# Theoretical and computational analysis of sizes of branch-and-bound trees

Santanu S. Dey Georgia Institute of Technology

Oct 2021

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Dey

Introductio

indiri results

**Proof Outlines** 

# Joint work with...



Yatharth Dubey Georgia Tech



Marco Molinaro PUC-Rio.



Prachi Shah Georgia Tech

ヘロト ヘヨト ヘヨト ヘヨト

# 1 Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dey

### Introduction

Branch-and-Boun procedure

Main results

**Proof Outlines** 

# Integer program



(ロ) (四) (E) (E) (E) (E)

# Size of branch-and-bound tree Integer program

Dey

### Introduction

- Branch-and-Boun procedure
- Main results

Proof Outlines

# $\begin{array}{c} \underline{\mathsf{Integer program}}\\ \min \quad c^\top x\\ \mathrm{s.t.} \quad Ax \leq b\\ x \in \mathbb{Z}^n \end{array} \qquad (\mathsf{IP})$

Many applications:

- Decision making with vast economic and societal impact
- Power systems, Sustainibility, IMRT cancer treatment, Circuit design, Healthcare analytics, Network design, Supply chain Design, Urban mobility, Production planning, National security, etc.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.



Example/Picture credit: Natashia Boland

Branch-and-Bound

э

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Branch-and-Bound

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.

# **Solving Root Note**



Example/Picture credit: Natashia Boland

(日)

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Branch-and-Bound

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.

# **Branch-and-Bound Tree**



・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Example/Picture credit: Natashia Boland

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Branch-and-Bound

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.



Branching process

(日)

э

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Branch-and-Bound

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.



Example/Picture credit: Natashia Boland

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Branch-and-Bound

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.

# **Branch-and-Bound Tree**



・ロッ ・ 一 ・ ・ ヨッ ・ ・ ヨッ

3

Example/Picture credit: Natashia Boland

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Branch-and-Bound

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.



Example/Picture credit: Natashia Boland

Dey

### Introductior

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.



Example/Picture credit: Natashia Boland

Branch-and-Bound

イロト イポト イヨト イヨト

э

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Branch-and-Bound

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.

# **Branch-and-Bound Tree**



э

Example/Picture credit: Natashia Boland

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.

Branch-and-Bound



15

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Branch-and-Bound

Branch-and-bound is the basic algorithm underlying state-of-art IP solvers.

# **Branch-and-Bound Tree**



Example/Picture credit: Natashia Boland

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Well-defined branch-and-bound algorithm

Node selection: Which node should we branch on next?

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Well-defined branch-and-bound algorithm

Node selection: Which node should we branch on next? <u>A common rule used: Worst bound rule</u> – use the node which has the largest (resp. smallest) LP value for a maximization-type (resp. minimization-type) IP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Well-defined branch-and-bound algorithm

- Node selection: Which node should we branch on next? <u>A common rule used: Worst bound rule</u> – use the node which has the largest (resp. smallest) LP value for a maximization-type (resp. minimization-type) IP.
- Partitioning the feasible region of an LP at a node

19

э.

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Well-defined branch-and-bound algorithm

- Node selection: Which node should we branch on next? <u>A common rule used: Worst bound rule</u> – use the node which has the largest (resp. smallest) LP value for a maximization-type (resp. minimization-type) IP.
- Partitioning the feasible region of an LP at a node
  - Simple branch-and-bound: Used in practise by solvers
    - $x_j \leq \lfloor \hat{x}_j \rfloor - >$  Added to left node
    - $x_i \geq \lceil \hat{x}_i \rceil - >$  Added to right node

Need rule to decide which variable to branch on: *Full strong branching, Reliability branching, Pseudocost branching*: will discuss some of these later.

General branch-and-bound:

$$\pi^{\top} x \leq \pi_0 \quad --> \text{Added to left node}$$
  
 $\pi^{\top} x \geq \pi_0 + 1 \quad --> \text{Added to right node}$ 

where  $\pi \in \mathbb{Z}^n$  is an integer vector and  $\pi_0 \in \mathbb{Z}$  is an integer.

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# Branch-and-bound procedure

 The branch and bound algorithm was invented by Land and Doig in 1960.



Ailsa Land Picture credit: Wikipedia



イロン 不得 とくほ とくほう 二日

Alison Doig

Dey

### Introductior

Branch-and-Bound procedure

Our questions

- Main results
- Proof Outlines

# Branch-and-bound procedure

- The branch and bound algorithm was invented by Land and Doig in 1960.
- Almost 60 years now, but there is very little theoretical analysis of the branch-and-bound algorithm!

・ロト (日本・ヨー・ヨー・ショー・ショー)

Dey

### Introduction

Branch-and-Boun procedure

Our questions

Main results

Proof Outlines

# What kind of questions we want to answer

► What is known: There are simple examples (i.e. knapsack IPs) with *n* variables that require O(2<sup>n</sup>) nodes when using simple branch-and-bound tree. [Jeroslow (1974)], [Chvátal (1980)]

< ロ > < 同 > < 回 > < 回 > .

Dey

### Introduction

Branch-and-Boun procedure

Our questions

Main results

Proof Outlines

# What kind of questions we want to answer

- ► What is known: There are simple examples (i.e. knapsack IPs) with *n* variables that require O(2<sup>n</sup>) nodes when using simple branch-and-bound tree. [Jeroslow (1974)], [Chvátal (1980)]
- However, branch-and bound algorithm (with many bells and whistle) seems to work well in practice.

24

Dey

### Introduction

Branch-and-Bound procedure

Our questions

Main results

Proof Outlines

# What kind of questions we want to answer

- ► What is known: There are simple examples (i.e. knapsack IPs) with *n* variables that require O(2<sup>n</sup>) nodes when using simple branch-and-bound tree. [Jeroslow (1974)], [Chvátal (1980)]
- However, branch-and bound algorithm (with many bells and whistle) seems to work well in practice.

So the type of questions we want to understand:

Can we prove for a random model for instances that branch-and-bound works well?

Dey

### Introduction

Branch-and-Boun procedure

Our questions

Main results

Proof Outlines

# What kind of questions we want to answer

- ► What is known: There are simple examples (i.e. knapsack IPs) with *n* variables that require O(2<sup>n</sup>) nodes when using simple branch-and-bound tree. [Jeroslow (1974)], [Chvátal (1980)]
- However, branch-and bound algorithm (with many bells and whistle) seems to work well in practice.

So the type of questions we want to understand:

- Can we prove for a random model for instances that branch-and-bound works well?
- The simple examples above can be solved using a polynomial number of nodes using general branch-and-bounds [Yang, Boland, Savelsbergh (2021)]. Can we understand lower bounds for general branch-and-bound. (Preliminary results: [Dadush, Tiwari (2020)])

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dey

### Introduction

Branch-and-Boun procedure

Our questions

Main results

Proof Outlines

# What kind of questions we want to answer

- ► What is known: There are simple examples (i.e. knapsack IPs) with *n* variables that require O(2<sup>n</sup>) nodes when using simple branch-and-bound tree. [Jeroslow (1974)], [Chvátal (1980)]
- However, branch-and bound algorithm (with many bells and whistle) seems to work well in practice.

So the type of questions we want to understand:

- Can we prove for a random model for instances that branch-and-bound works well?
- The simple examples above can be solved using a polynomial number of nodes using general branch-and-bounds [Yang, Boland, Savelsbergh (2021)]. Can we understand lower bounds for general branch-and-bound. (Preliminary results: [Dadush, Tiwari (2020)])
- Can we understand and analyse properties of some well-known rules for partitioning mentioned above? Hopefully this will lead to better rules.

# 2 Main results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# 2.1 Branch-and-bound solves (a class of) random IPs in polynomial time

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Dey

### Introduction

### Main results

### Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# Random model of IPs

We consider the following model of random IPs:

 $\begin{array}{ll} \max & c^{\top}x & c \sim \text{Uniform}([0, 1]^n) \\ \text{s.t.} & Ax \leq b & A \sim \text{Uniform}([0, 1]^{m \times n}) \\ & x \in \{0, 1\}^n & , \end{array}$ 

where  $b = \beta \cdot n, \beta \in (0, \frac{1}{2})^m$ .

・ロト (日本・ヨー・ヨー・ショー・ショー)

Dey

### Introduction

### Main results

### Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Proof Outlines

# Random model of IPs

We consider the following model of random IPs:

 $\begin{array}{ll} \max & c^{\top}x & c \sim \text{Uniform}([0, \ 1]^n) \\ \text{s.t.} & Ax \leq b & A \sim \text{Uniform}([0, \ 1]^{m \times n}) \\ & x \in \{0, 1\}^n & , \end{array}$ 

where  $b = \beta \cdot n, \beta \in (0, \frac{1}{2})^m$ . Incomplete literature review:

 Analysis of gap and enumerative algorithms: [Lueker (1982)], [Goldberg, Marchetti-Spaccamela (1984)], [Beier, Vocking (2003)], [Dyer, Frieze (1989)]

Dey

### Introduction

### Main results

### Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# Random model of IPs

We consider the following model of random IPs:

 $\begin{array}{ll} \max & c^{\top}x & c \sim \text{Uniform}([0, \ 1]^n) \\ \text{s.t.} & Ax \leq b & A \sim \text{Uniform}([0, \ 1]^{m \times n}) \\ & x \in \{0, 1\}^n & , \end{array}$ 

where  $b = \beta \cdot n, \beta \in (0, \frac{1}{2})^m$ . Incomplete literature review:

 Analysis of gap and enumerative algorithms: [Lueker (1982)], [Goldberg, Marchetti-Spaccamela (1984)], [Beier, Vocking (2003)], [Dyer, Frieze (1989)]

General branching: [Pataki, Tural, Wong (2010)]

Dey

### Introduction

### Main results

### Random IPs

- Lower bounds on size of general branch-and-bound tree
- Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# **Result for random IPs**

# Theorem (D., Dubey, Molinaro)

Consider a branch-and-bound algorithm using the following rules:

 Partitioning rule: Variable branching, where any fractional variable can be used to branch on.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Node selection rule: Worst bound rule (Select a node with largest LP value as the next node to branch on.)

Dey

### Introduction

### Main results

### Random IPs

- Lower bounds on size of general branch-and-bound tree
- Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# Result for random IPs

# Theorem (D., Dubey, Molinaro)

Consider a branch-and-bound algorithm using the following rules:

- Partitioning rule: Variable branching, where any fractional variable can be used to branch on.
- Node selection rule: Worst bound rule (Select a node with largest LP value as the next node to branch on.)

Consider  $n \ge m + 1$  and a random instance of IP described previously. Then with probability at least  $1 - \frac{1}{n} - 2^{-\alpha \overline{a}_2}$ , the branch-and-bound algorithm applied to this random instance produces a tree with at most

 $n^{\bar{a}_1 \cdot (m+\alpha \log m)}$ 

nodes for all  $\alpha \leq \min\{30m, \frac{\log n}{\bar{a}_2}\}$ , where  $\bar{a}_1$  and  $\bar{a}_2$  are constant depending only on *m* and  $\beta$ .

Dey

### Introduction

### Main results

### Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Proof Outlines

# Result for random IPs

## Simplified...

# Theorem (D., Dubey, Molinaro)

Any branch-and-bound tree using the worst bound rule for node selection, solving the above problem has no more than  $(n^{\mathcal{O}(m)})$  nodes with good probability.

・ロット (雪) (日) (日) (日)

Dey

### Introduction

### Main results

### Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Proof Outlines

# Result for random IPs

Simplified...

# Theorem (D., Dubey, Molinaro)

Any branch-and-bound tree using the worst bound rule for node selection, solving the above problem has no more than  $(n^{\mathcal{O}(m)})$  nodes with good probability.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nice follow up work [Borst, Dadush, Huiberts, Tiwari (2021)]
2.2 Lower bounds on size of general branch-and-bound tree

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Lower bounds

Dey

## Introduction

Main results

### Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

Remember when using general branch-and-bound, we are allowed to use general disjunctions:

$$\pi^{\top} x \leq \pi_0 - ->$$
 Added to left node  
 $\pi^{\top} x \geq \pi_0 + 1 - ->$  Added to right node

where  $\pi$  is an integer vector and  $\pi_0$  is an integer.

 As explaned before, most lower bounds are for simple branch-and-bound trees.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lower bounds

Dey

## Introduction

Main results

### Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

Remember when using general branch-and-bound, we are allowed to use general disjunctions:

$$\pi^{\top} x \leq \pi_0 - ->$$
 Added to left node  
 $\pi^{\top} x \geq \pi_0 + 1 - ->$  Added to right node

where  $\pi$  is an integer vector and  $\pi_0$  is an integer.

 As explaned before, most lower bounds are for simple branch-and-bound trees. We want results independent of computation complexity assumptions.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Dey

# Introduction

# Main results

### Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

Remember when using general branch-and-bound, we are allowed to use general disjunctions:

> $\pi^{\top} x \leq \pi_0 - ->$  Added to left node  $\pi^{\top} x \geq \pi_0 + 1 - ->$  Added to right node

where  $\pi$  is an integer vector and  $\pi_0$  is an integer.

- As explaned before, most lower bounds are for simple branch-and-bound trees. We want results independent of computation complexity assumptions.
- Very recently, [Dadush, Tiwari (2020)] showed the following:

# Theorem (Dadush, Tiwari)

Lower bounds

Any (general) branch-and-bound tree that certifies the following instance is integer feasible requires at least  $\frac{2^n}{n}$  leaf nodes:

$$\mathcal{C} := \left\{ x \in \left\{0,1\right\}^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \geq \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Dey

### Introduction

### Main results

Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# Lets consider the cross-polytope again..

$$C := \left\{ x \in \{0,1\}^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \ge \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

We can present a sligthly better result:

Dey

### Introduction

## Main results

Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# Lets consider the cross-polytope again..

$$C := \left\{ x \in \{0,1\}^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \ge \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

We can present a sligthly better result:

Consider any node of a general branch-and-bound tree where two distinct 0 – 1 vectors v and w are feasible for the branching-constraints added to that node (v and w ofcourse cannot belong to C or its LP relaxation).

Dey

## Introduction

## Main results

Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# Lets consider the cross-polytope again..

$$\mathcal{C} := \left\{ x \in \{0,1\}^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \ge \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

We can present a sligthly better result:

Consider any node of a general branch-and-bound tree where two distinct 0 – 1 vectors v and w are feasible for the branching-constraints added to that node (v and w ofcourse cannot belong to C or its LP relaxation).

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ヨッ

3

Then observe, by convexity, the vector <sup>v+w</sup>/<sub>2</sub> satisfies the branching constraints at this node.

Dey

## Introduction

## Main results

Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# Lets consider the cross-polytope again..

$$\mathcal{C} := \left\{ x \in \{0,1\}^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \ge \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

We can present a sligthly better result:

- Consider any node of a general branch-and-bound tree where two distinct 0 - 1 vectors v and w are feasible for the branching-constraints added to that node (v and w ofcourse cannot belong to C or its LP relaxation).
- Then observe, by convexity, the vector <sup>v+w</sup>/<sub>2</sub> satisfies the branching constraints at this node.
- Observe that any vector u ∈ {0, 1, ½}<sup>n</sup> with at least one component ½ satisfies the LP relaxation of C:

Dey

### Introduction

### Main results

Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# Lets consider the cross-polytope again..

$$\mathcal{C} := \left\{ x \in \{0,1\}^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \ge \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

We can present a sligthly better result:

- Consider any node of a general branch-and-bound tree where two distinct 0 - 1 vectors v and w are feasible for the branching-constraints added to that node (v and w ofcourse cannot belong to C or its LP relaxation).
- Then observe, by convexity, the vector <sup>v+w</sup>/<sub>2</sub> satisfies the branching constraints at this node.
- Observe that any vector u ∈ {0, 1, ½}<sup>n</sup> with at least one component ½ satisfies the LP relaxation of C:

$$\frac{v+w}{2} \in \left\{ x \in [0,1]^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \ge \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

Dey

### Introduction

### Main results

Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# Lets consider the cross-polytope again..

$$\mathcal{C} := \left\{ x \in \{0,1\}^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \ge \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

We can present a sligthly better result:

- Consider any node of a general branch-and-bound tree where two distinct 0 - 1 vectors v and w are feasible for the branching-constraints added to that node (v and w ofcourse cannot belong to C or its LP relaxation).
- Then observe, by convexity, the vector <sup>v+w</sup>/<sub>2</sub> satisfies the branching constraints at this node.
- Observe that any vector  $u \in \{0, 1, \frac{1}{2}\}^n$  with at least one component  $\frac{1}{2}$  satisfies the LP relaxation of *C*:

$$\frac{v+w}{2} \in \left\{ x \in [0,1]^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \ge \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

So <u>v+w</u> satisfies all the constraints at the node. Equivalently, the node is non-empty.

Dey

### Introduction

### Main results

Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# Lets consider the cross-polytope again..

$$\mathcal{C} := \left\{ x \in \{0,1\}^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \ge \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

We can present a sligthly better result:

- Consider any node of a general branch-and-bound tree where two distinct 0 - 1 vectors v and w are feasible for the branching-constraints added to that node (v and w ofcourse cannot belong to C or its LP relaxation).
- Then observe, by convexity, the vector <sup>v+w</sup>/<sub>2</sub> satisfies the branching constraints at this node.
- Observe that any vector u ∈ {0, 1, ½}<sup>n</sup> with at least one component ½ satisfies the LP relaxation of C:

$$\frac{v+w}{2} \in \left\{ x \in [0,1]^n \mid \sum_{j \in S} x_j + \sum_{j \in [n] \setminus S} (1-x_j) \ge \frac{1}{2} \ \forall S \subseteq [n] \right\}$$

So \frac{\nu+\nu}{2}\$ satisfies all the constraints at the node. Equivalently, the node is non-empty.

In order to prove integer-infeasibility of C, every leaf node should be infeasible. So from above, there must at at least 2<sup>n</sup> leaf nodes!

Dey

#### Introduction

### Main results

Random IPs

### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# More results -I: Hardness of some combinatorial problems

# Theorem (D., Dubey, Molinaro)

Let n be a even positive integer. Any branch-and-bound tree, solving the following instance

> $\max \sum_{j \in [n]} x_j$ s.t.  $\sum_{k \in S} x_j \le \frac{n}{2} - 1, \ \forall S \subseteq [n], |S| = \frac{n}{2}$  $x \in \{0, 1\}^n$

> > < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

requires at least  $2^{\Omega(n)}$  nodes.

Dey

### Introduction

## Main results

Random IPs

#### Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Proof Outlines

# More results -II: Hardness for travelling saleman problem

We develope techniques to reduce branch-and-bound hardness, and together with

イロト イポト イヨト イヨト

э

Dey

### Introduction

# Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Proof Outlines

More results -II: Hardness for travelling saleman problem

We develope techniques to reduce branch-and-bound hardness, and together with the cross polytope result, we can obtain the following result:

# Theorem (D., Dubey, Molinaro)

Let P be LP relaxation of the usual travelling saleman problem formulation (with sub tour elimination) with n cities.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ヨッ

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Proof Outlines

More results –II: Hardness for travelling saleman problem

We develope techniques to reduce branch-and-bound hardness, and together with the cross polytope result, we can obtain the following result:

# Theorem (D., Dubey, Molinaro)

Let *P* be LP relaxation of the usual travelling saleman problem formulation (with sub tour elimination) with n cities. There exist an objective function c, such that any branch-and-bound tree, solving the following instance

$$\begin{array}{ll} \max \quad c^{\top} x\\ \text{s.t.} \quad x \in P\\ \quad x \in \{0,1\}^{\frac{(n)(n-1)}{2}} \end{array}$$

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ヨッ

requires at least  $2^{\Omega(n)}$  nodes.

Dey

### Introduction

## Main results

### Random IPs

### Lower bounds on size of general branch-and-bound tree

1

Analysis of full strong branching rule for partitioning

**Proof Outlines** 

# More results -III: Smoothened analysis not possible

Random family of instances:

$$\begin{aligned} \mathcal{Q} &:= \sum_{i \in I} \left( 1 + N\left(0, \frac{1}{20^2}\right) \right) x_i + \sum_{i \notin I} \left( 1 - \left(1 + N\left(0, \frac{1}{20^2}\right) \right) x_i \right) \geq \frac{1.6n}{20}, \forall I \subseteq [n] \\ x \in [0, 1]^n, \end{aligned}$$

where each occurrence of  $N(0, \frac{1}{20^2})$  is independent.

# Theorem (D., Dubey, Molinaro)

With probability at least  $1 - \frac{2}{e^{n/2}}$  the polytope Q is integer-infeasible and every branch-and-bound tree proving its infeasibility has at least  $2^{\Omega(n)}$  nodes.

2.3 Analysis of full strong branching rule for partitioning

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Dey

## Introduction

## Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

#### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

# Full strong branching is a partitioning rule for simple branch-and-bound trees.

Full strong branching

イロト イポト イヨト イヨト

э

Dey

## Introduction

# Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

#### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

# Full strong branching

- Full strong branching is a partitioning rule for simple branch-and-bound trees.
- ▶ Supose  $\hat{x}$  is a LP optimal solution. Let  $\hat{x}_j \in (0, 1)$  for  $j \in F \subseteq [n]$ .

イロト イポト イヨト イヨト

Dey

# Introduction

# Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

#### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

# Full strong branching is a partitioning rule for simple branch-and-bound trees.

Full strong branching

- ▶ Supose  $\hat{x}$  is a LP optimal solution. Let  $\hat{x}_j \in (0, 1)$  for  $j \in F \subseteq [n]$ .
- Let OPT := the optimal value of the LP at this node.

・ロット (雪) (日) (日) (日)

Dey

# Introduction

# Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

# Full strong branching

- ► Full strong branching is a partitioning rule for simple branch-and-bound trees.
- ▶ Supose  $\hat{x}$  is a LP optimal solution. Let  $\hat{x}_j \in (0, 1)$  for  $j \in F \subseteq [n]$ .
- Let OPT := the optimal value of the LP at this node.
- Let OPT<sub>j,0</sub> := the optimal value of the LP of the child node where we have the inequality x<sub>i</sub> ≤ 0.
  - Let  $OPT_{j,1}$  := the optimal value of the LP of the child node where we have the inequality  $x_j \ge 1$ .

Dey

# Introduction

# Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

# Full strong branching is a partitioning rule for simple branch-and-bound trees.

- ▶ Supose  $\hat{x}$  is a LP optimal solution. Let  $\hat{x}_j \in (0, 1)$  for  $j \in F \subseteq [n]$ .
- Let OPT := the optimal value of the LP at this node.
- Let OPT<sub>j,0</sub> := the optimal value of the LP of the child node where we have the inequality x<sub>i</sub> ≤ 0.
  - Let  $OPT_{j,1}$  := the optimal value of the LP of the child node where we have the inequality  $x_j \ge 1$ .

Let

Full strong branching

 $score_{j} = \max \{ |OPT - OPT_{j,1}|, \epsilon \} \cdot \max \{ |OPT - OPT_{j,0}|, \epsilon \},\$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dey

# Introduction

# Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems A computational evaluation

of strong branching

Proof Outlines

# Full strong branching is a partitioning rule for simple branch-and-bound trees.

- ▶ Supose  $\hat{x}$  is a LP optimal solution. Let  $\hat{x}_j \in (0, 1)$  for  $j \in F \subseteq [n]$ .
- Let OPT := the optimal value of the LP at this node.
- Let OPT<sub>j,0</sub> := the optimal value of the LP of the child node where we have the inequality x<sub>i</sub> ≤ 0.
  - Let  $OPT_{j,1}$  := the optimal value of the LP of the child node where we have the inequality  $x_j \ge 1$ .

Let

Full strong branching

score<sub>j</sub> = max { $|OPT - OPT_{j,1}|, \epsilon$ } · max { $|OPT - OPT_{j,0}|, \epsilon$ },

where  $\epsilon > 0$  is a small number related to machine precision.

Let j<sup>\*</sup> := argmax<sub>j∈F</sub> (score<sub>j</sub>).

Dey

# Introduction

# Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems A computational evaluation

of strong branching

Proof Outlines

# Full strong branching

- ► Full strong branching is a partitioning rule for simple branch-and-bound trees.
- ▶ Supose  $\hat{x}$  is a LP optimal solution. Let  $\hat{x}_j \in (0, 1)$  for  $j \in F \subseteq [n]$ .
- Let OPT := the optimal value of the LP at this node.
- Let OPT<sub>j,0</sub> := the optimal value of the LP of the child node where we have the inequality x<sub>i</sub> ≤ 0.
  - Let  $OPT_{j,1}$  := the optimal value of the LP of the child node where we have the inequality  $x_j \ge 1$ .

Let

score<sub>j</sub> = max { $|OPT - OPT_{j,1}|, \epsilon$ } · max { $|OPT - OPT_{j,0}|, \epsilon$ },

where  $\epsilon > 0$  is a small number related to machine precision.

- Let j<sup>\*</sup> := argmax<sub>j∈F</sub> (score<sub>j</sub>).
- ▶ Branch on *j*\*.

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

#### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

**Proof Outlines** 

# More on full strong branching

Experimentally, full strong branching, works better than any other rule for simple branch-and-bound trees [Achterberg, Koch, and Martin (2005)].

くロン くぼう くほう くちょう

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

#### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

# More on full strong branching

- Experimentally, full strong branching, works better than any other rule for simple branch-and-bound trees [Achterberg, Koch, and Martin (2005)].
- However, this rule is not used in practise, because we need to solve 2|F| LPs just to decide one branching decision.

(日)

Dey

## Introduction

## Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

# More on full strong branching

- Experimentally, full strong branching, works better than any other rule for simple branch-and-bound trees [Achterberg, Koch, and Martin (2005)].
- However, this rule is not used in practise, because we need to solve 2|F| LPs just to decide one branching decision.
- Recently there has been many attempts made to mimic full strong branching using machine learning. [Alvarez, Louveaux, and Wehenkel (2017)], [Gasse, Chetelat, Ferroni, Charlin, Lodi (2019)], [Khalil, Le Bodic, Song, Nemhauser, Dilkina (2016)], [Nair et al. (2020)]

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

#### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluatio of strong branching

**Proof Outlines** 

# Some questions..

How large is the tree produced by strong-branching in comparison to the smallest possible branch-and-bound tree for a given instance? Answering this question may lead us to finding better rules.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

#### Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems A computational evaluation

Proof Outlines

# Some questions..

- How large is the tree produced by strong-branching in comparison to the smallest possible branch-and-bound tree for a given instance? Answering this question may lead us to finding better rules.
- A more refined questions is the following: it would be useful to understand the performance of strong-branching vis-á-vis different classes of instances.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ヨッ

2.3.1 Strong branching applied to specific problems

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

### Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

# Vertex cover

# Definition (Vertex cover)

The vertex cover problem over a graph G = (V, E) can be expressed as the following integer program (IP)

$$\begin{array}{ll} \min & \sum_{v \in V} x_v \\ \text{s.t.} & x_u + x_v \geq 1, \quad uv \in E \\ & x_v \in \{0,1\}, \quad v \in V \end{array}$$

Given an instance *I* of this IP, we let OPT(*I*) denote optimal objective function value and OPT<sub>L</sub>(*I*) be the optimal objective function of the LP relaxation (i.e. when the variable constraints are  $x_v \in [0, 1]$ ). Then let

$$\Gamma(I) := \mathsf{OPT}(I) - \mathsf{OPT}_L(I).$$

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluatior of strong branching

Proof Outlines

# Strong branching works well for vertex cover

# Theorem (D., Dubey. Molinaro, Shah)

Let I be any instance of vertex cover on n nodes. Assume we break ties within the worst-bound rule for node selection rule by selecting a node with the largest depth.

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluatio of strong branching

**Proof Outlines** 

# Strong branching works well for vertex cover

# Theorem (D., Dubey. Molinaro, Shah)

Let I be any instance of vertex cover on n nodes. Assume we break ties within the worst-bound rule for node selection rule by selecting a node with the largest depth. Let  $T_S(I)$  be some branch-and-bound tree generated by strong-branching with the above version of worst-bound node selection rule that solves I.

< ロ > < 同 > < 回 > < 回 > .

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

**Proof Outlines** 

# Strong branching works well for vertex cover

# Theorem (D., Dubey. Molinaro, Shah)

Let I be any instance of vertex cover on n nodes. Assume we break ties within the worst-bound rule for node selection rule by selecting a node with the largest depth. Let  $\mathcal{T}_{S}(I)$  be some branch-and-bound tree generated by strong-branching with the above version of worst-bound node selection rule that solves I. Then independent of the underlying LP solver used,

 $|\mathcal{T}_{\mathcal{S}}(I)| \leq 2^{2\Gamma(I)+1} + \mathcal{O}(n).$ 

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Dey

#### Introduction

#### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

#### Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

# Strong branching does not work well for other IP models

$$\left\{ (x, y) \in \{0, 1\}^n \times \{0, 1\}^n \, | \, y_i \le 2x_i, y_i \le 2 - 2x_i, \forall i \in [n], \sum_{i=1}^n y_i = 1 \right\}$$

# Theorem

The smallest branch-and-bound tree that shows that the above set is integer infeasible requires no more than 4n + 1 nodes. On the other hand, strong branching requires at least  $2^n$  nodes.

2.3.2 A computational evaluation of strong branching

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで
Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

## Optimal branch-and-bound tree

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

## Optimal branch-and-bound tree

It is not possible to analyse different problems analytically.

э

Dey

### Introduction

### Main results

Random IPs

- Lower bounds on size of general branch-and-bound tree
- Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines

## Optimal branch-and-bound tree

- It is not possible to analyse different problems analytically.
- So we came up with a Dynamic programming algorithm to compute the optimal branch-and-bound tree.

### Theorem (D., Dubey, Molinaro, Shah)

There is a DP algorithm with running time  $poly(data) \cdot 3^{O(n)}$  time to compute an optimal branch-and-bound tree for any binary MILP instance defined on n binary variables.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Dey

### Introduction

### Main results

Random IPs

Lower bounds on size of general branch-and-bound tree

Analysis of full strong branching rule for partitioning

Strong branching applied to specific problems

A computational evaluation of strong branching

Proof Outlines



Figure: Ratio of geometric mean of branch-and-bound tree sizes to geometric mean of optimal tree sizes over all instances of a problem for various branching strategies. "Rand" stands for random, "Most Inf" stands for most infeasible, "SB-P" stands for strong-branching with product score function, and "SB-L" stands for strong-branching with linear score function.

3 Proof Outlines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### 3.1 Random IPs Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dey

### Introductio

Main results

### **Proof Outlines**

#### Random IPs Theorem

Optimal branch-and-bound tree

### Reminder...

 $\begin{array}{ll} \max & c^{\top}x & c \sim \text{Uniform}([0, \ 1]^n) \\ \text{s.t.} & Ax \leq b & A \sim \text{Uniform}([0, \ 1]^{m \times n}) \\ & x \in \{0, 1\}^n & , \end{array}$ 

where  $b = \beta \cdot n, \beta \in (0, \frac{1}{2})^m$ .

### Theorem (D., Dubey, Molinaro)

Any branch-and-bound tree using the worst bound rule for node selection, solving the above problem has no more than  $(n^{\mathcal{O}(m)})$  nodes (with good probability).

Dey

#### Introductio

Main results

#### **Proof Outlines**

### Random IPs Theorem

Optimal branch-and-bound tree

### Proof Sketch



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

э

Dey

#### Introductio

Main results

#### Proof Outlines

### Random IPs Theorem

Optimal branch-and-bound tree

### Proof Sketch

$$\Delta(x) = \sum_{j \in [n]} \underbrace{(c_j - \langle \lambda^*, \mathcal{A}^j \rangle)}_{\text{reduced cost}} \cdot \underbrace{(x_j^* - x_j)}_{\text{LP Opt.}},$$

$$G := \left\{ x \in \left\{ 0,1 
ight\}^n \, | \, \Delta(x) \leq \mathsf{OPT} - \mathsf{OPT}_{\mathsf{LP}} 
ight\}$$

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Dey

#### Introduction

Main results

#### **Proof Outlines**

### Random IPs Theorem

Optimal branch-and-bound tree

### Proof Sketch

$$\Delta(\mathbf{x}) = \sum_{j \in [n]} \underbrace{(\mathbf{C}_j - \langle \lambda^*, \mathbf{A}^j \rangle)}_{\text{reduced cost}} \cdot \underbrace{(\mathbf{x}_j^* - \mathbf{x}_j)}_{\text{LP Opt.}},$$

$$G := ig\{x \in \{0,1\}^n \,|\, \Delta(x) \leq \mathsf{OPT} - \mathsf{OPT}_{\mathsf{LP}}ig\}$$

1. The number of internal nodes in a branch-and-bound tree is at most *n* times the number of good integer solutions *G*.

イロン 不得 とくほ とくほう 二日

Dey

#### Introduction

Main results

### **Proof Outlines**

### Random IPs Theorem

Optimal branch-and-bound tree

### Proof Sketch

$$\Delta(\mathbf{x}) = \sum_{j \in [n]} \underbrace{(\mathbf{c}_j - \langle \lambda^*, \mathbf{A}^j \rangle)}_{\text{reduced cost}} \cdot \underbrace{(\mathbf{x}_j^* - \mathbf{x}_j)}_{\text{LP Opt.}},$$

 $G := \left\{ x \in \left\{0,1\right\}^n | \Delta(x) \le \mathsf{OPT} - \mathsf{OPT}_{\mathsf{LP}} \right\}$ 

- 1. The number of internal nodes in a branch-and-bound tree is at most *n* times the number of good integer solutions *G*.
- 2. The number of good integer solutions is at most  $n^{\mathcal{O}(m)}$  (with good probability).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Dey

#### Introduction

Main results

### **Proof Outlines**

Random IPs Theorem

Optimal branch-and-bound tree

### We construct a mapping...

*r* : internal nodes  $\rightarrow$  *G* as follows:

Dey

#### Introduction

Main result

### **Proof Outlines**

Random IPs Theorem

Optimal branch-and-bound tree

### We construct a mapping...

*r* : internal nodes  $\rightarrow$  *G* as follows:

$$r(N) = x' \in \operatorname{argmin}\{\Delta(x) \mid x'_j = \underbrace{x_j^N}_{\text{Opt. Sol of N}} \text{ if } x_j^N \in \{0, 1\}\}.$$

Dey

### Introduction

Main results

### **Proof Outlines**

Random IPs Theorem

Optimal branch-and-bound tree

### We construct a mapping...





Picture credit: Yatharth Dubey

・ロト (日下・モート・モー・ショー・ショー)

3.2 Optimal branch-and-bound tree

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Dey

#### Introduction

Main results

### **Proof Outlines**

Random IPs Theorem

### Optimal branch-and-bound tree

### Dynamic programming algorithm

$$\max_{x \in P \cap \{0,1\}^n} c^\top x$$

Dey

#### Introduction

Main results

### **Proof Outlines**

Random IPs Theorem

Optimal branch-and-bound tree

### Dynamic programming algorithm

 $\max_{x \in P \cap \{0,1\}^n} c^\top x$ Let  $\mathcal{F}$  denote the set of faces of  $[0, 1]^n$ , i.e.  $|\mathcal{F}| = 3^n$ .

Dey

#### Introduction

Main results

### **Proof Outlines**

#### Random IPs Theorem

Optimal branch-and-bound tree

### Dynamic programming algorithm

$$\max_{x \in P \cap \{0,1\}^n} c^\top x$$

Let  $\mathcal{F}$  denote the set of faces of  $[0, 1]^n$ , i.e.  $|\mathcal{F}| = 3^n$ .

Algorithm 1 Computing Optimal Branch-and-bound Tree

Phase-1: Pruning by Infeasibility or Bound

- 1: Solve  $\max_{x \in P \cap \{0,1\}^n} \langle c, x \rangle$ ; let  $x^*$  be the solution
- 2: Initialise:  $\mathcal{S} \leftarrow \mathcal{F}$
- 3: for F in S do
- 4: Solve  $\max_{x \in F \cap P} \langle c, x \rangle$ ; let  $x_F^*$  be the optimal solution  $(x_F^* = \emptyset$  if LP is infeasible)
- 5: if  $x_F^* = \emptyset$  or  $\langle c, x_F^* \rangle \leq \langle c, x^* \rangle$  then
- 6:  $\overline{OPT}(F) \leftarrow 0$
- 7:  $S \leftarrow S \setminus \{F\}$
- 8: end if
- 9: end for

Phase-2: Recursive bottom-up computation

- 10: Sort S in order of increasing dimension
- 11: for F in S do
- 12:  $\overline{\operatorname{OPT}}(F) \leftarrow 1 + \min_j(\overline{\operatorname{OPT}}(F_{j,0}) + \overline{\operatorname{OPT}}(F_{j,1}))$

90

- 13: end for
- 14: return  $\overline{OPT}([0,1]^n)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

# Thank You.

- Dey, Santanu S., Yatharth Dubey, and Marco Molinaro. "Branch-and-bound solves random binary ips in polytime." Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics, 2021.
- Dey, Santanu S., Yatharth Dubey, and Marco Molinaro. "Lower Bounds on the Size of General Branch-and-Bound Trees." arXiv preprint arXiv:2103.09807 (2021).
- Dey, Santanu S., Yatharth Dubey, and Marco Molinaro. "A Theoretical and Computational Analysis of Full Strong-Branching." arXiv preprint arXiv:2110.10754 (2021).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで