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Linear Programming: Geometry,
Algebra and the Simplex Method

A linear programming problem (LP) is an optimization problem where all variables are continuous,
the objective is a linear (with respect to the decision variables) function , and the feasible region
is defined by a finite number of linear inequalities or equations. LP! is possibly the best known
and most frequently used branch of optimization. Beginning with the seminal work of Dantzig?,
LP has witnessed great success in real world applications from such diverse areas as sociology,
finance, transportation, manufacturing and medicine. The importance and extensive use of LPs
also come from the fact that the solution of certain optimization problems that are not LPs, e.g.,
integer, stochastic, and nonlinear programming problems, is often carried out by solving a sequence
of related linear programs.
In this note, we discuss the geometry and algebra of LPs and present the Simplex method.

1.1 Geometry of LP

Recall that an LP involves optimizing a linear objective subject to linear constraints, and so can
be written in the form
min {c'x: a/x<b i=1,...,m}.

An LP involving equality constraints can be written in the above form by replacing each equality
constraint by two inequality constraints. The feasible region of an LP is of the form

X={xeR": a/x<b; i=1,...,m}

which is a polyhedron (recall the definitions/properties of hyperplanes, halfspaces, and polyhedral
sets). Thus an LP involves minimizing a linear function over a polyhedral set. Since both the
objective function and constraint set are convex, an LP is a convex optimization problem. An LP
could be either infeasible, unbounded or have an optimal solution.

Example 1.1 Figure 1.1 shows the set of optimal solutions of the feasible LP

min C121 + Ccaxo
s.t. —x14+x2<1, 1 >0, zo2 > 0.

We use LP for both linear programming and a linear programming problem.
2G.B. Dantzig. Linear Programming and Eztensions, Princeton University Press, 1963
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Figure 1.1: Optimal solutions of the LP in Example 1.1

corresponding to different objective function vectors. This example illustrates LP could have a
unique optimal solution or could have an infinite number of optimal solutions. Moreover the set
of optimal solutions may also be unbounded. This example also illustrates that if an LP (whose
feasible region does not contain a line) has an optimal solution then there is an extreme point
(recall the definition of extreme points of convex sets) of the feasible region that is optimal.

Theorem 1.1 Consider the linear program
S B
min{c 'x: x € X},

and suppose that the feasible region X does mot contain a line. If the above LP has an optimal
solution then there exists an extreme point of X which is optimal.

1.2 Algebra of LP

By Theorem 1.1 the search for an optimal solution to an LP could be restricted to just the finite set
of extreme points of the feasible region (a polyhedron has a finite set of extreme points). To do this
we need to have an algebraic characterization of extreme points. First we consider a fixed format
for the LP known as the standard form. Next we consider an algebraic construction to obtain a
specific type of feasible solutions, and show that such solutions correspond to extreme points of the
feasible region.
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Standard form

An LP in standard form has only equality constraints and non-negative variables. The objective
function and constraints are simplified so that each variable appears only once. Any constant term
in the objective function is not considered and the constraint system is a system of linear equations
where all variables appear on the left and constants appear on the right hand side. An LP in any
form can always be converted to standard form by including additional non-negative variables. For
every < constraint, add a “slack” variable to the left-hand-side, and transform the constraint to =
form. The slack variable is non-negative and has a zero cost coefficient. For every > constraint,
subtract a “slack” variable from the left-hand-side, and transform the constraint to = form. Again
the slack variable is non-negative and has a zero cost coefficient. Any variable restricted to be
non-positive, i.e, a variable z; < 0, should be replaced by a new variable z} such that =, = —z;.
Note that z > 0. Any variable z; that is unrestricted in sign, should be replaced by the difference
of two new variables u; and v; such that x; = u; — v; and u;, v; > 0.

Example 1.2 Consider the LP

min 2z; 4+ 3z2 — 2zx3
st. x1 — x99 + 2x3 < 5
201 4+ 3x9 — 2x3 > 7
Ty + 2x9 — 3x3 = 12
1 > 0
xT9 S 0
T3 unrestricted,
and its standard form representation
min 2z — 3z — 2uz + 2v3
st. w1 4+ zh 4+ 2u3 — 2v3 + s = 5
2ry — 3y, — 2uz + 2uv3 — 5 = 7
ry — 2xh — 3ug + 3us = 12
T ) ‘T/Q ) us ’ U3 , S1 ,  S2 > 0
Using indices ¢ = 1,...,m for constraints and j = 1,...,n for variables, let z; be the j-th

variable, ¢; be the objective coefficient of x;, a;; be the coefficient of x; in the i-th constraint and
b; be the right-hand-side of the i-th constraint. A standard form LP is then

n
min E le‘j
Jj=1

n

s.t. Zaijxj = bz for all i = 1,...,m
j=1
z; >0 forallj=1,...,n.

Using vector matrix notation an LP in standard form is

min c'x

(LP) st. Ax=Db (1.1)
x >0,
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c1 b1 ail a2 ... Qain

c2 by as| Az ... ay, , )
where ¢ = .|, b= . ,and A = . . ) . . The j-th column of A is

Cn bin aml @m2 .- Gmn

denoted by A; and consists of the coefficients of the variable x; in all equations.

Basic solutions and Basic feasible solutions

Any solution to the LP (1.1) has to satisfy Ax = b and x > 0. Let us ignore the non-negativity
constraints x > 0 for a moment. Note that Ax = b is a system of linear equations with m
equations and n unknowns. Let us assume that all rows of A are linearly independent, i.e., we
ignore constraints that are obtained by taking linear combinations of other constraints. In other
words we assume that A has full row rank (we will always make this assumption from now on).
Then we must have m < n otherwise the system does not have a solution. If m = n, then Ax =b
has a unique solution x* = A~!'b. (Note that A~! exists since A has linearly independent rows
and columns and hence is non-singular.) If m < n, then there are an infinite number of solutions.
Consider the following special type of solutions. Fix (n —m) of the variables to 0 and solve for the
remaining m variables.

Example 1.3 Consider the following system (with m = 2 and n = 4):

1 + x2 + 23 = 6
) + x4 = 3

Fixing 3 = x4 = 0 and then solving for the remaining variables: z1 = 3,z9 = 3, we have the
solution (3,3,0,0)". Note that if we fix 29 = 24 = 0 then we cannot find a solution.

The above example illustrates that we must take care in deciding which variables to fix to zero.
We need to fix (n — m) of the variables to 0 in such a way that we can solve for the remaining
m variables uniquely. The (n —m) variables that are fixed to 0 are called non-basic variables, the
m variables that are solved for are called basic variables, and the corresponding solution is called
a basic solution to the system Ax = b. We now provide a precise algebraic description of basic
solutions.

XB
XN
of m basic variables and x be the vector of (n —m) non-basic variables. Similarly, partition A as

Consider the system Ax = b. Let us partition x as x = , where xp denote the vector

A =[Ap,AN]

where A g is an m x m matrix formed by the columns of A corresponding to m basic variables, and
Ay is an m X (n — m) matrix formed by the columns of A corresponding to the n — m non-basic
variables. Then Ax = b is equivalent to

Apxp+Ayxy =Db.
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Example 1.4 For the system in Example 1.3:

1
111 0] x| [6
01 01 3 | | 3|’
\—’_/.%4 ——
A b

X

Suppose xp = (x2,74) ", i.e., Xy = (z1,23) . Then we have
1 0 X9 + 11 I . 6
11 T4 0 0 x3 | | 3|
—— e e e N~
Ap XB Ay XN b

Setting xx = (x1,23)" = (0,0)7, the above system reduces to

EREIEED

Notice that we need Ap to be invertible to obtain a solution.

Let Ap be a m x m matrix formed by any m linearly independent columns of A. Such a matrix
is called a basis of A. (The variables corresponding to these columns are the basic variables xp).
The remaining columns form the matrix Ay and the associated non-basic variables are x. Then

a solution to Ax = b is
)=
X = =
XN 0

Such a solution is called a basic solution.

Recall that until now we have ignored the non-negativity restriction in the feasible region
Ax = b, x > 0. By construction a basic solution x satisfies Ax = b but not necessarily x > 0. A
basic solution that has all components non-negative is a basic feasible solution (bfs).

Example 1.5 For the system in Example 1.3 let us enumerate all choices of m = 2 out of n =4
columns of A that lead to a basis and check if the corresponding solution is a bfs.

Ap X bfs?
[A;,As]  (3,3,0,0)7  Yes
[Al,Ad (6,0,0,3)T Yes
[As, Azl (0,3,3,0)7  Yes
[A2,Ay] (0,6,0,-3)" No
[ ]

(0,0,6,3)T  Yes

where A is the column of A corresponding to variable x;. Note that the columns [A, A3] do not
form a basis since they are linearly dependent.

There are only :1 > ways to choose a set of m columns from n columns of A. So the number
of basis(es) of A and the number of basic solutions and hence basic feasible solutions is finite and
at most ( :L > For Example 1.3, n = 4, m = 2. The number of basic solutions = < ;l ) —1=5

and the number of basic feasible solutions is 4.
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Figure 1.2: Feasible region of Example 1.6

Equivalence of bfs and extreme points

Now we state (without proof) that basic feasible solutions are precisely the extreme point solutions.

Theorem 1.2 A solution x is an extreme point of the polyhedron X = {x € R": Ax =b, x > 0}
if and only it is a basic feasible solution of the system Ax =b, x > 0.

Example 1.6 Consider the LP feasible region defined by the constraints
T1+22<6, 22 <3, 1 >022 >0.

Figure 1.2 shows that the above feasible region along with its extreme points. In standard form
the above system is

r1 + x2 + 3 = 6
To + x4 = 3
x1, T2, x3, x4, = 0

This is the system from Example 1.3. The basic solution and the basic feasible solutions/extreme

points are
Ap X bfs/extreme point
[A1,As]  (3,3,0,0)7 Yes
[A1, A4 (6,0,0,3)" Yes
[Az,As]  (0,3,3,0)7 Yes
[A2, A4 (0,6,0,—3)" No
[A3,A4]  (0,0,6,3)7 Yes

Theorem 1.3 If an LP min{c'x: Ax =b, x > 0} has an optimal solution then there is a basic
feasible solution that is optimal.

Theorem 1.3 suggests a straight-forward scheme for solving LPs: enumerate all bfs (there are
only finitely many of these) checking their objective function values, and choose one with the
smallest objective value. Unfortunately for real-world LPs involving hundreds or thousands of
variables and constraints enumerating all bfs is hardly practical. In the next section we provide a
systematic way to search over bfs and solve LPs.



ISyE 3133 Lecture Notes - (¢)Shabbir Ahmed 7

1.3 The Simplex Method

The basic idea of the Simplex method for LPs is to move from a bfs to an “adjacent” to improve
the objective function value. Two bfs x' and x? are adjacent if one of the non-basic variables in x!
is basic in x2, and vice versa. The main steps of the Simplex algorithm are as follows:

0. Start from a bfs, if none exists STOP the problem is infeasible
1. Try to move to “adjacent” bfs to improve the objective function. There are three possibilities

(a) There is no adjacent bfs which will improve the objective function, in this case STOP
the current bfs is optimal

(b) We discover the problem is unbounded, in this case STOP

(¢) There is adjacent bfs which improves the objective function, in this case REPEAT step
1 from this bfs

We postpone the discussion of how to find a starting bfs for later. Recall that moving from a
bfs involves making one of the non-basic variables basic (i.e. increasing its value from zero). We
first investigate the effect of this.

Effect of increasing non-basic variables

Suppose we are at a bfs, given by the basis matrix Ap. (Recall we let B denote indices of the basic
variables, and N denote the indices of the non-basic variables.) Since moving to an adjacent bfs
entails increasing one of the current non-basic variables (i.e. one of the variables in x;) we need to
track how such a change effects the basic variables (xg) and the objective function. To understand
the effect on the basic variables, note that

Apxp+Anxy =Db

& Xp =AL'b - A Anxy
& Xp =Ap'b - > AR'Ajz; (1.2)
JEN

Currently all non-basic variables are at zero, and so the basic variables have the value
xp = Ag'b.

According to (1.2), a unit increase in a non-basic variable x; will decrease the vector of basic
variables xp by the vector A]§1Aj.
To understand the effect on the objective function value, observe that
2= c'x = CEXB + c}\—,xN
=ch(A5'b — A ANxy) + cixy
=chAG'b + (e — cLAS AN )Xy
TA-1 TA-1
=cpAp b+ Z(Cj —cpAp Aj)zj, (1.3)
JEN
where in line 2 above, we have plugged in the expression for xp in terms of x from (1.2). Currently
all non-basic variables are at zero, and so the objective value is

z = chglb.
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Figure 1.3: Consider the feasible region of Example 1.6. Moving from one bfs to an adjacent one
corresponds to making one of the non-basic variables basic (i.e. increasing its value and making the
corresponding tight constraint loose) and moving as far as possible until we hit another constraint
(the slack of this constraint which was basic now becomes non-basic). E.g. Moving from (6,0,0,3)
to the adjacent bfs (3,3,0,0) the basic variable x4 becomes non-basic, and the non-basic variable xy
becomes basic.

A unit change in a non-basic variable z; will increase the objective by (c¢; — CEA}_BlAj). This
quantity is known as the reduced cost. Given a bfs defined by basic variables B, the reduced cost

of a variable x; is defined as
Tj = Cj — CEAElAj. (14)

Note that reduced costs of basic variables is zero (why?).

Moving to an adjacent bfs

To move from the current bfs we have to increase the value of one of the non-basic variables from
zero. Two questions arise:

1. Which non-basic variable in N should we consider increasing?
2. How much should the chosen non-basic variable be increased to?

1. Which non-basic variable in N should we consider increasing? Note that we are trying to improve
the objective value from its current value of cEAElb. According to (1.3) increasing the non-basic
variable z; increases the objective value at the rate of r; (its reduced cost). Since we are minimizing
we would like to increase only one of the non-basic variables which has a negative reduced cost.

Rule: Pick a non-basic variable which has a negative reduced cost. (Anyone will do if there are
multiple). The chosen non-basic variable is said to enter the basis. If there are no non-basic vari-
ables with negative reduced cost, STOP the current bfs is optimal.

2.How much should the chosen non-basic variable be increased to? Suppose that we have picked a
non-basic variable z; with j € N with r; < 0 to enter the basis. All other non-basic variables will
remain at zero. From (1.2) the basic variables will change according to

XpB — Aélb - AélAj.%'j.
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Let us introduce another bit of notation:
J _ A-1
dy =A5Aj.

Note that d% is an m-dimensional vector and its components d{ are associated with the basic
variables i € B.

Example 1.7 Consider the bfs x = (6,0,0,3) " for the system in Example 1.6 (see also Figure 1.3).
Here B = {1,4}. Consider increasing the value of the non-basic variable z3, i.e., j = 2. Here

&:[ﬁ}:ABlAFH i’]_l[ikm

Writing out (1.2) component-wise (i.e. for each basic variable) we get

As we increase xj, the i-th basic variable z; will decrease at the rate of d{ . We need to make sure that
all basic variables remain non-negative. If the quantity d/ is non-positive then the basic variable

z; will remain non-negative. If d/ is positive then the basic variable z; will remain non-negative as
long as the non-basic variable x; satisfies

(A5'b);
&

]

Lj

The current value of the basic variable x; = (A;lb)i. This suggests the following rule:

Rule: Set the value of the entering (nonbasic) variable as follows:

xj:mln{d;: i € Bs.t. dg>0}. (1.5)

7

The above formula is known as the minimum ratio test.

What if d; <0 for all basic variables? Then we can increase the nonbasic variable z; as much
as we want and improve the objective. This then means that the problem is unbounded.

Note that the basic variable(s) which determines the minimum in the right-hand-side of the
expression (1.5) becomes zero when we increase the value of the entering nonbasic variable. Thus
one of these basic variables which are now zero becomes nonbasic. Now we repeat the process with
the new basis matrix. This is the Simplex algorithm. A summary of the method is presented in
Algorithm 1.1.
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Algorithm 1.1 The Simplex Method

0. Initialize with a starting bfs x°. Let Ap be the associated basis. If no such bfs exists, STOP,
the problem is infeasible.
1. For each non-basic variable j € N compute the reduced cost ;. If all reduced costs are non-

negative, STOP, the current bfs is optimal. Otherwise, compute d% corresponding to a nonbasic
variable x; with r; < 0.

2. If djé < 0, STOP, the problem is unbounded. Otherwise, compute the new value of x;
according to the minimum ratio test formula (1.5). Let z; be (one of) the basic variable which
become nonbasic.

3. The basic variable x; leaves the basis and the non-basic variable z; enters the basis. Update
B and Ap and return to step 1.

Example 1.8 Consider the LP

min 3x1 — 2x9
s.t. ry + T2 + 3 = 6
o + x4 = 3
xy, T2, x3, x4, > 0

Following are iterations of the Simplex method starting from the bfs (6,0,0,3) .

# XB XN Ap TN XB dp [_xél]
1 [z ] [ 22 ] 1 0 -5 6 ] 1 6
B 7 | 23 | 1 — 3 | 1 3
9 [ z1 ] [ x3 ] (1 1] -3 [ 3] 1 3
’ _:Eg_ _ZE4_ _0 1_ 5 _3_ 0 -
3 T2 1 1 3 3 _ -
| T3 | | Ta | | 1 0 | 2 | 3 ]

Finding an initial bfs

The Simplex method requires an initial basic feasible solution for the system Ax = b, x > 0. If the
constraint matrix A has an m x m identity submatrix I, we can use I as the initial basis. Otherwise,
we can suitably multiply the constraints by £1 so that b > 0 and then introduce auxiliary variables
y = (Y1,...,Ym) ", to construct the following Phase-I LP:

min eTy
s.t. Ax + 1y = b,
X,y 20,
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where I is an m x m identity matrix and e is a vector of ones. We can now solve the above LP using
I as the starting basis. If the optimal objective value is zero, implying y = 0, then we have a basis
consisting of only the columns of A, which we can use as an initial BF'S for the original problem.
However if the optimal objective value greater than 0, then the original problem is infeasible.

Degeneracy, stalling, cycling and termination

If the current basic feasible solution is such that one (or some) of the basic variables has a value
of zero, then the minimum ration test (1.5) gives a value of 0 for the entering variable. Such a
bfs is known as a degenerate bfs. In this case, the basic variable with a value of zero, leaves the
basis. So the basis changes but the actual solution does not change (since none of variable values
has changed). So we have more than one basis corresponding to the same bfs (extreme point). We
have gone through an iteration without making any improvement.

Example 1.9 Consider the system

- T + x2 + S = 0
T — 89 =1

Z2 — s3 = 1

x1, T2, 51, s2, s3 =2 0

and the three basis defined by choosing the basic variables as xp = (1, x2,51) ", Xg = (21,22, 52) ",
and xp = (21,2, s3) |, respectively. All three basis define the same bfs x = (1,1,0,0,0)".

In the presence of degeneracy there might be several simplex iterations (change of basis) without
any progress (improvement in the objective value). This is known as stalling. It may also happen
that starting from a basis, the algorithm may go through several iterations (change of basis) and
return to the starting basis. This is known as cycling. Figure 1.4 provides an example of cycling
of the Simplex method. In case of degeneracy, there are ties in choosing which non-basic variable
(with negative reduced cost) to enter the basis, and which basic variable (that determines A) to
leave the basis. Cycling can be avoided by careful choice when breaking ties.

With proper care in breaking ties) the Simplex method is guaranteed to terminate finitely with

an optimal solution to the LP. In the worst case, it might require ( ;Z > steps to terminate (since

it may require exploring all bfs). In most practical problems the performance is much better. The
practical performance is sensitive to the number of rows m. The optimal solution produced by the
simplex algorithm is a bfs, therefore, (at most) m of the n variables are positive.
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