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Many applications:
» Decision making with vast economic and societal impact
» Power systems, Sustainibility, IMRT cancer treatment, Circuit
design, Healthcare analytics, Network design, Supply chain
Design, Urban mobility, Production planning, National security,
etc.
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6x + 2y <27
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Example/Picture credit: Natashia Boland
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Branch-and-Bound
procedure

Our questions

Branch-and-Bound

Branch-and-bound is the basic algorithm underlying

state-of-art IP solvers.

Solving Root Note

Example/Picture credit: Natashia Boland

Max

s.t.

X + 2y

22X+ 7y=<14
6x + 2y <27
X,y = 0and integer
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Branch-and-bound is the basic algorithm underlying
Branch.and Bound state-of-art IP solvers.

Branch-and-Bound Tree

max x + 2y Upper bound from LP relaxation

9Ya

1
G¥%3) —u_ Solution to

x=4 LP relaxation

-00

Best lower bound from
any feasible solution
found so far

Example/Picture credit: Natashia Boland
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Branch-and-bound is the basic algorithm underlying

BemserE state-of-art IP solvers.
procedure

Our questions

Branching process

Example/Picture credit: Natashia Boland
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Example/Picture credit: Natashia Boland
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Branch-and-bound is the basic algorithm underlying
Branch-ancBound state-of-art IP solvers.

procedure

Branch-and-Bound Tree

9V,

(3%, 3)

7
(3,26/7) (4, 1%)

y<2

Example/Picture credit: Natashia Boland
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Branch-and-bound is the basic algorithm underlying

Branch-and-Bound state-of-art IP solvers.

procedure

Our questions

y
Max X + 2y
4 s.t. 2x+ 7y <14
6x + 2y <27
X,y = 0 and integer
3
& & y=2
10 () ()
1 2 5 x

Example/Picture credit: Natashia Boland
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4 s.t. 22X+ 7y <14
4 6x + 2y <27
~

X,y = 0and integer

Example/Picture credit: Natashia Boland
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state-of-art IP solvers.

Branch-and-Bound
procedure

Branch-and-Bound Tree

9%s

(3%, 3)

Pruned!
(3,2)

Integer feasible

Example/Picture credit: Natashia Boland
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Our quesions state-of-art IP solvers.
y
Max X+ 2y
4 s.t. 2x+ 7y <14
? 6x + 2y <27
t X,y = 0and integer

1 2 3 4 5
Example/Picture credit: Natashia Boland



branch—asr:ffboo{und tree B I’an Ch 'and - BO U n d
o Branch-and-bound is the basic algorithm underlying
state-of-art IP solvers.

Branch-and-Bound
procedure

Branch-and-Bound Tree

92
(3%, 3)

Solution to LP
relaxation at node

(3,2)

Integer feasible =~ Empty feasible set
and optimal! i.e., infeasible
Example/Picture credit: Natashia Boland
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Well-defined branch-and-bound algorithm

» Node selection: Which node should we branch on next?
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Branch-and-Bound

procedure » Node selection: Which node should we branch on next?
A common rule used: Worst bound rule — use the node which
has the largest (resp. smallest) LP value for a maximization-type
(resp. minimization-type) IP.
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Branch-and-Bound

procedure » Node selection: Which node should we branch on next?
A common rule used: Worst bound rule — use the node which
has the largest (resp. smallest) LP value for a maximization-type
(resp. minimization-type) IP.
» Partitioning the feasible region of an LP at a node
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Branch-and-Bound

procedure » Node selection: Which node should we branch on next?

A common rule used: Worst bound rule — use the node which

has the largest (resp. smallest) LP value for a maximization-type

(resp. minimization-type) IP.

» Partitioning the feasible region of an LP at a node
» Simple branch-and-bound: Used in practise by solvers

xi < |[X%] — — > Added to left node
Xxj > [%] — — > Added to right node

Need rule to decide which variable to branch on: Full strong
branching, Reliability branching, Pseudocost branching: will discuss
some of these later.

» General branch-and-bound:

7'x < m —— > Added to left node
x'x > my+1 — — > Added to right node
where 7 € Z" is an integer vector and my € Z is an integer.

20
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Our questions

Branch-and-bound procedure

» The branch and bound algorithm was invented by Land and Doig
in 1960.

Ailsa Land
Picture credit: Wikipedia

Alison Doig

24
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Branch-and-Bound
procedure

» The branch and bound algorithm was invented by Land and Doig
in 1960.

» Almost 60 years now, but there is very little theoretical analysis of
the branch-and-bound algorithm!

29
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» What is known: There are simple examples (i.e. knapsack IPs)
Our questons with n variables that require O(2") nodes when using simple
branch-and-bound tree. [Jeroslow (1974)], [Chvatal (1980)]

bk
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» What is known: There are simple examples (i.e. knapsack IPs)
Our questons with n variables that require O(2") nodes when using simple
branch-and-bound tree. [Jeroslow (1974)], [Chvatal (1980)]

» However, branch-and bound algorithm (with many bells and
whistle) seems to work well in practice.

24
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» What is known: There are simple examples (i.e. knapsack IPs)
Our questons with n variables that require O(2") nodes when using simple
branch-and-bound tree. [Jeroslow (1974)], [Chvatal (1980)]

» However, branch-and bound algorithm (with many bells and
whistle) seems to work well in practice.

So the type of questions we want to understand:

» Can we prove for a random model for instances that
branch-and-bound works well?

o5
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» What is known: There are simple examples (i.e. knapsack IPs)
Our questons with n variables that require O(2") nodes when using simple
branch-and-bound tree. [Jeroslow (1974)], [Chvatal (1980)]

» However, branch-and bound algorithm (with many bells and
whistle) seems to work well in practice.

So the type of questions we want to understand:

» Can we prove for a random model for instances that
branch-and-bound works well?

» The simple examples above can be solved using a polynomial
number of nodes using general branch-and-bounds [Yang,
Boland, Savelsbergh (2021)]. Can we understand lower bounds
for general branch-and-bound. (Preliminary results: [Dadush,
Tiwari (2020)])

26
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» What is known: There are simple examples (i.e. knapsack IPs)
Our questons with n variables that require O(2") nodes when using simple
branch-and-bound tree. [Jeroslow (1974)], [Chvatal (1980)]

» However, branch-and bound algorithm (with many bells and
whistle) seems to work well in practice.

So the type of questions we want to understand:

» Can we prove for a random model for instances that
branch-and-bound works well?

» The simple examples above can be solved using a polynomial
number of nodes using general branch-and-bounds [Yang,
Boland, Savelsbergh (2021)]. Can we understand lower bounds
for general branch-and-bound. (Preliminary results: [Dadush,
Tiwari (2020)])

» Can we understand and analyse properties of some well-known
rules for partitioning mentioned above? Hopefully this will lead to
better rules.

27
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Branch-and-bound solves (a class of) random IPs in
polynomial time
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Random IPs

We consider the following model of random IPs:

max c'x ¢ ~ Uniform([0, 1]")
s.t. Ax < b A ~ Uniform([0, 1]™*")
x €{0,1}" ;

where b=p-n, 8 € (0,1)".

20
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Random IPs

We consider the following model of random IPs:

max c'x ¢ ~ Uniform([0, 1]")
s.t. Ax < b A ~ Uniform([0, 1]™*")
x €{0,1}" ;

where b=p-n, 8 € (0,1)".
Incomplete literature review:
» Analysis of gap and enumerative algorithms: [Lueker (1982)],
[Goldberg, Marchetti-Spaccamela (1984)], [Beier, Vocking
(2003)], [Dyer, Frieze (1989)]

29
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Random IPs

We consider the following model of random IPs:

max c'x ¢ ~ Uniform([0, 1]")
s.t. Ax < b A ~ Uniform([0, 1]™*")
x €{0,1}" ;

where b=p-n, 8 € (0,1)".
Incomplete literature review:
» Analysis of gap and enumerative algorithms: [Lueker (1982)],
[Goldberg, Marchetti-Spaccamela (1984)], [Beier, Vocking
(2003)], [Dyer, Frieze (1989)]

» General branching: [Pataki, Tural, Wong (2010)]

kPl
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Random IPs.
Theorem (D., Dubey, Molinaro)
Consider a branch-and-bound algorithm using the following rules:

> Partitioning rule: Variable branching, where any fractional variable can be
used to branch on.

» Node selection rule: Worst bound rule (Select a node with largest LP
value as the next node to branch on.)

k]
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Random IPs.
Theorem (D., Dubey, Molinaro)
Consider a branch-and-bound algorithm using the following rules:
> Partitioning rule: Variable branching, where any fractional variable can be
used to branch on.
» Node selection rule: Worst bound rule (Select a node with largest LP
value as the next node to branch on.)

Consider n > m + 1 and a random irzstance of IP described previously. Then
with probability at least 1 — ‘; — 27 %% the branch-and-bound algorithm
applied to this random instance produces a tree with at most

na1-(m+alog m)

nodes for all « < min{30m, "’E%

only on m and .

}, where a; and a, are constant depending

24
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Simplified...

Theorem (D., Dubey, Molinaro)

Any branch-and-bound tree using the worst bound rule for node
selection, solving the above problem has no more than (n°™) nodes
with good probability.

25
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Random IPs

Simplified...

Theorem (D., Dubey, Molinaro)

Any branch-and-bound tree using the worst bound rule for node
selection, solving the above problem has no more than (n°‘™) nodes
with good probability.

Nice follow up work [Borst, Dadush, Huiberts, Tiwari (2021)]

26



2.2
Lower bounds on size of general branch-and-bound tree
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Lower bounds

» Remember when using general branch-and-bound, we are
allowed to use general disjunctions:
7'x < m —— > Added to left node
7'x > m+1 —— > Added to right node
where 7 is an integer vector and m is an integer.

» As explaned before, most lower bounds are for simple
branch-and-bound trees.

9
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tree

Lower bounds

» Remember when using general branch-and-bound, we are
allowed to use general disjunctions:

7'x < m —— > Added to left node
7'x > m+1 —— > Added to right node

where 7 is an integer vector and m is an integer.

» As explaned before, most lower bounds are for simple
branch-and-bound trees. We want results independent of
computation complexity assumptions.

20
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Lower bounds

» Remember when using general branch-and-bound, we are
allowed to use general disjunctions:

x < m — — > Added to left node
Tx > m+1 —— > Added to right node
where 7 is an integer vector and m is an integer.

» As explaned before, most lower bounds are for simple
branch-and-bound trees. We want results independent of
computation complexity assumptions.

» Very recently, [Dadush,Tiwari (2020)] showed the following:

Theorem (Dadush, Tiwari)

Any (general) branch-and-bound tree that cerntifies the following
instance is integer feasible requires at least 27 leaf nodes:

C:=3xe{0,1}"> x5+ > (1—)(,-)2%VSQ[n]

jes Jeln\Ss

40
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Lets consider the cross-polytope again..

C:= {xe{o,1}"2x,-+ > (1—)(,)2%\%82["]

jes Jeln\s
We can present a sligthly better result:

a1

}
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Lower bounds on size of
general branch-and-bound
tree

Lets consider the cross-polytope again..

C = {Xe{0,1}"zxj+ Z (1—x/)>;‘v’SC[n]}

jes Jeln\s
We can present a sligthly better result:

» Consider any node of a general branch-and-bound tree where two distinct
0 — 1 vectors v and w are feasible for the branching-constraints added to
that node (v and w ofcourse cannot belong to C or its LP relaxation).

42
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Lower bounds on size of
general branch-and-bound
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Lets consider the cross-polytope again..

C = {Xe{0,1}"zxj+ Z (1—x/-)>;VSC[n]}

jes Jeln\s
We can present a sligthly better result:

» Consider any node of a general branch-and-bound tree where two distinct
0 — 1 vectors v and w are feasible for the branching-constraints added to
that node (v and w ofcourse cannot belong to C or its LP relaxation).

> Then observe, by convexity, the vector ";—W satisfies the branching
constraints at this node.

43
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general branch-and-bound
tree

Lets consider the cross-polytope again..

1

C:= n - —x)>=-VSC

{XG{OJ} \_E X/+§ (1 X/)2V3[n]}
jes Jeln\s

We can present a sligthly better result:

» Consider any node of a general branch-and-bound tree where two distinct
0 — 1 vectors v and w are feasible for the branching-constraints added to
that node (v and w ofcourse cannot belong to C or its LP relaxation).

> Then observe, by convexity, the vector ";—W satisfies the branching
constraints at this node.

n
> Observe that any vector u € {0, 1, %} with at least one component %
satisfies the LP relaxation of C:

44
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Lets consider the cross-polytope again..

C = {Xe{0,1}"zxj+ Z (1—x/)>;VSC[n]}

jes Jeln\s
We can present a sligthly better result:

» Consider any node of a general branch-and-bound tree where two distinct
0 — 1 vectors v and w are feasible for the branching-constraints added to
that node (v and w ofcourse cannot belong to C or its LP relaxation).

> Then observe, by convexity, the vector ";—W satisfies the branching
constraints at this node.

n
> Observe that any vector u € {0, 1, %} with at least one component %
satisfies the LP relaxation of C:

vzwe{xe[o,1]"|2xj+ > (1—x,-)z;vsgn]}

jES jeln\S
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Lets consider the cross-polytope again..

C = {Xe{0,1}"zxj+ Z (1—x/)>;‘v’SC[n]}

jes Jeln\s
We can present a sligthly better result:

» Consider any node of a general branch-and-bound tree where two distinct
0 — 1 vectors v and w are feasible for the branching-constraints added to
that node (v and w ofcourse cannot belong to C or its LP relaxation).

> Then observe, by convexity, the vector ";—W satisfies the branching
constraints at this node.

n
> Observe that any vector u € {0, 1, %} with at least one component %
satisfies the LP relaxation of C:

vzwe{xe[o,1]"|2xj+ > (1—)(,-)2;V8g[n]}

jES jeln\S

> So %W satisfies all the constraints at the node. Equivalently, the node is
non-empty.

46
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Lets consider the cross-polytope again..

C = {Xe{0,1}"zxj+ Z (1—x/)>;‘v’SC[n]}

jes JelM\s

We can present a sligthly better result:

>

Consider any node of a general branch-and-bound tree where two distinct
0 — 1 vectors v and w are feasible for the branching-constraints added to
that node (v and w ofcourse cannot belong to C or its LP relaxation).

Then observe, by convexity, the vector ";—W satisfies the branching
constraints at this node.

n
Observe that any vector u € {0, 1, %} with at least one component %
satisfies the LP relaxation of C:

vzwe{xe[o,1]"|2xj+ > (1—x,-)z;vsgn]}

jES jeln\S

So %W satisfies all the constraints at the node. Equivalently, the node is
non-empty.

In order to prove integer-infeasiblilty of C, every leaf node should be
infeasible. So from above, there must at at least 2" leaf nodes!

a7
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Lower bounds on size of
general branch-and-bound

e Theorem (D., Dubey, Molinaro)

Let n be a even positive integer. Any branch-and-bound tree, solving
the following instance

Jeln
n n
st. > %< 5 1.YSC[nlIS| =3
keS
x €{0,1}"

requires at least 2™ nodes.

48
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Random IPs We develope techniques to reduce branch-and-bound hardness, and
Ig_g:::a?ﬁ‘::::h?:ni-zsgnd together With

tree

49
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Random IPs We develope techniques to reduce branch-and-bound hardness, and
Lower bounds on size of

e together with the cross polytope result, we can obtain the following

tree

Analysis of full strong result:

Theorem (D., Dubey, Molinaro)

Let P be LP relaxation of the usual travelling saleman problem
formulation (with sub tour elimination) with n cities.

50
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More results —II: Hardness for travelling saleman problem

We develope techniques to reduce branch-and-bound hardness, and

together with the cross polytope result, we can obtain the following
result:

Theorem (D., Dubey, Molinaro)

Let P be LP relaxation of the usual travelling saleman problem
formulation (with sub tour elimination) with n cities. There exist an
objective function ¢, such that any branch-and-bound tree, solving the
following instance

max c¢'x
st. xeP
()(n—1)
xe{0,1} 2

requires at least 2™ nodes.

51
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More results —Ill: Smoothened analysis not possible

Random family of instances:

Q=3 (14N (0, 5%) ) xi+> (1= (14N (0, 52)) %) = %,WQ [
i€l il
x € [0,1]",

where each occurrence of N(O, 21?) is independent.

Theorem (D., Dubey, Molinaro)
With probability at least 1 — ﬁ the polytope Q is integer-infeasible and every
branch-and-bound tree proving its infeasibility has at least 24" nodes.

52
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Analysis of full strong branching rule for partitioning
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branching applied

Full strong branching

» Full strong branching is a partitioning rule for simple
branch-and-bound trees.

R4
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Analysis of full strong
branching rule for

Full strong branching

» Full strong branching is a partitioning rule for simple
branch-and-bound trees.

» Supose X is a LP optimal solution. Let %; € (0, 1) forj € F C [n].

1Y
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Full strong branching

» Full strong branching is a partitioning rule for simple
branch-and-bound trees.

» Supose X is a LP optimal solution. Let %; € (0, 1) forj € F C [n].
» Let OPT := the optimal value of the LP at this node.

113
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» Full strong branching is a partitioning rule for simple
branch-and-bound trees.
Analysis of full strong

» Supose X is a LP optimal solution. Let %; € (0, 1) forj € F C [n].
parianing » Let OPT := the optimal value of the LP at this node.

> Let OPT;, := the optimal value of the LP of the child node where
we have the inequality x; < 0.
Let OPT; 1 := the optimal value of the LP of the child node where
we have the inequality x; > 1.

Rr7
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» Full strong branching is a partitioning rule for simple
branch-and-bound trees.
Analysis of full strong

» Supose X is a LP optimal solution. Let %; € (0, 1) forj € F C [n].
parianing » Let OPT := the optimal value of the LP at this node.

> Let OPT;, := the optimal value of the LP of the child node where
we have the inequality x; < 0.
Let OPT; 1 := the optimal value of the LP of the child node where
we have the inequality x; > 1.

> Let

score; = max {|OPT — OPT;j 1], e} - max {|OPT — OPT, o, ¢},

g8
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Full strong branching

Full strong branching is a partitioning rule for simple
branch-and-bound trees.

Supose X is a LP optimal solution. Let X; € (0, 1) for j € F C [n].
Let OPT := the optimal value of the LP at this node.

Let OPT; , := the optimal value of the LP of the child node where
we have the inequality x; < 0.
Let OPT; 1 := the optimal value of the LP of the child node where
we have the inequality x; > 1.

Let
score; = max {|OPT — OPT;j 1], e} - max {|OPT — OPT, o, ¢},

where ¢ > 0 is a small number related to machine precision.
Letj* := argmax; g (score;).

e}
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Full strong branching

Full strong branching is a partitioning rule for simple
branch-and-bound trees.

Supose X is a LP optimal solution. Let X; € (0, 1) for j € F C [n].
Let OPT := the optimal value of the LP at this node.

Let OPT; , := the optimal value of the LP of the child node where
we have the inequality x; < 0.
Let OPT; 1 := the optimal value of the LP of the child node where
we have the inequality x; > 1.

Let
score; = max {|OPT — OPT;j 1], e} - max {|OPT — OPT, o, ¢},

where ¢ > 0 is a small number related to machine precision.
Letj* := argmax; g (score;).
Branch on j*.

B0
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Random IPs

Ay ofl strong » Experimentally, full strong branching, works better than any other
branching rule for rule for simple branch-and-bound trees [Achterberg, Koch, and
' " Martin (2005)].

A1
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partitioning

More on full strong branching

» Experimentally, full strong branching, works better than any other
rule for simple branch-and-bound trees [Achterberg, Koch, and
Martin (2005)].

» However, this rule is not used in practise, because we need to
solve 2|F| LPs just to decide one branching decision.

B2
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Analysis of full strong
branching rule for
partitioning

More on full strong branching

» Experimentally, full strong branching, works better than any other
rule for simple branch-and-bound trees [Achterberg, Koch, and
Martin (2005)].

» However, this rule is not used in practise, because we need to
solve 2|F| LPs just to decide one branching decision.

» Recently there has been many attempts made to mimic full
strong branching using machine learning. [Alvarez, Louveaux,
and Wehenkel (2017)], [Gasse, Chetelat, Ferroni, Charlin, Lodi
(2019)], [Khalil, Le Bodic, Song, Nemhauser, Dilkina (2016)],
[Nair et al. (2020)]
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ams comparison to the smallest possible branch-and-bound tree for a
given instance? Answering this question may lead us to finding
better rules.
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Some questions..

» How large is the tree produced by strong-branching in
comparison to the smallest possible branch-and-bound tree for a
given instance? Answering this question may lead us to finding
better rules.

» A more refined questions is the following: it would be useful to
understand the performance of strong-branching vis-a-vis
different classes of instances.
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Definition (Vertex cover)
The vertex cover problem over a graph G = (V, E) can be expressed
as the following integer program (IP)

St b hi lied H
o spesioprobiome min E Xy
veV
st. xy+x,>1, uvekE

xy €{0,1}, veV

Given an instance / of this IP, we let OPT(/) denote optimal objective
function value and OPT,(/) be the optimal objective function of the LP
relaxation (i.e. when the variable constraints are x, € [0, 1]). Then let

r(l) := OPT(/) — OPT.(J).
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Strong branching applied
to specific problems

A computational evaluation
of strong branching

Strong branching works well for vertex cover

Theorem (D., Dubey. Molinaro, Shah)

Let | be any instance of vertex cover on n nodes. Assume we break

ties within the worst-bound rule for node selection rule by selecting a
node with the largest depth.
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Strong branching works well for vertex cover

Theorem (D., Dubey. Molinaro, Shah)

Let | be any instance of vertex cover on n nodes. Assume we break
ties within the worst-bound rule for node selection rule by selecting a
node with the largest depth. Let Ts(I) be some branch-and-bound tree
generated by strong-branching with the above version of worst-bound
node selection rule that solves |.
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A computational evaluation

Strong branching works well for vertex cover

Theorem (D., Dubey. Molinaro, Shah)

Let | be any instance of vertex cover on n nodes. Assume we break
ties within the worst-bound rule for node selection rule by selecting a
node with the largest depth. Let Ts(I) be some branch-and-bound tree
generated by strong-branching with the above version of worst-bound
node selection rule that solves I. Then independent of the underlying
LP solver used,

7s(h)] < 22!+ O(n).
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n
{(x, y) €401} x {01} |y < 2x,y <22, Vi€ [n], Y yi = 1}

of strong bran i=1

Theorem

The smallest branch-and-bound tree that shows that the above set is
integer infeasible requires no more than 4n + 1 nodes. On the other
hand, strong branching requires at least 2" nodes.
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2.3.2
A computational evaluation of strong branching



Optimal branch-and-bound tree
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Optimal branch-and-bound tree

» |t is not possible to analyse different problems analytically.
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» |t is not possible to analyse different problems analytically.

» So we came up with a Dynamic programming algorithm to
e Coaio] compute the optimal branch-and-bound tree.

Theorem (D., Dubey, Molinaro, Shah)

There is a DP algorithm with running time poly(data) - 3°" time to
compute an optimal branch-and-bound tree for any binary MILP
instance defined on n binary variables.
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Ratio of geometric mean of branch-and-bound
tree size to that of optimal tree size

Multi-row Packing IP (P5) —
ulti-row Packing = e
mmm Most Inf
Multi-row Covering IP (C5) . Rand
Mix Packing and Covering IP (G22)
Lot-sizing
Constrained Lot-sizing
Big-bucket Lot-sizing
Power Planning (CCP)
Portfolio Optimization (CCP)
Stable Set on Bipartite Graph + Knapsack
Minimum Vertex Cover
b T T T
1 2 4 8

Figure: Ratio of geometric mean of branch-and-bound tree sizes to geometric
mean of optimal tree sizes over all instances of a problem for various branching
strategies. “Rand" stands for random, “Most Inf" stands for most infeasible,
“SB-P" stands for strong-branching with product score function, and “SB-L"
stands for strong-branching with linear score function.
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Random IPs Theorem
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Random IPs Theorem

max c'x ¢ ~ Uniform([0, 1]")
s.t. Ax < b A ~ Uniform([0, 1]™*")
x €{0,1}" ;

where b=p-n, 8 € (0,1)".
Theorem (D., Dubey, Molinaro)

Any branch-and-bound tree using the worst bound rule for node
selection, solving the above problem has no more than (n°™) nodes
(with good probability).
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Random IPs Theorem

AX) =D (g =\ A))( \x,-*/ —Xj),

jeln) reduced cost LP Opt.
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Random IPs Theorem

AX) =D (g =\ A))( \x,-*/ —Xj),

jeln) reduced cost LP Opt.

G:= {x € {0,1}"| A(x) < OPT — OPT;5}
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Random IPs Theorem

Optimal branch-and-bound

A =D (G- W AN X —x).

jeln) reduced cost LP Opt.

G:= {x € {0,1}"| A(x) < OPT — OPT;5}

1. The number of internal nodes in a branch-and-bound tree is at
most n times the number of good integer solutions G.

82



branch—asr:ffb?){und tree PI’OOf SketCh

Dey

Random IPs Theorem

AX) =D (g =\ A))( \x,-*/ —Xj),

jeln) reduced cost LP Opt.

G:= {x € {0,1}"| A(x) < OPT — OPT;5}

1. The number of internal nodes in a branch-and-bound tree is at
most n times the number of good integer solutions G.

2. The number of good integer solutions is at most n®(™ (with good
probability).

a3



Size of
branch-and-bound tree

Dey

Random IPs Theorem

Optimal branch-and-bound

We construct a mapping...

r : internal nodes — G as follows:
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r : internal nodes — G as follows:
r(N) = x' e argmin{A(x) |x/ = %" ifx" € {0,1}}.
~~

Opt. Sol of N

Random IPs Theorem
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r : internal nodes — G as follows:

r(N)=x"cargmin{A(x)|x/ = x" ifx'e{0,1}}.
Random IPs Theorem ~
Opt. Sol of N
Ir(N)[ > 1
[ ] °

internal nodes G

Picture credit: Yatharth Dubey
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Optimal branch-and-bound tree
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Dynamic programming algorithm

maxxepﬁ{o,1}nCTX
Let F denote the set of faces of [0, 1]”, i.e. |F| = 3".
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Optimal branch-and-bound

-
maxxepﬁ{o,1}nc X

Let F denote the set of faces of [0, 1]”, i.e. |F| = 3".

tree

Algorithm 1 Computing Optimal Branch-and-bound Tree

A

© ®» 3

Phase-1: Pruning by Infeasibility or Bound

: Solve max,e pnfo,1}» (¢, 2); let z* be the solution
: Initialise: S « F
: for F'in S do

Solve maxgepnp(c, z); let 2 be the optimal solution (2} = 0 if LP is infeasible)
if @3, =0 or (c,2}) < (¢,2*) then

OPT(F) + 0

S+ S\ {F}
end if

: end for

Phase-2: Recursive bottom-up computation

: Sort S in order of increasing dimension
: for F'in S do

OPT(F) + 1+ min;(OPT(Fj,) + OPT(Fj1))

: end for
: return OPT([0,1]")
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Thank You.

» Dey, Santanu S., Yatharth Dubey, and Marco Molinaro.
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