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Some Properties of Integer hulls of Convex Sets

Introduction

Fundamental theorem of integer programming

Theorem (Meyer, 1974)
If K ⊆ Rn be a rational polyhedron1, then conv(K ∩ Zn) is a rational
polyhedron.

This motivates the following questions:

1. Let K be a closed convex set. When is conv(K ∩ Zn) a polyhedron?

2. A more basic question: Let K be a closed convex set. When is the set
conv(K ∩ Zn) closed?

1It is sufficient that K has a rational polyhedral recession cone
2
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Closedness of conv(K ∩ Zn)



1.0
Lets look at some example

Theme: Recession cone plays a role, however there are other factors.
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Closedness of conv(K ∩ Zn)

Example A

Figure: conv(K ∩ Zn) is not closed.
7



Some Properties of Integer hulls of Convex Sets

Closedness of conv(K ∩ Zn)

Example A

Figure: conv(K ∩ Zn) is not closed.
8



Some Properties of Integer hulls of Convex Sets

Closedness of conv(K ∩ Zn)

Example B

Figure: conv(K ∩ Zn) is closed!
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Example B

Figure: conv(K ∩ Zn) is closed!
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Example C

u

Figure: conv(K ∩ Zn) is closed
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u

Figure: conv(K ∩ Zn) is closed
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Example D

Figure: conv(K ∩ Zn) is closed!
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Example D

Figure: conv(K ∩ Zn) is closed!
14



Some Properties of Integer hulls of Convex Sets

Closedness of conv(K ∩ Zn)

Literature review: general polyhedron

Theorem (Moussafir, 2000)
Let K ⊆ Rn be a (not necessarily rational) polyhedron not containing a line
such that:

I int(rec.cone(K )) 6= ∅.

I For every proper face F of K : If F ∩ Zn 6= ∅, then for all u ∈ F ∩ Zn and
for all r ∈ rec.cone(F ), {u + λr |λ ≥ 0} ⊆ conv(F ∩ Zn).

Then conv(K ∩ Zn) is closed.
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Closedness of conv(K ∩ Zn)

Notation and definition

Definition (u(K ))
Given a convex set K ⊆ Rn and u ∈ K ∩ Zn, we define:

u(K ) = {d ∈ Rn | u + λd ∈ conv(K ∩ Zn) ∀λ ≥ 0}

16
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Closedness of conv(K ∩ Zn)

Illustration of u(K ) (1)
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Illustration of u(K ) (2)
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Closedness of conv(K ∩ Zn)

A sufficient condition for a direction to be in u(K )

Definition (Rational Linear Subspace)
A linear subspace L ⊆ Rn is said to be rational if there exists a basis of L
contained in Qn.

Lemma
Let K ⊆ Rn be a closed convex set such that aff(K ) is a rational affine set.
Let u ∈ K ∩ Zn. If {u + λd |λ > 0} ⊆ rel.int(K ), then
{u + dλ|λ ≥ 0} ⊆ conv(K ∩ Zn).

This property is useful to compute the set u(K ) in the case u ∈ rel.int(K ).
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20



Some Properties of Integer hulls of Convex Sets

Closedness of conv(K ∩ Zn)

Illustration of u(K ) (2)
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Closedness of conv(K ∩ Zn)

Convex sets not containing lines

Convex sets not containing lines: necessary and sufficient conditions

Theorem
Let K ⊆ Rn be a closed convex set not containing a line. Then the following are
equivalent:

1. conv(K ∩ Zn) is closed.

2. u(K ) is identical for every u ∈ K ∩ Zn.

Interpretation:
I It is not difficult to verify that,

conv(K ∩ Zn) = conv

 ⋃
u∈K∩Zn

(u + u(K ))

 . (1)

I Lemma (Rockafeller (1970))
If K1, ..., Km are non-empty closed convex sets in Rn all having the same recession
cone, then conv(K1 ∪ . . . ∪ Km) is closed.

I The union in (1) can be over infinite terms. (There are straightforward
counterexamples to lemma, when the union is not over finite terms.)
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Closedness of conv(K ∩ Zn)

Convex sets not containing lines

Proof outline

Case 1: rel.int(conv(K ∩ Zn)) ∩ Zn 6= ∅.
0.1 u(K ) identical for all u ∈ K ∩ Zn ⇒ u(K ) = rec.cone(conv(K ∩ Zn).
0.2 For some u ∈ rel.int(conv(K ∩ Zn)), we also have have

u(K ) = rec.cone(conv(K ∩ Zn).
0.3 Use result [Husseinov(1999)]: If T ⊆ Rn is closed, then every extreme point

of conv(T ) belongs to T .

Case 2: rel.int(conv(K ∩ Zn)) ∩ Zn = ∅
0.1 Proof by induction on dimension. (Proof straightforward for dimension 0,1)

0.2 WLOG assume that conv(K ∩ Zn) is full-dimensional. There exists a
full-dimensional maximal lattice-free convex set Q containing conv(K ∩ Zn).
Let F1, . . . ,FN be facets of Q.

0.3 Prove that u(K ∩ Fi ) is identical. (using the fact that u(K ) are identical)

0.4 Observe conv(K ∩ Zn) = conv[∪i∈{1,...,N}conv(K ∩ Fi ∩ Zn)]
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Closedness of conv(K ∩ Zn)

Convex sets not containing lines

"Convex set not containing line" condition is crucial

28
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Closedness of conv(K ∩ Zn)

Convex sets containing lines

Convex sets containing lines: necessary and sufficient conditions

Definition (Coterminal)
Given a set K and a half-line d := {u + λr |λ ≥ 0} we say K is coterminal
with d if sup{µ |µ > 0, u + µr ∈ K} =∞.

Theorem
Let K ⊆ Rn be a closed convex set such that the lineality space
L = lin.space(conv(K ∩ Zn)) is not trivial. Then, conv(K ∩ Zn) is closed if and
only if

1. L is a rational subspace.

2. The set K ∩ L⊥ ∩ PL⊥(Zn) is co-terminal with every extreme facial ray of
conv(K ∩ L⊥ ∩ PL⊥(Zn)).
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Closedness of conv(K ∩ Zn)

Application

Application 1: int(K ) ∩ Zn 6= ∅

Proposition
Let K ⊆ Rn be a closed convex set such that int(K ) ∩ Zn 6= ∅. Then the
following are equivalent.

1. conv(K ∩ Zn) is closed.

2. u(K ) = rec.cone(K ), ∀u ∈ K ∩ Zn.

3. For every proper exposed face F of K : If F ∩ Zn 6= ∅, then for all
u ∈ F ∩ Zn and for all r ∈ rec.cone(F ), {u + λr |λ ≥ 0} ⊆ conv(F ∩ Zn).

This is a generalization of result from [Moussafir, (2000)]

32



Some Properties of Integer hulls of Convex Sets

Closedness of conv(K ∩ Zn)

Application

Example A revisited (not closed)
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Application

Example A revisited (not closed)
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Closedness of conv(K ∩ Zn)

Application

Example B revisited (closed)
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Application

Example B revisited (closed)
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Closedness of conv(K ∩ Zn)

Application

Application 2: Strictly convex sets

Definition (strictly convex set)
A set K ⊆ Rn is called a strictly convex set, if K is a convex set and for all
x , y ∈ K , λx + (1− λ)y ∈ rel.int(K ) for λ ∈ (0, 1).

Proposition
If K ⊆ Rn is a closed strictly convex set, then conv(K ∩ Zn) is closed.
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Closedness of conv(K ∩ Zn)

Application

Example C revisited (closed)

u
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u
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Closedness of conv(K ∩ Zn)

Application

Example D revisited (closed)
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Application

Example D revisited (closed)
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Closedness of conv(K ∩ Zn)

Application

Application 3: Closed convex cones

Definition (rational scalable)
A vector r ∈ Rn is said to be rational scalable if there exists λ ∈ R \ {0} such
that λr ∈ Zn

Proposition
Let K be a full-dimensional pointed closed convex cone in Rn. Then,

1. conv(K ∩ Zn) = K .

2. Moreover, conv(K ∩ Zn) is closed if and only if every extreme ray of K is
rational scalable.
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Closedness of conv(K ∩ Zn)

Application

Example: Non-polyhedral cone (closed)

0 1

1

x
1

x
2

(1/2, 1/4)

(1/3, 1/9)

I Consider the set C = {(0, 0, 1)} ∪ {(0, 1, 1)} ∪ {( 1
n ,

1
n2 , 1)}n≥1.

I K = conv
(
{
∑

u∈C λuu |λu ≥ 0 ∀u ∈ C}
)

is a closed convex cone.

I By previous result, conv(K ∩ Z3) = K is closed.
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Closedness of conv(K ∩ Zn)

Convex sets containing lines: Applications

Application 4: sets containing lines

Proposition
Let K ⊆ Rn be a closed convex set and let rec.cone(K ) be a rational
polyhedral cone. Then conv(K ∩ Zn) is closed.

Proposition
Let K ⊆ Rn be a closed convex set such that int(K ) ∩ Zn 6= ∅. If lin.space(K )
is not a rational subspace, then conv(K ∩ Zn) is not closed.
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Convex sets containing lines: Applications
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Closedness of conv(K ∩ Zn)

Convex sets containing lines: Applications

Application 5: Closedness of conic quadratic IP

Definition
A polyhedral cone C is a lattice-cone wrt a lattice L if all the extreme rays of
C belong to L.

Proposition
Let

1. L be the Ice-cream cone, i.e., L := {x ∈ Rm | ||(x1, . . . , xm−1)|| ≤ xm}.
2. T : Rn → Rm be defined as T (x) = Ax − b.

3. P = T (Rn).

Then conv({x ∈ Rn |Ax �L b} ∩ Zn) is closed iff one of the following holds:

1. 0 /∈ L ∩ P, or

2. dim(L ∩ P) ≤ 1, or

3. [dim(L ∩ P) = 2 and L ∩ P is a lattice-cone w.r.t. T (Zn)].
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Closedness of conv(K ∩ Zn)

Convex sets containing lines: Applications

A calculus of operations on K preserving closed-ness of conv(K ∩ Zn)?

Suppose K1,K2 ⊆ Rn be closed convex sets such that conv(K1 ∩ Zn) and
conv(K2 ∩ Zn) is closed. Then:

1. Intersection: Is conv(K1 ∩ K2 ∩ Zn) always closed?

2. Products: Is conv(K1 × K2 ∩ (Zn × Zn)) always closed?

3. Rational Affine Image: Let A ∈ Qm×n and let b ∈ Qm. Is
conv ({Ax + b | x ∈ K1} ∩ Zm) always closed?

4. Rational Affine Pre-Image: Let A ∈ Qn×m and let b ∈ Qn. Is
conv ({x |Ax + b ∈ K1} ∩ Zm) always closed?

5. Sums: Is conv(K1 + K2 ∩ Zn) always closed?
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Convex sets containing lines: Applications

A calculus of operations on K preserving closed-ness of conv(K ∩ Zn)?

Suppose K1,K2 ⊆ Rn be closed convex sets such that conv(K1 ∩ Zn) and
conv(K2 ∩ Zn) is closed. Then:

1. Intersection: Is conv(K1 ∩ K2 ∩ Zn) always closed? Yes.

2. Products: Is conv(K1 × K2 ∩ (Zn × Zn)) always closed? Yes.

3. Rational Affine Image: Let A ∈ Qm×n and let b ∈ Qm. Is
conv ({Ax + b | x ∈ K1} ∩ Zm) always closed? No.

4. Rational Affine Pre-Image: Let A ∈ Qn×m and let b ∈ Qn. Is
conv ({x |Ax + b ∈ K1} ∩ Zm) always closed? No.

5. Sums: Is conv(K1 + K2 ∩ Zn) always closed? No
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Polyhedrality

Developing some intuition

Developing intuition about recession cone

I Suppose int(K ) ∩ Zn 6= ∅ and that conv(K ∩ Zn) is a polyhedron.

I This implies rec.cone(conv(K ∩ Zn)) = rec.cone(K ).

I Therefore, in this case rec.cone(K ) must be a rational polyhedron.
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Polyhedrality

Developing some intuition

Developing intuition about ‘kind of unboundedness’

I Consider
z∗ = sup{ctx : x ∈ K}

I We have z∗ =∞.

I rec.cone(K ) =
{λd , λ ≥ 0}.

I c⊥d .

u

55



Some Properties of Integer hulls of Convex Sets

Polyhedrality

Developing some intuition

Developing intuition about ‘kind of unboundedness’

I Consider
z∗ = sup{ctx : x ∈ K}

I We have z∗ =∞.

I rec.cone(K ) =
{λd , λ ≥ 0}.

I c⊥d .

u

56



Some Properties of Integer hulls of Convex Sets

Polyhedrality

Main result

Thin convex sets

Definition (Thin Convex set)
Let K ⊆ Rn be a closed convex set. We say K is thin if the following holds:
sup{ctx : x ∈ K} =∞ if and only if there exist d ∈ rec.cone(K ) such that
ctd > 0.

Example
Every Polyhedron is thin.
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Polyhedrality

Main result

Necessary and sufficient conditions

Theorem
Let K ⊆ Rn be a convex set. Then,

I If K is thin and rec.cone(K) is a rational polyhedral cone, then
conv(K ∩ Zn) is a polyhedron.

I Moreover, if int(K ) ∩ Zn 6= ∅ and conv(K ∩ Zn) is a polyhedron, then K is
thin and rec.cone(K ) is a rational polyhedral cone.
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Polyhedrality

Main result

Proof outline for sufficient case
Let K ⊆ Rn be a thin convex set with a rational polyhedral recession cone.
Notation:

I Then σK : Rn → R is defined as

σK (d) = sup{d t x | x ∈ K}

I Let rec.cone(K )∗ = {d ∈ Rn | d t x ≤ 0, ∀ x ∈ rec.cone(K )}
I Let D = {d ∈ rec.cone(K )∗ | ‖d‖ = 1}

It is sufficient to construct a polyhedron P such that:
A. P ∩ Zn = K ∩ Zn

B. rec.cone(P) is a rational polyhedral cone.

1. We construct an infinite family of polyhedra Pv such that:

1.1 For any v ∈ D, there exists a neighborhood Nv of v (wrt D) such that
σPv (v ′) ≤ σK (v ′) for all v ′ ∈ Nv

1.2 rec.cone(Pv ) = rec.cone(K )
1.3 Pv ∩ Zn ⊇ K ∩ Zn.

2. By compactness argument, we select a finite set of polyhedra P1, . . . , Pl such that

P′ := ∩l
i=1Pv ⊆ K

Then P′ satisfies (A.) and (B.)
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Polyhedrality

Main result
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1.3 Pv ∩ Zn ⊇ K ∩ Zn.

2. By compactness argument, we select a finite set of polyhedra P1, . . . , Pl such that

P′ := ∩l
i=1Pv ⊆ K

Then P′ satisfies (A.) and (B.)
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Outline of proof for necessary condition

1. Let
conv(K ∩ Zn) = {x ∈ Rn | at

i x ≤ bi , i ∈ I}

2. Verify that σK (ai ) <∞, for all i ∈ I.

Proof technique: Consider the set K ∩{x | at
i x ≥ bi}. This is contained in maximal

lattice-free convex set. Now use properties of maximal lattice-free convex sets.

3.
{x ∈ Rn | at

i x ≤ bi , i ∈ I} ⊆ K ⊆ {x ∈ Rn | at
i x ≤ σK (ai ), i ∈ I}

4. Finally, prove that if K is contained within two thin sets with same recession cone,
it must be thin.
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Alternative proof

1. We recently discovered an alternative proof: Starting from a result in
[Hemmecke, Weismantel (2007)]

2. Depends on the following alternative characterization of thin convex sets:
A convex set K is thin iff K ⊆ B + rec.cone(K ) where B is a bounded set.

3. This proof essentially uses triangulation of the recession cone and
Gordan-Dickson’s Lemma.
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