
Using Sparsity to Design Primal Heuristics for MILPs:
Two Stories

Santanu S. Dey
Joint work with: Andres Iroume, Marco Molinaro, Domenico

Salvagnin, Qianyi Wang

MIP Workshop, 2017

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems

Sparsity in “real" Integer Programs (IPs)

I “Real" IPs are sparse: The average number (median) of non-zero
entries in the constraint matrix of MIPLIB 2010 instances is
1.63% (0.17%).

I Many have "arrow shape" [Bergner, Caprara, Furini, Lübbecke,
Malaguti, Traversi 11] or "almost decomposable structure" of the
constraint matrix.

I Other example, two-stage Stochastic IPs:

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

Goal: Exploit sparsity of IPs while designing primal heuristics?

2

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems

Sparsity in “real" Integer Programs (IPs)

I “Real" IPs are sparse: The average number (median) of non-zero
entries in the constraint matrix of MIPLIB 2010 instances is
1.63% (0.17%).

I Many have "arrow shape" [Bergner, Caprara, Furini, Lübbecke,
Malaguti, Traversi 11] or "almost decomposable structure" of the
constraint matrix.

I Other example, two-stage Stochastic IPs:

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

Goal: Exploit sparsity of IPs while designing primal heuristics?

3

1
Story 1: New randomization step for Feasibility Pump
Joint work with: Andres Iroume1, Marco Molinaro2, and
Domenico Salvagnin3

1Revenue Analytics, USA
2PUC-Rio, Brazil
3IBM Italy and DEI, University of Padova, Italy

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Introduction: Feasibility Pump (FP)

[Fischetti, Glover, Lodi 05]

Vanilla Feasibility Pump

I Input: Mixed-binary LP (with binary variables x and
continuous variables y)

I Solve the linear programming relaxation, and let (x̄ , ȳ)
be an optimal solution

I While x̄ is not integral do:
I Round: Round x̄ to closest 0/1 values, call the obtained

vector x̃ .

I Project: Let (x̄ , ȳ) be the point in the LP relaxation that
minimizes

∑
i |xi − x̃i | (we say, x̄ = `1-proj(x̃)).

Problem: The above algorithm may cycle: Revisit the same
x̃ ∈ {0, 1}n is different iterations (stalling).
Solution: Randomly perturb x̃ .

5

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Introduction: Feasibility Pump (FP)

[Fischetti, Glover, Lodi 05]

Vanilla Feasibility Pump

I Input: Mixed-binary LP (with binary variables x and
continuous variables y)

I Solve the linear programming relaxation, and let (x̄ , ȳ)
be an optimal solution

I While x̄ is not integral do:
I Round: Round x̄ to closest 0/1 values, call the obtained

vector x̃ .

I Project: Let (x̄ , ȳ) be the point in the LP relaxation that
minimizes

∑
i |xi − x̃i | (we say, x̄ = `1-proj(x̃)).

Problem: The above algorithm may cycle: Revisit the same
x̃ ∈ {0, 1}n is different iterations (stalling).
Solution: Randomly perturb x̃ .

6

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Introduction: Feasibility Pump (FP)

[Fischetti, Glover, Lodi 05]

Vanilla Feasibility Pump

I Input: Mixed-binary LP (with binary variables x and
continuous variables y)

I Solve the linear programming relaxation, and let (x̄ , ȳ)
be an optimal solution

I while x̄ is not integral do:
I Round: Round x̄ to closest 0/1 values, call the obtained

vector x̃ .

I If stalling detected: Randomly perturb x̃
to a different 0/1 vector.

I Project (`1-proj): Let (x̄ , ȳ) be the point in the LP
relaxation that minimizes

∑
i |xi − x̃i |.

7

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Feasibility Pump (FP)

I FP is very successful in practice (For example, the original FP
finds feasible solutions for 96.3% of the instances in MIPLIB 2003
instances).

I Many improvements and generalizations: [Achterberg, Berthold
07], [Bertacco, Fischetti, Lodi 07], [Bonami, Cornuéjols, Lodi,
Margot 09], [Fischetti, Salvagnin 09], [Boland, Eberhard,
Engineer, Tsoukalas 12], [D’Ambrosio, Frangioni, Liberti, Lodi
12], [De Santis, Lucidi, Rinaldi 13], [Boland, Eberhard, Engineer,
Fischetti, Savelsbergh, Tsoukalas 14], [Geißler, Morsi, Schewe,
Schmidt 17], ...

I Some directions of research:
I Take objective function into account
I Mixed-integer programs with general integer variables.
I Mixed-integer Non-linear programs (MINLP)
I Alternative projection and rounding steps

Randomization step plays significant role but has not been explicitly
studied. We focus on changing the randomization step by "thinking
about sparsity".

8

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Feasibility Pump (FP)

I FP is very successful in practice (For example, the original FP
finds feasible solutions for 96.3% of the instances in MIPLIB 2003
instances).

I Many improvements and generalizations: [Achterberg, Berthold
07], [Bertacco, Fischetti, Lodi 07], [Bonami, Cornuéjols, Lodi,
Margot 09], [Fischetti, Salvagnin 09], [Boland, Eberhard,
Engineer, Tsoukalas 12], [D’Ambrosio, Frangioni, Liberti, Lodi
12], [De Santis, Lucidi, Rinaldi 13], [Boland, Eberhard, Engineer,
Fischetti, Savelsbergh, Tsoukalas 14], [Geißler, Morsi, Schewe,
Schmidt 17], ...

I Some directions of research:
I Take objective function into account
I Mixed-integer programs with general integer variables.
I Mixed-integer Non-linear programs (MINLP)
I Alternative projection and rounding steps

Randomization step plays significant role but has not been explicitly
studied. We focus on changing the randomization step by "thinking
about sparsity".

9

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Sparse IPs ≈ Decomposable IPs

I As discussed earlier real integer programs are sparse.
I A common example of sparse integer programs is those that are

almost decomposable.

I As proxy, we keep in mind decomposable problems.

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

10

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Sparse IPs ≈ Decomposable IPs

I As discussed earlier real integer programs are sparse.
I A common example of sparse integer programs is those that are

almost decomposable.
I As proxy, we keep in mind decomposable problems.

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

11

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Agenda

I Propose a modification of WalkSAT for the mixed-binary case.
I Show that this modified algorithm "works well" on-mixed-binary

instances that are decomposable.

I Analyze randomization based on WalkSAT + Feasibility Pump.
I Show that this version of FP "works well" on single-row

decomposable instances.
I Implementation of FP with new randomization step that combines

ideas from the previous randomization and new randomization.
I The new method shows small but consistent improvement over FP.

12

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Agenda

I Propose a modification of WalkSAT for the mixed-binary case.
I Show that this modified algorithm "works well" on-mixed-binary

instances that are decomposable.
I Analyze randomization based on WalkSAT + Feasibility Pump.

I Show that this version of FP "works well" on single-row
decomposable instances.

I Implementation of FP with new randomization step that combines
ideas from the previous randomization and new randomization.

I The new method shows small but consistent improvement over FP.

13

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Agenda

I Propose a modification of WalkSAT for the mixed-binary case.
I Show that this modified algorithm "works well" on-mixed-binary

instances that are decomposable.
I Analyze randomization based on WalkSAT + Feasibility Pump.

I Show that this version of FP "works well" on single-row
decomposable instances.

I Implementation of FP with new randomization step that combines
ideas from the previous randomization and new randomization.

I The new method shows small but consistent improvement over FP.

14

1.1
WalkSAT

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Introduction: WALKSAT

WalkSAT is effective primal heuristic used in SAT community
[Schöning 99]

≤

≤

≥

=

1. RAND BASED ON WALKSAT

0 1 0 0 … 0 1 1 … … 1 1 0 1 𝑥 = 0

• WalkSAT is effective primal heuristic used in SAT community [Schoning 99]

WalkSAT for pure-binary IPs

- Start with a uniformly random point 𝑥 ∈ {0,1}𝑛. If feasible, done

- Else, pick any violated constraint and randomly pick a variable 𝑥𝑖 in its

support

- Flip value of 𝑥 𝑖

- Repeat from Step 2

WalkSAT for pure binary IPs

I Start with a uniformly random point x̄ ∈ {0, 1}n. If
feasible, done

I While x̄ is infeasible do
I Pick any violated constraint and randomly pick a variable

x̄i in its support
I Flip value of x̄i

16

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Performance of WalkSAT

I [Schöning 99] WalkSAT returns a feasible solution in ∼ 2n

iterations, in expectation.

Key Ideas:

I Consider a fixed integer feasible solution x∗. Track the
number of coordinates that different from x∗.

I In each step, with probability at least

1
s︸︷︷︸

non-zeros in violated constraint

we choose to flip coordinate where they differ

I With probability atleast
�
��

a positive constant

1
s , reduce by 1 the number of

coordinates they differ.

17

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Performance of WalkSAT

I [Schöning 99] WalkSAT returns a feasible solution in ∼ 2n

iterations, in expectation.

Key Ideas:

I Consider a fixed integer feasible solution x∗. Track the
number of coordinates that different from x∗.

I In each step, with probability at least

1
s︸︷︷︸

non-zeros in violated constraint

we choose to flip coordinate where they differ

I With probability atleast
�
��

a positive constant

1
s , reduce by 1 the number of

coordinates they differ.

18

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Performance of WalkSAT

I [Schöning 99] WalkSAT returns a feasible solution in ∼ 2n

iterations, in expectation.

Key Ideas:

I Consider a fixed integer feasible solution x∗. Track the
number of coordinates that different from x∗.

I In each step, with probability at least

1
s︸︷︷︸

non-zeros in violated constraint

we choose to flip coordinate where they differ

I With probability atleast
�
��

a positive constant

1
s , reduce by 1 the number of

coordinates they differ.

19

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Performance of WalkSAT

I [Schöning 99] WalkSAT returns a feasible solution in ∼ 2n

iterations, in expectation.

Key Ideas:

I Consider a fixed integer feasible solution x∗. Track the
number of coordinates that different from x∗.

I In each step, with probability at least

1
s︸︷︷︸

non-zeros in violated constraint

we choose to flip coordinate where they differ

I With probability atleast
�
��

a positive constant

1
s , reduce by 1 the number of

coordinates they differ.

20

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

WalkSAT good for decomposable instances

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

Observation
I Each iteration depends only on one part. Overall execution can

be split into independent executions over each part
I Put together bound from previous page over all parts

Consequences

I Find feasible solution in ∼ k2n/k iterations, in expectation.
I Compare this to total enumeration ∼ 2n iterations.

21

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

WalkSAT good for decomposable instances

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

Observation
I Each iteration depends only on one part. Overall execution can

be split into independent executions over each part
I Put together bound from previous page over all parts

Consequences

I Find feasible solution in ∼ k2n/k iterations, in expectation.
I Compare this to total enumeration ∼ 2n iterations.

22

1.2
Mixed-binary version of WalkSAT

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Mixed-binary version of WalkSAT

WalkSAT(l) for Mixed-binary IPs

I Input: Mixed-binary LP-relaxation
{(x , y) |Ax + By ≤ b} (with binary variables x and
continuous variables y); parameter: l

I Start with a uniformly random point x̄ ∈ {0, 1}n. If ∃ȳ
such that (x̄ , ȳ) is feasible, done

I While x̄ 6∈ Projx (P) is infeasible do
I Generate minimal projected certificate of infeasibility:

λ>Ax ≤ λ>b

1. a valid inequality for Projx (P) i.e.,λ ≥ 0, λ>B = 0.
2. violating x̄ : (λ>A)x̄ > λ>b
3. minimal with respect to support of λ.

(Can be obtained by solving a LP)
I Randomly pick l variables (with replacement) in the

support of minimal projected certificate.
I Flip value of these variables

24

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Mixed-binary WalkSAT

Key Observation: If a set is decomposable, then minimal certificate
has a support contained in exactly one disjoint set of variables.

Theorem
Consider a feasible decomposable mixed-binary set

P I = P I
1 × . . .× P I

k , where for all i ∈ [k] we have

P I
i = Pi ∩ ({0, 1}ni × Rdi),

Pi = {(x i , y i) ∈ [0, 1]ni × Rdi : Aix i + B iy i ≤ c i}. (1)

Let si be such that each constraint in Pi has at most si binary
variables, and define γi := min{si · (di + 1), ni}. Then with probability
at least 1− δ, Mixed-binary WalkSAT(1) returns a feasible solution
within

ln(k/δ)
∑

i

ni 2ni log γi

iterations.

25

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Mixed-binary WalkSAT

Key Observation: If a set is decomposable, then minimal certificate
has a support contained in exactly one disjoint set of variables.

Theorem
Consider a feasible decomposable mixed-binary set

P I = P I
1 × . . .× P I

k , where for all i ∈ [k] we have

P I
i = Pi ∩ ({0, 1}ni × Rdi),

Pi = {(x i , y i) ∈ [0, 1]ni × Rdi : Aix i + B iy i ≤ c i}. (1)

Let si be such that each constraint in Pi has at most si binary
variables, and define γi := min{si · (di + 1), ni}. Then with probability
at least 1− δ, Mixed-binary WalkSAT(1) returns a feasible solution
within

ln(k/δ)
∑

i

ni 2ni log γi

iterations.

26

1.3
Feasibility Pump + WalkSAT

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

FP + WalkSAT (FPW)

Vanilla Feasibility Pump

I Input: Mixed-binary LP (with binary variables x and
continuous variables y)

I Solve the linear programming relaxation, and let (x̄ , ȳ)
be an optimal solution

I while x̄ is not integral do:
I Round: Round x̄ to closest 0/1 values, call the obtained

vector x̃ .

I If Stalling detected: "Randomly" perturb
x̃ to a different 0/1 vector.

I Project: Let (x̄ , ȳ) be the point in the LP relaxation that
minimizes

∑
i |xi − x̃i |.

28

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

FP + WalkSAT (FPW)

Feasibility Pump + WalkSAT

I Input: Mixed-binary LP (with binary variables x and
continuous variables y)

I Solve the linear programming relaxation, and let (x̄ , ȳ)
be an optimal solution

I while x̄ is not integral do:
I Round: Round x̄ to closest 0/1 values, call the obtained

vector x̃ .

I If Stalling detected: "Randomly" perturb
x̃ to a different 0/1 vector. < −−−− Use
mixed-binary WalkSAT(l) for random
update

I Project: Let (x̄ , ȳ) be the point in the LP relaxation that
minimizes

∑
i |xi − x̃i |.

29

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Analysis of Feasibility Pump + WalkSAT (FPW)

1. We are not able to analyze this algorithm WFP for a general
mixed-binary IP

I Issue: From previous proof, with probability 1/sj randomization
makes progress, but projection+rounding in next iteration could ruin
everything

2. Can analyze running-time for decomposable 1-row instances, i.e.
instances of the following kind:

aix i + biy i = ci

x i ∈ {0, 1}ni , yi ∈ Rdi
+ .

}
∀i ∈ [k]

30

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Analysis of Feasibility Pump + WalkSAT (FPW)

1. We are not able to analyze this algorithm WFP for a general
mixed-binary IP

I Issue: From previous proof, with probability 1/sj randomization
makes progress, but projection+rounding in next iteration could ruin
everything

2. Can analyze running-time for decomposable 1-row instances, i.e.
instances of the following kind:

aix i + biy i = ci

x i ∈ {0, 1}ni , yi ∈ Rdi
+ .

}
∀i ∈ [k]

31

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Main result

Theorem
Consider a feasible decomposable 1-row instances set as shown in
the previous slide. Then with probability at least 1− δ, Feasibility
Pump + WalkSAT(2) returns a feasible solution within

T = dln(k/δ)e
∑
i∈[k]

ni (ni + 1) · 22ni log ni ≤ dln(k/δ)e k(n̄ + 1)2 · 22n̄ log n̄

iterations, where n̄ = maxi ni .

Note: Naive Feasibility Pump with original randomization
may fail to converge for these instances.

32

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Main result

Theorem
Consider a feasible decomposable 1-row instances set as shown in
the previous slide. Then with probability at least 1− δ, Feasibility
Pump + WalkSAT(2) returns a feasible solution within

T = dln(k/δ)e
∑
i∈[k]

ni (ni + 1) · 22ni log ni ≤ dln(k/δ)e k(n̄ + 1)2 · 22n̄ log n̄

iterations, where n̄ = maxi ni .

Note: Naive Feasibility Pump with original randomization
may fail to converge for these instances.

33

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

34

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

35

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

36

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

37

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

38

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

39

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n.

Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ . Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

40

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n. Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ . Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

41

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n. Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ .

Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

42

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n. Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ . Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

43

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n. Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ . Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

44

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n. Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ . Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

45

1.4
Computations

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proposed randomization

I All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

I The only change is in the randomization step.

Old randomization
I Define fractionality of i th variable: |x̄i − x̃i |. Let F be the number of

variables with positive fractionality.
I Randomly generate an integer TT (uniformly from {10, . . . , 30}).
I Flip the min{F ,TT} variables with highest fractionality.

New randomization
I Flip the min{F ,TT} variables with highest fractionality.
I If F < TT , then:

I let S be the union of the supports of the constraints that are not
satisfied by the current point (x̃ , ȳ).

I Select uniformly at random min{|S|,TT − |F |} indices from S, and
flip the values in x̃ for all the selected indices.

47

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proposed randomization

I All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

I The only change is in the randomization step.

Old randomization
I Define fractionality of i th variable: |x̄i − x̃i |. Let F be the number of

variables with positive fractionality.
I Randomly generate an integer TT (uniformly from {10, . . . , 30}).
I Flip the min{F ,TT} variables with highest fractionality.

New randomization
I Flip the min{F ,TT} variables with highest fractionality.
I If F < TT , then:

I let S be the union of the supports of the constraints that are not
satisfied by the current point (x̃ , ȳ).

I Select uniformly at random min{|S|,TT − |F |} indices from S, and
flip the values in x̃ for all the selected indices.

48

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Proposed randomization

I All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

I The only change is in the randomization step.

Old randomization
I Define fractionality of i th variable: |x̄i − x̃i |. Let F be the number of

variables with positive fractionality.
I Randomly generate an integer TT (uniformly from {10, . . . , 30}).
I Flip the min{F ,TT} variables with highest fractionality.

New randomization
I Flip the min{F ,TT} variables with highest fractionality.
I If F < TT , then:

I let S be the union of the supports of the constraints that are not
satisfied by the current point (x̃ , ȳ).

I Select uniformly at random min{|S|,TT − |F |} indices from S, and
flip the values in x̃ for all the selected indices.

49

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Computational experiments

Two classes of problems:

1. Two-stage stochastic models (randomly generated)

Ax + Diy i ≤ bi , i ∈ {1, . . . , k}
x ∈ {0, 1}p

y i ∈ {0, 1}q i ∈ {1, . . . , k}

2. MIPLIB 2010

Two algorithms:

1. FP: Feasibility pump 2.0

2. FPWM: Feasibility pump 2.0 + the modified randomization above

50

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Results for stochastic instances

found itr. time (s) % gap % modified

seed FP FPWM FP FPWM FP FPWM FP FPWM FPWM

1 81 96 266 198 2.76 2.35 47% 39% 22%
2 81 101 257 167 2.71 2.11 45% 36% 26%
3 79 93 279 194 2.86 2.41 48% 40% 25%
4 81 106 275 181 2.81 2.26 45% 35% 23%
5 83 103 253 178 2.69 2.15 45% 35% 25%
6 76 101 255 85 2.72 2.20 49% 37% 27%
7 78 94 277 198 2.84 2.43 47% 39% 27%
8 80 99 256 175 2.71 2.21 47% 37% 25%
9 78 97 276 192 2.79 2.36 48% 37% 26%
10 80 98 274 185 2.86 2.24 47% 38% 24%

Avg. 80 99 267 185 2.78 2.27 47% 37% 25%

Table: Aggregated results by seed on two-stage stochastic models.

I 150 instances
I k ∈ {10, 20, 30, 40, 50}
I p = q ∈ {10, 20}

51

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Results for MIPLIB 2010 instances

found itr. time (s) % gap % modified

seed FP FPWM FP FPWM FP FPWM FP FPWM FPWM

1 279 280 43 43 8.24 8.32 48% 48% 29%
2 279 279 44 44 8.40 8.33 50% 50% 22%
3 277 285 43 41 8.32 8.02 48% 47% 33%
4 280 282 42 41 8.07 7.89 48% 48% 25%
5 276 277 42 41 8.26 8.21 51% 51% 27%
6 277 278 43 42 8.29 8.13 50% 50% 32%
7 278 281 43 41 8.17 8.04 50% 49% 26%
8 273 277 43 43 8.16 8.07 49% 48% 31%
9 282 282 42 41 8.13 7.95 49% 49% 27%
10 278 282 42 40 8.33 8.02 50% 49% 31%

Avg. 278 280 43 42 8.24 8.10 49% 49% 28%

Table: Aggregated results by seed on MIPLIB2010.

52

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Conclusions

I First ever analysis of running time of Feasibility Pump (even if it is
for a special class of instances)

I Suggested changes are trivial to implement and appears to
dominate feasibility pump almost consistently.

I "Designing for sparse instances" helps!

53

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)
WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Approximate algorithm
for sparse packing
problems

Conclusions

I First ever analysis of running time of Feasibility Pump (even if it is
for a special class of instances)

I Suggested changes are trivial to implement and appears to
dominate feasibility pump almost consistently.

I "Designing for sparse instances" helps!

54

2
Story 2: Approximate algorithm for sparse packing
problems
Joint work with: Qianyi Wang4 and Marco Molinaro5

4Uber Inc.
5PUC-Rio, Brazil

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Packing instances

max c>x

s.t. Ax ≤ b

x ∈ Zn
+,

where A and b is non-negative.

High-level sketch of algorithm
The algorithm runs in two phases.

1. In the first phase, the sparse packing problem is partitioned into
smaller parts and then these small integer programs are solved.

2. In the second phase, the optimal solutions of the smaller
problems are patched together into a feasible solution for the
original problem by exploiting the sparsity structure of the
constraint matrix.

56

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Packing instances

max c>x

s.t. Ax ≤ b

x ∈ Zn
+,

where A and b is non-negative.

High-level sketch of algorithm
The algorithm runs in two phases.

1. In the first phase, the sparse packing problem is partitioned into
smaller parts and then these small integer programs are solved.

2. In the second phase, the optimal solutions of the smaller
problems are patched together into a feasible solution for the
original problem by exploiting the sparsity structure of the
constraint matrix.

57

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Packing instances

max c>x

s.t. Ax ≤ b

x ∈ Zn
+,

where A and b is non-negative.

High-level sketch of algorithm
The algorithm runs in two phases.

1. In the first phase, the sparse packing problem is partitioned into
smaller parts and then these small integer programs are solved.

2. In the second phase, the optimal solutions of the smaller
problems are patched together into a feasible solution for the
original problem by exploiting the sparsity structure of the
constraint matrix.

58

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Packing instances

max c>x

s.t. Ax ≤ b

x ∈ Zn
+,

where A and b is non-negative.

High-level sketch of algorithm
The algorithm runs in two phases.

1. In the first phase, the sparse packing problem is partitioned into
smaller parts and then these small integer programs are solved.

2. In the second phase, the optimal solutions of the smaller
problems are patched together into a feasible solution for the
original problem by exploiting the sparsity structure of the
constraint matrix.

59

2.1
Key ideas

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - I

Suppose the matrix A looks like this:
I 5 blocks of variables.
I Unshaded boxes correspond to zeros in A.

1 2 3 4 5

A1x1 + A2x2 + A3x3 + Ax4 + A5x5 ≤ b, x i ∈ Zni
+

61

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - I

I Suppose we fix variables in blocks {2, 3, 4, 5} to zero and find a
non-zero feasible solution in variables of block 1.

A1x1 +
��

���
���

���
�:0

A2x2 + A3x3 + Ax4 + A5x5 ≤ b, x i ∈ Zni
+

I Let this solutions be: (x̄1, 0, 0, 0, 0)

1 2 3 4 5

62

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - I

I Similarly we can fix variables in blocks {1, 3, 4, 5} to zero and find
a non-zero feasible solution in variables of block 2.

��
�*0

A1x1 + A2x2 +
���

���
���:0

A3x3 + Ax4 + A5x5 ≤ b, x i ∈ Zni
+

I Let this solutions be: (0, x̄2, 0, 0, 0)

1 2 3 4 5

63

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - I

I Is
(x̄1, 0, 0, 0, 0) + (0, x̄2, 0, 0, 0)

guaranteed to be a feasible solution?

1 2 3 4 5 1 2 3 4 5

I No!

64

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - I

I Is
(x̄1, 0, 0, 0, 0) + (0, x̄2, 0, 0, 0)

guaranteed to be a feasible solution?

1 2 3 4 5 1 2 3 4 5

I No!

65

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - I

I Is
(x̄1, 0, 0, 0, 0) + (0, 0, x̄3, 0, 0)

guaranteed to be a feasible solution?

1 2 3 4 5 1 2 3 4 5

I Yes!

66

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - I

I Is
(x̄1, 0, 0, 0, 0) + (0, 0, x̄3, 0, 0)

guaranteed to be a feasible solution?

1 2 3 4 5 1 2 3 4 5

I Yes!

67

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - I

A graph theoretic perspective
1 2 3 4 5 1 2 3 4 5

	

1	2	

3	 4	

5	

68

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - I

A graph theoretic perspective
1 2 3 4 5 1 2 3 4 5

12

3 4

5

{1, 2} is not a stable set in the graph!

69

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - I

A graph theoretic perspective
1 2 3 4 5 1 2 3 4 5

12

3 4

5

{1, 3} is a stable set in the graph!

70

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - II

Generalizing the notion of stable sets
1 2 3 4 5

1 2 3 4 5

12

3 4

5

{{2, 3}, {5}} is a general-stable set in the graph!

71

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - II

Generalizing the notion of stable sets
1 2 3 4 5 1 2 3 4 5

12

3 4

5

{{2, 3}, {5}} is a general-stable set in the graph!

72

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Key idea - II

Generalizing the notion of stable sets
1 2 3 4 5 1 2 3 4 5

12

3 4

5

{{2, 3}, {5}} is a general-stable set in the graph!

73

2.2
Some definitions

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Describing sparsity of A

J1 J2 J3 J4 J5 J6

The matrix A with:

1. Column partition
J := {J1, ..., J6}.

2. Unshaded boxes
correspond to zeros in A.

3. Shaded boxes may have
non-zero entries.

v1 v4

v2 v3

v6 v5

The corresponding graph GA,J :

1. One node for every block
of variables.

2. (vi , vj) ∈ E if and only if
there is a row in A with
non-zero entries in both
parts Ji and Jj .

75

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Describing sparsity of A

J1 J2 J3 J4 J5 J6

The matrix A with:

1. Column partition
J := {J1, ..., J6}.

2. Unshaded boxes
correspond to zeros in A.

3. Shaded boxes may have
non-zero entries.

v1 v4

v2 v3

v6 v5

The corresponding graph GA,J :

1. One node for every block
of variables.

2. (vi , vj) ∈ E if and only if
there is a row in A with
non-zero entries in both
parts Ji and Jj .

76

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Some graph-theoretic definition I: General-stable set

Definition (General stable set)
Let G = (V ,E) be a simple graph. Let V be a collection of subsets of
the vertices V . We call a collection of subsets of vertices M ⊆ 2V a
general stable set subordinate to V if the following hold:

1. Every set in M is contained in a set in V.

2. The sets in M are pairwise disjoint.

3. There are no edges of G with endpoints in distinct sets in M.

Example:

1. V = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v1, v5}}
2. M = {{v3}, {v1, v5}}

Original Graph:
	 v1	 v2	

v4	

v3	
v5	

General Stable Set:
	

v1	 v2	

v4	

v3	
v5	

77

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Some graph-theoretic definition I: General-stable set

Definition (General stable set)
Let G = (V ,E) be a simple graph. Let V be a collection of subsets of
the vertices V . We call a collection of subsets of vertices M ⊆ 2V a
general stable set subordinate to V if the following hold:

1. Every set in M is contained in a set in V.

2. The sets in M are pairwise disjoint.

3. There are no edges of G with endpoints in distinct sets in M.

Example:

1. V = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v1, v5}}
2. M = {{v3}, {v1, v5}}

Original Graph:
	 v1	 v2	

v4	

v3	
v5	

General Stable Set:
	

v1	 v2	

v4	

v3	
v5	

78

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Some graph-theoretic definition II:
General-chromatic number

Consider a simple graph G = (V ,E) and a collection V of subset of
vertices.

I General-chromatic number with respect to V (Denoted as η̄V(G)): It
is the smallest number of general-stable sets M1, . . . ,Mk

subordinate to V that cover all vertices of the graph (that is, every
vertex v ∈ V belongs to a set in one of theMi ’s).

I Fractional general-chromatic number with respect to V (Denoted
as ηV(G)): Given a general stable set M subordinate to V, let
χM ∈ {0, 1}|V | denote its incidence vector (that is, for each vertex
v ∈ V , χM (v) = 1 if v belongs to a set in M, and χM (v) = 0
otherwise.) Then we define the fractional general-chromatic
number

ηV(G) = min
∑

M

yM

s.t.
∑

M

yMχM ≥ 1 (2)

yM ≥ 0 ∀M,

where the summations range over all general stable sets
subordinate to V.

79

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Some graph-theoretic definition II:
General-chromatic number

Consider a simple graph G = (V ,E) and a collection V of subset of
vertices.

I General-chromatic number with respect to V (Denoted as η̄V(G)): It
is the smallest number of general-stable sets M1, . . . ,Mk

subordinate to V that cover all vertices of the graph (that is, every
vertex v ∈ V belongs to a set in one of theMi ’s).

I Fractional general-chromatic number with respect to V (Denoted
as ηV(G)): Given a general stable set M subordinate to V, let
χM ∈ {0, 1}|V | denote its incidence vector (that is, for each vertex
v ∈ V , χM (v) = 1 if v belongs to a set in M, and χM (v) = 0
otherwise.) Then we define the fractional general-chromatic
number

ηV(G) = min
∑

M

yM

s.t.
∑

M

yMχM ≥ 1 (2)

yM ≥ 0 ∀M,

where the summations range over all general stable sets
subordinate to V.

80

2.3
Algorithm

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Algorithm
I Input: Interaction graph GA,J = (V ,E); A collection V of subset

of vertices. LetM be the collection of all general stable sets wrt
V.

I Solve Subproblems: For W ⊆ U ∈ V.

wW := max c>x

s.t. Ax ≤ b

xj = 0, ∀ variables not in W .

xj ∈ Z++

Optimal solution: xW

I Patching Integer program:

zA := max
∑

Û wW yW

s.t. yW1 + yW2 ≤ 1 if W1 ∩W2 6= ∅
yW1 + yW2 ≤ 1 if vi ∈ Wi , (v1, v2) ∈ E

y ∈ {0, 1}|W|

Optimal solution: y∗

I Output: xA :=
∑

M∈W y∗W xW

82

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Algorithm
I Input: Interaction graph GA,J = (V ,E); A collection V of subset

of vertices. LetM be the collection of all general stable sets wrt
V.

I Solve Subproblems: For W ⊆ U ∈ V.

wW := max c>x

s.t. Ax ≤ b

xj = 0, ∀ variables not in W .

xj ∈ Z++

Optimal solution: xW

I Patching Integer program:

zA := max
∑

Û wW yW

s.t. yW1 + yW2 ≤ 1 if W1 ∩W2 6= ∅
yW1 + yW2 ≤ 1 if vi ∈ Wi , (v1, v2) ∈ E

y ∈ {0, 1}|W|

Optimal solution: y∗

I Output: xA :=
∑

M∈W y∗W xW

83

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Algorithm
I Input: Interaction graph GA,J = (V ,E); A collection V of subset

of vertices. LetM be the collection of all general stable sets wrt
V.

I Solve Subproblems: For W ⊆ U ∈ V.

wW := max c>x

s.t. Ax ≤ b

xj = 0, ∀ variables not in W .

xj ∈ Z++

Optimal solution: xW

I Patching Integer program:

zA := max
∑

Û wW yW

s.t. yW1 + yW2 ≤ 1 if W1 ∩W2 6= ∅
yW1 + yW2 ≤ 1 if vi ∈ Wi , (v1, v2) ∈ E

y ∈ {0, 1}|W|

Optimal solution: y∗

I Output: xA :=
∑

M∈W y∗W xW

84

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Algorithm
I Input: Interaction graph GA,J = (V ,E); A collection V of subset

of vertices. LetM be the collection of all general stable sets wrt
V.

I Solve Subproblems: For W ⊆ U ∈ V.

wW := max c>x

s.t. Ax ≤ b

xj = 0, ∀ variables not in W .

xj ∈ Z++

Optimal solution: xW

I Patching Integer program:

zA := max
∑

Û wW yW

s.t. yW1 + yW2 ≤ 1 if W1 ∩W2 6= ∅
yW1 + yW2 ≤ 1 if vi ∈ Wi , (v1, v2) ∈ E

y ∈ {0, 1}|W|

Optimal solution: y∗

I Output: xA :=
∑

M∈W y∗W xW

85

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Performance guarantee

Theorem
Let x∗ be the optimal solution of packing IP, and xA be the solution
produced by Algorithm, with column partition J (resulting in packing
interaction graph GA,J) and list V. Then

c>xA ≥

(
1

ηV(GA,J)

)
· c>x∗.

86

2.4
Computations

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Two-stage instances

Table: Gaps for two-stage instances

Instance
Features

#Variables Algo. CPLEX GRASP

nv1-5s100/z5 600 2.321(2) NA(5) 3.375
nv1-5s100/z10 600 15.494 21.904 19.365
nv1-5s100/z15 600 15.278 25.034 18.942
nv1-5s100/z20 600 22.265 40.015 24.344
nv1-5s150/z5 900 11.300 12.747 14.857
nv1-5s150/z10 900 15.792 24.169 19.244
nv1-5s150/z15 900 17.835 34.535 19.753
nv1-5s150/z20 900 26.705 26.705 26.705
nv1-5s200/z5 1,200 13.932 16.999 17.849
nv1-5s200/z10 1,200 12.056 22.763 15.018
nv1-5s200/z15 1,200 21.282 41.441 25.029
nv1-5s200/z20 1,200 28.571 54.171 28.571

88

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Three stage instances

Table: Gaps for three stage instances

Instance
Features

#Variables Algo. CPLEX GRASP

nv1-5-25s100/z5 3,100 18.67 4.22 18.95
nv1-5-25s100/z10 3,100 26.94 29.81 30.09
nv1-5-25s100/z15 3,100 39.50 51.89 43.18
nv1-5-25s100/z20 3,100 47.62 68.97 51.64
nv1-5-25s150/z5 4,650 24.07 19.41 24.88

nv1-5-25s150/z10 4,650 39.22 47.07 44.82
nv1-5-25s150/z15 4,650 53.61 100.00 58.21
nv1-5-25s150/z20 4,650 59.38 100.00 60.14
nv1-5-25s200/z5 6,200 28.74 26.17 32.76

nv1-5-25s200/z10 6,200 47.83 56.69 53.17
nv1-5-25s200/z15 6,200 58.97 100.00 62.88
nv1-5-25s200/z20 6,200 60.59 100.00 60.88

89

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Random Graph Instances

Table: Relative gap of various algorithms (random graph instances)

Instance
Features

#Variables Algo. CPLEX GRASP

nv50pb3s400/z5 20,000 9.184 100.000 16.501
nv50pb3s400/z10 20,000 7.824 100.000 16.006
nv50pb3s400/z15 20,000 7.855(1) 10.131 13.105(1)
nv50pb3s400/z20 20,000 NA(5) 100.000 NA(5)
nv50pb5s400/z5 20,000 12.935 100.000 18.427

nv50pb5s400/z10 20,000 14.985 100.000 19.135
nv50pb5s400/z15 20,000 18.642 100.000 25.027
nv50pb5s400/z20 20,000 NA(5) 100.000 3.700(1)
nv50pb8s400/z5 20,000 13.278 100.000 18.241

nv50pb8s400/z10 20,000 16.043 100.000 19.998
nv50pb8s400/z15 20,000 22.924 100.000 29.355
nv50pb8s400/z20 20,000 1.961 100.000 2.480
nv50pb10s400/z5 20,000 25.434 100.000 28.343
nv50pb10s400/z10 20,000 32.628 100.000 33.007
nv50pb10s400/z15 20,000 34.253 100.000 39.144
nv50pb10s400/z20 20,000 8.000 100.000 8.676

90

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Random Graph Instances - II

Table: Relative gap of various algorithms (random graph instances) - II

Instance
Features

#Variables GapA GapIP GapGSGS

nv100pb3s200/z5 20,000 14.832 100.000 19.134
nv100pb3s200/z10 20,000 15.779 100.000 22.794
nv100pb3s200/z15 20,000 22.779 100.000 26.653
nv100pb3s200/z20 20,000 19.763 100.000 25.879
nv100pb5s200/z5 20,000 23.966 100.000 26.188

nv100pb5s200/z10 20,000 27.320 100.000 29.188
nv100pb5s200/z15 20,000 37.675 100.000 38.463
nv100pb5s200/z20 20,000 30.815 100.000 34.126
nv100pb8s200/z5 20,000 35.643 100.000 35.248

nv100pb8s200/z10 20,000 46.136 100.000 41.337
nv100pb8s200/z15 20,000 53.383 100.000 52.565
nv100pb8s200/z20 20,000 42.604 100.000 48.049
nv100pb10s200/z5 20,000 42.259 100.000 38.650
nv100pb10s200/z10 20,000 56.557 100.000 49.064
nv100pb10s200/z15 20,000 60.890 100.000 61.593
nv100pb10s200/z20 20,000 50.665 100.000 55.050

91

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Conclusion

Some comments:
I Our approximation algorithm almost always obtains a significantly

better solution than CPLEX and GRASP.

I Our algorithm is very easily parallelizable. We may solve each of
the sub-IPs separately.

I Dual bounds: Also parallelizable:

zUB = max cT x

s.t .
∑

j∈ variables in (U)

cjxj ≤ wU︸︷︷︸
Opt.obj.ofsubproblem

,∀U ∈ V

0 ≤ x ≤ 1

[Huchette, D., Vielma 16]

92

Using Sparsity to
Design Primal

Heuristics

Introduction

New randomization
step for Feasibility
Pump (FP)

Approximate algorithm
for sparse packing
problems
Key ideas

Some definitions

Algorithm and main result

Computations

Conclusion

Some comments:
I Our approximation algorithm almost always obtains a significantly

better solution than CPLEX and GRASP.
I Our algorithm is very easily parallelizable. We may solve each of

the sub-IPs separately.
I Dual bounds: Also parallelizable:

zUB = max cT x

s.t .
∑

j∈ variables in (U)

cjxj ≤ wU︸︷︷︸
Opt.obj.ofsubproblem

,∀U ∈ V

0 ≤ x ≤ 1

[Huchette, D., Vielma 16]

93

	Introduction
	New randomization step for Feasibility Pump (FP)
	WalkSAT
	Mixed-binary WalkSAT
	FP + WalkSAT
	Computations

	Approximate algorithm for sparse packing problems
	Key ideas
	Some definitions
	Algorithm and main result
	Computations

