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Most Successful Cutting Planes for
Unstructured Problems

Diasbled Cut Year Mean Performance
Degradation

Gomory Mixed Integer 1960 2.52X
Mixed Integer Rounding 2001 1.83X
Knapsack Cover 1983 1.40X
Flow Cover 1985 1.22X
Implied Bound 1991 1.19X
Flow path 1985 1.04X
Clique 1983 1.02X
GUB Cover 1998 1.02X
Disjunctive 1979 0.53X

Table taken from Bixby, Rothberg [2007].
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"Typical" Single Row Relaxations for
Unstructured MIPs

Let P = {x ∈ Zn
+|Ax ≤ b}. The single row relaxation approach

to cut generation is:

I Drop all constraints except one:
∑

j Aijxj ≤ bi .

I Use a Black-box program to generate the cutting plane∑
j αjxj ≤ β using one constraint and bounds on variables.

I Cutting plane
∑

j αjxj ≤ β is valid for P

Example: GMIC, Knapsack Cover.
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Not All Cuts Can Be Generated Through
Single-Row Relaxation - In One Step

5



A Family of Facets
for

Multiple-Constraint
Infinite Group

Relaxation of MIPs

Motivation
Deriving Cutting Planes
Using Multiple Constraints

Group Approach

A Simple Family:
Aggregation

Lifting-Space
(Superadditive)
Representation of
Group Cuts

Sequential-Merge
Operator

Conclusion

Studies Suggests Studying High-Dimensional
Group Problems

1. Fischetti and Saturni [2007]

“... then the research on improved bounds based on mod-1
considerations should concentrate on finding row combinations
different from those in the optimal tableau (a topic investigated in a
recent paper by Fischetti and Lodi [9]), or has to take into account
two or more tableau rows at a same time so as to better
approximate the corner polyhedron."

2. Dash and Günlük [2006c]

“GMI cuts have the smallest possible cut coefficient for continuous
variables among all group cuts. Indeed, for most of the instances
where no violated group cuts exist after GMI cuts are added are
problems with continuous variables."

3. Gomory and Johnson [2003]

“There are reasons to think that such inequalities would be
stronger since they deal with the properties of two rows, not one.
They can also much more accurately reflect the structure of the
continuous variables."
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Group Cut: Basic Idea
1. Generate the Group Problem which is a relaxation of a

MIP. This relaxation will consider information from multiple
rows.

2. Generate a valid inequality for the Group Problem.

Since Group Problem is a relaxation of the original MIP, the
valid inequality for the Group Problem is valid for the original
MIP.
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Group Relaxation
Feasible region of standard IP:

2.3x + 0.9y + 1.1z = 5.5

2.4x − 1.3y + 0.7z = 3.5; x, y, z ∈ Z+

Feasible Points: (2, 1, 0), (0, 0, 5).

I Relaxation Step 1: Consider each row modulo 1.

2.3x(mod1) + 0.9y(mod1) + 1.1z(mod1) ≡ 5.5(mod1)

2.4x(mod1)− 1.3y(mod1) + 0.7z(mod1) ≡ 3.5(mod1); x, y, z ∈ Z+ (1)

Feasible points: (2, 1, 0), (0, 0, 5), (4, 2, 5) ...

I
Rewrite (1) in ‘Group Space’:

(
.3
.4

)
x +

(
.9
.7

)
y +

(
.1
.7

)
z =

(
.5
.5

)

I Relaxation Step 2: Introduce additional variables.

∑
u∈I2

ut(u) =

(
.5
.5

)
,

where I2 = {u ∈ R2|0 ≤ u1, u2 < 1, } and t(u) > 0 for a finite subset of I2.
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m-Dimensional Group Problem

Definition (Infinite Group Problem, Johnson 1974)
For r ∈ Im and r 6= o, the group Problem PI(r ,m) is the set of
functions t : Im → R such that

1.
∑

u∈Im ut(u) = r , r ∈ Im,

2. t(u) is a non-negative integer for u ∈ Im,

3. t has a finite support, i.e., t(u) > 0 for a finite subset of Im.
�
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Inequalities for Infinite Group Problems

Definition (Valid Inequality, Johnson 1974)
A function φ : Im → R+ is defined as a valid inequality for
PI(r,m) if

1. φ(o) = 0,

2. φ(r) = 1, and

3.
∑

u∈Im φ(u)t(u) ≥ 1, ∀ t ∈ PI(r ,m). �
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A Hierarchy of Valid Cutting Planes

Definition (Subadditive Inequality, Gomory and
Johnson (1972a,b))
A function φ : Im → R+ is defined as a valid subadditive inequality for PI(r,m) if
φ is valid and φ(u) + φ(v) ≥ φ(u + v) ∀u, v ∈ Im. �

Definition (Minimal Inequality, Gomory and Johnson
(1972a,b))
A function φ : Im → R+ is defined as a minimal inequality for PI(r,m) if there
exists no valid function φ′ 6= φ such that φ′(u) ≤ φ(u) ∀u ∈ Im. �

Let P(φ) be the set of points t that satisfy φ at equality, i.e.,
P(φ) = {t ∈ PI(r ,m) |

∑
u∈Im,t(u)>0 φ(u)t(u) = 1}.

Definition (Facet-Defining Inequality, Gomory and
Johnson (2003))
We say that an inequality φ is facet-defining for PI(r ,m) if there does not exist
a valid function φ∗ such that P(φ∗) ) P(φ). �
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A Hierarchy of Valid Cutting Planes - II
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Technique to Prove Valid Function is
Facet-Defining

Given a function φ : Im → R+

1. Prove function is subadditive valid function.

2. Prove function is minimal: Use Gomory and Johnson’s
Characterization,

φ(u) + φ(r − u) = 1 ∀u ∈ Im. (2)

3. Prove E(φ)1 is unique. [Facet Theorem, Gomory and
Johnson (2003)]

1Notation E(φ): Let f be a ‘variable function’, i.e, for each point u ∈ Im, we

define f (u) to be a non-negative variable. E(φ) is the system of equations

f (u) + f (v) = f (u + v) for all u, v ∈ Im such that φ(u) + φ(v) = φ(u + v).
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GMIC is a Facet of One-Dimensional Group
Relaxation

1. One row from a simplex tableau

n∑
i=1

ai xi = b1

2. Compute fractional part of each coefficient,

fi = ai (mod1)

r = b(mod1)

3. The GMIC is generated as

n∑
i=1

ξ(fi )xi ≥ 1

ξ(f ) =

{
f/r f < r
(1− f )/(1− r) f ≥ r .

Figure: The GMIC

18



A Family of Facets
for

Multiple-Constraint
Infinite Group

Relaxation of MIPs

Motivation

Group Approach

A Simple Family:
Aggregation

Lifting-Space
(Superadditive)
Representation of
Group Cuts

Sequential-Merge
Operator

Conclusion

How Will Two-Dimensional Group Cuts
Work?

1. Extract two rows from a simplex tableau

n∑
i=1

a1i xi = b1

n∑
i=1

a2i xi = b2

2. Compute fractional part of each coefficient,

fji = aji (mod1) j ∈ {1, 2}

3. A group cut is generated as

n∑
i=1

φ(f1i , f2i )xi ≥ 1

where φ is a valid function for PI(r , 2), where
r = (b1(mod1), b2(mod1)).

Figure: A valid
function φ
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A Simple Family: Aggregation
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Homomorphism: Generalization of ‘K-Cuts’

Definition
The homomorphism λ : Im → Im is defined as λ(x1, ..., xm) = (λ1x1(mod1),
..., λmxm(mod1)), where λ1, ..., λm are non-zero integers.

Theorem (Homomorphism Theorem, Gomory and
Johnson (1972), D. and Richard(2006))
φ is facet-defining for PI(r ,m) iff φ ◦ λ is facet-defining for PI(v ,m), where
λ(v) = r .
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Apply One-Dimensional Facets to
Aggregation of Constraints: Facet-Defining
Definition
Given ζ : I1 → R+ a piecewise linear and continuous valid inequality for
PI(c, 1), we construct the function τ valid for PI((r1, r2), 2) as
τ(x , y) = ζ(λ1x + λ2y)(mod1), where λ1f1 + λ2f2 = c, λ1, λ2 ∈ Z, and λ1
and λ2 are not both zero.

Theorem (Aggregation Theorem)
κ is facet-defining for PI(r , 2) iff ζ is facet-defining for PI(c, 1).
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All ‘Two Gradient’ Cuts for PI(r , 2) are
Aggregation-Based Cuts

Theorem (Two-Gradient Theorem)
All continuous, piecewise linear, two-gradient facet of PI(r ,2)
can be derived from a facet of PI(r ,1) using aggregation.
Some consequences:

I Gives a complete characterization of continuous functions
with only two gradients.

I All two slope functions for PI(r ,1) are facet-defining. This
is a two-dimensional analog for a similar result in
one-dimension [Gomory and Johnson (1972b)].
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From Group- to Lifting-Space Representation

Definition (Lifting-Space Representation)
Given a valid inequality φ : Im → R+ for PI(r ,m), we define the
lifting-space representation of φ as [φ]r : Rm → R where

[φ]r (x) =
m∑

i=1

xi −

(
m∑

i=1

ri

)
φ(P(x)).

�

Proposition
Given m rows of tableau Ax = b, if

∑
i φ(P(Ai))xi ≥ 1 is valid,

then
∑

i [φ]r (Ai)xi ≤ [φ]r b is valid, where r = P(b). �

Notation: For a ∈ Rm, P(a) = (a1(mod1), a2(mod1), ...am(mod1).
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Example of a Function in Group- and
Lifting-Space
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Explanation of Lifting-Space Representation
For the tableau row:

n∑
i=1

aixi = b (3)

I Start with Group Cut:
∑n

i=1 φ(P(ai))xi ≥ 1.

I Multiply r = b(mod1) to group cut:

n∑
i=1

rφ(P(ai))xi ≥ r (4)

I Subtract (4) from tableau row (3):

n∑
i=1

[φ]r (ai)xi ≤ [φ]r b (5)
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From Lifting- to Group-Space Representation

Proposition
If φ is valid function for PI(r ,m),

1. [φ]r (x + ei) = [φ]r (x) + 1, where ei is the i th unit vector of
Rm. We say that [φ]r is pseudo-symmetric.

2. [φ]r is superadditive iff φ is subadditive. �

A function π : D → R is superadditive if π(u) + π(v) ≤ π(u + v) ∀u, v ∈ D.

Definition (Group-Space Representation)
Given a superadditive function ψ : Rm → R that is
pseudo-symmetric, we define the group-space representation
of ψ as [ψ]−1

r : Im → R where [ψ]−1
r (x) =

∑m
i=1 x̃i−ψ(x)∑m

i=1 r̃i
. �
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Sequential-Merge Operation

Definition
Assume that g and h are valid functions for PI(r1,1) and
PI(r2,m) respectively. We define the sequential-merge of g
and h as the function g♦h : Im+1 → R+ where

g♦h(x1, x2) = [[g]r1(x1 + [h]r2(x2))]
−1
r (x1, x2) (6)

and r = (r1, r2). �

g♦h =
(
∑m

i=1 r i
2)h(x2)+r1g(P(x1+

∑m
i=1 x i

2−(
∑m

i=1 r i
2)h(x2)))

r1+
∑m

i=1 r i
2

33



A Family of Facets
for

Multiple-Constraint
Infinite Group

Relaxation of MIPs

Motivation

Group Approach

A Simple Family:
Aggregation

Lifting-Space
(Superadditive)
Representation of
Group Cuts

Sequential-Merge
Operator
Sequential-Merge
Procedure

Facets of High-Dimensional
Group Problems

Conclusion

Examples of Sequential-Merge Inequalities
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Explanation of Sequential-Merge Operator
Given: (1)m + 1 Tableau Rows:∑

i

a1
i xi = b1 }... First Row∑

i

a2
i xi = b2 }... Next m Rows

(2) Valid group functions g and h.

1. Generate valid inequality [h] for the last m-rows:∑
i

[h](a2
i )xi ≤ [h](b2) (7)

2. Add (7) to the first row of tableau, i.e.,∑
i

([h](a2
i ) + a1)xi ≤ [h](b2) + b1 (8)

3. Generate the valid cut [g] for (8):∑
i

[g]([h](a2
i ) + a1)xi ≤ [g]([h](b2) + b1) (9)

4. Convert (9) to Group-Space.
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Explanation of Sequential-Merge Operator
Given: (1)m + 1 Tableau Rows:∑

i

a1
i xi = b1 }... First Row∑

i

a2
i xi = b2 }... Next m Rows

(2) Valid group functions g and h.
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Sequential-Merge Operator Generates
Minimal Inequalities

Proposition (Validity)
g♦h is a valid subadditive function for PI(r ,m+1) where
r ≡ (r1, r2), if:

I g and h are valid subadditive functions for PI(r1,1) and
PI(r2,m) respectively, and

I [g]r1 is nondecreasing. �

Proposition (Non-Dominance)
g♦h is a minimal function for PI(r ,m+1) where r ≡ (r1, r2), if:

I g and h are valid, minimal functions for PI(r1,1) and
PI(r2,m),

I [g]r1 is nondecreasing. �
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Sequential-Merge Operator Generates
Facets for High-Dimensional Group Problems

Theorem (Sequential-Merge Theorem)
g♦h is a facet-defining inequality for PI((r1, r2),m + 1) if:
I g and h are continuous, piecewise linear, facet-defining

inequalities of PI(r1, 1) and PI(r2,m) respectively,
I E(g) and E(h) have unique solution,
I [g]r1 and [h]r2 are nondecreasing.

�
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Outline of Proof
Aim: To prove g♦h is the unique solution to E(g♦h). [Facet
Theorem (Gomory and Johnson (2003)]

Assume by Contradiction: ∃ a valid function for PI(r ,m + 1), ψ,
such that ψ 6= g♦h and ψ is a solution to E(g♦h).

Three steps:
I Prove ψ = g♦h on the support. Support of g♦h:
{(x , y) ∈ Im+1 | x = −Y + R2h(y)}.

1. g and h are continuous, piecewise linear.
2. [h]r is non-decreasing.
3. E(h) is unique.
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Outline of Proof - Contd.

I Prove ψ(x ,0) = g♦h(x ,0) ∀0 ≤ x < 1.
1. E(g) is unique.

I Finally prove ψ(u) = g♦h(u) ∀u ∈ Im+1.
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Assumptions of the Sequential-Merge
Theorem: Necessary or Not?

Under very general conditions the Sequential-Merge operator
generates facets of high-dimensional group problem using two
facets of lower-dimensional group problems. ‘Reminiscent’ of
general results such as Homomorphism/Automorphism,
Aggregation, etc.

1. g being facet-defining in g♦h is necessary.

2. h being facet-defining in g♦h is not necessary: Need to
search more general conditions.

3. [h] being non-decreasing may also not be necessary.

44



A Family of Facets
for

Multiple-Constraint
Infinite Group

Relaxation of MIPs

Motivation

Group Approach

A Simple Family:
Aggregation

Lifting-Space
(Superadditive)
Representation of
Group Cuts

Sequential-Merge
Operator
Sequential-Merge
Procedure

Facets of High-Dimensional
Group Problems

Conclusion

Deriving Coefficients of Continuous Variables

Johnson (1974): If φ is subadditive, valid coefficients for continuous variables
can be found as the slope at the origin of function φ:

(10)

muφ(w) = limh→0+
φ(P(wh))

h

Proposition (Mixed Integer Extension)
Let c+

g = limε→0+
g(ε)
ε

= 1
r1

, c−g = limε→0+
g(1−ε)
ε

, ch(y) = limε→0+
h(εy)
ε

. The
coefficients of the continuous variables for g♦h are given by

µg♦h(x , y) =


R2ch(y)+r1c+

g (x+Y−R2ch(y))

r1+R2
if (x + Y − R2ch(y)) ≥ 0

R2ch(y)−r1c−g (x+Y−R2ch(y))

r1+R2
if (x + Y − R2ch(y)) ≤ 0

�

Notation: X =
∑m

i=1 xi .
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Sequential-Merge Facets Generate Strong
Coefficients for Continuous Variables

Proposition (Non-Dominance of Continuous
Variables’ Coefficients)
The coefficients for continuous variables of GMIC♦GMIC are
not dominated by those of GMICs based on single constraints.

�
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Example Where Sequential-Merge Inequality
Cannot Be Derived Using Disjunction

Example IP:

1
3

x − 1
3

y ≤ 1

1
3

x +
2
3

y ≤ 3
2

x , y ∈ Z+

Simplex Tableau:

x + 2s1 + s2 =
7
2

y − s1 + s2 =
1
2

47



A Family of Facets
for

Multiple-Constraint
Infinite Group

Relaxation of MIPs

Motivation

Group Approach

A Simple Family:
Aggregation

Lifting-Space
(Superadditive)
Representation of
Group Cuts

Sequential-Merge
Operator
Sequential-Merge
Procedure

Facets of High-Dimensional
Group Problems

Conclusion

Results on Günlük and Pochet Instances
[2001]

∆GMIC♦GMIC =
zGMIC♦GMIC − zGMIC

zGMIC − zLP
× 100 (11)

Integer Continuous Rows ∆GMIC♦GMIC
40 0 20 34.65
60 0 30 39.83
80 0 40 25.36

100 0 50 26.83
40 5 20 28.27
60 5 30 25.79
80 5 40 31.68

100 5 50 31.72
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Results on Atamtürk Mixed Integer Knapsack
[2003]

Integer Continuous Rows ∆GMIC♦GMIC
250 20 100 0.82
250 20 75 5.03
250 20 50 13.59
250 10 100 1.51
250 10 75 6.88
250 10 50 13.97
250 5 100 2.09
250 5 75 7.96
250 5 50 14.22
500 20 100 0.50
500 20 75 5.77
500 20 50 13.63
500 10 100 0.12
500 10 75 5.70
500 10 50 13.50
500 5 100 1.92
500 5 75 7.00
500 5 50 14.33
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Some Two-Step MIR inequalities are
Sequential-Merge Inequalities

Some two-step MIR inequalities (Dash and Günlük) can be
generated in the following fashion:
ξ♦ξ(x) = [[ξ]r (x + [ξ]r (x)]−1(x , x).
I Use the same row twice, instead of using two rows of the

tableau.
I Use the GMIC for both g and h in g♦h.

Figure: Two-Step MIR
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‘Projected’ Sequential-Merge Cuts
Obtain functions for lower-dimensional group problems using
functions of higher-dimensional group problems.
Basic Idea: φ(x1) = φ̃(nx1, x1).
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Some Other Projected Sequential-Merge
Functions
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Sufficient Condition For Projected
Sequential-Merge Inequality To Be
Facet-Defining

Notation:
1. ξ : GMIC
2. g♦1

nh(x) = g♦h(nx , x).

Theorem (Projected Sequential-Merge Theorem)
Let φ : Im+1 → R+ be a facet-defining inequality of
PI((r1, ..., rm+1),m + 1). If φ is of the form
g1♦g2♦g3...gm♦ξ where gi is a piecewise linear,
continuous, facet-defining inequality of PI(ri ,1), [gi ] is
nondecreasing and E(gi) is unique up to scaling then
φ′ : Im → R+ defined as g1♦g2♦g3...gm♦1

nξ is
facet-defining for PI((r1, ..., rm),m). �
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Pitfalls...

I ‘Low Rank’
1. Aggregation is ‘rank 1’.
2. Sequential-Merge is ‘rank 2’.

I Exponential increase in number of cuts: Although
group cuts are easy to derive, the number of cuts
increase exponentially.
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... Challenges

I Is it possible to create a ‘Library of Operations’ to create
‘guaranteed’ facet-defining inequalities? (Not all
‘Operations’ seem to create facets)

1. Aggregation
2. Homomorphism (K-Cuts...)
3. Sequential-Merge
4. ...

I All cuts cannot be generated using a sequence of
operations on lower-dimensional cuts. [Cook et al.(1990)]

I Identify operation/parameter to be selected based on
different criteria:

1. Coefficient of continuous variables.
2. Coefficient of integer variables.
3. ...
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Conclusions

I First known facets: The new inequalities form the first
family of facets for high-dimensional group problems.

I Generic result: The sequential-merge theorem is a
very general result, creating a large family of
facet-defining inequalities.

I Strong continuous coefficients: These new
inequalities have strong coefficients for continuous
variables. (A well-known weakness of
one-dimensional group cuts).

I Stronger than first split closure: These inequalities
can produce cuts that are not part of the first split
closure.
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Thank You.
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