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1 Getting Started — The Gambler’s Ruin

Each time a gambler plays, he wins $1 with probability p and loses $1 with probability
1 − p = q. Each play is independent. Suppose he starts with $i. Find the probability
that his fortune will hit $N (i.e., he breaks the bank) before it hits $0 (i.e., he is ruined).

Let Xn denote his fortune at time n. It turns out that X1, X2, . . . is a Markov chain
— a stochastic process where the next state depends only the current state (more on
this later).

To get things going, we’ll use a common trick — a so-called one-step analysis. Let

Pi ≡ Pr(Eventually hit $N |X0 = i)

= Pr(Event. hit N |X1 = i+ 1 and X0 = i)Pr(X1 = i+ 1|X0 = i)

+Pr(Event. hit N |X1 = i− 1 and X0 = i)Pr(X1 = i− 1|X0 = i)

= Pr(Event. hit N |X1 = i+ 1)p+ Pr(Event. hit N |X1 = i− 1)q

= pPi+1 + qPi−1, i = 1, 2, . . . , N − 1.

Since p+ q = 1, we have

pPi + qPi = pPi+1 + qPi−1

iff
p(Pi+1 − Pi) = q(Pi − Pi−1)

iff
Pi+1 − Pi =

q

p
(Pi − Pi−1), i = 1, 2, . . . , N − 1.

Since P0 = 0, we have

P2 − P1 =
q

p
P1

P3 − P2 =
q

p
(P2 − P1) =

(
q

p

)2

P1

...

Pi − Pi−1 =
q

p
(Pi−1 − Pi−2) =

(
q

p

)i−1
P1.
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Summing up the LHS terms and the RHS terms,

i∑
j=2

(Pj − Pj−1) = Pi − P1 =
i−1∑
j=1

(
q

p

)j
P1.

This implies that

Pi = P1

i−1∑
j=0

(
q

p

)j
=


1−(q/p)i
1−(q/p) P1 if q 6= p (p 6= 1/2)

iP1 if q = p (p = 1/2)

.

In particular, note that

1 = PN =


1−(q/p)N
1−(q/p) P1 if p 6= 1/2

NP1 if p = 1/2

.

Thus,

P1 =


1−(q/p)
1−(q/p)N if p 6= 1/2

1/N if p = 1/2

,

so that

Pi =


1−(q/p)i
1−(q/p)N if p 6= 1/2

i/N if p = 1/2

. ♦

By the way, as N →∞,

Pi →


1− (q/p)i if p > 1/2

0 if p ≤ 1/2
. ♦

Example: A guy can somehow win any blackjack hand w.p. 0.6. If he wins, he fortune
increases by $100; a loss costs him $100. Suppose he starts out with $500, and that he’ll
quit playing as soon as his fortune hits $0 or $1500. What’s the probability that he’ll
eventually hit $1500?

P5 =
1− (0.4/0.6)5

1− (0.4/0.6)15
= 0.870. ♦
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2 Probability Review

2.1 Preliminaries

To start with, I’ll assume that you know the following things:

• The set of all possible outcomes of an experiment is the sample space Ω.

• Any subset E of a sample space Ω is an event.

• The set of all possible events is denoted by F , which is called a sigma field of Ω.

For example, if Ω = {H,T}, then F = {∅, {H}, {T}, {H,T}}.

A sigma field must satisfy the following:

1. A ∈ F implies the complement Ā ∈ F .

2. A1, A2, . . . ∈ F implies ∪∞j=1Aj ∈ F .

• The probability function P (·) must satisfy 3 axioms:

1. For any event E ∈ F , we must have 0 ≤ P (E) ≤ 1

2. P (Ω) = 1

3. For any disjoint sequence of events E1, E2, . . . (i.e., Ei ∩ Ej = φ if i 6= j), we
have P (

⋃∞
i=1Ei) =

∑∞
i=1 P (Ei).

• A probability space is the triple (Ω,F , P ).

2.2 Conditional Probability and Independence

Definition: If P (B) > 0, then P (A|B) ≡ P (A ∩ B)/P (B) is the conditional probability
of A given B.

Example: Toss a fair die. Let A = {1, 2, 3} and B = {3, 4, 5, 6}. Then

P (A|B) =
P (A ∩B)

P (B)
=

1/6

4/6
= 1/4. ♦

Definition: If P (A ∩B) = P (A)P (B), then A and B are independent events.
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Theorem: If A and B are independent, then P (A|B) = P (A).

Proof: Easy. ♦

Example: Toss two dice. Let A = “Sum is 7” and B = “First die is 4”. Then P (A) =
1/6, P (B) = 1/6, and P (A ∩ B) = P ((4, 3)) = 1/36 = P (A)P (B); so A and B are
independent. ♦

2.3 Random Variables

Definition: A random variable (RV) X is a function from Ω to the real line R, i.e.,
X : Ω→ R.

Example: Let X be the sum of two dice rolls. Then X((4, 6)) = 10. In addition,

P (X = x) =



1/36 if x = 2
2/36 if x = 3

...
1/36 if x = 12

0 otherwise

♦

Definition: If the number of possible values of a RV X is finite or countably infinite,
then X is a discrete RV. Its probability mass function (pmf) is f(x) ≡ P (X = x). Note
that

∑
x f(x) = 1.

Example: Flip 2 coins. Let X be the number of heads.

f(x) =


1/4 if x = 0 or 2
1/2 if x = 1
0 otherwise

♦

Examples: Here are some well-known discrete RV’s that you should review:
Bernoulli(p), Binomial(n, p), Geometric(p), Negative Binomial, Poisson(λ), etc.

Definition: A continuous RV is one with probability zero at every individual point.
A RV is continuous if there exists a probability density function (pdf) f(x) such that
P (X ∈ A) =

∫
A f(x) dx for every set A. Note that

∫
x f(x) dx = 1.

Example: Pick a random number between 3 and 7. Then

f(x) =

{
1/4 if 3 ≤ x ≤ 7
0 otherwise

♦
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Examples: Here are some well-known continuous RV’s that you should review:
Uniform(a, b), Exponential(λ), Normal(µ, σ2), etc.

Definition: For any RV X (discrete or continuous), the cumulative distribution function
(cdf) is

F (x) ≡ P (X ≤ x) =

{ ∑
y≤x f(y) if X is discrete∫ x

−∞ f(y) dy if X is continuous

For convenience, we’ll henceforth write F (x) =
∫ x
−∞ dF (y) to denote both the discrete

and continuous cases. Note that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Example: Flip 2 coins. Let X be the number of heads.

F (x) =


0 if x < 0

1/4 if 0 ≤ x < 1
3/4 if 1 ≤ x < 2
1 if x ≥ 2

♦

Example: Suppose X ∼ Exp(λ) (i.e., X has the exponential distribution with parame-
ter λ). Then f(x) = λe−λx, x ≥ 0, and the cdf is F (x) = 1− e−λx, x ≥ 0. ♦

2.4 Expectation

Definition: The expected value (or mean) of a RV X is

E[X] ≡
∫
R
x dF (x) =

{ ∑
x xP (X = x) if X is discrete∫
R xf(x) dx if X is continuous

Example: Suppose that X ∼ Bernoulli(p). Then

X =

{
1 with prob. p
0 with prob. 1− p

and we have E[X] =
∑
x xf(x) = p. ♦

Example: Suppose that X ∼ Uniform(a, b). Then

f(x) =

{
1
b−a if a < x < b

0 otherwise

and we have E[X] =
∫
R xf(x) dx = (a+ b)/2. ♦
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“Definition” (the “law of the unconscious statistician”): Suppose that g(X) is some
function of the RV X. Then E[g(X)] ≡

∫
R g(x) dF (x).

Example: Suppose X is the following discrete RV:

x 2 3 4
f(x) 0.3 0.6 0.1

Then E[X3] =
∑
x x

3f(x) = 8(0.3) + 27(0.6) + 64(0.1) = 25. ♦

Example: Suppose X ∼ U(0, 2). Then E[Xn] =
∫
R x

nf(x) dx = 2n/(n+ 1). ♦

Definitions: E[Xn] is the nth moment of X. E[(X − E[X])n] is the nth central moment
of X. Var(X) ≡ E[(X − E[X])2] is the variance of X.

Theorem: Var(X) = E[X2]− (E[X])2.

Proof: Easy. ♦

Example: Suppose X ∼ Bern(p). Recall that E[X] = p. Further,

E[X2] =
∑
x

x2f(x) = 02(1− p) + 12p = p

and
Var(X) = E[X2]− (E[X])2 = p− p2 = p(1− p). ♦

Example: Suppose X ∼ U(0, 2). By previous examples, E[X] = 1 and E[X2] = 4/3. So
Var(X) = E[X2]− (E[X])2 = 1/3. ♦

Theorem: E[aX + b] = aE[X] + b and Var(aX + b) = a2Var(X).

Proof: Easy. ♦

Definition: The moment generating function (mgf) of X is MX(t) ≡ E[etX ]. For now,
we’ll assume that this expectation is finite in a neighborhood of t = 0.

Example: Suppose X ∼ Bern(p). MX(t) =
∑
x e

txf(x) = pet + q. ♦

Example: Suppose X ∼ Exp(λ). MX(t) =
∫∞
0 etxλe−λx dx = λ/(λ− t), t < λ. ♦
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Theorem (why we call them moment generating functions): Assuming that the mgf
exists in a neighborhood around t = 0,

E[Xk] =
dk

dtk
MX(t)|t=0, k = 1, 2, . . . .

“Proof” We’ll just do the first moment. (The others are similar.)

d

dt
MX(t) =

d

dt
E[etX ] “=” E

[
d

dt
etX

]
“=” E[XetX ].

If you believe the above steps, then

d

dt
MX(t)|t=0 = E[X]. ♦

Theorem: If X and Y have the same mgf, then they have the same distribution. Note
that there are problems if the mgf doesn’t exist around t = 0.

Bonus Definition (which is sometimes useful): The probability generating function (pgf)
of a random variable X is PX(s) ≡ E[sX ]. It can be shown that

dk

dsk
PX(s)|s=1 = E[X(X − 1) · · · (X − k + 1)], k = 1, 2, . . . .

2.5 Functions of a RV

Problem: Suppose we have a RV X with p.d.f./p.m.f. f(x). Let Y = h(X). Find g(y),
the p.d.f./p.m.f. of Y .

Discrete case: If X is discrete, then Y will be discrete, in which case

g(y) = Pr(Y = y) = Pr[h(X) = y] = Pr{x : h(x) = y} =
∑

x:h(x)=y

f(x).

Example: Let X denote the number of H’s from two coin tosses. We want the p.m.f.
for Y = X2 −X.

x 0 1 2
f(x) 1/4 1/2 1/4

y = x2 − x 0 0 2
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This implies that g(0) = Pr(Y = 0) = Pr(X = 0 or 1) = 3/4 and g(2) = Pr(Y = 2) =
1/4. In other words,

g(y) =


3/4 if y = 0
1/4 if y = 2
0 otherwise

. ♦

Continuous Case: We’ll assume that if X is continuous, then so is Y . The usual
method is to first compute the c.d.f. of Y ,

G(y) = Pr(Y ≤ y) = Pr[h(X) ≤ y] =
∫
{x:h(x)≤y}

f(x) dx,

and then take the derivative, g(y) = G′(y).

Example: Suppose X has p.d.f. f(x) = |x|, −1 ≤ x ≤ 1. Find the p.d.f. of Y = X2.
First of all, the c.d.f. of Y is

G(y) = Pr(Y ≤ y) = Pr(X2 ≤ y) = Pr(−√y ≤ X ≤ √y)

=
∫ √y
−√y
|x| dx = y, 0 < y < 1.

Thus, the p.d.f. of Y is g(y) = G′(y) = 1, 0 < y < 1, indicating that Y ∼ Unif(0, 1). ♦

Example: Here is a great result sometimes called the Inverse Transform Theorem.
Suppose X is a continuous random variable having c.d.f. F (x). Then, amazingly,
F (X) ∼ Unif(0, 1).

Proof: Let Y = F (X). Then the c.d.f. of Y is

Pr(Y ≤ y) = Pr(F (X) ≤ y) = Pr(X ≤ F−1(y)) = F (F−1(y)) = y,

which is the c.d.f. of the Unif(0,1). ♦

Here is a more-direct method for dealing with functions of RV’s. . .

Theorem: Suppose that X has p.d.f. f(x), a ≤ x ≤ b. Let Y = h(X) be a monotone
function (either increasing or decreasing) of X. Then the p.d.f. of Y is

g(y) = f(h−1(y))

∣∣∣∣∣ ddyh−1(y)

∣∣∣∣∣ , h(a) ≤ y ≤ h(b) (or h(b) ≤ y ≤ h(a)).

Remarks: (i) Warning: You can only use this method of h(x) if monotone! (The p.d.f.
f(x) doesn’t have to be monotone.) (ii) Think of the inverse function h−1(y) = x, and
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the quantity in the | · | as the Jacobian of the transformation.

Example: Suppose that f(x) = 3x2, 0 ≤ x ≤ 1. Find the p.d.f. of Y = h(X) = X2.
Note that f(x) is only defined on the domain 0 ≤ x ≤ 1; and on this range, h(x) is
monotone increasing — so it’s OK to use the wonderful theorem.

First, we have x = h−1(y) = ±√y =
√
y (since we’re only concerned with positive

x’s). The theorem then implies that

g(y) = f(
√
y)

∣∣∣∣∣ ddy√y
∣∣∣∣∣ , h(0) ≤ y ≤ h(1)

= 3y × 1

2
√
y

=
3

2

√
y, 0 ≤ y ≤ 1. ♦

Remark: We can also look at functions of ≥ 2 RV’s, but this takes more work. See any
probability text for more info on this important topic.

2.6 Jointly Distributed RV’s

Definition: The joint cdf of X and Y is F (x, y) ≡ P (X ≤ x, Y ≤ y), for all x, y.

Remark: The marginal cdf of X is FX(x) = F (x,∞). (We use the X subscript to
remind us that it’s just the cdf of X all by itself.) Similarly, the marginal cdf of Y is
FY (y) = F (∞, y).

Definition: If X and Y are discrete, then the joint pmf of X and Y is
f(x, y) ≡ P (X = x, Y = y).

Remark: The marginal pmf of X is

fX(x) = P (X = x) =
∑
y

f(x, y).

The marginal pmf of Y is

fY (y) = P (Y = y) =
∑
x

f(x, y).

Example: Suppose the following table gives the joint pmf of X and Y , along with the
accompanying marginals.

X = 2 X = 3 X = 4 fY (y)
Y = 4 0.3 0.2 0.1 0.6
Y = 6 0.1 0.2 0.1 0.4
fX(x) 0.4 0.4 0.2 1
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Definition: If X and Y are continuous, then the joint pdf of X and Y is
f(x, y) ≡ ∂2

∂x∂y
F (x, y).

Remark: The marginal pdf of X is

fX(x) =
∫
R
f(x, y) dy.

The marginal pdf of Y is

fY (y) =
∫
R
f(x, y) dx.

Example: This example shows that you have to be careful about “funny” limits when
computing marginals. Suppose the joint pdf is

f(x, y) =
21

4
x2y, x2 ≤ y ≤ 1.

Then the marginal pdf’s are:

fX(x) =
∫
R
f(x, y) dy =

∫ 1

x2

21

4
x2y dy =

21

8
x2(1− x4), −1 ≤ x ≤ 1

and

fY (y) =
∫
R
f(x, y) dx =

∫ √y
−√y

21

4
x2y dx =

7

2
y5/2, 0 ≤ y ≤ 1. ♦

2.7 Independent RV’s

Definition: X and Y are independent RV’s if f(x, y) = fX(x)fY (y) for all x, y.

Examples: If f(x, y) = cxy for 0 ≤ x ≤ 2, 0 ≤ y ≤ 3, then X and Y are independent. If
f(x, y) = 21

4
x2y for x2 ≤ y ≤ 1, then X and Y are not independent. If f(x, y) = c/(x+y)

for 1 ≤ x ≤ 2, 1 ≤ y ≤ 3, then X and Y are not independent. ♦

Definition: If fX(x) > 0, then f(y|x) ≡ f(x, y)/fX(x) is the conditional pdf (or pmf )
of Y given X = x.

Example: Suppose f(x, y) = 21
4
x2y for x2 ≤ y ≤ 1. By a previous example, we find that

f(y|x) =
f(x, y)

fX(x)
=

21
4
x2y

21
8
x2(1− x4)

=
2y

1− x4
, x2 ≤ y ≤ 1. ♦
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“Definition”: Suppose that h(X, Y ) is some function of the RV’s X and Y . Then

E[h(X, Y )] =

{ ∑
x

∑
y h(x, y)f(x, y) if (X, Y ) is discrete∫

R

∫
R h(x, y)f(x, y) dx dy if (X, Y ) is continuous

Example/Theorem: Whether or not X and Y are independent, we have
E[X + Y ] = E[X] + E[Y ]. In fact, if X1, X2, . . . are RV’s, then E[

∑
iXi] =

∑
i E[Xi].

Theorem: If X and Y are independent, then E[XY ] = E[X]E[Y ] and
Var(X + Y ) = Var(X) + Var(Y ).

Proof: Easy algebra. ♦

Theorem: Suppose that X1, . . . , Xn are independent RV’s. If Y =
∑n
i=1Xi, then

MY (t) = E[etY ] = E
[
et
∑

Xi

]
=

n∏
i=1

E[etXi ] =
n∏
i=1

MXi
(t).

Definition: X1, . . . , Xn form a random sample from f(x) is

1. X1, . . . , Xn are independent, and

2. Each Xi has the same pdf (or pmf) f(x).

Notation: X1, . . . , Xn
iid∼ f(x). (The term “iid” reads independent and identically

distributed)

Corollary: X1, . . . , Xn iid implies that MY (t) = [MXi
(t)]n.

Example: Suppose X1, . . . , Xn
iid∼ Bern(p). Then M∑

i
Xi

(t) = (pet + q)n. It turns out

that this is the mgf for the Bin(n, p) distribution. Thus, by a previous theorem, we have∑n
i=1Xi ∼ Bin(n, p). ♦

Example: If X1, . . . , Xn
iid∼ f(x) and X̄ ≡ ∑n

i=1Xi/n, then E[X̄] = E[Xi] and
Var(X̄) = Var(Xi)/n. Thus, the variance decreases. ♦

2.8 Covariance and Correlation

Definition: The covariance between X and Y is Cov(X, Y ) ≡ E[(X −E[X])(Y −E[Y ])].
Note that Var(X) = Cov(X,X).
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Theorem: Cov(X, Y ) = E[XY ]− E[X]E[Y ].

Proof: Easy. ♦

Theorem: If X and Y are independent RV’s, then Cov(X, Y ) = 0.

Proof: Since X and Y are independent, we have E[XY ] = E[X]E[Y ]. ♦

Remark: Cov(X, Y ) = 0 does not imply that X and Y are independent!

Example: Suppose X ∼ Unif(−1, 1) and Y = X2. Then X and Y are clearly dependent.
However,

Cov(X, Y ) = E[X3]− E[X]E[X2] = E[X3] =
∫ 1

−1

x3

2
dx = 0. ♦

Theorem: If a and b are constants, the Cov(aX, bY ) = abCov(X, Y ).

Definition: The correlation between X and Y is

ρ ≡ Cov(X, Y )√
Var(X)Var(Y )

.

Theorem: −1 ≤ ρ ≤ 1.

Proof: Follows from the Cauchy-Schwarz inequality. ♦

Remark: If ρ ≈ 1, we say that X and Y have “high positive” correlation. If ρ ≈ 0, X
and Y have “low” correlation. If ρ ≈ −1, there is “high negative” correlation.

Example: Suppose that X is the average yards per carry gained by a University of
Georgia fullback and Y is his IQ. Further suppose that the joint pmf f(x, y) is given in
the following table.

X = 2 X = 3 X = 4 fY (y)
Y = 40 0.00 0.20 0.10 0.3
Y = 50 0.15 0.10 0.05 0.3
Y = 60 0.30 0.00 0.10 0.4
fX(x) 0.45 0.30 0.25 1



13

Then we have E[X] = 2.8, Var(X) = 0.66, E[Y ] = 51, Var(Y ) = 69, E[XY ] =∑
x

∑
y xyf(x, y) = 140, and

ρ =
E[XY ]− E[X]E[Y ]√

Var(X)Var(Y )
= −0.415. ♦

Theorem: Var(
∑n
i=1 aiXi) =

∑n
i=1 a

2
iVar(Xi) + 2

∑∑
i<j aiajCov(Xi, Xj).

Corollary: Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ).

Corollary: Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X, Y ).

2.9 Some Fun Distributions

First, some discrete distributions. . .

2.9.1 Bernoulli

X ∼ Bernoulli(p).

f(x) =

{
p if x = 0

1− p if x = 1

E[X] = p, Var(X) = p(1− p), MX(t) = pet + q.

If X1, X2, . . . , Xn are i.i.d. Bern(p), we say that they form a series of Bernoulli(p) trials.

2.9.2 Binomial

X ∼ Binomial(n, p).

f(x) =

(
n
k

)
px(1− p)n−x, x = 0, 1, . . . , n.

E[X] = np, Var(X) = np(1− p), MX(t) = (pet + q)n. If X1, X2, . . . , Xn
iid∼ Bern(p), then∑n

i=1Xi ∼ Bin(n, p).

2.9.3 Geometric

X ∼ Geom(p) is the number of Bern(p) trials until a success occurs. For example,
“FFFS” implies that X = 4.

f(x) = (1− p)x−1p, x = 1, 2, . . . .

E[X] = 1/p, Var(X) = q/p2.
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2.9.4 Negative Binomial

X ∼ NegBin(r, p) is the sum of r i.i.d. Geom(p) RV’s, i.e., the time until the rth success
occurs. For example, “FFFSSFS” implies that NegBin(3, p) = 7.

f(x) =

(
x− 1
r − 1

)
(1− p)x−rpr, x = r, r + 1, . . . .

E[X] = r/p, Var(X) = qr/p2.

2.9.5 Poisson

A counting process N(t) tallies the number of “arrivals” observed in [0, t]. A Poisson
process is a counting process satisfying the following.

i. Arrivals occur one-at-a-time.

ii. Independent increments, i.e., the numbers of arrivals in disjoint time intervals are
independent.

iii. Stationary increments, i.e., the distribution of the number of arrivals only depends
on the length of the time interval under observation.

X ∼ Pois(λ) is the number of arrivals that a Poisson processes experiences in one time
unit, i.e., N(1).

f(x) =
e−λλx

x!
, x = 0, 1, . . . .

E[X] = λ = Var(X).

Now, some continuous distributions. . .

2.9.6 Uniform

X ∼ Unif(a, b).

f(x) =
1

b− a
, a ≤ x ≤ b.

E[X] = a+b
2

, Var(X) = (b−a)2
12

, MX(t) = etb−eta
t

.
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2.9.7 Exponential

X ∼ Exp(λ).
f(x) = λe−λx, x ≥ 0.

E[X] = 1/λ, Var(X) = 1/λ2, MX(t) = λ
λ−t , t < λ.

Theorem. The exponential distribution has the memoryless property, i.e., for s, t > 0,

Pr(X > s+ t|X > s) = Pr(X > t).

By the way, the Exp(λ) is the only continuous distribution with this property.

Example: Suppose that a light bulb has a lifetime that is exponential with mean 1000
hours. Suppose it has already survived 500 hours. Then the probability that it makes it
to 2000 is

Pr(X > 2000|X > 500) = Pr(X > 1500) = e−λt = e−1500/1000. ♦

2.9.8 Gamma

X ∼ Gamma(α, λ).

f(x) =
λαxα−1e−λx

Γ(α)
, x ≥ 0,

where the gamma function is

Γ(z) ≡
∫ ∞
0

tz−1e−t dt.

E[X] = α/λ, Var(X) = α/λ2, MX(t) = ( λ
λ−t)

α. If X1, X2, . . . , Xn
iid∼ Exp(λ), then Y ≡∑n

i=1Xi ∼ Gamma(n, λ). The Gamma(n, λ) is also called the Erlangn(λ). It has c.d.f.

FY (y) = 1− e−λy
n−1∑
j=0

(λy)j

j!
, y ≥ 0.

2.9.9 Normal

X ∼ Nor(µ, σ2).

f(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
, x ∈ <.

E[X] = µ, Var(X) = σ2, MX(t) = exp{µt+ 1
2
σ2t2}.
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Theorem (Additive Property of Normals): Suppose that X1, X2, . . . , Xn are inde-
pendent with Xi ∼ Nor(µi, σ

2
i ), i = 1, 2 . . . , n. Then

Y =
n∑
i=1

aiXi + b ∼ Nor

(
n∑
i=1

aiµi + b,
n∑
i=1

a2iσ
2
i

)
.

Proof: Use m.g.f.’s.

MY (t) = E(etY ) = E

(
exp

{
t

(
n∑
i=1

aiXi + b

)})

= etbE

(
exp

{
n∑
i=1

(ait)Xi

})

= etb
n∏
i=1

E
(
e(ait)Xi

)
(by independence)

= etb
n∏
i=1

MXi
(ait)

= etb
n∏
i=1

exp
{
µi(ait) +

1

2
σ2
i (ait)

2
}

= exp

{(
n∑
i=1

µiai + b

)
t+

1

2

(
n∑
i=1

a2iσ
2
i

)
t2
}
. ♦

Example: Suppose X ∼ Nor(3, 4), Y ∼ Nor(4, 6), and X and Y are independent. Then

2X − 3Y + 1 ∼ Nor(2E[X]− 3E[Y ] + 1, 4Var(X) + 9Var(Y )) ∼ Nor(−5, 70). ♦

Corollary: If X ∼ Nor(µ, σ2), then aX + b ∼ Nor(aµ+ b, a2σ2).

Corollary: If X ∼ Nor(µ, σ2), then Z ≡ X−µ
σ
∼ Nor(0, 1), the standard normal

distribution.

Notation: The standard normal’s p.d.f. is φ(x) = 1√
2π
e−x

2/2, and the c.d.f. is Φ(x),

which is usually tabled. For example, Φ(1.96)
.
= 0.975.

2.10 A First Look at Some Limit Theorems

Corollary (of theorem on linear combinations of normals from previous subsection): If

X1, X2, . . . , Xn
iid∼ Nor(µ, σ2), then the sample mean

X̄ ≡ 1

n

n∑
i=1

Xi ∼ Nor(µ, σ2/n).
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This is a special case of the Law of Large Numbers, which says that X̄ approximates µ
well as n becomes large.

Markov’s Inequality: If X is a non-negative RV, then for all ε > 0, we have

Pr(X ≥ ε) ≤ E[X]/ε.

Proof: Since X is non-negative,

E[X] =
∫ ∞
0

xf(x) dx ≥
∫ ∞
ε

xf(x) dx ≥ ε
∫ ∞
ε

f(x) dx = εPr(X ≥ ε). ♦

Chebychev’s Inequality: For any RV X and for all ε > 0, we have

Pr(|X − E[X]| ≥ ε) ≤ Var(X)/ε2.

Proof: Uses Markov’s Inequality; see any probability test. ♦

Bonus Generalization: Pr(|X| ≥ ε) ≤ E[|X|r]/εr.

Remark: These inequalities are usually pretty crude!

Example: Suppose that X ∼ Unif(0, 1). Then the probability that X deviates from its
mean by at least 1/4 is exactly

Pr
(∣∣∣∣X − 1

2

∣∣∣∣ ≥ 1

4

)
= 1− Pr

(∣∣∣∣X − 1

2

∣∣∣∣ < 1

4

)
= 1− Pr

(
−1

4
< X − 1

2
<

1

4

)
= 1− Pr

(
1

4
< X <

3

4

)
=

1

2
.

Meanwhile, by Chebychev (with E[X] = 1/2, Var(X) = 1/12, and ε = 1/4), we have

Pr
(∣∣∣∣X − 1

2

∣∣∣∣ ≥ 1

4

)
≤ Var(X)

ε2
=

16

12
=

4

3
,

which is a very crude upper bound indeed! ♦

Definition: The sequence of random variables Y1, Y2, . . . with respective c.d.f.’s
FY1(y), FY2(y), . . . converges in distribution to the random variable Y having c.d.f. FY (y)
if limn→∞ FYn(y) = FY (y) for all y belonging to the continuity set of Y (i.e., the set of

all points y at which FY (y) is continuous). Notation: Yn
D→ Y . (Also sometimes called

convergence in law or weak convergence.)
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Idea: If Yn
D→ Y , then you would expect to be able to approximate the distribution of

Yn by the limiting distribution of Y , at least for large enough n.

Central Limit Theorem: If X1, X2, . . . , Xn
iid∼ f(x) with mean µ and variance σ2, then

Zn ≡
∑n
i=1Xi − nµ√

nσ
=

√
n(X̄n − µ)

σ
D→ Nor(0, 1),

where X̄n is the sample mean. Thus, the c.d.f. of Zn approaches that of the standard
normal as n increases. The CLT usually works pretty well if the pdf/pmf is fairly
symmetric and n ≥ 15.

Example: Suppose that X1, X2, . . . , X100
iid∼ Exp(1). Then

Pr

(
90 ≤

100∑
i=1

Xi ≤ 110

)
= Pr

(
90− 100√

100
≤ Z100 ≤

110− 100√
100

)
= Pr(−1 ≤ Z100 ≤ 1) ≈ Pr(−1 ≤ Nor(0, 1) ≤ 1) = 2Φ(1)− 1 ≈ 0.683. ♦

Definition: The sequence of random variables Y1, Y2, . . . is said to converge in probability
to Y (often a constant) if for all ε > 0, Pr(|Yn − Y | > ε) → 0 as n → ∞. Notation:

Yn
P→ Y .

Theorem: Yn
P→ Y implies Yn

D→ Y . In other words, convergence in probability is a bit
stronger than convergence in distribution.

Weak Law of Large Numbers: If X1, X2, . . . are i.i.d. with mean µ, then X̄n
P→ µ.

Why is this called the weak LLN? Simply because there’s a stronger one coming up later.

Continuous Mapping Theorem: If Yn
P→ Y and g(·) is a nice, continuous function,

then g(Yn)
P→ g(Y ). The CMT is often useful for characterizing the convergence of nasty

functions of the Yi’s.

Definition: The sequence of random variables Y1, Y2, . . . is said to converge in rth mean
to Y (often a constant) if E[|Yn − Y |r]→ 0 as n→∞. Notation: Yn

r→ Y .

Theorem: Yn
r→ Y implies Yn

P→ Y . In other words, convergence in rth mean is a bit
stronger than convergence in probability.

Proof: Follows immediately from bonus version of Chebychev. ♦
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Definition: The sequence of random variables Y1, Y2, . . . converges almost surely (or
with probability one) to Y if Pr(Yn converges to Y ) = 1 as n→∞. Notation: Yn

a.s.→ Y .

Theorem: Yn
a.s.→ Y implies Yn

P→ Y . In other words, convergence almost surely is a bit
stronger than convergence in probability.

Strong Law of Large Numbers: If X1, X2, . . . are i.i.d. with mean µ, then X̄n
a.s.→ µ.

It turns out that the SLLN implies the WLLN.

How do almost sure and rth mean convergence relate to each other?

Dominated Convergence Theorem: If Yn
a.s.→ Y and there exists a random variable

W such that Pr(|Yn| ≤ W ) = 1 for every n, then E[Yn]→ E[Y ].


