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Abstract

This paper addresses a general class of two-stage stochastic programs
with integer recourse and discrete distributions. We exploit the structure
of the value function of the second-stage integer problem to develop a
novel global optimization algorithm. The proposed scheme departs from
those in the current literature in that it avoids explicit enumeration of
the search space while guaranteeing finite termination. Computational
experiments on standard test problems indicate superior performance of
the proposed algorithm in comparison to those in the existing literature.

Keywords: stochastic integer programming, branch-and-bound, finite al-
gorithms.

1 Introduction

Under the two-stage stochastic programming paradigm, the decision variables
of an optimization problem under uncertainty are partitioned into two sets.
The first-stage variables are those that have to be decided before the actual
realization of the uncertain parameters. Subsequently, once the random events
have presented themselves, further design or operational policy improvements
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can be made by selecting, at a certain cost, the values of the second-stage or
recourse variables. The goal is to determine first-stage decisions such that the
sum of first-stage cost and the expected recourse cost is minimized. A standard
formulation of the two-stage stochastic program is as follows (cf., [2]):

(2SSP) : z = min cT x + Eω∈Ω[Q(x, ω)] (1)
s.t. x ∈ X,

with

Q(x, ω) = min f(ω)T y (2)
s.t. D(ω)y ≥ h(ω) + T (ω)x

y ∈ Y,

where X ⊆ R
n1 , c ∈ R

n1 , and Y ⊆ R
n2 . Here, ω is a random variable from

a probability space (Ω,F ,P) with Ω ⊆ R
k, f : Ω → R

n2 , h : Ω → R
m2 ,

D : Ω → R
m2×n2 , T : Ω → R

m2×n1 . Problem (1) with variables x constitute
the first-stage which needs to be decided prior to the realization of the uncertain
parameters ω; and (2) with variables y constitute the second stage.

In case of linear constraints and variables, (2SSP) is referred to as a two-
stage stochastic linear program. For a given value of the first-stage variables x,
the second-stage problem decomposes into independent linear subproblems, one
for each realization of the uncertain parameters. This decomposability property,
along with the convexity of the second-stage linear programming value function
Q(·, ω) [24], has been exploited to develop a number of decomposition-based
and gradient-based algorithms. For an extensive discussion of stochastic linear
programming, the reader is referred to standard text books [2, 10].

In contrast to stochastic linear programming, the study of stochastic inte-
ger programs, those that have integrality requirements in the second stage, is
very much in its infancy. As reviewed recently in [1], these problems arise in
many contexts, including the modeling of risk objectives in stochastic linear
programming, as well as when the second stage involves scheduling decisions,
routing decisions, resource acquisition decisions, fixed-charge costs, and change-
over costs. The main difficulty in solving stochastic integer programs is that the
value function Q(·, ω) is not necessarily convex but only lower semicontinuous
(l.s.c.) [3]. Thus, standard convex programming based approaches that work
nicely for stochastic linear programs, break down when second-stage integer
variables are present. As an illustration of the non-convex nature of stochastic
integer programs, consider the following example from [21]:

(EX) : min −1.5x1 − 4x2 + E[Q(x1, x2, ω1, ω2)]
s.t. 0 ≤ x1, x2 ≤ 5,

where

Q(x1, x2, ω1, ω2) = min −16y1 − 19y2 − 23y3 − 28y4
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Figure 1: Objective function of (EX)

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ω1 − 1
3
x1 − 2

3
x2

6y1 + y2 + 3y3 + 2y4 ≤ ω2 − 2
3
x1 − 1

3
x2

y1, y2, y3, y4 ∈ {0, 1},
and (ω1, ω2) ∈ {5, 15}×{5, 15} with a uniform probability distribution. Figure 1
shows the objective function of (EX) in the space of the first-stage variables. The
highly discontinuous (lower semicontinuous) and multi-extremal nature of the
function is clearly observed. Thus, in general, stochastic integer programming
constitutes globally minimizing a highly non-convex function.

For problems where the second-stage recourse matrix D possesses a special
structure known as simple recourse, Klein Haneveld et al. [11, 12] proposed so-
lution schemes based upon constructing the convex envelope of the second-stage
value function. For more general recourse structure, Laporte and Louveaux [14]
proposed a decomposition-based approach for the case when first-stage variables
are pure binary. This restriction allows for the construction of optimality cuts
that approximate the non-convex second-stage value function at the binary first-
stage solutions. The authors proposed a branch-and-bound algorithm to search
the space of the first-stage variables for a globally optimal solution, while using
optimality cuts to approximate the second-stage value function. Finite termina-
tion of the algorithm is obvious since the number of first-stage solutions is finite.
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Unfortunately, the algorithm is not applicable if any of the first-stage variables
is continuous. Carøe and Tind [7] generalized this algorithm for mixed-integer
first- and second-stage variables. Their method uses non-linear integer program-
ming dual functions to approximate the second-stage value function in the space
of the first-stage variables. The resulting master problem then consists of non-
linear (possibly discontinuous) cuts, and no practical method for its solution is
currently known.

Carøe [5, 6] used the scenario decomposition approach of Rockafellar and
Wets [17] to develop a branch-and-bound algorithm for stochastic integer pro-
grams. Lower bounds were obtained from the Lagrangian dual derived by du-
alizing the non-anticipativity constraints. The subproblems of the Lagrangian
dual correspond to the scenarios and include variables and constraints from both
the first and second stage. These subproblems are more difficult to solve than
in Benders-based methods, where a subproblem corresponds to only the second-
stage problem for a particular scenario. Furthermore, although the Lagrangian
dual provides very tight bounds, its solution requires the use of subgradient
methods and is computationally expensive. A major limitation of this approach
is that finite termination is guaranteed only if the first-stage variables are purely
discrete, or if an ε−optimal termination criterion with ε > 0 is used [5, 6].

Norkin et al. [15] proposed a stochastic branch-and-bound algorithm for min-
imizing the expected value of an arbitrary function over a finite set. To avoid
explicit computation of the value function, the authors use Monte Carlo sam-
pling based upper and lower bounds, statistical fathoming rules, and standard
branching techniques. Almost sure convergence of the method was established.
The authors used this method to solve a class of two-stage stochastic integer
programs with pure integer first- and second-stage variables.

Schultz et al. [21] proposed a finite scheme for two-stage stochastic programs
with discrete distributions and pure-integer second-stage variables. For this
problem, the authors of [21] observe that only integer values of the right-hand-
side parameters of the second-stage problem are relevant. This fact is used to
identify a countable set, called the candidate set, in the space of the first-stage
variables containing the optimal solution. In its basic form, the scheme outlined
in [21] corresponds to complete enumeration of the candidate set to search for
the optimal solution. Evaluation of an element of the set requires the solution
of second-stage integer subproblems corresponding to all possible realizations
of the uncertain parameters. Thus, explicit enumeration of all elements is, in
general, computationally prohibitive. In [21], various ideas are implemented to
reduce the number of candidate solutions to be evaluated. Moreover, instead
of solving the scenario integer programs individually, the authors exploited the
common structure of these problems by using a Gröbner basis strategy.

A detailed discussion on various algorithms for stochastic integer program-
ming can be found in the survey of Klein Haneveld and van der Vlerk [13].

In this paper, we develop a branch-and-bound algorithm for the global op-
timization of two-stage stochastic integer programs with discrete distributions,
mixed-integer first-stage variables, and pure-integer second-stage variables. The
main difficulty with applying branch-and-bound to a (semi-)continuous domain

4



is that the resulting approach may not be finite, i.e., infinitely many subdivi-
sions may be required for the lower and upper bounds to become exactly equal.
With the exception of [21], all existing practical algorithms for general stochastic
integer programming also rely on applying branch-and-bound to the first-stage
variables to deal with the non-convexities of the value function. Consequently,
finite termination of these algorithms is not guaranteed unless the first-stage
variables, i.e., the search space, is purely discrete. For the algorithm proposed
in this paper, we prove finite termination. The method differs from the finite
algorithm of [21], in that it avoids explicit enumeration of all discontinuous
pieces of the value function. Furthermore, the proposed method allows for un-
certainties in the cost parameters and the constraint matrix in addition to the
right-hand-sides of the recourse problem.

The key concept behind our development is to reformulate the problem via
a variable transformation that induces special structure to the discontinuities of
the value function. This structure is exploited through: (a) a branching strategy
that isolates the discontinuous pieces and eliminates discontinuities, and (b) a
bounding strategy that provides an exact representation of the value function
of the second-stage integer program in the absence of discontinuities. Finiteness
of the method is a consequence of the fact that, within a bounded domain,
there is only a finite number of such discontinuous pieces of the value function.
The issue of finiteness is not only of theoretical significance—our computational
experiments using standard test problems indicate faster convergence of the
proposed algorithm in comparison to existing strategies in the literature.

The remainder of the paper is organized as follows. Section 2 specifies the
assumptions required for the proposed algorithm. In Section 3, we present the
transformed problem and discuss its relation to the original problem. Some
structural results on the transformed problem are presented in Section 4. These
results are used to develop a branch-and-bound algorithm in Section 5. Section 6
provides the proof of finiteness of the proposed algorithm. Some enhancements
and extensions of the algorithm are suggested in Section 7. Finally, computa-
tional results are presented in Section 8.

2 Assumptions

In this paper, we address instances of (2SSP) under the following assumptions:

(A1) The uncertain parameter ω follows a discrete distribution with finite sup-
port Ω = {ω1, . . . , ωS} with Pr(ω = ωs) = ps.

(A2) The second-stage variables y are purely integer, i.e., y ∈ Z
n2 .

(A3) The technology matrix T linking the first- and second-stage problems is
deterministic, i.e., T (ω) = T .

Assumption (A1) is justified by the results of Schultz [20] who showed that,
if ω has a continuous distribution, the optimal solution to the problem can be
approximated within any given accuracy by the use of discrete distributions.

5



Extensions of the proposed algorithm when assumptions (A2) and (A3) are not
satisfied are briefly discussed in Section 7.

The uncertain problem parameters (f(ω),D(ω), h(ω)) associated with a par-
ticular realization ωs (a scenario), will be succinctly denoted by (fs,Ds, hs) with
associated probability ps. Without any loss of generality, we assume the first-
stage variables to be purely continuous. Mixed-integer first-stage variables can
be handled in the framework to follow without any added conceptual difficulty.
We can then state the problem as follows:

(2SSIP) : z = min cx +
S∑

s=1

psQs(x)

s.t. x ∈ X,

with

Qs(x) = min fsy

s.t. Dsy ≥ hs + Tx

y ∈ Y ∩ Z
n2 ,

where X ⊆ R
n1 , c ∈ R

n1 , T ∈ R
m2×n1 , and Y ⊆ R

n2 . For each s = 1, . . . , S,
fs ∈ R

n2 , hs ∈ R
m2 , and Ds ∈ R

m2×n2 . Note that the expectation operator
has been replaced by a probability-weighted finite sum, and the transposes have
been eliminated for simplicity.

We make the following additional assumptions for (2SSIP):

(A4) The first-stage constraint set X is non-empty and compact.

(A5) Qs(x) < ∞ for all x ∈ R
n1 and all s.

(A6) For each s, there exists us ∈ R
m2
+ such that usDs ≤ fs.

(A7) For each s, the second-stage constraint matrix is integral, i.e., Ds ∈
Z

m2×n2 .

As detailed in Section 3, to guarantee the existence of an optimal solution
and the convergence of branch-and-bound search, we require assumption (A4).
Assumption (A5) is known as the complete recourse property [24]. In fact, we
only need relatively complete recourse, i.e., Qs(x) < ∞ for all x ∈ X and all s.
Since X is compact, relatively complete recourse can always be accomplished by
adding penalty-inducing artificial variables to the second-stage problem. How-
ever, we shall assume complete recourse for simplicity of exposition. Assumption
(A6) guarantees Qs(x) > −∞ [20]. Together, (A5) and (A6) imply that Qs(x)
is finite-valued and (2SSIP) is well-defined. Assumption (A7) can be satisfied
by appropriate scaling whenever the matrix elements are rational.

For a given value of the first-stage variables x, the problem decomposes into
S integer programs with value functions Qs(x). It is implicitly assumed that
these “small” integer subproblems are easier to solve than the deterministic
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equivalent. Our methodology is independent of the oracle required to solve the
integer subproblems. For example, when the second-stage objective function
and constraint matrix are deterministic, the Gröbner basis framework described
in [21] to solve many similar integer programs, can be used in this context.

Note that, for each s, Qs(x) is the value function of an integer program, and
is well-known to be l.s.c. with respect to x. Blair and Jeroslow [3, 4] showed
that such value functions are, in general, continuous only over set-theoretic
differences of certain cones in the space of x and the discontinuities lie along
the boundaries of these cones. Existing branch-and-bound methods [14, 5, 6] for
stochastic integer programs attempt to partition the space of first-stage variables
by branching on one variable at a time. In this way, the first-stage variable
space is partitioned into (hyper)rectangular cells. Since the discontinuities are,
in general, not orthogonal to the variable axes, there would always be some
rectangular cell that contains a discontinuity in the interior. Thus, in the case
of continuous first-stage variables, it might not be possible for the lower and
upper bounds to converge for such a cell, unless the cell is arbitrarily small. This
would require considerable partitioning of the first-stage variables and result in
a convergent only scheme, i.e., possibly infinite. In general, it is not obvious
how one can partition the search space by subdividing along the discontinuities
within a branch-and-bound framework.

Next, we propose a transformation of the problem that causes the disconti-
nuities to be orthogonal to the variable axes. Thus, a rectangular partitioning
strategy can potentially isolate the discontinuous pieces of the value function,
thereby allowing upper and lower bounds to collapse finitely. This is the key to
the subsequent development of a finite branch-and-bound algorithm.

3 Problem Transformation

Instead of (2SSIP), we propose to solve the following problem:

(TP) : min f(χ)
s.t. χ ∈ X

where

f(χ) = Φ(χ) + Ψ(χ),

Ψ(χ) =
S∑

s=1

psΨs(χ),

Φ(χ) = min{cx | Tx = χ, x ∈ X},
Ψs(χ) = min{fsy | Dsy ≥ hs + χ, y ∈ Y ∩ Z

n2}, and
X = {χ ∈ R

m2 | χ = Tx, x ∈ X}.

Variables χ are known as the “tender variables” in the stochastic program-
ming literature. These are the variables that link the first- and second-stage
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problems. Instead of the first-stage variables, we propose to search the space
of the tender variable for global optima. The following results establish the
existence of a solution of (TP), and its relation to the original problem (2SSIP).

Theorem 3.1. There exists an optimal solution to problem (TP).

Proof: It follows from Assumption (A5), and the results in [3, 4, 20] that Ψs(·)
is finite-valued and l.s.c. Φ(·) is the value function of a linear program and,
hence, piece-wise linear and convex. Thus, f(·) is a positive linear combination
of real valued l.s.c functions and, therefore, l.s.c by Fatou’s Lemma (cf. [18]).
Since X is non-empty compact and T is a linear transformation, X is nonempty
and compact. The claim then follows from Weierstrass’ theorem.

Theorem 3.2. Let χ∗ be an optimal solution of (TP). Then x∗ ∈ argmin{cx
| x ∈ X,Tx = χ∗} is an optimal solution of (2SSIP). Furthermore, the optimal
objective function values of the two problems are equal.

Proof: First, note that, for any χ and x such that Tx = χ, we have Ψs(χ) =
Qs(x) for all s. Then, from the definition of x∗ and Ψ(·), we have

Φ(χ∗) + Ψ(χ∗) = cx∗ +
S∑

s=1

psQs(x∗). (3)

We shall now prove the claim by contradiction. Suppose that x∗ is not an
optimal solution to (2SSIP). Then, there exists x′ ∈ X such that

cx′ +
S∑

s=1

psQs(x′) < cx∗ +
S∑

s=1

psQ(x∗). (4)

Now, construct χ′ = Tx′ and note that χ′ ∈ X . Since x′ ∈ {x | x ∈ X,Tx = χ′},
we have f(χ′) ≤ cx′. Also, Ψs(χ′) = Qs(x′) for all s. Equations (3) and (4),
then, imply that

Φ(χ′) + Ψ(χ′) < Φ(χ∗) + Ψ(χ∗).

Thus, we have a contradiction. Equation (3) also establishes that the objective
values of the two problems are equal.

Theorem 3.2 implies that we can solve (2SSIP) by solving (TP). Structural
properties of the latter problem are discussed next.

4 Structural Properties

Let Ψs
j(χj) denote Ψs(χ) as a function of the jth component (j = 1, . . . , m2)

of χ. We use cl(X), ∂(X), and dim(X) to denote the closure, the relative
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boundary, and the dimension of a set X, respectively. The following result is
well-known.

Lemma 4.1. For any s = 1, . . . , S, and j = 1, . . . , m2, Ψs
j(χj) is l.s.c and

non-decreasing in χj.
Schultz et al. [21] proved that the second-stage value function is constant

over certain subsets of the x-space. Next, we prove a similar result in the space
of the tender variables.

Lemma 4.2. For any k ∈ Z, Ψs
j(χj) is constant over the interval χj ∈(

k − hs
j − 1, k − hs

j

]
for all s = 1, . . . , S and j = 1, . . . , m2.

Proof: Since by (A7), Ds is integral, the jth constraint (Dsy)j ≥ hs
j + χj

implies (Dsy)j ≥ 	hs
j + χj
. Thus, for any k ∈ Z, Ψs

j(χj) is constant over the
subset {(hs

j + χj) | 	hs
j + χj
 = ks

j} = {(hs
j + χj) | k − 1 < hs

j + χj ≤ k}.
Equivalently, Ψs

j(k) is constant over intervals χj ∈ (k − hs
j − 1, k − hs

j ], k ∈ Z.

Let B be a subset of R
n and I be a set of indices. The collection of sets M :=

{Mi | i ∈ I}, where Mi ⊆ B, is called a partition of B if B = ∪i∈IMi and Mi ∩
Mj = ∂(Mi) ∩ ∂(Mj) for all i, j ∈ I, i �= j.

Theorem 4.3. Let k = (k1
1, . . . , k

s
j , . . . , kS

m2
)T ∈ Z

Sm2 be a vector of integers.
For a given k, let

C(k) := {χ ∈ R
m2 | χ ∈ ∩S

s=1Π
m2
j=1(k

s
j − hs

j − 1, ks
j − hs

j ]}.

The following assertions hold:

(i) if C(k) �= ∅, then cl(C(k)) is a full-dimensional hyper-rectangle, i.e., dim(C(k)) =
m2,

(ii) the collection {C(k) | k ∈ Z
Sm2} forms a partition of R

m2 ,

(iii) if C(k) �= ∅, then Ψ(χ) is constant over C(k).

Proof: Part (i): Note that Πm2
j=1[k

s
j − hs

j − 1, ks
j − hs

j ] is the Cartesian prod-
uct of intervals, and hence is a hyper-rectangle. The orthogonal intersection
of all such hyper-rectangles is also a hyper-rectangle. The first part of the
claim then follows from the well-known facts that for convex sets Ci with
i ∈ I, cl(Πi∈ICi) = Πi∈Icl(Ci), and cl(∩i∈ICi) = ∩i∈Icl(Ci) (cf. [16]). To
see that such a hyper-rectangle is full-dimensional, the reader can verify that
any C(k) �= ∅ can be written as C(k) = Πm2

j=1 ∩S
s=1 (ks

j − hs
j − 1, ks

j − hs
j ]. For

each j, ∩S
s=1(k

s
j −hs

j −1, ks
j −hs

j ] is the finite intersection of unit-length intervals
which are left-open and right-closed. Thus, this intersection is itself a positive
length interval. C(k) is then the Cartesian product of such positive length in-
tervals and is hence full-dimensional.
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Part (ii): It can be easily verified that for any χ ∈ R
m2 , there exists k ∈ Z

Sm2

such that χ ∈ C(k). Furthermore, for k �= k′, C(k) and C(k′) are disjoint. Thus,
{C(k) | k ∈ Z

Sm2} forms a partition of R
m2 .

Part (iii): For a given k, it follows from Lemma 4.2, that for any s, Ψs(χ) is
constant over the hyper-rectangle Πm2

j=1(k
s
j − hs

j − 1, ks
j − hs

j ]. Since C(k) is a
non-empty subset of all such hyper-rectangles (for all s), each Ψs(χ) is constant
over C(k), and so is Ψ(χ).

Theorem 4.3 establishes that the second-stage value function is piece-wise
constant over (neither open nor closed) rectangular subsets in the space of the
tender variables χ. Thus, the discontinuities can only lie at the boundaries
of these subsets and, therefore, are all orthogonal to the variable axes. This
is not the case, in general, for the value function in the space of the original
first-stage variables. To illustrate this, we plot the second-stage value function
for example problem (EX) of Section 1, in the space of the original first-stage
variables (Figure 2) and in the space of the tender variables (Figure 3). The
change in the orientation of the discontinuities is clear. Notice that the feasible
region X is a linear transformation of X.
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Figure 2: The second-stage Value Function of (EX) over X

Next, we establish the finiteness of the partitioning when the underlying set
is compact.

Theorem 4.4. Let X ∈ R
m2 and K := {k ∈ ZSm2 |C(k) ∩ X �= ∅}. Then, if X

is compact, |K| < ∞.
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Proof: Since X is compact, we can obtain finite bounds lj and uj such that
lj ≤ χj ≤ uj for all χ ∈ X . Now, suppose for some k = (k1

1, . . . , k
s
j , . . . , k

S
m2

)T ,
there exists χ ∈ C(k) ∩ X . Then, from the definition of C(k) and the fact that
X is compact, we must have for each j: lj ≤ ks

j − hs
j for all s, which implies

ks
j ≥ 	lj + hs

j
. Similarly, we also have ks
j − hs

j − 1 ≤ uj , which then implies
ks

j ≤ �uj + hs
j + 1�. Thus

	lj + hs
j
 ≤ ks

j ≤ �uj + hs
j + 1�.

We have bounded each component of the vector k for which C(k)∩X �= ∅. Since
k is an integer vector, there can only be a finite number of these that satisfy
the above bounds. Thus, the claim follows.

The above result along with Theorem 4.3 implies that the compact set X is
completely covered by a finite number of rectangular cells, over each of which the
second-stage value function is constant. In Section 5, we exploit this property
to develop a finite branch-and-bound algorithm for (TP).

5 A Branch-and-Bound Algorithm

A major issue in applying branch-and-bound over continuous domains is that
the resulting approach may not be finite but merely convergent, i.e., infinitely
many subdivisions may be required to make the lower bound exactly equal to
the upper bound. In addition, for our problem (TP), we need to be able to
deal with a discontinuous objective function. The challenge here is to identify
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Figure 3: The second-stage Value Function of (EX) over X
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combinations of lower-bounding and branching techniques that can handle the
discontinuous objective function and yield a finite algorithm. Towards this end,
we exploit the structural results of Section 4 by partitioning the search space
into subsets of the form Πm2

j=1(lj , uj ], where lj is a point at which the second-
stage value function Ψj(χj) may be discontinuous. Lemma 4.2 implies that
Ψj(χj) can only be discontinuous at points χj where (hs

j + χj) is integral for
some s. Thus, we partition the search space along such values of χ. Branching in
this manner, we can isolate subsets over which the second-stage value function
is constant, and hence solve the problem exactly.

We shall now present a formal statement of a prototype branch-and-bound
algorithm for problem (TP). The words in italic letters constitute the critical
operations of the algorithm and will be discussed in subsequent subsections.
The following notation is used in the description.

Notation:

L List of open subproblems
k Iteration number; also used to indicate the subproblem selected
Pk Subset corresponding to iteration k
αk Upper bound obtained at iteration k
βk Lower bound on subproblem k
χk A feasible solution to subproblem k
U Upper bound on the global optimum
L Lower bound on the global optimum
χ∗ Candidate globally optimal solution

The Algorithm

Initialization:

Preprocess the problem by constructing the hyper-rectangle P0 := Πm1
j=1(l

0
j ,

u0
j ] ⊇ X . Add the problem min{f(χ) | χ ∈ X ∩ P0} to the list L of open

subproblems.

Set U ← +∞ and k ← 0.

Iteration k:

Step k.1: If L = ∅, terminate with solution χ∗; otherwise, select a sub-
problem k, defined as inf{f(χ) | χ ∈ X ∩Pk}, from the list L of currently
open subproblems and set L ← L \ {k}. Note, that the min has been
replaced by inf since the feasible region of the problem is not necessarily
closed.

Step k.2: Bound the infimum of subproblem k from below, i.e., find βk

satisfying βk ≤ inf{f(χ) | χ ∈ X ∩ Pk}. If X ∩ Pk = ∅, βk = +∞ by
convention. Determine a feasible solution χk ∈ X and compute an upper
bound αk ≥ min{f(χ) | χ ∈ X} by setting αk = f(χk).

12



Step k.2.a: Set L ← mini∈L∪{k} βi.

Step k.2.b: If αk < U , then χ∗ ← χk and U ← αk.

Step k.2.c: Fathom the subproblem list, i.e., L ← L \ {i | βi ≥ U}.
If βk ≥ U , then goto Step k.1 and select another subproblem.

Step k.3: Branch, by partitioning Pk into Pk1 and Pk2 . Set L ← L ∪
{k1, k2}, i.e., append the two subproblems inf{f(χ) | χ ∈ X ∩ Pk1} and
inf{f(χ) | χ ∈ X ∩ Pk2} to the list of open subproblems. For selection
purposes, set βk1 , βk2 ← βk. Set k ← k + 1 and goto Step k.1.

5.1 Preprocessing

As mentioned earlier, we shall only consider subsets of the form Πm2
j=1(lj , uj ],

where lj is such that lj + hs
j is integral for some s. We can then construct a

subset P0 := Πm1
j=1(l

0
j , u

0
j ] ⊃ X in the following manner:

- Construct a closed subset Πm2
j=1[lj , uj ] ⊇ X as follows: for each component

j of χ, set lj = min{χj | χ ∈ X} and uj = max{χj | χ ∈ X}. Typically,
X is polyhedral and so the above problems are linear programs.

- For each s and j, find ks
j ∈ Z such that ks

j − hs
j − 1 < lj ≤ ks

j − hs
j . If

lj + hs
j is integral, set ks

j = lj + hs
j ; otherwise, set ks

j = �lj + hs
j + 1�. Let

l0j = maxs=1,...,S{ks
j − hs

j − 1}.
- Set u0

j = uj .

Above, we have relaxed lj to l0j such that l0j is the closest point to lj where
l0j + hs

j is integral for some s. From now on, whenever convenient, we shall
denote subsets of the form Πm1

j=1(lj , uj ] by (l, u] with l = (l1, . . . , lm2)
T , and

u = (u1, . . . , um2)
T .

5.2 Selection

In Step k.1, we need to select a subproblem, from the list of open subproblems
L, to be considered for bounding and further partitioning. A critical condition
for convergence of a branch-and-bound algorithm is that this selection operation
be bound improving [8]. This is accomplished by choosing the subproblem that
attains the least lower bound, i.e., by selecting k ∈ L such that βk = L.

5.3 Lower Bounding

For a given subset Pk := Πm2
j=1(l

k
j , uk

j ] where each lkj is such that (hs
j + lkj ) is inte-

gral for some s, we can obtain a lower bound on the corresponding subproblem
by solving:

(LB) : fL(Pk) = min cx + θ (5)
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s.t. x ∈ X,Tx = χ

lk ≤ χ ≤ uk

θ ≥
S∑

s=1

psΨs(lk + ε), (6)

where

Ψs(χ) = min fsy (7)
s.t. Dsy ≥ hs + χ

y ∈ Y ∩ Z
n2 .

In problem (LB), ε is sufficiently small such that Ψs(·) is constant over (lk, lk+ε]
for all s. Since we have exactly characterized the subsets over which the Ψs(·)
is constant, we can calculate this ε a priori as follows.

Calculation of ε:

• Do for j = 1, . . . , m2:

- Set s = 1, Ξ = ∅. Choose k1
j ∈ Z.

- Let χ0
j = k1

j − h1
j − 1 and χ1

j = χ0
j + 1.

- Set Ξ ← Ξ ∪ {χ0
j , χ

1
j}.

- Do for s = 2, . . . , S:

- Choose ks
j ∈ Z such that χ0

j < ks
j − hs

j ≤ χ1
j , i.e., set ks

j =
�χ1

j + hs
j�.

- Let χs
j = ks

j − hs
j .

- If Ξ ∩ {χs
j} = ∅, then set Ξ ← Ξ ∪ {χs

j}.
End Do.

- Order the elements of Ξ such that χ0
j = ξ0

j < ξ1
j < . . . < ξn

j = χ1
j ,

with n ≤ S.

- Let εj = mini=1,...,n{ξi
j − ξi−1

j }.
End Do.

• Set ε = 0.5 × minj=1,...,m2{εj}.

In the above procedure, we first determine an interval (χ0
j , χ

1
j ] such that

	h1
j + χj
, and hence Ψ1

j (χj), is constant for all χj ∈ (χ0
j , χ

1
j ]. Then, for each

s = 2, . . . , S, we find χs
j such that 	hs

j + χj
, and hence Ψ1
j (χj), is constant for

all χj ∈ (χ0
j , χ

s
j ]. In this way, all candidate points of discontinuity in (χ0

j , χ
1
j ]

are identified and collected in set Ξ. The points of discontinuity that appear in
(χ0

j , χ
1
j ] also repeat to the right of χ1

j with a unit period. It then suffices to sort
the potential points of discontinuity identified over (χ0

j , χ
1
j ] to obtain the length
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εj of the smallest interval along each axis j over which Ψs
j(χj) is guaranteed to

be constant for all s. We finally choose ε to be strictly smaller than each εj .
We next show that (LB) is a valid lower bounding problem. Note that the

feasible region of (LB) is closed, so that a minimizer exists.

Proposition 5.1. For any subset Pk = (lk, uk],

βk := fL(Pk) ≤ inf{f(χ) | χ ∈ Pk ∩ X}.

Proof: The claim obviously holds if Pk∩X = ∅. Now consider some χ ∈ Pk∩X .
Let x ∈ argmin{cx | Tx = χ, x ∈ X} and θ =

∑S
s=1 psΨs(χ). Thus, f(χ) =

Φ(χ) +
∑S

s=1 psΨs(χ) = cx + θ. We shall now show that (x, χ, θ) is feasible to
(LB). x and χ are obviously feasible. From the construction of ε and definition
of lk, we know that for each s, Ψs(χ) is constant over (lk, lk +ε]. Then, owing to
the monotonicity property of Ψs (Lemma 4.1), Ψs(χ) ≥ Ψs(lk + ε) since χ > lk.
Thus, θ =

∑S
s=1 psΨs(χ) ≥ ∑S

s=1 psΨs(lk + ε) and the constraint (6) in (LB)
is satisfied. Since the solution is feasible, fL(Pk) ≤ cx + θ = f(χ). The claim
follows from the fact that the above holds for any χ ∈ Pk ∩ X .

To solve (LB), we first need to solve S second-stage subproblems (7) to con-
struct the cut (6). The master problem (5) can then be solved with respect to
the variables (x, χ, θ). Note that X is typically polyhedral so that (5) is a lin-
ear program. If the first-stage variables have integrality requirements, then (5)
is a mixed-integer linear program. Each scenario subproblem and the master
problem can be solved completely independently, so complete stage and sce-
nario decomposition is achieved. The variable θ approximates the second-stage
value function in the first-stage variable space through constraint (6). In Sec-
tion 7, we shall discuss how tighter approximations to the value function may
be accommodated along with the “lower corner cut”(6).

Proposition 5.2. Let Pk be a subset over which the second-stage value func-
tion Ψ(·) is constant and there exists χ∗ ∈ argmin{f(χ) | χ ∈ X ∩ Pk}, i.e.,
the infimum is achieved. Let χk be an optimal solution to the lower bounding
problem (LB) over this subset. Then,

f(χk) ≤ f(χ∗).

Proof: Let (xk, χk, θk) be an optimal solution of the lower bounding prob-
lem (LB) for the subset Pk = (lk, uk]. Note that χk ∈ X ∩ cl(Pk). Then,
fL(Pk) = cxk + Ψ(lk + ε) and f(χk) = cxk + Ψ(χk). If χk > lk, then
Ψ(χk) = Ψ(lk + ε) since Ψ(·) is constant over Pk. Thus, f(χk) = fL(Pk). On
the other hand, if χk

j = lkj for some j = 1, . . . , m2, then Ψ(χk) ≤ Ψ(lk+ε), owing
to the monotonicity property. Thus f(χk) ≤ fL(Pk). Since fL(Pk) ≤ f(χ∗) by
Proposition 5.1, the claim follows.

15



5.4 Upper Bounding

For a given subset Pk such that Pk ∩ X �= ∅, let χk be an optimal solution of
problem (LB). Note that χk ∈ X is a feasible solution. We can then compute
an upper bound

αk := f(χk) ≥ min{f(χ)|χ ∈ X}.

Proposition 5.3. If, for a subset Pk, the second-stage value function Ψ(·) is
constant, then the subset Pk will be fathomed in the course of the algorithm.

Proof: From the proof of Proposition 5.2, αk = f(χk) ≤ fL(Pk) = βk. In the
bounding Step k.2.a of the algorithm, we set U = min{U,αk}. Thus, in Step
k.2.c, the current subset Pk satisfies βk ≥ U and will be fathomed.

5.5 Branching

A typical scheme for partitioning Pk would consist of selecting and bisecting
the variable j′ corresponding to the longest edge of the hyper-rectangle Pk.
Although such a scheme is exhaustive [8], it might not be possible to isolate
subsets without discontinuities, and take advantage of Proposition 5.3.

To isolate the discontinuous pieces of the second-stage value function, we
are required to partition an axis j′ at a point χj′ such that Ψs(·) is possibly
discontinuous at χj′ for some s. While we can do this by selecting χj′ such that
hs

j′ + χj′ is integral for some s, we can do better by determining the value of
χj′ where the current second-stage solution becomes infeasible. Such a point is
more likely to be one at which Ψs(·) is discontinuous. This scheme is formally
stated next. For each s, ys is the solution of the second-stage IP subproblem in
the solution of the lower bounding problem (LB).

The branching scheme

- For each j = 1, . . . , m2, compute pj := mins=1,...,S{(Dsys)j − hs
j}.

- Let j′ ∈ argmaxj{min{pj − lkj , uk
j − pj}}.

- Split Pk = Πm2
j=1(l

k
j , uk

j ] into two subsets Pk1 = (lkj′ , pj′ ]Πj �=j′(lkj , uk
j ], and

Pk2 = (pj′ , uk
j′ ]Πj �=j′(lkj , uk

j ].

6 Proof of Finiteness

Consider a nested sequence of successively refined subsets {Pkq} such that
Pkq+1 ⊂ Pkq .

Definition 6.1.[8] A bounding operation is called finitely consistent if, at every
step any unfathomed subset can be further refined, and if any nested sequence
of {Pkq} of successively refined subsets is finite.
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Lemma 6.2. In a branch-and-bound procedure, suppose that the bounding op-
eration is finitely consistent. Then, the procedure terminates after finitely many
steps.
Proof: See Theorem IV.1. in [8].

Lemma 6.3. The bounding operation of the proposed branch-and-bound algo-
rithm is finitely consistent.

Proof: Consider a subset Pk that is unfathomed. By Proposition 5.3, the
second-stage value function is discontinuous over this subset. Thus, the branch-
ing step can further refine it, thereby satisfying the first condition for finite
consistency. Branching along the discontinuity on this subset will result in two
strictly smaller subsets. By Theorem 4.4, the number of discontinuities in Pk is
finite. Therefore, any nested sequence {Pkq} generated by branching along the
discontinuities of Pk will be finite.

Theorem 6.4. The proposed algorithm terminates with a global minimum after
finitely many steps.

Proof: As a consequence of Lemmas 6.2 and 6.3, it follows that the algorithm
terminates after finitely many steps. The globality of the solution follows from
the validity of the lower and upper bounding procedures used. In particular,
let χ∗ ∈ P0 be a global minimizer. Then, there exists a finite nested sequence
{Pkq}Q

q=1 of length Q such that χ∗ ∈ Pkq for all q = 1, 2, . . . , Q. Clearly, PkQ

does not contain a discontinuity, otherwise it would be further refined. Further-
more, χ∗ ∈ argmin{f(χ) | χ ∈ X ∩ PkQ}. Let χk be the solution to the lower
bounding problem over PkQ . Then, by Proposition 5.2, f(χk) ≤ f(χ∗). Since
χk ∈ X , χk must also be a global minimizer.

7 Enhancements and Extensions

The proposed algorithm is valid for any lower bounding scheme that dominates
the lower bound obtained by solving problem (LB). In this section, we suggest
how such tighter bounds may be obtained. We also discuss the applicability of
the proposed algorithm in case of mixed-integer second-stage variables.

Benders cuts

Consider the LP relaxation of the second-stage problem for a given scenario s
and a value of the tender variable χ:

Ψs
LP (χ) = min fsy

s.t. Dsy ≥ hs + χ (us)
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y ≥ 0

where the us are the optimal dual solutions. We assume that y ∈ Y is included
in the constraint set Dsy ≥ hs + χ. The classical Benders or L-shaped [23]
optimality cut for the lower bounding problem (LB) is then given by

θ ≥
S∑

s=1

ps[(hs + χ)us].

These, along with the “lower corner cuts” (6), may provide a better approxima-
tion to the second-stage value function. To illustrate this, consider the example
problem (EX) described in Section 1. For the initial subset P0 = [(0, 0), (5, 5)],
the lower bound given by problem (LB) is −72.25. If we add a single Benders
cut to (LB), the lower bound improves to −60.9.

Bounds from the Lagrangian Dual

Carøe [5, 6] used a scenario decomposition approach to obtain lower bounds
for (2SSIP). The idea here is introduce copies x1, . . . , xS and y1, . . . , yS of the
first-stage and second-stage variables, corresponding to each scenario, and then
rewrite (2SSIP) in the form

min
∑S

s=1 pscxs + psfsys

s.t. xs ∈ X s = 1, . . . , S

Dsys ≥ hs + Txs s = 1, . . . , S

ys ∈ Y ∩ Z
n2 s = 1, . . . , S

x1 = . . . = xS (8)

Above, the non-anticipativity constraint (8) states that the first-stage decision
should not depend on the scenario which will prevail in the second stage. This
constraint can also be represented as

∑S
s=1 Hsxs = 0, where Hs are matri-

ces of conformable dimensions (see [5] for details). The Lagrangian relaxation
of the above formulation with respect to the non-anticipativity constraints is
completely decomposable by scenarios, and is given by

L(λ) =
S∑

s=1

min{(psc+λHs)xs+psfsys | xs ∈ X, Dsys ≥ hs+Txs, ys ∈ Y ∩Z
n2}.

It is well-known that the Lagrangian dual zLD = maxλ L(λ) provides a lower
bound to (2SSIP). Carøe used this lower bounding scheme within a branch-
and-bound framework for solving (2SSIP).

Since we partition the space of tender variables, consider the Lagrangian
relaxation of (2SSIP) when these variables are restricted to be χ ∈ P := (l, u]:

L(λ,P) =
S∑

s=1

min {(psc + λHs)xs + psfsys | xs ∈ X, l ≤ Txs ≤ u,

Dsys ≥ hs + Txs, Dsys ≥ hs + l + ε, ys ∈ Y ∩ Z
n2} ,
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where ε is the same as that considered in problem (LB) in Section 5.3. Note that
the above Lagrangian relaxation has additional constraints: Dsys ≥ hs + l + ε,
to deal with the neither open nor closed nature of P. We shall denote the
corresponding Lagrangian dual by

zLD(P) := max
λ

L(λ,P).

Proposition 7.1. Given a subset P := (l, u],

fL(P) ≤ zLD(P) ≤ inf{f(χ) | χ ∈ X ∩ P}.

Proof: Let (x1, . . . , xS , y1, . . . , yS) be the solutions obtained while computing
L(0,P). Thus

L(0,P) =
S∑

s=1

pscxs + psfsys.

Let x̃ be the solution of the master problem (5), and ỹs be the solution of the
scenario s subproblem (7), while computing fL(P). Since each xs is feasible to
the master problem (5), we have cx̃ ≤ cxs for all s. Thus, cx̃ ≤ ∑S

s=1 pscxs.
Recall that the subproblems (7) are solved with χ = l+ε, i.e., with the constraint
Dsy ≥ hs + l + ε. Since ys also satisfies Dsys ≥ hs + l + ε, ys is feasible to the
scenario s subproblems (7), and so fsỹs ≤ fsys for each s. Clearly,

fL(P) =
S∑

s=1

pscx̃s + psfsỹs

≤
S∑

s=1

pscxs + psfsys

= L(0,P)
≤ zLD(P).

To see that zLD(P) ≤ inf{f(χ) | χ ∈ X ∩ P}, consider a feasible solution
(χ, x, y1, . . . , yS) such that χ = Tx, x ∈ X, χ ∈ X ∩ P, and Dsys ≥ hs + χ for
all s. Construct a solution (x1, . . . , xS , y1, . . . , yS) to the Lagrangian relaxation
L(λ,P), by setting xs = x, and ys = ys for all s. To see that such a solution
is feasible to L(λ,P), we only need to verify that Dsys ≥ hs + l + ε. Since
Txs = χ > l, and from the definition of ε, 	hs + Txs
 is constant whenever
Txs ∈ (l, l+ε], we have that Dsys ≥ hs+Txs implies Dsys ≥ hs+l+ε. Thus the
solution (x1, . . . , xS , y1, . . . , yS) is feasible to L(λ,P). Since x1 = . . . = xS , we
have

∑S
s=1 Hsxs = 0, and

∑S
s=1 {(psc + λHs)xs + psfsys} = c(

∑S
s=1 psxs) +∑S

s=1 psfsys = cx +
∑S

s=1 psfsys. Thus, L(λ,P) ≤ inf{f(χ) | χ ∈ X ∩ P}.
Since the λ was arbitrary, the inequality is true for zLD(P).
Thus, we can use the Lagrangian dual to obtain tighter bounds than those
obtained by solving (LB).
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Mixed-integer Second Stage

In the presence of continuous variables in the second stage, the orthogonality of
the discontinuities in the space of the tender variables may be lost. Consider,
for example, a variant of (EX) where the second-stage problem (in the space of
the tender variables) is given by:

Q(χ1, χ2, ω1, ω2) = min −16y1 − 19y2 − 23y3 − 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ω1 − y5

6y1 + y2 + 3y3 + 2y4 ≤ ω2 − y6

−1.9706y5 + 0.9706y6 ≤ −χ1

0.9706y5 − 1.9706y6 ≤ −χ2

y1, y2, y3, y4 ∈ {0, 1}
y5, y6 ∈ [0, 5].

As detailed in [1], the discontinuities of Q(χ1, χ2, ω1, ω2) are not orthogonal
to the χ1 and χ2 axes. As a result, in case of mixed-integer second stage,
finiteness of the proposed algorithm is not guaranteed. One can reformulate
the problem by including all the continuous variables from the second-stage
subproblems in the first stage, thereby generating a pure-integer second stage.
The proposed algorithm is finite when applied to this reformulation. Since
such a scheme involves branching on continuous variables from the first-stage
problem as well as those from the scenario subproblems, the method is expected
to be viable only when there are a few continuous variables per second-stage
subproblem. Alternatively, in addition to branching on the tender variables, we
can allow branching on the second-stage variables similar to what one would
do while solving the large-scale deterministic equivalent integer program. Even
though explicit second-stage branching will be computationally intensive, it will
guarantee finite termination. As the monotonicity property of the second-stage
value function with respect to the tender variables still hold, a valid lower bound
over a subset in the tender variable space is obtained by evaluating the second-
stage value function at the lower-corner.

Random Technology Matrix

The proposed algorithm can be extended to problems with a scenario-dependent
technology matrix T by introducing tender variables corresponding to each sce-
nario, i.e., χs = T sx. However, in this case, the algorithm would require branch-
ing on S × m2 variables as opposed to m2 variables when T is deterministic.

8 Computational Results

In this section, we report our computational experience with the proposed algo-
rithm on instances of two-stage stochastic integer programs from the literature.
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Scenarios Integer Binary Constraints
Variables Variables

4 2 16 8
9 2 36 18

36 2 144 72
121 2 484 242
441 2 1764 882

Table 1: Sizes of instances in Test Set 1

Test Set 1

The first set of test problems involves pure-integer first-stage variables and is
taken from Carøe [5]. Since the first-stage variables are pure-integer, Carøe’s
method terminates finitely. However, our computational results indicate that
the proposed method is much faster than Carøe’s algorithm even for this problem
class. The test problems are generated from the following basic model:

(EX1) : min −1.5x1 − 4x2 + E[Q(x1, x2, ω1, ω2)]
s.t. x1, x2 ∈ [0, 5] ∩ Z,

where

Q(x1, x2, ω1, ω2) = min −16y1 − 19y2 − 23y3 − 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ω1 − x1

6y1 + y2 + 3y3 + 2y4 ≤ ω2 − x2

y1, y2, y3, y4 ∈ {0, 1},
where (ω1, ω2) is uniformly distributed on Ω ⊆ [5, 15]×[5, 15]. Five test problems
are generated from (EX1) by varying the number of scenarios by taking Ω as
equidistant lattice points in [5, 15] × [5, 15] with equal probability assigned to
each point. The resulting instances have 4, 9, 36, 121, and 441 scenarios. The
sizes of the corresponding deterministic equivalents are shown in Table 1.

Carøe [5] reports attempts to directly solve the deterministic equivalent of
the above instances using the MIP solver of CPLEX 5.0. With 36 or more
scenarios, CPLEX 5.0 MIP could not solve the problem instances within resource
usage limits. For example, the instance with 121 scenarios could not be solved
within 300,000 nodes, yielding an optimality gap of more than 10%. These
results clearly motivate the need for decomposition-based approaches.

The proposed algorithm was applied to solve this small example. The com-
putations were carried out on a 332 MHz IBM RS/6000 PowerPC. Table 2
compares the performance of the proposed algorithm to that of the Lagrangian
decomposition approach of Carøe [5]. A major part of the computational ef-
fort is spent on solving the second-stage IP subproblems. From Table 2, it is
clear that the number of IPs solved is smaller for the proposed method. Note
that, for the proposed method, the IP subproblems correspond to the second-
stage problem involving four binary variables and two constraints, whereas, for
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Carøe [5] Proposed
Scenarios CPU∗ s. IPs solved Obj. CPU† s. IPs solved Obj.

4 0.2 52 57.00 0.01 48 57.00
9 0.4 189 59.33 0.01 135 59.33

36 1.4 720 61.22 0.01 540 61.22
121 4.8 2783 62.29 0.02 1815 62.29
441 25.1 9702 61.32 0.06 6615 61.32

∗ Digital Alpha 500 MHz. (LINPACK DP (n = 100): 235.3 Mflop/s)
† IBM RS/6000 43P 332 MHZ. (LINPACK DP (n = 100): 59.9 Mflop/s)

Table 2: Computational results for Test Set 1

CPLEX 5.0 [21] Schultz et al. [21] Proposed
Nodes Gap Evaluations Obj. Evaluations Obj.

Problem 1 (T = I) 50000 24% 121 61.32 28 61.32
Problem 2 (T �= I) 50000 27% 19 61.44 10 61.44

Table 3: Comparative performance for Test Set 2

Carøe’s method, these include the first-stage variables as well and therefore in-
volve two general integer variables, four binary variables, and two constraints.
Note also that Carøe branches to enforce integrality of the first-stage solutions,
while our branching scheme is geared towards isolating the discontinuities of the
second-stage value function. Table 2 indicates that the CPU requirement of the
proposed method is significantly smaller than that of Carøe’s.

Test Set 2

The second test set is taken from Schultz et al. [21]. It consists of two variants of
(EX1) with continuous first-stage variables. The first of these problems (Exam-
ple 7.1 in [21]) is the 441 scenario version of (EX1) with the integrality restric-
tions removed from the first-stage variables. Schultz et al. [21] identified the set
of candidate solutions to be the finite set {(k1/2, k2/2) | k1, k2 ∈ Z}∩[0, 5]×[0, 5].
This set has a cardinality of 121, and the authors evaluated the second-stage
value function E[Q(x, ω)] corresponding to each of these points to determine the
optimal solution x1 = 0, x2 = 4 with value 61.32. Note that, a single evaluation
of E[Q(x, ω)] amounts to solving 441 second-stage integer programs involving 4
binary variables and 2 constraints. This represents a key bottleneck in solving
this class of problems. In [21], the authors used an efficient Gröbner basis-based
solution strategy to exploit the common structure in the second-stage problems.
In [21], the authors also report their attempt to solve this problem by CPLEX
5.0 with a node limit of 50, 000. After exploring all 50, 000 nodes, CPLEX ended
up with an optimality gap of 24%. No CPU times were reported in Schultz et
al. [21].

We solved the problem to global optimality using the proposed branch-and-
bound algorithm. The algorithm required only 28 evaluations of E[Q(x, ω)] in
contrast to the 121 required by the method of [21]—a reduction of 76%. As
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Problem 1 (T = I) Problem 2 (T �= I)
Scenarios CPU† s. Evaluations Obj. CPU† s. Evaluations Obj.

4 0.01 15 57.00 0.00 6 57.75
9 0.01 19 59.33 0.00 7 59.56

36 0.02 19 61.22 0.01 11 60.28
121 0.03 19 62.29 0.02 11 61.01
441 0.15 28 61.32 0.05 10 61.44

† IBM RS/6000 43P 332 MHZ

Table 4: Computational results for Test Set 2

in [21], each function evaluation requires solving the 441 second-stage integer
programs, and the Gröbner basis-based solution strategy suggested in [21] could
be used here.

Note that, in (EX1), the technology matrix T is the identity. To illustrate the
effect of the variable transformation, we next solve another variant of (EX1) with
a more interesting T matrix, namely problem (EX) (described in Section 1) with
441 scenarios. Schultz et al. [21] solved this problem (Example 7.3 in [21]) by
characterizing the solution set and identifying 53 candidate points. Using some
problem-specific results, they were able to reduce the number of candidate points
to 19. The second-stage value function was evaluated at each of these points,
and the optimal solution of x1 = 0, x2 = 4.5 with objective value 61.44 was
identified. In contrast, the proposed branch-and-bound algorithm required the
evaluation of E[Q(x, ω)] at only 10 points—a 47% reduction. For this problem,
Schultz et al. [21] reports that CPLEX with a node limit of 50, 000 ended up
with an optimality gap of 27%.

The comparative performances discussed above are summarized in Table 3.
Table 4 presents the CPU times and the number of evaluations of E[Q(x, ω)]
required by the proposed algorithm for solving various scenario instances of the
two problems in Test set 2.

Test Set 3

The final test set is a collection of two-stage stochastic product substitution
problems described in Jorjani et al. [9]. The problem involves mixed-integer
variables in the first and second stage. The set includes three problems, SIZES3,
SIZES5, and SIZES10, having 3, 5, and 10 scenarios, respectively. The size of
the deterministic equivalent integer program for each of these test problems is
presented in Table 5.

A direct attempt to solve the deterministic mixed-integer program using the
CPLEX 5.0 MIP solver was reported in Jorjani et al. [9]. These results are
summarized in Table 6. The authors put a node limit of 20,000 for the two
smaller problems, and 250,000 for the larger problem. Even after exploring
such large number of nodes, CPLEX could not solve these problems and yielded
optimality gaps in the range of 2-4%. From this table, it is clear that, although
the problems are of modest size (no more than 110 binary variables), they are
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Problem Binary Continuous Constraints
Variables Variables

SIZES3 40 260 142
SIZES5 60 390 186
SIZES10 110 715 341

Table 5: Sizes of Test Set 3

not amenable to state-of-the-art integer programming techniques, and one must
rely on decomposition methods.

Carøe [5] attempted to solve these problems using Lagrangian decomposition
based branch-and-bound algorithm. A CPU limit of 1000 seconds was imposed.
Until now, Carøe’s results were the best available for these problems.

Having gained some insight regarding the applicability of the proposed method
on problems with mixed-integer second stage (Section 7), we attempted to solve
these problems by explicitly branching on the second-stage integer variables.
The implementation was carried out using BARON [19, 22] to maintain the
branch-and-bound tree. CPLEX 6.0 was used as the LP solver. The computa-
tions were carried out on a 332MHz IBM RS/6000 PowerPC. A CPU limit of
100,000 seconds was imposed.

Problem LB UB Nodes CPU‡
SIZES3 218.2 224.7 20000 1859.8
SIZES5 220.1 225.6 20000 4195.2
SIZES10 218.2 226.9 250000 7715.5

‡ DEC alpha 3000/700

Table 6: Performance of CPLEX 5.0 on Test Set 3 as reported in [9]

Carøe [5] Proposed
Problem LB UB CPU∗ s LB UB CPU† s
SIZES3 224.384 224.544 1, 000 224.433 70.7
SIZES5 224.354 224.567 1, 000 224.486 7, 829.1
SIZES10 224.336 224.735 1, 000 224.236 224.717 10, 000.0

∗ Digital Alpha 500 MHz
† IBM RS/6000 133 MHZ

Table 7: Computational results for Test Set 3

Total Max. Nodes Nodes until
Problem Nodes in memory best UB
SIZES3 1885 260 906
SIZES5 108, 782 13, 562 41, 642
SIZES10 36, 700 23, 750 20, 458

Table 8: Nodes in branch-and-bound tree
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Table 7 compares the performance of the proposed method with that of
[5]. As a reference, the node information required by our branch-and-bound
algorithm is presented in Table 8. From Table 7, we observe that Carøe’s method
was not able to close the gap for these problems on a computer much faster than
ours. The proposed approach successfully closed the gap for two of these three
very difficult problems. For all three test problems, we were able to identify
better upper bounds (feasible solutions) than those known earlier.

25



References

[1] S. Ahmed. Strategic Planning under Uncertainty: Stochastic Integer Pro-
gramming Approaches. Ph.D. Thesis, University of Illinois, Urbana, IL,
2000.

[2] J. R. Birge and F. V. Louveaux. Introduction to Stochastic Programming.
Springer, New York, NY, 1997.

[3] C. E. Blair and R. G. Jeroslow. The value function of an integer program.
Mathematical Programming, 23:237–273, 1982.

[4] C. E. Blair and R. G. Jeroslow. Constructive characterizations of the
value-function of a mixed-integer program I. Discrete Applied Mathematics,
9:217–233, 1984.

[5] C. C. Carøe. Decomposition in stochastic integer programming. PhD thesis,
University of Copenhagen, 1998.

[6] C. C. Carøe and R. Schultz. Dual decomposition in stochastic integer
programming. Operations Research Letters, 24:37–45, 1999.

[7] C. C. Carøe and J. Tind. L-shaped decomposition of two-stage stochastic
programs with integer recourse. Mathematical Programming, 83:451–464,
1998.

[8] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches.
Springer-Verlag, Berlin, 3rd edition, 1996.

[9] S. Jorjani, C. H. Scott, and D. L. Woodruff. Selection of an optimal subset
of sizes. Technical report, University of California, Davis, CA, 1995.

[10] P. Kall and S. W. Wallace. Stochastic Programming. John Wiley and Sons,
Chichester, England, 1994.

[11] W. K. Klein Haneveld, L. Stougie, and M. H. van der Vlerk. On the convex
hull of the simple integer recourse objective function. Annals of Operational
Research, 56:209–224, 1995.

[12] W. K. Klein Haneveld, L. Stougie, and M. H. van der Vlerk. An algorithm
for the construction of convex hulls in simple integer recourse programming.
Annals of Operational Research, 64:67–81, 1996.

[13] W. K. Klein Haneveld and M. H. van der Vlerk. Stochastic integer program-
ming: General models and algorithms. Annals of Operational Research,
85:39–57, 1999.

[14] G. Laporte and F. V. Louveaux. The integer L-shaped method for stochas-
tic integer programs with complete recourse. Operations Research Letters,
13:133–142, 1993.

26



[15] V. I. Norkin, Y. M. Ermoliev, and A. Ruszczyński. On optimal allocation of
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