
A Lifted Linear Programming Branch-and-Bound
Algorithm for Mixed Integer Conic Quadratic Programs

Juan Pablo Vielma, Shabbir Ahmed, George L. Nemhauser,
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 765

Ferst Drive NW, Atlanta, GA 30332-0205, USA, {jvielma@isye.gatech.edu, shabbir.ahmed@isye.gatech.edu,
george.nemhauser@isye.gatech.edu}

This paper develops a linear programming based branch-and-bound algorithm for mixed in-

teger conic quadratic programs. The algorithm is based on a higher dimensional or lifted

polyhedral relaxation of conic quadratic constraints introduced by Ben-Tal and Nemirovski.

The algorithm is different from other linear programming based branch-and-bound algo-

rithms for mixed integer nonlinear programs in that, it is not based on cuts from gradient

inequalities and it sometimes branches on integer feasible solutions. The algorithm is tested

on a series of portfolio optimization problems. It is shown that it significantly outperforms

commercial and open source solvers based on both linear and nonlinear relaxations.

Key words: nonlinear integer programming; branch and bound; portfolio optimization

History: February 2007.

1. Introduction

This paper deals with the development of an algorithm for the class of mixed integer non-

linear programming (MINLP) problems known as mixed integer conic quadratic program-

ming problems. This class of problems arises from adding integrality requirements to conic

quadratic programming problems (Lobo et al., 1998), and is used to model several applica-

tions from engineering and finance. Conic quadratic programming problems are also known

as second order cone programming problems, and together with semidefinite and linear pro-

gramming (LP) problems are special cases of the more general conic programming problems

(Ben-Tal and Nemirovski, 2001a). For ease of exposition, we will refer to conic quadratic

and mixed integer conic quadratic programming problems simply as conic programming (CP)

and mixed integer conic programming (MICP) problems respectively.

1

We are interested in solving MICP problems of the form

zMICPP := max
x,y

cx + dy (1)

s.t.

Dx + Ey ≤ f (2)

(x, y) ∈ CCi i ∈ I (3)

(x, y) ∈ Rn+p (4)

x ∈ Zn (5)

where c ∈ Rn, d ∈ Rp, D ∈ Rm×n, E ∈ Rm×p, f ∈ Rm, I ⊂ Z+, |I| < ∞ and for each i ∈ I
the set CCi is a conic constraint of the form

CC := {(x, y) ∈ Rn+p : ||Ax + By + δ||2 ≤ ax + by + δ0} (6)

for some A ∈ R
r×n, B ∈ R

r×p, δ ∈ R
r, a ∈ R

n, b ∈ R
p, δ0 ∈ R and where || · ||2 is

the Euclidean norm. We denote the MICP problem given by (1)–(5) as MICPP and its CP

relaxation given by (1)–(4) as CPP.

MICPP includes many portfolio optimization problems (see for example Ben-Tal and

Nemirovski (1999), Ceria and Stubbs (2006), Lobo et al. (1998) and Lobo et al. (2007)). A

specific example is the portfolio optimization problem with cardinality constraints (see for

example Bienstock (1996), Chang et al. (2000), Maringer and Kellerer (2003) and Bertsimas

and Shioda (2004)) which can be formulated as

max
x,y

āy (7)

s.t.

||Q1/2y||2 ≤ σ (8)
n∑

j=1

yj = 1 (9)

yj ≤ xj ∀j ∈ {1, . . . , n} (10)
n∑

j=1

xj ≤ K (11)

x ∈ {0, 1}n (12)

y ∈ Rn
+, (13)

where n is the number of assets available, y indicates the fraction of the portfolio invested

in each asset, ā ∈ Rn is the vector of expected returns of the stocks, Q1/2 is the positive

2

semidefinite square root of the covariance matrix of the returns of the stocks, σ is the

maximum allowed risk and K < n is the maximum number of stocks that can be held in

the portfolio. Objective (7) is to maximize the expected return of the portfolio, constraint

(8) limits the risk of the portfolio, and constraints (10)–(12) limit the number of stocks that

can be held in the portfolio to K. Finally, constraints (9) and (13) force the investment of

the entire budget in the portfolio.

Most algorithms for solving MICP problems (and in general MINLP problems) can be

classified into two major groups depending on what type of continuous relaxations they use

(see for example Bonami et al. (2005) and Grossmann (2002)).

The first group only uses the nonlinear relaxation CPP in a branch-and-bound procedure

(Borchers and Mitchell, 1994; Gupta and Ravindran, 1985; Leyffer, 2001; Stubbs and Mehro-

tra, 1999). This procedure is the direct analog of the LP based branch-and-bound procedure

for mixed integer linear programming (MILP) problems and is the basis for the MICP solver

in CPLEX 9.0 and 10.0 (ILOG, 2005) and the I-BB solver in Bonmin (Bonami et al., 2005).

We refer to these algorithms as NLP based branch-and-bound algorithms.

The second group uses polyhedral relaxations of the nonlinear constraints of MICPP, pos-

sibly together with the nonlinear relaxation CPP. These polyhedral relaxations are usually

updated after solving an associated MILP problem or inside a branch-and-bound procedure.

Additionally the nonlinear relaxation of MICPP is sporadically solved to obtain integer feasi-

ble solutions, to improve the polyhedral relaxations, to fathom nodes in a branch-and-bound

procedure or as a local search procedure. Some of the algorithms in this group include

outer approximation (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994), generalized

Benders decomposition (Geoffrion, 1972), LP/NLP-based branch-and-bound (Quesada and

Grossmann, 1992) and the extended cutting plane method (Westerlund and Pettersson, 1995;

Westerlund et al., 1994). This approach is the basis for the I-OA, I-QG and I-Hyb solvers

in Bonmin (Bonami et al., 2005) and the MINLP solver FilMINT (Abhishek et al., 2006).

We refer to these algorithms as polyhedral relaxation based algorithms.

For algorithms in the second group to perform efficiently, it is essential to have polyhedral

relaxations of the nonlinear constraints that are both tight and have few constraints. To the

best of our knowledge, the polyhedral relaxations used by all the algorithms proposed so

far are based on gradient inequalities for the nonlinear constraints. This approach yields

a polyhedral relaxation which is constructed in the space of the original variables of the

problem. The difficulty with these types of polyhedral relaxations is that they can require

3

an unmanageable number of inequalities to yield tight approximations of the nonlinear con-

straints. In particular, it is known that obtaining a tight polyhedral approximation of the

Euclidean ball without using extra variables requires an exponential number of inequalities

(Ball, 1997). To try to resolve this issue, current polyhedral based algorithms generate the

relaxations dynamically.

In the context of CP problems, an alternative polyhedral relaxation that is not based

on gradient inequalities was introduced in 1999 by Ben-Tal and Nemirovski (Ben-Tal and

Nemirovski, 2001b). This approach uses the projection of a higher dimensional or lifted

polyhedral set to generate a polyhedral relaxation of a conic quadratic constraint of the

form CC. By exploiting the fact that projection can significantly multiply the number of

facets of a polyhedron, this approach constructs a relaxation that is “efficient” in the sense

that it is very tight and yet it is defined using a relatively small number of constraints

and extra variables. The relaxation of Ben-Tal and Nemirovski has been further studied

by Glineur (Glineur, 2000) who also tested it computationally on continuous CP problems.

These tests showed that solving the original CP problem with state of the art interior point

solvers was usually much faster than solving the polyhedral relaxation.

Although the polyhedral relaxation of Ben-Tal and Nemirovski (2001b) and Glineur

(2000) might not be practical for solving purely continuous CP problems, it could be useful

for polyhedral relaxation based algorithms for solving MICP problems. In particular, solv-

ing the polyhedral relaxation in a branch-and-bound procedure instead of the original CP

relaxations could benefit from the “warm start” capabilities of the simplex algorithm for LP

problems and the various integer programming enhancements such as cutting planes and

preprocessing that are available in commercial MILP solvers. The objective of this paper is

to develop such an algorithm and to demonstrate that this approach can significantly out-

perform other methods. The algorithm is conceptually valid for general MINLP problems,

but we only test it on MICP problems as we are only aware of the existence of an efficient

lifted polyhedral relaxation for this case.

The remainder of the paper is organized as follows. In section 2 we introduce a branch-

and-bound algorithm based on a lifted polyhedral relaxation. In section 3 we describe the

polyhedral relaxation of Ben-Tal and Nemirovski (2001b) and Glineur (2000) we use in our

test. Then, in section 4 we present computational results which demonstrate that the algo-

rithm significantly outperforms other methods. Finally, in section 5 we give some conclusions

and possible future work in this area.

4

2. A Branch-and-Bound Algorithm for MINLP

We describe the algorithm for general MINLP problems because it allows us to simplify

the notation. The algorithm is somewhat similar to other polyhedral relaxation algorithms

and in particular to enhanced versions of the LP/NLP-based branch-and-bound algorithm

such as Bonmin’s I-Hyb solver and FilMINT. The main differences between the proposed

algorithm and existing polyhedral relaxation based algorithms are that:

(i) it is based on a lifted polyhedral relaxation instead of one constructed using gradient

inequalities,

(ii) it does not update the relaxation using gradient inequalities, and

(iii) it will sometimes branch on integer feasible solutions.

The MINLP we solve is of the form

zMINLPP := max
x,y

cx + dy (14)

s.t.

(x, y) ∈ C ⊂ Rn+p (15)

x ∈ Zn (16)

where C is a compact convex set. We denote the problem given by (14)–(16) by MINLPP.

We also denote by NLPP the continuous relaxation of MINLPP given by (14)–(15) and we

assume for simplicity that MINLPP is feasible.

We further assume that we have a lifted polyhedral relaxation of the convex set C. In

other words there exists q ∈ Z+ and a bounded polyhedron P ⊂ Rn+p+q such that

C ⊂ {(x, y) ∈ Rn+p : ∃ v ∈ Rq s.t. (x, y, v) ∈ P}.

Thus we have the linear programming relaxation of MINLPP given by

zLPP := max
x,y,v

cx + dy (17)

s.t.

(x, y, v) ∈ P , (18)

5

which we denote by LPP. We also denote by MILPP the problem obtained by adding the

integrality requirements to LPP, in other words MILPP is the problem given by (17)–(18)

and (16).

Note that we could very well choose q = 0 in the construction of LPP, but as we will

discuss in section 3, the key idea for the effectiveness of our algorithm is the use of a tight

LP relaxation that requires q > 0.

The final problem we use in the algorithm is defined for any x̂ ∈ Zn as

zNLPP(x̂) := max
y

cx̂ + dy

s.t.

(x̂, y) ∈ C ⊂ Rn+p.

We denote this problem by NLPP(x̂).

We use these auxiliary problems to construct a branch-and-bound algorithm for solving

MINLPP as follows. For any (lk, uk) ∈ Z2n we denote by LPP(lk, uk) and NLPP(lk, uk) the

problems obtained by adding constraints lk ≤ x ≤ uk to LPP and NLPP respectively. We

also adopt the convention that a node k in a branch-and-bound tree is defined by some

(lk, uk, UBk) ∈ Z2n × (R ∪ {+∞}) where (lk, uk) are the bounds defining the node and UBk

is an upper bound on zNLPP(lk,uk). Furthermore, we denote by LB the global lower bound on

zMINLPP and by H the set of active branch-and-bound nodes. We give in Figure 1 a lifted LP

branch-and-bound algorithm for solving MINLPP.

A pure NLP based branch-and-bound algorithm solves NLPP(lk, uk) at each node k of the

branch-and-bound tree. The idea of the lifted LP branch-and-bound algorithm of Figure 1

is to replace each call to NLPP(lk, uk) in an NLP based branch-and-bound algorithm by a

call to LPP(lk, uk). After this replacement special care has to be taken when fathoming by

integrality as an integer feasible solution to LPP(lk, uk) is not necessarily an integer feasible

solution to NLPP(lk, uk). This is handled by the algorithm in lines 11–28. The first step is to

solve NLPP(x̂k) to attempt to correct an integer feasible solution (x̂k, ŷk) to LPP(lk, uk) into

an integer feasible solution to NLPP(lk, uk). If the correction is successful and zNLPP(x̂k) > LB

we can update LB. This step is carried out in lines 11–14 of the algorithm. Another

complication arises when the optimal solution to LPP(lk, uk) is integer feasible, but lk 6= uk.

The problem in this case is that integer optimal solutions to LPP(lk, uk) and NLPP(x̂k) may

not be solutions to MINLPP(lk, uk). In fact, in this case, it is possible for NLPP(x̂k) to

be infeasible and for MINLPP(lk, uk) to be feasible. To resolve this issue, the algorithm of

6

Set global lower bound LB := −∞.1

Set l0i := −∞, u0
i := +∞ for all i ∈ {1, . . . , n}.2

Set UB0 = +∞.3

Set node list H := {(l0, u0, UB0)}.4

while H 6= ∅ do5

Select and remove a node (lk, uk, UBk) ∈ H.6

Solve LPP(lk, uk).7

if LPP(lk, uk) is feasible and zLPP(lk,uk) > LB then8

Let (x̂k, ŷk) be the optimal solution to LPP(lk, uk).9

if x̂k ∈ Zn then10

Solve NLPP(x̂k).11

if NLPP(x̂k) is feasible and zNLPP(x̂k) > LB then12

LB := zNLPP(x̂k).13

end14

if lk 6= uk and zLPP(lk,uk) > LB then15

Solve NLPP(lk, uk).16

if NLPP(lk, uk) is feasible and zNLPP(lk,uk) > LB then17

Let (x̃k, ỹk) be the optimal solution to NLPP(lk, uk).18

if x̃k ∈ Zn then /* Fathom by Integrality */19

LB := zNLPP(lk,uk).20

else /* Branch on x̃k */21

Pick i0 in {i ∈ {1, . . . , n} : x̃k
i /∈ Z}.22

Let li = lki , ui = uk
i for all i ∈ {1, . . . , n} \ {io}.23

Let ui0 = bx̃k
i0
c, li0 = bx̃k

i0
c+ 1.24

H := H ∪ {(lk, u, zNLPP(lk,uk)), (l, u
k, zNLPP(lk,uk))}25

end26

end27

end28

else /* Branch on x̂k */29

Pick i0 in {i ∈ {1, . . . , n} : x̂k
i /∈ Z}.30

Let li = lki , ui = uk
i for all i ∈ {1, . . . , n} \ {io}.31

Let ui0 = bx̂k
i0
c, li0 = bx̂k

i0
c+ 1.32

H := H ∪ {(lk, u, zLPP(lk,uk)), (l, u
k, zLPP(lk,uk))}33

end34

end35

Remove every node (lk, uk, UBk) ∈ H such that UBk ≤ LB.36

end37

Figure 1: A Lifted LP Branch-and-Bound Algorithm.

7

Figure 1 solves NLPP(lk, uk) to process the node in the same way it would be processed in an

NLP based branch-and-bound algorithm for MINLPP. This last step is carried out in lines

15–28.

Note that, in lines 21–26, the algorithm is effectively branching on a variable xi such that

x̂k
i is integer but for which lki < uk

i . This idea of branching on integer feasible variables is

not a new idea in MILP (it can be used for example to find alternative optimal solutions),

but to the best of our knowledge it has never been used in the context of MINLP solvers.

We show the correctness of the algorithm in the following proposition.

Proposition 1. For any polyhedral relaxation LPP of NLPP using a bounded polyhedron P,

the lifted LP branch-and-bound algorithm of Figure 1 terminates with LB equal to the optimal

objective value of MINLPP.

Proof. Finiteness of the algorithm is direct from the fact that P is bounded. However after

branching in lines 21–26, solution (x̂k, ŷk) could be repeated in one of the newly created

nodes, which could cause (x̂k, ŷk) to be generated again in several nodes. This can only

happen a finite number of times though, as the branching will eventually cause lk = uk or

LPP(lk, uk) will become infeasible.

All that remains to prove is that the sub-tree rooted at a fathomed node cannot contain

an integer feasible solution to MINLPP which has an objective value strictly larger than the

current incumbent integer solution. The algorithm fathoms a node only in lines 8, 15, 17

and 19. In line 8, the node is fathomed if LPP(lk, uk) is infeasible or if zLPP(lk,uk) ≤ LB.

Because LPP(lk, uk) is a relaxation of NLPP(lk, uk) we have that infeasibility of LPP(lk, uk)

implies infeasibility of NLPP(lk, uk) and zNLPP(lk,uk) ≤ zLPP(lk,uk), hence in both cases we have

that the sub-tree rooted at node (lk, uk) cannot contain an integer feasible solution strictly

better than the incumbent. In line 15, the node is fathomed if lk = uk or if zLPP(lk,uk) ≤ LB.

In the first case, NLPP(lk, uk) = NLPP(x̂k) and hence processing node k is correctly done

by lines 12–14. In the second case, the node is correctly fathomed for the same reasons

for correctness in line 8. In line 17, the node is fathomed if NLPP(lk, uk) is infeasible or if

zNLPP(lk,uk) ≤ LB, in either case the sub-tree rooted at the fathomed node cannot contain a

integer feasible solution strictly better that the incumbent. Finally, in line 19 the node is

fathomed because solution (x̃k, ỹk) to NLPP(lk, uk) is integer feasible and hence it is the best

integer feasible solution that can be found at the sub-tree rooted at the fathomed node.

8

We note that, as in other branch-and-bound algorithms, at any point in the execution

of the algorithm we have a lower bound of zMINLPP given by LB and an upper bound given

by max{UBk : (lk, uk, UBk) ∈ H}. This can be used for early termination of the algorithm

given a target optimality gap.

3. Lifted Polyhedral Relaxations

The key idea for the effectiveness of the lifted LP branch-and-bound algorithm is the use

of a lifted polyhedral relaxation (q > 0) for the construction of LPP. For the algorithm

to be effective we need NLPP(lk, uk) to be called in as few nodes as possible, so we need

LPP to be a tight approximation of NLPP. On the other hand we need to solve LPP(lk, uk)

quickly, which requires the polyhedral relaxation to have relatively few constraints and extra

variables. The problem is that using a relaxation with q = 0, such as those constructed using

gradient inequalities, can require a polyhedron P with an exponential number of facets to

approximate the convex set C tightly. In fact, it is known (see for example Ball (1997)) that

for any ε > 0 approximating the d-dimensional unit euclidean ball Bd with a polyhedron

P ⊂ Rd such that Bd ⊂ P ⊂ (1 + ε)Bd requires P to have at least exp(d/(2(1 + ε)2)) facets.

This is one of the main reason why current polyhedral relaxation based algorithms do not use

a fixed polyhedral relaxation of C and instead dynamically refine the relaxation as needed.

On the other hand, when we allow for a polyhedron P in a higher dimensional space

we can take advantage of the fact that a lifted polyhedron with a polynomial number of

constraints and extra variables can have the same effect as a polyhedron in the original space

with an exponential number of facets. Exploiting this property, it is sometimes possible to

have a tight lifted polyhedral relaxation of C that can be described by a reasonable number

of inequalities and extra variables. Ben-Tal and Nemirovski (2001b) introduced such a lifted

polyhedral relaxation for MICP problems. We now give a compact description of the version

of the lifted polyhedral relaxation of Ben-Tal and Nemirovski (2001b) and Glineur (2000)

we use in this study.

We start by noting that a set CC given by (6) can be written as

CC = {(x, y) ∈ Rn+p : ∃(z0, z) ∈ R+ ×Rr s.t. Ax + By + δ = z,

ax + by + δ0 = z0,

(z0, z) ∈ Lr}

9

where Lr is the (r + 1)-dimensional Lorentz cone given by

Lr := {(z0, z) ∈ R+ ×Rr :
r∑

k=1

z2
k ≤ z2

0}.

Hence a polyhedral relaxation of Lr induces a polyhedral relaxation of CC. Then, for a given

tightness parameter ε > 0 we want to construct a polyhedron Lr
ε such that

Lr (Lr
ε ({(z0, z) ∈ R+ ×Rr : ||z||2 ≤ (1 + ε)z0}. (19)

To describe this polyhedral relaxation of Lr we assume at first that r = 2p for some

p ∈ Z+. We then begin by grouping variables z in Lr into k = r/2 pairs and associate a new

variable ρk for the kth pair. We can then rewrite Lr as

Lr = {(z0, z) ∈ R+ ×Rr :∃ρ ∈ Rr/2 s.t.

r/2∑
k=1

ρ2
k ≤ z2

0

z2
2k−1 + z2

2k ≤ ρ2
k for k ∈ {1, . . . , r/2}}.

In other words, we can rewrite Lr using (r/2) 3-dimensional Lorentz cones and one (r/2+1)-

dimensional Lorentz cone as

Lr = {(z0, z) ∈ R+ ×Rr :∃ρ ∈ Rr/2 s.t.

(ρ, z0) ∈ Lr/2

(z2k−1, z2k, ρk) ∈ L2 for k ∈ {1, . . . , r/2}}.

By recursively applying this procedure to the (r/2 + 1)-dimensional Lorentz cone we can

rewrite Lr using only (n−2) 3-dimensional Lorentz cones. We can then replace each of these

3-dimensional Lorentz cones with the polyhedral relaxation of L2 given by

Ws := {(z0, z1, z2) ∈ R+ ×R2 : ∃(α, β) ∈ R2s s.t.

z0 = αs cos
(π

2s

)
+ βs sin

(π

2s

)
α1 = z1 cos (π) + z2 sin (π)

β1 ≥ |z2 cos (π)− z1 sin (π)|

αi+1 = αi cos
(π

2i

)
+ βi sin

(π

2i

)
βi+1 ≥

∣∣∣βi cos
(π

2i

)
− αi sin

(π

2i

)∣∣∣
for i ∈ {1, . . . , s− 1}},

10

for some s ∈ Z.

For a general r, not necessarily a power of two, these ideas and some careful selection of

the parameter s in Ws yield the polyhedral relaxation of Lr given by

Lr
ε := {(z0, z) ∈ R+ ×Rr : ∃(ζk)K

k=0 ∈ RT (r) s.t.

z0 = ζK
1

ζ0
i = zi for i ∈ {1, . . . , r},

(ζk
2i−1, ζ

k
2i, ζ

k+1
i) ∈ Wsk(ε) for i ∈ {1, . . . , btk/2c},

k ∈ {0, . . . , K − 1},

ζk
tk

= ζk+1
dtk/2e for k ∈ {0, . . . , K − 1} s.t.

tk is odd}

where K = dlog2(r)e, {tk}K
k=0 is defined by the recursion t0 = r, tk+1 = dtk/2e for k ∈

{0, . . . , K − 1}, T (r) =
∏K

k=0 tk and

sk(ε) =

⌈
k + 1

2

⌉
−

⌈
log4

(
16

9
π−2 log(1 + ε)

)⌉
. (20)

From Ben-Tal and Nemirovski (2001b) and Glineur (2000) we have that Lr
ε complies with

(19) for any ε > 0 and has O(n log(1/ε)) variables and constraints for any 0 < ε < 1/2.

We can then use Lr
ε to define the relaxation of CC given by

P(CC, ε) = {(x, y) ∈ Rn+p : ∃(z0, z) ∈ R+ ×Rr s.t. Ax + By + δ = z,

ax + by + δ0 = z0,

(z0, z) ∈ Lr
ε},

which complies with

CC (P(CC, ε) ({(x, y) ∈ R
n+p : ||Ax + By + δ||2 ≤ (1 + ε)(ax + by + δ0)}.

Using this relaxation we can construct the lifted polyhedral relaxation of CPP given by

zLP(ε) := max
x,y,v

cx + dy (21)

s.t.

Dx + Ey ≤ f (22)

(x, y, v) ∈ P(CCi, ε) i ∈ I (23)

(x, y, v) ∈ Rn+p+q (24)

11

where v ∈ Rq are the auxiliary variables used to construct all P(CCi, ε)’s and P(CCi, ε) is

the polyhedron in Rn+p+q whose projection to Rn+p is P(CCi, ε). We denote the problem

given by (21)–(24) as LP(ε) and the problem given by (21)–(24) and (5) as MILP(ε).

We use LPP = LP(ε) and NLPP = CPP in the algorithm described in Figure 1 to obtain

a lifted LP branch-and-bound algorithm for MICPP.

4. Computational Results

In this section we present the results of computational tests showing the effectiveness of the

lifted LP branch-and-bound algorithm based on LP(ε). We begin by describing how the

algorithm was implemented, then describe the problem instances we used in the tests and

finally we present the computational results.

4.1. Implementation

We implemented the lifted LP branch-and-bound algorithm of Figure 1 for LPP = LP(ε)

and NLPP = CPP by modifying CPLEX 10.0’s MILP solver. We used the branch callback

feature to implement branching on integer feasible solutions when necessary and we used the

incumbent and heuristic callback features to implement the solve of NLPP(x̂k). All coding

was done in C++ using Ilog Concert Technology. We used CPLEX’s barrier solver to solve

CPP(lk, uk) and CPP(x̂). In all cases we used CPLEX’s default settings. We denote this

implementation as LP(ε) -BB .

There are some technical differences between this implementation and the lifted LP

branch-and-bound algorithm of Figure 1. First, in the CPLEX based implementation,

NLPP(x̂k) is solved for all integer feasible solutions found. This is a difference because

the algorithm of Figure 1 only finds integer solutions when LPP(lk, uk) is integer feasible,

but CPLEX also finds integer feasible solutions by using primal heuristics. Finally, the im-

plementation benefits from other advanced CPLEX features such as preprocessing, cutting

planes and sophisticated branching and node selection schemes. In particular, the addi-

tion of cutting planes conceptually modifies the algorithm as adding these cuts updates the

polyhedral relaxation defining LPP. This updating does not use any information from the

nonlinear constraints though, as CPLEX’s cutting planes are only derived using the linear

constraints of LPP and the integrality of the x variables.

12

4.2. Test Instances

Our test set consists of three different portfolio optimization problems with cardinality con-

straints from the literature (Ceria and Stubbs, 2006; Lobo et al., 1998, 2007). For most

portfolio optimization problems only the continuous variables are present in the nonlinear

constraints and hence the convex hull of integer feasible solutions to these problems is almost

never a polyhedron. Furthermore, polyhedral relaxation based algorithms for the purely con-

tinuous versions of these problems are known to converge slowly. For these reasons we believe

that portfolio optimization problems are a good set of problems to test the effectiveness of

the lifted LP branch-and-bound algorithm based on LP(ε).

For all three problems we let ai be the random return on stock i and let the expected

value and covariance matrix of the joint distribution of a = (a1, . . . , an) be ā ∈ Rn
+ and Q

respectively. Also, let yi be the fraction of the portfolio invested in stock i and Q1/2 be the

positive semidefinite square root of Q.

The first problem is obtained by adding a cardinality constraint to the classical mean-

variance portfolio optimization model to obtain the MICP problem already explained in

(7)–(13). We refer to the set of instances of this problem as the classical instances.

The second problem is constructed by replacing the variance risk constraint (8) of the clas-

sical mean-variance model with two shortfall risk constraints of the form Prob(āy ≥ W low) ≥ η.

Following Lobo et al. (1998) and Lobo et al. (2007) we formulate this model as a conic

quadratic programming problem obtained by replacing constraint (8) in the classical mean-

variance problem with

Φ−1(ηi)||Q1/2y||2 ≤ āy −W low
i i ∈ {1, 2}

where Φ(·) is the cumulative distribution function of a zero mean, unit variance Gaussian

random variable. We refer to the set of instances of this problem as the shortfall instances.

The final problem is a robust portfolio optimization problem studied in Ceria and Stubbs

(2006). This model assumes that there is some uncertainty in the expected returns ā and

that the true expected return vector is normally distributed with mean ā and covariance

matrix R. The model is similar to one introduced in Ben-Tal and Nemirovski (1999) and

can be formulated as the conic quadratic programming problem obtained by replacing the

objective function (7) of the classical mean-variance with maxx,y,r r and adding the constraint

āy−α||R1/2y||2 ≥ r where R1/2 is the positive semidefinite square root of R. The effect of this

13

change is the maximization of āy−α||R1/2y||2 which is a robust version of the maximization

of the expected return āy. We refer to the set of instances of this problem as the robust

instances.

We generated the data for the classical instances in a manner similar to the test instances

of Lobo et al. (2007). We first estimated ā and Q from 251 daily closing prices of S&P 500

stocks starting with the 22nd of August 2005 and we scaled the distributions for a portfolio

holding period of 20 days. Then, for each n we generated an instance by randomly selecting

n stocks out of the 462 stocks for which we had closing price data. We also arbitrarily

selected σ = 0.2 and K = 10.

For the shortfall instances we used the same data generated for the classical mean-variance

instances, but we additionally included a risk-less asset with unit return to make these

instances differ even more from the classical mean-variance instances. Also, in a manner

similar to the test sets of Lobo et al. (2007) we arbitrarily selected η1 = 80%, W low
1 = 0.9,

η2 = 97%, W low
2 = 0.7.

Finally, we generated the data for the robust instances in a manner similar to the test

instances of Ceria and Stubbs (2006). We used the same daily closing prices used for the

classical mean-variance and shortfall risk constraints instances, but we randomly selected

different groups of n stocks and we generated the data in a slightly different way. For stock

i we begin by calculating µi as the mean daily return from the first 120 days available. We

then let āi = 0.1µi +0.9r where r is the daily return for the 121st day. Finally Q is estimated

from the same first 120 days and following Ceria and Stubbs (2006) we let R = (0.9/120)Q.

We also arbitrarily selected α = 3 and we again selected σ = 0.2 and K = 10.

For the three sets of instances we generated 100 instances for each n in {20, 30, 40, 50}
and 10 instanced for each n in {100, 200}.

4.3. Results

All computational tests where done on a dual 2.4GHz Xeon workstation with 2GB of RAM

running Linux Kernel 2.4. The first set of experiments show calibration results for different

values of ε. We then study how LP(ε) -BB compares to other algorithms. Finally, we study

some factors that might affect the effectiveness of LP(ε).

14

4.3.1. Selection of ε

Note that as ε gets smaller the size of LP(ε) grows as O(n log(1/ε)), on the other hand the

relaxation gets tighter. To select the value of ε for subsequent runs we first studied the sizes

of LP(ε) for n in {20, 30} and for values of ε in {1, 0.1, 0.01, 0.001, 0.0001}. Table 1 presents

the number of columns, rows and non-zero coefficients for the different values of n and ε.

The table also includes the same information for CPP.

classical shortfall robust
n ε cols+rows nz cols+rows nz cols+rows nz
20 1 484 1172 908 2310 956 2368

0.1 579 1343 1098 2652 1156 2728
0.01 769 1685 1478 3336 1556 3448
0.001 959 2027 1858 4020 1956 4168
0.0001 1054 2198 2048 4362 2156 4528
CPP 105 501 150 968 154 948

30 1 734 2076 1378 4098 1426 4146
0.1 879 2337 1668 4620 1726 4686
0.01 1169 2859 2248 5664 2326 5766
0.001 1459 3381 2828 6708 2926 6846
0.0001 1604 36427 3118 7230 3226 7386
CPP 155 1051 220 2048 224 2018

Table 1: Problem Sizes for Different Values of ε

We see that the sizes of LP(ε) are considerable larger that the sizes of CPP. On the other

hand we confirm that sizes only grow logarithmically with ε.

We additionally devised the following simple computational experiment for selecting the

appropriate value of ε. For n equal to 20 and 30 we selected the first 10 instances of each

instance class and tried to solve them with values of ε in {1, 0.1, 0.01, 0.001, 0.0001}. A time

limit of 100 seconds was set. Note that ε = 1 is a value that we would probably never select,

but we decided to test it anyway to illustrate that the procedure works even for this extreme

choice of ε.

Table 2 shows the minimum, average, maximum and standard deviation of the number of

nodes needed by LP(ε) -BB to solve the instances. Tables 3 and 4 show the same statistics

for solve times in seconds and the number of branch-and-bound nodes in which nonlinear

relaxation CPP(lk, uk) is solved.

Figure 2 shows the performance profile (see Dolan and Moré (2002)) for all the instances

15

stat ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
min 0 0 0 0 0
avg 7760 1497 166 193 239
max 36443 14281 2390 2228 3995
std 3087 1342 196 303 289

Table 2: Number of Nodes for Different Values of ε

stat ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
min 0.14 0.07 0.09 0.12 0.18
avg 37.18 3.71 1.10 3.19 5.79
max 100.31 21.28 8.64 35.38 71.16
std 21.61 3.33 1.16 5.53 10.53

Table 3: Solve Time for Different Values of ε [s]

stat ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
min 1 1 1 0 0
avg 1700 74 4 3 3
max 6178 367 18 22 23
std 436 25 2 3 1

Table 4: Number of Nodes that Solve CPP(lk, uk)

using solve time as a performance metric. For a given value m on the horizontal axis and

a given method, the value f plotted in the performance profile indicates the fraction f of

the instances that were solved by that method within m times the length of time required

by the fastest method for each instance. In particular, the intercepts of the plot (if any)

with the vertical axis to the left and right indicate the fraction of the instances for which the

method was the fastest and the fraction of the instances which the method could solve in

the alloted time, respectivelly. For example, the method for ε = 1 was the fastest in about

5% of the instances, could solve almost 80% of the instances and could solve under 30% of

the instances within 10 times the length of time required by the fastest solver. We refer the

reader to Dolan and Moré (2002) for more details about the construction and interpretation

of performance profiles.

We see that ε = 0.01 is the best choice on average. It also has the best performance

profile and it yields the fastest method for 80% of the instances. Furthermore, for ε = 0.01

we have very few nodes solving CPP(lk, uk).

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

1
0.1

0.01
0.001

0.0001

Figure 2: Performance Profile for Different Values of ε

It is also interesting to note that the procedure still works fairly well for values of ε as

big as 0.1 and even for the extreme case of ε = 1 the procedure was still able to solve almost

80% of the instances in the alloted time of 100 seconds. For this last case though, the high

number of nodes that solve CPP(lk, uk) makes the algorithm behave almost like an NLP

based branch-and-bound algorithm.

Finally, we note that the result that ε = 0.01 requires the smallest number of branch-

and-bound nodes on average is somewhat unexpected. This contradicts the belief that the

algorithm of Figure 1 should require fewer branch-and-bound nodes if tighter relaxations are

used. An explanation of this apparent contradiction comes from the difference between the

algorithm of Figure 1 and the implementation of LP(ε) -BB as discussed in section 4.1, since

the use of CPLEX’s advanced features in LP(ε) -BB makes it hard to predict the behavior

of the algorithm. In particular, slightly larger problems might cause CPLEX’s default limits

for advanced features such as preprocessing, heuristics, and cut generation to be reached

quicker which could significantly reduce their effectiveness.

17

4.3.2. Performance of LP(ε) -BB against other methods

In this section we compare LP(ε) -BB with ε = 0.01 against other solvers. The solvers

we choose for the comparison are the NLP based branch-and-bound algorithms CPLEX 10

MICP solver and Bonmin’s I-BB and the polyhedral relaxation based algorithms I-QG and

I-Hyb from Bonmin. We did not include Bonmin’s I-OA algorithm as it performed very

badly in preliminary tests.

For CPLEX we used its default settings and for the Bonmin solvers we set parameters

allowable gap and allowable fraction gap to 10−6 and 10−4 respectively to have the

same target gaps as CPLEX. All tests were run with a time limit of 10000 seconds.

We first tested all solvers for all instances for n in {20, 30}. We denote this set of

instances as the small instances. Table 5 shows the minimum, average, maximum and

standard deviations of the solve times. Figure 3 shows the performance profile for all the

instances using solve time as a performance metric.

From Table 5 we see that LP(ε) -BB is the fastest algorithm on average for all but one

set of instances and that this average can be up to five times better than the average for its

closest competitor. Furthermore, as the standard deviation and maximum numbers show,

LP(ε) -BB is far more consistent in providing good solve times than the other methods.

From Figure 3 we can also see that LP(ε) -BB has the best performance profile, that it is

the fastest solver in 60% of the instances and that it is almost never an order of magnitude

slower than the best solver.

Our second set of tests include all instances for n in {40, 50}. We denote this set of

instances as the medium instances. We did not include I-QG in these tests as it performed

very poorly on the instances for n = 30 and reached the time limit in several instances.

Although I-Hyb performed close to I-QC we included it in these tests as it had only reached

the time limit in one instance and we wanted to have at least one of the original LP/NLP

based branch-and-bound solvers in our tests. Table 6 shows the minimum, average, maximum

and standard deviation of the solve times. Figure 4 shows the performance profile for all the

instances using solve time as a performance metric.

We see from Table 6 that LP(ε) -BB is now the fastest algorithm on average for all

instances and this average can be up to six times better than the average for its closest

competitor. Again, as the standard deviation and maximum numbers show, LP(ε) -BB is

far more consistent in providing good solve times than the other methods. From Figure 4

18

instance(n) stat LP(ε) -BB I-QG I-Hyb I-BB CPLEX
classical(20) min 0.08 0.38 0.22 0.28 0.02

avg 0.29 26.41 24.84 1.28 1.31
max 1.06 222.19 164.71 13.33 7.95
std 0.18 42.92 26.37 2.31 1.17

classical(30) min 0.25 1.62 0.33 0.38 0.73
avg 1.65 1434.86 217.25 13.19 9.68
max 27.0 10005.2 10003.3 573.97 324.63
std 3.21 2768.34 1016.68 59.17 33.68

shortfall(20) min 0.19 0.18 0.26 0.34 0.03
avg 0.48 17.42 16.78 0.63 1.68
max 1.65 174.62 58.45 3.52 5.19
std 0.21 30.77 17.96 0.52 0.89

shortfall(30) min 0.4 1.25 0.57 0.47 1.26
avg 2.20 847.63 136.39 5.00 9.26
max 29.34 10003.1 5907.32 73.81 80.36
std 3.21 1992.86 588.61 10.00 12.20

robust(20) min 0.19 0.39 0.12 0.37 0.03
avg 0.39 4.99 15.51 2.57 1.03
max 1.05 33.85 599.46 57.22 3.5
std 0.20 5.60 60.37 10.25 0.90

robust(30) min 0.43 0.59 0.29 0.48 0.07
avg 1.20 75.07 23.43 1.02 3.54
max 4.72 2071.47 134.08 4.92 10.76
std 0.81 284.39 25.49 0.87 2.45

Table 5: Solve Times for Small Instances [s]

we again see that LP(ε) -BB has the best performance profile, that it is the fastest solver

in over 60% of the instances and that it is almost never an order of magnitude slower than

the best solver. Moreover, it is the only solver with this last property.

Our last set of tests include instances for n in {100, 200}. We denote this set of instances

as the large instances. We do not include the results for I-Hyb as it was not able to solve

any of the instances in this group. Neither did we include results for the classical or shortfall

instances for n = 200 as none of the methods could solve a single instance in the alloted

time. Table 7 shows the minimum, average and maximumsome of the solve times. We did

not include standard deviations as time limits were reached for too many instances. We

instead include the number of instances (out of a total of 10 per instance class) that each

method could solve in the alloted time. Figure 5 shows the performance profile for all the

instances using solve time as a performance metric.

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

I-BB
I-Hyb
I-QG

Cplex
LP(ε)-BB

Figure 3: Performance Profile for Small Instances

From Table 7 we see that LP(ε) -BB is the fastest algorithm on average for all but one

set of instances in this group. Furthermore, for all instance classes it is the method that

solves the largest number of instances. From Figure 5 we can also see that LP(ε) -BB has

the best performance profile, that it is the fastest solver in about 40% of the instances and

that it is the method that is able to solve the greatest number of instances in the alloted

time.

4.3.3. Factors that affect the effectiveness of LP(ε) -BB

In this subsection we study some factors that might affect the effectiveness of LP(ε) including

solve times, accuracy and size of the polyhedral relaxation LP(ε), number of branch-and-

bound nodes processed and number of calls to the nonlinear relaxations.

We begin by confirming the results from Glineur (2000) that solving the polyhedral

relaxation LP(ε) is slower than solving CPP directly still hold for our tests instances. To

confirm this we solved CPP with CPLEX 10’s barrier solver and LP(0.01) with CPLEX 10’s

primal simplex, dual simplex and LP barrier solvers. We did this for all instances for n equal

to 100 and 200. Table 8 shows the minimum, average, maximum and standard deviation of

the solve times.

20

instance(n) stat LP(ε) -BB I-Hyb I-BB CPLEX
classical(40) min 0.56 35.04 0.61 1.55

avg 14.84 1412.23 144.17 63.41
max 554.52 10006.0 8518.95 2033.65
std 56.64 2631.92 848.84 208.86

classical(50) min 0.76 35.17 0.75 4.12
avg 102.88 4139.92 894.00 636.83
max 1950.81 12577.8 10030.1 10000.0
std 270.96 4343.71 2048.96 1626.37

shortfall(40) min 1.17 34.72 0.7 4.93
avg 16.60 956.98 92.85 111.97
max 389.57 10004.6 4888.26 4259.5
std 43.85 2133.56 489.98 430.95

shortfall(50) min 1.58 33.22 0.96 5.69
avg 163.10 3143.84 452.05 567.74
max 7674.86 10006.0 10034.1 10000.0
std 771.98 3803.14 1285.52 1319.39

robust(40) min 0.51 0.43 0.69 0.14
avg 3.82 59.10 4.31 11.17
max 42.57 1141.91 129.82 160.71
std 6.04 130.37 14.64 18.58

robust(50) min 0.92 0.65 0.93 0.25
avg 20.44 435.43 23.67 41.71
max 443.29 10002.1 746.37 876.31
std 63.47 1702.15 95.68 120.24

Table 6: Solve Times for Medium Instances [s]

We see that solving LP(0.01) is slower than solving CPP. In fact, solving LP(0.01) with

dual simplex is more than twice as slow as solving CPP with barrier. Hence, it is not the

solve times of a single relaxation that gives the LP(ε) -BB algorithm the advantage over

the NLP based branch-and-bound algorithms. Note that the “warm start” capabilities of an

LP solver might still make solving a series of similar LP(0.01) problems faster than solving

a series of similar CPP problems.

It is noted in Glineur (2000) that although the relaxation used to construct LP(ε) gives

accuracy guarantees on Lr
ε, it is in general not possible to give a priori guarantees on the

accuracy of LP(ε) or its optimal objective value zLP(ε). For this reason we studied empirically

the accuracy of zLP(ε) on our set of test instances. To do this we calculated the value of the

accuracy measure 100× (zLP(ε)−zCPP)/zCPP for all of our test instances and for values of ε in

{1, 0.1, 0.01, 0.001, 0.0001}. Table 9 shows the minimum, average, maximum and standard

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

I-BB
I-Hyb
Cplex

LP(ε)-BB

Figure 4: Performance Profile for Medium Instances

instance(n) stat LP(ε) -BB I-BB CPLEX
classical(100) min 1653 3497 4503

avg 7443 8605 8767
max 10012 10035 10000
solved 4 3 3

shortfall(100) min 2014 4105 8733
avg 6660 8497 9818
max 10003 10163 10000
solved 6 4 2

robust(100) min 30 4 85
avg 956 612 1395
max 4943 2684 5294
solved 10 10 10

robust(200) min 1458 1775 9789
avg 6207 7346 9979
max 10138 10016 10000
solved 6 5 1

Table 7: Solve Times for Large Instances [s]

22

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

I-BB
Cplex

LP(ε)-BB

Figure 5: Performance Profile for Large Instances

CPP LP(0.01)
stat Barrier P. Simplex D. Simplex Barrier
min 0.09 0.72 0.58 0.19
avg 4.88 34.94 11.66 6.94
max 20.39 174.45 49.69 29.7
std 1.50 10.45 2.86 2.05

Table 8: Solve Time for Root Relaxation [s]

deviation of this accuracy measure.

We see that even for the extreme case ε = 1 the accuracy of zLP(ε) is fairly good and for

our chosen value of ε = 0.01 the accuracy is extremely good. This accuracy is likely one of

the reasons for the effectiveness of the LP(ε) -BB algorithm.

We next study the sizes of LP(0.01) as n varies. Table 10 presents the number of columns,

rows and non-zero coefficients for different values of n. Again, we also include the sizes of

CPP. We see that LP(0.01) can be up to about an order of magnitude larger than CPP.

However, we also confirm that the size of LP(0.01) only grows linearly with n.

Finally, we study the number of branch-and-bound nodes processed and the number of

calls to the nonlinear relaxations. We begin by comparing LP(ε) -BB to the two NLP based

23

stat ε = 1 ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001
min 0.25 0.07 0.00 0.00 0.00
avg 4.30 1.14 0.07 0.00 0.00
max 13.94 5.16 0.29 0.02 0.01
std 0.80 0.21 0.01 0.00 0.00

Table 9: Accuracy of Relaxation zLP(ε) [%]

classical shortfall robust
n Relaxation cols+rows nz cols+rows nz cols+rows nz
20 CPP 105 501 150 968 154 948

LP(0.01) 769 1685 1478 3336 1556 3448
30 CPP 155 1051 220 2048 224 2018

LP(0.01) 1169 2859 2248 5664 2326 5766
40 CPP 205 1801 290 3528 294 3488

LP(0.01) 1574 4242 3028 8410 3116 8520
50 CPP 255 2751 360 5408 364 5358

LP(0.01) 1979 5825 3808 11556 3886 11638
100 CPP 505 10501 710 20808 714 20708

LP(0.01) 3994 16722 7688 33250 7766 33282
200 CPP 1005 41001 1410 81608 1414 81408

LP(0.01) 8024 53516 15448 106638 15536 106588

Table 10: Problem Sizes for Different Values of n

branch-and-bound solvers. To do this, we selected all instances that solved within the time

limit by I-BB, CPLEX and LP(ε) -BB . For these instances we present in Table 11 the total

number of branch-and-bound nodes processed by each method and the total number of calls

to nonlinear relaxations CPP(lk, uk) and CPP(x̂) made by LP(ε) -BB .

We see that the total number of calls to the nonlinear relaxations made by LP(ε) -BB is

only around 1% of the total number of branch-and-bound nodes processed. This is another

reason for the effectiveness of LP(ε) -BB as it has to solve very few expensive nonlinear

relaxations. An interesting observation is that CPP(x̂) is solved more times than CPP(lk, uk).

This is expected as CPLEX usually finds most of the integer feasible solutions with its

primal heuristic than at integer feasible nodes. On the other hand, the fact that that

LP(ε) -BB processed fewer branch-and-bound nodes than the two NLP based branch-and-

bound methods is somewhat unexpected. Because LP(ε) is a relaxation of CPP we would

expect that a pure branch-and-bound algorithm based on LP(ε) should process at least the

same number of nodes as an algorithm based on CPP. We believe that the reason for this

24

B-and-b nodes I-BB 3007029
B-and-b nodes CPLEX 3224115
B-and-b nodes LP(ε) -BB 2027332
LP(ε) -BB calls to CPP(lk, uk) 5818
LP(ε) -BB calls to CPP(x̂) 17784

Table 11: Total Number of Nodes and Calls to Relaxations for All Instances

unexpected behavior is that CPLEX is not a pure branch-and-bound solver. LP(ε) -BB

benefits from CPLEX being able to use some features which are currently available for

MILP problems, but not for MICP problems, such as advanced preprocessing, branching

rules, cutting planes and heuristics.

Finally, we compared LP(ε) -BB to the polyhedral relaxation based solvers by selecting

all instances that were solved within the time limit by I-QG, I-Hyb and LP(ε) -BB . For

these instances we present in Table 12 the total number of branch-and-bound nodes processed

by each method. Because the instances used to generate Table 12 are not the same as the

ones used to generate Table 11 we also include, as a reference, the total number of branch-

and-bound nodes processed by I-BB and CPLEX and the total number of calls to nonlinear

relaxations CPP(lk, uk) and CPP(x̂) made by LP(ε) -BB .

B-and-b nodes I-QG 3580051
B-and-b nodes I-Hyb 328316
B-and-b nodes I-BB 68915
B-and-b nodes CPLEX 85957
B-and-b nodes LP(ε) -BB 57933
LP(ε) -BB calls to CPP(lk, uk) 2305
LP(ε) -BB calls to CPP(x̂) 7810

Table 12: Total Number of Nodes and Calls to Relaxations for Small Instances

We see that I-Hyb needed almost four times the number of nodes needed by CPLEX

and I-QG needed over 40 times as many nodes as CPLEX. In contrast, LP(ε) -BB was the

algorithm that needed the fewest number of nodes. This confirms that the relaxation LP(ε)

is extremely good for our set of instances.

25

5. Conclusions and Further Work

We have introduced a branch-and-bound algorithm for MINLP problems that is based on

a lifted polyhedral relaxation, does not update the relaxation using gradient inequalities

and sometimes branches on integer feasible variables. We have also demonstrated how this

lifted LP branch-and-bound algorithm can be very effective when a good lifted polyhedral

relaxation is available. More specifically, we have shown that the lifted LP branch-and-bound

algorithm based on LP(ε) can significantly outperform other methods for solving a series

of portfolio optimization problems with cardinality constraints. One reason for this good

performance is that, for these problems, high accuracy of Lr
ε translates into high accuracy of

LP(ε) which results in the construction of a tight but small polyhedral relaxation. Another

factor is that by using a polyhedral relaxation of the nonlinear constraints we can benefit

from “warm start” capabilities of the simplex LP algorithm and the many advanced features

of CPLEX’s MILP solver. It is curious to note that a statement similar to this last one

can also be made for the other polyhedral relaxation based algorithms we tested and these

were the worst performers in our tests. It seems then that using LP(ε) provides a middle

point between NLP based branch-and-bound solvers and polyhedral relaxation based solvers

which only use gradient inequalities by inheriting most of the good properties of this last

class without suffering from slow convergence of the relaxations.

Although the lifted LP branch-and-bound algorithm based on LP(ε) we have presented

is already very efficient there are many improvements that can be made to it. While the

version of LP(ε) that we used achieves the best possible assymptotic order of magnitude of

variables and constraints (see Ben-Tal and Nemirovski (2001b) and Glineur (2000)), it is

shown in Glineur (2000) that for a fixed r and ε it can be improved further. Using a slightly

smaller version of LP(ε) would probably not increase significantly the performance of the

algorithm for our test instances, but it could provide an advantages for problems with many

conic constraints of the form CC.

The choice of value ε for LP(ε) is another aspect that can be studied further. The

dependence of LP(ε) on ε is through the function
⌈
log4

(
16
9
π−2 log(1 + ε)

)⌉
in (20). Hence,

there is only a discrete set of possible of choices of ε in a certain interval that yield different

relaxations LP(ε). This allows for a refinement of the calibration experiments of section 4.3.1.

For example, in our calibration experiment the only different relaxations LP(ε) for values

of ε in [0.001, 0.1] are the ones corresponding to values of ε in {0.1, 0.03, 0.01, 0.004, 0.001}.

26

By re-running our calibration experiments for all of these values of ε we discovered that

ε = 0.01 was still the best choice on average. This suggests the existence of, in some sense,

an optimal choice of ε. The choice of this ε could become more complicated though when the

more elaborate constructions of Glineur (2000) are used. An alternative to choosing ε a priori

is to choose a moderate initial value and refine the relaxation inside the branch-and-bound

procedure. It is not clear how to do this efficiently though.

We are currently studying some of these issues and the possibility of extending this work

to other classes of MINLP problems.

Acknowledgments

This research was supported in part by the National Science Foundation under grants DMI-

0121495, DMI-0522485 and DMI-0133943 and by a grant from ExxonMobil.

References

Abhishek, K., S. Leyffer, J. T. Linderoth. 2006. Filmint: An outer-approximation-based

solver for nonlinear mixed integer programs. Preprint ANL/MCS-P1374-0906, Argonne

National Laboratory, Mathematics and Computer Science Division, Argonne, IL.

Ball, K. M. 1997. An elementary introduction to modern convex geometry. S. Levy, ed.,

Flavors of Geometry , Mathematical Sciences Research Institute Publications , vol. 31. Cam-

bridge University Press, Cambridge, 1–58.

Ben-Tal, A., A. Nemirovski. 1999. Robust solutions of uncertain linear programs. Oper. Res.

Lett. 25 1–13.

Ben-Tal, A., A. Nemirovski. 2001a. Lectures on modern convex optimization: analysis,

algorithms, and engineering applications . Society for Industrial and Applied Mathematics,

Philadelphia, PA.

Ben-Tal, A., A. Nemirovski. 2001b. On polyhedral approximations of the second-order cone.

Math. Oper. Res. 26 193–205.

Bertsimas, D., R. Shioda. 2004. An algorithm for cardinality constrained quadratic opti-

mization problems. Working Paper, http://web.mit.edu/dbertsim/www/papers.html.

27

Bienstock, D. 1996. Computational study of a family of mixed-integer quadratic program-

ming problems. Math. Program. 74 121–140.

Bonami, P., A. Waechter, L. T. Biegler, A. R. Conn, G. Cornuejols, I. E. Grossmann,

C. D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya. 2005. An algorithmic framework for

convex mixed integer nonlinear programs. IBM Research Report RC23771, IBM, Yorktown

Heights, NY.

Borchers, B., J. E. Mitchell. 1994. An improved branch and bound algorithm for mixed

integer nonlinear programs. Comput. Oper. Res. 21 359–367.

Ceria, S., R. A. Stubbs. 2006. Incorporating estimation errors into portfolio selection: Robust

portfolio construction. J. Asset Manage. 7 109–127.

Chang, T.-J., N. Meade, J. E. Beasley, Y. M. Sharaiha. 2000. Heuristics for cardinality

constrained portfolio optimisation. Comput. and Oper. Res. 27 1271–1302.

Dolan, E. D., J. J. Moré. 2002. Benchmarking optimization software with performance

profiles. Math. Program. 91 201–213.

Duran, M. A., I. E. Grossmann. 1986. An outer-approximation algorithm for a class of

mixed-integer nonlinear programs. Math. Program. 36 307–339.

Fletcher, R., S. Leyffer. 1994. Solving mixed integer nonlinear programs by outer approxi-

mation. Math. Program. 66 327–349.

Geoffrion, A. 1972. Generalized benders decomposition. J. of Optim. Theory and Appl. 10

237–260.

Glineur, F. 2000. Computational experiments with a linear approximation of second order

cone optimization. Image Technical Report 0001, Service de Mathématique et de Recherche

Opérationnelle, Faculté Polytechnique de Mons, Mons, Belgium.

Grossmann, I. E. 2002. Review of nonlinear mixed-integer and disjunctive programming

techniques. Optim. and Engrg. 3 227–252.

Gupta, O. K., A. Ravindran. 1985. Branch and bound experiments in convex nonlinear

integer programming. Manage. Sci. 31 1533–1546.

28

ILOG. 2005. Cplex 10: User’s Manual and Reference Manual . ILOG, S.A.

Leyffer, S. 2001. Integrating SQP and branch-and-bound for mixed integer nonlinear pro-

gramming. Comput. Optim. and Appl. 18 295–309.

Lobo, M. S., M. Fazel, S. Boyd. 2007. Portfolio optimization with linear and fixed transaction

costs. Ann. Oper. Res. To appear.

Lobo, M. S., L. Vandenberghe, S. Boyd. 1998. Application of second-order cone program-

ming. Linear Algebra Appl. 284 193–228.

Maringer, D., H. Kellerer. 2003. Optimization of cardinality constrained portfolios with a

hybrid local search algorithm. OR Spectrum 25 481–495.

Quesada, I., I.E. Grossmann. 1992. An lp/nlp based branch and bound algorithm for convex

minlp optimization problems. Comput. and Chem. Engrg. 16 937–947.

Stubbs, R. A., S. Mehrotra. 1999. A branch-and-cut method for 0-1 mixed convex program-

ming. Math. Program. 86 515–532.

Westerlund, T., F. Pettersson. 1995. An extended cutting plane method for solving convex

minlp problems. Comput. and Chem. Engrg. 19 S131–S136.

Westerlund, T., F. Pettersson, I.E. Grossmann. 1994. Optimization of pump configurations

as a minlp problem. Comput. and Chem. Engrg. 18 845–858.

29

