
Course:

Linear and Convex
Optimization

ISyE 4803 D Spring 2015

Instructor: Dr. Arkadi Nemirovski
nemirovs@isye.gatech.edu, Groseclose 446
Office hours: Monday 10:00-12:00

Teaching Assistant: TBA

Lecture Notes, Transparencies, Assignments, Optional Projects:
T-Square
Note: In addition to Lecture Notes per se, Transparencies can
be viewed as self-contained (up to proofs) lecture notes.
Note: Proofs are non-obligatory (although highly recom-
mended!): in this course, you never will be asked to prove
something.

Rules of the Game

♣ Grade Components:
A. Obligatory “Pen and Paper” (p.-p.) assignments, point
weight 100 per assignment, to be graded by TA
— usual exercises like “find this and that” or “is it true that...”
• P.-p. assignments will be posted at T-Square and have due dates

B. MidTerm Exam, total point weight 100
C. Final Exam, total point weight 100

D. Optional bonus “Model and Solve” (m.s.) assignments,
each with its own points weight, to be graded by TA
— ask to model a story as optimization problem and process
the model numerically
• M.-s. assignments are/will be posted at T-Square, deadline for submis-

sions 04/01/2014

Software environment: MATLAB and CVX

CVX is an excellent user-friendly optimization solver working under MATLAB,

free download at http://cvxr.com/cvx/

E. Optional bonus modeling and computational project, total
weight 100 bonus points, to be graded by me
Project is posted at T-Square, deadline for submissions 04/20/2014

♣ Grading Formula:
Point Grade for the Course

= min

[
100,

0.05×
[

total # of points earned for p.p. assignments
total # of p.p. assignments

]
+ 0.45×

[
Grade in MidTerm︸ ︷︷ ︸

GMT

]
+ 0.50×

[
Grade in Final︸ ︷︷ ︸

GF

]
+ 0.20× 100×[total # of points earned for m.s. assignments]

total point weight of m.s. assignments

+ 0.50×
[

points earned in
Optional Project

]
×
{

1, min[GMT, GF] ≥ 50
1
2
, otherwise

]
Note: This is the messiest formula you will see in class...

♣ “There is nothing more practical than a good theory.” Our
course is aimed at methodology and theory of Optimization
rather than on acquiring ready-to-use practical skills
⇒ Concentrate on What ? and not on What for ? Under-
standing of “what for” will come later.

Please be patient!

♣ Questions are highly welcome. Ask as many questions as
you can, and then some!

Main Notational Conventions

• By default, all vectors are column vectors.
• The space of all n-dimensional vectors is denoted

Rn; and the set of all m×n matrices is denoted Rm×n.

• Usually, “MATLAB notation” is used: a vector with

coordinates x1, ..., xn is written down as

x = [x1; ...;xn]

(pay attention to semicolon “;” !)

For example,

 1
2
3

 is written as [1; 2; 3].

• More generally, if A1, ..., Am are matrices with the

same number of columns, we write [A1; ...;Am] to de-

note the matrix which is obtained when writing A2

beneath A1, A3 beneath A2, and so on.

• If A1, ..., Am are matrices with the same number of

rows, then [A1, ..., Am] stands for the matrix which is

obtained when writing A2 to the right of A1, A3 to

the right of A2, and so on.

Examples:

• A1 =

[
1 2 3
4 5 6

]
, A2 =

[
7 8 9

]

⇒ [A1;A2] =

 1 2 3
4 5 6
7 8 9


• A1 =

[
1 2
3 4

]
, A2 =

[
7
8

]

⇒ [A1, A2] =

[
1 2 7
4 5 8

]
• [1,2,3,4] = [1; 2; 3; 4]T

• [[1,2; 3,4], [5,6; 7,8]] =

[[
1 2
3 4

]
,

[
5 6
7 8

]]

=

[
1 2 5 6
3 4 7 8

]
= [1,2,5,6; 3,4,7,8]

Preface:

What Optimization is about?

What the course is about?

What Optimization is about

♣ To make decisions optimally is one of the basic

desires of a human being

♠ If (and this is a big If indeed!)

A. Our potential decisions can be quantified by val-
ues of a number of decision variables

x1, x2,...,xn ,
B. We can describe mathematically the set

X = {x = [x1; ...;xn]}
of feasible decisions — those indeed implementable
under circumstances,
C. We can quantify the outcome of a decision x =

[x1; ...;xn] by a single objective — real-valued func-
tion f(x1, ..., xn)

then we can select the optimal decision by solving

optimization problem

maximize
[minimize]

f(x) over x = [x1; ...;xn] subject to x ∈ X.

Note: Whether the objective f should be maximized

or minimized, it depends on what – profits or losses

– it expresses.

♣ When applying optimization-oriented methods to a

real-life situation, the key is to build an optimization

model which

a: is enough adequate – models well enough the struc-

ture of potential decisions, relations between the de-

cisions and outcomes, etc.,

b: can be “fed” by necessary data – we can identify nu-

merical values of various parameters (demands, re-

sources, performance characteristics of available de-

vices and processes, etc.) treated as given quantities

specifying “model’s environment,”

c: can be processed numerically in reasonable time.
Note: These targets are somehow contradictory – the

more adequate is the model, the more data it re-

quires, and the more complicated it becomes as far

as numerical processing is concerned...

a: Model should be enough adequate
b: We can “feed” the model by meaningful data
c: Model should be amenable for accurate numerical pro-
cessing taking reasonable time.

♠ In our course we

• do not touch a — building an adequate model re-

quires understanding the subject domain in question

and goes beyond optimization per se
• somehow touch b by presenting the basics of Ro-
bust Optimization methodology – a popular optimization

paradigm aimed at handling data uncertainty character-

istic for optimization problems of real-life origin

• focus on c, via emphasis on what optimization can

do well and what is problematic, and thus on what

are “desirable” model structures allowing for reliable

numerical processing.

Example: Given time horizon of one year, we want to create
a portfolio by distributing (at most) $ 1000 between 4 available
assets.
• A potential decision can be represented by values
of 4 decision variables x1, x2, x3, x4, where xj is the
money to be invested in asset #j, j = 1,2,3,4

• We probably can define the set of feasible decisions
as

X =

x = [x1;x2;x3;x4] :

x1 + x2 + x3 + x4 ≤ 1000
you cannot invest more than $ 1000
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
investments cannot be negative


• The simplest objective (to be maximized) is the
expected value of the portfolio in a year from now:

f(x) = c1x1 + c2x2 + c3x3 + c4x4

where cj are the expected yearly returns of the assets

⇒ Optimal Portfolio Selection can be modeled by the opti-
mization problem

max

{
c1x1 + c2x2 + c3x3 + c4x4 :

x1 + x2 + x3 + x4 ≤ 1000
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

}
♠ Quiz: What are the optimal portfolio selections in the cases

when

• c1 = 1.1, c2 = 1.2, c3 = 1.3, c4 = 1.4

• c1 = 1.1, c2 = 1.2, c3 = c4 = 1.3

• c1 = −0.1, c2 = −0.2, c3 = −0.3, c4 = −0.4

♠ Quiz: Does the model meet the requirements a - c? What is

the most problematic requirement?

♠ Same as in our toy Portfolio Selection problem,

the set X of feasible decisions is usually (not always!)

given by a system of constraints

gi(x)
≥
=
≤
bi, i = 1, ...,m

every one of them representing a specific requirement,

like upper bound on a resource consumed, or a balance

constraint, or a lower bound on a particular outcome.

Note: The constraints in the system are always linked by “and”
– a feasible decision x must satisfy every one of the con-
straints, and not some of them:

X =

x = [x1; ...;xn] : gi(x)
≥
=
≤
bi for all i = 1, ...,m,


In terms of the objective and the constraints, an op-

timization problem reads

minx
[maxx]

f(x) : gi(x)
≥
=
≤
bi for all i = 1, ...,m


[Mathematical Programming format of an optimiza-

tion problem]

minx
[maxx]

f(x) : gi(x)
≥
=
≤
bi for all i = 1, ...,m


♠ Note: We always can pose an optimization problem

as a maximization one and make all its constraints ≤-
inequalities [same as always can make the problem a

minimization one and/or write down the constraints

as ≥-inequalities].

Indeed,

• to maximize f(x) is the same as to minimize −f(x)

• inequality constraint gi(x) ≥ bi is equivalent to

−gi(x) ≤ −bi, and equality constraint gi(x) = bi can be

expressed by a pair of opposite inequalities gi(x) ≤ bi
and −gi(x) ≤ −bi.
Example: Problem

min
x=[x1;x2]

{
f(x) = x1 − 2x2 :

x1 ≥ 5
x1 + x2 = 10

}
is equivalent to

max
x=[x1;x2]

f̂(x) = −x1 + 2x2 :
−x1 ≤ −5

x1 + x2 ≤ 10
−x1 − x2 ≤ −10

 .

Example: Optimization problem

min
x=[x1;x2]

{
x1 + x2︸ ︷︷ ︸
f(x)

: x1 − x2︸ ︷︷ ︸
g1(x)

≤ 3︸︷︷︸
b1

or sin(x2)︸ ︷︷ ︸
g2(x)

≤ 0.5︸︷︷︸
b2

}
is not in MP format: the requirements g1(x) ≤ b1 and

g2(x) ≤ b2 are linked by “or,” not by “and,” and a

feasible x is allowed to violate one of these require-

ments, provided it meets the other one.

• The MP form of the problem is

min
x=[x1;x2]

{
x1 + x2︸ ︷︷ ︸
f(x)

: min[x1 − x2 − 3, sin(x2)− 0.5]︸ ︷︷ ︸
g(x):=min[g1(x)−b1,g2(x)−b2]

≤ 0
}

♠ Indeed, to say that

g1(x) ≤ b1 or g2(x) ≤ b2 or ... or gm(x) ≤ bm
is exactly the same as to say that

g(x) := min [g1(x)− b1, g2(x)− b2, ..., gm(x)− bm]≤0.

♥ In contrast, to say that

g1(x) ≤ b1 and g2(x) ≤ b2 and ... and gm(x) ≤ bm
is exactly the same as to say that

g(x) := max [g1(x)− b1, g2(x)− b2, ..., gm(x)− bm]≤0.

Optimization: Challenges

♣ When people want to say that certain task is in

fact intractable, they say “it is like to find a needle in a
haystack.”
• As far as computations are concerned, optimization
is exactly about finding a needle in a haystack, with elabo-

ration stemming from the fact that the haystack in

typical applications is of dimension in the range of

thousands and millions, rather than to be of modest

dimension 3.

♠ Finding a needle in n-dimensional haystack can be

posed as optimization problem as follows:

• The haystack – the feasible set of the problem –

is the box X = {x ∈ Rn : 0 ≤ xj ≤ 1, 1 ≤ j ≤ n}
• The needle, which is a small domain in Rn, is

modeled by the objective f(x): this is a function of

x ∈ Rn which is 0 outside of the needle and is negative

inside the needle.

⇒ To find the needle means to find a feasible solution to the
problem

minx=[x1;...;xn]

{
f(x) : 0 ≤ xj ≤ 1, 1 ≤ j ≤ n

}
where the objective is negative, to which end it suffices

to find a good enough approximate solution to the

problem.

minx=[x1;...;xn]

{
f(x) : 0 ≤ xj ≤ 1, 1 ≤ j ≤ n

}
Our needle is buried in hay – we cannot see it from

a distance. What we can do is to generate, one by

one, “search points” x1, x2,... in the haystack and to

check whether these points hit the needle.

Equivalently: At search step t, we select a point xt and

call an oracle which provides us with local information

on f at the point, e.g., reports the value f(xt) of f

at the point (and perhaps also the derivatives of f).

♠ Note: This is the standard model of a general-purpose
optimization process: when solving optimization problem

min
x
{f(x) : gi(x) ≤ bi, 1 ≤ i ≤ m}

we learn the problem by calling “an oracle” – a subroutine re-
porting local information on f and gi, most notably, values and
gradients – along a sequence of search points xt, t = 1,2,
A “general purpose” solution algorithm is, essentially, the col-
lection of rules for generating these search points.

♠ In our “needle in haystack” example, f is pretty

simple – it is zero outside the needle and negative in-

side it:

x

f(x)

1D haystack (the domain of f)
and the needle (the interval where f is negative)

• When querying local oracle outside of the needle,

we get no information on its location

⇒ When looking for a needle in 1D stack, the best

we can do is to scan for the needle along a grid with

resolution of order of the needle length `, or generate

the search points at random from the uniform distri-

bution. Typical number of steps before the needle is found
will be of order of 1/`.
♠When looking for a needle in n-dimensional haystack,

the situation is similar: the best we can do is to scan

along a “dense enough” grid in the haystack or to look

for the needle along a sequence of points drawn at

random from the uniform distribution in the haystack.

In both cases, typical number of steps before the needle is
found is of order of N = Voln(haystack)

Voln(needle)
• Voln: n-dimensional volume.

♠ When modeling the haystack as n-dimensional unit

box {x : 0 ≤ xj ≤ 1, 1 ≤ j ≤ n}, and the needle — as

a box with n − 1 edges equal to 0.005 and one edge

equal to 0.05, the typical number of steps before the

needle is found is of order of

N = 2n · 102n−1

n N comment

1 20 easy
3 800,000 proverbial case

10 1.024 · 1022 by far beyond reach
36 ≈ 6.87 · 1081 more than # of atoms in Universe!

Note: When minimizing within accuracy ε a function

over n-dimensional domain X, we should reach the

domain Xε of ε-optimal solutions. With “needle in

the haystack” approach, it would typically take

Voln(X)

Voln(Xε)
∼
(

1
√
ε

)n
steps – an astronomical number already for ε = 0.01

and n = 25. We would be unable to carry out that many
steps even if the future of mankind were at stake!

♠ Question: How happens that we can solve problems with
tens of thousands of variables within accuracies like ε = 10−6

or ε = 10−10 ?
♥ Answer: The key is in utilizing problem’s structure.
With favorable structure, already local information on ob-
jective and constraints conveys information on where the glob-
ally optimal solution is.

♣ Fact: The standard “favorable structure” is convex-
ity of the MP problem under consideration.

♠ Convexity: First acquaintance. For starters, con-

sider the problem minx∈X f(x) of minimizing a differ-
entiable function f over a simple domain, specifically,

n-dimensional box X = {x ∈ Rn : −1 ≤ x1, ..., xn ≤ 1}.
• For a differentiable f , convexity can be defined as the
property of f to dominate its linearizations:

f(y) ≥ f(x) + [∇f(x)]T (y − x)

:= f(x) +
∑n
i=1

∂f(x)
∂xi

(yi − xi) for all x, y

x

f(x)

a

What we see: We have computed f and ∇f at a (fea-

sible) solution a, and ∇f(a) turns out to be negative

⇒ to the left of a, linearization of f is > f(a) ⇒ to the
left of a, f itself is > f(a)

⇒ we can reduce the optimization domain by cutting off all
points < a!
• This “cut off” scheme can be extended to multi-

dimensional convex (i.e., with convex objective and

constraints) problems!

♠ Note: In the “cut off” scheme, convexity of f is

crucial. For example, in the case of (nonconvex!) f

al follows:

x

f(x)

cb

local information to the right of b reveals nothing

about the location of the global minimum and does

not allow for cutting off a massive set of candidate

solutions

⇒ In the non-convex case, to approximate well the globally
optimal solutions, a kind of brute search is necessary.
Utilizing problem’s structure, we can make brute

search more efficient than in the “needle in the

haystack” case, but usually cannot eliminate the

“curse of dimensionality” — exponential explosion of the
number of steps as problem’s dimension grows.

♣ Course-related consequences:
A. Emphasis on Convex optimization – the “solvable case” in
Mathematical Programming. Convex optimization

— covers a wide and constantly extending range of

applications in
• Decision Making (Linear Optimization models

without integrality constraints),
• Engineering (Signal Processing, Imaging, Machine

Learning, High-dimensional Statistics, Structural
Design, Synthesis of linear controllers,...)

— is the major “working horse” when solving difficult

non-convex optimization problems arising in Discrete

Optimization

— in theory, and to some extent also in practice,

allows to find, in a computationally efficient fashion, high ac-
curacy approximations to globally optimal solutions. Among

optimization algorithms, those of convex optimization

are by far closer to the ideal “You Press the Button, We
Do the Rest” than algorithms for solving non-convex

problems.

♣ Course-related consequences (continued):
B. In our course, “Emphasis on Convex Optimization”

will mean primary focus on “well-structured” families of con-
vex problems, specifically, conic ones.
• Convex problems typically possess much more struc-

ture than postulated by plain convexity, and utilizing

this “extra” structure in solution algorithms was and

still is the key driving force in the dramatic progress

in the area during the last two decades.

As a result of this progress, the performance of con-

vex optimization techniques increased by factor like

106, with nearly equal contributions of hardware and

of algorithmic improvements.

• Conic Programming is a far-reaching extension of

Linear Programming. Linear Programming possesses

an extremely rich and relatively simple structure which

underlies fundamental theoretical developments (du-

ality) and extremely efficient algorithms. It turns out

that these theory and algorithms can be extended to

an extremely wide variety of convex nonlinear problems

captured by Conic Programming.

♣ Course-related consequences (continued):
C. Availability of software (e.g., CVX) of the type “You
Press the Button, We Do the Rest” allows to switch from

the traditional emphasis on how convex optimization

algorithms work to what these algorithms can solve.

Cf.: When car engines are reliable, a driver should not know
much about “what is under the hood” and may focus on route
planning and safe driving.
⇒ In our course, algorithms will be presented at the

“executive summary” level. Our emphasis will be on

• basic theory of Convex Optimization, most notably, duality
• “calculus” of well-structured convex problems:

– how to recognize convexity?

– how to convert a problem into a form well-suited for

numerical processing?

– what are the key factors affecting the performance

of state-of-the-art algorithms?

• instructive application examples

Part I: Linear Optimization
• What can be expressed via LO?
• Geometry of polyhedral sets
• LO Duality
• Simplex Method

Linear Optimization Program

A Linear Optimization problem, or program (LO), called

also Linear Programming problem/program, is the prob-

lem of optimizing a linear function

f(x) =
n∑

j=1

cixi

of an n-dimensional decision vector x under finitely
many linear equality and nonstrict inequality con-

straints.

Equivalently: An LO program is a Mathematical Program-
ming program

minx
[maxx]

f(x) : gi(x)
≥
=
≤
bi for all i = 1, ...,m


where f and gi are linear functions of x.

• For example, the MP problem

min
x

x1 :


x1 + x2 ≤ 20
x1 − x2 = 5
x1, x2 ≥ 0

 (1)

is an LO program, while the problem

min
x

exp{x1} :


x1 + x2 ≤ 20
x1 − x2 = 5
x1, x2 ≥ 0

 (1′)

is not an LO program, since the objective in (1′) is

nonlinear.

• Similarly, the problem

max
x

x1 + x2 :


2x1 ≥ 20− x2

x1 − x2 = 5
x1 ≥ 0
x2 ≤ 0

 (2)

is an LO program, while the problem

max
x


x1 + x2 :



∀i ≥ 2 :
ix1 ≥ 20− x2,

x1 − x2 = 5
x1 ≥ 0
x2 ≤ 0


(2′)

is not an LO program – it has infinitely many linear

constraints.

However: Problems (1),(1′) are reducible to each

other, and similarly for problems (2) and (2′)

♠ Note: Property of an MP problem to be or not to

be an LO program is the property of a representation
of the problem. We classify optimization problems

according to how they are presented, and not according

to what they can be equivalent/reduced to.

What is good in Linear Optimization?

♠ Linear Optimization is, historically, the first “chap-

ter” of Mathematical Programming in general and

Convex Optimization in particular. Discovered in late

1940’s, it still remains the most frequently used optimization
methodology and computational toolbox.

Reasons:
• In spite of simple structure, linear models cover

reasonably well a wide spectrum of applications in De-

cision Making and Engineering

• It is relatively easy to “feed” linear model by data.

To specify a linear function of 1000 variables, you

need 1000 coefficients; to specify a quadratic func-

tion, you need 501,500 coefficients!

• LO methodology was from the very beginning comple-
mented by extremely powerful solution algorithm – Simplex
method, which make LO a working tool rather than a

wishful thinking.

♠ LO possesses deep, rich and instructive theory which is

the major source and prototype when developing the-

ory and algorithms of more general and complicated

classes of optimization problems. In particular,

• LO was the prototype when developing Conic Pro-
gramming and Interior Point Methods which extended dra-

matically the practical grasp and computational power

of Convex optimization

• LO theory underlies optimality conditions in Non-

linear optimization. These conditions serve as the

major “driving force” when designing algorithms for

non-convex continuous optimization.

♠ LO techniques are the major “working horse” in

crucial for applications Discrete and Combinatorial opti-

mization.

Illustration: Portfolio Selection

♣ I have $1 to invest for one year. My options are

A. To put some of the money, x0, to my savings ac-

count which guarantees 5% interest, so that in a year

from now I shall get 1.05x0 in the bank.

B. To distribute the rest of the money between 9 avail-

able assets. Investing xi into asset # i, in a year from

now the value of my investment will be [1 + ρi]xi,

where [1 + ρi] is the yearly return of asset i.

⇒ In a year from now, I shall own

u = 1.05x0 + [1 + ρ1]x1 + ...+ [1 + ρ9]x9

I would like to maximize u under natural constraints

x0 ≥ 0, x1 ≥ 0, ..., x9 ≥ 0; x0 + x1 + ...+ x9 = 1.

♠ Difficulty: The profits ρi are uncertain and random,

and their joint probability distribution is only partially
known. Specifically, from the historical data I know

• the ranges of the random profits ρ1,...,ρ9

• the expected profits ri = E{ρi}, i = 1, ...,9

In addition, I know that

• the profits are uncorrelated across the assets:

E{(ρi − ri)(ρj − rj)} = 0, 1 ≤ i < j ≤ 9.

How to proceed?
♠ The answer depends on my attitude to risk.

♠ Problem:
“maximize” u = 1.05x0 + [1 + ρ1]x1 + ...+ [1 + ρ9]x9

s.t. x0 ≥ 0, x1 ≥ 0, ..., x9 ≥ 0; x0 + x1 + ...+ x9 = 1
[ρi: uncorrelated profits with known expectations ri and ranges]
♥ Available data:

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

• green vertical segments: ranges of profits ρi
• +: expected profits which are the midpoints of the ranges
• ——- : profit guaranteed by saving account

(?) What should we maximize?

• A risk-neutral person would maximize the expected profit

⇒ invest all the money in the most promising asset # 9

• A risk-averse person, like me, would maximize, for a reasonable

risk level α, the value-at-risk α — the largest u such that

Prob{1.05x0 + [1 + ρ1]x1 + ...+ [1 + ρ9]x9< u}≤ α (!)

Quiz: What is the value-at-risk 0.05 for r.v. ξ given by
value v 1 2 3 4 5 6 7

Prob{ξ = v} 0.01 0.03 0.04 0.02 0.30 0.25 0.35
Prob{ξ < v} 0.00 0.01 0.04 0.08 0.10 0.40 0.65
Prob{ξ ≤ v} 0.01 0.04 0.08 0.10 0.40 0.65 1.00

Obstacle: I do not know what exactly is the distribution

of profits! ⇒ It makes sense to insist on the validity of
(!) for every distribution of returns compatible with my a priori
information.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

• green vertical segments: ranges of profits ρi
• +: expected profits
• ——- : profit guaranteed by saving account

• I want to maximize value-at-risk 0.05, that is, to

maximize u over x, u under the constraints
x0 ≥ 0, ..., x9 ≥ 0,

∑9
i=0 xi = 1

Prob{1.05x0 + [1 + ρ1]x1 + ...+ [1 + ρ9]x9< u} ≤ 0.05
for every distribution with uncorrelated ρi varying in given ranges

and possessing given expectations

(?) To invest or not to invest?
♠ Key observation: The worst case profits of every

one of the assets are less than the profit guaranteed

by savings ⇒ If the largest, over all distributions in question,
probability of a crisis – for all ρi simultaneously to take their
worst-case values, is > 0.05, then I should not invest into as-
sets!
Indeed, let my family of distributions contain one with probabil-

ity of the crisis > 0.05. If this bad distribution is the true one (why

not?), with probability > 0.05 profit on (nonzero) investments in

the assets will be less than 5% of these investments. With 5%

profit from savings, the overall profit will be less than 5% of my initial

capital of $1. In contrast, $1 in savings does yield 5% profit...

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

• green vertical segments: ranges of profits ρi
• +: expected profits
• ——- : profit guaranteed by saving account

♠ To understand how high could be the probability

of a crisis, I use educated guess stating that the most

dangerous distribution is the one where each ρi takes

only extreme values in its range. Indeed, such a dis-

tribution yields the largest possible volatilities.

• With my data, the expectation ri of ρi is the mid-

point of profit’s range

⇒ My educated guess says that ρi takes every one of its
two extreme values with probability 1/2:

ρi = ri + δiξi
• ξi: half-length of the range of ρi;

• δi: takes values ±1 with probabilities 1/2.

♠ In terms of δi’s, the problem of maximizing the

probability of the crisis reads:

Given n = 9 uncorrelated random variables δ1, ..., δn taking
values±1 with probabilities 1/2, how large could be the prob-
ability of the event δ1 = δ2 = ... = δn = −1?
This is a Linear Programming program!

Given n = 9 uncorrelated random variables δ1, ..., δn taking
values±1 with probabilities 1/2, how large could be the prob-
ability that δ1 = δ2 = ... = δn = −1?
• Denoting by ε = [ε1; ...; εn] a collection of n ±1’s,

we

— introduce N = 2n decision variables pε indexed by

the collections; for a particular ε = [ε1; ...; εn], pε is the

probability that {δ1 = ε1, ..., δn = εn};
— subject the variables to linear constraints

pε ≥ 0 for all ε probabilities are ≥ 0∑
ε
pε = 1 and sum up to 1∑

ε:εi=−1
pε = 1

2
for all i ∀i,Prob{δi = −1} = 1

2∑
ε:εi=1

pε = 1
2

for all i ∀i,Prob{δi = 1} = 1
2∑

ω=±1,

ω′=±1

[∑
ε:εi=ω,

εj=ω′

pε
]
ωω′ = 0 for all i < j no correlations

— maximize under these constraints the probability

p[−1;...;−1] of crisis.

Quiz: Are all the constraints necessary?

• LP solver finds the optimal value equal to 0.10

⇒ With my a priori information, probability of crisis

can be > 0.05

⇒ I should not invest in assets!

♠ Absence of correlations often is interpreted as ab-
sence of statistical dependency. What would I do if the

profits were indeed independent across the assets?

♠ The problem “Given that the profits of assets are in-
dependent r.v.’s with given ranges and expectations, find the
investment of $1 between savings and assets with the largest
possible value-at-risk α” is difficult – the value-at-risk

is a difficult to optimize function of the investments,

and on the top of it, we still have only partial knowl-

edge of the distribution of profits.

• However, one can maximize a properly built “opti-

mization friendly” lower bound of the value at risk, valid

for all distributions with independent ρ1, ..., ρ9 meet-

ing our priori information on ranges and expectations.

With our data and α = 0.05, maximizing the bound

yields a nicely diversified portfolio

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Near-optimal investment of $ 1 (no money in savings)

Lower bound on profit’s value-at-risk 0.05: 0.0616

But: Under the bad distribution we have found, the
value-at-risk 0.05 of the profit of our nice portfolio is as low as
0.0335!

♠ Given our data, we can specify two distributions:

• “bad” one, where the profits of assets are uncorre-
lated and take their extreme values with probabilities

1/2, and the probability of crisis is > 0.05;

• “good” one, where the profits of assets are indepen-
dent and take their extreme values with probabilities

1/2.

♥ Known in advance to be the true ones, these dis-
tributions lead to completely different investment policies, as

far as optimizing value-at-risk 0.05 is concerned.

Quiz: What is the probability of crisis for the good

distribution?

Quiz: Assume that one of the above distribution in-

deed takes place, and our historical data are sampled

from the true distribution, independently across time,

for T years. How large should be T in order to infer

from the historical data, with confidence 0.95, which

one of the two candidate distributions is the true one?

• at least 1 year

• at least 2 years

• at least 4 years

• at least 8 years

• at least 16 years

• at least 32 years

Canonical and Standard formats of LO programs

♣ We can somehow “standardize” the formats in

which LO programs are written.

• every linear equality/inequality can be equivalently

rewritten in the form where the left hand side is a

weighted sum
∑n
j=1 ajxj of variables xj with coeffi-

cients, and the right hand side is a real constant:

2x1 ≥ 20− x2 ⇔ 2x1 + x2 ≥ 20

• the sign of a nonstrict linear inequality always can

be made ”≤”, since the inequality
∑
j ajxj ≥ b is equiv-

alent to
∑
j[−aj]xj ≤ [−b]:

2x1 + x2 ≥ 20⇔ −2x1 − x2 ≤ −20

• a linear equality constraint
∑
j ajxj = b can be repre-

sented equivalently by the pair of opposite inequalities∑
j ajxj ≤ b,

∑
j[−aj]xj ≤ [−b]:

2x1 − x2 = 5⇔
{

2x1 − x2 ≤ 5
−2x1 + x2 ≤ −5

• to minimize a linear function
∑
j cjxj is exactly the

same to maximize the linear function
∑
j[−cj]xj.

♣ Every LO program is equivalent to an LO program in the
canonical form, where the objective should be maxi-
mized, and the constraints are “≤” inequalities:

Opt = max
x


∑n
j=1 cjxj :

∑n
j=1 a1jxj ≤ b1∑n
j=1 a2jxj ≤ b2

...∑n
j=1 amjxj ≤ bm


[“term-wise” notation]

Example:

Opt = max
x1,x2,x3

{
2x1 + 3x2 − x3 :

3x1 + 4x2 + 5x3 ≤ 6
7x1 + 8x2 + 9x3 ≤ 10

}
⇔ Opt = max

x

{
cTx : aTi x ≤ bi, 1 ≤ i ≤ m

}
[“constraint-wise” notation]

⇔ Opt = max
x

{
cTx : Ax ≤ b

}
[“matrix-vector” notation]

c = [c1; ...; cn], b = [b1; ...; bm], ai = [ai1; ...; ain]

A = [aT1 ; aT2 ; ...; aTm] =


a11 a12 ... a1n

a21 a22 ... a2n
...
am1 am2 ... amn


Recall: aT is the transpose of vector/matrix a. For
column vectors a, x of the same dimension n,

aTx =
[
a1 · · · an

]
·

 x1
...
xn

 = a1x1 + a2x2 + ...+ anxn

In Example: m = 2, n = 2,

c =

 2
3
−1

 , b =

[
6

10

]
, A =

[
aT1
aT2

]
=

[
3 4 5
7 8 9

]

♠ A set X ⊂ Rn given by X = {x : Ax ≤ b} – the

solution set of a finite system of nonstrict linear in-

equalities aTi x ≤ bi, 1 ≤ i ≤ m in variables x ∈ Rn – is

called polyhedral set, or polyhedron. An LO program in

the canonical form is to maximize a linear objective

over a polyhedral set, called the feasible set (or feasible
domain) of the program.

♠ Note: The solution set of an arbitrary finite sys-

tem of linear equalities and nonstrict inequalities in

variables x ∈ Rn is a polyhedral set.

max
x

x2 :


−x1 + x2 ≤ 6

3x1 + 2x2 ≤ 7
7x1 − 3x2 ≤ 1
−8x1 − 5x2 ≤ 100



[−10;−4]

[−1;5]

[1;2]

[−5;−12]

LO program and its feasible domain

♣ Standard form of an LO program is to maximize a

linear function over the intersection of the nonnegative
orthant Rn+ = {x ∈ Rn : x ≥ 0} and the feasible plane
{x : Ax = b}:

Opt = max
x


∑n
j=1 cjxj :

∑n
j=1 a1jxj = b1∑n
j=1 a2jxj = b2

.........................∑n
j=1 amjxj = bm

xj ≥ 0, j = 1, ..., n


[“term-wise” notation]

Example:

Opt = max
x1,x2,x3

2x1 + 3x2 − x3 :
3x1 + 4x2 + 5x3 = 6
7x1 + 8x2 + 9x3 = 10
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0


⇔ Opt = max

x

{
cTx :

aTi x = bi, 1 ≤ i ≤ m
xj ≥ 0, 1 ≤ j ≤ n

}
[“constraint-wise” notation]

⇔ Opt = max
x

{
cTx : Ax = b, x ≥ 0

}
[“matrix-vector” notation]

c = [c1; ...; cn], b = [b1; ...; bm], ai = [ai1; ...; ain],

A = [aT1 ; aT2 ; ...; aTm] =


a11 a12 ... a1n

a21 a22 ... a2n
...
am1 am2 ... amn


In the standard form LO program

• all variables are restricted to be nonnegative

• all “general-type” linear constraints are equalities.

♣ Observation: The standard form of LO program is univer-
sal: every LO program is equivalent to an LO program in the
standard form.
Indeed, it suffices to convert to the standard form a

canonical LO max
x
{cTx : Ax ≤ b}. This can be done

as follows:

• we introduce slack variables, one per inequality con-

straint, and rewrite the problem equivalently as

max
x,s
{cTx : Ax+s = b, s ≥ 0}

• we further represent x as the difference of two new

nonnegative vector variables x = u− v, thus arriving at

the program

max
u,v,s

{
cTu− cTv : Au−Av + s = b, [u; v; s] ≥ 0

}
.

Illustration:

Opt = max
x

[2x1 + 3x2 − x3]

s.t.
3x1 + 4x2 + 5x3 ≤ 6
7x1 + 8x2 + 9x3 ≤ 10

⇔ Opt = max
x,s

[2x1 + 3x2 − x3]

s.t.
3x1 + 4x2 + 5x6 +s1 = 6
7x1 + 8x2 + 9x3 +s2 = 10

s1 ≥ 0, s2 ≥ 0

⇔ Opt = max
u,v,s

[2[u1 − v1] + 3[u2 − v2]− [u3 − v3]]

s.t.
3[u1 − v1] + 4[u2 − v2] + 5[u3 − v3] +s1 = 6
7[u1 − v1] + 8[u2 − v2] + 9[u3 − v3] +s2 = 10
s1 ≥ 0, s2 ≥ 0, u1 ≥ 0, u2 ≥ 0, u3 ≥ 0,
v1 ≥ 0, v2 ≥ 0, v3 ≥ 0,

max
x
{−2x1 + x3 : −x1 + x2 + x3 = 1, x ≥ 0}

1
x

3
x

2
x

Standard form LO program
and its feasible domain

LO Terminology

Opt = max
x
{cTx : Ax ≤ b}

[A : m× n]
(LO)

• The variable vector x = [x1; ...;xn] in (LO) is called

the decision vector of the program; its entries xj are

called decision variables.

• The linear function to be maximized

cTx = c1x1 + ...+ cnxn

is called the objective function (or objective) of the pro-

gram, and the inequalities

ai1x1 + ...+ ainxn︸ ︷︷ ︸
aTi x

≤ bi, i = 1, ...,m

are called the constraints.

• The structure of (LO) reduces to the sizes m (num-

ber of constraints) and n (number of variables). The

data of (LO) is the collection of numerical values of

the coefficients in the cost vector
c = [c1; ...; cn],

in the right hand side vector
b = [b1; ...; bm],

and in the constraint matrix
A = [aij]1≤i≤m

1≤j≤n
.

Opt = max
x
{cTx : Ax ≤ b}

[A : m× n]
(LO)

• A solution to (LO) is an arbitrary value of the deci-

sion vector.

• A solution x is called feasible if it satisfies the con-

straints: Ax ≤ b.
The set of all feasible solutions is called the feasible
set (or feasible domain) of the program.

• The program is called feasible, if the feasible set is

nonempty, and is called infeasible otherwise.

Example: The vector x = [2; 0;−0.1] is a solution to

the LO program

Opt = max
x1,x2,x3

[2x1 + 3x2 − x3]

s.t.
3x1 + 4x2 + 5x3 ≤ 6
7x1 + 8x2 + 9x3 ≤ 10

This solution is infeasible.

• x = [−1;−1;−1] is a feasible solution to the same

problem

⇒ Feasible solutions do exist

⇒ The problem is feasible
• Adding to the problem additional constraint

10x1 + 12x2 + 14x3 ≥ 17

we make the problem infeasible
Quiz: Why?

Optimal value of LO program

Opt = max
x
{cTx : Ax ≤ b}

[A : m× n]
(LO)

♠ Given a program (LO), there are three possibilities:
• the program is infeasible. In this case, Opt = −∞ by
definition.
• the program is feasible, and the objective is not
bounded from above on the feasible set, i.e., for ev-
ery a ∈ R there exists a feasible solution x such that
cTx > a. In this case, the program is called unbounded,
and Opt = +∞ by definition.
♥ The program which is not unbounded is called
bounded; a program is bounded iff its objective is
bounded from above on the feasible set (e.g., due
to the fact that the latter is empty).
iff: if and only if.
• the program is feasible, and the objective is bounded
from above on the feasible set: there exists a real a
such that cTx ≤ a for all feasible solutions x. In this
case, the optimal value Opt is the supremum, over
the feasible solutions, of the values of the objective
at a solution. Thus, Opt = 5 means that
— there is no feasible solution with the value of the
objective > 5
— for every ε > 0, there is a feasible solution with the
value of the objective ≥ 5− ε

Opt = max
x
{cTx : Ax ≤ b}

[A : m× n]
(LO)

• a solution to the program is called optimal, if it is

feasible, and the value of the objective at the solution

equals to Opt. A program is called solvable, if it admits

an optimal solution.

♠ In the case of a minimization problem

Opt = min
x
{cTx : Ax ≤ b}

[A : m× n]
(LO)

• the optimal value of an infeasible program is +∞,

• unboundedness means that the objective to be min-

imized is not bounded from below on the feasible set.

The optimal value in an unbounded problem is −∞
• the optimal value of a feasible and bounded program is

the infinum of values of the objective at feasible solu-

tions to the program. Thus, for a minimization problem,

Opt = 5 means that

— there is no feasible solution with the value of the

objective < 5

— for every ε > 0, there is a feasible solution with the

value of the objective ≤ 5 + ε

♣ The notions of feasibility, boundedness, solvabil-

ity and optimality can be straightforwardly extended

from LO programs to arbitrary MP ones. With this

extension, a solvable problem definitely is feasible and

bounded, while the inverse not necessarily is true, as

is illustrated by the program

Opt = max
x
{− exp{−x} : x ≥ 0},

Opt = 0, but the optimal value is not achieved – there

is no feasible solution where the objective is equal to

0! As a result, the program is unsolvable.

⇒ In general, the fact that an optimization program

has a “legitimate” – real, and not ±∞ – optimal value,

is strictly weaker that the fact that the program is solv-

able (i.e., has an optimal solution).

♠ In LO the situation is much better: we shall prove

that an LO program is solvable iff it is feasible and bounded.

Quiz: What is the “status” (feasible/infeasible,

bounded/unbounded, solvable/unsolvable) of LO pro-

grams below?

A:

Opt = max
x1,x2,x3

[2x1 + 3x2 − x3]

s.t.
3x1 + 4x2 + 5x3 ≤ 6
7x1 + 8x2 + 9x3 ≤ 10

feasible: bounded: solvable:

B:

Opt = max
x1,x2,x3

[2x1 + 3x2 − x3]

s.t.
3x1 + 4x2 + 5x3 ≤ 6
7x1 + 8x2 + 9x3 ≤ 10

10x1 + 12x2 + 14x3 ≥ 17

feasible: bounded: solvable:

C:

Opt = max
x1,x2,x3

[2x1 + 3x2 − x3]

s.t.
3x1 + 4x2 + 5x3 ≤ 6
7x1 + 8x2 + 9x3 ≤ 10
−1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, −1 ≤ x3 ≤ 1

feasible: bounded: solvable:

Examples of LO Models

♣ Diet Problem: There are n types of products and

m types of nutrition elements. A unit of product #

j contains pij grams of nutrition element # i and

costs cj. The daily consumption of a nutrition ele-

ment # i should be within given bounds [bi, bi]. Find

the cheapest possible “diet” – mixture of products –

which provides appropriate daily amounts of every one

of the nutrition elements.

Denoting xj the amount of j-th product in a diet, the

LO model reads

min
x

∑n
j=1 cjxj [cost to be minimized]

subject to∑n
j=1 pijxj ≥ bi∑n
j=1 pijxj ≤ bi

1 ≤ i ≤ m


 upper & lower bounds on

the contents of nutrition
elements in a diet


xj ≥ 0,1 ≤ j ≤ n

 you cannot put into a
diet a negative amount
of a product



• Diet problem is routinely used in nourishment of

poultry, livestock, etc. As about nourishment of hu-

mans, the model is of no much use since it ignores

factors like food’s taste, food diversity requirements,

etc.

• Here is the optimal daily human diet as computed

by the software at

http://www.neos-guide.org/content/diet-problem-demo

(when solving the problem, I allowed to use all 64

kinds of food offered by the code; the prices of 2010

are used):
Food Serving Cost

Raw Carrots 0.12 cups shredded 0.02
Peanut Butter 7.20 Tbsp 0.25
Popcorn, Air-Popped 4.82 Oz 0.19
Potatoes, Baked 1.77 cups 0.21
Skim Milk 2.17 C 0.28

Daily cost $ 0.96

♣ Production planning: A factory

• consumes R types of resources (electricity, raw

materials of various kinds, various sorts of manpower,

processing times at different devices, etc.)

• produces P types of products.

♠ There are n possible production processes, j-th of

them can be used with “intensity” xj (fraction of the

planning period during which j-th process is used).

• Used at unit intensity, production process # j

consumes Arj units of resource r, 1 ≤ r ≤ R, and

yields Cpj units of product p, 1 ≤ p ≤ P .

• The profit of selling a unit of product p is cp.

♠ Given upper bounds b1, ..., bR on the recourses avail-

able during the planning period, and lower bounds

d1, ..., dP on the amounts of products to be produced,

find a production plan which maximizes the profit.

♠ Denoting by xj the intensity of production process

j, the LO model reads:

max
x

n∑
j=1

(∑P
p=1 cpCpj

)
xj [profit to be maximized]

subject to
n∑

j=1
Arjxj ≤ br, 1 ≤ r ≤ R

 upper bounds on
resources should
be met


n∑

j=1
Cpjxj ≥ dp, 1 ≤ p ≤ P

 lower bounds on
products should
be met


n∑

j=1
xj ≤ 1

xj ≥ 0, 1 ≤ j ≤ n


 total intensity should be ≤ 1

and intensities must be
nonnegative


Implicit assumptions:
• all production can be sold

• there are no setup costs when switching between

production processes

• the products are infinitely divisible

♣ Inventory: An inventory operates over time horizon

of T days 1, ..., T and handles K types of products.

• Products share common warehouse with space C.

Unit of product k takes space ck ≥ 0 and its day-long

storage costs hk.

• Inventory is replenished via ordering from a supplier;

a replenishment order sent in the beginning of day t is

executed immediately, and ordering a unit of product

k costs ok ≥ 0.

• The inventory is affected by external demand of dtk
units of product k in day t. Backlog is allowed, and a

day-long delay in supplying a unit of product k costs

pk ≥ 0.

♠ Given the initial amounts s0k, k = 1, ...,K, of products
in warehouse, all the (nonnegative) cost coefficients and the
demands dtk, we want to specify the replenishment orders
vtk (vtk is the amount of product k which is ordered from the
supplier at the beginning of day t) in such a way that at the
end of day T there is no backlogged demand, and we want to
meet this requirement at as small total inventory management
cost as possible.

Building the model

1. Let state variable stk be the amount of product k

stored at warehouse at the end of day t. stk can be

negative, meaning that at the end of day t the inven-

tory owes the customers |stk| units of product k.

Let also U be an upper bound on the total manage-

ment cost. The problem reads:

min
U,v,s

U

U ≥
∑

1≤k≤K,
1≤t≤T

[okvtk + max[hkstk,0] + max[−pkstk,0]]

[cost description]
stk = st−1,k + vtk − dtk,1 ≤ t ≤ T,1 ≤ k ≤ K

[state equations]∑K
k=1 max[ckstk,0] ≤ C, 1 ≤ t ≤ T

[space restriction should be met]
sTk ≥ 0,1 ≤ k ≤ K

[no backlogged demand at the end]
vtk ≥ 0,1 ≤ k ≤ K,1 ≤ t ≤ T

[no returns to the supplier are allowed]

Implicit assumption: replenishment orders are exe-

cuted, and the demands are shipped to customers at

the beginning of day t.

Quiz: Is the above an LO program?

♠ Our problem is not and LO program – it includes

nonlinear constraints of the form∑
k,t

[okvtk + max[hkstk,0] + max[−pkstk,0]] ≤ U∑
k

max[ckstk,0] ≤ C, t = 1, ..., T

Let us represented equivalently “troublemaking” con-

straints by linear constraints.

• for every term max[hkstk,0], introduce a new deci-

sion variable xtk – an upper bound on the term. The

fact that xtk upper-bounds the term can be repre-

sented by linear constraints

xtk ≥ hkstk and xtk ≥ 0

• similarly, for every term max[−pkstk,0], introduce a

variable ytk upper-bounding the term and say that it

indeed is so:

ytk ≥ −pkstk and ytk ≥ 0

• similarly, for every term max[ckstk,0], introduce a

variable ztk upper-bounding the term and say that it

indeed is so:

ztk ≥ ckstk and ztk ≥ 0

• Rewrite the problem by replacing all troublemaking terms
with their upper bounds and adding the “upper-bounding” con-
straints.

♠ Applying the above construction to the Inventory
problem, we end up with the following LO model:

min
U,v,s

U

U ≥
∑

1≤k≤K,
1≤t≤T

[okvtk + max[hkstk,0] + max[−pkstk,0]]

stk = st−1,k + vtk − dtk,1 ≤ t ≤ T,1 ≤ k ≤ K∑K
k=1 max[ckstk,0] ≤ C, 1 ≤ t ≤ T

sTk ≥ 0,1 ≤ k ≤ K
vtk ≥ 0,1 ≤ k ≤ K,1 ≤ t ≤ T

⇓
min

U,v,s,x,y,z
U

U ≥
∑
k,t

[okvtk + xtk + ytk]

xtk ≥ hkstk, xtk ≥ 0, 1 ≤ k ≤ K,1 ≤ t ≤ T
ytk ≥ −pkstk, ytk ≥ 0, 1 ≤ k ≤ K,1 ≤ t ≤ T
stk = st−1,k + vtk − dtk,1 ≤ t ≤ T,1 ≤ k ≤ K∑K

k=1 ztk ≤ C, 1 ≤ t ≤ T
ztk ≥ ckstk, ztk ≥ 0, 1 ≤ k ≤ K,1 ≤ t ≤ T
sTk ≥ 0,1 ≤ k ≤ K
vtk ≥ 0, 1 ≤ k ≤ K,1 ≤ t ≤ T

• The original and the reformulated programs are
equivalent in the sense that
a. solution to the first problem is feasible iff it can be
extended, by properly selected added variables x, y, z,
to a feasible solution of the second problem
b. the objective functions in both problems are iden-
tical to each other
⇒ Programs have the same optimal value, and feasible/optimal
solution to the second problem induces a feasible, resp., opti-
mal solution, with the same value of the objective, to the first
problem.

Example 1: How to eliminate red nonlinearity in the constraint
....+ max[x1 − x2, x1 + x3] +≤5 ?
Answer: Rewrite the constraint as

....+z + ≤ 5
and

z ≥ x1 − x2 and z ≥ x1 + x3
Example 2: How to eliminate magenta nonlinearity in the con-
straint+ min[x1 − x2, x1 + x3] +≥5 ?
Answer: Rewrite the constraint as

....+z + ≥ 5
and

z ≤ x1 − x2 and z ≤ x1 + x3
Example 3: How to eliminate red nonlinearity in the constraint
....+ max[x1 − x2, x1 + x3] +≥5 ?
Answer: The above recipe does not work! The con-
straint is equivalent to

....+z + ≥ 5
and

z ≤ x1 − x2 or z ≤ x1 + x3
but this is not a system of constraints!
♠ In order to eliminate a nonlinear term

Term = max
min [linear expression, ...linear expression]

in a constraint
....+Term +≤≥....

the type of the term should match the type of the
inequality. Good cases are
• max-type term and ≤-type inequality
• min-type term and ≥-type inequality.

♠ Note: I spoke only about eliminating nonlinearities

in constraints. This indeed is the only interesting case,

since in optimization, linearity of objective is “for free.” In-

deed, by adding extra variable, you always can make

your objective linear by converting the original objec-

tive into a new constraint:

maxxf(x) s.t. a system of constraints on x

is equivalent to

maxx,tt s.t.

{ the original system
of constraints on x
and the constraint

f(x) ≥ t

Example of LO Model in Engineering:
Sparsity-oriented Signal Processing

♠ Traditional applications of LO primarily deal with

various Decision Making problems: production planning,

supply chain management, transportation, facility lo-

cation, etc.

Recent years witness steady growth of applications of

LO in Engineering. A nice example is `1 minimization
in Sparsity-oriented Signal Processing.
♠ Basic Signal Processing problem is to recover un-
known signal x∗ (which is an n-dimensional vector)

from its observation

y = A(x∗) + ξ

• x 7→ A(x) : Rn → Rm: known “signal-to-observation”

transformation

• ξ: observation noise.

♣ In many applications, the signal-to-observation

transformation is just linear:
A(x) = Ax for some known m× n matrix A.

♠ Assume from now on that A(·) is linear

⇒ the recovery problem is just to solve a system of linear
equations

Ax = b := Ax∗
given m × n matrix A and a noisy observation y of the “true”
right hand side b.

♣ Problem of interest: to solve a linear system
Ax = b := Ax∗

given m × n matrix A and a noisy observation y of the “true”
right hand side b.
♠ As of now, there are two typical settings of the

problem:

• m ≥ n (typically, m � n) — we have (much) more

observations than unknowns. This is the classical case

studied in numerical Linear Algebra (where noise is

non-random) and Statistics (where noise is random).

Unless A is “pathological,” the only difficulty here is

the presence of noise. The challenge is to reproduce

well the true signal while suppressing as much as pos-

sible the influence of noise.

• m < n (and even m � n) – we have (much) less

observations than unknowns.

Till recently, this case was thought of as completely

meaningless. Indeed, as Linear Algebra says, an under-
determined (with more unknowns than equations) sys-
tem of linear equations either has no solutions at all, or has
infinitely many solutions which can be arbitrarily far away from
each other.
⇒ When m < n, the true signal cannot be recovered from
observations even in the noiseless case!
♠ Remedy: Add some information on the true signal.

♣ Problem of interest: to solve a linear system
Ax = b := Ax∗

given m × n matrix A and a noisy observation y of the “true”
right hand side b in the case of m� n

♠ Sparsity-oriented remedy: Reduce the problem to the
one where the signal is sparse – has s� n nonzero entries,
and utilize sparsity in your recovery routine.
♠ Fact: Many real-life signals x when presented by their co-
efficients in properly selected basis (“dictionary”) B:

x = Bu
• columns of B: vectors of basis B
• u: coefficients of x in basis B

become sparse (or nearly so): u has just s� n nonzero
entries (or can be well approximated by vector with s � n

nonzero entries).

Illustration: The 256× 256 image

50 100 150 200 250

50

100

150

200

250

can be thought of as 2562 = 65536-dimensional vector (write

down the intensities of pixels column by column). “As is,” this

vector is not sparse and cannot be approximated well by highly

sparse vectors. This is what happens when we keep several

leading (i.e., largest in magnitude) entries and zero out all other

entries:

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

1% of leading entries kept 10% of leading entries kept

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

25% of leading entries kept 50% of leading entries kept

50 100 150 200 250

50

100

150

200

250

However, the image (same as other “non-pathological”

images) is nearly sparse when represented in wavelet
basis:

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

1% of leading wavelet
coefficients kept

5% of leading wavelet
coefficients kept

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

10% of leading wavelet
coefficients kept

25% of leading wavelet
coefficients kept

♠ When recovering a signal x∗ admitting a sparse (or

nearly so) representation Bu∗ in a known basis B from

observations

y = Ax∗+ ξ,

the situation reduces to the one when the signal to

be recovered is just sparse.

Indeed, we can first recover sparse u∗ from observations

y = Ax∗ + ξ = [AB]u∗ + ξ.

After an estimate û of u∗ is built, we can estimate x∗ by Bû.

⇒ In fact, sparse recovery is about how to recover

a sparse n-dimensional signal x from m� n observa-

tions

y = Ax∗+ ξ.

(?) How to recover a sparse (or nearly so) n-

dimensional signal x from m� n observations

y = Ax∗+ ξ ?

♠ To get an idea, consider the case when x∗ is exactly

sparse – has s� n nonzero entries – and there is no

observation noise:

y = Ax∗
• If we knew the positions i1, ..., is of the nonzero entries in
x∗, we could recover x∗ by solving the system with just
s unknowns:

y =
[
Ai1, ..., Ais

]
·
[
xi1; ...;xis

]
. (!)

When s ≤ m (which, with s � n, still allows for

m � n), we would get over-determined system of lin-

ear equations on the nonzero entries in x. Assuming

A “non-pathologic,” so that every s ≤ m columns of

A are linearly independent, (!) has a unique solution

which can be easily found.

But: We never know in advance where the nonzeros in x are
located!

(?) How to recover a sparse (or nearly so) n-

dimensional signal x from m� n observations

y = Ax∗+ ξ ?

♠ A straightforward way to account for the fact that

we never know where the nonzeros in x∗ stand, is to look

for the sparsest solution to the system y = Ax. This

amounts to solving the optimization problem

minx nnz(x) s.t. y = Ax (!)

• nnz(x): # of nonzero entries in x.

• It is easily seen that if x∗ is s-sparse and every 2s

columns in A are linearly independent (which is so when

2s ≤ m, unless A is pathological), then x∗ is the unique
optimal solution to (!), and thus our procedure recovers

x∗ exactly.

But: nnz(z) is a bad (nonconvex and discontinuous)

function, so that (!) is a disastrously complicated

combinatorial problem. Seemingly, the only way to

solve (!) is to use brute force search where we test

one by one all collections of potential locations of

nonzero entries in a solution. Brute force is com-

pletely unrealistic: to recover s-sparse signal, it would

require looking through at least
N =

(
n
s−1

)
= n!

(s−1)!(n−s+1)!
candidate solutions.

• with s = 17, n = 128, N is as large as 1.49 · 1021

• with s = 49, n = 1024, N is as large as 3.94 · 1084

(?) How to recover a sparse (or nearly so) n-

dimensional signal x from m� n observations

y = Ax∗+ ξ ?

• Solving problem

minx nnz(x) s.t. y = Ax (!)

would yield the desired recovery, but (!) is heavily

computationally intractable...

♠ Partial remedy: Replace the difficult to minimize ob-

jective nnz(θ) with an “easy-to-minimize” objective,

specifically, with ‖θ‖1 =
∑
i |θi|, thus arriving at `1-

recovery
x̂ = argminx {

∑
i |xi| : Ax = y := Ax∗} (!!)

♠ Observation: (!!) is just an LO program!

Indeed,

• the constraints in (!!) are linear equalities.

• |xi| = max[xi,−xi], so that the terms in the objec-

tive can be “linearized.”

♠ The LO reformulation of (!!) is

min
x,z

{∑
j zj : Ax = y, zj ≥ xj, zj ≥ −xj ∀j ≤ n

}
.

• In the noiseless case, `1 recovery is given by

x̂ = argminx {
∑
i |xi| : Ax = y := Ax∗}

♠ When the observation y is noisy:

y = Ax∗+ ξ

the constraint Ax = y on a candidate recovery should

be relaxed.

• When we know an upper bound δ on some norm ‖ξ‖ of

the noise ξ, a natural version of `1 recovery is

x̂ ∈ Argminx {
∑
i |xi| : ‖Ax− y‖ ≤ δ} (∗)

Note: When ‖ξ‖ = ‖ξ‖∞ := maxi |ξi| (“uniform

norm”), (∗) reduces to the LO program

minx,z

{∑
j zj :

−zj ≤ xj ≤ zj, 1 ≤ j ≤ n
yi − δ ≤ [Ax]i ≤ yi + δ,1 ≤ i ≤ m

}
• When the noise ξ is random with zero mean, there are

reasons to define `1 recovery by Dantzig Selector:
x̂ ∈ Argminx {

∑
i |xi| : ‖Q(Ax− y)‖∞ ≤ δ}

with M ×m contrast matrix Q and δ > 0 chosen accord-

ing to noise’s structure and intensity. This again is

reducible to LO program, specifically,

minx,z

{∑
j zj :

−zj ≤ xj ≤ zj, 1 ≤ j ≤ n
−δ ≤ [QAx−Qy]i ≤ δ,1 ≤ i ≤M

}
• Note: In Dantzig Selector proper, Q = AT .

(?) How to recover a sparse (or nearly so) n-

dimensional signal x from m� n observations

y = Ax∗+ ξ ?

(!) Use `1 minimization

x̂ ∈ Argminx {
∑
i |xi| : ‖Ax− y‖ ≤ δ}

♣ Compressed Sensing theory shows that under appro-
priate assumptions on A, in a meaningful range of sizes m, n
and sparsities s, `1-minimization recovers the unknown signal
x∗
— exactly, when x∗ is s-sparse and there is no obser-

vation noise,

— within inaccuracy ≤ C(A)[δn + δs]

• δn: magnitude of noise

• δs: deviation of x∗ from its best s-sparse ap-

proximation

♠ Bad news: “Appropriate assumptions on A” are dif-
ficult to verify
Partial remedy: there are conservative verifiable suffi-

cient conditions for “appropriate assumptions.”

♠ Good news: For A drawn at random from natural distribu-
tions, “appropriate assumptions” are satisfied with overwhelm-
ing probability.
• E.g., when entries in m × n matrix A are, indepen-

dently of each other, sampled from Gaussian distri-

bution, the resulting matrix, with probability approaching
1 as m,n grow, ensures the validity of `1 recovery of

sparse signals with as many as

s = O(1) m
ln(n/m)

nonzero entries.

♠ More good news: In many applications (Imaging,

Radars, Magnetic Resonance Tomography,...), signal

acquisition via randomly generated matrices A makes

perfect sense and results in significant acceleration of

the acquisition process.

In these applications, signals of interest are sparse in

properly selected bases

⇒ With accelerated acquisition, no information is lost!

How it works:
Sparse recovery via Dantzig Selector

0 100 200 300 400 500 600
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

32 nonzero entries
No noise

Recovery error: 7.8 · 10−9

32 nonzero entries
Noise’s StD 0.01

Recovery error: 0.064

0 100 200 300 400 500 600
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

32 nonzero entries
Noise’s StD 0.10

Recovery error: 0.66

64 nonzero entries
No noise

Recovery error: 1.47
o: signal +: recovery

256× 512 Gaussian sensing matrix A

What Can Be Reduced to LO?

♣We have seen several examples of optimization pro-

grams which can be reduced to LO, although in its orig-
inal “maiden” form the program is not an LO one. Typical

“maiden form” of a MP problem is

(MP) :
max

x∈X⊂Rn
f(x)

X = {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ m}
In LO,

• The objective is linear: c1x1 + ...+ cnxn

• The constraints are affine:

gi(x) = ai1x1 + ...+ ainxn−bi
♠ Recall: Every MP program is equivalent to a pro-

gram with linear objective.

Indeed, adding slack variable t, we can rewrite (MP)

equivalently as

max
y=[x;t]∈Y

cTy := t,

Y = {[x; t] : gi(x) ≤ 0, t− f(x) ≤ 0}
⇒ we can assume from the very beginning that the objective
in (MP) is linear: f(x) = cTx.

(MP) :
max

x∈X⊂Rn
cTx

X = {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ m}

♣ Definition: A polyhedral representation (p.r.) of a

set X ⊂ Rn is a representation of X of the form:

X = {x : ∃w : Px+Qw ≤ r},

that is, a representation of X as the a projection onto

the space of x-variables of the polyhedral set

X+ = {[x;w] : Px+Qw ≤ r}
in the space of x,w-variables.

♠ Observation: Given a p.r. of the feasible set X of (MP),
we can pose (MP) as the LO program

max
[x;w]

{
cTx : Px+Qw ≤ r

}
.

♣ A polyhedral representation (p.r.) of a set X ⊂ Rn

is a representation of X of the form:

X = {x : ∃w : Px+Qw ≤ r}
♠ Examples of polyhedral representations:

• The set X = {x ∈ Rn :
∑
i |xi| ≤ 1} admits the p.r.

X =

x ∈ Rn : ∃w ∈ Rn :
−wi ≤ xi ≤ wi,

1 ≤ i ≤ n,∑
iwi ≤ 1

 .
• The set

X =
{
x ∈ R6 : max[x1, x2, x3] + 2 max[x4, x5, x6]

≤ x1 − x6 + 5
}

admits the p.r.

X =

x ∈ R6 : ∃w ∈ R2 :
x1 ≤ w1, x2 ≤ w1, x3 ≤ w1

x4 ≤ w2, x5 ≤ w2, x6 ≤ w2

w1 + 2w2 ≤ x1 − x6 + 5

 .

Whether a Polyhedrally Represented Set
is Polyhedral?

♣ Question: Let X be given by a p.r.:

X = {x ∈ Rn : ∃w : Px+Qw ≤ r},

that is, as the projection of the solution set

Y = {[x;w] : Px+Qw ≤ r} (∗)

of a finite system of linear inequalities in variables x,w

onto the space of x-variables.

Is it true that X is polyhedral, i.e., X is a solution set

of finite system of linear inequalities in variables x only?
Fact: Every polyhedrally representable set is polyhedral.
Proof is given by the Fourier — Motzkin elimination scheme
which demonstrates that the projection of the set (∗)
onto the space of x-variables is a polyhedral set.

Y = {[x;w] : Px+Qw ≤ r}, w = [w1; ...;wm] (∗)

Elimination step: eliminating a single slack variable.

Given set (∗), assume that m > 0, and let Y +

be the projection of Y on the space of variables

x,w1, ..., wm−1:

Y + = {[x;w1; ...;wm−1] : ∃wm : Px+Qw ≤ r} (!)

We want to prove that Y + is polyhedral.

To get the idea, let us look at numerical example:

Y =


[x1;x2;w1] :

2x1 −x2 +w1 ≤ 9 (a)
x1 +6x2 −w1 ≤ 5 (b)

3x1 +x2 ≤ 6 (c)
x1 −7x2 −w1 ≤ −8 (d)

5x1 −6x2 +w1 ≤ 1 (e)


Question: What the constraints say about w1?

• Constraints (a), (e) where the coefficients at w1 are positive

upper-bound w1 in terms of the remaining variables. They read{
w1 ≤ 9− 2x1 + x2

w1 ≤ 1− 5x1 + 6x2

• Constraints (b), (d) where the coefficients at w1 are negative

lower-bound w1 in terms of the remaining variables. They read{
w1 ≥ −5 + x1 + 6x2

w1 ≥ 8 + x1 − 7x2

• Constraint (c) where the coefficient at w1 is zero “says noth-

ing” about w1. It reads 3x1 + x2 ≤ 6

Question: When [x1;x2] belongs to the projection of Y onto
the x-space?
⇔When [x1;x2] can be augmented by properly selected w1

to satisfy the constraints defining Y ?
Answer: This is the case iff [x1;x2] satisfies the black in-
equality and there is “enough room” for w1 between the red
upper bounds and green lower bounds on the variable.
(!) The latter takes place iff every green lower bound is ≤ ev-
ery red upper bound..

Y =


[x1;x2;w1] :

2x1 −x2 +w1 ≤ 9 (a)
x1 +6x2 −w1 ≤ 5 (b)

3x1 +x2 ≤ 6 (c)
x1 −7x2 −w1 ≤ −8 (d)

5x1 −6x2 +w1 ≤ 1 (e)


is equivalent to{
w1 ≤ 9− 2x1 + x2
w1 ≤ 1− 5x1 + 6x2

,

{
w1 ≥ −5 + x1 + 6x2
w1 ≥ 8 + x1 − 7x2

,

3x1 + x2 ≤ 6

• In order for x = [x1;x2] to be in the projection of Y

onto the x-space, x should satisfy the black inequality

and make every green lower bound on w1 to be ≤
every red upper bound on w1.

⇒ The projection of Y on the x-space is given by the

system of linear inequalities
3x1 + x2 ≤ 6,

−5 + x1 + 6x2 ≤ 9− 2x1 + x2,
−5 + x1 + 6x2 ≤ 1− 5x1 + 6x2,

8 + x1 − 7x2 ≤ 9− 2x1 + x2,
8 + x1 − 7x2 ≤ 1− 5x1 + 6x2

Y = {[x;w] : Px+Qw ≤ r}, w = [w1; ...;wm] (∗)

Elimination step: eliminating a single slack variable.

Given set (∗), assume that m > 0, and let Y +

be the projection of Y on the space of variables

x,w1, ..., wm−1:

Y + = {[x;w1; ...;wm−1] : ∃wm : Px+Qw ≤ r} (!)

To prove that Y + is polyhedral, we use exactly the
same approach as in Example:
• We split the inequalities pTi x + qTi w ≤ ri, 1 ≤ i ≤ I
defining Y into three groups:
• black – the coefficient at wm is 0
• red – the coefficient at wm is > 0
• green – the coefficient at wm is < 0

Then

Y =
{

[x;w] ∈ Rn+m :
aTi x+ bTi [w1; ...;wm−1] ≤ ci, i is black

wm ≤ aTi x+ bTi [w1; ...;wm−1] + ci, i is red
wm ≥ aTi x+ bTi [w1; ...;wm−1] + ci, i is green

}
⇒

Y + =
{

[x;w1; ...;wm−1] :

aTi x+ bTi [w1; ...;wm−1] ≤ ci, i is black
aTµx+ bTµ [w1; ...;wm−1] + cµ

≥ aTν x+ bTν [w1; ...;wm−1] + cν
whenever µ is red

and ν is green
}

⇒ Y + is polyhedral.

• We have seen that the projection

Y + = {[x;w1; ...;wm−1] : ∃wm : [x;w1; ...;wm] ∈ Y }

of the polyhedral set Y = {[x,w] : Px+Qw ≤ r} is

polyhedral. Iterating the process, we conclude that

the set X = {x : ∃w : [x,w] ∈ Y } is polyhedral, Q.E.D.

♣ Given an LO program

Opt = max
x

{
cTx : Ax ≤ b

}
, (!)

observe that the set of values of the objective at fea-

sible solutions can be represented as

T = {t ∈ R : ∃x : Ax ≤ b, cTx− t = 0}
= {t ∈ R : ∃x : Ax ≤ b, cTx ≤ t, cTx ≥ t}

that is, T is polyhedrally representable. By Theorem,

T is polyhedral, that is, T can be represented by a

finite system of linear inequalities in variable t only. It

immediately follows that if T is nonempty and is bounded
from above, T has the largest element. Thus, we have

proved

Corollary. A feasible and bounded LO program admits an
optimal solution and thus is solvable.

T = {t ∈ R : ∃x : Ax ≤ b, cTx− t = 0}
= {t ∈ R : ∃x : Ax ≤ b, cTx ≤ t, cTx ≥ t}

♣ Fourier-Motzkin Elimination Scheme suggests a fi-

nite algorithm for solving an LO program, where we

• first, apply the scheme to get a representation of T

by a finite system S of linear inequalities in variable t,

• second, analyze S to find out whether the solution

set is nonempty and bounded from above, and when

it is the case, to find out the optimal value Opt ∈ T
of the program,

• third, use the Fourier-Motzkin elimination scheme

in the backward fashion to find x such that Ax ≤ b

and cTx = Opt, thus recovering an optimal solution

to the problem of interest.

Bad news: The resulting algorithm is completely im-

practical, since the number of inequalities we should

handle at a step usually rapidly grows with the step

number and can become astronomically large when

eliminating just tens of variables.

Polyhedrally Representable Functions

♣ Definition: The domain Domf of a function f(x) is the
set of all points x where the value of f is well defined.
• In general, description of Domf is a part of the de-

scription of f .

• When f(x) is given by analytical expression, Domf

by default is the set of all values of x where the expres-

sion makes sense.

For example, by default
• f(x) =

√
x ⇒ Domf = {x ∈ R : x ≥ 0} (nonnegative

ray)

• f(x) = sin(x) ⇒ Domf = R (real axis)

• f(x1, ..., xn) =
√
x2

1 + ...+ x2
n ⇒ Domf = Rn (n-

dimensional space)

♣ Definition: Let f be a real-valued function with Domf ⊂
Rn. The epigraph of f is the set

Epi{f} = {[x; t] ∈ Rn × R : x ∈ Domf, t ≥ f(x)}.

x

t

• bold magenta curve: graph of f – set of pairs [x; t=f(x)]
• magenta domain: epigraph of f – set of pairs [x; t≥f(x)]

Epigraph of real-valued function f(·) with domain

Domf ⊂ Rn is the set

Epi{f} = {[x; t] ∈ Rn × R : x ∈ Domf, t ≥ f(x)}.

Definition. A polyhedral representation of Epi{f} is

called a polyhedral representation of f . Function f is

called polyhedrally representable, if it admits a polyhe-

dral representation.

Quiz: Among the functions below, which are polyhe-

drally representable?

x

f(x)

x

f(x)

♠ Observation: A Lebesque set
{x ∈ Domf : f(x)≤a}

of a polyhedrally representable function is polyhedral, with a
p.r. readily given by a p.r. of Epi{f}:

Epi{f} = {[x; t] : ∃w : Px+ tp+Qw ≤ r} ⇒{
x :

x ∈ Domf
f(x) ≤ a

}
= {x : ∃w : Px+ ap+Qw ≤ r}.

Examples:
• The function f(x) = max

1≤i≤I
[αTi x+ βi] is polyhedrally

representable:

Epi{f} = {[x; t] : αTi x+ βi − t ≤ 0, 1 ≤ i ≤ I}.

• Extension: Let D = {x : Ax ≤ b} be a polyhedral set

in Rn. A function f with the domain D given in D as

f(x) = max
1≤i≤I

[αTi x+ βi] is polyhedrally representable:

Epi{f}= {[x; t] : x ∈ D, t ≥ max
1≤i≤I

αTi x+ βi} =

{[x; t] : Ax ≤ b, αTi x− t+ βi ≤ 0, 1 ≤ i ≤ I}.
In fact, every polyhedrally representable function f is of the
form stated in Extension.

Calculus of Polyhedral Representations

♣ In principle, speaking about polyhedral representa-

tions of sets and functions, we could restrict ourselves

with representations which do not exploit slack vari-

ables, specifically,

• for sets — with representations of the form

X = {x ∈ Rn : Ax ≤ b};

• for functions — with representations of the form

Epi{f} = {[x; t] : Ax ≤ b, t ≥ max
1≤i≤I

αTi x+ βi}

♠ However, “general” – involving slack variables –

polyhedral representations of sets and functions are

much more flexible and can be much more “compact”

that the straightforward – without slack variables –

representations.

Examples:
• The function f(x) = ‖x‖1 :=

∑n
i=1 |xi| : Rn → R

admits the p.r.

Epi{f} =

[x; t] : ∃w ∈ Rn :
−wi ≤ xi ≤ wi,

1 ≤ i ≤ n∑
iwi ≤ t


which requires n slack variables and 2n + 1 linear in-

equality constraints. In contrast to this, the straight-

forward — without slack variables — representation

of f

Epi{f} =

{
[x; t] :

∑n
i=1 εixi ≤ t
∀(ε1 = ±1, ..., εn = ±1)

}
requires 2n inequality constraints.

• The set Xn = {x ∈ Rn :
∑n
i=1 max[xi,0] ≤ 1} admits

the p.r.

Xn = {x ∈ Rn : ∃w : 0 ≤ w, xi ≤ wi ∀i,
∑
i

wi ≤ 1}

which requires n slack variables and 2n+ 1 inequality

constraints.

Quiz: How to represent X3 by linear constraints in
variables x1, x2, x3 only?

Xn = {x ∈ Rn :
∑n
i=1 max[xi,0] ≤ 1}

Fact: Every straightforward — without slack variables

— p.r. of Xn requires at least 2n−1 linear constraints.

A representation of Xn by 2n − 1 constraints in x-

variables is

Xn = {x ∈ Rn :
∑
i∈I

xi ≤ 1, ∅ 6= I ⊂ {1, ..., n}}

♣ Polyhedral representations admit a kind of sim-

ple and “fully algorithmic” calculus which, essentially,

demonstrates that all convexity-preserving operations

with polyhedral sets produce polyhedral results, and

a p.r. of the result is readily given by p.r.’s of the

operands.

♠ Role of Convexity: A set X ⊂ Rn is called convex,

if whenever two points x, y belong to X, the entire

segment [x, y] linking these points belongs to X.

• Segment [x, y] with endpoints x, y is built of the

points

z(λ) = x+ λ[y − x] = (1− λ)x+ λy, 0 ≤ λ ≤ 1

we can reach when shifting x by a fraction λ ∈ [0,1]

of the vector y − x:

z(0) = x
z(0.1)

z(0.5)

z(0.9)
z(1) = y

⇒ Analytically, convexity of a set X ⊂ Rn means that
∀(x, y ∈ X,λ ∈ [0,1]) :
x+ λ(y − x) = (1− λ)x+ λy ∈ X .

Quiz: Here are two closed contours in 2D plane:

contour A contour B

Fill the table

Set convex [Y/N]

contour A
domain inside A,
A included
domain inside A,
A excluded
what is outside
of A, A included

contour B
domain inside B,
B included
domain inside B,
B excluded
what is outside
of B, B included

♠ A function f : Domf → R is called convex, if its epi-

graph Epi{f} is a convex set, or, equivalently, if the

domain Domf of f is a convex set, and
x, y ∈ Domf, λ ∈ [0,1]
⇒f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

• Geometrically: Convexity of f means that Domf is

convex, and for every pair a ∈ Domf , b ∈ Domf , the
restriction of f on the segment [a, b] is dominated by the se-
cant – the linear function on [a, b] with the same values at the
endpoints as those of f

x

f(x)

a

b

x

f(x)

a

b

convex function nonconvex function

♠ Function f is called concave, if −f is convex.

Fact: A polyhedral set X = {x : Ax ≤ b} is convex. In
particular, a polyhedrally representable function is convex.
Indeed,

Ax ≤ b, Ay ≤ b, λ ≥ 0,1− λ ≥ 0

⇒ A(1− λ)x ≤ (1− λ)b
Aλy ≤ λb

⇒ A[(1− λ)x+ λy] ≤ b
Consequences:
• lack of convexity makes impossible polyhedral

representation of a set/function,

• consequently, operations with functions/sets al-

lowed by “calculus of polyhedral representability” we

intend to develop should be convexity-preserving op-

erations.

Calculus of Polyhedral Sets

♠ Raw materials: X = {x ∈ Rn : aTx ≤ b} (when a 6= 0,

or, which is the same, when the set is nonempty and

differs from the entire space, such a set is called half-
space)

X1

X2

Half-plane aTx := [2; 4]T [x1;x2] ≤ 1

• boundary line is given by equality [2; 4]T [x1;x2] ≤ 1

• vector a = [2; 4] is the outward normal to the bound-

ary line of the half-plane

Quiz: Where the boundary of the half-plane intersects

the coordinate axes?

♠ Calculus rules:
S.1. Taking finite intersections: If the sets Xi ⊂ Rn,
1 ≤ i ≤ k, are polyhedral, so is their intersection, and a p.r.
of the intersection is readily given by p.r.’s of the operands.
Indeed, if

Xi = {x ∈ Rn : ∃wi : Pix+Qiw
i ≤ ri}, i = 1, ..., k,

then

k⋂
i=1

Xi =

{
x : ∃w = [w1; ...;wk] :

Pix+Qiw
i ≤ ri,

1 ≤ i ≤ k

}
,

which is a polyhedral representation of
⋂
i
Xi.

Warning: Taking the union of sets does not preserve convex-
ity
⇒ The union of several polyhedral sets is, in general, non-
polyhedral (and even non-convex)

S.2. Taking direct products. Given k sets Xi ⊂ Rni,
their direct product X1× ...×Xk is the set in Rn1+...+nk

comprised of all block-vectors x = [x1; ...;xk] with

blocks xi belonging to Xi, i = 1, ..., k.

Example: The direct product of k segments [−1,1] on

the axis is the unit k-dimensional box {x ∈ Rk : −1 ≤
xi ≤ 1, i = 1, ..., k}.
If the sets Xi ⊂ Rni, 1 ≤ i ≤ k, are polyhedral, so is their
direct product, and a p.r. of the product is readily given by p.r.’s
of the operands.
Indeed, if

Xi = {xi ∈ Rni : ∃wi : Pix
i +Qiw

i ≤ ri}, i = 1, ..., k,

then

X1 × ...×Xk
=
{
x = [x1; ...;xk] : ∃w = [w1; ...;wk] :

Pix
i +Qiw

i ≤ ri,
1 ≤ i ≤ k

}
.

S.3. Taking affine image. If X ⊂ Rn is a polyhedral set
and y = Ax+b : Rn → Rm is an affine mapping, then the set
Y = AX + b := {y = Ax+ b : x ∈ X} ⊂ Rm is polyhedral,
with p.r. readily given by the mapping and a p.r. of X.
Indeed, if X = {x : ∃w : Px+Qw ≤ r}, then

Y = {y : ∃[x;w] : Px+Qw ≤ r, y = Ax+ b}

=

{
y : ∃[x;w] :

Px+Qw ≤ r,
y −Ax ≤ b, Ax− y ≤ −b

}
Since Y admits a p.r., Y is polyhedral.

S.4. Taking inverse affine image. If X ⊂ Rn is polyhe-
dral, and x = Ay + b : Rm → Rn is an affine mapping, then
the set Y = {y ∈ Rm : Ay + b ∈ X} ⊂ Rm is polyhedral,
with p.r. readily given by the mapping and a p.r. of X.
Indeed, if X = {x : ∃w : Px+Qw ≤ r}, then

Y = {y : ∃w : P [Ay + b] +Qw ≤ r}
= {y : ∃w : [PA]y +Qw ≤ r − Pb}.

S.5. Taking arithmetic sum: If the sets Xi ⊂ Rn, 1 ≤ i ≤
k, are polyhedral, so is their arithmetic sum X1 + ...+Xk :=

{x = x1 + ... + xk : xi ∈ Xi,1 ≤ i ≤ k}, and a p.r. of the
sum is readily given by p.r.’s of the operands.
Indeed, the arithmetic sum of X1, ..., Xk is the image of

X1×...×Xk under the linear mapping [x1; ...;xk] 7→ x1+

... + xk, and both operations preserve polyhedrality.

Here is an explicit p.r. for the sum: if Xi = {x : ∃wi :

Pix+Qiw
i ≤ ri}, 1 ≤ i ≤ k, then

X1 + ...+Xk

=

x : ∃x1, ..., xk, w1, ..., wk :
Pix

i +Qiw
i ≤ ri,

1 ≤ i ≤ k,
x =

∑k
i=1 x

i

 ,
and it remains to replace the vector equality in the

right hand side by a system of two opposite vector

inequalities.

Calculus of Polyhedrally Representable
Functions

♣ Preliminaries: Arithmetics of partially defined func-

tions.

• a scalar function f of n variables is specified by in-

dicating its domain Domf– the set where the function

is well defined, and by the description of f as a real-

valued function in the domain.

When speaking about convex functions f , it is very con-
venient to think of f as of a function defined everywhere on Rn

and taking real values in Domf and the value +∞ outside of
Domf .
With this convention, f becomes an everywhere defined func-
tion on Rn taking values in R ∪ {+∞}, and Domf becomes
the set where f takes real values.

♠ In order to allow for basic operations with partially

defined functions, like their addition or comparison,

we augment our convention with the following agree-

ments on the arithmetics of the “extended real axis”

R ∪ {+∞}:
• Addition: for a real a, a+ (+∞) = (+∞) + (+∞) =

+∞.

• Multiplication by a nonnegative real λ: λ · (+∞) = +∞
when λ > 0, and 0 · (+∞) = 0.

• Comparison: for a real a, a < +∞ (and thus a ≤ +∞
as well), and of course +∞ ≤ +∞.

Note: Our arithmetic is incomplete — operations like

(+∞)− (+∞) and (−1) · (+∞) remain undefined.

♠ Raw materials: f(x) = aTx+ b (affine functions)

Epi{aTx+ b} = {[x; t] : aTx+ b− t ≤ 0}

♠ Calculus rules:
F.1. Taking linear combinations with positive coeffi-

cients. If fi : Rn → R ∪ {+∞} are p.r.f.’s and λi > 0,
1 ≤ i ≤ k, then f(x) =

∑k
i=1 λifi(x) is a p.r.f., with a p.r.

readily given by those of the operands.
Indeed, if

{[x; t] : t ≥ fi(x)}
= {[x; t] : ∃wi : Pix+ tpi +Qiw

i ≤ ri},1 ≤ i ≤ k,
then

{[x; t] : t ≥
∑k
i=1 λifi(x)}

=

{
[x; t] : ∃t1, ..., tk :

ti ≥ fi(x),1 ≤ i ≤ k,∑
i λiti ≤ t

}

=

{
[x; t] : ∃t1, ..., tk, w1, ..., wk :

Pix+ tipi +Qiw
i ≤ ri,

1 ≤ i ≤ k,∑
i λiti ≤ t

}
.

F.2. Direct summation. If fi : Rni → R ∪ {+∞}, 1 ≤ i ≤
k, are p.r.f.’s, then so is their direct sum

f([x1; ...;xk]) =
k∑
i=1

fi(x
i) : Rn1+...+nk → R ∪ {+∞}

and a p.r. for this function is readily given by p.r.’s of the
operands.
Indeed, if

{[xi; t] : t ≥ fi(xi)}
= {[xi; t] : ∃wi : Pix

i + tpi +Qiw
i ≤ ri}, 1 ≤ i ≤ k,

then

{[x1; ...;xk; t] : t ≥
∑k
i=1 fi(x

i)}

=

[x1; ...;xk; t] : ∃t1, ..., tk :
ti ≥ fi(xk),

1 ≤ i ≤ k,∑
i ti ≤ t


=

{
[x1; ...;xk; t] : ∃t1, ..., tk, w1, ..., wk :

Pix
i + tipi +Qiw

i ≤ ri,
1 ≤ i ≤ k,∑

i λiti ≤ t

}
.

F.3. Taking maximum. If fi : Rn → R ∪ {+∞} are p.r.f.’s,
so is their maximum f(x) = max[f1(x), ..., fk(x)], with a
p.r. readily given by those of the operands.
Indeed, if

{[x; t] : t ≥ fi(x)}
= {[x; t] : ∃wi : Pix+ tpi +Qiw

i ≤ ri}, 1 ≤ i ≤ k,
then

{[x; t] : t ≥ maxi fi(x)}

=

{
[x; t] : ∃w1, ..., wk :

Pix+ tpi +Qiw
i ≤ ri,

1 ≤ i ≤ k

}
.

F.4. Affine substitution of argument. If a function f(x) :

Rn → R∪ {+∞} is a p.r.f. and x = Ay+ b : Rm → Rn is an
affine mapping, then the function g(y) = f(Ay + b) : Rm →
R ∪ {+∞} is a p.r.f., with a p.r. readily given by the mapping
and a p.r. of f .
Indeed, if

{[x; t] : t ≥ f(x)}
= {[x; t] : ∃w : Px+ tp+Qw ≤ r},

then

{[y; t] : t ≥ f(Ay + b)}
= {[y; t] : ∃w : P [Ay + b] + tp+Qw ≤ r}
= {[y; t] : ∃w : [PA]y + tp+Qw ≤ r − Pb}.

F.5. Theorem on superposition. Let
• fi(x) : Rn → R ∪ {+∞} be p.r.f.’s, and let
• F (y) : Rm → R∪{+∞} be a p.r.f. which is nondecreasing
w.r.t. every one of the variables y1, ..., ym. Then the superpo-
sition

g(x) =

{
F (f1(x), ..., fm(x)), fi(x) < +∞∀i
+∞, otherwise

of F and f1, ..., fm is a p.r.f., with a p.r. readily given by those
of fi and F .
Indeed, let

{[x; t] : t ≥ fi(x)}
= {[x; t] : ∃wi : Pix+ tp+Qiw

i ≤ ri},
{[y; t] : t ≥ F (y)}
= {[y; t] : ∃w : Py + tp+Qw ≤ r}.

Then
{[x; t] : t ≥ g(x)}

=︸︷︷︸
(∗)

[x; t] : ∃y1, ..., ym :
yi ≥ fi(x),

1 ≤ i ≤ m,
F (y1, ..., ym) ≤ t


=

{
[x; t] : ∃y, w1, ..., wm, w :

Pix+ yipi +Qiw
i ≤ ri,

1 ≤ i ≤ m,
Py + tp+Qw ≤ r

}
,

where (∗) is due to the monotonicity of F .

Note: if some of fi, say, f1, ..., fk, are affine, then the

Superposition Theorem remains valid when we require

the monotonicity of F w.r.t. the variables yk+1, ..., ym

only; a p.r. of the superposition in this case reads

{[x; t] : t ≥ g(x)}

=

{
[x; t] : ∃yk+1..., ym :

yi ≥ fi(x), k + 1 ≤ i ≤ m,
F (f1(x), ..., fk(x), yk+1, ..., ym) ≤ t

}

=

{
[x; t] : ∃y1, ..., ym, w

k+1, ..., wm, w :

yi = fi(x), 1 ≤ i ≤ k,
Pix+ yipi +Qiw

i ≤ ri,
k + 1 ≤ i ≤ m,

Py + tp+Qw ≤ r

}
,

and the linear equalities yi = fi(x), 1 ≤ i ≤ k, can be

replaced by pairs of opposite linear inequalities.

Fast Polyhedral Approximation
of the Second Order Cone

♠ Fact: The canonical polyhedral representation X =

{x ∈ Rn : Ax ≤ b} of the projection

X = {x : ∃w : Px+Qw ≤ r}

of a polyhedral set X+ = {[x;w] : Px + Qw ≤ r}
given by a moderate number of linear inequalities in

variables x,w can require a huge number of linear in-

equalities in variables x.

Question: Can we use this phenomenon in order to

approximate to high accuracy a non-polyhedral set

X ⊂ Rn by projecting onto Rn a higher-dimensional

polyhedral and simple (given by a moderate number of

linear inequalities) set X+ ?

Theorem: For every n and every ε, 0 < ε < 1/2, one can
point out a polyhedral set L+ given by an explicit system of
homogeneous linear inequalities in variables x ∈ Rn, t ∈ R,
w ∈ Rk:

L+ = {[x; t;w] : Px+ tp+Qw ≤ 0} (!)

such that
• the number of inequalities in the system (≈ 0.7n ln(1/ε))

and the dimension of the slack vector w (≈ 2n ln(1/ε)) do not
exceed O(1)n ln(1/ε)

• the projection

L = {[x; t] : ∃w : Px+ tp+Qw ≤ 0}

of L+ on the space of x, t-variables is in-between the Second
Order Cone and (1 + ε)-extension of this cone:

Ln+1 := {[x; t] ∈ Rn+1 : ‖x‖2 ≤ t} ⊂ L

⊂ Ln+1
ε := {[x; t] ∈ Rn+1 : ‖x‖2 ≤ (1 + ε)t}.

In particular, we have

B1
n ⊂ {x : ∃w : Px+ p+Qw ≤ 0} ⊂ B1+ε

n

Brn = {x ∈ Rn : ‖x‖2 ≤ r}

Note: When ε = 1.e-17, a usual computer does not

distinguish between r = 1 and r = 1 + ε. Thus, for all
practical purposes, the n-dimensional Euclidean ball ad-

mits polyhedral representation with ≈ 79n slack vari-

ables and ≈ 28n linear inequality constraints.

Note: A straightforward representation X = {x :

Ax ≤ b} of a polyhedral set X satisfying

B1
n ⊂ X ⊂ B1+ε

n

requires at least N = O(1)ε−
n−1

2 linear inequalities.

With n = 100, ε = 0.01, we get

N ≥ 3.0e85 ≈ 300,000× [# of atoms in universe]

With “fast polyhedral approximation” of B1
n, a 0.01-

approximation of B100 requires just 325 linear inequal-

ities on 100 original and 922 slack variables.

♣ With fast polyhedral approximation of the cone

Ln+1 = {[x; t] ∈ Rn+1 : ‖x‖2 ≤ t}, Conic Quadratic Op-

timization programs

max
x

{
cTx : ‖Aix− bi‖2 ≤ cTi x+ di, 1 ≤ i ≤ m

}
(CQI)

“for all practical purposes” become LO programs.

Note that numerous highly nonlinear optimization

problems, like

minimize cTx subject to
Ax = b
x ≥ 0(

8∑
i=1
|xi|3

)1/3

≤ x1/7
2 x

2/7
3 x

3/7
4 + 2x

1/5
1 x

2/5
5 x

1/5
6

5x2 ≥ 1

x
1/2
1 x2

2

+ 2

x
1/3
2 x3

3x
5/8
4

x2 x1
x1 x4 x3

x3 x6 x3
x3 x8

 � 5I

exp{x1}+ 2 exp{2x2 − x3 + 4x4}
+3 exp{x5 + x6 + x7 + x8} ≤ 12

can be in a systematic fashion converted to/rapidly ap-

proximated by problems of the form (CQI) and thus

“for all practical purposes” are just LO programs.

Building Fast Polyhedral Approximation

♣ Goal: To nearly represent by linear inequalities the

set

Ln+1 = {[x1; ...;xn; t] :
√
x2

1 + ...+ x2
n ≤ t

that is, to find a polyhedrally represented set

L̂ = {[x = [x1; ...;xn; t] : ∃w : Px+ tp+Qw ≤ 0}
such that

Ln+1 ⊂ L̂ ⊂ Ln+1
ε ,

Ln+1
ε = {[x1; ...;xn; t] :

√
x2

1 + ...+ x2
n ≤ (1 + ε)t}

• ε > 0: given tolerance.

♠ Observation: It suffices to solve our problem when n = 2.
Reason: Inequality

√
x2

1 + ...+ x2
n ≤ t can be repre-

sented by a system of similar inequalities with 3 vari-

ables in each.

Example: To represent the set

L6 = {[x; t] ∈ R6 :
√
x2

1 + x2
2 + ...+ x2

5 ≤ t},

by a system of constraints of the form
√
p2 + q2 ≤ r,

we

♠ add to x, t variable w1 and write down the system√
x2

4 + x2
5 ≤ w1,

√
x2

1 + x2
2 + x2

3+w2
1 ≤ t

• the system does represent L6 – the projection of its solution set

on the space of x, t-variables is exactly L6

• the “sizes” (# of variables involved) of the constraints in the

system are ≤ 5, while the size of the constraint in the original

description of L6 was 6.

♠ add to x, t, w1 variable w2 and write down the sys-

tem √
x2

4 + x2
5 ≤ w1,

√
x2

3 + w2
1 ≤ w2

√
x2

1 + x2
2 + w2

2 ≤ t
This system still represents L6, and the maximal size of its con-

straints is 4.

♠ add to x, t, w1, w2 variable w3 and write down the

system√
x2

4 + x2
5 ≤ w1,

√
x2

3 + w2
1 ≤ w2,

√
x2

2 + w2
2 ≤ w3,

√
x2

1 + w2
3 ≤ t

This system represents L6, and all its constraints are

of the form
√
p2 + q2 ≤ r. We are done.

Note: The above recipe clearly extends from the 6-

dimensional case to the general one. Representing

Ln+1 via constraints of the form
√
p2 + q2 ≤ r requires

n− 2 slack variables and n− 1 constraints.

Quiz: The number of steps in the above construc-

tion is n − 2. Find an alternative which represents

Ln by n − 1 constraints of the form
√
p2 + q2 ≤ t

and requires n − 2 slack variables, but takes at most

Ceil(log2(n))− 1 steps.

♠ Conclusion: In order to find a tight polyhedral ap-

proximation of

Ln+1 = {[x1; ...;xn; t] :
√
x2

1 + ...+ x2
n ≤ t} ,

we can

• represent the constraint
√
x2

1 + ...+ x2
n ≤ t by a sys-

tem of inequalities of the form
√
p2 + q2 ≤ r

• to replace every one of the resulting constraints by

its tight polyhedral approximation.

Note: We should account for “accumulation of er-

rors.” This is an easy task...

Fast polyhedral approximation of

L3 = {[p; q; r] :
√
p2 + q2 ≤ r}

“Ice-cream” cone L3

♠ Given variables p, q, r, we choose a positive integer

K, and consider K + 1 points P1, ..., PK+1 on the 2D

plane as follows.

• The first points P1 = [u1; v1] satisfies

u1 ≥ |p|, v1 ≥ |q|
which can be represented by a system of 4 linear con-

straints in variables p, q, u1, v1.

• The relation between Pk = [uk; vk] and Pk+1 =

[uk+1; vk+1] is as follows.

• we rotate Pk clockwise by the angle φk = π
2k+1,

thus getting a point Qk.

• we reflect Qk w.r.t. the u-axis, thus getting point

Q′k.

• we impose on Pk+1 = [uk+1; vk+1] the restriction

to belong to the vertical line passing through Qk and

Q′k and to be not lower than Qk and Q′k.

u

v

u

vPk

Qk

Q′k

Pk+1

φk Pk

Q′k

Qk

Pk+1

φk

♠ Note: Relations between Pk = [uk; vk] and Pk+1 =

[uk+1; vk+1] amount to a system of linear constraints
uk+1 = cos(φk)uk + sin(φk)vk

right hand side: u-coordinate of Qk and Q′k
vk+1 ≥ − sin(φk)uk + cos(φk)vk

right hand side: v-coordinate of Qk

vk+1 ≥ sin(φk)uk − cos(φk)vk
right hand side: v-coordinate of Q′k

in variables uk, vk, uk+1, vk+1.

♠ Let us write down all built so far constraints on

original and slack variables
u1 ≥ p
u1 ≥ −p
v1 ≥ q
v2 ≥ −q

uk+1 = cos(φk)uk + sin(φk)vk
vk+1 ≥ − sin(φk)uk + cos(φk)vk
vk+1 ≥ sin(φk)uk − cos(φk)vk

k = 1, ...,K
and augment this system by the requirement for PK+1

to be close to the segment [0, r] of the u-axis:

0 ≤ uK+1 ≤ r, 0 ≤ vK+1 ≤ tan(φK) · r
Observation 1: When p, q, r can be augmented by properly
selected u’s and v’s to satisfy the above constraints, we have√

p2 + q2 ≤ r
√

1 + tan2(φK)

Indeed, by the above constraints on p, q, r and the slack variables,

the points Pk = [uk; vk] satisfy

‖[p; q]‖2 ≤ ‖P1‖2 ≤ ... ≤ ‖PK+1‖2 =
√
u2
K+1 + v2

K+1 ≤ r
√

1 + tan2(φK).

u1 ≥ p
u1 ≥ −p
v1 ≥ q
v2 ≥ −q

uk+1 = cos(φk)uk + sin(φk)vk
vk+1 ≥ − sin(φk)uk + cos(φk)vk
vk+1 ≥ sin(φk)uk − cos(φk)vk

k = 1, ...,K
0 ≤ uK+1 ≤ r, 0 ≤ vK+1 ≤ tan(φK) · r

Observation 2: When
√
p2 + q2 ≤ r, p, q, r indeed can be

augmented by u’s and v’s to satisfy our constraints.
This combines with Observation 1 to imply that the
projection of the polyhedral set given by our constraints onto
the space of p, q, r variables is in-between the L3 and L3

δK
,

with

δK =
√

1 + tan2(φK)− 1

=
√

1 + tan2
(

π
2K+1

)
− 1 ≤ π2

22K+2.

⇒ To make δK ≤ ε, we need just O(1) ln(1/ε) slack vari-
ables and linear constraints!

u1 ≥ p, u1 ≥ −p
v1 ≥ q, v2 ≥ −q
uk+1 = cos(φk)uk + sin(φk)vk
vk+1 ≥ − sin(φk)uk + cos(φk)vk
vk+1 ≥ sin(φk)uk − cos(φk)vk

 k = 1, ...,K

0 ≤ uK+1 ≤ r, 0 ≤ vK+1 ≤ tan(φK) · r

(∗)

Observation 2: When
√
p2 + q2 ≤ r, p, q, r indeed can be

augmented by u’s and v’s to satisfy (∗).
♠ To justify Observation 2, let us augment p, q with

u’s and v’s which “rigidly” satisfy the magenta con-

straints, specifically, let us set u1 = |p|, v1 = |q|, and

let Pk+1 be the “highest” of the points Qk, Q′k:

u

v

u

v

Pk

Pk+1 = Qk

Q′k

Pk+1 = Q′k

Pk

Qk

Then

r ≥
√
p2 + q2 = ‖[p; q]‖2 = ‖P1‖2 = ... = ‖PK+1‖2

and the angle between Pk+1 and the nonnegative ray of the
u-axis does not exceed φk = π

2k+1 .
⇒ PK+1 = [uK+1, vK+1] indeed satisfies

0 ≤ uK+1 ≤ r and 0 ≤ vK+1 ≤ tan(φK) · r.

♥ To justify the claim on the angles, observe that

with our “rigid” construction of P1, ..., PK+1,

• P1 lives in the first quadrant, and P2 is obtained

from P1 by rotating clockwise by the angle φ1 = π/4

(and, perhaps, reflecting the result w.r.t. the u-axis

to bring it to the first quadrant).

After rotation, the angle between the point and the u-

axis does not exceed π/4, and reflection, if any, keeps

this angle intact

⇒ P2 lives in the first quadrant and makes angle at most
φ1 = π/4 with the u-axis
⇒ P3, which is obtained from P2 by rotating clock-

wise by the angle φ2 = π/8 (and, perhaps, reflecting

the result w.r.t. u-axis to bring it to the first quad-

rant), lives in the first quadrant and makes the angle at most
φ2 = π/8 with the u-axis
⇒⇒ PK+1 lives in the first quadrant and makes angle
at most φK = π

2K+1 with the u-axis.

♣ The simplest way to build a polyhedral approxima-

tion of the Lorentz cone is to take the tangent planes

along a “fine” finite grid of generators and to use, as

the approximation, the resulting polyhedral cone:

This approach is a complete failure: the number of

tangent planes required to get an 0.5-approximation

of Lm is at least

N =
√

2π(m− 2) exp{m/6},

which is > 429,481,377 for m = 100.

♣ With our approach, we approximate Lm by a projec-
tion of a higher-dimensional polyhedron. When projecting

an N-dimensional polyhedron onto a plane of dimen-

sion << N , the number of facets may grow up ex-

ponentially, so that a low-dimensional projection of a

“simple” high-dimensional polyhedron may have as-

tronomically many facets. With our approach, we

build a family of polyhedral cones Pm,k ⊂ RO(mk) given

by just O(mk) linear inequalities, while their projec-

tions P̂m,k on Rm have enough facets to approximate

Lm within accuracy exp{−O(k)}:
• P3,3 ⊂ R10 is given by 12 inequalities.

P̂3,3 approximates L3 within accuracy 5.e-3

(as good as the 16-facet circumscribed cone)

• P3,6 ⊂ R13 is given by 18 linear inequalities.

P̂3,6 approximates L3 within accuracy 3.e-4

(as good as the 127-facet circumscribed cone)

• P3,12 ⊂ R19 is given by 30 linear inequalities.

P̂3,12 approximates L3 within accuracy 7.e-8

(as good as the 8,192-facet circumscribed cone)

• P3,24 ⊂ R31 is given by 54 linear inequalities.

P̂3,24 approximates L3 within accuracy 4.e-15

(as good as the 34,200,933-facet circumscribed cone)

♠ Polyhedral approximation of Lm is basically the
same as polyhedral approximation of m-dimensional
Euclidean ball

Bm = {x ∈ Rm : ‖x‖2 ≤ 1}.
There is a less sophisticated way to approximate Eu-
clidean balls by projections of polyhedral sets:
Theorem [Lindenstrauss-Johnson]: For two positive inte-
gers N,n with N ≥ 10n, random n-dimensional projection of
N -dimensional unit box – the set
B = {x ∈ Rn : ∃y ∈ RN : x = Ay, −1 ≤ y1, ..., yN ≤ 1}

[A: drawn at random from Gaussian distribution]
with probability approaching one as N,n grow, is in-between
two n-dimensional Euclidean balls with the ratio of radii
(1 +O(

√
n/N)).

This result has tremendous theoretical implications. However,

— no individual matrices A yielding “nearly round” B are known

(pity! these matrices would be ideally suited for Compressed

Sensing)

Note: Our fast polyhedral approximation is explicit!

— to make B an ε-approximation of Bn, you need N = O(1/ε2)n

Note: With fast polyhedral approximation, you need much

smaller N : N = O(ln(1/ε))n

♠ Open question: With fast polyhedral approximation, centrally

symmetric ball Bn is ε-approximated by the projection of a highly

asymmetric polyhedron of dimension N = O(ln(1/ε))n given by

M = O(N) linear inequalities. Is it possible to make this higher-

dimensional polyhedron centrally symmetric, preserving the type of

dependence of N,M on n and ε?

Geometry of a Polyhedral Set

♣ An LO program max
x∈Rn

{
cTx : Ax ≤ b

}
is the problem

of maximizing a linear objective over a polyhedral set
X = {x ∈ Rn : Ax ≤ b} – the solution set of a finite
system of nonstrict linear inequalities

⇒ Understanding geometry of polyhedral sets is the key to
LO theory and algorithms.
♣ Our ultimate goal is to understand the following

fundamental

Theorem. A nonempty polyhedral set
X = {x ∈ Rn : Ax ≤ b}

admits a representation of the form

X =

x =
M∑
i=1

λivi +
N∑
j=1

µjrj :

λi ≥ 0∀i
M∑
i=1

λi = 1

µj ≥ 0∀j

 (!)

where vi ∈ Rn, 1 ≤ i ≤ M and rj ∈ Rn, 1 ≤ j ≤ N are
properly chosen “generators.”
Vice versa, every set X representable in the form of (!) is
polyhedral.

a)

b)

c)

d)

a): a polyhedral set
b): {

∑3
i=1 λivi : λi ≥ 0,

∑3
i=1 λi = 1}

c): {
∑2
j=1 µjrj : µj ≥ 0}

d): The set a) is the sum of sets b) and c)
Note: shown are the boundaries of the sets.

∅ 6= X = {x ∈ Rn : Ax ≤ b}
m

X =

x =
∑M

i=1 λivi +
∑N

j=1 µjrj :
λi ≥ 0 ∀i∑M

i=1 λi = 1
µj ≥ 0 ∀j

 (!)

♠ X = {x ∈ Rn : Ax ≤ b} is an “outer” description of

a polyhedral set X: it says what should be cut off Rn

to get X.

♠ (!) is an “inner” description of a polyhedral set X:

it explains how can we get all points of X, starting

with two finite sets of vectors in Rn.

♥ Taken together, these two descriptions offer a pow-

erful “toolbox” for investigating polyhedral sets. For

example,

• To see that the intersection of two polyhedral sub-

sets X, Y in Rn is polyhedral, we can use their outer

descriptions:

X = {x : Ax ≤ b}, Y = {x : Bx ≤ c}
⇒ X ∩ Y = {x : Ax ≤ b, Bx ≤ c} .

∅ 6= X = {x ∈ Rn : Ax ≤ b}
m

X =


∑M
i=1 λivi +

∑N
j=1 µjrj :

λi ≥ 0 ∀i
M∑
i=1

λi = 1

µj ≥ 0∀j

 (!)

• To see that the image Y = {y = Px+ p : x ∈ X} of

a polyhedral set X ⊂ Rn under an affine mapping x 7→
Px+ p : Rn → Rm, we can use the inner descriptions:

X is given by (!)

⇒ Y =


M∑
i=1

λi(Pvi + p) +
N∑
j=1

µjPrj :

λi ≥ 0 ∀i
M∑
i=1

λi = 1

µj ≥ 0 ∀j



Preliminaries: Linear Subspaces

♣ Definition: A linear subspace in Rn is a nonempty subset
L of Rn which is closed w.r.t. taking linear combinations of its
elements:

xi ∈ L, λi ∈ R,1 ≤ i ≤ I ⇒
∑I
i=1 λixi ∈ L

♣ Examples:
• L = Rn

• L = {0}
• L = {x ∈ Rn : x1 = 0}
• L = {x ∈ Rn : Ax = 0}
• Given a set X ⊂ Rn, let Lin(X) be set of all finite

linear combinations of vectors from X. This set – the
linear span of X – is a linear subspace which contains

X, and this is the intersection of all linear subspaces

containing X.

Convention: A sum of vectors from Rn with empty

set of terms is well defined and is the zero vector. In

particular, Lin(∅) = {0}.
♠ Note: The last two examples are “universal:” Every
linear subspace L in Rn can be represented as L = Lin(X)

for a properly chosen finite set X ⊂ Rn, same as can be
represented as L = {x : Ax = 0} for a properly chosen
matrix A.

Quiz: Consider the set

L = {[x1;x2;x3] ∈ R3 : x1 + x2 + x3 = 0}

• Is L a linear subspace? If “yes,” how to represent L as a
linear span of finitely many vectors?

Quiz: Consider the set

L = {[x1;x2;x3] ∈ R3 : x1 + x2 + x3 = 0}

• Is L a linear subspace? If “yes,” how to represent L as a
linear span of finitely many vectors?
• L is a linear subspace (as the solution set of a system

of homogeneous linear equations).

• Vectors from L are exactly the vectors in R3 with

x3 = −(x1 + x2) ⇒ Vectors from L are exactly vectors of
the form

[x1;x2;−(x1 + x2)] = x1[1; 0;−1] + x2[0; 1;−1]

⇒ L = Lin{[1; 0;−1], [0; 1;−1]}.

♣ Bases and dimension of a linear subspace
♣ Let L be a linear subspace in Rn.

♠ For properly chosen x1, ..., xm, we have

L = Lin({x1, ..., xm}) =
{∑m

i=1 λixi
}

;

whenever this is the case, we say that x1, ..., xm linearly
span L.

Quiz: Let L = {[x1;x2;x3] : x1 + x2 + x3 = 0}.
• Is it true that L is spanned by the two vectors

[1; 0;−1], [0; 1;−1] ?
• Is it true that L is spanned by the three vectors

[1; 0;−1], [0; 1;−1]; [−1; 0; 1] ?
• Is it true that L is spanned by the 3 vectors

[1; 0; 0], [0; 1; 0], [0; 0; 1] ?

Quiz: Let L = {[x1;x2;x3] : x1 + x2 + x3 = 0}.
• Is it true that L is spanned by the two vectors

[1; 0;−1], [0; 1;−1] ?
Yes; we have seen in the previous Quiz that L =

Lin{[1; 0;−1], [0; 1;−1]}.
• Is it true that L is spanned by the three vectors

[1; 0;−1], [0; 1;−1]; [−1; 0; 1] ?
Yes. All three vectors belong to L, so that linear span

of the vectors cannot be larger than L. And since the

linear span of already the first two vectors is the entire

L, the span of all three vectors cannot be smaller than

L.

• Is it true that L is spanned by the 3 vectors
[1; 0; 0], [0; 1; 0], [0; 0; 1] ?

No. If linear span of vectors belongs to L, all these

vectors should belong to L, which is not the case.

In fact, Lin{[1; 0; 0], [0; 1; 0], [0; 0; 1]} = R3:

[x1;x2;x3] = x1 · [1; 0; 0] + x2 · [0; 1; 0] + x3 · [0; 0; 1].

♠ Vectors x1, ..., xm ∈ Rn are called linearly indepen-
dent, if every nontrivial (not all coefficients are zeros)

linear combination of x1, ..., xm is a nonzero vector.
Equivalently: x1, ..., xm are linearly independent, if the coef-
ficients in a linear combination

x =
∑m
i=1 λixi

are uniquely defined by the value x of this combination.
Quiz:
• Are the two vectors [1; 0;−1], [0; 1;−1] linearly indepen-
dent?
• Are the three vectors [1; 0;−1], [0; 1;−1]; [−1; 0; 1] lin-
early independent?
• Are the 3 vectors [1; 0; 0], [0; 1; 0], [0; 0; 1] linearly inde-
pendent ?

Quiz:
• Are the two vectors [1; 0;−1], [0; 1;−1] linearly indepen-
dent?
Yes:

λ1[1; 0;−1] + λ2[0; 1;−1] = 0⇔ [λ1;λ2;−λ1 − λ2] = 0
⇔ λ1 = λ2 = 0

• Are the three vectors [1; 0;−1], [0; 1;−1]; [−1; 0; 1] lin-
early independent?
No. As we know, the third of the vectors is linear

combination of the first two:

[−1; 0; 1] = 1︸︷︷︸
λ1

·[1; 0; 1] + 1︸︷︷︸
λ2

·[0; 1;−1]

whence

1︸︷︷︸
λ1

·[1; 0; 1] + 1︸︷︷︸
λ2

·[0; 1;−1] + (−1)︸ ︷︷ ︸
λ3

[1; 0;−1] = 0,

while not all of λi’s are zero.

• Are the 3 vectors [1; 0; 0], [0; 1; 0], [0; 0; 1] linearly inde-
pendent ?
Yes.:

λ1[1; 0; 0] + λ2[0; 1; 0] + λ3[0; 0; 1] = 0⇔ [λ1;λ2;λ3] = 0
⇔ λ1 = λ2 = λ3 = 0

♠ Vectors x1, ..., xm from L are called a linear basis
of L, if they are linearly independent and linearly span

L.

Equivalently: x1, ..., xm from a linear subspace L form a
linear basis of L, if every x ∈ L is a linear combination of
x1, ..., xm and the coefficients of this linear combination are
uniquely defined by x.
Example: By the above Quizzes, the two vectors

[1; 0;−1], [0; 1;−1]

form a linear basis of the linear space

L = {[x1;x2;x3] : x1 + x2 + x3 = 0}.

♣ Let L be a linear subspace in Rn.

Facts:
♥ L admits bases, and all these bases have the same cardi-
nality, called the dimension dimL of L
♥ Let x1, ..., xm be a collection of vectors from L. The

following properties of x1, ..., xm are equivalent to each

other:

• Vectors x1, ..., xm form a maximal w.r.t. inclusion linearly
independent set in L (i.e., they are linearly independent,

but extending the collection by a vector from L always

yields a linearly dependent collection)

• Vectors x1, ..., xm are linearly independent and m =

dimL

• Vectors x1, ..., xm form a minimal w.r.t. inclusion set
which linearly spans L (i.e., x1, ..., xm linearly span L,

and this property is lost when eliminating from the

collection one of its members)

• Vectors x1, ..., xm linearly span L and m = dimL

• x1, ..., xm form a basis in L
In addition,
• Every collection of linearly independent vectors from L

can be extended to a basis of L
• From every collection of vectors from L which linearly

spans L one can extract a basis of L.

♠ Examples:

• dim {0} = 0, and the only basis of {0} is the empty

collection.

• dimRn = n. When n > 0, there are infinitely many

bases in Rn, e.g., one comprised of standard basic orths
ei = [0; ...; 0; 1; 0; ...; 0] (”1” in i-th position), 1 ≤ i ≤
n.

• L = {x ∈ Rn : x1 = 0} ⇒ dimL = n−1}. An example

of a basis in L is e2, e3, ..., en.

Facts:
♥ The smaller is linear subspace, the less is dimension: if
L⊂L′ are linear subspaces in Rn, then dimL≤dimL′, with
equality taking place iff L = L′.
⇒ Whenever L is a linear subspace in Rn, we have {0} ⊂
L ⊂ Rn, whence 0 ≤ dimL ≤ n
♥ In every representation of a linear subspace as

L = {x ∈ Rn : Ax = 0},
the number of rows in A is at least n− dimL.

This number is equal to n− dimL iff the rows of A are
linearly independent.

Quiz: What is the dimension of the linear subspace
L = {x ∈ R3 : x1 + x2 + x3 = 0} ?

Quiz: What is the dimension of the linear subspace
L = {x ∈ R3 : x1 + x2 + x3 = 0}

?
Answer: The dimension is 2.

• First explanation: We have seen that the two vectors

[1; 0;−1], [0; 1;−1] form a basis in L

• Second explanation: L is cut off R3 by a system of

homogeneous linear equations (single nontrivial – not

all coefficients are zero – equation x1 + x2 + x3 = 0).

The number of linearly independent equations in the

system is 1 ⇒ dimL = 3− 1 = 2.

“Calculus” of linear subspaces
♥ [taking intersection] When L1, L2 are linear subspaces
in Rn, so is the set L1 ∩ L2.
Extension: The intersection

⋂
α∈A

Lα of an arbitrary

family {Lα}α∈A of linear subspaces of Rn is a linear

subspace.

♥ [summation] When L1, L2 are linear subspaces in Rn,
so is their arithmetic sum

L1 + L2 = {x = u+ v : u ∈ L1, v ∈ L2}.
Note “dimension formula:”

dimL1 + dimL2 = dim (L1 + L2) + dim (L1 ∩ L2)

♥ [taking orthogonal complement] When L is a linear

subspace in Rn, so is its orthogonal complement
L⊥ = {y ∈ Rn : yTx = 0 ∀x ∈ L}.

Note:
• (L⊥)⊥ = L

• L+ L⊥ = Rn, L ∩ L⊥ = {0}⇒ dimL+ dimL⊥ = n

• L = {x : Ax = 0} if and only if the (transposes of)

the rows in A linearly span L⊥

• x ∈ Rn ⇒ ∃!(x1 ∈ L, x2 ∈ L⊥) : x = x1 + x2, and for

these x1, x2 one has xTx = xT1x1 + xT2x2.

♥ [taking direct product] When L1 ⊂ Rn1 and L2 ⊂ Rn2

are linear subspaces, the direct product (or direct sum) of L1

and L2 – the set
L1 × L2 := {[x1;x2] ∈ Rn1+n2 : x1 ∈ L1, x2 ∈ L2}

is a linear subspace in Rn1+n2, and
dim (L1 × L2) = dimL1 + dimL2.

♥ [taking image under linear mapping] When L is a lin-
ear subspace in Rn and x 7→ Px : Rn → Rm is a linear
mapping, the image

PL = {y = Px : x ∈ L}
of L under the mapping is a linear subspace in Rm.
♥ [taking inverse image under linear mapping] When L
is a linear subspace in Rn and x 7→ Px : Rm → Rn is a linear
mapping, the inverse image

P−1(L) = {y : Py ∈ L}
of L under the mapping is a linear subspace in Rm.

Quiz: Consider the set in R4

Y = {y : ∃x :

 y1

y2

y3

y4

 =

 1 1 1 0 0 0
−1 0 0 1 1 0

0 −1 0 −1 0 1
0 0 −1 0 −1 −1



x1

x2

x3

x4

x5

x6

}
A. Is Y a polyhedral set?

B. Is Y a linear subspace?

C. If Y is a linear subspace, then point out

— a set of vectors spanning Y

— dimY

— a basis in Y

— a representation of Y as a solution set of ho-

mogeneous system of linear equations

— the orthogonal complement to Y

Quiz: Consider the set in R4

Y = {y : ∃x :

 y1

y2

y3

y4

 =

A︷ ︸︸ ︷ 1 1 1 0 0 0
−1 0 0 1 1 0

0 −1 0 −1 0 1
0 0 −1 0 −1 −1



x1

x2

x3

x4

x5

x6

}
A. Is Y a polyhedral set? Yes, it is given by polyhedral
representation
B. Is Y a linear subspace? Yes, as the image of R6 under
linear mapping
C. If Y is a linear subspace, then point out

— a set of vectors spanning Y For example, all 6
columns of A

— dimY dimY = 3:

• The dimension could be at most 4. The sum of

entries in every column of A is 0 ⇒ the sum of entries

in every y ∈ Y is 0 ⇒ dimY ≤ 3.

But: Y contains 3 linearly independent vectors (e.g.,

the first 3 columns of A) ⇒ dimY ≥ 3

— a basis in Y For example, the first three columns in
A

— a representation of Y as a solution set of ho-

mogeneous system of linear equations

Y = {y ∈ R4 : y1 + y2 + y3 + y4 = 0} (∗)
— Y ⊥ is the line

R · [1; 1; 1; 1] = {[y1; y2; y3; y4] : y1 = y2 = y3 = y4}
spanned by the vector of coefficients in (∗)

Preliminaries: Affine Subspaces

♣ Definition: An affine subspace (or affine plane, or simply

plane) in Rn is a nonempty subset M of Rn which can be
obtained from a linear subspace L ⊂ Rn by a shift:

M = a+ L = {x = a+ y : y ∈ L} (∗)

Note: In a representation (∗),

• L us uniquely defined by M :

L = M −M = {x = u− v : u, v ∈M}.
L is called the linear subspace which is parallel to M ;

• a can be chosen as an arbitrary element of M , and

only as an element from M .

♠ Equivalently: An affine subspace in Rn is a nonempty sub-
set M of Rn which is closed with respect to taking affine com-
binations (linear combinations with coefficients sum-

ming up to 1) of its elements:xi ∈M,λi ∈ R,
I∑

i=1

λi = 1

⇒
I∑

i=1

λixi ∈M

♣ Examples:
• M = Rn. The parallel linear subspace is Rn

• M = {a} (singleton). The parallel linear subspace is

{0}
• M = {a+ λ [b− a]︸ ︷︷ ︸

6=0

: λ ∈ R} = {(1− λ)a+ λb : λ ∈ R}

– (straight) line passing through two distinct points

a, b ∈ Rn.

The parallel linear subspace is the linear span

R[b− a] of b− a.

Fact: A nonempty subset M ⊂ Rn is an affine subspace if
and only if with any pair of distinct points a, b from M , M con-
tains the entire line

` = {(1− λ)a+ λb : λ ∈ R}
spanned by a, b.

Examples of affine subspaces (continued):

• ∅ 6=M = {x ∈ Rn : Ax = b}.
The parallel linear subspace is {x : Ax = 0}.

• Given a nonempty set X ⊂ Rn, let Aff(X) be the

set of all finite affine combinations of vectors from X.

This set – the affine span (or affine hull) of X – is an

affine subspace, contains X, and is the intersection of

all affine subspaces containing X.

The parallel linear subspace is Lin(X − a), where a

is an arbitrary point from X.

♠ Note: The last two examples are “universal:” Every
affine subspaceM in Rn can be represented asM = Aff(X)

for a properly chosen finite and nonempty set X ⊂ Rn, same
as can be represented as M = {x : Ax = b} for a properly
chosen matrix A and vector B such that the system Ax = b

is solvable.

♣ Affine bases and dimension. Let M be an affine sub-

space in Rn, and L be the parallel linear subspace.

♠ By definition, the affine dimension (or simply dimension)

dimM of M is the (linear) dimension dimL of the lin-

ear subspace L to which M is parallel.

♠ We say that vectors x0, x1..., xm, m ≥ 0, from M

• are affinely independent, if no nontrivial (not all coef-

ficients are zeros) linear combination of these vectors

with zero sum of coefficients is the zero vector

Equivalently: x0, ..., xm are affinely independent if and

only if the coefficients in an affine combination x =
m∑
i=0

λixi are uniquely defined by the value x of this

combination.

• affinely span M , if

M = Aff({x0, ..., xm}) =
{∑m

i=0 λixi :
∑m
i=0 λi = 1

}
• form an affine basis in M , if x0, ..., xm are affinely inde-

pendent and affinely span M .

Equivalently: x0, x1, ..., xm from an affine subspace M form
an affine basis in M , if every x ∈ M is an affine combination
of x0, x1, ..., xm and the coefficients of this affine combination
are uniquely defined by x.

♠ Facts: Let M be an affine subspace in Rn, L be

the parallel linear subspace, and let x0, x1, ..., xm be a

collection of vectors from M . Then

♥ The collection x0, x1, ..., xm is an affine basis in M if and
only if x0 ∈M and the vectors x1 − x0, x2 − x0, ..., xm − x0

form a (linear) basis in L
♥ The following properties of the collection x0, ..., xm

are equivalent to each other:

• Vectors x0, x1, ..., xm form a maximal w.r.t. inclusion set
affinely independent set in M (i.e., they are affinely inde-

pendent, but extending the collection by a vector from
M always yields an affinely dependent collection)

• Vectors x0, x1, ..., xm are affinely independent and m =

dimM

• Vectors x0, x1, ..., xm form a minimal w.r.t. inclusion col-
lection which affinely spans M (i.e., x0, x1, ..., xm affinely

span M , and this property is lost when eliminating

from the collection one of its members)

• Vectors x0, x1, ..., xm affinely span M and m = dimL

• x0, x1, ..., xm form an affine basis in M
In addition,
• Every collection of affinely independent vectors from M

can be extended to an affine basis of M
• From every collection of vectors from M which affinely

spans M one can extract an affine basis of M .

Examples:

• dim {a} = 0, and the only affine basis of {a} is

x0 = a.

• dimRn = n. When n > 0, there are infinitely many

affine bases in Rn, e.g., one comprised of the zero

vector and the n standard basic orths.

• M = {x ∈ Rn : x1 = 1} ⇒ dimM = n − 1. An

example of an affine basis in M is

e1, e1 + e2, e1 + e3, ..., e1 + en.

Extension: M is an affine subspace in Rn of dimension

n− 1 iff M can be represented as

M = {x ∈ Rn : aTx = b}
with a 6= 0. Such a set is called hyperplane.

♠ Note: A hyperplane M = {x : aTx = b} (a 6= 0)

splits Rn into two half-spaces

Π+ = {x : aTx ≥ b}, Π− = {x : aTx ≤ b}

and is the common boundary of these half-spaces.

• A polyhedral set is the intersection of a finite

(perhaps empty) family of half-spaces.

X1

X2

Hyperplane in 2D (just line!) x1 + 2x2 = 1 (bold line)
• dashed half-space (half-plane):

Π− = {[x1;x2] : x1 + 2x2 ≤ 1}
• Complement to dashed half-space:

Π+ = {[x1;x2] : x1 + 2x2 ≥ 1}
• a = [1; 2] is the outward normal to the boundary of Π−

and the inward normal to the boundary of Π+

♠ Let c ∈ Rn be a nonzero vector. Consider the family
of hyperplanes

Πt = {x ∈ Rn : cTx = t}, −∞ < t <∞
• Hyperplanes of the family are parallel to each other:
when t 6= t′, Πt does not intersect Πt′
• Hyperplanes of the family are shifts of the linear
subspace {x : cTx = 0} (orthogonal complement to
the line R · c linearly spanned by c)
• In a LO program maxx{cTx : Ax ≤ b} we want to find the
largest t for which the hyperplane {x : cTx = t} intersects
the feasible set of the problem. The intersection of this
“extreme” hyperplane with the feasible set is the set
of optimal solutions:

c

Blue domain: feasible set.

Dashed lines: hyperplanes Πt for various values of t

Bold line: the “extreme” hyperplane yielding optimal solution

♠ Facts:
♥ The less is affine subspace, the smaller is dimension:
M⊂M ′ are affine subspaces in Rn ⇒ dimM≤dimM ′,
with equality taking place iff M = M ′.
⇒ Whenever M is an affine subspace in Rn, we have

0 ≤ dimM ≤ n
♥ In every representation of an affine subspace as

M = {x ∈ Rn : Ax = b},
the number of rows in A is at least n − dimM . This

number is equal to n− dimM iff the rows of A are

linearly independent.

Quiz: Consider the set in R4

Y = {y : ∃x :

 y1

y2

y3

y4

 =

 1
2
3
4

+

 1 1 1 0 0 0
−1 0 0 1 1 0

0 −1 0 −1 0 1
0 0 −1 0 −1 −1



x1

x2

x3

x4

x5

x6

}
A. Is Y a polyhedral set?

B. Is Y an affine subspace?

C. If Y is an affine subspace, then point out

— a shift vector a and the parallel linear subspace

L

— a set of vectors affinely spanning Y

— dimY

— an affine basis in Y

— a representation of Y as a solution set of a

system of linear equations

D. Is Y a linear subspace?

E. Is Y a hyperplane?

Quiz: Consider the set in R4

Y = {y : ∃x :

 y1

y2

y3

y4

 =

 1
2
3
4

+

A︷ ︸︸ ︷ 1 1 1 0 0 0
−1 0 0 1 1 0

0 −1 0 −1 0 1
0 0 −1 0 −1 −1



x1

x2

x3

x4

x5

x6

}
A. Is Y a polyhedral set? – Yes – Y is given by polyhedral
representation
B. Is Y an affine subspace? – Yes – Y is the image of

R6 under affine mapping

C. If Y is an affine subspace, then point out

— a shift vector and the parallel linear subspace L

– For example,

a =

 1
2
3
4

 , L = Linear span of columns Colj[A] of A
= {y ∈ R4 : y1 + y2 + y3 + y4 = 0}

— a set of vectors affinely spanning Y – For exam-
ple, {x0 = a, xj = a+ Colj[A],1 ≤ j ≤ 6}

— dimY – dimY = dimL = 3 (dimL was found

in the previous quiz)

— an affine basis in Y – For example, {x0 = a, xj =

a + uj, j = 1,2,3}, where uj, j = 1,2,3, is a linear basis
in L (we have computed one in the previous quiz). A
sample affine basis in Y is 1

2
3
4

 ,
 2

1
3
4

 ,
 2

2
2
4

 ,
 2

2
3
3



... point out

— a representation of Y as a solution set of

a system of linear equations – A representation is
Y = {[y1; y2; y3; y4] : y1 + y2 + y3 + y4 = 10},

since Y = [1; 2; 3; 4] + L and

L = {y ∈ R4 : y1 + y2 + y3 + y4 = 0}.
D. Is Y a linear subspace? – No, Y does not contain

the origin

E. Is Y a hyperplane? – Yes

“Calculus” of affine subspaces
♥ [taking intersection] WhenM1,M2 are affine subspaces
in Rn and M1 ∩M2 6= ∅, the set M1 ∩M2 is an affine sub-
space as well.
Extension: If nonempty, the intersection

⋂
α∈A

Mα of an arbi-

trary family {Mα}α∈A of affine subspaces in Rn is an affine
subspace.

The parallel linear subspace is
⋂
α∈ALα, where Lα are the

linear subspaces parallel to Mα.
♥ [summation] When M1,M2 are affine subspaces in Rn,
so is their arithmetic sum

M1 +M2 = {x = u+ v : u ∈M1, v ∈M2}.
The linear subspace parallel toM1+M2 is L1+L2, where

the linear subspaces Li are parallel to Mi, i = 1,2

♥ [taking direct product] When M1 ⊂ Rn1 and M2 ⊂
Rn2, the direct product (or direct sum) of M1 and M2 – the
set
M1 ×M2 := {[x1;x2] ∈ Rn1+n2 : x1 ∈M1, x2 ∈M2}

is an affine subspace in Rn1+n2.
The parallel linear subspace is L1 × L2, where linear sub-

spaces Li ⊂ Rni are parallel to Mi, i = 1,2.

♥ [taking image under affine mapping] When M is an
affine subspace in Rn and x 7→ Px + p : Rn → Rm is an
affine mapping, the image

PM + p = {y = Px+ p : x ∈M}
of M under the mapping is an affine subspace in Rm.

The parallel linear subspace is
PL = {y = Px : x ∈ L},

where L is the linear subspace parallel to M .
♥ [taking inverse image under affine mapping] When
M is a linear subspace in Rn, x 7→ Px + p : Rm → Rn is an
affine mapping and the inverse image

Y = {y : Py + p ∈M}
ofM under the mapping is nonempty, Y is an affine subspace
in Rm.

The parallel linear subspace is
P−1(L) = {y : Py ∈ L},

where L is the linear subspace parallel to M .

Convex Sets and Functions

♣ Definitions:
♠ A set X ⊂ Rn is called convex, if along with every

two points x, y it contains the entire segment linking

the points:

x, y ∈ X,λ ∈ [0,1]⇒ (1− λ)x+ λy ∈ X.

♥ Equivalently: X ∈ Rn is convex, if X is closed w.r.t.

taking all convex combinations of its elements (i.e., linear
combinations with nonnegative coefficients summing up to 1):

∀k ≥ 1 : x1, ..., xk ∈ X,λ1 ≥ 0, ..., λk ≥ 0,
∑k
i=1 λi = 1

⇒
k∑
i=1

λixi ∈ X

Indeed, computing k-term convex combination reduces to com-
puting k − 1 two-term ones:

1
10
x1 + 2

10
x2 + 3

10
x3 + 4

10
x4 = 1

10
x1 + 9

10

[
2
9
x2 + 3

9
x3 + 4

9
x4
]

= 1
10
x1 + 9

10

[
2
9
x2 + 7

9

[
3
7
x3 + 4

7
x4
]]

Assuming that all 2-term convex combinations of points from X

belong to X, the magenta representation of the red expression

shows that the value of the red expression belongs to X.

Example of a convex set: A polyhedral set X = {x ∈ Rn :

Ax ≤ b} is convex. In particular, linear and affine subspaces
are convex sets.

♠ A function f(x) : Rn → R ∪ {+∞} is called convex, if

its epigraph

Epi{f} = {[x; τ] : τ ≥ f(x)}

is convex.

♥ Equivalently: f is convex, if

x, y ∈ Rn, λ ∈ [0,1]
⇒ f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

♥ Equivalently: f is convex, if f satisfies the Jensen’s
Inequality:

∀k ≥ 1 : x1, ..., xk ∈ Rn, λ1 ≥ 0, ..., λk ≥ 0,
∑k
i=1 λi = 1

⇒ f
(∑k

i=1 λixi
)
≤

k∑
i=1

λif(xi)

Example: A piecewise linear function

f(x) =

 max
i≤I

[aTi x+ bi], Px ≤ p

+∞, otherwise

is convex.

♠ Convex hull: For a nonempty set X ⊂ Rn, its convex
hull is the set comprised of all convex combinations of

elements of X:

Conv(X) =

{
x =

m∑
i=1

λixi :
xi ∈ X, 1 ≤ i ≤ m ∈ N
λi ≥ 0∀i,

∑
i λi = 1

}
By definition, Conv(∅) = ∅.
Fact: The convex hull of X is convex, contains X and is the
intersection of all convex sets containing X and thus is the
smallest, w.r.t. inclusion, convex set containing X.
Note: a convex combination is an affine one, and an

affine combination is a linear one, whence

X ⊂ Rn ⇒ Conv(X) ⊂ Lin(X)
∅ 6= X ⊂ Rn ⇒ Conv(X) ⊂ Aff(X) ⊂ Lin(X)

Example: Convex hulls of a 3- and an 8-point sets

(red dots) on the 2D plane:

♣ Dimension of a nonempty set X ∈ Rn:
♥ When X is a linear subspace, dimX is the linear

dimension of X (the cardinality of (any) linear basis

in X)

♥ When X is an affine subspace, dimX is the linear
dimension of the linear subspace parallel to X (that is, the
cardinality of (any) affine basis of X minus 1)

♥ When X is an arbitrary nonempty subset of Rn,

dimX is the dimension of the affine hull Aff(X) of X.

Note: Some sets X are in the scope of more than one

of these three definitions. For these sets, all applicable

definitions result in the same value of dimX.

Calculus of Convex Sets

♠ [taking intersection] If X1, X2 are convex sets in Rn,

so is their intersection X1∩X2. In fact, the intersection⋂
α∈A

Xα

of a whatever family of convex subsets in Rn is convex.
Warning: The union of convex sets is, in general, non-
convex!
♠ [taking arithmetic sum] IfX1, X2 are convex sets in Rn,
so is the set

X1 +X2 = {x = x1 + x2 : x1 ∈ X1, x2 ∈ X2}.
♠ [taking affine image]: If X is a convex set in Rn, A is
an m× n matrix, and b ∈ Rm, then the set

AX + b := {Ax+ b : x ∈ X} ⊂ Rm

(the image of X under the affine mapping x 7→ Ax+b :

Rn → Rm) is a convex set in Rm.
♠ [taking inverse affine image] If X is a convex set in Rn,
A is an n× k matrix, and b ∈ Rm, then the set

{y ∈ Rk : Ay + b ∈ X}
(the inverse image of X under the affine mapping

y 7→ Ay + b : Rk → Rn) is a convex set in Rk.
♠ [taking direct product] If the sets Xi ⊂ Rni, 1 ≤ i ≤ k,
are convex, so is their direct product

X1 × ...×Xk := {[x1; ...;xk] : xi ∈ Xi,1 ≤ i ≤ k} ⊂ Rn1+...+nk.

Calculus of Convex Functions

♠ [taking linear combinations with positive coeffi-

cients] If functions fi : Rn → R ∪ {+∞} are convex and
λi > 0, 1 ≤ i ≤ k, then the function

f(x) =
∑k
i=1 λifi(x)

is convex.
♠ [direct summation] If functions fi : Rni → R ∪ {+∞},
1 ≤ i ≤ k, are convex, so is their direct sum
f([x1; ...;xk]) =

∑k
i=1 fi(x

i) : Rn1+...+nk → R ∪ {+∞}
♠ [taking supremum] The supremum f(x) = sup

α∈A
fα(x)

of a whatever (nonempty) family {fα}α∈A of convex functions
is convex.
♠ [affine substitution of argument] If a function f(x) :

Rn → R ∪ {+∞} is convex and x = Ay + b : Rm → Rn is
an affine mapping, then the function

g(y) = f(Ay + b) : Rm → R ∪ {+∞}
is convex.
♠ [projective transformation] If a function f(x) : Rn →
R ∪ {+∞} is convex, so is its projective transformation

g(y = [x;α]) =

{
αf(x/α), α > 0 and x/α ∈ Domf

+∞, otherwise

♠ [partial minimization] If a function
f([u; v]) : Rnu × Rnv → R ∪ {+∞}

is convex, then the function
g(u) = inf

v
f(u, v) : Rnv → R ∪ {+∞} ∪ {−∞}

is convex on every convex set on which g does not take the
value −∞.

♠ Theorem on superposition: Let
fi(x) : Rn → R ∪ {+∞}

be convex functions, and let
F (y) : Rm → R ∪ {+∞}

be a convex function which is nondecreasing w.r.t. every one
of the variables y1, ..., ym. Then the superposition

g(x) =

{
F (f1(x), ..., fm(x)), fi(x) < +∞,1 ≤ i ≤ m
+∞, otherwise

of F and f1, ..., fm is convex.
Note: Monotonicity of the outer function F is essential!
For example,

• f(x) = exp{x} and F (y) = −y are convex functions,

but g(x) = F (f(x)) = − exp{x} is nonconvex!

Note: If some of fi’s, say, f1, ..., fk, are affine, then

the conclusion of Theorem on superposition remains

valid when we require the monotonicity of F w.r.t.

yk+1, ..., ym only.

Cones

♣ Definition: A set X ⊂ Rn is called a cone, if X is
nonempty, convex and is homogeneous, that is,

x ∈ X,λ ≥ 0⇒ λx ∈ X

Geometrically: A cone is a convex set comprised of

rays emanating from the origin.

Equivalently: A set X ⊂ Rn is a cone, if X is nonempty and
is closed w.r.t. addition of its elements and multiplication of its
elements by nonnegative reals:

x, y ∈ X,λ, µ ≥ 0⇒ λx+ µy ∈ X

Equivalently: A set X ⊂ Rn is a cone, if X is nonempty
and is closed w.r.t. taking conic combinations of its elements
(that is, linear combinations with nonnegative coefficients):

∀m : xi ∈ X,λi ≥ 0,1 ≤ i ≤ m⇒
m∑
i=1

λixi ∈ X.

Examples:
• Every linear subspace in Rn (i.e., every solution set

of a homogeneous system of linear equations with n

variables) is a cone

• The solution set X = {x ∈ Rn : Ax ≤ 0} of a homo-
geneous system of linear inequalities is a cone. Such

a cone is called polyhedral.

Quiz: By our definition, a polyhedral cone is the so-

lution set of homogeneous system Ax ≤ 0 of linear

inequalities.

Is it exactly the same as to say that X is a cone and
X is polyhedral?

Quiz: By our definition, a polyhedral cone is the so-

lution set of homogeneous system Ax ≤ 0 of linear

inequalities.

Is it exactly the same as to say that X is a cone and
X is polyhedral?

Yes! If a polyhedral set X = {x : Ax ≤ b} is a cone,

then X = {x : Ax ≤ 0}, that is, X is a polyhedral

cone.

Indeed, when X = {x : Ax ≤ b} is a cone, then 0 ∈ X
and therefore b ≥ 0, so that the polyhedral cone

X̄ = {x : Ax ≤ 0}
is contained in X. On the other hand, for every x ∈ X,

we have A[tx] ≤ b for all t ≥ 0 (since X is a cone)

⇒ t[Ax] ≤ b for all positive t,

⇒ Ax ≤ 0,

so that X is contained in X̄.

♣ Conic hull: For a nonempty set X ⊂ Rn, its conic hull
Cone (X) is defined as the set of all conic combinations of
elements of X:

X 6= ∅

⇒ Cone (X) =

{
x =

∑
i
λixi :

λi ≥ 0,1 ≤ i ≤ m ∈ N
xi ∈ X,1 ≤ i ≤ m

}
By definition, Cone (∅) = {0}.
Fact: Cone (X) is a cone, contains X and is the intersection
of all cones containing X, and thus is the smallest, w.r.t. in-
clusion, cone containing X.
Example: The conic hull of the set X = {e1, ..., en} of all ba-
sic orths in Rn is the nonnegative orthant Rn+ = {x ∈ Rn : x ≥ 0}.

Calculus of Cones

♠ [taking intersection] If X1, X2 are cones in Rn, so is
their intersection X1 ∩X2.
In fact, the intersection

⋂
α∈A

Xα of a whatever family {Xα}α∈A
of cones in Rn is a cone.

♠ [taking arithmetic sum] If X1, X2 are cones in Rn, so
is the set X1 +X2 = {x = x1 + x2 : x1 ∈ X1, x2 ∈ X2}
♠ [taking linear image] If X is a cone in Rn and A is an
m× n matrix, then the set

AX := {Ax : x ∈ X} ⊂ Rm

(the image of X under the linear mapping x 7→ Ax :

Rn → Rm) is a cone in Rm.
♠ [taking inverse linear image] If X is a cone in Rn and
A is an n× k matrix, then the set

{y ∈ Rk : Ay ∈ X}
(the inverse image of X under the linear mapping

y 7→ Ay : Rk → Rn) is a cone in Rk.
♠ [taking direct products] If Xi ⊂ Rni are cones, 1 ≤ i ≤
k, so is the direct product

X1 × ...×Xk := {[x1; ...;xk] : xi ∈ Xi,1 ≤ i ≤ k} ⊂ Rn1+...+nk.

♠ [passing to the dual cone] If X is a cone in Rn, so is its
dual cone defined as

X∗ = {y ∈ Rn : yTx ≥ 0 ∀x ∈ X}.
Examples:
• The cone dual to a linear subspace L is the orthog-

onal complement L⊥ of L

• The cone dual to the nonnegative orthant Rn+ is the

nonnegative orthant itself:

(Rn+) := {y ∈ Rn : yTx ≥ 0 ∀x ≥ 0} = {y ∈ Rn : y ≥ 0}.

• 2D cones bounded by blue rays are dual to cones

bounded by red rays:

Quiz: Let a1, ..., am ∈ Rn, and let

K = Cone {a1, ..., am} :=
{∑m

i=1 λiai : λ ≥ 0
}

be the conic hull of a1, ..., am.

• Is K a polyhedral cone?

• What is the cone K∗ dual to K?

Quiz: Let a1, ..., am ∈ Rn, and let

K = Cone {a1, ..., am} :=
{∑m

i=1 λiai : λ ≥ 0
}

be the conic hull of a1, ..., am.

• Is K a polyhedral cone? – Yes! K admits immediate

polyhedral representation:

K = {x : ∃λ : x =
∑m
i=1 λiai & λ ≥ 0}

⇒ K is polyhedral ⇒ K is a polyhedral cone

• What is the cone K∗ dual to K? – This is the cone

K∗ = {x ∈ Rn : aTi x ≥ 0, i = 1, ...,m}

Indeed, a vector x has nonnegative inner products with

all conic combinations of a1, ..., am iff x has nonneg-

ative inner products with every one of the vectors

a1, ..., am.

Useful Fact: Caratheodory Theorem

Theorem. Let x1, ..., xN ∈ Rn and m = dim {x1, ..., xN}.
Then every point xwhich is a convex combination of x1, ..., xN
can be represented as a convex combination of at mostm+1

of the points x1, ..., xN .
Illustration:

What we see: The 2D polygon X bounded by the blue

contour is the convex hull of the set of red points.

The dimension of the polygon is m = 2.

• Splitting the polygon into triangles, we see that

every point from X is a convex combination of 3 = m+ 1 of
the red points (and even of a triple of red points which

form vertices of X).

Quiz:
• In the nature, there are 26 “pure” types of tea,

denoted A, B,..., Z; all other types are mixtures of

these “pure” types. In the market, 111 blends of pure

types, rather than the pure types of tea themselves,

are sold.

• John prefers a specific blend of tea which is not sold

in the market; from experience, he found that in order

to get this blend, he can buy 93 of the 111 market

blends and mix them in certain proportion.

• An OR student pointed out that to get his favorite

blend, John could mix appropriately just 27 properly

selected market blends. Another OR student found

that just 26 of market blends are enough.

• John does not believe the students, since no one of

them asked what exactly is his favorite blend. Is John

right?

Quiz:
• In the nature, there are 26 “pure” types of tea, de-

noted A, B,..., Z. In the market, 111 blends of these

types are sold.

• John knows that his favorite blend can be obtained

by mixing in appropriate proportion 93 of the 111 mar-

ket blends. Is it true that the same blend can be ob-

tained by mixing

• 27 market blends?

• 26 market blends?

Both answers are true. Let us speak about unit weight
portions of tea blends. Then

• a blend can be identified with 26-dimensional vector

x = [xA; ...;xZ]

where x? is the weight of pure tea ? in the unit weight

portion of the blend. The 26 entries in x are nonneg-

ative and sum up to 1;

• denoting the marked blends by x1, ..., x111 and the

favorite blend of John by x̄, we know that

x̄ =
∑111
i=1 λix

i

with nonnegative coefficients λi. Comparing the

weights of both sides, we conclude that
∑111
i=1 λi = 1

⇒ x̄ is a convex combination of x1, ..., x111

⇒ [by Caratheodory and due to dimxi = 26] x̄ is a con-
vex combination of just 26 + 1 = 27 of the market blends,

thus the first student is right.

• The vectors x1, ..., x111 have unit sums of entries

thus belong to the hyperplane

M = {[xA; ...;xZ] : xA + ...+ xZ = 1}
which has dimension 25

⇒ The dimension of the set {x1, x2, ..., x111} is at most

m = 25

⇒ By Caratheodory, x̄ is a convex combination of just
m+ 1 = 26 vectors from {x1, ..., x111}, thus the second

student also is right.

Proof of Caratheodory Theorem
• Let M = Aff{x1, ..., xN}, so that dimM = m. By

shifting M (which does not affect the statement we

intend to prove) we can make M a m-dimensional

linear subspace in Rn. Representing points from the

linear subspace M by their m-dimensional vectors of

coordinates in a basis of M , we can identify M and Rm,

and this identification does not affect the statement

we intend to prove. Thus, assume w.l.o.g. that m =

n.

• Let x =
∑N
i=1 µixi be a representation of x as a

convex combination of x1, ..., xN with as small number of
nonzero coefficients as possible. Reordering x1, ..., xN and

omitting terms with zero coefficients, assume w.l.o.g.

that x =
∑M
i=1 µixi, so that µi > 0, 1 ≤ i ≤ M , and∑M

i=1 µi = 1. It suffices to show that M ≤ n+ 1. Let,

on the contrary, M > n+ 1.

• Consider the system of linear equations in variables

δ1, ..., δM : ∑M
i=1 δixi = 0;

∑M
i=1 δi = 0

This is a homogeneous system of n+1 linear equations

in M > n + 1 variables, and thus it has a nontrivial

solution δ̄1, ..., δ̄M . Setting µi(t) = µi + tδ̄i, we have

∀t : x =
∑M
i=1 µi(t)xi,

∑M
i=1 µi(t) = 1.

• Since δ̄ is nontrivial and
∑
i δ̄i = 0, the set I = {i :

δi < 0} is nonempty. Let t̄ = min
i∈I

µi/|δi|. Then all µi(t̄)

are ≥ 0, at least one of µi(t̄) is zero, and

x =
∑M
i=1 µi(t̄)xi,

∑M
i=1 µi(t̄) = 1.

We get a representation of x as a convex combination

of xi with less than M nonzero coefficients, which is

impossible. �

Useful Fact: Helley Theorem

Theorem. Let A1, ..., AN be convex sets in Rn which belong
to an affine subspace M of dimension m. Assume that every
m+ 1 sets of the collection have a point in common. Then all
N sets have a point in common.
Illustration:
• If in a system of 2013 segments on the real axis,

every 2 segments intersect, all 2013 segments have a

point in common (easy!)

• If in a system of 2013 triangles on the 2D plane,

every triple of triangles have a point in common, all

2013 triangles have a point in common (???)

Quiz: The daily functioning of a plant is described by

the linear constraints

(a) Ax ≤ f ∈ R10

(b) Bx ≥ d ∈ R2013

(c) Cx ≤ c ∈ R2000
(!)

• x: decision vector

• f ∈ R10
+ : vector of resources

• d: vector of demands

• There are N demand scenarios di. In the evening

of day t − 1, the manager knows that the demand

of day t will be one of the N scenarios, but he does

not know which one. The manager should arrange a

vector of resources f for the next day, at a price c` ≥ 0

per unit of resource f`, in order to make the next day

production problem feasible.

• It is known that every one of the demand scenarios

can be “served” by $1 purchase of resources.

(?) How much should the manager invest in resources to
make the next day problem feasible when
• N = 1 • N = 2 • N = 10 • N = 11

• N = 12 • N = 2013 ?

(a) : Ax ≤ f ∈ R10; (b) : Bx ≥ d ∈ R2013; (c) : Cx ≤ c ∈ R2000

Quiz answer: With N scenarios, $ min[N,11] is
enough!
Indeed, the vector of resources f ∈ R10

+ appears only
in the constraints (a)
⇒ surplus of resources makes no harm
⇒ with N scenarios di, $ N in resources is enough:
every di can be “served” by $ 1 purchase of appropri-
ate resource vector f i ≥ 0, thus it suffices to buy the
vector f1 + ... + fN which costs $ N and is ≥ f i for
every i = 1, ..., n.
To see than $ 11 is enough, let Fi be the set of all re-
source vectors f which cost at most $11 and allow to
“serve” demand di ∈ D.
A. Fi ∈ R10 is convex (and even polyhedral): it admits
polyhedral representation
Fi = {f ∈ R10 : ∃x : Cx ≤ c, Bx ≥ di, Ax ≤ f, f ≥ 0,

∑10
`=1 c`f` ≤ 11}

B. Every 11 sets Fi1, ..., Fi11
of the family F1, ..., Fi

have a point in common. Indeed, scenario dis can
be “served” by $ 1 vector fs ≥ 0
⇒ every one of the scenarios di1, ..., di11 can be served
by the $ 11 vector of resources f = f1 + ...+ f11

⇒ f belongs to every one of Fi1, ..., Fi11
• By Helley, A and B imply that all the sets F1, ..., FN
have a point f in common. f costs at most $ 11 (the
description of Fi) and allows to “serve” every one of
the demands d1,...,dN .

Proof of Helley Theorem.
• Same as in the proof of Caratheodory Theorem, we

can assume w.l.o.g. that m = n.

• We need the following fact:

Theorem [Radon] Let x1, ..., xN be points in Rn. IfN ≥ n+ 2,
we can split the index set {1, ..., N} into two nonempty non-
overlapping subsets I, J such that

Conv{xi : i ∈ I} ∩Conv{xi : i ∈ J} 6= ∅.

From Radon to Helley: Let us prove Helley’s theorem

by indiction in N . There is nothing to prove when

N ≤ n + 1. Thus, assume that N ≥ n + 2 and that

the statement holds true for all collections of N − 1

sets, and let us prove that the statement holds true

for N-element collections of sets as well.

Proof of Helley Theorem (continued)
• Given A1, ..., AN , we define the N sets

Bi = A1 ∩A2 ∩ ... ∩Ai−1 ∩Ai+1 ∩ ... ∩AN .
By inductive hypothesis, all Bi are nonempty. Choos-

ing a point xi ∈ Bi, we get N≥ n+ 2 points xi,

1 ≤ i ≤ N .

• By Radon Theorem, after appropriate reordering of

the sets A1, ..., AN , we can assume that for certain

k, Conv{x1, ..., xk} ∩Conv{xk+1, ..., xN} 6= ∅. We claim

that if b ∈ Conv{x1, ..., xk} ∩ Conv{xk+1, ..., xN}, then b
belongs to all Ai, which would complete the inductive

step.

To support our claim, note that

— when i ≤ k, xi ∈ Bi ⊂ Aj for all j = k + 1, ..., N ,

that is, i ≤ k ⇒ xi ∈ ∩Nj=k+1Aj. Since the latter set is

convex and b is a convex combination of x1, ..., xk, we

get b ∈ ∩Nj=k+1Aj.

— when i > k, xi ∈ Bi ⊂ Aj for all 1 ≤ j ≤ k, that is,

i ≥ k ⇒ xi ∈ ∩kj=1Aj. Similarly to the above, it follows

that b ∈ ∩kj=1Aj.

Thus, our claim is correct.

Proof of Radon Theorem
Let x1, ..., xN ∈ Rn and N ≥ n + 2. We want to

prove that we can split the set of indexes {1, ..., N}
into non-overlapping nonempty sets I, J such that

Conv{xi : i ∈ I} ∩Conv{xi : i ∈ J} 6= ∅.
Indeed, consider the system of n + 1 < N homoge-

neous linear equations in n+ 1 variables δ1, ..., δN :

N∑
i=1

δixi = 0,
N∑
i=1

δi = 0. (∗)

This system has a nontrivial solution δ̄. Let us set

I = {i : δ̄i > 0}, J = {i : δ̄i ≤ 0}. Since δ̄ 6= 0 and∑N
i=1 δ̄i = 0, both I, J are nonempty, do not intersect

and µ :=
∑
i∈I δ̄i =

∑
i∈J[−δ̄i] > 0. (∗) implies that

∑
i∈I

δ̄i
µ
xi︸ ︷︷ ︸

∈Conv{xi:i∈I}

=
∑
i∈J

[−δ̄i]
µ

xi︸ ︷︷ ︸
∈Conv{xi:i∈J}

�

Useful Fact: Homogeneous Farkas Lemma

♣ Question: When a homogeneous linear inequality

aTx ≥ 0 (∗)

is a consequence of a system of homogeneous linear

inequalities

aTi x ≥ 0, i = 1, ...,m (!)

i.e., when (∗) is satisfied at every solution to (!)?

Observation: If a is a conic combination of a1, ..., am:

∃λi ≥ 0 : a =
∑
i

λiai, (+)

then (∗) is a consequence of (!).

Indeed, (+) implies that

aTx =
∑
i

λia
T
i x ∀x,

and thus for every x with aTi x ≥ 0 ∀i one has aTx ≥ 0.

♣ Homogeneous Farkas Lemma: (∗) is a consequence of
(!) if and only if a is a conic combination of a1, ..., am.

♣ Equivalently: Given vectors a1, ..., am ∈ Rn, let
K = Cone {a1, ..., am} = {

∑
i λiai : λ ≥ 0}

be the conic hull of the vectors. Given a vector a,
• it is easy to certify that a ∈ Cone {a1, ..., am}: a certificate
is a collection of weights λi ≥ 0 such that

∑
i λiai = a;

• it is easy to certify that a6∈Cone {a1, ..., am}: a certificate is
a vector d such that aTi d ≥ 0 ∀i and aTd < 0.

Proof of HFL: All we need to prove is that If a is not a
conic combination of a1, ..., am, then there exists d such that
aTd < 0 and aTi d ≥ 0, i = 1, ...,m.

Fact: As we know from one of the quizzes, the cone

K = Cone {a1, ..., am} is a polyhedral set and thus is a

polyhedral cone

⇒ K can be represented as

K = {x : dTj x ≥ 0, 1 ≤ j ≤M}

• ai ∈ K ⇒ dTj ai ≥ 0 for all i = 1, ...,m, j = 1, ...,M

• a 6∈ K ⇒ dTj∗a < 0 for some j∗ ≤M .

⇒ Setting d = dj∗, we get aTi d ≥ 0 for all i ≤ m, and

aTd < 0, Q.E.D.

Corollary: Let a1, ..., am ∈ Rn and K = Cone {a1, ..., am},
and let K∗ = {x ∈ Rn : xTu ≥ 0∀u ∈ K} be the dual cone.
Then K itself is the cone dual to K∗:

(K∗)∗ := {u : uTx ≥ 0 ∀u ∈ K∗}
= K := {

∑
i λiai : λi ≥ 0}.

Proof.
♠ If K is a cone, then, by definition of K∗, every

vector from K has nonnegative inner products with

all vectors from K∗ and thus K ⊂ (K∗)∗ for every

cone K.

♠ To prove the opposite inclusion (K∗)∗ ⊂ K in the

case when

K = Cone {a1, ..., am},

recall that

K∗ = {d : dTai ≥ 0, 1 ≤ i ≤ m}.

Now let a ∈ (K∗)∗, and let us verify that a ∈ K. As-

suming this is not the case, by HFL there exists d

such that aTd < 0 and aTi d ≥ 0∀i ⇒ d ∈ K∗, that is,

a 6∈ (K∗)∗, which is a contradiction.

Corollary: For every polyhedral cone K, the dual cone K∗
• is polyhedral and can be represented as

Cone (finite set)
• satisfies (K∗)∗ = K

Indeed, let K = {x : dTi x ≥ 0,1 ≤ i ≤ M} be a polyhe-

dral cone. The dual cone K∗ is, by definition, com-

prised of all vectors a which have nonnegative inner

products with all vectors x ∈ K, i.e., with all x’s sat-

isfying dTi x ≥ 0, i = 1, ...,M . By HFL, these vectors

a are exactly conic combinations of d1, ..., dM , that is,

K∗ = Cone {d1, ..., dM}, and we know that the cone of

this form is polyhedral. Besides this, by one of the

quizzes

(K∗)∗ = (Cone {d1, ..., dM})∗ = {x : dTi x ≥ 0, i = 1, ...,M},
⇒ (K∗)∗ = K

Corollary: Every polyhedral cone K can be represented as
K = Cone {finite set}.
Indeed, by previous Corollary

• every polyhedral cone K is the dual of another poly-

hedral cone (specifically, K∗)
• the dual of a polyhedral cone is of the form

Cone (finite set).

Quiz: X = {x ∈ Rn : Ax ≤ b} is a polyhedral set. Let

us set

X+ = {[x; t] ∈ Rn+1 : t ≥ 0 & Ax ≤ tb}
A: Is X a polyhedral cone? How to recover X ⊂ Rn

given X+ ⊂ Rn+1 ?

B: By description of X+, the t-coordinate of every

point from X+ is nonnegative. Is it true that when a

point from X+ differs from the origin, its t-coordinate

is positive?

C: Now let X be nonempty and bounded, and let [x; t]

be a nonzero point from X+. Is it true that t > 0?

D: Let X be nonempty and bounded. Is it true that

X is the convex hull of a finite set?

Quiz: X = {x ∈ Rn : Ax ≤ b} is a polyhedral set. Let

us set

X+ = {[x; t] ∈ Rn+1 : t ≥ 0 & Ax ≤ tb}
A: Is X a polyhedral cone? How to recover X ⊂ Rn

given X+ ⊂ Rn+1 ? – Yes, X+ is a polyhedral cone -

it is given by a finite system of nonstrict homogeneous

linear inequalities. Besides,

X = {x : [x; 1] ∈ X+}

Geometrically: X is the cross-section of X+ by the

hyperplane {t = 1}.
⇒ X+ contains points with t = 1 iff X 6= ∅.
B: By description of X+, the t-coordinate of every

point from X+ is nonnegative. Is it true that when a

point from X+ differs from the origin, its t-coordinate

is positive? – Not necessarily. For example, when

X = {x ∈ R : x ≤ 0},
we have

X+ = {[x; t] ∈ R2 : t ≥ 0, x ≤ t · 0 = 0}
= {[x; t] ∈ R2 : x ≤ 0, t ≥ 0},

⇒ X+ has plenty nonzero points with zero t-coordinate.

X = {x : Ax ≤ b}, X+ = {[x; t] : t ≥ 0, Ax ≤ tb}
X = {x : [x; 1] ∈ X+}.

C: Let X be nonempty and bounded, and let [x; t] be

a nonzero point from X+. Is it true that t > 0? –

Yes!. Indeed, let 0 6= [x; t] ∈ X+; we should verify

that t > 0. Assuming the opposite, our point is [x; 0]

with x 6= 0 and Ax ≤ 0. Since X is nonempty, there

exists x̄ with Ax̄ ≤ b
⇒ A[x̄+ sx] ≤ b for all s ≥ 0

⇒ The ray {x̄+sx : s ≥ 0} belongs to X. Since x 6= 0,

this ray is unbounded, which is a desired contradic-

tion – X is bounded and therefore cannot contain

unbounded set!

X = {x : Ax ≤ b}, X+ = {[x; t] : t ≥ 0, Ax ≤ tb}
X = {x : [x; 1] ∈ X+}

If X 6= ∅ and X is bounded, every nonzero [x; t] ∈ X+ has t > 0

D: Let X be nonempty and bounded. Is it true that

X is the convex hull of a finite set? – Yes!

• X+ is a polyhedral cone and as such is of the form

Cone {a1, ..., am}.
• Since X+ 6= {0}, not all ai are zero vectors. Re-

moving from the collection a1, ..., am zero vectors, if

any, we do not affect the conic hull of the collection

⇒ We can assume that X+ = Cone {a1, ...am} with

nonzero ai = [xi; ti].

• Since 0 6= [xi; ti] ∈ X+, we have by above ti > 0

⇒ the vectors āi = [x̄i = xi/ti; 1] are well defined, and

clearly X+ = Cone {a1, ..., am} = Cone {ā1, ..., ām}.
• Since āi = [x̄i; 1] belong to X+, we have x̄i ∈ X,

1 ≤ i ≤ m
• Now let x ∈ X, so that [x; 1] ∈ X+ = Cone {ā1, ..., ām}
⇒ [x; 1] =

∑m
i=1 λi[x̄i; 1] for some λi ≥ 0 ⇒

∑
i λi = 1

⇒ every x ∈ X is a convex combination of x̄i ∈ X,

i = 1, ...,m ⇒ X = Conv{x̄1, ..., x̄m}

Understanding Structure of a Polyhedral Set

♣ Situation: We consider a polyhedral set

X = {x ∈ Rn : Ax ≤ b} , A =

 aT1
· · ·
aTm

 ∈ Rm×n

⇔ X =
{
x ∈ Rn : aTi x ≤ bi, i ∈ I = {1, ...,m}

}
.

(X)

Standing assumption: X 6= ∅.
♠ Faces of X. Let us pick a subset I ⊂ I and replace

in (X) the inequality constraints aTi x ≤ bi, i ∈ I with

their equality versions aTi x = bi, i ∈ I. The resulting

set

XI = {x ∈ Rn : aTi x ≤ bi, i ∈ I\I, a
T
i x = bi, i ∈ I}

if nonempty, is called a face of X.

Examples:
• X is a face of itself: X = X∅.
• Let ∆n = Conv{0, e1, ..., en} = {x ∈ Rn : x ≥
0,
∑n
i=1 xi ≤ 1}

⇒ I = {1, ..., n+1} with aTi x := −x1 ≤ 0 =: bi, 1 ≤ i ≤
n, and aTn+1x :=

∑
i xi ≤ 1 =: bn+1

Every subset I ⊂ I different from I defines a face. For

example, I = {1, n+ 1} defines the face

{x ∈ Rn : x1 = 0, xi ≥ 0,
∑
i xi = 1}.

Quiz: What are the faces of 3D simplex ∆3 – the

convex hull of A,B,C,D ?

B

A

D

C

• 3-dimensional faces are

• 2-dimensional faces are

• 1-dimensional faces are

• 0-dimensional faces are

Quiz: What are the faces of 3D simplex ∆3 – the

convex hull of A,B,C,D ?

B

A

D

C

• 3-dimensional faces are the entire simplex

• 2-dimensional faces are 4 triangles ∆ABC, ∆BCD,

∆CDA, ∆DAB

• 1-dimensional faces are 6 segments [A,B], [A,C],

[A,D], [B,C], [B,D], [C,D]

• 0-dimensional faces are 4 points {A}, {B}, {C}, {D}

Quiz: How many faces has

• 1D box (segment) {x ∈ R : 0 ≤ x ≤ 1} ?

• 2D box (square) {x ∈ R2 : 0 ≤ x1, x2 ≤ 1}?
• 3D box (cube) {x ∈ R3 : 0 ≤ x1, x2, x3 ≤ 1} ?

• n-dimensional box {x ∈ Rn : 0 ≤ x1, ..., xn ≤ 1} ?

Quiz: How many faces has n-dimensional box

{x ∈ Rn : 0 ≤ x1, ..., xn ≤ 1} ?

Answer: 3n.

Explanation: We can list all faces as follows:

— select k ∈ {0,1, ..., n} pairs 0 ≤ xi ≤ 1 of inequalities

defining the box (

(
n
k

)
options)

— make one of the inequalities in every one of the

selected pairs equality (2k options).

⇒ The total number of faces is∑n
k=0

(
n
k

)
2k = (1 + 2)n.

X =
{
x ∈ Rn : aTi x ≤ bi, i ∈ I = {1, ...,m}

}
Facts:
• A face

∅ 6= XI = {x ∈ Rn : aTi x ≤ bi, i ∈ I, a
T
i x = bi, i ∈ I}

of X is a nonempty polyhedral set
• A face of a face of X can be represented as a face of X
• if XI and XI ′ are faces of X and their intersection is
nonempty, this intersection is a face of X:

∅ 6= XI ∩XI ′ ⇒ XI ∩XI ′ = XI∪I ′.

♣ A face XI is called proper, if XI 6= X.

Fact: A face XI of X is proper if and only if
dimXI < dimX .

Proof:
One direction is evident. Now assume that XI is a

proper face, and let us prove that dimXI < dimX.

• Since XI 6= X, there exists i∗ ∈ I such that aTi∗x 6≡ bi∗
on X and thus on M = Aff(X).

⇒ The set M+ = {x ∈ M : aTi∗x = bi∗} contains XI
(and thus is an affine subspace containing Aff(XI)),

and is $M .

⇒ Aff(XI)$M , whence

dimXI = dim Aff(XI)<dimM = dimX. �

Extreme Points of a Polyhedral Set

X =
{
x ∈ Rn : aTi x ≤ bi, i ∈ I = {1, ...,m}

}
Definition. A point v ∈ X is called an extreme point, or a
vertex of X, if it can be represented as a face of X:

∃I ⊂ I :
XI := {x ∈ Rn : aTi x ≤ bi, i ∈ I, aTi x = bi, i ∈ I}= {v}.

(∗)

Geometric characterization of extreme points: A point
v ∈ X is a vertex of X iff v is not the midpoint of a nontrivial
segment contained in X:

v ± h ∈ X ⇒ h = 0. (!)

Proof:

v ± h ∈ X ⇒ h = 0. (!)

∃I ⊂ I :
XI := {x ∈ Rn : aTi x ≤ bi, i ∈ I, aTi x = bi, i ∈ I}= {v}.

(∗)

• Let v be a vertex, so that (∗) takes place for certain
I, and let h be such that v ± h ∈ X; we should prove
that h = 0. We have ∀i ∈ I:{

bi ≥ aTi (v − h) = bi − aTi h & bi ≥ aTi (v + h) = bi + aTi h
}

⇒ aTi h = 0⇒ aTi [v ± h] = bi.

Thus, v ± h ∈ XI = {v}, whence h = 0. We have
proved that (∗) implies (!).
• Let us prove that (!) implies (∗). Indeed, let v ∈ X
be such that (!) takes place; we should prove that (∗)
holds true for certain I. Let

I = {i ∈ I : aTi v = bi},
so that v ∈ XI. It suffices to prove that XI = {v}. Let,
on the opposite, ∃0 6= e : v + e ∈ XI. Then aTi (v+e) =
bi = aTi v for all i ∈ I, that is, aTi e = 0 ∀i ∈ I, that is,

aTi (v ± te) = bi ∀(i ∈ I, t > 0).

When i ∈ I\I, we have aTi v < bi and thus aTi (v±te) ≤ bi
provided t > 0 is small enough.
⇒ There exists t̄ > 0: aTi (v± t̄e) ≤ bi ∀i ∈ I, that is v± t̄e ∈
X, which is a desired contradiction. �

Quiz: Who is who? Which of the depicted points are

extreme points of the blue polyhedral set?

A

B

C

D

E

F

G

H

I

J K

L

M
N

Algebraic characterization of extreme points: A point v ∈
X = {x ∈ Rn : aTi x ≤ bi, i ∈ I = {1, ...,m}} is a vertex
of X iff among the inequalities aTi x ≤ bi which are active at v
(i.e., aTi v=bi) there are n with linearly independent ai:

Rank {ai : i ∈ Iv} = n, Iv = {i ∈ I : aTi v = bi} (!)

Proof:
v ∈ X = {x ∈ Rn : aiu

Tx ≤ bi, i ∈ I}
Iv = {i ∈ I : aTi v = bi} (!)

We should prove that v ∈ X is an extreme point of X
iff among the vectors ai, i ∈ Iv, there are n linearly
independent.
• Let v be a vertex of X; we should prove that among
the vectors ai, i ∈ Iv there are n linearly independent.
Assuming that this is not the case, the linear system
aTi e = 0, i ∈ Iv in variables e has a nonzero solution e.
We have

i ∈ Iv ⇒ aTi [v ± te] = bi ∀t,
i ∈ I\Iv ⇒ aTi v < bi
⇒ aTi [v ± te] ≤ bi for all small enough t > 0

whence ∃t̄ > 0 : aTi [v± t̄e] ≤ bi ∀i ∈ I, that is v± t̄e ∈ X,
which is impossible due to t̄e 6= 0. �

• Now assume that among the vectors ai, i ∈ Iv, there

are n linearly independent. We should prove that v is
a vertex of X, that is, that the relation v ± h ∈ X

implies h = 0. Indeed, when v ± h ∈ X, we should
have

∀i ∈ Iv : bi ≥ aTi [vi ± h] = bi ± aTi h
⇒ aTi h = 0 ∀i ∈ Iv.

Thus, h ∈ Rn is orthogonal to n linearly independent
vectors from Rn, whence h = 0. �

♠ Fact: The set Ext(X) of extreme points of a polyhedral
set is finite.
Indeed, there could be no more extreme points than

faces.

♠ Observation: If X is a polyhedral set and XI is a face of
X, then Ext(XI) ⊂ Ext(X).
Indeed, extreme points are singleton faces, and a face

of a face of X can be represented as a face of X itself.

♥ Note: Geometric characterization of extreme points

allows to define this notion for every convex set X: A
point x ∈ X is called extreme, if x± h ∈ X ⇒ h = 0

♥ Fact: Let X be convex and x ∈ X. Then x ∈ Ext(X) iff
in every representation

x =
m∑
i=1

λixi

of x as a convex combination of points xi ∈ X with positive
coefficients one has

x1 = x2 = ... = xm = x

♥ Fact: For a convex set X and x ∈ X, x ∈ Ext(X) iff the
set X\{x} is convex.
♥ Fact: For every X ⊂ Rn

Ext(Conv(X)) ⊂ X

Quiz: What are extreme points of the set

∆=
n,k = {x ∈ Rn : 0 ≤ xi ≤ 1,

∑
i

xi = k}

[k ∈ N,0 ≤ k ≤ n] ?

Quiz: What are extreme points of the set

∆=
n,k = {x ∈ Rn : 0 ≤ xi ≤ 1,

∑
i

xi = k}

[k ∈ N,0 ≤ k ≤ n] ?

Description: These are exactly Boolean (i.e., with en-

tries 0 and 1) vectors from ∆n,k, i.e., Boolean n-

dimensional vectors with exactly k entries equal to 1.

In particular, the extreme points of the standard “flat”

simplex ∆=
n,1 = {x ∈ Rn : x ≥ 0, ,

∑
i xi = 1} are exactly

the n standard basic orths.

Indeed,

• If x is a Boolean vector from ∆=
n,k, then the set of

active at x bounds 0 ≤ xi ≤ 1 is of cardinality n, and

the corresponding vectors of coefficients are linearly

independent

⇒ x ∈ Ext(∆=
n,k)

• If x ∈ Ext(∆=
n,k), then among the active at x con-

straints defining ∆n,k there should be n linearly in-

dependent. One of these active constraints is the

equality ∑
i xi = k ,

and the remaining n−1 should be among the bounds

0 ≤ xi ≤ 1, implying that n−1 entries in x are Boolean.

Since the sum of all entries (k) is integer, the remain-

ing entry also is integer, and since it is in [0,1], it is

Boolean as well.

Quiz: What are extreme points of the set

∆n,k = {x ∈ Rn : 0 ≤ xi ≤ 1,
∑
i

xi ≤ k}

[k ∈ N,0 ≤ k ≤ n] ?

Quiz: What are extreme points of the set

∆n,k = {x ∈ Rn : 0 ≤ xi ≤ 1,
∑
i

xi ≤ k}

[k ∈ N,0 ≤ k ≤ n] ?
Description: These are exactly Boolean (i.e., with

entries 0 and 1) vectors from ∆n,k, i.e., Boolean n-
dimensional vectors with at most k entries equal to 1.
In particular,
— the extreme points of ∆n,n = {x ∈ Rn : 0 ≤ xi ≤
1 ∀i} (unit box) are all 2n n-dimensional Boolean vec-
tors;
— the extreme points of the “full-dimensional” sim-
plex ∆n,1 = {x ∈ Rn : x ≥ 0,

∑
i xi ≤ 1} are the n basic

orths and the origin.
Indeed,
• If x is a Boolean vector from ∆n,k, then the set of
active at x bounds 0 ≤ xi ≤ 1 is of cardinality n, and
the corresponding vectors of coefficients are linearly
independent
⇒ x ∈ Ext(∆n,k)
• If x ∈ Ext(∆n,k), then among the active at x con-
straints defining ∆n,k there should be n linearly inde-
pendent. There are two options:
— all n active constraints are among the bounds
0 ≤ xi ≤ 1 ⇒ x is Boolean
— one of the active constraints is “sum of all entries
is ≤ k” (that is,

∑
i xi = k), and remaining n − 1 are

among the bounds 0 ≤ xi ≤ 1. We have seen that in
this case x is Boolean.

Example: An n × n matrix A is called double stochastic, if
the entries are nonnegative and all the row and the column
sums are equal to 1. The set of double-stochastic matrices is
a polyhedral set in Rn×n:

Πn =

x = [xij]i,j ∈ Rn×n :
xij ≥ 0 ∀i, j∑n
i=1 xij = 1 ∀j∑n
j=1 xij = 1 ∀i


What are the extreme points of Πn ?
Quiz: Which of the matrices below are doubly stochas-

tic? 0 1 0
1 0 0
0 0 1

  1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

  2/3 −1/3 2/3
−1/3 2/3 2/3

2/3 2/3 −1/3



An n×nmatrix A is called double stochastic, if the entries are
nonnegative and all the row and the column sums are equal
to 1. The set of double-stochastic matrices is a polyhedral set
in Rn×n:

Πn =

x = [xij]i,j ∈ Rn×n :
xij ≥ 0 ∀i, j∑n
i=1 xij = 1 ∀j∑n
j=1 xij = 1 ∀i


What are the extreme points of Πn ?

♠ Birkhoff’s Theorem The vertices of Πn are exactly the
n× n permutation matrices (exactly one nonzero entry, equal
to 1, in every row and every column).
Proof:
• A permutation matrix P can be viewed as 0/1 vector

of dimension n2 and as such is an extreme point of

the box

{[xij] : 0 ≤ xij ≤ 1}

which contains Πn. Therefore P is an extreme point

of Πn since by geometric characterization of extreme

points, an extreme point x of a convex set is an extreme point
of every smaller convex set to which x belongs.

Birkhoff’s Theorem The vertices of the set

Πn =

x = [xij]i,j ∈ Rn×n :
xij ≥ 0 ∀i, j∑n
i=1 xij = 1 ∀j∑n
j=1 xij = 1 ∀i


of double-stochastic n×n matrices are exactly the n×n per-
mutation matrices (exactly one nonzero entry, equal to 1, in
every row and every column).
• We can drop in the description of Πn (any) one of
linear equations, since if all but one among the 2n row
and column sums of an n × n matrix are equal to 1,
all 2n row and column sums are equal to 1.
⇒ We lose nothing when assuming that Πn is given
by n2 bounds 0 ≤ xi,j and 2n− 1 linear equations.
• Let P be an extreme point of Πn; we want to prove
that Πn is a permutation matrix. By algebraic char-
acterization of extreme points, at least n2− (2n−1) =
(n− 1)2 > (n− 2)n entries in P should be zeros.
⇒ P has a column with at least n− 1 zero entries
⇒ ∃i∗, j∗ : Pi∗j∗ = 1
⇒ P belongs to the face {x ∈ Πn : xi∗,j∗ = 1} of Πn (which
we get when converting the bounds xi,j∗ ≥ 0, i 6= i∗,
and xi∗,j ≥ 0, j 6= j∗, into equalities)
⇒ Extreme point P of Πn belongs to the face {P ∈ Πn :
Pi∗j∗ = 1} of Πn and thus is an extreme point of the face
⇒ the matrix obtained from P by eliminating i∗-th row and
j∗-th column is an extreme point in the set Πn−1. Iterating
the reasoning, we conclude that P is a permutation
matrix.

Recessive Directions and Recessive Cone

X = {x ∈ Rn : Ax ≤ b} is nonempty

♣ Definition. A vector d ∈ Rn is called a recessive
direction of X, if X contains a ray directed by d:

∃x̄ ∈ X : x̄+ td ∈ X ∀t ≥ 0.

♠ Observation: d is a recessive direction of X iff Ad ≤ 0.
♠ Corollary: Recessive directions of X form a polyhedral
cone, namely, the cone Rec(X) = {d : Ad ≤ 0}, called
the recessive cone of X.
Whenever x ∈ X and d ∈ Rec(X), one has x + td ∈ X for
all t ≥ 0. In particular,

X + Rec(X) = X.

♠ Observation: The larger is a polyhedral set, the larger is
its recessive cone:

X ⊂ Y are polyhedral⇒ Rec(X) ⊂ Rec(Y).

Quiz: what are the recessive cones of the following polyhedral
sets X:
• X = {x ∈ R2 : 0 ≤ x1, x2 ≤ 1}
• X = Rn+ = {x ∈ Rn : x ≥ 0}
• X = {x ∈ Rn : x1 = 0}

• X =

x ∈ R3 :
−1 ≤ x1 + x2 ≤ 1,
−1 ≤ x2 + x3 ≤ 1,
−1 ≤ x3 + x1 ≤ 1


• X =

x ∈ R4 :

−1 ≤ x1 + x2 ≤ 1,
−1 ≤ x2 + x3 ≤ 1,
−1 ≤ x3 + x4 ≤ 1,
−1 ≤ x4 + x1 ≤ 1



Quiz: what are the recessive cones of the following polyhedral
sets X:
• X = {x ∈ R2 : 0 ≤ x1, x2 ≤ 1} Rec(X) = {0}
• X = Rn+ = {x ∈ Rn : x ≥ 0} Rec(X) = R+

n

• X = {x ∈ Rn : x1 = 0}
Rec(X) = X, as for every linear subspace or cone!

• X =

x ∈ R3 :
−1 ≤ x1 + x2 ≤ 1,
−1 ≤ x2 + x3 ≤ 1,
−1 ≤ x3 + x1 ≤ 1


Rec(X) = {0} (X is bounded!)

• X =

x ∈ R4 :

−1 ≤ x1 + x2 ≤ 1,
−1 ≤ x2 + x3 ≤ 1,
−1 ≤ x3 + x4 ≤ 1,
−1 ≤ x4 + x1 ≤ 1


Rec(X) = R · [1;−1; 1;−1]

Recessive Subspace of a Polyhedral Set

X = {x ∈ Rn : Ax ≤ b} is nonempty

♠ Observation: Directions d of lines contained in X are ex-
actly the vectors from the recessive subspace

L = KerA := {d : Ad = 0} = Rec(X) ∩ [−Rec(X)]

of X, and X = X + KerA. In particular,

X = X̄ + KerA,
X̄ = X ∩ [KerA]⊥ = {x ∈ Rn : Ax ≤ b, x ∈ [KerA]⊥}

Note: X̄ is polyhedral and does not contain lines.

X =

{
x :

x1 −2x2 ≤ −1
−x1 +2x2 ≤ 2

}

Thin red line: L = KerA = R · [2; 1]

Black line: L⊥

Bold red segment: X̄ = X ∩ L⊥

Pointed Polyhedral Cones & Extreme Rays
K = {x : Ax ≤ 0}

♣ Definition. Polyhedral cone K is called pointed, if it does
not contain lines. Equivalently: K is pointed iffK∩{−K} =

{0}.
Equivalently: K is pointed iff KerA = {0}.
♣ Definition An extreme ray of K is a face of K which is a
nontrivial ray (i.e., the set R+d = {td : t ≥ 0} associated
with a nonzero vector d, called a generator of the ray).
♠ Geometric characterization:A vector d ∈ K is a gener-
ator of an extreme ray of K (in short: d is an extreme

direction of K) iff d is nonzero and whenever d is a sum of
two vectors from K, both vectors are nonnegative multiples of
d:

d = d1 + d2, d1, d2 ∈ K ⇒
∃t1 ≥ 0, t2 ≥ 0 : d1 = t1d, d2 = t2d.

Example: K = Rn+. This cone is pointed, and its ex-

treme directions are positive multiples of basic orths

ei. There are n extreme rays — nonnegative rays of

coordinate axes Ri = R+ · ei, 1 ≤ i ≤ n.

♠ Observation: d is an extreme direction of K iff some

(and then – all) positive multiples of d are extreme di-

rections of K.

K = {x ∈ Rn : Ax ≤ 0}
=

{
x ∈ Rn : aTi x ≤ 0, i ∈ I = {1, ...,m}

}
♠ Algebraic characterization of extreme directions: A
vector d ∈ K is an extreme direction of K iff d is nonzero
and among the homogeneous inequalities aTi x ≤ 0 which are
active at d (i.e., are satisfied at d as equalities) there are
n− 1 inequalities with linearly independent ai’s.

Proof:
Let 0 6= d ∈ K, I = {i ∈ I : aTi d = 0}.
• Let the set {ai : i ∈ I} contain n − 1 linearly inde-

pendent vectors, say, a1, ..., an−1. Let us prove that

then d is an extreme direction of K. Indeed, the set

L = {x : aTi x = 0, 1 ≤ i ≤ n− 1} ⊃ KI
is a one-dimensional linear subspace in Rn. Since

0 6= d ∈ L, we have L = Rd. Since d ∈ K, the ray

R+d is contained in KI: R+d ⊂ KI. Since KI ⊂ L, all

vectors from KI are real multiples of d. Since K is

pointed, no negative multiples of d belong to KI.

⇒ KI = R+d and d 6= 0, i.e., KI is an extreme ray

of K, and d is a generator of this ray. �

Proof (continued)
• Let d be an extreme direction of K, that is, R+d is

a face of K, and let us prove that the set {ai : i ∈ I}
contains n− 1 linearly independent vectors.

Assuming the opposite, the solution set L of the ho-

mogeneous system of linear equations

aTi x = 0, i ∈ I
is of dimension ≥ 2 and thus contains a vector h which

is not proportional to d. When i 6∈ I, we have aTi d < 0

and thus aTi (d+ th) ≤ 0 when |t| is small enough.

⇒ ∃t̄ > 0 : |t| ≤ t̄⇒ aTi [d+ th] ≤ 0 ∀i ∈ I
⇒ the face KI of K (which is the smallest face of K

containing d)contains two non-proportional nonzero vectors
d, d+ t̄h, and thus is strictly larger than R+d.

⇒ R+d is not a face of K, which is a desired contra-

diction. �

What We Should Know After the Snow

♣ Consider a nonempty polyhedral set
X = {x ∈ Rn : aTi x ≤ bi, 1 ≤ i ≤ m}

A. Faces of X are nonempty sets which we can get by con-
verting some of inequalities specifying X into equalities:

XI = {x : aTi x = bi, i ∈ I, aTi x ≤ bi, i 6∈ I}

B. Extreme points (a.k.a. vertices) of X are faces which
are singletons.

B.1. Geometric characterization: A point v ∈ X is a
vertex iff it is not a midpoint of a nontrivial segment in X:

v ± h ∈ X ⇒ h = 0
B.2. Algebraic characterization: A point v ∈ X is a

vertex iff among the constraints aTi x ≤ bi which are active at
v (i.e., are satisfied at v as equalities) there are n linearly
independent (i.e., with linearly independent ai’s).
⇒ The set Ext(X) of extreme points of X is finite.
• Example: When k ≤ n is a positive integer, the

extreme points of the set
X = {x ∈ Rn : 0 ≤ xi ≤ 1∀i,

∑
i xi = k}

are exactly the 0/1 vectors from X (i.e., vectors with
k entries equal to 1 and remaining entries equal to
0).
C. Fact: Every nonempty and bounded polyhedral set X is
the convex hull of a finite set.
We shall see that the finite set in question can be taken as
the set Ext(X) of extreme points of X.

♣ Consider a polyhedral cone
K = {x ∈ Rn : aTi x ≤ 0, 1 ≤ i ≤ m}

D. Extreme rays of K are faces KI of K which are one-
dimensional rays:

KI = {tr : t ≥ 0} with r 6= 0.
Generators of extreme rays (a.k.a. extreme directions of
K) are nonzero vectors from the extreme rays. All gen-
erators of a particular extreme ray KI are positive
multiples of each other, and for such a generator r,
KI = {tr : t ≥ 0}.

D.1. Geometric characterization: A direction r ∈ K is
extreme iff r 6= 0 and in any representation of r as the sum
r = d1 + d2 of two vectors from K both terms d1, d2 are
nonnegative multiples of r.

D.2. Algebraic characterization: A direction r ∈ K is
extreme iff r 6= 0 and among the constraints aTi x ≤ 0 which
are active at r there are n−1 linearly independent (i.e., with
linearly independent ai’s).
⇒ The number of extreme rays of a polyhedral cone is finite.
• Example: The extreme rays of Rn+ are the non-

negative rays of the coordinate axes. Extreme direc-
tions of Rn are vectors with one coordinate positive
and the remaining coordinates equal to 0.
E. Fact: Every polyhedral cone is the conic hull of a finite set:

K = Cone {r1, ..., rN} = {x =
∑
i λiri : λ ≥ 0} .

We shall see that if K does not contain lines and is non-
trivial (i.e., K 6= {0}) one can take, as ri, generators of
extreme rays of K.

K = {x ∈ Rn : Ax ≤ 0}.

Observations:
• If K possesses extreme rays, then K is nontrivial (K 6=
{0}) and pointed (K ∩ [−K] = {0}).

In fact, the inverse is also true.

• The set of extreme rays of K is finite.
Indeed, there are no more extreme rays than faces.

Base of a Cone
K = {x ∈ Rn : Ax ≤ 0}.

♣ Definition. A set B of the form

B = {x ∈ K : fTx = 1} (∗)

is called a base of K, if it is nonempty and intersects with
every (nontrivial) ray in K:

∀0 6= d ∈ K ∃!t ≥ 0 : td ∈ B.
Example: The set

∆n = {x ∈ Rn+ :
n∑
i=1

xi = 1}

is a base of Rn+.

♠ Observation: Set (∗) is a base of K iff K 6= {0} and f
makes strictly positive inner products with all nonzero vectors
from K:

0 6= x ∈ K ⇒ fTx > 0.

3D cone K and its base B (pentagon)

Note: extreme rays of K are generated by extreme points of B

♠ Facts:
• K possesses a base iff K 6= {0} and K is pointed.
• K possesses a base B iff K possesses extreme rays, and
there is one-to-one correspondence between extreme rays of
K and extreme points of B: extreme directions of K are ex-
actly positive multiples of extreme points of B.
• The recessive cone of a base B of K is trivial: Rec(B) =

{0}.

Towards the Main Theorem:
First Step

Theorem. Let

X = {x ∈ Rn : Ax ≤ b}

be a nonempty polyhedral set which does not contain lines.
Then
(i) The set V = Ext{X} of extreme points of X is nonempty
and finite:

V = {v1, ..., vN}

(ii) The set R of extreme rays of the recessive cone Rec(X)

of X is finite:

R = {r1, ..., rM}

(iii) One has

X = Conv(V) + Cone (R)

=

x =
∑N
i=1 λivi +

∑M
j=1 µjrj :

λi ≥ 0∀i∑N
i=1 λi = 1

µj ≥ 0∀j



Main Lemma: Let

X = {x ∈ Rn : aTi x ≤ bi, 1 ≤ i ≤ m}

be a nonempty polyhedral set which does not contain lines.
Then the set V = Ext{X} of extreme points of X is
nonempty and finite, and

X = Conv(V) + Rec(X).

Note: We already know that Ext(X) is finite.

Proof: Induction in m = dimX.
Base m = 0 is evident: here

X = {a}, V = {a}, Rec(X) = {0}.
Inductive step m ⇒ m + 1: Let the statement be true

for polyhedral sets of dimension ≤ m, and let dimX =

m+ 1, M = Aff(X), L be the linear subspace parallel

to M.

• Take a point x̄ ∈ X and a nonzero direction e ∈ L
(it exists, since dimM = dimL = m+ 1 > 0).

• Since X does not contain lines, either e, or −e, or

both are not recessive directions of X. Swapping, if

necessary, e and −e, assume that −e 6∈ Rec(X).

♠ Case A: e, in contrast to −e, is a recessive direction of
X.
• Let us move from x̄ along the direction −e.
— since e ∈ L, we all the time will stay in Aff(X)

— since −e is not a recessive direction of X, eventu-

ally we will be about to leave X. When it happens, our
position x′ will belong to a proper face X ′ of X:

X

��
�*ex̄

x′

v

X ′↘
v ∈ Ext(X ′) ⊂ Ext(X)
x′ ∈ v + Rec(X ′) ⊂ v + Rec(X)
⇒ for some λ > 0
x̄ = v︸︷︷︸

∈ Ext(X)

+ [x′ − v] + λe︸ ︷︷ ︸
∈ Rec(X)

• Dimension of a proper face X ′ of X is less than

dimX

⇒ We can apply inductive hypothesis to X ′ and x′ to

conclude that Ext(X ′) 6= ∅, whence Ext(X) ⊃ Ext(X ′)
also is nonempty. Besides this,

x′ ∈ Conv(Ext(X ′)) + Rec(X ′) ⊂ Conv(Ext(X)) + Rec(X)

⇒ For some λ ≥ 0,

x̄ = x′+
∈ Rec(X)︷︸︸︷
λe

∈ [Conv(Ext(X)) + Rec(X)] + Rec(X)
= Conv(Ext(X)) + Rec(X).

♠ Case B: e, same as −e, is not a recessive direction of
X.
• As in Case A, we move from x̄ along the direction

−e until hitting a proper face X ′ of X at a point x′.
• Since e is not a recessive direction of X, when moving

from x̄ along the direction e, we eventually hit a proper

face X ′′ of X at a point x′′.

X

@R
e

x̄
x′

x′′
v

w

X ′↘

↖X ′′

v ∈ Ext(X ′) ⊂ Ext(X)
w ∈ Ext(X ′′) ⊂ Ext(X)
x′ ∈ v + Rec(X ′) ⊂ v + Rec(X)
x′′ ∈ w + Rec(X ′′) ⊂ w + Rec(X)
⇒ x̄ ∈ Conv{x′, x′′} ⊂ Conv{v, w}+ Rec(X)

⊂ Conv(Ext(X)) + Rec(X)

• Same as above, Ext(X) ⊂ Ext(X ′) 6= ∅,
x′ ∈ Conv(Ext(X)) + Rec(X)

and

x′′ ∈ Conv(Ext(X)) + Rec(X)

• Since x̄ is a convex combination of x′, x′′ and

Conv(Ext(X)) + Rec(X) is a convex set, we get

x̄ ∈ Conv(Ext(X)) + Rec(X)

♠ Summary: We have proved that Ext(X) is nonempty

and finite, and that every point x̄ ∈ X belongs to

Conv(Ext(X)) + Rec(X),

that is,

X ⊂ Conv(Ext(X)) + Rec(X).

Since Conv(Ext(X)) ⊂ X and X + Rec(X) = X, we

have also

X ⊃ Conv(Ext(X)) + Rec(X)

⇒ X = Conv(Ext(X)) + Rec(X).

Induction is complete. �

Important observation: Our reasoning is constructive: it

gives rise to an algorithm which, given a description

X = {x : Ax ≤ b} of a polyhedral set, not containing

lines, in Rn and a point x ∈ X, builds a representation

of x as a convex combination of extreme points of

X plus a recessive direction of X. “As it is” the

algorithm induced by the reasoning is not efficient:

the number of arithmetic operations needed to find a

desired representation is, in general, not polynomial in

the sizes m,n of A. The algorithm, however, can be

converted to an efficient algorithm, where the number

of a.o. is polynomial in m,n.

Corollaries of Main Lemma:
A. Let X be a nonempty polyhedral set which does not

contain lines. If X is has a trivial recessive cone, then
X = Conv(Ext(X)).

B. IfK is a nontrivial pointed polyhedral cone, then the set
of extreme rays of K is nonempty and finite, and if r1, ..., rM
are generators of the extreme rays of K, then

K = Cone {r1, ..., rM}.
Proof of B: Let B be a base of K, so that B is a

nonempty polyhedral set with Rec(B) = {0}. By A,

Ext(B) is nonempty, finite and B = Conv(Ext(B)),

whence K = Cone (Ext(B)) (since every nontrivial ray

in K intersects B). It remains to note that a ray in

K is extreme iff its intersection with B is an extreme

point of B.

♠ Augmenting Main Lemma with Corollary B, we get

the Theorem.

♣We have seen that if X is a nonempty polyhedral set

not containing lines, then X admits a representation

X = Conv(V) + Cone {R} (∗)

where

• V = V∗ is the nonempty finite set of all extreme

points of X;

• R = R∗ is a finite set comprised of generators of

the extreme rays of Rec(X) (this set can be empty).

♠ It is easily seen that this representation is “min-

imal:” Whenever X is represented in the form of (∗) with
finite sets V , R,
— V contains all extreme points of X
— R contains generators of all extreme rays of Rec(X).

Structure of a Polyhedral Set

Main Theorem (i) Every nonempty polyhedral set X ⊂ Rn

can be represented as

X = Conv(V) + Cone (R) (∗)

where V ⊂ Rn is a nonempty finite set, and R ⊂ Rn is a finite
set.
(ii) Vice versa, if a set X given by representation (∗) with
a nonempty finite set V and finite set R, X is a nonempty
polyhedral set.
Proof. (i): We know that (i) holds true when X does

not contain lines. We know also that every nonempty

polyhedral set X can be represented as

X = X̂ + L, L = Lin{f1, ..., fk},

where X̂ is a nonempty polyhedral set which does not

contain lines. In particular,

X̂ = Conv{v1, ..., vN}+ Cone {r1, ..., rM}
⇒ X = Conv{v1, ..., vN}

+Cone {r1, ..., rM , f1,−f1, ..., fK,−fK}

Note: In every representation (∗) of X, Cone (R) =

Rec(X).

(ii): Let

X = Conv{v1, ..., vN}+ Cone {r1, .., rM} ⊂ Rn
[N ≥ 1,M ≥ 0]

(∗)

To prove that X is a polyhedral set, note that (∗)
induces a polyhedral representation of X:

X = {x : ∃λ, µ :


x =

∑
i λivi +

∑
j µjrj

λ ≥ 0,
∑
i λi = 1

µ ≥ 0
}

and every polyhedrally representable set is polyhedral.

�

Quiz: Let X be a nonempty polyhedral set, and Y be

its image under affine mapping x 7→ y = Ax+ b.

What are the relations between extreme points of X

and Y ?

• Is it always true that the image y = Ax + b of an extreme
point x of X is an extreme point of Y ?
• Is it always true that if y is an extreme point of Y andX does
not contain lines, then y = Ax + b for some extreme point x
of X?
• Is it always true that if y is an extreme point of Y , then
y = Ax+ b for some x ∈ Ext(X) ?

Quiz: Let X be a nonempty polyhedral set, and Y be its image

under affine mapping x 7→ y = Ax+ b.

• Is it always true that the image y = Ax+b of x ∈ Ext(X) is an extreme
point of Y ?
No!

• Is it always true that if y is an extreme point of Y and X does not contain
lines, then y = Ax+ b for some x ∈ Ext(X) ?
Yes! Indeed, X does not contain lines

⇒ X = Conv{v1, ..., vN} + Cone {r1, ..., rN} with v1, ..., vN being

extreme points of X

⇒ Y = {Conv{Av1 + b, ..., AvN + b}+ Cone {Ar1, ..., ArM}
— if Y contains lines, it has no extreme points, and the claim is

true by trivial reasons.

— if Y does not contain lines, then Y = Conv(Ext(Y))+Rec(Y),

and in this representation, Ext(Y) is the smallest finite set V such

that Y = Conv(V) + Rec(Y)

⇒ {Av1 + b, ..., AvN + b} contains Ext(Y), as claimed.

• Is it always true that if y is an extreme point of Y , then y = Ax + b for
some extreme point x of X?
No! The 2D vertical strip X = {[x1 : x2] : −1 ≤ x1 ≤ 1} contains

lines and thus has no extreme points. However, the projection Y

of X onto the x1-axis is the segment [−1,1] which has extreme

points.

Immediate Corollaries

Corollary I. A nonempty polyhedral setX possesses extreme
points iff X does not contain lines. In addition, the set of ex-
treme points of X is finite.
Indeed, if X does not contain lines, X has extreme

points and their number is finite by Main Lemma.

When X contains lines, every point of X belongs to

a line contained in X, and thus X has no extreme

points.

Corollary II. (i) A nonempty polyhedral set X is bounded iff
its recessive cone is trivial: Rec(X) = {0}, and in this case
X is the convex hull of the (nonempty and finite) set of its ex-
treme points:

∅ 6= Ext(X) is finite and X = Conv(Ext(X)).

(ii) The convex hull of a nonempty finite set V is a bounded
polyhedral set, and Ext(Conv(X)) ⊂ V .
Corollary III. (i) A cone K is polyhedral iff it is the conic hull
of a finite set:

K = {x ∈ Rn : Bx ≤ 0}
⇔ ∃R = {r1, ..., rM} ⊂ Rn : K = Cone (R)

Note: this we already knew.

(ii) When K is a nontrivial and pointed polyhedral cone, one
can take as R the set of generators of the extreme rays of K.

Proof of Corollary II:
(i): If Rec(X) = {0}, then X does not contain lines

and therefore ∅ 6= Ext(X) is finite and

X = Conv(Ext(X)) + Rec(X)
= Conv(Ext(X)) + {0}
= Conv(Ext(X)),

(∗)

and thus X is bounded as the convex hull of a finite

set.

Vice versa, if X is bounded, then X clearly does not

contain nontrivial rays and thus Rec(X) = {0}.
(ii): By Main Theorem (ii),

X := Conv({v1, ..., vm})
is a polyhedral set, and this set clearly is bounded. Be-

sides this, X = Conv(V) always implies that Ext(X) ⊂
V . �

Application examples:
• Every vector x from the set

{x ∈ Rn : 0 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n

i=1
xi ≤ k}

(k is an integer) is a convex combination of Boolean vectors
from this set.
• Every double-stochastic matrix is a convex combination of
permutation matrices.

Indeed, both sets clearly are bounded ⇒ they are con-

vex hulls of their extreme points.

Besides, we know that the extreme points of the first

set are exactly Boolean vectors from this set, and the

extreme points of the second set are exactly n × n

permutation matrices.

Applications in LO

♣ Theorem. Consider a LO program
Opt = max

x

{
cTx : Ax ≤ b

}
,

and let the feasible set X = {x : Ax ≤ b} be nonempty and
thus representable as

X = Conv{v1, ..., vN}+ Cone {r1, ..., rM}
[N ≥ 1,M ≥ 0]

(∗)

Then
(i) The program is solvable iff c has nonpositive inner prod-

ucts with all rj, 1 ≤ j ≤M .
(ii) If X does not contain lines and the program is bounded,

then among its optimal solutions there are extreme points of
X.
Indeed, by (∗) we have

Opt = sup
λ,µ

∑i λicTvi +
∑
j

µjcTrj :
λi ≥ 0∑

i λi = 1
µj ≥ 0


⇒ Opt is finite iff cT rj ≤ 0 for all j, in which case

Opt = max
i
cTvi,

i.e., the best (with the largest cTvi) of the points v1, ..., vN is
an optimal solution.
It remains to note that when X does not contain lines,

we can set {vi}Ni=1 = Ext(X).

Application to Knapsack problem. A knapsack can store k
items. You have n ≥ k items, j-th of value cj ≥ 0. How to
select items to be placed into the knapsack in order to get the
most valuable selection?
Solution: Assuming for a moment that we can put to

the knapsack fractions of items, let xj be the fraction

of item j we put to the knapsack. The most valuable

selection then is given by an optimal solution to the

LO program

max
x

∑
j

cjxj : 0 ≤ xj ≤ 1,
∑
j

xj ≤ k


The feasible set is nonempty, polyhedral and bounded,

and all extreme points are Boolean vectors from this

set

⇒ There is a Boolean optimal solution.

In fact, the optimal solution is evident: we should put

to the knapsack k most valuable of the items.

Application to Assignment problem. There are n jobs and
n workers. Every job takes one man-hour. The profit of as-
signing worker i with job j is cij. How to assign workers with
jobs in such a way that every worker gets exactly one job, ev-
ery job is carried out by exactly one worker, and the total profit
of the assignment is as large as possible?
Solution: Assuming for a moment that a worker can

distribute his time between several jobs and denoting

xij the fraction of activity of worker i spent on job j,

we get a relaxed problem

max
x

∑
i,j

cijxij : xij ≥ 0,
∑
j

xij = 1 ∀i,
∑
i

xij = 1 ∀j


The feasible set is polyhedral, nonempty and bounded

⇒ Program is solvable, and among the optimal solu-

tions there are extreme points of the set of double

stochastic matrices, i.e., permutation matrices

⇒ Relaxation is exact!

Systems of Linear Inequalities and Duality

♣ We still do not know how to answer some most

basic questions about polyhedral sets, e.g.:

♠ How to recognize that a polyhedral set
X = {x ∈ Rn : Ax ≤ b}

is/is not empty?
♠ How to recognize that a polyhedral set

X = {x ∈ Rn : Ax ≤ b}
is/is not bounded?
♠ How to recognize that two polyhedral sets

X = {x ∈ Rn : Ax ≤ b} and X ′ = {x : A′x ≤ b′}
are/are not distinct?
♠ How to recognize that a given LO program is feasible/bound-
ed/solvable?
♠
Our current goal is to find answers to these and sim-

ilar questions, and these answers come from Linear
Programming Duality Theorem which is the second (or

even the first ?) main theoretical result in LO.

Theorem on Alternative

♣ Consider a system of m strict and nonstrict linear

inequalities in variables x ∈ Rn:

aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

• ai ∈ Rn, bi ∈ R, 1 ≤ i ≤ m,

• I ⊂ {1, ...,m}, I = {1, ...,m}\I.

Note: (S) is a universal form of a finite system of lin-

ear inequalities in n variables.

♣ Main questions on (S) [operational form]:
• How to find a solution to the system if one exists?
• How to find out that (S) is infeasible?

♠ Main questions on (S) [descriptive form]:
• How to certify that (S) is solvable?
• How to certify that (S) is infeasible?

aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

♠ The simplest certificate for solvability of (S) is a
solution: plug a candidate certificate into the system

and check that the inequalities are satisfied.

Example: The vector x̄ = [10; 10; 10] is a solvability

certificate for the system

−x1 −x2 −x3 < −29
x1 +x2 ≤ 20

x2 +x3 ≤ 20
x1 +x3 ≤ 20

– when plugging it into the system, we get valid nu-

merical inequalities.

But: How to certify that (S) has no solution? E.g., how to

certify that the system

−x1 −x2 −x3 < −30
x1 +x2 ≤ 20

x2 +x3 ≤ 20
x1 +x3 ≤ 20

has no solutions???

aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

♣ How to certify that (S) has no solutions?
♠ A recipe: Take a weighted sum, with nonnegative weights,
of the inequalities from the system, thus getting strict or non-
strict scalar linear inequality which, due its origin, is a conse-
quence of the system – it must be satisfied at every solution
to (S). If the resulting inequality has no solutions at all, then
(S) is unsolvable.

Example: To certify that the system

2× −x1 −x2 −x3 < −30
1× x1 +x2 ≤ 20
1× x2 +x3 ≤ 20
1× x1 +x3 ≤ 20

has no solutions, take the weighted sum of the in-

equalities with the weights marked in red, thus arriving

at the inequality

0 · x1 + 0 · x2 + 0 · x3 < 0.

This is a contradictory inequality which is a conse-

quence of the system

⇒ weights λ = [2; 1; 1; 1] certify insolvability.

aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

A recipe for certifying insolvability:

• Assign inequalities of (S) with weights λi ≥ 0 and sum
them up, thus arriving at the inequality

[
∑m
i=1 λiai]

Tx ?
∑m
i=1 λibi[

? = ” < ” when
∑
i∈I λi > 0

? = ” ≤ ” when
∑
i∈I λi = 0

]
(!)

• If (!) has no solutions, (S) is insolvable.
♠ Observation: Inequality (!) has no solution iff∑m

i=1 λiai = 0 and, in addition,
•
∑m
i=1 λibi≤0 when

∑
i∈I λi > 0

•
∑m
i=1 λibi<0 when

∑
i∈I λi = 0

♣ We have arrived at

Proposition: Given system (S), let us associate with it two
systems of linear inequalities in variables λ1, ..., λm:

(I) :


λi ≥ 0 ∀i∑m
i=1 λiai = 0∑m
i=1 λibi ≤ 0∑
i∈I λi > 0

, (II) :


λi ≥ 0 ∀i∑m
i=1 λiai = 0∑m
i=1 λibi < 0

λi = 0, i ∈ I
If at least one of the systems (I), (II) has a solution, then (S)

has no solutions.

General Theorem on Alternative: Consider, along with
system of linear inequalities

aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

in variables x ∈ Rn, two systems of linear inequalities in vari-
ables λ ∈ Rm:

(I) :


λi ≥ 0∀i∑m
i=1 λiai = 0∑m
i=1 λibi ≤ 0∑
i∈I λi > 0

, (II) :


λi ≥ 0∀i∑m
i=1 λiai = 0∑m
i=1 λibi < 0

λi = 0, i ∈ I
System (S) has no solutions if and only if at least one of the
systems (I), (II) has a solution.
Remark: Strict inequalities in (S) in fact do not par-

ticipate in (II). As a result, (II) has a solution iff the
“nonstrict” subsystem

aTi x ≤ bi, i ∈ I (S ′)
of (S) has no solutions.
Remark: GTA says that a finite system of linear in-

equalities has no solutions if and only if (one of two)

other systems of linear inequalities has a solution.

Such a solution can be considered as a certificate of

insolvability of (S): (S) is insolvable if and only if such

an insolvability certificate exists.

Proof of GTA

aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

(I) :


λi ≥ 0∀i∑m
i=1 λiai = 0∑m
i=1 λibi ≤ 0∑
i∈I λi > 0

, (II) :


λi ≥ 0∀i∑m
i=1 λiai = 0∑m
i=1 λibi < 0

λi = 0, i ∈ I
• In one direction: “If (I) or (II) has a solution, then

(S) has no solutions” the statement is already proved.

• Now assume that (S) has no solutions, and let us

prove that one of the systems (I), (II) has a solution.

Consider the system of homogeneous linear inequali-

ties in variables x, t, ε:
aTi x −bit +ε ≤ 0, i ∈ I
aTi x −bit ≤ 0, i ∈ I

−t +ε ≤ 0
−ε < 0

We claim that this system has no solutions. Indeed, as-

suming that the system has a solution x̄, t̄, ε̄, we have

ε̄ > 0, whence

t̄ > 0 & aTi x̄ < bit̄, i ∈ I & aTi x̄ ≤ bit̄ ≤ 0, i ∈ I,

⇒ x = x̄/t̄ is well defined and solves unsolvable system

(S), which is impossible.

Proof of GTA (continued)
Situation: System

aTi x −bit +ε ≤ 0, i ∈ I
aTi x −bit ≤ 0, i ∈ I

−t +ε ≤ 0
−ε < 0

has no solutions, or, equivalently, the homogeneous

linear inequality

−ε ≥ 0

is a consequence of the system of homogeneous linear

inequalities
−aTi x +bit −ε ≥ 0, i ∈ I
−aTi x +bit ≥ 0 i ∈ I

t −ε ≥ 0
in variables x, t, ε. By Homogeneous Farkas Lemma,

there exist µi ≥ 0, 1 ≤ i ≤ m, µ ≥ 0 such that
m∑
i=1

µiai = 0 &
m∑
i=1

µibi + µ = 0 &
∑
i∈I

µi + µ = 1

When µ > 0, setting λi = µi/µ, we get

λ ≥ 0,
∑m
i=1 λiai = 0,

∑m
i=1 λibi = −1,

⇒ when
∑
i∈I λi > 0, λ solves (I), otherwise λ solves

(II).

When µ = 0, setting λi = µi, we get

λ ≥ 0,
∑
i λiai = 0,

∑
i λibi = 0,

∑
i∈I λi = 1,

and λ solves (I). �

♣ GTA is equivalent to the following

Principle: A finite system of linear inequalities has no solution
iff one can get, as a legitimate (i.e., compatible with the

common rules of operating with inequalities) weighted
sum of inequalities from the system, a contradictory inequality,
i.e., either inequality 0Tx ≤ −1, or the inequality 0Tx < 0.
The advantage of this Principle is that it does not

require converting the system into the standard form.

For example, to see that the system of linear con-

straints

x1 +2x2 < 5
2x1 +3x2 ≥ 3
3x1 +4x2 = 1

has no solutions, it suffices to take the weighted sum

of these constraints with the weights −1,2,−1, thus

arriving at the contradictory inequality

0 · x1 + 0 · x2 > 0

♣ Specifying the system in question and applying

GTA, we can obtain various particular cases of GTA,

e.g., as follows:

Inhomogeneous Farkas Lemma: A nonstrict linear inequal-
ity

aTx ≤ α (!)

is a consequence of a solvable system of nonstrict linear in-
equalities

aTi x ≤ bi, 1 ≤ i ≤ m (S)

if and only if (!) can be obtained by taking weighted sum, with
nonnegative coefficients, of the inequalities from the system
and the identically true inequality 0Tx ≤ 1: (S) implies (!)

iff there exist nonnegative weights λ0, λ1, ..., λm such

that

λ0 · [1− 0Tx] +
∑m
i=1 λi[bi − a

T
i x] ≡ α− aTx,

or, which is the same, iff there exist nonnegative

λ0, λ1, ..., λm such that
m∑
i=1

λiai = a,
∑m

=1 λibi + λ0 = α

or, which again is the same, iff there exist nonnegative
λ1, ..., λm such that∑m

i=1 λiai = a,
∑m
i=1 λibi ≤ α.

Proof of Inhomogeneous Farkas Lemma aTi x ≤ bi, 1 ≤ i ≤ m (S)

aTx ≤ α (!)

• If (!) can be obtained as a weighted sum, with non-

negative coefficients, of the inequalities from (S) and

the inequality 0Tx ≤ 1, then (!) clearly is a corollary

of (S) independently of whether (S) is or is not solv-

able.

Now let (S) be solvable and (!) be a consequence of

(S); we want to prove that (!) is a combination, with

nonnegative weights, of the constraints from (S) and

the constraint 0Tx ≤ 1. Since (!) is a consequence of

(S), the system

−aTx < −α, aTi x ≤ bi 1 ≤ i ≤ m (M)

has no solutions, whence, by GTA, a legitimate

weighted sum of the inequalities from the system is

contradictory, that is, there exist µ ≥ 0, λi ≥ 0:

−µa+
∑m
i=1 λiai = 0, 0 ??

∑m
i=1 λibi − µα

?? =

{
” ≥ ”, µ > 0
” > ”, µ = 0

(!!)

Proof of Inhomogeneous Farkas Lemma (continued)
Situation: the system

−aTx < −α, aTi x ≤ bi 1 ≤ i ≤ m (M)

has no solutions, whence there exist µ ≥ 0, λ ≥ 0 such

that

−µa+
∑m
i=1 λiai = 0, 0 ??

∑m
i=1 λibi − µα

?? =

{
” ≥ ”, µ > 0
” > ”, µ = 0

(!!)

Claim: µ > 0. Indeed, otherwise the inequality

−aTx < −α does not participate in the weighted sum

of the constraints from (M) which is a contradictory

inequality

⇒ (S) can be led to a contradiction by taking weighted

sum of the constraints

⇒ (S) is infeasible, which is a contradiction with the

premise of Inhomogeneous Farkas Lemma.

• When µ > 0, setting λi = µi/µ, we get from (!!)

∑
i

λiai = a&
m∑
i=1

λibi − α ≤ 0. �

Why GTA is a deep fact?

♣ Consider the system of four linear inequalities in

variables u, v:

−1 ≤ u ≤ 1, −1 ≤ v ≤ 1

and let us derive its consequence as follows:

−1 ≤ u ≤ 1, −1 ≤ v ≤ 1
⇒ u2 ≤ 1, v2 ≤ 1
⇒ u2 + v2 ≤ 2

⇒ u+ v = 1 · u+ 1 · v ≤
√

12 + 12
√
u2 + v2

⇒ u+ v ≤
√

2
√

2 = 2

This derivation is of a nonstrict linear inequality which

is a consequence of a system of a solvable system of

nonstrict linear inequalities is “highly nonlinear.” A

statement which says that every derivation of this type

can be replaced by just taking weighted sum of the

original inequalities and the trivial inequality 0Tx ≤ 1

is a deep statement indeed!

♣ For every system S of inequalities, linear or nonlin-

ear alike, taking weighted sums of inequalities of the

system and trivial – identically true – inequalities al-

ways results in a consequence of S
⇒ In one direction, GTA always is true.
However the other direction in GTA heavily exploits

the fact that the inequalities of the original system

and a consequence we are looking for are linear. Al-

ready for quadratic inequalities, the statement similar

to GTA fails to be true. For example, the quadratic

inequality

x2 ≤ 1 (!)

is a consequence of the system of linear (and thus

quadratic) inequalities

−1 ≤ x ≤ 1 (∗)

Nevertheless, (!) cannot be represented as a weighted

sum of the inequalities from (∗) and identically true

linear and quadratic inequalities, like

0 · x ≤ 1, x2 ≥ 0, x2 − 2x+ 1 ≥ 0, ...

Answering Questions

♣ How to certify that a polyhedral set
X = {x ∈ Rn : Ax ≤ b}

is empty/nonempty?
♠ A certificate for X to be nonempty is a solution x̄ to

the system Ax ≤ b.
♠ A certificate for X to be empty is a solution λ̄ to

the system λ ≥ 0, ATλ = 0, bTλ < 0.

• In both cases, X possesses the property in question

iff it can be certified as explained above (“the certifi-

cation scheme is complete”).

Note: All certification schemes to follow are complete!

Examples:
• The vector x = [1; ...; 1] ∈ Rn certifies that the poly-

hedral set

X = {x ∈ Rn : x1 + x2 ≤ 2, x2 + x3 ≤ 2, ..., xn + x1 ≤ 2,
−x1 − ...− xn ≤ −n}

is nonempty.

• The vector λ = [1; 1; ...; 1; 2] ∈ Rn+1 ≥ 0 certifies

that the polyhedral set

X = {x ∈ Rn : x1 + x2 ≤ 2, x2 + x3 ≤ 2, ..., xn + x1 ≤ 2,
−x1 − ...− xn ≤ −n− 0.01}

is empty. Indeed, summing up the n + 1 constraints

defining X = {x : Ax ≤ b} with weights λi, we get the

contradictory inequality

0 ≡ 2 (x1 + ...+ xn)− 2 [x1 + ...+ xn]︸ ︷︷ ︸
[ATλ]Tx≡0

≤ 2n− 2(n+ 0.01) = −0.02︸ ︷︷ ︸
bTλ=−0.02<0

♣ How to certify that a linear inequality cTx ≤ d is violated
somewhere on a polyhedral set

X = {x ∈ Rn : Ax ≤ b},
that is, the inequality is not a consequence of the system
Ax ≤ b?
A certificate is x̄ such that Ax̄ ≤ b and cT x̄ > d.

♣ How to certify that a linear inequality cTx ≤ d is satisfied
everywhere on a polyhedral set

X = {x ∈ Rn : Ax ≤ b},
that is, the inequality is a consequence of the system Ax ≤ b?
♠ The situation in question arises in two cases:

A. X is empty, the target inequality is an arbitrary

one

B. X is nonempty, the target inequality is a conse-

quence of the system Ax ≤ b
Consequently, to certify the fact in question means

— either to certify that X is empty, the certificate

being λ such that λ ≥ 0, ATλ = 0, bTλ < 0,

— or to certify that X is nonempty by pointing out a

solution x̄ to the system Ax ≤ b and to certify the fact

that cTx ≤ d is a consequence of the solvable system

Ax ≤ b by pointing out a λ which satisfies the system

λ ≥ 0, ATλ = c, bTλ ≤ d (we have used Inhomogeneous

Farkas Lemma).

Note: In the second case, we can omit the necessity to

certify that X 6= ∅, since the existence of λ satisfying

λ ≥ 0, ATλ = c, bTλ ≤ d always is sufficient for cTx ≤ d

to be a consequence of Ax ≤ b.

Example:
• To certify that the linear inequality

cTx := x1 + ...+ xn ≤ d := n− 0.01

is violated somewhere on the polyhedral set

X = {x ∈ Rn : x1 + x2 ≤ 2, x2 + x3 ≤ 2, ..., xn + x1 ≤ 2}
= {x : Ax ≤ b}

it suffices to note that x = [1; ...; 1] ∈ X and n =

cTx > d = n− 0.01

• To certify that the linear inequality

cTx := x1 + ...+ xn ≤ d := n

is satisfied everywhere on the above X, it suffices to

note that when taking weighted sum of inequalities

defining X, the weights being 1/2, we get the target

inequality.

Equivalently: for λ = [1/2; ...; 1/2] ∈ Rn it holds λ ≥
0, ATλ = [1; ...; 1] = c, bTλ = n ≤ d

♣ How to certify that a polyhedral set
X = {x ∈ Rn : Ax ≤ b}

does not contain a polyhedral set
Y = {x ∈ Rn : Cx ≤ d}?

• A certificate is a point x̄ such that Cx̄ ≤ d (i.e.,

x̄ ∈ Y) and x̄ does not solve the system Ax ≤ b (i.e.,

x̄ 6∈ X).

♣ How to certify that a polyhedral set
X = {x ∈ Rn : Ax ≤ b}

contains a polyhedral set
Y = {x ∈ Rn : Cx ≤ d}?

This situation arises in two cases:

— Y = ∅, X is arbitrary. To certify that this

is the case, it suffices to point out λ such that

λ ≥ 0, CTλ = 0, dTλ < 0

— Y is nonempty and every one of the m linear in-

equalities aTi x ≤ bi defining X is satisfied everywhere

on Y . To certify that this is the case, it suffices to

point out x̄, λ1, ..., λm such that

CT x̄ ≤ d & λi ≥ 0, CTλi = ai, dTλi ≤ bi, 1 ≤ i ≤ m.

Note: Same as above, we can omit the necessity to

point out x̄.

Examples.
• To certify that the set

Y = {x ∈ R3 : −2 ≤ x1 + x2 ≤ 2,−2 ≤ x2 + x3 ≤ 2,
−2 ≤ x3 + x1 ≤ 2}

is not contained in the box

X = {x ∈ R3 : |xi| ≤ 2,1 ≤ i ≤ 3},

it suffices to note that the vector x̄ = [3;−1;−1] be-

longs to Y and does not belong to X.

• To certify that the above Y is contained in

X ′ = {x ∈ R3 : |xi| ≤ 3,1 ≤ i ≤ 3}

note that summing up the 6 inequalities
x1 + x2 ≤ 2, −x1 − x2 ≤ 2, x2 + x3 ≤ 2,−x2 − x3 ≤ 2,
x3 + x1 ≤ 2,−x3 − x1 ≤ 2

defining Y with the nonnegative weights

λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 1, λ5 = 1, λ6 = 0

we get

[x1 + x2] + [−x2 − x3] + [x3 + x1] ≤ 6⇒ x1 ≤ 3

— with the nonnegative weights

λ1 = 0, λ2 = 1, λ3 = 1, λ4 = 0, λ5 = 0, λ6 = 1

we get

[−x1 − x2] + [x2 + x3] + [−x3 − x1] ≤ 6⇒ −x1 ≤ 3

The inequalities −3 ≤ x2, x3 ≤ 3 can be obtained sim-

ilarly ⇒ Y ⊂ X ′.

♣ How to certify that a polyhedral set
X = {x ∈ Rn : Ax ≤ b}

is bounded/unbounded?
• X is bounded iff for properly chosen R it holds

X ⊂ XR = {x : |xi| ≤ R, 1 ≤ i ≤ n}

To certify this means

— either to certify that X is empty, the certificate

being λ: λ ≥ 0, ATλ = 0, bTλ < 0,

— or to point out vectors R and vectors λi± such that

λi± ≥ 0, ATλi± = ±ei, bTλi± ≤ R for all i. Since R can

be chosen arbitrary large, the latter amounts to point-

ing out vectors λi± such that λi± ≥ 0, ATλi± = ±ei,
i = 1, ..., n.

• X is unbounded iff X is nonempty and the recessive

cone Rec(X) = {x : Ax ≤ 0} is nontrivial. To certify

that this is the case, it suffices to point out x̄ satisfy-

ing Ax̄ ≤ b and d̄ satisfying d̄ 6= 0, Ad̄ ≤ 0.

Note: WhenX = {x ∈ Rn : Ax ≤ b} is known to be nonempty,
its boundedness/unboundedness is independent of the partic-
ular value of b!

Examples:
• To certify that the set

X = {x ∈ R3 : −2 ≤ x1 + x2 ≤ 2,−2 ≤ x2 + x3 ≤ 2,
−2 ≤ x3 + x1 ≤ 2}

is bounded, it suffices to certify that it belongs to the

box {x ∈ R3 : |xi| ≤ 3,1 ≤ i ≤ 3}, which was already

done.

• To certify that the set

X = {x ∈ R4 : −2 ≤ x1 + x2 ≤ 2,−2 ≤ x2 + x3 ≤ 2,
−2 ≤ x3 + x4 ≤ 2,−2 ≤ x4 + x1 ≤ 2}

is unbounded, it suffices to note that the vector

x̄ = [0; 0; 0; 0] belongs to X, and the vector d̄ =

[1;−1; 1;−1] when plugged into the inequalities defin-

ing X makes the bodies of the inequalities zero and

thus is a recessive direction of X.

Certificates in LO

♣ Consider LO program in the form

Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

♠ How to certify that (P) is feasible/infeasible?
• To certify that (P) is feasible, it suffices to point

out a feasible solution x̄ to the program.

• To certify that (P) is infeasible, it suffices to point

out aggregation weights λ`, λg, λe such that

λ` ≥ 0, λg ≤ 0
PTλ` +QTλg +RTλe = 0
pTλ` + qTλg + rTλe < 0

Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

♠ How to certify that (P) is bounded/unbounded?
• (P) is bounded if either (P) is infeasible, or (P)

is feasible and there exists a such that the inequality

cTx ≤ a is consequence of the system of constraints.

Consequently, to certify that (P) is bounded, we

should

— either point out an infeasibility certificate λ` ≥
0, λg ≤ 0, λe : PTλ` + QTλg + RTλe = 0, pTλ` + qTλg +

rTλe < 0 for (P),

— or point out a feasible solution x̄ and a, λ`, λg, λe

such that

λ` ≥ 0, λg ≤ 0 & PTλ` +QTλg +RTλe = c

& pTλ` + qTλg + rTλe ≤ a
which, since a can be arbitrary, amounts to

λ` ≥ 0, λg ≤ 0, PTλ` +QTλg +RTλe = c

Note: We can skip the necessity to certify that (P) is

feasible.

Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

• (P) is unbounded iff (P) is feasible and there is a

recessive direction d such that cTd > 0

⇒ to certify that (P) is unbounded, we should point

out a feasible solution x̄ to (P) and a vector d such

that

Pd ≤ 0, Qd ≥ 0, Rd = 0, cTd > 0.

Note: If (P) is known to be feasible, its boundedness/unbounded-
ness is independent of a particular value of [p; q; r].

Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

♠ How to certify that Opt ≥ a for a given a ∈ R?
A certificate is a feasible solution x̄ with cTx ≥ a.

♠ How to certify that Opt ≤ a for a given a ∈ R?
Opt ≤ a iff the linear inequality cTx ≤ a is a conse-

quence of the system of constraints. To certify this,

we should

— either point out an infeasibility certificate λ`, λg, λe:
λ` ≥ 0, λg ≤ 0,

PTλ` +QTλg +RTλe = 0,
pTλe + qTλg + rTλe < 0

for (P),

— or point out λ`, λg, λe such that
λ` ≥ 0, λg ≤ 0,

PTλ` +QTλg +RTλe = c,

pTλ` + qTλg + rTλe ≤ a

Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

♣ How to certify that x̄ is an optimal solution to (P)?
• x̄ is optimal solution iff it is feasible and Opt ≤ cT x̄.

The latter amounts to existence of λ`, λg, λe such that

(a)︷ ︸︸ ︷
λ` ≥ 0, λg ≤ 0 &

(b)︷ ︸︸ ︷
PTλ` +QTλg +RTλe = c

& pTλ` + qTλg + rTλe = cT x̄︸ ︷︷ ︸
(c)

• Multiplying both sides in (b) by x̄T and subtracting

the result from (c), we get

λT`︸︷︷︸
≥0

≥0︷ ︸︸ ︷
[p− P x̄] + λTg︸︷︷︸

≤0

≤0︷ ︸︸ ︷
[q −Qx̄] +λTe

=0︷ ︸︸ ︷
[r −Rx̄] = 0

which is possible iff (λ`)i[pi − (P x̄)i] = 0 for all i and

(λg)j[qj − (Qx̄)j] = 0 for all j.

Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

♠ We have arrived at the Karush-Kuhn-Tucker Optimality
Conditions in LO:

A feasible solution x̄ to (P) is optimal iff the con-
straints of (P) can be assigned with vectors of La-
grange multipliers λ`, λg, λe in such a way that
• [signs of multipliers] Lagrange multipliers as-
sociated with ≤-constraints are nonnegative, and La-
grange multipliers associated with ≥-constraints are
nonpositive,
• [complementary slackness] Lagrange multipli-
ers associated with non-active at x̄ constraints are
zero, and
• [KKT equation] One has

PTλ` +QTλg +RTλe = c .

Example. To certify that the feasible solution

x̄ = [1; ...; 1] ∈ Rn

to the LO program

max
x

{
x1 + ...+ xn :

x1 + x2 ≤ 2, x2 + x3 ≤ 2 , ..., xn + x1 ≤ 2

x1 + x2 ≥ −2, x2 + x3 ≥ −2 , ..., xn + x1 ≥ −2

}

is optimal, it suffices to assign the constraints with

Lagrange multipliers λ` = [1/2; 1/2; ...; 1/2], λg =

[0; ...; 0] and to note that

λ` ≥ 0, λg ≤ 0

P Tλ` +QTλg =


1 1
1 1

1 1
1 .. .

. . . 1
1 1

λT` = c := [1; ...; 1]

and complementary slackness takes place.

♣ Application: Faces of polyhedral set revisited. Re-

call that a face of a nonempty polyhedral set

X = {x ∈ Rn : aTi x ≤ bi,1 ≤ i ≤ m}
is a nonempty set of the form

XI = {x ∈ Rn : aTi x = bi, i ∈ I, aTi x ≤ bi, i 6∈ I}
This definition is not geometric.

Geometric characterization of faces:
(i) Let cTx be a linear function bounded from above on X.
Then the set

ArgmaxX c
Tx := {x ∈ X : cTx = max

x′∈X
cTx′}

is a face of X. In particular, if the maximizer of cTx over X
exists and is unique, it is an extreme point of X.
(ii) Vice versa, every face of X admits a representation as
Argmaxx∈X c

Tx for properly chosen c. In particular, every
vertex of X is the unique maximizer, over X, of some linear
function.

Proof:
(i): Let cTx be bounded from above on X. Then the

set X∗ = Argmaxx∈X c
Tx is nonempty. Let x∗ ∈ X∗.

By KKT Optimality conditions, there exist λ ≥ 0 such

that ∑
i λiai = c, aTi x < bi ⇒ λi = 0.

Let I∗ = {i : λi > 0}. We claim that X∗ = XI∗. In-

deed,

— x ∈ XI∗ ⇒ cTx = [
∑
i∈I∗ λiai]

Tx

=
∑
i∈I∗ λia

T
i x =

∑
i∈I∗ bi

=
∑
i∈I∗ λia

T
i x∗ = cTx∗,

⇒ x ∈ X∗ := Argmax
y∈X

cTy, and

— x ∈ X∗ ⇒ cT (x∗ − x) = 0

⇒
∑
i∈I∗ λi(a

T
i x∗ − a

T
i x) = 0

⇒
∑
i∈I∗ λi︸︷︷︸

>0

(bi − aTi x︸ ︷︷ ︸
≤bi

) = 0

⇒ aTi x = bi ∀i ∈ I∗ ⇒ x ∈ XI∗.
(ii): Let XI be a face of X, and let us set c =

∑
i∈I ai.

Same as above, it is immediately seen that XI =

Argmaxx∈X c
Tx.

LO Duality

♣ Consider an LO program

Opt(P) = max
x

{
cTx : Ax ≤ b

}
(P)

The dual problem stems from the desire to bound

from above the optimal value of the primal problem

(P), To this end, we use our aggregation technique,

specifically,

• assign the constraints aTi x ≤ bi with nonnegative aggrega-
tion weights λi (“Lagrange multipliers”) and sum them up
with these weights, thus getting the inequality

[ATλ]Tx ≤ bTλ (!)

Note: by construction, this inequality is a consequence

of the system of constraints in (P) and thus is satis-

fied at every feasible solution to (P).

• We may be lucky to get in the left hand side of (!) exactly
the objective cTx:

ATλ = c.
In this case, (!) says that bTλ is an upper bound on cTx

everywhere in the feasible domain of (P), and thus bTλ ≥
Opt(P).

Opt(P) = max
x

{
cTx : Ax ≤ b

}
(P)

♠ We arrive at the problem of finding the best – the small-
est – upper bound on Opt(P) achievable with our bounding
scheme. This new problem is

Opt(D) = min
λ

{
bTλ : ATλ = c, λ ≥ 0

}
. (D)

It is called the problem dual to (P).
♣ Note: Our “bounding principle” can be applied to

every LO program, independently of its format. For

example, as applied to the primal LO program

Opt(P) = max
x


cTx :



Px ≤︸︷︷︸
λ`

p (`)

Qx ≥︸︷︷︸
λg

q (g)

Rx =︸︷︷︸
λe

r (e)


(P)

it leads to the dual problem in the form of

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
PTλ` +QTλg +RTλe = c

} (D)

• Pay attention to the specific notation: the signs ≤, ≥, =

of constraints in (P) are marked by the associated vectors of
Lagrange multipliers λ`, λg, λe.

Opt(P) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

LO Duality Theorem: Consider a primal LO program (P)

along with its dual program (D). Then
(i) [Primal-dual symmetry] The duality is symmetric: (D) is
an LO program, and the program dual to (D) is (equivalent
to) the primal problem (P).
(ii) [Weak duality] We always have Opt(D) ≥ Opt(P).
Attention!: the latter inequality holds true when (P) is a max-
imization problem. In general, Weak Duality says that the op-
timal value in the minimization problem of a primal-dual pair is
≥ the optimal value of the maximization problem of the pair.
(iii) [Strong duality] The following 3 properties are equivalent
to each other:
• one of the problems is feasible and bounded
• both problems are solvable
• both problems are feasible
and whenever these equivalent to each other properties take
place, we have

Opt(P) = Opt(D).

Opt(P) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

Proof of Primal-Dual Symmetry: We rewrite (D) is ex-
actly the same form as (P), that is, as

−Opt(D) = max
[λ`;λg,λe]

{
− pTλ` − qTλg − rTλe :{

λg ≤ 0, λ` ≥ 0
PTλ` +QTλg +RTλe = c

}
and apply the recipe for building the dual, resulting in

min
[x`;xg;xe]

c
Txe :


x` ≥ 0, xg ≤ 0
Pxe + xg = −p
Qxe + x` = −q
Rxe = −r


whence, setting xe = −x and eliminating xg and xe,

the problem dual to dual becomes

min
x

{
−cTx : Px ≤ p,Qx ≤ q,Rx = r

}
which is equivalent to (P). �

Opt(P) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

Proof of Weak Duality Opt(D) ≥ Opt(P): by construc-

tion of the dual.

Proof of Strong Duality

Opt(P) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

Main Lemma: Let one of the problems (P), (D) be feasible
and bounded. Then both problems are solvable with equal op-
timal values.
Proof of Main Lemma: By Primal-Dual Symmetry, we can assume
w.l.o.g. that the feasible and bounded problem is (P). By what
we already know, (P) is solvable. Let us prove that (D) is solv-
able, and the optimal values are equal to each other.
• Observe that the linear inequality cTx ≤ Opt(P) is a conse-
quence of the (solvable!) system of constraints of (P). By
Inhomogeneous Farkas Lemma

∃λ` ≥ 0, λg ≤ 0, λe :
P Tλ` +QTλg +RTλe = c & pTλ` + qTλg + rTλe ≤ Opt(P).

⇒ λ is feasible for (D) with the value of dual objective ≤Opt(P). By
Weak Duality, this value should be ≥Opt(P)
⇒ the dual objective at λ equals to Opt(P)
⇒ λ is dual optimal and Opt(D) = Opt(P). �

Proof of Strong Duality (continued)
Main Lemma⇒ Strong Duality:
• By Main Lemma, if one of the problems (P), (D) is

feasible and bounded, then both problems are solvable

with equal optimal values

• If both problems are solvable, then both are feasible

• If both problems are feasible, then both are bounded

by Weak Duality, and thus one of them (in fact, both

of them) is feasible and bounded.

Immediate Consequences

Opt(P) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

Theorem Whenever at least one of the problems (P), (D)

is feasible, we have
Opt(P) = Opt(D).

Indeed, assuming w.l.o.g. that the feasible problem is

(P), observe that

— if (P) is bounded, Opt(P) = Opt(D) by Duality

Theorem.

— if (P) is unbounded, Opt(P) = + inf and (D) is

infeasible by Weak Duality, meaning that Opt(D) =

+∞ as well.

Immediate Consequences (continued)

Opt(P) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P)

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

♣ Optimality Conditions in LO: Let x and λ = [λ`;λg;λe]

be a pair of feasible solutions to (P) and (D). This pair is
comprised of optimal solutions to the respective problems
• [zero duality gap] if and only if the duality gap, as evalu-
ated at this pair, vanishes:

DualityGap(x, λ) := [pTλ` + qTλg + rTλe]− cTx
= 0

• [complementary slackness] if and only if the products of
all Lagrange multipliers λi and the residuals in the correspond-
ing primal constrains are zero:

∀i : [λ`]i[p− Px]i = 0 & ∀j : [λg]j[q −Qx]j = 0.

Proof
We are in the situation when both problems are fea-
sible and thus both are solvable with equal optimal
values. Therefore

DualityGap(x, λ) :=
[
[pTλ` + qTλg + rTλe]−Opt(D)

]
+
[
Opt(P)− cTx

]
For a primal-dual pair of feasible solutions the ex-

pressions in the magenta and the red brackets are

nonnegative

⇒ Duality Gap, as evaluated at a primal-dual feasible pair,
is nonnegative and can vanish iff both the expressions in the
magenta and the red brackets vanish, that is, iff x is primal
optimal and λ is dual optimal.
• Observe that

DualityGap(x, λ) = [pTλ` + qTλg + rTλe]− cTx
= [pTλ` + qTλg + rTλe]− [P Tλ` +QTλg +RTλ2]Tx
= λT` [p− Px] + λTg [q −Qx] + λTe [r −Rx]
=
∑

i[λ`]i[p− Px]i +
∑

j[λg]j[q −Qx]j

Al terms in the resulting sums are nonnegative

⇒ Duality Gap vanishes iff the complementary slackness
holds true.

Geometry of a Primal-Dual Pair of LO Programs

♣ Consider a primal-dual pair of LO programs

Opt(P) = max
x

c
Tx :


Px ≤︸︷︷︸

λ`

p (`)

Rx =︸︷︷︸
λe

r (e)

 (P)

Opt(D) = min
[λ`;λe]

{
pTλ` + rTλe :{

λ` ≥ 0
PTλ` +RTλe = c

} (D)

Standing Assumption: The systems of linear equations in
(P), (D) are solvable:

∃x̄, λ̄ = [λ̄`; λ̄e] : Rx̄ = r, PT λ̄` +RT λ̄e = −c

♣ Observation: Whenever Rx = r, we have

cTx = −[PT λ̄` +RT λ̄e]Tx = −λ̄T` [Px]− λ̄Te [Rx]

= λ̄T` [p− Px] +
[
−λ̄T` p− λ̄

T
e r
]

⇒ (P) is equivalent to the problem

max
x

{
λ̄T` [p− Px] : p− Px ≥ 0, Rx = r

}
.

Opt(P) = max
x

c
Tx :


Px ≤︸︷︷︸

λ`

p (`)

Rx =︸︷︷︸
λe

r (e)

 (P)

Opt(D) = min
[λ`;λe]

{
pTλ` + rTλe :{

λ` ≥ 0
PTλ` +RTλe = c

} (D)

[λ̄`; λ̄e] satisfies equations of (D)

⇒ (P) is equivalent to the problem

max
x

{
λ̄T` [p− Px] : p− Px ≥ 0, Rx = r

}
.

♠ Passing to the new variable (“primal slack”)

ξ = p− Px,

the primal problem becomes

max
ξ

{
λ̄T` ξ : ξ ≥ 0, ξ ∈MP := ξ̄ + LP

}
[
LP = {ξ = Px : Rx = 0}
ξ̄ = p− P x̄ [x̄ solves the equations of (P)]

]
MP : primal feasible affine plane

Opt(P) = max
x

{
cTx :

{
Px ≤ p (`)
Rx = r (e)

}
(P)

Opt(D) = min
[λ`;λe]

{
pTλ` + rTλe :{

λ` ≥ 0
P Tλ` +RTλe = c

} (D)

♣ Let us express (D) in terms of the dual slack λ`. If

[λ`;λe] satisfies the equality constraints in (D), then

pTλ` + rTλe = pTλ` + [Rx̄]Tλe = pTλ` + x̄T [RTλe]
= pTλ` + x̄T [c− PTλ`] = [p− P x̄]Tλ` + x̄T c

= ξ̄Tλ` + x̄T c

⇒ (D) is equivalent to the problem

min
λ`

{
ξ̄Tλ` : λ` ≥ 0, λ` ∈MD := LD − λ̄`

}
LD = {λ` : ∃λe : PTλ` +RTλe = 0}
Md : dual feasible affine plane

Opt(P) = max
x

{
cTx :

{
Px ≤ p (`)
Rx = r (e)

}
(P)

Opt(D) = min
[λ`;λe]

{
pTλ` + rTλe :{

λ` ≥ 0
P Tλ` +RTλe = c

} (D)

Bottom line: Problems (P), (D) are equivalent to

problems

max
ξ

{
λ̄T` ξ : ξ ≥ 0, ξ ∈MP := LP + ξ̄

}
(P)

min
λ`

{
ξ̄Tλ` : λ` ≥ 0, λ` ∈MD := LD − λ̄`

}
(D)

where

LP = {ξ : ∃x : ξ = Px,Rx = 0},
LD = {λ` : ∃λe : PTλ` +RTλe = 0}

Note:
• Linear subspaces LP and LD are orthogonal com-

plements of each other

• The minus primal objective −λ̄` belongs to the dual

feasible planeMD, and the dual objective ξ̄ belongs to

the primal feasible plane MP . Moreover, replacing λ̄`,

ξ̄ with any other pair of points from −MD and MP ,

problems remain essentially intact – on the respective

feasible sets, the objectives get constant shifts

Problems (P), (D) are equivalent to problems

max
ξ

{
λ̄T` ξ : ξ ≥ 0, ξ ∈MP := LP + ξ̄

}
(P)

min
λ`

{
ξ̄Tλ` : λ` ≥ 0, λ` ∈MD := LD − λ̄`

}
(D)

where

LP = {ξ : ∃x : ξ = Px,Rx = 0},
LD = {λ` : ∃λe : PTλ` +RTλe = 0}

• A primal-dual feasible pair (x, [λ`;λe]) of solutions

to (P), (D) induces a pair of feasible solutions

(ξ = p− Px, λ`) to (P,D), and

DualityGap(x, [λ`, λe]) = λT` ξ.

Thus, to solve (P), (D) to optimality is the same as to pick
a pair of orthogonal to each other feasible solutions to (P),
(D).

♣ We arrive at a wonderful perfectly symmetric and

transparent geometric picture:

Geometrically, a primal-dual pair of LO programs is given by
a pair of affine planes MP and MD in certain RN ; these
planes are shifts of linear subspaces LP and LD which are
orthogonal complements of each other.
We intersectMP andMD with the nonnegative orthant RN+,
and our goal is to find in these intersections two orthogonal to
each other vectors.
♠ Duality Theorem says that this task is feasible if and

only if both MP and MD intersect the nonnegative

orthant.

x

z

O

y

Geometry of primal-dual pair of LO programs:

Blue area: feasible set of (P) — intersection of the 2D primal

feasible plane MP with the nonnegative orthant R3
+.

Red segment: feasible set of (D) — intersection of the 1D dual

feasible plane MD with the nonnegative orthant R3
+.

Blue dot: primal optimal solution ξ∗.

Red dot: dual optimal solution λ∗`.

Pay attention to orthogonality of the primal solution (which is

on the z-axis) and the dual solution (which is in the xy-plane).

The Cost Function of an LO program, I

♣ Consider an LO program

Opt(b) = max
x

{
cTx : Ax ≤ b

}
. (P [b])

Note: we treat the data A, c as fixed, and b as vary-

ing, and are interested in the properties of the optimal

value Opt(b) as a function of b.

♠ Fact: When b is such that (P [b]) is feasible, the prop-
erty of problem to be/not to be bounded is independent of the
value of b.
Indeed, a feasible problem (P [b]) is unbounded iff

there exists d: Ad ≤ 0, cTd > 0, and this fact is in-

dependent of the particular value of b.

Standing Assumption: There exists b such that P ([b])

is feasible and bounded

⇒ P ([b]) is bounded whenever it is feasible.

Theorem Under Assumption, −Opt(b) is a polyhedrally rep-
resentable function with the polyhedral representation

{[b; τ] : −Opt(b) ≤ τ}
= {[b; τ] : ∃x : Ax ≤ b,−cTx ≤ τ}.

The function Opt(b) is monotone in b:
b′ ≤ b′′ ⇒ Opt(b′) ≤ Opt(b′′).

Opt(b) = max
x

{
cTx : Ax ≤ b

}
. (P [b])

♠ Additional information can be obtained from Dual-

ity. The problem dual to (P [b]) is

min
λ

{
bTλ : λ ≥ 0, ATλ = c

}
. (D[b])

By LO Duality Theorem, under our Standing Assump-

tion (D[b]) is feasible for every b, and

Opt(b) = min
λ

{
bTλ : λ ≥ 0, ATλ = c

}
. (∗)

Observation: Let b̄ be such that Opt(̄b) > −∞, so that
(D[̄b]) is solvable, and let λ̄ be an optimal solution to (D[̄b]).
Then λ̄ is a supergradient of Opt(b) at b = b̄, meaning that

∀b : Opt(b) ≤ Opt(̄b) + λ̄T [b− b̄]. (!)

Indeed, by (∗) we have Opt(̄b) = λ̄T b̄ and Opt(b) ≤
λ̄T b, that is,

Opt(b) ≤ λ̄T b̄+ λ̄T [b− b̄] = Opt(̄b) + λ̄T [b− b̄]. �

Opt(b) = max
x

{
cTx : Ax ≤ b

}
(P [b])

= min
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(D[b])

Opt(̄b) > −∞, λ̄ ∈ Argmin
λ
{̄bTλ : λ ≥ 0, ATλ = c}

⇒ Opt(b) ≤ Opt(̄b) + λ̄[b− b̄] (!)

Opt(b) is a polyhedrally representable and thus piece-

wise linear function with the full-dimensional domain:

Dom Opt(·) = {b : ∃x : Ax ≤ b}.

Representing the feasible set Λ = {λ : λ ≥ 0, ATλ = c} of

(D[b]) as

Λ = Conv({λ1, ..., λN}) + Cone ({r1, ..., rM})

we get

Dom Opt(b) = {b : bT rj ≥ 0, 1 ≤ j ≤M},
b ∈ Dom Opt(b)⇒ Opt(b) = min

1≤i≤m
λTi b

Opt(b) = max
x

{
cTx : Ax ≤ b

}
(P [b])

= min
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(D[b])

Opt(̄b) > −∞, λ̄ ∈ Argmin
λ
{̄bTλ : λ ≥ 0, ATλ = c}

⇒ Opt(b) ≤ Opt(̄b) + λ̄[b− b̄] (!)

Dom Opt(b) = {b : bT rj ≥ 0, 1 ≤ j ≤M},
b ∈ Dom Opt(b)⇒ Opt(b) = min

1≤i≤m
λTi b

⇒ Under our Standing Assumption,
• Dom Opt(·) is a full-dimensional polyhedral cone,
• Assuming w.l.o.g. that λi 6= λj when i 6= j, the finitely
many hyperplanes {b : λTi b = λTj b}, 1 ≤ i < j ≤ N , split
this cone into finitely many cells, and in the interior of every
cell Opt(b) is a linear function of b.
• By (!), when b is in the interior of a cell, the optimal solution
λ(b) to (D[b]) is unique, and λ(b) = ∇Opt(b).

Law of Diminishing Marginal Returns

♠ Consider a function of the form

Opt(β) = max
x

{
cTx : Px ≤ p, qTx ≤ β

}
(Pβ)

Interpretation: x is a production plan, qTx is the price

of resources required by x, β is our investment in the

resources, Opt(β) is the maximal return for an invest-

ment β.

♠ As above, for β such that (Pβ) is feasible, the prob-

lem is either always bounded, or is always unbounded.

Assume that the first is the case. Then

• The domain Dom Opt(·) of Opt(·) is a nonempty

ray β ≤ β <∞ with β ≥ −∞, and

• Opt(β) is nondecreasing and concave.

Monotonicity and concavity imply that if

β ≤ β1 < β2 < β3,

then

Opt(β2)−Opt(β1)

β2 − β1
≥

Opt(β3)−Opt(β2)

β3 − β2
,

that is, the reward for an extra $1 in the investment can only
decrease (or remain the same) as the investment grows.
In Economics, this is called the law of diminishing marginal
returns.

The Cost Function of an LO program, II

♣ Consider an LO program

Opt(c) = max
x

{
cTx : Ax ≤ b

}
. (P [c])

Note: we treat the data A, b as fixed, and c as vary-

ing, and are interested in the properties of Opt(c) as

a function of c.

Standing Assumption: (P [·]) is feasible (this fact is in-

dependent of the value of c).

Theorem Under Assumption, Opt(c) is a polyhedrally repre-
sentable function with the polyhedral representation

{[c; τ] : Opt(c) ≤ τ}
= {[c; τ] : ∃λ : λ ≥ 0, ATλ = c, bTλ ≤ τ}.

Proof. Since (P [c]) is feasible, by LO Duality The-

orem the program is solvable if and only if the dual

program

min
λ
{bTλ : λ ≥ 0, ATλ = c} (D[c])

is feasible, and in this case the optimal values of the

problems are equal

⇒ τ ≥ Opt(c) iff (D[c]) has a feasible solution with

the value of the objective ≤ τ . �

Opt(c) = max
x

{
cTx : Ax ≤ b

}
. (P [c])

Theorem Let c̄ be such that Opt(c̄) < ∞, and x̄ be an
optimal solution to (P [c̄]). Then x̄ is a subgradient of Opt(·)
at the point c̄:

∀c : Opt(c) ≥ Opt(c̄) + x̄T [c− c̄]. (!)

Proof: We have Opt(c) ≥ cT x̄ = c̄T x̄ + [c − c̄]T x̄ =

Opt(c̄) + x̄T [c− c̄]. �

♠ Representing

{x : Ax ≤ b} = Conv({v1, ..., vN}) + Cone ({r1, ..., rM}),

we see that

• Dom Opt(·) = {c : rTj c ≤ 0, 1 ≤ j ≤ M} is a polyhe-

dral cone, and

• c ∈ Dom Opt(·)⇒ Opt(c) = max
1≤i≤N

vTi c.

In particular, if Dom Opt(·) is full-dimensional and vi are
distinct from each other, everywhere in Dom Opt(·) outside
finitely many hyperplanes {c : vTi c = vTj c}, 1 ≤ i < j ≤ N ,
the optimal solution x = x(c) to (P [c]) is unique and x(c) =

∇Opt(c).

♣ Let X = {x ∈ Rn : Ax ≤ b} be a nonempty polyhedral

set. The function

Opt(c) = max
x∈X

cTx : Rn → R ∪ {+∞}

has a name - it is called the support function of X.

Along with already investigated properties of the sup-

port function, an important one is as follows:

♠ The support function of a nonempty polyhedral set X “re-
members” X: if

Opt(c) = max
x∈X

cTx,

then

X = {x ∈ Rn : cTx ≤ Opt(c) ∀c}.

Proof
Let X+ = {x ∈ Rn : cTx ≤ Opt(c) ∀c}. We clearly have

X ⊂ X+. To prove the inverse inclusion, let x̄ ∈ X+;

we want to prove that x ∈ X. To this end let us

represent X = {x ∈ Rn : aTi x ≤ bi, 1 ≤ i ≤ m}. For

every i, we have

aTi x̄ ≤ Opt(ai) ≤ bi,

and thus x̄ ∈ X. �

Quiz: What are the support functions of

• Unit box {x ∈ Rn : ‖x‖∞ := maxi |xi| ≤ 1} ?

• Unit ‖ · ‖1 ball {x ∈ Rn : ‖x‖1 :=
∑
i |xi| ≤ 1} ?

Antagonistic Games

♣ Consider the situation as follows. Given are
• two nonempty sets X ⊂ Rn, Λ ⊂ Rm
• real-valued cost function φ(x, λ) : X × Λ→ R
These data define a game of two players, A (you) and
B (me). A selects a point x ∈ X, and B selects a
point x ∈ X. As a result of these choices I (B) pay to
you (A) the sum φ(x, λ).
Naturally, I am interested to minimize my payment,
and you are interested to maximize it.
How should we act ?
♠ I. Assume that you make your selection first, and I
know your choice when making my selection. When
you select x ∈ X, you should be ready to get as low
as

φ(x) = infλ∈Λφ(x, λ),
and your natural policy is to maximize your worst-case
profit by selecting as x an optimal solution to the primal prob-
lem

Opt(P) = supx∈X
[
φ(x) := infλ∈Λφ(x, λ)

]
(P)

♠ II. Now assume that I make my selection first, and
you know it when making your selection. When se-
lecting λ, I should be ready to pay as much as

φ(λ) = supx∈Xφ(x, λ),
and my natural policy is to minimize my worst-case loss
by selecting as λ an optimal solution to the dual problem

Opt(D) = infλ∈Λ

[
φ(λ) := supx∈Xφ(x, λ)

]
(D)

Opt(P) = supx∈X
[
φ(x) := infλ∈Λφ(x, λ)

]
(P)

Opt(D) = infλ∈Λ

[
φ(λ) := supx∈Xφ(x, λ)

]
(D)

• Intuitively, the situation when I make my selection

first and you know it when making your selection is

worse for me than the one when you select your choice

first and I know it when making my selection

⇒ We can guess that
Opt(P) := sup

x∈X
inf

λ∈Λ∈X
φ(x, λ)≤ inf

λ∈Λ
sup
x∈X

φ(x, λ) =: Opt(D)

This guess is indeed true, and is called Weak Duality.

(?) What is natural behavior of the players when they are
making their selections simultaneously, knowing only “game’s
data” X,Λ, φ(·, ·), but not knowing the selection of the adver-
sary?
♠ A natural answer is offered by the notion of Nash

Equilibrium: A pair of choices x∗ ∈ X, λ∗ ∈ Λ such

that whenever one of the players sticks to x∗ (or to λ∗), the
other cannot gain when deviating from λ∗ (respectively, x∗):
∀(x ∈ X,λ ∈ Λ) : φ(x∗, λ) ≥ φ(x∗, λ∗) ≥ φ(x, λ∗)

Points (x∗, λ∗) ∈ X × Λ with this property are called saddle
points (max in x ∈ X, min in λ ∈ Λ) of φ(x, λ).
♠ Theorem. Saddle points exist iff both (P) and (D) are
solvable with equal optimal values: Opt(P) = Opt(D). In
this case, saddle points are exactly points (x∗, λ∗) comprised
of optimal solutions to (P) and (D), and for every such point
it holds

φ(x∗, λ∗) = Opt(P) = Opt(D)

Example: Lagrange Duality in LO

♠ Consider a primal-dual pair LO programs

Opt(P) = max
x∈Rn

{
cTx :

{
Px ≤ p (`)
Rx = r (e)

}
(P)

Opt(D) = min
[λ`;λe]

{
pTλ` + rTλe :{

λ` ≥ 0
P Tλ` +RTλe = c

} (D)

and let us associate with the primal problem (P) its Lagrange
function

L(x, λ) = cTx− λT` [Px− p]− λe[Rx− r]
with x (primal variable) varying in X = Rn and the Lagrange
multipliers λ = [λ`;λe] varying in

Λ = {[λ`;λe] : λ` ≥ 0}
(?) What are the primal and the dual problems associated with
X,Λ and the cost function L ?
What are the saddle points?
♠We have
L(x) := infλ`≥0,λe

[
cTx+ λ`

T [p− Px] + λeT [r −Rx]
]

= cTx+ infλ`≥0

[
λT` [p− Px]

]
+ infTλe

[
λTe [r −Rx]

]
=

{
cTx, Px ≤ p and Rx = r
−∞, otherwise

L(λ`, λe) := supx
[
cTx+ λ`

T [p− Px] + λeT [r −Rx]
]

= supx
[
[c− PTλ` −RTλe]Tx+ pTλ` + rTλeT

]
=

{
pTλ` + rTλe, PTλ` +RTλe = c
+∞, otherwise

Opt(P) = max
x∈Rn

{
cTx :

{
Px ≤ p (`)
Rx = r (e)

}
(P)

Opt(D) = min
[λ`;λe]

{
pTλ` + rTλe :{

λ` ≥ 0
P Tλ` +RTλe = c

} (D)

⇒ “Largange game” on the domains
X = Rn, Λ = {[λ`;λe] : λ` ≥ 0}

with cost function
L(x, λ) = cTx− λT` [Px− p]− λe[Rx− r]

⇒


L(x) =

{
cTx, Px ≤ p and Rx = r
−∞, otherwise

L(λ`, λe) =

{
pTλ` + rTλe, PTλ` +RTλe = c
+∞, otherwise

Conclusion: The primal and the dual problems associated
with our “Lagrange game”

Opt(P) = maxxL(x) (P)
Opt(D) = minλ=[λ`;λe]∈ΛL(λ) (D)

are nothing but (P) and (D) (in slight disguise). ⇒ Lagrange
game has saddle points if and only if (P) and (D) are solv-
able with equal optimal values which, by Duality Theorem,
takes place iff both (P) and (D) are solvable, same as iff
one of the problems (P), (D) is solvable. Whenever this is
the case, saddle points of the Lagrange game are exactly the
primal-dual optimal pairs of (P), (D).

Opt(P) = max
x∈Rn

{
cTx :

{
Px ≤ p (`)
Rx = r (e)

}
(P)

Opt(D) = min
[λ`;λe]

{
pTλ` + rTλe :{

λ` ≥ 0
P Tλ` +RTλe = c

} (D)

♠ Let (P), (D) be solvable, so that the primal-dual optimal
solutions (x∗, λ∗ = [λ∗` ;λ

∗
e]) are exactly the saddle points of

the Lagrange function
L(x, λ) = cTx− λT` [Px− p]− λTe [Rx− r]

= xT [c− PTλ` −RTλe] + pTλ` + rTλe
(min in λ = [λ`;λe] with λ` ≥ 0, max in x ∈ Rn).
Question: When (x∗, λ∗ = [λ∗` ;λ

∗
e]) is a saddle point of the

Lagrange function?
Answer: We should have
• λ∗` ≥ 0

• L(x, λ∗) as a function of x ∈ Rn should attain its maximum
in x at x∗, which is the case iff the KKT equation

PTλ∗` +RTλ∗` = c

takes place
• L(x∗, λ) as a function of λ = [λ`;λe] with λ` ≥ 0 should
attain its minimum at λ∗, which is the case iff

Rx∗ = r, Px∗ ≤ p and [λ∗`]
T [Px∗ − p] = 0.

♥ We have recovered KKT optimality conditions in LO!

Polyhedral Games

♣ “Lagrange game” is a very special case of polyhedral
game, where both X and Λ are polyhedral sets and the

cost function is bilinear, that is, of the form

φ(x, λ) = pTx+ qTλ+ λTRx

(?) What can be said on saddle points of a general polyhedral
game
♠ Let X = {x ∈ Rn : Ax ≤ b} and Λ = {λ ∈ Rm : Cλ ≤ d}.
Standing assumption: Both X and Λ are nonempty and
bounded.

♠ Fact: Under Standing assumption, a polyhedral game re-
duces to LO and has saddle points.

X = {x : Ax ≤ b}, λ = {λ : Cλ ≤ d}, φ(x, λ) = pTx+ qTλ+ λTRx

Explanation: We have
φ(x) = infλ:Cλ≤d

[
pTx+ qTλ+ λTRx

]
= pTx+ minλ

{
[q +Rx]Tλ : Cλ ≤ d

}
= pTx−maxλ

{
[−q −Rx]Tλ : Cλ ≤ d

}
= pTx−minw

{
dTw : w ≥ 0, CTw + q +Rx = 0

}
[Duality; note that {λ : CTλ ≤ d} 6= ∅]

= pTx+ maxw
{
−dTw : w ≥ 0, CTw + q +Rx = 0

}
⇒ Problem (P) of maximizing φ(x) over x ∈ X is nothing but

the LO program

maxx,w
{
pTx− dTw : Ax ≤ b, w ≥ 0, CTw +Rx = −q

}
(!)

both (P) and (!) are solvable/unsolvable simultaneously, and

optimal solutions to (P) are exactly the x-components of opti-

mal solutions to (!).

Note: Λ = {λ : Cλ ≤ d} is nonempty and bounded, whence φ is a

finite everywhere polyhedral function. Taking into account that

X is nonempty and bounded, the problem (P) of maximizing φ

over X is solvable, whence (!) is solvable as well.

• By completely similar reasoning, problem (D) of minimizing over
λ ∈ Λ the function φ(λ) = sup

x∈X
φ(x, λ) is nothing but the LO program

minλ,z

{
bTz + qTλ : Cλ ≤︸︷︷︸

w

d, z ≥ 0,−ATz +RTλ =︸︷︷︸
x

−p

}
(!!)

It is immediately seen that (!!) is the dual of the solvable problem

(!)

⇒ (!), (!!) are solvable with equal optimal values

⇒ (P) and (D) are solvable with equal optimal values
⇒ Saddle points exist and are of the form (x∗, λ∗), where x∗ is a com-
ponent of an optimal solution to (!), and λ∗ is a component of an optimal
solution to (!!).

Application: von Neumann Lemma

♣ Let X = {x ∈ Rn : Ax ≤ b} be a nonempty and bounded
polyhedral set, let

fi(x) = bTi x+ ci, i = 1, ...,m

be a finite collection of affine functions on X.

Consider the maximin problem

Opt = maxx∈X

[
f(x) := min

i=1,...,m
fi(x)

]
Observation: The problem is nothing but the primal problem
(P) associated with the polyhedral game where

X = {x ∈ Rn : Ax ≤ b},Λ = {λ ∈ Rm : λ ≥ 0,
∑

i λi = 1},
φ(x, λ) =

∑
i λifi(x) =

∑
i λi[b

T
i x+ ci]

Indeed,

φ(x) = min
λ

{∑
i

λifi(x) : λ ≥ 0,
∑
i

λi = 1

}
= min

1≤i≤m
fi(x) = f(x).

• By the above, the resulting game has a saddle point

x∗, λ∗, implying that for some λ∗ ∈ Λ,
maxx∈X

∑
i λ
∗
i fi(x)= φ(λ∗) = Opt(D)

= Opt(P) = maxx∈X f(x) = maxx∈X
[
min1≤i≤m fi(x)

]
In words: Maximum of the minimum of several affine func-
tions taken over a bounded and nonempty polyhedral domain
in the space of arguments, is the same as the maximum over
the same domain of a properly selected convex combination
of these functions.
Really surprising – any convex combination of a fi-

nite collection of functions is, at every point, ≥ the

smallest of these functions!

Matrix Games and Mixed Strategies

♣ Consider a game with finite set {1, ...,m} of your

choices and finite set {1, ..., n} of my choices. In this

case the cost function φ can be identified with m× n
matrix M = [Mij = φ(i, j)]. The resulting matrix game
is as follows:

Two players – you and me – are given anm×nmatrixM . You
select a row, I select a column; when you select row i, and I -
column j, your win (and my loss) is Mij.
♠ In a matrix game, saddle points are pairs (̄i, j̄) such

that the entry Mī,̄j of the game matrix M is the largest

in its column and the smallest in its row, like element

M2,3 in the matrix

M =

 1 2 3 4
9 7 7 8
9 10 4 12


However: Existence of a saddle point in a matrix is a

“rare commodity.” For example, the matrix

M =

[
1 0
0 1

]
has no saddle point.

Quiz: Assume an n × n game matrix is selected at random,
with entries assigned the values 0 and 1 with probability 0.5
independently across the entries. What is the probability p(n)

for the game to have a saddle point?
n 2 4 8 16 32

p(n) 0.875 ≈0.4547 ≈0.060

Quiz: Assume an n × n game matrix is selected at random,
with entries assigned the values 0 and 1 with probability 0.5
independently across the entries. What is the probability p(n)

for the game to have a saddle point?
A simple upper bound on p(n) is 2n2/2n (why?) result-

ing in
n 2 4 8 16 32

p(n) 0.875 ≈0.4547 ≈0.060 <0.008 <4.8e-7

(?) What to do if a matrix game does not have a saddle point?
Partial answer [von Neumann and Morgenstern, late

1940’s]: pass to mixed strategies.
♣ Imagine players are playing the game round by

round and are interested in their average outcomes

over large time horizon. In this case, they could use

randomized strategies as follows

• you select a probability distribution x on the set

{1, ...,m} of your choices; x is just a nonnegative m-

dimensional vector with unit sum of entries:∑m
i=1 xi = 1 .

In every round, you draw your choice ı ∈ {1, ...,m}
from this distribution, so that the probability to se-

lect 1 is x1, the probability to select 2 is x2, etc.

• likewise, I select a probability distribution on the set

{1, ..., n} of my choices – a nonnegative n-dimensional

vector λ with entries summing up to 1, and in every

round draw my choice from {1, ..., n} at random ac-

cording to this distribution.

♠ With the outlined mixed strategies, the probability in

a particular round the choices to be (i, j) is xiλj, and

your expected win (my expected loss) will be∑m
i=1

∑n
j=1Mijxiλj = xTMλ

You are interested to maximize your expected win over

x, and I am interested to minimize it over λ.

♠ We arrive at matrix game in mixed strategies given by
X = {x ∈ Rm : x ≥ 0,

∑
i xi = 1},

Λ = {λ ∈ Rn : λ ≥ 0,
∑
j λj = 1},

φ(x, λ) = xTMλ =
∑
i,jMijxiλj

Note: Matrix game in fixed strategies is a game with

polyhedral, nonempty and bounded X, Λ and with a

bilinear cost function

⇒ In mixed strategies, Nash equilibrium (a.k.a. saddle point)
always exists!
Informal Comment: In a “you or him” situation, it is

crucial to keep your intended actions secret from your

adversary. Mixed strategy is the ultimate implemen-

tation of this principle: you yourself do not know what you
will do tomorrow!

Quiz: Bankrupt the Banker!

• Alicubi is a small African country. The currency

there is Alicubi dollars (AD’s).

♠ Advertizement (Alicubi Evening News, January 7,

2014)

If you are smart, you definitely will earn at least AD 99

by playing 12 rounds of the game Bankrupt the Banker!

Terms and conditions:

• At the beginning, 4 playing cards of 4 different suits

are shuffled and placed in line in front of you, backs up.

Their order is never changed later.

• In every round, you point at a card in the row.

The banker

--- takes the pointed card and looks at its suit

--- tells you your win in the round,

--- returns the card to its place, still back up.

• Your win in the round is determined by the suit of the card

you have selected and Banker’s decision in the round.

The list of legitimate Banker’s decisions and the dependence

of your win on card’s suit and Banker’s decision remain the

same in all rounds.

• Rules of the game guarantee that if you are smart enough,

your total win in 12 rounds will be at least AD 99.

♠ Assuming the advertizement truthful, are you ready

to play? How would you play?

♠ Explanation: When translating the advertizement

from natural language to Math, it reads as follows:

• In the nature there exists a matrix M = [Mij]i,j with

4 rows indexed by the 4 suits, and N columns indexed

by Banker’s decisions.

In a round where you select card with suit i and Banker

selects decision j, you win is Mij.

• All you know about M is that M has 4 rows and

that there exists a policy specifying your selections in

such a way that independently of the results of initial shuf-
fling and of Banker’s behavior, your total win in 12 rounds will
be at least 99.
The problem is to find this policy.

The solution. Let ai = min
1≤j≤N

Mij be your guaranteed

win when selecting card of suit i, and let a∗ = max
1≤i≤4

ai

be your maximin win.

Proposition. (i) No policy can guarantee you total win in 12
rounds larger than

S = [a1 + a2 + a3 + a4] + 8a∗

(ii) Total win at least S is guaranteed by the policy as follows:
— initially, assign every card with the estimate +∞;

— in course of the game, update estimates of the

card as follow: the current estimate of a card is the minimum
of the wins you got when selecting this card in the past; if this
card was never used before, keep its estimate at its initial value
+∞;

— in every round, select the card with the largest

current estimate.

Conclusion: Since the advertizement is truthful, you

are in the case of S ≥ 99

⇒ Apply policy from (ii) and enjoy your AD 99 !

Proof:
(i): Let the Banker be greedy, so that when you se-

lect card with suit i, your win is exactly ai. Assume

w.l.o.g. that a1 ≤ a2 ≤ a3 ≤ a4, so that a∗ = a4.

• When selecting the card in the first round, you have

no specific information. Whatever card you decide to

select, the initial shuffling can be such that the suit

of this card will be 1 (the worst, as far as guaranteed

win is concerned)

⇒ Your guaranteed win in the first round cannot be larger than
a1.
• Assume the shuffling indeed made the suit of your

first selection equal to 1, so that you won a1 in the

first round. In the second round, you could select the

same card again, or select another card. In the sec-

ond case, the initial shuffling can be such that your

second selection is the second worst card (with suit

i = 2).

⇒ Your guaranteed total win in the first two rounds is at most
max[2a1, a1 + a2] = a1 + a2.
• Iterating this reasoning, we conclude that your guar-
anteed total win in the first 4 rounds is at most a1 + a2 +

a3 + a4. Since greedy Banker never pays you more that
a∗ = a4 = max[a1, a2, a2, a4], you guaranteed total win is
at most

S = a1 + a2 + a3 + a4 + (12− 4)a∗

(ii): With the policy described in Proposition,

• A card which once yielded win < a∗ will never be used in
the future
Indeed, since the win on card #s happened to be < a∗,
the estimate of this card is < a∗, and you always have

a card with estimate ≥ a∗ (namely, card with suit 4)

• If card #s once brought you win < a∗, this win is at least
ais, where is is the suit of card #s.

⇒ Your win will be < a∗ in at most three rounds, and the total
win over these rounds is at least a1 + a2 + a3 ⇒ Your total
win is at least

a1 + a2 + a3 + (12− 3)a∗ = a1 + a2 + a3 + a4 + (12− 4)a∗

Note: In the game we played,

a1 = a2 = a3 = −267, a4 = 100

⇒ S = 3 · (−267) + 9 · 100 = 99

However: with Greedy Banker and just 4 (instead of

3) “bad choices,” your total win will be

4 · (−267) + 8 · 100 = −268

Conclusions:
• To earn and to learn are, in general, two different goals!
If your goal is to guarantee a positive win in round

12 (or # 2013), this goal is inachievable: Banker

could cheat you by paying all the time, say, AD 100

whatever be your choice, and become greedy only in

the “critical” round.

Whether you learn something or nothing, it depends

on Banker; but you earn as if you were learning some-

thing!

• Cheating is expensive: to keep you ignorant, Banker should
pay you extras!

Applications of Duality in Robust LO

♣ Data uncertainty: Sources
Typically, the data of real world LOs

max
x

{
cTx : Ax ≤ b

}
[A = [aij] : m× n] (LO)

is not known exactly when the problem is being solved.

The most common reasons for data uncertainty are:

• Some of data entries (future demands, returns, etc.)

do not exist when the problem is solved and hence are

replaced with their forecasts. These data entries are

subject to prediction errors
• Some of the data (parameters of technological

devices/processes, contents associated with raw ma-

terials, etc.) cannot be measured exactly, and their

true values drift around the measured “nominal” val-

ues. These data are subject to measurement errors

• Some of the decision variables (intensities with

which we intend to use various technological pro-

cesses, parameters of physical devices we are design-

ing, etc.) cannot be implemented exactly as com-

puted. The resulting implementation errors are equiva-

lent to appropriate artificial data uncertainties.

A typical implementation error can be modeled

as xj 7→ (1 + ξj)xj + ηj, and effect of these

errors on a linear constraint
n∑

j=1

aijxj ≤ bj

is as if there were no implementation errors,

but the data aij got the multiplicative pertur-

bations:

aij 7→ aij(1 + ξj) ,

and the data bi got the perturbation

bi 7→ bi −
∑
j ηjaij.

Data uncertainty: Dangers.
In the traditional LO methodology, a small data un-

certainty (say, 0.1% or less) is just ignored: the prob-

lem is solved as if the given (“nominal”) data were

exact, and the resulting nominal optimal solution is

what is recommended for use.

Rationale: we hope that small data uncertainties will

not affect too badly the feasibility/optimality proper-

ties of the nominal solution when plugged into the

“true” problem.

Fact: The above hope can be by far too optimistic, and the
nominal solution can be practically meaningless.

♣ Example: Antenna Design
♠ [Physics:] Directional density of energy transmitted by an
monochromatic antenna placed at the origin is proportional
to |D(δ)|2, where the antenna’s diagram D(δ) is a complex-
valued function of 3-D direction (unit 3-D vector) δ.
♠ [Physics:] For an antenna array — a complex an-

tenna comprised of a number of antenna elements,

the diagram is

D(δ) =
∑

j
xjDj(δ) (∗)

• Dj(·): diagrams of elements

• xj: complex weights – design parameters responsible

for how the elements in the array are invoked.

♠ Antenna Design problem: Given diagrams
D1(·), ..., Dn(·)

and a target diagram D∗(·), find complex weights xi which
make the synthesized diagram (∗) as close as possible to the
target diagram D∗(·).
♥ When Dj(·), D∗(·) and the weights are real and

the “closeness’ is quantified by the maximal deviation

along a finite grid Γ of directions, Antenna Design

becomes the LO problem

min
x∈Rn,τ

{
τ : −τ ≤ D∗(δ)−

∑
j
xjDj(δ) ≤ τ ∀δ ∈ Γ

}
.

♠ Example: Consider planar antenna array comprised
of 10 elements (circle surrounded by 9 rings of equal
areas) in the plane XY (Earth’s surface”), and our
goal is to send most of the energy “up,” along the
12o cone around the Z-axis:

• Diagram of a ring {z = 0, a ≤
√
x2 + y2 ≤ b}:

Da,b(θ) = 1
2

b∫
a

[
2π∫
0

r cos
(
2πrλ−1 cos(θ) cos(φ)

)
dφ

]
dr,

• θ: altitude angle • λ: wavelength

0 10 20 30 40 50 60 70 80 90
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

10 elements,
equal areas,

outer radius 1 m

Diagrams of the
elements vs the
altitude angle θ,

λ =50 cm
• Nominal design problem:

τ∗ = min
x∈R10,τ

{
τ : −τ ≤ D∗(θi)−

10∑
j=1

xjDj(θi) ≤ τ,

1 ≤ i ≤ 240
}
, θi = iπ

480

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Target (blue) and nominal
optimal (magenta) diagrams,

τ∗ = 0.0589

But: The design variables are characteristics of phys-

ical devices and as such they cannot be implemented

exactly as computed. What happens when there are im-
plementation errors:

xfact
j = (1 + εj)x

comp
j , εj ∼ Uniform[−ρ, ρ]

with small ρ?

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90
−20

−15

−10

−5

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90
−200

−150

−100

−50

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90
−2000

−1500

−1000

−500

0

500

1000

1500

ρ = 0 ρ = 0.0001 ρ = 0.001 ρ = 0.01

“Dream and reality,” nominal optimal design: samples of 100

actual diagrams (red) for different uncertainty levels. Blue: the

target diagram

Dream Reality
ρ = 0 ρ = 0.0001 ρ = 0.001 ρ = 0.01
value mean mean mean

‖ · ‖∞-distance
to target 0.059 5.671 56.84 506.5

energy
concentration 85.1% 16.4% 16.5% 14.9%

Quality of nominal antenna design: dream and reality. Data

over 100 samples of actuation errors per each uncertainty level.

♠ Conclusion: Nominal optimal design is completely mean-
ingless...

NETLIB Case Study: Diagnosis

♣ NETLIB is a collection of about 100 not very large

LPs, mostly of real-world origin. To motivate the

methodology of our “case study”, here is constraint

372 of the NETLIB problem PILOT4:
aTx ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829

−1.526049x830 − 0.031883x849 − 28.725555x850 − 10.792065x851
−0.19004x852 − 2.757176x853 − 12.290832x854 + 717.562256x855
−0.057865x856 − 3.785417x857 − 78.30661x858 − 122.163055x859
−6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863
−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870
−0.401597x871 + x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

The related nonzero coordinates in the optimal solu-

tion x∗ of the problem, as reported by CPLEX, are:
x∗826 = 255.6112787181108 x∗827 = 6240.488912232100
x∗828 = 3624.613324098961 x∗829 = 18.20205065283259
x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

This solution makes the constraint an equality within

machine precision.

♣ Most of the coefficients in the constraint are “ugly

reals” like -15.79081 or -84.644257. We can be sure

that these coefficients characterize technological de-

vices/processes, and as such hardly are known to high
accuracy.

⇒ “ugly coefficients” can be assumed uncertain and

coinciding with the “true” data within accuracy of 3-4

digits.

The only exception is the coefficient 1 of x880,

which perhaps reflects the structure of the problem

and is exact.

aTx ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829
−1.526049x830 − 0.031883x849 − 28.725555x850 − 10.792065x851
−0.19004x852 − 2.757176x853 − 12.290832x854 + 717.562256x855
−0.057865x856 − 3.785417x857 − 78.30661x858 − 122.163055x859
−6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863
−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870
−0.401597x871 + x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

♣ Assume that the uncertain entries of a are 0.1%-

accurate approximations of unknown entries in the

“true” data ã. How does data uncertainty affect the

validity of the constraint as evaluated at the nominal so-
lution x∗?
• The worst case, over all 0.1%-perturbations of un-

certain data, violation of the constraint is as large as

450% of the right hand side!

•With random and independent of each other 0.1% per-

turbations of the uncertain coefficients, the statistics

of the “relative constraint violation”

V = max[b−ãTx∗,0]
b × 100%

also is disastrous:
Prob{V > 0} Prob{V > 150%} Mean(V)

0.50 0.18 125%
Relative violation of constraint # 372 in PILOT4

(1,000-element sample of 0.1% perturbations)

♣We see that quite small (just 0.1%) perturbations of “obvi-
ously uncertain” data coefficients can make the “nominal” opti-
mal solution x∗ heavily infeasible and thus – practically mean-
ingless.

♣ In Case Study, we choose a “perturbation level”

ρ ∈ {1%,0.1%,0.01%}, and, for every one of the

NETLIB problems, measure the “reliability index” of the

nominal solution at this perturbation level:

• We compute the optimal solution x∗ of the pro-

gram

• For every one of the inequality constraints

aTx ≤ b
— we split the left hand side coefficients aj into “cer-

tain” (rational fractions p/q with |q| ≤ 100) and “un-

certain” (all the rest). Let J be the set of all uncertain

coefficients of the constraint.

— we compute the reliability index of the constraint
max[aTx∗+ρ

√∑
j∈J a

2
j (x∗j)

2−b,0]

max[1,|b|] × 100%

Note: the reliability index is of order of typical violation (mea-

sured in percents of the right hand side) of the con-
straint, as evaluated at x∗, under independent random pertur-
bations, of relative magnitude ρ, of the uncertain coefficients.

• We treat the nominal solution as unreliable, and

the problem - as bad, the level of perturbations being

ρ, if the worst, over the inequality constraints, relia-

bility index is worse than 5%.

♣ The results of the Diagnosis phase of Case Study
are as follows.
• From the total of 90 NETLIB problems processed,
— in 27 problems the nominal solution turned out to
be unreliable at the largest (ρ = 1%) level of uncer-
tainty;
— 19 of these 27 problems were already bad at the
0.01%-level of uncertainty
— in 13 problems, 0.01% perturbations of the uncer-
tain data can make the nominal solution more than
50%-infeasible for some of the constraints.

Problem Sizea) ρ = 0.01% ρ = 0.1%
#badb) Indexc) #bad Index

80BAU3B 2263× 9799 37 84 177 842
25FV47 822× 1571 14 16 28 162
ADLITTLE 57× 97 2 6
AFIRO 28× 32 1 5
CAPRI 272× 353 10 39
CYCLE 1904× 2857 2 110 5 1,100
D2Q06C 2172× 5167 107 1,150 134 11,500
FINNIS 498× 614 12 10 63 104
GREENBEA 2393× 5405 13 116 30 1,160
KB2 44× 41 5 27 6 268
MAROS 847× 1443 3 6 38 57
PEROLD 626× 1376 6 34 26 339
PILOT 1442× 3652 16 50 185 498
PILOT4 411× 1000 42 210,000 63 2,100,000
PILOT87 2031× 4883 86 130 433 1,300
PILOTJA 941× 1988 4 46 20 463
PILOTNOV 976× 2172 4 69 13 694
PILOTWE 723× 2789 61 12,200 69 122,000
SCFXM1 331× 457 1 95 3 946
SCFXM2 661× 914 2 95 6 946
SCFXM3 991× 1371 3 95 9 946
SHARE1B 118× 225 1 257 1 2,570

a) # of linear constraints (excluding the box ones) plus 1
and # of variables

b) # of constraints with index > 5%
c) The worst, over the constraints, reliability index, in %

♣ Conclusions:
♦ In real-world applications of Linear Programming one can-
not ignore the possibility that a small uncertainty in the data
(intrinsic for the majority of real-world LP programs)

can make the usual optimal solution of the problem completely
meaningless from practical viewpoint.
Consequently,

♦ In applications of LP, there exists a real need of a technique
capable of detecting cases when data uncertainty can heavily
affect the quality of the nominal solution, and in these cases
to generate a “reliable” solution, one which is immune against
uncertainty.
Robust LO is aimed at meeting this need.

Robust LO: Paradigm

♣ In Robust LO, one considers an uncertain LO problem

P =
{

max
x

{
cTx : Ax ≤ b

}
: (c, A, b) ∈ U

}
,

— a family of all usual LO instances of common sizes

m (number of constraints) and n (number of vari-

ables) with the data (c, A, b) running through a given

uncertainty set U ⊂ Rnc × Rm×nA × Rmb .

♠ We consider the situation where

• The solution should be built before the “true” data reveals
itself and thus cannot depend on the true data. All we know

when building the solution is the uncertainty set U to

which the true data belongs.

• The constraints are hard: we cannot tolerate their violation.
♠ In the outlined “decision environment,” the only

meaningful candidate solutions x are the robust feasible
ones – those which remain feasible whatever be a realization
of the data from the uncertainty set:

x ∈ Rn is robust feasible for P
⇔ Ax ≤ b ∀(c, A, b) ∈ U

♥ We characterize the objective at a candidate solu-

tion x by the guaranteed value

t(x) = min{cTx : (c, A, b) ∈ U}

of the objective.

P =
{

max
x

{
cTx : Ax ≤ b

}
: (c, A, b) ∈ U

}
,

♥ Finally, we associate with the uncertain problem P
its Robust Counterpart

ROpt(P)

= max
t,x

{
t : t ≤ cTx, Ax ≤ b ∀(c, A, b) ∈ U

}
(RC)

where one seeks for the best (with the largest guaran-
teed value of the objective) robust feasible solution to

P.

The optimal solution to the RC is treated as the

best among “immunized against uncertainty” solu-

tions and is recommended for actual use.

Basic question: Unless the uncertainty set U is finite, the RC
is not an LO program, since it has infinitely many linear con-
straints. Can we convert (RC) into an explicit LO program?

P =
{

max
x

{
cTx : Ax ≤ b

}
: (c, A, b) ∈ U

}
⇒ max

t,x

{
t : t ≤ cTx, Ax ≤ b∀(c, A, b) ∈ U

}
(RC)

Observation: The RC remains intact when the uncertainty
set U is replaced with its convex hull.
Theorem: The RC of an uncertain LO program with nonempty
polyhedrally representable uncertainty set is equivalent to an
LO program. Given a polyhedral representation of U , the LO
reformulation of the RC is easy to get.

P =
{

max
x

{
cTx : Ax ≤ b

}
: (c, A, b) ∈ U

}
⇒ max

t,x

{
t : t ≤ cTx, Ax ≤ b ∀(c, A, b) ∈ U

}
(RC)

Proof of Theorem. Let

U = {ζ = (c, A, b) ∈ RN : ∃w : Pζ +Qw ≤ r}
be a polyhedral representation of the uncertainty set.

Setting y = [x; t], the constraints of (RC) become

qi(ζ)− pTi (ζ)y ≤ 0∀ζ ∈ U , 0 ≤ i ≤ m (Ci)

with pi(·), qi(·) affine in ζ. We have

qi(ζ)− pTi (ζ)y ≡ πTi (y)ζ − θi(y),

with θi(y), πi(y) affine in y. Thus, i-th constraint in

(RC) reads

max
ζ,wi

{
πTi (y)ζ : Pζ +Qwi ≤ r

}
= max

ζ∈U
πTi (y)ζ ≤ θi(y).

Since U 6= ∅, by the LO Duality we have
max
ζ,wi

{
πTi (y)ζ : Pζ +Qwi ≤ r

}
= min

ηi

{
rTηi : ηi ≥ 0, P Tηi = πi(y), QTηi = 0

}
⇒ y satisfies (Ci) if and only if there exists ηi such that

ηi ≥ 0, P Tηi = πi(y), QTηi = 0, rTηi ≤ θi(y) (Ri)

⇒ (RC) is equivalent to the LO program of maximizing
eTy ≡ t in variables y, η0, η1, ..., ηm under the linear con-
straints (Ri), 0 ≤ i ≤ m.

♠ Example: The Robust Counterpart of uncertain LO
with interval uncertainty:

Uobj = {c : |cj − c0
j | ≤ δcj, j = 1, ..., n}

Ui = {(ai1, , , .aim, bi) : |aij − a0
ij| ≤ δaij, |bi − b0

i | ≤ δbi}

is the LO program

max
x,y,t

t :

∑
j
c0j xj −

∑
j
δcjyj ≥ t∑

j
a0
ijxj +

∑
j
δaijyj ≤ bi − δb0i

−yj ≤ xj ≤ yj



How it works? – Antenna Example
min
x,τ

{
τ : −τ ≤ D∗(θ`)−

∑10
j=1 xjDj(θ`) ≤ τ, ` = 1, ..., L

}
m

min
x,τ
{τ : Ax+ τa+ b ≥ 0} (LO)

• The influence of “implementation errors”

xj 7→ (1 + εj)xj
with |εj| ≤ ρ ∈ [0,1] is as if there were no implementa-

tion errors, but the part A of the constraint matrix was

uncertain and known “up to multiplication by a diag-

onal matrix with diagonal entries from [1− ρ,1 + ρ]”:

U =
{
A = AnomDiag{1 + ε1, ...,1 + ε10} : |εj| ≤ ρ

}
(U)

Note that as far as a particular constraint is concerned, the
uncertainty is an interval one with δAij = ρ|Aij|. The remain-
ing coefficients (and the objective) are certain.
♣ To improve reliability of our design, we replace the

uncertain LO program (LO), (U) with its robust coun-

terpart, which is nothing but an explicit LO program.

How it Works: Antenna Design (continued)
min
τ,x

{
τ : −τ ≤ D∗(θi)−

∑10
j=1 xjDj(θi) ≤ τ, 1 ≤ i ≤ I

}
xj 7→ (1 + εj)xj, −ρ ≤ εj ≤ ρ

⇓

min
τ,x

{
τ :

D∗(θi)−
∑

j xjDj(θi)−ρ
∑
j

|xj||Dj(θi)| ≥ −τ

D∗(θi)−
∑

j xjDj(θi)+ρ
∑

j |xj||Dj(θi)| ≤ τ
, 1 ≤ i ≤ I

}

♠ Solving the Robust Counterpart at uncertainty level

ρ = 0.01, we arrive at robust design. The robust op-

timal value is 0.0815 (39% more than the nominal

optimal value 0.0589).

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ρ = 0.01 ρ = 0.05 ρ = 0.1
Robust optimal design: samples of 100 actual diagrams (red).

Reality
ρ = 0.01 ρ = 0.1

‖ · ‖∞
distance
to target

max = 0.081
mean = 0.077

max = 0.216
mean = 0.113

energy
concentration

min = 70.3%
mean = 72.3%

min = 52.2%
mean = 70.8%

Robust optimal design, data over 100 samples of actuation errors.

• For nominal design with ρ = 0.001, the average ‖ · ‖∞-distance to target is

56.8, and average energy concentration is 16.5%.

♣ Why the “nominal design” is that unreliable?
• The basic diagrams Dj(·) are “nearly linearly depen-
dent”. As a result, the nominal problem is “ill-posed”
– it possesses a huge domain comprised of “nearly op-
timal” solutions. Indeed, look what are the optimal
values in the nominal Antenna Design LO with added
box constraints |xj| ≤ L on the variables:

L 1 10 102 103 104 105 106

Opt Val 0.0945 0.0800 0.0736 0.0696 0.0659 0.0627 0.0622

The “exactly optimal” solution to the nominal prob-

lem is very large, and therefore even small relative im-

plementation errors may completely destroy the de-

sign.

• In the robust counterpart, magnitudes of candidate

solutions are penalized, and RC implements a smart

trade-off between the optimality and the magnitude

(i.e., the stability) of the solution.
j 1 2 3 4 5 6 7 8 9 10

xnom
j 2e3 -1e4 6e4 -1e5 1e5 2e4 -1e5 1e6 -7e4 1e4
xrob
j -0.3 5.0 -3.4 -5.1 6.9 5.5 5.3 -7.5 -8.9 13

How it works? NETLIB Case Study

♣ When applying the RO methodology to the bad

NETLIB problems, assuming interval uncertainty of (rel-

ative) magnitude ρ ∈ {1%,0.1%,0.01%} in “ugly coef-

ficients” of inequality constraints (no uncertainty in equa-
tions!), it turns out that

• Reliable solutions do exist, except for 4 cases corre-

sponding to the highest (ρ = 1%) perturbation level.

• The “price of immunization” in terms of the ob-

jective value is surprisingly low: when ρ ≤ 0.1%, it

never exceeds 1% and it is less than 0.1% in 13 of

23 cases. Thus, passing to the robust solutions, we gain a
lot in the ability of the solution to withstand data uncertainty,
while losing nearly nothing in optimality.

Objective at robust solution

Problem
Nominal
optimal

value
ρ = 0.1% ρ = 1%

80BAU3B 987224.2 1009229 (2.2%)
25FV47 5501.846 5502.191 (0.0%) 5505.653 (0.1%)
ADLITTLE 225495.0 228061.3 (1.1%)
AFIRO -464.7531 -464.7500 (0.0%) -464.2613 (0.1%)
BNL2 1811.237 1811.237 (0.0%) 1811.338 (0.0%)
BRANDY 1518.511 1518.581 (0.0%)
CAPRI 1912.621 1912.738 (0.0%) 1913.958 (0.1%)
CYCLE 1913.958 1913.958 (0.0%) 1913.958 (0.0%)
D2Q06C 122784.2 122893.8 (0.1%) Infeasible
E226 -18.75193 -18.75173 (0.0%)
FFFFF800 555679.6 555715.2 (0.0%)
FINNIS 172791.1 173269.4 (0.3%) 178448.7 (3.3%)
GREENBEA -72555250 -72192920 (0.5%) -68869430 (5.1%)
KB2 -1749.900 -1749.638 (0.0%) -1746.613 (0.2%)
MAROS -58063.74 -58011.14 (0.1%) -57312.23 (1.3%)
NESM 14076040 14172030 (0.7%)
PEROLD -9380.755 -9362.653 (0.2%) Infeasible
PILOT -557.4875 -555.3021 (0.4%) Infeasible
PILOT4 -64195.51 -63584.16 (1.0%) -58113.67 (9.5%)
PILOT87 301.7109 302.2191 (0.2%) Infeasible
PILOTJA -6113.136 -6104.153 (0.2%) -5943.937 (2.8%)
PILOTNOV -4497.276 -4488.072 (0.2%) -4405.665 (2.0%)
PILOTWE -2720108 -2713356 (0.3%) -2651786 (2.5%)
SCFXM1 18416.76 18420.66 (0.0%) 18470.51 (0.3%)
SCFXM2 36660.26 36666.86 (0.0%) 36764.43 (0.3%)
SCFXM3 54901.25 54910.49 (0.0%) 55055.51 (0.3%)
SHARE1B -76589.32 -76589.32 (0.0%) -76589.29 (0.0%)

Objective values at nominal and robust solutions to bad
NETLIB problems.
Percent in (·): Excess of robust optimal value over the
nominal optimal value

Quiz: Alicubi is a small country in Africa. All n = 128

types of diary products consumed by the population

are supplied by a single company Diary Co which fre-

quently and abruptly changes the prices of its prod-

ucts. There is, however, Consumer Protection Law

stating that whenever buying m = 5 distinct from

each other diary products, in unit amount each, the

total cost cannot exceed 5 Alicubi dollars (AD).

Mr. Nemo wants to order diaries. His utility function

to be maximized is
u =

∑n
i=1 pixi

• pi ≥ 0: per unit “utility” of diary # i • xi: order for diary # i

and he wants to maximize the utility by selecting or-

der x = [x1; ...;x128] under the constraints that

• x ≥ 0

•Whatever be the diary prices (obeying the Consumer

Protection Law) at the time of order’s delivery, Mr.

Nemo’s AD 1 will be enough to pay the bill.

(?) How Mr. Nemo should act?

♠ Mr. Nemo should solve the Robust Optimization

problem

max
x∈Rn

{
pTx : x ≥ 0, cTx ≤ 1 ∀c ∈ Um

}
[n = 128]

where Um is the set of all price vectors obeying the

Consumer Protection Law:

Um = {c ∈ Rn : c ≥ 0, cj1 + cj2 + ...+ cjm ≤ m
for all 1 ≤ j1 < j2 < ... < jm ≤ n}

[m = 5]

• The uncertainty set is polyhedral ⇒ Mr. Nemo’s prob-
lem can be converted to LO
But: Um is given by a huge number of linear inequal-

ities. Can we find a “compact” polyhedral representation of
Um ?

Um = {c ∈ Rn : c ≥ 0, cj1 + cj2 + ...+ cjm ≤ m
for all 1 ≤ j1 < j2 < ... < jm ≤ n}

[m = 5]

(?) Can we find a “compact” polyhedral representation of Um
?
Observation: Um = {c ≥ 0 : eT c ≤ m for all e ∈ E}
• E: the set of all Boolean vectors from Rn with m

nonzero entries

♠ As we know, E is exactly the set of all extreme

points of the polytope

Y = {y ∈ Rn : 0 ≤ yj ≤ 1∀j,
∑n
j=1 yj = m}

⇒ Um is the set

{c ∈ Rn+ :

(∗)︷ ︸︸ ︷
max
y

{
cTy : −y ≤︸︷︷︸

u

0, y ≤︸︷︷︸
v

[1; ...; 1],
∑

j
yj =︸︷︷︸

w

m
}
≤ m}

=

{
c ∈ Rn+ : min

u,v,w
{mw +

∑
jvj : w[1; ...; 1] + v − u = c, u ≥ 0, v ≥ 0}≤ m

}
[we have passed to the dual of (∗)]

=

{
c ∈ Rn+ : min

u,v,w
{mw +

∑
jvj : w[1; ...; 1] + v ≥ c, v ≥ 0}≤ m

}
=
{
c ∈ Rn+ : ∃v, w : c ≤ w[1; ...; 1] + v, v ≥ 0,

∑
j vj +mw ≤ m

}

• Mr. Nemo’s problem becomes
maxx pTx

s.t. x ≥ 0

maxc,v,w


xT c :



c− v − w[1; ...1] ≤︸︷︷︸
q

0

−c ≤︸︷︷︸
r

0, −v ≤︸︷︷︸
s

0

[1; ...; 1]Tv +mw =︸︷︷︸
t

m


≤ 1

⇔ min
q,r,s,t

mt :


q − r = x, q + s = t[1; ...; 1]

[1; ...; 1]T q = mt
q ≥ 0, r ≥ 0, s ≥ 0

 ≤ 1

⇔ min
q

{∑n
j=1 qj : q ≥ x, q ≥ 0, qj ≤

∑
k qk
m , 1 ≤ j ≤ n

}
≤ 1

⇔ ∃q : q ≥ x, q ≥ 0,
∑
j qj ≤ 1, qj ≤

∑
k qk
m ,1 ≤ j ≤ n

⇔ ∃q : q ≥ x, q ≥ 0,
∑n
j=1 qj = 1, qj ≤ 1

m, 1 ≤ j ≤ n
or, which is the same,

max
x
{
∑n
j=1 pjxj : 0 ≤ xj ≤ 1

m ∀j,
∑n
j=1 xj ≤ 1}

• Since pj ≥ 0 for all j, a robustly optimal order is to
request 1

m = 1
5 units of every one of the m = 5 most useful

for Mr. Nemo (with the largest pj) diaries and zero amounts
of all other diaries. The robust optimal value in Mr. Nemo’s
problem is the average of the 5 largest pj ’s.

Affinely Adjustable Robust Counterpart

♣ The rationale behind the Robust Optimization

paradigm as applied to LO is based on two assump-

tions:

A. Constraints of an uncertain LO program is a “must”: a
meaningful solution should satisfy all realizations of the con-
straints allowed by the uncertainty set.
B. All decision variables should be defined before the true
data become known and thus should be independent of the
true data.
♣ In many cases, Assumption B is too conservative:

• In dynamical decision-making, only part of deci-

sion variables correspond to “here and now” decisions,

while the remaining variables represent “wait and see”

decisions to be made when part of the true data will

be already revealed.

(!) “Wait and see” decision variables may – and should! –
depend on the corresponding part of the true data.
• Some of decision variables do not represent actual

decisions at all; they are artificial “analysis variables”

introduced to convert the problem into the LO form.

(!) Analysis variables may – and should! – depend on the
entire true data.

Example: Consider the problem of the best ‖ · ‖1-

approximation

min
x,t

t :
∑
i

|bi −
∑
j

aijxj| ≤ t

 . (P)

When the data are certain, this problem is equivalent

to the LP program

min
x,y,t

t :
∑
i

yi ≤ t, −yi ≤ bi −
∑
j

aijxj ≤ yi ∀i

 . (LP)

With uncertain data, the Robust Counterpart of (P)

becomes the semi-infinite problem

min
x,t

t :
∑
i

|bi −
∑
j

aijxj| ≤ t ∀(bi, aij) ∈ U

,
or, which is the same, the problem

min
x,t

t : ∀(bi, aij) ∈ U : ∃y :
∑
i

yi ≤ t, −yi ≤ bi −
∑
j

aijxj ≤ yi

,
while the RC of (LP) is the much more conservative
problem

min
x,t

t : ∃y : ∀(bi, aij) ∈ U :
∑
i

yi ≤ t, −yi ≤ bi −
∑
j

aijxj ≤ yi

.

Adjustable Robust Counterpart of an Uncertain LO

♣ Consider an uncertain LO. Assume w.l.o.g. that the

data of LO are affinely parameterized by a “pertur-

bation vector” ζ running through a given perturbation
set Z:

LP =
{

max
x

{
cT [ζ]x : A[ζ]x− b[ζ] ≤ 0

}
: ζ ∈ Z

}
[
cj[ζ], Aij[ζ], bi[ζ] : affine in ζ

]
♠ Assume that every decision variable may depend

on a given “portion” of the true data. Since the latter

is affine in ζ, this assumption says that xj may depend
on Pjζ, where Pj are given matrices.

• Pj = 0 ⇒ xj is non-adjustable: xj represents an inde-

pendent of the true data “here and now” decision;

• Pj 6= 0 ⇒ xj is adjustable: xj represents a “wait and

see’ decision or an analysis variable which may adjust

itself – fully or partially, depending on Pj – to the true

data.

LP =
{

max
x

{
cT [ζ]x : A[ζ]x− b[ζ] ≤ 0

}
: ζ ∈ Z

}
[
cj[ζ], Aij[ζ], bi[ζ] : affine in ζ

]
♣ Under circumstances, a natural Robust Counter-

part of LP is the problem

Find t and functions φj(·) such that the decision rules
xj = φj(Pjζ) make all the constraints feasible for all
perturbations ζ ∈ Z, while minimizing the guaran-
teed value t of the objective:

max
t,{φj(·)}

t :

∑
j
cj[ζ]φj(Pjζ) ≥ t ∀ζ ∈ Z∑

j
φj(Pjζ)Aj[ζ]− b[ζ] ≤ 0∀ζ ∈ Z


(ARC)

♣ Bad news: The Adjustable Robust Counterpart

max
t,{φj(·)}

t :

∑
j
cj[ζ]φj(Pjζ) ≥ t ∀ζ ∈ Z∑

j
φj(Pjζ)Aj[ζ]− b[ζ] ≤ 0 ∀ζ ∈ Z


(ARC)

of uncertain LP is an infinite-dimensional optimization

program and as such typically is absolutely intractable:

How could we represent efficiently general-type func-

tions of many variables, not speaking about how to

optimize with respect to these functions?

♠ Partial Remedy (???): Let us restrict the decision

rules xj = φj(Pjζ) to be easily representable – specif-

ically, affine – functions:

φj(Pjζ) ≡ µj + νTj Pjζ.

With this dramatic simplification, (ARC) becomes a

finite-dimensional (still semi-infinite) optimization problem
in new non-adjustable variables µj, νj

max
t,{µj,νj}

t :

∑
j
cj[ζ](µj + νTj Pjζ) ≥ t ∀ζ ∈ Z∑

j
(µj + νTj Pjζ)Aj[ζ]− b[ζ] ≤ 0 ∀ζ ∈ Z


(AARC)

♣ We have associated with uncertain LO

LP =
{

max
x

{
cT [ζ]x : A[ζ]x− b[ζ] ≤ 0

}
: ζ ∈ Z

}
[
cj[ζ], Aij[ζ], bi[ζ] : affine in ζ

]
and the “information matrices” P1, ..., Pn the Affinely
Adjustable Robust Counterpart

max
t,{µj,νj}

t :

∑
j
cj[ζ](µj + νTj Pjζ) ≥ t ∀ζ ∈ Z∑

j
(µj + νTj Pjζ)Aj[ζ]− b[ζ] ≤ 0 ∀ζ ∈ Z


(AARC)

♠ Relatively good news:
• AARC is by far more flexible than the usual (non-
adjustable) RC of LP.
• As compared to ARC, AARC has much more
chances to be computationally tractable:
— In the case of simple recourse, where the coefficients
of adjustable variables are certain, AARC has the
same tractability properties as RC:
If the perturbation set Z is given by polyhedral representation,
(AARC) can be straightforwardly converted into an explicit
LO program.
— In the general case, (AARC) may be computation-
ally intractable; however, under mild assumptions on
the perturbation set, (AARC) admits “tight” compu-
tationally tractable approximation.

♣ Example: simple Inventory model. There is a single-

product inventory system with

• a single warehouse which should at any time store

at least Vmin and at most Vmax units of the product;

• uncertain demands dt of periods t = 1, ..., T known to

vary within given bounds:

dt ∈ [d∗t (1− θ), d∗t (1 + θ)], t = 1, ..., T
• θ ∈ [0,1]: uncertainty level

No backlogged demand is allowed!
• I factories from which the warehouse can be replen-

ished:

— at the beginning of period t, you may order pt,i
units of product from factory i. Your orders should

satisfy the constraints

0 ≤ pt,i ≤ Pi(t) [bounds on capacities per period]∑
t
pt,i ≤ Qi [bounds on cumulative capacities]

— an order is executed with no delay

— order pt,i costs you ci(t)pt,i.

• The goal: to minimize the total cost of the orders.

♠ With certain demand, the problem can be modeled as

the LO program

min
pt,i,:i≤I,t≤T,
vt,2≤t≤T+1

∑
t,i
ci(t)pt,i [total cost]

s.t.

vt+1 − vt −
∑
i
pt,i = dt, t = 1, ..., T

[
state equations

(v1 is given)

]
Vmin ≤ vt ≤ Vmax,2 ≤ t ≤ T + 1 [bounds on states]

0 ≤ pt,i ≤ Pi(t), i ≤ I, t ≤ T [bounds on orders]∑
t
pt,i ≤ Qi, i ≤ I

[
cumulative bounds

on orders

]
♠ With uncertain demand, it is natural to assume that

the orders pt,i may depend on the demands of the

preceding periods 1, ..., t − 1. The analysis variables vt
are allowed to depend on the entire actual data. In

fact, it suffices to allow for vt to depend on d1, ..., dt−1.

♠ Applying the AARC methodology, we make pt,i and

vt affine functions of past demands:

pt,i = φ0
t,i +

∑
1≤τ<t

φτt,idτ

vt = ψ0
t +

∑
1≤τ<t

ψτt dτ

• φ’s and ψ’s are our new decision variables...

min{pt,i,vt}
∑
t,i

ci(t)pt,i s.t.

vt+1 − vt −
∑
i

pt,i = dt, t = 1, ..., T

Vmin ≤ vt ≤ Vmax,2 ≤ t ≤ T + 1
0 ≤ pt,i ≤ Pi(t), i ≤ I, t ≤ T∑
t
pt,i ≤ Qi, i ≤ I

pt,i = φ0
t,i +

∑
1≤τ<t

φτt,idτ

vt = ψ0
t +

∑
1≤τ<t

ψτt dτ

♠ The AARC is the following semi-infinite LO in non-

adjustable decision variables φ’s and ψ’s:
minC,{φτt,i,ψτ

t }C s.t.∑
t,i

ci(t)

[
φ0
t,i +

∑
1≤τ<t

φτt,idτ

]
≤ C[

ψ0
t+1 +

t∑
τ=1

ψτt+1dτ

]
−
[
ψ0
t +

t−1∑
τ=1

ψτt dτ

]
−
∑
i

[
φ0
t,i +

t−1∑
τ=1

φτt,idτ

]
= dt

Vmin ≤
[
ψ0
t +

t−1∑
τ=1

ψτt dτ

]
≤ Vmax

0 ≤
[
φ0
t,i +

t−1∑
τ=1

φτt,idτ

]
≤ Pi(t)∑

t

[
φ0
t,i +

t−1∑
τ=1

φτt,idτ

]
≤ Qi

• The constraints should be valid for all values of

“free” indexes and all demand trajectories d = {dt}Tt=1
from the “demand uncertainty box”
D = {d : d∗t (1− θ) ≤ dt ≤ d∗t (1 + θ),1 ≤ t ≤ T}.

♠ The AARC can be straightforwardly converted to a usual LP
and easily solved.

♣ In the numerical illustration to follow:

• the planning horizon is T = 24

• there are I = 3 factories with per period capacities

Pi(t) = 567 and cumulative capacities Qi = 13600

• the nominal demand d∗t is seasonal:

0 5 10 15 20 25 30 35 40 45 50
400

600

800

1000

1200

1400

1600

1800

d∗t = 1000
(
1 + 0.5 sin

(
π(t−1)

12

))
• the ordering costs also are seasonal:

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

ci(t) = ci
(
1 + 0.5 sin

(
π(t−1)

12

))
, c1 = 1, c2 = 1.5, c3 = 2

• v1 = Vmin = 500, Vmax = 2000

• demand uncertainty θ = 20%

♣ Results:
• Opt(AARC) = 35542.

Note: The non-adjustable RC is infeasible already at

5% uncertainty level!

• With uniformly distributed in the range ±20% de-

mand perturbations, the average, over 100 simula-

tions, AARC management cost is 35121.

Note: Over the same 100 simulations, the average

“utopian” management cost (optimal for a priori known
demand trajectories) is 33958, i.e., is by just 3.5% (!)

less than the average AARC management cost.

♣ Comparison with Dynamic Programming. When ap-
plicable, DP is the technique for dynamical decision-

making under uncertainty – in (worst-case-oriented)

DP, one solves the Adjustable Robust Counterpart of

uncertain LO, with no ad hoc simplifications like “let us re-
strict ourselves with affine decision rules.”
♠ Unfortunately, DP suffers from “curse of dimension-
ality” – with DP, the computational effort blows up

rapidly as the state dimension of the dynamical pro-

cess grows. Usually state dimension 4 is already “too

big”.

Note: There is no “curse of dimensionality” in AARC!

Quiz: What is state dimension in our toy inventory model?
However: Reducing the number of factories to 1, in-

creasing the per period capacity of the remaining fac-

tory to 1800 and making its cumulative capacity +∞,

we reduce the state dimension to 1 and make DP eas-

ily implementable. With this setup,

• the DP (that is, the “absolutely best”) optimal value

is 31270

• the AARC optimal value is 31514 – just by 0.8%

worse!

ALGORITHMS OF LINEAR OPTIMIZATION

♣ The existing algorithmic “working horses” of LO

fall into two major categories:

♠ Pivoting methods, primarily the Simplex-type algo-
rithms which heavily exploit the polyhedral structure of

LO programs, in particular, move along the vertices

of the feasible set.

♠ Interior Point algorithms, primarily the Primal-
Dual Path-Following Methods, much less “polyhedrally

oriented” than the pivoting algorithms and, in par-

ticular, traveling along interior points of the feasible

set of LO rather than along its vertices. In fact, IPM’s

have a much wider scope of applications than LO.

♠ Theoretically speaking (and modulo rounding er-

rors), pivoting algorithms solve LO programs exactly
in finitely many arithmetic operations. The operation

count, however, can be astronomically large already

for small LO’s.

In contrast to the disastrously bad theoretical worst-

case-oriented performance estimates, Simplex-type al-
gorithms seem to be extremely efficient in practice. In 1940’s

— early 1990’s these algorithms were, essentially, the
only LO solution techniques.

♠ Interior Point algorithms, discovered in 1980’s, en-

tered LO practice in 1990’s. These methods combine

high practical performance (quite competitive with

the one of pivoting algorithms) with nice theoretical

worst-case-oriented efficiency guarantees.

Simplex Method – Executive Summary

S.I. Simplex method works with an LO problem in the

standard form
Opt(P) = maxx

{
cTx : Ax = b, x ≥ 0

}
(P)

Standing Assumption:
• A is an m× n matrix with linearly independent rows.
⇒ The system of linear equationsAx = b has a solution (not

necessary nonnegative).

Note: This assumption is not restrictive: checking

whether a system of linear equations is solvable is an

easy task of Linear Algebra. When this is the case,

it is equally easy to eliminate from A, one by one,

rows which are linear combinations of the remaining

rows, and this does not affect the solution set of the

system.

Terminology: The set {x : Ax = b} of solutions to the

system of primal equations will be called the primal
feasible plane.

Opt(P) = maxx

cTx : Ax =︸︷︷︸
λe

b, x ≥︸︷︷︸
λg

0

 (P)

S.2. The problem dual to (P) reads
Opt(D) = min

λ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

Terminology: The set {λ = [λg;λe] : λg = c − ATλ`}
of solutions to the system of dual equations will be
called the dual feasible plane. It always is nonempty.
Fact: Under Standing Assumption, primal and dual feasible
sets do not contain lines. (why?) ⇒ If (P), (D) are solv-
able, among the optimal solutions x∗, λ∗ there are
those which are extreme points of the respective fea-
sible sets.
Fact: By Optimality Conditions, a pair

(x, λ = [λg;λe])
of feasible solutions to (P), (D) is comprised of opti-
mal solutions to the respective problems iff the solu-
tions are complementary:

(λg)jxj = 0, j = 1, ..., n.

Intermediate Summary:
• In order to find optimal solutions to (P), (D), we
need to ensure primal-dual feasibility and complementarity.
• When achieving this goal, we can work with candi-
dates to the role of extreme point solutions. The key
role in the description of these candidates is played by
the notion of a basis of A.

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

Definition: A subset J of m distinct from each other indexes
of columns in the m × n matrix A is called basis, if these m
columns Aj, j ∈ J , are linearly independent or, which is the
same, the m×m submatrix

AJ = [Aj1, Aj2, ..., Ajm]
[J = {j1, ..., jm}, Aj is j-th column of A]

is invertible.
Simple facts: For every basis J of A, there exists

— exactly one solution xJ to the system Ax = b of primal
equations for which all nonbasic – with indexes not from J –
entries are zeros. This solution is called basic primal so-
lution associated with basis J.

The basic part of xJ is [AJ]−1b.

— exactly one solution λJ = [λJg ;λJe] to the system λg =

c − ATλe of dual equations for which all basic entries in λg
are zero. This solution is called basic dual solution as-

sociated with basis J, and its λg-component is called

vector of reduced costs associated with J.

λJ is given by λJe = [ATJ]−1cJ, λJg = c−ATλJe , where cJ is comprised

of basic entries of c (those with indexes from J).

♠ Important observation: Basic primal and dual solu-

tions associated with the same basis always are com-

plementary.

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

S.III. Crucial fact: Under Standing Assumptions, the extreme
points of the primal and the dual feasible sets are “parameter-
ized” by bases of A:
• extreme points of the primal feasible set are exactly basic
primal solutions which happen to be primal feasible (i.e., non-
negative);
• extreme points of the dual feasible set are exactly basic dual
solutions which happen to be dual feasible (i.e., to have non-
positive reduced costs).

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

S.IV. Simplex strategy:
♠ In the Primal Simplex method, we build a sequence

of feasible basic primal solutions along with sequence of

(perhaps infeasible) basic dual solutions associated

with the same bases (and thus complementary to our

primal solutions).

• The consecutive bases we build are neighbouring:

each time we drop out one “old” basic index and make

basic one “old” nonbasic index.

• The process terminates when

— either the current basic dual solution becomes fea-

sible ⇒ we get a pair of complementary primal-dual

feasible (and thus optimal) solutions

— or unboundedness of (P) (i.e., infeasibility of (D))

is discovered.

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

Simplex strategy (continued):
♠ In the Dual Simplex method, we build a sequence of

feasible basic dual solutions along with sequence of (per-

haps infeasible) basic primal solutions associated with

the same bases (and thus complementary to our dual

solutions).

• The consecutive bases we build are neighbouring.

• The process terminates when

— either the current basic primal solution becomes

feasible ⇒ we end up with a pair of primal-dual feasi-

ble complementary (and thus optimal) solutions

— or unboundedness of (D) (and thus infeasibility of

(P)) is discovered.

Implementing the Strategy: Primal Simplex

♠ At the beginning of a step, we have at our disposal

• current basis J

• associated with J feasible basic primal solution x̄

♠ We start the step with computing the associated

with J basic dual solution λ̄, in particular, the vector

of reduced costs λ̄g.

♥ It may happen that λ̄ is dual feasible: λ̄g ≤ 0 ⇒ we
have a complementary pair of primal-dual feasible (and thus –
primal-dual optimal) solutions x̄, λ̄ and terminate.
Otherwise we proceed with the step.

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

Situation: We have at our disposal basis J, associated feasible

basic primal solution x̄, and associated vector λ̄g of reduced costs

with some of the reduced costs positive.

♠ We select index j∗ of a positive reduced cost, and

try to pass to a better feasible primal solution.

Note: j∗ is nonbasic (basic reduced costs are zeros!)

Note: When replacing the original costs c with the vec-

tor of reduced costs λ̄g, we get an equivalent problem:

on the entire primal feasible plane, the objective is just

shifted by a constant.

Indeed, λ̄g differs from c by a linear combination of

rows ai of A, and the linear forms aTi x are constant

on the primal feasible plane.

• Let us try to replace the j∗-th entry in x̄ (which

is zero) with some t ≥ 0, compensating this change by
updating basic entries in x̄ in order to satisfy the primal equa-
tions. We get a ray {x(t) : t ≥ 0} in the primal feasible

plane such that
basic part xJ(t) of x(t) is affine in t
xj∗(t) ≡ t
xj(t) ≡ 0 for all nonbasic j different from j∗

Note: When moving along the ray {x(t) : t ≥ 0} and in-
creasing t, the primal objective strictly grows:

cT (x(t)− x(0)) = λ̄Tg (x(t)− x(0)) = (λ̄g)j∗︸ ︷︷ ︸
>0

t

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

Situation: We have at our disposal basis J, associated feasible

basic primal solution x̄, associated reduced costs λ̄g, index j∗ of a

positive reduced cost, and an “improving ray” {x(t) : t ≥ 0} with

the following properties:

• the ray lies in the primal feasible plane and emanates from x̄;

• when moving along the ray, the primal objective grows;

• along the ray:

— j∗-th coordinate of x(t) is t,

— basic coordinates in x(t) affinely depend on t,

— all other coordinates in x(t) stay zeros.

A. It may happen that as t grows, all basic coordi-

nates in x(t) stay nonnegative ⇒ we have discovered
a primal feasible ray along which the primal objective goes to
+∞⇒ (P) is unbounded, (D) is infeasible, we terminate.

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

Situation: We have at our disposal basis J, associated feasible

basic primal solution x̄, associated reduced costs λ̄g, index j∗ of

positive reduced cost, and an “improving ray” x(t) with the fol-

lowing properties:

• the ray lies in the dual feasible plane and emanates from λ̄;

• when moving along the ray, the dual objective strictly de-

creases;

• along the ray:

— j∗-th coordinate of xt is t,

— basic coordinates in x(t) affinely depend on t,

— all other coordinates in x(t) stay zeros.

B. It may happen that as t grows, some basic coor-
dinates in x(t) (all nonnegative at t = 0!) eventually
become negative.
• We identify the largest t = t̄ for which all basic co-
ordinates in x(t) still are nonnegative. When t = t̄,
one of the basic coordinates of x(t), let its index be
i∗, “is about to become negative” – xi∗(t̄) = 0 and
xi∗(t) < 0 when t > t̄.
• We take
• J+ = [J−{i∗}]∪{j∗} as our new basis – “i∗ leaves

the basis, j∗ enters the basis” (it can be shown that
J+ indeed is a basis),
• x(t̄) as the basic solution associated with J+ (it

indeed is so!),
compute the basic dual solution associated with J+

and pass to the next step.

Note: When passing to the next step, we

— strictly improve the primal objective, if t̄ > 0 (which def-

initely is the case when all basic entries in x̄ are posi-

tive; such a basic solution x̄ is called nondegenerate)

— keep the basic solution and the value of the objective in-
tact, if t̄ = 0. This may happen only when x̄ is degen-

erate.

In all cases, the basis does change.

Conclusion: If all feasible basic primal solutions are nonde-
generate, no one of them can be visited twice (since the

primal objective strictly grows at every step)

⇒ We terminate with primal and dual optimal solutions (or
with certificate of primal unboundedness) after finitely many
steps
Indeed, there are finitely many feasible basic primal

solutions, and no one of them can be visited twice.

However: When the problem admits degenerate feasi-

ble basic primal solutions, the method can “loop for

ever” – after several steps in which the primal feasible

basic solution remains intact, and only basis changes,

we can come back to the basis we started with and

then “loop forever.”

Remedies:
• In problems with “real data,” chances to meet de-

generacy are nonexistent.

• In problems of combinatorial origin, where the en-

tries in A are moderate integers, the chances to meet

degeneracy could be high, but actual cycling is a very

rare phenomenon. Thus, cycling is not a practical is-

sue.

• It often happens that there are several candidates

to be entered to/discarded from the basis. It turns

out that properly selected rules for “resolving ties”

provably eliminate cycling.

How to Find Initial Feasible Primal Basic Solution?
Opt(P) = maxx

{
cTx : Ax = b, x ≥ 0

}
(P)

♠ In order to start Primal Simplex, we need an initial

basis associated with a feasible basic solution to (P).

The standard way to achieve this goal is to run Phase
0 as follows.

• Multiplying, if necessary, the equations of (P) by

−1, we can ensure that b ≥ 0.

• Consider auxiliary LO program in variables x, s:

minx,s
{∑m

i=1 si : Ax+ s = b, x ≥ 0, s ≥ 0
}

Note:
• Problem is in the standard form, and a feasible basic

solution to it is readily available: the basis is com-

prised of the indexes of s-variables, and the basic part

of the basic solution is just b.

• The optimal value in the problem is either 0 (mean-

ing that (P) is feasible), or is strictly positive (mean-

ing that (P) is infeasible).

⇒ Solving the auxiliary problem by Primal Simplex, we find
out whether (P) is feasible, and if it is the case, at the optimal
solution x∗, s∗ we have s∗ = 0, meaning that x∗ is a basic
feasible solution to (P). We can now solve (P) starting with
this feasible basic solution and corresponding basis.

“Column Generation”
Opt(P) = maxx

{
cTx : Ax = b, x ≥ 0

}
(P)

♣ When solving an m×n standard form maximization

LO by Primal Simplex, computational effort per step

reduces to

A. Identifying, given current basis J, the index j∗ of

“bad” – positive – reduced cost, if any exists;

B. Updating the basis J and the associated basic so-

lution, provided positive reduced cost was found.

Note: The only part of A which participates in a step is com-
prised of the “old” basic columns Aj, j ∈ J , and the column
Aj∗.
This is in sharp contrast with computing the vector of

reduced costs – this computation requires to process

every one of the columns of A.

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

♠ Given basis J and feasible basic solution, we want

A. To identify the index j∗ of a positive reduced cost,

or to conclude that no such cost exists;

B. To update the basis and the basic feasible solution,

provided a positive reduced cost was found.

♠With good implementation, task B requires at most

O(m2) arithmetic operations; this cost is not affected

by the magnitude of n. B is “doable” when m is “mod-

erate” (with modern hardware, tens of thousands and

perhaps even millions, but not billions or billions of

billions)

♥ In contrast to this, computing the entire vector of re-
duced costs takes something like O(m2n) arithmetic opera-
tions. For problem in standard form, n ≥ m (why?),

and in typical applications n � m. What to do when n
is huge, so that computing the entire vector of reduced costs
becomes prohibitively time consuming?
Note: In some applications, n is that large, that we

just cannot store the matrix A, or even a single n-

dimensional vector.

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

♠ Observation. In applications, huge n usually means

that the constraint matrix A is given by a specific

“short description” rather than by the standard list-

ing of nonzero entries and their indexes (for a huge

matrix, where can we take data to fill such a list, un-

less the matrix is “well organized” ?)

♠ The idea of column generation is to use “short de-

scription” of columns of a “well-organized” A in order

to identify the column with positive reduced cost (or

to conclude that no such column exists), thus avoid-

ing computing the entire vector of reduced costs.

Implementation of this idea is “problem specific” – it

depends on what is the “short description” of A.

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

♠ Given basis J, the vector of reduced costs is

λg = c − AT [ATJ]−1cJ, where cJ is the basic part of

c.

⇒ (λg)j = cj − eTAj, where e = [ATJ]−1cJ and Aj is

j-th column of A.

Note: Computing e requires to operate with basic columns of
A and basic entries of c only!
♠ After e is computed, identifying the index of a pos-

itive reduced cost, if any, reduces to solving the dis-

crete optimization problem

maxj
[
cj − eTAj

]
(!)

When A admits a good description, utilizing this description
could result in a much more efficient algorithm for solving (!)

than the exhaustive search through all the columns Aj!

Example: Cutting Stock problem. We should produce

metal rectangle plates of m types. A plate of type j

must have width wj and height hj, and we need bj of

these plates, 1 ≤ j ≤ m.

• Plates are cut off a band with height H and infinite

width. How to arrange the plates on the band in order to
minimize the waste?
♠ We can group the plates according to their width

and solve the problem for every one of the groups,

thus reducing it to the case when all the plates

have common width w and distinct from each other

heights; this is called the Cutting Stock problem. In this

case, we can split the band into vertical rectangles of

width w and decide what should be “plate patterns” in

every rectangle – how many plates of type i = 1,2, ...

we place on the rectangle.

3 plate patterns in 3 vertical rectangles, Red: waste

♠ Let us arrange heights hi of plates of types

i = 1,2, ...,m into m-dimensional vector h, and iden-

tify a plate pattern with m-dimensional vector p =

[p1; ...; pm], where pi is the number of plates of type i

in the pattern.

Example: Assume we have m = 3 types of plates with

heights h1 = 10, h2 = 20, h3 = 30. In this case,

h = [10; 20; 30]. Pattern p = [1; 2; 1] describes verti-

cal rectangle from which we cut

— 1 plate of height h1 = 10

— 2 plates of height h2 = 20

— 1 plate of height h3 = 30.

Note: The total height of plates in pattern p is

p1h1 + p2h2 + ...+ pmhm = hTp

⇒ Feasible patterns are nonnegative integer vectors p satis-
fying hTp ≤ H
Example (continued): In our Example, pattern p =

[1; 2; 1] to be feasible requires the height of the band

to be at least

1 · 10 + 2 · 20 + 1 · 30 = hTp = 80

♠ Let n be the number of all feasible plate patterns,

let Aj, j = 1, ..., n, be the list of all these patterns; we

think of A1, ..., An as of the columns of m× n matrix

A = [A1, ..., An]

Quiz: Let there be m = 3 types of plates with heights

h1 = 10, h2 = 20, h3 = 30,

and let H = 80. Which of the following vectors are

columns of A ?

•

 3
1
1

 •


0
0
1
1

 •

 4
1
1

 •

 1
1
2

 •

 0
1
2



• Let our decision variables xj be the numbers of rect-

angles where patterns Aj will be used.

• The total yield of plates of type i is (Ax)i, and we

should have Ax = b

• The waste in a rectangle where we use plate pattern

Aj is H − hTAj
⇒ The total waste is∑

j[H − hTAj]xj
⇒ Our problem (in maximization form: maximize mi-

nus waste) becomes

maxx

∑j [hTAj −H]︸ ︷︷ ︸
cj

xj : Ax = b, x ≥ 0

 (∗)

♠ Our problem becomes

maxx

∑j [hTAj −H]︸ ︷︷ ︸
cj

xj : Ax = b, x ≥ 0

 (∗)

Note: We skip the natural requirement that x should

be integer. This can be justified when

— we are speaking about mass production and can

expect that in the optimal solution, nonzero xj’s will

be large, and their rounding will not make much harm,

or

– we are solving the problem with integrality con-

straints on xj, and (!) is the relaxation of the “true”

problem generated by the master branch and bound

algorithm.

maxx

∑j [hTAj −H]︸ ︷︷ ︸
cj

xj : Ax = b, x ≥ 0

 (∗)

♠ When hi are small as compared to H, n could be

astronomically large. However, the problem of identi-

fying the largest reduced cost:
maxj[cj − eTAj]
= maxj

[
hTAj −H︸ ︷︷ ︸

cj

−eTAj
]

= maxp
{

[h− e]Tp−H : p ≥ 0, hTp ≤ H, p is integer
}

is a knapsack type problem which can be solved effi-

ciently by Dynamic Programming.

Quiz: Let m = 20, h = [1; 2; ...; 20], H = 100. In your

opinion, how large is the number n of all feasible plate

patterns?

• ≤ 100,000

• ≤ 1,000,000

• ≤ 10,000,000

• ≤ 100,000,000

• ≤ 1,000,000,000

Answer: n = 928,321,174

Dual Simplex Method

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

♠ In the Dual Simplex method, we build a sequence of
feasible basic dual solutions along with sequence of (per-
haps infeasible) basic primal solutions associated with
the same bases (and thus complementary to our dual
solutions).
• The consecutive bases we build are neighbouring.
• The process terminates when
— either the current basic primal solution becomes
feasible ⇒ we end up with a pair of primal-dual feasi-
ble complementary (and thus optimal) solutions
— or unboundedness of (D) (and thus infeasibility of
(P)) is discovered.
Question: Due to primal-dual symmetry, Dual Simplex looks
exactly the same as Primal Simplex, with swapped primal and
dual problems. Why a separate algorithm is necessary?
Answer: Geometrically, primal-dual symmetry indeed is
perfect, but algorithmically it is not. Algorithm works
with an analytical description of a problem, and not with
the problem as a geometrical entity! And analytically,
(P) and (D) are in different formats...
⇒ Algorithmic description of Primal Simplex cannot be “liter-
ally translated” into the description of Dual Simplex...

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

♠ At the beginning of a step of Dual Simplex, we have

at our disposal

• basis J

• feasible basic dual solution λ̄ = [λ̄g; λ̄e] associated

with the basis.

♠ We start the step with computing the basic primal

solution x̄ associated with J.

♥ It may happen that x̄ is primal feasible: x̄ ≥ 0 ⇒ we
have a complementary pair of primal-dual feasible (and thus –
primal-dual optimal) solutions x̄, λ̄ and terminate.
Otherwise we proceed with the step.

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

Situation: We have at our disposal basis J, associated dual feasi-

ble basic solution λ̄ = [λ̄g; λ̄e], and associated with J basic primal

solution x̄ with not all entries in x positive.

♠ We select index j∗ of a negative entry in x̄, and try

to pass to a better feasible dual solution.

Note: j∗ is basic (nonbasic entries in x̄ are zeros!)

Note: When replacing the dual objective bTλe with

the objective −x̄Tλg, we get an equivalent problem:

on the entire dual feasible plane, the dual objective is

just shifted by a constant.

Indeed, on the dual feasible plane we have

x̄T [ATλe] = x̄T c− x̄Tλg
which, due to Ax̄ = b, reads −x̄Tλg = bTλe + const.

• Let us try to replace j∗-th entry in λ̄g (which is zero)

with some t ≤ 0, compensating this change by updating
nonbasic entries in λ̄g and updating λe in order to satisfy the
dual equations. We get a ray {λ(t) = [λg(t);λe(t)] : t ≤
0} in the dual feasible plane such that

nonbasic part λJg (t) of λg(t) is affine in t

(λg(t))j∗ ≡ t
(λg(t))j ≡ 0 for all basic j different from j∗

Note: When moving along the ray {λ(t) : t ≤ 0} and de-
creasing t, the dual objective strictly decreases:
bT (λe(t)− λe(0)) = [−x̄]T (λg(t)− λg(0)) = −x̄j∗︸ ︷︷ ︸

>0

t

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

Situation: We have at our disposal basis J, associated feasible

basic dual solution λ̄ = [λ̄g; λ̄e], associated basic primal solu-

tion x̄, index j∗ of negative entry in x̄ and an “improving ray”

{λ(t) : t ≤ 0} with the following properties:

• the ray lies in the dual feasible plane and emanates from λ̄;

• when moving along the ray, the dual objective strictly de-

creases;

• along the ray:

— j∗-th coordinate of λg(t) is t,

— nonbasic coordinates of λg(t) affinely depend on t,

— all other coordinates in λg(t) stay zeros.

A. It may happen that as t ≤ 0 decreases, all nonbasic

coordinates in λg(t) stay nonpositive ⇒ we have discov-
ered a dual feasible ray along which the dual objective goes to
−∞⇒ (D) is unbounded, (P) is infeasible, we terminate.

Opt(P) = maxx
{
cTx : Ax = b, x ≥ 0

}
(P)

Opt(D) = minλ=[λg;λe]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

Situation: We have at our disposal basis J, associated feasible

basic dual solution λ̄ = [λ̄g; λ̄e], associated basic primal solu-

tion x̄, index j∗ of negative entry in x̄ and an “improving ray”

{λ(t) : t ≤ 0} with the following properties:

• the ray lies in the dual feasible plane and emanates from λ̄;

• when moving along the ray, the dual objective strictly de-

creases;

• along the ray:

— j∗-th coordinate of λg(t) is t,

— nonbasic coordinates of λg(t) affinely depend on t,

— all other coordinates in λg(t) stay zeros.

B. It may happen that as t ≤ 0 decreases, some nonba-
sic coordinates λg(t) (all nonpositive at t = 0!) even-
tually become positive.
• We identify the smallest t = t̄ ≤ 0 for which all
nonbasic coordinates in λg(t) still are nonpositive.
When t = t̄, one of the nonbasic coordinates in λg(t),
let its index be i∗, “is about to become positive” –
(λg(t̄))i∗ = 0 and (λg(t))i∗ > 0 when t < t̄.
• We take
• J+ = [J−{j∗}]∪{i∗} as our new basis – “j∗ leaves

the basis, i∗ enters the basis” (it can be shown that
J+ indeed is a basis),
• λ(t̄) as the feasible basic dual solution associated

with J+ (it indeed is so!),
compute the basic primal solution associated with J+

and pass to the next step.

Note: When passing to the next step, we

— strictly improve the dual objective, if t̄ < 0 (which defi-

nitely is the case when all nonbasic entries in λ̄g are

negative; such a basic dual solution λ̄ is called nonde-
generate)

— keep the basic dual solution and the value of the dual ob-
jective intact, if t̄ = 0. This may happen only when λ̄ is

degenerate.

In all cases, the basis does change.

Conclusion: If all basic feasible dual solutions are nondegen-
erate, no one of them can be visited twice (since the dual

objective strictly decreases at every step)

⇒We terminate with primal and dual optimal solutions (or with
certificate of dual unboundedness) after finitely many steps
Indeed, there are finitely many basic feasible dual so-

lutions, and no one of them can be visited twice.

However: When the problem admits degenerate dual

solutions, the method can “loop for ever” – after sev-

eral steps in which the dual feasible basic solution re-

mains intact, and only basis changes, we can come

back to the basis we started with and then “loop for-

ever.”

Part II: General Convex Optimization
• Convex sets, functions and problems
• Lagrange Duality and Optimality Conditions
• Ellipsoid Method

Convex Optimization Program

♣ A Convex Optimization problem is an extension of

a LO problem

Opt = min
x∈Rn

{
cTx : aTi x− bi ≤ 0, 1 ≤ i ≤ m

}
(LO)

obtained by replacing the linear objective cTx by a con-
vex objective f(x), and the affine constraints aTi x−bi ≤
0 – with convex constraints gi(x) ≤ 0, i = 1, ...,m,

“convexity” of constraint gi(x) ≤ 0 being a shortcut

for “the left hand side gi(x) of the constraint is a convex func-
tion.” It makes sense also to add to the formulation

of the problem the domain constraint x ∈ X, where X is

a given convex set.

⇒ Convex Optimization problem is a Mathematical Program-
ming problem

Opt = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

where the objective f , and the left hand sides gi(x) of the
constraints gi(x) ≤ 0 are convex functions, and the domain
X ⊂ Rn is convex.

Opt = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

Note: Usually, the domain X of (P) itself is given by

a bunch of convex constraints

⇒ Adding the constraints describing X to the list of

“functional constraints” gi(x) ≤ 0, we can “get rid”

of the domain – to make X = Rn.

However: “can” is not the same as “should.” In some

cases, presence of the domain is convenient, and we

keep it in the problem.

Review of Elementary Calculus

♣ In the LO part of our course, our “working horse”

was elementary Linear Algebra.

Just formulating facts about Convex Programming re-

quires (minimal!) portion of Analysis. Review of this

portion is as follows:

♣ A sequence of vectors xt ∈ Rn, t = 1,2, ..., is called con-
verging to a vector x̄, if for every positive r, all xt, for all large
enough values of t are at the distance at most r of x̄:

∀r > 0∃t = t(r) : ‖xt − x̄‖2 ≤ r whenever t ≥ t(r)
In this situation, x̄ is called the limit of the system, denoted by
x̄ = limt→∞ xt, or by “xt → x̄ as t→∞”..
Note:
• A sequence x1, x2, ... of vectors converges to x̄ iff

the sequence of reals ‖xt − x̄‖2 converges to 0:

x̄ = limt→∞ xt ⇔ ‖xt − x̄‖2 → 0as t→∞
• A sequence which has a limit is called converging. A

converging sequence has exactly one limit.

♣ Let X be a set in Rn

♠ X is called closed, if it contains the limits of all converging
sequences of its elements:

if xt ∈ X, t = 1,2, ... and xt → x̄ as t→∞, then x̄ ∈ X
Facts: When adding to X the limits of all converg-

ing sequences of the members of X, we get a closed
set called the closure of X and denoted clX. A set is

closed iff it coincides with its closure.

Informally: clX is the set of all points x which can be approx-
imated to whatever high accuracy by points from X.

♠ A point x is called an interior point of X (notation: x ∈
intX), if a ball of some positive radius centered at x is con-
tained to X:
{x ∈ intX} ⇔ {∃r> 0 : Br(x) := {y : ‖x− y‖2 ≤ r} ⊂ X}
Informally: The fact that x ∈ intX means that x ∈ X and
this inclusion is robust: all points close enough to x belong to
X as well. Equivalently: x ∈ intX iff x cannot be approxi-
mated to high enough accuracy by points outside of X.
• The set of all interior points of X is called the interior of X,
denoted intX

• X is called open if every point of X is its interior point:
X = intX

♠ We always have intX ⊂ X ⊂ clX. For open sets, the left
of these inclusions is equality. For closed sets, the right of
these inclusions is equality.
• The complement of the interior in the closure is called the
boundary of X, denoted ∂X:

∂X = (clX)\(intX) = {x : x ∈ clX & x 6∈ intX}
Informally: The boundary of X is the set of all points x which
can be approximated to whatever high accuracy both by points
from X and points from outside of X.

Quiz: What can be said about closedness, openess, closure,
interior, and boundary of the following sets in Rn:
• X = ∅
• X = Rn

• X = [0,1] := {x : 0 ≤ x ≤ 1} ⊂ R
• X = (0,1] := {x : 0 < x ≤ 1} ⊂ R
• X = (0,1) := {x : 0 < x < 1} ⊂ R

Quiz: What can be said about closedness, openess, closure,
interior, and boundary of the following sets in Rn:
• X = ∅
∅ is both closed and open and thus coincides with its

interior, its closure and its boundary: all these sets

are empty!

• X = Rn

Rn is both closed and open (and thus coincides with

its interior and its closure); the boundary of Rn is

empty.

Note: ∅ and Rn are the only subsets of Rn which are both
open and closed!
• X = [0,1] := {x : 0 ≤ x ≤ 1} ⊂ R
X is closed and is not open; clX = X = [0,1], intX =

(0,1) := {x : 0 < x < 1}, ∂X = {0,1}.
• X = (0,1] := {x : 0 < x ≤ 1} ⊂ R
X is neither closed nor open, clX = [0,1], intX =

(0,1), ∂X = {0,1}
• X = {x : 0 < x < 1} ⊂ R
X is open and not closed, clX = [0,1], intX = X =

(0,1), ∂X = {0,1}

Elementary Calculus of Closedness and Openess

♣ Facts: When speaking about subsets of common “uni-
verse” Rn,
• closed sets are exactly the complements of open sets:

X is closed iff (Rn\X) is open
• intersection of whatever family of closed sets is closed
• union of whatever family of open sets is open
• finite unions of closed sets are closed
• finite intersections of open sets are open.
• the closure of a set X is the intersection of all closed sets
containing X, and thus is the smallest closed set containing
X – whenever a closed set Y contains X, Y contains clX as
well.

Continuity

♣ Let X be a subset of Rn and f(x) be a real-valued func-
tion defined on X.
♠ f is called continuous onX at a point x̄ ∈ X, if for every se-
quence xt of points from X converging to x̄, f(xt) converges
to f(x̄) as t→∞
Informally: f is continuous on X at a point x̄ ∈ X, if f(x)

approximates f(x̄) to a whatever high desired accuracy, pro-
vided that x ∈ X is close enough to x̄.
Formally: f is continuous on x at x̄ ∈ X, iff for every ε > 0

there exists δ = δ(ε) > 0 such that
if x ∈ X satisfies ‖x− x̄‖2 ≤ δ, then |f(x)− f(x̄)| < ε.

♠ f is called continuous on X, if it is continuous on x at every
point of X:

f is continuous on X
m

whenever x̄ = limt→∞ xt with x̄, xt from X,
it holds f(x̄) = limt→∞ f(xt)

In words: f is continuous on X iff along every se-

quence xi of points of X converging, as i → ∞, to a

point x̄ ∈ X, the values f(xi) of f converge to f(x̄).

How to Recognize Continuity

Fact: Elementary functions of one variable, like constants,

exp{x}, xp, sin(x), ln(x), are continuous on their natural
domains.
This is established by “bare hands” – by case-by-case

verifying the definition of continuity.

Fact: Continuity of more complicated functions is established
via “calculus of continuity” – general statements which state
that such and such operations with functions preserve conti-
nuity.
♣ Basic rules of “calculus of continuity” are as fol-

lows:

♠ Stability of continuity w.r.t. arithmetic operations:

if f1, f2 are real-valued functions on X ⊂ Rn, x̄ ∈ X,

and all fi are continuous on X at x̄, then

• linear combinations af1(x) + bf2(x) of functions

fi with constant coefficients a, b are continuous on X

at x̄

• the product f1(x)f2(x) is continuous on X at x̄

• if f2(x̄) 6= 0, then the ratio f1(x)/f2(x) is contin-

uous on X at x̄

♠ Theorem on superposition: Let
— f1, ..., fm be real-valued functions on X ⊂ Rn, x̄ ∈ X, and
let all fi be continuous on X at x̄;
— F be a real-valued function on Y ⊂ Rm.
Assume that
(a) f(x) := [f1(x); ...; fm(x)] ∈ Y whenever x ∈ X
(b) F is continuous on Y at the point ȳ = f(x̄)

Then the function g(x) = F (f(x)) is continuous on X at the
point x̄.

Closedness/Openess and Continuity

Fact: Let X ⊂ Rn be nonempty and closed, and f be a
real-valued continuous function on X. Then
• The subsets of X given by nonstrict (in)equalities involving
f :

{x ∈ X : f(x) ≤ a} [a Lebesque set of f]
{x ∈ X : f(x) = a} [a level set of f]
{x ∈ X : f(x) ≥ a}

where a is a real, are closed.
In particular: All polyhedral sets are closed
Note: Replacing nonstrict inequalities with strict ones,

we may get non-closed sets (which could be non-

open).

• X, in addition to closedness and nonemptiness, is bounded,
then f is bounded on X and attains its maximum and its min-
imum on X.
• If f , in addition to continuity on X, is coercive, meaning that
every Lebesque set of f is bounded, or, equivalently, that

f(xt)→∞ as t→∞ whenever xt ∈ X
are such that ‖xt‖2 →∞ as t→∞,

then f attains its minimum on X.
Fact: Let X ⊂ Rn be nonempty and open, and f be a
real-valued continuous function on X. Then the subsets of X
given by strict inequalities involving f :

{x ∈ X : f(x) < a}
{x ∈ X : f(x) > a}

where a is a real, are open.

Convex Sets: Second Acquaintance
Calculus of Convex Sets

♣ Calculus of convex sets is very similar to calculus

of polyhedrally representable sets. Specifically:

S.1. Taking intersections: If the sets Xα ⊂ Rn, α ∈ A

(where A can be infinite), are convex sets, so is their in-
tersection

⋂
α∈A

Xα

Note: In “calculus of polyhedral representations,” sim-

ilar rule was restricted to finite index sets A.

S.2. Taking direct products. The direct product of K con-
vex sets Xk ⊂ Rnk – the set
X = {[x1; ...;xK] : xk ∈ Xk,1 ≤ k ≤ K} ⊂ Rn1+...+nK

is convex.
S.3. Taking affine image. If X ⊂ Rn is a convex set and
y = Ax + b : Rn → Rm is an affine mapping, then the set
Y = AX + b := {y = Ax+ b : x ∈ X} ⊂ Rm is convex.
S.4. Taking inverse affine image. If X ⊂ Rn is a convex
set and x = Ay + b : Rm → Rn is an affine mapping, then
the set Y = {y ∈ Rm : Ay + b ∈ X} ⊂ Rm is convex.
S.5. Taking arithmetic sum: If the sets Xi ⊂ Rn,
1 ≤ i ≤ k, are convex, so is their arithmetic sum
X1 + ...+Xk := {x = x1 + ...+ xk : xi ∈ Xi,1 ≤ i ≤ k}

Topological Properties of Convex Sets

Facts: Let X be a convex set in Rn. Then

• the interior and the closure of X are convex
• If nonempty, the interior “well approximates” the closure:
whenever x̄ ∈ intX and x ∈ clX, the vectors

(1− λ)x̄+ λx, 0 ≤ λ<1

belong to intX. In particular, every point from clX can be
approximated within whatever accuracy by a point from intX.
♣ The second of the above statements is void when

intX = ∅ (which well may happen for a nonempty

convex X). There are many other situations when

the presence of interior (or the fact that a point in

consideration belongs to the interior of the domain in

question) is important.

How to “compensate” for potential emptiness of the interior?
Remedy: relative interior – interior taken w.r.t. the

affine hull of the set.

♠ Definition: LetX be a nonempty subset in Rn and Aff(X)

be the affine hull of X. We say that a point x ∈ X is relatively
interior point of X, if all close enough to x points from Aff(X)

belong to X, that is, if
∃r > 0: ‖y − x‖2 ≤ r and y ∈ Aff(X) imply y ∈ X.

• The set of all relatively interior points of X is called

the relative interior riX of X.

Facts: Let X be a nonempty convex set in Rn. Then
• the relative interior of X is nonempty and convex, and
• the relative interior “well approximates” the closure: when-
ever x̄ ∈ riX and x ∈ clX, the vectors

(1− λ)x̄+ λx, 0 ≤ λ<1

belong to riX. In particular, every point from clX can be ap-
proximated within whatever accuracy by a point from riX.

Main Facts about Convex Sets

♣ Basic facts about polyhedral sets (which are con-

vex and closed) extend, with some losses, to general

closed convex sets.

Facts: ♥ Every polyhedral set X is intersection of

finitely many sets of the form {x : aTi x ≤ bi}, 1 ≤ i ≤
M .

♥ Every closed convex set X is intersection of a sequence of
sets of the form {x : aTi x ≤ bi}, i = 1,2,

Facts: ♥ If r is a recessive direction of polyhe-

dral set X, meaning that for some x̄ ∈ X, the ray

{x̄ + tr : t ≥ 0} is contained in X, then for every

x ∈ X, the ray {x+ tr : t ≥ 0} is contained in X.

All recessive directions of a polyhedral set X form a

polyhedral cone Rec(X), and X + Rec(X) = X.

♥ If r is a recessive direction of closed convex setX, meaning
that for some x̄ ∈ X, the ray {x̄ + tr : t ≥ 0} is contained in
X, then for every x ∈ X, the ray {x+ tr : t ≥ 0} is contained
in X.
All recessive directions of a closed convex setX form a closed
convex cone Rec(X), and X + Rec(X) = X.

Facts: ♥ A nonempty polyhedral set is bounded iff its

recessive cone is trivial: Rec(X) = {0}.
♥ A closed convex set is bounded iff its recessive cone

is trivial: Rec(X) = {0}.
Facts: ♥ A nonempty polyhedral set X is the sum of

a polyhedral set X̂ not containing lines and the linear

subspace Rec(X) ∩ [−Rec(X)]

♥ A nonempty closed convex set X is the sum of a closed
convex set X̂ not containing lines and the linear subspace
Rec(X) ∩ [−Rec(X)]

Facts: ♥ Let X be a nonempty polyhedral set which

does not contain lines. Then

• X has extreme points, and the set Ext(X) of these

points is finite: Ext(x) = {v1, ..., vN}.
• The recessive cone of X is the conic hull of finitely

many vectors r1, ..., rN : Rec(X) = Cone {r1, ..., rM}.
• We have

X = Conv(Ext(X)) + Rec(X)
= Conv{v1, ..., vN}+ Cone {r1, ..., rM}

• In particular, a nonempty bounded polyhedral set is

the convex hull of the finite set Ext(X).

♥ Let X be a nonempty closed convex set which does not
contain lines. Then
• X has extreme points (perhaps, infinitely many)
•We have X = Conv(Ext(X)) + Rec(X)

• In particular, a nonempty closed convex and bounded set X
is the convex hull of the set Ext(X).

Facts: ♥ Let K be a polyhedral cone.

• K admits a base B – a set of the form {x ∈ K :

fTx = 1} which intersects all nontrivial rays from K

– iff K is nontrivial and pointed. This is exactly the

case when K has extreme rays.

• The recessive cone of a base B of K is trivial.

• The number of extreme rays, if any, of K is finite,

and these rays are exactly the rays spanned by the

extreme points of a base B of K.

• If K is pointed, the number of extreme rays of K is

finite, and K is the conic hull of the generators of all

extreme rays of K.

♥ Let K be a closed convex cone.
• K admits a base B – a set of the form {x ∈ K : fTx = 1}
which intersects all nontrivial rays from K – iff K is nontrivial
and pointed.
This is exactly the case when K has extreme rays.
• The recessive cone of a base B of K is trivial.
• The extreme rays of K are exactly the rays spanned by the
extreme points of a base B of K.
• If K is pointed, then K is the conic hull of the generators of
all extreme rays of K.

Facts: ♥ Let K be a polyhedral cone. Then the cone

K∗ dual to K also is polyhedral, and the cone dual to

the dual is K itself.

♥ Let K be a closed convex cone. Then the cone dual to K
also is a closed convex cone, and the cone dual to the dual is
K itself.

♣ While the above results on closed convex sets re-

semble their polyhedral prototypes, the proofs are

more technical.

♠ In retrospect, all polyhedral results stem from

Fourier-Motzkin elimination, which is a purely poly-

hedral fact: the projection of a closed convex set,

while being convex, not necessarily is closed!

♠ The key tool in extending the above results from

polyhedral to “closed convex” case is the notion of

separation by linear form and associated Separation Theo-
rem.

Definition. Let S, T be nonempty sets in Rn. we say that a
linear form aTx separates S and T , if, for some real a, the sets
are on the different sides of the hyperplane {x : fTx = a}
and not both of them belong to this hyperplane, or, which is
the same, if

supx∈Sf
Tx ≤ infx∈Tf

Tx

infx∈Sf
Tx < supx∈Tf

Tx
Separation Theorem: Two nonempty convex sets S, T in Rn

can be separated by a linear form iff their relative interiors do
not intersect.
• As many most useful theorems in Math, this state-

ment at the first glance seems completely esoteric.

Convex Functions: Second Acquaintance

♠ Recall that a convex function f(x) on Rn is, in
general, only partially defined; this is a function on Rn
which takes real values and value +∞ and possesses
the following equivalent to each other properties:

(a) The epigraph
Epi{f} = {[x; t] ∈ Rn × x : f(x) ≤ t}

is a convex set
(b) Convexity inequality
∀(x, y ∈ Rn, λ ∈ [0,1]) : f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

♠ The set Domf = {x : f(x) <∞} where f takes real val-
ues is called the domain of f .
• In (b), we use our standard conventions:

• a+ (+∞) = +∞ for all a ∈ R ∪ {+∞}
• 0 × (+∞) = 0 and a × (+∞) = +∞ whenever a

is a positive real

Operations like (−∞) + (+∞) or a× (+∞) with neg-

ative reals a, which in fact will never arise in our con-

text, are undefined.

Calculus of Convex Functions

♣ Calculus of convex functions is very similar to cal-

culus of polyhedrally representable functions. Specif-

ically:

F.1. Taking linear combinations with positive coef-

ficients. If fi : Rn → R ∪ {+∞} are convex functions and
λi ≥ 0, 1 ≤ i ≤ k, then f(x) =

∑k
i=1 λifi(x) is convex.

F.2. Direct summation. If fi : Rni → R ∪ {+∞},
1 ≤ i ≤ k, are convex functions, then so is their direct sum

f([x1; ...;xk]) =
k∑
i=1

fi(x
i) : Rn1+...+nk → R ∪ {+∞}

F.3. Taking supremum. If fα : Rn → R ∪ {+∞}, α ∈ A
(A can be infinite!) are convex functions, so is their supre-
mum

f(x) = supα∈A fα(x).
F.4. Affine substitution of argument. If function

f(x) : Rn → R ∪ {+∞}
is convex and x = Ay + b : Rm → Rn is an affine mapping,
then the function

g(y) = f(Ay + b) : Rm → R ∪ {+∞}
is convex.

F.5. Partial minimization. Let function
f(x, y) : Rnx × Rmy → R ∪ {+∞}

be convex, and let

g(x) = inf
y
f(x, y) : Rnx → {−∞} ∪ R ∪ {+∞}

For every convex set Q such that g > −∞ at every point of Q,
the restriction of g on Q – the function

gQ(x) =

{
g(x), x ∈ Q
+∞, x 6∈ Q

is convex.
F.6. Projective transformation. Let a function f(x) :

Rn → R ∪ {+∞} be convex. Then the function

g(x, α) =

{
αf(x/α), α > 0
+∞, α ≤ 0

is convex.
Example: f(x) = x2 is convex

⇒ g(x, α) = αf(x/α) = x2

α is convex in the domain

α > 0.

F.7. Theorem on Superposition. Let
• fi(x) : Rn → R ∪ {+∞} be convex functions,
• F (y) : Rm → R ∪ {+∞} be a convex function, such that
F (y1, ..., ym) is monotonically nondecreasing in every one of
y1, ..., ym. Then the superposition

g(x) =

{
F (f1(x), ..., fm(x)), fi(x) < +∞∀i
+∞, otherwise

of F and f1, ..., fm is a convex function.
Note: if some of fi, say, f1, ..., fk, are affine, then the Super-
position Theorem remains valid when we require the mono-
tonicity of F w.r.t. the variables yk+1, ..., ym only.
Note: One can slightly relax the monotonicity re-

quirement. Specifically, assume that for some convex set
Q ⊂ Rm,
— f(x), when finite, (i.e., all fi(x) are reals) belongs to
Q, and
— F is monotone on Q only: whenever y ≥ y′ and y, y′ ∈ Q,
we have F (y) ≥ F (y′).
Then the superposition F (f1(x), ..., fk(x)) is convex.
Here again, if f1, ..., fk, are affine, the monotonicity on

Q can be further relaxed to the following property:

whenever y ≥ y′ are such that y, y′ ∈ Q and yj = y′j for
j ≤ k, one has F (y) ≥ F (y′).

Illustration: Let f1, ..., fm be nonnegative convex func-

tions, and let F (y1, ..., ym) =
∑m
i=1 y

2
i . Is the function

g(x) = F (f1(x), ..., fm(x)) =
∑m
i=1 f

2
i (x) convex?

• “Plain” Theorem on superposition is not applicable,

since F , while convex, is not monotone.

• However, on the nonnegative orthant Q = {y ≥ 0}, F
is monotone, and since all fi are nonnegative, the condi-

tions of the “relaxed” Theorem on Superposition are

met, proving that g is convex.

Note: nonnegativity of fi in this illustration is impor-

tant. The square of an arbitrary convex function can

be nonconvex. For example, f(x) = x2 − 1 is convex,

and its square is nonconvex!

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

−2 −1 0 1 2
0

1

2

3

4

5

6

7

8

9

Left: x2 − 1 Right: (x2 − 1)2

What does the definition of convexity actually mean?

♣ The Convexity inequality
f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), 0 ≤ λ ≤ 1

is automatically satisfied when λ = 0 and λ = 1, same
as is automatically satisfied in x and/or y is not in the
domain of f , same as it is automatically satisfied when
x = y.
⇒ Thus, the Convexity inequality says something only
when x, y ∈ Dom(f), x 6= y and 0 < λ < 1.
What does it say in this case?
• First, it says that whenever 0 < λ < 1, the point
z = (1 − λ)x + λy is in the domain of f ⇒ Domf is
convex.
• Second, when 0 < λ < 1, z = (1 − λ)x + λy is a
(relative) interior point of the segment [x, y], and

‖y − x‖2 : ‖y − z‖2 : ‖z − x‖2 = 1 : (1− λ) : λ
whence

f(z) ≤ (1− λ)f(x) + λf(y) (∗)
⇔ f(z)− f(x) ≤ λ︸︷︷︸

‖z−x‖2
‖y−x‖2

(f(y)− f(x))

⇔ f(z)−f(x)
‖z−x‖ ≤ f(y)−f(x)

‖y−x‖
Similarly,

f(z) ≤ (1− λ)f(x) + λf(y) (∗)
⇔ (1− λ)︸ ︷︷ ︸

‖y−z‖2
‖y−x‖2

(f(y)− f(x)) ≤ f(y)− f(z)

⇔ f(y)−f(x)
‖y−x‖2

≤ f(y)−f(z)
‖y−z‖2

Conclusion: f is convex iff for every three distinct points
x, y, z such that x, y ∈ Domf and z ∈ [x, y], we have
z ∈ Domf and

f(z)−f(x)
‖z−x‖2

≤ f(y)−f(x)
‖y−x‖2

≤ f(y)−f(z)
‖y−z‖2

(!)

In words: When moving along [x; y], among the three aver-
age rates at which f changes
(a) “at the beginning” (x→ z),
(b) “at average” (x→ y), and
(c) “at the end” (z → y),
the first is the smallest, and the third is the largest.

x yz

Note: From 3 inequalities in (!):

f(z)−f(x)
‖z−x‖2

≤ f(y)−f(x)
‖y−x‖2

f(y)−f(x)
‖y−x‖2

≤ f(y)−f(z)
‖y−z‖2

f(z)−f(x)
‖z−x‖2

≤ f(y)−f(z)
‖y−z‖2

every single one implies the other two.

Conclusions:
A. Convexity of a function f : Rn → R ∪ {+∞} is one-
dimensional property: f is convex iff Domf is a convex set,
and for every line segment [x, y] ∈ Domf the restriction of f
on the segment [x, y] – the univariate function

g(λ) = f((1− λ)x+ λy) = f(x+ λ[y − x])

is convex on [0,1].
B. For a univariate real-valued differentiable function g

on [0,1], average rate of change when moving from

a to b, 0 ≤ a < b ≤ 1, is the derivative of g at certain

point of (a, b) (Lagrange’s Theorem). With minimal

effort, from our story about average rates it follows

that a differentiable on [0,1] univariate function g is convex
iff its derivative is monotonically nondecreasing on [0,1].
This can be easily extended to the claim that A con-
tinuous function on a one-dimensional convex set and differ-
entiable on the interior of this set, is convex on the set iff its
derivative is nondecreasing on the interior of the set.
C. Recalling what is a necessary and sufficient condition

for monotonicity of a smooth univariate function, we

arrive at the following claim: A univariate function g which
is continuous on a convex one-dimensional set ∆ and twice
differentiable on int ∆ is convex on ∆ iff g′′(λ) ≥ 0 for all
λ ∈ int ∆.

D. Combining C and A, we arrive at the following sim-

ple and extremely useful result:

Let f : Rn → R ∪ {+∞} be a function such that
• Domf is convex,
• f is continuous on Domf , and
• for every x ∈ ri Domf , and every direction h ∈ Domf − x,
the second order directional derivative taken at x along the di-
rection h – the quantity d2

dλ2

∣∣∣
λ=0

f(x+ λh) – exists.
f is convex iff all these second order directional derivatives
are nonnegative.
♠ Recall that at the beginning of the course we have

developed “calculus” of convex functions and convex

sets. We know, e.g., that the operations

• taking linear combinations with nonnegative con-

stant coefficients,

• taking pointwise supremum of a whatever family of

functions,

• affine substitution of argument in a function,

as applied to convex functions, produce convex results.

⇒ to justify convexity of a function, it suffices to show that
it is obtained from known to be convex “raw materials” by
convexity-preserving operations.

♠ The question is, where to take “raw materials.” In

the LO part of the course, we need only one kind of

“raw material” – affine functions.

In the general case, most of “raw materials” are

yielded by D.
♠ “Modulo calculus of convex functions” most of the

materials we need are just univariate functions. Ap-

plying elementary calculus and C, we conclude, e.g.,

that the following univariate functions are convex on

the indicated domains:

• for every nonnegative integer p, x2p is convex on the

entire R
• for every real p ≥ 1, the function |x|p is convex on

R, and xp – on R+ = [0,∞)

• when 0 < p < 1, the function −xp is convex on R+

(i.e., the function xp is concave on R+)

• when p < 0, the function xp is convex on (0,∞)

• the exponent exp{x} is convex on the entire R, and

the function ln(1/x) is convex on (0,∞)

• the entropy f(x) =

{
x lnx, x > 0
0, x = 0

is convex on

[0,∞)

•

♣ Usually, “calculus of convexity” along with “uni-

variate convex raw materials” is enough to establish

convexity of actually convex multivariate functions.

♠ In relatively rare cases, convexity of useful multivari-

ate functions should be established by “bare hands”

— directly via D.
Example: The function f(x) = ln(ex1 + ...+ exn) is con-
vex.
Indeed,

d
dλf(x+ λh) =

∑
i e

xi+λhihi∑
i e

xi+λhi

⇒ d2

dλ2f(x+ λh) =
∑
i e

xi+λhih2
i∑

i e
xi+λhi

−
[∑

i e
xi+λhihi∑

i e
xi+λhi

]2
⇒ d2

dλ2

∣∣∣
λ=0

f(x+ λh) =
∑
i pih

2
i − [

∑
i pihi]

2, pi = exi∑
j exj

.

Note: pi are nonnegative and sum up to 1

⇒ d2

dλ2

∣∣∣
λ=0

f(x+λh) is the variance of random variable

taking values h1, ..., hn with probabilities p1, ..., pn, and
the variance always is nonnegative.

Corollary: When ci > 0, the function
g(y) = ln

(∑
i ci exp{aTi y}

)
is convex.
Indeed, g(y) = ln

(∑
i exp{ln ci + aTi y}

)
is obtained

from the convex function ln (
∑
i exi) by affine substi-

tution of argument, and this operation preserves con-

vexity.

Quiz: Which of the following functions are convex?
• ln(e2x+3y + 2ey−x)

• ln(ex
2

+ ey
2
)

• ln(e−x
2

+ ey
2
)

• ln(ex
2

+ 2e−3x2
)

• ln(ex
2

+ e−x
2
)

Quiz: Which of the following functions are convex?
• ln(e2x+3y+2ey−x) – Convex along with ln(ex1 +ex2)

(affine substitution of argument)

• ln(ex
2

+ ey
2
) – Convex along with ln(ex1 + ex2) and

x2, y2 (Theorem on Superposition; note that ln(ex1 +

ex2) is nondecreasing in x1 and x2)

• ln(e−x
2

+ ey
2
) – Non-convex: look what happens

when y = 0: d
dx
f(x,0) = −2xe−x2

e−x2+1
, and the derivative is not

nondecreasing in x!

• ln(ex
2

+ 2e−3x2
) – Non-convex: d

dx
f(x) = −x(6e−3x2−2ex2

)
ex2+e−3x2 ,

and the derivative is not nondecreasing around x = 0

• ln(ex
2

+ e−x
2
) — Convex: The function ln(es+ e−s)

is convex and nondecreasing in the domain s ≥ 0, and

x2 is convex and nonnegative

Interesting convex functions: norms

♣ A real-valued function ‖x‖ : Rn → R is called norm,

if

• [homogeneity] ‖λx‖ = λ‖x‖ for all x ∈ Rn and all

nonnegative real λ

• [symmetry] ‖x‖ = ‖ − x‖ for all x

• [positivity] ‖x‖ is positive unless x = 0 (‖0‖ = 0 by

homogeneity)

• [triangle inequality] ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y

Fact: A homogeneous real-valued function p(·) is convex iff
it satisfies the triangle inequality.
Indeed, when p is homogeneous, Convexity Inequality

reads
p((1− λ)u+ λv) ≤ (1− λ)p(u) + λp(v)

= p((1− λ)u) + p(λv)
and thus is nothing but triangle inequality.

Fact: Every two norms ‖ · ‖, ‖ · ‖′ on Rn are within constant
factor of each other: for some θ > 0, it holds

θ‖x‖ ≤ ‖x‖′ ≤ θ−1‖x‖ for all x
In particular, all norms define the same notion of convergence:
‖xt−x‖ → 0, as t→∞, is exactly the same as ‖xt−x‖2 → 0

as t→∞.
This property characterises finite-dimensional linear

spaces Rn.

♠ The standard norms on Rn are the `p norms
‖x‖p = (

∑
i |xi|p)1/p

Here 1 ≤ p ≤ ∞. When p = ∞, the right hand side,

by definition, is maxi |xi| (which is also limp→∞ ‖x‖p).

Note: ‖x‖1 =
∑
i |xi|, ‖x‖2 =

√∑
i x

2
i is the standard

Euclidean norm, ‖x‖∞ = maxi |xi|.
♠ ‖ · ‖p clearly is homogeneous, symmetric, and posi-

tive outside the origin. Triangle inequality (equivalent

to convexity) stems from the

Hölder Inequality: For p ∈ [1,∞], let p∗ ∈ [1,∞] be given
by 1

p + 1
p∗

= 1 (e.g., 1∗ =∞,2∗ = 2,∞∗ = 1). Then

for all x, y ∈ Rn: xTy ≤ ‖x‖p‖y‖p∗
and the inequality is tight: for every x,

‖x‖p = maxy{xTy : ‖y‖p∗ ≤ 1}
• Tightness says that ‖x‖p is the supremum of a family

of linear functions of x and thus is convex by calculus

of convexity.

Note: When p = 2, p∗ = 2 as well, and Hölder Inequal-

ity becomes the Cauchy Inequality:

xTy ≤ ‖x‖2‖y‖2.

♠ A function f : Rn → R ∪ {+∞} produces Lebesque
sets {x : f(x) ≤ a} where a is a real. The Lebesque sets
of a convex function f always are convex:

f(x) ≤ a, f(y) ≤ a, λ ∈ [0,1], f is convex
⇓

f((1− λ)x+ λy) ≤(1− λ)f(x) + λf(y) ≤ (1− λ)a+ λa = a

• The Lebesque set {x : ‖x‖ ≤ 1} of a norm is called

the unit ball of the norm.

Here are the unit balls of several `p-norms on R2:

From inside outside: p = 1,3/2,2,3,∞
• In every dimension, ‖x‖p decreases as p grows
⇒ unit ball of ‖ · ‖p extends as p grows.

Jensen’s Inequality

• Convexity implies the Jensen’s Inequality: The value of a
convex function h : Rn → R∪{+∞} at a convex combination
of points is ≤ the convex combination, with the same weights,
of the values of h at these points:

∀(m,xi ∈ Rn, λi ≥ 0, 1 ≤ i ≤ m, with
∑
i λi = 1) :

h(
∑
i λixi) ≤

∑
i λih(xi)

For example, for a random variable ξ taking real values
a1, ..., aN with probabilities p1, ..., pN , its variance

Var{ξ} := E{ξ2} − [E{ξ}]2 =
∑
i

pia
2
i −

∑
i

piai

2

is always nonnegative. This is just Jensen’s inequality

with x2 in the role of f(x), ai in the role of xi and pi
in the role of λi.

Continuity of a Convex Function

♣ Fact: Convex function is continuous on its domain at every
relative interior point of the domain. In particular, a real-valued
convex function on Rn always is continuous on the entire Rn.
In fact, we can say much more:

♠ Let f be convex, and Y be a closed and bounded subset
of the relative interior of Domf . Within Y , change in f is at
most proportional to the change in the argument: for some
L = L(Y) <∞, we have

|f(x)− f(y)| ≤ L‖x− y‖2 for all x, y ∈ Y
Scientifically: With f and Y as above, f is Lipschitz
continuous on Y .

• At boundary points of its domain, a convex function

can be discontinuous: it can “jump up,” as is the case

with the function

f(x) =


0, x < 0
1, x = 0

+∞, x > 0

Gradient Inequality

♣ Fact: Let f be a convex function on Rn, and x̄ ∈ Domf

be a point where f is differentiable. Then the linearization of
f , taken at x̄, underestimates f :

f(x) ≥ f(x̄) + 〈∇f(x̄), x− x̄〉 for all x

• The inequality clearly holds true when f(x) = +∞,

as well as when x = x̄. When f(x) < ∞ and x 6= x̄,

for all λ ∈ (0,1) it holds
f(x̄+λ[x−x̄])−f(x̄)

λ‖x−x̄‖2
≤ f(x)−f(x̄)

‖x−x̄‖2
as λ→ +0, the left hand side in this inequality tends

to 〈∇f(x̄),x−x̄〉
‖x−x̄‖2

, and the right hand side remains intact.

Passing to limit as λ→ +0, we get
〈∇f(x̄),x−x̄〉
‖x−x̄‖2

≤ f(x)−f(x̄)
‖x−x̄‖2

.

as claimed.

Note: Gradient Inequality is the source of many useful

inequalities, like

• p ≥ 1, x ≥ −1⇒ (1+x)p ≥ 1+px (f = (1+x)p, x̄ = 0)

• p > 0, x > −1⇒ 1
(1+x)p ≥ 1− px (f(x) = 1

(1+x)p, x̄ =

0)

• ex ≥ 1 + x (f(x) = ex, x̄ = 0)

Subgradients of Convex Functions

♠ Let f be a convex function. If x̄ ∈ Domf and f

is differentiable at x, then ∇f(x̄) is the “slope” (the

vector of coefficients) of an affine function

h(x) = f(x̄) + 〈∇f(x̄), x− x̄〉
which everywhere underestimates f and coincides with f at
the point x̄.
However: It may happen that such an “exact at x̄

affine lower bound on f” exists at a point x̄ where f

is not differentiable.

Example: f(x) = |x| : R → R is convex and differen-

tiable outside of x = 0, and is not differentiable at

x̄ = 0. However, there are many affine lower bounds

on f which are exact at x̄ = 0: whenever |g| ≤ 1, we

have

∀x : f(x) = |x| ≥ gx = f(0) + g(x− 0)

and slopes g of these lower bounds fill the entire seg-

ment [−1,1].

♠ As far as a convex function f is concerned, the

slopes of exact at x̄ affine lower bounds on f(·) are,

in many respects, quite satisfactory surrogates of ∇(x̄).

These slopes have name: they are called subgradients
of f at x̄.

Definition: let f be a convex function on Rn, and x̄ ∈ Domf .
A vector g ∈ Rn is called subgradient of f at x̄, if

∀x : f(x) ≥ f(x̄) + 〈g, x− x̄〉.
The set of all subgradients of f at x̄ is called the sub-
differential of f at x̄, denoted ∂f(x̄).

Note: By Gradient inequality, if∇f(x̄) exists, then∇f(x̄)

is a subgradient of f at x̄.

♠ The main property of subgradients is that they

“nearly always” exist:

Fact: Let f be a convex function on Rn and x̄ belong to
relative interior of Domf . Then f admits a subgrdient at x̄:
∂f(x̄) 6= ∅
• At a point x̄ from the relative boundary of Domf ,

∂f(x̄) can be empty even when Domf is closed and f

is continuous on Domf . For example, the convex uni-

variate function f(x) = −
√
x with the domain [0,∞)

admits no subgradients at x̄ = 0.

♠ Elementary calculus of subgradients is as follows.

A. Let a convex function f be differentiable at x̄ ∈ Domf .
Then ∇f(x̄) ∈ ∂f(x̄), and if x̄ ∈ int Domf , then ∇f(x̄) is
the only subgradient of f at x̄.
B. Behavior of subgradients with respect to linear op-

erations and change of variables is very similar to the

one of gradients:

• Let f(x) =
∑m
i=1 λifi(x) with nonnegative λi and convex

fi, and let fi, ..., fm admit subgradients gi at a point x̄. Then∑
i λigi ∈ ∂f(x̄).
• Let f be a convex function on Rn, and let

x = Ay + b : Rm → Rn, h(y) = f(Ay + b).
Given ȳ ∈ Rm, let x̄ = Aȳ + b and g ∈ ∂f(x̄). Then
ATg ∈ ∂h(ȳ).
C. Smoothness not always “survives” passing from

several functions to their maximum, while subgradi-

ents are well suited for this operation:

Let {fα(·)}α∈A be a family of convex functions on Rn, and
f(x) = supα∈A fα(x). Given x̄ ∈ domf , assume that there
exists ᾱ ∈ A such that f(x̄) = fᾱ(x̄). Then any subgradient
g of fᾱ(·) at x̄ is a subgradient of f at x̄.
Indeed, f(x) ≥fᾱ(x) ≥ fᾱ(x̄) + 〈g, x− x̄〉 = f(x̄) + 〈g, x− x̄〉

Minima of Convex Functions

♣ The following simple facts explain why minimizing
convex functions over convex sets is much easier than
nonconvex minimization.
♠ Facts: Let X be a convex set in Rn, and f be a convex
function on Rn. consider optimization problem

Opt = min
x∈X

f(x)

• Every local minimizer x∗ of f on X is a global minimizer of
f on X: if x∗ ∈ [Domf] ∩ X is a local minimizer, meaning
that for some positive r, f(x) ≥ f(x∗) whenever x ∈ X and
‖x−x∗‖2 ≤ r, then x∗ is a global minimizer of f onX: f(x) ≥
f(x∗) for all x ∈ X.
Indeed, let x∗ be a local minimizer of f on X; to see
that f(x) ≥ f(x∗) for every x ∈ X, it suffices to verify
this inequality when x ∈ [Domf] ∩ X and x 6= x∗. In
this case, by convexity

f(x∗+λ[x−x∗])−f(x∗)
λ‖x−x∗‖2

≤ f(x)−f(x∗)
‖x−x∗‖2

for all λ ∈ (0,1). Since x∗ is a local minimizer of f
on X, the left hand side ratio is nonnegative when λ

is positive and small ⇒ the right hand side ratio is
nonnegative ⇒ f(x) ≥ f(x∗) �

• The set of minimizers of f on X is convex.
Indeed, when nonempty, this set is the Lebesque set
{x : f(x) ≤ Opt} (which is convex) intersected with
convex set X.

Question: Let X be a convex set in Rn, f be a convex func-
tion, and let x∗ ∈ X ∩Domf be a point such that f is differ-
entiable at x∗. When x∗ is a global minimizer of f on X?
Answer: This is the case iff the directional derivative of f ,
taken at x∗ along any direction leading from x∗ into X, is non-
negative:

∀(x ∈ X) : 〈∇f(x∗), x− x∗〉 ≥ 0
• In one direction: for every x ∈ X, we should have
g(λ) := f(x∗+λ(x−x∗)) ≥ f(x∗) = g(0) when 0 ≤ λ ≤
1, whence 0 ≤ g′(0) = 〈∇f(x∗), x − x∗〉. This should
be so for all x ∈ X, implying that 〈∇f(x∗), x− x∗〉 ≥ 0
for all x ∈ X.
• In the opposite direction: By Gradient Inequality,
f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉 for all x, implying that
f(x) ≥ f(x∗) when x ∈ X and 〈∇f(x∗), x− x∗〉 ≥ 0 for
all x ∈ X.
Note: Given x ∈ X, the set of all vectors h such that
〈h, y − x〉 ≥ 0 whenever y ∈ X, is called the normal
cone NX(x) of X taken at x; this set indeed is a closed
convex cone. This cone is dual to the radial cone

TX(x) = Cone {X − x}
spanned by the directions leading from x into X.
The above necessary and sufficient optimality condi-
tion reads: In the situation in question, x∗ is a global mini-
mizer of f on X iff ∇f(x) ∈ NX(x∗).
What this condition actually means, it depends on
what is the normal cone NX(x∗).

x∗ ?? ∈?? ArgminX f

Examples:
• x∗ ∈ intX. In this case, TX(x∗) = Rn, whence

NX(x∗) = {0}
⇒ When X is a convex set, f is convex and is differentiable
at a point x∗ ∈ [intX] ∩ [int Domf], the point x∗ is a global
minimizer of f on X iff

∇f(x∗) = 0 [Fermat equation]

• x∗ ∈ riX. In this case, TX(x∗) is the linear sub-

space L parallel to the affine hull Aff(X) of X, whence

NX(x∗) = L⊥.

⇒ WhenX is a convex set, f is convex and is differentiable at
a point x∗ ∈ [riX]∩ [int Domf], the point x∗ is a global mini-
mizer of f onX iff∇f(x∗) is orthogonal to L = Lin(X−x∗).

x∗ ?? ∈?? ArgminX f

Examples (continued):
• X = {x : aTi x ≤ bi, 1 ≤ i ≤ m} is a polyhedral set. In

this case, the radial cone is {h : aTi h ≤ 0 ∀i ∈ I(x∗)},
where I(x∗) is the set of indexes of all constraints

aTi x ≤ bi which are active at x∗ – are satisfied at x∗as

equalities. By Homogeneous Farkas Lemma, the nor-

mal cone (the dual to the radial one) is

NX(x∗) = Cone {−ai : i ∈ I(x∗)}
⇒ When X = {x : aTi x ≤ bi, 1 ≤ i ≤ m}, f is convex
and is differentiable at a point x∗ ∈ X ∩ [Domf], the point x∗
is a global minimizer of f on X iff there are nonnegative La-
grange multipliers λ∗i associated with active at x∗ constraints
aTi x ≤ bi, i ∈ I(x∗) such that

∇f(x∗) +
∑
i∈I(x∗) λ

∗
iai = 0.

Setting λ∗i = 0 for i 6∈ I(x∗), our optimality condition

reads:

When X = {x : aTi x ≤ bi, 1 ≤ i ≤ m}, f is convex and is
differentiable at a point x∗ ∈ X ∩ [Domf], the point x∗ is a
global minimizer of f on X iff there are nonnegative Lagrange
multipliers λ∗i such that

λ∗i [bi − a
T
i x∗] = 0 ∀i [complementary slackness]

∇f(x∗) +
∑
i λ
∗
iai = 0 [KKT equation]

This is exact analogy of the KKT optimality condi-

tion in LO, with ∇f(x∗) in the role of the vector of

coefficients of the LO objective.

♠ One of the beauties of Convex Optimization is the

presence of local conditions for global optimality. In

simple cases, these conditions allow for explicit solv-

ing of convex problems “on paper.”

Examples:
A. Let a1, ..., an be given positive reals. What is

Opt = minx

{
f(x) =

∑n
j=1

aj
xj

: x > 0,
∑n
j=1 xj ≤ 1

}
?

To represent the problem as a convex program min
X

f ,

we set

X = {x ∈ Rn : x > 0,
∑

j xj ≤ 1}, Domf = {x ∈ Rn : x > 0}
Let us make an educated guess that there exist an op-

timal solution where xj > 0 for all j and
∑
j xj = 1.

The optimality condition reads:

For some λ ≥ 0, it holds ∇f(x) + λ[1; ...; 1] = 0 and∑
j xj = 1, which amounts to

−aj
x2
j

+ λ = 0 ∀j and
∑
j xj = 1. in other words,

xj =
√
aj/λ and

∑
j

√
aj/λ = 1, whence

λ =
√
a1 + ...+

√
an, xj =

√
aj√

a1+...+
√
an
, f(x) = [

√
a1 + ...+

√
an]2

We have satisfied the optimality condition which in the
convex case is sufficient for global optimality and thus have

found a global optimal solution. There is no need to jus-
tify our educated guess – we are in the situation when eating
indeed is a proof of the pudding!

B. Given n-dimensional vector a, we want to solve the prob-
lem

Opt = minx
{
f(x) = ln(

∑n
i=1 exi)− aTx

}
We are minimizing smooth convex function over the
entire Rn ⇒ minimizers are exactly the solutions to
the Fermat equation ∇f(x) = 0, that is,

exi∑n
j=1 exj

= yi, 1 ≤ i ≤ n

• It is seen by naked eye that the necessary condition
for the system to have a solution is yi > 0 for all i and∑
i yi = 1. This condition is also sufficient: when it is

satisfied, the Fermat equation is satisfied when setting
xj = ln(yj), 1 ≤ j ≤ n

resulting in Opt = −
∑
j yj ln yj.

• All we know so far when our condition
y > 0,

∑
j yj = 1

is not satisfied, is that in this case, the problem has no
optimal solutions. What about the optimal value and
near-optimal solutions?
With some dedicated effort, it could be seen that
— if y is not nonnegative and/or

∑
j yj 6= 1, the problem is un-

bounded: Opt = −∞
— if

∑
j yj = 1, y ≥ 0, but not y > 0, we still have Opt =

−
∑

j yj ln yj, but there is no optimal solution. To get a near-

optimal solution, it suffices to make the entries in x correspond-

ing to yj > 0 equal to ln yj, and make the entries corresponding

to yj = 0 large in magnitude negative reals.

Here eating gives only partial proof of the pudding, but already

this partial proof allows to guess what is the correct answer and

how to justify it.

♦When a Minimizer of a Convex Function is Unique?

♣ Sometimes it makes sense to know when the opti-

mal solution to a convex program

Opt = minx∈X⊂Rn f(x) (P)

is unique.

The standard sufficient condition for uniqueness is strict
convexity of f , defined as follows:

♠ A convex function f : Rn → R ∪ {+∞} is called strictly
convex, when f strictly satisfies the Convexity Inequality “in all
nontrivial cases:”
x, y ∈ Domf, x 6=y,0<λ<1⇒ f((1− λ)x+ λy)<(1− λ)f(x) + λf(y).

Fact: IfX is convex subset of Rn, f is strictly convex and (P)

is solvable, the optimal solution to (P) is unique.
Indeed, if x′, x′′ were two distinct optimal solutions,

the point x̄ = 1
2(x′+x′′) would be feasible and, by strict

convexity, would satisfy f(x̄) < 1
2(f(x′)+f(x′′) = Opt,

which is impossible.

♠ Assuming a convex function f to possess sec-

ond order directional derivatives, taken at every point

x ∈ ri Domf along every direction h ∈ [Domf]− x, the

standard sufficient condition for f to be strictly convex

is that when h 6= 0, these derivatives are strictly pos-

itive: for all (x ∈ ri Domf, h ∈ [Domf]− x, h 6= 0) :
d2

dλ2

∣∣∣
λ=0

f(x+ λh) > 0.

Maxima of Convex Functions

♣ Fact: Let f be a convex function. Then
• If f attains its maximum over Domf at a point x∗ ∈
ri Domf , then f is constant on Domf

• If Domf is closed and does not contain lines and f attains
its maximum on Domf , then among the maximizers there is
an extreme point of Domf

• If Domf is polyhedral and f is bounded from above on
Domf , then f attains its maximum on Domf .

♠ Assume we want to maximize a convex function

f which is real valued on a nonempty, bounded and

polyhedral set X, over this set.

Good news: The optimal solution does exist and can be
found among the extreme points of X (i.e., in “finite time”).
For example: it is easy to maximize a convex function

over the standard simplex {x ∈ Rn : x ≥ 0,
∑
i x1 = 1}

of reasonable dimension.

Very bad news: X may have astronomically many extreme
points, and huge number of them could be local, but not
global, maximizers of f . In general, local information on f

does not allow to understand whether a local maximizer is
global.
While it is relatively easy, starting with a point x ∈ X, to find
an extreme points v of X with f(v) ≥ f(x), it, in general, is
impossible to avoid exhaustive search (usually completely un-
realistic) through all, or a “significant part” of, extreme points
of X.
Conclusion: Convex functions are badly suited for

maximization.

We shall see, however, that convex functions are well
suited for minimization.

Optimality Conditions in Convex Programming

♣ Consider an optimization problem

Opt = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

Standing Assumption: The problem is convex, meaning that
X is a convex set, and f , g1, ..., gm are convex functions.
We always assume X to be nonempty, and f, g1, ..., gm to be
real-valued on X.
♠ The main theoretical questions related to (P) are
A. Is the problem solvable?
B. Is the optimal solution unique?
C. How to characterize an optimal solution – what are optimal-
ity conditions?
♠ The main practical question is how to find an op-
timal solution, or, more realistically, how to find, in rea-
sonable time, a near-optimal and near-feasible solution?
♠ We already know some answers to A and to B:
• The standard answer to A is:
If the feasible set X∗ = {x ∈ X : gi(x) ≤ 0,1 ≤ i ≤ m} is
nonempty and closed (closedness definitely takes place
when X is closed, and g1, ..., gm are continuous on X)
and f is continuous and coercive on X∗, an optimal solution
does exist.
Note: convexity here is irrelevant.
• The standard answer to B is:
If f is strictly convex on its domain, the optimal solution, if it
exists, is unique.
♠ What is ahead of us now, is C.

Lagrange Function and Lagrange Duality

Opt(P) = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

♠ The Lagrange function of problem (P) is the function
L(x, λ) := f(x) +

∑m
i=1 λigi(x) : X → Rm+ → R

Note: When speaking about the Lagrange function,
• x-argument is restricted to vary in X
• λ-argument is restricted to vary in Rm+ – we want the La-
grange multipliers λ1, ..., λm to be nonnegative.
Note: Essentially, we have already met Lagrange function in the

LO case, where X = Rn, f is linear, and g1, ..., gm are affine. “Es-

sentially” reflects the current swap of min and max as compared

to the LO case: in LO, our problem of interest was to maximize,

and now it is to minimize.

Observation: When λ ≥ 0, the Lagrange function underesti-
mates f(·) on the feasible set of (P)

⇒ In the domain λ ≥ 0, the function
L(λ) = infx∈XL(x, λ) : Rm+ → R ∪ {−∞}

is ≤ Opt(P).
The problem

Opt(D) = maxλ≥0L(λ) (D)
= maxλ≥0 infx∈XL(x, λ)

Opt(P) = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

⇒ L(x, λ) := f(x) +
m∑
i=1

λigi(x) : X → Rm+ → R

⇒ L(λ) = inf
x∈X

L(x, λ) : Rm+ → R ∪ {−∞}
⇒ Opt(D) = max

λ≥0
L(λ), (D)

= max
λ≥0

inf
x∈X

L(x, λ)

Note: We have seen that in the LO case, (D) is the

LO dual of (P) (in a slight disguise).

Fact [Weak Duality]: By construction,
Opt(D) ≤ Opt(P).

Note: Convexity is irrelevant here.

Course of actions: We will show that in the convex case,

under mild assumptions Opt(D) = Opt(P), and will

extract from this fact optimality conditions for (P).

♠ The “mild assumption,” in its simplest form, is

Slater condition: (P) admits a strictly feasible solution x̄,
meaning that x̄ ∈ X and gi(x̄)< 0 for all i = 1, ...,m.

• A more advanced version of “mild assumption” is

Relaxed Slater condition: (P) admits a feasible solution
x̄∈ riX where all non-affine constraints gi(x) ≤ 0 are satis-
fied as strict inequalities.
Note: For convex (P), the Relaxed Slater condition is

weaker than the plain Slater condition.

Lagrange Duality Theorem

Opt(P) = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

⇒ L(x, λ) := f(x) +
m∑
i=1

λigi(x) : X → Rm+ → R

⇒ L(λ) = inf
x∈X

L(x, λ) : Rm+ → R ∪ {−∞}
⇒ Opt(D) = max

λ≥0
L(λ), (D)

= max
λ≥0

inf
x∈X

L(x, λ)

♠ Lagrange Duality Theorem: Under our Standing Assump-
tions (which include convexity of (P)) and Relaxed Slater
condition, (D) is solvable, and

Opt(D) = Opt(P)

Illustration:
• Let (P) be the problem

Opt(P) = min
x∈X=[0,∞)

{
f(x) =

1

1 + x
:, g1(x) := 20−x ≤ 0

}
.

(P)

Here Opt(P) = infx{ 1
1+x : x ≥ 20} = 0, but (P) is

unsolvable.

However, problem is convex and satisfies Slater con-

dition. We have

L(λ) = inf
x≥0

{
1

1 + x
+ λ(20− x)

}
=

{
0, λ = 0

−∞, λ > 0

and (D) is solvable with the optimal solution λ = 0

and optimal value Opt(D) = 0 = Opt(P).

• In LDT all assumptions are essential. For example,

the problem

Opt(P) = min
x∈X=R

{
x : g1(x) :=

1

2
x2 ≤ 0

}
, (P)

is convex and solvable with Opt(P) = 0. It, however,

does not satisfy Slater condition.

We have

L(x) = min
x

{
x+

λ

2
x2
}

=

{
−∞, λ = 0
− 1

2λ, λ > 0

⇒ Opt(D) = 0 = Opt(P) (“by chance”), but the dual

problem has no solutions!

Optimality Conditions in CO, Saddle Point From

Opt(P) = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

⇒ L(x, λ) := f(x) +
m∑
i=1

λigi(x) : X → Rm+ → R

Theorem [optimality conditions for (P), saddle point

form] Let x∗ ∈ X. Then
(i) If x∗ can be augmented by λ∗ ≥ 0 to yield a saddle point
(x∗, λ∗) of L(x, λ) (min in x ∈ X, max in λ ≥ 0), that is,
∀(x ∈ X,λ ≥ 0) : L(x, λ∗) ≥︸︷︷︸

(1)

L(x∗, λ∗) ≥︸︷︷︸
(2)

L(x∗, λ)

then x∗ is an optimal solution to (P), and x∗, λ∗ satisfy the
complementary slackness:

λ∗i gi(x∗) = 0, 1 ≤ i ≤ m
(ii) Assume that (P) is convex and satisfies the Relaxed Slater
condition. Then x∗ is an optimal solution to (P) iff x∗ can be
augmented, by a properly selected λ∗ ≥ 0, to yield a saddle
point (x∗, λ∗) of the Lagrange function, and x∗, λ∗ satisfy the
complementary slackness.

Opt(P) = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

⇒ L(x, λ) := f(x) +
m∑
i=1

λigi(x) : X → Rm+ → R

“(i) If x∗ ∈ X can be augmented by λ∗ ≥ 0 to yield a saddle point (x∗, λ∗)

of L(x, λ) (min in x ∈ X, max in λ ≥ 0), that is,

∀(x ∈ X,λ ≥ 0) : L(x, λ∗) ≥︸︷︷︸
(1)

L(x∗, λ∗) ≥︸︷︷︸
(2)

L(x∗, λ)

then x∗ is an optimal solution to (P), and x∗, λ∗ satisfy the complementary

slackness:

λ∗i gi(x∗) = 0, 1 ≤ i ≤ m”

Explanation, (i): Let x∗ ∈ X and λ∗ ≥ 0 are such that (x∗, λ∗) form

a saddle point of L on X × {λ ≥ 0}. Then

• by (2), λ∗ is a maximizer of L(x∗, λ) as a function of λ ≥ 0.

This function is linear in λ, and therefore its minimum in λ ≥ 0

can be achieved at λ∗ iff gi(x∗) ≥ 0 for all i and complementary

slackness holds. By complementary slackness,

L(x∗, λ∗) =︸︷︷︸
(3)

f(x∗)

Note: as a byproduct of our reasoning, we get that feasibility of

x∗ for (P) plus complementary slackness is a necessary and sufficient

condition for (2) to hold for all λ ≥ 0.

Now, if x is a feasible solution to (P), then f(x) ≥ L(x, λ∗) (since

λ∗ ≥ 0), which combines with (1), (3) to imply that f(x) ≥ f(x∗).

The bottom line is that x∗ is an optimal solution to (P).

Opt(P) = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

⇒ L(x, λ) := f(x) +
m∑
i=1

λigi(x) : X → Rm+ → R

⇒ Opt(D) = max
λ≥0

L(λ), (D)

= max
λ≥0

inf
x∈X

L(x, λ) (S)

“(ii) Assume that (P) is convex and satisfies the Relaxed Slater condition.

Then x∗ ∈ X is an optimal solution to (P) iff x∗ can be augmented, by a

properly selected λ∗ ≥ 0, to yield a saddle point (x∗, λ∗) of the Lagrange

function, and x∗, λ∗ satisfy the complementary slackness.”

Explanation, (ii): “If x∗ can be augmented ... then x∗ is an opti-

mal solution to (P) and ...” was already proved in (i) and when

checking that the complementary slackness is implied by the fact

that (x∗, λ∗) is a saddle point of L on X × {λ ≥ 0}.
Now assume that x∗ is an optimal solution to (P), and let us

check that then “x∗ can be augmented...”. Consider the saddle

point problem (S). The associated dual problem is (D), and the

associated primal problem (P ′) is

minx∈X
[
L(x) := supλ≥0L(x, λ) =

{
f(x), gi(x) ≤ 0 ∀i
+∞, otherwise

]
⇒ x∗ is an optimal solution to (P ′), and Opt(P ′) = Opt(P).

By Lagrange Duality Theorem, (D) is solvable with an optimal solu-

tion λ∗ and optimal value Opt(D) = Opt(P).

⇒ (P ′) is solvable with optimal solution x∗, (D) is solvable with optimal

solution λ∗, and Opt(P ′) = Opt(D)

⇒ By what we know about saddle points, (x∗, λ∗) is a saddle

point of L on X × {λ ≥ 0}. This, as we have seen when proving

(i), implies complementary slackness.

Optimality Conditions in CO, Karush-Kuhn-Tucker Form

Opt(P) = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

⇒ L(x, λ) := f(x) +
m∑
i=1

λigi(x) : X → Rm+ → R

Theorem [optimality conditions for (P), KKT form]
Let x∗ be a feasible solution to a convex problem (P), and let
f, g1, ..., gm be differentiable at x∗. Then
(i) If x∗ is a KKT point of (P), meaning that x∗ can be aug-
mented by a properly selected λ∗ ≥ 0 to satisfy

λ∗jgj(x∗) = 0 ∀j [complementary slackness]
∇f(x∗) +

∑m
i=1 λ

∗
i∇gi(x∗) ∈ NX(x∗) [KKT equation]

NX(x∗) = {h : 〈h, x′ − x〉 ≥ 0 ∀x′ ∈ X}: normal cone of X at x
then (x∗, λ∗) is a saddle point of L(x, λ) (min in x ∈ X, max
in λ ≥ 0), whence x∗ is an optimal solution to (P).
(ii) Assume that, in addition to what stated in the premise of
Theorem, (P) satisfies the Relaxed Slater condition. Then x∗
is an optimal solution to (P) iff x∗ is a KKT point of (P).
Explanation, (i): If x∗ is a KKT point and λ∗ ≥ 0 is the associated

vector of Lagrange multipliers, then

• x∗ is feasible for (P) by assumption, and x∗, λ∗ satisfy comple-

mentary slackness

⇒ L(x∗, λ) as a function of λ ≥ 0 attains it maximum at λ∗.

• The function h(x) = f(x) +
∑

i λ
∗
i gi(x) is convex and differen-

tiable at x∗ ∈ X and satisfies ∇h(x∗) ∈ NX(x∗)

⇒ L(x, λ∗) as a function of x ∈ X attains its minimum at x∗
⇒ (x∗, λ∗) is a saddle point of L on X × {λ ≥ 0}
⇒ [previous theorem] x∗ is an optimal solution to (P).

Opt(P) = min
x∈X⊂Rn

{f(x); gi(x) ≤ 0, i = 1, ...,m} (P)

⇒ L(x, λ) := f(x) +
m∑
i=1

λigi(x) : X → Rm+ → R

“(ii) Assume that, in addition to what stated in the premise of Theorem,

(P) the Relaxed Slater condition. Then x∗ is an optimal solution to (P) iff

x∗ is a KKT point of (P).”

Explanation, (ii): “If x∗ is a KKT point ... then x∗ is an optimal

solution to (P)” is stated by (i).

All we need to verify is the claim

“If (P) is convex and satisfies Relaxed Slater condition, f, gi are differen-

tiable at x∗ and x∗ is an optimal solution to (P), then x∗ is a KKT point of

(P).”

• By the Saddle Point form of Optimality Conditions, under the

premise of our claim x∗ can be augmented by λ∗ to yield a saddle

point (x∗, λ∗) of L on X×{λ ≥ 0} and x∗, λ∗ satisfy complementary

slackness. All we need to verify is the validity of KKT equality.

• The function h(x) = f(x)
∑

i λ
∗
i gi(x) is convex and differentiable

at x∗ ∈ X. Since (x∗, λ∗) is a saddle point of L on X × {λ ≥ 0},
h(x) attains its minimum on X at x∗

⇒ [what we know about minimizing convex function over a con-

vex set] ∇h(x∗) ∈ NX(x∗), which is the KKT equality

Solving Convex Problems: Ellipsoid Algorithm

♣ There is a wide spectrum of algorithms capable
to approximate global solutions of convex problems to
high accuracy in “reasonable” time.
We will start with one of the “universal” algorithms of
this type – the Ellipsoid method imposing only minimal
additional to convexity requirements on the problem.
♣ The Ellipsoid method is aimed at solving convex
problem in the form

Opt(P) = minx∈X⊂Rn f(x)
where
• f is a real-valued continuous convex function on

X which admits subgradients at every point of X.
f is given by First Order oracle – a procedure (“black
box”) which, given on input a point x ∈ X, returns
the value f(x) and a subgradient f ′(x) of f at x.
For example, when f is differentiable, it is enough to
be able to compute the value and the gradient of f
at a point from X.
• X is a closed and bounded convex set in Rn with

nonempty interior.
X is given by Separation oracle – a procedure SepX
which, given on input a point x ∈ Rn, reports whether
x ∈ X, and if it is not the case, returns a separator –
a nonzero vector e ∈ Rn such that

maxy∈X e
Ty ≤ eTx.

Opt(P) = minx∈X⊂Rn f(x)

♠ Usually, the original description of the feasible do-

main X of the problem is as follows:

X = {x ∈ Y : gi(x) ≤ 0, 1 ≤ i ≤ m}
where

• Y is a nonempty convex set admitting a simple

Separation oracle SepY .

Example: Let Y be nonempty and given by a list of linear in-

equalities aTk x ≤ bk, 1 ≤ k ≤ K. Here SepY is as follows:

Given a query point x, we check validity of the inequalities

aTk x ≤ bk. If all of them are satisfied, we claim that x ∈ Y ,

otherwise claim that x 6∈ Y , take a violated inequality – one with

aTk x > bk – and return ak as the required separator e.

Note: We have maxy∈Y aTk y ≤ bk < aTk x, implying that e := ak

separates x and Y and is nonzero (since Y 6= ∅).

• gi : Y → R are convex functions on Y given by

First Order oracles and such that given x ∈ Y , we can
check whether gi(x) ≤ 0 for all i, and if it is not the case, we
can find i∗ = i∗(x) such that gi∗(x) > 0.

X = {x ∈ Y : gi(x) ≤ 0, 1 ≤ i ≤ m}

♠ In the outlined situation, assuming X nonempty,

Separation oracle SepX for X can be built as follows:

Given query point x ∈ Rn, we

— call SepY to check whether x ∈ Y . If it is not the case, x 6∈ X,

and the separator of x and Y separates x and X as well. Thus,

when SepY reports that x 6∈ Y , we are done.

— when SepY reports that x ∈ Y , we check whether gi(x) ≤ 0

for all i. If it is the case, x ∈ X, and we are done. Otherwise

we claim that x 6∈ X, find a constraint gi∗(·) ≤ 0 violated at x:

gi∗(x) > 0, call First Oracle to compute a subgradient e of gi∗(·)
at x and return this e as the separator of x and X.

Note: In the latter case, e is nonzero and separates x and X:

since gi∗(y) ≥ gi∗(x) + eT(y − x) > eT(y − x) and gi∗(y) ≤ 0 when

y ∈ X, we have

y ∈ X ⇒ eT(y − x) < 0

It follows that e 6= 0 (X is nonempty!) and maxy∈X eTy ≤ eTx.

Opt(P) = minx∈X⊂Rn f(x) (P)

Assumptions:
• X is convex, closed and bounded set with intX 6=

∅ given by Separation oracle SepX.

• f is convex and continuous function on X given

by First Order oracle Of .

• [new] We have an “upper bound” on X – we know
R <∞ such that the ball B of radius R centered at the origin
contains X,
(?) How to solve (P) ?
To get an idea, let us start with univariate case.

Univariate Case: Bisection

♣ When solving a problem
min
x
{f(x) : x ∈ X = [a, b] ⊂ [−R,R]} ,

by bisection, we recursively update localizers – seg-
ments ∆t = [at, bt] containing the optimal set Xopt.
• Initialization: Set ∆1 = [−R,R] [⊃ Xopt]
• Step t: Given ∆t ⊃ Xopt let ct be the midpoint of
∆t. Calling Separation and First Order oracles at et,
we replace ∆t by twice smaller localizer ∆t+1.

a b c
t

1.a)

a
t−1

b
t−1

f

a bc
t

1.b)

a
t−1

b
t−1

f

c
t

2.a)

a
t−1

b
t−1

f

c
t

2.b)

a
t−1

b
t−1

f

c
t

2.c)

a
t−1

b
t−1

f

1) SepX says that ct 6∈ X and reports, via separator e,
on which side of ct X is.
1.a): ∆t+1 = [at, ct]; 1.b): ∆t+1 = [ct, bt]

2) SepX says that ct ∈ X, and Of reports, via signf ′(ct),
on which side of ct Xopt is.
2.a): ∆t+1 = [at, ct]; 2.b): ∆t+1 = [ct, bt]; 2.c): ct ∈ Xopt

♠ Since the localizers rapidly shrink and X is of positive length, eventually

some of search points will become feasible, and the nonoptimality of the

best found so far feasible search point will rapidly converge to 0 as process

goes on.

♠ Bisection admits multidimensional extension, called

Generinc Cutting Plane Algorithm, where one builds a

sequence of “shrinking” localizers Gt – closed and

bounded convex domains containing the optimal set

Xopt of (P).

Generic Cutting Plane Algorithm is as follows:

♠ Initialization Select as G1 a closed and bounded con-

vex set containing X and thus being a localizer.

Opt(P) = minx∈X⊂Rn f(x) (P)

♠ Step t = 1,2, ...: Given current localizer Gt,
• Select current search point ct ∈ Gt and call Sepa-

ration and First Order oracles to form a cut – to find
et 6= 0 such that Xopt ⊂ Ĝt := {x ∈ Gt : eTt x ≤ eTt ct}

A: ct 6∈ X B: ct ∈ X

Black: X; Blue: Gt; Magenta: Cutting hyperplane

To this end
— call SepX, ct being the input. If SepX says that
ct 6∈ X and returns a separator, take it as et (case A
on the picture).
Note: ct 6∈ X ⇒ all points from Gt\Ĝt are infeasible
— if ct ∈ Xt, call Of to compute f(ct), f ′(ct). If
f ′(ct) = 0, terminate, otherwise set et = f ′(ct) (case
B on the picture).
Note: When f ′(ct) = 0, ct is optimal for (P), otherwise
f(x) > f(ct) at all feasible points from Gt\Ĝt
• By the two “Note” above, Ĝt is a localizer along

with Gt. Select a closed and bounded convex set
Gt+1 ⊃ Ĝt (it also will be a localizer) and pass to step
t+ 1.

Opt(P) = minx∈X⊂Rn f(x) (P)

♠ Approximate solution xt built in course of t = 1,2, ... steps
is the best – with the smallest value of f – of the feasible
search points c1, ..., ct built so far.
If in course of the first t steps no feasible search points

were built, xt is undefined.

♣ Analysing Cutting Plane algorithm
• Let Vol(G) be the n-dimensional volume of a closed

and bounded convex set G ⊂ Rn.

Note: For convenience, we use, as the unit of volume,

the volume of n-dimensional unit ball {x ∈ Rn : ‖x‖2 ≤
1}, and not the volume of n-dimensional unit box.

• Let us call the quantity ρ(G) = [Vol(G)]1/n the radius
of G. ρ(G) is the radius of n-dimensional ball with the

same volume as G, and this quantity can be thought

of as the average linear size of G.

Theorem. Let convex problem (P) satisfying our standing
assumptions be solved by Generic Cutting Plane Algorithm
generating localizers G1, G2,... and ensuring that ρ(Gt)→ 0

as t → ∞. Let t̄ be the first step where ρ(Gt+1) < ρ(X).
Starting with this step, approximate solution xt is well defined
and obeys the “error bound”

f(xt)−Opt(P) ≤ min
τ≤t

[
ρ(Gτ+1)
ρ(X)

] [
max
X

f −min
X

f

]

Opt(P) = minx∈X⊂Rn f(x) (P)

Explanation: Since intX 6= ∅, ρ(X) is positive, and
since X is closed and bounded, (P) is solvable. Let
x∗ be an optimal solution to (P).
• Let us fix ε ∈ (0,1) and set Xε = x∗+ ε(X − x∗).
Xε is obtained X by similarity transformation which
keeps x∗ intact and “shrinks” X towards x∗ by fac-
tor ε. This transformation multiplies volumes by εn

⇒ ρ(Xε) = ερ(X).
• Let t be such that ρ(Gt+1) < ερ(X) = ρ(Xε). Then
Vol(Gt+1) < Vol(Xε) ⇒ the set Xε\Gt is nonempty ⇒ for
some z ∈ X, the point

y = x∗+ ε(z − x∗) = (1− ε)x∗+ εz
does not belong to Gt+1.
• G1 contains X and thus y, and Gt+1 does not con-
tain y, implying that for some τ ≤ t, it holds

eTτ y > eTτ cτ (!)
• We definitely have cτ ∈ X – otherwise eτ separates
cτ and X 3 y, and (!) witnesses otherwise.
• Thus, cτ ∈ X and therefore eτ = f ′(xτ). By the defi-
nition of subgradient, we have f(y) ≥ f(cτ)+eTτ (y−cτ)
⇒ [by (!)] f(cτ) ≤ f(y) = f((1 − ε)x∗ + εz) ≤
(1− ε)f(x∗) + εf(z)

⇒ f(cτ)− f(x∗) ≤ε[f(z)− f(x∗)] ≤ ε
[
max
X

f −min
X

f

]
.

Bottom line: If 0 < ε < 1 and ρ(Gt+1) < ερ(X), then
xt is well defined (since τ ≤ t and cτ is feasible) and

f(xt)−Opt(P) ≤ ε
[
max
X

f −min
X

f

]
.

Opt(P) = minx∈X⊂Rn f(x) (P)

“Starting with the first step t̄ where ρ(Gt+1) < ρ(X),

xt is well defined, and

f(xt)−Opt ≤ min
τ≤t

[
ρ(Gτ+1)

ρ(X)

]
︸ ︷︷ ︸

εt

[
max
X

f −min
X

f

]
︸ ︷︷ ︸

V

”

♣ We are done. Let t ≥ t̄, so that εt < 1, and let

ε ∈ (εt,1). Then for some t′ ≤ t we have

ρ(Gt′+1) < ερ(X)

⇒ [by bottom line] xt
′
is well defined and

f(xt
′
)−Opt(P) ≤ εV

⇒ [since f(xt) ≤ f(xt
′
) due to t ≥ t′] xt is well defined

and f(xt)−Opt(P) ≤ εV
⇒ [passing to limit as ε → εt + 0] xt is well defined and
f(xt)−Opt(P) ≤ εtV �

Opt(P) = minx∈X⊂Rn f(x) (P)

♠ Corollary: Let (P) be solved by cutting Plane Algorithm
which ensures, for some ϑ ∈ (0,1), that

ρ(Gt+1) ≤ ϑρ(Gt)

Then, for every desired accuracy ε > 0, finding feasible ε-
optimal solution xε to (P) (i.e., a feasible solution xε sat-

isfying f(xε)−Opt ≤ ε) takes at most
N = 1

ln(1/ϑ) ln
(
R
[
1 + V

ε

])
+ 1

steps of the algorithm. Here
R = ρ(G1)

ρ(X)
says how well, in terms of volume, the initial localizer G1 ap-
proximates X, and

V = max
X

f −min
X

f

is the variation of f on X.
Note: R, and V/ε are under log, implying that high

accuracy and poor approximation of X by G1 cost

“nearly nothing.”

What matters, is the factor at the log which is the

larger the closer ϑ < 1 is to 1.

“Academic” Implementation: Centers of Gravity

♠ In high dimensions, to ensure progress in volumes of

subsequent localizers in a Cutting Plane algorithm is

not an easy task: we do not know how the cut through

ct will pass, and thus should select ct in Gt in such a

way that whatever be the cut, it cuts off the current lo-

calizer Gt a “meaningful” part of its volume.

♠ The most natural choice of ct in Gt is the center of
gravity:

ct =

[∫
Gt
xdx

]
/

[∫
Gt

1dx

]
,

the expectation of the random vector uniformly dis-

tributed on Gt.

Good news: The Center of Gravity policy with Gt+1 =

Ĝt results in

ϑ =
(
1−

[
1

n+1

])1/n
≤ [0.632...]1/n

This results in the complexity bound (# of steps

needed to build ε-solution)

N = 2.2n ln
(
R
[
1 + V

ε

])
+ 1

Note: It can be proved that within absolute constant fac-
tor, like 4, this is the best complexity bound achievable by
whatever algorithm for convex minimization which can “learn”
the objective via First Order oracle only.

Disastrously bad news: Centers of Gravity are not im-

plementable, unless the dimension n of the problem is

like 2 or 3.

Reason: In the method, we have no control on the

shape of localizers. Perhaps the best we can say is

that if we started with a polytope G1 given by M lin-

ear inequalities, even as simple as a box, then Gt, for

meaningful t’s, is a more or less arbitrary polytope

given by at most M + t − 1 linear inequalities. And

computing center of gravity of a general-type high-

dimensional polytope is a computationally intractable

task – it requires astronomically many computations

already in the dimensions like 5 – 10.

Remedy: Maintain the shape of Gt simple and convenient for
computing centers of gravity, sacrificing, if necessary, the

value of ϑ.

The most natural implementation of this remedy is

enforcing Gt to be ellipsoids. As a result,

• ct becomes computable in O(n2) operations (nice!)

• ϑ = [0.632...]1/n ≈ exp{−0.367/n} increases to

ϑ ≈ exp{−0.5/n2}, spoiling the complexity bound

N = 2.2n ln
(
R
[
1 + V

ε

])
+ 1

to

N = 4n2 ln
(
R
[
1 + V

ε

])
+ 1

(unpleasant, but survivable...)

Practical Implementation - Ellipsoid Method

♠ Ellipsoid in Rn is the image of the unit n-dimensional

ball under one-to-one affine mapping:

E = E(B, c) = {x = Bu+ c : uTu ≤ 1}
where B is n× n nonsingular matrix, and c ∈ Rn.

• c is the center of ellipsoid E = E(B, c): when

c+ h ∈ E, c− h ∈ E as well

• When multiplying by n× n matrix B, n-dimensional

volumes are multiplied by |Det(B)|
⇒ Vol(E(B, c)) = |Det(B)|, ρ(E(B, c)) = |Det(B)|1/n.

Simple fact: Let E(B, c) be ellipsoid in Rn and e ∈ Rn be a
nonzero vector. The “half-ellipsoid”

Ê = {x ∈ E(B, c) : eTx ≤ eT c}
is covered by the ellipsoid E+ = E(B+, c+) given by

c+ = c− 1
n+1Bp, p = BT e/

√
eTBBT e

B+ = n√
n2−1

B +
(

n
n+1 −

n√
n2−1

)
(Bp)pT ,

•E(B+, c+) is the ellipsoid of the smallest volume containing
the half-ellipsoid Ê, and the volume of E(B+, c+) is strictly
smaller than the one of E(B, c):

ϑ := ρ(E(B+,c+))
ρ(E(B,c)) ≤ exp{− 1

2n2}.
•GivenB, c, e, computingB+, c+ costsO(n2) arithmetic op-
erations.

Opt(P) = minx∈X⊂Rn f(x) (P)

♣ Ellipsoid method is the Cutting Plane Algorithm

where

• all localizers Gt are ellipsoids:

Gt = E(Bt, ct),

• the search point at step t is ct, and

• Gt+1 is the smallest volume ellipsoid containing the

half-ellipsoid

Ĝt = {x ∈ Gt : eTt x ≤ eTt ct}
Computationally, at every step of the algorithm we

once call the Separation oracle SepX, (at most) once

call the First Order oracle Of and spend O(n2) oper-

ations to update (Bt, ct) into (Bt+1, ct+1) by explicit

formulas.

♠ Complexity bound of the Ellipsoid algorithm is

N = 4n2 ln
(
R
[
1 + V

ε

])
+ 1

R = ρ(G1)
ρ(X) , V = max

x∈X
f(x)−min

x∈X
f(x)

Pay attention:
• R, V, ε are under log ⇒ large magnitudes in data entries
and high accuracy are not issues
• the factor at the log depends only on the structural param-
eter of the problem (its design dimension n) and is inde-
pendent of the remaining data.

What is Inside Simple Fact

♠ Messy formulas describing the updating

(Bt, ct)→ (Bt+1, ct+1)

in fact are easy to get.

• Ellipsoid E is the image of the unit ball B under

affine transformation. Affine transformation preserves ra-
tio of volumes
⇒ Finding the smallest volume ellipsoid containing a given
half-ellipsoid Ê reduces to finding the smallest volume ellip-
soid B+ containing half-ball B̂:

e

⇔
x=c+Bu

p

E, Ê and E+ B, B̂ and B+

• The “ball” problem is highly symmetric, and solving

it reduces to a simple exercise in elementary Calculus.

Why Ellipsoids?

(?) When enforcing the localizers to be of “simple and stable” shape, why

we make them ellipsoids (i.e., affine images of the unit Euclidean ball), and

not something else, say parallelotopes (affine images of the unit box)?

Answer: In a “simple stable shape” version of Cutting Plane

Scheme all localizers are affine images of some fixed n-dimensional

solid C (closed and bounded convex set in Rn with a nonempty in-

terior). To allow for reducing step by step volumes of localizers,

C cannot be arbitrary. What we need is the following property

of C:

One can fix a point c in C in such a way that whatever be a cut

Ĉ = {x ∈ C : eTx ≤ eTc} [e 6= 0]

this cut can be covered by the affine image of C with the volume less than

the one of C:

∃B, b : Ĉ ⊂ BC + b & |Det(B)| < 1 (!)

Note: The Ellipsoid method corresponds to unit Euclidean ball

in the role of C and to c = 0, which allows to satisfy (!) with

|Det(B)| ≤ exp{− 1
2n
}, finally yielding ϑ ≤ exp{− 1

2n2}.
• Solids C with the above property are “rare commodity.” For

example, n-dimensional box does not possess it.

• Another “good” solid is n-dimensional simplex (this is not

that easy to see!). Here (!) can be satisfied with |Det(B)| ≤
exp{−O(1/n2)}, finally yielding ϑ = (1−O(1/n3)).

⇒ From the complexity viewpoint, “simplex” Cutting Plane algorithm is

worse than the Ellipsoid method.

The same is true for handful of other known so far (and quite

exotic) ”good solids.”

Ellipsoid Method: pro’s & con’s

♣ Academically speaking, Ellipsoid method is an indispens-
able tool underlying basically all results on efficient solvability
of generic convex problems, most notably, the famous

theorem of L. Khachiyan (1978) on efficient (scientif-

ically: polynomial time, whatever it means) solvability of
Linear Programming with rational data.
♠ What matters from theoretical perspective, is “universal-

ity” of the algorithm (nearly no assumptions on the

problem except for convexity) and complexity bound

of the form “structural parameter outside of log, all else, in-
cluding required accuracy, under the log.”
♠ Another theoretical (and to some extent, also prac-

tical) advantage of the Ellipsoid algorithm is that as
far as the representation of the feasible setX is concerned, all
we need is a Separation oracle, and not the list of constraints
describing X. The number of these constraints can

be astronomically large, making impossible to check

feasibility by looking at the constraints one by one;

however, in many important situations the constraints

are “well organized,” allowing to implement Separa-

tion oracle efficiently.

♠ Theoretically, the only (and minor!) drawbacks of

the algorithm is the necessity for the feasible set X

to be bounded, with known “upper bound,” and to

possess nonempty interior.

As of now, there is not way to cure the first drawback

without sacrificing universality. The second “draw-

back” is artifact: given nonempty

X = {x : gi(x) ≤ 0,1 ≤ i ≤ m},
we can extend it to

Xε = {x : gi(x) ≤ ε,1 ≤ i ≤ m},
thus making the interior nonempty, and minimize the

objective within accuracy ε on this larger set, seeking

for ε-optimal ε-feasible solution instead of ε-optimal

and exactly feasible one.

This is quite natural: to find a feasible solution is,

in general, not easier than to find an optimal one.

Thus, either ask for exactly feasible and exactly optimal so-
lution (which beyond LO is unrealistic), or allow for

controlled violation in both feasibility and optimality!

♠ From practical perspective, theoretical drawbacks of

the Ellipsoid method become irrelevant: for all prac-

tical purposes, bounds on the magnitude of variables

like 10100 is the same as no bounds at all, and in-

feasibility like 10−10 is the same as feasibility. And

since the bounds on the variables and the infeasibility

are under log in the complexity estimate, 10100 and

10−10 are not a disaster.

♠ Practical limitations (rather severe!) of Ellipsoid al-

gorithm stem from method’s sensitivity to problem’s

design dimension n. Theoretically, with ε, V,R fixed,

the number of steps grows with n as n2, and the effort

per step is at least O(n2) a.o.

⇒ Theoretically, computational effort grows with n at least as
O(n4),

⇒ n like 1000 and more is beyond the “practical grasp” of the
algorithm.
Note: Nearly all modern applications of Convex Optimization
deal with n in the range of tens and hundreds of thousands!

♠ By itself, growth of theoretical complexity with n

as n4 is not a big deal: for Simplex method, this

growth is exponential rather than polynomial, and no-

body dies – in reality, Simplex does not work according

to its disastrous theoretical complexity bound.

Ellipsoid algorithm, unfortunately, works more or less

according to its complexity bound.

⇒ Practical scope of Ellipsoid algorithm is restricted to convex
problems with few tens of variables.
However: Low-dimensional convex problems from

time to time do arise in applications. More impor-

tantly, these problems arise “on a permanent basis”

as auxiliary problems within some modern algorithms

aimed at solving extremely large-scale convex problems.

⇒ The scope of practical applications of Ellipsoid algorithm is
nonempty, and within this scope, the algorithm, due to its abil-
ity to produce high-accuracy solutions (and surprising sta-

bility to rounding errors) can be considered as the method
of choice.

How It Works

Opt = min
x
f(x), X = {x ∈ Rn : aTi x− bi ≤ 0, 1 ≤ i ≤ m}

♠ Real-life problem with n = 10 variables and m =

81,963,927 “well-organized” linear constraints:
CPU, sec t f(xt) f(xt)−Opt≤ ρ(Gt)/ρ(G1)

0.01 1 0.000000 6.7e4 1.0e0
0.53 63 0.000000 6.7e3 4.2e-1
0.60 176 0.000000 6.7e2 8.9e-2
0.61 280 0.000000 6.6e1 1.5e-2
0.63 436 0.000000 6.6e0 2.5e-3
1.17 895 -1.615642 6.3e-1 4.2e-5
1.45 1250 -1.983631 6.1e-2 4.7e-6
1.68 1628 -2.020759 5.9e-3 4.5e-7
1.88 1992 -2.024579 5.9e-4 4.5e-8
2.08 2364 -2.024957 5.9e-5 4.5e-9
2.42 2755 -2.024996 5.7e-6 4.1e-10
2.66 3033 -2.024999 9.4e-7 7.6e-11

Note: My implementation of Ellipsoid algorithm uti-

lizes simple tricks described in the beginning of “Op-

tional Project,” including on-line upper bounding of

“optimality gaps” f(xt)−Opt.

♠ Similar problem with n = 30 variables and

m = 1,462,753,730 “well-organized” linear con-

straints:
CPU, sec t f(xt) f(xt)−Opt≤ ρ(Gt)/ρ(G1)

0.02 1 0.000000 5.9e5 1.0e0
1.56 649 0.000000 5.9e4 5.0e-1
1.95 2258 0.000000 5.9e3 8.1e-2
2.23 4130 0.000000 5.9e2 8.5e-3
5.28 7080 -19.044887 5.9e1 8.6e-4

10.13 10100 -46.339639 5.7e0 1.1e-4
15.42 13308 -49.683777 5.6e-1 1.1e-5
19.65 16627 -50.034527 5.5e-2 1.0e-6
25.12 19817 -50.071008 5.4e-3 1.1e-7
31.03 23040 -50.074601 5.4e-4 1.1e-8
37.84 26434 -50.074959 5.4e-5 1.0e-9
45.61 29447 -50.074996 5.3e-6 1.2e-10
52.35 31983 -50.074999 1.0e-6 2.0e-11

Part III: Conic Optimization
• From Linear to Conic Optimization
• Conic Duality
• Interior Point Methods for Linear

and Semidefinite Optimization

Conic Optimization: Why?

♠ “Universal” Convex Optimization algorithm, like El-
lipsoids method, are blind (scientifically: “black box
oriented”) – they do not utilize problem’s structure,
aside of convexity, and “learn” the problem via local
information (values and (sub)gradients of objective
and constraints along search points).
At present level of our knowledge, this implies severe
limitations on the sizes of convex problems amenable
to “universal” algorithms.
Note: A convex program always has a lot of structure
– otherwise how could we know that the problem is
convex?
A good algorithm should utilize a priori knowledge of
problem’s structure in order to accelerate the solution
process.

Example: The LP Simplex Method is fully ad-
justed to the particular structure of an LO
problem. Although by far inferior to the Ellip-
soid method in the worst case, Simplex Method
in reality is capable to solve LO’s with tens
and hundreds of thousands of variables and
constraints – a task which is by far out of
reach of the theoretically efficient “universal”
black box oriented algorithms.

From Linear to Conic Optimization

♠ Before utilizing structure of a convex program, one
should “reveal” it.
Revealing structure is a highly challenging task: it is
unclear what we are looking for until we find it!
♠ The most useful, as of now, “structure revealing”
form of convex program – Conic Optimization – was
found in early 1990’s. The idea behind looks really
striking (if not crazy):
• Traditionally, when passing from a LO problem

min{cTx : Ax− b ≤ 0} (P)
to a convex one,
• linear objective cTx is replaced with convex objec-
tive, and
• affine in x left hand side Ax−b in the vector inequality
constraint Ax − b ≤ 0 is replaced with entrywise con-
vex vector-valued function A(x), yielding the vector
inequality constraint A(x) ≤ 0. In Conic Optimization,
we keep the objective and the left hand side in the vector in-
equality Ax− b ≤ 0 linear/affine, and “introduce nonlinearity”
in what “≤ 0” means!
Note: This is not as crazy as it looks. When comparing
numbers, there is only one meaningful notion of ≤. In-
equality ≤ in (P) is something different: it is specific
“entrywise” inequality between vectors, with “a ≤ 0”
meaning “all entries in vector a are nonpositive.”
On a closed inspection, the entrywise vector inequality “≤”
is neither the only possible, nor the only useful way to compare
vectors, so why to stick to the entrywise ≤ ?

♣ A Conic Programming optimization program is

Opt = min
x

{
cTx : Ax− b ∈ K

}
, (C)

where K ⊂ Rm is a regular cone.

♠ Regularity of K means that

• K is convex cone:
(xi ∈ K, λi ≥ 0,1 ≤ i ≤ p)⇒

∑
i λixi ∈ K

• K is pointed: ±a ∈ K⇔ a = 0

• K is closed: xi ∈ K, limi→∞ xi = x⇒ x ∈ K

• K has a nonempty interior int K:
∃(x̄ ∈ K, r > 0) : {x : ‖x− x̄‖2 ≤ r} ⊂ K

Example: The nonnegative orthant

Rm+ = {x ∈ Rm : xi ≥ 0, 1 ≤ i ≤ m}
is a regular cone, and the associated conic problem

(C) is just the usual LO program.

Fact: When passing from LO programs (i.e., conic pro-

grams associated with nonnegative orthants) to conic
programs associated with properly chosen wider families of
cones, we extend dramatically the scope of applications we
can process, while preserving the major part of LO theory and
preserving our abilities to solve problems efficiently.

• Let K ⊂ Rm be a regular cone. We can associate

with K two relations between vectors of Rm:

• “nonstrict K-inequality” ≥K:
a ≥K b⇔ a− b ∈ K

• “strict K-inequality” >K:
a >K b⇔ a− b ∈ intK

Example: when K = Rm+, ≥K is the usual “coordinate-

wise” nonstrict inequality ”≥” between vectors a, b ∈
Rm:

a ≥ b⇔ ai ≥ bi, 1 ≤ i ≤ m
while >K is the usual “coordinate-wise” strict inequal-

ity ”>” between vectors a, b ∈ Rm:

a > b⇔ ai > bi, 1 ≤ i ≤ m
♣ K-inequalities share the basic algebraic and topo-

logical properties of the usual coordinate-wise ≥ and

>, for example:

♠ ≥K is a partial order:

• a ≥K a (reflexivity),

• a ≥K b and b ≥K a ⇒ a = b (anti-symmetry)

• a ≥K b and b ≥K c ⇒ a ≥K c (transitivity)

♠ ≥K is compatible with linear operations:

• a ≥K b and c ≥K d ⇒ a+ c ≥K b+ d,

• a ≥K b and λ ≥ 0 ⇒ λa ≥K λb

♠ ≥K is stable w.r.t. passing to limits:

ai ≥K bi, ai → a, bi → b as i→∞ ⇒ a ≥K b

♠ >K satisfies the usual arithmetic properties, like

• a >K b and c ≥K d ⇒ a+ c >K b+ d

• a >K b and λ > 0 ⇒ λa >K λb

and is stable w.r.t perturbations: if a >K b, then

a′ >K b′ whenever a′ is close enough to a and b′ is

close enough to b.

♣ Note: Conic program associated with a regular cone K

can be written down as
min
x

{
cTx : Ax− b ≥K 0

}
Note: Every convex program can be equivalently re-

formulated as a conic one.

Data and Structure of Conic Program

min
x∈Rn

{
cTx : Ax− b ≥K 0

}
(CP)

♠ When asked “what is the data, and what is the

structure in (CP)”, everybody will give the same an-

swer:

The structure “sits” in the cone K (and in n), and the data
are the entries in c, A, b.
But: General type convex cone is as “unstructured”

as a general type convex function. Why not to say

that in a convex program of in the MP form

minx∈Rn {f(x) : gi(x) ≤ 0, 1 ≤ i ≤ m}
the structure “sits” in the convex functions f, g1, ..., gm

(and m,n) — definitely true and absolutely useless!

♠ Fact: Conic problems associated with just three specific
families of cones cover nearly all (for all practical purposes

– just all) applications of Convex Optimization.
Cones from the three “magic” families possess trans-

parent structure fully utilized by theoretically (and

practically!) efficient Interior Point methods “tailored”

to these cones.

⇒ Reformulating convex program as a conic program from a
“magic family” allows to process the problem by highly efficient
dedicated algorithms.

Linear/Conic Quadratic/Semidefinite Optimization

♣ The three magic families of cones are

• Direct products of nonnegative rays – nonnegative
orthants giving rise to Linear Optimization,

• Direct products of Lorentz cones giving rise to Conic
Quadratic Optimization, a.k.a. Second Order Cone Opti-
mization,

• Direct products of Semidefinite cones giving rise to

Semidefinite Optimization.

♣ Linear Optimization. Let K = LO be the family of

all nonnegative orthants, i.e., all direct products of

nonnegative rays. Conic programs associated with

cones from K are exactly the LO programs

min
x

{
cTx : aTi x− bi ≥ 0,1 ≤ i ≤ m︸ ︷︷ ︸

⇔Ax−b≥Rm
+

0

}

♣ Conic Quadratic Optimization. Lorentz cone Lm of di-

mension m is the regular cone in Rm given by

Lm = {x ∈ Rm : xm ≥
√
x2

1 + ...+ x2
m−1}

This cone is self-dual.

♠ Let K = CQP be the family of all direct products of

Lorentz cones. Conic programs associated with cones

from K are called conic quadratic programs.

“Mathematical Programming” form of a conic quadratic

program is

min
x

{
cTx : ‖Pix− pi‖2 ≤ qTi x+ ri︸ ︷︷ ︸

⇔[Pix−pi;qTi x−ri]∈L
mi

,1 ≤ i ≤ m
}

Note: According our convention “sum over empty set

is 0”, L1 = R+ is the nonnegative ray

⇒ All LO programs are Conic Quadratic ones.

♣ Semidefinite Optimization.
♠ Semidefinite cone Sm+ of order m “lives” in the space

Sm of real symmetric m×m matrices and is comprised

of positive semidefinite m × m matrices, i.e., symmetric

m×m matrices A such that dTAd ≥ 0 for all d.

♥ Equivalent descriptions of positive semidefiniteness:
A symmetric m × m matrix A is positive semidefinite (nota-
tion: A � 0) if and only if it possesses any one of the following
properties:
• All eigenvalues of A are nonnegative, that is,

A = UDiag{λ}UT

with orthogonal U and nonnegative λ.
Note: In the representation A = UDiag{λ}UT with orthogo-
nal U , λ = λ(A) is the vector of eigenvalues of A taken with
their multiplicities
• A = DTD for a rectangular matrix D, or, equivalently, A is
the sum of dyadic matrices: A =

∑
` d`d

T
`

• All principal minors of A are nonnegative.

♥ The semidefinite cone Sm+ is regular and self-dual, pro-

vided that the inner product on the space Sm where

the cone lives is inherited from the natural embedding

Sm into Rm×m:

∀A,B ∈ Sm : 〈A,B〉 =
∑
i,j AijBij = Tr(AB)

♠ Let K = SDP be the family of all direct products of

Semidefinite cones. Conic programs associated with

cones from K are called semidefinite programs. Thus, a
semidefinite program is an optimization program of the

form
min
x

{
cTx : Aix−Bi :=

∑n
j=1 xjA

ij −Bi � 0, 1 ≤ i ≤ m
}

Aij, Bi : symmetric ki × ki matrices
Note: A collection of symmetric matrices A1, ..., Am

is comprised of positive semidefinite matrices iff the

block-diagonal matrix Diag{A1, ..., Am} is � 0

⇒ an SDO program can be written down as a problem

with a single � constraint (called also a Linear Matrix
Inequality (LMI)):

min
x

{
cTx : Ax−B := Diag{Aix−Bi,1 ≤ i ≤ m} � 0

}
.

♣ Three generic conic problems – Linear, Conic

Quadratic and Semidefinite Optimization — posses

intrinsic mathematical similarity allowing for deep uni-

fied theoretical and algorithmic developments, includ-

ing design of theoretically and practically efficient poly-

nomial time solution algorithms — Interior Point Meth-
ods.

♠ At the same time, “expressive abilities” of Conic
Quadratic and especially Semidefinite Optimization are in-
comparably stronger than those of Linear Optimization. For

all practical purposes, the entire Convex Programming is
within the grasp of Semidefinite Optimization.

LO/CQO/SDO Hierarchy

♠ L1 = R+ ⇒ LO ⊂ CQO ⇒ Linear Optimization is a
particular case of Conic Quadratic Optimization.
♠ Fact: Conic Quadratic Optimization is a particular case of
Semidefinite Optimization.
♥ Explanation: The relation x ≥Lk 0 is equivalent to

the relation

Arrow(x) =


xk x1 x2 · · · xk−1
x1 xk
x2 xk
... . . .

xk−1 xk

 � 0.

As a result, a system of conic quadratic constraints

Aix− bi ≥Lki
0, 1 ≤ i ≤ m

is equivalent to the system of LMIs

Arrow(Aix− bi) � 0, 1 ≤ i ≤ m.

Why
x ≥Lk 0⇔ Arrow(x) � 0 (!)

Schur Complement Lemma: A symmetric block matrix[
P Q

QT R

]
with positive definite R is � 0 if and only if the

matrix P −QR−1QT is � 0.
Proof. We have[

P Q
QT R

]
⇔ [u; v]T

[
P Q
QT R

]
[u; v] ≥ 0 ∀[u; v]

⇔ uTPu+ 2uTQv + vTRv ≥ ∀[u; v]
⇔ ∀u : uTPu+ min

v

{
2uTQv + vTRv

}
≥ 0

⇔ ∀u : uTPu− uTQR−1QTu ≥ 0
⇔ P −QR−1QT � 0 �

♠ Schur Complement Lemma⇒ (!):
• In one direction: Let x ∈ Lk. Then either

xk = 0, whence x = 0 and Arrow(x) � 0, or

xk > 0 and
∑k−1
i=1

x2
i
xk
≤ xk, meaning that the matrix

xk x1 · · · xk−1

x1 xk
... . . .

xk−1 xk

 satisfies the premise of the SCL

and thus is � 0.

• In another direction: let


xk x1 · · · xk−1

x1 xk
... . . .

xk−1 xk

 � 0.

Then either xk = 0, and then x = 0 ∈ Lk, or xk > 0

and
∑k−1
i=1

x2
i
xk
≤ xk by the SCL, whence x ∈ Lk. �

♣ Example of CQO program: Control of Linear Dynami-
cal system. Consider a discrete time linear dynamical

system given by
x(0) = 0;

x(t+ 1) = Ax(t) +Bu(t) + f(t),0 ≤ t ≤ T − 1
• x(t): state at time t

• u(t): control at time t

• f(t): given external input

Goal: Given time horizon T , bounds on control

‖u(t)‖2 ≤ 1 for all t and desired destination x∗, find a

control which makes x(T) as close as possible to x∗.
The model: From state equations,

x(T) =
∑T−1
t=0 A

T−t−1[Bu(t) + f(t)],

so that the problem in question is

min
τ,u(0),...,u(T−1)

{
τ : ‖x∗ −

∑T−1
t=0 A

T−t−1[Bu(t) + f(t)]‖2 ≤ τ
‖u(t)‖2 ≤ 1, 0 ≤ t ≤ T − 1

}

♣ Example of SDO program: Relaxation of a Combinato-
rial Problem.
♠ Numerous NP-hard combinatorial problems can be

posed as problems of quadratic minimization under

quadratic constraints:
Opt(P) = min

x
{f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m}

fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m
(P)

Example: One can model Boolean constraints xi ∈
{0; 1} as quadratic equality constraints x2

i = xi and

then represent them by pairs of quadratic inequalities

x2
i − xi ≤ 0 and −x2

i + xi ≤ 0

⇒ Boolean Programming problems reduce to (P).

Opt(P) = min
x
{f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m}

fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m
(P)

♠ In branch-and-bound algorithms, an important role

is played by efficient bounding of Opt(P) from below.

To this end one can use Semidefinite relaxation as fol-

lows:

• We set Fi =

[
Qi bi
bTi ci

]
, 0 ≤ i ≤ m, and X[x] =[

xxT ∗ x
xT 1

]
, so that

fi(x) = Tr(FiX[x]).

⇒ (P) is equivalent to the problem

min
x
{Tr(F0X[x]) : Tr(FiX[x]) ≤ 0, 1 ≤ i ≤ m} (P ′)

Opt(P) = min
x
{f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m}[

fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m
] (P)

⇔ min
x
{Tr(F0X[x]) : Tr(FiX[x]) ≤ 0, 1 ≤ i ≤ m}[

Fi =

[
Qi bi
bTi ci

]
, 0 ≤ i ≤ m

]
(P ′)

• The objective and the constraints in (P ′) are lin-

ear in X[x], and the only difficulty is that as x runs

through Rn, X[x] runs through a difficult for mini-

mization manifold X ⊂ Sn+1 given by the following

restrictions:

A. X � 0

B. Xn+1,n+1 = 1

C. RankX = 1

• Restrictions A, B are simple constraints specifying a

nice convex domain

• Restriction C is the “troublemaker” – it makes the

feasible set of (P) difficult

♠ In SDO relaxation, we just eliminate the rank constraint C,
thus ending up with the SDO program

Opt(SDO) = min
X∈Sn+1

{
Tr(F0X) :

Tr(FiX) ≤ 0, 1 ≤ i ≤ m,
X � 0, Xn+1,n+1 = 1

}
.

♠ When passing from (P) ≡ (P ′) to the SDO relaxation, we
extend the domain over which we minimize
⇒ Opt(SDO) ≤ Opt(P).

What Can Be Expressed via LO/CQO/SDO ?

♣ Consider a family K of regular cones such that

• K is closed w.r.t. taking direct products of cones:

K1, ...,Km ∈ K ⇒ K1 × ...×Km ∈ K
• K is closed w.r.t. passing from a cone to its dual:

K ∈ K ⇒ K∗ ∈ K
Examples: LO, CQO, SDO.

Question: When an optimization program

min
x∈X

f(x) (P)

can be posed as a conic problem associated with a cone from
K ?
Answer: This is the case when the set X and the func-

tion f are K-representable, i.e., admit representations

of the form
X = {x : ∃u : Ax+Bu+ c ∈ KX}

Epi{f} := {[x; τ] : τ ≥ f(x)}
= {[x; τ] : ∃w : Px+ τp+Qw + d ∈ Kf}

where KX ∈ K, Kf ∈ K.

Indeed, if
X = {x : ∃u : Ax+Bu+ c ∈ KX}

Epi{f} := {[x; τ] : τ ≥ f(x)}
= {[x; τ] : ∃w : Px+ τp+Qw + d ∈ Kf}

then problem

min
x∈X

f(x) (P)

is equivalent to

min
x,τ,u,w

{
τ :

says that x ∈ X︷ ︸︸ ︷
Ax+Bu+ c ∈ KX
Px+ τp+Qw + d ∈ KF︸ ︷︷ ︸

says that τ ≥ f(x)

}

and the constraints read

[Ax+ bu+ c;Px+ τp+Qw + d] ∈ K := KX ×Kf ∈ K .

♣ K-representable sets/functions always are convex.
♣ K-representable sets/functions admit fully algorithmic cal-
culus completely similar to the one we have developed

in the particular case K = LO.

♠ Example of CQO-representable function: convex

quadratic form

f(x) = xTATAx+ 2bTx+ c

Indeed,
τ ≥ f(x)⇔ [τ − c− 2bTx] ≥ ‖Ax‖22
⇔
[

1+[τ−c−2bTx]
2

]2
−
[

1−[τ−c−2bTx]
2

]2
≥ ‖Ax‖22

⇔
[
Ax; 1−[τ−c−2bTx]

2 ; 1+[τ−c−2bTx]
2

]
∈ Ldim b+2

♠ Examples of SDO-representable functions/sets:
• the maximal eigenvalue λmax(X) of a symmetric

m×m matrix X:

τ ≥ λmax(X)⇔ τIm −X � 0︸ ︷︷ ︸
LMI

• the sum of k largest eigenvalues of a symmetric

m×m matrix X

• Det1/m(X), X ∈ Sm+
• the set Pd of (vectors of coefficients of) nonnegative

on a given segment ∆ algebraic polynomials p(x) =

pdx
d + pd−1x

d−1 + ...+ p1x+ p0 of degree ≤ d.

Conic Duality Theorem

♣ Consider a conic program

Opt(P) = min
x

{
cTx : Ax ≥K b

}
(P)

As in the LO case, the concept of the dual problem

stems from the desire to find a systematic way to

bound from below the optimal value Opt(P).

♠ In the LO case K = Rm+ this mechanism was built

as follows:

• We observe that for properly chosen vectors of “ag-

gregation weights” λ (specifically, for λ ∈ Rm+) the

aggregated constraint λTAx ≥ λT b is the consequence

of the vector inequality Ax ≥K b and thus λTAx ≥ λT b
for all feasible solutions x to (P)

• In particular, when admissible vector of aggregation

weights λ is such that ATλ = c, then the aggregated

constraint reads “cTx ≥ bTλ for all feasible x” and thus

bTλ is a lower bound on Opt(P). The dual problem

is the problem of maximizing this bound:

Opt(D) = max
λ
{bTλ :

ATλ = c
λ is admissible for aggregation

}

Opt(P) = min
x

{
cTx : Ax ≥K b

}
(P)

♠ The same approach works in the case of a general

cone K. The only issue to be resolved is:

What are admissible weight vectors λ for (P)? When a valid
vector inequality a ≥K b always implies the inequality λTa ≥
λT b ?
Answer: is immediate: the required λ’s are exactly the
vectors from the cone K∗ dual to K.
Indeed,

• If λ ∈ K∗, then

a ≥K b⇒ a− b ∈ K⇒ λT (a− b) ≥ 0⇒ λTa ≥ λT b,
that is, λ is an admissible weight vector.

• If λ is admissible weight vector and a ∈ K, that

is, a ≥K 0, we should have λTa ≥ λT0 = 0, so that

λTa ≥ 0 for all a ∈ K, i.e., λ ∈ K∗.

Opt(P) = min
x

{
cTx : Ax ≥K b

}
(P)

♠ We arrive at the following construction:

• Whenever λ ∈ K∗, the scalar inequality λTAx ≥ λT b

is a consequence of the constraint in (P) and thus is

valid everywhere on the feasible set of (P).

• In particular, when λ ∈ K∗ is such that ATλ = c,

the quantity bTλ is a lower bound on Opt(P), and the

dual problem is to maximize this bound:

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥K∗ 0

}
(D)

As it should be, in the LO case, where K = Rm+ =

(Rm+)∗ = K∗, (D) is nothing but the LP dual of (P).

♣ Our “aggregation mechanism” can be applied to

conic problems in a slightly more general format:

Opt(P) = min
x∈X

{
cTx :

A`x ≥K` b`, 1 ≤ ` ≤ L
Px = p

}
(P)

Here the dual problem is built as follows:

• We associate with every vector inequality constraint

A`x ≥K` b`
dual variable (“Lagrange multiplier”) λ` ≥K`∗

0, so

that the scalar inequality constraint λT` A`x ≥ λ
T
` b` is

a consequence of A`x ≥K` b` and λ` ≥K∗`
0;

• We associate with the system Px = p a “free” vec-

tor µ of Lagrange multipliers of the same dimension

as p, so that the scalar inequality µTPx ≥ µTp is a

consequence of the vector equation Px = p;

• We sum up all the scalar inequalities we got, thus

arriving at the scalar inequality[∑L
`=1A

T
` λ` + P Tµ

]T
x ≥

∑L
`=1 b

T
` λ` + pTµ (∗)

Opt(P) = min
x∈X

{
cTx :

A`x ≥K` b`, 1 ≤ ` ≤ L
Px = p

}
(P)

Whenever x is feasible for (P) and λ` ≥K`∗
0, 1 ≤ ` ≤ L,

we have[∑L
`=1A

T
` λ` + P Tµ

]T
x ≥

∑L
`=1 b

T
` λ` + pTµ (∗)

• If we are lucky to get in the left hand side of (∗)
the expression cTx, that is, if

∑L
`=1A

T
` λ` + PTµ = c,

then the right hand side of (∗) is a lower bound on the

objective of (P) everywhere in the feasible domain of

(P) and thus is a lower bound on Opt(P). The dual

problem is to maximize this bound:
Opt(D)

= max
λ,µ

{∑L
`=1 b

T
` λ` + pTµ :

λ` ≥K`
∗

0, 1 ≤ ` ≤ L∑L
`=1A

T
` λ` + P Tµ = c

}
(D)

Note: When all cones K` are self-dual (as it is the

case in Linear/Conic Quadratic/Semidefinite Opti-

mization), the dual problem (D) involves exactly the
same cones K` as the primal problem.

Example: Dual of a Semidefinite program.

Consider a Semidefinite program

min
x

{
cTx :

∑n
i=1A

j
`xj � B

j
` ,1 ≤ ` ≤ L

Px = p

}

The cones Sk+ are self-dual, so that the Lagrange mul-
tipliers for the �-constraints are matrices Λ` � 0 of

the same size as the symmetric data matrices Aj`, B`.
Aggregating the constraints of our SDO program and
recalling that the inner product 〈A,B〉 in Sk is Tr(AB),
the aggregated linear inequality reads

n∑
j=1

xj

 L∑
`=1

Tr(Aj`Λ`) +
n∑

j=1

(P Tµ)j

 ≥ L∑
`=1

Tr(B`Λ`) + pTµ

The equality constraints of the dual should say that the left
hand side expression, identically in x ∈ Rn, is cTx, that is, the
dual problem reads

max
{Λ`},µ


L∑
`=1

Tr(B`Λ`) + pTµ :
Tr(Aj`Λ`) + (P Tµ)j = cj,

1 ≤ j ≤ n
Λ` � 0, 1 ≤ ` ≤ L



Symmetry of Conic Duality

Opt(P) = min
x∈X

{
cTx :

A`x ≥K` b`, 1 ≤ ` ≤ L
Px = p

}
(P)

Opt(D)

= max
λ,µ

 L∑
`=1

bT` λ` + pTµ :
λ` ≥K`

∗
0, 1 ≤ ` ≤ L

L∑
`=1

AT` λ` + P Tµ = c

 (D)

♠ Observe that (D) is, essentially, in the same form

as (P), and thus we can build the dual of (D). To

this end, we rewrite (D) as
−Opt(D)

= min
λ`,µ

− L∑
`=1

bT` λ` − pTµ :
λ` ≥K`

∗
0, 1 ≤ ` ≤ L

L∑
`=1

AT` λ` + P Tµ = c

 (D′)

−Opt(D)

= min
λ`,µ

− L∑
`=1

bT` λ` − pTµ :
λ` ≥K`

∗
0, 1 ≤ ` ≤ L

L∑
`=1

AT` λ` + P Tµ = c

 (D′)

Denoting by −x the vector of Lagrange multipliers for

the equality constraints in (D′), and by ξ` ≥[K`∗]∗
0

(i.e., ξ` ≥K` 0) the vectors of Lagrange multipliers

for the ≥K`∗
-constraints in (D′) and aggregating the

constraints of (D′) with these weights, we see that

everywhere on the feasible domain of (D′) it holds:∑
`[ξ` −A`x]Tλ` + [−Px]Tµ ≥ −cTx

• When the left hand side in this inequality as a func-

tion of {λ`}, µ is identically equal to the objective of

(D′), i.e., when{
ξ` −A`x = −b` 1 ≤ ` ≤ L,
−Px = −p ,

the quantity −cTx is a lower bound on Opt(D′) =

−Opt(D), and the problem dual to (D) thus is

maxx,ξ`

−cTx :
A`x = b` + ξ`,1 ≤ ` ≤ L
Px = p
ξ` ≥K` 0, 1 ≤ ` ≤ L


which is equivalent to (P).

⇒ Conic duality is symmetric!

Conic Duality Theorem

♠ A conic program in the form

min
y

{
cTy : Ry = r,

Py ≥K p
Sy ≥ s︸ ︷︷ ︸
Qy≥Mq

}

is called strictly feasible, if there exists a strictly feasi-
ble solution ȳ – a feasible solution where the vector

inequality constraint is satisfied as strict: Qȳ >M q.

The program is called essentially strictly feasible, if there

exists a feasible solution ŷ such that P ŷ >K p.

Opt(P) = min
x

{
cTx : Ax ≥K b, Px = p

}
(P)

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ PTµ = c

}
(D)

Conic Duality Theorem
♠ [Weak Duality] One has Opt(D) ≤ Opt(P).
♠ [Symmetry] duality is symmetric: (D) is a conic program,
and the program dual to (D) is (equivalent to) (P).
♠ [Strong Duality] Let one of the problems (P),(D) be es-
sentially strictly feasible and bounded. Then the other problem
is solvable, and Opt(D) = Opt(P).
In particular, if both (P) and (D) are strictly feasible, then
both the problems are solvable with equal optimal values.

Example: Dual of the SDO relaxation. Recall that given

a (difficult to solve!) quadratic quadratically con-

strained problem
Opt∗ = min

x
{f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m}

fi(x) = xTQix+ 2bTi x+ ci
we can bound its optimal value from below by passing

to the semidefinite relaxation of the problem:
Opt∗ ≥ Opt

:= min
X

Tr(F0X) :

Tr(FiX) ≥ 0,1 ≤ i ≤ m
X � 0, Xn+1,n+1 ≡ Tr(GX) = 1

G =

[
1

]
 (P)

Fi =

[
Qi bi
bTi ci

]
, 0 ≤ i ≤ m.

Let us build the dual to (P). Denoting by λi ≥ 0

the Lagrange multipliers for the scalar inequality con-

straints, by Λ � 0 the Lagrange multiplier for the LMI

X � 0, and by µ – the Lagrange multiplier for the

equality constraint Xn+1,n+1 = 1, and aggregating

the constraints, we get the aggregated inequality

Tr([
∑m
i=1 λiFi]X) + Tr(ΛX) + µTr(GX) ≥ µ

Specializing the Lagrange multipliers to make the left

hand side to be identically equal to Tr(F0X), the dual

problem reads

Opt(D) = max
Λ,{λi},µ

{
µ : F0 =

∑m
i=1 λiFi + µG+ Λ, λ ≥ 0,Λ � 0

}
We can easily eliminate Λ, thus arriving at

Opt(D) = max
{λi},µ

{
µ :

∑m
i=1 λiFi + µG � F0, λ ≥ 0

}
(D)

Geometry of Primal-Dual Pair of Conic Problems

♣ Consider a primal-dual pair of conic problems in the

form
Opt(P) = min

x

{
cTx : Ax ≥K b, Px = p

}
(P)

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ P Tµ = c

}
(D)

♠ Assumption: The systems of linear constraints in

(P) and (D) are solvable:

∃x̄, λ̄, µ̄ : P x̄ = p & AT λ̄+ PT µ̄ = c

♠ Let us pass in (P) from variable x to the slack

variable ξ = Ax − b. For x satisfying the equality

constraints Px = p of (P) we have

cTx =[AT λ̄+ P T µ̄]Tx = λ̄TAx+ µ̄TPx = λ̄Tξ + µ̄Tp+ λ̄T b

⇒ (P) is equivalent to
Opt(P) = min

ξ

{
λ̄Tξ : ξ ∈MP ∩K

}
(P)

= Opt(P)−
[
bT λ̄+ pT µ̄

]
MP = LP − [b−Ax̄]︸ ︷︷ ︸

ξ̄

,

LP = {ξ : ∃x : ξ = Ax, Px = 0}
♠ Let us eliminate from (D) the variable µ. For [λ;µ]

satisfying the equality constraint ATλ + PTµ = c of

(D) we have

bTλ+ pTµ = bTλ+ x̄TP Tµ = bTλ+ x̄T [c−ATλ] = [b−Ax̄]︸ ︷︷ ︸
ξ̄

Tλ+ cT ξ̄

⇒ (D) is equivalent to
Opt(D) = max

λ

{
ξ̄Tλ : λ ∈MD ∩K∗

}
= Opt(D)− cT ξ̄ (D)

MD = LD + λ̄, LD = {λ : ∃µ : ATλ+ P Tµ = 0}

Opt(P) = min
x

{
cTx : Ax ≥K b, Px = p

}
(P)

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ P Tµ = c

}
(D)

♣ Intermediate Conclusion: The primal-dual pair (C),

(D) of conic problems with feasible equality con-

straints is equivalent to the pair
Opt(P) = min

ξ

{
λ̄Tξ : ξ ∈MP ∩K

}
= Opt(P)−

[
bT λ̄+ pT µ̄

]
(P)

MP = LP − ξ̄, LP = {ξ : ∃x : ξ = Ax, Px = 0}

Opt(D) = max
λ

{
ξ̄Tλ : λ ∈MD ∩K∗

}
= Opt(D)− cT ξ̄ (D)

MD = LD + λ̄, LD = {λ : ∃µ : ATλ+ P Tµ = 0}
Observation: The linear subspaces LP and LD are or-

thogonal complements of each other.

Observation: Let x be feasible for (P) and [λ, µ] be

feasible for (D), and let ξ = Ax − b then the primal

slack associated with x. Then
DualityGap(x, λ, µ) = cTx− [bTλ+ pTµ]
= [ATλ+ P Tµ]Tx− [bTλ+ pTµ]
= λT [Ax− b] + µT [Px− p] = λT [Ax− b] = λTξ.

Note: To solve (P), (D) ⇔ to minimize the duality gap

over primal feasible x and dual feasible λ, µ

⇔ to minimize the inner product of ξTλ over ξ feasible for (P)

and λ feasible for (D).

♣ Conclusion: A primal-dual pair of conic problems
Opt(P) = min

x

{
cTx : Ax ≥K b, Px = p

}
(P)

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ P Tµ = c

}
(D)

with feasible equality constraints is, geometrically, the problem
as follows:
♠We are given
• a regular cone K in certain RN along with its dual cone K∗
• a linear subspace LP ⊂ RN along with its orthogonal com-
plement LD ⊂ RN

• a pair of vectors ξ̄, λ̄ ∈ RN .
These data define

• Primal feasible set Ξ = [LP − ξ̄] ∩K ⊂ RN

• Dual feasible set Λ = [LD + λ̄] ∩K∗ ⊂ RN

♠ We want to find a pair ξ ∈ Ξ and λ ∈ Λ with as

small as possible inner product. Whenever Ξ inter-

sects intK and Λ intersects intK∗, this geometric

problem is solvable, and its optimal value is 0 (Conic

Duality Theorem).

Opt(P) = min
x

{
cTx : Ax ≥K b, Px = p

}
(P)

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ P Tµ = c

}
(D)

♣ The data LP , ξ̄, LD, λ̄ of the geometric problem

associated with (P), (D) is as follows:
LP = {ξ = Ax : Px = 0}
ξ̄ : any vector of the form Ax− b with Px = p

LD = L⊥P = {λ : ∃µ : ATλ+ PTµ = 0}
λ̄ : any vector λ such that ATλ+ P Tµ = c for some µ

• Vectors ξ ∈ Ξ are exactly vectors of the form Ax− b
coming from feasible solutions x to (P), and vectors

λ from Λ are exactly the λ-components of the feasible

solutions [λ;µ] to (D).

• ξ∗, λ∗ form an optimal solution to the geometric

problem if and only if ξ∗ = Ax∗−b with Px∗ = p, λ∗ can

be augmented by some µ∗ to satisfy ATλ∗+PTµ∗ = c

and, in addition, x∗ is optimal for (P), and [λ∗;µ∗] is

optimal for (D).

Conic Programming Optimality Conditions:

Let both (P) and (D) be essentially strictly feasible. Then a
pair (x, y) of primal and dual feasible solutions is comprised
of optimal solutions to the respective problems if and only if

• [Zero Duality Gap]
DualityGap(x, y) := cTx− bTy = 0 Indeed,

DualityGap(x, y) = [cTx−Opt(P)]︸ ︷︷ ︸
≥0

+ [Opt(D)− bTy]︸ ︷︷ ︸
≥0


and if and only if
• [Complementary Slackness]

[Ax− b]Ty = 0 Indeed,
[Ax− b]Ty = (ATy)Tx− bTy = cTx− bTy

= DualityGap(x, y)



min
x

{
cTx : Ax− b ∈ K

}
(P)

⇔ min
ξ

{
eT ξ : ξ ∈ [L − b] ∩K

}
m

max
y

{
bTy : y ∈ [L⊥+ e] ∩K∗

}
⇔ max

y

{
bTy : ATy = c, y ≥K∗ 0

}
(D)[

L = ImA, AT e = c,

K∗ = {y : yT ξ ≥ 0 ∀ξ ∈ K}

]

♣ Conic Duality, same as the LP one, is

• fully algorithmic: to write down the dual, given the

primal, is a purely mechanical process

• fully symmetric: the dual problem “remembers” the

primal one

♥ Cf. Lagrange Duality:

min
x
{f(x) : gi(x) ≤ 0, i = 1, ...,m} (P)

⇓
max
y≥0

L(y) (D)[
L(y) = min

x

{
f(x) +

∑
i
yigi(x)

}]

• Dual “exists in the nature”, but is given implicitly;

its objective, typically, is not available in a closed

form

• Duality is asymmetric: given L(·), we, typically,

cannot recover f and gi...

♣ Conic Duality in the case of Magic cones:

• powerful tool to process problem, to some ex-

tent, “on paper”, which in many cases provides

extremely valuable insight and/or allows to end

up with a problem much better suited for numer-

ical processing

• is heavily exploited by efficient polynomial time

algorithms for Magic conic problems

Illustration: Semidefinite Relaxation

♣ Consider a quadratically constrained quadratic pro-

gram

Opt = minx∈Rn {f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m}[
fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m

] (QP)

Note: (QP) is “as difficult as a problem can be:” e.g.,

the Boolean constraints on variables: xi ∈ {0,1} can

be modeled as quadratic equalities x2
i − xi = 0 and

thus can be modeled as pairs of simple quadratic in-

equalities.

♠ Question: How to lower-bound Opt?

Opt = min
x∈Rn

{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m}[
fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m

] (QP)

How to lower-bound Opt?
♠ Answer, I: Semidefinite Relaxation. Associate with x

the symmetric matrix

X[x] = [x; 1][x; 1]T =

[
xxT x

xT 1

]
and rewrite (QP) equivalently as

Opt = min
X

{
Tr(F0X) :

Tr(FiX) ≤ 0,1 ≤ i ≤ m
X = X[x] for some x

}
[
Fi =

[
Qi bi
bTi ci

]] (QP ′)

(QP ′) has just linear in X objective and constraints.

The “domain restriction”

“X = X[x] for some x”

says that

• X ∈ R(n+1)×(n+1) is symmetric positive semidefinite and
Xn+1,n+1 = 1 (nice convex constraints)

• X is of rank 1 (highly nonconvex constraint)

Removing the “troublemaking” rank restriction, we

end up with semidefinite relaxation of (QP) – the prob-

lem

Opt(SDO) = min
X

{
Tr(F0X) :

Tr(FiX) ≤ 0,1 ≤ i ≤M
X � 0, Xn+1,n+1 = 1

}

Opt = min
x∈Rn

{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m}[
fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m

] (QP)

m

Opt = min
X

Tr(F0X) :
Tr(FiX) ≤ 0,1 ≤ i ≤ m

X =

[
xxT x
xT 1

]
for some x

[
Fi =

[
Qi bi
bTi ci

]] (QP ′)

⇓
Opt(SDO) = min

X

{
Tr(F0X) :

Tr(FiX) ≤ 0,1 ≤ i ≤M
X � 0, Xn+1,n+1 = 1

}
(SDO)

♠ Probabilistic Interpretation of (SDP):
Assume that instead of solving (QP) in deterministic

variables x, we are solving the problem in random vec-
tors ξ and want to minimize the expected value of the

objective under the restriction that the constraints are
satisfied at average.
Since fi are quadratic, the expectations of the ob-

jective and the constraints are affine functions of the

moment matrix

X = E

{[
ξξT ξ

ξT 1

]}
which can be an arbitrary symmetric positive semidef-

inite matrix X with Xn+1,n+1 = 1. The “randomized”
version of (QP) is exactly (SDO) (check it!)

♣ With outlined interpretation, an optimal solution to
(SDO) gives rise to (various) randomized solutions to the
problem of interest.
In good cases, we can extract from these randomized solu-
tions feasible solutions to the problem of interest with reason-
able approximation guarantees in terms of optimality.

We can, e.g.,

— use X∗ to generate a sample ξ1, ..., ξN of, say,

N = 100 random solutions to (QP),

— “correct” ξt to get feasible solutions xt to (QP).
The approach works when the correction is easy, e.g.,
when at some known point x̄ the constraints of (QP) are
satisfied strictly. Here we can take as xt the closest to ξt

feasible solution from the segment [x̄, ξt].

— select from the resulting N feasible solutions xt to

(QP) the best in terms of the objective.

♥ When applicable, the outlined approach can be

combined with local improvement – N runs of any tradi-

tional algorithm for nonlinear optimization as applied

to (QP), x1, ..., xN being the starting points of the

runs.

♣ Example: Quadratic Maximization over the box
Opt = maxx{xTLx : x2

i ≤ 1, 1 ≤ i ≤ n} (QP)
⇒ Opt(SDO) = maxX{Tr(XL) : X � 0, Xii ≤ 1 ∀i} (SDO)

Note: When L � 0 or L has zero diagonal, Opt and

Opt(SDO) remain intact when the inequality con-

straints are replaced with their equality versions.

♠ MAXCUT: The combinatorial problem “given n-node
graph with arcs assigned nonnegative weights aij = aij,
1 ≤ i, j ≤ n, split the nodes into two non-overlapping subsets
to maximize the total weight of the arcs linking nodes from dif-
ferent subsets” is equivalent to (QP) with

Lij =

{ ∑
k aik , j = i
−aij , j 6= i

♠ Theorem of Goemans and Williamson ’94:

Opt ≤ Opt(SDO) ≤ 1.1383 ·Opt (!)

Note: To approximate Opt within 4% is NP-hard...

Sketch of the proof of (!): treat an optimal solution X∗
of (SDO) as the covariance matrix of zero mean Gaus-

sian random vector ξ and look at

E{sign[ξ]TLsign[ξ]}.

Illustration: MAXCUT, 1024 nodes, 2614 arcs.

Suboptimal cut, weight ≥ 0.9196 ·Opt(SDO) ≥ 0.9196 ·Opt[
Slightly better than Goemans-Williamson guarantee:

weight ≥ 0.8785 ·Opt(SDO) ≥ 0.8785 ·Opt

]

Opt = maxx{xTLx : x2
i ≤ 1, 1 ≤ i ≤ n} (QP)

⇒ Opt(SDO) = maxX{Tr(XL) : X � 0, Xii ≤ 1∀i}(SDO)

♠ Nesterov’s π/2 Theorem. Matrix L arising in MAX-

CUT is � 0 (and possesses additional properties).

What can be said about (SDO) under the only re-

striction L � 0?

Answer [Nesterov’98]: Opt ≤ Opt(SDO) ≤ π
2 ·Opt.

Illustration: L: randomly built positive semidefinite

1024 × 1024 matrix. Relaxation combined with local

improvement yields a feasible solution x̄ with

x̄TLx̄ ≥ 0.7867 ·Opt(SDO) ≥ 0.7867 ·Opt

Opt = maxx{xTLx : x2
i ≤ 1, 1 ≤ i ≤ n} (QP)

⇒ Opt(SDO) = maxX{Tr(XL) : X � 0, Xii ≤ 1 ∀i} (SDO)

♠ The case of indefinite L: When L is an arbitrary sym-

metric matrix, one has

Opt ≤ Opt(SDO) ≤ O(1) ln(n)Opt.

This is a particular case of the following result: The
SDP relaxation

Opt(SDO) = max
X
{Tr(XL) : Tr(XQi) ≤ 1, i ≤ m}

of the problem

Opt = maxx
{
xTLx : xTQix ≤ 1, i ≤ m

}
[Qi � 0 ∀i,

∑
iQi � 0]

(P)

satisfies Opt ≤ Opt(SDO) ≤ O(1) ln(m)Opt.
Illustration, A: Problem (QP) with randomly selected

indefinite 1024×1024 matrix L. Relaxation combined

with local improvement yields a feasible solution x̄

with

x̄TLx̄ ≥ 0.7649 ·Opt(SDO) ≥ 0.7649 ·Opt

Illustration, B: Problem (P) with randomly selected in-

definite 1024 × 1024 matrix L and 64 randomly se-

lected positive semidefinite matrices Qi of rank 64.

Relaxation yields a feasible solution x̄ with

x̄TLx̄ ≥ 0.9969 ·Opt(SDO) ≥ 0.9969 ·Opt

Lagrangian Relaxation

♣ Recall that for every MP problem

Opt(P) = min
x∈X
{f(x) : gi(x) ≤ 0, 1 ≤ i ≤ m} (P)

its Lagrange function

L(x, λ) = f(x) +
∑
i

λigi(x)

underestimates f(x) on the feasible set of (P), pro-

vided

λ ≥ 0 ⇒

Opt(D) = max
λ≥0

[
L(λ) := inf

x∈X
L(x, λ)

]
≤ Opt(P)

(“Weak Lagrange duality”).

♠ Whenever L is efficiently computable, Opt(D) is an effi-
ciently computable lower bound on Opt(P).

♣ Example:
Opt = min

x∈Rn
{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m} (QP)[

fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m
]

• Applying Lagrange Relaxation Scheme, we get

L(λ) = infx
{
f0(x) +

∑m
i=1 λifi(x)

}
= infx

{
xT
[
Q0 +

∑m
i=1 λiQi

]
x+ 2

[
b0 +

∑m
i=1 λibi

]T
x

+
[
c0 +

∑m
i=1 λici

]}
Simple Fact: xTPx+ 2qTx+ r ≥ τ for all x ∈ Rn iff[

P q
qT r − τ

]
� 0

• Using Simple Fact, the Lagrange dual of (QP) becomes

Opt(D) = max
λ,τ

τ : λ ≥ 0,

 Q0 +
m∑
i=1

λiQi b0 +
m∑
i=1

λibi

bT0 +
m∑
i=1

λibTi c0 +
m∑
i=1

λici − τ

 � 0



Opt = min
x∈Rn

{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m} (QP)[
fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m

]
♠ Note: The SDO relaxations of (QP) resulting from our two
relaxation schemes read

Opt(SDO) = min
X

{
Tr(F0X) :

Tr(QiX) ≤ 0,1 ≤ i ≤M
X � 0, Xn+1,n+1 = 1

}
(P)

SDP = max
λ,τ

τ :

 Q0 +
m∑
i=1

λiQi b0 +
m∑
i=1

λibi

bT0 +
m∑
i=1

λibTi c0 +
m∑
i=1

ciλi − τ

 � 0

λ ≥ 0

 (D)

On a closest inspection, they are just semidefinite duals of
each other!

Illustration: Lyapunov Stability Analysis

♣ Consider an uncertain time varying linear dynamical

system

d

dt
x(t) = A(t)x(t) (ULS)

• x(t) ∈ Rn: state at time t,

• A(t) ∈ Rn×n: known to take all values in a given

uncertainty set U ⊂ Rn×n.

♠ (ULS) is called stable, if all trajectories of the system

converge to 0 as t→∞:

A(t) ∈ U ∀t ≥ 0, d
dtx(t) = A(t)x(t)⇒ lim

t→∞
x(t) = 0.

♣ Question: How to certify stability?
♠ Standard sufficient stability condition is the existence
of Lyapunov Stability Certificate – a matrix X � 0 such that
the function L(x) = xTXx for some α > 0 satisfies

d
dtL(x(t)) ≤ −αL(x(t)) for all trajectories

and thus goes to 0 exponentially fast along the trajectories:
d
dtL(x(t)) ≤ −αL(x(t))⇒ d

dt [exp{αt}L(x(t))] ≤ 0
⇒ exp{αt}L(x(t)) ≤ L(x(0)), t ≥ 0
⇒ L(x(t)) ≤ exp{−αt}L(x(0))

⇒ ‖x(t)‖22 ≤
λmax(X)
λmin(X) exp{−αt}‖x(0)‖22

• For a time-invariant system, this condition is necessary

and sufficient for stability.

♠ Question: When α > 0 is such that
d
dtL(x(t)) ≤ −αL(x(t)) for all trajectories x(t) satisfying
d
dtx(t) = A(t)x(t) with A(t) ∈ U for all t ?

♥ Answer: We should have
d
dt

(
xT (t)Xx(t)

)
= (ddtx(t))TXx(t) + xT (t)X d

dtx(t)

= xT (t)AT (t)Xx(t) + xT (t)XAx(t)

= xT (t)
[
AT (t)X +XA(t)

]
x(t)

≤ −αxT (t)Xx(t)
Thus,

d
dt
L(x(t)) ≤ −αL(x(t)) for all trajectories

⇔ xT(t)
[
AT(t)X +XA(t)

]
x(t) ≤ −αxT(t)Xx(t) for all trajectories

⇔ xT(t)[AT(t)X +XA(t) + αX]x(t) ≤ 0 for all trajectories
⇔ ATX +XA � −αX ∀A ∈ U
⇒ X � 0 is LSC for a given α > 0 iff X solves semi-

infinite LMI

ATX +XA � −αX ∀A ∈ U
⇒ Uncertain linear dynamical system

d
dtx(t) = A(t)x(t), A(t) ∈ U

admits an LSC iff the semi-infinite system of LMI’s
X � I, ATX +XA � −I ∀A ∈ U

in matrix variable X is solvable.
♠ But: SDP is about finite, and not semi-infinite, systems
of LMI’s. Semi-infinite systems of LMI’s typically are heavily
computationally intractable...

X � I, ATX +XA � −I ∀A ∈ U (!)

♠ Solvable case I: Scenario (a.k.a. polytopic) uncertainty
U = Conv{A1, ..., AN}. Here (!) is equivalent to the

finite system of LMI’s

X � I, ATkX +XAk � −I, 1 ≤ k ≤ N
♠ Solvable case II: Unstructured Norm-Bounded uncertainty

U = {A = Ā+B∆C : ‖∆‖2,2 ≤ ρ},
• ‖ · ‖2,2: spectral norm of a matrix.

♥ Example: We close open loop time invariant system
d
dtx(t) = Px(t) +Bu(t) [state equations]

y(t) = Cx(t) [observed output]

with linear feedback
u(t) = Ky(t),

thus arriving at the closed loop system
d
dtx(t) = [P +BKC]x(t)

and want to certify stability of the closed loop system

when the feedback matrix K is subject to time-varying

norm-bounded perturbations:

K = K(t) ∈ V = {K̄ + ∆ : ‖∆‖2,2 ≤ ρ}.
This is exactly the same as to certify stability of the

system
d
dtx(t) = A(t)x(t), A(t) ∈ U = {P +BK̄C︸ ︷︷ ︸

Ā

+B∆C}

with unstructured norm-bounded uncertainty.

• Observation: The semi-infinite system of LMI’s

X � I & ATX +XAT � −I ∀(A = Ā+B∆C : ‖∆‖2,2 ≤ ρ)

is of the generic form
(A) : finite system of LMI’s in variables x

semi-infinite LMI
(!) : A(x) + LT(x)∆R+RT∆TL(x) � 0 ∀(∆ : ‖∆‖2,2 ≤ ρ)

A(x), L(x): affine in x

♠ Fact: [S. Boyd et al, early 90’s] Assuming w.l.o.g. that
R 6= 0, the semi-infinite LMI (!) can be equivalently repre-
sented by the usual LMI[

A(x)− λRTR ρLT (x)
ρL(x) λI

]
� 0 (!!)

in variables x, λ, meaning that x satisfies (!) if and only

x can be augmented by properly selected λ to satisfy

(!!).

♣ Key argument when proving Fact:

S-Lemma: A homogeneous quadratic inequality
xTBx ≥ 0 (B)

is a consequence of strictly feasible homogeneous quadratic
inequality

xTAx ≥ 0 (A)

if and only if (B) can be obtained by taking weighted sum,
with nonnegative weights, of (A) and identically true homoge-
neous quadratic inequality:
∃(λ ≥ 0 & C : xTCx ≥ 0∀x︸ ︷︷ ︸

⇔C�0

) : xTBx ≡ λxTAx+ xTCx

or, which is the same, if and only if
∃λ ≥ 0 : B � λA.

Immediate corollary: A quadratic inequality
xTBx+ 2bTx+ β ≥ 0

is a consequence of strictly feasible quadratic inequality
xTAx+ 2aTx+ α ≥ 0

iff

∃λ ≥ 0 :

[
B − λA bT − λaT
b− λa β − λα

]
� 0

⇒We can efficiently optimize a quadratic function over the set
given by a single strictly feasible quadratic constraint.

♣ S-Lemma: A homogeneous quadratic inequality
xTBx ≥ 0 (B)

is a consequence of strictly feasible homogeneous quadratic
inequality

xTAx ≥ 0 (A)

if and only if (B) can be obtained by taking weighted sum,
with nonnegative weights, of (A) and identically true homoge-
neous quadratic inequality:
∃(λ ≥ 0 & C : xTCx ≥ 0∀x︸ ︷︷ ︸

⇔C�0

) : xTBx ≡ λxTAx+ xTCx

or, which is the same, if and only if
∃λ ≥ 0 : B � λA.

♠ Note: The “if” part of the claim is evident and

remains true when we replace (A) with a finite system
of quadratic inequalities: Let a system of homogeneous
quadratic inequalities

xTAix ≥ 0, 1 ≤ i ≤ m,
and a “target” inequality xTBx ≥ 0 be given. If the target
inequality can be obtained by taking weighted sum, with non-
negative coefficients, of the inequalities of the system and an
identically true homogeneous quadratic inequality, or, equiv-

alently, If there exist λi ≥ 0 such that

B �
∑
i λiAi,

then the target inequality is a consequence of the system.

∃λi ≥ 0 : B �
∑m
i=1 λiAi (!)

⇒ xTBx ≥ 0 is a consequence of xTAix ≥ 0,1 ≤ i ≤ m

• If instead of homogeneous quadratic inequalities we

were speaking about homogeneous linear ones, simi-

lar sufficient condition for the target inequality to be

a consequence of the system would be also necessary
(Homogeneous Farkash Lemma).

• The power of S-Lemma is in the claim that when
m = 1, the sufficient condition (!) for the target inequality
xTBx ≥ 0 to be a consequence of the system xTAix ≥
0, 1 ≤ i ≤ m, is also necessary, provided the “system”

xTA1x ≥ 0 is strictly feasible.

The “necessity” part of S-Lemma fails to be true when

m > 1.

Proof of the “only if” part of S-Lemma

• Situation: We are given two symmetric matrices A,

B such that

(I): ∃x̄ : x̄TAx̄ > 0

and

(II): xTAx ≥ 0 implies xTBx ≥ 0

or, equivalently,

(I-II): Opt := minx{xTBx : xTAx ≥ 0} ≥ 0
and the constraint xTAx ≥ 0 is strictly feasible

• Goal: To prove that

(III): ∃λ ≥ 0 : B � λA
or, equivalently, that
(III′): SDP := minX {Tr(BX) : Tr(AX) ≥ 0, X � 0} ≥ 0.

Equivalence of (III) and (III′): By (I), semidefinite pro-

gram in (III′) is strictly feasible. Since the program

is homogeneous, its optimal value is either 0, or −∞.

By Conic Duality, the optimal value is finite (i.e., 0)

if and only if the dual problem

maxλ,Y {0 : B = λA+ Y, λ ≥ 0, Y � 0}
is solvable, which is exactly (III).

• Given that xTAx ≥ 0 implies xTBx ≥ 0 we should

prove that

Tr(BX) ≥ 0 whenever Tr(AX) ≥ 0 and X � 0

• Let X � 0 be such that Tr(AX) ≥ 0, and let us

prove that Tr(BX) ≥ 0.

There exists orthogonal U such that UTX1/2AX1/2U is

diagonal

⇒ For every vector ξ with ±1 entries:
[X1/2Uξ]TA[X1/2Uξ] = ξT [UTX1/2AX1/2U]︸ ︷︷ ︸

diagonal

ξ

= Tr(UTX1/2AX1/2U)
= Tr(AX) ≥ 0

⇒ For every vector ξ with ±1 entries:

0 ≤ [X1/2Uξ]TB[X1/2Uξ] = ξT [UTX1/2BX1/2U]ξ

⇒ [Taking average over ±1 vectors ξ]

0 ≤ Tr(UTX1/2BX1/2U) = Tr(BX)

Thus, Tr(BX) ≥ 0, as claimed.

Interior Point Methods for LO and SDO

Interior Point Methods for LO and SDO

♣ Interior Point Methods (IPM’s) are state-of-the-art

theoretically and practically efficient polynomial time

algorithms for solving well-structured convex opti-

mization programs, primarily Linear, Conic Quadratic

and Semidefinite ones.

Modern IPMs were first developed for LO, and the

words “Interior Point” are aimed at stressing the fact

that instead of traveling along the vertices of the fea-

sible set, as in the Simplex algorithm, the new meth-

ods work in the interior of the feasible domain.

♠ Basic theory of IPMs remains the same when pass-

ing from LO to SDO

⇒ It makes sense to study this theory in the more

general SDO case.

Primal-Dual Pair of SDO Programs

♣ Consider an SDO program in the form

Opt(P) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

where Aj, B are m×m block diagonal symmetric ma-

trices of a given block-diagonal structure ν (i.e., with

a given number and given sizes of diagonal blocks).

(P) can be thought of as a conic problem on the self-

dual and regular positive semidefinite cone Sν+ in the

space Sν of symmetric block diagonal m×m matrices

with block-diagonal structure ν.

Note: In the diagonal case (with the block-diagonal

structure in question, all diagonal blocks are of size

1), (P) becomes a LO program with m linear inequal-

ity constraints and n variables.

Opt(P) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

♠ Standing Assumption A: The mapping x 7→ Ax has

trivial kernel, or, equivalently, the matrices A1, ..., An

are linearly independent.

♠ The problem dual to (P) is

Opt(D) = max
S∈Sν
{Tr(BS) : S � 0Tr(AjS) = cj ∀j} (D)

♠ Standing Assumption B: Both (P) and (D) are

strictly feasible (⇒ both problems are solvable with

equal optimal values).

♠ Let C ∈ Sν satisfy the equality constraint in (D).

Passing in (P) from x to the primal slack X = Ax− b,
we can rewrite (P) equivalently as the problem

Opt(P) = min
X∈Sν

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

LP = {X = Ax} = Lin{A1, ..., An}
while (D) is the problem

Opt(D) = max
S∈Sν

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

LD = L⊥P = {S : Tr(AjS) = 0, 1 ≤ j ≤ n}

Opt(P) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Since (P) and (D) are strictly feasible, both prob-

lems are solvable with equal optimal values, and a pair

of feasible solutions X to (P) and S to (D) is com-

prised of optimal solutions to the respective problems

iff Tr(XS) = 0.

Fact: For positive semidefinite X,S, Tr(XS) = 0 if and only
if XS = SX = 0.

Proof: • Standard Fact of Linear Algebra: For every ma-
trix A � 0 there exists exactly one matrix B � 0 such that
A = B2; B is denoted A1/2.

• Standard Fact of Linear Algebra: WheneverA,B are ma-
trices such that the product AB makes sense and is a square
matrix, Tr(AB) = Tr(BA).
• Standard Fact of Linear Algebra: Whenever A � 0 and
QAQT makes sense, we have QAQT � 0.
• Standard Facts of LA ⇒ Claim:

0 = Tr(XS) = Tr(X1/2X1/2S) = Tr(X1/2SX1/2) ⇒ All diagonal

entries in the positive semidefinite matrix X1/2SX1/2 are zeros

⇒ X1/2SX1/2 = 0 ⇒ (S1/2X1/2)T(S1/2X1/2) = 0 ⇒ S1/2X1/2 =

0⇒
SX = S1/2[S1/2X1/2]X1/2 = 0 ⇒ XS = (SX)T = 0. �

Opt(P) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Theorem: Assuming (P), (D) strictly feasible, feasible solu-
tions X for (P) and S for (D) are optimal for the respective
problems if and only if

XS = SX = 0

(“SDO Complementary Slackness”).

Logarithmic Barrier for the Semidefinite Cone Sν+

Opt(P) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

♣ A crucial role in building IPMs for (P), (D) is played

by the logarithmic barrier for the positive semidefinite cone:
K(X) = − ln Det(X) : intSµ+ → R

Back to Basic Analysis: Gradient and Hessian

♣ Consider a smooth (3 times continuously differen-

tiable) function f(x) : D → R defined on an open

subset D of Euclidean space E.

♠ The first order directional derivative of f taken at a point

x ∈ D along a direction h ∈ E is the quantity

Df(x)[h] := d
dt

∣∣∣
t=0

f(x+ th)

Fact: For a smooth f , Df(x)[h] is linear in h and thus
Df(x)[h] = 〈∇f(x), h〉 ∀h

for a uniquely defined vector∇f(x) called the gradient of f at
x.
If E is Rn with the standard Euclidean structure, then

[∇f(x)]i = ∂
∂xi
f(x), 1 ≤ i ≤ n

♠ The second order directional derivative of f taken at a

point x ∈ D along a pair of directions g, h is defined as

D2f(x)[g, h] = d
dt

∣∣∣
t=0

[Df(x+ tg)[h]]

Fact: For a smooth f , D2f(x)[g, h] is bilinear and symmetric
in g, h, and therefore
D2f(x)[g, h] = 〈g,∇2f(x)h〉 = 〈∇2f(x)g, h〉∀g, h ∈ E

for a uniquely defined linear mapping h 7→ ∇2f(x)h : E →
E, called the Hessian of f at x.
If E is Rn with the standard Euclidean structure, then

[∇2f(x)]ij = ∂2

∂xi∂xj
f(x)

Fact: Hessian is the derivative of the gradient:
∇f(x+ h) = ∇f(x) + [∇2f(x)]h+Rx(h),
‖Rx(h)‖ ≤ Cx‖h‖2 ∀(h : ‖h‖ ≤ ρx), ρx > 0

Fact: Gradient and Hessian define the second order Taylor
expansion

f̂(y) = f(x) + 〈y − x,∇f(x)〉+ 1
2
〈y − x,∇2f(x)[y − x]〉

of f at x which is a quadratic function of y with the same gra-
dient and Hessian at x as those of f . This expansion approxi-
mates f around x, specifically,

|f(y)− f̂(y)| ≤ Cx‖y − x‖3
∀(y : ‖y − x‖ ≤ ρx), ρx > 0

Back to SDO
Opt(P) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

K(X) = − ln DetX : Sν++ := {X ∈ Sν : X � 0} → R

Facts: K(X) is a smooth function on its domain Sν++ =

{X ∈ Sν : X � 0}. The first- and the second order directional
derivatives of this function taken at a point X ∈ domK along
a direction H ∈ Sν are given by
d
dt

∣∣
t=0

K(X + tH) = −Tr(X−1H)
[
⇔ ∇K(X) = −X−1

]
d2

dt2

∣∣
t=0

K(X + tH) = Tr(H[X−1HX−1]) = Tr([X−1/2HX−1/2]2)

In particular, K is strongly convex:
X ∈ DomK,0 6= H ∈ Sν ⇒ d2

dt2

∣∣
t=0

K(X + tH) > 0

Proof:

d
dt

∣∣
t=0

[− ln Det(X + tH)] = d
dt

∣∣
t=0

[− ln Det(X[I + tX−1H)]
= d

dt

∣∣
t=0

[− ln Det(X)− ln Det(I + tX−1H)]
= d

dt

∣∣
t=0

[− ln Det(I + tX−1H)]
= − d

dt

∣∣
t=0

[Det(I + tX−1H)] [chain rule]
= −Tr(X−1H)

d
dt

∣∣
t=0

[
−Tr([X + tG]−1H)

]
= d

dt

∣∣
t=0

[
−Tr([X[I + tX−1G]]−1H)

]
d
dt

∣∣
t=0

[
−Tr([I + tX−1G]−1X−1H)

]
= −Tr

([
d
dt

∣∣
t=0

[I + tX−1G]−1
]
X−1H

)
= Tr(X−1GX−1H)

In particular, when X � 0 and H ∈ Sν, H 6= 0, we have

d2

dt2

∣∣
t=0

K(X + tH) = Tr(X−1HX−1H)
= Tr(X−1/2[X−1/2HX−1/2]X−1/2H)
= Tr([X−1/2HX−1/2]X−1/2HX−1/2)
= 〈X−1/2HX−1/2, X−1/2HX−1/2〉 > 0.

Additional properties of K(·):
• ∇K(tX) =−[tX]−1 = −t−1X−1 =t−1∇K(X)

• The mapping X 7→ −∇K(X) = X−1 maps the do-

main Sν++ of K onto itself and is self-inverse:

S = −∇K(X)⇔ X = −∇K(S)⇔ XS = SX = I

• The function K(X) is an interior penalty for the pos-

itive semidefinite cone Sν+: whenever points Xi ∈
DomK = Sν++ converge to a boundary point of Sν+,

one has K(Xi)→∞ as i→∞.

Primal-Dual Central Path
Opt(P) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

K(X) = − ln Det(X)

Let
X = {X ∈ LP −B : X � 0}
S = {S ∈ LD + C : S � 0}.

be the (nonempty!) sets of strictly feasible solutions

to (P) and (D), respectively. Given path parameter
µ > 0, consider the functions

Pµ(X) = Tr(CX) + µK(X) : X → R
Dµ(S) = −Tr(BS) + µK(S) : S → R .

Fact: For every µ > 0, the function Pµ(X) achieves its min-
imum at X at a unique point X∗(µ), and the function Dµ(S)

achieves its minimum on S at a unique point S∗(µ). These
points are related to each other:

X∗(µ) = µS−1
∗ (µ)⇔ S∗(µ) = µX−1

∗ (µ)
⇔ X∗(µ)S∗(µ) = S∗(µ)X∗(µ) = µI

Thus, we can associate with (P), (D) the primal-dual central
path – the curve

{X∗(µ), S∗(µ)}µ>0;
for every µ > 0, X∗(µ) is a strictly feasible solution to (P),
and S∗(µ) is a strictly feasible solution to (D).

Opt(P) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Proof of the fact: A. Let us prove that the primal-dual

central path is well defined. Let S̄ be a strictly feasible

solution to (D). For every pair of feasible solutions

X,X ′ to (P) we have

〈X −X ′, S̄〉 = 〈X −X ′, C〉+ 〈X −X ′︸ ︷︷ ︸
∈LP

, S − C︸ ︷︷ ︸
∈LD=L⊥P

〉 = 〈X −X ′, C〉

⇒ On the feasible plane of (P), the linear functions

Tr(CX) and Tr(S̄X) of X differ by a constant

⇒ To prove the existence of X∗(µ) is the same as to

prove that the feasible problem

Opt = min
X∈X

[
Tr(S̄X) + µK(X)

]
(R)

is solvable.

Opt = min
X∈X

[
Tr(S̄X) + µK(X)

]
(R)

Let Xi ∈ X be such that[
Tr(S̄Xi) + µK(Xi)

]
→ Opt as i→∞.

We claim that a properly selected subsequence {Xij}
∞
j=1

of the sequence {Xi} has a limit X̄ � 0.

Claim ⇒ Solvability of (R): Since Xij → X̄ � 0 as

j →∞, we have X̄ ∈ X and

Opt = limj→∞
[
Tr(S̄Xij) + µK(Xij)

]
=
[
Tr(S̄X̄) + µK(X̄)

]
⇒ X̄ is an optimal solution to (R).

Proof of Claim “Let Xi � 0 be such that
limi→∞

[
Tr(S̄Xi) + µK(Xi)

]
< +∞.

Then a properly selected subsequence of {Xi}∞i=1 has a limit
which is � 0”:
First step: Let us prove that Xi form a bounded se-

quence.

Lemma: Let S̄ � 0. Then there exists c = c(S̄) > 0 such
that Tr(XS̄) ≥ c‖X‖ for all X � 0.
Indeed, there exists ρ > 0 such that S̄ − ρU � 0 for all

U ∈ Sν, ‖U‖ ≤ 1. Therefore for every X � 0 we have
∀(U, ‖U‖ ≤ 1) : Tr([S̄ − ρU]X) ≥ 0
⇒ Tr(S̄X) ≥ ρ max

U :‖U‖≤1
Tr(UX) = ρ‖X‖.

Now let Xi satisfy the premise of our claim. Then

Tr(S̄Xi) + µK(Xi) ≥ c(S̄)‖Xi‖ − µ ln(‖Xi‖m).

Since the left hand side sequence is above bounded

and cr−µ ln(rm)→∞ as r → +∞, the sequence ‖Xi‖
indeed is bounded.

“Let Xi � 0 be such that limi→∞
[
Tr(S̄Xi) + µK(Xi)

]
< +∞. Then a

properly selected subsequence of {Xi}∞i=1 has a limit which is � 0”

Second step: Let us complete the proof of the

claim. We have seen that the sequence {Xi}∞i=1
is bounded, and thus we can select from it a con-

verging subsequence Xij. Let X̄ = limj→∞Xij. If

X̄ were a boundary point of Sν+, we would have

Tr(S̄Xij) + µK(Xij)→ +∞, j →∞
which is not the case. Thus, X̄ is an interior point of

Sν+, that is, X̄ � 0.

The existence of S∗(µ) is proved similarly, with (D) in

the role of (P).

The uniqueness of X∗(µ) and S∗(µ) follows from the

fact that these points are minimizers of strongly con-

vex functions.

B. Let us prove that S∗(µ) = µX−1
∗ (µ). Indeed, since

X∗(µ) � 0 is the minimizer of Pµ(X) = Tr(CX) +

µK(X) on X = {X ∈ [LP−B]∩Sν++}, the first order di-

rectional derivatives of Pµ(X) taken at X∗(µ) along di-

rections from LP should be zero, that is, ∇Pµ(X∗(µ))

should belong to LD = L⊥P . Thus,

C − µX−1
∗ (µ) ∈ LD ⇒ S := µX−1

∗ (µ) ∈ C + LD & S � 0

⇒ S ∈ S. Besides this,
∇K(S) = −S−1 = −µ−1X∗(µ)⇒ µ∇K(S) = −X∗(µ)
⇒ µ∇K(S) ∈ −[LP −B]⇒ µ∇K(S)−B ∈ LP = L⊥D

⇒ ∇Dµ(S) is orthogonal to LD
⇒ S is the minimizer of Dµ(·) on S = [LD+C]∩Sν++.

⇒ µX−1
∗ (µ) =: S = S∗(µ). �

Duality Gap on the Central Path
Opt(P) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

⇒
{
X∗(µ) ∈ [LP −B] ∩ Sν++
S∗(µ) ∈ [LD + C] ∩ Sν++

}
: X∗(µ)S∗(µ) = µI

Observation: On the primal-dual central path, the duality gap
is

Tr(X∗(µ)S∗(µ)) = Tr(µI) = µm.
Therefore sum of non-optimalities of the strictly feasible solu-
tion X∗(µ) to (P) and the strictly feasible solution S∗(µ) to
(D) in terms of the respective objectives is equal to µm and
goes to 0 as µ→ +0.
⇒ Our ideal goal would be to move along the primal-dual
central path, pushing the path parameter µ to 0 and thus
approaching primal-dual optimality, while maintaining primal-
dual feasibility.

♠ Our ideal goal is not achievable – how could we

move along a curve? A realistic goal could be to move

in a neighborhood of the primal-dual central path,

staying close to it. A good notion of “closeness to

the path” is given by the proximity measure of a triple

µ > 0, X ∈ X , S ∈ S to the point (X∗(µ), S∗(µ)) on the

path:
dist(X,S, µ) =

√
Tr(X[X−1 − µ−1S]X[X−1 − µ−1S])

=
√

Tr(X1/2[X1/2[X−1 − µ−1S]X1/2]
[
X1/2[X−1 − µ−1S]

]
)

=
√

Tr([X1/2[X−1 − µ−1S]X1/2]
[
X1/2[X−1 − µ−1S]X1/2

]
)

=
√

Tr([X1/2[X−1 − µ−1S]X1/2]2)

=
√

Tr([I − µ−1X1/2SX1/2]2).

Note: We see that dist(X,S, µ) is well defined and

dist(X,S, µ) = 0 iff X1/2SX1/2 = µI, or, which is the

same,

SX = X−1/2[X1/2SX1/2]X1/2 = µX−1/2X1/2 = µI,

i.e., iff X = X∗(µ) and S = S∗(µ).

Note: We have
dist(X,S, µ) =

√
Tr(X[X−1 − µ−1S]X[X−1 − µ−1S])

=
√

Tr([I − µ−1XS][I − µ−1XS])

=
√

Tr(
[
[I − µ−1XS][I − µ−1XS]

]T
)

=
√

Tr([I − µ−1SX][I − µ−1SX])

=
√

Tr(S[S−1 − µ−1X]S[S−1 − µ−1X]),
⇒ The proximity is defined in a symmetric w.r.t. X,

S fashion.

Fact: Whenever X ∈ X , S ∈ S and µ > 0, one has
Tr(XS) ≤ µ[m+

√
mdist(X,S, µ)]

Indeed, we have seen that

d := dist(X,S, µ) =
√

Tr([I − µ−1X1/2SX1/2]2).

Denoting by λi the eigenvalues of X1/2SX1/2, we have
d2 = Tr([I − µ−1X1/2SX1/2]2) =

∑
i[1− µ−1λi]

2

⇒
∑
i |1− µ−1λi| ≤

√
m
√∑

i[1− µ−1λi]
2

=
√
md

⇒
∑
i λi ≤ µ[m+

√
md]

⇒ Tr(XS) = Tr(X1/2SX1/2) =
∑
i λi≤ µ[m+

√
md]

Corollary. Let us say that a triple (X,S, µ) is close to
the path, if X ∈ X , S ∈ S, µ > 0 and dist(X,S, µ) ≤ 0.1.

Whenever (X,S, µ) is close to the path, one has

Tr(XS) ≤ 2µm,

that is, if (X,S, µ) is close to the path, then X is

at most 2µm-nonoptimal strictly feasible solution to

(P), and S is at most 2µm-nonoptimal strictly feasible

solution to (D).

How to Trace the Central Path?

♣ The goal: To follow the central path, staying close

to it and pushing µ to 0 as fast as possible.

♣ Question. Assume we are given a triple (X̄, S̄, µ̄) close
to the path. How to update it into a triple (X+, S+, µ+), also
close to the path, with µ+ < µ?
♠ Conceptual answer: Let us choose µ+, 0 < µ+ < µ̄,

and try to update X̄, S̄ into X+ = X̄ + ∆X, S+ =

S̄+ ∆S in order to make the triple (X+, S+, µ+) close

to the path. Our goal is to ensure that
X+ = X̄ + ∆X ∈ LP −B & X+ � 0 (a)
S+ = S̄ + ∆S ∈ LD + C & S+ � 0 (b)

Gµ+(X+, S+) ≈ 0 (c)
where Gµ(X,S) = 0 expresses equivalently the aug-
mented slackness condition XS = µI. For example, we

can take
Gµ(X,S) = S − µ−1X−1, or

Gµ(X,S) = X − µ−1S−1, or

Gµ(X,S) = XS + SX = 2µI, or...

X+ = X̄ + ∆X ∈ LP −B & X+ � 0 (a)
S+ = S̄ + ∆S ∈ LD + C & S+ � 0 (b)

Gµ+(X+, S+) ≈ 0 (c)

♠ Since X̄ ∈ LP − B and X̄ � 0, (a) amounts to

∆X ∈ LP , which is a system of linear equations on

∆X, and to X̄ + ∆X � 0. Similarly, (b) amounts to

the system ∆S ∈ LD of linear equations on ∆S, and

to S̄+∆S � 0. To handle the troublemaking nonlinear
in ∆X,∆S condition (c), we linearize Gµ+ in ∆X and
∆S:

Gµ+(X+, S+) ≈ Gµ+(X̄, S̄)

+
∂Gµ+

(X,S)

∂X

∣∣∣∣
(X,S)=(X̄,S̄)

∆X +
∂Gµ+

(X,S)

∂S

∣∣∣∣
(X,S)=(X̄,S̄)

∆S

and enforce the linearization, as evaluated at ∆X, ∆S, to be
zero. We arrive at the Newton system

∆X ∈ LP
∆S ∈ LD
∂Gµ+

∂X
∆X +

∂Gµ+

∂S
∆S = −Gµ+

(N)

(the value and the partial derivatives of Gµ+(X,S) are

taken at the point (X̄, S̄)).

♠ We arrive at conceptual primal-dual path-following
method where one iterates the updatings

(Xi, Si, µi) 7→ (Xi+1 = Xi + ∆Xi, Si+1 = Si + ∆Si, µi+1)

where µi+1 ∈ (0, µi) and ∆Xi,∆Si are the solution to

the Newton system
∆Xi ∈ LP
∆Si ∈ LD
∂G(i)

µi+1

∂X
∆Xi +

∂G(i)
µi+1

∂S
∆Si = −G(i)

µi+1

(Ni)

and G
(i)
µ (X,S) = 0 represents equivalently the aug-

mented complementary slackness condition XS = µI

and the value and the partial derivatives of G(i)
µi+1 are

evaluated at (Xi, Si).

♠ Being initialized at a close to the path triple

(X0, S0, µ0), this conceptual algorithm should

• be well-defined: (Ni) should remain solvable, Xi
should remain strictly feasible for (P), Si should re-

main strictly feasible for (D), and

• maintain closeness to the path: for every i,

(Xi, Si, µi) should remain close to the path.

Under these limitations, we want to push µi to 0 as

fast as possible.

Example: Primal Path-Following Method
Opt(P) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

♣ Let us choose

Gµ(X,S) = S + µ∇K(X) = S − µX−1

Then the Newton system becomes
∆Xi ∈ LP ⇔ ∆Xi = A∆xi
∆Si ∈ LD ⇔ A∗∆Si = 0

A∗U = [Tr(A1U); ...; Tr(AnU)]
(!) ∆Si + µi+1∇2K(Xi)∆Xi = −[Si + µi+1∇K(Xi)]

(Ni)

♠ Substituting ∆Xi = A∆xi and applying A∗ to both

sides in (!), we get
(∗) µi+1 [A∗∇2K(Xi)A]︸ ︷︷ ︸

H

∆xi = −
[
A∗Si︸ ︷︷ ︸

=c

+A∗∇K(Xi)
]

∆Xi = A∆xi
Si+1 = µi+1

[
∇K(Xi)−∇2K(Xi)A∆xi

]
The mappings h 7→ Ah, H 7→ ∇2K(Xi)H have trivial

kernels

⇒ H is nonsingular

⇒ (Ni) has a unique solution given by
∆xi = −H−1

[
µ−1
i+1c+A∗∇K(Xi)

]
∆Xi = A∆xi
Si+1 = Si + ∆Si = µi+1

[
∇K(Xi)−∇2K(Xi)A∆xi

]

Opt(P) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

⇒

 ∆xi = −H−1
[
µ−1
i+1c+A∗∇K(Xi)

]
∆Xi = A∆xi
Si+1 = Si + ∆Si = µi+1

[
∇K(Xi)−∇2K(Xi)A∆xi

]
♠ Xi = Axi−B for a (uniquely defined by Xi) strictly

feasible solution xi to (P). Setting

F (x) = K(Ax−B),

we have A∗∇K(Xi) = ∇F (xi), H = ∇2F (xi)

⇒ The above recurrence can be written solely in terms of xi
and F :

(#)

{
µi 7→ µi+1 < µi
xi+1 = xi − [∇2F (xi)]−1

[
µ−1
i+1c+∇F (xi)

]
Xi+1 = Axi+1 −B
Si+1 = µi+1

[
∇K(Xi)−∇2K(Xi)A[xi+1 − xi]

]
Recurrence (#) is called the primal path-following method.

Opt(P) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

♠ The primal path-following method can be explained

as follows:

• The barrier K(X) = − ln DetX induces the barrier

F (x) = K(Ax − B) for the interior P o of the feasible

domain of (P).

• The primal central path

X∗(µ) = argminX=Ax−B�0 [Tr(CX) + µK(X)]

induces the path

x∗(µ) ∈ P o: X∗(µ) = Ax∗(µ) + µF (x).

Observing that

Tr(C[Ax−B]) + µK(Ax−B) = cTx+ µF (x) + const,

we have

x∗(µ) = argminx∈P o Fµ(x), Fµ(x) = cTx+ µF (x).

• The method works as follows: given xi ∈ P o, µi > 0,

we

— replace µi with µi+1 < µi
— convert xi into xi+1 by applying to the function

Fµi+1(·) a single step of the Newton minimization method
xi 7→ xi+1 − [∇2Fµi+1(xi)]−1∇Fµi+1(xi)

Opt(P) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Theorem. Let (X0 = Ax0 − B,S0, µ0) be close to the
primal-dual central path, and let (P) be solved by the Primal
path-following method where the path parameter µ is updated
according to

µi+1 =
(

1− 0.1√
m

)
µi. (∗)

Then the method is well defined and all triples (Xi = Axi −
B,Si, µi) are close to the path.
♠ With the rule (∗) it takes O(

√
m) steps to reduce

the path parameter µ by an absolute constant factor.

Since the method stays close to the path, the duality

gap Tr(XiSi) of i-th iterate does not exceed 2mµi.

⇒ The number of steps to make the duality gap ≤ ε does not
exceed O(1)

√
m ln

(
1 + 2mµ0

ε

)
.

2D feasible set of a toy SDO (K = S3
+).

“Continuous curve” is the primal central path
Dots are iterates xi of the Primal Path-Following method.

Itr# Objective Gap Itr# Objective Gap
1 -0.100000 2.96 7 -1.359870 8.4e-4
2 -0.906963 0.51 8 -1.360259 2.1e-4
3 -1.212689 0.19 9 -1.360374 5.3e-5
4 -1.301082 6.9e-2 10 -1.360397 1.4e-5
5 -1.349584 2.1e-2 11 -1.360404 3.8e-6
6 -1.356463 4.7e-3 12 -1.360406 9.5e-7

Duality gap along the iterations

♣ The Primal path-following method is yielded by

Conceptual Path-Following Scheme when the Aug-

mented Complementary Slackness condition is repre-

sented as

Gµ(X,S) := S + µ∇K(X) = 0.

Passing to the representation

Gµ(X,S) := X + µ∇K(S) = 0,

we arrive at the Dual path-following method with the same

theoretical properties as those of the primal method.

the Primal and the Dual path-following methods im-

ply the best known so far complexity bounds for LO

and SDO.

♠ In spite of being “theoretically perfect”, Primal and

Dual path-following methods in practice are inferior as

compared with the methods based on less straight-

forward and more symmetric forms of the Augmented

Complementary Slackness condition.

♠ The Augmented Complementary Slackness condi-

tion is

XS = SX = µI (∗)
Fact: For X,S ∈ Sν++, (∗) is equivalent to

XS + SX = 2µI

Indeed, if XS = SX = µI, then clearly XS + SX =

2µI. On the other hand,
X,S � 0, XS + SX = 2µI
⇒ S +X−1SX = 2µX−1

⇒ X−1SX = 2µX−1 − S
⇒ X−1SX = [X−1SX]T = XSX−1

⇒ X2S = SX2

We see that X2S = SX2. Since X � 0, X is a poly-

nomial of X2, whence X and S commute, whence

XS = SX = µI. �

Fact: Let Q ∈ Sν be nonsingular, and let X,S � 0.

Then XS = µI if and only if

QXSQ−1 +Q−1SXQ = 2µI

Indeed, it suffices to apply the previous fact to the

matrices X̂ = QXQ � 0, S̃ = Q−1SQ−1 � 0. �

♠ In practical path-following methods, at step i the

Augmented Complementary Slackness condition is

written down as

Gµi+1(X,S) := QiXSQ
−1
i +Q−1

i SXQi − 2µi+1I = 0

with properly chosen varying from step to step non-

singular matrices Qi ∈ Sν.

Explanation: Let Q ∈ Sν be nonsingular. The Q-scaling
X 7→ QXQ is a one-to-one linear mapping of Sν onto

itself, the inverse being the mapping X 7→ Q−1XQ−1.

Q-scaling is a symmetry of the positive semidefinite cone – it
maps the cone onto itself.
⇒ Given a primal-dual pair of semidefinite programs

Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

and a nonsingular matrix Q ∈ Sν, one can pass in (P)

from variable X to variables X̂ = QXQ, while passing

in (D) from variable S to variable S̃ = Q−1SQ−1. The

resulting problems are
Opt(P) = min

X̂

{
Tr(C̃X̂) : X̂ ∈ [L̂P − B̂] ∩ Sν+

}
(P̂)

Opt(D) = max
S̃

{
Tr(B̂S̃) : S̃ ∈ [L̃D + C̃] ∩ Sν+

}
(D̃)[

B̂ = QBQ, L̂P = {QXQ : X ∈ LP},
C̃ = Q−1CQ−1, L̃D = {Q−1SQ−1 : S ∈ LD}

]

Opt(P) = min
X̂

{
Tr(C̃X̂) : X̂ ∈ [L̂P − B̂] ∩ Sν+

}
(P̂)

Opt(D) = max
S̃

{
Tr(B̂S̃) : S̃ ∈ [L̃D + C̃] ∩ Sν+

}
(D̃)[

B̂ = QBQ, L̂P = {QXQ : X ∈ LP},
C̃ = Q−1CQ−1, L̃D = {Q−1SQ−1 : S ∈ LD}

]

P̂ and D̃ are dual to each other, the primal-dual cen-

tral path of this pair is the image of the primal-dual

path of (P), (D) under the primal-dual Q-scaling
(X,S) 7→ (X̂ = QXQ, S̃ = Q−1SQ−1)

Q preserves closeness to the path, etc.

Writing down the Augmented Complementary Slack-

ness condition as

QXSQ−1 +Q−1SXQ = 2µI (!)

we in fact

• pass from (P), (D) to the equivalent primal-dual

pair of problems (P̂), (D̃)

• write down the Augmented Complementary Slack-

ness condition for the latter pair in the simplest

primal-dual symmetric form

X̂S̃ + S̃X̂ = 2µI,

• “scale back” to the original primal-dual variables

X,S, thus arriving at (!).

Note: In the LO case Sν is comprised of diagonal

matrices, so that (!) is exactly the same as the “un-

scaled” condition XS = µI.

Gµi+1(X,S) := QiXSQ
−1
i +Q−1

i SXQi − 2µi+1I = 0 (!)

With (!), the Newton system becomes
∆X ∈ LP , ∆S ∈ LD
Qi∆XSiQ

−1
i +Q−1

i Si∆XQi +QiXi∆SQ−1
i +Q−1

i ∆SXiQi

= 2µi+1I −QiXiSiQ
−1
i −Q

−1
i SiXiQi

♣ Theoretical analysis of path-following methods sim-

plifies a lot when the scaling (!) is commutative, mean-

ing that the matrices X̂i = QiXiQi and Ŝi = Q−1
i SiQ

−1
i

commute.

Popular choices of commuting scalings are:

• Qi = S
1/2
i (“XS-method,” S̃ = I)

• Qi = X
−1/2
i (“SX-method, X̂ = I)

• Qi =
(
X−1/2(X1/2SX1/2)−1/2X1/2S

)1/2

(famous Nesterov-Todd method, X̂ = S̃).

Opt(P) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P)

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Theorem: Let a strictly-feasible primal-dual pair (P), (D)

of semidefinite programs be solved by a primal-dual path-
following method based on commutative scalings. Assume
that the method is initialized by a close to the path triple
(X0, S0, µ0 = Tr(X0S0)/m) and let the policy for updat-
ing µ be

µi+1 =
(

1− 0.1√
m

)
µi.

The the trajectory is well defined and stays close to the path.
As a result, every O(

√
m) steps of the method reduce

duality gap by an absolute constant factor, and it takes
O(1)

√
m ln

(
1 + mµ0

ε

)
steps to make the duality gap ≤ ε.

♠ To improve the practical performance of primal-

dual path-following methods, in actual computations

• the path parameter is updated in a more aggressive

fashion than µ 7→
(

1− 0.1√
m

)
µ;

• the method is allowed to travel in a wider neighbor-

hood of the primal-dual central path than the neigh-

borhood given by our “close to the path” restriction

dist(X,S, µ) ≤ 0.1;

• instead of updating Xi+1 = Xi + ∆Xi, Si+1 =

Si + ∆Si, one uses the more flexible updating

Xi+1 = Xi + αi∆Xi, Si+1 = Si + αi∆Si
with αi given by appropriate line search.

♣ The constructions and the complexity results we

have presented are incomplete — they do not take

into account the necessity to come close to the cen-

tral path before starting path-tracing and do not take

care of the case when the pair (P), (D) is not strictly

feasible. All these “gaps” can be easily closed via the

same path-following technique as applied to appropri-

ate augmented versions of the problem of interest.

