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Abstract

We consider a chance constraint Prob{ξ : A(x, ξ) ∈
K} ≥ 1 − ε (x is the decision vector, ξ is a random
perturbation, K is a closed convex cone, and A(·, ·)
is bilinear). While important for many applications in
Optimization and Control, chance constraints typically
are “computationally intractable”, which makes it nec-
essary to look for their tractable approximations. We
present these approximations for the cases when the
underlying conic constraint A(x, ξ) ∈ K is (a) scalar
inequality, or (b) conic quadratic inequality, or (c) lin-
ear matrix inequality, and discuss the level of conser-
vativeness of the approximations.

1 The problem

Consider a randomly perturbed convex constraint in
the conic form:

Aξ,σ(x) = A0(x) + σ

k∑

i=1

ξiAi(x) ∈ K, (1)

where

• Ai(·) are affine mappings from Rn to finite-dimen-
sional real vector space E, and x ∈ Rn is the decision
vector;

• ξi are scalar random perturbations satisfying the re-
lations

(a) : ξi are mutually independent;
(b) : E {ξi} = 0;
(c) : E

{
exp{ξ2

i /4}} ≤ √
2

(2)

Cases of primary interest:
— ξi ∼ N (0, 1) (“Gaussian noise”; the absolute con-
stants in (2.c) come exactly from the desire to make
the relation valid for the standard Gaussian perturba-
tions);
— E{ξi} = 0, |ξi| ≤ 1 (“bounded random noise”).

• σ ≥ 0 is the level of perturbations,

• K is a closed pointed convex cone in E.
Cases of primary interest:

— E = R, K = R+; here (1) is a scalar linear inequal-
ity;
— E = Rm+1, K = Lm = {x ∈ Rm+1 : xm+1 ≥√

x2
1 + ... + x2

m}; here (1) is a randomly perturbed
Conic Quadratic Inequality (CQI)

‖A[σξ]x + b[σξ]‖2 ≤ cT [σξ]x + d[σξ], (3)

where the “data” A[·], b[·], c[·], d[·] are affine in the
perturbations. (Systems of) CQI’s arise in many im-
portant applications, see, e.g., [6, 2];
— E = Sm is the space of m×m symmetric matrices,
K = Sm

+ is the cone of positive semidefinite matrices
from Sm; here (1) is a randomly perturbed Linear Ma-
trix Inequality (LMI).

We are interested to describe x’s which satisfy (1) with
a given high probability, that is, are such that

Prob {ξ : Aξ,σ(x) 6∈ K} ≤ ε, (4)

for a given ε << 1, with ultimate goal to optimize over
the resulting set, perhaps under additional constraints
on x (the latter problem arises in numerous situations
coming from Optimization and Control). The chance
constraint (4) usually is “computationally intractable”.
E.g., among the examples above, the only one where (4)
can be rewritten equivalently as an explicit convex con-
straint on x is the simplest case of scalar linear inequal-
ity affected by Gaussian noise; even here, replacing the
Gaussian perturbations ξi with uniformly distributed
ones (4) becomes intractable. In the case when the
chance constraint (4) is computationally intractable, it
makes sense to look for its “computationally tractable
approximations”, specifically, systems S = Sσ,ε(x, u) of
explicit convex constraints on x and additional “anal-
ysis” variables u such that

Pσ,ε(x) : ∃u : (x, u) satisfies Sσ,ε(x, u)
⇓

Qσ,ε(x) : x satisfies (4), whatever is the
distribution of ξ satisfying (2)

(5)

so that the possibility to extend a given x to a solution
to S implies that x satisfies (4). Besides this, we require
the possibility to build S, given σ, ε and the data Ai(·),
i = 0, 1, ..., k, in time polynomial in the size of these
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data and ln(1/ε). The latter requirement, modulo mi-
nor additional technical assumptions, implies that one
can check efficiently whether or not a given x satisfies
Pσ,ε(x), so that S gives an efficiently verifiable sufficient
condition for the validity of (4). Moreover, the set of
x’s satisfying this sufficient condition is convex, so that
one can minimize efficiently convex objectives over x’s
satisfying this sufficient condition and, perhaps, addi-
tional “explicit” convex constraints.

The validity of Pσ,ε(x) is just a sufficient condition for
the validity of (4), and as such it can be very conser-
vative. A natural way to quantify the associated “level
of conservativeness” is offered by the following

Definition 1 We say that Pσ,ε(·) is a tight, within fac-
tor κ ≥ 1, approximation of Qσ,ε(·) if, first, implica-
tion (5) holds true and, second, if an x does not satisfy
Pσ,ε(·), then, for properly chosen distribution of ξ satis-
fying (2), x does not satisfy Qκσ,ε/κ(·) as well. In other
words, the set of x’s satisfying Pσ,ε(·) is in-between the
feasible set of the original chance constraint (4) (what-
ever be a distribution of ξ satisfying (2)) and the fea-
sible set of the chance constraint obtained from (4) by
increasing by factor κ the level of perturbations and re-
ducing by the same factor the “unreliability” ε.

In reality the levels of uncertainty and/or unrelia-
bility are usually given “by order of magnitude”, so
that tight, within moderate factors, approximations of
chance constraints can be treated as reasonable substi-
tutions of these constraints.

2 The results

2.1 Scalar Linear Inequality
This case is trivial: a tight, within factor O(1),
tractable approximation of (1) is the conic quadratic
inequality

A0(x)−Θσ

√√√√
k∑

i=1

A2
i (x) ≥ 0, Θ = O(1)

√
ln(1/ε).

2.2 Conic Quadratic Inequality
In the case when (1) is a CQI (3), we know how to build
a tight tractable approximation only in the particular
case when the random perturbations in the left hand
side and in the right hand side of (3) are independent
of each other. Thus, assume that ξ is partitioned into
subvectors ξ′ = (ξ1, ..., ξp) and ξ′′ = (ξp+1, ..., ξk), with
A[·], b[·] depending affinely on σξ′, and c[·], d[·] depend-
ing affinely on σξ′′. Under this assumption, (3) can be
rewritten equivalently as

‖r(x) + σR(x)ξ′‖2 ≤ s(x) + σqT (x)ξ′′, (6)

with r(·), R(·), s(·), q(·) affinely depending on x.
An O(

√
ln(1/ε))-tight approximation of the associated

chance constraint (4) turns out to be given by the fol-
lowing system of constraints in variables x, τ, µ:

(a) τ ≤ s(x)−Θσ‖q(x)‖2
(b) τ ≥

√
rT (x)r(x) + σ2Θ2Tr(RT (x)R(x))

(c) 0 ¹




τ −Θ2σ2µ rT (x)

µI
RT

1 (x)
...

RT
p (x)

r(x) R1(x) · · ·Rp(x) τI




(7)
where R1(x), ..., Rp(x) are columns of R(x) and Θ =
O(1)

√
ln(1/ε).

The informal outline of the derivation is as follows.
First, independence of the perturbations in the left and
in the right hand sides implies that in order for (4) to
be valid with ε << 1, there should exist τ ≥ 0 (de-
pending on x only) such that the right hand side in
(3) is, with probability ≥ 1− O(ε), ≥ τ , while the left
hand side is, with the same probability, ≤ τ . The for-
mer of these requirements is expressed by (7.a); the
essence of the matter is how to express the fact that
‖r(x) + σR(x)ζ‖22 ≤ τ2, ζ = ξ′,z with probability close
to 1. Assuming the noise Gaussian, the inequality in
question becomes

rT (x)r(x) + 2σζT RT (x)r(x) + σ2ζT RT (x)R(x)ζ ≤ τ2.
(8)

In order for this inequality to be satisfied with proba-
bility close to 1, one clearly should have

rT (x)r(x)+2σ‖RT (x)r(x)‖2 +σ2Tr(RT (x)R(x)) ≤ τ2,
(9)

whence

(a) rT (x)r(x) + 2σ‖RT (x)r(x)‖2
+σ2Tr(RT (x)R(x)) ≤ τ2,

(b) rT (x)r(x) + σ2Tr(RT (x)R(x)) ≤ τ2.
(10)

Note that from (10) it follows that

(a) max
η:‖η‖2≤1

{
rT (x)r(x) + 2σηT RT (x)r(x)

+σ2ηT RT (x)R(x)η
} ≤ τ2,

(b) rT (x)r(x) + σ2Tr(RT (x)R(x)) ≤ τ2.

(11)

Vice versa, applying results on large deviations for vec-
tor sums (see Section 3), it is easily seen that whenever
x, τ satisfy the “reliable” version of (11), specifically,

(a) max
η:‖η‖2≤Θ

{
rT (x)r(x) + 2σηT RT (x)r(x)

+σ2ηT RT (x)R(x)η
} ≤ τ2,

(b) rT (x)r(x) + σ2Θ2Tr(RT (x)R(x)) ≤ τ2.

(12)

where Θ = O(1)
√

ln(1/ε), x, τ satisfy (9) with prob-
ability at least 1 − ε. It remains to note that (12.b)
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is exactly (7.b), while (12.a) states that the uncertain
CQI

‖r(x) + R(x)η‖2 ≤ τ

is satisfied for all perturbations η from the ball ‖η‖2 ≤
σΘ. It is known (see [5, 1]) that the latter requirement
is equivalent to the existence of µ satisfying (7.c).

2.3 Linear Matrix Inequality
What we know in this most difficult case can be sum-
marized as follows.

A. In the case of nondegenerate A0(x) (which can be
assumed without loss of generality) a sufficient condi-
tion for the validity of (4) is that A0(x) Â 0 and

Θσ

√
k∑

i=1

λ2
max(A

−1/2
0 (x)Ai(x)A−1/2

0 (x)) ≤ 1,

Θ = O(1)
√

ln(m) ln(1/ε),

(13)

where λmax(A) is the maximum eigenvalue of a sym-
metric matrix A and m is the size of the matrices Ai(x).
A bad news about this sufficient condition is that in
general it is a nonconvex restriction on x and thus is
computationally intractable. Sometimes this difficulty
does not occur, e.g., when A1(x), ..., Ak(x) are inde-
pendent of x (“LMI with randomly perturbed constant
term”); here the above condition becomes

∃(µ1, ..., µk > 0) :



−A0(x) ¹ µiAi ¹ A0(x), i = 1, ..., k

O(1)σ
√

ln(m) ln(1/ε)

√
k∑

i=1

µ−2
i ≤ 1

In more complicated cases, where (13) is intractable,
one can replace this condition by its tractable approx-
imation, e.g., by the system of constraints

A0(x) º τD[
λiD Ai(x)
Ai(x) λiD

]
º 0, i = 1, ..., k

O(1)σ
√

ln(m) ln(1/ε)
√∑

i

λ2
i ≤ τ

(14)
in variables x, τ, λ (D Â 0 is the “free parameter” of
the construction), or the system

A0(x) º 0[
αiA0(x) Ai(x)
Ai(x) αiA0(x)

]
º 0, i = 1, ..., k

(15)

in variables x, where positive parameters αi satisfy the
restriction

O(1)σ
√

ln(m) ln(1/ε)
√∑

i

α2
i ≤ 1.

Note that the tightness factor of (13) does not exceed
O(
√

m), while tightness factors of (14) and (15) seem-
ingly cannot bounded solely in terms of data size.

B. A simple way to build “safe versions” of randomly
perturbed constraints is offered by the scenario ap-
proach: we generate a sample ξ1,..., ξS of random per-
turbations, choose a “safety parameter” Θ > 1 and
replace (4) with the system of constraints

Aξs,Θσ(x) ≡ A0[x] + Θσ

k∑

i=1

ξs
i Ai(x) ∈ K, s = 1, ..., S.

(16)
The advantage of this approach is that it guarantees
computational tractability of “approximation” (16) of
chance constraint (4), provided that K itself is com-
putationally tractable (which indeed is the case in all
our examples) and that the number S of “scenarios” is
polynomial in the size of the original data and ln(1/ε).
Note also that system (16) is random, so that we cannot
require from it to possess a particular property (e.g., to
be an approximation of (4)) for all scenario samples);
all we may hope for is that this system possesses a de-
sired property with probability at least 1 − δ, where
δ << 1 is a given “(un)reliability level”.

Recently, Calafiore and Campi [4] have obtained an
extremely elegant and deep result on the “power” of
the scenario approach as applied to a general-type ran-
domly perturbed convex program. We are about to
present an incomparably more specialized result, which
has, however, the advantage that it deals with the sam-
ples of scenarios of polynomial in ln(ε−1δ−1) size, while
the result of [4] requires the sample to be of cardinal-
ity inverse proportional to δε. For the sake of definite-
ness, consider the case of randomly perturbed LMI and
Gaussian perturbations (the latter restriction seems to
be crucial). Our result is as follows:

Proposition 1 Consider randomly perturbed LMI
with Gaussian perturbations:

A0(x) + σ

k∑

i=1

ξiAi(x) º 0 [Ai(·) ∈ Sm, ξ ∼ N (0, Ik)]

along with its “scenario approximation” given by (16)
(where K = Sm

+ ). Then

(i) With safety parameter Θ = O(1)
√

ln(/ε) and sam-
ple size

S ≥ O(1)[m2k ln(k) + ln(1/δ)],

the feasible set YΘσ[ξ1, ..., ξS ] of (16) is contained in
the set X [σ, ε] of solutions to the chance constraint

Prob

{
ξ : A0(x) + σ

k∑

i=1

ξiAi(x) º 0

}
≥ 1− ε

with probability at least 1− δ.

(ii) For all δ, ε, 0 < δ, ε < 1/4, every Θ > 1 and every
sample size S, with κ ≥ O(1)

√
ln(S/δ), every point x

p. 3



of the set X [κΘσ, ε] with probability at least 1−δ belongs
to the set YΘσ[ξ1, ..., ξS ].

In particular, when approximating an optimization
problem

c∗(σ, ε) = min
x

{
eT x : x ∈ X ∩ X [σ, ε]

}
(17)

with its “scenario approximation”

c∗ = min
x

{
eT x : x ∈ X , Aξs,Θσ(x) º 0, s = 1, ..., S

}
[

Θ = O(1)
√

ln(1/ε)
S = O(1)[m2k ln(k) + ln(1/δ)]

]

the solution to the approximation, with probability at
least 1 − δ, is feasible for the problem of interest (17),
and the optimal value c∗ of the approximation, with
probability at least 1− δ, satisfies the inequalities

c∗(σ, ε) ≤ c∗ ≤ c∗(σ
√

ln(1/ε) ln(mk/δ), ε).

When considering the scenario approximations, one
should mention the following phenomenon. By Propo-
sition 1, in the case of Gaussian noise, for “moderate” Θ
and S, a “scenario-feasible” domain YΘσ is, with prob-
ability close to 1, inside the feasible set X [σ, ε] of the
chance constraint, and with probability close to 1 con-
tains every fixed feasible solution of the “strengthened”
chance constraint (with the level of perturbations in-
creased by a moderate factor). However, the set of all
solutions to the strengthened chance constraint can be
much larger than a “typical” scenario-feasible domain.
Indeed, consider a simple randomly perturbed linear
constraint in Rn:

σxT ξ ≤ 1 [ξ ∈ N (0, In)]

The feasible set of the corresponding chance con-
straint is the centered at the origin ball B of radius
O(σ−1/

√
ln(1/ε)). In contrast to this, a typical “sce-

nario” ξs is of Euclidean norm O(
√

n), so that a typical
set of the form YΘσ is contained in the intersection of
O(S) “strips” of width O(n−1/2Θ−1σ−1) each, and ev-
ery one of these strips, for large n, is pretty “thin” as
compared to B.

3 The techniques

The techniques underlying the outlined results might
be of interest by their own right. Our main “building
blocks” are as follows:

3.1 Exponential bounds on probabilities of
large deviations in normed spaces
Let (E, ‖ · ‖) be a separable Banach space with the
following “smoothness” property: there exists a norm
p(x) which is compatible, up to factor 2, with the norm

‖ · ‖ (i.e., ‖x‖ ≤ p(x) ≤ 2‖x‖ for all x) which is smooth
outside of the origin, specifically, the function P (x) =
1
2p2(x) is continuously differentiable and satisfies the
relation

P (x + y) ≤ P (x) + 〈P ′(x), y〉+
κ2

2
P (y).

Now let ξs, s = 1, ..., S, be independent random vectors
in E with zero mean, such that E

{
exp{‖ξs‖2/σ2

s}
} ≤

exp{1}. Then for properly chosen positive absolute
constant c and for all ρ > 0 one has

Prob



‖

S∑
s=1

ξs‖ > ρκ

√√√√
S∑

s=1

σ2
s



 ≤ c−1 exp{−cρ2}.

The outlined result seems to be very natural; however,
we were unable to find this result in the literature,
even in the simplest case of (E, ‖ · ‖) = (Rn, ‖ · ‖2)
(where κ = 1). Note that this latter case underlies
the analysis of the tractable approximation (7) of a
randomly perturbed CQI. Similarly, the sufficiency of
condition (13) for the validity of (4) in the case of a
randomly perturbed LMI is a direct consequence of
the above “large deviation” result as applied to the
space E = Mm,n of m× n matrices equipped with the
standard matrix norm ‖ · ‖ (maximum singular value);
the (not completely trivial) fact underlying this appli-
cation is that this particular normed space is smooth
with κ = O(1)

√
ln(min[m,n] + 1).

3.2 Convex sets and Gaussian distributions
The results stated in Proposition 1 are straightforward
consequences of the following statement (which seems
to be new; it is an easy consequence of the “isoperimet-
ric inequality” for Gaussian distribution, see [3]):

Let ξ be a Gaussian vector with zero mean in Rn, and
B be a closed convex set in Rn such that Prob{ξ ∈
B} ≥ θ > 1/2. Then

0 < α < 1 ⇒ Prob{αξ ∈ B} ≥ 1− exp
{
−φ2(θ)

2α2

}
,

φ(r) : 1√
2π

∫ φ(r)

−∞
exp{−s2/2}ds = r.
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