Input Data Analysis: Specifying Model Parameters & Distributions

Christos Alexopoulos
David Goldsman
School of Industrial & Systems Engineering
Georgia Tech
Overview

- Deterministic vs. random inputs
- Data collection
- Distribution fitting
 - Model “guessing”
 - Fitting parametric distributions
 - Assessment of independence
 - Parameter estimation
 - Goodness-of-fit tests
- No data?
- Non-stationary arrival processes
- Multivariate / correlated input data
- Case study
Deterministic vs. Random Inputs

- *Deterministic*: Nonrandom, fixed values
 - Number of units of a resource
 - Entity transfer time (?)
 - Interarrival, processing times (?)

- *Random*: Model as a distribution, “draw” or “generate” values from to drive simulation
 - Interarrival, processing times
 - What distribution? What distributional parameters?
 - Causes simulation output to be random, too

- Don’t just assume randomness away!
Collecting Data

- Generally hard, expensive, frustrating, boring
 - System might not exist
 - Data available on the wrong things — might have to change model according to what’s available
 - Incomplete, “dirty” data
 - Too much data (!)
- Sensitivity of outputs to uncertainty in inputs
- Match model detail to quality of data
- Cost — should be budgeted in project
- Capture variability in data — model validity
- Garbage In, Garbage Out (GIGO)
Using Data: Alternatives and Issues

- Use data “directly” in simulation
 - Read actual observed values to drive the model inputs (interarrivals, service times, part types, ...)
 - All values will be “legal” and realistic
 - But can never go outside your observed data
 - May not have enough data for long or many runs
 - Computationally slow (reading disk files)

- Or, fit probability distribution to data
 - “Draw” or “generate” synthetic observations from this distribution to drive the model inputs
 - Can go beyond observed data (good and bad)
 - May not get a good “fit” to data — validity?
Fitting Distributions: Some Important Issues

- Not an exact science — no “right” answer
- Consider theoretical vs. empirical
- Consider range of distribution
 - Infinite both ways (e.g., normal)
 - Positive (e.g., exponential, gamma)
 - Bounded (e.g., beta, uniform)
- Consider ease of parameter manipulation to affect means, variances
- Simulation model sensitivity analysis
- Outliers, multimodal data
 - Maybe split data set
Guess model using:

- Summary statistics, such as
 - Sample mean \overline{X}_n
 - Sample variance S_n^2
 - Sample median
 - Sample coefficient of variation S_n/\overline{X}_n
 - Sample skewness

- Skewness close to zero indicates a symmetric distribution
- A skewed distribution with unit coefficient of variation is likely the exponential

- Histograms (play with interval width to get a reasonably smooth histogram). They resemble the unknown density
- Box plots

Estimates

$CV(X) = \frac{\sigma}{\mu} = \sqrt{\frac{\text{Var}(X)}{\text{E}(X)}}$

$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}_n)^3$

$E(X - \mu)^3 / \sigma^3$

$\frac{S_n^3}{n}$
Main Steps (continued)

- If a parametric model seems plausible:
 - Estimate parameters
 - Test goodness-of-fit
Fitting Parametric Distributions

- Assume that the sample data are independent identically distributed data from some distribution with density (probability) function

\[X_1, X_2, \ldots, X_n \sim f(x; \theta) \]

\[\theta = (\theta_1, \ldots, \theta_m) \]

- All data are complete (no censoring)
- How can we test independence?
 - Using the scatter-plot of \((X_i, X_{i+1}), i = 1, \ldots, n - 1\)
 - By means of von-Neumann’s test
Von Neumann’s Test

The test statistic is

\[U_n = \sqrt{\frac{n^2 - 1}{n - 2}} \times \left[\hat{\rho}_1 + \frac{(X_1 - \bar{X}_n)^2 + (X_n - \bar{X}_n)^2}{2 \sum_{i=1}^{n} (X_i - \bar{X}_n)^2} \right] \]

where

\[\hat{\rho}_1 = \frac{\sum_{i=1}^{n-1} (X_i - \bar{X}_n)(X_{i+1} - \bar{X}_n)}{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2} \]

estimates the correlation between adjacent observations.

If the data are independent and \(n \geq 20 \), \(U_n \approx N(0, 1) \)

We reject the hypothesis of independence when

\[|U_n| > z_{\beta/2} \]

where \(\beta \) is the type-I error.
Types of Parameters

- **Location** parameters — they shift the density function
- **Shape** parameters — they change the shape of the density function
- **Scale** parameters

Example: For the \(N(\mu, \sigma^2) \) distribution
- \(\mu \) is the location parameter because \(X \sim N(\mu, \sigma^2) \Leftrightarrow X-\mu \sim N(0, \sigma^2) \)
- \(\sigma \) is the scale parameter because \(X \sim N(\mu, \sigma^2) \Leftrightarrow X/\sigma \sim N(\mu, 1) \)

Example: In the Weibull(\(\alpha, \lambda \)) distribution
- \(\alpha \) is a shape parameter
- \(\lambda \) is the scale parameter
Parameter Estimation Methods

- Method of moments
- Maximum likelihood estimation
Method of Moments

- Equate the first m sample (non-central) moments to the theoretical moments and solve the resulting system for the unknown parameters:

$$E(X^k) = \frac{1}{n} \sum_{i=1}^{n} X_i^k, \; k = 1, \ldots, m$$
Example: The normal distribution

\[E(X) = \mu = \bar{X}_n \]

\[E(X^2) = \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \]

give

\[\hat{\mu} = \bar{X}_n \quad \text{and} \quad \hat{\sigma} = S_n \]
Maximum Likelihood Estimation

- The likelihood function is the joint density (probability function) of the data:

\[L(\theta) = \prod_{i=1}^{n} f(X_i; \theta) \]

- The Maximum Likelihood Estimator of \(\theta \) maximizes \(L(\theta) \) or, equivalently, the log-likelihood \(\ln L(\theta) \):

\[\ln L(\hat{\theta}) \geq \ln L(\theta) \text{ for all } \theta \]
Example: The exponential distribution

\[
\ell(\lambda) \equiv \ln L(\lambda) = \ln \left(\prod_{i=1}^{n} \lambda e^{-\lambda X_i} \right) = n \ln \lambda - \lambda \sum_{i=1}^{n} X_i
\]

\[
\frac{d\ell}{d\lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} X_i = 0 \Rightarrow \hat{\lambda} = 1/\bar{X}_n
\]

Check that \(d^2\ell / d\lambda^2 = -1/\lambda^2 < 0\); this guarantees that \(\hat{\lambda}\) is a maximizer
Example: The normal distribution

\[\hat{\mu} = \bar{X}_n \]

\[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \frac{n-1}{n} S_n^2 \]
Example: The Uniform(0, \(b\)) distribution

We wish to find the MLE of \(b\)

The likelihood function is

\[
L(b) = \begin{cases}
1 / b^n & \text{for } 0 \leq X_i \leq b \iff b \geq \max X_i \\
0 & \text{otherwise}
\end{cases}
\]

Notice that \(L(b)\) is discontinuous; so don’t take derivatives...

Check that \(L(b)\) is maximized at

\[
\hat{b} = \max X_i
\]
Example: The Weibull distribution

The density is given by

\[f(x) = \alpha \lambda (\lambda x)^{\alpha-1} \exp[-(\lambda x)^\alpha], \]

where \(\alpha > 0 \) is the shape parameter and \(\lambda > 0 \) is the scale parameter.

The m.l.e.s satisfy the following equations:

\[
\frac{\sum_{i=1}^{n} X_i^\hat{\alpha} \ln X_i}{\sum_{i=1}^{n} X_i^\hat{\alpha}} - \frac{1}{\hat{\alpha}} = \frac{\sum_{i=1}^{n} \ln X_i}{n} \quad \text{and} \quad \hat{\lambda} = \left(\frac{\sum_{i=1}^{n} X_i^\hat{\alpha}}{n} \right)^{-1/\hat{\alpha}}
\]

We can solve the first equation by Newton’s method.
MLEs are “nice” because they are
- Asymptotically \((n \to \infty)\) unbiased
- Asymptotically normal
- Invariant, i.e., if \(g\) is continuous,

\[
\lambda = g(\theta) \Rightarrow \hat{\lambda} = g(\hat{\theta})
\]

Example: The MLE of the variance \((\sigma^2 = 1/\lambda^2)\) for the exponential distribution is \(\overline{X}_n^2\)
Testing Goodness-of-Fit

We want to test the null hypothesis

\[H_0 : X_1, \ldots, X_n \text{ are from } \hat{f}(x) = f(x; \hat{\theta}) \]

\(\alpha = \text{Type I Error} = \Pr(\text{reject } H_0 | H_0 \text{ is true}) \)
\(\beta = \text{Type II Error} = \Pr(\text{accept } H_0 | H_0 \text{ is false}) \)
\(\text{Power} = 1 - \beta = \Pr(\text{reject } H_0 | H_0 \text{ is false}) \)
\(p\text{-value} = \text{smallest value of type I error that leads to rejection of } H_0 \)
Graphical approaches

The Q-Q plot graphs the quantiles of the fitted distribution vs. the sample quantiles. It emphasizes poor fitting at the tails.

The P-P plot graphs the fitted CDF vs. the empirical CDF.

\[
\bar{F}(x) = \frac{\text{number of } X_i \leq x}{n}, \quad -\infty < x < \infty
\]

Computation: Sort \(X_{(1)} < X_{(2)} < \cdots < X_{(n)} \). Then

\[
\bar{F}(X_{(i)}) = \frac{i}{n}
\]

It emphasizes poor fitting at the middle of the fitted CDF.
Testing Goodness-of-Fit (continued)

- Statistical Tests
 - The chi-square test
 - The Kolmogorov-Smirnov test
 - The Anderson-Darling test
The Chi-square Test

- Split the range of X into k adjacent intervals

- Let

 $$I_i = [a_{i-1}, a_i) = \text{ith interval}$$

 $$O_i = \text{number of observations in interval } i$$

 $$E_i = \text{expected number of observations in interval } i = n[\hat{F}(a_i) - \hat{F}(a_{i-1})]$$

 CDF of fitted distribution
The Chi-square Test (continued)

- The null hypothesis is rejected (at level \(\alpha \)) if

\[
\chi_0^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} > \chi_{k-s-1,\alpha}^2
\]

where \(s \) is the number of parameters replaced by their MLEs

- One should use \(E_i \geq 5 \)
- The test has maximum power if the \(E_i \) are equal (the intervals are equiprobable)
The Kolmogorov-Smirnov Test

- It generally assumes that all parameters are known
- Sort the data and define the empirical CDF

\[
\bar{F}(x) = \frac{\text{number of } X_i \leq x}{n} = \begin{cases}
0 & \text{if } x < X_{(1)} \\
\frac{i}{n} & \text{if } X_{(i)} \leq x < X_{(i+1)}, \ 1 \leq i \leq n - 1 \\
1 & \text{if } x > X_{(n)}
\end{cases}
\]
The null hypothesis is rejected (at level α) if

$$D_n = \sup \left| \hat{F}(x) - \bar{F}(x) \right|$$

$$= \max \left\{ \max \left[\frac{i}{n} - \hat{F}(X_{(i)}) \right], \max \left[\hat{F}(X_{(i)}) - \frac{i - 1}{n} \right] \right\} > d_{n, \alpha}$$
The Kolmogorov-Smirnov Test (continued)

- We usually simplify the above inequality by computing a modified test statistic and a modified critical value c_α:

 \[\text{Adjusted Test Statistic} > \underbrace{c_\alpha}_{\text{tabulated}} \]

- When parameters are replaced by MLEs modified K-S test statistics exist for the following distributions:
 - Normal
 - Exponential
 - Weibull
 - Log-logistic
The Kolmogorov-Smirnov Test (continued)

Modified Critical Values c_{α} for Adjusted K-S Statistics

<table>
<thead>
<tr>
<th>Case</th>
<th>Adjusted Test Statistic</th>
<th>(0.15)</th>
<th>(0.10)</th>
<th>(0.05)</th>
<th>(0.025)</th>
<th>(0.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All parameters</td>
<td>(\left(\sqrt{n} + 0.12 + \frac{0.11}{\sqrt{n}}\right) D_n)</td>
<td>1.138</td>
<td>1.224</td>
<td>1.358</td>
<td>1.480</td>
<td>1.628</td>
</tr>
<tr>
<td>known</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nor((\bar{X}_n, S_n^2))</td>
<td>(\left(\sqrt{n} - 0.01 + \frac{0.85}{\sqrt{n}}\right) D_n)</td>
<td>0.775</td>
<td>0.819</td>
<td>0.895</td>
<td>0.995</td>
<td>1.035</td>
</tr>
<tr>
<td>Expo((1/\bar{X}_n))</td>
<td>(\left(D_n - \frac{0.2}{\sqrt{n}}\right) \left(\sqrt{n} - 0.01 + \frac{0.85}{\sqrt{n}}\right))</td>
<td>0.926</td>
<td>0.990</td>
<td>1.094</td>
<td>1.190</td>
<td>1.308</td>
</tr>
</tbody>
</table>
The Kolmogorov-Smirnov Test (continued)

Modified Critical Values for the K-S Test for the Weibull Distribution

<table>
<thead>
<tr>
<th>n</th>
<th>(\alpha)</th>
<th>(\alpha = 0.10)</th>
<th>(\alpha = 0.05)</th>
<th>(\alpha = 0.025)</th>
<th>(\alpha = 0.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.760</td>
<td>0.819</td>
<td>0.880</td>
<td>0.944</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.779</td>
<td>0.843</td>
<td>0.907</td>
<td>0.973</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.790</td>
<td>0.856</td>
<td>0.922</td>
<td>0.988</td>
<td></td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.803</td>
<td>0.874</td>
<td>0.939</td>
<td>1.007</td>
<td></td>
</tr>
</tbody>
</table>
The Kolmogorov-Smirnov Test (continued)

Modified Critical Values for the K-S Test for the Log-logistic Distribution

<table>
<thead>
<tr>
<th>n</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>10</td>
<td>0.679</td>
</tr>
<tr>
<td>20</td>
<td>0.698</td>
</tr>
<tr>
<td>50</td>
<td>0.708</td>
</tr>
<tr>
<td>∞</td>
<td>0.715</td>
</tr>
</tbody>
</table>
The Anderson-Darling Test

The null hypothesis is rejected (at level α) if

$$A_n^2 = n \int_{-\infty}^{\infty} \frac{[\hat{F}(x) - \bar{F}(x)]^2}{\hat{F}(x)[1 - \hat{F}(x)]} f(x) \, dx$$

$$= -\frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left\{ \ln \hat{F}(X_{(i)}) + \ln\left[1 - \hat{F}(X_{(n-i+1)})\right] \right\} - n > a_{n,1-\alpha} \text{ (tabulated)}$$

It generally assumes that all parameters are known.
The Anderson-Darling Test (continued)

- We usually simplify the above inequality by computing a modified test statistic and a modified critical value a_α:

 Adjusted Test Statistic > a_α tabulated

- When parameters are replaced by MLEs, modified A-D test statistics exist for:
 - The normal distribution
 - The exponential distribution
 - The Weibull distribution
 - The log-logistic distribution
The Anderson-Darling Test (continued)

Modified Critical Values a_α for Adjusted A-D Statistics

<table>
<thead>
<tr>
<th>Case</th>
<th>Adjusted Test Statistic</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>All parameters known</td>
<td>A_n^2 for $n \geq 5$</td>
<td>1.933</td>
</tr>
<tr>
<td>Nor(\bar{X}_n, S^2_n)</td>
<td>$(1 + \frac{4}{n} - \frac{25}{n^2}) A_n^2$</td>
<td>0.632</td>
</tr>
<tr>
<td>Expo($1/\bar{X}_n$)</td>
<td>$(1 + \frac{0.6}{n}) A_n^2$</td>
<td>1.070</td>
</tr>
<tr>
<td>Weibull($\hat{\alpha}, \hat{\beta}$)</td>
<td>$(1 + \frac{0.2}{\sqrt{n}}) A_n^2$</td>
<td>0.637</td>
</tr>
<tr>
<td>Log-logistic($\hat{\alpha}, \hat{\beta}$)</td>
<td>$(1 + \frac{0.25}{\sqrt{n}}) A_n^2$</td>
<td>0.563</td>
</tr>
</tbody>
</table>
No Data?

- Happens more often than you would like
- No good solution; some (bad) options:
 - Interview “experts”
 - Min, Max: Uniform
 - Average, % error or absolute error: Uniform
 - Min, Mode, Max: Triangular
 - Mode can be different from Mean — allows asymmetry (skewness)
 - Interarrivals — independent, stationary
 - Exponential — still need some value for mean
 - Number of “random” events in an interval: Poisson
 - Sum of independent “pieces”: normal
 - Product of independent “pieces”: lognormal
Non-stationary Arrival Processes

- External events (often arrivals) whose rate varies over time
 - Lunchtime at fast-food restaurants
 - Rush-hour traffic in cities
 - Telephone call centers
 - Seasonal demands for a manufactured product

- It can be critical to model this non-stationarity for model validity
 - Ignoring peaks, valleys can mask important behavior
 - Can miss rush hours, etc.

- Good model: *Non-stationary Poisson process*
Non-stationary Arrival Processes (continued)

- Two issues:
 - How to specify/estimate the rate function
 - How to generate from it properly during the simulation (will be discussed during the Output Analysis session)

- Several ways to estimate rate function — we’ll just do the piecewise-constant method
 - Divide time frame of simulation into subintervals of time over which you think rate is fairly flat
 - Compute observed rate within each subinterval
 - Be very careful about time units!
 - Model time units = minutes
 - Subintervals = half hour (= 30 minutes)
 - 45 arrivals in the half hour; rate = 45/30 = 1.5 per minute
Multivariate and Correlated Input Data

- Usually we assume that all generated random observations across a simulation are independent (though from possibly different distributions)

- Sometimes this isn’t true:
 - A “difficult” part may require longer service times by a set of machines
 - This indicates positive correlation

- Ignoring such relations can invalidate model
Case Study: Times-to-Failure

- A data set contains 200 times-to-failure for a piece of equipment
- We use ExpertFit®
- To assess independence, we create a scatter plot
Case Study — Scatter Plot

The data appear to be independent
Case Study — Data Summary

<table>
<thead>
<tr>
<th>Data Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source file</td>
<td>TTF.DAT</td>
</tr>
<tr>
<td>Observation type</td>
<td>Real valued</td>
</tr>
<tr>
<td>Number of observations</td>
<td>200</td>
</tr>
<tr>
<td>Minimum observation</td>
<td>162.26205</td>
</tr>
<tr>
<td>Maximum observation</td>
<td>2,351.98858</td>
</tr>
<tr>
<td>Mean</td>
<td>768.91946</td>
</tr>
<tr>
<td>Median</td>
<td>709.90162</td>
</tr>
<tr>
<td>Variance</td>
<td>157,424.22579</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>0.51601</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.02670</td>
</tr>
</tbody>
</table>

- Can the data be from
 - The normal distribution?
 - The exponential distribution?
Case Study — Histogram with 16 Intervals

<table>
<thead>
<tr>
<th>Interval Midpoint</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3e2</td>
<td>5.2e2</td>
</tr>
<tr>
<td>5.2e2</td>
<td>8.0e2</td>
</tr>
<tr>
<td>8.0e2</td>
<td>10.9e2</td>
</tr>
<tr>
<td>10.9e2</td>
<td>13.8e2</td>
</tr>
<tr>
<td>13.8e2</td>
<td>16.6e2</td>
</tr>
<tr>
<td>16.6e2</td>
<td>19.5e2</td>
</tr>
<tr>
<td>19.5e2</td>
<td>22.4e2</td>
</tr>
</tbody>
</table>

16 intervals of width 143.325 between 160 and 2,453.2
Case Study — Model Guessing

- We will allow ExpertFit to choose a continuous distribution automatically.
- We will tell it that
 - the left limit for the underlying random variable is zero and
 - the tight limit is infinity.
Case Study — ExpertFit’s Choice...

Relative Evaluation of Candidate Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Relative Score</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Weibull(E)</td>
<td>100.00</td>
<td>Location: 161.74177</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scale: 673.46506</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shape: 1.54741</td>
</tr>
<tr>
<td>2 - Beta</td>
<td>95.45</td>
<td>Lower endpoint: 54.43617</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper endpoint: 12,916.87962</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shape #1: 3.00707</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shape #2: 51.12749</td>
</tr>
<tr>
<td>3 - Gamma</td>
<td>89.77</td>
<td>Location: 0.00000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scale: 197.09191</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shape: 3.90132</td>
</tr>
</tbody>
</table>

23 models are defined with scores between 0.00 and 100.00

Absolute Evaluation of Model 1 - Weibull(E)

Evaluation: Good
Suggestion: Additional evaluations using Comparisons Tab might be informative.

Additional Information About Model 1 - Weibull(E)

- Results of the Anderson-Darling goodness-of-fit test at level 0.1: Not applicable
- "Error" in the model mean relative to the sample mean: 1.35980 - 0.18%

Weibull(E): Weibull distribution with a location parameter
Case Study — Histogram Comparisons

The gamma distribution does not fit well at the left tail...
Case Study — Graphical Goodness-of-Fit Tests

P-P Plot

- Range of sample
- 1 - Weibull(E) (discrepancy=0.02285)
- 3 - Gamma (discrepancy=0.03057)
Case Study — Graphical Goodness-of-Fit Tests

(continued)

![Q-Q Plot](image-url)

1 - Weibull(E) (discrepancy=0.05400)
3 - Gamma (discrepancy=0.05316)
Case Study — A-D & K-S Goodness-of-Fit Tests

Anderson-Darling Test With Model 1 - Weibull(E)

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Sample Size Critical Values for Level of Significance (alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1.248 1.933 2.492 3.070 3.857 4.500</td>
</tr>
</tbody>
</table>

Note:
- No critical values exist for this special case.
- The following critical values are for the case where all parameters are known, and are conservative.

Kolmogorov-Smirnov Test With Model 1 - Weibull(E)

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Sample Size Critical Values for Level of Significance (alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1.128 1.213 1.346 1.467 1.613</td>
</tr>
</tbody>
</table>

Note:
- No critical values exist for this special case.
- The following critical values are for the case where all parameters are known, and are conservative.

Anderson-Darling Test With Model 3 - Gamma

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Sample Size Critical Values for Level of Significance (alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.474 0.638 0.761 0.884 1.047 1.176</td>
</tr>
</tbody>
</table>

Note:
- The following critical values are approximate.

Kolmogorov-Smirnov Test With Model 3 - Gamma

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Sample Size Critical Values for Level of Significance (alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1.128 1.213 1.346 1.467 1.613</td>
</tr>
</tbody>
</table>

Note:
- No critical values exist for this special case.
- The following critical values are for the case where all parameters are known, and are conservative.
Case Study — Chi-square Goodness-of-Fit Tests

Equal-Probable Chi-Square Test With Model 1 - Weibull(E)

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>Observed Level of Significance</th>
<th>Critical Values for Level of Significance (alpha)</th>
<th>0.25</th>
<th>0.15</th>
<th>0.10</th>
<th>0.05</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.554</td>
<td>19.369</td>
<td>21.793</td>
<td>23.542</td>
<td>25.296</td>
<td>26.700</td>
<td>32.000</td>
</tr>
<tr>
<td>19</td>
<td>0.748</td>
<td>22.718</td>
<td>25.329</td>
<td>27.204</td>
<td>30.144</td>
<td>36.191</td>
<td></td>
</tr>
<tr>
<td>Reject?</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning: The test may not be statistically valid because a method other than maximum likelihood was used to estimate parameters.

Beware: Outcomes depend on the number of intervals!

Equal-Probable Chi-Square Test With Model 3 - Gamma

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>Observed Level of Significance</th>
<th>Critical Values for Level of Significance (alpha)</th>
<th>0.25</th>
<th>0.15</th>
<th>0.10</th>
<th>0.05</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0.045</td>
<td>20.489</td>
<td>22.977</td>
<td>24.769</td>
<td>27.587</td>
<td>33.409</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.083</td>
<td>22.718</td>
<td>25.329</td>
<td>27.204</td>
<td>30.144</td>
<td>36.191</td>
<td></td>
</tr>
<tr>
<td>Reject?</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What distribution gives a better fit?
Case Study — Additional Graphical Comparisons

Box-Plot Comparisons

- 7-point sample box plot
- 1 - Weibull(E)
- 3 - Gamma
Case Study — Arena Code for the Winner...

Arena Representation of Model 1 - Weibull(E)

Use:

\[161.741769 + \text{WEIB}(673.465060, 1.547408, \text{<stream>}) \]

1. **Estimate for location parameter.** Check the translation...
2. **Estimate for scale parameter**
3. **Estimate for shape parameter**

We haven't used this yet...