routing Step Matrix by Product: QPRP"];
   0068: MatrixPrint[1.0QPRP];
   0069: Print[" "];
   0070:
   0071: [* number of machines in stations *]
   0072: m = \{2, 2, 2\};
   0073: [* special workstations - batching size fixed *]
   0074: BatchWS = {1,1,1};
   0075: [* prod serv time means and variances by step *]
   0076: ProdMeans = \{\{0.086, 0.110, 0.080\}\};
   0077:
   0078: ProdSCV = \{\{1.3521, 0.8264, 1.5625\}\};
   0079: ProdVar = (ProdSCV) * ProdMeans^2;
   0080:
   0081: [* MACHINE AVAILABILITY DUE TO BREAKDOWNS AND REPAIRS *]
   0082: [* used only if avail < 1, and applies to each machine of a group *]
   0083: [* avail is the fraction of the time that the machine is operational *]
_____ 0084: avail = {0.95, 0.93, 0.87};
   0085: [* repair time data not used unless avail < 1 *]
-> 0086: ERTime = {0.2,0.3,0.4};
0088:
   0089: [* ======= end of user input data ======== *]
   ______
    CaKorqK: 0 CdApprox: 1 CaApprox: 1
    maxciter: 10 prtciter: 1 CaPrt: 0
    ______
```

Products: { HW5_19b} ----- model analysis in: hours External Arrival Stream Mean Rates : G external inflow by product to Steps $1 \{ 10.000, 2.000,$ 0.000External Arrival Streams Squared Coef. Var. by step: Cao $1 \{ 1.500,$ 1.500, 0.000} Steps to WorkStations Conversion 1 2 3 Workstations: { one, two, three } Routing Step Matrix by Product: QPRP 0.000 0.750 0.250 0.333 0.000 0.667 0.200 0.000 0.000 ---- machine availability data ---avail: { 0.950, 0.930, 0.870} E[R] : { 0.200, 0.300, 0.400C^2[R]: { 1, 1, 1} Prod mean times 0.086 0.110 0.080 Prod Service SCVs 1.352 0.826 1.563 Prod Serv Vars 0.010 0.010 0.010 External Inflow by Product to WorkStations $1 \{ 10.000, 2.000, 0.000 \}$ External Arrival Squared Coef. Var. by WorkStation: Caows uses asymptotic weighted Cao of steps into workstations 1.500, $0.000\}$ $1 \{ 1.500,$ S - Serv Time Sq. Coef. Var. by Product 1.352 0.826 1.563 QPRP 1 0.000 0.750 0.250 0.000 0.333 0.667 0.000 0.000 0.200 G[i] by step: { 10.000, 2.000, 0.000} Lam: $1 = \{ 18.222, 15.667, 15.000 \}$ Lam by Product per Step 18.222 15.667 15.000 Lam by Product and WorkStation 18.222 15.667 15.000 Total wslam by WorkStation 18.222 15.667 15.000 Branching Probabilities by Workstation: Qws 0.750 0.250 0.000 0.333 0.000 0.667 0.200 0.000 0.000 Gam Inflow by Workstation and Product: Gws 10.000 2.000 0.000 wsgam: { 10.000, 2.000, 0.000total gam: 12 mean proc times at WorkStations

mtws: { 0.086, 0.110, 0.080Sq. Coef Serv Times at WorkStations Csws: { 1.352, 0.826, 1.563mean proc times at WorkStations adjusted for avail mtws: { 0.091, 0.118, 0.092} Sq. Coef Serv Times at WorkStations adjusted for avail Csws: { 1.573, 1.181, 2.694station loads →^{util: {} 0.927, 0.6900.825, num machs at stations m: { 2, 2, 2} external arriv sq coef var to stations: asymptotic method Caosws: { 1.500, 1.500, 0.0000 Ca: { 1.000, 1.000, $1.000\}$ citer: 1 Ca: { 1.304, 1.244, 1.072citer: 1.276, Cd: { 1.110, 1.570} Cda: { 1.069, 1.073, 1.114} 1.095citer: 2 Ca: { 1.308, 1.308, Cd: { 1.373, 1.145, 1.607Cda: { 1.093, 1.096, 1.121} 1.100} 1.309, 1.309, citer: 3 Ca: { 1.620Cd: { 1.374, 1.154, 1.094, 1.102, 1.124} Cda: { citer: 4 Ca: { 1.310, 1.309, $1.100\}$ Cd: { 1.375, 1.154, 1.622Cda: { 1.094, 1.103, 1.1245 Ca: { 1.309, $1,100\}$ citer: 1.310, Cd: { 1.375, 1.154, 1.622} Cda: { 1.094, 1.103, 1.124} 6 Ca: { citer: 1.310, 1.309, 1.1001.622} Cd: { 1.375, 1.154, Cda: { 1.094, 1.103, 1.124} citer: 7 Ca: { 1.310, 1.309, 1.100} Cd: { 1.154, 1.622} 1.375, Cda: { 1.094, 1.103, 1.124} citer: 8 Ca: { 1.310, 1.309, 1.100Cd: { 1.375, 1.154, 1.622Cda: { 1.094, 1.103, 1.124} citer: 9 Ca: { 1.310, 1.309, 1.1001.622Cd: { 1.375, 1.154, Cda: { 1.094, 1.103, 1.124} 10 Ca: { 1.310, 1.309, 1.100citer: Cd: { 1.375, 1.154, 1.622

Cda: { 1.094, 1.103, 1.124} asymptotic method 1.100} WS Ca : { 1.310, 1.309, 6 1.375, 1.154, 1.622} WS Cd : { 1.103, 1.124} WS Cda: { 1.094, WS Utils: { 0.825, 0.927, 0.690} WS E[Ts]: { 0.091, 0.118, 0.092} Results by WorkStation 1 one CTqi: 0.282 WIPqi: 5.132 WSi: CTsi: 0.372 WIPsi: 6.782 two CTqi: 0.897 WIPqi: 14.057 WSi: 2 CTsi: 1.016 WIPsi: 15.911 WSi: 3 three CTqi: 0.164 WIPqi: 2.460 CTsi: 0.256 WIPsi: 3.839 total system inflow (tgam): 12.000 WIPsys: 26.531 CTsys: 2,211 hours 0.092 days CTsys: