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Cutting-planes

Cutting Plane

1. Cutting-planes in a linear inequality that is valid for all integer feasible
points, but may not be valid for the linear programming relaxation.

2. The convex hull of integer feasible solutions is a rational polyhedron, so a
finite number of cutting-planes gives the convex hull.

3. Huge amount of research in Integer Programming on
problem-specific and general purpose cutting-planes.

4. Justified by (or more importantly?) being extremely useful in
practice to solve IPs.

Cutting planes

In theory
•
• Give convex hull of solutions
• Many families of cuts, large literature, since 60’s
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Implementation of cutting planes is a different matter
altogether

A double edged sword?
More commercial/successful IP solvers have very sophisticated
methods of cutting-planes selection and use.

1. "Dept of cut" and variants ( "Rotated distance", "Distance with
bounds", )

2. "Parallelism" ("Objective function parallelism", "Cutting plane
parallelism")

3. "Numerical stability"

4. "Cutting-plane sparsity"

‘Cut pool management system’, ‘Cutting-plane filter’
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Cutting plane Sparsity

In practice

1. Prefer to use sparse cutting planes.

Cutting planes
In practice
• Only want to use sparse cutting planes

• Most commercial solvers use sparsity to filter cuts
• Very limited theoretical investigation [Andersen, Weismantel 10]

• Do not give convex hull of solutions

ܽ . ݔ  	ܾ

at most  non‐zero entries

How good are sparse cutting planes?

2. Why use sparse cutting-planes:

Pros: It is easy to solve LPs in B&B tree with sparse
cutting-planes.

Cons: Sparse cutting planes do not give the convex hull.
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Geometric Problem

Considered abstractly

1. We have a polytope P ⊆ Rn, which represents the integer hull.

2. Pk : The set of points that are valid for all k -sparse inequalities.
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Geometric Problem
Considered abstractly

1. Instead of considering a general polytope, we have a polytope
���

�XXXXP ⊆ Rn P ⊆ [0 1]n, which represents the integer hull.

2. Pk : The set of points that are valid for all k -sparse inequalities.

How well does Pk approximate P?

We wanted a measure that is well-defined in all cases:

d(P,Pk ) = maxx∈Pk {distance(x ,P)}

Geometric problem

• ‐ polytope in  

•  ‐ intersection of all  ‐sparse cuts

• 
௫∈ೖ

– Well defined for every polytope
– Upper bound on depth‐of‐cut
– At most  ݊

Comments:
1. At most

√
n.

2. Upper bound on dept of cut measure.
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Example 1: "Single phase"

P := {x ∈ [0 1]n|
∑n

i=1 xi ≤ 1}
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Example 1: "Two phase"
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Example 1: "Three phases"
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Main results - Informally

1. Upper bounds on d(P,Pk ) depending on n, k , and number of
vertices.

2. Matching lower bound: a random 0/1 polytope, with prob 1
4

Our results

݀ ܲ, ܲ݀ ܲ, ܲ

݇ (density)݇ (density)

݀ ܲ, ܲ

݇ (density)

Our results

• Upper bounds on ݀ሺܲ, ܲሻ for polytopes in  0,1 	
• Matching lower bound: a random 0/1 polytope, with prob¼ 
• Hard packing IPs: sparse cuts are bad

ൎ



.ሺܗܔ ܜܚ܍ܞ# ࡼ ሻ			

 

 െ 

Consequences

1. Polynomial number of vertices as a function of dimension with
∼ 1

2 sparsity, implies d(P,Pk ) is very small (≈
√

logn), i.e.
sparse cutting planes are good.

2. As the number of vertices grow, the location of vertices becomes
more important....
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Main results - Informally
3. Random packing instances: Sparse cutting-planes are bad.

Used commonly as computational test‐instances [Freville and 
Plateau 96, Chu and Beasly 98, Kaparis and Letchford 08 and 10, …]

Theorem: With probability at least ½, ݀ ܲ, ܲ  ~ ݊ 

െ 1 , 

for ݇  ݊/2.

Hard packing IPs

	

Obs 1: Almost matches upper bound: as bad as it gets

Obs 2: Still have distance ܱሺ ݊ሻ even with sparsity Ωሺ݊ሻ

ܣ ݔ	 	ܾ
[0, …, M] 
uniform 

distribution

ݏ݄݈	݂	݉ݑݏ
2

ݔ ∈ 0,1 

Our results

݀ ܲ, ܲ݀ ܲ, ܲ݀ ܲ, ܲ

Our results

• Upper bounds on ݀ሺܲ, ܲሻ for polytopes in  0,1 	
• Matching lower bound: a random 0/1 polytope, with prob¼ 
• Hard packing IPs: sparse cuts are bad

݇ (density)

4 k -sparse cutting-planes for extended formulation + projection to
original space is significantly stronger than k -sparse
cutting-planes for original polytope.
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Upper Bound

Theorem 1 [Upper Bound on d(P,Pk )]
Let n ≥ 2. Let P ⊆ [0, 1]n be the convex hull of points {p1, . . . , pt}.
Then

1. d(P,Pk ) ≤ 4 max
{

n1/4
√

k

√
8 maxi∈[t] ‖pi‖

√
log 4tn, 8

√
n

3k log 4tn
}

2. d(P,Pk ) ≤ 2
√

n
( n

k − 1
)
. �

݀ ܲ, ܲ݀ ܲ, ܲ

݇ (density)݇ (density)

݀ ܲ, ܲ

݇ (density)

ൎ



.ሺܗܔ ܜܚ܍ܞ# ࡼ ሻ			

Our results

• Upper bounds on ݀ሺܲ, ܲሻ for polytopes in  0,1 	
• Matching lower bound: a random 0/1 polytope, with prob¼ 
• Hard packing IPs: sparse cuts are bad
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Proof Outline

To show: d(P,Pk ) ≤ 2λ ,
√

n√
k

√
log(n × number of vertices).

1. Let u ∈ Rn such that distance between u and P greater than 2λ.

2. How to obtain a k -sparse inequality to separate u?
3. Start with valid inequality d>x ≤ b of P; d is unit norm such that

3.1 2λd = (u − v); v is the closest point to u in P.

4. Let α = k/(2
√

n). Randomly “sparsify” d to a vector D:
α|di | ≤ 1 α|di | > 1

Di =

{ sign(di )
α

with probabilityα|di |
0 with probability1− α|di |

Di = di

5. With probability > 0, D is k -sparse, D>x ≤ (D>v + λ) is valid for
P, and D>u > (D>v + λ).
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1. Let u ∈ Rn such that distance between u and P greater than 2λ.

Upper bound

• Show: ݀ ܲ, ܲ ൏ 


݈݃ ݊. ݐݎ݁ݒ# ܲ ൌ ߣ2

• Start with ݀ of norm 1 st ݀ܲ  ܾ െ ߣ and ݀ݑ  ܾ  ߣ

• Randomly round ݀ to vector ܦ: scaling ߙ ൌ 
ଶ 

	

• Show: with non‐zero prob. ܦ is ݇‐sparse, ܲܦ  ܾ and ݑܦ  ܾ

ݑ

ࡼ

ߣ2

݇‐sparse cut

2. How to obtain a k -sparse inequality to separate u?

3. Start with valid inequality d>x ≤ b of P; d is unit norm such that
3.1 2λd = (u − v); v is the closest point to u in P.

4. Let α = k/(2
√

n). Randomly “sparsify” d to a vector D:
α|di | ≤ 1 α|di | > 1

Di =

{ sign(di )
α

with probabilityα|di |
0 with probability1− α|di |

Di = di

5. With probability > 0, D is k -sparse, D>x ≤ (D>v + λ) is valid for
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To show: d(P,Pk ) ≤ 2λ ,
√

n√
k

√
log(n × number of vertices).

1. Let u ∈ Rn such that distance between u and P greater than 2λ.

2. How to obtain a k -sparse inequality to separate u?
3. Start with valid inequality d>x ≤ b of P; d is unit norm such that

3.1 2λd = (u − v); v is the closest point to u in P.

4. Let α = k/(2
√

n). Randomly “sparsify” d to a vector D:
α|di | ≤ 1 α|di | > 1

Di =

{ sign(di )
α

with probabilityα|di |
0 with probability1− α|di |

Di = di

5. With probability > 0, D is k -sparse, D>x ≤ (D>v + λ) is valid for
P, and D>u > (D>v + λ).

35



How Good Are Sparse
Cutting Planes?

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines
Upper Bound

Lower Bound

Hard Packing Instances

Sparse Cutting Planes and
Exended Formulations

Proof Outline

To show: d(P,Pk ) ≤ 2λ ,
√

n√
k

√
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2. How to obtain a k -sparse inequality to separate u?
3. Start with valid inequality d>x ≤ b of P; d is unit norm such that

3.1 2λd = (u − v); v is the closest point to u in P.

Upper bound

• Show: ݀ ܲ, ܲ ൏ 


݈݃ ݊. ݐݎ݁ݒ# ܲ ൌ ߣ2

• Start with ݀ܲ  ܾ െ ߣ and ݀ݑ  ܾ  ݀ ;ߣ of unit norm 

• Randomly “round” ݀ to vector ܦ: scaling ߙ ൌ 
ଶ 

	

• Show: with non‐zero prob. ܦ is ݇‐sparse, ܲܦ  ܾ and ݑܦ  ܾ

ݑ

ࡼ ݀

ܦ ൌ ቐ
݀
ߙ 										wp		݀ߙ
1		ݓ					0 െ ݀ߙ

ଵ
ఈ
	 with prob ݀ߙ

0 with prob 1 െ ݀ߙ

ܦ

4. Let α = k/(2
√

n). Randomly “sparsify” d to a vector D:
α|di | ≤ 1 α|di | > 1

Di =

{ sign(di )
α

with probabilityα|di |
0 with probability1− α|di |

Di = di

5. With probability > 0, D is k -sparse, D>x ≤ (D>v + λ) is valid for
P, and D>u > (D>v + λ).
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n). Randomly “sparsify” d to a vector D:
α|di | ≤ 1 α|di | > 1

Di =

{ sign(di )
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α|di | ≤ 1 α|di | > 1
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{ sign(di )
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Upper Bound: "Sparsity of random vectors"

Claim: With high probability D is k -sparse.

Proof

1. E [# of non-zero components of D] =
∑n

i=1 αdi ≤ k/2.

2. Std [# of non-zero components of D] ≤
√

k/2

3. # of non-zero components of D . k/2 +
√

k/2

P(# of non-zero components of D ≤ k) ≥︸︷︷︸
Bernstein’s Inequality

1− 1
4n
.
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Upper Bound: "Sparsity of random vectors"

Claim: With high probability D is k -sparse.

Proof
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√

k/2
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Upper Bound: "Sparsity of random vectors"

Claim: With high probability D is k -sparse.

Proof

1. E [# of non-zero components of D] =
∑n

i=1 αdi ≤ k/2.

2. Std [# of non-zero components of D] ≤
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k/2

3. # of non-zero components of D . k/2 +
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P(# of non-zero components of D ≤ k) ≥︸︷︷︸
Bernstein’s Inequality

1− 1
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Upper Bound: "Validity of random inequality"

Observation
Let w ∈ Rn. Then E(D>w) = d>w , Var(D>w) = 1

α

∑n
i=1 w2

i |di |.

Claim: With high probability D>x ≤ (D>v + λ) is a valid inequality for P.

Proof
1. Fix a vertex p of P.

2. E [D>(p − v)] = d>(p − v) ≤ 0.

3. Std [D>(p − v)] ≤ λ√
log(n× number of vertices)

4. P
(

D>p > D>v + λ
)
≤ P

(
D>(p − v) > E [D>(p − v)] + λ

)
≤

1
4n× number of vertices .

5. Probability that atleast one vertex does not satisfy D>x ≤ D>(v + λ)

≤
(

1
4n× number of vertices × number of vertices

)
. (Union Bound)

P
(

D>x ≤ (D>v + λ) is a valid inequality
)
≥ 1−

1
4n
.
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Upper Bound: "Validity of random inequality"

Observation
Let w ∈ Rn. Then E(D>w) = d>w , Var(D>w) = 1

α

∑n
i=1 w2

i |di |.

Claim: With high probability D>x ≤ (D>v + λ) is a valid inequality for P.

Proof
1. Fix a vertex p of P.

2. E [D>(p − v)] = d>(p − v) ≤ 0.

3. Std [D>(p − v)] ≤ λ√
log(n× number of vertices)

4. P
(

D>p > D>v + λ
)
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(
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)
≤

1
4n× number of vertices .

5. Probability that atleast one vertex does not satisfy D>x ≤ D>(v + λ)

≤
(

1
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)
. (Union Bound)

P
(

D>x ≤ (D>v + λ) is a valid inequality
)
≥ 1−

1
4n
.
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Observation
Let w ∈ Rn. Then E(D>w) = d>w , Var(D>w) = 1
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Claim: With high probability D>x ≤ (D>v + λ) is a valid inequality for P.

Proof
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Upper Bound: "Validity of random inequality"

Observation
Let w ∈ Rn. Then E(D>w) = d>w , Var(D>w) = 1

α
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i |di |.

Claim: With high probability D>x ≤ (D>v + λ) is a valid inequality for P.

Proof
1. Fix a vertex p of P.

2. E [D>(p − v)] = d>(p − v) ≤ 0.

3. Std [D>(p − v)] ≤ λ√
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4. P
(
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)
≤ P

(
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)
≤

1
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5. Probability that atleast one vertex does not satisfy D>x ≤ D>(v + λ)

≤
(

1
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)
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P
(
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1
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Upper Bound: "Validity of random inequality"

Observation
Let w ∈ Rn. Then E(D>w) = d>w , Var(D>w) = 1
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i |di |.

Claim: With high probability D>x ≤ (D>v + λ) is a valid inequality for P.

Proof
1. Fix a vertex p of P.

2. E [D>(p − v)] = d>(p − v) ≤ 0.

3. Std [D>(p − v)] ≤ λ√
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4. P
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D>p > D>v + λ
)
≤ P

(
D>(p − v) > E [D>(p − v)] + λ

)
≤

1
4n× number of vertices .

5. Probability that atleast one vertex does not satisfy D>x ≤ D>(v + λ)

≤
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1
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)
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(
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)
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Upper Bound: "Validity of random inequality"

Observation
Let w ∈ Rn. Then E(D>w) = d>w , Var(D>w) = 1

α

∑n
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i |di |.

Claim: With high probability D>x ≤ (D>v + λ) is a valid inequality for P.

Proof
1. Fix a vertex p of P.

2. E [D>(p − v)] = d>(p − v) ≤ 0.
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4. P
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)
≤
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Upper Bound: "Separation of u"

Obs: For every ݒ, E ݒܦ ൌ Var  ;ݒ݀ ݒܦ ൌ ଵ
ఈ
∑ ଶ|݀|ݒ

Claim 1: With high probability ܦ is k‐sparse

Claim 2: With high probability ܲܦ  ܾ

Claim 3: With probability 1/2n, ݑܦ  ܾ

Upper bound

• ݑሺܦ െ ሻݒ ൌ ݑܦ ሻ, so݀ߣሺ2ܦ ൌ ݀ܦߣ2  ݒܦ
• E ݒܦ ൌ ݒ݀ ൌ ܾ െ ,ߣ so ݑܦ ൎ ݀ܦߣ2  ܾ െ ߣ
• Show: with prob ݀ܦߣ2 ,1/2݊  ߣ ≡ ࢊࡰ  /
• Eሾ݀ܦሿ ൌ ݀݀ ൌ 1

• ݀ܦ  ∑ ଵ
ఈ
݀ଶ  ݊

• ݀ܦ  1/2 with prob 1/2݊ (Markov’s ineq to ݊ െ  (݀ܦ

ݑ

ࡼ

ݔ݀ ൌ ܾ

ݒ ߣ2

݀

P
(

D>u > (D>v + λ)
)

= P
(

D>(u − v) > λ)
)

= P
(

D>(2λd) > λ)
)

= P
(

D>d > 1/2)
)

Claim: With probability at least 1
2n−1 , D>d > 1/2.

Proof

1. E [D>d ] = 1.

2. D>d ≤ n

3. With probability at least 1
2n−1 , D>d > 1/2. (Using Markov’s

inequality on the random variable n − D>d)
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= P
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)
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3. With probability at least 1
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Upper Bound: Putting it all together

1. With probability at most 1
4n , the inequality is not k -sparse.

2. With probability at most 1
4n , the inequality is not valid.

3. With probability at most 1 - 1
2n−1 , the inequality is does not

separate u.

With probablity at most 1− 1
(2n−1)(2n) , the inequality is either not

k -sparse, not valid or does not separate u.

⇒ With probablity at least 1
(2n−1)(2n) > 0, the inequality is

k -sparse, valid inequality and separates u.
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Upper Bound: Putting it all together

1. With probability at most 1
4n , the inequality is not k -sparse.

2. With probability at most 1
4n , the inequality is not valid.

3. With probability at most 1 - 1
2n−1 , the inequality is does not

separate u.

With probablity at most 1− 1
(2n−1)(2n) , the inequality is either not

k -sparse, not valid or does not separate u.

⇒ With probablity at least 1
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Lower Bound

Theorem 2 [‘Matching’ Lower Bound on d(P,Pk )]
Let k , t , n ∈ Z+ satisfy

1. 64 ≤ k ≤ n

2. (0.5k2 log n + 2k + 1)2 ≤ t ≤ en.

Let X 1,X 2, . . . ,X t be independent uniformly random points in {0, 1}n

and let P = conv(X 1,X 2, . . . ,X t). Then with probability at least 1/4
we have that

d(P,Pk ) ≥ min

{√
n√
k

√
log t

110
√

log n
,

√
n

8

}(
1
2
− 1

k3/2

)
−3
√

log t . �

Upper bound ≈
√

n√
k

√
log(n × t).
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Lower Bound
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Let X 1,X 2, . . . ,X t be independent uniformly random points in {0, 1}n

and let P = conv(X 1,X 2, . . . ,X t). Then with probability at least 1/4
we have that

d(P,Pk ) ≥ min

{√
n√
k

√
log t

110
√
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√
n

8

}(
1
2
− 1

k3/2

)
−3
√

log t . �

Upper bound ≈
√

n√
k

√
log(n × t).

54



How Good Are Sparse
Cutting Planes?

Dey, Molinaro, Wang

Motivation

Setting up the problem

Some Examples

Main Results

Proof Outlines
Upper Bound

Lower Bound

Hard Packing Instances

Sparse Cutting Planes and
Exended Formulations

Lower Bound: Proof Outline

We show that there are points in Pk far from P.

1. With high probability the inequality
∑n

i=1 xi ≤ n
2 + 3

√
nlogt is

valid for P.

2. With high propobablity if the inequality a>x ≤ b is valid for Pk

then b ≥
(

1 +

√
logt

110
√

k
√

logn

(
1− 1

k2

)) ∑n
i=1 ai
2 − ||a||∞2k2

2.1 New anti-concentration inequality (approx):
P
(

ax ≥ E [ax ] + γ
|a|1√

n

)
≥ e−γ

2

2.2 If c>x ≤ f is a facet-defining inequality of a 0/1 polytope in Rk , then
||c||∞ ≤ kk/2.
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√
logt
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Lower Bound: Proof Outline
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Hard Packing Instances

Used commonly as computational test‐instances [Freville and 
Plateau 96, Chu and Beasly 98, Kaparis and Letchford 08 and 10, …]

Theorem: With probability at least ½, ݀ ܲ, ܲ  ~ ݊ 

െ 1 , 

for ݇  ݊/2.

Hard packing IPs

	

Obs 1: Almost matches upper bound: as bad as it gets

Obs 2: Still have distance ܱሺ ݊ሻ even with sparsity Ωሺ݊ሻ

ܣ ݔ	 	ܾ
[0, …, M] 
uniform 

distribution

ݏ݄݈	݂	݉ݑݏ
2

ݔ ∈ 0,1 

Theorem 3
Consider n,m,M ∈ N such that n ≥ 50 and 8 log 8n ≤ m ≤ n. Then
with probability at least 1/2,
d(P,Pk ) ≥

√
n

2

(
2

max{α,1} (1− ε)
2 − (1 + ε′)

)
, where c = k/n and

1
α

=
M

2(M + 1)

[
n − 2

√
n log 8m

c((2− c)n + 1) + 2
√

10cnm

]
, ε =

24
√

log 4n2m√
n

,

ε′ =
3
√

log 8n
√

m − 2
√

log 8n
. �

∼With probabily 1/2, d(P,Pk ) &
√

n
( n

k − 1
)

for k ≥ n/2.
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Sparse cutting-planes and extended formulations

Let projx : Rn × Rm → Rn denote the projection operator onto the first
n coordinates.

Proposition
Consider a polyhedron P ⊆ Rn and an extended formulation
Q ⊆ Rn × Rm for it. Then projx(Q

k ) ⊆ (projx(Q))k = Pk .

Proposition
Consider n ∈ N and assume it is a power of 2. Then there is a
polytope P ⊆ Rn such that:

1. d(P,Pk ) =
√

n/2 for all k ≤ n/2.

2. There is an extended formulation Q ⊆ Rn × R2n−1 of P such that
projx(Q

3) = P.
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Extended Formulation

Original Polytope:
P = {x ∈ [0 1]n |

∑n
i=1 xi ≤ n/2}

ݎݕ <= 1

1ݕ 2ݕ

3ݕ 4ݕ 5ݕ 6ݕ

	1ݕ rݕ  =	2ݕ +

15ݕ 3ݕ2ݕ  =	6ݕ + 1ݕ  =	4ݕ +

Extended Formulation:

yr ≤ 1

yv = yleft(v) + yright(v), ∀v ∈ int(T )

yv =
2
n

xi(v), ∀v ∈ T \ int(T ) (1)

yv ≥ 0, ∀v ∈ T

xi ∈ [0, 1], ∀i ∈ [n].
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Thank You!
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