
Hand and Spreadsheet Simulations

Dave Goldsman

Georgia Institute of Technology, Atlanta, GA, USA

8/16/21

1 / 39

Outline

1 Stepping Through a Differential Equation

2 Monte Carlo Integration

3 Making Some π

4 Single-Server Queue

5 (s, S) Inventory System

6 Simulating Random Variables

7 Spreadsheet Simulation

2 / 39

Goal: Look at some examples of easy problems that we can simulate
by hand (or almost by hand).

We’ll start out with a simple method for solving a differential
equation — a simulation with no randomness at all involved.

Then some small-to-medium problems involving a little randomness,

Finally, we’ll show how to generate that randomness.

3 / 39

Stepping Through a Differential Equation

“Solving” a Differential Equation Numerically

Recall: If f(x) is continuous, then it has the derivative

d

dx
f(x) ≡ f ′(x) ≡ lim

h→0

f(x+ h)− f(x)

h

if the limit exists and is well-defined for any given x. Think of the
derivative as the slope of the function.

Then for small h,

f ′(x)
.
=

f(x+ h)− f(x)

h

so that
f(x+ h)

.
= f(x) + hf ′(x). (1)

4 / 39

Stepping Through a Differential Equation

Example: Suppose you have a differential equation of a population
growth model, f ′(x) = 2f(x) with f(0) = 10.

This is really easy to solve analytically. To do so, we’ll set y = f(x)
and rewrite the differential equation as dy

dx = 2y. Then we have
dy
y = 2 dx, so that

∫ dy
y =

∫
2 dx, so that `n(y) = 2x+ C, where C

is an arbitrary constant.

Exponentiating both sides yields y = e2x+C = Ke2x, where K is
another arbitrary constant. We can solve for K by using the initial
condition f(0) = 10 = Ke0, forcing K = 10.

Thus, the analytical (exact) answer is f(x) = 10e2x.

5 / 39

Stepping Through a Differential Equation

Now let’s “solve” this same problem using a fixed-increment time
approach with h = 0.01. (This is known as Euler’s method.) By (1),
we have

f(x+ h)
.
= f(x) + hf ′(x) = f(x) + 2hf(x) = (1 + 2h)f(x).

Similarly,

f(x+2h) = f((x+h)+h)
.
= (1+2h)f(x+h)

.
= (1+2h)2f(x).

Continuing,

f(x+ ih)
.
= (1 + 2h)if(x) i = 0, 1, 2, . . . ,

though the approximation may deteriorate as i gets large.

6 / 39

Stepping Through a Differential Equation

Plugging in f(0) = 10 and h = 0.01, we have

f(0.01i)
.
= 10(1.02)i, i = 0, 1, 2, (2)

The approximation (2) makes sense since for small z,

ez =

∞∑
`=0

z`

`!

.
= 1 + z

.
= (1 + z)i for small i,

and in particular, 10e0.02
.
= 10(1.02)i, so that (2) pretty much

matches the exact answer f(x) = 10e2x.

In any case, let’s see how well the approximation does. . . .

x = ih = 0.01i 0 0.01 0.02 0.03 0.04 · · · 0.10

approx f(x)
.
= 10(1.02)i 10 10.20 10.40 10.61 10.82 · · · 12.19

true f(x) = 10e2x = 10e0.02i 10 10.20 10.41 10.62 10.83 · · · 12.21

Not bad at all (at least for small i)! 2
7 / 39

Monte Carlo Integration

Outline

1 Stepping Through a Differential Equation

2 Monte Carlo Integration

3 Making Some π

4 Single-Server Queue

5 (s, S) Inventory System

6 Simulating Random Variables

7 Spreadsheet Simulation

8 / 39

Monte Carlo Integration

Monte Carlo Integration

The previous differential equation example didn’t involve any
randomness. That will change with the current Monte Carlo
application. Let’s integrate

I =

∫ b

a
g(x) dx = (b− a)

∫ 1

0
g(a+ (b− a)u) du,

where we get the last equality by substituting u = (x− a)/(b− a).

Of course, we can often do this by analytical methods that we learned
back in calculus class, or by numerical methods like the trapezoid rule
or something like Gauss-Laguerre integration. But if these methods
aren’t possible, you can always use MC integration. . . .

9 / 39

Monte Carlo Integration

Suppose U1, U2, . . . are iid Unif(0,1), and define

Ii ≡ (b− a)g(a+ (b− a)Ui) for i = 1, 2, . . . , n.

We can use the sample average as an estimator for I:

Īn ≡
1

n

n∑
i=1

Ii =
b− a
n

n∑
i=1

g(a+ (b− a)Ui).

Why is this okey dokey? Let’s appeal to our old friend, the Law of
Large Numbers: If an estimator is asymptotically unbiased and its
variance goes to zero, then things are good.

10 / 39

Monte Carlo Integration

First, by the Law of the Unconscious Statistician, notice that

E[Īn] = (b− a)E[g(a+ (b− a)Ui)]

= (b− a)

∫
R
g(a+ (b− a)u)f(u) du

(where f(u) is the Unif(0,1) pdf)

= (b− a)

∫ 1

0
g(a+ (b− a)u) du = I.

So Īn is unbiased for I .

Since it can also be shown that Var(Īn) = O(1/n), the LLN implies
Īn → I as n→∞.

11 / 39

Monte Carlo Integration

12 / 39

Monte Carlo Integration

Approximate Confidence Interval for I:

By the CLT, for n ≥ 30-ish, we have

Īn ≈ Nor
(
E[Īn],Var(Īn)

)
∼ Nor

(
I,Var(Ii)/n

)
.

This suggests that a reasonable approximate 100(1− α)% confidence
interval for I is

I ∈ Īn ± zα/2
√
S2
I /n, (3)

where zα/2 is the usual standard normal quantile, and
S2
I ≡

1
n−1

∑n
i=1(Ii − Īn)2 is the sample variance of the Ii’s.

13 / 39

Monte Carlo Integration

Example: Suppose I =
∫ 1
0 sin(πx) dx (and pretend we don’t know

the actual answer, 2/π
.
= 0.6366).

Let’s take n = 30 Unif(0,1) observations, U1, U2, . . . , U30:

0.635 0.873 0.388 0.713 0.373 0.315 0.870 0.815 0.253 0.788

0.106 0.939 0.450 0.845 0.009 0.056 0.156 0.894 0.846 0.428

0.957 0.160 0.583 0.352 0.036 0.188 0.714 0.342 0.560 0.063

Since

Ii = (b− a)g(a+ (b− a)Ui) = g(Ui) = sin(πUi),

we obtain

Īn =
1

4

30∑
i=1

Ii =
1

30

30∑
i=1

sin(πUi) = 0.582,

which is sort of close to 2/π. (We’ll do better as n gets bigger.)

14 / 39

Monte Carlo Integration

Moreover, the approximate 95% confidence interval for I from (3) is

I ∈ Īn ± zα/2
√
S2
I /n

= 0.582± 1.96
√

0.0956/30

= [0.471, 0.693].

We’ll usually get a smaller CI as n increases a bit — though
sometimes the convergence is choppy due to good or bad luck. 2

15 / 39

Making Some π

Outline

1 Stepping Through a Differential Equation

2 Monte Carlo Integration

3 Making Some π

4 Single-Server Queue

5 (s, S) Inventory System

6 Simulating Random Variables

7 Spreadsheet Simulation

16 / 39

Making Some π

Making Some π

Consider a unit square (with area one). Inscribe in the square a circle
with radius 1/2 (with area π/4). Suppose we toss darts randomly at
the square. The probability that a particular dart will land in the
inscribed circle is obviously π/4 (the ratio of the two areas). We can
use this fact to estimate π.

Toss n such darts at the square and calculate the proportion p̂n that
land in the circle. Then an estimate for π is π̂n = 4p̂n, which
converges to π as n becomes large by the LLN.

For instance, suppose that we throw n = 500 darts at the square and
397 of them land in the circle. Then p̂n = 0.794, and our estimate for
π is π̂n = 3.176 — not so bad.

17 / 39

Making Some π

18 / 39

Making Some π

How would we actually conduct such an experiment?

To simulate a dart toss, suppose U1 and U2 are iid Unif(0,1). Then
(U1, U2) represents the random position of the dart on the unit square.
The dart lands in the circle if(

U1 −
1

2

)2

+

(
U2 −

1

2

)2

≤ 1

4
.

Generate n such pairs of uniforms and count up how many of them
fall in the circle. Then plug into π̂n. 2

19 / 39

Single-Server Queue

Outline

1 Stepping Through a Differential Equation

2 Monte Carlo Integration

3 Making Some π

4 Single-Server Queue

5 (s, S) Inventory System

6 Simulating Random Variables

7 Spreadsheet Simulation

20 / 39

Single-Server Queue

Single-Server Queue
Customers arrive at a single-server Q with iid interarrival times and iid
service times. Customers must wait in a FIFO Q if the server is busy.

We will estimate the expected customer waiting time, the expected
number of people in the system, and the server utilization (proportion
of busy time). First, some notation.

Interarrival time between customers i− 1 and i is Ii
Customer i’s arrival time is Ai =

∑i
j=1 Ij

Customer i starts service at time Ti = max(Ai, Di−1)

Customer i’s waiting time is WQ
i = Ti −Ai

Customer i’s time in the system is Wi = Di −Ai
Customer i’s service time is Si
Customer i’s departure time is Di = Ti + Si

21 / 39

Single-Server Queue

Example: Suppose we have the following sequence of events. . .

i Ii Ai Ti WQ
i Si Di

1 3 3 3 0 7 10

2 1 4 10 6 6 16

3 2 6 16 10 4 20

4 4 10 20 10 6 26

5 5 15 26 11 1 27

6 5 20 27 7 2 29

The average waiting time for the six customers is obviously∑6
i=1W

Q
i /6 = 7.33.

How do we get the average number of people in the system (in line +
in service)?

22 / 39

Single-Server Queue

Note that arrivals and departures are the only possible times for the
number of people in the system, L(t), to change. These times (and the
associated things that happen) are called events.

time t event L(t)

0 simulation begins 0
3 customer 1 arrives 1
4 2 arrives 2
6 3 arrives 3

10 1 departs; 4 arrives 3
15 5 arrives 4
16 2 departs 3
20 3 departs; 6 arrives 3
26 4 departs 2
27 5 departs 1
29 6 departs 0

23 / 39

Single-Server Queue

 L(t)

 5
 Queue

 customer
 3 4 4 5 6

 2 2 3 3 4 5 6

 in 1 1 1 2 2 3 4 5 6
 service t

 3 4 6 10 15 16 20 26 27 29

The average number in the system is L̄ = 1
29

∫ 29
0 L(t) dt = 70

29 .

24 / 39

Single-Server Queue

Another way to get the average number in the system is to calculate

L̄ =
total person-time in system

29

=

∑6
i=1(Di −Ai)

29

=
7 + 12 + 14 + 16 + 12 + 9

29
=

70

29
.

Finally, to obtain the estimated server utilization, we easily see (from
the picture) that the proportion of time that the server is busy is
ρ̂ = 26

29 . 2

25 / 39

Single-Server Queue

Example: Same events, but last-in-first-out (LIFO) services. . .

i Ii Ai Ti WQ
i Si Di

1 3 3 3 0 7 10

2 1 4 23 19 6 29

3 2 6 17 11 4 21

4 4 10 10 0 6 16

5 5 15 16 1 1 17

6 5 20 21 1 2 23

The average waiting time for the six customers is 5.33, and the
average number of people in the system turns out to be 58

29 = 2, which
in this case turn out to be better than FIFO. 2

26 / 39

(s, S) Inventory System

Outline

1 Stepping Through a Differential Equation

2 Monte Carlo Integration

3 Making Some π

4 Single-Server Queue

5 (s, S) Inventory System

6 Simulating Random Variables

7 Spreadsheet Simulation

27 / 39

(s, S) Inventory System

(s, S) Inventory System
A store sells a product at $d/unit. Our inventory policy is to have at
least s units in stock at the start of each day. If the stock slips to less
than s by the end of the day, we place an order with our supplier to
push the stock back up to S by the beginning of the next day.

Let Ii denote the inventory at the end of day i, and let Zi denote the
order that we place at the end of day i. Clearly,

Zi =

{
S − Ii if Ii < s

0 otherwise
.

If an order is placed to the supplier at the end of day i, it costs the
store K + cZi. It costs $h/unit for the store to hold unsold inventory
overnight, and a penalty cost of $p/unit if demand can’t be met. No
backlogs are allowed. Demand on day i is Di.

28 / 39

(s, S) Inventory System

How much money does the store make on day i?

Total Profit

= Sales − Ordering Cost − Holding Cost − Penalty Cost

= d min(Di, inventory at beginning of day i)

−

{
K + cZi if Ii < s

0 otherwise

−hIi − p max(0, Di − inventory at beginning of day i)

= d min(Di, Ii−1 + Zi−1)

−

{
K + cZi if Ii < s

0 otherwise

−hIi − p max(0, Di − (Ii−1 + Zi−1)).

29 / 39

(s, S) Inventory System

Example: Suppose

d = 10, s = 3, S = 10, K = 2, c = 4, h = 1, p = 2.

Consider the following sequence of demands:

D1 = 5, D2 = 2, D3 = 8, D4 = 6, D5 = 2, D6 = 1.

Suppose that we start out with an initial stock of I0 + Z0 = 10.

Day begin sales order hold penalty TOTAL
i stock Di Ii Zi rev cost cost cost profit

1 10 5 5 0 50 0 −5 0 45
2 5 2 3 0 20 0 −3 0 17
3 3 8 0 10 30 −42 0 −10 −22
4 10 6 4 0 60 0 −4 0 56
5 4 2 2 8 20 −34 −2 0 −16
6 10 1 9 0 10 0 −9 0 1

30 / 39

Simulating Random Variables

Outline

1 Stepping Through a Differential Equation

2 Monte Carlo Integration

3 Making Some π

4 Single-Server Queue

5 (s, S) Inventory System

6 Simulating Random Variables

7 Spreadsheet Simulation

31 / 39

Simulating Random Variables

Simulating Random Variables

Example (Discrete Uniform): Consider a D.U. on {1, 2, . . . , n},
i.e., X = i with probability 1/n for i = 1, 2, . . . , n. (Think of this as
an n-sided dice toss for you Dungeons and Dragons fans.)

If U ∼ Unif(0, 1), we can obtain a D.U. random variate simply by
setting X = dnUe, where d·e is the “ceiling” (or “round up”)
function.

For example, if n = 10 and we sample a Unif(0,1) random variable
U = 0.73, then X = d7.3e = 8. 2

32 / 39

Simulating Random Variables

Example (Another Discrete Random Variable):

P (X = x) =

0.25 if x = −2

0.10 if x = 3

0.65 if x = 4.2

0 otherwise

Can’t use a die toss to simulate this random variable. Instead, use
what’s called the inverse transform method.

x P (X = x) P (X ≤ x) Unif(0,1)’s

−2 0.25 0.25 [0.00, 0.25]
3 0.10 0.35 (0.25, 0.35]

4.2 0.65 1.00 (0.35, 1.00)

Sample U ∼ Unif(0, 1). Choose the corresponding x-value, i.e.,
X = F−1(U). For example, U = 0.46 means that X = 4.2. 2

33 / 39

Simulating Random Variables

Now we’ll use the inverse transform method to generate a continuous
random variable. Recall. . .

Theorem: If X is a continuous random variable with cdf F (x), then
the random variable F (X) ∼ Unif(0, 1).

This suggests a way to generate realizations of the RV X . Simply set
F (X) = U ∼ Unif(0, 1) and solve for X = F−1(U).

Old Example: Suppose X ∼ Exp(λ). Then F (x) = 1− e−λx for
x > 0. Set F (X) = 1− e−λX = U . Solve for X ,

X =
−1

λ
`n(1− U) ∼ Exp(λ). 2

34 / 39

Simulating Random Variables

Example (Generating Uniforms): All of the above RV generation
examples relied on our ability to generate a Unif(0,1) RV. For now,
let’s assume that we can generate numbers that are “practically” iid
Unif(0,1).

If you don’t like programming, you can use Excel function RAND()
or something similar to generate Unif(0,1)’s.

Here’s an algorithm to generate pseudo-random numbers (PRN’s),
i.e., a series R1, R2, . . . of deterministic numbers that appear to be iid
Unif(0,1). Pick a seed integer X0, and calculate

Xi = 16807Xi−1mod(231 − 1), i = 1, 2,

Then set Ri = Xi/(2
31 − 1), i = 1, 2,

35 / 39

Simulating Random Variables

Here’s an easy FORTRAN implementation of the above algorithm
(from Bratley, Fox, and Schrage).

FUNCTION UNIF(IX)
K1 = IX/127773 (this division truncates, e.g., 5/3 = 1.)
IX = 16807*(IX - K1*127773) - K1*2836 (update seed)
IF(IX.LT.0)IX = IX + 2147483647
UNIF = IX * 4.656612875E-10
RETURN

END

In the above function, we input a positive integer IX and the function
returns the PRN UNIF, as well as an updated IX that we can use
again. 2

36 / 39

Spreadsheet Simulation

Outline

1 Stepping Through a Differential Equation

2 Monte Carlo Integration

3 Making Some π

4 Single-Server Queue

5 (s, S) Inventory System

6 Simulating Random Variables

7 Spreadsheet Simulation

37 / 39

Spreadsheet Simulation

Spreadsheet Simulation
Let’s simulate a fake stock portfolio consisting of 6 stocks from
different sectors, as laid out in my Excel file Spreadsheet Stock
Portfolio. We start out with $5000 worth of each stock, and each
increases or decreases in value each year according to

Previous Value * max
[

0, Nor
(
µi, σ

2
i

)
* Nor

(
1, (0.2)2

)]
,

where the first normal term denotes the natural stock fluctuation for
stock i, and the second normal denotes natural market conditions (that
affect all stocks).

To generate a normal in Excel, you can use

NORM.INV(RAND(),µ,σ) ,

where RAND() is Unif(0,1), so that NORM.INV uses the inverse
transform method.

38 / 39

Spreadsheet Simulation

39 / 39

	Stepping Through a Differential Equation
	Monte Carlo Integration
	Making Some
	Single-Server Queue
	(s,S) Inventory System
	Simulating Random Variables
	Spreadsheet Simulation

