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Motivation

o Generation of strong cutting planes will help solve general MIPs
faster.

@ All know group based cutting planes using a single constraint to
derive cut.

@ We present first know strong cuts that use two constraints.

@ We hope these will be stronger since they use information from two
constraints concurrently.
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Infinite Group Relaxation
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Infinite Group Relaxation of Integer Programs

@ Standard IP:

Ax=b x €L,

where A € RMX 7 b ¢ RMX1
@ Relaxation step 1: Consider each row modulo 1.

n

D _(Aj)(modl)x; = bj(modl) V1< j<m (1)

i=

@ Rewrite in Group Space: S =r
Each a; belongs to the group I = {x € R™[0 < x; <1 V1 < i< m}.
Note that a; = (Ajy (modl), ..., Ajy,(modl)).

@ Relaxation step 2: Introduce new variables.

Z ax(a) =r (2)
agim
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Definition: Group Problem and Valid Inequalities

Definition (Integer Group Problem PI(r, m), Johnson 1974)

For r € I™ and r 5 o, the group problem PI(r, m) is the set of functions t : I — R such that
Q Z.emutlw)=r,reim,
e t(u) is a non-negative integer for u € I,
e t has a finite support, i.e., t(u) > 0 for a finite subset of /™.

Definition (Valid Inequality, Johnson 1974)

A function ¢ : 1™ — R is defined as a valid inequality for PI(r,m) if ¢:(0) = 0, $(r) = 1and 3=, cjm G(u)t(u) > 1,V
t € PI(r, m).

\

GMIC

a;(mod 1)
1-;
11—




Infinite Group Relaxation
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Piecewise Linear Functions

Definition

¢ is piecewise linear, i.e. /2 can be decomposed into finitely many
polytopes with non-empty interiors Py, ..., Py, such that
#(u) = o] u+ B, Vu € Py, where a, € R 3, e RVt = {1,2,...k}.

vertex




Tools to Prove Facets
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Step to Prove Function Represents Facet-defining

Inequality

@ Prove function is subadditive, i.e., ¢(u) + ¢(v) > ¢(u + v)
Yu,v € I%.
o Develop methods to efficiently prove a function is subadditive over /2.

@ Prove function is minimal (un-dominated). This is easy to do.
(Gomory and Johnson Theorem 1972).

@ Define an additive equality as ¢(u) + ¢(v) = ¢(u + v). Let E(¢) be
the set of all additive equalities. Then if the ¢ is the only function
that satisfies all the equalities E(¢), then ¢ is a facet.

o Prove a result called Interval Lemma in two dimension. This result is
used to prove E(¢) is unique.

o Prove a homomorphism result to generate new facets from older
ones.
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Checking subadditivity for Functions Defined on /2

Theorem (Checking Subadditivity)

Let ¢ be a continuous, piecewise linear and nonnegative function on I12. Then ¢ is
subadditive iff
d(v1) + ¢(v2) > (v + v2) Vv, v2 € V() UV'(9) (3)
(vi) + d(vs — v1) > d(v3) Vvi,v3 € V(¢) U V() (4)
B(v1) + d(e2) > P(e3) where & € g2, €3 € g3, v1 + €2 = €3,
Vv € V() UV'(4), Va2,q3 € Q) (5)
d(e1) + d(e2) > #(v3) where e1 € q1,e2 € g2, €1 + €& = v3,
Yvs € V() UV'(¢), VYai,92 € Q(8) . (6)

Furthermore, if ey and e3 (resp. e1 and e;) belong to identical or parallel edges, then
(5) (resp. (6)) is redundant.
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Discussion on Subadditivity Result

o1 F+A-MA-2, 1) (g1
R2 // //
012) £ (f1,12) /
/]
/
//RA,/ /
/ /
S/
R1 VAV
/ / Aa,1-12)
/’
Yy
a4
// // RS
0.0) 0 +-1)(1-12,00  (1,0)

X
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Interval lemma in Two Dimensions

@ Interval Lemma is a key tool used to prove that a function is
facet-defining by Gomory and Johnson[2003].
@ The following a generalization we introduced in two dimensions.

Theorem (Interval Lemma in Two Dimensions)

Let U and V be closed sets in R?. Let g be a real-valued function
defined over U, V and U + V. Assume that

@ U is star-shaped with respect to the origin, and U has a non-empty
interior.

© V is path connected.

Q g(u)+g(v)=g(u+v),Vue U, VveV.

Q > icsg(ui) =g(>es ui) Yui € U such that 3, s u; € U and VS
with |S| < 3.

Q g(u)>0,Vuel.
Then g is a linear function with the same gradient in U, V and U + V.

V.

10



Tools to Prove Facets
o

Creating New Facets

Defi n (A Hom phism

The homomorphism X : 12 — /2 is defined as A(x, y) = (A1x(mod1),
A2y(mod1)), where A1, A, are positive integers.

Theorem (Homomorphism Theorem)

¢ is facet-defining with respect to right-hand-side r iff p o \ is
facet-defining with respect to right-hand-side v, where \(v) = r.

‘a Three-aradient facet 11
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Family 1: Constraint Aggregation

Given ¢ a piecewise linear and continuous valid inequality for one
dimensional integer infinite group problem PI(c, 1), we construct the
function T for Pl(r,2) with right-hand-side r = (f;, f,) where

Af 4+ Ao = c as 7(x,y) = ((A1x + Aay)(modl), and A\, Ay € Z and
are not both zero.

Theorem (Aggregation Theorem)

T is facet-defining for Pl(r,2) iff  is facet-defining for 1DIIGP.
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Results on Family - |

Theorem (Two Gradient Theorem)

Any continuous piecewise linear two-gradient facet of Pl(r,2) can be
derived from a facet of PI(r',1) using Construction 1.

Some observations:

> Gives a complete characterization of continuous functions with only
two gradients.

> All two slope functions for 1DIIGP are facet-defining [Gomory and
Johnson 1972, 2003]. This is a two-dimensional analog for a similar
result for the one dimensional infinite group problem.



Facet-defining Inequalities
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Family 2: Three-Gradient Facet

We divide I? into five polytopes R1, R2, R3, R4, R5 as shown in figure.

We construct 1 to be the only continuous piecewise linear function with
¥(f, ) =1 and ¢(0,0) = 0, whose gradients in R2 and R4 are equal
and whose gradients in R3 and R5 are equal.

Y is facet-defining for Pl(r,2).

©,1) 1+ (1-f)(1-12), 1) .1

R2 / /
/ /
/
/ R3 /
(0.f2) (f1,12) / y
/ //
/s /
a4
> s /
R / // v
/ ,1-12
/! //
a4
S/
/S
v RS
/

0,0) 0 (1+A-M1-12.0 (10
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Three-Gradient Functions Yield Facets of IPs

Consider the set of nonnegative integer solutions to

[§ Jae [ 8 ae[7 ]or[2]ne§]me 1 ]wr[3]n=]3]

where x; € Z, Vi € {1,...,7}. This system has 3 feasible solutions:
{0 01 1 100,{01 02 0 0 1}and
{0 1 0 0 1 1 1} Now consider the constraints divided by 8.

Observations

© The three-gradient inequality v is generates a facet of the feasible
region of the IP.

@ The GMIC generates a different facet of this problem.
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Results on Family

Using result from Johnson [1974] cuts for integer infinite groups can be extended to mixed integer infinite group problems.

Proposition

Among all the facets of one-dimensional mixed integer infinite group problem (1DMIIGP), the coefficients of continuous variables are
strongest in GMIC.

Proposition

The coefficients for continuous variables of the th dient il lity 1) are not domi by GMIC based on the single constraint.

Figure:

Three-gradient not dominated by GMIC

Both the GHIIC A

wie threegradient facet

The value of the cut

o \ coeffiient of the.
ivee-gracient facet is in
Between the valuz from
the tio GMIC

The

- three-gracient
facet dominates
both the GMICs




Conclusion

@ Presented Tools for proving facet-defining tools for the two
-dimensional group problem.

@ Presented two-families of first known facets of two-dimensional
group problem.

@ These new families have interesting generate stronger coefficients for
continuous variable.



Conclusion

Thank You.
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