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Group Cutting Planes.



General Definition of Group Problem

F (x1, ..., xm) = (x1(mod1), ..., xm(mod1)).

Definition (Gomory and Johnson (1972a,b))
Let U be a subgroup of I2 and W be any subset of R2. For r ∈ I2 \ {0}, the group
Problem MI(U,W , r) is the set of functions x : U → Z+, y : W → R+ such that

1. ∑
u∈U

ux(u) +
∑

w∈W

F (wy(w)) = r , (1)

2. x has a finite support, i.e., x(u) > 0 for a finite subset of U.

3. y has a finite support, i.e., y(w) > 0 for a finite subset of W . �

Notation: Let f = −r(mod1). MI(U,W , r) can be equivalently written as:∑
u∈U

ux(u) +
∑

w∈W

wy(w) + f ∈ Z2.

(In R2 instead of Group Space)
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Inequalities for Infinite Group Problems

Definition (Valid Inequality, Gomory and Johnson
(1972a,b), Johnson 1974)
A pair of functions, φ : I2 → R+ and π : R2 → R+ is defined as a valid inequality for
MI(I2,R2, r) if

1. φ(0) = 0,

2. φ(r) = 1,

3.
∑

u∈I2 φ(u)x(u) +
∑

w∈R2 π(w)y(w) ≥ 1, ∀ (x , y) ∈ MI(I2,R2, r). �
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A Hierarchy of Valid Cutting Planes

Definition (Minimal Inequality, Gomory and Johnson
(1972a,b))
A function (φ, π) is defined as a minimal inequality for MI(I2,R2, r) if there exists no
valid function (φ′, π′) 6= (φ, π) such that φ′(u) ≤ φ(u) ∀u ∈ I2 and π′(w) ≤ π(w)
∀w ∈ R2. �

Definition (Extreme Inequality, Gomory and Johnson
(1972a,b))
We say that an inequality (φ, π) is extreme for MI(I2,R2, r) if there does not exist valid
inequalities (φ1, π1) 6= (φ2, π2) such that (φ, π) = 1

2 (φ1, π1) + 1
2 (φ2, π2). �
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GMIC is a Lifted Inequality Starting With Minimal
Inequalities for MI(∅,R1, r) in the One-Row Case

1. Let 0 < f < 1. First fix integer variables in MI(I1,R, r) to zeros, i.e., consider the
problem MI(∅,R, r): ∑

w∈R
wy(w) + f ∈ Z (2)

2. First generate the minimal inequality for (2)

π(w) =

{ w
1−f w > 0
−w

f otherwise
(3)

3. Next lift the integer variables into (4). There is a an unique lifting function:
Gomory Mixed Integer Cut.

φ(u) =

{
u

1−f if u < 1− f
1−u

f if u ≥ 1− f
(4)
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Minimal Inequalities for Infinite Group Problem
With Continuous Variables For Two Rows.



‘Minimal Inequality ≡ Maximal Lattice-Free Convex
Set’

[Borozan and Cornuéjols (2007), Andersen, Louveaux, Weismantel, and Wolsey
(2007)]

Definition
A set S is called a maximal lattice-free convex set in R2 if it is closed, convex, and

1. interior(S) ∩ Z2 = ∅,
2. There exists no convex set S′ satisfying (1), such that S ( S′. �

Theorem
For the system f +

∑
w∈Q2 wy(w) ∈ Z2, y(w) ≥ 0, where y has a finite support, an

inequality of the form
∑

w∈Q2 π(w)y(w) ≥ 1 is minimal, if the closure of

P(π) = {w ∈ Q2|π(w − f ) ≤ 1} (5)

is a maximal lattice-free convex set. Moreover, given a maximal lattice-free convex set
P(π) such that f ∈ interior(P(π)), the function

π(w) =

{
0 if w ∈ recession cone of P(π)
λ if f + w

λ
∈ Boundary(P(π))

(6)

is a minimal valid inequality. �
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Finding the Value of π(w)
Idea: π is positively homoge-
nous and value of π(u) = 1 if
u + f ∈ Bnd(P(π))

Given: a vector w ,

−→
f +

−→w
l1/(l1+l2)

∈ BoundaryP(π).

Therefore, π(w) = l1
l1+l2

f

f + w

l
1

l
2
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Maximal Bounded Lattice-Free Convex Sets are
Triangles and Quadrilaterals

Proposition
Let P be a maximal lattice-free set in R2 that is bounded. Then,

1. If P is a maximal lattice-free triangle in R2, then exactly one of the following is
true:

1.1 One side of P contains more than one integral point in its interior1.
1.2 All the vertices are integral and each side contains one integral point in its

interior.
1.3 The vertices are non-integral and each side contains one integral point in

its interior.

2. If P is a lattice-free quadrilateral, then each of its sides contains exactly one
integral point in its interior. �

1Interior implies Relative Interior
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Example: One Side of Triangle has Multiple Integral
Points.
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Example: Triangle Whose Vertices are Integral and
Each Side Contains One Integral Point in Its Interior.
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Example: Triangle Whose Vertices are Non-Integral
and Each Side Contains One Integral Point in Its
Interior.
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Example: Quadrilateral.
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Lifting integer variables in the minimal
inequalities for continuous variables in the

two-rows case.



Fill-in Procedure ≡ Lifting Integer Variables

Modified from Gomory and Johnson (1972), Johnson (1974).

Definition (Fill-in Procedure)
I Let π be a inequality for MI(∅,R2, r).

I Let G be any subgroup of I2. Let (V , π) be a valid subadditive function for
MI(G,R2, r).

I For example: Let u1 ∈ G and we want to lift x(u1) in the inequality π. We
solve the problem:

V (u1) = supz∈Z+,z≥1{
1− π(w)

z
|u1z + w − r ∈ Z2} (7)

I Define function φG,V : I2 → R+ as follows:

φG,V (u) = infv∈G,w∈R2 {V (v) + π(w) | v + w ≡ u} . (8)
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Example of Fill-in Procedure in One Dimension
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π is a valid inequality for the continuous group
problem with r = 0.6
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V(0) = 0, V(0.2) = 0.75, V(0.4) = 0.25, V(0.6) = 1,
V(0.8) = 0.5

(V, π) is a valid inequality for MI(G,R
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1
, R
1
, 0.6)

V

G

φ
G,V

I
1

22



The Strength Of Fill-in Function Depends On The
Choice of G,V
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Deriving GMIC As A Fill-in Function: G Is The Trivial
Subgroup
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π is a minimal valid inequality for the
continuous group problem.

G is the trivial subgroup:

G = {0}
V(0) = 0

(φ
{0}, {0}

, π) is the Gomory Mixed Integer Cut
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Strength of Fill-in Inequalities: ‘For what choice
of G and V do we get strong inequalities for

MI(I2,R2, r)?’



Towards a Framework to Analyze Strength of Fill-in
Procedure: D(π).

ff D(π)

Integral point in the
relative interior
of on side

b

g h
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‘Strength’ of Fill-in function With Trivial Subgroup
Depends on ‘Area’ of D(π)

Key Idea: Given u ∈ I2, if ∃ w ∈ D(π) such that F (w) = u then φ{0},{0}(u) is the best
possible coefficient corresponding to the variable x(u).

Proposition
If π is a valid and minimal function for MI(∅,R2, r) and φG,V (u) + φG,V (r − u) = 1
∀u ∈ I2, then (φG,V , π) is minimal for MI(I2,R2, r). �

Proposition
Let π is a valid and minimal function for MI(∅,R2, r). The function (φ{0},{0}, π)2 is
minimal for MI(I2,R2, r) iff F (D(π)) = I2. �

2Note that φ{0},{0}(u) = infw∈R2{π(w) |w ≡ u}.
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Uniqueness and Extremity of Fill-in Functions

Lemma (Uniqueness)
Let (φG,V , π) be minimal for MI(I2,R2, r). If (φ′, π) is any valid minimal function for
MI(I2,R2, r) such that φ′(u) = V (u) ∀u ∈ G, then φ′(v) = φG,V (v) ∀v ∈ I2. �

Implications:

1. If (φ{0},{0}, π) is minimal, this is the unique minimal function: the behavior is
similar to the one-dimensional case.

2. If (φ{0},{0}, π) is not minimal, then by selecting different subgroups G, and
corresponding functions V for the subgroup, we may obtain different minimal
functions: this behavior is not seen in the one-dimensional case.

Theorem (Extremity)
Let (V , π) be minimal for MI(G,R2, r). (φG,V , π) is an extreme valid inequality for
MI(I2,R2, r) iff (V , π) is extreme for MI(G,R2, r) and (φG,V , π) is minimal for
MI(I2,R2, r).
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Families of Extreme Inequalities.



P(π) is a Triangle With Multiple Integral Points in the
Interior of One Side: F (D(π)) = I2
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P(π) is a Triangle With Integral Vertices and One
Integral Point in the Interior of Each Side: F (D(π)) = I2
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Triangle With Non-Integral Vertices and One Integral
Point in the Interior of Each Side: F (D(π)) ( I2
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Example Where P(π) is a Triangle With Non-Integral
Vertices and One Integral Point in the Interior of Each
Side
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P(π) is a Quadrilateral

Theorem
Let π correspond to maximal lattice-free quadrilateral P(π). Then (φ{0},{0}, π) is not
extreme for MI(I2,R2, r). �

Not Unique: It is not necessary that there are unique extreme functions.
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Discussion

1. Techniques for lifting integer variables into minimal inequalities for continuous
variables.

2. Lifting functions are unique for
I Triangles with multiple integer points in the interior of each side.
I Triangles with one integral point in the interior of each side, and integral

vertices.

3. Lifting functions are not unique for
I Triangles with one integral point in the interior of each side, and

non-integral vertices.
I Quadrilaterals.

4. The class of new inequalities are ‘like GMIC’ since their continuous coefficients
are strong.

Challenges:

1. Separation.

2. Closed-form of some of the inequalities [Sequential-Merge Inequalities,
Mixing....]
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Thank You.
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