Santanu S. Dey Marco Molinaro Qianyi Wang

ISyE - Georgia Tech

Thanks to Marco Molinaro for the figures

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

Dey, Molinaro, Wang

Motivation

Setting up the problem Some Examples Main Results

Proof Outlines

Outline

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines Upper Bound Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

・ロト (日下・モート・モー・ショー・ショー)

1 Introduction and Motivation

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results
- **Proof Outlines**

Cutting-planes

Cutting Plane

1. Cutting-planes in a linear inequality that is valid for all integer feasible points, but may not be valid for the linear programming relaxation.

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results
- **Proof Outlines**

Cutting-planes

Cutting Plane

- 1. Cutting-planes in a linear inequality that is valid for all integer feasible points, but may not be valid for the linear programming relaxation.
- 2. The convex hull of integer feasible solutions is a rational polyhedron, so a finite number of cutting-planes gives the convex hull.

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results
- **Proof Outlines**

Cutting-planes

Cutting Plane

- 1. Cutting-planes in a linear inequality that is valid for all integer feasible points, but may not be valid for the linear programming relaxation.
- 2. The convex hull of integer feasible solutions is a rational polyhedron, so a finite number of cutting-planes gives the convex hull.
- 3. Huge amount of research in Integer Programming on problem-specific and general purpose cutting-planes.
- 4. Justified by (or more importantly?) being extremely useful in practice to solve IPs.

Dey, Molinaro, Wang

Motivation

Setting up the problem Some Examples Main Results

Proof Outlines

Implementation of cutting planes is a different matter altogether

A double edged sword?

More commercial/successful IP solvers have very sophisticated methods of cutting-planes selection and use.

Dey, Molinaro, Wang

Motivation

- Setting up the problem Some Examples Main Results
- Proof Outlines

Implementation of cutting planes is a different matter altogether

A double edged sword?

More commercial/successful IP solvers have very sophisticated methods of cutting-planes selection and use.

- 1. "Dept of cut" and variants ("Rotated distance", "Distance with bounds",)
- 2. "Parallelism" ("Objective function parallelism", "Cutting plane parallelism")

- 3. "Numerical stability"
- 4. "Cutting-plane sparsity"

'Cut pool management system', 'Cutting-plane filter'

Dey, Molinaro, Wang

Motivation

- Setting up the problem Some Examples Main Results
- Proof Outlines

Implementation of cutting planes is a different matter altogether

A double edged sword?

More commercial/successful IP solvers have very sophisticated methods of cutting-planes selection and use.

- 1. "Dept of cut" and variants ("Rotated distance", "Distance with bounds",)
- "Parallelism" ("Objective function parallelism", "Cutting plane parallelism")

- 3. "Numerical stability"
- 4. "Cutting-plane sparsity"

'Cut pool management system', 'Cutting-plane filter'

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results
- **Proof Outlines**

Cutting plane Sparsity

In practice

1. Prefer to use sparse cutting planes.

イロト イポト イヨト イヨト

э

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results
- **Proof Outlines**

Cutting plane Sparsity

In practice

1. Prefer to use sparse cutting planes.

- 2. Why use sparse cutting-planes:
 - Pros: It is easy to solve LPs in B&B tree with sparse cutting-planes.

Dey, Molinaro, Wang

Motivation

Setting up the problem Some Examples

Main Results

Proof Outlines

Cutting plane Sparsity

In practice

1. Prefer to use sparse cutting planes.

- 2. Why use sparse cutting-planes:
 - Pros: It is easy to solve LPs in B&B tree with sparse cutting-planes.

Cons: Sparse cutting planes do not give the convex hull.

< ロ > < 同 > < 回 > < 回 >

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results
- **Proof Outlines**

Cutting plane Sparsity

In practice

1. Prefer to use sparse cutting planes.

- 2. Why use sparse cutting-planes:
 - Pros: It is easy to solve LPs in B&B tree with sparse cutting-planes.
 - Cons: Sparse cutting planes do not give the convex hull.

How good are sparse cutting-planes?

2 Setting up the problem

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results
- **Proof Outlines**

Geometric Problem

Considered abstractly

1. We have a polytope $P \subseteq \mathbb{R}^n$, which represents the integer hull.

イロン 不得 とくほ とくほう 二日

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results
- **Proof Outlines**

Geometric Problem

Considered abstractly

- 1. We have a polytope $P \subseteq \mathbb{R}^n$, which represents the integer hull.
- 2. P^k : The set of points that are valid for all *k*-sparse inequalities.

イロン 不得 とくほ とくほう 二日

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Geometric Problem

Considered abstractly

- 1. Instead of considering a general polytope, we have a polytope $\mathcal{P} \subseteq \mathbb{R}^n P \subseteq [0 \ 1]^n$, which represents the integer hull.
- 2. P^k : The set of points that are valid for all *k*-sparse inequalities.

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Geometric Problem

Considered abstractly

- 1. Instead of considering a general polytope, we have a polytope $\mathcal{P} \subseteq \mathbb{R}^n P \subseteq [0 \ 1]^n$, which represents the integer hull.
- 2. P^k : The set of points that are valid for all *k*-sparse inequalities.

How well does P^k approximate P?

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Geometric Problem

Considered abstractly

- 1. Instead of considering a general polytope, we have a polytope $\mathcal{P} \subseteq \mathbb{R}^n P \subseteq [0 \ 1]^n$, which represents the integer hull.
- 2. P^k : The set of points that are valid for all *k*-sparse inequalities.

How well does P^k approximate P?

We wanted a measure that is well-defined in all cases:

 $d(P, P^k) = \max_{x \in P^k} \{ \text{distance}(x, P) \}$

Comments:

- 1. At most \sqrt{n} .
- 2. Upper bound on dept of cut measure.

3 Some Examples

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Result

Proof Outlines

Example 1: "Single phase"

$$P := \{x \in [0 \ 1]^n | \sum_{i=1}^n x_i \le 1\}$$

$$\frac{d(P, P^k)}{k} \approx \frac{\sqrt{n}}{k} \text{ This is Good!}$$

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Result

Proof Outlines

Example 1: "Two phase"

 $P := \{x \in [0 \ 1]^n | \sum_{i=1}^n x_i \le \frac{n}{2}\}$ Phase 1: $d(P, P^k) \approx \sqrt{n}/2$ This is Bad! Phase 2: $d(P, P^k) \approx \frac{n\sqrt{n}}{2k}$

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Result

Proof Outlines

Example 1: "Three phases"

 $\begin{array}{l} P := \text{convex hull of random 0/1 points} \\ \text{Phase 1: } d(P, P^k) \approx \sqrt{n}/2 \\ \text{Phase 2: } d(P, P^k) \propto \frac{1}{\sqrt{k}} \\ \text{Phase 3: } d(P, P^k) \propto \frac{1}{k} \end{array}$

4 Outline of main results

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples

Main Results

Proof Outlines

Main results - Informally

1. Upper bounds on *d*(*P*, *P*^{*k*}) depending on *n*, *k*, and number of vertices.

Consequences

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results
- **Proof Outlines**

Main results - Informally

- 1. Upper bounds on *d*(*P*, *P*^{*k*}) depending on *n*, *k*, and number of vertices.
- 2. Matching lower bound: a random 0/1 polytope, with prob $\frac{1}{4}$

Consequences

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results
- **Proof Outlines**

Main results - Informally

- 1. Upper bounds on $d(P, P^k)$ depending on *n*, *k*, and number of vertices.
- 2. Matching lower bound: a random 0/1 polytope, with prob $\frac{1}{4}$

Consequences

Polynomial number of vertices as a function of dimension with

 <u>1</u> sparsity, implies d(P, P^k) is very small (≈ √logn), i.e. sparse cutting planes are good.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results
- **Proof Outlines**

Main results - Informally

- 1. Upper bounds on *d*(*P*, *P*^{*k*}) depending on *n*, *k*, and number of vertices.
- 2. Matching lower bound: a random 0/1 polytope, with prob $\frac{1}{4}$

Consequences

- Polynomial number of vertices as a function of dimension with

 <u>1</u> sparsity, implies d(P, P^k) is very small (≈ √logn), i.e. sparse cutting planes are good.
- 2. As the number of vertices grow, the location of vertices becomes more important....

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples

Main Results

Proof Outlines

Main results - Informally

3. Random packing instances: Sparse cutting-planes are bad.

・ロット (雪) (き) (き)

э

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Main results - Informally

3. Random packing instances: Sparse cutting-planes are bad.

4 *k*-sparse cutting-planes for extended formulation + projection to original space is significantly stronger than *k*-sparse cutting-planes for original polytope.

4 Results and outline of proofs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results

Proof Outline

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound

Theorem 1 [Upper Bound on $d(P, P^k)$] Let $n \ge 2$. Let $P \subseteq [0, 1]^n$ be the convex hull of points $\{p^1, \dots, p^t\}$. Then

1. $d(P, P^k) \le 4 \max\left\{\frac{n^{1/4}}{\sqrt{k}} \sqrt{8 \max_{i \in [t]} \|p^i\|} \sqrt{\log 4tn}, \frac{8\sqrt{n}}{3k} \log 4tn\right\}$ 2. $d(P, P^k) \le 2\sqrt{n} \left(\frac{n}{k} - 1\right)$.

(日)

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Proof Outline

To show:
$$d(P, P^k) \leq 2\lambda \triangleq \frac{\sqrt{n}}{\sqrt{k}} \sqrt{\log(n \times \text{number of vertices})}$$
.

・ロン ・回 とくほど ・ほとう

э

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Proof Outline

To show: $d(P, P^k) \leq 2\lambda \triangleq \frac{\sqrt{n}}{\sqrt{k}} \sqrt{\log(n \times \text{number of vertices})}$.

1. Let $u \in \mathbb{R}^n$ such that distance between u and P greater than 2λ .

イロン 不良 とくほう イロン

2. How to obtain a k-sparse inequality to separate u?

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results

Proof Outline

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Proof Outline

To show: $d(P, P^k) \leq 2\lambda \triangleq \frac{\sqrt{n}}{\sqrt{k}} \sqrt{\log(n \times \text{number of vertices})}$.

- 1. Let $u \in \mathbb{R}^n$ such that distance between u and P greater than 2λ .
- 2. How to obtain a k-sparse inequality to separate u?
- 3. Start with valid inequality $d^{\top}x \leq b$ of *P*; *d* is unit norm such that

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

3.1 $2\lambda d = (u - v)$; v is the closest point to u in P.

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Proof Outline

To show: $d(P, P^k) \leq 2\lambda \triangleq \frac{\sqrt{n}}{\sqrt{k}} \sqrt{\log(n \times \text{number of vertices})}$.

- 1. Let $u \in \mathbb{R}^n$ such that distance between u and P greater than 2λ .
- 2. How to obtain a k-sparse inequality to separate u?
- 3. Start with valid inequality $d^{\top}x \le b$ of *P*; *d* is unit norm such that 3.1 $2\lambda d = (u v)$; *v* is the closest point to *u* in *P*.

(日)

4. Let $\alpha = k/(2\sqrt{n})$. Randomly "sparsify" *d* to a vector *D*:

$ \alpha \mathbf{d}_i \leq 1$			$\alpha \boldsymbol{d}_i > 1$
$D_i = \begin{cases} \frac{sign}{s} \end{cases}$	$\frac{n(d_i)}{\alpha}$	with probability $\alpha d_i $ with probability1 – $\alpha d_i $	$D_i = d_i$

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Proof Outline

To show: $d(P, P^k) \leq 2\lambda \triangleq \frac{\sqrt{n}}{\sqrt{k}} \sqrt{\log(n \times \text{number of vertices})}$.

- 1. Let $u \in \mathbb{R}^n$ such that distance between u and P greater than 2λ .
- 2. How to obtain a k-sparse inequality to separate u?
- 3. Start with valid inequality $d^{\top}x \le b$ of *P*; *d* is unit norm such that 3.1 $2\lambda d = (u v)$; *v* is the closest point to *u* in *P*.

< ロ > < 同 > < 回 > < 回 > .

4. Let $\alpha = k/(2\sqrt{n})$. Randomly "sparsify" *d* to a vector *D*:

$\alpha d_i \leq 1$	$\alpha \boldsymbol{d}_i > 1$	
$D_i = \begin{cases} \frac{sign(d_i)}{\alpha} \\ 0 \end{cases}$	with probability $\alpha d_i $ with probability $1 - \alpha d_i $	$D_i = d_i$

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Proof Outline

To show: $d(P, P^k) \leq 2\lambda \triangleq \frac{\sqrt{n}}{\sqrt{k}} \sqrt{\log(n \times \text{number of vertices})}$.

- 1. Let $u \in \mathbb{R}^n$ such that distance between u and P greater than 2λ .
- 2. How to obtain a k-sparse inequality to separate u?
- 3. Start with valid inequality $d^{\top}x \le b$ of *P*; *d* is unit norm such that 3.1 $2\lambda d = (u v)$; *v* is the closest point to *u* in *P*.

4. Let $\alpha = k/(2\sqrt{n})$. Randomly "sparsify" *d* to a vector *D*:

$\alpha \mathbf{d}_i \leq 1$			$\alpha d_i > 1$
$D_i = \begin{cases} \frac{s}{2} \end{cases}$	$\frac{\alpha}{\alpha}$	with probability $\alpha d_i $ with probability1 – $\alpha d_i $	$D_i = d_i$

5. With probability > 0, *D* is *k*-sparse, $D^{\top}x \leq (D^{\top}v + \lambda)$ is valid for *P*, and $D^{\top}u > (D^{\top}v + \lambda)$.

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Sparsity of random vectors"

Claim: With high probability *D* is *k*-sparse.

Proof

1. $E[\# \text{ of non-zero components of } D] = \sum_{i=1}^{n} \alpha d_i \leq k/2.$

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Sparsity of random vectors"

Claim: With high probability *D* is *k*-sparse.

Proof

- 1. $E[\# \text{ of non-zero components of } D] = \sum_{i=1}^{n} \alpha d_i \leq k/2.$
- 2. *Std*[# of non-zero components of D] $\leq \sqrt{k/2}$

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Sparsity of random vectors"

Claim: With high probability *D* is *k*-sparse.

Proof

- 1. $E[\# \text{ of non-zero components of } D] = \sum_{i=1}^{n} \alpha d_i \leq k/2.$
- 2. *Std*[# of non-zero components of D] $\leq \sqrt{k/2}$
- 3. # of non-zero components of $D \lesssim k/2 + \sqrt{k/2}$

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Sparsity of random vectors"

Claim: With high probability *D* is *k*-sparse.

Proof

- 1. $E[\# \text{ of non-zero components of } D] = \sum_{i=1}^{n} \alpha d_i \leq k/2.$
- 2. *Std*[# of non-zero components of D] $\leq \sqrt{k/2}$
- 3. # of non-zero components of $D \lesssim k/2 + \sqrt{k/2}$

 $P(\# \text{ of non-zero components of } D \le k) \ge 1 - \frac{1}{4n}.$

Bernstein's Inequality

< ロ > < 同 > < 回 > < 回 > .

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Validity of random inequality"

Observation Let $w \in \mathbb{R}^n$. Then $E(D^\top w) = d^\top w$, $Var(D^\top w) = \frac{1}{\alpha} \sum_{i=1}^n w_i^2 |d_i|$.

Dey, Molinaro, Wang

Motivation

Setting up the proble

Some Examples

Main Results

Proof Outline

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Validity of random inequality"

Observation

Let $w \in \mathbb{R}^n$. Then $E(D^\top w) = d^\top w$, $Var(D^\top w) = \frac{1}{\alpha} \sum_{i=1}^n w_i^2 |d_i|$.

Claim: With high probability $D^{\top}x \leq (D^{\top}v + \lambda)$ is a valid inequality for *P*. Proof

1. Fix a vertex p of P.

Dey, Molinaro, Wang

Motivation

Setting up the proble

Some Examples

Main Results

Proof Outline

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Validity of random inequality"

Observation

Let $w \in \mathbb{R}^n$. Then $E(D^\top w) = d^\top w$, $Var(D^\top w) = \frac{1}{\alpha} \sum_{i=1}^n w_i^2 |d_i|$.

Claim: With high probability $D^{\top}x \leq (D^{\top}v + \lambda)$ is a valid inequality for *P*. Proof

- 1. Fix a vertex *p* of *P*.
- **2.** $E[D^{\top}(p-v)] = d^{\top}(p-v) \leq 0.$
- 3. $Std[D^{\top}(p-v)] \leq \frac{\lambda}{\sqrt{\log(n \times \text{ number of vertices})}}$

Dey, Molinaro, Wang

Motivation

Setting up the proble

Some Examples

Main Results

Proof Outline

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Validity of random inequality"

Observation

Let
$$w \in \mathbb{R}^n$$
. Then $E(D^\top w) = d^\top w$, $Var(D^\top w) = \frac{1}{\alpha} \sum_{i=1}^n w_i^2 |d_i|$.

Claim: With high probability $D^{\top}x \leq (D^{\top}v + \lambda)$ is a valid inequality for *P*. Proof

- 1. Fix a vertex *p* of *P*.
- **2.** $E[D^{\top}(p-v)] = d^{\top}(p-v) \leq 0.$
- 3. $Std[D^{\top}(p-v)] \leq \frac{\lambda}{\sqrt{\log(n \times \text{ number of vertices})}}$

4.
$$P(D^{\top}p > D^{\top}v + \lambda) \leq P(D^{\top}(p - v) > E[D^{\top}(p - v)] + \lambda) \leq \frac{1}{4n \times \text{ number of vertices}}.$$

Dey, Molinaro, Wang

Motivation

Setting up the proble

Some Examples

Main Results

Proof Outline

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Validity of random inequality"

Observation Let $w \in \mathbb{R}^n$. Then $E(D^\top w) = d^\top w$, $Var(D^\top w) = \frac{1}{\alpha} \sum_{i=1}^n w_i^2 |d_i|$.

Claim: With high probability $D^{\top}x \leq (D^{\top}v + \lambda)$ is a valid inequality for *P*. Proof

- 1. Fix a vertex p of P.
- 2. $E[D^{\top}(p-v)] = d^{\top}(p-v) \le 0.$
- 3. $Std[D^{\top}(p-v)] \leq \frac{\lambda}{\sqrt{\log(n \times \text{ number of vertices})}}$
- 4. $P(D^{\top}p > D^{\top}v + \lambda) \leq P(D^{\top}(p v) > E[D^{\top}(p v)] + \lambda) \leq \frac{1}{4n \times \text{ number of vertices}}$.
- 5. Probability that atleast one vertex does not satisfy $D^{\top}x \le D^{\top}(\nu + \lambda)$ $\le \left(\frac{1}{4n \times \text{ number of vertices}} \times \text{ number of vertices}\right)$. (Union Bound)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Dey, Molinaro, Wang

Motivation

Setting up the proble

Some Examples

Main Results

Proof Outline

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Validity of random inequality"

Observation Let $w \in \mathbb{R}^n$. Then $E(D^\top w) = d^\top w$, $Var(D^\top w) = \frac{1}{\alpha} \sum_{i=1}^n w_i^2 |d_i|$.

Claim: With high probability $D^{\top}x \leq (D^{\top}v + \lambda)$ is a valid inequality for *P*. Proof

- 1. Fix a vertex p of P.
- 2. $E[D^{\top}(p-v)] = d^{\top}(p-v) \leq 0.$

3.
$$Std[D^{\top}(p-v)] \leq \frac{\lambda}{\sqrt{\log(n \times \text{ number of vertices})}}$$

4.
$$P(D^{\top}p > D^{\top}v + \lambda) \leq P(D^{\top}(p - v) > E[D^{\top}(p - v)] + \lambda) \leq \frac{1}{4n \times \text{ number of vertices}}$$
.

5. Probability that atleast one vertex does not satisfy $D^{\top}x \le D^{\top}(v + \lambda)$ $\le \left(\frac{1}{4n \times \text{ number of vertices}} \times \text{ number of vertices}\right)$. (Union Bound)

$$P(D^{\top}x \leq (D^{\top}v + \lambda) \text{ is a valid inequality}) \geq 1 - \frac{1}{4n}$$

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Separation of *u*"

$$P(D^{\top}u > (D^{\top}v + \lambda)) = P(D^{\top}(u - v) > \lambda))$$
$$= P(D^{\top}(2\lambda d) > \lambda))$$
$$= P(D^{\top}d > 1/2)$$

イロト イポト イヨト イヨト

3

Claim: With probability at least $\frac{1}{2n-1}$, $D^{\top}d > 1/2$.

Proof

1. $E[D^{\top}d] = 1$. 2. $D^{\top}d < n$

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: "Separation of *u*"

$$P(D^{\top}u > (D^{\top}v + \lambda)) = P(D^{\top}(u - v) > \lambda))$$
$$= P(D^{\top}(2\lambda d) > \lambda))$$
$$= P(D^{\top}d > 1/2)$$

Claim: With probability at least $\frac{1}{2n-1}$, $D^{\top}d > 1/2$.

Proof

- 1. $E[D^{\top}d] = 1$.
- 2. $D^{\top}d \leq n$
- 3. With probability at least $\frac{1}{2n-1}$, $D^{\top}d > 1/2$. (Using Markov's inequality on the random variable $n D^{\top}d$)

・ロット (雪) (き) (き)

Dey, Molinaro, Wang

Motivation

- Setting up the problem
- Some Examples
- Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: Putting it all together

- 1. With probability at most $\frac{1}{4n}$, the inequality is not *k*-sparse.
- 2. With probability at most $\frac{1}{4n}$, the inequality is not valid.
- 3. With probability at most 1 $\frac{1}{2n-1}$, the inequality is does not separate *u*.

くロト くぼと くほと くほと

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Upper Bound: Putting it all together

- 1. With probability at most $\frac{1}{4n}$, the inequality is not *k*-sparse.
- 2. With probability at most $\frac{1}{4n}$, the inequality is not valid.
- 3. With probability at most 1 $\frac{1}{2n-1}$, the inequality is does not separate *u*.

With probablity at most $1 - \frac{1}{(2n-1)(2n)}$, the inequality is either not *k*-sparse, not valid or does not separate *u*.

⇒ With probablity at least $\frac{1}{(2n-1)(2n)} > 0$, the inequality is *k*-sparse, valid inequality and separates *u*.

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Lower Bound

Theorem 2 ['Matching' Lower Bound on $d(P, P^k)$] Let $k, t, n \in \mathbb{Z}_+$ satisfy

2.
$$(0.5k^2 \log n + 2k + 1)^2 \le t \le e^n$$
.

Let $X^1, X^2, ..., X^t$ be independent uniformly random points in $\{0, 1\}^n$ and let $P = \text{conv}(X^1, X^2, ..., X^t)$. Then with probability at least 1/4 we have that

$$d(P,P^k) \geq \min\left\{\frac{\sqrt{n}}{\sqrt{k}}\frac{\sqrt{\log t}}{110\sqrt{\log n}},\frac{\sqrt{n}}{8}\right\}\left(\frac{1}{2}-\frac{1}{k^{3/2}}\right)-3\sqrt{\log t}.$$

イロン 不良 とくほう イロン

Dey, Molinaro, Wang

Motivation

Setting up the problem

- Some Examples
- Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Theorem 2 ['Matching' Lower Bound on $d(P, P^k)$] Let $k, t, n \in \mathbb{Z}_+$ satisfy

1. 64 ≤ *k* ≤ *n*

Lower Bound

2.
$$(0.5k^2 \log n + 2k + 1)^2 \le t \le e^n$$
.

Let $X^1, X^2, ..., X^t$ be independent uniformly random points in $\{0, 1\}^n$ and let $P = \text{conv}(X^1, X^2, ..., X^t)$. Then with probability at least 1/4 we have that

$$d(P, P^k) \ge \min\left\{\frac{\sqrt{n}}{\sqrt{k}}\frac{\sqrt{\log t}}{110\sqrt{\log n}}, \frac{\sqrt{n}}{8}\right\} \left(\frac{1}{2} - \frac{1}{k^{3/2}}\right) - 3\sqrt{\log t}.$$

<u>Upper bound</u> $\approx \frac{\sqrt{n}}{\sqrt{k}} \sqrt{\log(n \times t)}$.

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Lower Bound: Proof Outline

We show that there are points in P^k far from P.

1. With high probability the inequality $\sum_{i=1}^{n} x_i \leq \frac{n}{2} + 3\sqrt{n \log t}$ is valid for *P*.

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Lower Bound: Proof Outline

We show that there are points in P^k far from P.

- 1. With high probability the inequality $\sum_{i=1}^{n} x_i \leq \frac{n}{2} + 3\sqrt{n \log t}$ is valid for *P*.
- 2. With high propobablity if the inequality $a^{\top}x \leq b$ is valid for P^k then $b \geq \left(1 + \frac{\sqrt{\log t}}{110\sqrt{k}\sqrt{\log n}}\left(1 - \frac{1}{k^2}\right)\right) \frac{\sum_{i=1}^{n} a_i}{2} - \frac{||a||_{\infty}}{2k^2}$

・ロット (雪) (日) (日)

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Lower Bound: Proof Outline

We show that there are points in P^k far from P.

- 1. With high probability the inequality $\sum_{i=1}^{n} x_i \leq \frac{n}{2} + 3\sqrt{n\log t}$ is valid for *P*.
- 2. With high propobablity if the inequality $a^{\top}x \leq b$ is valid for P^k then $b \geq \left(1 + \frac{\sqrt{\log t}}{110\sqrt{k}\sqrt{\log n}}\left(1 - \frac{1}{k^2}\right)\right) \frac{\sum_{i=1}^{n} a_i}{2} - \frac{||a||_{\infty}}{2k^2}$

3. The point
$$\sim (\frac{1}{2} + \frac{\sqrt{\log t}}{\sqrt{k}})e$$
 belongs to P^k

・ロット (雪) (日) (日)

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Lower Bound: Proof Outline

We show that there are points in P^k far from P.

- 1. With high probability the inequality $\sum_{i=1}^{n} x_i \leq \frac{n}{2} + 3\sqrt{n \log t}$ is valid for *P*.
- 2. With high propobablity if the inequality $a^{\top}x \le b$ is valid for P^k then $b \ge \left(1 + \frac{\sqrt{\log t}}{110\sqrt{k_1}/\log n} \left(1 - \frac{1}{k^2}\right)\right) \frac{\sum_{j=1}^{n} a_j}{2} - \frac{||a||_{\infty}}{2k^2}$

- 3. The point $\sim (\frac{1}{2} + \frac{\sqrt{\log t}}{\sqrt{k}})e$ belongs to P^k
- 4. The point $\sim (\frac{1}{2})e$ is closest point to above point in $P. \Rightarrow$

$$d(P, P^k) \approx \frac{\sqrt{n}}{\sqrt{k}} \sqrt{\log t}$$

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances Sparse Cutting Planes and Exended Formulations

Lower Bound: Proof Outline

We show that there are points in P^k far from P.

- 1. With high probability the inequality $\sum_{i=1}^{n} x_i \leq \frac{n}{2} + 3\sqrt{n \log t}$ is valid for *P*.
- 2. With high propobablity if the inequality $a^{\top}x \leq b$ is valid for P^k

then
$$b \ge \left(1 + rac{\sqrt{\log t}}{110\sqrt{k}\sqrt{\log n}}\left(1 - rac{1}{k^2}\right)
ight)rac{\sum_{i=1}^n a_i}{2} - rac{||a||_{\infty}}{2k^2}$$

- 2.1 New anti-concentration inequality (approx): $P\left(ax \ge E[ax] + \gamma \frac{|a|_1}{\sqrt{a}}\right) \ge e^{-\gamma^2}$
- 2.2 If $c^{\top}x \le f$ is a facet-defining inequality of a 0/1 polytope in R^k , then $||c||_{\infty} \le k^{k/2}$.
- 3. The point $\sim (\frac{1}{2} + \frac{\sqrt{\log t}}{\sqrt{k}})e$ belongs to P^k
- 4. The point $\sim (\frac{1}{2})e$ is closest point to above point in $P. \Rightarrow$

$$d(P, P^k) \approx \frac{\sqrt{n}}{\sqrt{k}} \sqrt{\log t}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Hard Packing Instances

How Good Are Sparse Cutting Planes? Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances

Sparse Cutting Planes and Exended Formulations

Hard packing IPs [0, ..., M] uniform A $x \leq b$ $\frac{sum \ of \ lhs}{2}$

 $x\in\{0,1\}^n$

Hard Packing Instances

How Good Are Sparse Cutting Planes? Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances

Sparse Cutting Planes and Exended Formulations

Theorem 3

Consider $n, m, M \in N$ such that $n \ge 50$ and $8 \log 8n \le m \le n$. Then with probability at least 1/2,

$$d(P, P^k) \geq \frac{\sqrt{n}}{2} \left(\frac{2}{\max\{\alpha, 1\}} (1 - \epsilon)^2 - (1 + \epsilon') \right)$$
, where $c = k/n$ and

$$\begin{aligned} \frac{1}{\alpha} &= \frac{M}{2(M+1)} \left[\frac{n - 2\sqrt{n\log 8m}}{c((2-c)n+1) + 2\sqrt{10cnm}} \right], \quad \epsilon = \frac{24\sqrt{\log 4n^2m}}{\sqrt{n}}, \\ \epsilon' &= \frac{3\sqrt{\log 8n}}{\sqrt{m} - 2\sqrt{\log 8n}}. \end{aligned}$$

Hard Packing Instances

How Good Are Sparse Cutting Planes? Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances

Sparse Cutting Planes and Exended Formulations

Hard packing IPs [0, ..., M] uniform distribution $x \in \{0,1\}^n$ $x \in \{0,1\}^n$

Theorem 3

Consider $n, m, M \in N$ such that $n \ge 50$ and $8 \log 8n \le m \le n$. Then with probability at least 1/2,

$$d(P, P^k) \geq \frac{\sqrt{n}}{2} \left(\frac{2}{\max\{\alpha, 1\}} (1 - \epsilon)^2 - (1 + \epsilon') \right)$$
, where $c = k/n$ and

$$\begin{aligned} \frac{1}{\alpha} &= \frac{M}{2(M+1)} \left[\frac{n - 2\sqrt{n\log 8m}}{c((2-c)n+1) + 2\sqrt{10cnm}} \right], \quad \epsilon = \frac{24\sqrt{\log 4n^2m}}{\sqrt{n}}, \\ \epsilon' &= \frac{3\sqrt{\log 8n}}{\sqrt{m} - 2\sqrt{\log 8n}}. \end{aligned}$$

~ With probabily 1/2, $d(P, P^k) \gtrsim \sqrt{n} \left(\frac{n}{k} - 1\right)$ for $k \ge n/2$.

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances

Sparse Cutting Planes and Exended Formulations

Sparse cutting-planes and extended formulations

Let $\operatorname{proj}_{x} : \mathbb{R}^{n} \times \mathbb{R}^{m} \to \mathbb{R}^{n}$ denote the projection operator onto the first *n* coordinates.

Proposition

Consider a polyhedron $P \subseteq \mathbb{R}^n$ and an extended formulation $Q \subseteq \mathbb{R}^n \times \mathbb{R}^m$ for it. Then $\operatorname{proj}_x(Q^k) \subseteq (\operatorname{proj}_x(Q))^k = P^k$.

Proposition

Consider $n \in N$ and assume it is a power of 2. Then there is a polytope $P \subseteq \mathbb{R}^n$ such that:

- 1. $d(P, P^k) = \sqrt{n/2}$ for all $k \le n/2$.
- 2. There is an extended formulation $Q \subseteq \mathbb{R}^n \times \mathbb{R}^{2n-1}$ of P such that $\operatorname{proj}_x(Q^3) = P$.

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances

Sparse Cutting Planes and Exended Formulations

Extended Formulation

Original Polytope: $P = \{x \in [0 \ 1]^n \mid \sum_{i=1}^n x_i \le n/2\}$

Extended Formulation:

$$y_{r} \leq 1$$

$$y_{v} = y_{\text{ieft}(v)} + y_{\text{right}(v)}, \forall v \in \text{int}(T)$$

$$y_{v} = \frac{2}{n} x_{i(v)}, \forall v \in T \setminus \text{int}(T)$$

$$y_{v} \geq 0, \forall v \in T$$

$$x_{i} \in [0, 1], \forall i \in [n].$$
(1)

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines

Upper Bound

Lower Bound

Hard Packing Instances

Sparse Cutting Planes and Exended Formulations Thank You!