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1 Introduction

Optimization can be roughly defined as a quantitative approach for decision
making, where we seek to determine a “best” decision from a “set” of possible
decisions. We need to specify what we mean by decisions, the set of possible de-
cisions, and the criteria according to which one decision is better than another.
Let us illustrate these notions through a concrete decision problem.

Example: Portfolio Optimization
Suppose we are considering investing $1000.00 in three non-dividend paying
stocks, IBM (IBM), Walmart (WMT), and Southern Electric (SEHI), for a one-
month period. This means we will use the $1000.00 to buy shares of the three
stocks at the current market prices, hold these for one month, and sell the shares
off at the prevailing market prices at the end of the month. As a rational in-
vestor, we hope to make some profit out of this endeavor, i.e., the return on our
investment should be positive. Suppose we bought a stock at $ p/share in the
beginning of the month, and sold it off at $s/share at the end of the month.
Then the one-month return on a share of the stock is s−p

p $/$. Since the stock
prices are quite uncertain, so is the end-of-month return on our investment.
Our goal is to invest in such a way that the expected end-of-month return is at
least $50.00 or 5%. Furthermore, we want to make sure that the “risk” of not
achieving our desired return is minimum.

In the above example, our decision constitutes determining how much of the
$1000.00 to invest in each of the three stocks; the set of possible decisions are
the investment amounts that will provide an expected return of $50.00; and
the criteria for comparing two decisions is the risk of not achieving the desired
return.

An optimization approach to the above decision problem consists of the
following steps:
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• Build a mathematical model of the decision problem.

• Analyze available quantitative data to use in the mathematical model.

• Use a numerical method to solve the mathematical model.

• Infer the actual decision from the solution to the mathematical model.

In this class you will learn important concepts and tools for each of the above
steps in the context of optimization of various decisions. In the following, we
briefly describe these steps in the context of our portfolio optimization example.

Note that fortunately the actual decision problem in our example is quite
well formulated. This is already great progress. Most often than not, in practical
circumstances, the right question to ask is far from being well-posed.

2 Modeling

This step involves approximating the underlying decision problem using math-
ematical expressions suitable for quantitative analysis. A key trade-off in this
step is deciding how much of the detail of the actual problem to consider while
maintaining numerical tractability of the mathematical model. For example,
should we consider the fact that investing in more stocks requires us to pay
more transaction costs, or are these costs negligible? Should we explicitly con-
sider the fact that shares can only be traded in lots of certain sizes, or should we
neglect this restriction? The modeling step often requires us to make simplifying
assumptions regarding the actual problem, either because some of the problem
characteristics are not well-defined mathematically, or because we wish to de-
velop a model that can actually be solved. One needs to exercise great caution
in these assumptions and not loose sight of the true underlying problem.

The three key components of an optimization model are:

(a) The decision variables representing the actual decisions we are seek-
ing. In our portfolio optimization example, these represent the investment
levels in each of the three stocks.

(b) The constraints that specify the restrictions and interactions between
the decision variables, thus defining the set of possible decisions. In our
example, one constraint corresponds to the restriction that our investment
should provide an expected return of $50.

(c) The objective function quantifies the criteria for choosing the best de-
cision. The values of the decision variables that maximize or minimize the
objective function is the “best” among the set of decision values defined by
the constraints in the optimization model. In our example, the objective
function is the risk level of the investment.
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The standard statement of an optimization model has the form:

min or max objective function
s.t. constraints

where “s.t.” stands for “subject to.” Let us now develop an optimization model
for our example problem.

Example (contd.):
It will be convenient to adopt an indexing scheme on the set of stocks. Let us
use the index i to denote a particular stock, where i = 1, 2, and 3 correspond
to the stocks IBM, WMT, and SEHI, respectively.

Our decision variables are xi, i = 1, 2, 3, denoting the dollars invested in
stock i. Since we have a total of $ 1000.00 to invest, thus xi’s must satisfy:

3∑
i=1

xi ≤ 1000.00.

Let us make the following assumptions:

(i) We can trade any continuum of shares.

(ii) No short-selling is allowed.

These assumptions restrict the variables xi to take on non-negative real values,
i.e.

xi ≥ 0 i = 1, 2, 3.

Note that the end-of-month return of a stock i is uncertain, and therefore,
so is the return on our investment. Let us denote by r̃i the random variable
corresponding to the monthly return (increase in the stock price) per dollar for
stock i. Then the return (or profit) on xi dollars invested in stock i is r̃ixi, and
the total (random) return on our investment is

∑3
i=1 r̃ixi. Note that we have

assumed that:

(iii) There are no transaction costs.

The expected return on our investment is then E[
∑3

i=1 r̃ixi] =
∑3

i=1 r̄ixi, where
r̄i is the expected value of the r̃i. Since we want to have an expected return of
at least $ 50.00, thus xi’s have to be such that:

3∑
i=1

r̄ixi ≥ 50.00.

Now we need to quantify the notion of “risk” in our investment. Markowitz,
in his Nobel prize winning work, showed that a rational investor’s notion of

3



minimizing risk can be closely approximated by minimizing the variance of the
return of the investment portfolio. This variance is given by:

Var[
3∑

i=1

r̃ixi] = E

( 3∑
i=1

r̃ixi −
3∑

i=1

r̄ixi

)2


= E

( 3∑
i=1

(r̃i − r̄i)xi

) 3∑
j=1

(r̃j − r̄j)xj


=

3∑
i=1

3∑
j=1

xixjE[(r̃i − r̄i)(r̃j − r̄j)]

=
3∑

i=1

3∑
j=1

xixjσij ,

where σij is the covariance of the return of stock i with stock j.
We can now state the following optimization model for our example problem:

min
3∑

i=1

3∑
j=1

xixjσij

s.t.
3∑

i=1

xi ≤ 1000.00,

3∑
i=1

r̄ixi ≥ 50.00,

xi ≥ 0 i = 1, 2, 3.

For a complete description of the model, we need to specify the values of r̄i and
σij . Although we do not know the exact distribution of the random return, we
can obtain some statistical inference regarding it through analysis of historical
data. This will be discussed in Section 3.

Using matrices and vectors, we can compactly represent the above optimiza-
tion model as follows:

min xT Qx

s.t. eT x ≤ 1000.00
r̄T x ≥ 50.00

x ≥ 0,

where x is the decision vector of size n (n is the number of stocks, n = 3 in our
example), e is an n-vector of ones, r̄ is the n-vector of expected returns of the
stocks, and Q is the n × n covariance matrix (whose i-jth element Qij = σij).
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Note that all equations and inequalities are defined component-wise.

Exercise 1: Verify that the above model with vector notation is equivalent to
the original portfolio optimization model.

3 Data Collection

Before attempting to solve an optimization model numerically, we need to quan-
tify all components of the model except for the decisions variables (whose values
are to be determined through solving the model). These are known as the model
parameters. For our example problem, the model parameters are the invest-
ment budget of $1000.00, the desired return $50.00, the expected returns for
the stocks r̄i, and the covariances σij . In this case, the parameters r̄i and σij

need to be quantified.
Reliable quantification of model parameters can only be done through careful

observation and analysis of the actual data processes underlying the decision
problem. This is one of the most crucial steps in the optimization approach. One
of the key reasons why optimization models can fail to provide a useful decision
(or even provide a wrong decision) in practice is improper data specification.
This is the garbage in garbage out (GIGO) principle.

Specification of model parameters again involves approximations and as-
sumptions. Descriptive models are used to describe the actual data processes,
and provide numerical estimates1 For example, the approximation of risk via
variance (in Markowitz’s model) is a descriptive model. Another common de-
scriptive model is the probability distribution used to describe uncertain data
processes. Once a descriptive model of the data process is decided upon, we
need to collect numerical data to calibrate this model and obtain the desired
information. Let us illustrate this process using our example.

Example (contd.):
As mentioned before, we need to determine the expected values and the covari-
ances for the end-of-month returns of the three stocks. We will assume that

(iv) The end-of-month stock prices have a stationary probability distribution.

Under this model of the stock price process, the end-of-month returns on the
stocks, defined as the ratio on the change in stock price to the last month’s
stock price, has also a stationary distribution. We can then estimate the ex-
pected values and covariances of this distribution through statistical analysis of
historical data. Table 1 presents the closing prices of the three stocks in the last
trading day of the month from November 2000 to November 2001. Using this
data, the one-month return on the stocks are calculated in Table 2. This table
also presents the average one-month return for each of the three stocks. The

1Note, that an optimization model is prescriptive and involves a variety of descriptive
models in its description.

5



covariances among the returns of the three stocks are presented in Table 3. We
can now use these values for r̄i and σij in our model.

Note that the analysis used above is quite naive. We have made a very
simplistic assumption of the stock price distribution, no temporal effects are
considered here. Furthermore, the expectation and covariances are estimated
based on a very small sample. In practice, the data collection and analysis
process would involve very sophisticated statistical and time series models to
obtain reliable estimates of the means and covariances.

Month IBM WMT SEHI
November-00 93.043 51.826 1.063
December-00 84.585 52.823 0.938

January-01 111.453 56.477 1.000
February-01 99.525 49.805 0.938

March-01 95.819 50.287 1.438
April-01 114.708 51.521 1.700
May-01 111.515 51.531 2.540
June-01 113.211 48.664 2.390
July-01 104.942 55.744 3.120

August-01 99.827 47.916 2.980
September-01 91.607 49.438 1.900

October-01 107.937 51.336 1.750
November-01 115.590 55.081 1.800

Table 1: Stock price data ($)

4 Solving the Model

Once the model has been established and all parameters quantified, we are now
ready to solve the model to obtain the values of the decisions variables that
are consistent with the model constraints and optimize the specified objective
function.

Rarely do optimization models of practical decision problems lend themselves
to analytical solutions. These models have to be solved using iterative schemes
(or algorithms) with the help of a computer. Depending on the structure (eg.
linear of non-linear) of the objective function, constraints, and the domain of
the decision variables, a wide variety of optimization algorithms have been de-
veloped. The most widely used optimization algorithms have been implemented
in robust software packages (like GAMS and CPLEX) and can be used to solve
very large models. Unfortunately, software implementations are not available
for all possible model structures. In that case, one can either approximate the
complicated model using the more common structures, or implement special
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Month IBM WMT SEHI
December-00 -0.091 0.019 -0.118

January-01 0.318 0.069 0.067
February-01 -0.107 -0.118 -0.063

March-01 -0.037 0.010 0.533
April-01 0.197 0.025 0.183
May-01 -0.028 0.000 0.494
June-01 0.015 -0.056 -0.059
July-01 -0.073 0.145 0.305

August-01 -0.049 -0.140 -0.045
September-01 -0.082 0.032 -0.362

October-01 0.178 0.038 -0.079
November-01 0.071 0.073 0.029

Average 0.026 0.008 0.074

Table 2: Stock Returns ($ / $)

IBM WMT SEHI
IBM 0.017087987 0.003298885 0.001224849

WMT 0.003298885 0.005900944 0.004488271
SEHI 0.001224849 0.004488271 0.063000818

Table 3: The Covariance Matrix

purpose algorithms. Thus, one needs to knowledge of the various model struc-
tures and the algorithms and software available for these, as well as skills to
modify and develop new optimization algorithms.

In this class, we shall learn about: the classification of optimization models
based upon structure, a wide variety of optimization algorithms and software,
practical computational issues in using existing software for solving large prob-
lems, as well as modifying existing optimization algorithms to solve problems
with special structures.

Example (contd.):
Our portfolio optimization model involves minimizing a quadratic objective
function subject to linear constraints. Fortunately algorithms and software for
this class of optimization problems are widely available. We used the GAMS
optimization system to solve this model, and for the data of Section 3, obtained
the following solution:

x1 = 497.669, x2 = 0.00, x3 = 502.331.

The return on the investment is $50.00 and the variance of the return is 20742.0772.
2The standard deviation is 144.02. Thus if the end-of-month wealth is assumed to be
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5 Solution Analysis

This step involves inferring the actual decisions from the solution to the op-
timization model of the decision problem. Note that the optimization process
involves various approximations and assumptions at modeling, data collection,
and solution stage. Therefore, it is crucial to check the solution for robustness
and sensitivity to the underlying approximations. This step can be quite subjec-
tive and requires a clear understanding of the real problem and its surrounding
circumstances.

Example (contd.):
From the optimization problem solution, our optimal decision is to invest $497.669
in IBM stocks, and $502.331 in SEHI stocks.

Suppose we made our investment on the last day of November 2001. The
closing prices on the last day of November were:

IBM := $115.59, WMT := $55.081, and SEHI := $1.8.

Thus, the optimal decision is to buy (497.669/115.59 = ) 4.305 shares of IBM,
and 279.073 shares of SEHI. Unfortunately, shares can only be traded in whole
numbers, so we can consider buying either 4 or 5 IBM shares, and 279 or 280
SEHI shares.

Exercise 2: Consider each of the four possible combinations of the number of
shares of IBM and SEHI stocks, i.e. (4, 279), (4, 280), (5, 279), and (5, 280).

1. For each of the four investment possibilities, compute the expected return
and variance based on the data given in Section 3. Comment on these
values in relation to the expected return and variance values obtained from
the optimization model. Choose one investment strategy from the four,
and outline your reasoning.

2. Obtain the closing prices for the three stocks on December 31, 2001 (from
http://finance.yahoo.com for example). What is the true return of the
investment strategy chosen in part 1?

6 Concluding Remarks

In this handout, we have tried to illustrate the steps in an optimization approach
to solve a decision problem. It is important to realize that the steps outlined
here is not a straight-cut recipe. Each of the steps of modeling, data analysis,
solution, and solution analysis is very involved and may need to be revisited
and revised as more is learnt about the problem.

Normal distributed about the mean $1050.00, the 3σ range of the end-of-period wealth is
between $617.94 and $1482.06.
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