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Group Cutting Planes.



General Definition of Group Problem

F(x1, ..., Xxm) = (xy(mod1), ..., xm(mod1)).

Definition (Gomory and Johnson (1972a,b))

Let U be a subgroup of /2 and W be any subset of R2. For r € /7 \ {0}, the group
Problem MI(U, W, r) is the set of functions x : U — Z4, y : W — R4 such that

1.

doux(u)+ Y Flwy(w) =r, M

uelU weW

2. x has a finite support, i.e., x(u) > 0 for a finite subset of U.
3. y has a finite support, i.e., y(w) > 0 for a finite subset of W. O



General Definition of Group Problem

F(x1, ..., Xxm) = (xy(mod1), ..., xm(mod1)).

Definition (Gomory and Johnson (1972a,b))

Let U be a subgroup of /2 and W be any subset of R2. For r € /7 \ {0}, the group
Problem MI(U, W, r) is the set of functions x : U — Z, y : W — R4 such that

1.

doux(u)+ Y Flwy(w) =r, M

uelU weW

2. x has a finite support, i.e., x(u) > 0 for a finite subset of U.
3. y has a finite support, i.e., y(w) > 0 for a finite subset of W. O

Notation: Let f = —r(mod1). MI(U, W, r) can be equivalently written as:

D ux(u)+ Y wy(w)+f ezl

uelU weWw

(In R2 instead of Group Space)



Inequalities for Infinite Group Problems

(0.1) (1.1)

©00) 1.0

Definition (Valid Inequality, Gomory and Johnson
(1972a,b), Johnson 1974)

A pair of functions, ¢ : 2 — R, and 7 : R2 — R, is defined as a valid inequality for
MI(IZ,Rz, r) if

1. #(0) =0,

2. ¢(r)=1,

3. Yyer dUX(U) + 3 yeme T(W)y(W) > 1,V (x, ) € MI(P,R?, r).



A Hierarchy of Valid Cutting Planes

Definition (Minimal Inequality, Gomory and Johnson
(1972a,b))

A function (¢, ) is defined as a minimal inequality for MI(/?,R?, r) if there exists no
valid function (¢’, 7’) # (¢, ) such that ¢’ (u) < ¢(u) Vu € P and ' (w) < 7(w)
vw € R2.

Definition (Extreme Inequality, Gomory and Johnson
(1972a,b))

We say that an inequality (¢, 7) is extreme for MI(/2,R2, r) if there does not exist valid
inequalities (¢1, 1) # (¢2, m2) such that (¢,7) = 3(¢1,m1) + 2(¢2, 72). O



GMIC is a Lifted Inequality Starting With Minimal
Inequalities for MI(, R, r) in the One-Row Case

1. Let0 < f < 1. First fix integer variables in MI(I', R, r) to zeros, i.e., consider the
problem MI(0, R, r):

> wy(w)+fez

wER

(2)
2. First generate the minimal inequality for (2)
2 w>0
_ —f
m(w) = { =% otherwise ©)

3. Next lift the integer variables into (4). There is a an unique lifting function:
Gomory Mixed Integer Cut.

£ ifu<1—f
¢(”)_{ i if5>1—f @



Minimal Inequalities for Infinite Group Problem
With Continuous Variables For Two Rows.



‘Minimal Inequality = Maximal Lattice-Free Convex
Set’

[Borozan and Cornuéjols (2007), Andersen, Louveaux, Weismantel, and Wolsey
(2007)]
Definition
A set S'is called a maximal lattice-free convex set in R? if it is closed, convex, and
1. interior(S) N Z2 = 0,
2. There exists no convex set S’ satisfying (1), such that S C S'. ]

Theorem
For the system f + 3~ c o2 Wy (W) € 72, y(w) > 0, where y has a finite support, an
inequality of the form 3~ g2 7(w)y(w) > 1 is minimal, if the closure of

P(r) = {w € Q*|m(w — f) < 1} (®)

is a maximal lattice-free convex set. Moreover, given a maximal lattice-free convex set
P(7) such that f € interior(P(7)), the function

(6)

w) — 0  ifw € recession cone of P(r)
W)= X i+ ¥ € Boundary(P(r))

is a minimal valid inequality. ]



Finding the Value of 7(w)

Idea: = is positively homoge-
nous and value of w(u) = 1 if
u+ f € Bnd(P(r))

Given: a vector w,

— —
f +m € BoundaryP(r).

Therefore, (w) = h’ﬁ




Maximal Bounded Lattice-Free Convex Sets are
Triangles and Quadrilaterals

Proposition

Let P be a maximal lattice-free set in R? that is bounded. Then,

1. If P is a maximal lattice-free triangle in R2, then exactly one of the following is

true:
1.1 One side of P contains more than one integral point in its interior' .
1.2 All the vertices are integral and each side contains one integral point in its
interior.
1.3 The vertices are non-integral and each side contains one integral point in
its interior.
2. If P is a lattice-free quadrilateral, then each of its sides contains exactly one
integral point in its interior. O

VInterior implies Relative Interior



Example: One Side of Triangle has Multiple Integral
Points.
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Example: Triangle Whose Vertices are Integral and
Each Side Contains One Integral Point in lts Interior.
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Example: Triangle Whose Vertices are Non-Integral
and Each Side Contains One Integral Point in Its
Interior.



Example: Quadrilateral.
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Lifting integer variables in the minimal
inequalities for continuous variables in the
two-rows case.



Fill-in Procedure = Lifting Integer Variables

Modified from Gomory and Johnson (1972), Johnson (1974).
Definition (Fill-in Procedure)

> Let 7 be a inequality for MI(0,R?, r).
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Fill-in Procedure = Lifting Integer Variables

Modified from Gomory and Johnson (1972), Johnson (1974).
Definition (Fill-in Procedure)

> Let 7 be a inequality for MI(0,R?, r).
> Let G be any subgroup of /2. Let (V, ) be a valid subadditive function for
MI(G, R2, r).

» For example: Let uy € G and we want to lift x(u1) in the inequality =. We
solve the problem:

m(w)

1—
V(u1):supz€Z+7221{f|u1z+wfreZZ} (7)

20



Fill-in Procedure = Lifting Integer Variables

Modified from Gomory and Johnson (1972), Johnson (1974).
Definition (Fill-in Procedure)

> Let 7 be a inequality for MI(0,R?, r).

> Let G be any subgroup of /2. Let (V, ) be a valid subadditive function for
MI(G, R2, r).

» For example: Let uy € G and we want to lift x(u1) in the inequality =. We
solve the problem:

m(w)

1—
V(u1):supz€Z+7221{f|u1z+wfrEZZ} (7)

» Define function &V : 2 — R as follows:

¢G'V(U) = infveG,we]Rz {V(v) +7m(w) |[v+w=u}. (8)
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Example of Fill-in Procedure in One Dimension

n is a valid inequality for the continuous group 4
problem with r = 0.6

G={0,0.2,0.4,0.6, 0.8} 1 o
V(0) = 0, V(0.2) = 0.75, V(0.4) = 0.25, V(0.6) = 1, o
V(0.8)= 0.5 o

\ o
(V, m) is a valid inequality for MI(G,R', 0.6) o .

0.2

02 04 06 08 1

G

4%V, m) is extreme inequality for Mi(I", R", 0.6)

05 1
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The Strength Of Fill-in Function Depends On The
Choice of G, V

Same & as before

A different choice of G and V: !

08 o
G=1{0, 1/3, 2/3} Voo
V(0) = 0, V(1/3) = 5/12, V(2/3) = 5/6 o o

Again (V, =) is a valid inequality for MI(G, R1,O.6)

0 0.3333 0.6667 1

G

((bG’V, n) is not minimal. s

29



Deriving GMIC As A Fill-in Function: G Is The Trivial
Subgroup

© is a minimal valid inequality for the 4
continuous group problem.

G is the trivial subgroup:
0.8

G={0} 0s
V(O) =0 04
0.2

;

@ © 1) is the Gomory Mixed Integer Cut o8

05 1

24



Strength of Fill-in Inequalities: ‘For what choice
of G and V do we get strong inequalities for
MI(I?,R?, r)?



Towards a Framework to Analyze Strength of Fill-in
Procedure: D(r).

Integral point in th8
relative interior
of on side

D(m)

26



‘Strength’ of Fill-in function With Trivial Subgroup
Depends on ‘Area’ of D(x)

Key Idea: Given u € 2, if 3w € D(r) such that F(w) = u then ${°3:{%} (1) is the best
possible coefficient corresponding to the variable x(u).
Proposition

If w is a valid and minimal function for MI(9,R2, r) and ¢&V (u) + ¢&Y(r — u) = 1
Yu € PP, then (¢&V, ) is minimal for MI(2,R? r). O

Proposition

Let  is a valid and minimal function for MI(0, R?, r). The function (¢10}-10} )2 js
minimal for MI(2, R2, r) iff F(D(r)) = P. O

®Note that ¢{0}-{0} (1) = inf,, o {m(W) | w = u}.
27



Uniqueness and Extremity of Fill-in Functions

Lemma (Uniqueness)
Let (%Y, ) be minimal for MI(I2,R2, r). If (¢', ) is any valid minimal function for
MI(2,R?, r) such that ¢’ (u) = V(u) Yu € G, then ¢'(v) = ¢&V(v) Vv € . O
Implications:
1. 1f (¢103:{0} /) is minimal, this is the unique minimal function: the behavior is
similar to the one-dimensional case.

2. 1f (¢191:{0} ) is not minimal, then by selecting different subgroups G, and
corresponding functions V for the subgroup, we may obtain different minimal
functions: this behavior is not seen in the one-dimensional case.

Theorem (Extremity)

Let (V, ) be minimal for MI(G,R?, r). (¢©V, ) is an extreme valid inequality for
MI(2,R?, r) iff (V, ) is extreme for MI(G,R?, r) and (¢©V, x) is minimal for
MI(/2,R2, r).

28



Families of Extreme Inequalities.



P(r) is a Triangle With Multiple Integral Points in the
Interior of One Side: F(D(r)) = I?

20 (6] (@] (@] (@] (@]

1

o
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-30
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1 0
Maximal Lattice free triangle with Fill in function ((p{O}’ o )

f1 =0.5, f2 =0.75 is extreme
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P(~) is a Triangle With Integral Vertices and One
Integral Point in the Interior of Each Side: F(D(r)) = /?

20 0]
10 ©)
Ve o
-10 O 0.
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o o 0.
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1 0
Maximal Lattice free triangle with Fill in function ((p{o}’ {0}, ) is extreme

integral vertices and one integral
spoint in the interior of each side

1



Triangle With Non-Integral Vertices and One Integral
Point in the Interior of Each Side: F(D(r)) < I?

0.5

-0.5

0
0 02 04 06 08 1

05 0 05 i 15 2 Brown region corresponds to D( =)
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Example Where P(r) is a Triangle With Non-Integral
Vertices and One Integral Point in the Interior of Each
Side

Fill-in function with (6", x) is extreme for Another extreme
the trivial subgroup. the two-dimensional inequality.
This function is not group problem.

minimal.

23



P(~) is a Quadrilateral

Theorem
Let = correspond to maximal lattice-free quadrilateral P(r). Then (10310} 1) is not
extreme for MI(2, R, r). O

Not Unique: It is not necessary that there are unique extreme functions.

24



Discussion

1. Techniques for lifting integer variables into minimal inequalities for continuous
variables.
2. Lifting functions are unique for
> Triangles with multiple integer points in the interior of each side.
> Triangles with one integral point in the interior of each side, and integral
vertices.
3. Lifting functions are not unique for

> Triangles with one integral point in the interior of each side, and
non-integral vertices.
> Quadrilaterals.

4. The class of new inequalities are ‘like GMIC’ since their continuous coefficients
are strong.

Challenges:
1. Separation.

2. Closed-form of some of the inequalities [Sequential-Merge Inequalities,
Mixing....]

25



Thank You.
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