Daniel Dadush¹ Santanu S. Dey¹ Juan Pablo Vielma^{2,3}

¹H. Milton Stewart Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, USA.

²Business Analytics and Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, USA.

³Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, USA.

University of Florida, Gainesville, May 2010.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Outline

Introduction: Chvátal-Gomory Procedure

Definitions The CGC Question Discussion

Main Result and Proof Outline

Main Results High Level Proof Outline Proof of Step 1 Separation Lemmas and Their Use Proof of the First Separation Lemma Proof of the Second Separation Lemma Proof of Step 2

Conclusion

1 Chvátal-Gomory Procedure

- Introduction: Chvátal-Gomory Procedure

L Definitions

The Chvátal-Gomory Procedure

Let $C \subseteq \mathbb{R}^n$ be a closed convex set and we are interested in 'nontrivial' convex relaxation of the set $C \cap \mathbb{Z}^n$ that are 'easy to construct'.

- Introduction: Chvátal-Gomory Procedure

L Definitions

The Chvátal-Gomory Procedure

Let $C \subseteq \mathbb{R}^n$ be a closed convex set and we are interested in 'nontrivial' convex relaxation of the set $C \cap \mathbb{Z}^n$ that are 'easy to construct'.

1. Let $\langle a, x \rangle \leq r$ be a valid inequality for *C* (i.e. $C \subseteq \{u \in \mathbb{R}^n \mid \langle a, u \rangle \leq r\}$) such that $a \in \mathbb{Z}^n$.

L Definitions

The Chvátal-Gomory Procedure

Let $C \subseteq \mathbb{R}^n$ be a closed convex set and we are interested in 'nontrivial' convex relaxation of the set $C \cap \mathbb{Z}^n$ that are 'easy to construct'.

- 1. Let $\langle a, x \rangle \leq r$ be a valid inequality for *C* (i.e. $C \subseteq \{u \in \mathbb{R}^n \mid \langle a, u \rangle \leq r\}$) such that $a \in \mathbb{Z}^n$.
- 2. Since $x \in \mathbb{Z}^n$, $\langle a, x \rangle \in \mathbb{Z}$. Therefore the inequality

 $\langle a, x \rangle \leq \lfloor r \rfloor$

is a valid inequality for $C \cap \mathbb{Z}^n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- Introduction: Chvátal-Gomory Procedure

L Definitions

Chvátal-Gomory Cuts for Polyhedron

 $\{(x_1, x_2) \in \mathbb{Z}^2 \mid x_1 \ge x_2 \ge 0, x_1 + x_2 \le 3, 5x - 3y \le 3\}$ Valid inequality for Continuous Relaxation: $\underbrace{4x_1 + 3x_2}_{4x_1 + 3x_2} \le 10.5$.

 $\in \mathbb{Z}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- Introduction: Chvátal-Gomory Procedure

L Definitions

Chvátal-Gomory Cuts for Polyhedron

 $\begin{array}{l} \{(x_1, x_2) \in \mathbb{Z}^2 \mid x_1 \ge , x_2 \ge 0, x_1 + x_2 \le 3, 5x - 3y \le 3\} \\ \text{Valid inequality for Continuous Relaxation: } \underbrace{4x_1 + 3x_2}_{\in \mathbb{Z}} \le 10.5. \end{array}$ This gives the following nontrivial valid inequality: $4x_1 + 3x_2 \le |10.5|$.

L Definitions

Strictly Convex Sets

Definition

- 1. We say a set *C* is strictly convex if for all $u, v \in C$, $u \neq v$ we have that $\lambda u + (1 \lambda)v \in \text{rel.int}(C)$ for all $0 < \lambda < 1$.
- 2. We say *C* is a strictly convex body if *C* is a full dimensional, strictly convex and a compact set.

L Definitions

Strictly Convex Sets

Definition

- 1. We say a set *C* is strictly convex if for all $u, v \in C$, $u \neq v$ we have that $\lambda u + (1 \lambda)v \in \text{rel.int}(C)$ for all $0 < \lambda < 1$.
- 2. We say *C* is a strictly convex body if *C* is a full dimensional, strictly convex and a compact set.

Almost always I will be concerned with strictly convex body.

The Chvátal-Gomory Closure of Strictly Convex Body
Introduction: Chvátal-Gomory Procedure
Definitions

Chvátal-Gomory Cuts for a Strictly Convex Body $\{(x_1, x_2) \in \mathbb{Z}^2 \mid \| \begin{bmatrix} 0.375 & 0.125 \\ 0.125 & 0.375 \end{bmatrix} (x - \begin{bmatrix} 1 \\ 3 \end{bmatrix}) \| \le 1\}$ Valid inequality for Continuous Relaxation: $\underbrace{x_1 + x_2}_{\in \mathbb{Z}} \le \sqrt{8} + 4$.

This gives the following nontrivial valid inequality: $x_1 + x_2 \le \lfloor \sqrt{8} + 4 \rfloor$.

The Chvátal-Gomory Closure of Strictly Convex Body
Introduction: Chvátal-Gomory Procedure
Definitions

Chvátal-Gomory Cuts for a Strictly Convex Body $\{(x_1, x_2) \in \mathbb{Z}^2 \mid \| \begin{bmatrix} 0.375 & 0.125 \\ 0.125 & 0.375 \end{bmatrix} (x - \begin{bmatrix} 1 \\ 3 \end{bmatrix}) \| \le 1\}$ Valid inequality for Continuous Relaxation: $\underbrace{x_1 + x_2}_{\in \mathbb{Z}} \le \sqrt{8} + 4$.

This gives the following nontrivial valid inequality: $x_1 + x_2 \le \lfloor \sqrt{8} + 4 \rfloor$.

- Introduction: Chvátal-Gomory Procedure

The CGC Question

Chvátal-Gomory Closure

1. It is sufficient to restrict attention to supporting hyperplanes to obtain all interesting CG cuts.

・ロト (日下・モート・モー・ショー・ショー)

- Introduction: Chvátal-Gomory Procedure

- The CGC Question

Chvátal-Gomory Closure

- 1. It is sufficient to restrict attention to supporting hyperplanes to obtain all interesting CG cuts.
- 2. (Support Function) Given $a \in \mathbb{Z}^n$. Let $\sigma_C(a) := \sup\{\langle a, x \rangle \mid x \in C\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- Introduction: Chvátal-Gomory Procedure

- The CGC Question

Chvátal-Gomory Closure

- 1. It is sufficient to restrict attention to supporting hyperplanes to obtain all interesting CG cuts.
- 2. (Support Function) Given $a \in \mathbb{Z}^n$. Let $\sigma_C(a) := \sup\{\langle a, x \rangle | x \in C\}$ $\Rightarrow \langle a, x \rangle \leq \sigma_C(a)$ is a supporting inequality for *C*.

- Introduction: Chvátal-Gomory Procedure

- The CGC Question

Chvátal-Gomory Closure

- 1. It is sufficient to restrict attention to supporting hyperplanes to obtain all interesting CG cuts.
- 2. (Support Function) Given $a \in \mathbb{Z}^n$. Let $\sigma_C(a) := \sup\{\langle a, x \rangle | x \in C\}$ $\Rightarrow \langle a, x \rangle \leq \sigma_C(a)$ is a supporting inequality for *C*.
- **3**. For any subset $D \subseteq \mathbb{Z}^n$ we define,

$$CGC(D, C) := \{ x \in \mathbb{R}^n \mid \bigcap_{a \in D} \langle a, x \rangle \leq \lfloor \sigma_C(a) \rfloor \}$$

- Introduction: Chvátal-Gomory Procedure

- The CGC Question

Chvátal-Gomory Closure

- 1. It is sufficient to restrict attention to supporting hyperplanes to obtain all interesting CG cuts.
- 2. (Support Function) Given $a \in \mathbb{Z}^n$. Let $\sigma_C(a) := \sup\{\langle a, x \rangle | x \in C\}$ $\Rightarrow \langle a, x \rangle \leq \sigma_C(a)$ is a supporting inequality for *C*.
- 3. For any subset $D \subseteq \mathbb{Z}^n$ we define,

$$CGC(D, C) := \{ x \in \mathbb{R}^n \mid \bigcap_{a \in D} \langle a, x \rangle \leq \lfloor \sigma_C(a) \rfloor \}$$

4. $CGC(\mathbb{Z}^n, C)$ is called the Chvátal-Gomory closure.

- Introduction: Chvátal-Gomory Procedure

- The CGC Question

Chvátal-Gomory Closure

- 1. It is sufficient to restrict attention to supporting hyperplanes to obtain all interesting CG cuts.
- 2. (Support Function) Given $a \in \mathbb{Z}^n$. Let $\sigma_C(a) := \sup\{\langle a, x \rangle | x \in C\}$ $\Rightarrow \langle a, x \rangle \leq \sigma_C(a)$ is a supporting inequality for *C*.
- **3**. For any subset $D \subseteq \mathbb{Z}^n$ we define,

$$CGC(D, C) := \{ x \in \mathbb{R}^n \mid \bigcap_{a \in D} \langle a, x \rangle \leq \lfloor \sigma_C(a) \rfloor \}$$

4. $CGC(\mathbb{Z}^n, C)$ is called the Chvátal-Gomory closure.

Is $CGC(\mathbb{Z}^n, C)$ a polyhedron?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

L Discussion

What We Know?

Theorem (Chvátal (1973), Schrijver (1980)) Let *C* be a rational polyhedron. Then $CGC(\mathbb{Z}^n, C)$ is a polyhedron.

L Discussion

What We Know?

Theorem (Chvátal (1973), Schrijver (1980)) Let C be a rational polyhedron. Then $CGC(\mathbb{Z}^n, C)$ is a polyhedron. Let $C^1 := CGC(\mathbb{Z}^n, C)$. Let $C^2 := CGC(\mathbb{Z}^n, C^1)$. Let $C^3 := CGC(\mathbb{Z}^n, C^2)$.

Theorem (Chvátal (1973), Schrijver (1980))

Let *C* be a rational polyhedron or any bounded convex set, then there exists an integer *k* such that c^k is the convex hull of the integer feasible points.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

L Discussion

What We Know?

Theorem (Chvátal (1973), Schrijver (1980)) Let C be a rational polyhedron. Then $CGC(\mathbb{Z}^n, C)$ is a polyhedron. Let $C^1 := CGC(\mathbb{Z}^n, C)$. Let $C^2 := CGC(\mathbb{Z}^n, C^1)$. Let $C^3 := CGC(\mathbb{Z}^n, C^2)$.

Theorem (Chvátal (1973), Schrijver (1980))

Let *C* be a rational polyhedron or any bounded convex set, then there exists an integer *k* such that c^k is the convex hull of the integer feasible points.

Unfortunately, Theorem 2 does not imply Theorem 1. For example:

If C is irrational polytope, then we do not know if $CGC(\mathbb{Z}^n, C)$ a polytope.

- Main Result and Proof Outline

Main Results

Main Results

Theorem Let C be a strictly convex body. Then cgc(C) is a rational polytope.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- Main Result and Proof Outline

Main Results

Main Results

Theorem Let C be a strictly convex body. Then cgc(C) is a rational polytope.

Theorem

Let C be a strictly convex body and P a rational polyhedron. Then $CGC(C \cap P)$ is a rational polytope.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

2 Proof outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Main Result and Proof Outline

High Level Proof Outline

Proof Outline

Figure: A procedure to generate the CG closure for a strictly convex body C

- Step 1 Show that it is possible to construct a polytope *Q* defined by a finite number of CG cuts such that:
 - $Q \subset C$.
 - ▶ $Q \cap \operatorname{bnd}(C) \subset \mathbb{Z}^n$.

- Main Result and Proof Outline

High Level Proof Outline

Proof Outline

Figure: A procedure to generate the CG closure for a strictly convex body C

- Step 1 Show that it is possible to construct a polytope *Q* defined by a finite number of CG cuts such that:
 - $\blacktriangleright Q \subset C.$
 - ▶ $Q \cap \operatorname{bnd}(C) \subset \mathbb{Z}^n$.
- Step 2 Update *Q* with CG cuts that separate points of $Q \setminus CGC(\mathbb{Z}^n, C)$: Show that there can exist only a finite number of such cuts are possible.

- Main Result and Proof Outline

High Level Proof Outline

Proof Outline

Figure: A procedure to generate the CG closure for a strictly convex body C

- Step 1 Show that it is possible to construct a polytope *Q* defined by a finite number of CG cuts such that:
 - ▶ $Q \subset C$.
 - ▶ $Q \cap \operatorname{bnd}(C) \subset \mathbb{Z}^n$.
- Step 2 Update *Q* with CG cuts that separate points of $Q \setminus CGC(\mathbb{Z}^n, C)$: Show that there can exist only a finite number of such cuts are possible.

Proof of Step 1

Outline of Step 1: Separate All Points on the Boundary 'Smartly'

Lemma (Fractional Points on the Boundary) If $u \in bnd(C) \setminus \mathbb{Z}^n$, then there exists a CG cut that separates point u. - Main Result and Proof Outline

Proof of Step 1

Outline of Step 1: Separate All Points on the Boundary 'Smartly'

Lemma (Fractional Points on the Boundary)

If $u \in bnd(C) \setminus \mathbb{Z}^n$, then there exists a CG cut that separates point u.

In case of rational polyhedron, there is a similar result that essentially says that if P is a rational polyhedron and F is an face, then

 $\operatorname{CGC}(\mathbb{Z}^n, P) \cap F = \operatorname{CGC}(\mathbb{Z}^n, F).$

However, this proof does not carry though here.

Proof of Step 1

Outline of Step 1: Separate All Points on the Boundary 'Smartly'

Lemma (Fractional Points on the Boundary) If $u \in bnd(C) \setminus \mathbb{Z}^n$, then there exists a CG cut that separates point u.

Lemma (Integral Points on the Boundary)

Let $C \subseteq \mathbb{R}^n$ be a strictly convex body and $u \in bnd(C) \cap \mathbb{Z}^n$. Then

1. There exists a polyhedral cone $T'(u) = \{x \in \mathbb{R}^n : \langle c_i, x \rangle \le 0, 1 \le i \le k\}$ such that

$$c_i \in \mathbb{Z}^n$$
 and $\lfloor \sigma_C(c_i) \rfloor = \langle c_i, u \rangle \quad \forall i, 1 \le i \le k$ (1)

and

$$T'(u) \subseteq \operatorname{int}(T_{\mathcal{C}}(u)) \cup \{0\}$$
(2)

2. There exists an open neighborhood \mathcal{N} of u such that

$$\mathcal{N} \cap \mathsf{bnd}(\mathcal{C}) \cap (u + T'(u)) = \{u\}$$

- Main Result and Proof Outline

Proof of Step 1

Illustration of Second Lemma

Proof of Step 1

Constructing Q Using a Compactness Argument

The Boundary is compact

Constructing Q Using a Compactness Argument

The new set obtained by removing some open sets from the boundary is compact

Constructing Q Using a Compactness Argument

Since every point is separated, there exists a finite sub collection that separates every point + finite number of cuts separating neighborhood of integer points

- Main Result and Proof Outline

Proof of Step 1

Constructing Q Using a Compactness Argument

 $Q \subset C, Q \cap \mathsf{Bnd}(C) \subseteq \mathbb{Z}^n$

э

2.1 Proof of the First Separation Lemma

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで
Proof of the First Separation Lemma

Separation: Easy Case

1. Select a fractional point u on the boundary and let s(u) be a vector in the normal cone, i.e.

 $\langle s(u), x \rangle \leq \sigma_{C}(s(u)) = \langle s(u), u \rangle$ be the valid inequality which is tight at u

イロン 不得 とくほ とくほう 二日

Proof of the First Separation Lemma

Separation: Easy Case

1. Select a fractional point u on the boundary and let s(u) be a vector in the normal cone, i.e.

 $\langle s(u), x \rangle \leq \sigma_{\mathcal{C}}(s(u)) = \langle s(u), u \rangle$ be the valid inequality which is tight at u

2. If there exists $\lambda > 0$ such that 2.1 $\lambda s(u) \in \mathbb{Z}^n$ and 2.2 $\sigma_C(\lambda s(u)) \notin \mathbb{Z}$

Proof of the First Separation Lemma

Separation: Easy Case

1. Select a fractional point u on the boundary and let s(u) be a vector in the normal cone, i.e.

 $\langle s(u), x \rangle \leq \sigma_{\mathcal{C}}(s(u)) = \langle s(u), u \rangle$ be the valid inequality which is tight at u

- 2. If there exists $\lambda > 0$ such that 2.1 $\lambda s(u) \in \mathbb{Z}^n$ and 2.2 $\sigma_C(\lambda s(u)) \notin \mathbb{Z}$
- 3. Then generate the CG cut

 $\langle \lambda s(u), u \rangle \leq \lfloor \sigma_{C}(\lambda s(u)) \rfloor$

that separates u.

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult Cases

Given $u \in bnd(C)$, for all $\lambda > 0$ such that

- 1. $\lambda s(u) \in \mathbb{Z}^n$
- **2.** but $\sigma_{\mathcal{C}}(\lambda s(u)) \in \mathbb{Z}$.

Example

Let $C := \{x \in \mathbb{R}^2 \mid \sqrt{x_1^2 + x_2^2} \le 5\}$ and $u = (25/13, 60/13)^T \in bnd(C)$. We have that the supporting inequality for u can be is $5x_1 + 12x_2 \le 65$. Because 5 and 12 are coprime and $\sigma_C(\cdot)$ is positively homogeneous, (5, 12) cannot be scaled so that $\lambda(5, 12) \in \mathbb{Z}^2$ and $\sigma_C(\lambda(5, 12)) \notin \mathbb{Z}$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult Cases

Given $u \in bnd(C)$, for all $\lambda > 0$ such that

- 1. $\lambda s(u) \in \mathbb{Z}^n$
- **2.** but $\sigma_{\mathcal{C}}(\lambda s(u)) \in \mathbb{Z}$.

Example

Let $C := \{x \in \mathbb{R}^2 \mid \sqrt{x_1^2 + x_2^2} \le 5\}$ and $u = (25/13, 60/13)^T \in bnd(C)$. We have that the supporting inequality for u can be is $5x_1 + 12x_2 \le 65$. Because 5 and 12 are coprime and $\sigma_C(\cdot)$ is positively homogeneous, (5, 12) cannot be scaled so that $\lambda(5, 12) \in \mathbb{Z}^2$ and $\sigma_C(\lambda(5, 12)) \notin \mathbb{Z}$.

Given $u \in bnd(C)$, there does not exist $\lambda > 0$ such that $\lambda s(u) \in \mathbb{Z}^n$.

Example

Let $C := \{x \in \mathbb{R}^2 \mid \sqrt{x_1^2 + x_2^2} \le 1\}$ and $u = (1/2, \sqrt{3}/2)^T \in bnd(C)$. We have that the supporting inequality for u is $\frac{1}{2}x_1 + \frac{\sqrt{3}}{2}x_2 \le 1$. Since $(1/2, \sqrt{3}/2)$ is irrational in only one component, observe that it cannot be scaled to be integral.

Proof of the First Separation Lemma

Separation in Difficult Cases

Given $u \in bnd(C)$ such that the supporting hyperplane does not provide a CG cut. <u>Idea:</u> Construct a sequence $\{s^i\}_{i=1}^{\infty}$ of vectors in \mathbb{Z}^n such that there exists some N such that

$$\langle \boldsymbol{s}^{N}, \boldsymbol{u} \rangle > \lfloor \sigma_{C}(\boldsymbol{s}^{N}) \rfloor$$
 (3)

Proof of the First Separation Lemma

Separation in Difficult Cases

<

Given $u \in bnd(C)$ such that the supporting hyperplane does not provide a CG cut.

<u>Idea:</u> Construct a sequence $\{s^i\}_{i=1}^{\infty}$ of vectors in \mathbb{Z}^n such that there exists some N such that

$$\begin{array}{l} \langle \boldsymbol{s}^{N},\boldsymbol{u} \rangle > \lfloor \sigma_{C}(\boldsymbol{s}^{N}) \rfloor \\ \Leftrightarrow \langle \boldsymbol{s}^{N},\boldsymbol{u} \rangle > \sigma_{C}(\boldsymbol{s}^{N}) - \mathcal{F}(\sigma_{C}(\boldsymbol{s}^{N})) \\ \Leftrightarrow \langle \boldsymbol{s}^{N},\boldsymbol{u} \rangle - \sigma_{C}(\boldsymbol{s}^{N}) + \mathcal{F}(\sigma_{C}(\boldsymbol{s}^{N})) > 0. \end{array}$$

$$(3)$$

Proof of the First Separation Lemma

Separation in Difficult Cases

Given $u \in bnd(C)$ such that the supporting hyperplane does not provide a CG cut.

<u>Idea:</u> Construct a sequence $\{s^i\}_{i=1}^{\infty}$ of vectors in \mathbb{Z}^n such that there exists some N such that

$$\langle \boldsymbol{s}^{N}, \boldsymbol{u} \rangle > \lfloor \sigma_{C}(\boldsymbol{s}^{N}) \rfloor$$

$$\Leftrightarrow \langle \boldsymbol{s}^{N}, \boldsymbol{u} \rangle > \sigma_{C}(\boldsymbol{s}^{N}) - \mathcal{F}(\sigma_{C}(\boldsymbol{s}^{N}))$$

$$\Leftrightarrow \langle \boldsymbol{s}^{N}, \boldsymbol{u} \rangle - \sigma_{C}(\boldsymbol{s}^{N}) + \mathcal{F}(\sigma_{C}(\boldsymbol{s}^{N})) > 0.$$

$$(3)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

To obtain (3), we construct sequence that satisfy the following property:

- 1. $\lim_{i\to\infty} \langle s^i, u \rangle \sigma_C(s^i) = 0$
- 2. $\lim_{i\to\infty} \mathcal{F}(\sigma_C(s^i)) = \delta > 0$

Main Result and Proof Outline

Proof of the First Separation Lemma

Example

▶ Let $C := \{x \in \mathbb{R}^2 : ||x|| \le 5\}$ and $u = (25/13, 60/13)^T \in bnd(C)$.

・ロト (日下・モート・モー・ショー・ショー)

- Main Result and Proof Outline

Proof of the First Separation Lemma

Example

▶ Let $C := \{x \in \mathbb{R}^2 : ||x|| \le 5\}$ and $u = (25/13, 60/13)^T \in bnd(C)$. Then $N_C(u) = cone(\{(5, 12)^T\}).$

- Main Result and Proof Outline

Proof of the First Separation Lemma

Example

- ▶ Let $C := \{x \in \mathbb{R}^2 : ||x|| \le 5\}$ and $u = (25/13, 60/13)^T \in bnd(C)$. Then $N_C(u) = cone(\{(5, 12)^T\}).$
- ▶ We can select $s = (5, 12)^T \in N_C(u)$ and approximate *s* with sequence $\{s^i\}_{i \in \mathbb{N}}$ given by $s^i = (65i^2, 26i + 156i^2)^T$. Then

$$\lim_{i\to\infty}\frac{\boldsymbol{s}^i}{||\boldsymbol{s}^i||}=\frac{\boldsymbol{s}}{||\boldsymbol{s}||},$$

イロン 不得 とくほ とくほう 二日

- Main Result and Proof Outline

Proof of the First Separation Lemma

Example

- ▶ Let $C := \{x \in \mathbb{R}^2 : ||x|| \le 5\}$ and $u = (25/13, 60/13)^T \in bnd(C)$. Then $N_C(u) = cone(\{(5, 12)^T\}).$
- ▶ We can select $s = (5, 12)^T \in N_C(u)$ and approximate *s* with sequence $\{s^i\}_{i \in \mathbb{N}}$ given by $s^i = (65i^2, 26i + 156i^2)^T$. Then

$$\lim_{i\to\infty}\frac{\boldsymbol{s}^i}{||\boldsymbol{s}^i||}=\frac{\boldsymbol{s}}{||\boldsymbol{s}||},$$

but $\lim_{i\to\infty} \langle \boldsymbol{s}^i, \boldsymbol{u} \rangle - \sigma_{\mathcal{C}}(\boldsymbol{s}^i) = -\infty$.

イロン 不得 とくほ とくほう 二日

- Main Result and Proof Outline

Proof of the First Separation Lemma

Example

- ▶ Let $C := \{x \in \mathbb{R}^2 : ||x|| \le 5\}$ and $u = (25/13, 60/13)^T \in bnd(C)$. Then $N_C(u) = cone(\{(5, 12)^T\}).$
- ▶ We can select $s = (5, 12)^T \in N_C(u)$ and approximate *s* with sequence $\{s^i\}_{i \in \mathbb{N}}$ given by $s^i = (65i^2, 26i + 156i^2)^T$. Then

$$\lim_{i\to\infty}\frac{\boldsymbol{s}^i}{||\boldsymbol{s}^i||}=\frac{\boldsymbol{s}}{||\boldsymbol{s}||},$$

but $\lim_{i\to\infty} \langle \boldsymbol{s}^i, \boldsymbol{u} \rangle - \sigma_{\mathcal{C}}(\boldsymbol{s}^i) = -\infty.$

► Consider $s^i = (65i, 26 + 156i)^T$. Then $\lim_{i\to\infty} \langle s^i, u \rangle - \sigma_C(s^i) = 0$. Unfortunately, $\langle s^i, u \rangle - \sigma_C(s^i) \leq -F(\sigma(s^i))$ and hence $\langle s^i, u \rangle \leq \lfloor \sigma(s^i) \rfloor$ for all *i*.

- Main Result and Proof Outline

Proof of the First Separation Lemma

Example

- ▶ Let $C := \{x \in \mathbb{R}^2 : ||x|| \le 5\}$ and $u = (25/13, 60/13)^T \in bnd(C)$. Then $N_C(u) = cone(\{(5, 12)^T\}).$
- ▶ We can select $s = (5, 12)^T \in N_C(u)$ and approximate *s* with sequence $\{s^i\}_{i \in \mathbb{N}}$ given by $s^i = (65i^2, 26i + 156i^2)^T$. Then

$$\lim_{i\to\infty}\frac{\boldsymbol{s}^i}{||\boldsymbol{s}^i||}=\frac{\boldsymbol{s}}{||\boldsymbol{s}||},$$

but $\lim_{i\to\infty} \langle \boldsymbol{s}^i, \boldsymbol{u} \rangle - \sigma_{\mathcal{C}}(\boldsymbol{s}^i) = -\infty.$

- ► Consider $s^i = (65i, 26 + 156i)^T$. Then $\lim_{i\to\infty} \langle s^i, u \rangle \sigma_C(s^i) = 0$. Unfortunately, $\langle s^i, u \rangle - \sigma_C(s^i) \leq -F(\sigma(s^i))$ and hence $\langle s^i, u \rangle \leq \lfloor \sigma(s^i) \rfloor$ for all *i*.
- Perturb slightly $s^i = (65i, 25 + 156i)^T$, which works: $\langle s^3, u \rangle > \lfloor \sigma(s^3) \rfloor$.

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult case

Theorem (Dirichlet)

Let $s \in \mathbb{R}^n$. There exists $\{p^i, q_i\}_{i \in \mathbb{N}} \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that $1 \le q_i \le i^n$ for all $i \in \mathbb{N}$, $\max_{1 \le j \le n} |p_j^i - q_i s_j| \le \frac{1}{i}$ and $\lim_{i \to \infty} q_i = +\infty$.

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult case

Theorem (Dirichlet)

Let $s \in \mathbb{R}^n$. There exists $\{p^i, q_i\}_{i \in \mathbb{N}} \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that $1 \le q_i \le i^n$ for all $i \in \mathbb{N}$, $\max_{1 \le j \le n} |p_j^i - q_i s_j| \le \frac{1}{i}$ and $\lim_{i \to \infty} q_i = +\infty$.

Construction

▶ Since $u \notin \mathbb{Z}^n$, let $u_l \notin \mathbb{Z}$.

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult case

Theorem (Dirichlet)

Let $s \in \mathbb{R}^n$. There exists $\{p^i, q_i\}_{i \in \mathbb{N}} \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that $1 \le q_i \le i^n$ for all $i \in \mathbb{N}$, $\max_{1 \le j \le n} |p_j^i - q_i s_j| \le \frac{1}{i}$ and $\lim_{i \to \infty} q_i = +\infty$.

Construction

- ▶ Since $u \notin \mathbb{Z}^n$, let $u_l \notin \mathbb{Z}$.
- Scale s(u), that is let $s = \lambda s(u)$ such that $\langle s, u \rangle \in \mathbb{Z}$.

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult case

Theorem (Dirichlet)

Let $s \in \mathbb{R}^n$. There exists $\{p^i, q_i\}_{i \in \mathbb{N}} \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that $1 \le q_i \le i^n$ for all $i \in \mathbb{N}$, $\max_{1 \le j \le n} |p_j^i - q_i s_j| \le \frac{1}{i}$ and $\lim_{i \to \infty} q_i = +\infty$.

Construction

- Since $u \notin \mathbb{Z}^n$, let $u_l \notin \mathbb{Z}$.
- Scale s(u), that is let $s = \lambda s(u)$ such that $\langle s, u \rangle \in \mathbb{Z}$.
- Let s' = p' + e', where p' comes from the Dirichlet approximation of *s*.

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult case

Theorem (Dirichlet)

Let $s \in \mathbb{R}^n$. There exists $\{p^i, q_i\}_{i \in \mathbb{N}} \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that $1 \le q_i \le i^n$ for all $i \in \mathbb{N}$, $\max_{1 \le j \le n} |p_j^i - q_i s_j| \le \frac{1}{i}$ and $\lim_{i \to \infty} q_i = +\infty$.

Construction

- ▶ Since $u \notin \mathbb{Z}^n$, let $u_l \notin \mathbb{Z}$.
- Scale s(u), that is let $s = \lambda s(u)$ such that $\langle s, u \rangle \in \mathbb{Z}$.
- Let $s^i = p^i + e^i$, where p^i comes from the Dirichlet approximation of *s*. Then:

$$\begin{array}{ll} 1. & 0 \geq \langle \boldsymbol{s}^{i}, \boldsymbol{u} \rangle - \sigma_{\mathcal{C}}(\boldsymbol{s}^{i}) \xrightarrow{i \to \infty} \boldsymbol{0}, \\ 2. & \mathcal{F}(\sigma_{\mathcal{C}}(\boldsymbol{s}^{i})) \xrightarrow{i \to \infty} \mathcal{F}(\boldsymbol{u}_{l}) > \boldsymbol{0}. \end{array}$$

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult case

Theorem (Dirichlet)

Let $s \in \mathbb{R}^n$. There exists $\{p^i, q_i\}_{i \in \mathbb{N}} \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that $1 \le q_i \le i^n$ for all $i \in \mathbb{N}$, $\max_{1 \le j \le n} |p_j^i - q_i s_j| \le \frac{1}{i}$ and $\lim_{i \to \infty} q_i = +\infty$.

Construction

- ▶ Since $u \notin \mathbb{Z}^n$, let $u_l \notin \mathbb{Z}$.
- Scale s(u), that is let $s = \lambda s(u)$ such that $\langle s, u \rangle \in \mathbb{Z}$.
- ► Let sⁱ = pⁱ + eⁱ, where pⁱ comes from the Dirichlet approximation of s. Then:

$$\begin{array}{ll} 1. & 0 \geq \langle \boldsymbol{s}^{i}, \boldsymbol{u} \rangle - \sigma_{\mathcal{C}}(\boldsymbol{s}^{i}) \xrightarrow{i \to \infty} \boldsymbol{0}, \\ 2. & \mathcal{F}(\sigma_{\mathcal{C}}(\boldsymbol{s}^{i})) \xrightarrow{i \to \infty} \mathcal{F}(\boldsymbol{u}_{l}) > \boldsymbol{0}. \end{array}$$

 $\mathcal{F}(\sigma_{\mathcal{C}}(\boldsymbol{s}^{i}))$

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult case

Theorem (Dirichlet)

Let $s \in \mathbb{R}^n$. There exists $\{p^i, q_i\}_{i \in \mathbb{N}} \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that $1 \le q_i \le i^n$ for all $i \in \mathbb{N}$, $\max_{1 \le j \le n} |p_j^i - q_i s_j| \le \frac{1}{i}$ and $\lim_{i \to \infty} q_i = +\infty$.

Construction

- Since $u \notin \mathbb{Z}^n$, let $u_l \notin \mathbb{Z}$.
- Scale s(u), that is let $s = \lambda s(u)$ such that $\langle s, u \rangle \in \mathbb{Z}$.
- ► Let sⁱ = pⁱ + eⁱ, where pⁱ comes from the Dirichlet approximation of s. Then:

1.
$$0 \ge \langle s^i, u \rangle - \sigma_{\mathcal{C}}(s^i) \xrightarrow{i \to \infty} 0,$$

2. $\mathcal{F}(\sigma_{\mathcal{C}}(s^i)) \xrightarrow{i \to \infty} \mathcal{F}(u_l) > 0.$

 $\mathcal{F}(\sigma_{\mathcal{C}}(\boldsymbol{s}^{i})) \approx \mathcal{F}(\langle \boldsymbol{s}^{i}, \boldsymbol{u} \rangle)$

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult case

Theorem (Dirichlet)

Let $s \in \mathbb{R}^n$. There exists $\{p^i, q_i\}_{i \in \mathbb{N}} \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that $1 \le q_i \le i^n$ for all $i \in \mathbb{N}$, $\max_{1 \le j \le n} |p_j^i - q_i s_j| \le \frac{1}{i}$ and $\lim_{i \to \infty} q_i = +\infty$.

Construction

- ▶ Since $u \notin \mathbb{Z}^n$, let $u_l \notin \mathbb{Z}$.
- Scale s(u), that is let $s = \lambda s(u)$ such that $\langle s, u \rangle \in \mathbb{Z}$.
- Let $s^i = p^i + e^i$, where p^i comes from the Dirichlet approximation of *s*. Then:

1.
$$0 \ge \langle s^i, u \rangle - \sigma_{\mathcal{C}}(s^i) \xrightarrow{i \to \infty} 0,$$

2. $\mathcal{F}(\sigma_{\mathcal{C}}(s^i)) \xrightarrow{i \to \infty} \mathcal{F}(u_l) > 0.$

$$\mathcal{F}(\sigma_{\mathcal{C}}(\boldsymbol{s}^{i})) pprox \mathcal{F}(\langle \boldsymbol{p}^{i}, \boldsymbol{u}
angle) = \mathcal{F}(\langle \boldsymbol{p}^{i}, \boldsymbol{u}
angle) = \mathcal{F}(\langle \boldsymbol{p}^{i}, \boldsymbol{u}
angle + \langle \boldsymbol{e}^{l}, \boldsymbol{u}
angle)$$

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult case

Theorem (Dirichlet)

Let $s \in \mathbb{R}^n$. There exists $\{p^i, q_i\}_{i \in \mathbb{N}} \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that $1 \le q_i \le i^n$ for all $i \in \mathbb{N}$, $\max_{1 \le j \le n} |p_j^i - q_i s_j| \le \frac{1}{i}$ and $\lim_{i \to \infty} q_i = +\infty$.

Construction

- ▶ Since $u \notin \mathbb{Z}^n$, let $u_l \notin \mathbb{Z}$.
- Scale s(u), that is let $s = \lambda s(u)$ such that $\langle s, u \rangle \in \mathbb{Z}$.
- Let $s^i = p^i + e^j$, where p^i comes from the Dirichlet approximation of *s*. Then:

1.
$$0 \ge \langle s^i, u \rangle - \sigma_C(s^i) \xrightarrow{i \to \infty} 0$$
,
2. $\mathcal{F}(\sigma_C(s^i)) \xrightarrow{i \to \infty} \mathcal{F}(u_l) > 0$.

$$egin{split} \mathcal{F}(\sigma_{\mathcal{C}}(m{s}^{i})) & \approx \mathcal{F}(\langlem{p}^{i},m{u}
angle) = \mathcal{F}(\langlem{p}^{i},m{u}
angle) = \mathcal{F}(\langlem{p}^{i},m{u}
angle + \langlem{e}^{l},m{u}
angle) & lpha & \mathcal{F}(\langlem{p}^{i},m{u}
angle + \langlem{e}^{l},m{u}
angle)) \end{split}$$

- Main Result and Proof Outline

Proof of the First Separation Lemma

Separation: Difficult case

Theorem (Dirichlet)

Let $s \in \mathbb{R}^n$. There exists $\{p^i, q_i\}_{i \in \mathbb{N}} \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that $1 \le q_i \le i^n$ for all $i \in \mathbb{N}$, $\max_{1 \le j \le n} |p_j^i - q_i s_j| \le \frac{1}{i}$ and $\lim_{i \to \infty} q_i = +\infty$.

Construction

- Since $u \notin \mathbb{Z}^n$, let $u_l \notin \mathbb{Z}$.
- Scale s(u), that is let $s = \lambda s(u)$ such that $\langle s, u \rangle \in \mathbb{Z}$.
- Let $s^i = p^i + e^j$, where p^i comes from the Dirichlet approximation of *s*. Then:

$$\begin{array}{ll} 1. & 0 \geq \langle \boldsymbol{s}^{i}, \boldsymbol{u} \rangle - \sigma_{\mathcal{C}}(\boldsymbol{s}^{i}) \xrightarrow{i \to \infty} \boldsymbol{0}, \\ 2. & \mathcal{F}(\sigma_{\mathcal{C}}(\boldsymbol{s}^{i})) \xrightarrow{i \to \infty} \mathcal{F}(\boldsymbol{u}_{l}) > \boldsymbol{0}. \end{array}$$

$$\begin{split} \mathcal{F}(\sigma_{\mathcal{C}}(\boldsymbol{s}^{i})) &\approx \mathcal{F}(\langle \boldsymbol{s}^{i}, \boldsymbol{u} \rangle) = \mathcal{F}(\langle \boldsymbol{p}^{i} + \boldsymbol{e}^{i}, \boldsymbol{u} \rangle) = \mathcal{F}(\langle \boldsymbol{p}^{i}, \boldsymbol{u} \rangle + \langle \boldsymbol{e}^{i}, \boldsymbol{u} \rangle) \\ &\approx \mathcal{F}(\boldsymbol{q}_{i} \langle \boldsymbol{s}, \boldsymbol{u} \rangle + \langle \boldsymbol{e}^{i}, \boldsymbol{u} \rangle)) = \mathcal{F}(\underbrace{\boldsymbol{q}_{i} \langle \boldsymbol{s}, \boldsymbol{u} \rangle}_{\in \mathbb{Z}}) + \mathcal{F}(\boldsymbol{u}_{l}). \end{split}$$

2.2 Proof of the Second Separation Lemma

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

- Main Result and Proof Outline

Proof of the Second Separation Lemma

The Second Separation Lemma

Proposition

Let $C \subseteq \mathbb{R}^n$ be a strictly convex body. Take $u \in bnd(C) \cap \mathbb{Z}^n$. Then for every $v \in \mathbb{R}^n \setminus int(T_C(u)), v \neq 0$, there exists $a \in \mathbb{Z}^n$ such that

 $\langle a, u \rangle = \lfloor \sigma_{C}(a) \rfloor$ and $\langle a, v \rangle > 0$

- Main Result and Proof Outline

Proof of the Second Separation Lemma

The Second Separation Lemma

Proposition

Let $C \subseteq \mathbb{R}^n$ be a strictly convex body. Take $u \in bnd(C) \cap \mathbb{Z}^n$. Then for every $v \in \mathbb{R}^n \setminus int(T_C(u)), v \neq 0$, there exists $a \in \mathbb{Z}^n$ such that

$$\langle a, u \rangle = \lfloor \sigma_C(a) \rfloor$$
 and $\langle a, v \rangle > 0$

The construction of a uses Dirichlet approximation.

- Main Result and Proof Outline

Proof of the Second Separation Lemma

The Second Separation Lemma

Proposition

Let $C \subseteq \mathbb{R}^n$ be a strictly convex body. Take $u \in bnd(C) \cap \mathbb{Z}^n$. Then for every $v \in \mathbb{R}^n \setminus int(T_C(u)), v \neq 0$, there exists $a \in \mathbb{Z}^n$ such that

$$\langle a, u \rangle = \lfloor \sigma_C(a) \rfloor$$
 and $\langle a, v \rangle > 0$

- The construction of a uses Dirichlet approximation.
- We use another compactness argument to obtain the second separation lemma.

Proof of Step 2

Back to Proof Outline

Figure: A procedure to generate the CG closure for a strictly convex body C

- Step 1 Show that it is possible to construct a polytope *Q* defined by a finite number of CG cuts such that:
 - $\blacktriangleright Q \subset C.$
 - ▶ $Q \cap \operatorname{bnd}(C) \subset \mathbb{Z}^n$.
- Step 2 Update *Q* with CG cuts that separate points of $Q \setminus CGC(\mathbb{Z}^n, C)$: Show that there can exist only a finite number of such cuts are possible.

Proof of Step 2

1. Let V be the set of vertices of Q. We have that

 $bnd(C) \cap V \subset \mathbb{Z}^n$

1. Let V be the set of vertices of Q. We have that

 $bnd(C) \cap V \subset \mathbb{Z}^n$

Hence any CG cut that separates u ∈ Q \ CGC(Zⁿ, C) must also separate a point in V \ bnd(C).

Proof of Step 2

1. Let V be the set of vertices of Q. We have that

 $bnd(C) \cap V \subset \mathbb{Z}^n$

- Hence any CG cut that separates u ∈ Q \ CGC(Zⁿ, C) must also separate a point in V \ bnd(C).
- It is then sufficient to show that the set of CG cuts that separates some point in V \ bnd(C) is finite.

Proof of Step 2

1. Let V be the set of vertices of Q. We have that

$$bnd(C) \cap V \subset \mathbb{Z}^n$$

- Hence any CG cut that separates u ∈ Q \ CGC(Zⁿ, C) must also separate a point in V \ bnd(C).
- It is then sufficient to show that the set of CG cuts that separates some point in V \ bnd(C) is finite.
- 4. Because $V \setminus bnd(C) \subset C \setminus bnd(C)$ and $|V| < \infty$, there exists $\varepsilon > 0$ such that

$$B(v,\varepsilon) \subseteq C \quad \forall v \in V \setminus bnd(C).$$
(4)

Now, if a CG cut $\langle a, x \rangle \leq \lfloor \sigma_{\mathcal{C}}(a) \rfloor$ has $||a|| > \frac{1}{\varepsilon}$ then it cannot separate ν .

Proof of Step 2

1. Let V be the set of vertices of Q. We have that

$$bnd(C) \cap V \subset \mathbb{Z}^n$$

- Hence any CG cut that separates u ∈ Q \ CGC(Zⁿ, C) must also separate a point in V \ bnd(C).
- It is then sufficient to show that the set of CG cuts that separates some point in V \ bnd(C) is finite.
- 4. Because $V \setminus bnd(C) \subset C \setminus bnd(C)$ and $|V| < \infty$, there exists $\varepsilon > 0$ such that

$$B(v,\varepsilon) \subseteq C \quad \forall v \in V \setminus bnd(C). \tag{4}$$

Now, if a CG cut $\langle a, x \rangle \leq \lfloor \sigma_{C}(a) \rfloor$ has $||a|| > \frac{1}{\varepsilon}$ then it cannot separate *v*.

5. The set of integer vectors such that $||a|| \leq \frac{1}{\epsilon}$ is finite.

- Conclusion

- 1. General bounded convex sets.
- 2. Unbounded sets, where convex hull of integer feasible points is a polyhedron.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- Conclusion

Thank You.