Convexification in global optimization

Santanu S. Dey¹

¹Industrial and Systems Engineering, Georgia Institute of Technology,

IPCO 2020

Introduction: Global optimization

The general global optimization paradigm

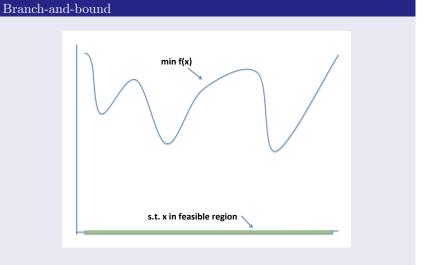
General optimization problem

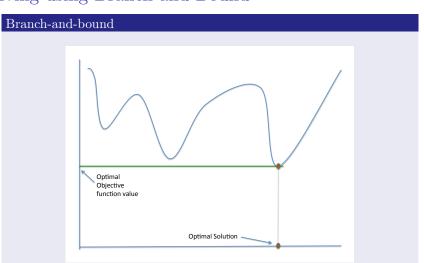
```
min f(x)
s.t. x \in S \subseteq \mathbb{R}^n,
x \in [l, u],
```

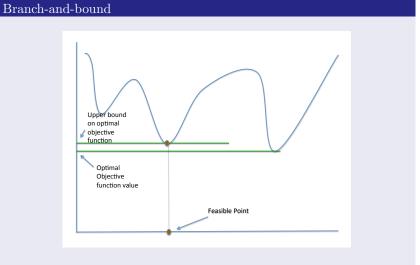
where

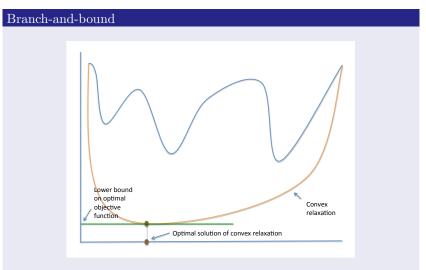
- f is not necessarily a convex function, S is not necessarily a convex set.
- **2** Ideal goal: Find a globally optimal solution: x^* , i.e. $x^* \in S \cap [l, u]$ such that $OPT := f(x^*) \le f(x) \ \forall x \in S \cap [l, u]$.
- What we will usually settle for: $x^* \in S \cap [l, u]$ (may be approximately feasible) and a lower bound: LB such that:

$$x^* \in S \cap [l, u]$$
 and gap := $\frac{f(x^*) - LB}{LB}$ is "small".



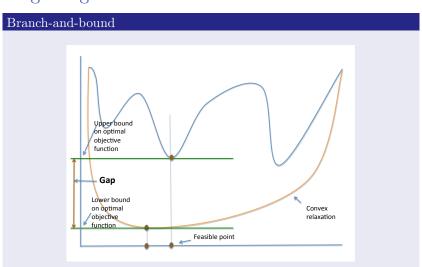




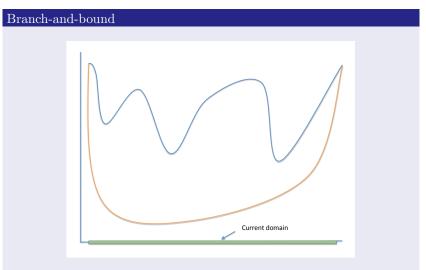


4日 → 4団 → 4 三 → 4 三 → 9 Q ○

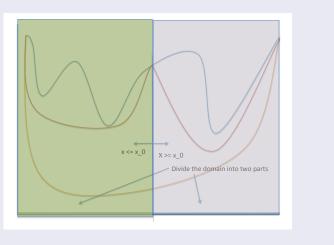
4/136



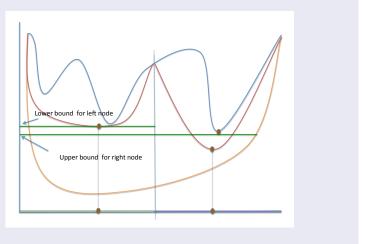
4/136



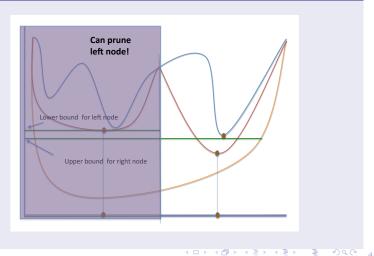
Branch-and-bound



Branch-and-bound



Branch-and-bound



Discussion of Branch-and-bound algorithm

- The method works because: As the domain becomes "smaller" in the nodes, we are able to get a better (tighter) lower bound on f(x). (•)
- Usually S is not a convex set, then we need to obtain both: (1) a convex function that lower bounds f(x) and (2) A convex relaxation of S.
- Our task is to obtain:
 - (1) Machinery for obtaining "Good" lower bounding function that is convex and satisfying (*)
 - (2) "Good" convex relaxation of non-convex set $S \cap [l, u]$.

Our goals for the next few hours

We want to study "convexification" for:

Quadrically constrainted quadratic program (QCQP)

$$\begin{aligned} & \text{min} & & x^\top Q x + c^\top x \\ & \text{s.t.} & & x^\top Q^i x + (a^i)^\top x \leq b_i \ \forall \ i \in [m] \\ & & x \in [l, u], \end{aligned}$$

Very general model:

■ Bounded polynomial optimization (replace higher order terms by quadratic terms by introducing new variables). For example:

$$xyz \le 3 \Leftrightarrow xy = w, wz \le 3.$$

■ Bounded integer programs (including 0 – 1 integer programs). For example:

$$x \in \{0,1\} \Leftrightarrow x^2 - x = 0$$

Our goals for the next few hours

- Beautiful theory of Lasserre hierarchy which gives convex hulls via a hierarchy of Semi-definite programs (SDPs). (Also called the sums-of-square approach). We are not covering this theory. ②
- Instead we will consider simple functions and simple sets that are relaxations of general QCQPs and consider their "convexification": You can think of this as the MILP-approach. Even though there are nice hierarchies for obtaining convex hulls in IP, in practice, we construct linear programming relaxations within branch-and-bound algorithm, which are often strengthened by addition of constraints obtained from the convexification of simple substructures.
- There will be other connections with integer programming...
- Usually, we will stick to linear programming (LP) or second order cone representable (SOCr) convex functions and sets for our convex relaxations.

Contribution of many people

- Warren Adams
- Claire S. Adjiman
- Shabbir Ahmed
- Kurt Anstreicher
- Gennadiy Averkov
- Harold P. Benson
- Daniel Bienstock
- Natashia Boland
- Pierre Bonami
- Samuel Burer
- Kwanghun Chung
- Yves Crama
- Danial Davarnia
- Alberto Del Pia

- Marco Duran
- Hongbo Dong
- Christodoulos A. Floudas
- Ignacio Grossmann
- Oktay Günlük
- Akshay Gupte
- Thomas Kalinowski
- Fatma Kılınç-Karzan
- Aida Khajavirad
- Burak Kocuk
- Jan Kronqvist
- Jon Lee
- Adam Letchford

Contribution of many people

- Jeff Linderoth
- Leo Liberti
- Jim Luedtke
- Marco Locatelli
- Andrea Lodi
- Alex Martin
- Clifford A. Meyer
- Garth P. McCormick
- Ruth Misener
- Marco Molinaro
- Gonzalo Munoz
- Mahdi Namazifar
- Jean-Philippe P. Richard
- Fabian Rigterink
- Anatoliy D. Rikun

- Nick Sahinidis
- Asteroide Santana
- Hanif Sherali
- Lars Schewe
- Felipe Serrano
- Suvrajeet Sen
- Emily Speakman
- Fabio Tardella
- Mohit Tawarmalani
- Hoáng Tuy
- Juan Pablo Vielma
- Alex Wang

Dey

And many more! I apologize in advance if I miss any citations. This

9/136

Convex envelope: Definition and some properties

Definition: Convex envelope

Given $S \subseteq \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$, we want:

- A function $g: \mathbb{R}^n \to \mathbb{R}$ that is an under estimator of f over S and,
- $\blacksquare g$ should be convex.

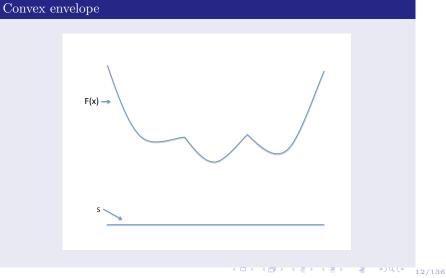
Because (pointwise) supremum of a collection of convex functions is a convex function, we can achieve "the best possible convex under estimator" as follows:

Definition: Convex envelope

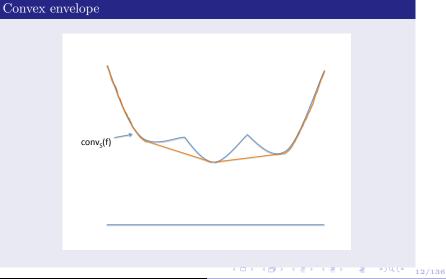
Given a set $S \subseteq \mathbb{R}^n$ and a function $f: S \to \mathbb{R}$, the convex envelope denoted as $\text{conv}_S(f)$ is:

 $\operatorname{conv}_S(f)(x) = \sup\{g(x) \mid g \text{ is convex on } \operatorname{conv}(S) \text{ and } g(y) \le f(y) \ \forall y \in S\}.$

Convex envelope example



Convex envelope example



Another way to think about convex envelope

Definition: Convex Envelope

Given a set $S \subseteq \mathbb{R}^n$ and a function $f: S \to \mathbb{R}$,

 $\operatorname{conv}_S(f)(x) = \sup\{g(x) \mid g \text{ is convex on } \operatorname{conv}(S) \text{ and } g(y) \leq f(y) \ \forall y \in S\}.$

Proposition (1)

Given a set $S \subseteq \mathbb{R}^n$ and a function $f: S \to \mathbb{R}$, let $\operatorname{epi}_S(f) \coloneqq \{(w,x) \mid w \ge f(x), x \in S\}$ denote the epigraph of f restricted to S. Then the convex envelope is:

$$\operatorname{conv}_{S}(f)(x) = \inf \{ y | (y, x) \in \operatorname{conv}(\operatorname{epi}_{S}(f)) \}. \tag{1}$$

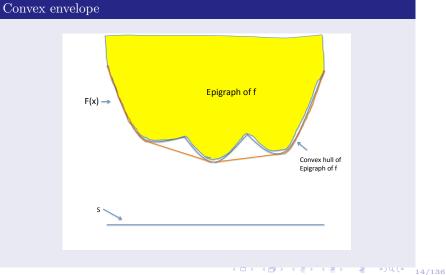
Convex envelope example contd.

Convex envelope $F(x) \rightarrow$

Convex envelope example contd.

Convex envelope Epigraph of f $F(x) \rightarrow$

Convex envelope example contd.



A simple property of convex envelope

Proposition (1)

$$\operatorname{conv}_S(f)(x) = \inf \{ y | (y, x) \in \operatorname{conv}(\operatorname{epi}_S(f)) \}.$$

Corollary (1)

If x^0 is an extreme point of S, then $conv_S(f)(x^0) = f(x^0)$.

Proof.

We verify the contrapositive:

■ Consider any $\hat{x} \in S$. If $\text{conv}_S(f)(\hat{x}) < f(\hat{x})$, then (via Proposition (1)) there must be $\{x^i\}_{i=1}^{n+2} \in S$:

$$\hat{x} = \sum_{i=1}^{n+2} \lambda_i x^i, \quad f(\hat{x}) > \sum_{i=1}^{n+2} \lambda_i f(x^i),$$

where $\lambda \in \Delta$ (i.e. $\lambda_i \ge 0 \ \forall i \in [n+2], \ \sum_{i=1}^{n+2} \lambda_i = 1$).

■ If $\hat{x} = x^i \ \forall i$, then $f(\hat{x}) \ngeq \sum_{i=1}^{n+2} \lambda_i f(x^i) \Rightarrow x \ne x^i \Rightarrow \hat{x}$ is not extreme.

When does extreme points of S describe the convex envelope of f(x)?

Let S be a polytope.

- We know now that $\operatorname{conv}_S(f)(x^0) = f(x^0)$ for extreme points.
- For $x^0 \in S$ and $x^0 \notin \text{ext}(S)$, we know that

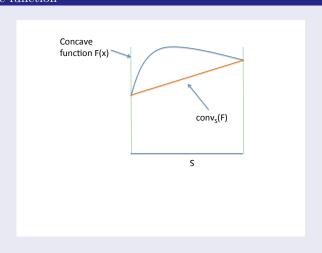
$$\operatorname{conv}_{S}(f)(x^{0}) = \inf \left\{ y \mid y = \sum_{i} \lambda_{i} f(x^{i}), x^{0} = \sum_{i} \lambda_{i} x^{i}, \boldsymbol{x^{i}} \in \boldsymbol{S}, \lambda \in \Delta \right\}.$$

■ It would be nice (why?) if:

$$\operatorname{conv}_{S}(f)(x^{0}) = \inf \left\{ y \mid y = \sum_{i} \lambda_{i} f(x^{i}), x^{0} = \sum_{i} \lambda_{i} x^{i}, x^{i} \in \operatorname{ext}(S), \lambda \in \Delta \right\}.$$

Concave function work: proof by example

Concave function



Sufficient condition for polyhedral convex envelope of f(x): When f is edge concave

Definition: Edge concave function

Given a polytope $S \subseteq \mathbb{R}^n$. Let $S_D = \{d_1, \ldots, d_k\}$ be a set of vectors such that for each edge E (one-dimensional face) of S, S_D contains a vector parallel to E. Let $f: S \to \mathbb{R}^n$ be a function. We say f is edge concave for S if it is concave on all line segments in S that are parallel to an edge of S, i.e., on all the sets of the form:

$$\{y \in S \mid y = x + \lambda d\},\$$

for some $x \in S$ and $d \in S_D$.

Example of edge concave function

Bilnear function

- $S := \{(x,y) \in \mathbb{R}^2 \mid 0 \le x, y \le 1\}.$
- $S_d = \{(0,1),(1,0)\}.$
- f(x,y) = xy is linear for all segments in S that are parallel to an edge of S.
- \blacksquare Therefore f is a edge concave function over S.

Note: f(x,y) = xy is not concave.

Polyhedral convex envelope of f(x): f is edge concave

Theorem (Edge concavity gives polyhedral envelope [Tardella (1989)])

Let S be a polytope and $f: S \to \mathbb{R}^n$ is an edge concave function. Then $\operatorname{conv}_S(f)(x) = \operatorname{conv}_{ext(S)}(f)(x)$, where

$$\operatorname{conv}_{ext(S)}(f)(x) \coloneqq \min \left\{ y \mid y = \sum_{i} \lambda_{i} f(x^{i}), x = \sum_{i} \lambda_{i} x^{i}, x^{i} \in \operatorname{ext}(S), \lambda \in \Delta \right\}.$$

Corollary [Rikun (1997)]

Let $f = \prod_i x_i$ and S = [l, u]. Then $\text{conv}_S(f)(x) = \text{conv}_{ext(S)}(f)(x)$.

Polyhedral convex envelope of f(x): f is edge concave

Theorem (Edge concavity gives polyhedral envelope [Tardella (1989)])

Let S be a polytope and $f: S \to \mathbb{R}^n$ is an edge concave function. Then $\operatorname{conv}_S(f)(x) = \operatorname{conv}_{ext(S)}(f)(x)$, where

$$\operatorname{conv}_{ext(S)}(f)(x) \coloneqq \min \left\{ y \mid y = \sum_{i} \lambda_{i} f(x^{i}), x = \sum_{i} \lambda_{i} x^{i}, x^{i} \in \operatorname{ext}(S), \lambda \in \Delta \right\}.$$

Proof sketch

- Claim 1: Since f is edge concave, we obtain: $f(x) \ge \operatorname{conv}_{ext(S)}(f)(x)$ for all $x \in S$.
- Claim 2: If $f(x) \ge \operatorname{conv}_{ext(S)}(f)(x)$, then

$$\operatorname{conv}_S(f)(x) = \operatorname{conv}_{ext(S)}(f)(x).$$

Proof of Claim 1

To prove: $f(x) \ge \operatorname{conv}_{ext(S)}(f)(x)$

Let $\hat{x} \in \text{rel.int}(F)$, F is a face of S. Proof by induction on the dimension of F.

- Base case: Consider \hat{x} which belongs to a one-dimensional face of S, i.e. \hat{x} belongs to an edge of f. Then since edge-concavity, we obtain that $f(\hat{x}) \ge \operatorname{conv}_{ext(S)}(f)(\hat{x})$.
- Inductive step: Let F be a face of S where $\dim(F) \geq 2$. Consider $\hat{x} \in \operatorname{rel.int}(F)$. If we show that there exists x^1, x^2 belonging to proper faces of F, such that $\hat{x} = \lambda_1 x^1 + \lambda_2 x^2$, $\lambda_1 + \lambda_2 = 1, \lambda_1, \lambda_2 \geq 0$, and $f(\hat{x}) \geq \lambda_1 f(x^1) + \lambda_2 f(x^2)$. Then applying this argument recursively to $f(x^1)$ and $f(x^2)$ we obtain the result.
- Indeed, consider an edge of F and let d be the direction of this edge. Then there exists $\mu_1, \mu_2 > 0$ such that: $\hat{x} + \mu_1 d$ and $\hat{x} \mu_2 d$ belong to lower dimensional faces of F. Now on this segment edge-concavity = concavity, so we are done.

Proof of Claim 2

$$\operatorname{conv}_{S}(f)(x^{0}) = \inf \left\{ y \mid y = \sum_{i} \lambda_{i} f(x^{i}), x^{0} = \sum_{i} \lambda_{i} x^{i}, x^{i} \in S, \lambda \in \Delta \right\}.$$

$$\operatorname{conv}_{ext(S)}(f)(x^{0}) = \inf \left\{ y \mid y = \sum_{i} \lambda_{i} f(x^{i}), x^{0} = \sum_{i} \lambda_{i} x^{i}, x^{i} \in \operatorname{ext}(S), \lambda \in \Delta \right\}.$$

To prove: $f(x) \ge \operatorname{conv}_{ext(S)}(f)(x)$, implies $\operatorname{conv}_S(f)(x) = \operatorname{conv}_{ext(S)}(f)(x)$

- Note that $\operatorname{conv}_S(f) \leq \operatorname{conv}_{\operatorname{ext}(S)}(f)$ (by definition), so it is sufficient to prove $\operatorname{conv}_S(f) \geq \operatorname{conv}_{\operatorname{ext}(S)}(f)$.
- Indeed, observe that $\operatorname{conv}_S(f) \geq \operatorname{conv}_S(\operatorname{conv}_{\operatorname{ext}(S)}(f))$ = $\operatorname{conv}_{\operatorname{ext}(S)}(f)$

where the first inequality because of Claim 1, $f(x) \ge \operatorname{conv}_{ext(S)}(f)(x)$, and the second inequality because $\operatorname{conv}_{ext(S)}(f)$ is a convex function.

3 Convex hull of simple sets

3.1 McCormick envelope

McCormick envelope

$$P \coloneqq \{(w, x, y) \mid w = xy, 0 \le x, y \le 1\}$$

We want to find conv(P).

- $P = \{(w, x, y) \mid \underbrace{w = xy}_{f(x,y)=xy}, \underbrace{0 \le x, y \le 1}_{S} \}$
- So we need to find the convex envelope (and similarly, concave envelope) of f(x, y) = xy over $x, y \in [0, 1]$).
- By previous section result on edge-concavity, we only need to consider the extreme points of $S = [0,1]^2$.
- $conv(P) = conv\{(0,0,0), (1,0,0), (0,1,0), (1,1,1)\}$

$${\rm conv}(P) = \{(w, x, y) \, | \, \underline{w} \geq 0, \underline{w} \geq x + y - 1, \underline{w} \leq x, \underline{w} \leq \underline{y} \}.$$

McCormick Envelope

Alternative proof of validity of McCormick envelope

- $\underbrace{(x-0)(y-0)}_{\text{product of 2 non-negative trms}} \ge 0 \Leftrightarrow xy \ge 0 \Longrightarrow w \ge 0.$
- $\underbrace{(1-x)(1-y)}_{\text{product of 2 non-negative trms}} \ge 0 \Leftrightarrow xy \ge x+y-1 \Rightarrow w \ge x+y-1.$
- $(x-0)(1-y) \ge 0 \Rightarrow w \le x.$
- $(1-x)(y-0) \ge 0 \Rightarrow w \le y.$
- This is the Reformulation-linearization-techique (RLT) view point (Sherali-Adams).

Our first convex relaxation of QCQP

$$(\text{QCQP}): \min \ x^T A_0 x + a_0^T x$$

s.t.
$$x^T A_k x + a_k^T x \le b_k \quad k = 1, \dots, K$$
$$l \le x \le u$$

(Lifted QCQP): min
$$\underbrace{A_0 \cdot X}_{\sum_{i,j} (A_0)_{ij} X_{ij}} + a_0^T x$$
 s.t.
$$\underbrace{A_k \cdot X}_{\sum_{i,j} (A_k)_{ij} X_{ij}} + a_k^T x \leq b_k \quad k = 1, \dots, K$$

$$\underbrace{l \leq x \leq u}_{X = xx^T} < ---\text{Nonconvexity}$$

(Note: X is the "outer product" of x, i.e. X is $n \times n$)

Our first convex (LP) relaxation of QCQP

(QCQP): min
$$x^T A_0 x + a_0^T x$$

s.t. $x^T A_k x + a_k^T x \le b_k$ $k = 1, ..., K$
 $l \le x \le u$

(Lifted QCQP): min
$$A_0 \cdot X + a_0^T x$$

s.t. $A_k \cdot X + a_k^T x \le b_k$ $k = 1, ..., K$
 $l \le x \le u$

$$X = xx^T$$

McCormick (LP) Relaxation: replace $X = xx^{\mathsf{T}}$ above by:

$$X_{ij} \ge l_i x_j + l_j x_i - l_i l_j$$

$$X_{ij} \ge u_i x_j + u_j x_i - u_i u_j$$

$$X_{ij} \le l_i x_j + u_j x_i - l_i u_j$$

$$X_{ij} \le u_i x_j + l_j x_i - u_i l_j$$

Semi-definite programming (SDP) relaxation of QCQPs

(QCQP): min
$$x^T A_0 x + a_0^T x$$

s.t. $x^T A_k x + a_k^T x \le b_k$ $k = 1, ..., K$
 $l \le x \le u$

(Lifted QCQP): min
$$A_0 \cdot X + a_0^T x$$

s.t. $A_k \cdot X + a_k^T x \le b_k$ $k = 1, ..., K$
 $l \le x \le u$

$$X = xx^T$$

SDP Relaxation: replace $X - xx^{\mathsf{T}} = 0$ above by:

 $X - xx^{\mathsf{T}} \in \text{cone of positive-semi definite matrix}$

$$\Leftrightarrow \left[\begin{array}{cc} 1 & x^{\mathsf{T}} \\ x & X \end{array}\right] \in \text{cone of positive-semi definite matrix}.$$

Comments

- The SDP relaxation is the first level of the sum-of-square hierarchy. (We will not discuss this more here)
- The McCormick relaxation is first (basic) level of the RLT hireranchy.
- The McCormick relaxation and the SDP relaxation are incomparable. So many times if one is able to solve SDPs, both the relaxations are thrown in together.
- Note that the McCormick relaxation has the (\clubsuit) property, i.e. as the bounds [l,u] get tighter, the McCormick envelopes gets better. In particular, if l=u, then the McCormick envelope is exact. Therefore, we can obtain "asymptotic convergence of lower and upper bound" using a branch and bound tree with McCormick relaxation, as the size of the tree goes off to infinity.

3.2

Extending the McCormick envelope ideas

Extending the McCormick envelope argument: Using extreme points of S to construct convex hull

(Lifted QCQP): min
$$A_0 \cdot X + a_0^T x$$

s.t. $A_k \cdot X + a_k^T x \le b_k$ $k = 1, ..., K$
 $0 \le x \le 1$

$$X = xx^T$$

For now ignore the x_i^2 terms and consider the set:

$$Q \coloneqq \left\{ (X, x) \in \mathbb{R}^{\frac{n(n-1)}{2}} \times \mathbb{R}^n \mid X_{ij} = x_i x_j \forall i, j \in [n], i \neq j, x \in [0, 1]^n \right\}$$

(Here l = 0 and u = 1 without loss of generality, by rescaling the variables.)

Extending the McCormick envelope argument: Using extreme points of S to construct convex hull

Theorem ([Burer, Letchford (2009)])

Consider the set

$$Q := \{ (X, x) \in \mathbb{R}^{\frac{n(n-1)}{2}} \times \mathbb{R}^n \mid X_{ij} = x_i x_j \, \forall i, j \in [n], i \neq j, x \in [0, 1]^n \}.$$

Then,

$$\operatorname{conv}(Q) \coloneqq \operatorname{conv}\left(\left\{\underbrace{(X,x) \in \mathbb{R}^{\frac{n(n-1)}{2}} \times \mathbb{R}^{n} \mid X_{ij} = x_{i}x_{j} \, \forall i,j \in [n], i \neq j, \mathbf{x} \in \{0,1\}^{n}}_{\text{Boolean quadric polytope}}\right\}\right).$$

Extending the McCormick envelope ideas

Krein - Milman theorem

Theorem (Krein - Milman Theorem)

Let $S \subseteq \mathbb{R}^n$ be a compact set. Then conv(S) = conv(ext(S)).

Proof of Theorem

Proof using "Extreme point of S argument"

By Krein - Milman Theorem, It is sufficient to prove that the extreme points of Q:

$$Q := \{ (X, x) \in \mathbb{R}^{\frac{n(n-1)}{2}} \times \mathbb{R}^{n} \mid X_{ij} = x_{i}x_{j} \forall i, j \in [n], i \neq j, x \in [0, 1]^{n} \}$$

satisfy $x \in \{0,1\}^n$.

■ Suppose $(\hat{X}, \hat{x}) \in Q$ is an extreme point of S. Assume by contradition $\hat{x}_i \notin \{0, 1\}$. Consider the following points:

$$x_{j}^{(1)} = \begin{cases} \hat{x}_{j} & j \neq i \\ \hat{x}_{i} + \epsilon & j = i \end{cases} \qquad x_{j}^{(2)} = \begin{cases} \hat{x}_{j} & j \neq i \\ \hat{x}_{i} - \epsilon & j = i \end{cases}$$

$$X_{uv}^{(1)} = \begin{cases} \hat{X}_{uv} & u, v \neq i \\ \hat{x}_{u}x_{v}^{(1)} & v = i \end{cases} \qquad X_{uv}^{(2)} = \begin{cases} \hat{X}_{uv} & u, v \neq i \\ \hat{x}_{u}x_{v}^{(2)} & v = i \end{cases}$$

- Since there is no "square term", $X^{(\cdot)}$ perturbs linearly with perturbation of one component of $x^{(\cdot)}$.
- So $(\hat{X}, \hat{x}) = 0.5 \cdot (X^{(1)}, x^{(1)}) + 0.5 \cdot (X^{(2)}, x^{(2)})$, which is the required contradiction.

Consequence: Can use IP technology to obtain better convexification of QCQP!

(Lifted QCQP): min
$$A_0 \cdot X + a_0^T x$$

s.t. $A_k \cdot X + a_k^T x \le b_k$ $k = 1, ..., K$
 $0 \le x \le 1$
 $X = xx^T$

Apart from the McCormick inequalities we can also add:

- Triangle inequality: $x_i + x_j + x_k X_{ij} X_{jk} X_{ik} \le 1$ [Padberg (1989)]
- $\{0, \frac{1}{2}\}$ Chvatal-Gomory cuts for BQP recently used successfully by [Bonami, Günlük, Linderoth (2018)]

$$BQP := \{(X,x) \mid X_{ij} \ge 0, X_{ij} \ge x_i + x_j - 1, X_{ij} \le x_i, X_{ij} \le j \ \forall \ (i,j) \in [n], x \in \{0,1\}^n\}$$

4 Incorporating "data" in our sets

Introduction

(Lifted QCQP): min
$$A_0 \cdot X + a_0^T x$$

s.t. $A_k \cdot X + a_k^T x \le b_k$ $k = 1, ..., K$
 $0 \le x \le 1$

$$X = xx^T$$

• We have explored convex hull of set of the form:

$$Q := \{ (X, x) \in \mathbb{R}^{\frac{n(n-1)}{2}} \times \mathbb{R}^n \mid X_{ij} = x_i x_j \, \forall i, j \in [n], i \neq j, x \in [0, 1]^n \}$$

Now we want to consider sets wich includes the data, for example: A_k 's.

4.1 A packing-type bilinear knapsack set

A packing-type bilinear knapsack set

Consider the following set:

$$P := \{(x,y) \in [0,1]^n \times [0,1]^n \mid \sum_{i=1}^n a_i x_i y_i \le b\},\$$

where $a_i \ge 0$ for all $i \in [n]$.

The convex-hull of packing-type bilinear set

Proposition (3 Coppersmith, Günlük, Lee, Leung (1999))

- Convex hull is a polytope.
- Shows the power of McCormick envelopes.

A packing-type bilinear knapsack set

Proof of Proposition(3): \subseteq

$$\operatorname{conv}(P) \coloneqq \operatorname{Proj}_{x,y} \left(\underbrace{\left\{ (x,y,w) \;\middle|\; \begin{array}{l} \sum_{i=1}^{n} a_{i}w_{i} \leq b, \\ w_{i}, x_{i}, y_{i} \in [0,1], w_{i} \geq x_{i} + y_{i} - 1 \; \forall i \in [n] \end{array} \right\}}_{\mathbb{R}} \right).$$

■ Observe $P \subseteq \operatorname{Proj}_{x,y}(R) \Rightarrow \operatorname{conv}(P) \subseteq \operatorname{Proj}_{x,y}(R)$.

$$\operatorname{conv}(P) \coloneqq \operatorname{Proj}_{x,y} \left(\underbrace{\left\{ (x,y,w) \;\middle|\; \begin{array}{c} \sum_{i=1}^{n} a_{i}w_{i} \leq b, \\ w_{i}, x_{i}, y_{i} \in [0,1], w_{i} \geq x_{i} + y_{i} - 1 \; \forall i \in [n] \end{array} \right\}}_{\operatorname{R}} \right).$$

It is sufficient to prove that the (x, y) component of extreme points of R belong to P.

Let $(\hat{w}, \hat{x}, \hat{y})$ be extreme point of R. For each i:

- If $\hat{w}_i = 0$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (0,1), (1,0)\}$, i.e. $\hat{x}_i \hat{y}_i = \hat{w}_i$.
- If $0 < \hat{w}_i < 1$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (0,1), (1,0), (1,\hat{w}_i), (\hat{w}_i,1)\}$, i.e. $\hat{x}_i \hat{y}_i \le \hat{w}_i$.
- If $\hat{w} = 1$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (1,0), (0,1), (1,1)\}$, i.e. $\hat{x}_i \hat{y}_i \le \hat{w}_i$.

Thus,
$$\sum_{i=1}^{n} a_i \hat{x}_i \hat{y}_i \le b$$
. (: $a_i \ge 0 \ \forall i \in [n]$)

$$\operatorname{conv}(P) \coloneqq \operatorname{Proj}_{x,y} \left(\underbrace{\left\{ (x,y,w) \middle| \begin{array}{c} \sum_{i=1}^{n} a_{i}w_{i} \leq b, \\ w_{i}, x_{i}, y_{i} \in [0,1], w_{i} \geq x_{i} + y_{i} - 1 \ \forall i \in [n] \end{array} \right\}}_{\operatorname{R}} \right).$$

It is sufficient to prove that the (x, y) component of extreme points of R belong to P.

Let $(\hat{w}, \hat{x}, \hat{y})$ be extreme point of R. For each i:

- If $\hat{w}_i = 0$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (0,1), (1,0)\}$, i.e. $\hat{x}_i \hat{y}_i = \hat{w}_i$.
- If $0 < \hat{w}_i < 1$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (0,1), (1,0), (1,\hat{w}_i), (\hat{w}_i,1)\}$, i.e. $\hat{x}_i \hat{y}_i \le \hat{w}_i$.
- If $\hat{w} = 1$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (1,0), (0,1), (1,1)\}$, i.e. $\hat{x}_i \hat{y}_i \le \hat{w}_i$.

Thus, $\sum_{i=1}^{n} a_i \hat{x}_i \hat{y}_i \le b$. (: $a_i \ge 0 \ \forall i \in [n]$)

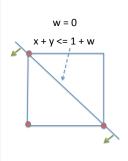
$$\operatorname{conv}(P) \coloneqq \operatorname{Proj}_{x,y} \left(\underbrace{\left\{ (x,y,w) \;\middle|\; \begin{array}{c} \sum_{i=1}^{n} a_{i}w_{i} \leq b, \\ w_{i}, x_{i}, y_{i} \in \llbracket 0, 1 \rrbracket, w_{i} \geq x_{i} + y_{i} - 1 \; \forall i \in \llbracket n \rrbracket \end{array} \right)}_{\operatorname{R}} \right).$$

It is sufficient to prove that the (x, y) component of extreme points of R belong to P.

Let $(\hat{w}, \hat{x}, \hat{y})$ be extreme point of R. For each i:

- If $\hat{w}_i = 0$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (0,1), (1,0)\}$, i.e. $\hat{x}_i \hat{y}_i = \hat{w}_i$.
- If $0 < \hat{w}_i < 1$, then $(\hat{x}_i, \hat{y}_i) \in \{(0, 0), (0, 1), (1, 0), (1, \hat{w}_i), (\hat{w}_i, 1)\}$, i.e. $\hat{x}_i \hat{y}_i \le \hat{w}_i$.
- If $\hat{w} = 1$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (1,0), (0,1), (1,1)\}$, i.e. $\hat{x}_i \hat{y}_i \leq \hat{w}_i$.

Thus, $\sum_{i=1}^{n} a_i \hat{x}_i \hat{y}_i \leq b$. (: $a_i \geq 0 \ \forall i \in [n]$)



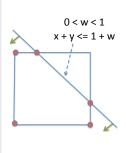
$$\operatorname{conv}(P) \coloneqq \operatorname{Proj}_{x,y} \left(\underbrace{\left\{ (x,y,w) \;\middle|\; \begin{array}{c} \sum_{i=1}^n a_i w_i \leq b, \\ w_i, x_i, y_i \in [0,1], w_i \geq x_i + y_i - 1 \; \forall i \in [n] \end{array} \right\}}_{\operatorname{R}} \right).$$

It is sufficient to prove that the (x, y) component of extreme points of R belong to P.

Let $(\hat{w}, \hat{x}, \hat{y})$ be extreme point of R. For each i:

- If $\hat{w}_i = 0$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (0,1), (1,0)\}$, i.e. $\hat{x}_i \hat{y}_i = \hat{w}_i$.
- If $0 < \hat{w}_i < 1$, then $(\hat{x}_i, \hat{y}_i) \in \{(0, 0), (0, 1), (1, 0), (1, \hat{w}_i), (\hat{w}_i, 1)\}$, i.e. $\hat{x}_i \hat{y}_i \le \hat{w}_i$.
- If $\hat{w} = 1$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (1,0), (0,1), (1,1)\}$, i.e. $\hat{x}_i \hat{y}_i \le \hat{w}_i$.

Thus, $\sum_{i=1}^{n} a_i \hat{x}_i \hat{y}_i \leq b$. ($\because a_i \geq 0 \ \forall i \in [n]$)



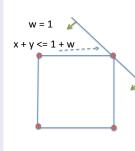
$$\operatorname{conv}(P) \coloneqq \operatorname{Proj}_{x,y} \left(\underbrace{\left\{ (x,y,w) \middle| \begin{array}{c} \sum_{i=1}^{n} a_{i}w_{i} \leq b, \\ w_{i}, x_{i}, y_{i} \in [0,1], w_{i} \geq x_{i} + y_{i} - 1 \ \forall i \in [n] \end{array} \right\}}_{\operatorname{R}} \right).$$

It is sufficient to prove that the (x, y) component of extreme points of R belong to P.

Let $(\hat{w}, \hat{x}, \hat{y})$ be extreme point of R. For each i:

- If $\hat{w}_i = 0$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (0,1), (1,0)\}$, i.e. $\hat{x}_i \hat{y}_i = \hat{w}_i$.
- If $0 < \hat{w}_i < 1$, then $(\hat{x}_i, \hat{y}_i) \in \{(0, 0), (0, 1), (1, 0), (1, \hat{w}_i), (\hat{w}_i, 1)\}$, i.e. $\hat{x}_i \hat{y}_i \le \hat{w}_i$.
- If $\hat{w} = 1$, then $(\hat{x}_i, \hat{y}_i) \in \{(0,0), (1,0), (0,1), (1,1)\}$, i.e. $\hat{x}_i \hat{y}_i \le \hat{w}_i$.

Thus,
$$\sum_{i=1}^{n} a_i \hat{x}_i \hat{y}_i \leq b$$
. (: $a_i \geq 0 \ \forall i \in [n]$)



44/136

4.2 Product of a simplex and a polytope

Simplex-polytope product

A commonly occuring set

$$S \coloneqq \{ (q, y, v) \in \mathbb{R}_+^{n_1} \times \mathbb{R}^{n_2} \times \mathbb{R}^{n_1 n_2} \mid v_{ij} = q_i y_j \, \forall i \in [n_1], j \in [n_2], \underbrace{Ay \leq b}_{y \in P}, \underbrace{q \in \Delta}_{\sum_{i=1}^{n_1} q_i = 1} \}.$$

Some applications:

- Pooling problem ([Tawarmalani and Sahinidis (2002)])
- General substructure in "discretize NLPs" ([Gupte, Ahmed, Cheon, D. (2013)])
- Network interdiction ([Davarnia, Richard, Tawarmalani (2017)])

Convex hull of S

Theorem (Sherali, Alameddine [1992], Tawarmalani (2010), Kılınç-Karzan (2011))

Let

$$S \coloneqq \left\{ (q, y, v) \in \mathbb{R}_+^{n_1} \times \mathbb{R}^{n_2} \times \mathbb{R}^{n_1 n_2} \left| \begin{array}{l} v_{ij} = q_i y_j \, \forall \, i \in [n_1], \, j \in [n_2], \\ \frac{Ay \leq b}{q \in \Delta}, \\ \end{array} \right. \right\}.$$

Then conv(S) := conv
$$\left(\bigcup_{i=1}^{n_1} \underbrace{\{(q, y, v) | q_i = 1, v_{ij} = y_j, y \in P\}}_{S_i} \right)$$
.

Proof of Theorem: ⊇

Theorem

Let

$$S \coloneqq \left\{ (q, y, v) \in \mathbb{R}_+^{n_1} \times \mathbb{R}^{n_2} \times \mathbb{R}^{n_1 n_2} \left| \begin{array}{c} v_{ij} = q_i y_j \, \forall \, i \in [n_1], \, j \in [n_2], \\ \frac{Ay \leq b}{q \in \Delta} \end{array} \right. \right\}.$$

Then
$$\operatorname{conv}(S) \coloneqq \operatorname{conv}\left(\bigcup_{i=1}^{n_1} \underbrace{\{(q,y,v) \mid q_i = 1, v_{ij} = y_j, y \in P\}}_{S_i}\right).$$

Proof of ⊇

- $S_i \subseteq S. \ \forall i \in [n_1]$
- \bullet conv $(\bigcup_{i=1}^{n_1} S_i) \subseteq \operatorname{conv}(S)$.

Proof of Theorem: \subseteq

$$S \coloneqq \left\{ (q, y, v) \in \mathbb{R}_+^{n_1} \times \mathbb{R}^{n_2} \times \mathbb{R}^{n_1 n_2} \, \middle| \, v_{ij} = q_i y_j \, \forall i \in [n_1], j \in [n_2], Ay \leq b, q \in \Delta \right\}$$

$$\operatorname{conv}(S) \coloneqq \operatorname{conv}\left(\bigcup_{i=1}^{n_1} \underbrace{\left\{ (q, y, v) \, \middle| \, q_i = 1, v_{ij} = y_j, y \in P \right\}}_{S_i} \right).$$

Proof of ⊆

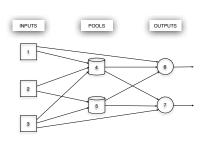
- Pick $(\hat{q}, \hat{y}, \hat{v}) \in S$. We need to show $(\hat{q}, \hat{y}, \hat{v}) \in \text{conv}(\bigcup_{i=1}^{n_1} S_i)$
- Let $I \subseteq [n_1]$ such that $\hat{q}_i \neq 0$ for $i \in I$. Then it is easy to verify, $(\hat{q}, \hat{y}, \hat{v})$ is the convex combination of the points of the form for $i_0 \in I$:

 \Rightarrow $(\hat{q}, \hat{y}, \hat{v}) \in \text{conv}(\bigcup_{i=1}^{n_1} S_i)$

4.2.1

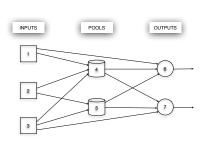
Application: Pooling problem

The Pooling Problem: Network Flow on Tripartite Graph



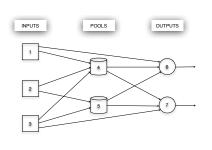
- Network flow problem on a tripartite directed graph, with three type of node: *Input* Nodes (I), *Pool* Nodes (L), *Output* Nodes (J).
- Send flow from input nodes via pool nodes to output nodes.
- Each of the arcs and nodes have capacities of flow.

The Pooling Problem: Network Flow on Tripartite Graph

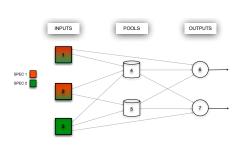


- Network flow problem on a tripartite directed graph, with three type of node: *Input* Nodes (I), *Pool* Nodes (L), *Output* Nodes (J).
- Send flow from input nodes via pool nodes to output nodes.
- Each of the arcs and nodes have capacities of flow.

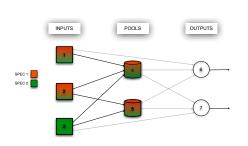
The Pooling Problem: Network Flow on Tripartite Graph



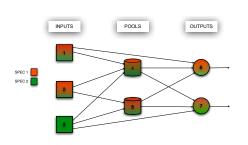
- Network flow problem on a tripartite directed graph, with three type of node: *Input* Nodes (I), *Pool* Nodes (L), *Output* Nodes (J).
- Send flow from input nodes via pool nodes to output nodes.
- Each of the arcs and nodes have capacities of flow.



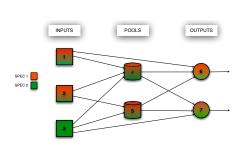
- Raw material has specifications (like sulphur, carbon, etc.).
- Raw material gets mixed at the pool producing new specification level at pools.
- The material gets further mixed at the output nodes.
- The output node has required levels for each specification.



- Raw material has specifications (like sulphur, carbon, etc.).
- Raw material gets mixed at the pool producing new specification level at pools.
- The material gets further mixed at the output nodes.
- The output node has required levels for each specification.

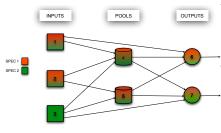


- Raw material has specifications (like sulphur, carbon, etc.).
- Raw material gets mixed at the pool producing new specification level at pools.
- The material gets further mixed at the output nodes.
- The output node has required levels for each specification.



- Raw material has specifications (like sulphur, carbon, etc.).
- Raw material gets mixed at the pool producing new specification level at pools.
- The material gets further mixed at the output nodes.
- The output node has required levels for each specification.

Tracking Specification



Data:

 λ_i^k : The value of specification k at input node i.

Variable:

- p_l^k : The value of specification k at node l
- y_{ab} : Flow along the arc (ab).

Specification Tracking:
$$\sum_{i \in I} \lambda_i^k y_{il} = p_l^k \left(\sum_{j \in J} y_{lj} \right)$$
Inflow of Spec k Out flow of Spec k

The pooling problem: 'P' formulation

$$\max \quad \sum_{ij \in \mathcal{A}} w_{ij} y_{ij} \quad \text{(Maximize profit due to flow)}$$

Subject To:

- 1 Node and arc capacities.
- 2 Total flow balance at each node.
- 3 Specification balance at each pool.

$$\left| \sum_{i \in I} \lambda_i^k y_{il} = p_l^k \left(\sum_{j \in J} y_{lj} \right) \right| < -- \text{Write McCormick relaxation of these}$$

4 Bounds on p_j^k for all out put nodes j and specification k.

[Ben-Tal, Eiger, Gershovitz (1994)]

New Variable:

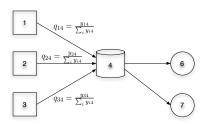
 q_{il} : fraction of flow to l from $i \in I$

$$\sum_{i \in I} q_{il} = 1, q_{il} \ge 0, i \in I.$$

$$p_l^k = \sum_{i \in I} \lambda_i^k q_{il}$$

• v_{ilj} : flow from input node i to output node j via pool node l.

$$v_{ilj} = q_{il}y_{lj}$$



[Ben-Tal, Eiger, Gershovitz (1994)]

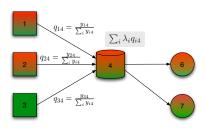
New Variable:

 q_{il} : fraction of flow to l from $i \in I$

$$\sum_{i \in I} q_{il} = 1, q_{il} \ge 0, i \in I.$$

• v_{ilj} : flow from input node i to output node j via pool node l.

 $v_{i1i} = a_{i1}v_{1i}$



[Ben-Tal, Eiger, Gershovitz (1994)]

New Variable:

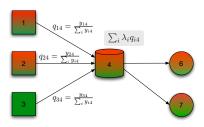
 q_{il} : fraction of flow to l from $i \in I$

$$\sum_{i \in I} q_{il} = 1, q_{il} \ge 0, i \in I.$$

$$p_l^k = \sum_{i \in I} \lambda_i^k q_{il}$$

• v_{ilj} : flow from input node i to output node j via pool node l.

$$v_{ilj} = q_{il}y_{lj}$$



[Ben-Tal, Eiger, Gershovitz (1994)]

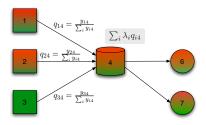
New Variable:

 q_{il} : fraction of flow to l from $i \in I$

$$\sum_{i \in I} q_{il} = 1, q_{il} \ge 0, i \in I.$$

$$p_l^k = \sum_{i \in I} \lambda_i^k q_{il}$$

- v_{ilj} : flow from input node i to output node j via pool node l.
 - $\mathbf{v}_{ilj} = q_{il}y_{lj}$



$$\max \quad \sum_{i \in I, j \in J} w_{ij} y_{ij} + \sum_{i \in I, l \in L, j \in J} (w_{il} + w_{lj}) v_{ilj}$$

s.t. $v_{ilj} = q_{il}y_{lj} \ \forall i \in I, l \in L, j \in J < -- \text{Write McCormick relaxation of these} \\ \sum_{i \in I} q_{il} = 1 \ \forall l \in L$

$$a_j^k \left(\sum_{i \in I} y_{ij} + \sum_{l \in L} y_{lj} \right) \leq \sum_{i \in I} \lambda_i^k y_{ij} + \sum_{i \in I, l \in L} \lambda_i^k v_{ilj} \leq b_j^k \left(\sum_{i \in I} y_{ij} + \sum_{l \in L} y_{lj} \right)$$

Capacity constraints

All variables are non-negative

"PQ Model" Improved: Significantly better bounds

[Quesada and Grossmann (1995)], [Tawarmalani and Sahinidis (2002)]

$$\max \quad \sum_{i \in I, j \in J} w_{ij} y_{ij} + \sum_{i \in I, l \in L, j \in J} (w_{il} + w_{lj}) v_{ilj}$$

s.t. $v_{ilj} = q_{il}y_{lj} \ \forall i \in I, l \in L, j \in J < --$ Write McCormick relaxation of these $\sum q_{il} = 1 \ \forall l \in L$

$$a_j^k \left(\sum_{i \in I} y_{ij} + \sum_{l \in L} y_{lj} \right) \leq \sum_{i \in I} \lambda_i^k y_{ij} + \sum_{i \in I, l \in L} \lambda_i^k v_{ilj} \leq b_j^k \left(\sum_{i \in I} y_{ij} + \sum_{l \in L} y_{lj} \right)$$

Capacity constraints

All variables are non-negative

$$\sum_{i \in I} v_{ilj} = y_{lj} \ \forall l \in L, j \in J$$

$$\sum_{i \in I} v_{ilj} \le c_l q_{il} \ \forall i \in I, l \in L.$$

Consider the following set:

$$P := \{ (\tilde{x}, \tilde{y}) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+ | \sum_{i=1}^n a_i \tilde{x}_i \tilde{y}_i \ge b \},$$

where $a_i \ge 0$ for all $i \in [n]$ and b > 0.

Note that this is an unbounded set.

For convenience of analysis consider <u>rescaled</u> version:

$$P \coloneqq \{(x,y) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+ \mid \sum_{i=1}^n x_i y_i \ge 1\},$$

(For example: $x_i = \frac{a_i}{b}\tilde{x_i}, y_i = \tilde{y_i}$)

Is re-scaling okay?

Observation: Affine bijective map "commutes" with convex hull operation

Let $S \subseteq \mathbb{R}^n$ and let $f : \mathbb{R}^n \to \mathbb{R}$ be an affine bijective map. Then:

$$f(\operatorname{conv}(S)) = \operatorname{conv}(f(S)).$$

Proof

$$x \in f(\operatorname{conv}(S)) \iff \exists y : x = f(y), y = \sum_{i=1} y^i \lambda_i, \lambda \in \Delta$$

$$\iff \exists y : x = f(y), f(y) = \sum_{i=1} f(y^i) \lambda_i, \lambda \in \Delta \text{ (f is bij. affine)}$$

$$\iff x \in \operatorname{conv}(f(S)).$$

Careful: Not usually true if f is only bijective, but not affine!

The convex-hull of covering-type bilinear set

Theorem (Tawarmalani, Richard, Chung (2010))

Let
$$P := \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+ \mid \sum_{i=1}^n x_i y_i \ge 1\}$$
. Then
$$\operatorname{conv}(P) := \left\{ (x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+ \mid \sum_{i=1}^n \sqrt{x_i y_i} \ge 1 \right\}.$$

Note: $\sum_{i=1}^{n} \sqrt{x_i y_i} \ge 1$ is a convex set because:

- $\sqrt{x_i y_i}$ is a concave function for $x_i, y_i \ge 0$.
- So $\sum_{i=1}^{n} \sqrt{x_i y_i}$ is a concave function.
- $f(x_i, y_i) := \sqrt{x_i y_i}$ is a positively-homogenous, i.e. $f(\eta(u, v)) = \eta f(u, v)$ for all $\eta > 0$.

Proof of Theorem: "⊆"

$$P := \left\{ (x, y) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \middle| \sum_{i=1}^n x_i y_i \ge 1 \right\}.$$

$$\operatorname{conv}(P) = \underbrace{\left\{ (x, y) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \middle| \sum_{i=1}^n \sqrt{x_i y_i} \ge 1 \right\}}_{H}.$$

$conv(P) \subseteq H$

- Sufficient to prove $P \subseteq H$. Let $(\hat{x}, \hat{y}) \in P$. Two cases:
 - If $\exists i$ such that $\hat{x}_i \hat{y}_i \ge 1$. Then $\sqrt{\hat{x}_i \hat{y}_i} \ge 1$ and thus $(\hat{x}, \hat{y}) \in H$.
 - Else $\hat{x}_i \hat{y}_i \leq 1$ for $i \in [n]$. Thus $\sum_{i=1}^n \sqrt{\hat{x}_i \hat{y}_i} \geq \sum_{i=1}^n \hat{x}_i \hat{y}_i \geq 1$ and thus $(\hat{x}, \hat{y}) \in H$.

Proof of Theorem: "⊇"

$\operatorname{conv}(P) \supseteq H$

- Let $(\hat{x}, \hat{y}) := (\hat{x}_1, \hat{y}_1, \hat{x}_2, \hat{y}_2, \dots, \hat{x}_n, \hat{y}_n) \in H$. "WLOG:" $(\hat{x}_1, \hat{y}_1, \hat{x}_2, \hat{y}_2, \hat{x}_3, \hat{y}_3, \hat{x}_4, \hat{y}_4, \dots, \hat{x}_n, \hat{y}_n)$ $\sqrt{\hat{x}_1 \hat{y}_1} = \lambda_1 > 0$ $\sqrt{\hat{x}_2 \hat{y}_2} = \lambda_2 > 0$ $\sqrt{\hat{x}_3 \hat{y}_3} = \lambda_3 > 0$ $\hat{x}_4 > 0, \hat{y}_4 = 0$ $\hat{x}_n = 0, \hat{y}_n > 0$
- So we have $\lambda_1 + \lambda_2 + \lambda_3 \ge 1$. Let $\check{\lambda}_i = \frac{\lambda_i}{\lambda_1 + \lambda_2 + \lambda_3} \ \forall \ i \in [3]$.
- Consider the three points:

- Trivial to verify that $\breve{\lambda}_1 p^1 + \breve{\lambda}_2 p^2 + \breve{\lambda}_3 p^3 = (\hat{x}, \hat{y})$, and $\breve{\lambda}_1 + \breve{\lambda}_2 + \breve{\lambda}_3 = 1$.
- $\frac{\hat{x}_1}{\tilde{\lambda}_1} \cdot \frac{\hat{y}_1}{\tilde{\lambda}_1} = \left(\frac{\sqrt{\hat{x}_i \hat{y}_i}}{\tilde{\lambda}_1}\right)^2 = \left(\frac{\lambda_1}{\tilde{\lambda}_1}\right)^2 \ge 1 \Rightarrow p^1 \in P.$ Similarly $p^2 \in P, p^3 \in P.$

An interpretation of the proof

The result in [Tawarmalani, Richard, Chung (2010)] is more general.

"Two ingredients" in the proof

• "Orthogonal disjunction": Define $P_i := \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+ \mid x_i y_i \geq 1\}$. Then it can be verified that:

$$\operatorname{conv}(P) = \operatorname{conv}\left(\bigcup_{i=1}^{n} P_i\right).$$

■ Positive homogenity: P_i is convex set. Also,

$$P_i \coloneqq \{(x,y) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \mid \sqrt{x_i y_i} \ge 1\} < --$$
The "correct way" to write the set

This single term convex hull is described using the positive homogenous function.

Another example of convexification from [Tawarmalani, Richard, Chung (2010)]

Example

$$S \coloneqq \left\{ \left(x_1, x_2, x_3, x_4, x_5, x_6 \right) \in \mathbb{R}_+^6 \, \middle| \, x_1 x_2 x_3 + x_4 x_5 + x_6 \ge 1 \right\}, \text{ then}$$

$$\operatorname{conv}(S) \coloneqq \left\{ \left(x_1, x_2, x_3, x_4, x_5, x_6 \right) \in \mathbb{R}_+^6 \, \middle| \, \left(x_1 x_2 x_3 \right)^{\frac{1}{3}} + \left(x_4 x_5 \right)^{\frac{1}{2}} + x_6 \ge 1 \right\}$$

Lets talk about "representability" of the convex hull

- Up till now, we had polyhedral convex hull. This bilinear covering set yields our first non-polyhedral example of convex hull.
- It turns out the set:

$$\left\{ (x,y) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \left| \sum_{i=1}^n \sqrt{x_i y_i} \ge 1 \right. \right\}$$

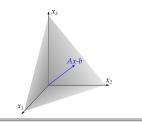
is second order cone representable (SOCr).

A quick review of second order cone representable sets: Introduction

Polyhedron:

$$Ax - b \in \mathbb{R}^m_+$$
$$x \in \mathbb{R}^n$$

 \mathbb{R}^m_+ is a closed, convex, pointed and full dimensional cone.



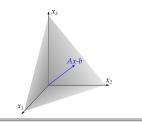
Conic set:

A quick review of second order cone representable sets: Introduction

Polyhedron:

$$Ax - b \in \mathbb{R}^m_+$$
$$x \in \mathbb{R}^n$$

 \mathbb{R}^m_+ is a closed, convex, pointed and full dimensional cone.



Conic set:

Second order conic representable set

Conic set

$$Ax - b \in K$$

Definition: Second order cone

$$K := \{u \in \mathbb{R}^m \mid ||(u_1, \dots, u_{m-1})||_2 \le u_m \}$$

Second order conic representable (SOCr) set

A set $S \subseteq \mathbb{R}^n$ is a second order cone representable if,

$$S := \operatorname{Proj}_{x} \left\{ (x, y) \mid Ax + Gy - b \in (K_{1} \times K_{2} \times K_{3} \times \cdots \times K_{p}) \right\},$$

where K_i 's are second order cone. Or equivalently,

$$S \coloneqq \operatorname{Proj}_{x} \{ (x, y) \mid \|A^{i}x + G^{i}y - b^{i}\|_{2} \le A^{i_{0}}x + G^{i_{0}}y - b^{i_{0}} \ \forall i \in [p] \},$$

Lets get back to our convex hull

$$\left\{ (x,y) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \left| \sum_{i=1}^n \sqrt{x_i y_i} \ge 1 \right. \right\}$$

$$\begin{array}{rcl} x,y & \in & \mathbb{R}^n_+ \\ \sum_{i=1}^n u_i & \geq & 1 \\ \sqrt{x_i y_i} & \geq & u_i \ \forall i \in [n] \end{array}$$

Lets get back to our convex hull

$$\left\{ (x,y) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \left| \sum_{i=1}^n \sqrt{x_i y_i} \ge 1 \right. \right\}$$

$$x, y \in \mathbb{R}^{n}_{+}$$

$$\sum_{i=1}^{n} u_{i} \geq 1$$

$$x_{i}y_{i} \geq u_{i}^{2} \ \forall i \in [n]$$

Lets get back to our convex hull

$$\left\{ (x,y) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \left| \sum_{i=1}^n \sqrt{x_i y_i} \ge 1 \right. \right\}$$

$$x, y \in \mathbb{R}^{n}_{+}$$

$$\sum_{i=1}^{n} u_{i} \geq 1$$

$$(x_{i} + y_{i})^{2} - (x_{i} - y_{i})^{2} \geq 4u_{i}^{2} \ \forall i \in [n]$$

Lets get back to our convex hull

$$\left\{ (x,y) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \left| \sum_{i=1}^n \sqrt{x_i y_i} \ge 1 \right. \right\}$$

$$x, y \in \mathbb{R}^{n}_{+}$$

$$\sum_{i=1}^{n} u_{i} \geq 1$$

$$x_{i} + y_{i} \geq \sqrt{(2u_{i})^{2} + (x_{i} - y_{i})^{2}} \forall i \in [n]$$

Our convex hull is SOCr

$$\left\{ (x,y) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \middle| \sum_{i=1}^n \sqrt{x_i y_i} \ge 1 \right\}$$

$$x, y \in \mathbb{R}^{n}_{+}$$

$$\sum_{i=1}^{n} u_{i} \geq 1$$

$$(x_{i} + y_{i}) \geq \left\| \begin{array}{c} 2u_{i} \\ (x_{i} - y_{i}) \end{array} \right\|_{2} \forall i \in [n]$$

Our convex hull is SOCr

$$\left\{ (x,y) \in \mathbb{R}_+^n \times \mathbb{R}_+^n \middle| \sum_{i=1}^n \sqrt{x_i y_i} \ge 1 \right\}$$

$$x_{i} \geq \|0\|_{2} \forall i \in [n]$$

$$y_{i} \geq \|0\|_{2} \forall i \in [n]$$

$$\sum_{i=1}^{n} u_{i} - 1 \geq \|0\|_{2}$$

$$(x_{i} + y_{i}) \geq \|\frac{2u_{i}}{(x_{i} - y_{i})}\|_{2} \forall i \in [n]$$

Convex hull of a general one-constraint quadratic constraint

Our next goal

Theorem (Santana, D. (2019))

Let

$$S \coloneqq \{ x \in \mathbb{R}^n \mid x^\top Q x + \alpha^\top x = g, \ x \in P \}, \tag{2}$$

where $Q \in \mathbb{R}^{n \times n}$ is a symmetric matrix, $\alpha \in \mathbb{R}^n$, $g \in \mathbb{R}$ and $P := \{x \mid Ax \leq b\}$ is a polytope. Then $\operatorname{conv}(S)$ is second order cone representable.

- The proof is contructive. So in principle, we can build the convex hull using the proof.
- The size of the second order "extended formulation" is exponential in size.
- The result holds if we replace the quadratic equation with an inequality.

Main ingredients to proof theorem

Basically 3 ingredients:

- Hillestad-Jacobsen Theorem on reverse convex sets.
- Richard-Tawarmalani lemma for continuous function.
- Convex hull of union of conic sets.

5.1 Reverse convex sets

A common structure

$$S \coloneqq P \setminus \left(\bigcup_{i=1}^{m} \operatorname{int}(C^{i}) \right),$$

where P is a polyope and C^{i} 's are closed convex sets.

- Where have we seen this before in context of integer programming? When m = 1: Intersection cuts!
- Note that $conv(P \setminus C)$ is a polytope!

A common structure

$$S \coloneqq P \setminus \left(\bigcup_{i=1}^{m} \operatorname{int}(C^{i}) \right),$$

where P is a polyope and C^{i} 's are closed convex sets.

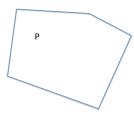
- Where have we seen this before in context of integer programming? When m = 1: Intersection cuts!
- Note that $conv(P \setminus C)$ is a polytope!

A common structure

$$S \coloneqq P \setminus \left(\bigcup_{i=1}^{m} \operatorname{int}(C^{i}) \right),$$

where P is a polyope and C^i 's are closed convex sets.

• Where have we seen this before in context of integer programming? When m = 1: Intersection cuts!

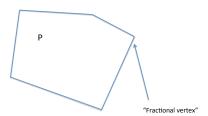


A common structure

$$S \coloneqq P \setminus \left(\bigcup_{i=1}^{m} \operatorname{int}(C^{i}) \right),$$

where P is a polyope and C^{i} 's are closed convex sets.

■ Where have we seen this before in context of integer programming? When m = 1: Intersection cuts!

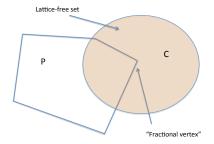


A common structure

$$S := P \setminus \left(\bigcup_{i=1}^{m} \operatorname{int}(C^{i}) \right),$$

where P is a polyope and C^{i} 's are closed convex sets.

■ Where have we seen this before in context of integer programming? When m = 1: Intersection cuts!

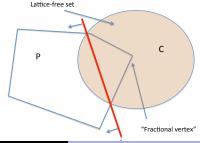


A common structure

$$S := P \setminus \left(\bigcup_{i=1}^{m} \operatorname{int}(C^{i}) \right),$$

where P is a polyope and C^i 's are closed convex sets.

• Where have we seen this before in context of integer programming? When m = 1: Intersection cuts!

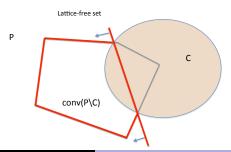


A common structure

$$S := P \setminus \left(\bigcup_{i=1}^{m} \operatorname{int}(C^{i}) \right),$$

where P is a polyope and C^{i} 's are closed convex sets.

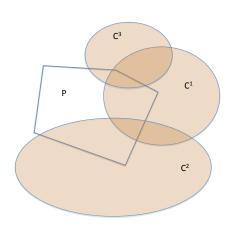
■ Where have we seen this before in context of integer programming? When m = 1: Intersection cuts!



Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

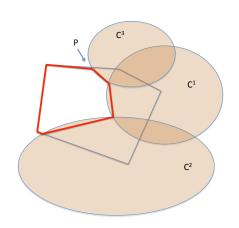
 $m \ge 2$



Convex hull of a general one-constraint quadratic constraint

Ingredient 1: Reverse convex sets

 $m \ge 2$



Do we have a theorem?

Theorem (Hillestad, Jacobsen (1980))

Let $P \subseteq \mathbb{R}^n$ be a polytope and let C^1, \dots, C^m be closed convex sets. Then

$$\operatorname{conv}\left(P\left(\bigcup_{i=1}^{m}\operatorname{int}(C^{i})\right)\right)$$

is a polytope.

The proof is again going to use the Krein-Milman Theorem. In particular, we will prove that $S = P \setminus (\bigcup_{i=1}^m \operatorname{int}(C^i))$ has a finite number of extreme points.

A key Lemma

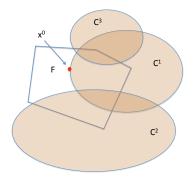
Necesary condition for extreme points of S

Let

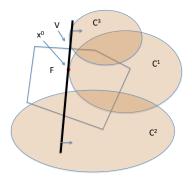
$$S \coloneqq P \left\backslash \left(\bigcup_{i=1}^m \operatorname{int}(C^i) \right),\right.$$

where P is a polyope and C^i 's are closed convex sets. Let F be a face of P of dimension d. Let $x^0 \in \operatorname{rel.int}(F)$ be an extreme point of S. Then x^0 belongs to the boundary of at least d of the convex sets C^i s.

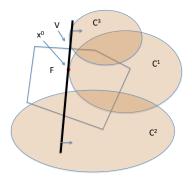
- Assume by contradiction: $x^0 \in \text{rel.int}(F)$ and $x^0 \in \text{bnd}(C^i)$ for $i \in [k]$ where k < d.
- Let $(a^i)^{\mathsf{T}} x \leq b^i$ be a separating hyperplane between x^0 and $\operatorname{int}(C^i)$ for $i \in [k]$. Let $V := \{x \mid (a^i)^{\mathsf{T}} x = b^i \ i \in [k]\}$
- Since dim(F) = d and dim(V) $\geq n k$, we have dim(aff.hull(F) $\cap V$) $\geq d k > 1$.



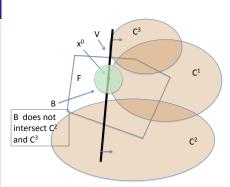
- Assume by contradiction: $x^0 \in \text{rel.int}(F)$ and $x^0 \in \text{bnd}(C^i)$ for $i \in [k]$ where k < d.
- Let $(a^i)^{\top}x \leq b^i$ be a separating hyperplane between x^0 and $\operatorname{int}(C^i)$ for $i \in [k]$. Let $V := \{x \mid (a^i)^{\top}x = b^i \mid i \in [k]\}$
- Since dim(F) = d and dim(V) $\geq n k$, we have dim(aff.hull(F) $\cap V$) $\geq d k > 1$.



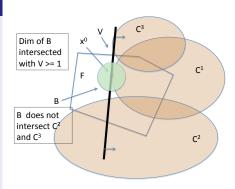
- Assume by contradiction: $x^0 \in \text{rel.int}(F)$ and $x^0 \in \text{bnd}(C^i)$ for $i \in [k]$ where k < d.
- Let $(a^i)^{\top}x \leq b^i$ be a separating hyperplane between x^0 and $\operatorname{int}(C^i)$ for $i \in [k]$. Let $V := \{x \mid (a^i)^{\top}x = b^i \mid i \in [k]\}$
- Since dim(F) = d and dim(V) $\geq n k$, we have dim(aff.hull(F) $\cap V$) $\geq d k > 1$.



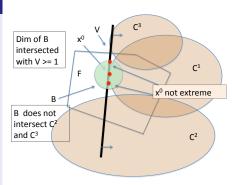
- Also there is a ball B, centered at x^0 , such that (i) $B \cap \text{aff.hull}(F) \subseteq F$, (ii) $B \cap C_i = \emptyset$ $i \in \{k+1, \dots, m\}$.
- Then, $B \cap (\operatorname{aff.hull}(F) \cap V) \subseteq$ $F \setminus \bigcup_{i=1}^{m} \operatorname{int}(C^{i}) \text{ and }$ $\dim (B \cap (\operatorname{aff.hull}(F) \cap V)) \ge$ 1.
- So x^0 is not an extreme point in S.



- Also there is a ball B, centered at x^0 , such that (i) $B \cap \text{aff.hull}(F) \subseteq F$, (ii) $B \cap C_i = \emptyset \ i \in \{k+1, \dots, m\}$.
- Then, $B \cap (\operatorname{aff.hull}(F) \cap V) \subseteq$ $F \setminus \bigcup_{i=1}^{m} \operatorname{int}(C^{i}) \text{ and }$ $\dim (B \cap (\operatorname{aff.hull}(F) \cap V)) \ge$ 1.
- So x^0 is not an extreme point in S.



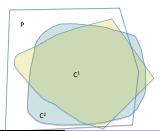
- Also there is a ball B, centered at x^0 , such that (i) $B \cap \text{aff.hull}(F) \subseteq F$, (ii) $B \cap C_i = \emptyset \ i \in \{k+1, \dots, m\}$.
- Then, $B \cap (\operatorname{aff.hull}(F) \cap V) \subseteq$ $F \setminus \bigcup_{i=1}^{m} \operatorname{int}(C^{i}) \text{ and }$ $\dim (B \cap (\operatorname{aff.hull}(F) \cap V)) \ge$ 1.
- So x^0 is not an extreme point in S.



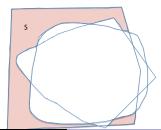
- Already proves theorem for m=1 case: Since m=1, points in P that are in the relative interior of faces of dimension 2 or higher are not extreme points. So all extreme points of S are either (i) on points in edges (one-dim face of P) of P which intersect with the boundary of C^1 s or (ii) extreme points of $P \Rightarrow$ number of extreme points of S is finite.
- For m > 1: Not enough to prove Theorem, since (for example, convex set can share parts of boundary) there can infinite points satisfying the condition of Lemma. Note that the Lemma's condition is not a sufficient condition:

- Already proves theorem for m = 1 case: Since m = 1, points in P that are in the relative interior of faces of dimension 2 or higher are not extreme points. So all extreme points of S are either (i) on points in edges (one-dim face of P) of P which intersect with the boundary of C^1 s or (ii) extreme points of $P \Rightarrow$ number of extreme points of S is finite.
- For m > 1: Not enough to prove Theorem, since (for example, convex set can share parts of boundary) there can infinite points satisfying the condition of Lemma. Note that the Lemma's condition is not a sufficient condition:

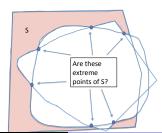
- Already proves theorem for m = 1 case: Since m = 1, points in P that are in the relative interior of faces of dimension 2 or higher are not extreme points. So all extreme points of S are either (i) on points in edges (one-dim face of P) of P which intersect with the boundary of C^1 s or (ii) extreme points of $P \Rightarrow$ number of extreme points of S is finite.
- For m > 1: Not enough to prove Theorem, since (for example, convex set can share parts of boundary) there can infinite points satisfying the condition of Lemma. Note that the Lemma's condition is not a sufficient condition:



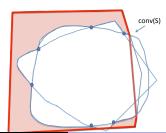
- Already proves theorem for m = 1 case: Since m = 1, points in P that are in the relative interior of faces of dimension 2 or higher are not extreme points. So all extreme points of S are either (i) on points in edges (one-dim face of P) of P which intersect with the boundary of C^1 s or (ii) extreme points of $P \Rightarrow$ number of extreme points of S is finite.
- For m > 1: Not enough to prove Theorem, since (for example, convex set can share parts of boundary) there can infinite points satisfying the condition of Lemma. Note that the Lemma's condition is not a sufficient condition:



- Already proves theorem for m = 1 case: Since m = 1, points in P that are in the relative interior of faces of dimension 2 or higher are not extreme points. So all extreme points of S are either (i) on points in edges (one-dim face of P) of P which intersect with the boundary of C^1 s or (ii) extreme points of $P \Rightarrow$ number of extreme points of S is finite.
- For m > 1: Not enough to prove Theorem, since (for example, convex set can share parts of boundary) there can infinite points satisfying the condition of Lemma. Note that the Lemma's condition is not a sufficient condition:



- Already proves theorem for m = 1 case: Since m = 1, points in P that are in the relative interior of faces of dimension 2 or higher are not extreme points. So all extreme points of S are either (i) on points in edges (one-dim face of P) of P which intersect with the boundary of C^1 s or (ii) extreme points of $P \Rightarrow$ number of extreme points of S is finite.
- For m > 1: Not enough to prove Theorem, since (for example, convex set can share parts of boundary) there can infinite points satisfying the condition of Lemma. Note that the Lemma's condition is not a sufficient condition:



One more idea to prove theorem

Dominating pattern

Let $x^1, x^2 \in S$. We say that the pattern of x^2 dominates the pattern of x^1 if:

- $\mathbf{1}$ x^1 and x^2 belong to the relative interior of the same face F of P
- If $x^1 \in \operatorname{bnd}(C_j)$, then $x^2 \in \operatorname{bnd}(C_j)$.

Another lemma

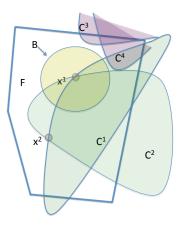
Lemma

Let $x^1, x^2 \in S$ be distinct points. If the pattern of x^2 dominates the pattern of x^1 , then x^1 is not an extreme point of S.

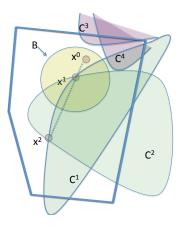
This lemma completes the proof of the Theorem:

- We want to prove total number of extreme points in finite.
- Lemma 1 tell us that for an extreme point, which is in rel.int of a face F of dim d, it must be on the boundary of d convex sets.
- For any face and any "pattern" of convex sets, there can only be one extreme point of S. Thus, the number of extreme points of S is finite.

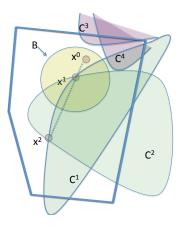
- $\blacksquare x^2$ dominates x^1 .
- WLOG let $x^1, x^2 \in \text{bnd}(C^i)$ for $i \in [k]$ and there is a ball B centered around x^2 such that (i) $B \cap \text{aff.hull}(F) \subseteq F$ and (ii) $B \cap C^j = \emptyset$ for $j \in \{k+1, \ldots, m\}$.
- Consider $x^0 \in B$ such that x^2 is a convex combination of x^1 and x^0 . It remains to show $x^0 \in S$:
 - Clearly $x^0 \in F \subseteq P$.
 - $\blacksquare B \cap C^j = \varnothing \Rightarrow x^0 \notin C^j \{k+1, \dots, m\}.$
 - Suppose $x^0 \in \operatorname{int}(C^j)$ for $j \in [k]$, by dominance $x^2 \in C^j$, then $x^2 \in \operatorname{int}(C^j)$, a contradiction. So $x^0 \notin \operatorname{int}(C^j)$ for $j \in [k]$.



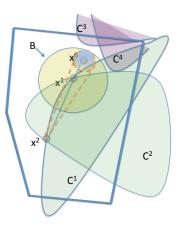
- $\blacksquare x^2$ dominates x^1 .
- WLOG let $x^1, x^2 \in \text{bnd}(C^i)$ for $i \in [k]$ and there is a ball B centered around x^2 such that (i) $B \cap \text{aff.hull}(F) \subseteq F$ and (ii) $B \cap C^j = \emptyset$ for $j \in \{k+1, \ldots, m\}$.
- Consider $x^0 \in B$ such that x^2 is a convex combination of x^1 and x^0 . It remains to show $x^0 \in S$:
 - Clearly $x^0 \in F \subseteq P$.
 - $\blacksquare B \cap C^j = \varnothing \Rightarrow x^0 \notin C^j \{k+1, \dots, m\}.$
 - Suppose $x^0 \in \operatorname{int}(C^j)$ for $j \in [k]$, by dominance $x^2 \in C^j$, then $x^2 \in \operatorname{int}(C^j)$, a contradiction. So $x^0 \notin \operatorname{int}(C^j)$ for $j \in [k]$.



- $\blacksquare x^2$ dominates x^1 .
- WLOG let $x^1, x^2 \in \text{bnd}(C^i)$ for $i \in [k]$ and there is a ball B centered around x^2 such that (i) $B \cap \text{aff.hull}(F) \subseteq F$ and (ii) $B \cap C^j = \emptyset$ for $j \in \{k+1, \ldots, m\}$.
- Consider $x^0 \in B$ such that x^2 is a convex combination of x^1 and x^0 . It remains to show $x^0 \in S$:
 - Clearly $x^0 \in F \subseteq P$.
 - $\blacksquare B \cap C^j = \varnothing \Rightarrow x^0 \notin C^j \{k+1, \dots, m\}.$
 - Suppose $x^0 \in \operatorname{int}(C^j)$ for $j \in [k]$, by dominance $x^2 \in C^j$, then $x^2 \in \operatorname{int}(C^j)$, a contradiction. So $x^0 \notin \operatorname{int}(C^j)$ for $j \in [k]$.



- $\blacksquare x^2$ dominates x^1 .
- WLOG let $x^1, x^2 \in \text{bnd}(C^i)$ for $i \in [k]$ and there is a ball B centered around x^2 such that (i) $B \cap \text{aff.hull}(F) \subseteq F$ and (ii) $B \cap C^j = \emptyset$ for $j \in \{k+1, \ldots, m\}$.
- Consider $x^0 \in B$ such that x^2 is a convex combination of x^1 and x^0 . It remains to show $x^0 \in S$:
 - Clearly $x^0 \in F \subseteq P$.
 - $\blacksquare B \cap C^j = \varnothing \Rightarrow x^0 \notin C^j \{k+1, \dots, m\}.$
 - Suppose $x^0 \in \operatorname{int}(C^j)$ for $j \in [k]$, by dominance $x^2 \in C^j$, then $x^2 \in \operatorname{int}(C^j)$, a contradiction. So $x^0 \notin \operatorname{int}(C^j)$ for $j \in [k]$.



5.2 Dealing with "equality sets": The Richard-Tawamalani Lemma

The Richard-Tawarmalani Lemma

Lemma (Richard Tawarmalani (2014))

Consider the set $S := \{x \in \mathbb{R}^n \mid f(x) = 0, x \in P\}$ where f is a continuous function and P is a convex set. Then:

$$\operatorname{conv}(S) = \operatorname{conv}(S^{\leq}) \bigcap \operatorname{conv}(S^{\geq}),$$

where

$$S^{\leq} := \{x \in \mathbb{R}^n \mid f(x) \leq 0, x \in P\}$$

$$S^{\geq} := \{x \in \mathbb{R}^n \mid f(x) \geq 0, x \in P\}$$

Proof of Lemma

Clearly

$$\operatorname{conv}(S) \subseteq \operatorname{conv}(S^{\leq}) \bigcap \operatorname{conv}(S^{\geq})$$

■ So it is sufficient to prove

$$\operatorname{conv}(S) \supseteq \operatorname{conv}(S^{\leq}) \bigcap \operatorname{conv}(S^{\geq})$$

■ Pick $x^0 \in \text{conv}(S^{\leq}) \cap \text{conv}(S^{\geq})$, we need to show $x^0 \in \text{conv}(S)$.

Claim 1

Claim: $x^0 \in \text{conv}(S^{\leq})$ implies x^0 can be written as convex combination of points in S and at most one point from $S^{\leq} \setminus S$.

Proof

- Suppose $x^0 = \sum_{i=1}^{n+1} \lambda_i y^i$, $\lambda \in \Delta$, where $y^i \in S^{\leq}$
- Suppose WLOG, $y^1, y^2 \in S^{\leq} \setminus S$. Two cases:
 - $y^0 := \frac{1}{\lambda_1 + \lambda_2} (\lambda_1 y^1 + \lambda_2 y^2) \in S^{\varsigma}$: In this case replace the two points y^1 and y^2 by the point y^0 and we have one less point from $S^{\varsigma} \setminus S$ whose convex combination gives x^0

Claim 1

Claim: $x^0 \in \text{conv}(S^{\leq})$ implies x^0 can be written as convex combination of points in S and at most one point from $S^{\leq} \setminus S$.

Proof

- Suppose $x^0 = \sum_{i=1}^{n+1} \lambda_i y^i$, $\lambda \in \Delta$, where $y^i \in S^{\leq}$
- Suppose WLOG, $y^1, y^2 \in S^{\leq \times} S$. Two cases:

f(x) <= 0 y^{3} y^{2} y^{2}

f(x) = 0

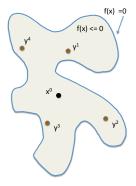
case replace the two points
$$y^1$$
 and y^2 by the point y^0 and we have one less point from $S^{\leq} \setminus S$ whose convex combination gives x^0 .

Claim 1

Claim: $x^0 \in \text{conv}(S^{\leq})$ implies x^0 can be written as convex combination of points in S and at most one point from $S^{\leq} \setminus S$.

Proof

- Suppose $x^0 = \sum_{i=1}^{n+1} \lambda_i y^i$, $\lambda \in \Delta$, where $y^i \in S^{\leq}$
- Suppose WLOG, $y^1, y^2 \in S^{\leq} \setminus S$. Two cases:
 - $y^0 := \frac{1}{\lambda_1 + \lambda_2} (\lambda_1 y^1 + \lambda_2 y^2) \in S^{\leq}$: In this case replace the two points y^1 and y^2 by the point y^0 and we have one less point from $S^{\leq} \setminus S$ whose convex combination gives x^0 .

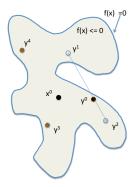


Claim 1

Claim: $x^0 \in \text{conv}(S^{\leq})$ implies x^0 can be written as convex combination of points in S and at most one point from $S^{\leq} \setminus S$.

Proof

- Suppose $x^0 = \sum_{i=1}^{n+1} \lambda_i y^i$, $\lambda \in \Delta$, where $y^i \in S^{\leq}$
- Suppose WLOG, $y^1, y^2 \in S^{\leq} \setminus S$. Two cases:
 - $y^0 := \frac{1}{\lambda_1 + \lambda_2} (\lambda_1 y^1 + \lambda_2 y^2) \in S^{\leq}$: In this case replace the two points y^1 and y^2 by the point y^0 and we have one less point from $S^{\leq} \setminus S$ whose convex combination gives x^0 .



Claim 1

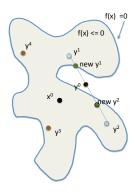
Claim: $x^0 \in \text{conv}(S^{\leq})$ implies x^0 can be written as convex combination of points in S and at most one point from $S^{\leq} \setminus S$.

Proof

- Suppose $x^0 = \sum_{i=1}^{n+1} \lambda_i y^i$, $\lambda \in \Delta$, where $y^i \in S$
- Suppose WLOG, $y^1, y^2 \in S^{\leq} \setminus S$. Two cases:

$$y^0 \coloneqq \frac{1}{\lambda_1 + \lambda_2} (\lambda_1 y^1 + \lambda_2 y^2) \in S^{\leq}.$$

■ $y^0 := \frac{1}{\lambda_1 + \lambda_2} (\lambda_1 y^1 + \lambda_2 y^2) \in S^{\geq}$: In this case, we can just move the two points y^1 and y^2 towards each other to obtain \tilde{y}^1 and \tilde{y}^2 such that (i) $\lambda_1 \tilde{y}^1 + \lambda_2 \tilde{y}^2 = \lambda_1 y^1 + \lambda_2 y^2$, (ii) $\tilde{y}^1, \tilde{y}^2 \in S^{\leq}$ (iii) either $\tilde{y}^1 \in S$ or $\tilde{y}^2 \in S$ (Intermediate value theorem). Again we have one less point from $S^{\leq} \setminus S$ whose convex combination gives x^0 .



Claim 1

Claim: $x^0 \in \operatorname{conv}(S^{\leq})$ implies x^0 can be written as convex combination of points in S and at most one point from $S^{\leq} \setminus S$.

Proof

- Suppose $x^0 = \sum_{i=1}^{n+1} \lambda_i y^i$, $\lambda \in \Delta$, where $y^i \in S$
- Suppose WLOG, $y^1, y^2 \in S^{\leq} \setminus S$. Two cases:
 - $y^0 := \frac{1}{\lambda_1 + \lambda_2} (\lambda_1 y^1 + \lambda_2 y^2) \in S^{\leq}$: In this case replace the two points y^1 and y^2 by the point y^0 and we have one less point from $S^{\leq} \setminus S$ whose convex combination gives x^0 .
 - $y^0 \coloneqq \frac{1}{\lambda_1 + \lambda_2} (\lambda_1 y^1 + \lambda_2 y^2) \in \widetilde{S^2}$: In this case, we can just move the two points y^1 and y^2 towards each other to obtain \tilde{y}^1 and \tilde{y}^2 such that (i) $\lambda_1 \tilde{y}^1 + \lambda_2 \tilde{y}^2 = \lambda_1 y^1 + \lambda_2 y^2$, (ii) $\tilde{y}^1, \tilde{y}^2 \in S^{\leq}$ (iii) either $\tilde{y}^1 \in S$ or $\tilde{y}^2 \in S$ (Intermediate value theorem). Again we have one less point from $S^{\leq} \setminus S$ whose convex combination gives x^0 .
- Repeat above argument finite number of times to arrive at Claim.

Claim 1

Claim: $x^0 \in \operatorname{conv}(S^{\leq})$ implies x^0 can be written as convex combination of points in S and at most one point from $S^{\leq} \setminus S$.

Proof

- Suppose $x^0 = \sum_{i=1}^{n+1} \lambda_i y^i$, $\lambda \in \Delta$, where $y^i \in S$
- Suppose WLOG, $y^1, y^2 \in S^{\leq} \setminus S$. Two cases:
 - $y^0 := \frac{1}{\lambda_1 + \lambda_2} (\lambda_1 y^1 + \lambda_2 y^2) \in S^{\leq}$: In this case replace the two points y^1 and y^2 by the point y^0 and we have one less point from $S^{\leq} \setminus S$ whose convex combination gives x^0 .
 - $y^0 \coloneqq \frac{1}{\lambda_1 + \lambda_2} (\lambda_1 y^1 + \lambda_2 y^2) \in \widetilde{S^2}$: In this case, we can just move the two points y^1 and y^2 towards each other to obtain \tilde{y}^1 and \tilde{y}^2 such that (i) $\lambda_1 \tilde{y}^1 + \lambda_2 \tilde{y}^2 = \lambda_1 y^1 + \lambda_2 y^2$, (ii) $\tilde{y}^1, \tilde{y}^2 \in S^{\leq}$ (iii) either $\tilde{y}^1 \in S$ or $\tilde{y}^2 \in S$ (Intermediate value theorem). Again we have one less point from $S^{\leq} \setminus S$ whose convex combination gives x^0 .
- Repeat above argument finite number of times to arrive at Claim.

Completing proof of Lemma

- Remember, for $x^0 \in \operatorname{conv}(S^{\leq}) \cap \operatorname{conv}(S^{\geq})$, we need to show $x^0 \in \operatorname{conv}(S)$.
- From previous claim applied to S^{\leq} and S^{\geq} :

$$x^{0} = \lambda_{0} y^{0} + \sum_{i=1}^{n} \lambda_{i} y^{i}, \ \lambda \in \Delta, y^{0} \in S^{\leq}, y^{i} \in S \ i \geq 1$$
 (3)

$$x^{0} = \mu_{0}w^{0} + \sum_{i=1}^{n} \mu_{i}w^{i}, \ \mu \in \Delta, w^{0} \in S^{\geq}, w^{i} \in S \ i \geq 1.$$
 (4)

■ (Again) by intermediate value theorem, suppose $z^0 := \gamma y^0 + (1 - \gamma) w^0$ satisfies $z^0 \in S$ for $\gamma \in [0, 1]$. Then by taking suitable convex combination of (3) and (4), $\exists \delta \in \Delta$

$$\delta_0 z^0 + \sum_{i=1}^2 \delta_i y^i + \sum_{i=n+1}^{2n} \delta_i w^{i-n} = x^0, \ \lambda \in \Delta, z^0, y^i, w^i \in S \ i \ge 1.$$

An important corollary

Theorem (Hillestad, Jacobsen (1980))

Let $P \subseteq \mathbb{R}^n$ be a polytope and let $C^1, \dots C^m$ be closed convex sets. Then

$$\operatorname{conv}\left(P\left(\bigcup_{i=1}^{m}\operatorname{int}(C^{i})\right)\right)$$

is a polytope.

Lemma (Richard Tawarmalani (2014))

Consider the set $S := \{x \in \mathbb{R}^n \mid f(x) = 0, x \in P\}$ where f is a continuous function and P is a convex set. Then:

$$\operatorname{conv}(S) = \operatorname{conv}(S^{\leq}) \bigcap \operatorname{conv}(S^{\geq}),$$

where

$$S^{\leq} := \{x \in \mathbb{R}^n \mid f(x) \leq 0, x \in P\}$$

$$S^{\geq} := \{x \in \mathbb{R}^n \mid f(x) \geq 0, x \in P\}$$

An important corollary: The SOCr-Boundary Corollary

Corollary

Let $S := \{x \in P \mid f(x) = 0\}$ such that

- $f: \mathbb{R}^n \to \mathbb{R}$ is real-valued convex function such that $\{x \mid f(x) \leq 0\}$ is SOCr.
- $P \subseteq \mathbb{R}^n$ is a polytope.

Then conv(S) is SOCr.

Proof

- Convexity implies continuity of f, so by the Richard-Tawarmalani Lemma, $\operatorname{conv}(S) = \operatorname{conv}(S^{\leq}) \cap \operatorname{conv}(S^{\geq})$.
- conv(S^{\leq}) = { $x \in P \mid f(x) \leq 0$ } = $\underbrace{\{x \mid f(x) \leq 0\} \cap P}_{SOCr}$.
- conv $(S^{\geq}) = \underbrace{\{x \in P \mid f(x) \geq 0\}}_{\equiv P \setminus \text{int}(\{x \mid f(x) \leq 0\})}$, so conv (S^{\geq}) is a polytope by the

Hillestad-Jacobsen Theorem. A polytope is a SOCr representable.

Ingredient 2: Dealing with equality sets

An important corollary: The SOCr-Boundary Corollary

Corollary

Let $S := \{x \in P \mid f(x) = 0\}$ such that

- $f: \mathbb{R}^n \to \mathbb{R}$ is real-valued convex function such that $\{x \mid f(x) \leq 0\}$ is SOCr.
- $P \subseteq \mathbb{R}^n$ is a polytope.

Then conv(S) is SOCr.

If T is boundary of a SOCr set, then convex hull of T interesected with a polytope is SOCr.

Ingredient - Convex hull of union of conic sets

Theorem

Let $P^1 := \{x \in \mathbb{R}^n \mid A^1x - b^1 \in K^1\}$ and $P^2 := \{x \in \mathbb{R}^n \mid A^2x - b^2 \in K^2\}$ be bounded conic sets. Then

$$\operatorname{conv}(P^1 \bigcup P^2) = \operatorname{Proj}_x \underbrace{\left\{ \left(\begin{array}{c} x \in \mathbb{R}^n, \\ x^1 \in \mathbb{R}^n, \\ x^2 \in \mathbb{R}^n, \\ \lambda \in \mathbb{R} \end{array} \right) \left| \begin{array}{c} A^1 x^1 - b^1 \lambda \in K^1, \\ A^2 x^2 - b^2 (1 - \lambda) \in K^2, \\ x = x^1 + x^2, \\ \lambda \in [0, 1] \end{array} \right. \right\}}_{Q}$$

Corollary for SOCr sets

Let S^1 and S^2 be two bounded SOCr sets. Then $\operatorname{conv}(S^1 \cup S^2)$ is also SOCr.

Proof: $\operatorname{conv}(P^1 \cup P^2) \subseteq \operatorname{Proj}_x(Q)$ inclusion

$$Q \coloneqq \left\{ \left(\begin{array}{c} x \in \mathbb{R}^n, \\ x^1 \in \mathbb{R}^n, \\ x^2 \in \mathbb{R}^n, \\ \lambda \in \mathbb{R} \end{array} \right) \middle| \begin{array}{c} A^1 x^1 - b^1 \lambda \in K^1, \\ A^2 x^2 - b^2 (1 - \lambda) \in K^2, \\ x = x^1 + x^2, \\ \lambda \in [0, 1] \end{array} \right\}$$

$\operatorname{conv}(P^1 \bigcup P^2) \subseteq \operatorname{Proj}_x(Q)$

- If $\tilde{x} \in P^1$, then $\tilde{x} \in \text{Proj}_x(Q)$ (by setting $x = x^1 = \tilde{x}$, $x^2 = 0$, $\lambda = 1$).
- Similarly if $\tilde{x} \in P^2$, then $\tilde{x} \in \text{Proj}_x(Q)$.
- $P^1 \cup P^2 \subseteq \operatorname{Proj}_x(Q)$
- $\operatorname{conv}(P^1 \cup P^2) \subseteq \operatorname{Proj}_x(Q)$ (Because $\operatorname{Proj}_x(Q)$ is a convex set)

Proof: $\operatorname{conv}(P^1 \cup P^2) \supseteq \operatorname{Proj}_x(Q)$ inclusion

$$Q := \left\{ \left(\begin{array}{c} x \in \mathbb{R}^n, \\ x^1 \in \mathbb{R}^n, \\ x^2 \in \mathbb{R}^n, \\ \lambda \in \mathbb{R} \end{array} \right) \left| \begin{array}{c} A^1 x^1 - b^1 \lambda \in K^1, \\ A^2 x^2 - b^2 (1 - \lambda) \in K^2, \\ x = x^1 + x^2, \\ \lambda \in [0, 1] \end{array} \right. \right\} \text{ Let } \tilde{x}, \tilde{x}^1, \tilde{x}^2, \tilde{\lambda} \in Q.$$

Case 1: $0 < \tilde{\lambda} < 1$

ī

$$K^{1} \qquad \underbrace{\underbrace{\ni}}_{K^{1} \text{ is a cone}} \qquad \frac{1}{\tilde{\lambda}} \underbrace{\left(A^{1} \tilde{x}^{1} - \tilde{\lambda} b^{1}\right)}_{\in K^{1}} = A^{1} \left(\frac{\tilde{x}^{1}}{\tilde{\lambda}}\right) - b^{1}$$

- So $\left(\frac{\tilde{x}^1}{\tilde{\lambda}}\right) \in P^1$.
- Similarly: $\frac{\tilde{x}^2}{1-\tilde{\lambda}} \in P^2$.
- Also $\tilde{x} = \tilde{\lambda} \cdot \left(\frac{\tilde{x}^1}{\tilde{\lambda}}\right) + (1 \tilde{\lambda}) \cdot \frac{\tilde{x}^2}{1 \tilde{\lambda}}$.
- So $\tilde{x} \in \text{conv}(P^1 \cup P^2)$.

Proof: $\operatorname{conv}(P^1 \cup P^2) \supseteq \operatorname{Proj}_x(Q)$ inclusion

$$Q \coloneqq \left\{ \left(\begin{array}{c} x \in \mathbb{R}^n, \\ x^1 \in \mathbb{R}^n, \\ x^2 \in \mathbb{R}^n, \\ \lambda \in \mathbb{R} \end{array} \right) \left(\begin{array}{c} A^1 x^1 - b^1 \lambda \in K^1, \\ A^2 x^2 - b^2 (1 - \lambda) \in K^2, \\ x = x^1 + x^2, \\ \lambda \in [0, 1] \end{array} \right) \right. \text{Let } \tilde{x}, \tilde{x}^1, \tilde{x}^2, \tilde{\lambda} \in Q.$$

Case 2: $\tilde{\lambda} = 1$

- $\tilde{\boldsymbol{x}}^1 \in P^1$, since $A^1 \tilde{\boldsymbol{x}}^1 b^1 \cdot 1 \in K^1$.
- Claim: $\tilde{x}^2 = 0$: Note $A^2 \tilde{x}^2 = 0$. If $\tilde{x}^2 \neq 0$, then for any $x^0 \in P^2$, we have that for any M > 0, $A^2 (x^0 + M \tilde{x}^2) b^2 = M A^2 \tilde{x}^2 + A^2 (x^0) b^2 = A^2 x^0 b^2 \in K^2$. So $x^0 + M \tilde{x}^2 \in P^2$ for M > 0, i.e., P^2 is unbounded, a contradition.
- So $\tilde{x} = \tilde{x}^1 \in P^1 \subseteq \operatorname{conv}(P^1 \cup P^2)$.

Case 3: $\tilde{\lambda} = 0$

Same as previous case

One row theorem

Theorem (Santana, D. (2019))

Let

$$S \coloneqq \{ x \in \mathbb{R}^n \mid x^\top Q x + \alpha^\top x = g, \ x \in P \}, \tag{5}$$

where $Q \in \mathbb{R}^{n \times n}$ is a symmetric matrix, $\alpha \in \mathbb{R}^n$, $g \in \mathbb{R}$ and $P := \{x \mid Ax \leq b\}$ is a polytope. Then $\operatorname{conv}(S)$ is second order cone representable.

Proof of Thm: Basic building block

- Krein-Milman Theorem: If S is compact, conv(S) = conv(ext(S)).
- If $\operatorname{ext}(S) \subseteq \bigcup_{k=1}^m T_k \subseteq S$, then

$$\operatorname{conv}(S) = \operatorname{conv}\left(\bigcup_{k=1}^{m} \operatorname{conv}(T_k)\right)$$

■ Finally, if conv (T_k) is SOCr, then conv (S) is SOCr.

Structure Lemma on Quadratic functions

Lemma

- 1 Case 1: It is the boundary of a SOCP representable convex set,
- **2** Case 2: It is the union of boundary of two disjoint SOCP representable convex set; or
- 3: It has the property that, through every point, there exists a straight line that is entirely contained in the surface.

Structure Lemma on Quadratic functions

Lemma

- 1 Case 1: It is the boundary of a SOCP representable convex set,
- **2** Case 2: It is the union of boundary of two disjoint SOCP representable convex set; or
- 3 Case 3: It has the property that, through every point, there exists a straight line that is entirely contained in the surface.

Structure Lemma on Quadratic functions

Lemma

- **1** Case 1: It is the boundary of a SOCP representable convex set,
- **2** Case 2: It is the union of boundary of two disjoint SOCP representable convex set; or
- 3 Case 3: It has the property that, through every point, there exists a straight line that is entirely contained in the surface.

Structure Lemma on Quadratic functions

Lemma

- **1** Case 1: It is the boundary of a SOCP representable convex set,
- **2** Case 2: It is the union of boundary of two disjoint SOCP representable convex set; or
- 3 Case 3: It has the property that, through every point, there exists a straight line that is entirely contained in the surface.

Convex hull of a general one-constraint quadratic constraint

Proof of one-row-theorem

Ruled surface are beautiful!

Proof of Thm (sketch)

Using the Structure Lemma $S := \{x \in \mathbb{R}^n \mid x^{\mathsf{T}}Qx + \alpha^{\mathsf{T}}x = g, x \in P\}$

- I If in Case 1 or Case 2: (i.e., the boundry of SOCr convex set or union of boundary of two SOCr sets), then done!
 (Via SOCr-boundary Corollary; and Convex hull of union of SOCr sets Theorem)
- 2 Otherwise:
 - 1 Because of the lines (Case 3), no point in the relative interior of the polytope can be an extreme point;
 - 2 Intersect the quadratic with each facet of the polytope;
 - **3** Each intersection yields a new quadratic set of the same form, but in lower dimension;
- 3 Repeat above argument for each facet.

Basically: (i) Consider all faces of P such that the quadratic on those faces are in Case 1 or Case 2. (ii) Then for these cases, write down the conv hull of the quadratic interested with the face—which is SOCr due to SOCr-boundary Corollary (iii) Take convex hull of the union of these SOCr set — which is SOCr due to the Convex hull of union of SOCr sets Theorem.

Proof of Structure Lemma

Lemma: Proof of Structure Lemma — Reduction

Let T be a set defined by the a quadratic equation. If F is an affine bijective map, then:

I T is Case 1, Case 2, Case 3 iff F(S) is in Case 1, Case 2, Case 3 (respectively)

Then, we rewrite

$$T := \{u \in \mathbb{R}^n \, | \ u^{\mathsf{T}}Qu + c^{\mathsf{T}}u = d\},$$

as

$$T = \left\{ (w, x, y) \in \mathbb{R}^{n_{q+}} \times \mathbb{R}^{n_{q-}} \times \mathbb{R}^{n_l} \mid \sum_{i=1}^{n_{q+}} w_i^2 - \sum_{j=1}^{n_{q-}} x_j^2 + \sum_{k=1}^{n_l} y_k = d, \right\},$$

where we may assume $d \ge 0$.

Proof of Structure Lemma

$$T = \left\{ (w, x, y) \in \mathbb{R}^{n_{q+}} \times \mathbb{R}^{n_{q-}} \times \mathbb{R}^{n_l} \mid \sum_{i=1}^{n_{q+}} w_i^2 - \sum_{j=1}^{n_{q-}} x_j^2 + \sum_{k=1}^{n_l} y_k = d, \right\}$$

Lemma

Assuming T as above and $d \ge 0$, we have:

Case	Classification
1) $n_l \ge 2$	Case 3: straight line
2) $n_{q+} \le 1$, $n_l = 0$	Case 1 or Case 2
3) $n_{q+}n_{q-} = 0, n_l \le 1$	Case 1 or Case 2
4) $n_{q+}, n_{q-} \ge 1, n_l = 1$	Case 3: straight line
5) $n_{q+} \ge 2$, $n_{q-} \ge 1$, $n_l = 0$	Case 3: straight line

Proof of Structure Lemma

First four cases are straightforward.

Last case of previous lemma

$$T = \left\{ (w, x) \in \mathbb{R}^{n_{q+}} \times \mathbb{R}^{n_{q-}} \mid \sum_{i=1}^{n_{q+}} w_i^2 - \sum_{j=1}^{n_{q-}} x_j^2 = d, \right\},\,$$

where $d \ge 0$, $n_{q+} \ge 2$, and $n_{q-} \ge 1$. Then through every point in T, there exists a *straight* line that is *entirely* contained in T.

Proof of last case

Proof

- Consider a vector $(\hat{w}, \hat{x}) \in (\mathbb{R}^{n_{q^+}} \times \mathbb{R}^{n_{q^-}}) \in T$.
- We want to show that there is a line $\{(\hat{w}, \hat{x}) + \lambda(u, v) | \lambda \in \mathbb{R}\}$ satisfies the quadratic equation of T, where $(u, v) \neq 0$. We consider the case when $(\hat{w}, \hat{x}) \neq 0$ [Other case trivial]:
- In this case $\hat{w} \neq 0$, since otherwise $-\sum_{j=1}^{n_{q-}} \hat{x}_j^2 = d \ge 0$ implies $\hat{x} = 0$. Then observe that:

$$\sum_{i=1}^{n_{q+}} \hat{w}_i^2 = d + \sum_{j=1}^{n_{q-}} \hat{x}_j^2 \ge \hat{x}_1^2 \Longleftrightarrow \frac{|\hat{x}_1|}{\|\hat{w}\|_2} \le 1.$$

$$d = \sum_{i=1}^{n_{q+}} (\hat{w}_i + \lambda u_i)^2 - \sum_{i=1}^{n_{q-}} (\hat{x}_i + \lambda v_i)^2 \quad \forall \lambda \in \mathbb{R}$$

$$\Leftrightarrow d = \left(\sum_{i=1}^{n_{q+}} \hat{w}_i^2 - \sum_{i=1}^{n_{q-}} \hat{x}_i^2\right) + \lambda^2 \left(\sum_{i=1}^{n_{q+}} u_i^2 - \sum_{i=1}^{n_{q-}} v_i^2\right) + 2\lambda \left(\sum_{i=1}^{n_{q+}} \hat{w}_i u_i - \sum_{i=1}^{n_{q-}} \hat{x}_i v_i\right) \quad \forall \lambda \in \mathbb{R}$$

Proof of last case - contd.

$$\Leftrightarrow d = \frac{\sum_{i=1}^{n_{q+}} \hat{w}_i^2 - \sum_{i=1}^{n_{q-}} \hat{x}_i^2}{\sum_{i=1}^{n_{q-}} \hat{x}_i^2} + \lambda^2 \left(\sum_{i=1}^{n_{q+}} u_i^2 - \sum_{i=1}^{n_{q-}} v_i^2 \right) + 2\lambda \left(\sum_{i=1}^{n_{q+}} \hat{w}_i u_i - \sum_{i=1}^{n_{q-}} \hat{x}_i v_i \right) \quad \forall \lambda \in \mathbb{R}$$

$$\Leftrightarrow \sum_{i=1}^{n_{q+}} u_i^2 - \sum_{i=1}^{n_{q-}} v_i^2 = 0, \quad \sum_{i=1}^{n_{q+}} \hat{w}_i u_i - \sum_{i=1}^{n_{q-}} \hat{x}_i v_i = 0.$$
(6)

■ We set $v_1 = 1$ and $v_j = 0$ for all $j \in \{2, ..., n_{q-}\}$. Then satisfying (6) is equivalent to finding real values of u satisfying:

$$\sum_{i=1}^{n_{q+}} u_i^2 = 1, \quad \sum_{i=1}^{n_{q+}} \hat{w}_i u_i = \hat{x}_1.$$

■ This is the intersection of a circle of radius 1 in dimension two or higher (since $n_{q+} \ge 2$ in this case) and a hyperplane whose distance from the origin is $\frac{\|\hat{x}_1\|}{\|\hat{w}\|_2}$. Done!

Discussion

Classify: conv.hull of QCQP substructure is SOCr?

Is SOCP representable:

- **1** One quadratic equality (or inequality) constraint \cap polytope.
- 2 Two quadratic inequalities ([Yıldıran (2009)], [Bienstock, Michalka (2014)], [Burer, Kılınç-Karzan (2017)], [Modaresi, Vielma (2017)])

Is not SOCP representable:

■ Already in 10 variables, 5 quadratic equalities, 4 quadratic inequalities, 3 linear inequalities ([Fawzi (2018)])

Other simple sets (with mostly SDP based convex hulls): highly incomplete literature review

■ Related to study of generalized trust region problem:

inf
$$x^{\mathsf{T}}Q^{0}x + (A^{0})^{\mathsf{T}}x$$
 s.t. $x^{\mathsf{T}}Q^{1}x + (A^{1})^{\mathsf{T}}x + b^{1} \le 0$

[Fradkov and Yakubovich (1979)] showed SDP relaxation is tight. Since then work by: [Sturm, Zhang (2003)], [Ye, Zhang (2003)], [Beck, Eldar(2005)] [Burer, Anstreicher (2013)], [Jeyakumar, Li (2014)], [Yang, Burer (2015) (2016)], [Ho-Nguyen, Kılınç-Karzan (2017)], [Wang, Kılınç-Karzan (2019)]

- Explicit descriptions for the convex hull of the intersection of a single nonconvex quadratic region with other structured sets [Yıldıran (2009)], [Luo, Ma, So, Ye, Zhang (2010)], [Bienstock, Michalka (2014)], [Burer (2015)], [Kılınç-Karzan, Yıldız (2015)], [Yıldız, Cornuejols (2015)], [Burer and Kılınç-Karzan (2017)], [Yang, Anstreicher, Burer (2017)], [Modaresi and Vielma (2017)]
- SDP tight for general QCQPs? [Burer, Ye(2018)], [Wang, Kılınç-Karzan (2020)].
- Approximation Guarantees. [Nesterov (1997)], [Ye(1999)] [Ben-Tal, Nemirovski (2001)]

6

Back to convexification of functions: efficiency and approximation

A simple example

Consider:

$$f(x) = 5x_1x_2 + 3x_1x_4 + 7x_3x_4 \text{ over } S := [0, 1]^4$$

- By edge-concavity of f(x), we have that concave envelope can be obtained by just examining the 2^4 extreme points.
- What if I add the term-wise concave envelopes?

$$g(x) = \begin{cases} 5w_1 + 3w_2 + 7w_3 \\ w_1 = \operatorname{conv}_{[0,1]^2}(x_1x_2)(x), \\ w_2 = \operatorname{conv}_{[0,1]^2}(x_1x_4)(x), \\ w_3 = \operatorname{conv}_{[0,1]^2}(x_3x_4)(x) \end{cases}$$

How good of an approximation is g(x) of $conv_{[0,1]^4}(f)(x)$?

"Positive" result about "positive" coefficients

Theorem [Crama (1993)], [Coppersmith, Günlük, Lee, Leung (1999)], [Meyer, Floudas (2005)]

Consider the function $f(x):[0,1]^n \to \mathbb{R}$ given by:

$$f(x) = \sum_{(i,j)\in E} a_{ij} x_i x_j$$

If $a_{ij} \ge 0 \ \forall (i,j) \in E$, then the concave envelope of f is given by (weighted) sum of the concave envelope of the individual functions $x_i x_j$.

Proof: Thanks total unimodularity!

$$f(x) = 5x_1x_2 + 3x_1x_4 + 7x_3x_4 \text{ over } S := [0, 1]^4$$

$$g(x) = \max \quad 5w_1 + 3w_2 + 3w_3$$
s.t.
$$w_1 \le x_1, w_1 \le x_2$$

$$w_2 \le x_1, w_2 \le x_4$$

$$w_3 \le x_3, w_3 \le x_4$$

$$1 > w > 0$$

- Lets say we are computing concave envelope at \hat{x} of f. Let \hat{w} be the optimal solution of the above.
- g is concave function: $g(\hat{x}) \ge \operatorname{conc}_{[0,1]^4} f(x)(\hat{x})$.
- By TU matrix in both x, w variables (and therefore integrality of the polytope in the x, w space), $(\hat{x}, \hat{w}) = \sum_k \lambda_k(x^k, w^k)$ where (x^k, w^k) are integral and $\lambda \in \Delta$.
- $g(\hat{x}) = 5\hat{w}_1 + 3\hat{w}_2 + 7\hat{w}_3 = \sum_k \lambda_k (5w_1^k + 3w_2^k + 7w_3^k) \le \operatorname{conc}_{[0,1]^4} f(x)(\hat{x}).$

More generally...

■ Given $f(x) = \sum_{(i,j)\in E} a_{ij}x_ix_j$ and a particular $\hat{x} \in [0,1]^n$ let:

$$ideal(\hat{x}) = conc_{[0,1]^n}(f)(\hat{x}) - conv_{[0,1]^n}(f)(\hat{x})$$

and

efficient(
$$\hat{x}$$
) = McCormick Upper(f)(\hat{x}) – McCormick Lower(f)(\hat{x})

■ Clearly efficient(\hat{x}) \geq ideal(\hat{x}).

How much larger (worse) is efficient(\hat{x}) in comparison to ideal(\hat{x})?

Answers

- Consider the graph G(V, E) where V is the set of nodes and E is the set of terms $x_i x_j$ in the function f for which $a_{ij} \neq 0$.
- Let the weight of edge (i,j) be a_{ij} .

Theorem

 $ideal(\hat{x}) = efficient(\hat{x})$ for all $\hat{x} \in [0,1]^n$ iff G is bipartite and each cycle have even number of positive weights and even number of negative weights.

- [Luedtke, Namazifar, Linderoth (2012)]
- [Misener, Smadbeck, Floudas (2014)]
- [Boland, D., Kalinowski, Molinaro, Rigterink (2017)]

More Answers...

Theorem ([Luedtke, Namazifar, Linderoth (2012)])

If $a_{ij} \ge 0$, then

$$ideal(\hat{x}) \le efficient(\hat{x}) \le \left(2 - \frac{1}{\lceil \chi(G)/2 \rceil}\right) \cdot ideal(\hat{x}),$$

where $\chi(G)$ is the chromatic number of the graph (minimum number of colors needed to color the vertices, so that no two vertices connected by an edge have the same color).

Theorem ([Boland, D., Kalinowski, Molinaro, Rigterink (2017)])

In general,

$$ideal(\hat{x}) \leq efficient(\hat{x}) \leq 600\sqrt{n} \cdot ideal(\hat{x}),$$

where the multipicative ratio is tight upto constants.

6.1 Proofs for the case $a_{ij} \ge 0$

Infinite to finite

Theorem ([Luedtke, Namazifar, Linderoth (2012)])

If $a_{ij} \ge 0$, then

$$ideal(\hat{x}) \le efficient(\hat{x}) \le \left(2 - \frac{1}{\lceil \chi(G)/2 \rceil}\right) \cdot ideal(\hat{x}),$$

where $\chi(G)$ is the chromatic number of the graph (minimum number of colors needed to color the vertices, so that no two vertices connected by an edge have the same color).

(Non-trivial) part of Theorem is equivalent to:

$$\min_{\hat{x} \in [0,1]^n} \left(\left(2 - \frac{1}{\lceil \chi(G)/2 \rceil} \right) \cdot \operatorname{ideal}(\hat{x}) - \operatorname{efficient}(\hat{x}) \right) \ge 0$$

Step 1: Infinite to finite

$$\min_{\hat{x} \in [0,1]^n} \left(\left(2 - \frac{1}{\lceil \chi(G)/2 \rceil} \right) \cdot \mathrm{ideal}(\hat{x}) - \mathrm{efficient}(\hat{x}) \right) \geq 0$$

First task:

It is sufficient to prove:

$$\min_{\hat{x} \in \{0, \frac{1}{2}, 1\}^n} \left(\left(2 - \frac{1}{\lceil \chi(G)/2 \rceil} \right) \cdot \operatorname{ideal}(\hat{x}) - \operatorname{efficient}(\hat{x}) \right) \ge 0$$

Let
$$\rho := \left(2 - \frac{1}{\lceil \chi(G)/2 \rceil}\right) \ge 1$$

Step 1: Infinite to finite

```
\min_{\hat{x} \in [0,1]^n} \quad (\rho \cdot \operatorname{ideal}(\hat{x}) - \operatorname{efficient}(\hat{x}))
= \min_{\hat{x} \in [0,1]^n} \quad (\rho \cdot \operatorname{conc}_{[0,1]^n}(f)(\hat{x}) - \rho \cdot \operatorname{conv}_{[0,1]^n}(f)(\hat{x})
-\operatorname{McCormick Upper}(f)(\hat{x}) + \operatorname{McCormick Lower}(f)(\hat{x}))
However, since a_{ij} \ge 0, we have already seen:
\operatorname{conc}_{[0,1]^n}(f)(\hat{x}) = \operatorname{McCormick Upper}(f)(\hat{x}), \text{ so:}
= \min_{\hat{x} \in [0,1]^n} \quad ((\rho - 1) \cdot \operatorname{conc}_{[0,1]^n}(f)(\hat{x}) - \rho \cdot \operatorname{conv}_{[0,1]^n}(f)(\hat{x})
+\operatorname{McCormick Lower}(f)(\hat{x}))
```

Step 1: Infinite to finite

Let

$$MC := \left\{ (x,y) \in [0,1]^n \times [0,1]^{n(n-1)/2} \middle| \begin{array}{l} y_{ij} & \geq & 0, \\ y_{ij} & \geq & x_i + x_j - 1, \\ y_{ij} & \leq & x_i, \\ y_{ij} & \leq & x_j \end{array} \right. \forall i,j \in [n](i \neq j) \right\}$$

$$= \min_{\hat{x} \in [0,1]^n} ((\rho - 1) \cdot \operatorname{conc}_{[0,1]^n}(f)(\hat{x}) - \rho \cdot \operatorname{conv}_{[0,1]^n}(f)(\hat{x}) \\ + \operatorname{McCormick Lower}(f)(\hat{x}))$$

$$= \min_{(\hat{x},\hat{y}) \in MC} ((\rho - 1) \cdot \operatorname{conc}_{[0,1]^n}(f)(\hat{x}) - \rho \cdot \operatorname{conv}_{[0,1]^n}(f)(\hat{x}) \\ + \sum_{(i,j) \in E} a_{ij} y_{ij})$$

- $\rho 1 \ge 0$ implies, $(\rho 1) \cdot \operatorname{conc}_{[0,1]^n}(f)$ is concave.
- \bullet conv_{[0,1]ⁿ} (f) is convex, so $-\rho \cdot \text{conv}_{[0,1]^n}(f)$

So the optimal solution can be assumed to be at a vertex of MC!

Step 1: Infinite to finite

Let

$$MC := \left\{ (x,y) \in [0,1]^n \times [0,1]^{n(n-1)/2} \middle| \begin{array}{l} y_{ij} & \geq & 0, \\ y_{ij} & \geq & x_i + x_j - 1, \\ y_{ij} & \leq & x_i, \\ y_j & \leq & x_j \end{array} \right. \forall i,j \in [n](i \neq j) \right\}$$

Proposition [Padberg (1989)]

All the extreme points of MC are in $\{0, \frac{1}{2}, 1\}^n$

So:

$$\begin{aligned} & & \min_{\hat{x} \in [0,1]^n} & & \left(\left(2 - \frac{1}{\lceil \chi(G)/2 \rceil} \right) \cdot \mathrm{ideal}(\hat{x}) - \mathrm{efficient}(\hat{x}) \right) \geq 0 \\ \Leftrightarrow & & \min_{\hat{x} \in \{0,\frac{1}{2},1\}^n} & \left(\left(2 - \frac{1}{\lceil \chi(G)/2 \rceil} \right) \cdot \mathrm{ideal}(\hat{x}) - \mathrm{efficient}(\hat{x}) \right) \geq 0 \end{aligned}$$

Step 2: Computation of efficient (\hat{x})

Notation:

- \blacksquare Remember G(V, E)
- For $U^1, U^2, \delta(U^1, U^2)$ is the edges of G where one end point is in U^1 and the other end point in U^2 .
- Corresponding to $\hat{x} \in \{0, \frac{1}{2}, 1\}$, let $V := V_0 \cup V_f \cup V_1$

Proposition

For
$$\hat{x} \in \{0, \frac{1}{2}, 1\}$$
, efficient $(\hat{x}) = \frac{1}{2} \sum_{(i,j) \in \delta(V_f, V_f)} a_{ij}$.

■ This is just calculation, remembering that the MC concave and convex envelope 'cancel out for y_{ij} if x_i or x_j are in $\{0,1\}$ '.

Back to convexification of functions: efficiency and approximation

Proofs for the case $a_{i,j} \ge 0$

Step 3: Estimation of ideal(\hat{x}): $\operatorname{conc}_{[0,1]^n}(f)(\hat{x})$

$$\operatorname{ideal}(\hat{x}) = \operatorname{conc}_{[0,1]^n}(f)(\hat{x}) - \operatorname{conv}_{[0,1]^n}(f)(\hat{x})$$

First estimate $\operatorname{conc}_{[0,1]^n}(f)(\hat{x})$:

Proposition

For
$$\hat{x} \in \{0, \frac{1}{2}, 1\}$$
, $\operatorname{conc}_{[0,1]^n}(f)(\hat{x}) = \sum_{(i,j)\in\delta(V_1,V_1)} a_{ij} + \frac{1}{2} \sum_{(i,j)\in\delta(V_1,V_f)} a_{ij} + \frac{1}{2} \sum_{(i,j)\in\delta(V_f,V_f)} a_{ij}$.

Step 3: Estimation of ideal(\hat{x}): conv_{[0,1]ⁿ}(f)(\hat{x})

Now we want to estimate $\operatorname{conv}_{[0,1]^n}(f)(\hat{x})$

- Remember G(V, E) and $V := V_1 \cup V_f \cup V_0$.
- Suppose $T_f^a \cup T_f^b$ is a partition of the nodes in T_f . Then:

Note
$$\widehat{x} = \frac{1}{2} \cdot x(T_1 \cup T_f^a) + \frac{1}{2} \cdot x(T_1 \cup T_f^b)$$

- Therefore $\operatorname{conv}_{[0,1]^n}(f)(\hat{x}) \leq$ $\frac{1}{2} \operatorname{conv}_{[0,1]^n}(f)(x(T_1 \cup T_f^a)) + \frac{1}{2} \operatorname{conv}_{[0,1]^n}(f)(x(T_1 \cup T_f^a)).$
- With some simple calculations:

$$\frac{1}{2} \operatorname{conv}_{[0,1]^n}(f) (x(T_1 \cup T_f^a)) + \frac{1}{2} \operatorname{conv}_{[0,1]^n}(f) (x(T_1 \cup T_f^a)) = \frac{1}{2} (A + B + C - D),$$

where:

- $\blacksquare A = 2 \sum_{(i,j) \in \delta(T_1,T_1)} a_{ij}$
- $\blacksquare B = \sum_{(i,j) \in \delta(T_1,T_f)} a_{ij}$
- $C = \sum_{(i,j) \in \delta(T_f, T_f)} a_{ij}$
- $D = \sum_{(i,j)\in\delta(T_{\ell}^a,T_{\iota}^b)} a_{ij} < ---$ This is a cut among the fractional

vertices! Question: how large can this cut be?

Step 3: Estimation of ideal(\hat{x}): $\operatorname{conv}_{[0,1]^n}(f)(\hat{x})$

Theorem

Assuming $a_{ij} \ge 0$ for all $(i, j) \in E$, there exists a cut of value at least:

$$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2\chi(G) - 2} \right) \sum_{(i,j) \in E} a_{ij}$$

- Apply this Theorem to the induced subgraph of fractional vertices.
- Note that the chromatic number cannot increase for a subgraph.

Putting it all together

- Examining $\hat{x} \in \{0, \frac{1}{2}, 1\}$:
- efficient(\hat{x}) = $\frac{1}{2}\sum_{(i,j)\in\delta(V_f,V_f)}a_{ij}$.

$$\begin{split} \operatorname{ideal}(\hat{x}) & \geq & \frac{\sum_{(i,j) \in \delta(V_1,V_1)} a_{ij} + \frac{1}{2} \sum_{(i,j) \in \delta(V_1,V_f)} a_{ij}}{+\frac{1}{2} \sum_{(i,j) \in \delta(V_f,V_f)} a_{ij}} \\ & - \frac{\sum_{(i,j) \in \delta(V_1,V_1)} a_{ij} - \frac{1}{2} \sum_{(i,j) \in \delta(V_1,V_f)} a_{ij}}{-\frac{1}{4} \sum_{(i,j) \in \delta(V_f,V_f)} a_{ij}} \\ & + \frac{1}{4\chi(G) - 4} \sum_{(i,j) \in \delta(V_f,V_f)} a_{ij} \end{split}$$

- $\bullet \text{ ideal}(\hat{x}) \ge \frac{1}{4} \left(1 + \frac{1}{\chi(G) 1} \right) \cdot \sum_{(i,j) \in \delta(V_f, V_f)} a_{ij}.$

 \square Proofs for the case $a_{i,i} \ge 0$

Mixed a_{ij} case

Theorem ([Boland, D., Kalinowski, Molinaro, Rigterink (2017)])

In general,

$$ideal(\hat{x}) \leq efficient(\hat{x}) \leq 600\sqrt{n} \cdot ideal(\hat{x}),$$

where the multipicative ratio is tight upto constants.

Similar techniques, a key result on cuts of graphs:

Theorem ([Boland, D., Kalinowski, Molinaro, Rigterink (2017)])

Let G = (V, E) be a complete graph on vertices $V = \{1, ..., n\}$ and let $a \in \mathbb{R}^{n(n-1)/2}$ be edge weights. Then there exists a $U \subseteq V$ such that

$$\left| \sum_{(i,j) \in \delta(U, V \setminus U)} a_{ij} \right| \ge \frac{1}{600\sqrt{n}} \cdot \sum_{(i,j) \in E} |a_{ij}|$$

Back to convexification of functions: efficiency and approximation

Proofs for the case $a_{ij} \ge 0$

Thank You!