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» Network flow problem
on a tripartite directed
graph, with three type

weuTs rooLs oureuTs of node: Input Nodes
(I), Pool Nodes (L),
Output Nodes (J).

» Send flow from input
nodes via pool nodes
to output nodes.

» Each of the arcs and
nodes have capacities
of flow.
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L Introduction

The Pooling Problem: Other Constraints

INPUTS | POOLS OUTPUTS |

SPEC 1 '
sPEG2 '

» Raw material has

specifications (like
sulphur, carbon, etc.).

Raw material gets
mixed at the pool
producing new
specification level at
pools.

The material gets
further mixed at the
output nodes.

The output node has
required levels for each
specification.
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L Introduction

Tracking Specification
Data:
» \K: The value of
— — — specification k at input
node i.

= Variable:

» pk: The value of
specification k at node /

> yap: Flow along the arc
(ab).

Specification Tracking: > " Myi =pf | >y

iel jed
————

—_—
Inflow of Speck  Qut flow of Spec k
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L Introduction

The pooling problem: ‘P’ formulation

max Y wjy; (Maximize profit due to flow)
jeA

Subject To:

1. Node and arc capacities.

2. Total flow balance at each node.

3. Specification balance at each pool.
S Myi=p Dy
icl jed

4. Bounds on pj’.‘ for all out put nodes j and specification k.
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L Introduction

PQ Model

New Variable:

» @y : fraction of flow to /

fromiel
> qi=1,g:>0,i€l. A
Iel 14 Zhllm

Do Aidia

> pf = Ziel/\;(qi/

> vy : flow from input node i
to output node j via pool
node /.

> Vij = QiYy
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L Introduction

PQ Model Complete

max > wiyi oy (Wit wp)vy

iel,jed iel,leL,jed
s.t. V,‘/]‘:q,'/y/jViGI,IE L,jEJ
dai=1viel
iel
. (Zm+2w> S My Y A< bf (Zm+2w)
iel leL iel ielleL iel leL

Capacity constraints

All variables are non-negative
Svp=yvieljed

iel

S vi<agqiViellel.
jed
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L Introduction

What do we know?

1. The Pooling problem was formally introduced by Haverly (1978).

2. The model is a Bilinear Model, this is a special case of Indefinite
quadratic program.

3. Recently, Alfaki and Haugland (2012) formally proved that the
pooling problem is NP-hard.

4. Numerous papers over the years have studied this problem.
5. This problem continues to remain challenging to solve to this day.

| am an integer programmer, so | am going to talk about IP
methods....
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L Relaxation

Using Integer Linear Programming to Construct
Relaxation

1

2.

CS={xy,w)eR | w=xy, x <x<Xxy, i<y <y}

Let g(x,y) : [x1, xu] X [V1, ¥u] — R be a piece-wise linear
continuous function (pwl) such that g(x, y) > xy.

. Let h(x,y) : [x1, Xu] X [V1, Yu] — R piece-wise linear continuous
function such that h(x, y) < xy.

. Then S C {(x,y,w) e R¥| h(x,y) <w < g(x,y), xi < x <
Xu, i <Y < Yu}

. The set
{6y, w) eR®|h(x,y) <w < g(x.¥), X <X < Xu, Y1 < ¥ < Yu}
is representable as a mixed integer liner set.

. Gounaris et al. (2009), Misener and Floudas (2009) used this

for Pooling Problem very succesfully.
10
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L Restriction

Using Mixed Integer Linear Programming to
Construction Restriction

Si={(xy,w) eR¥|w=xy, x <X <Xy, Yy <y <Y}

1. Restrictions typically obtained by restricting a subset of
variables, say y, to take values in a pre-determined finite set.

2. This restriction can be modeled using extra 0/1 variables and
unary or binary expansion models.

3. Pham et al. (2009), Alfaki et al. (2011), Gupte et al.(2012)
used for pooling problem with some success.
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» w=xy,x€[0,1],y € [0,1]
» Replace withy € 1,2z, z€{0,...,M}.
> Let N = [logM]. Equivalently:

i Sy 2y,

ZL 2y,
ue{0,1}VieN
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Using Mixed Integer Linear Programming to
Construction Restriction: Example

» w=xy,x€[0,1],y € [0,1]
» Replace withy € 1,2z, z€{0,...,M}.
> Let N = [logM]. Equivalently:

N ai_
i Z;V=1 27y = w
i1, -
i 27y < M MILP restriction
Vi<u,vi<x,vi > x+u—1

ue{0,1}vieN
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Main Results - Relaxations

‘ Why do these MILP relaxations work so well?

Theorem
Let n denote the number of output nodes. Let z* denote the optimal

solution of pooling problem.

1. Bound: For any pwl MILP relaxation P, let z¥ be the optimal
value of the MILP. Then

2. Quality of analysis: Suppose we choose a pwl MILP relaxation
‘P. Then for any € > 0, there exists an instance of the pooling
problem with

zZP7 > (n—e)z".

15
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Main Results - Computational Complexity

Corollary

There exists a polynomial-time algorithm that produces a feasible
solution with objective function value z4 that satisfies z* > Z-.

1. Note that the dimension of the pooling problem is governed by |/|
(number of input nodes), |L| (number of pools), n := |J| (number of
output nodes), |K| (number of specs.).

2. But a factor of ‘n’ is still very bad, ...

Proposition

If there exists a polynomial-time approximation algorithm with
guarantee z* > nz for any e > 0O for the pooling problem, then any
problem in NP has randomized polynomial time algorithm.
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Main results - Computational

1. Actually the ‘approximation algorithm’ is a "rather silly
algorithm".

2. We generalize the key ideas behind the n-approximation
algorithm to construct a MILP s.t.

2.1 MILP’s feasible region is a restriction of the pooling
problem.

2.2 All solution produced by the approximation algorithnm
belong to the MILP = MILP produces solutions within a
factor of n.

3. The MILP produces good results in short time. In particular, for a
number of problems in the literature, we have found the best
known solutions.
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Quality of dual bound

Proposition

Let n denote the number of output nodes. Let z* denote the optimal
solution of pooling problem. For any pwl MILP relaxation P, let z¥ be
the optimal value of the MILP. Then

z* < 7P < nz*.
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2. Let z® be the optimal solution of R:

2P < ZR

3. We will show that
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LPart 3: Quality of MILP Relaxation

High level proof technique

1. We construct a general relaxation R of the pooling problem,
such that R O P, i.e. R is a relaxation of P as well.

2. Let z® be the optimal objective function value of R:
P < R

3. We will show that
zR < nz,

where Z is objective function value of a feasible solution of the
pooling problem.

4. Therefore, z < z*
5. Combining we obtain: z” < z® < nz < nz*,i.e., zF < nz*

21
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Inconsistent Pool Outflow Problem (IPOP)

max Y owyi+ oy (Wit wp)vy

iel,jed iel,leL,jed
s.t. V,‘/]‘:q,'/y/jViGI,IE L,jEJ
Zq,‘/ =1Vvlel
iel
. (Zm+2w> S My Y A< bf (Zm+2w)
iel leL iel ielleL iel leL

Capacity constriants

All variables are non-negative
dovi=yvleLjed

iel

Svi<aqiViellel.

jed

bl
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Inconsistent Pool Outflow Problem (IPOP)

IPOP:
max > owyit+ Y (Wit wy)vy
iel,jed iel,leL,jed
st & (Z;/,-,-JrZyu) <STNy+ S0 My < bf (Zmzya)
iel leL i€l iellel i€l leL

Capacity constriants
All variables are non-negative
S vp=yVleljed

iel

Bilinear constraint relaxed: vy = quyj
1. This is a relaxation of P (any piecewise linear MILP relaxation).

2. Vg _
yll il
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Inconsistent Pool Outflow Problem (IPOP)

IPOP:
max > owyit+ Y (Wit wy)vy
iel,jed iel,leL,jed
st & (Zy,-,-JrZy/j) <STNy+ S0 My < bf (Zmzya)
iel leL i€l iellel i€l leL

Capacity constriants
All variables are non-negative
S vp=yVleljed

iel

Bilinear constraint relaxed: vy = quyj
1. This is a relaxation of P (any piecewise linear MILP relaxation).
2. ”’ = qi: Implies the spec value in the different outer arc from a pool to
be consistent.

29



Analysis of MILP techniques for the Pooling Problem
LPart 3: Quality of MILP Relaxation

Rounding IPOP Solution

Let (y, v) be optimal to IPOP and j* € J be most ‘profitable output’:

j* € argmax;, {Z wiyj+ > (wi+ W,,-)v,,,}

iel iel,leL

24
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Rounding IPOP Solution
Let (y, v) be optimal to IPOP and j* € J be most ‘profitable output’:

J* € argmax;. {Z wiyi+ > (Wi + le)Vilj}

i€l iel,leL

V,'/j =

{o j# i

* F
Vip 1=

] o i
5 - { j#]

Yi J=r
Vi V- >0
= o y//*
@ = 1 _
indeg(l). 7"~

24
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Final details

Lemma
(¥, v, q) is a valid solution to the pooling problem.

Proposition
ZR < nz
Proof:

1. (y,v) is optimal solution of /POP

2. (¥, Vv, q) is a valid solution for pooling problem.
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Final details

Lemma
(¥, v, q) is a valid solution to the pooling problem.

Proposition
zZR <nz
Proof:
1. (y,v) is optimal solution of /POP
2. (¥, Vv, q) is a valid solution for pooling problem.

3. Because j* was picked greedily, we have that
n(Obj. value(y, v, q)) > (Obj. value(y, v)).
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Analysis is tight

Proposition (Quality of analysis)

Suppose we choose a pwl MILP relaxation P. Then for any ¢ > 0,
there exists an instance of the pooling problem with

zZP > (n—ez*
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Analysis is tight : High level idea

Construct a pooling problem with:

1. 2input nodes, 1 pool node, n out put nodes, 2 specs, no direct arcs
between input and output nodes.
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Analysis is tight : High level idea

Construct a pooling problem with:

1. 2 input nodes, 1 pool node, n out put nodes, 2 specs, no direct arcs
between input and output nodes.

2. Each output node has a capacity of 1.

3. The spec requirement of the n output nodes to not match; If j # k:
{(u,v)eR?|a <u<b,&<u<b} N
{(uv)eR?|agt <u<bjg<u<bf} = 0

On the other hand the are very "similar": g; ~ ax, b; ~ bx.

4. Maximize the total flow through the pool.

1. Pooling Problem: In the actual problem flow can be sent to at most one
output node. Therefore max flow = 1.

2. IPOP: On the other hand in the pwl relaxation since vy ~ giy; and
since g; ~ ax, b; ~ by, we can set y; ~ 1 for all j-& J.
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Algorithm

‘Algorithm’:

1. Solve IPOP

2. Round it to make it feasible for pooling problem
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Algorithm

‘Algorithm’:

1. Solve IPOP

2. Round it to make it feasible for pooling problem.

Is it possible to obtain a better approximation ratio in polynomial time?
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LPart 4: Approximation Algorithm

Approximation preserving reduction from Stable Set
Theorem (Hardness to Approximate Max Stable Set
(Hastad))

In a graph with n nodes, the max stable set problem cannot be approximated
in polynomial time within a factor n'~<, for any constant e > 0, unless any
problem in NP can be solved in probabilistic polynomial time.
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Approximation preserving reduction from Stable Set
Theorem (Hardness to Approximate Max Stable Set
(Hastad))

In a graph with n nodes, the max stable set problem cannot be approximated
in polynomial time within a factor n'~<, for any constant ¢ > 0, unless any
problem in NP can be solved in probabilistic polynomial time.

Proposition (Approximation Factor Preserving Reduction
from Stable Set Problem)

Given a simple graph with n vertices, there exists an instance of the pooling
problem with n output nodes and of size polynomial in the size of the input
graph such that
1. The size of the maximum stable set of the input graph is less than or
equal to the optimal objective function value of the instance of the
pooling problem.

2. Given any feasible solution for the instance of the pooling problem with
objective function value t, it is possible to construct a stable set in the
input graph of cardinality greater than or equal tot in polynomial time.
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‘Improving’ the solutions from the approximation
algorithm - |

1. Construct an IP whose feasible region contains all the feasible
solutions generated by the approximation algorithm.
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LPa\rt 5: A New MILP Restriction

‘Improving’ the solutions from the approximation
algorithm - |

1. Construct an IP whose feasible region contains all the feasible
solutions generated by the approximation algorithm.

2. Improve further by having "as many as possible" solutions of the
pooling problem not generated by the approximation algorithm.

We constructed a feasible solution of the pooling problem such that
only one output node j* € J receives positive flow.

)

Solve a multicommodity flow problem with the additional condition
that all flow must go to one output node
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LPart 5: A New MILP Restriction

‘Improving’ the solutions from the approximation
algorithm - I

Solve a multicommodity flow problem with the additional condition
that all flow must go to one output node

C Solve a multicommodity flow problem with the additional condition
that flow from every pool goes to atmost one output node.

Can we try and do better?
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Using IP technology: A new method to discretize
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1. Introduce M
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2. Each artificial node
t receives v;
fraction of total
flow.
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Using IP technology: A new method to discretize

~. T4, 94

M artificial nodes

24

. Introduce M

artificial nodes.

. Each artificial node

t receives v;
fraction of total
flow.

. Each artificial node

t sends flow to one
output only.
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MILP formulation

max
y,v,w,¢

s.t.

Sowyy o+ > (Wit wy) vy (1a)
ieljed ielleL,jed
Vij = Zfi/rf ViE/,/EL,jEJ (1b)
t=1

Sty=wd vy ViellelLte{l,...r} (o)
jed jed

Vi = ZV,‘/j V/EL,jEJ (1d)
i€l

0 < fij < Gy VielleLite{1,...,7},j€ le)

> G =1 vielLte{1,...,7} (1)

jed

G € {0,1} vieLte{1,....,7},jed (19)

Spec bounds for j € J, k € K, yis feasible flow.
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More details

Some reasonable choices for :
1. Yt = M71

2.y = ﬁ2_t
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More details
Some reasonable choices for :

1. ")/[IMi‘I

2. Tt = 1_;—M2_t

Theorem

1. Let Z be the optimal solution of the MILP restriction and let z* be
the optimal solution of the pooling problem. Then

z*

zZ>—.
n
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More details
Some reasonable choices for ~:

1. Yt = M71
2.y = ﬁz_t
Theorem

1. Let Z be the optimal solution of the MILP restriction and let z* be
the optimal solution of the pooling problem. Then

z*
z>—.
n

2. Let~ be a rational vector. Then there exists a pooling instance
such that
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Computational Experiment

Instances:

Source Label Inputs | Pools | Outputs | Specs

M1 1] 1] K]

Alfaki et al. (2012) stdA0-9 20 10 15 12

Alfaki et al. (2012) stdB0-5 35 17 21 17

Alfaki et al. (2012) stdC0-3 60 30 40 20

Random randstd11-20 25 18 25 8

Random randstd21-30 25 22 30 10

Random randstd31-40 30 22 35 10

Random randstd41-50 40 30 45 10

Random randstd51-60 40 30 50 14
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Experiment Details

Solvers
1. BARON 9.0.7: (24 hours)
2. SNOPT (1 hr)
3. Alternating LP technique

4. MILP (1hr) (CPLEX 12.2)

Metric
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Experiment Details

Solvers
1. BARON 9.0.7: (24 hours)
2. SNOPT (1 hr)
3. Alternating LP technique

4. MILP (1hr) (CPLEX 12.2)

Metric

1. %gap: 100 x (BestRe/ax _ 1)

BestFeas
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Experiment Details

Solvers
1. BARON 9.0.7: (24 hours)
2. SNOPT (1 hr)
3. Alternating LP technique
4. MILP (1hr) (CPLEX 12.2)

Metric
1. %gap = 100 x (5 — 1)
2. TM(I) =

the best solution value for instance / until termination of method M.

T —T(])
3' 77M(I) T 7-ma)((,)_frrhilzn(,)
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Performance profile

1.0

0.8

0.6

0.4

0.2
— Global  — U{) — U@ — U@ — U@
— up) — AB) — AW4) — AB) — ALLP
0 — SNOPT
0.4 K 0.6 0.8
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Geometric Average of
outputs |J| = n.

% gap versus number of

n [ Global | U(1) | U@2) | UB) | AB) | SNOPT | ALP
15 [ 1.13% | 2.95% | 2.09% | 1.70% | 1.63% | 2.81% | 25%
21 8% | 1.00% | 1.57% | 1.72% | 1.89% | 5.18% | 12%
25 | 0.60% | 3.75% | 2.15% | 2.18% | 1.82% | 10% | 63%
30 | 3.50% | 2.78% | 1.75% | 1.82% | 1.87% | 4.09% | 39%
35 6% | 2.73% | 3.54% | 5.63% | 4.71% | 5.79% | 29%
40 | 370% | 12% | 15% | 15% | 18% | 115% | 38%
45 | 485% | 5% | 26% | 203% | 135% | 22% | 71%
50 | 550% | 1.87% | 10% | 30% | 59% | 11% | 35%
G.Ave. | 15% | 3.00% | 4.36% | 7.16% | 7.18% | 8.46% | 36%
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Discussion

1. For 19 out of the 20 Alfaki et al. instances, MILP heuristic
produces the best known results.
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Discussion

1. For 19 out of the 20 Alfaki et al. instances, MILP heuristic
produces the best known results.

Open Problems:

1. The performance of the MILP heuristic is surprising. Can we
better explain this?

2. For a fixed value of out degree of the pool nodes, what is the
complexity status of this problem?

3. If we fix the number of specifications, what is the complexity of
the problem?

4. Is it possible to obtain a better guarantee than n (n is the number
of output nodes), by using some other MILP restrictions of the
pooling problem?
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Thank you

Analysis of MILP techniques for the Pooling Problem

Thank You!
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