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Quadratically Constrained Quadratic Program

QCQP
Quadratic objective, quadratic constraints:

max x>Q0x + b>0 x

s.t. x>Qi x + b>i x ≤ di ∀i ∈ [m]

1. So, we care about finding:

conv
{

x
∣∣∣ x>Qi x + b>i x ≤ di ∀i ∈ [m]

}
2. This is challenging to compute! So we can consider convexification of

relaxations (similar to integer programming)
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Two row relaxation

I We can select two rows and try and find the convex hull of their
interesection:

C2 =
{

x ∈ Rn
∣∣∣ x>Qix + b>i x ≤ di ∀i ∈ [2]

}

I (For some technical reasons), let us consider the “open version"
of the above set:

O2 =
{

x ∈ Rn
∣∣∣ x>Qix + b>i x < di ∀i ∈ [2]

}
I It turns out convex hull of O2 is well understood!
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Lets first talk about aggregation

I Given λ ∈ Rm
+ and

S :=
{

x
∣∣∣ x>Qix + b>i x ♠ di ∀i ∈ [m]

}
,

where ♠ ∈ {≤, <}.

I Basically, we are multiplying i th constraint by λi and then add
them together.
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I Given λ ∈ Rm
+ and

S :=
{

x
∣∣∣ x>Qix + b>i x ♠ di ∀i ∈ [m]

}
,

where ♠ ∈ {≤, <}.
Then:

Sλ :=

x

∣∣∣∣∣∣ x>
(

m∑
i=1

λiQi

)
x +

(
m∑

i=1

λibi

)>
x ♠

(
m∑

i=1

λidi

)
∀i ∈ [m]


is a relaxation of S.

I Basically, we are multiplying i th constraint by λi and then add
them together.

14



Convex hull of
quadratic inequalities

via aggregations

Dey, Muñoz, Serrano

Introduction
QCQP: Need for
convexification

Two row relaxation

Main results

Proof Outlines

Convex hull of O2

O2 =
{

x ∈ Rn
∣∣∣ x>Qix + b>i x < di ∀i ∈ [2]

}

Theorem ([Yildiran (2009)])
Given a set O2, such that conv (O2) 6= Rn, there exists λ1, λ2 ∈ R2

+

such that:
conv (O2) = (O2)λ

1
∩ (O2)λ

2
.

I The paper [Yildiran (2009)] gives algorithm to compute λ1 and λ2.

I The quadratic constraints (O2)λ
i

i ∈ {1, 2} has very nice
properties:
I
∑2

j=1 λ
i
j Qj has at most one negative eigenvalue for both i ∈ {1, 2}!

I Basically, the sets (O2)λi i ∈ {1, 2} are either
ellipsoid (may be degenarate) or
hyperboloid which is union of two convex sets.

I Henceforth, we call quadratic constraints with the “quadratic part"
having at most one negative eigenvalue as a good constraint.
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∣∣∣∣ −xy < −1
x2 + y2 < 9

}
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Example - contd 2

S :=

{
x , y

∣∣∣∣ −xy < −1
x2 + y2 < 9

}

conv(S) :=

{
x , y

∣∣∣∣ (x − y)2 < 7
x2 + y2 < 9

}

I Understanding the blue quadratic: λ1 = (2, 1)

−xy < −1 ×2
+ x2 + y2 < 9 ×1

x2 − 2xy + y2 < 7 ≡ (x − y)2 < 7

I λ2 = (0, 1), so the second aggregated constraints is x2 + y2 < 9.
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Literature survey (incomplete!)

Related results:
I [Yildiran (2009)]
I [Burer and Kılınc-Karzan (2017)] (second order cone intersection

with a nonconvex quadratic)
I [Modaresi and Vielma (2017)] (closed version of results)

Other related papers:
I [Tawarmalani, Richard, Chung (2010)] (Covering bilinear

knapsack)
I [Santana and Dey (2020)] (polytope and one quadratic constraint)
I [Ye and Zhang (2003)], [Burer and Anstreicher (2013)],

[Beinstock (2014)] [Burer (2015)], [Burer and Yang (2015)],
[Anstreicher (2017)] (extended trust-region problem)

I [Burer and Ye (2019)], [Wang and Kılınc-Karzan (2020, 2021)],
[Argue, Kılınc-Karzan, and Wang (2020)] (general conditions for
the SDP relaxation being tight)

I [Bienstock, Chen, and Muñoz (2020)], [Muñoz and Serrano
(2020)] (Cut for QCQP using intersction approach)

I . . .
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Questions we consider...

The main goal of this study is to understand the power of aggregation.
I What happens for m > 2, i.e. for the case of two rows.
I If we cannot obtain the convex hull via aggregation, then can be

identify explicit examples.
I etc.
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Results described in a high level

I Under some technical sufficient conditions, intersection of
aggregations (not necessarily finite) can lead to convex hull for
three quadratic constraints.

I The above result represents the limit of aggregations. Basically,
aggregations do not lead to convex hull even when the technical
suffcient condition does not hold for m = 3 or when m > 3.
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Three rows: main result

Theorem
Let n ≥ 3 and

O3 =

{
x ∈ Rn

∣∣∣∣ [x 1]

[
Ai bi

b>i ci

] [
x
1

]
< 0, i ∈ [3]

}
.

Assume
I (Positive definite linear combination, (PDLC)) There exists θ ∈ R3

such that
3∑

i=1

θi

[
Ai bi

b>i ci

]
� 0.

I (Non-trivial convex hull) conv(O3) 6= Rn.

Let
Ω :=

{
λ ∈ R3

+ | (O3)λ ⊇ conv(O3) and O3 is good
}
,

where (O3)λ =

{
x ∈ Rn

∣∣∣∣ [x 1]

(∑3
i=1 λi

[
Ai bi

b>i ci

])[
x
1

]
< 0

}
.

Then
conv(O3) =

⋂
λ∈Ω

(O3)λ.
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Example

I

S :=

(x , y , z)

∣∣∣∣∣∣
x2 + y2 < 2
−x2 − y2 < −1

−x2 + y2 + z2 + 6x < 0


I PDLC condition holds, conv(S) 6= R3

I

conv(S) :=

(x , y , z)

∣∣∣∣∣∣
x2 + y2 < 2

−2x2 + z2 + 6x < −1 ?

−x2 + y2 + z2 + 6x < 0


?: sum of second and third constraint describing S
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Example -contd 1

Figure: Plots of sets S (left) and conv(S) (right).
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Comparsion of results

Two quadratic
constraints

Three quadratic
constraints

[Yildiran (2009)] This talk

When does it
hold?

conv(S) 6= Rn Under PDLC con-
dition, conv(S) 6=
Rn

How many aggre-
gated inequalities
needed to de-
scribe convex
hull?

2 ∞ (Conjecture!)

Structure of ag-
gregated inequal-
ities

Polynomial-time
algorithm exists
to find them

Even checking if
λ ∈ Ω is not clear.
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The closed case

Theorem
Let n ≥ 3 and let

C3 =

{
x ∈ Rn

∣∣∣∣ [x 1]

[
Ai bi
b>i ci

] [
x
1

]
≤ 0, i ∈ [3]

}
.

Assume
I (Positive definite linear combination, or PDLC) There exists θ ∈ R3 such

that
3∑

i=1

θi

[
Ai bi
b>i ci

]
� 0.

I (Non-trivial convex hull) conv(C3) 6= Rn.

I (No low-dimensional components) C3 ⊆ int(C3).
Let

Ω′ :=
{
λ ∈ R3

+ | (C3)λ ⊇ conv(C3) and (C3)λ is good
}
,

where (C3)λ =

{
x ∈ Rn | [x 1]

(∑3
i=1 λi

[
Ai bi
b>i ci

])[
x
1

]
≤ 0
}

Then

conv(C3) =
⋂

λ∈Ω′
(C3)λ.
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m = 3 but not satisfying PDLC condition

S :=

(x , y , z)

∣∣∣∣∣∣
x2 < 1
y2 < 1

−xy + z2 < 0


I PDLC condition does not

hold, conv(S) 6= R3

I conv(S) 6= ∩λ∈ΩSλ
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m = 4 (and satisfying PDLC)

S :=

(x , y , z)

∣∣∣∣∣∣∣∣
x2 + y2 + z2 + 2.2(xy + yz + xz) < 1

−2.1x2 + y2 + z2 < 0
x2 − 2.1y2 + z2 < 0
x2 + y2 − 2.1z2 < 0



I PDLC condition holds,
conv(S) 6= R3

I conv(S) 6= ∩λ∈ΩSλ
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Do we need a finite number of aggregations?

S := {x , y
∣∣ x2 ≤ 1, y2 ≤ 1, (x − 1)2 + (y − 1)2 ≥ 1

}
,

I PDLC does not hold
I Let Ω+ := {λ ∈ R3

+ |Sλ ⊇ conv(S)}

I conv(S) =
⋂

λ∈Ω+ Sλ.

I conv(S) (
⋂

λ∈Ω̃+ Sλ for any Ω̃+ ⊆ Ω+ which is finite.
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Figure: Plots of sets S (left) and conv(S) (right).

53



Convex hull of
quadratic inequalities

via aggregations

Dey, Muñoz, Serrano

Introduction

Main results
Three rows

Counterexamples

Proof Outlines

Do we need a finite number of aggregations?

S := {x , y
∣∣ x2 ≤ 1, y2 ≤ 1, (x − 1)2 + (y − 1)2 ≥ 1

}
,

I PDLC does not hold
I Let Ω+ := {λ ∈ R3

+ |Sλ ⊇ conv(S)}
I conv(S) =

⋂
λ∈Ω+ Sλ.

I conv(S) (
⋂

λ∈Ω̃+ Sλ for any Ω̃+ ⊆ Ω+ which is finite.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure: Plots of sets S (left) and conv(S) (right).

54



3
Proof outlines



3.1
A new S-lemma



Convex hull of
quadratic inequalities

via aggregations

Dey, Muñoz, Serrano

Introduction

Main results

Proof Outlines
S-lemma

Rest of proof

A new S-Lemma for 3 quadratic constraints

Lemma
Let n ≥ 3 and let g1, g2, g3 : Rn → R be homogeneous quadratic
functions:

gi (x) = x>Qix .

Assuming there is a linear combination of Q1,Q2,Q3 that is positive
definite, the following equivalence holds

{x ∈ Rn : gi (x) < 0, i ∈ [3]} = ∅ ⇐⇒ ∃λ ∈ R3
+ \ {0},

3∑
i=1

λiQi � 0.
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Main ingredients for proving new S-lemma

I SDP strong duality (under staler condition)
I

Theorem ([Barvinok (2001)])
If A ⊆ Sn is an affine subspace such that the intersection Sn

+ ∩ A is
non-empty, bounded and dim(A) ≥

(n+1
2

)
−
(r+2

2

)
then there is a

matrix X ∈ Sn
+ ∩ A such that rank(X ) ≤ r .
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Lets try to prove conv(S) = ∩λ∈ΩSλ

conv(S) ⊆ ∩λ∈ΩSλ <— Straight forward

conv(S) ⊇ ∩λ∈ΩSλ:
I Pick x∗ ∈ Rn such that x∗ 6∈ conv(S)

I (Separation theorem), there exists α>x < β valid for conv(S) that
separates x∗.

I (Homogenization) The above together with conv(S) 6= Rn can be
shown to imply: {x |α>x = βxn+1} (call it H) does not intersect
homogenization of S:

H ∩
{

(x , xn+1 | [x xn+1]

[
Ai bi

b>i ci

] [
x

xn+1

]
< 0, i ∈ [3]

}
= ∅.

I (Apply S-lemma, assuming PDLC) We obtain λ ∈ Ω such that

H ∩

{
(x , xn+1 | [x xn+1]

(
3∑

i=1

λi

[
Ai bi

b>i ci

])[
x

xn+1

]
< 0,

}
= ∅.

I It turns, the above is sufficient to show that x∗ 6= Sλ.
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