Infinite	Group	Relaxation

Tools to Prove Facets

Facet-defining Inequalities

Facets for Two-Dimensional Mixed Integer Infinite Group Problem

Santanu S. Dey , Jean-Philippe P. Richard

School of Industrial Engineering, Purdue University.

INFORMS 2006.

Infinite	Relaxation	
000		

Motivation

- Generation of strong cutting planes will help solve general MIPs faster.
- All know group based cutting planes using a single constraint to derive cut.
- We present first know strong cuts that use two constraints.
- We hope these will be stronger since they use information from two constraints concurrently.

Infinite Group Relaxation	Tools to Prove Facets	Facet-defining Inequalities	Conclusion
Outline			

Introduction

2 Tools to Prove Facets

- Subadditivity
- Interval Lemma
- Homomorphism
- Facet-defining Inequalities
 Family I
 - Family II

4 Conclusion

・ロト ・雪 ・ ・ ヨ ・ ・

-2

Facet-defining Inequalities

Infinite Group Relaxation of Integer Programs

Standard IP:

 $Ax = b \quad x \in \mathbb{Z}_+,$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m \times 1}$.

Relaxation step 1: Consider each row modulo 1.

$$\sum_{i=1}^{n} (A_{ij}) (mod1) x_i \equiv b_j (mod1) \quad \forall 1 \le j \le m$$
(1)

• Rewrite in Group Space:
$$\sum_{i=1}^{n} (a_i) x_i = r$$

Each a_i belongs to the group $I^m = \{x \in \mathbb{R}^m | 0 \le x_i < 1 \quad \forall 1 \le i \le m\}$.

Note that $a_i = (A_{i1}(mod1), \ldots, A_{im}(mod1)).$

Relaxation step 2: Introduce new variables.

$$\sum_{a \in I^{m}} ax(a) = r \tag{2}$$

Tools to Prove Facets 00000 Facet-defining Inequalities

Conclusion

Definition: Group Problem and Valid Inequalities

Definition (Integer Group Problem PI(r, m), Johnson 1974)

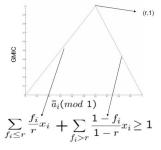
For
$$r \in I^m$$
 and $r \neq o$, the group problem $PI(r, m)$ is the set of functions $t: I^m \to \mathbb{R}$ such that

$$\sum_{u \in I^m} ut(u) = r, r \in I^m,$$

- (2) t(u) is a non-negative integer for u ∈ I^m,
- t has a finite support, i.e., t(u) > 0 for a finite subset of I^m.

Definition (Valid Inequality, Johnson 1974)

A function ϕ : $l^{m} \rightarrow \mathbb{R}_{+}$ is defined as a valid inequality for Pl(r,m) if $\phi(o) = 0$, $\phi(r) = 1$ and $\sum_{u \in lm} \phi(u)t(u) \ge 1$, $\forall t \in Pl(r, m)$.

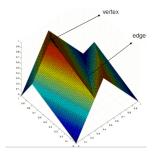


Infinite Group Relaxation	Tools to Prove Facets	Facet-defining Inequalities	Conclusion
	inoar Eunctions		

Definition

IEdi

 ϕ is piecewise linear, i.e. I^2 can be decomposed into finitely many polytopes with non-empty interiors $P_1, ..., P_k$, such that $\phi(u) = \alpha_t^T u + \beta_t$, $\forall u \in P_t$, where $\alpha_t \in \mathbb{R}^{2 \times 1}, \beta_t \in \mathbb{R} \ \forall t = \{1, 2, ...k\}$.



Tools to Prove Facets

Facet-defining Inequalities

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Step to Prove Function Represents Facet-defining Inequality

- Prove function is subadditive, i.e., φ(u) + φ(v) ≥ φ(u + v) ∀u, v ∈ I².
 - Develop methods to efficiently prove a function is subadditive over I^2 .
- Prove function is minimal (un-dominated). This is easy to do. (Gomory and Johnson Theorem 1972).
- Obefine an additive equality as φ(u) + φ(v) = φ(u + v). Let E(φ) be the set of all additive equalities. Then if the φ is the only function that satisfies all the equalities E(φ), then φ is a facet.
 - Prove a result called Interval Lemma in two dimension. This result is used to prove $E(\phi)$ is unique.
 - Prove a homomorphism result to generate new facets from older ones.

Tools to Prove Facets ○●○○○ Facet-defining Inequalities

Conclusion

Checking subadditivity for Functions Defined on I^2

Theorem (Checking Subadditivity)

Let ϕ be a continuous, piecewise linear and nonnegative function on ${\rm I}^2.$ Then ϕ is subadditive iff

 $\phi(\mathbf{v}_1) + \phi(\mathbf{v}_2) \ge \phi(\mathbf{v}_1 + \mathbf{v}_2) \quad \forall \mathbf{v}_1, \mathbf{v}_2 \in \mathbb{V}(\phi) \cup \mathbb{V}'(\phi)$ (3)

$$\phi(\mathbf{v}_1) + \phi(\mathbf{v}_3 - \mathbf{v}_1) \ge \phi(\mathbf{v}_3) \quad \forall \mathbf{v}_1, \mathbf{v}_3 \in \mathbb{V}(\phi) \cup \mathbb{V}'(\phi)$$
(4)

 $\phi(v_1) + \phi(e_2) \ge \phi(e_3)$ where $e_2 \in q_2, e_3 \in q_3, v_1 + e_2 = e_3$,

$$orall v_1 \in \mathbb{V}(\phi) \cup \mathbb{V}'(\phi), \quad orall q_2, q_3 \in \mathbb{Q}(\phi)$$
 (5)

$$\begin{aligned} \phi(\mathbf{e}_1) + \phi(\mathbf{e}_2) &\geq \phi(\mathbf{v}_3) \text{ where } \mathbf{e}_1 \in q_1, \mathbf{e}_2 \in q_2, \mathbf{e}_1 + \mathbf{e}_2 = \mathbf{v}_3, \\ \forall \mathbf{v}_3 \in \mathbb{V}(\phi) \cup \mathbb{V}'(\phi), \quad \forall q_1, q_2 \in \mathbb{Q}(\phi) . \end{aligned}$$
(6)

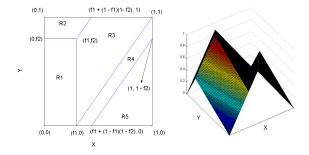
Furthermore, if e_2 and e_3 (resp. e_1 and e_2) belong to identical or parallel edges, then (5) (resp. (6)) is redundant.

Tools to Prove Facets

Facet-defining Inequalities

Conclusion

Discussion on Subadditivity Result



Infinite Group Relaxation 000	Tools to Prove Facets ○○○●○	Facet-defining Inequalities	Conclusion
Interval lemma in	Two Dimensions		

- Interval Lemma is a key tool used to prove that a function is facet-defining by Gomory and Johnson[2003].
- The following a generalization we introduced in two dimensions.

Theorem (Interval Lemma in Two Dimensions)

Let U and V be closed sets in \mathbb{R}^2 . Let g be a real-valued function defined over U, V and U + V. Assume that

- U is star-shaped with respect to the origin, and U has a non-empty interior.
- V is path connected.

$$g(u) + g(v) = g(u + v), \ \forall u \in U, \ \forall v \in V.$$

- $\sum_{i \in S} g(u_i) = g(\sum_{i \in S} u_i) \ \forall u_i \in U \text{ such that } \sum_{i \in S} u_i \in U \text{ and } \forall S \text{ with } |S| \leq 3.$
- $g(u) \geq 0, \forall u \in U.$

Then g is a linear function with the same gradient in U, V and U + V.

Infinite Group Relaxation			Tools to Prove Facets	Facet-defining Inequalities	Conclusion	
000				00000	00000	
~	-		_			

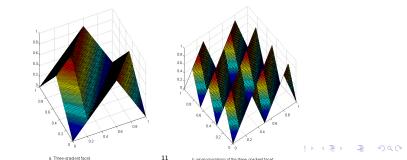
Creating New Facets

Definition (λ Homomorphism)

The homomorphism $\lambda : I^2 \to I^2$ is defined as $\lambda(x, y) = (\lambda_1 x (mod1), \lambda_2 y (mod1))$, where λ_1, λ_2 are positive integers.

Theorem (Homomorphism Theorem)

 ϕ is facet-defining with respect to right-hand-side r iff $\phi \circ \lambda$ is facet-defining with respect to right-hand-side v, where $\lambda(v) = r$.



Tools to Prove Facets 00000 Facet-defining Inequalities

Conclusion

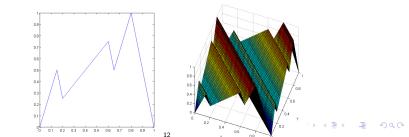
Family 1: Constraint Aggregation

Construction

Given ζ a piecewise linear and continuous valid inequality for one dimensional integer infinite group problem PI(c, 1), we construct the function τ for PI(r,2) with right-hand-side $r \equiv (f_1, f_2)$ where $\lambda_1 f_1 + \lambda_2 f_2 = c$ as $\tau(x, y) = \zeta(\lambda_1 x + \lambda_2 y) \pmod{1}$, and $\lambda_1, \lambda_2 \in \mathbb{Z}$ and are not both zero.

Theorem (Aggregation Theorem)

 τ is facet-defining for PI(r,2) iff ζ is facet-defining for 1DIIGP.



Infinite Group Relaxation		Facet-defining Inequalities	Conclusion
000	00000	00000	
Results on Fai	mily – I		

Theorem (Two Gradient Theorem)

Any continuous piecewise linear two-gradient facet of PI(r,2) can be derived from a facet of PI(r',1) using Construction 1.

Some observations:

- $\succ\,$ Gives a complete characterization of continuous functions with only two gradients.
- ≻ All two slope functions for 1DIIGP are facet-defining [Gomory and Johnson 1972, 2003]. This is a two-dimensional analog for a similar result for the one dimensional infinite group problem.

Infinite	Relaxation
000	

Tools to Prove Facets 00000 Facet-defining Inequalities

Family 2: Three-Gradient Facet

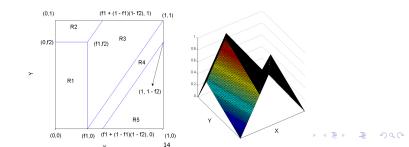
Construction

We divide I² into five polytopes R1, R2, R3, R4, R5 as shown in figure.

We construct ψ to be the only continuous piecewise linear function with $\psi(f_1, f_2) = 1$ and $\psi(0, 0) = 0$, whose gradients in R2 and R4 are equal and whose gradients in R3 and R5 are equal.

Theorem

 ψ is facet-defining for PI(r, 2).



Tools to Prove Facets 00000 Facet-defining Inequalities

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Three-Gradient Functions Yield Facets of IPs

Example

Consider the set of nonnegative integer solutions to

$$\begin{bmatrix} 8\\0 \end{bmatrix} x_1 + \begin{bmatrix} 2\\0 \end{bmatrix} x_2 + \begin{bmatrix} 1\\7 \end{bmatrix} x_3 + \begin{bmatrix} 5\\2 \end{bmatrix} x_4 + \begin{bmatrix} 6\\3 \end{bmatrix} x_5 + \begin{bmatrix} 4\\1 \end{bmatrix} x_6 + \begin{bmatrix} 0\\8 \end{bmatrix} x_7 = \begin{bmatrix} 12\\12 \end{bmatrix}$$

where $x_i \in \mathbb{Z}_+ \ \forall i \in \{1, ..., 7\}$. This system has 3 feasible solutions: {0 0 1 1 1 0 0}, {0 1 0 2 0 0 1} and {0 1 0 0 1 1 1}. Now consider the constraints divided by 8.

Observations

- \blacksquare The three-gradient inequality ψ is generates a facet of the feasible region of the IP.
- In the GMIC generates a different facet of this problem.

Infinite Group Relaxation		Facet-defining Inequalities	Conclusion
000	00000	00000	
Poculta on Eami	ы. П		

Results on Family - II

Using result from Johnson [1974] cuts for integer infinite groups can be extended to mixed integer infinite group problems.

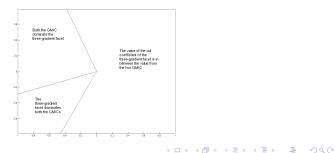
Proposition

Among all the facets of one-dimensional mixed integer infinite group problem (1DMIIGP), the coefficients of continuous variables are strongest in GMIC.

Proposition

The coefficients for continuous variables of the three-gradient inequality ψ are not dominated by GMIC based on the single constraint.

Figure: Three-gradient not dominated by GMIC



Infinite Group Relaxation 000	Tools to Prove Facets 00000	Facet-defining Inequalities	Conclusion

- Presented Tools for proving facet-defining tools for the two -dimensional group problem.
- Presented two-families of first known facets of two-dimensional group problem.
- These new families have interesting generate stronger coefficients for continuous variable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Infinite Group Relaxation		Facet-defining Inequalities	Conclusion
000	00000	00000	

Thank You.