
Managing Short-Term Electricity Contracts

Under Uncertainty: A Minimax Approach

Samer Takriti∗ Shabbir Ahmed†

March 1, 2002

Abstract

A common problem facing energy producers is marketing excess capacity in the

short-term market. A producer holds an auction asking interested buyers to submit

bids reflecting their capacity and price requirements. As a buyer’s demand is not

known in advance, the supplier constructs several demand forecasts and associates

a set of possible probability measures with these forecasts. The supplier then maxi-

mizes the expected profit while considering the worst-case probability distribution.

The formulation—a minimax mixed-integer program—is solved using a branch-and-

cut technique. The proposed technique is quite general and can be used to solve a

wide class of minimax two-stage stochastic programs. Numerical testing indicates

that the developed method is successful in solving practical models in less than a

minute.
∗Mathematical Sciences Department, IBM T.J. Watson Research Center, P.O. Box 218, Yorktown

Heights, New York 10598, USA, takriti@us.ibm.com
†School of Industrial & Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, Atlanta,

Georgia 30332, USA, sahmed@isye.gatech.edu. The work of this author was supported, in part, by the

National Science Foundation under grant DMI-0099726.

1

1 Introduction

The deregulation of the electric-power industry has transformed electricity into a com-

modity, the price of which follows supply and demand imbalances. Electricity prices,

which were tightly controlled prior to deregulation, are now set by market participants

who buy and sell electricity as necessary. Due to the non-storable nature of electricity

and the real-time aspect of power delivery, electricity has become one of the most volatile

traded commodities. An example of this severe volatility is the situation that occurred

in the Midwest during the week of June 22, 1998, when the day-ahead electricity price

departed from its normal level of $50 per MWH, and reached an unprecedented level of

$6000 per MWH (FERC 1998).

In order to cope with price volatility, several exchanges, including the New York Mer-

cantile Exchange and the Nordic Power Exchange, began to offer standardized power

contracts, such as futures and options. Unfortunately, the electric-power industry has

been slow to adopt these standardized instruments, and instead has embraced over-the-

counter contracts, such as daily and hourly options. The popularity of over-the-counter

contracts may be attributed to transmission constraints and losses, to the contractual

flexibility needed to cover the electric load, and to the tight relationship between electric-

ity and other fuels. We refer the reader to Kaminski, Gibner, and Krishnarao (1999) for

more details.

Although over-the-counter contracts are negotiated on a case-by-case basis, it is possi-

ble to classify them based on duration into long and short term (Ancona 1997). Long-term

contracts have a duration of a few weeks to several years, whereas short-term contracts

span a period of a few hours to several days. In this paper, we present our methodology

as it applies to the evaluation of short-term contracts. Electricity contracts may also be

classified based on the type of supply into firm and non-firm. In general, a firm contract

obligates the electricity producer to deliver power throughout the contracted term unless

there is a catastrophic event obstructing the production or delivery of power. Non-firm

contracts provide a higher level of flexibility for the power producer as they do not come

2

with the obligation to deliver. We limit our interest to firm contracts.

Throughout the rest of the paper, we refer to the entity that is interested in selling its

short-term capacity in the form of firm contracts as the producer. Entities that bid for

the producer’s excess capacity are referred to as the bidders or buyers. We first describe

the structure of a firm contract. Typically, a firm contract specifies a maximum amount

of power C, known as capacity, that can be delivered during a single time period. It

reflects the generation capacity that the producer must reserve on its system in order to

respond to the buyer’s demand. For each time period, the buyer of the contract has the

right but not the obligation to consume an amount of power in the range [0, C]. In order

to issue the contract and reserve the needed capacity, the producer charges an up-front

fee which is a function of the reserved capacity: the higher the reserved capacity, the more

expensive the initial fee. This fee is known as the capacity charge and is denoted by r. The

second charge associated with a firm contract is a variable charge that reflects the total

consumption of power over the contract duration. This charge is known as energy charge.

We use the function f(dt) to represent this charge during time period t and for demand

dt. Price structures that consider both capacity and energy charges are popular as they

encourage buyers to accurately estimate and truthfully reveal their peak consumption,

while discouraging them from over consuming.

In this paper, we consider a power producer that is interested in marketing its short-

term excess capacity. Excess capacity is often a result of the conservative planning of

electric-power generators in anticipation of existing demand obligations, also known as

the native load. As more information becomes available, a producer frequently finds

itself in the position of having excess generating capacity at its disposal. The capacity

is marketed in the form of firm power by soliciting bids—capacity, capacity charge, and

energy charge—from interested buyers. Given the uncertain nature of the native load as

well as that of demand of the received bids, the producer’s problem consists of selecting

bids to maximize its expected profit.

In order to model demand uncertainty, we construct several sample paths—scenarios—

3

that represent possible future demand patterns. Then, an optimal production schedule

is calculated by minimizing the average cost of operating the system while remaining

feasible for each of the scenarios. However to construct the scenario tree and assign the

appropriate probabilities with its nodes, we need to have access to sufficient historical

information. More often than not, decision makers are faced with a lack of historical

data, leading them to rely on subjective probabilities that may differ greatly from one

expert opinion to another.

In the case of marketing short-term power, estimating the probabilities is a particularly

difficult task. The producer has little knowledge, if any, of the goal behind the purchased

power. Occasionally, a contract is purchased as a backup to enhance system security, in

which case there is a little probability that it will be used. In other cases, a contract is

purchased in order to compensate for supply shortage, which means that the buyer will

most likely consume most of the contracted capacity. Therefore, it is unlikely that one

can associate accurate probabilities with the scenario tree.

To overcome the difficulty of constructing an accurate probability measure on the

demand scenarios, we assume the presence of several experts who are capable of providing

views regarding the probabilities. That is, given a scenario tree that represents the future

demand for each contract as well as that of the native load, each expert provides his/her

views regarding the probability of each scenario. For example, assume that our problem is

to maximize the expected profit over three future scenarios. Furthermore, assume that we

have access to two experts. The first feels that scenario 1 is more likely than scenario 2,

which in turn is more likely than scenario 3. Hence, we can write p1 ≥ p2 ≥ p3, where p1,

p2, and p3 are the probabilities associated with scenarios 1, 2, and 3, respectively. The

second expert believes that scenario 2 is the most likely one; i.e., p2 ≥ p1 and p2 ≥ p3.

Then, the set of feasible probabilities can be identified as p1 = p2 = π and p3 = 1 − 2π,

where π is a parameter satisfying 1/3 ≤ π ≤ 1/2. Alternatively, we write p ∈ P, where

P = {(p1, p2, p3) : p1 = p2 = π, p3 = 1− 2π, 1/3 ≤ π ≤ 1/2}. The question then is which

set of probabilities should we choose in our stochastic program?

4

From a risk viewpoint, it is prudent to consider the worst set of probabilities; i.e.,

probabilities that minimize the expected profit or maximize the expected cost. That is,

given the differing views of our experts, one needs to consider the most bleak outlook—

probabilities assigned to the scenario tree—of the future. In the case of selecting bids,

the optimization problem consists of choosing contracts so as to maximize the expected

profit of delivering power under the most pessimistic probability distribution; i.e., the

probability distribution that causes the expected profit to be at its minimum. These

types of models are referred to as minimax stochastic programs.

In the case of power delivery and production, it seems that the minimax formulation

is of special interest as it reflects the risk-aversion attitude of this industry. Social and

financial consequences of blackouts are costly and never tolerated. Therefore, generating

companies often plan for the worst-case scenario. As a matter of fact, stochastic models

that maximize expected profit, such as the one suggested in Takriti, Krasenbrink, and Wu

(2000), are often criticized as having strong appetite for risk. As a result, it seems that

the minimax formulation provides a reasonable compromise that captures stochasticity

while accounting for forecast errors that may cause severe financial damages.

Minimax stochastic programming has received considerable attention in the context

of bounding and approximating stochastic programs (Birge and Wets 1987, Gassman and

Ziemba 1986, Kall 1991). For the case when the underlying problem is linear or convex,

the theoretical properties of the problem of maximization over a probability space have

been studied by Žáčková (1966) and by Shapiro and Kleywegt (2000). In contrast, al-

gorithmic techniques for solving the proposed minimax stochastic program are limited.

Dupacova (Dupačová 1980, Dupačová 1987, Žáčková 1966) considers minimax stochastic

programs with separable and simple recourse structures and develops equivalent deter-

ministic non-linear programming formulations for these. Under suitable convexity as-

sumptions, the equivalent problem can, in principle, be solved using convex optimization

techniques. Several general purpose saddle-point type algorithms for this class of mini-

max problems have also been suggested. For example, Ermoliev et al. (1985) describes

5

a stochastic search method when the problem is convex with respect to the probability

measures, and non-convex with respect to the problem variables. However, no numer-

ical experience is reported with this technique. Breton and El Hachem (1995) develop

a bundle methods based scheme for solving convex multi-stage minimax stochastic pro-

grams. The method requires solving a sequence of linear and quadratic programs. Limited

computational results involving a test problem with 9 scenarios, and 18 variables and 12

constraints per scenario are reported. Note that both Ermoliev et al. (1985) and Breton

and El Hachem (1995) require convexity of the set of probability measures and are inap-

plicable when, for example, the space of the probability measures is the union of several

discrete distributions.

In this paper, we develop a minimax stochastic-programming model for the problem

of selecting short-term power contracts. As the demand profile of a buyer is unknown,

we assume the knowledge of several views, each of which represents a potential proba-

bility distribution for various demand scenarios. The objective is to maximize expected

profit subject to the worst-case probability distribution on future load scenarios. The

combinatorial nature of selecting a subset from a set of contracts makes the problem a

difficult minimax stochastic mixed-integer program. To the best of our knowledge, algo-

rithms for solving this class of problems have not been developed earlier. We propose a

decomposition-based branch-and-cut strategy for this problem. This method extends the

standard mixed-integer programming branch-and-bound algorithm by using a cutting-

plane scheme to approximate the minimax objective function in each iteration. The pro-

posed method can easily be extended to a wide variety of minimax stochastic programs.

In particular, in the absence of the integer variables, the method reduces to a variant

of the popular L-shaped decomposition algorithm for stochastic linear programs. We

use the proposed branch-and-cut method to solve a set of test problems arising in power

contract management. Our computational results indicate that the developed method sig-

nificantly outperforms standard branch-and-bound techniques when applied to problems

with a finite set of probability distributions, with a speed-up ratio of 20–2000 times.

6

The rest of this paper is organized as follows. Section 2 describes the problem at

hand and formulates it as a mixed-integer program. In Section 3, we present a decompo-

sition approach for solving the model. Finally, Section 4 provides a detailed description

regarding our computer implementation and presents numerical results.

2 Model Development

We assume that the power producer is faced with J contracts, each of which has a capacity

requirement of Cj, j = 1, . . . , J . The capacity indicates the maximum amount of power

that a bidder is entitled, but not obligated, to consume in a single time period. By

accepting a contract, the producer receives a one-time payment of rj for reserving the

capacity. Furthermore, when quantity djt of the commodity is delivered during time

period t, the producer receives a payment of fj(djt). In order to accommodate demand

fluctuations, we assume that the consumption of contract j is stochastic. Exceeding

the capacity results in severe financial penalties. Therefore, we assume that the true

consumption is bounded above by capacity; i.e., djt ≤ Cj.

To model future uncertainties, we associate a set of sample paths—scenarios—with

each of the contracts. We assume without loss of generality that the number of scenarios

is the same for all contracts and is equal to K. We denote the sampled demand of contract

j at time t by dk
jt, where k = 1, . . . , K, is the scenario index. When contract j is accepted,

our producer expects to receive a payment of rj, which is the sum of the present revenue

of rj and the expected future revenue of
∑K

k=1 pk

∑T
t=1 fj(d

k
jt).

In order to generate power, the producer has I generating units which are assumed to

be committed in advance in response to the native load forecasts. The producer may alter

the generation levels, but not the commitments, as to keep its cost at a minimum. That is,

when bids are accepted, the producer makes the necessary adjustments to the production

level without affecting the on-off status of each generator. For a given scenario k, we

denote the production of generator i at time period t by yk
it, i = 1, . . . , I, t = 1, . . . , T . In

7

order to balance supply and demand, we enforce the constraint

I∑
i=1

yk
it = dk

0t +
J∑

j=1

dk
jtxj, t = 1, . . . , T, k = 1, . . . , K,

where dk
0t represents the native load; i.e., the original load that is used to schedule the

generating units. Then, for a given set of probabilities pk, the standard stochastic pro-

gramming model is

maxxj ,yk
it

∑J
j=1 rjxj −

∑K
k=1 pk

∑T
t=1

∑I
i=1 gk

it(y
k
it)

s.t.
∑I

i=1 yk
it = dk

0t +
∑J

j=1 dk
jtxj, t = 1, . . . , T, k = 1, . . . , K,

xj binary, yk ∈ Y k, k = 1, . . . , K,

(1)

where xj is a binary variable indicating whether contract j is to be accepted xj = 1 or

rejected xj = 0. The function gk
it(y

k
it) is the cost of producing yk

it units of power and is

assumed to be convex (Muckstadt and Koenig 1977).

As it might be beneficial to supplement the generating capacity by purchasing power

from the spot market, we assume that the generation set has a spot-market generator with

a cost function that reflects spot-market prices. Note that our formulation (1) allows the

cost g associated with the spot generator, i.e., the spot price, to vary from one period

to another and between scenarios. Furthermore, we assume that the spot generator may

have a negative production; i.e., the set of y variables associated with the spot generator

is unrestricted in sign. By allowing the production of the spot generator to be negative,

the producer may opt to sell the power directly to the spot market, assuming that the

price is attractive. The spot market—spot generator—can also be used to sell any excess

capacity that is not sold in the form of firm contracts. In case of transaction costs or if

spot prices are expected to change as a result of transacting with the spot market, one

can use two spot generators: one for selling and the other for buying.

In (1), the notation yk ∈ Y k denotes the constraints imposed on the production

vector yk = {yk
it, i = 1, . . . , I, t = 1, . . . , T}, under scenario k. For example, let us

say that generator i is committed at time period t. Then, its production cannot exceed

its maximum capacity and cannot go below its minimum capacity; i.e., we enforce the

8

constraint qk
it ≤ yk

it ≤ Qk
it, where [qk

it, Q
k
it] is the operating range of unit i. Note that

we allow available capacity to vary with time and scenarios. This reflects the fact that

available capacity is determined by solving another optimization problem—a stochastic

unit commitment—that attempts to minimize the cost needed to cover the native load dk
0t.

For an introduction to the unit commitment and its stochastic extensions, we refer the

reader to Baldick (1995), Jacobs et al. (1995), Carpentier, Cohen, and Culioli (1996), and

Takriti, Birge, and Long (1996). The set Y k may include additional constraints depending

on operational requirements. Our approach is valid as long as Y k is convex and does not

couple the decisions across stages; i.e., the resulting model is a two-stage program. Since

Y k represents the constraints imposed by the solution of a stochastic unit commitment

problem when dk
0t is used as the native load, the problem in (1) has a feasible solution in

which all bids are declined; i.e., x1 = . . . = xJ = 0.

The model in (1) is a two-stage program in which the first stage determines the set

of contracts to be chosen by assigning xj the value of 0 or 1, while the second stage

determines an optimal production strategy yk
it in response to the demand dictated by the

contracts. Viewing the problem as a two-stage program allows for the use of decomposition

techniques that are widely used in stochastic programming (Birge and Louveaux 1997).

The formulation in (1) assumes that the probabilities pk, k = 1, . . . , K, are known with

complete certainty. As mentioned earlier, an alternative is to allow these probabilities to

vary in order to reflect the collective view of our experts. To do so, we seek the probability

distribution that provides the most conservative solution.

Mathematically, our formulation amounts to replacing the objective of (1) by the

following minimax function.

maxxj ,yk
it

∑J
j=1 rjxj −minp∈P

∑K
k=1 pk

∑T
t=1

∑I
i=1 gk

it(y
k
it),

s.t.
∑I

i=1 yk
it = dk

0t +
∑J

j=1 dk
jtxj, t = 1, . . . , T, k = 1, . . . , K,

xj binary, yk ∈ Y k, k = 1, . . . , K,

(2)

where p = (p1, . . . , pK) and P is the set of feasible probability distributions. Note that

the set P is the intersection of the domains defined by the different views. That is, if view

9

l defines a set of feasible measures Pl, then P = ∩lPl. As P represents the intersection of

several views, it is possible that P may be infeasible. In this case, the objective function

of the maximization problem in p may be augmented by a penalty term measuring the

infeasibility with respect to the linear constraints defining P. For the purpose of this

paper, we assume that P is nonempty.

3 Minimax Stochastic Programming

The proposed formulation (2) has the general form:

min
x

{
cT x + h(x) | x ∈ X ∩ {0, 1}J

}
, (3)

where h(x) = maxp{
∑K

k=1 pkQk(x)|(p1, . . . , pk) ∈ P} and

Qk(x) = min
y
{

T∑
t=1

I∑
i=1

gk
it(y

k
it) | Dy = hk + Tkx, y ∈ Y k}.

Due to the convexity of g and the presence of a spot-market generator, the function

Qk(x), k = 1, . . . , K, is convex and finite valued for all x ∈ X. Hence, the expected cost

function h(x) is also convex and finite valued over X. We denote the feasible solutions

to (3) by x1, . . . , xM ; i.e., X ∩ {0, 1}J = {x1, . . . , xM}. From the convexity of h(x), we

can reformulate (3) into the following mixed-integer linear program:

min
x,θ

{
cT x + θ | x ∈ X ∩ {0, 1}J , (x, θ) ∈ S

}
, (4)

where S = {(x, θ)|θ ≥ h(xm)+∂h(xm)T (x−xm), m = 1, . . . ,M} and ∂h(xm) is a subgradi-

ent of h evaluated at xm. That is, S is represented using a set of linear constraints—cuts,

which are binding at all integer solutions xm. Note that for a solution x̃ to the linear

relaxation of (4); i.e., x̃ ∈ X ∩ [0, 1]J , the cut θ ≥ h(x̃) + ∂h(x̃)T (x− x̃) is a valid cut for

S, but may not be binding; i.e., the inequality may be strict.

We propose solving (4) using a branch-and-cut approach (Nemhauser and Wolsey

1998). In this scheme, we begin with a linear relaxation for (4) of the form

min
x,θ

{
cT x + θ | x ∈ X ∩ [0, 1]J , (x, θ) ∈ S

}
, (5)

10

where S is defined using a set of valid cuts for S; i.e., S ⊆ S. The solution of (5) provides

a lower bound on the value of (4). Integrality is enforced by branching on non-integer

solutions in a typical branch-and-bound fashion. In order to tighten the approximation

S, cuts may be added at any point in the branch-and-bound process as long as they are

embedded to all nodes in the tree. We choose to add binding cuts at integer nodes that

violate S so that the approximation is exact.

As for the root node, we start without any cuts in the system; i.e., S = <J+1, and use

Benders’ decomposition to solve the model: solve the first-stage problem, solve the second-

stage problems to create a cut, add the cut to S, and resolve the first-stage problem. The

process iterates until an optimal solution for the linear relaxation is reached or until the

number of cuts reaches its maximum limit. The cuts added to the S are of the form

θ ≥ h(x̃) + ∂h(x̃)T (x − x̃) and can be carried to the branch-and-cut process as they are

valid for the integer program (4).

A formal description of the algorithm follows.

A Branch-and-cut algorithm for Solving (4)

Step 0. Set S to <J+1 and θ ← −∞. Solve the linear relaxation (4) as follows

Step a. Choose a solution x̃ ∈ X ∩ [0, 1]J and p ∈ P.

Step b. For each scenario k, solve the second-stage problem and determine the

optimal objective value Qk(x̃).

Step c. Evaluate h(x̃) = maxp{
∑

k Qk(x̃)pk|p ∈ P}. Construct a new cut

θ ≥ h(x̃) + ∂h(x̃)T (x− x̃) and add it to S.

Step d. If θ ≈ h(x̃) or if the maximum number of cuts is reached, go to Step f.

Step e. Solve the first-stage problem (5) and determine a new x̃ and θ. Go to

Step b.

Step f. This is the end of the root node iteration. Note that S contains valid

cuts that are added during the solution process. In order to begin the branch-

11

and-bound procedure, define L to be the set of unfathomed problems. Set L

so that it has a single element, L0, which is the linear problem defined by (5).

Set x1 ← x̃, n to 1, m∗ to -1, and z to ∞. As will become clear, n represents

the number of nodes in the tree, m∗ points to the optimal node, and z serves

as an upper bound on the optimal objective value of (4). Proceed to Step 1.

Step 1. If L is empty, terminate and declare xm∗
to be an optimal solution for (4).

Step 2. Select a problem m from L. We denote the linear program corresponding

to this problem by Lm. If Lm is infeasible, set L ← L− Lm, and go to Step 1.

Step 3. Let (xm, θm) be an optimal solution and zm be the optimum value for

problem Lm. If zm ≥ z, set L ← L− Lm and go to Step 1.

Step 4. If xm 6∈ {0, 1}J , create two new problems Ln and Ln+1, by fixing a non-

integer element of xm to 0 and 1, respectively. Set L ← L−Lm, increment n by 2,

and go to Step 1.

Step 5. Solve the second-stage problems and calculate a new probability measure

as in Step b and Step c above. If cT xm + h(xm) < z, set z ← cT xm + h(xm) and

m∗ ← m.

Step 6. If θm = h(xm), set L ← L − Lm and go to Step 1. Otherwise, update

the set S by adding a binding cut at (xm, θm); i.e., S ← S ∩ {(x, θ)|θ ≥ h(xm) +

∂h(xm)T (x− xm)}, to all problems Lm, . . . ,Ln−1. Set L ← L− Lm. Go to Step 1.

The algorithm requires the computation of a subgradient of h at x̃ in Step c and at xm

in Step 5. The following result establishes this procedure.

Proposition 1 Consider a point xm ∈ X. Let λm,k, k = 1, . . . , K, be the optimal La-

grange multiplier associated with the constraint Dy = hk + Tkx
m in the evaluation of

Qk(x
m) and let (pm

1 , . . . , pm
K) ∈ arg maxP{

∑K
k=1 pkQk(x

m)}. Then a subgradient of h at

12

xm is given by:

∂h(xm) =
K∑

k=1

pm
k λT

m,kTk.

Proof. From Lagrangian duality, for any x ∈ X

Qk(x) ≥ Qk(x
m) + λT

m,kTk(x− xm) for all k.

Multiplying the inequalities by (pm
1 , . . . , pm

K) and summing,

K∑
k=1

pm
k Qk(x) ≥

K∑
k=1

pm
k Qk(x

m) +
K∑

k=1

pm
k λT

m,kTk(x− xm).

Noting that h(x) = max(p1,...,pK)∈P
∑K

k=1 pkQk(x) ≥
∑K

k=1 pm
k Qk(x), and h(xm) =

∑K
k=1 pm

k Qk(x
m)

completes the proof.

Thus, Step 5 involves solving Qk(x
m) for each scenario k = 1, . . . , K, collecting the cor-

responding optimal Lagrange multipliers, and then solving for the optimal probabilities

(pm
1 , . . . , pm

K), to construct a subgradient ∂h(xm). Note that the solution of Qk(x
m) for

each scenario k can be carried out in a computationally convenient decomposed fashion.

From the fact that the set S is defined by a finite number of inequalities, and since the

set of feasible integer solutions is finite, we immediately have the following result.

Proposition 2 Provided that h(x) and a subgradient ∂h(x) can be evaluated in finite

time, then the proposed branch-and-cut algorithm terminates finitely with an optimal so-

lution to (4).

Proposition 2 indicates that our algorithm is valid as long as the maximization problem

in p can be evaluated. Note that the proposed method is applicable to any two-stage

stochastic program with a finite number of scenarios and continuous recourse. In the

case of continuous first-stage variables and a fixed probability measure, our method is

equivalent to the L-shaped algorithm that is widely used in solving stochastic linear

programs.

13

4 Numerical Results

In this section, we present our experience with the proposed solution technique when

applied to the system of a utility that is based in the Midwestern US. The system has

33 generators which are committed in advance in response to the native load using a

unit commitment solver. As mentioned before, we assume that the commitment of a unit

cannot be changed and that the only possible action is that of changing the production

level of a generator. The generation system contains a committed spot generator with a

linear cost function that changes across scenarios and periods in order to reflect possible

spot market prices. The goal of our numerical experiment is to verify the validity of our

solution method and to investigate its scalability with respect to the number of scenarios,

views, and number of contracts. To do so, we implemented the algorithm in C++ on

a Sun Sparc Workstation 450 MHz running Solaris 5.7. We used CPLEX 7.0 and its

mixed-integer programming solver as the backbone for solving the first-stage problem (5).

In order to create a scenario tree for each contract and to associate a probability

measure with its nodes, we rely on high-resolution weather forecasts for the delivery

point of the contract. As the subject of weather forecasting is outside the scope of this

paper, we refer the reader to the web site http://www.research.ibm.com/weather for

a detailed discussion of the weather modeling work at IBM Research. Given a particular

weather forecast, we use several load profiles to construct the scenario tree for a contract

as described in Hoy, Takriti, and Wu (1998). Then, experts—traders—are presented

with the scenario tree and asked to provide their views regarding the load, which are in

turn translated into a set of linear constraints representing the set of possible probability

measures.

The optimizer starts at the root node with a model that has bound constraints 0 ≤

xj ≤ 1, j = 1, . . . , J , on the first-stage variables while it allows the approximate value of

the second-stage objective θ to take any value. Then, by solving the second-stage problem

and the corresponding maximization model in p, we construct a cut that is added to the

root node, hence tightening the quality of the solution. The process is repeated until

14

we find an optimal solution for the linear relaxation of the model. At this point the

branch-and-bound starts.

In our implementation of the algorithm of Section 3, CPLEX maintains the list of

unfathomed nodes L, selects a new node as suggested in Step 2, solves the linear program

of Step 3, and determines the branching variable of Step 4. At every node, we use

CPLEX’s call-back facility to check if the solution xm at hand is integer. If it is, then

the algorithm moves to Step 5, where a cut of the form θ ≥ h(xm) + ∂h(xm)T (x − xm)

is added to all active nodes L within the branch-and-bound tree. If x is non-integer,

CPLEX proceeds with its branch-and-bound without alternating the set of cuts in the

model. Our experience indicates that adding cuts at the root and at integer nodes only,

outperforms other methods, such as adding cuts at every node in the tree, as it keeps the

total number of cuts under control.

In order to create the cuts efficiently, we developed a Lagrangian-based C++ code for

solving the second-stage problems Qk(x
m), k = 1, . . . , K, as described in economic power

dispatch literature. Briefly, the economic power dispatch is the problem of determining

an optimal generation level so that the electric load is covered at each time period. As

demand constraints are the only constraints linking the different generators, the problem

can be decomposed by relaxing the demand requirement. The Lagrange multiplier λm,k

associated with each period can be interpreted as the value of a unit of power in that

particular period. We refer the reader to Wood and Wollenberg (1996) for more detail.

Given the optimal second-stage values Qk(x
m), k = 1, . . . , K, the maximization prob-

lem in p is maxp{
∑

k Qk(x
m)pk | p ∈ P}. If the set of feasible measures P is a convex

polytope, then the maximization problem in p is a linear program, which is solved using

the linear-programming library of CPLEX. In case P represents a finite set of measures,

an optimal measure is found by evaluating the objective function at each p ∈ P and

choosing the maximum value. A cut is then constructed and added to all active nodes in

the branch-and-bound tree.

In order to compare the proposed method to CPLEX’s mixed-integer programming

15

solver, we consider the case when gk
it is piecewise linear and convex, and P is finite; i.e.,

P = {p1, . . . , pL} and pl = (pl
1, . . . , p

l
K) for all l = 1, . . . , L. Then, the deterministic

equivalent of (3) is

minx,y,φ{cT x + φ | x ∈ X ∩ {0, 1}J , Dyk = hk + Tkx, yk ∈ Y k, k = 1, . . . , K,

φ ≥
∑K

k=1 pl
k

∑T
t=1

∑I
i=1 gk

it(y
k
it), l = 1, . . . , L},

(6)

which is a large-scale mixed-integer program that we pass to CPLEX. In the general case

when P is a polytope, it is sufficient to consider the finite set of extreme points of P.

Then, the deterministic equivalent can be constructed as in (6), where L corresponds to

the number of vertices.

Table 1 compares the decomposition approach with CPLEX’s branch-and-bound solver

when applied to 20 problems, each with a horizon of 24 periods. In Table 1, a problem is

identified using three numbers representing the number of scenarios, views, and contracts,

respectively. For example, Problem 10×20×40 refers to the problem of selecting contracts

from a pool of 40 contracts, where the future load of each contract is represented by 10

scenarios. The probability space has 20 possible probability measures, where each measure

is represented by a vector of dimension 10.

For CPLEX, we report the CPU time needed to solve the linear relaxation—root

node, the number of nodes in the branch-and-bound tree, and the total execution time

for solving the integer program (6). These results are listed in the columns labeled “R-

CPU,” “Nodes,” and “CPU,” respectively. All execution times are measured in seconds

and represent the total user and system times as reported by UNIX’s times function.

For the decomposition approach, the column “Root” reports the number of Benders’

cuts needed to solve the linear-programming relaxation to within 10−9 of optimality.

However, for the problems in Table 1, we limit the maximum number of cuts at the

root node to 200. The number of additional cuts imposed during the branch-and-bound

process is reported in “Int.” Note that this is also the number of integer solutions—

incumbents—encountered during the branch-and-bound process. The column “Nodes”

under “Decomposition” reports the total number of nodes searched by the first-stage

16

branch-and-bound while “CPU” indicates the total execution time in seconds. That is, it

is the time needed to solve the first-stage mixed-integer program, to solve the second-stage

problems, and to create and add the appropriate cuts.

The “Ratio” of the execution time of CPLEX to the CPU time of the algorithm of

Section 3 provides the speed up that is achieved as a result of decomposing the model.

This ratio varies between a minimum of 208.20/8.46 = 24.61 for Problem 10×20×80 and

a maximum of 2132.23 for Problem 50×50×80, with an average speed up of 447.53. Note

that we do not report the execution time for solving the root node using decomposition as

this time is relatively small. For example, for Problem 20×20×100, it takes 1.44 seconds

to solve the root node, while it takes 1.64 seconds to solve the root node of Problem

50× 50× 40.

An interesting issue is that of deciding whether to solve the linear-programming re-

laxation to optimality or to stop after a certain number of cuts. For example, Table 1

indicates that the number of cuts needed to solve the root node of Problem 10×20×80 is

162 cuts. It might be beneficial to terminate the process of adding cuts at the root node

after a 100 cuts. In this case, we may lose accuracy in approximating the region around

the continuous optimal solution, but gain by reducing the size of the first-stage problem.

Table 2 studies the impact of capping the number of cuts at the root node by looking at

Problem 10× 20× 100, Problem 20× 20× 100, and Problem 50× 50× 100.

In Table 2, the column “Max.” indicates the maximum number of cuts permitted at

the root node. The algorithm for solving the root node terminates when the maximum

number of cuts is reached or when the current solution is within 10−9 of optimality. The

actual number of cuts at the root is reported in the column labeled “Root”. When solving

the linear relaxation of the root node terminates as a result of reaching the maximum

number of cuts, we calculate the “Error” which is the ratio of the upper bound to the

lower bound minus one. When the error exceeds 100%, we do not report its value. As

in Table 1, columns labeled “Int.,” “Nodes,” and “CPU” provide the number of integer

solutions found during the branch-and-bound process, the number of nodes searched,

17

and the execution time in seconds, respectively. There does not appear to be a direct

correlation between the execution time and the number of cuts at the root node. However,

it is clear that as the number of cuts introduced at the root level increases, the total

number of nodes in the branch-and-bound tree decreases.

Finally, Table 3 presents results related to several large test problems with the maxi-

mum number of cuts allowed at the root set to 100. The results indicate that the decom-

position approach scales well with the number of contracts, views, and scenarios.

5 Conclusions

We proposed formulating the problem of selecting bids in the short-term electricity market

as a minimax stochastic program. The load associated with a bid was modeled using a

scenario tree, while the probability was allowed to vary based on an expert’s view. In order

to limit risk, we chose a probability measure that minimized the maximum expected profit.

The resulting problem is a large-scale mixed-integer program which was solved using a

decomposition approach. Our numerical results indicate that the suggested approach can

solve large instances of the problem in 1–2 minutes.

References

J. J. Ancona. A bid solicitation and selection method for developing a competitive spot

priced electric market. IEEE Transactions on Power Systems, 12(2):743–748, 1997.

J. R. Birge and R. J.-B. Wets. Computing bounds for stochastic programming problems

by means of a generalized moment problem. Mathematics of Operations Research,

12:149–162, 1987.

J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, New

York, 1997.

18

R. Baldick The generalized unit commitment problem. IEEE Transactions on Power

Systems, 10:465–475, 1995.

M. Breton and S. El Hachem Algorithms for the solution of stochastic dynamic minimax

problems. Computational Optimization and Applications, 4:317–345, 1995.

A. Carpentier, G. Cohen, and J.-C. Culioli. Stochastic optimization of unit commitment:

A new decomposition framework. IEEE Transactions on Power Systems, 11(2):1067–

1073, May 1996.

J. Dupačová. The minimax approach to stochastic programming and an illustrative ap-

plication. Stochastics, 20:73–88, 1987.

J. Dupačová. Minimax stochastic programs with nonseparable penalties. Optimization

techniques (Proc. Ninth IFIP Conf., Warsaw, 1979), Lecture Notes in Control and

Information Science, 22(1):157–163, Springer, Berlin, 1980.

Y. Ermoliev, A. Gaivoronsky, and C. Nedeva. Stochastic optimization problems with

partially known distribution functions. SIAM Journal on Control and Optimization,

23:697–716, 1985.

Federal Energy Regulatory Commission. Staff Report to the Federal Energy Regulatory

Commission on the Causes of Wholesale Electricity Pricing Abnormalities in the

Midwest During June 1998. September 1998.

H. Gassman and W. T. Ziemba. A tight upper bound for the expectation of convex func-

tion of a multi-variate random variable. Mathematical Programming Study, 27:39–53,

1986.

E. Hoy, S. Takriti, and L. S.-Y. Wu. Divide and conquer: A Threshold model. Energy

and Power Risk Management, 2(10):14–17, March 1998.

19

J. Jacobs, G. Freeman, J. Grygier, D. Morton, G. Schultz, K. Staschus, and J. Stedinger.

SOCRATES: A system for scheduling hydroelectric generation under uncertainty.

Annals of Operations Research, 59:99–133, 1995.

P. Kall. An upper bound for SLP using first and total second moments. Annals of

Operations Research, 30:670–682, 1991.

V. Kaminski, S. Gibner, and K. Pinnamaneni. Energy exotic options. In Managing Energy

Price Risk, Risk Books, 1999.

J. A. Muckstadt and S. A. Koenig. An application of Lagrangian relaxation to scheduling

in power-generation systems. Operations Research, 25(3):387–403, 1977.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley, New

York, 1998.

A. Shapiro and A. Kleywegt. Robust analysis of stochastic programs. Working paper,

School of Industrial & Systems Engineering, Georgia Institute of Technology, 2000.

S. Takriti, J. R. Birge, and E. Long. A stochastic model of the unit commitment problem.

IEEE Transactions on Power Systems, 11:1497–1508, 1996.

S. Takriti, B. Krasenbrink, and L. S.-Y. Wu. Incorporating fuel constraints and electric-

ity spot prices into the stochastic unit commitment problem. Operations Research,

48(2):268–280, March-April 2000.

A. J. Wood and B. F. Wollenberg. Power Generation, Operation, and Control. John

Wiley, New York, 1996.

J. Žáčková. On minimax solution of stochastic linear programming problems. Cas. Pest.

Mat., 91:423–430, 1966.

20

CPLEX Decomposition

Problem R-CPU Nodes CPU Root Int. Nodes CPU Ratio

10× 20× 20 13.85 113 59.58 94 8 306 0.65 92

10× 20× 40 23.00 169 137.98 147 33 761 2.43 57

10× 20× 60 24.86 357 181.24 171 51 1626 5.97 30

10× 20× 80 31.11 340 208.20 162 65 2594 8.46 25

10× 20× 100 31.03 282 211.38 144 48 1422 4.87 43

20× 20× 20 91.25 251 448.93 95 22 1011 1.68 267

20× 20× 40 128.54 452 645.13 136 44 2889 6.17 105

20× 20× 60 145.72 583 1129.61 136 54 2912 7.18 157

20× 20× 80 151.28 389 861.98 134 36 1628 5.24 165

20× 20× 100 145.92 583 1128.92 200 97 5490 19.82 60

40× 30× 20 560.27 518 3919.79 162 77 2367 5.62 697

40× 30× 40 999.26 113 2637.74 200 18 897 4.19 630

40× 30× 60 1076.77 182 3585.73 127 44 2940 7.17 500

40× 30× 80 1052.01 383 4878.95 144 79 4022 11.42 427

40× 30× 100 1129.17 954 7204.66 200 228 10268 41.79 172

50× 50× 20 1015.99 311 5439.08 144 47 2499 5.13 1060

50× 50× 40 1219.29 357 7213.40 200 134 8487 26.03 277

50× 50× 60 1553.08 214 6235.42 200 29 2356 8.20 760

50× 50× 80 1446.61 52 6034.21 163 6 229 2.83 2132

50× 50× 100 1668.75 83 7100.50 138 21 1140 4.74 1498

Table 1: Performance comparison between the proposed decomposition algorithm and

CPLEX’s mixed-integer programming solver. The maximum number of cuts at the root

node is set to 200.

21

Root BB

Problem Max. Act. Error Int. Nodes CPU

10× 20× 100 1 1 ∞ 89 2659 3.71

10 10 ∞ 98 3098 5.38

50 50 0.51% 48 1736 2.73

100 100 0.01% 47 1241 3.53

≥ 200 144 0.00% 48 1422 4.87

20× 20× 100 1 1 ∞ 117 7044 11.18

10 10 14.36 137 7927 14.83

50 50 0.90% 100 5855 11.94

100 100 0.06% 91 5544 12.30

200 200 0.00% 97 5490 19.82

≥ 300 210 0.00% 95 5220 19.88

50× 50× 100 1 1 ∞ 90 5090 7.28

10 10 5.52% 46 4178 4.76

50 50 0.27% 32 1530 3.08

100 100 0.00% 21 1325 4.14

≥ 200 138 0.00% 21 1140 4.74

Table 2: The impact of the maximum number of cuts allowed at the root node.

22

Problem Int. Nodes CPU Problem Int. Nodes CPU

50× 50× 100 21 1325 4.14 50× 50× 200 69 3528 22.65

100× 50× 100 63 4930 11.63 100× 50× 200 319 17849 136.31

200× 50× 100 25 2418 10.28 200× 50× 200 74 3663 43.64

50× 100× 100 89 9631 31.09 50× 100× 200 233 13949 85.29

100× 100× 100 20 1258 9.78 100× 100× 200 350 22664 156.58

200× 100× 100 97 7076 37.19 200× 100× 200 105 4149 47.94

Table 3: The scalability of the proposed algorithm. The maximum number of cuts at the

root node is set to 100.

23

