
A note on :“A Superior Representation Method for
Piecewise Linear Functions” by Li, Lu, Huang and Hu

Juan Pablo Vielma, Shabbir Ahmed and George Nemhauser
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 765
Ferst Drive, NW, Atlanta, GA 30332-0205, USA, {jvielma@isye.gatech.edu, sahmed@isye.gatech.edu,

george.nemhauser@isye.gatech.edu}

This paper shows that two Mixed Integer Linear Programming (MILP) formulations for

piecewise linear functions introduced by Li et al. (2008) are both theoretically and compu-

tationally inferior to standard MILP formulations for piecewise linear functions.

Key words: Mathematics:Piecewise linear; Programming:Integer;

History:

1. Introduction

Two new Mixed Integer Linear Programming (MILP) formulations for modeling a univariate

piecewise linear function f were introduced in Li et al. (2008). The first formulation (given

by (1)–(3) in Li et al.) uses “Big-M” type constraints, so we denote it by LiBigM. The

second formulation (given by (23)–(33) in Li et al.) uses a number of binary variables that is

logarithmic in the number of segments in which f is affine, so we denote it by LiLog. Based

on computational results that show that LiLog outperforms LiBigM, Li et al. declare LiLog

to be superior to other MILP formulations for piecewise linear functions. In this paper we

show that LiBigM and LiLog are both theoretically and computationally inferior to standard

MILP formulations for piecewise linear functions.

In Section 2 we show that both formulations from Li et al. are theoretically inferior to

essentially every standard MILP formulation for piecewise linear functions. In Section 3 we

present results of computational experiments that compare the formulations from Li et al.

to two other standard formulations.

1



2. Strength of Formulations

An MILP formulation for a univariate piecewise linear function f : D → R is Q :=

{(x, y, λ, µ) ∈ P : µ ∈ {0, 1}q} such that P is a polyhedron and proj(x,y)(Q) = {(x, y) :

f(x) = y}, where proj(x,y)(·) is the projection onto the (x, y) variables. An MILP formulation

Q is said to be sharp (Jeroslow and Lowe, 1984) if its linear programming (LP) relaxation

P is such that y ≥ g(x) for all (x, y) ∈ proj(x,y)(P ), where g := convenvD(f) is the lower

convex envelope of f over D. Sharp formulations provide the best possible LP relaxation

bounds so the sharpness property is crucial for the efficient solution of these problems using

branch-and-bound. An MILP formulation is locally ideal (Padberg, 2000) if P has integral

extreme points. The locally ideal property can provide an additional advantage because it

implies the sharpness property (e.g. Vielma et al., 2008). The sharpness property is shared

by essentially every standard MILP formulation for piecewise linear functions (see Vielma

et al.) and most of them are also locally ideal. We now show that neither LiBigM nor LiLog

is sharp.

For LiBigM we use the piecewise linear function f : [0, 4]→ R defined by

f(x) :=

{
3x x ∈ [0, 1]

2x+ 1 x ∈ [1, 4],
(1)

for which g(1) = 2.25 for g = convenvD(f). LiBigM for this function is

−4(1− λ0) ≤ x ≤ 1 + 4(1− λ0)

1− 4(1− λ1) ≤ x ≤ 2 + 4(1− λ1)

3x− 12(1− λ0) ≤ y ≤ 3x+ 12(1− λ0)

2x+ 1− 12(1− λ1) ≤ y ≤ 2x+ 1 + 12(1− λ1)

λ0 + λ1 = 1 , λ0, λ1 ∈ {0, 1}

which has λ0 = λ1 = 1/2, x = 1, and y = −3 < 2.25 as a feasible solution to its LP

relaxation.

For LiLog we use the piecewise linear function f : [0, 4]→ R defined by

f(x) :=


4x x ∈ [0, 1]

3x+ 1 x ∈ [1, 2]

2x+ 3 x ∈ [2, 3]

x+ 6 x ∈ [3, 4],

2



for which g(1) = 2.5 for g = convenvD(f). LiLog for this function is

r1 + 2r2 + 3r3 ≤ x ≤ r0 + 2r1 + 3r2 + 4r3

r1 + 3r2 + 6r3 + 4w0 + 3w1 + 2w2 + w3 = y

r0 + r1 + r2 + r3 = 1

r1 + r2 + 2r3 + z1 + z2 = 0

−u′
1 ≤ z1 ≤ u′

1

−u′
2 ≤ z2 ≤ u′

2

r0 − r1 + r2 − r3 − (1− u′
1) ≤ z1 ≤ r0 − r1 + r2 − r3 + (1− u′

1)

r0 + r1 − r2 − r3 − (1− u′
2) ≤ z2 ≤ r0 + r1 − r2 − r3 + (1− u′

2)

w0 + w1 + w2 + w3 = x

w1 + w2 + 2w3 + δ1 + δ2 = 0

−4u′
1 ≤ δ1 ≤ 4u′

1

−4u′
2 ≤ δ2 ≤ 4u′

2

w0 − w1 + w2 − w3 − 4(1− u′
1) ≤ δ1 ≤ w0 − w1 + w2 − w3 + 4(1− u′

1)

w0 + w1 − w2 − w3 − 4(1− u′
2) ≤ δ2 ≤ w0 + w1 − w2 − w3 + 4(1− u′

2)

u′
1 + 2u′

2 ≤ 3

r0, r1, r2, r3, w0, w1, w2, w3 ≥ 0

u′
1, u

′
2 ∈ {0, 1}

which has x = 1, r0 = r1 = 0.5, r2 = r3 = 0, u′
1 = 0.5, u′

2 = 0, w0 = w1 = w2 = 0, w3 = 1,

z1 = −0.5, z2 = 0, δ1 = −2.0, δ2 = 0 and y = 1.5 < 2.5 as a feasible solution to its LP

relaxation.

3. Computational Results

We now present a computational comparison between LiBigM, LiLog and two standard

MILP formulations. Most standard MILP formulations for piecewise linear functions are

studied in Vielma et al. From these formulations we select the so called Convex Combination

Model and Logarithmic Convex Combination Model as a representative sample. The Convex

3



Combination Model appears as early as Dantzig (1960) and is included in many textbooks

(Dantzig, 1963; Garfinkel and Nemhauser, 1972; Nemhauser and Wolsey, 1988). Although it

is a sharp formulation, it is the only formulation studied in Vielma et al. that is not locally

ideal and it has one of the worst computational performances. Hence it is an example of a

classical, but relatively weak formulation. The Logarithmic Convex Combination Model is a

sharp and locally ideal formulation introduced in Vielma and Nemhauser (2008a,b) that has

a number of binary variables and constraints that is logarithmic in the number of segments

in which the modeled function is affine. It has one of the best computational performances

in Vielma et al. and hence is an example of a state of the art formulation. We denote

the Convex Combination and Logarithmic Convex Combination Models by CC and Log

respectively.

The first set of instances are from Li et al. and consists of a series of Mixed Integer

Nonlinear Programming (MINLP) problems that were obtained by linearizing some Nonlin-

ear Nonconvex Programming (NNP) problems. These MINLPs were obtained by replacing

the nonconvex portions of the NNPs by univariate piecewise linear approximations and cor-

respond to Examples 1 and 2 in Li et al. To solve these instances we used Bonmin 1.0.1

(Bonami et al., 2005) with CPLEX 11 (ILOG, 2008) as an MILP subsolver on a 2.4GHz

workstation with 2GB of RAM. We selected the Hybrid solver from Bonmin because most of

the time it significantly outperforms the other Bonmin solvers. Table 1 shows the solve times

in seconds for the different instances, which are identified according to their parameters (e.g.

Example 1 in Li et al. has three possible sets of parameter that we identify as 1a, 1b and

1c) and the resolution of the piecewise linear approximations (e.g. Example 2 in Li et al.

included approximations with piecewise linear functions with 32 and 64 segments).

Example 1a Example 1b Example 1c Example 2
segments 64 256 64 128 256 64 128 256 32 64
Log 1.1 3.3 0.2 0.4 0.7 0.3 0.4 0.7 6.1 11.2
CC 4.8 12.1 1.0 1.6 3.2 1.8 2.1 5.7 24.1 59.5
LiLog 4.3 23.5 1.1 2.2 5.4 1.2 2.5 5.6 116.0 129.2
LiBigM 1.9 19.2 1.0 2.5 17.5 1.0 4.5 15.8 214.0 306.0

Table 1: Solve times for MINLPs using Bonmin’s hybrid algorithm [s].

We see that LiLog is rarely faster than CC and is always at least four times slower than

Log. In fact, for the instances from Example 2 the solve times of both LiLog and LiBigM

4



are more than twice the time of CC and over an order of magnitude the time of Log.

The second set of instances from Li et al. are MILPs resulting from problems with

univariate piecewise linear functions. These instances include Example 4 and a variant of

Example 1 from Li et al constructed by replacing every nonlinearity (convex and nonconvex)

of the original NNP with a piecewise linear approximation. We note that for this variant we

did not treat the convex nonlinearities specially so that we could assess the performance of

the different formulations even in the case in which some of the piecewise linear functions

can actually be modeled as LPs. These instances were solved using CPLEX 11. Table 2

shows the results for these instances in the same format as Table 1.

Example 1a Example 1b Example 1c Example 4
segments 64 256 64 128 256 64 128 256 32 64 128
Log 0.03 0.07 0.04 0.03 0.10 0.02 0.03 0.11 0.10 0.24 0.47
CC 0.08 0.57 0.38 0.41 1.38 0.30 0.62 1.41 0.58 1.79 3.77
LiLog 0.45 2.86 0.37 1.47 4.60 0.34 1.41 8.96 6.21 34.09 260.68
LiBigM 1.35 73.34 1.40 8.75 66.90 1.16 7.60 46.78 11.22 56.35 428.06

Table 2: Solve times for MILPs from Li et al. (2008) [s].

The results are very similar to those for the first set and agree with the fact that BigM

and LiLog are theoretically inferior to standard formulation for piecewise linear functions.

The final set of instances consists of the transportation problems with piecewise linear

cost functions studied in Vielma et al. These instances consider univariate piecewise linear

functions that are affine in K segments for K ∈ {4, 8, 16, 32} and include 100 randomly

generated instances for each K. We again used CPLEX 11 as an MILP solver and Table 3

shows the minimum, average, maximum and standard deviation of the solve times in seconds.

The table also shows the number of times the solves failed because the time limit of 10,000

seconds was reached. We note that LiBigM was not considered for K = 16 and 32 because it

had already failed too many times for K = 8 and that the statistics for LiLog with K = 32

are marked with a dash (-) because it failed in every single instance.

We again see that the theoretically inferior formulations LiBigM and LiLog are signifi-

cantly slower than CC and Log. In addition, the results from Table 3 can be compared with

the results in Vielma et al. to see that both LiBigM and LiLog are significantly slower than

each of the six formulation tested in Vielma et al. for this set of instances.

5



min avg max std fail
Log 0.2 2.1 12 2.3 0
CC 0.3 4.6 23 4.3 0
LiLog 10.0 25.5 124 15.1 0
BigM 17.4 652.2 9951 1245.2 0

(a) 4 segments.

min avg max std fail
Log 0.6 12 84 11 0
CC 2.6 81 570 97 0
LiLog 88.9 2702 10000 3024 11
BigM 259.8 6380 10000 3742 44

(b) 8 segments.

min avg max std fail
Log 0.5 24 96 18 0
CC 3.9 351 3691 517 0
LiLog 848.0 9863 10000 982 97

(c) 16 segments.

min avg max std fail
Log 2.5 43 194 39 0
CC 67.5 1938 10000 2560 4
LiLog - - - - 100

(d) 32 segments.

Table 3: Solve times for univariate continuous functions [s].

We finally note that these negative results only concern formulations LiBigM and LiLog

that Li et al. use to model piecewise linear functions. The results in Table 4 from Li et al.

suggest that their main ideas could be useful for other problems such as the unique selection

over a finite set of choices.

Acknowledgments

This research has been supported by NSF grants CMMI-0522485 and CMMI-0758234 and

AFOSR grant FA9550-07-1-0177.

References

Bonami, P., A. Waechter, L. T. Biegler, A. R. Conn, G. Cornuejols, I. E. Grossmann,

C. D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya. 2005. An algorithmic framework for

convex mixed integer nonlinear programs. IBM Research Report RC23771, IBM, Yorktown

Heights, NY.

Dantzig, G. B. 1960. On the significance of solving linear-programming problems with some

integer variables. Econometrica 28 30–44.

Dantzig, G. B. 1963. Linear Programming and Extensions . Princeton University Press,

Princeton.

Garfinkel, R. S., G. L. Nemhauser. 1972. Integer Programming . Wiley.

6



ILOG. 2008. ILOG CPLEX User’s Manual . ILOG, S.A.

Jeroslow, R. G., J. K. Lowe. 1984. Modeling with integer variables. Mathematical Program-

ming Study 22 167–184.

Li, H.-L., H.-C. Lu, C.-H. Huang, N.-Z. Hu. 2008. A superior representation method

for piecewise linear functions. Informs Journal on Computing To appear, DOI:

10.1287/ijoc.1080.0294.

Nemhauser, G. L., L. A. Wolsey. 1988. Integer and combinatorial optimization. Wiley-

Interscience.

Padberg, M. 2000. Approximating separable nonlinear functions via mixed zero-one pro-

grams. Operations Research Letters 27 1–5.

Vielma, J. P., S. Ahmed, G. L. Nemhauser. 2008. Mixed-integer models for nonseparable

piecewise linear optimization: unifying framework and extensions. Operations Research

To Appear.

Vielma, J. P., G. L. Nemhauser. 2008a. Modeling disjunctive constraints with a logarithmic

number of binary variables and constraints. A. Lodi, A. Panconesi, G. Rinaldi, eds., IPCO ,

Lecture Notes in Computer Science, vol. 5035. Springer, 199–213.

Vielma, J. P., G. L. Nemhauser. 2008b. Modeling disjunctive constraints with a logarithmic

number of binary variables and constraints. Mathematical Programming Under second

review.

7


