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Preface

The subject of Nonparametric statistics is statistical inference applied to noisy obser-
vations of infinite-dimensional “parameters” like images and time-dependent signals.
This is a mathematical area on the border between Statistics and Functional Analysis,
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self-contained, modulo a few facts from the theory of functional spaces.
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Chapter 1

Estimating regression functions
from Hölder balls

1.1 Introduction

We start with brief outline of the problems we are interested in and the goals we are
aimed at.

Statistical problems and estimates. A typical problem of Statistics is as follows:

(*) We are given a Polish (i.e., metric, separable and complete) “space
of observations” Y along with a family of Borel probability distributions
{Φf (·)}f∈F on Y ; the family is parameterized by a “parameter” f varying
in a metric space F .

The goal is, given an “observation ” – a realization

y ∼ Φf

of random variable associated with an unknown f ∈ F , to make conclu-
sions about f , e.g.

I. [Identification] To estimate f ,

F. [Evaluation of a functional] To estimate the value F (f) at f of a given
functional F : F → R,

H. [Hypotheses testing] Given a partition F =
N⋃
i=1

Fi of F , to decide to

which element Fi of the partition f belongs,

In all these problems, a “candidate solution” is an estimate – a Borel function
f̂(y) on the “space of observations” Y taking values in an appropriately chosen Polish
“space of answers” Z:
• In the case of Identification problem, Z = F , and f̂(y) is the estimated value of

f ;
• In the case of problem of evaluating a functional, Z = R, and f̂(y) is the

estimated value of F (f)
• In the case of Hypotheses testing, Z = {1, ..., N}, and f̂(y) is the (index of the)

accepted hypothesis.
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6 ESTIMATING FUNCTIONS FROM HÖLDER BALLS

Risk of an estimate. Normally it is impossible to recover the “true answer” f∗(f)
exactly, and we should be satisfied with estimates f̂(·) which with “high” probability
are “close” to true answers.

A natural way to quantify the quality of an estimate is to look at its (mean squared)
risk

R(f̂ , f) =
(
EΦf

{
dist2

Z(f̂(y), f∗(f)
})1/2

, (1.1)

where
• EΦf {·} is the expectation w.r.t. y ∼ Φf ;
• distZ(·, ·) is the metric on the “space of answers” Z;
• f∗(f) ∈ Z is the true answer.
For example
• In the Identification problem, Z = F , distZ(·, ·) is the metric F is equipped

with, and f∗(f) = f ;
• In the Functional Evaluation problem, Z = R, distZ(p, q) = |p− q| and f∗(f) =

F (f);
• In the Hypotheses testing problem,

Z = {1, ..., N}, distZ(i, j) =
{

0, i = j
1, i 6= j

, f∗(f) = i for f ∈ Fi.

In the latter case (1.1) is the square root of the probability to misclassify the parameter
f of the distribution we observe.

Remark 1.1.1 Of course, (1.1) is not the only meaningful way to measure risk; a
general scheme requires to choose a “loss function” – a nondecreasing function Ψ(t)
on the nonnegative ray such that Ψ(0) = 0 – and to associate with this loss function
the risk

R(f̂ , f) = Ψ−1
(
EΦf

{
Ψ
(
distZ(f̂(y), f∗(f))

)})
.

To order to simplify our considerations and notation (in our course, we shall have
enough of other “parameters of situation” to trouble about), in what follows we focus
on the mean square risk (1.1), i.e., on the simplest loss functions Ψ(t) = t2.

Risk (1.1) depends on the “true parameter” f , and thus cannot be used “as it is”
to quantify the quality of an estimate. There are two standard ways to eliminate the
dependence on f and to get a quantitative characterization of an estimate:
• [Bayesian approach] To take average of R(f̂ , f) over a given a priori distribution

of f ∈ F
• [Minimax approach] To take the supremum of R(f̂ , f) over f ∈ F , thus coming

to the worst-case risk

R(f̂ ;F) = sup
f∈F
R(f̂ , f) = sup

f∈F

(
EΦf

{
dist2

Z(f̂(y), f∗(f)
})1/2

(1.2)

of an estimate f̂ on the “parameter set” F . In our course, we always use the minimax
approach. The major reason for this choice is that we intend to work with infinite-
dimensional parameter sets, and these sets usually do not admit “natural” a priori
distributions.
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With the minimax approach, the quality of “ideal” estimation becomes the mini-
max risk

R∗(F) = inf
f̂(·)
R(f̂ ;F) (1.3)

– the minimal, over all estimates, worst-case risk of an estimate.

Nonparametric regression problems. In the “parametric” Statistics, the param-
eter set F is finite-dimensional: F ⊂ Rk (“the distribution is known up to finitely
many parameters”). In the Nonparametric Statistics, the parameter set F is infinite-
dimensional – typically, it is a compact subset of certain functional space, like the
space C([0, 1]d) of continuous functions on the unit d-dimensional cube. Typical
generic examples are as follows:
• Nonparametric regression estimation problem:

(R) Recover a function f : [0, 1]d → R known to belong to a given set
F ⊂ C([0, 1]d) via n noisy observations

y = yf = {yi = f(xi) + σξi, i = 1, ..., n} (1.4)

of the values of the function along n given points xi ∈ [0, 1]d; here {ξi}ni=1

is the observation noise.

• Nonparametric density estimation problem:

(D) Recover a probability density f on [0, 1]d known to belong to a
given set F ⊂ C([0, 1]d) via n-element sample of independent realizations
{xi ∼ f}ni=1.

In our course, we will focus on the Nonparametric regression estimation problem and
related problems of estimating functionals of a “signal” f via observations (1.4).

In order to get a particular “instance” of generic setting (R), we should specify
the following “data elements”:

1. The grid {xi}ni=1

Options:

• n-point equidistant grid;

• sample of n independent realizations of random vector with known/unknown
distribution;

• ...

2. Type of noises {ξi}ni=1

Options:

• independent N (0, 1)-random variables;

• independent identically distributed random variables with known/unknown
distribution;

• dependent, in a prescribed fashion, random variables;

• ...
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3. The set F
Options:

• a subset of C([0, 1]d) comprised of functions satisfying certain smoothness
conditions;

• ...

4. The metric used to measure risk

In our course, we measure recovering errors in the standard ‖ · ‖q-norms

‖ g ‖q=



 ∫
[0,1]d

|g(x)|qdx


1/q

, 1 ≤ q <∞

max
x∈[0,1]d

|g(x)|, q =∞

The risks associated with these norms are called q-risks.

It would be too ambitious for a single course to be aimed at achieving “maximal gener-
ality” with respect to all these “data elements”. Our decision will be in favour of “gen-
erality in the classes of signals F” rather than “generality with respect to the schemes
of observations”. Indeed, what makes the major difference between the paramet-
ric and the nonparametric statistics, is exactly the “nontrivial” infinite-dimensional
geometry of the parameter set, and it is natural to focus first of all on the role of
this geometry, not complicating things by considering “difficult” observation schemes.
Specifically, the main part of the results to be presented deals with the simplest ob-
servation scheme, where the observations are taken along an equidistant grid, and the
observation noises are independent N (0, 1)1).

The asymptotic approach. After all “data elements” of the Regression estimation
problem (recall that this is the problem we focus on) are specified, our “ideal goal”
becomes to find the optimal, for a given volume n of observations (1.4), estimate – the
one yielding the minimax risk. As a matter of fact, this goal never is achievable – we
do not know what is the optimal in the minimax sense estimate even in the simplest
– parametric! – problem

“Recover a real f ∈ F = [0, 1] via n independent observations yi =
f + ξi, ξi ∼ N (0, 1)”.

Thus, we are enforced to simplify our goal, and the standard “simplification” is to
fix all data elements except the volume of observations n, to treat n as a varying
“large parameter” and to speak about asymptotically optimal in order/ asymptotically
efficient estimation methods defined as follows.

When n is treated as a varying parameter,
• The minimax risk becomes a function of n:

R∗(n;F) = inf
f̂n(·)

(
En,f

{
dist2(f̂n(yf , ·)− f(·))

})1/2
,

1) Most of these results can be more or less straightforwardly extended to the case of more general
schemes of observations, but all these extensions are beyond the scope of the course.



1.2. RECOVERING A UNIVARIATE LIPSCHITZ CONTINUOUS FUNCTION 9

where
• inf is taken over the set of all possible estimates of f via n observations (1.4),

i.e., all Borel functions f̂(x; y) : [0, 1]d ×Rn → R
• En,f is the expectation over yf .

• A candidate solution to the Regression estimation problem becomes an estimation
method – a sequence of estimates{

f̂n(·, ·) : [0, 1]d ×Rn → R
}∞
n=1

indexed by volumes of observations used by the estimates;
• Our goal becomes either to find an asymptotically efficient estimation method:

R(f̂n;F) = (1 + o(1))R∗(n;F), n→∞,

or, which is more realistic, to find an optimal in order estimation method:

R(f̂n;F) ≤ O(1)R∗(n;F), n→∞.

In our course, we focus primarily on building optimal in order estimation methods for
the Regression estimation problem and asymptotically efficient estimation of function-
als of a regression function. The only situation we are interested in is when consistent
estimation is possible – i.e., when the minimax risk itself converges to zero as n→∞.
Note that the latter assumption is satisfied only when F possesses some compactness
properties (see Corollary 1.2.1), and that the rate of convergence of the minimax risk
to 0 as n→∞ heavily depends on the geometry of F (and sometimes – on the metric
used to measure the estimation error). These phenomena are characteristic for Non-
parametric Statistics and reflect its “combined” (Statistics + Geometry of functional
spaces) nature.

Just to give an impression of a typical result on estimating a non-parametric
regression function, we are about to consider the simplest problem of this type – the
one of recovering functions from Hölder balls. We start with the situation where
the main ideas of the constructions to follow are most transparent, namely, with
estimating a univariate Lipschitz continuous function, and then pass to the case of a
general Hölder ball.

1.2 Recovering a univariate Lipschitz continuous

function

The problem. Assume we are given n noisy observations

yi = f(i/n) + σξi, i = 1, ..., n (1.5)

of a function
f(x) : [0, 1]→ R,

{ξi} being independent N (0, 1) noises. Our a priori information on f is that f is
Lipschitz continuous with a given constant L > 0. How to recover the function?
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The recovering routine. Our problem is very simple and admits several standard
“good” solutions. We shall discuss just one of them, the so called locally polynomial,
or window estimate. The construction is as follows. In order to recover the value of
f at a given point x ∈ [0, 1], let us choose somehow a window – a segment B ⊂ [0, 1]
containing x and including at least one of the observation points xi = i/n. Let us
estimate f(x) via the observations from the window as if f were constant in it. The
most natural estimate of this type is just the arithmetic mean of the observations
from the window:

f̂B(x; y) =
1

n(B)

∑
i:xi∈B

yi, (1.6)

where n(B) stands for the number of observation points in a segment B. Recalling
the origin of yi’s and taking into account that

f(x) =
1

n(B)

∑
i:xi∈B

f(x),

we get
errB(x; y) ≡ f̂B(x; y)− f(x)

= dB(x) + sB,
dB(x) = 1

n(B)

∑
i:xi∈B

[f(xi)− f(x)],

sB = 1
n(B)

∑
i:xi∈B

σξi.

(1.7)

We have decomposed the estimation error in two components:

• deterministic dynamic error (bias) coming from the fact that f is not constant
in the window,

• stochastic error sB coming from observation noises and depending on window,
not on f ,

and this decomposition allows us to bound the estimation error from above. Indeed,
the deterministic error clearly can be bounded as

|dB(x)| ≤ 1
n(B)

∑
i:xi∈B

|f(xi)− f(x)|

≤ 1
n(B)

∑
i:xi∈B

L|xi − x|

≤ L|B|,

(1.8)

where |B| is the length of the segment B.
Now, the stochastic error is a Gaussian random variable with the standard devia-

tion
σ√
n(B)

≤ σn(|B|) ≡ σ√
n|B|/2

(1.9)

(we have taken into account that the number of observation points in B is at least
n|B|/2), and we can therefore bound from above all moments of the stochastic error:

(E{|sB|q})1/q ≤ O(1)σn(|B|)√q, q ≥ 1



1.2. RECOVERING A UNIVARIATE LIPSCHITZ CONTINUOUS FUNCTION 11

(from now on, E is the expectation over the observation noise, and all O(1)’s are
absolute constants). It follows that the moments of the estimation error errB(x; y)
can be bounded as follows:

(E{|errB|q(x; y)})1/q ≤ O(1)
√
qεn(|B|),

εn(h) = Lh+ σ
√

2
nh
.

(1.10)

The concluding step is to choose the window width h = |B| which results in the
smallest possible εn(h). Since we do not bother much about absolute constant factors,
we may just balance the “deterministic” and the “stochastic” components of εn(h):

Lh = σ(nh)−1/2 ⇒ h =

(
σ

L
√
n

)2/3

.

Thus, we come to the estimation routine as follows:

(Lip) Let number of observations n, noise intensity σ > 0 and a real
L > 0 be given, and let

h =

(
σ

L
√
n

)2/3

. (1.11)

In order to estimate an unknown regression function f at a point x ∈ [0, 1]
via observations (1.5), we

– cover x by a segment Bx ⊂ [0, 1] of the length h
(for the sake of definiteness, let this segment be centered at x, if the
distance from x to both endpoints of [0, 1] is ≥ h/2, otherwise let Bx be
either [0, h], or [1 − h, 1], depending on which of the points – 0 or 1 – is
closer to x);

– take, as an estimate of f(x), the quantity

f̂n(x; y) =
1

n(Bx)

∑
i:xi∈Bx

yi.

Note that the resulting estimate is linear in observations:

f̂n(x; y) =
n∑
i=1

φi,n(x)yi

with piecewise constant “weight functions” φi,n(·).
It should be stressed that the above estimation routine is well-defined only in

certain restricted domain of values of the parameters L, n, σ. Indeed, the resulting h
should not exceed 1 – otherwise the required window will be too large to be contained
in [0, 1]. At the same time, h should be at least n−1, since otherwise the window may
be too small to contain even a single observation point. Thus, the above construction
is well-defined only in the case when

1 ≤
(
L
√
n

σ

)2/3

≤ n. (1.12)

Note that for any fixed pair (L, σ), the relation (1.12) is satisfied for all large enough
values of n.
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Bounds for q-risks, 1 ≤ q <∞. The quality of our estimator is described by the
following simple

Proposition 1.2.1 Let n, L, σ satisfy the restriction (1.12). Whenever a regression
function f underlying observations (1.5) is Lipschitz continuous on [0, 1] with constant
L, the estimate f̂n(·; ·) given by the estimation routine (Lip) satisfies the relations

(
E{‖ f − f̂n ‖2

q}
)1/2
≤ O(1)

√
qL

(
σ

L
√
n

) 2
3

, 1 ≤ q <∞. (1.13)

In particular, whenever 1 ≤ q <∞, the (worst-case) q-risk

Rq(f̂n;H1
1(L)) = sup

f∈H1
1(L)

(
E{‖ f̂n − f ‖2

q}
)1/2

of the estimate f̂n on the Lipschitz ball

H1
1(L) = {f : [0, 1]→ R | |f(x)− f(x′)| ≤ L|x− x′| ∀x, x′ ∈ [0, 1]}

can be bounded from above as

Rq(f̂n;H1
1(L)) ≤ O(1)

√
qL

(
σ

L
√
n

) 2
3

. (1.14)

Proof. Let q ∈ [1,∞). Relations (1.10) and (1.11) imply that for every Lipschitz
continuous, with constant L, function f and for every x ∈ [0, 1] one has

E{|f̂n(x; y)− f(x)|2q} ≤
[
O(1)

√
qLh

]2q
⇒

E


[

1∫
0
|f̂n(x; y)− f(x)|qdx

]2
 ≤ E

{
1∫
0
|f̂n(x; y)− f(x)|2qdx

}
≤

[
O(1)

√
qLh

]2q
⇒(

E{‖ f̂n − f ‖2
q}
)1/2

≤ O(1)
√
qLh

= O(1)
√
qL1/3σ2/3n−1/3

[see (1.11)]

Bound for the ∞-risk. The bounds established in Proposition 1.2.1 relate to q-
risks with q < ∞ only; as we shall see in a while, these bounds are optimal in order
in the minimax sense. In order to get a similarly “good” bound for the ∞-risk, the
above construction should be slightly modified. Namely, let us fix h, 1 ≥ h ≥ n−1,
and consider an estimate of the same structure as (Lip):

f̂h(x; y) =
1

n(Bx)

∑
i:xi∈Bx

yi, (1.15)
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with all windows Bx being of the same width h 2). In view of (1.7), the ‖ · ‖∞-error
of the estimator f̂h can be bounded from above by the sum of the maximal, over
x ∈ [0, 1], deterministic and stochastic errors:

‖ f̂h − f ‖∞≤
{

sup
x∈[0,1]

|dBx(x)|
}

1

+

{
sup
x∈[0,1]

|sBx|
}

2

.

According to (1.8), the right hand side term {·}1 does not exceed Lh. In order to
evaluate the term {·}2, note that every sBx is a Gaussian random variable with the zero

mean and the standard deviation not exceeding σn(h) = σ
√

2
nh

, see (1.9). Besides this,

the number of distinct random variables among sBx does not exceed O(1)n2 (indeed,
every stochastic error is the arithmetic mean of several “neighbouring” observation
noises σξi, σξi+1, ..., σξj, and there are no more than n(n+ 1)/2 groups of this type).
It follows that

E
{
{·}2

2

}
≤ O(1)σ2

n(h) lnn,

whence (
E
{
‖ f̂h − f ‖2

∞

})1/2
≤ O(1)

[
Lh+

σ
√

lnn√
nh

]
. (1.16)

Choosing h which balances the “deterministic” and the “stochastic” terms Lh, σ
√

lnn√
nh

,
respectively, we get

h =

(
σ
√

lnn

L
√
n

) 2
3

. (1.17)

Denoting by f̂∞n (·) the estimate (1.15), (1.17) and applying (1.16), we get the following
risk bound:

R∞(f̂∞n ;H1
1(L)) ≡ sup

f∈H1
1(L)

(
E
{
‖ f̂∞n (·)− f(·) ‖2

∞

})1/2
≤ O(1)L

(
σ
√

lnn

L
√
n

) 2
3

. (1.18)

Note that the construction makes sense only when h given by (1.17) belongs to the
segment [n−1, 1], i.e., when

1 ≤
(
L
√
n

σ
√

lnn

)2/3

≤ n, (1.19)

which for sure is the case for all large enough values of n.
Note that the q-risks of the estimate f̂∞n (·), 1 ≤ q < ∞, are worse than those of

the estimate f̂n by a logarithmic in n factor only; similarly, the∞-risk of the estimate
f̂n is only by a logarithmic in n factor worse than the ∞-risk of the estimate f̂∞n .

Lower bounds. We have build two estimates f̂n, f̂∞n for recovering a Lipschitz
continuous, with a known constant, function from observations (1.5). It is time now
to demonstrate that these estimates are optimal in order in the minimax sense:

2) Same as in (Lip), Bx =

 [0, h], 0 ≤ x ≤ h/2
[x− h/2, x+ h/2], h/2 ≤ x ≤ 1− h/2
[1− h, 1 1− h/2 ≤ x ≤ 1

.
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Proposition 1.2.2 For every triple L, σ, n satisfying (1.12) and every q ∈ [1,∞)
the minimax q-risk of estimating functions from H1

1(L) via observations (1.5) can be
bounded from below as

R∗q(n;H1
1(L)) ≥ O(1)L

(
σ

L
√
n

) 2
3

. (1.20)

For every fixed κ > 0, for every triple L, σ, n satisfying the assumption

nκ ≤
(
L
√
n

σ
√

lnn

) 2
3

≤ n (1.21)

(cf. (1.19)), the minimax ∞-risk of estimating functions from H1
1(L) via observations

(1.5) can be bounded from below as

R∗∞(n;H1
1(L)) ≥ C(κ)L

(
σ
√

lnn

L
√
n

) 2
3

(1.22)

(C(κ) > 0 depends on κ only).
Consequently, in the case of (1.12) the estimate f̂n is minimax optimal, up to a

factor depending on q only, with respect to q-risk, 1 ≤ q < ∞, on the set H1
1(L).

Similarly, in the case of (1.21) the estimate f̂∞n is minimax optimal, up to a factor
depending on κ only, with respect to the ∞-risk on the same set.

The proof of this Proposition, same as basically all other lower bounds in regression
estimation, is based on information-type inequalities. It makes sense to summarize
these arguments in the following statement:

Proposition 1.2.3 Let

• L be a space of real-valued functions on a set X , and ρ(f, g) be a metric on the
functional space L;

• F be a subset of the space L;

• Xn be an n-point subset of X;

• FN = {f1, ..., fN} be an N-element subset of F ;

• σ be a positive real.

Given the indicated data, let us set

Resolution(FN) = min {ρ(fi, fj) | 1 ≤ i < j ≤ N} ;

Diameter(FN |Xn) = 1
2

max
1≤i≤j≤N

∑
x∈Xn

|fi(x)− fj(x)|2

and assume that

Diameter(FN |Xn) < σ2
[
1

2
ln(N − 1)− ln 2

]
. (1.23)
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Now consider the problem of recovering a function f ∈ F from n observations

yf = {yf (x) = f(x) + σξx}x∈Xn ,

ξ = {ξx}x∈Xn being a collection of independent N (0, 1) noises, and let f̃ be an arbitrary
estimate3). Then the worst-case ρ-risk

Rρ(f̃ ;F) ≡ sup
f∈F
E{ρ(f(·), f̃(·, yf ))}

of the estimate f̃ on F can be bounded from below as

Rρ(f̃ ;F) ≥ 1

4
Resolution(FN). (1.24)

Corollary 1.2.1 Let L be a space of real-valued functions on a set X , ρ be a metric
on L and F be a subset of L. Assume that functions from F are uniformly bounded
and that F is not pre-compact with respect to ρ: there exists a sequence {fi ∈ F}∞i=1

and ε > 0 such that ρ(fi, fj) ≥ ε for all i 6= j. Then F does not admit consistent
estimation: for every sequence {Xn ⊂ X}∞n=1 of finite subsets of X , Card(Xn) = n,
the minimax ρ-risk

R∗ρ(n;F) ≡ inf
f̃n

sup
f∈F
E{ρ(f(·), f̃n(·, yf ))}

of estimating f ∈ F via observations

yf = {yf (x) = f(x) + σξx}x∈Xn [ξi ∼ N (0, 1) are independent]

remains bounded away from 0 as n→∞:

R∗ρ(n;F) ≥ 1

4
ε. (1.25)

Proof. Under the premise of Corollary there exist subsets FN ⊂ F of arbitrary large
cardinality N with Resolution(FN) ≥ ε and bounded, by a constant depending on F
only, Diameter(FN |Xn) (since all functions from F are uniformly bounded). It follows
that for every n we can find FN ⊂ F satisfying (1.23) and such that the associated
lower bound (1.24) implies (1.25).

Proof of Proposition 1.2.3. Consider N hypotheses Hi, i = 1, ..., N , on the distri-
bution of a random vector y ∈ Rn; according to i-th of them, the distribution is the
one of the vector yfi , i.e., n-dimensional Gaussian distribution Fi(·) with the covari-
ance matrix σ2I and the mean f̄i, f̄i being the restriction of fi onto Xn. Assuming
that there exists an estimate f̃ which does not satisfy (1.24), let us build a routine S
for distinguishing between these hypotheses:

3)Here an estimate is a function

f̃(x, y) : X ×Rn → R

such that f̃(·, y) ∈ L for all y ∈ Rn and the function ρ(f(·), f̃(·, y)) is Borel in y for every f ∈ F
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Given observations y, we build the function f y(·) = f̃(·, y) ∈ L and
check whether there exists i ≤ N such that

ρ(f y(·), fi(·)) <
1

2
Resolution(FN).

If it is the case, then the associated i is uniquely defined by the observations
(by definition of Resolution), and we accept the hypothesis Hi, otherwise
we accept, say, the hypothesis H1.

Note that since f̃ does not satisfy (1.24), then for every i ≤ N the probability to
accept hypothesis Hi if it indeed is true is ≥ 1/2 (recall that FN ⊂ F and use the
Tschebyshev inequality). On the other hand, the Kullback distance

K(Fi : Fj) ≡
∫
Rn

ln

(
dFj(y)

dFi(y)

)
dFj(y)

between the distributions Fi and Fj is at most σ−2Diameter(FN |Xn):

K(Fi : Fj) =
∫ (
‖ y − f̄i ‖2

2 − ‖ y − f̄j ‖2
2

2σ2

)
(2π)−n/2σ−n exp

{
−‖ y − f̄j ‖

2
2

2σ2

}
dy

=
∫ (
‖ z − [f̄i − f̄j] ‖2

2 − ‖ z ‖2
2

2σ2

)
(2π)−n/2σ−n exp

{
−‖ z ‖

2
2

2σ2

}
dz

=
∫ (
‖ f̄i − f̄j ‖2

2 −2zT [f̄i − f̄j]
2σ2

)
(2π)−n/2σ−n exp

{
−‖ z ‖

2
2

2σ2

}
dz

=
‖f̄i−f̄j‖22

2σ2 .

It remains to make use of the following fundamental

Theorem 1.2.1 [Fano’s inequality, Fano ’61] Let (Ω,F) be a Polish space with
the Borel σ-algebra, let F1, ..., FN be N mutually absolutely continuous proba-
bility distributions on (Ω,F). Let also

K(Fi : Fj) =

∫
Ω

ln

(
dFj(ω)

dFi(ω)

)
dFj(ω)

be the Kullback distance from Fj to Fi, and let

K = max
i,j
K(Fi : Fj).

Given a positive integer m, consider N hypotheses on the distribution of a ran-
dom point ωm ∈ Ωm, i-th of the hypotheses being that the distribution is Fmi
(i.e., that the entries ω1, ..., ωm of ωm are mutually independent and distributed
according to Fi). Assume that for some reals δi ∈ (0, 1), i = 1, ..., N , there
exists a decision rule – a Borel function

D : Ωm → [1, N ] = {1, 2, ..., N}

– such that the probability to accept i-th hypothesis if it indeed is true is at least
δi:

Fmi ({ωm : D(ωm) = i}) ≥ δi, i = 1, ..., N.
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Then for every probability distribution {p(i)}Ni=1 on [1, N ] it holds

mK ≥ −
∑
i
p(i) ln p(i)− (1− θ) ln(N − 1)− ln 2,

θ =
∑
i
p(i)δ(i).

(1.26)

In particular,
mK ≥ θ∗ ln(N − 1)− ln 2,
θ∗ = 1

N

∑
i
δ(i). (1.27)

As we have seen, for the routine S we have built the probabilities to accept every one
of the hypotheses Hi if it is true are at least 1/2. Besides this, we have seen that for
the hypotheses in question K ≤ σ−2Diameter(FN |Xn). Applying (1.27) with m = 1,
we get

σ−2Diameter(FN |Xn) ≥ 1

2
ln(N − 1)− ln 2,

which is impossible by (1.23).

Proof of Proposition 1.2.2. A. In order to prove (1.20), let us fix q ∈ [1,∞) and
specify the data of Proposition 1.2.3 as follows:

• L = Lq[0, 1], ρ(f, g) =‖ f − g ‖q;

• F = H1
1(L);

• Xn = {i/n, i = 1, ..., n}.

It remains to define a candidate to the role of FN . To this end let us choose somehow
a positive h < 1 (our choice will be specified later). Note that we can find a collection
of

M = M(h) ≥ 1

2h

non-overlapping segments Bl ∈ [0, 1], l = 1, ...,M , of the length h each. Now consider
functions f as follows:

f is zero outside
M⋃
l=1

Bl, and in every segment Bl = [xl − h/2, xl + h/2]

the function is either L[0.5h− |x− xl|], or −L[0.5h− |x− xl|].

It is clear that there exist 2M(h) distinct functions of this type, and all of them belong
toH1

1(L). Moreover, it is easily seen that one can find a collection FN(h) = {f1, ..., fN}
comprised of

N(h) ≥ 2O(1)M(h) (1.28)

functions of the indicated type in such a way that for distinct i, j the number n(i, j)
of those segments Bl where fi differs from fj is at least O(1)M(h). It is immediately
seen that the latter property implies that

i 6= j ⇒‖ fi − fj ‖q≥ O(1)Lh(O(1)M(h)h)1/q ≥ O(1)Lh,

so that
Resolution(FN(h)) ≥ O(1)Lh. (1.29)
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Now let us specify h in a way which ensures (1.23) for FN = FN(h). The uniform
distance between any two functions fi, fj does not exceed Lh, hence

Diameter(FN(h)|Xn) ≤ L2h2n. (1.30)

In view of (1.28), for N = N(h) the right hand side of (1.23) is at least O(1)σ2h−1,
provided that h is less than a small enough absolute constant. On the other hand, by
(1.30) the right hand side of (1.23) for FN = FN(h) is at most nL2h2. We see that in
order to ensure (1.23) for FN = FN(h) it suffices to set

h = O(1) min
[
1, n−1/3L−2/3σ2/3

]
= O(1)n−1/3L−2/3σ2/3,

the concluding relation being given by (1.12). In view of (1.29), with this choice of h
Proposition 1.2.3 yields (1.20).

B. In order to prove (1.22), one can use a construction similar to the one of A.
Namely, let us set

• L = L∞[0, 1], ρ(f, g) =‖ f − g ‖∞;

• F = H1
1(L);

• Xn = {i/n, i = 1, ..., n},

choose h ∈ [0, 1) and build
M(h) ≥ O(1)h−1

non-overlapping segments Bj = [xj − h/2, xj + h/2] ⊂ [0, 1]. Associating with j-th
segment the function

fj(x) =
{

0, x 6∈ Bj

L[0.5h− |x− xj|], x ∈ Bj
,

we get a collection FM(h) of M(h) functions such that

Resolution(FM(h)) = 0.5Lh (1.31)

and
Diameter(FM(h)|Xn) ≤ O(1)L2h3n

(indeed, the difference of two functions from FM(h) is of the uniform norm at most
0.5Lh and differs from zero at no more than O(1)nh point of the grid Xn). We see
that for FN = FM(h) the left hand side in (1.23) is at most O(1)L2h3n, while the right
hand side is at least O(1)σ2 lnM(h) = O(1)σ2 lnh−1, provided that h is less than a
small enough absolute constant. It follows that in order to ensure (1.23) it suffices to
choose h less than an appropriate absolute constant and satisfying the relation

L2h3n ≤ O(1)σ2 lnh−1.

In the case of (1.21) the latter requirement, in turn, is satisfied by

h = d(κ)

(
σ
√

lnn

L
√
n

) 2
3

with properly chosen d(κ) > 0 (depending on κ only). With this h, Proposition 1.2.3
combined with (1.31) yields the bound (1.22).
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1.3 Extension: recovering functions from Hölder

balls

The constructions and results related to recovering univariate Lipschitz continuous
functions can be straightforwardly extended to the case of general Hölder balls.

Hölder ball Hs
d(L) is specified by the parameters s > 0 (order of smoothness),

d ∈ Z+ (dimension of the argument) and L > 0 (smoothness constant) and is as
follows. A positive real s can be uniquely represented as

s = k + α, (1.32)

where k is a nonnegative integer and 0 < α ≤ 1. By definition, Hs
d(L) is comprised

of all k times continuously differentiable functions

f : [0, 1]d → R

with Hölder continuous, with exponent α and constant L, derivatives of order k:

|Dkf(x)[h, ..., h]−Dkf(x′)[h, ..., h]| ≤ L|x− x′|α|h|k ∀x, x′ ∈ [0, 1]d∀h ∈ Rd.

Here | · | is the standard Euclidean norm on Rd, and Dkf(x)[h1, ..., hk] is k-th differ-
ential of f taken at a point x along the directions h1, ..., hk:

Dfk(x)[h1, ..., hk] =
∂k

∂t1...∂tk

∣∣∣∣∣
t1=t2=...=tk=0

f(x+ t1h1 + t2h2 + ...+ tkhk).

Note that H1
d(L) is just the set of all Lipschitz continuous, with constant L, functions

on the unit d-dimensional cube [0, 1]d.

The problem we now are interested in is as follows. Assume we are given n = md

noisy observations

y = yf (ξ) =
{
yι = f(xι) + σξι|ι = (i1, ..., id) ∈ [1,m]d

}[
x(i1,...,id) = (i1/m, i2/m, ..., id/m)T

] (1.33)

of unknown regression function f ; here {ξι} are independent N (0, 1) noises. All we
know in advance about f is that the function belongs to a given Hölder ball Hs

d(L),
and our goal is to recover the function from the observations.

The recovering routine we are about to present is quite similar to the one of the
previous Section. Namely, we fix a “window width” h such that

k + 2

m
≤ h ≤ 1, (1.34)

k being given by (1.32). In order to estimate the value f(x) of f at a point x ∈ [0, 1]d,
we choose somehow a “window” – a cube Bx ⊂ [0, 1]d such that x ∈ Bx and the edges
of Bx are equal to h, and estimate f(x) via observations from the window as if f was
a polynomial of degree k. Let us explain the exact meaning of the latter sentence.
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Estimating polynomials. Let Bh = {x ∈ Rd | ai ≤ xi ≤ ai + h, i = 1, ..., d} be
a d-dimensional cube with edges h > 0, and let Γδ = δZd be the regular grid with
resolution δ > 0. Assume that

h

(k + 2)δ
≥ 1, (1.35)

and let Bδ
h be the intersection of the cube Bh and the grid Γδ. Let also Pkd be the space

of all polynomials of (full) degree k of d variables. Consider the following auxiliary
problem:

(*) Given x ∈ Bh, find “interpolation weights” ω = {ω(u)}u∈Bδ
h

which
reproduce the value at x of every polynomial of degree k via its restriction
on Bδ

h:
p(x) =

∑
u∈Bδ

h

ω(u)p(u) ∀p ∈ Pkd (1.36)

with the smallest possible variance

‖ ω ‖2
2=

∑
u∈Bδ

h

ω2(u).

Lemma 1.3.1 Problem (*) is solvable, and its optimal solution ωx is unique and
continuously depends on x. Moreover,

‖ ωx ‖2
2≤ κ2(k, d)

(
δ

h

)d
(1.37)

and
‖ ωx ‖1≡

∑
u∈Bδ

h

|ω(u)| ≤ κ1(k, d) (1.38)

with factors κ1,2(k, d) depending on k, d only.

Proof. 10. Observe, first, that if Gi, i = 1, ..., d, are finite sets of reals, each of the
sets being comprised of li ≥ k + 1 equidistantly placed points, and

Gd = G1 ×G2 × ...×Gd,

then the only polynomial from Pkd vanishing at the grid Gd is the zero polynomial
(this observation is given by a straightforward induction in d). In other words, if
p1, ..., pN is a basis in Pkd and P is the matrix with columns being the restrictions of
the basic polynomials piGd on the grid Gd:

P = [p1
Gd ; ...; p

N
Gd ],

then the kernel of the matrix P is trivial. Denoting by p̂ the vector of coefficients of
a polynomial p ∈ Pkd in the basis p1, ..., pN and observing that

pGd = P p̂ ∀p ∈ Pkd ,

we conclude that p̂ can be expressed, in a linear fashion, via pGd . Consequently, the
value of p ∈ Pkd at a given point u can also be expressed as a linear function of pGd :

∃λ : λTpGd = p(u) ∀p ∈ Pkd .
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The corresponding vectors of coefficients λ are exactly the solutions to the linear
system

P Tλ =

 p1(u)
· · ·

pN(u)

 (1.39)

As we have seen, (1.39) is solvable, and the matrix P is with the trivial kernel; under
these conditions Linear Algebra says that the matrix P TP is non-singular and that
the (unique) least norm solution to (1.39) is given by

λu = P (P TP )−1

 p1(u)
· · ·

pN(u)

 .
In particular, λu is a continuous function of u.

20. In view of (1.35), the set Bδ
h is a grid of the type considered in 10; in view of

the results of 10, the weight vector ωx is well-defined and is continuous in x.
30. To prove (1.37), let us come back to the situation of 10 and assume for a

moment that the cardinality of every “partial grid” Gi is exactly k + 1, and the
convex hull of the grid is the segment [0, 1]. In this case the norms ‖ λu ‖2 of the
weight vectors λu, being continuous functions of u, are bounded in the cube

−1 ≤ ui ≤ 2, i = 1, ..., d

by certain constant C1(k, d) depending on k, d only. By evident similarity reasons we
conclude that if the partial grids Gi are arbitrary equidistant grids of the cardinality
k + 1 each, the parallelotope B(Gd) is the convex hull of Gd and B+(Gd) is the
concentric toB(Gd) three times larger parallelotope, then for the corresponding weight
vectors it holds

‖ λu ‖2≤ C1(k, d) ∀u ∈ B+(Gd). (1.40)

Let q be the largest integer such that q(k+2)δ ≤ h; note that by (1.35) we have q ≥ 1.
As we just have mentioned, the grid Bδ

h is a direct product of d partial equidistant
grids Ĝi, and the cardinality of every one of these grids is at least q(k + 1). For
every i, let us partition the grid Ĝi into q mutually disjoint equidistant sub-grids Gi,l,
l = 1, ..., q of cardinality k + 1 each as follows: Gi,l contains the l-th, the (l + q)-
th,...,the (l + kq)-th points of the grid Ĝi. For every collection ν = (ν1, ..., νd) of
integers νi ∈ [1, q], we can build the d-dimensional grid

Gd
ν = G1,ν1 ×G2,ν2 × ...×Gd,νd .

By construction, all qd d-dimensional grids we can get in this way from qd distinct
collections ν are mutually disjoint and are contained in Bδ

h. Moreover, it is easily seen
that every one of the parallelotopes B+(Gd

ν) contains Bh. As we just have seen, for
every ν there exists a representation

p(x) =
∑
u∈Gdν

λν(u)p(u) ∀p ∈ Pkd

with ∑
u∈Gdν

λ2
ν(u) ≤ C2

1(k, d).
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It follows that for every p ∈ Pkd it holds

p(x) =
∑
u∈Bδ

h

ω(u)p(u) ≡ 1

qd
∑
ν

∑
u∈Gdν

λν(u)p(u).

The variance of the resulting interpolation weights clearly is

1

q2d

∑
ν

∑
u∈Gdν

λ2
ν(u) ≤ 1

qd
C2

1(k, d) ≤ C2(k, d)(δ/h)d

(we have used (1.40) and the fact that q ≥ O(1)hδ−1(k + 2)−1). Since the variance
of the optimal interpolation weights (those coming from the optimal solution to (*))
cannot be worse than the variance of the weights we just have built, we come to (1.37).
It remains to note that (1.38) follows from (1.37) in view of the Cauchy inequality.

Window estimates. The simple technique for estimating polynomials we have de-
veloped gives rise to a useful construction we shall use a lot – the one of a window
estimate of f(x) via observations (1.33). For a given volume of observations n, such
an estimate is specified by its order k (which is a nonnegative integer) and a window
B (recall that this is a cube containing x and contained in [0, 1]d with the edges of
a length h satisfying (1.34)) and is as follows. Let Bn be the intersection of B with
the observation grid. In view of Lemma 1.3.1, problem (*) associated with the data
x,Bh = B,Bδ

h = Bn, k is solvable; its optimal solution is certain collection of weights

ω ≡ ωBx =
{
ωBι (x) | ι : xι ∈ B

}
.

The order k window estimate of f(x) associated with the cube B is

f̂(x; y) ≡ f̂Bn (x; y) =
∑

ι:xι∈Bx
ωBι (x)yι. (1.41)

The following proposition summarizes some useful properties of window estimates.

Proposition 1.3.1 Let x ∈ [0, 1]d, k, n be given, and let B be a window for x. Given
a continuous function f : [0, 1]d 7→ R, let us define Φk(f,B) as the smallest uniform
error of approximating f in B by a polynomial of degree ≤ k:

Φk(f,B) = min
p∈Pk

d

max
u∈B
|f(u)− p(u)|.

Then the error of the order k window estimate of f(x) associated with the window B
can be bounded as follows:

|f̂Bn (x; yf (ξ))− f(x)| ≤ Ok,d(1)

[
Φk(f,B) +

σ√
n
D−d/2(B)|ζBx (ξ)|

]
, (1.42)

where

• D(B) is the edge of the cube B;

• ζBx (ξ) is a linear combination of the noises {ξι} with variance 1.



1.3. EXTENSION: RECOVERING FUNCTIONS FROM HÖLDER BALLS 23

Here in what follows O...(1) denotes a positive quantity depending solely on the pa-
rameter(s) listed in the subscript.

Furthermore, let

Θn = Θn(ξ) = sup
{
|ζBx (ξ)| | x ∈ [0, 1]d, B is a window for x

}
Then the random variable Θn is “of order of

√
lnn”:

∀w ≥ 1 : Prob
{

Θn > Ok,d(1)w
√

lnn
}
≤ exp

{
−w

2 lnn

2

}
. (1.43)

Proof. Let n(B) be the number of observation points in the window B and p(·) be
a polynomial of degree ≤ k such that

max
u∈B
|f(u)− p(u)| = Φk(f,B).

We have

|f(x)− f̂Bn (x; yf (ξ))|
= |f(x)−

∑
ι:xι∈B

ωBι (x) [p(xι) + [f(xι)− p(xι)]] +
∑

ι:xι∈B
ωBι (x)σξι|

= |f(x)− p(x) +
∑

ι:xι∈B
ωBι (x) [f(xι)− p(xι)] +

∑
ι:xι∈B

ωBι (x)σξι|

[by (1.36)]

≤ |f(x)− p(x)|+
∑

ι:xι∈B
|ωBι (x)||f(xι)− p(xι)|+ |

∑
ι:xι∈B

ωBι (x)σξι|

≤ Φk(f,B)
[
1+ ‖ ωBx ‖1

]
+ σ ‖ ωBx ‖2 |ζBx |,

ζBx = 1
‖ωBx ‖2

∑
ι:xι∈B

ωBι (x)ξι.

(1.44)

By Lemma 1.3.1 (applied with δ = n−1/d) one has

‖ ωBx ‖1≤ κ1(k, d), ‖ ωBx ‖2≤ κ2(k, d)n−1/2D−d/2(B),

and (1.44) implies (1.42).
The proof of (1.43) is left to the reader; we just indicate that the key argument is

that, as it is immediately seen from the proof of Lemma 1.3.1, for fixed B the weights
ωBι (x) are polynomials of x of degree ≤ k.

From estimating polynomials to estimating functions from Hölder balls.
Let us estimate f(·) at every point by a window estimate, all windows being of the
same size; the underlying length of window edges – the “window width” h – is the
parameter of our construction. Let us specify somehow the correspondence x 7→ Bx,
Bx being the window used to estimate f(x); we may, e.g., use the “direct product” of
the rules used in the univariate case. Let f̂h(·; y) denote the resulting estimate of the
regression function f underlying observations y (see (1.33)).
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Bounds for q-risks, 1 ≤ q < ∞. Observe that for f ∈ Hs
d(L) and all cubes

B ⊂ [0, 1]d we clearly have

Φk(f,B) ≤ Ok,d(1)LDs(B) (1.45)

(the right hand side is just the standard upper bound for the error, on B, of approx-
imating f by its Taylor polynomial of the degree k taken at a point from B). From
this observation and (1.44) it follows that for the window estimate f̂h(x) we have

(
E{|f(x)− f̂h(x; y)|q}

)1/q
≤ Ok,d(1)

√
q

[
Lhs +

σ√
nhd

]
, (1.46)

provided that h satisfies (1.34).
Now let us choose the window width h which balances the terms Lhs and σ√

nhd
in

the right hand side of (1.46):

h =

(
σ

L
√
n

)2/(2s+d)

. (1.47)

Assuming that the resulting h satisfies (1.34), i.e., that

1 <

(
L
√
n

σ

) 2d
2s+d

≤ (k + 2)−dn, (1.48)

(cf. (1.12); note that for every pair of (positive) L, σ this relation is satisfied by all
large enough values of n), we come to certain estimate, let it be denoted by f̂n(x; y).
In view of (1.46), the q-risk of this estimate on Hs

d(L) can be bounded as follows:

Rq(f̂n;Hs
d(L)) ≤ Os,d(1)

√
qL

(
σ

L
√
n

) 2s
2s+d

. (1.49)

Note that our estimate, same as in the univariate case, is linear in observations:

f̂n(x; y) =
∑
ι

φι,n(x)yι.

Bound for ∞-risk. When interested in the estimate of the outlined type with
∞-risk being as small as possible, we should choose the window width h in a way
slightly different from (1.47) (same as we did so in the previous Section). Indeed,
for f ∈ Hs

d(L), the uniform risk of the estimate f̂h, in view of (1.45), (1.44), can be
bounded as

‖ f(·)− f̂(·, y) ‖∞≤ Ok,d(1)

[
Lhs +

σ√
n

Θn

]
. (1.50)

As we know from (1.43), the “typical values” of Θn are of order of
√

lnn. Consequently,
a reasonable choice of h should balance the “deterministic term” Lhs and the “typical
value” σn−1/2

√
lnn of the “stochastic term” in the right hand side of (1.50). We come

to the choice

h =

(
σ
√

lnn

L
√
n

)2/(2s+d)

. (1.51)
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Assume that this choice fits (1.34), i.e., that

1 <

(
L
√
n

σ
√

lnn

) 2d
2s+d

< (k + 2)−dn, (1.52)

and let us denote the resulting estimate f̂∞n . From (1.43) combined with (1.50) we
get the following bound on the ∞-risk of the estimate on Hs

d(L):

R∞(f̂∞n ;Hs
d(L)) ≤ Os,d(1)L

(
σ
√

lnn

L
√
n

) 2s
2s+d

. (1.53)

Lower bounds on the minimax q-risks of recovering functions from a Hölder ball
Hs
d(L) are given by essentially the same reasoning as in the particular case considered

in the previous Section; they are particular cases of the bounds from Theorem 2.1.1
proved in Section 2.3. We come to the result as follows:

Theorem 1.3.1 For every collection d, s, L, σ, n = md satisfying (1.48) and every
q ∈ [1,∞) the minimax q-risk of estimating functions from Hs

d(L) via observations
(1.33) can be bounded from below as

R∗q(n;Hs
d(L)) ≥ Os,d(1)L

(
σ

L
√
n

) 2s
2s+d

. (1.54)

For every fixed κ > 0, for every collection s, d, L, σ, n = md satisfying the assumption

nκ ≤
(
L
√
n

σ
√

lnn

) 2d
2s+d

≤ (k + 2)−dn (1.55)

(cf. (1.52)), the minimax ∞-risk of estimating functions from Hs
d(L) via observations

(1.33) can be bounded from below as

R∗∞(n;Hs
d(L)) ≥ Oκ,s,d(1)L

(
σ
√

lnn

L
√
n

) 2s
2s+d

. (1.56)

Consequently, in the case of (1.48) the estimation method {f̂n}n given by (1.41),
(1.47) is minimax optimal on Hs

d(L) with respect to q-risk, 1 ≤ q <∞, up to a factor
depending on s, d, q only. Similarly, in the case of (1.55) the estimate f̂∞n is minimax
optimal on Hs

d(L) with respect to the ∞-risk up to a factor depending on s, d, κ only.

As a corollary, we get the following expressions for the minimax risks of estimating
functions from Hölder balls Hs

d(L) via observations (1.33):

For all large enough values of n (cf. (1.48), (1.55)), one has

R∗q(n;Hs
d(L)) = Os,d,q

(
L
(

σ
L
√
n

) 2s
2s+d

)
,

1 ≤ q <∞;

R∗∞(n;Hs
d(L)) = Os,d,κ

(
L
(
σ
√

lnn
L
√
n

) 2s
2s+d

) (1.57)

(From now on, we write f(n) = Oθ(g(n)), θ being a collection of parame-
ters, if both f(n)/g(n) and g(n)/f(n) admit upper bounds depending on
Θ only.)

Note that the estimates underlying the upper bounds in (1.57) can be chosen to be
linear in observations.
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1.4 Appendix: proof of the Fano inequality

The proof of the Fano inequality is given by the following two lemmas.

Lemma 1.4.1 Let {π(i, j)}Ni,j=1 be a probability distribution on [1, N ]2, let

p(i) =
N∑
j=1

π(i, j), i = 1, ..., N

q(j) =
N∑
i=1

π(i, j), j = 1, ..., N

be the associated marginal distributions, and let

θ =
N∑
i=1

π(i, i).

Then

I[π] ≡
∑
i,j
π(i, j) ln

(
π(i,j)
p(i)q(j)

)
≥ −

∑
i
p(i) ln p(i)− (1− θ) ln(N − 1) + [(1− θ) ln(1− θ) + θ ln θ]

≥ −
∑
i
p(i) ln p(i)− (1− θ) ln(N − 1)− ln 2.

(1.58)

Proof. We have

I[π] =
∑
i,j

[
−π(i, j) ln p(i) + π(i, j) ln

(
π(i,j)
q(j)

)]
= −

∑
i
p(i) ln p(i) +

∑
i,j
π(i, j) ln

(
π(i,j)
q(j)

)
≥ −

∑
i
p(i) ln p(i)

+ min
ξ(·,·),η(·)∈B

∑
i,j

ξ(i, j) ln

(
ξ(i, j)

η(j)

)
,

B =

{(
{ξ(i, j) ≥ 0}Ni,j=1, {η(j) ≥ 0}Nj=1

)
| ξ(i, i) = π(i, i),∑

i
ξ(i, j) = η(j) ∀j,

∑
j
η(j) = 1

}
.

(1.59)

The function p ln p
q

4) is convex and lower semicontinuous in p, q ≥ 0, so that the function

f(ξ, η) =
∑
i,j

ξ(i, j) ln

(
ξ(i, j)

η(j)

)

is convex on the convex set B. To compute its minimum on B, let us fix {η(j) ≥ π(j, j)}Nj=1

with
∑
j
η(j) = 1 and minimize f(ξ, η) over those ξ for which (ξ, η) ∈ B. Due to the separable

structure of f , this minimization results in

min
ξ:(ξ,η)∈B

f(ξ, η) =
∑
j

min
{ξ(i)≥0}Ni=1:ξ(j)=π(j,j),

∑
i

ξ(i)=η(j)

∑
i

ξ(i) ln

{
ξ(i)

η(j)

}
.

4) By definition, 0 ln 0
q = 0 for all q ≥ 0 and p ln p

0 = +∞ whenever p > 0



1.4. APPENDIX: PROOF OF THE FANO INEQUALITY 27

For every j, a solution to the problem

min
{ξ(i)≥0}Ni=1:ξ(j)=π(j,j),

∑
i

ξ(i)=η(j)

∑
i

ξ(i) ln

{
ξ(i)

η(j)

}

is given by

ξ(i) =

{
π(j, j), i = j
η(j)−π(j,j)

N−1 , i 6= j
, 5)

so that

g(η) ≡ min
ξ:(ξ,η)∈B

f(ξ, η) =
∑
j

[
[η(j)− π(j, j)] ln

(
η(j)− π(j, j)

(N − 1)η(j)

)
+ π(j, j) ln

(
π(j, j)

η(j)

)]
.

It remains to minimize g(η) over

η ∈ B′ =

{η(j)}Nj=1 | η(j) ≥ π(j, j),
∑
j

η(j) = 1

 .
We claim that the required minimizer η∗ is given by

η∗(j) =
1

θ
π(j, j), j = 1, ..., N.

Indeed, g is convex on the convex set B′, so that in order to verify that the above η∗ (which
clearly belongs to B′) minimizes g on B′, it suffices to verify that the derivative of g at
η∗ is proportional to the vector of ones (i.e., to the normal to the hyperplane

∑
j
η(j) = 1

containing B′). We have

∂
∂η(j)g(η∗) = ln

(
η∗(j)−π(j,j)
(N−1)η∗(j)

)
+ 1− η∗(j)−π(j,j)

η∗(j)
− π(j,j)

η∗(j)

= 1−θ
N−1 ,

as required.
We conclude that

min
(ξ,η)∈B

f(ξ, η) = g(η∗)

=
∑
j
π(j, j)

[(
1
θ − 1

)
ln
(

1−θ
N−1

)
+ ln θ

]
= (1− θ) ln(1− θ)− (1− θ) ln(N − 1) + θ ln θ,

and (1.58) follows.
Now let us set Hi = Fmi , so that Hi is a probability distribution on (Ω,F)m, and let Ωj

be the set of those ωm ∈ Ωm at which D(·) is equal to j, so that {Ωj}Nj=1 is a partition of Ω

into N non-overlapping Borel sets. Given a probability distribution {p(i)}Ni=1 on [1, N ], let
us set

κ(i, j) =
∫

Ωj

dHi(ω
m),

π(i, j) = p(i)κ(i, j),

5) Indeed, the function we are minimizing is lower semicontinuous, and it is minimized on a
compact set, so that the minimum is attained. Since the set is convex and the function is convex
and symmetric in {ξ(i)}i6=j , it has a minimizer where all ξ(i) with i 6= j are equal to each other.
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so that π(·, ·) is a probability distribution on [1, N ]2. Note that by evident reasons

K(Hi : Hj) = mK(Fi : Fj),

so that
K(Hi : Hj) ≤ mK. (1.60)

Lemma 1.4.2 One has
I[π] ≤ K. (1.61)

Proof. Denoting H =
∑
j
Hj and hj(ω

m) =
dHj(ω

m)
dH(ωm) , we get

K(Hi : Hj) =
∑
k

∫
Ωk

hj(ω
m) ln

(
hj(ω

m)
hi(ωm)

)
dH(ωm)

= −
∑
k

∫
Ωk

hj(ω
m) ln

(
hi(ω

m)
hj(ωm)

)
dH(ωm)

≥ −
∑
k
κ(j, k) ln

( ∫
Ωk

hj(ω
m)

κ(j,k)
hi(ω

m)
hj(ωm)dH(ωm)

)
[Jensen’s inequality for the concave function ln(·)]

=
∑
k
κ(j, k) ln

(
κ(j,k)
κ(i,k)

)
.

(1.62)

Thus, in view of (1.60)

mK ≥ K(Hi : Hj) ≥
∑
k

κ(j, k) ln

(
κ(j, k)

κ(i, k)

)
∀i, j. (1.63)

We now have

I[π] =
∑
j,k
p(j)κ(j, k) ln

 p(j)κ(j,k)(∑
i

p(j)κ(j,i)

)(∑
i

p(i)κ(i,k)

)


=
∑
j,k
p(j)κ(j, k) ln

 κ(j,k)∑
i

p(i)κ(i,k)


≤

∑
i,j,k

p(i)p(j)κ(j, k) ln
(
κ(j,k)
κ(i,k)

)
[Jensen’s inequality for the convex function f(t) = ln a

t ]
≤

∑
i,j
p(i)p(j)mK

[by (1.63)]
= mK.

(1.64)

Combining (1.64) and (1.58), we come to (1.26); setting in the latter inequality p(i) = 1
N ,

i = 1, ..., N , we get (1.27).

Remark 1.4.1 In course of proving the Fano inequality (see (1.62), we have obtained a
result which is important by itself:

Let F,G be two mutually absolutely continuous probability distributions on
Ω, and let

Ω =
I⋃
i=1

Ωi
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be a partitioning of Ω into I < ∞ mutually disjoint sets from the underlying
σ-algebra. Let F̂ , Ĝ be the distributions of the “point index”

i(ω) =


1, ω ∈ Ω1

2, ω ∈ Ω2,
...
I, ω ∈ ΩI

induced by F , G, respectively. Then

K(F̂ : Ĝ) ≤ K(F : G).
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Chapter 2

Estimating regression functions
from Sobolev balls

We have seen what are the possibilities to recover a “uniformly smooth” regression
function – one from a given Hölder ball. What happens if the function f in question
is smooth in a “non-uniform” sense, i.e., bounds on somehow averaged magnitudes of
the derivatives of f are imposed? In this case, the function is allowed to have “nearly
singularities” – it may vary rapidly in small neighbourhoods of certain points. The
most convenient form of a “non-uniform” smoothness assumption is that the observed
function f : [0, 1]d → R belongs to a given Sobolev ball Sk,pd (L).

A Sobolev ball Sk,pd (L) is given by four parameters:

• positive integer k – order of smoothness,

• positive integer d – dimensionality,

• p ∈ (d,∞],

• L > 0,

and is comprised of all continuous functions f : [0, 1]d → R such that the partial
derivatives of order k of f (understood in the sense of distributions) form a usual
vector-function Dkf(·) with

‖ Dkf(·) ‖p≤ L.

It is known [2] that functions f ∈ Sk,pd (L) are (k − 1) times continuously differen-
tiable (this is ensured by the restriction p > d), and we denote by Dsf(·) the vector-
function comprised of partial derivatives of order s < k of a function f ∈ Sk,pd (L).

Note that Hölder balls Hs
d(L) with integer s are essentially the same as Sobolev

balls Ss,∞d (L).

The problem we are interested in is as follows. Given n = md observations

y ≡ yf (ξ) =
{
yι = f(xι) + σξι|ι = (i1, ..., id) ∈ [1,m]d

}[
x(i1,...,id) = (i1/m, i2/m, ..., id/m)T ,

ξ = {ξι} : ξι are independent N (0, 1)

]
(2.1)

31
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of an unknown regression function f : [0, 1]d → R belonging to a given Sobolev ball
S = Sk,pd (L), we want to recover f along with its partial derivatives

D(α)f =
∂|α|

∂xα1
1 ...∂x

αd
d

f

of orders |α| ≡
d∑
i=1

αi ≤ k − 1.

Notation and conventions. In what follows, for an estimate f̂n,(α)(x; y) of D(α)f
via observations (2.1), we denote by

Rq,(α)(f̂
n,(α);S) = sup

f∈S

(
E
{
‖ f̂n,(α)(·; y)−D(α)f(·) ‖2

q

})1/2

the q-risk of the estimate on the Sobolev ball in question; here 1 ≤ q ≤ ∞. The
associated minimax risk is defined as

R∗q,(α)(n;S) = inf
f̂n,(α)

Rq,(α)(f̂
n,(α);S)

Below we deal a lot with the parameters p, q ∈ [1,∞] (coming from the description
of the Sobolev ball and the risk we are interested in, respectively); let us make the
convention to denote

π =
1

p
, θ =

1

q
.

We call a cube a subset B ⊂ [0, 1]d of the form {x | [0 ≤] ai ≤ xi ≤ ai+h [≤ 1], i ∈
[1, d]} and denote by D(B) = h the edge length, and by |B| = hd the d-dimensional
volume of such a cube B.

For a collection k, d ∈ N; p ∈ (d,∞]; q ∈ [1,∞] and l ∈ [0, k − 1] let

βl(p, k, d, q) =

{
k−l

2k+d
, θ ≥ π 2l+d

2k+d
k−l+dθ−dπ
2k−2dπ+d

, θ ≤ π 2l+d
2k+d

; (2.2)

when the parameters p, k, d, q are clear from the context, we shorten βl(p, k, d, q) to
βl.

We denote by A the set of the admissible for us values of the parameters p, k, d,
i.e.,

A = {(p, k, d) | k, d ∈ N, p ∈ (d,∞]}.

In what follows we denote by C (perhaps with sub- or superscripts) positive quantities
depending on k, d only, and by P (perhaps with sub- or superscripts) – quantities ≥ 1
depending solely on (p, k, d) ∈ A and nonincreasing in p.

Finally, | · | stands both for the absolute value of a real and the Euclidean norm
of a vector.

2.1 Lower bounds for the minimax risk

The lower bounds for the minimax risk are given by the following
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Theorem 2.1.1 Let σ, L > 0, (p, k, d) ∈ A, q ∈ [1,∞], l ∈ [0, k − 1] and (α), |α| = l,
be given. Assume that the volume of observations n is large enough, namely,

1 ≤ L
√
n

σ
. (2.3)

Then the minimax q-risk of estimating D(α)f for functions f from the Sobolev ball
Sk,pd (L) via observations (2.1) can be bounded from below as

R∗q,(α)(n;S) ≥ Ok,d(1)L

(
σ

L
√
n

)2βl(p,k,d,q)

. (2.4)

If the volume of observations n is so large that

nε ≤ L
√
n

σ
(2.5)

for some positive ε, then in the case of “large” ratios q/p, namely, q
p
≥ 2k+d

2l+d
, the lower

bound can be strengthened to

R∗q,(α)(n;S) ≥ Ok,d,ε(1)L

(
σ
√

lnn

L
√
n

)2βl(p,k,d,q)

. (2.6)

The proof (completely similar to the proof of the lower bounds from Section 1.2) is
placed in Section 2.3.

Comments, I. The lower bounds for the minimax risk (2.4), (2.6) (which, as we
shall see in a while, are sharp in order) demonstrate the following behaviour of the
minimax risk as a function of the volume of observations n:

1. For given k, d and l = |α| < k there exists the “standard” asymptotics of the
risk R∗q,(α)(n;S) which is

O(n−(k−l)/(2k+d));

this is the behaviour of the risk for “small” ratios q/p, namely, when

q/p = π/θ <
2k + d

2l + d
.

Note that the standard asymptotics is independent of p, q – i.e., of the particular
norms in which we measure the magnitude ofDkf and the estimation error. Note
also that in the case of l = |α| = 0, i.e., when speaking about recovering the
regression function itself rather than its derivatives, the standard asymptotics
of risk is O(n−k/(2k+d)) – the result already known to us in the particular case
of p = ∞, q < ∞, i.e., when the Sobolev ball in question is in fact the Hölder
ball Hk

d(L).

2. When the ratio q/p is greater than or equal to the “critical level” 2k+d
2l+d

, the
asymptotics of the minimax risk becomes

O

( lnn

n

) k−l+dθ−dπ
2k−2dπ+d
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and starts to depend on p, q. As q grows, p being fixed, it becomes worse and
worse, and the worst asymptotics corresponds to q =∞ and is

O

( lnn

n

) k−l−dπ
2k−2dπ+d

 .
Comments, II. We have seen that when recovering “uniformly smooth” regression
functions – those from Hölder balls – an optimal in order estimate can be chosen to
be linear in observations. In the case of “non-uniform” smoothness linear estimates
work well in a restricted range of values of q only – essentially, when q ≤ p <∞. The
exact claims are as follows:

(i) The lower bounds from Theorem 2.1.1 in the case of q ≤ p <∞ can be achieved
(up to independent of n factors) by properly chosen linear estimates;

(ii) If ∞ > q > p and q ≥ 2, no linear estimation method can achieve the rates of
convergence indicated in Theorem 2.1.1.

We shall check (i) in the case when our target is to recover the regression function,
and not its derivatives; namely, we shall demonstrate that the order k − 1 window
estimate f̂n (see Section 1.3) recovers functions f ∈ S = Sk,pd (L) with the desired
order of convergence of q-risk to 0 as n→∞ (provided that q ≤ p) 1). Recall that f̂n
uses windows of the same width h to recover f(x) at all points x. Let us specify this
width as (cf. (1.47))

h =

(
σ

L
√
n

)2/(2k+d)

(2.7)

and assume that n is large, namely, that

1 ≤
(
L
√
n

σ

) 2d
2k+d

≤ (k + 2)−dn (2.8)

(cf. (1.48)). Under this assumption

h ≥ k + 2

n1/d
, (2.9)

so that our estimate f̂n is well-defined.
To bound the risk of the resulting estimate, we need the following fact from Anal-

ysis (see [2]):

Lemma 2.1.1 Let B ⊂ [0, 1]d be a cube, let p ∈ (d,∞], and let g ∈ S1,d
p (·). Then the

function g is Hölder continuous in B with Hölder exponent 1−dπ ≡ 1−d/p; namely,

∀x, x′ ∈ B : |g(x)− g(x′)| ≤ Op,d(1)|x− x′|1−dπ
∫
B

|Dg(u)du|p
1/p

. (2.10)

with Op,d(1) nonincreasing in p > d.

1) One can easily build optimal in order, in the case of q ≤ p, window estimates of the derivatives
as well.
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An immediate consequence of Lemma 2.1.1 is the following useful relation:

f ∈ Sk,pd (L)⇒ Φk−1(f,B) ≤ Op,k,d(1)Dk−dπ(B)

∫
B

|Dkf(u)|pdu

1/p

(2.11)

(B ∈ [0, 1]d is a cube, D(B) is the edge length of B) with Op,d(1) nonincreasing in
p > d; here Φk−1(f,B) is the quality of the best uniform, on B, approximation of
f by a polynomial of degree ≤ k − 1, see Proposition 1.3.1. The right hand side in
the inequality in (2.11) is nothing but an upper bound (given by (2.10) as applied
to g = Dk−1f) on the error of approximating f in B by its Taylor polynomial of the
degree k − 1, the polynomial being taken at a point from B.

Now we are ready to evaluate the q-risks, q ≤ p, of the window estimate f̂n on a
Sobolev ball S = Sk,pd (L). Let us start with the case of q = p. Assuming f ∈ S and
combining the bound (1.42) from Proposition 1.3.1 and (2.11), we get

|f̂n(x; yf (ξ))− f(x)| ≤ d(x) + s(x, ξ),

d(x) = Ok,p,d(1)Dk−dπ(B(x))

 ∫
B(x)

|Dkf(u)|pdu


1/p

,

s(x, ξ) = Ok,d(1) σ√
nhd
|ζB(x)
x |;

(2.12)

here B(x) is the window used by f̂n to recover f(x).
Now, the function d(x) is non-random, and its p-norm can be evaluated as follows.

Let us extend the function `(u) = |Dkf(u)| from [0, 1]d to the entire Rd as 0 outside
the unit cube. Then∫

dp(x)dx = Op
k,p,d(1)hkp−d

∫
[0,1]d

 ∫
B(x)

`p(u)du

 dx
≤ Op

k,p,d(1)hkp−d
∫  h∫
−h

...

h∫
−h

`p(x− u)du

 dx
[since B(x) ⊂ {u | xi − h ≤ ui ≤ xi + h, i ≤ d}]

= Op
k,p,d(1)hkp−d

h∫
−h

...

h∫
−h

[∫
`p(x− u)dx

]
du

= Op
k,p,d(1)hkp−d(2h)d

∫
`p(x)dx

≤ Op
k,p,d(1)hkpLp.

Thus,
‖ d(x) ‖p≤ Ok,p,d(1)hkL. (2.13)

Furthermore, ζB(x)
x is N (0, 1)-random variable, so that(

Eξ
{
‖ s(·, ξ) ‖2

p

})1/2
≤ Ok,p,d(1)

σ√
nhd

. (2.14)

Relations (2.12), (2.13), (2.14) imply that

Rp(f̂n;S) ≤ Ok,p,d(1)

[
hkL+

σ√
nhd

]
;
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substituting the expression for h from (2.7), we see that the risk bound

Rq(f̂n;S) ≤ Ok,p,d(1)L

(
σ

L
√
n

) 2k
2k+d

(2.15)

is valid in the case of q = p. Since the left hand side in (2.15) clearly is nondecreasing
in q, it follows that the bound is valid for 1 ≤ q ≤ p as well. It remains to note that
the right hand side of our upper bound is, up to a factor depending on k, d, p only,
the same as the lower bound on the minimax risk (2.4) (look what is βl in the case of
l = 0, q/p ≤ 1).

Now let us verify our second claim – that in the case of ∞ > q > p, q ≥ 2, the
q-risk of a linear estimate on a Sobolev ball Sk,pd (L) never is optimal in order. Let
Linn be the set of all linear in observations (2.1) estimates

f̂n,(α)(x; y) =
∑
ι

φι,n(x)yι

of D(α)f(·), and let

RLin
q,(α)(n;S) = inf

f̂n,(α)∈Lin
sup

f∈Sk,p
d

(L)

(
E
{
‖ D(α)f(·)− f̂n,(α)(·; y) ‖2

q

})1/2

be the associated minimax risk.

Theorem 2.1.2 Let us fix σ > 0, (p, k, d) ∈ A, l ∈ [0, k − 1] and (α), |α| = l. For
every q ∈ [2,∞) such that q > p and for all large enough volumes n of observations
one has

RLin
q,(α)(n;S) ≥ Op,k,d,q(1)L

(
σ

L
√
n

)2µl
,

µl ≡ µl(p, k, d, q) = k−l−dπ+dθ
2k−2πd+2dθ+d

< βl(p, k, d, q).
(2.16)

The proof is placed in Section 2.3.

As we just have mentioned, the lower bounds on the minimax risk R∗q,(α)(n,S)
given in Theorem 2.1.1 are sharp in order, so that (2.16) implies that

∞ > q ≥ 2, q > p⇒
RLin
q,(α)(n;S)

R∗q,(α)(n,S)
→∞ as n→∞;

thus, for “large” q/p linear estimators cannot be optimal in order on Sk,pd (L), inde-
pendently of whether we are interested in recovering the regression function or its
derivatives. Note also that the lower bound (2.16) is valid for an arbitrary n-point
observation grid, not necessary the equidistant one.

2.2 Upper bounds on the minimax risk

In order to bound the minimax risk from above, we are about to build a particular
recovering routine and to investigate its risks. In what follows, Γn is the equidistant
observation grid from (2.1).
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The recovering routine is as follows. Let Bn be the system of all distinct cubes
with vertices from Γn, and let n(B) be the number of observation points in a cube B.
Let us associate with every cube B ∈ Bn the linear functional (the “B-average”)

φB(g) = n−1/2(B)
∑

ι:xι∈B
g(ι)

on the space of real-valued functions defined on the grid Γn.
Let us call a system B ⊂ Bn normal, if it meets the following requirement:

(*) For every cube B ⊂ [0, 1]d such that |B| > 6dn−1, there exists a
cube B′ ∈ B such that

B′ ⊂ B and |B′| ≥ 6−d|B|.

Note that normal systems clearly exist (e.g., B = Bn; in fact one can build a normal
system with O(n) cubes).

Given observations (2.1) (which together form a function on Γn), we may compute
all the averages φB(y), B ∈ B. Consider the following optimization problem:

ΦB(g, y) ≡ max
B∈B
|φB(g)− φB(y)| → min | g ∈ Sk,pd (L). (2.17)

It can be easily verified that the problem is solvable and that its optimal solution
can be chosen to be a Borel function f̂n(x; y) of x, y. f̂n(·; y) is exactly the estimate
of f we are interested in, and we estimate the derivative D(α)f(·) of f just by the
corresponding derivative

f̂n,(α)(x; y) =
∂l

∂α1
x1
...∂αdxd

f̂n(x; y) [l ≡ |α| ≤ k − 1]

of f̂(·; y).

Risks of the estimates f̂n,(α)(·; ·) on the Sobolev ball Sk,pd (L) are given by the
following

Theorem 2.2.1 For every σ > 0, (p, k, d) ∈ A, q ∈ [1,∞], l ∈ [0, k − 1] and (α),
|α| = l, for all large enough volumes n of observations, namely, such that n > P and

1 ≤ L
√
n

σ
√

lnn
≤ n

2k−2dπ+d
2d (2.18)

one has

Rq,(α)(f̂
n,(α);Sk,pd (L)) ≤ PL

(
σ
√

lnn
L
√
n

)2βl
,

βl ≡ βl(p, k, d, q);
(2.19)

here P ≥ 1 depends on k, p, d only and is nonincreasing in p > d.
In particular (cf. Theorem 2.1.1), in the case of “large” ratios q/p:

q/p ≥ 2k + d

2l + d
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the estimate f̂n,(α) is asymptotically optimal in order in the minimax sense:

Rq,(α)(f̂
n,(α);Sk,pd (L))

R∗q,(α)(n;Sk,pd (L))
≤ P

for all large enough values of n.
In the case of “small” ratios q/p:

q/p <
2k + d

2l + d

the estimate is optimal in order up to a logarithmic in n factor: for all large enough
values of n,

Rq,(α)(f̂
n,(α);Sk,pd (L))

R∗q,(α)(n;Sk,pd (L))
≤ P (lnn)βl .

Proof. In what follows we fix p, k, d, α, l, L, q satisfying the premise of the theorem.
We write S instead of Sk,pd (L) and denote

S = Sk,pd =
⋃
L>0

Sk,pd (L).

Let us set
‖ g ‖B= max

B∈B
|φB(g)|,

and let

Θ(ξ) =‖ σξ ‖B≡ σmax
B∈B

1√
n(B)

∑
ι:xι∈B

ξι. (2.20)

Our central auxiliary result is as follows:

Lemma 2.2.1 There exists P ≥ 1 depending on p, k, d only and nonincreasing in
p > d such that whenever n ≥ P one has

∀f ∈ S :

‖ f̂n(·; yf (ξ))− f ‖B≤ 2Θ(ξ)
(2.21)

and

∀g ∈ S, ∀(α), l ≡ |α| < k :

‖ D(α)g ‖q≤ P0 max

{(
‖g‖2B
‖Dkg‖2pn

)β
‖ Dkg ‖p;

(
‖g‖2B
n

)1/2

;n−λ ‖ Dkg ‖p
}
,

where
β = βl(p, k, d, q), λ = λl(p, k, d, q) = 2k+d−2dπ

d
βl(p, k, d, q).

(2.22)

From Lemma 2.2.1 to Theorem 2.2.1. Assuming f ∈ S, denoting

g(x) = f(x)− f̂n(x; yf (ξ))

and taking into account (2.21), we get

‖ g ‖B≤ 2Θ(ξ),
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and by construction f̂n(·, yf (ξ)) ∈ S, so that

‖ Dkg(·) ‖p≤ 2L.

In view of these observations, (2.22) says that

‖ D(α)g ‖2
q≤ P1 max

L2

(
Θ2(ξ)

L2n

)2βl

;

(
Θ2(ξ)

n

)
;Ln−2λl

 . (2.23)

Since Θ is the maximum of no more than Card(B) ≤ n2 N (0, σ2) random variables
(see (2.20)), we get

(
E
{
‖ D(α)g ‖2

q

})1/2
≤ P2 max

L
(
σ
√

lnn

L
√
n

)2βl

;

(
σ
√

lnn√
n

)
;Ln−λl

 . (2.24)

It is immediately seen that in the case of (2.18) the maximum in the right hand side

of this bound equals to L
(
σ
√

lnn
L
√
n

)2βl
, so that (2.24) is the required bound (2.19).

Proof of Lemma 2.2.1. 10. Relation (2.21) is evident: since f is a feasible solution
to the optimization problem (2.17) and the value of the objective of the problem at
this feasible solution is Θ(ξ), the optimal value of the problem does not exceed Θ(ξ);
consequently, by the triangle inequality

‖ f(·)− f̂n(·; y) ‖B≤ ΦB(f, y) + ΦB(f̂(·; y), y) ≤ 2Θ(ξ) [y = yf (ξ)],

as claimed in (2.17).
20. In order to prove (2.21), note first of all that a function g ∈ Sk,pd can be

approximated by a sequence of C∞ functions gt in the sense that

‖ Dkgt ‖p→‖ Dkg ‖, ‖ gt ‖B→‖ g ‖B, ‖ D(α)gt ‖q→‖ D(α)g ‖q

as t→∞; consequently, it suffices to prove (2.22) for a C∞ function g.
30. We shall use the following well-known fact (given by embedding theorems for

Sobolev spaces, see [2]):

Lemma 2.2.2 For properly chosen P3, P4 and for every r, q ∈ [1,∞], l ∈ [0, k − 1],
for every C∞ function g : [0, 1]d → R one has:

• either
‖ Dkg ‖p≤ P3 ‖ g ‖1, (2.25)

and then
‖ Dlg ‖∞≤ P4 ‖ g ‖1, (2.26)

• or
‖ Dlg ‖q ≤ P5 ‖ g ‖ψr ‖ Dkg ‖1−ψ

p ,
where

ψ =


k−l
k
, θ ≥ πl+(k−l)/r

k
,

k−l−dπ+dθ
k−dπ+d/r

, θ ≤ πl+(k−l)/r
k

(2.27)
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Recall that by Lemma 2.1.1 for smooth functions g : [0, 1]d → R and for every cube
B ⊂ [0, 1]d one has∣∣∣Dk−1g(x)−Dk−1g(y)

∣∣∣ ≤ P4|x− y|1−dπΩ(g,B) ∀x, y ∈ B,

Ω(g,B) =

(∫
B
|Dkg(u)|pdu

)1/p

.
(2.28)

40. From (2.28) it follows that whenever B ⊂ [0, 1]d, x ∈ B and gs(y) is the Taylor
polynomial, taken at x, of degree k − 1 of g, then

maxy∈B |g(y)− gx(y)| ≤ P5[D(B)]k+δ−1Ω(g,B),
δ ≡ 1− dπ. (2.29)

50. Let us call a cube B ⊂ [0, 1]d regular, if

g(B) ≡ max
x∈B
|g(x)| ≥ 4P5[D(B)]k+δ−1Ω(g,B). (2.30)

Note that for a regular cube B, in view of (2.29), one has

∀x ∈ B : max
y∈B
|g(y)− gx(y)| ≤ 1

4
g(B). (2.31)

It is clearly seen that if

U = {x ∈ (0, 1)d | g(x) 6= 0},

then every point x ∈ U is an interior point of a regular cube B; among these cubes,
there clearly exists a maximal one (i.e., a one which is not a proper subset of any
other regular cube). For every x ∈ U , let us denote by Bx a maximal regular cube
containing x as an interior point, and let

U ′ =
⋃
x∈U

B0
x,

B0
x being the interior of the cube Bx. By the standard separability arguments,

U ′ =
∞⋃
i=1

B0
xi

for properly chosen sequence x1, x2, ....
In what follows we consider separately two cases

A. The cube [0, 1]d is not regular;

B. The cube [0, 1]d is regular.

60. For the time being, let A be the case. Since [0, 1]d is not regular, every maximal
regular cube B must satisfy (2.30) as an equality. In particular,

g(Bxi) = 4P5[D(Bxi ]
k+δ−1Ω(g,Bxi), i = 1, 2, ... (2.32)

60.a) We start with the following Lemma (which essentially originates from Ba-
nach):
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Lemma 2.2.3 One can extract from the system of cubes A0 = {Bxi}∞i=1 a sub-system
A with the following properties:

• Cubes from A are mutually disjoint;

• For every cube B ∈ A0 there exists a cube B′ ∈ A such that B intersects with
B′ and D(B) ≤ 2D(B′).

Proof of Lemma 2.2.3: Let us choose as the first cube of A a cube B1 ∈ A0

with

D(B1) ≥ 1

2
sup
B∈A0

D(B).

After B1 is chosen, we set A1 = {B ∈ A0 | B ∩ B1 = ∅}. If A1 is empty, we
terminate; otherwise, we choose a cube B2 from the collection A1 exactly in the
same manner as B1 was chosen from A0 and set A2 = {B ∈ A1 | B ∩B2 = ∅}.
If A2 is empty, we terminate, otherwise choose in the outlined fashion a cube
B3 ∈ A2 and replace A2 by A3, and so on.

As a result of this construction, we get a finite or a countable collection

A of cubes B1, B2,...; it is immediately seen that this collection satisfies the

requirements of Lemma.

60.2) For B ∈ A, let U(B) be the union of all those cubes from A0 which intersect
B and have edges not exceeding 2D(B). In view of Lemma 2.2.3, we have

U ⊂ U ′ ⊂
⋃
B∈A

U(B).

Let us choose

r ∈ [
d+ 2k

d
,∞). (2.33)

We have
‖ g ‖rr =

∫
U
|g(x)|rdx

≤ ∑
B∈A

∫
U(B)

|g(x)|rdx

≤ 5d
∑
B∈A
|B|ĝr(B),

ĝ(B) = supx∈U(B) |g(x)|.

(2.34)

We claim that for every B ∈ A it holds

ĝ(B) ≤ P6g(B). (2.35)

Indeed, let y ∈ U(B); then there exists B′ ∈ A0 such that y ∈ B′, B′ ∩ B 6= ∅
and D(B′) ≤ 2D(B). Choosing a point x ∈ B ∩ B′ and applying (2.31) to the
regular cubes B,B′, we get

max
u∈D
|g(u)− gx(u)| ≤ 1

4
max
u∈D
|g(u)|

both for D = B and D = B′. It follows that

max
u∈D
|g(u)| ≤ 4

3
max
u∈D
|gx(u)| (2.36)
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for both D = B and D = B′. Since gx(·) is a polynomial of degree k− 1 and B′

is contained in 5 times larger than the cube B concentric to B cube, we have

max
u∈B′

|gx(u)| ≤ P7 max
u∈B
|gx(u)|,

whence, in view of (2.36),

max
u∈B∪B′

|g(u)| ≤ 4

3
P7 max

u∈B
|gx(u)|.

Recalling that maxu∈B |gx(u)| ≤ 5
4g(B) by (2.31), we come to

|g(y)| ≤ max
u∈B′

|gx(u)| ≤ 5

3
P7g(B),

so that the choice P6 = 5
3P7 ensures (2.35).

Combining (2.34) and (2.35), we get

‖ g ‖rr≤ P r
8

∑
B∈A
|B|gr(B). (2.37)

60.c) Since A ⊂ A0, (2.32) says that for every B ∈ A it holds

g(B) = 4P5[D(B)]k+δ−1Ω(g,B),

so that (2.37) yields the inequality

‖ g ‖rr≤ P r
9

∑
B∈A
|B|1+

r(k+δ−1)
d Ωr(B, g). (2.38)

60.d) Let us set
A = sup

B∈A
g(B)|B|1/2;

note that by (2.32) we have

A ≥ P10 sup
B∈A
|B|

1
2

+ k+δ−1
d Ω(B, g). (2.39)

Let

ζ =
1 + r(k+δ−1)

d
1
2

+ k+δ−1
d

.

Then

B ∈ A
⇒ |B|1+

r(k+δ−1)
d ≤ P ζ

11A
ζΩ−ζ(B, g)

[see (2.39)]

⇒ ‖ g ‖rr ≤ P r
9P

ζ
11A

ζ
∑
B∈A

Ωr−ζ(B, g)

[see (2.38)]

≤ P r
9P

ζ
11A

ζ

(∑
B∈A

Ωp(B, g)

) r−ζ
p

[since r − ζ ≥ p in view of (2.33)]

≤ P r
9P

ζ
11A

ζ ‖ Dkg ‖r−ζp

[since the cubes B ∈ A are mutually disjoint]
⇒ ‖ g ‖r ≤ P12A

γ ‖ Dkg ‖1−γ
p ,

γ = ζ
r
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The resulting estimate was established in the case of (2.33); passing to limit as r →∞,
we see that it is valid for r =∞ as well, so that

∞ ≥ r ≥ 2k + d

d
p⇒‖ g ‖r≤ P12A

γ ‖ Dkg ‖1−γ, γ =
2(k − dπ + d/r)

2k − 2dπ + d
. (2.40)

60.d) By definition of A, there exists a regular cube B such that

g(B)|B|1/2 ≥ 1

2
A. (2.41)

Let x0 ∈ B; since B is regular, we have

supx∈B |g(x)− gx0(x)| ≤ 1
4
g(B)

[see (2.31)]
⇒ 3

4
g(B) ≤ maxx∈B |gx0(x)| ≤ 5

4
g(B).

(2.42)

In view of the latter inequalities and since gx0(·) is a polynomial of degree k−1, there
exists a cube B∗ ⊂ B such that |B∗| ≥ P13|B| and |gx0(x)| ≥ 1

2
g(B) for all x ∈ B∗,

whence, in view of the first inequality in (2.42), |g(x)| ≥ 1
4
g(B) whenever x ∈ B∗.

Combining these observations and (2.41), we conclude that

A ≤ P14|B∗|1/2 min
x∈B∗
|g(x)|,

so that by (2.40)

∃B∗ :

∞ ≥ r ≥ 2k+d
d
p⇒‖ g ‖r≤ P14

[
|B∗|1/2 minx∈B∗ |g(x)|

]γ
‖ Dkg ‖1−γ

p ,

γ = 2(k−dπ+d/r)
2k−2dπ+d

.

(2.43)

Consider two possible cases:
(I): |B∗| ≥ 6dn−1;
(II): |B∗| < 6dn−1.
In the case of (I), since B is a normal system, there exists a cube B̂ ∈ B such that

B̂ ≥ 6−d|B∗| and B̂ ⊂ B∗, and we get

‖ g ‖B≥ n1/2(B̂) min
x∈B̂
≥ 6−d/2nmin

x∈B̂
|g(x)||B̂|1/2.

Thus, in the case of (I) relation (2.43) implies that

∞ ≥ r ≥ 2k + d

d
p⇒‖ g ‖r≤ P15

(
‖ g ‖2

B
n ‖ Dkg ‖2

p

)γ/2
‖ Dkg ‖p . (2.44)

In the case of (II) relation (2.43) applied with r =∞ yields

‖ g ‖∞ ≤ P14

[
|B∗|1/2 minx∈B∗ |g(x)|

]γ∗
‖ Dkg ‖1−γ∗

p

[γ∗ = 2(k−dπ)
2k−2dπ+d

]

≤
[
|B∗|1/2 ‖ g ‖∞

]γ∗
‖ Dkg ‖1−γ∗

p

⇒ ‖ g ‖∞ ≤ P16|B∗|
γ∗

2(1−γ∗)

⇒ ‖ g ‖r ≤ P17|B∗|
γ

2(1−γ∗) ‖ Dkg ‖p
[in view of (2.43)]

⇒ ‖ g ‖r ≤ P18n
− k−dπ+d/r

d

[since (II) is the case].
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Combining the concluding inequality with (2.44), we see that for r ∈ [2k+d
d
p,∞] it

holds

‖ g ‖r≤ P19 max


(
‖ g ‖2

B
n ‖ Dkg ‖2

p

)β0(p,k,d,r)

‖ Dkg ‖p;n−λ0(p,k,n,r) ‖ Dkg ‖p

 (2.45)

(we have used the fact that for the values of r in question one has γ/2 = β0(p, k, d, r),
k−dπ+d/r

d
= λ0(p, k, d, r)).

Since the values of β0(p, k, d, r), λ0(p, k, d, r) for r < 2k+d
d
p are the same as for

r = 2k+d
d
p, relation (2.45) is in fact valid for all r ∈ [1,∞].

60.e) Since we are in the case of A – i.e., [0, 1]d is not a regular cube – we have
‖ Dkg ‖p≥ P20 ‖ g ‖∞. Tracing the origin of P20, one can easily see that we can ensure
P20 > P3, P3 being defined in Lemma 2.2.2. Thus, in the case under consideration the
first of the alternatives stated by Lemma 2.2.2 does not take place, and therefore (2.26)

is valid. Assuming that q ≥ 2k+d
2l+d

p, let us set r = 2k+d
d
p, thus getting θ ≤ (k−l)/r+πl

k
.

Applying (2.26) with the indicated r and (2.45), we get for q ≥ 2k+d
2l+d

p:

l ≡ |α| < k ⇒

‖ D(α)g ‖q≤ P21

{(
‖g‖2B

n‖Dkg‖2p

)βl(p,k,d,q)
‖ Dkg ‖p;n−λl(p,k,d,q) ‖ Dkg ‖p

}
.

(2.46)

Since βl(p, k, d, q), λl(p, k, d, q) are independent of q in the segment [1, 2k+d
2l+d

p] of values
of the parameter, relation (2.46) in fact is valid for all q. Thus, we have proved (2.22)
in the case of A.

70. It remains to prove (2.22) in the case of B, i.e., when [0, 1]d is a regular cube,
whence

‖ Dkg ‖≤ P22 ‖ g ‖∞ . (2.47)

In this case we can apply (2.31) to the cube B = [0, 1]n to get the inequality

max
x∈[0,1]n

|g(x)− g0(x)| ≤ 1

4
‖ g ‖∞,

whence, same as in 60.d), there exists a cube B such that |B| ≥ P23 and |g(x)| ≥‖ g ‖∞
for x ∈ B. Since B is a normal system, there exists B∗ ∈ B such that B∗ ∈ B and
|B∗| ≥ P24, provided that n is large enough, and we get

‖ g ‖B≥ P25n
1/2 ‖ g ‖∞,

whence

‖ g ‖∞≤ P26
‖ g ‖B
n

1
2

. (2.48)

Combining (2.47), (2.48) and Lemma 2.2.2, we come to (2.22). The proof of Lemma
2.2.1 is completed.

2.3 Appendix: Proofs of Theorems 2.1.1, 2.1.2

Proof of Theorem 2.1.1. Let us fix a C∞ function h(·) 6≡ 0 such that

supp(h) = [0, 1]d; ‖ Dkh ‖∞≤ 1; ‖ h ‖∞≤ 1. (2.49)
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Let also
C1 = min{‖ D(α)h ‖1| 0 ≤ |α| < k};

(recall that Ci stand for positive quantities depending on k, d only). Let us fix the
volume of observations n = md and a ∆ ∈ ( 1

m
, 1

8
), and let B1, ..., BN be a maximal

in cardinality system of mutually disjoint cubes with the edges ∆, all cubes of the
system belonging to [0, 1]d. Note that the number of points from the observation grid
Γn in every one of the cubes Bi does not exceed

n∆ = (2∆)dn.

As it is immediately seen,
N ≥ max{8;C2∆−d}. (2.50)

Let
h∆(x) = L∆k−dπh(x/∆),

and let hj be the translation of hδ with the support Bj, j = 1, ..., N ; it is immediately

seen that hj ∈ S ≡ Sk,pd (L). Now consider N hypotheses on the distribution of
observations y, j-th of the hypotheses being that the distribution is the one of the
vector yhj(ξ), see (2.1).

Let us fix α such that
l ≡ |α| < k,

and let

ε(∆) =
1

4
C1∆k−l−dπ+dθL.

We have
i 6= j ⇒

‖ D(α)hi −D(α)hj ‖q ≥ ‖ D(α)hi ‖q
= L∆k−l−dπ+dθ ‖ D(α)h ‖q
≥ L∆k−l−dπ+dθC1

= 4ε(∆).

Consequently (cf. the proof of Proposition 1.2.3), under the assumption that the
minimax q-risk of estimating D(α)f , f ∈ S is ≤ ε(∆):

R∗q,(α)(n;S) < ε(∆), (2.51)

there exists a routine for distinguishing our N hypotheses with probability to reject
a hypothesis when it is true at most 1/4. On the other hand, the Kullback distance
between pairs of distributions associated with our hypotheses is at most

σ−2Diameter({hj(·)}Nj=1|Γn) ≤ 2σ−2n∆ ‖ h∆ ‖2
∞≤ C3nσ

−2L2∆d+2(k−dπ).

Applying the Fano inequality (1.27), we see that the assumption (2.51) implies the
relation

(L/σ)2n∆d+2(k−dπ) ≥ C4 lnN ≥ C5 ln
1

∆
, (2.52)

the concluding inequality being given by (2.50). Now let us set

∆1 = C6

(
σ

L
√
n

) 2
2k−2dπ+d

;
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it is clearly seen that if C6 is a properly chosen function of k, d and (2.3) takes place,
then (2.52) fails to be true when ∆ = ∆1. Consequently, for ∆ = ∆1 (2.51) cannot
be valid, and we come to

R∗q,(α)(n;S) ≥ ε(∆1) ≥ C7L

(
σ

L
√
n

)2 k−l−dπ+dθ
2k−2dπ+d

; (2.53)

this is exactly the bound (2.4) for the case of large ratios q/p (i.e., q
p
≥ 2k+d

2l+d
).

Now assume that (2.5) takes place, and let us set

∆2 = F

(
σ
√

lnn

L
√
n

) 2
2k−2dπ+d

;

it is immediately seen that for properly chosen F > 0 (depending on k, d, ε only)
relation (2.52) fails to be true when ∆ = ∆2. Consequently, for ∆ = ∆2 (2.51) cannot
be valid, and we come to

R∗q,(α)(n;S) ≥ ε(∆2) ≥ C(ε)L

(
σ
√

lnn

L
√
n

)2 k−l−dπ+dθ
2k−2dπ+d

; (2.54)

this is exactly the bound (2.5) for the case of large ratios q/p.
We have established the desired lower bounds for the case of large ratios q/p. The

lower bound (2.4) in the case of small ratios q/p: q
p
< 2k+d

2l+d
is given by exactly the

same construction as in the case of Hölder balls. Namely, let us redefine h∆ as follows:

h∆(x) = L∆kh(x/∆),

let hj be the translation of h∆ with the support Bj, and let F∗N be the set of 2N

functions
m∑
j=1

εjhj(x), where εj = ±1. The set F∗N clearly is contained in Sk,∞d (L) and

possesses a subset FM comprised of

M ≥ 2N/8

functions with the following property: if f, g are two distinct functions from FM ,
then f differs from g on at least N/8 of the cubes B1, ..., BN . Now let us fix α with
l = |α| < k; for two distinct functions f, g ∈ FM one clearly has

‖ D(α)f −D(α)g ‖1≥ C8L∆k−l∆dN ≥ C9L∆k−l.

Setting

ε(∆) =
1

4
C9L∆k−l,

we, same as above, conclude that under the assumption that

R∗1,(α)(n;Sk,∞d (L)) < ε(∆) (2.55)

one can “reliably” distinguish between M hypotheses on the distribution of observa-
tions (2.1), the Kullback distances between pairs of the distributions not exceeding

σ−2n max
f,g∈FM

‖ f − g ‖2
∞≤ C10(L/σ)2∆2k.
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Applying the Fano inequality and taking into account that M ≥ 2N/8 ≥ exp{C11∆−d},
we see that (2.55) implies the relation

n(L/σ)2∆2k ≥ C12∆−d. (2.56)

Now let us set

∆ = C13

(
σ

L
√
n

) 2
2k+d

;

for properly chosen C13 and all n satisfying (2.3) the relation (2.56) (and therefore
(2.55) as well) fails to be true. Thus, for the indicated values of n one has

R∗1,(α)(n;Sk,∞d (L)) ≥ ε(∆) ≥ C14L

(
σ

L
√
n

) 2(k−l)
2k+d

.

Since the risk R∗q,(α)(n;Sk,pd (L)) is nondecreasing in q and nonincreasing in p, the left
hand side of this inequality is ≤ the one in (2.4), while the right hand side is exactly
as required in (2.4) in the case of small ratios q/p.

Proof of Theorem 2.1.2. Same as in the proof of Theorem 2.1.1, below Ci are
positive quantities depending on k, d only.

Let h(·) and C1 be the same as in the proof of Theorem 2.1.1, and let C2 be such
that

mes{x ∈ [0, 1]d | |D(α)h| > C2} > C2 ∀α, |α| < k.

Let us fix L, σ, d, p, k, q satisfying the premise of Theorem 2.1.2, the volume n of
observations (2.1) and α, |α| ≡ l < k. Consider a linear estimate of D(α)f , f ∈ S ≡
Sk,pd (L), based on observations (2.1), let it be

f̂n(x; y) =
∑
ι

φι(x)yι,

and let ε be the worst-case, with respect to S, q-risk of this estimate:

ε2 = sup
f∈S
E
{
‖ D(α)f − f̂n ‖2

q

}
.

We have

ε2 ≥ E
{
‖ ∑

ι
φι(·)σξι ‖2

q

}
≥ σ2E

{
‖ ∑

ι
φι(·)ξι ‖2

2

}
[since q ≥ 2 by the premise of Theorem 2.1.2]

= σ2∑
ι
‖ φι(·) ‖2

2

(2.57)

and
ε2 ≥‖ D(α)f(·)−

∑
ι

φι(·)f(xι) ‖2
q ∀f ∈ S. (2.58)

Now assume that
ε < (0.5C2)1+θL, (2.59)



48 ESTIMATING FUNCTIONS FROM SOBOLEV BALLS

and let τ be the largest integer less than the quantity(
(0.5C2)1+θL

ε

) 1
k−l−dπ+dθ

; (2.60)

note that τ ≥ 1 by (2.59). Setting

∆ = 1/τ

and taking into account (2.57), we observe that there exists a cube B ⊂ [0, 1]d such
that the number n(B) of observation points in (2.1) in B does not exceed 2n∆d, while

σ2
∫
B

∑
ι

φ2
ι (x)dx ≤ 2∆dε2. (2.61)

Now let h∆(·) be the translation of the function L∆k−dπh(x/∆) such that the support
of h∆ is B. Setting

g∆(x) =
∑
ι

φι(x)h∆(x),

and applying the Cauchy inequality, we get

|g∆(x)| ≤ ‖ h∆ ‖∞ n1/2(B)
(∑

ι
φ2
ι (x)

)1/2

≤ C3L∆k−dπ+d/2n1/2

(∑
ι
φ2
ι (x)

)1/2

[since by construction n(B) ≤ 2n∆d]

(2.62)

The resulting inequality combined with (2.61) implies that there exist B∗ ⊂ B and
C4 such that

(a) mesB∗ ≥ (1− 0.5C2)∆d;
(b) x ∈ B∗ ⇒ |g∆(x)| ≤ C4Lσ

−1∆k−dπ+d/2n1/2ε.
(2.63)

Now note that by construction τ is less than the quantity (2.60), so that

0.5C2L∆k−dπ−l(0.5C2∆d)θ > ε. (2.64)

We claim that
0.5C2L∆k−dπ−l ≤ C4Lσ

−1∆k−dπ+d/2n1/2ε. (2.65)

Indeed, assuming that the opposite inequality holds:

0.5C2L∆k−dπ−l > C4Lσ
−1∆k−dπ+d/2n1/2ε

and combining this inequality with (2.63), we would get

x ∈ B∗ ⇒ |g∆(x)| < 0.5C2L∆k−dπ−l [B∗ ⊂ B,mesB∗ ≥ (1− 0.5C2) mesB].

Recalling the origin of C2, we would further conclude that there exists B∗∗ ⊂ B
such that

mesB∗∗ ≥ 0.5C2∆d;

x ∈ B∗∗ ⇒
{
|g∆(x)| ≤ 0.5C2L∆k−dπ−l

}
&
{
|D(α)h∆(x)| ≥ C2∆k−dπ−lL

}
.

Combining these observations and (2.58), we would get

ε ≥‖ D(α)h∆ − g∆ ‖q≥ 0.5C2L∆k−dπ−l(0.5C2∆d)θ,

which is impossible in view of (2.64).



2.3. APPENDIX: PROOFS OF THEOREMS 2.1.1, 2.1.2 49

In view of (2.65)

ε ≥ C5

(
σ2

n

)1/2
∆−l−d/2

≥ G1

(
σ2

n

)1/2 (
L
ε

) d+2l
2(k−l−dπ+dθ)

[see the origin of ∆]

with G1 > 0 depending on k, p, d, q only. From the resulting inequality it follows that

ε > G2L

(
σ

L
√
n

)2µl(p,k,d,q)

. (2.66)

with G2 of the same type as G1.
We have established the implication (2.59) ⇒ (2.66); in view of this implication,

(2.16) is valid for all large enough values of n, as stated in Theorem 2.1.2.
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Chapter 3

Spatial adaptive estimation on
Sobolev balls

3.1 Spatial adaptive estimation: the goal

We have seen what are the minimax risks of recovering functions f from Sobolev balls
Sk,pd (L) via their n = md noisy observations

y ≡ yf (ξ) =
{
yι = f(xι) + σξι|ι = (i1, ..., id) ∈ [1,m]d

}[
x(i1,...,id) = (i1/m, i2/m, ..., id/m)T ,

ξ = {ξι} : ξι are independent N (0, 1)

]
(3.1)

and have developed the associated, optimal in order up to logarithmic in n factors,
estimates. These estimates, however, suffer two serious drawbacks:

• The estimates are not adaptive to the parameters of smoothness p, k, L of the
regression function f to be recovered. An estimate depends on a particular a
priori choice of these parameters and guarantees certain quality of recovering
only in the case when f belongs to the corresponding Sobolev ball.

In reality we hardly can know in advance the precise values of the parameters
of smoothness of f and should therefore use certain guesses for them. If our
guesses “underestimate” the smoothness of f , then the associated estimate does
ensure the risk bounds corresponding to the guessed smoothness; these bounds,
however, may be much worse than if we were capable to fit the estimate to the
actual smoothness of f . And if our guesses for the parameters of smoothness of
f “overestimate” the actual smoothness, we simply cannot guarantee anything.

• The estimates are not spatial adaptive: assume, e.g., that we know that the
function f : [0, 1] → R to be recovered is continuously differentiable with,
say, ‖ f ′ ‖2= L, and that we know the value of L, so that there seemingly
is no difficulty with tuning the recovering routine to the actual smoothness of
f . Note, however, that ‖ f ′ ‖2 may come from a “local singularity” of f – a
relatively small part of our “universe” [0, 1] where f varies rapidly, and there still
may be large segments B′ ⊂ [0, 1] where f is much more smooth than it is said
by the inclusion f ∈ S1,2

1 (L). If we knew these “segments of high smoothness
of f”, along with the corresponding smoothness parameters, in advance, we

51
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could recover the function on these segments much better than it is possible on
the entire [0, 1]. However, the recovering routines we know to the moment are
“too stupid” to adapt themselves to favourable local behaviour of the regression
function in question.

For estimates aimed at recovering smooth regression functions, the “adaptive abil-
ities” of an estimate can be quantified as follows.

For a cube
B = {x | |xi − ci| ≤ h i = 1, ..., d}

contained in [0, 1]d, let Sk,pd (B;L) be the set of functions f : [0, 1]d → R satisfying the
following assumptions:

• f is continuous on [0, 1]d;

• f is k times differentiable on B, and ‖ Dkf ‖p,B≤ L.

Here ‖ · ‖p,B is the standard Lp-norm on B.

In this definition, similar to the definition of a Sobolev ball in Chapter 2,
• k is a positive integer – order of smoothness;
• d is a positive integer – dimensionality;
• p ∈ (d,∞];
• L > 0.

From now on, we fix the dimension d of the regression functions in question. In
the sequel, we use for Sk,pd (B;L) also the shortened notation S[ψ], where ψ stands for
the collection of “parameters” (k, p, B, L), and call the set S[w] a local Sobolev ball.

Let us once for ever fix a “margin” – a real γ ∈ (0, 1) – and let Bγ, B being a
cube, be the γ times smaller concentric cube:

B = {x | |xi − ci| ≤ h, i = 1, ..., d} ⊂ [0, 1]d

⇓
Bγ = {x | |xi − ci| ≤ γh, i = 1, ..., d} ⊂ B

Given an estimate f̂n based on observations (3.1), (i.e., a Borel real-valued function of
x ∈ [0, 1]d and y ∈ Rn), let us characterize its quality on a set S[ψ] by the worst-case
risks

R̂q

(
f̂n;S[ψ]

)
= sup

f∈S[ψ]

(
E
{
‖ f̂n(·; yf (ξ))− f(·) ‖2

q,Bγ

})1/2
,

and let

R̂∗q (n;S[ψ]) = inf
f̂n

sup
f∈S[ψ]

(
E
{
‖ f̂n(·; yf (ξ))− f(·) ‖2

q,Bγ

})1/2
, (3.2)

be the corresponding minimax risks 1).
For a particular estimate f̂n, the ratio

R̂q

(
f̂n;S[ψ]

)
R̂∗q (n;S[ψ])

(∗)

1) Note that we prefer to measure the estimation errors in the integral norms associated with a
little bit smaller than B cube Bγ ; this allows to avoid in the sequel boring analysis of “boundary
effects”.
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measures the level of non-optimality, with respect to the q-risk, of the estimate f̂
on the set S[ψ]. It is natural to measure adaptive abilities of an estimate f̂n by
looking at “how wide” is the spectrum of local Sobolev balls for which the ratio (*)
is “moderately large”. The formal definition is as follows.

Definition 3.1.1 Let

1. S = {Sn}n≥1 be a “nested family” of local Sobolev balls on Rd, i.e.,

Sn = {S[ψ] | ψ ∈ Ψn}

and
Sn+1 ⊃ Sn

for every n;

2. {f̂n}n≥1 be an estimation method – a collection of estimates indexed by volumes
n of observations (3.1) used by the estimates;

3. Φ(n) be a real-valued function.

We say that the S-nonoptimality index of the estimation method {f̂n}∞n=1 is Φ(·), if,
for every q ∈ [1,∞] and all large enough values of n, one has

sup
ψ=(k,p,B,L)∈Ψn

R̂q

(
f̂n;S[ψ]

)
R̂∗q (n;S[ψ])

≤ O(Φ(n)).

An “ideal” adaptive routine for recovering smooth regression functions would have a
constant nonoptimality index with respect to the widest possible nested family of local
Sobolev balls – the one for which Sn, for every n, contains all local Sobolev balls. As
we shall see in the mean time, such an ideal routine simply does not exist. Recently,
several adaptive routines of nearly the same “adaptive power” were proposed (the
wavelet-based estimators of Donoho et al. [5, 7], and Juditsky [15], adaptive kernel
estimates of Lepskii, Mammen and Spokoiny [20])2). What we are about to do is to
build an extremely simple recovering routine with “nearly ideal” adaptive abilities
– one for which the nonoptimality index with respect to certain “rapidly extending”
nested family {Sn} grows with n “very slowly” – logarithmically. We shall also see that
“logarithmic growth” of the nonoptimality index is an unavoidable price for ability of
a routine to adapt itself to rapidly extending nested families of local Sobolev balls.

3.2 The estimate

The recovering routine we are about to build is aimed at estimating functions with
order of smoothness not exceeding a given upper bound µ + 1; µ (which should, of
course, be a nonnegative integer) is the only parameter our construction depends
upon.

2) In the cited papers, the smoothness of the signal is specified as membership in the Besov or
Triebel spaces – extensions of the Sobolev spaces we deal with.
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The idea of our construction is very simple. Given n = md observations (3.1), we,
same as in Chapter 1, use point-wise window estimator of f . Namely, to estimate f
at a given point x ∈ int [0, 1]d, we choose somehow an admissible window – a cube

Bh(x) = {u | |ui − xi| ≤ h/2, i = 1, ..., d} ⊂ [0, 1]d

centered at x and containing at least (µ+ 3)d observation points:

h ≥ µ+ 3

m
. (3.3)

Note that since the window should be centered at x and be contained in [0, 1]d, the
point x should be not too close to the boundary of [0, 1]d:

µ+ 3

2m
≤ xi ≤ 1− µ+ 3

2m
, i = 1, ..., d, (3.4)

which we assume from now on.
The estimate f̂n(x; y) will be just the order µ window estimate (Chapter 1, Section

1.3 3)) with the window width depending on x and chosen on the basis of observations.
Thus, the difference of the estimate we are about to build with the estimator from
Chapter 1 is that now we choose its own window width for every point rather than
to serve all points with the same window width.

The central issue is, of course, how to choose the window width for a given x, and
the underlying idea (which goes back to Lepskii [19]) is as follows.

Let, as in Chapter 1,

Φµ(f,Bh(x)) = min
p∈Pµ

max
u∈Bh(x)

|f(u)− p(u)|,

Pµ being the space of polynomials on Rd of total degree ≤ µ. Applying Proposition
1.3.1, we come to the following upper bound on the error of estimating f(x) by the
estimate f̂hn (x; ·) – the window estimate associated with the centered at x window of
width h:

errh(f, x) ≡ |f(x)− f̂hn (x; yf (ξ))| ≤ C1

[
Φµ(f,Bh(x)) +

σ√
nhd

Θn

]
, (3.5)

Θn = Θn(ξ) being a deterministic function of the observation noises; from now on, C
(perhaps with sub- or superscripts) are positive quantities depending on d, µ, γ only.

As we remember from (1.43), one has

∀w ≥ 1 : Prob
{

Θn > Oµ,d(1)w
√

lnn
}
≤ exp

{
−w

2 lnn

2

}
, (3.6)

Note that (3.5) implies that

errh(f, x) ≤ C1

[
Φµ(f,Bh(x)) +

σ√
nhd

Θn

]
. (3.7)

3)In this chapter we assume that the window estimate associated with a window B does not use
the observations at boundary points of the cube B; this is why we write µ + 3 instead of µ + 2 in
(3.4).
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Observe that the random variable Θn “is not too large” – (3.6) says that “typical
values” of this variable do not exceed O(

√
lnn). Let us fix a “safety factor” ω in such

a way that the event Θn > ω
√

lnn is “highly un-probable”, namely,

Prob
{

Θn > ω
√

lnn
}
≤ n−4(µ+1); (3.8)

by (3.6), the required ω may be chosen as a function of µ, d only.
Let us set

Ξn = {ξ | Θn ≤ ω
√

lnn}. (3.9)

Note that (3.7) implies the “conditional” error bound

ξ ∈ Ξn ⇒
errh(f, x) ≤ C1 [Φµ(f,Bh(x)) + Sn(h)] ,

Sn(h) = σ√
nhd

ω
√

lnn.
(3.10)

The two terms in the right hand side of the resulting error bound – the deterministic
term Φµ(f,Bh(x)) and the stochastic term Sn(h) possess opposite monotonicity prop-
erties with respect to h: as h grows (i.e., as the window extends), the deterministic
term does not decrease, while the stochastic term does not increase. It follows that if
we were clever enough to find the “ideal window” – the one for which the deterministic
term is equal to the stochastic one – we would get the best possible, up to factor 2,
error bound (3.10). Of course, we never can be clever enough to specify the “ideal
window”, since we do not know the deterministic term. It turns out, however, that
we can act nearly as if we knew everything.

Let us define the “ideal window” B∗(x) as the largest admissible window for which
the stochastic term dominates the deterministic one:

B∗(x) = Bh∗(x)(x),
h∗(x) = max{h | h ≥ µ+3

m
, Bh(x) ⊂ [0, 1]d,Φµ(f,Bh(x)) ≤ Sn(h)}. (3.11)

Note that such a window not necessarily exists: it may happen that f varies in a
neighbourhood of x too rapidly, so that already for the smallest possible admissible
window the deterministic term majorates the stochastic one. In this case we define
B∗(x) as the smallest possible window which is admissible for x. Thus, the ideal
window B∗(x) is well-defined for every x possessing admissible windows; we call it
good if it is given by (3.11) and bad in the opposite case.

It is immediately seen that whenever ξ ∈ Ξn, the error bound (3.10) associated
with the ideal window is, up to factor 2, better than the bound associated with any
other (admissible) window, which motivates the term “ideal window”.

To explain the idea of the estimate of f(x) we are about to build, assume that the
ideal window for x is a good one, and let ξ ∈ Ξn. Then the errors of all estimates
f̂hn (x; y) associated with admissible windows smaller than the ideal one are dominated
by the corresponding stochastic terms:

ξ ∈ Ξn, h ∈
[
µ+ 3

m
,h∗(x)

]
⇒ errh(f, x) ≤ 2C1Sn(h); (3.12)

indeed, for the (good) ideal window B∗(x) the deterministic term is equal to the
stochastic one, so that for smaller windows the deterministic term is not greater than
the stochastic one.
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Now let us fix ξ ∈ Ξn and call an admissible for x window Bh(x) normal, if the
associated estimate f̂hn (x; y) differs from every estimate associated with a smaller ad-
missible window by no more than 4C1 times the stochastic term of the latter estimate:

Window Bh(x) is normal
m{

Bh(x) is admissible

∀h′ ∈
[
µ+3
m
, h
]

: |f̂h′n (x; y)− f̂hn (x; y)| ≤ 4C1Sn(h′) [y = yf (ξ)]

(3.13)

Note that if x possesses an admissible window, then it possesses a normal one as well
(e.g., the smallest admissible for x window clearly is normal). Note also that (3.12)
says that

(!) If ξ ∈ Ξn (i.e., if Θn is not “pathologically large”), then the ideal
window B∗(x) is normal.

Indeed, for a good ideal window the claim follows from (3.12), while
a bad ideal window is just the smallest window admissible for x and is
therefore normal.

Now observe that the property of an admissible window to be normal is “observable”
– given observations y, we can say whether a given window is or is not normal.
Besides this, it is clear that among all normal windows there exists the largest one
B+(x) = Bh+(x)(x) (to ensure the latter property, we have redefined window estimates
as ones using observations from the interior of the underlying windows rather than
from entire windows). From (!) it follows that

(!!) If ξ ∈ Ξn (i.e., if Θn is not “pathologically large”), then the largest
normal window B+(x) contains the ideal window B∗(x).

By definition of a normal window, under the premise of (!!) we have

|f̂h+(x)
n (x; y)− f̂h∗(x)

n (x; y)| ≤ 4C1Sn(h∗(x)),

and we come to the conclusion as follows:

(*) If ξ ∈ Ξn (i.e., if Θn is not “pathologically large”), then the error
of the estimate

f̂n(x; y) ≡ f̂h
+(x)

n (x; y)

is dominated by the error bound (3.10) associated with the ideal window:

ξ ∈ Ξn ⇒
|f̂n(x; y)− f(x)| ≤ 5C1

[
Φµ(f,Bh∗(x)(x)) + Sn(h∗(x))

]
.

(3.14)

Thus, the estimate f̂n(·; ·) – which is based solely on observations and does not require
any a priori knowledge of smoothness of f – possesses basically the same accuracy as
the “ideal” estimate associated with the ideal window (provided, of course, that the
realization of noises is not pathological: ξ ∈ Ξn).

Note that the estimate f̂n(x; y) we have built – let us call it the adaptive estimate
– depends on a single “design parameter” µ (and, of course, on σ, the volume of
observations n and the dimensionality d).
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3.3 Quality of estimation

Our main result is as follows:

Theorem 3.3.1 Let γ ∈ (0, 1), µ ≥ 0 be an integer, let S = Sk,pd (B;L) be a local
Sobolev ball with order of smoothness k not exceeding µ + 1 and with p > d. For
properly chosen P ≥ 1 depending solely on µ, d, p, γ and nonincreasing in p > d the
following statement takes place:

If the volume n = md of observations (3.1) is large enough, namely,

P−1n
2k−2dπ+d

2d ≥ L
σ̂n
≥ PD−

2k−2dπ+d
2 (B)[

σ̂n = σ
√

lnn
n
, π = 1

p

] (3.15)

(D(B) is the edge of the cube B), then for every q ∈ [1,∞] the worst case, with respect
to S, q-risk of the adaptive estimate f̂n(·, ·) associated with the parameter µ can be
bounded as follows (cf. (2.2)):

R̂q

(
f̂n;S

)
≡ supf∈S

(
E
{
‖ f̂n(·; yf (ξ))− f(·) ‖2

q,Bγ

})1/2

≤ PL
(
σ̂n
L

)2β(p,k,d,q)
Ddλ(p,k,d,q)(B),

β(p, k, d, q) =

{
k

2k+d
, θ ≥ π d

2k+d
k+dθ−dπ
2k−2dπ+d

, θ ≤ π d
2k+d

,

θ = 1
q
,

λ(p, k, d, q) =

{
θ − dπ

2k+d
, θ ≥ π d

2k+d

0, θ ≤ π d
2k+d

;

(3.16)

here Bγ is the concentric to B γ times smaller in linear sizes cube.

Proof. 10. In the main body of the proof, we focus on the case p, q <∞; the case of
infinite p and/or q will be considered at the concluding step 40.

Let us fix a local Sobolev ball Sk,pd (B;L) with the parameters satisfying the premise
of Theorem 3.3.1 and a function f from this class.

Recall that by (2.11)

∀ (x ∈ int B) ∀ (h,Bh(x) ⊂ B) :

Φµ(f,Bh(x)) ≤ P1h
k−dπΩ(f,Bh(x)), Ω(f,B′) =

∫
B′

|Dkf(u)|pdu

1/p

;
(3.17)

from now on, P (perhaps with sub- or superscripts) are quantities ≥ 1 depending on
µ, d, γ, p only and nonincreasing in p > d, and | · | stands both for the absolute value
of a real and for the Euclidean norm of a vector from Rk.

20. Our central auxiliary result is as follows:

Lemma 3.3.1 Assume that

(a) n ≥
(

2(µ+3)
(1−γ)D(B)

)d
,

(b) n
k−dπ
d

√
lnn ≥ P1(µ+ 3)k−dπ+d/2 L

σω
.

(3.18)
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Given a point x ∈ Bγ, let us choose the largest h = h(x) such that

(a) h ≤ (1− γ)D(B),
(b) P1h

k−dπΩ(f,Bh(x)) ≤ Sn(h).
(3.19)

Then

h(x) ≥ µ+ 3

m
, (3.20)

and the error at x of the adaptive estimate f̂n as applied to f can be bounded as
follows:

(a) in the case of ξ ∈ Ξn :

|f̂n(x; y)− f(x)| ≤ C2Sn(h(x));
(b) in the case of ξ 6∈ Ξn :

|f̂n(x; y)− f(x)| ≤ P2D
k−dπ(B)L+ C2σΘn.

(3.21)

Proof of Lemma. a0. Let h− = µ+3
m . From (3.18) it follows that h−

satisfies (3.19.a), so that Bh−(x) ⊂ B. Moreover, (3.18.b) implies that

P1h
k−dπ
− L ≤ Sn(h−);

the latter inequality, in view of Ω(f,Bh−(x)) ≤ L, says that h− satisfies (3.19.b)
as well. Thus, h(x) ≥ h−, as claimed in (3.20).

b0. Consider the window Bh(x)(x). By (3.19.a) it is admissible for x, while
from (3.19.b) combined with (3.17) we get

Φµ(f,Bh(x)(x)) ≤ Sn(h).

It follows that the ideal window B∗(x) of x is not smaller than Bh(x)(x) and is
good.

c0. Assume that ξ ∈ Ξn. Then, according to (3.14), we have

|f̂n(x; y)− f(x)| ≤ 5C1

[
Φµ(f,Bh∗(x)(x)) + Sn(h∗(x))

]
. (3.22)

Now, by the definition of a good ideal window,

either
case (a): Φµ(f,Bh∗(x)(x)) = Sn(h∗(x)),

or
case (b): Φµ(f,Bh∗(x)(x)) ≤ Sn(h∗(x)) and B∗(x) is the largest

cube centered at x and contained in [0, 1]d.

If both cases, the right hand side in (3.22) does not exceed

10C1Sn(h∗(x)) ≤ 10C1Sn(h(x))

(recall that, as we have seen, h∗(x) ≥ h(x)), as required in (3.21.a).
d0. Now let ξ 6∈ Ξn. Note that f̂n(x; y) is certain estimate f̂h(x; y) associated

with a centered at x and admissible for x cube Bh(x). There are two possible
cases:

case (c): Bh(x) ⊂ B;
case (d): Bh(x) 6⊂ B.
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If (c) is the case, then

|f̂n(x; y)− f(x)| ≤ C1

[
Φµ(f,Bh(x)) + σ√

nhd
Θn

]
≤ P ′Dk−dπ(B)L+ C ′σΘn,

(3.23)

the concluding inequality being given by (3.17) as applied to the cubeBh(x) ⊂ B
combined with the fact that this cube is admissible for x and therefore nhd ≥ 1.

If (d) is the case, then the window Bh(x) contains the cube Bh(x)(x). For
the estimate associated with the latter window we have (by the same reasons
as in (3.5))

|f̂h(x)
n (x; y)− f(x)| ≤ P ′Dk−dπ(B)L+ C ′σΘn,

and since the estimate f̂n(x; y) is associated with a normal cube containing
Bh(x)(x), we have

|f̂h(x)
n (x; y)− f̂n(x; y)| ≤ 4C1Sn(h(x)) ≤ C ′′σΘn,

the concluding inequality being given by the definition of Sn(·) and the fact
that ω

√
lnn ≤ Θn due to ξ 6∈ Ξn. Combining our observations, we see that in

both cases (c), (d) we have

|f̂n(x; y)− f(x)| ≤ P2D
k−dπ(B)L+ C2σΘn,

as required in (3.21.b).

30. Now we are ready to complete the proof. Assume that (3.18) takes place, and
let us fix q, 2k+d

d
p ≤ q <∞.

30.a) Note that for every x ∈ Bγ

– either
h(x) = (1− γ)D(B),

– or
P1h

k−dπ(x)Ω(f,Bh(x)(x)) = Sn(h(x))
m

h(x) =
(

σ̂n
P1Ω(f,Bh(x)(x))

) 2
2k+d−2dπ

.

(3.24)

Let U, V be the sets of those x ∈ Bγ for which the first, respectively, the second of
this possibilities takes place.

If V is nonempty, let us partition it as follows.

1) Since h(x) is bounded away from zero in Bγ by (3.20), we can choose
x1 ∈ V such that

h(x) ≥ 1

2
h(x1) ∀x ∈ V.

After x1 is chosen, we set

V1 = {x ∈ V | Bh(x)(x) ∩Bh(x1)(x1) 6= ∅}.

2) If the set V \V1 is nonempty, we apply the construction from 1) to this
set, thus getting x2 ∈ V \V1 such that

h(x) ≥ 1

2
h(x2) ∀x ∈ V \V1,
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and set
V2 = {x ∈ V \V1 | Bh(x)(x) ∩Bh(x2)(x2) 6= ∅}.

If the set V \(V1 ∪ V2) still is nonempty, we apply the same construction
to this set, thus getting x3 and V3, and so on.

The outlined process clearly terminates after certain step; indeed, by construction the
cubes Bh(x1)(x1), Bh(x2)(x2), ... are mutually disjoint and are contained in Bγ, while
the sizes of these cubes are bounded away from 0. On termination, we get a collection
of M points x1, ..., xM ∈ V and a partition

V = V1 ∪ V2 ∪ ... ∪ VM

with the following properties:
(i) The cubes Bh(x1)(x1), ..., Bh(xM )(xM) are mutually disjoint;
(ii) For every ` ≤M and every x ∈ V` we have

h(x) ≥ 1

2
h(x`) and Bh(x)(x) ∩Bh(x`)(x`) 6= ∅.

We claim that also
(iii) For every ` ≤M and every x ∈ V`:

h(x) ≥ 1

2
max [h(x`); ‖ x− x` ‖∞] . (3.25)

Indeed, h(x) ≥ 1
2
h(x`) by (ii), so that it suffices to verify (3.25) in the case when

‖ x − x` ‖∞≥ h(x`). Since Bh(x)(x) intersects Bh(x`)(x`), we have ‖ x − x` ‖∞≤
1
2
(h(x) + h(x`)), whence

h(x) ≥ 2 ‖ x− x` ‖∞ −h(x`) ≥‖ x− x` ‖∞,

which is even more than we need.
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30.b) Assume that ξ ∈ Ξn. Then

‖ f̂n(·; y)− f(·) ‖qq,Bγ
≤ Cq

2

∫
Bγ

Sqn(h(x))dx [by (3.21.a)]

= Cq
2

∫
U

Sqn(h(x))dx+ Cq
2

M∑
`=1

∫
V`

Sqn(h(x))dx

= Cq
2

∫
U

[
σ̂n

((1− γ)D(B))d/2

]q
dx+ Cq

2

M∑
`=1

∫
V`

Sqn(h(x))dx

[since h(x) = (1− γ)D(B) for x ∈ U ]

≤ Cq
3 σ̂

q
nD

d−dq/2(B) + Cq
3 σ̂

q
n

M∑
`=1

∫
V`

(max [h(x`), ‖ x− x` ‖∞])−dq/2 dx

≤ Cq
3 σ̂

q
nD

d−dq/2(B) + Cq
4 σ̂

q
n

M∑
`=1

∞∫
0

rd−1 (max [h(x`), r])
−dq/2 dr

≤ Cq
3 σ̂

q
nD

d−dq/2(B) + Cq
5 σ̂

q
n

M∑
`=1

[h(x`)]
d−dq/2

[note that dq/2− d+ 1 ≥ 2k+d
2
p− d+ 1 ≥ d2/2 + 1

in view of q ≥ 2k+d
d
p, k ≥ 1 and p > d]

= Cq
3 σ̂

q
nD

d−dq/2(B) + Cq
5 σ̂

q
n

M∑
`=1

[
σ̂n

P1Ω(f,Bh(x`)(x`))

] 2d−dq
2k−2dπ+d

[by (3.24)]

= Cq
3 σ̂

q
nD

d−dq/2(B) + Cq
5 σ̂

2β(p,k,d,q)q
n

M∑
`=1

[
P1Ω(f,Bh(x`)(x`))

] dq−2d
2k−2dπ+d

[see the definition of β(p, k, d, q)]

(3.26)

Now note that dq−2d
2k−2dπ+d

≥ p in view of q ≥ 2k+d
d
p, so that

M∑̀
=1

[
P1Ω(f,Bh(x`)(x`))

] dq−2d
2k−2dπ+d

≤
[
M∑
`=1

(
P1Ω(f,Bh(x`)(x`))

)p] dq−2d
p(2k−2dπ+d)

≤ [P p
1L

p]
dq−2d

p(2k−2dπ+d)

(see (3.17) and take into account that the cubes Bh(x`)(x`), ` = 1, ...,M , are mutually
disjoint by (i)). Thus, (3.26) results in

ξ ∈ Ξn ⇒
‖ f̂n(·; yf (ξ))− f(·) ‖q,Bγ≤ C6σ̂nD

dθ−d/2(B) + P2σ̂
2β(p,k,d,q)
n L

d−2θd
2k−2dπ+d

= C6σ̂nD
dθ−d/2(B) + P2L

(
σ̂n
L

)2β(p,k,d,q)
(3.27)

30.c) Now assume that ξ 6∈ Ξn. In this case, by (3.21),

|f̂n(x; y)− f(x)| ≤ P2D
k−dπ(B)L+ C2σΘn. ∀x ∈ Bγ,

whence
‖ f̂n(·; y)− f(·) ‖q,Bγ≤

[
P2D

k−dπ(B)L+ C2σΘn

]
Dd/q(B). (3.28)
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30.d) Combining (3.27) and (3.28), we get(
E
{
‖ f̂n(·; y)− f(·) ‖2

q,Bγ

})1/2

≤ C7 max
[
σ̂nD

− d−2dθ
2 (B);P4L

(
σ̂n
L

)2β(p,k,d,q)
;J (f)

]
,

J (f) =
(
E
{
χξ 6∈Ξn

[
P2D

2k−2dπ(B)L2 + C2σ
2Θ2

n

]})1/2

≤ P2D
k−dπ(B)LProb1/2{ξ 6∈ Ξn}+ C2σ

(
Prob1/2{ξ 6∈ Ξn} (E {Θ4

n})
1/2
)1/2

≤ P2D
k−dπ(B)LProb1/2{ξ 6∈ Ξn}+ C2σProb1/4{ξ 6∈ Ξn} (E {Θ4

n})
1/4

≤ P2D
k−dπ(B)Ln−2(µ+1) + C2σn

−(µ+1)
√

lnn
[we have used (3.6) and (3.8)]

(3.29)
Thus, under assumptions (3.18) for all d < p <∞ and all q, 2k+d

d
p ≤ q <∞ we have(

E
{
‖ f̂n(·; y)− f(·) ‖2

q,Bγ

})1/2

≤ C7 max
[
σ̂nD

− d−2dθ
2 (B);P4L

(
σ̂n
L

)2β(p,k,d,q)
;

P5D
k−dπ(B)Ln−2(µ+1);C8σn

−(µ+1)
√

lnn
]
.

(3.30)

Now, it is easily seen that if P ≥ 1 is a properly chosen function of µ, d, γ, p nonin-
creasing in p > d and (3.15) takes place, then, first, the assumption (3.18) is satisfied
and, second, the right hand side in (3.30) does not exceed the quantity

PL
(
σ̂n
L

)2β(p,k,d,q)

= PL
(
σ̂n
L

)2β(p,k,d,q)

Ddλ(p,k,d,q)(B)

(see (3.16) and take into account that we are in the situation q ≥ 2k+d
d
p, so that

λ(p, k, d, q) = 0). We have obtained the bound (3.16) for the case of d < p < ∞,
∞ > q ≥ 2k+d

d
p; passing to limit as q → ∞, we get the desired bound for q = ∞ as

well.
40. Now let d < p <∞ and 1 ≤ q ≤ q∗ ≡ 2k+d

d
p. By Hölder inequality,

‖ g ‖q,Bγ≤‖ g ‖q∗,Bγ |Bγ|
1
q
− 1
q∗ ,

whence
R̂q

(
f̂n;S

)
≤ R̂q∗

(
f̂n;S

)
Dd(1/q−1/q∗)(B);

combining this observation with the (already proved) bound (3.16) associated with
q = q∗, we see that (3.16) is valid for all q ∈ [1,∞], provided that d < p <∞. Passing
in the resulting bound to limit as p → ∞, we conclude that (3.16) is valid for all
p ∈ (d,∞], q ∈ [1,∞].

3.4 Optimality index of the adaptive estimate

Let us first point out lower bounds for the minimax risks of estimating functions from
local Sobolev balls. These bounds can be immediately derived from Theorem 2.1.1: by
“similarity arguments”, to recover functions from Sk,pd (B;L) via n observations (3.1)
is clearly the same as to recover functions from Sk,pd ([0, 1]d, L′) via nDd(B) similar
observations, where L′ is readily given by the parameters of the local Sobolev ball (in
fact, L′ = Ddπ+k(B)L). The results are as follows:
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Theorem 3.4.1 Let σ, L > 0, γ ∈ (0, 1), (p, k, d), p > d, q ∈ [1,∞] and a cube
B ⊂ [0, 1]d be given. Assume that the volume of observations n is large enough,
namely,

D−
2k−2dπ+d

2 (B) ≤ L
√
n

σ[
π = 1

p

] (3.31)

Then the minimax q-risk (3.2) of estimating functions f from the local Sobolev ball
S = Sk,pd (B;L) via observations (3.1) can be bounded from below as

R̂∗q(n;S) ≥ Ok,d,γ(1)L

(
σ

L
√
n

)2β(p,k,d,q)

Ddλ(p,k,d,q)(B), (3.32)

where β(·), λ(·) are given by (3.16).
If the volume of observations n is so large that

nεD−
2k−2dπ+d

2 (B) ≤ L
√
n

σ
. (3.33)

for some positive ε, then in the case of “large” ratios q/p, namely, q
p
≥ 2k+d

d
, the lower

bound can be strengthened to

R̂∗q(n;S) ≥ Ok,d,γ,ε(1)L

(
σ
√

lnn

L
√
n

)2β(p,k,d,q)

Ddλ(p,k,d,q)(B). (3.34)

Comparing the statements of Theorems 3.3.1 and 3.4.1, we come to the following

Theorem 3.4.2 Let us fix the dimensionality d of the regression problem, a real p >
d, a nonnegative integer µ, and let us associate with these data the nested family of
local Sobolev balls

S ≡ Sp,d,µ = {Sn}∞n=1

defined as follows:

Sn =

S
k,p′

d (B;L)

∣∣∣∣∣∣∣∣∣
(a) p′ ≥ p,
(b) 1 ≤ k ≤ µ+ 1,

(c) P−1n
2−2dπ+d

2d ≥ L
σ̂n
≥ PD−

2(µ+1)−2dπ+d
2 (B)

 (3.35)

where P is given by Theorem 3.3.1, π = 1
p

and

σ̂n =
σ
√

lnn√
n

.

The S-nonoptimality index of the adaptive estimation method {f̂n}∞n=1 from Section
3.2 is not worse than the logarithmic in n function

Φ(n) = (lnn)
µ+1

2(µ+1)+d . (3.36)

We see that the nonoptimality index of our adaptive estimate on certain nested fami-
lies of local Sobolev balls is “not too large” – it grows with n logarithmically. We are
about to demonstrate that this logarithmic growth is, in a sense, unavoidable price for
“reasonable adaptive abilities”. For the sake of definiteness, in the below statement
the parameter γ from (3.2) is assumed to be 0.5.
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Proposition 3.4.1 Let d, p, µ be the same as in Theorem 3.4.2, and let ε ∈ (0, 1).
Consider the nested family S of local Sobolev balls given by

Sn =
{
Sµ+1,p
d (B;L)

∣∣∣ P−1nε
2(µ+1)−2dπ+d

2d ≥ L
σ̂n
≥ PD−

2(µ+1)−2dπ+d
2 (B)

}
(3.37)

where, as always,

σ̂n =
σ
√

lnn√
n

(note that for small enough ε this nested family is contained in the one of Theorem
3.4.2).

There exist positive constants C,N such that for every estimation method {f̂n}∞n=1

one has
n ≥ N ⇒

sup
S∈Sn

R̂p

(
f̂n;S

)
R̂∗p (n;S)

≥ C(lnn)
(µ+1)

2(µ+1)+d .
(3.38)

Thus, the S-nonoptimality index of every estimation method with respect to the nested

family S is at least O
(

(lnn)
µ+1

2(µ+1)+d

)
.

In particular, the adaptive estimation method from Section 3.2 possesses the best
possible S-nonoptimality index.

Proof of Proposition is similar to the one used by Lepskii [18] to demonstrate that
it is impossible to get optimal in order adaptive to smoothness estimator of the value
of a smooth regression function at a given point.

Let us fix κ ∈ (0, ε) and an estimation method {f̂n}, and let

k = µ+ 1.

10. Given n, consider the Sobolev ball Sn from Sn with the largest possible B,
namely, B = [0, 1]d, and the smallest possible, for our B and n, value of L – namely,

L = L(n) = σ̂nP. (3.39)

Let
r(n) = R̂p(f̂n;Sn)

be the p-risk of the estimate f̂n on this ball, and let

ρ(n) = R̂∗p(n;Sn)

be the corresponding minimax risk. From the results of Section 2.1 (see (2.15)) we
know that

ρ(n) ≤ Op,µ,d(1)L(n)
(

sn
L(n)

) 2k
2k+d

= Op,µ,d(1)sn
(√

lnn
) d

2k+d ,

sn = σ√
n
.

(3.40)

Now let us set
h(n) = n−κ/d; (3.41)
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for all large enough values of n, the collection Sn contains the family Fn of all local
Sobolev balls Sk,pd (L̂(n), B) with

L̂(n) = σ̂nP (2h(n))−
2k−2dπ+d

2 ,
D(B) = 2h(n) [B ⊂ [0, 1]d].

(3.42)

Let r̂(n) be the upper bound of the risks R̂p(f̂n; ·) over all these balls. Let also ρ̂(n) be

the upper bound of the minimax risks R̂∗p(n; ·) over the same family of local Sobolev
balls. From (2.15) we know that for large enough values of n one has

ρ̂(n) ≤ Op,µ,d(1)L̂(n)
(

sn
L̂(n)

) 2k
2k+d

(2h(n))
2πkd
2k+d

≤ Op,µ,d(1)sn
(√

lnn
) d

2k+d hdπ−d/2(n).

(3.43)

Finally, let

δ = δ(n) =
2−dσ

√
κ lnn

5
√
n

h−d/2(n). (3.44)

20. We claim that for all large enough values of n one has

max

[
r(n)nκ/4

δ
;
r̂(n)

δhdπ(n)

]
≥ 1

4
. (3.45)

Postponing for a moment the justification of our claim, let us derive from (3.45) the
assertion of Proposition. Indeed, by (3.45),

– either

r(n) ≥ 1
4
n−κ/4δ

≥ Op,µ,d,κ(1)sn
√

lnnn−κ/4h−d/2(n)

≥ Op,µ,d,κ(1)sn
√

lnnn−κ/4nκ/2 [see (3.41)]

≥ Op,µ,d,κ(1) (lnn)
k

2k+d nκ/4ρ(n) [see (3.40)],

– or
r̂(n) ≥ 1

4
δhdπ(n)

≥ Op,µ,d,κ(1)sn
√

lnnhdπ−d/2(n) [see (3.44)]

≥ Op,µ,d,κ(1)(lnn)
k

2k+d ρ̂(n) [see (3.43)]

In both cases, the worst-case, over the local Sobolev balls from Sn, ratio of the risks

of f̂n and the minimax risks associated with the balls is at least Op,µ,d,κ(1)(lnn)
k

2k+d ,
as stated by Proposition (recall that k = µ+ 1).

30. To establish (3.45), let us look what happens when f̂n is used to recover
a particular function from Sn – namely, the function f ≡ 0. The result will be
some random function f̃n depending deterministically on the observation noises ξ; by
definition of r(n), we have

Eξ
{
‖ f̃n ‖p

}
≤ r(n). (3.46)

Lemma 3.4.1 For all large enough values of n there exists a cube B ⊂ [0, 1]d with
edge length h(n) such that the twice larger concentric cube B+(B) is contained in
[0, 1]d and

Prob
{
‖ f̃n ‖p,B> 2nκ/4r(n)hdπ(n)

}
≤ 2n−κ/8, (3.47)
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the probability being taken w.r.t. the distribution of observations (3.1) associated with
f ≡ 0.

Proof. Let t = nκ/4, u = tp/(p+1), v = t1/(p+1), and let χ be the characteristic function
of the event ‖ f̃n ‖p≤ ur(n). From (3.46) it follows that

Prob{χ = 0} ≤ u−1. (3.48)

On the other hand, assuming that n is so large that h(n) < 0.1, we have

‖ (χf̃n) ‖pp ≤ uprp(n)

⇒ E


∫

[0,1]d

|(χf̃n)(x)|pdx

 ≤ uprp(n)

⇒ ∃B : D(B) = h(n), B+(B) ⊂ [0, 1]d and

E


∫
B

|(χf̃n)(x)|pdx

 ≤ 2uprp(n)hd(n)

⇒ Prob
{
‖ χf̃n ‖pp,B> 2vpuprp(n)hd(n)

}
≤ 1

vp

⇒ Prob
{
‖ f̃n ‖p,B> 2uvr(n)hdπ(n)

}
≤ Prob{ ‖ χf̃n ‖pp,B>

2vpuprp(n)hd(n)}+ Prob{χ = 0}
≤ 1

vp
+ 1

u
[see (3.48)]

It remains to note that uv = t = nκ/4 and u−1 + v−p = 2t−p/(p+1) ≤ 2n−κ/8.

Let B be given by Lemma 3.4.1 and g be a continuous function taking values
between 0 and δ(n) and such that g is equal to δ(n) on B+(B) and vanishes outside
twice larger than B+(B) concentric to B+(B) cube. Consider the following two hy-
potheses on the distribution of observations (3.1): H0 says that the observations come
from f ≡ 0, while H1 says that they come from f = g. Let us associate with f̂n the
following procedure for distinguishing between H0 and H1 via observations (3.1):

Given y, we build the function f̂n(·, y) and restrict it on the cube B.
If the p-norm of this restriction is ≤ 0.5δhdπ(n), we accept H0, otherwise
we accept H1.

We claim that if (3.45) is not valid, then our procedure possesses the following prop-
erties:

(a) probability p1|1 to accept H1 in the case when H1 is true is at least 1/2;
(b) probability p1|0 to accept H1 in the case when H0 is true is at most 2n−κ/8.

Indeed, we have g ∈ Sµ+1,p
d (L̂(n), B+(B)). Now, whenever H1 is true and

is rejected by our procedure, the ‖ · ‖p,B-error of estimate f̂n, the true re-

gression function being g, is at least 0.5δhdπ(n); since the expectation of this

error is at most r̂(n) by origin of the latter quantity, 1 − p1|1 is at most

2r̂(n)(δhdπ(n))−1; if (3.45) is not valid, the latter quantity is ≤ 1/2, so that

p1|1 ≥ 1/2, as claimed in (a). Now, whenever H0 is true and is rejected by our

procedure, we have ‖ f̃n ‖p,B≥ 0.5δhdπ(n). When (3.45) is not valid, we have

0.5δhdπ(n) > 2r(n)nκ/4hdπ(n), so that here ‖ f̃ ‖p,B≥ 2r(n)nκ/4hdπ(n), and

the H0-probability of the latter event, by (3.47), does not exceed 2n−κ/8, as

claimed in (b).
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On the other hand, the Kullback distance between the distributions of observations
associated with the hypotheses Hi, i = 0, 1, by construction does not exceed

K = (4h(n))dσ−2δ2n =
κ lnn

25
.

As we remember from the proof of the Fano inequality (see Remark 1.4.1), the Kull-
back distance may only decrease when we pass from the original pair of distributions
to their “deterministic transforms” – to the distributions of the results of our routine
for hypotheses testing. Thus, denoting by pi|j the probability to accept Hi when the
true hypothesis is Hj, i, j = 0, 1, we get

κ lnn
25

≥ K
≥ p1|1 ln

(
p1|1
p1|0

)
+ p0|1 ln

(
p0|1
p0|0

)
=

[
p1|1 ln p1|1 + p0|1 ln p0|1

]
− p1|1 ln p1|0 − p0|1 ln p0|0

≥ − ln 2− p1|1 ln p1|0

≥ − ln 2 + 1
2

ln
(
nκ/8

2

)
[we have used (a) and (b)]

The resulting inequality cannot be valid for large values of n, so that for these values
of n (3.45) does take place.

We conclude this chapter with demonstrating a reasonably good numerical be-
haviour of the adaptive estimate we have built (for details of implementation, see
[9]). Our numerical results deal with univariate functions and two-dimensional im-
ages. As the test univariate signals, we used the functions Blocks, Bumps, HeaviSine
and Doppler given in [6, 5]. The level of noise in experiments is characterized by the
signal-to-noise ratio 

∑
ι
f 2(xι)

nσ2

1/2

;

the less it is, the more difficult is to recover the regression function.
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Figure 3.1: “Blocks”, n = 2048.
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Figure 3.2: “Bumps”, n = 2048.
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Figure 3.3: “HeavySine”, n = 2048.
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Figure 3.4: “Doppler”, n = 2048.
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Figure 3.5: “Ball”, n = 5122.
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Figure 3.6: “Lennon”, n = 2562.
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Chapter 4

Estimating signals satisfying
differential inequalities

4.1 The goal

Let us look again at the problem of recovering a univariate function f : [0, 1] → R
via n equidistant observations

y = yf (ξ) = {yt = f(t/n) + σξt}nt=1 ,

ξ = {ξt}nt=1 be a collection of independent N (0, 1) noises. To the moment we have
developed a number of theoretically efficient techniques for solving this problem in
the case when f is a smooth function – it belongs to a (local) Sobolev ball. At the
same time, these techniques fail to recover regression functions, even very simple ones,
possessing “bad” parameters of smoothness. Assume, e.g., that f(x) = sin(ωx) and
the frequency of this sine may be large. In spite of the fact that sine is extremely
“regular”, there does not exist a single Sobolev ball containing sines of all frequencies,
As a result, with the techniques we have to the moment (as with all other traditional
regression estimation techniques – all of them are aimed at estimating functions with
somehow fixed smoothness parameters) the quality of recovering a sine is the worse the
larger is the frequency, and no uniform in frequency rate of convergence is guaranteed.
In fact, all our estimates as applied to a sine of high frequency will recover it as zero.
The same unpleasant phenomenon occurs when the function f to be recovered is an
“amplitude modulation” of a smooth (belonging to a given Sobolev ball) signal g:

f(x) = g(x) sin(ωx+ φ) (4.1)

and the frequency ω is large:
We are about to extend our estimation techniques from the classes of smooth

functions to wider classes including, in particular, the signals of the type (4.1). This
extension comes from the following simple observation:

A Sobolev ball Sk,p(B;L) ≡ Sk,p1 (B;L) is comprised of functions satis-
fying the “differential inequality”:

‖ r
(
d

dx

)
f ‖p,B≤ L (4.2)

75



76 SIGNALS SATISFYING DIFFERENTIAL INEQUALITIES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 4.1: An “amplitude modulated” signal.

associated with the linear differential operator

r

(
d

dx

)
=

dk

dxk

of order k. A natural way to extend this particular family of functions
is to consider functions satisfying differential inequalities associated with
other linear differential operators of order k, each function being “served”
by its own operator.

Guided by the above observation, we come to the family of functions Dk,p(B;L)
defined as follows:

Definition 4.1.1 Let k be a positive integer, p ∈ [1,∞], L > 0 and B be a segment
contained in [0, 1].

We say that a function
f : [0, 1]→ C 1)

is contained in the family Dk,p(B;L), if f is k − 1 times continuously differentiable,
f (k−1) is absolutely continuous and there exists a linear differential operator with con-
stant (perhaps complex-valued) coefficients

r

(
d

dx

)
=

dk

dxk
+ r1

dk−1

dxk−1
+ ...+ rk−1

d

dx
+ rk

such that

‖ r
(
d

dx

)
f ‖p,B≤ L.

The families Dk,p(B;L) are wide enough to contain both functions from the usual
Sobolev ball Sk,p(B;L) and the sines of arbitrary frequencies: a sine is a solution of
a homogeneous differential equation of order 2, so that sin(ωt + φ) ∈ D2,p([0, 1]; 0).

1)In this chapter it is more convenient to deal with complex-valued functions than with real-valued
ones.
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As about “modulated signals” (4.1), each of them can be represented as a sum of two
signals from Dk,p(·, ·). Indeed,

g ∈ Sk,p(L)⇒
f(x) ≡ g(x) sin(ωx+ φ) = f1(x) + f2(x),

f1(x) = 1
2i
g(x) exp{i(ωx+ φ)},

f2(x) = − 1
2i
g(x) exp{−i(ωx+ φ)};

setting
r1(z) = (z − iω)k, r2(z) = (z + iω)k,

we have (
rj
(
d
dx

)
fj
)

(x) = εj
1
2i

exp{εji(ωx+ φ)}g(k)(x), εj = (−1)j−1

⇓
‖ rj

(
d
dx

)
fj ‖p≤ 1

2
L,

so that function (4.1) associated with g ∈ Sk,p(B;L) is the sum of two functions from
Dk,p(B;L/2).

Motivated by the latter example, we see that it makes sense to know how to recover
regression functions from the families W l,k,p(B;L) defined as follows:

Definition 4.1.2 Let k, l be positive integers, p ∈ [1,∞], L > 0 and B be a segment
contained in [0, 1].

We say that a function f : [0, 1] → C belongs to the family W l,k,p(B;L), if f can
be represented as

f(x) =
l∑

j=1

fj(x)

with fj ∈ Dk,p(B;Lj) and
l∑

j=1

Lj ≤ L.

Below, we build estimates for regression functions from classes W l,k,p(B;L); since we
have agreed to work with complex-valued functions, it makes sense to speak about
complex-valued noises, so that our model of observations from now on will be

y = yf (ξ) = {yt = f(t/n) + σξt}nt=1 , (4.3)

where ξ = {ξt}nt=1 is a collection of independent complex-valued standard Gaussian
noises (i.e., of random 2D real Gaussian vectors with zero mean and the unit covariance
matrix). Of course, if the actual observations are real, we always can add to them
artificial imaginary Gaussian noises to fit the model (4.3).

Note that when recovering a highly oscillating function f via observations (4.3),
we may hope to say something reasonable only about the restriction of f on the
observation grid Γn = {xt = t/n}nt=1, and not on the behaviour of f outside the grid.
Indeed, it may happen that f is a sine of amplitude 1 which vanishes on Γn, so that
observations (4.3) give no hint that f is not identically zero. By the just indicated
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reason, in what follows we are interested to recover functions on the observation grid
Γn only, and we measure the estimation error in the “discrete versions” of q-norms

|g|q,B =

 1

n

∑
x∈Γn∩B

|g(x)|q
1/q

,

with the standard interpretation of the right hand side in the case of q = ∞; here g
is a complex-valued function defined at least on Γn, and B ⊂ [0, 1] is a segment.

We shall see that our possibilities to recover functions from class W l,k,p(B;L) are
essentially the same as in the case when the functions belong to the Sobolev ball
Sk,p1 (B;L) (up to the fact that now we are recovering the restriction of a function
on Γn rather than the function itself), in spite of the fact that the former class is
“incomparably wider” than the latter one.

Our strategy will be as follows. When estimating a smooth function f – one
satisfying the differential inequality

‖ rk
(
d

dx

)
f ‖p≤ L [rk(z) = zk]

– at a point x, we observe that locally it can be well approximated by a polynomial
of degree k − 1, i.e., by a solution of the homogeneous differential equation

rk

(
d

dx

)
p = 0

associated with our differential inequality; and when estimating f(x), we act as if f
were equal to its local polynomial approximation in the neighbourhood of x used by
the estimate.

Basically the same strategy can be used for estimating a regression function sat-
isfying a general differential inequality

‖ r
(
d

dx

)
f ‖p≤ L, [deg r = k]

with the only difference that now a “local model” of f should be a solution of the
associated homogeneous equation

r

(
d

dx

)
p = 0 (4.4)

rather than an algebraic polynomial. This is, however, an essential difference: it is
easy to act “as if f were an algebraic polynomial”, because we know very well how to
recover algebraic polynomials of a given order from noisy observations. Now we need
to solve similar recovering problem for a solution to unknown homogeneous differential
equation of a given order, which by itself is a nontrivial problem. We start with this
problem; after it is resolved, the remaining part of the job will be carried out in the
same manner as in the standard case of estimating smooth regression functions.
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4.2 Estimating solutions of homogeneous equations

When restricting a solution of a homogeneous differential equation (4.4) on an equidis-
tant grid, we get a sequence satisfying a homogeneous finite-difference equation. Since
we are interested to recover signals on the grid only, we may temporarily forget about
“continuous time” and focus on estimating sequences satisfying finite-difference equa-
tions.

4.2.1 Preliminaries

Space of sequences. Let F be the space of two-sided complex-valued sequences
φ = {φt}t∈Z, and F∗ be the subspace of “finite” sequences – those with finitely many
nonzero entries. In what follows we identify a sequence φ = {φt} ∈ F∗ with the
rational function

φ(z) =
∑
t

φtz
t.

The space F is equipped with the natural linear operations - addition and multipli-
cation by scalars from C, and F∗ – also with multiplication

(φψ)(z) = φ(z)ψ(z)

(which corresponds to the convolution in the initial ”sequence” representation of the
elements of F∗). For φ ∈ F∗ we denote by deg(φ) the minimum of those τ ≥ 0 for
which φt = 0, |t| > τ , so that

φ(z) =
∑

|t|≤deg(φ)

φtz
t;

if φ is a sequence with infinitely many nonzero entries then by definition deg(φ) =∞.
Let FN denote the subspace of F comprised of all φ with deg(φ) ≤ N ; clearly, one
always has φ ∈ Fdeg(φ) (by definition F∞ ≡ F).

Further, let ∆ stand for the backward shift operator on F :

(∆φ)t = φt−1.

Given φ ∈ F∗, we can associate with φ the finite difference operator φ(∆) on F :

φ(∆)ψ =

{∑
s

φsψt−s

}
t∈Z

, ψ ∈ F .

Discrete Fourier transformation. Let N be a nonnegative integer, and let GN

be the set of all roots

ζk = exp

{
i

2πk

2N + 1

}
, k = 0, 1, ..., 2N,

of the unity of the degree 2N+1. Let C(GN) be the space of complex–valued functions
on GN , i.e., the vector space C2N+1 with the entries of the vectors indexed by the
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elements of GN . We define the discrete Fourier transformation FN : F → C(GN) by
the usual formula

(FNφ)(ζ) =
1√

2N + 1

∑
|t|≤N

φtζ
t, ζ ∈ GN .

Clearly, for φ ∈ FN one has

(FNφ)(ζ) =
1√

2N + 1
φ(ζ), ζ ∈ GN .

The inverse Fourier transformation is given by

φt =
1√

2N + 1

∑
ζ∈GN

(FNφ)(ζ)ζ−t, |t| ≤ N.

Norms on F . For 0 ≤ N ≤ ∞ and p ∈ [1,∞] let

‖ φ ‖p,N=

 N∑
t=−N

|φt|p
1/p

(if p = ∞, then the right hand side, as usual, is max|t|≤N |φt|). This is the standard
p-seminorm on F ; restricted on FN , this is an actual norm. We shall omit explicit
indicating N in the notation of the norm in the case of N = ∞; thus, ‖ φ ‖p is the
same as ‖ φ ‖p,∞.

Let φ ∈ F be such that there exists a positive integer k satisfying

(i) ‖ φ ‖∞,k= 1,

(ii) the smallest of t’s with nonzero φt is zero, and the largest is ≤ k;

in this case we say that φ ∈ F is normalized polynomial of the degree ≤ k. In the
other words, the sequence φ from F is normalized polynomial of the degree ≤ k if it

can be identified with polynomial φ(z) =
k∑
t=0

φtz
t with max

0≤t≤k
|φt| = 1.

It is well–known that the Fourier transformation FN being restricted on FN is an
isometry in 2-norms:

〈φ, ψ〉N ≡
∑
|t|≤N

φtψt = 〈FNφ, FNψ〉 ≡
∑
ζ∈GN

(FNφ)(ζ)(FNψ)(ζ), φ, ψ ∈ F , (4.5)

where ā denotes the conjugate of a ∈ C. The space C(GN) also can be equipped with
p-norms

‖ g(·) ‖p=

 ∑
ζ∈GN

|g(ζ)|p
1/p

with the already indicated standard interpretation of the right hand side in the case
of p =∞. Via Fourier transformation, the norms on C(GN) can be translated to F ,
and we set

‖ φ ‖∗p,N=‖ FNφ ‖p;
these are seminorms on F , and their restrictions on FN are norms on the latter
subspace.
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Useful inequalities. We list here several inequalities which are used repeatedly in
the sequel.

‖ φ ‖2,N=‖ φ ‖∗2,N , (4.6)

‖ φψ ‖p,N≤‖ φ ‖1‖ ψ ‖p,N+deg(φ), (4.7)

‖ φ ‖1,N≤‖ φ ‖∗1,N
√

2N + 1, (4.8)

‖ φ ‖∗∞,N≤ (2N + 1)1/2−1/p ‖ φ ‖p,N , (4.9)

deg(φ) + deg(ψ) ≤ N ⇒‖ φψ ‖∗1,N≤‖ φ ‖1,N‖ ψ ‖∗1,N , (4.10)

Proofs of the above inequalities are straightforward; we note only that (4.6) is the
Parseval equality, and (4.7) is the Young inequality.

4.2.2 Estimating sequences

The problem we want now to focus on is as follows. Assume we are given noisy
observations

y = yf (ξ) = {yt = ft + σξt}t∈Z (4.11)

of a sequence f ∈ F ; here {ξt} is a sequence of independent random Gaussian 2D
noises with zero mean and the unit covariance matrix.

Assume that f “nearly satisfies” an (unknown) finite-difference equation of a given
order k:

|φ(∆)f | ≤ ε, (4.12)

for some normalized polynomial φ of degree ≤ k; here ε is small. We want to recover
a given entry of f , say, f0, via a given number of observations (4.11) around the
time instant t = 0. For our purposes it is convenient to parameterize the number of
observations we use to estimate f0 as

8µT + 1,

where µ is a once for ever a priori fixed positive integer (“order” of the estimate to
be built) and T ∈ N is the parameter (“window width”). Thus, we want to estimate
f0 via the vector of observations

yT = {yt}|t|≤4µT .

The idea of the estimate we are about to build is very simple. Assume for a moment
that our signal satisfies a homogeneous difference equation – ε = 0. If we knew the
underlying difference operator φ, we could use the Least Squares approach to estimate
fτ , and the resulting estimator would be linear in observations. By analogy, let us
postulate a “filter” form

f̂τ = −
∑
|s|≤2µT

ψsyτ−s. (4.13)

of estimate of fτ in the case of unknown φ as well (By reasons which will become
clear in a moment, our filter recovers fτ via reduced number of observations – 4µT +1
observations around τ instead of the allowed number 8µT + 1.)

If we knew φ, we could specify “good weights” ψs in advance, as we did it when
estimating algebraic polynomials. Since we do not know φ, we should determine
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the weights ψs on the basis of observations. The first requirement to the weights is
that

∑
|s|≤2µT

|ψs|2 should be small enough in order to suppress the observation noises.

Imposing such a restriction on the weights ψs, we can determine the weights themselves
by a kind of “bootstrapping” – by fitting the output {f̂τ} of our filter to its input – to
the sequence of observations {yt}. Our hope is that if our filter suppresses the noises,
then the only possibility for the output to “reproduce” the input is to reproduce its
deterministic component f – since the “white noise” component of the input (the
sequence of observation noises) is “irreproducible”. In other words, let us form the
residual g[T, ψ, y] ∈ F according to

gt[T, ψ, y] =

 yt +
∑
|s|≤2µT

ψsyt−s, |t| ≤ 2µT

0, |t| > 2µT
, (4.14)

and let us choose the weights by minimizing a properly chosen norm of this residual in
ψ under the restriction that the filter associated with ψ “suppresses the observation
noises”. After these weights are found, we use them to build the estimate f̂0 of f0

according to (4.13).
Note that a procedure of the outlined type indeed recovers f0 via yT , since our

residual depends on yT rather than on the entire sequence of observations (the reason
to reduce the number of observations used by f̂ was exactly the desire to ensure the
latter property).

We have outlined our “estimation strategy” up to the following two issues:
(a) what is an appropriate for us form of the restriction “the filter with weights ψ

suppresses the observations noises”;
(b) what is a proper choice of the norm used to measure the residual.

Surprisingly enough, it turns out that it makes sense to ensure (a) by imposing an
upper bound on the ‖ · ‖1-norm of the Fourier transform of ψ, and to use in (b) the
‖ · ‖∞-norm of the Fourier transform of the residual. The “common sense” reason
for such a choice is that the difference between a highly oscillating “regular” signal
observed in noise and the noise itself is much better seen in the frequency domain
than in the time domain (look at the plots below!)

The estimate we have outlined formally is defined as follows. Let us fix a positive
integer µ – the order of our estimate. For every positive T we define the estimate

f̂ [T, y]

of f0 via observations yT = {yt}|t|≤4µT , namely,
• We associate with T, y the optimization problem

(PT [y]) :
‖ g[T, ψ, y] ‖∗∞,2µT→ min

s.t.
(a) ψ ∈ F2µT ;

(b) ‖ ψ ‖∗1,2µT≤ α(T ) ≡ 22µ+2
√

µ
T
.

As we remember, for ψ ∈ F2µT the residual g[T, ψ, y] depends on yT only, so that our
optimization problem involves only the observations yt with |t| ≤ 4µT . The problem
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Figure 4.2: Who is who?
Up: a noisy sum of 3 sines and the modulus of its Fourier transform

(257 observations, signal-to-noise ratio 1)
Down: noise and the modulus of its Fourier transform



84 SIGNALS SATISFYING DIFFERENTIAL INEQUALITIES

clearly is a convex optimization program, and its solution ψ̂[T, yT ] can be chosen to
be a Borel function of observations. By definition,

f̂ [T, y] = −
∑
|s|≤2µT

ψ̂s[T, y
T ]y−s.

The main result on the estimate we have built is as follows.

Theorem 4.2.1 Let

• k, l be two positive integers such that kl ≤ µ, µ being the order of the estimate
f̂ [·, ·];

• T be a positive integer;

• ε ≥ 0.

Assume that the sequence f underlying observations (4.11) can be decomposed as

f =
l∑

j=1

f j (4.15)

and for every component f j there exists normalized polynomial ηj of degree ≤ k such
that

l∑
j=1

‖ ηj(∆)f j ‖p,4µT≤ ε. (4.16)

Then the inaccuracy of the estimate f̂ [T, ·] of f0 can be bounded from above as follows:

|f0 − f̂ [T, y]| ≤ C
[
T k−1/pε+ σT−1/2ΘT (ξ)

]
(4.17)

where C depends on µ only and

ΘT (ξ) = max|s|≤2µT ‖ ∆sξ ‖∗∞,2µT

= max
|s|≤2µT

max
ζ∈G2µT

1√
4µT + 1

∣∣∣∣∣∣
2µT∑

t=−2µT

ξt−sζ
t

∣∣∣∣∣∣. (4.18)

Proof. Let us fix f satisfying the premise of our theorem, and let ηj, fj be the
associated sequences.

10. We start with

Lemma 4.2.1 There exists η ∈ F2µT such that
(i) η(z) = δ(z) + ω(z), δ(z) ≡ 1 being the convolution unit, with

‖ η ‖1≤ 2µ (4.19)

and

‖ ω ‖∗1,N≤ 2µ
√

2N + 1

T
∀N ≥ 2µT ; (4.20)

(ii) for every j = 1, ..., l there exists representation

η(z) = ηj(z)ρj(z) : ρj ∈ F2µT , ‖ ρj ‖∞≤ 22µT k−1. (4.21)
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The proof of Lemma is placed in Section 4.4.
20. Let ψ be a feasible solution of the optimization problem (PT [yf (ξ)]). We claim

that the value of the objective at ψ can be bounded from above as follows:

‖ g[T, ψ, yf (ξ)] ‖∗∞,2µT ≤ ‖ g∗[ψ, f ] ‖∗∞,2µT +22µ+4µσΘT (ξ),

g∗t [ψ, f ] =

 ft +
∑
|s|≤2µT

ψsft−s, |t| ≤ 2µT

0, |t| > 2µT
.

(4.22)

Indeed, we have

(a) g[T, ψ, yf (ξ)] = g∗[ψ, f ] + h[ψ, ξ],

(b) h[ψ, ξ] =

σξt +
∑
|s|≤2µT

ψsσξt−s, |t| ≤ 2µT

0, |t| > 2µT
⇒

‖ g[T, ψ, yf (ξ)] ‖∗∞,2µT ≤ ‖ g∗[ψ, f ] ‖∗∞,2µT + ‖ h[ψ, ξ] ‖∗∞,2µT ;
(c) ‖ h[ψ, ξ] ‖∗∞,2µT ≤ ‖ σξ ‖∗∞,2µT +

∑
|s|≤2µT

|ψs| ‖ σ∆sξ ‖∗∞,2µT
[by definition of h]

≤ σΘT (ξ)

[
1 +

∑
|s|≤2µT

|ψs|
]

[see (4.18)]
= σΘT (ξ) [1+ ‖ ψ ‖1,2µT ]

≤ σΘT (ξ)
[
1+ ‖ ψ ‖∗1,2µT

√
4µT + 1

]
[by (4.8)]

≤ 22µ+4µσΘT (ξ)
[in view of the constraints in (PT [·])],

(4.23)

and (4.22) follows.
30. We claim that the optimal value P ∗ξ in (PT [yf (ξ)]) can be bounded from above

as follows:
P ∗ξ ≤ 22µ+3µ3/2T 1/2+k−1/pε+ 22µ+4µσΘT (ξ). (4.24)

Indeed, let η, ω ∈ F2µT be given by Lemma 4.2.1. Applying (4.20) with N = 2µT , we
conclude that ω is a feasible solution of PT [yf (ξ)]. In view of (4.22), to prove (4.24)
it suffices to verify that

‖ g∗[ω, f ] ‖∗∞,2µT≤ 22µ+3µ3/2T 1/2+k−1/pε (4.25)

which is given by the following computation. Let

φj = ηj(∆)f j, j = 1, ..., l.
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We have

‖ g∗[ω, f ] ‖∗∞,2µT ≤
l∑

j=1
‖ g∗[ω, f j] ‖∗∞,2µT

[since g∗[ω, ·] is linear in the second argument]

=
l∑

j=1
‖ f j + ω(∆)f j ‖∗∞,2µT

=
l∑

j=1
‖ η(∆)f j ‖∗∞,2µT

=
l∑

j=1
‖ ρj(∆) [ηj(∆)f j] ‖∗∞,2µT

[the origin of ρj, see Lemma 4.2.1.(ii)]

=
l∑

j=1
‖ ρjφj ‖∗∞,2µT

≤ (4µT + 1)1/2−1/p
l∑

j=1
‖ ρjφj ‖p,2µT

[by (4.9) applied with N = 2µT ]

≤ (4µT + 1)1/2−1/p
l∑

j=1
‖ ρj ‖1‖ φj ‖p,4µT

[by (4.7) and since deg(ρj) ≤ 2µT ]

≤ (4µT + 1)1/2−1/p
l∑

j=1
(2µT + 1) ‖ ρj ‖∞‖ φj ‖p,4µT

[since ρj ∈ F2µT ]

≤ (4µT + 1)1/2−1/p(2µT + 1)22µT k−1
l∑

j=1
‖ φj ‖p,4µT

[by (4.21)]

≤ 22µ+3µ3/2T 1/2+k−1/pε

[see (4.16)],

as required in (4.25).
40. We claim that

‖ g∗[ω, f ] ‖∞≤ 22µ+3µT k−1/pε. (4.26)
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Indeed, similar to the preceding computation,

‖ g∗[ω, f ] ‖∞ ≤
l∑

j=1
‖ g∗[ω, f j] ‖∞

=
l∑

j=1
‖ f j + ω(∆)f j ‖∞,2µT

=
l∑

j=1
‖ η(∆)f j ‖∞,2µT

=
l∑

j=1
‖ ρj(∆) [ηj(∆)f j] ‖∞,2µT

=
l∑

j=1
‖ ρjφj ‖∞,2µT

≤
l∑

j=1
‖ ρj ‖∞ max

|s|≤2µT
‖ ∆sφj ‖1,2µT

[since deg(ρj) ≤ 2µT ]

≤ 22µT k−1
l∑

j=1
max
|s|≤2µT

‖ ∆sφj ‖1,2µT

[by (4.21)]

≤ 22µT k−1(4µT + 1)1−1/p
l∑

j=1
‖ φj ‖p,4µT

[by Hölder inequality]

≤ 22µ+3µT k−1/pε

[see (4.16)],

as required.
50. Let us fix a realization ξ of the noises, and let ψ̂ be the corresponding optimal

solution of (PT ). By (4.24) one has

22µ+3µ3/2T 1/2+k−1/pε+ 22µ+4µσΘT (ξ) ≥ P ∗ξ
= ‖ g∗[ψ̂, f ] + h[ψ̂, ξ] ‖∗∞,2µT

[see (4.23.a)]

≥ ‖ g∗[ψ̂, f ] ‖∗∞,2µT − ‖ h[ψ̂, ξ] ‖∗∞,2µT ,

whence

‖ g∗[ψ̂, f ] ‖∗∞,2µT ≤ A(ξ)

≡ 22µ+3µ3/2T 1/2+k−1/pε+ 22µ+4µσΘT (ξ)+ ‖ h[ψ̂, ξ] ‖∗∞,2µT
≤ 22µ+3µ3/2T 1/2+k−1/pε+ 22µ+5µσΘT (ξ)

[see (4.23.c)]
(4.27)

60. Let η, ω be the same as in 30–40, and let

α = (1 + ψ̂(∆))f.

Note that by the definition of g∗ one has

g∗t [ψ̂, f ] = αt ∀t : |t| ≤ 2µT. (4.28)

We claim that
|(η(∆)α)0| ≤ 24µ+5µ2T k−1/pε. (4.29)
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Indeed, we have

η(∆)α = η(∆)(1 + ψ̂(∆))f

= (1 + ψ̂(∆))[η(∆)f ]

⇒ (η(∆)α)0 = (η(∆)f)0 +
∑

|s|≤2µT
ψ̂s (η(∆)f)−s

= g∗0[ω, f ] +
∑

|s|≤2µT
ψ̂sg

∗
−s[ω, f ]

[since g∗s [ω, f ] = (η(∆)f)s, |s| ≤ 2µT ]

⇒ |(η(∆)α)0| ≤ |g∗0[ω, f ]|+ ‖ ψ̂ ‖∗1,2µT‖ g∗[ω, f ] ‖∗∞,2µT
[by Parseval equality and since |〈u, v〉| ≤‖ u ‖1‖ v ‖∞,
u, v ∈ C(G2µT )]

≤ 22µ+3µT k−1/pε+ ‖ ψ̂ ‖∗1,2µT‖ g∗[ω, f ] ‖∗∞,2µT
[by (4.26)]

≤ 22µ+3µT k−1/pε+ 22µ+2µ1/2T−1/222µ+3µ3/2T 1/2+k−1/pε
[since ψ is feasible for (PT ) and by (4.25)],

as claimed.
70. Now – the concluding step. Setting f̂ = f̂ [T, y], we have

f0 − f̂ = f(0) +
(
ψ̂(∆)y

)
0

[the construction of the estimate]

=
(
(1 + ψ̂(∆))f

)
0

+ σ
(
ψ̂(∆)ξ

)
0

= α0 + σ
(
ψ̂(∆)ξ

)
0

[the definition of α]
⇒

|f0 − f̂ | ≤ |α0|+ σ

∣∣∣∣∣ ∑|s|≤2T
ψ̂sξ−s

∣∣∣∣∣
≤ |α0|+ σ ‖ ψ̂ ‖∗1,2µT‖ ξ ‖∗∞,2µT

[same as in the previous computation]
≤ |α0|+ 22µ+2µ1/2T−1/2σΘT (ξ)

[since ψ̂ is feasible for (PT ) and by definition of ΘT ];

Thus,
|f0 − f̂ | ≤ |α0|+ 22µ+2µ1/2σT−1/2ΘT (ξ). (4.30)
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It remains to bound |α0|. We have

α0 = (η(∆)α)0 − (ω(∆)α)0 ⇒
|α0| ≤ |(η(∆)α)0|+ |(ω(∆)α)0|

≤ 24µ+5µ2T k−1/pε+ |(ω(∆)α)0|
[see (4.29)]

≤ 24µ+5µ2T k−1/pε+ ‖ ω ‖∗1,2µT‖ α ‖∗∞,2µT
[as in the previous two computations]

= 24µ+5µ2T k−1/pε+ 22µ+2µ1/2T−1/2 ‖ α ‖∗∞,2µT
[by (4.20) applied with N = 2µT ]

≤ 24µ+5µ2T k−1/pε+ 22µ+2µ1/2T−1/2 ‖ g∗[ψ̂, f ] ‖∗∞,2µT
[by (4.28)]

≤ 24µ+5µ2T k−1/pε

+22µ+2µ1/2T−1/2
[
22µ+3µ3/2T 1/2+k−1/pε+ 22µ+5µσΘT (ξ)

]
[by (4.27)]

Thus,
|α0| ≤ 24µ+6µ2T k−1/pε+ 24µ+7µ3/2σT−1/2ΘT (ξ).

Combining this inequality with (4.30), we come to (4.17).

4.2.3 Discussion

Theorem 4.2.1 has a number of important consequences already in the “parametric
case” – when the signal f we observe according to (4.11) satisfies a homogeneous finite
difference equation with constant coefficients:

η(∆)f ≡ 0, (4.31)

η being normalized polynomial of degree ≤ µ. In the notation of Theorem 4.2.1, this
is in the case when l = 1, k ≤ µ and ε = 0.

A) In the case of (4.31) relation (4.17) becomes

|f0 − f̂ [T, yf (ξ)]| ≤ CσT−1/2ΘT (ξ). (4.32)

Due to the origin of ΘT , we have(
E
{

(ΘT (ξ))2
})1/2

≤ O(1)
√

lnT ,

so that (
E
{
|f0 − f̂ [T, yf (ξ)]|2

})1/2
≤ Oµ(1)σ

√
lnT

T
. (4.33)

We see that

(!) For every T , it is possible to recover an entry ft in a sequence f satisfy-
ing unknown homogeneous difference equation with constant coefficients
of a given order µ via Oµ(1)T noisy observations of the entries of the

sequence around the instant t with “nearly parametric risk” Oµ(1)σ
√

lnT
T

.
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It should be stressed that the result is uniform with respect to all solutions of
all difference equations of a given order, which is rather surprising. Note that if
the equation were known in advance, the quality of recovering ft could be slightly
improved – we could get rid of the

√
lnT -factor, thus coming to the result completely

similar to the case of recovering algebraic polynomials of order µ−1 (their restrictions
on an equidistant observation grid are the solutions of a particular finite difference
equation of order µ, namely, (1−∆)µf = 0).

In the case when the equation is unknown, the logarithmic factor turns out to be
unavoidable: it is proved in [22] that when the signal to be recovered is known to
be a harmonic oscillation ft = c sin(ωt + φ), the uniform, with respect to all values
of c, ω, φ, risk of an arbitrary estimate of f0 via 2T + 1 observations (4.11) around

the time instant t = 0 is at least O(1)σ
√

lnT
T

. Note that the problem of recovering a
harmonic oscillation c sin(ωt + φ) is a parametric problem; indeed, all we need is to
recover the triple of parameters c, ω, φ. As we see, the minimax risk associated with
this parametric estimation problem is not the parametric risk O(T−1/2).

B) The estimate we have built solves an “interpolation” problem – it recovers f0 via
observations “placed symmetrically” around the time instant t = 0 we are interested
in. In some applications we should solve the “forecast” problem – we would like to
estimate f0 via a given number of observations (4.11) placed at least τ units of time
before the instant t = 0, i.e., via the observations y−τ−4µT , y−τ−4µT+1, ..., y−τ . What
can be done in this situation?

Slight modification of the construction we have presented demonstrates the fol-
lowing:

(!!) In addition to the premise of Theorem 4.2.1, assume that every finite-
difference equation

ηj(∆)h = 0

is “quasi-stable”: every solution of this equation grows with t no faster
than an algebraic polynomial (equivalently: all roots of the polynomial
ηj(z) are ≥ 1 in absolute value). Then the result of the theorem is valid
for a properly chosen “forecast” estimate, namely, for the estimate

f̂+[T, y] = −
4µT∑
s=T

ψ̂sy−s,

where ψ̂ is an optimal solution to the optimization program

‖ ∆4µT (I + ψ(∆))y ‖∗∞,4µT→ min
s.t.

ψ ∈ F4µT ;
ψs = 0,−4µT ≤ s < T ;

‖ ψ ‖∗1,4µT ≤ B(µ)T−1/2

with properly chosen B(m).

As a consequence, given N subsequent noisy observations (4.11) of a solution to an
unknown quasi-stable homogeneous difference equation of order ≤ µ, we may predict
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the value of the solution O(N/µ) units of time forward, with the worst-case, over all

solutions of all quasi-stable equations of order ≤ µ, risk not exceeding Oµ(1)σ
√

lnN
N

.
Note that the assumption of quasi-stability of the underlying finite-difference equa-

tion is crucial in the forecast problem. E.g., given all observations yt, t < 0, of a
solution to a known (unstable) equation

ft+1 − 2ft = 0,

you cannot say definitely what is the solution at 0 (provided, of course, that σ > 0).

4.3 From sequences to functions

The main step in passing from estimating sequences “nearly satisfying” homogeneous
difference equations to estimating functions satisfying differential inequalities is given
by the following simple

Lemma 4.3.1 Let

• n, k, µ ≥ k and T be positive integers;

• g : (−∞,∞) → C be a k − 1 times continuously differentiable function with
absolute continuous g(k−1);

• gn ∈ F be the restriction of g on the grid Γn = {t/n}∞t=−∞:

gnt = g(t/n) t ∈ Z;

• q(z) = zk + q1z
k−1 + ... + qk be a polynomial of degree k with unit leading

coefficient;

• B be a segment centered at the origin and containing at least 8µT +2k+1 points
of the grid Γn;

• p ∈ [1,∞].

There exists a normalized polynomial θ(z) of degree k such that

‖ θ(∆)gn ‖p,4µT≤ Ok(1)n−k+1/p ‖ q
(
d

dx

)
g ‖p,B . (4.34)

The proof is placed in Section 4.4.

Combining Lemma 4.3.1 with Theorem 4.2.1, we can extend – in a quite straight-
forward manner – basically all estimation techniques we have considered so far to the
case of functions satisfying unknown differential inequalities. We shall focus on “the
best” – the spatial adaptive – estimate.
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4.3.1 Spatial adaptive estimate: preliminaries

The recovering routine we are about to build, same as the spatial adaptive estimate
from Chapter 3, is specified by a single parameter – its order µ which should be a
positive real. Let observations (4.3) be given, and let x = t/n be a point from the
observation grid. For every positive integer T such that the grid contains 8µT + 1
observations around x – i.e., such that 0 < t − 4µT , t + 4µT ≤ n – we have built
in the previous Section an estimate f̂T (x; y) of f(x) via the segment of observations
{yt−4µT , yt−4µT+1, ..., yt+4µT}. Let us associate with the estimate f̂T (x; y) its window

BT (x) = [x− (4T + 2)µn−1, x+ (4T + 2)µn−1].

From Theorem 4.2.1 and Lemma 4.3.1 we know that

(*) Let f be the function underlying observations (4.3), x = t/n be a point
from the observation grid Γn, and let T ≥ 1 be such that the window BT (x)
is contained in [0, 1].

(i) For every collection U comprised of

• positive integers k, l with kl ≤ µ;

• l polynomials ηj, j = 1, ..., l, normalized of degree k each;

• a decomposition

f(u) =
l∑

j=1

f j(u), u ∈ BT (x);

• p ∈ [1,∞]

the error of the estimate f̂T (x; y) can be bounded from above as

|f̂T (x; yf (ξ))− f(x)| ≤ C1(µ)
[
ε(T,U) + σT−1/2Θn(ξ)

]
,

ε(T,U) = T k−1/p
l∑

j=1
‖ ηj(∆)f̃ j ‖p,4µT ,

f̃ js = f j
(
s−t
n

)
,

(4.35)

where Θn(ξ) is the maximum of the ‖ · ‖∞-norms of discrete Fourier
transforms of all segments, of odd cardinality, of the sequence {ξs}ns=1 (so
that Θn is the maximum of norms of ≤ n2 standard Gaussian 2D vectors
with zero mean and unit covariance matrix).

(ii) Let l, k be positive integers with kl ≤ µ, let p ∈ [1,∞] and let
f ∈ W l,k,p(BT (x);A) for some A. Then there exists a collection U of the
type described in (i) such that

ε(T,U) ≤ C2(µ)(T/n)k−1/pA ≤ C3(µ)Dk−1/p(BT (x))A; (4.36)

here, as always D(B) is the length of a segment B.

Combining (*.i) and (*.ii) and observing that T−1/2, up to a factor depending on µ
only, is the same as 1√

nD(BT (x))
, we come to the conclusion as follows:
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(**) Given a positive integer µ, a function f and a segment B ∈ [0, 1], let
us set

Φµ(f,B) = inf {Dk−1/p(B)A | p ∈ [1,∞]; k, l ∈ N, kl ≤ µ;
A ≥ 0, f ∈ W l,k,p(B;A)}.

Then for every point x = t/n from the observation grid Γn and every
integer T ≥ 1 such that BT (x) ⊂ [0, 1] one has

|f̂T (x; yf (ξ))− f(x)| ≤ C(µ)

Φf (x,BT (x)) +
σ√

nD(BT (x))
Θn(ξ)

 .
(4.37)

Besides this,

∀w ≥ 1 : Prob
{

Θn ≥ Oµ(1)w
√

lnn
}
≤ exp

{
−w2 lnn

2

}
. (4.38)

Finally, from the definitions of the classes W and the quantity Φµ it im-
mediately follows that

If f ∈ W l,k,p(B;L) with lk ≤ µ, then there exists a function f̃ : B →
R+ such that

‖ f̃ ‖p,B ≤ L;

∀B′ ⊂ B : Φµ(f,B′) ≤ Dk−1/p(B′) ‖ f̃ ‖p,B′
(4.39)

Note that (4.37), (4.38), (4.39) are completely similar to the basic relations (3.5),
(3.17), (3.6), respectively, underlying all developments of Chapter 3.

4.3.2 Spatial adaptive estimate: construction and quality

The construction. Let us choose ω = ω(µ) so large that

Prob
{

Θn > ω
√

lnn
}
≤ n−4µ (4.40)

(cf. (3.8)).
The adaptive estimate f̂n(x; y) of the value f(x) at a point x ∈ Γn is as follows (cf.

Section 3.2). Let us say that a positive integer T is admissible for x, if the segment
BT (x) is contained in [0, 1]. Assume that x admits admissible T ’s, i.e., that

6µn−1 < x < 1− 6µn−1. (4.41)

We already have associated with every T admissible for x certain estimate f̂T (x; ·) of
f(x) via observations (4.3). Given these observations y, let us call a positive integer
T x normal for x (cf. (3.13)), if it is admissible for x and

|f̂T ′(x; y)− f̂T (x; y)| ≤ 4C(µ)
σω
√

lnn√
nD(BT ′(x))

∀T ′, 1 ≤ T ′ ≤ T,

C(µ) being the constant from (4.37). Normal for x values of T clearly exist (e.g.,
T = 1); let T (x; y) be the largest of these values; note that this indeed is a well-
defined deterministic function of x, y. Our order µ adaptive estimate of f(x), by
construction, is

f̂n(x; y) = f̂T (x;y)(x; y). (4.42)



94 SIGNALS SATISFYING DIFFERENTIAL INEQUALITIES

The quality of our adaptive estimate f̂n is given by the following

Theorem 4.3.1 Let γ ∈ (0, 1), let µ be a positive integer, and let W =W l,k,p(B;L),
where kl ≤ µ and pk > 1. For properly chosen P ≥ 1 depending solely on µ, p, γ and
nonincreasing in p the following statement takes place:

If the volume n of observations (4.3) is large enough, namely,

P−1n
2k−2π+1

2 ≥ L
σ̂n
≥ PD−

2k−2π+1
2 (B)[

σ̂n = σ
√

lnn
n
, π = 1

p

] (4.43)

(D(B) is the length of segment B), then for every q ∈ [1,∞] the worst case, with
respect to W, discrete q-risk of the order µ adaptive estimate f̂n(·; ·) can be bounded
as follows (cf. (3.16)):

R̃q

(
f̂n;W

)
≡ supf∈W

(
E
{
|f̂(·; yf (ξ))− f(·)|2q,Bγ

})1/2

≤ PL
(
σ̂n
L

)2β(p,k,q)
Dλ(p,k,q)(B),

β(p, k, q) =

{
k

2k+1
, θ ≥ π 1

2k+1
k+θ−π

2k−2π+1
, θ ≤ π 1

2k+1

,

θ = 1
q
,

λ(p, k, q) =

{
θ − π

2k+1
, θ ≥ π 1

2k+1

0, θ ≤ π 1
2k+1

;

(4.44)

here Bγ is the concentric to B γ times smaller segment and

|g|q,B =

 1

n

∑
x∈Γn∩B

|g(x)|q
1/q

.

Proof of the theorem repeats word by word the proof of Theorem 3.3.1, with (4.37),
(4.38), (4.39) playing the role of (3.5), (3.17), (3.6), respectively.

Optimality issues. The upper bounds on risks given by Theorem 4.3.1 are exactly
the univariate (d = 1) versions of bounds from Theorem 3.3.1. Since now we are
working with wider families of functions wider than local Sobolev balls, all results
of Chapter 3 (see Section 3.4) on the non-optimality index of the adaptive estimate
remain valid for our new estimate as considered on the nested family of collections of
regression functions (cf. Theorem 3.4.2)

W ≡Wp,µ = {Wn}∞n=1

(p ∈ (1,∞], µ ∈ N) defined as follows:

Wn =

W l,k,p′(B;L)

∣∣∣∣∣∣∣∣
(a) p′ ≥ p,
(b) 1 ≤ kl ≤ µ,

(c) P−1n
2−2π+1

2 ≥ L
σ̂n
≥ PD−

2µ−2π+1
2 (B),

 P is given by Theorem 4.3.1, π = 1
p

σ̂n = σ
√

lnn√
n


(4.45)
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the non-optimality index of our estimate on W does not exceed

Φ(n) = (lnn)
µ

2µ+1 . 2)

4.3.3 “Frequency modulated signals”

A function f from class W l,k,p([0, 1];L) is a sum of l functions f j satisfying each its
own differential inequality of order k on the entire segment [0, 1]. What happens if
we “localize” this property, allowing the decomposition to vary from point to point?
The precise definition is as follows:

Definition 4.3.1 Let us fix positive integers k, l and reals p ∈ [1,∞], L > 0, d ∈
(0, 1/6]. We say that a function f : [0, 1]→ C belongs to the class Al,k,p,d(L), if there
exists a function Lf (x) ∈ Lp[d, 1− d] such that

‖ Lf ‖p,[d,1−d]≤ L (4.46)

and
∀x ∈ [d, 1− d] : f ∈ W l,k,p([x− d, x+ d]; (2d)1/pLf (x)). (4.47)

Note that the classes A extend our previous classes W :

∀d ∈ (0, 1/6] :
W l,k,p([0, 1];L) ⊂ Al,k,p,d(L)

(4.48)

Indeed, let f ∈ W l,k,p([0, 1];L), let f =
l∑

j=1
f j be the corresponding decomposi-

tion, and let qj(z) = zk + qj1z
k−1 + ...+ qjk be the associated polynomials:

l∑
j=1

‖ qj
(
d

dx

)
f j ‖p≤ L.

Let us set

Lf (x) = (2d)−1/p
l∑

j=1

‖ qj
(
d

dx

)
f j ‖p,[x−d,x+d]

and let us verify that this choice fits (4.46), (4.47). The latter relation is evident,
while the former one is given by the following computation: setting

L(·) =
l∑

j=1

∣∣∣∣qj ( d

dx

)
f j
∣∣∣∣ ,

2) Formally, the announced statement is not a straightforward corollary of the lower bounds on
the minimax risk established in Chapter 3: there we were dealing with the usual q-norms of the
estimation errors, while now we are speaking about discrete versions of these norms. However,
looking at the proofs of the lower bounds, one can observe that they remain valid for the discrete
versions of q-risks as well.
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Figure 4.3: A “frequency modulated” signal.

and assuming p <∞, we have

‖ Lf ‖pp,[d,1−d] = (2d)−1

1−d∫
d


x+d∫
x−d

Lp(u)du

 dx
= (2d)−1

1∫
0


min[1,u+d]∫

max[0,u−d]

dx

Lp(u)du

≤ ‖ L(·) ‖pp,[0,1]⇒
‖ Lf ‖p,[d,1−d] ≤ L,

as required in (4.46). We have established the latter relation in the case of

p <∞; by continuity, it is valid in the case p =∞ as well.

Our interest in classes A comes from the fact that they contained not only “amplitude
modulated”, but also “frequency modulated” signals. Consider, e.g., the following
construction. Given a positive integer N , we partition the segment [0, 1] into N non-
overlapping segments Bt, t = 1, ..., N , of the length 2d = 1

N
each; let xt = 2td,

t = 1, ..., N , be the right endpoints of these segments. Now let g ∈ Sk,p([0, 1];L) be
an “amplitude” which is supposed to vanish, along with its derivatives of order < k,
at all points xt, t = 1, ..., N . Consider the family of functions obtained from g by
“frequency modulation”: A function f from the family on every segment Bt is of the
form

g(x) sin(ωtx+ φt)

with somehow chosen frequency ωt and phase φt. One can immediately verify that all
functions from this family belong to A4,k,p,d(4L).

It turns out that the quality of our adaptive estimate on classes A is basically the
same as on narrower classes W :

Theorem 4.3.2 Let γ ∈ (0, 1), let µ be a positive integer, and let A = Al,k,p,d(L),
where kl ≤ µ and pk > 1. Assume that the volume of observations n is large enough
(the critical value depends on µ, p, L/σ only and is independent of d), and that d is
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not too small, namely,

d ≥
(
σ̂n
L

) 2
2k+1

, σ̂n =
σ
√

lnn√
n

. (4.49)

Then, for every q ∈ [1,∞], the | · |q,[0,1]γ -risk of the order µ adaptive estimate f̂n on
the class A can be bounded as follows:

R̃q

(
f̂n;A

)
≡ supf∈A

(
E
{
|f̂(·; yf (ξ))− f(·)|2q,[0,1]γ

})1/2

≤ PL
(
σ̂n
L

)2β(p,k,q)
,

β(p, k, q) =

{
k

2k+1
, θ ≥ π 1

2k+1
k+θ−π

2k−2π+1
, θ ≤ π 1

2k+1

,

π = 1
p
,

θ = 1
q
.

(4.50)

Here [0, 1]γ = [0.5(1− γ), 1− 0.5(1− γ)] is the γ-shrinkage of the segment [0, 1] to its
center and P depends on µ, p, γ only and is nonincreasing in p.

If (4.49) is equality rather than inequality, then, for all large enough values of n,
the upper bound (4.50) coincides (up to a factor depending on µ, p, γ only) with the
minimax | · |q,[0,1]γ -risk of estimating functions from A via observations (4.3).

For proof, see [10].

4.4 Appendix: Proofs of Lemmas 4.2.1, 4.3.1

4.4.1 Proof of Lemma 4.2.1

10. To simplify notation, let us assume that every polynomial ηj is of degree k (the modi-
fications in the case of deg ηj < k are quite straightforward), and let λj`, ` = 1, ..., k, be the
roots of the polynomial ηj (taken with their multiplicities). For every j, let Lj be the set
of those ` for which λj` are ≥ 1 in absolute value, and let Sj be the set of the remaining
indices from [1, k].

20. Let us fix j ≤ l, and let

νj(z) =

∏
`∈Lj

(1− z/λj`)

∏
`∈Sj

(z − λj`)

 . (4.51)

Then
ηj(z) = cjν

j(z). (4.52)

We claim that
|cj | ≥ 2−k. (4.53)

Indeed, it is clear that the maximum of absolute values of the coefficients of νj is not greater
than the one of the polynomial (z+1)k, i.e., is ≤ 2k; since the product cjπ

j(z) is a normalized
polynomial (i.e., with the maximum of modulae of coefficients equal to 1), the factor cj must
satisfy (4.53).
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30. Mini-lemma. Let λ ∈ C. Then there exists a polynomial πλT (z) of degree 2T such
that

(i) If |λ| ≥ 1, then

1 + πλT (z) = (1− z/λ)rλT (z)
with
(a) rλT ∈ F2T ,
(b) ‖ rλT ‖1 ≤ 2T,
(c) ‖ rλT ‖∞ ≤ 2;

(4.54)

If |λ| < 1, then
z2T + πλT (z) = (z − λ)rλT (z)

with
(a) rλT ∈ F2T ,
(b) ‖ rλT ‖1 ≤ 2T,
(c) ‖ rλT ‖∞ ≤ 2.

(4.55)

(ii) One has

∀N ≥ 2T : ‖ πλT ‖∗1,N≤
√

2N + 1

T
. (4.56)

and
‖ πλT ‖1≤ 1. (4.57)

Indeed, let us set

ψ(z) =


1
T

T∑
t=1

(z/λ)t, if |λ| ≥ 1

1
T

T−1∑
t=0

ztλT−t, otherwise

,

πλT (z) = −ψ2(z).

Note that in the case of |λ| ≥ 1 we have

1 + πλT (z) =

(
T−1

T∑
t=1

[1− (z/λ)t]

)(
1 + T−1

T∑
t=1

(z/λ)t
)

= (1− z/λ)

(
T−1

T∑
t=1

t−1∑
τ=0

(z/λ)τ
)

︸ ︷︷ ︸
q1(z)

(
1 + T−1

T∑
t=1

(z/λ)t
)

︸ ︷︷ ︸
q2(z)

≡ (1− z/λ)rλT (z)

and
rλT ∈ F2T ,

‖ rλT ‖1 ≤ ‖ q1 ‖1‖ q2 ‖1 [by (4.8) with p = 1]
≤ T × 2 [since |λ| ≥ 1]
= 2T,

‖ rλT ‖∞ ≤ ‖ q1 ‖∞‖ q2 ‖1 [by (4.8) with p =∞]
≤ 2 [since |λ| ≥ 1].

as required in (4.54). Completely similar computation demonstrates (4.55) in the case of
|λ| < 1.
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Now, by construction, ‖ πλT ‖1≤‖ ψ ‖21= 1, as required in (4.57). To check (4.56), note
that for N ≥ 2T and ζ ∈ GN we have

|(FNπλT )(ζ)| = 1√
2N+1

|πλT (ζ)|
= 1√

2N+1
|ψ(ζ)|2

=
√

2N + 1
[

1√
2N+1

|ψ(ζ)|
]2

=
√

2N + 1|(FNψ)(ζ)|2
⇒ ‖ πλT ‖∗1,N =

√
2N + 1 ‖ FNψ ‖22

=
√

2N + 1 ‖ ψ ‖22 [by (4.6) and in view of ψ ∈ FT ]

=
√

2N+1
T [by construction of ψ]

40. Now let us set
πj+(z) =

∏
s∈Lj

(1 + π
λjs
T (z)),

πj−(z) =
∏
s∈Sj

(z2T + π
λjs
T (z)),

πj(z) = πj+(z)πj−(z),

π(z) =
l∏

j=1

πj(z),

η(z) = z−2TMπ(z),

where M is the sum, over j ≤ l, of the cardinalities of the sets Sj . Let us verify that η
meets all requirements of Lemma 4.2.1.

40.1) By construction, we have deg(πj+(z)πj−(z)) ≤ 2Tk, whence π ∈ F2lkT ; since M ≤
lk, we have 2TM ≤ 2lkT as well. Since π(z) is a polynomial, we have η ∈ F2klT ⊂ F2µT , as
required.

40.2) By (4.57) we have ‖ πλT ‖1≤ 1, whence

‖ πj ‖1≤ 2k, (4.58)

so that ‖ η ‖1=‖ π ‖1≤ (2k)l = 2kl ≤ 2µ, as required in (4.19).
40.3) Let N ≥ 2µT . Let us fix j ≤ l, and let Mj = Card(Sj). By construction, we have

πj(z)z−2TMj =
k∏
s=1

(1 + θjs(z)), (4.59)

where (see Mini-lemma) θjs ∈ F2T are of ‖ · ‖1-norms not exceeding 1 and of ‖ · ‖∗1,N norms

not exceeding γ ≡
√

2N+1
T . By (4.7) applied with p = 1 and (4.10), every nonempty product

of a number of θjs(z) with distinct values of the index s is of ‖ · ‖1-norm not exceeding 1
and of ‖ · ‖∗1,N -norm not exceeding γ. When opening parentheses in the right hand side of

(4.59), we get the sum of 1 and 2k − 1 products of the just outlined type; consequently,

θj(z) ≡ πj(z)z−2TMj − 1 ∈ F2kT

is of ‖ · ‖1-norm not exceeding 2k and of ‖ · ‖∗1,N -norm not exceeding 2kγ. Observing that

η(z) =
l∏

j=1

(1 + θj(z))

and repeating the reasoning we just have used, we conclude that ω(z) = η(z) − 1 is of
‖ · ‖∗1,N -norm not exceeding 2klγ, as required in (4.20).
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40.4) It remains to verify (4.21). To save notation, let us prove this relation for j = l.
By construction (see Mini-lemma and (4.51)) we have

π(z) = π1(z)νl(z)
k∏
s=1

rλlsT (z),

π1(z) =
l−1∏
j=1

πj(z),

whence, in view of (4.52),

η(z) = ηl(z) c−1
l z−2MTπ1(z)

k∏
s=1

rλlsT (z)︸ ︷︷ ︸
ρl(z)

.

Due to its origin, ρl ∈ F2µT . Furthermore, we have

|cl|−1 ≤ 2k [by (4.53)]

‖ π1 ‖1 ≤ 2k(l−1) [by (4.58)]

‖ rλlsT (z) ‖1 ≤ 2T [by Mini-lemma]

‖ rλlsT (z) ‖∞ ≤ 2 [by Mini-lemma];

applying (4.7), we come to (4.21).

4.4.2 Proof of Lemma 4.3.1

Proof. We may assume that q has k distinct roots λ1, ..., λk
3). Let the first ν of the roots

belong to the closed left half-plane, and the rest of the roots belong from the open right
half-plane.

Let us set
µs = exp{λsn−1}, s = 1, ..., k;

θ̂(z) =

(
ν∏
s=1

(1− zµs)
) k∏

s=ν+1

(z − 1/µs)

 ;

χs(x) =


{

0, x ≤ 0
exp{λsx}, x > 0

, s ≤ ν{
− exp{λsx}, x ≤ 0
0, x > 0

, k ≥ s > ν
;

note that the fundamental solutions exp{λsx} of the homogeneous equation q
(
d
dx

)
p = 0,

being restricted on the grid {t/n}t∈Z, are proportional to the progressions {µts}t∈Z and
therefore satisfy the homogeneous difference equation

θ̂(∆)g ≡ 0.

Let

(a ∗ b)(x) =

∞∫
−∞

a(u)b(x− u)du

3) The case when q has multiple roots can be obtained from the one with simple roots by perturbing
q to make its roots distinct and then passing to limit as the perturbation tends to 0.
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be the usual convolution, δ(x) be the Dirac delta-function and

γ(x) = χ1 ∗ ... ∗ χk.

We have q(z) = (z − λ1)...(z − λn), so that

q
(
d
dx

)
γ =

(
( d
dx − λ1)χ1

)
∗ ... ∗

(
( d
dx − λk)χk

)
= δ ∗ ... ∗ δ︸ ︷︷ ︸

k times
= δ,

whence, setting

h(x) =

{(
q
(
d
dx

)
g
)

(x), x ∈ B
0, x 6∈ B

,

r = γ ∗ h,
we get

q

(
d

dx

)
r =

(
q

(
d

dx

)
γ

)
∗ h = h =

(
q

(
d

dx

)
g

)
χx∈B.

Thus, for x ∈ int B we have

(
q

(
d

dx

)
(g − r)

)
(x) = 0⇒ g(x)− r(x) =

k∑
s=1

cs exp{λsx},

whence(
θ̂(∆)(gn − rn)

)
t

= 0 ∀t :
t± k
n
∈ int B ⇒‖ θ̂(∆)(gn − rn) ‖p,4µT= 0 (4.60)

(recall that for |t| ≤ 4µT the points (t± k)/n belong to B, since B is centered at the origin
and contains at least 8µT + 2k + 1 points of the grid Γn).

Now let us compute θ̂(∆)rn. Let ∆ be the shift by n−1 in the space of functions on the
axis:

(∆f)(x) = f(x− n−1).

Then (
θ̂(∆)rn

)
t

=
(
θ̂(∆)r

)
(tn−1),

θ̂(∆)r = θ̂(∆)(γ ∗ h)
[since r = γ ∗ h]

=
(
θ̂(∆)γ

)
∗ h

[since ∆(f ∗ e) = (∆f) ∗ e]
=

(
χ1 − µ1∆χ1

)
︸ ︷︷ ︸

ψ1

∗... ∗
(
χν − µν∆χν

)
︸ ︷︷ ︸

ψν

∗
(
∆χν+1 − µ−1

ν+1χν+1

)
︸ ︷︷ ︸

ψν+1

∗... ∗
(
∆χk − µ−1

k χk
)

︸ ︷︷ ︸
ψk

∗h.

Now note that every one of the functions ψs(·) in absolute value does not exceed 1, and that it
vanishes outside [0, n−1]. It follows that the function ψ = ψ1∗...∗ψk vanishes outside [0, kn−1]
and does not exceed in absolute value the quantity ‖ ψ1 ‖1 ... ‖ ψk−1 ‖1‖ ψk ‖∞≤ n−(k−1).
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Assuming 1 ≤ p <∞, we have

‖ θ̂(∆)rn ‖pp,4µT =
4µT∑

t=−4µT

∣∣∣(θ̂(∆)r
)

(tn−1)
∣∣∣p

=
4µT∑

t=−4µT

∣∣(ψ ∗ h)(tn−1)
∣∣p

=
4µT∑

t=−4µT

∣∣∣∣∣∣∣
kn−1∫
0

ψ(u)h(tn−1 − u)du

∣∣∣∣∣∣∣
p

≤
4µT∑

t=−4µT

 kn−1∫
0

n−(k−1)|h(tn−1 − u)|du


p

≤
4µT∑

t=−4µT
n−(k−1)p

kn−1∫
0

|h(tn−1 − u)|pdu(kn−1)p−1

= kp−1n−kp+1
∫
|h(u)|pC(u)du[

C(u) = Card
({
t ∈ Z : |t| ≤ 4µT, (−k + t)n−1 ≤ u ≤ tn−1

})]
≤ kpn−kp+1 ‖ h ‖pp,B

⇒ ‖ θ̂(∆)rn ‖p,4µT ≤ kn−k+1/p ‖ q
(
d
dx

)
g ‖p,B .

Combining the resulting inequality with (4.60), we get

‖ θ̂(∆)gn ‖p,4µT≤ kn−k+1/p ‖ q
(
d

dx

)
g ‖p,B . (4.61)

This inequality was obtained in the case of p < ∞; by continuity reasons, it is valid for
p =∞ as well.

Relation (4.61) is nearly what we need; the only bad thing is that the polynomial θ̂ is
not normalized. Let w be the maximum of absolute values of the coefficients of θ̂; setting

θ = w−1θ̂,

we get a normalized polynomial of degree k such that

‖ θ(∆)gn ‖p,4µT≤ w−1kn−k+1/p ‖ q
(
d

dx

)
g ‖p,B . (4.62)

It remains to bound from above the quantity w−1, which is immediate: there exists a point z∗

in the unit circle which is at the distance at least d = (1+
√
k)−1 from all points µ−1

ν+1, ..., µ
−1
k

and at at least at the same distance from the boundary of the circle (otherwise the circles
of the radius d centered at the points were covering the circle of the radius 1 − d centered
at the origin, which is clearly impossible – compare the areas!). From the formula for θ̂ it
follows that

k∑
s=0

|θ̂s| ≥ |θ̂(z∗)| ≥ (1 +
√
k)−k,

whence
w−1 ≤ (k + 1)(1 +

√
k)k.

Combining this inequality with (4.62), we come to (4.34).



Chapter 5

Aggregation of estimates, I

5.1 Motivation

The non-parametric regression estimates we have built so far heavily depend on a
priori assumptions on the structure of the function to be recovered. As a matter of
fact, this dependence of estimation techniques on a priori hypotheses concerning the
structure of “true signals” is a characteristic feature of the non-parametric regression
estimates; we can reduce sometimes the “size” of the required a priori knowledge, but
we never can get rid of it completely. Now, typically there are many “concurrent” a
priori hypotheses on the structure of a signal rather than a single hypothesis of this
type; if we knew which one of our a priori hypotheses indeed takes place, we would
know how to recover the signal. The difficulty, however, is that we do not know in
advance which one of our concurrent hypotheses actually takes place. We already
met this situation in adaptive estimation of smooth functions, where the hypotheses
were parameterized by the smoothness parameters of local Sobolev balls, a particular
hypothesis saying that the signal belongs to a particular Sobolev ball (and similarly
in the case of recovering functions satisfying differential inequalities). As another
example of this type, assume that we are recovering a smooth regression function f of
d > 1 variables and that we have reasons to suppose that in fact f depends on d′ < d
“properly chosen” variables:

f(x) = F (P Tx), (5.1)

where P is a d′ × d matrix. If we knew P in advance, we could reduce the problem
of recovering f to the one of recovering F . Since the rates of convergence of non-
parametric estimates rapidly slows down with the dimensionality of the problem (e.g.,

for Lipschitz continuous functions of d variables the convergence rate is O(n−
1

2+d ) –
think how many observations we need to get a reasonable accuracy when estimating
a Lipschitz continuous function of just 4 variables), such an opportunity would look
very attractive. But what to do when we know that a representation (5.1) exists, but
do not know the matrix P?

The “general form” of the situation we are interested in is as follows. We have a
family H of a priori hypotheses on the signal f , and we know in advance that at least
one of these hypotheses is true. If we knew that f fits a particular hypothesis H ∈ H,
we would know how to recover f – in other words, every hypothesis H is associated
with a recovering routine f̂H which “works fine” when f fits H. However, we do not
know what is the hypothesis the observed signal fits. What to do?

103
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Sometimes (e.g., in the case of recovering smooth functions or functions satisfying
differential inequalities) we may act as if we knew the “true” hypothesis, but this
possibility heavily depends on the specific nature of the corresponding family of hy-
potheses H; for other families H, no results of this type are known. This is the case,
e.g., for the family associated with representation (2.1) with given d, d′ and varying
P .

In the general case we could act as follows: we could partition our observations y
into two groups and use the observations of the first group, yI , to build all estimates
fH(·) = f̂H(·, yI), H ∈ H, of f ; after this is done, we could use the second group of
observations, yII , in order to “aggregate” the estimates fH – to build a new estimate
which reproduces f (nearly) as good as the best of the functions fH , H ∈ H. Since in
our approach the family of hypotheses/estimates is given in advance and is therefore
beyond our control, our problem is how to implement the “aggregation” stage; how
we resolve this problem, it depends on what exactly is our target. Mathematically
natural targets could be to find an “aggregated” estimate which is nearly as good as

L. The closest to f linear combination of the functions fH , H ∈ H;

C. The closest to f convex combination of the functions fH , H ∈ H;

V. The closest to f of the functions fH , H ∈ H.

To the moment, the three outlined versions of the Aggregation problem were investi-
gated in the case when

• The number of “basic estimates” is finite.

• The estimation error is measured in L2(X,µ), X being a space on which f, fH

are defined and µ being a probability measure on this space.

The majority of known results relate to the version V of the aggregation problem
(see [11] and references therein). In our course, we prefer to start with the version C,
postponing the versions L, V till Chapter 6.

5.2 The problem and the main result

5.2.1 Aggregation problem

We are about to consider the following

Aggregation problem C. Let

• Λ ⊂ RM be a convex compact set contained in the ‖ · ‖1-ball, i.e., let

max{‖ λ ‖1| λ ∈ Λ} ≤ 1;

• X be a Polish space equipped with Borel probability measure µ;

• fj : X → R, j = 1, ...,M , M ≥ 3, be given Borel functions;

• f : X → R be a Borel function.
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Assume that we are given n noisy observations of f :

z = {zt = (xt, yt = f(xt) + et)}nt=1, (5.2)

where xt are mutually independent random points from X, each of them
being distributed according to µ, and et are independent of each other and
of {xt} random noises such that

E{et} = 0 and E{e2
t} ≤ σ2 <∞, t = 1, ..., n. (5.3)

Let fΛ be the closest to f , in L2(X,µ), linear combination of functions
f1, ..., fM with coefficients from Λ:

fΛ =
M∑
j=1

λ∗jfj,

λ∗ ∈ Argmin
λ∈Λ

Ψ(λ),

Ψ(λ) =
∫
X

(f(x)−
M∑
j=1

λjfj(x))2µ(dx).

(5.4)

Our goal is to find, given f1, ..., fM and n observations (5.2), a combination∑
j
λjfj with λ ∈ Λ which is nearly as close to f as fΛ.

It should be stressed that we do not assume that the measure µ is known in advance.
From now on, we make the following crucial for us

Boundedness assumption: Functions f, f1, ..., fM are bounded.
From now on, we set

L = max{‖ f ‖∞, ‖ f1 ‖∞, ..., ‖ fM ‖∞} <∞, (5.5)

the ∞-norm being associated with the measure µ.

5.2.2 The recovering routine

Our recovering routine is extremely simple. The function Ψ(λ) from (5.4) is a convex
quadratic form of λ:

Ψ(λ) = Ψ∗(λ) + c∗,

Ψ∗(λ) =
M∑
i,j=1

Q∗ijλiλj −
M∑
j=1

q∗jλj,

Q∗ij =
∫
X

fi(x)fj(x)µ(dx),

q∗j = 2
∫
X

f(x)fj(x)µ(dx),

c∗ =
∫
X

f 2(x)µ(dx).

(5.6)

Given a quadratic form Φ(λ) on RM with Φ(0) = 0:

Φ(λ) =
M∑
i,j=1

Qijλiλj −
M∑
j=1

qjλj [Qij = Qji]
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let us denote by
Coef(Φ) = ({Qij}1≤j≤i≤M , {qj}Mj=1)

the
(
M(M+1)

2
+M

)
-dimensional vector of coefficients of the form.

Note that every observation (xt, yt = f(xt) + et) provides us with a noisy observa-
tion

ζt = ({fi(xt)fj(xt)}1≤j≤i≤M , {2ytfj(xt)}Mj=1) (5.7)

of the vector
ζ∗ = Coef(Ψ∗),

and that ζt is the vector of coefficients of the convex quadratic form of rank 1

Ψzt(λ) =

yt − M∑
j=1

λjfj(xt)

2

− y2
t .

Our aggregation procedure is as follows: given observations (5.2), we
1) build the form

Ψz(λ) =
1

n

n∑
t=1

Ψzt(λ),

and
2) solve the convex optimization problem

Ψz(λ)→ min | λ ∈ Λ. (Pz)

An optimal solution λ(z) to this problem clearly can be chosen to be Borel in z;
3) We define our “aggregated estimate” as

f̂(·; z) =
M∑
j=1

λj(z)fj(·).

5.2.3 Main result

Our main result bounds the difference between the quality of the “ideal”, as far as
closeness to f is concerned, aggregate of fj with coefficients from Λ and the expected

quality of the aggregate f̂ we have built, i.e., the difference between the quantities

Ψ(λ∗) = min
λ∈Λ

∫
X

(f(x)−
M∑
j=1

λjfj(x))2µ(dx)

and

E {Ψ(λ(z))} = E


∫
X

(f(x)− f̂(x; z))2µ(dx)

 .
Note that a meaningful “quality measure” for an aggregation routine should be exactly
of this type – it should bound the difference between the expected distance from f
to the result of the aggregation routine in question and the distance from f to the
“ideal” aggregate fΛ, not the distance from f to the result of the aggregation routine
separately. Indeed, since we make no assumptions on how well the “ideal” aggregate
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approximates f , we have no hope to ensure that the result of an aggregation routine
(which cannot be closer to f than the ideal aggregate) is a good approximation of f ;
all we should worry about is to get an aggregate which is nearly as good as the ideal
one.

Theorem 5.2.1 For the aggregation routine f̂ we have built, one has

εn ≡ E {Ψ(λ(z))} −Ψ(λ∗) ≤ O(1)
(L2 + Lσ)

√
lnM√

n
(5.8)

with absolute constant O(1).

Discussion

The quantity εn in the left hand side of (5.8) can be treated as the “aggregation
price” – the loss in accuracy of approximating f by a linear combination of fj (with
coefficients from Λ) coming from the fact that we do not know the “true” optimal
combination (since neither f nor even µ are known in advance) and are enforced to
recover a nearly optimal combination from observations. Note that εn is the expected
loss in the squared ‖ · ‖2-distance from f (‖ · ‖2 is associated with the measure µ). A
more natural price is the loss in the ‖ · ‖2-distance itself – the quantity

νn =‖ f − f̂ ‖2 − ‖ f − fΛ ‖2 .

Since for 0 ≤ a ≤ b one has (b− a)2 ≤ b2 − a2, (5.8) implies that

En ≡
(
E
{
ν2
n

})1/2
≤
√
εn ≤ O(1)

(L+
√
Lσ)(lnM)1/4

n1/4
. (5.9)

A good news about the latter bound is that it is “nearly independent of the number
M of functions we are estimating” – it is proportional to (lnM)1/4. Thus, if our
aggregation problem comes from the desire to aggregate estimates associated with a
number of concurrent hypotheses on the signal f to be recovered, this number can
be “very large”. From the applied viewpoint, it means that our abilities to handle
many concurrent hypotheses are limited not by the statistics – by growth of the
aggregation price with the number of hypotheses – but by the necessity to process
these hypotheses computationally. And a bad news about our aggregation routine is
that the aggregation price En decreases rather slowly (as n−1/4) as the volume n of
observations used for aggregation grows. We shall see, however, that in our setting of
the aggregation problem this rate is unimprovable.

Note that one can replace the “off-line” aggregation routine we have described
(where we first accumulate all observations (5.2) and only then solve a (large-scale,
for large M) convex optimization problem (Pz) to build the desired aggregate) with a
Stochastic Approximation-type on-line routine where neither the observations should
be stored, nor a separate stage of solving a convex optimization problem is needed
(for details, see [16]).

Proof of Main result

Proof of Theorem 5.2.1 is given by combination of two simple observations; the second
of them is interesting by its own right.

The first observation is given by



108 CHAPTER 5. AGGREGATION OF ESTIMATES, I

Lemma 5.2.1 The random vectors ζt given by (5.7) are mutually independent and
unbiased estimates of ζ∗:

E{ζt} = ζ∗. (5.10)

Besides this,
E
{
‖ ζt − ζ∗ ‖2

∞

}
≤ 4(2L2 + σL)2, (5.11)

(From now on, for ξ = (ξ1, ..., ξK) ∈ RK ‖ ξ ‖∞ is the norm maxk |ξk| of the vector
ξ).

Proof. Mutual independence of {ζt}nt=1 and relation (5.10) are evident. To establish
(5.11), note that

|Q∗ij − fi(xt)fj(xt)| ≤ 2L2,
|qj − 2(f(xt) + et)fj(xt)| ≤ 4L2 + 2L|et| ⇒

‖ ζt − ζ∗ ‖2
∞ ≤ 4(2L2 + L|et|)2 ⇒

E {‖ ζt − ζ∗ ‖2
∞} ≤ 4(2L2 + Lσ)2.

20. Our second observation is an extremely useful “Tschebyshev inequality in
the ∞-norm”. Recall that the usual Tschebyshev inequality gives a rough upper

bound on the probability of the event |
n∑
t=1

ξt| > a, where ξt are independent scalar

random variables with zero mean and finite variance; this inequality is an immediate
consequence of the observation that in the case in question

E
{
|
n∑
t=1

ξt|2
}

=
n∑
t=1

E{|ξt|2}.

Similar equality with respect to the Euclidean norm takes place if ξt are independent
vectors with zero mean and bounded variances:

E
{
‖

n∑
t=1

ξt ‖2
2

}
=

n∑
t=1

E{‖ ξt ‖2
2}, (∗)

where for ξ = (ξ1, ..., ξK) ∈ RK

‖ ξ ‖p=


(
K∑
i=1
|ξi|p

)1/p

, 1 ≤ p <∞

maxi |ξi|, p =∞
.

Now, (*) reflects specific algebraic properties of the Euclidean norm ‖ · ‖2 and fails to
be valid for the standard norms ‖ · ‖p with p 6= 2. As far as statistical consequences
are concerned, the “‖ · ‖p-version” of (*) is played by the following result1):

Lemma 5.2.2 Let ξt ∈ RK, t = 1, ..., n, be independent random vectors with zero
means and finite variance, and let K ≥ 3. Then for every p ∈ [2,∞] one has

E
{
‖

n∑
t=1

ξt ‖2
p

}
≤ O(1) min[p, lnK]

n∑
t=1

E
{
‖ ξt ‖2

p

}
; (5.12)

here, as always, O(1) is an absolute constant.

1)I am using this fact for more than 20 years; all this time I was (and still am) sure that the fact
is well-known, all this time I was looking for a reference and found none.
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Proof. Given π ∈ [2,∞), let us set

Vπ(ξ) =‖ ξ ‖2
π: RK → R.

The function Vπ is continuously differentiable with Lipschitz continuous gradient; it
can be easily verified (for the proof, see [21]) that

Vπ(ξ + η) ≤ Vπ(ξ) + ηT∇Vπ(ξ) + CπVπ(η) (5.13)

with absolute constant C. We conclude that

E
{
Vπ(

k+1∑
t=1

ξt)

}
≤ E

{
Vπ(

k∑
t=1

ξt) + (ξk+1)T∇Vπ(
k∑
t=1

ξt)

}
+ CπE {Vπ(ξt)}

= E
{
Vπ(

k∑
t=1

ξt)

}
+ CπE {Vπ(ξt)}

[since E{ξk+1} = 0 and ξk+1 is independent of ξ1, ..., ξk]

The resulting recurrence implies that whenever p ∈ [2,∞), one has

E
{
‖

n∑
t=1

ξt ‖2
p

}
≤ Cp

n∑
t=1

E
{
‖ ξt ‖2

p

}
. (5.14)

To complete the proof of (5.12), it suffices to verify that we can replace the factor Cp
in the right hand side by a factor of the type O(1) lnK. This is immediate: there is
nothing to prove when p ≤ p(K) ≡ 2 lnK. Now let us assume that p > 2 lnK. Since
for p ≥ p′ ≥ 1 one has

‖ ξ ‖p≤‖ ξ ‖p′≤ K
1
p′−

1
p ‖ ξ ‖p ∀ξ ∈ RK

we have

E
{
‖

n∑
t=1

ξt ‖2
p

}
≤ E

{
‖

n∑
t=1

ξt ‖2
p(K)

}
≤ Cp(K)

n∑
t=1
E
{
‖ ξt ‖2

p(K)

}
[by (5.14) applied with p = p(K)]

≤ Cp(K)
n∑
t=1
E
{
K

2
p(K)

− 2
p ‖ ξt ‖2

p

}
≤ Cp(K)K

2
p(K)

n∑
t=1
E
{
‖ ξt ‖2

p

}
= 2Ce lnK

n∑
t=1
E
{
‖ ξt ‖2

p

}
[since p(K) = 2 lnK]

30. We are basically done. Indeed, since Λ is contained in the unit ‖ · ‖1-ball in
RM , the uniform, on Λ, distance between a pair of quadratic forms Ψ,Ψ′ of λ, both
forms being with zero constant terms, does not exceed 3 times the ‖ · ‖∞-distance
between the coefficient vectors of the forms:

Ψ(λ) =
M∑
i,j=1

Qijλiλj −
M∑
j=1

qjλj,

Ψ′(λ) =
M∑
i,j=1

Q′ijλiλj −
M∑
j=1

q′jλj

⇒ max
λ∈Λ
|Ψ(λ)−Ψ′(λ)| ≤ 3 ‖ Coef(Ψ)− Coef(Ψ′) ‖∞ .
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It follows that if λ′ is a minimizer of Ψ′ on Λ and ‖ Coef(Ψ)− Coef(Ψ′) ‖∞ is small,
then λ′ is a “nearly minimizer” of Ψ on Λ:

λ′ ∈ Argmin
Λ

Ψ′(·)⇒

Ψ(λ′)−min
Λ

Ψ(·) ≤ 2max
λ∈Λ
|Ψ(λ)−Ψ′(λ)|

≤ 6 ‖ Coef(Ψ)− Coef(Ψ′) ‖∞ .

(5.15)

Now, the output of our aggregation routine – the vector of aggregation weights λ(z) –

by construction is a minimizer, on Λ, of a random quadratic form Ψz(λ) = 1
n

n∑
t=1

Ψzt(λ),

so that our quality measure – the “aggregation price” – can be bounded as follows:

Ψ(λ(z))−minΛ Ψ(·) = Ψ∗(λ(z))−minΛ Ψ∗(·)
[since Ψ differs from Ψ∗ by a constant]

≤ 6 ‖ Coef(Ψ∗)− Coef(Ψz) ‖∞
[by (5.15)]

= 6
n
‖

n∑
t=1

[ζ∗ − ζt] ‖∞
[by construction]

⇒
εn ≡ E {Ψ(λ(z))−minΛ Ψ(·)}
≤ 6

n
E
{
‖

n∑
t=1

[ζ∗ − ζt] ‖∞
}

≤ 6
n

(
E
{
‖

n∑
t=1

[ζ∗ − ζt] ‖2
∞

})1/2

≤ 6
n

(
O(1) lnM

[
n∑
t=1

4(2L2 + σL)2

])1/2

[by Lemmas 5.2.1, 5.2.2]

≤ O(1) (L2+σL)
√

lnM√
n

,

as required.

5.2.4 “Concentration”

From the computational viewpoint, a drawback of our aggregation routine is that the
resulting aggregate f̂ can involve all our M functions f1, ..., fM . If M is very large
(and this is the case we indeed are interested in), such an aggregate is computationally
difficult to use.

We are about to prove that in fact the aggregate f̂ can be enforced to involve at
most O(n) or even O(n1/2) of the functions f1, ..., fM , provided that Λ is “simple”,
e.g.,

Λ = {λ ∈ RM | ‖ λ ‖1≤ 1} (5.16)

Λ = {λ ∈ RM | λ ≥ 0, ‖ λ ‖1≤ 1} (5.17)

Λ = {λ ∈ RM | λ ≥ 0, ‖ λ ‖1= 1} (5.18)



5.2. THE PROBLEM AND THE MAIN RESULT 111

“n-concentrated” aggregation. Given an M -dimensional vector ω with coordi-
nates ±1, let us set

RM
ω = {λ ∈ RM | ωjλj ≥ 0, j = 1, ...,M}.

Let us call Λ k-simple, if the intersection of Λ with every one of 2M “orthants” RM
ω is

a polyhedral set cut off RM
ω by at most k linear equalities and inequalities (in addition

to M “sign constraints” which define RM
ω itself). E.g., every one of the sets (5.16) –

(5.18) is 1-simple.
Note that the weight vector λ(z) yielded by our aggregation routine is not neces-

sarily unique. Indeed, we can choose as λ(z) any minimizer (on Λ) of the quadratic
form Ψz(·). The quadratic part of each of the forms Ψzt(·), t = 1, ..., n, is of rank 1, so
that the rank of the quadratic part of the form Ψz(·) is of rank at most n. It follows
that there exists a linear subspace Ez ⊂ RM of codimension at most n+ 1 such that
Ψz(·) is constant along every translation of this subspace. In particular, after we have
found a minimizer λ(z) of Ψz(·) on Λ, we can “refine” it as follows. Let ω be such
that λ(z) ∈ RM

ω . Consider the set

P = Λ ∩RM
ω ∩ [Ez + λ(z)] .

Every point of this set (which contains λ(z)) is a minimizer of Ψz(·) on Λ, along
with λ(z) (since Ψz is constant on Ez + λ(z)). Assuming that Λ is k-simple, we
observe that P is a compact polyhedral set given by M “sign constraints” defining
RM
ω and no more than k+ n+ 1 additional linear inequalities and equations (at most

k linear constraints which cut off Λ∩RM
ω from RM

ω plus n+1 linear equation defining
the affine plane Ez + λ(z)). As any compact polyhedral set, P has extreme points,
and by the standard results of Linear Programming every extreme point of P fits at
least M of equations/inequalities defining P as equations. We are in our right to
choose, as a minimizer of Ψz(·) on Λ, any one of these extreme points, let the chosen
point be denoted λ+(z), and to treat λ(z) as an intermediate, and λ+(z) – as the
actual output of our aggregation routine. It remains to note that among ≥ M of
equations/inequalities defining P which are satisfied at λ+(z) as equalities, at least
M − (k + n + 1) must come from the sign constraints defining the orthant RM

ω , i.e.,
at least M − (k + n + 1) coordinates in λ+(z) must be zero. We have arrived at the
following

Proposition 5.2.1 Assume that Λ is k-simple. Then in our aggregation routine
we can specify the rules for choosing the weight vector λ(z) in such a way that the
aggregate

f̂(·; z) =
M∑
j=1

λj(z)fj(·)

will include, with positive weights λj(z), no more than k + n+ 1 of the functions fj.

“n1/2-concentrated” aggregation. The construction we are about to present goes
back to Maurey [28]. We shall implement the construction under the assumption that
Λ is the ‖ · ‖1-unit ball (5.16); however, our reasoning can be easily modified to handle
the case of simplices (5.17), (5.18).
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Our new aggregation routine is randomized. Namely, we first apply our basic
routine to get the vector of aggregation weights λ(z). After it is found, we set

ν(z) =
M∑
j=1

|λj(z)|

(note that ν(z) ≤ 1) and define a probability measure {πzj}Mj=0 on the set {0, 1, ...,M}
as follows:

πzj =
{ |λj(z)|, j > 0

1− ν, j = 0

For 0 ≤ j ≤M , let us set

gzj (·) =


0, j = 0
fj(·), j > 0, λj(z) ≥ 0
−fj(·), j > 0, λj(z) < 0

.

Note that we can represent the aggregate f̂(·; z) =
M∑
j=1

λj(z)fj(·) as the expectation

of “random function” gzj with respect to the distribution πz of the index j:

f̂(·; z) =
M∑
j=0

πzj g
z
j (·).

Now let us draw independently of each other K indices j1, ..., jK according to the
probability distribution πz and let us set

f̃(·; z, j̄) =
1

K

K∑
l=1

gzjl(·) [j̄ = (j1, ..., jk)]

Note that the resulting function is obtained from f1, ..., fM by linear aggregation with
the weight vector λ̃(z, j̄) ∈ Λ which is “K-concentrated” – has at most K nonzero
entries.

Now let us look at the “aggregation price”

ε̃n(K) ≡ Ez,j̄
{

Ψ(λ̃(z, j̄))−min
Λ

Ψ(·)
}

of our new – randomized – aggregation routine. Treating gzj (·) as a random element
of L2(X,µ), the conditional, for z fixed, distribution of j being πz, we observe that

(a) gzj1 , ..., g
z
jK

are conditionally, z being fixed, independent and identically dis-

tributed with conditional expectation f̂(·; z)
(b) The conditional, z being fixed, expectation of ‖ gzjl(·) − f̂(·; z) ‖2

2,µ does not
exceed L2, where ‖ · ‖2,µ is the standard norm of L2(X,µ).
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We now have

Ez,j̄
{

Ψ(λ̃(z, j̄))
}

= Ez
{
Ej̄|z

{
‖ 1
K

K∑
l=1

gzjl − f ‖
2
2,µ

}}

= Ez
{
Ej̄|z

{
‖
[

1
K

K∑
l=1

[gzjl(·)− f̂(·; z)]

]
+
[
f̂(·; z)− f(·)

]
‖2

2,µ

}}

= Ez
{
Ej̄|z

{
‖ 1
K

K∑
l=1

[gzjl(·)− f̂(·; z)] ‖2
2,µ

}
+ ‖ f̂(·; z)− f(·) ‖2

2,µ

}
[by (a)]

= Ez
{

1
K2

K∑
l=1
Ej̄|z

{
‖ gzjl(·)− f̂(·; z) ‖2

2,µ

}
+ ‖ f̂(·; z)− f(·) ‖2

2,µ

}
[by (a)]

≤ Ez
{
L2

K
+ ‖ f̂(·; z)− f(·) ‖2

2,µ

}
[by (b)]

≤ L2

K
+ Ez

{
‖ f̂(·; z)− f(·) ‖2

2,µ

}
= L2

K
+ E {Ψ(λ(z))} .

Combining the resulting inequality with (5.8), we come to the result as follows:

Proposition 5.2.2 For the randomized, with parameter K, aggregate f̃(·; z, j̄), the
aggregation price can be bounded from above as

ε̃n(K) ≡ Ez,j̄
{

Ψ(λ̃(z, j̄))−min
Λ

Ψ(·)
}
≤ O(1)

(L2 + Lσ)
√

lnM√
n

+
L2

K
. (5.19)

In particular, choosing K as the smallest integer which is ≥
√

n
lnM

, we get a random-

ized aggregation routine which is “
√
n-concentrated” – the resulting aggregate always

is combination of at most K ≤
√
n of the functions f1, ..., fM , and the aggregation

price of the routine, up to factor 2, is the same as for our basic aggregation routine,
see Theorem 5.2.1.

5.3 Lower bound

We have seen that when aggregating M functions on the basis of n observations (5.2),
the expected aggregation price

E
{

Ψ(λ(·))−min
Λ

Ψ(·)
}
, Ψ(λ) =

∫
X

f(x)−
M∑
j=1

λjfj(x)

2

µ(dx)

can be made as small as O(
√

lnMn−1/2). We are about to demonstrate that this
bound is optimal in order in the minimax sense.

Theorem 5.3.1 For appropriately chosen absolute constant κ > 0 the following is
true.

Let positive L, σ and integer M ≥ 3 be given, and let n be a positive integer such
that

σ2 lnM

L2
≤ n ≤ κ

σ2M lnM

L2
. (5.20)

For every aggregation routine B solving the Aggregation problem C on the basis of n
observations (5.2) one can point out
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• M continuous functions f1, ..., fM on the segment [0, 1] not exceeding L in ab-
solute value,

• a function f which is a convex combination of the functions f1, ..., fM ,

with the following property. Let

f̂B(·; z) =
M∑
j=1

λBj (z)fj(·)

be the aggregate yielded by the routine B as applied to the Aggregation problem with
the data given by

– fj, j = 1, ...,M , as the basic functions,
– the uniform distribution on X = [0, 1] as the distribution µ of the observation

points,
– the N (0, σ2) observation noises et,
– f as the “true” function,

and
– the simplex (5.18) as Λ.

The expected aggregation price of the aggregate f̂B can be bounded from below as

E
{

Ψ(λB)−min
Λ

Ψ(·)
}

= E
{

Ψ(λB)
}
≥ κ

Lσ
√

lnM√
n

. (5.21)

In particular, under assumption (5.20) the aggregation price associated with the rou-
tines from Section 5.2.2 is optimal in order, in the minimax sense, provided that
L = O(1)σ.

Proof. Let M ≥ 3, and let

fj(x) = L cos(2πjx), j = 1, ...,M.

Given a positive integer p ≤M/2, let us denote by Fp the set of all convex combina-
tions of the functions f1, ..., fM with the coefficients as follows: 2p of the coefficients
are equal to (2p)−1 each, and the remaining coefficients vanish.

It is easily seen that if p ≤
√
M , then Fp contains a subset F∗p with the following

properties:
I. Every two distinct functions from F∗p have at most p common nonzero coefficients

in the basis f1, ..., fM , so that

L2

4p
≤‖ f − g ‖2

2≤
L2

2p
(5.22)

(note that f1, ..., fM are mutually orthogonal in L2[0, 1] and that ‖ fj ‖2
2= 1

2
);

II. The cardinality K of F∗p satisfies the relation

K ≥Mκ1p (5.23)

(from now on, κi > 0 are appropriate absolute constants).
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Now let

ε(p) = max
f∈F∗p

[
E
{

Ψf (λ
B
f )−min

Λ
Ψf (·)

}]
= max

f∈F∗p

[
E
{

Ψf (λ
B
f )
}]
, (5.24)

where

Ψf (λ) =‖ f −
M∑
j=1

λjfj ‖2
2

and λBf is the vector of aggregation weights yielded by the aggregation routine B, the
observations being associated with f . Note that the second equality in (5.24) comes
from the fact that Λ is the simplex (5.18) and all f ∈ Fp are convex combinations of
f1, ..., fM .

We claim that if p ≤
√
M , then, for properly chosen κ2, the following implication

holds true:

ε(p) <
L2

64p
⇒ n ≥ κ2

σ2p2 lnM

L2
. (5.25)

Note that (5.25) implies the conclusion of the Theorem. Indeed, believing in (5.25),
choosing

p =cL
σ

√
n

κ2 lnM
b

and taking into account that in the case of (5.20) the resulting p is ≤
√
M , provided

that κ is chosen properly, we see that the conclusion in (5.25) fails to be true, so that

ε(p) ≥ L2

64p
≥ O(1)

σL
√

lnM√
n

;

the latter inequality, in view of the origin of ε(p), is exactly what we need.
It remains to prove (5.25), which can be done by our standard information-based

considerations. Indeed, let p satisfy the premise in (5.25), and let B be a method
for solving the Aggregation problem with the data we have built. Let us associate
with B a method B′ for distinguishing between K hypotheses H`, ` = 1, ..., K, on
the distribution of the observation (5.2), `-th of them saying that the observations
are associated with `-th signal f ` from F∗p . Namely, given observations z, we call
B to solve the Aggregation problem; after the corresponding aggregated estimate
FB = fB(z) is obtained, we find the ‖ · ‖2-closest to fB function f ` in F∗p (if there
are several functions of this type, we choose, say, the first of them) and accept the
hypotheses H`.

Since the pairwise ‖ · ‖2-distances between the signals from F∗p are ≥ d ≡ L/
√

4p
by (5.22), and for every f ∈ F∗p it holds E {‖ fB − f ‖2

2} ≤ ε(p) by (5.24), we see that
the probability to reject hypothesis H` if it is true is, for every ` = 1, ..., K, at most√
ε(p)/(d/2) ≤ 1/4. On the other hand, it is immediately seen that

(!) The Kullback distance between every pair of distributions associ-
ated with our K hypotheses does not exceed

K ≡ n

2σ2
max
f,g∈F∗p

‖ f − g ‖2
2≤

nL2

4pσ2
. (5.26)
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Indeed, let f, g ∈ F∗p and Fnf , F
n
g be the corresponding distri-

butions of observations (5.2). Since the entries zt are independent
identically distributed, we have

K(Fnf : Fng ) = nK(F 1
f : F 1

g )

= n

1∫
0

dx


∞∫
−∞

ψ(t− f(x)) ln
ψ(t− f(x))

ψ(t− g(x))
dt

[
ψ(t) = 1√

2πσ
exp{−t2/(2σ2)}

]
= n

2σ2

1∫
0

(f(x)− g(x))2dx

= n
2σ2 ‖ f − g ‖22,

and we conclude that the Kullback distance between Fnf and Fng does

not exceed the quantity K defined in (5.26). The inequality in (5.26)

is given by (5.22).

Applying the Fano inequality (Theorem 1.2.1), we come to

nL2

4pσ2
≥ 3

4
ln(K − 1)− ln 2;

taking into account (5.23), we come to the conclusion of (5.25).

5.4 Application: Recovering functions from Bar-

ron’s class

Usually, the “complexity” of approximating a multivariate function (e.g., the number
of “simple terms” used in approximation) grows rapidly with dimensionality. This is
why the Artificial Intelligence community was happy with the following “dimension-
independent” result:

Theorem 5.4.1 [Barron ’93 [1]] Let f : Rd → R be the Fourier transform of a
complex-valued measure of variation 1:

f(x) =
∫

exp{iωTx}F (dω),
∫
|F (dω)| ≤ 1,

and let µ be a probability distribution on Rd. Then for every n ≥ 1 there exists an
n-term sum of cosines

f̃(x) =
n∑
j=1

aj cos(ωTj x+ φj)

such that ∫
|f̃(x)− f(x)|2µ(dx) ≤ 1

n
.

In fact, this theorem goes back to Maurey. In order to simplify notation, assume that∫
|F (dω)| = 1,
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so that
ν(dω) = |F (dω)|

is a probability distribution. Let

p(ω) =
F (dω)

ν(dω)

be the density of complex-valued measure F with respect to the probability measure
ν, and let g(·) be random element of the space L2(Rd, µ) of complex-valued µ-square
summable functions on Rn given by

gω(x) = p(ω) exp{iωTx},

ω being distributed according to ν.
The expected value of the random function gω(·) clearly is f , while the second

moment of the L2(Rd, µ)-norm of this random function does not exceed 1:

E
{∫
|gω(x)|2µ(dω)

}
≤ 1,

since ‖ gω(·) ‖∞≤ 1 and µ is a probabilistic measure.
It follows that if ω1, ..., ωn is a sample of n independent random vectors ωj dis-

tributed each according to ν, then

E


∫ ∣∣∣∣∣∣ 1n

n∑
j=1

gωj(x)− f(x)

∣∣∣∣∣∣
2

µ(dx)

 =
1

n2

n∑
j=1

E
{∫
|gωj(x)− f(x)|2µ(dx)

}
≤ 1

n

and, consequently, there exists a particular collection ω̄1, ...ω̄n such that

∫ ∣∣∣∣∣∣f(x)− 1

n

n∑
j=1

gω̄j(x)

∣∣∣∣∣∣
2

µ(dx) ≤ 1

n
;

it suffices to take, as f̃(·), the real part of the function

1

n

n∑
j=1

gω̄j(x) =
1

n

n∑
j=1

p(ω̄j) exp{iω̄Tj x}.

The advantage of Barron’s result is that the quality of approximation in his theo-
rem depends on the “number of simple terms” in the approximating aggregate and is
independent of the dimensionality of the function to be approximated. A disadvan-
tage of the construction is that in order to build the approximation, we need complete
knowledge of F , or, which is the same, of f .

We are about to demonstrate that the aggregation technique developed in the
previous section allows to build a “simple” approximation of f directly from its noisy
observations, with basically no a priori knowledge of the function. Namely, assume
that all our a priori knowledge about f is that f is the Fourier transform of a complex-
valued measure of variation not exceeding a given upper bound L/2 <∞ and vanish-
ing outside the ball of a given radius R:

f(x) ∈ F(L,R) =

f(x) =
∫

‖ω‖2≤R

exp{iωTx}F (dω)
∣∣∣∣ ∫ |F (dω)| ≤ L/2

 . (5.27)
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Besides this a priori knowledge, we are given n noisy observations

z = {zt = (xt, yt = f(xt) + et)}nt=1 (5.28)

of the values of f , where the observation points xt are independent of each other and
are distributed according to certain probability measure µ, and the observation noises
et are independent of each other and of {xt}nt=1 and have zero mean and bounded
variance:

E {et} = 0; E
{
e2
t

}
≤ σ2. (5.29)

We do not assume the measure µ to be known; all our a priori information on this
measure is that ∫

‖ x ‖2
2 µ(dx) ≤ σ2

x (5.30)

with certain known in advance σx <∞.
In order to recover f via observations (5.28), we act as follows:
Initialization. Given σ, n, d, L,R, σx, we set

(a) η =
√
L2+Lσ
n1/4 ,

(b) ε = 2η
Lσx

= 2
√
L2+Lσ

n1/4Lσx

(5.31)

and build an ε-net Ω = {ωk}Kk=1 in the ball WR = {ω ∈ Rd | ‖ ω ‖2≤ R}.
It is easily seen that the cardinality K of the net can be chosen to satisfy the

bound
K ≤ (1 + 2ε−1R)d. (5.32)

Estimation. We set M = 2K, Λ = {λ ∈ RM | ‖ λ ‖1≤ 1} and define the basic
functions fj, j = 1, ...,M, as

f2k−1(x) = L cos(ωTk x), f2k(x) = L sin(ωTk x), k = 1, 2, ..., K.

Then we use the aggregation routine from Section 5.2.2 to get “nearly closest to f”
weighted combination

f̂n(·; z) =
M∑
j=1

λj(z)fj(·) [
M∑
j=1
|λj(z)| ≤ 1]

of functions fj and treat this combination as the resulting approximation of f .

Remark 5.4.1 Applying our “n-concentration” technique, we can enforce f̂n to be
a weighted sum of at most n + 2 cosines, similarly to the approximation given by
Barron’s Theorem.

The rate of convergence of the outlined approximation scheme is given by the
following

Theorem 5.4.2 Let f ∈ F(L,R) and let (5.29), (5.30) be satisfied. Then for all n
one has

E
{
‖ f̂n(·, z)− f(·) ‖2

2,µ

}
≤ O(1)

(L2 + Lσ)
√
d lnMn√

n
, Mn = 2 +

n1/4LRσx√
L2 + Lσ

. (5.33)
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Proof. 10. Let us verify that for every f ∈ F(L,R) there exists a function

f̃(x) =
M∑
j=1

λjfj(x)

with λ ∈ Λ such that
‖ f − f̃ ‖2,µ≤ η. (5.34)

Indeed, we have

f(x) =
∫
WR

exp{iωTx}F (dω) with
∫
WR

|F (dω)| ≤ L/2.

Since Ω is an ε-net in WR, we can partition WR into K non-overlapping sets Ωk in
such a way that ωk ∈ Ωk and Ωk is contained in the ball of radius ε centered at ωk,
for all k. Setting

pk =
∫

Ωk

F (dω) = ak + bki, k = 1, ..., K,

f̃ =
K∑
k=1
<
{
pk exp{iωTk x}

}
=

K∑
k=1

[λ2k−1f2k−1(x) + λ2kf2k(x)] ,

λ2k−1 = 1
L
ak,

λ2k = − 1
L
bk,

we get
M∑
j=1

|λj| ≤
√

2L−1
K∑
k=1

|pk| ≤
∫
WR

|F (dω)| ≤ 1

and

|f̃(x)− f(x)| ≤
∣∣∣∣∣ K∑k=1

pk exp{iωTk x} − f(x)

∣∣∣∣∣ [since f is real-valued]

=

∣∣∣∣∣∣∣
K∑
k=1

∫
Ωk

[
exp{iωTx} − exp{iωTk x}

]
F (dω)

∣∣∣∣∣∣∣
≤

K∑
k=1

∫
Ωk

∣∣∣exp{iωTx} − exp{iωTk x}
∣∣∣ |F (dω)|

≤ ε ‖ x ‖2

K∑
k=1

∫
Ωk

|F (dω)| [since |ω − ωk| ≤ ε ∀ω ∈ Ωk]

≤ ε ‖ x ‖2 L/2

⇒ ‖ f̃ − f ‖2,µ ≤ 0.5εLσx
= η [see (5.31.(b))]

as required.
20. Applying Theorem 5.2.1, we get

E
{
‖ f(·)− f̂n(·; z) ‖2

2,µ

}
≤ O(1) (L2+Lσ)

√
lnM√

n
+ min

λ∈Λ
‖ f −

M∑
j=1

λjfj ‖2
2,µ

≤ O(1) (L2+Lσ)
√

lnM√
n

+ ‖ f − f̃ ‖2
2,µ,
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which combined with (5.34) implies that

E
{
‖ f(·)− f̂n(·; z) ‖2

2,µ

}
≤ O(1)

(L2 + Lσ)
√

lnM√
n

+ η2.

It remains to note that M ≤ 2Md
n by (5.32) and that η2 ≤ L2+Lσ√

n
by (5.31.(a)).

Discussion. Theorem 5.4.2 establishes “nearly dimension-independent” rate of con-
vergence of approximations of a function f ∈ F(L,R) to the function: when all but the
dimension parameters (i.e., σ, L,R, σx) are fixed, the rate of convergence (measured

as E
{
‖ f − f̂n ‖2

2,µ

}
) is O(

√
dn−1 lnn), so that the volume of observations required

to approximate f within a given margin is just proportional to the dimension d. To
understand that this linear growth indeed means “nearly dimension-independence” of
the complexity of recovering a function, note that for the “usual” functional classes,
like Sobolev and Hölder balls, the number of observations (even noiseless) needed to
recover a function within a given inaccuracy grows with the dimension d like exp{αd}
(α > 0 depends on the parameters of smoothness of the class in question). It should
be stressed that the rate of convergence given by (5.33) is nearly independent of the
parameters R, σx; we could allow these parameters to grow with n in a polynomial
fashion, still preserving the O(

√
dn−1 lnn)-rate of convergence. By similar reasons,

we would not loose much when replacing the assumption that the Fourier transform
of f vanishes outside a given compact with bounds on the “tails” of this transform,
thus coming to the classes like

F(L, γ) = {f =
∫

exp{iωTx}F (dω)
∣∣∣∣ ∫ |F (dω)| ≤ L,∫

‖ω‖2>R
|F (dω)| ≤ R−γ ∀R > 0}.

As compared to the original result of Barron, the result stated by Theorem 5.4.2
has, essentially, only one drawback: the rate of convergence (5.33) is nearly O(n−1/2),
while in Barron’s theorem the rate of convergence is O(n−1). This “slowing down” is
an unavoidable price for the fact that Theorem 5.4.2 deals with the case of approxi-
mating unknown function from Barron’s-type class. In this case, the convergence rate
O(n−1/2) is nearly optimal in the minimax sense, as stated by the following result of
[16]:

Theorem 5.4.3 Let L > 0. Consider the problem of estimating a univariate function
f : R → R via observations (5.28), where xt are uniformly distributed on [0, 1] and
et ∼ N (0, σ2). Let Fn be the class of all real-valued trigonometric polynomials of
degree ≤ n with the sum of absolute values of the coefficients not exceeding L. Then,
for appropriately chosen absolute constant κ > 0 and for all large enough values of
n, for every algorithm B approximating f ∈ Fn via n associated with f observations
(5.28) it holds

sup
f∈Fn
E
{
‖ f − f̂B ‖2

2

}
≥ κLσ

√
lnn

n
; (5.35)

here f̂B is the estimate yielded by B, the function underlying observations being f .
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5.5 Numerical example: nonparametric filtration

Following [16], consider a nonlinear time-invariant dynamic system:

yt = f(yt−1, yt−2, ..., yt−d) + et, (5.36)

e0, e1, ... being independent noises. We do not know f , and our target is to predict,
given y0, ..., yn, the state yn+1.

A natural way to approach our target is to recover f from observations and to
form the prediction as

yp
n+1 = f̂n(yn, ..., yn−d+1), (5.37)

f̂n being the estimate of f built upon the first n observations (5.36). Setting xt =
(yt−1, ..., yt−d)

T , we can represent the observations accumulated at time instant n as

z = {zt = (xt, yt = f(xt) + et)}nt=d. (5.38)

The situation resembles the observation scheme (5.2), up to the fact that now the
points xt where we observe f depend on each other in a complicated and unknown
fashion rather than to be i.i.d. Let us ignore this “minor difference” (we are not going
to prove anything, just to look how it works) and act as if {xt} were i.i.d.

Assume that the dynamic system in question is known to be semilinear (“a system
with single output nonlinearity”):

f(x) = φ(pTx).

If p were known, we could project our observation points xt onto the corresponding
axis, thus reducing the situation to the one where we are observing a univariate
function φ. As a result, we would be capable to recover the multivariate function f as
if it were a univariate function. In the case when p is unknown (this is the case we are
interested in) it makes sense to use the approach outlined in Section 5.1, namely, to
choose a “fine finite grid” Π in the space of d-dimensional directions and to associate
with every direction p ∈ Π the estimate f̂p of f corresponding to the hypothesis that
the “true” direction is p. We can use, say, the first half of our n observations to build
the associated realizations fp, p ∈ Π, of our estimates, and use the remaining half of
observations to aggregate the resulting basic estimates, as described in Section 5.2.2,
thus coming to the aggregated estimate f̂n to be used in the predictor (5.37).

We are about to present the results yielded by the just outlined scheme as applied
to systems of the type

(Dd) :


yt = F (pTx) + σηt, x

T
t = (yt−1, ..., yt−d),

F (z) = cos(4πz) + cos(5πz),
ηt ∼ N (0, 1),
p = d−1/2(1, ..., 1)T ∈ Rd.

In our simulations, we dealt with the dynamics (Dd) with d = 2, 3. In the case of
d = 2, the grid Π of directions was

{
pi =

(
cos(φ0 + jM−1π)
sin(φ0 + jM−1π

)}M
j=1

,
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φ0 being a randomly chosen “phase shift”; we used M = 400. In the case of d = 3,
the grid Π was comprised of M = 3144 randomly generated directions in R3. In
both cases, the basic estimates fp were the zero order spatial adaptive estimates from
Chapter 3 (modified in an evident manner to get the possibility to work with non-
equidistant grids of observation points).

In our experiments, we used the first 1024 observations zt to build the basic es-
timates, the next 1024 observations to aggregate these estimates by the aggregation
routine from Section 5.2.2, the underlying set Λ being the standard simplex

{λ ∈ RM | λ ≥ 0,
∑
j

λj = 1},

and used the resulting predictor (5.37) at 2048 subsequent time instants in order to
measure the empirical standard deviation

δ =

√√√√ 1

2048

4096∑
t=2049

(f(xt)− yp
t )2.

In order to understand what is the effect of our “structure-based” prediction scheme
– one which exploits the a priori knowledge that the actual dynamics is semilinear,
we have compared its performance with the one of the “standard” prediction scheme
based on the zero order spatial adaptive non-parametric recovering of f (treated as a
“general-type” function of d variables) from the first 2048 observations (5.38).

The results of the experiments are as follows:

Method σ = 0.1 σ = 0.33

Structure-based predictor, dynamics (D2) 0.093 0.275
Standard predictor, dynamics (D2) 0.483 0.623
Structure-based predictor, dynamics (D3) 0.107 0.288
Standard predictor, dynamics (D3) 0.244 1.013

Empirical standard deviation

The histograms of the prediction errors f(xt)− yp
t and typical prediction patterns are

as follows: Finally, this is how the function f itself was recovered in the case of
dynamics (D2):
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Figure 5.1: Distribution of prediction errors, dynamics (D2).
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Figure 5.2: Distribution of prediction errors, dynamics (D3).

3000 3005 3010 3015 3020 3025 3030 3035
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

3000 3005 3010 3015 3020 3025 3030 3035
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Structure-based predictor, σ = 0.33 Standard predictor, σ = 0.33

Figure 5.3: Prediction patterns, dynamics (D2).
[circles: f(xt); crosses: yp

t ]



5.5. NUMERICAL EXAMPLE: NONPARAMETRIC FILTRATION 125

3000 3005 3010 3015 3020 3025 3030 3035
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

3000 3005 3010 3015 3020 3025 3030 3035
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Structure-based predictor, σ = 0.1 Standard predictor, σ = 0.1

Figure 5.4: Prediction patterns, dynamics (D3).
[circles: f(xt); crosses: yp

t ]

−2
−1

0
1

2 −2

−1

0

1

2

−2

−1

0

1

2

Dynamics (D2)

−2
−1

0
1

2 −2

−1

0

1

2

−2

−1

0

1

2

−2
−1

0
1

2 −2

−1

0

1

2

−3

−2

−1

0

1

2

3

Structure-based reconstruction Standard reconstruction

Figure 5.5: Reconstructions of dynamics D2, σ = 0.1.



126 CHAPTER 5. AGGREGATION OF ESTIMATES, I

−2
−1

0
1

2 −2

−1

0

1

2

−2

−1

0

1

2

Dynamics (D2)

−2
−1

0
1

2 −2

−1

0

1

2

−2

−1

0

1

2

−2
−1

0
1

2 −2

−1

0

1

2

−3

−2

−1

0

1

2

3

Structure-based reconstruction Standard reconstruction

Figure 5.6: Reconstructions of dynamics D2, σ = 0.33.



Chapter 6

Aggregation of estimates, II

We proceed with aggregating estimates associated with a number of “concurrent hy-
potheses” on the observed regression function. In the previous chapter our goal was,
essentially, to reproduce the best convex combination of the estimates, while now we
focus on reproducing the best of the estimates or their best linear combination.

6.1 Gaussian white noise model of observations

It makes sense now to switch from the “discrete” models of observations we dealt with
to the moment to the “continuous” model. In this new model, a signal f : [0, 1]→ R
is observed in continuous time Gaussian white noise of intensity ε2. In other words,
our observation is the random function

y(x) = yf,ε(x) =
∫ x

0
f(s)ds+ εW (x), (6.1)

W (x) being the standard Wiener process.
Model (6.1) is very popular in Nonparametric Statistics by the reasons as follow.

There exists a rich “L2 regression theory”, where the quality of restoring f is measured
in the L2 norm and a priori assumptions on the signal are expressed in geometric form
– usually, as hypotheses on the rate at which f can be approximated by elements of a
given sequence of finite-dimensional subspaces E1 ⊂ E2 ⊂ ... of L2. A typical example
is a periodic with derivatives of order < k, of the period 1, signal from the Sobolev
ball Sk,21 (L): ∫ 1

0
(f (k)(x))2dx ≤ L2.

The indicated properties of f are equivalent to the fact that

∞∑
j=1

(2πj)2k[f 2
2j−1 + f 2

2j] ≤ L2, (6.2)

where {fj}∞j=0 are the Fourier coefficients of f in the standard trigonometric orthonor-
mal basis of L2[0, 1]

φ0(x) ≡ 1, φ2j−1(x) =
√

2 cos(2πjx), φ2j(x) =
√

2 sin(2πjx), j = 1, 2, ...

Note that (6.2) is just a way to fix the rate at which f can be approximated, in the
L2-metric, by a trigonometric polynomial of degree j.

127
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As far as the L2 regression theory is concerned, (6.1) definitely is the most con-
venient model of observations, since it admits a very transparent and simple “trans-
lation” to the language of the L2-geometry. As a result, with this model we get a
“convenient road” to a number of interesting and instructive results. Now the role of
“volume of observations” n is played by the quantity ε−2; instead of asking “how well
can we recover a signal from a large number n of noisy observations of the signal”, we
now ask how well we can recover a signal affected by Gaussian white noise of small
intensity ε2.

“Scientific practice” demonstrates that the majority of asymptotic, ε→ 0, results
of the L2 regression theory with observations (6.1) can as well be established (under
appropriate technical assumptions) for more (or less?) realistic discrete models of
observations like the one where we observe the signal along an equidistant (or random)
n-point grid, variance of the noise affecting a particular observation being σ2. The
“translation” of the results obtained for the continuous model of observations to those
for the discrete model is given by the correspondence σ2n−1 = ε2. Which one of these
models to use, it is, essentially, the question of mathematical convenience, and in our
course we have reached the point when it definitely is easier to deal with model (6.1).

L2 regression theory: the language. It is well-known that observations (6.1)
are equivalent to the possibility to observe the L2[0, 1]-inner products of the signal f
with functions φ ∈ L2[0, 1]. Namely, given a function φ ∈ L2[0, 1], one can convert a
realization of observation (6.1) in a realization of the random variable∫ 1

0
φ(x)dy(x) = (f, φ) + εξφ, (6.3)

where

(f, g) =
∫ 1

0
f(x)g(x)dx

is the standard inner product in L2[0, 1]. It turns out that the vector of random
noises {ξφi}ki=1 corresponding to every finite collection of φi ∈ L2 is Gaussian, and its
covariance matrix is just the Gram matrix of φ1, ..., φk:

E {ξφξψ} = (φ, ψ) ∀φ, ψ ∈ L2. (6.4)

It should be mentioned that for every φ ∈ L2 the left hand side in (6.3) is well-
defined with probability one, the probability space in question being generated by the
underlying Wiener process; thus, it makes no sense to speak simultaneously about
values of all random noises {ξφ | φ ∈ L2}, but it does make sense to speak about
values of any countable collection from this set, and this is the only situation we shall
deal with.

The outlined properties of model (6.1) allow to pass from the “functional” language
to the geometric one and to represent the situation we are interested in as follows.
We fix a real separable Hilbert space H with inner product (·, ·) and the associated
norm ‖ · ‖; the “signals” we are observing are just the elements of this space. An
observation y of a signal f ∈ H is comprised of noisy measurements

{yφ(f, ε) = (f, φ) + εξφ}φ∈H (6.5)
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of the projections of f on vectors from H, all finite collections of the noises ξφ being
Gaussian random vectors with covariance matrices given by (6.4). In (6.5), ε is given
“noise intensity”1) Note that a sufficient statistics for (6.5) is given already by the
sequence of observations

yf,ε =
{
yf,εi ≡ yφi(f, ε) = (f, φi) + εξi ≡ (f, φi) + εξφi

}
(6.6)

associated with a fixed orthonormal basis {φi}∞i=1 of H; given these observations, we
can recover yφ(f, ε) for every φ ∈ H according to

yφ(f, ε) =
∞∑
i=1

(φ, φi)yφi(f, ε).

Thus, in fact our observations are just noisy observations of the coordinates of the
signal in a somehow fixed orthonormal basis of H, the noises in the observations
forming a sequence of independent N (0, ε2) random variables.

Our goal is to recover signal f from the associated observations. A recovering
routine f̂(·) is a Borel mapping acting from the set RZ of sequences with real entries
to H, the set of sequences being equipped with the usual Tikhonov topology of the
direct product (in this topology, RZ is a Polish space). The reconstruction associated
with observations (6.5) is the random vector

f̂(yf,ε) ∈ H,

where yf,ε are given by (6.6), {φi} being a fixed orthonormal basis in H (it does not
matter how we choose this basis: as explained above, the observations associated with
a basis can be converted to those associated with any other basis).

Given noise intensity ε, we measure the quality of a recovering routine f̂ at a signal
f ∈ H by the quantity

Rε(f̂ , f) =
(
E
{
‖ f̂(yf,ε)− f ‖2

})1/2
, (6.7)

the expectation being taken over the observation noise. Given a subset F ⊂ H, we
measure the quality of the routine f̂ on the set F by the corresponding worst-case
risk

Rε(f̂ , F ) = sup
f∈F
Rε(f̂ , f). (6.8)

The minimax risk associated with F is the function

R∗(ε, F ) = inf
f̂

Rε(f, F ) = inf
f̂

sup
f∈F
Rε(f̂ , f). (6.9)

Finally, an estimation method is a family {f̂ε}ε>0 of recovering routines param-
eterized by the noise intensity; we say that such a method is asymptotically opti-
mal/optimal in order in the minimax sense on a set F ⊂ H, if

Rε(f̂ε, F ) ≤ C(ε)R∗(ε, F )

where C(ε) converges to 1, respectively, remains bounded as ε→ +0.

1)In the standard terminology, the intensity of noise in (6.5) is ε2 rather than ε. In order to get
a name for the quantity ε, we prefer to call it, and not its square, the intensity of noise.
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6.2 Approximating the best linear combination of

estimates

The problem. Assume we observe signals from a separable Hilbert space H ac-
cording to (6.6) and are given a collection

M =
{
Mj = {f̂ jε}ε>0, j = 1, ...,M

}
of M estimation methods. For every signal f ∈ H, let

Mε(f, y) = min
µ∈RM

‖ f −
∑
j

µj f̂
j
ε (y) ‖

be the distance from f to the linear span of the estimates f̂ jε (y). When aggregating
the given estimates in a linear fashion (however, with the weights which may depend
on observations), and being clever enough to find, for every signal f underlying ob-
servations and every sequence of observation noises, the best – the closest to f –
“mixture” of this type, we would recover f with inaccuracyMε(f, y); the risk of this
“ideal linear aggregation” would be

RLA
M (ε, f) =

(
E
{
M2

ε(f, y
f,ε)

})1/2
. (6.10)

The problem we are about to address is as follows:

Aggregation problem L. Given a collection M of M estimation meth-
ods, find an estimation method with the risk, at every f ∈ H, “close” to
the risk RLA

M (ε, f) of the “ideal” linear aggregation of the methods from
M.

A solution: the idea. The problem we are interested in admits an extremely simple
(and, as we shall see in a while, quite powerful) “solution” as follows. Assume we
observe a signal f ∈ H twice, so that we have two realizations y′, y′′ of observation yf,·,
the noises affected the realizations being independent of each other; let the intensities
of noise in y′ and y′′ be ε′, ε′′, respectively.

Let us use the first realization of observations to build the M estimates f j = f̂ jε′(y
′),

j = 1, ...,M . Consider the linear span

L = L(y′) =

g =
M∑
j=1

µjf
j | µ ∈ RM

 ⊂ H

of these estimates; this is a random linear subspace of H of dimension not exceeding
M . To simplify notation, assume that this dimension almost surely is equal to M
(what follows can be modified in an evident fashion to capture the general case as
well). Applying the orthogonalization process, we may build a basis in L comprised
of M orthonormal vectors h1, ..., hM ; these vectors are deterministic functions of y′.

Now let us use the second observation, y′′, to evaluate the orthogonal projection
fL of f onto L = L(y′). The orthogonal projection itself is given by

fL =
M∑
j=1

(f, hj)hj, (6.11)
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and is the closest to f linear combination of f j = f̂ jε′(y
′):

‖ f − fL ‖2=M2
ε′(f, y

′). (6.12)

Observation y′′ provide us with noisy observations

zj = (f, hj) + ε′′ξ′′j ,

ξ′′j being independent of each other and of y′ N (0, 1) random noises. Using zj in (6.11)
instead of the “true” Fourier coefficients (f, hj), we come to the estimate

f̃ = f̃(y′, y′′) =
M∑
j=1

zjh
j = fL + ε′′

M∑
j=1

ξ′′j h
j. (6.13)

Let us evaluate the quality of the resulting estimate of f . We have

‖ f − f̃ ‖2=‖ f − fL ‖2 +2ε′′(f − fL,
M∑
j=1

ξ′′j h
j) + (ε′′)2M.

Taking expectation over noises affecting y′, y′′ and taking into account that ξ′′j are
independent of y′, we get

E
{
‖ f − f̃ ‖2

}
=
(
RLA
M (ε′, f)

)2
+ (ε′′)2M, (6.14)

whence, in particular,(
E
{
‖ f − f̃ ‖2

})1/2
≤ RLA

M (ε′, f) + ε′′
√
M. (6.15)

The simple result we have obtained looks as a “nearly solution” to the Aggregation
problem L: in the right hand side of (6.15) we see the risk RLA

M of the “ideal” linear
aggregation (associated, however, with noise intensity ε′ rather than ε), plus the
“aggregation price” ε′′

√
M . As we shall see, in many important cases this price

is negligible small as compared to the risk of the ideal linear aggregation, so that
(6.15) is, basically, what we need. There is, however, a difficulty: our estimation
method requires two independent observations of the signal, while in our setting of
the Aggregation problem we are allowed to use only one observation. We are about to
demonstrate that this difficulty can be easily avoided – we always can “split” a single
observation we have into two (or 1000) independent observations.

Splitting observations. Let us start with the following simple situation: we are
given a realization ζ of anN (a, σ2) random variable; σ is known, a is unknown. Can we
“split” our observation ζ in a given number k of independent of each other realizations
ζ`, ` = 1, ..., k, of N (a, σ2

` ) random variables? What could be the corresponding
variances σ2

` ?
The answer is immediate: we claim that the required partitioning is possible,

provided that
1

σ2
=

k∑
`=1

1

σ2
`

. (6.16)
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Indeed, we claim that under assumption (6.16) there exists a k×k matrix of the form

Q =


1 q12 q13 ... q1k

1 q22 q23 ... q2k

... ... ... ... ...
1 qk2 qk3 ... qkk


such that for the rows q1, ..., qk of the matrix it holds

qTj q` =
σ2
j

σ2
δj`, (6.17)

δj` being the Kronecker symbols.

Matrix Q can be built as follows. Indeed, let e1, ..., ek be the standard basic
orths in Rk, and let

rj =
σj
σ
ej , j = 1, ..., k; ū =

(
σ

σ1
, ...,

σ

σk

)T
.

By construction we have

rTj ū = 1, j = 1, ..., k,

and ū is a unit vector by (6.16). Let us pass to an orthonormal basis of Rk

where the first vector of the basis is ū, and let qj be the vector of coordinates
of rj in this new basis. Then

(qj)1 = rTj ū = 1 ∀j and qTj q` = rTj r` =
σ2
j

σ2
δj`, (6.18)

as required.

Now assume that we are given σ, {σi}ki=1 satisfying (6.16), and a realization ζ of
N (a, σ2) random variable, and our goal is to “split” ζ in a sample of k independent
N (a, σ2

i ) random variables ζ1, ..., ζk. To this end let us build matrix Q satisfying
(6.17), generate k − 1 independent of each other and of ζ “artificial” N (0, 1) random
variables ω1, ..., ωk−1 and set


ζ1

ζ2

...
ζk

 = Q


ζ
σω1

σω2

...
σωk−1

 . (6.19)

From (6.17) combined with the fact that the first column of Q is comprised of ones
it immediately follows that ζj, j = 1, ..., k, are independent of each other N (a, σ2

j )
random variables.

After we know how to split a single realization of an N (a, σ2) random variable, we
know how to split a single realization yf,ε of observation (6.6) into a desired number k
of independent realizations yf,εi , i = 1, ..., k, of the same signal with prescribed noise
intensities σ1, ..., σk satisfying the “balance equation”

1

ε2
=

k∑
i=1

1

ε2
i

(6.20)
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– it suffices to apply the above randomized routine to every one of the observations
yf,εj , using, for every index j = 1, 2, ..., “its own” artificial random ω-variables. Thus,
from the statistical viewpoint, we always may assume that instead of observation (6.6)
we are given a desired number k of independent of each other similar observations, the
noise intensities of the observations being linked by (6.20). From the implementation
viewpoint, our “observation splitting” just means that we pass from deterministic
recovering routines to randomized ones.

As a byproduct of our “splitting result”, we see that as far as model (6.6) of
observations is concerned, the quantity ε−2 indeed behaves itself as the “volume of
observations”: given an observation of “volume n = ε−2”, we can partition it into
a prescribed number k of independent observations of prescribed volumes nk = ε−2

k ,
provided that n = n1 + ... + nk. And of course vice versa: given k independent
observations yf,εi of the same signal, we can aggregate them into a single observation
y of the volume n =

∑
i
ni ≡

∑
i

1
ε2i

: it suffices to set

y =
1

n1 + ...+ nk

k∑
i=1

niy
f,εi .

Finally, note that in the discrete model of observations similar “splitting” is given by
“physical” splitting of observations, like partitioning all observations in subsequent
segments, 5 observations per each, and putting the first observation from every seg-
ment to the first group, two next – to the second group, and two more – to the third
one.

Intermediate summary. Let us come back to Aggregation problem L, and let us
fix somehow a set F ⊂ H of signals we are interested in, along with a collection
M =

{
f̂ jε (·)

}
ε>0

j=1,...,M

of M estimation methods. Assume that

A. The worst-case, over f ∈ F , risk

RLA
M (ε, F ) = sup

f∈F
RLA
M (ε, f)

of “ideal linear aggregation” of the estimation methods fromM is a “well-
behaved” function of ε as ε→ 0: whenever δ(ε) ≥ ε is such that δ(ε)/ε→
1, ε→ +0, one has

RLA
M (δ(ε), F ) ≤ (1 + o(1))RLA

M (ε, F ), ε→ 0. (6.21)

B. The worst-case, over f ∈ F , risk of “ideal linear aggregation” of
the estimation methods from M is “non-parametric”:

ε−1RLA
M (ε, F )→∞, ε→ 0. (6.22)

Both of these assumptions are very natural. As about B, note that already the
minimax risk of estimating k-parametric signals

f ∈ Fk(L) = {f =
k∑
i=1

fiφi |
k∑
i=1

f 2
i ≤ L2}
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is (1+o(1))ε
√
k as ε→ +0. As about A, this assumption is satisfied in all applications

known to us.
Under assumptions A, B we can implement the outlined aggregation scheme as

follows:

Setup. Choose δ1(ε), δ2(ε) satisfying the relations

(a) 1
δ21(ε)

+ 1
δ22(ε)

= 1
ε2

;

(b) δ1(ε)
ε
→ 1, ε→ +0;

(c) δ−1
2 (ε)RLA

M (ε, F ) → ∞, ε→ 0,

(6.23)

which is possible in view of (6.22).
Aggregation.
1) Given observation y = yf,ε with known noise intensity ε, we split it

into two independent observations y′ = yf,δ1(ε), y′′ = yf,δ2(ε).
2) We build M vectors f j = f̂ jδ1(ε)(y

′), j = 1, ...,M , and apply to
these vectors orthogonalization procedure to get an orthonormal system
h1, ..., hM with the same linear span.

3) We use the observation y′′ to get estimates zj = (f, hj) + δ2(ε)ξj of
the projections of f on the directions h1, ..., hM and define the resulting
estimate of f as

f̃ε(y) =
M∑
j=1

zjh
j.

Relation (6.15) immediately yields the following

Proposition 6.2.1 Under assumptions A, B one can solve the Aggregation problem
L associated with the collection M of estimation methods and the set of signals F
“asymptotically ideally” in the minimax sense. Namely, for the outlined estimation
method {f̃ε}ε>0 one has

Rε(f̃ε, F ) ≡ sup
f∈F

(
E
{
‖ f − f̃ε(yf,ε) ‖2

})1/2
≤ (1 + o(1))RLA

M (ε, F ), ε→ +0. (6.24)

Indeed, from (6.15) it follows that

Rε(f̃ε, F ) ≤ RLA
M (δ1(ε), F ) + δ2(ε)

√
M.

By (6.23.b) and Assumption A, the first term in the right hand side of this bound is
(1 + o(1))RLA

M (ε, F ), while the second term, by (6.23.c), is o(1)RLA
M (ε, F ).

Note that we are not restricted to deal with mimicking the best linear aggregation
of once for ever fixed number M of estimation methods: we can allow the collection
to extend at certain, not too high, rate as ε → +0. Thus, assume that we have a
“nested family”

M =
{
f̂ jε (·)

}
ε>0

j=1,...,M(ε)

of estimation methods. The notions of the ideal linear aggregation of the methods
from the family and the associated “ideal aggregation risks” RLA

M (ε, f) and RLA
M (ε, F )



6.3. APPLICATION: AGGREGATING PROJECTION ESTIMATES 135

at a given signal f and at a given family F ⊂ H of signals can be straightforwardly
extended to our new situation. The assumptions A, B which allowed us to get Proposi-
tion 6.2.1 now should be modified as follows: A remains unchanged, and B is replaced
with the assumption

B.1. The worst-case, over f ∈ F , risk of “ideal linear aggregation” of
the estimation methods from M satisfies the relation(

ε
√
M(ε)

)−1

RLA
M (ε, F )→∞, ε→ +0 (6.25)

which is an upper bound on the rate at which M(ε) is allowed to grow as ε → +0.
Finally, the setup rule (6.23.c) should be replaced with(

δ2(ε)
√
M(ε)

)−1

RLA
M (ε, F )→∞, ε→ +0. (6.26)

With these modifications of the assumptions and the construction, we still ensure
(6.24), i.e., still are able to get “asymptotically ideal” linear aggregation of our, now
extending as ε→ +0, nested family of estimation methods.

6.3 Application: aggregating projection estimates

Recall that we have fixed an orthonormal basis {φi}∞i=1 in our “universe” – in the
Hilbert space H. To the moment this basis was playing a completely technical role of
representing an observation as a countable (and thus – “tractable”) sample of random
variables. In fact, in the traditional L2 regression theory basis plays a much more
important role – the majority of the traditional estimators are “basis-dependent”. As
the simplest – and typical – example, consider a linear or, better to say, a simple filter
estimate associated with a given basis {φi}.

6.3.1 Linear estimates

A linear estimate is specified by a square-summable sequence of its weights λ = {λi}∞i=1

and is just

f̂λ(y) =
∞∑
i=1

λiyiφi. (6.27)

As applied to an observation yf,ε, the estimate becomes

f̂λ(yf,ε) =
∞∑
i=1

λi(f, φi)φi + ε

[ ∞∑
i=1

λiξiφi

]
(6.28)

The “stochastic vector series” ε
[ ∞∑
i=1

λiξiφi

]
in the right hand side of this expression

clearly converges in the mean square sense to a random element of H (recall that λ
is a square summable sequence), so that the estimate makes sense. One can easily
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compute the squared expected error of this estimate:

R2
ε(f̂

λ, f) =
∞∑
i=1

(1− λi)2(f, φi)
2 + ε2

∞∑
i=1

λ2
i

= d2(λ, f) + ε2e2(λ),

d(λ, f) =

√
∞∑
i=1

(1− λi)2(f, φi)2

e(λ, f) =

√
∞∑
i=1

λ2
i .

(6.29)

The “deterministic” component d2(λ, f) of the squared risk depends on the signal f
and is nothing but the squared norm of the bias of our filter (the difference between
the input f =

∑
i
fiφi of the filter and its output

∑
i
λifiφi in the absence of errors;

from now on,
fi = (f, φi)

stand for the coordinates of a signal in our fixed basis). The stochastic component
ε2e2(λ) of the squared risk is nothing but the energy of the noise component of the
output, the input being affected by white noise of intensity ε.

The simplest linear estimates are the so called projection estimates f̂k – the weights
λj are equal to 1 for j not exceeding certain k (called the degree of the estimate) and
are zero for j > k. Note that for the projection estimate of degree k relation (6.29)
becomes

R2
ε(f̂

k, f) =
∞∑

i=k+1

f 2
i + ε2k (6.30)

and is very transparent: the larger is the degree of the estimate, the less is the de-
terministic component of the squared risk and the larger is its stochastic component
– the situation similar, “up to vice versa”, to the one with window estimates. “Re-
versed”, as compared to the case of window estimates, monotonicity properties of the
deterministic and the stochastic components of the squared risk as functions of the
“window width” (the role of the latter now is played by the degree k of the estimate)
is quite natural: narrow windows in “time domain” correspond to wide windows in
the “frequency domain”.

From the theoretical viewpoint, the interest in linear and projection estimates
comes from the fact that they are minimax optimal in order on very natural classes
of signals – on “ellipsoids”.

An “ellipsoid” is given by a sequence of its “half-axes”

a1 ≥ a2 ≥ ... : ai ∈ R ∪ {+∞}, ai → 0, i→∞

and its “radius” – a positive real L – and is defined as

E({ai}, L) = {f ∈ H |
∞∑
i=1

f 2
i

a2
i

≤ L2}.

For example, the class of k times differentiable periodic with derivatives of order
< k, of period 1, signals f with

∫ 1
0 |f (k)(x)|2dx ≤ L2 is an ellipsoid with respect

to the standard trigonometric orthonormal basis in L2[0, 1], and its half-axes are
ai = (1 + o(1))(πi)k (see (6.2)). Similarly, a Sobolev ball Sk,21 (L) (see Chapter 2) is
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an ellipsoid with respect to a properly chosen (depending on k) orthonormal basis
in L2[0, 1], the half-axes of the ellipsoid possessing the same asymptotics as in the
periodic case (6.2).

It can be easily seen that when estimating signals from a given ellipsoid, one can
find optimal in order estimates already among the simplest – the projection – ones,
choosing properly the degree of the projection estimate as a function of noise intensity
ε. Moreover, given an ellipsoid E and a noise intensity ε, we can easily build the best,
in the minimax sense on E, among all linear estimates. In view of (6.29), to this end
it suffices to solve the optimization program

Φε(λ) → min

Φε(λ) ≡ sup{
∞∑
i=1

(1− λi)2f 2
i + ε2

∞∑
i=1

λ2
i | f :

∞∑
i=1

(fi/ai)
2 ≤ L2}

= L2 maxi(1− λi)2a2
i + ε2

∞∑
i=1

λ2
i .

It is immediately seen that the optimal solution to this optimization program has the
following structure:

λ∗i =
(ai − t(ε))+

ai
, (6.31)

where a+ = max(a, 0) and t(ε) is the minimizer of the univariate function

φε(t) = L2t2 + ε2
∑
i

[(ai − t)+]2

a2
i

over t > 0.
A remarkable result of M.S. Pinsker [26] is that under minimal regularity assump-

tions on the sequence of half-axes of the ellipsoid in question (which are satisfied for
the case when the axes decrease as a power sequence aj ∼ j−α or as a geometric
progression), the optimal in the minimax sense on E linear estimate is asymptotically
optimal in the minimax sense among all possible estimates. As a byproduct of this
fact, we can point out not only the order of the principal term of the minimax risk
R(ε, E) as ε → +0, but this principal term itself; this is a very rare case in the
non-parametric regression when we know both the principal term of the minimax risk
and an asymptotically optimal up to factor (1 + o(1)), not just in order, estimation
method.

A shortcoming of the initial results on minimax optimality in order/minimax op-
timality up to factor (1 + o(1)) of projection/linear estimates on ellipsoids is that
to build an estimate of this type we should know the parameters of the ellipsoid –
the sequence of its half-axes and its radius (cf. the case of estimates from Chapters
1 – 2). As far as the projection estimates are concerned, there are several popular,
although not too well understood theoretically, techniques for specifying the degree
of the estimate from observations; for linear estimates, for a long time no theoreti-
cally valid “adaptation schemes” were known. A breakthrough in the area is due to
Efroimovich and Pinsker [27] who proposed an adaptive estimation method which is
asymptotically optimal (up to (1 + o(1))!) in the minimax sense on a wide spectrum
of ellipsoids.

We are about to demonstrate that the results completely similar to those of
Efroimovich and Pinsker can be obtained just by linear aggregation of projection
estimates.
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6.3.2 Aggregating projection estimates

Looking at the structure (6.31) of the optimal, in the minimax sense on an ellipsoid
E, linear estimate, we see that this estimate has a nonincreasing sequence of weights
belonging to the segment [0, 1] 2). In other words, all these estimates belong to the
set Λ of linear estimates with nonincreasing weights from [0, 1]:

Λ = {λ ∈ `2 | 1 ≥ λ1 ≥ λ2 ≥ ...,
∑
i

λ2
i <∞}.

Now, given a signal f ∈ H and a positive ε, we may ask ourselves what is the best, for
these f and ε, linear estimate from the class Λ. The answer is clear: the corresponding
weights are given by the solution to the optimization problem

(Pf,ε) : min


√√√√ ∞∑
i=1

[(1− λi)2f 2
i + ε2λ2

i ] | λ ∈ Λ

 .
The optimal value in this problem, i.e., the best quality of reproducing f from obser-
vations (6.6) by a linear estimate with nonincreasing weights, the intensity of noise
being ε, is certain function Φ(f, ε) of f, ε. What we are about to build is an estimation
method Bm = {f̂mε (·)}ε>0 depending on a single “design parameter” m ∈ N with the
following property:

(!) Whenever ‖ f ‖≤ 1 and 0 < ε < 1, the risk of the estimate f̂mε at
f can be bounded as follows:

Rε(f̂
m
ε , f) ≤ (1 + γm(ε))Φ(f, ε) + CmεLnm(1/ε), (6.32)

where γm(ε)→ 0, ε→ 0, is independent of f , Cm depends on m only, and

Lnm(x) = ln (1 + ln (1 + ln (1 + ...+ ln (1 + ln (1 + x)) ...)))︸ ︷︷ ︸
m times

is the “m-iterated” logarithm.

Postponing for the moment the construction which leads to (6.32), let us look what
are the consequences. Consider an ellipsoid E({ai}, L) and assume (in fact this as-
sumption can be eliminated) that the ellipsoid is contained in the unit ball. According
to Pinsker’s result, for a given intensity of noise the best, in the minimax sense on E,
linear estimate is minimax optimal up to (1 + o(1)) factor as ε → +0, and this esti-
mate, as we have seen, for every ε is given by certain weight sequence λ = λ(ε) ∈ Λ.
Combining this fact with the definition of Φ(·, ·), we conclude that for the minimax
risk R∗(ε, E) associated with the ellipsoid E it holds

R∗(ε, E) ≥ (1− o(1)) sup
f∈E

Φ(f, ε), ε→ +0.

In view of this relation, (6.32) implies that

Rε(f̂
m
ε , F ) ≤ (1 + o(1))R∗(ε, E) + CmεLnm(ε−1), ε→ +0.

Consequently,

2)From (6.29) it is absolutely clear that there is no sense to speak about linear estimates with part
of the weights outside [0, 1]: replacing a weight λi 6∈ [0, 1] by the closest weight from this segment, we
always improve the quality of the estimate. The actually important observation is that the weights
λ∗i given by (6.31) form a nonincreasing sequence.
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(!!) The estimation method Bm is asymptotically optimal in the mini-
max sense, up to (1 + o(1)) factor, on every ellipsoid E such that(

εLnm(ε−1)
)−1
R∗(ε, E)→∞, ε→∞.

(!!) is a very strong “certificate of adaptive optimality”, since the minimax risks
associated with interesting ellipsoids do not decrease with ε too fast. E.g., in the case
when {φi} is the standard trigonometric basis in L2[0, 1], it turns out that

• When the half-axes ai of E decrease sub-linearly:

ai ≥ O(i−α),

for some α, as it is the case for ellipsoids comprised of smooth periodic functions
of fixed degree of smoothness, one has

R∗(ε, E)

ε ln(ε−1)
→∞, ε→ +0,

so that already the method B1 is asymptotically optimal on E;

• When ai decrease at most exponentially:

ai ≥ O(exp{−αi}), i→∞,

for some α, as it is the case, e.g., for classes of functions f(x) = φ(exp{2πix}),
φ(z) being analytic in a fixed ring containing the unit circumference, one has

R∗(ε, E)

εLn2(ε−1)
→∞, ε→ +0,

so that the method B2 is asymptotically optimal on E;

• When ai decrease at most double-exponentially:

ai ≥ O(exp{− exp{O(i)}}),

the method B3 is asymptotically optimal on E, etc.

6.3.3 The construction

We are about to build the estimation method Bm underlying (!). In what follows,
0 < ε < 1.

10. Let us set
ρ(ε) = Ln−1/6

m (10ε−1). (6.33)

Given ε > 0, let us define a sequence of positive integers {kj(ε)}∞j=1 as follows. Let
ν(ε) be the first integer ν such that (1 + ρ(ε))ν > 1

ρ(ε)
. We set

kj(ε) =

{
j, j ≤ ν(ε)
kj−1 + b(1 + ρ(ε))jc, j > ν(ε)

, (6.34)
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where bac is the largest integer not exceeding a.
The structure of the sequence {kj} is quite transparent:

ν(ε) = O
(
ρ−1(ε) ln(ρ−1(ε))

)
initial terms of the sequence are just subsequent integers 1,2,..., so that the corre-
sponding differences

dj = kj+1(ε)− kj(ε)

are equal to 1. Starting with j = ν(ε) + 1, the differences dj of two subsequent
terms of our sequence become integer approximations of the geometric progression
(1 + ρ(ε))j+1. Note that the number K(n, ε) of terms kj(ε) not exceeding a positive
integer n is not too large:

K(n, ε) = max{j : kj(ε) ≤ n} ≤ Om(1)ρ−1(ε)
[
ln(ρ−1(ε)) + lnn

]
. (6.35)

20. Let us set
Ñ`(ε) = Ln2

`−1(102ε−2), ` = 1, ...,m, (6.36)

where for ` ≥ 1 Ln`(·) is the `-iterated logarithm and Ln0(x) = x, and let N`(ε) be
the first integer in the sequence {kj(ε)} which is ≥ Ñ`(ε).

For ` = 1, ...,m, let P`(ε) be the set of all projection estimates f̂k of degrees
belonging to the sequence {kj(ε)− 1} and not exceeding N`(ε)− 1; note that

P1(ε) ⊃ P2(ε) ⊃ ... ⊃ Pm(ε).

Let K`(ε) be the cardinality of P`(ε); according to (6.35), for all small enough values
of ε we have

K`(ε) ≤ Om(1)ρ−1(ε)
[
ln(ρ−1(ε)) + lnN`(ε)

]
≤ Om(1)ρ−1(ε)Ln`(ε

−1). (6.37)

Our plan is as follows: given ε > 0, we aggregate all projection estimates from P`(ε)
according to the scheme of Section 6.2, thus getting m “aggregated estimates” f̃ `ε ,
` = 1, ...,m, and then aggregate thesem estimates, thus coming to the desired estimate
f̃ε. The precise description of the construction is as follows:

Setup. We choose in advance three positive functions δ1(ε), δ2(ε), δ3(ε)
in such a way that

(a)
3∑

ν=1

1
δ2ν(ε)

= 1
ε2

(b) δ1(ε)
ε
→ 1, ε→ +0;

(c) δν(ε) ≤ Om(1) ε
ρ(ε)

, ν = 2, 3,

(6.38)

which of course is possible.
Building estimate f̃ε. 1) Given observation y = yf,ε with known noise

intensity ε, we split it into three independent observations yν = yf,δν(ε),
ν = 1, 2, 3.
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2) We build K1(ε) vectors f j = f̂kj(ε)−1(y1), j = 1, ..., K1(ε), and
apply to the vectors the orthogonalization procedure to get an orthonormal
system {hj}K1(ε)

j=1 such that the linear span of h1, ..., hs is, for every s =
1, 2, ..., K1(ε), coincides with the linear span of f 1, ..., f s.

3) We use the observation y2 to get estimates

zj = (f, hj) + δ2(ε)ξj

of the projections of f on the directions hj, j = 1, ..., K1(ε) (the noises ξj,
j = 1, ..., K1(ε), are independent of each other and of y1 N (0, 1) random
variables), and for every ` = 1, ...,m define g` ≡ f̃ `ε(y) ∈ H as

g` =
K`(ε)∑
j=1

zjh
j.

4) We apply to the m vectors g1, ..., gm the orthogonalization process to
get an orthonormal system {e`}m`=1 with the same linear span, and use the
observation y3 to get estimates w` = (f, e`)+δ3(ε)η` of the projections of f
onto e1, ..., em, the noises η`, ` = 1, ...,m, being independent of each other
and of y1, y2 N (0, 1) random variables, and define the resulting estimate
f̃ε of f as

f̃ε = f̃ε(y
f,ε) =

m∑
`=1

w`e
`.

Accuracy analysis, I. Let

Λ(ε) =
{
λ = {λj}∞j=1 ∈ `2 : λl = λl′ , kj(ε) ≤ l ≤ l′ < kj+1(ε), ∀j = 1, 2, ...

}
,

and let
Λ`(ε) = {λ ∈ Λ(ε) | λl = 0, l ≥ N`(ε)} , ` = 1, ...,m.

Let us set
R`(ε, f) = inf

λ∈Λ`(ε)
Rε(f̂

λ, f), (6.39)

where f̂λ is the linear estimate with weight vector λ.
Observe that every weight vector λ ∈ Λ`(ε) is a linear combination of the weight

vectors of projection estimates f̂k ∈ P`(ε). It follows that the risk RLA
P`(ε)

(ε, f) of
“ideal linear aggregation” of the estimates from P`(ε) is, for every f and ε > 0, at
most R`(ε, f). Applying (6.14), we get

R2
ε(f̃

`
ε , f) ≤

(
RLA
P`(ε)

(δ1(ε), f)
)2

+ δ2
2(ε)K`(ε) ≤ R2

`(δ1(ε), f) + δ2
2(ε)K`(ε). (6.40)

Recalling how the resulting estimate f̃ε is obtained from the estimates f̃ `ε and applying
the same arguments as those used to get (6.14), we conclude that

R2
ε(f̃ε, f) ≤ min

`=1,...,m

[
R2
`(δ1(ε), f) + δ2

2(ε)K`(ε)
]

+ δ2
3(ε)m,

whence also

Rε(f̃ε, f) ≤ min
`=1,...,m

[
R`(δ1(ε), f) + δ2(ε)

√
K`(ε)

]
+ δ3(ε)

√
m. (6.41)
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Accuracy analysis, II. We are ready to demonstrate that the estimation method
we have built satisfies (!). Let us fix f ∈ H, ‖ f ‖≤ 1, and ε ∈ (0, 1).

10. It is clear that the optimization program (Pf,ε) specifying the best, for noise
intensity ε, linear estimate of f with weights from Λ is solvable; let λ = λ(f, ε) be an
optimal solution to this problem. The corresponding squared risk is

Φ2(f, ε) =
∞∑
j=1

(1− λj)2f 2
j + ε2

∞∑
j=1

λ2
j , (6.42)

and
1 ≥ λ1 ≥ λ2 ≥ ...; λj → 0, j →∞ (6.43)

by the definition of Λ.
20 Let n be the largest of integers i such that λi ≥ ρ(ε) (if no i ≥ 1 with this

property exists, n = 0). Note that (6.42), (6.43) imply that

Φ(f, ε) ≥ εn1/2ρ(ε). (6.44)

On the other hand, it is clear that Φ(f, ε) ≤ 1 (since the value of the objective in
(Pf,ε) is ‖ f ‖≤ 1 already at the trivial feasible solution λ = 0). We conclude that

n ≤ 1

ε2ρ2(ε)
< N1(ε).

Let `∗ ≡ `∗(f, ε) be the largest of values ` = 1, ...,m such that n < N`(ε).
30. Let us build weight vector λ̂ ∈ Λ`∗(ε) as follows:

• If j ≥ N`∗(ε), then λ̂j = 0;

• If j < N`∗(ε), then there exists the largest i = i(j) such that ki(ε) ≤ j, and we
set

λ̂j = λki(ε), i = i(j).

Note that by construction λ̂ ∈ Λ`∗(ε).
Let

R2 =
∞∑
j=1

(1− λ̂j)2f 2
j + δ2

1(ε)
∞∑
j=1

λ̂2
j (6.45)

be the squared risk of recovering f by the linear estimate with the weight vector λ̂,
the intensity of noise being δ1(ε). Our local goal is to verify that

R2 ≤ (1 + Θm(ε))2Φ2(f, ε), (6.46)

Θm(ε) ≥ 0 being an independent of f and converging to 0 as ε → +0 function. The
cases of f = 0 and/or λ = 0 are trivial; assume that f 6= 0, λ 6= 0, and let us bound
from above the ratio

θ2 = R2

Φ2(f,ε)
≤ max{θ2

d, θ
2
s},

θ2
d =

∑
j

(1−λ̂j)2f2j∑
j

(1−λj)2f2j
,

θ2
s =

δ21(ε)

ε2

∑
j

λ̂2j∑
j

λ2j

(6.47)
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By construction, for j < N`∗(ε) we have 0 ≤ λj ≤ λ̂j ≤ 1, while for j ≥ N`∗(ε) we

have λj < ρ(ε) and λ̂j = 0. Thus, we have

(1− λ̂j)2 ≤ (1− ρ(ε))−2(1− λj)2

for all j, whence
θ2
d ≤ (1− ρ(ε))−2. (6.48)

It remains to bound from above θ2
s ; the first ratio in the expression defining θ2

s does
not depend on f and tends to 1 as ε → +0 by (6.38.b), so that we may focus on
bounding the ratio

ϑ2
s =

∑
j
λ̂2
j∑

j
λ2
j

≤

N∑
j=1

λ̂2
j

N∑
j=1

λ2
j

, N = N`∗(ε).

Note that if the initial N -dimensional segment of λ̂ differs from that one of λ (this
is the only case we should consider), then the connection between these segments is
as follows. We can partition the range {1, ..., N} of values of index j in subsequent
groups I1, ..., Ip in such a way that

1. The first ν = ν(ε) = O (ρ−1(ε) ln ρ−1(ε)) of the groups are singletons: Ij = {j},
j ≤ ν, and λ̂j = λj for j ≤ ν;

2. For ν < l ≤ p, the group Il = {j | kl ≤ j < kl+1} contains dl indices, where
dl = b(1 + ρ(ε))lc, and λ̂j = λkl for j ∈ Il.

Let

Sν =
ν∑
j=1

λ2
j

[
=

ν∑
j=1

λ̂2
j

]
,

Sl =
∑
j∈Il

λ2
j , l = ν + 1, ..., p.

Note that for l ≥ ν + 2 we have

λ2
kl
≥ Sl−1

dl−1

(see (6.43)), and therefore

N∑
j=1

λ̂2
j = Sν +

p∑
l=ν+1

dlλ
2
kl

≤ Sν + dν+1λ
2
kν+1

+
p∑

l=ν+2
dld
−1
l−1Sl−1

≤
(

max
l≥ν+2

[dld
−1
l−1]

)(
Sν +

p∑
l=ν+1

Sl

)
+ dν+1λ

2
kν+1

≤
(

max
l≥ν+2

[dld
−1
l−1]

)(
N∑
j=1

λ2
j

)
+ dν+1λ

2
kν+1

,

whence

ϑ2
s ≤

(
max
l≥ν+2

[dld
−1
l−1]

)
+ dν+1λ

2
kν+1

/Sν . (6.49)
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When l ≥ ν + 2, we have

dl
dl−1

= b(1+ρ(ε))lc
b(1+ρ(ε))l−1c

≤ (1+ρ(ε))l

(1+ρ(ε))l−1−1

≤ (1 + ρ(ε))(1 + 2ρ(ε)) [since (1 + ρ(ε))ν ≥ ρ−1(ε)]

(6.50)

Besides this, Sν ≥ νλ2
kν+1

by (6.43), while dν+1 ≤ (1 + ρ(ε))ν+1, so that

dν+1λ
2
ν+1/S

ν ≤ (1 + ρ(ε))ν+1ν−1 ≤ Om(1)
1

ln ρ−1(ε)
(6.51)

(recall that ν = ν(ε) = O (ρ−1(ε) ln ρ−1(ε)) and ρ(ε) is small when ε is small).
Combining (6.47), (6.48), (6.49) – (6.51), we come to (6.46).
40. With (6.46) at hand, we are nearly done. Indeed, by origin of R we have

R`∗(δ1(ε), f) ≤ R

(see the definition of R` in “Accuracy analysis I”). Combining this observation, (6.46)
and (6.41), we come to the inequality

Rε(f̃ε, f) ≤ (1 + Θm(ε))Φ(f, ε) + δ2(ε)
√
K`∗(ε) + δ3(ε)

√
m,

whence, by (6.38.b, c),

Rε(f̃ε, f) ≤ (1 + Θm(ε))Φ(f, ε) +Om(1)
ε

ρ(ε)

[√
K`∗(ε) +

√
m
]
. (6.52)

For a given f , there are two possible cases:
(I): `∗ < m;
(II): `∗ = m.

In the case of (I) we have n ≥ N`∗+1(ε), whence, by (6.44),

Φ(f, ε) ≥ ερ(ε)
√
n ≥ ερ(ε)

√
N`∗+1(ε) ≥ Om(1)ερ(ε)Ln`∗(ε

−1)

(note that due to their origin, N`(ε) = O(Ln2
`−1(ε−1)) when ε→ 0). Therefore in the

case of (I) the ratio of the second right hand side term in (6.52) to the first one does
not exceed Om(1) times the quantity

√
K`∗ (ε)

ρ2(ε)Ln`∗ (ε−1)
≤ Om(1)

ρ−5/2(ε−1)
√

Ln`∗ (ε−1)

Ln`∗ (ε−1)
[we have used (6.37)]

≤ Om(1) Ln
5/12
m (ε−1)√
Ln`∗ (ε−1)

[see (6.33)]

≤ Om(1)Ln−1/6
m (ε−1) [since `∗ < m]

≡ Ωm(ε)→ 0, ε→ +0

Thus, if f is such that (I) is the case, then relation (6.52) implies that

Rε(f̃ε, f) ≤ (1 + γm(ε))Φ(f, ε) (6.53)

with independent of f function γm(ε) → 0, ε → +0. It remains to consider the case
when f is such that (II) is the case. Here the second right hand side term in (6.52) is

Om(1) ε
ρ(ε)

[√
K`∗(ε) +

√
m
]
≤ Om(1)ερ−3/2(ε)

√
Lnm(ε−1)

≤ Om(1)εLnm(ε−1) [see (6.33)].

Combining the latter relation with (6.53) and (6.52), we come to (6.32).
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6.4 Approximating the best of given estimates

We have considered two of our three aggregation problems – C, where we are interested
to mimic the best convex combination of a given family estimates, and L, where the
goal is to reproduce the best linear combination of the estimates from the family.
Now let us address the third problem. Thus, assume we are given a nested family
M = {f̂ jε (·)} ε>0

j=1,...,M(ε)
of estimates of signals f ∈ H, H being a separable Hilbert

space with an orthonormal basis {φi}, via observations (6.6). For every f ∈ H and
every ε > 0, let us denote by

RM(ε, f) = min
j≤M(ε)

Rε(f̂
j
ε , f) ≡ min

j≤M(ε)

(
E
{
‖ f − f̂ jε (yf,ε) ‖2

})1/2

the minimal, over the estimates from the family, risk of recovering f , the intensity of
noise being ε. We are interested to solve the following

Aggregation problem V. Given a nested familyM of estimation meth-
ods, find an estimation method with the risk, at every f ∈ H, “close” to
the risk RM(ε, f) of the best, with respect to f , estimate from the family.

A solution to the problem can be obtained by straightforward exploiting the aggre-
gation technique from Section 6.2, which now should be used in a “cascade” mode.
Namely, without loss of generality we may assume that M(ε), for every ε, is an integral
power of 2:

M(ε) = 2µ(ε)

and that µ(ε) is nonincreasing in ε > 0. What we intend to do is to split a given obser-
vation yf,ε into µ(δ0(ε))+1 independent observations yj = yf,δj(ε), j = 0, 1, ..., µ(δ0(ε)),
and to use y0 to build all 2µ(δ0(ε)) of the estimates from the family, let us call them
“estimates of generation 0”. We partition these estimates into pairs and use the ob-
servation y1 to approximate the closest to f linear combinations of estimates in every
of the resulting 2µ(ε)−1 pairs, thus coming to 2µ(δ0(ε))−1 estimates of “generation 1”.
Applying the same construction to estimates of generation 1 with y2 playing the role
of y1, we get 2µ(δ0(ε))−2 estimates of “generation 2”, and so on, until a single “estimate
of generation µ(δ0(ε))” is built; this estimate is the result of our aggregation routine.
The precise description of the routine is as follows:

Setup. We choose somehow a function δ(ε) > ε and set

δ̂(ε) =
√
µ(δ(ε))

εδ(ε)√
δ2(ε)− ε2

. (6.54)

Recovering routine f̃ε. 1) Given observation y = yf,ε of a signal f ∈ H,
we set

ε̂ = δ(ε)

and split y into µ(ε̂)+1 independent observations y0, y1, ..., yµ(ε̂), the noise
intensities being δ(ε) for y0 and δ̂(ε) for every one of the remaining y’s.
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Note that

1

δ2(ε)
+
µ(ε̂)

δ̂2(ε)
=

1

δ2(ε)
+
δ2(ε)− ε2

ε2δ2(ε)
=

1

ε2
,

so that the required splitting is possible.

2) We use y0 to build 2µ(ε̂) vectors f j0 ≡ f j0 (y0) = f̂ j
ε̂
(y0) ∈ H –

“estimates of generation 0”.
3) For ν = 1, ..., µ(ε̂), we perform the following operations.

Given 2Mν = 2µ(ε̂)−ν+1 “estimates of generation ν−1” – vec-
tors f jν−1 = f jν−1(y0, ..., yν−1) ∈ H – partition them into Mν pairs
P ν
` , ` = 1, ...,Mν . For every pair P ν

` = {f ν−1
` , gν−1

` }, we build an
orthonormal basis {h`,νκ }κ=1,2 in the linear span of the vectors
from the pair and use the observation yν to build estimates

zν,`κ = (f, hν,`κ ) + δ̂(ε)ξν,`κ , κ = 1, 2

with independent of each other and of y0, ..., yν−1 N (0, 1) ran-
dom noises ξν,`κ , κ = 1, 2.

We set
f `ν = zν,`1 h`,ν1 + zν,`2 h`,ν2 .

After all Mν pairs P ν
` are processed, Mν = 2µ(ε̂)−ν estimates f `ν of “gen-

eration ν” are built, and we either pass to the next step (if ν < µ(ε̂)),
increasing ν by one, or terminate (if ν = µ(ε̂)), the single estimate of
generation µ(ε̂) being the result f̃ε(y) of our aggregation routine.

Exactly the same reasoning which led us to (6.14) demonstrates that for every f ∈ H
and for every ν = 1, ..., µ(ε̂) and every ` = 1, ...,Mν it holds

E
{
‖ f − f `ν(y0, ..., yν) ‖2

}
≤ E

{
min

g∈Lin{P ν
`
}
‖ f − g ‖2

}
+ 2δ̂2(ε)

≤ min
g∈P ν

`

E
{
‖ f − g ‖2

}
+ 2δ̂2(ε),

while
E
{
‖ f − f j0 (y0) ‖2

}
≤ Rδ(ε)(f̂

j
ε , f), j = 1, ...,M(δ(ε)).

Combining these observations, we come to

E
{
‖ f − f̃ε ‖2

}
≤ min

j=1,...,M(δ(ε))
Rδ(ε)(f̂

j
δ(ε), f) + 2µ(δ(ε))δ̂2(ε).

Recalling the origin of δ̂(ε), we come to the following

Proposition 6.4.1 LetM = {f jε} ε>0
j=1,...,M(ε)

be a nested family of estimation methods,

M(ε) being nonincreasing in ε > 0. For every function δ(ε) > ε, the risk of the
associated with δ(·), according to the above construction, aggregated estimation method
{f̃ε}ε>0 satisfies the relation

Rε(f̃ε, f) ≤ RM(δ(ε), f) +O(1)
εδ(ε)√
δ2(ε)− ε2

lnM(ε) ∀(f ∈ H, ε > 0). (6.55)



6.4. APPROXIMATING THE BEST OF GIVEN ESTIMATES 147

In particular, we get a sufficient condition for “asymptotically efficient”, in the mini-
max sense, aggregation:

Corollary 6.4.1 Let F ⊂ H be a family of signals, and let M be the same nested
family of estimation methods as in Proposition 6.4.1. Assume that

I. The “minimax risk”

RM(ε, F ) = sup
f∈F

min
j=1,...,M(ε)

(
E
{
‖ f − f̂ jε ‖2

})1/2

associated with F,M is a “well-behaved” function of ε as ε→ 0: whenever a function
δ(ε) is such that δ(ε)/ε→ 1 as ε→ +0, one has

RM(δ(ε), F ) ≤ (1 + o(1))RM(ε, F ), ε→ +0;

II. The risk RM(ε, F ) satisfies the relation

ε lnM(ε) = o(1)RM(ε, F ), ε→ +0

(II in fact is an upper bound on the rate at which the number M(ε) of estimates to
be aggregated can grow as ε→ +0).

Under these assumptions, the estimation methods from the family M restricted
on the class of signals F admit “asymptotically efficient aggregation”: there exists an
estimation method {f̃ε}ε>0 such that

Rε(ε, F ) ≤ (1 + o(1))RM(ε, F ), ε→ +0.

To get the asymptotically efficient aggregation mentioned in the Corollary, it suffices
to implement the above construction with δ(ε)/ε approaching 1 as ε→ +0 so slowly
that

εδ(ε)√
δ2(ε)− ε2

lnM(ε) = o(1)RM(ε, F ), ε→ +0;

the possibility of such a choice of δ(·) is guaranteed by assumption II.
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Chapter 7

Estimating functionals, I

From now on we switch from the problem of estimating a nonparametric regression
function to the problem of estimating functional of such a function.

7.1 The problem

We continue to work within the bounds of the L2-theory and Gaussian white noise
model of observations. Geometrical setting of the generic problem we are interested
in is as follows:

We are given

• a real separable Hilbert space H with inner product (·, ·) and an
orthonormal basis {φi}∞i=1,

• a set Σ ⊂ H,

• a real-valued functional F defined in a neighbourhood of Σ.

A “signal” f ∈ Σ is observed in Gaussian white noise of intensity ε,
i.e., we are given a sequence of observations

yf,ε =
{
yf,εi ≡ (f, φi) + εξi

}
, (7.1)

{ξi}∞i=1 being a collection of independent N (0, 1) random variables (“the
noise”), and our goal is to estimate via these observations the value F (f)
of F at f .

As always, we will be interested in asymptotic, ε→ 0, results.

Recall that the model (7.1) is the geometric form of the standard model where signals
f are functions from L2[0, 1], and observation is the “functional observation”

yf (x) =
∫ x

0
f(s)ds+ εW (x), (7.2)

W (x) being the standard Wiener process; in this “functional language”, interesting
examples of functionals F are the Gateau functionals

F (f) =

1∫
0

G(x, f(x))dx (7.3)

149
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or

F (f) =

1∫
0

...

1∫
0

G(x1, ..., xk, f(x1), ..., f(xk))dx1...dxk. (7.4)

In this chapter we focus on the case of a smooth functional F . As we shall see, if
the parameters of smoothness of F “fit” the geometry of Σ, then F (f), f ∈ Σ, can
be estimated with “parametric convergence rate” O(ε), and, moreover, we can build
asymptotically efficient, uniformly on Σ, estimates.

7.1.1 Lower bounds and asymptotical efficiency

In order to understand what “asymptotical efficiency” should mean, the first step is
to find out what are limits of performance of an estimate. The answer can be easily
guessed: if F (f) = (f, ψ) is a continuous linear functional, so that

ψ =
∞∑
i=1

ψiφi, {ψi = (ψ, φi)}∞i=1 ∈ `2,

then seemingly the best way to estimate F (f) is to use the “plug-in” estimate

F̂ (y) =
∞∑
i=1

ψiy
f,ε
i = (f, ψ) + ε

∞∑
i=1

ψiξi

(the series in the right hand side converges in the mean square sense, so that the
estimate makes sense); the estimate is unbiased, and its variance clearly is ε2 ‖ ψ ‖2.
Now, if F is Frećhet differentiable in a neighbourhood of a signal f ∈ Σ, then we
have all reasons to expect that locally it is basically the same – to estimate F or the
linearized functional F̄ (g) = F̄ (f) + (F ′(f), g− f), so that the variance of an optimal
estimate in this neighbourhood should be close to ε2 ‖ F ′(f) ‖2. Our intuition turns
out to be true:

Theorem 7.1.1 [13] Let f̄ ∈ Σ and F be a functional defined on Σ. Assume that
(i) Σ is convex, and F is Gateau differentiable “along Σ” in a neighbourhood U of

f̄ in Σ: for every f ∈ U , there exists a vector F ′(f) ∈ H such that

lim
t→+0

F (f + t(g − f))− F (f)

t
= (F ′(f), g − f) ∀g ∈ Σ,

and assume that every one of the functions ψg(t) = (F ′(f̄ + t(g − f̄)), g − f̄), g ∈ Σ,
is continuous in a neighbourhood of the origin of the ray {t ≥ 0}

(ii) The “tangent cone” of Σ at f̄ – the set

T = {h ∈ H | ∃t > 0 : f̄ + th ∈ Σ}

– is dense in a half-space H+ = {h ∈ H | (ψ, h) ≥ 0} associated with certain ψ 6= 0.
Then the local, at f̄ , squared minimax risk of estimating F (f), f ∈ Σ, via obser-

vations (7.1) is at least ε2(1 + o(1)) ‖ F ′(f̄) ‖2:

lim
δ→+0

liminf
ε→+0

inf
F̂∈F

sup
f∈Σ,‖f−f̄‖≤δ

E
{
ε−2

[
F̂ (yf,ε)− F (f)

]2}
≥‖ F ′(f̄) ‖2, (7.5)
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where F is the family of all possible estimates (i.e., real-valued Borel functions F̂ (y)
on the space R∞ of real sequences1) and E is the expectation with respect to the noises
{ξi}.

In other words, for every fixed δ > 0 the squared minimax risk of estimating F (f)

in a δ-neighbourhood (in Σ) of f̄ is at least ε2
(
‖ F ′(f̄) ‖2 +o(1)

)
, ε→ +0.

Proof. Let d = F ′(F̄ ); there is nothing to prove is d = 0, so that we may assume
that d 6= 0. By (ii), either d, or −d is a limit of a sequence {hi ∈ T}; for the sake of
definiteness, assume that d = limi→∞ hi (the alternative case is completely similar).

Let us fix positive δ.
10 Let κ ∈ (0, 1/4). Since d is a limiting point of the set T , there exists a unit

vector h ∈ T such that (h, d) ≥‖ d ‖ (1 − κ). By definition of T , there exists a
segment ∆ = [0, r], with 0 < r < δ such that ft = f̄ + th ∈ Σ for all t ∈ ∆. Taking
into account (i) and decreasing, if necessary, the value of r, we may assume that the
function

α(t) = F (ft)

satisfies the condition

(1− 2κ) ‖ d ‖≤ α′(t) ≤ (1 + 2κ) ‖ d ‖, t ∈ ∆, (7.6)

whence the inverse function α−1(s) satisfies the relation

|α−1(s)− α−1(s′)| ≤ 1

(1− 2κ) ‖ d ‖
|s− s′|, α(0) ≤ s, s′ ≤ α(r). (7.7)

20. Now let us fix ε > 0, let F̂ be an arbitrary estimate from F , and let

ρ2 = sup
t∈∆
E
{[
F̂ (yft,ε)− F (ft)

]2}
be the squared minimax risk of estimating the value of F on the segment S = {ft}t∈∆

of signals. We claim that

ρ2 ≥
(
rε(1− 2κ) ‖ d ‖

r + 2ε

)2

, (7.8)

Postponing for a while the justification of our claim, let us derive from (7.8) the
required lower bound. Indeed, since F̂ is an arbitrary estimate and by construction
segment S is contained in Σ and in the δ-neighbourhood of f̂ , we get

inf
F̂∈F

sup
f∈Σ,‖f−f̄‖≤δ

E
{
ε−2

[
F̂ (yf,ε)− F (f)

]2}
≥ ε−2ρ2 =

(
r(1− 2κ) ‖ d ‖

r + 2ε

)2

,

whence

liminf
ε→+0

inf
F̂∈F

sup
f∈Σ,‖f−f̄‖≤δ

E
{
ε−2

[
F̂ (yf,ε)− F (f)

]2}
≥ (1− 2κ)2 ‖ d ‖2 .

The resulting inequality is valid for all δ, κ > 0, and (7.5) follows.

1) As always, R∞ is equipped with metric defining the Tikhonov topology
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30. It remains to verify (7.8). Assume, on contrary, that (7.8) is wrong: there
exists F̂ ∈ F and ε > 0 such that

sup
t∈∆
E
{[
F̂ (yft,ε)− F (ft)

]2}
<

(
rε(1− 2κ) ‖ d ‖

r + 2ε

)2

. (7.9)

30.1) Since F (ft), 0 ≤ t ≤ r, takes its values in the segment [α(0), α(r)], we may
assume that F̂ takes its values in the latter segment; indeed, if it is not the case, we
may pass from F̂ to the “truncated” estimate

F̃ (y) =


α(0), F̂ (y) < α(0)
F̂ (y), α(0) ≤ F̂ (y) ≤ α(r)
α(r), F̂ (y) > α(r)

;

when replacing F̂ with F̃ , we may only decrease the left hand side in (7.9), and the
truncated estimate takes its values in [α(0), α(r)].

30.2) Thus, we may assume that α(0) ≤ F̂ (·) ≤ α(r). Now let us set

t̂(y) = α−1(F̂ (y)).

Combining (7.9) and (7.7), we conclude that

∀t ∈ ∆ = [0, r] : E
{[
t̂(yft,ε)− t

]2}
<

r2ε2

(r + 2ε)2
. (7.10)

30.3) Without loss of generality we may assume that f̄ = 0; changing, if necessary,
our orthonormal basis in H, we may assume also that h is the first basic orth φ1

(recall that our observations have the same structure in every orthonormal basis).
Then ft = tφ1, and (7.10) says the following:

(*) There exists possibility to recover parameter t ∈ [0, r] from obser-
vations

y1 = t+ εξ1, y2 = εξ2, y3 = εξ3, ... (7.11)

with independent N (0, 1) random noises ξ1, ξ2, ... in such a way that the
variance of the recovering error, for every t ∈ [0, r], is < r2ε2

(r+2ε)2
.

Since observations y2, y3, ... impart no information on t, (*) simply says that

(**) Given that t ∈ [0, r], there exists possibility to recover the mean t
of N (t, ε2) random variable from a single realization of this variable with
the variance of the error, uniformly in t ∈ [0, r], less than r2ε2

(r+2ε)2
.

Formal reasoning corresponding to our “impart no information” arguments
is as follows: passing from the estimate t̂(y) to the estimate

t̃(y1) = Eξ2,ξ3,...
{
t̂(y1, ξ2, ξ3, ...)

}
,

we may only improve the variance of recovering t from observations (7.11) and

get an estimate which depends on y1 only.
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It remains to note that (**) is forbidden by the Kramer-Rao inequality. To be self-
contained, let us reproduce the corresponding reasoning for the simplest case we are
interested in.

Let t̂(t+εξ) be an estimate of t ∈ [0, r] via noisy observation t+ξ of t, ξ ∼ N (0, 1),
and let

(a) δ(t) = Eξ
{
t− t̂(t+ εξ)

}
=
∫

(t− t̂(s))p(t, s)ds,
p(t, s) = (ε

√
2π)−1 exp{−(s− t)2/(2ε2)},

(b) γ2(t) = Eξ
{[
t̂(t+ εξ)− t

]2)
=
∫

(t̂(s)− t)2p(t, s)ds

(7.12)

be the expectation and the variance of the estimation error; we are interested to bound
from below the quantity

γ2 ≡ sup
0≤t≤r

γ2(t).

In this bounding, we may assume that the estimate t̂ takes its values in [0, r] (cf.
the above “truncation” reasoning). When t̂ is bounded, the bias δ(t) is continuously
differentiable in [0, r], and from (7.12.a) we get

δ′(t) = 1−
∫

(t− t̂(s))p′t(t, s)ds

= 1−
∫ [

(t− t̂(s))
√
p(t, s)

]  p′t(t, s)√
p(t, s)

 ds
≥ 1−

(∫
(t− t̂(s))2p(t, s)ds

)1/2
(∫ (p′t(t, s))

2

p(t, s)
ds

)1/2

[Cauchy’s inequality]

= 1− ε−1

(∫
(t− t̂(s))2p(t, s)ds

)1/2

[direct computation]

= 1− ε−1γ(t)
≥ 1− ε−1γ

Integrating the resulting inequality from t = 0 to t = r and taking into account that
|δ(t)| ≤ γ(t) ≤ γ, we get

2γ ≥ δ(r)− δ(0) ≥ r(1− ε−1γ),

whence

γ2 ≥
(

rε

r + 2ε

)2

so that (**) indeed is impossible.

The lower bound on local minimax risk of estimating smooth functionals stated
by Theorem 7.1.1 motivates the following definition of an asymptotically efficient
estimation method:

Definition 7.1.1 Let Σ ⊂ H be a convex family of signals and F : Σ → R be a
functional such that for every f ∈ Σ there exists a vector F ′(f) ∈ H:

lim
t→+0

F (f + t(g − f))− F (f)

t
= (F ′(f), g − f) ∀f, g ∈ Σ.
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Assume also that linear combinations of elements of Σ are dense in H, so that F ′(f) is
uniquely defined by F, f . An estimation method {F̂ε(·) ∈ F}ε>0 is called asymptotically
efficient on Σ, if

limsup
ε→+0

sup
f∈Σ

[
ε−2E

{[
F̂ (yf,ε)− F (f)

]2}
− ‖ F ′(f) ‖2

]
≤ 0. (7.13)

E.g., we have seen that a continuous linear functional F (f) = (f, ψ) admits asymp-
totically efficient, on the entire H, estimation method. Such a functional is a simplest
– linear – polynomial on H. We shall see in a while that a polynomial of a degree > 1
also can be estimated in an asymptotically efficient, on every bounded subset of H,
fashion, provided that the polynomial is a Hilbert-Schmidt one. On the other hand,
it turns out that already the function F (f) =‖ f ‖2 cannot be estimated in an asymp-
totically efficient fashion on the entire unit ball. Thus, in order to be able to build
asymptotically efficient estimates of “smooth”, but not “very smooth” functionals,
we should restrict the class of signals Σ to be “not too massive”, similarly to what
we did when recovering the signals themselves. A very convenient way to control the
“massiveness” of Σ is to impose restrictions on the Kolmogorov diameters dk(Σ):

Definition 7.1.2 Let Σ ⊂ H and m be a positive integer. We say that the m-
dimensional Kolmogorov diameter dm(Σ) of Σ is ≤ δ, if there exists an m-dimensional
linear subspace Hm ⊂ H such that

∀f ∈ Σ : dist(f,Hm) ≡ min
f ′∈Hm

‖ f − f ′ ‖≤ δ. 2)

In what follows, we impose on Σ restrictions like

dm(Σ) ≤ Lm−β, m ≥ m0 [β > 0], (7.14)

i.e., say at which rate the “non-parametric” set of signals Σ can be approximated by
“m-parametric” sets – by the projections of Σ on appropriately chosen m-dimensional
subspaces of H. E.g., if Σ is an ellipsoid

Σ = {f ∈ H |
∞∑
i=1

(f, φi)
2

a2
i

≤ L2} [a1 ≥ a2 ≥ ..., ai → 0, i→∞] , (7.15)

then one clearly has
dm(Σ) ≤ Lam+1, m = 1, 2, ...

In particular, the Kolmogorov diameters of the “periodic part” of a Sobolev ball
Sk,21 (L) (same as the diameters of the ball itself) decrease as m−k (cf. (6.2)):

dm
(
Sk,21 (L)

)
≤ ckLm

−k, k = m+ 1,m+ 2, ...

Thus, (7.14) in typical applications is an a priori restriction on the smoothness of
signals we deal with.

2) The “canonical” definition of the Kolmogorov diameters deals with affine rather than linear
subspaces of H; note, however, that if there is an affine m-dimensional subspace H ′ of H such that
dist(f,H ′) ≤ δ ∀f ∈ Σ, there exists (m+1)-dimensional linear subspace of H with the same property;
thus, “up to shift by 1 in the dimension” (absolutely unimportant in what follows), we may speak
about approximation by linear, rather than affine, subspaces.
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The goal. In what follows we focus on the questions (a) what should be the re-
lations between the “degree of smoothness” of a functional F to be estimated and
the “asymptotical width” of Σ (i.e., the value of β in (7.15)) in order for F to ad-
mit an asymptotically efficient, on Σ, estimation method, and (b) how to build an
asymptotically efficient estimation method, provided that it exists.

To get a kind of preliminary orientation, let us start with the simplest case of a
once continuously differentiable functional.

7.2 The case of once continuously differentiable

functional

Consider the problem of estimating a functional F on a set of signals Σ and assume
that

A.1. Σ is a bounded subset of H, and the Kolmogorov diameters of Σ satisfy (7.14)
with certain a priori known β, L.

For the sake of definiteness, assume that Σ is contained in the unit ball

O = {f | ‖ f ‖≤ 1}

of H.

A.2. The functional F to be estimated is defined in the ball

O2ρ = {f | ‖ f ‖< 1 + 2ρ} [ρ > 0],

is continuously Fréchet differentiable in O2ρ, and its derivative F ′(·) is Hölder
continuous in O2ρ with exponent γ > 0 and constant L:

∀f, g ∈ O2ρ : ‖ F ′(f)− F ′(g) ‖≤ L ‖ f − g ‖γ . (7.16)

E.g., the Gateau functional (7.3) satisfies A.2, provided that the integrand
G(x, t) is continuously differentiable in t for almost all x ∈ [0, 1], is measurable
in x for every t and

G(·, 0) ∈ L1[0, 1],
G′t(x, 0) ∈ L2[0, 1],

‖ G′t(·, τ)−G′t(·, τ ′) ‖∞ ≤ C max [|τ − τ ′|, |τ − τ ′|γ] ∀τ, τ ′ ∈ R

Similarly, the Gateau functional (7.4) satisfies A.2, provided that

G(x1, ..., xk, t1, ..., tk) = G(x̄, t̄)

is continuously differentiable in t̄ for almost all x̄, is measurable in x̄ for all t̄
and

G(·, 0) ∈ L1([0, 1]k),
G′t̄(·, 0) ∈ L2([0, 1]k),

‖ G′t̄(·, τ̄)−G′t̄(·, τ̄ ′) ‖∞ ≤ C max [|τ̄ − τ̄ ′|, |τ̄ − τ̄ ′|γ] ∀τ̄ , τ̄ ′ ∈ Rk.
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We are about to establish the following result:

Theorem 7.2.1 Assume that A.1, A.2 are satisfied and that the parameters β and
γ are linked by the inequality

γ >
1

2β
. (7.17)

Then F admits asymptotically efficient on Σ estimation method.

Proof. We build explicitly the corresponding estimation method.

The idea of the construction is quite transparent. Given noise intensity ε > 0,
we choose an appropriate m = m(ε), find an m-dimensional linear subspace Hm such
that dist(f,Hm) ≤ Lm−β, and build the associated projection estimate f̂m of f . After
f̂m is built, we approximate F by the first order Taylor expansion of F at f̂m:

F (f) ≈ F (f̂m) + (F ′(f̂m), f − fm),

fm being the projection of f onto Hm, and estimate the linear part of this expansion
as a linear functional – just substituting, instead of f − fm, the observation of this
vector. A nice feature of this scheme is that the noises affecting the observation of
f − fm are independent of those affecting the estimate f̂m, which allows for easy
evaluation of the risk.

The construction is as follows.
10. We first choose the “order” m = m(ε) of the estimate f̂m from a very natural

desire to get an optimal in order nonparametric estimate of f ∈ Σ. To understand
what is this order, we use the quite familiar to us reasoning as follows. For a given m,
we build an m-dimensional subspace Hm in H such that the norm of the projection f⊥

of f ∈ Σ on the orthogonal complement to Hm (this norm is nothing but dist(f,Hm))
is guaranteed to be ≤ Lm−β, build an orthonormal basis h1, ..., hm in Hm and define
f̂m as

f̂m =
m∑
i=1

zihi,

where zi = (f, hi) + εηi, {ηi}mi=1 are independent N (0, 1) random variables, are the
estimates of the projections of f onto hi given by observation yf,ε. The squared risk
E
{
‖ f − f̂m ‖2

}
clearly can be bounded as

E
{
‖ f − f̂m ‖2

}
≤ mε2+ ‖ f⊥ ‖2≤ mε2 + L2m−2β, (7.18)

and to get an optimal in order estimate, we should balance the stochastic term mε2

and the deterministic term L2m−2β, i.e., to set

m = m(ε) = bε−
2

2β+1 c 3). (7.19)

After our choice of m(ε) is specified, we may assume – just to save notation – that
Hm is simply the linear span of the first basic orths φ1, ..., φm of the basis where the

3) In order to avoid messy expressions, in what follows we do not opimize the choice of parameters
with respect to the constant L involved in A.1, A.2.
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observations (7.1) are given. Indeed, we are working now with fixed ε (and therefore
– with fixed Hm(ε)) and are in our right to use whatever orthonormal basis we want,
updating the observations (without any change in their structure) accordingly.

20. Let f ∈ Σ be the observed signal, fm be its projection on the subspace spanned
by the first m = m(ε) basic orths φi, and f̂m be the corresponding projection estimate
of f :

f̂m = fm + ε
m∑
i=1

ηiφi.

In order to implement the outlined approximation-based scheme, we should ensure
that the “preliminary estimate” we use belongs to the domain of the functional F ,
which is not the case for some realizations of f̂m. This is, however, a minor difficulty:
since f ∈ Σ ⊂ O, we only improve the quality ‖ · − f ‖ of our estimate by projecting
f̂m on Oρ – by passing from f̂m to the estimate

f̃m =

{
f̂m, ‖ f̂m ‖≤ 1 + ρ
(1 + ρ) ‖ f̂m ‖−1 f̂m, ‖ f̂m ‖> 1 + ρ

.

The estimate f̃m is the one we actually use in the above approximation scheme.
Important for us properties of the estimate can be summarized as follows:

(a) For a given f ∈ Σ, the estimate f̃m depends on the collection ξm = {ξi}mi=1 of
the observations noises in (7.1) and does not depend on the sequence ξ∞m+1 =
{ξi}∞i=m+1 of the “remaining” noises;

(b) We have (from now on all C’s stand for different positive quantities depending
only on F and Σ and independent of ε and of a particular choice of f ∈ Σ):

(a) ‖ f̃m ‖ ≤ 1 + ρ

(b) ‖ f̃m − fm ‖ ≤ ‖ f̂m − fm ‖
(c) ‖ f − fm ‖ ≤ Cm−β(ε) ≤ Cε

2β
2β+1

(d) E
{
‖ fm − f̃m ‖2

}
= Eξm

{
‖ fm − f̃m ‖2

}
≤ Cε2m(ε)

≤ Cε
4β

2β+1

(7.20)

Note that (d) is given by (7.19) and the fact that ‖ f̃m − fm ‖≤‖ f̂m − fm ‖.
30. The estimate of F (f) we arrive at is

F̂ε ≡ F̂ε(y
f,ε) = F (f̃m) +

F ′(f̃m),
∞∑

i=m+1

yiφi

 , yi = yf,εi (7.21)

(of course, f̃m depends on observations yf,εi , i = 1, ...,m, and m = m(ε); to save
notation, we omit explicit indication of these dependencies).

Accuracy analysis. To evaluate the accuracy of the estimate we have built, let

R = F (f)− F (fm)− (F ′(fm), f − fm),

ζ = ε
∞∑

i=m+1
ηi[F

′(f̃m)]i [for g ∈ H, gi = (g, φi)]
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so that

F (f)− F̂ε = [F (fm) + (F ′(fm), f − fm) +R]−
[
F (f̃m) + (F ′(f̃m), f − fm) + ζ

]
= R +

{
F (fm)− F (f̃m)

}
1

+
{

(F ′(fm)− F ′(f̃m), f − fm)
}

2
− ζ

(7.22)
Observe that R is deterministic, { }1, { }2 depend only on ξm, while the conditional

expectations, ξm being fixed, of ζ and ζ2 are, respectively, 0 and ε2
∞∑

i=m+1
[F ′(f̃m)]2i .

Consequently,

E
{[
F (f)− F̂ε

]2}
= E

{[
R + F (fm)− F (f̃m) + (F ′(fm)− F ′(f̃m), f − fm)

]2}
+ε2E

{
∞∑

i=m+1
[F ′(f̃m)]2i

}
.

(7.23)
We claim that the following facts hold true:

A)
|R| ≤ o(1)ε (7.24)

From now on, o(1)’s stand for deterministic functions of ε (independent of a
particular choice of f ∈ Σ) tending to 0 as ε→ +0.

B)

E
{

[F (fm)− F (f̃m)]2
}
≤ ε2

m∑
i=1

[F ′(f)]2i + ε2o(1) (7.25)

C)

E
{

[(F ′(fm)− F ′(f̃m), f − fm)]2
}
≤ ε2o(1) (7.26)

D)

ε2E
{ ∞∑
i=m+1

[F ′(f̃m)]2i

}
≤ ε2

∞∑
i=m+1

[F ′(f)]2i + ε2o(1) (7.27)

Note that (7.23) combined with A) – D) clearly implies that

E
{[
F (f)− F̂ε

]2}
≤ ε2 ‖ F ′(f) ‖2 +ε2o(1) ∀f ∈ Σ,

i.e., that the estimate we have built is asymptotically efficient on Σ. Thus, all we need
is to verify A) – D)

Verifying A) We have

|R| ≤ C ‖ f − fm ‖1+γ [by A.2]
≤ C[m(ε)]−β(1+γ) [by A.1]

≤ Cε
2β(1+γ)
2β+1 [by (7.19)]

= εo(1) [by (7.17)]

as required in (7.24).
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Verifying B) We have

F (fm)− F (f̃m) =
[
F (fm) + (F ′(fm), f̃m − fm)− F (f̃m)

]
+
[
(F ′(fm), fm − f̂m)

]
+
[
(F ′(fm), f̂m − f̃m)

]
,

(7.28)
and in order to verify (7.25) it suffices to demonstrate that

(a) E
{[
F (fm) + (F ′(fm), f̃m − fm)− F (f̃m)

]2}
≤ ε2o(1)

(b) E
{[

(F ′(fm), fm − f̂m)
]2}

≤ ε2
m∑
i=1

[F ′(f)]2i + ε2o(1)

(c) E
{[

(F ′(fm), f̂m − f̃m)
]2}

≤ ε2o(1)

(7.29)

(7.29.a): We have

E
{[
F (fm) + (F ′(fm), f̃m − fm)− F (f̃m)

]2}
≤ E

{
C ‖ fm − f̃m ‖2(1+γ)

}
[by A.2]

≤ E
{
C ‖ fm − f̂m ‖2(1+γ)

}
[by (7.20.b)]

≤ E
{
C
[
ε2(1+γ)

m∑
i=1

ξ2
i

]1+γ
}

[since f̂m − fm = ε
m∑
i=1

ξi]

≤ C[ε2m(ε)]1+γ

≤ Cε
4β(1+γ)
2β+1

[by (7.19)]
≤ ε2o(1)

[by (7.17)]
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(7.29.b): We have

E
{[

(F ′(fm), fm − f̂m)
]2}

= E
{
ε2

[
m∑
i=1

[F ′(fm)]iξi

]2
}
[since f̂m − fm = ε

m∑
i=1

ξi]

= ε2
m∑
i=1

[F ′(fm)]2i

= ε2
m∑
i=1

[[F ′(f)]i + δi]
2 [δi = [F ′(fm)]i − [F ′(f)]i]

≤ ε2(1 + θ)
m∑
i=1

[F ′(f)]2i + ε2(1 + θ−1)
m∑
i=1

δ2
i ∀θ > 0

[since (a+ b)2 ≤ (1 + θ)a2 + (1 + θ−1)b2]

≤ ε2(1 + θ)
m∑
i=1

[F ′(f)]2i

+Cε2(1 + θ−1) ‖ f − fm ‖2γ

[by A.2]

≤ ε2(1 + θ)
m∑
i=1

[F ′(f)]2i + Cε2(1 + θ−1)ε
4βγ
2β+1

[by (7.20.c)]

≤ ε2(1 + o(1))
m∑
i=1

[F ′(f)]2i + ε2o(1)

[set θ = ε
2βγ
2β+1 ]

≤ ε2
m∑
i=1

[F ′(f)]2i + ε2o(1)

[by A.2]

(7.29.c): Observe first that for every q ≥ 1 one has

E
{
‖

m∑
i=1

ξiφi ‖2q

}
≤ C(q)mq. (7.30)

Consequently, for every q ≥ 1 and every θ ≥ 1 it holds

E
{
‖ f̃m − f̂m ‖q

}
≤

(
E
{
‖ f̃m − f̂m ‖2q

})1/2 (
Prob{f̂m 6= f̃m}

)1/2

≤ 2q
(
E
{
‖ f̂m − fm ‖2q

})1/2 (
Prob{‖ f̂m − fm ‖> ρ}

)1/2

[since ‖ f̃m − fm ‖≤‖ f̂m − fm ‖]

≤ C1(q)[ε2m]q/2
(

Prob{‖
m∑
i=1

ξiφi ‖≥ ρ/ε}
)1/2

[by (7.30)]
≤ C(q, θ)[ε2m]q/2+θ

[since E
{
‖

m∑
i=1

ξiφi ‖4θ

}
≤ C(4θ)m2θ by (7.30)

and therefore Prob{‖
m∑
i=1

ξiφi ‖> ρ/ε} ≤ C̄(θ)[ε2m]2θ]

Thus, we get

∀q, θ ≥ 1 : E
{
‖ f̃m − f̂m ‖q

}
≤ C(q, θ)[ε2m(ε)]q/2+θ. (7.31)
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We now have

E
{[

(F ′(fm), f̂m − f̃m)
]2}

≤ CE
{
‖ f̂m − f̃m ‖2

}
[by A.2]

≤ C(θ)[ε2m(ε)]1+θ ∀θ ≥ 1 [by (7.31)]

≤ C(θ)ε
4β(1+θ)
2β+1 ∀θ ≥ 1 [by (7.19)]

≤ ε2o(1) [choose θ appropriately]

Verifying C) We have

E
{

[(F ′(fm)− F ′(f̃m), f − fm)]2
}

≤ E
{
‖ F ′(fm)− F ′(f̃m) ‖2‖ f − fm ‖2

}
≤ E

{
C ‖ fm − f̃m ‖2γ m−2β(ε)

}
[by A.2 and (7.20.c)]

≤ Cε
4βγ
2β+1m−2β(ε) [by (7.20.d) and since γ ≤ 1]

≤ Cε2ε
4βγ−2
2β+1 [by (7.19)]

= ε2o(1) [by (7.17)]

Verifying D) We have

ε2E
{ ∞∑
i=m+1

[F ′(f̃m)]2i

}

≤ ε2E

(1 + θ)
∞∑

i=m+1

[F ′(f)]2i + (1 + θ−1)
∞∑

i=m+1

δ2
i

 ∀θ > 0

[δi = [F ′(f)]i − [F ′(f̃m)]i,
cf. verificaton of (7.29.b)]

≤ ε2(1 + θ)
∞∑

i=m+1

[F ′(f)]2i

+(1 + θ−1)ε2E
{
‖ F ′(f)− F ′(f̃m) ‖2

}
≤ ε2(1 + θ)

∞∑
i=m+1

[F ′(f)]2i + (1 + θ−1)ε2E
{
‖ f − f̃m ‖2γ

}
≤ ε2(1 + θ)

∞∑
i=m+1

[F ′(f)]2i + Cε2(1 + θ−1)ε
4βγ
2β+1

[by (7.20.c, d) and since γ ≤ 1]

≤ ε2(1 + o(1))
∞∑

i=m+1

[F ′(f)]2i + ε2o(1)

[set θ = ε
2βγ
2β+1 ]

= ε2
∞∑

i=m+1

[F ′(f)]2i + ε2o(1)

[by A.2]

The proof of Theorem 7.2.1 is completed.

7.2.1 Whether condition (7.2.2) is sharp?

We have seen that if the “asymptotical width of Σ” β (see A.1) and the “degree of
smoothness of F” γ are “properly linked”, namely, γ > 1

2β
(see (7.17)), then F admits
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an asymptotically efficient on Σ estimation method. A natural question is whether
the condition (7.17) is “definitive” (i.e., if it is violated, then it may happen that
F admits no asymptotically efficient estimation on Σ), or it is an “artifact” coming
from the particular estimation method we were dealing with. It turns out that (7.17)
indeed is “definitive”:

Theorem 7.2.2 Let β > 0, γ ∈ (0, 1] be such that

γ <
1

2β
. (7.32)

Then there exist Σ ⊂ O satisfying A.1 and a functional F : H → R satisfying A.2
on the entire space H such that F does not admit asymptotically efficient estimation
on Σ.

Proof. Let us set

Σ = {f ∈ H |
∞∑
i=1

i2β(f, φi)
2 ≤ 1}, (7.33)

so that Σ clearly satisfies A.1 (one can choose as Hm the linear span of the first m
basic orths φ1, ..., φm).

We are about to build a functional F which satisfies A.2 and does not admit
asymptotically efficient estimation on Σ.

The idea. Assume we are given a noise intensity ε > 0. Let us choose somehow
k = k(ε) and K = K(ε) = 2k(ε) distinct elements f0, ..., fK−1 ∈ Σ such that for
appropriately chosen ρ = ρ(ε) it holds:

(i) ‖ fi ‖= 8ρ ∀i;

(ii) ‖ fi − fj ‖> 2ρ whenever i 6= j.

Let Ψ(f) be a once for ever fixed smooth function on H which is equal to 1 at the
point f = 0 and is zero outside the unit ball, e.g.,

Ψ(f) = ψ(‖ f ‖2), (7.34)

where ψ is a C∞ function on the axis which is 1 at the origin and vanishes outside
[−1, 1]. Given an arbitrary collection ω = {ωi ∈ {−1; 1}}K−1

i=0 , let us associate with it
the functional

Ψω(f) =
K−1∑
i=0

ωiΨi(f), Ψi(f) = ρ1+γΨ(ρ−1(f − fi)). (7.35)

The structure of the functional is very transparent: every fi is associated with the
term ωiΨi(f) in Ψ; this term vanishes outside the centered at fi ball of radius ρ and
is equal to ωiρ

1+γ at the center fi of this ball. Due to the origin of ρ, the supports of
distinct terms have no points in common, so that

Ψω(fi) = ωiρ
1+γ i = 0, ..., K − 1. (7.36)
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Besides this, from the fact that the supports of distinct terms in Ψω are mutually
disjoint it is immediately seen that Ψω is C∞ on H and

‖ Ψ′ω(f)−Ψ′ω(g) ‖≤ C ‖ f − g ‖γ ∀f, g ∈ H (7.37)

with C depending on γ only.
We are about to demonstrate that with properly chosen k(ε), ρ(ε), at least one of

the 2K functionals Ψω(·) corresponding to all 2K collections of ωi = ±1 is “difficult
to evaluate” already on the set Fε = {f0, ..., fK−1}, provided that the intensity of
noises in (7.1) is ε. Namely, there exists a functional Ψ in the family such that no
estimate F̂ε is able to recover its values on Fε with squared risk ≤ ε2−δ, δ > 0 being
chosen appropriately. After this central fact will be established, we shall combine
the “difficult to estimate” functionals corresponding to different values of the noise
intensity ε in a single functional which is impossible to evaluate in an asymptotically
efficient (even in an order-efficient) way.

In order to prove that there exists a “difficult to estimate” functional of the type
Ψω, assume, on contrary, that all these functionals are easy to estimate. Note that we
can “encode” a signal f ∈ Fε = {f0, ..., fK−1} by the values of k = log2K functionals
from our family, namely, as follows. Let I`, ` = 1, ..., k, be the set of indices i =
0, ..., K − 1 = 2k − 1 such that the `-th binary digit in the binary representation of i
is 1, and let Ψ`(·) be the functional Ψω(·) corresponding to the following choice of ω:

ωi =
{

1, i ∈ I`
−1, i 6∈ I`

In other words, the value of the functional Ψ`(·) at fi “says” what is the `-th binary
digit of i: if it is 1, then Ψ`(fi) = ρ1+γ, and if it is 0, then Ψ`(fi) = −ρ1+γ. It follows
that the collection of values of k functionals Ψ1,Ψ2, ...,Ψk at every f ∈ Fε allows to
identify f .

Now, if all k functionals Ψ`, ` = 1, ..., k, are “easy to estimate” via observations
(7.1), we can use their “good” estimates in order to recover a signal f (known to
belong to Fε) from observations (7.1), since the collection of values of our functionals
at f ∈ Fε identifies f . On the other hand, we know from the Fano inequality what
in fact are our abilities to recover signals from Fε from observations (7.1); if these
“actual abilities” are weaker than those offered by the outlined recovering routine, we
may be sure that the “starting point” in developing this routine – the assumption
that every one of the functionals Ψ`, ` = 1, ..., k, is easy to estimate on Fε – is false,
so that one of these functionals is difficult to estimate, and this is exactly what we
need.

The implementation of the above plan is as follows.
10. Let us fix β′ such that

(a) β′ < β
(b) 2βγ < 1 + 2β′ − 2β

(7.38)

(this is possible since 2βγ < 1).
20. Let us fix ε > 0 and set

k = k(ε) = bε−
2

1+2β′ c. (7.39)
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Figure 7.1: Three functionals “encoding” 8 = 23 signals.
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In the sequel we assume that ε is so small that k(ε) ≥ 7.
30. The set Σ given by (7.33) contains the centered at the origin k-dimensional

disk of the radius r = k−β. Since m-dimensional unit sphere contains a set of 2m

points with pairwise distances at least 1/44), we conclude that for

ρ = ρ(ε) =
1

8
k−β(ε) (7.40)

there exist K = 2k signals fi ∈ Σ satisfying conditions (i) and (ii) from the previous
item. Let Ψ`, ` = 1, ..., k, be the functionals associated with Fε = {f0, ..., fK−1} by
the construction from the previous item. Let

δk(ε) = max
`=1,...,k

inf
F̂ε

max
i=0,...,K−1

E
{[
F̂ε(y

fi,ε)−Ψ`(fi)
]2}

Our central auxiliary results is as follows:

Lemma 7.2.1 For all small enough values of ε one has

δk(ε) ≥
1

128
ρ2+2γ(ε) ≥ Cε

4β(1+γ)

2β′+1 (7.41)

with positive C > 0.

Proof. Assume that (7.41) does not hold, so that

δk(ε) <
1

128
ρ2+2γ(ε) (7.42)

Let F̂ `
ε , ` = 1, ..., k be estimates such that

E
{[
F̂ `
ε (yfi,ε)−Ψ`(fi)

]2}
≤ 2δk(ε), ` = 1, ..., k, i = 0, ..., K − 1. (7.43)

Let
m = b10 ln kc.

Consider K = 2k hypotheses Hi on the distribution of a sample Y of m observations
y(1), ..., y(m); hypotheses Hi states that Y is a sample of m independent observations
(7.1) associated with the signal fi. Let us look at the following procedure for distin-
guishing between these hypotheses:

4To see this, note that if X = {xi}Ni=1 is the maximal subset of the unit sphere in Rm such that
the pairwise distances between the points of the set are > 1/4, then N “spherical hats” {x ∈ Rm | ‖
x ‖= 1, ‖ x− xi ‖≤ 1

4} cover the entire sphere. On the other hand, the ratio of the “area” of such a
hat and the one of the sphere is

2 arcsin(1/8)∫
0

sinm−2(s)ds

2

π/2∫
0

sinm−2(s)ds

≤=

sin(2 arcsin(1/8))∫
0

tm−2(1− t2)−1/2dt

1∫
0

tm−2(1− t2)−1/2dt

≤ (m−1) sinm−2(2 arcsin(1/8))
cos(2 arcsin(1/8)) ≤ 2−m,m ≥ 7,

so that N ≥ 2m for m ≥ 7.
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Given Y = {y(1), ..., y(m)}, we for every ` = 1, ..., k build m reals F`j =
F̂ `
ε (y(j)). If more than one half of these reals are positive, we set b` = 1,

otherwise we set b` = 0. After b1,..., bk are built, we treat them as the
binary digits of (uniquely defined) integer i, 0 ≤ i ≤ 2k− 1 and claim that
Y is given by the hypotheses Hi.

Let us evaluate the probability θ to reject a particular hypotheses Hi when it is true.
If for every ` = 1, ..., k in the sequence {F`j}mj=1 more than one half of the entries are
of the same sign as Ψ`(fi), then b` will be exactly the `th binary digit b`(i) of i, and
the hypotheses Hi will be accepted. Thus, if Hi is not accepted, it means that there
exists ` such that among the entries of the sequence {F`j}mj=1 at least one half is of the
sign opposite to that one of Ψ`(fi). The probability that it is the case for a particular
value of ` is at most the probability that in a sequence of m independent identically
distributed random variables ζj = F̂ `

ε (y(j)) − Ψ`(fi) at least one half of the elements
is in absolute value ≥ ρ1+γ(ε). On the other hand, by (7.43) we have

E
{
ζ2
j

}
≤ 2δk(ε),

whence

Prob
{
|ζj| ≥ ρ1+γ(ε)

}
≤

√
2δk(ε)

ρ1+γ(ε)
<

1

8

(see (7.42)), so that

ProbHi {b` 6= b`(i)} ≤
∑

m/2≤j≤m
Cj
m(1/8)j(7/8)m−j ≤ 2−m.

It follows that

ProbHi {∃` ≤ k : b` 6= b`(i)} ≤ k2−m ≤ 1

4

(we have taken into account the origin of m). Thus, for every i = 0, ..., K − 1 the
probability to reject the hypotheses Hi when it is true is at most 1/4. On the other
hand, the pairwise Kullback distances between the distributions of y(j) associated with
hypotheses H0, ...,HK−1 clearly do not exceed

K =
1

2ε2
max

i,j=0,...,K−1
‖ fi − fj ‖2≤ 128k−2β

ε2

(we have taken into account property (i) from the previous item). Applying the Fano
inequality (1.27) and recalling that m ≤ 10 ln k(ε) and K = 2k(ε), we get

1280k−2β(ε) ln k(ε)

ε2
≥ 1

4
ln(2k(ε) − 1)− ln 2,

In view of (7.39) and (7.38.a), the concluding inequality fails to be true for all small
enough ε > 0.

40. We have seen that for all small enough values of ε > 0 there exist functionals
Ψ(ε) with the following properties:

A) Ψ(ε) is continuously differentiable on the entire H, and the derivative of the
functional is Hölder continuous with exponent γ and constant independent of ε;
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B) Ψ(ε) is zero outside the ρ(ε)-neighbourhood Uε = {f ∈ H | 7ρ(ε) ≤‖ f ‖≤
9ρ(ε)} of the sphere {f | ‖ f ‖= 8ρ(ε)}, where

ρ(ε) =
1

8

(
bε−

2
2β′+1 c

)−β
;

C) There exists Fε ⊂ Σ ∩ Uε such that

inf
F̂ε

sup
f∈Fε
E
{[
F̂ε(y

f,ε)−Ψ(ε)(f)
]2}
≥ Cε

4β(1+γ)

2β′+1

with some positive C independent of ε.

Note that property C) clearly is preserved under arbitrary modification of Ψ(ε) which
does not vary the functional in Uε.

Now let us choose a decreasing sequence of positive reals εi which converges to 0
so fast that the “outer boundary” of Uεi+1

is inside the “inner boundary” of Uεi (see
B)), and let us set

Ψ(f) =
∞∑
i=1

Ψ(εi)(f);

note that Ψ is well-defined, since at every point f at most one of the terms of the right
hand side series differs from 0. Moreover, from A) combined with the fact that {Uεi}
are mutually disjoint it follows that Ψ satisfies A.2. We claim that the functional Ψ
cannot be evaluated ε2-consistently on Σ, which is immediate: since Ψ coincides with
Ψ(εi) in Uεi , from C) and the remark accompanying this statement it follows that

inf
F̂εi

sup
f∈Σ

ε−2
i E

{[
F̂εi(y

f,εi)−Ψ(f)
]2}
≥ Cε

2 2β−2β′−1+2βγ
2β′+1

i →∞, i→∞

(see (7.38.b)), as claimed.

7.3 Increasing smoothness of F

As we have seen, the sharp link between the “asymptotical width” β of the set of
signals Σ and the “degree of smoothness” γ of the functional F we intend to estimate
in an asymptotically efficient on Σ fashion is given by the inequality γ > 1

2β
. It follows

that the “wider” is Σ (the less is β in A.1), the more smooth should be F . Note
that the outlined tradeoff is possible in a restricted range of values of β only: since
γ ≤ 1, the “width” parameter β should be > 1/2. If we are interested to work with
“wider” signal sets – those satisfying A.1 with β ≤ 1/2 – we should impose stronger
requirements on the degree of smoothness of F and switch from the estimates based
on the first-order approximation of F to those based on higher-order approximations.
The general scheme of the associated estimates is quite transparent: in order to
estimate the value of a k ≥ 1 times differentiable functional F via observations (7.1)
of the argument f , we choose somehow m = m(ε), ε being the noise intensity, build
an orthonormal basis where signals from Σ can be approximated as tight as possible
by their order m projection estimates f̂m and write

F (f) ≈
k∑
`=0

1

`!
D`F (f̂m)[f − fm]`, (7.44)
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where fm is the projection of f on the linear span of the first m basic orths,

D`F (f)[h1, ..., h`] =
∂`

∂t1∂t2...∂t`

∣∣∣∣∣
t=0

F (f + t1h1 + ...+ t`h`)

is the value of `-th differential of F taken at f along the set of directions h1, ..., h`,
and

D`F (f)[h]` = D`F (f)[h, ..., h]

is the `-th derivative of F taken at f in a direction h. In order to estimate F (f),
we use the observations of the first m coordinates of f in our basis to build f̂m and
therefore – to build the polynomials of f − fm in the right hand side of (7.44). After
these polynomials are built, we use the observations of the remaining coordinates of
f (i.e., those of the coordinates of f − fm) in order to estimate the right hand side in
(7.44). Note that the estimate we dealt with in the previous section is given by the
outlined construction as applied with k = 1.

As we shall see in a while, passing from first-order local approximations of F to
higher-order approximations allows to get “sharp” tradeoff between the “asymptotical
width” of Σ and the degree of smoothness of F in the entire range β > 0 of the values
of the width parameter. However, the implementation of this scheme heavily depends
on whether k ≤ 2 or k ≥ 3; in the second case, a completely new curious phenomenon
occurs. We postpone the case of k ≥ 3 till the next chapter, and are about to complete
the current one with considering the case of k = 2 (which is quite similar to the case
of k = 1 we are already acquainted with).

7.3.1 The case of twice continuously differentiable functional

We are about to replace the assumption A.2 with

A.3. The functional F to be estimated is defined in the ball

O2ρ = {f | ‖ f ‖< 1 + 2ρ} [ρ > 0],

is twice continuously Fréchet differentiable inO2ρ, and its second derivative F ′′(·)
(which is a symmetric bounded linear operator on H) is Hölder continuous in
O2ρ with exponent γ > 0 and constant L:

∀f, g ∈ O2ρ : ‖ F ′′(f)− F ′′(g) ‖≤ L ‖ f − g ‖γ; (7.45)

here for a bounded linear operator A on H ‖ A ‖ is the operator norm of A:

‖ A ‖= sup{‖ Ah ‖| ‖ h ‖≤ 1}.

Note that the Gateau functional (7.3) with twice differentiable in f integrand
G(x, t) does not satisfy A.3, except the case when G(x, t) is quadratic in t
for almost all x and this integrand defines a continuous quadratic form on H
(to this end G(·, 0) should belong to L1[0, 1], G′t(·, 0) should belong to L2[0, 1]
and G′′ff (·, 0) should belong to L∞[0, 1]). Similarly, in order to satisfy A.3, the
Gateau functional (7.4) should have quadratic with respect to every ti integrand
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G(x1, ..., xk, t1, ..., tk), the coefficient at t2i depending on the x-variables only; an
interesting example of this type is a “homogeneous Gateau polynomial”

F (f) =
∫ 1

0
...
∫ 1

0
G(x1, ..., xk)f(x1)...f(xk)dx1...dxk (7.46)

with square summable kernel G(x1, ..., xk).

We are about to prove the following extension of Theorem 7.2.1:

Theorem 7.3.1 Let assumptions A.1, A.3 be satisfied, and let

γ >
1

2β
− 1. (7.47)

Then F admits an asymptotically efficient on Σ estimation method.

Proof. Let us build the estimation method as follows.

Setup. Given noise intensity ε < 0.1, we set

m = m(ε) = bε−
2

2β+1 c,
M = M(ε) = b 1

ε2 ln(1/ε)
c; (7.48)

note that M > 2m, provided that ε is small enough (as it is assumed in the sequel).
According to A.1, we may find m-dimensional and (M−m)-dimensional subspaces

Hm, HM−m in H in such a way that

dist(f,Hm) ≤ Cm−β, dist(f,HM−m) ≤ CM−β ∀f ∈ Σ

(as above, C’s stand for positive quantities depending on the data in A.1, A.3 only
and independent of ε and of a particular choice of f ∈ Σ). It follows that we may
choose an orthonormal basis in H in such a way that Hm is the linear span of the first
m vectors of the basis, while Hm + HM−m is contained in the linear span of the first
M vectors from the basis; without loss of generality, we may assume that this basis is
our original basis {φi}∞i=1. Denoting by f ` the projection of f ∈ H on the linear span
of the first ` vectors of the basis, we therefore get

‖ f − f ` ‖≤ C`−β, ` = m and ` = M. (7.49)

Now, by A.1 the closure of Σ is a compact set, and since by A.3 F ′ is Lipschitz
continuous on cl Σ, the image of cl Σ under the mapping f 7→ F ′(f) also is a compact
set. Consequently, the quantities

‖ f − fN ‖, ‖ F ′(f)− [F ′(f)]N ‖

converge to 0 as N → ∞ uniformly in f ∈ Σ. Since by A.3 both F and F ′ are
Lipschitz continuous on Σ, there exists N = N(ε) > M(ε) such that

∀f ∈ Σ : ‖ F (f)− F (fN) ‖≤ ε4, ‖ F ′(f)− [F ′(fN)]N ‖≤ ε4. (7.50)
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The estimate F̂ε of F via observations (7.1) is as follows.
1) We use the observations yf,εi , i ≤ m(ε), to build the projection estimate

f̂m =
m∑
i=1

yf,εi φi = fm + ε
m∑
i=1

ξiφi (7.51)

and then “correct” it to get the estimate

f̃m =

{
f̂m, ‖ f̂m ‖≤ 1 + ρ
(1 + ρ) ‖ f̂ ‖−1

m f̂m, ‖ f̂m ‖> 1 + ρ
,

exactly as in the construction used to prove Theorem 5.3.1; in particular, we ensure
(7.20) and (7.31).

2) In what follows, f ∈ Σ, y stands for the observation yf,ε and ξ is the corre-
sponding sequence of noises. For a pair of nonnegative integers p, q with p ≤ q we
set

f qp =
q∑
i=p

(f, φi)φi,

ξqp =
q∑
i=p

ξiφi,

yqp =
q∑
i=p

yiφi = f qp + ε
q∑
i=p

ξiφi = f qp + εξqp;

We write f q1 , yq1, ξq1 simply as f q, yq, ξq.
Our estimate is

F̂ε = F (f̃m) + (F ′(f̃m), yNm+1) + 1
2
(F ′′(f̃m)yMm+1, y

N
m+1 + yNM+1)− ε2

2

M∑
i=1

F ′′ii(f̃m),

[m = m(ε),M = M(ε), see (7.48); N = N(ε), see (7.50)]
(7.52)

where F ′′ij(f̃m) are the entries of the matrix of the operator F ′′(f̃m) in the basis {φi}.

The origin of the estimate is as follows. It is more convenient to think
that we are estimating F (fN) rather than F (f) – these two quantities, in
view of (7.50), differ from each other by no more than ε4, while the rate
of convergence we are interested to get is O(ε); at the same time, when
estimating F (fN), we should not bother about convergence of infinite
series. Now, we have

F (fN) ≈ F (fM) + (F ′(fM), fNM+1),
F (fM) ≈ F (fm) + (F ′(fm), fMm+1) + 1

2
(F ′′(fm)fMm+1, f

M
m+1),

F ′(fM) ≈ F ′(fm) + F ′′(fm)fMm+1;

combining these approximations, we come to

F (fN) ≈
[
F (fm) +

(
F ′(fm), fMm+1

)
+ 1

2

(
F ′′(fm)fMm+1, f

M
m+1

)]
+
(
F ′(fm) + F ′′(fm)fMm+1, f

N
M+1

)
= F (fm) +

(
F ′(fm), fNm+1

)
+ 1

2

(
F ′′(fm)fMm+1, f

N
m+1 + fNM+1

)
.

(7.53)
Our concluding step is to replace in the resulting approximation the value
and the derivatives of F at fm with the value and derivatives at f̃m and
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the vectors f qp with their observations yqp. We should, however, take care
of suppressing the ε2-terms in the bias resulting from this substitution.
There are two sources of ε2-terms in the bias:

1) When replacing F (fm) with F (f̃m), the resulting error is, approxi-
mately,

(F ′(fm), f̂m − fm) +
1

2
(F ′′(fm)(f̂m − fm), f̂m − fm)

(recall that f̃m and f̂m coincide with probability close to 1); a good ap-
proximation to the expectation of this error is

ε2

2

m∑
i=1

F ′′ii(f
m) ≈ ε2

2

m∑
i=1

F ′′ii(f̃
m);

2) When replacing f qp with yqp, the ε2-terms in the expectation of the
resulting error are the same as in the expectation of

1

2

F ′′(fm)
M∑

i=m+1

ξiφi,
N∑

i=m+1

ξiφi +
N∑

i=M+1

ξiφi

 ,
i.e., their sum is

ε2

2

M∑
i=m+1

F ′′ii(f
m) ≈ ε2

2

M∑
i=m+1

F ′′ii(f̃m)

Thus, a natural way to convert approximation (7.53) into an estimate of
F (fN) is to plug in the right hand side f̃m instead of fm and yqp instead
of f qp , subtracting simultaneously the principal term of the bias, which is

ε2

2

M∑
i=1

F ′′ii(f̃m); the resulting estimate is exactly (7.52).

Accuracy analysis. Note that for small enough values of ε, all f ∈ Σ and all
realizations of observation noise the points f̃m + fNm+1 and f̃m belong to O2ρ. Indeed,
the latter point, by construction, belongs to Oρ, while ‖ fNm+1 ‖≤ Cm−β(ε) by (7.49),
so that ‖ fNm+1 < ρ, provided that ε is small.

Setting

G = F (f̃m) + (F ′(f̃m), fNm+1) +
1

2
(F ′′(f̃m)fNm+1, f

N
m+1), (7.54)

we have

F̂ε − F (fN) = G− F (f̃m + fNm+1)︸ ︷︷ ︸
A

+ F̂ε +
ε2

2

m∑
i=1

F ′′ii(f̃m)−G︸ ︷︷ ︸
B

+F (f̃m + fNm+1)− F (fN)− ε2

2

m∑
i=1

F ′′ii(f̃m)︸ ︷︷ ︸
D

(7.55)

As it was already explained, A is well-defined for small enough values of ε, and in the
sequel we assume that ε meets this requirement.
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We should prove that for all f ∈ Σ we have

E
{[
F̂ε − F (f)

]2}
≤ ε2 ‖ F ′(f) ‖2 +ε2o(1);

from now on, all o(1) stand for deterministic functions of ε independent of f ∈ Σ and
converging to 0 as ε→ +0. In view of (7.50), in fact we should verify that

E
{[
F̂ε − F (fN)

]2}
≤ ε2 ‖ F ′(f) ‖2 +ε2o(1),

or, which is the same in view of (7.55), that

E
{

(A+B + C)2
}
≤ ε2 ‖ F ′(f) ‖2 +ε2o(1) (7.56)

We claim that

A)
|A| ≤ εo(1) (7.57)

B)

(a) |E {B|ξm}| ≤ o(1)ε

(b) E {B2|ξm} ≤ ε2
N∑

i=m+1
[F ′(f̃m)]2i + ε2o(1) [for g ∈ H, gi = (g, φi)]

(7.58)
here E {·|ξm} is the conditional expectation, the noises ξm = (ξ1, ..., ξm) being
fixed;

C)

E
{
D2
}
≤ ε2

m∑
i=1

[F ′(fN)]2i + ε2o(1) (7.59)

D)

E


N∑

i=m+1

[F ′(f̃m)]2i

 ≤
N∑

i=m+1

[F ′(fN)]2i + o(1). (7.60)
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Let us check that A) – D) imply (7.56). Indeed, we have

E {(A+B +D)2}
≤ (1 + o(1))E {(B +D)2}+ ε2o(1)

[by A)]
≤ (1 + o(1)) [E {B2}+ 2Eξm {DE {B|ξm}}+ E {D2}] + ε2o(1)

[since D depends on ξm only]

≤ (1 + o(1))

{
ε2

[
Eξm

{
N∑

i=m+1
[F ′(f̃m)]2i

}
+ o(1)

]
+ o(1)εEξm {|D|}+ E {D2}

}
+ε2o(1)

[by B)]

≤ (1 + o(1))

{
ε2Eξm

{
N∑

i=m+1
[F ′(f̃m)]2i

}
+ o(1)ε

√
Eξm {D2}+ E {D2}

}
+ ε2o(1)

≤ (1 + o(1))

{
ε2Eξm

{
N∑

i=m+1
[F ′(f̃m)]2i

}
+ ε2o(1) + ε2

m∑
i=1

[F ′(fN)]2i

}
+ ε2o(1)

[by C)]

≤ ε2
N∑
i=1

[F ′(fN)]2i + ε2o(1)

[by D)]
= ε2 ‖ F ′(f) ‖2 +ε2o(1)

[by (7.50)]

It remains to verify A) – D)
Verifying A) We have

|A| = |G− F (f̃m + fNm+1)|
=

∣∣∣F (f̃m) + (F ′(f̃m), fNm+1) + 1
2
(F ′′(f̃m)fNm+1, f

N
m+1)− F (f̃m + fNm+1)

∣∣∣
[origin of G]

≤ C ‖ fNm+1 ‖2+γ

[by A.3]
≤ Cm−β(2+γ)(ε)

[by (7.49)]

≤ Cε
2β(2+γ)
2β+1

≤ εo(1)
[by (7.47)]
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Verifying B) We have

B = F̂ε + ε2

2

m∑
i=1

F ′′ii(f̃m)−G

= F (f̃m) + (F ′(f̃m), yNm+1) + 1
2
(F ′′(f̃m)yMm+1, y

N
M+1 + yNm+1)− ε2

2

M∑
i=1

F ′′ii(f̃m)

−F (f̃m)− (F ′(f̃m), fNm+1)− 1
2
(F ′′(f̃m)fNm+1, f

N
m+1)

= ε(F ′(f̃m), ξNm+1)︸ ︷︷ ︸
B1

+
ε2

2

(F ′′(f̃m)ξMm+1, ξ
M
m+1)−

M∑
i=m+1

F ′′ii(f̃m)


︸ ︷︷ ︸

B2

− 1

2
(F ′′(f̃m)fNM+1, f

N
M+1)︸ ︷︷ ︸

B3

+
ε

2
(F ′′(f̃m)fMm+1, ξ

N
M+1)︸ ︷︷ ︸

B4

+
ε

2
(F ′′(f̃m)fMm+1, ξ

N
m+1)︸ ︷︷ ︸

B5

+
ε

2
(F ′′(f̃m)ξMm+1, f

N
M+1)︸ ︷︷ ︸

B6

+
ε

2
(F ′′(f̃m)ξMm+1, f

N
m+1)︸ ︷︷ ︸

B7

+ ε2(F ′′(f̃m)ξMm+1, ξ
N
M+1)︸ ︷︷ ︸

B8

(7.61)
(7.58.a): Among the terms B1 – B8 in (7.61), the only one with nonzero conditional,
ξm fixed, expectation is B3, so that

|E {B|ξm}| =
∣∣∣(F ′′(f̃m)fNM+1, f

N
M+1)

∣∣∣
≤ C ‖ fNM+1 ‖2 [by A.3]
≤ CM−2β(ε) [by (7.49)]

≤ C
(
ε
√

ln(1/ε)
)4β

[by (7.48)]

= εo(1) [since β > 1/4 by (7.47)]

(7.58.b): It suffices to demonstrate that

E
{
B2

1 |ξm
}

= ε2
N∑

i=m+1

[F ′(f̃m)]2i (7.62)

(which is evident) and that

E
{
B2
` |ξm

}
≤ ε2o(1), ` = 2, 3, ..., 8. (7.63)

(7.63) for ` = 2: We have

E {B2
2 |ξm} = ε4

4
E


[
(F ′′(f̃m)ξMm+1, ξ

M
m+1)−

M∑
i=m+1

F ′′ii(f̃m)

]2

|ξm


= ε4

4
E


[

M∑
i,j=m+1

F ′′ij(f̃m)(ξiξj − δij)
]2

|ξm


= ε4

4

M∑
i,j=m+1

[F ′′ij(f̃m)]2(2− δij)E {(ξiξj − δij)2}

≤ Cε4M

[since ‖ F ′′(f̃m) ‖≤ C by A.3, whence
∑
j

[F ′′ij(f̃m)]2 ≤ C ∀i]

≤ ε2o(1)
[by (7.48)]
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(7.63) for ` = 3: We have

E {B2
3 |ξm} ≤ C ‖ fNM+1 ‖4 [by A.3]

≤ CM−4β(ε) [by (7.49)]

≤ C (ε2 ln(1/ε))
4β

[by (7.49)]
≤ ε2o(1) [since 4β > 1 due to (7.47) combined with γ ≤ 1]

(7.63) for ` = 4: We have

E {B2
4 |ξm} ≤ ε2

4
‖ F ′′(f̃m)fMm+1 ‖2

≤ C ε2

4
‖ fMm+1 ‖2 [by A.3]

= ε2o(1) [by (7.49)]

(7.63) for ` = 5, 6, 7: completely similar to the case of ` = 4.
(7.63) for ` = 8: We have

E {B2
8 |ξm} ≤ ε4E

{
‖ F ′′(f̃m)ξMm+1 ‖2 |ξm

}
[since ξMm+1 is independent of ξNM+1]

≤ Cε4E
{
‖ ξMm+1 ‖2

}
[by A.3]

= Cε4M
≤ ε2o(1) [by (7.48)]

B) is proved.
Verifying C) We have

D

= F (f̃m + fNm+1)− F (fN )− ε2

2

m∑
i=1

F ′′ii(f̃m)

= (F ′(fN ), f̂m − fm)︸ ︷︷ ︸
D1

+ (F ′(fN ), f̃m − f̂m)︸ ︷︷ ︸
D2

+F (f̃m + fNm+1)− F (fN )− (F ′(fN ), f̃m − fm)− 1

2

(
F ′′(fN )(f̃m − fm), f̃m − fm

)
︸ ︷︷ ︸

D3

+
1

2

[(
F ′′(fN )(f̃m − fm), f̃m − fm

)
− ε2

m∑
i=1

F ′′ii(f̃m)

]
︸ ︷︷ ︸

D4

(7.64)

To establish C), it suffices to verify that

E
{
D2

1

}
= ε2

M∑
i=1

[F ′(fN)]2i

(which is evident) and that

E
{
D2
`

}
≤ ε2o(1), ` = 2, 3, 4. (7.65)

(7.65) for ` = 2: We have

E {D2
2} ≤ CE

{
‖ f̃m − f̂m ‖2

}
[by A.3]

≤ C(θ)(ε2m(ε))1+θ ∀θ ≥ 1 [by (7.31)]
≤ ε2o(1) [choose θ appropriately]
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(7.65) for ` = 3: We have

|F (f̃m + fNm+1)− F (fN)−
(
F (fN), f̃m − fm

)
−1

2

(
F ′′(fN)(f̃m − fm), f̃m − fm

)
|

≤ C ‖ f̃m − fm ‖2+γ

by A.3, whence

E {D2
3} ≤ CE

{
‖ f̃m − fm ‖2(2+γ)

}
≤ CE

{
‖ f̂m − fm ‖2(2+γ)

}
[by (7.20.b]

≤ C[ε2m(ε)]2+γ [by (7.30)]

≤ Cε
4β(2+γ)
2β+1 [by (7.48)]

≤ ε2o(1) [by (7.47)]

(7.65) for ` = 4: We have

2D4 =
(
F ′′(fN)(f̃m − fm), f̃m − fm

)
− ε2

m∑
i=1

F ′′ii(f̃m)

=
(
F ′′(fN)(f̂m − fm

)
, f̂m − fm)− ε2

m∑
i=1

F ′′ii(f̃m)︸ ︷︷ ︸
D4,1

+
(
F ′′(fN)(f̃m − fm), f̃m − fm

)
−
(
F ′′(fN)(f̂m − fm), f̂m − fm

)
︸ ︷︷ ︸

D4,2

+ ε2
m∑
i=1

(F ′′ii(f
N)− F ′′ii(f̃m))︸ ︷︷ ︸
D4,3

and in order to establish (7.65) for ` = 4 it suffices to verify that

E
{
D2

4,κ

}
≤ ε2o(1), κ = 1, 2, 3. (7.66)

(7.66) for κ = 1: We have

E
{
D2

4,1

}
= ε4E


[

m∑
i,j=1

F ′′ij(f
N)(ξiξj − δij)

]2


= ε4
m∑

i,j=1

[
F ′′ij(f

N)
]2

(2− δij)E {(ξiξj − δij)2}

≤ Cε4m(ε)
[since ‖ F ′′(fN) ‖≤ C by A.3, whence

∑
j

[F ′′ij(f
N)]2 ≤ C ∀i]

≤ ε2o(1)
[by (7.48)]



TWICE CONTINUOUSLY DIFFERENTIABLE FUNCTIONAL 177

(7.66) for κ = 2: We have

E
{
D2

4,2

}
= E

{∣∣∣∣ (F ′′(fN)(f̃m − fm), f̃m − fm
)

−
(
F ′′(fN)(f̂m − fm), f̂m − fm

) ∣∣∣∣2}
≤ CE

{
‖ f̂m − f̃m ‖2 + ‖ f̂m − f̃m ‖4

}
[by A.3]

≤ C(θ)
[
[ε2m(ε)]1+θ + [ε2m(ε)]2+θ

]
∀θ ≥ 1 [by (7.31)]

≤ C(θ)ε
4β(1+θ)
2β+1 [by (7.48)]

≤ ε2o(1) [choose θ appropriately]

(7.66) for κ = 3: We have

E
{
D2

4,3

}
≤ Cε4E

{[
m ‖ F ′′(fN)− F ′′(f̃m) ‖

]2}
≤ Cε4E

{
m2 ‖ fN − f̃m ‖2γ

}
[by A.3]

≤ C[ε2m]2E
{
‖ f − f̃m ‖2γ

}
≤ C[ε2m]2ε

4βγ
2β+1 [by (7.20.c, d)]

≤ Cε
4β(2+γ)
2β+1 [by (7.48)]

= ε2o(1) [by (7.47)]

C) is proved.
Verifying D) We have

E
{

N∑
i=m+1

[F ′(f̃m)]2i

}

≤ E
{

(1 + θ)
N∑

i=m+1
[F ′(fN)]2i + (1 + θ−1)

N∑
i=m+1

δ2
i

}
∀θ > 0

[δi = [F ′(fN)− F ′(f̃m)]i]

≤ (1 + θ)
N∑

i=m+1
[F ′(fN)]2i + (1 + θ−1)E

{
‖ F ′(fN)− F ′(f̃m) ‖2

}
≤ (1 + θ)

N∑
i=m+1

[F ′(fN)]2i + (1 + θ−1)CE
{
‖ fN − f̃m ‖2

}
[by A.3]

≤ (1 + θ)
N∑

i=m+1
[F ′(fN)]2i + C(1 + θ−1)ε

4β
2β+1

[by (7.20.c, d)]

≤
N∑

i=m+1
[F ′(fN)]2i + o(1)

[set θ = ε
2β

2β+1 ]

The proof of Theorem 7.3.1 is completed.

7.3.2 Concluding remarks

Sharpness of (7.3.4). Relation (7.47) establishes “sharp” link between the asymp-
totical width of Σ (i.e., the parameter β) and the degree of smoothness γ of a functional
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satisfying A.3 (cf. Section 7.2.1). A construction completely similar to the one used
to prove Theorem 7.2.2 yields the following result:

Theorem 7.3.2 Let γ ∈ (0, 1] and β > 0 be such that

γ <
1

2β
− 1.

Then there exist a set Σ ⊂ H and a functional F : H → R satisfying A.1, A.3
such that F does not admit asymptotically efficient (even efficient in order) on Σ
estimation method.

The case of quadratic functional. Let F (f) = (Af, f), where A is a bounded
symmetric operator on H, and let Σ satisfy A.1. Consider the estimator resulting
from (7.52) by letting N → ∞ and replacing f̃m with f̂m. Tracing the proof of
Theorem 7.3.1, one can see that in the case in question the squared risk of estimating
F (f) can be bounded from above as

E
{[
F̂ε − F (f)

]2}
≤ ε2 ‖ F ′(f) ‖2 +C(ε4M +M−4β) + ε2o(1) (7.67)

(C is independent of ε and f ∈ Σ); here M > m(ε) is a “free design parameter” of
the estimate5). Assuming that β ≤ 1/4 (the case of β > 1/4 is covered by Theorem
7.3.1) and setting

M = bε−
4β

4β+1 c,

we get an estimate of a quadratic functional with the squared risk satisfying the
relation

E
{[
F̂ε − F (f)

]2}
≤ ε2 ‖ F ′(f) ‖2 +Cε

16β
4β+1 + ε2o(1)

(C is independent of f ∈ Σ and of ε). We see that if the asymptotical width of Σ
is β ≤ 1

4
, then a quadratic functional F can be estimated at points f ∈ Σ with the

squared risk not exceeding ε
16β
4β+1 . It turns out (see [14]) that this rate of convergence

is unimprovable in the minimax sense, provided that

dk(Σ) ≥ ck−β, k = 1, 2, ...

and that for some κ > 0 it holds

F (f) ≥ κ ‖ f ‖2 ∀f ∈ H.

5) In (7.52), M = M(ε) was controlled according to (7.48); the estimate, however, makes sense
for other values of the parameter as well.



Chapter 8

Estimating functionals, II

We proceed with constructing asymptotically efficient, on a given compact set Σ,
estimates of a smooth functional F of a nonparametric signal f via observations

yf,ε =
{
yf,εi ≡ (f, φi) + εξi

}
, (8.1)

of the signal ({φi} form an orthonormal basis in the Hilbert space H where the signals
live, the “noise” {ξi}∞i=1 is a collection of independent N (0, 1) random variables).

8.1 Preliminaries: estimating polynomials

We already know that if the Kolmogorov diameters dk(Σ) admit an upper bound

dk(Σ) ≤ ck−β

and F is κ times (κ = 1, 2) continuously differentiable in a neighbourhood of Σ
functional with Hölder continuous, with exponent γ, κ-th derivative, then F can be
asymptotically efficiently estimated on Σ, provided that the asymptotic width of Σ
and the degree of smoothness of F are linked according to

κ+ γ > 1 +
1

2β
. (8.2)

The “widest” Σ we can handle corresponds to the case of κ = 2, γ = 1, where (8.2)
requires from β to be > 1/4. As we remember, (8.2) is sharp; thus, when interested
to deal with wider – β ≤ 1/4 – sets of signals, we should impose stronger smoothness
restrictions on F . On the other hand, it was mentioned in Section 7.3.2 that if

dk(Σ) = O(k−β), β < 1/4,

then some quadratic functionals – e.g., F (f) =‖ f ‖2 – cannot be estimated on Σ
with uniform squared risk of order ε2. Since a quadratic functional is “as smooth as
a functional can be”, we conclude that merely increasing the number of derivatives F
is assumed to possess does not help; we should impose certain structural restrictions
on these derivatives. In order to understand what these restrictions could be, note
that if we are planning to build asymptotically efficient, on a “wide” set Σ, estimators
of F and the estimators we intend to construct are based on local approximations

179
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of F by its Taylor polynomials, then at least the polynomials involved should admit
asymptotically efficient, on Σ, estimation. And since we intend to work with “wider
and wider” sets of signals – i.e., with β approaching 0 – the above polynomials should
admit asymptotically efficient estimation on the entire space H (or at least on any
bounded subset of H). Indeed, if our “structural restrictions” on the derivatives of F
are such that ε2-consistent estimation of, say, the Taylor polynomial of degree 5 of F
already imposes a nontrivial restriction on the asymptotical width of Σ, we have no
hope to work successfully with β too close to 0.

Now, there is a very natural family of polynomials on H admitting asymptotically
efficient estimation on all bounded subsets of H – the Hilbert-Schmidt polynomials,
and this is the family we will work with.

8.1.1 Hilbert-Schmidt polynomials

Recall that a homogeneous polynomial of degree k on H is a function

P (f) = Πk[f, ..., f︸ ︷︷ ︸
k times

],

where Πk[f1, ..., fk] is a symmetric k-linear continuous form on H. Given an orthonor-
mal basis {φi} in H, we may associate with Πk (and therefore – with P (·)) the system
of coefficients {Pι = Πk[φι1 , ..., φιk ]}ι∈Ik , where Ik is the set of all k-dimensional multi-
indices ι = (ι1, ..., ιk) with positive integer entries. We clearly have

P (f) = lim
N→∞

∑
ι:ιp≤N, p=1,...,k

Pιfι1 ...fιk [fi = (f, φi)].

A homogeneous polynomial P (f) of degree k is called a Hilbert-Schmidt polynomial,
if

‖ P ‖2≡
√∑
ι∈Ik

P 2
ι <∞;

‖ P ‖2 is called the Hilbert-Schmidt norm of P . It can be proved that the Hilbert-
Schmidt norm is independent of the (orthonormal) basis with respect to which the
coefficients of P are taken. A generic example of a Hilbert-Schmidt polynomial is the
Gateau polynomial

F (f) =
∫ 1

0
...
∫ 1

0
G(x1, ..., xk)f(x1)...f(xk)dx1...dxk

on L2[0, 1] with square-summable kernel G; the Hilbert-Schmidt norm of this polyno-
mial is just the L2-norm of the kernel.

A non-homogeneous polynomial P of degree ≤ k is a sum of homogeneous poly-
nomials P p of degrees 0 (a constant), 1,..., k:

P (f) =
k∑
p=0

P p(f).

P is called a Hilbert-Schmidt polynomial, if its homogeneous components P 1, ..., P k

are so.
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8.1.2 Estimating Hilbert-Schmidt polynomials

Let P be a Hilbert-Schmidt polynomial of degree ≤ k on H. We are about to demon-
strate that such a polynomial admits asymptotically efficient, on every bounded subset
of H, estimate. Let us fix an orthonormal basis {φi}, and let

fN =
N∑
i=1

(f, φi)φi

be the projection of f ∈ H onto the linear span of the first N basic orths. Let also

PN(f) = P (fN).

We start with building an estimator of PN via observations (8.1). Note that PN is
a polynomial of N real variables and therefore it can be naturally extended onto the
complexification CN of RN . Let ζN be a random N -dimensional Gaussian vector with
zero mean and unit covariance matrix. For z ∈ CN , let

P̂N(z) = E
{
PN(z + iεζN)

}
.

i being the imaginary unit. Setting

yN = yN(f, ε) =
N∑
i=1

yf,εi φi = fN + εξN , ξN =
N∑
i=1

ξiφi,

consider the estimator
P̃N = P̂ (yN). (8.3)

Theorem 8.1.1 P̃N is an unbiased estimator of PN :

E
{
P̃N(yN(f, ε))

}
= PN(f) ∀f ∈ H,

with the variance

E
{[
P̃N(yN(f, ε))− PN(f)

]2}
=

k∑
p=1

ε2p

p!
‖ DpPN(f) ‖2

2 . (8.4)

Proof. Let ωN = ξN + iζN (ζN is independent of ξN Gaussian vector with zero
mean and unit covariance matrix). The distribution of ωN remains invariant under
rotations of CN (viewed as a 2N -dimensional real Euclidean space), while PN is an
analytic function on CN and is therefore a harmonic function on CN (again viewed
as a 2N -dimensional real space). Therefore

E
{
P̃N(yN(f, ε))

}
= EξN

{
EζN

{
PN(fN + εξN + iεζN)

}}
= EωN

{
PN(fN + εωN)

}
= PN(f),

the concluding equality being given by the Mean Value Theorem for harmonic func-
tions.
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Since P̃N is unbiased, to determine the variance of the estimator at a fixed f we
can confine ourselves to the case of PN(f) = 0.

Let ρN be a random vector identically distributed like ξN , ζN and independent
of these two vectors, and let ωN = ξN + iζN , λN = ξN + iρN . Since P̃N clearly is
real-valued, we have

E
{
P̃ 2
N

}
= E

{
PN(fN + εωN)PN(fN + ελN)

}
,

whence, expanding PN in a Taylor series around fN ,

E
{
P̃ 2
N

}
= E


k∑

p,q=1

1

p!q!

[
DpPN(fN)[εωN ]p

] [
DqPN(fN)[ελN ]q

] , (8.5)

where A[h]p = A[h, ..., h︸ ︷︷ ︸
p times

], A[h1, ..., hp] being a p-linear form.

Let J p
N be the set of multi-indices ι = (ι1, ..., ιN) with nonnegative entries and

with |ι| ≡
N∑
j=1

ιj = p. For ι ∈ J p
N , z =

N∑
j=1

zjφj ∈ CN and p = 1, ..., k let

ι! = ι1!...ιN !,
zι = zι11 ...z

ιN
N ,

P p
ι = DpPN(fN)[φ1, ..., φ1︸ ︷︷ ︸

ι1

, φ2, ..., φ2︸ ︷︷ ︸
ι2

, ..., φN , ..., φN︸ ︷︷ ︸
ιN

].

We have[
DpPN(fN)[εωN ]p

] [
DqPN(fN)[ελN ]q

]
=

∑
ι∈J pN ,ν∈J

q
N

εp+q
p!q!

ι!ν!
P p
ι P

q
ν (ωN)ι(λN)ν . (8.6)

Observe now that

E
{

(ωN)ι(λN)ν
}

=
N∏
j=1

E
{
ω
ιj
j λ

νj
j

}
=

N∏
j=1

[
διjνj ιj!

]
. (8.7)

Indeed, all we need to verify is the concluding equality, i.e., the fact that if ξ, ζ, ρ are
independent N (0, 1) random variables and r, s are nonnegative integers, then

E {(ξ + iζ)r(ξ + iρ)s} = δrsr!. (8.8)

But Eζ {(ξ + iζ)r} = Hr(ξ) is the r-th Hermite polynomial (see [31], p. 163), and
(8.8) is precisely the orthogonality property of these polynomials:

E {Hr(ξ)Hs(ξ)} = δrsr!

(see [4], p. 133).
Combining (8.5), (8.6) and (8.7), we get

E
{
P̃ 2
N

}
=

k∑
p=1

ε2p
∑
ι∈J pN

(P p
ι )2

ι!
=

k∑
p=1

ε2p

p!
‖ DpPN(f) ‖2

2,

the concluding equality being given by the fact that every P p
ι occurs exactly p!

ι!
times

among the coefficients of the p-linear form DpPN(f)[·, ..., ·] with respect to the basis
{φi}Ni=1.
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Remark 8.1.1 A simple modification of the proof of Theorem 8.1.1 yields the fol-
lowing result. Let G(x) be a function on RN which can be continued to an entire
function G(z) on CN such that

|G(z)| ≤ c exp

{
θ
‖ z ‖2

2

2ε2

}

with some θ ∈ (0, 1), c <∞. Assume that an observation y = x+εξ of a point x ∈ RN

is given, where the noise ξ is Gaussian with zero mean and identity covariance matrix.
Then the estimator

Ĝ(y) ≡ EζG(y + iεζ),

ζ being independent of ξ Gaussian random vector with zero mean and identity co-
variance matrix, is an unbiased estimator of G(x), x ∈ RN , with variance

E
{[
Ĝ−G(x)

]2}
=
∞∑
p=1

ε2p

p!
‖ DpG(x) ‖2

2

‖ DpG(x) ‖2
2≡

∑
ι∈J pN

∣∣∣∣∣ ∂pf(x)

∂xι11 ...∂x
ιN
N

∣∣∣∣∣
2
p!

ι!


Note that Ĝ is the unique unbiased estimator of G in the class of estimators Ψ(y)
satisfying the condition

∀y ∈ RN : Ψ(y) ≤ cΨ exp

{
θΨ
‖ y ‖2

2

2ε2

}
[cΨ <∞, θΨ ∈ (0, 1)]

Corollary 8.1.1 Let

P (f) =
k∑
p=0

P p(f)

be a polynomial on H with Hilbert-Schmidt homogeneous components P 0, ..., P k of
the Hilbert-Schmidt norms not exceeding L. Then for every ε > 0 one can choose
N = N(P, ε) < ∞ in such a way that for the associated estimator P̃N of P (f) via
observations (8.1) one has

∀f ∈ H : E
{[
P̃N(yN(f, ε))− P (f)

]2}
≤ ε2 ‖ P ′(f) ‖2 +c(k)L2ε4(1+ ‖ f ‖2k).

(8.9)
In particular, the resulting estimator is asymptotically efficient on every bounded sub-
set of H.

Proof. For every positive integer N , for every p ≤ k and every f ∈ H we have∣∣∣P p(f)− P p(fN)
∣∣∣ ≤ ∑

ι1,...ιp:
maxj ιj>N

∣∣∣P p
ι1,...,ιp

fι1 ...fιp
∣∣∣

≤
√√√√ ∑

ι1,...ιp:
maxj ιj>N

(
P p
ι1,...,ιp

)2
‖ f ‖p,

whence for every positive δ there exists N1(δ) such that

|P (f)− P (fN)| ≤ δ(1+ ‖ f ‖k) ∀f∀N ≥ N1(δ).
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By similar reasons, for every δ > 0 there exists N2(δ) such that

‖ P ′(f)−DPN(f) ‖≤ δ(1+ ‖ f ‖k−1) ∀f∀N ≥ N2(δ).

It is also clear that for some c1(k) (depending only on k) and for all N and all f ∈ H
we have

‖ DpPN(f) ‖2≤ Lc1(k)(1+ ‖ f ‖k).

Letting N = max [N1(Lε2), N2(Lε2)], we get (8.9) as a consequence of (8.4).

Remark 8.1.2 It is easily seen that if a polynomial P satisfies the premise of Corol-
lary 8.1.1, then the estimators P̃N (see (8.3)) converge in the mean square as N →∞
to an unbiased estimator P̃ of P (·), the variance of the estimator being

E
{[
P̃ (yf,ε)− P (f)

]2}
=

k∑
p=1

ε2p

p!
‖ DpP (f) ‖2

2 .

Examples. I. A continuous linear form P (f) = (p, f) always is a Hilbert-Schmidt
polynomial, and the corresponding unbiased estimator is the standard plug-in esti-
mator

P̃ (yf,ε) =
∞∑
j=1

yf,εj pj [pj = (p, φj)]

II. Let P (f) = (Af, f) be a homogeneous continuous quadratic form, and let
[aj`] be the matrix of the form with respect to the basis {φj}. The estimator P̃N of
PN(f) = (AfN , fN) is

P̃N =
∑

j 6=`,j,`≤N
aj`y

f,ε
j yf,ε` +

N∑
j=1

ajj

([
yf,εj

]2
− ε2

)
,

and the variance of this estimator is

E
{[
P̃N − PN(f)

]2}
= 4ε2 ‖ (AfN)N ‖2 +2ε4

N∑
j,`=1

a2
j`.

For N fixed, this is an asymptotically efficient estimator of PN(f). The trivial plug-in
estimator PN(yN(f, ε)) also is an asymptotically efficient estimator of PN(f) (N is
fixed), but its risk is greater than the one of P̃N in terms of order of ε4:

E
{[
PN(yN(f, ε))− PN(f)

]2}
= 4ε2 ‖ (AfN)N ‖2 +2ε4

 N∑
j,`=1

a2
j` +

1

2

∣∣∣∣∣∣
N∑
j=1

ajj

∣∣∣∣∣∣
2
 ;

when N is large, this difference can be decisive.
If A is a Hilbert-Schmidt operator (i.e.,

∑
j,`
a2
j` < ∞), then the estimators P̃N

converge in the mean square, as N →∞, to an unbiased asymptotically efficient, on
every bounded subset of H, estimator of P (·).
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III. Let P (f) =
∞∑
j=1

[(f, φj)]
3. Then the unbiased estimator P̃N of PN(f) =

N∑
j=1

[(f, φj)]
3 is

P̃N =
N∑
j=1

([
yf,εj

]2
− 3ε2yf,εj

)
,

and its variance is

E
{[
PN(yN(f, ε))− PN(f)

]2}
= 9ε2

N∑
j=1

f 4
j + 18ε4

N∑
j=1

f 2
j + 6ε6N, fj = (f, φj).

8.1.3 Extension

We have built asymptotically efficient, on bounded subsets of H, estimators for
Hilbert-Schmidt polynomials. To achieve our final goals, we need to build a “nearly”
asymptotically efficient estimate for a “nearly” Hilbert-Schmidt polynomial. Namely,
assume that

P (f) =
k∑
p=0

P p(f)

is a polynomial of degree k ≥ 2 such that

(a) P p are Hilbert-Schmidt polynomials for p ≤ k − 1 with ‖ P p ‖2≤ L <∞
(b.1) ‖ P k ‖≡ sup {|Πk[f1, ..., fk]| | ‖ f` ‖≤ 1, ` = 1, ..., k} ≤ L
(b.2) ‖ P k,h ‖2≤ L ‖ h ‖,

(8.10)
where Πk[f1, ..., fk] is the symmetric k-linear form associated with P k and P k,h is the
(k − 1)-symmetric linear form obtained from Πk[f1, ..., fk] when the last argument is
set to a constant value h. E.g., the quadratic form (Af, f) associated with a bounded
symmetric operator A satisfies (b.1), (b.2) with L =‖ A ‖. Another example of a
homogeneous polynomial satisfying (b.1), (b.2) is given by a “diagonal” polynomial

P k(f) =
∞∑
j=1

cjf
k
j [fj = (f, φj)]

with bounded sequence of coefficients {cj} or by a continuous “band-type” polynomial

P k(f) =
∑
ι∈Id

k

cιfι1 ...fιk [fj = (f, φj)],

where Idk is the set of multi-indices ι = (ι1, ..., ιk) such that max
`=1,...,k

ι` − min
`=1,...,k

ι` ≤ d <

∞.
Under condition (8.10) we can build an estimator for the polynomial PN(f) =

P (fN) as follows. Let M < N be a given natural number. Consider the polynomial

P∗,M(f) =
k−1∑
p=1

P p(f) + P k[f, ..., f, fM ] (8.11)
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Then, by virtue of (8.10.b.1),∣∣∣P∗,M(fN)− PN(fN)
∣∣∣ ≤ L ‖ fNM+1 ‖‖ fN ‖k−1,

fNM+1 =
N∑

j=M+1
(f, φj)φj.

(8.12)

At the same time, the homogeneous polynomial P̄ k(f) = P k[f, ..., f, fM ] corresponds
to the symmetric k-linear form

Π̄k(h1, ..., hk) =
1

k

(
Πk[(h1)M , h2, ..., hk] + ...+ Πk[h1, ..., hk−1, (hk)

M ]
)
,

and the coefficients of this form are as follows. Let us partition the set Ik of multi-
indices ι = (ι1, ..., ιk) of the coefficients into M + 1 groups: the first M groups Gj

contain the multi-indices ι with min
`=1,...,k

ι` = j, j = 1, ...,M , and the group GM+1

contains the multi-indices ι with min
`=1,...,k

ι` > M . The coefficients of Π̄k with indices

from GM+1 are zero, and absolute values of the coefficients with indices from Gj,
j = 1, ...,M , are less than or equal to the absolute values of the coefficients Πk,ι of Πk

with the same indices. By (8.10.b.2),√∑
ι∈Gj

Π2
k,ι ≤ L,

whence

‖ P̄k ‖2
2≤

M∑
j=1

∑
ι∈Gj

Π2
k,ι ≤ML2. (8.13)

Associating with the Hilbert-Schmidt polynomial P∗,M(·) estimator (8.3), let the latter
be denoted by P̃M,N(·), and applying Theorem 8.1.1, we get the following result:

Proposition 8.1.1 Let P be a polynomial of degree k ≥ 2 satisfying (8.10). Then,
for every pair of positive integers M,N (M < N), the estimator P̃M,N(·) for every
f ∈ H and every ε ∈ (0, 1) satisfies the relations

(a)
∣∣∣E {P̃M,N(yN(f, ε))− P (fN)

}∣∣∣ ≤ L ‖ fNM+1 ‖‖ fN ‖k−1

(b)
(
E
{[
P̃M,N(yN(f, ε))− P (fN)

]2})1/2

≤ ε ‖ P ′∗,M(fN) ‖
+c1(k)Lε2(1+ ‖ fN ‖k)
+c2(k)εk

√
ML(1+ ‖ fN ‖k)

+L ‖ fNM+1 ‖‖ fN ‖k−1 .
(8.14)

8.2 From polynomials to smooth functionals

We are about to extend the techniques for asymptotically efficient estimating Hilbert-
Schmidt polynomials to estimating smooth functionals with Hilbert-Schmidt deriva-
tives. As before, we assume that the set of signals Σ satisfies A.1, i.e., it is a subset
of the unit ball O of H with Kolmogorov diameters satisfying

dk(Σ) ≤ Lk−β (8.15)

As about the functional F to be estimated, we assume that
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A.4. F is defined in the ball

Oρ = {f ∈ H | ‖ f ‖< 1 + 2ρ} [ρ > 0]

and is k ≥ 3 times continuously Fréchet differentiable in Oρ. Moreover,
A.4.1. The derivatives F (j)(f), f ∈ Oρ, of order j ≤ k − 1 have

bounded Hilbert-Schmidt norms:

sup
{
‖ F (j)(f) ‖2| f ∈ Oρ

}
≤ L 1 ≤ j ≤ k − 1; (8.16)

A.4.2. The k-th derivative F (k)(f) satisfies the inequality

‖ F (k),g(f) ‖2≤ L ‖ g ‖ ∀f ∈ Oρ ∀g ∈ H (8.17)

(cf. (8.10)), where

F (k),g(f)[h1, ..., hk−1] ≡ DkF (f)[h1, ..., hk−1, g].

A.4.3. F (k)(f) is Hölder continuous, with exponent γ > 0, in the usual
norm:

‖ F (k)(f)− F (k)(g) ‖≤ L ‖ f − g ‖γ ∀f, g ∈ Oρ. (8.18)

Note that A.2, A.3 are nothing but the versions of A.4 associated with k = 1, 2,
respectively. In these cases the sharp link between the asymptotical width β of the
set Σ and the smoothness parameters of F ensuring possibility for asymptotically
efficient, on Σ, estimation of F was given by

γ >
1

2β
+ 1− k, (8.19)

and it would be natural to suppose that the same link works for k > 2 as well. It turns
out, however, that the “correct tradeoff” between the width of Σ and the smoothness
of F under assumption A.4 is given by

γ >
1

2β
− k, k ≥ 3. (8.20)

E.g., (8.19) says that to ensure asymptotically efficient estimation of twice contin-
uously differentiable functional with Lipschitz continuous second derivative (k = 2,
γ = 1) the asymptotical width of Σ should be > 1

4
, while (8.20) says that in order to

ensure the same possibility for three times continuously differentiable functional with
Hölder continuous, with close to 0 exponent γ, third derivative, it suffices to have
β > 1

6
. At the same time, common sense says to us that a twice continuously differ-

entiable functional with Lipschitz continuous second order derivative is basically the
same as a three times continuously differentiable functional with small Hölder continu-
ity exponent of the third derivative; if so, where the “jump down” β > 1

4
7→ β > 1

6
in

the condition ensuring possibility of asymptotically efficient estimation comes from?
The answer is that when passing from A.3 to A.4, we do not merely increase

the number of derivatives of the functional, but impose a structural assumption on
the derivatives of order < k – now they should be Hilbert-Schmidt polylinear opera-
tors. This structural assumption is exactly what is responsible for the above “jump
down”. More specifically, imposing on the second derivative of a smooth functional
the restriction to be bounded in the Hilbert-Schmidt norm results in a completely
new phenomenon – measure concentration.
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8.2.1 Measure concentration

The phenomenon of measure concentration was discovered by P. Levy; in its rough
form, the phenomenon is that a function G with fixed modulus of continuity, say,
Lipschitz continuous with constant 1, on a high-dimensional unit Euclidean sphere
“almost everywhere is almost constant”: there exists a constant a = a(G) such that
Prob{x | |G(x)−a(G)| > ε}, the probability being taken with respect to the uniform
distribution of x on the unit n-dimensional sphere, for every fixed ε > 0 goes to 0
as the dimension n → ∞. In the case we are interested in – the one when G is
with Hilbert-Schmidt second-order derivative – this phenomenon can be expressed as
follows:

Proposition 8.2.1 Let G be a twice continuously differentiable in the ball

Vr = {x ∈ Rn | ‖ x ‖≤ r}

function, and let ‖ G′(0) ‖≤ T and ‖ G′′(x) ‖2≤ T for all x ∈ Vr and some T < ∞.
For L : Vr → R, let Mρ[L] be the average of L taken over the uniform distribution on
the sphere of radius ρ centered at the origin, 0 ≤ ρ ≤ r. Then

Mr

[
(G(x)−G(0))2

]
≤ (1+θ)

r2

n

(
‖ G′(0) ‖2 +T 2r(2 + r)

)
+(2+θ+θ−1)

r4T 2

4n
∀θ > 0.

(8.21)

Remark 8.2.1 Note that if T is fixed and n is large, then (8.21) demonstrates that
G in Vr is close, in the mean square sense, to the constant G(0). Thus, Proposition
indeed demonstrates a kind of “measure concentration” phenomenon.

Proof. Let g(x) = (G(x) − G(0))2. For 0 < ρ ≤ r, let Qρ(h) =‖ h ‖2−n −ρ2−n. For
0 < δ < ρ by Green’s formula (∆ is the Laplacian) we have

∫
δ≤‖h‖≤ρ

{g∆Qρ −Qρ∆g} dh =
∫

‖h‖=R

{
g
∂Qρ

∂e
−Qρ

∂g

∂e

}
dS(h)

+
∫

‖h‖=δ

{
g
∂Qρ

∂e
−Qρ

∂g

∂e

}
dS(h),

(8.22)

where dS(h) is the element of area of the boundary of the strip {δ ≤‖ h ‖≤ ρ} and e
is the outer unit normal to the boundary. Since ∆Qρ = 0, the left hand side in (8.22)
is equal to

−
ρ∫
δ

sn−1(s2−n − ρ2−n)σnMs [∆g] ds,

where σn is the surface area of a unit sphere in Rn. As δ → +0, the right hand side in
(8.22) tends to (2− n)σnMρ[g] (note that g(0) = 0). Thus, passing to limit in (8.22)
as δ → +0, we get

(n− 2)Mρ[g] = −
ρ∫

0

(s− sn−1ρ2−n)Ms[∆g]ds,
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or, which is the same,

Mρ[g] = (2n)−1ρ2
ρ∫
0
θρ(s)Ms[∆g]ds,

θρ(s) = 2n
ρ2(n−2)

(s− sn−1ρ2−n)

≥ 0,
ρ∫

0

θρ(s)ds = 1.

(8.23)

Now let `(x) = G(x)−G(0), so that g(x) = `2(x). We have

1

2
∆g = `∆`+ ‖ ∇` ‖2 . (8.24)

Let
A(ρ) = max

0≤s≤ρ
Ms[g],

B(ρ) = max
0≤s≤ρ

Ms

[
(∆`)2

]
,

C(ρ) = max
0≤s≤ρ

Ms

[
‖ ∇` ‖2

]
.

From (8.23) and (8.24) it follows that

Mρ[g] = ρ2

n

ρ∫
0

θρ(s)Ms

[
|`∆`|+ ‖ ∇` ‖2

]
ds

≤ ρ2

n

ρ∫
0

θρ(s)
(
M1/2

s [`2]M1/2
s [(∆`)

2] +Ms[‖ ∇` ‖2]
)
ds

≤ ρ2

n

(
A1/2(ρ)B1/2(ρ) + C(ρ)

)
[since θρ ≥ 0 and

ρ∫
0

θρ(s)ds = 1]

≤ r2

n

(
A1/2(r)B1/2(r) + C(r)

)
.

Since the resulting inequality is valid for all ρ ≤ r, we get for every δ > 0:

A(r) ≤ r2

n

[
δ
2
A(r) + 1

2δ
B(r) + C(r)

][
setting 1− r2δ

2n
= 1

θ+1

]
⇒ A(r) ≤ r2

n
(1 + θ)C(r) + r4

4n2 (2 + θ + θ−1)B(r) ∀θ > 0.

(8.25)

Now, by assumptions of Proposition in Vr we have ‖ ∇` ‖=‖ ∇G ‖≤‖ G′(0) ‖2 +Tr,
whence

C(r) = max
0≤ρ≤r

Mρ[‖ ∇` ‖2] ≤ (‖ G′(0) ‖ +Tr)2 ≤‖ G′(0) ‖2 +T 2r(2 + r),

and
B(r) = max

0≤ρ≤r
Mρ[(∆`)

2] = max
0≤ρ≤r

Mρ[(∆G)2] ≤ nT 2,

the concluding inequality being given by

(∆G)2 =

(
n∑
i=1

∂2G

∂x2
i

)2

≤ n
n∑
i=1

(
∂2G

∂x2
i

)2

≤ nT 2.

In view of these bounds, (8.25) implies (8.21).
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8.2.2 The estimate

We are about to prove the following

Theorem 8.2.1 Let Σ, F satisfy conditions A.1, A.4 and let (8.20) take place. The
F admits asymptotically efficient on Σ estimation method.

Remark 8.2.2 The link (8.20) between β and γ is sharp (in the same sense as in
Theorem 7.2.2). The proof (see [24]) follows the same line of argument as in Theorem
7.2.2, but is more involving, since now we should ensure the Hilbert-Schmidt property
of the derivatives.

Proof. We just build the asymptotically efficient estimation method.

Setup. Given noise intensity ε < 0.1, let us set

m = m(ε) = b 1

ε2 ln(1/ε)
c, M = M(ε) = b 1

ε2(k−1) ln(1/ε)
c (8.26)

(note that M > m for all small enough values of ε, which is assumed from now on).
Same as in the proof of Theorem 7.3.1, without loss of generality we may assume that

∀f ∈ Σ : ‖ f − fn ‖≤ cn−β, n = m,M (8.27)

and can find N = N(ε) > M such that

∀f ∈ Σ : |F (f)− F (fN)| ≤ ε4, ‖ F ′(f)− F ′(fN) ‖≤ ε4; (8.28)

here and in what follows, as usual,

f qp =
q∑
i=p

(f, φi)φi,

f q = f q1 ; [f ∈ H]

yqp = yqp(f, ε) =
q∑
i=p

yf,εi φi

= f qp + ε
q∑
i=p

ξiφi,

yq = yq1;
ξqp = {ξi}qi=p,
ξq = ξq1.

In view of (8.28), we may focus on estimating the functional FN(f) = F (fN),
f ∈ Σ.

The estimate is as follows. Let

f̂m = ym = fm + ε
m∑
i=1

ξiφi,

f̃m =

{
f̂m, ‖ f̂m ‖≤ 1 + ρ
(1 + ρ) ‖ f̂m ‖−1 f̂m, ‖ f̂m ‖> 1 + ρ

,
(8.29)
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and let

G(h) = Gf̃m(h) ≡
n∑
`=0

1

`!
F (`)(f̃m)[hNm+1, ..., h

N
m+1︸ ︷︷ ︸

`

] (8.30)

Note that the polynomial G is random – it depends, as on parameters, on the “initial
fragments” fm, ξm of the observed signal and the observation noise; usually we skip
indicating this dependence in notation.

Since the polynomial G(h) depends on hNm+1 only and clearly satisfies (8.10) with
L depending only on the parameters involved into A.1, A.4, we may apply to this
polynomial the construction from Section 8.1.3 with already specified M,N to get an
estimator

F̂ε = F̂ f̃m
ε (yNm+1)

of Gf̃m(fNm+1) via observations yNm+1 = yNm+1(f, ε) with conditional (ξm being fixed)
bias and risk satisfying the relations (see Proposition 8.1.1 and take into account that
G(h), as a function of h, depends on the “tail” hNm+1 of h only)

(a)
∣∣∣∣E {F̂ε −G(fNm+1)

∣∣∣∣ξm}∣∣∣∣ ≤ C ‖ fNM+1 ‖‖ fNm+1 ‖k−1,

(b)
(
E
{[
F̂ε −G(fNm+1)

]2 ∣∣∣∣ξm})1/2

≤ ε ‖ G′∗(fNm+1) ‖

+C
(
ε2 + εk

√
M+ ‖ fNM+1 ‖‖ fNm+1 ‖k−1

)
;

(8.31)
where

G∗(h) =
k−1∑
`=0

1

`!
F (`)(f̃m)[hNm+1, ..., h

N
m+1] +

1

k!
F (k)(f̃m)[hNm+1, ..., h

N
m+1, h

M
m+1]; (8.32)

here and in what follows, all C denote positive quantities depending only on the data
involved A.1, A.4 and all o(1) are deterministic functions of ε depending on the same
“side parameters” as C’s and converging to 0 as ε→ +0.

The above F̂ε is our estimate of F (f) via observations (8.1).

Accuracy analysis. We should prove (see (8.28)) that if f ∈ Σ, then

E
{[
F̂ε − FN(f)

]2}
≤ ε2 ‖ F ′N(f) ‖2 +ε2o(1), ε→ 0 (8.33)

Assume that ε is so small that ‖ fNm+1 ‖≤ ρ for all f ∈ Σ (this indeed is the case
for all small enough values of ε in view of (8.27)). Since F is well-defined in Oρ and

‖ f̃m ‖≤ 1 + ρ by construction, the functional F (f̃m + fNm+1) is well-defined for all
f ∈ Σ and all realizations of noises. Representing

F̂ε − FN(f) = F̂ε −Gf̃m(fNm+1)︸ ︷︷ ︸
A

+Gf̃m(fNm+1)− F (f̃m + fNm+1)︸ ︷︷ ︸
B

+F (f̃m + fNm+1)− F (fN)︸ ︷︷ ︸
D

,

we claim that in order to get (8.33) it suffices to verify that
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A)

(a) E
{[
F̂ε −Gf̃m(fNm+1)

]2}
≤ ε2

N∑
i=m+1

[F ′(fN)]2i + ε2o(1)

[for g ∈ H, gi = (g, φi)]

(b)
∣∣∣∣E {[F̂ε −Gf̃m(fNm+1)

] ∣∣∣∣ξm}∣∣∣∣ ≤ εo(1)

(8.34)

B)

E
{[
Gf̃m(fNm+1)− F (f̃m + fNm+1)

]2
}
≤ ε2o(1) (8.35)

C)

E
{[
F (f̃m + fNm+1)− F (fN)

]2}
≤ ε2

m∑
i=1

[F ′(fN)]2i + ε2o(1). (8.36)

Indeed, assuming that (8.34) – (8.36) take place, we have

E
{[
F̂ε − FN(f)

]2}
= E

{
[A+B +D]2

}
≤ (1 + θ)E

{
[A+D]2

}
+ (1 + θ−1)E {B2} [∀θ > 0]

≤ (1 + θ)E
{

[A+D]2
}

+ (1 + θ−1)ε2o(1)

[by (8.35)]

≤ (1 + θ)
[
E {A2 +D2}+ 2Eξm

{
DE

{
A
∣∣∣∣ξm}}]+ (1 + θ−1)ε2o(1)

[since D depends on ξm only]
≤ (1 + θ) [E {A2 +D2}+ εo(1)E {|D|}] + (1 + θ−1)ε2o(1)

[by (8.34.b)]
≤ (1 + θ) [ε2 (‖ F ′N(f) ‖2 +o(1)) + εo(1)E {|D|}] + (1 + θ−1)ε2o(1)

[by (8.34.a), (8.36)]
≤ (1 + θ)ε2 (‖ F ′N(f) ‖2 +o(1)) + (1 + θ−1)ε2o(1)

[by (8.36)]
≤ ε2 ‖ F ′N(f) ‖2 +ε2o(1)

[choose appropriate θ = θ(ε)→ 0, ε→ +0]

as required in (8.33).
It remains to verify A) – C)
Verifying A) We have∣∣∣∣E {[F̂ε −Gf̃m(fNm+1)

] ∣∣∣∣ξm}∣∣∣∣
≤ C ‖ fNM+1 ‖‖ fNm+1 ‖k−1 [by (8.31.a)]
≤ CM−βm−(k−1)β [by (8.27)]

≤ Cε4(k−1)β (ln(1/ε))C [by (8.26)]
≤ εo(1) [since

4β(k − 1) > 2 k−1
k+γ
≥ 2k−1

k+1
≥ 1 by (8.20) and due to γ ≤ 1, k ≥ 3]

(8.37)
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as required in (8.34.b). To prove (8.34.a), observe first that

E
{[
F̂ε −Gf̃m(fNm+1)

]2}
≤ (1 + θ)E

{
ε2 ‖ G′∗(fNm+1) ‖2

}
+(1 + θ−1)C

(
ε4 + ε2kM+ ‖ fNM+1 ‖2‖ fNm+1 ‖2k−2

)
[∀θ > 0]

[see (8.31.b)]

≤ (1 + θ)E
{
ε2 ‖ G′∗(fNm+1) ‖2

}
+ (1 + θ−1)ε2o(1)

[since ε2kM ≤ Cε2/ ln(1/ε) by (8.26)
and ‖ fNM+1 ‖2‖ fNm+1 ‖2k−2≤ ε2o(1) as in (8.37)]

(8.38)

To complete the proof of (8.34.a), it suffices to show that

E
{
‖ G′∗(fNm+1) ‖2

}
≤

N∑
i=m+1

[F ′N(f)]2i + o(1); (8.39)

given (8.39), we can choose in the resulting estimate of (8.38) θ = θ(ε) so slowly
converging to 0 as ε→ +0 that the estimate will imply (8.34.a).

To verify (8.39), note that by (8.32) and in view of A.4

‖ G′∗(fNm+1)−
(
[F ′(f̃m)]Nm+1

)
‖≤ C ‖ fNm+1 ‖≤ o(1)

(the concluding inequality is given by (8.27)), whence

(
E
{
‖ G′∗(fNm+1) ‖2

})1/2

≤
√

N∑
i=m+1

[F ′(fN)]2i +
(
E
{
‖ F ′(f̃m)− F ′(fN) ‖2

})1/2
+ o(1)

≤
√

N∑
i=m+1

[F ′(fN)]2i + C
(
E
{
‖ fN − f̃m ‖2

})1/2
+ o(1)

[since F ′ is Lipschitz continuous on Oρ by A.4]

≤
√

N∑
i=m+1

[F ′(fN)]2i + C
(
E
{
‖ fN − f̂m ‖2

})1/2
+ o(1)

≤
√

N∑
i=m+1

[F ′(fN)]2i + C
(
mε2+ ‖ fNm+1 ‖2

)1/2
+ o(1)

=

√
N∑

i=m+1
[F ′(fN)]2i + o(1)

[see (8.26), (8.27)] ;

since F ′ is bounded in Oρ, (8.39) follows. A) is proved.
Verifying B) As it was already mentioned, for all small enough values of ε the

segment [f̃m, f̃m + fNm+1] is, for all f ∈ Σ and all realizations of noises, contained in

Oρ. Due to the origin of G(h) = Gf̃m(h) and in view of A.4.3 we have

|F (f̃m + fNm+1)−G(fNm+1)| ≤ C ‖ fNm+1 ‖k+γ

≤ Cm−β(k+γ) [by (8.27)]
≤ εo(1) [by (8.26) and (8.20)]
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Verifying C) We have

E
{[
F (f̃m + fNm+1)− F (fN)

]2}
= E

{[
F (f̂m + fNm+1)− F (fN)

]2
χε‖ξm‖≤ρ

}
+E

{[
F (f̃m + fNm+1)− F (fN)

]2
χε‖ξm‖>ρ

}
,

so that to verify C) it suffices to check that

(a) E
{[
F (f̃m + fNm+1)− F (fN)

]2
χε‖ξm‖>ρ

}
≤ ε2o(1),

(b) E
{[
F (f̂m + fNm+1)− F (fN)

]2
χε‖ξm‖≤ρ

}
≤ ε2

m∑
i=1

[F ′(fN)]2i + ε2o(1).
(8.40)

Verifying (8.40.a): Since F is bounded in Oρ, it suffices to prove that

Prob {ε ‖ ξm ‖> ρ} ≤ ε2o(1),

which is immediately given by Bernstein’s inequality; for the sake of com-
pleteness, here is the proof:

Prob {ε ‖ ξm ‖> ρ}
= Prob

{
m∑
i=1

ξ2
i > ρ2ε−2

}
= Prob

{
1
4

m∑
i=1

ξ2
i >

1
4
ρ2ε−2

}
≤ E

{
exp

{
m∑
i=1

ξ2i
4

}}
exp

{
−1

4
ρ2ε−2

}
[by Tschebyshev’s inequality]

=
[
E
{

exp
{
ξ21
4

}}]m
exp

{
−1

4
ρ2ε−2

}
≤ exp

{
Cm− 1

4
ρε−2

}
≤ exp

{
−1

8
ρ2ε−2

}
∀ε ≤ ε0 [by (8.26)]

≤ ε2o(1).

Verifying (8.40.b): this is the central point, and this is the point where the “measure
concentration” is exploited. Let

g(h) = F (fN + h)− F (fN), h ∈ Hm,

where Hm is the linear span of φ1, ..., φm. By A.4.1, this function satisfies the premise
of Proposition 8.2.1 with r = ρ and with T = C. Denoting by

ψm(s) = am exp{−s2/2}sm−1

the density of the Euclidean norm of m-dimensional random Gaussian vector ξm, we
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have

E
{[
F (f̂m + fNm+1)− F (fN)

]2
χε‖ξm‖≤ρ

}
= E

{
g2(εξm)χ‖ξm‖≤ρ/ε

}
=

ρ/ε∫
0

Mεs[g
2]ψm(s)ds [averages Mt[·] are defined in Proposition 8.2.1]

≤
∞∫
0

[
(1 + θ)

ε2s2

m
‖ g′(0) ‖2 +(1 + θ)C

ε3s3(1 + εs)

m

+(2 + θ + θ−1)C s4ε4

m

]
ψm(s)ds ∀θ > 0

[by (8.21)]

≤ (1 + θ) ‖ g′(0) ‖2 ε2

m
E {‖ ξm ‖2}+ (1 + θ)CE

{
ε3

m
‖ ξm ‖3 + ε4

m
‖ ξm ‖4

}
+(2 + θ + θ−1)CE

{
ε4

m
‖ ξm ‖4

}
≤ (1 + θ)ε2 ‖ g′(0) ‖2 +C(2 + θ + θ−1)ε2

[
εm1/2 + ε2m

]
[since E {‖ ξm ‖2} = m, E {‖ ξm ‖p} ≤ cpm

p/2]
≤ (1 + θ)ε2 ‖ g′(0) ‖2 +(2 + θ + θ−1)ε2o(1)

[since εm1/2 = o(1) by (8.26)]

= (1 + θ)ε2
m∑
i=1

[F ′(fN)]2i + (2 + θ + θ−1)ε2o(1)

[the origin of g]

≤ ε2
m∑
i=1

[F ′(fN)]2i + ε2o(1)

[choose appropriate θ = θ(ε)→ 0, ε→ +0]
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