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Motivation

Cutting-planes

Cutting Plane

1.

Cutting-planes in a linear inequality that is valid for all integer feasible
points, but may not be valid for the linear programming relaxation.

The convex hull of integer feasible solutions is a rational polyhedron, so a
finite number of cutting-planes gives the convex hull.

Huge amount of research in Integer Programming on
problem-specific and general purpose cutting-planes.

. Justified by (or more importantly?) being extremely useful in

practice to solve IPs.
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In practice

Motivation

1. Prefer to use sparse cutting planes.

a X< b

t

at most k non-zero entries

2. Why use sparse cutting-planes:
Pros: It is easy to solve LPs in B&B tree with sparse
cutting-planes.
Cons: Sparse cutting planes do not give the convex hull.

How good are sparse cutting-planes?
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Cuting Planes? Geometric Problem

Dey, Molinaro, Wang

Considered abstractly

1. Instead of considering a general polytope, we have a polytope
P=RT P C [0 1]", which represents the integer hull.

2. P¥: The set of points that are valid for all k-sparse inequalities.

Setting up the problem

How well does P* approximate P?

We wanted a measure that is well-defined in all cases:
d(P, P) = max, o« {distance(x, P)}

Comments:
1. At most v/n.

2. Upper bound on dept of cut measure.
109
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P:={xe[01]X0, x <1}
d(P, P¥) ~ ¥ This is Good!

Some Examples

ayn=10,t=11

Dimension k

24
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cutngPianes  EXample 1: "Two phase”
Dey, Molinaro, Wang
P={xe[01]XL, x <2}
Phase 1: d(P, P¥) ~ \/n/2 This is Bad!
Seme Examples Phase 2: d(P, P¥) ~ "y"

b) n =10, t = 252

1 5 10
Dimension k

29



Pamgraness . Example 1: "Three phases"
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P := convex hull of random 0/1 points
Phase 1: d(P, P¥) ~ /n/2
Some Examples Phase 2: d(P/ Pk) X ﬁ

Phase 3: d(P, P*) « 1

c)n=10,t=150

3 6
~
£ 7 X
o2 A 4%
S \ o
5 / \ S
c / .
! ‘2B
= \ o
o \ =
S
\ —

0 0

1 5 10

Dimension k

bk
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1. Upper bounds on d(P, P") depending on n, k, and number of
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Main Results

d(p,P¥) ‘/—— ~ ﬁ\/log(n. #vert(P))

vk
\/—\ Zﬁ(%_l)

k (density)

Consequences

25
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1. Upper bounds on d(P, P") depending on n, k, and number of
vertices.
2. Matching lower bound: a random 0/1 polytope, with prob §

Main Results

/—— ~ %«/ log(n. #vert(P))

d(p,P*)

Zﬁ(%*l)

k (density)

Consequences

1. Polynomial number of vertices as a function of dimension with
~ 1 sparsity, implies d(P, P¥) is very small (~ /logn), i.e.
sparse cutting planes are good.

27



Futngpencer . Main results - Informally

Cutting Planes?

Dey, Molinaro, Wang

1. Upper bounds on d(P, P¥) depending on n, k, and number of
vertices.
2. Matching lower bound: a random 0/1 polytope, with prob §

Main Results

/—— ~ j—%«/ log(n. #vert(P))

d(p,P*)
/—\ 24n (% . 1)
k (density)
Consequences

1. Polynomial number of vertices as a function of dimension with
~ 1 sparsity, implies d(P, P¥) is very small (~ /logn), i.e.
sparse cutting planes are good.

2. As the number of vertices grow, the location of vertices becomes
more important....

o8
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Motivation

Setting up the problem
Some Examples

Main Results

Proof Outlines

Main results - Informally
3. Random packing instances: Sparse cutting-planes are bad.

Hard packing IPs

sum of lhs
umform
distribution

x € {0,1}"

d(p,P¥)

k (density)

29



g paes . Main results - Informally

Dey, Molinaro, Wang

Main Results

3. Random packing instances: Sparse cutting-planes are bad.

4 k-sparse cutting-planes for extended formulation + projection to
original space is significantly stronger than k-sparse
cutting-planes for original polytope.

20
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Upper Bound

Lower Bound

Hard Packing Instances
Sparse Cutting Planes and
Exended Formulations

Upper Bound

Theorem 1 [Upper Bound on d(P, P¥)]
Let n > 2. Let P C [0, 1]" be the convex hull of points {p',...,p'}.

Then
1. d(P,P*) < 4max{

\/8 max;c

2. d(P,PX)<2yn(2—-1).

d(p,P¥)

N

m 1ol

§|<|

Vlog4in, &/ log 4tn}

‘/ log(n. #vert(P))

k (density)

O



Proof Outline

To show: d(P, P*) < 2) £ 7 /log(n » number of vertices).

kil

«O0>» «Fr «E» «

nae
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Proof Outline

To show: d(P, P¥) <2\ 2 % v/log(n x number of vertices).
1. Let u € R" such that distance between u and P greater than 2.

u
22

4~ k-sparse cut

2. How to obtain a k-sparse inequality to separate u?

24
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To show: d(P, P¥) < 2X\ £ 7 /log(n » number of vertices).
1. Let u € R" such that distance between u and P greater than 2.

2. How to obtain a k-sparse inequality to separate u?

P 3. Start with valid inequality d " x < b of P; d is unit norm such that
3.1 2Xd = (u — v); v is the closest point to v in P.
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To show: d(P, P¥) <2\ 2
1. Let u € R" such that distance between u and P greater than 2.

2. How to obtain a k-sparse inequality to separate u?
U] 3. Start with valid inequality d" x < b of P; d is unit norm such that
3.1 2X\d = (u — v); v is the closest point to v in P.

U

D
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aldi] <1 ald] > 1
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To show: d(P, P¥) < 2) 2

1.

Upper Bound 3

Let u € R" such that distance between u and P greater than 2.

How to obtain a k-sparse inequality to separate u?

. Start with valid inequality d" x < b of P; d is unit norm such that

3.1 2X\d = (u — v); v is the closest point to v in P.

U

D
Let Randomly “sparsify” d to a vector D:
aldi] <1 aldi| > 1
SGa) i ii .
D = - w!th probab!l!tya|d,| D = d
0 with probability! — «|d;|

. With probability > 0, D is k-sparse, D"x < (DTV + A) is valid for

P,and D"u > (D"v+ ).

9



Pamereness . Upper Bound: "Sparsity of random vectors"

Dey, Molinaro, Wang

Claim: With high probability D is k-sparse.
et Proof

Lower Bound

1. E[# of non-zero components of D] = 37, ad; < k/2.

20
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Dey, Molinaro, Wang

Claim: With high probability D is k-sparse.

Upper Bound Proof

Lower Bound

e 1. E[# of non-zero components of D] = 37, ad; < k/2.
Sparse Cutting Planes an -

Exended Formulations

2. Std[# of non-zero components of D] < \/k/2

40
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cungPaness - Upper Bound: "Sparsity of random vectors”

Dey, Molinaro, Wang

Claim: With high probability D is k-sparse.

Upper Bound Proof

Lower Bound

e 1. E[# of non-zero components of D] = 37, ad; < k/2.
Sparse Cutting Planes an =

Exended Formulations

2. Std[# of non-zero components of D] < \/k/2
3. # of non-zero components of D < k/2 + \/k/2

a1



Pamereness . Upper Bound: "Sparsity of random vectors"

Dey, Molinaro, Wang

Claim: With high probability D is k-sparse.
et Proof

Lower Bound

1. E[# of non-zero components of D] = 37, ad; < k/2.
2. Std[# of non-zero components of D] < \/k/2
3. # of non-zero components of D < k/2 + \/k/2

P(# of non-zero components of D < k) > 1— l.
~ 4n

Bernstein’s Inequality

42



Pamerenees . Upper Bound: "Validity of random inequality”

Dey, Molinaro, Wang

Observation
Letw € R™. Then E(DTw) = dTw, Var(DTw) = 1 -7 w?|d]].

Upper Bound
Lower Bound

43
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Observation
Letw € R™. Then E(DTw) = dTw, Var(DTw) = 1 -7 w?|d]].

Claim: With high probability DT x < (DT v + ) is a valid inequality for P.
Upper Bound P roof

1. Fix a vertex p of P.

44
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cutngPianesz  Upper Bound: "Validity of random inequality"

Dey, Molinaro, Wang

Observation
Letw € R™. Then E(DTw) = dTw, Var(DTw) = 1 -7 w?|d]].

Claim: With high probability DT x < (DT v + ) is a valid inequality for P.

Upper Bound P roof

Bound

1. Fix a vertex p of P.
2. E[DT(p-v)]=d"(p—v)<O.
3. Std[DT (p— V)] < A

/log(nx number of vertices)

45
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cutngPianesz  Upper Bound: "Validity of random inequality"

Dey, Molinaro, Wang

Observation
Letw € R™. Then E(DTw) = dTw, Var(DTw) = 1 -7 w?|d]].
Claim: With high probability DT x < (DT v + ) is a valid inequality for P.
Urper Bound Proof
1. Fix a vertex p of P.
2. E[DT(p-v)]=d"(p—v)<O.
3. Std[DT(p—v)] < A

/log(nx number of vertices)

4. P(DTp>DTv+2) <P(DT(p—v) > EIDT (p— V)] + 1) <
1

4nx number of vertices *

46
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Observation
Letw € R™. Then E(DTw) = dTw, Var(DTw) = 1 -7 w?|d]].
Claim: With high probability DT x < (DT v + ) is a valid inequality for P.
Urper Bound Proof
1. Fix a vertex p of P.
2. E[DT(p-v)]=d"(p—v)<O.
3. Std[DT(p—v)] < A

/log(nx number of vertices)

4. P(DTp>DTv+2) <P(DT(p—v) > EIDT (p— V)] + 1) <
1
4nx number of vertices *

5. Probability that atleast one vertex does not satisfy DT x < DT (v + ))

1 n .
< (m X number of vertlces) . (Union Bound)

a7
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cutngPianesz  Upper Bound: "Validity of random inequality"

Dey, Molinaro, Wang

Observation
Letw € R™. Then E(DTw) = dTw, Var(DTw) = 1 -7 w?|d]].
Claim: With high probability DT x < (DT v + ) is a valid inequality for P.
Urper Bound Proof
1. Fix a vertex p of P.
2. E[DT(p-v)]=d"(p—v)<O.
3. Std[DT(p—v)] < A

/log(nx number of vertices)

4. P(DTp>DTv+2) <P(DT(p—v) > EIDT (p— V)] + 1) <
1
4nx number of vertices *

5. Probability that atleast one vertex does not satisfy DT x < DT (v + ))

1 . .
< (m X number of vertlces) . (Union Bound)

P<DTX < (DTv+ ) is avalid inequality) >1- #

48
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dx=b

Upper Bound

P(DTu>(DTv+A)) = P(DT(u—v)>A))

P(DT(Z)\d) > )\))

P(DTd > 1/2))
Claim: With probability at least 5., D"d > 1/2.
Proof

1. E[D"d] =1.
2.D'd<n

49
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cutngPness - Upper Bound: "Separation of u"

Dey, Molinaro, Wang

Upper Bound

P(DTu>(DTv+A)) = P(DT(u—v)>A))
- P(DT(zAd)>A))

P(DTd > 1/2))

Claim: With probability at least 5., D" d > 1/2.

Proof
1. E[D"d] =1.
2.D'd<n
3. With probability at least -, D" d > 1/2. (Using Markov's

inequality on the random variable n — D" d)

50
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1
4n?
al
4n?
3. With probability at most 1 -

separate u.

1. With probability at most -, the inequality is not k-sparse.

Upper Bound 2. With probability at most .-, the inequality is not valid.

1

557 the inequality is does not

Rq
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cutngpianesz  Upper Bound: Putting it all together

Dey, Molinaro, Wang

1. With probability at most ! 4n, the inequality is not k-sparse.
et 2. With probability at most -, the inequality is not valid.

3. With probability at most 1 -
separate u.

5-—, the inequality is does not

With probablity at most 1 — m, the inequality is either not
k-sparse, not valid or does not separate u.

= With probablity at least m > 0, the inequality is
k-sparse, valid inequality and separates u.

5O
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Theorem 2 [‘Matching’ Lower Bound on d(P, P¥)]
Let k, t,n € Z, satisfy
1.64<k<n
2. (0.5K%logn+2k+1)> <t<e"

Let X', X?,..., X' be independent uniformly random points in {0, 1}"
and let P = conv(X', X2,..., X"). Then with probability at least 1/4
we have that

K vn log \f
(PP>>mm{meW }(—k/) “3ylgt. O

%]
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Gutting Planes? Lower Bound

Dey, Molinaro, Wang

Theorem 2 [‘Matching’ Lower Bound on d(P, P¥)]
Let k, t,n € Z, satisfy
1.64<k<n
2. (0.5K?logn+2k+ 12 <t<e"

Let X', X?,..., X' be independent uniformly random points in {0, 1}"
and let P = conv(X', X2,..., X"). Then with probability at least 1/4
we have that

p vn_ \/logt /n
(PP)>mm{f11O\/@ }(‘;@/z) -3y/logt. O

Upper bound =~ %\/Iog(n x 1).
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We show that there are points in P* far from P.

1. With high probability the inequality 3", x; < 2 + 3,/nlogt is
valid for P.

Lower Bound

RE
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Cutting Planes? Lower Bound: Proof Outline
Dey, Molinaro, Wang

We show that there are points in P* far from P.

1. With high probability the inequality 3", x; < 2 + 3,/nlogt is
valid for P.
2. With high propobablity if the inequality a' x < b is valid for P

then b > (1 b Vst g i)) Ziad e

110vk+ /logn k2 2 2k?

113



How Good Are Sparse

Cuting Planes? Lower Bound: Proof Outline

Dey, Molinaro, Wang

We show that there are points in P* far from P.
1. With high probability the inequality 3", x; < 2 + 3,/nlogt is

valid for P.
2. With high propobablity if the inequality a' x < b is valid for P
gt _ 1 Xiaa lalle
Lower Bound then b > (1 + TN (1 kZ) 21 aL
\/logt

3. The point ~ (§ + )e belongs to P

vk



Mo e pieners ™" Lower Bound: Proof Outline

Dey, Molinaro, Wang

We show that there are points in P* far from P.

1.

2.

Lower Bound

With high probability the inequality >°7 , x; < 4 4+ 3/nlogt is
valid for P.
With high propobability if the inequality a' x < b is valid for P

then b > (1 N VAL \/'OQLU _ ﬁ)) 2121 a :k\z\

110vk+ /logn

The point ~ (1 + \/E)e belongs to P¥

2
The point ~ (})e is closest point to above point in P. =

Y
N

d(P, P¥) ~ logt

g8
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Cuting Planes? Lower Bound: Proof Outline

Dey, Molinaro, Wang

We show that there are points in P* far from P.

1.

2.

Lower Bound

With high probability the inequality >°7 , x; < 4 4+ 3/nlogt is
valid for P.
With high propobability if the inequality a' x < b is valid for P

then b > (1+ﬂt7<1 ,7)> SLia llalle

110vk+ /logn k2 2 2k?
2.1 New anti-concentration inequality (approx):
lal —
P(aX> Elax] +~ f> >e

2.2 If ¢Tx < fis a facet-defining inequality of a 0/1 polytope in R¥, then
llelloo < kK72,

The point ~ (§ + V\'/(ig )e belongs to P

The point ~ (})e is closest point to above point in P. =

d(P, P¥) ~ ? logt

e}
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Hard Packing Instances

Hard packing IPs

©, ... M] sum of lhs
uniform 2
distribution

x €{0,1}"
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Upper Bound

Lower Bound

Hard Packing Instances
Sparse Cutting Planes and
Exended Formulations

Hard Packing Instances

unlform
distribution

Theorem 3

Consider n,m, M € N such that n > 50 and 8log8n < m < n. Then
with probability at least 1/2,

d(P.P*) = 4 (

1

[0}

M

2
max{a,1} (1-

Hard packing IPs

x €{0,1}"

n—2,/nlog8m

T 2(M+1)

c((2—c)n+1)+2V10cnm

’

3y/log8n
- Vm—-2,/log8n’

A1

-I I'\ . “f )

], -

0

e —(1+ e’)) , Where ¢ = k/n and

24./log4nmm

Vvn

I
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Upper Bound

Lower Bound

Hard Packing Instances
Sparse Cutting Planes and
Exended Formulations

Hard Packing Instances

Hard packing IPs

sum (1/‘ lhs
unlform
distribution

x €{0,1}"

Theorem 3

Consider n,m, M € N such that n > 50 and 8log8n < m < n. Then

with probability at least 1/2,

d(P,P*) > ¥ (ligy (1= € = (14 ¢)) , where ¢ = k/n and

1w - 2./mogem _ 24/lga
a  2(M+1) | ¢((2-c)n+1)+2V/T0cnm |’ Vvn

J 3./log8n
B —2,/log8n’

~ With probabily 1/2, d(P, P*) > v/n (% —

B2

0

1) for k > n/2.

I
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cungPaness  Sparse cutting-planes and extended formulations
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Let proj, : R” x R™ — R" denote the projection operator onto the first

n coordinates.

Proposition

Consider a polyhedron P C R" and an extended formulation
gaseaungparesans Q) C R" x R™ for it. Then proj, (QF) C (proj,(Q))* = P.

Proposition

Consider n € N and assume it is a power of 2. Then there is a
po/ytope P C R" such that:

d(P,P*) = \/nj2 for all k < n/2.

2. Thereis an extended formulation Q C R" x R®"~" of P such that
proj,(Q°%) =

B3
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Original Polytope:
P={xel01]"| 7, x < n/2}

yr<=1
SO " @ Ya Yi+Y2= Yy
e &
Exended Formulations 4 \
Y3+ ¥a= V1 () Yis+ Vo= ¥z
V3 Va Vs Ve
Extended Formulation:
¥ < 1
W = Yeei(v) + Yiignt(v), YV € int(T)
2 .
Yo =2 Xiw), Vv e T\int(T) (1)
yw>0,vwveT

x; € [0,1], Vi € [n].

/A4



Thank You!
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