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Abstract

Planning for capacity expansion forms a crucial part of the strategic level decision

making in many applications. Consequently, quantitative models for economic capac-

ity expansion planning have been the subject of intense research. However, much of

the work in this area has been restricted to linear cost models and/or limited degree

of uncertainty to make the problems analytically tractable. This paper addresses a

stochastic capacity expansion problem where the economies-of-scale in expansion costs

are handled via fixed-charge cost functions, and forecast uncertainties in the problem

parameters are explicitly considered by specifying a set of scenarios. The resulting

formulation is a multi-stage stochastic integer program. We develop a fast, linear pro-

gramming based, approximation scheme that exploits the decomposable structure and

is guaranteed to produce feasible solutions for this problem. Through probabilistic

analysis tools, we prove that the optimality gap of the heuristic solution almost surely

vanishes asymptotically as the problem size increases.
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1 Introduction

Planning for capacity expansion consists, primarily, of determining future expansion times,

sizes, and locations to support anticipated demand growth. This activity forms a crucial

part of the strategic level decision making in many applications. Examples can be found in

heavy process industries (Sahinidis & Grossmann 1992), communication networks (Chang

& Gavish 1993, Saniee 1995, Laguna 1998), electric utilities (Murphy, Sen & Soyster 1987,

Murphy & Weiss 1990), automobile industries (Eppen, Martin & Schrage 1989), service

industries (Berman, Ganz & Wagner 1994, Berman & Ganz 1994), and, more recently, in

electronic goods and semiconductor industries (Rajagopalan, Singh & Morton 1998, Bermon

& Hood 1999, Swaminathan 2000). In all of these applications, the expansion of production

capacity requires the commitment of substantial capital resources over long periods of time.

Furthermore, the economies-of-scale in the expansion costs, as well as the uncertainties in

the long range forecasts for costs and demands, make these decision problems very complex.

Consequently, quantitative models for economic capacity expansion planning have been the

subject of intense research since the early 1960s. However, much of the work in this area

has been restricted to linear cost models and/or limited degree of uncertainty to make the

problems analytically tractable.

Early approaches for solving stochastic capacity expansion problems were based on

stochastic control theory (Manne 1961, Freidenfelds 1980, David, Dempster, Sethi & Ver-

mes 1987, Bean, Higle & Smith 1992). In these models, the demands were assumed to be

simple stochastic processes to render analytical tractability. With the advent of stochas-

tic programming (cf. Kall & Wallace (1994) or Birge & Louveaux (1997)) and increased

computational power, the use of scenarios to model uncertainties in planning models has

become increasingly popular. In two-stage stochastic programming approaches for capacity

planning (Eppen et al. 1989, Fine & Freund 1990, Berman et al. 1994, Swaminathan 2000),
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it is assumed that the entire capacity expansion schedule is decided before the uncertainty

is realized, and only some recourse actions can be taken in order to correct any infeasibili-

ties. Since all capacity expansion decisions, and hence any fixed-charge expansion costs, are

restricted to the first stage of the problem, standard stochastic programming decomposition

methods can be used to solve these models.

Multi-stage models extend the two-stage stochastic programming models by allowing re-

vised decisions in each time stage based upon the uncertainty realized so far. The uncertainty

information in a multi-stage stochastic program is modeled as a multi-layered scenario tree,

and the optimization problem consists of determining an expansion schedule that hedges

against this scenario tree. Multi-stage stochastic linear programming has been extensively

treated in the literature (cf. Birge & Louveaux (1997)). Solution approaches for multi-

stage stochastic linear programs include nested Benders decomposition (Birge 1985) and

progressive hedging (Rockafellar & Wets 1991). However, these methods are inapplicable to

stochastic capacity expansion problems with fixed-charge costs owing to the non-convexities

caused by the presence of integer variables in later stages.

In the context of capacity planning, Rajagopalan et al. (1998) proposed a multi-stage

capacity expansion and replacement model where capacity becomes available only at certain

time periods. The demand is assumed to be non-decreasing and the available capacity

of a technology, when it appears, is assumed to be sufficient. The authors exploited the

structure of the optimal solution to develop a dynamic programming strategy. More recently,

Chen, Li & Tirupati (2001) addressed a multi-stage stochastic capacity expansion model

for technology selection. The authors assumed linear expansion cost functions and used

Lagrangian decomposition to solve the problem.

In this paper, we consider a stochastic capacity expansion problem where the economies-

of-scale in expansion costs are handled via fixed-charge cost functions and forecast uncer-

tainties in the problem parameters are explicitly considered by specifying a set of scenarios.
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The resulting formulation is a multi-stage stochastic mixed-integer program with binary vari-

ables in all stages. The proposed model is fairly general in terms of the existing literature. It

allows for multiple production facilities, does not require non-decreasing demand patterns,

and allows for limited availability of procurable capacity of the various facility types. How-

ever, this generalization makes the problem NP-hard even in a deterministic setting. This

computational complexity motivates the need for efficient heuristic methods. Heuristics for

solving deterministic capacity expansion problems are prevalent in the literature (Fong &

Srinivasan 1981a, Klincewicz, Luss & Yu 1988, Li & Tirupati 1994). However, theoretical

analyses of the performance of these heuristics have not been reported. In a recent line of

work, Liu & Sahinidis (1997), Ahmed & Sahinidis (2000a), and Ahmed & Sahinidis (2000b)

proposed LP-based heuristics for deterministic capacity expansion problems in the chemical

process industries and in manufacturing technology selection. Using probabilistic analysis

tools, these schemes were proven to be asymptotically optimal in the number of time periods.

In this paper, we extend this approach to the stochastic case.

The remainder of this paper is organized as follows. Section 2 presents the multi-stage

integer programming formulation. A heuristic scheme for the problem is presented in Sec-

tion 3. The main idea is to decompose the problem into a sequence of smaller, deterministic

problems each of which is solved by an efficient heuristic. A probabilistic analysis of the

approach is carried out in Section 4. For a standard probability model, we show that the

heuristic is asymptotically optimal as the planning horizon increases. Finally, in Section 5,

we present computational results in the context of capacity expansion of chemical processing

networks under uncertainty.
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2 Problem Statement

In this section, we present a multi-stage stochastic programming formulation for capacity

expansion under uncertainty with fixed-charge expansion costs.

We consider the problem of determining the timing and the level of capacity acquisitions

for a set of production facilities I, along with a policy for allocating the available capacity

to satisfy the demand of a set of product families J , while minimizing the expected total

discounted investment and allocation cost for a planning horizon of n periods. The product

demands (d), variable and fixed costs of capacity acquisition (α and β), and the costs for

allocating capacity to products (δ) are assumed to be stochastic. We model uncertainty as a

multi-layered tree. Each node layer in the tree corresponds to a time period t. A scenario s

corresponds to a single path from the root to a unique leaf of this tree, representing a joint

realization of the uncertain parameters over all time periods, i.e., {ds
jt, α

s
it, β

s
it, δ

s
ijt}n

t=1, where

i ∈ I and j ∈ J . Figure 1 presents an example of a scenario tree. At any time stage, a

node may be identified with the “bundle” Bt of scenarios passing through it. We denote the

collection of nodes or bundles at a time stage t by Bt. The collection at the root node B1

contains a single bundle B1 consisting of all scenarios s = 1, . . . , S. Similarly, the collection

Bn at the leaf nodes consists of S members each of which contains a single scenario. The

probability associated with a scenario (path) s is denoted by ps.

With the uncertainty information structure specified as above, we can now state a for-

mulation for the problem. The following notation will be used to describe the model:
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Sets and indices:

i index for a production facility (i ∈ I);

j index for a product family (j ∈ J );

Ij set of facilities that are capable of producing product family j;

Ji set of product families that can be produced by facility i;

t index for time periods (t = 1, . . . , n);

s index for scenarios (s = 1, . . . , S).

Parameters:

αs
it variable cost associated with acquiring unit capacity of facility i in period t under

scenario s;

βs
it fixed cost associated with acquiring capacity of facility i in period t under scenario

s;

δs
ijt cost associated with allocating a unit of capacity of facility i to product family j in

period t under scenario s;

µij (deterministic) yield rate of product family j per unit capacity of facility i;

ds
jt demand of product family j in period t under scenario s;

Uit (deterministic) capacity of facility i available for acquisition in time period t;

Xi0 initial capacity of facility i;

ps probability of scenario s (
∑S

s=1 ps = 1).

Variables:

W s
ijt amount of capacity of facility i allocated to product family j in period t under

scenario s;

Xs
it amount of capacity addition to facility i in period t under scenario s;

Y s
it binary variables equal to 1 if capacity of facility i is acquired in period t under

scenario s and equal to 0 otherwise.

We assume that ∪i∈IJi = J and ∪j∈J Ij = I, so that there is a facility available for
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each product family and I consists of only those facilities that can produce one or more

of the product families in J . We also assume that all cost parameters are appropriately

discounted to their present values. Following Rajagopalan (1994) and Li & Tirupati (1994),

we ignore inventory fluctuations and do not permit disposal of excess capacity. With the

above assumptions, the stochastic capacity expansion problem is formulated as follows.

(SCAP) : min
∑S

s=1 ps
{∑n

t=1

∑
i∈I

(
αs

itX
s
it + βs

itY
s
it +

∑
j∈Ji

δs
ijtW

s
ijt

)}
(1)

subject to

Xs
it ≤ UitY

s
it t = 1, . . . , n; i ∈ I; s = 1, . . . , S (2)∑

j∈Ji

W s
ijt ≤ Xi0 +

t∑
τ=1

Xs
iτ t = 1, . . . , n; i ∈ I; s = 1, . . . , S (3)∑

i∈Ij

µijW
s
ijt = ds

jt t = 1, . . . , n; j ∈ J ; s = 1, . . . , S (4)

W s
ijt, X

s
it ≥ 0 t = 1, . . . , n; j ∈ Ji; i ∈ I; s = 1, . . . , S (5)

Y s
it ∈ {0, 1} t = 1, . . . , n; i ∈ I; s = 1, . . . , S (6)

Xs1
it = Xs2

it ∀(s1, s2) ∈ Bt,∀Bt ∈ Bt, t = 1, . . . , n; i ∈ I (7)

Y s1
it = Y s2

it ∀(s1, s2) ∈ Bt,∀Bt ∈ Bt, t = 1, . . . , n; i ∈ I (8)

W s1
ijt = W s2

ijt ∀(s1, s2) ∈ Bt,∀Bt ∈ Bt, t = 1, . . . , n; j ∈ Ji; i ∈ I (9)

In the formulation above, the objective (1) minimizes the expected total investment

and allocation costs over the planning horizon. Constraint (2) ensures that the capacity

acquired in any period and any scenario does not exceed the upper bound on the acquirable

capacity. Constraint (3) enforces the condition that, for any facility, the total capacity

allocated to the product families does not exceed the installed capacity. Constraint (4) links
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the allocated capacities to the product demand. Non-negativity and binary restrictions of

the variables are enforced through (5) and (6). Notice that, at time stage t, the decision

maker cannot distinguish between two scenarios s1 and s2 that belong to the same node

Bt of the scenario tree. Consequently, the decisions corresponding to scenarios s1 and s2

have to be identical. These non-anticipativity restrictions (cf. Birge & Louveaux (1997)) are

enforced by constraints (7), (8), and (9).

Ahmed & Sahinidis (2000b) proved that, owing to the presence of finite bounds on the

capacity additions, the deterministic capacity expansion problem (S = 1) is NP-hard with

respect to the number of time periods even for a single facility. Since the deterministic

problem is a special single-scenario version of (SCAP), (SCAP) is NP-hard. Currently,

no practicable general-purpose solution methodology exists for the exact solution of multi-

stage stochastic integer programs. In principle, with the scenario tree specified, the problem

is a large-scale deterministic mixed-integer program and can be solved by standard integer

programming techniques. However, such a scheme will be very expensive computationally. In

the next section, we describe an efficient decomposition-based heuristic strategy to construct

good quality solutions to (SCAP).

3 An Approximation Scheme

In this section, we develop an approximation scheme to construct solutions to (SCAP). The

approach is motivated by the following observations: relaxing the integrality restrictions

reduces the problem to a stochastic linear program which can be solved by standard decom-

position methods; and relaxing the non-anticipativity constraints decomposes the problem

into S instances of the deterministic capacity expansion problem which can be solved inde-

pendently.

For notational ease, let us denote a joint realization of the uncertain parameters (or
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a scenario) by ωs := (ωs
1, . . . , ω

s
n) where ωs

t := (αs
t , β

s
t , δ

s
t , d

s
t). Note that the subscripts i

and j have been omitted. The technological constraints (2)-(6) in (SCAP) corresponding

to scenario s will be concisely denoted by X (ωs). The decision variables corresponding to

scenario s will be denoted by xs := (xs
1, . . . , x

s
n) with xs

t := (Xs
t , Y

s
t , W s

t ). The objective

function (1) corresponding to scenario s for an n−period problem will be denoted by f s
n(·).

The non-anticipativity constraints (7)-(9) will collectively be denoted by N . Using this

notation, we can concisely represent the problem as:

(SCAP) : min zn =
S∑

s=1

psf s
n(xs) (10)

s.t. xs ∈ X (ωs) ∩N ∀s = 1, . . . , S (11)

From now on, we shall refer to the above representation of (SCAP) for convenience.

Note that, for a solution (x1, . . . , xS) to be feasible, it needs to satisfy both the techno-

logical constraints X (ωs) and the non-anticipativity constraints N , i.e., xs ∈ X (ωs)∩N for

s = 1, . . . , S. A solution that satisfies only the non-anticipativity constraints, but not nec-

essarily the technological constraints, is called implementable; while a solution that satisfies

only the technological constraints, but not necessarily the non-anticipativity constraints, is

called admissible (Rockafellar & Wets 1991). Thus, a solution is feasible if it is both im-

plementable and admissible. We propose to construct a feasible solution to (SCAP) in the

following three phases:

I. Relax the integrality requirement in the technological constraints X (ωs) and construct

an implementable solution (x1, . . . , xS) ∈ N . If the current solution is also admissible,

i.e., xs ∈ X (ωs) for s = 1, . . . , S, then stop. Otherwise, go to Phase II.

II. Relax the non-anticipativity constraints N and perturb (x1, . . . , xS) to construct an

admissible solution (x1, . . . , xS) such that xs ∈ X (ωs) for s = 1, . . . , S. If such a

solution is also implementable, i.e., (x1, . . . , xS) ∈ N , then stop. Otherwise, go to
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Phase III.

III. Re-enforce the non-anticipativity constraints on (x1, . . . , xS) to construct a feasible

solution (x̂1, . . . , x̂S) such that x̂s ∈ X (ωs) ∩N for s = 1, . . . , S.

Details of each of the above steps are described next.

3.1 Phase I: Constructing an implementable solution

Relaxing the integrality requirement in the constraint set X (ωs) transforms (SCAP) into

a multi-stage stochastic linear program, which can then be solved using LP technology or

specialized decomposition techniques such as the nested Benders decomposition (Birge 1985)

or progressive hedging (Rockafellar & Wets 1991). Performance of solution approaches to

stochastic linear programs largely depends on problem size and structure and a problem-

specific implementation may be required for very large-scale problems. Now matter how this

LP is solved, its solution clearly obeys the non-anticipativity restrictions.

3.2 Phase II: Constructing an admissible solution

Relaxing the non-anticipativity constraints N decomposes (SCAP) into S instances of the

deterministic capacity expansion problem (for s = 1, . . . , S):

(CAP) : min
∑n

t=1

∑
i∈I

(
αs

itX
s
it + βs

itY
s
it +

∑
j∈Ji

δs
ijtW

s
ijt

)

subject to

Xs
it ≤ U s

itY
s
it t = 1, . . . , n; i ∈ I∑

j∈Ji

W s
ijt ≤ Xi0 +

t∑
τ=1

Xs
iτ t = 1, . . . , n; i ∈ I
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∑
i∈Ij

µijW
s
ijt = ds

jt t = 1, . . . , n; j ∈ J

W s
ijt, X

s
it ≥ 0 t = 1, . . . , n; i ∈ I; j ∈ J

Y s
it ∈ {0, 1} t = 1, . . . , n; i ∈ I

Liu & Sahinidis (1997), Ahmed & Sahinidis (2000a) and Ahmed & Sahinidis (2000b) pro-

posed temporal capacity shifting heuristics based upon perturbing the LP relaxation solution

to construct integral solutions to (CAP). The motivation for the development of these heuris-

tics comes from the empirical results of Chang & Gavish (1995) and Liu & Sahinidis (1995),

who observed decreasing relaxation gaps of deterministic capacity expansion problems with

respect to the planning horizon length. This empirical evidence suggests the possibility of

construction of good quality solutions from the LP relaxation solution for instances of (CAP)

with large planning horizons. Note that simply rounding up the values of the binary vari-

ables (Yit) in the LP relaxation of (CAP) results in a feasible solution. However, such a

naive strategy might result in very poor solutions, possibly requiring capacity expansion to

be carried out in all periods. It is important to perturb the LP relaxation solution in a way so

as to keep the number of expansion decisions small. Note that, since fixed costs of capacity

addition are typically high, we wish to acquire as much capacity as possible whenever the

decision to expand is taken. It is easy to see that, if the investment costs are constant across

all periods, there is an optimal solution to (CAP) where capacity acquisitions are made only

in the earliest periods. Furthermore, in this case, there is an optimal solution where the

capacity addition equals the availability bound (Uit) in all periods except perhaps the last

one in which capacity was added. Using these observations, Ahmed & Sahinidis (2000a)

and Ahmed & Sahinidis (2000b) proposed to perturb the LP relaxation solution by shifting

capacity additions from later periods to the earlier periods if capacity is available.

Having decomposed (SCAP) by relaxing the non-anticipativity constraints, we can apply

the above temporal capacity shifting heuristic to the implementable (LP relaxation) solution
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from Phase I to construct admissible (integral) solutions for each of the scenario subproblems

of (SCAP). A formal statement of this is presented below:

1. Start with the implementable (LP relaxation) solution from Phase I (x1, . . . , xS) where

xs := (xs
1, . . . , x

s
n), and xs

t := (X
s

it, Y
s

it, W
s

ijt).

2. Denote the solution obtained in this phase by (x1, . . . , xS) where xs := (xs
1, . . . , x

s
n),

and xs
t := (Xs

it, Y
s
it, W

s
ijt). Set W s

ijt = W
s

ijt.

3. Repeat the following temporal capacity shifting heuristic for all s = 1, . . . , S. The

superscripts s have been eliminated for brevity.

(a) For each i ∈ I, let Ti := {t|Y it > 0}, i.e., the set of time periods when capacity

is added in the LP solution of Phase I. Let Ti = {t1, t2, . . . , tpi
}.

(b) Repeat the following step for all i ∈ I:

Do for h = 1, . . . , pi

Set X ith
← X ith , Y ith

← 0, and k ← h + 1.

While X ith
< Uith and k ≤ pi do,

Let δ = min{Uith − X ith
, X itk}.

Set X ith
← X ith

+ δ and X itk ← X itk − δ.

Set k ← k + 1.

End While.

If X ith
> 0, set Y ith

← 1.

End Do.

The following two properties of the solution obtained by the above heuristic are obvious

from the construction:
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Lemma 3.1 For any production facility i ∈ I,
∑t

τ=1 Xs
it ≥

∑t
τ=1 X

s

it for all t = 1, . . . , n

and s = 1, . . . , S.

Lemma 3.2 For any production facility i ∈ I,
∑n

t=1 Xs
it =

∑n
t=1 X

s

it for all s = 1, . . . , S.

Since the implementable solution xs satisfies all constraints in X (ωs), except perhaps the

integrality requirements, by the above results and the construction the solution xs satisfies

all constraints in X (ωs) including the integrality requirements.

Proposition 3.3 The solution (x1, . . . , xS) obtained in Phase II is admissible.

We shall now establish a crucial property of the temporal capacity shifting heuristic that

is needed for the probabilistic analysis in the next section.

Lemma 3.4 For any facility i ∈ I,
∑n

t=1 UitY
s
it −

∑n
t=1 UitY

s

it ≤ Umax
i , where Umax

i =

maxt=1,...,n{Uit}. If Uit is constant across time periods, the above reduces to
∑n

t=1 Y s
it −∑n

t=1 Y
s

it ≤ 1.

Proof: Recall that, by construction, the solution in Phase II consists of capacity expansions

up to the available capacity level for all periods in which the capacity is acquired except

perhaps the last. Let t′ be the last period in which capacity is acquired in the heuristic

solution. Then, for any facility i,
∑n

t=1 Xs
it =

∑n
t=1 UitY

s
it − εs

it′ , where εs
it′ = Uit′ −Xs

it′ . The

LP relaxation solution satisfies
∑n

t=1 X
s

it =
∑n

t=1 UitY
s

it. Noting that εs
it′ ≤ Umax

i , the result

follows from Lemma 3.2. �

Note that the above property will not be satisfied by a naive round-up strategy, since

such a scheme could potentially lead to rounding up the binary variables in all periods. Let

us illustrate this fact with an example.
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Example

Consider the following deterministic single-facility capacity expansion problem.

min
n∑

t=1

αtXt + βtYt

s.t. 0 ≤ Xt ≤ UtYt t = 1, . . . , n
t∑

τ=1

Xτ ≥ dt t = 1, . . . , n

Yt ∈ {0, 1} t = 1, . . . , n

Let us assume that αt > αt+1 and βt > βt+1 for all t = 1, . . . , n, i.e., it is cheaper to postpone

capacity addition. We also assume that Ut ≥ (dt −max1≤τ≤t−1 dτ )
+, where (·)+ = max(0, ·).

Consider now the class of problem instances for which the demand parameters are given

by dt =
∑t

τ=1
C
τ2 and Ut = C for all t = 1, . . . , n, for some C > 0. Note that the demand dt

is bounded above by Cπ2

6
.

It is then clear that an optimal solution to the LP-relaxation of the above problem is

X t = (dt − max
1≤τ≤t−1

dτ )
+ and Y t =

(dt − max1≤τ≤t−1 dτ )
+

Ut

for all t = 1, . . . , n.

Specifically, the LP-relaxation solution is Y t = 1
t2

for all t = 1, . . . , n. If we use a naive

round-up strategy to construct a feasible integer solution, then the resulting solution is

Y R
t = 	 1

t2

 = 1 yielding a total number of expansion set-ups of

∑n
t=1 Y R

t = n. On the

other hand, by Lemma 3.4, it is easily seen that the proposed shifting heuristic guarantees∑n
t=1 Y s

t ≤
∑n

t=1 Y
s

t + 1 ≤ �π2

6
+ 1� = 2. �
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Phase III: Constructing a feasible solution

In this final phase of the heuristic, we construct a solution that is both implementable and

admissible, hence feasible. Let x̂s denote this solution. Note that the capacity shifting step

might destroy the non-anticipativity structure of the capacity expansion variables (Xs
t , Y

s
t ).

We recover non-anticipativity by a procedure we call capacity bundling where we set X̂s
it =

maxs∈Bt {Xs
it} for all s ∈ Bt for all Bt ∈ Bt. This guarantees that the capacity acquired in

any period is the same in all scenarios of a scenario bundle. Finally, the values of the binary

variables are rounded up accordingly.

Figure 2 illustrates the heuristic strategy for a simple 3-period, 4-scenario example. The

solutions obtained in each of the three phases of the heuristic are plotted. The heights of the

rectangular blocks represent the capacity expansion bounds, and the heights of fillings in the

block represent the amounts of capacity added in the corresponding solution. Note that the

LP relaxation solution satisfies the non-anticipativity constraints. For example, the capacity

additions in scenarios 2 and 3 in time period 2 are the same since these scenarios belong

to the same bundle. However, after the temporal capacity shifting, the non-anticipativity

structure is destroyed. The capacity bundling phase restores the non-anticipativity structure.

From construction of the heuristic, it can be easily verified that:

Theorem 3.5 The solution obtained by the proposed heuristic is feasible to (SCAP), i.e.,

x̂s ∈ X (ω) ∩N .

The proposed heuristic has a running time of O(TLP +mn2 +Sn), where TLP is the effort

required to solve the LP relaxation, m is the number of facilities, n is the number of time

periods, and S is the total number of scenarios in the scenario tree.

The heuristic can be easily improved by shifting capacity only to periods that offer

an expected cost benefit in Phase II. Furthermore, the proposed strategy can potentially be

integrated with other heuristic methods such as those proposed by Fong & Srinivasan (1981b)
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and Li & Tirupati (1994). Such improvements will only produce better quality solutions.

However, in the next section, we show that the proposed heuristic even in its simple form is

asymptotically optimal in the number of planning periods.

4 Probabilistic Analysis

In this section, we carry out a probabilistic analysis to characterize the probable performance

of the heuristic on “typical” problem instances. We consider a fixed set of product families

J , a fixed set of production facilities I, and a fixed set of yield rates µij. The probabilistic

analysis will be carried out on instances of (SCAP) consisting of increasingly more time

periods where the problem parameters such as costs, product demands, and technological

availability are drawn from the following probabilistic model.

- The capacity expansion bounds, {Uit}n
t=1, of a facility i are drawn from distributions

with bounded support, i.e., Uit ∈ [U i, U i], with U i > 0 for all i ∈ I.

- The demands of the various product families and the cost parameters for the various

technologies are assumed to follow one of the following distributions:

(D1) For each product family j, the demand, {djt}n
t=1, is a sequence of i.i.d random

variables with finite first and second moments. For a given technology i, the cost

parameters {αit}n
t=1 and {βit}n

t=1 are either sequences of i.i.d random variables

with finite first and second moments, or are sequences of random variables (not

necessarily i.i.d) with bounded supports.

(D2) For each product family j, the demand, {djt}n
t=1, is a sequence of independent

random variables (not necessarily identically distributed) with bounded second

moments. For a given technology i, the cost parameters {αit}n
t=1 and {βit}n

t=1 are

sequences of random variables with bounded supports.
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(D3) For each product family j, the demand, {djt}n
t=1, is a sequence of random variables

with bounded support. For a given technology i, the cost parameters {αit}n
t=1 and

{βit}n
t=1 are either sequences of i.i.d random variables with finite first and second

moments or are sequences of random variables with bounded supports.

- The problem parameters are such that the random instance is feasible. This can be

easily ensured by including an expensive artificial facility with infinite capacity that is

capable of producing all product families.

To specify an instance of (SCAP), we need to construct a scenario tree of realizations for

the stochastic cost and demand parameters. The generation of scenario trees for multi-stage

stochastic programming is an active field of research. See Dupačová, Consigli & Wallace

(2000) for a survey. In the current analysis, we assume that the scenario tree is generated

from data sample paths. In this scheme, the first step is to delineate the initial structure of

the scenario tree, i.e., the number of stages and the branching scheme. Independent sample

paths of the stochastic problems parameters are generated by simulation. The sample paths

are then “fitted” onto the scenario tree by first discretizing the range of sample points

according to the number of nodes of the tree at a particular stage. The weights of the

scenario paths are then computed by collecting the sample paths that pass through the data

ranges in the nodes of that scenario path. Each scenario in the tree is then either a sample

path of data realizations or a collection of such sample paths. This scheme is also followed,

for example, in building scenario trees from simulations in IBM’s commercial stochastic

programming software (IBM Corporation 1998).

Using the above probability model, we shall now prove that the optimality gap of the

proposed heuristic almost surely vanishes asymptotically as the problem size increases. The

main tool in our probabilistic analysis is the asymptotic convergence properties of extreme or-

der statistics (Galambos 1987). For a sequence of random variables {x1, x2, . . . , xn}, consider
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the random variables xmax
n = maxj=1,...,n{xj} and xmin

n = minj=1,...,n{xj}. The asymptotic

theory of extreme order statistics concerns with the study of the limiting distributions of the

statistics xmax
n and xmin

n as n approaches infinity. We shall make use of the following two

asymptotic properties of xmax
n :

Lemma 4.1 Suppose {xj}n
j=1 is a sequence of non-negative i.i.d random variables with finite

second moment. Let xmax
n = maxj=1,n{xj}. Then, limn→∞

xmax
n√

n
= 0 with probability 1

(w.p. 1).

Lemma 4.2 Suppose {xj}n
j=1 is a sequence of non-negative independent random variables

with bounded first and second moments. Let xmax
n = maxj=1,n{xj}. Then, limn→∞

xmax
n

n
= 0

w.p. 1.

Lemmas 4.1 and 4.2 can be easily shown using classical results in extreme value theory

(cf. Leadbetter, Lindgren & Rootźen (1983) or Galambos (1987)).

Lemma 4.3 Consider instances of (SCAP) generated from distributions (D1) or (D3) for

the problem parameters. Then, the solution corresponding to any scenario s obtained at the

end of Phase II of the heuristic satisfies the following:

For any i ∈ I, lim
n→∞

∑n
t=1 Y s

it√
n

= 0 w.p. 1.

If the instances are generated from distribution (D2) for the problem parameters, we have:

For any i ∈ I, lim
n→∞

∑n
t=1 Y s

it

n
= 0 w.p. 1.

Proof: For a random instance of (SCAP) with n time periods, let the maximum demand of

product family j in scenario s be ds
j(n) = maxt=1,n{ds

jt}. Clearly, in the optimal solution of

the LP relaxation of (SCAP) obtained in Phase I, the final capacity of any facility i in scenario
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s will satisfy Xi0 +
∑n

t=1 X
s

it ≤ ∑
j∈Ji

ds
j(n) while, additionally,

∑n
t=1 X

s

it =
∑n

t=1 UitY
s

it.

From Lemma 3.4, we then have
n∑

t=1

UitY
s
it ≤

∑
j∈Ji

(ds
j(n) − Xi0)

+ + U i,

or,
n∑

t=1

Y s
it ≤

∑
j∈Ji

(ds
j(n) − Xi0)

+

U i

+
U i

U i

, (12)

where (·)+ = max(·, 0). Recall that our scenario tree is constructed by collecting sample

paths {dp
jt} generated according to one of the distributions. Let for each sample path p,

dp
j(n) = maxt=1,n{dp

jt}. Let Ps be the set of sample paths that correspond to scenario s.

Since the scenario parameters are obtained by discretizing the range of the path parameters,

then minp∈Ps{dp
j(n)} ≤ ds

j(n) ≤ maxp∈Ps{dp
j(n)}. If the demand sequence satisfies distribu-

tion (D1), then by Lemma 4.1, for each sample path p ∈ Ps, limn→∞
dp

j (n)√
n

= 0 w.p. 1 for all

j ∈ Ji. If the demands satisfy distribution (D2), then by Lemma 4.2, for each sample path

p ∈ Ps, limn→∞
dp

j (n)

n
= 0 w.p. 1 for all j ∈ Ji. If the demands satisfy distribution (D3),

then for each j ∈ Ji there exists a finite upper bound dj on the demand in all time periods.

Then, for each sample path p ∈ Ps, dp
j(n) ≤ dj w.p. 1 and limn→∞

dp
j (n)√

n
= 0 w.p. 1. Thus,

under distributions (D1) and (D3), limn→∞
ds

j(n)√
n

= 0 w.p. 1, and under distribution (D2),

limn→∞
ds

j(n)

n
= 0 w.p. 1 for all j ∈ J . Using these limits in (12) and the fact U i and U i are

independent of n, we have the desired results. �

Proposition 4.4 For a given scenario s,

lim
n→∞

f s
n(xs) − f s

n(xs)

n
= 0 w.p. 1.
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Proof: From the construction of the Phase II solution, we have:

f s
n(xs) − f s

n(xs) ≤
n∑

t=1

∑
i∈I

[
αs

itX
s
it − αs

itX
s

it + βs
itY

s
it − βs

itY
s

it

]
.

Let αmax
i = maxt=1,n{αs

it}, αmin
i = mint=1,n{αs

it}, βmax
i = maxt=1,n{βs

it}, and βmin
i =

mint=1,n{βs
it}. Using Lemma 3.2 and Lemma 3.4, we have

f s
n(xs) − f s

n(xs) ≤
∑
i∈I

[(
αmax

i − αmin
i

) n∑
t=1

Xs
it + βmax

i

n∑
t=1

Y s
it − βmin

i

(
n∑

t=1

Y s
it − 1

)]

≤
∑
i∈I

[
βmin

i +
{
U i(α

max
i − αmin

i ) + (βmax
i − βmin

i )
} n∑

t=1

Y s
it

]
.

Since 0 ≤ αmin
i and 0 ≤ βmin

i ≤ βmax
i for all i ∈ I, we have:

f s
n(xs) − f s

n(xs) ≤
∑
i∈I

[
βmax

i + (αmax
i U i + βmax

i )
n∑

t=1

Y s
it

]
.

Dividing by n, we obtain:

f s
n(xs) − f s

n(xs)

n
≤

∑
i∈I

[
βmax

i

n
+

(
U i

αmax
i√
n

+
βmax

i√
n

) ∑n
t=1 Y s

it√
n

]
.

Under distributions (D1) and (D3), the cost parameters are either i.i.d or have bounded

support. In either case, limn→∞
αmax

i√
n

= 0 and limn→∞
βmax

i√
n

= 0 w.p. 1. Thus, the result

follows from Lemma 4.3. Similarly, we also have,

f s
n(xs) − f s

n(xs)

n
≤

∑
i∈I

[
βmax

i

n
+

(
αmax

i U i + βmax
i

) ∑n
t=1 Y s

it

n

]
.

Under distribution (D2), the cost parameters have bounded support. Hence, (U iα
max
i +

βmax
i ) < +∞ and, for all i, βmax

i < +∞ and are independent of n. Thus, the result follows

from Lemma 4.3. �
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Proposition 4.5 For any scenario s,

lim
n→∞

f s
n(x̂s) − f s

n(xs)

n
= 0 w.p. 1.

Proof: Recall that in the capacity bundling phase we increase the capacity installed for

time periods that do not satisfy the non-anticipativity restriction. For a facility i, let s′i

be the scenario that requires the largest number of capacity expansion sequences, i.e., the

worst-case scenario. Then, clearly, the increase in capacity for other scenarios in the capacity

bundling phase will at most be that of the worst-case scenario. Thus

f s
n(x̂s) − f s

n(x(s)

n
≤

∑
i∈I

[(
αmax

i U i + βmax
i

) ∑n
t=1 Y

s′i
it

n

]
.

Taking the limit and invoking Lemma 4.3 for s′i completes the proof. �

For an instance of (SCAP) with n time periods, let zLP
n , zIP

n , and zH
n denote the optimal

value of LP relaxation solution obtained in Phase I, the optimal value of the integer program

(SCAP), and the value of the heuristic solution obtained in Phase III, respectively. We now

state the main results of this section.

Theorem 4.6

lim
n→∞

zH
n − zIP

n

n
= 0 w.p. 1.

Proof: Note that 0 ≤ zH
n − zIP

n ≤ zH
n − zLP

n . Thus,

zH
n − zIP

n

n
≤

∑S
s=1 ps[f s

n(x̂s) − f s
n(xs)]

n

=
S∑

s=1

ps

[
f s

n(x̂s) − f s
n(xs)

n
+

f s
n(xs) − f s

n(xs)

n

]
.
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Invoking Propositions 4.4 and 4.5 completes the proof. �

To characterize the asymptotic properties of the relative error of the heuristic solution,

we make the following assumptions:

Assumption 4.7 For any s and t, δs
ijt/µij ≥ 1 for all j ∈ Ji and i ∈ I.

Assumption 4.8 For any s and t, ds
jt ≥ 1 for at least one j ∈ J .

The quantity δs
ijt/µij can be interpreted as the unit production cost of family j from tech-

nology i in period t and scenario s. Then, Assumption 4.7 states that, in each scenario, the

unit production cost of a product family in any period is at least 1. Similarly, Assumption

4.8 states that in each scenario and in each period there is unit demand of at least one of the

product families. These assumptions are satisfied by appropriate scaling for positive lower

bounds on the production costs and demands.

Corollary 4.9 Under Assumptions 4.7 and 4.8 and the specified probability model,

lim
n→∞

zH
n − zIP

n

zIP
n

= 0 w.p. 1.

Proof: In light of Theorem 4.6, it suffices to show that zIP
n is Ω(n), i.e., there exist positive

constants C and n0 such that zIP
n ≥ Cn for all n ≥ n0.

First, let us rewrite the non-anticipativity constraints (7), (8), and (9) in (SCAP) as

follows:

∑S
s=1 Ls

itX
s
it = 0 t = 1, . . . , n; i ∈ I (13)∑S

s=1 M s
itY

s
it = 0 t = 1, . . . , n; i ∈ I (14)∑S

s=1 N s
ijtW

s
ijt = 0 t = 1, . . . , n; i ∈ I; j ∈ J (15)
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where the matrices Ls
it, M

s
it, and N s

ijt appropriately defined. Now consider the dual to the

LP relaxation of (SCAP):

zD
n = max

∑S
s=1

∑n
t=1

[(∑
i∈I Xi0γ

s
it + ξs

it

)
+

∑
j∈J ds

jtη
s
jt

]
s.t. λs

it + Ls
ituit −

n∑
τ=t

γiτ ≤ psαs
it t = 1, . . . , n; s = 1, . . . , S; i ∈ I

−Uiλ
s
it + M s

itvit + ξs
it ≤ psβs

it t = 1, . . . , n; s = 1, . . . , S; i ∈ I

γs
it + N s

ijtwijt + µijηjt ≤ psδs
ijt t = 1, . . . , n; s = 1, . . . , S; i ∈ I; j ∈ Ji

λs
it, γ

s
it, ξ

s
it ≤ 0 t = 1, . . . , n; s = 1, . . . , S; i ∈ I

ηs
jt, uit, vit, wijtunrestricted t = 1, . . . , n; s = 1, . . . , S; i ∈ I; j ∈ J

where λs
it, γs

it, and ηs
jt are the dual variables corresponding to constraints (2), (3), and (4),

respectively; ξs
it are the dual variables corresponding to the LP relaxation of (6); and uit, vit,

and wijt are the dual variables corresponding to the non-anticipativity constraints (13), (14),

and (15), respectively. Consider the following feasible solution to the above dual problem:

λs
it = 0, ξs

it = 0, γs
it = 0, uit = 0, vit = 0, wijt = 0, and ηs

jt = mini∈Ij
{psδs

ijt/µij}. Then, under

Assumptions 4.7 and 4.8, clearly zD
n is Ω(n). Since the problem instances are assumed to be

feasible, we also have that zIP
n is Ω(n). �

5 Capacity Expansion of Chemical Processing Networks

under Uncertainty

In this section, we demonstrate the asymptotic convergence behavior of the proposed heuris-

tic in the context of capacity expansion of chemical processing networks under uncertainty.

Given a potential network consisting of a set of processes interconnected by a set of chemi-

23



cals, the problem consists of (i) selecting processes from among competing technologies, (ii)

timing and sizing process expansions, (iii) determining the optimal production levels for the

installed processes. The objective is to minimize the discounted cost of the entire processing

network over a long-range horizon. A detailed description of the deterministic version of

this problem appears in Sahinidis, Grossmann, Fornari & Chathrathi (1989). Here, we use

(SCAP) to model the stochastic version.

We applied the proposed heuristic on randomly generated problem instances from a set

of four basic process networks. The first of these networks (see Figure 3) is from Ahmed &

Sahinidis (1998) while the next two are from Liu (1995). These networks involve three, four,

and four processes (square nodes in the figures), and four, five, and five chemicals (circular

nodes). The fourth basic network is that of an industrial petrochemical processing chain

with 38 processes and 24 chemicals and is described in Sahinidis et al. (1989). For the first

three networks, we report results with planning horizons ranging from 2 to 10 time periods

in unit increments. For the fourth network, we present results with up to 8 time periods.

Parameters for the problem instances were generated randomly according to the probability

model described in Section 4. The uncertainty was modeled as a binary tree with a total of

2n−1 scenarios for a problem with n time periods. The sizes of the deterministic equivalent

of the instances with n time periods are presented in Table 1. For each network, 5 instances

were randomly generated corresponding to each planning horizon. Thus, the entire problem

set consisted of 170 problem instances.

For all networks, the proposed heuristic was compared against solving the deterministic

equivalent integer program using state-of-the-art integer programming techniques. CPLEX

7.0 (CPLEX 2000) was used with default strategies to solve the linear and integer programs

on an IBM RISC System/6000 Model-43P machine with 128MB of memory. Most of the

generated integer problems are not solvable within reasonable computing times with CPLEX

unless cutting planes and extensive problem preprocessing are used.
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Figure 3 presents the network structure and the per-period heuristic error as a function

of the number of time periods for the first three examples. The asymptotic convergence

of the normalized error as proved in Theorem 4.6 is clearly observed in all cases. This is

more profound in Figure 4 where the percentage relative error of the heuristic solution is

plotted against the problem size. It can be observed that, for large problems in this set, the

heuristic provided solutions which are within an average of 1% of optimality. The largest

problem in this set involved 36, 858 binary variables, 184, 291 continuous variables, and

368, 641 constraints. This problem was solved by the heuristic to within 1% of optimality in

13 CPU minutes. Exact solution of these problems required up to 14 times more than the

time required by the heuristic. The only exception was Network 1 with n = 10 for which

the IP was not solved after 500 CPU minutes and 186,000 branch and bound nodes. On the

other hand, the heuristic took only 3.5 minutes to solve this problem with a gap from the

LP relaxation of only 0.57%.

The per-period error of the heuristic solution for the industrial scale processing Network

4 is presented in Figure 5. The asymptotic convergence of the optimality gap is observed in

this case as well. The largest problem in this set that was solved by the IP solver involved

n = 7 time periods. The problem with n = 8 required 48, 602 binary variables, 217, 431

continuous variables, and 415, 745 constraints. This problem was not solved by the IP solver

even after 12 CPU hours and 64,500 branch and bound nodes. On the other hand, the

problem was solved by the heuristic with a 10.7% gap from the LP relaxation value in less

than 16 CPU minutes – the major portion of which was the time required for solving the

LP relaxation. It should be noted that the gap of 10.7% is with respect to the LP relaxation

value. Our experience from the smaller (n ≤ 7) problem instances suggests that the true

optimality gap is significantly smaller.

Finally, we compare the quality of simple LP rounding solution to that of the heuristic

solutions. Recall that simple rounding up of the values of the binary variables in the corre-
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sponding LP relaxation solution produces an integer feasible solution. Figure 7 presents the

normalized errors for simple LP rounding and that of the proposed heuristic for Network

3. Even though the normalized errors for LP rounding do show a decreasing trend with

the number of time periods, these errors are several orders of magnitude higher than the

errors for the heuristic solutions, and therefore of little practical value. Also, recall that

the example in Section 3.2 demonstrates that the normalized error of LP rounding will not

decrease in general.
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Problem Number of Number of Binary Continuous Constraints
Processes Chemicals Variables Variables

Network 1 3 4 3n2n−1 14n2n−1 10n2n−1 + 14(n2n−1 − 2n + 1)
Network 2 4 5 4n2n−1 18n2n−1 13n2n−1 + 18(n2n−1 − 2n + 1)
Network 3 5 6 5n2n−1 22n2n−1 16n2n−1 + 22(n2n−1 − 2n + 1)
Network 4 38 24 38n2n−1 132n2n−1 104n2n−1 + 132(n2n−1 − 2n + 1)

Table 1: Dimensions of the problem instances
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Figure 1: Scenario tree used to model uncertainty
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Figure 2: The heuristic strategy
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Figure 3: Results for Networks 1, 2, and 3
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Figure 4: Relative errors for Networks 1, 2, and 3
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Figure 5: Heuristic error bounds for Network 4
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Figure 6: Solution times for Network 4
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Figure 7: Rounding vs. Heuristic Errors for Network 3
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