Some Properties of Convex Hulls of Integer Points Contained in General Convex Sets

Santanu S. Dey, Diego A. Morán R.

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

June, 2011.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Fundamental theorem of integer programming

Theorem (Meyer, 1974)

If $K \subseteq \mathbb{R}^n$ be a rational polyhedron¹, then $conv(K \cap \mathbb{Z}^n)$ is a rational polyhedron.

This motivates the following questions:

¹It is sufficient that K has a rational polyhedral recession cone $\langle \Box \rangle = \langle \Box \rangle + \langle \Box \rangle +$

Fundamental theorem of integer programming

Theorem (Meyer, 1974)

If $K \subseteq \mathbb{R}^n$ be a rational polyhedron¹, then $conv(K \cap \mathbb{Z}^n)$ is a rational polyhedron.

This motivates the following questions:

1. Let *K* be a closed convex set. When is $conv(K \cap \mathbb{Z}^n)$ a polyhedron?

¹ It is sufficient that K has a rational polyhedral recession cone $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Fundamental theorem of integer programming

Theorem (Meyer, 1974)

If $K \subseteq \mathbb{R}^n$ be a rational polyhedron¹, then $conv(K \cap \mathbb{Z}^n)$ is a rational polyhedron.

This motivates the following questions:

- 1. Let *K* be a closed convex set. When is $conv(K \cap \mathbb{Z}^n)$ a polyhedron?
- 2. A more basic question: Let *K* be a closed convex set. When is the set $conv(K \cap \mathbb{Z}^n)$ closed?

¹It is sufficient that K has a rational polyhedral recession cone $\langle \Box \rangle = \langle \Box \rangle + \langle \Box \rangle +$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

1.0 Lets look at some example

Theme: Recession cone plays a role, however there are other factors.

Figure: conv $(K \cap \mathbb{Z}^n)$ is not closed.

Example A

Figure: $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is not closed. $\operatorname{conv}(K \cap \mathbb{Z}^n) \cong \operatorname{conv}(K \cap \mathbb{Z}^n)$

Figure: $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed!

- Closedness of $\operatorname{conv}(K \cap \mathbb{Z}^n)$

Figure: conv($K \cap \mathbb{Z}^n$) is closed!

Figure: $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed $\langle \Box \rangle \langle \Box \rangle$

- Closedness of $\operatorname{conv}(K \cap \mathbb{Z}^n)$

Figure: $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed!

- Closedness of $\operatorname{conv}(K \cap \mathbb{Z}^n)$

Figure: $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed!

Literature review: general polyhedron

Theorem (Moussafir, 2000)

Let $K \subseteq \mathbb{R}^n$ be a (not necessarily rational) polyhedron not containing a line such that:

- int(rec.cone(K)) $\neq \emptyset$.
- ► For every proper face F of K: If $F \cap \mathbb{Z}^n \neq \emptyset$, then for all $u \in F \cap \mathbb{Z}^n$ and for all $r \in \text{rec.cone}(F)$, $\{u + \lambda r \mid \lambda \ge 0\} \subseteq \text{conv}(F \cap \mathbb{Z}^n)$.

Then $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed.

Notation and definition

Definition (u(K))

Given a convex set $K \subseteq \mathbb{R}^n$ and $u \in K \cap \mathbb{Z}^n$, we define:

$$u(K) = \{ d \in \mathbb{R}^n \mid u + \lambda d \in \operatorname{conv}(K \cap \mathbb{Z}^n) \; \forall \lambda \ge 0 \}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Illustration of u(K) (1)

Illustration of u(K) (2)

A sufficient condition for a direction to be in u(K)

Definition (Rational Linear Subspace)

A linear subspace $L \subseteq \mathbb{R}^n$ is said to be *rational* if there exists a basis of *L* contained in \mathbb{Q}^n .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

A sufficient condition for a direction to be in u(K)

Definition (Rational Linear Subspace)

A linear subspace $L \subseteq \mathbb{R}^n$ is said to be *rational* if there exists a basis of *L* contained in \mathbb{Q}^n .

Lemma

Let $K \subseteq \mathbb{R}^n$ be a closed convex set such that aff(K) is a rational affine set. Let $u \in K \cap \mathbb{Z}^n$. If $\{u + \lambda d | \lambda > 0\} \subseteq \text{rel.int}(K)$, then $\{u + d\lambda | \lambda \ge 0\} \subseteq \text{conv}(K \cap \mathbb{Z}^n)$.

This property is useful to compute the set u(K) in the case $u \in \text{rel.int}(K)$.

Illustration of u(K) (2)

1.1 Convex sets not containing lines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Convex sets not containing lines

Convex sets not containing lines: necessary and sufficient conditions

Theorem

Let $K \subseteq \mathbb{R}^n$ be a closed convex set not containing a line. Then the following are equivalent:

- 1. $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed.
- 2. u(K) is identical for every $u \in K \cap \mathbb{Z}^n$.

Convex sets not containing lines

Convex sets not containing lines: necessary and sufficient conditions

Theorem

Let $K \subseteq \mathbb{R}^n$ be a closed convex set not containing a line. Then the following are equivalent:

- 1. $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed.
- 2. u(K) is identical for every $u \in K \cap \mathbb{Z}^n$.

Interpretation:

It is not difficult to verify that,

$$\operatorname{conv}(K \cap \mathbb{Z}^n) = \operatorname{conv}\left(\bigcup_{u \in K \cap \mathbb{Z}^n} (u + u(K))\right).$$
 (1)

Convex sets not containing lines

Convex sets not containing lines: necessary and sufficient conditions

Theorem

Let $K \subseteq \mathbb{R}^n$ be a closed convex set not containing a line. Then the following are equivalent:

- 1. $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed.
- 2. u(K) is identical for every $u \in K \cap \mathbb{Z}^n$.

Interpretation:

It is not difficult to verify that,

$$\operatorname{conv}(K \cap \mathbb{Z}^n) = \operatorname{conv}\left(\bigcup_{u \in K \cap \mathbb{Z}^n} (u + u(K))\right).$$
(1)

Lemma (Rockafeller (1970))

If $K_1, ..., K_m$ are non-empty closed convex sets in \mathbb{R}^n all having the same recession cone, then $conv(K_1 \cup ... \cup K_m)$ is closed.

Convex sets not containing lines

Convex sets not containing lines: necessary and sufficient conditions

Theorem

Let $K \subseteq \mathbb{R}^n$ be a closed convex set not containing a line. Then the following are equivalent:

- 1. $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed.
- 2. u(K) is identical for every $u \in K \cap \mathbb{Z}^n$.

Interpretation:

It is not difficult to verify that,

$$\operatorname{conv}(K \cap \mathbb{Z}^n) = \operatorname{conv}\left(\bigcup_{u \in K \cap \mathbb{Z}^n} (u + u(K))\right).$$
(1)

Lemma (Rockafeller (1970))

If $K_1, ..., K_m$ are non-empty closed convex sets in \mathbb{R}^n all having the same recession cone, then $conv(K_1 \cup ... \cup K_m)$ is closed.

The union in (1) can be over infinite terms. (There are straightforward counterexamples to lemma, when the union is not over finite terms.)

- Closedness of $conv(K \cap \mathbb{Z}^n)$

Convex sets not containing lines

Proof outline

- Case 1: rel.int(conv($K \cap \mathbb{Z}^n$)) $\cap \mathbb{Z}^n \neq \emptyset$.
 - 0.1 u(K) identical for all $u \in K \cap \mathbb{Z}^n \Rightarrow u(K) = \text{rec.cone}(\text{conv}(K \cap \mathbb{Z}^n))$.
 - 0.2 For some $u \in \text{rel.int}(\text{conv}(K \cap \mathbb{Z}^n))$, we also have have $u(K) = \text{rec.cone}(\overline{\text{conv}}(K \cap \mathbb{Z}^n))$.
 - 0.3 Use result [*Husseinov*(1999)]: If $T \subseteq \mathbb{R}^n$ is closed, then every extreme point of $\overline{\text{conv}}(T)$ belongs to T.
- Case 2: rel.int(conv($K \cap \mathbb{Z}^n$)) $\cap \mathbb{Z}^n = \emptyset$
 - 0.1 Proof by induction on dimension. (Proof straightforward for dimension 0,1)
 - 0.2 WLOG assume that conv(K ∩ Zⁿ) is full-dimensional. There exists a full-dimensional maximal lattice-free convex set Q containing conv(K ∩ Zⁿ). Let F₁,..., F_N be facets of Q.
 - 0.3 Prove that $u(K \cap F_i)$ is identical. (using the fact that u(K) are identical)
 - 0.4 Observe $\operatorname{conv}(K \cap \mathbb{Z}^n) = \operatorname{conv}[\cup_{i \in \{1, \dots, N\}} \operatorname{conv}(K \cap F_i \cap \mathbb{Z}^n)]$

- Closedness of $\operatorname{conv}(K \cap \mathbb{Z}^n)$

Convex sets not containing lines

"Convex set not containing line" condition is crucial

1.2 Convex sets containing lines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Convex sets containing lines: necessary and sufficient conditions

Definition (Coterminal)

Given a set *K* and a half-line $d := \{u + \lambda r \mid \lambda \ge 0\}$ we say *K* is *coterminal* with *d* if sup $\{\mu \mid \mu > 0, u + \mu r \in K\} = \infty$.

Theorem

Let $K \subseteq \mathbb{R}^n$ be a closed convex set such that the lineality space $L = \text{lin.space}(\text{conv}(K \cap \mathbb{Z}^n))$ is not trivial. Then, $\text{conv}(K \cap \mathbb{Z}^n)$ is closed if and only if

- 1. L is a rational subspace.
- The set K ∩ L[⊥] ∩ P_{L[⊥]}(Zⁿ) is co-terminal with every extreme facial ray of conv(K ∩ L[⊥] ∩ P_{L[⊥]}(Zⁿ)).

1.3 Applications

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Application 1: $int(K) \cap \mathbb{Z}^n \neq \emptyset$

Proposition

Let $K \subseteq \mathbb{R}^n$ be a closed convex set such that $int(K) \cap \mathbb{Z}^n \neq \emptyset$. Then the following are equivalent.

- 1. $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed.
- 2. $u(K) = \text{rec.cone}(K), \forall u \in K \cap \mathbb{Z}^n$.
- 3. For every proper exposed face *F* of *K*: If $F \cap \mathbb{Z}^n \neq \emptyset$, then for all $u \in F \cap \mathbb{Z}^n$ and for all $r \in \text{rec.cone}(F)$, $\{u + \lambda r \mid \lambda \ge 0\} \subseteq \text{conv}(F \cap \mathbb{Z}^n)$.

This is a generalization of result from [Moussafir, (2000)]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Application

Example A revisited (not closed)

Application

Example A revisited (not closed)

Application

Example B revisited (closed)

Application

Example B revisited (closed)

Application 2: Strictly convex sets

Definition (strictly convex set)

A set $K \subseteq \mathbb{R}^n$ is called a *strictly convex set*, if K is a convex set and for all $x, y \in K$, $\lambda x + (1 - \lambda)y \in \text{rel.int}(K)$ for $\lambda \in (0, 1)$.

Proposition

If $K \subseteq \mathbb{R}^n$ is a closed strictly convex set, then $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Application

Example C revisited (closed)

Application

Application

Example D revisited (closed)

Application

Example D revisited (closed)

Application 3: Closed convex cones

Definition (rational scalable)

A vector $r \in \mathbb{R}^n$ is said to be *rational scalable* if there exists $\lambda \in \mathbb{R} \setminus \{0\}$ such that $\lambda r \in \mathbb{Z}^n$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Application 3: Closed convex cones

Definition (rational scalable)

A vector $r \in \mathbb{R}^n$ is said to be *rational scalable* if there exists $\lambda \in \mathbb{R} \setminus \{0\}$ such that $\lambda r \in \mathbb{Z}^n$

Proposition

Let K be a full-dimensional pointed closed convex cone in \mathbb{R}^n . Then,

- 1. $\overline{\operatorname{conv}}(K \cap \mathbb{Z}^n) = K$.
- 2. Moreover, $\operatorname{conv}(K \cap \mathbb{Z}^n)$ is closed if and only if every extreme ray of K is rational scalable.

- Application

Example: Non-polyhedral cone (closed)

- Consider the set $C = \{(0,0,1)\} \cup \{(0,1,1)\} \cup \{(\frac{1}{n},\frac{1}{n^2},1)\}_{n \ge 1}$.
- $K = \operatorname{conv} \left(\left\{ \sum_{u \in C} \lambda_u u \, | \, \lambda_u \ge 0 \, \forall u \in C \right\} \right)$ is a closed convex cone.
- ▶ By previous result, $conv(K \cap \mathbb{Z}^3) = K$ is closed.

Closedness of conv($K \cap \mathbb{Z}^n$)

Convex sets containing lines: Applications

Application 4: sets containing lines

Proposition

Let $K \subseteq \mathbb{R}^n$ be a closed convex set and let rec.cone(K) be a rational polyhedral cone. Then conv($K \cap \mathbb{Z}^n$) is closed.

Closedness of $conv(K \cap \mathbb{Z}^n)$

Convex sets containing lines: Applications

Application 4: sets containing lines

Proposition

Let $K \subseteq \mathbb{R}^n$ be a closed convex set and let rec.cone(K) be a rational polyhedral cone. Then conv($K \cap \mathbb{Z}^n$) is closed.

Proposition

Let $K \subseteq \mathbb{R}^n$ be a closed convex set such that $int(K) \cap \mathbb{Z}^n \neq \emptyset$. If lin.space(K) is not a rational subspace, then $conv(K \cap \mathbb{Z}^n)$ is not closed.

Closedness of conv($K \cap \mathbb{Z}^n$)

Convex sets containing lines: Applications

Application 5: Closedness of conic quadratic IP

Definition

A polyhedral cone *C* is a lattice-cone wrt a lattice \mathcal{L} if all the extreme rays of *C* belong to \mathcal{L} .

Proposition

Let

- 1. *L* be the lce-cream cone, i.e., $L := \{x \in \mathbb{R}^m | || (x_1, ..., x_{m-1}) || \le x_m \}.$
- 2. $T : \mathbb{R}^n \to \mathbb{R}^m$ be defined as T(x) = Ax b.
- 3. $P = T(\mathbb{R}^n)$.

Closedness of $conv(K \cap \mathbb{Z}^n)$

Convex sets containing lines: Applications

Application 5: Closedness of conic quadratic IP

Definition

A polyhedral cone C is a lattice-cone wrt a lattice \mathcal{L} if all the extreme rays of C belong to \mathcal{L} .

Proposition

Let

- 1. *L* be the lce-cream cone, i.e., $L := \{x \in \mathbb{R}^m | ||(x_1, ..., x_{m-1})|| \le x_m\}.$
- 2. $T : \mathbb{R}^n \to \mathbb{R}^m$ be defined as T(x) = Ax b.
- 3. $P = T(\mathbb{R}^n)$.

Then $conv(\{x \in \mathbb{R}^n | Ax \succeq_L b\} \cap \mathbb{Z}^n)$ is closed iff one of the following holds:

- 1. $0 \notin L \cap P$, or
- 2. dim $(L \cap P) \leq 1$, or
- 3. $[\dim(L \cap P) = 2 \text{ and } L \cap P \text{ is a lattice-cone w.r.t. } T(\mathbb{Z}^n)].$

A calculus of operations on *K* preserving closed-ness of $conv(K \cap \mathbb{Z}^n)$?

Suppose $K_1, K_2 \subseteq \mathbb{R}^n$ be closed convex sets such that $conv(K_1 \cap \mathbb{Z}^n)$ and $conv(K_2 \cap \mathbb{Z}^n)$ is closed. Then:

- 1. Intersection: Is $conv(K_1 \cap K_2 \cap \mathbb{Z}^n)$ always closed?
- 2. Products: Is $conv(K_1 \times K_2 \cap (\mathbb{Z}^n \times \mathbb{Z}^n))$ always closed?
- 3. Rational Affine Image: Let $A \in \mathbb{Q}^{m \times n}$ and let $b \in \mathbb{Q}^m$. Is conv $(\{Ax + b \mid x \in K_1\} \cap \mathbb{Z}^m)$ always closed?
- Rational Affine Pre-Image: Let A ∈ Q^{n×m} and let b ∈ Qⁿ. Is conv ({x | Ax + b ∈ K₁} ∩ Z^m) always closed?
- 5. Sums: Is $conv(K_1 + K_2 \cap \mathbb{Z}^n)$ always closed?

A calculus of operations on *K* preserving closed-ness of $conv(K \cap \mathbb{Z}^n)$?

Suppose $K_1, K_2 \subseteq \mathbb{R}^n$ be closed convex sets such that $conv(K_1 \cap \mathbb{Z}^n)$ and $conv(K_2 \cap \mathbb{Z}^n)$ is closed. Then:

- 1. Intersection: Is $conv(K_1 \cap K_2 \cap \mathbb{Z}^n)$ always closed? Yes.
- 2. Products: Is conv($K_1 \times K_2 \cap (\mathbb{Z}^n \times \mathbb{Z}^n)$) always closed? Yes.
- 3. Rational Affine Image: Let $A \in \mathbb{Q}^{m \times n}$ and let $b \in \mathbb{Q}^m$. Is conv $(\{Ax + b \mid x \in K_1\} \cap \mathbb{Z}^m)$ always closed? No.
- 4. Rational Affine Pre-Image: Let $A \in \mathbb{Q}^{n \times m}$ and let $b \in \mathbb{Q}^n$. Is conv $(\{x \mid Ax + b \in K_1\} \cap \mathbb{Z}^m)$ always closed? No.
- 5. Sums: Is $conv(K_1 + K_2 \cap \mathbb{Z}^n)$ always closed? No

Polyhedrality of $\operatorname{conv}(K \cap \mathbb{Z}^n)$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

- Developing some intuition

Developing intuition about recession cone

Suppose $int(K) \cap \mathbb{Z}^n \neq \emptyset$ and that $conv(K \cap \mathbb{Z}^n)$ is a polyhedron.

・ロト (日下・モート・モー・ショー・ショー)

- Developing some intuition

Developing intuition about recession cone

- Suppose $int(K) \cap \mathbb{Z}^n \neq \emptyset$ and that $conv(K \cap \mathbb{Z}^n)$ is a polyhedron.
- This implies rec.cone(conv($K \cap \mathbb{Z}^n$)) = rec.cone(K).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- Developing some intuition

Developing intuition about recession cone

- Suppose $int(K) \cap \mathbb{Z}^n \neq \emptyset$ and that $conv(K \cap \mathbb{Z}^n)$ is a polyhedron.
- This implies rec.cone(conv($K \cap \mathbb{Z}^n$)) = rec.cone(K).
- Therefore, in this case rec.cone(K) must be a rational polyhedron.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- Polyhedrality

- Developing some intuition

Developing intuition about 'kind of unboundedness'

- Consider $z^* = \sup\{c^t x : x \in K\}$
- We have $z^* = \infty$.
- rec.cone(K) = {λd, λ ≥ 0}.
- c⊥d.

・ロト (日下・モート・モー・ショー・ショー)

- Polyhedrality

- Developing some intuition

Developing intuition about 'kind of unboundedness'

- Consider $z^* = \sup\{c^t x : x \in K\}$
- We have $z^* = \infty$.
- rec.cone(K) = {λd, λ ≥ 0}.
- c⊥d.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Main result

Thin convex sets

Definition (Thin Convex set)

Let $K \subseteq \mathbb{R}^n$ be a closed convex set. We say K is *thin* if the following holds: sup{ $c^t x : x \in K$ } = ∞ if and only if there exist $d \in \text{rec.cone}(K)$ such that $c^t d > 0$.

Example

Every Polyhedron is thin.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Main result

Necessary and sufficient conditions

Theorem

Let $K \subseteq \mathbb{R}^n$ be a convex set. Then,

If K is thin and rec.cone(K) is a rational polyhedral cone, then conv(K ∩ Zⁿ) is a polyhedron.

Main result

Necessary and sufficient conditions

Theorem

Let $K \subseteq \mathbb{R}^n$ be a convex set. Then,

- If K is thin and rec.cone(K) is a rational polyhedral cone, then conv(K ∩ Zⁿ) is a polyhedron.
- Moreover, if int(K) ∩ Zⁿ ≠ Ø and conv(K ∩ Zⁿ) is a polyhedron, then K is thin and rec.cone(K) is a rational polyhedral cone.

Some Properties of Integer hulls of Convex Sets
Polyhedrality
Main result

Let $K \subseteq \mathbb{R}^n$ be a thin convex set with a rational polyhedral recession cone. Notation:

• Then $\sigma_{\mathcal{K}} : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$\sigma_{K}(d) = \sup\{d^{t}x \,|\, x \in K\}$$

- Let rec.cone(K)* = { $d \in \mathbb{R}^n | d^t x \le 0, \forall x \in \text{rec.cone}(K)$ }
- Let $D = \{ d \in \text{rec.cone}(K)^* | ||d|| = 1 \}$

・ロト (日下・モート・モー・ショー・ショー)

```
Some Properties of Integer hulls of Convex Sets
```

Let $K \subseteq \mathbb{R}^n$ be a thin convex set with a rational polyhedral recession cone. Notation:

• Then $\sigma_K : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$\sigma_{K}(d) = \sup\{d^{t}x \,|\, x \in K\}$$

- Let rec.cone(K)* = { $d \in \mathbb{R}^n | d^t x \le 0, \forall x \in \text{rec.cone}(K)$ }
- Let $D = \{ d \in \text{rec.cone}(K)^* | ||d|| = 1 \}$

It is sufficient to construct a polyhedron P such that:

A. $P \cap \mathbb{Z}^n = K \cap \mathbb{Z}^n$

B. rec.cone(P) is a rational polyhedral cone.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

```
Some Properties of Integer hulls of Convex Sets
```

Let $K \subseteq \mathbb{R}^n$ be a thin convex set with a rational polyhedral recession cone. Notation:

• Then $\sigma_K : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$\sigma_{K}(d) = \sup\{d^{t}x \,|\, x \in K\}$$

- Let rec.cone(K)* = { $d \in \mathbb{R}^n | d^t x \le 0, \forall x \in \text{rec.cone}(K)$ }
- Let $D = \{ d \in \text{rec.cone}(K)^* | ||d|| = 1 \}$

It is sufficient to construct a polyhedron P such that:

A. $P \cap \mathbb{Z}^n = K \cap \mathbb{Z}^n$

B. rec.cone(P) is a rational polyhedral cone.

1. We construct an infinite family of polyhedra P_V such that:

1.1 For any $v \in D$, there exists a neighborhood N_v of v (wrt D) such that $\sigma_{P_v}(v') \leq \sigma_K(v')$ for all $v' \in N_v$ 1.2 rec.cone(P_v) = rec.cone(K)

1.3 $P_{v} \cap \mathbb{Z}^{n} \supseteq \check{K} \cap \mathbb{Z}^{n}$.

Some Properties of Integer hulls of Convex Sets
- Polyhedrality
Main result

Let $K \subseteq \mathbb{R}^n$ be a thin convex set with a rational polyhedral recession cone. Notation:

• Then $\sigma_K : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$\sigma_{K}(d) = \sup\{d^{t}x \,|\, x \in K\}$$

- Let rec.cone(K)* = { $d \in \mathbb{R}^n | d^t x \le 0, \forall x \in \text{rec.cone}(K)$ }
- Let $D = \{ d \in \text{rec.cone}(K)^* | ||d|| = 1 \}$

It is sufficient to construct a polyhedron P such that:

A. $P \cap \mathbb{Z}^n = K \cap \mathbb{Z}^n$

- B. rec.cone(P) is a rational polyhedral cone.
- 1. We construct an infinite family of polyhedra P_V such that:

1.1 For any $v \in D$, there exists a neighborhood N_v of v (wrt D) such that $\sigma_{P_v}(v') \leq \sigma_K(v')$ for all $v' \in N_v$

- 1.2 rec.cone(P_v) = rec.cone(K)
- 1.3 $P_v \cap \mathbb{Z}^n \supseteq K \cap \mathbb{Z}^n$.
- 2. By compactness argument, we select a finite set of polyhedra P_1, \ldots, P_l such that

$$P' := \cap_{i=1}^{l} P_{v} \subseteq K$$

Then P' satisfies (A.) and (B.)

Main result

Outline of proof for necessary condition

1. Let

$$\operatorname{conv}(K \cap \mathbb{Z}^n) = \{x \in \mathbb{R}^n \mid a_i^t x \le b_i, i \in I\}$$

2. Verify that $\sigma_{\mathcal{K}}(a_i) < \infty$, for all $i \in I$.

・ロト (日下・モート・モー・ショー・ショー)

Main result

Outline of proof for necessary condition

1. Let

$$\operatorname{conv}(K \cap \mathbb{Z}^n) = \{x \in \mathbb{R}^n \mid a_i^t x \leq b_i, i \in I\}$$

2. Verify that $\sigma_{\mathcal{K}}(a_i) < \infty$, for all $i \in I$.

Proof technique: Consider the set $K \cap \{x \mid a_i^t x \ge b_i\}$. This is contained in maximal lattice-free convex set. Now use properties of maximal lattice-free convex sets.

イロン 不得 とくほ とくほう 二日

Main result

Outline of proof for necessary condition

1. Let

$$\operatorname{conv}(K \cap \mathbb{Z}^n) = \{x \in \mathbb{R}^n \mid a_i^t x \leq b_i, i \in I\}$$

Verify that σ_K(a_i) < ∞, for all i ∈ I.
 Proof technique: Consider the set K ∩ {x | a^t_ix ≥ b_i}. This is contained in maximal lattice-free convex set. Now use properties of maximal lattice-free convex sets.

З.

$$\{x \in \mathbb{R}^n \mid a_i^t x \le b_i, i \in I\} \subseteq K \subseteq \{x \in \mathbb{R}^n \mid a_i^t x \le \sigma_K(a_i), i \in I\}$$

イロン 不得 とくほ とくほう 二日

Main result

Outline of proof for necessary condition

1. Let

$$\operatorname{conv}(K \cap \mathbb{Z}^n) = \{x \in \mathbb{R}^n \mid a_i^t x \leq b_i, i \in I\}$$

Verify that σ_K(a_i) < ∞, for all i ∈ l.
 Proof technique: Consider the set K ∩ {x | a_i^tx ≥ b_i}. This is contained in maximal lattice-free convex set. Now use properties of maximal lattice-free convex sets.

3.

$$\{x \in \mathbb{R}^n \mid a_i^t x \le b_i, i \in I\} \subseteq K \subseteq \{x \in \mathbb{R}^n \mid a_i^t x \le \sigma_K(a_i), i \in I\}$$

4. Finally, prove that if K is contained within two thin sets with same recession cone, it must be thin.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Main result

Alternative proof

- 1. We recently discovered an alternative proof: Starting from a result in [Hemmecke, Weismantel (2007)]
- 2. Depends on the following alternative characterization of thin convex sets: A convex set K is thin iff $K \subseteq B + \text{rec.cone}(K)$ where B is a bounded set.
- 3. This proof essentially uses triangulation of the recession cone and Gordan-Dickson's Lemma.