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The Chvátal-Gomory Closure of Strictly Convex Body

Introduction: Chvátal-Gomory Procedure

Definitions

The Chvátal-Gomory Procedure

Let C ⊆ Rn be a closed convex set and we are interested in ‘nontrivial’
convex relaxation of the set C ∩ Zn that are ‘easy to construct’.

1. Let 〈a, x〉 ≤ r be a valid inequality for C (i.e. C ⊆ {u ∈ Rn | 〈a, u〉 ≤ r})
such that a ∈ Zn.

2. Since x ∈ Zn, 〈a, x〉 ∈ Z. Therefore the inequality

〈a, x〉 ≤ brc

is a valid inequality for C ∩ Zn.
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Introduction: Chvátal-Gomory Procedure

Definitions

Chvátal-Gomory Cuts for Polyhedron

{(x1, x2) ∈ Z2 | x1 ≥, x2 ≥ 0, x1 + x2 ≤ 3, 5x − 3y ≤ 3}
Valid inequality for Continuous Relaxation: 4x1 + 3x2︸ ︷︷ ︸

∈Z

≤ 10.5.
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Introduction: Chvátal-Gomory Procedure

Definitions

Chvátal-Gomory Cuts for Polyhedron

{(x1, x2) ∈ Z2 | x1 ≥, x2 ≥ 0, x1 + x2 ≤ 3, 5x − 3y ≤ 3}
Valid inequality for Continuous Relaxation: 4x1 + 3x2︸ ︷︷ ︸

∈Z

≤ 10.5.

This gives the following nontrivial valid inequality: 4x1 + 3x2 ≤ b10.5c.
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Introduction: Chvátal-Gomory Procedure

Definitions

Strictly Convex Sets

Definition

1. We say a set C is strictly convex if for all u, v ∈ C, u 6= v we have that
λu + (1− λ)v ∈ rel.int(C) for all 0 < λ < 1.

2. We say C is a strictly convex body if C is a full dimensional, strictly
convex and a compact set.

Almost always I will be concerned with strictly convex body.
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Introduction: Chvátal-Gomory Procedure

Definitions

Chvátal-Gomory Cuts for a Strictly Convex Body
{(x1, x2) ∈ Z2 | ||

[
0.375 0.125
0.125 0.375

]
(x −

[
1
3

]
)|| ≤ 1}

Valid inequality for Continuous Relaxation: x1 + x2︸ ︷︷ ︸
∈Z

≤
√

8 + 4.

This gives the following nontrivial valid inequality: x1 + x2 ≤ b
√

8 + 4c.
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Introduction: Chvátal-Gomory Procedure

The CGC Question

Chvátal-Gomory Closure

1. It is sufficient to restrict attention to supporting hyperplanes to obtain all
interesting CG cuts.

2. (Support Function) Given a ∈ Zn. Let σC(a) := sup{〈a, x〉 | x ∈ C}
⇒ 〈a, x〉 ≤ σC(a) is a supporting inequality for C.

3. For any subset D ⊆ Zn we define,

CGC(D,C) := {x ∈ Rn |
⋂
a∈D

〈a, x〉 ≤ bσC(a)c}

4. CGC(Zn,C) is called the Chvátal-Gomory closure.

Is CGC(Zn,C) a polyhedron?

13



The Chvátal-Gomory Closure of Strictly Convex Body

Introduction: Chvátal-Gomory Procedure

The CGC Question

Chvátal-Gomory Closure

1. It is sufficient to restrict attention to supporting hyperplanes to obtain all
interesting CG cuts.

2. (Support Function) Given a ∈ Zn. Let σC(a) := sup{〈a, x〉 | x ∈ C}

⇒ 〈a, x〉 ≤ σC(a) is a supporting inequality for C.

3. For any subset D ⊆ Zn we define,

CGC(D,C) := {x ∈ Rn |
⋂
a∈D

〈a, x〉 ≤ bσC(a)c}

4. CGC(Zn,C) is called the Chvátal-Gomory closure.

Is CGC(Zn,C) a polyhedron?

14



The Chvátal-Gomory Closure of Strictly Convex Body

Introduction: Chvátal-Gomory Procedure

The CGC Question

Chvátal-Gomory Closure

1. It is sufficient to restrict attention to supporting hyperplanes to obtain all
interesting CG cuts.

2. (Support Function) Given a ∈ Zn. Let σC(a) := sup{〈a, x〉 | x ∈ C}
⇒ 〈a, x〉 ≤ σC(a) is a supporting inequality for C.

3. For any subset D ⊆ Zn we define,

CGC(D,C) := {x ∈ Rn |
⋂
a∈D

〈a, x〉 ≤ bσC(a)c}

4. CGC(Zn,C) is called the Chvátal-Gomory closure.

Is CGC(Zn,C) a polyhedron?

15



The Chvátal-Gomory Closure of Strictly Convex Body

Introduction: Chvátal-Gomory Procedure

The CGC Question

Chvátal-Gomory Closure

1. It is sufficient to restrict attention to supporting hyperplanes to obtain all
interesting CG cuts.

2. (Support Function) Given a ∈ Zn. Let σC(a) := sup{〈a, x〉 | x ∈ C}
⇒ 〈a, x〉 ≤ σC(a) is a supporting inequality for C.

3. For any subset D ⊆ Zn we define,

CGC(D,C) := {x ∈ Rn |
⋂
a∈D

〈a, x〉 ≤ bσC(a)c}

4. CGC(Zn,C) is called the Chvátal-Gomory closure.

Is CGC(Zn,C) a polyhedron?

16



The Chvátal-Gomory Closure of Strictly Convex Body

Introduction: Chvátal-Gomory Procedure

The CGC Question

Chvátal-Gomory Closure

1. It is sufficient to restrict attention to supporting hyperplanes to obtain all
interesting CG cuts.

2. (Support Function) Given a ∈ Zn. Let σC(a) := sup{〈a, x〉 | x ∈ C}
⇒ 〈a, x〉 ≤ σC(a) is a supporting inequality for C.

3. For any subset D ⊆ Zn we define,

CGC(D,C) := {x ∈ Rn |
⋂
a∈D

〈a, x〉 ≤ bσC(a)c}

4. CGC(Zn,C) is called the Chvátal-Gomory closure.

Is CGC(Zn,C) a polyhedron?

17



The Chvátal-Gomory Closure of Strictly Convex Body

Introduction: Chvátal-Gomory Procedure

The CGC Question

Chvátal-Gomory Closure

1. It is sufficient to restrict attention to supporting hyperplanes to obtain all
interesting CG cuts.

2. (Support Function) Given a ∈ Zn. Let σC(a) := sup{〈a, x〉 | x ∈ C}
⇒ 〈a, x〉 ≤ σC(a) is a supporting inequality for C.

3. For any subset D ⊆ Zn we define,

CGC(D,C) := {x ∈ Rn |
⋂
a∈D

〈a, x〉 ≤ bσC(a)c}

4. CGC(Zn,C) is called the Chvátal-Gomory closure.

Is CGC(Zn,C) a polyhedron?

18



The Chvátal-Gomory Closure of Strictly Convex Body

Introduction: Chvátal-Gomory Procedure

Discussion

What We Know?

Theorem (Chvátal (1973), Schrijver (1980))
Let C be a rational polyhedron. Then CGC(Zn,C) is a polyhedron.

Let C1 := CGC(Zn,C).
Let C2 := CGC(Zn,C1).
Let C3 := CGC(Zn,C2).
...

Theorem (Chvátal (1973), Schrijver (1980))
Let C be a rational polyhedron or any bounded convex set, then there exists
an integer k such that Ck is the convex hull of the integer feasible points.

Unfortunately, Theorem 2 does not imply Theorem 1. For example:

If C is irrational polytope, then we do not know if CGC(Zn,C) a polytope.
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Main Result and Proof Outline

Main Results

Main Results

Theorem
Let C be a strictly convex body. Then CGC(C) is a rational polytope.

Theorem
Let C be a strictly convex body and P a rational polyhedron. Then
CGC(C ∩ P) is a rational polytope.
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Main Result and Proof Outline

High Level Proof Outline

Proof Outline

Figure: A procedure to generate the CG closure for a strictly convex body C

Step 1 Show that it is possible to construct a polytope Q defined by a
finite number of CG cuts such that:

I Q ⊂ C.
I Q ∩ bnd(C) ⊂ Zn.

Step 2 Update Q with CG cuts that separate points of Q \ CGC(Zn,C):
Show that there can exist only a finite number of such cuts are
possible.
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Main Result and Proof Outline

Proof of Step 1

Outline of Step 1: Separate All Points on the Boundary ‘Smartly’

Lemma (Fractional Points on the Boundary)
If u ∈ bnd(C) \ Zn, then there exists a CG cut that separates point u.

Lemma (Integral Points on the Boundary)
Let C ⊆ Rn be a strictly convex body and u ∈ bnd(C) ∩ Zn. Then

1. There exists a polyhedral cone T ′(u) = {x ∈ Rn : 〈ci , x〉 ≤ 0, 1 ≤ i ≤ k}
such that

ci ∈ Zn and bσC(ci)c = 〈ci , u〉 ∀ i, 1 ≤ i ≤ k (1)

and
T ′(u) ⊆ int(TC(u)) ∪ {0} (2)

2. There exists an open neighborhood N of u such that

N ∩ bnd(C) ∩ (u + T ′(u)) = {u}
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Outline of Step 1: Separate All Points on the Boundary ‘Smartly’
Lemma (Fractional Points on the Boundary)
If u ∈ bnd(C) \ Zn, then there exists a CG cut that separates point u.

In case of rational polyhedron, there is a similar result that essentially says that if P is a
rational polyhedron and F is an face, then

CGC(Zn,P) ∩ F = CGC(Zn,F ).

However, this proof does not carry though here.
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Proof of Step 1

Illustration of Second Lemma
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Proof of Step 1

Constructing Q Using a Compactness Argument

The Boundary is compact
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Main Result and Proof Outline

Proof of Step 1

Constructing Q Using a Compactness Argument

The new set obtained by removing some open sets from the boundary is
compact
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Main Result and Proof Outline

Proof of Step 1

Constructing Q Using a Compactness Argument

Since every point is separated, there exists a finite sub collection that
separates every point + finite number of cuts separating neighborhood of
integer points

Q
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Proof of Step 1

Constructing Q Using a Compactness Argument

Q ⊂ C, Q ∩ Bnd(C) ⊆ Zn

Q
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Proof of the First Separation Lemma

Separation: Easy Case

1. Select a fractional point u on the boundary and let s(u) be a vector in the
normal cone, i.e.

〈s(u), x〉 ≤ σC(s(u)) = 〈s(u), u〉 be the valid inequality which is tight at u

2. If there exists λ > 0 such that
2.1 λs(u) ∈ Zn and
2.2 σC(λs(u)) /∈ Z

3. Then generate the CG cut

〈λs(u), u〉 ≤ bσC(λs(u))c

that separates u.
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Proof of the First Separation Lemma

Separation: Difficult Cases
Given u ∈ bnd(C), for all λ > 0 such that

1. λs(u) ∈ Zn

2. but σC(λs(u)) ∈ Z.

Example
Let C := {x ∈ R2 |

√
x2

1 + x2
2 ≤ 5} and u = (25/13, 60/13)T ∈ bnd(C). We

have that the supporting inequality for u can be is 5x1 + 12x2 ≤ 65. Because
5 and 12 are coprime and σC(·) is positively homogeneous, (5, 12) cannot be
scaled so that λ(5, 12) ∈ Z2 and σC(λ(5, 12)) /∈ Z.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Given u ∈ bnd(C), there does not exist λ > 0 such that λs(u) ∈ Zn.

Example
Let C := {x ∈ R2 |

√
x2

1 + x2
2 ≤ 1} and u = (1/2,

√
3/2)T ∈ bnd(C). We have

that the supporting inequality for u is 1
2 x1 +

√
3

2 x2 ≤ 1. Since (1/2,
√

3/2) is
irrational in only one component, observe that it cannot be scaled to be
integral.

40



The Chvátal-Gomory Closure of Strictly Convex Body

Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult Cases
Given u ∈ bnd(C), for all λ > 0 such that

1. λs(u) ∈ Zn

2. but σC(λs(u)) ∈ Z.

Example
Let C := {x ∈ R2 |

√
x2

1 + x2
2 ≤ 5} and u = (25/13, 60/13)T ∈ bnd(C). We

have that the supporting inequality for u can be is 5x1 + 12x2 ≤ 65. Because
5 and 12 are coprime and σC(·) is positively homogeneous, (5, 12) cannot be
scaled so that λ(5, 12) ∈ Z2 and σC(λ(5, 12)) /∈ Z.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Given u ∈ bnd(C), there does not exist λ > 0 such that λs(u) ∈ Zn.

Example
Let C := {x ∈ R2 |

√
x2

1 + x2
2 ≤ 1} and u = (1/2,

√
3/2)T ∈ bnd(C). We have

that the supporting inequality for u is 1
2 x1 +

√
3

2 x2 ≤ 1. Since (1/2,
√

3/2) is
irrational in only one component, observe that it cannot be scaled to be
integral.

41



The Chvátal-Gomory Closure of Strictly Convex Body

Main Result and Proof Outline

Proof of the First Separation Lemma

Separation in Difficult Cases

Given u ∈ bnd(C) such that the supporting hyperplane does not provide a
CG cut.
Idea: Construct a sequence {si}∞i=1 of vectors in Zn such that there exists
some N such that

〈sN , u〉 > bσC(sN)c (3)

⇔ 〈sN , u〉 > σC(sN)−F(σC(sN))

⇔ 〈sN , u〉 − σC(sN) + F(σC(sN)) > 0.

To obtain (3), we construct sequence that satisfy the following property:

1. limi→∞〈si , u〉 − σC(si) = 0

2. limi→∞F(σC(si)) = δ > 0

42
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Proof of the First Separation Lemma

Example

I Let C := {x ∈ R2 : ‖x‖ ≤ 5} and u = (25/13, 60/13)T ∈ bnd(C).

Then
NC(u) = cone

({
(5, 12)T}).

I We can select s = (5, 12)T ∈ NC(u) and approximate s with sequence
{si}i∈N given by si = (65i2, 26i + 156i2)T . Then

lim
i→∞

si

||si || =
s
||s|| ,

but limi→∞〈si , u〉 − σC(si) = −∞.
I Consider si = (65i, 26 + 156i)T . Then limi→∞〈si , u〉 − σC(si) = 0.

Unfortunately, 〈si , u〉 − σC(si) ≤ −F (σ(si)) and hence 〈si , u〉 ≤ bσ(si)c
for all i .

I Perturb slightly si = (65i, 25 + 156i)T , which works: 〈s3, u〉 > bσ(s3)c.
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Separation: Difficult case

Theorem (Dirichlet)
Let s ∈ Rn. There exists

{
pi , qi

}
i∈N ⊆ Zn × Z such that 1 ≤ qi ≤ in for all

i ∈ N, max1≤j≤n
∣∣pi

j − qisj
∣∣ ≤ 1

i and limi→∞ qi = +∞.

Construction

I Since u /∈ Zn, let ul /∈ Z.
I Scale s(u), that is let s = λs(u) such that 〈s, u〉 ∈ Z.
I Let si = pi + el , where pi comes from the Dirichlet approximation of s.

Then:
1. 0 ≥ 〈si , u〉 − σC(si )

i→∞−−−→ 0,

2. F(σC(si ))
i→∞−−−→ F(ul ) > 0.

F(σC(si))
≈ F(〈si , u〉) = F(〈pi + el , u〉) = F(〈pi , u〉+ 〈el , u〉)
≈ F(qi〈s, u〉+ 〈el , u〉)) = F(qi〈s, u〉︸ ︷︷ ︸

∈Z

) + F(ul).
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The Second Separation Lemma

Proposition
Let C ⊆ Rn be a strictly convex body. Take u ∈ bnd(C) ∩ Zn. Then for every
v ∈ Rn \ int(TC(u)), v 6= 0, there exists a ∈ Zn such that

〈a, u〉 = bσC(a)c and 〈a, v〉 > 0

I The construction of a uses Dirichlet approximation.
I We use another compactness argument to obtain the second separation

lemma.
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Back to Proof Outline

Figure: A procedure to generate the CG closure for a strictly convex body C

Step 1 Show that it is possible to construct a polytope Q defined by a
finite number of CG cuts such that:

I Q ⊂ C.
I Q ∩ bnd(C) ⊂ Zn.

Step 2 Update Q with CG cuts that separate points of Q \ CGC(Zn,C):
Show that there can exist only a finite number of such cuts are
possible.
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Proof of Step 2

1. Let V be the set of vertices of Q. We have that

bnd(C) ∩ V ⊂ Zn

2. Hence any CG cut that separates u ∈ Q \ CGC(Zn,C) must also
separate a point in V \ bnd(C).

3. It is then sufficient to show that the set of CG cuts that separates some
point in V \ bnd(C) is finite.

4. Because V \ bnd(C) ⊂ C \ bnd(C) and |V | <∞, there exists ε > 0 such
that

B(v , ε) ⊆ C ∀v ∈ V \ bnd(C). (4)

Now, if a CG cut 〈a, x〉 ≤ bσC(a)c has ||a|| > 1
ε

then it cannot separate v .

5. The set of integer vectors such that ||a|| ≤ 1
ε

is finite.
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Open Questions

1. General bounded convex sets.

2. Unbounded sets, where convex hull of integer feasible points is a
polyhedron.
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Thank You.
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