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Preface

WHEN SPEAKING about links between Statistics and Optimization, what comes
to mind first is the indispensable role played by optimization algorithms in the
“computational toolbox” of Statistics (think about the numerical implementation
of the fundamental Maximum Likelihood method). However, on a second thought,
we should conclude that whatever high this role could be, the fact that it comes
to our mind first primarily reflects the weaknesses of Optimization rather than
its strengths; were optimization algorithms used in Statistics as efficient and as
reliable as, say, Linear Algebra techniques used there, nobody would think about
special links between Statistics and Optimization, same as nobody usually thinks
about special links between Statistics and Linear Algebra. When computational,
rather than methodological, issues are concerned, we start to think about links with
Optimization, Linear Algebra, Numerical Analysis, etc., only when computational
tools offered to us by these disciplines do not work well and need the attention of
experts in these disciplines.

The goal of Lectures is to present another type of links between Optimization
and Statistics, those which have nothing in common with algorithms and number-
crunching. What we are speaking about, are the situations where Optimization
theory (theory, not algorithms!) seems to be of methodological value in Statistics,
acting as the source of statistical inferences with provably optimal, or nearly so,
performance. In this context, we focus on utilizing Convex Programming theory,
mainly due to its power, but also due to the desire to end up with inference routines
reducing to solving convex optimization problems and thus implementable in a
computationally efficient fashion. Thus, while we do not mention computational
issues explicitly, we do remember that at the end of the day we need a number, and
in this respect, intrinsically computationally friendly convex optimization models
are the first choice.

The three topics we intend to consider are:

1. Sparsity-oriented Compressive Sensing. Here the role of Convex Optimization
theory, by itself by far not negligible (it allows, e.g., to derive from “first prin-
ciples” the necessary and sufficient conditions for the validity of ¢ recovery) is
relatively less important than in two other topics. Nevertheless, we believe that
Compressive Sensing, due to its popularity and the fact that now it is one of
the major “customers” of advanced convex optimization algorithms, is worthy of
being considered.

2. Pairwise and Multiple Hypothesis Testing, including sequential tests, estimation
of linear functionals, and some rudimentary design of experiments. This is the
topic where, as of now, the approaches based on Convex Optimization theory
were most successful.

3. Recovery of signals from noisy observations of their linear images.
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Xiv PREFACE

The exposition does not require prior knowledge of Statistics and Optimization;
as far as these disciplines are concerned, all necessary for us facts and concepts
are incorporated into the text. The actual prerequisites are elementary Calculus,
Probability, and Linear Algebra and (last but by far not least) general mathematical
culture.

Anatoli Juditsky & Arkadi Nemirovski
Date details
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Notational conventions

VECTORS AND MATRICES.

By default, all vectors are column ones; to write them down, we use “Matlab nota-
1

tion:” | 2 | is written as [1;2;3]. More generally, for vectors/matrices A, B, ..., Z
3

of the same “width” [A; B;C;...; D] is the matrix obtained by writing B beneath

of A, C beneath of B, and so on. For vectors/matrices A, B,C, ..., Z of the same

“height,” [A, B, C, ..., Z] denotes the matrix obtained by writing B to the right of

A, C to the right of B, and so on. Examples: for what in the “normal” notation is

. 1 2 7
er‘ctendownasA:[3 4},32[5 6],02[8},Wehave
L2 1 2 7
[A;B]=| 3 4 | =[1,2;3,4;5,6], [A,C] = =[1,2,7;3,4,8].
5 6 3 4 8

Blanks in matrices replace (blocks of) zero entries. For example,

1 100
2 =(2 00
3 4 5 3 4 5

Diag{A;, A, ..., A} stands for block-diagonal matrix with diagonal blocks Aj,
As,...,Ar. For example,

Diag{1,2,3} = 2 , Diag{[1,2]; [3;4]} = 3
3 4

For an m x n matrix A, dg(A) is the diagonal of A — vector of dimension min[m, n|
with entries A;;, 1 <4 < min[m,n].

STANDARD LINEAR SPACES

in our course are R™ (the space of n-dimensional column vectors), R™*™ (the space
of m x n real matrices), and S™ (the space of n x n real symmetric matrices). All
these linear spaces are equipped with the standard inner product:

(A,B) = AyBj; = Tr(AB") = Tr(BA") = Tr(A" B) = Tr(B" A);

2%}
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in the case when A = a and B = b are column vectors, this simplifies to (a,b) =
a’b = bTa, and when A, B are symmetric, there is no need to write BT in Tr(ABT).
Usually we denote vectors by lowercase, and matrices — by uppercase letters;
sometimes, however, lowercase letters are used also for matrices.
Given a linear mapping A(z) : E; — E,, where E,, E, are standard linear
spaces, one can define the conjugate mapping A*(y) : E, — E, via the identity

(A(z),y) = (z, A"(y)) ¥(z € B,y € E).

One always has (A*)* = A. When E, = R", E, = R™ and A(x) = Az, one has
A*(y) = ATy; when E, = R", E, = S™, so that A(z) = >, z;4;, A; € S™, we
have

A*(Y) = [Tr(A1Y);...; Tr(A,Y)].

Z" is the set of n-dimensional integer vectors.

NORMS.

For 1 < p < oo and for a vector = [z1;...;z,] € R, ||z|, is the standard p-norm

of z: Y
i, _{ (07 foil?) 1<p<oo

max; |z;| = limy o0 2]y p =00 ’

Notation for various norms of matrices is specified when used.

STANDARD CONES.

R is the nonnegative ray on the real axis, R’ stands for the n-dimensional non-
negative orthant — the cone comprised of all entrywise nonnegative vectors from
R™, S stands for the positive semidefinite cone in S™ — the cone comprised of all
positive semidefinite matrices from S™.

MISCELLANEOUS.

e For matrices A, B, relation A < B, or, equivalently, B = A, means that A, B are
symmetric matrices of the same size such that B — A is positive semidefinite; we
write A > 0 to express the fact that A is a symmetric positive semidefinite matrix.
Strict version A = B (<& B < A) of A > B means that A — B is positive definite
(and, as above, A and B are symmetric matrices of the same size).

e Linear Matrix Inequality (LMI, a.k.a. semidefinite constraint) in variables x is
the constraint on z stating that a symmetric matrix affinely depending on z is
positive semidefinite. When x € R™, LMI reads

ao+2xiait0 [a; € S™,0 < i < nj

o N(u, ©) stands for the Gaussian distribution with mean p and covariance matrix
O.
e For a probability distribution P,

o & ~ P means that £ is a random variable with distribution P. Sometimes we
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express the same fact by writing & ~ p(-), where p is the density of P taken w.r.t.
some reference measure (the latter always is fixed by the context);

o E..p{f(€)} is the expectation of f(£), { ~ P; when P is clear from the context,
this notation can be shortened to E¢{f(§)}, or Ep{f(§)}, or even E{f(£)}. Sim-
ilarly, Probe~p{...}, Probe{...}, Probp{...}, Prob{...} denote the P-probability
of the event specified inside the braces.

e O(1)’s stand for positive absolute constants — positive reals which we do not want
or are too lazy to write down explicitly, like in sin(z) < O(1)|z|.

o [, f(EII(dE) stands for the integral, taken w.r.t. measure II over domain €, of
function f.
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About proofs

Lecture Notes are basically self-contained in terms of proofs of the statements to
follow. Simple proofs usually are placed immediately after the corresponding state-
ments; more technical proofs are transferred to dedicated sections titled “Proof of

...,” and this is where a reader should look for “missing” proofs.
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Lecture One

Sparse Recovery via /1 Minimization

In this lecture, we overview basic results of Compressed Sensing — a relatively new
and extremely rapidly developing area in Signal Processing dealing with recovering
signals (vectors z from some R™) from their noisy observations Az +n (A is a given
m X n sensing matriz, 1 is observation noise) in the case when the number of ob-
servations m is much smaller than the signal’s dimension n, but is essentially larger
than the “true” dimension — the number of nonzero entries — in the signals. This
setup leads to extremely deep, elegant and highly innovative theory and possesses
quite significant applied potential. It should be added that along with the plain
sparsity (small number of nonzero entries), Compressed Sensing deals with other
types of “low-dimensional structure” hidden in high-dimensional signals, most no-
tably, with the case of low rank matriz recovery, when signal is a matrix, and sparse
signals are matrices with low ranks, and the case of block sparsity, where signal is
a block vector, and sparsity means that only small number of blocks are nonzero.
In our presentation, we do mot consider these extensions of the simplest sparsity
paradigm.

1.1 COMPRESSED SENSING: WHAT IT IS ABOUT?

1.1.1 Signal Recovery Problem

One of the basic problems in Signal Processing is the problem of recovering a signal
x € R™ from noisy observations

y=Az+n (1.1)

of the affine image of the signal under a given sensing mapping x — Az : R™ — R™;
in (1.1), n is the observation error. Matrix A in (1.1) is called sensing matriz.

Recovery problem of outlined types arise in many applications, including, but
by far not reducing to,

e communications, where x is the signal sent by transmitters, y is the signal
recorded by receivers, A represents the communication channel (reflecting, e.g.,
dependencies of decays in signals’ amplitude on the transmitter-receiver dis-
tances); 1 here typically is modeled as the standard (zero mean, unit covariance
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matrix) m-dimensional Gaussian noise';

e image reconstruction, where the signal x is an image — a 2D array in the usual
photography, or a 3D array in Tomography, and y is data acquired by the imaging
device. Here 1 in many cases (although not always) can again be modeled as the
standard Gaussian noise;

e [inear regression arising in a wide range of applications. In linear regression, one
is given m pairs “input a’ € R™” to a “black box” — output y; € R of the black
box.” Sometimes we have reasons to believe that the output is a corrupted by
noise version of the “existing in the nature,” but unobservable, ideal output”
yF = zTa’ which is just a linear function of the input (this is called “linear
regression model,” with inputs a’ called “regressors”). Our goal is to convert
actual observations (a,y;), 1 < i < m, into estimates of the unknown “true”
vector of parameters z. Denoting by A the matrix with the rows [a‘]T and
assembling individual observations y; into a single observation y = [y1;...; Ym] €
R™, we arrive at the problem of recovering vector x from noisy observations of
Azx. Here again the most popular model for 7 is the standard Gaussian noise.

1.1.2 Signal Recovery: parametric and non-parametric cases

Recovering signal x from observation y would be easy if there were no observation
noise (n = 0) and the rank of matrix A were equal to the dimension n of signals. In
this case, which can take place only when m > n (“more observations that unknown
parameters” ), and is typical in this range of sizes m,n, the desired x would be the
unique solution to the system of linear equation, and to find x would be a simple
problem of Linear Algebra. Aside of this trivial “enough observations, no noise”
case, people over the years looked at the following two versions of the recovery
problem:

Parametric case: m > n, 1 is nontrivial noise with zero mean, say, standard
Gaussian one. This is the classical statistical setup considered in thousands of
papers, with the emphasis on how to use the numerous observations we have at our
disposal in order to suppress in the recovery, to the extent possible, the influence
of observation noise.

Nonparametric case: m < n. Literally treated, this case seems to be sense-
less: when the number of observations is less that the number of unknown param-
eters, even in the no-noise case we arrive at the necessity to solve an undetermined
(less equations than unknowns) system of linear equations. Linear Algebra says that
if solvable, the system has infinitely many solutions; moreover, the solution set (an
affine subspace of positive dimension) is unbounded, meaning that the solutions are
in no sense close to each other. Typical way to make the case of m < n meaning-
ful is to add to the observations (1.1) some a priori information on the signal. In

IThe “physical” noise usually indeed is Gaussian with zero mean, but its covariance matrix
not necessarily is the unit matrix. Note, however, that a zero mean Gaussian noise 7 always can
be represented as Q¢ with standard Gaussian ¢; assuming @ nonsingular (which indeed is so when
the covariance matrix of 7 is positive definite), we can rewrite (1.1) equivalently as

Q ly=[Q 'Alz+¢

and treat Q 'y and Q' A as our new observation and new sensing matrix; new observation noise
¢ is indeed standard. Thus, in the case of Gaussian zero mean observation noise, to assume the
noise standard Gaussian is the same as to assume that its covariance matrix is known.
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traditional Nonparametric Statistics this additional information is summarized in
a given to us in advance bounded conver set X C R™ known to contain the true
signal z. This set usually is such that every signal x € X can be approzimated by
a linear combination of s = 1,2,...,n of vectors from properly selected and known
to us in advance orthonormal basis (“dictionary” in the slang of signal processing)
within accuracy d(s), where d(s) is a known in advance function approaching 0 as
s — oo. In this situation, with appropriate A (e.g., just the unit matrix, as in
denoising problem), we can select somehow s < m and try to recover x as if it
were a vector from the linear span F; of the first s vectors of the outlined basis. In
the “ideal case” x € Ej, recovering x in fact reduces to the case where the dimen-
sion of the signal is s < m rather than n > m, and we arrive at the well-studied
situation of recovering signal of low (as compared to the number of observations)
dimension. In the “realistic case” of x d(s)-close to E, deviation of = from Ej
results in additional component in the recovery error (“bias”); a typical result of
traditional Nonparametric Statistics quantifies the resulting error and minimizes it
in s. Of course, this outline of traditional statistical approach to “nonparametric”
(with n > m) recovery problems is extremely sketchy, but it captures the most
important in our context fact: with the traditional approach to nonparametric sig-
nal recovery, one assumes that after representing the signals by vectors of their
coefficients in properly selected orthonormal basis, the n-dimensional signal to be
recovered can be well approximated by s-sparse (at most s nonzero entries) signal,
with s < n, and this sparse approximation can be obtained by zeroing out all but
the first s entries in the signal vector.

The just formulated assumption indeed takes place for signals obtained by dis-
cretization of smooth uni- and multivariate functions, and this class of signals for
several decades was the main, if not the only, focus of Nonparametric Statistics.

To the best of our knowledge, developments in the traditional Nonparametric
Statistics had nearly nothing to do with Convex Optimization.

Compressed Sensing. The situation changed dramatically around Year 2000
as a consequence of the breakthroughs due to D. Donoho, T. Tao, J. Romberg, E.
Candes, J. Fuchs and several other researchers; as a result of these breakthroughs,
an extremely popular and completely novel area of research, called Compressed
Sensing, emerged.

In the Compressed Sensing (CS) setup of the Signal Recovery problem, same
as in the traditional Nonparametric Statistics, is assumed that after passing to an
appropriate basis, the signal to be recovered is s-sparse (has < s nonzero entries),
or is well approximated by s-sparse signal. The difference with the traditional
approach is that now we assume nothing on the location of the nonzero entries.
Thus, the a priori information on the signal  both in the traditional and in the
CS settings is summarized in a set X known to contain the signal x we want to
recover. The difference is, that in the traditional setting, X is a bounded convex
and “nice” (well approximated by its low-dimensional cross-sections) set, while in
CS this set is, computationally speaking, a “monster:” already in the simplest case
of recovering ezactly s-sparse signals, X is the union of all s-dimensional coordinate
planes, which is a heavily combinatorial entity.

Note that in many applications we indeed can be sure that the true vector
of parameters 6* is sparse. Consider, e.g., the following story about signal
detection. There are n locations where signal transmitters could be placed,
and m locations with the receivers. The contribution of a signal of unit
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magnitude originating in location j to the signal measured by receiver i is
a known quantity A;;, and signals originating in different locations merely
sum up in the receivers; thus, if x is the n-dimensional vector with entries x;
representing the magnitudes of signals transmitted in locations j = 1,2, ...,n,
then the m-dimensional vector y of measurements of the m receivers is y =
Ax +n, where n is the observation noise. Given y, we intend to recover x.
Now, if the receivers are hydrophones registering noises emitted by sub-
marines in certain part of Atlantic, tentative positions of submarines being
discretized with resolution 500 m, the dimension of the vector  (the number
of points in the discretization grid) will be in the range of tens of thousands,
if not tens of millions. At the same time, the total number of submarines
(i.e., nonzero entries in z) can be safely upper-bounded by 50, if not by 20.

In order to see sparsity on our everyday life, look at the 256 x 256 image on the top
of Figure 1.1. The image can be thought of as a 2562 = 65536-dimensional vector
comprised of pixels’ intensities in gray scale, and there is no much sparsity in
this vector. However, when representing the image in the wavelet basis, whatever it
means, we get a “nearly sparse” vector of wavelet coefficients (this is true for typical
“non-pathological” images). On the bottom of Figure 1.1 we see what happens when
we zero out all but a percentage of the largest in magnitude wavelet coefficients and
replace the true image by its sparse, in the wavelet basis, approximations.

Our visual illustration along with numerous similar examples show the “every-
day presence” of sparsity and the possibility to utilize it when compressing signals.
The difficulty, however, is that simple compression — compute the coefficients of the
signal in an appropriate basis and then keep, say, 10% of the largest in magnitude
coefficients — requires to start with digitalizing the signal — representing it as an
array of all its coefficients in some orthonormal basis. These coefficients are inner
products of the signal with vectors of the basis; for a “physical” signal, like speech
or image, these inner products are computed by analogous devices, with subsequent
discretization of the results. After the measurements are discretized, processing the
signal (denoising, compression, storing, etc., etc.) can be fully computerized. The
major potential (to some extent, already actual) advantage of Compressed Sensing
is in the possibility to reduce the “analogous effort” in the outlined process: instead
of computing analogously n linear forms of n-dimensional signal z (its coefficients
in a basis), we use analogous device to compute m < n other linear forms of the
signal and then use signal’s sparsity in a known to us basis in order to recover the
signal reasonably well from these m observations.

In our “picture illustration” this technology would work (in fact, works - it
is called “single pixel camera,” see Figure 1.2) as follows: in reality, the digital
256 x 256 image on the top of Figure 1.1 was obtained by analogous device — a dig-
ital camera which gets on input analogous signal (light of varying along the field of
view intensity caught by camera’s lenses) and discretizes lights’s intensity in every
pixel to get the digitalized image. We then can compute the wavelet coeflicients
of the digitalized image, compress its representation by keeping, say, just 10% of
leading coefficients, etc., etc., but “the damage is already done” — we have already
spent our analogous resources to get the entire digitalized image. The technology
utilizing Compressed Sensing would work as follows: instead of measuring and dis-
cretizing light intensity in every one of the 65,536 pixels, we compute analogously
the integral, taken over the field of view, of the product of light intensity and an
analogously generated “mask,” and do it for, say, 20,000 different masks, thus ob-
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1% of leading wavelet 5% of leading wavelet
coefficients (99.70 % of energy) kept coefficients (99.93 % of energy) kept

50 50

10% of leading wavelet 25% of leading wavelet
coefficients (99.96% of energy) kept coeflicients (99.99% of energy) kept

Figure 1.1:  Top: true 256 x 256 image; bottom: sparse in the wavelet basis
approximations of the image. Wavelet basis is orthonormal, and a natural way to
quantify near-sparsity of a signal is to look at the fraction of total energy (sum
of squares of wavelet coefficients) stored in the leading coefficients; these are the
“energy data” presented on the figure.
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quantizer

photodiode

Figure 1.2: Singe-pixel camera

taining measurements of 20,000 linear forms of our 65,536-dimensional signal. Next
we utilize, via the Compressed Sensing machinery, signal’s sparsity in the wavelet
basis in order to recover the signal from these 20,000 measurements. With this
approach, we reduce the “analogous component” of signal processing effort, at the
price of increasing the “computerized component” of the effort (instead of ready-to-
use digitalized image directly given by 65,536 analogous measurements, we need to
recover the image by applying computationally not so trivial decoding algorithms
to our 20,000 “indirect” measurements). When taking pictures by your camera or
ipad, the game is not worth the candle — analogous component of taking usual pic-
tures is cheap enough, and decreasing it at the price of nontrivial decoding of the
digitalized measurements would be counter-productive. There are, however, impor-
tant applications where the advantages stemming from reduced “analogous effort”
overweight significantly the drawbacks caused by the necessity to use nontrivial
computerized decoding.

1.1.3 Compressed Sensing via /; minimization: Motivation
1.1.3.1 Preliminaries

In principle there is nothing surprising in the fact that under reasonable assumption
on m X n sensing matrix A we may hope to recover from noisy observations of Ax
an s-sparse, with s < m, signal x. Indeed, assume for the sake of simplicity
that there are no observation errors, and let Col;[A] be j-th column in A. If we
knew the locations j; < ja < ... < js of the nonzero entries in z, identifying
z could be reduced to solving system of linear equations .,_, z;,Col;,[A] = y
with m equations and s < m unknowns; assuming every s columns in A linearly
independent (a quite unrestrictive assumption on a matrix with m > s rows), the




StatOpt'LN'NS  January 21, 2019 7x10

SPARSE RECOVERY VIA ¢; MINIMIZATION 11

solution to the above system is unique, and is exactly the signal we are looking for.
Of course, the assumption that we know the locations of nonzeros in x makes the
recovery problem completely trivial. However, it suggests the following course of
actions: given noiseless observation y = Ax of an s-sparse signal x, let us solve the
combinatorial optimization problem

min {||2]lo : Az =y} (1.2)

where ||z||o is the number of nonzero entries in z. Clearly, the problem has a solution
with the value of the objective at most s. Moreover, it is immediately seen (verify
it!) that if every 2s columns in A are linearly independent (which again is a very
unrestrictive assumption on the matrix A provided that m > 2s), then the true
signal z is the unique optimal solution to (1.2).

What was said so far can be extended to the case of noisy observations and “nearly
s-sparse” signals . For example, assuming that the observation error is “uncertain-
but-bounded,” specifically some known norm || - || of this error does not exceed a
given € > 0, and that the true signal is ezactly s-sparse (think how to relax this to
“near s-sparsity”), we could solve the combinatorial optimization problem

min {[|zflo : |4z =yl <€} . (1.3)

Assuming that every m x 2s submatrix A of A is not just with linearly independent
columns (i.e., with trivial kernel), but is reasonably well conditioned:

[Awl] > € w2

for all (2s)-dimensional vectors w, with some constant C, it is immediately seen
that the true signal x underlying observation and the optimal solution T of (1.3)
are close to each other within accuracy of order of e: ||z — Z||2 < 2C¢; it is easily
seen that the resulting error bound is basically as good as it could be.

We see that the difficulties with recovering sparse signals stem not from the lack of
information, they are of purely computational nature: (1.2) is a disastrously difficult
combinatorial problem, and the only known way to process it is by “brute force”
search through all guesses on where the nonzeros in x are located — by inspecting
first the only option that there are no nonzeros in x at all, then by inspecting n
options that there is only one nonzero, for every one of n locations of this nonzero,
then n(n — 1)/2 options that there are exactly two nonzeros, etc., etc. until the
current option will result in a solvable system of linear equations Az = y in variables
z with entries restricted to vanish outside the locations prescribed by the option
under consideration. Running time of this “brute force” search, beyond the range
of small values of s and n (by far too small to be of any applied interest) is by many
orders of magnitude larger than what we can afford to ourselves in reality?.

A partial remedy is as follows. Well, if we do not know how to minimize under
linear constraints, as in (1.2), the “bad” objective ||z]|o, let us “approximate” this

2When s = 5 and n = 100, a sharp upper bound on the number of linear systems we should
process before termination in the “brute force” algorithm is ~ 7.53e7 — much, but perhaps doable.
When n = 200 and s = 20, the number of systems to be processed jumps to ~ 1.61e27, which is
by many orders of magnitude beyond our “computational grasp”; we would be unable to carry out
that many computations even if the fate of the mankind were at stake. And from the perspective
of Compressed Sensing, n = 200 still is a completely toy size, by 3-4 orders of magnitude less than
we would like to handle.
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objective with one which we do know how to minimize. The true objective is
separable: ||z|| = 3" ; €(2;), where £(s) is the function on the axis equal to 0 at the
origin and equal to 1 otherwise. As a matter of fact, the separable functions which
we do know how to minimize under linear constraints are sums of convex functions
of z1, ..., z,. The most natural candidate to the role of convex approximation of £(s)
is |s|; with this approximation, (1.2) converts into the ¢; minimization problem

m;n{nznl =zl Azzy}, (14)

=1

and (1.3) becomes the convex optimization problem

m;n{zn =3Izl Az g < } (L5)

i=1

Both problems are efficiently solvable, which is nice; the question, however, is how
relevant these problems are in our context — whether it is true that they do recover
the “true” s-sparse signals in the noiseless case, or “nearly recover” these signals
when the observation error is small. Since we want to be able to handle whatever
s-sparse signals, the validity of /1 recovery — it ability to recover well every s-sparse
signal — depends solely on the sensing matrix A. Our current goal is to understand
what are “good” in this respect sensing matrices.

1.2 VALIDITY OF SPARSE SIGNAL RECOVERY VIA /;
MINIMIZATION

What follows is based on the standard basic results of Compressed Sensing theory
originating from [35, 34, 36, 37, 32, 33, 48, 46, 47, 60, 61] and augmented by the
results of [85]3.

1.2.1 Validity of /; minimization in the noiseless case

The minimal requirement on sensing matrix A which makes ¢; minimization valid
is to guarantee the correct recovery of exactly s-sparse signals in the noiseless case,
and we start with investigating this property.

1.2.1.1 Notational convention
From now on, for a vector x € R"
o I, ={j:x; # 0} stands for the support of x; we also set
I ={j:a; >0}, I; ={j:2; <0} (= L =IF UI;]

e for a subset I of the index set {1,...,n}, x stands for the vector obtained from

3in fact, in the latter source, an extension of the sparsity, the so called block sparsity, is
considered; in what follows, we restrict the results of [85] to the case of plain sparsity.
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x by zeroing out entries with indexes not in I, and I° for the complement of I:

I°={ie{l,..,n}:i¢gI};

e for s < n, x° stands for the vector obtained from x by zeroing our all but the s
largest in magnitude entries* Note that z° is the best s-sparse approximation of
x in any one of the £, norms, 1 < p < oo;

o for s <n and p € [1,x], we set

[2lls.p = [l2°[lp;

note that || - ||s, is a norm (why?).

1.2.1.2 s-Goodness

Definition of s-goodness. Let us say that an m x n sensing matrix A is s-good,
if whenever the true signal x underlying noiseless observations is s-sparse, this
signal will be recovered ezxactly by 1 minimization. In other words, A is s-good,
if whenever in y in (1.4) is of the form y = Az with s-sparse z, x is the unique
optimal solution to (1.4).

Nullspace property. There is a simply-looking necessary and sufficient con-
dition for a sensing matrix A to be s-good — the nullspace property. After this
property is guessed, it is easy to see that it indeed is necessary and sufficient for
s-goodness; we, however, prefer to derive this condition from the “first principles,”
which can be easily done via Convex Optimization; thus, in the case in question,
same as in many other cases, there is no necessity to be smart to arrive at the truth
via “lucky guess,” it suffices to be knowledgeable and use the standard tools.

Let us start with necessary and sufficient condition for A to be such that when-
ever z is s-sparse, x is an optimal solution (perhaps, not the unique one) of the
optimization problem

min {[|z[|y : Az = Az}, (%)

let us call the latter property of A weak s-goodness. Our first observation is as
follows:

Proposition 1.1. A is weakly s-good if and only if the following condition holds
true: whenever I is a subset of {1,...,n} of cardinality < s, we have

YVw € KerA : |

wr|l1 < [|wglla (1.6)
Proof is immediate. In one direction: Assume A is weakly s-good, and let us
verify (1.6). Let I be an s-element subset of {1, ...,n}, and x be s-sparse vector with

support I. Since A is weakly s-good, z is an optimal solution to (x). Rewriting the

4note that in general z® is not uniquely defined by x and s, since the s-th largest among
the magnitudes of entries in = can be achieved at several entries. In our context, it does not
matter how the ties of this type are resolved; for the sake of definiteness, we can assume that
when ordering the entries in x according to their magnitudes, from the largest to the smallest,
entries of equal magnitude are ordered in the order of their indexes.
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latter problem in the form of LP, that is, as

min{ "t ;42 2 0.4, — 2 2 0,4z = Aa},
J

and invoking LP optimality conditions, the necessary and sufficient condition for
z = x to be the z-component of an optimal solution is the existence of )\;', A
1 € R™ (Lagrange multipliers for the constraints t; — z; > 0, t; + z; > 0, and
Az = Ax, respectively) such that

(a) AT+ = 1Y),

(b) AT =X"+ATu = 0,

© Azl —z5) = 0V, (L.7)
(@) Aj(zl+z;) = 0V, '
(e) P> ov,

(f) A; > 0V

From (¢, d), we have )\j =1A =0forje I7 and )\;r =0,A; =1lforjel,.
From (a) and nonnegativity of )\;E it follows that for j ¢ I, we should have —1 <
)\;' —A; < 1. With this in mind, the above optimality conditions admit eliminating
N's and reduce to the following conclusion:

(1) x is an optimal solution to (x) if and only if there exists vector p € R™ such
that j-th entry of ATy is —1, if x; > 0, +1, if x; < 0, and a real from [—1,1], if
XTj = 0.

Now let w € Ker A be a vector with the same signs of entries w;, i € I, as these of
the entries in . Then

0= pu"Aw = [ATp]"w = 37 [AT ] jw;
= ZjGII |w;| = ZjGII (AT pljw; = — nglz (AT p)jw; < nglz |wj

(we have used the fact that [AT u]; = signx; = signw; for j € I, and |[ATp];| <1
for all 7). Since I can be an arbitrary s-element subset of {1,...,n} and the pattern
of signs of an s-sparse vector x supported on I can be arbitrary, (1.6) holds true.
Now let us assume that (1.6) holds true, and let us prove that A is weakly s-
sparse. Assume the opposite; then for some s-sparse x, = is not an optimal solution
to (*), meaning that system (1.7) of linear constraints in variables A*, y has no
solution. Applying Theorem on Alternative ([11, Theorem 1.2.1]), we can assign
the constraints (a) — (f) in (1.7) with respective vectors of weights wa, ..., we, wy,
with the weights w., wy of inequality constraints (e), (f) being nonnegative, such
that multiplying the constraints by the weights and summing up the results, we get
as a consequence of (1.7) a contradictory inequality — one with no solutions at all.
This contradictory consequence of (1.7) is the linear inequality in variables \*, j:

[Wa+wp+Gwetwe| " AT +[wg —wy+G_wa+w ] " A +wl AT > Z(wa)j7 (xx)
J

where G4, G_ are diagonal matrices with j-th diagonal entry equal to |z;| — x;
(G1) and |z;| + z; (G-). Thus, we can find w,, ..., wy with nonnegative w, and
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wy such that

Wo +wp + Grwe + we =0, wg — wp + G_wg + wy =0, Awy =0, Z(wa)j > 0.
J

or, equivalently, there exist wg, wy, we, wq such that

(p) wq+ wp + Grw, <0,
~——

g
(q) We — wp + G_wyg <0,
——
h
(r) Aw, =0,
(s) 22;(wa); > 0.

Now note that when j € I}, we have g; = 0 and thus (p) says that |[wp];| > [wa];,
and when j € I, we have h; = 0 and thus (q) says that |[ws];| > [wa];. And when
J &I, =11 Ul;, (p) and (q) say that [w,]; < —|[wp],;|. With this in mind, (s)
implies that — > o, [[wslj| + 327, |[ws]j| = 32 ;[wal; > 0. Thus, assuming that
A is not weakly s-good, we have found a set I, of indexes of cardinality < s and a
vector wy, € Ker A (see (r)) such that >, [[ws]j| > 32,47 |[we]s], contradicting
the condition (1.6). O

1.2.1.8 Nullspace property

We have established necessary and sufficient condition for A to be weakly s-good;
it states that ||wy||1 should be < ||wyo||; for all w € Ker A and all I of cardinality
s. It may happen that this inequality holds true as equality, for some nonzero
w € Ker A:

I(w € Ker A\{0}, I, Card(]) < s) : |lwr|l1 = ||wre||1-

In this case matrix A clearly is not s-good, since the s-sparse signal x = wy is not
the unique optimal solution to (x) — the vector —wjyo is a different feasible solution
to the same problem and with the same value of the objective. We conclude that
for A to be s-good, a necessary condition is for the inequality in (1.6) to be strict
whenever w € Ker A is nonzero. By the standard compactness arguments, the
latter condition means the existence of v € (0, 1) such that

V(w € Ker A, I, Card(I) < s) : [lwr|1 < yl|lwre|1,
or, which is the same, existence of x € (0,1/2) such that
V(w € Ker A, I, Card(I) < s) : ||lwr|1 < kl|w]|1.

Finally, the supremum of ||wy||; over I of cardinality s is what we have defined the
norm ||w||1,s (the sum of s largest magnitudes of entries) of w, so that the condition
we are processing finally can be formulated as

k€ (0,1/2) : [[w|1,s < kljw|1 Yw € Ker A. (1.8)
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The resulting nullspace condition in fact is necessary and sufficient for A to be
s-good:

Proposition 1.2. Condition (1.8) is necessary and sufficient for A to be s-good.

Proof. We have already seen that the nullspace condition is necessary for s-
goodness. To verify sufficiency, let A satisfy nullspace condition, and let us prove
that A is s-good. Indeed, let x be an s-sparse vector. By Proposition 1.1, A is
weakly s-good, so that x is an optimal solution to (x), and the only thing we need
to prove is that if y is another optimal solution to (x), then y = x. Assuming y
optimal for (x), let T be the support of z. Setting w = y — x, we have

Aw=0& |lyr — |1 < wlllyr — zlls + yre — z10l[1] = £ll[wrll1 + [lyre 1],
—_——

llwrllx
whence
(1 = m)l[wrlly < &llyrelly = syl = llyzl)-
Since il = lyr — 2l = el — llys |1, we arrive at
(1= r)(lzll = llyrlh) < &yl = llyzl}),
which, due to ||z||1 = |Jy||1 (since z and y are optimal solutions of (%)) and k < 1/2,

boils down to
[yl =Nzl < flyellas

implying, due to ||z|1 = ||ly|l1, that y; = y, that is, y is supported on the support
I of z. In other words, w = y — x is supported on s-element set, and since Aw = 0,
nullspace property implies that y = x. O

1.2.2 TImperfect /1 minimization

We have found a necessary and sufficient condition for ¢; minimization to recover
exactly s-sparse signals in the noiseless case. “In reality,” both these assumptions
typically are violated: instead of s-sparse signals, we should speak about “nearly
s-sparse ones,” quantifying the deviation from sparsity by the distance from the
signal z underlying observations to its best s-sparse approximation z®. Similarly,
we should allow for nonzero observation noise. With noisy observations and/or
imperfect sparsity, we cannot hope to recover signal exactly; all we may hope for,
is to recover it with some error depending on the level of observation noise and
“deviation from s-sparsity” and tending to zero as these level and deviation tend to
0. We are about to quantify the Nullspace property to allow for instructive “error
analysis.”

1.2.2.1 Contrast matrices and quantifications of Nullspace property

By itself, Nullspace property says something about the signals from the kernel of
the sensing matrix. We can reformulate it equivalently to say something important
about all signals. Namely, observe that given sparsity s and x € (0,1/2), the
Nullspace property

lwlls,1 < &llw|ls Yw € Ker A (1.9)
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is satisfied if and only if for a properly selected constant C' one has
lw]ls1 < CllAw||2 + kljw]|1 Yw. (1.10)

Indeed, (1.10) clearly implies (1.9); to get the inverse implication, note that for
every h orthogonal to Ker A it holds

[AR[l2 = of|A]2,

where ¢ > 0 is the minimal positive singular value of A. Now, given w € R", we
can decompose w into the sum of @ € Ker A and h € (Ker A)*, so that

lwlls,r < l@lls1 + [l 1 < sllwlh + VsliRlls,2 < Klllwll + [2]a] + vsllR ]2
< sllwlly + [svn + Vs]llhll2 < o [svn+ V] [[ ARl +allwl,
N— e N——

c =llAw]l2

as required in (1.10).

Condition Q(s, k). For our purposes, it is convenient to present the condition
(1.10) in the following flexible form:

lwllsa < s HT Awl| + &llwll, (L.11)

where H is an m x N contrast matrix and || - || is some norm on RY. Whenever
a pair (H, | -|), called contrast pair, satisfies (1.11), we say that (H, || - ||) satisfies
condition Q1(s, k). From what we have seen, If A possesses Nullspace property
with some sparsity level s and some x € (0,1/2), then there are many ways to
select pairs (H, || -||) satisfying Q1 (s, k), e.g., to take H = C1,,, with appropriately
large C and | - | = | - -

Conditions Qg(s,x). As we shall see in a while, it makes sense to embed
the condition Q1(s, ) into a parametric family of conditions Qq(s, x), where the
parameter ¢ runs through [1, co]. Specifically,

Given m x n sensing matriz A, sparsity level s <n and k € (0,1/2), we say
that m x N matriz H and a norm ||- || on RN satisfy condition Q,(s, k), if

w]ls.g < 57 |HT Aw|| + ks~ lw) Vw € R™. (1.12)
Let us make two immediate observations on relations between the conditions:
A. When a pair (H, || -||) satisfies condition Qq(s, k), the pair satisfies also all con-
ditions Qg (s, k) with 1 < ¢’ <gq.

Indeed in the situation in question for 1 < ¢’ < ¢ it holds

1
7

1
[wl]ls,qr < s

1 1 —_
ol <5777 [s7 BT Aw| + 57w ]

1 1 _
=57 |H" Aw|| + ks7 " Jw]1,

where the first inequality is the standard inequality between ¢,-norms of the
s-dimensional vector w®.
B. When a pair (H,| - ||) satisfies condition Q4(s,x) and 1 < s’ < s, the pair
((s/s’)%H7 | - |) satisfies the condition Qq(s’, k).
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Indeed, in the situation in question we clearly have for 1 < s’ < s:

1 1 19
lellsa < lwllag < ()01 [(s/5)TH] Awll+5 g1l

—1

Q=

<(s")

1.2.3 Regular /; recovery

Given observation scheme (1.1) with m x n sensing matrix A, we define the regular
{1 recovery of x via observation y as

Treg(y) € Argmin {[lully : [ H" (Au—y)| < p}, (1.13)

where the contrast matric H € R™* Y the norm | - | on RY and p > 0 are
parameters of the construction.
The role of Q-conditions we have introduced is clear from the following

Theorem 1.3. Let s be a positive integer, q € [1,00] and k € (0,1/2). Assume
that the pair (H, || - ||) satisfies the condition Qq(s, k) associated with A, and let

Ep={n: [H"nll < p}. (1.14)

Then for all z € R™ and n € =, one has

[Zreg(Az + 1) — 2|, < 1— 9% s 1<p=<q (1.15)

The above result can be slightly strengthened by replacing the assumption that
(H, | - ||) satisfies Qq(s, k) with some x < 1/2, with a weaker, by observation A
from Section 1.2.2.1, assumption that (H, || -||) satisfies Q1 (s, ») with s < 1/2 and
satisfies Qq(s, k) with some (perhaps large) «:

Theorem 1.4. Given A, integer s > 0 and q € [1,00], assume that (H,| - ||)
satisfies the condition Qu1(s, ») with s < 1/2 and the condition Qq(s, k) with some
Kk > s, and let E, be given by (1.14). Then for all z € R™ and n € 2, it holds:

[Zreq(Az + 1) — x|y <

4(2s)7 1 G

$)P[1+ Kk — s|rla- —a

_ Sy Lo =2l
1— 25

1<p<aqg.
2s ]7 =P=q

(1.16)

Before commenting on the above results, let us present their alternative versions.

1.2.4 Penalized ¢; recovery

Penalized ¢; recovery of signal = from its observation (1.1) is
Tpen(y) € Argmin {[|ulls + M HT (Au - y)||}, (L.17)
u
where H € R™*N anorm | - || on RY and a positive real A are parameters of the
construction.

Theorem 1.5. Given A, positive integer s, and q € [1,00], assume that (H,| -||)
satisfies the conditions Qg (s, k) and Q1 (s, ») with 3¢ < 1/2 and k > s. Then
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(i) Let X\ > 2s. Then for all z € R", y € R™ it holds:

1 a(p—1) R
e () = llp < {25 [+ 52 = 2 7= [|HT (A — g + =] 1 < p<g.
(1.18)
In particular, with A = 2s we have:

. s 1 g(p—1) S
[@pen(y) = @llp < 4255 11+ 5 = 76 [|HT (Aw = )| + Legle] - (1.19)

(1) Let p > 0, and let =, be given by (1.14). Then for all x € R" and all
1 € 2, one has:

A>2s =
1 a(p—1)

[@pen(Az+0) = wllp < 252 [14 52 =] 7o [p4 2] 1 <p <y
A=2s =

A

1 _
4(25)P alo=p) le—=* 1

[@pen (Az -+ 1) = ally < 4292 (14 1 — 30D [p+ L2l ] 1 <p <
(1.20)

A

1.2.5 Discussion

Some remarks are in order.

A. Qualitatively speaking, Theorems 1.3, 1.4, 1.5 say the same: under Q-
conditions, the regular, resp., penalized recoveries are capable to reproduce the
true signal exactly when there is no observation noise and the signal is s-sparse; in
the presence of observation error 1 and imperfect sparsity, the signal is recovered
within the error which can be upper-bounded by the sum of two terms, one propor-
tional to the magnitude of observation noise and one proportional to the deviation
lx—2*||1 of the signal from s-sparse ones. In the penalized recovery, the observation
error is measured in the scale given by the contrast matrix and the norm || - || - as
|HT7||, and in the regular one — by an a priori upper bound p on ||[H77n|| — when
p > ||[HTn||, n belongs to Z, and thus the bounds (1.15), (1.16) are applicable to the
actual observation error 7. Clearly, in qualitative terms error bound of this type is
the best we may hope for. Now let us look at the quantitative aspect. Assume that
in the regular recovery we use p ~ ||[H 7|, and in the penalized one use A = 2s. In
this case, error bounds (1.15), (1.16), (1.20), up to factors C' depending solely on
s and K, are the same, specifically,

1z~ all, < CsYPIIHT | + ]z — 2°|l1/s), 1 < p < q. ()

Is this error bound bad or good? The answer depends on many factors, including
on how well we select H and || - ||. To get a kind of orientation, consider the trivial
case of direct observations, where matrix A is square and, moreover, is proportional
to the unit matrix: A = al; assume in addition that x is exactly s-sparse. In this
case, the simplest way to ensure condition Qq(s, k), even with x = 0, is to take
|-l =1"llsq and H = s~*/9a711, so that (!) becomes

Iz — all, < Ca™'sVP7 V4l q, 1 < p < q. ()

As far as the dependence of the bound on the magnitude ||5||s,4 of the observation
noise is concerned, this dependence is as good as it can be — even if we knew in
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advance the positions of the s largest in magnitude entries of x, we would be unable
to recover x is g-norm with error < a=!{|n||s,, (why?); in addition, with the equal
to each other s largest magnitudes of entries in 7, the || - |,-norm of the recovery
error clearly cannot be guaranteed to be less than a=t|n|s, = a~'s'/P=V||n]|s .
Thus, at least for s-sparse signals x, our error bound is, basically, the best one can
get already in the “ideal” case of direct observations.

B. Given that (H, ||-||) obeys Q1 (s, ») with some > < 1/2, the larger is ¢ such that
the pair (H, || -||) obeys the condition Qq(s, x) with a given k > 3¢ (x can be > 1/2)
and s, the larger is the range p < ¢ of values of p where the error bounds (1.16),
(1.20) are applicable. This is in full accordance with the fact that if a pair (H, || -||)
obeys condition Q,(s, k), it obeys also all conditions Qg (s,k) with 1 < ¢’ < ¢
(item A in Section 1.2.2.1).

C. Flexibility offered by contrast matrix H and norm || - || allows to adjust, to some
extent, the recovery to the “geometry of observation errors.” For example, when 7
is “uncertain but bounded,” say, all we know is that ||n||2 < 6 with some given 4,
all what matters (on the top of the requirement for (H, || - ||) to obey Q-conditions)
is how large could be ||[HT7|| when ||n|s < 6. In particular, when || - || = | - |2,
the error bound “is governed” by the spectral norm of H; consequently, if we have
a technique allowing to design H such that (H,|| - ||2) obeys Q-condition(s) with
given parameters, it makes sense to look for design with as small spectral norm of
H as possible. In contrast to this, in the most interesting for applications case of
Gaussian noise:

y=Az+mn, n~N(0,0%I,) (1.21)

looking at the spectral norm of H, with |||z in the role of ||-||, is counter-productive,
since a typical realization of 7 is of Euclidean norm of order of y/mo and thus is
quite large when m is large. In this case to quantify “the magnitude” of H'n by
the product of the spectral norm of H and the Euclidean norm of 7 is completely
misleading — in typical cases, this product will grow rapidly with the number of
observations m, completely ignoring the fact that n is random with zero mean®.
What is much better suited for the case of Gaussian noise, is || - [|oo norm in the
role of || - || and the norm “the maximum of || - ||z-norms of the columns in H,” let
it be denoted by ||H||1,2, of H. Indeed, with n ~ N(0,0%1,,), the entries in HTp
are Gaussian with zero mean and variance bounded by 02| H|[? ,, so that [|[H"7]|s
is the maximum of magnitudes of N zero mean Gaussian random variables with
standard deviations bounded by || H||1,2. As a result,

_p?
Prob{||H nllsc > p} < NExf(p/0)|[H|12 < Nez? | Hl|1.z, (1.22)

where

1 .
Erf(s) = E/ e /24t

is the error function. It follows that the typical values of || HT7]|o0, 7 ~ N(0,021,,)
are of order of at most o+/In(N)| H||1,2; typically, N = O(m), so that with ¢ and

5the simplest way to see the difference is to look at a particular entry k77 in HTn. Operating
with spectral norms, we upper-bound this entry by | h||2||n]|2, and the second factor for n ~
N(0,021I,) is typically as large as o/m, in sharp contrast to the fact that typical values of h”n
are of order of o, completely independently of what m is!
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| H ||1.2 given, typical values || H? ||~ are nearly independent of m. The bottom line
is that ¢; minimization is capable to handle large-scale Gaussian observation noise
incomparably better than “uncertain-but-bounded” observation noise of similar
magnitude (measured in Euclidean norm).

D. As far as comparison of regular and penalized ¢; recoveries with the same
pair (H, || -||) is concerned, the situation is as follows. Assume for the sake of
simplicity that (H, | - ||) satisfies Qq(s, x) with some s and some xk < 1/2, and let
the observation error be random. Given € € (0,1), let

pelH, || - Il = min {p: Prob{n: [H nl| <p} >1—¢}; (1.23)
this is nothing but the smallest p such that
Prob{n e E,} > 1—¢ (1.24)

(see (1.14)) and thus — the smallest p for which the error bound (1.15) for the
regular ¢; recovery holds true with probability 1 — € (or at least the smallest p for
which the latter claim is supported by Theorem 1.3). With p = p[H,| - ||], the
regular ¢; recovery guarantees (and that is the best guarantee one can extract from
Theorem 1.3) that

(#) For some set 2, Prob{n € 2} > 1 —¢, of “good” realizations of n ~
N(0,0%1,,), one has

1 .
4(2s)7 [z — z*[s

1Z(Az +m) = allp < == | pelH, |- ]+

,1<p<gq, (1.25)

[t

whenever x € R™ and n € Z,.

The error bound (1.19) (where we set » = k) says that (#) holds true for the penal-
ized €1 recovery with A = 2s. The latter observation suggests that the penalized ¢,
recovery associated with (H, |- ||) and A = 2s is better than its regular counterpart,
the reason being twofold. First, in order to ensure (#) with the regular recovery,
the “built in” parameter p of this recovery should be set to p.[H,| - ||], and the
latter quantity not always is easy to identify. In contrast to this, the construc-
tion of penalized ¢ recovery is completely independent of a priori assumptions on
the structure of observation errors, while automatically ensuring (#) for the error
model we use. Second, and more importantly, for the penalized recovery the bound
(1.25) is no more than the “worst, with confidence 1 — ¢, case,” while the typical
values of the quantity ||[HTn|| which indeed participates in the error bound (1.18)
are essentially smaller than p.[H, | - ||]. Numerical experience fully supports the
above suggestion: the difference in observed performance of the two routines in
question, although not dramatic, is definitely in favor of the penalized recovery.
The only potential disadvantage of the latter routine is that the penalty parameter
) should be tuned to the level s of sparsity we aim at, while the regular recovery is
free of any guess of this type. Of course, the “tuning” is rather loose — all we need
(and experiments show that we indeed need this) is the relation A > 2s, so that a
rough upper bound on s will do; note, however, that bound (1.18) deteriorates as
A grows.
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Finally, we remark that when H is m x N and n ~ N(0,021L,,), we have

pelH, || - lloo] < Exfluv(e/N)|[Hl[1,2 < /2In(N/€)[|H]|1,2

(see 1.22)); here ErfInv(J) is the inverse error function:

Erf(Erflnv(d)) =0, 0 < § < 1.

How it works. Here we present a small numerical illustration. We observe in
Gaussian noise m = n/2 randomly selected terms in n-element “time series” z =
(#1,...,2n) and want to recover this series under the assumption that the series is
“nearly s-sparse in frequency domain,” that is, that

z = Fzx with ||z — 2°||; <,

where F' is the matrix of n x n Inverse Discrete Cosine Transform, x° is the vector
obtained from z by zeroing out all but s largest in magnitude entries, and § upper-
bounds the distance from x to s-sparse signals. Denoting by A the m x n submatrix
of F' corresponding to the time instants ¢ where z; is observed, our observation
scheme becomes

Y= Az + O-fv

where ¢ is the standard Gaussian noise. After the signal in frequency domain, that
is, x, is recovered by £; minimization, let the recovery be Z, we recover the signal in
the time domain as z = FZ. On Figure 1.3, we present four test signals, of different
(near) sparsity, along with their regular and penalized ¢; recoveries. The data on
Figure 1.3 clearly show how the quality of ¢; recovery deteriorates as the number s
of “essential nonzeros” of the signal in the frequency domain grows. It is seen also
that the penalized recovery meaningfully outperforms the regular one in the range
of sparsities up to 64.

1.3 VERIFIABILITY AND TRACTABILITY ISSUES

Good news on ¢ recovery stated in Theorems 1.3, 1.4, 1.5 are “conditional” — we
assume that we are smart enough to point out a pair (H, || - ||) satisfying condition
Qi (s, 5) with s < 1/2 (and condition Q,(s, k) with a “moderate” » ©). The related
issues are twofold:

1. First, we do not know in which range of s,m,n these conditions, or even the
weaker than Q1 (s, »), » < 1/2, Nullspace property can be satisfied; and without
the Nullspace property, £; minimization becomes useless, at least when we want
to guarantee its validity whatever be s-sparse signal we want to recover;

2. Second, it is unclear how to verify whether a given sensing matrix A satisfies the
Nullspace property for a given s, or a given pair (H, || -||) satisfies the condition

6Qq(s, k) always is satisfied with “large” k, namely, xk = s, but this large value of & is of no
interest: the associated bounds on p-norms of recovery error are straightforward consequences of
the bounds on || - ||1-norm of this error yielded by the condition Qq (s, »).
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recovery errors, regular ¢ recovery recovery errors, penalized ¢ recovery

Figure 1.3: Regular and penalized ¢; recovery of nearly s-sparse signals. Red
circles: true time series, blue crosses: recovered time series (to make the plots
readable, one per eight consecutive terms in the time series is shown). Problem’s
sizes are m = 256 and n = 2m = 512, noise level is ¢ = 0.01, deviation from
s-sparsity is ||z — 2|1 = 1, contrast pair is (H = \/n/mA,| - |s). In penalized
recovery, A = 2s, parameter p in regular recovery is set to ErfInv(0.005/n).
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Q,(s, k) with given parameters.
What is known on these crucial issues, can be outlined as follows.

1. It is known that for given m,n with m < n (say, m/n < 1/2), there exist

m X n sensing matrices which are s-good for the values of s “nearly as large
as m”, specifically, for s < O(I)W
of matrices where this level of goodness “is a rule.” E.g., when drawing an
m X n matrix at random from the Gaussian or the £1 distributions (i.e., filling
the matrix with independent realizations of a random variable which is either
a standard (zero mean, unit variance) Gaussian one, or takes values +1 with
probabilities 0.5), the result will be s-good, for the outlined value of s, with
probability approaching 1 as m and n grow. All this remains true when instead
of speaking about matrices A satisfying “plain” Nullspace properties, we are
speaking about matrices A for which it is easy to point out a pair (H,|| - ||)
satisfying the condition Qa(s, ») with, say, » = 1/4.
The above results can be considered as a good news. A bad news is, that we
do not know how to check efficiently, given an s and a sensing matrix A, that
the matrix is s-good, same as we do not know how to check that A admits good
(i.e., satisfying Qi (s, ») with s < 1/2) pairs (H, || - ||). Even worse: we do not
know an efficient recipe allowing to build, given m, an m X 2m matrix A which
is provably s-good for s larger than O(1)/m, which is a much smaller “level of
goodness” then the one promised by theory for randomly generated matricesS.
The “common life” analogy of this pitiful situation would be as follows: you
know that 90% of bricks in your wall are made of gold, and at the same time,
you do not know how to tell a golden brick from a usual one.’

2. There exist verifiable sufficient conditions for s-goodness of a sensing matrix,

7. Moreover, there are natural families

"From now on, O(1)’s denote positive absolute constants — appropriately chosen numbers
like 0.5, or 1, or perhaps 100,000. We could, in principle, replace all O(1)’s by specific numbers;
following the standard mathematical practice, we do not do it, partly from laziness, partly because
the particular values of these numbers in our context are irrelevant.

8Note that the naive algorithm “generate m x 2m matrices at random until an s-good, with
s promised by the theory, matrix is generated” is not an efficient recipe, since we do not know
how to check s-goodness efficiently.

9This phenomenon is met in many other situations. E.g., in 1938 Claude Shannon (1916-
2001), “the father of Information Theory,” made (in his M.Sc. Thesis!) a fundamental discovery
as follows. Consider a Boolean function of n Boolean variables (i.e., both the function and the
variables take values 0 and 1 only); as it is easily seen there are 22" function of this type, and every
one of them can be computed by a dedicated circuit comprised of “switches” implementing just 3
basic operations AND, OR and NOT (like computing a polynomial can be carried out on a circuit
with nodes implementing just two basic operation: addition of reals and their multiplication). The
discovery of Shannon was that every Boolean function of n variables can be computed on a circuit
with no more than Cn—12" switches, where C is an appropriate absolute constant. Moreover,
Shannon proved that “nearly all” Boolean functions of n variables require circuits with at least
cn~12" switches, ¢ being another absolute constant; “nearly all” in this context means that the
fraction of “easy to compute” functions (i.e., those computable by circuits with less than cn =127
switches) among all Boolean functions of n variables goes to 0 as n goes to co. Now, computing
Boolean functions by circuits comprised of switches was an important technical task already in
1938; its role in our today life can hardly be overestimated — the outlined computation is nothing
but what is going on in a computer. Given this observation, it is not surprising that the Shannon
discovery of 1938 was the subject of countless refinements, extensions, modifications, etc., etc.
What is still missing, is a single individual ezample of a “difficult to compute” Boolean function:
as a matter of fact, all multivariate Boolean functions f(z1,...,zn) people managed to describe
explicitly are computable by circuits with just linear in n number of switches!
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same as verifiable sufficient conditions for a pair (H,| - ||) to satisfy condition
Q,(s, k). A bad news that when m < n, these verifiable sufficient conditions can
be satisfied only when s < O(1)y/m — once again, in a much more narrow range
of values of s than the one where typical randomly selected sensing matrices are
s-good. In fact, s = O(y/m) is the best known so far sparsity level for which we
know individual s-good m x n sensing matrices with m < n/2.

1.3.1 Restricted Isometry Property and s-goodness of random
matrices

There are several sufficient conditions for s-goodness, equally difficult to verify, but
provably satisfied for typical random sensing matrices. The best known of them is
the Restricted Isometry Property (RIP) defined as follows:

Definition 1.6. Let k be an integer and 6 € (0,1). We say that an m X n sens-
ing matriz A possesses the Restricted Isometry Property with parameters § and k,
RIP(6, k), if for every k-sparse x € R™ one has

(L= 0)lz]l3 < lAzl3 < (1 + 8)l[l3. (1.26)

It turns out that for natural ensembles of random m X n matrices, a typical
matrix from the ensemble satisfies RIP(4, k) with small § and k& “nearly as large
as m,” and that RIP(%7 2s) implies Nullspace condition, and more. The simplest
versions of the corresponding results are as follows.

Proposition 1.7. Given § € (0, %], with properly selected positive ¢ = ¢(§), d =
d(0), f = f(6) for all m < n and all positive integers k such that
m

= cln(n/m) +d (1.27)

the probability for a random m x n matriz A with independent N (0, %) entries to
satisfy RIP(6, k) is at least 1 — exp{—fm}.

Proposition 1.8. Let A € R™*" satisfy RIP(0,2s) for some § < 1/3 and positive
integer s. Then
—1/2

(i) The pair (H = S—=1In, || ||2> satisfies the condition Qg (S, ﬁ) associated
with A;

(ii) The pair (H = 15A, || - ||lso) satisfies the condition Qg (s, %) associated
with A.

1.3.2 Verifiable sufficient conditions for Q(s, x)

When speaking about verifiable sufficient conditions for a pair (H, || - ||) to satisfy
Q,(s, k), it is convenient to restrict ourselves with the case when H, same as A, is
an m x n matrix, and || - || = || * ||oo-

Proposition 1.9. Let A be an m X n sensing matriz, and s < n be a sparsity level.
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Given m x n matriz H and q € [1,00], let us set

Vg H] = max | Coly [ — HT A (1.28)

where Col;[C] is j-th column of matriz C'. Then
wlls.q < sYNHT Aw|| oo + vs.g[H]|Jw|1 Yw € R™, (1.29)
implying that the pair (H, | - ||«) satisfies the condition Qq(s, Slfiysﬁq[H]).
Proof is immediate. Setting V =1 — HT A, we have

[wllsq = I[HT A+ V]w|sq < |[H" Awll, s,
< sV HT Awllo + 32; [w;[|Coli[V]|ls.g < V9 HT Allo + vs,g[H]w]]s-

O

Observe that the function v, 4[H] is an efficiently computable convex function of
H, so that the set

HE, = {H e R™" v, [H] < 577 'k} (1.30)

is a computationally tractable convex set. When this set is nonempty for some
Kk < 1/2, every point H in this set is a contrast matrix such that (H,|| - ||oo)
satisfies the condition Q,(s, k), that is, we can find contrast matrices making ¢;
minimization valid. Moreover, we can design contrast matrix, e.g., by minimizing
over H{ , the function |[H||1 2, thus optimizing the sensitivity of the corresponding
{1 recoveries to Gaussian observation noise, see items C, D in Section 1.2.5.

Explanation. The sufficient condition for s-goodness of A stated in Proposition
1.9 looks as coming out of thin air; in fact it is a particular case of a simple and
general construction as follows. Let f(x) be a real-valued convex function on R™,
and X C R" be a nonempty bounded polytope represented as

X = {x € Conv{gy,...,gn} : Ax =0},

where Conv{gi,...,gn} = {dD; Nigi : A > 0,2, A; = 1} is the convex hull of
J1,--,gn- Our goal is to upper-bound the maximum Opt = max,¢cx f(z); this is
a meaningful problem, since precise maximizing a convex function over a polytope
typically is a computationally intractable task. Let us act as follows: clearly, for a
whatever matrix H of the same sizes as A we have max,cx f(z) = max,cx f([I —
HT Alx), since on X we have [I — H4]z = z. As a result,

maxzex f(z) = maxmex f([I — HT AJx)
mMaXzeConv{gy,... I} f HTA]l‘)
maX]<Nf I H

Opt

IA

We get a parametric, the parameter being H, upper bound on Opt, namely, the
bound max;<x f([I — H' A]g;). This parametric bound is convex in the parameter
H, and thus is well suited for minimization over this parameter.

The result of Proposition 1.9 is inspired by this construction as applied to the
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nullspace property: given m X n sensing matrix A and setting
X ={zeR":|z|1 £1,Az =0} = {x € Conv{tey,...,te,} : Ar =0}
(e; are the basic orths in R™), A is s-good if and only if

Opt, := max{f(z) := [lzls1} <1/2;

A verifiable sufficient condition for this yielded by the above construction is the
existence of m x n matrix H such that

maxmax[f([, — HT Ale;), f(~[L, — H" Ale,)] < 1/2,

Jj<n

or, which is the same,

max ||Col;[I,, — HT A||s,1 < 1/2,
j

bringing to our attention the matrix I — HT A with varying H and the idea to
express sufficient conditions for s-goodness and related properties in terms of this
matrix.

1.3.3 Tractability of Q. (s, k)

As we have already mentioned, the conditions Q,(s, k) are intractable, in the sense
that we do not know how to verify whether a given pair (H,| - ||) satisfies the
condition. Surprisingly, this is not the case with the strongest of these conditions,
the one with ¢ = co. Specifically,

Proposition 1.10. Let A be an m x n sensing matriz, s be a sparsity level, and
k > 0. Then whenever a pair (H,||-||) satisfies the condition Quo($, k), there exists
an m x n matriz H such that

[|Col;[1, — HTA]”S,OO = [|Col; [ — H'Allloo <571k, 1<) <,
(so that (H, || - ||ec) satisfies Qoo(s, k) by Proposition 1.9) and, in addition,
|H e < A7) Vo € R™. (131)

In addition, m X n contrast matriz H such that the pair (H,| - ||s) satisfies the
condition Qoo (8, k) with as small k as possible can be found as follows: we consider
n LP programs

Opt; :Hyligl{l/ JATh — €| < v}, (#:)

where €' is i-th basic orth in R™, find optimal solutions Opt,, h; to these problems,
and make h;, i = 1,...,n, the columns of H; the corresponding value of K is

k. = smax Opt,.
7

Besides this, there exists a transparent alternative description of the quantities Opt,
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(and thus — of k. ); specifically,

Opt, = max {z; : ||z]|; <1, Az =0}. (1.32)

Looking at (1.31) and error bounds in Theorems 1.3, 1.4, 1.5, Proposition 1.10
says that

As far as the condition Qoo(s,K) is concerned, we lose nothing when re-
stricting ourselves with pairs (H € R"™*" || - ||o) and contrast matrices H
satisfying the condition

I[I, — HT Al;j| < s 'k (1.33)
implying that (H,|| - ||s) satisfies Qoo(S, K).

A good news is that (1.33) is an explicit convex constraint on H (in fact, even on
H and k), so that we can solve the design problems, where we want to optimize a
convex function of H under the requirement that (H, | - ||« ) satisfies the condition
Qo (s, k) (and, perhaps, additional convex constraints on H and k).

1.8.8.1 Mutual Incoherence

The simplest (and up to some point in time, the only) verifiable sufficient condition
for s-goodness of a sensing matrix A is expressed in terms of mutual incoherence of
A defined as .
|Col; [A]Col,[A]
A) = max — L.
M) = T coL Al

this quantity is well defined whenever A has no zero columns (otherwise A is not
even 1-good). Note that when A is normalized to have all columns of equal || - ||2-
lengths'®, 1(A) is small when the directions of distinct columns in A are nearly
orthogonal. The standard related result is that

(1.34)

Whenever A and a positive integer s are such that 12&5{2) < %, A is s-good.

It is immediately seen that the latter condition is weaker than what we can get
with the aid of (1.33):

Proposition 1.11. Let A be an m X n matriz, and let the columns in m X n matriz
H be given by

1

1.(H) = =Col;(A), 1 <4 <n.
CLI = T aca g v T ==
Then (A)
_HT ALl < _ A 35
L, — H" Al;;| < T+ o A) Vi, j (1.35)

In particular, when 11“’;?{% < é, A is s-good.

1045 far as ¢1 minimization is concerned, this normalization is non-restrictive: we always can
enforce it by diagonal scaling of the signal underlying observations (1.1), and ¢; minimization in
scaled variables is the same as weighted £; minimization in original variables.
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Proof. With H as above, the diagonal entries in I — HT A are equal to 1 — ﬁm) =
n(A)

THa(A) while by definition of mutual incoherence the magnitudes of the off-diagonal

entries in I — HT A are < % as well, implying (1.35). The “in particular” claim

is given by (1.35) combined with Proposition 1.9. o

1.8.3.2  From RIP to conditions Qg(-, k)

It turns out that when A is RIP(4, k) and ¢ > 2, it is easy to point out pairs (H, ||-||)
satisfying Q,(¢, k) with a desired x > 0 and properly selected t:

Proposition 1.12. Let A be an m X n sensing matriz satisfying RIP(9,2s) with
some s and some § € (0,1), and let q € [2,00] and k > 0 be given. Then
(i) Whenever a positive integer t satisfies

t < min {M] : ,sg PR (1.36)
V1496

the pair (H = %[,m |- ll2) satisfies Qq(t, k);
(i) Whenever a positive integer t satisfies

t < min H/{(la—é)} . ,32'7422] $T@T (1.37)

the pair (H = Sit_;ﬁ A, |l |loo) satisfies Qq(t, k).

The most important consequence of Proposition 1.12 deals with the case of
q = oo and states that when s-goodness of a sensing matrix A can be ensured by
difficult to verify condition RIP(6,2s) with, say, 6 = 0.2, the somehow worse level of
sparsity, t = O(1)+/s with properly selected absolute constant O(1) can be certified
via condition Qoo (t, 3) — there exists pair (H, | - ||o) satisfying this condition. The
point is that by Proposition 1.10, if the condition Q(t, %) can at all be satisfied,
a pair (H,| - ||«) satisfying this condition can be found efficiently.

Unfortunately, the significant “dropdown” in the level of sparsity when passing
from unverifiable RIP to verifiable Q. is inevitable; this bad news is what is on
our agenda now.

1.8.3.8  Limits of performance of verifiable sufficient conditions for goodness

Proposition 1.13. Let A be an m X n sensing matrix which is “essentially non-
square,” specifically, such that 2m < n, and let q € [1,00]. Whenever a positive
integer s and an m x n matrix H are linked by the relation

11
|Col,[I,, — HT A]|ls.4 < isrl, 1<j<n, (1.38)

one has

s < V2m. (1.39)

As a result, sufficient condition for the wvalidity of Qq(s,r) with k < 1/2 from
Proposition 1.9 can never be satisfied when s > +/2m. Similarly, the verifiable
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600

600

Figure 1.4: Erroneous ¢; recovery of 25-sparse signal, no observation noise. Ma-
genta: true signal, blue: ¢1 recovery. Top: frequency domain, bottom: time domain.

sufficient condition Qoo (s, k), K < 1/2 for s-goodness of A cannot be satisfied when

s> v2m.

We see that unless A is “nearly square,” our (same as all other known to us)
verifiable sufficient conditions for s-goodness are unable to justify this property for
“large” s. This unpleasant fact is in full accordance with the already mentioned
fact that no individual provably s-good “essentially nonsquare” m X n matrices
with s > O(1)y/m are known.

Matrices for which our verifiable sufficient conditions do establish s-goodness
with s < O(1)y/m do exist.

How it works: Numerical illustration. Let us apply our machinery to the
256 x 512 randomly selected submatrix A of the matrix of 512 x 512 Inverse Discrete
Cosine Transform which we used in experiments reported on Figure 1.3. These
experiments exhibit nice performance of ¢; minimization when recovering sparse
(even nearly sparse) signals with as much as 64 nonzeros. In fact, the level of
goodness of A is at most 24, as is witnessed by Figure 1.4.

In order to upper-bound the level of goodness of a matrix A, one can try to
maximize the convex function ||w||s,1 over the set W = {w : Aw = 0, ||w|:1 < 1};

if, for a given s, the maximum of ||+ ||s,1 over W is > 1/2, the matrix is not s-good —
it does not possess the Nullspace property. Now, while global maximization of the
convex function ||w||s,1 over W is difficult, we can try to find suboptimal solutions
as follows: let us start with a vector w1 € W of ||-||l1-norm 1, and let u* be obtained
from wi by replacing the s largest in magnitude entries in w; by the signs of these
entries and zeroing out all other entries, so that w{ u' = ||w1||s,1. After u® is found,
let us solve the LO program max,,{[u*]"w : w € W}. w, is a feasible solution to

this problem, so that for the optimal solution ws to it we have [u']T w2 > [u']Tw: =
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lw1]ls,1; this inequality, by virtue of what u' is, implies that ||wz|s;1 > |lwi||s,1
and by construction wa € W. We now can iterate the construction, with ws in
the role of w1, to get wg € W with ||Jwsl|s,1 > ||wz||s,1; proceeding in this way, we
generate a sequence of points from W with monotonically increasing value of the
objective || - ||s,1 we want to maximize. Usually, people terminate this recurrence
either when the achieved value of the objective becomes > 1/2 (then we know
for sure that A is not s-good, and can proceed to investigating s-goodness for a
smaller value of s) or when the recurrence becomes stuck — the observed progress
in the objective falls below a given threshold, say, 1.e-6; after it happens we can
restart this process from a new randomly selected in W starting point, after getting
stuck, restart again, etc., etc., until exhausting our time budget. The output of
the process is the best — with the largest || - ||s,1 — of the points from W we have
generated. Applying this approach to the matrix A in question, in a couple of
minutes it turns out that the matrix is at most 24-good.

One can ask how happens that experiments with recovering 64-sparse signals went
fine, when in fact some 25-sparse signals cannot be recovered by ¢; minimization
even in the ideal noiseless case. The answer is simple: in our experiments, we dealt
with randomly selected signals, and, as it typically is the case, randomly selected
data are much nicer, whatever be the purpose of a numerical experiment, that the
worst-case data.

It is interesting to understand also which goodness we can certify with our
verifiable sufficient conditions. Computation shows that the fully verifiable (and
strongest in our scale of sufficient conditions for s-goodness) condition Qu (s, »)
can be satisfied with s < 1/2 when s is as large as 7 and » = 0.4887, and cannot
be satisfied with s < 1/2 when s = 8. As about Mutual Incoherence, it can justify
just 3-goodness, no more. We hardly could be happy with the resulting bounds —
goodness at least 7 and at most 24; however, it could be worse...

1.4 EXERCISES FOR LECTURE 1

Ezxercise 1.14. k-th Hadamard matrix, Hy (here k is nonnegative integer) is the
ng X ny Mmatrix, ng = 2%, given by the recurrence

(1.40)

H H
7'[0:[1]§’H1c+1={ k b ]

Hi | —Hyg
In the sequel, we assume that k& > 0. Now goes the exercise:

1. Check that Hj, is symmetric matrix with entries +1, and columns of the matrix
are mutually orthogonal, so that #y//ny is an orthogonal matrix.

2. Check that when k > 0, H; has just two distinct eigenvalues, \/ny and —,/ng,
each of multiplicity my, := 28~ = n;. /2.

3. Prove that whenever f is an eigenvector of Hj, one has

[ flloo < [f 111/ /rk-

Derive from this observation the conclusion as follows:

Let aq, ..., ay, € R™ be orthogonal to each other unit vectors which are
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eigenvectors of H;, with eigenvalues \/ni; (by the above, the dimension of
the eigenspace of H}, associated with the eigenvalue \/ny is my, so that
the required aq, ..., @y, do exist), and let A be the my X nj matrix with
the rows af, ..., a%k. For every x € Ker A it holds

1
[2]loo < —=Il2ll1,

Vi
whence A satisfies the nullspace property whenever the sparsity s satisfies
2s < \/nk = +/2my,. Moreover, there exists (and can be found efficiently)

an my X ng contrast matrix H = Hy, such that for every s < %. /ny, the pair
(Hp, || - ||oo) satisfies the associated with A condition Qoo (s, ks = S/v/Nk),
——

<1/2
and the || - ||2-norms of columns of Hy, do not exceed \/@ ,

Note that the above conclusion yields a sequence of individual (m) = 2¥~1) x
(ny = 2%) sensing matrices, k = 1,2,..., with “size ratio” ny/mj = 2, which
make an efficiently verifiable condition for s-goodness, say, Qo (s, %) satisfiable
in basically the entire range of values of s allowed by Proposition 1.13. It would
be interesting to get similar “fully constructive” results for other size ratios, like
m:n=1:4 m:n=1:8, etc.

Ezercise 1.15. [Follow-up to Exercise 1.14] Exercise 1.14 provides us with an ex-
plicitly given (m = 512) x (n = 1024) sensing matrix A such that the efficiently
verifiable condition Q. (15, é—g) is satisfiable; in particular, A is 15-good. With all
we know about limits of performance of verifiable sufficient conditions for goodness,
how should we evaluate this specific sensing matrix? Could we point out a sensing
matrix of the same size which is provably s-good for a larger (or “much larger”)
than 15 value of s?7

We do not know the answer, and you are requested to explore some possibilities,
including (but not reducing to — you are welcome to investigate more options!) the

following ones.

1. Generate at random a sample of m x n sensing matrices A, compute their mutual
incoherences and look how large goodness levels they justify. What happens when
the matrices are the Gaussian (independent N (0, 1) entries) and the Rademacher
ones (independent entries taking values £1 with probabilities 1/2)?

2. Generate at random a sample of m x n matrices with independent N(0,1/m)
entries. Proposition 1.7 suggests that a sampled matrix A has good chances to
satisfy RIP (4, k) with some § < 1/3 and some k, and thus to be s-good (and even
more than this, see Proposition 1.8) for every s < k/2. Of course, given A we
cannot check whether the matrix indeed satisfies RIP (0, k) with given §, k; what
we can try to do is to certify that RIP(4, k) does not take place. To this end, it
suffices to select at random, say, 200 m x k submatrices A of A and compute the
eigenvalues of AT A; if A possesses RIP(0, k), all these eigenvalues should belong
to the segment [1 — 4,1 + 4], and if in reality this does not happen, A definitely
is not RIP(4, k).

Exercise 1.16. Let us start with preamble. Consider a finite Abelian group; the only
thing which matters for us is that such a group G is specified by a collection of a
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k > 1 of positive integers vy, ..., vy, and is comprised of all collections w = (w1, ..., wg)
where every w; is an integer from the range {0, 1,..., vy — 1}; the group operation,
denoted by @, is

(Wi, ey wi) B (W) ooy wy) = (w1 + w)) mod vy, ..., (wg + wy,) mod vy),

where amod b is the remainder, taking values in {0,1,...,b — 1}, in the division of
an integer a by positive integer b; say, 5mod3 = 2, and 6 mod 3 = 0. Clearly, the
cardinality of the above group G is ngy = vivs...v,. A character of group G is a
homomorphism acting from G into the multiplicative group of complex numbers
of modulus 1, or, in simple words, a complex-valued function x(w) on G such that
Ix(w)] = 1 for all w € G and x(w B w') = x(w)x(w') for all w,w’ € G. Note
that characters themselves form a group w.r.t. pointwise multiplication; clearly, all
characters of our G are functions of the form

X((wlv ...,Wk)) = pfijl'“ﬂb}:ka

where f1; are restricted to be roots of degree v; from 1: p;* = 1. It is immediately

seen that the group G, of characters of G is of the same cardinality ny = vy...v as

G. We can associate with G the matrix F of size nj X ny; the columns in the matrix

are indexed by the elements w of G, the rows — by the characters x € G, of G,

and the element in cell (x,w) is x(w). The standard example here corresponds to

k =1, in which case F clearly is the v, X v; matrix of Discrete Fourier Transform.
Now goes the exercise:

1. Verify that the above F is, up to factor \/ng, a unitary matrix: denoting by
@ the complex conjugate of a complex number a, ) o x(w)x'(w) is ng or 0
depending on whether x = x’ or x # x'.

2. Let @,&" be two elements of G. Prove that there exists a permutation II of
elements of G which maps @ into @’ and is such that

Coln(w) [.7:} = DCol, []‘—} Yw € G,

where D is diagonal matrix with diagonal entries x(&')/x(®), x € G-

3. Consider the special case of the above construction where vy = vy = ... = v, = 2.
Verify that in this case F, up to permutation of rows and permutation of columns
(these permutations depend on how we assign the elements of G and of G, their
serial numbers) is exactly the Hadamard matrix Hy.

4. Extract from the above the following fact: let m, k be positive integers such that

m < ny := 2% and let sensing matrix A be obtained from #; by selecting m
distinct rows. Assume we want to find an m X nj contrast matrix H such that
the pair (H, || - ||oo) satisfies the condition Qu (s, k) with as small k as possible;

by Proposition 1.10, to this end we should solve n LP programs

Opt; = mhin ||ei - ATh||007

where €’ is i-th basic orth in R™. Prove that with A coming from Hj, all
these problems have the same optimal value, and optimal solutions to all of the
problems are readily given by the optimal solution to just one of them.

Ezercise 1.17. Proposition 1.13 states that the verifiable condition Q. (s, k) can
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certify s-goodness of “essentially nonsquare” (with m < n/2) m X n sensing matrix
A only when s is small as compared to m, namely, s < V2m. The exercise to follow
is aimed at investigating what happens when m x n “low” (with m < n) sensing
matrix A is “nearly square”, meaning that m® = n — m is small as compared to
n. Specifically, you should prove that for properly selected individual (n —m°) x n
matrices A the condition Q. (s, k) with £ < 1/2 is satisfiable when s is as large as

O(1)n/v/me.

1. Let n = 2Fp with positive integer p and integer k& > 1, and let m® = 21,
Given 2m°-dimensional vector u, let u™ be n-dimensional vector built as follows:
we split indexes from {1,...,n = 2¥p} into 2% consecutive groups Iy, ..., Iox, p
elements per group, and all entries of 4t with indexes from I; are equal to i-th
entry, u;, of vector u. Now let U be the linear subspace in R2 comprised of
all eigenvectors, with eigenvalue V2k , of the Hadamard matrix Hj, see Exercise
1.14, so that the dimension of U is 2~ = m?®, and let L be given by

L={u":ueU}CR"
Clearly, L is a linear subspace in R™ of dimension m°. Prove that

V2me
n

Ve eL: |zfe <

1

Conclude that if A is (n — m°) X n sensing matrix with Ker A = L, then the
verifiable sufficient condition Qo (s, k) does certify s-goodness of A whenever

n
1<s< .
2v/2m?°

2. Let L be m°-dimensional subspace in R™. Prove that L contains nonzero vector

x with
A /mO

[2lloe > l[]l1,

so that the condition Q. (s, k) cannot certify s-goodness of (n — m?°) x n sens-
ing matrix A whenever s > O(1)n/+/m?, for properly selected absolute constant
O(1).

Exercise 1.18. Utilize the results of Exercise 1.16 in a numerical experiment as
follows.

e select n as an integer power 2% of 2, say, set n = 2'0 = 1024
e select a “representative” sequence M of values of m, 1 < m < n, including values
of m close to n and “much smaller” than n, say, use

M = {2,5,8,16, 32, 64,128,256, 512, 7,896, 960, 992, 1008, 1016, 1020, 1022, 1023}

e for every m € M,

— generate at random an m x n submatrix A of the n x n Hadamard matrix
and utilize the result of item 4 of Exercise 1.16 in order to find the largest
s such that s-goodness of A can be certified via the condition Q. (-, -); call
s(m) the resulting value of s.
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— generate a moderate sample of Gaussian m X n sensing matrices A; with
independent N'(0,1/m) entries and use the construction from Exercise 1.15
to upper-bound the largest s for which a matrix from the sample satisfies
RIP(1/3,2s); call s(m) the largest, over your A;’s, of the resulting upper
bounds.

The goal of the exercise is to compare the computed values of s(m) and 5(m);
in other words, we again want to understand how “theoretically perfect” RIP
compares to “conservative restricted scope” condition Quc-

1.5 PROOFS

1.5.1 Proofs of Theorem 1.3, 1.4

All we need is to prove Theorem 1.4, since Theorem 1.3 is the particular case
2 = £ < 1/2 of Theorem 1.4.

Let us fix x € R" and n € Z,, and let us set T = Zyeq(Az + 7). Let also
I C{1,...,n} be the set of indexes of the s largest in magnitude entries in x, I° be
the complement of I in {1,...,n}, and let for w € R™, w; and wr. be the vectors
obtained from w by zeroing entries with indexes j & I and j & I°, respectively, and
keeping the remaining entries intact. Finally, let z = 7 — x.
1%, By the definition of 2, and due to n € E, we have

IHT ([Az + 1) = Az)[| < p, (L.41)

so that x is a feasible solution to the optimization problem specifying z, whence
IZ]ln < ||z||1. We therefore have

1771 1Zll = N1Z1]lx < llzlly = 172l = ozl + llzrells = 122l (1.42)
lzzlly + llzre |1,

IN I

and therefore
lzrellr < M[Zrellt + [lzre |t < [lzrllr + 2|z e |1

It follows that
lzlln = llzrlls + llzrellx < 2||2rll1 + 2[|2 101 (1.43)

Further, by definition of # we have ||H7 ([Az + 7] — AZ)|| < p, which combines with
(1.41) to imply that
|HTAG - 2)] < 2p. (1.44)

29, Since (H, || - ||) satisfies Q1 (s, ), we have
l2lls1 < sIHT Az + sl|2])1.

By (1.44), it follows that ||z||s.1 < 2sp + 3[/z]|1, which combines with the evident
inequality ||z7|| < ||z||s,1 (recall that Card(I) = s) and with (1.43) to imply that

lzrll1 < 2sp + s||z|l1 < 2sp + 25|21 |1 + 25¢|z 1o |1,
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whence
2sp + 2x||x o1

<
e

Invoking (1.43), we conclude that

4s Tro
2l < p lzrel) (1.45)
1— 2 2s
3Y. Since (H, | - ||) satisfies Q,(s, k), we have
l2lleg < 57| H Az]| + 557 2],
which combines with (1.45) and (1.44) to imply that
||Z||sq < Sq2p+/ﬁl$‘1 4P+28 12!{110”1 S 4561[1_21‘;7%] |:p+ H120§H1:| (146)

(we have taken into account that s < 1/2 and k > ). Let 6 be the (s + 1)-st
largest magnitude of entries in z, and let w = z — z°. Now (1.46) implies that

A1+ K — 5] {H ||x10||1} .

1
s a <
|S’q - 1—2x 2s

0 <]z

Hence invoking (1.45) we have

g=1 1 q—1 1
lwlly - < lwllss” wllf <67 lz]1
< 9"%1 (46)‘1;{ _|_\|$I°||1}q
[1—23c] @ .
g=1
4 ‘7[1+ ] ¢ llz ol
S s 1H274){ |: + més 1:| .

Taking into account (1.46) and the fact that the supports of 2* and w do not
intersect, we get

1 1
Izllg < 2w max{l|=*]lg, [w]q) = 2 max([lz[ls.q, [w]4]
< toadben [, lepl].

This bound combines with (1.45), the Holder inequality and the relation ||z.]|; =
|z — 2*||; to imply (1.16). ]

1.5.2 Proof of Theorem 1.5

Let us prove (i). Let us fix z € R™ and 7, and let us set ¥ = Zpen(Az + 1). Let
also I C {1,..., K} be the set of indexes of the s largest in magnitude entries in x,
I° be the complement of I in {1,...,n}, and for w € R™ let wy, wro be the vectors
obtained from w by zeroing out all entries with indexes not in I, respectively, not
in I°. Finally, let 2 =2 — 2 and v = |[HT||.
1°. We have

|11 + MHT (AZ — Az —n)|| < [lz]ls + A[H 7]|
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and
|H" (AZ — Az —n)|| = [|H" (Az — )| > [|[H" Az| — [|[H 7],

whence
1201+ ANHTAz|| < ||2]li + 2X|H 9] = [|2]1 + 22 (1.47)

We have
|z + 2|1 = [lzr + 21/l + [|wre + 210 |2

1zl =
> Nlzrll = Nlzrll + llzrelly = |2 101,

which combines with (1.47) to imply that
Jorll = el + 2o I = Norells + MHT A2 < llelly + 25w,
or, which is the same,
lzrolly = ll2rlln + MHT Az|| < 2[|lzro |1 + 2Av. (1.48)
Since (H, || - ||) satisfies Q1 (s, »), we have
arlls < lzlon < sIHT Az]) + ] 2],

so that
(1= 2)||z1]l1 — sl zro ||y — s||[HT Az < 0. (1.49)

Taking weighted sum of (1.48) and (1.49), the weights being 1, 2, respectively, we
get
(1= 25 [zl + 122 1] + (A — 2) [ HT Az < 2o s + 20,

that is (since A > 2s),

12l <

2 + 2||zr0 |y 2 R
< . 1.
=22 —“1-2.|"1 25 (1.50)

Further, by (1.47) we have
MHTAz|| < |zl = |2l + 22w < [l2]l + 22w,

which combines with (1.50) to imply that

200 + 2||x 101 o= 200 (2 — 25) + 2”(1}’[0”1.

N HAT 2| <
1— 2 1— 2

(1.51)
From Qq(s, x) it follows that

I2lls.q < 57| HT Az|| + 55774 |2])1,

which combines with (1.51) and (1.50) to imply that

1_ 1_ 4 1— 2s
HZ”s,q < 54 1 I:SHHTAZH +K||ZH1] < 54 1 |: sv( ?;)_‘*'23; [lzroll1 + EPAVTE!Z;IO””]
1
%41/(1—%)4—23 1)041/]4—2[/\ Tis ln]HzloHl §41if;% [1+ % _%} v+ H;go

1—2s
(1.52)
(recall that A > 2s, K > 3, and » < 1/2). It remains to repeat the reasoning
following (1.46) in item 3° of the proof of Theorem 1.4. Specifically, denoting by

=S
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the (s + 1)-st largest magnitude of entries in z, (1.52) implies that

_ 4 A (BTl
< s/ < BAR Hatan L .
0<s z]ls,g < 1_2%[1—1—528 | |:l/+ 5 | (1.53)

so that for the vector w = z — 2° one has

1 % 4 % =t Xro
hwlly < 078wl < 2205 14 ng o T [+ gl

(we have used (1.53), (1.50) and the fact that A > 2s). Hence, taking into account
that z® and w have non-intersecting supports,

1 1
Izllg < 27 max(]|2*lg, [|wllg] = 27 max]]|

< B[4 o [v ot leph]

al

(we have used (1.52) along with A > 2s and k > ). This combines with (1.50)
and Holder inequality to imply (1.18). All remaining claims of Theorem 1.5 are
immediate corollaries of (1.18). a

1.5.3 Proof of Proposition 1.7

1Y. Assuming k¥ < m and selecting a set I of k distinct from each other indexes
from {1,...,n}, consider an m x k submatrix A; of A comprised of columns with
indexes from I, and let u be a unit vector in R¥. The entries in the vector m*/2 A u
are independent N'(0,1) random variables, so that for the random variable ¢, =
S (mY2Au)? and v € (—1/2,1/2) it holds (in what follows,expectations and
probabilities are taken w.r.t. our ensemble of random A’s)

In (B{exp{1¢}}) = mln( [ ):_Tgma_zy).

Given a € (0,0.1] and selecting v in such a way that 1 — 2y =
0 < < 1/2 and therefore

1
Tra’ we get

Prob{¢, > m(1 + a)} < E{exp{y¢u}}exp{—m~y(1 4+ )}
= exp{—% In(1 —27) —my(1+a)}
— exp{2 fin(1 + )  a]} < exp{-Za?},

and similarly, selecting v in such a way that 1 — 2y = %, we get —1/2 <y <0
and therefore

Prob{¢, <m(1 - a)} < E{exp{1Cu}} exp{—mr(1 - a)}
= exp{—5 In(l —27) —my(1 - a)}
= exp{% [In(1 — a) + o]} < exp{-Fa?},

and we end up with

Prob{A: ||Aru|3 > 1+ a} < exp{-%a?}

Prob{A: [[Arul3 <1—a} < eXP{—%oﬂ} (1.54)

ueRk,||u|2=1:>{
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29, Same as above, let « € (0,0.1], let

e
M=1+420,e= 20+ 20)"
and let us build an e-net on the unit sphere S in R¥ as follows. We start with a
point uy € S; after {uy,...,u;} C S is already built, we check whether there is a
point in S at the || - ||o-distance from all points of the set > e. If it is the case, we
add such a point to the net built so far and proceed with building the net, otherwise
we terminate with the net {uq,...,u;}. By compactness of S and due to € > 0, this
process eventually terminates; upon termination, we have at our disposal collection
{u1,...,un} of unit vectors such that every two of them are at the || - [|2-distance
> ¢ from each other, and every point from S is at the distance at most € from some
point of the collection. We claim that the cardinality IV of the resulting set can be

bounded as . . .
N < |:2+€:| _ [44—904} < (5) . (1.55)

€ « «

Indeed, the interiors of the || - ||o-balls of radius €/2 centered at the points uy, ..., uy
are mutually disjoint, and their union is contained in the || - ||2-ball of radius 1+ ¢/2
centered at the origin; comparing the volume of the union and the one of the ball,
we arrive at (1.55).

39, Consider event E comprised of all realizations of A such that for all k-element
subsets I of {1,...,n} and all ¢ < n it holds

1—a<| Al <1+a. (1.56)

By (1.54) and the union bound,

Prob{A ¢ E} < 2N < . ) exp{f%oﬂ}. (1.57)

We claim that

AEEé(lQa)ﬁHAIu%glJrQaV( Ic{l,..,n}:Card(l) =k )

ueRF:|ulla =1

(1.58)
Indeed, let A € E, let us fix I € {1,...,n}, Card(I) = k, and let M be the maximal
value of the quadratic form f(u) = u” AT Aju on the unit || - ||2-ball B, centered
at the origin, in R*. In this ball, f is Lipschitz continuous with constant 2N
w.r.t. || - |l2; denoting by % a maximizer of the form on B, we lose nothing when
assuming that @ is a unit vector. Now let u,s be the point of our net which is at the
| - |l2-distance from @ at most e. We have

M = f(u) < f(us) +2Me <1+ a+ 2Me,
whence

1+«
1— 2

M < =14 2a,
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implying the right inequality in (1.58). Now let u be unit vector in R*, and u, be

a point in the net at the || - ||-distance < € from u. We have
1
fu) > f(us) —2Me > 1—@—21 +;e:1—2a,
—2¢

justifying the first inequality in (1.58).
The bottom line is:

§€(0,02,1<k<n

k
= Prob{A : A does not satisfy RIP(d,%k)} <2 < > < Z ) exp{——},
—_———

<(%)"
(1.59)
Indeed, setting a = §/2, we have seen that whenever A ¢ E, we have (1 — ) <
|Aul|2 < (1 + §) for all unit k-sparse u, which is nothing but RIP(§, k); with this
in mind, (1.59) follows from (1.57) and (1.55).

=[5

¥

49, Tt remains to verify that with properly selected, depending solely on §, positive
quantities ¢, d, f, for every k > 1 satisfying (1.27) the right hand side in (1.59) is
at most exp{—fm}. Passing to logarithms, our goal is to ensure the relation

G = a(d)m —b(d)k —In ( Z ) = mf(0) >0 (1.60)
[o(6) = 55,5(9) = n (3]

provided that k > 1 satisfies (1.27).
Let k satisfy (1.27) with some ¢,d to be specified later, and let y = k/m.
Assuming d > 3, we have 0 < y < 1/3. Now, it is well known that

C:zln( . ) Sn[:h(:)—i—n;kln(nnk)y

whence &
C < n[Zyin(a) + "=E (1 4 ——)]
| —

< n—k

< n[%yln(miy) + 5] = m[yln(mly) +y] < 2myIn(;7-)

n

(recall that n > m and y < 1/3). It follows that

G = a(&)m—0b(6)k —C > a(d)m — b(8)ym — meln(my)
= m|a(s) ~b(6)y — 2yln(--) — 2yIn(>)]
H

and all we need is to select ¢, d in such a way that (1.27) would imply that H > f
with some positive f = f(§). This is immediate: we can find u(4) > 0 such that
when 0 < y < u(8), we have 2yIn(1/y) + b(6)y < 2a(9); selecting d(J) > 3 large
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enough, (1.27) would imply y < u(d), and thus would imply

H> 2a((5) — 2y In(

> )

Sls

Now we can select c(§) large enough for (1.27) to ensure that 2yIn(Z) < 1a(d).
With just specified ¢, d, (1.27) implies that H > £a(6), and we can take the latter

quantity as f(9). O

1.5.4 Proof of Propositions 1.8, 1.12

Let us prove Proposition 1.12; as a byproduct of our reasoning, we shall prove
Proposition 1.8 as well.

Let 2 € R™, and let 2!, ..., 29 be obtained from z by the following construction:
x' is obtained from z by zeroing all but the s largest in magnitude entries; z? is
obtained by the same procedure applied to x — z!, 22 — by the same procedure
applied to  — 2! — 22, and so on; the process is terminated at the first step ¢ when
it happens that z = 2! +... + 2%. Note that for j > 2 we have |27 o < s7 2771
and ||27||; < [|#?~ |1, whence also ||z7]]s < /|27 ][eo]l? |1 < s~ /2||27 1|1, Tt is
easily seen that if A is RIP(J,2s), then for every two s-sparse vectors u,v with
non-overlapping supports we have

[T AT Au| < 6]|ull2]|v]|2. (%)

Indeed, for s-sparse u,v, let I be the index set of cardinality < 2s containing
the supports of v and v, so that, denoting by A; the submatrix of A comprised
of columns with indexes from I, we have vT AT Au = vT [AT AfJur. By RIP, the
eigenvalues A; = 14p; of the symmetric matrix Q = A?AI are in-between 1—4¢ and
1+9; representing u; and vy by vectors w, z of their coordinates in the orthonormal

eigenbasis of Q, we get |[vT AT Au| = [0 Aiwizi] = | >, wize + >, piwizi| <
|wT 2| + 6]|w||2||z|l2- Tt remains to note that w’z = ufvr = 0 and ||w|l2 = [jul|2,
lzll2 = [lv]l2-
(i): We have

[ Azt ||a[| Azl > [']" AT Az = ||Azt |3 — 325, [2!]T AT Aa?

> [[Azt13 = 6 327, Izt fl2ll27 [l [by (+)]

> [| Az |3 — 05~ 2 a2 30, 17 = [[Azt 3 — 857 2 |2zl
= [|Azt|3 < |4z 2]l Azl2 + 6572 2t 2]l

1 1 1 2
= o'l = gl et f < ik Axls + 657172 (k)

—1/2
= zllsz = 22 £ = llAz]2 + 8 ——|lx[l [by RIP(S,2s)]

s—1/2

and we see that the pair (H = =5 1Im; II - ||2) satisfies Qa(s, 125), as claimed in

(i).

In addition, the relation after the first = implies that

—1y2 [ Mzl
421 < 1Azl + 5577 | ]
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By RIP, the left hand side in this inequality is > ||z']|21/1 — &, while the ratio of
norms in the right hand side is < ﬁ, so that

—1/2

65
lAzllz + T— Iz,

ooz = o'l < —=—
; 1=
implying Proposition 1.8.i. Moreover, when ¢ > 2, k > 0 and integer ¢t > 1 satisfy

—1/2
t < sand ktt/7"1 > %, we have

52 < 1Az + st/ 7 1,

e < [l2lls

Ve

or, equivalently,

q
_ - —2 q
1 <t < min [Llé 6)} ot 7quqzj| FEICESY)
1/2

= (H= f;mlm, | - [|2) satisfies Qq(t, k),

as required in item (i) of Proposition 1.12.
(ii): We have

2t 1) AT Azlloe > [a]T AT Az = [ A2 |5 — 307 _o[a']T AT Ax?

> || Az |3 — 05~/ 2|| 2|2 |z]|1 [exactly as above]

1Az 5 < [l [1|AT Azl oo + 57/l |2 ||

(1 =023 < [la* L[| AT Azl|o + 857/l |2]|z]|1 [by RIP(S, 25)]
< 12|t 2| AT Az oo + 572 [l |12 2]l

= allsz = lletlls < $5 147 Azlloo + 12552121,

=
=

and we see that the pair (H =154, ||oo) satisfies the condition Qs (s, &),
as required in Proposition 1.8.ii.
In addition, the inequality after the second = implies that

1
latlo < 7= [s/21AT Aalloc + 857/,

Consequently, when ¢ > 2, k > 0 and integer ¢t > 1 satisfy t < s and ktl/a=1 >

5 —1/2
155 , we have

llle.g < llzllog < llzllee < 755" 2IAT Az oo + st/ T ],

or, equivalently,
S = 4
1 <t<min [%] , 8202 | §%@-D

1 -1
= (H = 5755 A, || - ||oo) satisfies Qq(t, k),

as required in item (ii) of Proposition 1.12. O
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1.5.5 Proof of Proposition 1.10
(i): Let H € R™Y and | - || satisfy Qoo(s, ). Then for every k < n we have

|zx < | HT Azl + 57 k|21,
or, which is the same by homogeneity,

min{”HTAxH —ap |zl €1} > =5k,
xr
In other words, the optimal value Opt,, of the conic optimization problem?!?
Opt;, = mitn {t — [Tz |H" Az|| < t, ||z < 1},
T,

where e* € R™ is k-th basic orth, is > —s~'x. Since the problem clearly is strictly
feasible, this is the same as to say that the dual problem

max —pu: ATHp+g=¢ < <1},
.- S O 1+9=e"|glloc < p, lInll < 1}

where || - ||« is the norm conjugate to || - |:

lulls = max hTu
lnll<1

has a feasible solution with the value of the objective > —s~'s. It follows that
there exists n = n* and g = ¢* such that

(a): ek = A?hk + g%,
(b) : ¥ = Ff, . < 1, (1.61)
(©) :lg"loo < 57155
Denoting H = [ht,...,h"], V =1 — HT A, we get
Col,[VT] = &b — AThE = g*

implying that ||Colx[V7T]|l < s™'k. Since the latter inequality it is true for all
k < n, we conclude that

[IColk [V]ls,00 = [|Colk [Vl oo < sk, 1<k<n,

whence, by Proposition 1.9, (H,| - ||«) satisfies Quo(s, k). Moreover, for every
n € R™ and every k < n we have, in view of (b) and (c),

Bl = 1" H ) < |l |1 0l

whence |H"nlle < [|H"n].
Now let us prove the “In addition” part of Proposition. Let H = [hy, ..., h,] be
the contrast matrix specified in this part. We have

| — HT Alij| = [[[e']" = hT Alj| < [l[e]" = hi Alloo = lle' = AThillo < Opt;,

HFor summary on conic programming, see Section 4.1.




StatOpt'LN'NS  January 21, 2019 7x10

44 LECTURE 1

implying by Proposition 1.9 that (H, || - [|«) does satisfy the condition Qo (8, )
with k. = smax; Opt,. Now assume that there exists a matrix H’ which, taken
along with some norm || - ||, satisfies the condition Q. (s,x) with x < k., and
let us lead this assumption to a contradiction. By the already proved first part
of Proposition 1.10, our assumption implies that there exists m x n matrix H =
(A1, ..., hy) such that ||Col;[I, — HTA]l|oc < s 'k for all j < n, implying that
[[e)" — hT A];| < s71k for all i and j, or, which is the same, [¢’ — ATh;||o < 571k
for all i. Due to the origin of Opt,;, we have Opt, < |l — ATh;|| for all i,
and we arrive at s~ !k, = max; Opt, < s~ 1k, that is, k. < K, which is a desired
contradiction.

It remains to prove (1.32), which is just an exercise on LP duality: denoting by
e n-dimensional all-ones vector, we have

Opt;

K3

= miny, [|e" — ATh||c = ming {t : €' — ATh < te, ATh — ¢’ < te}

= maxy, {N —pi A >0,AN—pul =0, A+ >, ni =1}
[LP duality]

= maxgp—x_,{z;i: Az =0, |zl <1}

where the concluding equality follows from the fact that vectors x representable as
A —powith A, > 0 satisfying || Al + ||p]l1 = 1 are exactly vectors « with [|z||; < 1.
O

1.5.6 Proof of Proposition 1.13

Let H satisfy (1.38). Since |[v]|s1 < s'7Y|v|s,, it follows that H satisfies for
some « < 1/2 the condition

|Col; [T, — HTA]||s1 < o, 1 < j <. (1.62)
whence, as we know,
|zlls,1 < sl|H" Az||o + al|z[l V2 € R"

It follows that s < m, since otherwise there exists a nonzero s-sparse vector x with
Az = 0; for this z, the inequality above cannot hold true.

Let us set 7 = 2m, so that 7 < n, and let H and A be the m x 7 matrices
comprised of the first 2m columns of H, respectively, A. Relation (1.62) implies
that the matrix V = I, — HT A satisfies

ICol;[V]lls1 S a<1/2,1<j<n. (1.63)

Now, V = I, — HT A, and since the rank of HT A is < m, at least 7 — m singular
values of V are > 1, and therefore the squared Frobenius norm |[V||% of V is at
least n —m. On the other hand, we can upper-bound this squared norm as follows.
Observe that for every n-dimensional vector f one has

n
113 < max [ 55 1] 1712, (1.64)

Indeed, by homogeneity it suffices to verify the inequality when || f|ls1 =
1; besides, we can assume w.l.o.g. that the entries in f are nonnegative,
and that f1 > fo > ... > fa. We have f, < ||flls1/s = %; in addition,
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Z?:S“ f? < (7n—s)f2. Now, due to ||f]|s,; = 1, for fixed fs € [0,1/s] we
have

il s—1 s—1
DS fmax{y it > foj<s—1Y t;=1-f}.
Jj=1 j=1 j=1

The maximum in the right hand side is the maximum of a convex function
over a bounded polytope; it is achieved at an extreme point, that is, at a
point where one of the ¢; is equal to 1 — (s — 1) fs, and all remaining ¢; are
equal to fs. As a result,

LA =G=DLP+ =D+ A= <= (= 1f)° +(m-1J2

The right hand side in the latter inequality is convex in fg and thus achieves
its maximum over the range [0,1/s] of allowed values of f, at an endpoint,
yielding Zj sz < max[1,7/5?], as claimed.

Applying (1.64) to the columns of V' and recalling that 7 = 2m, we get

2m 2m
VI =" ICoL; (V][5 < max[1,2m/s%] Y " ||Col;[V][7 ; < 2ammax(1,2m/s%].
j=1 j=1

The left hand side in this inequality, as we remember, is > n — m = m, and we
arrive at
m < 2ammax[l,2m/s?].

Since a < 1/2, this inequality implies 2m/s? > 1, whence s < v/2m.

It remains to prove that when m < n/2, the condition Q. (s, x) with x < 1/2
can be satisfied only when s < v/2m. This is immediate: by Proposition 1.10,
assuming Q. (s, k) satisfiable, there exists m X n contrast matrix H such that
\[I, — HT A];;] < /s for all i, j, which, by the already proved part of Proposition
1.13, is impossible when s > v/2m. O
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Hypothesis Testing

Disclaimer for experts. In what follows, we allow for “general” probability and
observation spaces, general probability distributions, etc., which, formally, would
make it necessary to address the related measurability issues. In order to streamline
our exposition, and taking into account that we do not expect from our target
audience to be experts in formal nuances of the measure theory, we decided to
omit in the text comments (always self-evident for an expert) on measurability and
replace them with a “disclaimer” as follows:

Below, unless the opposite is explicitly stated,

e all probability and observation spaces are Polish (complete separable metric)
spaces equipped by o-algebras of Borel sets;

e all random variables (i.e., functions from a probability space to some other space)
take values in Polish spaces; these variables, same as other functions we deal with,
are Borel;

e all probability distributions we are dealing with are o-additive Borel measures
on the respective probability spaces; the same is true for all reference measures
and probability densities taken w.r.t. these measures.

When an entity (a random variable, or a probability density, or a function, say, a
test) is part of the data, the Borel property is a default assumption; e.g., the sen-
tence “Let random variable 17 be a deterministic transformation of random variable
&’ should be read as “let n = f(£) for some Borel function f”, and the sentence
“Consider test 7 deciding on hypotheses Hi, ..., Hy via observation w € Q” should
be read as “Consider a Borel function 7 on Polish space 2, the values of the func-
tion being subsets of the set {1,...,L}.” When an entity is built by us rather than
being part of the data, the Borel property is (always straightforwardly verifiable)
property of the construction. For example, the statement “The test T given by...
is such that...” should be read as “The test 7 given by... is a Borel function of
observations and is such that...”

On several occasions, we still use the word ”Borel;” those not acquainted with
the notion are welcome to just ignore this word.

2.1 PRELIMINARIES FROM STATISTICS: HYPOTHESES,
TESTS, RISKS

2.1.1 Hypothesis Testing Problem

Hypothesis Testing is one of the most basic problems of Statistics. Informally, this
is the problem where one is given an observation — a realization of random variable
with unknown (at least partially) probability distribution and want to decide, based
on this observation, on two or more hypotheses on the actual distribution of the
observed variable. A convenient for us formal setting is as follows:
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Given are:

e Observation space €2, where the observed random variable (r.v.) takes its
values;

o L families Py of probability distributions on 2. We associate with these
families L hypotheses Hi, ..., Hy,, with H, stating that the probability
distribution P of the observed r.v. belongs to the family P, (shorthand:
Hy : P € P;). We shall say that the distributions from P, obey hypothesis
Hy.

Hypothesis Hy is called simple, if Py is a singleton, and is called composite
otherwise.

Our goal is, given an observation — a realization w of the r.v. in question —
to decide which one of the hypotheses is true.

2.1.2 Tests

Informally, a test is an inference procedure one can use in the above testing problem.
Formally, a test for this testing problem is a function 7 (w) of w € Q; the value
T (w) of this function at a point w is some subset of the set {1,...,L}:

T c{1,..,L}.

Given observation w, the test accepts all hypotheses Hy with £ € T (w) and rejects
all hypotheses H, with ¢ ¢ T (w). We call a test simple, if T (w) is a singleton for
every w, that is, whatever be the observation, the test accepts exactly one of the
hypotheses Hy, ..., Hr, and rejects all other hypotheses.

Note: what we have defined is a deterministic test. Sometimes we shall consider
also randomized tests, where the set of accepted hypotheses is a (deterministic)
function of observation w and of a realization 6 of independent of w random param-
eter (which w.l.o.g. can be assumed to be uniformly distributed on [0, 1]). Thus, in
a randomized test, the inference depends both on the observation w and the out-
come 6 of “flipping a coin,” while in a deterministic test the inference depends on
observation only. In fact, randomized testing can be reduced to deterministic one.
To this end it suffices to pass from our “actual” observation w to new observation
wy = (w,0), where 0 ~ Uni form|0, 1] is independent of w; the w-component of our
new observation wy is, as before, generated by “the nature,” and the #-component
is generated by ourselves. Now, given families Py, 1 < ¢ < L, of probability distri-
butions on the original observation space (), we can associate with them families
Pe+ = {P x Uniform[0,1] : P € Py} of probability distributions on our new ob-
servation space ;. = Q x [0, 1]; clearly, to decide on the hypotheses associated
with the families P, via observation w is the same as to decide on the hypotheses
associated with the families P, 4 of our new observation w, and deterministic tests
for the latter testing problem are exactly the randomized tests for the former one.

2.1.3 Testing from repeated observations

There are situations where an inference can be based on several observations wi, ..., wx
rather than on a single one. Our related setup is as follows:

We are given L families Py, £ = 1,..., L, of probability distributions on
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observation space 2 and a collection

W = (w1, wrg) € =0 x .. xQ
——
K

and want to make conclusions on how the distribution of w® “is positioned”

w.r.t. the families Py, 1 < ¢ < L.

Specifically, we are interested in three situations of this type, specifically, as follows.

2.1.3.1 Stationary K -repeated observations

In the case of stationary K-repeated observations wi,...,wx are independently of
each other drawn from a distribution P. Our goal is to decide, given w’, on the
hypotheses P € Py, £ =1, ..., L.

Equivalently: Families P, of probability distributions of w € Q, 1 < ¢ < L, give
rise to the families

POK = {PK=Px..xP:PcPy}
K

of probability distributions on Q; we refer to the families P, K asto K-th diagonal
powers of the family Py. Given observation w®¥ € Q¥ we want to decide on the
hypotheses

HYR WK~ PR epPR 1<e<L.

2.1.3.2 Semi-stationary K-repeated observations

In the case of semi-stationary K-repeated observations, “the nature” selects some-
how a sequence P4, ..., Px of distributions on €2, and then draws, independently
across k, observations wy, k =1, ..., K, from these distributions:

wy ~ Py are independent across k < K

K

Our goal is to decide, given w"® = (wy,...,wk), on the hypotheses {P; € Py,1 <

k<K} (=1,..L.

Equivalently: Families P, of probability distributions of w € Q, 1 < ¢ < L, give
rise to the families

’PEB’K:{PK:FHXXPKPkGP[,lngK}

of probability distributions on Q5. Given observation w® € Q¥ we want to decide
on the hypotheses

HPR cwf ~ PR epP 1<0<L.

)

In the sequel, we refer to families ’Pe69 K as to K-th direct powers of the families Py.
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A closely related notion is the one of direct product
K
K
P = D Pen
k=1

of K families Py, of probability distributions on €, over k =1, ..., K. By defini-
tion,
PIE = [PK =P/ x ... x Px : P, € Pj, 1 <k < K}.

2.1.3.83 Quasi-stationary K -repeated observations

Quasi-stationary K-repeated observations w; € Q,...,wx € ) stemming from a
family P of probability distributions on an observation space ) are generated as
follows:

“In the nature” there exists random sequence (¥ = ({1, ..., () of “driving
factors” such that for every k, wy is a deterministic function of (1, ..., (:

wi = 0(C1, -5 Cr)

and the conditional, (1, ..., (x—1 given, distribution P, ¢, ... ¢,_, of wi always
(i.e., for all (3, ...,(k—1) belongs to P.

With the above mechanism, the collection w® = (wy, ..., wx ) has some distribution
PX which depends on the distribution of driving factors and on functions 0 (-). We
denote by P®K the family of all distributions P¥ which can be obtained in this
fashion and we refer to random observations w’ with distribution P¥ of the just
define type as to quasi-stationary K-repeated observations stemming from P. The
quasi-stationary version of our hypothesis testing problem reads: Given L families
P, of probability distributions Py, £ =1, ..., L, on € and an observation w® € QX
decide on the hypotheses

HPN ={PKePP®} 1<tl<K
on the distribution PX of the observation w’.
A closely related notion is the one of quasi-direct product

K
©.K _
Py = ®7’M
k=1

of K families Py, of probability distributions on €y, over k = 1,..., K. By def-
inition, ’ng) Ko comprised of all probability distributions of random sequences
wk = (Wi, .y wi), Wi € Qk, which can be generated as follows: “in the nature”
there exists a random sequence (¥ = ((y, ..., (k) of “driving factors” such that for
every k < K, wy, is a deterministic function of (¥ = ({1, ...,(x), and conditional,
¢*=1 being given, distribution of wy always belongs to Py .

The above description of quasi-stationary K-repeated observations seems to be
too complicated; well, this is what happens in some important applications, e.g., in
hidden Markov chain. Here Q = {1,...,d} is a finite set, and wy, € Q, k = 1,2, ..., are
generated as follows: “in the nature there” exists a Markov chain with D-element
state space S split into d non-overlapping bins, and wy, is the serial number 5(n)
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of the bin to which the state 1, of the chain belongs. Now, every column Q7 of
the transition matrix @ of the chain (this column is a probability distribution on
{1, ..., D}) generates a probability distribution P; on €, specifically, the distribution
of B(n), n ~ Q7. Now, a family P of distributions on €2 induces a family Q[P] of all
D x D stochastic matrices @ for which all D distributions P7, j = 1, ..., D, belong
to P. When Q € Q[P], observations wy, k = 1,2, ... clearly are given by the above
“quasi-stationary mechanism” with 7 in the role of driving factors and P in the
role of Py. Thus, in the situation in question, given L families Py, £ = 1,..., L of
probability distributions on S, deciding on hypotheses Q € Q[P], £ = 1,...,L, on
the transition matrix ) of the Markov chain underlying our observations reduces
to hypothesis testing via quasi-stationary K-repeated observations.

2.1.4 Risk of a simple test

Let Py, £ =1, ..., L, be families of probability distributions on observation space €2;
these families give rise to hypotheses

Hy:PePyl=1,..L

on the distribution P of a random observation w ~ P. We are about to define the
risks of a simple test T deciding on the hypotheses Hy, £ = 1, ..., L, via observation
w; recall that simplicity means that as applied to an observation, our test accepts
exactly one hypothesis and rejects all other hypotheses.

Partial risks Risky(7|Hq, ..., Hz) are the worst-case, over P € Py, P-probabilities
for T to reject f-th hypothesis when it is true, that is, when w ~ P:

Risk,(T|Hy, ..., Hr) = sup Prob,p{w: T(w)#{{}}, £=1,.., L.
PeP,

Note that for ¢ fixed, ¢-th partial risk depends on how we order the hypotheses;
when reordering them, we should reorder risks as well. In particular, for a test T
deciding on two hypotheses H, H' we have

Risk (T|H, H') = Risko(T|H', H).

Total risk Riskeot (7 |Hy, ..., Hr) is the sum of all L partial risks:

L
Riskeot (T]Hy, ..., Hp) = ZRiskg(ﬂHl, L Hp).
=1

Risk Risk(T|H1, ..., Hy) is the maximum of all L partial risks:
Risk(7|Hy, ..., Hy) = max Riske(T|Hy, ..., Hy).
1<e<L

Note that at the first glance, we have defined risks for single-observation tests only;
in fact, we have defined them for tests based on stationary, semi-stationary, and
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quasi-stationary K-repeated observations as well, since, as we remember from Sec-
tion 2.1.3, the corresponding testing problems, after redefining observations and

K
families of probability distributions (w in the role of w and, say, P?’K =P P
k=1

in the role of Py), become single-observation testing problems.
Pay attention to the following two important observations:

e Partial risks of a simple test are defined in the worst-case-oriented fashion: as
the worst, over the true distributions P of observations compatible with the
hypothesis in question, probability to reject this hypothesis

e Risks of a simple test say what happens, statistically speaking, when the true
distribution P of observation obeys one of the hypotheses in question, and say
nothing on what happens when P does not obey neither one of the L hypotheses.

Remark 2.1. “The smaller are hypotheses, the less are risks.” Specifically, given
families of probability distributions P, C Pj, £ = 1,..., L, on observation space €,
along with hypotheses H, : P € Py, H, : P € P, on the distribution P of an
observation w € 2, every test 7 deciding on the “larger” hypotheses H1, ..., H; can
be considered as a test deciding on smaller hypotheses Hy, ..., H;, as well, and the
risks of the test when passing from larger hypotheses to smaller ones can only drop
down:

Py C Py,1 <0< L= Risk(T|Hy,..., Hy) < Risk(T|H}, ..., H}).

For example, families of probability distributions Py, 1 < £ < L, on §2 and a positive
integer K induce three families of hypotheses on a distribution PX of K-repeated
observations:

K
HY MK . PE e PP HPX . PK e pPK = D P
K
HPK . pK e pPK :155_9173,5, 1<¢<1L,

(see Section 2.1.3), and clearly
P C PRt C PPN

it follows that when passing from quasi-stationary K-repeated observations to semi-
stationary K-repeated, and then to stationary K-repeated observations, the risks
of a test can only go down.

2.1.5 Two-point lower risk bound

The following observation is nearly evident:

Proposition 2.2. Consider two simple hypotheses Hy : P = P; and Hy : P = P,
on the distribution P of observation w € ), and assume that Py, Py have densities
p1, p2 w.r.t. some reference measure II on Q 2. Then for any simple test T

12 This assumption is w.l.o.g. — we can take, as I, the sum of the measures P; and Ps.
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deciding on Hq, Hs it holds
Riskiot (T Hy, Ha) > / min(py (w), pe(w)|I(dw). (2.1)
Jo

Note that the right hand side in this relation is independent of how II is selected.

Proof. Consider a simple test 7, perhaps a randomized one, and let w(w) be the
probability for this test to accept H; and reject Hs when the observation is w; since
the test is simple, the probability for T to accept Hy and to reject Hi, observation
being w, is 1 — w(w). Consequently,

Risky (T|Hy, Hs) Jo(1 = m(w))p1 (w)(dw),
Risky(THy, Hy) = [, m(w)p2(w)II(dw),

whence

Riskior (T]H1, Ha) Jol(@ = m(w))p1(w) + 7(w)pa(w) T (dw)

Jo min[p1 (w), p2(w)|TL(dw). m|

AVAN|

Remark 2.3. Note that the lower risk bound (2.1) is achievable; given an observa-
tion w, the corresponding test 7 accepts H; with probability 1 (i.e., m(w) = 1
when pj(w) > pa(w)), accepts Hy when p;(w) < po(w) (ie., m(w) = 0 when
p1(w) < p2(w)) and accepts H; and Hy with probabilities 1/2 in the case of tie
(i.e., m(w) = 1/2 when p; (w) = pa(w)); this is nothing but maximum likelihood test
naturally adjusted to account for ties.

Example 2.4. Let Q = R?, let the reference measure IT be the Lebesgue measure on
R4, and let py, (-) = N (i, Ia), be the Gaussian densities on R? with unit covariance
and means t,, x = 1,2. In this case, assuming p; # po, the recipe from Remark
2.3 reduces to the following:

Let

Pr2(w) = %[Ml — o] [w —w], w= %[m + pia]. (2.2)

Consider the simple test 7 which, given an observation w, accepts Hy : p =
p1 and rejects Hy : p = pa when ¢12(w) > 0, otherwise accepts Hy and
rejects Hy. For this test,

RlSkl(T‘HLHQ) = RlSkz(T‘Hl,HQ) = RlSk(T|H]H2)

. 2.3
— 1Riskeot (T|H1, Ha) = Exf (Ll — iallo), (2:3)

where
Erf(5) = —— / T2y (2.4)
r = e * s .
V2 Js
is the error function, and the test is optimal in terms of its risk and its total
risk.

Note that optimality of 7 in terms of total risk is given by Proposition 2.2 and
Remark 2.3; optimality in terms of risk is ensured by optimality in terms of total
risk combined with the first equality in (2.3).

Example 2.4 admits an immediate and useful extension:
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Figure 2.1: “Gaussian Separation” (Example 2.5): Optimal test deciding on whether the
mean of Gaussian r.v. belongs to the dark red (H:) or to the dark blue (H2) domains.
Dark and light red: acceptance domain for H;. Dark and light blue: acceptance domain
for H».

Example 2.5. Let Q = R?, let the reference measure II be the Lebesgue measure
on R%, and let M;, M, be two nonempty closed convex sets in R% with empty
intersection and such that the convex optimization program

min {{lp1 — polls gy € My, x = 1,2} (*)
Hi,p2
has an optimal solution uj, u5 (this definitely is the case when at least one of the
sets My, Ms is bounded). Let

1

61200) = g1t — 3] — wl, w= S lut + g, (25)

and let the simple test 7 deciding on the hypotheses
Hy:p=N(p,1g) with p € My, Hy:p=N(u,1;) with u € My

be as follows (see Figure 2.1): given an observation w, T accepts H; and rejects Ho
when @1 2(w) > 0, otherwise accepts Hs and rejects Hy. Then

Riskl(T|H1,H2) = RiSkg(T|H1,H2) = RISk(TlHl,HQ)

. % " 2.6
— 1Riskyo(T|Hy, Hy) = Bxf (L1 — pis|l2), (26)

and the test is optimal in terms of its risk and its total risk.

Justification of Example 2.5 is immediate. Let e be the || - ||2-unit vector with
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the same direction as the one of uj — u%, and let £[w] = €T (w—w). From optimality
conditions for (x) it follows that

elp>eluivue M & eT'p<el'pl Vu e M,.

As a result, if p € My and the density of w is p, = N (p, I4), the random variable
&[w] is scalar Gaussian random variable with unit variance and expectation > § :=
2l|lps — p3ll2, implying that p,-probability for £[w] to be negative (which is exactly
the same as the p,-probability for 7 to reject H; and accept Hy) is at most Erf(9).
Similarly, when p € My and the density of w is p, = N(u,Iq), &w] is scalar
Gaussian random variable with unit variance and expectation < —4, implying that
the p,-probability for {jw] to be nonnegative (which is exactly the same as the
probability for T to reject Hy and accept Hy) is at most Erf(d). These observations
imply the validity of (2.6); optimality in terms of risks follows from the fact that
risks of a simple test deciding on our now — composite — hypotheses Hy, H; on
the density p of observation w can be only larger than the risks of a simple test
deciding on two simple hypotheses p = p,: and p = p,:, that is, the quantity
Erf(3|/ui — p3ll2), see Example 2.4, is a lower bound on the risk and half of the
total risk of a test deciding on Hy, Hy; with this in mind, the announced optimalities
of T in terms of risks are immediate consequences of (2.6).

We remark that the (nearly self-evident) result stated in Example 2.5 seems
first been noticed in [27].

Example 2.5 allows for substantial extensions in two directions: first. it turns
out that the “Euclidean separation” underlying the test built in this example can
be used to decide on hypotheses on location of a “center” of d-dimensional distri-
bution far beyond the Gaussian observation model considered in this example; this
extension will be our goal in the next Section, based on recent paper [70]. A less
straightforward and, we believe, more instructive extensions, originating from [64],
will be considered in Section 2.3.

2.2 HYPOTHESIS TESTING VIA EUCLIDEAN SEPARATION

2.2.1 Situation

In this section, we will be interested in testing hypotheses
Hy:PePytlt=1,..L (2.7)

on the probability distribution of a random observation w in the situation where
the families of distributions P, are obtained from the probability distributions from
a given family P by shifts. Specifically, we are given

e A family P of probability distributions on Q@ = R? such that all distributions
from P possess densities with respect to the Lebesgue measure on R", and these
densities are even functions on R? 13;

13 Allowing for a slight abuse of notation, we write P € P, where P is a probability distri-
bution, to express the fact that P belongs to P (no abuse of notation so far), and write p(-) € P
(this is the abuse of notation), where p(-) is the density of a probability distribution P, to express
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e A collection X1, ..., X1 of nonempty closed and convex subsets of RY, with at
most one of the sets unbounded.

These data specify L families P, of distributions on R%; P, is comprised of distri-
butions of random vectors of the form = + £, where z € X, is deterministic, and
¢ is random with distribution from P. Note that with this setup, deciding upon
hypotheses (2.7) via observation w ~ P is exactly the same as to decide, given
observation

w=2x+E, (2.8)

where z is a deterministic “signal” and £ is random noise with distribution P known
to belong to P, on the “position” of x w.r.t. Xi,..., Xr; ¢-th hypothesis H; merely
says that z € Hy. The latter allows us to write down ¢-th hypothesis as Hy : € X,
(of course, this shorthand makes sense only within the scope of our current “signal
plus noise” setup).

2.2.2 Pairwise Hypothesis Testing via Euclidean Separation
2.2.2.1 The simplest case

Consider nearly the simplest case of the situation from Section 2.2.1, one with
L =2, X; = {2} and Xy = {22}, ' # 22, are singletons, and P also is a
singleton; moreover, the probability density of the only distribution from P is of
the form

p(u) = f(||u||2), f(+) is a strictly monotonically increasing function on the nonnegative ray.
(2.9)
This situation is a generalization of the one considered in Example 2.4, where we
dealt with the special case of f, namely, with

p(u) — (27r)7d/2€7uTu/2'

In the case in question our goal is to decide on two simple hypotheses H, : p(u) =

f(lu—2X]||2), x = 1,2, on the density of observation (2.8). Let us set

1_ .2
— 1

i , o(w) =eTw — §eT[x1 + 27, (2.10)

|

c

1
§= 2|zl = 22 _ -
I =l e =

and consider the test 7 which, given observation w = x + &£, accepts the hypothesis
Hy :x = 2! when ¢(w) > 0, and accepts the hypothesis Hs : 2 = 22 otherwise.

the fact that P € P.
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H
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)

We have (cf. Example 2.4)

Riski (T|Hi, H2) = [ piw)dw= [ f(llu]2)du
w:p(w)<0 ueTu>6
pg(w)dw = RiSkQ(T|H1, H2)

wip()20

Since p(u) is strictly decreasing function of ||u||2, we have also

minlps (). a()] = { 222 0020

whence
Risky (T|Hy, H2) + Risko (T |Hy, Hy) = [ pwdw+ [ pe(w)dw)
wip(w)<0 w:p(w)>0
= [ min[p;(u), p2(u)]du
Rd

Invoking Proposition 2.2, we conclude that the test T is the minimum risk simple
test deciding on Hy, Ho, and the risk of this test is

Risk(T| Hy, Hy) — / Fllull2)d. (2.11)

weTu>6

2.2.2.2 FEaxtension

Now consider a slightly more complicated case of the situation from Section 2.2.1,
the one with L = 2 and nonempty and nonintersecting closed convex sets X1, Xo,
one of the sets being bounded; as about P, we still assume that it is a singleton, and
the density of the only distribution from P is of the form 2.9. Our now situation is
an extension of the one from Example 2.5. By the same reasons as in the case of
the latter Example, with X, X5 as above, the convex minimization problem

1
Opt = i — ||zt — 22 2.12
pt=_  mmin_ 5lle =272 (212)
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is solvable, and denoting by (x!,22) an optimal solution and setting
1 2
T T, — T 1 Tr. .1 2
w=ew-—-c,e=———— c=—¢ |T T 2.13
o(w) e o= 3¢ ek o) (213)

the stripe {w : —Opt < ¢(x) < Opt} separates X; and Xo:

B(z') > p(zl) = OptVa' € Xy & ¢(2?) > ¢(2?) = —Opt Va? € X, (2.14)

o d(w) = $[62 — 6]

Proposition 2.6. Let X1, X5 be nonempty and nonintersecting closed convex sets
in R%, one of the sets being bounded. With Opt and ¢(-) given by (2.12) - (2.13),
let us split the width 20pt of the stripe {w : —Opt < ¢(w) < Opt} separating X,
and Xa into two nonnegative parts:

01 > 0,00 >0, 61 + d2 = 20pt (2.15)

and consider simple test T deciding on the hypotheses Hy : x € X1, Hy : © € X5 via
observation (2.8) by accepting Hy when

1
$(w)25[02 — 41]

and accepting Ho otherwise. Then

oo

Risk, (T|H1, Ha) < /W(s)ds, x =12, (2.16)
6)(

where (+) is the univariate marginal density of £, that is, probability density of
the scalar random variable h* ¢, where ||h||2 = 1 (note that due to (2.9), v(-) is
independent of how we select h with ||hlls = 1).

In addition, when 61 = do = Opt, T is the minimum risk test deciding on Hy,
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Hy. The risk of this test is
Risk(T|Hy, Hs) = /w(s)da (2.17)

Opt

Proof. By (2.9) and (2.14), for € X; we have (see the picture above):
1 o0
Probe.p() {(b(x +&) < 5[(52 - 51]} < Probgy) {[—€]T¢ > 61} = /y(s)ds;
61
by “symmetric” reasoning, for x € X5 we have
1 o0
Probg,\,p(.) {(25(33 +€) Z 5[(52 - 61]}] S Probgwp(.) {€T£ Z 62} = /’Y(S)ds,
S2

and we arrive at (2.16). The fact that in the case of §; = d2 = Opt our test T
becomes the minimum risk test deciding on composite hypotheses H;, Hy, same
as (2.16), are readily given by the fact that due to the analysis in Section 2.2.2.1,
the minimal, over all possible tests, risk of deciding on two simple hypotheses
H) :x=2al, H): 2 = 22 is given by (2.11), that is, is equal to fgﬁtv(s)ds (note

that e in (2.11) by construction is a || - [|2-unit vector), that is, it is equal to the
already justified upper bound (2.17) on the risk of the test 7 deciding on the larger
than H} composite hypotheses H,, x = 1,2. ]

2.2.2.3 Further extensions: spherical families of distributions

Now let us assume that we are in the situation of Section 2.2.1 with L = 2
and nonempty closed, convex and non-intersecting X;, Xs, one of the sets be-
ing bounded, exactly what we have assumed in Section 2.2.2.2. What we intend
to do now, is to relax the restrictions on the family P of noise distributions, which
in Section 2.2.2.2 was just a singleton with density which is a strictly decreas-
ing function of the || - ||2-norm. Observe that as far as the density p(-) of noise
is concerned, justification of the upper risk bound (2.16) in Proposition 2.6 used
the only fact that whenever h € R? is a || - ||o-unit vector and § > 0, we have
Joryss P(u)du < féoo ~(s)ds, with the even univariate probability density () spec-
ified in Proposition. We use this observation to extend our construction to spherical
families of probability densities.

2.2.2.3.A. Spherical families of probability densities. Let v(-) be an even
probability density on the axis such that there is no neighbourhood of the origin
where v = 0 almost surely. We associate with v the spherical family of densities
Pg comprised of all probability densities p(-) on R such that

A. p(-) is even
B. Whenever e € R, |le[2 = 1, and 6 > 0, we have

Probep{¢:ef¢ > 6} < P,(0) := /v(s)ds. (2.18)
5
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Geometrically: p(-)-probability for & ~ p(-) to belong to a half-space not contain-
ing origin does not exceed P (d), where 0 is the || - [|2-distance from the origin to
the half-space.

Note that density (2.9) belongs to the family P¢ with ~(-) defined in Proposition
2.6; the resulting ~, in addition to being an even density, is strictly monotonically
decreasing on the nonnegative ray. When speaking about general-type spherical
families 73;1, we do not impose monotonicity requirements on 7(-). If a spherical
family P¢ includes a density p(-) of the form (2.9) such that y(-) is the induced by
p(+) univariate marginal density, as in Proposition 2.6, we say that Pﬁ‘f has a cap,
and this cap is p(+).

2.2.2.3.B. Example: Gaussian mixtures. Let  ~ N(0,0), where the d x d
covariance matrix © satisfies © < I;, and let Z be an independent of n positive
scalar random variable. Gaussian mizture of Z and 7 (or, better to say, of the
distribution Pz of Z and the distribution N'(0,0)) is the probability distribution
of the random vector ¢ = v/Zn. Examples of Gaussian mixtures include

e Gaussian distribution N(0,0) (take Z identically equal to 1),

e multidimensional Student’s ¢-distribution with v € {1,2,...} degrees of freedom
and “covariance structure” ©; here Z is given by the requirement that v/Z has
x2-distribution with v degrees of freedom.

An immediate observation (see Exercise 2.55) is that with 7 given by the distribu-
tion Py of Z according to

1 s
vz(s) = / e_%PZ(dz), (2.19)
>0 2mz

the distribution of random variable v/Z7, with 5 ~ AN(0,0), © < I;, independent
of Z, belongs to the family ’P;lz, and the family Pﬁfz has a cap, specifically, the
Gaussian mixture of Py and N (0, I;).

Another example of this type: Gaussian mixture of a distribution Pz of random
variable Z taking values in (0, 1] and a distribution A/ (0, ©) with © < I; belongs to
the spherical family P‘Wig associated with the standard univariate Gaussian density

1 .
T9(s) = Z=e /%

This family has a cap, specifically, the standard Gaussian d-dimensional distribution

N(0, I,).

2.2.2.3.C. Main result. Looking at the proof of Proposition 2.6, we arrive at the
following

Proposition 2.7. Let X1, X5 be nonempty and nonintersecting closed convex sets
in R%, one of the sets being bounded, and let 73,? be a spherical family of probability
distributions. With Opt and ¢(-) given by (2.12) — (2.13), let us split the width
20pt of the stripe {w : —Opt < ¢(w) < Opt} separating X1 and Xo into two
nonnegative parts:

01 > 0,00 >0, 61 + d2 = 20pt (220)
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and consider simple test T deciding on the hypotheses Hy : x € X1, Hs : x € X5 via
observation (2.8) by accepting Hy when

cb(w)Z%[(sQ — 1]

and accepting Hy otherwise. Then

Risk, (T|H1, Ha) < /ﬂ/(s)ds., x=12 (2.21)

Ox

In addition, when §; = d2 = Opt and 731,1 has a cap, T is the minimum risk test
deciding on Hy, Hy. The risk of this test is

Risk(T |Hy, Hs) = P,(Opt) := /fy(s)ds. (2.22)

Opt

To illustrate the power of Proposition 2.7, consider the case when < is the
function (2.19) stemming from Student’s ¢-distribution on R? with v degrees of
freedom. It is known that in this case  is the density of univariate Student’s
t-distribution with v degrees of freedom:

r (V;rl) 2 vl
1s) = oy =0 +5"/v)" 7,
r (%) VT

where I'(+) is Euler’s Gamma function. When v = 1, (+) is just the heavy tailed (no
expectation!) standard Cauchy density 1 (14s%)~!. Same as in this “extreme case,”
multidimensional Student’s distributions have relatively heavy tails (the heavier the
less is v) and as such are of interest in Finance.

2.2.3 Euclidean Separation, Repeated Observations, and Majority
Tests

Assume that X, Xo, Pﬁ are as in the premise of Proposition 2.7 and K-repeated
observations are allowed, K > 1. An immediate attempt to reduce the situation
to the single-observation case by calling K-repeated observation w® = (wy, ..., wx)
our new observation and thus reducing testing via repeated observations to the
single-observation case seemingly fails: already in the simplest case of stationary
K-repeated observations this reduction would require replacing the family Pff with
the family of product distributions P X ... x P stemming from P € ”P:;l, and it

K
is unclear how to apply to the resulting single-observation testing problem our
machinery based on Euclidean separation. Instead, let us use K -step majority test.
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2.2.83.1 Preliminaries: Repeated observations in “signal plus noise” observation
model

We are in the situation when our inference should be based on observations

Wk = (w1, w2, .y Wi, (2.23)
and decide on hypotheses H;, Hs on the distribution Q¥ of w’, and we are inter-
ested in the following 3 cases:

S [stationary K-repeated observations, cf. Section 2.1.3.1]: wy,...,wx are drawn
independently of each other from the same distribution @, that is, Q¥ is the
product distribution @ x ... x Q. Further, under hypothesis H,, x = 1,2, Q is
the distribution of random variable w = 2 + &, where x € X, is deterministic,
and the distribution P of £ belongs to the family P,‘Yi;

SS [semi-stationary K -repeated observations, cf. Section 2.1.3.2]: there are two de-

terministic sequences, one of signals {z;}X |, another of distributions {P; €

Pg}szl, and wy = xx + &, 1 < k < K, with & ~ P, independent across k.

Under hypothesis H,, all signals z, k£ < K, belong to X,.

QS [quasi-stationary K -repeated observations, cf. Section 2.1.3.3]: “in the nature”

there exists a random sequence of driving factors ¢* = ((i,...,(x) such that

observation wy, for every k, is a deterministic function of ¢¥ = (¢y, ..., (x): wy =

05 (¢*). On the top of it, under /-th hypothesis H,, for all k& < K and all

¢*=1 the conditional, ¢(*~! being given, distribution of wy belong to the family

P,y of distributions of all random vectors of the form x + &, where z € X, is

deterministic, and £ is random noise with distribution from Pg.

2.2.3.2  Magjority Test

2.2.3.2.A. The construction of K-observation majority test is very natural.
We use Euclidean separation to build simple single-observation test 7 deciding
on hypotheses H, : x € X,, x = 1,2, via observation w = x + &, where z is
deterministic, and the distribution of noise ¢ belongs to ”P;i. T is given by the
construction from Proposition 2.7 applied with §; = d3 = Opt. The summary of
our actions is as follows:

Opt = mingiex, s2ex, 3/lz! — 222

X1, Xy = .
Doz { (xivxz) € ArgmlnxleXl,m’?GXQ 5“1'1 - £L'2l|2

1,2 (2.24)
- = . o= beTlsk+a

= dw) =elw—c

Magority test Ti™, as applied to K-repeated observation w’ = (w1, ..., wr ), builds
the K reals vy, = ¢(wg). If at least K /2 of these reals are nonnegative, the test

accepts H1 and rejects Ho; otherwise the test accepts Ho and rejects Hi.

2.2.3.2.B. Risk analysis. We intend to carry out the risk analysis for the case
QS of quasi-stationary K-repeated observations; this analysis automatically ap-
plies to the cases SS of stationary and S of K-repeated stationary/semi-stationary
observations, which are special cases of QS.
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Proposition 2.8. With Xl,Xg,P;l, obeying the premise of Proposition 2.7, in the
case QS of quasi-stationary observations the risk of K-observation Majority test

maj

> can be bounded as

K ‘ i ‘ oo
Risk(TZ“ M1, Ha) < ex = Z (k)ei(l — e*)h_k‘, € = / ~v(s)ds. (2.25)
K/QSkSK Opt

Proof. Here we restrict ourselves to the case SS of semi-stationary K -repeated
observations. In “full generality,” that is, in the case QS of quasi-stationary K-
repeated observations, Proposition will be proved in Section 2.11.2.

Assume that H; takes place, so that (recall that we are in the SS case!) wy =
x, + & with some deterministic zp € X; and independent across k noises & ~ P,
for some deterministic sequence Pj, € ”P,‘f. Let us fix {zy € X1}, and {P; €
Pif}kK:l. Then the random reals vy, = ¢(wr = x + &) are independent across k,
and so are the Boolean random variables

_ 1, v, <0

XE=3 0, v;>0
xr = 1 if and only if test T, as applied to observation wyg, rejects hypothesis
Hy : ), € Xi. By Proposition 2.7, Py-probability py of the event xx = 1 is at most
€.. Further, by construction of the Majority test, if 7™ rejects the true hypothesis

H1, then the number of k’s with xx = 1 is > K/2. Thus, with {z; € X;} and
IS Pff the probability to reject H; is not greater than the probability of the event

In K independent coin tosses, with probability pi < €, to get head in k-th
toss, the total number of heads is > K/2.

The probability of this event clearly does not exceed the right hand side in (2.25),
implying that Risk (75" |H1, Ha) < €. “Symmetric” reasoning yields

Riskg(']}?ajw'[l,?'b) S €k,
completing the proof of (2.25). m|

Corollary 2.9. Under the premise of Proposition 2.8, the upper bounds €y on the

risk of the K-observation Majority test goes to 0 exponentially fast as K — .
Indeed, we are in the situation of Opt > 0, so that €, < % 14,

Remark 2.10. When proving (SS-version of) Proposition 2.8, we have used “evi-

dent” observation as follows:

(#) Let x1,..., xx be independent random variables taking values 0 and
1, and let the probabilities p; for xi to be 1 be upper-bounded by some
€ € [0,1] for all k. Then for every fixed M the probability of the event “at
least M of x1,...,xx are equal to 1” is upper-bounded by the probability
Y M<k<K (Ik()ek(l — €)%= of the same event in the case when p; = ¢ for all

M Recall that we have assumed from the very beginning that v is an even probability density
on the axis, and there is no neighbourhood of the origin where v = 0 a.s.




StatOpt'LN'NS  January 21, 2019 7x10

HYPOTHESIS TESTING 63

If there are evident facts in Math, (#) definitely is one of them. Nevertheless, why
(#) is true?

Reader is kindly asked to prove (#). For your information: design of proof took
about 10-minute effort of the authors (a bit too much for an evident statement);
the results of their effort can be found in Section 2.11.2.

2.2.3.2.C. Near-optimality. We are about to show that under appropriate as-
sumptions, the majority test 7. is near-optimal. The precise statement is as
follows:

Proposition 2.11. Let Xl,XQ,Ple obey the premise of Proposition 2.7. Assume
that the spherical family Py and positive reals D, o, B are such that

gD <1, (2.26)

1=

)
[ ays= 85 0<s <. (2.27)
0

and P+ contains a density q(-) such that

| VaE=aaE T e > esplaeTe} Vie: el D). (229)

Let, further, the sets X1, Xo be such that Opt as given by (2.12) satisfies the
relation
Opt < D. (2.29)

Given tolerance € € (0,1/5), the risk of K-observation magority test T;»* utilizing
QS observations ensures the relation

In(1 .

K>K":= J H(/E)Q{ = Risk(TZY|Hi, Ha) <€ (2.30)
2320pt

(here |x| stands for the smallest integer > x € R). In addition, for every K-

observation test Tx wutilizing stationary repeated observations and satisfying

RlSk(TK |H1, Hg) S €

it holds

In (i)
K> K, :=—4, 2.31
> K, =l (231)
As a result, the majority test T for (Sk~) has risk at most € and is near-optimal,
in terms of the required number of observations, among all tests with risk < e: the
number K of observations in such test satisfies the relation

«
E.

Proof of Proposition is the subject of Exercise 2.56.

K*/K < 0:= K*/K, = O(1)

Ilustration. Given v > 1, consider the case when P = P, is the spherical family




StatOpt'LN'NS  January 21, 2019 7x10

64 LECTURE 2

with n-variate (spherical) Student’s distribution in the role of the cap, so that

() ~(wH1)/2
Y(s) = =2t [1+ 5% /v (2.32)
I (%) (7v)'/? [ ]
It is easily seen (see Exercise 2.56) that P contains the A(0,11,) density q(-),
implying that setting
D = 17 a = 1’ /B = %7
one ensures relations (2.26), (2.27) and (2.29). As a result, when Opt as yielded by
(2.12) is < 1, the non-optimality factor 6 of the majority test T4 as defined in
Proposition 2.11 does not exceed O(1).

2.2.4 From Pairwise to Multiple Hypotheses Testing
2.2.4.1 Situation

Assume we are given L families of probability distributions Py, 1 < ¢ < L, on
observation space (2, and observe a realization of random variable w ~ P taking
values in ). Given w, we want to decide on the L hypotheses

H/ :PePy, 1<{<L. (2.33)

Our ideal goal would be to find a low-risk simple test deciding on the hypotheses.
However, it may happen that the * ideal goal” is not achievable, for example, when
some pairs of families P, have nonempty intersections. When P, NPy # () for some
£ #£ 0, there is no way to decide on the hypotheses with risk < 1/2.

But: Impossibility to decide reliably on all L hypotheses “individually” does not
mean that no meaningful inferences can be done.
For example, consider the 3 colored rectangles on the plane:

and 3 hypotheses, with Hy, 1 < ¢ < 3, stating that our observation is w = x+& with
deterministic “signal” x belonging to -th rectangle and & ~ N'(0,02%I3). Whatever
small o be, no test can decide on the 3 hypotheses with risk < 1/2; e.g., there is
no way to decide reliably on H; vs. H,. However, we may hope that when o is
small (or when repeated observations are allowed), observations allow us to discard
reliably some of the hypotheses; for example, when the signal “is brown” (i.e., Hy
holds true), we hardly can discard reliably the hypothesis Hs stating that the signal
“is green,” but hopefully can discard reliably Hj (that is, infer that the signal is
not blue).

When handling multiple hypotheses which cannot be reliably decided upon “as
they are,” it makes sense to speak about testing the hypotheses “up to closeness.”
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2.2.4.2 Closeness relation and “up to closeness” risks

Closeness relation, or simply closeness C on a collection of L hypotheses Hq, ..., Hr
is defined as some set of pairs (£,£') with 1 < £,¢' < L. We interpret the relation
(¢,0') € C as the fact that the hypotheses H, and H, are close to each other.
Sometimes we shall use the words “¢ and ¢ are/are not C-close to each other” as
an equivalent form of “hypotheses Hy, Hy are/are not C-close to each other.”

We always assume that

e C contains all “diagonal pairs” (¢,¢), 1 < ¢ < L (“every hypothesis is close to
itself”);
o (£,0') eCisandonly if (¢,£) € C (“closeness is a symmetric relation”).

Note that by symmetry of C, the relation (¢,¢') € T is in fact a property of
unordered pair {£,¢'}.

“Up to closeness” risks. Let T be a test deciding on L hypotheses Hy, ..., Hy,
see (2.33); given observation w, 7 accepts all hypotheses H; with indexes ¢ € T (w)
and rejects all other hypotheses. We say that ¢-th partial C-risk of test T is < e, if
whenever Hy is true: w ~ P € Py, the P-probability of the event
T accepts Hy: £ € T (w)
and

all hypotheses Hy accepted by T are C-close to Hy: (£,0') € C,V0' € T (w)
is at least 1 —e.

(-th partial C-risk RiskS (T|Hy,...,Hr) of T is the smallest € with the outlined
property, or, equivalently,

Risk{(T|Hy, ..., Hy) = 5161713 Probyp{[{ & T(w)] or [F¢' € T(w): (¢,,¢) £ C)}

C-risk Risk®(T|Hy, ..., Hy) of T is the largest of the partial C-risks of the test:

Risk®(T|Hy, ..., Hy) = max RiskS(T|Hy, ..., Hy).
1<¢<L

Observe that when C is the “strictest possible” closeness, that is, (¢,¢') € C if
and only if £ = ¢/, then a test 7 deciding on Hy, ..., Hy up to closeness C with
risk € is, basically, the same as a simple test deciding on Hy, ..., Hy, with risk < e.
Indeed, a test with the latter property clearly decides on Hy, ..., Hy, with C-risk < e.
The inverse statement, taken literally, is not true, since even with our “as strict as
possible” closeness, a test T with C-risk < € not necessarily is simple. However, we
can enforce T to be simple, specifically, to accept a once for ever fixed hypothesis,
say, Hy, and only it, when the set of hypotheses accepted by 7 “as is” is not a
singleton, otherwise accept exactly the same hypothesis as 7. The modified test
already is simple, and clearly its C-risk does not exceed the one of T.

2.2.4.8 Multiple Hypothesis Testing via pairwise tests

Assume that for every unordered pair {¢,¢'} with (¢,¢')¢C we are given a simple
test Ty ¢y deciding on Hy vs. Hy via observation w.

Our goal is to “assemble” the tests Ty ey, (£,¢') € C, into a test 7 deciding on
H;...,Hy, up to closeness C.
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The construction we intend to use is as follows:

e For 1 < ¢, ¢ < L, we define functions Ty (w) as follows:
— when (¢,0") € C, we set Ty () = 0.
— when (£,0') € C, so that £ # ¢/, we set

W) = L Tey(w) = {}
TM’( )_{ -1, 7:(@70}((#) _ {gl} . (2'34)

Note that Ty ¢y is a simple test , so that Ty (-) is well defined and takes
values +1 when (4, ¢') ¢ C and 0 when (¢,¢') € C.

Note that by construction and since C is symmetric, we have
Toer(w) = —Tpp(w), 1 < 0,0 < L. (2.35)

e The test 7 is as follows:  given observation w, we build the L x L matriz
T(w) = [Tee (w)] and accept exactly those of the hypotheses Hy for which £-th row
in T(w) is nonnegative.

Observation 2.12. When T accepts some hypothesis Hy, all hypotheses accepted
by T are C-close to Hy.

Indeed, if w is such that ¢ € T (w), then the ¢-th row in T'(w) is nonnegative. If now
' is not C-close to ¢, we have Ty (w) > 0 and Ty (w) € {—1,1}, whence Ty (w) = 1.
Consequently, by (2.35) it holds Ty y(w) = —1, implying that ¢/-th row in T'(w) is
not nonnegative, and thus ¢ € T (w). |

Risk analysis. For (£,¢') € C, let

€ = Risky (Tge ey |He, Her) = g < Probu~p{f & Tieey (@)}
€Pe
= sup Proby~p{Te (w) = —1} = sup Prob,.p{Tp(w) =1}
PePy Pebe (2:36)
= sup Prob,.p{¢ € 7—{&2’}(“})}
PeP,

= Riskg(ﬁz,ez} |Hgl, Hg).

Proposition 2.13. For the just defined test T it holds

Ve < L:Riskg (T|Hy, ., Hy) S €= Y e (2.37)
(0,0 ge

Proof. Let us fix ¢, let H; be true, and let P € P, be the distribution of observation
w. Set I={¢'<L:({{)&C}. Forl €1,let Ey be the event

{w : ng/(w) = —1}.
We have Prob,~p(Es) < € (by definition of € ), whence

Proby,~p(UrerEr ) < €.

E
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When the event E does not take place, we have Typ (w) = 1 for all £ € I, so that
Ty (w) >0 forall ¢/, 1 < ¢ < L, whence £ € T (w). By Observation 2.12, the latter
inclusion implies that

{LeT(w)&{( V) ecV e T(w)}
Invoking the definition of partial C-risk, we get

Risk$ (T|Hy, ..., Hy) < Prob,.p(E) < ¢. O

2.2.4.4 Testing Multiple Hypotheses via Euclidean separation

Situation. We are given L nonempty and closed convex sets X, C Q =R%, 1< /¢ <
L, with at least L—1 of the sets being bounded, and a spherical family of probability
distributions 73,?. These data define L families P, of probability distributions on
RY; the family Py, 1 < ¢ < L, is comprised of probability distributions of all
random vectors of the form x + &, where deterministic x (“signal”) belongs to Xy,
and ¢ is random noise with distribution from Pfyl. Given positive integer K, we can
speak about L hypotheses on the distribution PX of K-repeated observation w® =
(Wi, ..., wr ), with H, stating that w’ is a quasi-stationary K-repeated observation
associated with Py. In other words H, = H?’K, see Section 2.1.3.3. Finally, we are
given a closeness C.

Our goal is to decide on the hypotheses Hi,...,Hr up to closeness C via K-
repeated observation w’€. Note that this is a natural extension of the case QS of
pairwise testing from repeated observations considered in Section 2.2.3 (there L = 2
and C is the only meaningful closeness on a two-hypotheses set: (¢,¢') € C is and
only if £ =1").

Standing Assumption which is by default in force everywhere in this Section is:

Whenever £,£' are not C-close: (£,£')¢C, the sets Xy, Xo do not intersect.

Strategy: We intend to attack the above testing problem by assembling pairwise
Euclidean separation Majority tests via the construction from Section 2.2.4.3.

Building blocks to be assembled are Euclidean separation K-observation pairwise
Majority tests built for the pairs Hy, Hy of hypotheses with not close to each other
¢ and ¢'; that is, with (¢,¢') & C. These tests are built as explained in Section
2.2.3.2; for reader’s convenience, here is the construction. For a pair (¢,¢') € C, we

1. Find the optimal value Opt,, and an optimal solution (uge, ve) to the convex
optimization problem

1
Optyyy = min_ —||lu—v||a, 2.38
Phee u€Xy,vEX 2” I2 ( )
The latter problem is solvable, since we have assumed from the very beginning
that X,, X are nonempty, closed and convex, and that at least one of these sets
is bounded;
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2. Set

Uper — Vpgr 17 T
eper = | Coer = e [eer + Vo], Do (W) = eppw — copr.

[weer — veer|2”

Note that the construction makes sense, since by our Standing Assumption for /,
¢ in question X, and X, do not intersect. Further, ey and ¢y clearly depend
solely on (¢, ¢'), but not on how we select an optimal solution (ug, vee ) to (2.38).
Finally, we have

epr = —€prg, Copr = —Cprgy Goor (1) = —bure(-).

3. We consider separately the case of K =1 and the case of K > 1. Specifically,

2)

when K = 1, we select somehow nonnegative reals &g/, dgr¢ such that
(5([ + 5@’[ = ZOptée/ (239)

and specify the single-observation simple test Ty deciding on the hypotheses
He, He according to

1 rp — ’
= { ff g el

Note that by Proposition 2.7, setting

P,(6) = /v(s)ds, (2.40)
b
we have ]
Risky (Toe'[He, Her) < Py(S0r)
Riska (Teer[He, Her) < Py(0ere) (2.41)
Risky (Tore|He, He) < Py(60r0) '
Risky (Toe|He, He) < Py(du)
when K > 1, we specify K-observation simple test Ty i deciding on H,, H

according to

k _ _ {f}, Card{kz < K : gf)gg/ > O} > K/2,
Tew (W = (@1, -, k) = { {0'}, otherwise

Note that by Proposition 2.8 we have

Risk(Teo x| Hes Hy) < e = > (5) el (1 — enurr)7F,
K/2<k<K (2.42)

Extpr = P,Y(Optw) = €400

Assembling building blocks, case of K = 1. In the case of K = 1, we specify
the simple pairwise tests Ty ¢y, (£,¢') & C, participating in the construction of the
multi-hypothesis test presented in Section 2.2.4.3, as follows. Given unordered pair
{€,¢'} with (¢,¢") & C (which is exactly the same as (¢',£) & C), we arrange ¢, ¢ in
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ascending order, thus arriving at ordered pair (£, '), and set
Tieey () = Tao (0),

with the right hand side tests defined as explained above. We then assemble,
as explained in Section 2.2.4.3, the tests T(yy into a single-observation test 7;
deciding on hypotheses H1, ..., H,. Looking at (2.36) and (2.41), we conclude that
for the just defined tests 7,y and the associated with the tests Ty, via (2.36),
quantities €y it holds

(0,0') & C = ewr < Py(err). (2.43)

Invoking Proposition 2.13, we get

Proposition 2.14. In the situation described in the beginning of Section 2.2.4.4
and under Standing Assumption, the C-risks of the just defined test Ty, whatever be
the choice of nonnegative dppr, (0, 0) & C, satisfying (2.39), can be upper-bounded
as
Risky (73[Ha, ., Ho) < D Py(6er). (2.44)
(e engc

with Py(-) given by (2.40).

Case of K =1 (continued): Optimizing the construction. We can try to
optimize the risk bounds (2.44) over the parameters dz of the construction. The
first question to be addressed here is what to minimize — we have several risks! A
natural model here is as follows. Let us fix a nonnegative M x L weight matrix W
and M-dimensional positive profile vector w, and solve the optimization problem

L
min  {¢: [waw')&zc P 7(5”’)]421 < tw . (2.45)
t{0er:(6,E)2C Seer > 0,000 + 0prg = 20Dtyp, (6,07) €C

For example, when M = 1 and w = 1, we are minimizing weighted sum of (upper
bounds on) partial C-risks of our test, and when W is a diagonal matrix with
positive diagonal entries and w is the all-ones vector, we are minimizing the largest
of scaled partial risks. Note that when P,(-) is convex on R, or, which is the
same, y(-) is nonincreasing in R, (2.45) is a convex, and thus efficiently solvable,
problem.

Assembling building blocks, case of K > 1. We again pass from our building
blocks — K-observation simple pairwise tests T g, (£,€') € C, we have already
specified, to tests Tippy = Tgpg, with £ = min[¢,¢'] and ¢ = max[(, ('], and
then apply to the resulting tests the construction from Section 2.2.4.3, arriving at
K-observation multi-hypothesis test Tx. By Proposition 2.8, the quantities €z
associated with the tests Tyy,) via (2.36) satisfy the relation

(0, 0) EC = ew < Z (Ik{) [P, (Optye)]*[1 = Py (Optye )] 7F,  (2.46)

K/2<k<K

which combines with Proposition 2.13 to imply
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Proposition 2.15. Let the situation described in the beginning of Section 2.2.4.4
take place, and let K > 1. Under Standing Assumption, the C-risks of the just
defined test T can be upper-bounded as

stkg(ﬂﬁ-l,l, v Hr) < Z P, (8¢0) Z <Ik(> P, (Optw)]k[l 7PA'(OptM/)]K—k7

02,00 gC K/2<k<K
(2.47)
with Py(-) given by (2.40) and Opt,y given by (2.58).

Note that by Standing Assumption the quantities P, (Opt,, ) are < 1/2, so that
the risks RiskS (T |Hi, ..., HL) go to 0 exponentially fast as K — co.

2.3 DETECTORS AND DETECTOR-BASED TESTS

2.3.1 Detectors and their risks

Let Q be an observation space, and P,, x = 1,2, be two families of probability
distributions on 2. By definition a detector associated with 2 is a real-valued
function ¢(w) of Q. We associate with a detector ¢ and families P,, x = 1,2, risks
defined as follows:

Risk_[¢|P1] = suppep, [, exp{—¢(w)}P(dw) (a)
Risk, [0[Ps] = suppep, Joexplo@)P(do) () (248)
Risk[¢|P1,P2] = max[Risk_[¢|P1], Risky[6|Pa]] (c)

Given a detector ¢, we can associate with it simple test 7, deciding, via observation
w ~ P, on the hypotheses

Hy IPEPh Hy : PEPQ; (249)

specifically, given observation w € €1, the test 74 accepts H; and rejects Hy when-
ever ¢(w) > 0, otherwise the test accepts Hs and rejects Hj.
Let us make the following immediate observation:

Proposition 2.16. Let Q be an observation space, Py, x = 1,2, be two families
of probability distributions on Q, and ¢ be a detector. The risks of the test T,
associated with this detector satisfy

Rlbkl(,n«)lHl, Hg)
Rl&kg('ﬁr)lHl, HQ)

Risk_ [(f)|7)1] )

<
< Risky[o|Ps].

(2.50)

Proof. Let w ~ P € P;. Then the P-probability of the event {w : ¢(w) < 0} does
not exceed Risk_[¢|P1], since on the set {w : ¢(w) < 0} the integrand in (2.48.a) is
> 1, and this integrand is nonnegative everywhere, so that the integral in (2.48.a)
is > P{w : ¢(w) < 0}. Recalling what 7, is, we see that the P-probability to
reject Hy is at most Risk_[¢|P1], implying the first relation in (2.50). By similar
argument, with (2.48.0) in the role of (2.48.a), when w ~ P € Ps, the P-probability
of the event {w : ¢(w) > 0} is upper-bounded by Risk [¢|Ps], implying the second
relation in (2.50). O
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2.3.2 Detector-based tests

Our current goal is to establish some basic properties of detector-based tests.

2.8.2.1 Structural properties of risks

Observe that the fact that €; and e; are upper bounds on the risks of a detector
are expressed by system of convex constraints

SUPpep, Jo exXp{—d(w)}P(dw) < e (a)
SUppep, Joexp{p(w)}P(dw) < e (D)

on €1, €2 and ¢(+); this observation is useful, but not too useful, since the convex
constraints in question usually are infinite-dimensional when ¢(-) is so, and are semi-
infinite (suprema, over parameter ranging in infinite set, of parametric families of
convex constraints), provided P; or Ps are of infinite cardinalities; constraints of
this type can be intractable computationally.

Another important observation is that the distributions P enter the constraints
linearly; as a result, when passing from families of probability distributions P1, Po
to their conver hulls, the risks of a detector remain intact.

(2.51)

2.3.2.2 Renormalization

Let 2, Py, P2 be the same as in Section 2.3.1, and let ¢ be a detector. When
shifting this detector by a real a — passing from ¢ to the detector

$a(w) = d(w) —a
— the risks clearly are updated as follows:

Risk_[¢a|P1] = e*Risk_[o|P1],
Risky [¢q|P2] = e “Risky [p|P2].

(2.52)
We see that
When speaking about risks of a detector, what matters is the product

Riskg [¢|P1, P2] := Risk_ [¢|P1]Risk, [¢|P2]

of the risks, not these risks individually: by shifting the detector, we can re-
distribute this product between the factors in any way we want. In particular,
we can always shift a detector to make it balanced, i.e., satisfying

Risk_[¢|P1] = Risky [¢|Ps] = Risk[o|Py, Pa].
When deciding on the hypotheses
Hy:PePy, Hy: PPy

on the distribution P of observation, the risk of the test T, associated with
a balanced detector ¢ is bounded by the risk Risk|[p|P1, P2] of the detector:

Rlsk(7:¢,|H1,H2) = max [Risk1(7—¢|H1,HQ),RiSkQ(n|H1,H2)} S RlSk[¢|P1,P2]
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2.3.2.83 Detector-based testing from repeated observations

We are about to show that detector-based tests are perfectly well suited for passing
from inferences based on single observation to those based on repeated observations.

Given K observation spaces Q, 1 < k < K, each equipped with pair Py 1, P2
of families of probability distributions, we can build a new observation space

OF =) x .o x Qg = {wf = (W1, .., wk) twp € Uk < K}

and equip it with two families Pff , x = 1,2, of probability distributions; distribu-
tions from ’P)If are exactly the product-type distributions P = P; X ... X Pg with all
factors Py, taken from Py ,. Observations w® = (w1, ...,wr) from QX drawn from
a distribution P = P} X .... Xx P € ’Pf are nothing but collections of observations
wg, k =1,..., K, drawn, independently of each other, from distributions Pj. Now,

given detectors ¢ (-) on observation spaces {2 and setting
K

$U(W) =" grlwr) : Q€ 5 R,
k=1

we clearly have

K
Risk_[pF)|PE] = T[] Risk_[¢r|Pr.1],

k[i(l (2.53)
Risk, [ |PK] =[] Risky [ox|Pr.2)-

k=1

Let us look at some useful consequences of (2.53).

Stationary K-repeated observations. Consider the case of Section 2.1.3.1: we
are given an observation space () and a positive integer K, and what we observe,
is a sample w® = (wy,...,wx) with wy,...,wx drawn, independently of each other,
from some distribution P on 2. Let now P;, P2, be two families of probability
distributions on €2; we can associate with these families two hypotheses, H; ’K,
H, ’K, on the distribution of K-repeated observation w® = (w1, ..., wx ), with H)?’K
stating that wq,...,wk are drawn, independently of each other, from a distribution
P € P,. Given a detector ¢ on (2, we can associate with it the detector

K
0 (WF) = 3 gewn)

k=1

on

QK Q0 x...x0.
K

Combining (2.53) and Proposition 2.16, we arrive at the following nice result:

Proposition 2.17. The risks of the simple test Tyx) deciding, given K-repeated

K

observation w™ = (w1, ...,wk) on the hypotheses

HE'K twk, k < K, are independently of each other drawn from a distribution P € P,
H;J"R twi, k < K, are independently of each other drawn from a distribution P € Pa
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according to the rule

oK
(K)( Ky . . >0 = accept H
G ; $lwr) { <0 = accept HSD’K

K
admit the upper bounds

Risk; (7;5(1() ‘H?’K, HQQ’K)
RiSkQ(E(K) ‘H?’K, H?’K)

(Risk_[¢|P1]) "~

(Risk., [6[P2]) < (2.54)

Semi- and Quasi-Stationary K-repeated observations. Recall that Semi-
Stationary and Quasi-Stationary K-repeated observations associated with a family
P of distributions on observation space ) were defined in Sections 2.1.3.2 and
2.1.3.3, respectively. It turns out that Proposition 2.17 extends to quasi-stationary
K-repeated observations:

Proposition 2.18. Let Q be an observation space, Py, x = 1,2 be families of
probability distributions on Q, ¢ : Q@ — R be a detector, and K be a positive
integer.

Families Py, x = 1,2, give rise to two hypotheses on the distribution PE of
quasi-stationary K -repeated observation Wk

K
HPK PR e PEK = Q) Py, x =1,2
k=1

(see Section 2.1.3.3), and ¢ gives rise to the detector
K

¢ W) =) dlwn).

k=

1

The risks of the detector ¢'5) on the families P;?’K, x = 1,2, can be upper-bounded
as follows:
Risk_ [¢F)|P{H]
Risk [Py "]

(Risk_[g|P1])"

(Risk_[¢|P2]) " . (2.59)

<
<
Further, the detector ¢ induces simple test Tpu<) deciding on H)‘?’K, x=12 as

follows: given W, the test accepts H1®’K when (b(K)(wK) > 0, and accepts H?’K
otherwise. The risks of this test can be upper-bounded as

Risk; (Tyo0 [HN, HY ™)
Risko (Tyo0 [HN, HY ™)

(Risk_ [6[P1])",

(Risk s [6[Pa)) " (2.56)

<
<

Finally, the above results remain intact when passing from quasi-stationary to semi-
stationary K-repeated observations (that is, when replacing PS'K with PE’K =
K

@b P, and H§=K with the hypotheses H§>K stating that the distribution of w®
k=1

belongs to POX, x =1,2).
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Proof. All we need is to verify (2.55) — in view of Proposition 2.16, all other
claims in Proposition 2.18 are immediate consequences of (2.55) and the inclusions
Pf’K C PE’K, x = 1,2. Verification of (2.55) is as follows. Let PX € P; K and
let PX be the distribution of random sequence w® = (wy,..,.,wx) generated as
follows: there exists a random sequence of driving factors (1, ..., (x such that wy is
a deterministic function of ¢* = ({1, ..., (&)

W = 9k(<17 sy Ck)u

and the conditional, (1,...,(x—1 being given, distribution P, ¢cx-1 belongs to P;.
Let Pex be the distribution of the first & driving factors, and P, |¢cx-1 be the con-
ditional, (7, ...Cx_1 being given, distribution of (;. Let us set

k
PGy G) = D D(0:(Grs s G1)),
t=1
so that
/ exp{—¢") (W)} PX (dw™) = / exp{ =) (¢F)} Pex (dCF). (2.57)
QK

On the other hand, denoting Cy = 1, we have

Ch 1= [ exp{—)(C)} Por (dCH) = [ exp{—p®=D(CE1) — ¢(8,(CH))) P (dC)
— [exp{—p-D(ct1)) [ / exp{as(ok(c’“))}Pckckl(d@)} P (dCY)

= S{EXP{—Qﬁ(w)}Puk jck—1(dwg)

S Risk_[B[P1] [ exp{ -~V (¢F1)) Poos (dH) = Risk_[9[P1]Ci 1,
(=

~

where (x) is due to the fact that the distribution P,
resulting recurrence we get

ct—1 belongs to P;. From the

k|

Cx < (Risk_[¢|P1])",

which combines with (2.57) to imply that

/ exp{—¢") (WF)} PK (dw™) < (Risk_[8|P1])¥ .
QK

The latter inequality holds true for every distribution P¥ & P?’K , and the first
inequality in (2.55) follows. The second inequality in (2.55) is given by completely
similar reasoning, with Py in the role of Py, and —¢, —¢) in the roles of ¢, ¢p(F),
respectively. m]

The fact that observations wy under hypotheses H, £® ’K, ¢ = 1,2 are related to
“constant in time” families P, has no importance here, and in fact the proof of
Proposition 2.18 after absolutely evident modifications of wording allows to justify
the following “non-stationary” version of Proposition:
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Proposition 2.19. For k =1,..., K, let Q. be observation spaces, Py, x = 1,2
be families of probability distributions on Qy, and ¢y : O — R be detectors.
Families Py, x = 1,2, give rise to quasi-direct products (see Section 2.1.3.3)

K

”P)‘%&K - 1@ Py i of the families Py, over 1 < k < K, and thus to two hypotheses
=1

on the distribution PX of observation w® = (wy,...,wx) € QX = Q) x ... x Qp:

HPR . PR eP2R, x=1,2,

and detectors ¢r, 1 < k < K, give rise to the detector

K
S (W) = drlwn).

k=1

The risks of the detector ¢* on the families Pf’K, x = 1,2, can be upper-bounded
as follows:
Risk-[0"|P7"] < TTj_, Risk-[[P1.c],

2.58
Risk [ |PS"] < [Ir, Risky [¢]Po k). 259

Further, the detector ¢¥ induces simple test Ty deciding on H)?’K, x=1,2 as

follows: given W™, the test accepts H1®’K when ¢ (W) > 0, and accepts H?’K
otherwise. The risks of this test can be upper-bounded as

Risky (T [HP™ HS ™) < T, Risk_[¢]Py 4],

. . 2.59
Risk (T [H N HY ™) < [T, Risk, [¢|Pa.x]- (2.59)

Finally, the above results remain intact when passing from quasi-direct products to
direct products of the families of distributions in question (that is, when replacing

K
PO with PR = 19_91 Pk and HYX with the hypotheses HPX stating that the

distribution of w be[ongs to PO, x =1,2).

2.83.2.4 Limits of performance of detector-based tests

We are about to demonstrate that as far as limits of performance of pairwise simple
detector-based tests are concerned, these tests are nearly as good as simple tests
can be.

Proposition 2.20. Let €2 be an observation space, and Py, x = 1,2, be families of
probability distributions on . Assume that for some € € (0,1/2) “in the nature”
there exists a simple test (deterministic or randomized) deciding on the hypotheses

H12PEP1, HQIPGPQ
on the distribution P of observation w with risks < e:
RiSkl(T‘HhHQ) S e& RiSkQ(T‘Hl,HQ) S €.

Then there exists a detector-based test Ty deciding on the same pair of hypotheses
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with risk “comparable” with €:
Rlbkl(%“v‘[l,Hg) < E+ & Rlbkg(??b‘HhHg) < 6+., 6+ = 2\/ 6(1 - E). (260)

Proof. Let us prove the claim in the case when the test 7 is deterministic; the
case when this test is randomized is the subject of Exercise 2.64.

Let €, x = 1,2, be the sets of w € € such that 7 as “feeded” by observation w
accepts H,. Since T is simple, 21, {5 split €2 into two non-overlapping parts, and
since the risks of 7 are < ¢, we have

(a) €(P):=P{Q} <eVPePy
(a) €1(P):=P{M} <eVP e Py

Let 6 = \/(1 —€)/e, so that § > 1 due to 0 < e < 1/2, and let

v ={ g SE0L L 6 = ).

When P € P;, we have

[ expl-s(nP(aa) = 3P} + 6Pl = F+ [ 3| Py < 4 [5- 3 =

——
>0

whence Risk_[¢|P1] < €T. Similarly, when P € Py, we have

/Q exp{0(w)} P(de) = SP{ )41 P} = {5 - (15] Q(P)+3 < {5 _ H e+3=e",
0

whence Risk; [¢|P2] < €. O

Discussion. Proposition 2.20 states that we can restrict ourselves with detector-
based tests at the price of passing from risk e exhibited by “the best test existing
in the nature” to “comparable” risk et = 24/¢(1 — €). What we buy when sticking
to detector-based tests are nice properties listed in Sections 2.3.2.1 — 2.3.2.3 and
possibility to compute under favorable circumstances, see below, the best, in terms
of their risk, among the detector-based tests; optimizing risk of a detector-based test
turns out to be an essentially more realistic task than optimizing risk of a general-
type test. This being said, one can argue that treating ¢ and €™ “comparable” is
a too optimistic attitude; for example, risk level ¢ = 0.01 seems to be much more
attractive than [0.01]" ~ 0.2. While passing from a test 7 with risk 0.01 to a
detector-based test 74 with risk 0.2 could indeed be a “heavy toll,” there is some
comfort in the fact that passing from a single observation to three of them (i.e., to
3-repeated, stationary or non-stationary alike, version of the original observation
scheme), we can straightforwardly convert 7y into a test with risk (0.2)% = 0.008 <
0.01, and passing to 6 observations, to make the risk less than 0.0001. On the
other hand, seemingly the only way to convert a general-type single-observation
test 7 with risk 0.01 into a multi-observation test with essentially smaller risk is
to pass to a Majority version of T, see Section 2.2.3.2 . Computation shows that

151n Section 2.2.3.2, we dealt with “signal plus noise” observations and with specific test T~
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with e, = 0.01, to make the risk of the majority test < 0.0001 takes 5 observations,
which is only marginally better than the 6 observations needed in the detector-based
construction.

2.4 SIMPLE OBSERVATION SCHEMES

2.4.1 Simple observation schemes — Motivation

A natural conclusion one can extract from the previous Section is that it makes
sense, to say the least, to learn how to build detector-based tests with minimal risk.
Thus, we arrive at the following design problem:

Given an observation space 2 and two families, P; and Ps, of probability
distributions on €2, solve the optimization problem

Opt = min max[ sup /e_d’(“)P(dw), sup /e¢(w)P(dw)} (2.61)
¢ 2—R PePy JQ PeP; JQ

Fl4] G4l

While being convex, problem (2.61) typically is computationally intractable. First,
it is infinite-dimensional — candidate solutions are multivariate functions; how to
represent them in a computer, not speaking of how to optimize over them? Besides,
the objective to be optimized is expressed in terms of suprema of infinitely many
(provided P; and/or P, are infinite) expectations, and computing just a single
expectation can be a difficult task... We are about to consider “favorable” cases —
simple observation schemes — where (2.61) is efficiently solvable.

To arrive at the notion of a simple observation scheme, consider the case when all
distributions from P;, Po admit densities taken w.r.t. some reference measure Il on
Q, and these densities are parameterized by “parameter” p running through some
parameter space M, so that P; is comprised of all distributions with densities p,,(-)
and p belonging to some subset M; of M, while P is comprised of distributions
with densities p,(-) and p belonging to another subset, M, of M. To save words,
we shall identify distributions with their densities taken w.r.t. II, so that

Py ={p.:pe M}, x=1,2,

where {p,(-) : p € M} is a given “parametric” family of probability densities.
Quotation marks in “parametric” reflect the fact that at this point in time, the
“parameter” p can be infinite-dimensional (e.g, we can parameterise a density by
itself), so that assuming “parametric” representation of the distributions from Py,
P52 in fact does not restrict generality.

Our first observation is that in our “parametric” setup, we can rewrite problem

given by Euclidean separation. Straightforward inspection of the construction and the proof of
Proposition 2.8 makes it clear that the construction is applicable to a whatever simple test 7, and
that the risk of the resulting multi-observation test obeys the upper bound in (2.25), with the risk
of 7 in the role of .
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(2.61) equivalently as

n(Opt) = min  sup %[ln < /ﬂ e_¢(w)pu(w)H(dw)) +in < /Q e¢(w)py(w)H(dw)):|.

¢ Q=R e My, veEM,

D (¢p3p,v) ( )
2.62

Indeed, when shifting ¢ by a constant: ¢(-) — ¢(-) — a, the positive quan-
tities F'[¢] and G[¢] participating in (2.61) are multiplied by e* and e~%,
respectively, and their product remains intact. It follows that to minimize
over ¢ the maximum of F[¢] and G[¢] (this is what (2.61) wants of us) is
exactly the same as to minimize over ¢ the quantity H[¢] := /F[¢]G¢].
Indeed, a candidate solution ¢ to the problem ming H[¢] can be balanced —
shifted by a constant to ensure F[¢] = G[¢], and this balancing does not
change H|[]; as a result, minimizing H over all ¢ is the same as minimizing
H over balanced ¢, and the latter problem clearly is equivalent to (2.61).
It remains to note that (2.62) is nothing but the problem of minimizing

In(H|¢)).

Now, (2.62) is a min-max problem — a problem of the generic form

min max ¥ (u, v).

uclU veV
Problems of this type (at least, finite-dimensional ones) are computationally tractab-
le when the domain of the minimization argument is convex and the cost function ¥
is convex in the minimization argument (this indeed is the case for (2.62)), and the
domain of the maximization argument is convex, and the cost function is concave
in this argument (this not necessarily is the case for (2.62)). Simple observation
schemes we are about to define are, essentially, the schemes where the just outlined
requirements of finite dimensionality and convexity-concavity indeed are met.

2.4.2 Simple observation schemes — Definition

Consider the situation where we are given

1. A Polish (complete separable metric) observation space 2 equipped with o-finite
o-additive Borel reference measure II such that the support of II is the entire €.
Those not fully comfortable with some of the notions from the previous sentence
can be assured that the only observation spaces we indeed shall deal with are
pretty simple:

e O =R equipped with the Lebesgue measure II, and

e a finite or countable set 2 which is discrete (distances between distinct points
are equal to 1) and is equipped with the counting measure II.

2. A parametric family {p,(-) : p € M} of probability densities, taken w.r.t. II,
such that

e the space M of parameters is a convex set in some R™ which coincides with
its relative interior,

o the function p,(w) : M x Q@ — R is continuous in (y,w) and positive every-
where.

3. A finite-dimensional linear subspace F of the space of continuous functions on
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€) such that

e F contains constants,
e all functions of the form In(p,(w)/p, (w)) with p,v € M are contained in F;
o for every ¢(-) € F, the function

i ([ @pomia)

is real-valued and concave on M.

In this situation we call the collection
(1L {py - p € M} F)
a simple observation scheme (s.0.s. for short).

Nondegenerate simple o.s. We call a simple observation scheme nondegenerate,
if the mapping p — p,, is an embedding: whenever p, y/ € M and p # p1/, we have

Pu # Pu’-

2.4.3 Simple observation schemes — Examples

We are about to list basic examples of s.0.s.’s.

2.4.8.1 Gaussian observation scheme

In Gaussian o.s.,

e the observation space (€2,1I) is the space R? with Lebesgue measure,

e the family {p,(-) : p € M} is the family of Gaussian densities N (u, ©), with
fixed positive definite covariance matrix O, distributions from the family are
parameterized by their expectations p. Thus,

LR ()= ! o =T w =g
M= (o) = o s ennd - )

e the family F is the family of all affine functions on R,

It is immediately seen that Gaussian o.s. meets all requirements imposed on a
simple o.s. For example,

I, (@)/pu() = (v = 17O+ £ [0y — pTO

is an affine function of w and thus belongs to F. Besides this, a function ¢(-) € F
is affine: ¢(w) = a’w + b, implying that

f) = In([ree®@pu(w)dw) = In (Egopnro,r,) {exp{a’ (03¢ + ) + b} })
= a’pu+b+ const,
const = In(Eguno,1,) {exp{aT@l/Qf}}) =1a"0a

is affine (and thus concave) function of pu.
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As we remember from Lecture 1, Gaussian o.s. is responsible for the standard
signal processing model where one is given a noisy observation

w= Az +¢ [€ ~ N(0,0)]

of the image Az of unknown signal x € R™ under linear transformation with known
d x n sensing matriz, and the goal is to infer from this observation some knowledge
about z. In this situation, a hypothesis that = belongs to some set X translates
into the hypothesis that the observation w is drawn from Gaussian distribution with
known covariance matrix © and expectation known to belong to the set M = {u =
Az : x € X}, so that deciding on various hypotheses on where z is located reduces
to deciding on hypotheses on the distribution of observation in Gaussian o.s.

2.4.3.2 Poisson observation scheme

In Poisson observation scheme,

e the observation space € is the set Zi of d-dimensional vectors with nonnegative
integer entries, and this set is equipped with the counting measure,

e the family {p,(-) : p € M} is the family of product-type Poisson distributions
with positive parameters. In other words,

M={peR%: u>0}pu(w) = 7”051”32'””5(1e‘“l‘“?"“‘“d w e Z4
H HH Pu wilws!...wy! ’ +

that is, random variable w ~ p,, ¢t € M, is d-dimensional vector with indepen-
dent random entries, and i-th of the entries is w; ~ Poisson(u;);
e the space F is comprised of affine functions on Zz{.

It is immediately seen that Poisson o.s. is simple. For example,

d

d
n(pu(w)/py(w)) = Zln(ui/w)wi = lni—vi

i=1

is affine function of w and thus belongs to F. Besides this, a function ¢ € F is
affine: ¢(w) = a’w + b, implying that the function
Wi = hg
F) = Do (fo e p, (@)(dw) = In (Tep e T, “5ir )
= b+ (TI, [em 5022 b ) = b4 L in(expen s — pi})
= lem —1pi+0

is affine (and thus concave) function of .

Poisson observation scheme is responsible for Poisson Imaging. This is the
situation where there are n “sources of customers;” arrivals of customers at source
i are independent of what happens at other sources, and inter-arrival times at
source j are independent random variables with exponential, with parameter \;,
random variables, so that the number of customers arriving at source j in a unit
time interval is Poisson random variable with parameter ;. Now, there are d
“servers”, and a customer arrived at source j is dispatched to server ¢ with some
given probability A;;, >, A;; < 1; with probability 1 — . A;;, such a customer
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leaves the system. Needless to say, the dispatches are independent of each other
and of the arrival processes. What we observe is the vector w = (wy, ...,wg), where
w; is the number of customers dispatched to server ¢ on the time horizon [0, 1]. It
is easy to verify that in the just described situation, the entries w; in w indeed are
independent of each other Poisson random variables with Poisson parameters

pi =Y Aijh;.
=1

In what is called Poisson Imaging, one is given a random observation w of the above
type along with sensing matric A = [A;;], and the goal is to use the observation to
infer conclusions on the parameter y = A\ and underlying this parameter “signal”
A

Poisson imaging is has several important applications'®, for example, in Positron
Emission Tomography (PET).

Positron emission and PET scanner
positron-electron annihilation

Positron-emitting
radionuclide

g Positron

Electron

511 keV 511 keV

jamma ra amma ra’
9 Y Anninitation !

Gamma ray
detectors

In PET, a patient is injected radioactive tracer and is placed in PET tomograph,
which can be thought of as a cylinder with surface split into small detector cells.
The tracer disintegrates, and every disintegration act produces a positron which
immediately annihilates with a nearby electron, producing two vy-quants flying at
the speed of light in two opposite directions along a line (“line of response” —
LOR) with completely random orientation. Eventually, each of the y-quants hits
its own detector cell. When two detector cells are “simultaneously” hit (in fact
- hit within a short time interval, like 10~% sec), this event — coincidence — and
the serial number of the bin (pair of detectors) where the hits were observed are
registered; observing a coincidence in some bin, we know that somewhere on the
line linking the detector cells from the bin a disintegration act took place. The
data collected in a PET study are the numbers of coincidences registered in every
one of the bins; discretizing the field of view (patient’s body) into small 3D cubes
(voxels), an accurate enough model of the data is a realization w of random vector
with independent Poisson entries w; ~ Poisson(u;), with u,; given by

n
i = Z Dij A,
j=1

where A; is proportional to the amount of tracer in voxel j, and p;; is the probability

16in all these applications, the signal A we ultimately are interested in is an image, this is

where “Imaging” comes from.
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for LOR emanating from voxel j to be registered in bin 4 (these probabilities can
be computed given the geometry of PET device). The tracer is selected in such
a way that in the body it concentrates in the areas of interest (say, the areas
of high metabolic activity when tumor is sought), and the goal of the study is
to infer from the observation w conclusions on the density of the tracer. The
characteristic feature of PET as compared to other types of tomography is that
with properly selected tracer, this technique allows to visualize metabolic activity,
and not only the anatomy of tissues in the body. Now, PET fits perfectly well the
above “dispatching customers” story, with disintegration acts taking place in voxel
j in the role of customers arriving in location j and bins in the role of servers;
the arrival intensities are (proportional to) the amounts A; of tracer in voxels, and
the random dispatch of customers to servers corresponds to random orientation of
LOR’s (in reality, the nature draws their directions from the uniform distribution
on the unit sphere in 3D).

It is worthy of noting that there are two other real life applications of Poisson
Imaging: Large Binocular Telescope and Nanoscale Fluorescent Microscopy 7.

2.4.3.3 Discrete observation scheme

In Discrete observation scheme,

e the observation space is a finite set Q = {1, ...,d} equipped with counting mea-
sure,

o the family {p,(-) : p € M} is comprised of all non-vanishing distributions on €2,
that is,

M={peR : 1>0, " =1}, pu(w) = p,w € O
we)

e F is the space of all real-valued functions on the finite set 2.
Clearly, Discrete o.s. is simple; for example, the function
= [ e, @)a) ) =1n (Z e¢<w>uw>
Q wEeN

indeed is concave in p € M.

2.4.3.4 Direct products of simple observation schemes

Given K simple observation schemes

Or = (e, s {ppp () : € My} Fi), 1 <k <K,

"Large Binocular Telescope is a cutting edge instrument for high-resolution opti-
cal/infrared astronomical imaging; it is the subject of huge ongoing international project, see
http://www.lbto.org. Nanoscale Fluorescent Microscopy (a.k.a. Poisson Biophotonics) is a revo-
lutionary tool for cell imaging trigged by the advent of techniques [15, 73, 76, 132] (2014 Nobel
Prize in Chemistry) allowing to break the diffraction barrier and to view biological molecules “at
work” at a resolution 10-20 nm, yielding entirely new insights into the signalling and transport
processes within cells.
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we can define their direct product
K
OF = T Ox = (%, 1% {p,, : p € M¥}; FK)
k=1

by modeling the situation where our observation is a tuple w’ = (wy, ..., wx) with
components wy, yielded, independently of each other, by observation schemes O,
namely, as follows:

e The observation space Q¥ is the direct product of observations spaces Q1 ..., Qx,
and the reference measure I1% is the product of the measures II;, ..., I x;

o The parameter space M¥ is the direct product of partial parameter spaces
My, ..., Mk, and the distribution p, (w’) associated with parameter

= (p1, p2, s i) € MF = My x o x M

is the probability distribution on QO with the density

Ky _ 8
pu(w™) Hpu,k(wk)
k=1

w.r.t. II¥. In other words, random observation w’ ~ Dy is a sample of ob-

servations wq, ..., wg , drawn, independently of each other, from the distributions

pul,h pu2,27"'7puK,K;
o The space F¥ is comprised of all separable functions

Ky _ .
$w) = drl(wr)
k=1

with (bk() e Fr, 1<k<K.

It is immediately seen that the direct product of simple observation o0.s.’s is simple.
When all factors Ok, 1 < k < K, are identical to simple o.s.

O = (QIL{p,: p€ M} F),

the direct product of the factors can be “truncated” to yield the K-th power (called
also the stationary K-repeated version) of O, denoted

[O1F = (@, 15 {pfO - e M}; FUIO)
and defined as follows:

o OF and IIX are exactly the same as in the direct product:
QF =0 x..xQ O =IO x..xII
— S—

K K

e the parameter space is M rather than the direct product of K copies of M, and
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the densities are .
PO W = (i, wi)) = [] pulwn);
k=1

in other words, random observations w® ~ pLK) are K-element samples with

components drawn, independently of each other, from p,;
o the space F(5) is comprised of separable functions

K
U (W) = plwr)
k=1

with identical components belonging to F (i.e., ¢ € F).

It is immediately seen that a power of simple o.s. is simple.

Remark 2.21. Gaussian, Poisson and Discrete 0.s.’s clearly are nondegenerate. It
is also clear that the direct product of nondegenerate o0.s.’s is nondegenerate.

2.4.4 Simple observation schemes — Main result

We are about to demonstrate that when deciding on convex, in some precise sense
to be specified below, hypotheses in simple observation schemes, optimal detectors
can be found efficiently by solving convez-concave saddle point problems.

We start with “executive summary” on convex-concave saddle point problems.

2.4.4.1 Ezecutive summary of convex-concave saddle point problems

The results to follow are absolutely standard, and their proofs can be found in all
textbooks on the subject, see, e.g., [11, Section D.4].

Let U and V be nonempty sets, and ® : U x V — R be a function. These
data define an antagonistic game of two players, I and II, where player I selects a
point u € U, and player II selects a point v € V'; as an outcome of these selections,
player I pays to player II the sum ®(u,v). Clearly, the player I is interested to
minimize this payment, and player II — to maximize the payment. The data U, V, ®
are known to the players in advance, and the question is, what should be their
selections.

When the player I makes his selection w first, and player II makes his selection
v with u already known, player I should be ready to pay for a selection u € U the
toll as large as

®(u) = sup ®(u,v).
veV
In this situation, a risk-averse player I would select u by minimizing the above
worst-case payment, by solving the primal problem

Opt(P) = inf ®(u) = inf D (u, P
pt(P) = inf ®(u) = inf sup (u;v) (P)
associated with the data U, V, ®.

Similarly, if player II makes his selection v first, and player I selects u after v
becomes known, player II should be ready to get, as a result of selecting v € V| the
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amount as small as
®(v) = inf .
(v) = inf é(u,v)
In this situation, a risk-averse player II would select v by maximizing the above
worst-case payment, by solving the dual problem

Opt(D) = sup ®(v) = sup inf ®(u,v) (D)
veV veV uel

Intuitively, the first situation is less preferable for player I than the second one, so
that his guaranteed payment in the first situation, that is, Opt(P), should be > his
guaranteed payment, Opt(D), in the second situation:

Opt(P) := inf sup ®(u,v) > sup inf ®(u,v)=: Opt(D); (2.63)
uwel ey veV weU
this fact, called Weak Duality, indeed is true.

The central question related to the game is what should the players do when
making their selections simultaneously, with no knowledge of what is selected by
the adversary. There is a case when this question has a completely satisfactory
answer — this is the case where ® has a saddle point on U x V.

Definition 2.22. A point (u.,v.) € U x V is called a saddle point ¥ of function
O(u,v) : UXxV = R, if © as a function of u € U attains at this point its minimum,
and as a function of v € V. — its maximum, that is, if

D(u,vi) > (s, vs) > D(uy,v) V(u e Uv e V).

From the viewpoint of our game, a saddle point (u.,v,) is an equilibrium: when
one of the players sticks to the selection stemming from this point, the other one
has no incentive to deviate from his selection stemming from the point: if player
II selects v, there is no reason for player I to deviate from selecting u,, since with
another selection, his loss (the payment) can only increase; similarly, when player I
selects u,, there is no reason for player II to deviate from v,, since with any other
selection, his gain (the payment) can only decrease. As a result, if the cost function
® has a saddle point on U x V, this saddle point (u.,v,) can be considered as a
solution to the game, as the pair of preferred selections of rational players. It can
be easily seen that while ® can have many saddle points, the values of ® at all
these points are equal to each other, let us denote their common value by SadVal.
If (u.,vs) is a saddle point and player I selects u = wu., his worst, over selections
v € V of player II, loss is SadVal, and if player I selects a whatever v € U, his
worst-case, over the selections of player II, loss can be only > SadVal. Similarly,
when player II selects v = v,, his worst-case, over the selections of player I, gain is
SadVal, and if player II selects a whatever v € V', his worst-case, over the selections
of player I, gain can be only < SadVal.

Existence of saddle points of ® (min in v € U, max in v € V) can be expressed
in terms of the primal problem (P) and the dual problem (P):

Bmore precisely, “saddle point (min inu € U, max inv € V);” we will usually skip the clar-

ification in parentheses, since it always will be clear from the context what are the minimization
variables and what are the maximization ones.
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Proposition 2.23. ® has saddle point (min in u € U, max in v € V) if and only
if problems (P) and (D) are solvable with equal optimal values:

Opt(P) := inf sup ®(u,v) = sup inf ®(u,v)=: Opt(D). (2.64)
uel yev veV uel

Whenever this is the case, the saddle points of ® are exactly the pairs (., vy)
comprised of optimal solutions to problems (P) and (D), and the value of ® at
every one of these points is the common value SadVal of Opt(P) and Opt(D).

Existence of a saddle point of a function is “rare commodity;” the standard
sufficient condition for it is convexity-concavity of ® coupled with convexity of U
and V; the precise statement is as follows:

Theorem 2.24. [Sion-Kakutani,  see, e.g., [11, Theorems D.4.3, D.}.4]] Let
U cC R™V C R" be nonempty closed convex sets, with W bounded, and let ® :
U xV — R be continuous function which is convex in u € U for every fired v € V,
and is concave inv €V for every fized uw € U. Then the equality (2.64) holds true
(although it may happen that Opt(P) = Opt(D) = —o0).

If, in addition, ® is coercive in u, meaning that the level sets

{ueU: ®(u,v) <a}

are bounded for every a € R and v € V' (equivalently: for every v € V, ®(u;,v) —
+oo along every sequence u; € U going to oo: |lu;|| — oo asi — o), then ® admits
saddle points (min in v € U, max inv € V).

Note that the “true” Sion-Kakutani Theorem is a bit stronger than Theorem
2.24; the latter, however, covers all our related needs.

2.4.4.2 Main Result

Theorem 2.25. Let
O=(Q1L{p,:p€M}EF)

be a simple observation scheme, and let My, Ms be nonempty compact convexr sub-
sets of M. Then

(i) The function

(@, (1)) = 3 [In (Jo e *pu(@)II(dw)) +In (o e*py @)(dw))] = g 6y
Fx (My x M) R

is continuous on its domain, is convex in ¢(-) € F, concave in [p; v] € My x Ms, and

possesses a saddle point (min in ¢ € F, max in [u;v] € My x My) (¢x(+), [14s; V4])
on F x (My x Ms). ¢, w.l.o.g. can be assumed to satisfy the relation'?

/Q exp{— 6. ()P, (W)TT(dw) = / exp{ e (@) }pp. () TT(do). (2.66)

9Note that F contains constants, and shifting by a constant the ¢-component of a saddle
point of ® and keeping its [u; v]-component intact, we clearly get another saddle point of ®.
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Denoting the common value of the two quantities in (2.66) by €4, the saddle point
value

min max Do, |3 v
min omex (¢, [ v])

is In(e,). Besides this, setting ¢2(-) = ¢.(-) — a, one has

(@) fooxp{—¢2()}pu(@)I(dw) < explale, V€ M,

<
(b) fQ exp{¢?(w)}p, (W) (dw) < exp{—a}e, Vv € M.’ (2.67)

implying, in view of Proposition 2.16, that when deciding via an observation w € §)
on the hypotheses
Hy :w~p, withpeM, x=12,

the risks of the simple test Tga based on the detector ¢ can be upper-bounded as
follows:

Risk1 (7;51:|H1, HQ) S exp{a}a*, RiSkQ(%ﬂHl, HQ) S exp{—a}e*. (268)
Besides this, ¢4, e, form an optimal solution to the optimization problem

. S et @p(w)I(dw) < eV € My
e {6 o e?@pu(w)(dw) < eV € M, (2.69)

(the minimum in (2.69) is taken over all € > 0 and all II-measurable functions
&(-), not just over ¢ € F).
(i) The dual problem associated with the saddle point data ®, F, My x My is

= inf ®(¢; [u; ).
eipax O(u,v) = inf &(¢;[u;v]) (D)

The objective in this problem is in fact the logarithm of Hellinger affinity of p,, and

. B(u,v) = In ( / \/pu(w)pV(w)H(dw)) | (2.70)

and this objective is concave and continuous on My X M.
The (1, v)-components of saddle points of ® are exactly the mazimizers (fu., Vs)
of the concave function ® on My x My. Given such a maximizer [p.; vy and setting

62() = 5 n(pp (@) /0. () (271)

we get a saddle point (¢u, [11s; vi]) of ® satisfying (2.66).

(iii) Let [pis; V] be a mazimizer of ® over My x My. Let, further, € € [0,1/2]
be such that there exists a (whatever, perhaps randomized) test for deciding via
observation w € ) on two simple hypotheses

(A) swr~p() i=pu. (), (B):w~q():=pu() (2.72)

with total risk < 2e. Then
gx < 2v/e(1 —e).

In other words, if the simple hypotheses (A), (B) can be decided, by a whatever test,
with total risk 2¢, then the risks of the simple test with detector ¢, given by (2.71)
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on the composite hypotheses Hy, Ho do not exceed 21/e(1 — €).

Proof. 1°. Since O is a simple o.s., the function ®(¢, [u;v]) given by (2.65) is a well
defined real-valued function on F x (M x M) which is concave in [p;v]; convexity of
the function in ¢ € F is evident. Since both F and M are convex sets coinciding with
their relative interiors, convexity-concavity and real valuedness of ® on F x (M x M)
imply the continuity of ® on the indicated domain. As a consequence, ® is convex-concave
continuous real-valued function on F X (M1 X Ma).

Now let

&(p,v) = inf &(¢, [p;v]). (2.73)

Note that @, being the infimum of a family of concave functions of [u;v] € M X M, is
concave on M x M. We claim that for p,v € M the function

O (@) = 5 (D) /0 ()

(which, by definition of a simple o.s., belongs to F) is an optimal solution to the right
hand side minimization problem in (2.73), so that

V(p € Myi,v € Ma) :

([ = infoer (6, 155 7) = Py ) = 1n (Jo Vou @l @M)) . 3T

Indeed, we have

exp{ =@ (W) }pu(w) = exp{ou. (W) }pv (W) = 9(w) == Vpu(w)py (@),

whence ®(¢y.v, [p;v]) = In ([, g(w)II(dw)). On the other hand, for ¢(-) = ¢u.(-) +8(-) €
F we have

Jo 9(@)T(dw) = [, [/g(@) exp{=0(w)/2}] [v/9(w) exp{é(w)/2}| 1(dw)
(@) < (fop 9(w) exp{=3(w)HI(dw))""* (f,, 9(w) exp{d(w) HI(dw)) /2

= ([, exp{—6(w)}p(@)II(dw))"* ([, exp{e(w) }pu ()I1(dw)) />
() = In(f, 9(w)(dw)) < B(, [; 7)),

and thus ®(¢.., [15v]) < B(6, [1; v]) for every ¢ € F.

Remark 2.26. Note that the above reasoning did not use the fact that the minimization in
the right hand side of (2.73) is over ¢ € F; in fact, this reasoning shows that ¢, (-) min-
imizes ®(¢, [11; v]) over all functions ¢ for which the integrals [, exp{—¢(w)}p,(w)II(dw)
and [, exp{¢(w)}p, (w)II(dw) exist.

Remark 2.27. Note that the inequality in (b) can be equality only when the inequality in
(a) is so. In other words, if ¢ is a minimizer of ®(¢,[u;v]) over ¢ € F, setting §(-) =
&(-) = ¢ (+), the functions \/g(w) exp{—d(w)/2} and \/g(w) exp{d(w)/2}, considered as
elements of L[, II], are proportional to each other. Since g is positive and g,d are
continuous, while the support of II is the entire €2, this “Ls-proportionality” means that
the functions in question differ by a constant factor, or, which is the same, that 6(-) is
constant. Thus, the minimizers of ®(&, [u;v]) over ¢ € F are exactly the functions of the
form ¢(w) = ¢, (w) + const.

2°. We are about to verify that ®(¢, [i;v]) has a saddle point (min in ¢ € F, max in
[u;v] € M1 x Ms). Indeed, observe, first, that on the domain of ® it holds
(o(-) + a, [ v]) = D(S(), [4;v]) V(a € R, ¢ € F). (2.75)

Let us select somehow g € M, and let II be the measure on Q with density py w.r.t.
II. For ¢ € F, the integrals [, eI (dw) are finite (since O is simple), implying that
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¢ € L1[Q,I1]; note also that II is a probabilistic measure. Let now Fo = {¢ € F :
Jo #(@)II(dw) = 0}, so that Fo is a linear subspace in F, and all functions ¢ € F can
be obtained by shifts of functions from Fy by constants. Invoking (2.75), to prove the
existence of a saddle point of ® on F x (M1 x Ms) is exactly the same as to prove the
existence of a saddle point of ® on Fy x (M1 x M2). Let us verify that ®(¢, [p; v]) indeed
has a saddle point on Fo x (M1 x M2). M; X Mz is a convex compact set, and P is
continuous on Fy X (M7 x M) and convex-concave; invoking Sion-Kakutani Theorem we
see that all we need in order to verify the existence of a saddle point is to show that
® is coercive in the first argument, that is, for every fixed [u;v] € Mi X Mz one has
D(p, [u;v]) = +00 as ¢ € Fo and ||@]| — oo (whatever be the norm || - || on Fo; recall that
Fo is a finite-dimensional linear space). Setting

0(0) = 26, uiv) =  [in ([ e nomia)) +n ([ *n ) |

and taking into account that © is convex and finite on Fo, in order to prove that © is
coercive, it suffices to verify that ©(t¢) — oo, t — oo, for every nonzero ¢ € Fo, which
is evident: since [, p(w)Il(dw) = 0 and ¢ is nonzero, we have [, max[p(w),0]ll(dw) =
Jo max[—¢(w),0]II(dw) > 0, whence ¢ > 0 and ¢ < 0 on sets of II-positive measure,
so that ©(t¢) — oo as t — oo due to the fact that both p,(-) and p,(-) are positive
everywhere.

3°. Now let (¢« (-); [14+; v+]) be a saddle point of ® on F x (M7 x M>). Shifting, if necessary,
¢« (+) by a constant (by (2.75), this does not affect the fact that (¢, [u«;v«]) is a saddle
point of ®), we can assume that

v 1= / exp{—¢x () }pp. (W) (dw) = / exp{d«(w)}pv, (W) (dw), (2.76)
Q Q
so that the saddle point value of ® is

P, = in ®(o, [u; = O (s, [px; Vs]) = In(ey). 2.77
X min B(¢, (13 v]) = (b, [ v]) = In(ey) (2.77)
as claimed in item (i) of Theorem.
Now let us prove (2.67). For u € M1, we have

In(e) = Pu>O(¢s, [1504])
= 3l (fqexp{—¢s(w)}pu(w)(dw)) + 5 In ([, exp{¢«(w)}pv. (w)II(dw))
= 3l (fgexp{—¢s(w)}pu(w)P(dw)) + 5 In(e),

whence In ( [, exp{—¢% (w) }pu(w)I(dw)) = In ([, exp{—¢«(w)}pu(w)P(dw))+a < In(e,)+
a, and (2.67.a) follows. Similarly, when v € M», we have

In(e,) = Du > (s, [ux;V])
= n (f, exp{~ 6 ()} ()TI(dw)) + 1 0 (f exp{6 () ()T1(d))
= B+ o (), expl6s @) pu(@)T@))

so that In ([, exp{¢%(w)}p, (w)I(dw)) = In ([, exp{ ¢« (w)}p, (w)II(dw)) —a < In(e,) — a,
and (2.67.b) follows.

We have proved all claims in item (i), except for the claim that the just defined ¢., e
form an optimal solution to (2.69). Note that by (2.67) as applied with a = 0, the pair in
question is feasible for (2.69). Assuming that the problem admits a feasible solution (¢, ¢)
with € < &, let us lead this assumption to a contradiction. Note that ¢ should be such
that

/ e_d;(“’)pu* (W)I(dw) < ex & / ?“p,. (w)II(dw) < e,
Q Q
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and consequently O(p, [1x;v+]) < In(ex). On the other hand, Remark 2.26 says that
D (¢, [1+; v+]) cannot be less than ;nelg D (¢, [u+; v+]), and the latter quantity is @ (P« [fi«; V])

due to the fact that (¢, [1«; v4]) is a saddle point of ® on F x (M7 x Mz). Thus, assuming
that the optimal value in (2.69) is < €, we conclude that ® (¢« [p«; vs]) < (P, [+ v4]) <
In(e.), contradicting (2.77). Item (i) of Theorem 2.25 is proved.

4°. Let us prove item (ii) of Theorem 2.25. Relation (2.70) and concavity of the right
hand side of this relation in [u;v] were already proved; moreover, these relations were
proved in the range M x M of [u;v]. Since this range coincides with its relative interior,
the real-valued concave function @ is continuous in M x M and thus is continuous in
My x M. Next, let ¢, be the ¢-component of a saddle point of ® on F x (M x Ms) (we
already know that a saddle point exists). Invoking Proposition 2.23, the [u; v]-components
of saddle points of ® on F x (M; X Ms) are exactly the maximizers of ® on M1 x M.
Let [p«;v«] be such a maximizer; by the same Proposition 2.23, (¢« [u«; v«]) is a saddle
point of &, whence ® (¢, [u; V«]) attains its minimum over ¢ € F at ¢ = ¢.. We have also
seen that @ (¢, [u«; v«]) attains its minimum over ¢ € F at ¢ = ¢, ... These observations
combine with Remark 2.27 to imply that ¢. and ¢, ., differ by a constant, which, in
view of (2.75), means that (¢u, v, [1«; V«]) is a saddle point of ® along with (¢u, [ V]).
(ii) is proved.

5°. Tt remains to prove item (iii) of Theorem 2.25. In the notation from (iii), simple hy-
potheses (A) and (B) can be decided with the total risk < 2e¢, and therefore, by Proposition
2.2,

2€ 1= Amin[p(w),q(w)]l‘[(dw) < 2e.

On the other hand, we have seen that the saddle point value of ® is In(e,); since [f«; v«
is a component of a saddle point of @, it follows that minger ®(¢@, [1+; v«]) = In(ex). The
left hand side in this equality, as we know from item 1°, is ®(¢s. 4., [T+;¥+]), and we

arrive at In(e.) = ®(3 In(pu, () /pv. (+)), [,u*; vi]) = In (fﬂ D (WP, (W )H(do.;))7 so that

fQ Dy (W)pr, (W) (dw) fQ \/p w)II(dw). We now have

= fﬂ \/p w)II( dw 2\/mm[p q(w) \/max[p q w)](dw)

(fﬂ mm[p( w))l (fQ max[p( w)) L

= (f,, min[p(w) dw))/ (/, +q(w) mln[p(w) g(w)])T(dw)) "/
= 1/2¢(2 — 2¢) <2\/1— €)e,

where the concluding inequality is due to € < e < 1/2. (iii) is proved, and the proof of

Theorem 2.25 is complete. a

[

Remark 2.28. Assume that we are under the premise of Theorem 2.25 and that the
simple o.s. in question is nondegenerate (see Section 2.4.2). Then ¢, < 1 if and
only if the sets M; and Ms> do not intersect.

Indeed, by Theorem 2.25.i, In(e,) is the saddle point value of ®(¢, [u;v]) on
F x (M; x Ms), or, which is the same by Theorem 2.25.ii, the maximum of the
function (2.70) on M; x Ma; since saddle points exist, this maximum is achieved at
some pair [u;v] € My x Ma. Since (2.70) clearly is < 0, we conclude that e, < 1 and
the equality takes place if and only if [, \/pu(w)py (w)II(dw) = 1 for some p € M,
and v € Ma, or, which is the same, [(,(v/pu(w) — /Py (w))*I(dw) = 0 for these p
and v. Since p,(-) and p,(-) are continuous and the support of II is the entire 2,

the latter can happen if and only if p, = p, for our p, v, or, by nondegeneracy of
O, if and only if My N My # (). m]
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2.4.5 Simple observation schemes — Examples of optimal detectors

Theorem 2.25.1 states that when the observation scheme
O=(QI{p,: pe€M}F)

is simple and we are interested to decide on a pair of hypotheses on the distribution
of observation w € €,

H,:w~p, withpe M, x=1,2

and the hypotheses are conver, meaning that the underlying parameter sets M,
are convex and compact, building optimal, in terms of its risk, detector ¢, — that
is, solving (in general, semi-infinite and infinite-dimensional) optimization problem
(2.69) reduces to solving the usual finite-dimensional convex problem. Specifically,
an optimal solution (¢4, e,) can be built as follows:

1. We solve optimization problem

ope= _gx, |2 = ([ mnan)|: e

of maximizing Hellinger affinity (the quantity under the logarithm) of a pair of
distributions obeying H; and Hs, respectively; for a simple o.s., the objective in
this problem is concave and continuous, and optimal solutions do exist;

2. (Any) optimal solution [p.; V.| to (2.78) gives rise to an optimal detector ¢, and
its risk e,, according to

1 (pu (W)
X ==1 i = Opt}. 2.79
o) = i (2=, e~ explOpt) (2.79)
The risks of the simple test 7y, associated with the above detector and deciding
on Hy, Hs, satisfy the bounds

max [RlSkl (%* ‘Hh HQ), RiSkQ(n* ‘Hh Hg)] S Exs (280)

and the test is near-optimal, meaning that whenever the hypotheses Hy, H>
(and in fact — even two simple hypotheses stating that w ~ p,, and w ~ p,_,
respectively) can be decided upon by a test with total risk < 2e, 7, exhibits
“comparable” risk:

gx < 2¢/€(1 —¢). (2.81)

Note that the test Ty, is just the mazimum likelihood test induced by the proba-
bility densities p,,, and p,,.

Note that after we know that (¢.,e,) form an optimal solution to (2.69), some
kind of near-optimality of the test 7Ty, is guaranteed already by Proposition 2.20;
specifically, by this Proposition, whenever in the nature there exists a test 7 which
decides on Hj, Hy with risks Risk;, Risks bounded by some € < 1/2; the upper
bound e, on the risks of 7;, can be bounded according to (2.81). Our now near-
optimality statement is a bit stronger: first, we allow T to have the total risk < 2e,
which is weaker than to have both risks < €; second, and more important, now 2¢
should upper-bound the total risk of 7 on a pair of simple hypotheses “embedded”
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into the hypotheses Hy, Hy; both these modifications extend the family of tests T
to which we compare the test 73,, and thus enrich the comparison.
Let us look how the above recipe works for our basic simple o.s.’s.

2.4.5.1 Gaussian o.s.

When O is a Gaussian o.s., that is, {p, : p € M} are Gaussian densities with
expectations 1 € M = R% and common positive definite covariance matrix ©, and
F is the family of affine functions on = R%,

e M, M, can be arbitrary nonempty convex compact subsets of R,
e problem (2.78) becomes the convex optimization problem

Opt— — mn H=VOu-v)
HEM;,vEM> 8

(2.82)

e the optimal detector ¢, and the upper bound &, on its risks given by an optimal
solution (g, v«) to (2.82) are

Pe(w) = gl —v]TOTw —w], w= . + 0]

_ 2.83
Ex = exp{——[”*_y*]eglw*_y*]} (2:83)

Note that when © = I, the test 74, becomes exactly the optimal test from Example
2.4. The upper bound on the risks of this test established in Example 2.4 (in our
present notation, this bound is Erf(4||p. — v.]2)) is slightly better than the bound
£, = exp{—||« — v«||3/8} given by (2.83) when © = I,;. Note, however, that when
speaking about the distance 6 = ||« — vi||2 between M; and My allowing for a test
with risks < € < 1, the results of Example 2.4) and (2.83) say nearly the same:
Example 2.4 says that § should be > 2ErfInv(e), where Erflnv(e) is the Inverse
Error function:
Erf(Erflnv(e)) = ¢, 0 < e < 1,

and (2.83) says that ¢ should be > 24/21In(1/¢). When € — +0, the ratio of these
two lower bounds on § tends to 1.

It should be noted that our general construction of optimal detectors as applied
to Gaussian o.s. and a pair of convex hypotheses results in ezactly optimal test and
can be analyzed directly, without any “science” (see Example 2.4).

2.4.5.2 Poisson o.s.

When O is a Poisson o.s., that is, M = Rle_ is the interior of nonnegative orthant
in R, and p,, u € M, is the density

pu(w) = H (Mi /e_“'i> , w=(w,...,wq) € Z‘i

wi!

taken w.r.t. the counting measure Il on Q = Zi, and F is the family of affine
functions on 2, the recipe from the beginning of Section 2.4.5 reads as follows:

e M, M5 can be arbitrary nonempty convex compact subsets of Ri L =1{ze€ RY :
x> 0};
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e problem (2.78) becomes the convex optimization problem
d

Opt = — min %Z (Vi — Vi)’ ; (2.84)

peEMi,veEMs2 4 < ]
i=

e the optimal detector ¢, and the upper bound e, on its risks given by an optimal
solution (u*,v*) to (2.84) are

buw) = S (M) wi+ I - (2.85)

€y eOpt

2.4.5.8 Discrete o.s.

When O is a Discrete o.s., that is, Q = {1,...,d}, II is a counting measure on {2,
M={peR: >0, =1} and

Pu(w) = pro, w=1,...,d, p € M,
the recipe from the beginning of Section 2.4.5 reads as follows:

e My, My can be arbitrary nonempty convex compact subsets of the relative inte-
rior M of the probabilistic simplex,
e problem (2.78) is equivalent to the convex program

d

€, = max Z NITIZE (2.86)

HWEM;,vE My 4
=1
e the optimal detector ¢, given by an optimal solution (u*,v*) to (2.84) is

¢u(w) = 3In (‘:—:), (2.87)

w

and the upper bound &, on the risks of this detector is given by (2.86).

2.4.5.4 K-th power of simple o.s.
Recall that K-th power of a simple o.s. O = (,1I; {p,, : p € M}; F) (see Section
2.4.3.4) is the o.s.

[O1F = (@, 15 {pf0 - e M}; FUIO)

where Q% is the direct product of K copies of Q, II¥ is the product of K copies
of II, the densities p/(LK) are product densities induced by K copies of density p,,,

we M:

K
PO W = (w1, wi)) = [ pulwr),
k=1
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and F) is comprised of functions

K
¢(K)(WK = (wh ""wK)) = Z¢(wk)

k=1

stemming from functions ¢ € F. Clearly, [O]¥ is the observation scheme describing
the stationary K-repeated observations w’ = (wy, ..., wx) with wy, stemming from
the o.s. O, see Section 2.3.2.3. As we remember, [O]¥ is simple provided that O is
S0.

Assuming O simple, it is immediately seen that as applied to the o.s. [O]¥, the
recipe from the beginning of Section 2.4.5 reads as follows:

e My, M5 can be arbitrary nonempty convex compact subsets of M, and the corre-
sponding hypotheses, Hf , x = 1,2, state that the components wy, of observation
wk = (w1, ...,wr) are independently of each other drawn from distribution Dy
with g € M; (hypothesis HY) or p € My (hypothesis HI).

e problem (2.78) is the convex program

opt(K) = e ([ WOt an) o0
EKln(fxz VPu (w)py(w)l'[(dw)>

implying that any optimal solution to the “single-observation” problem (Dy)
associated with M, My is optimal for the “K-observation” problem (Dy) asso-
ciated with M;, Ms, and Opt(K) = KOpt(1);

e the optimal detector (bim given by an optimal solution (j.,v.) to (Dp) (this
solution is optimal for (D) as well) is

oNWE) = TR dulwn),
bu(w) = 3ln(Z=i),

(2.88)

and the upper bound &,(K) on the risks of the detector ¢5<K) on the pair of
families of distributions obeying hypotheses H¥ | resp., HX | is

£, (K) = eOPHE) = KOpt(L) — [¢ (1)), (2.89)

The just outlined results on powers of simple observation schemes allow to express
near-optimality of detector-based tests in simple 0.s.’s in a nicer form, specifically,
as follows.

Proposition 2.29. Let O = (Q,1;{p, : p € M};F) be a simple observation
scheme, My, My be two nonempty convex compact subsets of M, and let (pix, Vi)
be an optimal solution to the convex optimization problem (cf. Theorem 2.25)

Let ¢, and ¢X be single- and K -observation detectors induced by (1., v.) via (2.88).
Let € € (0,1/2), and assume that for some positive integer K in the nature
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exists a simple test TX deciding via K i.i.d. observations w¥ = (wy,...,wr) with

Wk ~ Py, for some unknown u € M, on the hypotheses
H;K) peM,, x=1,2,

with risks Risky, Risks mot exceeding €. Then setting

2
1—In(4(1 —¢€))/In(1/e¢)

K+ :J Kl_‘

the simple test 7:/)(I(+) utilizing Ky i.i.d. observations decides on H1<K+), HéK”

with risks < €. Note that K, “is of order of K:” K. /K — 2 as ¢ — +0.

K

Proof. Applying item (iii) of Theorem 2.25 to the simple o.s. [O]", we see that

what above was called e, (K) satisfies

& (K) < 2y/e(1 —e).

1K
By (2.89), we conclude that €,(1) < (2 e(1— 6)) , whence, by the same (2.89),

T/K
(1) < (2 e(1— e)) T =1,2,...; plugging in this bound T = K., we get
(check it!) the inequality e,(Ky) < e. It remains to recall that ,(K) upper-

bounds the risks of the test 7;)(1{+) when deciding on Hl(K+) VS. H2(K+). O

2.5 TESTING MULTIPLE HYPOTHESES

So far, we focused on detector-based tests deciding on pairs of hypotheses, and our
“constructive” results were restricted to pairs of conver hypotheses dealing with a
simple o.s.

0= (QIL{p,:peM}F), (2.90)

convexity of a hypothesis meaning that the family of probability distributions obey-
ing the hypothesis is {p, : p € X} associated with a convex (in fact, convex com-
pact) set X C M.

In this Section, we will be interested in pairwise testing unions of convex hy-
potheses and testing multiple (more than two) hypotheses.

2.5.1 Testing unions
2.5.1.1 Situation and goal

Let Q be an observation space, and assume we are given two finite collections of
families of probability distributions on : families of red distributions R;, 1 <1i <r,
and families of blue distributions B;, 1 < j < b. These families give rise to r red
and b blue hypotheses on the distribution P of an observation w € ), specifically,

R; : P € R; (red hypotheses) and B; : P € B; (blue hypotheses)
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Assume that for every i < r, j < B we have at our disposal a simple detector-based
test 7;; capable to decide on R; vs B;; what we want is to assemble these tests into
a test 7 deciding on the union R of red hypotheses vs. the union B of blue ones:

r b
R:PeR:=|JRi, B:PeB:=]B,

i=1 j=1
where P, as always, stands for the probability distribution of observation w € €.

Our motivation primarily stems from the case where R; and B; are convex hy-
potheses in a simple o.s. (2.90):

Ri={pu:p € M}, B = {pu: p € N;},

where M; and N; are convex compact subsets of M. In this case we indeed know
how to build near-optimal tests deciding on R; vs. Bj, and the question we have
posed becomes, how to assemble these tests into a test deciding on R vs. B, with

R:PeR={p,:peX} X=U,M,
B:PeB={p.:peY}Y=U,;N;

while structure of R, B is similar to the one of R;, Bj, there is a significant
difference: the sets X, Y are, in general, non-convex, and therefore the techniques
we have developed fail to address testing R vs. B directly.

2.5.1.2 The construction

In the just described situation, let ¢;; be the detectors underlying the tests 7;;;
w.l.o.g., we can assume these detectors balanced (see Section 2.3.2.2) with some
risks €;;:

fﬂ €_¢ij(w)P(dw) < €5 VP € R;

<i< <4 <b. .
Joe?9 @ P(dw) < e; VP € B, }=1““»19b (2:91)

Let us assemble the detectors ¢;; into a detector for R, B as follows:

$lw) = max min lgi; — aij], (2.92)

where the shifts a;; are construction’s parameters.
Proposition 2.30. The risks of ¢ on R, B can be bounded as

VPER: [ e ¢ P(dw) < max;<, {2221 eije““}

(2.93)
VPEB: [,e? @ P(dw) < maxj<p[> ), €je" ]

Thus, the risks of ¢ on R, B are upper-bounded by the quantity

b

.
€, = Iax |max E €je“ | max { E ev;jefa”} , (2.94)
i<r j=1 j<b i=1

J

whence the risks of the based on the detector ¢ simple test Ty deciding on R, B are
upper-bounded by e,.
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Proof. Let P € R, so that P € R;, for some i, <r. Then

fQ e—qb(w)P(dw) — fQ emini<T man<b[—¢ij(w)+a,-j} (dw)

< f emax;<p[—¢i,j(W)+ai, ;] p (dw) < Z 1]9@ ¢%*J(w)+al*]P(dw)
= Z 1 exp ixj f 6_¢1*J(W)P(dw)

< D joi €ije [by (2.91) due to P € Ry, ]

< max;<pr [Z?:l Eijeaij]
Now let P € B, so that P € B;, for some j.. We have

f e¢(w)P dw) f eMax; <r minj <p[¢i; (w)— O‘”]P(dw)

< f emax;<r| ¢7J*(W? 0477*]P(dw) < E 1];, ePijx (W)—ij, p (dw)
= _jexp % [ e®iin () P(dw)

<3 €j.e®i+ [by (2.91) due to P € B;, |

< maxj<p [P, €je7 ]

(2.93) is proved. The remaining claims in Proposition are readily given by (2.93)
combined with Proposition 2.16. ]

Optimal choice of shift parameters. The detector and the test considered in
Proposition 2.30, same as the resulting risk bound €,, depend on the shifts o;;. We
are about to optimize the risk bound w.r.t. these shifts. To this end, consider the
7 X b matrix

B=lelisy

and the symmetric (r + b) x (r + b) matrix

o= e

As it is well known, the eigenvalues of the symmetric matrix £ are comprised of
the pairs (o, —05), where o4 are the singular values of E, and several zeros; in
particular, the leading eigenvalue of £ is the spectral norm |E| 22 (the largest
singular value) of matrix E. Further, E is a matrix with positive entries, so that
£ is a symmetric entrywise nonnegative matrix. By Perron-Frobenius Theorem,
the leading eigenvector of this matrix can be selected to be nonnegative. Denoting
this nonnegative eigenvector [g; h] with r-dimensional g and b-dimensional h, and
setting p = || E||2,2, we have

pg = Eh

- (2.95)

Observe that p > 0 (evident), whence both g and h are nonzero (since otherwise
(2.95) would imply ¢ = h = 0, which is impossible — the eigenvector [g;h] is
nonzero). Since h and g are nonzero nonnegative vectors, p > 0 and E is entrywise
positive, (2.95) says that g and h are strictly positive vectors. The latter allows to
define shifts «;; according to

ij =1n(h;/gi). (2.96)




StatOpt'LN'NS  January 21, 2019 7x10

98 LECTURE 2

With these shifts, we get

max;<, [2221 eijeo‘if} = max;<, 23:1 €ijhj/g9; = maxi<,(Eh);/g; = max;<, p=p
(we have used the first relation in (2.95)) and

max;j<p [Y5;_y €56 ] = maxj<p 331 €59i/hj = max;<p[ETgl;/hj = max;<pp=p
(we have used the second relation in (2.95)). The bottom line is as follows:

Proposition 2.31. In the situation and the notation from Section 2.5.1.1, the risks
of the detector (2.92) with shifts (2.95), (2.96) on the families R, B do not exceed
the quantity

1B := [eij]i<rj<bll2,2-

As a result, the risks of the simple test Ty, deciding on the hypotheses R, B, does
not exceed ||E||2,2 as well.

In fact, the shifts in the above proposition are the best possible; this is an
immediate consequence of the following simple fact:

Proposition 2.32. Let £ = [e;;] be nonzero entrywise nonnegative nxn symmetric
matriz. Then the optimal value in the optimization problem

n

Opt = Iélljn Iglgai(zeijeaij Dy = — Qg (%)
7j=1

is equal to ||E]|2,2. When the Perron-Frobenius eigenvector f of € can be selected

positive, the problem is solvable, and an optimal solution is given by

Proof. Let us prove, first, that Opt < p := ||€||2,2. Given € > 0, we clearly can find
an entrywise nonnegative symmetric matrix £ with entries €}, in-between e;; and
ei; + € such that the Perron-Frobenius eigenvector f of £ can be selected positive
(it suffices, e.g., to set e;; = e;; + €). Selecting a;; according to (2.97), we get a
feasible solution to (x) such that

Vi . Zeijea” < Ze;jfj/fi = ||5/||2’27
J J

implying that Opt < ||€’||22. Passing to limit as e — +0, we get Opt < ||€||2,2. As
a byproduct of our reasoning, we see that if £ admits a positive Perron-Frobenius
eigenvector f, then (2.97) yields a feasible solution to () with the value of the
objective equal to ||€]|2,2.

It remain to prove that Opt > ||€]|2,2. Assume that this is not the case, so that
(*) admits a feasible solution &;; such that

pi= mf‘xzeijea” <p:=[€]2,2-
J
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Perturbing £ a little bit, we can make this matrix symmetric and entrywise positive,
and still satisfying the above strict inequality; to save notation, assume that already
the original £ is entrywise positive. Let f be a positive Perron-Frobenius eigenvector
of £, and let, as above, a;; = In(f;/f;), so that

Z e;je* = Z eijfi/ fi = p Vi.
J J
Setting d;; = &;; — a5, we conclude that the convex functions

0; (t) = Z €ij eXii +tdi;
J

all are equal to p as t = 0, and all are < p < p as t = 1, implying that 6;(1) < 6;(0)
for every i. The latter, in view of convexity of 6;(-), implies that

0;(0) = Y eije™idyy =Y eij(f;/fi)diy <0 Vi.
J J
Multiplying the resulting inequalities by f? and summing up over i, we get
Zeijfifj(;ij <0,
(2%

which is impossible: we have e;; = e;; and d;; = —¢;;, implying that the left hand
side in the latter inequality is 0. O

2.5.2 Testing multiple hypotheses ”up to closeness”

So far, we have considered detector-based simple tests deciding on pairs of hy-
potheses, specifically, convex hypotheses in simple o0.s.’s (Section 2.4.4) and unions
of convex hypotheses (Section 2.5.1)2°. Now we intend to consider testing of mul-
tiple (perhaps more than 2) hypotheses “up to closeness;” the latter notion was
introduced in Section 2.2.4.2.

2.5.2.1 Situation and goal

Let Q be an observation space, and let a collection Py, ..., Py of families of proba-
bility distributions on 2 be given. As always, families P, give rise to hypotheses

Hy:PePy

on the distribution P of observation w € 2. Assume also that we are given a
closeness relation C on {1, ..., L}; recall that a closeness relation, formally, is some
set of pairs of indexes (¢,¢') € {1, ..., L}; we interpret the inclusion (¢, ¢’) € C as the

20strictly speaking, in Section 2.5.1 it was not explicitly stated that the unions under consid-
eration involve convex hypotheses in simple 0.s.’s; our emphasis was on how to decide on a pair
of union-type hypotheses given pairwise detectors for “red” and “blue” components of the unions
from the pair. Note, however, that as of now, the only situation where we indeed have at our
disposal good pairwise detectors for red and blue components is the one where these components
are convex hypotheses in a good o.s.
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Figure 2.2: 11 hypotheses on the location of the mean p of observation w ~
N (u, I), each stating that p belongs to the polygon of specific color.

fact that hypothesis H, “is close” to hypothesis Hy. When (¢,¢') € C, we say that
¢ is close (or C-close) to £. We always assume that

e C contains the diagonal: (¢,¢) € C for every ¢ < L (“each hypothesis is close to
itself”), and

e C is symmetric: whenever (¢,¢') € C, we have also (¢, ¢) € C (“if ¢-th hypothesis
is close to ¢'-th one, then ¢'-th hypothesis is close to ¢-th one”).

Recall that a test 7 deciding on the hypotheses Hy, ..., Hy via observation w € €
is a procedure which, given on input w € €, builds some set T(w) C {1,...,L},
accepts all hypotheses Hy with ¢ € T (w), and rejects all other hypotheses.

Risks of an “up to closeness” test. The notion of C-risk of a test was introduced
in Section 2.2.4.2; we reproduce it here for reader’s convenience. Given closeness C
and a test T, we define the C-risk

Risk(T|Hy, ..., Hy)
of T as the smallest € > 0 such that

Whenever an observation w is drawn from a distribution P € |J, Py, and (.
is such that P € Py, (i.e., hypothesis Hy, is true), the P-probability of the
event Uy & T(w) (“true hypothesis Hy, is not accepted”) or there exists ¢’
not close to £ such that Hy is accepted” is at most €.

Equivalently:

Risk®(T|Hy, ..., Hy) < € if and only if the following takes place:

Whenever an observation w is drawn from a distribution P € |, Pe, and
L, is such that P € Py, (i.e., hypothesis Hy, is true), the P-probability of
the event

L, € T(w) (“the true hypothesis Hy, is accepted”) and ¢ € T (w)
implies that (£,0") € C (“all accepted hypotheses are C-close to the
true hypothesis Hy, ”) is at least 1 — e.

For example, consider 11 colored polygons presented on Figure 2.2 and associate
with them 11 hypotheses on 2D “signal plus noise” observation w = x + &, & ~
N(0, I5), with £-th hypothesis stating that = belongs to ¢-th polygon. When defining
closeness C on the collection of 11 hypotheses presented on Figure 2.2 as

“two hypotheses are close if and only if the corresponding color polygons inter-
sect”
the fact that a test 7 has C-risk < 0.01 implies, in particular, that if the probability
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distribution P underlying the observed w “is black,” (i.e., the mean of w belongs
to the black polygon), then with P-probability at least 0.99 the list of accepted
hypotheses will include the black one, and the only other hypotheses in this list
will be among the red, yellow and light-blue ones.

2.5.2.2  “Building blocks” and construction

The construction we are about to present is, essentially, the one used in Section
2.2.4.3 as applied to detector-generated tests; this being said, the presentation to
follow is self-contained.

Building blocks for our construction are pairwise detectors ¢pp (w), 1 < €< ¢ <
L, for pairs Py, Py along with (upper bounds on) the risks ey of these detectors:

V(P c PZ) . fQ e_d’“’("")P(dw) < €ppr

< " < L.
V(P S Pgl) : fQ e¢£2/(w)P(dw) S €0 }7 1 > <t < L

Setting
Geo(w) = —ep (W), €pp=€ppr, 1 <L <V <L, ¢po(w)=0,€00=1,1<{ <L,

we get what we shall call balanced system of detectors ¢per and risks €ppr, 1 < 0,0 <
L, for the collection P1, ..., Pr, meaning that

(@) : ¢or (W) + dre(w) =0, €gpr = €prg, 1 < L0 <L

b)y: VPePy: fQ e—WW(W)P(dw) <ew,1<0,0 <L. (2.98)

Given closeness C, we associate with it the symmetric L x L matrix C given by

Cur :{ " E%g S (2.99)

Test Tc. Let a collection of shifts ay € R satisfying the relation
Qupr = 70[[/[, 1 S é, f/ S L (2100)

be given. The detectors ¢y and the shifts gy specify a test 7¢ deciding on
hypotheses Hy, ..., Hy; specifically, given an observation w, the test 7¢ accepts
exactly those hypotheses Hy for which ¢gp (w) — ager > 0 whenever ¢ is not C-close
to £:

'Tc(w) = {f : @p(w) —ayge >0 V(f’ : (Z, 2/) ¢ C)} (2.101)

Proposition 2.33. (i) The C-risk of the just defined test Te is upper-bounded by
the quantity

L
ela] = max E €opr Copre®e?
=1

with C given by (2.99).
(ii) The infimum, over shifts o satisfying (2.100), of the risk bound £[c] is the
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quantity
&x = [1€]|2.2,

where the L x L symmetric entrywise nonnegative matriz £ is given by

£ = [ew = EM'C“’]Z,/Z’SL‘

Assuming £ admits a strictly positive Perron-Frobenius vector f, an optimal choice
of the shifts is
o =In(fp/fe),1 <00 <L,

resulting in ela] = e, = ||€]|2,2.
Proof. (i): Setting

Peer (W) = Peer (W) = appr, € = e,
(2.98), (2.100) imply that

(a) : (EMI(OJ) + (Bz/g(w) =0,1</4 V' <L (2 102)
(b): VPEP: [qe @ P(dw) < &, 1< 6,0 < L. :

Now let £, be such that the distribution P of observation w belongs to P,,. Then
the P-probability of the event ¢y, ¢ (w) < 0 is, for every ¢/, < &, 4 by (2.102.b),
whence the P-probability of the event

E,={w:30:(6,,0)&C & pp.p(w) < 0}

is upper-bounded by

L
E €00 = E Cg*(feg*glea‘*[' < E[Oé}.

0 (L 1) gC =1

Assume that F. does not take place (as we have seen, this indeed is so with P-
probability > 1 —¢[a]). Then ¢y, (w) > 0 for all # such that (4., ¢') € C, implying,
first, that Hy, is accepted by our test. Second, ¢grg, (w) = —y¢, ¢ (w) < 0 whenever
(Ls,0") & C, or, which is the same due to the symmetry of closeness, whenever
(¢, 4,) & C, implying that the test 7¢ rejects the hypothesis Hy when ¢’ is not C-
close to £,. Thus, the P-probability of the event “Hy, is accepted, and all accepted
hypotheses are C-close to Hy,” is at least 1 — e[a]. We conclude that the C-risk
Risk®(T¢|Hy, ..., Hy) of the test T¢ is at most e[a]. (i) is proved. (ii) is readily
given by Proposition 2.32. O

2.5.2.8 Testing multiple hypotheses via repeated observations

In the situation of Section 2.5.2.1, given a balanced system of detectors ¢y and
risks g, 1 < £, 0" < L for the collection Py, ..., Py, (see (2.98)) and a positive integer
K, we can
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e pass from detectors ¢yp and risks ey to the entities

K

b (WK = (Wi, wi)) = Z¢Z€’(wk)7 i) =€y, 1< 00 <L
k=1

e associate with the families P, families PEK) of probability distributions underly-
ing quasi-stationary K-repeated versions of observations w ~ P € Py, see Section
2.3.2.3, and thus arrive at hypotheses HZK = ”H?’K stating that the distribution
PE of K-repeated observation w’ = (wy,...,wr), wi € Q, belongs to the family

K
P, K & Py, see Section 2.1.3.3, associated with Py.
k=1

Invoking Proposition 2.18 and (2.98), we arrive at the following analogy of (2.98):

() o (@) + o0 (WK) =0, el = efy) = €5, 1< 6,0 < L

2.103
(b): VPE e PO [ et @O PR @Ry < B 1< <L (2.103)

Given shifts gy satisfying (2.100) and applying the construction from Section
2.5.2.2 to these shifts and our new detectors and risks, we arrive at the test test 75
deciding on hypotheses HX ..., HX via K-repeated observation w’; specifically,
given an observation w’®, the test ’7'CK accepts exactly those hypotheses H, ZK for

which qﬁgf)(wK) — ayp > 0 whenever ¢ is not C-close to £:
TE (W) = {£: 65 (WF) = ager > 0V = (4,0) ¢ C)}, (2.104)

Invoking Proposition 2.33, we arrive at

Proposition 2.34. (i) The C-risk of the just defined test ’TCK is upper-bounded by
the quantity

L
e K L Qe
ela, K] = Thax Z €ppr Cope™et’ .
=1
(ii) The infimum, over shifts a satisfying (2.100), of the risk bound ela, K] is

the quantity
en(K) = [E5|a,,

where the L x L symmetric entrywise nonnegative matriz E) is given by

EE) = ()%‘,ﬂ = 65/Cw

(<L’

Assuming EX) admits a strictly positive Perron-Frobenius vector f, an optimal
choice of the shifts is
g =In(fe/fer),1 < 0,0 <L,

resulting in o, K] = e, (K) = ||€5)|35.

2.5.2.4 Consistency and near-optimality

Observe that when the closeness C is such that €, < 1 whenever ¢, ¢ are not
C-close to each other, the entries on the matrix ) exponentially fast go to 0 as
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K — oo, whence the C-risk of test TCK also goes to 0 as K — oo; this is called
consistency. When, in addition, P, correspond to convex hypotheses in a simple
0.8., the test T# possesses certain near-optimality properties similar to those stated
in Proposition 2.29

Proposition 2.35. Consider the special case of the situation from Section 2.5.2.1
where, giwen a simple o.s. O = (Q,IL;{p, : p € M}; F), the families Py of prob-
ability distributions are of the form Py = {p, : n € N¢}, where No, 1 < £ < L,
are nonempty convex compact subsets of M. Let also the pairwise detectors ¢gp
and their risks €gp underlying the construction from Section 2.5.2.2 be obtained by
applying Theorem 2.25 to the pairs Ny, Ny, so that for 1 < { < {' < L one has

1
Soe(w) = 5 0(py, o (@)/Py, , (W), €cer = exp{OPLyy },

Optyy = _ min ) In < /Q \/ p,,,(w)p,/(w)ﬂ(dW)>

and (weer , veer) form an optimal solution to the right hand side optimization problem.
Assume that for some positive integer K, in the nature there exists a test TK+

capable to decide with C-risk ¢ € (0,1/2), via stationary K.-repeated observation
K

where

wi=, on the hypotheses HéK*>, stating that the components in w"™* are drawn,
independently of each other, from a distribution P € Py, £ = 1,..., L, and let

1+1In(L —1)/In(1/e) )
T -1 =)/ (/e (2.105)

K =2

Then the test TX yielded by the construction from Section 2.5.2.2 as applied to the
above Qppr, €ppr and trivial shifts app = 0 decides on the hypotheses HZK, see Section
2.5.2.3, via quasi-stationary K -repeated observations w™ , with C-risk < e.

Note that K/K, — 2 as ¢ — +0.

Proof. Let

€= max {€wr : £ < 0" and ¢, " are not C-close to each other} .

Denoting by (., £,) the maximizer in the right hand side maximization, note that
TX« induces a simple test 7 capable to decide via stationary K,-repeated obser-
vations wX on the pair of hypotheses H ,Sf(*), H lE,K “) with risks < e (it suffices to
make T to accept the first of the hypotheses in the pair and reject the second one
whenever 7%+ on the same observation accepts H, X(*), otherwise T rejects the first
hypothesis in the pair and accepts the second one). This observation, by the same
argument as in the proof of Proposition 2.29, implies that e&+ < 2,/¢(1 —¢€) < 1,
whence all entries in the matrix £ do not exceed éX/K+) implying by Proposi-
tion 2.33 that the C-risk of the test 77 does not exceed

e(K) := (L —1)[2\/e(1 — &) K/ %~

It remains to note that for K given by (2.105) one has e¢(K) < e. O
Remark 2.36. Note that the tests T¢ and ’TCK we have built, may, depending on
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observations, accept no hypotheses at all, which sometimes is undesirable. Clearly,
every test deciding on multiple hypotheses up to C-closeness always can be modified
to ensure that a hypothesis always is accepted; to this end, it suffices to accept
exactly those hypotheses, if any, which are accepted by our original test, and accept,
say, hypothesis # 1 when the original test accepts no hypotheses. It is immediate
to see that the C-risk of the modified test cannot be larger than the one of the
original test.

2.5.3 Illustration: Selecting the best among a family of estimates

Let us illustrate our machinery for multiple hypothesis testing by applying it to the
situation as follows:

We are given:

e a simple nondegenerate observation scheme O = (Q,IL{p,(-) : p €
M} F),

e a seminorm | - || on R™, 2!

e a convex compact set X C R™ along with a collection of M points x; €
R", 1 < ¢ < M and a positive D such that the || - ||-diameter of the set

XT=XU{x;:1<i< M} is at most D:
e — /]| < D (.2’ € X7,

e an affine mapping z — A(z) from R" into the embedding space of M
such that A(z) € M for all x € M,
e a tolerance € € (0,1).

We observe K-element sample w® = (wy,...,wr) of independent across k
observations
Wk~ PA(,): 1 Sk <K, (2.106)

where z, € R™ is unknown signal known to belong to X. Our “ideal goal”
is to use w’ in order to identify, with probability > 1 — ¢, the || - ||-closest
to x, point among the points x1,...,xas.

This just outlined goal often is too ambitious, and in the sequel we focus on the
relaxed goal as follows:

Given a positive integer N and a “resolution” 0 > 1, consider the grid
I'={r;=D077,0<j<N}

and let
— 1 . . . > 1 O A
p(x) = min {pJ el:p; > 1§mi1§nM | xz||}

Given design parameters o > 1,8 > 0, we want to specify volume of obser-

21 A seminorm on R™ is defined by exactly the same requirements as a norm, except that
now we allow zero seminorms for some nonzero vectors. Thus, a seminorm on R" is a nonnegative

function || - || which is even and homogeneous: |[[Az|| = |A|||z|| and satisfies the triangle inequality
le +y|l < |lz|l + ||yll. A universal example is ||z|| = ||Bz||o, where || - || is a norm on some R™
and B is an m X n matrix; whenever this matrix has a nontrivial kernel, || - || is a seminorm rather

than a norm.
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vations K and an inference routine w™ s i, g(w’) € {1,..., M} such that

V(z. € X) : Prob{||z. — z;, ;) > ap(zs) + B} > 1 - (2.107)

Note that when passing from the “ideal” to the relaxed goal, the simplification is
twofold: first, we do not care about the precise distance min; ||z, — ;|| from z, to
{z1, ...,z }, all we look at is the best upper bound p(x.) on this distance from the
grid I'; second, we allow factor a and additive term § in mimicking the (discretized)
distance p(z.) by ||z« — 75,y l-

The problem we have posed is rather popular in Statistics; its origin usually
looks as follows: z; are candidate estimates of x, yielded by a number of a priori
“models” of z, and perhaps some preliminary noisy observations of z,. Given z;
and a matrix B, we want to select among the vectors Bx; the (nearly) best, w.r.t.

a given norm || - ||,, approximation of Bz,, utilizing additional observations w
of the signal. To bring this problem into our framework, it suffices to specify the
seminorm as ||z| = ||Bx||,. We shall see in the mean time that in the context of

this problem, the above “discretization of distances” is, for all practical purposes,
irrelevant: the dependence of the volume of observations on NV is just logarithmic,
so that we can easily handle fine grid, like the one with # = 1.001 and §— = 10710,
As about factor a and additive term (3, they indeed could be “expensive in terms
of applications,” but the “nearly ideal” goal of making a close to 1 and S close to
0 is in many cases too ambitious to be achievable.

2.5.8.1 The construction

Let us associate with ¢ < M and j, 0 < j < N, hypothesis H;; stating that the
independent across k observations wy, see (2.106), stem from z, € X;; = {r € X :
|z — z;|| <r;}. Note that the sets X;; are convex and compact. We denote by J
the set of all pairs (4, 5), for which ¢ € {1,...,M}, j € {0,1,...,N}, and X;; # 0.
Further, we define closeness C, g on the set of hypotheses H;j;, (i, j) € J, as follows:

(2j,4'5") € Cap if and only if

a—1
5

||$i — QL‘Z/H < @(Tj + ’/‘j/) + 8, a= (2108)

(here and in what follows, k¢ denotes the ordered pair (k,?)).

Applying Theorem 2.25, we can build, in a computation-friendly fashion, the system
Gijirgr (W), 14,15 € J, of optimal balanced detectors for the hypotheses H;; along
with the risks of these detectors, so that

(@)  Gijirj (W) = —dirjrij(w)V(ig,i'j" € T)

S (w .. . 2.109
b  Joe CORDH )pA(m) (W) (dw) < €505 V(ij € T,i'j € T, x € Xy5) ( )

Let us say that a pair (o, 8) is admissible, if « > 1, § > 0 and

V(i) € T, (0 ') € T, (ij.7') & Carp) s ACXip) NA(Xiry) = 0. (2.110)

Note that checking admissibility of a given pair («, ) is a computationally tractable
task.
Given an admissible par («, 8), we associate with it positive integer K = K («, 3)
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and inference w’ — i, 5(w’) as follows:

1. K = K(a,f) is the smallest integer such that the detector-based test Tc{jﬁ
yielded by the machinery of Section 2.5.2.3 decides on the hypotheses H;;, ij € 7,
with C, g-risk not exceeding €. Note that by admissibility, €;;,/;7 < 1 whenever
(15,7'3") & Cq,B, so that K(a, B) is well defined.

2. Given observation w’, K = K(a, ), we define i, g(w

K as follows:

a) We apply to w® the test 73;3. If the test accepts no hypothesis (case A),
inp(w!) is undefined. The observations w’ resulting in case A comprise some
set, which we denote by B; given w’, we can recognize whether or not w® € B.

b) When w’ ¢ B, the test 7'CI§1B accepts some of the hypotheses H;;, let the set of
their indexes ij be J(w’); we select from the pairs ij € J(w’) one with the
largest 7, and set i, 5(w’) to be equal to the first component, and j, g(w’)
to be equal to the second component of the selected pair.

We are about to prove the following

Proposition 2.37. Assuming (o, ) admissible, for the just defined inference w™
iuﬁ(wk) and for every x, € X, denoting by PLLI.‘: the distribution of stationary K-
repeated observation w’ stemming from x. one has

|2+ — 5, )|l < apzs) + B. (2.111)
with PX -probability at least 1 — .

Proof. Let us fix 2, € X, let j. = j.(z.) be the largest j < N such that r; >
min;< s ||z« — 2;||; note that j, is well defined due to rg = D > ||z, — z1]]. We set

Tj*

= min{r; ;> min o, — o))} = p(a)
and specify i, = i,(2+) < M in such a way that

S?"j*.

(2.112)

|2 — s,

Note that i, is well defined and that observations (2.106) stemming from z, obey
the hypothesis H;_ ;..
Let £ be the set of those w’ for which the predicate

P: As applied to observation w™, the test TC‘EIB accepts H;_ ;. , and all hy-
potheses accepted by the test are Co g-close to H;_j,

holds true. Taking into account that the Cq, g-risk of T* , does not exceed € and

that the hypothesis H;_;, is true, the ngi -probability of the event £ is at least 1 —e.
Let observation w’ satisfy
Wk e&. (2.113)

Then

1. The test 7-(3}25 accepts the hypothesis H;,_;, , that is, wk ¢ B. By construction of
i3 (W5)ja,5(WF) (see the rule 2b above) and due to the fact that ’72{55 accepts
H;_j., we have j, g(w) > j..
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2. The hypothesis H; ) is Cq p-close to H;,j, , so that

a,8(WK)ja,p(wk
i, — @i, s | S @lry, + 75, 4wr)) + 8 < 2ar;, + 8 =2ap(x.) + B3, (2.114)

where the concluding inequality is due to the fact that, as we have already seen,
Jo.p (W) > 4. when (2.113) takes place.

Invoking (2.112), we conclude that with ngi -probability at least 1 — € it holds
|7+ = Zi, sl < 20+ )p(zs) + B = ap(z.) + B, (2.115)

where the concluding equality is due to the definition of &. O

2.5.3.2 A modification

From the computational viewpoint, a shortcoming of the construction presented
in the previous Section is the necessity to operate with M (N + 1) hypotheses,
which could require computing as many as O(M2N?) detectors. We are about to
present a modified construction, where we deal at most N 4+ 1 times with just M
hypotheses at a time (i.e., with the total of at most O(M?N) detectors). The idea
is to replace simultaneous processing of all hypotheses H;;, ij € J, with processing
them in stages j = 0,1,...,, with stage j operating only with the hypotheses H;;,
i=1,..., M.

The implementation of this idea is as follows. In the situation of Section 2.5.3,
given the same entities I', (o, 3), H;;, X;j, ij € J, as in the beginning of Section
2.5.3.1 and specifying closeness C, g according to (2.108), we now act as follows.

Preprocessing. We look, one by one, at j = 0,1,..., N, and for such a j,

1. identify the set Z; = {i < M : X;; # 0} and stop if this set is empty. If this set
is nonempty, we

2. specify closeness Ciﬁ on the set of hypotheses H;;, i € Z; as a “slice” of the
closeness C, 3t

H;; and Hy; (equivalently, ¢ and i) are Ciﬁ—close to each other if (ij,'j)

are Cy g-close, that is,

a—1
7

sz — .TZ'/H < 2ar; + B, &=

3. build the optimal detectors ¢;; /;, along with their risks €;;;/;, for all 4,7 € Z;
such that (i,') ¢ Ci,ﬁ'
If for a pair 4,4’ of this type it happens that €;;;; = 1, that is, A(X;;)NA(X,/;) #
(), we claim that («, 3) is inadmissible and stop. Otherwise we find the smallest
K = K such that the spectral norm of the symmetric M x M matrix EIK with
the entries ,

BIK _ { iy €Ly €Ty, (i,7) € C) g
i 0, otherwise

does not exceed € = ¢/(N + 1). We then use the machinery of Section 2.5.2.3 to

build detector-based test 7'CIJ<’ which decides on the hypotheses H,;, i € Z;, with
a,B

CJ, s-risk not exceeding €.
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It may happen that the outlined process stops when processing some value j of j;
if this does not happen, we set 5 = N + 1. Now, if the process does stop, and stops
with the claim that («, 8) is inadmissible, we call («, 8) inadmissible and terminate
— in this case we fail to produce a desired inference; note that if this is the case,
(o, B) is inadmissible in the sense of Section 2.5.3.1 as well. When we do not stop
with inadmissibility claim, we call (a, §) admissible, and in this case we do produce
an inference, specifically, as follows.

Processing observations.

1. We set J = {0,1,....7 = j — 1}, K = K(o, ) = max K7. Note that J is
0<5<j
nonempty due to j > 0. 22
2. Given observation w® with independent across k& components stemming from

unknown signal z. € X according to (2.106), we act as follows.

a) We set Z_1 (W) = {1,... M} = T,.

b) We look, one by one, at the values j = 0,1,...,/]7. When processing j, we
already have at our disposal subsets fk(wK) c{l,..,M}, -1 <k < j, and
act as follows:

i. we apply the test 7'613-(7‘3 to the initial K; components of the observation
wi. Let I;r(wK) be the set of hypotheses H;j, i € I;, accepted by the
test.

ii. it may happen that I;r (wi) = 0; if it is so, we terminate.

iii. if Z;" (w™) is nonempty, we look, one after one, at indexes i € Z (w*) and
for such an 4, check, for every ¢ € {—1,0,...,5 — 1}, whether i € fg(wK).
If it is the case for every £ € {—1,0,...,5 — 1}, we call index i good.

iv. if good indexes in Z; (w™) are discovered, we define Z;(wk) as the set

of these good indexes and process to the next value of j (if j < j), or
terminate (if j = 7). If there are no good indexes in I;' (W), we terminate.

¢) Upon termination, we have at our disposal a collection i-j wk), 0 <5 <
F (W), of all sets fj (wk) we have built (this collection can be empty, which
we encode by setting j(wX) = —1). When j(w®) = —1, our inference remains
undefined. Otherwise we select from the set fg(wK)(wK ) an index i, g(w’),
say, the smallest one, and claim that the point z; ,(,x) is the “nearly closest”
to z, point among x1,...,Tas.

a,B(

We have the following analogy of Proposition 2.37:

Proposition 2.38. Assuming («, 3) admissible, for the just defined inference w’
ia.5(WX) and for every x. € X, denoting by ng‘ the distribution of stationary K-
repeated observation w™ stemming from x. one has

PEALWE tig g(w™) is well defined and ||z, — T, eyl <ap(e.) + 8} >1—e
(2.116)

22 A1l the sets X;0 contain X and thus are nonempty, so that Zo = {1,..., M} # @, and thus
we cannot stop at step 5 = 0 due to Zgp = @); and another possibility to stop at step j = 0 is ruled
out by the fact that we are in the case when («, 3) is admissible.
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Proof. Let us fix the signal x, € X underlying observations w’. Same as in
the proof of Proposition 2.37, let j,. be such that p(x,) = ., and let i, < M be
such that =, € X;_;,; clearly, i, and j. are well defined, and the hypotheses H;_;,
0 < j < j«, are true. In particular, X, ; # 0 when j < j,, implying that i, € Z;,
0 < j < j«, whence also}Z s

For 0 < j < j., let & be the set of all realizations of w¥ such that

uezﬂww&um@e@ﬁWeq@ﬂ»

Since C] grisk of the test T is <€, we conclude that the PX-probability of &;

is at least 1 — €, whence the PK *-probability of the event

Jx
E=¢&
§=0

isatleast 1 — (N +1)e=1—¢.
Now let
wk cé.

Then, by the definition of &;, j < 7.,

e When j < j,., we have i, € I;r(wK), whence, by evident induction in j, i, €
fj(wK) for all 7 < j,.

e From the above item, j(wX) > J«; in particular, i := iq 5( K is well defined
and turned out to be good at step j > j., implying that i € 7 (Wi c I;: ().

Thus, i € I]t (w®), which combines with the definition of £;, to imply that i and

1y are C’i 5—close to each other, whence
1%i(a,p)(@r) = @i || < 2ar), + B =2ap(x.) + B,
resulting in the desired relation
17i(a,8) (wr) =T+l < 20p(24) + B+ ||2i, — 2| < 20 +1]p(24) + 8 = ap(z.) + 8. O
2.5.3.3  “Near-optimality”

We augment the above simple constructions with the following

Proposition 2.39. Let in the nature for some pos‘m‘mm integer K, ¢ € (0,1/2)
and a pair (a,b) > 0 there exists an inference w’ — i(wk) € {1, .. ]\[} such that
whenever x, € X, we have

Prob,x _ps {lle — ;s || < apla) + b} > 1 —e.

Then the pair (o = 2a + 3,3 = 2b) is admissible in the sense of Section 2.5.8.1
(and thus — in the sense of Section 2.5.3.2), and for both our constructions — the
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one from Section 2.5.3.1 and the one from Section 2.5.8.2) — one has

1+ In(M(N+1))/In(1/e) -
. K
1_ In(4(1—¢))
In(1/€)

K(a,8) < Ceil |2 (2.117)

Proof. Consider the situation of Section 2.5.3.1 (the situation of Section 2.5.3.2
can be processed in a completely similar fashion). Observe that with «, 5 as above,
there exists a simple test deciding on a pair of hypotheses H;;, H; ;; which are not
Ca,p-close to each other via stationary K-repeated observation w® with risk < e.
Indeed, the desired test T is as follows: given ij € J, i'j’ € J, and observation
w, we compute i(w™) and accept Hi; if and only if ||z, — x:l| < (a+1)r; +0,
and accept H; j otherwise. Let us check that the risk of this test indeed is at
most €. Assume, first, that H;; takes place. The ngi -probability of the event
E ¢ iy — z4ll < ap(zi) + b is at lest 1 — € due to the origin of i(-), and
lz; — x| < r; since H;; takes place, implying that p(x.) < r; by the definition of
p(+). Thus, in the case of £ it holds

[23ry = Till < llwgry = zull + l|l2i = 2] < ap(ze) +0+71; < (a+1)r;+0.

We conclude that if H;; is true and wi € &, then the test T accepts H;;, and thus
the Pﬁ -probability for the simple test 7 not to accept H;; when the hypothesis
takes place is < e. )

Now let H,; take place, and let £ be the same event as above. When wkeg,
which happens with the ngi -probability at least 1 — ¢, we by exactly the same
reasons as above have |[z;,x) — || < (a + 1)ry +b. It follows that when Hy ;s

takes place and w € &, we have ;i) — 2ill > (a+1)r; + b, since otherwise we
would have

i — || < llzjwry — @il + |25r) — 2|l < (@+)rj +b+(a+ 1)ry +b
< (a+1)(rj+ry) + 2= 2F (rj + 1) + B,

which contradicts the fact that ij and ¢'j" are not C, g-close. Thus, whenever H; ;s
holds true and & takes place, we have ||lz;,x) — ;|| > (a+1)r;+b, implying that T
accepts Hy/ ;. Thus, the Paff -probability not to accept H; j» when the hypotheses if
true is at most e. From the just established fact that whenever (ij,4'j') & Cq g, the
hypotheses H;;, H; j» can be decided upon, via K observations, with risk < € < 0.5
it follows that for ¢j,4'j" in question, the sets A(X;;) and A(X; ;) do not intersect,
so that (a, ) is an admissible pair.

Same as in the proof of Proposition 2.35, by basic properties of simple ob-
servation schemes, the fact that the hypotheses H;;, H,/j with (ij,i'j’) & Cap
can be decided upon via K-repeated observations (2.106) with risk < ¢ < 1/2
implies that e;;;;; < [2¢/€(1 — €)]'/K, whence, again by basic results on sim-
ple observation scheme (look once again at the proof of Proposition 2.35), the
Cq p-risk of K-observation detector-based test Tx deciding on the hypotheses H;;,
ij € J, up to closeness C, s does not exceed Card(J)[2+/e(1 — €)]X/K < M(N +

1)[21/e(1 — €)]5/K | and (2.117) follows. m|

Comment. Proposition 2.39 says that in our problem, the “statistical toll” for
quite large values of N and M is quite moderate: with e = 0.01, resolution § = 1.001
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(which for all practical purposes is the same as no discretization of distances at all),
D/ry as large as 10'°, and M as large as 10,000, (2.117) reads K = Ceil(10.7K)
— not a disaster! The actual statistical toll in our construction is in replacing the
“existing in the nature” a and b with a = 2a¢ 4+ 3 and = 2b. And of course there
is a huge computational toll for large M and N: we need to operate with large
(albeit polynomial in M, N) number of hypotheses and detectors.

2.5.83.4 Numerical illustration

The toy problem we use to illustrate the approach presented in this Section is as
follows:

A signal xz, € R™ (it makes sense to think of z, as of the restriction on
the equidistant n-point grid in [0, 1] of a function of continuous argument
t € [0,1]) is observed according to

w= Az, +&, &~ N(0,06%I,), (2.118)

where A is “discretized integration:”
1 S

(Az)s = - les, s=1,..,n.
i=

We want to approximate x in the discrete version of Lj-norm

n

1 n
lyll = EZIysly yeR

s=1
by a low order polynomial.

In order to build the approximation, we use a single observation w, stemming
from z, according to (2.118), to build 5 candidate estimates x;, i = 1,...,5 of x,.
Specifically, x; is the Least Squares polynomial, of degree < ¢ — 1, approximation
of z:
x; = argmin || Ay — w||3,
YyEPi—1

where P, is the linear space of algebraic polynomials, of degree < k, of discrete
argument s varying in {1,2,...,n}. After the candidate estimates are built, we
use additional K observations (2.118) “to select the model” — to select among our
estimates the || - ||-closest to z..

In the experiment to be reported we used n = 128 and ¢ = 0.01. The true signal
x4 is plotted in magenta on the top of Figure 2.3; it is discretization of function of
continuous argument ¢ € [0, 1] which is linear, with slope 1, to the left of ¢ = 0.5,
and is linear, with slope —1, to the right of ¢ = 0.5; at ¢ = 0.5, the function
has a jump. A priori information on the true signal is that it belongs to the box
{z € R": ||z||oo < 1}. Sample polynomial approximations z; of z,, 1 <1i <5, are
plotted in blue on the top of Figure 2.3; their actual || - ||-distances to z, are as
follows:

i 1] 2] 3 |4 ] 5 |
[w; — @] || 0.534 | 0.354 | 0.233 | 0.161 | 0.172 ||
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Figure 2.3: Signal (top, magenta) and its candidate estimates (top,blue). Bottom:
the primitive of the signal.

As usual, the reliability tolerance € was set to 0.01. We used N = 22 and § = 2/4,
a =3, f =0.05, resulting in K = 3. In a series of 1000 simulations of the result-
ing inference, all 1000 results correctly identified the || - ||-closest to z. candidate
estimate, specifically, x4, in spite of the factor & = 3 in (2.111). Surprisingly, the
same holds true when we use the resulting inference with the reduced values of K,
namely, K = 1 and K = 2, although the theoretical reliability guarantees dete-
riorate: with K = 1 and K = 2, theory guarantees the validity of (2.111) with
probabilities 0.77 and 0.97, respectively.

2.6 SEQUENTIAL HYPOTHESIS TESTING

2.6.1 Motivation: Election Polls

Consider the question as follows:

One of L candidates for an office is about to be selected by population-wide
majority vote. Every member of the population votes for exactly one of the
candidates. How to predict the winner via an opinion poll?

A (naive) model of situation could be as follows. Let us represent the preference
of a particular voter by his preference vector — basic orth e in R with unit entry
in a position ¢ meaning that the voter is about to vote for the ¢-th candidate. The
entries py in the average u, over the population, of these vectors are the fractions of
votes in favor of /-th candidate, and the elected candidate is the one “indexing” the
largest of pp’s. Now assume that we select at random, from the uniform distribution,
a member of the population and observe his preference vector. Our observation w
is a realization of discrete random variable taking values in the set Q = {ey,...,er}
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of basic orths in RY, and p is the distribution of w (technically, the density of this
distribution w.r.t. the counting measure II on Q). Selecting a small threshold &
and assuming that the true — unknown to us — p is such that the largest entry in
u is at least by ¢ larger than every other entry and that p, > % for all ¢/, N being
the population size?3, the fact that /-th candidate wins the elections means that

peMy = {peR > 5,3 =10 > pi +0V(i #0)}
C M={peR:p>0>, u=1}

In an (idealized) poll, we select at random a number K of voters and observe their
preferences, thus arriving at a sample w® = (w1, ...,wx) of observations drawn,
independently of each other, from unknown distribution p on €2, with p known
to belong to L_JEL:1 M,, and to predict the winner is the same as to decide on L
convex hypotheses, Hy, ..., Hy, in the Discrete o.s., with Hy stating that wy,...,wg
are drawn, independently of each other, from a distribution p € M,. What we end
up with, is the problem of deciding on L convex hypotheses in the Discrete o.s.
with L-element (2 via stationary K-repeated observations.

Illustration. Consider two-candidate elections; now the goal of a poll is, given K
independent of each other realizations wy, ...,wg of random variable w taking value
X = 1,2 with probability j, 1 + 2 = 1, to decide what is larger, p1 or po. As
explained above, we select somehow a threshold § and impose on the unknown p
a priori assumption that the gap between the largest and the next largest (in our
case — just the smallest) entry of u is at least §, thus arriving at two hypotheses:

Hy:pyp > pe+9, Hp:pz > pr+9,
which is the same as

Hl:N’GMl:{/“L::U’lz O 7M2>07N1+;u'2:1}3
Hy:p€ My = {p:po> 2 1y > 0,01 + pg = 1}

We now want to decide on these two hypotheses from stationary K-repeated ob-
servations. We are in the case of simple (specifically, Discrete) o.s.; the optimal
detector as given by Theorem 2.25 stems from the optimal solution (u*,*) to the
convex optimization problem

e = (Vi + i) (2.119)

/LEMl,VEIVIQ

the optimal balanced single-observation detector is

$u(w) = flw, fu= %[ln(uT/VT);ln(MZ/VS)]

(recall that we encoded observations wy by basic orths from R?), the risk of this
detector being e,. In other words,

= [ B = 2 L T
Jo 2 H % 81/ /)

23with the size N of population in the range of tens of thousands and § like 1/N, both these
assumptions seem to be quite realistic.
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The optimal balanced K-observation detector and its risk are

SKK)(M, e WEK) = f*T(w1 + ... twk), 5£K) =(1- 52)K/2.
—

wk

The near-optimal K-observation test 7/ accepts Hy and rejects Hy if (R
0, otherwise it accepts Hy and rejects H;. Both risks of this test do not exceed
e

Given risk level ¢, we can identify the minimal “poll size” K for which the risks
Risky, Risks of the test ’7;{: do not exceed €. This poll size depends on ¢ and on
our a priory “hypotheses separation” parameter 6 : K = K.(J). Some impression
on this size can be obtained from Table 2.1, where, as in all subsequent “election
illustrations,” € is set to 0.01. We see that while poll sizes for “landslide” elec-
tions are surprisingly low, reliable prediction of the results of “close run” elections
requires surprisingly high sizes of the polls. Note that this phenomenon reflects
reality (to the extent at which the reality is captured by our model?*); indeed, from
Proposition 2.29 we know that our poll size is within an explicit factor, depending
solely on €, from the “ideal” poll sizes — the smallest ones which allow to decide
upon Hy, Hy with risk < e. For € = 0.01, this factor is about 2.85, meaning that
when § = 0.01, the ideal poll size is larger than 32,000. In fact, we can build more
accurate lower bounds on the sizes of ideal polls, specifically, as follows. When com-
puting the optimal detector ¢., we get, as a byproduct, two distributions, u*, v*
obeying H;i, H, respectively. Denoting by pj., v} the distributions of K-element
i.i.d. samples drawn from p* and v*, the risk of deciding on two simple hypotheses
on the distribution of w’, stating that this distribution is u}, respectively, v} can
be only smaller than the risk of deciding on Hy, Hs via K-repeated stationary ob-
servations. On the other hand, the former risk can be lower-bounded by one half of
the total risk of deciding on our two simple hypotheses, and the latter risk admits
a sharp lower bound given by Proposition 2.2, namely,

Z min [H ufz,HVi*[ =Eq,...ix) {min [H@NZ%H@VZ;)] } )
I} ¢ ¢ I

Q1,0 €{1,2}
with the expectation taken w.r.t independent tuples of K integers taking values
1 and 2 with probabilities 1/2. Of course, when K is in the range of few tens
and more, we cannot compute the above 2¥-term sum exactly; however, we can
use Monte Carlo simulation in order to estimate the sum reliably within moderate
accuracy, like 0.005, and use this estimate to lower-bound the value of K for which
“ideal” K-observation test decides on Hi, H, with risks < 0.01. Here are the
resulting lower bounds (along with upper bounds stemming from the data in Table

24in actual opinion polls, additional information is used; for example, in reality voters can be

split into groups according to their age, sex, education, income, etc., etc., with variability of pref-
erences within a group essentially lower than across the entire population; when planning a poll,
respondents are selected at random within these groups, with a prearranged number of selections
in every group, and their preferences are properly weighted, yielding more accurate predictions as
compared to the case when the respondents are selected from the uniform distribution. In other
words, in actual polls a non-trivial a priori information on the “true” distribution of preferences
is used — something we do not have in our naive model.
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[ 5 [] 0.5623 [ 0.3162 [ 0.1778 [ 0.1000 [ 0.0562 [ 0.0316 [ 0.0177 [ 0.0100 []
[ Kooi(d),L=21 25 [ 88 T 287 [ 917 [ 2908 [ 9206 [ 29118 [ 92098 ]
| Ko.o1(9),L=5 ]| 32 | 114 | 373 [ 1193 [ 3784 [ 11977 | 37885 [ 119745 ||

Table 2.1: Sample of values of poll size K(.01(0) as a function of ¢ for 2-candidate
(L = 2) and 5-candidate (L = 5) elections. Values of ¢ form a decreasing geometric
progression with ratio 10~1/4.

2.1):

6 | 0.5623 | 0.3162 | 0.1778 | 0.1000 | 0.0562 | 0.0316 | 0.0177 |  0.0100 |
K,K | 14,25 | 51,88 | 166,287 | 534,917 | 1699,2908 | 5379,9206 | 17023,29122 | 53820,92064 |
Lower (K) and upper (K) bounds on the “ideal” poll sizes

We see that the poll sizes as yielded by our machinery are within factor 2 of the
“ideal” poll sizes.

Clearly, the outlined approach can be extended to L-candidate elections with
L > 2. We model the corresponding problem as the one where we need to decide, via
stationary K-repeated observations drawn from unknown probability distribution
w on L-element set, on L hypotheses

1
HzZMEMeZ{MERdIMiZNJSL,Z/M=1,ueZMef+5V(f/7é€)}7f§L;

(2.120)
here § > 0 is a selected in advance threshold small enough to believe that the
actual preferences of the voters correspond to p € |J, My. Defining closeness C in
the strongest possible way — Hy is close to Hy if and only if ¢ = ¢/, predicting
the outcome of elections with risk e becomes the problem of deciding upon our
multiple hypotheses with C-risk < €, and we can use the pairwise detectors yielded
by Theorem 2.25 to identify the smallest possible K = K. such that the test ’7'CK
from Section 2.5.2.3 is capable to decide upon our L hypotheses with C-risk < e.
Numerical illustration of the performance of this approach in 5-candidate elections
is presented in Table 2.1 (where € is set to 0.01).

2.6.2 Sequential hypothesis testing

In view of the above analysis, when predicting outcomes of “close run” elections,
huge poll sizes are a must. It, however, does not mean that nothing can be done in
order to build more reasonable opinion polls. The classical related statistical idea,
going back to Wald [144] is to pass to sequential tests where the observations are
processed one by one, and at every time we either accept some of our hypotheses
and terminate, or conclude that the observations obtained so far are insufficient
to make a reliable inference and pass to the next observation. The idea is that
a properly built sequential test, while still ensuring a desired risk, will be able to
make “early decisions” in the case when the distribution underlying observations
is “well inside” the true hypothesis and thus is far from the alternatives. Let us
show how to utilize our machinery in building a sequential test for the problem of
predicting the outcome of L-candidate elections; thus, our goal is, given a small
threshold §, to decide upon L hypotheses (2.120). Let us act as follows.
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Figure 2.4: 3-candidate hypotheses in probabilistic simplex Ag:

[green] M, dark green + light green: candidate A wins with margin > dg

[green] My dark green: candidate A wins with margin > 65 > dg

[red] My dark red + pink: candidate B wins with margin > dg

[red] M3 dark red: candidate B wins with margin > d5 > dg

[blue]  Ms dark blue + light blue: candidate C wins with margin > dg

[blue] M5 dark blue: candidate C wins with margin > §; > dg
Cs closeness: hypotheses in the tuple {G5, | : p € My, G5, : p € M, 1 < ¢ <3}
are not Cs-close to each other, if the corresponding M-sets are of different colors
and at least one the sets is dark-painted, like M7 and Ms, but not M; and Ms.

1. We select a factor § € (0,1), say, # = 107/, and consider thresholds 6, = 6,
09 = 061, 63 = 092, and so on, until for the first time we get a threshold < d; to
save notation, we assume that this threshold is exactly ¢, and let the number of
the thresholds be S.

2. We split somehow (e.g., equally) the risk e which we want to guarantee into S
portions €,, 1 < s < S, so that ¢, are positive and

E €s = E.

s=1
3. For s € {1,2,..., S}, we define, along with the hypotheses Hy, the hypotheses
H}:peM;={ue€M:pe>pp+06s, VU #£0)}, £=1,..,L,

see Figure 2.4, and introduce 2L hypotheses G5, _; = Hy, and G5, = H}, 1 <

¢ < L. It is convenient to color these hypotheses in L colors, with G5, ; = Hy

and G5, = H; assigned color £. We define also s-th closeness C, as follows:
When s < S, hypotheses G} and G} are Cs-close to each other if either
they are of the same color, or they are of different colors and both of them
have odd indexes (that is, one of them is Hy, and another one is Hy with
£,
When s = S (in this case G5, | = H, = G3,), hypotheses G and G}, are
Cgs-close to each other if and only if they are of the same color, i.e., both
coincide with the same hypothesis Hy.

Observe that G} is a convex hypothesis:

Giipey? [Yoi1 = M, Y3y = M7
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The key observation is that when G} and G are not Cs-close, the sets Y;* and
Y are “separated” by at least d;, meaning that for some vector e € R’ with
just two nonnegative entries, equal to 1 and —1, we have

: T T
min e’y > ds + max e’ p. 2.121
i etz 0+ max ety (2.121)
Indeed, let G} and G3 be not Cs-close to each other. That means that the
hypotheses are of different colors, say, £ and £’ # £, and at least one of them
has even index; w.l.o.g. we can assume that the even-indexed hypothesis is G,

so that

Y’ C {N’ e — per 2 65}7

while Y is contained in the set {4 : ue > pe}. Specifying e as the vector
with just two nonzero entries, /-th equal to 1 and ¢'-th equal to —1, we ensure
(2.121).

4. For 1 < s < S, we apply the construction from Section 2.5.2.3 to identify the
smallest K = K (s) for which the test T yielded by this construction as applied to
stationary K-repeated observation allows to decide on the hypotheses G3, ..., G5,
with Cs-risk < €; the required K exists due to the already mentioned separation
of members in a pair of not Cs-close hypotheses G7, G3. It is easily seen that
K(1) < K(2) <.. < K(S—1); however, it may happen that K(S —1) > K(S),
the reason being that Cg is defined differently than Cs with s < S. We set

S={s<S5:K(s) < K(5)}.

For example, this is what we get in L-candidate Opinion Poll problem when
S =38, =dg =0.01, and for properly selected €5 with Zle es = 0.01:

IL]EKM)[KEQ [KB)[KW@][ KOG [ K6) [ K7) [ KQ8) |
2 ][ 177 | 617 [ 1829 [ 5099 [ 15704 [ 49699 | 153299 | 160118
51 208 | 723 | 2175 | 6204 | 19205 | 60781 | 188203 | 187718

S =38, 85 =107/
S§={1,2,...,8} when L=2and § ={1,2,...,6} U{8} when L = 5.

5. Our sequential test Tseq works in attempts s € S — it tries to make conclusions
after observing K(s), s € S, realizations wy of w. At s-th attempt, we apply
the test 77 to the collection w® ) of observations obtained so far to decide on
hypotheses G7,...,G5;. If 75 accepts some of these hypotheses and all accepted
hypotheses are of the same color, let it be £, the sequential test accepts the
hypothesis Hy and terminates, otherwise we continue to observe the realizations
of w (when s < S) or terminate with no hypotheses accepted/rejected (when

s=29).

It is easily seen that the risk of the outlined sequential test 7., does not exceed
€, meaning that whatever be a distribution u € Ungl My underlying observations
w1, we, ...wk(s) and L, such that p € My, , the pu-probability of the event

Tseq accepts exactly one hypothesis, namely, Hy,
is at least 1 —e.

Indeed, observe, first, that the sequential test always accepts at most one of the
hypotheses Hi, ..., Hr,. Second, let wy ~ p with p obeying H,,. Consider events
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Es, s € S, defined as follows:

e when s < S, F, is the event “the test 7; as applied to observation w™) does
not accept the true hypothesis G3,, | = Hy,”;

e Ejs is the event “as applied to observation w® ), the test Tg does not accept the
true hypothesis GEZ*_I = H,, or accepts a hypothesis not Cs-close to GQS@*_l.”

Note that by our selection of K(s)’s, the u-probability of Es does not exceed e,
so that the p-probability of no one of the events Es, s € S, taking place is at
least 1 — €. To justify the above claim on the risk of our sequential test, all we
need is to verify that when no one of the events Es, s € S, takes place, then the
sequential test accepts the true hypothesis Hp,. Verification is immediate: let the
observations be such that no one of the events Fs takes place. We claim that in
this case

(a) The sequential test does accept a hypothesis — if this does not happen at

s-th attempt with some s < S, it definitely happens at S-th attempt.
Indeed, since Eg does not take place, Tg accepts ng* _, and all other hypotheses,

if any, accepted by Tg are Cg-close to Ggé*il, implying by construction of Cg
that 7g does accept hypotheses, and all these hypotheses are of the same color,

that is, the sequential test at S-th attempt does accept a hypothesis.
(b) The sequential test does not accept a wrong hypothesis.
Indeed, assume that the sequential test accepts a wrong hypothesis, Hyr, £ # L.,

and it happens at s-th attempt, and let us lead this assumption to a contradic-
tion. Observe that under our assumption the test 75 as applied to observation
wE () does accept some hypothesis G, but does not accept the true hypothesis
G;Z*_l = H,, (indeed, assuming the latter hypothesis to be accepted, its color,
which is £, should be the same as the color £/ of G (we are in the case when
the sequential test accepts Hys at s-th attempt!); since in fact ¢ # £, the above
assumption leads to a contradiction). On the other hand, we are in the case when
E, does not take place, that is, 75 does accept the true hypothesis GSZ*,p and

we arrive at the desired contradiction.
(a) and (b) provide us with a verification we were looking for.

Discussion and illustration. It can be easily seen that when e, = ¢/5 for all
s, the worst-case duration K(S) of our sequential test is within a logarithmic in
SL factor of the duration of any other test capable to decide on our L hypotheses
with risk e. At the same time it is easily seen that when the distribution p of our
observation is “deeply inside” some set My, specifically, p € M for some s € S,
s < S, then the u-probability to terminate not later than after just K (s) realizations
wy, of w ~ p are observed and to infer correctly what is the true hypothesis is at least
1 —e. Informally speaking, in the case of “landslide” elections, a reliable prediction
of elections’ outcome will be made after a relatively small number of respondents
are interviewed.

Indeed, let s € S and wir ~ u € My, so that u obeys the hypothesis G5,. Consider
the s events F;, 1 <t < s, defined as follows:

e For t < s, E; occurs when the sequential test terminates at attempt t with
accepting, instead of Hy, wrong hypothesis Hy/, £/ # £. Note that E; can take
place only when 7; does not accept the true hypothesis G5, = H; (why?), and
p-probability of this outcome is < €.

e F, occurs when 75 does not accept the true hypothesis G35, or accepts it along
with some hypothesis G5, 1 < j < 2L, of color different from ¢. Note that we
are in the situation where the hypothesis G35, is true, and, by construction of
Cs, all hypotheses Cs-close to G5, are of the same color £ as G5,. Recalling what
Cs-risk is and that the Cs-risk of 7T is < €5, we conclude that the p-probability
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of E, is at most €5.

The bottom line is that u-probability of the event |J, ., E: is at most > 7_, e < ¢
by construction of the sequential test, if the event OKS E: does not take place,
the test terminates in course of the first s attempts with accepting the correct
hypothesis Hy. Our claim is justified.

Numerical illustration. To get an impression of the “power” of sequential hy-
pothesis testing, here are the data on the durations of non-sequential and sequential

tests with risk e = 0.01 for various values of J; in the sequential tests, § = 10~1/4 is

used. The worst-case data for 2-candidate and 5-candidate elections are as follows
(below ”volume” stands for the number of observations used by test)

[0 5 [[ 05623 ] 0.3162 [ 0.1778 | 0.1000 | 0.0562 | 0.0816 | 0.0177 | 0.0100 ||
I K L=2 [ 25 | 88 [ 287 | 917 | 2908 | 9206 | 29118 [ 92098 ||
[S&K(S),L=2 || 1&25 | 2&152 | 3&499 | 4&1594 | 5&5056 | 6&16005 | 7&50624 | 8&160118 ||
[T K, L=5 [[ 32 [ 114 [ 373 [ 1193 [ 3784 [ 11977 [ 37885 | 119745 |
[S&K(S),L=5 || 1&32 | 2&179 | 3&585 | 4&1870 | 5&5931 | 6&18776 | 7&59391 | 8&187720 ||

Volume of non-sequential test (K), number of stages (S) and worst-case volume
(K(S)) of sequential test as functions of threshold § = §g. Risk € is set to 0.01.

As it should be, the worst-case volume of sequential test is essentially worse than
the volume of the non-sequential test2®. This being said, let us look what happens
in the “average,” rather than the worst, case, specifically, let us look at the empirical
distribution of the volume when the distribution g of observations is selected in the
L-dimensional probabilistic simplex A, = {g € R : p > 0,3, pe = 1} at random.
Here is the empirical statistics of test volume obtained when drawing p from the
uniform distribution on J,.; M, and running the sequential test?% on observations
drawn from the selected u:

L risk median mean 50% 55% 60% 65%
2 0.0010 177 9182 177 177 177 397
5 0.0040 1449 18564 1449 2175 2175 4189
L 70% 75% 80% 85% 90% 95% 100%
2 617 617 1223 1829 8766 87911 160118
5 6204 12704 19205 39993 60781 124249 187718

The data on empirical risk (column ”risk”) and volume (columns ”median...100%")
of Sequential test. Column ”X%”: empirical X%-quantile of test volume.

The data in the table are obtained from 1,000 experiments. We see that with the
Sequential test, “typical” numbers of observations before termination are much less
than the worst-case values of these numbers. For example, in as much as 80%
of experiments these numbers were below quite reasonable levels, at least in the
case L = 2. Of course, what is “typical,” and what is not, depends on how we
generate p’s (scientifically speaking, this is called “prior Bayesian distribution”);
were our generation more likely to produce “close run” distributions, the advan-
tages of sequential decision making would be reduced. This ambiguity is, however,
unavoidable when attempting to go beyond worst-case-oriented analysis.

25the reason is twofold: first, for s < S we pass from deciding on L hypotheses to deciding
on 2L of them; second, the desired risk € is now distributed among several tests, so that each of
them should be more reliable than the non-sequential test with risk e.

26corresponding to 6 = 0.01, § = 10~/ and € = 0.01
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2.6.3 Concluding remarks

Application of our machinery to sequential hypothesis testing is in no sense re-
stricted to the simple election model considered so far. A natural general setup we
can handle is as follows:

We are given a simple observation scheme O and a number L of related
convex hypotheses, colored in d colors, on the distribution of an observation,
with distributions obeying hypotheses of different colors being distinct from
each other. Given risk level ¢, we want to infer (1—¢)-reliably the color of the
distribution underlying observations (i.e., the color of the hypothesis obeyed
by this distribution) from stationary K-repeated observations, utilizing as
small number of observations as possible.

For detailed description of our related constructions and results, an interested
reader is referred to [87].

2.7 MEASUREMENT DESIGN IN SIMPLE OBSERVATION
SCHEMES

2.7.1 Motivation: Opinion Polls revisited

Consider the same situation as in Section 2.6.1 — we want to use opinion poll
to predict the winner in a population-wide elections with L candidates. When
addressing this situation earlier, no essential a priori information on the distribution
of voters’ preferences was available. Now consider the case when the population is
split into I groups (according to age, sex, income, etc., etc.), with i-th group forming
fraction #; of the entire population, and we have at our disposal, at least for some
i, a nontrivial a priori information about the distribution p’ of the preferences
across group # i ((-th entry p} in p’ is the fraction of voters of group i voting for
candidate ¢). For example, we could know in advance that at least 90% of members
of group #1 vote for candidate #1, and at least 85% of members of group #2 vote
for candidate #2; no information of this type for group #3 is available. In this
situation it would be wise to select respondents in the poll via two-stage procedure,
first — selecting at random, with probabilities g1, ..., qr, the group from which the
next respondent will be picked, and second — selecting the respondent from this
group at random according to the uniform distribution on the group. When g¢;
are proportional to the sizes of the groups (i.e., ¢; = 0; for all i), we come back
to selecting respondents at random from the uniform distribution over the entire
population; the point, however, is that in the presence of a priori information, it
makes sense to use ¢; different from 6;, specifically, to make the ratios ¢;/6; “large”
or “small” depending on whether a priori information on group #i is poor or rich.

The story we just have told is an example of situation when we can “design
measurements” — draw observations from a distribution which partly is under our
control. Indeed, what in fact happens in the story, is the following. “In the nature”
there exist I probabilistic vectors p', ...,p! of dimension L representing distribu-
tions of voting preferences within the corresponding groups; the distribution of
preferences across the entire population is p = . 0;p*. With two-stage selection
of respondents, the outcome of a particular interview becomes a pair (i, £), with i
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identifying the group to which the respondent belongs, and ¢ identifying the candi-
date preferred by this respondent. In subsequent interviews, the pairs (i, £) — these
are our observations — are drawn, independently of each other, from the probability
distribution on the pairs (¢,¢), ¢ < I, £ < L, with the probability of an outcome
(i,£) equal to
(i, €) = qipp-
Thus, we find ourselves in the situation of stationary repeated observations stem-
ming from the Discrete o.s. with observation space 2 of cardinality IL; the dis-
tribution from which the observations are drawn is a probabilistic vector p of the
form
p = Az,

where
e v = [p';...;p!] is the “signal” underlying our observations and representing the

preferences of the population; this signal is selected by the nature in the known

to us set X defined in terms of our a priori information on p', ..., p:

X={o=[z". ;22" €T;,1 <i<T}, (2.122)

where II; are the sets, given by our a priori information, of possible values of
the preference vectors p’ of the voters from i-th group. In the sequel, we assume
that II; are convex compact subsets in the positive part A% = {p € Rf : p >
0,> ,p¢ = 1} of the L-dimensional probabilistic simplex;

e A is “sensing matrix” which, to some extent, is under our control; specifically,

A[xl;...;acl] = [qlxl;quZ;...;qul], (2.123)

with ¢ = [g1;...;¢7] fully controlled by us (up to the fact that ¢ must be a
probabilistic vector).

Note that in the situation under consideration the hypotheses we want to decide
upon can be represented by convex sets in the space of signals, with particular
hypothesis stating that the observations stem from a distribution p on €, with p
belonging to the image of some convex compact set Xy C X under the mapping
x +— p = Az. For example, the hypotheses

1
Hp:peMy={p€R Y =1 > spope > py +6. 0 #03,1< (<L

considered in Section 2.6.1 can be expressed in terms of the signal x = [z1;...; 27]:
2t > 0,3,z =1vi < I
Hy:p=Ar, 2 € Xp={ax=[2". ;2 3,02 >, 0l + 6V #0)
> i > Vi
(2.124)

The challenge we intend to address is as follows: so far, we were interested in
inferences from observations drawn from distributions selected “by nature.” Now
our goal is to make inferences from observations drawn from a distribution selected
partly by the nature and partly by us: the nature selects the signal =, we select from
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some set matrix A, and the observations are drawn from the distribution Az. As
a result, we arrive at a completely new for us question: how to utilize the freedom
in selecting A in order to improve our inferences (this is somehow similar to what
in statistics is called “design of experiments.”)

2.7.2 Measurement Design: SetUp

In what follows we address measurement design in simple observation schemes, and
our setup is as follows (to make our intensions transparent, we illustrate our general
setup by explaining how it should be specified to cover the outlined two-stage Design
of Opinion Polls — DOP for short).

Given are

e simple observation scheme O = (Q,IL; {p, : p € M}; F), specifically, Gaussian,
Poisson or Discrete one, with M C R%.
In DOP, O is the Discrete o.s. with Q = {(4,¢) : 1 <i < 1,1 < ¢ < L}, that is,
points of 2 are the potential outcomes “reference group, preferred candidate” of
individual interviews.

e a nonempty closed convex signal space X C R", along with L nonempty convex
compact subsets Xy of X, £ =1,..., L.
In DOP, X is the set (2.122) comprised by tuples of allowed distributions of
voters’ preferences from various groups, and X, are the sets (2.124) of signals
associated with the hypotheses Hy we intend to decide upon.

e a nonempty convex compact set Q in some R along with a continuous mapping
q — Ay acting from Q into the space of d x n matrices such that

Ve X,qge Q): Agz € M. (2.125)

In DOP, Q is the set of probabilistic vectors ¢ = [g1;...; q7] specifying our mea-
surement design, and A, is the matrix of the mapping (2.123).

e a closeness C on the set {1, ..., L} (that is, a set C of pairs (4,7) with 1 <4,5 < L
such that (¢,4) € C for all i < L and (j,i) € C whenever (4, j) € C), and a positive
integer K.

In DOP, the closeness S is as strict as it could be — 7 is close to j if and only if
i =427, and K is the total number of interviews in the poll.

We can associate with ¢ € Q and every one of X, £ < L, nonempty convex compact
sets M/ in the space M:
M} ={Agx:z e X}

and hypotheses H} on K-repeated stationary observations wk = (w1, ...,wr), with
H} stating that wy, k = 1,..., K, are drawn, independently of each other, from a
distribution p € M/, £ =1, ..., L. Closeness C can be thought of as closeness on the
collection of hypotheses H{, Hj, ..., H}. Given g € Q, we can use the construction
from Section 2.5.2 in order to build the test 7;K deciding on the hypotheses H} up
to closeness C, the C-risk of the test being the smallest allowed by the construction.
Note that this C-risk depends on ¢; the “Measurement Design” (MD for short)

27this closeness makes sense when the goal of the poll is to predict the winner; less ambitious
goal, like to decide whether the winner will or will not belong to a particular set of candidates,
would require weaker closeness.
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problem we are about to consider is to select ¢ € Q which minimizes the C-risk of
the associated test 7;K .

2.7.3 Formulating the MD problem

By Proposition 2.34, the C-risk of the test T¢K is upper-bounded by the spectral
norm of the symmetric entrywise nonnegative L x L matrix

EY)(q) = [eo (@)]g.00

and this is what we intend to minimize in our MD problem. In the above formula,
eor (q) = €ve(q) are zeros when (¢,¢') € C; when (,0') ¢ Cand 1 < ¢ < ¥ < L,
the quantities ey (q) = €p¢(q) are defined depending on what is the simple o.s. O.
Specifically,

e In the case of Gaussian observation scheme (see Section 2.4.5.1), restriction
(2.125) does not restrict the dependence A, on ¢ at all (modulo the default
restriction that A, is a continuous in ¢ € Q d x n matrix), and

eorr (q) = exp{ KOptyp ()}

where

Opte(q) = _max ——[Ay(@—y)]"O7 [y — )] (Gy)

and O is the common covariance matrix of the Gaussian densities forming the
family {p, : p € M};

e In the case of Poisson o.s. (see Section 2.4.5.2), restriction (2.125) requires from
Agqx to be positive vector whenever ¢ € Q and x € X, and

€or (q) = exp{ KOpty (q)},

where

Optyy(a) = _max [Z Vidahlagls - 5 31l - 5 3 Al

3

()

e In the case of Discrete o.s. (see Section 2.4.5.3), restriction (2.125) requires from
Agx to be a positive probabilistic vector whenever ¢ € Q and « € X', and

eeer(q) = [Optyp ()],

Opter (@) = _max 3 \/[Agali[Agyli (Dy)

The summary of above observations is as follows. The norm ||[E)||5 5 — the quan-
tity we are interested to minimize in ¢ € Q — as a function of ¢ € Q is of the form

U(q) = ¥ ({Opte(q) : (6,4') £C})

Opt(q)

where

(2.126)

where the outer function ¢ is real-valued convex and nondecreasing in every one
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of its arguments explicitly given function on R¥ (IV is the cardinality of the set of
pairs (£,0'), 1 < £,¢' < L, with (¢,¢) ¢ C). Indeed, denoting by I'(S) the spectral
norm of d X d matrix S, note that I' is convex function of S, and this function
is nondecreasing in every one of the entries of S, provided that S is restricted to
be entrywise nonnegative®®. 1(-) is obtained from I'(S) by substitution, instead of
entries Sy of S, everywhere convex, nonnegative and nondecreasing functions of
new variables 2= {zy : (¢,0') € C,1 < ¢, ¢/ < L}, specifically

e when (¢,¢') € C, we set Sy to zero;
e when (£,0') & C, we set Sy = exp{K zp} in the case of Gaussian and Poisson
0.8.’s, and set Sg = max|0, z¢ ], in the case of Discrete o.s.

As a result, we indeed get a convex and nondecreasing in every one of its arguments
function ¢ of 7€ RY.
Now, the Measurement Design problem we want to solve reads

Opt = min¢(Opi(q)); (2.127)

q

As we remember, the entries in the inner function Opt(q) are optimal values of
solvable convez optimization problems and as such are efficiently computable. When
these entries are also convez functions of ¢ € Q, the objective in (2.127), due to the
already established convexity and monotonicity properties of 1, is a convex function
of ¢, meaning that (2.127) is a convex and thus efficiently solvable problem. On
the other hand, when some of the entries in Opt(g) are nonconvex in ¢, we hardly
could expect (2.127) to be an easy-to-solve problem. Unfortunately, convexity of
the entries in Opt(q) in ¢ turns out to be a “rare commodity.” For example, we
can verify by inspection that the objectives in (Gy), (P,), (Dy) as a functions of
A, (not of ¢!) are concave rather than convex, so that the optimal values in the
problems, as a functions of ¢, are maxima, over the parameters, of parametric
families of concave functions of A, (the parameter in these parametric families are
the optimization variables in (G4) — (Dy)) and as such as a functions of A, hardly
are convex. And indeed, as a matter of fact, the MD problem usually is nonconvex
and difficult to solve. We intend to consider “Simple case” where this difficulty does
not arise, specifically, the case where the objectives of the optimization problems
specifying Opt,(q) are affine in ¢; in this case, Opt,:(q) as a function of ¢ is
the maximum, over the parameters (optimization variables in the corresponding
problems), of parametric families of affine functions of ¢ and as such is convex.

Our current goal is to understand what our sufficient condition for tractability
of the MD problem — affinity in ¢ of the objectives in the respective problems
(Gq), (Py), (Dg) — actually means, and to show that this, by itself quite restrictive,
assumption indeed takes place in some important applications.

28 monotonicity follows from the fact that for an entrywise nonnegative S, we have

1Sll2,2 = Q%X{ITSZJ el < 1yl <13 = H;ayX{ITSy leflz < 1 lyllz < 1,2 > 0,y > 0}
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2.7.3.1 Simple case, Discrete o.s.

Looking at the optimization problem (D), we see that the simplest way to ensure
that its objective is affine in ¢ is to assume that

A, = Diag{Bq}A, (2.128)

where A is some fixed d x n matrix, and B is some fixed d x (dim ¢) matrix such
that Bgq is positive whenever ¢ € Q. On the top of this, we should ensure that
when ¢ € Q and z € X, A,z is a positive probabilistic vector; this amounts to
some restrictions linking Q, X', A, and B.

Illustration. An instructive example of the Simple case of Measurement Design
in Discrete o.s. is the “Opinion Poll” problem with a priori information presented
in Section 2.7.1: the voting population is split into I groups, with i-th group con-
stituting fraction ; of the entire population. In i-th group, the distribution of
voters’ preferences is represented by unknown L-dimensional probabilistic vector
z = [2%;..;2%] (L is the number of candidates, z is the fraction of voters in i-th
group intending to vote for ¢-th candidate), known to belong to a given convex
compact subset II; of the “positive part” A = {z € RF : 2 > 0,>,2, = 1} of
the L-dimensional probabilistic simplex. We are given threshold § > 0 and want to
decide on L hypotheses Hy,..., Hy,, with Hy stating that the population-wide vector
y = Zi[:l ;" of voters’ preferences belongs to the closed convex set

I
Yo={y=> 0’2’ €10, 1 <i < Lye > yp +0, ¥l #0)};

i=1

note that Y, is the image, under the linear mapping
[z' . 52" - y(z) = Zé)ixi
i

of the compact convex set
Xp={o=[2Y. ;2" 2" €, 1 <i < Iye() > yor(x) + 6, V(' #£)}
which is a subset of the convex compact set
X={z=[z". ;22" €T, 1 <i < T}
k-th poll interview is organized as follows:

We draw at random a group among the I groups of voters, with probability
¢; to draw i-th group, and then draw at random, from the uniform distri-
bution on the group, the respondent to be interviewed. The outcome of
the interview — our observation wy — is the pair (¢,¢), where ¢ is the group
to which the respondent belongs, and ¢ is the candidate preferred by the
respondent.

This results in a sensing matrix A, see (2.123), which is in the form of (2.128),
specifically,
Ay =Diag{qIr,q211, .., qrlL} lq € Af]
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the outcome of k-th interview is drawn at random from the discrete probability
distribution A,x, where x € X is the “signal” summarizing voters’ preferences in
the groups.

Given total number of observations K, our goal is to decide with a given risk e
on our L hypotheses; whether this goal is or is not achievable, it depends on K and
on A,. What we want, is to find ¢ for which the above goal is achievable with as
small K as possible; in the case in question, this reduces to solving, for various trial
values of K, problem (2.127), which under the circumstances is an explicit convez
optimization problem.

To get an impression of the potential of Measurement Design, we present a
sample of numerical results. In all reported experiments, we used § = 0.05 and
€ = 0.01. The sets II;, 1 < i < I, were generated as follows: we pick at random
a probabilistic vector p* of dimension L, and II; was the intersection of the box
{p:pe—ui <pr < pPr+ u;} centered at p with the probabilistic simplex Ap,
where u;, © = 1,...,I, are prescribed “uncertainty levels;” note that uncertainty
level u; > 1 is the same as absence of any a priori information on the preferences

of voters from ¢-th group.
The results of our numerical experiments are as follows:

[[ L T I ] Uncertainty levels u_[] Group sizes 0 [ Kini ] qopt [ Kopt ]
22 [0.03; 1.00] [0.500; 0.500 1212 [0.437;0.563] 1194
2 |2 [0.02;1.00] [0.500; 0.500 2699 [0.000; 1.000] 1948
3 3 [0.02;0.03; 1.00] [0.333;0.333; 0.333] 3177 [0.000; 0.455; 0.545] 2726
5 4 [0.02;0.02; 0.03; 1.00] [0.250; 0.250; 0.250; 0.250] 2556 [0.000; 0.131; 0.322; 0.547] 2086
5 4 [1.00; 1.00; 1.00; 1.00] [0.250; 0.250; 0.250; 0.250] 4788 [0.250; 0.250; 0.250; 0.250] 4788

Effect of measurement design. Kj,; and Kopt are the poll sizes required for 0.99-reliable
prediction of the winner when ¢ = 6 and q = gopt, respectively.

We see that measurement design allows to reduce (for some data — quite signif-
icantly) the volume of observations as compared to the straightforward selecting
the respondents uniformly across the entire population. To compare our current
model and results with those from Section 2.6.1, note that now we have more a pri-
ori information on the true distribution of voting preferences due to some a priori
knowledge of preferences within groups, which allows to reduce the poll sizes with
both straightforward and optimal measurement design®’. The differences between
Kini and Kopy is fully due to measurement design.

Comparative drug study. A related to DOP and perhaps more interesting Sim-
ple case of the Measurement Design in Discrete o.s. is as follows. Let us speak about
L competing drugs rather than L competing candidates running for an office, and
population of patients the drugs are aimed to help rather than population of vot-
ers. For the sake of simplicity, assume that when a particular drug is administered
to a particular patient, the outcome is binary: (positive) “effect” or “no effect”
(what follows can be easily extended to the case of non-binary categorial outcomes,
like “strong positive effect,” “weak positive effect,” “negative effect,” and alike).
Our goal is to organize a clinical study in order to make inferences on comparative
drug efficiency, measured by the percentage of patients on which a particular drug
has effect. The difference with organizing opinion poll is that now we cannot just
ask a respondent what are his/her preferences; we are supposed to administer to a
participant of the study a single drug on our choice and to look at the result.

29T illustrate this point, look at the last two lines in the table: utilizing a priori information
allows to reduce the poll size from 4788 to 2556 even with the straightforward measurement design.
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As in the DOP problem, we assume that the population of patients is split into
I groups, with i-th group comprising fraction 6; of the entire population.

We model the situation as follows. We associate with a patient Boolean vector
of dimension 2L, with ¢-th entry in the vector equal to 1 or 0 depending on whether
drug # ¢ has effect on the patient, and the (L + ¢)-th entry complementing the ¢-th
one to 1 (that is, if /-th entry is x, then (L + ¢)-th entry is 1 — x). Let z° be the
average of these vectors over patients from group i. We define “signal” z underlying
our measurements as the vector [z!;...; 2] and assume that our a priori information
allows to localize x in a closed convex subset X of the set

y:{x:[azl;...;xl}:xizo,xé—l—xiwzl,1§i§[,1§£§L}

to which all our signals belong by construction. Note that the vector
y = Bx = Z 0;z°
i

can be treated as “population-wise distribution of drug effects:” y,, £ < L, is the
fraction, in the entire population of patients, of those patients on whom drug ¢ has
effect, and yr1¢ = 1 — y¢. As a result, typical hypotheses related to comparison of
the drugs, like “drug ¢ has effect on a larger, at least by margin §, percentage of
patients than drug ¢',” become convex hypotheses on the signal z. In order to test
hypotheses of this type, we can use two-stage procedure for observing drug effects,
namely, as follows.

To get a particular observation, we select at random, with probability ¢;,, pair
(7,¢) from the set {(i,¢) : 1 < i < I,1 < ¢ < L}, select a patient from group @
according to the uniform distribution on the group, administer the patient drug £
and check whether the drug has effect on the patient. Thus, a single observation is a
triple (i, ¢, x), where x = 0 when the administered drug has no effect on the patient,
and x = 1 otherwise. The probability to get observation (i,¢,1) is qigx}}, and the
probability to get observation (i,¢,0) is giez? 4¢- Thus, we arrive at the Discrete
o.s. where the distribution p of observations is of the form u = A,x, with the rows
in A, indexed by triples w = (i,£,x) € Q:={1,2,...,1} x {1,2,...,L} x {0,1} and
given by ‘

1. T _ ) Gy, x=1
(Aglxs 2! ))iey = { Gty X =0
Specifying the set Q of allowed measurement designs ¢ as a closed convex subset of
the set of all non-vanishing discrete probability distributions on the set {1,2, ..., I} x
{1,2,..., L}, we find ourselves in the Simple case, as defined by (2.128), of Discrete
o.s., and A,z is a probabilistic vector whenever ¢ € Q and x € ).

2.7.3.2 Simple case, Poisson o.s.

Looking at the optimization problem (F,), we see that the simplest way to ensure
that its objective is, same as in the case of Discrete o.s., to assume that

A, = Diag{Bq} A,

where A is some fixed d x n matrix, and B is some fixed d x (dim ¢) matrix such
that Bgq is positive whenever ¢ € Q. On the top of this, we should ensure that
when g € Q and x € X, A,z is a positive vector; this amounts to some restrictions
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linking @, X', A, and B.

Application Example: PET with time control. Positron Emission Tomogra-
phy was already mentioned, as an example of Poisson o.s., in Section 2.4.3.2. As
explained in the latter Section, in PET we observe a random vector w € R¢ with
independent entries [w]; ~ Poisson(u;), 1 < i < d, where the vector of parameters
= [p1;...1q) of the Poisson distributions is the linear image u = A\ of unknown
“signal” (tracer’s density in patient’s body) A belonging to some known subset A
of Rf , with entrywise nonnegative matrix A; our goal is to make inferences about
A. Now, in actual PET scan, patient’s position w.r.t. the scanner is not the same
during the entire study; the position is kept fixed within i-th time period, 1 < i < I,
and changes from period to period in order to expose to the scanner the entire “area
of interest”

For example, with the scanner shown on the picture, during PET study the imaging
table with the patient will be shifted several times along the axis of the scanning
ring. As a result, observed vector w can be split into blocks w?, i = 1, ..., I, of data
acquired during ¢-th period, 1 <4 < I; on the closest inspection, the corresponding
block p¢ in p is

p=qiAiA,

where A; is a known in advance entrywise nonnegative matrix, and ¢; is the duration
of i-th period. In principle, ¢; could be treated as nonnegative design variables
subject to the “budget constraint” Zle q; = T, where T is the total duration of
the study3®, and perhaps some other convex constraints, say, positive lower bounds
on g;. It is immediately seen that the outlined situation is exactly as is required in
the Simple case of Poisson o.s.

2.7.8.83 Simple case, Gaussian o.s.

Looking at the optimization problem (G,), we see that the simplest way to ensure
that its objective is affine in ¢ is to assume that the covariance matrix © is diagonal,

and
A, = Diag{\/q1,..-.,\/qa}A (2.129)

where A is a fixed d X n matrix, and ¢ runs through a convex compact subset of
d
RY.
It turns out that there are situations where assumption (2.129) makes perfect

30T cannot be too large; aside of other considerations, the tracer disintegrates, and its density
can be considered as nearly constant only on a properly restricted time horizon.
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sense. Let us start with preamble. In Gaussian o.s.

w=Ar+¢ 2.130
[A e R €~ N(0,%), ¥ = Diag{o?,...,03}] (2.130)
the “physics” behind the observations in many cases is as follows. There are d
sensors (receivers), i-th registering continuous time analogous input depending lin-
early on the underlying observations signal z; on the time horizon on which the
measurements are taken, this input is constant in time and is registered by i-th
sensor on time interval A;. The deterministic component of the measurement reg-
istered by sensor ¢ is the integral of the corresponding input taken over A;, and
the stochastic component of the measurement is obtained by integrating over the
same interval white Gaussian noise. As far as this noise is concerned, the only
thing which matters is that when the white noise affecting i-th sensor is integrated
over a time interval A, the result is random Gaussian variable with zero mean and
variance o2|A| (JA| is the length of A), and the random variables obtained by inte-
grating white noise over non-overlapping segments are independent. Besides this,
we assume that the noisy components of measurements are independent across the
Sensors.

Now, there could be two basic versions of the just outlined situation, both
leading to the same observation model (2.130). In the first, “parallel,” version,
all d sensors work in parallel on the same time horizon of duration 1. In the
second, “sequential,” version, the sensors are activated and scanned one by one,
each working unit time; thus, here the full time horizon is d, and the sensors are
registering their respective inputs on consecutive time intervals of duration 1 each.
In this second “physical” version of Gaussian o.s., we can, in principle, allow for
sensors to register their inputs on consecutive time segments of varying durations
q1 >0, g2 >0,..., g¢ > 0, with the additional to nonnegativity restriction that our
total time budget is respected: >, ¢; = d (and perhaps with some other convex
constraints on ¢;). Let us look what is the observation scheme we end up with.
Assuming that (2.130) represents correctly our observations in the reference case
where all |A;| are equal to 1, the deterministic component of the measurement
registered by sensor i in time interval of duration ¢; will be ¢; > ; @ij Ty, and the
standard deviation of the noisy component will be 0;,/g;, so that the measurements
become

Zi = Ui\/@(i +szau$37 1= 1) "'7d7
J

with independent of each other standard (zero mean, unit variance) Gaussian noises
(;- Now, since we know ¢;, we can scale the latter observations by making the
standard deviation of the noisy component the same o; as in the reference case;
specifically, we lose nothing when assuming that our observations are

wi = 2i/\/Gi = 0iGi +\/@;aiﬂ'l’j’
&i

or, equivalently,

w = ¢ + Diag{\/q1, ... V@i Az, &~ N(0,Diag{o?, ...,02}) [A = [a;;]]

Aq
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where ¢ is allowed to run through a convex compact subset Q of the simplex {q €
Ri :Y:¢ = d}. Thus, if the “physical nature” of a Gaussian o.s. is sequential,
then, making, as is natural under the circumstances, the activity times of the sensors
our design variables, we arrive at (2.129), and, as a result, end up with easy-to-solve
Measurements Design problem.

2.8 AFFINE DETECTORS BEYOND SIMPLE OBSERVATION
SCHEMES

On a closer inspection, the “common denominator” of our basic simple o.s.’s —
Gaussian, Poisson and Discrete ones, is that in all these cases the minimal risk
detector for a pair of convex hypotheses is affine. At the first glance, this indeed is
so for the Gaussian and the Poisson 0’s”s, where F is comprised of affine functions
on the corresponding observation space (R for Gaussian o.s., and Zi c R¢
for Poisson o.s.), but is not so for the Discrete o.s. — in the latter case, Q =
{1,...,d}, and F is comprised of all functions on 2, while “affine functions on
Q = {1,...,d}” merely make no sense. Note, however, that we can encode (and
from now on indeed encode) the points ¢ = 1, ...,d of d-element set by basic orths
e; = [0;...;0;1;0;...; 0] € R in R?, thus making our observation space Q = {1, ..., d}
a subset of R%. With this encoding, every real valued function on {1, ..., d} becomes
restriction on 2 of an affine function. Note that when passing from our basic
simple 0.8.’s to their direct products, the minimum risk detectors for pairs of convex
hypotheses remain affine.
Now, good in our context news about simple o0.s.’s state that

A) the best — with the smallest possible risk — affine detector, same as its risk, can
be efficiently computed;

B) the smallest risk affine detector from A) is the best, in terms of risk, detector
available under the circumstances, so that the associated test is near-optimal.

Note that as far as practical applications of the detector-based hypothesis testing
are concerned, one “can survive” without B) (near-optimality of the constructed
detectors), while A) is a must.

In this Section we focus on families of probability distributions obeying A).
This class turns out to be incomparably larger than what was defined as simple
0.8.’s in Section 2.4; in particular, it includes nonparametric families of distribu-
tions. Staying within this much broader class, we still are able to construct in a
computationally efficient way the best affine detectors for a pair of “convex”, in
certain precise sense, hypotheses, along with valid upper bounds on the risks of
the detectors. What we, in general, cannot claim anymore, is that the tests asso-
ciated with the above detectors are near-optimal. This being said, we believe that
investigating possibilities for building tests and quantifying their performance in a
computationally friendly manner is of value even when we cannot provably guar-
antee near-optimality of these tests. The results to follow originate from [89, 88].
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2.8.1 Situation

In what follows, we fix observation space Q@ = R?, and let Pi, 1 <5 < J, be

given families of probability distributions on . Put broadly, our goal still is, given

a random observation w ~ P, where P € J P;, to decide upon the hypotheses
Jj<J

H; : PePj,j=1,..J. We intend to address this goal in the case when the

families P; are simple — they are comprised of distributions for which moment-

generating functions admit an explicit upper bound.

2.8.1.1 Preliminaries: Regular data and associated families of distributions

Regular data is defined as a triple H, M, ®(-,-), where

e H is a nonempty closed convex set in 2 = R? symmetric w.r.t. the origin,
e M is a closed convex set in some R,
e O(h;p) : H x M — R is a continuous function convex in h € H and concave in

we M.
Regular data H, M, ®(-,-) define two families of probability distributions on :

e the family of regular distributions
R =R[H, M, D]
comprised of all probability distributions P on 2 such that
Vhe M Ipe M :In([,exp{hTw}P(dw)) < ®(h;p). (2.131)
e the family of simple distributions
S=8H,M,]
comprised of probability distributions P on {2 such that
Jue M :VheH:In([,exp{hTw}P(dw)) < ®(h;p). (2.132)

Recall that beginning with Section 2.3, the starting point in all our constructions
is a “plausibly good” detector-based test which, given two families P; and Py of
distributions with common observation space, and repeated observations wy, ..., ws
drawn from a distribution P € P; U Ps, decides whether P € P; or P € Ps.
Our interest in the families of regular/simple distributions stems from the fact
that when the families P; and P, are of this type, building such a test reduces
to solving a convex-concave saddle point problem and thus can be carried out in
a computationally efficient manner. We postpone the related construction and
analysis to Section 2.8.2, and continue with presenting some basic examples of
families of simple and regular distributions along with a simple “calculus” of these
families.
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2.8.1.2 Basic examples of simple families of probability distributions

2.8.1.2.A. Sub-Gaussian distributions: Let H = Q = R% M be a closed
convex subset of the set Gg = {p = (0,0) : § € R%,© € S}, where S¢ is cone of
positive semidefinite matrices in the space S¢ of symmetric d x d matrices, and let

1
®(h;0,0) =60Th + 5hT@h.

In this case, S[H, M, ®] contains all sub-Gaussian distributions P on R% with sub-
Gaussianity parameters from M.

Recall that a distributions P on = R? is called sub-Gaussian with sub-
Gaussianity parameters § € R and © € Si, if

1
E.p{exp{hTw}} <exp{0Th + ihTGh} vh € R% (2.133)

Whenever this is the case, 6 is the expected value of P. We shall use the
notation £ ~ SG(0,0) as a shortcut for the sentence “random vector £
is sub-Gaussian with parameters 6, ©.” It is immediately seen that when
& ~ N(0,0), we have also £ ~ SG(6,0), and (2.133) in this case is an
identity rather than inequality.

In particular, S[H, M, ®] contains all Gaussian distributions A/ (6, ©) with (,0) €
M.

2.8.1.2.B. Poisson distributions: Let H = Q = R?, let M be a closed convex
subset of d-dimensional nonnegative orthant R‘j_, and let

d
O(h = [hy;...;hal; o= [p1; s a)) = Zui[exp{hi} —1]:HxM—=R.

i=1

The family S[H, M, ®] contains all product-type Poisson distributions Poisson|u]
with vectors u of parameters belonging to M; here Poisson[u] is the distribution
of random d-dimensional vector with independent of each other entries, i-th entry
being Poisson random variable with parameter ;.

2.8.1.2.C. Discrete distributions. Consider a discrete random variable taking
values in d-element set {1,2,...,d}, and let us think of such a variable as of random
variable taking values e; € R% i = 1,...,d, where ¢; = [0;...;0;1;0;...;0] (1 in
position 4) are standard basic orths in R%. Probability distribution of such a variable
can be identified with a point g = [p1;...; ptg] from the d-dimensional probabilistic
simplex

d
Ad:{VERi:ZV,;:l},
i=1

where p; is the probability for the variable to take value e;. With these identifica-
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tions, setting H = R%, specifying M as a closed convex subset of Ay and setting

d
®(h = [has . hal; = [pa5 -5 pa]) = In (Z 1L exp{hi}> ,

the family S[H, M, ®] contains distributions of all discrete random variables taking
values in {1, ..., d} with probabilities p1, ..., g comprising a vector from M.

2.8.1.2.D. Distributions with bounded support. Consider the family P[X] of
probability distributions supported on a closed and bounded convex set X C ) =
R<, and let

¢x(h) = maxh’z

be the support function of X. We have the following result (to be refined in Section
2.8.1.3):

Proposition 2.40. For every P € P[X] it holds
1 .
VheR?: In (/ exp{hTw}P(dw)) < hTe[P] + S [ox (h) + dx (—h)]>, (2.134)
R4

where e[P] = fRd wP(dw) is the expectation of P, and the right hand side function
in (2.134) is convex. As a result, setting

1
H=R" M=X, 0(hip) =h"p+ ¢ [ox(h) +ox (=D,
we get regular data such that P[X]| C S[H, M, P].

For proof, see Section 2.11.3

2.8.1.3 Calculus of reqular and simple families of probability distributions
Families of regular and simple distributions admit “fully algorithmic” calculus, with

the main calculus rules as follows.

2.8.1.3.A. Direct summation. For 1 < /¢ < L, let regular data H, C Q, = R%,
My CR™, Dy(hg; ) : He X My — R be given. Let us set

2
|

le...XQL:Rd, d:d1—|——|—dL,

H = Hl X ..o X HL = {h: [hl;...;hL] : hé € /He,g < L},

M = Mix.xMp={p=[u'.;p']: e M <L} CR",
n=n;+..+ngp,

O(h = [hY . hE)s = (b s pF]) = S0y @u(h5pf)  H x M = R.

Then H is a symmetric w.r.t. the origin closed convex set in Q = R, M is a
nonempty closed convex set in R", & : H x M — R is a continuous convex-
concave function, and clearly

e the family R[H, M, ®] contains all product-type distributions P = P; X ... X Pp,
on Q=0 x...xQp with P, € R[He, My, @], 1 <L < L;
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e the family S[H, M, ®] contains all product-type distributions P = P; X ... X Pp,
on Q=0 x...xQp with P, € S[H¢, My, @], 1 <€ < L.

2.8.1.3.B. Mixing. For 1 < ¢ < L, let regular data H, ¢ Q = R%, M, C R™,
Dy(he; o) : Hex My — R be given, with compact My. Let also v = [v1;...;v1] be a
probabilistic vector. For a tuple PL = {P, € R[H,, My, ®¢]}L_,, let TI[PE, v] be the
v-mixture of distributions P, ..., P, defined as the distribution of random vector
w ~ () generated as follows: we draw at random, from probability distribution v on
{1,..., L}, index ¢, and then draw w at random from the distribution P,. Finally, let
P be the set of all probability distributions on 2 which can be obtained as II[PZ, ]
from the outlined tuples P* and vectors v running through the probabilistic simplex
Ap={peRl:v>0>,v,=1}

Let us set
L
H = () He
=1
Ue(h) = max Py(h;ue) : He — R, (2.135)
HeEM,
O(h;v) = In (ZZL:1 vy exp{\I/g(h)}) cHx A = R.

Then H, A, ® clearly is a regular data (recall that all M, are compact sets), and
for every v € Ay, and tuple P” of the above type one has

P=TI[P*,v] = In (/ ehT“’P(dw)) < ®(h;v) Yh € H, (2.136)
Q

implying that P C S[H, A1, ®], v being a parameter of a distribution P = I[Pl ] €
P.

Indeed,(2.136) is readily given by the fact that for P = II[P*,v] € P and h € H
it holds

L L
In (EWNP {ehT“’}) =In <Z ygEWNP,Z{ehT“’}) <In (Z Ve exp{‘lu(h,)}) = ®(h;v),
=1 =1
with the concluding inequality given by h € H C H, and Pr € R[He, My, Do),
1</¢<L.

We have build a simple family of distributions S := S[H, A, ®] which contains
all mixtures of distributions from given regular families R, := R[H¢, My, @y], 1 <
¢ < L, which makes S a simple outer approximation of mixtures of distributions
from the simple families Sy := S[Hy, My, @4, 1 < £ < L. In this latter capacity, S
has a drawback — the only parameter of the mixture P = II[P%, v] of distributions
P, € Sy is v, while the parameters of P,’s disappear. In some situations, this makes
outer approximation S of P too conservative. We are about to get rid, to come
extent, of this drawback.

A modification. In the situation described in the beginning of 2.8.1.3.B, let a
vector 7 € A, be given, and let

L
(s, oy pir) = > 7e®e(hipe) : H X (My X .. x ML) = R. (2.137)
=1
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Let d x d matrix @ > 0 satisfy

(®(h; o) — B(hs pir, oo i) < ATQR V(b € H 0 < Lo € My X ... x M),
(2.138)
and let

3 _
D(h; oy, e pip) = ghTQh—i- D(h; oy, espir) : H X (Mp X oo x M) — R. (2.139)

® clearly is convex-concave and continuous on its domain, whence H = (), H¢, M X
.. X My, ® is regular data.

Proposition 2.41. In the just defined situation, denoting by Py the family of all
probability distributions P = II[PL, 1], stemming from tuples

b =P, € S[He, My, ¥4}y, (2.140)

one has

Py C S[H, My x ... x My, ®]. (2.141)

As a parameter of distribution P = I[P, v] € P, with PX as in (2.140), one can
take pu* = [py;...; ).

Proof. It is easily seen that
e*<a +e%a2, Ya.

As a result, when ay, £ = 1,..., L, satisfy ), 7ya; = 0, we have
ST et <N mpag+ Y ettt < of maxeai, (2.142)
¢ ¢ ¢

Now let P¥ be as in (2.140), and let h € H = [ H,. Setting P = II[P*, 7], we have
L

n (fQ ehT“’P(dw)> In (Ze v [, e" “’Pg w) ) =1n (>, v exp{Pe(h, 1e)})
= @(@;Ml, wpr) +1n (Zz p exp{<1>g(h7m_) — é(h W, . )})

< q)(h;lj/la"'ML)+%maX€[¢Z(h7M€) _(b( S ML, L )]2 < ‘b(h§ﬂla---aﬂL)7
7 ey

where a is given by (2.142) as applied to a; = ®;(h, p1g) — ®(h; 1, ...pur), and b is
due to (2.138), (2.139). The resulting inequality, which holds true for all h € H, is
all we need. a

2.8.1.3.C. I.I.D summation. Let @ = R? be an observation space, (H, M, ®)
be regular data on this space, and let A = {\,}£ | be a collection of reals. We can
associate with the outlined entities a new data (Hx, M, ®y) on Q by setting

L
Ha=1{heQ: |[Mlooh € H}, Oa(hip)=> ®(A\h;p): Hxx M = R.
=1

Now, given a probability distribution P on 2, we can associate with it and with the
above A a new probability distribution P* on Q as follows: P? is the distribution
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of 37, Aewe, where wy,ws, ...,wr, are drawn, independently of each other, from P.
An immediate observation is that the data (Hx, M, ®,) is regular, and

e whenever a probability distribution P belongs to S[H, M, ®], the distribution
P* belongs to S[H, M, ®,]. In particular, when w ~ P € S[H, M, ®], then the
distribution P* of the sum of L independent copies of w belongs to S[H, M, L®].

2.8.1.3.D. Semi-direct summation. For 1 < /¢ < L, let regular data H, C €y, =
R, M,, ®, be given. To avoid complications, we assume that for every ¢,

o Hy =y,
o M, is bounded.

Let also an € > 0 be given. We assume that € is small, namely, Le < 1.
Let us aggregate the given regular data into a new one by setting

H=Q: =M x..xQ =R d=d; +..+dr, M=M; x..x Mg,

and let us define function ®(h; u) : Q¢ x M — R as follows:

B(h = [Pl h ) = [0 s p]) = infacac S0, Ae@e(h? /e 1), (2.143)
Ac={NeR4: N> eVl & Y0 A =1}

By evident reasons, the infimum in the description of ® is achieved, and & is
continuous. In addition, ® is convex in A € R? and concave in u € M. Postponing
for a moment verification, the consequences are that # = Q = R%, M and ® form
a regular data. We claim that

Whenever w = [w';...;w*] is a random variable taking values in Q = R4 x

... x R and the marginal distributions Py, 1 < £ < L, of w belong to the
families S[RY“, My, ®,] for all 1 < ¢ < L, the distribution P of w belongs to
S[R4, M, @].

Indeed, since P, € S[R%, My, ®;], there exists i € M, such that
I(E ¢ p, {exp{gTw’}}) < ®4(g; i) Vg € R%.

Let us set i = [@;...; il], and let h = [hY;...; L] € Q be given. We can find A € A€
such that

L
hift) =Y Me®(h /A i)
(=1

Applying Holder inequality, we get

L

E[wl;.i.;wL]Np{GXP{Z[hE]TWE}} H wimry {0 w Z/M}) ;

=1

whence

In (E[wl;“_;wL]NP {exp{Z[he]Tof}}> Z)\@Cbg (RfJXg; 0%) = ®(h; ).
4 /=1
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We see that

and thus P € S[R%, M, ], as claimed.

It remains to verify that the function ® defined by (2.143) indeed is convex
in h € R? and concave in € M. Concavity in p is evident. Further, func-
tions \¢®@,(h*/A¢; 1) (as perspective transformation of convex functions ®,(-; 1))
are jointly convex in A and h?, and so is U(\, h;pu) = Zé‘:l Xe®(h’ /A, ). Thus
®(-; ), obtained by partial minimization of ¥ in A, indeed is convex.

2.8.1.3.E. Affine image. Let H, M, ® be regular data, {2 be the embedding
space of H, and x — Az + a be an affine mapping from Q to Q = R%, and let us
set

H={heR¥": AThe H}, M =M, &h;p) =D(ATh;p) +a"h: H x M — R.
Note that #, M and ® are regular data. It is immediately seen that

Whenever the probability distribution of a random wvariable w belongs to
R[H, M, ®] (or belongs to S[H, M, ®]), the distribution P[P] of the ran-
dom wariable @ = Aw + a belongs to R[H, M, ®] (respectively, belongs to
S[H, M, ).

2.8.1.3.F. Incorporating support information. Consider the situation as fol-
lows. We are given regular data H C Q = R% M, ® and are interested in a family
P of distributions known to belong to S[H, M, ®]. In addition, we know that all
distributions P from P are supported on a given closed convex set X C RY. How
could we incorporate this domain information to pass from the family S[H, M, @]
containing P to a smaller family of the same type still containing P 7 We are
about to give an answer in the simplest case of H = 2. Specifically, denoting by
éx (-) the support function of X and selecting somehow a closed convex set G ¢ R?
containing the origin, let us set

®(h; ) = inf [@7(h,g; 1) = S(h = gip1) + x(9)]
where ®(h; 1) : R% x M — R is the continuous convex-concave function participat-
ing in the original regular data. Assuming that ® is real-valued and continuous on
the domain R? x M (which definitely is the case when G is a compact set such that
¢x is finite and continuous on G), note that d is convex-concave on this domain,
so that R%, M, disa regular data. We claim that

The family S[Rd7./\/l,$] contains P, provided the family SR, M, ®] does
so, and the first of these two families is smaller than the second one.

Verification of the claim is immediate. Let P € P, so that for properly selected
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= pp € M and for all e € R? it holds

In ( /. exp{eTw}P<dw>) < B(e; up).

Besides this, for every g € G we have ¢x(g) — g% w > 0 on the support of P, whence
for every h € R? one has

In ([ra exp{hTw}P(dw)) < In (g exp{h’w + ¢x(g) — g7 w} P(dw))
< ¢x(9) + ®(h—gipp).

Since the resulting inequality holds true for all g € G, we get
In </ exp{hTw}P(dw)> < </I;(h, pp) Vh € RY,
Rd

implying that P € S [Rd,./\/l,zl;]; since P € P is arbitrary, the first part of the
claim is justified. The inclusion S[R?, M, ®] C S[R?, M, ®] is readily given by the
inequality ® < @, and the latter is due to ®(h, ) < ®(h — 0, 1) + ¢x(0).

Illustration: distributions with bounded support revisited. In Section
2.8.1.2, given a convex compact set X C R? with support function ¢x, we checked
that the data H = RY, M = X, ®(h;p) = h''p+ [ox(h) + ¢x(—h)]? are
regular and the family S[RY, M, ®] contains the family P[X] of all probability
distributions supported on X. Moreover, for every p € M = X, the family
SR, {u}, (I)|Rdx{u}} contains all supported on X distributions with the expecta-
tions e[P] = u. Note that ®(h;e[P]) describes well the behaviour of the logarithm
Fp(h) =1In (fRd ehT“’P(dw)) of the moment-generating function of P € P[X]| when
h is small (indeed, Fp(h) = hTe[P] + O(||h||?) as h — 0), and by far overestimates
Fp(h) when h is large. Utilizing the above construction, we replace ® with the

real-valued, convex-concave and continuous on R? x M = R x X (see Exercise
2.75) function

B(h; ) = infy [W(h, g 1) = (h = )T+ 3ox (b — g) + Ox (~h + )] + 6x(9)]
< O(h; ).

(2.144)

It is easy to see that ®(-; ) still ensures the inclusion P € S[R<, {e[P]}, a\)‘Rdx{e[P]}]

for every distribution P € P[X] and “reproduces Fp(h) reasonably well” for both

small and large h. Indeed, since Fp(h) < ®(h;e[P]) < ®(h;e[P]), for small h

~

®(h; e[P]) reproduces Fp(h) even better than ®(h;e[P]), and we clearly have
~ 1
O(hip) < |(h =) p+ Zlox(h = h) + éx(=h+h)* + ¢x(h)| = 6x(h) Vi,

and ¢x (h) is a correct description of Fp(h) for large h.
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2.8.2 Main result
2.8.2.1 Situation & Construction

Assume we are given two collections of regular data with common 2 = R and
common 7, specifically, the collections (H, M,,®,), x = 1,2. We start with
constructing a specific detector for the associated families of regular probability

distributions
Py =R[H, My, ,], x =1,2.

When building the detector, we impose on the regular data in question the following
Assumption I: The regular data (H, M,,®,), x = 1,2, are such that the

convex-concave function

\I’(h, /.L1,/.L2) = [@1(—}1,;/11) + (I)Q(h;MQ)] T H X (Ml X MQ) — R (2.145)

N | =

has a saddle point (min in h € H, max in (u1, p2) € My x My).
A simple sufficient condition for existence of a saddle point of (2.145) is

Condition A: The sets My and My are compact, and the function

B(h) = ®(h; 1,
(h) eanax (hs g1, pi2)

is coercive on H, meaning that ®(h;) — oo along every sequence h; € H
with |[hi|l2 = 0o as i — co.

Indeed, under Condition A by Sion-Kakutani Theorem (Theorem 2.24) it

holds
SadVal[®] := inf max ®(h; 1, _ su inf ®(hs o, 7
(9] REH p1 €My o €EMs (ks s pi2) meMl,;EzeMz heH (7 1, pi2)
—_—
@(h) 2 (p1,02)

so that the optimization problems

(P): Opt(P) = min D (h)

(D): Opt(D)= _ max  ®(u1,p2)
have equal optimal values. Under Condition A, problem (P) clearly is a
problem of minimizing a continuous coercive function over a closed set and
as such is solvable; thus, Opt(P) = Opt(D) is a real. Problem (D) clearly
is the problem of maximizing over a compact set an upper semi-continuous
(since @ is continuous) function taking real values and, perhaps, value —oo,
and not identically equal to —oo (since Opt(D) is a real), and thus (D) is
solvable. Thus, (P) and (D) are solvable with common optimal values, and
therefore ® has a saddle point.

2.8.2.2 Main Result

An immediate (and cruciall) observation is as follows:
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Proposition 2.42. In the situation of Section 2.8.2.1, let h € H be such that the
quantities

Ui(h) = sup Pi(—h;p), Yo(h) = sup Pa(h;p2)
n1 €My H2EM2

are finite. Consider the affine detector

On() = WTe-+ S[01(h) — Wa(h)]

el

Then
Risk[¢n|R[H, M1, P1], R[H, M2, s3]] < exp{%[\lll(h) + Wa(h)]}. (2.146)

Proof. Let h satisfy the premise of Proposition. For every pu; € My, we have
Dy (—h; 1) < Uy(h), and for every P € R[H, M1, P1], we have

/ exp{—hTw}P(dw) < exp{®;(—h; )}
Q
for properly selected p; € My. Thus,
/ exp{—hTw} P(dw) < exp{W1(h)} YP € RIH, My, &1],
Q

whence also

/ exp{—hTw—%}P(dw) < exp{Vi(h)—s»} = exp{%[\lﬁ(h)—i—\llg(h)]} VP € R[H, M1, P4q].
Q

Similarly, for every us € My, we have ®o(h;us) < Wy(h), and for every P €

R[H, Ma, D3], we have

[ explhT) Plde) < exp(®a(li )
Q
for properly selected ps € Ms. Thus,
/ exp{hTw}P(dw) < exp{Uy(h)} VP € R[H, My, B,
Q

whence also
1
/ exp{h" -+ 5} P(dw) < exp{Wa(h) 2} exp{ g [0 () +-Wa(h)]} VP € RIH, Mo, 3] O
Q
An immediate corollary is as follows:

Proposition 2.43. In the situation of Section 2.8.2.1 and under Assumption I, let
us associate with a saddle point (hy; p3, 113) of the convexr-concave function (2.145)
the following entities:

e the risk
€ 1= exp{W(hs; p1, pua) b (2.147)

this quantity is uniquely defined by the saddle point value of ¥ and thus is inde-
pendent of how we select a saddle point;




StatOpt'LN'NS  January 21, 2019 7x10

142 LECTURE 2

e the detector ¢.(w) — the affine function of w € R? given by
1
0u(w) = w0, a = 2 @1 (~hai i) = Balhai i3)] (2.148)

Then
Rlbk[(f)* |R[7‘[ ./\/ll, (1)1], R[H Mo, (I)QH < €. (2.149)

Consequences. Assume we are given L collections (H, My, ;) of regular data on
a common observation space Q = R? and with common #, and let

P = R[H, My, D]

be the corresponding families of regular distributions. Assume also that for every
pair (£,¢'), 1 < ¢ < ¢ < L, the pair of regular data (H, My, ®;), (H, My, Py)
satisfies Assumption I, so that the convex-concave functions

Woer (hs e, prer) = % [Do(—h; o) + Por(hyper)] : H X (Mg x My) = R
1<t<?<I]
have saddle points (hj,; (15, 1)) (min in b € H, max in (g, pr) € My x Myr).
These saddle points give rise to affine detectors

1
oo (w) = [hip]Tw + 5 [@e(—hips ) — e (hes i) l<e<t<I]

and the quantities
1
€0 = €Xp {2 [e(—hips ng) + ‘I’z'(h*m;f)]} ; [1<i<l <L]

by Proposition 2.43, €y are upper bounds on the risks, taken w.r.t. Py, Py, of the
detectors ¢y :

/ e %@ P(dw) < e VP € Py & / e? (W) P(dw) < ey VP € Py

N N N<t<t<I).
Setting ¢epr () = —@pe(-) and egyr = €prp when L > £ > £/ > 1 and ¢p(-) = 0,
e = 1,1 <€ < L, we get a system of detectors and risks satisfying (2.98) and,
consequently, can use these “building blocks” in the developed so far machinery
for pairwise- and multiple hypothesis testing from single and repeated observations
(stationary, semi-stationary, and quasi-stationary).

Numerical example. To get some impression of how Proposition 2.43 extends the
grasp of our computation-friendly test design machinery. consider a toy problem
as follows:

We are given observation

w = Az + 0 ADiag {\/Z1, ..., /Tn } €, (2.150)

where
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e unknown signal x is known to belong to a given convex compact subset
M of the interior of RT};
e Ais a given n X n matrix of rank n, o > 0 is a given noise intensity, and

£~N(0,1,).

Our goal is to decide via K-repeated version of observations (2.150) on the
pair of hypotheses z € X, x = 1,2, where X;, X5 are given nonempty
convex compact subsets of M.

Note that an essential novelty, as compared to the standard Gaussian o.s., is that
now we deal with zero mean Gaussian noise with covariance matrix

O(z) = o?ADiag{z} AT

depending on the true signal — the larger signal, the larger noise.
We can easily process the situation in question via the machinery developed in
this Section. Specifically, let us set

Hy =R", M, = {(z,Diag{z}) : 2z € X} C R" x 8%,
= T o2 1 T[ A= AT =12
O\ (b2, E) =h'x+ Gh'[AZA ] : My = R
It is immediately seen that for x = 1,2, H, M,, ®, is regular data, and that the
distribution P of observation (2.150) stemming from a signal € X, belongs to
S[H, M,, ®,], so that we can use Proposition 2.43 to build an affine detector for
the families P,, x = 1,2, of distributions of observations (2.150) stemming from
signals x € X,. The corresponding recipe boils down to the necessity to find a
saddle point (h«;Z,y«) of the simple convex-concave function

1 2
U(h;x,y) = 5 Y (y — x) + %hTADiag{x +y}ATh (2.151)

(min in h € R", max in (z,y) € X7 x X»); such a point clearly exists and is easily
found, and gives rise to affine detector

2
1
Gu(w) = hTw + %h*TADiag{:v* —y AT h, — Ehf[z* + Y

a

such that
1 2
Risk[¢«|P1, P2] < exp {2 {hf[y* — )+ %thDiag{x* + y*}ATh*] } . (2.152)
Note that we could also process the situation when defining the regular data as
H,ME = X, ®F, x = 1,2, where

0.2

6
+(pooy — pT T A AT _
o7 (hsz)=h"z+ 5 h* AA*h [0 BB 12| o]

which, basically, means passing from our actual observations (2.150) to the “more
noisy” observations given by the Gaussian o.s.

w=Az+n, n~N(0,020AAT). (2.153)
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It is easily seen that the risk Risk[¢x|P1, Pa] of the optimal, for this Gaussian o.s.,
detector ¢4, can be upper-bounded by the known to us risk Risk[¢4|P;", Py ], where
Py is the family of distributions of observations (2.153) induced by signals = € X.
Note that were we staying within the realm of detector-based tests in simple o.s.’s,
Risk[q5#|731+ , P} would be seemingly the best risk bound available for us. The goal
of the small numerical experiment we are about to report was to understand how
our new risk bound (2.152) compares to the “old” bound Risk[p4|P;, PS]. We
used

0.001 <z <46
_ _ 16 . ==
n—16,X1—{x€R ‘0.001§xi§1,2§i§16}’
200<x; <1
. 16 . =<1 =
X2—{$ER '0.001<xi<1,2<i<16}

and ¢ = 0.1. The “separation parameter” § was set to 0.1. Finally, 16 x 16
matrix A was generated to have condition number 100 (singular values 0.010—1/15,
1 <4 < 16) with randomly oriented systems of left- and right singular vectors.
With this setup, a typical numerical result is as follows:

e the right hand side in (2.152) is 0.4346, implying that with detector ¢., 6-
repeated observation is sufficient to decide on our two hypotheses with risk
<0.01;

e the quantity Risk[¢x|P;, P5 ] is 0.8825, meaning that with detector ¢, we need
at least 37-repeated observation to guarantee risk < 0.01.

When the separation parameter ¢ participating in the descriptions of X7, X, was
reduced to 0.01, the risks in question grew to 0.9201 and 0.9988, respectively (56-
repeated observation to decide on the hypotheses with risk 0.01 when ¢, is used
vs. 3685-repeated observation needed when ¢4 is used). The bottom line is that
our new developments could improve quite significantly the performance of our
inferences.

2.8.2.8 Illustration: sub-Gaussian and Gaussian cases

For x = 1,2, let U, be nonempty closed convex set in R4, and V, be a compact
convex subset of the interior of the positive semidefinite cone S‘i. We assume that
U; is compact. Setting

Hy=Q=RI M, =U, xV,, (2.154)
D (h;0,0) = 0Th+ LhTOh : Hy x My — R, x = 1,2, '
we get two collections (H, My, ®,), x = 1,2, of regular data. As we know from
Section 2.8.1.2, for x = 1,2, the families of distributions S[R¥, M,, ®,] contain
the families SG[U,, V| of sub-Gaussian distributions on R? with sub-Gaussianity
parameters (0,0) € U, x V, (see (2.133)), as well as families G[U,, V, ] of Gaussian
distributions on R? with parameters (§,©0) (expectation and covariance matrix)
running through U, x V,. Besides this, the pair of regular data in question clearly
satisfies Condition A. Consequently, the test 7.5 given by the above construction
as applied to the collections of regular data (2.154) is well defined and allows to
decide on hypotheses

HX tPe R[RdaU)GVX]v X = 1a27
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on the distribution P underlying K-repeated observation w’. The same test can
be also used to decide on stricter hypotheses HS , x = 1,2, stating that the obser-
vations wi,...,wk are i.i.d. and drawn from a Gaussian distribution P belonging
to G[Uy, Vy]. Our goal now is to process in detail the situation in question and to
refine our conclusions on the risk of the test 7.} when the Gaussian hypotheses HS
are considered and the situation is symmetric, that is, when V; = Vs.

Observe, first, that the convex-concave function ¥ from (2.145) in the situation
under consideration becomes

1 1 1
U(h;01,01,02,05) = 5}?[92 —601] + ZhT@lh + 1hTe)Qh. (2.155)
We are interested in solutions to the saddle point problem

min max  U(h;0;,01,0s,02) (2.156)
heR? 61€U1,02€U3
O1EV1,026V,

associated with the function (2.155). From the structure of ¥ and compactness of
Ui, Vi, Vs, combined with the fact that V,, x = 1,2, are comprised of positive
definite matrices, it immediately follows that saddle points do exist, and a saddle
point (h.; 67,07, 05, 0%) satisfies the relations

(a) h. =07 + O3]} — 03],
(b) KT(6y —67) > 00, € Uy, hT(63 —62) >0V, € Uy, (2.157)
(¢) hTO1h, <hTOh, VO, € Vi, hTO3h, < h,O%h, VO, € Vs.

From (2.157.a) it immediately follows that the affine detector ¢, (-) and risk e,, as
given by (2.147) and (2.148), are

6uw) = hTlw—w.]+ 3hT[0F - O3)h., w. = 4167 + 6]
e = exp{—1[0; — 05707 + 03167 — 03]} (2.158)
= exp{—1hl[OF + O3]h.}.

Note that in the symmetric case (where V; = V), there always exists a saddle
point of ¥ with ©F = ©3 3!, and the test 7! associated with such saddle point is
quite transparent: it is the maximum likelihood test for two Gaussian distributions,
N(67,0,), N(05,0.), where O, is the common value of @} and ©3, and the bound
€, on the risk of the test is nothing but the Hellinger affinity of these two Gaussian
distributions, or, equivalently,

e =exp{—L[07 — 0317007 — 03]} . (2.159)
We arrive at the following result:

Proposition 2.44. In the symmetric sub-Gaussian case (i.e., in the case of (2.154)
with V1 = V), saddle point problem (2.155), (2.156) admits a saddle point of the

31Indeed, from (2.155) it follows that when Vi = Vs, the function ¥(h;61,01,02,03)
is symmetric w.r.t. ©1,02, implying similar symmetry of the function ¥(61,01,62,02) =
ming ey Y(h;601,01,02,02). Since ¥ is concave, the set M of its maximizers over My X Ma
(which, as we know, is nonempty) is symmetric w.r.t. the swap of ©; and ©2 and is convex,
implying that if (61, ©1,02,02) € M, then (61, %[@1 + O3], 62, %[61 + ©2]) € M as well, and the
latter point is the desired component of saddle point of ¥ with ©1 = Oa.
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form (hy;07,0,,05,0,), and the associated affine detector and its risk are given by

bu(w) = Mlw—w.], w, = 3[07 +63];
. N o , 2.160
e = exp{—1[07 — 0370, 1(6; — 03]}, (2.160)

As a result, when deciding, via w’, on “sub-Gaussian hypotheses” o, x=1,2,

the risk of the test TX associated with iK)(wK) = Zfil ¢+ (wy) is at most €X.

In the symmetric single-observation Gaussian case, that is, when V; = V5 and we
apply the test 7, = 7.} to observation w = w; in order to decide on the hypotheses
HS , X = 1,2, the above risk bound can be improved:

Proposition 2.45. Consider symmetric case Vi = Vo =V, let (hy; 07;07,05,0%5)
be “symmetric” — with ©F = O = O, — saddle point of function ¥ given by (2.155),
and let ¢, be the affine detector given by (2.157) and (2.158):

1 1
$u(w) = hl[w —w.], h.= 59;1[91‘ = 03], we = S107 + 03]
Let also .
§=1/hTO.h, = §\/[9;* —031Tetor — 03], (2.161)
so that

1
62 = hT[07 —w,] = hl [w, — 03] ande, = exp{—§52}. (2.162)

Let, further, a < 62, B < 6%. Then

(@) V(0 €Up,© €V):Probyag,e){0«w) < a} <Erf(d —a/d)

(b) V(e € UQ,@ S V) : ProwaN(07®){¢*(w) > 76} < EI‘f((S o 5/5), (2163)

where ) -
Erf(s) = — exp{—r2/2}dr
(== | ewl=r?2)

18 the normal error function. In particular, when deciding, via a single observation
w, on Gaussian hypotheses Hf(;, x = 1,2, with Hg stating that w ~ N(0,0) with
(0,0) € Uy x V, the risk of the test T} associated with ¢. is at most Erf(d).

Proof. Let us prove (a) (the proof of (b) is completely similar). For § € Uy, © € V
we have

Prob,,n(6,0){¢«(w) < a} = Prob,uns,e){hf [w — w.] < a}

= Probg 0,1 {hL [0 + o2 —w,] < a}

= Probeono,n{[0'?h]T¢ <a— B0 —w.] }
—_——

>hT[0F —wi]=62
by (2.157.b),(2.162)

< Probeon(o,n{[0"?h.]7¢ < o — 6%}

= Erf([0° - a]/[|0/*h.]2)

< Erf([62 — a]/||©+/?h,||2) [since 62 — a > 0 and hTOh, < hTO,h, by (2.157.c)]
= Erf([62 — /).

The “in particular” part of Proposition is readily given by (2.163) as applied with
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a=p8=0. O

Note that the progress, as compared to our results on the minimum risk detectors
for convex hypotheses in Gaussian o.s. is that we do not assume anymore that the
covariance matrix is once for ever fixed. Now both the mean and the covariance
matrix of Gaussian random variable we are observing are not known in advance, the
mean is allowed to run through a closed convex set (depending on the hypothesis),
the covariance is allowed to run, independently of the mean, through a given convex
compact subset of the interior of the positive definite cone, and this subset should
be common for both hypotheses we are deciding upon.

2.9 BEYOND THE SCOPE OF AFFINE DETECTORS: LIFTING
OBSERVATIONS

2.9.1 Motivation

The detectors considered so far in this Section were affine functions of observations.
Note, however, that what is an observation, it to some extent depends on us. To
give an instructive example, consider the Gaussian observation

¢(=A[uy; 1]+ RY,

where u is unknown signal known to belong to a given set U C R"™, u — Alu;1]
is a given affine mapping from R” into the observation space R¢, and ¢ is zero
mean Gaussian observation noise with covariance matrix © known to belong to a
given convex compact subset V of the interior of the positive semidefinite cone Si.
Treating observation “as is”, affine in observation detector is affine in [u; £]. On the
other hand, we can treat as our observation the image of the actual observation ¢
under a whatever deterministic mapping, e.g., the “quadratic lift” ¢ ~ (¢, ¢¢T).
A detector affine in the new observation is quadratic in u and & — we get access
to a wider set of detectors as compared to those affine in ¢! At the first glance,
applying our “affine detectors” machinery to appropriate “nonlinear lifts” of ac-
tual observations we can handle quite complicated detectors, e.g., polynomial, of
arbitrary degree, in (. The bottleneck here stems from the fact that in general it
is really difficult to “cover” the distribution of “nonlinearly lifted” actual observa-
tion ¢ (even as simple as the above Gaussian observation) by an explicitly defined
family of regular distributions; and such a “covering” is what we need in order to
apply to the lifted observation our affine detector machinery. It turns out, however,
that in some important cases the desired covering is achievable. We are about to
demonstrate that this favorable situation indeed takes place when speaking about
the quadratic lifting ¢ + (¢, (¢T) of (sub)Gaussian observation ¢, and the resulting
quadratic detectors allow to handle some important inference problems which are
far beyond the grasp of “genuinely affine” detectors.

2.9.2 Quadratic lifting: Gaussian case

Given positive integer d, we define £¢ as the linear space R? x S? equipped with
the inner product

((2,9),(¢,8") = sT2 + %Tr(SS’).
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Note that the quadratic lifting z + (2, 2zz7) maps the space R? into £9.
In the sequel, an instrumental role is played by the following result.

Proposition 2.46.

(i) Assume we are given

e a nonempty and bounded subset U of R",

e a convexr compact set V contained in the interior of the cone Si of positive
semidefinite d x d matrices

e adx (n+1) matriz A.

These data specify the family Ga|U, V] of distributions of quadratic lifts (¢,(CT) of
Gaussian random vectors ¢ ~ N (Alu; 1], ©) stemming from v € U and © € V.
Let us select somehow

1. v€(0,1),
2. convex compact subset Z of the set Z" = {Z € S"* 1 Z = 0,Zpy1n41 = 1}

such that
Z(u) = [u; 1][u; 1)]T € Z Vu € U, (2.164)

3. positive definite d x d matriz ©, € S% and 6 € [0,2] such that

0, =0V eV & |00, -1, <5 VO eV, (2.165)
where || - || is the spectral norm,3?
and set
H=H":={(h,H) e R xS?: 40! < H <10}, (2.166)
®az(h,H;0) = —LllnDet(I —0Y°HOV?) + LTr([© - ©,]H)
210, o 102!

2(1—|el?Hel?)

30z (BT [[S5] + H.0T0:" — H) 7 [H.1] B) :

HxV — R,
(2.167)
where B is given by
A
B= { 0,...,0,1] } , (2.168)
the function
o=z(Y) = max Tr(ZY) (2.169)

is the support function of Z, and || - ||F is the Frobenius norm.
Function ® 4 =z is continuous on its domain, convex in (h, H) € H and concave
in© €V, so that (H,V, P4 z) is a reqular data. Besides this,

enever u € 1s such that [u; 1||u; € Z an €V, the Gaussian
#) Wh R” h th Nu; 1T € Zand© €V, the G

321t is easily seen that with § = 2, the second relation in (2.165) is satisfied for all © such
that 0 < © <X O, so that the restriction § < 2 is w.l.o.g.
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random vector ¢ ~ N (Alu; 1], ©) satisfies the relation
V(h,H) e H: In (ECNN(A[M;”,@) {e%CTH<+hT<}) < By z(h, H;O).
(2.170)

which combines with (2.164) to imply that
GalU,V] C S[H,V, (I)A7z]. (2.171)

In addition, ® 4.z is coercive in (h, H): ® 4 z(h;, H;; ©) — 400 as i — oo whenever
(C] S V, (h“Hz) cH and ||(hL,H1)|| — 00, 7 — 00.

(1t) Let two collections of entities from (i), (Vy, 952(), Os Yoo Axs 25 )y x = 1,2,
with common d be given, giving rise to the sets H,, matrices By, and functions
Qa2 (h,H;0), x =1,2. These collections specify the families of normal distri-
butions

G ={N0):0eV, &FuelU:v=A[ul]}, x =12

Consider the convex-concave saddle point problem

1
SV = i ~[@ —h,—H;01) + ® h,H;0,)].
(h’H)rg;ymm@lem_ievﬂ[ A1,z (—h, —H;01) + @, 2, (h, H; O2)]

®(h,H;01,03)
(2.172)
A saddle point (H,, h.; OF, ©%) in this problem does exist, and the induced quadratic
detector

1 1
¢*(w) = ngH*w + hzw + 5 [®A1,Z1(_h*7 _H*; @T) - q)Az,Zz (h*v H*7 @;)]7

a

(2.173)
when applied to the families of Gaussian distributions Gy, x = 1,2, has the risk

Risk[¢.|G1, o] < €, := 5V,

that is,
(@)  Jgae *WP(dw) <e. VPeG,

(b) Ja €@ P(dw) <€, VP € Go. (2.174)

For proof, see Section 2.11.4.

Remark 2.47. Note that the computational effort to solve (2.172) reduces dramat-
ically in the “easy case” of the situation described in item (ii) of Proposition 2.46,
specifically, in the case where

e the observations are direct, meaning that A, [u;1] = u, u € RY, y=1,2;

e the sets V, are comprised of positive definite diagonal matrices, and matrices
0 are diagonal as well, x =1, 2;

e the sets Z,, x = 1,2, are convex compact sets of the form
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with diagonal matrices Q;‘, 33 and these sets intersect the interior of the positive

semidefinite cone S’iﬂ .

In this case, the convex-concave saddle point problem (2.172) admits a saddle point
(hs, Hy; ©7,0%) where h, = 0 and H., is diagonal.

Justifying the remark. In the easy case, we have B, = I441 and therefore

M (h,H) := BT H?H'J%} T [0 —H] [H,h]] B,

H+H [[@S})]—l - H]_l H ‘ h+ H[[©X]! — H] A
BT T [[O00) 7 - H]_l H ‘ GHICE H]_l h

and
62.(2) = max {TH(ZW): W= 0, THWQY) < g, 1 <5 < 1)
= iny {Zj qu/\j tA>0,Z= Ej /\jQ;(},

where the last equality is due to semidefinite duality®*. From the second representa-
tion of ¢z (-) and the fact that all Q} are diagonal it follows that ¢z, (M, (0, H)) <
¢z, (My(h, H)) (indeed, with diagonal QF, if X is feasible for the minimization
problem participating in the representation when Z = M, (h, H), it clearly remains
feasible when Z is replaced with M, (0,H)). This, in turn, combines straight-
forwardly with (2.167) to imply that when replacing h, with 0 in a saddle point
(hy, Hy;0%,0%) of (2.172), we end up with another saddle point of (2.172). In
other words, when solving (2.172), we can from the very beginning set h to 0, thus
converting (2.172) into the convex-concave saddle point problem

V= min max  ®(0,H;01,0,). (2.175)
H:(0,H)eH1NH2 ©O1EV1,02€V2

Taking into account the fact that we are in the case where all matrices from the
sets V,, same as the matrices @SFX) and all the matrices Q;C , x = 1,2, are diagonal,
it is immediate to verify that if F is a d x d diagonal matrix with diagonal entries
+1, then ®(0,H;01,03) = ®(0, EHE;©1,03). Due to convexity-concavity of @
this implies that (2.175) admits a saddle point (0, H,;©O7,03%) with H, invariant
w.r.t. transformations H, — FH,FE with the above E, that is, with diagonal H,,
as claimed. a

2.9.3 Quadratic lifting — does it help?

Assume that for y = 1,2, we are given

e affine mappings u — A, (u) = Ay [u; 1] : R"™ — R,
e nonempty convex compact sets U, C R™x,
e nonempty convex compact sets V, C int Si.

33In terms of the sets Uy, this assumption means that the latter sets are given by linear
inequalities on the squares of entries in w,
34see Section 4.1 ( or [116, Section 7.1] for more details).
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These data define families G, of Gaussian distributions on R%: G, is comprised of all
distributions N'(Ay (u), ©) with v € U, and © € V,. The data define also families
SG, of sub-Gaussian distributions on R?%: SG, is comprised of all sub-Gaussian
distributions with parameters (A, (u), ©) with (u,0) € U, x V.

Assume we observe random variable ¢ € R% drawn from a distribution P known
to belong to G; U Ga, and our goal is to decide from stationary K-repeated version
of our observation on the pair of hypotheses H, : P € G,, x = 1,2; we refer to
this situation as to Gaussian case. We could also speak about sub-Gaussian case,
where the hypotheses we would decide upon state that P € SG,. In retrospect, all
we are about to establish for the Gaussian case can be word by word repeated for
the sub-Gaussian one, so that from now on, we assume we are in Gaussian case.

At present, we have developed two approaches to building detector-based tests
for Hy, Hs:

A. Utilizing the affine in ¢ detector ¢,g given by solution to the saddle point problem
(see (2.155), (2.156) and set 0, = A, (u,) with u, running through U, )

1 1
SadVal,gs = min max = |hT[Aa(ug) — Ay (u1)] + =hT [©1 + Os] R | ;
heR? ui€Up,usels 2 2
©1€V1,02€V;

(2.176)
this detector satisfies risk bound

Risk[¢ar|G1, G2] < exp{SadVal,g}. (2.177)

Q. Utilizing the quadratic in  detector ¢y given by Proposition 2.46.ii, with the
risk bound
Risk[¢yir|G1, Ga] < exp{SadValyy }, (2.178)

with SadValyy, given by (2.172).

A natural question is, which one of these options results in a better risk bound.
Note that we cannot just say “clearly, the second option is better, since there are
more quadratic detectors than affine ones” — the difficulty is that the key, in the
context of Proposition 2.46, relation (2.170) is inequality rather than equality>®. We
are about to show that under reasonable assumptions, the second option indeed is
better:

Proposition 2.48. In the situation in question, assume that the sets V,,, x = 1,2,
contain the =-largest elements, and that these elements are taken as the matrices
(_)ix) participating in Proposition 2.46.11. Let, further, the convexr compact sets Z,
participating in Proposition 2.46.1i satisfy

W | u

2, C2y:={Z= { | =0 ue Uy} (2.179)

(this assumption does not restrict generality, since Zx is, along with Uy, a closed

350One cannot make (2.170) an equality by redefining the right hand side function — it will
lose the required in our context convexity-concavity properties.
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unrestricted
p o1 | 09 H and h H=0|h=0
0.5 2 2 0.31 0.31 1.00
0.5 1 4 0.24 0.39 0.62
0.01 1 4 0.41 1.00 0.41

Table 2.2: Risk of quadratic detector ¢(¢) = hT¢ + %CTHC +

convex set which clearly contains all matrices [u;1][u; 1]T with u € U, ). Then

SadVal,; < SadVal,g, (2.180)

that is, option Q is at least as efficient as option A.

Proof. Let A, = [A,,a,]. Looking at (2.155), where one should substitute 6, =

A, (uy) with u, running through U, ) and taking into account that ©, < ol e Vy
when ©, € V,, we conclude that

1
SadVal, g = m}jn max -

- _ 1
hT[AQUQ - A1U1 +ag — al] + *hT |:@>(k1) + @,(k2)i| h|.
u1 €Uy, us €Uz 2 2

(2.181)
At the same time, we have by Proposition 2.46.ii:

SadValjge = min max % [@Al,zl (—h, —H; @1) + (I)AZ,ZQ(hq H; ("‘)2)]
(h,HYEH1NHg ©1EV1,02€V2
< i 1 —h.0: .
= }flelgld 916\5111?9)(26\)2 2 [®a1,2,(—h,0;01) + Pa, 2, (h,0; 02)]
—Afh
_ . 1|1 T‘I‘ Z _ ‘ 1
ifggl‘i @1615111,%(26\/’2 2 |:2 erlg%i Y AT A, ‘ —2hTa; +hTOWh
AT h
i Tr | Z _| :
IR T\ | hT A, | 2hTas + nTOPh
[by direct computation utilizing (2.167)]
< min % = max [—QulTﬁlTh —2aTh + hT@S})h] +
heRd uy €Uy
% max [ZuQTAQTh +2aFh + hT@g)h]
u2 2
[due to (2.179)]
= SadVal.g,
where the concluding equality is due to (2.181). O

Numerical illustration. To get an impression of the performance of quadratic
detectors as compared to affine ones under the premise of Proposition 2.48, we
present here the results of experiment where Uy = Uf = {u € R'? 1 u; > p,1 <i <
12}, Uy = Uf = —UP, Ay = Ay € R®1_ and V, = {8 = o2lg} are singletons.
The risks of affine, quadratic and “purely quadratic” (with h set to 0) detectors on
the associated families G, Go are given in Table 2.2.

We see that

e when deciding on families of Gaussian distributions with common covariance
matrix and expectations varying in associated with the families convex sets,
passing from affine detectors described by Proposition 2.44 to quadratic detectors
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does not affect the risk (first row in the table). This should be expected: we are
in the scope of Gaussian o.s., where minimum risk affine detectors are optimal
among all possible detectors.

e when deciding on families of Gaussian distributions in the case where distribu-
tions from different families can have close expectations (third row in the table),
affine detectors are useless, while the quadratic ones are not, provided that @Skl)
differs from ©'?. This is how it should be — we are in the case where the
first moments of the distribution of observation bear no definitive information
on the family this distribution belongs to, which makes affine detectors useless.
In contrast, quadratic detectors are able to utilize information (valuable when
ol # @9)) “stored” in the second moments of the observation.

e “in general” (second row in the table), both affine and purely quadratic compo-
nents in a quadratic detector are useful; suppressing one of them can increase
significantly the attainable risk.

2.9.4 Quadratic lifting: sub-Gaussian case

Sub-Gaussian version of Proposition 2.46 is as follows:

Proposition 2.49.

(i) Assume we are given

e a nonempty and bounded subset U of R™,

e a convex compact set V contained in the interior of the cone Si of positive
semidefinite d x d matrices

e adx (n+1) matriz A.

These data specify the family SGa[U, V)| of distributions of quadratic lifts (¢,¢CT)
of sub-Gaussian random vectors ¢ with sub-Gaussianity parameters Alu; 1], © stem-
ming from w € U and © € V.

Let us select somehow

~

reals v, yT such that 0 < v <~ < 1,

2. convex compact subset Z of the set Z" = {Z € S"* 1 Z = 0,Zpy1n41 = 1}
such that relation (2.164) takes place,

3. positive definite d x d matriz ©, € S% and § € [0,2] such that (2.165) takes

place.

These data specify the closed convex sets
H = HY:={(h,H) cR*xS?: 1O < H <7071},
~ ~ A~ =< =< —1
A = Hw*z{(h,H,G)eRdxsdxsd:{ 0,7 2 H 270, }

0=G=~yt0;, H=G
(2.182)
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and the functions

Va4 z(hHG) = —LmDet(I-0Y*cel/?)
+i0z (BT H hH " } +[H, T[0! fG]‘l[H,h]} B) :
HxZ—=R,
VS o (h,H,G;0) = —imDet(I-0.°Ge.?)
+im(e - 0.)6) + —2CH e/ *Gel? |3

21— |01/ cel/?|)
+hoz (87 | [ + wrier 61| B) -
Hx{0<0=<06.} - R,
mGin{\I/Ayz(h,H,G) (b, H,G) € ﬁ} ‘H — R,
rnci:n{\I/‘L’Z(h,H,G; ©): (h,H,G) € ﬁ} ‘Hx{0<0=<6,} >R,
(2.183)
where B is given by (2.168) and ¢ z(+) is the support function of Z given by (2.169).
Function ®4 z(h, H) is convex and continuous on its domain, while function

@%Z(h,H;@) is continuous on its domain, convex in (h, H) € H and concave in
0 € {0 <0 <X 0.}. Besides this,

©4,z(h, H)

(##) Whenever u € R™ is such that [u;1][u;1]T € Z and © € V, the sub-

Gaussian, with parameters (Alu; 1], ©), random vector ¢ satisfies the relation

V(h,H) € H :
() In(E¢qes¢ HrT ) <@, o (h, H), (2.184)
(b) In(Ec{es Hrrel) < @b _(n, H;0).

which combines with (2.164) to imply that
SGA[U, V] C S[H,V,@A,S]. (2.185)

In addition, ®4 .z and ‘IJZ’Z are coercive in (h,H): ®4 z(h;,H;) — 400 and
<I>§47Z(hi,Hi; ©) = +00 as i — oo whenever © € V, (h;, H;) € H and ||(h;, H;)| —
00, 1 — 00.

(ii) Let two collections of data from (i): ()/X,@iX),éx,'yX,'y;r,AX,ZX), X =
1,2, with common d be given, giving rise to the sets H,, matrices By, and functions
Qa2 (b H), q)i;,zx(th?@% x = 1,2. These collections specify the families
SG\ = 8G A [Uy,Vy] of sub-Gaussian distributions.

Consider the convex-concave saddle point problem

) Tr.s s
SV = 2 le% _ (—h —H:0,) + &% hH~@}.
o 0B Ly, 5 | Pz (TR —H O1) + O, 5, (B, H O:)

©91:92 (h,H;01,02)
(2.186)
A saddle point (H,, hy; ©F, ©%) in this problem does exist, and the induced quadratic
detector

1 1
6u(w) = 5w How+ hlw+ 2 |0 5, (—he, —H.507) = 9%, 2, (b, Hi303)],

a

(2.187)
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when applied to the families of sub-Gaussian distributions SGy, x = 1,2, has the
risk
Risk[¢.|SG1,SGs) < ¢, := eV,

As a result,

(@)  [pae @ P(dw) <€, VP eSGy,

(b) Jra €@ P(dw) < e, VP € SGs. (2.188)
Similarly, the convexr minimization problem
1
Opt = min —[®a,. 2, (=h,—H)+ P4, z,(h,H). (2.189)

(h,H)eH NHy 2

®(h,H)

is solvable, and the induced by its optimal solution (h., H.) quadratic detector

1 ., o1
bu(w) = §w1 H.w+hTw+ 5 [@4,.2,(—he,—H.) — ®a, z,(he, Ho)],  (2.190)

a

when applied to the families of sub-Gaussian distributions SGy, x = 1,2, has the
risk

Risk[¢.|SG1,SGa] < €, := P!,
so that for just defined ¢, and e, relation (2.189) takes place.

For proof, see Section 2.11.5.

Remark 2.50. Proposition 2.49 offers two options for building quadratic detectors
for the families SG1, SG1, those based on saddle point of (2.186) and on optimal
solution to (2.189). Inspecting the proof, the number of options can be increased
to 4: we can replace any one of the functions @i"wzx, x = 1,2 (or both these
functions simultaneously) with ®4 = . The second of the original two options is

exactly what we get when replacing both CIJZXM z X =12, with®y =z . Itis easily
seen that depending on the data, every one of these 4 options can be the best —
result in the smallest risk bound. Thus, it makes sense to keep all these options in
mind and to use the one which, under the circumstances, results in the best risk
bound. Note that the risk bounds are efficiently computable, so that identifying
the best option is easy.

2.9.5 Recovering quadratic form of discrete distribution

Lemma 2.51. Let  be zero mean random variable taking values in the n-dimensional
l1-ball of radius 2 centered at the origin, K be a positive integer, and let ng =
% Zle (i, where (1, ...,Cx are independent copies of (. Then

YNENK n
O<7<K/4:>E{exp{ }} <" (2.191)
2 V1—4y/K

In particular,

K T
E {cxp{"g"K}} < 3n. (2.192)
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Proof. By Proposition 2.40 we have

B {exp{(hnic}} = [B {exp{h /K1) < [exp{In/K]1%/2)] = expg 2l )

Now let z ~ N(0,1,,) be independent of nx. We have

E,. {exp{mEknk/2}} = By {E. {exp{\nkz}}} = B, {Ey, {exp{\Ank2}}}
< E, {exp{27[|z[I2./K)}} <E. {311, exp{(47/K)z}/2}}
1*(4”/2/K)]52 bds = n 0O

—_n_[ _
= V= J expl Ve

Corollary 2.52. In the notation and under the premise of Lemma 2.51, for every
p€[1,2] and € € (0,1) one has

2—-p
3n2r /In(3
Prob {||nK||p Sl n( ”/e)} <e

VK

Proof. Let L = 2 In(3n/e), and = = {nx : nknrx < L}, so that Prob{n, ¢ E} <
by (2.192). When nx € E, we have

3n In(3n/€) .
VK '

1_1
Inxlly < nP ™2k ll2 <

Application: recovering quadratic form of discrete distribution. Consider
the situation as follows: we are given an i.i.d. sample

Wk = (w1, .y wk)

with w; ~ Au, where u € A,, is an unknown probabilistic vector, and A is m X n
stochastic matrix, so that wy takes value e; (eq, ..., e,, are basic orths in R™) with
probability [Au];. Our goal is to recover

F(u) = u" Qu,

where ) € S™ is given, and to this end we want to build a “presumably good”
estimate of the form

T
. 1 1
e[ o] o]
Let us set

1 1
p=Au,( = wp — p, K = ?;Cme:E;Wk:nK +p.
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Note that ||(x][1 < 2. We have
EH(@K) - F(u) = ﬁ'Z;vHﬁj\' - 11,7‘(’2‘1/ =¢EHnk + L Hp
= ¢ Hn +nkHp + [pT Hp — u” Qu]
— Tl — " Qul < [p" Hp — T Qul + 2 H| ol

where ||H || = max; ; |H;;|. Invoking Corollary 2.52, it follows that for all e € (0,1)
and all v € A, it holds

. : 6/mIn(3m/e)||H| s
Prob?{ |gg (W) — F(u)| > R[H] := +

ATHA - Qx} <e
and we can build a “presumably good” estimate by minimizing R[H] over H.

2.9.6 Generic application: quadratically constrained hypotheses

Propositions 2.46, 2.49 operate with Gaussian/sub-Gaussian observations ¢ with
matrix parameters © running through convex compact subsets V of int Si, and
means of the form Afu;1], with “signals” v running through given sets U C R™.
The constructions, however, involved additional entities — convex compact sets
ZC2Zv:={Z €8S : Z,t1,n41 = 1} containing quadratic lifts [u; 1][u; 1]7 of
all signals uw € U; other things being equal, the smaller is Z, the smaller is the
associated function ®4 z (or ®9 ), and consequently, the smaller are the (upper
bounds on the) risks of quadratic in ¢ detectors we end up with. In order to apply
these propositions, we should understand how to build the required sets Z in an
“economical” way. There exists a relatively simple case when it is easy to get
reasonable candidates to the role of Z — the case of quadratically constrained signal
set U:

U={ueR": fi(u) = u"Qru+2¢fu<by, 1<k <K} (2.193)

Indeed, the constraints fi(u) < by are just linear constraints on the quadratic lifting
[u; 1][u; 1]T of u:

ul Qru + 2w < by & Tr(Fi[u; 1[u; 1)7) < by, Fi = [‘?Hq—’“} € st
k

Consequently, in the case of (2.193), the simplest candidate on the role of Z is the
set

Z={2€8":Z%0,Zni1ns1=1,Te(FpZ) <bp, 1 <k <K} (2.194)

This set clearly is closed and convex (the latter — even when U itself is not convex),
and indeed contains the quadratic lifts [u;1][u; 1]7 of all points u € U. We need
also the compactness of Z; the latter definitely takes place when the quadratic
constraints describing U contain constraint of the form u”u < R2, which, in turn,
can be ensured, basically “for free,” when U is bounded. It should be stressed
that the “ideal” choice of Z would be the convex hull Z[U] of all rank 1 matrices
[u; 1][u; 1]T with u € U — this definitely is the smallest convex set which contains the
quadratic lifts of all points from U; moreover, Z[U] is closed and bounded, provided
U is so. The difficulty is that Z[U] can be computationally intractable (and thus
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useless in our context) already for pretty simple sets U of the form (2.193). The
set (2.194) is a simple outer approximation of Z[U], and this approximation can be
very loose; for example, when U = {u: —1 < wuy, < 1,1 < k < d} is just the unit
box in RY, the set (2.194) is

(Z2e8" 270, Znj1nr = 1| Z | <1, 1<k <n;

this set even is not bounded, while Z[U] clearly is bounded. There is, essentially,
just one generic case when the set (2.194) is exactly equal to Z[U] — the case where

U={u:v"Qu<c},Q >0

is an ellipsoid centered at the origin; the fact that in this case the set given by
(2.194) is ezxactly Z[U] is a consequence of what is called S-Lemma.

The fact that, in general, the set Z could be a very loose outer approximation
of Z[U] does not mean that we cannot improve this construction. As an instructive
example, let U = {u € R™ : |lu]looc < 1}. We get a much better that above
approximation of Z[U] when applying (2.194) to equivalent description of the box
by quadratic constraints:

U={ucR": |uo <1} ={ucR":u <1,1 <k <n}.

Applying recipe (2.194) to the second description of U, we arrive at a significantly
less conservative outer approximation of Z[U], specifically,

Z={ZeS"":Z=0,Zpni1m11=1,Z1, < 1,1 <k <n}.

Not only the resulting set Z is bounded; we can get a reasonable “upper bound” on
the discrepancy between Z and Z[U]. Namely, denoting by Z° the matrix obtained
from a symmetric n X n matrix Z by zeroing out the South-Eastern entry (the one
in the cell (n + 1,74 1)) and keeping the remaining entries intact, we have

Z°U:={2°:Ze€ZU)} CcZ2°:={Z°:Ze€ Z} CO(1)In(n+1)2°.

This is a particular case of a general result (going back to [119]; we shall get this
result as a byproduct of our forthcoming considerations, specifically, Proposition
4.6) as follows:

Let U be a bounded set given by a system of convex quadratic constraints
without linear terms:

U={ueR":u"Qu<cy, 1<k<K},Qur=01<k<K,
and let Z be the associated set (2.194):
Z={ZeS"":Z=0,Zni1ns1 =1, Tr(ZDiag{Q,1}) < e, 1 <k < K}
Then
Z0):={Z°:Z e ZU)} Cc 2°:={Z°: Z € Z} C4In(5(K + 1)) Z°[U].

Note that when K =1 (i.e., U is an ellipsoid centered at the origin), the
factor 4In(5(K + 1)), as it was already mentioned, can be replaced by 1.
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One can think that the factor 4In(5(K 4 1)) is too large to be of interest; well, this
is nearly the best factor one can get under the circumstances, and a nice fact is
that the factor is “nearly independent” of K.

Finally, we remark that, same as in the case of a box, we can try to reduce the
conservatism of outer approximation (2.194) of Z[U] by passing from the initial
description of U to an equivalent one. The standard recipe here is to replace linear
constraints in the description of U by their quadratic consequences; for example, we
can augment a pair of linear constraints ¢l u < ¢;, quu < ¢;, assuming there is such
a pair, with the quadratic constraint (¢; —q; u)(c; —q] u) > 0. While this constraint
is redundant, as far as the description of U itself is concerned, adding this constraint
reduces, and sometimes significantly, the set given by (2.194). Informally speaking,
transition from (2.193) to (2.194) is by itself “too stupid” to utilize the fact (known
to every kid) that the product of two nonnegative quantities is nonnegative; when
augmenting linear constraints in the description of U by their pairwise products, we
somehow compensate for this stupidity. Unfortunately, “computationally tractable”
assistance of this type perhaps allows to reduce the conservatism of (2.194), but
usually does not allow to eliminate it completely: a grave “fact of life” is that even
in the case of unit box U, the set Z[U] is computationally intractable. Scientifically
speaking: maximizing quadratic forms over the unit box U provably is an NP-hard
problem; were we able to get a computationally tractable description of Z[U], we
would be able to solve this NP-hard problem efficiently, implying that P=NP. While
we do not know for sure that the latter is not the case, “the informal odds” are
strongly against this possibility.

The bottom line is that while the approach we are discussing in some situations
could result in quite conservative tests, “some” is by far not the same as “always;”
on the positive side, this approach allows to process some important problems. We
are about to present a simple and instructive illustration.

2.9.6.1 Simple change detection

On Figure 2.5, you see a sample of frames from a “movie” where noisy picture of a
gentleman gradually transforms into noisy picture of a lady; several initial frames
differ just by realizations of noise, and starting with some instant, the “signal” (the
deterministic component of the image) starts to drift from the gentleman towards
the lady. What, in your opinion, is the change point — the first time instant where
the signal component of the image differs from the signal component of the initial
image?

A simple model of the situation is as follows: we observe, one by one, vectors
(in fact, 2D arrays, but we can “vectorize” them)

wt:xt—&-ft, t= 1,2,...7K, (2195)

where z; are deterministic components of the observations and &; are random noises.
It may happen that for some 7 € {2,3,..., K}, the vectors z; are independent of
t when t < 7, and z, differs from x,_; (“7 is a change point”); if it is the case,
7 is uniquely defined by % = z1,...,xx. An alternative is that z; is independent
of t, 1 <t < K (“no change”). The goal is to decide, based on observation
wl = (w1, ..,wr), whether there was a change point, and if yes, then, perhaps, to
localize it.

The model we have just described is the simplest case of “change detection,”
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Figure 2.5: Frames from a “movie”

LECTURE 2




StatOpt'LN'NS  January 21, 2019 7x10

HYPOTHESIS TESTING 161

where, given noisy observations on some time horizon, one is interested to detect
a “change” in some time series underlying the observations. In our simple model,
this time series is comprised by deterministic components z; of observations, and
“change at time 7” is understood in the most straightforward way - as the fact
that x, differs from equal to each other preceding xz;’s. In more complicated sit-
uations, our observations are obtained from the underlying time series {z;} by a
non-anticipative transformation, like

t
Wt = ZAtsxs +£t7 t= 17 "'7Ka

s=1

and we still want to detect the change, if any, in the time series {x;}. As an
instructive example, consider observations, taken along equidistant time grid, of
the positions of an aircraft which “normally” flies with constant velocity, but at
some time instant can start to maneuver. In this situation, the underlying time
series is comprised of the velocities of the aircraft at consecutive time instants,
observations are obtained from this time series by integration, and to detect a
maneuver means to detect that on the observation horizon, there was a change in
the series of velocities.

Change detection is the subject of huge literature dealing with a wide range of
models differing from each other in

e whether we deal with direct observations of the time series of interest, as in
(2.195), or with indirect ones (in the latter case, there is a wide spectrum of
options related to how the observations depend on the underlying time series),

e what are assumptions on noise,

e what happens with z;’s after the change takes place — do they jump from their
common value prior to time 7 to a new common value starting with this time,
or start to depend on time (and if yes, then how), etc., etc.

A significant role in change detection is played by hypothesis testing; as far as
affine/quadratic-detector-based techniques developed in this Section are concerned,
their applications in the context of change detection are discussed in [71]. In what
follows, we focus on the simplest of these applications.

Situation and goal. We consider the situation as follows:

1. Our observations are given by (2.195) with independent across t = 1, ..., K noises
& ~ N(0,0%1;). We do not known o a priori, what we know is that o is
independent of ¢ and belongs to a given segment [o,7], with 0 < ¢ < ;

2. Observations (2.195) arrive one by one, so that at time ¢, 2 < ¢t < K we have
at our disposal observation w! = wi,...,w;. Our goal is to build a system of
inferences T;, 2 < t < K, such that 7; as applied to w! either infers that there
was a change at time ¢ or earlier, in which case we terminate, or infers that so
far there was no change, in which case we either proceed to time t+1 (if t < K),
or terminate (if ¢ = K) with “no change” conclusion.

We are given ¢ € (0,1) and want from our collection of inferences to make the
probability of false alarm (i.e., terminating somewhere on time horizon 2,3, ..., K
with “there was a change” conclusion in the situation when there was no change:
1 = ... = k) at most €. Under this restriction, we want to make as small
as possible the probability of a miss (of not detecting the change at all in the
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situation where there was a change).

The “small probability of a miss” desire should be clarified. When the noise is
nontrivial, we have no chances to detect very small changes and respect the bound
on the probability of false alarm. A realistic goal is to make as small as possible the
probability of missing a not too small change, which can be formalized as follows.
Given p > 0, and tolerances €, € (0,1), let us look for a system of inferences
{T: : 2 <t < K} such that

e the probability of false alarm is at most ¢, and

e the probability of “p-miss” — the probability to detect no change when there was
a change of energy > p? (i.e., when there was a change point 7, and, moreover,
at this point it holds ||z, — z1||3 > p?) is at most &.

What we are interested in, is to achieve the just formulated goal with as small p as
possible.

Construction. Let us select a large “safety parameter” R, like R = 108 or even
R = 1089, so that we can assume that for all time series we are interested in it
holds ||z, — x,||3 < R? 35. Let us associate with p > 0 “signal hypotheses” H/,
t = 2,3,...,K, on the distribution of observation w’ given by (2.195), with H/
stating that in the time series {z;}2 ; underlying observation w there is a change,
of energy at least p2, at time t:

1 =x9=..=x41 & ||z — xt_1||§ = ||z — 1:1||§ > p2

(and on the top of it, ||z; —x,||3 < R? for all t, 7). Let us augment these hypotheses
by the null hypothesis Hy stating that there is no change at all — the observation
w stems from a stationary time series z; = zo = ... = xx. We are about to use
our machinery of detector-based tests in order to build a system of tests deciding,
with partial risks €, &, on the null hypothesis vs. the “signal alternative” | J, Hf for
as small p as possible.

The implementation is as follows. Given p > 0 such that p? < R2, consider two
hypotheses, G; and G%, on the distribution of observation

(=z+&eR™ (2.196)

Both hypotheses state that £ ~ AN (0,0%1;) with unknown o known to belong to a
given segment A := [v/20,+/25]. In addition, G; states that z = 0, and G4 - that
p? < |lz]|3 < R?. We can use the result of Proposition 2.46.ii to build a quadratic in
¢ detector for the families of distributions Py, P§ obeying the hypotheses Gy, G5,
respectively. To this end it suffices to apply Proposition to the collections of data

Vy = {020 € A}, O =25°1,,6, =1 —0/F,7, = 0.999, Ay, = Iy, Zy,
[X = ]-a 2]

36 R is needed by the only reason — to make the domains we are working with bounded, thus
allowing to apply the theory we have developed so far. The actual value of R does not enter our
constructions and conclusions.
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where

Z {[05...;0;1][0; ..; 0; 1] 7} € 84+,
2y, = Z28={Z2eS™ : Zy1a11=11+R*>Te(Z) > 1+ p?}.

The (upper bound on the) risk of the quadratic in ¢ detector yielded by a saddle
point of function (2.172), as given by Proposition 2.46.ii, is immediate: by the same
argument as used when justifying Remark 2.47, in the situation in question one can
look for saddle point with A = 0, H = nl;, and identifying the required n reduces
to solving univariate convex problem

~4 2
Opt(p) = min ;{ — 4In(1 - 54?) — 462(1 — ¢?/5°)n + LEEIT

+2(1”23%:—7§8277§0}
[6=V25,6=1-0/7|
which can be done in no time by Bisection. The resulting detector and the upper

bound on its risk are given by optimal solution n(p) to the latter problem according
to

¢5(¢) = 3n(p)CT¢

d n 1 —5%(p) _5%(1 — o2 /52 _ p*1(p)
+4P( g ) (1= /o) - A0S .

IN

Risk[¢7|P1, P2 Risk(p) := e©Pt(r),

(2.197)
Observe that R does not appear in (2.197) at all. Now, it is immediately seen
that Opt(p) — 0 as p — +0 and Opt(p) = —oc as p — +oo, implying that given
k € (0,1), we can easily find by bisection p = p(k) such that Risk(p) = k; in what
follows, we assume w.l.o.g. that R > p(x) for the value of k we end with, see below.
Next, let us pass from the detector gb:(n)() to its shift

""(C) = () (€) + In(e/k),

so that for the simple test 7" which, given observation (, accepts G and rejects
Gg(”) whenever ¢**(¢) > 0, and accepts GS(H) and rejects G otherwise, it holds

Risky (T7%|G1, G2"™) < ) Risko (771G, G5™) < e, (2.198)

;2
€
see Proposition 2.16 and (2.52).

We are nearly done. Given k € (0,1), consider the system of tests 7%, t =
2,3,..., K, as follows. At time t € {2,3,..., K}, given observations wy, ..., w; stem-
ming from (2.195), let us form the vector

Gt = wy —wi

and compute the quantity ¢**(¢;). If this quantity is negative, we claim that the
change has already taken place and terminate, otherwise we claim that so far, there
was no change, and proceed to time ¢ + 1 (if ¢ < K) or terminate (if ¢t = K).
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The risk analysis for the resulting system of inferences is immediate. Observe
that

(1) For everyt=2,3,....K:

A. if there is no change on time horizon 1,...,t: ©1 = xo = ... = x¢, then the
probability for T,* to conclude that there was a change is at most K /e;

B. if, on the other hand, ||z — x1||5 > p?, then the probability for T to
conclude that so far there was no change is at most €.

Indeed, we clearly have
G=z—z]+ &,

where ¢t = & — & ~ N(0,021,) with o € [v2g,v/25]. Our actions at time ¢
are nothing but application of the test 7" to the observation (;. In the case
of A the distribution of this observation obeys the hypothesis G1, and the
probability for 7% to claim that there was a change is at most x2/¢ by the
first inequality in (2.198). In the case of B, the distribution of {; obeys the
hypothesis Gg(ﬁ), and thus the probability for 7, to claim that there was
no change on time horizon 1, ...,t is < € by the second inequality in (2.198).

In view of (!), the probability of false alarm for the system of inferences {7,*}X,
is at most (K — 1)x?/e, and specifying x as

k=e/(K—-1),

we make this probability < e. The resulting procedure, by the same (!), detects a
change at time ¢t € {2,3,..., K} with probability at least 1 — ¢, provided that the
energy of this change is at least p2, with

pe=p ( /(K — 1)) : (2.199)
In fact we can say a bit more:

Proposition 2.53. Let the deterministic sequence x1,...,xx underlying observa-
tions (2.195) be such that for some t it holds ||z — x1||3 > p?, with p. given by
(2.199). Then the probability for the system of inferences we have built to detect a
change at time t or earlier is at least 1 — €.

Indeed, under the premise of Proposition, the probability for 7, to claim that a
change already took place is at least 1 — ¢, and this probability can be only smaller
than the probability to detect change on time horizon 2,3, ..., .

How it works. As applied to the “movie” story we started with, the outlined
procedure works as follows. The images in question are of the size 256 x 256, so
that we are in the case of d = 2562 = 65536. The images are represented by 2D
arrays in gray scale, that is, as 256 x 256 matrices with entries in the range [0, 255].
In the experiment to be reported (same as in the movie) we assumed the maximal
noise intensity & to be 10, and used ¢ = &/v/2. The reliability tolerances €, € were
set to 0.01, and K was set to 9, resulting in

p2 =17.38-10°,
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which corresponds to the per pixel energy p?/65536 = 112.68 — just by 12% above
the allowed expected per pixel energy of noise (the latter is @ = 100). The resulting
detector is

CT

L) = —2.7138>=> 9548;
6+ (C) 713832 + 366.9548

in other words, test 7, claims that the change took place when the average, over
pixels, per pixel energy in the difference w; — wq is at least 206.33, which is pretty
close to the expected per pixel energy (200.0) in the noise & — & affecting the
difference wy — wy.

Finally, this is how the just described system of inferences worked in simulations.
The underlying sequence of images was obtained from the “basic sequence”

T =G+00357(t—1)(L—G),t =1,2,..5 (2.200)

where G is the image of the gentlemen and L is the image of the lady (up to noise,
these are the first and the last frames on Figure 2.5). To get the observations in
a particular simulation, we augmented this sequence from the left by a random
number of images G, took the first 9 images in the resulting sequence, and added
to them independent across the images observation noises drawn at random from
N(0,100765536). Augmentation was carried out in such a way that with probability
1/2, there was no change on the time horizon 1,2,...,9, and with probability 0.5
there was a change at time instant 7 chosen at random according to uniform distri-
bution on {2,3,...,9}. In 3000 simulations of this type, not a single false alarm was
observed, while the empirical probability of a miss was 0.0553. It should be added
that the actual energy of a change, if any, that is, 0.0357%||L — G||%, was “just”
3.37-10°, that is, it was by factor ~ 21 less than the energy of change p? which our
inferences are bound to detect with probability at least 0.99. And in the series of
3000 experiments we have reported, there was no “no detection” simulations where
max;< g ||z, — z1]|3 was above p? (that is, no simulations where Proposition 2.53
ensures detectability with probability at least 0.99, and in fact the change is not
detected). Thus, all misses came from simulations which are not covered by our
risk guarantees®®. Moreover, the change at time ¢, if detected, never was detected
with a delay more than 1.

Finally, in the particular “movie” we started with, the change takes place at
time t = 3, and the system of inferences we have just developed discovered the
change at time 4. How this compares to the time at which you managed to detect
the change?

“Numerical near-optimality.” Beyond the realm of simple o.s.’s we have no
theoretical guarantees of near-optimality for the inferences we are developing; this
does not mean, however, that we cannot quantify conservatism of our techniques

38 A reader can be surprised — how happens that with actual energy of change 20 times less
than the “theoretical threshold” p2, in our experiments, the empirical probability of a miss was as
low as 5%, instead of being 50% or 100%. A plausible explanation is as follows: our performance
guarantees are given by worst-case oriented theoretical analysis , and in random simulations we
usually do not generate the “worst case” situations. For example, with model (2.200), the change,
when happens, is of energy 20 times below the threshold; however, 3 time units after the change,
the quantity ||x¢ — le% becomes 16 times larger the energy of change, so that by Proposition
2.53, already worst-case analysis shows that there are good chances to detect the change when it
happens “deeply inside” the observation horizon.




StatOpt'LN'NS  January 21, 2019 7x10

166 LECTURE 2

numerically. To give an example, let us forget, for the sake of simplicity, about
change detection per se and focus on the auxiliary problem we have introduced
above, the one on deciding upon hypotheses G; and G% via observation (2.196),
and let our goal be to decide on these two hypotheses from a single observation with
risk <'¢, for a given € € (0,1). Whether this is possible or not, it depends on p; let
us denote by p* the smallest p for which we can meet the risk specification with
our detector-based approach (p™ is nothing but what was above called p(¢)), and
by p — the smallest p for which “in the nature” there exists a simple test deciding
on Gy vs. G% with risk < e. We can look at the ratio p*/p as at the “index of
conservatism” of our approach. Now, p* is given by an efficient computation; what
about p 7 Well, there is a simple way to get a lower bound on p, namely, as follows.
Observe that if the two composite hypotheses G1, G% can be decided upon with risk
< ¢, the same holds true for two simple hypotheses stating that the distribution
of observation (2.196) is Py, respectively, Py, where Py, P, correspond to the cases
when

e (P)): ¢ is drawn from N(0, 252%1,)
e (P,): ( is obtained by adding N (0,2021,;)-noise to a random, independent of the
noise, signal u uniformly distributed on the sphere {||ull2 = p}.

Indeed, P; obeys hypothesis Gy, and P is a mixture of distributions obeying G%;
as a result, a simple test 7 deciding (1 — ¢€)-reliably on Gy vs. G% would induce
a test deciding equally reliably on P; vs. P, specifically, the test which, given
observation (, accepts P; if 7 on the same observation accepts G, and accepts P
otherwise.

Now, we can use two-point lower bound (Proposition 2.2) to lower-bound the
risk of deciding on P; vs. Ps; since both distributions are spherically symmet-
ric, computing this bound reduces to computing similar bound for the univariate
distributions of ¢7¢ induced by P; and P,, and these univariate distributions are
easy to compute. The resulting lower risk bound depends on p, and we can find
the smallest p for which the bound is > 0.01, and use this p in the role of p; the
associated indexes of conservatism can be only larger than the true ones. Let us
look what are these indexes for the data used in our change detection experiment,
that is, € = 0.01, d = 256 = 65536, @ = 10, ¢ = 5/v/2. Computation shows that
in this case we have

pt = 27024, p* /p < 1.04

— nearly no conservatism at alll When eliminating the uncertainty in the intensity
of noise by increasing o from 7/ V2 to 7, we get

pt =668.46, p*/p < 1.15

— still not that much of conservatism!

2.10 EXERCISES FOR LECTURE 2

T marks more difficult exercises.
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2.10.1 Two-point lower risk bound

Ezercise 2.54. Let p and ¢ be two distinct from each other probability distributions
on d-element observation space Q = {1, ...,d}, and consider two simple hypotheses
on the distribution of observation w € Q, H; : w ~ p, and Hy : w ~ q.

1. Is it true that there always exists a simple deterministic test deciding on H;, Ho
with risk < 1/27

2. Is it true that there always exists a simple randomized test deciding on H;, Ho
with risk < 1/2?

3. Is it true that when quasi-stationary K-repeated observations are allowed, one
can decide on H;y, Hs with a whatever small risk, provided K is large enough?

2.10.2 Around Euclidean Separation
FEzercise 2.55. Justify the “immediate observation” in Section 2.2.2.3.B.

Exercise 2.56. 1. Prove Proposition 2.11.
Hint: You can find useful the following simple observation (prove it, provided
you indeed use it):

Let f(w), g(w) be probability densities taken w.r.t. a reference measure
P on an observation space €2, and let € € (0,1/2] be such that

A min[f(w), g(w)]P(dw) < 2e.

Then
2€ := ., V f(w)g(w)P(dw) < 2y/€(1 —€).

2. Justify Illustration in Section 2.2.3.2.C.

2.10.3 Hypothesis testing via /;-separation

Let d be a positive integer, and the observation space 2 be the finite set {1, ...,d}
equipped with the counting reference measure®®. Probability distributions on
can be identified with points p of d-dimensional probabilistic simplex

Ag={peR":p>0,> p; =1}
%

i-th entry p; in p € Ay is the probability for the distributed according to p random
variable to take value i € {1,...,d}. With this interpretation, p is the probability
density taken w.r.t. the counting measure on ).

Assume B and W are two nonintersecting nonempty closed convex subsets of
Ay; we interpret B and W as black and white probability distributions on €2, and
our goal is to find optimal, in terms of its total risk, test deciding on the hypotheses

Hi:peB, Hy:peW

39Counting measure is the measure on a discrete (finite or countable) set 2 which assigns
every point of 2 with mass 1, so that the measure of a subset of €2 is the cardinality of the subset
when it is finite and is +oco otherwise.
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via a single observation w ~ p.
Warning: Everywhere in this Section, “test” means “simple test.”

Ezercise 2.57. Consider the convex optimization problem

d
Opt = min [f(p, q) =Y |pi — al (2.201)

pEB,qeW °
=1

and let (p*, ¢*) be an optimal solution to this problem (it clearly exists).

1. Extract from optimality conditions that there exist reals p; € [-1,1], 1 <i < n,

such that
1, pi>q
;= i~ % 2.202
P { -1, pr<q (2:202)
and
p'(p—p*)>0VpeB&p (qg—q") <0VgeW. (2.203)

2. Extract from the previous item that the test 7 which, given an observation
w € {1,...,d}, accepts Hy with probability m, = (1 + p.,)/2 and accepts He with
complementary probability, has total risk equal to

> min[p}, ¢] (2.204)

weN

and thus is minimax optimal in terms of the total risk.

Comments. Exercise 2.57 describes an efficiently computable and optimal in
terms of worst-case total risk simple test deciding on a pair of “convex” compos-
ite hypotheses on the distribution of a discrete random variable. While it seems
an attractive result, we believe by itself this result is useless, since usually in the
testing problem in question a single observation by far is not enough for a reason-
able inference; such an inference requires observing several independent realizations
w1, ...,wg of the random variable in question. And construction presented in Exer-
cise 2.57 says nothing on how to adjust the test to the case of repeated observation.
Of course, when w® = (w1, ...,wx) is K-element i.i.d. sample drawn from a proba-
bility distribution p on © = {1, ...,d}, w® can be thought of as a single observation
of discrete random variable taking value in the set QX = Q x ... x Q, the prob-

K
ability distribution p¥ of w® being readily given by p; so why not to apply the
construction from Exercise 2.57 to wX in the role of w? On a close inspection,
this idea fails. One serious reason for this failure is that the cardinality of Qf
(which, among other factors, is responsible for the computational complexity of
building the test in Exercise 2.57) blows up exponentially as K grows. Another,
even more serious, complication is that p depends on p nonlinearly, so that the
family of distributions p& of wX induced by a convex family of distributions p of
w, convexity meaning that p’s in question fill a convex subset of the probabilistic
simplex, is not convex; and convexity of the sets B, W in the context of Exercise
2.57 is crucial. Thus, passing from single realization of discrete random variable
to the sample of K > 1 independent realizations of the variable results in severe
structural and quantitative complications “killing,” at least at the first glance, the
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approach undertaken in Exercise 2.57.

In spite of the above pessimistic conclusions, the single-observation test from
Exercise 2.57 admits a meaningful multi-observation modification, which is the
subject of our next Exercise.

Ezercise 2.58. There is a straightforward way to use the optimal, in terms of its to-
tal risk, single-observation test built in Exercise 2.57 in the “multi-observation” en-
vironment. Specifically, following the notation from Exercise 2.57, let p € R, p*, ¢*
be the entities built in this Exercise, so that p* € B, ¢* € W, all entries in p belong
to [—1,1], and

{p"p>a:=p"p* Vpe B} & {p"q¢< B :=p"q" Vg W}
&a—-p=p"p*—q]=p* =

Given an ii.d. sample w® = (wi,...,wx) with w; ~ p, where p € BU W, we
could try to decide on the hypotheses Hy : p € B, Hy : p € W as follows. Let us
set (; = p.,. For large K the observable, given w’  quantity (¥ := % Zfil (e,
by the Law of Large Numbers, will be with overwhelming probability close to
Eup{pw} = pTp, and the latter quantity is > o when p € B and is < 8 < o when
p € W. Consequently, selecting a “comparison level” ¢ € (5, «), we can decide on
the hypotheses p € B vs. p € W by computing (¥, comparing the result with ¢, and
accepting the hypothesis p € B when (¥ > ¢, otherwise accepting the alternative
p € W. The goal of this Exercise is to quantify the above qualitative considerations.
To this end let us fix £ € (8, «) and K and ask ourselves the following questions:

A. For p € B, how to upper-bound the probability Prob,, {¢¥ < ¢} ?
B. For p € W, how to upper-bound the probability Prob,, {¢¥ > ¢} ?

Here pg is the probability distribution of the i.i.d. sample w® = (w1, ...,wx) with
Wy ~ P.

The simplest way to answer these questions is to use Bernstein’s bounding
scheme. Specifically, to answer question A, let us select v > 0 and observe that for
every probability distribution p on {1,2,...,d} it holds

d K
Proby, {¢* < 0} exp{—y0} <E,, {exp{—("}} = [Zpi eXP{—Il(’YPi}] ,

=1

T, —[p]
whence

d
In(rg,~[p]) < Kln (Zpi eXP{—[l(%oi}> +,

i=1
implying, via substitution v = pK, that
i=1

d
Vi > 0:In(mg,—[p]) < K¢ (u,p), ¢—(p,p) =1In (ZP:’ exp{—um}> + .

Similarly, setting 7,4 [p] = Prob,, {¢¥ > ¢}, we get

d
Vv 2 0:In(mg 4 [p]) < K¢y (v,p), ¢4 (v,p) =In <Zp7: exp{l/ﬂ&) —vi.

i=1
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Now goes the exercise:

1. Extract from the above observations that
Risk(T5¢ Hy, Hy) < K = inf ¢_ inf
isk(T™°|H1, Ha) < exp{K s}, 3 = max r;leag;gow (u,p),géavgigom(v,q) ;

where T+ is the K-observation test which accepts the hypothesis H; : p € B
when (¥ > ¢ and accepts the hypothesis Hs : p € W otherwise.

2. Verify that ¢_(u, p) is convex in p and concave in p, and similarly for 1 (v, q),
so that

—— . ) . -
r,??é‘,ﬁgfoz/’ (11, 1) ;Lg{)gleagw (1, 1), {Iré%;g%m(v,q) 3gog%%<¢+(v,q)

Thus, computing s reduces to minimizing on the nonnegative ray the convex

functions ¢_ (1) = maxpep ¥+ (1, p) and ¢4 (v) = maxgew ¥+ (v, ).
3. Prove that when ¢ = J[o + /3], one has

1
%S—EAQ, A=a—-0=I|p*—q. (2.205)

Note that the above test and the quantity s¢ responsible for the upper bound on its
risk depend, as on a parameter, on the “acceptance level” ¢ € (3, «). The simplest
way to select a reasonable value of £ is to minimize > over an equidistant grid
I’ C (8, ), of small cardinality, of values of .

Now let us consider an alternative way to pass from a “good” single-observation
test to its multi-observation version. Our ”building block” now is the minimum risk
randomized single-observation test*®, and its multi-observation modification is just
the majority version of this building block. Our first observation is that building
the minimum risk single-observation test reduces to solving a conwvex optimization
problem:

Ezercise 2.59. Let, as above, B and W be nonempty nonintersecting closed convex
subsets of probabilistic simplex Ay. Demonstrate that the problem of finding the
best, in terms of its risk, randomized single-observation test deciding on Hy : p € B
vs. Hy : p € W via observation w ~ p reduces to solving a convex optimization
problem. Write down this problem as an explicit LO program when B and W are
polyhedral sets given by polyhedral representations:

B = {p:3u:Ppp+Qpu<ap},
W = {p:3Ju:Pwp+Qwu<aw}

We see that the “ideal building block” — the minimum-risk single-observation
test — can be built efficiently. What is at this point unclear, is whether this block is
of any use for majority modifications, that is, whether it is true that the risk of this
test is < 1/2 — this is what we need to get the possibility for low-risk testing from
repeated observations via majority version of the minimum-risk single-observation
test.

40this test can differ from the one built in Exercise 2.57 — the latter test is optimal in terms
of the sum, rather than the maximum, of its partial risks.
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Ezercise 2.60. Extract from Exercise 2.57 that in the situation of this Section,
denoting by A the optimal value in the optimization problem (2.201), one has

1. The risk of any single-observation test, deterministic or randomized alike, is

1_ A
~— 2 14
2. There exists a single-observation randomized test with risk < % — %, and thus

the risk of the minimum risk single-observation test given by Exercise 2.59 does
not exceed 1 — % < 1/2 as well.

Pay attention to the fact that A > 0 (since, by assumption,. B and W do not
intersect).

The bottom line is that in the situation of this Section, given a target value e of
risk and assuming stationary repeated observations are allowed, we have (at least)
three options to meet the risk specifications:

1. To start with the optimal, in terms of its total risk, single-observation detector
as explained in Exercise 2.57, and the to pass to its multi-observation version
built in Exercise 2.58;

2. To use the majority version of the minimum-risk randomized single-observation
test built in Exercise 2.59;

3. To use the test based on the minimum risk detector for B, W, as explained in
the main body of Lecture 2.

In all cases, the number K of observations should be specified as “presumably the
smallest” K ensuring that the risk of the resulting multi-observation test is at most
a given target €; this K can be easily specified by utilizing the results on the risk
of a detector-based test in a Discrete o.s. from the main body of Lecture 2 along
with risk-related results of Exercises 2.58, 2.59.

Ezxercise 2.61. Run numerical experimentation to get an idea whether one of the
three options above always dominates other options (that is, requires smaller sample
of observations to ensure the same risk).

Now let us focus on theoretical comparison of the detector-based test and the
majority version of the minimum-risk single-observation test (options 1 and 2 above)
in the general situation described in the beginning of Section 2.10.3. Given € €
(0,1), the corresponding sample sizes, K, and K,,, are completely specified each
by its own “measure of closeness” between B and W. Specifically,

e For K, the closeness measure is

BW)=1— o 2.206
pa(B, W) pcmax 2 N ( )

1 — pa(B, W) is the minimal risk of a detector for B, W, and for pq(B, W) and
e small, we have K4 ~ In(1/€)/pqa(B, W) (why?).

e Given €, K,, is fully specified by the minimal risk p of simple randomized single-
observation test 7 deciding on the associated with B, W hypotheses; by Exercise
2.60, we have p = % — §, where § is within absolute constant factor of the
optimal value A = min,ep qew ||p — ¢l]1 of (2.201). The risk bound for the K-
observation majority version of 7 is the probability to get at least K /2 heads
in K independent tosses of coin with probability to get head in a single toss
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equal to p = 1/2 — 5. When p is not close to 0 and e is small, the (1 — €)-
quantile of the number of heads in our K coin tosses is Kp+ O(1)/K In(1/e) =
K/2—0K+0(1)\/K In(1/¢) (why?). K,, is the smallest K for which this quantile
is < K/2, so that K, is of order of In(1/€)/?, or, which is the same, of order of
In(1/€)/A%. We see that the “responsible for K,,” closeness between B and W

1S
2

(B, W) = A% = i — , 2.207
P ) peg{;gwllp qllx ( )

and K, is of order of In(1/¢)/pm (B, W).

The goal of the next exercise is to compare p, and py,.

Ezxercise 2.62. . Prove that in the situation of this Section one has

1 1

gpm(Bv W) < pd(B7 W) < 5 V pm(B7 W) (2208)
Relation (2.208) suggests that while K4 never is “much larger” than K, (this

we know in advance: in repeated version of Discrete o.s., properly built detector-

based test provably is nearly optimal), but K, could be much larger than K,. This

indeed is the case:

Ezercise 2.65. Given § € (0,1/2), let B = {[6;0;1 — 4]} and W = {[0;5;1 — d]}.
Verify that in this case, the numbers of observations K, and K, resulting in a given
risk € < 1 of multi-observation tests, as functions of ¢ are proportional to 1/ and
1/62, respectively. Compare the numbers when € = 0.01 and § € {0.01;0.05;0.1}.

2.10.4 Miscellaneous exercises

Exzercise 2.64. Prove that the conclusion in Proposition 2.20 remains true when the
test 7 in the premise of Proposition is randomized.

Ezercise 2.65. Let p1(w), p2(w) be two positive probability densities, taken w.r.t. a
reference measure II, on an observation space €2, and let P, = {p, }, x = 1,2. Find
the optimal, in terms of its risk, balanced detector for P,, x =1, 2.

Ezercise 2.66. Recall that the exponential, with parameter p > 0, distribution on
1 = Ry is the distribution with the density p,(w) = pe™#*, w > 0. Given positive
reals a < f, consider two families of exponential distributions, P1 = {p, : 0 <
u < a}, and Py = {p, : p > B}. Build the optimal, in terms of its risk, balanced
detector for Py, Po. What happens with the risk of the detector you have built
when the families P,, x = 1,2, are replaced with their convex hulls?

Ezercise 2.67. [Follow-up to Exercise 2.66] Assume that the “lifetime” ¢ of a light-
bulb is a realization of random variable with exponential distribution (i.e., the
density p,(¢) = pe k< ¢ > 0; in particular, the expected lifetime of a lightbulb in
this model is 1/p) L. Given a lot of lightbulbs, you should decide whether they were

411n Reliability, probability distribution of the lifetime ¢ of an organism or a technical device

Prob{t<¢<t4dt
%& (so that for small dt, A(t)dt

is the conditional probability to “die” in the time interval [¢, ¢+ d¢] provided the lifetime is at least

is characterized by the failure rate A(t) = limg— 40
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produced under normal conditions (resulting in ; < & = 1) or under abnormal ones
(resulting in x4 > B = 1.5). To this end, you can select at random K lightbulbs and
test them. How many lightbulbs should you test in order to make a 0.99-reliable
conclusion? Answer this question in the situations when the observation w in a test
is

1. the lifetime of a lightbulb (i.e., w ~ p,(-))

2. the minimum w = min|[(, 6] of the lifetime ¢ ~ p,,(-) of a lightbulb and the allowed
duration § > 0 of your test (i.e., if the lightbulb you are testing does not “die”
on time horizon §, you terminate the test)

3. w = Xx¢<s, that is, w = 1 when ¢ < §, and w = 0 otherwise; here, as above,
¢ ~ pu(-) is the random lifetime of a lightbulb, and J > 0 is the allowed test
duration (i.e., you observe whether or not a lightbulb “dies” on time horizon 4,
but do not register the lifetime when it is < ).

Consider the values 0.25,0.5,1,2,4 of 4.

FEzercise 2.68. [Follow-up to Exercise 2.67] In the situation of Exercise 2.67, build
a sequential test for deciding on Null hypothesis “the lifetime of a lightbulb from a
given lot is ¢ ~ p,(-) with g < 17 (recall that p,(z) is the exponential density pe™**
on the ray {z > 0}) vs. the alternative “the lifetime is  ~ p,,(-) with 4 > 1.” In this
test, you can select a number K of lightbulbs from the lot, switch them on at time
0 and record the actual lifetimes of the lightbulbs you are testing. As a result at the
end of (any) observation interval A = [0, §], you observe K independent realizations
of r.v. min|¢,d], where { ~ p,(-) with some unknown p. In your sequential test,
you are welcome to make conclusions at the endpoints §; < ds < ... < dg of several
observation intervals.

Note: We deliberately skip details of problem’s setting; how you decide on these
missing details, is part of your solution to Exercise.

Exercise 2.69. In Section 2.6, we considered a model of elections where every mem-
ber of population was supposed to cast a vote. Enrich the model by incorporating
the option for a voter not to participate in the elections at all. Implement Sequential
test for the resulting model and run simulations.

Ezercise 2.70. Work out the following extension of the DOP problem. You are
given two finite sets, = {1,...,I} and Qo = {1,..., M}, along with L nonempty
closed convex subsets Y, of the set

Arv = {[Yim > Oliym : Z Z Yim = 1}

i=1 m=1

of all non-vanishing probability distributions on Q = Q; x Qy = {(i,m) : 1 < i <
I,1 <m < M}. The sets Yy are such that all distributions from Y have a common

t). The exponential distribution corresponds to the case of failure rate independent of ¢; usually,
this indeed is nearly so except for ”very small” and “very large” values of ¢.
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marginal distribution #¢ > 0 of

M
> Yim =0, 1<i<I, VeV, 1<l<L

m=1

Your observations wy,ws, ... are sampled, independently of each other, from a dis-
tribution partly selected “by nature,” and partly — by you. Specifically, the nature
selects ¢ < L and a distribution y € Yy, and you select a positive I-dimensional
probabilistic vector ¢ from a given convex compact subset Q of the positive part
of I-dimensional probabilistic simplex. Let y; be the conditional, i being given,
distribution of m € {22 induced by y, so that y; is the M-dimensional probabilistic

vector with entries
Yim o Yim

[y|i]m = Z

u<M Yip Gf
In order to generate wy = (ir, m;) € 2, you draw 4; at random from the distribution
q, and then the nature draws m; at random from the distribution yj;,.

Given closeness relation C, your goal is to decide, up to closeness C, on the hy-
potheses Hy, ..., Hy, with H, stating that the distribution y selected by the nature
belongs to Y. Given “observation budget” (a number K of observations wy you
can use), you want to find a probabilistic vector ¢ which results in the test with as
small C-risk as possible. Pose this Measurement Design problem as an efficiently
solvable convex optimization problem.

Ezercise 2.71. [probabilities of deviations from the mean]

The goal of what follows is to present the most straightforward application of
simple families of distributions — bounds on probabilities of deviations of random
vectors from their means.

Let H C Q = R4, M, ® be a regular data such that 0 € int H, M is compact,
®(0; 1) = 0V € M, and ®(h; u) is differentiable at h = 0 for every u € M. Let,
further, P € S[H, M, ®] and let i € M be a parameter of P. Prove that

1. P possesses expectation e[P], and
e[P] = V,,(0; 1)
2. For every linear form e”w on Q it holds

D T _ D 3 A T c7)
m:=P{w:e (w—e[P]) >1} <exp {iélﬁtzol:rtlfeﬂ [<I>(te,,u) te” Vi ®(0; ) t] } .
(2.209)

Ezercise 2.72. [testing convex hypotheses on mixtures| Consider the situation as
follows. For given positive integers K, L and for xy = 1,2, given are

e nonempty convex compact signal sets U, C R"x
e regular data H), C R%, MY, ®X,, and affine mappings

wy > A [uy; 1] s R™ — R%

such that
uy € Uy = A, [uy; 1] € MY,
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1<k<K,1<(<I,
e probability vectors ¥ = [uf;..;uk], 1 <k < K.

We can associate with the outlined data families of probability distributions P, on
the observation space = R% x ... x R4 as follows. For y = 1,2, P, is comprised
of all probability distributions P of random vectors w® = [w1;...;wx] € Q generated

as follows:
We select

e a signal u € U,,
e a collection of probability distributions Py, € S[Hy,, My, ®5], 1 < k < K,
1 < ¢ <L, in such a way that AY,[u,;1] is a parameter of Pyy:

e we generate the components wy, k = 1, ..., K, independently across k, from p*-
mixture II[{ Py}, p] of distributions Py, £ = 1, ..., L, that is, draw at random,
from distribution p* on {1, ..., L}, index ¢, and then draw wy, from the distribution
Pyo.

Prove that setting

L
Hy = {h=[h1;..;hg] € RIZOTFdx e N H,1<k<K},
=1
M, = {0} CR,
Oy (hip) = Zfﬂ(ZfMﬂﬁﬁ¢MMM%me)WHXMX%Rv

we get regular data such that
Py C S[Hys My, @y ].

Explain how to use this observation to compute via Convex Programming affine
detector, along with its risk, for the families of distributions Py, Ps.

Ezercise 2.73. [mixture of sub-Gaussian distributions] Let Py be sub-Gaussian dis-
tributions on R? with sub-Gaussianity parameters 6,0, 1 < ¢ < L, with a com-
mon O-parameter, and let v = [v1;...; 1] be a probabilistic vector. Consider the
v-mixture P = II[P¥, v] of distributions P, so that w ~ P is generated as follows:
we draw at random from distribution v index ¢ and then draw w at random from
distribution P;. Prove that P is sub-Gaussian with sub-Gaussianity parameters
0 =3, v, and O, with (any) © chosen to satisfy

éz@+gm—ﬂm—ﬂTW,

in particular, according to any one of the following rules:

O+ g% maxy ||0; — 01|3) Ia,
O+ 23,6 —0)(0,— )T,
O+352, 0,07, provided that v; = ... = v, = 1/L,

ooRoO]
I

1.
2.
3.
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Ezercise 2.74. The goal of this Exercise is to give a simple sufficient condition for
quadratic lift “to work” in the Gaussian case. Specifically, let A, Uy, Vy, Gy,
x = 1,2, be as in Section 2.9.3, with the only difference that now we do not assume
the compact sets U, to be convex, and let Z, be convex compact subsets of the
sets Z™x, see (2.164), such that

[uy; uy; 1T € 2, Yu, € Uy, x = 1,2.

Augmenting the above data with @;*), 0y such that V =V,, 0, = @S}O, 0 =y
satisfy (2.165), x = 1,2, and invoking Proposition 2.46.ii, we get at our disposal a
quadratic detector ¢y such that

RiSk[¢lift |g1, 92} < eXP{*Sadvallifc},

with SadValiy, given by (2.172). A natural question is, when SadValyy, is negative,
meaning that our quadratic detector indeed “is working” — its risk is < 1, implying
that when repeated observations are allowed, tests based upon this detector allow to
decide on the hypotheses H, : P € G,, x = 1,2, on the distribution of observation
¢ ~ P with a whatever small desired risk ¢ € (0,1). With our computation-
oriented ideology, this is not too important question, since we can answer it via
efficient computation. This being said, there is no harm in a “theoretical” answer
which could provide us with an additional insight. The goal of the Exercise is to
justify a simple result on the subject. Here is the Exercise:

In the situation in question, assume that V; = Vo = {©,}, which allows to set

@&X) = 0,, 0, =0, x = 1,2. Prove that in the case in question a necessary and
sufficient condition for SadValy;, to be negative is that the convex compact sets

U, ={ByZBL :Z € 2,} c ST x=1,2

do not intersect with each other.

Ezercise 2.75. Prove if X is a nonempty convex compact set in R?, then the func-
tion @ (h; i) given by (2.144) is real-valued and continuous on R?x X and is convex
in h and concave in p.

2.11 PROOFS

2.11.1 Proof of Claim in Remark 2.10

What we should prove is that is p = [p1;...;px] € B = [0,1]%, then the probability
Pys(p) of the event

The total number of heads in K independent coin tosses, with probability
pr to get head in k-th toss, is at least M

is a nondecreasing function of p: if p’ <p”, p/,p"” € B, then Py (p') < P (p”). To
see it, let us associate with p € B a subset of B, specifically, B, = {x € B: 0 <
zp < pr,1 < k < K}, and a function x,(x) : B — {0,1} which is equal to 0 at
every point x € B where the number of entries zj satisfying xj < py is less than
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M, and is equal to 1 otherwise. It is immediately seen that

PM(p)E/BXp(x)dm (2.210)

(since with respect to the uniform distribution on B, the events Fy = {z € B :
xp < p} are independent across k and have probabilities py, and the right hand
side in (2.210) is exactly the probability, taken w.r.t. the uniform distribution on
B, of the event “at least M of the events Fi,..., Ex take place”). But the right
hand side in (2.33) clearly is nondecreasing in p € B, since x,, by construction, is
the characteristic function of the set

Blp] = {z: at least M of the entries x, in x satisfy xx < p},

and these sets clearly grow when p is entrywise increased. a

2.11.2 Proof of Proposition 2.8 in the case of quasi-stationary
K-repeated observations

2.11.2.A Situation and goal. We are in the case QS, see Section 2.2.3.1, of the
situation described in the beginning of Section 2.2.3; it suffices to verify that if H,,
¢ € {1, 2}, is true, then the probability for T;(“aj to reject H, is at most the quantity
ex defined in (2.25). Let us verify this statement in the case of £ = 1; the reasoning
for ¢ = 2 “mirrors” the one to follow.

It is clear that our situation and goal can be formulated as follows:

e “In the nature” there exists a random sequence (¥ = ((y, ..., (k) of driving fac-
tors and collection of deterministic functions 6x(¢¥ = ((1,...,¢x)) *2 such that
our k-th observation is wy, = 05 (¢¥). Besides this, the conditional, (¥~ given,
distribution P, |¢ck-1 of wy always belongs to the family P; comprised of distri-
butions of random vectors of the form z + £, where deterministic = belongs to
X1 and the distribution of £ belongs to PY.

e There exist deterministic functions yi : © — {0,1} and integer M, 1 < M < K,
such that the test 7,7, as applied to observation w® = (w1, ..., wr), rejects Hi
if and only if the number of ones among the quantities xx(wg), 1 <k < K, is at
least M.

In the situation of Proposition 2.8, M =|K/2| and x(-) are in fact independent
of k: xx(w) = 1if and only if ¢(w) < 0 43.

e What we know is that the conditional, (*~! being given, probability of the event

Xr(wr = 0, (CF)) = 1 is at most €,:

Pwk‘gk—l{(.L)k» : Xk(wk-) = 1} < €4 VCkil.

425 always, given a K-element sequence, say, (1, ..., (x, we write ¢t, t < K, as a shorthand

for the fragment (1, ..., (¢ of this sequence.

43in fact, we need to write ¢(w) < 0 instead of ¢p(w) < 0; we replace the strict inequality with
its nonstrict version in order to make our reasoning applicable to the case of £ = 2, where nonstrict
inequalities do arise. Clearly, replacing in the definition of xj strict inequality with the nonstrict
one, we only increase the “rejection domain” of Hjp, so that upper bound on the probability of
this domain we are about to get automatically is valid for the true rejection domain.
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Indeed, P, |cx-1 € Py, that is F,, k-1 € P1. As a result,

Pyjeri{wn s dp(wr) =13 = Py jee-i{wr : ¢(wr) < 0}
= Poer—{wn : ¢lwr) <0} <e,

where the second equality is due to the fact that ¢(w) is a nonconstant affine
function and P, |¢ck-1, along with all distributions from Pj, has density, and
the inequality is given by the origin of ¢, which upper-bounds the risk of the
single-observation test underlying 7%

What we want to prove is that under the circumstances we have just summarized,
we have

P {w® = (w1, ...,wk) : Card{k < K : xp(wi) =1} > M} (2.211)
K _ .
Sem = ZMgkgK (k)ﬁlf(l —e)t T,
where P« is the distribution of w® = {w), = 0;(¢*~1)} | induced by the distri-
bution of hidden factors. There is nothing to prove when €, = 1, since in this case
ey = 1. Thus, we assume from now on that €, < 1.

2.11.2.B Achieving the goal, step 1. Our reasoning, inspired by the one we
used to justify Remark 2.10, is as follows. Consider a sequence of random variables
Nk, 1 < k < K, uniformly distributed on [0, 1] and independent of each other and
of (¥, and consider new driving factors A\, = [(x; 7] and new observations

M = [wk = Qk(ck);nk] = @k(Ak == ()\1, ,)\k)) 44 (2212)

driven by these new driving factors, and let

Vi (e = [wis me]) = Xk (wk).
It is immediately seen that

o i = [wr = 0x(CF);mi] is a deterministic function, ©4(\*), of A*, and the con-
ditional, \*=! = [¢¥=1;n*~1] given, distribution P, ax-1 of py is the product
distribution P, |cx-1 x U on Q x [0, 1], where U is the uniform distribution on
[0,1]. In particular,

(A1) = 'ukl)\k—l{/,l/k; = [wisme) + xe(wg) =1} = Pwklgk—l{W]g s xk(wk) =1}
< €.
(2.213)
e We have

Py {\E : Card{k < K : (. = Or(\F)) =1} > M}
= P c{wl = (w1, ...,wr) : Card{k < K : xi(wi) = 1} > M},
(2.214)
where P,k is as in (2.211), and O(-) is defined in (2.212).

Now let us define ¢, (A¥) as follows:

e when 9;,(01(\*)) = 1, or, which is the same, xx(wr = 0x(C*))) = 1, we set
YiE(\F) =1 as well;
e when 11 (0(A\¥)) = 0, or, which is the same, y(wr = Ox(C*)) = 0, we set
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Y7 (\F) = 1 whenever

€x — (AP

. < k=1 = —
Mk _”Yk()\ ) 1—7Tk()\k_1)

and ¢ (A¥) = 0 otherwise.
Let us make the following immediate observations:

(A) Whenever A* is such that ¢y, (ux = O(AF)) = 1, we have also ¢, (A\F) = 1;
(B) The conditional, A¥=1 = [¢¥~1;*~1] being fixed, probability of the event

G =1

is exactly e,.
Indeed, let Py, |y\r—1 be the conditional, M= being fixed, distribution of \. Let

us fix A*~1. The event E = { )\ : w,:'()\k) = 1}, by construction, is the union of
two nonoverlapping events:

Er = {N =[Gkl s xe(0k(¢F) =1}
Ey = {X=1[Cim] : xe(0c(¢F) = 0,me < (W)}

Taking into account that the conditional, \*~! fixed, distribution of j = [wy =
0 (¢*); mi] is the product distribution P, cr—1 x U, we conclude in view of (2.213)
that

Pype-{E1} = Pujo—{wr : xa(w) = 1} = m(A),
P)\klAkfl{E2} = Pwkkkﬂ{wk sxk(wr) = 03U{n < ye(AF1)}
= (L=mAH)m A,

which combines with the definition of v (-) to imply (B).

2.11.2.C Achieving the goal, step 2. By (A) combined with (2.214) we have

P x{w® : Card{k < K : xp(wi) = 1} > M}
= Py {\K : Card{k < K : ¢y (g = Ox(\F)) = 1} > M}
< Puc{\K : Card{k < K : i (\F) = 1} > M},

and all we need to verify is that the first quantity in this chain is upper-bounded
by the quantity ej; given by (2.211). Invoking the chain and (B), it is enough to
justify the following claim:

() Let AX = (\{,...,A\) be a random sequence with probability distribu-
tion P, let 9, (AF) take values 0 and 1 only, and let for every k < K the
conditional, \*~! being fixed, probability for w,j(/\k) to take value 1 is, for
all \*=1_ equal to €,. Then the P-probability of the event

{NECard{k < K : 4 (\) =1} > M}
is exactly equal to ey given by (2.211).

This is immediate. For integers k, m, 1 < k < K, m > 0, Let x* (\*) be the
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characteristic function of the event
{(\F o Card{t < k(N =1} =m},

and let
mh = PO b (W) = 1)

We have the following evident recurrence:
X () = 0 TORTH (1= 9 ) + X LA D9 (), k= 1,2,

augmented by the “boundary conditions” x%, =0, m > 0, x3 =1, x*7' = 0 for all
k > 1. Taking expectation w.r.t. P and utilizing the fact that conditional, \*~!
being given, expectation of w,j (AF) is, identically in A*=1, equal to e, we get

1, m=0

k=1 _ _
0. m>0 , o =0,k=1,2, ..

m

k=l (e )+nt e k=1, K, 70 = {

whence . i
ok (m)e* (1 —ey) , m<k
m 0, m >k

and therefore

PN Cardfk < K:yf (W) =1} > M}y = > af =eu,
M<k<K

as required. O

2.11.3 Proof of Proposition 2.40

All we need is to verify (2.134) and to check that the right hand side function in
this relation is convex. The latter is evident, since ¢px (h) + ¢x(—h) > 2¢x(0) =0
and ¢x (h) + ¢x(—h) is convex. To verify (2.134), let us fix P € P[X] and h € R?
and set

v =nhTe[P],

so that v is the expectation of hTw with w ~ P. Note that —¢x(—h) < v < ¢x(h),
so that (2.134) definitely holds true when ¢x(h) + ¢x(—h) = 0. Now let

n= g [ox(h) + ox(h)] >0,

and let 1
a= 3 [ox(h) —ox(=h)], B=—a)/n.

Denoting by P, the distribution of h”w induced by the distribution P of w and
noting that this distribution is supported on [—¢x(—h), ¢x(h)] = [a —n,a+n| and
has expectation v, we get

g e[-1,1]

and
a-+n

vi= /exp{hTw}P(dw) = / [e* — X(s — v)] Pr(ds)

-n
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for all A € R. Hence,

IN

In(y) inf In ( max  [e® — A(s — u)])

A a—n<s<a+n

a+ infln ( max [e' — p(t — [V — a])])

P —n<t<n

— . t o < t (1
a+ Hgf In <}7n<3fén[e p(t nﬁ)}) <a+In <£]n<%>én[e p(t 775))
with p = (27)~!(e" — e~"). The function g(t) = e! — p(t —nf3) is convex on [—n, 7],
and

9(=n) = g(n) = cosh(n) + fsinh(n),

which combines with the above computation to yield the relation
In() < a + In(cosh(n) + B sinh(n)), (2.215)

and all we need to verify is that
1
Y(n>0,e[-1,1]): Bn+ 5772 — In(cosh(n) + Bsinh(n)) > 0. (2.216)

Indeed, if (2.216) holds true (2.215) implies that

1 1
In(y) < a+ fn+ 5172 =v+ 5772,

which, recalling what ~, v and n are, is exactly what we want to prove.

Verification of (2.216) is as follows. The left hand side in (2.216) is convex in 3

for 8 > —iiﬁiég containing, due to n > 0, the range of 8 in (2.216). Furthermore,

the minimum of the left hand side of (2.216) over 8 > — coth(n) is attained when

_ sinh(n)—ncosh(n)
B - 7 sinh(n)

and is equal to

r(n) = 37 + 1~ neoth(y) ~ In(sinh(r) /).

All we need to prove is that the latter quantity is nonnegative whenever n > 0. We
have

r'(n) = — coth() = (1~ coth?(n)) — coth(n) + n~* = (ncoth(n) — 1)*y~* >0,
and since 7(4+0) = 0, we get r(n) > 0 when 7 > 0. O

2.11.4 Proof of Proposition 2.46
2.11.4.A Proof of Proposition 2.46.i

19 Let b = [0;...;0;1] € R""!, so that B = [ pr } and let A(u) = Alu;1]. For
any u € R, h € R%, © € S and H € S? such that —I < ©/2HO/2 < I we have
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U(h,H;u,0):=1n (E<~N(A(u),6) {exp{hT( + %CTHC}})
= In (Eeun(o,0) {exp{h" [A(u) + ©'/2¢] + §[A(u) + O H[A(u) + ©'/%¢]}})
= —1InDet(I — ©V2HOY?) + KT A(u) + 2 A(u)T HA(u)
+3[HA(u) + h)TOY2[I — 0/2HOY~10Y2[H A(u) + h]
= —1InDet(I — ©V2HOY?) + L[u;1]7 [bhT A+ AThbT + AT HA] [u; 1]
+3w; )7 [BT[H,hTOY2[I — ©Y/2HOY?|710'/2[H, h|B] [u;1]
(2.217)
due to

hT A(u) = [u; 1)TohT Alu; 1] = [u; 1)T AT  [u; 1), HA(u) + h = [H, h|B[u; 1].
Observe that when (h, H) € H", we have
@1/2[[ _ @1/2H®1/2]_1®1/2 _ [@—1 _ H]—l =< [9*—1 _ H]_l,
so that (2.217) implies that for all w € R™, © € V, and (h, H) € H",

U(h, H;u,©) < —1InDet(I — ©Y/2HOY?)
+2fu; 7 [bh" A+ ATho" + ATHA + BT [H, n]" [0, — H|"'[H, h)B][u; 1]
) QIH 1]
= —1inDet(I — OV2HOY?) + L Tr(Q[H, h])Z(u))
< —1InDet(I — ©Y/2HOY?) +Tz(h, H),
Uz(h,H) = 362(Q[H, h])

(2.218)
(we have taken into account that Z(u) € Z when u € U (premise of the proposition)
and therefore Tr(Q[H, h]Z(u)) < ¢z(Q[H, h])).

29, We need the following

Lemma 2.76. Let O, be a d x d symmetric positive definite matriz, let § € [0, 2],
and let V be a closed conver subset of Si such that

OcV={0=0,} & {6V 1| <} (2.219)
cf. (2.165)). Let also H° .= {H € S%: -7 < H < ©;'}. Then
(

V(H,0) € HO x V:
G(H;0) := —1InDet(I — ©/2HOY?)
< GH(H;0) = —LnDet(I - ©/°HOY?) 1 iTv(j0 — 0,1H)  (2220)
5(243) 1/2 1/2)12
e ey |9 HO

where || - || is the spectral, and || - ||F - the Frobenius norm of a matriz. In addition,
GT(H,©) is continuous function on H° xV which is convex in H € H® and concave
(in fact, affine) in © € V

Proof. Let us set 1/2 1/2
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so that d(H) < 1 for H € H°. For H € H° and © € V fixed we have

lO2HOY2| = ([0 2y He. el 20 AT
< ||e2e 22|ek Hel?|| < |oY*HeY?| = d(H)
(2.221)
(we have used the fact that 0 < © < ©, implies ||®1/2@; || <1). Noting that
|AB||r < ||A|||| B||r, computation completely similar to the one in (2.221) yields

1/2

10Y2HOY?| 5 < |02 HOY? | = D(H) (2.222)

Besides this, setting F(X) = —InDet(X) : int S — R and equipping S% with the
Frobenius inner product, we have VF(X) = —X !, so that with Ry = o2 gel/?
Ry = ©Y2HO'Y2 and A = R, — Ry, we have for properly selected A € (0,1) and
Ry = ARy + (1 — )\)Rli

F(I-R)) = F(I—Ry—A)=F(I—Ry)+(VF(I - Ry),—A)
= F(I—Ry)+((I-Ry)"LA)
= F(I—Ry)+ {I,A)+((I- R)\)_l — I, A).

We conclude that
F(I—Ry) < F(I—Ro)+Te(A)+ [T — (I = Rx)"Mrl|Allp- (2.223)

Denoting by pu; the eigenvalues of Ry and noting that ||Ry| < max][||Ro|, ||R1H]

d(H) (see (2.221)), we have |u;| < d(H), and therefore eigenvalues v; = 1 — = uz =

— (I = Ry)™" satisfy [vi] < |pal /(1 = i) < |pal /(1 — d(H)), whence

17 = (I = Rx)"Hlp < |RAllp/(1 = d(H)).

Noting that ||Ry||r < max[||Ro| r, |R1l|r] < D(H), see (2.222), we conclude that
I — (I — Ra)"M||lr < D(H)/(1 — d(H)), so that (2.223) vields
F(I—-Ry) <F(—Ry)+Te(A)+ D(H)|Alr/(1—d(H)). (2.224)

1/2

Further, by (2.165) the matrix D = ©'/20, /% — I satisfies || D|| < d, whence

A=0Y2He'Y2 _e?HeY? = (I+D)Ry(I+DT)~Ry = DRo+RoDT+DR,D.
Ry Ro

Consequently,

[AllF < [IDRollr + [RoD || + [ DRoDT|r < [2]|D]| + || D*]]| Roll »

< 624 6)[|Rollr = 0(2+ 6)D(H).
This combines with (2.224) and the relation

Tr(A) = Tr(0Y2HOY?2 — 0Y?HOY?) = Tr([6 — 6.]H)
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to yield

5(2+6)

22T 1ol 2 Hel )2
1— d(H)” ||F7

F(I—Ry) < F(I — Ro)+Tr([® — ©,]H) +

and we arrive at (2.220). It remains to prove that G*(H;©) is convex-concave and
continuous on H° x V. The only component of this claim which is not completely
evident is convexity of the function in H € H?; to see that it is the case, note
that InDet(S) is concave on the interior of the semidefinite cone, the function
2
f(u,v) = 7% is convex and nondecreasing in u,v in the convex domain II =
{(u,v) : w > 0,v < 1}, and the function Jox2Hel|E
; . = YU ) 1—H91/2H@i/2“
S . 1/2 170 1/2 1/2 774 1/2 . o
convex substitution of variables H — (|0 "HO. " ||r, ||©+ " HO.'“||) mapping H
into II. a

is obtained from f by

3Y. Combining (2.220), (2.218), (2.167) and the origin of ¥, see (2.217), we arrive
at

Y((1,0) € U x V, (h, H) € H7 = H) :
In (E¢on(amo) {exp{h"¢ + 5¢THCY}) < @a.2(h, H; ©),

as claimed in (2.170).

4%, Now let us check that ®4 z(h, H;©) : H x V — R is continuous and convex-
concave. Recalling that the function G (H;©) from (2.220) is convex-concave and
continuous on H°xV, all we need to verify is that T'z (h, H) is convex and continuous
on H. Recalling that Z is nonempty compact set, the function ¢z(-) : S¥** — R
is continuous, implying the continuity of I'z(h, H) = %QSZ(Q[H, h]) on H = H”
(Q[H, h] is defined in (2.218)). To prove convexity of I'z, note that Z is contained
in Siﬂ, implying that ¢z(-) is convex and =-monotone. On the other hand, by
Schur Complement Lemma, we have

S = {(hH,G):G=Q[H,N](hH) € H"}
[ G—hTA+ AThT + ATHA] | BT[H, h]"

0
(h,H) € H7}7

implying that S is convex. Since ¢z (-) is »=-monotone, we have

{(h,H,7): (h,H) e H", 7 >Tz(h,H)}
={(h,H,7): 3G : G = Q[H,}], 21 > ¢=(G), (h, H) € H},

and we see that the epigraph of I'z is convex (since the set S and the epigraph of
¢z are 0), as claimed.

5Y. It remains to prove that ® 4 z is coercive in H, h. Let © € V and (h;, H;) € H”
with ||(hs, H;)|| — oo as i — oo, and let us prove that ®4 z(h;, H;; ©) — oc.
Looking at the expression for ® 4 z(h;, H;; ©), it is immediately seen that all terms
in this expression, except for the terms coming from ¢z(-), remain bounded as
i grows, so that all we need to verify is that the ¢z(-)-term goes to oo as i —
00. Observe that H; are uniformly bounded due to (h,;, H;) € H”, implying that
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|hilla — oo as i — oco. Denoting e = [0;...;0;1] € R*! and, as before, b =
[0;...;0;1] € R™! note that, by construction, BTe = b. Now let W € Z, so
that W, 41,,+1 = 1. Taking into account that the matrices [©7' — H;]™! satisfy
aly = [©71 — H;]7! < BI, for some positive a, 3 due to H; € H?, observe that

|:|: th s :| + [Hi, hz]T [@;1 - Hdil [Hi, h,] = [hZT[@Il — Hdilhijl eel + R;,

K3

a;hill3

Qi
where o; > a > 0 and ||R;||r < C(1 + [|hs]|2). As a result,
¢z(BTQ;B) > Tr(WBTQ;B) = Tr(WB”[a;| hi||3ee” + R;]|B)
= ailhill3 Te(Wob") —||BWB”||||Ri||
———

=Wnit1,nt1=1

allhillz = C(1+ |lhill2) | BW BT | F,

Y

and the concluding quantity tends to oo as i — oo due to ||h;||2 — 00, i — co. Part
(i) is proved.

2.11.4.B Proof of Proposition 2.46.ii

By (i) the function ®(h, H; ©1, ©5) is continuous and convex-concave on the domain
(H1NHz) x (V1 x Vs) and are coercive in (h, H), while H and V are closed and
—— Y—

H %
convex, and V in addition is compact, saddle point problem (2.172) is solvable

(Sion-Kakutani Theorem, a.k.a. Theorem 2.24). Now let (h., H,;©7,03%) be a
saddle point. To prove (2.174), let P € Gy, that is, P = N (A1[u;1],01) for some
©; € V; and some u with [u; 1][u; 1]T € Z;. Applying (2.170) to the first collection
of data, with a given by (2.173), we get the first < in the following chain:

In (f e*%“’TH*‘”*“’Th**aP(dw)) <Oz (—he,—H;01) —a
< (I)Al,Zl(_hvm_H*?@ik) —a = SV,
(@) (®)

where (a) is due to the fact that @4, z, (—h., —H.; 01)+ P4, =, (hs, Hi; O2) attains
its maximum over (©1,02) € V1 x Vs at the point (07, 03), and (b) is due to the
origin of a and the relation SV = 1[®4, z, (—hs, —H,; O%) + P, z, (hy, Hy; ©3)].
The bound in (2.174.a) is proved. Similarly, let P € Gy, that is, P = N (Az[u; 1], O2)
for some O € V5 and some u with [u; 1][u; 1]7 € Z,. Applying (2.170) to the second
collection of data, with the same a as above, we get the first < in the following
chain:

In <fe%wTH*w+wTh*+aP(dw)) < q)Az.,Zz (h*, H*; @2) +a

\S//CI)A%&(h*,H*; 03) + a\:’_/SV,

(a) (b)

with exactly the same as above justification of (a) and (b). The bound in (2.174.b)
is proved. O
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2.11.5 Proof of Proposition 2.49
2.11.5.A Preliminaries

We start with the following result:

Lemma 2.77. Let © be a positive definite d x d matriz, and let
u C(u) = Alu; 1]

be an affine mapping from R™ into R%. Finally, let h € R?, H € 8¢ and P € S¢
satisfy the relations - -
0<P<1I; & P>0Y2HOY2 (2.225)

A

Then, setting B = [ o

0.1 ], for every u € R™ it holds

¢ ~SG(C(u),0) = In (Eg {ehT“'%CTHg}) < —3InDet(I — P)
31w BT[] + (1, 0] ©Y/2(1 — PI716Y2 [H, ]| Blus 1]
i i (2.226)
Equivalently (set G = ©7Y/2PO~1/2): Whenever h € R?, H € 8% and G € S¢

satisfy the relations B
0<G=<6"'&G>H, (2.227)

one has for every for every u € R™:

¢ ~SG(C(u),0) =1In (EC {ehT<+§<TH<}) < —1InDet(I — ©1/2GO'Y?)
+1[u; 1)7 BT H# +[H RO — G A, h,]] Blu; 1]
(2.228)

Proof. 1°. Let us start with the following observation:

Lemma 2.78. Let © € Sff_ and S € R¥™? be such that SOST < 1;. Then for
every v € R? one has

In (Bgsce) {e 58S L) <n (Bpon, {e177505"+})

(2.229)
= —LInDet(l; — SOST) + LT [SOST (I, — SO5T) ] v.

Indeed, let £ ~ SG(0,0) and z ~ N (v, I4) be independent. We have

E; {e”TSH%fTSTSf} = E¢ {Ex {e[SE]Tm}} =E, {Eg {e[STﬂ”]Tf}}

a
T T
< E, {e%w ses w}7

b

where a is due to x ~ N(v, I;) and b is due to £ ~ SG(0,0). We have verified the
inequality in (2.229); the equality in (2.229) is given by direct computation. O

29, Now, in the situation described in Lemma 2.77, by continuity it suffices to
prove (2.226) in the case when P * 0 in (2.225) is replaced with P > 0. Under the
premise of Lemma, given u € R™ and assuming P > 0, let us set u = C(u) = Afu; 1],
v = PY20Y2[Hu + h), S = PY?2071/2) so that SOST = P < I, and let
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G= @_1/2P(:)_1_/2, so that G = H. Let ¢ ~ SG(u,0). Representing ¢ as ¢ = p+¢
with £ ~ SG(0,0), we have

In (Ec {ehT<+%<TH<}) = W+ Ly Hy o+ In (Ef {e[h+Hu]Ts+%£THs})
<hTp+ip"Hp+1n (Eg {e[h+H“]T5+%5TG5})
[since G = H|
=hTpu+ $p"Hp+In (Eg {e”TSf‘F%éTSTS&})
B [since STy = h+ Hp and G = STS]
<hTp+ u"Hp — 5 InDet(Iq — SOST) 4 507 [SOST (14 — S©5T) v
[by Lemma 2.78 with © = O]
=hTpu+ " Hy — $nDet(Iy — P) + 2 [Hp + h)TOY2(I, — P)~1OY2[Hpu + h]
[plugging in S and V]

It is immediately seen that the concluding quantity in this chain is nothing but the
right hand side quantity in (2.226). |

2.11.5.B Completing proof of Proposition 2.49.

19 Let us prove (2.184.a). By Lemma 2.77 (see (2.228)) applied with © = O,,
setting C(u) = Afu; 1], we have

V((h,H) €EH,G:0=G=2~vT0;1,G = HueR": [u;1][i; 1] € Z) :
In (Ecwsg(c(u),@*) {ehT<+%<TH<}) < —LnDet(I — ©Y2GOY?)

3w T BT[] + (H. 0] (071 = G)7 [H, B Blus1]
< —lInDet(I — 0©*GOL?)
+10z (BT H‘h’i_ﬁ] + (1T 07 = G H ]| B) = Waz(h H,G),
(2.230)
implying, due to the origin of ® 4 z, that under the premise of (2.230) we have

I (Bcesacwen {e" < HY) < @az(h H), (b, H) € H.

Taking into account that when ( ~ SG(C(u),®) with © € V, we have also ¢ ~
SG(C(u),0,), (2.184.a) follows.

29, Now let us prove (2.184.b). All we need is to verify the relation

V((hH) €eH,G:0=G=7"0;1,G= HueR": [u;1][i;1]T € Z,0 € V) :
In (ECNSG(C(u),@) {ehTC"'%CTHC}) < \I/i’z(h, H, G, @),
(2.231)
with this relation at our disposal (2.184.b) can be obtained by the same argument
as the one we used in item 1° to derive (2.184.a).

To establish (2.231), let us fix h, H, G, u,© satisfying the premise of (2.231);
note that under the premise of Proposition 2.49.i, we have 0 = © < O,. Now
let A € (0,1), and let ©y = © + A(©, — ©), so that 0 < ©) = O,, and let
oy = ||@§/2®:1/2 —I|, so that &, € [0,2]. We have 0 < G <7TO;! <~++0 ! that
is, H, G satisfy (2.227) w.r.t. © = ©,. As a result, for our h, G, H,u and the just
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defined © relation (2.228) holds true:

¢~ SG(C(u),05) =

1n(E<{ehT<+ <TH<}) LinDet(I — ©/2G0Y?)
4w BT [ + (0T 05 - G ] Blu 1] (2:232)

< —LmDet(I - 0/2GOY?)
ol TR wariop o

(recall that [u; 1][u; 1]T € Z). As a result,

¢~ SG(C(u),0) = In (B¢ {3 HL) < —LinDet(1 - ©}/°GO}/?)

o (0 [ 0 -0 ]

(2.233)

When deriving (2.233) from (2.232), we have used that

— © = 0O,, so that when { ~ SG(C(u), ®), we have also { ~ SG(C(u), O,),
—0=<0, <06, and G < O7, whence [9;1 —Gt=ert-art

— Z C S, whence ¢z is =-monotone: ¢z (M) < ¢z(N) whenever M < N.

By Lemma 2.76 applied with ©, in the role of ® and §y in the role of §, we have

—IInDet(I — ©)/%GO}?)

1/2 1/2 ox(2+0 1/2 1/2
<~y InDet(l — ©:/°GOY?) + 4 Tr([Ox — 0.16) + ;2T 01 Gor 3.

Consequently, (2.233) implies that

¢~ SG(C(u),0) =
In (EC {ehT<+%<TH<}) < —linDet(I — ©Y%GOY?) + LTx([0, — 0.]G)

Ix(246x) @1/2G®1/2 2
2067 aer ™ 19+ e

+16z (BT [[4H] + (10" (071 - G [H,1] B).

The resulting inequality holds true for all small positive A; taking liminf of the
right hand side as A — +0, and recalling that ©y = ©, we get

(~SG(C(u),0) =
In (EC {ehT<+%<TH<}) < —LDet(I — ©Y*GOY?) + 1Ti([0 - 0.]G)

_ 8(240) 1/2 1/2)2
e ey 19+ GOl

rhoe (57 [ i (072 - 0] )
<

(note that under the premise of Proposition 2.49.i we clearly have liminfy_, oy
§). The right hand side of the resulting inequality is nothing but W9 A.z(h, H,G;0),
see (2.183), and we arrive at the inequality required in the conclusion of (2.231).

3%, To complete the proof of Proposition 2.49.i, it remains to prove that the
functions ®4 z, <I>j347 = possess the announced in Proposition continuity, convexity-
concavity, and coerciveness properties. Let us verify that this indeed is so for <I>‘f4’ 2
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reasoning to follow, with evident simplifications, is applicable to ® 4 z as well.

Observe, first, that by exactly the same reasons as in item 4° of the proof
of Proposition 2.46, the function ‘I’ix, z(h,H,G;0) is real valued, continuous and
convex-concave on the domain

HxV={(hHG) : —4T0;' <H=<~"0;1,0=<G<~+"0;",H <G} x V.

The function @iyZ(MH;@) : " xV — R is obtained from W°(h, H,G;0) by the
following two operations: we first minimize \Ijil,z (h, H,G;©) over G linked to (h, H)
by the convex constraints 0 < G < y+07! and G = H, thus obtaining a function

O(h,H;0): {(h,H): —yTO;' < H <~T0;'} xV = RU {400} U {—o0}.

H

Second, we restrict the function ®(h, H; ©) from H xV onto H x V. For (h, H) € H,
the set of G’s linked to (h, H) by the above convex constraints clearly is a nonempty
compact set; as a result, ® is real-valued convex-concave function on 7 x V. From
continuity of \Ifi, ~ on its domain it immediately follows that \Ili\, ~ is bounded and
uniformly continuous on every bounded subset of this domain, implying by evident
reasons that ®(h, H; ©) is bounded in every domain of the form B x V, where B is
a bounded subset of H, and is continuous on B x V in © € V with properly selected
modulus of continuity independent of (h, H) € B. Besides this, by construction,
H C int H, implying that if B is a convex compact subset of H, it belongs to the
interior of a properly selected convex compact subset B of H. Since ® is bounded on
B xV and is convex in (h, H), the function ® is Lipschitz continuous in (h, H) € B
with Lipschitz constant which can be selected to be independent of © € V. Taking
into account that # is convex and closed, the bottom line is that <I>‘f4, = is not just
real-valued convex-concave function on the domain H x V), it is also continuous on
this domain.

Coerciveness of @i,z (h,H;0) in (h, H) is proved in exactly the same fashion
as the similar property of function (2.167), see item 5° in the proof of Proposition
2.46. The proof of item (i) of Proposition 2.49 is complete.

4%, Ttem (ii) of Proposition 2.49 can be derived from item (i) of Proposition in
exactly the same fashion as when proving Proposition 2.46. O
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Lecture Three

Estimating Functions via Hypothesis Testing

In this Lecture we apply the hypothesis testing techniques developed in Lecture 2
to estimating properly structured scalar functionals in simple o.s.’s (Section 3.2)
and beyond (Section 3.4).

3.1 ESTIMATING LINEAR FORMS ON UNIONS OF CONVEX
SETS

3.1.1 The problem

Let O = ((,1I), {pu(-) : p € M}, F) be a simple observation scheme. The problem
we are interested in this section is as follows:

We are given a positive integer K and I nonempty convex compact sets
X; C R", along with affine mappings A;(+) : R® — RM such that A;(z) €
M whenever x € X;, 1 < j <I. In addition, we are given a linear function
g7z on R™.

Given random observation

Wl = (Wi, ., wi)

with wy, drawn, independently across k, from py; () with j < I and z € Xj,
we want to recover g7 z. It should be stressed that we do not know neither
J nor x underlying our observation.

Given reliability tolerance € € (0,1), we quantify the performance of a candidate
estimate — a Borel function g(-) : @ — R — by the worst case, over j and x, width
of (1 — €)-confidence interval, Specifically, we say that g(-) is (p, €)-reliable, if

Vij<IzeX;): Probwprjm{@(w) —g'2| > p} <e
We define e-risk of the estimate as
Riske[g] = inf {p : g is (p, €)-reliable} ;

note that g is the smallest p such that g is (p, €)-reliable.

We remark that the technique we are about to use originates from [86] where
recovery, in a simple o.s., of a linear form on a convex compact set (i.e., the case
I =1 of the estimation problem at hand) was considered; it was proved that in this

situation the estimate
Gw™) =" dlwr) +
k

with properly selected ¢ € F and k € R is near-optimal; for Gaussian o.s. similar
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fact was discovered, by different technique, by D. Donoho [44] as early as in 1994.

3.1.2 The estimate

In the sequel, we associate with the simple o.s. O = ((Q,II), {p.() : p € M}, F)
in question the function

Bo(si) =tn ( [ “p () ) i 7 x MR

Recall that by definition of a simple o.s., this function is real-valued on its domain
and is concave in u € M, convex in ¢ € F, and continuous on F x M (the latter
follows from convexity-concavity and relative openness of M and F).

Let us associate with a pair (7,j), 1 <4,7 < I, the functions

(o, ps,y) = 5[Ka®o(p/a;Ai(x)) + KaPo(—¢/a; Aj(y))
+97(y — 2) + 2aln(2I /e)] : {a > 0,¢ € F} x [X; x X;] = R,
Vijla¢) = | _max  Oy(az,y)
= % W +(,0) + 9, _(a,9)] : {aa >0} x F = R,
Ve (B,9) = max [KBPo(v/B; Ag(x)) — gTa + BIn(21/€)] :

{#>0,¢9eF} =R,
max [KB®Po(—/B; Au(x)) + g7 x4+ B1In(21 /e)] :
{>0,9 € F} - R.
(3.1)
Note that the function a® e (¢/a; A;(x)) is obtained from continuous convex-concave
function ®n(+,-) by projective transformation in the convex argument, and affine
substitution in the concave argument, so that the former function is convex-concave
and continuous on the domain {a > 0,¢ € X} x X;. By similar argument,
the function a®p(—¢/a; A;(y)) is convex-concave and continuous on the domain
{a>0,¢ € F} x X;. These observations combine with compactness of X;, X; to
imply that U;;(a, @) is real-valued continuous convex function on the domain

\Ile,— (/87 d))

Ft={a>0}xF.

Observe that functions ¥;; (v, ¢) are nonnegative on F+. Indeed, selecting somehow
Z € X;, and setting u = A;(Z), we have

(0, 0) > B0, 65 7,7) = & [K[Do(d/as 1) + Do~/ u)] + 21n(21/)]
:;[Kn( exp{<z> )fatmomas)]| [ exp{—¢<w>/a}pﬂ<w>n<dw>])

>[[ exp{5p(w)/a} exp{—5¢(w)/a}pu(w)I(dw)]?=1
+2 ln(ZI/e)}

>aln(2l/e) >0

(we have used Cauchy inequality).
Functions ¥;; give rise to convex and feasible optimization problems

Opt;; = Opt;(K) = @ %ienf+ Wij(e, @) (3.2)
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By its origin, Opt,; is either a real, or —oo; by the observation above, Opt,; are
nonnegative. Our estimate is as follows.

1. For 1 <1,j < I, we select somehow feasible solutions «;j, ¢;; to problems (3.2)
(the less the values of the corresponding objectives, the better) and set

pij = \}/ij(aijv(bij) = 3 [Wi 4 (i, dij) + V5 _(aij, dij)]
Hij = 3 [I‘I(’j,—(aij’ bij) — Vit (ij, dij)] (3.3)
9i;(WX) = Y bij(wk) + 24y
p = MAX1<,5<T Pij
2. Given observation w¥, we specify the estimate g(w) as follows:
T = HlanSI gij(wK)
cj = mini<s gij(w) (3.4)
Wk = %[minigf r; + max;j<r ¢ .

3.1.3 Main result

Proposition 3.1. The e-risk of the estimate we have built can be upper-bounded

as follows:
Risk, [g] < p. (3.5)

Proof. Let the common distribution p of independent across & components wy,
in observation w¥ be DA, (w) for some £ < I and v € X,. Let us fix these £ and u,
let 4 = Ay(u), and let p¥ stand for the distribution of w’.

1Y. We have
Wyt (aj, dej) = maxzex, [Kou;®o(des/ous, Ac(z)) — g" ] + aej In(21 /e)
> Kagi®o(dej/ows, p) — g" u+ ag; In(21/€) [since u € X, and p = A¢(u)]
= Kag; In ([ exp{e;(w)/ e }pu(w)l(dw)) — g7 u+ ag; In(21/€)
[by definition of ®p]
=agIn (E kK exp{a;jl Dok D (wk)}}) — gTu + ayj In(21/€)
=agjln (E kK exp{azjl [gzj(wK) — %gﬂ}}) —gTu+ au; In(21 /¢)
= a;In (Byrpre {explag;' g (@) = g"u = puil} }) + pej = 50; + e (21 /)
> agjln (ProwaNpK {gg]-(wK) > gTu+ p({j}) + pej — e + aej In(21 /€)
=
ag;In (Probyx x {90 (W) > gTu+ pei }) < Vo (s, deg) + 05 — pej + ey In(57)
= ag;In(57) [by (3.3)]

and we arrive at

Prob,xprc {gej (™) > gTu = py;} < % (3.6)
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Similarly,

Wy, (e, pie) = maxyex, [Kaw®o(—¢i/ai, Ac(y)) + 9" y] + e In(21 /€)
> Kau®o(—die/ e, 1) + gTu+ e In(21/€) [since u € X, and p = A¢(u)]
= KayeIn ([ exp{—oic(w)/aie}pu(w)l(dw)) + g7 u + ae In(21 /€)
[by definition of ®o)]
= ailn (EWKNPK {exp{—oz;_,1 >k qﬁw(wk)}}) +gTu+ o In(21/€)
= aieIn (BE,x i {exp{ag,' [—gie(w™) + 5]} }) + g7 u+ cie In(21 /e)
= airIn (Byx oy {exp{ag,! [—gie(w™) + 97w — picl} }) + pie + 20 + cie In(21 fe)
> aeIn (Probyx px {gie(W™) < g"u— pie}) + pie + 20 + cie In(21 /e)
=
aieln (Probyx i {gie(w™) < g"u — pie}) < We—(qie, pie) — e — pie + aie In(57)
= aieln(5) by (3.3)]

and we arrive at

Prob,,x ,x {giz(wK) <gfu-— pic} < % (3.7)

20, Let
E = {w™ 1 g0 (W) < gTu+ pej, gie(WS) > gTu— pig, 1 <, j < I}

From (3.6), (3.7) and the union bound it follows that p-probability of the event £
is > 1 —e. As a result, all we need to complete the proof of Proposition is to verify
that

Wk e &= 9w - gTu| < p. (3.8)

Indeed, let us fix w® € &£, and let E be the I x I matrix with entries E;; = g;;(w’),
1 <,7 < I. The quantity r;, see (3.4), is the maximum of entries in i-th row of E,
and the quantity c; is the minimum of entries in j-th column of F; in particular,
r; > Ei; > ¢; for all i, j, implying that r; > ¢; for all 4, j. Now, since w® € &, we
have By = goo(w™) > g"u—po > g"u—p and Egj = goj (W) < gTu+pg; < g"utp
for all j, implying that r, = max; E¢; € A = [gTu — p,gTu + p|. Similarly, w € €
implies that Ep = gee(w’) < gTu+ p and Eyp = gio(w) > gTu — pie > gTu —p
for all ¢, implying that ¢, = min; E;y € A. We see that both r, and ¢; belong to
A; since r, := min; r; < ry and, as have already seen, r; > ¢, for all i, we conclude

that ., € A. By similar argument, c, := max;c; € A as well. By construction,
g(w’) = 3[r + c.], that is, g(w’) € A, and the conclusion in (3.8) indeed takes
place. O

3.1.4 Near-optimality

Observe that properly selecting ¢;; and o;; we can make, in a computationally
efficient manner, the upper bound p on the e-risk of the above estimate arbitrarily
close to

Opt(K) = ax Opt,; (K).
We are about to demonstrate that the quantity Opt(K) “nearly lower-bounds” the
minimax optimal e-risk

Risk! (K) = ig(uf) Risk.[q],
L
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the infimum being taken over all K-observation Borel estimates. The precise state-
ment is as follows:

Proposition 3.2. In the situation of this Section, let ¢ € (0,1/2) and K be a
positive integer. Then for every integer K satisfying

21n(21/¢)

K/K >
111(46(1176))

one has B
Opt(K) < Risk! (K). (3.9)

In addition, in the special case where for every i,j there exists x;; € X; N X, such
that A;(z;;) = Aj(x;j) one has

7 21n(21
K > K = Opt(K) < M
11](46(176>)

Risk” (). (3.10)

Proof. 1°. Observe that Opt,;;(K) is the saddle point value in the convex-
concave saddle point problem:

Opt;(K) = a>}){14f€fzegg>éxj $Ka{®o(¢/a; Ai(z)) + Po(—o/a; A;(y))}

+297 [y — 2] + aln(21 /e) |

The domain of the maximization variable is compact and the cost function is con-
tinuous on its domain, whence, by Sion-Kakutani Theorem, we have also

Oules) = _inf_ |4 {@o(o/ai Aa)) + Po(-0/a A1) (311

+o ln(2I/e)] + 297y — al.
We have

Oues) = i [3Ka{@o(v: Aie) + Bo(—viA )}

+197ly — a] + aln(21/e)

a>0

= inf L%aqug;{@o(w;Ai(x))+‘I’o(1/J;Aj(y))}+041n(21/6)
+39

ly — ]

Given z € X;, y € X, and setting p = A;(z), v = A;(y), we obtain

(Bo(vi Ai(a)) + o(-v: 4] = iut [in( [ explv)mwrr(s)

inf
PpeF

i ( [ent-venmnr))].
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Since O is a good o.s., the function ¢ (w) = § In(p, (w)/p.(w)) belongs to F, and
aat 1o ([ exppunpa P ) +1n ([ ep(-vlppa)]
= ot [in ([ ep0) + 5 @P)) 410 [ exp{-0) - sl ()P@) )]

int [0 ([ epts@mtime)Pa@) ) +in ([ expl=50y/ou @) P(a)) |

1(8)

Observe that f(0) clearly is a convex and even function of § € F; as such, it attains
its minimum over 6 € F when 6 = 0. The bottom line is that

it [ov: Ai(a) + o (s 450 =210 [ o @pa@P(@) )
. (3.12)

Oy = infa|Kin ([ \fon o @rao@P@) + /] + 37 -

_ {;gT[y—x} K ([ /paso @Pa, ) @) P(dw) ) + In(21/€) > 0,

—00, otherwise.

This combines with (3.11) to imply that

€
Opt,; (K )—m&X{ Tly—a] : xGXz,yGX],[/\/PA (@) (@)Pa; (y) (W) P dw} >2I}

(3.13)

20, We claim that under the premise of Proposition, for all 4,7, 1 < 4,5 < I, one
has -
Opt,; (K) < Risk; (K),

implying the validity of (3.9). Indeed, assume that for some pair 4,j the opposite
inequality holds true: ~
Opt,;(K) > Risk; (K),

and let us lead this assumption to a contradiction. Under our assumption opti-
mization problem in (3.13) has a feasible solution (Z, %) such that

1 _
2gT[y — 7] > Risk!(K), (3.14)
implying, due to the origin of Risk(K), that there exists an estimate §(wk ) such

that for p = A;(Z), v = A;(¥) it holds

Probys e {3(@5) < 37l +91} < Probeye {[3w5) — g7l 21} <
Probys e {3(w5) > 37T +9]} < Probeps {[3w5) — "2 > 1| <,

so that we can decide on two simple hypotheses stating that observation wk obeys
distribution pu , resp., p& | with risk < e. Therefore,

/min {pf(wk),pf(wk)} PR (dw®) < 2e.
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Hence, when settin K(wkK) = wi) and PE = P x ... X P, we have
w g pg (W™) =I1)po(wk) y W Vi

K

[fﬁ @ P()] " = [ ol @R )l (@) P (du)
K (WK

I yfmin [P (@), pI ()] /max [pf (@F), pff (@F)] PR (dw)
< [min [pf @), pf ()] PR ()] [ max [p (5, pE (5)] PE (@)
' ]

1/2

)
)

wF) = min [pf (@F), pf (WF)] | PR (d)]
) 1/2

12 [2 — [ min [pf;( (wk),pf (wk)] Pk(dwk)]

IA I
[\
a
—~
—_
I
&)
~—

Consequently,

U WPWK <pVel—o"/F < .

which is the desired contradiction (recall that 4 = A;(Z), v = A;(y) and (z,7) is
feasible for (3.13)).

39, Now let us prove that under the premise of Proposition, (3.10) takes place. To
this end let us set

wso) = {50 ol K ([ \foao@na, o @P@) +5 0},

H(z,y)

(3.15)
As we have seen in item 1°, see (3.12), one has

Hw,y) = il 5 olws Ai(e)) + Pol—, 4, (1),

that is, H(z, y) is the infimum of a parametric family of concave functions of (z,y) €
X; x X, and as such is concave. Besides this, the optimization problem in (3.15)
is feasible whenever s > 0, a feasible solution being y = # = x;;. At this feasible
solution we have g [y — z] = 0, implying that w;;(s) > 0 for s > 0. Observe also
that from concavity of H(z,y) it follows that w;;(s) is concave on the ray {s > 0}.
Finally, we claim that

w;;(5) < Risk!(K), 5= —In(2v/€(1 — ¢)). (3.16)

Indeed, w;;(s) is nonnegative, concave and bounded (since X;, X; are compact) on
R, implying that w;;(s) is continuous on {s > 0}. Assuming, on the contrary
to our claim, that w;;(5) > Risk(K), there exists s’ € (0,5) such that w;;(s") >
Risk!(K) and thus there exist # € X;, § € X; such that (z,9) is feasible for the
optimization problem specifying w;;(s’) and (3.14) takes place. We have seen in
item 2° that the latter relation implies that for u = A;(z), v = A;(y) it holds

/ \/mmdmr <oy /di=0),




StatOpt'LN'NS  January 21, 2019 7x10

ESTIMATING FUNCTIONS VIA HYPOTHESIS TESTING 197

that is,

Kn </ \/mp(dw)> +5<0,
Kln (/ \/mp(dw)) 48 <0,

contradicting the fact that (&, %) is feasible for the optimization problem specifying
Wi (S/)

It remains to note that (3.16) combines with concavity of w;;(-) and the relation
w;;(0) > 0 to imply that

whence

21n(21/e)

Wi j (1D<2[/6)) S ﬁwij(g) S 191{181{:(I?>7 Y= ln(2[/e)/§ = W

Invoking (3.13), we conclude that
Opt,;(K) = w;(In(21/€)) < 9Risk? (K) Vi, j.

Finally, from (3.13) it immediately follows that Opt,;(K) is nonincreasing in K
(since as K grows, the feasible set of the right hand side optimization problem in
(3.13) shrinks), that is,

K > K = Opt(K) < Opt(K) = max Opt;(K) < 9Risk; (K),
’L’]
and (3.10) follows. O

3.1.5 TIllustration

We illustrate our construction on the simplest possible example — one where X; =
{z;} are singletons in R™, ¢ = 1,..., I, the observation scheme is Gaussian. Thus,
setting y; = A;(z;) € R™, the observation’s components wy, 1 < k < K, stemming
from signal x;, are drawn, independently of each other, from the normal distribution
N (yi, In). The family F of functions ¢ associated with Gaussian o.s. is the family
of all affine functions ¢(w) = ¢ + ¢’ w on the observation space (which at present
is R™); we identify ¢ € F with the pair (¢g, ¢). The function ¥y associated with
the Gaussian observation scheme with m-dimensional observations is

1
Do(d;p) = do+ " p+ §<pTga :(RxR™) xR™ — R,
a straightforward computation shows that in the case in question, setting

0 =1n(21/¢),
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we have

;i (o,9) = Kalpo+ e yi/a+ 10T 0/a?] +ab — gTz;

Koo+ KTy —gTzi+ EoTp+ab

—K¢o — KTy + gTz; + %@Tgo +ab

infoso,6 2 (Wi (o, ¢) + 9 _(a, ¢)]

= 397[z; —xi] +infy, (K0T [y — ;] + infaso [£ 070 + af]]
= 197l — @il + infy | K67y — y] + V2D go]

_ { 597 [y —xi), Ny —yilla < 20/20/K

—00, lyi —yjll2 > 2y/20/K.

We see that we can safely set ¢9 = 0 and that setting

T={(g) : lyi — yjll2 < 20/207K},

Opt,; (K) is finite iff (4, j) € 7 and is —oo otherwise; in both cases, the optimization
problem specifying Opt;; has no optimal solution. Indeed, this clearly is the case
when (4,7) € Z; when (i,j) € Z, a minimizing sequence is, e.g., ¢g = 0, ¢ = 0,
a; — 0, but its limits is not in the minimization domain (on this domain, « should
be positive). Coping with this case was exactly the reason why in our construction
we required from ¢;;, a;; to be feasible, and not necessary optimal, solutions to
the optimization problems in question). In the illustration under consideration, the
simplest way to overcome the difficulty is to restrict the optimization domain F+
in (3.2) with its compact subset {a > 1/R, g = 0, ||p|l2 < R} with large R, like
R =10 or 10%°. With this approach, we specify the entities participating in (3.3)
as

\Ilj-,*(av d))
Optij

(3.17)

(W) = Tw =10 (i,j) €T
Pl = e oy {—R[yi—yj]/nyi—ym (i,§) €1
{ 1/R,  (i,j)eZ (3.18)

VER, G.)) 2T

Oéij =

resulting in

wij = 5[V (0, i) — Vit (g, 6ij)]
= 3 [*K%—ijj +9"z; + Tij ©ipij + il — KoLy + g7z — Ti]. P31 Pij — Olije]
= %QT[%‘ + ;] — %%7; [ys + 5]

pij = g [Wit(ouz, bi5) + 5 (aij, ¢iz)]

Kolyi — 9" wi + sa—elei + 00 — Keliy; + 9" a; + g8 eliei; + az-je]
= Qai{@;‘1‘;‘¢i‘j + a0+ g% [z —x] + %eo?j[yi - yj]
{ 297 [z — =]+ R0, (4,7) €T

397 [j — 2] + [V2KO — Sllyi — ysll2]R,  (6.5) €T

(3.19)
In the numerical experiments we are about to report we used n = 20, m = 10, and
I = 100, with x;, ¢ < I, drawn independently of each other from N(0,I,), and
y; = Ax; with randomly generated matrix A (specifically, matrix with independent
N(0,1) entries normalized to have unit spectral norm), and used R = 10%°; the
linear form to be recovered was just the first coordinate of x. The results of typical
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experiment are as follows:

K | max; ; pi; Empirical recovery error
© [mean/median/max]
2 2.541 0.9243/0.8292/2.541
4 2541 0.9859/0.9066,/2.541
8 2.541 0.8057/0.7316/2.541
16 2.541 0.6807/0.6567/2.115
32 1.758 0.3630/0.2845/1.758
64 0.954 0.0860,/0.0000/0.954
128 0.000 0.0000,/0.0000/0.000
256 0.000 0.0000,/0.0000/0.000

For every K, the empirical recovery errors shown in the table stem from 20 ex-
periments, with the signal underlying an experiment selected at random among
L1y ---32100-

3.2 ESTIMATING N-CONVEX FUNCTIONS ON UNIONS OF
CONVEX SETS

In this Section, we apply our testing machinery to the estimation problem as follows.

Given are:

e asimple o.s. O = (Q,1;{p, : p € M} F),
e a signal space X C R™ along with affine encoding x — A(z) : X — M,
e a real-valued function f on X.

Given observation w ~ p4(,,) stemming from unknown signal . known to
belong to X, we want to recover f(z,).

Our approach imposes severe restrictions on f (satisfied, e.g., when f is linear, or
linear-fractional, or is the maximum of several linear functions); as a compensation,
we allow for rather “complex” X — finite unions of convex sets.

3.2.1 Outline

The approach we intend to develop is, in nutshell, extremely simple; its formal
description, however, turns to be lengthy and obscures, to some extent, the simple
ideas underlying the construction. By this reason, it makes sense to start with
informal outline of the strategy underlying the forthcoming developments. Consider
the situation where the signal space X is the 2D rectangle depicted on the top of
Figure 3.1.(a), and let the function to be recovered be f(u) = w;. Thus, “the
nature” has somehow selected = in the rectangle, and we observe, say, Gaussian
random variable with the mean A(x) and known covariance matrix, where A(:) is
a given affine mapping. Note that hypotheses f(z) > b and f(z) < a translate
into convex hypotheses on the expectation of the observed Gaussian r.v., so that
we can use out hypothesis testing machinery to decide on hypotheses of this type
and to localize f(z) in a (hopefully, small) segment by a Bisection-type process.
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(b) ()

Figure 3.1: Bisection via Hypothesis Testing

Before describing the process, let us make a terminological agreement. In the sequel
we shall use pairwise hypothesis testing in the situation where it may happen the
neither one of the hypotheses Hi, Hy we are deciding upon is true. In this case,
we will say that the outcome of a test is correct, if the rejected hypothesis indeed
is wrong (the accepted hypothesis can be wrong as well, but the latter can happen
only in the case when both our hypotheses are wrong).

This is how our Bisection could look like.

1. Were we able to decide reliably on the Blue and Red hypotheses on Figure
3.1.(a), that is, to understand via observations whether x belongs to the left or
to the right half of the original rectangle, our course of actions would be clear:
depending on this decision, we would replace our original rectangle with a smaller
rectangle localizing z, as shown on Figure 3.1.(a), and then iterate this process.
The difficulty, of course, is that our Red and Blue hypotheses intersect, so that is
impossible to decide on them reliably.

2. In order to make Red and Blue hypotheses distinguishable from each other, we
could act as shown on Figure 3.1.(b), by shrinking a little bit the blue and the red
rectangles and inserting between the resulting rectangles the green “no-man land.”
Assuming that the width of the green rectangle allows to decide reliably on our
new Blue and Red hypotheses and utilizing available observation, we can localize x
either in the blue, or in the red rectangles as shown on Figure 3.1.(b). Specifically,
assume that our “Red vs. Blue” test rejected correctly the red hypothesis. Then
x can be located either in blue, or in green rectangles shown on the top of the
figure, and thus z is in the new blue localizer which is the union of the blue and the
green original rectangles. Similarly, if our test rejects correctly the blue hypothesis,
then we can take, as the new localizer of z, the union of the original red and green
rectangles, as shown on Figure 3.1.(b). Note that our localization is as reliable as
our test is, and that it reduces the width of localizer by factor close to 2, provided
the width of the green rectangle is small as compared to the width of the original
“tricolor” localizer of x. We can iterate this process, with the new — smaller —
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localizer in the role of the old till arriving at a localizer so narrow that “no-man
land” part of it (this part cannot be too narrow, since it should allow for reliable
decision on the current blue and red hypotheses) becomes too large to allow for
significant progress in localizer’s width.

The bottleneck of this approach is where to take observations to be used in our
subsequent tests. In principle, we could use in all of them the initial observation; the
difficulty with this approach is, that the hypotheses we need to decide upon depend
on the observations (e.g., when z belongs to the green part of the “tricolor” rectangle
on Figure 3.1, deciding on Blue vs. Red can, depending on observation, lead to
accepting either red or blue hypothesis, thus leading to different updated localizers),
and we arrive at the situation when we should decide on random hypotheses via
observation statistically depending on these hypotheses — a mess we have no idea
how to analyze. To circumvent this difficulty, we could use in every one of the
tests its own observation drawn, independently of the previous observations, from
the distribution p,(,). However, to do this, we need repeated observations to be
allowed, and the number of observations we will use will be proportional to the
number of tests we intend to run.

3. Finally, there is a theoretically sound way to implement Bisection based on a
single observation, and this is what we intend to do. The policy we use now is
as follows: given current localizer for x (at the first step - our initial rectangle),
we consider two “tricolor” partitions of it depicted at the top of Figure 3.1.(c). In
the first partition, the blue rectangle is the left half of the original rectangle, in
the second the red rectangle is the right half of the original rectangle. We then
run two Blue vs. Red tests, the first on the pair of Blue and Red hypotheses
stemming from the first partition, and the second on the pair of Blue and Red
hypotheses stemming from the second partition. Assuming that in both tests the
rejected hypotheses indeed were wrong, the results of these tests allow us to make
conclusions as follows:

e when both tests reject red hypotheses from the corresponding pairs, z is located
in the left half of the initial rectangle (since otherwise in the second test the
rejected hypothesis were in fact true, contradicting to the assumption that both
tests make no wrong rejections);

e when both tests reject blue hypotheses from the corresponding pairs, z is located
in the right half of the original rectangle (by the same reasons as in the previous
case);

e when the tests “disagree,” rejecting hypotheses of different colors, x is located in
the union of the two green rectangles we deal with. Indeed, otherwise x should
be either in the blue rectangles of both our “tricolors,” or in the red rectangles of
both of them. Since we have assumed that in both tests no wrong rejections took
place, in the first case both tests must reject red hypotheses, and in the second
both should reject blue ones, while in fact neither one of these two options took
place.

Now, in the first two cases we can safely say to which one of “halves” — left or
right — of the initial rectangle x belongs, and take this half as our new localizer.
In the third case, we take as a new localizer for x the green rectangle shown on
the bottom of Figure 3.1 and terminate our estimation process — the new localizer
already is narrow! Now, in the proposed algorithm, unless we terminate at the very
first step, we carry out the second step exactly in the same fashion as the first one,
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with the localizer of x yielded by the first step in the role of the initial localizer,
then carry out, in the same fashion, the third step, etc., until termination either due
to running into a disagreement, or due to reaching a prescribed number of steps.
Upon termination, we return the last localizer for £ which we have built, and claim
that f(z) = 1 belongs to the projection of this localizer onto the zi-axis. In all
tests from the above process, we use the same observation. Note that in our current
situation, in contrast to the one we have discussed earlier, re-utilizing a single
observation creates no difficulties, since with no wrong rejections in the pairwise
tests we use, the pairs of hypotheses participating in the tests are not random at all
— they are uniquely defined by f(x) = 1! Indeed, with no wrong rejections, prior
to termination everything is as if we were running perfect Bisection, that is, were
updating subsequent rectangles A; containing = according to the rules

e A is a given in advance rectangle containing x,
o Ay is either the left, or the right half of A;, depending on which one of these
two halves contains x.

Thus, given x and with no wrong rejections, the situation is as if a single observation
were used in a number L of tests “in parallel” rather than sequentially, and the only
elaboration caused by the sequential nature of our process is in “risk accumulation”
— we want the probability of error in one or more of our L tests to be less than the
desired risk e of wrong “bracketing” of f(x), implying, for absence of something
better, that the risks of the individual tests should be at most €/L. These risks,
in turn, define the allowed width of “no man land” zones, and thus — the accuracy
to which f(z) can be estimated. It should be noted that the number L of steps of
Bisection always is a moderate integer (since otherwise the width of “no-man land”
zone, which at the concluding Bisection steps is of order of 2=%, will be by far too
small to allow for deciding on the concluding pairs of our hypotheses with risk ¢/L,
at least when our observations possess non-negligible volatility). As a result, “the
price” of Bisection turns out to be low as compared to the case where every test
uses its own observation.

We have outlined the strategy we are about to implement. From the outline
it is clear that all what matters is our ability to decide on the pairs of hypotheses
{reX: f(x)<a}and {z € X : f(X) > b}, with a and b given, via observation
drawn from pa(,). In our outline, these were convex hypotheses in Gaussian o.s.,
and in this case we can use detector-based pairwise tests yielded by Theorem 2.25.
Applying the machinery developed in Section 2.5.1, we could also handle the case
when the sets {z € X : f(z) < a}and {x € X : f(X) > b} are unions of a moderate
number of convex sets (e.g., f is affine, and X is the union of a number of convex
sets), the o.s. in question still being simple, and this is the situation we intend to
consider.

3.2.2 Estimating N-convex functions: problem’s setting

In the rest of this Section, we consider the situation as follows. Given are:

1. simple o.s. O = ((, P),{pu(:) : p € M}, F),

2. convex compact set X C R™ along with a collection of I convex compact sets
X; C X,

3. affine “encoding” x — A(z) : X — M,

4. a continuous function f(z): X — R which is N-conver, meaning that for every
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a € Rthesets X%2 ={z € X: f(z) > a} and X< = {x € X : f(x) < a} can

be represented as the unions of at most N closed convex sets X2, X&<:

N N
xoz = Jap=, xes = Jags, (3.20)
v=1 v=1
I
For some unknown x known to belong to X = |J X;, we have at our disposal
i=1

observation w® = (wy, ...,wr) with i.i.d. w; ~ PA(z)(-), and our goal is to estimate
from this observation the quantity f(x).

Given tolerances p > 0, ¢ € (0,1), let us call a candidate estimate ]?(wK)
p, €)-reliable, if for every x € X, with the p4,)-probability at least 1 — € it holds
(z)

|f(wE) — f(x)|] < p or, which is the same, if

W@ € X) : Probux oy, xxpacs {|f(wK) — f(2)| > ,o} <e. (3.21)

3.2.2.1 Ezamples of N-convex functions

Ezample 3.3. [Minima and Maxima of linear-fractional functions] Every function

which can be obtained from linear-fractional functions ;* Eg (gv, h, are affine func-
tions on X and h, are positive on X) by taking maxima and minima is N-convex
for appropriately selected N due to the following immediate observations:

e linear-fractional function Zg; with positive on X denominator is 1-convex on AX’;

o if f(z)is N-convex, so is —f(x);
o if f;(x) is N;-convex, i = 1,2,...,I, then f(x) = max f;(x) is N-convex with

N =max[[[ N:, Y N,

due to

{reX: flx)<a} = él{x s filz) < al,

@eXif@za = Ule:hi)za)

The first right hand side set is the intersection of I unions of convex sets with N;
components in i-th union, and thus is the union of [, N; convex sets; the second
right hand side set is the union of I unions, N; components in i-th of them, of
convex sets, and thus is the union of ), N; convex sets.

Ezample 3.4. [Conditional quantile]. Let S = {s1 < s2 < ... < sy} CRand T
be a finite set, and let X' be a convex compact set in the space of nonvanishing
probability distributions on S x T. Given 7 € T, consider the conditional, by the
condition ¢ = 7, distribution ¢, [p] of s € S induced by a distribution p(-,-) € A"

_ p(:“» T) .
(ar[P)p Zivzlp(VaT)
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For a nonvanishing probability distribution ¢ on S and « € (0,1), let x4(q) be the
reqularized a-quantile of ¢ defined as follows: we pass from ¢ to the distribution
on [s1,sn]| by spreading uniformly the mass ¢,, 1 < v < N, over [s,, $y+1], and
assigning mass g to the point sy; xa(q) is the usual a-quantile of the resulting
distribution ¢:

Xa(q) = min {s € [s1,sn] : ¢{(s,sn]} < a}

The function x4 (¢-[p]) : ¥ — R turns out to be 2-convex, see Section 3.6.2.

3.2.3 Bisection Estimate: Construction

While the construction to be presented admits numerous refinements, we focus here
on its simplest version as follows.

3.2.8.1 Preliminaries

Upper and lower feasibility /infeasibility, sets Zf’z and Zf’g. Let a be a
real. We associate with a the collection of upper a-sets defined as follows: we look at
the sets X; NX%2,1<i<1I,1<v <N, and arrange the nonempty sets from this
family into a sequence Z“’— 1 <¢ <1, >, where I, > = 0 if all sets in the family
are empty; in the latter case, we call a upper- mfeaszble otherwme upper-feasible.
Similarly, we associate with a the collection of lower a-sets Z' = ,1<i< I, < by
arranging into a sequence all nonempty sets from the family X ﬂ XDS, and call
a lower-feasible or lower-infeasible depending on whether I, < is positive or zero.
Note that upper and lower a-sets are nonempty convex compact sets, and

X2 = {zeX:f(x)>a}= U 2Z"7,
1<i<I, >
T 3.22
PO {zreX: f(z)<a}= U qué' ( )
1<i<I, <

Right-side tests. Given a segment A = [a, b] of positive length with lower-feasible
a, we associate with this segment right-side test — a function TAIfr (w) taking values
red and blue, and risk oa , > 0 — as follows:

. if b is upper-infeasible, ’TK (-) = blue and O’A .= 0.

. if b is upper-feasible, the collections {A( )}z<Ib . (“red sets”), {A(Z] <)}j<1
(“blue sets”), are nonempty, and the test is given by the construction from Sec—
tion 2.5.1 as applied to these sets and the stationary K-repeated version of O in
the role of O, specifically,

o for 1 <i< I >,1<j<1I,<, we build the detectors

UA Z(ble wt
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with ¢i;a(w) given by

(Tija, sija) € Argminrezlp,zysezf,g n (fo, v/Pagr)(@)pas) (@)(dw))

dijaw) = 3 (pag,a)(W)/Dacs,;n) (W)
(3.23)
set

8 = [ \fPatn (©Paces) @) (3.24)
Q

and build the I, > x I, < matrix Ea , = [ef](A] 1i<n, 5
1<j<1, <

® o, is defined as the spectral norm of Ea .. We compute the Perron-Frobenius

Enx .
eigenvector [¢27; hAT] of the matrix [Eﬁ%}’ so that (see Section
Ar

2.5.1.2)
gt >0, A > 0,0a g7 = Ea b2,
0ahAT = BL g

Finally, we define the matrix-valued function

D (") = [¢fa@™) + I(h5") — In(g;™")]

Test TX,(w™) takes value red iff the matrix Da ;(w™) has a nonnegative row,
and takes value blue otherwise.

Given 0 > 0, 3 > 0, we call segment A = [a, b] d-good (right), if a is lower-feasible,
b>a, and oa, < J. We call a §-good (right) segment A = [a, b] sc-mazimal, if the
segment [a,b — 3] is not d-good (right).

Left-side tests. The “mirror” version of the above is as follows. Given a segment
A = [a,b] of positive length with upper-feasible b, we associate with this segment
left-side test — a function TAIfl(wK) taking values red and blue, and risk oa,; > 0 —
as follows:

1. if a is lower-infeasible, T\ (-) = red and oA, = 0.
2. if a is lower-feasible, we set T, = TE , oa1=o0a,.

Given § > 0, 5 > 0, we call segment A = [a,b] §-good (left), if b is upper-feasible,
b > a, and oa) < . We call a 0-good (left) segment A = [a,b] s>-mazimal, if the
segment [a + 3z,b] is not d-good (left).

Explanation: When a < b and a is lower-feasible, b is upper-feasible, so that the

sets
XS ={zeX: fx)<a}, X"Z ={zeX: f(x)>b}

are nonempty, the right-side and the left-side tests T§17 TAIfr are identical to each

other and coincide with the minimal risk test, built as explained in Section 2.5.1,

deciding, via stationary K-repeated observations, on the “color” of the distribution

P A(z) underlying observations — whether this color is blue (“blue” hypothesis stating

that z € X and f(z) < a, whence A(z) € | A(Zf’g))7 or red (“red” hypoth-
1<i<Ia <

esis, stating that € X and f(x) > b, whence A(z) € U A(Zf’z)). When a is

1<i<ly,>
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lower-feasible and b is not upper-feasible, the red one of the above two hypotheses
is empty, and the left-side test associated with [a, b], naturally, always accepts the
blue hypothesis; similarly, when a is lower-infeasible and b is upper-feasible, the
right-side test associated with [a, b] always accepts the red hypothesis.

A segment [a, b] with a < b is d-good (left), if the corresponding to the segment
“red” hypothesis is nonempty, and the left-hand side test ’TA@ associated with [a, b]
decides on the “red” and the “blue” hypotheses with risk < ¢, and similarly for
d-good (right) segment [a, b].

3.2.4 Building the Bisection estimate
3.2.4.1 Control parameters

The control parameters of our would-be Bisection estimate are

1. positive integer L — the maximum allowed number of bisection steps,
2. tolerances § € (0,1) and s > 0.

3.2.4.2 Bisection estimate: construction

The estimate of f(x) ( is the signal underlying our observations: w; ~ pa(y)) is
given by the following recurrence run on the observation @® = (@1, ...,@wx) which

we have at our disposal:

1. Initialization. We find a valid upper bound by on max,cx f(u) and valid lower
bound ag on min,ex f(u) and set Ag = [ag, by]. We assume w.l.o.g. that ag < by,
otherwise the estimation is trivial.

Note: f(a) € Ag.

2. Bisection Step ¢, 1 < ¢ < L. Given localizer Ap_1 = [ag—1,bp—1] With a—1 <

be_1, we act as follows:

a) We set ¢y = %[ag,l + bg—1]. If ¢ is not upper-feasible, we set Ay = [ay_1, ¢/]
and pass to 2e, and if ¢ is not lower-feasible, we set A, = [c¢, by—1] and pass
to 2e.

Note: In the latter two cases, Ay\Ay_; does not intersect with f(X); in par-
ticular, in these cases f(z) € A, provided that f(x) € Ay_;.

b) When ¢, is both upper- and lower-feasible, we check whether the segment
[ce, be—1] is d-good (right). If it is not the case, we terminate and claim that
f(z) € A := Ay_q, otherwise find vy, cp < vy < by_1, such that the segment
AJ®E = e, vg] is 6-good (right) s-maximal.

Note: In terms of the outline of our strategy presented in Section 3.2.1, ter-
mination when the segment [cg, by—1] is not §-good (right) corresponds to the
case when the current localizer is too small to allow for “no-man land” wide
enough to ensure low-risk decision on the blue and the red hypotheses.

Note: To find vy, we look one by one at the candidates with v§ = b1 — ks,
k = 0,1,... until arriving for the first time at segment [c,,vf] which is not
5-good (right), and take, as vy, the quantity v*~! (when v, indeed is sought,
we clearly have k > 1, so that our recipe for building v, is well-defined and
clearly meets the above requirements on vy).

c¢) Similarly, we check whether the segment [as_1,cs] is d-good (left). If it is
not the case, we terminate and claim that f(z) € A := A,_;, otherwise find
up, ap—1 < ug < c¢g, such that the segment Ay = [ug, co] is d-good (left)
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»-maximal.

Note: The rules for building uy are completely similar to those for vy.
d) We compute 74 (&%) and TX (@), If TL L (@%) = 7L (@F)
(“consensus” ), we set

[057 bg,1], TAIi r(@K) = red,
K-k
[ag—1,¢], TA,,, (@) =blue

Ag = [ag,bg] = { (325)

and pass to 2e. Otherwise (“disagreement”) we terminate and claim that
£(z) € A = [ur, ve].

e) When arriving at this rule, Ay is already built. When ¢ < L, we pass to step
£+ 1, otherwise we terminate with the claim that f(z) € A := Ap.

3. Output of the estimation procedure is the segment A built upon termination
and claimed to contain f(x), see rules 2b—2e; the midpoint of this segment is the
estimate of f(x) yielded by our procedure.

3.2.5 Bisection estimate: Main result

Our main result on Bisection is as follows:

Proposition 3.5. Consider the situation described in the beginning of Section
3.2.2, and let € € (0,1/2) be given. Then

(i) [reliability of Bisection] For every positive integer L and every k > 0,
Bisection with control parameters L,

=5
K is (1 — €)-reliable: for every x € X, the ps()-probability of the event
flx)e A

(A is the output of Bisection as defined above) is at least 1 —e.
(i) [near-optimality] Let p > 0 and positive integer K be such that in the nature
there exists a (p, €)-reliable estimate f(-) of f(z), v € X :=J;<; X, via stationary

K -repeated observation w’ with wy ~ PA@), 1 <k < K. Given p > 2p, the
Bisection estimate utilizing stationary K -repeated observations, with

2In(2LN1/e) _

K=l In(1/€) — In(4(1 — e))KL (3.26)

the control parameters of the estimate being

L =|log, (bo ;ﬁo) 6= o7, x=p—2p, (3.27)

is (p, €)-reliable. Not that K is only “slightly larger” than K.
For proof, see Section 3.6.1.
Note that the running time K of Bisection estimate as given by (3.26) is just by

(at most) logarithmic in N, I, L, 1/e factor larger than K; note also that L is just
logarithmic in 1/p. Assume, e.g., that for some v > 0 “in the nature” there exist
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(€7, €) reliable estimates, parameterized by € € (0,1/2), with K = K(e). Bisection
with the volume of observation and control parameters given by (3.26) (3.27), where
p=3p =3 and K = K(e), is (3¢”, ¢)-reliable and requires K = K (¢)-repeated
observations with lim._, ;oK (€)/K (¢) < 2.

3.2.6 Illustration

To illustrate bisection-based estimation of N-convex functional, consider the situa-
tion as follows*>. There are M devices (“receivers”) recording a signal u known to
belong to a given convex compact and nonempty set U C R'™; the output of i-th
receiver is the vector

yi = Aju+ 0§ € R™ [5 ~ N(O’ Im)]

where A; are given m X m matrices; you may think about M allowed positions of
a single receiver, and on y; — as on the output of receiver when the latter is in
position i. Our observation w is one of the vectors y;, 1 < i < M with unknown to
us indezx i (“we observe a noisy record of signal, but do not know the position in
which this record was taken”). Given w, we want to recover a given linear function
g(z) = eTu of the signal.

The problem can be modeled as follows. Consider the sets

X,={z=[z". ;2 e RM" =R"x .. xR" :29 =0,j #i;2' € U}
—_—
M

along with the linear mapping
M
Alzts . 2M) = ZAi:c’ :RMn  R™
i=1

and linear function

f(zts . xM)) =T in :RM" L R,

and let X be a convex compact set in RM" containing all the sets X;, 1 < i <
m. Observe that the problem we are interested in is nothing but the problem of
recovering f(z) via observation

w=Az+ 0§, £~N(0, In), (3.28)

where the unknown signal x is known to belong to the union Uf\il X; of known
convex compact sets X;. As a result,our problem can be solved via the machinery
we have developed.

Numerical illustration. In the numerical results to be reported, we used n = 128,
m = 64 and M = 2. The data was generated as follows:

e Theset U C R'?® of candidate signals was comprised by restrictions onto equidis-
tant (n = 128)-point grid in [0, 1] of twice differentiable functions h(t) of continu-

450ur local goal is to illustrate a mathematical construction rather than to work out a partic-
ular application; the reader is welcome to invent a plausible “covering story” for this construction.
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[ Characteristic H min [ median [ mean [ max H
error bound 0.008 0.015 0.014 0.015
actual error 0.001 0.002 0.002 0.005
# of Bisection steps 5 7.00 6.60 8

Table 3.1: Experiments with Bisection, data over 10 experiments, ¢ = 0.01. In
the table, “error bound” is half-length of final localizer, which is an 0.99-reliable
upper bound on the estimation error, and “actual error” is the actual estimation
error.

ous argument ¢ € [0, 1] satisfying the relations |h(0)] < 1, [h'(0)| < 1, |n"(t)] < 1,
0 <t < 1, which for the discretized signal v = [h(0); h(1/n); h(2/n);...;h(1 —
1/n)] translates to the system of convex constraints

lur] < 1,mfug —ug| <1, n?uipr — 2u; +ui| <1,2<i<n—1.

o We were interested to recover the discretized counterpart of the integral fol h(t)dt,
specifically, dealt with e = €, eTu = « >, u;. The normalizing constant o was
selected to ensure max,cy €' u = 1, min,ey 7 v = —1, allowing to run Bisection
with Ay = [—1;1].

e We generated A as (m = 64) x (n = 128) matrix with singular values o; = =1,
1 < i < m, with 0 selected from the requirement ¢, = 0.1. The system of left
singular vectors of A; was obtained from the system of basic orths in R™ by
random rotation.

Matrix A, was selected as Ay = A1S, where S was “reflection w.r.t. the axis &”,
that is,
Se = e & Sh = —h whenever h is orthogonal to e. (3.29)

Signals u underlying the observations were selected in U at random.

e The reliability 1 — e of our estimate was set to 0.99, and the maximal allowed
number L of Bisection steps was set to 8. We used single observation (3.28) (i.e.,
used K =1 in our general scheme) with ¢ set to 0.01.

The results of our experiments are presented in Table 3.1. Note that in the problem
we are considering, there exists an intrinsic obstacle for high accuracy estimation
even in the case of noiseless observations and invertible matrices A;, i = 1,2 (recall
that we are in the case of M = 2). Indeed, assume that there exist u € U, v’ € U
such that Aju = Asu’ and eTu # eTu/. In this case, when the signal is « and the
(noiseless) observation is Aju, the true quantity to be estimated is e?u, and when
the signal is v’ and the observation is Asu/, the true quantity to be estimated is
eTu' # eTu. Since we do not know which of the matrices, A; or A,, underlies the
observation and Aju = Asu/, there is no way to distinguish between the two cases
we have described, implying that the quantity

1 T 1
= = — s Aju = At 3.30
p u{gagU{Qle (u—u')|: Au 2U} (3.30)
is a lower bound on the worst-case, over signals from U, error of a reliable recovery

of eTu, independently of how small is the noise. In the reported experiments, we
used A2 = A;S with S linked to e = &, see (3.29); with this selection of S, e =&
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[ Characteristic [[ min | median | mean [ max ||
error bound 0.057 0.457 0.441 1.000
actual error 0.001 0.297 0.350 1.000
# of Bisection steps 1 1.00 2.20 5

“Difficult” signals, data over 10 experiments

13 0.0223 | 0.0281 0.1542 0.1701 0.2130 | 0.2482 | 0.2503 | 0.4999 0.6046 | 0.9238

sgiﬁ'fd 0.0569 | 0.0625 | 0.2188 | 0.2393 | 0.4063 | 0.5078 | 0.5156 | 0.6250 | 0.7734 | 1.0000

Error bound vs. p, experiments sorted according to the values of p

[ Characteristic [[ min | median | mean [ max ||
error bound 0.016 0.274 0.348 1.000
actual error 0.005 0.066 0.127 0.556

# of Bisection steps 1 2.00 2.80 7

Random signals, data over 10 experiments

P 0.0100 0.0853 0.1768 0.2431 0.2940 0.3336 0.3365 0.5535 0.6300 0.7616
error
bound

0.0156 | 0.1816 | 0.3762 0.4375 0.6016 | 0.0293 | 0.0313 | 0.6875 0.1250 1.0000

Error bound vs. p, experiments sorted according to the values of p

Table 3.2: Experiments with randomly selected linear form, o = 0.01

and A, were Ay invertible, the lower bound p would be just trivial — zero. In fact,
our A; was not invertible, resulting in a positive p; computation shows, however,
that with our data, this positive p is negligibly small (about 2.0e-5). When we
destroy the link between e and S, the estimation problem can become intrinsically
more difficult, and the performance of our estimation procedure can deteriorate.
Let us look what happens when we keep A; and Ay = A1 S exactly as they are, but
replace the linear form é”7u to be estimated with e”u, e being randomly selected e
46 The corresponding data are presented in Table 3.2. The data in the top part
of Table relate to the case of “difficult” signals u — those participating in forming
the lower bound (3.30) on the recovery error, while the data in the bottom part
of Table relate to randomly selected signals 7. We see that when recovering the
value of a randomly selected linear form, the error bounds indeed deteriorate, as
compared to those in Table 3.1. We see also that the resulting error bounds are in
reasonably good agreement with the lower bound p, illustrating the basic property
of nearly optimal estimates: the guaranteed performance of an estimate can be bad
or good, but it always is nearly as good as is possible under the circumstances. As
about actual estimation errors, they in some experiments were essentially less than
the error bounds, especially when random signals were used. This phenomenon, of
course, should not be overestimated; remember that even a broken clock twice a
day shows the correct time.

46ip the experiments to be reported, e was selected as follows: we start with a random unit
vector drawn from the uniform distribution on the unit sphere in R™ and then normalize it to
make max, ey el u — mingey el u = 2.

4Tspecifically, to generate a signal u, we drew a point @ at random, from the uniform distri-
bution on the sphere of radius 10/n, and took as u the || - ||2-closest to @ point of U.
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3.2.7 Estimating N-convex functions: an alternative

Observe that the problem of estimating an N-convex function on the union of
convex sets posed in Section 3.2.2 can be processed not only by Bisection. An
alternative is as follows. In the notation from Section 3.2.2, we start with computing
the range A of function f on the set X = (J Xj, that is, we compute the quantities

i<I
f=minf(z), f=maxf(z)
and set A = [f, f]. We assume that this segment is not a singleton, otherwise

estimating f is trivial. Further, we split A in a number L of consecutive bins —
segments Ay of equal length 67, = (f— f)/L. oz will be the accuracy of our estimate;
given a desired accuracy, we can select L accordingly. We now consider the sets

Xyp={zeX;: flz) eA},1<i<I,1<(<L.

Since f is N-convex, every one of these sets is the union of M;, < N? convex
compact sets Xp;, 1 < j < M. Thus, we get at our disposal a collection of
at most ILN? convex compact sets; let us eliminate from this collection empty
sets and arrange the nonempty ones into a sequence Y1, ..., Yas, M < ILN2. Note
that (J,«,, Ys = X, so that the goal posed in Section 3.2.2 can be reformulated as
follows:

M

For some unknown x known to belong to X = J Y5, we have at our dis-
s=1

posal observation w® = (w1, ...,wg) with i.i.d. w; ~ pa((-); our goal is to

estimate from this observation the quantity f(z).

The sets Yy give rise to M hypotheses Hy, ..., Hy; on the distribution of our obser-
vations wy, 1 <t < K; according to Hy, wy ~ pa(g)(-) with some z € Y.

Let us define a closeness C on the set of our M hypotheses as follows. Given
s < M, the set Yy is some Xj(4)p(s);i(s); We say that two hypotheses, Hs and Hy, are
C-close, if the segments A,y and Ay intersect. Observe that when H, and Hy
are not C-close, the convex compact sets Ys, Y. do not intersect, since the values of
f on Y, belong to Ay, the values of f on Y belong to Ay, and the segments
Aygsy) and Ay(gry do not intersect.

Now let us apply to the hypotheses Hq, ..., Hy; our machinery for testing up to
closeness C, see Section 2.5.2. Assuming that whenever H,; and Hg: are not C-close,
the risks €4y defined in Section 2.5.2.2 are < 1 8 we, given tolerance € € (0, 1), can
find K = K(¢) such that stationary K-repeated observation w’ allows to decide
(1—e¢)-reliably on Hy, ..., Hys up to closeness C. As applied to w’, the corresponding
test 75 will accept some (perhaps, none) of the hypotheses, let the indexes of the
accepted hypotheses form set S = S(w’). We convert S into an estimate f(wK ) of
f(x), x € X =J < Ys being the signal underlying our observation, as follows:

e when S is empty, the estimate is, say (f + £)/2;

48Tn our standard simple o.s.’s, this is the case whenever for s,s’ in question the images of
Ys and Y,/ under the mapping = — A(z) do not intersect; this definitely is the case when A(-) is
an embedding, since for our s, s’, Y5 and Y, do not intersect.
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e when S is nonempty, we take the union A(S) of the segments Ay, s € S, and
our estimate is the average of the largest and the smallest elements of A(S).

It is immediately seen (check it!) that if the signal x underlying our stationary K-
repeated observation w® belongs to some Y, , so that the hypothesis H,, is true,
and the outcome S of T contains s, and is such that for all s € S H, and H,,

are C-close to each other, we have |f(z) — f(w®)| < 6.. Note that since C-risk of
TH is < ¢, the pa(,)-probability to get |f(z) — f(w™)| < 6L is at least 1 —e.

3.2.7.1 Numerical illustration

Our illustration deals with the situation when I = 1, X = X is a convex compact
set, and f(z) is fractional-linear: f(z) = a®x/c?x with positive on X denominator.
Specifically, assume we are given noisy measurements of voltages V; at some nodes
¢ and currents I;; in some arcs (4, j) of an electric circuit, and want to recover the
resistance of a particular arc (i, 7):

In our experiment, we work with the data as follows:

A input node (# 1)

=& output node (# 8)

xr = [Voltages at nodes; currents in arcs}
Az = [observable voltages; observable currents]
] Currents are measured in blue arcs only
. Voltages are measured in magenta nodes only
. We want to recover resistance of red arc

conservation of current, except for nodes ##1,8

zero voltage at node #1, nonnegative currents

current in red arc at least 1, total of currents at most 33
Ohm Law, resistances of arcs between 1 and 10

. X :

We are in the situation N = 1, I = 1, implying M = L. When using L = 8, the
projections of the sets Yy, 1 < s < L = 8 onto the 2D plane of variables (Vj Vi, I:5)

771
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are the “stripes” shown below:

Ve — Ve
ki i

The range of the unknown resistance turns out to be A = [1,10].

In our experiment we worked with ¢ = 0.01. Instead of looking for K such
that K-repeated observation allows to recover 0.99-reliably the resistance in the
arc of interest within accuracy |A|/L, we looked for the largest observation noise
o allowing to achieve the desired recovery with single observation. The results for
L = 8,16, 32 are as follows

L 1 8 [ 16 [ 32 ]
oL 9/8~1.13 | 9/16 ~ 0.56 | 9/32 ~ 0.28
o 0.024 0.010 0.005
Copt /0 < 1.31 1.31 1.33
o 0.031 0.013 0.006
Copt /0 < 1.01 1.06 1.08

In the table:

® Oopt is the largest o for which “in the nature” there exists a test deciding on
Hy, ..., Hy, with C-risk < 0.01;

e Red data: Risks €44 of pairwise tests are bounded via risks of optimal detectors,
C-risk of T is bounded by

L 1,
[ess’Xss/]&s/:l - y Xss! = 0
k) b

see Proposition 2.33;
e Brown data: Risks e,y of pairwise tests are bounded via error function, C-risk of
T is bounded by
max Z €ss’

s’:(s,s")¢C

(check that in the case of Gaussian o.s., this indeed is a legitimate risk bound).
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Figure 3.2: A circuit (9 nodes, 16 arcs). Red: arc of interest; arcs with
measured currents and nodes with measured voltages.

3.2.7.2 Estimating dissipated power

The alternative approach to estimating N-convex functions proposed in Section
3.2.7 can be combined with quadratic lifting from Section 2.9 to yield, under favor-
able circumstances, estimates of quadratic and quadratic fractional functions. We
are about to consider an instructive example of this sort. Figure 3.2 represent a DC
electrical circuit. We have access to repeated noisy measurements of currents in
green arcs and voltages at green nodes, with the voltage of the ground node equal
to 0. The arcs are somehow oriented; this orientation, however, is of no relevance in
our context and therefore is not displayed. Our goal is to use these observations to
estimate the power dissipated in a given “arc of interest.” Our a priori information
is as follows:

e the (unknown) resistances of arcs are known to belong to a given range [r, R],
with 0 <r < R < o0;
e the currents and the voltages are linked by Kirchhoff Laws:

— at every node, the sum of currents in the outgoing arcs is equal to the sum
of currents in the incoming arcs plus the external current at the node.
In our circuit, there are just two external currents, one at the ground node
and one at the input node marked by dashed line.

— the voltages and the currents are linked by Ohm’s Law: for every (inner)
arc vy, we have
Lyry = Vi) = Viey
where I, is the current in the arc, 7., is the arc’s resistance, V; is the voltage
at node s, and i(7y), j(vy) are the initial and the final nodes linked by arc ~;
e magnitudes of all currents and voltages are bounded by 1.
We assume that the measurements of observable currents and voltages are affected

by zero mean Gaussian noise with scalar covariance matrix 621, with unknown 6
from a given range [0, 7].
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Processing the problem. We specify the “signal” underlying our observation as
the collection u of the voltages at our 9 nodes and currents I, in our 16 (inner) arcs
7, augmented by external current I, at the input node (so that —I, is the external
current at the ground node), so that our single-time observation is

¢ = Au+ 0¢, (3.31)

where A extracts from u four entries, & ~ N(0,14), and 6 € [g,7]. Our a priori
information on u states that u belongs to the compact set U given by the quadratic
constraints, namely, as follows:

I2 <1,V <1y, 0" JT Ju=0
Wit = Vil?/ R = Iy [Vj5) = Vi) <0 } Vv (a)
U=qu={lLL,Vi}: ©L[Vjy— Vi(’y)}; [‘;j([w‘)/_ %(”‘)/]Q/G < 8 )
rly = 1 Vie) — Vil =
L[Vie = Vil = RIZ <0 } o
(3.32)
where Ju = 0 expresses the first Kirchhoft’s Law, and quadratic constraints (a), (b)
account for the Ohm’s Law in the situation when we do not know the resistances,
just the range [r, R] of them. Note that the groups (a), (b) of constraints in (3.32)
are “logical consequences” of each other, and thus one of groups seems to be re-
dundant. However, on a closest inspection, valid on U quadratic inequalities are
indeed redundant in our context, that is, do not tighten the outer approximation
Z of Z[U], only when these inequalities can be obtained from the inequalities we
do include into the description of Z “in a linear fashion” — by taking weighted sum
with nonnegative coefficients; this is not how (b) is obtained from (a). As a result,
to get a smaller Z, it makes sense to keep both (a) and (b).
The dissipated power we are interested to estimate is the quadratic function

flu) = L. Vi, = Vil = [w 1] Glus 1]

where 7, = (i4,j«) is the arc of interest, and G € S"*!, n = dim u, is a properly
built matrix.
In order to build an estimate, we “lift quadratically” the observations:

(= w=(¢¢Ch)

and pass from the domain U of actual signals to the outer approximation Z of the
quadratic lifting of U:

Z = {ZeS"":Z=0,Zn11m+1=1,Tr(Qs2) <5, 1 <5< S}
> A{wl)w )T rueV},

where the matrix Q, € S"! represents the left hand side F,(u) of s-th quadratic
constraint participating in the description (3.32) of U: Fy(u) = [u; 1] Q[u; 1], and
s is the right hand side of s-th constraint.

We process the problem similarly to what was done in Section 3.2.7.1, where
our goal was to estimate a fractional-linear function. Specifically,

1. We compute the range of f on U; the smallest value f of f on U clearly is zero,
and an upper bound on the maximum of f(u) over u € U, is the optimal value
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in the convex optimization problem

f= max Tr(GZ)

2. Given a positive integer L, we split the range [f, f] into L segments A, =
[a¢_1,a¢] of equal length 6, = (f — f)/L and define convex compact sets

Zr={Z€Z:ap-1 <Tr(GZ) <ay}, 1 <l <L,

so that
uwel, f(u) € A= [u;1][u;1]7 € 24, 1 <L < L;

3. We specify L quadratically constrained hypotheses Hy, ..., Hy, on the distribution
of observation (3.31), with H, stating that ¢ ~ N(Au,6%I;) with some u € U
satisfying f(u) € Ay (so that [u;1][u;1]T € Z;), and @ belongs to the above
segment [o,7]].

We equip our hypotheses with closeness relation C, specifically, say that Hy, Hy
are C-close if and only if the segments A, and Ay intersect.

4. We use Proposition 2.46.ii to build quadratic in  detectors ¢ for the families
of distributions obeying H, and H,s, respectively, along with upper bounds €y
on the risks of these detectors, and then use the machinery from Section 2.5.2
to find the smallest K and a test TCK , based on stationary K-repeated version
of observation (3.31), capable to decide on Hi, ..., H;, with C-risk < €, where
e € (0,1) is a given tolerance.

Finally, given stationary K-repeated observation (3.31), we apply to it test T,
look at the hypotheses, if any, accepted by the test, and build the union A of
the corresponding segments A,. If A = (), we estimate f(u) by the midpoint of

the range [f, f] of power, otherwise the estimate is the mean of the largest and

the smallest points in A. It is easily seen (check it!) that for this estimate, the
probability for the estimation error to be > §; is <.

Numerical results we are about to report deal with the circuit presented on
Figure 3.2; we used @ = 0.01, ¢ = 5/v2, [r,R] = [1,2], ¢ = 0.01, and L = 8. The
numerical results are as follows. The range [f, f] of the dissipated power turned
out to be [0,0.821], so that the estimate we have built with reliability 0.99 recovers
the dissipated power within accuracy 0.103. The resulting value of K was K = 95.

In a series of 500 simulations, the actual recovery error all the time was less

than the bound 0.103, and the average error was as small as 0.041.

3.3 ESTIMATING LINEAR FORMS

We are about to demonstrate that the techniques developed in Section 2.8 can
be applied to building estimates of linear and quadratic forms of the parameters
of observed distributions. As compared to the machinery of Section 3.2, our new
approach has somehow restricted scope: we cannot estimate anymore general N-
convex functions and/or handle domains which are unions of convex sets; now we
need the function to be linear (perhaps, after quadratic lifting of observations) and
the domain to be convex. As a compensation, the new approach, when applicable,
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seems to be cheaper computationally: the estimate is yielded by solving a single
convex problem, while the techniques developed so far require solving several (per-
haps even few tens) of problems of similar structure and complexity. In this Section,
we focus on estimating linear forms; estimating quadratic forms will be our subject
in Section 3.4.

3.3.1 Situation and goal

Consider the situation as follows: given are Euclidean spaces () = &g, &y, Ex
along with

e regular data H C Eg, M C Ep, @(+5) : H X M — R, with 0 € int H,

e a nonempty convex compact set X C Ex,

e an affine mapping x — A(x) : Ex — &y such that A(X) C M,

e a continuous convex calibrating function v(z) : X - R

e a vector g € Ex and a constant ¢ specifying the linear form G(z) = (g,z) + ¢ :
Ex - R 49,

e a tolerance € € (0,1).

These data specify, in particular, the family
P =S[H, M, D]

of probability distributions on 2 = £y, see Section 2.8.1.1. Given random observa-
tion

w~ P(") (3.33)
where P € P is such that

VheH:In ( /g ' e<h*“’>P(dw)) < ®(h; Ax)) (3.34)

for some z € X (that is, A(x) is a parameter, as defined in Section 2.8.1.1, of
distribution P), we want to recover the quantity G(x).

e-risk. Given p > 0, we call an estimate g(-) : €y — R (p, €,v(+))-accurate, if for
all pairs x € X, P € P satisfying (3.34) it holds

Proby~p {|g(w) — G(x)| > p+v(z)} <e. (3.35)

If p. is the infimum of those p for which estimate g is (p, €, v(-))-accurate, then
clearly g is (p«, €, v(+))-accurate; we shall call p, the e-risk of the estimate g taken
w.r.t. the data G(-), X, v(-) and (A, H, M, D):

RiSkg(E(')‘G,X,’U,.A,H,M, q)) = min p: PrObW"*P{w : |§(w) - G(‘T)| > p+ U(ZE)} S €

PePzeX
V(J), P) : { In (f ehT“’P(dUJ)) < (I)(h,; _A(x))Vh cH }
(3.36)

from now on, (u,v) denotes the inner product of vectors u,v belonging to a Euclidean
space; what is this space, it always will be clear from the context.
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When G, X, v, A, H, M, ® are clear from the context, we shorten
RISké(a()‘Ga Xv v, Aa Ha Ma (I))

to Riske(g()).

Given the data listed in the beginning of this section, we are about to build,
in a computationally efficient fashion, an affine estimate g(w) = (h.,w) + s along
with p. such that the estimate is (ps, €, v(+))-accurate.

3.3.2 Construction & Main results

Let us set
HT ={(h,a):h€Ex,a>0,h/acH}

so that HT is a nonempty convex set in £ x Ry, and let

(a) Ui(h,a) = jlelg [a®(h/a, A(z)) — G(z) —v(z)] : HT — R,
(6) ¥-(hB) = sup[Be(=h/B,A@)) +Clx) ~v(@)] : H — R, (3.37)

so that W4 are convex real-valued functions on H* (recall that ® is convex-concave
and continuous on H x M, while A(X) is a compact subset of M).
Our starting point is pretty simple:

Proposition 3.6. Given e € (0,1), let h, a, 3, 5, p be a feasible solution to the
system of convex constraints

(a1) (h,a) € HT

(a2)  (h,B) € HT ‘
(bf) aln(e/2) > W (h,a)—p+x (3.38)
(b2) Bln(e/2) > W_(h,B)—p— s

in variables h, «, B, p, ». Setting

we get an estimate with e-risk at most p.

Proof. Let ¢ € (0,1), h, &, 3, , p satisfy the premise of Proposition, and let
x € X, P satisty (3.34). We have

Proby~p{g(w) > G(x) + p+ v(x)} = Probyp { @(’i@ > G(w)”;’_”“(@

= Probu.p{jw) > G(z) + 5+ v(z)} < [ fe<’_““>/5‘P(dw)} o~ Sleltporte(e)
< 0®(h/a,A()) o— Flte_ztule)
= aln(Proby~p{g(w) > G(x) 4+ p +v(z)})
<ad(h/a, A(x)) — G(x) —p—v(z) + >
< W, (h,a) — p+ 3 [by definition of ¥ and due to z € X]
< aln(e/2) by (by)
= Proby~p{g(w) > G(z) +p+v(z)} <¢/2,
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and similarly

Proby,.p{g(w (hw) o —Ga)+p+5tv(z)

)< G
= Probu.p{jw) < G(z) — p—v(z)} < [ [ e‘<’3’w>/5P(dw)} e
< e2(~h/B.A(®) o -

= BIn (Probu,.p{j(w) < G(z) - p — v(x)})
< PO(=h/B, Alx)) + G(x) — p — 7 — v(x)

_ —G(@)+p+xtu(e)
B

Corollary 3.7. In the situation described in Section 3.3.1, let ® satisfy the relation

D(0;p) >0V e M. (3.39)
Then
U (h) = info{U,(h,a)+aln(2/e):a>0,(ha)cH}
T supaex aso e [0®(h/a, A)) — G(z) - v(z) + aln(2/e)],
U_(h) = inf, {¥_(h,a)+aln(2/e):a>0,(ha)ecH}
= Supex infoso (nayens [0@(—h/a, A(z)) + G(z) — v(z) + aln(2/6)].

(3.40)
and functions Wy : Eg — R are convex. Furthermore, let h, 3, p be a feasible
solution to the system of convex constraints

~

U (h)y<p—s, U_(h)<p+x (3.41)

in variables h, p, . Then, setting

) = (i) + %
we get an estimate of G(x), x € X, with e-risk at most U(h):
Risk(§(-)|G, X, v, A, H, M, ®) < U(h). (3.42)

Relation (8.41) (and thus — the risk bound (3.42)) clearly holds true when h is a
candidate solution to the convexr optimization problem

Opt = min {\I:(h) = % [\m(h) + qf,(h)} } : (3.43)

p=U(h), and
b (h)— B4(h)
5 .
As a result, properly selecting h, we can make (an upper bound on) the e-risk of

estimate g(+) arbitrarily close to Opt, and equal to Opt when optimization problem

(3.43) is solvable.

w =
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Proof. Let us first verify the equalities in (3.40). The function
O (h,a;2) = a®(h/a, A(z)) — G(z) —v(z) + aln(2/e) : HT x X = R

is convex-concave and continuous, and X is compact, whence by Sion-Kakutani
Theorem

U (h) = info{Ui(h,a)+aln(2/e):a>0,(h,a)ecH}

= infoz>0,(h,a)€7-£+ maxgex 04 (h, ;)

SUp,¢e v infoso, (hayert O+ (h, ;)

= Supex infaso (nayen+ [@®(h/a, A(z)) — G(z) — v(z) + aln(2/€)],

as required in (3.40.a). As we know, ¥ (h, ) is real-valued continuous function on

H™, so that \/I)+ is convex on &y, provided that the function is real-valued. Now,
let Z € X, and let e be a subgradient of ¢(h) = ®(h; A(z)) taken at h = 0. For
h € €y and all a > 0 such that (h,a) € HT we have

a®(h/a; A(z)) — G(Z) - v(Z) + aln(2/€)
<[ (> (()_))+ e(’%)/@ﬂ G(2) — v(Z) + aln(2/e)

(we have used (3.39)), and therefore ¥ (h, @) is bounded below on the set {a > 0 :
h/a € H}; in addition, this set is nonempty, since H contains a neighbourhood of
the origin. Thus, \T/Jr is real-valued and convex on Ep. Verification of (3.40.b) and
of the fact that W_ (h) is real-valued convex function on g is completely similar.

Now, given a feasible solution (h, 7, p) to (3.41), let us select somehow p > p.
Taking into account the definition of \I/i, we can find & and 3 such that

(
(

implying that the collection (h, @, 3, , p) is a feasible solution to (3.38). Invoking

Proposition 3.6, we get

lI/-i-(h7 Oé)

VIV IV

h,a) € HT & W (h,a)+ aln(2/e) < p— z,
h,B) € HT & W_(h,B) + BIn(2/e) < p+ 5

Prob,p {w: |gw) — G(z)| > p+v(x)} <e

for all (z € X, P € P) satistying (3.34). Since p can be selected arbitrarily close to
0, g(+) indeed is a (p, €, v(+))-accurate estimate. O

3.3.3 Estimation from repeated observations

Assume that in the situation described in section 3.3.1 we have access to K observa-
tions wiy, ..., wx sampled, independently of each other, from a probability distribu-
tion P, and are allowed to build our estimate based on these K observations rather
than on a single observation. We can immediately reduce this new situation to the
previous one, just by redefining the data. Specifically, given initial data H C &y,
MCEy, () : HXM = R, X C X CEx, A(-), G(x) = g'zv+c, see section 3.3.1
and a positive integer K, let us update part of the data, specifically, replace H C Ex
with HE == H x ... x H C EE = €y x ... x Eg and replace ®(-,-) : H x M — R
—_—— —_———
K K
with ®5 (WK = (hy, .., hie); p) = o5, ®(ha; p) : HE x M — R. Tt is immediately
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seen that the updated data satisfy all requirements imposed on the data in section
3.3.1, and that whenever a Borel probability distribution P on £4 and z € X are
linked by (3.34), the distribution PX of K-element i.i.d. sample w® = (wy,...,wx)
drawn from P and x are linked by the relation

VhE = (hl,...,hK) e HE
In (fgke w >PK(dwK))

z In ;g Je., e<h i) dw,)) (3.44)

IN

Applying to our new data the construction from section 3.3.2, we arrive at “repeated
observations” versions of Proposition 3.6 and Corollary 3.7. Note that the result-
ing convex constraints/objectives are symmetric w.r.t. permutations functions of
the components hq, ..., hx of h  implying that we lose nothing when restricting
ourselves with collections h® with equal to each other components; it is convenient
to denote the common value of these components h/K. With these observations,
Proposition 3.6 and Corollary 3.7 become the statements as follows (we use the
assumptions and the notation from the previous sections):

Proposition 3.8. Given € € (0,1) and positive integer K, let

(@) ¥y(h,a) = sup[a®(h/a, Az)) — G(z)—v(z)]: HT = R,
reX
(b) W_(h,8) = sup[BP(—h/B, A(z))+G(z)—v(z)]: HT = R,
reX
and let h, &, 3, %, p be a feasible solution to the system of convex constraints

e Ht
€ Ht
> Uy(h,a)—p+x
> \ij(haﬂ)*pf%

(a1)
(az) (h, B
(b1)
(b2)

2

(3.45)

in variables h, o, B, p, ». Setting

K
N - 1 _
G = (h, = > wi) + 7,
i=1
we get an estimate of G(x) via independent K -repeated observations
wi~Pi=1,.,K

9

with e-risk on X mnot exceeding p, meaning that whenever x € X and a Borel
probability distribution P on Ey are linked by (3.34), one has
Prob,x . px {wK : |ZJ\(OJK) —G(z)|>p+ U(l’)} <e. (3.46)

Corollary 3.9. In the situation described in the beginning of section 3.3.1, let ®@
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satisfy the relation (3.39), and let a positive integer K be given. Then

Uy(h) = iI;f {W,(h,a) + K 'aln(2/e) : a >0, (h,a) € H'}

= :gga>0‘(g’1‘£>eﬂ+ [a®(h/a, A(z)) — G(z) — v(z) + K 'aIn(2/e)], (a)

U_(h) = info{U_(h,a)+ K ‘'aln(2/e):a>0,(ha)ecH"}

= sup inf [a®(—h/a, A(z)) + G(z) — v(z) + K 'aln(2/€)] . (b)
zeX a>0,(h,a)eM+
(3.47)

and functions \T/i : &y — R are convex. Furthermore, let h, », p be a feasible
solution to the system of convex constraints

~ ~

Uy(h)<p—3, V_(h) <p+x (3.48)

in variables h, p, ». Then, setting
LS
G = (h, = z; wi) + 7,
i—

we get an estimate of G(x), x € X, with e-risk at most \T/(i?) meaning that whenever
x € X and a Borel probability distribution P on Ey are linked by (3.84), relation
(8.46) holds true.

Relation (3.48) clearly holds true when h is a candidate solution to the convex
optimization problem

Opt = min {@(h) = % [\fq(h) + @,(h)} } , (3.49)

p=U(h) and
=

As a result, properly selecting h, we can make (an upper bound on) the e-risk of
estimate g(-) arbitrarily close to Opt, and equal to Opt when optimization problem
(3.49) is solvable.

From now on, if otherwise is not explicitly stated, we deal with K-repeated
observations; to get back to single-observation case, it suffices to set K = 1.

3.3.4 Application: Estimating linear form of sub-Gaussianity
parameters

Consider the simplest case of the situation from sections 3.3.1, 3.3.3, where

e H=Eg =R M=Ey;=R*xS%, ®(h;u, M) =hTp+1h"Mh: R? x (R? x
S?) — R, so that S[H, M, ®] is the family of all sub-Gaussian distributions on
RY;

X =X C £x = R™ is a nonempty convex compact set, and

A(z) = (Az+a, M(z)), where A is d X n, matrix, and M (x) is affinely depending
on x symmetric d X d matrix such that M (z) is = 0 when z € X,

v(z) is a convex continuous function on X,

G(z) is an affine function on £x.
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In the case in question (3.39) clearly takes place, and the left hand sides in the
constraints (3.48) are

Uy(h) = :gg olgfo {h"[Az + a] + =h"M(2)h + K 'aIn(2/e) — G(z) — v(z)}
= max {\/21«1 n(2/¢) AT M ()R] + hT[Az + a] — G(z) — U(x)} ,
T_(h) = sug ;I;fo {—h"[Az +a] + AT M (2)h + K 'aln(2/€) + G(z) — v(z)}

= ‘;16%’(‘{\/2[{_1 In(2/€)[hT M (x)h] — KT [Az + a] + G(z) — v(:c)} .

Thus, system (3.48) reads

a’h + max {\/QK*1 In(2/€)[hT M (x)h] + hT Ax — G(z) — v(x)} < p—o,
—a"h + max [\/QK* n(2/e) AT M (2)h] — hT Az + G(z) — u(x)] < pta

We arrive at the following version of Corollary 3.9:

Proposition 3.10. In the situation described in the beginning of section 3.3.4,
given € € (0,1), let h be a feasible solution to the convex optimization problem

Opt = min \/I\’(h),

heRA \i+(h)
T max [\/QK*1 In(2/€)[WT M (z)h] + hf Az — G(x) — U(?E)] +a"h
(h):= 2 { +max {\/21«1 In(2/€)[hT M (y)h] — " Ay + G(y) — v(y)} —a"h } }
U_(h)
(3.50)
Then, setting )
=5 [0 () - )], 5 =B, (3.51)

the affine estimate
| XK
9w = I Z h'w; + 5
i=1
has e-risk, taken w.r.t. the data listed in the beginning of this section, at most p.

It is immediately seen that optimization problem (3.50) is solvable, provided

that
() Ker(M(x)) = {0},
rzeX

and an optimal solution h, to the problem, taken along with

= 1 [xp,(h*) - \Iq(h*)} , (3.52)

yields the affine estimate
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with e-risk, taken w.r.t. the data listed in the beginning of this section, at most
Opt.

8.8.4.1 Consistency

Assuming v(z) = 0, we can easily answer the natural question “when the proposed
estimation scheme is consistent”, meaning that for every € € (0,1), it allows to
achieve arbitrarily small e-risk, provided that K is large enough. Specifically, de-
noting by g7z the linear part of G(x): G(z) = g7z + ¢, from Proposition 3.10 it
is immediately seen that a sufficient condition for consistency is the existence of
h € R? such that hT Az = g7z for all z € X — X, or, equivalently, the condition
that g is orthogonal to the intersection of the kernel of A with the linear span of
X — X. Indeed, under this assumption, for every fixed € € (0,1) we clearly have
limg o0 i(ﬁ) = 0, implying that limg ., Opt = 0, with T and Opt given by
(3.50). Still assuming v(x) = 0, the condition in question is necessary for consis-
tency as well, since when the condition is violated, we have Az’ = Az” for properly
selected 2/, 2" € X with G(2’) # G(2""), making low risk recovery of G(z), z € X,

impossible already in the case of zero noisy component in observations®’.

3.83.4.2 Direct product case

Further simplifications are possible in the direct product case, where, in addition to
what was assumed in the beginning of section 3.3.4,

e Ex =&y x &y and X = U x V, with convex compact sets U C &y = R™ and
V C By =R™,

o Az = (u,v)) = [Au+a,M()] : U x V — R? x S, with M(v) =0 forv eV,

o G(z = (u,v)) = gTu+ c depends solely on u, and

e v(z = (u,v)) = o(u) depends solely on w.

It is immediately seen that in the direct product case problem (3.50) reads

i . ¢U(ATh_g)+¢U(_ATh+g) 1 T
Opt = }fggld{ 5 +qu1€a‘3< \/2K In(2/e)hT M (v)h ¢,
(3.53)
where
du(f) = max [u” f — o(u)] . (3.54)
Assuming [, oy Ker(M(v)) = {0}, the problem is solvable, and its optimal solution

h. produces affine estimate

1 1
~ KN\ _ T, _ 1+ T _ Ty T
gu(™) = 5 Ei hywi+ 5, 50 = Slou(=ATh + 9) = $u(ATh —g)] —a” hu + ¢

with e-risk < Opt.

Near-optimality In addition to the assumption that we are in the direct product
case, assume that v(-) = 0 and, for the sake of simplicity, that M (v) > 0 whenever

50Note that in Gaussian case with M (z) depending on x the above condition is, in general, not
necessary for consistency, since a nontrivial information on = (and thus on G(z)) can, in principle,
be extracted from the covariance matrix M (z) which can be estimated from observations.
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v € V. In this case (3.50) reads

Opt = mhin max {@(h, v) = %[QSU(ATh —9)+ ou(—ATh +g)] + \/QK*1 1n(2/e)hTM(v)h} ,

whence, taking into account that ©(h,v) clearly is convex in h and concave in v,
while V' is a convex compact set, by Sion-Kakutani Theorem we get also

Opt = max {Opt(v) = m}}n %[d)U(ATh —9)+ou(=ATh+g)] + V2K 1 1n(2/e)hTM(U)h} .

(3.55)
Now consider the problem of recovering g7 u from observation w;, i < K, indepen-
dently of each other sampled from N (Au+a, M (v)), where unknown v is known to
belong to U and v € V' is known. Let p.(v) be the minimax e-risk of the recovery:

plv) = inf {p: Probs iy (auta sy (& 1 [3(6) = 67| > p} < evu e U},

where inf is taken over all Borel functions g(-) : R¥4 — R. Invoking [86, Theorem
3.1], it is immediately seen that whenever € < 1/4, one has

21n(2/€)
In (57)
Since the family SG(U, V) of all sub-Gaussian, with parameters (Au+a, M (v)), u €

U, v € V, distributions on R? contains all Gaussian distributions N (Au+ a, M (v))
induced by (u,v) € U x V, we arrive at the following conclusion:

pe(v) > l ] Opt(v).

Proposition 3.11. In the just described situation, the minimax optimal e-risk

Risk?P*(K) = 13(1f) Riske(9(-)),
5

of recovering gTu from K-repeated i.i.d. sub-Gaussian, with parameters (Au +
a, M(v)), (u,v) € U x V, random observations is within a moderate factor of the
upper bound Opt on the e-risk, taken w.r.t. the same data, of the affine estimate
7+ () yielded by an optimal solution to (3.53), namely,

Opt < 21n(2/¢)

~ In (ﬁ)

:.1,0pt
Risk?".

3.3.4.8 Numerical illustration

The numerical illustration we are about to discuss models the situation when we
want to recover a linear form of a signal z known to belong to a given convex
compact subset X via indirect observations Az affected by sub-Gaussian “relative
noise,” meaning that the variance of observation is the larger the larger is the signal.
Specifically, our observation is

w~ SG(Ax, M (x)),
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where

reX={reR":0<a;<j*1<j<n}, Mx)=0") 2;0;  (3.56)
j=1

where A € R¥*™ and (CFRS Si, j =1,...,n, are given matrices; the linear form to be
recovered from observation w is G(x) = g”x. The entities g, A, {©;}"_, and reals
a > 0 (“degree of smoothness”), o > 0 (“noise intensity”) are parameters of the
estimation problem we intend to process. The parameters g, A, ©; were generated
as follows:

e g > 0 was selected at random and then normalized to have

T T
max g  r = max T —y|l =2;
max g nax g [z —y] =2

e we dealt with n > d (“deficient observations”); the d nonzero singular values

of A were set to 97%7 where “condition number” # > 1 is a parameter; the
orthonormal systems U and V of the first d left, respectively, right singular
vectors of A were drawn at random from rotationally invariant distributions;

e the positive semidefinite d x d matrices ©; were orthogonal projectors on ran-
domly selected subspaces in R of dimension |d/2];

e in all our experiments, we dealt with single-observation case K = 1, and used
v(-) =0.

Note that X possesses >-largest point Z, whence M (xz) < M(Z) whenever z € X;
as a result, sub-Gaussian distributions with matrix parameter M(x), x € X, can
be thought also to have matrix parameter M(Z). One of the goals of experiment
to be reported was to understand how much would be lost were we replacing M (-)
with M () = M (Z), that is, were we ignoring the fact that small signals result in
low-noise observations.

In the experiment to be reported, we use d = 32, m = 48, « = 2, § = 2, and
o = 0.01. Utilizing these parameters, we generated at random, as described above,
10 collections {g, 4, ©;, j < d}, thus arriving at 10 estimation problems. For every
one of these problems, we used the outlined machinery to build affine in w estimate
of g7 x as yielded by optimal solution to (3.50), and computed upper bound Opt on
(e = 0.01)-risk of this estimate. In fact, for every one of the 10 generated estimation
problems, we build two estimates and two risk bounds: the first — for the problem
“as is,” and the second — for the aforementioned “direct product envelope” of the
problem, where the mapping « — M () is replaced with = — M(z) := M(Z). The
results are as follows:

H min \ median \ mean \ max H
0.138 | 0.190 | 0.212 | 0.299
0.150 | 0.210 | 0.227 | 0.320

0.01-Risk, data over 10 estimation problems [d = 32,m =48, a =2, = 2,0 = 0.

First row: w ~ SG(Ax, M(x)). Second row: w ~ SG(Ax, M(Z))

Pay attention to “amplification of noise” in the estimate (about 20 times the level
o of observation noise) and significant variability of risk across the experiments;
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seemingly, both these phenomena stem from the fact that we have highly deficient
observations (n/d = 1.5) combined with “random interplay” between the directions
of coordinate axes in R"™ (along these directions, X becomes more and more thin)
and the orientation of the 16-dimensional kernel of A.

3.4 ESTIMATING QUADRATIC FORMS VIA QUADRATIC
LIFTING

In the situation of Section 3.33, passing from “original” observations (3.33) to their
quadratic lifting: we can use the just developed machinery to estimate quadratic
forms of the underlying parameters rather than linear ones. We are about to investi-
gate the related possibilities in the cases of Gaussian and sub-Gaussian observations.

3.4.1 Estimating quadratic forms, Gaussian case
3.4.1.1 Preliminaries

Consider the situation where we are given

a nonempty bounded set U in R™;

a nonempty convex compact subset V of the positive semidefinite cone Si;

a matrix O, > 0 such that ©, > O for all © € V;

an affine mapping u — Afu; 1] : R™ — Q = R?, where A is a given d x (m + 1)
matrix,

e a convex continuous function o(-) on ST

A pair (u € U, O € V) specifies Gaussian random vector ¢ ~ N (A[u;1],0) and thus
specifies probability distribution P[u,©] of (¢,(¢T). Let Q(U,V) be the family of
probability distributions on Q = R?% x 8¢ stemming in this fashion from Gaussian
distributions with parameters from U x V. Our goal is to cover the family Q(U, V)
by a family of the type S[N, M, ®].

It is convenient to represent a linear form on Q = R?% x 8¢ as

1
Tz + S T(HZ),
where (h, H) € R? x S¢ is the “vector of coefficients” of the form, and (z,Z) €

R? x S is the argument of the form.
We assume that for some ¢ € [0, 2] it holds

|eY2e 2 1| <5 ve eV, (3.57)
. . A
where || - || is the spectral norm (cf. (2.165). Finally, we set B = { BT } and
Zt={W e ST Woi1,me1 = 1} (3.58)

The statement below is a straightforward reformulation of Proposition 2.46.i:
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Proposition 3.12. In the just described situation, let us select v € (0,1) and set

H = H,:={(hHcR*xS*: —y0;' < H <~07"'},
Mt = VYxzt,
®(h,H;0,7) = —imDet(I —0Y*HOLY?) + 1Tr([© — ©.]H)
5(249) 1/2 1/2)2
ot ey 102 HO I
+T(h, H; Z) : Hx MT = R
[Il - || is the spectral, and || - || is the Frobenius norm],
L(h,H;Z) = LTr(Zbh"A+ A"h" + ATHA+ BT [H,h]"[©," — H]"'[H, h]B])

_ in (z (BT H#} +H T — H] A, h]} B))

(3.59)
Then H, M™*,® form a regular data, and for every (u,®) € R™ x V it holds

V(h,H) € H:1n (ECNN(W@) {ehT<+%<TH<}) < ®(h, H; 0, [u; 1][u; 7). (3.60)

Besides this, function ®(h, H;©,Z) is coercive in the convex argument: when-
ever (0,7) € M and (h;, H;) € H and ||(hi, H;)|| = o0 as i — oo, we have
®(h;, Hi;0,7Z) — 00, i — 00.

3.4.1.2  Estimating quadratic form: Situation & goal

We are interested in the situation as follows: we are given a sample (¥ = ((y, ..., (k)
of independent across ¢ and identically distributed random observations

G~ N(AJu;1],M(v)),1<i< K, (3.61)
where

e (u,v) is unknown “signal” known to belong to a given set U x V', where
— U C R™ is a compact set, and
— V c RF is a compact convex set;

e Ais a given d x (m + 1) matrix, and v — M(v) : R¥ — S% is affine mapping
such that M (v) = 0 whenever v € V.

We are also given a convex calibrating function o(Z) : ST‘H — R and “functional
of interest”
F(u,v) = [u; 17 Q[u; 1] + ¢"v, (3.62)

where @ and ¢ are known (m + 1) x (m + 1) symmetric matrix and k-dimensional
vector, respectively. Our goal is to recover F'(u,v), for unknown (u,v) known to
belong to U x V, via observation (3.61). Given a tolerance € € (0,1), we quantify
the quality of a candidate estimate g(¢¥) of F(u,v) by the smallest p such that for
all (u,v) € U x V it holds

Probere s Ar(Afus1], M (o)) % .. x N (AJust] M () 11G(C5) = F(u,0) p+ ol[u; 1][u; 1]T)}( < €~)
3.63
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3.4.1.3 Construction € Result

Let
V={M({):veV}
so that V is a convex compact subset of the positive semidefinite cone Siﬂ. Let

us select somehow

1. a matrix ©, > 0 such that ©, = ©, for all © € V;

2. a convex compact subset Z of the set ZT = {Z € STH * Zm+1,m+1 = 1} such
that [u; 1][u; 1T € Z for all u € U;

3. areal v € (0,1) and a nonnegative real ¢ such that (3.57) takes place.

We further set (cf. Proposition 3.12)

A
_ (d+1)x (m+1)
B = [ [0,...,0,1] } €R ’
" = H,={(hH cR*x8%: 40, < H=<+40;'},
M = VxZ
®(h,H;0,Z) = —LnDet(I —0)*HO.?) + iTr([© — ©.]H)
S | HOL ||

21—} 2 Hel/?|)
+I'(h,H;Z) :Hx M —=R
[Il - |l is the spectral, and || - || is the Frobenius norm],
I'h,H;Z) = LiTr(Zbh"A+A"h" + ATHA+ BT [H,h]"[©;" — H]"'[H, h]B])

B e )

(3.64)
and treat, as our observation, the quadratic lift of observation (3.61), that is, our
observation is

Wi = {w; = (G, GENYE L, G ~ N(A[u; 1], M (v)) are independent across i.
(3.65)
Note that by Proposition 3.12, function ®(h, H; 0, 7) : H x M — R is continu-
ous convex-concave function which is coercive in convex argument and is such that

VueUweV,(h,H)eH):

In (EC~N(A[u;1],M(v)) {Q%CTHWLTC}) < ®(h, H; M(v), [u; 1][u; 1]7). (3.66)
We are about to demonstrate that as far as estimating the functional of interest
(3.62) at a point (u,v) € U x V via observation (3.65) is concerned, we are in
the situation considered in Section 3.3 and can use the machinery developed there.
Indeed, let us specify the data introduced in section 3.3.1 and participating in the
constructions of section 3.3 as follows:

o H={f=(hH)eH}CEy=RIxS with H defined in (3.64), and the inner
product on £y defined as

((h, H),(W,H")) = hTh' + %TT(HH’),

Enr =S¥ x S+ and M, ® are as defined in (3.64);
e Ex =RF xS X ={2=w2):veV,Z=[ul|wl)]T,uec U} C X :=
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{r=W,2)eV x Z};

o A(z) = A(v,Z) = (M(v), Z); note that A is affine mapping from Ex into &y
mapping X into M, as required in section 3.3. Observe that when v € U and
v € V, the distribution P = P, , of observation w defined by (3.65) satisfies the
relation

V(f = (h,H) €H):
In (EwNP {e(f,w) }) =1In (ECNN(A[u;l],M(v)) {ehTCJr%CTHCi) (367)
< ®(h, H; M (v), [u; 1][u; 1]7),

see (3.66);
e vix=2))=02): X >R,
e we define affine functional G(x) on Ex by the relation

(g,2:= (v,2)) = q¢" v+ Tr(Q2),

see (3.62). As a result, for z € X, that is, for z = (v, [u;1][u; 1]T) with v € V
and u € U we have
F(u,v) = G(z). (3.68)

Applying to the just specified data Corollary 3.9 (which is legitimate, since our ®
clearly satisfies (3.39)), we arrive at the result as follows:

Proposition 3.13. In the just described situation, let us set

Uy (h, H)
= inf{ max _[a®(h/a, H/a; M(v),Z) — G(v,Z) — o(Z) + K~ 'aIn(2/e)] :
a (v,2)EVXZ
a>0,—ya0;! jHj'ya@;l}
= <v1%13§xz ;Eg’ a®(h/a,H/a; M(v), Z) — G(v, Z) — 0o(2)
—ya© 7 <H=<~va0 !
+K71aln(2/e)},
U_(h,H)
= inf{ max _[a®(—h/a,—H/a; M (v),Z) + G(v, Z) — o(Z) + K 'aln(2/e)] :
et (v,Z2)eEVXZ
a>0,—yaO;' < H =< 'ya@*_l}
= (u,ZIr)lg‘)/(xZ an>1£ a®(—hj/a,—H/a; M(v), Z) + G(v,Z) — o(Z)

—va©; ' <H=ya0 !
+K71aln(2/e)} .
A (3.69)
so that the functions V. (h,H):R?xS% = R are conver. Furthermore, whenever
h, H, p, > form a feasible solution to the system of convex constraints
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in variables (h, H) € R x S, p € R, » € R, setting

K

9" = (G Cr)) = %Z [hTQ + ;CZ-THQ} + x, (3.71)

i=1

we get an estimate of the functional of interest F(u,v) = [u;1]T Q[u; 1] + ¢"'v via
K independent observations

G~ NAu; 1, M), i=1,..., K,
with the following property:

Y(u,v) €U x V.

~ _ 3.72
PrObCKN[N(A[uzl],]\r’[(v))]K {|F(U’U) - g(CK” >p+ Q([U, 1] [u; 1]T)} <e ( )

Proof. Under the premise of Proposition, let us fix u € U, v € V, so that = :=
(v, Z = [u;1][u;1]T) € X. Denoting, as above, by P = P, the distribution of
w = (¢, ¢¢T) with ¢ ~ N(Afu; 1], M (v)), and invoking (3.67), we see that for just
defined (z, P), relation (3.34) takes place. Applying Corollary 3.9, we conclude that

Probex c(n(apus),mpix {3(C7) = G@)| > p+ o(u; 1[u; 1]7)} <.
It remains to note that by construction for = (v, Z) in question it holds

G(z) = ¢"v+Tr(Q2) = ¢"v + Tr(Qu; [w; 1) = ¢"v + [w; 1T Qlu, 1] = F(u, v).
O
An immediate consequence of Proposition 3.13 is as follows:

Corollary 3.14. Under the premise and in the notation of Proposition 3.13, let
(h, H) € R x S?. Setting

p = U (h,H)|,
_ (3.73)
v ;

w =

N= D=

the e-risk of estimate (3.71) does not exceed p.
Indeed, with p and s given by (3.73), h, H, p, 5 satisfy (3.70).

3.4.1.4 Consistency

We are about to present a simple sufficient condition for the estimator suggested
by Proposition 3.13 to be consistent, in the sense of Section 3.3.4.1. Specifically, in
the situation and with the notation from Sections 3.4.1.1, 3.4.1.3 assume that

Al o(r) =0,
A.2. V = {v} is a singleton, which allows to set ©, = M(9), to satisfy (3.57) with
6 = 0, and to assume w.l.o.g. that

F(u,v) = [u; 1) QJus; 1], G(Z) = Tr(QZ);

A.3. the first m columns of the d x (m + 1) matrix A are linearly independent.
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By A.3, the columns of (d+1) x (m+ 1) matrix B, see (3.64), are linearly indepen-
dent, so that we can find (m+1) x (d+ 1) matrix C' such that CB = I,,,1. Let us
define (h, H) € R% x S from the relation

H?TJ%} =2(cTQ0)°, (3.74)

where for (d+ 1) x (d + 1) matrix S, S° is the matrix obtained from S by zeroing
our the entry in the cell (d+ 1,d + 1).

The consistency of our estimation machinery is given by the following simple
statement:

Proposition 3.15. In the just described situation and under assumptions A.1-3,
given € € (0,1), consider the estimate

. 1
gK,F(CI() -

=

K
ZVLTQ« + %CTHCk] + XK €5
k=1

where .
AK,e = 5 [\/I\/,(B,H) — \/I\/+<7L7 I:I)}

and (I\/i = \T/i(e are given by (3.69). Then the e-risk of i (-) goes to 0 as K — oo.

For proof, see Section 3.6.3.

3.4.1.5 A modification

In the situation described in the beginning of this Section, let a set W C U x V be
given, and assume we are interested in recovering functional of interest (3.62) at
points (u,v) € W only. When reducing the “domain of interest” U x V to W, we
hopefully can reduce the achievable e-risk of recovery. To utilize for this purpose
the machinery we have developed, assume that we can point our a convex compact
set W C V x Z such that

(u,v) € W = (v, [u; [u; 7)) e W

A straightforward inspection justifies the following

Remark 3.16. In the just described situation, the conclusion of Proposition 3.13
remains valid when the set U x V participating in (3.72) and in relations (3.69)
is reduced to W. This modification enlarges the feasible set of (3.70) and thus
reduces the achievable values of risk bound p.

3.4.2 Estimating quadratic form, sub-Gaussian case
3.4.2.1 Situation

In the rest of this Section we are interested in the situation is as follows: we are
given i.i.d. random observations

G ~SG(A[u; 1], M(v)), i =1,..., K, (3.75)




StatOpt'LN'NS  January 21, 2019 7x10

ESTIMATING FUNCTIONS VIA HYPOTHESIS TESTING 233

where ¢ ~ SG(1,©) means that ¢ is sub-Gaussian with parameters u € R%, © €
Sjir, and

e (u,v) is unknown “signal” known to belong to a given set U x V', where
— U C R™ is a compact set, and
— V c RF is a compact convex set;

e Aisagiven d x (m + 1) matrix, and v + M(v) : R¥ — S%*! is affine mapping
such that M (v) = 0 whenever v € V.

We are also given a convex calibrating function o(Z) : STH — R and “functional

of interest”
F(u,v) = [u; 1] Qu; 1] + ¢"v, (3.76)

where @ and ¢ are known (m + 1) x (m + 1) symmetric matrix and k-dimensional
vector, respectively. Our goal is to recover F'(u,v), for unknown (u,v) known to
belong to U x V, via observation (3.75).

Note that the only difference of our present situation with the one considered in
Section 3.4.1.1 is that now we allow for sub-Gaussian, and not necessary Gaussian,
observations.

3.4.2.2 Construction € Result
Let
V={M@):veV}

so that V is a convex compact subset of the positive semidefinite cone Si. Let us
select somehow

1. a matrix O, > 0 such that ©, > ©, for all © € V;

2. a convex compact subset Z of the set ZT = {Z € STH : Zm+1,m+1 = 1} such
that [u;1][u; 1]7 € Z for all u € U;

3. reals v,y € (0,1) with v < 4T (say, v = 0.99,7T = 0.999).

Preliminaries Given the data of the above description and ¢ € [0, 2], we set (cf.
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Proposition 3.12)

H=H,:={(h,H) e R xS8: —40;1 < H <~0;'},

A
_ (d+1) X (m+1)
B [[0,...,0,1} }GR 7
M=V x2Z,

U(h, H,G; Z) = —L InDet(I — ©2GOY?)

1Ty (ZBT H?H_’L] +[H, KT — G H, h]] B) :

(Hx{G:0=2G=~yT0,"'}) x Z >R,

s(h, H,G;©,2) =~ lnDet(I — 0./°GO./%) + JTx([© ~ 6.]C) (3.77)
T 5340 ol/2ael/2)2
201-[ler/*cel/?|) 1©7Ge. " H

+1iTy <ZBT [[%L} + [H,BT[e: - GV [H, h]] B> :

Hx{G:0=G=770,'}) x ({020 =6.} x Z) >R,

O(h,H; Z) :mGin{\I/(h,H,G;Z) 002G =2y"e;,G=H} :HxZ—>R,
®5(h,H;0,7) = mGin{\Ifg(h, H,G;0,72): 02 G =2~yT0;',G= H}:

Hx ({020 =<06.}x2)—=R.

The following statement is straightforward reformulation of Proposition 2.49.i:

Proposition 3.17. In the situation described in Section 3.4.2.1, we have

(i) © is well-defined real-valued continuous function on the domain H X Z; the
function is convex in (h, H) € H, concave in Z € Z, and ®(0; Z) > 0. Furthermore,
let (hyH)e H,uecU,veV, and let ( ~ SG(Alu;1], M (v)). Then

i (ke {eotrc s 3} ) < o, @

ZZ Lﬁ]; V be a CONveEr C)mpacl SubSet 0’ Sd SuCh thal Af V) € V f07 (lll NS L )
+
(]/“,d Let (S c [0 2] bﬁ SU/Ch Lh(ll

OcV={0=<06,}& {020 1| <6} (3.79)

Then ®5(h, H; 0, Z) is well-defined real-valued continuous function on the domain
H x (V x Z); the function is convex in (h,H) € H, concave in (0,Z) € V x Z,
and ®5(0;0,7) > 0. Furthermore, let (h,H) € H, w € U, v € V, and let  ~
SG(Alu; 1], M (v)). Then

In (EC {exp{hTC + ;QTHQ}}> < ®s(h, H; M(v), [u; 1[u; 1]7). (3.80)

The estimate. We estimate the functional of interest similarly to the case of
Gaussian observations. Specifically, let us pass from observations (3.75) to their
quadratic lifts, so that our observations become

wi = (G, GCP), 1<i < K, ¢ ~ SG(Afu; 1], M (v)) are i.id. (3.81)

As in the Gaussian case, we find ourselves in the situation considered in section
3.3.3 and can use the machinery developed there. Indeed, let us specify the data
introduced in section 3.3.1 and participating in the constructions of section 3.3 as
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follows:

o H={f=(hH)eH}CEr =RIxS% with H defined in (3.77), and the inner
product on £y defined as

((h,H),(h',H")) = hTH + %Tr(HH/),

En = S™H and M, ® are as defined in (3.77);

e Ex=RF xS X :={(v,2):veV,Z=[u1|u; 1T, uc U} C X :={(v,2):
veV,Z e Z},

e A(z) = A(v,Z) = (M(v), Z); note that A is affine mapping from Ex into &y
mapping X into M, as required in section 3.3. Observe that when v € U and
v € V, the distribution P = P of observation w; defined by (3.81) satisfies the
relation

V(f = (h,H) € H) :

I (B {9 }) = In (Beusoapanare {737 H¢}) (3.82)
< ®(h, H; [u; 1][u; 1]7),

see (3.78). Moreover, in the case of (3.79), we have also

V(f = (h, H) € H)
In (Egp {eV*)}) =In (E<~SG(A[u;1],M(v)) {ehT“%CTHC}) (3.83)
< @g(h, Hy M (v), [u; 1][u; 1]7),

see (3.80);
o we set v(z = (v,2)) = o(2),
o we define affine functional G(z) on £x by the relation

Gla = (v,2) = ¢"v + T(QZ),

see (3.76). As a result, for x € X, that is, for z = (v, [u; 1][u; 1]7) with v € V
and v € U we have
F(u,v) = G(z). (3.84)

The result. Applying to the just specified data Corollary 3.9 (which is legitimate,
since our P clearly satisfies (3.39)), we arrive at the result as follows:
Proposition 3.18. In the situation described in Section 3.4.2.1, let us set
U — . EaToN _ -1 .
U, (h,H) := 12f { (vﬁzr?gégxz [a®(h/a,H/o; Z) — G(v, Z) — 0(Z) + oK~ 1n(2/€)] :
a>0,—ya0; ! < H < va0; !
_ . 3 Loy _ -1
= o R nu;[fL [a®(h/a,H/o; Z) — G(v,Z) — 0(Z) + aK~11n(2/€)] ,

—va0; ' <H=<~ya0 !

‘5[\/,(}1,, H) := igf { o ngléli(’xz [a®(—h/a,—H/a; Z) + G(v,Z) — o(Z) + aK 1 In(2/€)] :

a>0,— ,’(,y@fl < H = ’ya@:l

= ( Zn)leaé = 12% [a®(—h/a,—H/o; Z) + G(v, Z) — o(Z) + oK~ In(2/€)] .
v, X a>0,
—Fg007 L<xH=F 0071

(3.85)
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_s0 that the functions \Tli(h, H):R?x 8% = R are convex. Furthermore, whenever
h, H, p,  form a feasible solution to the system of convex constraints

in variables (h, H) € R% x S, p € R, » € R, setting
1 & 1
g(¢) = Ve > {}LTQ‘ + 2(1'THQ:| + 7,
i=1

we get an estimate of the functional of interest F(u,v) = [u; 1]TQ[u; 1] + ¢Tv via
1.%.d. observations
G~ SG(Alu; 1], M(v)), 1 <i < K,

with the following property:

Y(u,v) €U x V:

N _ 3.87
Prob s ~saap oy {IF(w0) =5 > o+ o w17} < e, 87

Proof. Under the premise of Proposition, let us fix v € U, v € V, so that z :=
(v, Z = [u;1][u;1]7) € X. Denoting by P the distribution of w := (¢, ¢¢T) with
¢ ~ SG(A[u;1], M (v)), and invoking (3.82), we see that for just defined (x, P),
relation (3.34) takes place. Applying Corollary 3.9, we conclude that

Prober oy (aus] ) {19(C7%) = G(@)| > p+ o(fu; 1][u;1]7) } < e.
It remains to note that by construction for = (v, Z) in question it holds

G(z) = q"v+Tr(QZ) = ¢" v+ Tr(Qlu; U[u; 1]") = ¢"v + [u; 1]7 Q[u, 1] = F(u, v).
O

Remark 3.19. In the situation described in section 3.4.2.1, let § € [0,2] be such
that
|e2e? — 1| <sve e V.

Then the conclusion of Proposition 3.18 remains valid when the function ® in (3.85)
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is replaced with the function ®g, that is, when \Tli are defined as
U, (h,H) := inf{ max [a®s(h/a, H/o; M(v), Z) — G(v,Z) — o(Z) + a K~ 1n(2/€)] :
a | (v,2)evxz

a >0, —wz,y@*_l <H= A,a@*_l}
=  max inf [a‘bg (h/a,H/a; M (v), Z) — G(v, Z) — o(Z)

(v,Z)EV XZ >0,
—va0; ' <H=~ya0 !

tfaK~t 1n(2/e)} ,

U_(h,H) := igf{ (v,ZI?g\);xZ [a®s(—h/a,—H/o; M(v), Z) + G(v, Z) — o(Z) + aK 1 In(2/€)] :
a >0, —7049*_1 < H= A,a@*_l}

(v,ZH)lg\)gxz 7%{1(1@;10;253%&@;1 a®s(—h/a,—H/a; M(v),Z) + G(v,Z) — o(Z)
+aK ™! ln(2/€)} .
(3.88)
To justify Remark 3.19, it suffices to use in the proof of Proposition 3.18 relation
(3.83) in the role of (3.82). Note that what is better in terms of the risk of the
resulting estimate — Proposition 3.18 “as is” or its modification presented in Remark
3.19 — depends on the situation, so that it makes sense to keep in mind both options.

3.4.2.3 Numerical illustration, direct observations

The problem. Our initial illustration is deliberately selected to be extremely
simple: given direct noisy observations

(=u+e

of unknown signal v € R™ known to belong to a given set U, we want to recover
the “energy” u”w of u; what we are interested in, is the quadratic in ¢ estimate
with as small e-risk on U as possible; here € € (0,1) is a given design parameter.
The details of our setup are as follows:

e U is the “spherical layer” U = {u € R™ : r2 < uTu < R?}, where , R, 0 <
r < R < 0o are given. As a result, the “main ingredient” in constructions from
sections 3.4.1.3, 3.4.2.2 — the convex compact subset Z of the set {Z € STH :
Zm+1.m+1 = 1} containing all matrices [u; 1][u; 1]7, u € U, can be specified as

Z2={Z2eS"  Zniim = 1,1+ <Tr(Z) <1+ R}

e ¢ is either ~ N(0,0) (Gaussian case), or ~ SG(0,0) (sub-Gaussian case), with
matrix © known to be diagonal with diagonal entries satisfying 602 < ©;; < o2,
1 <i <d=m, with known 6 € [0,1] and 02 > 0;

e the calibrating function o(Z) is o(Z) = <(>_1", Zi;), where ¢ is a convex contin-
uous real-valued function on R,. Note that with this selection, the claim that
e-risk of an estimate g(-) is < p means that whenever u € U, one has

Prob{|g(u + &) — ulu| > p+ s(u’u)} <. (3.89)
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Processing the problem. It is easily seen that in the situation in question the
machinery of sections 3.4.1, 3.4.2 boils down to the following:

1. We lose nothing when restricting ourselves with estimates of the form

5(0) = SCTC+ (3.90)

2
with properly selected scalars 7 and s;
2. In Gaussian case, n and s are yielded by the convex optimization problem with
just 3 variables ay,a_,n, namely the problem

min {@(ar,a,n) = § [Ty (ag,n) + T (a,m)] : 0*nl < as

at,n

T a 3(248)o'n’
Vo(asm) = —%5In(l - o?n/ay) + £0°(1 — ) max|—n, 0] + Bt
+ max Hﬁ - 1] t— c(t)} + a4 In(2/¢)
~ o 4,2
U (ay,n) = —%=m(+o%n/a )+ G02(1— 0)maxp, 0] + gt
o_n
—+ 7-2gltaéXR2 {[—m —+ 1:| t— §(t)] + a_ 111(2/6) s
(3.91)

where § = 1 — /0. Specifically, the n-component of a feasible solution to (3.91)
augmented by the quantity

x=3 [\f/,(a,,n) - ‘T’+(OZ+777)}

yields estimate (3.90) with e-risk on U not exceeding ¥(ay, a_,n);
3. In sub-Gaussian case, 17 and s are yielded by convex optimization problem with
just 5 variables, a4, g+, n, namely, the problem

ot,945M

min {(I\](Oéﬂ:ag:lnn) = % |:\/I;+(Oé+,)\+,g+’l’]) + ‘/1\’7(0477)\7,9—777)} :

0<0%gs <vyox,0’n> —ar,0’n<a_,n< gy, < g—},

~

Uy(ar,g,m) = —5In(l-ogy) -
a’n 1. —
+ay In(2/€) + max H?<a+79+> + 37 1] r c(t)}
T da_
\I/*(a*7g*7n) = 7T1n(1 - 029*)4» 5 2
_o*n? 1 _
o In(2/e) + masx [  — gn 1] (1)

(3.92)
where v € (0, 1) is construction’s parameter (we used v = 0.99). Specifically, the
n-component of a feasible solution to (3.92) augmented by the quantity

~ ~

1
n = 5 [\I’—(a—,g—aﬁ) - \I/+(a+,g+,77)}

yields estimate (3.90) with e-risk on U not exceeding (I\/(ai, gi,1).

Note that the Gaussian case of our “energy estimation” problem is well studied
in the literature, mainly in the case & ~ N(0,0%1,,) of white Gaussian noise with
exactly known variance o?; available results investigate analytically the interplay
between the dimension m of signal, noise intensity o2 and the parameters R, r and
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H d ‘ r ‘ R ‘ 0 H Recl}a,tive‘OAOl—x"i:sk7 Relative 0..01—risk, H Optimality ratio
ausslan case sub-Gaussian case
64 0 16 1 0.34808 0.44469 1.22
64 0 16 0.5 0.43313 0.44469 1.48
64 0 128 1 0.04962 0.05181 1.28
64 0 128 0.5 0.05064 0.05181 1.34
64 8 80 1 0.07827 0.08376 1.28
64 8 80 0.5 0.08095 0.08376 1.34
256 0 32 1 0.19503 0.30457 1.28
256 0 32 0.5 0.26813 0.30457 1.41
256 0 512 1 0.01264 0.01314 1.28
256 0 512 0.5 0.01289 0.01314 1.34
256 16 160 1 0.03996 0.04501 1.28
256 16 160 0.5 0.04255 0.04501 1.34
1024 0 64 1 0.10272 0.21923 1.28
1024 0 64 0.5 0.17032 0.21923 1.34
1024 0 2048 1 0.00317 0.00330 1.28
1024 0 2048 | 0.5 0.00324 0.00330 1.34
1024 | 32 320 1 0.02019 0.02516 1.28
1024 | 32 320 0.5 0.02273 0.02516 1.41

Table 3.3: Recovering signal’s energy from direct observations

offer provably optimal, up to absolute constant factors, estimates. A nice property
of the proposed approach is that (3.91) automatically takes care of the parameters
and results in estimates with seemingly near-optimal performance, as is witnessed
by the numerical results we are about to present.

Numerical results. In the first series of experiments, we used the trivial calibrat-
ing function: ¢(-) = 0.

A typical sample of numerical results is presented in Table 3.3. To avoid large
numbers, we display in the table relative 0.01-risk achievable with our machinery,
that is, the plain risk divided by R?; keeping this in mind, one should not be
surprised that when extending the range [r, R] of allow norms of the observed
signal, all other components of the setup being fixed, the relative risk can decrease
(the actual risk, of course, can only increase). Note that in all our experiments o
was set to 1.

Along with the values of the relative 0.01-risk, we present also the values of
“optimality ratios” — the ratios of the relative risks achievable with our machinery
in the Gaussian case to the (lower bounds on the) the best possible under circum-
stances relative 0.01-risks. These lower bounds are obtained as follows. Let us
select somehow values 1 < 75 in the allowed under the circumstances range [r, R]
of ||u||2, and two values, o1, o9, in the allowed range [fo,0] = [0,1] of values of
diagonal entries in diagonal matrices ©, and consider two distributions of observa-
tions P, and P, as follows: P, is the distribution of random vector x + ¢, where
x and § are independent, x is uniformly distributed on the sphere ||z|ls = 7, and
¢ ~ N(0, oi[d). It is immediately seen that whenever the two simple hypotheses
w ~ P, and w ~ P,, cannot be decided upon via a single observation by a test
with total risk < 2e (with the total risk of a test defined as the sum, over the two
hypotheses in question, of probabilities for the test to reject the hypothesis when
it is true), the quantity § = # is a lower bound on the optimal e-risk, Risk?,
defined as the infimum, over all estimates recovering ||u||3 via single observation
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w = u + (, of the e-risk of the estimate, where the e-risk is taken w.r.t. u running
through the spherical layer U = {u : r2 <uTu< RZ}, and the covariance matrices
© of Gaussian zero mean noise running through the set of scalar matrices with
diagonal entries varying in [0, 1]. In other words, denoting by p,(-) the density of
P,, we have

T%—’/’l

0.02 < min[p; (w), p2(w)]dw = Risky ; >
Rd

Now, the densities p, are spherically symmetric, whence, denoting by ¢,(-) the
univariate density of the energy w”w of observation w ~ P,, we have

[ winlpr ). ol = [ minfa(s). (o)),

so that
r2 — 12

o0
0.02 < / min|q; (s), g2(s)]ds = Risky g, > (3.93)
0

Now, on a closest inspection, g, is the convolution of two univariate densities repre-
sentable by explicit computation-friendly formulas, implying that given rq, ro, 01, 09,
we can check numerically whether the premise in (3.93) indeed takes place, and
whenever the latter is the case, the quantity ngrf is a lower bound on Risk ;. In
our experiments, we used a simple search strategy (not described here) aimed at
crude maximizing this bound in rq,79, 01,09 and used the resulting lower bounds
on Riskg o; to compute the optimality ratios presented in the table5!.

We believe that quite moderate values of the optimality ratios presented in the

table (these results are typical for a much larger series of experiments we have
conducted) witness quite good performance of our machinery.
Optimizing the relative risk. The “relative risk” displayed in Table 3.3 is the
corresponding to the trivial calibrating function 0.01-risk in recovery u”u divided
by the largest value R? of this risk allowed by the inclusion u € U. When R is large,
low relative risk can correspond to pretty high “actual” risk. For example, with
d:=dimu =1024, 0 =1, and U = {u € R? : ||u2 < 1.e6}, the 0.01-risk becomes
as large as p ~ 6.5¢6; for “relatively small” signals, like u” T

u = 10*, recovering uTu
within accuracy p does not make much sense. In order to allow for “large” domains
U, it makes sense to pass from the trivial calibrating function to a nontrivial one,
like ¢(t) = at, with small positive a. With this calibrating function, (3.89) reads

Prob {|g(u+ &) —u"u| > p+ au’u} <

It turns out that (quite reasonable when U is large) “relative” characterization of
risk results in much smaller values of p as compared to the case o = 0 of “plain”

51The reader should not be surprised by “narrow numerical spectrum” of optimality ratios
displayed in Table 3.3: our lower bounding scheme was restricted to identify actual optimality
ratios among the candidate values 1.05%, i = 1,2, ...
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risk. Here is instructive numerical datas:

[ r | R JJ0.01-Risk, a =0 | 0.01-Risk, @ = 0.01 | 0.01-Risk, « = 0.1 ||

0 l.e7 6.51e7/6.51e7 1.33e3/1.58¢e3 474/642
l.e2 | l.e7 6.51e7/6.51e7 1.33e3/1.58¢e3 —123/92.3
1.1e3 | 1.e7 6.51e7/6.51e7 —4.73e3/—4.48¢3 | —1.14e5/—1.14eb

U={uecRY:r<|uls <R}, 0=1/2
Left/Right: risks in Gaussian/sub-Gaussian cases

3.4.2.4  Numerical illustration, indirect observations

The problem. The estimation problem we are about to process numerically is as
follows. Our observations are
¢=Au+¢, (3.94)

where

e Ais a given d x m matrix, with m > d (“under-determined observations”),

e u € R™ is a signal known to belong to a compact set U,

e £ ~ N(0,0) (Gaussian case) of & ~ SG(0,0) (sub-Gaussian case) is the obser-
vation noise; © is positive semidefinite d X d matrix known to belong to a given
convex compact set V C Si.

Our goal is to recover the energy

1
Plu) = =3

of the signal from a single observation (3.94).
In our experiment, the data is specified as follows:

1. We think of u € R™ as of discretization of a smooth function z(t) of continuous
argument ¢ € [0;1]: w; = x(L), 1 <i < m. Weset U= {u: |Sul> < 1},
where u — Su is the finite-difference approximation of the mapping x(-) —
(2(0),2'(0),z"(-)), so that U is a natural discrete-time analogy of the Sobolev-
type ball {z : [2(0)]% + [/(0)]2 + [, [«"(1)]2dt < 1}.

2. d x m matrix A is of the form UDV”, where U and V are randomly selected
d x d and m x m orthogonal matrices, and the d diagonal entries in diagonal
d x m matrix D are of the form 9_3%11, 1 <4 < d; the “condition number” 6 of
A is design parameter.

3. The set V of allowed matrices © is the set of all diagonal d x d matrices with
diagonal entries varying from 0 to o2, where the “noise intensity” o is design
parameter.

Processing the problem. Our estimating problem clearly is covered by the setups
considered in sections 3.4.1 (Gaussian case) and 3.4.2 (sub-Gaussian case); in terms
of these setups, it suffices to specify ©, as 021, M(v) as the identity mapping of
V onto itself, the mapping u — Afu;1] as the mapping u — Pu, and the set Z
(which should be a convex compact subset of the set {Z € Sff_+1 : Za+1,d+1 = 0}
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containing all matrices of the form [u; 1][u; 1]7, u € U) as the set
Z2={Z¢eS%": Zyt1,a41 = 1, Tr (ZDiag{ST'S,0}) < 1}.

As suggested by Propositions 3.13 (Gaussian case) and 3.18 (sub-Gaussian case),
the linear in “lifted observation” w = (¢,(¢T) estimates of F(u) = | lu/[3 stem
from the optimal solution (h., H.) to the convex optimization problem

1= -
Opt = min 5 [m(h, H) +T_(h, H)] , (3.95)

with (I\/i() given by (3.69) in the Gaussian, and by (3.85) in the sub-Gaussian
cases, with the number K of observations in (3.69), (3.85) set to 1. The resulting
estimate is

1 11~ ~
¢ WG+ SCTHC 4 36, 56 = 5 [0 (hay Ho) = By (e, HL)| (3.96)

and the e-risk of the estimate is (upper-bounded by) Opt.

Problem (3.95) is a well-structured convex-concave saddle point problem and
as such is beyond the “immediate scope” of the standard Convex Programming
software toolbox primarily aimed at solving well-structured convex minimization
problems. However, applying conic duality, one can easily eliminate in (3.69), (3.85)
the inner maxima over v, Z and end up with reformulation which can be solved
numerically by CVX [69], and this is how (3.95) was processed in our experiments.

Numerical results. In the experiments to be reported, we used the trivial cali-
brating function: o(-) = 0.

Table 3.4 displays typical numerical results of our experiments. To give an
impression of the performance of our approach, we present, along with the upper
risk bounds for the estimates yielded by our machinery, simple lower bounds on
e-risk achievable under the circumstances. The origin of the lower bounds is as
follows. Assume we are speaking about e-risk and have at our disposal a signal
w € U, and let t(w) = |[|Aw]|2, p = 20ErfInv(e), where ErfInv is the inverse error-
function:

Probg(o.1){€ > Erflnv(e)} = e.

Setting #(w) = max[l — p/t(w),0], observe that w’ := f(w)w € U and ||Aw —
Aw'||3 < p, which, due to the origin of p, implies that there is no way to decide via
observation Au+¢, & ~ N(0,02), with risk < € on the two simple hypotheses u = w
and u = w’. As an immediate consequence, the quantity ¢(w) := 3[||w||3—|lw’||3] =
|wl||3[1 — 62(w)]/2 is a lower bound on the e-risk, on U, of a whatever estimate of
|ul|3. We can now try to maximize the resulting lower risk bound over U, thus
arriving at the lower bound

_ L2 p2
LwBnd = Iur)lgl)j{2||w||2(1 0 (w))}

On a closest inspection, the latter problem is not a convex one, which does not
prevent building a suboptimal solution to this problem, and this is how the lower
risk bounds in Table 3.4 were built (we omit the details). We see that the e-risks
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H d,m H Opt, Gaussian case \ Opt, sub-Gaussian case \ LwBnd H

8,12 0.1362(+65%) 0.1382(+67%) 0.0825
16,24 || 0.1614(+53%) 0.1640(+55%) 0.1058
32,48 || 0.0687(+46%) 0.0692(+48%) 0.0469

Table 3.4:  Upper bound (Opt) on the 0.01-risk of estimate (3.96), (3.95) vs.
lower bound (LwBnd) on 0.01-risk achievable under the circumstances. In the
experiments, ¢ = 0.025 and § = 10. Data in parentheses: excess of Opt over
LwBnd.

d=8,m =12 d=16,m = 24 d=32,m =48

Gaussian case
d=16,m = 24 d=32,m =48

Sub-Gaussian case

Figure 3.3: Histograms of recovery errors in experiments, data over 1000 simula-
tions per experiment.

of our estimates are within a moderate factor from the optimal ones.

Figure 3.3 shows empirical error distributions of the estimates built in the three
experiments reported in Table 3.4. When simulating the observations and esti-
mates, we used N (0,0%1;) obsedrvation noise and selected signals in U by max-
imizing over U randomly selected linear forms.  Finally, we note that with our
design parameters d, m, 0,0 fixed, we still deal with a family of estimation prob-
lems rather than with a single problem, the reason being that our U is ellipsoid
with essentially different from each other half-axes, and achievable risks heavily
depend on how the right singular vectors of A are oriented with respect to the
directions of the half-axes of U, so that the risks of our estimates vary significantly
from instance to instance even when the design parameters are fixed. Note also
that the “sub-Gaussian experiments” were conducted on exactly the same data as
“Gaussian experiments” of the same sizes d, m.
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3.5 EXERCISES FOR LECTURE 3

T marks more difficult exercises.

Ezercise 3.20. . The goal of what follows is to refine the change detection pro-
cedure (let us refer to it as to “basic”) developed in Section 2.9.6.1. The idea is
pretty simple. With the notation from Section 2.9.6.1, in basic procedure, when
testing the null hypothesis Hy vs. signal hypothesis HY, we looked at the difference
(¢ = wy — wy and were trying to decide whether the energy of the deterministic
component x; — x; of (; is 0, as is the case under Hy, or is > p?, as is the case
under HY. Note that if o € [o,7] is the actual intensity of the observation noise,
then the noise component of (; is N'(0,2021,); other things being equal, the large
is the noise in (;, the larger should be p to allow for a reliable, with a given relia-
bility level, decision of this sort. Now note that under the hypothesis Hf, we have
T1 = .. = T;_1, so that the deterministic component of the difference (; = wy — wy
is exactly the same as for the difference Et = wy — ﬁ Ei;ll ws, while the noise
component in ¢ is N(0,0714) with 07 = 02 + 2702 = ;107 thus, the intensity
of noise in Zt is at most the one in (;, and this intensity, in contrast to the one for
(¢, decreases as t grows. Now goes the exercise:

Let reliability tolerances e, € (0,1) be given, and let our goal be to design a
system of inferences Ty, t = 2,3,..., K, which, when used in the same fashion as
tests 7,” were used in Basic procedure, results in false alarm probability at most
€ and in probability to miss a change of energy > p? at most ; needless to say,
we want to achieve this goal with as small p as possible. Think how to utilize the
above observation to refine Basic procedure by hopefully reducing (and provably
not increasing) the required value of p. Implement the Basic and the refined change
detection procedures and compare their quality (the resulting values of p) on, say,
the data used in the experiment reported in Section 2.9.6.1.

Ezercise 3.21. In the situation of Section 3.3.4, design of a “good” estimate is
reduced to solving convex optimization problem (3.50). Note that the objective in
this problem is, in a sense, “implicit” — the design variable is f, and the objective is
obtained from an explicit convex-concave function of f and (z,y) by maximization
over (z,y). While there exist solvers capable to process problems of this type
efficiently; however, commonly used of-the-shelf solvers, like cvx, cannot handle
problems like (3.50). The goal of the exercise to follow is to reformulate (3.50) as
a semidefinite program, thus making it amenable for cvx.

On an immediate inspection, the situation we are interested in is as follows. We
are given

e a nonempty convex compact set X C R™ along with affine function M (z) taking
values in S and such that M(x) = 0 when € X, and
e affine function F(f): R — R™.

Given v > 0, this data gives rise to the convex function

¥(1) = max { FT(1)e + /TP 017}

and we want to find a “nice” representation of this function, specifically, want to
represent the inequality 7 > ¥(f) by a bunch of LMI’s in variables 7, f, and
perhaps additional variables.
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To achieve our goal, we assume in the sequel that the set
Xt ={(z,M):2€ X,M = M(x)}

can be described by a system of linear and semidefinite constraints in variables
x, M and additional variables, specifically, the system

(@) s;—alx—blé—Te(C;M) >0,i <1

(b) S—Alx)—B(¢)—-C(M) =0

(¢ M*>»0

where A(+),B(:),C(-) are affine functions taking values in S». We assume that
this system of constraints is essentially strictly feasible, meaning that there exists
a feasible solution at which the semidefinite constraints (b), (¢) are satisfied strictly
(i.e., the left hand sides of the LMI’s are positive definite).

Now goes the exercise:

1. Check that ¥(f) is the optimal value in a semidefinite program, specifically,

si—ajx—bleé—Tr(C;M)>0,i<T (

S— A( ) = B(§) —C(M) =0 (
U(f)= max { F'(flz+~t:{ M>0 (c)
(

x,M,E,t

2. Passing from (P) to the semidefinite dual of (P), build explicit semidefinite
representation of W, that is, an explicit system S of LMI’s in variables f, 7 and
additional variables u such that

{r>29()} & {u: (7, f,u) satisfies S}.

Ezercise 3.22. T Consider the situation as follows: given an m xn “sensing matrix”
A which is stochastic— with columns from the probabilistic simplex A,,, = {v € R™ :
v >0, v, =1} and a nonempty closed subset U of A,,, we observe M-element,
M > 1, ii.d. sample (M = ((y, ..., Car) with ¢, drawn from the discrete distribution
Auy, wherc u, is an unknown probabilistic vector (“signal”) known to belong to
U. We treat the discrete distribution Au, u € A,,, as a distribution on the vertices
€1, ...,em of A,,, so that possible values of (; are basic orths ey, ..., e, in R™. Our
goal is to recover the value at u, of a given quadratic form

F(u) = uTQu+ 2¢"u.

Observe that for u € A,,, we have u = [uuT]1,,, where 1} is the all-ones vector in
RF. This observation allows to rewrite F'(u) as a homogeneous quadratic form:

F(u) =u"Qu, @ =Q +[q1} + 1,¢"]. (3.97)

The goal of Exercise is to follow the approach developed in Section 3.4.1 for the
Gaussian case in order to build an estimate g(¢*) of F(u), specifically, estimate as
follows.

Let
In ={(i,§) : 1 <i<j <M}, Jy = Card(Jnr).
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For (M = (¢1,...,Car) with ¢ € {e1,...,em}, 1 <k < M, let
1 .
wij[CM] = §[CzCJT +CjCiT]a (@7]) € Jm-
The estimates we are interested in are of the form

g(¢M) =Tr (h {JLZWGWwU [cM]} ) + 5 (3.98)

w[¢M]

where h € S™ and k € R are the parameters of the estimate.
Now goes the exercise:

. Verify that when (,’s stem from signal v € U, the expectation of w[¢™] is a linear
image Az[u] AT of the matrix z[u] = uu” € S™: denoting by PM the distribution
of (M, we have

Ecvpu {w[(M]} = Az[u]A”. (3.99)

Check that when setting
Zk:{wGSk:wtO,wZO,lgwlkzl}’

where x > 0 for a matrix  means that x is entrywise nonnegative, the image of
Z,, under the mapping z — AzAT is contained in Z,,.

. Let Ak = {z € S : 2 > 0,1T721,, = 1}, so that Zj is the set of all positive
semidefinite matrices form A*. For u € A™, let P, be the distribution of the
random matrix w taking values in S, namely, as follows: the possible values of
w are matrices of the form e = %[eiejT +ejel], 1 <i < j < m; for every i <m,
w takes value e? with probability p;;, and for every i, j with i < j, w takes value

e¥ with probability 2p45. Further, let us set

Oy (h;p) =1n Z wijexp{hii} | : S™ x A™ - R, (3.100)

ij=1

so that ®; is a continuous convex-concave function on S™ x A™.

2.1. Prove that

V(h€S™ p€ Zy): In(Ey~p, {exp{Tr(hw)}}) = ®1(h; p). (3.101)
2.2. Derive from 2.1 that setting
K=K(M)=|M/2], ®pr(h;p) = KO (h/K;pu): S™ x A™ - R,

®,; is a continuous convex-concave function on S™ x A™ such @k (0;u) =0
for all 4 € Z,,,, and whenever u € U, the following holds true:

Let PM be the distribution of (M = ({1, ..., {ys) with independent blocks
Ck ~ Au, and let P, j is the distribution of w = w[¢(M], ¢M ~ PM. Then
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Y(ue UheS™):

I (Bup, o, {exp{Tr(hw)}}) < Bas(h; Azfu] A7), 2fu] = w3102

3. Combine the above observations with Corollary 3.7 to arrive at the following
result:

Proposition 3.23. In the situation in question, let Z be a convex compact subset
of Z, such that vu” € Z for allu € U. Given e € (0,1), let

U, (h,a) = max [a®nr(h/a, AzAT) — Tr(Q2)] : 8™ x {a > 0} = R,
U_(h,a) = max [a®n(—h/a, AzAT) + Tr(Qz)] : ™ x {a > 0} = R
Uy (h) = infaso{Vy(h,a)+aln(2/e)}
= max (iyr;fo [a®n(h/a, AzAT) — Tr(Qz) + aIn(2/€)]
= max ég% [B21(h/B, AzAT) — Tr(Q2) + £ 1n(2/€)]  [8 = Kdal,
U_(h) = inf {¥_(h,a) + aln(2/e)}
= 