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Introduction and Review of Classical Confidence Intervals

Statistics / Simulation experiments are typically performed to analyze
or compare a “small” number of systems, say ≤ 200.

The appropriate method depends on the type of comparison desired
and properties of the output data.

If we analyze one system, we could use traditional confidence
intervals (CIs) based on the normal or t-distributions from baby stats.

If we compare two systems, we could again use CIs from baby stats
— maybe even clever ones based on paired observations.

If we compare > 2 systems, we may want to use ranking and
selection techniques.
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Introduction and Review of Classical Confidence Intervals

Confidence Intervals

Lots of possible confidence intervals:

means, variances, quantiles.

one-sample, two-sample cases (e.g., differences in means)

One-Sample Case:

Interested in obtaining a two-sided 100(1− α)% CI for the
unknown mean µ of a normal distribution.

Suppose we have independent and identically distributed (i.i.d.)
normal data X1, X2, . . . , Xn.

Assume unknown variance σ2.

Use the well-known t-distribution based CI, which I’ll derive for
your viewing pleasure.
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Introduction and Review of Classical Confidence Intervals

First of all, recall that

The sample mean X̄n ≡
∑n

i=1Xi/n ∼ Nor(µ, σ2/n).

The sample variance
S2
X ≡

∑n
i=1(Xi − X̄n)2/(n− 1) ∼ σ2χ2(n− 1)/(n− 1).

X̄n and S2
X are independent.

With these facts in mind, we have

T =
X̄n − µ√
S2
X/n

=

X̄n−µ√
σ2/n√
S2
X/σ

2
∼ Nor(0, 1)√

χ2(n−1)
n−1

∼ t(n− 1).
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Introduction and Review of Classical Confidence Intervals

Letting the notation tγ,ν denotes the 1− γ quantile of a t-distribution
with ν degrees of freedom, we have

1− α = P (−tα/2,n−1 ≤ T ≤ tα/2,n−1)

= P

(
−tα/2,n−1 ≤

X̄n − µ√
S2
X/n

≤ tα/2,n−1

)
= P

(
X̄n − tα/2,n−1SX/

√
n ≤ µ ≤ X̄n + tα/2,n−1SX/

√
n
)
.

So we have the following 100(1− α)% CI for µ,

µ ∈ X̄n ± tα/2,n−1SX/
√
n.
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Introduction and Review of Classical Confidence Intervals

Two-Sample Case: Suppose that X1, X2, . . . , Xn are i.i.d.
Nor(µX , σ2

X) and Y1, Y2, . . . , Ym are i.i.d. Nor(µY , σ2
Y ).

A CI for the difference between µX − µY can be carried out by any of
the following methods, all of which are from baby stats.

pooled CI (use when σ2
X and σ2

Y are equal but unknown)

approximate CI (use when σ2
X and σ2

Y are unequal and unknown)

paired CI (use when Cov(Xi, Yi) > 0)

In what follows, X̄ , Ȳ , S2
X , and S2

Y are the obvious sample means
and variances of the X’s and Y ’s.

7 / 103



Introduction and Review of Classical Confidence Intervals

Pooled CI: If the X’s and Y ’s are independent but with common,
unknown variance, then the usual CI for the difference in means is

µX − µY ∈ X̄ − Ȳ ± tα/2,n+m−2 SP

√
1

n
+

1

m
,

where

S2
P ≡

(n− 1)S2
X + (m− 1)S2

Y

n+m− 2

is the pooled variance estimator for σ2.
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Introduction and Review of Classical Confidence Intervals

Approximate CI: If the X’s and Y ’s are independent but with arbitrary
unknown variances, then the usual CI for the difference in means is

µX − µY ∈ X̄ − Ȳ ± tα/2,ν

√
S2
X

n
+
S2
Y

m
.

This CI is not quite exact, since it uses an approximate degrees of
freedom,

ν ≡

(
S2
X
n +

S2
Y
m

)2

(S2
X/n)2

n+1 +
(S2

Y /m)2

m+1

− 2.
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Introduction and Review of Classical Confidence Intervals

Example: Times for people to parallel park two cars (assume normal).

A guy parks Different (indep)

Honda Xi guy parks Caddy Yi
10 30

25 15

5 40

20 10

15 25

After a little algebra, we have

X̄ = 15, Ȳ = 24, S2
X = 62.5, S2

Y = 142.5.
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Introduction and Review of Classical Confidence Intervals

More algebra gives

ν =
6
(

62.5 + 142.5
)2

(62.5)2 + (142.5)2
− 2 = 8.4 ≈ 8 (round down).

This yields the following 90% CI,

µX − µY ∈ X̄ − Ȳ ± t0.05,8

√
S2
X

n
+
S2
Y

n
= −9± 11.91,

which contains 0 and so is inconclusive about which of µX and µY is
bigger. 2
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Introduction and Review of Classical Confidence Intervals

Paired CI: Again consider two competing normal pop’ns with
unknown means µX and µY . Suppose we collect observations from
the two pop’ns in pairs.

Different pairs are independent, but the two obs’ns within the same
pair may not be indep.

indep



Pair 1 : (X1, Y1)

Pair 2 : (X2, Y2)
...

...

Pair n : (Xn, Yn)︸ ︷︷ ︸
not indep
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Introduction and Review of Classical Confidence Intervals

Example: Think sets of twins. One twin takes a new drug, the other
takes a placebo.

Idea: By setting up such experiments, we hope to be able to capture
the difference between the two normal populations more precisely,
since we’re using the pairs to eliminate extraneous noise.

This will be the trick we use later on in this module when we use the
simulation technique of common random numbers.
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Introduction and Review of Classical Confidence Intervals

Here’s the set-up. Take n pairs of observations:

X1, X2, . . . , Xn
iid∼ Nor(µX , σ2

X)

Y1, Y2, . . . , Yn
iid∼ Nor(µY , σ2

Y ).

(Technical assumption: All Xi’s and Yj’s are jointly normal.)

We assume that the variances σ2
X and σ2

Y are unknown and possibly
unequal.

Further, pair i is indep of pair j (between pairs), but Xi may not be
indep of Yi (within a pair).
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Introduction and Review of Classical Confidence Intervals

Define the pair-wise differences, Di ≡ Xi − Yi, i = 1, 2, . . . , n.

Then D1, D2, . . . , Dn
iid∼ Nor(µD, σ2

D), where µD ≡ µX − µY
(which is what we want the CI for), and

σ2
D ≡ σ2

X + σ2
Y − 2Cov(Xi, Yi).

Idea: We hope that Cov(Xi, Yi) is pretty positive, which will result in
lower σ2

D — low variance is a good thing!
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Introduction and Review of Classical Confidence Intervals

Now the problem reduces to the old Nor(µ, σ2) case with unknown µ
and σ2. So let’s calculate the sample mean and variance as before.

D̄ ≡ 1

n

n∑
i=1

Di ∼ Nor(µD, σ2
D/n)

S2
D ≡ 1

n− 1

n∑
i=1

(Di − D̄)2 ∼
σ2
Dχ

2(n− 1)

n− 1
.

Just like before, get the CI

µD ∈ D̄ ± tα/2,n−1

√
S2
D/n.
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Introduction and Review of Classical Confidence Intervals

Example: Times for the same person to parallel park two cars.

Person Park Honda Park Cadillac Difference

1 10 20 −10

2 25 40 −15

3 5 5 0

4 20 35 −15

5 15 20 −5

The individual people are indep, but the times for the same individual
to park the two cars are not indep.
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Introduction and Review of Classical Confidence Intervals

The 90% two-sided CI is therefore

µD ∈ D̄ ± t0.05,4

√
S2
D/n

= −9± 2.13
√

42.5/5 = −9± 6.21.

This interval is entirely to the left of 0, indicating µD < 0, i.e.,
Caddys take longer to park, on average. 2

This CI is quite a bit shorter (more informative) than the previous
“approximate” two-sample CI, −9± 11.91, because the paired-t takes
advantage of the correlation within observation pairs.

Moral: Use paired-t when you can.
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Comparison of Simulated Systems
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Comparison of Simulated Systems

One of the most important uses of simulation output analysis regards
the comparison of competing systems or alternative system
configurations.

Example: Evaluate two different “re-start” strategies that an airline
can evoke following a major traffic disruption such as a snowstorm in
the Northeast — which policy minimizes a certain cost function
associated with the re-start?

Simulation is uniquely equipped to help the experimenter conduct this
type of comparison analysis.

Many techniques: (i) classical CI’s, (ii) variance reduction methods,
and (iii) ranking and selection procedures.
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Comparison of Simulated Systems

Confidence Intervals for Mean Differences

With our airline example in mind, let Zi,j be the cost from the jth
simulation replication of strategy i, i = 1, 2, j = 1, 2, . . . , bi.

Assume that Zi,1, Zi,2, . . . , Zi,bi are i.i.d. normal with unknown mean
µi and unknown variance, i = 1, 2. Justification?. . .

(a) Get independent data by controlling the random numbers between
replications.

(b) Get identically distributed costs between reps by performing the
reps under identical conditions.

(c) Get approximately normal data by adding up (or averaging) many
sub-costs to get overall costs for both strategies.
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Comparison of Simulated Systems

Confidence Intervals for Mean Differences

Goal: Obtain a 100(1− α)% CI for the difference in means, µ1 − µ2.

Suppose that the Z1,j’s are independent of the Z2,j’s and define

Z̄i,bi ≡
1

bi

bi∑
j=1

Zi,j , i = 1, 2,

and

S2
i ≡

1

bi − 1

bi∑
j=1

(Zi,j − Z̄i,bi)
2, i = 1, 2.
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Comparison of Simulated Systems

Confidence Intervals for Mean Differences

An approximate 100(1− α)% CI is

µ1 − µ2 ∈ Z̄1,b1 − Z̄2,b2 ± tα/2,ν

√
S2

1

b1
+
S2

2

b2

where the (approx.) d.f. ν is given earlier in this module.

Suppose (as in airline example) that small cost is good.

If the interval lies entirely to the left [right] of zero, then system
1 [2] is better.

If the interval contains zero, then the two systems are,
statistically, about the same.
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Comparison of Simulated Systems

Confidence Intervals for Mean Differences

Alternative strategy: Use a CI analogous to a paired-t test.

Take b replications from both strategies and set the difference
Dj ≡ Z1,j − Z2,j for j = 1, 2, . . . , b.

Calculate the sample mean and variance of the differences:

D̄b ≡
1

b

b∑
j=1

Dj and S2
D ≡

1

b− 1

b∑
j=1

(Dj − D̄b)
2.

The 100(1−α)% paired-t CI is very efficient if Corr(Z1,j , Z2,j) > 0.

µ1 − µ2 ∈ D̄b ± tα/2,b−1

√
S2
D/b.
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Comparison of Simulated Systems

Variance Reduction Techniques

Common Random Numbers

Idea behind paired-t CI: Use common random numbers, i.e., use the
same pseudo-random numbers in exactly the same ways for
corresponding runs of each of the competing systems.

Example: Use the same customer arrival and service times when
simulating different proposed configurations of a job shop.

By subjecting the alternative systems to identical experimental
conditions, we hope to make it easy to distinguish which systems are
best even though the respective estimators have sampling error.
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Comparison of Simulated Systems

Variance Reduction Techniques

Consider the case in which we compare two queueing systems, A and
B, on the basis of their expected customer transit times, θA and θB —
the smaller θ-value corresponds to the better system.

Suppose we have estimators θ̂A and θ̂B for θA and θB , respectively.

We’ll declare A as the better system if θ̂A < θ̂B . If θ̂A and θ̂B are
simulated independently, then the variance of their difference,

Var(θ̂A − θ̂B) = Var(θ̂A) + Var(θ̂B),

could be very large; then our declaration might lack conviction.
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Comparison of Simulated Systems

Variance Reduction Techniques

If we could reduce Var(θ̂A − θ̂B), then we could be much more
confident about our declaration.

CRN sometimes induces a high positive correlation between the point
estimators θ̂A and θ̂B .

Then we have

Var(θ̂A − θ̂B) = Var(θ̂A) + Var(θ̂B)− 2Cov(θ̂A, θ̂B)

< Var(θ̂A) + Var(θ̂B),

and we obtain a savings in variance.
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Comparison of Simulated Systems

Variance Reduction Techniques

Demo Time! Queueing analysis. Exponential interarrival and service
times. Which strategy yields shorter cycle times?

A. One line feeding into two parallel servers, or

B. Customers making a 50-50 choice between two lines each
feeding into a single server?

Simulate each alternative for 20 replications of 1000 minutes.

The usual independent simulations of strategies A and B reveals gives
a CI of µA − µB ∈ −16.19± 9.26.

The use of CRN with the same arrival and service times across
strategies gives µA − µB ∈ −15.05± 3.37. Much tighter CIs! ,
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Comparison of Simulated Systems

Variance Reduction Techniques

Antithetic Random Numbers

Opposite of CRN — Suppose that θ̂1 and θ̂2 are i.i.d. unbiased
estimators for some parameter θ.

If we can induce negative correlation between θ̂1 and θ̂2, then the
average of the two is also unbiased and may have very low variance,

Var

(
θ̂1 + θ̂2

2

)
=

1

4

[
Var(θ̂1) + Var(θ̂2) + 2Cov(θ̂1, θ̂2)

]
=

1

2

[
Var(θ̂1) + Cov(θ̂1, θ̂2)

]
<

Var(θ̂1)

2
(← “usual” avg of two reps!).
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Comparison of Simulated Systems

Variance Reduction Techniques

Example: Let’s do some Monte Carlo integration, using ARN to
obtain a nice variance reduction.

Consider the integral I =
∫ 2

1 (1/x) dx. (Because I have natural logger
rhythm, I happen to know that the true answer is `n(2) ≈ 0.693.)

We’ll use the following n = 5 Unif(0, 1) random numbers to come
up with the usual estimator Īn for I:

0.85 0.53 0.98 0.12 0.45
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Comparison of Simulated Systems

Variance Reduction Techniques

Using the Monte Carlo integration notation from waaaay back in time
with g(x) = 1/x,

θ̂1 = Īn =
b− a
n

n∑
i=1

g(a+ (b− a)Ui)

=
1

5

5∑
i=1

g(1 + Ui)

=
1

5

5∑
i=1

1

1 + Ui

= 0.6563 (not bad).
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Comparison of Simulated Systems

Variance Reduction Techniques

Now we’ll use the following antithetic random numbers (which are all
the “opposite” of the above PRNs, i.e., 1− Ui):

0.15 0.47 0.02 0.88 0.55

Then the antithetic version of the estimator is

θ̂2 =
1

5

5∑
i=1

1

1 + (1− Ui)
= 0.7475 (also not bad).

But lookee here when you take the average of the two answers,

θ̂1 + θ̂2

2
= 0.6989.

Wow — really close to the right answer! ,
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Comparison of Simulated Systems

Variance Reduction Techniques

Control Variates

Another method to reduce estimator variance is related to regression.

Suppose that our goal is to estimate the mean µ of some steady-state
simulation output process, X1, X2, . . . , Xn. Suppose we somehow
know the expected value of some other RV Y , and we also know that
Cov(X̄, Y ) > 0, where X̄ is the sample mean.

Obviously, X̄ is the “usual” estimator for µ. But let’s look at another
estimator for µ, namely, the control-variate estimator,

C = X̄ − β(Y − E[Y ]), for some constant β.
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Comparison of Simulated Systems

Variance Reduction Techniques

Note that

E[C] = E[X̄]− β(E[Y ]− E[Y ]) = E[X̄] = µ.

Further,

Var(C) = Var(X̄) + β2 Var(Y )− 2β Cov(X̄, Y ).

And then we can minimize Var(C) with respect to β. Differentiating,

β =
Cov(X̄, Y )

Var(Y )
.

Thus,

Var(C) = Var(X̄)− Cov2(X̄, Y )

Var(Y )
< Var(X̄). 2
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Comparison of Simulated Systems

Variance Reduction Techniques

Examples: We might try to estimate a population’s mean weight µ
using observed weights X1, X2, . . . with corresponding heights
Y1, Y2, . . . as controls (assuming that E[Y ] is known).

We could estimate the price of an American stock option (which is
tough) using the corresponding European option price (which is easy)
as a control.

In any case, many simulation texts give advice on how to run the
simulations of the competing systems so as to use CRN, ARN, and
control variates.
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Ranking and Selection Methods
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Ranking and Selection Methods

Ranking, selection, and multiple comparisons methods form another
class of statistical techniques used to compare alternative systems.

Here, the experimenter is interested in selecting the best of a number
(≥ 2) of competing processes.

Specify the desired probability of correctly selecting the best process,
especially if the best process is significantly better than its
competitors.

These methods are simple to use, fairly general, and intuitively
appealing (see Bechhofer, Santner, and Goldsman 1995).
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Ranking and Selection Methods

For > 2 systems, we could use methods such as simultaneous CIs and
ANOVA. But those methods don’t tell us much except that “at least
one of the systems is different than the others”, which is no surprise.

And what measures do you use to compare different systems?

Which has the biggest mean?

The smallest variance?

The highest probability of yielding a success?

The lowest risk?

A combination of criteria?
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Ranking and Selection Methods

Remainder of this module: We present ranking & selection
procedures to find the best system with respect to one parameter.

Examples:

Great Expectations: Which of 10 fertilizers produces the largest
mean crop yield? (Normal)

Great Expectorants: Find the pain reliever that has the highest
probability of giving relief for a cough. (Binomial)

Great Ex-Patriots: Who is the most-popular former New England
football player? (Multinomial)
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Ranking and Selection Methods

R&S selects the best system, or a subset of systems that includes the
best.

Guarantee a probability of a correct selection.

Multiple Comparisons Procedures (MCPs) add in certain
confidence intervals.

R&S is relevant in simulation:

Normally distributed data by batching.

Independence by controlling random numbers.

Multiple-stage sampling by retaining the seeds.
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Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

We give procedures for selecting that one of k normal distributions
having the largest mean.

We use the indifference-zone approach.

Assumptions: Independent Yi1, Yi2, . . . (1 ≤ i ≤ k) are taken from
k ≥ 2 normal populations Π1, . . . ,Πk. Here Πi has unknown mean µi
and known or unknown variance σ2

i .

Denote the vector of means by µ = (µ1, . . . , µk) and the vector of
variances by σ2 = (σ2

1, . . . , σ
2
k).

The ordered (but unknown) µi’s are µ[1] ≤ · · · ≤ µ[k].

The system having the largest mean µ[k] is the “best.”
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Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

Goal: To select the population associated with mean µ[k].

A correct selection (CS) is made if the Goal is achieved.

Indifference-Zone Probability Requirement: For specified constants
(P ?, δ?) with δ? > 0 and 1/k < P ? < 1, we require

P (CS) ≥ P ? whenever µ[k] − µ[k−1] ≥ δ?. (1)

The constant δ? can be thought of as the “smallest difference worth
detecting.”

The probability in (1) depends on the differences µi − µj , the sample
size n, and σ2.
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Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

Parameter configurations µ satisfying µ[k] − µ[k−1] ≥ δ? are in the
preference-zone for a correct selection.

-�µ in preference zone δ?

µ[k−1] µ[k]µ[1]

If µ[k] − µ[k−1] < δ?, then you’re in the indifference-zone.

-� δ?µ in indifference zone

µ[k−1] µ[k]µ[1]
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Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

Any procedure that guarantees (1) is said to be employing the
indifference-zone approach.

There are 100’s of such procedures. Highlights:

Single-Stage Procedure (Bechhofer 1954)

Two-Stage Procedure (Rinott 1979)

Sequential Procedure (Kim and Nelson 2001)
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Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

Single-Stage Procedure NB (Bechhofer 1954)

This procedure takes all necessary observations and makes the
selection decision at once (in a single stage).

Assumes populations have common known variance.

For the given k and specified (P ?, δ?/σ), determine sample size n.

Take a random sample of n observations Yij (1 ≤ j ≤ n) in a single
stage from Πi (1 ≤ i ≤ k).
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Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

Calculate the k sample means, Ȳi =
∑n

j=1 Yij/n (1 ≤ i ≤ k).

Select the population that yielded the largest sample mean,
Ȳ[k] = max{Ȳ1, . . . , Ȳk}, as the one associated with µ[k].

Very intuitive — all you have to do is figure out n.

from a table (easy), or

from a multivariate normal quantile (not too bad), or

via a separate simulation (if all else fails)
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Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

δ?/σ

k P ? 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.75 91 23 11 6 4 3 2 2 2 1

2 0.90 329 83 37 21 14 10 7 6 5 4

0.95 542 136 61 34 22 16 12 9 7 6

0.99 1083 271 121 68 44 31 23 17 14 11

0.75 206 52 23 13 9 6 5 4 3 3

3 0.90 498 125 56 32 20 14 11 8 7 5

0.95 735 184 82 46 30 21 15 12 10 8

0.99 1309 328 146 82 53 37 27 21 17 14

0.75 283 71 32 18 12 8 6 5 4 3

4 0.90 602 151 67 38 25 17 13 10 8 7

0.95 851 213 95 54 35 24 18 14 11 9

0.99 1442 361 161 91 58 41 30 23 18 15

Common Sample Size n per Population Required by NB
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Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

Remark: Don’t really need the above table. You can directly calculate

n =

⌈
2
(
σZ

(1−P ?)
k−1,1/2/δ

?
)2
⌉
,

where d·e rounds up, and the constant Z(1−P ?)
k−1,1/2 is an upper

equicoordinate point of a certain multivariate normal distribution.

The value of n satisfies the Probability Requirement (1) for any µ
with

µ[1] = µ[k−1] = µ[k] − δ?. (2)

Configuration (2) is the slippage configuration (since µ[k] is larger
than the other µi’s by a fixed amount). It turns out that for Procedure
NB, (2) is also the least-favorable (LF) configuration because, for
fixed n, it minimizes the P (CS) among all µ in the preference-zone.
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Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

The next thing we’ll do is to calculate n (without using multivariate
normal tables).

The value of n will be the smallest value that satisfies the Probability
Requirement when µ is in the “worst-case” LF configuration.

We’ll assume without loss of generality that Πk has the largest µi.

And recall our old notation friends φ(·) and Φ(·) — the standard
normal p.d.f. and c.d.f.
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Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

P ? = P (CS |LF) = P{Ȳi < Ȳk, i = 1, . . . , k − 1 |LF}

= P

{
Ȳi − µk√
σ2/n

<
Ȳk − µk√
σ2/n

, i = 1, . . . , k − 1

∣∣∣∣LF

}

=

∫
R
P

{
Ȳi − µk√
σ2/n

< x, i = 1, . . . , k − 1

∣∣∣∣LF

}
φ(x) dx

=

∫
R
P

{
Ȳi − µi√
σ2/n

< x+

√
nδ?

σ
, i = 1, . . . , k − 1

}
φ(x) dx

=

∫
R

Φk−1

(
x+

√
nδ?

σ

)
φ(x) dx =

∫
R

Φk−1(x+ h)φ(x) dx.

Now solve numerically for h, and then set n = d(hσ/δ?)2e.
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Example: Suppose k = 4 and we want to detect a difference in means
as small as 0.2 standard deviations with P (CS) ≥ 0.99. The table for
NB calls for n = 361 observations per population.

If, after taking n = 361 obns, we find that Ȳ1 = 13.2, Ȳ2 = 9.8,
Ȳ3 = 16.1, and Ȳ4 = 12.1, then we select population 3 as the best.

Note that increasing δ? and/or decreasing P ? requires a smaller n. For
example, when δ?/σ = 0.6 and P ? = 0.95, NB requires only n = 24
observations per population. 2

Robustness of Procedure: How does NB do under different types of
violations of the underlying assumptions on which it’s based?

Lack of normality — not so bad.

Different variances — sometimes a big problem.

Dependent data — usually a nasty problem (e.g., in simulations).
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Two-Stage Procedure NR (Rinott 1979)

Assumes populations have unknown and unequal variances. Takes a
first stage of observations to estimate the variances of each system,
and then uses those estimates to determine how many observations to
take in the second stage — the higher the variance estimate, the more
observations needed.

For the given k, specify (P ?, δ?), and a common first-stage sample
size n0 ≥ 2.

Look up the constant g(P ?, n0, k) in an appropriate table or (if you
have the urge) solve the following equation for g:∫ ∞

0

∫ ∞
0

Φk−1

(
g

(n0 − 1)( 1
x + 1

y )

)
f(x)f(y) dx dy = P ?,

where f(·) is the χ2(n0 − 1) p.d.f.
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Take an i.i.d. sample Yi1, Yi2, . . . , Yin0 from each of the k scenarios
simulated independently.

Calculate the first-stage sample means and variances,

Ȳi(n0) =
1

n0

n0∑
j=1

Yij and S2
i =

∑n0
j=1

(
Yij − Ȳi(n0)

)2
n0 − 1

,

and then the final sample sizes

Ni = max
{
n0,
⌈
(gSi/δ

?)2
⌉}
, i = 1, 2, . . . , k.

Take Ni − n0 additional i.i.d. observations from scenario i,
independently of the first-stage sample and the other scenarios, for
i = 1, 2, . . . , k.
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Compute overall sample means ¯̄Yi = 1
Ni

∑Ni
j=1 Yij , ∀i.

Select the scenario with the largest ¯̄Yi as best.

Bonus: Simultaneously form MCP confidence intervals

µi−max
j 6=i

µj ∈

[
−
(

¯̄Yi −max
j 6=i

¯̄Yj − δ?
)−

,

(
¯̄Yi −max

j 6=i
¯̄Yj + δ?

)+
]

∀i, where (a)+ ≡ max{0, a} and −(b)− ≡ min{0, b}.
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k

P ? n0 2 3 4 5 6 7

9 2.656 3.226 3.550 3.776 3.950 4.091
10 2.614 3.166 3.476 3.693 3.859 3.993
11 2.582 3.119 3.420 3.629 3.789 3.918
12 2.556 3.082 3.376 3.579 3.734 3.860
13 2.534 3.052 3.340 3.539 3.690 3.812
14 2.517 3.027 3.310 3.505 3.654 3.773
15 2.502 3.006 3.285 3.477 3.623 3.741

0.95 16 2.489 2.988 3.264 3.453 3.597 3.713
17 2.478 2.973 3.246 3.433 3.575 3.689
18 2.468 2.959 3.230 3.415 3.556 3.669
19 2.460 2.948 3.216 3.399 3.539 3.650
20 2.452 2.937 3.203 3.385 3.523 3.634
30 2.407 2.874 3.129 3.303 3.434 3.539
40 2.386 2.845 3.094 3.264 3.392 3.495
50 2.373 2.828 3.074 3.242 3.368 3.469

g Constant Required by NR
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Example: A Simulation Study of Airline Reservation Systems

Consider k = 4 different airline reservation systems.

Objective: Find the system with the largest expected time to failure
(E[TTF]). Let µi denote the E[TTF] for system i.

From past experience we know that the E[TTF]’s are roughly 100,000
minutes (about 70 days) for all four systems.

Goal: Select the best system with probability at least P ? = 0.90 if the
difference in the expected failure times for the best and second best
systems is ≥ δ? = 3000 minutes (about two days).

The competing systems are sufficiently complicated that computer
simulation is required to analyze their behavior.
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Let Tij (1 ≤ i ≤ 4, j ≥ 1) denote the observed time to failure from
the jth independent simulation replication of system i.

Application of the Rinott procedure NR requires i.i.d. normal
observations from each system.

If each simulation replication is initialized from a particular system
under the same operating conditions, but with independent random
number seeds, the resulting Ti1, Ti2, . . . will be i.i.d. for each system.

However, the Tij aren’t normal — in fact, they’re skewed right.
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Instead of using the raw Tij in NR, apply the procedure to the
so-called macroreplication estimators of the µi.

These estimators group the {Tij :j ≥ 1} into disjoint batches and use
the batch averages as the “data” to which NR is applied.

Fix a number m of simulation replications that comprise each
macroreplication (that is, m is the batch size) and let

Yij ≡
1

m

m∑
k=1

Ti,(j−1)m+k, 1 ≤ i ≤ 4, 1 ≤ j ≤ bi,

where bi is the number of macroreplications to be taken from system i.
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The macroreplication estimators from the ith system,
Yi1, Yi2, . . . , Yibi , are i.i.d. with expectation µi.

If m is sufficiently large, say at least 20, then the CLT yields
approximate normality for each Yij .

No assumptions on the variances of the macroreplications.

To apply NR, first conduct a pilot study to serve as the first stage of
the procedure. Each system was run for n0 = 20 macroreplications
with each macroreplication consisting of the averages of m = 20
simulations of the system.

Rinott table with k = 4 and P ? = 0.90 gives g = 2.720.

The total sample sizes Ni are computed for each system and are
displayed in the summary table.
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i 1 2 3 4

Ȳi(n0) 108286 107686 96167 89747

Si 29157 24289 25319 20810

Ni 699 485 527 356
¯̄Yi 110816 106411 99093 86568

std. error 872 1046 894 985

Summary of Airline Rez Example
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E.g., System 2 requires an additional N2 − 20 = 465
macroreplications in the second stage (each macroreplication again
being the average of m = 20 system simulations).

In all, a total of about 40,000 simulations of the four systems were
required to implement procedure NR. The combined sample means
for each system are listed in row 4 of the summary table.

Clearly establish System 1 as having the largest E[TTF]. 2

61 / 103



Ranking and Selection Methods

Find the Normal Distribution with the Largest Mean

Multi-Stage Procedure NKN (Kim & Nelson 2001)

Very efficient procedure. Takes observations from each population
one-at-a-time, and eliminates populations that appear to be
noncompetitive along the way.

Assumes populations have unknown (unequal) variances.

For the given k, specify (P ?, δ?), and a common initial sample size
from each scenario n0 ≥ 2.

To begin with, calculate the constant

η ≡ 1

2

[(
2(1− P ?)
k − 1

)−2/(n0−1)

− 1

]
.

Initialize I = {1, 2, . . . , k} and let h2 ≡ 2η(n0 − 1).
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Take an initial random sample of n0 ≥ 2 observations Yij
(1 ≤ j ≤ n0) from population i (1 ≤ i ≤ k).

For population i, compute the sample mean based on the n0

observations, Ȳi(n0) =
∑n0

j=1 Yij/n0 (1 ≤ i ≤ k).

For all i 6= `, compute the sample variance of the difference between
populations i and `,

S2
i` =

1

n0 − 1

n0∑
j=1

(
Yij − Y`j − [Ȳi(n0)− Ȳ`(n0)]

)2
.

For all i 6= `, set Ni` =
⌊
h2S2

i`/(δ
?)2
⌋

and then Ni = max`6=iNi`.
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If n0 > maxiNi, stop and select the population with the largest
sample mean Ȳi(n0) as one having the largest mean. Otherwise, set
the sequential counter r = n0 and go to the Screening phase of the
procedure.

Screening: Set Iold = I and re-set

I = {i : i ∈ Iold and Ȳi(r) ≥ Ȳ`(r)−Wi`(r),

for all ` ∈ Iold, ` 6= i},

where

Wi`(r) = max

{
0,
δ?

2r

(
h2S2

i`

(δ?)2
− r
)}

.

Keep those surviving populations that aren’t “too far” from the
current leader.
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Stopping Rule: If |I| = 1, then stop and select the treatment with
index in I as having the largest mean.

If |I| > 1, take one additional observation Yi,r+1 from each treatment
i ∈ I .

Increment r = r+ 1 and go to the screening stage if r < maxiNi + 1.

If r = maxiNi + 1, then stop and select the treatment associated with
the largest Ȳi(r) having index i ∈ I .
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Normal Extensions

Correlation between populations.

Better fully sequential procedures.

Better elimination of populations that aren’t competitive.

Different variance estimators.
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Examples:

Which anti-cancer drug is most effective?

Which simulated system is most likely to meet design specs?

There are 100’s of such procedures. Highlights:

Single-Stage Procedure (Sobel and Huyett 1957)

Sequential Procedure (Bechhofer, Kiefer, Sobel 1968)

“Optimal” Procedures (Bechhofer et al., 1980’s)

Again use the indifference-zone approach.
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We have k competing Bern populations with success parameters
p1, p2, . . . , pk. Denote the ordered p’s by p[1] ≤ p[2] ≤ · · · ≤ p[k].

Goal: Select the population having the largest probability p[k].

Probability Requirement: For specified constants (P ?,∆?) with
1/k < P ? < 1 and 0 < ∆? < 1, we require

P (CS) ≥ P ? whenever p[k] − p[k−1] ≥ ∆?.

The prob req’t is defined in terms of the difference p[k] − p[k−1], and
we interpret ∆? as the “smallest difference worth detecting.”
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A Single-Stage Procedure BSH (Sobel and Huyett 1957)

For the specified (P ?,∆?), find n from a table.

Take a sample of n observations Xij (1 ≤ j ≤ n) in a single stage
from each population (1 ≤ i ≤ k).

Calculate the k sample sums Yin =
∑n

j=1Xij .

Select the treatment that yielded the largest Yin as the one associated
with p[k]; in the case of ties, randomize.
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P ?

k ∆? 0.60 0.75 0.80 0.85 0.90 0.95 0.99

0.10 20 52 69 91 125 184 327

0.20 5 13 17 23 31 46 81

3 0.30 3 6 8 10 14 20 35

0.40 2 4 5 6 8 11 20

0.50 2 3 3 4 5 7 12

0.10 34 71 90 114 150 212 360

0.20 9 18 23 29 38 53 89

4 0.30 4 8 10 13 17 23 39

0.40 3 5 6 7 9 13 21

0.50 2 3 4 5 6 8 13

Smallest n for BSH to Guarantee Probability Requirement
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Example: Suppose we want to select the best of k = 4 treatments
with probability at least P ? = 0.95 whenever p[4] − p[3] ≥ 0.10.

The table shows that we need n = 212 observations.

Suppose that, at the end of sampling, we have Y1,212 = 70,
Y2,212 = 145, Y3,212 = 95, and Y4,212 = 102.

Then we select population 2 as the best. 2
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A Curtailment Trick (Bechhofer and Kulkarni)

Idea: Do the single-stage procedure, except stop sampling when the
guy in second place can at best tie.

This is called curtailment — you might as well stop because it won’t
be possible for the outcome to change (except if there’s a tie, which
doesn’t end up mattering).

Turns out curtailment gives the same P (CS) as the single-stage
procedure, but a lower expected number of observations (≤ n).
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Example (cont’d): Recall that for k = 4, P ? = 0.95, and ∆? = 0.10,
the single-sample procedure required us to take n = 212 observations.

Suppose that, at the end of just 180 samples from each population, we
have the intermediate result Y1,180 = 50, Y2,180 = 130, Y3,180 = 74,
and Y4,180 = 97.

We stop sampling right now and select population 2 as the best
because it’s not possible for population 4 to catch up in the remaining
212− 180 = 32 observations — big savings! 2
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A Sequential Procedure BBKS (BKS 1968)

New Prob Requirement: For specified (P ?, θ?) with 1/k < P ? < 1
and θ? > 1, we require P (CS) ≥ P ? whenever the odds ratio

p[k]/(1− p[k])

p[k−1]/(1− p[k−1])
≥ θ?.

The procedure proceeds in stages, where we take one Bernoulli
observation from each of the populations.

It’s even more efficient than curtailment!
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At the mth stage of experimentation (m ≥ 1),

Observe the random Bernoulli vector (X1m, . . . , Xkm).

Compute the sums Yim =
∑m

j=1Xij (1 ≤ i ≤ k), and denote the
ordered sums by Y[1]m ≤ · · · ≤ Y[k]m.

Stop if

Zm ≡
k−1∑
i=1

(1/θ?)Y[k]m−Y[i]m ≤ 1− P ?

P ?
.

Let N be the (random) stage m when the procedure stops.

Select the population yielding Y[k]N as the one associated with p[k].
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Example: For k = 3 and (P ?, θ?) = (0.75, 2), suppose the following
sequence of vector-observations is obtained using BBKS.

m X1m X2m X3m Y1m Y2m Y3m Zm

1 1 0 1 1 0 1 1.5

2 0 1 1 1 1 2 1.0

3 0 1 1 1 2 3 0.75

4 0 0 1 1 2 4 0.375

5 1 1 1 2 3 5 0.375

6 1 0 1 3 3 6 0.25

Since Z6 ≤ (1− P ?)/P ? = 1/3, sampling stops at stage N = 6 and
population 3 is selected as best. 2
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Bernoulli Extensions

Correlation between populations.

More-efficient sequential procedures.

Elimination of populations that aren’t competitive.
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Examples:

Who is the most popular political candidate?

Which television show is most watched during a particular time
slot?

Which simulated warehouse configuration is most likely to
maximize throughput?

Yet again, use the indifference-zone approach.
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Experimental Set-Up:

• k possible outcomes (categories).

• pi is the probability of the ith category.

• n independent replications of the experiment.

• Yi is the number of outcomes falling in category i after the n
observations have been taken.
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Definition: If the k-variate discrete vector random variable
Y = (Y1, Y2, . . . , Yk) has the probability mass function

P{Y1 = y1, Y2 = y2, . . . , Yk = yk} =
n!∏k
i=1 yi!

k∏
i=1

pyii ,

then Y has a multinomial distribution with parameters n and
p = (p1, . . . , pk), where

∑k
i=1 pi = 1 and pi > 0 for all i.
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Example: Suppose three of the faces of a fair die are red, two are blue,
and one is violet, i.e., p = (3/6, 2/6, 1/6).

Toss it n = 5 times. Then the probability of observing exactly three
reds, no blues and two violets is

P{Y = (3, 0, 2)} =
5!

3!0!2!
(3/6)3(2/6)0(1/6)2 = 0.03472. 2

Example (continued): Suppose we did not know the probabilities for
red, blue, and violet in the previous example and that we want to
select the most probable color.

The selection rule is to choose the color that occurs the most
frequently during the five trials, using randomization to break ties.
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Let Y = (Yr, Yb, Yv) denote the number of occurrences of (red, blue,
violet) in five trials. The probability that we correctly select red is. . .

P{red wins in 5 trials}
= P{Yr > Yb and Yv}+ 0.5P{Yr = Yb, Yr > Yv}

+ 0.5P{Yr > Yb, Yr = Yv}
= P{Y = (5, 0, 0), (4, 1, 0), (4, 0, 1), (3, 2, 0), (3, 1, 1), (3, 0, 2)}

+ 0.5P{Y = (2, 2, 1)}+ 0.5P{Y = (2, 1, 2)}.

We can list the outcomes favorable to a correct selection (CS) of red,
along with the associated probabilities, randomizing in case of ties. . .
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Outcome Contribution

(red, blue, violet) to P{red wins in 5 trials}
(5,0,0) 0.03125

(4,1,0) 0.10417

(4,0,1) 0.05208

(3,2,0) 0.13889

(3,1,1) 0.13889

(3,0,2) 0.03472

(2,2,1) (0.5)(0.13889)

(2,1,2) (0.5)(0.06944)

0.60416

The probability of correctly selecting red as the most probable color
based on n = 5 trials is 0.6042. This P (CS) can be increased by
increasing the sample size n. 2
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Example: The most probable alternative might be preferable to that
having the largest expected value.

Consider two inventory policies, A and B, where

Profit from A = $5 with probability 1

Profit from B =

{
$0 with probability 0.99

$1000 with probability 0.01.

Then
E[Profit from A] = $5 < E[Profit from B] = $10

P{Profit from A > Profit from B} = 0.99.

So E[A] < E[B], but A wins almost all of the time. 2
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Assumptions and Notation for Multinomial Selection

Xj = (X1j , . . . , Xkj) (j ≥ 1) are independent observations
taken from a multinomial distribution having k ≥ 2 categories
with associated unknown probabilities p = (p1, . . . , pk).

Xij = 1 [0] if category i does [does not] occur on the jth
observation.

The (unknown) ordered pi’s are p[1] ≤ · · · ≤ p[k].

The category with p[k] is the most probable or best.

The cumulative sum for category i after m multinomial
observations have been taken is Yim =

∑m
j=1Xij .

The ordered Yim’s are Y[1]m ≤ · · · ≤ Y[k]m.
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Indifference-Zone Procedures

Goal: Select the category associated with p[k].

A correct selection (CS) is made if the Goal is achieved.

Probability Requirement: For specified (P ?, θ?) with 1/k < P ? < 1
and θ? > 1, we require

P (CS) ≥ P ? whenever p[k]/p[k−1] ≥ θ?. (3)

The probability in (3) depends on the entire vector p and on the
number n of independent multinomial observations to be taken.

θ? is the “smallest p[k]/p[k−1] ratio worth detecting.”

Can consider various procedures to guarantee prob req’t (3).
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Single-Stage ProcedureMBEM

For the given k, P ? and θ?, find n from the table (sort of from
Bechhofer, Elmaghraby, and Morse 1959).

Take n multinomial observationsXj = (X1j , . . . , Xkj) (1 ≤ j ≤ n)
in a single stage.

Calculate the ordered sample sums Y[1]n ≤ · · · ≤ Y[k]n. Select the
category with the largest sum, Y[k]n, as the one associated with p[k],
randomizing to break ties.

Remark: The n-values are computed so thatMBEM achieves
P (CS) ≥ P ? when the cell probabilities p are in the least-favorable
(LF) configuration (Kesten and Morse 1959),

p[1] = p[k−1] = 1/(θ? + k − 1) and p[k] = θ?/(θ? + k − 1). (4)
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Example: A soft drink producer wants to find the most popular of
k = 3 proposed cola formulations.

The company will give a taste test to n people.

The sample size n is to be chosen so that P (CS) ≥ 0.95 whenever the
ratio of the largest to second largest true (but unknown) proportions is
at least 1.4.

Entering the table with k = 3, P ? = 0.95, and θ? = 1.4, we find that
n = 186 individuals must be interviewed.

If we find that Y1,186 = 53, Y2,186 = 110, and Y3,186 = 23, then we
select formulation 2 as the best. 2
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k = 2 k = 3 k = 4 k = 5

P ? θ? n n0 n n0 n n0 n n0

2.0 5 5 12 13 20 24 29 34
1.8 5 7 17 18 29 35 41 50

0.75 1.6 9 9 26 32 46 57 68 86
1.4 17 19 52 71 92 124 137 184
1.2 55 67 181 285 326 495 486 730

2.0 15 15 29 34 43 53 58 71
1.8 19 27 40 50 61 75 83 104

0.90 1.6 31 41 64 83 98 126 134 172
1.4 59 79 126 170 196 274 271 374
1.2 199 267 437 670 692 1050 964 1460

2.0 23 27 42 52 61 74 81 98
1.8 33 35 59 71 87 106 115 142

0.95 1.6 49 59 94 125 139 180 185 240
1.4 97 151 186 266 278 380 374 510
1.2 327 455 645 960 979 1500 1331 2000

Sample Sizes n forMBEM and Truncation Numbers n0 forMBG to Guarantee (3)
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A Curtailed ProcedureMBK (Bechhofer and Kulkarni 1984)

For the given k, specify n prior to the start of sampling.

At the mth stage of experimentation (m ≥ 1), take the random
observationXm = (X1m, . . . , Xkm).

Calculate the sample sums Yim through stage m (1 ≤ i ≤ k). Stop
sampling at the first stage m for which there exists a category
satisfying

Yim ≥ Yjm + n−m for all j 6= i (1 ≤ i, j ≤ k). (5)

Let N (a random variable) denote the value of m at the termination of
sampling. Select the category having the largest sum as the one
associated with p[k], randomizing to break ties.
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Remark: The LHS of (5) is the current total number of occurrences of
category i; the RHS is the current total of category j plus the
additional number of potential occurrences of j if all of the (n−m)
remaining outcomes after stage m were also to be associated with j.

Thus, curtailment takes place when one of the categories has
sufficiently more successes than all of the other categories, i.e.,
sampling stops when the leader can do no worse than tie.

ProcedureMBK saves observations and achieves the same P (CS) as
doesMBEM with the same n. In fact,. . .

P{CS usingMBK |p} = P{CS usingMBEM |p}

and
E{N usingMBK |p} ≤ n usingMBEM .
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Example: For k = 3 and n = 2, stop sampling if

m X1m X2m X3m Y1m Y2m Y3m

1 1 0 0 1 0 0

and select category 1 because
Y1m = 1 ≥ Yjm + n−m = 0 + 2− 1 = 1 for j = 2 and 3. 2

Example: For k = 3 and n = 3 or 4, stop sampling if

m X1m X2m X3m Y1m Y2m Y3m

1 0 1 0 0 1 0

2 0 1 0 0 2 0

and select category 2 because Y2m = 2 ≥ Yjm + n−m = 0 + n− 2
for n = 3 or n = 4 and both j = 1 and 3. 2
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Example: For k = 3 and n = 3 suppose that

m X1m X2m X3m Y1m Y2m Y3m

1 1 0 0 1 0 0

2 0 0 1 1 0 1

3 0 1 0 1 1 1

Because Y13 = Y23 = Y33 = 1, we stop sampling and randomize
among the three categories. 2

93 / 103



Ranking and Selection Methods

Find the Most Probable Multinomial Cell

Sequential Procedure with CurtailmentMBG (Bechhofer
and Goldsman 1986)

For the given k and specified (P ?, θ?), find the truncation number n0

from the table.

At the mth stage of experimentation (m ≥ 1), take the random
observationXm = (X1m, . . . , Xkm).

Calculate the ordered category totals Y[1]m ≤ · · · ≤ Y[k]m and

Zm =
k−1∑
i=1

(1/θ?)(Y[k]m−Y[i]m).

Stop sampling at the first stage when either

Zm ≤ (1− P ?)/P ? or Y[k]m − Y[k−1]m ≥ n0 −m. (6)
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Let N denote the value of m at the termination of sampling. Select
the category that yielded Y[k]N as the one associated with p[k];
randomize in the case of ties.

Remark: The truncation numbers n0 given in the previous table are
calculated assuming that ProcedureMBG has the same
LF-configuration (3) as doesMBEM. (This hasn’t been proven yet.)

Example: Suppose k = 3, P ? = 0.75, and θ? = 3.0. The table tells us
to truncate sampling at n0 = 5 observations. For the data

m X1m X2m X3m Y1m Y2m Y3m

1 0 1 0 0 1 0

2 0 1 0 0 2 0

we stop sampling by the first criterion in (6) because
Z2 = (1/3)2 + (1/3)2 = 2/9 ≤ (1− P ?)/P ? = 1/3, and we select
category 2. 2

95 / 103



Ranking and Selection Methods

Find the Most Probable Multinomial Cell

Example: Again suppose k = 3, P ? = 0.75, and θ? = 3.0 (so that
n0 = 5). For the data

m X1m X2m X3m Y1m Y2m Y3m

1 0 1 0 0 1 0

2 1 0 0 1 1 0

3 0 1 0 1 2 0

4 1 0 0 2 2 0

5 1 0 0 3 2 0

we stop sampling by the second criterion in (6) because m = n0 = 5
observations, and we select category 1. 2
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Example: Yet again suppose k = 3, P ? = 0.75, and θ? = 3.0 (so that
n0 = 5). For the data

m X1m X2m X3m Y1m Y2m Y3m

1 0 1 0 0 1 0

2 1 0 0 1 1 0

3 0 1 0 1 2 0

4 1 0 0 2 2 0

5 0 0 1 2 2 1

we stop according to the second criterion in (6) because m = n0 = 5.
However, we now have a tie between Y1,5 and Y2,5 and thus randomly
select between categories 1 and 2. 2
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Example: Still yet again suppose k = 3, P ? = 0.75, and θ? = 3.0 (so
that n0 = 5). Suppose we observe

m X1m X2m X3m Y1m Y2m Y3m

1 0 1 0 0 1 0

2 1 0 0 1 1 0

3 0 1 0 1 2 0

4 0 0 1 1 2 1

Because categories 1 and 3 can do no better than tie category 2 (if we
were to take the potential remaining n0 −m = 5− 4 = 1
observation), the second criterion in (6) tells us to stop; we select
category 2. 2
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Remark: ProcedureMBG usually requires fewer observations than
MBEM.

Example: Suppose k = 4, P ? = 0.75, θ? = 1.6.

The single-stage procedureMBEM requires 46 observations to
guarantee (3).

ProcedureMBG (with a truncation number of n0 = 57) has
E[N |LF] = 31.1 and E[N |EP] = 37.7 for p in the LF configuration
(4) and equal-probability (EP) configuration, p[1] = p[k], respectively.

99 / 103



Ranking and Selection Methods

Find the Most Probable Multinomial Cell

Applications

Let’s take i.i.d. vector-observationsWj = (W1j , . . . ,Wkj) (j ≥ 1),
where the Wij can be either discrete or continuous.

For a particular vector-observationWj , suppose the experimenter can
determine which of the k observations Wij (1 ≤ i ≤ k) is the “most
desirable.” The term “most desirable” is based on some criterion of
goodness designated by the experimenter, and it can be quite general,
e.g.,. . .

The largest crop yield based on a vector-observation of k
agricultural plots using competing fertilizers.

The smallest sample average customer waiting time based on a
simulation run of each of k competing queueing strategies.

The smallest estimated variance of customer waiting times (from
the above simulations).
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For a particular vector-observationWj , suppose Xij = 1 or 0
according as Wij (1 ≤ i ≤ k) is the “most desirable” of the
components ofWj or not. Then (X1j , . . . , Xkj) (j ≥ 1) has a
multinomial distribution with probability vector p, where

pi = P{Wi1 is the “most desirable” component ofW1}.

Selection of the category corresponding to the largest pi can be
thought of as that of finding the component having the highest
probability of yielding the “most desirable” observation of those from
a particular vector-observation. This problem can be approached
using the multinomial selection methods described in this module.
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Example: Suppose we want to find which of k = 3 job shop
configurations is most likely to give the shortest expected
times-in-system for a certain manufactured product. Because of the
complicated configurations of the candidate job shops, it is necessary
to simulate the three competitors. Suppose the jth simulation run of
configuration i yields Wij (1 ≤ i ≤ 3, j ≥ 1), the proportion of 1000
times-in-system greater than 20 minutes.

Management has decided that the “most desirable” component of
Wj = (W1j ,W2j ,W3j) will be that component corresponding to
min1≤i≤3Wij .
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If pi denotes the probability that configuration i yields the smallest
component ofWj , then we seek to select the configuration
corresponding to p[3]. Specify P ? = 0.75 and θ? = 3.0. The
truncation number from the table forMBG is n0 = 5. We apply the
procedure to the data

m W1m W2m W3m X1m X2m X3m Y1m Y2m Y3m

1 0.13 0.09 0.14 0 1 0 0 1 0

2 0.24 0.10 0.07 0 0 1 0 1 1

3 0.17 0.11 0.12 0 1 0 0 2 1

4 0.13 0.08 0.02 0 0 1 0 2 2

5 0.14 0.13 0.15 0 1 0 0 3 2

. . . and select shop configuration 2. 2
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