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Preface

When speaking about links between Statistics and Optimization, what comes
to mind first is the indispensable role played by optimization algorithms in the
“computational toolbox” of Statistics (think about the numerical implementation
of the fundamental Maximum Likelihood method). However, on a second thought,
we should conclude that whatever high this role could be, the fact that it comes
to our mind first primarily reflects the weaknesses of Optimization rather than
its strengths; were optimization algorithms used in Statistics as efficient and as
reliable as, say, Linear Algebra techniques used there, nobody would think about
special links between Statistics and Optimization, same as nobody usually thinks
about special links between Statistics and Linear Algebra. When computational,
rather than methodological, issues are concerned, we start to think about links with
Optimization, Linear Algebra, Numerical Analysis, etc., only when computational
tools offered to us by these disciplines do not work well and need the attention of
experts in these disciplines.

The goal of Lectures is to present another type of links between Optimization
and Statistics, those which have nothing in common with algorithms and number-
crunching. What we are speaking about, are the situations where Optimization
theory (theory, not algorithms!) seems to be of methodological value in Statistics,
acting as the source of statistical inferences with provably optimal, or nearly so,
performance. In this context, we focus on utilizing Convex Programming theory,
mainly due to its power, but also due to the desire to end up with inference routines
reducing to solving convex optimization problems and thus implementable in a
computationally efficient fashion. Thus, while we do not mention computational
issues explicitly, we do remember that at the end of the day we need a number, and
in this respect, intrinsically computationally friendly convex optimization models
are the first choice.

The three topics we intend to consider are:

1. Sparsity-oriented Compressive Sensing. Here the role of Convex Optimization
theory, by itself by far not negligible (it allows, e.g., to derive from “first prin-
ciples” the necessary and sufficient conditions for the validity of `1 recovery) is
relatively less important than in two other topics. Nevertheless, we believe that
Compressive Sensing, due to its popularity and the fact that now it is one of
the major “customers” of advanced convex optimization algorithms, is worthy of
being considered.

2. Pairwise and Multiple Hypothesis Testing, including sequential tests, estimation
of linear functionals, and some rudimentary design of experiments. This is the
topic where, as of now, the approaches based on Convex Optimization theory
were most successful.

3. Recovery of signals from noisy observations of their linear images.
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PREFACE

The exposition does not require prior knowledge of Statistics and Optimization;
as far as these disciplines are concerned, all necessary for us facts and concepts
are incorporated into the text. The actual prerequisites are elementary Calculus,
Probability, and Linear Algebra and (last but by far not least) general mathematical
culture.

Anatoli Juditsky & Arkadi Nemirovski
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Notational conventions

Vectors and matrices.

By default, all vectors are column ones; to write them down, we use “Matlab nota-

tion:”

 1
2
3

 is written as [1; 2; 3]. More generally, for vectors/matrices A,B, ..., Z

of the same “width” [A;B;C; ...;D] is the matrix obtained by writing B beneath
of A, C beneath of B, and so on. For vectors/matrices A,B,C, ..., Z of the same
“height,” [A,B,C, ..., Z] denotes the matrix obtained by writing B to the right of
A, C to the right of B, and so on. Examples: for what in the “normal” notation is

written down as A =

[
1 2
3 4

]
, B =

[
5 6

]
, C =

[
7
8

]
, we have

[A;B] =

 1 2
3 4
5 6

 = [1, 2; 3, 4; 5, 6], [A,C] =

[
1 2 7
3 4 8

]
= [1, 2, 7; 3, 4, 8].

Blanks in matrices replace (blocks of) zero entries. For example, 1
2
3 4 5

 =

 1 0 0
2 0 0
3 4 5

 .
Diag{A1, A2, ..., Ak} stands for block-diagonal matrix with diagonal blocks A1,
A2,...,Ak. For example,

Diag{1, 2, 3} =

 1
2

3

 , Diag{[1, 2]; [3; 4]} =

 1 2
3
4

 .
For an m×n matrix A, dg(A) is the diagonal of A – vector of dimension min[m,n]

with entries Aii, 1 ≤ i ≤ min[m,n].

Standard linear spaces

in our course are Rn (the space of n-dimensional column vectors), Rm×n (the space
of m× n real matrices), and Sn (the space of n× n real symmetric matrices). All
these linear spaces are equipped with the standard inner product:

〈A,B〉 =
∑
i,j

AijBij = Tr(ABT ) = Tr(BAT ) = Tr(ATB) = Tr(BTA);



2

StatOpt˙LN˙NS January 21, 2019 7x10

ACKNOWLEDGMENTS

in the case when A = a and B = b are column vectors, this simplifies to 〈a, b〉 =
aT b = bTa, and when A,B are symmetric, there is no need to write BT in Tr(ABT ).

Usually we denote vectors by lowercase, and matrices – by uppercase letters;
sometimes, however, lowercase letters are used also for matrices.

Given a linear mapping A(x) : Ex → Ey, where Ex, Ey are standard linear
spaces, one can define the conjugate mapping A∗(y) : Ey → Ex via the identity

〈A(x), y〉 = 〈x,A∗(y)〉 ∀(x ∈ Ex, y ∈ Ey).

One always has (A∗)∗ = A. When Ex = Rn, Ey = Rm and A(x) = Ax, one has
A∗(y) = AT y; when Ex = Rn, Ey = Sm, so that A(x) =

∑n
i=1 xiAi, Ai ∈ Sm, we

have
A∗(Y ) = [Tr(A1Y ); ...; Tr(AnY )].

Zn is the set of n-dimensional integer vectors.

Norms.

For 1 ≤ p ≤ ∞ and for a vector x = [x1; ...;xn] ∈ Rn, ‖x‖p is the standard p-norm
of x:

‖x‖p =

{
(
∑n
i=1 |xi|p)

1/p
, 1 ≤ p <∞

maxi |xi| = limp′→∞ ‖x‖p′ , p =∞
,

Notation for various norms of matrices is specified when used.

Standard cones.

R+ is the nonnegative ray on the real axis, Rn
+ stands for the n-dimensional non-

negative orthant – the cone comprised of all entrywise nonnegative vectors from
Rn, Sn+ stands for the positive semidefinite cone in Sn – the cone comprised of all
positive semidefinite matrices from Sn.

Miscellaneous.

• For matrices A, B, relation A � B, or, equivalently, B � A, means that A, B are
symmetric matrices of the same size such that B − A is positive semidefinite; we
write A � 0 to express the fact that A is a symmetric positive semidefinite matrix.
Strict version A � B (⇔ B ≺ A) of A � B means that A − B is positive definite
(and, as above, A and B are symmetric matrices of the same size).
• Linear Matrix Inequality (LMI, a.k.a. semidefinite constraint) in variables x is
the constraint on x stating that a symmetric matrix affinely depending on x is
positive semidefinite. When x ∈ Rn, LMI reads

a0 +
∑
i

xiai � 0 [ai ∈ Sm, 0 ≤ i ≤ n]

• N (µ,Θ) stands for the Gaussian distribution with mean µ and covariance matrix
Θ.
• For a probability distribution P ,

• ξ ∼ P means that ξ is a random variable with distribution P . Sometimes we
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express the same fact by writing ξ ∼ p(·), where p is the density of P taken w.r.t.
some reference measure (the latter always is fixed by the context);
• Eξ∼P {f(ξ)} is the expectation of f(ξ), ξ ∼ P ; when P is clear from the context,

this notation can be shortened to Eξ{f(ξ)}, or EP {f(ξ)}, or even E{f(ξ)}. Sim-
ilarly, Probξ∼P {...}, Probξ{...}, ProbP {...}, Prob{...} denote the P -probability
of the event specified inside the braces.

• O(1)’s stand for positive absolute constants – positive reals which we do not want
or are too lazy to write down explicitly, like in sin(x) ≤ O(1)|x|.
•
∫

Ω
f(ξ)Π(dξ) stands for the integral, taken w.r.t. measure Π over domain Ω, of

function f .
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About proofs

Lecture Notes are basically self-contained in terms of proofs of the statements to
follow. Simple proofs usually are placed immediately after the corresponding state-
ments; more technical proofs are transferred to dedicated sections titled “Proof of
...,” and this is where a reader should look for “missing” proofs.
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Lecture One

Sparse Recovery via `1 Minimization
In this lecture, we overview basic results of Compressed Sensing – a relatively new
and extremely rapidly developing area in Signal Processing dealing with recovering
signals (vectors x from some Rn) from their noisy observations Ax+η (A is a given
m × n sensing matrix, η is observation noise) in the case when the number of ob-
servations m is much smaller than the signal’s dimension n, but is essentially larger
than the “true” dimension – the number of nonzero entries – in the signals. This
setup leads to extremely deep, elegant and highly innovative theory and possesses
quite significant applied potential. It should be added that along with the plain
sparsity (small number of nonzero entries), Compressed Sensing deals with other
types of “low-dimensional structure” hidden in high-dimensional signals, most no-
tably, with the case of low rank matrix recovery, when signal is a matrix, and sparse
signals are matrices with low ranks, and the case of block sparsity, where signal is
a block vector, and sparsity means that only small number of blocks are nonzero.
In our presentation, we do not consider these extensions of the simplest sparsity
paradigm.

1.1 COMPRESSED SENSING: WHAT IT IS ABOUT?

1.1.1 Signal Recovery Problem

One of the basic problems in Signal Processing is the problem of recovering a signal
x ∈ Rn from noisy observations

y = Ax+ η (1.1)

of the affine image of the signal under a given sensing mapping x 7→ Ax : Rn → Rm;
in (1.1), η is the observation error. Matrix A in (1.1) is called sensing matrix.

Recovery problem of outlined types arise in many applications, including, but
by far not reducing to,

• communications, where x is the signal sent by transmitters, y is the signal
recorded by receivers, A represents the communication channel (reflecting, e.g.,
dependencies of decays in signals’ amplitude on the transmitter-receiver dis-
tances); η here typically is modeled as the standard (zero mean, unit covariance
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matrix) m-dimensional Gaussian noise1;
• image reconstruction, where the signal x is an image – a 2D array in the usual

photography, or a 3D array in Tomography, and y is data acquired by the imaging
device. Here η in many cases (although not always) can again be modeled as the
standard Gaussian noise;
• linear regression arising in a wide range of applications. In linear regression, one

is given m pairs “input ai ∈ Rn” to a “black box” — output yi ∈ R of the black
box.” Sometimes we have reasons to believe that the output is a corrupted by
noise version of the “existing in the nature,” but unobservable, ideal output”
y∗i = xTai which is just a linear function of the input (this is called “linear
regression model,” with inputs ai called “regressors”). Our goal is to convert
actual observations (ai, yi), 1 ≤ i ≤ m, into estimates of the unknown “true”
vector of parameters x. Denoting by A the matrix with the rows [ai]T and
assembling individual observations yi into a single observation y = [y1; ...; ym] ∈
Rm, we arrive at the problem of recovering vector x from noisy observations of
Ax. Here again the most popular model for η is the standard Gaussian noise.

1.1.2 Signal Recovery: parametric and non-parametric cases

Recovering signal x from observation y would be easy if there were no observation
noise (η = 0) and the rank of matrix A were equal to the dimension n of signals. In
this case, which can take place only when m ≥ n (“more observations that unknown
parameters”), and is typical in this range of sizes m,n, the desired x would be the
unique solution to the system of linear equation, and to find x would be a simple
problem of Linear Algebra. Aside of this trivial “enough observations, no noise”
case, people over the years looked at the following two versions of the recovery
problem:

Parametric case: m� n, η is nontrivial noise with zero mean, say, standard
Gaussian one. This is the classical statistical setup considered in thousands of
papers, with the emphasis on how to use the numerous observations we have at our
disposal in order to suppress in the recovery, to the extent possible, the influence
of observation noise.

Nonparametric case: m� n. Literally treated, this case seems to be sense-
less: when the number of observations is less that the number of unknown param-
eters, even in the no-noise case we arrive at the necessity to solve an undetermined
(less equations than unknowns) system of linear equations. Linear Algebra says that
if solvable, the system has infinitely many solutions; moreover, the solution set (an
affine subspace of positive dimension) is unbounded, meaning that the solutions are
in no sense close to each other. Typical way to make the case of m� n meaning-
ful is to add to the observations (1.1) some a priori information on the signal. In

1The “physical” noise usually indeed is Gaussian with zero mean, but its covariance matrix
not necessarily is the unit matrix. Note, however, that a zero mean Gaussian noise η always can
be represented as Qξ with standard Gaussian ξ; assuming Q nonsingular (which indeed is so when
the covariance matrix of η is positive definite), we can rewrite (1.1) equivalently as

Q−1y = [Q−1A]x+ ξ

and treat Q−1y and Q−1A as our new observation and new sensing matrix; new observation noise
ξ is indeed standard. Thus, in the case of Gaussian zero mean observation noise, to assume the
noise standard Gaussian is the same as to assume that its covariance matrix is known.
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traditional Nonparametric Statistics this additional information is summarized in
a given to us in advance bounded convex set X ⊂ Rn known to contain the true
signal x. This set usually is such that every signal x ∈ X can be approximated by
a linear combination of s = 1, 2, ..., n of vectors from properly selected and known
to us in advance orthonormal basis (“dictionary” in the slang of signal processing)
within accuracy δ(s), where δ(s) is a known in advance function approaching 0 as
s → ∞. In this situation, with appropriate A (e.g., just the unit matrix, as in
denoising problem), we can select somehow s � m and try to recover x as if it
were a vector from the linear span Es of the first s vectors of the outlined basis. In
the “ideal case” x ∈ Es, recovering x in fact reduces to the case where the dimen-
sion of the signal is s � m rather than n � m, and we arrive at the well-studied
situation of recovering signal of low (as compared to the number of observations)
dimension. In the “realistic case” of x δ(s)-close to Es, deviation of x from Es
results in additional component in the recovery error (“bias”); a typical result of
traditional Nonparametric Statistics quantifies the resulting error and minimizes it
in s. Of course, this outline of traditional statistical approach to “nonparametric”
(with n � m) recovery problems is extremely sketchy, but it captures the most
important in our context fact: with the traditional approach to nonparametric sig-
nal recovery, one assumes that after representing the signals by vectors of their
coefficients in properly selected orthonormal basis, the n-dimensional signal to be
recovered can be well approximated by s-sparse (at most s nonzero entries) signal,
with s � n, and this sparse approximation can be obtained by zeroing out all but
the first s entries in the signal vector.

The just formulated assumption indeed takes place for signals obtained by dis-
cretization of smooth uni- and multivariate functions, and this class of signals for
several decades was the main, if not the only, focus of Nonparametric Statistics.

To the best of our knowledge, developments in the traditional Nonparametric
Statistics had nearly nothing to do with Convex Optimization.

Compressed Sensing. The situation changed dramatically around Year 2000
as a consequence of the breakthroughs due to D. Donoho, T. Tao, J. Romberg, E.
Candes, J. Fuchs and several other researchers; as a result of these breakthroughs,
an extremely popular and completely novel area of research, called Compressed
Sensing, emerged.

In the Compressed Sensing (CS) setup of the Signal Recovery problem, same
as in the traditional Nonparametric Statistics, is assumed that after passing to an
appropriate basis, the signal to be recovered is s-sparse (has ≤ s nonzero entries),
or is well approximated by s-sparse signal. The difference with the traditional
approach is that now we assume nothing on the location of the nonzero entries.
Thus, the a priori information on the signal x both in the traditional and in the
CS settings is summarized in a set X known to contain the signal x we want to
recover. The difference is, that in the traditional setting, X is a bounded convex
and “nice” (well approximated by its low-dimensional cross-sections) set, while in
CS this set is, computationally speaking, a “monster:” already in the simplest case
of recovering exactly s-sparse signals, X is the union of all s-dimensional coordinate
planes, which is a heavily combinatorial entity.

Note that in many applications we indeed can be sure that the true vector
of parameters θ∗ is sparse. Consider, e.g., the following story about signal
detection. There are n locations where signal transmitters could be placed,
and m locations with the receivers. The contribution of a signal of unit
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magnitude originating in location j to the signal measured by receiver i is
a known quantity Aij, and signals originating in different locations merely
sum up in the receivers; thus, if x is the n-dimensional vector with entries xj
representing the magnitudes of signals transmitted in locations j = 1, 2, ..., n,
then the m-dimensional vector y of measurements of the m receivers is y =
Ax+ η, where η is the observation noise. Given y, we intend to recover x.

Now, if the receivers are hydrophones registering noises emitted by sub-
marines in certain part of Atlantic, tentative positions of submarines being
discretized with resolution 500 m, the dimension of the vector x (the number
of points in the discretization grid) will be in the range of tens of thousands,
if not tens of millions. At the same time, the total number of submarines
(i.e., nonzero entries in x) can be safely upper-bounded by 50, if not by 20.

In order to see sparsity on our everyday life, look at the 256×256 image on the top
of Figure 1.1. The image can be thought of as a 2562 = 65536-dimensional vector
comprised of pixels’ intensities in gray scale, and there is no much sparsity in
this vector. However, when representing the image in the wavelet basis, whatever it
means, we get a “nearly sparse” vector of wavelet coefficients (this is true for typical
“non-pathological” images). On the bottom of Figure 1.1 we see what happens when
we zero out all but a percentage of the largest in magnitude wavelet coefficients and
replace the true image by its sparse, in the wavelet basis, approximations.

Our visual illustration along with numerous similar examples show the “every-
day presence” of sparsity and the possibility to utilize it when compressing signals.
The difficulty, however, is that simple compression – compute the coefficients of the
signal in an appropriate basis and then keep, say, 10% of the largest in magnitude
coefficients – requires to start with digitalizing the signal – representing it as an
array of all its coefficients in some orthonormal basis. These coefficients are inner
products of the signal with vectors of the basis; for a “physical” signal, like speech
or image, these inner products are computed by analogous devices, with subsequent
discretization of the results. After the measurements are discretized, processing the
signal (denoising, compression, storing, etc., etc.) can be fully computerized. The
major potential (to some extent, already actual) advantage of Compressed Sensing
is in the possibility to reduce the “analogous effort” in the outlined process: instead
of computing analogously n linear forms of n-dimensional signal x (its coefficients
in a basis), we use analogous device to compute m � n other linear forms of the
signal and then use signal’s sparsity in a known to us basis in order to recover the
signal reasonably well from these m observations.

In our “picture illustration” this technology would work (in fact, works - it
is called “single pixel camera,” see Figure 1.2) as follows: in reality, the digital
256× 256 image on the top of Figure 1.1 was obtained by analogous device – a dig-
ital camera which gets on input analogous signal (light of varying along the field of
view intensity caught by camera’s lenses) and discretizes lights’s intensity in every
pixel to get the digitalized image. We then can compute the wavelet coefficients
of the digitalized image, compress its representation by keeping, say, just 10% of
leading coefficients, etc., etc., but “the damage is already done” – we have already
spent our analogous resources to get the entire digitalized image. The technology
utilizing Compressed Sensing would work as follows: instead of measuring and dis-
cretizing light intensity in every one of the 65,536 pixels, we compute analogously
the integral, taken over the field of view, of the product of light intensity and an
analogously generated “mask,” and do it for, say, 20,000 different masks, thus ob-
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Figure 1.1: Top: true 256 × 256 image; bottom: sparse in the wavelet basis
approximations of the image. Wavelet basis is orthonormal, and a natural way to
quantify near-sparsity of a signal is to look at the fraction of total energy (sum
of squares of wavelet coefficients) stored in the leading coefficients; these are the
“energy data” presented on the figure.
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Figure 1.2: Singe-pixel camera

taining measurements of 20,000 linear forms of our 65,536-dimensional signal. Next
we utilize, via the Compressed Sensing machinery, signal’s sparsity in the wavelet
basis in order to recover the signal from these 20,000 measurements. With this
approach, we reduce the “analogous component” of signal processing effort, at the
price of increasing the “computerized component” of the effort (instead of ready-to-
use digitalized image directly given by 65,536 analogous measurements, we need to
recover the image by applying computationally not so trivial decoding algorithms
to our 20,000 “indirect” measurements). When taking pictures by your camera or
ipad, the game is not worth the candle – analogous component of taking usual pic-
tures is cheap enough, and decreasing it at the price of nontrivial decoding of the
digitalized measurements would be counter-productive. There are, however, impor-
tant applications where the advantages stemming from reduced “analogous effort”
overweight significantly the drawbacks caused by the necessity to use nontrivial
computerized decoding.

1.1.3 Compressed Sensing via `1 minimization: Motivation

1.1.3.1 Preliminaries

In principle there is nothing surprising in the fact that under reasonable assumption
on m× n sensing matrix A we may hope to recover from noisy observations of Ax
an s-sparse, with s � m, signal x. Indeed, assume for the sake of simplicity
that there are no observation errors, and let Colj [A] be j-th column in A. If we
knew the locations j1 < j2 < ... < js of the nonzero entries in x, identifying
x could be reduced to solving system of linear equations

∑s
`=1 xi`Colj` [A] = y

with m equations and s � m unknowns; assuming every s columns in A linearly
independent (a quite unrestrictive assumption on a matrix with m ≥ s rows), the
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solution to the above system is unique, and is exactly the signal we are looking for.
Of course, the assumption that we know the locations of nonzeros in x makes the
recovery problem completely trivial. However, it suggests the following course of
actions: given noiseless observation y = Ax of an s-sparse signal x, let us solve the
combinatorial optimization problem

min
z
{‖z‖0 : Az = y} , (1.2)

where ‖z‖0 is the number of nonzero entries in z. Clearly, the problem has a solution
with the value of the objective at most s. Moreover, it is immediately seen (verify
it!) that if every 2s columns in A are linearly independent (which again is a very
unrestrictive assumption on the matrix A provided that m ≥ 2s), then the true
signal x is the unique optimal solution to (1.2).

What was said so far can be extended to the case of noisy observations and “nearly
s-sparse” signals x. For example, assuming that the observation error is “uncertain-
but-bounded,” specifically some known norm ‖ · ‖ of this error does not exceed a
given ε > 0, and that the true signal is exactly s-sparse (think how to relax this to
“near s-sparsity”), we could solve the combinatorial optimization problem

min
z
{‖z‖0 : ‖Az − y‖ ≤ ε} . (1.3)

Assuming that every m×2s submatrix Ā of A is not just with linearly independent
columns (i.e., with trivial kernel), but is reasonably well conditioned:

‖Āw‖ ≥ C−1‖w‖2

for all (2s)-dimensional vectors w, with some constant C, it is immediately seen

that the true signal x underlying observation and the optimal solution x̂ of (1.3)

are close to each other within accuracy of order of ε: ‖x − x̂‖2 ≤ 2Cε; it is easily

seen that the resulting error bound is basically as good as it could be.

We see that the difficulties with recovering sparse signals stem not from the lack of
information, they are of purely computational nature: (1.2) is a disastrously difficult
combinatorial problem, and the only known way to process it is by “brute force”
search through all guesses on where the nonzeros in x are located – by inspecting
first the only option that there are no nonzeros in x at all, then by inspecting n
options that there is only one nonzero, for every one of n locations of this nonzero,
then n(n − 1)/2 options that there are exactly two nonzeros, etc., etc. until the
current option will result in a solvable system of linear equations Az = y in variables
z with entries restricted to vanish outside the locations prescribed by the option
under consideration. Running time of this “brute force” search, beyond the range
of small values of s and n (by far too small to be of any applied interest) is by many
orders of magnitude larger than what we can afford to ourselves in reality2.

A partial remedy is as follows. Well, if we do not know how to minimize under
linear constraints, as in (1.2), the “bad” objective ‖z‖0, let us “approximate” this

2When s = 5 and n = 100, a sharp upper bound on the number of linear systems we should
process before termination in the “brute force” algorithm is ≈ 7.53e7 — much, but perhaps doable.
When n = 200 and s = 20, the number of systems to be processed jumps to ≈ 1.61e27, which is
by many orders of magnitude beyond our “computational grasp”; we would be unable to carry out
that many computations even if the fate of the mankind were at stake. And from the perspective
of Compressed Sensing, n = 200 still is a completely toy size, by 3-4 orders of magnitude less than
we would like to handle.
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objective with one which we do know how to minimize. The true objective is
separable: ‖z‖ =

∑n
i=1 ξ(zj), where ξ(s) is the function on the axis equal to 0 at the

origin and equal to 1 otherwise. As a matter of fact, the separable functions which
we do know how to minimize under linear constraints are sums of convex functions
of z1, ..., zn. The most natural candidate to the role of convex approximation of ξ(s)
is |s|; with this approximation, (1.2) converts into the `1 minimization problem

min
z

{
‖z‖1 :=

n∑
i=1

|zj | : Az = y

}
, (1.4)

and (1.3) becomes the convex optimization problem

min
z

{
‖z‖1 :=

n∑
i=1

|zj | : ‖Az − y‖ ≤ ε

}
. (1.5)

Both problems are efficiently solvable, which is nice; the question, however, is how
relevant these problems are in our context – whether it is true that they do recover
the “true” s-sparse signals in the noiseless case, or “nearly recover” these signals
when the observation error is small. Since we want to be able to handle whatever
s-sparse signals, the validity of `1 recovery – it ability to recover well every s-sparse
signal – depends solely on the sensing matrix A. Our current goal is to understand
what are “good” in this respect sensing matrices.

1.2 VALIDITY OF SPARSE SIGNAL RECOVERY VIA `1

MINIMIZATION

What follows is based on the standard basic results of Compressed Sensing theory
originating from [35, 34, 36, 37, 32, 33, 48, 46, 47, 60, 61] and augmented by the
results of [85]3.

1.2.1 Validity of `1 minimization in the noiseless case

The minimal requirement on sensing matrix A which makes `1 minimization valid
is to guarantee the correct recovery of exactly s-sparse signals in the noiseless case,
and we start with investigating this property.

1.2.1.1 Notational convention

From now on, for a vector x ∈ Rn

• Ix = {j : xj 6= 0} stands for the support of x; we also set

I+
x = {j : xj > 0}, I−x = {j : xj < 0} [⇒ Ix = I+

x ∪ I−x ]

• for a subset I of the index set {1, ..., n}, xI stands for the vector obtained from

3in fact, in the latter source, an extension of the sparsity, the so called block sparsity, is
considered; in what follows, we restrict the results of [85] to the case of plain sparsity.
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x by zeroing out entries with indexes not in I, and Io for the complement of I:

Io = {i ∈ {1, ..., n} : i 6∈ I};

• for s ≤ n, xs stands for the vector obtained from x by zeroing our all but the s
largest in magnitude entries4 Note that xs is the best s-sparse approximation of
x in any one of the `p norms, 1 ≤ p ≤ ∞;

• for s ≤ n and p ∈ [1,∞], we set

‖x‖s,p = ‖xs‖p;

note that ‖ · ‖s,p is a norm (why?).

1.2.1.2 s-Goodness

Definition of s-goodness. Let us say that an m× n sensing matrix A is s-good,
if whenever the true signal x underlying noiseless observations is s-sparse, this
signal will be recovered exactly by `1 minimization. In other words, A is s-good,
if whenever in y in (1.4) is of the form y = Ax with s-sparse x, x is the unique
optimal solution to (1.4).

Nullspace property. There is a simply-looking necessary and sufficient con-
dition for a sensing matrix A to be s-good – the nullspace property. After this
property is guessed, it is easy to see that it indeed is necessary and sufficient for
s-goodness; we, however, prefer to derive this condition from the “first principles,”
which can be easily done via Convex Optimization; thus, in the case in question,
same as in many other cases, there is no necessity to be smart to arrive at the truth
via “‘lucky guess,” it suffices to be knowledgeable and use the standard tools.

Let us start with necessary and sufficient condition for A to be such that when-
ever x is s-sparse, x is an optimal solution (perhaps, not the unique one) of the
optimization problem

min
z
{‖z‖1 : Az = Ax} , (∗)

let us call the latter property of A weak s-goodness. Our first observation is as
follows:

Proposition 1.1. A is weakly s-good if and only if the following condition holds
true: whenever I is a subset of {1, ..., n} of cardinality ≤ s, we have

∀w ∈ KerA : ‖wI‖1 ≤ ‖wĪ‖1 (1.6)

Proof is immediate. In one direction: Assume A is weakly s-good, and let us
verify (1.6). Let I be an s-element subset of {1, ..., n}, and x be s-sparse vector with
support I. Since A is weakly s-good, x is an optimal solution to (∗). Rewriting the

4note that in general xs is not uniquely defined by x and s, since the s-th largest among
the magnitudes of entries in x can be achieved at several entries. In our context, it does not
matter how the ties of this type are resolved; for the sake of definiteness, we can assume that
when ordering the entries in x according to their magnitudes, from the largest to the smallest,
entries of equal magnitude are ordered in the order of their indexes.
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latter problem in the form of LP, that is, as

min
z,t
{
∑
j

tj : tj + zj ≥ 0, tj − zj ≥ 0, Az = Ax},

and invoking LP optimality conditions, the necessary and sufficient condition for
z = x to be the z-component of an optimal solution is the existence of λ+

j , λ−j ,
µ ∈ Rm (Lagrange multipliers for the constraints tj − zj ≥ 0, tj + zj ≥ 0, and
Az = Ax, respectively) such that

(a) λ+
j + λ−j = 1∀j,

(b) λ+ − λ− +ATµ = 0,
(c) λ+

j (|xj | − xj) = 0∀j,
(d) λ−j (|xj |+ xj) = 0∀j,
(e) λ+

j ≥ 0 ∀j,
(f) λ−j ≥ 0 ∀j.

(1.7)

From (c, d), we have λ+
j = 1, λ−j = 0 for j ∈ I+

x and λ+
j = 0, λ−j = 1 for j ∈ I−x .

From (a) and nonnegativity of λ±j it follows that for j 6∈ Ix we should have −1 ≤
λ+
j −λ

−
j ≤ 1. With this in mind, the above optimality conditions admit eliminating

λ’s and reduce to the following conclusion:
(!) x is an optimal solution to (∗) if and only if there exists vector µ ∈ Rm such

that j-th entry of ATµ is −1, if xj > 0, +1, if xj < 0, and a real from [−1, 1], if
xj = 0.
Now let w ∈ KerA be a vector with the same signs of entries wi, i ∈ I, as these of
the entries in x. Then

0 = µTAw = [ATµ]Tw =
∑
j [A

Tµ]jwj
⇒
∑
j∈Ix |wj | =

∑
j∈Ix [ATµ]jwj = −

∑
j 6∈Ix [ATµ]jwj ≤

∑
j 6∈Ix |wj |

(we have used the fact that [ATµ]j = signxj = signwj for j ∈ Ix and |[ATµ]j | ≤ 1
for all j). Since I can be an arbitrary s-element subset of {1, ..., n} and the pattern
of signs of an s-sparse vector x supported on I can be arbitrary, (1.6) holds true.

Now let us assume that (1.6) holds true, and let us prove that A is weakly s-
sparse. Assume the opposite; then for some s-sparse x, x is not an optimal solution
to (∗), meaning that system (1.7) of linear constraints in variables λ±, µ has no
solution. Applying Theorem on Alternative ([11, Theorem 1.2.1]), we can assign
the constraints (a) – (f) in (1.7) with respective vectors of weights wa, ..., we, wf ,
with the weights we, wf of inequality constraints (e), (f) being nonnegative, such
that multiplying the constraints by the weights and summing up the results, we get
as a consequence of (1.7) a contradictory inequality – one with no solutions at all.
This contradictory consequence of (1.7) is the linear inequality in variables λ±, µ:

[wa+wb+G+wc+we]
Tλ++[wa−wb+G−wd+wf ]Tλ−+wTb A

Tµ ≥
∑
j

(wa)j , (∗∗)

where G+, G− are diagonal matrices with j-th diagonal entry equal to |xj | − xj
(G+) and |xj | + xj (G−). Thus, we can find wa, ..., wf with nonnegative we and
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wf such that

wa + wb +G+wc + we = 0, wa − wb +G−wd + wf = 0, Awb = 0,
∑
j

(wa)j > 0.

or, equivalently, there exist wa, wb, wc, wd such that

(p) wa + wb +G+wc︸ ︷︷ ︸
g

≤ 0,

(q) wa − wb +G−wd︸ ︷︷ ︸
h

≤ 0,

(r) Awb = 0,
(s)

∑
j(wa)j > 0.

Now note that when j ∈ I+
x , we have gj = 0 and thus (p) says that |[wb]j | ≥ [wa]j ,

and when j ∈ I−x , we have hj = 0 and thus (q) says that |[wb]j | ≥ [wa]j . And when
j 6∈ Ix := I+

x ∪ I−x , (p) and (q) say that [wa]j ≤ −|[wb]j |. With this in mind, (s)
implies that −

∑
j 6∈Ix |[wb]j | +

∑
j∈Ix |[wb]j | ≥

∑
j [wa]j > 0. Thus, assuming that

A is not weakly s-good, we have found a set Ix of indexes of cardinality ≤ s and a
vector wb ∈ KerA (see (r)) such that

∑
j∈Ix |[wb]j | >

∑
j 6∈Ix |[wb]j |, contradicting

the condition (1.6). 2

1.2.1.3 Nullspace property

We have established necessary and sufficient condition for A to be weakly s-good;
it states that ‖wI‖1 should be ≤ ‖wIo‖1 for all w ∈ KerA and all I of cardinality
s. It may happen that this inequality holds true as equality, for some nonzero
w ∈ KerA:

∃(w ∈ KerA\{0}, I,Card(I) ≤ s) : ‖wI‖1 = ‖wIo‖1.

In this case matrix A clearly is not s-good, since the s-sparse signal x = wI is not
the unique optimal solution to (∗) – the vector −wIo is a different feasible solution
to the same problem and with the same value of the objective. We conclude that
for A to be s-good, a necessary condition is for the inequality in (1.6) to be strict
whenever w ∈ KerA is nonzero. By the standard compactness arguments, the
latter condition means the existence of γ ∈ (0, 1) such that

∀(w ∈ KerA, I,Card(I) ≤ s) : ‖wI‖1 ≤ γ‖wIo‖1,

or, which is the same, existence of κ ∈ (0, 1/2) such that

∀(w ∈ KerA, I,Card(I) ≤ s) : ‖wI‖1 ≤ κ‖w‖1.

Finally, the supremum of ‖wI‖1 over I of cardinality s is what we have defined the
norm ‖w‖1,s (the sum of s largest magnitudes of entries) of w, so that the condition
we are processing finally can be formulated as

∃κ ∈ (0, 1/2) : ‖w‖1,s ≤ κ‖w‖1 ∀w ∈ KerA. (1.8)
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The resulting nullspace condition in fact is necessary and sufficient for A to be
s-good:

Proposition 1.2. Condition (1.8) is necessary and sufficient for A to be s-good.

Proof. We have already seen that the nullspace condition is necessary for s-
goodness. To verify sufficiency, let A satisfy nullspace condition, and let us prove
that A is s-good. Indeed, let x be an s-sparse vector. By Proposition 1.1, A is
weakly s-good, so that x is an optimal solution to (∗), and the only thing we need
to prove is that if y is another optimal solution to (∗), then y = x. Assuming y
optimal for (∗), let I be the support of x. Setting w = y − x, we have

Aw = 0 & ‖yI − x‖1︸ ︷︷ ︸
‖wI‖1

≤ κ [‖yI − x‖1 + ‖yIo − xIo‖1] = κ[‖wI‖1 + ‖yIo‖1],

whence
(1− κ)‖wI‖1 ≤ κ‖yIo‖1 = κ(‖y‖1 − ‖yI‖1).

Since ‖wI‖1 = ‖yI − x‖1 ≥ ‖x‖1 − ‖yI‖1, we arrive at

(1− κ)(‖x‖1 − ‖yI‖1) ≤ κ(‖y‖1 − ‖yI‖1),

which, due to ‖x‖1 = ‖y‖1 (since x and y are optimal solutions of (∗)) and κ < 1/2,
boils down to

[‖y‖1 =]‖x‖1 ≤ ‖yI‖1,

implying, due to ‖x‖1 = ‖y‖1, that yI = y, that is, y is supported on the support
I of x. In other words, w = y−x is supported on s-element set, and since Aw = 0,
nullspace property implies that y = x. 2

1.2.2 Imperfect `1 minimization

We have found a necessary and sufficient condition for `1 minimization to recover
exactly s-sparse signals in the noiseless case. “In reality,” both these assumptions
typically are violated: instead of s-sparse signals, we should speak about “nearly
s-sparse ones,” quantifying the deviation from sparsity by the distance from the
signal x underlying observations to its best s-sparse approximation xs. Similarly,
we should allow for nonzero observation noise. With noisy observations and/or
imperfect sparsity, we cannot hope to recover signal exactly; all we may hope for,
is to recover it with some error depending on the level of observation noise and
“deviation from s-sparsity” and tending to zero as these level and deviation tend to
0. We are about to quantify the Nullspace property to allow for instructive “error
analysis.”

1.2.2.1 Contrast matrices and quantifications of Nullspace property

By itself, Nullspace property says something about the signals from the kernel of
the sensing matrix. We can reformulate it equivalently to say something important
about all signals. Namely, observe that given sparsity s and κ ∈ (0, 1/2), the
Nullspace property

‖w‖s,1 ≤ κ‖w‖1 ∀w ∈ KerA (1.9)
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is satisfied if and only if for a properly selected constant C one has

‖w‖s,1 ≤ C‖Aw‖2 + κ‖w‖1 ∀w. (1.10)

Indeed, (1.10) clearly implies (1.9); to get the inverse implication, note that for
every h orthogonal to KerA it holds

‖Ah‖2 ≥ σ‖h‖2,

where σ > 0 is the minimal positive singular value of A. Now, given w ∈ Rn, we
can decompose w into the sum of w̄ ∈ KerA and h ∈ (KerA)⊥, so that

‖w‖s,1 ≤ ‖w̄‖s,1 + ‖h‖s,1 ≤ κ‖w̄‖1 +
√
s‖h‖s,2 ≤ κ[‖w‖1 + ‖h‖1] +

√
s‖h‖2

≤ κ‖w‖1 + [κ
√
n+
√
s]‖h‖2 ≤ σ−1[κ

√
n+
√
s]︸ ︷︷ ︸

C

‖Ah‖2︸ ︷︷ ︸
=‖Aw‖2

+κ‖w‖1,

as required in (1.10).

Condition Q1(s, κ). For our purposes, it is convenient to present the condition
(1.10) in the following flexible form:

‖w‖s,1 ≤ s‖HTAw‖+ κ‖w‖1, (1.11)

where H is an m × N contrast matrix and ‖ · ‖ is some norm on RN . Whenever
a pair (H, ‖ · ‖), called contrast pair, satisfies (1.11), we say that (H, ‖ · ‖) satisfies
condition Q1(s, κ). From what we have seen, If A possesses Nullspace property
with some sparsity level s and some κ ∈ (0, 1/2), then there are many ways to
select pairs (H, ‖ · ‖) satisfying Q1(s, κ), e.g., to take H = CIm with appropriately
large C and ‖ · ‖ = ‖ · ‖2.

Conditions Qq(s, κ). As we shall see in a while, it makes sense to embed
the condition Q1(s, κ) into a parametric family of conditions Qq(s, κ), where the
parameter q runs through [1,∞]. Specifically,

Given m×n sensing matrix A, sparsity level s ≤ n and κ ∈ (0, 1/2), we say
that m×N matrix H and a norm ‖ · ‖ on RN satisfy condition Qq(s, κ), if

‖w‖s,q ≤ s
1
q ‖HTAw‖+ κs

1
q−1‖w‖1 ∀w ∈ Rn. (1.12)

Let us make two immediate observations on relations between the conditions:

A. When a pair (H, ‖ · ‖) satisfies condition Qq(s, κ), the pair satisfies also all con-
ditions Qq′(s, κ) with 1 ≤ q′ ≤ q.

Indeed in the situation in question for 1 ≤ q′ ≤ q it holds

‖w‖s,q′ ≤ s
1
q′−

1
q ‖w‖q,s ≤ s

1
q′−

1
q

[
s

1
q ‖HTAw‖+ κs

1
q
−1‖w‖1

]
= s

1
q′ ‖HTAw‖+ κs

1
q′−1‖w‖1,

where the first inequality is the standard inequality between `p-norms of the

s-dimensional vector ws.

B. When a pair (H, ‖ · ‖) satisfies condition Qq(s, κ) and 1 ≤ s′ ≤ s, the pair

((s/s′)
1
qH, ‖ · ‖) satisfies the condition Qq(s

′, κ).
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Indeed, in the situation in question we clearly have for 1 ≤ s′ ≤ s:

‖w‖s′,q ≤ ‖w‖s,q ≤ (s′)
1
q ‖
[
(s/s′)

1
qH
]
Aw‖+ κ s

1
q
−1︸ ︷︷ ︸

≤(s′)
1
q
−1

‖w‖1.

1.2.3 Regular `1 recovery

Given observation scheme (1.1) with m×n sensing matrix A, we define the regular
`1 recovery of x via observation y as

x̂reg(y) ∈ Argmin
u

{
‖u‖1 : ‖HT (Au− y)‖ ≤ ρ

}
, (1.13)

where the contrast matrix H ∈ Rm×N , the norm ‖ · ‖ on RN and ρ > 0 are
parameters of the construction.

The role of Q-conditions we have introduced is clear from the following

Theorem 1.3. Let s be a positive integer, q ∈ [1,∞] and κ ∈ (0, 1/2). Assume
that the pair (H, ‖ · ‖) satisfies the condition Qq(s, κ) associated with A, and let

Ξρ = {η : ‖HT η‖ ≤ ρ}. (1.14)

Then for all x ∈ Rn and η ∈ Ξρ one has

‖x̂reg(Ax+ η)− x‖p ≤
4(2s)

1
p

1− 2κ

[
ρ+
‖x− xs‖1

2s

]
, 1 ≤ p ≤ q. (1.15)

The above result can be slightly strengthened by replacing the assumption that
(H, ‖ · ‖) satisfies Qq(s, κ) with some κ < 1/2, with a weaker, by observation A
from Section 1.2.2.1, assumption that (H, ‖ ·‖) satisfies Q1(s,κ) with κ < 1/2 and
satisfies Qq(s, κ) with some (perhaps large) κ:

Theorem 1.4. Given A, integer s > 0 and q ∈ [1,∞], assume that (H, ‖ · ‖)
satisfies the condition Q1(s,κ) with κ < 1/2 and the condition Qq(s, κ) with some
κ ≥ κ, and let Ξρ be given by (1.14). Then for all x ∈ Rn and η ∈ Ξρ it holds:

‖x̂reg(Ax+ η)− x‖p ≤
4(2s)

1
p [1 + κ− κ]

q(p−1)
p(q−1)

1− 2κ

[
ρ+
‖x− xs‖1

2s

]
, 1 ≤ p ≤ q.

(1.16)

Before commenting on the above results, let us present their alternative versions.

1.2.4 Penalized `1 recovery

Penalized `1 recovery of signal x from its observation (1.1) is

x̂pen(y) ∈ Argmin
u

{
‖u‖1 + λ‖HT (Au− y)‖

}
, (1.17)

where H ∈ Rm×N , a norm ‖ · ‖ on RN and a positive real λ are parameters of the
construction.

Theorem 1.5. Given A, positive integer s, and q ∈ [1,∞], assume that (H, ‖ · ‖)
satisfies the conditions Qq(s, κ) and Q1(s,κ) with κ < 1/2 and κ ≥ κ. Then



SPARSE RECOVERY VIA `1 MINIMIZATION

StatOpt˙LN˙NS January 21, 2019 7x10

19

(i) Let λ ≥ 2s. Then for all x ∈ Rn, y ∈ Rm it holds:

‖x̂pen(y)− x‖p ≤ 4λ
1
p

1−2κ
[
1 + κλ

2s
− κ

] q(p−1)
p(q−1)

[
‖HT (Ax− y)‖+ ‖x−xs‖1

2s

]
, 1 ≤ p ≤ q.

(1.18)

In particular, with λ = 2s we have:

‖x̂pen(y)− x‖p ≤ 4(2s)
1
p

1−2κ [1 + κ− κ]
q(p−1)
p(q−1)

[
‖HT (Ax− y)‖+ ‖x−xs‖1

2s

]
. (1.19)

(ii) Let ρ ≥ 0, and let Ξρ be given by (1.14). Then for all x ∈ Rn and all
η ∈ Ξρ one has:

λ ≥ 2s ⇒

‖x̂pen(Ax+ η)− x‖p ≤ 4λ
1
p

1−2κ
[
1 + κλ

2s
− κ

] q(p−1)
p(q−1)

[
ρ+ ‖x−xs‖1

2s

]
, 1 ≤ p ≤ q;

λ = 2s ⇒

‖x̂pen(Ax+ η)− x‖p ≤ 4(2s)
1
p

1−2κ [1 + κ− κ]
q(p−1)
p(q−1)

[
ρ+ ‖x−xs‖1

2s

]
, 1 ≤ p ≤ q.

(1.20)

1.2.5 Discussion

Some remarks are in order.
A. Qualitatively speaking, Theorems 1.3, 1.4, 1.5 say the same: under Q-

conditions, the regular, resp., penalized recoveries are capable to reproduce the
true signal exactly when there is no observation noise and the signal is s-sparse; in
the presence of observation error η and imperfect sparsity, the signal is recovered
within the error which can be upper-bounded by the sum of two terms, one propor-
tional to the magnitude of observation noise and one proportional to the deviation
‖x−xs‖1 of the signal from s-sparse ones. In the penalized recovery, the observation
error is measured in the scale given by the contrast matrix and the norm ‖ · ‖ - as
‖HT η‖, and in the regular one – by an a priori upper bound ρ on ‖HT η‖ — when
ρ ≥ ‖HT η‖, η belongs to Ξρ and thus the bounds (1.15), (1.16) are applicable to the
actual observation error η. Clearly, in qualitative terms error bound of this type is
the best we may hope for. Now let us look at the quantitative aspect. Assume that
in the regular recovery we use ρ ≈ ‖HT η‖, and in the penalized one use λ = 2s. In
this case, error bounds (1.15), (1.16), (1.20), up to factors C depending solely on
κ and κ, are the same, specifically,

‖x̂− x‖p ≤ Cs1/p[‖HT η‖+ ‖x− xs‖1/s], 1 ≤ p ≤ q. (!)

Is this error bound bad or good? The answer depends on many factors, including
on how well we select H and ‖ · ‖. To get a kind of orientation, consider the trivial
case of direct observations, where matrix A is square and, moreover, is proportional
to the unit matrix: A = αI; assume in addition that x is exactly s-sparse. In this
case, the simplest way to ensure condition Qq(s, κ), even with κ = 0, is to take
‖ · ‖ = ‖ · ‖s,q and H = s−1/qα−1I, so that (!) becomes

‖x̂− x‖p ≤ Cα−1s1/p−1/q‖η‖s,q, 1 ≤ p ≤ q. (!!)

As far as the dependence of the bound on the magnitude ‖η‖s,q of the observation
noise is concerned, this dependence is as good as it can be – even if we knew in
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advance the positions of the s largest in magnitude entries of x, we would be unable
to recover x is q-norm with error ≤ α−1‖η‖s,q (why?); in addition, with the equal
to each other s largest magnitudes of entries in η, the ‖ · ‖p-norm of the recovery
error clearly cannot be guaranteed to be less than α−1‖η‖s,p = α−1s1/p−1/q‖η‖s,q.
Thus, at least for s-sparse signals x, our error bound is, basically, the best one can
get already in the “ideal” case of direct observations.

B. Given that (H, ‖ ·‖) obeys Q1(s,κ) with some κ < 1/2, the larger is q such that
the pair (H, ‖ ·‖) obeys the condition Qq(s, κ) with a given κ ≥ κ (κ can be ≥ 1/2)
and s, the larger is the range p ≤ q of values of p where the error bounds (1.16),
(1.20) are applicable. This is in full accordance with the fact that if a pair (H, ‖ · ‖)
obeys condition Qq(s, κ), it obeys also all conditions Qq′(s, κ) with 1 ≤ q′ ≤ q
(item A in Section 1.2.2.1).

C. Flexibility offered by contrast matrix H and norm ‖ ·‖ allows to adjust, to some
extent, the recovery to the “geometry of observation errors.” For example, when η
is “uncertain but bounded,” say, all we know is that ‖η‖2 ≤ δ with some given δ,
all what matters (on the top of the requirement for (H, ‖ · ‖) to obey Q-conditions)
is how large could be ‖HT η‖ when ‖η‖2 ≤ δ. In particular, when ‖ · ‖ = ‖ · ‖2,
the error bound “is governed” by the spectral norm of H; consequently, if we have
a technique allowing to design H such that (H, ‖ · ‖2) obeys Q-condition(s) with
given parameters, it makes sense to look for design with as small spectral norm of
H as possible. In contrast to this, in the most interesting for applications case of
Gaussian noise:

y = Ax+ η, η ∼ N (0, σ2Im) (1.21)

looking at the spectral norm of H, with ‖·‖2 in the role of ‖·‖, is counter-productive,
since a typical realization of η is of Euclidean norm of order of

√
mσ and thus is

quite large when m is large. In this case to quantify “the magnitude” of HT η by
the product of the spectral norm of H and the Euclidean norm of η is completely
misleading – in typical cases, this product will grow rapidly with the number of
observations m, completely ignoring the fact that η is random with zero mean5.
What is much better suited for the case of Gaussian noise, is ‖ · ‖∞ norm in the
role of ‖ · ‖ and the norm “the maximum of ‖ · ‖2-norms of the columns in H,” let
it be denoted by ‖H‖1,2, of H. Indeed, with η ∼ N (0, σ2Im), the entries in HT η
are Gaussian with zero mean and variance bounded by σ2‖H‖21,2, so that ‖HT η‖∞
is the maximum of magnitudes of N zero mean Gaussian random variables with
standard deviations bounded by σ‖H‖1,2. As a result,

Prob{‖HT η‖∞ ≥ ρ} ≤ NErf(ρ/σ)‖H‖1,2 ≤ Ne
−ρ2

2σ2 ‖H‖1,2, (1.22)

where

Erf(s) =
1√
2π

∫ ∞
s

e−t
2/2dt

is the error function. It follows that the typical values of ‖HT η‖∞, η ∼ N (0, σ2Im)
are of order of at most σ

√
ln(N)‖H‖1,2; typically, N = O(m), so that with σ and

5the simplest way to see the difference is to look at a particular entry hT η in HT η. Operating
with spectral norms, we upper-bound this entry by ‖h‖2‖η‖2, and the second factor for η ∼
N (0, σ2Im) is typically as large as σ

√
m, in sharp contrast to the fact that typical values of hT η

are of order of σ, completely independently of what m is!
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‖H‖1,2 given, typical values ‖HT η‖∞ are nearly independent of m. The bottom line
is that `1 minimization is capable to handle large-scale Gaussian observation noise
incomparably better than “uncertain-but-bounded” observation noise of similar
magnitude (measured in Euclidean norm).

D. As far as comparison of regular and penalized `1 recoveries with the same
pair (H, ‖ · ‖) is concerned, the situation is as follows. Assume for the sake of
simplicity that (H, ‖ · ‖) satisfies Qq(s, κ) with some s and some κ < 1/2, and let
the observation error be random. Given ε ∈ (0, 1), let

ρε[H, ‖ · ‖] = min
{
ρ : Prob

{
η : ‖HT η‖ ≤ ρ

}
≥ 1− ε

}
; (1.23)

this is nothing but the smallest ρ such that

Prob{η ∈ Ξρ} ≥ 1− ε (1.24)

(see (1.14)) and thus – the smallest ρ for which the error bound (1.15) for the
regular `1 recovery holds true with probability 1− ε (or at least the smallest ρ for
which the latter claim is supported by Theorem 1.3). With ρ = ρε[H, ‖ · ‖], the
regular `1 recovery guarantees (and that is the best guarantee one can extract from
Theorem 1.3) that

(#) For some set Ξ, Prob{η ∈ Ξ} ≥ 1 − ε, of “good” realizations of η ∼
N (0, σ2Im), one has

‖x̂(Ax+ η)− x‖p ≤
4(2s)

1
p

1− 2κ

[
ρε[H, ‖ · ‖] +

‖x− xs‖1
2s

]
, 1 ≤ p ≤ q, (1.25)

whenever x ∈ Rn and η ∈ Ξρ.

The error bound (1.19) (where we set κ = κ) says that (#) holds true for the penal-
ized `1 recovery with λ = 2s. The latter observation suggests that the penalized `1
recovery associated with (H, ‖ ·‖) and λ = 2s is better than its regular counterpart,
the reason being twofold. First, in order to ensure (#) with the regular recovery,
the “built in” parameter ρ of this recovery should be set to ρε[H, ‖ · ‖], and the
latter quantity not always is easy to identify. In contrast to this, the construc-
tion of penalized `1 recovery is completely independent of a priori assumptions on
the structure of observation errors, while automatically ensuring (#) for the error
model we use. Second, and more importantly, for the penalized recovery the bound
(1.25) is no more than the “worst, with confidence 1 − ε, case,” while the typical
values of the quantity ‖HT η‖ which indeed participates in the error bound (1.18)
are essentially smaller than ρε[H, ‖ · ‖]. Numerical experience fully supports the
above suggestion: the difference in observed performance of the two routines in
question, although not dramatic, is definitely in favor of the penalized recovery.
The only potential disadvantage of the latter routine is that the penalty parameter
λ should be tuned to the level s of sparsity we aim at, while the regular recovery is
free of any guess of this type. Of course, the “tuning” is rather loose – all we need
(and experiments show that we indeed need this) is the relation λ ≥ 2s, so that a
rough upper bound on s will do; note, however, that bound (1.18) deteriorates as
λ grows.
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Finally, we remark that when H is m×N and η ∼ N (0, σ2Im), we have

ρε[H, ‖ · ‖∞] ≤ ErfInv(ε/N)‖H‖1,2 ≤
√

2 ln(N/ε)‖H‖1,2

(see 1.22)); here ErfInv(δ) is the inverse error function:

Erf(ErfInv(δ)) = δ, 0 < δ < 1.

How it works. Here we present a small numerical illustration. We observe in
Gaussian noise m = n/2 randomly selected terms in n-element “time series” z =
(z1, ..., zn) and want to recover this series under the assumption that the series is
“nearly s-sparse in frequency domain,” that is, that

z = Fx with ‖x− xs‖1 ≤ δ,

where F is the matrix of n× n Inverse Discrete Cosine Transform, xs is the vector
obtained from x by zeroing out all but s largest in magnitude entries, and δ upper-
bounds the distance from x to s-sparse signals. Denoting by A the m×n submatrix
of F corresponding to the time instants t where zt is observed, our observation
scheme becomes

y = Ax+ σξ,

where ξ is the standard Gaussian noise. After the signal in frequency domain, that
is, x, is recovered by `1 minimization, let the recovery be x̂, we recover the signal in
the time domain as ẑ = Fx̂. On Figure 1.3, we present four test signals, of different
(near) sparsity, along with their regular and penalized `1 recoveries. The data on
Figure 1.3 clearly show how the quality of `1 recovery deteriorates as the number s
of “essential nonzeros” of the signal in the frequency domain grows. It is seen also
that the penalized recovery meaningfully outperforms the regular one in the range
of sparsities up to 64.

1.3 VERIFIABILITY AND TRACTABILITY ISSUES

Good news on `1 recovery stated in Theorems 1.3, 1.4, 1.5 are “conditional” – we
assume that we are smart enough to point out a pair (H, ‖ · ‖) satisfying condition
Q1(s,κ) with κ < 1/2 (and condition Qq(s, κ) with a “moderate” κ 6). The related
issues are twofold:

1. First, we do not know in which range of s,m, n these conditions, or even the
weaker than Q1(s,κ), κ < 1/2, Nullspace property can be satisfied; and without
the Nullspace property, `1 minimization becomes useless, at least when we want
to guarantee its validity whatever be s-sparse signal we want to recover;

2. Second, it is unclear how to verify whether a given sensing matrix A satisfies the
Nullspace property for a given s, or a given pair (H, ‖ · ‖) satisfies the condition

6Qq(s, κ) always is satisfied with “large” κ, namely, κ = s, but this large value of κ is of no
interest: the associated bounds on p-norms of recovery error are straightforward consequences of
the bounds on ‖ · ‖1-norm of this error yielded by the condition Q1(s,κ).
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s = 16 s = 32 s = 64 s = 128
‖z − ẑ‖2 0.170 0.220 0.365 3.772
‖z − ẑ‖∞ 0.0239 0.0323 0.0608 0.729

s = 16 s = 32 s = 64 128
‖z − ẑ‖2 0.0679 0.0673 0.0812 3.665
‖z − ẑ‖∞ 0.0095 0.0107 0.0143 0.705

recovery errors, regular `1 recovery recovery errors, penalized `1 recovery

Figure 1.3: Regular and penalized `1 recovery of nearly s-sparse signals. Red
circles: true time series, blue crosses: recovered time series (to make the plots
readable, one per eight consecutive terms in the time series is shown). Problem’s
sizes are m = 256 and n = 2m = 512, noise level is σ = 0.01, deviation from
s-sparsity is ‖x − xs‖1 = 1, contrast pair is (H =

√
n/mA, ‖ · ‖∞). In penalized

recovery, λ = 2s, parameter ρ in regular recovery is set to ErfInv(0.005/n).
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Qq(s, κ) with given parameters.

What is known on these crucial issues, can be outlined as follows.

1. It is known that for given m,n with m � n (say, m/n ≤ 1/2), there exist
m × n sensing matrices which are s-good for the values of s “nearly as large
as m”, specifically, for s ≤ O(1) m

ln(n/m)
7. Moreover, there are natural families

of matrices where this level of goodness “is a rule.” E.g., when drawing an
m× n matrix at random from the Gaussian or the ±1 distributions (i.e., filling
the matrix with independent realizations of a random variable which is either
a standard (zero mean, unit variance) Gaussian one, or takes values ±1 with
probabilities 0.5), the result will be s-good, for the outlined value of s, with
probability approaching 1 as m and n grow. All this remains true when instead
of speaking about matrices A satisfying “plain” Nullspace properties, we are
speaking about matrices A for which it is easy to point out a pair (H, ‖ · ‖)
satisfying the condition Q2(s,κ) with, say, κ = 1/4.
The above results can be considered as a good news. A bad news is, that we
do not know how to check efficiently, given an s and a sensing matrix A, that
the matrix is s-good, same as we do not know how to check that A admits good
(i.e., satisfying Q1(s,κ) with κ < 1/2) pairs (H, ‖ · ‖). Even worse: we do not
know an efficient recipe allowing to build, given m, an m×2m matrix Am which
is provably s-good for s larger than O(1)

√
m, which is a much smaller “level of

goodness” then the one promised by theory for randomly generated matrices8.
The “common life” analogy of this pitiful situation would be as follows: you
know that 90% of bricks in your wall are made of gold, and at the same time,
you do not know how to tell a golden brick from a usual one.9

2. There exist verifiable sufficient conditions for s-goodness of a sensing matrix,

7From now on, O(1)’s denote positive absolute constants – appropriately chosen numbers
like 0.5, or 1, or perhaps 100,000. We could, in principle, replace all O(1)’s by specific numbers;
following the standard mathematical practice, we do not do it, partly from laziness, partly because
the particular values of these numbers in our context are irrelevant.

8Note that the naive algorithm “generate m× 2m matrices at random until an s-good, with
s promised by the theory, matrix is generated” is not an efficient recipe, since we do not know
how to check s-goodness efficiently.

9This phenomenon is met in many other situations. E.g., in 1938 Claude Shannon (1916-
2001), “the father of Information Theory,” made (in his M.Sc. Thesis!) a fundamental discovery
as follows. Consider a Boolean function of n Boolean variables (i.e., both the function and the
variables take values 0 and 1 only); as it is easily seen there are 22n function of this type, and every
one of them can be computed by a dedicated circuit comprised of “switches” implementing just 3
basic operations AND, OR and NOT (like computing a polynomial can be carried out on a circuit
with nodes implementing just two basic operation: addition of reals and their multiplication). The
discovery of Shannon was that every Boolean function of n variables can be computed on a circuit
with no more than Cn−12n switches, where C is an appropriate absolute constant. Moreover,
Shannon proved that “nearly all” Boolean functions of n variables require circuits with at least
cn−12n switches, c being another absolute constant; “nearly all” in this context means that the
fraction of “easy to compute” functions (i.e., those computable by circuits with less than cn−12n

switches) among all Boolean functions of n variables goes to 0 as n goes to ∞. Now, computing
Boolean functions by circuits comprised of switches was an important technical task already in
1938; its role in our today life can hardly be overestimated — the outlined computation is nothing
but what is going on in a computer. Given this observation, it is not surprising that the Shannon
discovery of 1938 was the subject of countless refinements, extensions, modifications, etc., etc.
What is still missing, is a single individual example of a “difficult to compute” Boolean function:
as a matter of fact, all multivariate Boolean functions f(x1, ..., xn) people managed to describe
explicitly are computable by circuits with just linear in n number of switches!
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same as verifiable sufficient conditions for a pair (H, ‖ · ‖) to satisfy condition
Qq(s, κ). A bad news that when m� n, these verifiable sufficient conditions can
be satisfied only when s ≤ O(1)

√
m – once again, in a much more narrow range

of values of s than the one where typical randomly selected sensing matrices are
s-good. In fact, s = O(

√
m) is the best known so far sparsity level for which we

know individual s-good m× n sensing matrices with m ≤ n/2.

1.3.1 Restricted Isometry Property and s-goodness of random
matrices

There are several sufficient conditions for s-goodness, equally difficult to verify, but
provably satisfied for typical random sensing matrices. The best known of them is
the Restricted Isometry Property (RIP) defined as follows:

Definition 1.6. Let k be an integer and δ ∈ (0, 1). We say that an m × n sens-
ing matrix A possesses the Restricted Isometry Property with parameters δ and k,
RIP(δ, k), if for every k-sparse x ∈ Rn one has

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22. (1.26)

It turns out that for natural ensembles of random m × n matrices, a typical
matrix from the ensemble satisfies RIP(δ, k) with small δ and k “nearly as large
as m,” and that RIP( 1

6 , 2s) implies Nullspace condition, and more. The simplest
versions of the corresponding results are as follows.

Proposition 1.7. Given δ ∈ (0, 1
5 ], with properly selected positive c = c(δ), d =

d(δ), f = f(δ) for all m ≤ n and all positive integers k such that

k ≤ m

c ln(n/m) + d
(1.27)

the probability for a random m× n matrix A with independent N (0, 1
m ) entries to

satisfy RIP(δ, k) is at least 1− exp{−fm}.

Proposition 1.8. Let A ∈ Rm×n satisfy RIP(δ, 2s) for some δ < 1/3 and positive
integer s. Then

(i) The pair
(
H = s−1/2

√
1−δ Im, ‖ · ‖2

)
satisfies the condition Q2

(
s, δ

1−δ

)
associated

with A;

(ii) The pair (H = 1
1−δA, ‖ · ‖∞) satisfies the condition Q2

(
s, δ

1−δ

)
associated

with A.

1.3.2 Verifiable sufficient conditions for Qq(s, κ)

When speaking about verifiable sufficient conditions for a pair (H, ‖ · ‖) to satisfy
Qq(s, κ), it is convenient to restrict ourselves with the case when H, same as A, is
an m× n matrix, and ‖ · ‖ = ‖ · ‖∞.

Proposition 1.9. Let A be an m×n sensing matrix, and s ≤ n be a sparsity level.
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Given m× n matrix H and q ∈ [1,∞], let us set

νs,q[H] = max
j≤n
‖Colj [I −HTA]‖s,q, (1.28)

where Colj [C] is j-th column of matrix C. Then

‖w‖s,q ≤ s1/q‖HTAw‖∞ + νs,q[H]‖w‖1 ∀w ∈ Rn, (1.29)

implying that the pair (H, ‖ · ‖∞) satisfies the condition Qq(s, s
1− 1

q νs,q[H]).

Proof is immediate. Setting V = I −HTA, we have

‖w‖s,q = ‖[HTA+ V ]w‖s,q ≤ ‖HTAw‖s,q + ‖V w‖s,q
≤ s1/q‖HTAw‖∞ +

∑
j |wj |‖Colj [V ]‖s,q ≤ s1/q‖HTA‖∞ + νs,q[H]‖w‖1.

2

Observe that the function νs,q[H] is an efficiently computable convex function of
H, so that the set

Hκs,q = {H ∈ Rm×n : νs,q[H] ≤ s
1
q−1κ} (1.30)

is a computationally tractable convex set. When this set is nonempty for some
κ < 1/2, every point H in this set is a contrast matrix such that (H, ‖ · ‖∞)
satisfies the condition Qa(s, κ), that is, we can find contrast matrices making `1
minimization valid. Moreover, we can design contrast matrix, e.g., by minimizing
over Hκs,q the function ‖H‖1,2, thus optimizing the sensitivity of the corresponding
`1 recoveries to Gaussian observation noise, see items C, D in Section 1.2.5.

Explanation. The sufficient condition for s-goodness of A stated in Proposition
1.9 looks as coming out of thin air; in fact it is a particular case of a simple and
general construction as follows. Let f(x) be a real-valued convex function on Rn,
and X ⊂ Rn be a nonempty bounded polytope represented as

X = {x ∈ Conv{g1, ..., gN} : Ax = 0},

where Conv{g1, ..., gN} = {
∑
i λigi : λ ≥ 0,

∑
i λi = 1} is the convex hull of

g1, ..., gN . Our goal is to upper-bound the maximum Opt = maxx∈X f(x); this is
a meaningful problem, since precise maximizing a convex function over a polytope
typically is a computationally intractable task. Let us act as follows: clearly, for a
whatever matrix H of the same sizes as A we have maxx∈X f(x) = maxx∈X f([I −
HTA]x), since on X we have [I −HA]x = x. As a result,

Opt := maxx∈X f(x) = maxx∈X f([I −HTA]x)
≤ maxx∈Conv{g1,...,gN} f([I −HTA]x)
= maxj≤N f([I −HTA]gj).

We get a parametric, the parameter being H, upper bound on Opt, namely, the
bound maxj≤N f([I−HTA]gj). This parametric bound is convex in the parameter
H, and thus is well suited for minimization over this parameter.

The result of Proposition 1.9 is inspired by this construction as applied to the
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nullspace property: given m× n sensing matrix A and setting

X = {x ∈ Rn : ‖x‖1 ≤ 1, Ax = 0} = {x ∈ Conv{±e1, ...,±en} : Ax = 0}

(ei are the basic orths in Rn), A is s-good if and only if

Opts := max
x∈X
{f(x) := ‖x‖s,1} < 1/2;

A verifiable sufficient condition for this yielded by the above construction is the
existence of m× n matrix H such that

max
j≤n

max[f([In −HTA]ej), f(−[In −HTA]ej)] < 1/2,

or, which is the same,

max
j
‖Colj [In −HTA]‖s,1 < 1/2,

bringing to our attention the matrix I − HTA with varying H and the idea to
express sufficient conditions for s-goodness and related properties in terms of this
matrix.

1.3.3 Tractability of Q∞(s, κ)

As we have already mentioned, the conditions Qq(s, κ) are intractable, in the sense
that we do not know how to verify whether a given pair (H, ‖ · ‖) satisfies the
condition. Surprisingly, this is not the case with the strongest of these conditions,
the one with q =∞. Specifically,

Proposition 1.10. Let A be an m × n sensing matrix, s be a sparsity level, and
κ ≥ 0. Then whenever a pair (H̄, ‖ · ‖) satisfies the condition Q∞(s, κ), there exists
an m× n matrix H such that

‖Colj [In −HTA]‖s,∞ = ‖Colj [In −HTA]‖∞ ≤ s−1κ, 1 ≤ j ≤ n,

(so that (H, ‖ · ‖∞) satisfies Q∞(s, κ) by Proposition 1.9) and, in addition,

‖HT η‖∞ ≤ ‖H̄T η‖ ∀η ∈ Rm. (1.31)

In addition, m × n contrast matrix H such that the pair (H, ‖ · ‖∞) satisfies the
condition Q∞(s, κ) with as small κ as possible can be found as follows: we consider
n LP programs

Opti = min
ν,h

{
ν : ‖ATh− ei‖∞ ≤ ν

}
, (#i)

where ei is i-th basic orth in Rn, find optimal solutions Opti, hi to these problems,
and make hi, i = 1, ..., n, the columns of H; the corresponding value of κ is

κ∗ = smax
i

Opti.

Besides this, there exists a transparent alternative description of the quantities Opti
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(and thus – of κ∗); specifically,

Opti = max
x
{xi : ‖x‖1 ≤ 1, Ax = 0} . (1.32)

Looking at (1.31) and error bounds in Theorems 1.3, 1.4, 1.5, Proposition 1.10
says that

As far as the condition Q∞(s, κ) is concerned, we lose nothing when re-
stricting ourselves with pairs (H ∈ Rm×n, ‖ · ‖∞) and contrast matrices H
satisfying the condition

|[In −HTA]ij | ≤ s−1κ (1.33)

implying that (H, ‖ · ‖∞) satisfies Q∞(s, κ).

A good news is that (1.33) is an explicit convex constraint on H (in fact, even on
H and κ), so that we can solve the design problems, where we want to optimize a
convex function of H under the requirement that (H, ‖ · ‖∞) satisfies the condition
Q∞(s, κ) (and, perhaps, additional convex constraints on H and κ).

1.3.3.1 Mutual Incoherence

The simplest (and up to some point in time, the only) verifiable sufficient condition
for s-goodness of a sensing matrix A is expressed in terms of mutual incoherence of
A defined as

µ(A) = max
i6=j

|ColTi [A]Colj [A]|
‖Coli[A]‖22

; (1.34)

this quantity is well defined whenever A has no zero columns (otherwise A is not
even 1-good). Note that when A is normalized to have all columns of equal ‖ · ‖2-
lengths10, µ(A) is small when the directions of distinct columns in A are nearly
orthogonal. The standard related result is that

Whenever A and a positive integer s are such that 2µ(A)
1+µ(A) <

1
s , A is s-good.

It is immediately seen that the latter condition is weaker than what we can get
with the aid of (1.33):

Proposition 1.11. Let A be an m×n matrix, and let the columns in m×n matrix
H be given by

Colj(H) =
1

(1 + µ(A))‖Colj(A)‖22
Colj(A), 1 ≤ j ≤ n.

Then

|[Im −HTA]ij | ≤
µ(A)

1 + µ(A)
∀i, j. (1.35)

In particular, when 2µ(A)
1+µ(A) <

1
s , A is s-good.

10as far as `1 minimization is concerned, this normalization is non-restrictive: we always can
enforce it by diagonal scaling of the signal underlying observations (1.1), and `1 minimization in
scaled variables is the same as weighted `1 minimization in original variables.
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Proof. With H as above, the diagonal entries in I−HTA are equal to 1− 1
1+µ(A) =

µ(A)
1+µ(A) , while by definition of mutual incoherence the magnitudes of the off-diagonal

entries in I−HTA are ≤ µ(A)
1+µ(A) as well, implying (1.35). The “in particular” claim

is given by (1.35) combined with Proposition 1.9. 2

1.3.3.2 From RIP to conditions Qq(·, κ)

It turns out that when A is RIP(δ, k) and q ≥ 2, it is easy to point out pairs (H, ‖·‖)
satisfying Qq(t, κ) with a desired κ > 0 and properly selected t:

Proposition 1.12. Let A be an m × n sensing matrix satisfying RIP(δ, 2s) with
some s and some δ ∈ (0, 1), and let q ∈ [2,∞] and κ > 0 be given. Then

(i) Whenever a positive integer t satisfies

t ≤ min

[[
κ
√

1− δ
δ
√

1 + δ

] q
q−1

, s
q−2
q−1

]
s

q
2(q−1) , (1.36)

the pair (H = t−1/2
√

1−δ Im, ‖ · ‖2) satisfies Qq(t, κ);

(ii) Whenever a positive integer t satisfies

t ≤ min

[[
κ(1− δ)

δ

] q
q−1

, s
q−2
2q−2

]
s

q
2(q−1) , (1.37)

the pair (H = s
1
2 t
− 1
q

1−δ A, ‖ · ‖∞) satisfies Qq(t, κ).

The most important consequence of Proposition 1.12 deals with the case of
q = ∞ and states that when s-goodness of a sensing matrix A can be ensured by
difficult to verify condition RIP(δ, 2s) with, say, δ = 0.2, the somehow worse level of
sparsity, t = O(1)

√
s with properly selected absolute constant O(1) can be certified

via condition Q∞(t, 1
3 ) – there exists pair (H, ‖ · ‖∞) satisfying this condition. The

point is that by Proposition 1.10, if the condition Q∞(t, 1
3 ) can at all be satisfied,

a pair (H, ‖ · ‖∞) satisfying this condition can be found efficiently.
Unfortunately, the significant “dropdown” in the level of sparsity when passing

from unverifiable RIP to verifiable Q∞ is inevitable; this bad news is what is on
our agenda now.

1.3.3.3 Limits of performance of verifiable sufficient conditions for goodness

Proposition 1.13. Let A be an m × n sensing matrix which is “essentially non-
square,” specifically, such that 2m ≤ n, and let q ∈ [1,∞]. Whenever a positive
integer s and an m× n matrix H are linked by the relation

‖Colj [In −HTA]‖s,q <
1

2
s

1
q−1, 1 ≤ j ≤ n, (1.38)

one has
s ≤
√

2m. (1.39)

As a result, sufficient condition for the validity of Qq(s, κ) with κ < 1/2 from
Proposition 1.9 can never be satisfied when s >

√
2m. Similarly, the verifiable
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Figure 1.4: Erroneous `1 recovery of 25-sparse signal, no observation noise. Ma-
genta: true signal, blue: `1 recovery. Top: frequency domain, bottom: time domain.

sufficient condition Q∞(s, κ), κ < 1/2 for s-goodness of A cannot be satisfied when
s >
√

2m.

We see that unless A is “nearly square,” our (same as all other known to us)
verifiable sufficient conditions for s-goodness are unable to justify this property for
“large” s. This unpleasant fact is in full accordance with the already mentioned
fact that no individual provably s-good “essentially nonsquare” m × n matrices
with s ≥ O(1)

√
m are known.

Matrices for which our verifiable sufficient conditions do establish s-goodness
with s ≤ O(1)

√
m do exist.

How it works: Numerical illustration. Let us apply our machinery to the
256×512 randomly selected submatrix A of the matrix of 512×512 Inverse Discrete
Cosine Transform which we used in experiments reported on Figure 1.3. These
experiments exhibit nice performance of `1 minimization when recovering sparse
(even nearly sparse) signals with as much as 64 nonzeros. In fact, the level of
goodness of A is at most 24, as is witnessed by Figure 1.4.

In order to upper-bound the level of goodness of a matrix A, one can try to

maximize the convex function ‖w‖s,1 over the set W = {w : Aw = 0, ‖w‖1 ≤ 1};
if, for a given s, the maximum of ‖·‖s,1 over W is ≥ 1/2, the matrix is not s-good –

it does not possess the Nullspace property. Now, while global maximization of the

convex function ‖w‖s,1 over W is difficult, we can try to find suboptimal solutions

as follows: let us start with a vector w1 ∈W of ‖·‖1-norm 1, and let u1 be obtained

from w1 by replacing the s largest in magnitude entries in w1 by the signs of these

entries and zeroing out all other entries, so that wT1 u
1 = ‖w1‖s,1. After u1 is found,

let us solve the LO program maxw{[u1]Tw : w ∈ W}. w1 is a feasible solution to

this problem, so that for the optimal solution w2 to it we have [u1]Tw2 ≥ [u1]Tw1 =
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‖w1‖s,1; this inequality, by virtue of what u1 is, implies that ‖w2‖s,1 ≥ ‖w1‖s,1
and by construction w2 ∈ W . We now can iterate the construction, with w2 in

the role of w1, to get w3 ∈ W with ‖w3‖s,1 ≥ ‖w2‖s,1; proceeding in this way, we

generate a sequence of points from W with monotonically increasing value of the

objective ‖ · ‖s,1 we want to maximize. Usually, people terminate this recurrence

either when the achieved value of the objective becomes ≥ 1/2 (then we know

for sure that A is not s-good, and can proceed to investigating s-goodness for a

smaller value of s) or when the recurrence becomes stuck – the observed progress

in the objective falls below a given threshold, say, 1.e-6; after it happens we can

restart this process from a new randomly selected in W starting point, after getting

stuck, restart again, etc., etc., until exhausting our time budget. The output of

the process is the best – with the largest ‖ · ‖s,1 – of the points from W we have

generated. Applying this approach to the matrix A in question, in a couple of

minutes it turns out that the matrix is at most 24-good.

One can ask how happens that experiments with recovering 64-sparse signals went
fine, when in fact some 25-sparse signals cannot be recovered by `1 minimization
even in the ideal noiseless case. The answer is simple: in our experiments, we dealt
with randomly selected signals, and, as it typically is the case, randomly selected
data are much nicer, whatever be the purpose of a numerical experiment, that the
worst-case data.

It is interesting to understand also which goodness we can certify with our
verifiable sufficient conditions. Computation shows that the fully verifiable (and
strongest in our scale of sufficient conditions for s-goodness) condition Q∞(s,κ)
can be satisfied with κ < 1/2 when s is as large as 7 and κ = 0.4887, and cannot
be satisfied with κ < 1/2 when s = 8. As about Mutual Incoherence, it can justify
just 3-goodness, no more. We hardly could be happy with the resulting bounds –
goodness at least 7 and at most 24; however, it could be worse...

1.4 EXERCISES FOR LECTURE 1

Exercise 1.14. k-th Hadamard matrix, Hk (here k is nonnegative integer) is the
nk × nk matrix, nk = 2k, given by the recurrence

H0 = [1];Hk+1 =

[
Hk Hk
Hk −Hk

]
(1.40)

In the sequel, we assume that k > 0. Now goes the exercise:

1. Check that Hk is symmetric matrix with entries ±1, and columns of the matrix
are mutually orthogonal, so that Hk/

√
nk is an orthogonal matrix.

2. Check that when k > 0, Hk has just two distinct eigenvalues,
√
nk and −√nk,

each of multiplicity mk := 2k−1 = nk/2.
3. Prove that whenever f is an eigenvector of Hk, one has

‖f‖∞ ≤ ‖f‖1/
√
nk.

Derive from this observation the conclusion as follows:

Let a1, ..., amk ∈ Rnk be orthogonal to each other unit vectors which are
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eigenvectors of Hk with eigenvalues
√
nk (by the above, the dimension of

the eigenspace of Hk associated with the eigenvalue
√
nk is mk, so that

the required a1, ..., amk do exist), and let A be the mk × nk matrix with
the rows aT1 , ..., a

T
mk

. For every x ∈ KerA it holds

‖x‖∞ ≤
1
√
nk
‖x‖1,

whence A satisfies the nullspace property whenever the sparsity s satisfies
2s <

√
nk =

√
2mk. Moreover, there exists (and can be found efficiently)

anmk×nk contrast matrixH = Hk such that for every s < 1
2

√
nk, the pair

(Hk, ‖ · ‖∞) satisfies the associated with A condition Q∞(s, κs = s/
√
nk︸ ︷︷ ︸

<1/2

),

and the ‖ · ‖2-norms of columns of Hk do not exceed
√

2
√
nk+1√
nk

.

Note that the above conclusion yields a sequence of individual (mk = 2k−1) ×
(nk = 2k) sensing matrices, k = 1, 2, ..., with “size ratio” nk/mk = 2, which
make an efficiently verifiable condition for s-goodness, say, Q∞(s, 1

3 ) satisfiable
in basically the entire range of values of s allowed by Proposition 1.13. It would
be interesting to get similar “fully constructive” results for other size ratios, like
m : n = 1 : 4, m : n = 1 : 8, etc.

Exercise 1.15. [Follow-up to Exercise 1.14] Exercise 1.14 provides us with an ex-
plicitly given (m = 512) × (n = 1024) sensing matrix Ā such that the efficiently
verifiable condition Q∞(15, 15

32 ) is satisfiable; in particular, Ā is 15-good. With all
we know about limits of performance of verifiable sufficient conditions for goodness,
how should we evaluate this specific sensing matrix? Could we point out a sensing
matrix of the same size which is provably s-good for a larger (or “much larger”)
than 15 value of s?

We do not know the answer, and you are requested to explore some possibilities,
including (but not reducing to – you are welcome to investigate more options!) the
following ones.

1. Generate at random a sample of m×n sensing matrices A, compute their mutual
incoherences and look how large goodness levels they justify. What happens when
the matrices are the Gaussian (independent N (0, 1) entries) and the Rademacher
ones (independent entries taking values ±1 with probabilities 1/2)?

2. Generate at random a sample of m × n matrices with independent N (0, 1/m)
entries. Proposition 1.7 suggests that a sampled matrix A has good chances to
satisfy RIP(δ, k) with some δ < 1/3 and some k, and thus to be s-good (and even
more than this, see Proposition 1.8) for every s ≤ k/2. Of course, given A we
cannot check whether the matrix indeed satisfies RIP(δ, k) with given δ, k; what
we can try to do is to certify that RIP(δ, k) does not take place. To this end, it
suffices to select at random, say, 200 m× k submatrices Ã of A and compute the
eigenvalues of ÃT Ã; if A possesses RIP(δ, k), all these eigenvalues should belong
to the segment [1− δ, 1 + δ], and if in reality this does not happen, A definitely
is not RIP(δ, k).

Exercise 1.16. Let us start with preamble. Consider a finite Abelian group; the only
thing which matters for us is that such a group G is specified by a collection of a
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k ≥ 1 of positive integers ν1, ..., νk and is comprised of all collections ω = (ω1, ..., ωk)
where every ωi is an integer from the range {0, 1, ..., νk − 1}; the group operation,
denoted by ⊕, is

(ω1, ..., ωk)⊕ (ω′1, ..., ω
′
k) = ((ω1 + ω′1) mod ν1, ..., (ωk + ω′k) mod νk),

where amod b is the remainder, taking values in {0, 1, ..., b − 1}, in the division of
an integer a by positive integer b; say, 5 mod 3 = 2, and 6 mod 3 = 0. Clearly, the
cardinality of the above group G is nk = ν1ν2...νk. A character of group G is a
homomorphism acting from G into the multiplicative group of complex numbers
of modulus 1, or, in simple words, a complex-valued function χ(ω) on G such that
|χ(ω)| = 1 for all ω ∈ G and χ(ω ⊕ ω′) = χ(ω)χ(ω′) for all ω, ω′ ∈ G. Note
that characters themselves form a group w.r.t. pointwise multiplication; clearly, all
characters of our G are functions of the form

χ((ω1, ..., ωk)) = µω1
1 ...µωkk ,

where µi are restricted to be roots of degree νi from 1: µνii = 1. It is immediately
seen that the group G∗ of characters of G is of the same cardinality nk = ν1...νk as
G. We can associate with G the matrix F of size nk×nk; the columns in the matrix
are indexed by the elements ω of G, the rows – by the characters χ ∈ G∗ of G,
and the element in cell (χ, ω) is χ(ω). The standard example here corresponds to
k = 1, in which case F clearly is the ν1 × ν1 matrix of Discrete Fourier Transform.

Now goes the exercise:

1. Verify that the above F is, up to factor
√
nk, a unitary matrix: denoting by

a the complex conjugate of a complex number a,
∑
ω∈G χ(ω)χ′(ω) is nk or 0

depending on whether χ = χ′ or χ 6= χ′.
2. Let ω̄, ω̄′ be two elements of G. Prove that there exists a permutation Π of

elements of G which maps ω̄ into ω̄′ and is such that

ColΠ(ω)[F ] = DColω[F ] ∀ω ∈ G,

where D is diagonal matrix with diagonal entries χ(ω̄′)/χ(ω̄), χ ∈ G∗.
3. Consider the special case of the above construction where ν1 = ν2 = ... = νk = 2.

Verify that in this case F , up to permutation of rows and permutation of columns
(these permutations depend on how we assign the elements of G and of G∗ their
serial numbers) is exactly the Hadamard matrix Hk.

4. Extract from the above the following fact: let m, k be positive integers such that
m ≤ nk := 2k, and let sensing matrix A be obtained from Hk by selecting m
distinct rows. Assume we want to find an m × nk contrast matrix H such that
the pair (H, ‖ · ‖∞) satisfies the condition Q∞(s, κ) with as small κ as possible;
by Proposition 1.10, to this end we should solve n LP programs

Opti = min
h
‖ei −ATh‖∞,

where ei is i-th basic orth in Rn. Prove that with A coming from Hk, all
these problems have the same optimal value, and optimal solutions to all of the
problems are readily given by the optimal solution to just one of them.

Exercise 1.17. Proposition 1.13 states that the verifiable condition Q∞(s, κ) can
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certify s-goodness of “essentially nonsquare” (with m ≤ n/2) m×n sensing matrix
A only when s is small as compared to m, namely, s ≤

√
2m. The exercise to follow

is aimed at investigating what happens when m × n “low” (with m < n) sensing
matrix A is “nearly square”, meaning that mo = n − m is small as compared to
n. Specifically, you should prove that for properly selected individual (n−mo)×n
matrices A the condition Q∞(s, κ) with κ < 1/2 is satisfiable when s is as large as
O(1)n/

√
mo.

1. Let n = 2kp with positive integer p and integer k ≥ 1, and let mo = 2k−1.
Given 2mo-dimensional vector u, let u+ be n-dimensional vector built as follows:
we split indexes from {1, ..., n = 2kp} into 2k consecutive groups I1, ..., I2k , p
elements per group, and all entries of u+ with indexes from Ii are equal to i-th

entry, ui, of vector u. Now let U be the linear subspace in R2k comprised of
all eigenvectors, with eigenvalue

√
2k, of the Hadamard matrix Hk, see Exercise

1.14, so that the dimension of U is 2k−1 = mo, and let L be given by

L = {u+ : u ∈ U} ⊂ Rn.

Clearly, L is a linear subspace in Rn of dimension mo. Prove that

∀x ∈ L : ‖x‖∞ ≤
√

2mo

n
‖x‖1.

Conclude that if A is (n − mo) × n sensing matrix with KerA = L, then the
verifiable sufficient condition Q∞(s, κ) does certify s-goodness of A whenever

1 ≤ s < n

2
√

2mo
.

2. Let L be mo-dimensional subspace in Rn. Prove that L contains nonzero vector
x with

‖x‖∞ ≥
√
mo

n
‖x‖1,

so that the condition Q∞(s, κ) cannot certify s-goodness of (n −mo) × n sens-
ing matrix A whenever s > O(1)n/

√
mo, for properly selected absolute constant

O(1).

Exercise 1.18. Utilize the results of Exercise 1.16 in a numerical experiment as
follows.

• select n as an integer power 2k of 2, say, set n = 210 = 1024
• select a “representative” sequence M of values of m, 1 ≤ m < n, including values

of m close to n and “much smaller” than n, say, use

M = {2, 5, 8, 16, 32, 64, 128, 256, 512, 7, 896, 960, 992, 1008, 1016, 1020, 1022, 1023}

• for every m ∈M ,

– generate at random an m×n submatrix A of the n×n Hadamard matrix Hk
and utilize the result of item 4 of Exercise 1.16 in order to find the largest
s such that s-goodness of A can be certified via the condition Q∞(·, ·); call
s(m) the resulting value of s.
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– generate a moderate sample of Gaussian m × n sensing matrices Ai with
independent N (0, 1/m) entries and use the construction from Exercise 1.15
to upper-bound the largest s for which a matrix from the sample satisfies
RIP(1/3, 2s); call ŝ(m) the largest, over your Ai’s, of the resulting upper
bounds.

The goal of the exercise is to compare the computed values of s(m) and ŝ(m);
in other words, we again want to understand how “theoretically perfect” RIP
compares to “conservative restricted scope” condition Q∞.

1.5 PROOFS

1.5.1 Proofs of Theorem 1.3, 1.4

All we need is to prove Theorem 1.4, since Theorem 1.3 is the particular case
κ = κ < 1/2 of Theorem 1.4.

Let us fix x ∈ Rn and η ∈ Ξρ, and let us set x̂ = x̂reg(Ax + η). Let also
I ⊂ {1, ..., n} be the set of indexes of the s largest in magnitude entries in x, Io be
the complement of I in {1, ..., n}, and let for w ∈ Rn, wI and wIo be the vectors
obtained from w by zeroing entries with indexes j 6∈ I and j 6∈ Io, respectively, and
keeping the remaining entries intact. Finally, let z = x̂− x.
10. By the definition of Ξρ and due to η ∈ Ξρ we have

‖HT ([Ax+ η]−Ax)‖ ≤ ρ, (1.41)

so that x is a feasible solution to the optimization problem specifying x̂, whence
‖x̂‖1 ≤ ‖x‖1. We therefore have

‖x̂Io‖1 = ‖x̂‖1 − ‖x̂I‖1 ≤ ‖x‖1 − ‖x̂I‖1 = ‖xI‖1 + ‖xIo‖1 − ‖x̂I‖1
≤ ‖zI‖1 + ‖xIo‖1,

(1.42)

and therefore
‖zIo‖1 ≤ ‖x̂Io‖1 + ‖xIo‖1 ≤ ‖zI‖1 + 2‖xIo‖1.

It follows that
‖z‖1 = ‖zI‖1 + ‖zIo‖1 ≤ 2‖zI‖1 + 2‖xIo‖1. (1.43)

Further, by definition of x̂ we have ‖HT ([Ax+ η]−Ax̂)‖ ≤ ρ, which combines with
(1.41) to imply that

‖HTA(x̂− x)‖ ≤ 2ρ. (1.44)

20. Since (H, ‖ · ‖) satisfies Q1(s,κ), we have

‖z‖s,1 ≤ s‖HTAz‖+ κ‖z‖1.

By (1.44), it follows that ‖z‖s,1 ≤ 2sρ + κ‖z‖1, which combines with the evident
inequality ‖zI‖ ≤ ‖z‖s,1 (recall that Card(I) = s) and with (1.43) to imply that

‖zI‖1 ≤ 2sρ+ κ‖z‖1 ≤ 2sρ+ 2κ‖zI‖1 + 2κ‖xIo‖1,
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whence

‖zI‖1 ≤
2sρ+ 2κ‖xIo‖1

1− 2κ
.

Invoking (1.43), we conclude that

‖z‖1 ≤
4s

1− 2κ

[
ρ+
‖xIo‖1

2s

]
. (1.45)

30. Since (H, ‖ · ‖) satisfies Qq(s, κ), we have

‖z‖s,q ≤ s
1
q ‖HTAz‖+ κs

1
q−1‖z‖1,

which combines with (1.45) and (1.44) to imply that

‖z‖s,q ≤ s
1
q 2ρ+ κs

1
q

4ρ+2s−1‖xIo‖1
1−2κ ≤ 4s

1
q [1+κ−κ]
1−2κ

[
ρ+ ‖xo‖1

2s

]
(1.46)

(we have taken into account that κ < 1/2 and κ ≥ κ). Let θ be the (s + 1)-st
largest magnitude of entries in z, and let w = z − zs. Now (1.46) implies that

θ ≤ ‖z‖s,qs−
1
q ≤ 4[1 + κ− κ]

1− 2κ

[
ρ+
‖xIo‖1

2s

]
.

Hence invoking (1.45) we have

‖w‖q ≤ ‖w‖
q−1
q
∞ ‖w‖

1
q

1 ≤ θ
q−1
q ‖z‖

1
q

1

≤ θ
q−1
q

(4s)
1
q

[1−2κ]
1
q

[
ρ+ ‖xIo‖1

2s

] 1
q

≤ 4s
1
q [1+κ−κ]

q−1
q

1−2κ

[
ρ+ ‖xIo‖1

2s

]
.

Taking into account (1.46) and the fact that the supports of zs and w do not
intersect, we get

‖z‖q ≤ 2
1
q max[‖zs‖q, ‖w‖q] = 2

1
q max[‖z‖s,q, ‖w‖q]

≤ 4(2s)
1
q [1+κ−κ]
1−2κ

[
ρ+ ‖xIo‖1

2s

]
.

This bound combines with (1.45), the Hölder inequality and the relation ‖xIo‖1 =
‖x− xs‖1 to imply (1.16). 2

1.5.2 Proof of Theorem 1.5

Let us prove (i). Let us fix x ∈ Rn and η, and let us set x̂ = x̂pen(Ax + η). Let
also I ⊂ {1, ...,K} be the set of indexes of the s largest in magnitude entries in x,
Io be the complement of I in {1, ..., n}, and for w ∈ Rn let wI , wIo be the vectors
obtained from w by zeroing out all entries with indexes not in I, respectively, not
in Io. Finally, let z = x̂− x and ν = ‖HT η‖.
10. We have

‖x̂‖1 + λ‖HT (Ax̂−Ax− η)‖ ≤ ‖x‖1 + λ‖HT η‖
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and
‖HT (Ax̂−Ax− η)‖ = ‖HT (Az − η)‖ ≥ ‖HTAz‖ − ‖HT η‖,

whence
‖x̂‖1 + λ‖HTAz‖ ≤ ‖x‖1 + 2λ‖HT η‖ = ‖x‖1 + 2λν. (1.47)

We have
‖x̂‖1 = ‖x+ z‖1 = ‖xI + zI‖1 + ‖xIo + zIo‖1

≥ ‖xI‖1 − ‖zI‖1 + ‖zIo‖1 − ‖xIo‖1,

which combines with (1.47) to imply that

‖xI‖1 − ‖zI‖1 + ‖zIo‖1 − ‖xIo‖1 + λ‖HTAz‖ ≤ ‖x‖1 + 2λν,

or, which is the same,

‖zIo‖1 − ‖zI‖1 + λ‖HTAz‖ ≤ 2‖xIo‖1 + 2λν. (1.48)

Since (H, ‖ · ‖) satisfies Q1(s,κ), we have

‖zI‖1 ≤ ‖z‖s,1 ≤ s‖HTAz‖+ κ‖z‖1,

so that
(1− κ)‖zI‖1 − κ‖zIo‖1 − s‖HTAz‖ ≤ 0. (1.49)

Taking weighted sum of (1.48) and (1.49), the weights being 1, 2, respectively, we
get

(1− 2κ) [‖zI‖1 + ‖zIo‖1] + (λ− 2s)‖HTAz‖ ≤ 2‖xIo‖1 + 2λν,

that is (since λ ≥ 2s),

‖z‖1 ≤
2λν + 2‖xIo‖1

1− 2κ
≤ 2λ

1− 2κ

[
ν +
‖xIo‖1

2s

]
. (1.50)

Further, by (1.47) we have

λ‖HTAz‖ ≤ ‖x‖1 − ‖x̂‖1 + 2λν ≤ ‖z‖1 + 2λν,

which combines with (1.50) to imply that

λ‖HAT z‖ ≤ 2λν + 2‖xIo‖1
1− 2κ

+ 2λν =
2λν(2− 2κ) + 2‖xIo‖1

1− 2κ
. (1.51)

From Qq(s, κ) it follows that

‖z‖s,q ≤ s
1
q ‖HTAz‖+ κs

1
q−1‖z‖1,

which combines with (1.51) and (1.50) to imply that

‖z‖s,q ≤ s
1
q
−1 [

s‖HTAz‖+ κ‖z‖1
]
≤ s

1
q
−1
[

4sν(1−κ)+ 2s
λ
‖xIo‖1

1−2κ + κ[2λν+2‖xIo‖1]
1−2κ

]
= s

1
q 4ν(1−κ)+2s−1λκν]+2[λ−1+s−1κ]‖xIo‖1

1−2κ ≤ 4 s
1
q

1−2κ
[
1 + κλ

2s
− κ

] [
ν + ‖xIo

2s

]
(1.52)

(recall that λ ≥ 2s, κ ≥ κ, and κ < 1/2). It remains to repeat the reasoning
following (1.46) in item 30 of the proof of Theorem 1.4. Specifically, denoting by θ
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the (s+ 1)-st largest magnitude of entries in z, (1.52) implies that

θ ≤ s−1/q‖z‖s,q ≤
4

1− 2κ
[1 + κ

λ

2s
− κ]

[
ν +
‖xIo‖1

2s

]
, (1.53)

so that for the vector w = z − zs one has

‖w‖q ≤ θ1− 1
q ‖w‖

1
q

1 ≤
4(λ/2)

1
q

1−2κ
[
1 + κ λ

2s − κ
] q−1

q

[
ν + ‖xIo‖1

2s

]
(we have used (1.53), (1.50) and the fact that λ ≥ 2s). Hence, taking into account
that zs and w have non-intersecting supports,

‖z‖q ≤ 2
1
q max[‖zs‖q, ‖w‖q] = 2

1
q max[‖z‖s,q, ‖w‖q]

≤ 4λ
1
q

1−2κ
[
1 + κ λ

2s − κ
] [
ν + ‖xIo‖1

2s

]
(we have used (1.52) along with λ ≥ 2s and κ ≥ κ). This combines with (1.50)
and Hölder inequality to imply (1.18). All remaining claims of Theorem 1.5 are
immediate corollaries of (1.18). 2

1.5.3 Proof of Proposition 1.7

10. Assuming k ≤ m and selecting a set I of k distinct from each other indexes
from {1, ..., n}, consider an m × k submatrix AI of A comprised of columns with
indexes from I, and let u be a unit vector in Rk. The entries in the vector m1/2AIu
are independent N (0, 1) random variables, so that for the random variable ζu =∑m
i=1(m1/2AIu)2

i and γ ∈ (−1/2, 1/2) it holds (in what follows,expectations and
probabilities are taken w.r.t. our ensemble of random A’s)

ln (E{exp{γζ}}) = m ln

(
1√
2π

∫
eγt

2− 1
2 t

2

ds

)
= −m

2
ln(1− 2γ).

Given α ∈ (0, 0.1] and selecting γ in such a way that 1 − 2γ = 1
1+α , we get

0 < γ < 1/2 and therefore

Prob{ζu > m(1 + α)} ≤ E{exp{γζu}} exp{−mγ(1 + α)}
= exp{−m2 ln(1− 2γ)−mγ(1 + α)}
= exp{m2 [ln(1 + α)− α]} ≤ exp{−m5 α

2},

and similarly, selecting γ in such a way that 1 − 2γ = 1
1−α , we get −1/2 < γ < 0

and therefore

Prob{ζu < m(1− α)} ≤ E{exp{γζu}} exp{−mγ(1− α)}
= exp{−m2 ln(1− 2γ)−mγ(1− α)}
= exp{m2 [ln(1− α) + α]} ≤ exp{−m5 α

2},

and we end up with

u ∈ Rk, ‖u‖2 = 1⇒
{

Prob{A : ‖AIu‖22 > 1 + α} ≤ exp{−m5 α
2}

Prob{A : ‖AIu‖22 < 1− α} ≤ exp{−m5 α
2} (1.54)
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20. Same as above, let α ∈ (0, 0.1], let

M = 1 + 2α, ε =
α

2(1 + 2α)
,

and let us build an ε-net on the unit sphere S in Rk as follows. We start with a
point u1 ∈ S; after {u1, ..., ut} ⊂ S is already built, we check whether there is a
point in S at the ‖ · ‖2-distance from all points of the set > ε. If it is the case, we
add such a point to the net built so far and proceed with building the net, otherwise
we terminate with the net {u1, ..., ut}. By compactness of S and due to ε > 0, this
process eventually terminates; upon termination, we have at our disposal collection
{u1, ..., uN} of unit vectors such that every two of them are at the ‖ · ‖2-distance
> ε from each other, and every point from S is at the distance at most ε from some
point of the collection. We claim that the cardinality N of the resulting set can be
bounded as

N ≤
[

2 + ε

ε

]k
=

[
4 + 9α

α

]k
≤
(

5

α

)k
. (1.55)

Indeed, the interiors of the ‖ ·‖2-balls of radius ε/2 centered at the points u1, ..., uN
are mutually disjoint, and their union is contained in the ‖ ·‖2-ball of radius 1+ ε/2
centered at the origin; comparing the volume of the union and the one of the ball,
we arrive at (1.55).

30. Consider event E comprised of all realizations of A such that for all k-element
subsets I of {1, ..., n} and all t ≤ n it holds

1− α ≤ ‖AIut‖22 ≤ 1 + α. (1.56)

By (1.54) and the union bound,

Prob{A 6∈ E} ≤ 2N

(
n
k

)
exp{−m

5
α2}. (1.57)

We claim that

A ∈ E ⇒ (1− 2α) ≤ ‖AIu‖22 ≤ 1 + 2α ∀
(
I ⊂ {1, ..., n} : Card(I) = k
u ∈ Rk : ‖u‖2 = 1

)
.

(1.58)
Indeed, let A ∈ E, let us fix I ∈ {1, ..., n}, Card(I) = k, and let M be the maximal
value of the quadratic form f(u) = uTATI AIu on the unit ‖ · ‖2-ball B, centered
at the origin, in Rk. In this ball, f is Lipschitz continuous with constant 2M
w.r.t. ‖ · ‖2; denoting by ū a maximizer of the form on B, we lose nothing when
assuming that ū is a unit vector. Now let us be the point of our net which is at the
‖ · ‖2-distance from ū at most ε. We have

M = f(ū) ≤ f(us) + 2Mε ≤ 1 + α+ 2Mε,

whence

M ≤ 1 + α

1− 2ε
= 1 + 2α,



40

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 1

implying the right inequality in (1.58). Now let u be unit vector in Rk, and us be
a point in the net at the ‖ · ‖-distance ≤ ε from u. We have

f(u) ≥ f(us)− 2Mε ≥ 1− α− 2
1 + α

1− 2ε
ε = 1− 2α,

justifying the first inequality in (1.58).
The bottom line is:

δ ∈ (0, 0.2], 1 ≤ k ≤ n

⇒ Prob{A : A does not satisfy RIP(δ, k)} ≤ 2

(
10

δ

)k
︸ ︷︷ ︸
≤( 20

δ )
k

(
n
k

)
exp{−mδ

2

20 }.

(1.59)
Indeed, setting α = δ/2, we have seen that whenever A 6∈ E, we have (1 − δ) ≤
‖Au‖22 ≤ (1 + δ) for all unit k-sparse u, which is nothing but RIP(δ, k); with this
in mind, (1.59) follows from (1.57) and (1.55).

40. It remains to verify that with properly selected, depending solely on δ, positive
quantities c, d, f , for every k ≥ 1 satisfying (1.27) the right hand side in (1.59) is
at most exp{−fm}. Passing to logarithms, our goal is to ensure the relation

G := a(δ)m− b(δ)k − ln

(
n
k

)
≥ mf(δ) > 0[

a(δ) = δ2

20 , b(δ) = ln
(

20
δ

)] (1.60)

provided that k ≥ 1 satisfies (1.27).
Let k satisfy (1.27) with some c, d to be specified later, and let y = k/m.

Assuming d ≥ 3, we have 0 ≤ y ≤ 1/3. Now, it is well known that

C := ln

(
n
k

)
≤ n

[
k

n
ln(

n

k
) +

n− k
n

ln(
n

n− k
)

]
,

whence

C ≤ n
[
m
n y ln( n

my ) + n−k
n ln(1 +

k

n− k
)︸ ︷︷ ︸

≤ k
n−k

]
≤ n

[
m
n y ln( n

my ) + k
n

]
= m

[
y ln( n

my ) + y
]
≤ 2my ln( n

my )

(recall that n ≥ m and y ≤ 1/3). It follows that

G = a(δ)m− b(δ)k − C ≥ a(δ)m− b(δ)ym− 2my ln( n
my )

= m

[
a(δ)− b(δ)y − 2y ln(

n

m
)− 2y ln(

1

y
)

]
︸ ︷︷ ︸

H

,

and all we need is to select c, d in such a way that (1.27) would imply that H ≥ f
with some positive f = f(δ). This is immediate: we can find u(δ) > 0 such that
when 0 ≤ y ≤ u(δ), we have 2y ln(1/y) + b(δ)y ≤ 1

3a(δ); selecting d(δ) ≥ 3 large
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enough, (1.27) would imply y ≤ u(δ), and thus would imply

H ≥ 2

3
a(δ)− 2y ln(

n

m
).

Now we can select c(δ) large enough for (1.27) to ensure that 2y ln( nm ) ≤ 1
3a(δ).

With just specified c, d, (1.27) implies that H ≥ 1
3a(δ), and we can take the latter

quantity as f(δ). 2

1.5.4 Proof of Propositions 1.8, 1.12

Let us prove Proposition 1.12; as a byproduct of our reasoning, we shall prove
Proposition 1.8 as well.

Let x ∈ Rn, and let x1, ..., xq be obtained from x by the following construction:
x1 is obtained from x by zeroing all but the s largest in magnitude entries; x2 is
obtained by the same procedure applied to x − x1, x3 – by the same procedure
applied to x−x1−x2, and so on; the process is terminated at the first step q when
it happens that x = x1 + ...+xq. Note that for j ≥ 2 we have ‖xj‖∞ ≤ s−1‖xj−1‖1
and ‖xj‖1 ≤ ‖xj−1‖1, whence also ‖xj‖2 ≤

√
‖xj‖∞‖xj‖1 ≤ s−1/2‖xj−1‖1. It is

easily seen that if A is RIP(δ, 2s), then for every two s-sparse vectors u, v with
non-overlapping supports we have

|vTATAu| ≤ δ‖u‖2‖v‖2. (∗)

Indeed, for s-sparse u, v, let I be the index set of cardinality ≤ 2s containing

the supports of u and v, so that, denoting by AI the submatrix of A comprised

of columns with indexes from I, we have vTATAu = vTI [ATI AI ]uI . By RIP, the

eigenvalues λi = 1+µi of the symmetric matrix Q = ATI AI are in-between 1−δ and

1+δ; representing uI and vI by vectors w, z of their coordinates in the orthonormal

eigenbasis of Q, we get |vTATAu| = |
∑
i λiwizi| = |

∑
i wizi +

∑
i µiwizi| ≤

|wT z| + δ‖w‖2‖z‖2. It remains to note that wT z = uTI vI = 0 and ‖w‖2 = ‖u‖2,

‖z‖2 = ‖v‖2.

(i): We have

‖Ax1‖2‖Ax‖2 ≥ [x1]TATAx = ‖Ax1‖22 −
∑q
j=2[x1]TATAxj

≥ ‖Ax1‖22 − δ
∑q
j=2 ‖x1‖2‖xj‖2 [by (∗)]

≥ ‖Ax1‖22 − δs−1/2‖x1‖2
∑q
j=2 ‖xj−1‖1 ≥ ‖Ax1‖22 − δs−1/2‖x1‖2‖x‖1

⇒ ‖Ax1‖22 ≤ ‖Ax1‖2‖Ax‖2 + δs−1/2‖x1‖2‖x‖1
⇒ ‖x1‖2 = ‖x1‖2

‖Ax1‖22
‖Ax1‖22 ≤

‖x1‖2
‖Ax1‖2 ‖Ax‖2 + δs−1/2

(
‖x1‖2
‖Ax1‖2

)2

‖x‖1
⇒ ‖x‖s,2 = ‖x1‖2 ≤ 1√

1−δ‖Ax‖2 + δs−1/2

1−δ ‖x‖1 [by RIP(δ, 2s)]

and we see that the pair
(
H = s−1/2

√
1−δ Im, ‖ · ‖2

)
satisfies Q2(s, δ

1−δ ), as claimed in

(i).
In addition, the relation after the first ⇒ implies that

‖Ax1‖2 ≤ ‖Ax‖2 + δs−1/2

[
‖x1‖2
‖Ax1‖2

]
‖x‖1.
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By RIP, the left hand side in this inequality is ≥ ‖x1‖2
√

1− δ, while the ratio of
norms in the right hand side is ≤ 1√

1−δ , so that

‖x‖s,2 = ‖x1‖2 ≤
1√

1− δ
‖Ax‖2 +

δs−1/2

1− δ
‖x‖1,

implying Proposition 1.8.i. Moreover, when q ≥ 2, κ > 0 and integer t ≥ 1 satisfy

t ≤ s and κt1/q−1 ≥ δs−1/2

1−δ , we have

‖x‖t,q ≤ ‖x‖s,q ≤ ‖x‖s,2 ≤
1√

1− δ
‖Ax‖2 + κt1/q−1‖x‖1,

or, equivalently,

1 ≤ t ≤ min

[[
κ(1−δ)

δ

] q
q−1

, s
q−2
2q−2

]
s

q
2(q−1)

⇒ (H = t−1/2
√

1−δ Im, ‖ · ‖2) satisfies Qq(t, κ),

as required in item (i) of Proposition 1.12.
(ii): We have

‖x1‖1‖ATAx‖∞ ≥ [x1]TATAx = ‖Ax1‖22 −
∑q
j=2[x1]TATAxj

≥ ‖Ax1‖22 − δs−1/2‖x1‖2‖x‖1 [exactly as above]
⇒ ‖Ax1‖22 ≤ ‖x1‖1‖ATAx‖∞ + δs−1/2‖x1‖2‖x‖1
⇒ (1− δ)‖x1‖22 ≤ ‖x1‖1‖ATAx‖∞ + δs−1/2‖x1‖2‖x‖1 [by RIP(δ, 2s)]

≤ s1/2‖x1‖2‖ATAx‖∞ + δs−1/2‖x1‖2‖x‖1
⇒ ‖x‖s,2 = ‖x1‖2 ≤ s1/2

1−δ ‖A
TAx‖∞ + δ

1−δ s
−1/2‖x‖1,

and we see that the pair
(
H = 1

1−δA, ‖ · ‖∞
)

satisfies the condition Q2

(
s, δ

1−δ

)
,

as required in Proposition 1.8.ii.
In addition, the inequality after the second ⇒ implies that

‖x1‖2 ≤
1

1− δ

[
s1/2‖ATAx‖∞ + δs−1/2‖x‖1

]
,

Consequently, when q ≥ 2, κ > 0 and integer t ≥ 1 satisfy t ≤ s and κt1/q−1 ≥
δ

1−δ s
−1/2, we have

‖x‖t,q ≤ ‖x‖s,q ≤ ‖x‖s,2 ≤
1

1− δ
s1/2‖ATAx‖∞ + κt1/q−1‖x‖1,

or, equivalently,

1 ≤ t ≤ min

[[
κ(1−δ)

δ

] q
q−1

, s
q−2
2q−2

]
s

q
2(q−1)

⇒ (H = s
1
2 t
− 1
q

1−δ A, ‖ · ‖∞) satisfies Qq(t, κ),

as required in item (ii) of Proposition 1.12. 2
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1.5.5 Proof of Proposition 1.10

(i): Let H̄ ∈ Rm×N and ‖ · ‖ satisfy Q∞(s, κ). Then for every k ≤ n we have

|xk| ≤ ‖H̄TAx‖+ s−1κ‖x‖1,

or, which is the same by homogeneity,

min
x

{
‖H̄TAx‖ − xk : ‖x‖1 ≤ 1

}
≥ −s−1κ.

In other words, the optimal value Optk of the conic optimization problem11

Optk = min
x,t

{
t− [ek]Tx : ‖H̄TAx‖ ≤ t, ‖x‖1 ≤ 1

}
,

where ek ∈ Rn is k-th basic orth, is ≥ −s−1κ. Since the problem clearly is strictly
feasible, this is the same as to say that the dual problem

max
µ∈R,g∈Rn,η∈RN

{
−µ : AT H̄η + g = ek, ‖g‖∞ ≤ µ, ‖η‖∗ ≤ 1

}
,

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖:

‖u‖∗ = max
‖h‖≤1

hTu

has a feasible solution with the value of the objective ≥ −s−1κ. It follows that
there exists η = ηk and g = gk such that

(a) : ek = AThk + gk,
(b) : hk := H̄ηk, ‖ηk‖∗ ≤ 1,
(c) : ‖gk‖∞ ≤ s−1κ.

(1.61)

Denoting H = [h1, ..., hn], V = I −HTA, we get

Colk[V T ] = ek −AThk = gk,

implying that ‖Colk[V T ]‖∞ ≤ s−1κ. Since the latter inequality it is true for all
k ≤ n, we conclude that

‖Colk[V ]‖s,∞ = ‖Colk[V ]‖∞ ≤ s−1κ, 1 ≤ k ≤ n,

whence, by Proposition 1.9, (H, ‖ · ‖∞) satisfies Q∞(s, κ). Moreover, for every
η ∈ Rm and every k ≤ n we have, in view of (b) and (c),

|[hk]T η| = |[ηk]T H̄T η| ≤ ‖ηk‖∗‖H̄T η‖,

whence ‖HT η‖∞ ≤ ‖H̄T η‖.
Now let us prove the “In addition” part of Proposition. Let H = [h1, ..., hn] be

the contrast matrix specified in this part. We have

|[Im −HTA]ij | = |[[ei]T − hTi A]j | ≤ ‖[ei]T − hTi A‖∞ = ‖ei −AThi‖∞ ≤ Opti,

11For summary on conic programming, see Section 4.1.
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implying by Proposition 1.9 that (H, ‖ · ‖∞) does satisfy the condition Q∞(s, κ∗)
with κ∗ = smaxi Opti. Now assume that there exists a matrix H ′ which, taken
along with some norm ‖ · ‖, satisfies the condition Q∞(s, κ) with κ < κ∗, and
let us lead this assumption to a contradiction. By the already proved first part
of Proposition 1.10, our assumption implies that there exists m × n matrix H̄ =
[h̄1, ..., h̄n] such that ‖Colj [In − H̄TA]‖∞ ≤ s−1κ for all j ≤ n, implying that
|[[ei]T − h̄Ti A]j | ≤ s−1κ for all i and j, or, which is the same, ‖ei−AT h̄i‖∞ ≤ s−1κ
for all i. Due to the origin of Opti, we have Opti ≤ ‖ei − AT h̄i‖∞ for all i,
and we arrive at s−1κ∗ = maxi Opti ≤ s−1κ, that is, κ∗ ≤ κ, which is a desired
contradiction.

It remains to prove (1.32), which is just an exercise on LP duality: denoting by
e n-dimensional all-ones vector, we have

Opti := minh ‖ei −ATh‖∞ = minh,t
{
t : ei −ATh ≤ te, ATh− ei ≤ te

}
= maxλ,µ {λi − µi : λ, µ ≥ 0, A[λ− µ] = 0,

∑
i λi +

∑
i µi = 1}

[LP duality]
= maxx:=λ−µ {xi : Ax = 0, ‖x‖1 ≤ 1}

where the concluding equality follows from the fact that vectors x representable as
λ−µ with λ, µ ≥ 0 satisfying ‖λ‖1 + ‖µ‖1 = 1 are exactly vectors x with ‖x‖1 ≤ 1.
2

1.5.6 Proof of Proposition 1.13

Let H satisfy (1.38). Since ‖v‖s,1 ≤ s1−1/q‖v‖s,q, it follows that H satisfies for
some α < 1/2 the condition

‖Colj [In −HTA]‖s,1 ≤ α, 1 ≤ j ≤ n. (1.62)

whence, as we know,

‖x‖s,1 ≤ s‖HTAx‖∞ + α‖x‖1 ∀x ∈ Rn

It follows that s ≤ m, since otherwise there exists a nonzero s-sparse vector x with
Ax = 0; for this x, the inequality above cannot hold true.

Let us set n̄ = 2m, so that n̄ ≤ n, and let H̄ and Ā be the m × n̄ matrices
comprised of the first 2m columns of H, respectively, A. Relation (1.62) implies
that the matrix V = In̄ − H̄T Ā satisfies

‖Colj [V ]‖s,1 ≤ α < 1/2, 1 ≤ j ≤ n̄. (1.63)

Now, V = In̄ − H̄T Ā, and since the rank of H̄T Ā is ≤ m, at least n̄ −m singular
values of V are ≥ 1, and therefore the squared Frobenius norm ‖V ‖2F of V is at
least n̄−m. On the other hand, we can upper-bound this squared norm as follows.
Observe that for every n̄-dimensional vector f one has

‖f‖22 ≤ max
[ n̄
s2
, 1
]
‖f‖2s,1. (1.64)

Indeed, by homogeneity it suffices to verify the inequality when ‖f‖s,1 =
1; besides, we can assume w.l.o.g. that the entries in f are nonnegative,
and that f1 ≥ f2 ≥ ... ≥ fn̄. We have fs ≤ ‖f‖s,1/s = 1

s ; in addition,
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∑n̄
j=s+1 f

2
j ≤ (n̄ − s)f2

s . Now, due to ‖f‖s,1 = 1, for fixed fs ∈ [0, 1/s] we
have

s∑
j=1

f2
j ≤ f2

s + max
t
{
s−1∑
j=1

t2s : tj ≥ fs, j ≤ s− 1,

s−1∑
j=1

tj = 1− fs}.

The maximum in the right hand side is the maximum of a convex function
over a bounded polytope; it is achieved at an extreme point, that is, at a
point where one of the tj is equal to 1− (s− 1)fs, and all remaining tj are
equal to fs. As a result,∑
j

f2
j ≤

[
(1− (s− 1)fs)

2 + (s− 1)f2
s

]
+ (n̄− s)f2

s ≤ (1− (s− 1)fs)
2 + (n̄− 1)f2

s .

The right hand side in the latter inequality is convex in fs and thus achieves
its maximum over the range [0, 1/s] of allowed values of fs at an endpoint,
yielding

∑
j f

2
j ≤ max[1, n̄/s2], as claimed.

Applying (1.64) to the columns of V and recalling that n̄ = 2m, we get

‖V ‖2F =

2m∑
j=1

‖Colj [V ]‖22 ≤ max[1, 2m/s2]

2m∑
j=1

‖Colj [V ]‖2s,1 ≤ 2αmmax[1, 2m/s2].

The left hand side in this inequality, as we remember, is ≥ n̄ − m = m, and we
arrive at

m ≤ 2αmmax[1, 2m/s2].

Since α < 1/2, this inequality implies 2m/s2 ≥ 1, whence s ≤
√

2m.
It remains to prove that when m ≤ n/2, the condition Q∞(s, κ) with κ < 1/2

can be satisfied only when s ≤
√

2m. This is immediate: by Proposition 1.10,
assuming Q∞(s, κ) satisfiable, there exists m × n contrast matrix H such that
|[In −HTA]ij | ≤ κ/s for all i, j, which, by the already proved part of Proposition
1.13, is impossible when s >

√
2m. 2
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Hypothesis Testing

Disclaimer for experts. In what follows, we allow for “general” probability and
observation spaces, general probability distributions, etc., which, formally, would
make it necessary to address the related measurability issues. In order to streamline
our exposition, and taking into account that we do not expect from our target
audience to be experts in formal nuances of the measure theory, we decided to
omit in the text comments (always self-evident for an expert) on measurability and
replace them with a “disclaimer” as follows:
Below, unless the opposite is explicitly stated,

• all probability and observation spaces are Polish (complete separable metric)
spaces equipped by σ-algebras of Borel sets;
• all random variables (i.e., functions from a probability space to some other space)

take values in Polish spaces; these variables, same as other functions we deal with,
are Borel;
• all probability distributions we are dealing with are σ-additive Borel measures

on the respective probability spaces; the same is true for all reference measures
and probability densities taken w.r.t. these measures.

When an entity (a random variable, or a probability density, or a function, say, a
test) is part of the data, the Borel property is a default assumption; e.g., the sen-
tence “Let random variable η be a deterministic transformation of random variable
ξ” should be read as “let η = f(ξ) for some Borel function f”, and the sentence
“Consider test T deciding on hypotheses H1, ...,HL via observation ω ∈ Ω” should
be read as “Consider a Borel function T on Polish space Ω, the values of the func-
tion being subsets of the set {1, ..., L}.” When an entity is built by us rather than
being part of the data, the Borel property is (always straightforwardly verifiable)
property of the construction. For example, the statement “The test T given by...
is such that...” should be read as “The test T given by... is a Borel function of
observations and is such that...”

On several occasions, we still use the word ”Borel;” those not acquainted with
the notion are welcome to just ignore this word.

2.1 PRELIMINARIES FROM STATISTICS: HYPOTHESES,

TESTS, RISKS

2.1.1 Hypothesis Testing Problem

Hypothesis Testing is one of the most basic problems of Statistics. Informally, this
is the problem where one is given an observation – a realization of random variable
with unknown (at least partially) probability distribution and want to decide, based
on this observation, on two or more hypotheses on the actual distribution of the
observed variable. A convenient for us formal setting is as follows:
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Given are:

• Observation space Ω, where the observed random variable (r.v.) takes its
values;
• L families P` of probability distributions on Ω. We associate with these

families L hypotheses H1, ...,HL, with H` stating that the probability
distribution P of the observed r.v. belongs to the family P` (shorthand:
H` : P ∈ P`). We shall say that the distributions from P` obey hypothesis
H`.
Hypothesis H` is called simple, if P` is a singleton, and is called composite
otherwise.

Our goal is, given an observation – a realization ω of the r.v. in question –
to decide which one of the hypotheses is true.

2.1.2 Tests

Informally, a test is an inference procedure one can use in the above testing problem.
Formally, a test for this testing problem is a function T (ω) of ω ∈ Ω; the value
T (ω) of this function at a point ω is some subset of the set {1, ..., L}:

T (Ω) ⊂ {1, ..., L}.

Given observation ω, the test accepts all hypotheses H` with ` ∈ T (ω) and rejects
all hypotheses H` with ` 6∈ T (ω). We call a test simple, if T (ω) is a singleton for
every ω, that is, whatever be the observation, the test accepts exactly one of the
hypotheses H1, ...,HL and rejects all other hypotheses.

Note: what we have defined is a deterministic test. Sometimes we shall consider
also randomized tests, where the set of accepted hypotheses is a (deterministic)
function of observation ω and of a realization θ of independent of ω random param-
eter (which w.l.o.g. can be assumed to be uniformly distributed on [0, 1]). Thus, in
a randomized test, the inference depends both on the observation ω and the out-
come θ of “flipping a coin,” while in a deterministic test the inference depends on
observation only. In fact, randomized testing can be reduced to deterministic one.
To this end it suffices to pass from our “actual” observation ω to new observation
ω+ = (ω, θ), where θ ∼ Uniform[0, 1] is independent of ω; the ω-component of our
new observation ω+ is, as before, generated by “the nature,” and the θ-component
is generated by ourselves. Now, given families P`, 1 ≤ ` ≤ L, of probability distri-
butions on the original observation space Ω, we can associate with them families
P`,+ = {P × Uniform[0, 1] : P ∈ P`} of probability distributions on our new ob-
servation space Ω+ = Ω × [0, 1]; clearly, to decide on the hypotheses associated
with the families P` via observation ω is the same as to decide on the hypotheses
associated with the families P`,+ of our new observation ω+, and deterministic tests
for the latter testing problem are exactly the randomized tests for the former one.

2.1.3 Testing from repeated observations

There are situations where an inference can be based on several observations ω1, ..., ωK

rather than on a single one. Our related setup is as follows:

We are given L families P`, ` = 1, ..., L, of probability distributions on
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observation space Ω and a collection

ωK = (ω1, ..., ωK) ∈ ΩK = Ω× ...× Ω︸ ︷︷ ︸
K

and want to make conclusions on how the distribution of ωK “is positioned”
w.r.t. the families P`, 1 ≤ ` ≤ L.

Specifically, we are interested in three situations of this type, specifically, as follows.

2.1.3.1 Stationary K-repeated observations

In the case of stationary K-repeated observations ω1, ..., ωK are independently of
each other drawn from a distribution P . Our goal is to decide, given ωK , on the
hypotheses P ∈ P`, ` = 1, ..., L.

Equivalently: Families P` of probability distributions of ω ∈ Ω, 1 ≤ ` ≤ L, give
rise to the families

P�,K` = {PK = P × ...× P︸ ︷︷ ︸
K

: P ∈ P`}

of probability distributions on ΩK ; we refer to the families P�,K` as to K-th diagonal
powers of the family P`. Given observation ωK ∈ ΩK , we want to decide on the
hypotheses

H�,K` : ωK ∼ PK ∈ P�,K` , 1 ≤ ` ≤ L.

2.1.3.2 Semi-stationary K-repeated observations

In the case of semi-stationary K-repeated observations, “the nature” selects some-
how a sequence P1, ..., PK of distributions on Ω, and then draws, independently
across k, observations ωk, k = 1, ...,K, from these distributions:

ωk ∼ Pk are independent across k ≤ K

Our goal is to decide, given ωK = (ω1, ..., ωK), on the hypotheses {Pk ∈ P`, 1 ≤
k ≤ K}, ` = 1, ..., L.

Equivalently: Families P` of probability distributions of ω ∈ Ω, 1 ≤ ` ≤ L, give
rise to the families

P⊕,K` = {PK = P1 × ...× PK : Pk ∈ P`, 1 ≤ k ≤ K}

of probability distributions on ΩK . Given observation ωK ∈ ΩK , we want to decide
on the hypotheses

H⊕,K` : ωK ∼ PK ∈ P⊕,K` , 1 ≤ ` ≤ L.

In the sequel, we refer to families P⊕,K` as to K-th direct powers of the families P`.
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A closely related notion is the one of direct product

P⊕,K` =

K⊕
k=1

P`,k

of K families P`,k, of probability distributions on Ωk, over k = 1, ...,K. By defini-
tion,

P⊕,K` = {PK = P1 × ...× PK : Pk ∈ P`,k, 1 ≤ k ≤ K}.

2.1.3.3 Quasi-stationary K-repeated observations

Quasi-stationary K-repeated observations ω1 ∈ Ω, ..., ωK ∈ Ω stemming from a
family P of probability distributions on an observation space Ω are generated as
follows:

“In the nature” there exists random sequence ζK = (ζ1, ..., ζK) of “driving
factors” such that for every k, ωk is a deterministic function of ζ1, ..., ζk:

ωk = θk(ζ1, ..., ζk)

and the conditional, ζ1, ..., ζk−1 given, distribution Pωk|ζ1,...,ζk−1
of ωk always

(i.e., for all ζ1, ..., ζk−1) belongs to P.

With the above mechanism, the collection ωK = (ω1, ..., ωK) has some distribution
PK which depends on the distribution of driving factors and on functions θk(·). We
denote by P⊗,K the family of all distributions PK which can be obtained in this
fashion and we refer to random observations ωK with distribution PK of the just
define type as to quasi-stationary K-repeated observations stemming from P. The
quasi-stationary version of our hypothesis testing problem reads: Given L families
P` of probability distributions P`, ` = 1, ..., L, on Ω and an observation ωK ∈ ΩK ,
decide on the hypotheses

H⊗,K` = {PK ∈ P⊗,K` }, 1 ≤ ` ≤ K

on the distribution PK of the observation ωK .
A closely related notion is the one of quasi-direct product

P⊗,K` =

K⊗
k=1

P`,k

of K families P`,k, of probability distributions on Ωk, over k = 1, ...,K. By def-

inition, P⊗,K` is comprised of all probability distributions of random sequences
ωK = (ω1, ..., ωK), ωk ∈ Ωk, which can be generated as follows: “in the nature”
there exists a random sequence ζK = (ζ1, ..., ζK) of “driving factors” such that for
every k ≤ K, ωk is a deterministic function of ζk = (ζ1, ..., ζk), and conditional,
ζk−1 being given, distribution of ωk always belongs to P`,k.

The above description of quasi-stationary K-repeated observations seems to be
too complicated; well, this is what happens in some important applications, e.g., in
hidden Markov chain. Here Ω = {1, ..., d} is a finite set, and ωk ∈ Ω, k = 1, 2, ..., are
generated as follows: “in the nature there” exists a Markov chain with D-element
state space S split into d non-overlapping bins, and ωk is the serial number β(η)
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of the bin to which the state ηk of the chain belongs. Now, every column Qj of
the transition matrix Q of the chain (this column is a probability distribution on
{1, ..., D}) generates a probability distribution Pj on Ω, specifically, the distribution
of β(η), η ∼ Qj . Now, a family P of distributions on Ω induces a family Q[P] of all
D ×D stochastic matrices Q for which all D distributions P j , j = 1, ..., D, belong
to P. When Q ∈ Q[P], observations ωk, k = 1, 2, ... clearly are given by the above
“quasi-stationary mechanism” with ηk in the role of driving factors and P in the
role of P`. Thus, in the situation in question, given L families P`, ` = 1, ..., L of
probability distributions on S, deciding on hypotheses Q ∈ Q[P`], ` = 1, ..., L, on
the transition matrix Q of the Markov chain underlying our observations reduces
to hypothesis testing via quasi-stationary K-repeated observations.

2.1.4 Risk of a simple test

Let P`, ` = 1, ..., L, be families of probability distributions on observation space Ω;
these families give rise to hypotheses

H` : P ∈ P`, ` = 1, ..., L

on the distribution P of a random observation ω ∼ P . We are about to define the
risks of a simple test T deciding on the hypotheses H`, ` = 1, ..., L, via observation
ω; recall that simplicity means that as applied to an observation, our test accepts
exactly one hypothesis and rejects all other hypotheses.

Partial risks Risk`(T |H1, ...,HL) are the worst-case, over P ∈ P`, P -probabilities
for T to reject `-th hypothesis when it is true, that is, when ω ∼ P :

Risk`(T |H1, ...,HL) = sup
P∈P`

Probω∼P {ω : T (ω) 6= {`}} , ` = 1, ..., L.

Note that for ` fixed, `-th partial risk depends on how we order the hypotheses;
when reordering them, we should reorder risks as well. In particular, for a test T
deciding on two hypotheses H, H ′ we have

Risk1(T |H,H ′) = Risk2(T |H ′, H).

Total risk Risktot(T |H1, ...,HL) is the sum of all L partial risks:

Risktot(T |H1, ...,HL) =

L∑
`=1

Risk`(T |H1, ...,HL).

Risk Risk(T |H1, ...,HL) is the maximum of all L partial risks:

Risk(T |H1, ...,HL) = max
1≤`≤L

Risk`(T |H1, ...,HL).

Note that at the first glance, we have defined risks for single-observation tests only;
in fact, we have defined them for tests based on stationary, semi-stationary, and
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quasi-stationary K-repeated observations as well, since, as we remember from Sec-
tion 2.1.3, the corresponding testing problems, after redefining observations and

families of probability distributions (ωK in the role of ω and, say, P⊕,K` =
K⊕
k=1

P`
in the role of P`), become single-observation testing problems.
Pay attention to the following two important observations:

• Partial risks of a simple test are defined in the worst-case-oriented fashion: as
the worst, over the true distributions P of observations compatible with the
hypothesis in question, probability to reject this hypothesis

• Risks of a simple test say what happens, statistically speaking, when the true
distribution P of observation obeys one of the hypotheses in question, and say
nothing on what happens when P does not obey neither one of the L hypotheses.

Remark 2.1. “The smaller are hypotheses, the less are risks.” Specifically, given
families of probability distributions P` ⊂ P ′`, ` = 1, ..., L, on observation space Ω,
along with hypotheses H` : P ∈ P`, H ′` : P ∈ P ′` on the distribution P of an
observation ω ∈ Ω, every test T deciding on the “larger” hypotheses H ′1, ...,H

′
L can

be considered as a test deciding on smaller hypotheses H1, ...,HL as well, and the
risks of the test when passing from larger hypotheses to smaller ones can only drop
down:

P` ⊂ P ′`, 1 ≤ ` ≤ L⇒ Risk(T |H1, ...,HL) ≤ Risk(T |H ′1, ...,H ′L).

For example, families of probability distributions P`, 1 ≤ ` ≤ L, on Ω and a positive
integer K induce three families of hypotheses on a distribution PK of K-repeated
observations:

H�,K` K : PK ∈ P�,K` , H⊕,K` : PK ∈ P⊕,K` =
K⊕
k=1

P`,

H⊗,K` : PK ∈ P⊗,K` =
K⊗
k=1

P`, 1 ≤ ` ≤ L,

(see Section 2.1.3), and clearly

PK` ⊂ P
⊕,K
` ⊂ P⊗,K` ;

it follows that when passing from quasi-stationary K-repeated observations to semi-
stationary K-repeated, and then to stationary K-repeated observations, the risks
of a test can only go down.

2.1.5 Two-point lower risk bound

The following observation is nearly evident:

Proposition 2.2. Consider two simple hypotheses H1 : P = P1 and H2 : P = P2

on the distribution P of observation ω ∈ Ω, and assume that P1, P2 have densities
p1, p2 w.r.t. some reference measure Π on Ω 12. Then for any simple test T

12This assumption is w.l.o.g. – we can take, as Π, the sum of the measures P1 and P2.
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deciding on H1, H2 it holds

Risktot(T |H1, H2) ≥
∫

Ω

min[p1(ω), p2(ω)]Π(dω). (2.1)

Note that the right hand side in this relation is independent of how Π is selected.

Proof. Consider a simple test T , perhaps a randomized one, and let π(ω) be the
probability for this test to accept H1 and reject H2 when the observation is ω; since
the test is simple, the probability for T to accept H2 and to reject H1, observation
being ω, is 1− π(ω). Consequently,

Risk1(T |H1, H2) =
∫

Ω
(1− π(ω))p1(ω)Π(dω),

Risk2(T |H1, H2) =
∫

Ω
π(ω)p2(ω)Π(dω),

whence

Risktot(T |H1, H2) =
∫

Ω
[(1− π(ω))p1(ω) + π(ω)p2(ω)]Π(dω)

≥
∫

Ω
min[p1(ω), p2(ω)]Π(dω). 2

Remark 2.3. Note that the lower risk bound (2.1) is achievable; given an observa-
tion ω, the corresponding test T accepts H1 with probability 1 (i.e., π(ω) = 1
when p1(ω) > p2(ω)), accepts H2 when p1(ω) < p2(ω) (i.e., π(ω) = 0 when
p1(ω) < p2(ω)) and accepts H1 and H2 with probabilities 1/2 in the case of tie
(i.e., π(ω) = 1/2 when p1(ω) = p2(ω)); this is nothing but maximum likelihood test
naturally adjusted to account for ties.

Example 2.4. Let Ω = Rd, let the reference measure Π be the Lebesgue measure on
Rd, and let pχ(·) = N (µχ, Id), be the Gaussian densities on Rd with unit covariance
and means µχ, χ = 1, 2. In this case, assuming µ1 6= µ2, the recipe from Remark
2.3 reduces to the following:

Let

φ1,2(ω) =
1

2
[µ1 − µ2]T [ω − w], w =

1

2
[µ1 + µ2]. (2.2)

Consider the simple test T which, given an observation ω, accepts H1 : p =
p1 and rejects H2 : p = p2 when φ1,2(ω) ≥ 0, otherwise accepts H2 and
rejects H1. For this test,

Risk1(T |H1, H2) = Risk2(T |H1, H2) = Risk(T |H1, H2)
= 1

2Risktot(T |H1, H2) = Erf( 1
2‖µ1 − µ2‖2),

(2.3)

where

Erf(δ) =
1√
2π

∫ ∞
δ

e−s
2/2ds (2.4)

is the error function, and the test is optimal in terms of its risk and its total
risk.

Note that optimality of T in terms of total risk is given by Proposition 2.2 and
Remark 2.3; optimality in terms of risk is ensured by optimality in terms of total
risk combined with the first equality in (2.3).

Example 2.4 admits an immediate and useful extension:
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Figure 2.1: “Gaussian Separation” (Example 2.5): Optimal test deciding on whether the
mean of Gaussian r.v. belongs to the dark red (H1) or to the dark blue (H2) domains.
Dark and light red: acceptance domain for H1. Dark and light blue: acceptance domain
for H2.

Example 2.5. Let Ω = Rd, let the reference measure Π be the Lebesgue measure
on Rd, and let M1, M2 be two nonempty closed convex sets in Rd with empty
intersection and such that the convex optimization program

min
µ1,µ2

{‖µ1 − µ2‖2 : µχ ∈Mχ, χ = 1, 2} (∗)

has an optimal solution µ∗1, µ
∗
2 (this definitely is the case when at least one of the

sets M1, M2 is bounded). Let

φ1,2(ω) =
1

2
[µ∗1 − µ∗2]T [ω − w], w =

1

2
[µ∗1 + µ∗2], (2.5)

and let the simple test T deciding on the hypotheses

H1 : p = N (µ, Id) with µ ∈M1, H2 : p = N (µ, Id) with µ ∈M2

be as follows (see Figure 2.1): given an observation ω, T accepts H1 and rejects H2

when φ1,2(ω) ≥ 0, otherwise accepts H2 and rejects H1. Then

Risk1(T |H1, H2) = Risk2(T |H1, H2) = Risk(T |H1, H2)
= 1

2Risktot(T |H1, H2) = Erf( 1
2‖µ

∗
1 − µ∗2‖2),

(2.6)

and the test is optimal in terms of its risk and its total risk.

Justification of Example 2.5 is immediate. Let e be the ‖ · ‖2-unit vector with
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the same direction as the one of µ∗1−µ∗2, and let ξ[ω] = eT (ω−w). From optimality
conditions for (∗) it follows that

eTµ ≥ eTµ∗1 ∀µ ∈M1 & eTµ ≤ eTµ∗2 ∀µ ∈M2.

As a result, if µ ∈ M1 and the density of ω is pµ = N (µ, Id), the random variable
ξ[ω] is scalar Gaussian random variable with unit variance and expectation ≥ δ :=
1
2‖µ

∗
1 − µ∗2‖2, implying that pµ-probability for ξ[ω] to be negative (which is exactly

the same as the pµ-probability for T to reject H1 and accept H2) is at most Erf(δ).
Similarly, when µ ∈ M2 and the density of ω is pµ = N (µ, Id), ξ[ω] is scalar
Gaussian random variable with unit variance and expectation ≤ −δ, implying that
the pµ-probability for ξ[ω] to be nonnegative (which is exactly the same as the
probability for T to reject H2 and accept H1) is at most Erf(δ). These observations
imply the validity of (2.6); optimality in terms of risks follows from the fact that
risks of a simple test deciding on our now – composite – hypotheses H1, H1 on
the density p of observation ω can be only larger than the risks of a simple test
deciding on two simple hypotheses p = pµ∗1 and p = pµ∗2 , that is, the quantity

Erf( 1
2‖µ

∗
1 − µ∗2‖2), see Example 2.4, is a lower bound on the risk and half of the

total risk of a test deciding on H1, H2; with this in mind, the announced optimalities
of T in terms of risks are immediate consequences of (2.6).

We remark that the (nearly self-evident) result stated in Example 2.5 seems
first been noticed in [27].

Example 2.5 allows for substantial extensions in two directions: first. it turns
out that the “Euclidean separation” underlying the test built in this example can
be used to decide on hypotheses on location of a “center” of d-dimensional distri-
bution far beyond the Gaussian observation model considered in this example; this
extension will be our goal in the next Section, based on recent paper [70]. A less
straightforward and, we believe, more instructive extensions, originating from [64],
will be considered in Section 2.3.

2.2 HYPOTHESIS TESTING VIA EUCLIDEAN SEPARATION

2.2.1 Situation

In this section, we will be interested in testing hypotheses

H` : P ∈ P`, ` = 1, ..., L (2.7)

on the probability distribution of a random observation ω in the situation where
the families of distributions P` are obtained from the probability distributions from
a given family P by shifts. Specifically, we are given

• A family P of probability distributions on Ω = Rd such that all distributions
from P possess densities with respect to the Lebesgue measure on Rn, and these
densities are even functions on Rd 13;

13Allowing for a slight abuse of notation, we write P ∈ P, where P is a probability distri-
bution, to express the fact that P belongs to P (no abuse of notation so far), and write p(·) ∈ P
(this is the abuse of notation), where p(·) is the density of a probability distribution P , to express
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• A collection X1, ..., XL of nonempty closed and convex subsets of Rd, with at
most one of the sets unbounded.

These data specify L families P` of distributions on Rd; P` is comprised of distri-
butions of random vectors of the form x + ξ, where x ∈ X` is deterministic, and
ξ is random with distribution from P. Note that with this setup, deciding upon
hypotheses (2.7) via observation ω ∼ P is exactly the same as to decide, given
observation

ω = x+ ξ, (2.8)

where x is a deterministic “signal” and ξ is random noise with distribution P known
to belong to P, on the “position” of x w.r.t. X1, ..., XL; `-th hypothesis H` merely
says that x ∈ H`. The latter allows us to write down `-th hypothesis as H` : x ∈ X`

(of course, this shorthand makes sense only within the scope of our current “signal
plus noise” setup).

2.2.2 Pairwise Hypothesis Testing via Euclidean Separation

2.2.2.1 The simplest case

Consider nearly the simplest case of the situation from Section 2.2.1, one with
L = 2, X1 = {x1} and X2 = {x2}, x1 6= x2, are singletons, and P also is a
singleton; moreover, the probability density of the only distribution from P is of
the form

p(u) = f(‖u‖2), f(·) is a strictly monotonically increasing function on the nonnegative ray.

(2.9)
This situation is a generalization of the one considered in Example 2.4, where we
dealt with the special case of f , namely, with

p(u) = (2π)−d/2e−u
Tu/2.

In the case in question our goal is to decide on two simple hypotheses Hχ : p(u) =
f(‖u− xχ‖2), χ = 1, 2, on the density of observation (2.8). Let us set

δ =
1

2
‖x1 − x2‖2, e =

x1 − x2

‖x1 − x2‖2
, φ(ω) = eTω − 1

2
eT [x1 + x2]︸ ︷︷ ︸

c

, (2.10)

and consider the test T which, given observation ω = x+ ξ, accepts the hypothesis
H1 : x = x1 when φ(ω) ≥ 0, and accepts the hypothesis H2 : x = x2 otherwise.

the fact that P ∈ P.
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x1

x2

p1(·)↘

↙ p2(·)

φ(ω) = 0φ(ω) > 0 φ(ω) < 0

We have (cf. Example 2.4)

Risk1(T |H1, H2) =
∫

ω:φ(ω)<0

p1(ω)dω =
∫

u:eTu≥δ
f(‖u‖2)du

=
∫

ω:φ(ω)≥0

p2(ω)dω = Risk2(T |H1, H2)

Since p(u) is strictly decreasing function of ‖u‖2, we have also

min[p1(u), p2(u)] =

{
p1(u), φ(u)≥0
p2(u), φ(u)≤0

,

whence

Risk1(T |H1, H2) + Risk2(T |H1, H2) =
∫

ω:φ(ω)<0

p1(ω)dω +
∫

ω:φ(ω)≥0

p2(ω)dω)

=
∫

Rd

min[p1(u), p2(u)]du

Invoking Proposition 2.2, we conclude that the test T is the minimum risk simple
test deciding on H1, H2, and the risk of this test is

Risk(T |H1, H2) =

∫
u:eTu≥δ

f(‖u‖2)du. (2.11)

2.2.2.2 Extension

Now consider a slightly more complicated case of the situation from Section 2.2.1,
the one with L = 2 and nonempty and nonintersecting closed convex sets X1, X2,
one of the sets being bounded; as about P, we still assume that it is a singleton, and
the density of the only distribution from P is of the form 2.9. Our now situation is
an extension of the one from Example 2.5. By the same reasons as in the case of
the latter Example, with X1, X2 as above, the convex minimization problem

Opt = min
x1∈X1,x2∈X2

1

2
‖x1 − x2‖2 (2.12)
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is solvable, and denoting by (x1
∗, x

2
∗) an optimal solution and setting

φ(ω) = eTω − c, e =
x1
∗ − x2

∗
‖x1
∗ − x2

∗‖2
, c =

1

2
eT [x1

∗ + x2
∗] (2.13)

the stripe {ω : −Opt ≤ φ(x) ≤ Opt} separates X1 and X2:

φ(x1) ≥ φ(x1
∗) = Opt ∀x1 ∈ X1 & φ(x2) ≥ φ(x2

∗) = −Opt∀x2 ∈ X2 (2.14)

X1

X2

x1
∗

δ1

x2
∗

δ2

φ(ω) = Opt

φ(ω) = −Opt

↙φ(ω) = 1
2 [δ2 − δ1]

Proposition 2.6. Let X1, X2 be nonempty and nonintersecting closed convex sets
in Rd, one of the sets being bounded. With Opt and φ(·) given by (2.12) – (2.13),
let us split the width 2Opt of the stripe {ω : −Opt ≤ φ(ω) ≤ Opt} separating X1

and X2 into two nonnegative parts:

δ1 ≥ 0, δ2 ≥ 0, δ1 + δ2 = 2Opt (2.15)

and consider simple test T deciding on the hypotheses H1 : x ∈ X1, H2 : x ∈ X2 via
observation (2.8) by accepting H1 when

φ(ω)≥1

2
[δ2 − δ1]

and accepting H2 otherwise. Then

Riskχ(T |H1, H2) ≤
∞∫
δχ

γ(s)ds, χ = 1, 2, (2.16)

where γ(·) is the univariate marginal density of ξ, that is, probability density of
the scalar random variable hT ξ, where ‖h‖2 = 1 (note that due to (2.9), γ(·) is
independent of how we select h with ‖h‖2 = 1).

In addition, when δ1 = δ2 = Opt, T is the minimum risk test deciding on H1,
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H2. The risk of this test is

Risk(T |H1, H2) =

∞∫
Opt

γ(s)ds. (2.17)

Proof. By (2.9) and (2.14), for x ∈ X1 we have (see the picture above):

Probξ∼p(·)

{
φ(x+ ξ) <

1

2
[δ2 − δ1]

}
≤ Probξ∼p(·)

{
[−e]T ξ ≥ δ1

}
=

∞∫
δ1

γ(s)ds;

by “symmetric” reasoning, for x ∈ X2 we have

Probξ∼p(·)

{
φ(x+ ξ) ≥ 1

2
[δ2 − δ1]

}
] ≤ Probξ∼p(·)

{
eT ξ ≥ δ2

}
=

∞∫
δ2

γ(s)ds,

and we arrive at (2.16). The fact that in the case of δ1 = δ2 = Opt our test T
becomes the minimum risk test deciding on composite hypotheses H1, H2, same
as (2.16), are readily given by the fact that due to the analysis in Section 2.2.2.1,
the minimal, over all possible tests, risk of deciding on two simple hypotheses
H ′1 : x = x1

∗, H
′
2 : x = x2

∗ is given by (2.11), that is, is equal to
∫∞

Opt
γ(s)ds (note

that e in (2.11) by construction is a ‖ · ‖2-unit vector), that is, it is equal to the
already justified upper bound (2.17) on the risk of the test T deciding on the larger
than H ′χ composite hypotheses Hχ, χ = 1, 2. 2

2.2.2.3 Further extensions: spherical families of distributions

Now let us assume that we are in the situation of Section 2.2.1 with L = 2
and nonempty closed, convex and non-intersecting X1, X2, one of the sets be-
ing bounded, exactly what we have assumed in Section 2.2.2.2. What we intend
to do now, is to relax the restrictions on the family P of noise distributions, which
in Section 2.2.2.2 was just a singleton with density which is a strictly decreas-
ing function of the ‖ · ‖2-norm. Observe that as far as the density p(·) of noise
is concerned, justification of the upper risk bound (2.16) in Proposition 2.6 used
the only fact that whenever h ∈ Rd is a ‖ · ‖2-unit vector and δ ≥ 0, we have∫
hTu≥δ p(u)du ≤

∫∞
δ
γ(s)ds, with the even univariate probability density γ(·) spec-

ified in Proposition. We use this observation to extend our construction to spherical
families of probability densities.

2.2.2.3.A. Spherical families of probability densities. Let γ(·) be an even
probability density on the axis such that there is no neighbourhood of the origin
where γ = 0 almost surely. We associate with γ the spherical family of densities
Pdγ comprised of all probability densities p(·) on Rd such that

A. p(·) is even
B. Whenever e ∈ Rd, ‖e‖2 = 1, and δ ≥ 0, we have

Probξ∼P {ξ : eT ξ ≥ δ} ≤ Pγ(δ) :=

∞∫
δ

γ(s)ds. (2.18)
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Geometrically: p(·)-probability for ξ ∼ p(·) to belong to a half-space not contain-
ing origin does not exceed Pγ(δ), where δ is the ‖ · ‖2-distance from the origin to
the half-space.

Note that density (2.9) belongs to the family Pdγ with γ(·) defined in Proposition
2.6; the resulting γ, in addition to being an even density, is strictly monotonically
decreasing on the nonnegative ray. When speaking about general-type spherical
families Pdγ , we do not impose monotonicity requirements on γ(·). If a spherical

family Pdγ includes a density p(·) of the form (2.9) such that γ(·) is the induced by

p(·) univariate marginal density, as in Proposition 2.6, we say that Pdγ has a cap,
and this cap is p(·).

2.2.2.3.B. Example: Gaussian mixtures. Let η ∼ N (0,Θ), where the d × d
covariance matrix Θ satisfies Θ � Id, and let Z be an independent of η positive
scalar random variable. Gaussian mixture of Z and η (or, better to say, of the
distribution PZ of Z and the distribution N (0,Θ)) is the probability distribution
of the random vector ξ =

√
Zη. Examples of Gaussian mixtures include

• Gaussian distribution N (0,Θ) (take Z identically equal to 1),
• multidimensional Student’s t-distribution with ν ∈ {1, 2, ...} degrees of freedom

and “covariance structure” Θ; here Z is given by the requirement that ν/Z has
χ2-distribution with ν degrees of freedom.

An immediate observation (see Exercise 2.55) is that with γ given by the distribu-
tion PZ of Z according to

γZ(s) =

∫
z>0

1√
2πz

e−
s2

2z PZ(dz), (2.19)

the distribution of random variable
√
Zη, with η ∼ N (0,Θ), Θ � Id, independent

of Z, belongs to the family PdγZ , and the family PdγZ has a cap, specifically, the
Gaussian mixture of PZ and N (0, Id).

Another example of this type: Gaussian mixture of a distribution PZ of random
variable Z taking values in (0, 1] and a distribution N (0,Θ) with Θ � Id belongs to
the spherical family PdγG associated with the standard univariate Gaussian density

γG(s) =
1√
2π

e−s
2/2;

This family has a cap, specifically, the standard Gaussian d-dimensional distribution
N (0, Id).

2.2.2.3.C. Main result. Looking at the proof of Proposition 2.6, we arrive at the
following

Proposition 2.7. Let X1, X2 be nonempty and nonintersecting closed convex sets
in Rd, one of the sets being bounded, and let Pdγ be a spherical family of probability
distributions. With Opt and φ(·) given by (2.12) – (2.13), let us split the width
2Opt of the stripe {ω : −Opt ≤ φ(ω) ≤ Opt} separating X1 and X2 into two
nonnegative parts:

δ1 ≥ 0, δ2 ≥ 0, δ1 + δ2 = 2Opt (2.20)
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and consider simple test T deciding on the hypotheses H1 : x ∈ X1, H2 : x ∈ X2 via
observation (2.8) by accepting H1 when

φ(ω)≥1

2
[δ2 − δ1]

and accepting H2 otherwise. Then

Riskχ(T |H1, H2) ≤
∞∫
δχ

γ(s)ds, χ = 1, 2 (2.21)

In addition, when δ1 = δ2 = Opt and Pdγ has a cap, T is the minimum risk test
deciding on H1, H2. The risk of this test is

Risk(T |H1, H2) = Pγ(Opt) :=

∞∫
Opt

γ(s)ds. (2.22)

To illustrate the power of Proposition 2.7, consider the case when γ is the
function (2.19) stemming from Student’s t-distribution on Rd with ν degrees of
freedom. It is known that in this case γ is the density of univariate Student’s
t-distribution with ν degrees of freedom:

γ(s) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
πν

(1 + s2/ν)−
ν+1

2 ,

where Γ(·) is Euler’s Gamma function. When ν = 1, γ(·) is just the heavy tailed (no
expectation!) standard Cauchy density 1

π (1+s2)−1. Same as in this “extreme case,”
multidimensional Student’s distributions have relatively heavy tails (the heavier the
less is ν) and as such are of interest in Finance.

2.2.3 Euclidean Separation, Repeated Observations, and Majority
Tests

Assume that X1, X2, Pdγ are as in the premise of Proposition 2.7 and K-repeated
observations are allowed, K > 1. An immediate attempt to reduce the situation
to the single-observation case by calling K-repeated observation ωK = (ω1, ..., ωK)
our new observation and thus reducing testing via repeated observations to the
single-observation case seemingly fails: already in the simplest case of stationary
K-repeated observations this reduction would require replacing the family Pdγ with

the family of product distributions P × ...× P︸ ︷︷ ︸
K

stemming from P ∈ Pdγ , and it

is unclear how to apply to the resulting single-observation testing problem our
machinery based on Euclidean separation. Instead, let us use K-step majority test.
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2.2.3.1 Preliminaries: Repeated observations in “signal plus noise” observation
model

We are in the situation when our inference should be based on observations

ωK = (ω1, ω2, ..., ωK), (2.23)

and decide on hypotheses H1, H2 on the distribution QK of ωK , and we are inter-
ested in the following 3 cases:

S [stationary K-repeated observations, cf. Section 2.1.3.1]: ω1, ..., ωK are drawn
independently of each other from the same distribution Q, that is, QK is the
product distribution Q × ... × Q. Further, under hypothesis Hχ, χ = 1, 2, Q is
the distribution of random variable ω = x + ξ, where x ∈ Xχ is deterministic,
and the distribution P of ξ belongs to the family Pdγ ;

SS [semi-stationary K-repeated observations, cf. Section 2.1.3.2]: there are two de-
terministic sequences, one of signals {xk}Kk=1, another of distributions {Pk ∈
Pdγ}Kk=1, and ωk = xk + ξk, 1 ≤ k ≤ K, with ξk ∼ Pk independent across k.
Under hypothesis Hχ, all signals xk, k ≤ K, belong to Xχ.

QS [quasi-stationary K-repeated observations, cf. Section 2.1.3.3]: “in the nature”
there exists a random sequence of driving factors ζk = (ζ1, ..., ζK) such that
observation ωk, for every k, is a deterministic function of ζk = (ζ1, ..., ζk): ωk =
θk(ζk). On the top of it, under `-th hypothesis H`, for all k ≤ K and all
ζk−1 the conditional, ζk−1 being given, distribution of ωk belong to the family
P` of distributions of all random vectors of the form x + ξ, where x ∈ X` is
deterministic, and ξ is random noise with distribution from Pdγ .

2.2.3.2 Majority Test

2.2.3.2.A. The construction of K-observation majority test is very natural.
We use Euclidean separation to build simple single-observation test T deciding
on hypotheses Hχ : x ∈ Xχ, χ = 1, 2, via observation ω = x + ξ, where x is
deterministic, and the distribution of noise ξ belongs to Pdγ . T is given by the
construction from Proposition 2.7 applied with δ1 = δ2 = Opt. The summary of
our actions is as follows:

X1, X2 ⇒
{

Opt = minx1∈X1,x2∈X2

1
2‖x

1 − x2‖2
(x1
∗, x

2
∗) ∈ Argminx1∈X1,x2∈X2

1
2‖x

1 − x2‖2
⇒ e =

x1
∗−x

2
∗

‖x1
∗−x2

∗‖2
, c = 1

2e
T [x1
∗ + x2

∗]

⇒ φ(ω) = eTω − c

(2.24)

Majority test T maj

K , as applied to K-repeated observation ωK = (ω1, ..., ωK), builds
the K reals vk = φ(ωk). If at least K/2 of these reals are nonnegative, the test
accepts H1 and rejects H2; otherwise the test accepts H2 and rejects H1.

2.2.3.2.B. Risk analysis. We intend to carry out the risk analysis for the case
QS of quasi-stationary K-repeated observations; this analysis automatically ap-
plies to the cases SS of stationary and S of K-repeated stationary/semi-stationary
observations, which are special cases of QS.
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Proposition 2.8. With X1, X2,Pdγ obeying the premise of Proposition 2.7, in the
case QS of quasi-stationary observations the risk of K-observation Majority test
T maj

K can be bounded as

Risk(T maj

K |H1,H2) ≤ εK ≡
∑

K/2≤k≤K

(
K

k

)
εk?(1− ε?)K−k, ε? =

∞∫
Opt

γ(s)ds. (2.25)

Proof. Here we restrict ourselves to the case SS of semi-stationary K-repeated
observations. In “full generality,” that is, in the case QS of quasi-stationary K-
repeated observations, Proposition will be proved in Section 2.11.2.

Assume that H1 takes place, so that (recall that we are in the SS case!) ωk =
xk + ξk with some deterministic xk ∈ X1 and independent across k noises ξk ∼ Pk,
for some deterministic sequence Pk ∈ Pdγ . Let us fix {xk ∈ X1}Kk=1 and {Pk ∈
Pdγ}Kk=1. Then the random reals vk = φ(ωk = xk + ξk) are independent across k,
and so are the Boolean random variables

χk =

{
1, vi < 0
0, vi ≥ 0

χk = 1 if and only if test T , as applied to observation ωk, rejects hypothesis
H1 : xk ∈ X1. By Proposition 2.7, Pk-probability pk of the event χk = 1 is at most
ε?. Further, by construction of the Majority test, if T maj

K rejects the true hypothesis
H1, then the number of k’s with χk = 1 is ≥ K/2. Thus, with {xk ∈ X1} and
Pk ∈ Pdγ the probability to reject H1 is not greater than the probability of the event

In K independent coin tosses, with probability pk ≤ ε∗ to get head in k-th
toss, the total number of heads is ≥ K/2.

The probability of this event clearly does not exceed the right hand side in (2.25),
implying that Risk1(T maj

K |H1,H2) ≤ εk. “Symmetric” reasoning yields

Risk2(T maj

K |H1,H2) ≤ εk,

completing the proof of (2.25). 2

Corollary 2.9. Under the premise of Proposition 2.8, the upper bounds εK on the
risk of the K-observation Majority test goes to 0 exponentially fast as K →∞.

Indeed, we are in the situation of Opt > 0, so that ε? <
1
2

14.

Remark 2.10. When proving (SS-version of) Proposition 2.8, we have used “evi-
dent” observation as follows:

(#) Let χ1,..., χK be independent random variables taking values 0 and
1, and let the probabilities pk for χk to be 1 be upper-bounded by some
ε ∈ [0, 1] for all k. Then for every fixed M the probability of the event “at
least M of χ1, ..., χK are equal to 1” is upper-bounded by the probability∑
M≤k≤K

(
K
k

)
εk(1− ε)K−k of the same event in the case when pk = ε for all

k.

14Recall that we have assumed from the very beginning that γ is an even probability density
on the axis, and there is no neighbourhood of the origin where γ = 0 a.s.
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If there are evident facts in Math, (#) definitely is one of them. Nevertheless, why
(#) is true?
Reader is kindly asked to prove (#). For your information: design of proof took
about 10-minute effort of the authors (a bit too much for an evident statement);
the results of their effort can be found in Section 2.11.2.

2.2.3.2.C. Near-optimality. We are about to show that under appropriate as-
sumptions, the majority test T maj

K is near-optimal. The precise statement is as
follows:

Proposition 2.11. Let X1, X2,Pdγ obey the premise of Proposition 2.7. Assume
that the spherical family Pγ and positive reals D, α, β are such that

βD ≤ 1

4
, (2.26)

∫ δ

0

γ(s)ds ≥ βδ, 0 ≤ δ ≤ D, (2.27)

and Pγ contains a density q(·) such that∫
Rn

√
q(ξ − e)q(ξ + e)dξ ≥ exp{−αeT e} ∀(e : ‖e‖2 ≤ D). (2.28)

Let, further, the sets X1, X2 be such that Opt as given by (2.12) satisfies the
relation

Opt ≤ D. (2.29)

Given tolerance ε ∈ (0, 1/5), the risk of K-observation majority test T maj

K utilizing
QS observations ensures the relation

K ≥ K∗ :=

⌋
ln(1/ε)

2β2Opt2

⌊
⇒ Risk(T maj

K |H1,H2) ≤ ε (2.30)

(here cxb stands for the smallest integer ≥ x ∈ R). In addition, for every K-
observation test TK utilizing stationary repeated observations and satisfying

Risk(TK |H1,H2) ≤ ε

it holds

K ≥ K∗ :=
ln
(

1
4ε

)
2αδ2

. (2.31)

As a result, the majority test T maj

K∗ for (SK∗) has risk at most ε and is near-optimal,
in terms of the required number of observations, among all tests with risk ≤ ε: the
number K of observations in such test satisfies the relation

K∗/K ≤ θ := K∗/K∗ = O(1)
α

β2
.

Proof of Proposition is the subject of Exercise 2.56.

Illustration. Given ν ≥ 1, consider the case when P = Pγ is the spherical family
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with n-variate (spherical) Student’s distribution in the role of the cap, so that

γ(s) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)
(πν)1/2

[
1 + s2/ν

]−(ν+1)/2
(2.32)

It is easily seen (see Exercise 2.56) that P contains the N (0, 1
2In) density q(·),

implying that setting
D = 1, α = 1, β = 1

7
,

one ensures relations (2.26), (2.27) and (2.29). As a result, when Opt as yielded by
(2.12) is ≤ 1, the non-optimality factor θ of the majority test T maj

K∗ as defined in
Proposition 2.11 does not exceed O(1).

2.2.4 From Pairwise to Multiple Hypotheses Testing

2.2.4.1 Situation

Assume we are given L families of probability distributions P`, 1 ≤ ` ≤ L, on
observation space Ω, and observe a realization of random variable ω ∼ P taking
values in Ω. Given ω, we want to decide on the L hypotheses

H` : P ∈ P`, 1 ≤ ` ≤ L. (2.33)

Our ideal goal would be to find a low-risk simple test deciding on the hypotheses.
However, it may happen that the “ ideal goal” is not achievable, for example, when
some pairs of families P` have nonempty intersections. When P`∩P`′ 6= ∅ for some
` 6= `′, there is no way to decide on the hypotheses with risk < 1/2.

But: Impossibility to decide reliably on all L hypotheses “individually” does not
mean that no meaningful inferences can be done.
For example, consider the 3 colored rectangles on the plane:

and 3 hypotheses, with H`, 1 ≤ ` ≤ 3, stating that our observation is ω = x+ξ with
deterministic “signal” x belonging to `-th rectangle and ξ ∼ N (0, σ2I2). Whatever
small σ be, no test can decide on the 3 hypotheses with risk < 1/2; e.g., there is
no way to decide reliably on H1 vs. H2. However, we may hope that when σ is
small (or when repeated observations are allowed), observations allow us to discard
reliably some of the hypotheses; for example, when the signal “is brown” (i.e., H1

holds true), we hardly can discard reliably the hypothesis H2 stating that the signal
“is green,” but hopefully can discard reliably H3 (that is, infer that the signal is
not blue).

When handling multiple hypotheses which cannot be reliably decided upon “as
they are,” it makes sense to speak about testing the hypotheses “up to closeness.”
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2.2.4.2 Closeness relation and “up to closeness” risks

Closeness relation, or simply closeness C on a collection of L hypotheses H1, ..., HL
is defined as some set of pairs (`, `′) with 1 ≤ `, `′ ≤ L. We interpret the relation
(`, `′) ∈ C as the fact that the hypotheses H` and H ′` are close to each other.
Sometimes we shall use the words “` and `′ are/are not C-close to each other” as
an equivalent form of “hypotheses H`, H`′ are/are not C-close to each other.”
We always assume that

• C contains all “diagonal pairs” (`, `), 1 ≤ ` ≤ L (“every hypothesis is close to
itself”);

• (`, `′) ∈ C is and only if (`′, `) ∈ C (“closeness is a symmetric relation”).

Note that by symmetry of C, the relation (`, `′) ∈ T is in fact a property of
unordered pair {`, `′}.

“Up to closeness” risks. Let T be a test deciding on L hypotheses H1, ...,HL,
see (2.33); given observation ω, T accepts all hypotheses H` with indexes ` ∈ T (ω)
and rejects all other hypotheses. We say that `-th partial C-risk of test T is ≤ ε, if
whenever H` is true: ω ∼ P ∈ P`, the P -probability of the event

T accepts H`: ` ∈ T (ω)
and

all hypotheses H`′ accepted by T are C-close to H`: (`, `′) ∈ C,∀`′ ∈ T (ω)
is at least 1− ε.

`-th partial C-risk RiskC` (T |H1, ...,HL) of T is the smallest ε with the outlined
property, or, equivalently,

RiskC` (T |H1, ...,HL) = sup
P∈P`

Probω∼P {[` 6∈ T (ω)] or [∃`′ ∈ T (ω) : (`, `′) 6∈ C]}

C-risk RiskC(T |H1, ...,HL) of T is the largest of the partial C-risks of the test:

RiskC(T |H1, ...,HL) = max
1≤`≤L

RiskC` (T |H1, ...,HL).

Observe that when C is the “strictest possible” closeness, that is, (`, `′) ∈ C if
and only if ` = `′, then a test T deciding on H1, ...,HL up to closeness C with
risk ε is, basically, the same as a simple test deciding on H1, ...,HL with risk ≤ ε.
Indeed, a test with the latter property clearly decides on H1, ...,HL with C-risk ≤ ε.
The inverse statement, taken literally, is not true, since even with our “as strict as
possible” closeness, a test T with C-risk ≤ ε not necessarily is simple. However, we
can enforce T to be simple, specifically, to accept a once for ever fixed hypothesis,
say, H1, and only it, when the set of hypotheses accepted by T “as is” is not a
singleton, otherwise accept exactly the same hypothesis as T . The modified test
already is simple, and clearly its C-risk does not exceed the one of T .

2.2.4.3 Multiple Hypothesis Testing via pairwise tests

Assume that for every unordered pair {`, `′} with (`, `′)6∈C we are given a simple
test T{`,`′} deciding on H` vs. H`′ via observation ω.
Our goal is to “assemble” the tests T{`,`′}, (`, `′) 6∈ C, into a test T deciding on
H1..., HL up to closeness C.
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The construction we intend to use is as follows:

• For 1 ≤ `, `′ ≤ L, we define functions T``′(ω) as follows:

– when (`, `′) ∈ C, we set T``′(·) ≡ 0.

– when (`, `′) 6∈ C, so that ` 6= `′, we set

T``′(ω) =

{
1, T{`,`′}(ω) = {`}
−1, T{`,`′}(ω) = {`′} . (2.34)

Note that T{`,`′} is a simple test , so that T``′(·) is well defined and takes
values ±1 when (`, `′) 6∈ C and 0 when (`, `′) ∈ C.

Note that by construction and since C is symmetric, we have

T``′(ω) ≡ −T`′`(ω), 1 ≤ `, `′ ≤ L. (2.35)

• The test T is as follows: given observation ω, we build the L × L matrix
T (ω) = [T``′(ω)] and accept exactly those of the hypotheses H` for which `-th row
in T (ω) is nonnegative.

Observation 2.12. When T accepts some hypothesis H`, all hypotheses accepted
by T are C-close to H`.

Indeed, if ω is such that ` ∈ T (ω), then the `-th row in T (ω) is nonnegative. If now
`′ is not C-close to `, we have T``′(ω) ≥ 0 and T``′(ω) ∈ {−1, 1}, whence T``′(ω) = 1.
Consequently, by (2.35) it holds T`′`(ω) = −1, implying that `′-th row in T (ω) is
not nonnegative, and thus `′ 6∈ T (ω). 2

Risk analysis. For (`, `′) 6∈ C, let

ε``′ = Risk1(T{`,`′}|H`, H`′) = sup
P∈P`

Probω∼P {` 6∈ T{`,`′}(ω)}

= sup
P∈P`

Probω∼P {T``′(ω) = −1} = sup
P∈P`

Probω∼P {T`′`(ω) = 1}

= sup
P∈P`

Probω∼P {`′ ∈ T{`,`′}(ω)}

= Risk2(T{`,`′}|H`′ , H`).

(2.36)

Proposition 2.13. For the just defined test T it holds

∀` ≤ L : RiskC` (T |H1, ...,HL) ≤ ε` :=
∑

`′:(`,`′)6∈C

ε``′ . (2.37)

Proof. Let us fix `, let H` be true, and let P ∈ P` be the distribution of observation
ω. Set I = {`′ ≤ L : (`, `′) 6∈ C}. For `′ ∈ I, let E`′ be the event

{ω : T``′(ω) = −1}.

We have Probω∼P (E`′) ≤ ε``′ (by definition of ε``′), whence

Probω∼P
(
∪`′∈IE`′︸ ︷︷ ︸

E

)
≤ ε`.
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When the event E does not take place, we have T``′(ω) = 1 for all `′ ∈ I, so that
T``′(ω) ≥ 0 for all `′, 1 ≤ `′ ≤ L, whence ` ∈ T (ω). By Observation 2.12, the latter
inclusion implies that

{` ∈ T (ω) & {(`, `′) ∈ C ∀`′ ∈ T (ω)}.

Invoking the definition of partial C-risk, we get

RiskC` (T |H1, ...,HL) ≤ Probω∼P (E) ≤ ε`. 2

2.2.4.4 Testing Multiple Hypotheses via Euclidean separation

Situation. We are given L nonempty and closed convex sets X` ⊂ Ω = Rd, 1 ≤ ` ≤
L, with at least L−1 of the sets being bounded, and a spherical family of probability
distributions Pdγ . These data define L families P` of probability distributions on

Rd; the family P`, 1 ≤ ` ≤ L, is comprised of probability distributions of all
random vectors of the form x+ ξ, where deterministic x (“signal”) belongs to X`,
and ξ is random noise with distribution from Pdγ . Given positive integer K, we can

speak about L hypotheses on the distribution PK of K-repeated observation ωK =
(ω1, ..., ωK), with H` stating that ωK is a quasi-stationary K-repeated observation

associated with P`. In other words H` = H⊗,K` , see Section 2.1.3.3. Finally, we are
given a closeness C.

Our goal is to decide on the hypotheses H1, ...,HL up to closeness C via K-
repeated observation ωK . Note that this is a natural extension of the case QS of
pairwise testing from repeated observations considered in Section 2.2.3 (there L = 2
and C is the only meaningful closeness on a two-hypotheses set: (`, `′) ∈ C is and
only if ` = `′).

Standing Assumption which is by default in force everywhere in this Section is:

Whenever `, `′ are not C-close: (`, `′)6∈C, the sets X`, X`′ do not intersect.

Strategy: We intend to attack the above testing problem by assembling pairwise
Euclidean separation Majority tests via the construction from Section 2.2.4.3.

Building blocks to be assembled are Euclidean separation K-observation pairwise
Majority tests built for the pairs H`, H`′ of hypotheses with not close to each other
` and `′, that is, with (`, `′) 6∈ C. These tests are built as explained in Section
2.2.3.2; for reader’s convenience, here is the construction. For a pair (`, `′) 6∈ C, we

1. Find the optimal value Opt``′ and an optimal solution (u``′ , v``′) to the convex
optimization problem

Opt``′ = min
u∈X`,v∈X`′

1

2
‖u− v‖2, (2.38)

The latter problem is solvable, since we have assumed from the very beginning
that X`, X

′
` are nonempty, closed and convex, and that at least one of these sets

is bounded;
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2. Set

e``′ =
u``′ − v``′
‖u``′ − v``′‖2

, c``′ =
1

2
eT``′ [u``′ + v``′ ], φ``′(ω) = eT``′ω − c``′ .

Note that the construction makes sense, since by our Standing Assumption for `,
`′ in question X` and X`′ do not intersect. Further, e``′ and c``′ clearly depend
solely on (`, `′), but not on how we select an optimal solution (u``′ , v``′) to (2.38).
Finally, we have

e``′ = −e`′`, c``′ = −c`′`, φ``′(·) ≡ −φ`′`(·).

3. We consider separately the case of K = 1 and the case of K > 1. Specifically,

a) when K = 1, we select somehow nonnegative reals δ``′ , δ`′` such that

δ``′ + δ`′` = 2Opt``′ (2.39)

and specify the single-observation simple test T``′ deciding on the hypotheses
H`, H`′ according to

T``′(ω) =

{
{`}, φ``′(ω) ≥ 1

2 [δ`′` − δ``′ ]
{`′}, otherwise

;

Note that by Proposition 2.7, setting

Pγ(δ) =

∞∫
δ

γ(s)ds, (2.40)

we have
Risk1(T``′ |H`,H`′) ≤ Pγ(δ``′)
Risk2(T``′ |H`,H`′) ≤ Pγ(δ`′`)
Risk1(T`′`|H`′ ,H`) ≤ Pγ(δ`′`)
Risk2(T`′`|H`′ ,H`) ≤ Pγ(δ``′)

(2.41)

b) when K > 1, we specify K-observation simple test T``′K deciding on H`, H`′
according to

T``′(ωk = (ω1, ..., ωk)) =

{
{`}, Card{k ≤ K : φ``′ ≥ 0} ≥ K/2,
{`′}, otherwise

.

Note that by Proposition 2.8 we have

Risk(T``′K |H`,H′`) ≤ ε``′K :=
∑

K/2≤k≤K

(
K
k

)
εk?``′(1− ε?``′)K−k,

ε?``′ = Pγ(Opt``′) = ε?`′`.
(2.42)

Assembling building blocks, case of K = 1. In the case of K = 1, we specify
the simple pairwise tests T{`,`′}, (`, `′) 6∈ C, participating in the construction of the
multi-hypothesis test presented in Section 2.2.4.3, as follows. Given unordered pair
{`, `′} with (`, `′) 6∈ C (which is exactly the same as (`′, `) 6∈ C), we arrange `, `′ in



HYPOTHESIS TESTING

StatOpt˙LN˙NS January 21, 2019 7x10

69

ascending order, thus arriving at ordered pair (¯̀, ¯̀′), and set

T{`,`′}(·) = T ¯̀̀̄ ′(·),

with the right hand side tests defined as explained above. We then assemble,
as explained in Section 2.2.4.3, the tests T{`,`′} into a single-observation test T1

deciding on hypotheses H1, ...,HL. Looking at (2.36) and (2.41), we conclude that
for the just defined tests T{`,`′} and the associated with the tests T{`,`′}, via (2.36),
quantities ε``′ it holds

(`, `′) 6∈ C ⇒ ε``′ ≤ Pγ(δ``′). (2.43)

Invoking Proposition 2.13, we get

Proposition 2.14. In the situation described in the beginning of Section 2.2.4.4
and under Standing Assumption, the C-risks of the just defined test T1, whatever be
the choice of nonnegative δ``′ , (`, `′) 6∈ C, satisfying (2.39), can be upper-bounded
as

RiskC` (T1|H1, ...,HL) ≤
∑

`′:(`,`′)6∈C

Pγ(δ``′). (2.44)

with Pγ(·) given by (2.40).

Case of K = 1 (continued): Optimizing the construction. We can try to
optimize the risk bounds (2.44) over the parameters δ``′ of the construction. The
first question to be addressed here is what to minimize – we have several risks! A
natural model here is as follows. Let us fix a nonnegative M × L weight matrix W
and M -dimensional positive profile vector w, and solve the optimization problem

min
t,{δ``′ :(`,`′)6∈C

{
t :

W ·
[∑

`′:(`,`′)6∈C Pγ(δ``′)
]L
`=1
≤ tw

δ``′ ≥ 0, δ``′ + δ`′` = 2Opt``′ , (`, `′) 6∈ C

}
. (2.45)

For example, when M = 1 and w = 1, we are minimizing weighted sum of (upper
bounds on) partial C-risks of our test, and when W is a diagonal matrix with
positive diagonal entries and w is the all-ones vector, we are minimizing the largest
of scaled partial risks. Note that when Pγ(·) is convex on R+, or, which is the
same, γ(·) is nonincreasing in R+, (2.45) is a convex, and thus efficiently solvable,
problem.

Assembling building blocks, case of K > 1. We again pass from our building
blocks – K-observation simple pairwise tests T``′K , (`, `′) 6∈ C, we have already
specified, to tests T{`,`′} = T ¯̀̀̄ ′K , with ¯̀ = min[`, `′] and ¯̀′ = max[`, `′], and
then apply to the resulting tests the construction from Section 2.2.4.3, arriving at
K-observation multi-hypothesis test TK . By Proposition 2.8, the quantities ε``′

associated with the tests T{`,`′} via (2.36) satisfy the relation

(`, `′) 6∈ C ⇒ ε``′ ≤
∑

K/2≤k≤K

(
K

k

)
[Pγ(Opt``′)]

k[1− Pγ(Opt``′)]
K−k, (2.46)

which combines with Proposition 2.13 to imply
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Proposition 2.15. Let the situation described in the beginning of Section 2.2.4.4
take place, and let K > 1. Under Standing Assumption, the C-risks of the just
defined test TK can be upper-bounded as

RiskC` (T1|H1, ...,HL) ≤
∑

`′:(`,`′)6∈C

Pγ(δ``′)
∑

K/2≤k≤K

(
K

k

)
[Pγ(Opt``′)]

k[1−Pγ(Opt``′)]
K−k,

(2.47)

with Pγ(·) given by (2.40) and Opt``′ given by (2.38).

Note that by Standing Assumption the quantities Pγ(Opt``′) are < 1/2, so that

the risks RiskC` (TK |H1, ...,HL) go to 0 exponentially fast as K →∞.

2.3 DETECTORS AND DETECTOR-BASED TESTS

2.3.1 Detectors and their risks

Let Ω be an observation space, and Pχ, χ = 1, 2, be two families of probability
distributions on Ω. By definition a detector associated with Ω is a real-valued
function φ(ω) of Ω. We associate with a detector φ and families Pχ, χ = 1, 2, risks
defined as follows:

Risk−[φ|P1] = supP∈P1

∫
Ω

exp{−φ(ω)}P (dω) (a)
Risk+[φ|P2] = supP∈P2

∫
Ω

exp{φ(ω)}P (dω) (b)
Risk[φ|P1,P2] = max[Risk−[φ|P1],Risk+[φ|P2]] (c)

(2.48)

Given a detector φ, we can associate with it simple test Tφ deciding, via observation
ω ∼ P , on the hypotheses

H1 : P ∈ P1, H2 : P ∈ P2; (2.49)

specifically, given observation ω ∈ Ω, the test Tφ accepts H1 and rejects H2 when-
ever φ(ω) ≥ 0, otherwise the test accepts H2 and rejects H1.

Let us make the following immediate observation:

Proposition 2.16. Let Ω be an observation space, Pχ, χ = 1, 2, be two families
of probability distributions on Ω, and φ be a detector. The risks of the test Tφ
associated with this detector satisfy

Risk1(Tφ|H1, H2) ≤ Risk−[φ|P1];
Risk2(Tφ|H1, H2) ≤ Risk+[φ|P2].

(2.50)

Proof. Let ω ∼ P ∈ P1. Then the P -probability of the event {ω : φ(ω) < 0} does
not exceed Risk−[φ|P1], since on the set {ω : φ(ω) < 0} the integrand in (2.48.a) is
> 1, and this integrand is nonnegative everywhere, so that the integral in (2.48.a)
is ≥ P{ω : φ(ω) < 0}. Recalling what Tφ is, we see that the P -probability to
reject H1 is at most Risk−[φ|P1], implying the first relation in (2.50). By similar
argument, with (2.48.b) in the role of (2.48.a), when ω ∼ P ∈ P2, the P -probability
of the event {ω : φ(ω) ≥ 0} is upper-bounded by Risk+[φ|P2], implying the second
relation in (2.50). 2
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2.3.2 Detector-based tests

Our current goal is to establish some basic properties of detector-based tests.

2.3.2.1 Structural properties of risks

Observe that the fact that ε1 and ε2 are upper bounds on the risks of a detector
are expressed by system of convex constraints

supP∈P1

∫
Ω

exp{−φ(ω)}P (dω) ≤ ε1 (a)
supP∈P2

∫
Ω

exp{φ(ω)}P (dω) ≤ ε2 (b)
(2.51)

on ε1, ε2 and φ(·); this observation is useful, but not too useful, since the convex
constraints in question usually are infinite-dimensional when φ(·) is so, and are semi-
infinite (suprema, over parameter ranging in infinite set, of parametric families of
convex constraints), provided P1 or P2 are of infinite cardinalities; constraints of
this type can be intractable computationally.

Another important observation is that the distributions P enter the constraints
linearly; as a result, when passing from families of probability distributions P1, P2

to their convex hulls, the risks of a detector remain intact.

2.3.2.2 Renormalization

Let Ω, P1, P2 be the same as in Section 2.3.1, and let φ be a detector. When
shifting this detector by a real a – passing from φ to the detector

φa(ω) = φ(ω)− a

– the risks clearly are updated as follows:

Risk−[φa|P1] = eaRisk−[φ|P1],
Risk+[φa|P2] = e−aRisk+[φ|P2].

(2.52)

We see that

When speaking about risks of a detector, what matters is the product

Risk�[φ|P1,P2] := Risk−[φ|P1]Risk+[φ|P2]

of the risks, not these risks individually: by shifting the detector, we can re-
distribute this product between the factors in any way we want. In particular,
we can always shift a detector to make it balanced, i.e., satisfying

Risk−[φ|P1] = Risk+[φ|P2] = Risk[φ|P1,P2].

When deciding on the hypotheses

H1 : P ∈ P1, H2 : P ∈ P2

on the distribution P of observation, the risk of the test Tφ associated with
a balanced detector φ is bounded by the risk Risk[φ|P1,P2] of the detector:

Risk(Tφ|H1, H2) := max [Risk1(Tφ|H1, H2),Risk2(Tφ|H1, H2)] ≤ Risk[φ|P1,P2].
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2.3.2.3 Detector-based testing from repeated observations

We are about to show that detector-based tests are perfectly well suited for passing
from inferences based on single observation to those based on repeated observations.

Given K observation spaces Ωk, 1 ≤ k ≤ K, each equipped with pair Pk,1, Pk,2
of families of probability distributions, we can build a new observation space

ΩK = Ω1 × ...× ΩK = {ωK = (ω1, ..., ωK) : ωk ∈ Ωk, k ≤ K}

and equip it with two families PKχ , χ = 1, 2, of probability distributions; distribu-

tions from PKχ are exactly the product-type distributions P = P1× ...×PK with all

factors Pk taken from Pk,χ. Observations ωK = (ω1, ..., ωK) from ΩK drawn from
a distribution P = P1 × ....× PK ∈ PKχ are nothing but collections of observations
ωk, k = 1, ...,K, drawn, independently of each other, from distributions Pk. Now,
given detectors φk(·) on observation spaces Ωk and setting

φ(K)(ωK) =

K∑
k=1

φk(ωk) : ΩK → R,

we clearly have

Risk−[φ(K)|PK1 ] =
K∏
k=1

Risk−[φk|Pk,1],

Risk+[φ(K)|PK2 ] =
K∏
k=1

Risk+[φk|Pk,2].

(2.53)

Let us look at some useful consequences of (2.53).

Stationary K-repeated observations. Consider the case of Section 2.1.3.1: we
are given an observation space Ω and a positive integer K, and what we observe,
is a sample ωK = (ω1, ..., ωK) with ω1, ..., ωK drawn, independently of each other,
from some distribution P on Ω. Let now P1, P2, be two families of probability
distributions on Ω; we can associate with these families two hypotheses, H�,K1 ,

H�,K2 , on the distribution of K-repeated observation ωK = (ω1, ..., ωK), with H�,Kχ

stating that ω1, ..., ωK are drawn, independently of each other, from a distribution
P ∈ Pχ. Given a detector φ on Ω, we can associate with it the detector

φ(K)(ωK) =

K∑
k=1

φ(ωk)

on
ΩK : Ω× ...× Ω︸ ︷︷ ︸

K

.

Combining (2.53) and Proposition 2.16, we arrive at the following nice result:

Proposition 2.17. The risks of the simple test Tφ(K) deciding, given K-repeated

observation ωK = (ω1, ..., ωK) on the hypotheses

H�,K1 : ωk, k ≤ K, are independently of each other drawn from a distribution P ∈ P1

H�,K2 : ωk, k ≤ K, are independently of each other drawn from a distribution P ∈ P2
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according to the rule

φ(K)(ωK) :=

K∑
k=1

φ(ωk)

{
≥ 0 ⇒ accept H�,K1

< 0 ⇒ accept H�,K2

admit the upper bounds

Risk1(Tφ(K) |H�,K1 , H�,K2 ) ≤ (Risk−[φ|P1])
K

Risk2(Tφ(K) |H�,K1 , H�,K2 ) ≤ (Risk+[φ|P2])
K (2.54)

Semi- and Quasi-Stationary K-repeated observations. Recall that Semi-
Stationary and Quasi-Stationary K-repeated observations associated with a family
P of distributions on observation space Ω were defined in Sections 2.1.3.2 and
2.1.3.3, respectively. It turns out that Proposition 2.17 extends to quasi-stationary
K-repeated observations:

Proposition 2.18. Let Ω be an observation space, Pχ, χ = 1, 2 be families of
probability distributions on Ω, φ : Ω → R be a detector, and K be a positive
integer.

Families Pχ, χ = 1, 2, give rise to two hypotheses on the distribution PK of
quasi-stationary K-repeated observation ωK :

H⊗,Kχ : PK ∈ P⊗,Kχ =

K⊗
k=1

Pχ, χ = 1, 2

(see Section 2.1.3.3), and φ gives rise to the detector

φ(K)(ωK) :=

K∑
k=1

φ(ωk).

The risks of the detector φ(K) on the families P⊗,Kχ , χ = 1, 2, can be upper-bounded
as follows:

Risk−[φ(K)|P⊗,K1 ] ≤ (Risk−[φ|P1])
K
,

Risk+[φ(K)|P⊗,K2 ] ≤ (Risk−[φ|P2])
K
.

(2.55)

Further, the detector φ(K) induces simple test Tφ(K) deciding on H⊗,Kχ , χ = 1, 2 as

follows: given ωK , the test accepts H⊗,K1 when φ(K)(ωK) ≥ 0, and accepts H⊗,K2

otherwise. The risks of this test can be upper-bounded as

Risk1(Tφ(K) |H⊗,K1 , H⊗,K2 ) ≤ (Risk−[φ|P1])
K
,

Risk2(Tφ(K) |H⊗,K1 , H⊗,K2 ) ≤ (Risk+[φ|P2])
K
.

(2.56)

Finally, the above results remain intact when passing from quasi-stationary to semi-
stationary K-repeated observations (that is, when replacing P⊗,Kχ with P⊕,Kχ =
K⊕
k=1

Pχ and H⊗,Kχ with the hypotheses H⊕,Kχ stating that the distribution of ωK

belongs to P⊕,Kχ , χ = 1, 2).
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Proof. All we need is to verify (2.55) – in view of Proposition 2.16, all other
claims in Proposition 2.18 are immediate consequences of (2.55) and the inclusions

P⊕,Kχ ⊂ P⊗,Kχ , χ = 1, 2. Verification of (2.55) is as follows. Let PK ∈ P⊗,K1 , and

let PK be the distribution of random sequence ωK = (ω1, .., ., ωK) generated as
follows: there exists a random sequence of driving factors ζ1, ..., ζK such that ωk is
a deterministic function of ζk = (ζ1, ..., ζk):

ωk = θk(ζ1, ..., ζk),

and the conditional, ζ1, ..., ζk−1 being given, distribution Pωk|ζk−1 belongs to P1.
Let Pζk be the distribution of the first k driving factors, and Pζk|ζk−1 be the con-
ditional, ζ1, ...ζk−1 being given, distribution of ζk. Let us set

ψ(k)(ζ1, ..., ζk) =

k∑
t=1

φ(θt(ζ1, ..., ζt)),

so that∫
ΩK

exp{−φ(K)(ωk)}PK(dωK) =

∫
exp{−ψ(K)(ζK)}PζK (dζK). (2.57)

On the other hand, denoting C0 = 1, we have

Ck :=
∫

exp{−ψ(k)(ζk)}Pζk(dζk) =
∫

exp{−ψ(k−1)(ζk−1)− φ(θk(ζk))}Pζk(dζk)

=
∫

exp{−ψ(k−1)(ζk−1)}
[∫

exp{−φ(θk(ζk))}Pζk|ζk−1(dζk)

]
︸ ︷︷ ︸

=
∫
Ω

exp{−φ(ωk)}P
ωk|ζk−1 (dωk)

Pζk−1(dζ−1)

≤︸︷︷︸
(∗)

Risk−[φ|P1]
∫

exp{−ψ(k−1)(ζk−1)}Pζk−1(dζk−1) = Risk−[φ|P1]Ck−1,

where (∗) is due to the fact that the distribution Pωk|ζk−1 belongs to P1. From the
resulting recurrence we get

CK ≤ (Risk−[φ|P1])
K
,

which combines with (2.57) to imply that∫
ΩK

exp{−φ(K)(ωk)}PK(dωK) ≤ (Risk−[φ|P1])
K
.

The latter inequality holds true for every distribution PK ∈ P⊗,Kχ , and the first
inequality in (2.55) follows. The second inequality in (2.55) is given by completely
similar reasoning, with P2 in the role of P1, and −φ, −φ(K) in the roles of φ, φ(K),
respectively. 2

The fact that observations ωk under hypotheses H⊗,K` , ` = 1, 2 are related to
“constant in time” families P` has no importance here, and in fact the proof of
Proposition 2.18 after absolutely evident modifications of wording allows to justify
the following “non-stationary” version of Proposition:
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Proposition 2.19. For k = 1, ...,K, let Ωk be observation spaces, Pχ,k, χ = 1, 2
be families of probability distributions on Ωk, and φk : Ωk → R be detectors.

Families Pχ,k, χ = 1, 2, give rise to quasi-direct products (see Section 2.1.3.3)

P⊗,Kχ =
K⊗
k=1

Pχ,k of the families Pχ,k over 1 ≤ k ≤ K, and thus to two hypotheses

on the distribution PK of observation ωK = (ω1, ..., ωK) ∈ ΩK = Ω1 × ...× ΩK :

H⊗,Kχ : PK ∈ P⊗,Kχ , χ = 1, 2,

and detectors φk, 1 ≤ k ≤ K, give rise to the detector

φK(ωK) :=

K∑
k=1

φk(ωk).

The risks of the detector φK on the families P⊗,Kχ , χ = 1, 2, can be upper-bounded
as follows:

Risk−[φK |P⊗,K1 ] ≤
∏K
k=1 Risk−[φ|P1,k],

Risk+[φK |P⊗,K2 ] ≤
∏K
k=1 Risk+[φ|P2,K ].

(2.58)

Further, the detector φK induces simple test Tφ(K) deciding on H⊗,Kχ , χ = 1, 2 as

follows: given ωK , the test accepts H⊗,K1 when φK(ωK) ≥ 0, and accepts H⊗,K2

otherwise. The risks of this test can be upper-bounded as

Risk1(TφK |H⊗,K1 , H⊗,K2 ) ≤
∏K
k=1 Risk−[φ|P1,k],

Risk2(Tφ(K) |H⊗,K1 , H⊗,K2 ) ≤
∏K
k=1 Risk+[φ|P2,k].

(2.59)

Finally, the above results remain intact when passing from quasi-direct products to
direct products of the families of distributions in question (that is, when replacing

P⊗,Kχ with P⊕,Kχ =
K⊕
k=1

Pχ,k and H⊗,Kχ with the hypotheses H⊕,Kχ stating that the

distribution of ωK belongs to P⊕,Kχ , χ = 1, 2).

2.3.2.4 Limits of performance of detector-based tests

We are about to demonstrate that as far as limits of performance of pairwise simple
detector-based tests are concerned, these tests are nearly as good as simple tests
can be.

Proposition 2.20. Let Ω be an observation space, and Pχ, χ = 1, 2, be families of
probability distributions on Ω. Assume that for some ε ∈ (0, 1/2) “in the nature”
there exists a simple test (deterministic or randomized) deciding on the hypotheses

H1 : P ∈ P1, H2 : P ∈ P2

on the distribution P of observation ω with risks ≤ ε:

Risk1(T |H1, H2) ≤ ε & Risk2(T |H1, H2) ≤ ε.

Then there exists a detector-based test Tφ deciding on the same pair of hypotheses
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with risk “comparable” with ε:

Risk1(Tφ|H1, H2) ≤ ε+ & Risk2(Tφ|H1, H2) ≤ ε+, ε+ = 2
√
ε(1− ε). (2.60)

Proof. Let us prove the claim in the case when the test T is deterministic; the
case when this test is randomized is the subject of Exercise 2.64.

Let Ωχ, χ = 1, 2, be the sets of ω ∈ Ω such that T as “feeded” by observation ω
accepts Hχ. Since T is simple, Ω1, Ω2 split Ω into two non-overlapping parts, and
since the risks of T are ≤ ε, we have

(a) ε2(P ) := P{Ω2} ≤ ε∀P ∈ P1

(a) ε1(P ) := P{Ω1} ≤ ε∀P ∈ P2

Let δ =
√

(1− ε)/ε, so that δ ≥ 1 due to 0 < ε ≤ 1/2, and let

ψ(ω) =

{
δ, ω ∈ Ω1

1/δ, ω ∈ Ω2
, φ(ω) = ln(ψ(ω)).

When P ∈ P1, we have∫
Ω

exp{−φ(ω)}P (dω) =
1

δ
P{Ω1}+ δP{Ω2} =

1

δ
+

[
δ − 1

δ

]
︸ ︷︷ ︸
≥0

ε2(P ) ≤ 1

δ
+

[
δ − 1

δ

]
ε = ε+,

whence Risk−[φ|P1] ≤ ε+. Similarly, when P ∈ P2, we have∫
Ω

exp{φ(ω)}P (dω) = δP{Ω1}+
1

δ
P{Ω2} =

[
δ − 1

δ

]
︸ ︷︷ ︸
≥0

ε1(P )+
1

δ
≤
[
δ − 1

δ

]
ε+

1

δ
= ε+,

whence Risk+[φ|P2] ≤ ε+. 2

Discussion. Proposition 2.20 states that we can restrict ourselves with detector-
based tests at the price of passing from risk ε exhibited by “the best test existing
in the nature” to “comparable” risk ε+ = 2

√
ε(1− ε). What we buy when sticking

to detector-based tests are nice properties listed in Sections 2.3.2.1 – 2.3.2.3 and
possibility to compute under favorable circumstances, see below, the best, in terms
of their risk, among the detector-based tests; optimizing risk of a detector-based test
turns out to be an essentially more realistic task than optimizing risk of a general-
type test. This being said, one can argue that treating ε and ε+ “comparable” is
a too optimistic attitude; for example, risk level ε = 0.01 seems to be much more
attractive than [0.01]+ ≈ 0.2. While passing from a test T with risk 0.01 to a
detector-based test Tφ with risk 0.2 could indeed be a “heavy toll,” there is some
comfort in the fact that passing from a single observation to three of them (i.e., to
3-repeated, stationary or non-stationary alike, version of the original observation
scheme), we can straightforwardly convert Tφ into a test with risk (0.2)3 = 0.008 <
0.01, and passing to 6 observations, to make the risk less than 0.0001. On the
other hand, seemingly the only way to convert a general-type single-observation
test T with risk 0.01 into a multi-observation test with essentially smaller risk is
to pass to a Majority version of T , see Section 2.2.3.2 15. Computation shows that

15In Section 2.2.3.2, we dealt with “signal plus noise” observations and with specific test T
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with ε? = 0.01, to make the risk of the majority test ≤ 0.0001 takes 5 observations,
which is only marginally better than the 6 observations needed in the detector-based
construction.

2.4 SIMPLE OBSERVATION SCHEMES

2.4.1 Simple observation schemes – Motivation

A natural conclusion one can extract from the previous Section is that it makes
sense, to say the least, to learn how to build detector-based tests with minimal risk.
Thus, we arrive at the following design problem:

Given an observation space Ω and two families, P1 and P2, of probability
distributions on Ω, solve the optimization problem

Opt = min
φ:Ω→R

max

[
sup
P∈P1

∫
Ω

e−φ(ω)P (dω)︸ ︷︷ ︸
F [φ]

, sup
P∈P2

∫
Ω

eφ(ω)P (dω)︸ ︷︷ ︸
G[φ]

]
(2.61)

While being convex, problem (2.61) typically is computationally intractable. First,
it is infinite-dimensional – candidate solutions are multivariate functions; how to
represent them in a computer, not speaking of how to optimize over them? Besides,
the objective to be optimized is expressed in terms of suprema of infinitely many
(provided P1 and/or P2 are infinite) expectations, and computing just a single
expectation can be a difficult task... We are about to consider “favorable” cases –
simple observation schemes – where (2.61) is efficiently solvable.

To arrive at the notion of a simple observation scheme, consider the case when all
distributions from P1, P2 admit densities taken w.r.t. some reference measure Π on
Ω, and these densities are parameterized by “parameter” µ running through some
parameter spaceM, so that P1 is comprised of all distributions with densities pµ(·)
and µ belonging to some subset M1 of M, while P2 is comprised of distributions
with densities pµ(·) and µ belonging to another subset, M2, of M. To save words,
we shall identify distributions with their densities taken w.r.t. Π, so that

Pχ = {pµ : µ ∈Mχ}, χ = 1, 2,

where {pµ(·) : µ ∈ M} is a given “parametric” family of probability densities.
Quotation marks in “parametric” reflect the fact that at this point in time, the
“parameter” µ can be infinite-dimensional (e.g, we can parameterise a density by
itself), so that assuming “parametric” representation of the distributions from P1,
P2 in fact does not restrict generality.

Our first observation is that in our “parametric” setup, we can rewrite problem

given by Euclidean separation. Straightforward inspection of the construction and the proof of
Proposition 2.8 makes it clear that the construction is applicable to a whatever simple test T , and
that the risk of the resulting multi-observation test obeys the upper bound in (2.25), with the risk
of T in the role of ε?.
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(2.61) equivalently as

ln(Opt) = min
φ:Ω→R

sup
µ∈M1,ν∈M2

1

2

[
ln

(∫
Ω

e−φ(ω)pµ(ω)Π(dω)

)
+ ln

(∫
Ω

eφ(ω)pν(ω)Π(dω)

)]
︸ ︷︷ ︸

Φ(φ;µ,ν)

.

(2.62)

Indeed, when shifting φ by a constant: φ(·) 7→ φ(·) − a, the positive quan-
tities F [φ] and G[φ] participating in (2.61) are multiplied by ea and e−a,
respectively, and their product remains intact. It follows that to minimize
over φ the maximum of F [φ] and G[φ] (this is what (2.61) wants of us) is
exactly the same as to minimize over φ the quantity H[φ] :=

√
F [φ]G[φ].

Indeed, a candidate solution φ to the problem minφH[φ] can be balanced –
shifted by a constant to ensure F [φ] = G[φ], and this balancing does not
change H[·]; as a result, minimizing H over all φ is the same as minimizing
H over balanced φ, and the latter problem clearly is equivalent to (2.61).
It remains to note that (2.62) is nothing but the problem of minimizing
ln(H[φ]).

Now, (2.62) is a min-max problem – a problem of the generic form

min
u∈U

max
v∈V

Ψ(u, v).

Problems of this type (at least, finite-dimensional ones) are computationally tractab-
le when the domain of the minimization argument is convex and the cost function Ψ
is convex in the minimization argument (this indeed is the case for (2.62)), and the
domain of the maximization argument is convex, and the cost function is concave
in this argument (this not necessarily is the case for (2.62)). Simple observation
schemes we are about to define are, essentially, the schemes where the just outlined
requirements of finite dimensionality and convexity-concavity indeed are met.

2.4.2 Simple observation schemes – Definition

Consider the situation where we are given

1. A Polish (complete separable metric) observation space Ω equipped with σ-finite
σ-additive Borel reference measure Π such that the support of Π is the entire Ω.
Those not fully comfortable with some of the notions from the previous sentence
can be assured that the only observation spaces we indeed shall deal with are
pretty simple:

• Ω = Rd equipped with the Lebesgue measure Π, and
• a finite or countable set Ω which is discrete (distances between distinct points

are equal to 1) and is equipped with the counting measure Π.

2. A parametric family {pµ(·) : µ ∈ M} of probability densities, taken w.r.t. Π,
such that

• the space M of parameters is a convex set in some Rn which coincides with
its relative interior,

• the function pµ(ω) : M× Ω → R is continuous in (µ, ω) and positive every-
where.

3. A finite-dimensional linear subspace F of the space of continuous functions on
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Ω such that

• F contains constants,
• all functions of the form ln(pµ(ω)/pν(ω)) with µ, ν ∈M are contained in F ;
• for every φ(·) ∈ F , the function

ln

(∫
Ω

eφ(ω)pµ(ω)Π(dω)

)
is real-valued and concave on M.

In this situation we call the collection

(Ω,Π; {pµ : µ ∈M};F)

a simple observation scheme (s.o.s. for short).

Nondegenerate simple o.s. We call a simple observation scheme nondegenerate,
if the mapping µ 7→ pµ is an embedding: whenever µ, µ′ ∈M and µ 6= µ′, we have
pµ 6= pµ′ .

2.4.3 Simple observation schemes – Examples

We are about to list basic examples of s.o.s.’s.

2.4.3.1 Gaussian observation scheme

In Gaussian o.s.,

• the observation space (Ω,Π) is the space Rd with Lebesgue measure,
• the family {pµ(·) : µ ∈ M} is the family of Gaussian densities N (µ,Θ), with

fixed positive definite covariance matrix Θ, distributions from the family are
parameterized by their expectations µ. Thus,

M = Rd, pµ(ω) =
1

(2π)d/2
√

Det(Θ)
exp{− (ω − µ)TΘ−1(ω − µ)

2
};

• the family F is the family of all affine functions on Rd.

It is immediately seen that Gaussian o.s. meets all requirements imposed on a
simple o.s. For example,

ln(pµ(ω)/pν(ω)) = (ν − µ)TΘ−1ω +
1

2

[
νTΘ−1ν − µTΘ−1µ

]
is an affine function of ω and thus belongs to F . Besides this, a function φ(·) ∈ F
is affine: φ(ω) = aTω + b, implying that

f(µ) := ln
(∫

Rd e
φ(ω)pµ(ω)dω

)
= ln

(
Eξ∼N (0,Id)

{
exp{aT (Θ1/2ξ + µ) + b}

})
= aTµ+ b+ const,

const = ln
(
Eξ∼N (0,Id)

{
exp{aTΘ1/2ξ}

})
= 1

2a
TΘa

is affine (and thus concave) function of µ.
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As we remember from Lecture 1, Gaussian o.s. is responsible for the standard
signal processing model where one is given a noisy observation

ω = Ax+ ξ [ξ ∼ N (0,Θ)]

of the image Ax of unknown signal x ∈ Rn under linear transformation with known
d×n sensing matrix, and the goal is to infer from this observation some knowledge
about x. In this situation, a hypothesis that x belongs to some set X translates
into the hypothesis that the observation ω is drawn from Gaussian distribution with
known covariance matrix Θ and expectation known to belong to the set M = {µ =
Ax : x ∈ X}, so that deciding on various hypotheses on where x is located reduces
to deciding on hypotheses on the distribution of observation in Gaussian o.s.

2.4.3.2 Poisson observation scheme

In Poisson observation scheme,

• the observation space Ω is the set Zd+ of d-dimensional vectors with nonnegative
integer entries, and this set is equipped with the counting measure,
• the family {pµ(·) : µ ∈ M} is the family of product-type Poisson distributions

with positive parameters. In other words,

M = {µ ∈ Rd : µ > 0}, pµ(ω) =
µω1

1 µω2
2 ...µωdd

ω1!ω2!...ωd!
e−µ1−µ2−...−µd , ω ∈ Zd+,

that is, random variable ω ∼ pµ, µ ∈ M, is d-dimensional vector with indepen-
dent random entries, and i-th of the entries is ωi ∼ Poisson(µi);
• the space F is comprised of affine functions on Z+

d .

It is immediately seen that Poisson o.s. is simple. For example,

ln(pµ(ω)/pν(ω)) =

d∑
i=1

ln(µi/νi)ωi −
d∑
i=1

[µi − νi]

is affine function of ω and thus belongs to F . Besides this, a function φ ∈ F is
affine: φ(ω) = aTω + b, implying that the function

f(µ) := ln
(∫

Ω
eφ(ω)pµ(ω)Π(dω)

)
= ln

(∑
ω∈Zd+

ea
Tω+b

∏d
i=1

µ
ωi
i e−µi

ωi!

)
= b+ ln

(∏d
i=1

[
e−µi

∑∞
s=0

[eaiµi]
s

s!

])
= b+

∑d
i=1 ln(exp{eaiµi − µi})

=
∑
i[e

ai − 1]µi + b

is affine (and thus concave) function of µ.
Poisson observation scheme is responsible for Poisson Imaging. This is the

situation where there are n “sources of customers;” arrivals of customers at source
i are independent of what happens at other sources, and inter-arrival times at
source j are independent random variables with exponential, with parameter λj ,
random variables, so that the number of customers arriving at source j in a unit
time interval is Poisson random variable with parameter λj . Now, there are d
“servers”, and a customer arrived at source j is dispatched to server i with some
given probability Aij ,

∑
iAij ≤ 1; with probability 1 −

∑
iAij , such a customer



HYPOTHESIS TESTING

StatOpt˙LN˙NS January 21, 2019 7x10

81

leaves the system. Needless to say, the dispatches are independent of each other
and of the arrival processes. What we observe is the vector ω = (ω1, ..., ωd), where
ωi is the number of customers dispatched to server i on the time horizon [0, 1]. It
is easy to verify that in the just described situation, the entries ωi in ω indeed are
independent of each other Poisson random variables with Poisson parameters

µi =

n∑
j=1

Aijλj .

In what is called Poisson Imaging, one is given a random observation ω of the above
type along with sensing matrix A = [Aij ], and the goal is to use the observation to
infer conclusions on the parameter µ = Aλ and underlying this parameter “signal”
λ.

Poisson imaging is has several important applications16, for example, in Positron
Emission Tomography (PET).

In PET, a patient is injected radioactive tracer and is placed in PET tomograph,
which can be thought of as a cylinder with surface split into small detector cells.
The tracer disintegrates, and every disintegration act produces a positron which
immediately annihilates with a nearby electron, producing two γ-quants flying at
the speed of light in two opposite directions along a line (“line of response” –
LOR) with completely random orientation. Eventually, each of the γ-quants hits
its own detector cell. When two detector cells are “simultaneously” hit (in fact
- hit within a short time interval, like 10−8 sec), this event – coincidence – and
the serial number of the bin (pair of detectors) where the hits were observed are
registered; observing a coincidence in some bin, we know that somewhere on the
line linking the detector cells from the bin a disintegration act took place. The
data collected in a PET study are the numbers of coincidences registered in every
one of the bins; discretizing the field of view (patient’s body) into small 3D cubes
(voxels), an accurate enough model of the data is a realization ω of random vector
with independent Poisson entries ωi ∼ Poisson(µi), with µi given by

µi =

n∑
j=1

pijλj ,

where λj is proportional to the amount of tracer in voxel j, and pij is the probability

16in all these applications, the signal λ we ultimately are interested in is an image, this is
where “Imaging” comes from.
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for LOR emanating from voxel j to be registered in bin i (these probabilities can
be computed given the geometry of PET device). The tracer is selected in such
a way that in the body it concentrates in the areas of interest (say, the areas
of high metabolic activity when tumor is sought), and the goal of the study is
to infer from the observation ω conclusions on the density of the tracer. The
characteristic feature of PET as compared to other types of tomography is that
with properly selected tracer, this technique allows to visualize metabolic activity,
and not only the anatomy of tissues in the body. Now, PET fits perfectly well the
above “dispatching customers” story, with disintegration acts taking place in voxel
j in the role of customers arriving in location j and bins in the role of servers;
the arrival intensities are (proportional to) the amounts λj of tracer in voxels, and
the random dispatch of customers to servers corresponds to random orientation of
LOR’s (in reality, the nature draws their directions from the uniform distribution
on the unit sphere in 3D).

It is worthy of noting that there are two other real life applications of Poisson
Imaging: Large Binocular Telescope and Nanoscale Fluorescent Microscopy 17.

2.4.3.3 Discrete observation scheme

In Discrete observation scheme,

• the observation space is a finite set Ω = {1, ..., d} equipped with counting mea-
sure,
• the family {pµ(·) : µ ∈M} is comprised of all non-vanishing distributions on Ω,

that is,

M = {µ ∈ Rd : µ > 0,
∑
ω∈Ω

µω = 1}, pµ(ω) = µω, ω ∈ Ω;

• F is the space of all real-valued functions on the finite set Ω.

Clearly, Discrete o.s. is simple; for example, the function

f(µ) := ln

(∫
Ω

eφ(ω)pµ(ω)Π(dω)

)
= ln

(∑
ω∈Ω

eφ(ω)µω

)

indeed is concave in µ ∈M.

2.4.3.4 Direct products of simple observation schemes

Given K simple observation schemes

Ok = (Ωk,Πk; {pµ,k(·) : µ ∈Mk};Fk), 1 ≤ k ≤ K,

17Large Binocular Telescope is a cutting edge instrument for high-resolution opti-
cal/infrared astronomical imaging; it is the subject of huge ongoing international project, see
http://www.lbto.org. Nanoscale Fluorescent Microscopy (a.k.a. Poisson Biophotonics) is a revo-
lutionary tool for cell imaging trigged by the advent of techniques [15, 73, 76, 132] (2014 Nobel
Prize in Chemistry) allowing to break the diffraction barrier and to view biological molecules “at
work” at a resolution 10-20 nm, yielding entirely new insights into the signalling and transport
processes within cells.
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we can define their direct product

OK =

K∏
k=1

Ok = (ΩK ,ΠK ; {pµ : µ ∈MK};FK)

by modeling the situation where our observation is a tuple ωK = (ω1, ..., ωK) with
components ωk yielded, independently of each other, by observation schemes Ok,
namely, as follows:

• The observation space ΩK is the direct product of observations spaces Ω1, ...,ΩK ,
and the reference measure ΠK is the product of the measures Π1, ...,ΠK ;
• The parameter space MK is the direct product of partial parameter spaces
M1, ...,MK , and the distribution pµ(ωK) associated with parameter

µ = (µ1, µ2, ..., µK) ∈MK =M1 × ...×MK

is the probability distribution on ΩK with the density

pµ(ωK) =

K∏
k=1

pµ,k(ωk)

w.r.t. ΠK . In other words, random observation ωK ∼ pµ is a sample of ob-
servations ω1, ..., ωK , drawn, independently of each other, from the distributions
pµ1,1, pµ2,2,...,pµK ,K ;

• The space FK is comprised of all separable functions

φ(ωK) =

K∑
k=1

φk(ωk)

with φk(·) ∈ Fk, 1 ≤ k ≤ K.

It is immediately seen that the direct product of simple observation o.s.’s is simple.
When all factors Ok, 1 ≤ k ≤ K, are identical to simple o.s.

O = (Ω,Π; {pµ : µ ∈M};F),

the direct product of the factors can be “truncated” to yield the K-th power (called
also the stationary K-repeated version) of O, denoted

[O]K = (ΩK ,ΠK ; {p(K)
µ : µ ∈M};F (K))

and defined as follows:

• ΩK and ΠK are exactly the same as in the direct product:

ΩK = Ω× ...× Ω︸ ︷︷ ︸
K

, ΠK = Π× ...×Π︸ ︷︷ ︸
K

;

• the parameter space isM rather than the direct product of K copies ofM, and
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the densities are

p(K)
µ (ωK = (ω1, ..., ωK)) =

K∏
k=1

pµ(ωk);

in other words, random observations ωK ∼ p
(K)
µ are K-element samples with

components drawn, independently of each other, from pµ;
• the space F (K) is comprised of separable functions

φ(K)(ωK) =

K∑
k=1

φ(ωk)

with identical components belonging to F (i.e., φ ∈ F).

It is immediately seen that a power of simple o.s. is simple.

Remark 2.21. Gaussian, Poisson and Discrete o.s.’s clearly are nondegenerate. It
is also clear that the direct product of nondegenerate o.s.’s is nondegenerate.

2.4.4 Simple observation schemes – Main result

We are about to demonstrate that when deciding on convex, in some precise sense
to be specified below, hypotheses in simple observation schemes, optimal detectors
can be found efficiently by solving convex-concave saddle point problems.

We start with “executive summary” on convex-concave saddle point problems.

2.4.4.1 Executive summary of convex-concave saddle point problems

The results to follow are absolutely standard, and their proofs can be found in all
textbooks on the subject, see, e.g., [11, Section D.4].

Let U and V be nonempty sets, and Φ : U × V → R be a function. These
data define an antagonistic game of two players, I and II, where player I selects a
point u ∈ U , and player II selects a point v ∈ V ; as an outcome of these selections,
player I pays to player II the sum Φ(u, v). Clearly, the player I is interested to
minimize this payment, and player II – to maximize the payment. The data U, V,Φ
are known to the players in advance, and the question is, what should be their
selections.

When the player I makes his selection u first, and player II makes his selection
v with u already known, player I should be ready to pay for a selection u ∈ U the
toll as large as

Φ(u) = sup
v∈V

Φ(u, v).

In this situation, a risk-averse player I would select u by minimizing the above
worst-case payment, by solving the primal problem

Opt(P ) = inf
u∈U

Φ(u) = inf
u∈U

sup
v∈V

Φ(u, v) (P )

associated with the data U, V,Φ.
Similarly, if player II makes his selection v first, and player I selects u after v

becomes known, player II should be ready to get, as a result of selecting v ∈ V , the
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amount as small as
Φ(v) = inf

u∈U
φ(u, v).

In this situation, a risk-averse player II would select v by maximizing the above
worst-case payment, by solving the dual problem

Opt(D) = sup
v∈V

Φ(v) = sup
v∈V

inf
u∈U

Φ(u, v) (D)

Intuitively, the first situation is less preferable for player I than the second one, so
that his guaranteed payment in the first situation, that is, Opt(P ), should be ≥ his
guaranteed payment, Opt(D), in the second situation:

Opt(P ) := inf
u∈U

sup
v∈V

Φ(u, v) ≥ sup
v∈V

inf
u∈U

Φ(u, v) =: Opt(D); (2.63)

this fact, called Weak Duality, indeed is true.
The central question related to the game is what should the players do when

making their selections simultaneously, with no knowledge of what is selected by
the adversary. There is a case when this question has a completely satisfactory
answer – this is the case where Φ has a saddle point on U × V .

Definition 2.22. A point (u∗, v∗) ∈ U × V is called a saddle point 18 of function
Φ(u, v) : U×V → R, if Φ as a function of u ∈ U attains at this point its minimum,
and as a function of v ∈ V – its maximum, that is, if

Φ(u, v∗) ≥ Φ(u∗, v∗) ≥ Φ(u∗, v) ∀(u ∈ U, v ∈ V ).

From the viewpoint of our game, a saddle point (u∗, v∗) is an equilibrium: when
one of the players sticks to the selection stemming from this point, the other one
has no incentive to deviate from his selection stemming from the point: if player
II selects v∗, there is no reason for player I to deviate from selecting u∗, since with
another selection, his loss (the payment) can only increase; similarly, when player I
selects u∗, there is no reason for player II to deviate from v∗, since with any other
selection, his gain (the payment) can only decrease. As a result, if the cost function
Φ has a saddle point on U × V , this saddle point (u∗, v∗) can be considered as a
solution to the game, as the pair of preferred selections of rational players. It can
be easily seen that while Φ can have many saddle points, the values of Φ at all
these points are equal to each other, let us denote their common value by SadVal.
If (u∗, v∗) is a saddle point and player I selects u = u∗, his worst, over selections
v ∈ V of player II, loss is SadVal, and if player I selects a whatever u ∈ U , his
worst-case, over the selections of player II, loss can be only ≥ SadVal. Similarly,
when player II selects v = v∗, his worst-case, over the selections of player I, gain is
SadVal, and if player II selects a whatever v ∈ V , his worst-case, over the selections
of player I, gain can be only ≤ SadVal.

Existence of saddle points of Φ (min in u ∈ U , max in v ∈ V ) can be expressed
in terms of the primal problem (P ) and the dual problem (P ):

18more precisely, “saddle point (min in u ∈ U , max in v ∈ V );” we will usually skip the clar-
ification in parentheses, since it always will be clear from the context what are the minimization
variables and what are the maximization ones.
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Proposition 2.23. Φ has saddle point (min in u ∈ U , max in v ∈ V ) if and only
if problems (P ) and (D) are solvable with equal optimal values:

Opt(P ) := inf
u∈U

sup
v∈V

Φ(u, v) = sup
v∈V

inf
u∈U

Φ(u, v) =: Opt(D). (2.64)

Whenever this is the case, the saddle points of Φ are exactly the pairs (u∗, v∗)
comprised of optimal solutions to problems (P ) and (D), and the value of Φ at
every one of these points is the common value SadVal of Opt(P ) and Opt(D).

Existence of a saddle point of a function is “rare commodity;” the standard
sufficient condition for it is convexity-concavity of Φ coupled with convexity of U
and V ; the precise statement is as follows:

Theorem 2.24. [Sion-Kakutani, see, e.g., [11, Theorems D.4.3, D.4.4]] Let
U ⊂ Rm, V ⊂ Rn be nonempty closed convex sets, with W bounded, and let Φ :
U ×V → R be continuous function which is convex in u ∈ U for every fixed v ∈ V ,
and is concave in v ∈ V for every fixed u ∈ U . Then the equality (2.64) holds true
(although it may happen that Opt(P ) = Opt(D) = −∞).

If, in addition, Φ is coercive in u, meaning that the level sets

{u ∈ U : Φ(u, v) ≤ a}

are bounded for every a ∈ R and v ∈ V (equivalently: for every v ∈ V , Φ(ui, v)→
+∞ along every sequence ui ∈ U going to ∞: ‖ui‖ → ∞ as i→∞), then Φ admits
saddle points (min in u ∈ U , max in v ∈ V ).

Note that the “true” Sion-Kakutani Theorem is a bit stronger than Theorem
2.24; the latter, however, covers all our related needs.

2.4.4.2 Main Result

Theorem 2.25. Let
O = (Ω,Π; {pµ : µ ∈M};F)

be a simple observation scheme, and let M1,M2 be nonempty compact convex sub-
sets of M. Then

(i) The function

Φ(φ, [µ; ν]) = 1
2

[
ln
(∫

Ω
e−φ(ω)pµ(ω)Π(dω)

)
+ ln

(∫
Ω
eφ(ω)pν(ω)Π(dω)

)]
:

F × (M1 ×M2)→ R
(2.65)

is continuous on its domain, is convex in φ(·) ∈ F , concave in [µ; ν] ∈M1×M2, and
possesses a saddle point (min in φ ∈ F , max in [µ; ν] ∈ M1 ×M2) (φ∗(·), [µ∗; ν∗])
on F × (M1 ×M2). φ∗ w.l.o.g. can be assumed to satisfy the relation19∫

Ω

exp{−φ∗(ω)}pµ∗(ω)Π(dω) =

∫
Ω

exp{φ∗(ω)}pµ∗(ω)Π(dω). (2.66)

19Note that F contains constants, and shifting by a constant the φ-component of a saddle
point of Φ and keeping its [µ; ν]-component intact, we clearly get another saddle point of Φ.
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Denoting the common value of the two quantities in (2.66) by ε?, the saddle point
value

min
φ∈F

max
[µ;ν]∈M1×M2

Φ(φ, [µ; ν])

is ln(ε?). Besides this, setting φa∗(·) = φ∗(·)− a, one has

(a)
∫

Ω
exp{−φa∗(ω)}pµ(ω)Π(dω) ≤ exp{a}ε? ∀µ ∈M1,

(b)
∫

Ω
exp{φa∗(ω)}pν(ω)Π(dω) ≤ exp{−a}ε? ∀ν ∈M2.

, (2.67)

implying, in view of Proposition 2.16, that when deciding via an observation ω ∈ Ω
on the hypotheses

Hχ : ω ∼ pµ with µ ∈Mχ, χ = 1, 2,

the risks of the simple test Tφa∗ based on the detector φa∗ can be upper-bounded as
follows:

Risk1(Tφa∗ |H1, H2) ≤ exp{a}ε?, Risk2(Tφa∗ |H1, H2) ≤ exp{−a}ε?. (2.68)

Besides this, φ∗, ε? form an optimal solution to the optimization problem

min
φ,ε

{
ε :

∫
Ω
e−φ(ω)pµ(ω)Π(dω) ≤ ε∀µ ∈M1∫

Ω
eφ(ω)pµ(ω)Π(dω) ≤ ε∀µ ∈M2

}
(2.69)

(the minimum in (2.69) is taken over all ε > 0 and all Π-measurable functions
φ(·), not just over φ ∈ F).

(ii) The dual problem associated with the saddle point data Φ, F , M1 ×M2 is

max
µ∈M1,ν∈M2

Φ(µ, ν) := inf
φ∈F

Φ(φ; [µ; ν]). (D)

The objective in this problem is in fact the logarithm of Hellinger affinity of pµ and
pν :

Φ(µ, ν) = ln

(∫
Ω

√
pµ(ω)pν(ω)Π(dω)

)
, (2.70)

and this objective is concave and continuous on M1 ×M2.
The (µ, ν)-components of saddle points of Φ are exactly the maximizers (µ∗, ν∗)

of the concave function Φ on M1×M2. Given such a maximizer [µ∗; ν∗] and setting

φ∗(ω) =
1

2
ln(pµ∗(ω)/pν∗(ω)) (2.71)

we get a saddle point (φ∗, [µ∗; ν∗]) of Φ satisfying (2.66).
(iii) Let [µ∗; ν∗] be a maximizer of Φ over M1 ×M2. Let, further, ε ∈ [0, 1/2]

be such that there exists a (whatever, perhaps randomized) test for deciding via
observation ω ∈ Ω on two simple hypotheses

(A) : ω ∼ p(·) := pµ∗(·), (B) : ω ∼ q(·) := pν∗(·) (2.72)

with total risk ≤ 2ε. Then
ε? ≤ 2

√
ε(1− ε).

In other words, if the simple hypotheses (A), (B) can be decided, by a whatever test,
with total risk 2ε, then the risks of the simple test with detector φ∗ given by (2.71)
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on the composite hypotheses H1, H2 do not exceed 2
√
ε(1− ε).

Proof. 10. Since O is a simple o.s., the function Φ(φ, [µ; ν]) given by (2.65) is a well
defined real-valued function on F × (M×M) which is concave in [µ; ν]; convexity of
the function in φ ∈ F is evident. Since both F and M are convex sets coinciding with
their relative interiors, convexity-concavity and real valuedness of Φ on F × (M×M)
imply the continuity of Φ on the indicated domain. As a consequence, Φ is convex-concave
continuous real-valued function on F × (M1 ×M2).

Now let
Φ(µ, ν) = inf

φ∈F
Φ(φ, [µ; ν]). (2.73)

Note that Φ, being the infimum of a family of concave functions of [µ; ν] ∈ M ×M, is
concave on M×M. We claim that for µ, ν ∈M the function

φµ,ν(ω) =
1

2
ln(pµ(ω)/pν(ω))

(which, by definition of a simple o.s., belongs to F) is an optimal solution to the right
hand side minimization problem in (2.73), so that

∀(µ ∈M1, ν ∈M2) :

Φ([x; y]) := infφ∈F Φ(φ, [µ; ν]) = Φ(φµ,ν , [µ; ν]) = ln
(∫

Ω

√
pµ(ω)pν(ω)Π(dω)

)
.

(2.74)

Indeed, we have

exp{−φµ,ν(ω)}pµ(ω) = exp{φµ,ν(ω)}pν(ω) = g(ω) :=
√
pµ(ω)pν(ω),

whence Φ(φµ,ν , [µ; ν]) = ln
(∫

Ω
g(ω)Π(dω)

)
. On the other hand, for φ(·) = φµ,ν(·) + δ(·) ∈

F we have ∫
Ω
g(ω)Π(dω) =

∫
Ω

[√
g(ω) exp{−δ(ω)/2}

] [√
g(ω) exp{δ(ω)/2}

]
Π(dω)

(a) ≤
(∫

Ω
g(ω) exp{−δ(ω)}Π(dω)

)1/2 (∫
Ω
g(ω) exp{δ(ω)}Π(dω)

)1/2
=
(∫

Ω
exp{−φ(ω)}pµ(ω)Π(dω)

)1/2 (∫
Ω

exp{φ(ω)}pν(ω)Π(dω)
)1/2

(b) ⇒ ln
(∫

Ω
g(ω)Π(dω)

)
≤ Φ(φ, [µ; ν]),

and thus Φ(φµ,ν , [µ; ν]) ≤ Φ(φ, [µ; ν]) for every φ ∈ F .

Remark 2.26. Note that the above reasoning did not use the fact that the minimization in
the right hand side of (2.73) is over φ ∈ F ; in fact, this reasoning shows that φµ,ν(·) min-
imizes Φ(φ, [µ; ν]) over all functions φ for which the integrals

∫
Ω

exp{−φ(ω)}pµ(ω)Π(dω)
and

∫
Ω

exp{φ(ω)}pν(ω)Π(dω) exist.

Remark 2.27. Note that the inequality in (b) can be equality only when the inequality in
(a) is so. In other words, if φ̄ is a minimizer of Φ(φ, [µ; ν]) over φ ∈ F , setting δ(·) =
φ̄(·)− φµ,ν(·), the functions

√
g(ω) exp{−δ(ω)/2} and

√
g(ω) exp{δ(ω)/2}, considered as

elements of L2[Ω,Π], are proportional to each other. Since g is positive and g, δ are
continuous, while the support of Π is the entire Ω, this “L2-proportionality” means that
the functions in question differ by a constant factor, or, which is the same, that δ(·) is
constant. Thus, the minimizers of Φ(φ, [µ; ν]) over φ ∈ F are exactly the functions of the
form φ(ω) = φµ,ν(ω) + const.

20. We are about to verify that Φ(φ, [µ; ν]) has a saddle point (min in φ ∈ F , max in
[µ; ν] ∈M1 ×M2). Indeed, observe, first, that on the domain of Φ it holds

Φ(φ(·) + a, [µ; ν]) = Φ(φ(·), [µ; ν]) ∀(a ∈ R, φ ∈ F). (2.75)

Let us select somehow µ̄ ∈ M, and let Π̄ be the measure on Ω with density pµ̄ w.r.t.
Π. For φ ∈ F , the integrals

∫
Ω
e±φ(ω)Π̄(dω) are finite (since O is simple), implying that
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φ ∈ L1[Ω, Π̄]; note also that Π̄ is a probabilistic measure. Let now F0 = {φ ∈ F :∫
Ω
φ(ω)Π̄(dω) = 0}, so that F0 is a linear subspace in F , and all functions φ ∈ F can

be obtained by shifts of functions from F0 by constants. Invoking (2.75), to prove the
existence of a saddle point of Φ on F × (M1 ×M2) is exactly the same as to prove the
existence of a saddle point of Φ on F0 × (M1 ×M2). Let us verify that Φ(φ, [µ; ν]) indeed
has a saddle point on F0 × (M1 × M2). M1 × M2 is a convex compact set, and Φ is
continuous on F0 × (M1 ×M2) and convex-concave; invoking Sion-Kakutani Theorem we
see that all we need in order to verify the existence of a saddle point is to show that
Φ is coercive in the first argument, that is, for every fixed [µ; ν] ∈ M1 × M2 one has
Φ(φ, [µ; ν])→ +∞ as φ ∈ F0 and ‖φ‖ → ∞ (whatever be the norm ‖ · ‖ on F0; recall that
F0 is a finite-dimensional linear space). Setting

Θ(φ) = Φ(φ, [µ; ν]) =
1

2

[
ln

(∫
ω

e−φ(ω)pµ(ω)Π(dω)

)
+ ln

(∫
ω

eφ(ω)pν(ω)Π(dω)

)]
and taking into account that Θ is convex and finite on F0, in order to prove that Θ is
coercive, it suffices to verify that Θ(tφ) → ∞, t → ∞, for every nonzero φ ∈ F0, which
is evident: since

∫
Ω
φ(ω)Π̄(dω) = 0 and φ is nonzero, we have

∫
Ω

max[φ(ω), 0]Π̄(dω) =∫
Ω

max[−φ(ω), 0]Π̄(dω) > 0, whence φ > 0 and φ < 0 on sets of Π-positive measure,
so that Θ(tφ) → ∞ as t → ∞ due to the fact that both pµ(·) and pν(·) are positive
everywhere.

30. Now let (φ∗(·); [µ∗; ν∗]) be a saddle point of Φ on F×(M1×M2). Shifting, if necessary,
φ∗(·) by a constant (by (2.75), this does not affect the fact that (φ∗, [µ∗; ν∗]) is a saddle
point of Φ), we can assume that

ε? :=

∫
Ω

exp{−φ∗(ω)}pµ∗(ω)Π(dω) =

∫
Ω

exp{φ∗(ω)}pν∗(ω)Π(dω), (2.76)

so that the saddle point value of Φ is

Φ∗ := max
[µ;ν]∈M1×M2

min
φ∈F

Φ(φ, [µ; ν]) = Φ(φ∗, [µ∗; ν∗]) = ln(ε?). (2.77)

as claimed in item (i) of Theorem.
Now let us prove (2.67). For µ ∈M1, we have

ln(ε?) = Φ∗ ≥ Φ(φ∗, [µ; ν∗])
= 1

2
ln
(∫

Ω
exp{−φ∗(ω)}pµ(ω)Π(dω)

)
+ 1

2
ln
(∫

Ω
exp{φ∗(ω)}pν∗(ω)Π(dω)

)
= 1

2
ln
(∫

Ω
exp{−φ∗(ω)}pµ(ω)P (dω)

)
+ 1

2
ln(ε?),

whence ln
(∫

Ω
exp{−φa∗(ω)}pµ(ω)Π(dω)

)
= ln

(∫
Ω

exp{−φ∗(ω)}pµ(ω)P (dω)
)
+a ≤ ln(ε?)+

a, and (2.67.a) follows. Similarly, when ν ∈M2, we have

ln(ε?) = Φ∗ ≥ Φ(φ∗, [µ∗; ν])
= 1

2
ln
(∫

Ω
exp{−φ∗(ω)}pµ∗(ω)Π(dω)

)
+ 1

2
ln
(∫

Ω
exp{φ∗(ω)}pν(ω)Π(dω)

)
= 1

2
ln(ε?) + 1

2
ln
(∫

Ω
exp{φ∗(ω)}pν(ω)Π(dω)

)
,

so that ln
(∫

Ω
exp{φa∗(ω)}pν(ω)Π(dω)

)
= ln

(∫
Ω

exp{φ∗(ω)}pν(ω)Π(dω)
)
− a ≤ ln(ε?)− a,

and (2.67.b) follows.
We have proved all claims in item (i), except for the claim that the just defined φ∗, ε?

form an optimal solution to (2.69). Note that by (2.67) as applied with a = 0, the pair in
question is feasible for (2.69). Assuming that the problem admits a feasible solution (φ̄, ε)
with ε < ε?, let us lead this assumption to a contradiction. Note that φ̄ should be such
that ∫

Ω

e−φ̄(ω)pµ∗(ω)Π(dω) < ε? &

∫
Ω

eφ̄(ω)pν∗(ω)Π(dω) < ε?,
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and consequently Φ(φ̄, [µ∗; ν∗]) < ln(ε?). On the other hand, Remark 2.26 says that
Φ(φ̄, [µ∗; ν∗]) cannot be less than min

φ∈F
Φ(φ, [µ∗; ν∗]), and the latter quantity is Φ(φ∗, [µ∗; ν∗])

due to the fact that (φ∗, [µ∗; ν∗]) is a saddle point of Φ on F×(M1×M2). Thus, assuming
that the optimal value in (2.69) is < ε?, we conclude that Φ(φ∗, [µ∗; ν∗]) ≤ Φ(φ̄, [µ∗; ν∗]) <
ln(ε?), contradicting (2.77). Item (i) of Theorem 2.25 is proved.

40. Let us prove item (ii) of Theorem 2.25. Relation (2.70) and concavity of the right
hand side of this relation in [µ; ν] were already proved; moreover, these relations were
proved in the range M×M of [µ; ν]. Since this range coincides with its relative interior,
the real-valued concave function Φ is continuous in M×M and thus is continuous in
M1 ×M2. Next, let φ∗ be the φ-component of a saddle point of Φ on F × (M1 ×M2) (we
already know that a saddle point exists). Invoking Proposition 2.23, the [µ; ν]-components
of saddle points of Φ on F × (M1 ×M2) are exactly the maximizers of Φ on M1 ×M2.
Let [µ∗; ν∗] be such a maximizer; by the same Proposition 2.23, (φ∗, [µ∗; ν∗]) is a saddle
point of Φ, whence Φ(φ, [µ∗; ν∗]) attains its minimum over φ ∈ F at φ = φ∗. We have also
seen that Φ(φ, [µ∗; ν∗]) attains its minimum over φ ∈ F at φ = φµ∗,ν∗ . These observations
combine with Remark 2.27 to imply that φ∗ and φµ∗,ν∗ differ by a constant, which, in
view of (2.75), means that (φµ∗,ν∗ , [µ∗; ν∗]) is a saddle point of Φ along with (φ∗, [µ∗; ν∗]).
(ii) is proved.

50. It remains to prove item (iii) of Theorem 2.25. In the notation from (iii), simple hy-
potheses (A) and (B) can be decided with the total risk ≤ 2ε, and therefore, by Proposition
2.2,

2ε̄ :=

∫
Ω

min[p(ω), q(ω)]Π(dω) ≤ 2ε.

On the other hand, we have seen that the saddle point value of Φ is ln(ε?); since [µ∗; ν∗]
is a component of a saddle point of Φ, it follows that minφ∈F Φ(φ, [µ∗; ν∗]) = ln(ε?). The
left hand side in this equality, as we know from item 10, is Φ(φx∗,y∗ , [x∗; y∗]), and we

arrive at ln(ε?) = Φ( 1
2

ln(pµ∗(·)/pν∗(·)), [µ∗; ν∗]) = ln
(∫

Ω

√
pµ∗(ω)pν∗(ω)Π(dω)

)
, so that

ε? =
∫

Ω

√
pµ∗(ω)pν∗(ω)Π(dω) =

∫
Ω

√
p(ω)q(ω)Π(dω). We now have

ε? =
∫

Ω

√
p(ω)q(ω)Π(dω) =

∫
Ω

√
min[p(ω), q(ω)]

√
max[p(ω), q(ω)]Π(dω)

≤
(∫

Ω
min[p(ω), q(ω)]Π(dω)

)1/2 (∫
Ω

max[p(ω), q(ω)]Π(dω)
)1/2

=
(∫

Ω
min[p(ω), q(ω)]Π(dω)

)1/2 (∫
Ω

(p(ω) + q(ω)−min[p(ω), q(ω)])Π(dω)
)1/2

=
√

2ε̄(2− 2ε̄) ≤ 2
√

(1− ε)ε,

where the concluding inequality is due to ε̄ ≤ ε ≤ 1/2. (iii) is proved, and the proof of
Theorem 2.25 is complete. 2

Remark 2.28. Assume that we are under the premise of Theorem 2.25 and that the
simple o.s. in question is nondegenerate (see Section 2.4.2). Then ε? < 1 if and
only if the sets M1 and M2 do not intersect.

Indeed, by Theorem 2.25.i, ln(ε?) is the saddle point value of Φ(φ, [µ; ν]) on
F × (M1 ×M2), or, which is the same by Theorem 2.25.ii, the maximum of the
function (2.70) on M1×M2; since saddle points exist, this maximum is achieved at
some pair [µ; ν] ∈M1×M2. Since (2.70) clearly is ≤ 0, we conclude that ε? ≤ 1 and
the equality takes place if and only if

∫
Ω

√
pµ(ω)pν(ω)Π(dω) = 1 for some µ ∈M1

and ν ∈ M2, or, which is the same,
∫

Ω
(
√
pµ(ω) −

√
pν(ω))2Π(dω) = 0 for these µ

and ν. Since pµ(·) and pν(·) are continuous and the support of Π is the entire Ω,
the latter can happen if and only if pµ = pν for our µ, ν, or, by nondegeneracy of
O, if and only if M1 ∩M2 6= ∅. 2
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2.4.5 Simple observation schemes – Examples of optimal detectors

Theorem 2.25.i states that when the observation scheme

O = (Ω,Π; {pµ : µ ∈M};F)

is simple and we are interested to decide on a pair of hypotheses on the distribution
of observation ω ∈ Ω,

Hχ : ω ∼ pµ with µ ∈Mχ, χ = 1, 2

and the hypotheses are convex, meaning that the underlying parameter sets Mχ

are convex and compact, building optimal, in terms of its risk, detector φ∗ – that
is, solving (in general, semi-infinite and infinite-dimensional) optimization problem
(2.69) reduces to solving the usual finite-dimensional convex problem. Specifically,
an optimal solution (φ∗, ε?) can be built as follows:

1. We solve optimization problem

Opt = max
µ∈M1,ν∈M2

[
Φ(µ, ν) := ln

(∫
Ω

√
pµ(ω)pν(ω)Π(dω)

)]
; (2.78)

of maximizing Hellinger affinity (the quantity under the logarithm) of a pair of
distributions obeying H1 and H2, respectively; for a simple o.s., the objective in
this problem is concave and continuous, and optimal solutions do exist;

2. (Any) optimal solution [µ∗; ν∗] to (2.78) gives rise to an optimal detector φ∗ and
its risk ε?, according to

φ∗(ω) =
1

2
ln

(
pµ∗(ω)

pν∗(ω)

)
, ε? = exp{Opt}. (2.79)

The risks of the simple test Tφ∗ associated with the above detector and deciding
on H1, H2, satisfy the bounds

max [Risk1(Tφ∗ |H1, H2),Risk2(Tφ∗ |H1, H2)] ≤ ε?, (2.80)

and the test is near-optimal, meaning that whenever the hypotheses H1, H2

(and in fact – even two simple hypotheses stating that ω ∼ pµ∗ and ω ∼ pν∗ ,
respectively) can be decided upon by a test with total risk ≤ 2ε, Tφ∗ exhibits
“comparable” risk:

ε? ≤ 2
√
ε(1− ε). (2.81)

Note that the test Tφ∗ is just the maximum likelihood test induced by the proba-
bility densities pµ∗ and pν∗ .

Note that after we know that (φ∗, ε?) form an optimal solution to (2.69), some
kind of near-optimality of the test Tφ∗ is guaranteed already by Proposition 2.20;
specifically, by this Proposition, whenever in the nature there exists a test T which
decides on H1, H2 with risks Risk1,Risk2 bounded by some ε ≤ 1/2, the upper
bound ε? on the risks of Tφ∗ can be bounded according to (2.81). Our now near-
optimality statement is a bit stronger: first, we allow T to have the total risk ≤ 2ε,
which is weaker than to have both risks ≤ ε; second, and more important, now 2ε
should upper-bound the total risk of T on a pair of simple hypotheses “embedded”
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into the hypotheses H1, H2; both these modifications extend the family of tests T
to which we compare the test Tφ∗ , and thus enrich the comparison.

Let us look how the above recipe works for our basic simple o.s.’s.

2.4.5.1 Gaussian o.s.

When O is a Gaussian o.s., that is, {pµ : µ ∈ M} are Gaussian densities with
expectations µ ∈M = Rd and common positive definite covariance matrix Θ, and
F is the family of affine functions on Ω = Rd,

• M1, M2 can be arbitrary nonempty convex compact subsets of Rd,
• problem (2.78) becomes the convex optimization problem

Opt = − min
µ∈M1,ν∈M2

(µ− ν)TΘ−1(µ− ν)

8
(2.82)

• the optimal detector φ∗ and the upper bound ε? on its risks given by an optimal
solution (µ∗, ν∗) to (2.82) are

φ∗(ω) = 1
2 [µ∗ − ν∗]TΘ−1[ω − w], w = 1

2 [µ∗ + ν∗]

ε? = exp{− [µ∗−ν∗]Θ−1[µ∗−ν∗]
8 }

(2.83)

Note that when Θ = Id, the test Tφ∗ becomes exactly the optimal test from Example
2.4. The upper bound on the risks of this test established in Example 2.4 (in our
present notation, this bound is Erf( 1

2‖µ∗− ν∗‖2)) is slightly better than the bound
ε? = exp{−‖µ∗ − ν∗‖22/8} given by (2.83) when Θ = Id. Note, however, that when
speaking about the distance δ = ‖µ∗−ν∗‖2 between M1 and M2 allowing for a test
with risks ≤ ε � 1, the results of Example 2.4) and (2.83) say nearly the same:
Example 2.4 says that δ should be ≥ 2ErfInv(ε), where ErfInv(ε) is the Inverse
Error function:

Erf(ErfInv(ε)) ≡ ε, 0 < ε < 1,

and (2.83) says that δ should be ≥ 2
√

2 ln(1/ε). When ε → +0, the ratio of these
two lower bounds on δ tends to 1.

It should be noted that our general construction of optimal detectors as applied
to Gaussian o.s. and a pair of convex hypotheses results in exactly optimal test and
can be analyzed directly, without any “science” (see Example 2.4).

2.4.5.2 Poisson o.s.

When O is a Poisson o.s., that is,M = Rd
++ is the interior of nonnegative orthant

in Rd, and pµ, µ ∈M, is the density

pµ(ω) =
∏
i

(
µωii
ωi!

e−µi
)
, ω = (ω!, ..., ωd) ∈ Zd+

taken w.r.t. the counting measure Π on Ω = Zd+, and F is the family of affine
functions on Ω, the recipe from the beginning of Section 2.4.5 reads as follows:

• M1, M2 can be arbitrary nonempty convex compact subsets of Rd
++ = {x ∈ Rd :

x > 0};
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• problem (2.78) becomes the convex optimization problem

Opt = − min
µ∈M1,ν∈M2

1

2

d∑
i=1

(
√
µi −

√
νi)

2
; (2.84)

• the optimal detector φ∗ and the upper bound ε? on its risks given by an optimal
solution (µ∗, ν∗) to (2.84) are

φ∗(ω) = 1
2

∑d
i=1 ln

(
µ∗i
ν∗i

)
ωi + 1

2

∑d
i=1[ν∗i − µ∗i ],

ε? = eOpt
(2.85)

2.4.5.3 Discrete o.s.

When O is a Discrete o.s., that is, Ω = {1, ..., d}, Π is a counting measure on Ω,
M = {µ ∈ Rd : µ > 0,

∑
i µi = 1} and

pµ(ω) = µω, ω = 1, ..., d, µ ∈M,

the recipe from the beginning of Section 2.4.5 reads as follows:

• M1, M2 can be arbitrary nonempty convex compact subsets of the relative inte-
rior M of the probabilistic simplex,

• problem (2.78) is equivalent to the convex program

ε? = max
µ∈M1,ν∈M2

d∑
i=1

√
µiνi; (2.86)

• the optimal detector φ∗ given by an optimal solution (µ∗, ν∗) to (2.84) is

φ∗(ω) = 1
2 ln

(
µ∗ω
ν∗ω

)
, (2.87)

and the upper bound ε? on the risks of this detector is given by (2.86).

2.4.5.4 K-th power of simple o.s.

Recall that K-th power of a simple o.s. O = (Ω,Π; {pµ : µ ∈ M};F) (see Section
2.4.3.4) is the o.s.

[O]K = (ΩK ,ΠK ; {p(K)
µ : µ ∈M};F (K))

where ΩK is the direct product of K copies of Ω, ΠK is the product of K copies

of Π, the densities p
(K)
µ are product densities induced by K copies of density pµ,

µ ∈M:

p(K)
µ (ωK = (ω1, ..., ωK)) =

K∏
k=1

pµ(ωk),
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and F (K) is comprised of functions

φ(K)(ωK = (ω1, ..., ωK)) =

K∑
k=1

φ(ωk)

stemming from functions φ ∈ F . Clearly, [O]K is the observation scheme describing
the stationary K-repeated observations ωK = (ω1, ..., ωK) with ωk stemming from
the o.s. O, see Section 2.3.2.3. As we remember, [O]K is simple provided that O is
so.

Assuming O simple, it is immediately seen that as applied to the o.s. [O]K , the
recipe from the beginning of Section 2.4.5 reads as follows:

• M1, M2 can be arbitrary nonempty convex compact subsets ofM, and the corre-
sponding hypotheses, HK

χ , χ = 1, 2, state that the components ωk of observation

ωK = (ω1, ..., ωK) are independently of each other drawn from distribution pµ
with µ ∈M1 (hypothesis HK

1 ) or µ ∈M2 (hypothesis HK
2 ).

• problem (2.78) is the convex program

Opt(K) = max
µ∈M1,ν∈M2

ln

(∫
ΩK

√
p

(K)
µ (ωK)p

(K)
ν (ωK)ΠK(dΩ)

)
︸ ︷︷ ︸

≡K ln
(∫

Ω

√
pµ(ω)pν(ω)Π(dω)

)
(DK)

implying that any optimal solution to the “single-observation” problem (D1)
associated with M1, M2 is optimal for the “K-observation” problem (DK) asso-
ciated with M1, M2, and Opt(K) = KOpt(1);

• the optimal detector φ
(K)
∗ given by an optimal solution (µ∗, ν∗) to (D1) (this

solution is optimal for (DK) as well) is

φ
(K)
∗ (ωK) =

∑K
k=1 φ∗(ωk),

φ∗(ω) = 1
2 ln

(
pµ∗ (ω)
pν∗ (ω)

)
,

(2.88)

and the upper bound ε?(K) on the risks of the detector φ
(K)
∗ on the pair of

families of distributions obeying hypotheses HK
1 , resp., HK

2 , is

ε?(K) = eOpt(K) = eKOpt(1) = [ε?(1)]K . (2.89)

The just outlined results on powers of simple observation schemes allow to express
near-optimality of detector-based tests in simple o.s.’s in a nicer form, specifically,
as follows.

Proposition 2.29. Let O = (Ω,Π; {pµ : µ ∈ M};F) be a simple observation
scheme, M1, M2 be two nonempty convex compact subsets of M, and let (µ∗, ν∗)
be an optimal solution to the convex optimization problem (cf. Theorem 2.25)

Opt = max
µ∈M1,ν∈M2

ln

(∫
Ω

√
pµ(ω)pν(ω)Π(dω)

)
.

Let φ∗ and φK∗ be single- and K-observation detectors induced by (µ∗, ν∗) via (2.88).
Let ε ∈ (0, 1/2), and assume that for some positive integer K in the nature
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exists a simple test T K deciding via K i.i.d. observations ωK = (ω1, ..., ωK) with
ωk ∼ pµ, for some unknown µ ∈M, on the hypotheses

H(K)
χ : µ ∈Mχ, χ = 1, 2,

with risks Risk1, Risk2 not exceeding ε. Then setting

K+ =c 2

1− ln(4(1− ε))/ ln(1/ε)
Kb,

the simple test T
φ

(K+)
∗

utilizing K+ i.i.d. observations decides on H
(K+)
1 , H

(K+)
2

with risks ≤ ε. Note that K+ “is of order of K:” K+/K → 2 as ε→ +0.

Proof. Applying item (iii) of Theorem 2.25 to the simple o.s. [O]K , we see that
what above was called ε?(K) satisfies

ε?(K) ≤ 2
√
ε(1− ε).

By (2.89), we conclude that ε?(1) ≤
(

2
√
ε(1− ε)

)1/K

, whence, by the same (2.89),

ε?(T ) ≤
(

2
√
ε(1− ε)

)T/K
, T = 1, 2, ...; plugging in this bound T = K+, we get

(check it!) the inequality ε?(K+) ≤ ε. It remains to recall that ε?(K+) upper-

bounds the risks of the test T
φ

(K+)
∗

when deciding on H
(K+)
1 vs. H

(K+)
2 . 2

2.5 TESTING MULTIPLE HYPOTHESES

So far, we focused on detector-based tests deciding on pairs of hypotheses, and our
“constructive” results were restricted to pairs of convex hypotheses dealing with a
simple o.s.

O = (Ω,Π; {pµ : µ ∈M};F), (2.90)

convexity of a hypothesis meaning that the family of probability distributions obey-
ing the hypothesis is {pµ : µ ∈ X} associated with a convex (in fact, convex com-
pact) set X ⊂M.

In this Section, we will be interested in pairwise testing unions of convex hy-
potheses and testing multiple (more than two) hypotheses.

2.5.1 Testing unions

2.5.1.1 Situation and goal

Let Ω be an observation space, and assume we are given two finite collections of
families of probability distributions on Ω: families of red distributionsRi, 1 ≤ i ≤ r,
and families of blue distributions Bj , 1 ≤ j ≤ b. These families give rise to r red
and b blue hypotheses on the distribution P of an observation ω ∈ Ω, specifically,

Ri : P ∈ Ri (red hypotheses) and Bj : P ∈ Bj (blue hypotheses)
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Assume that for every i ≤ r, j ≤ B we have at our disposal a simple detector-based
test Tij capable to decide on Ri vs Bj ; what we want is to assemble these tests into
a test T deciding on the union R of red hypotheses vs. the union B of blue ones:

R : P ∈ R :=

r⋃
i=1

Ri, B : P ∈ B :=

b⋃
j=1

Bj ,

where P , as always, stands for the probability distribution of observation ω ∈ Ω.

Our motivation primarily stems from the case where Ri and Bj are convex hy-
potheses in a simple o.s. (2.90):

Ri = {pµ : µ ∈Mi}, Bj = {pµ : µ ∈ Nj},

where Mi and Nj are convex compact subsets of M. In this case we indeed know
how to build near-optimal tests deciding on Ri vs. Bj , and the question we have
posed becomes, how to assemble these tests into a test deciding on R vs. B, with

R : P ∈ R = {pµ : µ ∈ X}, X =
⋃
iMi,

B : P ∈ B = {pµ : µ ∈ Y }, Y =
⋃
j Nj ;

while structure of R, B is similar to the one of Ri, Bj , there is a significant

difference: the sets X, Y are, in general, non-convex, and therefore the techniques

we have developed fail to address testing R vs. B directly.

2.5.1.2 The construction

In the just described situation, let φij be the detectors underlying the tests Tij ;
w.l.o.g., we can assume these detectors balanced (see Section 2.3.2.2) with some
risks εij : ∫

Ω
e−φij(ω)P (dω) ≤ εij ∀P ∈ Ri∫

Ω
eφij(ω)P (dω) ≤ εij ∀P ∈ Bj

}
, 1 ≤ i ≤ r, 1 ≤ j ≤ b. (2.91)

Let us assemble the detectors φij into a detector for R, B as follows:

φ(ω) = max
1≤i≤r

min
1≤j≤b

[φij − αij ], (2.92)

where the shifts αij are construction’s parameters.

Proposition 2.30. The risks of φ on R, B can be bounded as

∀P ∈ R :
∫

Ω
e−φ(ω)P (dω) ≤ maxi≤r

[∑b
j=1 εije

αij
]

∀P ∈ B :
∫

Ω
eφ(ω)P (dω) ≤ maxj≤b [

∑r
i=1 εije

−αij ]
(2.93)

Thus, the risks of φ on R, B are upper-bounded by the quantity

ε? = max

[
max
i≤r

[∑b

j=1
εije

αij

]
,max
j≤b

[∑r

i=1
εije
−αij

]]
, (2.94)

whence the risks of the based on the detector φ simple test Tφ deciding on R, B are
upper-bounded by ε?.
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Proof. Let P ∈ R, so that P ∈ Ri∗ for some i∗ ≤ r. Then∫
Ω
e−φ(ω)P (dω) =

∫
Ω
emini≤r maxj≤b[−φij(ω)+αij ]P (dω)

≤
∫

Ω
emaxj≤b[−φi∗j(ω)+αi∗j ]P (dω) ≤

∑b
j=1

∫
Ω
e−φi∗j(ω)+αi∗jP (dω)

=
∑b
j=1 expαi∗j

∫
Ω
e−φi∗j(ω)P (dω)

≤
∑b
j=1 εi∗je

αi∗j [by (2.91) due to P ∈ Ri∗ ]
≤ maxi≤r

[∑b
j=1 εije

αij
]

Now let P ∈ B, so that P ∈ Bj∗ for some j∗. We have∫
Ω
eφ(ω)P (dω) =

∫
Ω
emaxi≤r minj≤b[φij(ω)−αij ]P (dω)

≤
∫

Ω
emaxi≤r[φij∗ (ω)−αij∗ ]P (dω) ≤

∑r
i=1

∫
Ω
eφij∗ (ω)−αij∗P (dω)

=
∑r
i=1 exp−αij∗

∫
Ω
eφij∗ (ω)P (dω)

≤
∑r
i=1 εij∗e

αij∗ [by (2.91) due to P ∈ Bj∗ ]
≤ maxj≤b [

∑r
i=1 εije

−αij ]

(2.93) is proved. The remaining claims in Proposition are readily given by (2.93)
combined with Proposition 2.16. 2

Optimal choice of shift parameters. The detector and the test considered in
Proposition 2.30, same as the resulting risk bound ε?, depend on the shifts αij . We
are about to optimize the risk bound w.r.t. these shifts. To this end, consider the
r × b matrix

E = [εij ] i≤r
j≤b

and the symmetric (r + b)× (r + b) matrix

E =

[
E

ET

]
As it is well known, the eigenvalues of the symmetric matrix E are comprised of
the pairs (σs,−σs), where σs are the singular values of E, and several zeros; in
particular, the leading eigenvalue of E is the spectral norm ‖E‖2,2 (the largest
singular value) of matrix E. Further, E is a matrix with positive entries, so that
E is a symmetric entrywise nonnegative matrix. By Perron-Frobenius Theorem,
the leading eigenvector of this matrix can be selected to be nonnegative. Denoting
this nonnegative eigenvector [g;h] with r-dimensional g and b-dimensional h, and
setting ρ = ‖E‖2,2, we have

ρg = Eh
ρh = ET g

(2.95)

Observe that ρ > 0 (evident), whence both g and h are nonzero (since otherwise
(2.95) would imply g = h = 0, which is impossible – the eigenvector [g;h] is
nonzero). Since h and g are nonzero nonnegative vectors, ρ > 0 and E is entrywise
positive, (2.95) says that g and h are strictly positive vectors. The latter allows to
define shifts αij according to

αij = ln(hj/gi). (2.96)
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With these shifts, we get

maxi≤r

[∑b
j=1 εije

αij
]

= maxi≤r
∑b
j=1 εijhj/gi = maxi≤r(Eh)i/gi = maxi≤r ρ = ρ

(we have used the first relation in (2.95)) and

maxj≤b [
∑r
i=1 εije

−αij ] = maxj≤b
∑r
i=1 εijgi/hj = maxj≤b[E

T g]j/hj = maxj≤b ρ = ρ

(we have used the second relation in (2.95)). The bottom line is as follows:

Proposition 2.31. In the situation and the notation from Section 2.5.1.1, the risks
of the detector (2.92) with shifts (2.95), (2.96) on the families R, B do not exceed
the quantity

‖E := [εij ]i≤r,j≤b‖2,2.

As a result, the risks of the simple test Tφ deciding on the hypotheses R, B, does
not exceed ‖E‖2,2 as well.

In fact, the shifts in the above proposition are the best possible; this is an
immediate consequence of the following simple fact:

Proposition 2.32. Let E = [eij ] be nonzero entrywise nonnegative n×n symmetric
matrix. Then the optimal value in the optimization problem

Opt = min
αij

max
i≤n

n∑
j=1

eije
αij : αij = −αji

 (∗)

is equal to ‖E‖2,2. When the Perron-Frobenius eigenvector f of E can be selected
positive, the problem is solvable, and an optimal solution is given by

αij = ln(fj/fi), 1 ≤ i, j ≤ n. (2.97)

Proof. Let us prove, first, that Opt ≤ ρ := ‖E‖2,2. Given ε > 0, we clearly can find
an entrywise nonnegative symmetric matrix E ′ with entries e′ij in-between eij and
eij + ε such that the Perron-Frobenius eigenvector f of E ′ can be selected positive
(it suffices, e.g., to set e′ij = eij + ε). Selecting αij according to (2.97), we get a
feasible solution to (∗) such that

∀i :
∑
j

eije
αij ≤

∑
j

e′ijfj/fi = ‖E ′‖2,2,

implying that Opt ≤ ‖E ′‖2,2. Passing to limit as ε→ +0, we get Opt ≤ ‖E‖2,2. As
a byproduct of our reasoning, we see that if E admits a positive Perron-Frobenius
eigenvector f , then (2.97) yields a feasible solution to (∗) with the value of the
objective equal to ‖E‖2,2.

It remain to prove that Opt ≥ ‖E‖2,2. Assume that this is not the case, so that
(∗) admits a feasible solution α̂ij such that

ρ̂ := max
i

∑
j

eije
α̂ij < ρ := ‖E‖2,2.
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Perturbing E a little bit, we can make this matrix symmetric and entrywise positive,
and still satisfying the above strict inequality; to save notation, assume that already
the original E is entrywise positive. Let f be a positive Perron-Frobenius eigenvector
of E , and let, as above, αij = ln(fj/fi), so that∑

j

eije
αij =

∑
j

eijfj/fi = ρ ∀i.

Setting δij = α̂ij − αij , we conclude that the convex functions

θi(t) =
∑
j

eije
αij+tδij

all are equal to ρ as t = 0, and all are ≤ ρ̂ < ρ as t = 1, implying that θi(1) < θi(0)
for every i. The latter, in view of convexity of θi(·), implies that

θ′i(0) =
∑
j

eije
αijδij =

∑
j

eij(fj/fi)δij < 0 ∀i.

Multiplying the resulting inequalities by f2
i and summing up over i, we get∑

i,j

eijfifjδij < 0,

which is impossible: we have eij = eji and δij = −δji, implying that the left hand
side in the latter inequality is 0. 2

2.5.2 Testing multiple hypotheses ”up to closeness”

So far, we have considered detector-based simple tests deciding on pairs of hy-
potheses, specifically, convex hypotheses in simple o.s.’s (Section 2.4.4) and unions
of convex hypotheses (Section 2.5.1)20. Now we intend to consider testing of mul-
tiple (perhaps more than 2) hypotheses “up to closeness;” the latter notion was
introduced in Section 2.2.4.2.

2.5.2.1 Situation and goal

Let Ω be an observation space, and let a collection P1, ...,PL of families of proba-
bility distributions on Ω be given. As always, families P` give rise to hypotheses

H` : P ∈ P`

on the distribution P of observation ω ∈ Ω. Assume also that we are given a
closeness relation C on {1, ..., L}; recall that a closeness relation, formally, is some
set of pairs of indexes (`, `′) ∈ {1, ..., L}; we interpret the inclusion (`, `′) ∈ C as the

20strictly speaking, in Section 2.5.1 it was not explicitly stated that the unions under consid-
eration involve convex hypotheses in simple o.s.’s; our emphasis was on how to decide on a pair
of union-type hypotheses given pairwise detectors for “red” and “blue” components of the unions
from the pair. Note, however, that as of now, the only situation where we indeed have at our
disposal good pairwise detectors for red and blue components is the one where these components
are convex hypotheses in a good o.s.
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Figure 2.2: 11 hypotheses on the location of the mean µ of observation ω ∼
N (µ, I2), each stating that µ belongs to the polygon of specific color.

fact that hypothesis H` “is close” to hypothesis H`′ . When (`, `′) ∈ C, we say that
`′ is close (or C-close) to `. We always assume that

• C contains the diagonal: (`, `) ∈ C for every ` ≤ L (“each hypothesis is close to
itself”), and
• C is symmetric: whenever (`, `′) ∈ C, we have also (`′, `) ∈ C (“if `-th hypothesis

is close to `′-th one, then `′-th hypothesis is close to `-th one”).

Recall that a test T deciding on the hypotheses H1, ...,HL via observation ω ∈ Ω
is a procedure which, given on input ω ∈ Ω, builds some set T (ω) ⊂ {1, ..., L},
accepts all hypotheses H` with ` ∈ T (ω), and rejects all other hypotheses.

Risks of an “up to closeness” test. The notion of C-risk of a test was introduced
in Section 2.2.4.2; we reproduce it here for reader’s convenience. Given closeness C
and a test T , we define the C-risk

RiskC(T |H1, ...,HL)

of T as the smallest ε ≥ 0 such that

Whenever an observation ω is drawn from a distribution P ∈
⋃
` P`, and `∗

is such that P ∈ P`∗ (i.e., hypothesis H`∗ is true), the P -probability of the
event “`∗ 6∈ T (ω) (“true hypothesis H`∗ is not accepted”) or there exists `′

not close to ` such that H`′ is accepted” is at most ε.

Equivalently:

RiskC(T |H1, ...,HL) ≤ ε if and only if the following takes place:
Whenever an observation ω is drawn from a distribution P ∈

⋃
` P`, and

`∗ is such that P ∈ P`∗ (i.e., hypothesis H`∗ is true), the P -probability of
the event

`∗ ∈ T (ω) (“the true hypothesis H`∗ is accepted”) and `′ ∈ T (ω)
implies that (`, `′) ∈ C (“all accepted hypotheses are C-close to the
true hypothesis H`∗”) is at least 1− ε.

For example, consider 11 colored polygons presented on Figure 2.2 and associate
with them 11 hypotheses on 2D “signal plus noise” observation ω = x + ξ, ξ ∼
N (0, I2), with `-th hypothesis stating that x belongs to `-th polygon. When defining
closeness C on the collection of 11 hypotheses presented on Figure 2.2 as

“two hypotheses are close if and only if the corresponding color polygons inter-
sect”
the fact that a test T has C-risk ≤ 0.01 implies, in particular, that if the probability
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distribution P underlying the observed ω “is black,” (i.e., the mean of ω belongs
to the black polygon), then with P -probability at least 0.99 the list of accepted
hypotheses will include the black one, and the only other hypotheses in this list
will be among the red, yellow and light-blue ones.

2.5.2.2 “Building blocks” and construction

The construction we are about to present is, essentially, the one used in Section
2.2.4.3 as applied to detector-generated tests; this being said, the presentation to
follow is self-contained.

Building blocks for our construction are pairwise detectors φ``′(ω), 1 ≤ ` ≤ `′ ≤
L, for pairs P`, P`′ along with (upper bounds on) the risks ε``′ of these detectors:

∀(P ∈ P`) :
∫

Ω
e−φ``′ (ω)P (dω) ≤ ε``′

∀(P ∈ P`′) :
∫

Ω
eφ``′ (ω)P (dω) ≤ ε``′

}
, 1 ≤ ` < `′ ≤ L.

Setting

φ`′`(ω) = −φ``′(ω), ε`′` = ε``′ , 1 ≤ ` < `′ ≤ L, φ``(ω) ≡ 0, ε`` = 1, 1 ≤ ` ≤ L,

we get what we shall call balanced system of detectors φ``′ and risks ε``′ , 1 ≤ `, `′ ≤
L, for the collection P1, ...,PL, meaning that

(a) : φ``′(ω) + φ`′`(ω) ≡ 0, ε``′ = ε`′`, 1 ≤ `, `′ ≤ L
(b) : ∀P ∈ P` :

∫
Ω
e−φ``′ (ω)P (dω) ≤ ε``′ , 1 ≤ `, `′ ≤ L. (2.98)

Given closeness C, we associate with it the symmetric L× L matrix C given by

C``′ =

{
0, (`, `′) ∈ C
1, (`, `′) 6∈ C (2.99)

Test TC. Let a collection of shifts α``′ ∈ R satisfying the relation

α``′ = −α`′`, 1 ≤ `, `′ ≤ L (2.100)

be given. The detectors φ``′ and the shifts α``′ specify a test TC deciding on
hypotheses H1, ...,HL; specifically, given an observation ω, the test TC accepts
exactly those hypotheses H` for which φ``′(ω)−α``′ > 0 whenever `′ is not C-close
to `:

TC(ω) = {` : φ``′(ω)− α``′ > 0 ∀(`′ : (`, `′) 6∈ C)}. (2.101)

Proposition 2.33. (i) The C-risk of the just defined test TC is upper-bounded by
the quantity

ε[α] = max
`≤L

L∑
`′=1

ε``′C``′e
α``′

with C given by (2.99).
(ii) The infimum, over shifts α satisfying (2.100), of the risk bound ε[α] is the
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quantity
ε? = ‖E‖2,2,

where the L× L symmetric entrywise nonnegative matrix E is given by

E = [e``′ := ε``′C``′ ]`,`′≤L .

Assuming E admits a strictly positive Perron-Frobenius vector f , an optimal choice
of the shifts is

α``′ = ln(f`′/f`), 1 ≤ `, `′ ≤ L,

resulting in ε[α] = ε? = ‖E‖2,2.

Proof. (i): Setting

φ̄``′(ω) = φ``′(ω)− α``′ , ε̄``′ = ε``′e
α``′ ,

(2.98), (2.100) imply that

(a) : φ̄``′(ω) + φ̄`′`(ω) ≡ 0, 1 ≤ `, `′ ≤ L
(b) : ∀P ∈ P` :

∫
Ω
e−φ̄``′ (ω)P (dω) ≤ ε̄``′ , 1 ≤ `, `′ ≤ L. (2.102)

Now let `∗ be such that the distribution P of observation ω belongs to P`∗ . Then
the P -probability of the event φ̄`∗`′(ω) ≤ 0 is, for every `′, ≤ ε̄`∗`′ by (2.102.b),
whence the P -probability of the event

E∗ = {ω : ∃`′ : (`∗, `
′) 6∈ C & φ̄`∗`′(ω) ≤ 0}

is upper-bounded by

∑
`′:(`∗,`′) 6∈C

ε̄`∗`′ =

L∑
`′=1

C`∗`′ε`∗`′e
α`∗`′ ≤ ε[α].

Assume that E∗ does not take place (as we have seen, this indeed is so with P -
probability ≥ 1−ε[α]). Then φ̄`∗`′(ω) > 0 for all `′ such that (`∗, `

′) 6∈ C, implying,
first, that H`∗ is accepted by our test. Second, φ̄`′`∗(ω) = −φ̄`∗`′(ω) < 0 whenever
(`∗, `

′) 6∈ C, or, which is the same due to the symmetry of closeness, whenever
(`′, `∗) 6∈ C, implying that the test TC rejects the hypothesis H`′ when `′ is not C-
close to `∗. Thus, the P -probability of the event “H`∗ is accepted, and all accepted
hypotheses are C-close to H`∗” is at least 1 − ε[α]. We conclude that the C-risk
RiskC(TC |H1, ...,HL) of the test TC is at most ε[α]. (i) is proved. (ii) is readily
given by Proposition 2.32. 2

2.5.2.3 Testing multiple hypotheses via repeated observations

In the situation of Section 2.5.2.1, given a balanced system of detectors φ``′ and
risks ε``′ , 1 ≤ `, `′ ≤ L for the collection P1, ...,PL (see (2.98)) and a positive integer
K, we can
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• pass from detectors φ``′ and risks ε``′ to the entities

φ
(K)
``′ (ωK = (ω1, ..., ωK)) =

K∑
k=1

φ``′(ωk), ε
(K)
``′ = εK``′ , 1 ≤ `, `′ ≤ L

• associate with the families P` families P(K)
` of probability distributions underly-

ing quasi-stationary K-repeated versions of observations ω ∼ P ∈ P`, see Section
2.3.2.3, and thus arrive at hypotheses HK

` = H⊗,K` stating that the distribution
PK of K-repeated observation ωK = (ω1, ..., ωK), ωk ∈ Ω, belongs to the family

P⊗,K` =
K⊗
k=1

P`, see Section 2.1.3.3, associated with P`.

Invoking Proposition 2.18 and (2.98), we arrive at the following analogy of (2.98):

(a) : φ
(K)
``′ (ωK) + φ

(K)
`′` (ωK) ≡ 0, ε

(K)
``′ = ε

(K)
`′` = εK``′ , 1 ≤ `, `′ ≤ L

(b) : ∀PK ∈ P(K)
` :

∫
ΩK

e−φ
(K)

``′ (ωK)PK(dωK) ≤ ε(K)
``′ , 1 ≤ `, `′ ≤ L.

(2.103)

Given shifts α``′ satisfying (2.100) and applying the construction from Section
2.5.2.2 to these shifts and our new detectors and risks, we arrive at the test test T KC
deciding on hypotheses HK

1 , ...,H
K
L via K-repeated observation ωK ; specifically,

given an observation ωK , the test T KC accepts exactly those hypotheses HK
` for

which φ
(K)
``′ (ωK)− α``′ > 0 whenever `′ is not C-close to `:

T KC (ωK) = {` : φ
(K)
``′ (ωK)− α``′ > 0 ∀(`′ : (`, `′) 6∈ C)}, (2.104)

Invoking Proposition 2.33, we arrive at

Proposition 2.34. (i) The C-risk of the just defined test T KC is upper-bounded by
the quantity

ε[α,K] = max
`≤L

L∑
`′=1

εK``′C``′e
α``′ .

(ii) The infimum, over shifts α satisfying (2.100), of the risk bound ε[α,K] is
the quantity

ε?(K) = ‖E(K)‖2,2,

where the L× L symmetric entrywise nonnegative matrix E(K) is given by

E(K) =
[
e

(K)
``′ := εK``′C``′

]
`,`′≤L

.

Assuming E(K) admits a strictly positive Perron-Frobenius vector f , an optimal
choice of the shifts is

α``′ = ln(f`/f`′), 1 ≤ `, `′ ≤ L,

resulting in ε[α,K] = ε?(K) = ‖E(K)‖2,2.

2.5.2.4 Consistency and near-optimality

Observe that when the closeness C is such that ε``′ < 1 whenever `, `′ are not
C-close to each other, the entries on the matrix E(K) exponentially fast go to 0 as
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K → ∞, whence the C-risk of test T KC also goes to 0 as K → ∞; this is called
consistency. When, in addition, P` correspond to convex hypotheses in a simple
o.s., the test T KC possesses certain near-optimality properties similar to those stated
in Proposition 2.29

Proposition 2.35. Consider the special case of the situation from Section 2.5.2.1
where, given a simple o.s. O = (Ω,Π; {pµ : µ ∈ M};F), the families P` of prob-
ability distributions are of the form P` = {pµ : µ ∈ N`}, where N`, 1 ≤ ` ≤ L,
are nonempty convex compact subsets of M. Let also the pairwise detectors φ``′

and their risks ε``′ underlying the construction from Section 2.5.2.2 be obtained by
applying Theorem 2.25 to the pairs N`, N`′ , so that for 1 ≤ ` < `′ ≤ L one has

φ``′(ω) =
1

2
ln(pµ`,`′ (ω)/pν`,`′ (ω)), ε``′ = exp{Opt``′},

where

Opt``′ = min
µ∈N`,ν∈N`′

ln

(∫
Ω

√
pµ(ω)pν(ω)Π(dω)

)
and (µ``′ , ν``′) form an optimal solution to the right hand side optimization problem.

Assume that for some positive integer K∗ in the nature there exists a test T K∗
capable to decide with C-risk ε ∈ (0, 1/2), via stationary K∗-repeated observation

ωK∗ , on the hypotheses H
(K∗)
` , stating that the components in ωK∗ are drawn,

independently of each other, from a distribution P ∈ P`, ` = 1, ..., L, and let

K =c2 1 + ln(L− 1)/ ln(1/ε)

1− ln(4(1− ε))/ ln(1/ε)
K∗b. (2.105)

Then the test T KC yielded by the construction from Section 2.5.2.2 as applied to the
above φ``′ , ε``′ and trivial shifts α``′ ≡ 0 decides on the hypotheses HK

` , see Section
2.5.2.3, via quasi-stationary K-repeated observations ωK , with C-risk ≤ ε.

Note that K/K∗ → 2 as ε→ +0.

Proof. Let

ε̄ = max
`,`′
{ε``′ : ` < `′ and `, `′ are not C-close to each other} .

Denoting by (`∗, `
′
∗) the maximizer in the right hand side maximization, note that

T K∗ induces a simple test T capable to decide via stationary K∗-repeated obser-

vations ωK on the pair of hypotheses H
(K∗)
`∗

, H
(K∗)
`′∗

with risks ≤ ε (it suffices to
make T to accept the first of the hypotheses in the pair and reject the second one

whenever T K∗ on the same observation accepts H
(K∗)
`∗

, otherwise T rejects the first
hypothesis in the pair and accepts the second one). This observation, by the same
argument as in the proof of Proposition 2.29, implies that ε̄K∗ ≤ 2

√
ε(1− ε) < 1,

whence all entries in the matrix E(K) do not exceed ε̄(K/K∗), implying by Proposi-
tion 2.33 that the C-risk of the test T KC does not exceed

ε(K) := (L− 1)[2
√
ε(1− ε)]K/K∗ .

It remains to note that for K given by (2.105) one has ε(K) ≤ ε. 2

Remark 2.36. Note that the tests TC and T KC we have built, may, depending on
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observations, accept no hypotheses at all, which sometimes is undesirable. Clearly,
every test deciding on multiple hypotheses up to C-closeness always can be modified
to ensure that a hypothesis always is accepted; to this end, it suffices to accept
exactly those hypotheses, if any, which are accepted by our original test, and accept,
say, hypothesis # 1 when the original test accepts no hypotheses. It is immediate
to see that the C-risk of the modified test cannot be larger than the one of the
original test.

2.5.3 Illustration: Selecting the best among a family of estimates

Let us illustrate our machinery for multiple hypothesis testing by applying it to the
situation as follows:

We are given:

• a simple nondegenerate observation scheme O = (Ω,Π; {pµ(·) : µ ∈
M};F),

• a seminorm ‖ · ‖ on Rn, 21

• a convex compact set X ⊂ Rn along with a collection of M points xi ∈
Rn, 1 ≤ i ≤ M and a positive D such that the ‖ · ‖-diameter of the set
X+ = X ∪ {xi : 1 ≤ i ≤M} is at most D:

‖x− x′‖ ≤ D ∀(x, x′ ∈ X+),

• an affine mapping x 7→ A(x) from Rn into the embedding space of M
such that A(x) ∈M for all x ∈M,

• a tolerance ε ∈ (0, 1).

We observe K-element sample ωK = (ω1, ..., ωK) of independent across k
observations

ωk ∼ pA(x∗), 1 ≤ k ≤ K, (2.106)

where x∗ ∈ Rn is unknown signal known to belong to X. Our “ideal goal”
is to use ωK in order to identify, with probability ≥ 1 − ε, the ‖ · ‖-closest
to x∗ point among the points x1, ..., xM .

This just outlined goal often is too ambitious, and in the sequel we focus on the
relaxed goal as follows:

Given a positive integer N and a “resolution” θ > 1, consider the grid

Γ = {rj = Dθ−j , 0 ≤ j ≤ N}

and let

ρ(x) = min

{
ρj ∈ Γ : ρj ≥ min

1≤i≤M
‖x− xi‖

}
.

Given design parameters α ≥ 1, β ≥ 0, we want to specify volume of obser-

21A seminorm on Rn is defined by exactly the same requirements as a norm, except that
now we allow zero seminorms for some nonzero vectors. Thus, a seminorm on Rn is a nonnegative
function ‖ · ‖ which is even and homogeneous: ‖λx‖ = |λ|‖x‖ and satisfies the triangle inequality
‖x + y‖ ≤ ‖x‖ + ‖y‖. A universal example is ‖x‖ = ‖Bx‖o, where ‖ · ‖o is a norm on some Rm

and B is an m×n matrix; whenever this matrix has a nontrivial kernel, ‖ · ‖ is a seminorm rather
than a norm.
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vations K and an inference routine ωK 7→ iα,β(ωK) ∈ {1, ...,M} such that

∀(x∗ ∈ X) : Prob{‖x∗ − xiα,β(ωK)‖ > αρ(x∗) + β} ≥ 1− ε. (2.107)

Note that when passing from the “ideal” to the relaxed goal, the simplification is
twofold: first, we do not care about the precise distance mini ‖x∗ − xi‖ from x∗ to
{x1, ..., xM}, all we look at is the best upper bound ρ(x∗) on this distance from the
grid Γ; second, we allow factor α and additive term β in mimicking the (discretized)
distance ρ(x∗) by ‖x∗ − xiα,β(ωK)‖.

The problem we have posed is rather popular in Statistics; its origin usually
looks as follows: xi are candidate estimates of x∗ yielded by a number of a priori
“models” of x∗ and perhaps some preliminary noisy observations of x∗. Given xi
and a matrix B, we want to select among the vectors Bxi the (nearly) best, w.r.t.
a given norm ‖ · ‖o, approximation of Bx∗, utilizing additional observations ωK

of the signal. To bring this problem into our framework, it suffices to specify the
seminorm as ‖x‖ = ‖Bx‖o. We shall see in the mean time that in the context of
this problem, the above “discretization of distances” is, for all practical purposes,
irrelevant: the dependence of the volume of observations on N is just logarithmic,
so that we can easily handle fine grid, like the one with θ = 1.001 and θ−N = 10−10.
As about factor α and additive term β, they indeed could be “expensive in terms
of applications,” but the “nearly ideal” goal of making α close to 1 and β close to
0 is in many cases too ambitious to be achievable.

2.5.3.1 The construction

Let us associate with i ≤ M and j, 0 ≤ j ≤ N , hypothesis Hij stating that the
independent across k observations ωk, see (2.106), stem from x∗ ∈ Xij = {x ∈ X :
‖x− xi‖ ≤ rj}. Note that the sets Xij are convex and compact. We denote by J
the set of all pairs (i, j), for which i ∈ {1, ...,M}, j ∈ {0, 1, ..., N}, and Xij 6= ∅.
Further, we define closeness Cα,β on the set of hypotheses Hij , (i, j) ∈ J , as follows:

(ij, i′j′) ∈ Cαβ if and only if

‖xi − xi′‖ ≤ ᾱ(rj + rj′) + β, ᾱ =
α− 1

2
. (2.108)

(here and in what follows, k` denotes the ordered pair (k, `)).

Applying Theorem 2.25, we can build, in a computation-friendly fashion, the system
φij,i′j′(ω), ij, i′j′ ∈ J , of optimal balanced detectors for the hypotheses Hij along
with the risks of these detectors, so that

(a) φij,i′j′(ω) ≡ −φi′j′,ij(ω)∀(ij, i′j′ ∈ J )

(b)
∫

Ω
e−φij,i′j′ (ω)pA(x)(ω)Π(dω) ≤ εij,i′j′ ∀(ij ∈ J , i′j′ ∈ J , x ∈ Xij)

(2.109)

Let us say that a pair (α, β) is admissible, if α ≥ 1, β ≥ 0 and

∀((i, j) ∈ J , (i′, j′) ∈ J , (ij, i′j′) 6∈ Cα,β) : A(Xij) ∩A(Xi′j′) = ∅. (2.110)

Note that checking admissibility of a given pair (α, β) is a computationally tractable
task.

Given an admissible par (α, β), we associate with it positive integerK = K(α, β)
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and inference ωK 7→ iα,β(ωK) as follows:

1. K = K(α, β) is the smallest integer such that the detector-based test T KCα,β
yielded by the machinery of Section 2.5.2.3 decides on the hypothesesHij , ij ∈ J ,
with Cα,β-risk not exceeding ε. Note that by admissibility, εij,i′j′ < 1 whenever
(ij, i′j′) 6∈ Cα,β , so that K(α, β) is well defined.

2. Given observation ωK , K = K(α, β), we define iα,β(ωK) as follows:

a) We apply to ωK the test T KCα,β . If the test accepts no hypothesis (case A),

iαβ(ωK) is undefined. The observations ωK resulting in case A comprise some
set, which we denote by B; given ωK , we can recognize whether or not ωK ∈ B.

b) When ωK 6∈ B, the test T KCα,β accepts some of the hypotheses Hij , let the set of

their indexes ij be J (ωK); we select from the pairs ij ∈ J (ωK) one with the
largest j, and set iα,β(ωK) to be equal to the first component, and jα,β(ωK)
to be equal to the second component of the selected pair.

We are about to prove the following

Proposition 2.37. Assuming (α, β) admissible, for the just defined inference ωK 7→
iα,β(ωK) and for every x∗ ∈ X, denoting by PKx∗ the distribution of stationary K-
repeated observation ωK stemming from x∗ one has

‖x∗ − xiα,β(ωK)‖ ≤ αρ(x∗) + β. (2.111)

with PKx∗-probability at least 1− ε.

Proof. Let us fix x∗ ∈ X, let j∗ = j∗(x∗) be the largest j ≤ N such that rj ≥
mini≤M ‖x∗ − xi‖; note that j∗ is well defined due to r0 = D ≥ ‖x∗ − x1‖. We set

rj∗ = min
j
{rj : rj ≥ min

i
‖x∗ − xi‖} = ρ(x∗)

and specify i∗ = i∗(x∗) ≤M in such a way that

‖x∗ − xi∗‖ ≤ rj∗ . (2.112)

Note that i∗ is well defined and that observations (2.106) stemming from x∗ obey
the hypothesis Hi∗j∗ .

Let E be the set of those ωK for which the predicate

P: As applied to observation ωK , the test T KCα,β accepts Hi∗j∗ , and all hy-
potheses accepted by the test are Cα,β-close to Hi∗j∗

holds true. Taking into account that the Cα,β-risk of T KCα,β does not exceed ε and

that the hypothesis Hi∗j∗ is true, the PKx∗ -probability of the event E is at least 1−ε.
Let observation ωK satisfy

ωK ∈ E . (2.113)

Then

1. The test T KCα,β accepts the hypothesis Hi∗j∗ , that is, ωK 6∈ B. By construction of

iα,β(ωK)jα,β(ωK) (see the rule 2b above) and due to the fact that T KCα,β accepts

Hi∗j∗ , we have jα,β(ωK) ≥ j∗.
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2. The hypothesis Hiα,β(ωK)jα,β(ωK) is Cα,β-close to Hi∗j∗ , so that

‖xi∗ − xiα,β(ωK)‖ ≤ ᾱ(rj∗ + rjα,β(ωK)) + β ≤ 2ᾱrj∗ + β = 2ᾱρ(x∗) + β, (2.114)

where the concluding inequality is due to the fact that, as we have already seen,
jα,β(ωK) ≥ j∗ when (2.113) takes place.

Invoking (2.112), we conclude that with PKx∗ -probability at least 1− ε it holds

‖x∗ − xiα,β(ωK)‖ ≤ (2ᾱ+ 1)ρ(x∗) + β = αρ(x∗) + β, (2.115)

where the concluding equality is due to the definition of ᾱ. 2

2.5.3.2 A modification

From the computational viewpoint, a shortcoming of the construction presented
in the previous Section is the necessity to operate with M(N + 1) hypotheses,
which could require computing as many as O(M2N2) detectors. We are about to
present a modified construction, where we deal at most N + 1 times with just M
hypotheses at a time (i.e., with the total of at most O(M2N) detectors). The idea
is to replace simultaneous processing of all hypotheses Hij , ij ∈ J , with processing
them in stages j = 0, 1, ...,, with stage j operating only with the hypotheses Hij ,
i = 1, ...,M .

The implementation of this idea is as follows. In the situation of Section 2.5.3,
given the same entities Γ, (α, β), Hij , Xij , ij ∈ J , as in the beginning of Section
2.5.3.1 and specifying closeness Cα,β according to (2.108), we now act as follows.

Preprocessing. We look, one by one, at j = 0, 1, ..., N , and for such a j,

1. identify the set Ij = {i ≤ M : Xij 6= ∅} and stop if this set is empty. If this set
is nonempty, we

2. specify closeness Cjαβ on the set of hypotheses Hij , i ∈ Ij as a “slice” of the
closeness Cα,β :

Hij and Hi′j (equivalently, i and i′) are Cjα,β-close to each other if (ij, i′j)
are Cὰ,β-close, that is,

‖xi − xi′‖ ≤ 2ᾱrj + β, ᾱ =
α− 1

2
.

3. build the optimal detectors φij,i′j , along with their risks εij,i′j , for all i, i′ ∈ Ij
such that (i, i′) 6∈ Cjα,β .
If for a pair i, i′ of this type it happens that εij,i′j = 1, that is, A(Xij)∩A(Xi′j) 6=
∅, we claim that (α, β) is inadmissible and stop. Otherwise we find the smallest
K = Kj such that the spectral norm of the symmetric M ×M matrix EjK with
the entries

EjKii′ =

{
εKij,i′j , i ∈ Ij , i′ ∈ Ij , (i, i′) 6∈ Cjα,β
0, otherwise

does not exceed ε̄ = ε/(N + 1). We then use the machinery of Section 2.5.2.3 to

build detector-based test T Kj
Cjα,β

which decides on the hypotheses Hij , i ∈ Ij , with

Cjα,β-risk not exceeding ε̄.
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It may happen that the outlined process stops when processing some value j̄ of j;
if this does not happen, we set j̄ = N + 1. Now, if the process does stop, and stops
with the claim that (α, β) is inadmissible, we call (α, β) inadmissible and terminate
– in this case we fail to produce a desired inference; note that if this is the case,
(α, β) is inadmissible in the sense of Section 2.5.3.1 as well. When we do not stop
with inadmissibility claim, we call (α, β) admissible, and in this case we do produce
an inference, specifically, as follows.

Processing observations.

1. We set J̄ = {0, 1, ..., ĵ = j̄ − 1}, K = K(α, β) = max
0≤j≤ĵ

Kj . Note that J̄ is

nonempty due to j̄ > 0. 22

2. Given observation ωK with independent across k components stemming from
unknown signal x∗ ∈ X according to (2.106), we act as follows.

a) We set Î−1(ωK) = {1, ...,M} = I0.

b) We look, one by one, at the values j = 0, 1, ..., ĵ. When processing j, we

already have at our disposal subsets Îk(ωK) ⊂ {1, ...,M}, −1 ≤ k < j, and
act as follows:

i. we apply the test T Kj
Cjα,β

to the initial Kj components of the observation

ωK . Let I+
j (ωK) be the set of hypotheses Hij , i ∈ Ij , accepted by the

test.

ii. it may happen that I+
j (ωK) = ∅; if it is so, we terminate.

iii. if I+
j (ωK) is nonempty, we look, one after one, at indexes i ∈ I+

j (ωK) and

for such an i, check, for every ` ∈ {−1, 0, ..., j − 1}, whether i ∈ Î`(ωK).
If it is the case for every ` ∈ {−1, 0, ..., j − 1}, we call index i good.

iv. if good indexes in I+
j (ωK) are discovered, we define Îj(ωK) as the set

of these good indexes and process to the next value of j (if j < ĵ), or

terminate (if j = ĵ). If there are no good indexes in I+
j (ωK), we terminate.

c) Upon termination, we have at our disposal a collection Îj(ωK), 0 ≤ j ≤
j̃(ωK), of all sets Îj(ωK) we have built (this collection can be empty, which

we encode by setting j̃(ωK) = −1). When j̃(ωK) = −1, our inference remains

undefined. Otherwise we select from the set Îj̃(ωK)(ω
K) an index iα,β(ωK),

say, the smallest one, and claim that the point xiα,β(ωK) is the “nearly closest”
to x∗ point among x1, ..., xM .

We have the following analogy of Proposition 2.37:

Proposition 2.38. Assuming (α, β) admissible, for the just defined inference ωK 7→
iα,β(ωK) and for every x∗ ∈ X, denoting by PKx∗ the distribution of stationary K-
repeated observation ωK stemming from x∗ one has

PKx∗
{
ωK : iα,β(ωK) is well defined and ‖x∗ − xiα,β(ωK)‖ ≤ αρ(x∗) + β

}
≥ 1− ε.

(2.116)

22All the sets Xi0 contain X and thus are nonempty, so that I0 = {1, ...,M} 6= ∅, and thus
we cannot stop at step j = 0 due to I0 = ∅; and another possibility to stop at step j = 0 is ruled
out by the fact that we are in the case when (α, β) is admissible.
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Proof. Let us fix the signal x∗ ∈ X underlying observations ωK . Same as in
the proof of Proposition 2.37, let j∗ be such that ρ(x∗) = rj∗ , and let i∗ ≤ M be
such that x∗ ∈ Xi∗j∗ ; clearly, i∗ and j∗ are well defined, and the hypotheses Hi∗j ,
0 ≤ j ≤ j∗, are true. In particular, Xi∗j 6= ∅ when j ≤ j∗, implying that i∗ ∈ Ij ,
0 ≤ j ≤ j∗, whence also ĵ ≥ j∗.

For 0 ≤ j ≤ j∗, let Ej be the set of all realizations of ωK such that

i∗ ∈ I+
j (ωK) & {(i∗, i) ∈ Cjα,β ∀i ∈ I

+
j (ωK)}.

Since Cjα,β-risk of the test T Kj
Cjα,β

is ≤ ε̄, we conclude that the PKx∗ -probability of Ej
is at least 1− ε̄, whence the PKx∗ -probability of the event

E =

j∗⋂
j=0

Ej

is at least 1− (N + 1)ε̄̇ = 1− ε.
Now let

ωK ∈ E .

Then, by the definition of Ej , j ≤ j∗,

• When j ≤ j∗, we have i∗ ∈ I+
j (ωK), whence, by evident induction in j, i∗ ∈

Îj(ωK) for all j ≤ j∗.
• From the above item, j̃(ωK) ≥ j∗; in particular, i := iα,β(ωK) is well defined

and turned out to be good at step j̃ ≥ j∗, implying that i ∈ Îj∗(ωK) ⊂ I+
j∗

(ωK).

Thus, i ∈ I+
j∗

(ωK), which combines with the definition of Ej∗ to imply that i and

i∗ are Cj∗α,β-close to each other, whence

‖xi(α,β)(ωK) − xi∗‖ ≤ 2ᾱrj∗ + β = 2ᾱρ(x∗) + β,

resulting in the desired relation

‖xi(α,β)(ωK)−x∗‖ ≤ 2ᾱρ(x∗)+β+‖xi∗−x∗‖ ≤ [2ᾱ+1]ρ(x∗)+β = αρ(x∗)+β. 2

2.5.3.3 “Near-optimality”

We augment the above simple constructions with the following

Proposition 2.39. Let in the nature for some positive integer K̄, ε ∈ (0, 1/2)
and a pair (a, b) ≥ 0 there exists an inference ωK̄ 7→ i(ωK̄) ∈ {1, ...,M} such that
whenever x∗ ∈ X, we have

ProbωK̄∼P K̄x∗
{‖x∗ − xi(ωK̄)‖ ≤ aρ(x∗) + b} ≥ 1− ε.

Then the pair (α = 2a + 3, β = 2b) is admissible in the sense of Section 2.5.3.1
(and thus – in the sense of Section 2.5.3.2), and for both our constructions – the
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one from Section 2.5.3.1 and the one from Section 2.5.3.2) – one has

K(α, β) ≤ Ceil

2
1 + ln(M(N + 1))/ ln(1/ε)

1− ln(4(1−ε))
ln(1/ε)

K̄

 ; (2.117)

Proof. Consider the situation of Section 2.5.3.1 (the situation of Section 2.5.3.2
can be processed in a completely similar fashion). Observe that with α, β as above,
there exists a simple test deciding on a pair of hypotheses Hij , Hi′j′ which are not

Cα,β-close to each other via stationary K̄-repeated observation ωK̄ with risk ≤ ε.
Indeed, the desired test T is as follows: given ij ∈ J , i′j′ ∈ J , and observation
ωK̄ , we compute i(ωK̄) and accept Hij if and only if ‖xi(ωK̄) − xi‖ ≤ (a+ 1)rj + b,
and accept Hi′j′ otherwise. Let us check that the risk of this test indeed is at

most ε. Assume, first, that Hij takes place. The P K̄x∗ -probability of the event
E : ‖xi(ωK̄) − x∗‖ ≤ aρ(x∗) + b is at lest 1 − ε due to the origin of i(·), and
‖xi − x∗‖ ≤ rj since Hij takes place, implying that ρ(x∗) ≤ rj by the definition of
ρ(·). Thus, in the case of E it holds

‖xi(ωK̄) − xi‖ ≤ ‖xi(ωK̄) − x∗‖+ ‖xi − x∗‖ ≤ aρ(x∗) + b+ rj ≤ (a+ 1)rj + b.

We conclude that if Hij is true and ωK̄ ∈ E , then the test T accepts Hij , and thus

the P K̄x∗ -probability for the simple test T not to accept Hij when the hypothesis
takes place is ≤ ε.

Now let Hi′j′ take place, and let E be the same event as above. When ωK̄ ∈ E ,

which happens with the P K̄x∗ -probability at least 1 − ε, we by exactly the same
reasons as above have ‖xi(ωK̄) − xi′‖ ≤ (a + 1)rj′ + b. It follows that when Hi′j′

takes place and ωK̄ ∈ E , we have ‖xi(ωK̄) − xi‖ > (a+ 1)rj + b, since otherwise we
would have

‖xi − xi′‖ ≤ ‖xi(ωK̄) − xi‖+ ‖xi(ωK̄) − xi′‖ ≤ (a+ 1)rj + b+ (a+ 1)rj′ + b

≤ (a+ 1)(rj + rj′) + 2b = α−1
2 (rj + rj′) + β,

which contradicts the fact that ij and i′j′ are not Cα,β-close. Thus, whenever Hi′j′

holds true and E takes place, we have ‖xi(ωK̄)−xi‖ > (a+1)rj +b, implying that T
accepts Hi′j′ . Thus, the P K̄x∗ -probability not to accept Hi′j′ when the hypotheses if
true is at most ε. From the just established fact that whenever (ij, i′j′) 6∈ Cα,β , the
hypotheses Hij , Hi′j′ can be decided upon, via K̄ observations, with risk ≤ ε < 0.5
it follows that for ij, i′j′ in question, the sets A(Xij) and A(Xi′j′) do not intersect,
so that (α, β) is an admissible pair.

Same as in the proof of Proposition 2.35, by basic properties of simple ob-
servation schemes, the fact that the hypotheses Hij , Hi′j′ with (ij, i′j′) 6∈ Cα,β
can be decided upon via K̄-repeated observations (2.106) with risk ≤ ε < 1/2
implies that εij,i′j′ ≤ [2

√
ε(1− ε)]1/K̄ , whence, again by basic results on sim-

ple observation scheme (look once again at the proof of Proposition 2.35), the
Cα,β-risk of K-observation detector-based test TK deciding on the hypotheses Hij ,

ij ∈ J , up to closeness Cα,β does not exceed Card(J )[2
√
ε(1− ε)]K/K̄ ≤ M(N +

1)[2
√
ε(1− ε)]K/K̄ , and (2.117) follows. 2

Comment. Proposition 2.39 says that in our problem, the “statistical toll” for
quite large values of N and M is quite moderate: with ε = 0.01, resolution θ = 1.001
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(which for all practical purposes is the same as no discretization of distances at all),
D/rN as large as 1010, and M as large as 10,000, (2.117) reads K = Ceil(10.7K̄)
– not a disaster! The actual statistical toll in our construction is in replacing the
“existing in the nature” a and b with α = 2α+ 3 and β = 2b. And of course there
is a huge computational toll for large M and N : we need to operate with large
(albeit polynomial in M,N) number of hypotheses and detectors.

2.5.3.4 Numerical illustration

The toy problem we use to illustrate the approach presented in this Section is as
follows:

A signal x∗ ∈ Rn (it makes sense to think of x∗ as of the restriction on
the equidistant n-point grid in [0, 1] of a function of continuous argument
t ∈ [0, 1]) is observed according to

ω = Ax∗ + ξ, ξ ∼ N (0, σ2In), (2.118)

where A is “discretized integration:”

(Ax)s =
1

n

s∑
j=1

xs, s = 1, ..., n.

We want to approximate x in the discrete version of L1-norm

‖y‖ =
1

n

n∑
s=1

|ys|, y ∈ Rn

by a low order polynomial.

In order to build the approximation, we use a single observation ω, stemming
from x∗ according to (2.118), to build 5 candidate estimates xi, i = 1, ..., 5 of x∗.
Specifically, xi is the Least Squares polynomial, of degree ≤ i − 1, approximation
of x:

xi = argmin
y∈Pi−1

‖Ay − ω‖22,

where Pκ is the linear space of algebraic polynomials, of degree ≤ κ, of discrete
argument s varying in {1, 2, ..., n}. After the candidate estimates are built, we
use additional K observations (2.118) “to select the model” – to select among our
estimates the ‖ · ‖-closest to x∗.

In the experiment to be reported we used n = 128 and σ = 0.01. The true signal
x∗ is plotted in magenta on the top of Figure 2.3; it is discretization of function of
continuous argument t ∈ [0, 1] which is linear, with slope 1, to the left of t = 0.5,
and is linear, with slope −1, to the right of t = 0.5; at t = 0.5, the function
has a jump. A priori information on the true signal is that it belongs to the box
{x ∈ Rn : ‖x‖∞ ≤ 1}. Sample polynomial approximations xi of x∗, 1 ≤ i ≤ 5, are
plotted in blue on the top of Figure 2.3; their actual ‖ · ‖-distances to x∗ are as
follows:

i 1 2 3 4 5
‖xi − x∗‖ 0.534 0.354 0.233 0.161 0.172
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Figure 2.3: Signal (top, magenta) and its candidate estimates (top,blue). Bottom:
the primitive of the signal.

As usual, the reliability tolerance ε was set to 0.01. We used N = 22 and θ = 21/4,
α = 3, β = 0.05, resulting in K = 3. In a series of 1000 simulations of the result-
ing inference, all 1000 results correctly identified the ‖ · ‖-closest to x∗ candidate
estimate, specifically, x4, in spite of the factor α = 3 in (2.111). Surprisingly, the
same holds true when we use the resulting inference with the reduced values of K,
namely, K = 1 and K = 2, although the theoretical reliability guarantees dete-
riorate: with K = 1 and K = 2, theory guarantees the validity of (2.111) with
probabilities 0.77 and 0.97, respectively.

2.6 SEQUENTIAL HYPOTHESIS TESTING

2.6.1 Motivation: Election Polls

Consider the question as follows:

One of L candidates for an office is about to be selected by population-wide
majority vote. Every member of the population votes for exactly one of the
candidates. How to predict the winner via an opinion poll?

A (naive) model of situation could be as follows. Let us represent the preference
of a particular voter by his preference vector – basic orth e in RL with unit entry
in a position ` meaning that the voter is about to vote for the `-th candidate. The
entries µ` in the average µ, over the population, of these vectors are the fractions of
votes in favor of `-th candidate, and the elected candidate is the one “indexing” the
largest of µ`’s. Now assume that we select at random, from the uniform distribution,
a member of the population and observe his preference vector. Our observation ω
is a realization of discrete random variable taking values in the set Ω = {e1, ..., eL}
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of basic orths in RL, and µ is the distribution of ω (technically, the density of this
distribution w.r.t. the counting measure Π on Ω). Selecting a small threshold δ
and assuming that the true – unknown to us – µ is such that the largest entry in
µ is at least by δ larger than every other entry and that µ` ≥ 1

N for all `, N being
the population size23, the fact that `-th candidate wins the elections means that

µ ∈M` = {µ ∈ Rd : µi ≥ 1
N ,
∑
i µi = 1, µ` ≥ µi + δ ∀(i 6= `)}

⊂ M = {µ ∈ Rd : µ > 0,
∑
i µi = 1}.

In an (idealized) poll, we select at random a number K of voters and observe their
preferences, thus arriving at a sample ωK = (ω1, ..., ωK) of observations drawn,
independently of each other, from unknown distribution µ on Ω, with µ known
to belong to

⋃L
`=1M`, and to predict the winner is the same as to decide on L

convex hypotheses, H1, ...,HL, in the Discrete o.s., with H` stating that ω1, ..., ωK
are drawn, independently of each other, from a distribution µ ∈M`. What we end
up with, is the problem of deciding on L convex hypotheses in the Discrete o.s.
with L-element Ω via stationary K-repeated observations.

Illustration. Consider two-candidate elections; now the goal of a poll is, given K
independent of each other realizations ω1, ..., ωK of random variable ω taking value
χ = 1, 2 with probability µχ, µ1 + µ2 = 1, to decide what is larger, µ1 or µ2. As
explained above, we select somehow a threshold δ and impose on the unknown µ
a priori assumption that the gap between the largest and the next largest (in our
case – just the smallest) entry of µ is at least δ, thus arriving at two hypotheses:

H1 : µ1 ≥ µ2 + δ, H2 : µ2 ≥ µ1 + δ,

which is the same as

H1 : µ ∈M1 = {µ : µ1 ≥ 1+δ
2 , µ2 ≥ 0, µ1 + µ2 = 1},

H2 : µ ∈M2 = {µ : µ2 ≥ 1+δ
2 , µ1 ≥ 0, µ1 + µ2 = 1}.

We now want to decide on these two hypotheses from stationary K-repeated ob-
servations. We are in the case of simple (specifically, Discrete) o.s.; the optimal
detector as given by Theorem 2.25 stems from the optimal solution (µ∗, ν∗) to the
convex optimization problem

ε? = max
µ∈M1,ν∈M2

[
√
µ1ν1 +

√
µ2ν2] , (2.119)

the optimal balanced single-observation detector is

φ∗(ω) = fT∗ ω, f∗ =
1

2
[ln(µ∗1/ν

∗
1 ); ln(µ∗2/ν

∗
2 )]

(recall that we encoded observations ωk by basic orths from R2), the risk of this
detector being ε?. In other words,

µ∗ = [ 1+δ
2 ; 1−δ

2 ], ν∗ = [ 1−δ
2 ; 1+δ

2 ], ε? =
√

1− δ2,
f∗ = 1

2 [ln((1 + δ)/(1− δ)); ln((1− δ)/(1 + δ))] .

23with the size N of population in the range of tens of thousands and δ like 1/N , both these
assumptions seem to be quite realistic.
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The optimal balanced K-observation detector and its risk are

φ
(K)
∗ (ω1, ..., ωK︸ ︷︷ ︸

ωK

) = fT∗ (ω1 + ...+ ωK), ε
(K)
? = (1− δ2)K/2.

The near-optimal K-observation test T Kφ∗ accepts H1 and rejects H2 if φ
(K)
∗ (ωK) ≥

0, otherwise it accepts H2 and rejects H1. Both risks of this test do not exceed

ε
(K)
? .

Given risk level ε, we can identify the minimal “poll size” K for which the risks
Risk1, Risk2 of the test T Kφ∗ do not exceed ε. This poll size depends on ε and on
our a priory “hypotheses separation” parameter δ : K = Kε(δ). Some impression
on this size can be obtained from Table 2.1, where, as in all subsequent “election
illustrations,” ε is set to 0.01. We see that while poll sizes for “landslide” elec-
tions are surprisingly low, reliable prediction of the results of “close run” elections
requires surprisingly high sizes of the polls. Note that this phenomenon reflects
reality (to the extent at which the reality is captured by our model24); indeed, from
Proposition 2.29 we know that our poll size is within an explicit factor, depending
solely on ε, from the “ideal” poll sizes – the smallest ones which allow to decide
upon H1, H2 with risk ≤ ε. For ε = 0.01, this factor is about 2.85, meaning that
when δ = 0.01, the ideal poll size is larger than 32,000. In fact, we can build more
accurate lower bounds on the sizes of ideal polls, specifically, as follows. When com-
puting the optimal detector φ∗, we get, as a byproduct, two distributions, µ∗, ν∗

obeying H1, H2, respectively. Denoting by µ∗K , ν∗K the distributions of K-element
i.i.d. samples drawn from µ∗ and ν∗, the risk of deciding on two simple hypotheses
on the distribution of ωK , stating that this distribution is µ∗K , respectively, ν∗K can
be only smaller than the risk of deciding on H1, H2 via K-repeated stationary ob-
servations. On the other hand, the former risk can be lower-bounded by one half of
the total risk of deciding on our two simple hypotheses, and the latter risk admits
a sharp lower bound given by Proposition 2.2, namely,

∑
i1,...,iK∈{1,2}

min

[∏
`

µ∗i` ,
∏
`

ν∗i`

]
= E(i1,...,iK)

{
min

[∏
`

(2µ∗i`),
∏
`

(2ν∗i`)

]}
,

with the expectation taken w.r.t independent tuples of K integers taking values
1 and 2 with probabilities 1/2. Of course, when K is in the range of few tens
and more, we cannot compute the above 2K-term sum exactly; however, we can
use Monte Carlo simulation in order to estimate the sum reliably within moderate
accuracy, like 0.005, and use this estimate to lower-bound the value of K for which
“ideal” K-observation test decides on H1, H2 with risks ≤ 0.01. Here are the
resulting lower bounds (along with upper bounds stemming from the data in Table

24in actual opinion polls, additional information is used; for example, in reality voters can be
split into groups according to their age, sex, education, income, etc., etc., with variability of pref-
erences within a group essentially lower than across the entire population; when planning a poll,
respondents are selected at random within these groups, with a prearranged number of selections
in every group, and their preferences are properly weighted, yielding more accurate predictions as
compared to the case when the respondents are selected from the uniform distribution. In other
words, in actual polls a non-trivial a priori information on the “true” distribution of preferences
is used – something we do not have in our naive model.
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δ 0.5623 0.3162 0.1778 0.1000 0.0562 0.0316 0.0177 0.0100

K0.01(δ), L = 2 25 88 287 917 2908 9206 29118 92098
K0.01(δ), L = 5 32 114 373 1193 3784 11977 37885 119745

Table 2.1: Sample of values of poll size K0.01(δ) as a function of δ for 2-candidate
(L = 2) and 5-candidate (L = 5) elections. Values of δ form a decreasing geometric
progression with ratio 10−1/4.

2.1):

δ 0.5623 0.3162 0.1778 0.1000 0.0562 0.0316 0.0177 0.0100

K,K 14, 25 51, 88 166, 287 534, 917 1699, 2908 5379, 9206 17023, 29122 53820, 92064

Lower (K) and upper (K) bounds on the “ideal” poll sizes

We see that the poll sizes as yielded by our machinery are within factor 2 of the
“ideal” poll sizes.

Clearly, the outlined approach can be extended to L-candidate elections with
L ≥ 2. We model the corresponding problem as the one where we need to decide, via
stationary K-repeated observations drawn from unknown probability distribution
µ on L-element set, on L hypotheses

H` : µ ∈M` = {µ ∈ Rd : µi ≥
1

N
, i ≤ L,

∑
i

µi = 1, µ` ≥ µ`′ + δ ∀(`′ 6= `)}, ` ≤ L;

(2.120)
here δ > 0 is a selected in advance threshold small enough to believe that the
actual preferences of the voters correspond to µ ∈

⋃
`M`. Defining closeness C in

the strongest possible way – H` is close to H`′ if and only if ` = `′, predicting
the outcome of elections with risk ε becomes the problem of deciding upon our
multiple hypotheses with C-risk ≤ ε, and we can use the pairwise detectors yielded
by Theorem 2.25 to identify the smallest possible K = Kε such that the test T KC
from Section 2.5.2.3 is capable to decide upon our L hypotheses with C-risk ≤ ε.
Numerical illustration of the performance of this approach in 5-candidate elections
is presented in Table 2.1 (where ε is set to 0.01).

2.6.2 Sequential hypothesis testing

In view of the above analysis, when predicting outcomes of “close run” elections,
huge poll sizes are a must. It, however, does not mean that nothing can be done in
order to build more reasonable opinion polls. The classical related statistical idea,
going back to Wald [144] is to pass to sequential tests where the observations are
processed one by one, and at every time we either accept some of our hypotheses
and terminate, or conclude that the observations obtained so far are insufficient
to make a reliable inference and pass to the next observation. The idea is that
a properly built sequential test, while still ensuring a desired risk, will be able to
make “early decisions” in the case when the distribution underlying observations
is “well inside” the true hypothesis and thus is far from the alternatives. Let us
show how to utilize our machinery in building a sequential test for the problem of
predicting the outcome of L-candidate elections; thus, our goal is, given a small
threshold δ, to decide upon L hypotheses (2.120). Let us act as follows.
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Figure 2.4: 3-candidate hypotheses in probabilistic simplex ∆3:

[green] M1 dark green + light green: candidate A wins with margin ≥ δS
[green] Ms

1 dark green: candidate A wins with margin ≥ δs > δS
[red] M2 dark red + pink: candidate B wins with margin ≥ δS
[red] Ms

2 dark red: candidate B wins with margin ≥ δs > δS
[blue] M3 dark blue + light blue: candidate C wins with margin ≥ δS
[blue] Ms

3 dark blue: candidate C wins with margin ≥ δs > δS
Cs closeness: hypotheses in the tuple {Gs2`−1 : µ ∈ M`, G

s
2` : µ ∈ Ms

` , 1 ≤ ` ≤ 3}
are not Cs-close to each other, if the corresponding M -sets are of different colors
and at least one the sets is dark-painted, like Ms

1 and M2, but not M1 and M2.

1. We select a factor θ ∈ (0, 1), say, θ = 10−1/4, and consider thresholds δ1 = θ,
δ2 = θδ1, δ3 = θδ2, and so on, until for the first time we get a threshold ≤ δ; to
save notation, we assume that this threshold is exactly δ, and let the number of
the thresholds be S.

2. We split somehow (e.g., equally) the risk ε which we want to guarantee into S
portions εs, 1 ≤ s ≤ S, so that εs are positive and

S∑
s=1

εs = ε.

3. For s ∈ {1, 2, ..., S}, we define, along with the hypotheses H`, the hypotheses

Hs
` : µ ∈Ms

` = {µ ∈M` : µ` ≥ µ`′ + δs, ∀(`′ 6= `)}, ` = 1, ..., L,

see Figure 2.4, and introduce 2L hypotheses Gs2`−1 = H`, and Gs2` = Hs
` , 1 ≤

` ≤ L. It is convenient to color these hypotheses in L colors, with Gs2`−1 = H`

and Gs2` = Hs
` assigned color `. We define also s-th closeness Cs as follows:

When s < S, hypotheses Gsi and Gsj are Cs-close to each other if either
they are of the same color, or they are of different colors and both of them
have odd indexes (that is, one of them is H`, and another one is H`′ with
` 6= `′).
When s = S (in this case GS2`−1 = H` = GS2`), hypotheses GS` and GS`′ are
CS-close to each other if and only if they are of the same color, i.e., both
coincide with the same hypothesis H`.

Observe that Gsi is a convex hypothesis:

Gsi : µ ∈ Y si [Y s2`−1 = M`, Y
s
2` = Ms

` ]
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The key observation is that when Gsi and Gsj are not Cs-close, the sets Y si and

Y sj are “separated” by at least δs, meaning that for some vector e ∈ RL with
just two nonnegative entries, equal to 1 and −1, we have

min
µ∈Y si

eTµ ≥ δs + max
µ∈Y sj

eTµ. (2.121)

Indeed, let Gsi and Gsj be not Cs-close to each other. That means that the
hypotheses are of different colors, say, ` and `′ 6= `, and at least one of them
has even index; w.l.o.g. we can assume that the even-indexed hypothesis is Gsi ,
so that

Y si ⊂ {µ : µ` − µ`′ ≥ δs},

while Y sj is contained in the set {µ : µ`′ ≥ µ`}. Specifying e as the vector

with just two nonzero entries, `-th equal to 1 and `′-th equal to −1, we ensure

(2.121).

4. For 1 ≤ s ≤ S, we apply the construction from Section 2.5.2.3 to identify the
smallest K = K(s) for which the test Ts yielded by this construction as applied to
stationary K-repeated observation allows to decide on the hypotheses Gs1, ..., G

s
2L

with Cs-risk ≤ εs; the required K exists due to the already mentioned separation
of members in a pair of not Cs-close hypotheses Gsi , G

s
j . It is easily seen that

K(1) ≤ K(2) ≤ ... ≤ K(S − 1); however, it may happen that K(S − 1) > K(S),
the reason being that CS is defined differently than Cs with s < S. We set

S = {s ≤ S : K(s) ≤ K(S)}.

For example, this is what we get in L-candidate Opinion Poll problem when
S = 8, δ = δS = 0.01, and for properly selected εs with

∑8
s=1 εs = 0.01:

L K(1) K(2) K(3) K(4) K(5) K(6) K(7) K(8)

2 177 617 1829 5099 15704 49699 153299 160118
5 208 723 2175 6204 19205 60781 188203 187718

S = 8, δs = 10−s/4.
S = {1, 2, ..., 8} when L = 2 and S = {1, 2, ..., 6} ∪ {8} when L = 5.

5. Our sequential test Tseq works in attempts s ∈ S – it tries to make conclusions
after observing K(s), s ∈ S, realizations ωk of ω. At s-th attempt, we apply
the test Ts to the collection ωK(s) of observations obtained so far to decide on
hypotheses Gs1, ..., G

s
2L. If Ts accepts some of these hypotheses and all accepted

hypotheses are of the same color, let it be `, the sequential test accepts the
hypothesis H` and terminates, otherwise we continue to observe the realizations
of ω (when s < S) or terminate with no hypotheses accepted/rejected (when
s = S).

It is easily seen that the risk of the outlined sequential test Tseq does not exceed

ε, meaning that whatever be a distribution µ ∈
⋃L
`=1M` underlying observations

ω1, ω2, ...ωK(S) and `∗ such that µ ∈M`∗ , the µ-probability of the event
Tseq accepts exactly one hypothesis, namely, H`∗

is at least 1− ε.

Indeed, observe, first, that the sequential test always accepts at most one of the
hypotheses H1, ..., HL. Second, let ωk ∼ µ with µ obeying H`∗ . Consider events
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Es, s ∈ S, defined as follows:

• when s < S, Es is the event “the test Ts as applied to observation ωK(s) does
not accept the true hypothesis Gs2`∗−1 = H`∗”;

• ES is the event “as applied to observation ωK(S), the test TS does not accept the
true hypothesis GS2`∗−1 = H`∗ or accepts a hypothesis not CS-close to GS2`∗−1.”

Note that by our selection of K(s)’s, the µ-probability of Es does not exceed εs,
so that the µ-probability of no one of the events Es, s ∈ S, taking place is at
least 1 − ε. To justify the above claim on the risk of our sequential test, all we
need is to verify that when no one of the events Es, s ∈ S, takes place, then the
sequential test accepts the true hypothesis H`∗ . Verification is immediate: let the
observations be such that no one of the events Es takes place. We claim that in
this case

(a) The sequential test does accept a hypothesis – if this does not happen at
s-th attempt with some s < S, it definitely happens at S-th attempt.

Indeed, since ES does not take place, TS accepts GS2`∗−1 and all other hypotheses,

if any, accepted by TS are CS-close to GS2`∗−1, implying by construction of CS
that TS does accept hypotheses, and all these hypotheses are of the same color,

that is, the sequential test at S-th attempt does accept a hypothesis.
(b) The sequential test does not accept a wrong hypothesis.

Indeed, assume that the sequential test accepts a wrong hypothesis, H`′ , `
′ 6= `∗,

and it happens at s-th attempt, and let us lead this assumption to a contradic-

tion. Observe that under our assumption the test Ts as applied to observation

ωK(s) does accept some hypothesis Gsi , but does not accept the true hypothesis

Gs2`∗−1 = H`∗ (indeed, assuming the latter hypothesis to be accepted, its color,

which is `∗, should be the same as the color `′ of Gsi (we are in the case when

the sequential test accepts H`′ at s-th attempt!); since in fact `′ 6= `∗, the above

assumption leads to a contradiction). On the other hand, we are in the case when

Es does not take place, that is, Ts does accept the true hypothesis Gs2`∗−1, and

we arrive at the desired contradiction.
(a) and (b) provide us with a verification we were looking for.

Discussion and illustration. It can be easily seen that when εs = ε/S for all
s, the worst-case duration K(S) of our sequential test is within a logarithmic in
SL factor of the duration of any other test capable to decide on our L hypotheses
with risk ε. At the same time it is easily seen that when the distribution µ of our
observation is “deeply inside” some set M`, specifically, µ ∈ Ms

` for some s ∈ S,
s < S, then the µ-probability to terminate not later than after just K(s) realizations
ωk of ω ∼ µ are observed and to infer correctly what is the true hypothesis is at least
1− ε. Informally speaking, in the case of “landslide” elections, a reliable prediction
of elections’ outcome will be made after a relatively small number of respondents
are interviewed.

Indeed, let s ∈ S and ωk ∼ µ ∈Ms
` , so that µ obeys the hypothesis Gs2`. Consider

the s events Et, 1 ≤ t ≤ s, defined as follows:

• For t < s, Et occurs when the sequential test terminates at attempt t with
accepting, instead of H`, wrong hypothesis H`′ , `

′ 6= `. Note that Et can take
place only when Tt does not accept the true hypothesis Gs2` = Hs

` (why?), and
µ-probability of this outcome is ≤ εt.

• Es occurs when Ts does not accept the true hypothesis Gs2` or accepts it along
with some hypothesis Gsj , 1 ≤ j ≤ 2L, of color different from `. Note that we
are in the situation where the hypothesis Gs2` is true, and, by construction of
Cs, all hypotheses Cs-close to Gs2` are of the same color ` as Gs2`. Recalling what
Cs-risk is and that the Cs-risk of Ts is ≤ εs, we conclude that the µ-probability
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of Es is at most εs.

The bottom line is that µ-probability of the event
⋃
t≤sEt is at most

∑s
t=1 εt ≤ ε;

by construction of the sequential test, if the event
⋃
t≤sEt does not take place,

the test terminates in course of the first s attempts with accepting the correct

hypothesis H`. Our claim is justified.

Numerical illustration. To get an impression of the “power” of sequential hy-
pothesis testing, here are the data on the durations of non-sequential and sequential
tests with risk ε = 0.01 for various values of δ; in the sequential tests, θ = 10−1/4 is
used. The worst-case data for 2-candidate and 5-candidate elections are as follows
(below ”volume” stands for the number of observations used by test)

δ 0.5623 0.3162 0.1778 0.1000 0.0562 0.0316 0.0177 0.0100

K,L = 2 25 88 287 917 2908 9206 29118 92098
S & K(S), L = 2 1&25 2&152 3&499 4&1594 5&5056 6&16005 7&50624 8&160118

K,L = 5 32 114 373 1193 3784 11977 37885 119745
S & K(S), L = 5 1&32 2&179 3&585 4&1870 5&5931 6&18776 7&59391 8&187720

Volume of non-sequential test (K), number of stages (S) and worst-case volume
(K(S)) of sequential test as functions of threshold δ = δS . Risk ε is set to 0.01.

As it should be, the worst-case volume of sequential test is essentially worse than
the volume of the non-sequential test25. This being said, let us look what happens
in the “average,” rather than the worst, case, specifically, let us look at the empirical
distribution of the volume when the distribution µ of observations is selected in the
L-dimensional probabilistic simplex ∆L = {µ ∈ RL : µ ≥ 0,

∑
` µ` = 1} at random.

Here is the empirical statistics of test volume obtained when drawing µ from the
uniform distribution on

⋃
`≤LM` and running the sequential test26 on observations

drawn from the selected µ:

L risk median mean 50% 55% 60% 65%
2 0.0010 177 9182 177 177 177 397
5 0.0040 1449 18564 1449 2175 2175 4189

L 70% 75% 80% 85% 90% 95% 100%
2 617 617 1223 1829 8766 87911 160118
5 6204 12704 19205 39993 60781 124249 187718

The data on empirical risk (column ”risk”) and volume (columns ”median...100%”)
of Sequential test. Column ”X%”: empirical X%-quantile of test volume.

The data in the table are obtained from 1,000 experiments. We see that with the
Sequential test, “typical” numbers of observations before termination are much less
than the worst-case values of these numbers. For example, in as much as 80%
of experiments these numbers were below quite reasonable levels, at least in the
case L = 2. Of course, what is “typical,” and what is not, depends on how we
generate µ’s (scientifically speaking, this is called “prior Bayesian distribution”);
were our generation more likely to produce “close run” distributions, the advan-
tages of sequential decision making would be reduced. This ambiguity is, however,
unavoidable when attempting to go beyond worst-case-oriented analysis.

25the reason is twofold: first, for s < S we pass from deciding on L hypotheses to deciding
on 2L of them; second, the desired risk ε is now distributed among several tests, so that each of
them should be more reliable than the non-sequential test with risk ε.

26corresponding to δ = 0.01, θ = 10−1/4 and ε = 0.01
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2.6.3 Concluding remarks

Application of our machinery to sequential hypothesis testing is in no sense re-
stricted to the simple election model considered so far. A natural general setup we
can handle is as follows:

We are given a simple observation scheme O and a number L of related
convex hypotheses, colored in d colors, on the distribution of an observation,
with distributions obeying hypotheses of different colors being distinct from
each other. Given risk level ε, we want to infer (1−ε)-reliably the color of the
distribution underlying observations (i.e., the color of the hypothesis obeyed
by this distribution) from stationary K-repeated observations, utilizing as
small number of observations as possible.

For detailed description of our related constructions and results, an interested
reader is referred to [87].

2.7 MEASUREMENT DESIGN IN SIMPLE OBSERVATION

SCHEMES

2.7.1 Motivation: Opinion Polls revisited

Consider the same situation as in Section 2.6.1 – we want to use opinion poll
to predict the winner in a population-wide elections with L candidates. When
addressing this situation earlier, no essential a priori information on the distribution
of voters’ preferences was available. Now consider the case when the population is
split into I groups (according to age, sex, income, etc., etc.), with i-th group forming
fraction θi of the entire population, and we have at our disposal, at least for some
i, a nontrivial a priori information about the distribution pi of the preferences
across group # i (`-th entry pi` in pi is the fraction of voters of group i voting for
candidate `). For example, we could know in advance that at least 90% of members
of group #1 vote for candidate #1, and at least 85% of members of group #2 vote
for candidate #2; no information of this type for group #3 is available. In this
situation it would be wise to select respondents in the poll via two-stage procedure,
first – selecting at random, with probabilities q1, ..., qI , the group from which the
next respondent will be picked, and second – selecting the respondent from this
group at random according to the uniform distribution on the group. When qi
are proportional to the sizes of the groups (i.e., qi = θi for all i), we come back
to selecting respondents at random from the uniform distribution over the entire
population; the point, however, is that in the presence of a priori information, it
makes sense to use qi different from θi, specifically, to make the ratios qi/θi “large”
or “small” depending on whether a priori information on group #i is poor or rich.

The story we just have told is an example of situation when we can “design
measurements” – draw observations from a distribution which partly is under our
control. Indeed, what in fact happens in the story, is the following. “In the nature”
there exist I probabilistic vectors p1, ..., pI of dimension L representing distribu-
tions of voting preferences within the corresponding groups; the distribution of
preferences across the entire population is p =

∑
i θip

i. With two-stage selection
of respondents, the outcome of a particular interview becomes a pair (i, `), with i
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identifying the group to which the respondent belongs, and ` identifying the candi-
date preferred by this respondent. In subsequent interviews, the pairs (i, `) – these
are our observations – are drawn, independently of each other, from the probability
distribution on the pairs (i, `), i ≤ I, ` ≤ L, with the probability of an outcome
(i, `) equal to

p(i, `) = qip
i
`.

Thus, we find ourselves in the situation of stationary repeated observations stem-
ming from the Discrete o.s. with observation space Ω of cardinality IL; the dis-
tribution from which the observations are drawn is a probabilistic vector µ of the
form

µ = Ax,

where

• x = [p1; ...; pI ] is the “signal” underlying our observations and representing the
preferences of the population; this signal is selected by the nature in the known
to us set X defined in terms of our a priori information on p1, ..., pI :

X = {x = [x1; ...;xI ] : xi ∈ Πi, 1 ≤ i ≤ I}, (2.122)

where Πi are the sets, given by our a priori information, of possible values of
the preference vectors pi of the voters from i-th group. In the sequel, we assume
that Πi are convex compact subsets in the positive part ∆o

L = {p ∈ RL : p >
0,
∑
` p` = 1} of the L-dimensional probabilistic simplex;

• A is “sensing matrix” which, to some extent, is under our control; specifically,

A[x1; ...;xI ] = [q1x
1; q2x

2; ...; qIx
I ], (2.123)

with q = [q1; ...; qI ] fully controlled by us (up to the fact that q must be a
probabilistic vector).

Note that in the situation under consideration the hypotheses we want to decide
upon can be represented by convex sets in the space of signals, with particular
hypothesis stating that the observations stem from a distribution µ on Ω, with µ
belonging to the image of some convex compact set X` ⊂ X under the mapping
x 7→ µ = Ax. For example, the hypotheses

H` : µ ∈M` = {µ ∈ RL :
∑
i

µi = 1, µi ≥
1

N
,µ` ≥ µ′` + δ, `′ 6= `}, 1 ≤ ` ≤ L

considered in Section 2.6.1 can be expressed in terms of the signal x = [x1; ...;xI ]:

H` : µ = Ax, x ∈ X` =

x = [x1; ...;xI ] :
xi ≥ 0,

∑
` x

i
` = 1∀i ≤ I∑

i θix
i
` ≥

∑
i θix

i
`′ + δ ∀(`′ 6= `)∑

i θix
i
j ≥ 1

N ,∀j

 .

(2.124)

The challenge we intend to address is as follows: so far, we were interested in
inferences from observations drawn from distributions selected “by nature.” Now
our goal is to make inferences from observations drawn from a distribution selected
partly by the nature and partly by us: the nature selects the signal x, we select from
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some set matrix A, and the observations are drawn from the distribution Ax. As
a result, we arrive at a completely new for us question: how to utilize the freedom
in selecting A in order to improve our inferences (this is somehow similar to what
in statistics is called “design of experiments.”)

2.7.2 Measurement Design: SetUp

In what follows we address measurement design in simple observation schemes, and
our setup is as follows (to make our intensions transparent, we illustrate our general
setup by explaining how it should be specified to cover the outlined two-stage Design
of Opinion Polls – DOP for short).

Given are

• simple observation scheme O = (Ω,Π; {pµ : µ ∈ M};F), specifically, Gaussian,
Poisson or Discrete one, with M⊂ Rd.
In DOP, O is the Discrete o.s. with Ω = {(i, `) : 1 ≤ i ≤ I, 1 ≤ ` ≤ L}, that is,
points of Ω are the potential outcomes “reference group, preferred candidate” of
individual interviews.

• a nonempty closed convex signal space X ⊂ Rn, along with L nonempty convex
compact subsets X` of X , ` = 1, ..., L.
In DOP, X is the set (2.122) comprised by tuples of allowed distributions of
voters’ preferences from various groups, and X` are the sets (2.124) of signals
associated with the hypotheses H` we intend to decide upon.

• a nonempty convex compact set Q in some RN along with a continuous mapping
q 7→ Aq acting from Q into the space of d× n matrices such that

∀(x ∈ X , q ∈ Q) : Aqx ∈M. (2.125)

In DOP, Q is the set of probabilistic vectors q = [q1; ...; qI ] specifying our mea-
surement design, and Aq is the matrix of the mapping (2.123).

• a closeness C on the set {1, ..., L} (that is, a set C of pairs (i, j) with 1 ≤ i, j ≤ L
such that (i, i) ∈ C for all i ≤ L and (j, i) ∈ C whenever (i, j) ∈ C), and a positive
integer K.
In DOP, the closeness S is as strict as it could be – i is close to j if and only if
i = j 27, and K is the total number of interviews in the poll.

We can associate with q ∈ Q and every one of X`, ` ≤ L, nonempty convex compact
sets Mq

` in the space M:
Mq
` = {Aqx : x ∈ X`}

and hypotheses Hq
` on K-repeated stationary observations ωK = (ω1, ..., ωK), with

Hq
` stating that ωk, k = 1, ...,K, are drawn, independently of each other, from a

distribution µ ∈Mq
` , ` = 1, ..., L. Closeness C can be thought of as closeness on the

collection of hypotheses Hq
1 , H

q
2 , ...,H

q
L. Given q ∈ Q, we can use the construction

from Section 2.5.2 in order to build the test T Kφ∗ deciding on the hypotheses Hq
` up

to closeness C, the C-risk of the test being the smallest allowed by the construction.
Note that this C-risk depends on q; the “Measurement Design” (MD for short)

27this closeness makes sense when the goal of the poll is to predict the winner; less ambitious
goal, like to decide whether the winner will or will not belong to a particular set of candidates,
would require weaker closeness.
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problem we are about to consider is to select q ∈ Q which minimizes the C-risk of
the associated test T Kφ∗ .

2.7.3 Formulating the MD problem

By Proposition 2.34, the C-risk of the test T Kφ∗ is upper-bounded by the spectral
norm of the symmetric entrywise nonnegative L× L matrix

E(K)(q) = [ε``′(q)]`,`′ ,

and this is what we intend to minimize in our MD problem. In the above formula,
ε``′(q) = ε`′`(q) are zeros when (`, `′) ∈ C; when (`, `′) 6∈ C and 1 ≤ ` < `′ ≤ L,
the quantities ε``′(q) = ε`′`(q) are defined depending on what is the simple o.s. O.
Specifically,

• In the case of Gaussian observation scheme (see Section 2.4.5.1), restriction
(2.125) does not restrict the dependence Aq on q at all (modulo the default
restriction that Aq is a continuous in q ∈ Q d× n matrix), and

ε``′(q) = exp{KOpt``′(q)}

where
Opt``′(q) = max

x∈X`,y∈X`′
−[Aq(x− y)]TΘ−1[Aq(x− y)] (Gq)

and Θ is the common covariance matrix of the Gaussian densities forming the
family {pµ : µ ∈M};

• In the case of Poisson o.s. (see Section 2.4.5.2), restriction (2.125) requires from
Aqx to be positive vector whenever q ∈ Q and x ∈ X , and

ε``′(q) = exp{KOpt``′(q)},

where

Opt``′(q) = max
x∈X`,y∈X`′

[∑
i

√
[Aqx]i[Aqy]i −

1

2

∑
i

[Aqx]i −
1

2

∑
i

[Aqy]i

]
; (Pq)

• In the case of Discrete o.s. (see Section 2.4.5.3), restriction (2.125) requires from
Aqx to be a positive probabilistic vector whenever q ∈ Q and x ∈ X , and

ε``′(q) = [Opt``′(q)]
K
,

where

Opt``′(q) = max
x∈X`,y∈X`′

∑
i

√
[Aqx]i[Aqy]i. (Dq)

The summary of above observations is as follows. The norm ‖E(K)‖2,2 – the quan-
tity we are interested to minimize in q ∈ Q – as a function of q ∈ Q is of the form

Ψ(q) = ψ({Opt``′(q) : (`, `′) 6∈ C}︸ ︷︷ ︸
Opt(q)

)
(2.126)

where the outer function ψ is real-valued convex and nondecreasing in every one
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of its arguments explicitly given function on RN (N is the cardinality of the set of
pairs (`, `′), 1 ≤ `, `′ ≤ L, with (`, `′) 6∈ C). Indeed, denoting by Γ(S) the spectral
norm of d × d matrix S, note that Γ is convex function of S, and this function
is nondecreasing in every one of the entries of S, provided that S is restricted to
be entrywise nonnegative28. ψ(·) is obtained from Γ(S) by substitution, instead of
entries S``′ of S, everywhere convex, nonnegative and nondecreasing functions of
new variables ~z = {z``′ : (`, `′) 6∈ C, 1 ≤ `, `′ ≤ L}, specifically

• when (`, `′) ∈ C, we set S``′ to zero;
• when (`, `′) 6∈ C, we set S``′ = exp{Kz``′} in the case of Gaussian and Poisson

o.s.’s, and set S``′ = max[0, z``′ ]
K , in the case of Discrete o.s.

As a result, we indeed get a convex and nondecreasing in every one of its arguments
function ψ of ~z ∈ RN .

Now, the Measurement Design problem we want to solve reads

Opt = min
q∈Q

ψ(Opt(q)); (2.127)

As we remember, the entries in the inner function Opt(q) are optimal values of
solvable convex optimization problems and as such are efficiently computable. When
these entries are also convex functions of q ∈ Q, the objective in (2.127), due to the
already established convexity and monotonicity properties of ψ, is a convex function
of q, meaning that (2.127) is a convex and thus efficiently solvable problem. On
the other hand, when some of the entries in Opt(q) are nonconvex in q, we hardly
could expect (2.127) to be an easy-to-solve problem. Unfortunately, convexity of
the entries in Opt(q) in q turns out to be a “rare commodity.” For example, we
can verify by inspection that the objectives in (Gq), (Pq), (Dq) as a functions of
Aq (not of q!) are concave rather than convex, so that the optimal values in the
problems, as a functions of q, are maxima, over the parameters, of parametric
families of concave functions of Aq (the parameter in these parametric families are
the optimization variables in (Gq) – (Dq)) and as such as a functions of Aq hardly
are convex. And indeed, as a matter of fact, the MD problem usually is nonconvex
and difficult to solve. We intend to consider “Simple case” where this difficulty does
not arise, specifically, the case where the objectives of the optimization problems
specifying Opt``′(q) are affine in q; in this case, Opt``′(q) as a function of q is
the maximum, over the parameters (optimization variables in the corresponding
problems), of parametric families of affine functions of q and as such is convex.

Our current goal is to understand what our sufficient condition for tractability
of the MD problem – affinity in q of the objectives in the respective problems
(Gq), (Pq), (Dq) – actually means, and to show that this, by itself quite restrictive,
assumption indeed takes place in some important applications.

28monotonicity follows from the fact that for an entrywise nonnegative S, we have

‖S‖2,2 = max
x,y
{xTSy : ‖x‖2 ≤ 1, ‖y‖2 ≤ 1} = max

x,y
{xTSy : ‖x‖2 ≤ 1, ‖y‖2 ≤ 1, x ≥ 0, y ≥ 0}
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2.7.3.1 Simple case, Discrete o.s.

Looking at the optimization problem (Dq), we see that the simplest way to ensure
that its objective is affine in q is to assume that

Aq = Diag{Bq}A, (2.128)

where A is some fixed d × n matrix, and B is some fixed d × (dim q) matrix such
that Bq is positive whenever q ∈ Q. On the top of this, we should ensure that
when q ∈ Q and x ∈ X , Aqx is a positive probabilistic vector; this amounts to
some restrictions linking Q, X , A, and B.

Illustration. An instructive example of the Simple case of Measurement Design
in Discrete o.s. is the “Opinion Poll” problem with a priori information presented
in Section 2.7.1: the voting population is split into I groups, with i-th group con-
stituting fraction θi of the entire population. In i-th group, the distribution of
voters’ preferences is represented by unknown L-dimensional probabilistic vector
xi = [xi1; ...;xiL] (L is the number of candidates, xi` is the fraction of voters in i-th
group intending to vote for `-th candidate), known to belong to a given convex
compact subset Πi of the “positive part” ∆o

L = {x ∈ RL : x > 0,
∑
` x` = 1} of

the L-dimensional probabilistic simplex. We are given threshold δ > 0 and want to
decide on L hypotheses H1,..., HL, with H` stating that the population-wide vector
y =

∑I
i=1 θix

i of voters’ preferences belongs to the closed convex set

Y` = {y =

I∑
i=1

θix
i : xi ∈ Πi, 1 ≤ i ≤ I, y` ≥ y`′ + δ, ∀(`′ 6= `)};

note that Y` is the image, under the linear mapping

[x1; ...;xI ] 7→ y(x) =
∑
i

θix
i

of the compact convex set

X` = {x = [x1; ...;xI ] : xi ∈ Πi, 1 ≤ i ≤ I, y`(x) ≥ y`′(x) + δ, ∀(`′ 6= `)}

which is a subset of the convex compact set

X = {x = [x1; ...;xI ] : xi ∈ Πi, 1 ≤ i ≤ I}.

k-th poll interview is organized as follows:

We draw at random a group among the I groups of voters, with probability
qi to draw i-th group, and then draw at random, from the uniform distri-
bution on the group, the respondent to be interviewed. The outcome of
the interview – our observation ωk – is the pair (i, `), where i is the group
to which the respondent belongs, and ` is the candidate preferred by the
respondent.

This results in a sensing matrix Aq, see (2.123), which is in the form of (2.128),
specifically,

Aq = Diag{q1IL, q2IL, ..., qIIL} [q ∈∆I ]
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the outcome of k-th interview is drawn at random from the discrete probability
distribution Aqx, where x ∈ X is the “signal” summarizing voters’ preferences in
the groups.

Given total number of observations K, our goal is to decide with a given risk ε
on our L hypotheses; whether this goal is or is not achievable, it depends on K and
on Aq. What we want, is to find q for which the above goal is achievable with as
small K as possible; in the case in question, this reduces to solving, for various trial
values of K, problem (2.127), which under the circumstances is an explicit convex
optimization problem.

To get an impression of the potential of Measurement Design, we present a
sample of numerical results. In all reported experiments, we used δ = 0.05 and
ε = 0.01. The sets Πi, 1 ≤ i ≤ I, were generated as follows: we pick at random
a probabilistic vector p̄i of dimension L, and Πi was the intersection of the box
{p : p̄` − ui ≤ p` ≤ p̄` + ui} centered at p̄ with the probabilistic simplex ∆L,
where ui, i = 1, ..., I, are prescribed “uncertainty levels;” note that uncertainty
level ui ≥ 1 is the same as absence of any a priori information on the preferences
of voters from i-th group.

The results of our numerical experiments are as follows:

L I Uncertainty levels u Group sizes θ Kini qopt Kopt

2 2 [0.03; 1.00] [0.500; 0.500] 1212 [0.437; 0.563] 1194
2 2 [0.02; 1.00] [0.500; 0.500] 2699 [0.000; 1.000] 1948
3 3 [0.02; 0.03; 1.00] [0.333; 0.333; 0.333] 3177 [0.000; 0.455; 0.545] 2726
5 4 [0.02; 0.02; 0.03; 1.00] [0.250; 0.250; 0.250; 0.250] 2556 [0.000; 0.131; 0.322; 0.547] 2086
5 4 [1.00; 1.00; 1.00; 1.00] [0.250; 0.250; 0.250; 0.250] 4788 [0.250; 0.250; 0.250; 0.250] 4788

Effect of measurement design. Kini and Kopt are the poll sizes required for 0.99-reliable
prediction of the winner when q = θ and q = qopt, respectively.

We see that measurement design allows to reduce (for some data – quite signif-
icantly) the volume of observations as compared to the straightforward selecting
the respondents uniformly across the entire population. To compare our current
model and results with those from Section 2.6.1, note that now we have more a pri-
ori information on the true distribution of voting preferences due to some a priori
knowledge of preferences within groups, which allows to reduce the poll sizes with
both straightforward and optimal measurement design29. The differences between
Kini and Kopt is fully due to measurement design.

Comparative drug study. A related to DOP and perhaps more interesting Sim-
ple case of the Measurement Design in Discrete o.s. is as follows. Let us speak about
L competing drugs rather than L competing candidates running for an office, and
population of patients the drugs are aimed to help rather than population of vot-
ers. For the sake of simplicity, assume that when a particular drug is administered
to a particular patient, the outcome is binary: (positive) “effect” or “no effect”
(what follows can be easily extended to the case of non-binary categorial outcomes,
like “strong positive effect,” “weak positive effect,” “negative effect,” and alike).
Our goal is to organize a clinical study in order to make inferences on comparative
drug efficiency, measured by the percentage of patients on which a particular drug
has effect. The difference with organizing opinion poll is that now we cannot just
ask a respondent what are his/her preferences; we are supposed to administer to a
participant of the study a single drug on our choice and to look at the result.

29To illustrate this point, look at the last two lines in the table: utilizing a priori information
allows to reduce the poll size from 4788 to 2556 even with the straightforward measurement design.
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As in the DOP problem, we assume that the population of patients is split into
I groups, with i-th group comprising fraction θi of the entire population.

We model the situation as follows. We associate with a patient Boolean vector
of dimension 2L, with `-th entry in the vector equal to 1 or 0 depending on whether
drug # ` has effect on the patient, and the (L+ `)-th entry complementing the `-th
one to 1 (that is, if `-th entry is χ, then (L + `)-th entry is 1 − χ). Let xi be the
average of these vectors over patients from group i. We define “signal” x underlying
our measurements as the vector [x1; ...;xI ] and assume that our a priori information
allows to localize x in a closed convex subset X of the set

Y = {x = [x1; ...;xI ] : xi ≥ 0, xi` + xiL+` = 1, 1 ≤ i ≤ I, 1 ≤ ` ≤ L}

to which all our signals belong by construction. Note that the vector

y = Bx =
∑
i

θix
i

can be treated as “population-wise distribution of drug effects:” y`, ` ≤ L, is the
fraction, in the entire population of patients, of those patients on whom drug ` has
effect, and yL+` = 1− y`. As a result, typical hypotheses related to comparison of
the drugs, like “drug ` has effect on a larger, at least by margin δ, percentage of
patients than drug `′,” become convex hypotheses on the signal x. In order to test
hypotheses of this type, we can use two-stage procedure for observing drug effects,
namely, as follows.

To get a particular observation, we select at random, with probability qi`, pair
(i, `) from the set {(i, `) : 1 ≤ i ≤ I, 1 ≤ ` ≤ L}, select a patient from group i
according to the uniform distribution on the group, administer the patient drug `
and check whether the drug has effect on the patient. Thus, a single observation is a
triple (i, `, χ), where χ = 0 when the administered drug has no effect on the patient,
and χ = 1 otherwise. The probability to get observation (i, `, 1) is qi`x

i
`, and the

probability to get observation (i, `, 0) is qi`x
i
L+`. Thus, we arrive at the Discrete

o.s. where the distribution µ of observations is of the form µ = Aqx, with the rows
in Aq indexed by triples ω = (i, `, χ) ∈ Ω := {1, 2, ..., I} × {1, 2, ..., L} × {0, 1} and
given by

(Aq[x
1; ...;xI ])i,`,χ =

{
qi`x

i
`, χ = 1

qi`x
i
L+`, χ = 0

Specifying the set Q of allowed measurement designs q as a closed convex subset of
the set of all non-vanishing discrete probability distributions on the set {1, 2, ..., I}×
{1, 2, ..., L}, we find ourselves in the Simple case, as defined by (2.128), of Discrete
o.s., and Aqx is a probabilistic vector whenever q ∈ Q and x ∈ Y.

2.7.3.2 Simple case, Poisson o.s.

Looking at the optimization problem (Pq), we see that the simplest way to ensure
that its objective is, same as in the case of Discrete o.s., to assume that

Aq = Diag{Bq}A,

where A is some fixed d × n matrix, and B is some fixed d × (dim q) matrix such
that Bq is positive whenever q ∈ Q. On the top of this, we should ensure that
when q ∈ Q and x ∈ X , Aqx is a positive vector; this amounts to some restrictions
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linking Q, X , A, and B.

Application Example: PET with time control. Positron Emission Tomogra-
phy was already mentioned, as an example of Poisson o.s., in Section 2.4.3.2. As
explained in the latter Section, in PET we observe a random vector ω ∈ Rd with
independent entries [ω]i ∼ Poisson(µi), 1 ≤ i ≤ d, where the vector of parameters
µ = [µ1; ...µd] of the Poisson distributions is the linear image µ = Aλ of unknown
“signal” (tracer’s density in patient’s body) λ belonging to some known subset Λ
of RD

+ , with entrywise nonnegative matrix A; our goal is to make inferences about
λ. Now, in actual PET scan, patient’s position w.r.t. the scanner is not the same
during the entire study; the position is kept fixed within i-th time period, 1 ≤ i ≤ I,
and changes from period to period in order to expose to the scanner the entire “area
of interest”

For example, with the scanner shown on the picture, during PET study the imaging
table with the patient will be shifted several times along the axis of the scanning
ring. As a result, observed vector ω can be split into blocks ωi, i = 1, ..., I, of data
acquired during i-th period, 1 ≤ i ≤ I; on the closest inspection, the corresponding
block µi in µ is

µi = qiAiλ,

where Ai is a known in advance entrywise nonnegative matrix, and qi is the duration
of i-th period. In principle, qi could be treated as nonnegative design variables
subject to the “budget constraint”

∑I
i=1 qi = T , where T is the total duration of

the study30, and perhaps some other convex constraints, say, positive lower bounds
on qi. It is immediately seen that the outlined situation is exactly as is required in
the Simple case of Poisson o.s.

2.7.3.3 Simple case, Gaussian o.s.

Looking at the optimization problem (Gq), we see that the simplest way to ensure
that its objective is affine in q is to assume that the covariance matrix Θ is diagonal,
and

Aq = Diag{√q1, ...,
√
qd}A (2.129)

where A is a fixed d × n matrix, and q runs through a convex compact subset of
Rd

+.
It turns out that there are situations where assumption (2.129) makes perfect

30T cannot be too large; aside of other considerations, the tracer disintegrates, and its density
can be considered as nearly constant only on a properly restricted time horizon.
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sense. Let us start with preamble. In Gaussian o.s.

ω = Ax+ ξ[
A ∈ Rd×n, ξ ∼ N (0,Σ), Σ = Diag{σ2

1 , ..., σ
2
d}
] (2.130)

the “physics” behind the observations in many cases is as follows. There are d
sensors (receivers), i-th registering continuous time analogous input depending lin-
early on the underlying observations signal x; on the time horizon on which the
measurements are taken, this input is constant in time and is registered by i-th
sensor on time interval ∆i. The deterministic component of the measurement reg-
istered by sensor i is the integral of the corresponding input taken over ∆i, and
the stochastic component of the measurement is obtained by integrating over the
same interval white Gaussian noise. As far as this noise is concerned, the only
thing which matters is that when the white noise affecting i-th sensor is integrated
over a time interval ∆, the result is random Gaussian variable with zero mean and
variance σ2

i |∆| (|∆| is the length of ∆), and the random variables obtained by inte-
grating white noise over non-overlapping segments are independent. Besides this,
we assume that the noisy components of measurements are independent across the
sensors.

Now, there could be two basic versions of the just outlined situation, both
leading to the same observation model (2.130). In the first, “parallel,” version,
all d sensors work in parallel on the same time horizon of duration 1. In the
second, “sequential,” version, the sensors are activated and scanned one by one,
each working unit time; thus, here the full time horizon is d, and the sensors are
registering their respective inputs on consecutive time intervals of duration 1 each.
In this second “physical” version of Gaussian o.s., we can, in principle, allow for
sensors to register their inputs on consecutive time segments of varying durations
q1 ≥ 0, q2 ≥ 0,..., qd ≥ 0, with the additional to nonnegativity restriction that our
total time budget is respected:

∑
i qi = d (and perhaps with some other convex

constraints on qi). Let us look what is the observation scheme we end up with.
Assuming that (2.130) represents correctly our observations in the reference case
where all |∆i| are equal to 1, the deterministic component of the measurement
registered by sensor i in time interval of duration qi will be qi

∑
j aijxj , and the

standard deviation of the noisy component will be σi
√
qi, so that the measurements

become
zi = σi

√
qiζi + qi

∑
j

aijxj , i = 1, ..., d,

with independent of each other standard (zero mean, unit variance) Gaussian noises
ζi. Now, since we know qi, we can scale the latter observations by making the
standard deviation of the noisy component the same σi as in the reference case;
specifically, we lose nothing when assuming that our observations are

ωi = zi/
√
qi = σiζi︸︷︷︸

ξi

+
√
qi
∑
j

aijxj ,

or, equivalently,

ω = ξ + Diag{√q1, ...,
√
qd}A︸ ︷︷ ︸

Aq

x, ξ ∼ N (0,Diag{σ2
1 , ..., σ

2
d}) [A = [aij ]]
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where q is allowed to run through a convex compact subset Q of the simplex {q ∈
Rd

+ :
∑
i qi = d}. Thus, if the “physical nature” of a Gaussian o.s. is sequential,

then, making, as is natural under the circumstances, the activity times of the sensors
our design variables, we arrive at (2.129), and, as a result, end up with easy-to-solve
Measurements Design problem.

2.8 AFFINE DETECTORS BEYOND SIMPLE OBSERVATION

SCHEMES

On a closer inspection, the “common denominator” of our basic simple o.s.’s –
Gaussian, Poisson and Discrete ones, is that in all these cases the minimal risk
detector for a pair of convex hypotheses is affine. At the first glance, this indeed is
so for the Gaussian and the Poisson o’s”s, where F is comprised of affine functions
on the corresponding observation space Ω (Rd for Gaussian o.s., and Zd+ ⊂ Rd

for Poisson o.s.), but is not so for the Discrete o.s. – in the latter case, Ω =
{1, ..., d}, and F is comprised of all functions on Ω, while “affine functions on
Ω = {1, ..., d}” merely make no sense. Note, however, that we can encode (and
from now on indeed encode) the points i = 1, ..., d of d-element set by basic orths
ei = [0; ...; 0; 1; 0; ...; 0] ∈ Rd in Rd, thus making our observation space Ω = {1, ..., d}
a subset of Rd. With this encoding, every real valued function on {1, ..., d} becomes
restriction on Ω of an affine function. Note that when passing from our basic
simple o.s.’s to their direct products, the minimum risk detectors for pairs of convex
hypotheses remain affine.

Now, good in our context news about simple o.s.’s state that

A) the best – with the smallest possible risk – affine detector, same as its risk, can
be efficiently computed;

B) the smallest risk affine detector from A) is the best, in terms of risk, detector
available under the circumstances, so that the associated test is near-optimal.

Note that as far as practical applications of the detector-based hypothesis testing
are concerned, one “can survive” without B) (near-optimality of the constructed
detectors), while A) is a must.

In this Section we focus on families of probability distributions obeying A).
This class turns out to be incomparably larger than what was defined as simple
o.s.’s in Section 2.4; in particular, it includes nonparametric families of distribu-
tions. Staying within this much broader class, we still are able to construct in a
computationally efficient way the best affine detectors for a pair of “convex”, in
certain precise sense, hypotheses, along with valid upper bounds on the risks of
the detectors. What we, in general, cannot claim anymore, is that the tests asso-
ciated with the above detectors are near-optimal. This being said, we believe that
investigating possibilities for building tests and quantifying their performance in a
computationally friendly manner is of value even when we cannot provably guar-
antee near-optimality of these tests. The results to follow originate from [89, 88].
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2.8.1 Situation

In what follows, we fix observation space Ω = Rd, and let Pj , 1 ≤ j ≤ J , be
given families of probability distributions on Ω. Put broadly, our goal still is, given
a random observation ω ∼ P , where P ∈

⋃
j≤J
Pj , to decide upon the hypotheses

Hj : P ∈ Pj , j = 1, ..., J . We intend to address this goal in the case when the
families Pj are simple – they are comprised of distributions for which moment-
generating functions admit an explicit upper bound.

2.8.1.1 Preliminaries: Regular data and associated families of distributions

Regular data is defined as a triple H,M,Φ(·, ·), where

• H is a nonempty closed convex set in Ω = Rd symmetric w.r.t. the origin,
• M is a closed convex set in some Rn,
• Φ(h;µ) : H×M→ R is a continuous function convex in h ∈ H and concave in
µ ∈M.

Regular data H,M,Φ(·, ·) define two families of probability distributions on Ω:

• the family of regular distributions

R = R[H,M,Φ]

comprised of all probability distributions P on Ω such that

∀h ∈ H ∃µ ∈M : ln
(∫

Ω
exp{hTω}P (dω)

)
≤ Φ(h;µ). (2.131)

• the family of simple distributions

S = S[H,M,Φ]

comprised of probability distributions P on Ω such that

∃µ ∈M : ∀h ∈ H : ln
(∫

Ω
exp{hTω}P (dω)

)
≤ Φ(h;µ). (2.132)

Recall that beginning with Section 2.3, the starting point in all our constructions
is a “plausibly good” detector-based test which, given two families P1 and P2 of
distributions with common observation space, and repeated observations ω1, ..., ωt
drawn from a distribution P ∈ P1 ∪ P2, decides whether P ∈ P1 or P ∈ P2.
Our interest in the families of regular/simple distributions stems from the fact
that when the families P1 and P2 are of this type, building such a test reduces
to solving a convex-concave saddle point problem and thus can be carried out in
a computationally efficient manner. We postpone the related construction and
analysis to Section 2.8.2, and continue with presenting some basic examples of
families of simple and regular distributions along with a simple “calculus” of these
families.
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2.8.1.2 Basic examples of simple families of probability distributions

2.8.1.2.A. Sub-Gaussian distributions: Let H = Ω = Rd, M be a closed
convex subset of the set Gd = {µ = (θ,Θ) : θ ∈ Rd,Θ ∈ Sd+}, where Sd+ is cone of
positive semidefinite matrices in the space Sd of symmetric d× d matrices, and let

Φ(h; θ,Θ) = θTh+
1

2
hTΘh.

In this case, S[H,M,Φ] contains all sub-Gaussian distributions P on Rd with sub-
Gaussianity parameters from M.

Recall that a distributions P on Ω = Rd is called sub-Gaussian with sub-
Gaussianity parameters θ ∈ Rd and Θ ∈ Sd+, if

Eω∼P {exp{hTω}} ≤ exp{θTh+
1

2
hTΘh} ∀h ∈ Rd. (2.133)

Whenever this is the case, θ is the expected value of P . We shall use the
notation ξ ∼ SG(θ,Θ) as a shortcut for the sentence “random vector ξ
is sub-Gaussian with parameters θ, Θ.” It is immediately seen that when
ξ ∼ N (θ,Θ), we have also ξ ∼ SG(θ,Θ), and (2.133) in this case is an
identity rather than inequality.

In particular, S[H,M,Φ] contains all Gaussian distributions N (θ,Θ) with (θ,Θ) ∈
M.

2.8.1.2.B. Poisson distributions: Let H = Ω = Rd, let M be a closed convex
subset of d-dimensional nonnegative orthant Rd

+, and let

Φ(h = [h1; ...;hd];µ = [µ1; ...;µd]) =

d∑
i=1

µi[exp{hi} − 1] : H×M→ R.

The family S[H,M,Φ] contains all product-type Poisson distributions Poisson[µ]
with vectors µ of parameters belonging to M; here Poisson[µ] is the distribution
of random d-dimensional vector with independent of each other entries, i-th entry
being Poisson random variable with parameter µi.

2.8.1.2.C. Discrete distributions. Consider a discrete random variable taking
values in d-element set {1, 2, ..., d}, and let us think of such a variable as of random
variable taking values ei ∈ Rd, i = 1, ..., d, where ei = [0; ...; 0; 1; 0; ...; 0] (1 in
position i) are standard basic orths in Rd. Probability distribution of such a variable
can be identified with a point µ = [µ1; ...;µd] from the d-dimensional probabilistic
simplex

∆d = {ν ∈ Rd
+ :

d∑
i=1

νi = 1},

where µi is the probability for the variable to take value ei. With these identifica-
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tions, setting H = Rd, specifying M as a closed convex subset of ∆d and setting

Φ(h = [h1; ...;hd];µ = [µ1; ...;µd]) = ln

(
d∑
i=1

µi exp{hi}

)
,

the family S[H,M,Φ] contains distributions of all discrete random variables taking
values in {1, ..., d} with probabilities µ1, ..., µd comprising a vector from M.

2.8.1.2.D. Distributions with bounded support. Consider the family P[X] of
probability distributions supported on a closed and bounded convex set X ⊂ Ω =
Rd, and let

φX(h) = max
x∈X

hTx

be the support function of X. We have the following result (to be refined in Section
2.8.1.3):

Proposition 2.40. For every P ∈ P[X] it holds

∀h ∈ Rd : ln

(∫
Rd

exp{hTω}P (dω)

)
≤ hT e[P ] +

1

8
[φX(h) + φX(−h)]

2
, (2.134)

where e[P ] =
∫
Rd ωP (dω) is the expectation of P , and the right hand side function

in (2.134) is convex. As a result, setting

H = Rd, M = X, Φ(h;µ) = hTµ+
1

8
[φX(h) + φX(−h)]

2
,

we get regular data such that P[X] ⊂ S[H,M,Φ].

For proof, see Section 2.11.3

2.8.1.3 Calculus of regular and simple families of probability distributions

Families of regular and simple distributions admit “fully algorithmic” calculus, with
the main calculus rules as follows.

2.8.1.3.A. Direct summation. For 1 ≤ ` ≤ L, let regular data H` ⊂ Ω` = Rd` ,
M` ⊂ Rn` , Φ`(h`;µ`) : H` ×M` → R be given. Let us set

Ω = Ω1 × ...× ΩL = Rd, d = d1 + ...+ dL,
H = H1 × ...×HL = {h = [h1; ...;hL] : h` ∈ H`, ` ≤ L},
M = M1 × ...×ML = {µ = [µ1; ...;µL] : µ` ∈M`, ` ≤ L} ⊂ Rn,

n = n1 + ...+ nL,

Φ(h = [h1; ...;hL];µ = [µ1; ...;µL]) =
∑L
`=1 Φ`(h

`;µ`) : H×M→ R.

Then H is a symmetric w.r.t. the origin closed convex set in Ω = Rd, M is a
nonempty closed convex set in Rn, Φ : H × M → R is a continuous convex-
concave function, and clearly

• the family R[H,M,Φ] contains all product-type distributions P = P1 × ...× PL
on Ω = Ω1 × ...× ΩL with P` ∈ R[H`,M`,Φ`], 1 ≤ ` ≤ L;
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• the family S[H,M,Φ] contains all product-type distributions P = P1 × ...× PL
on Ω = Ω1 × ...× ΩL with P` ∈ S[H`,M`,Φ`], 1 ≤ ` ≤ L.

2.8.1.3.B. Mixing. For 1 ≤ ` ≤ L, let regular data H` ⊂ Ω = Rd, M` ⊂ Rn` ,
Φ`(h`;µ`) : H`×M` → R be given, with compactM`. Let also ν = [ν1; ...; νL] be a
probabilistic vector. For a tuple PL = {P` ∈ R[H`,M`,Φ`]}L`=1, let Π[PL, ν] be the
ν-mixture of distributions P1, ..., PL defined as the distribution of random vector
ω ∼ Ω generated as follows: we draw at random, from probability distribution ν on
{1, ..., L}, index `, and then draw ω at random from the distribution P`. Finally, let
P be the set of all probability distributions on Ω which can be obtained as Π[PL, ν]
from the outlined tuples PL and vectors ν running through the probabilistic simplex
∆L = {µ ∈ RL : ν ≥ 0,

∑
` ν` = 1}.

Let us set

H =
L⋂
`=1

H`,

Ψ`(h) = max
µ`∈M`

Φ`(h;µ`) : H` → R,

Φ(h; ν) = ln
(∑L

`=1 ν` exp{Ψ`(h)}
)

: H×∆L → R.

(2.135)

Then H,∆L,Φ clearly is a regular data (recall that all M` are compact sets), and
for every ν ∈∆L and tuple PL of the above type one has

P = Π[PL, ν]⇒ ln

(∫
Ω

eh
TωP (dω)

)
≤ Φ(h; ν) ∀h ∈ H, (2.136)

implying that P ⊂ S[H,∆L,Φ], ν being a parameter of a distribution P = Π[PL, ν] ∈
P.

Indeed,(2.136) is readily given by the fact that for P = Π[PL, ν] ∈ P and h ∈ H
it holds

ln
(
Eω∼P

{
eh
Tω
})

= ln

(
L∑
`=1

ν`Eω∼P`{e
hTω}

)
≤ ln

(
L∑
`=1

ν` exp{Ψ`(h)}

)
= Φ(h; ν),

with the concluding inequality given by h ∈ H ⊂ H` and P` ∈ R[H`,M`,Φ`],

1 ≤ ` ≤ L.

We have build a simple family of distributions S := S[H,∆L,Φ] which contains
all mixtures of distributions from given regular families R` := R[H`,M`,Φ`], 1 ≤
` ≤ L, which makes S a simple outer approximation of mixtures of distributions
from the simple families S` := S[H`,M`,Φ`], 1 ≤ ` ≤ L. In this latter capacity, S
has a drawback – the only parameter of the mixture P = Π[PL, ν] of distributions
P` ∈ S` is ν, while the parameters of P`’s disappear. In some situations, this makes
outer approximation S of P too conservative. We are about to get rid, to come
extent, of this drawback.
A modification. In the situation described in the beginning of 2.8.1.3.B, let a
vector ν̄ ∈∆L be given, and let

Φ̄(h;µ1, ..., µL) =

L∑
`=1

ν̄`Φ`(h;µ`) : H× (M1 × ...×ML)→ R. (2.137)
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Let d× d matrix Q � 0 satisfy(
Φ`(h;µ`)− Φ̄(h;µ1, ..., µL)

)2 ≤ hTQh ∀(h ∈ H, ` ≤ L, µ ∈M1 × ...×ML),
(2.138)

and let

Φ(h;µ1, ..., µL) =
3

5
hTQh+ Φ̄(h;µ1, ..., µL) : H× (M1 × ...×ML)→ R. (2.139)

Φ clearly is convex-concave and continuous on its domain, whenceH =
⋂
`H`,M1×

...×ML,Φ is regular data.

Proposition 2.41. In the just defined situation, denoting by Pν̄ the family of all
probability distributions P = Π[PL, ν̄], stemming from tuples

PL = {P` ∈ S[H`,M`,Φ`]}L`=1, (2.140)

one has
Pν̄ ⊂ S[H,M1 × ...×ML,Φ]. (2.141)

As a parameter of distribution P = Π[PL, ν̄] ∈ Pν̄ with PL as in (2.140), one can
take µL = [µ1; ....;µL].

Proof. It is easily seen that

ea ≤ a+ e
3
5a

2

, ∀a.

As a result, when a`, ` = 1, ..., L, satisfy
∑
` ν̄`a` = 0, we have∑

`

ν̄`e
a` ≤

∑
`

ν̄`a` +
∑
`

ν̄`e
3
5a

2
` ≤ e

3
5 max` a

2
` . (2.142)

Now let PL be as in (2.140), and let h ∈ H =
⋂
L

H`. Setting P = Π[PL, ν̄], we have

ln
(∫

Ω
eh
TωP (dω)

)
= ln

(∑
` ν̄`

∫
Ω

eh
TωP`(dω)

)
= ln (

∑
` ν̄` exp{Φ`(h, µ`)})

= Φ̄(h;µ1, ...µL) + ln
(∑

` ν̄` exp{Φ`(h, µ`)− Φ̄(h;µ1, ...µL)}
)

≤︸︷︷︸
a

Φ̄(h;µ1, ...µL) + 3
5 max`[Φ`(h, µ`)− Φ̄(h;µ1, ...µL)]2 ≤︸︷︷︸

b

Φ(h;µ1, ..., µL),

where a is given by (2.142) as applied to a` = Φ`(h, µ`) − Φ̄(h;µ1, ...µL), and b is
due to (2.138), (2.139). The resulting inequality, which holds true for all h ∈ H, is
all we need. 2

2.8.1.3.C. I.I.D summation. Let Ω = Rd be an observation space, (H,M,Φ)
be regular data on this space, and let λ = {λ`}K`=1 be a collection of reals. We can
associate with the outlined entities a new data (Hλ,M,Φλ) on Ω by setting

Hλ = {h ∈ Ω : ‖λ‖∞h ∈ H}, Φλ(h;µ) =

L∑
`=1

Φ(λ`h;µ) : Hλ ×M→ R.

Now, given a probability distribution P on Ω, we can associate with it and with the
above λ a new probability distribution Pλ on Ω as follows: Pλ is the distribution
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of
∑
` λ`ω`, where ω1, ω2, ..., ωL are drawn, independently of each other, from P .

An immediate observation is that the data (Hλ,M,Φλ) is regular, and

• whenever a probability distribution P belongs to S[H,M,Φ], the distribution
Pλ belongs to S[Hλ,M,Φλ]. In particular, when ω ∼ P ∈ S[H,M,Φ], then the
distribution PL of the sum of L independent copies of ω belongs to S[H,M, LΦ].

2.8.1.3.D. Semi-direct summation. For 1 ≤ ` ≤ L, let regular data H` ⊂ Ω` =
Rd` , M`, Φ` be given. To avoid complications, we assume that for every `,

• H` = Ω`,
• M` is bounded.

Let also an ε > 0 be given. We assume that ε is small, namely, Lε < 1.
Let us aggregate the given regular data into a new one by setting

H = Ω := Ω1 × ...× ΩL = Rd, d = d1 + ...+ dL, M =M1 × ...×ML,

and let us define function Φ(h;µ) : Ωd ×M→ R as follows:

Φ(h = [h1; ...;hL];µ = [µ1; ...;µL]) = infλ∈∆ε

∑d
`=1 λ`Φ`(h

`/λ`;µ
`),

∆ε = {λ ∈ Rd : λ` ≥ ε ∀` &
∑L
`=1 λ` = 1}.

(2.143)

By evident reasons, the infimum in the description of Φ is achieved, and Φ is
continuous. In addition, Φ is convex in h ∈ Rd and concave in µ ∈M. Postponing
for a moment verification, the consequences are that H = Ω = Rd, M and Φ form
a regular data. We claim that

Whenever ω = [ω1; ...;ωL] is a random variable taking values in Ω = Rd1 ×
... ×RdL , and the marginal distributions P`, 1 ≤ ` ≤ L, of ω belong to the
families S[Rd` ,M`,Φ`] for all 1 ≤ ` ≤ L, the distribution P of ω belongs to
S[Rd,M,Φ].

Indeed, since P` ∈ S[Rd` ,M`,Φ`], there exists µ̂` ∈M` such that

ln(Eω`∼P`{exp{gTω`}}) ≤ Φ`(g; µ̂`) ∀g ∈ Rd` .

Let us set µ̂ = [µ̂1; ...; µ̂L], and let h = [h1; ...;hL] ∈ Ω be given. We can find λ ∈∆ε

such that

Φ(h; µ̂) =

L∑
`=1

λ`Φ`(h
`/λ`; µ̂

`).

Applying Hölder inequality, we get

E[ω1;...;ωL]∼P

{
exp{

∑
`

[h`]Tω`}

}
≤

L∏
`=1

(
Eω`∼P`

{
[h`]Tω`/λ`

})λ`
,

whence

ln

(
E[ω1;...;ωL]∼P

{
exp{

∑
`

[h`]Tω`}

})
≤

L∑
`=1

λ`Φ`(h
`/λ`; µ̂

`) = Φ(h; µ̂).



138

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 2

We see that

ln

(
E[ω1;...;ωL]∼P

{
exp{

∑
`

[h`]Tω`}

})
≤ Φ(h; µ̂) ∀h ∈ H = Rd,

and thus P ∈ S[Rd,M,Φ], as claimed.
It remains to verify that the function Φ defined by (2.143) indeed is convex

in h ∈ Rd and concave in µ ∈ M. Concavity in µ is evident. Further, func-
tions λ`Φ`(h

`/λ`;µ) (as perspective transformation of convex functions Φ`(·;µ))

are jointly convex in λ and h`, and so is Ψ(λ, h;µ) =
∑L
`=1 λ`Φ`(h

`/λ`, µ). Thus
Φ(·;µ), obtained by partial minimization of Ψ in λ, indeed is convex.

2.8.1.3.E. Affine image. Let H, M, Φ be regular data, Ω be the embedding
space of H, and x 7→ Ax + a be an affine mapping from Ω to Ω̄ = Rd̄, and let us
set

H̄ = {h̄ ∈ Rd̄ : AT h̄ ∈ H}, M̄ =M, Φ̄(h̄;µ) = Φ(AT h̄;µ) + aT h̄ : H̄ × M̄ → R.

Note that H̄, M̄ and Φ̄ are regular data. It is immediately seen that

Whenever the probability distribution of a random variable ω belongs to
R[H,M,Φ] (or belongs to S[H,M,Φ]), the distribution P̄ [P ] of the ran-
dom variable ω̄ = Aω + a belongs to R[H̄,M̄, Φ̄] (respectively, belongs to
S[H̄,M̄, Φ̄]).

2.8.1.3.F. Incorporating support information. Consider the situation as fol-
lows. We are given regular data H ⊂ Ω = Rd,M,Φ and are interested in a family
P of distributions known to belong to S[H,M,Φ]. In addition, we know that all
distributions P from P are supported on a given closed convex set X ⊂ Rd. How
could we incorporate this domain information to pass from the family S[H,M,Φ]
containing P to a smaller family of the same type still containing P ? We are
about to give an answer in the simplest case of H = Ω. Specifically, denoting by
φX(·) the support function of X and selecting somehow a closed convex set G ⊂ Rd

containing the origin, let us set

Φ̂(h;µ) = inf
g∈G

[
Φ+(h, g;µ) := Φ(h− g;µ) + φX(g)

]
,

where Φ(h;µ) : Rd×M→ R is the continuous convex-concave function participat-

ing in the original regular data. Assuming that Φ̂ is real-valued and continuous on
the domain Rd×M (which definitely is the case when G is a compact set such that

φX is finite and continuous on G), note that Φ̂ is convex-concave on this domain,

so that Rd,M, Φ̂ is a regular data. We claim that

The family S[Rd,M, Φ̂] contains P, provided the family S[Rd,M,Φ] does
so, and the first of these two families is smaller than the second one.

Verification of the claim is immediate. Let P ∈ P, so that for properly selected
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µ = µP ∈M and for all e ∈ Rd it holds

ln

(∫
Rd

exp{eTω}P (dω)

)
≤ Φ(e;µP ).

Besides this, for every g ∈ G we have φX(g)−gTω ≥ 0 on the support of P , whence
for every h ∈ Rd one has

ln
(∫

Rd exp{hTω}P (dω)
)
≤ ln

(∫
Rd exp{hTω + φX(g)− gTω}P (dω)

)
≤ φX(g) + Φ(h− g;µP ).

Since the resulting inequality holds true for all g ∈ G, we get

ln

(∫
Rd

exp{hTω}P (dω)

)
≤ Φ̂(h;µP ) ∀h ∈ Rd,

implying that P ∈ S[Rd,M, Φ̂]; since P ∈ P is arbitrary, the first part of the

claim is justified. The inclusion S[Rd,M, Φ̂] ⊂ S[Rd,M,Φ] is readily given by the

inequality Φ̂ ≤ Φ, and the latter is due to Φ̂(h, µ) ≤ Φ(h− 0, µ) + φX(0).

Illustration: distributions with bounded support revisited. In Section
2.8.1.2, given a convex compact set X ⊂ Rd with support function φX , we checked
that the data H = Rd, M = X, Φ(h;µ) = hTµ + 1

8 [φX(h) + φX(−h)]2 are
regular and the family S[Rd,M,Φ] contains the family P[X] of all probability
distributions supported on X. Moreover, for every µ ∈ M = X, the family
S[Rd, {µ},Φ

∣∣
Rd×{µ}] contains all supported on X distributions with the expecta-

tions e[P ] = µ. Note that Φ(h; e[P ]) describes well the behaviour of the logarithm

FP (h) = ln
(∫

Rd e
hTωP (dω)

)
of the moment-generating function of P ∈ P[X] when

h is small (indeed, FP (h) = hT e[P ] +O(‖h‖2) as h→ 0), and by far overestimates
FP (h) when h is large. Utilizing the above construction, we replace Φ with the
real-valued, convex-concave and continuous on Rd ×M = Rd × X (see Exercise
2.75) function

Φ̂(h;µ) = infg

[
Ψ̂(h, g;µ) := (h− g)Tµ+ 1

8 [φX(h− g) + φX(−h+ g)]2 + φX(g)
]

≤ Φ(h;µ).
(2.144)

It is easy to see that Φ̂(·; ·) still ensures the inclusion P ∈ S[Rd, {e[P ]}, Φ̂
∣∣
Rd×{e[P ]}]

for every distribution P ∈ P[X] and “reproduces FP (h) reasonably well” for both

small and large h. Indeed, since FP (h) ≤ Φ̂(h; e[P ]) ≤ Φ(h; e[P ]), for small h

Φ̂(h; e[P ]) reproduces FP (h) even better than Φ(h; e[P ]), and we clearly have

Φ̂(h;µ) ≤
[
(h− h)Tµ+

1

8
[φX(h− h) + φX(−h+ h)]2 + φX(h)

]
= φX(h) ∀µ,

and φX(h) is a correct description of FP (h) for large h.
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2.8.2 Main result

2.8.2.1 Situation & Construction

Assume we are given two collections of regular data with common Ω = Rd and
common H, specifically, the collections (H,Mχ,Φχ), χ = 1, 2. We start with
constructing a specific detector for the associated families of regular probability
distributions

Pχ = R[H,Mχ,Φχ], χ = 1, 2.

When building the detector, we impose on the regular data in question the following

Assumption I: The regular data (H,Mχ,Φχ), χ = 1, 2, are such that the
convex-concave function

Ψ(h;µ1, µ2) =
1

2
[Φ1(−h;µ1) + Φ2(h;µ2)] : H× (M1 ×M2)→ R (2.145)

has a saddle point (min in h ∈ H, max in (µ1, µ2) ∈M1 ×M2).

A simple sufficient condition for existence of a saddle point of (2.145) is

Condition A: The sets M1 and M2 are compact, and the function

Φ(h) = max
µ1∈M1,µ2∈M2

Φ(h;µ1, µ2)

is coercive on H, meaning that Φ(hi) → ∞ along every sequence hi ∈ H
with ‖hi‖2 →∞ as i→∞.

Indeed, under Condition A by Sion-Kakutani Theorem (Theorem 2.24) it
holds

SadVal[Φ] := inf
h∈H

max
µ1∈M1,µ2∈M2

Φ(h;µ1, µ2)︸ ︷︷ ︸
Φ(h)

= sup
µ1∈M1,µ2∈M2

inf
h∈H

Φ(h;µ1, µ2)︸ ︷︷ ︸
Φ(µ1,µ2)

,

so that the optimization problems

(P ) : Opt(P ) = min
h∈H

Φ(h)

(D) : Opt(D) = max
µ1∈M1,µ2∈M2

Φ(µ1, µ2)

have equal optimal values. Under Condition A, problem (P ) clearly is a

problem of minimizing a continuous coercive function over a closed set and

as such is solvable; thus, Opt(P ) = Opt(D) is a real. Problem (D) clearly

is the problem of maximizing over a compact set an upper semi-continuous

(since Φ is continuous) function taking real values and, perhaps, value −∞,

and not identically equal to −∞ (since Opt(D) is a real), and thus (D) is

solvable. Thus, (P ) and (D) are solvable with common optimal values, and

therefore Φ has a saddle point.

2.8.2.2 Main Result

An immediate (and crucial!) observation is as follows:
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Proposition 2.42. In the situation of Section 2.8.2.1, let h ∈ H be such that the
quantities

Ψ1(h) = sup
µ1∈M1

Φ1(−h;µ1), Ψ2(h) = sup
µ2∈M2

Φ2(h;µ2)

are finite. Consider the affine detector

φh(ω) = hTω +
1

2
[Ψ1(h)−Ψ2(h)]︸ ︷︷ ︸

κ

.

Then

Risk[φh|R[H,M1,Φ1],R[H,M2,Φ2]] ≤ exp{1

2
[Ψ1(h) + Ψ2(h)]}. (2.146)

Proof. Let h satisfy the premise of Proposition. For every µ1 ∈ M1, we have
Φ1(−h;µ1) ≤ Ψ1(h), and for every P ∈ R[H,M1,Φ1], we have∫

Ω

exp{−hTω}P (dω) ≤ exp{Φ1(−h;µ1)}

for properly selected µ1 ∈M1. Thus,∫
Ω

exp{−hTω}P (dω) ≤ exp{Ψ1(h)} ∀P ∈ R[H,M1,Φ1],

whence also∫
Ω

exp{−hTω−κ}P (dω) ≤ exp{Ψ1(h)−κ} = exp{1

2
[Ψ1(h)+Ψ2(h)]} ∀P ∈ R[H,M1,Φ1].

Similarly, for every µ2 ∈ M2, we have Φ2(h;µ2) ≤ Ψ2(h), and for every P ∈
R[H,M2,Φ2], we have∫

Ω

exp{hTω}P (dω) ≤ exp{Φ2(h;µ2)}

for properly selected µ2 ∈M2. Thus,∫
Ω

exp{hTω}P (dω) ≤ exp{Ψ2(h)} ∀P ∈ R[H,M2,Φ2],

whence also∫
Ω

exp{hTω+κ}P (dω) ≤ exp{Ψ2(h)+κ} exp{1

2
[Ψ1(h)+Ψ2(h)]} ∀P ∈ R[H,M2,Φ2] 2

An immediate corollary is as follows:

Proposition 2.43. In the situation of Section 2.8.2.1 and under Assumption I, let
us associate with a saddle point (h∗;µ

∗
1, µ
∗
2) of the convex-concave function (2.145)

the following entities:

• the risk
ε? := exp{Ψ(h∗;µ

∗
1, µ
∗
2)}; (2.147)

this quantity is uniquely defined by the saddle point value of Ψ and thus is inde-
pendent of how we select a saddle point;
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• the detector φ∗(ω) – the affine function of ω ∈ Rd given by

φ∗(ω) = hT∗ ω + a, a =
1

2
[Φ1(−h∗;µ∗1)− Φ2(h∗;µ

∗
2)] . (2.148)

Then
Risk[φ∗|R[H,M1,Φ1],R[H,M2,Φ2]] ≤ ε?. (2.149)

Consequences. Assume we are given L collections (H,M`,Φ`) of regular data on
a common observation space Ω = Rd and with common H, and let

P` = R[H,M`,Φ`]

be the corresponding families of regular distributions. Assume also that for every
pair (`, `′), 1 ≤ ` < `′ ≤ L, the pair of regular data (H,M`,Φ`), (H,M`′ ,Φ`′)
satisfies Assumption I, so that the convex-concave functions

Ψ``′(h;µ`, µ`′) =
1

2
[Φ`(−h;µ`) + Φ`′(h;µ`′)] : H× (M` ×M`′)→ R

[1 ≤ ` < `′ ≤ L]
have saddle points (h∗``′ ; (µ∗` , µ

∗
`′)) (min in h ∈ H, max in (µ`, µ`′) ∈ M` ×M`′).

These saddle points give rise to affine detectors

φ``′(ω) = [h∗``′ ]
Tω +

1

2
[Φ`(−h∗``′ ;µ∗` )− Φ`′(h∗;µ

∗
`′)] [1 ≤ ` < `′ ≤ L]

and the quantities

ε``′ = exp

{
1

2
[Φ`(−h∗``′ ;µ∗` ) + Φ`′(h∗;µ

∗
`′)]

}
; [1 ≤ ` < `′ ≤ L]

by Proposition 2.43, ε``′ are upper bounds on the risks, taken w.r.t. P`,P`′ , of the
detectors φ``′ :∫

Ω

e−φ``′ (ω)P (dω) ≤ ε``′ ∀P ∈ P` &

∫
Ω

eφ``′ (ω)P (dω) ≤ ε``′ ∀P ∈ P`′ .

[1 ≤ ` < `′ ≤ L].
Setting φ``′(·) = −φ`′`(·) and ε``′ = ε`′` when L ≥ ` > `′ ≥ 1 and φ``(·) ≡ 0,
ε`` = 1, 1 ≤ ` ≤ L, we get a system of detectors and risks satisfying (2.98) and,
consequently, can use these “building blocks” in the developed so far machinery
for pairwise- and multiple hypothesis testing from single and repeated observations
(stationary, semi-stationary, and quasi-stationary).

Numerical example. To get some impression of how Proposition 2.43 extends the
grasp of our computation-friendly test design machinery. consider a toy problem
as follows:

We are given observation

ω = Ax+ σADiag {
√
x1, ...,

√
xn} ξ, (2.150)

where
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• unknown signal x is known to belong to a given convex compact subset
M of the interior of Rn

+;
• A is a given n× n matrix of rank n, σ > 0 is a given noise intensity, and
ξ ∼ N (0, In).

Our goal is to decide via K-repeated version of observations (2.150) on the
pair of hypotheses x ∈ Xχ, χ = 1, 2, where X1, X2 are given nonempty
convex compact subsets of M .

Note that an essential novelty, as compared to the standard Gaussian o.s., is that
now we deal with zero mean Gaussian noise with covariance matrix

Θ(x) = σ2ADiag{x}AT

depending on the true signal – the larger signal, the larger noise.
We can easily process the situation in question via the machinery developed in

this Section. Specifically, let us set

Hχ = Rn, Mχ = {(x,Diag{x}) : x ∈ Xχ} ⊂ Rn × Sn+,

Φχ(h;x,Ξ) = hTx+ σ2

2 h
T [AΞAT ]h :Mχ → R

[χ = 1, 2]

It is immediately seen that for χ = 1, 2, H,Mχ,Φχ is regular data, and that the
distribution P of observation (2.150) stemming from a signal x ∈ Xχ belongs to
S[H,Mχ,Φχ], so that we can use Proposition 2.43 to build an affine detector for
the families Pχ, χ = 1, 2, of distributions of observations (2.150) stemming from
signals x ∈ Xχ. The corresponding recipe boils down to the necessity to find a
saddle point (h∗;x∗, y∗) of the simple convex-concave function

Ψ(h;x, y) =
1

2

[
hT (y − x) +

σ2

2
hTADiag{x+ y}ATh

]
(2.151)

(min in h ∈ Rn, max in (x, y) ∈ X1 ×X2); such a point clearly exists and is easily
found, and gives rise to affine detector

φ∗(ω) = hT∗ ω +
σ2

4
hT∗ADiag{x∗ − y∗}ATh∗ −

1

2
hT∗ [x∗ + y∗]︸ ︷︷ ︸

a

such that

Risk[φ∗|P1,P2] ≤ exp

{
1

2

[
hT∗ [y∗ − x∗] +

σ2

2
hT∗ADiag{x∗ + y∗}ATh∗

]}
. (2.152)

Note that we could also process the situation when defining the regular data as
H,M+

χ = Xχ,Φ
+
χ , χ = 1, 2, where

Φ+
χ (h;x) = hTx+

σ2θ

2
hTAATh [θ = max

x∈X1∪X2

‖x‖∞]

which, basically, means passing from our actual observations (2.150) to the “more
noisy” observations given by the Gaussian o.s.

ω = Ax+ η, η ∼ N (0, σ2θAAT ). (2.153)
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It is easily seen that the risk Risk[φ#|P1,P2] of the optimal, for this Gaussian o.s.,
detector φ#, can be upper-bounded by the known to us risk Risk[φ#|P+

1 ,P
+
2 ], where

P+
χ is the family of distributions of observations (2.153) induced by signals x ∈ Xχ.

Note that were we staying within the realm of detector-based tests in simple o.s.’s,
Risk[φ#|P+

1 ,P
+
2 ] would be seemingly the best risk bound available for us. The goal

of the small numerical experiment we are about to report was to understand how
our new risk bound (2.152) compares to the “old” bound Risk[φ#|P+

1 ,P
+
2 ]. We

used

n = 16, X1 =

{
x ∈ R16 :

0.001 ≤ x1 ≤ δ
0.001 ≤ xi ≤ 1, 2 ≤ i ≤ 16

}
,

X2 =

{
x ∈ R16 :

2δ ≤ x1 ≤ 1
0.001 ≤ xi ≤ 1, 2 ≤ i ≤ 16

}
and σ = 0.1. The “separation parameter” δ was set to 0.1. Finally, 16 × 16
matrix A was generated to have condition number 100 (singular values 0.01(i−1)/15,
1 ≤ i ≤ 16) with randomly oriented systems of left- and right singular vectors.
With this setup, a typical numerical result is as follows:

• the right hand side in (2.152) is 0.4346, implying that with detector φ∗, 6-
repeated observation is sufficient to decide on our two hypotheses with risk
≤ 0.01;

• the quantity Risk[φ#|P+
1 ,P

+
2 ] is 0.8825, meaning that with detector φ#, we need

at least 37-repeated observation to guarantee risk ≤ 0.01.

When the separation parameter δ participating in the descriptions of X1, X2 was
reduced to 0.01, the risks in question grew to 0.9201 and 0.9988, respectively (56-
repeated observation to decide on the hypotheses with risk 0.01 when φ∗ is used
vs. 3685-repeated observation needed when φ# is used). The bottom line is that
our new developments could improve quite significantly the performance of our
inferences.

2.8.2.3 Illustration: sub-Gaussian and Gaussian cases

For χ = 1, 2, let Uχ be nonempty closed convex set in Rd, and Vχ be a compact
convex subset of the interior of the positive semidefinite cone Sd+. We assume that
U1 is compact. Setting

Hχ = Ω = Rd,Mχ = Uχ × Vχ,
Φχ(h; θ,Θ) = θTh+ 1

2h
TΘh : Hχ ×Mχ → R, χ = 1, 2,

(2.154)

we get two collections (H,Mχ,Φχ), χ = 1, 2, of regular data. As we know from
Section 2.8.1.2, for χ = 1, 2, the families of distributions S[Rd,Mχ,Φχ] contain
the families SG[Uχ,Vχ] of sub-Gaussian distributions on Rd with sub-Gaussianity
parameters (θ,Θ) ∈ Uχ×Vχ (see (2.133)), as well as families G[Uχ,Vχ] of Gaussian
distributions on Rd with parameters (θ,Θ) (expectation and covariance matrix)
running through Uχ ×Vχ. Besides this, the pair of regular data in question clearly
satisfies Condition A. Consequently, the test T K∗ given by the above construction
as applied to the collections of regular data (2.154) is well defined and allows to
decide on hypotheses

Hχ : P ∈ R[Rd, Uχ,Vχ], χ = 1, 2,
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on the distribution P underlying K-repeated observation ωK . The same test can
be also used to decide on stricter hypotheses HG

χ , χ = 1, 2, stating that the obser-
vations ω1, ..., ωK are i.i.d. and drawn from a Gaussian distribution P belonging
to G[Uχ,Vχ]. Our goal now is to process in detail the situation in question and to
refine our conclusions on the risk of the test T 1

∗ when the Gaussian hypotheses HG
χ

are considered and the situation is symmetric, that is, when V1 = V2.
Observe, first, that the convex-concave function Ψ from (2.145) in the situation

under consideration becomes

Ψ(h; θ1,Θ1, θ2,Θ2) =
1

2
hT [θ2 − θ1] +

1

4
hTΘ1h+

1

4
hTΘ2h. (2.155)

We are interested in solutions to the saddle point problem

min
h∈Rd

max
θ1∈U1,θ2∈U2

Θ1∈V1,Θ2∈V2

Ψ(h; θ1,Θ1, θ2,Θ2) (2.156)

associated with the function (2.155). From the structure of Ψ and compactness of
U1, V1, V2, combined with the fact that Vχ, χ = 1, 2, are comprised of positive
definite matrices, it immediately follows that saddle points do exist, and a saddle
point (h∗; θ

∗
1 ,Θ

∗
1, θ
∗
2 ,Θ

∗
2) satisfies the relations

(a) h∗ = [Θ∗1 + Θ∗2]−1[θ∗1 − θ∗2 ],
(b) hT∗ (θ1 − θ∗1) ≥ 0 ∀θ1 ∈ U1, hT∗ (θ∗2 − θ2) ≥ 0 ∀θ2 ∈ U2,
(c) hT∗Θ1h∗ ≤ hT∗Θ∗1h∗ ∀Θ1 ∈ V1, hT∗Θ∗2h∗ ≤ h∗Θ∗2h∗ ∀Θ2 ∈ V2.

(2.157)

From (2.157.a) it immediately follows that the affine detector φ∗(·) and risk ε?, as
given by (2.147) and (2.148), are

φ∗(ω) = hT∗ [ω − w∗] + 1
2h

T
∗ [Θ∗1 −Θ∗2]h∗, w∗ = 1

2 [θ∗1 + θ∗2 ];
ε? = exp{− 1

4 [θ∗1 − θ∗2 ]T [Θ∗1 + Θ∗2]−1[θ∗1 − θ∗2 ]}
= exp{− 1

4h
T
∗ [Θ∗1 + Θ∗2]h∗}.

(2.158)

Note that in the symmetric case (where V1 = V2), there always exists a saddle
point of Ψ with Θ∗1 = Θ∗2

31, and the test T 1
∗ associated with such saddle point is

quite transparent: it is the maximum likelihood test for two Gaussian distributions,
N (θ∗1 ,Θ∗), N (θ∗2 ,Θ∗), where Θ∗ is the common value of Θ∗1 and Θ∗2, and the bound
ε? on the risk of the test is nothing but the Hellinger affinity of these two Gaussian
distributions, or, equivalently,

ε? = exp
{
− 1

8
[θ∗1 − θ∗2 ]TΘ−1

∗ [θ∗1 − θ∗2 ]
}
. (2.159)

We arrive at the following result:

Proposition 2.44. In the symmetric sub-Gaussian case (i.e., in the case of (2.154)
with V1 = V2), saddle point problem (2.155), (2.156) admits a saddle point of the

31Indeed, from (2.155) it follows that when V1 = V2, the function Ψ(h; θ1,Θ1, θ2,Θ2)
is symmetric w.r.t. Θ1,Θ2, implying similar symmetry of the function Ψ(θ1,Θ1, θ2,Θ2) =
minh∈HΨ(h; θ1,Θ1, θ2,Θ2). Since Ψ is concave, the set M of its maximizers over M1 ×M2

(which, as we know, is nonempty) is symmetric w.r.t. the swap of Θ1 and Θ2 and is convex,
implying that if (θ1,Θ1, θ2,Θ2) ∈M , then (θ1,

1
2

[Θ1 + Θ2], θ2,
1
2

[Θ1 + Θ2]) ∈M as well, and the
latter point is the desired component of saddle point of Ψ with Θ1 = Θ2.
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form (h∗; θ
∗
1 ,Θ∗, θ

∗
2 ,Θ∗), and the associated affine detector and its risk are given by

φ∗(ω) = hT∗ [ω − w∗], w∗ = 1
2 [θ∗1 + θ∗2 ];

ε? = exp{− 1
8 [θ∗1 − θ∗2 ]TΘ−1

∗ [θ∗1 − θ∗2 ]}. (2.160)

As a result, when deciding, via ωK , on “sub-Gaussian hypotheses” Hχ, χ = 1, 2,

the risk of the test T K∗ associated with φ
(K)
∗ (ωK) :=

∑K
t=1 φ∗(ωt) is at most εK? .

In the symmetric single-observation Gaussian case, that is, when V1 = V2 and we
apply the test T∗ = T 1

∗ to observation ω ≡ ω1 in order to decide on the hypotheses
HG
χ , χ = 1, 2, the above risk bound can be improved:

Proposition 2.45. Consider symmetric case V1 = V2 = V, let (h∗; θ
∗
1 ; Θ∗1, θ

∗
2 ,Θ

∗
2)

be “symmetric” – with Θ∗1 = Θ∗2 = Θ∗ – saddle point of function Ψ given by (2.155),
and let φ∗ be the affine detector given by (2.157) and (2.158):

φ∗(ω) = hT∗ [ω − w∗], h∗ =
1

2
Θ−1
∗ [θ∗1 − θ∗2 ], w∗ =

1

2
[θ∗1 + θ∗2 ].

Let also

δ =
√
hT∗Θ∗h∗ =

1

2

√
[θ∗1 − θ∗2 ]TΘ−1

∗ [θ∗1 − θ∗2 ], (2.161)

so that

δ2 = hT∗ [θ∗1 − w∗] = hT∗ [w∗ − θ∗2 ] and ε? = exp{−1

2
δ2}. (2.162)

Let, further, α ≤ δ2, β ≤ δ2. Then

(a) ∀(θ ∈ U1,Θ ∈ V) : Probω∼N (θ,Θ){φ∗(ω) ≤ α} ≤ Erf(δ − α/δ)
(b) ∀(θ ∈ U2,Θ ∈ V) : Probω∼N (θ,Θ){φ∗(ω) ≥ −β} ≤ Erf(δ − β/δ), (2.163)

where

Erf(s) =
1√
2π

∫ ∞
s

exp{−r2/2}dr

is the normal error function. In particular, when deciding, via a single observation
ω, on Gaussian hypotheses HG

χ , χ = 1, 2, with HG
χ stating that ω ∼ N (θ,Θ) with

(θ,Θ) ∈ Uχ × V, the risk of the test T 1
∗ associated with φ∗ is at most Erf(δ).

Proof. Let us prove (a) (the proof of (b) is completely similar). For θ ∈ U1, Θ ∈ V
we have

Probω∼N (θ,Θ){φ∗(ω) ≤ α} = Probω∼N (θ,Θ){hT∗ [ω − w∗] ≤ α}
= Probξ∼N (0,I){hT∗ [θ + Θ1/2ξ − w∗] ≤ α}
= Probξ∼N (0,I){[Θ1/2h∗]

T ξ ≤ α− hT∗ [θ − w∗]︸ ︷︷ ︸
≥hT∗ [θ∗1−w∗]=δ

2

by (2.157.b),(2.162)

}

≤ Probξ∼N (0,I){[Θ1/2h∗]
T ξ ≤ α− δ2}

= Erf([δ2 − α]/‖Θ1/2h∗‖2)

≤ Erf([δ2 − α]/‖Θ1/2
∗ h∗‖2) [since δ2 − α ≥ 0 and hT∗Θh∗ ≤ hT∗Θ∗h∗ by (2.157.c)]

= Erf([δ2 − α]/δ).

The “in particular” part of Proposition is readily given by (2.163) as applied with
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α = β = 0. 2

Note that the progress, as compared to our results on the minimum risk detectors
for convex hypotheses in Gaussian o.s. is that we do not assume anymore that the
covariance matrix is once for ever fixed. Now both the mean and the covariance
matrix of Gaussian random variable we are observing are not known in advance, the
mean is allowed to run through a closed convex set (depending on the hypothesis),
the covariance is allowed to run, independently of the mean, through a given convex
compact subset of the interior of the positive definite cone, and this subset should
be common for both hypotheses we are deciding upon.

2.9 BEYOND THE SCOPE OF AFFINE DETECTORS: LIFTING

OBSERVATIONS

2.9.1 Motivation

The detectors considered so far in this Section were affine functions of observations.
Note, however, that what is an observation, it to some extent depends on us. To
give an instructive example, consider the Gaussian observation

ζ = A[u; 1] + ξ ∈ Rn,

where u is unknown signal known to belong to a given set U ⊂ Rn, u 7→ A[u; 1]
is a given affine mapping from Rn into the observation space Rd, and ξ is zero
mean Gaussian observation noise with covariance matrix Θ known to belong to a
given convex compact subset V of the interior of the positive semidefinite cone Sd+.
Treating observation “as is”, affine in observation detector is affine in [u; ξ]. On the
other hand, we can treat as our observation the image of the actual observation ζ
under a whatever deterministic mapping, e.g., the “quadratic lift” ζ 7→ (ζ, ζζT ).
A detector affine in the new observation is quadratic in u and ξ – we get access
to a wider set of detectors as compared to those affine in ζ! At the first glance,
applying our “affine detectors” machinery to appropriate “nonlinear lifts” of ac-
tual observations we can handle quite complicated detectors, e.g., polynomial, of
arbitrary degree, in ζ. The bottleneck here stems from the fact that in general it
is really difficult to “cover” the distribution of “nonlinearly lifted” actual observa-
tion ζ (even as simple as the above Gaussian observation) by an explicitly defined
family of regular distributions; and such a “covering” is what we need in order to
apply to the lifted observation our affine detector machinery. It turns out, however,
that in some important cases the desired covering is achievable. We are about to
demonstrate that this favorable situation indeed takes place when speaking about
the quadratic lifting ζ 7→ (ζ, ζζT ) of (sub)Gaussian observation ζ, and the resulting
quadratic detectors allow to handle some important inference problems which are
far beyond the grasp of “genuinely affine” detectors.

2.9.2 Quadratic lifting: Gaussian case

Given positive integer d, we define Ed as the linear space Rd × Sd equipped with
the inner product

〈(z, S), (z′, S′)〉 = sT z′ +
1

2
Tr(SS′).
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Note that the quadratic lifting z 7→ (z, zzT ) maps the space Rd into Ed.
In the sequel, an instrumental role is played by the following result.

Proposition 2.46.

(i) Assume we are given

• a nonempty and bounded subset U of Rn,
• a convex compact set V contained in the interior of the cone Sd+ of positive

semidefinite d× d matrices
• a d× (n+ 1) matrix A.

These data specify the family GA[U,V] of distributions of quadratic lifts (ζ, ζζT ) of
Gaussian random vectors ζ ∼ N (A[u; 1],Θ) stemming from u ∈ U and Θ ∈ V.

Let us select somehow

1. γ ∈ (0, 1),
2. convex compact subset Z of the set Zn = {Z ∈ Sn+1 : Z � 0, Zn+1,n+1 = 1}

such that
Z(u) := [u; 1][u; 1]T ∈ Z ∀u ∈ U, (2.164)

3. positive definite d× d matrix Θ∗ ∈ Sd+ and δ ∈ [0, 2] such that

Θ∗ � Θ ∀Θ ∈ V & ‖Θ1/2Θ
−1/2
∗ − Id‖ ≤ δ ∀Θ ∈ V, (2.165)

where ‖ · ‖ is the spectral norm,32

and set

H = Hγ := {(h,H) ∈ Rd × Sd : −γΘ−1
∗ � H � γΘ−1

∗ }, (2.166)

ΦA,Z(h,H; Θ) = − 1
2 ln Det(I −Θ

1/2
∗ HΘ

1/2
∗ ) + 1

2Tr([Θ−Θ∗]H)

+ δ(2+δ)

2(1−‖Θ1/2
∗ HΘ

1/2
∗ ‖)
‖Θ1/2
∗ HΘ

1/2
∗ ‖2F

+ 1
2φZ

(
BT

[[
H h

hT

]
+ [H,h]T [Θ−1

∗ −H]−1[H,h]
]
B
)

:

H× V → R,
(2.167)

where B is given by

B =

[
A

[0, ..., 0, 1]

]
, (2.168)

the function
φZ(Y ) := max

Z∈Z
Tr(ZY ) (2.169)

is the support function of Z, and ‖ · ‖F is the Frobenius norm.
Function ΦA,Z is continuous on its domain, convex in (h,H) ∈ H and concave

in Θ ∈ V, so that (H,V,ΦA,Z) is a regular data. Besides this,

(#) Whenever u ∈ Rn is such that [u; 1][u; 1]T ∈ Z and Θ ∈ V, the Gaussian

32It is easily seen that with δ = 2, the second relation in (2.165) is satisfied for all Θ such
that 0 � Θ � Θ∗, so that the restriction δ ≤ 2 is w.l.o.g.
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random vector ζ ∼ N (A[u; 1],Θ) satisfies the relation

∀(h,H) ∈ H : ln
(
Eζ∼N (A[u;1],Θ)

{
e

1
2 ζ
THζ+hT ζ

})
≤ ΦA,Z(h,H; Θ).

(2.170)

which combines with (2.164) to imply that

GA[U,V] ⊂ S[H,V,ΦA,Z ]. (2.171)

In addition, ΦA,Z is coercive in (h,H): ΦA,Z(hi, Hi; Θ)→ +∞ as i→∞ whenever
Θ ∈ V, (hi, Hi) ∈ H and ‖(hi, Hi)‖ → ∞, i→∞.

(ii) Let two collections of entities from (i), (Vχ,Θ(χ)
∗ , δχ, γχ, Aχ,Zχ), χ = 1, 2,

with common d be given, giving rise to the sets Hχ, matrices Bχ, and functions
ΦAχ,Zχ(h,H; Θ), χ = 1, 2. These collections specify the families of normal distri-
butions

Gχ = {N (v,Θ) : Θ ∈ Vχ & ∃u ∈ U : v = Aχ[u; 1]}, χ = 1, 2.

Consider the convex-concave saddle point problem

SV = min
(h,H)∈H1∩H2

max
Θ1∈V1,Θ2∈V2

1

2
[ΦA1,Z1(−h,−H; Θ1) + ΦA2,Z2(h,H; Θ2)]︸ ︷︷ ︸

Φ(h,H;Θ1,Θ2)

.

(2.172)
A saddle point (H∗, h∗; Θ∗1,Θ

∗
2) in this problem does exist, and the induced quadratic

detector

φ∗(ω) =
1

2
ωTH∗ω + hT∗ ω +

1

2
[ΦA1,Z1(−h∗,−H∗; Θ∗1)− ΦA2,Z2(h∗, H∗; Θ∗2)]︸ ︷︷ ︸

a

,

(2.173)
when applied to the families of Gaussian distributions Gχ, χ = 1, 2, has the risk

Risk[φ∗|G1,G2] ≤ ε? := eSV ,

that is,
(a)

∫
Rd e−φ∗(ω)P (dω) ≤ ε? ∀P ∈ G1,

(b)
∫
Rd eφ∗(ω)P (dω) ≤ ε? ∀P ∈ G2.

(2.174)

For proof, see Section 2.11.4.

Remark 2.47. Note that the computational effort to solve (2.172) reduces dramat-
ically in the “easy case” of the situation described in item (ii) of Proposition 2.46,
specifically, in the case where

• the observations are direct, meaning that Aχ[u; 1] ≡ u, u ∈ Rd, χ = 1, 2;
• the sets Vχ are comprised of positive definite diagonal matrices, and matrices

Θ
(χ)
∗ are diagonal as well, χ = 1, 2;

• the sets Zχ, χ = 1, 2, are convex compact sets of the form

Zχ = {Z ∈ Sd+1
+ : Z � 0, Tr(ZQχj ) ≤ qχj , 1 ≤ j ≤ Jχ}
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with diagonal matrices Qχj , 33 and these sets intersect the interior of the positive

semidefinite cone Sd+1
+ .

In this case, the convex-concave saddle point problem (2.172) admits a saddle point
(h∗, H∗; Θ∗1,Θ

∗
2) where h∗ = 0 and H∗ is diagonal.

Justifying the remark. In the easy case, we have Bχ = Id+1 and therefore

Mχ(h,H) := BTχ

[[
H h

hT

]
+ [H,h]T

[
[Θ

(χ)
∗ ]−1 −H

]−1

[H,h]

]
Bχ

=

 H +H
[
[Θ

(χ)
∗ ]−1 −H

]−1

H h+H[[Θ
(χ)
∗ ]−1 −H]−1h

hT + hT
[
[Θ

(χ)
∗ ]−1 −H

]−1

H hT
[
[Θ

(χ)
∗ ]−1 −H

]−1

h


and

φZχ(Z) = max
W

{
Tr(ZW ) : W � 0, Tr(WQχj ) ≤ qχj , 1 ≤ j ≤ Jχ

}
= minλ

{∑
j q

χ
j λj : λ ≥ 0, Z �

∑
j λjQ

χ
j

}
,

where the last equality is due to semidefinite duality34. From the second representa-
tion of φZχ(·) and the fact that all Qχj are diagonal it follows that φZχ(Mχ(0, H)) ≤
φZχ(Mχ(h,H)) (indeed, with diagonal Qχj , if λ is feasible for the minimization
problem participating in the representation when Z = Mχ(h,H), it clearly remains
feasible when Z is replaced with Mχ(0, H)). This, in turn, combines straight-
forwardly with (2.167) to imply that when replacing h∗ with 0 in a saddle point
(h∗, H∗; Θ∗1,Θ

∗
2) of (2.172), we end up with another saddle point of (2.172). In

other words, when solving (2.172), we can from the very beginning set h to 0, thus
converting (2.172) into the convex-concave saddle point problem

SV = min
H:(0,H)∈H1∩H2

max
Θ1∈V1,Θ2∈V2

Φ(0, H; Θ1,Θ2). (2.175)

Taking into account the fact that we are in the case where all matrices from the

sets Vχ, same as the matrices Θ
(χ)
∗ and all the matrices Qχj , χ = 1, 2, are diagonal,

it is immediate to verify that if E is a d× d diagonal matrix with diagonal entries
±1, then Φ(0, H; Θ1,Θ2) = Φ(0, EHE; Θ1,Θ2). Due to convexity-concavity of Φ
this implies that (2.175) admits a saddle point (0, H∗; Θ∗1,Θ

∗
2) with H∗ invariant

w.r.t. transformations H∗ 7→ EH∗E with the above E, that is, with diagonal H∗,
as claimed. 2

2.9.3 Quadratic lifting – does it help?

Assume that for χ = 1, 2, we are given

• affine mappings u 7→ Aχ(u) = Aχ[u; 1] : Rnχ → Rd,
• nonempty convex compact sets Uχ ⊂ Rnχ ,
• nonempty convex compact sets Vχ ⊂ int Sd+.

33In terms of the sets Uχ, this assumption means that the latter sets are given by linear
inequalities on the squares of entries in u,

34see Section 4.1 ( or [116, Section 7.1] for more details).
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These data define families Gχ of Gaussian distributions on Rd: Gχ is comprised of all
distributions N (Aχ(u),Θ) with u ∈ Uχ and Θ ∈ Vχ. The data define also families
SGχ of sub-Gaussian distributions on Rd: SGχ is comprised of all sub-Gaussian
distributions with parameters (Aχ(u),Θ) with (u,Θ) ∈ Uχ × Vχ.

Assume we observe random variable ζ ∈ Rd drawn from a distribution P known
to belong to G1 ∪ G2, and our goal is to decide from stationary K-repeated version
of our observation on the pair of hypotheses Hχ : P ∈ Gχ, χ = 1, 2; we refer to
this situation as to Gaussian case. We could also speak about sub-Gaussian case,
where the hypotheses we would decide upon state that P ∈ SGχ. In retrospect, all
we are about to establish for the Gaussian case can be word by word repeated for
the sub-Gaussian one, so that from now on, we assume we are in Gaussian case.

At present, we have developed two approaches to building detector-based tests
for H1, H2:

A. Utilizing the affine in ζ detector φaff given by solution to the saddle point problem
(see (2.155), (2.156) and set θχ = Aχ(uχ) with uχ running through Uχ)

SadValaff = min
h∈Rd

max
u1∈U1,u2∈U2

Θ1∈V1,Θ2∈V2

1

2

[
hT [A2(u2)−A1(u1)] +

1

2
hT [Θ1 + Θ2]h

]
;

(2.176)
this detector satisfies risk bound

Risk[φaff|G1,G2] ≤ exp{SadValaff}. (2.177)

Q. Utilizing the quadratic in ζ detector φlift given by Proposition 2.46.ii, with the
risk bound

Risk[φlift|G1,G2] ≤ exp{SadVallift}, (2.178)

with SadVallift given by (2.172).

A natural question is, which one of these options results in a better risk bound.
Note that we cannot just say “clearly, the second option is better, since there are
more quadratic detectors than affine ones” – the difficulty is that the key, in the
context of Proposition 2.46, relation (2.170) is inequality rather than equality35. We
are about to show that under reasonable assumptions, the second option indeed is
better:

Proposition 2.48. In the situation in question, assume that the sets Vχ, χ = 1, 2,
contain the �-largest elements, and that these elements are taken as the matrices

Θ
(χ)
∗ participating in Proposition 2.46.ii. Let, further, the convex compact sets Zχ

participating in Proposition 2.46.ii satisfy

Zχ ⊂ Z̄χ := {Z =

[
W u
uT 1

]
� 0, u ∈ Uχ} (2.179)

(this assumption does not restrict generality, since Z̄χ is, along with Uχ, a closed

35One cannot make (2.170) an equality by redefining the right hand side function – it will
lose the required in our context convexity-concavity properties.
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ρ σ1 σ2

unrestricted
H and h H = 0 h = 0

0.5 2 2 0.31 0.31 1.00
0.5 1 4 0.24 0.39 0.62
0.01 1 4 0.41 1.00 0.41

Table 2.2: Risk of quadratic detector φ(ζ) = hT ζ + 1
2ζ
THζ + κ

convex set which clearly contains all matrices [u; 1][u; 1]T with u ∈ Uχ). Then

SadVallift ≤ SadValaff, (2.180)

that is, option Q is at least as efficient as option A.

Proof. Let Aχ = [Āχ, aχ]. Looking at (2.155), where one should substitute θχ =

Aχ(uχ) with uχ running through Uχ) and taking into account that Θχ � Θ
(χ)
∗ ∈ Vχ

when Θχ ∈ Vχ, we conclude that

SadValaff = min
h

max
u1∈U1,u2∈U2

1

2

[
hT [Ā2u2 − Ā1u1 + a2 − a1] +

1

2
hT
[
Θ

(1)
∗ + Θ

(2)
∗

]
h

]
.

(2.181)
At the same time, we have by Proposition 2.46.ii:

SadVallift = min
(h,H)∈H1∩H2

max
Θ1∈V1,Θ2∈V2

1
2

[ΦA1,Z1(−h,−H; Θ1) + ΦA2,Z2(h,H; Θ2)]

≤ min
h∈Rd

max
Θ1∈V1,Θ2∈V2

1
2

[ΦA1,Z1(−h, 0; Θ1) + ΦA2,Z2(h, 0; Θ2)]

= min
h∈Rd

max
Θ1∈V1,Θ2∈V2

1
2

[
1
2

max
Z1∈Z1

Tr

(
Z1

[
−ĀT1 h

−hT Ā1 −2hT a1 + hTΘ
(1)
∗ h

])

+ 1
2

max
Z2∈Z2

Tr

(
Z2

[
ĀT2 h

hT Ā2 2hT a2 + hTΘ
(2)
∗ h

])]
[by direct computation utilizing (2.167)]

≤ min
h∈Rd

1
2

[
1
2

max
u1∈U1

[
−2uT1 Ā

T
1 h− 2aT1 h+ hTΘ

(1)
∗ h

]
+

1
2

max
u2∈U2

[
2uT2 Ā

T
2 h+ 2aT2 h+ hTΘ

(2)
∗ h

] ]
[due to (2.179)]

= SadValaff,

where the concluding equality is due to (2.181). 2

Numerical illustration. To get an impression of the performance of quadratic
detectors as compared to affine ones under the premise of Proposition 2.48, we
present here the results of experiment where U1 = Uρ1 = {u ∈ R12 : ui ≥ ρ, 1 ≤ i ≤
12}, U2 = Uρ2 = −Uρ1 , A1 = A2 ∈ R8×13, and Vχ = {Θ(χ)

∗ = σ2
χI8} are singletons.

The risks of affine, quadratic and “purely quadratic” (with h set to 0) detectors on
the associated families G1,G2 are given in Table 2.2.

We see that

• when deciding on families of Gaussian distributions with common covariance
matrix and expectations varying in associated with the families convex sets,
passing from affine detectors described by Proposition 2.44 to quadratic detectors
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does not affect the risk (first row in the table). This should be expected: we are
in the scope of Gaussian o.s., where minimum risk affine detectors are optimal
among all possible detectors.
• when deciding on families of Gaussian distributions in the case where distribu-

tions from different families can have close expectations (third row in the table),

affine detectors are useless, while the quadratic ones are not, provided that Θ
(1)
∗

differs from Θ
(2)
∗ . This is how it should be – we are in the case where the

first moments of the distribution of observation bear no definitive information
on the family this distribution belongs to, which makes affine detectors useless.
In contrast, quadratic detectors are able to utilize information (valuable when

Θ
(1)
∗ 6= Θ

(2)
∗ ) “stored” in the second moments of the observation.

• “in general” (second row in the table), both affine and purely quadratic compo-
nents in a quadratic detector are useful; suppressing one of them can increase
significantly the attainable risk.

2.9.4 Quadratic lifting: sub-Gaussian case

Sub-Gaussian version of Proposition 2.46 is as follows:

Proposition 2.49.

(i) Assume we are given

• a nonempty and bounded subset U of Rn,
• a convex compact set V contained in the interior of the cone Sd+ of positive

semidefinite d× d matrices
• a d× (n+ 1) matrix A.

These data specify the family SGA[U,V] of distributions of quadratic lifts (ζ, ζζT )
of sub-Gaussian random vectors ζ with sub-Gaussianity parameters A[u; 1],Θ stem-
ming from u ∈ U and Θ ∈ V.

Let us select somehow

1. reals γ, γ+ such that 0 < γ < γ+ < 1,
2. convex compact subset Z of the set Zn = {Z ∈ Sn+1 : Z � 0, Zn+1,n+1 = 1}

such that relation (2.164) takes place,
3. positive definite d × d matrix Θ∗ ∈ Sd+ and δ ∈ [0, 2] such that (2.165) takes

place.

These data specify the closed convex sets

H = Hγ := {(h,H) ∈ Rd × Sd : −γΘ−1
∗ � H � γΘ−1

∗ },

Ĥ = Ĥγ,γ+

=

{
(h,H,G) ∈ Rd × Sd × Sd :

{
−γΘ−1

∗ � H � γΘ−1
∗

0 � G � γ+Θ−1
∗ , H � G

}
(2.182)
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and the functions

ΨA,Z(h,H,G) = − 1
2

ln Det(I −Θ
1/2
∗ GΘ

1/2
∗ )

+ 1
2
φZ

(
BT

[[
H h

hT

]
+ [H,h]T [Θ−1

∗ −G]−1[H,h]

]
B

)
:

Ĥ × Z → R,

ΨδA,Z(h,H,G; Θ) = − 1
2

ln Det(I −Θ
1/2
∗ GΘ

1/2
∗ )

+ 1
2

Tr([Θ−Θ∗]G) +
δ(2+δ)

2(1−‖Θ1/2
∗ GΘ

1/2
∗ ‖)

‖Θ1/2
∗ GΘ

1/2
∗ ‖2F

+ 1
2
φZ

(
BT

[[
H h

hT

]
+ [H,h]T [Θ−1

∗ −G]−1[H,h]

]
B

)
:

Ĥ × {0 � Θ � Θ∗} → R,

ΦA,Z(h,H) = min
G

{
ΨA,Z(h,H,G) : (h,H,G) ∈ Ĥ

}
: H → R,

ΦδA,Z(h,H; Θ) = min
G

{
ΨδA,Z(h,H,G; Θ) : (h,H,G) ∈ Ĥ

}
: H× {0 � Θ � Θ∗} → R,

(2.183)
where B is given by (2.168) and φZ(·) is the support function of Z given by (2.169).

Function ΦA,Z(h,H) is convex and continuous on its domain, while function
ΦδA,Z(h,H; Θ) is continuous on its domain, convex in (h,H) ∈ H and concave in
Θ ∈ {0 � Θ � Θ∗}. Besides this,

(##) Whenever u ∈ Rn is such that [u; 1][u; 1]T ∈ Z and Θ ∈ V, the sub-
Gaussian, with parameters (A[u; 1],Θ), random vector ζ satisfies the relation

∀(h,H) ∈ H :

(a) ln
(
Eζ

{
e

1
2 ζ
THζ+hT ζ

})
≤ ΦA,Z(h,H),

(b) ln
(
Eζ

{
e

1
2 ζ
THζ+hT ζ

})
≤ ΦδA,Z(h,H; Θ).

(2.184)

which combines with (2.164) to imply that

SGA[U,V] ⊂ S[H,V,ΦA,S ]. (2.185)

In addition, ΦA,Z and ΦδA,Z are coercive in (h,H): ΦA,Z(hi, Hi) → +∞ and

ΦδA,Z(hi, Hi; Θ)→ +∞ as i→∞ whenever Θ ∈ V, (hi, Hi) ∈ H and ‖(hi, Hi)‖ →
∞, i→∞.

(ii) Let two collections of data from (i): (Vχ,Θ(χ)
∗ , δχ, γχ, γ

+
χ , Aχ,Zχ), χ =

1, 2, with common d be given, giving rise to the sets Hχ, matrices Bχ, and functions

ΦAχ,Zχ(h,H), Φ
δχ
Aχ,Zχ(h,H; Θ), χ = 1, 2. These collections specify the families

SGχ = SGAχ [Uχ,Vχ] of sub-Gaussian distributions.
Consider the convex-concave saddle point problem

SV = min
(h,H)∈H1∩H2

max
Θ1∈V1,Θ2∈V2

1

2

[
Φδ1A1,Z1

(−h,−H; Θ1) + Φδ2A2,Z2
(h,H; Θ2)

]
︸ ︷︷ ︸

Φδ1,δ2 (h,H;Θ1,Θ2)

.

(2.186)
A saddle point (H∗, h∗; Θ∗1,Θ

∗
2) in this problem does exist, and the induced quadratic

detector

φ∗(ω) =
1

2
ωTH∗ω + hT∗ ω +

1

2

[
Φδ1A1,Z1

(−h∗,−H∗; Θ∗1)− Φδ2A2,Z2
(h∗, H∗; Θ∗2)

]
︸ ︷︷ ︸

a

,

(2.187)
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when applied to the families of sub-Gaussian distributions SGχ, χ = 1, 2, has the
risk

Risk[φ∗|SG1,SG2] ≤ ε? := eSV .

As a result,
(a)

∫
Rd e−φ∗(ω)P (dω) ≤ ε? ∀P ∈ SG1,

(b)
∫
Rd eφ∗(ω)P (dω) ≤ ε? ∀P ∈ SG2.

(2.188)

Similarly, the convex minimization problem

Opt = min
(h,H)∈H1∩H2

1

2
[ΦA1,Z1

(−h,−H) + ΦA2,Z2
(h,H)]︸ ︷︷ ︸

Φ(h,H)

. (2.189)

is solvable, and the induced by its optimal solution (h∗, H∗) quadratic detector

φ∗(ω) =
1

2
ωTH∗ω + hT∗ ω +

1

2
[ΦA1,Z1

(−h∗,−H∗)− ΦA2,Z2
(h∗, H∗)]︸ ︷︷ ︸

a

, (2.190)

when applied to the families of sub-Gaussian distributions SGχ, χ = 1, 2, has the
risk

Risk[φ∗|SG1,SG2] ≤ ε? := eOpt,

so that for just defined φ∗ and ε? relation (2.189) takes place.

For proof, see Section 2.11.5.

Remark 2.50. Proposition 2.49 offers two options for building quadratic detectors
for the families SG1, SG2, those based on saddle point of (2.186) and on optimal
solution to (2.189). Inspecting the proof, the number of options can be increased

to 4: we can replace any one of the functions Φ
δχ
Aχ,Zχ , χ = 1, 2 (or both these

functions simultaneously) with ΦAχ,Zχ . The second of the original two options is

exactly what we get when replacing both Φ
δχ
Aχ,Zχ , χ = 1, 2, with ΦAχ,Zχ . It is easily

seen that depending on the data, every one of these 4 options can be the best –
result in the smallest risk bound. Thus, it makes sense to keep all these options in
mind and to use the one which, under the circumstances, results in the best risk
bound. Note that the risk bounds are efficiently computable, so that identifying
the best option is easy.

2.9.5 Recovering quadratic form of discrete distribution

Lemma 2.51. Let ζ be zero mean random variable taking values in the n-dimensional
`1-ball of radius 2 centered at the origin, K be a positive integer, and let ηK =
1
K

∑K
k=1 ζk, where ζ1, ..., ζK are independent copies of ζ. Then

0 < γ < K/4⇒ E

{
exp{γη

T
KηK
2
}
}
≤ n√

1− 4γ/K
. (2.191)

In particular,

E

{
exp{Kη

T
KηK
9

}
}
≤ 3n. (2.192)
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Proof. By Proposition 2.40 we have

E
{

exp{hT ηK}
}

=
[
E
{

exp{hT ζ/K}
}]K ≤ [exp{‖h/K‖2∞/2}

]K
= exp{2‖h‖2∞

K
}.

Now let z ∼ N (0, In) be independent of ηK . We have

EηK

{
exp{γηTKηK/2}

}
= EηK

{
Ez

{
exp{√γηTKz}

}}
= Ez

{
EηK

{
exp{√γηTKz}

}}
≤ Ez

{
exp{2γ‖z‖2∞/K)}

}
≤ Ez

{∑n
i=1 exp{(4γ/K)z2

i /2}
}

= n√
2π

∫
exp{− [1−(4γ/K)]s2

2 }ds = n√
1−4γ/K

2

Corollary 2.52. In the notation and under the premise of Lemma 2.51, for every
p ∈ [1, 2] and ε ∈ (0, 1) one has

Prob

{
‖ηK‖p >

3n
2−p
2p

√
ln(3n/ε)√
K

}
< ε.

Proof. Let L = 9
K ln(3n/ε), and Ξ = {ηK : ηTKηK ≤ L}, so that Prob{ηk 6∈ Ξ} < ε

by (2.192). When ηK ∈ Ξ, we have

‖ηK‖p ≤ n
1
p−

1
2 ‖ηK‖2 ≤

3n
2−p
2p

√
ln(3n/ε)√
K

. 2

Application: recovering quadratic form of discrete distribution. Consider
the situation as follows: we are given an i.i.d. sample

ωK = (ω1, ..., ωK)

with ωi ∼ Au, where u ∈ ∆n is an unknown probabilistic vector, and A is m × n
stochastic matrix, so that ωk takes value ei (e1, ..., em are basic orths in Rm) with
probability [Au]i. Our goal is to recover

F (u) = uTQu,

where Q ∈ Sn is given, and to this end we want to build a “presumably good”
estimate of the form

ĝH(ωK) =

[
1

K

∑
k

ωk

]T
H

[
1

K

∑
k

ωk

]
.

Let us set

p = Au, ζk = ωk − p, ηK =
1

K

∑
k

ζk, ξK =
1

K

∑
k

ωk = ηK + p.
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Note that ‖ζk‖1 ≤ 2. We have

ĝH(ωK)− F (u) = ξTKHξK − uTQu = ξTKHηK + ξTKHp
= ξTKHηK + ηTKHp+ [pTHp− uTQu]
⇒ |ĝH(ωK − uTQu| ≤ |pTHp− uTQu|+ 2‖H‖∞‖ηK‖1,

where ‖H‖∞ = maxi,j |Hij |. Invoking Corollary 2.52, it follows that for all ε ∈ (0, 1)
and all u ∈∆n it holds

Prob

{
|ĝH(ωK)− F (u)| ≥ R[H] :=

6
√
m ln(3m/ε)‖H‖∞√

K
+ ‖ATHA−Q‖∞

}
≤ ε.

and we can build a “presumably good” estimate by minimizing R[H] over H.

2.9.6 Generic application: quadratically constrained hypotheses

Propositions 2.46, 2.49 operate with Gaussian/sub-Gaussian observations ζ with
matrix parameters Θ running through convex compact subsets V of int Sd+, and
means of the form A[u; 1], with “signals” u running through given sets U ⊂ Rn.
The constructions, however, involved additional entities – convex compact sets
Z ⊂ Zn := {Z ∈ Sn+1

+ : Zn+1,n+1 = 1} containing quadratic lifts [u; 1][u; 1]T of
all signals u ∈ U ; other things being equal, the smaller is Z, the smaller is the
associated function ΦA,Z (or ΦδA,Z), and consequently, the smaller are the (upper
bounds on the) risks of quadratic in ζ detectors we end up with. In order to apply
these propositions, we should understand how to build the required sets Z in an
“economical” way. There exists a relatively simple case when it is easy to get
reasonable candidates to the role of Z – the case of quadratically constrained signal
set U :

U = {u ∈ Rn : fk(u) := uTQku+ 2qTk u ≤ bk, 1 ≤ k ≤ K}. (2.193)

Indeed, the constraints fk(u) ≤ bk are just linear constraints on the quadratic lifting
[u; 1][u; 1]T of u:

uTQku+ 2qTk u ≤ bk ⇔ Tr(Fk[u; 1][u; 1]T ) ≤ bk, Fk =

[
Qk qk
qTk

]
∈ Sn+1.

Consequently, in the case of (2.193), the simplest candidate on the role of Z is the
set

Z = {Z ∈ Sn : Z � 0, Zn+1,n+1 = 1,Tr(FkZ) ≤ bk, 1 ≤ k ≤ K}. (2.194)

This set clearly is closed and convex (the latter – even when U itself is not convex),
and indeed contains the quadratic lifts [u; 1][u; 1]T of all points u ∈ U . We need
also the compactness of Z; the latter definitely takes place when the quadratic
constraints describing U contain constraint of the form uTu ≤ R2, which, in turn,
can be ensured, basically “for free,” when U is bounded. It should be stressed
that the “ideal” choice of Z would be the convex hull Z[U ] of all rank 1 matrices
[u; 1][u; 1]T with u ∈ U – this definitely is the smallest convex set which contains the
quadratic lifts of all points from U ; moreover, Z[U ] is closed and bounded, provided
U is so. The difficulty is that Z[U ] can be computationally intractable (and thus
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useless in our context) already for pretty simple sets U of the form (2.193). The
set (2.194) is a simple outer approximation of Z[U ], and this approximation can be
very loose; for example, when U = {u : −1 ≤ uk ≤ 1, 1 ≤ k ≤ d} is just the unit
box in Rd, the set (2.194) is

{Z ∈ Sn+1 : Z � 0, Zn+1,n+1 = 1, |Zk,n+1| ≤ 1, 1 ≤ k ≤ n};

this set even is not bounded, while Z[U ] clearly is bounded. There is, essentially,
just one generic case when the set (2.194) is exactly equal to Z[U ] – the case where

U = {u : uTQu ≤ c}, Q � 0

is an ellipsoid centered at the origin; the fact that in this case the set given by
(2.194) is exactly Z[U ] is a consequence of what is called S-Lemma.

The fact that, in general, the set Z could be a very loose outer approximation
of Z[U ] does not mean that we cannot improve this construction. As an instructive
example, let U = {u ∈ Rn : ‖u‖∞ ≤ 1}. We get a much better that above
approximation of Z[U ] when applying (2.194) to equivalent description of the box
by quadratic constraints:

U := {u ∈ Rn : ‖u‖∞ ≤ 1} = {u ∈ Rn : u2
k ≤ 1, 1 ≤ k ≤ n}.

Applying recipe (2.194) to the second description of U , we arrive at a significantly
less conservative outer approximation of Z[U ], specifically,

Z = {Z ∈ Sn+1 : Z � 0, Zn+1,n+1 = 1, Zkk ≤ 1, 1 ≤ k ≤ n}.

Not only the resulting set Z is bounded; we can get a reasonable “upper bound” on
the discrepancy between Z and Z[U ]. Namely, denoting by Zo the matrix obtained
from a symmetric n× n matrix Z by zeroing out the South-Eastern entry (the one
in the cell (n+ 1, n+ 1)) and keeping the remaining entries intact, we have

Zo[U ] := {Zo : Z ∈ Z[U ]} ⊂ Zo := {Zo : Z ∈ Z} ⊂ O(1) ln(n+ 1)Zo.

This is a particular case of a general result (going back to [119]; we shall get this
result as a byproduct of our forthcoming considerations, specifically, Proposition
4.6) as follows:

Let U be a bounded set given by a system of convex quadratic constraints
without linear terms:

U = {u ∈ Rn : uTQku ≤ ck, 1 ≤ k ≤ K}, Qk � 0, 1 ≤ k ≤ K,

and let Z be the associated set (2.194):

Z = {Z ∈ Sn+1 : Z � 0, Zn+1,n+1 = 1, Tr(ZDiag{Qk, 1}) ≤ ck, 1 ≤ k ≤ K}

Then

Zo[U ] := {Zo : Z ∈ Z[U ]} ⊂ Zo := {Zo : Z ∈ Z} ⊂ 4 ln(5(K + 1))Zo[U ].

Note that when K = 1 (i.e., U is an ellipsoid centered at the origin), the
factor 4 ln(5(K + 1)), as it was already mentioned, can be replaced by 1.
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One can think that the factor 4 ln(5(K+ 1)) is too large to be of interest; well, this
is nearly the best factor one can get under the circumstances, and a nice fact is
that the factor is “nearly independent” of K.

Finally, we remark that, same as in the case of a box, we can try to reduce the
conservatism of outer approximation (2.194) of Z[U ] by passing from the initial
description of U to an equivalent one. The standard recipe here is to replace linear
constraints in the description of U by their quadratic consequences; for example, we
can augment a pair of linear constraints qTi u ≤ ci, qTj u ≤ cj , assuming there is such

a pair, with the quadratic constraint (ci−qTi u)(cj−qTj u) ≥ 0. While this constraint
is redundant, as far as the description of U itself is concerned, adding this constraint
reduces, and sometimes significantly, the set given by (2.194). Informally speaking,
transition from (2.193) to (2.194) is by itself “too stupid” to utilize the fact (known
to every kid) that the product of two nonnegative quantities is nonnegative; when
augmenting linear constraints in the description of U by their pairwise products, we
somehow compensate for this stupidity. Unfortunately, “computationally tractable”
assistance of this type perhaps allows to reduce the conservatism of (2.194), but
usually does not allow to eliminate it completely: a grave “fact of life” is that even
in the case of unit box U , the set Z[U ] is computationally intractable. Scientifically
speaking: maximizing quadratic forms over the unit box U provably is an NP-hard
problem; were we able to get a computationally tractable description of Z[U ], we
would be able to solve this NP-hard problem efficiently, implying that P=NP. While
we do not know for sure that the latter is not the case, “the informal odds” are
strongly against this possibility.

The bottom line is that while the approach we are discussing in some situations
could result in quite conservative tests, “some” is by far not the same as “always;”
on the positive side, this approach allows to process some important problems. We
are about to present a simple and instructive illustration.

2.9.6.1 Simple change detection

On Figure 2.5, you see a sample of frames from a “movie” where noisy picture of a
gentleman gradually transforms into noisy picture of a lady; several initial frames
differ just by realizations of noise, and starting with some instant, the “signal” (the
deterministic component of the image) starts to drift from the gentleman towards
the lady. What, in your opinion, is the change point – the first time instant where
the signal component of the image differs from the signal component of the initial
image?

A simple model of the situation is as follows: we observe, one by one, vectors
(in fact, 2D arrays, but we can “vectorize” them)

ωt = xt + ξt, t = 1, 2, ...,K, (2.195)

where xt are deterministic components of the observations and ξt are random noises.
It may happen that for some τ ∈ {2, 3, ...,K}, the vectors xt are independent of
t when t < τ , and xτ differs from xτ−1 (“τ is a change point”); if it is the case,
τ is uniquely defined by xK = x1, ..., xK . An alternative is that xt is independent
of t, 1 ≤ t ≤ K (“no change”). The goal is to decide, based on observation
ωK = (ω1, .., ωK), whether there was a change point, and if yes, then, perhaps, to
localize it.

The model we have just described is the simplest case of “change detection,”
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Figure 2.5: Frames from a “movie”
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where, given noisy observations on some time horizon, one is interested to detect
a “change” in some time series underlying the observations. In our simple model,
this time series is comprised by deterministic components xt of observations, and
“change at time τ” is understood in the most straightforward way - as the fact
that xτ differs from equal to each other preceding xt’s. In more complicated sit-
uations, our observations are obtained from the underlying time series {xt} by a
non-anticipative transformation, like

ωt =

t∑
s=1

Atsxs + ξt, t = 1, ...,K,

and we still want to detect the change, if any, in the time series {xt}. As an
instructive example, consider observations, taken along equidistant time grid, of
the positions of an aircraft which “normally” flies with constant velocity, but at
some time instant can start to maneuver. In this situation, the underlying time
series is comprised of the velocities of the aircraft at consecutive time instants,
observations are obtained from this time series by integration, and to detect a
maneuver means to detect that on the observation horizon, there was a change in
the series of velocities.

Change detection is the subject of huge literature dealing with a wide range of
models differing from each other in

• whether we deal with direct observations of the time series of interest, as in
(2.195), or with indirect ones (in the latter case, there is a wide spectrum of
options related to how the observations depend on the underlying time series),

• what are assumptions on noise,
• what happens with xt’s after the change takes place – do they jump from their

common value prior to time τ to a new common value starting with this time,
or start to depend on time (and if yes, then how), etc., etc.

A significant role in change detection is played by hypothesis testing; as far as
affine/quadratic-detector-based techniques developed in this Section are concerned,
their applications in the context of change detection are discussed in [71]. In what
follows, we focus on the simplest of these applications.

Situation and goal. We consider the situation as follows:

1. Our observations are given by (2.195) with independent across t = 1, ...,K noises
ξt ∼ N (0, σ2Id). We do not known σ a priori, what we know is that σ is
independent of t and belongs to a given segment [σ, σ], with 0 < σ ≤ σ;

2. Observations (2.195) arrive one by one, so that at time t, 2 ≤ t ≤ K we have
at our disposal observation ωt = ω1, ..., ωt. Our goal is to build a system of
inferences Tt, 2 ≤ t ≤ K, such that Tt as applied to ωt either infers that there
was a change at time t or earlier, in which case we terminate, or infers that so
far there was no change, in which case we either proceed to time t+ 1 (if t < K),
or terminate (if t = K) with “no change” conclusion.
We are given ε ∈ (0, 1) and want from our collection of inferences to make the
probability of false alarm (i.e., terminating somewhere on time horizon 2, 3, ...,K
with “there was a change” conclusion in the situation when there was no change:
x1 = ... = xK) at most ε. Under this restriction, we want to make as small
as possible the probability of a miss (of not detecting the change at all in the
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situation where there was a change).

The “small probability of a miss” desire should be clarified. When the noise is
nontrivial, we have no chances to detect very small changes and respect the bound
on the probability of false alarm. A realistic goal is to make as small as possible the
probability of missing a not too small change, which can be formalized as follows.
Given ρ > 0, and tolerances ε, ε ∈ (0, 1), let us look for a system of inferences
{Tt : 2 ≤ t ≤ K} such that

• the probability of false alarm is at most ε, and
• the probability of “ρ-miss” – the probability to detect no change when there was

a change of energy ≥ ρ2 (i.e., when there was a change point τ , and, moreover,
at this point it holds ‖xτ − x1‖22 ≥ ρ2) is at most ε.

What we are interested in, is to achieve the just formulated goal with as small ρ as
possible.

Construction. Let us select a large “safety parameter” R, like R = 108 or even
R = 1080, so that we can assume that for all time series we are interested in it
holds ‖xt − xτ‖22 ≤ R2 36. Let us associate with ρ > 0 “signal hypotheses” Hρ

t ,
t = 2, 3, ...,K, on the distribution of observation ωK given by (2.195), with Hρ

t

stating that in the time series {xt}Kt=1 underlying observation ωK there is a change,
of energy at least ρ2, at time t:

x1 = x2 = ... = xt−1 & ‖xt − xt−1‖22 = ‖xt − x1‖22 ≥ ρ2

(and on the top of it, ‖xt−xτ‖22 ≤ R2 for all t, τ). Let us augment these hypotheses
by the null hypothesis H0 stating that there is no change at all – the observation
ωK stems from a stationary time series x1 = x2 = ... = xK . We are about to use
our machinery of detector-based tests in order to build a system of tests deciding,
with partial risks ε, ε, on the null hypothesis vs. the “signal alternative”

⋃
tH

ρ
t for

as small ρ as possible.
The implementation is as follows. Given ρ > 0 such that ρ2 < R2, consider two

hypotheses, G1 and Gρ2, on the distribution of observation

ζ = x+ ξ ∈ Rd. (2.196)

Both hypotheses state that ξ ∼ N (0, σ2Id) with unknown σ known to belong to a
given segment ∆ := [

√
2σ,
√

2σ]. In addition, G1 states that x = 0, and Gρ2 - that
ρ2 ≤ ‖x‖22 ≤ R2. We can use the result of Proposition 2.46.ii to build a quadratic in
ζ detector for the families of distributions P1, Pρ2 obeying the hypotheses G1, G

ρ
2,

respectively. To this end it suffices to apply Proposition to the collections of data

Vχ = {σ2Id : σ ∈ ∆},Θ(χ)
∗ = 2σ2Id, δχ = 1− σ/σ, γχ = 0.999, Aχ = Id,Zχ,

[χ = 1, 2]

36R is needed by the only reason – to make the domains we are working with bounded, thus
allowing to apply the theory we have developed so far. The actual value of R does not enter our
constructions and conclusions.
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where

Z1 = {[0; ...; 0; 1][0; ...; 0; 1]T } ⊂ Sd+1
+ ,

Z2 = Zρ2 = {Z ∈ Sd+1
+ : Zd+1,d+1 = 1, 1 +R2 ≥ Tr(Z) ≥ 1 + ρ2}.

The (upper bound on the) risk of the quadratic in ζ detector yielded by a saddle
point of function (2.172), as given by Proposition 2.46.ii, is immediate: by the same
argument as used when justifying Remark 2.47, in the situation in question one can
look for saddle point with h = 0, H = ηId, and identifying the required η reduces
to solving univariate convex problem

Opt(ρ) = min
η

1
2

{
− d

2 ln(1− σ̂4η2)− d
2 σ̂

2(1− σ2/σ2)η + dδ(2+δ)σ̂4η2

1+σ̂2η

+ ρ2η
2(1−σ̂2η) : −γ ≤ σ̂2η ≤ 0

}
[
σ̂ =
√

2σ, δ = 1− σ/σ
]

which can be done in no time by Bisection. The resulting detector and the upper
bound on its risk are given by optimal solution η(ρ) to the latter problem according
to

φ∗ρ(ζ) = 1
2η(ρ)ζT ζ

+
d

4

[
ln

(
1− σ̂2η(ρ)

1 + σ̂2η(ρ)

)
− σ̂2(1− σ2/σ2)η(ρ)− ρ2η(ρ)

1− σ̂2η(ρ)

]
︸ ︷︷ ︸

a(ρ)

,

Risk[φ∗ρ|P1,P2] ≤ Risk(ρ) := eOpt(ρ).
(2.197)

Observe that R does not appear in (2.197) at all. Now, it is immediately seen
that Opt(ρ) → 0 as ρ → +0 and Opt(ρ) → −∞ as ρ → +∞, implying that given
κ ∈ (0, 1), we can easily find by bisection ρ = ρ(κ) such that Risk(ρ) = κ; in what
follows, we assume w.l.o.g. that R > ρ(κ) for the value of κ we end with, see below.
Next, let us pass from the detector φ∗ρ(κ)(·) to its shift

φ∗,κ(ζ) = φ∗ρ(κ)(ζ) + ln(ε/κ),

so that for the simple test T κ which, given observation ζ, accepts G1 and rejects

G
ρ(κ)
2 whenever φ∗,κ(ζ) ≥ 0, and accepts G

ρ(κ)
2 and rejects G1 otherwise, it holds

Risk1(T κ|G1, G
ρ(κ)
2 ) ≤ κ2

ε
, Risk2(T κ|G1, G

ρ(κ)
2 ) ≤ ε, (2.198)

see Proposition 2.16 and (2.52).
We are nearly done. Given κ ∈ (0, 1), consider the system of tests T κt , t =

2, 3, ...,K, as follows. At time t ∈ {2, 3, ...,K}, given observations ω1, ..., ωt stem-
ming from (2.195), let us form the vector

ζt = ωt − ω1

and compute the quantity φ∗,κ(ζt). If this quantity is negative, we claim that the
change has already taken place and terminate, otherwise we claim that so far, there
was no change, and proceed to time t+ 1 (if t < K) or terminate (if t = K).



164

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 2

The risk analysis for the resulting system of inferences is immediate. Observe
that

(!) For every t = 2, 3, ...,K:

A. if there is no change on time horizon 1, ..., t: x1 = x2 = ... = xt, then the
probability for T κt to conclude that there was a change is at most κ2/ε;

B. if, on the other hand, ‖xt − x1‖22 ≥ ρ2, then the probability for T κt to
conclude that so far there was no change is at most ε.

Indeed, we clearly have

ζt = [xt − x1] + ξt,

where ξt = ξt− ξ1 ∼ N (0, σ2Id) with σ ∈ [
√

2σ,
√

2σ]. Our actions at time t
are nothing but application of the test T κ to the observation ζt. In the case
of A the distribution of this observation obeys the hypothesis G1, and the
probability for T κt to claim that there was a change is at most κ2/ε by the
first inequality in (2.198). In the case of B, the distribution of ζt obeys the

hypothesis G
ρ(κ)
2 , and thus the probability for T κt to claim that there was

no change on time horizon 1, ..., t is ≤ ε by the second inequality in (2.198).

In view of (!), the probability of false alarm for the system of inferences {T κt }Kt=2

is at most (K − 1)κ2/ε, and specifying κ as

κ =
√
εε/(K − 1),

we make this probability ≤ ε. The resulting procedure, by the same (!), detects a
change at time t ∈ {2, 3, ...,K} with probability at least 1 − ε, provided that the
energy of this change is at least ρ2

∗, with

ρ∗ = ρ
(√

εε/(K − 1)
)
, (2.199)

In fact we can say a bit more:

Proposition 2.53. Let the deterministic sequence x1, ..., xK underlying observa-
tions (2.195) be such that for some t it holds ‖xt − x1‖22 ≥ ρ2

∗, with ρ∗ given by
(2.199). Then the probability for the system of inferences we have built to detect a
change at time t or earlier is at least 1− ε.

Indeed, under the premise of Proposition, the probability for T κt to claim that a
change already took place is at least 1− ε, and this probability can be only smaller
than the probability to detect change on time horizon 2, 3, ..., t.

How it works. As applied to the “movie” story we started with, the outlined
procedure works as follows. The images in question are of the size 256 × 256, so
that we are in the case of d = 2562 = 65536. The images are represented by 2D
arrays in gray scale, that is, as 256×256 matrices with entries in the range [0, 255].
In the experiment to be reported (same as in the movie) we assumed the maximal
noise intensity σ to be 10, and used σ = σ/

√
2. The reliability tolerances ε, ε were

set to 0.01, and K was set to 9, resulting in

ρ2
∗ = 7.38 · 106,
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which corresponds to the per pixel energy ρ2
∗/65536 = 112.68 – just by 12% above

the allowed expected per pixel energy of noise (the latter is σ2 = 100). The resulting
detector is

φ∗(ζ) = −2.7138
ζT ζ

105
+ 366.9548;

in other words, test T κt claims that the change took place when the average, over
pixels, per pixel energy in the difference ωt − ω1 is at least 206.33, which is pretty
close to the expected per pixel energy (200.0) in the noise ξt − ξ1 affecting the
difference ωt − ω1.

Finally, this is how the just described system of inferences worked in simulations.
The underlying sequence of images was obtained from the “basic sequence”

x̄t = G+ 0.0357(t− 1)(L−G), t = 1, 2, ...37 (2.200)

where G is the image of the gentlemen and L is the image of the lady (up to noise,
these are the first and the last frames on Figure 2.5). To get the observations in
a particular simulation, we augmented this sequence from the left by a random
number of images G, took the first 9 images in the resulting sequence, and added
to them independent across the images observation noises drawn at random from
N (0, 100I65536). Augmentation was carried out in such a way that with probability
1/2, there was no change on the time horizon 1,2,...,9, and with probability 0.5
there was a change at time instant τ chosen at random according to uniform distri-
bution on {2, 3, ..., 9}. In 3000 simulations of this type, not a single false alarm was
observed, while the empirical probability of a miss was 0.0553. It should be added
that the actual energy of a change, if any, that is, 0.03572‖L − G‖2F , was “just”
3.37 ·105, that is, it was by factor ≈ 21 less than the energy of change ρ2

∗ which our
inferences are bound to detect with probability at least 0.99. And in the series of
3000 experiments we have reported, there was no “no detection” simulations where
maxt≤K ‖xt − x1‖22 was above ρ2

∗ (that is, no simulations where Proposition 2.53
ensures detectability with probability at least 0.99, and in fact the change is not
detected). Thus, all misses came from simulations which are not covered by our
risk guarantees38. Moreover, the change at time t, if detected, never was detected
with a delay more than 1.

Finally, in the particular “movie” we started with, the change takes place at
time t = 3, and the system of inferences we have just developed discovered the
change at time 4. How this compares to the time at which you managed to detect
the change?

“Numerical near-optimality.” Beyond the realm of simple o.s.’s we have no
theoretical guarantees of near-optimality for the inferences we are developing; this
does not mean, however, that we cannot quantify conservatism of our techniques

38A reader can be surprised – how happens that with actual energy of change 20 times less
than the “theoretical threshold” ρ2

∗, in our experiments, the empirical probability of a miss was as
low as 5%, instead of being 50% or 100%. A plausible explanation is as follows: our performance
guarantees are given by worst-case oriented theoretical analysis , and in random simulations we
usually do not generate the “worst case” situations. For example, with model (2.200), the change,
when happens, is of energy 20 times below the threshold; however, 3 time units after the change,
the quantity ‖xt − x1‖22 becomes 16 times larger the energy of change, so that by Proposition
2.53, already worst-case analysis shows that there are good chances to detect the change when it
happens “deeply inside” the observation horizon.
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numerically. To give an example, let us forget, for the sake of simplicity, about
change detection per se and focus on the auxiliary problem we have introduced
above, the one on deciding upon hypotheses G1 and Gρ2 via observation (2.196),
and let our goal be to decide on these two hypotheses from a single observation with
risk ≤ ε, for a given ε ∈ (0, 1). Whether this is possible or not, it depends on ρ; let
us denote by ρ+ the smallest ρ for which we can meet the risk specification with
our detector-based approach (ρ+ is nothing but what was above called ρ(ε)), and
by ρ – the smallest ρ for which “in the nature” there exists a simple test deciding
on G1 vs. Gρ2 with risk ≤ ε. We can look at the ratio ρ+/ρ as at the “index of
conservatism” of our approach. Now, ρ+ is given by an efficient computation; what
about ρ ? Well, there is a simple way to get a lower bound on ρ, namely, as follows.
Observe that if the two composite hypotheses G1, Gρ2 can be decided upon with risk
≤ ε, the same holds true for two simple hypotheses stating that the distribution
of observation (2.196) is P1, respectively, P2, where P1, P2 correspond to the cases
when

• (P1): ζ is drawn from N (0, 2σ2Id)
• (P2): ζ is obtained by adding N (0, 2σ2Id)-noise to a random, independent of the

noise, signal u uniformly distributed on the sphere {‖u‖2 = ρ}.

Indeed, P1 obeys hypothesis G1, and P2 is a mixture of distributions obeying Gρ2;
as a result, a simple test T deciding (1 − ε)-reliably on G1 vs. Gρ2 would induce
a test deciding equally reliably on P1 vs. P2, specifically, the test which, given
observation ζ, accepts P1 if T on the same observation accepts G1, and accepts P2

otherwise.
Now, we can use two-point lower bound (Proposition 2.2) to lower-bound the

risk of deciding on P1 vs. P2; since both distributions are spherically symmet-
ric, computing this bound reduces to computing similar bound for the univariate
distributions of ζT ζ induced by P1 and P2, and these univariate distributions are
easy to compute. The resulting lower risk bound depends on ρ, and we can find
the smallest ρ for which the bound is ≥ 0.01, and use this ρ in the role of ρ; the
associated indexes of conservatism can be only larger than the true ones. Let us
look what are these indexes for the data used in our change detection experiment,
that is, ε = 0.01, d = 2562 = 65536, σ = 10, σ = σ/

√
2. Computation shows that

in this case we have
ρ+ = 2702.4, ρ+/ρ ≤ 1.04

– nearly no conservatism at all! When eliminating the uncertainty in the intensity
of noise by increasing σ from σ/

√
2 to σ, we get

ρ+ = 668.46, ρ+/ρ ≤ 1.15

– still not that much of conservatism!

2.10 EXERCISES FOR LECTURE 2

† marks more difficult exercises.
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2.10.1 Two-point lower risk bound

Exercise 2.54. Let p and q be two distinct from each other probability distributions
on d-element observation space Ω = {1, ..., d}, and consider two simple hypotheses
on the distribution of observation ω ∈ Ω, H1 : ω ∼ p, and H2 : ω ∼ q.

1. Is it true that there always exists a simple deterministic test deciding on H1, H2

with risk < 1/2?
2. Is it true that there always exists a simple randomized test deciding on H1, H2

with risk < 1/2?
3. Is it true that when quasi-stationary K-repeated observations are allowed, one

can decide on H1, H2 with a whatever small risk, provided K is large enough?

2.10.2 Around Euclidean Separation

Exercise 2.55. Justify the “immediate observation” in Section 2.2.2.3.B.

Exercise 2.56. 1. Prove Proposition 2.11.
Hint: You can find useful the following simple observation (prove it, provided
you indeed use it):

Let f(ω), g(ω) be probability densities taken w.r.t. a reference measure
P on an observation space Ω, and let ε ∈ (0, 1/2] be such that∫

Ω

min[f(ω), g(ω)]P (dω) ≤ 2ε.

Then

2ε̄ :=

∫
Ω

√
f(ω)g(ω)P (dω) ≤ 2

√
ε(1− ε).

2. Justify Illustration in Section 2.2.3.2.C.

2.10.3 Hypothesis testing via `1-separation

Let d be a positive integer, and the observation space Ω be the finite set {1, ..., d}
equipped with the counting reference measure39. Probability distributions on Ω
can be identified with points p of d-dimensional probabilistic simplex

∆d = {p ∈ Rd : p ≥ 0,
∑
i

pi = 1};

i-th entry pi in p ∈∆d is the probability for the distributed according to p random
variable to take value i ∈ {1, ..., d}. With this interpretation, p is the probability
density taken w.r.t. the counting measure on Ω.

Assume B and W are two nonintersecting nonempty closed convex subsets of
∆d; we interpret B and W as black and white probability distributions on Ω, and
our goal is to find optimal, in terms of its total risk, test deciding on the hypotheses

H1 : p ∈ B, H2 : p ∈W

39Counting measure is the measure on a discrete (finite or countable) set Ω which assigns
every point of Ω with mass 1, so that the measure of a subset of Ω is the cardinality of the subset
when it is finite and is +∞ otherwise.
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via a single observation ω ∼ p.
Warning: Everywhere in this Section, “test” means “simple test.”

Exercise 2.57. Consider the convex optimization problem

Opt = min
p∈B,q∈W

[
f(p, q) :=

d∑
i=1

|pi − qi|

]
(2.201)

and let (p∗, q∗) be an optimal solution to this problem (it clearly exists).

1. Extract from optimality conditions that there exist reals ρi ∈ [−1, 1], 1 ≤ i ≤ n,
such that

ρi =

{
1, p∗i > q∗i
−1, p∗i < q∗i

(2.202)

and
ρT (p− p∗) ≥ 0∀p ∈ B & ρT (q − q∗) ≤ 0 ∀q ∈W. (2.203)

2. Extract from the previous item that the test T which, given an observation
ω ∈ {1, ..., d}, accepts H1 with probability πω = (1 + ρω)/2 and accepts H2 with
complementary probability, has total risk equal to∑

ω∈Ω

min[p∗ω, q
∗
ω] (2.204)

and thus is minimax optimal in terms of the total risk.

Comments. Exercise 2.57 describes an efficiently computable and optimal in
terms of worst-case total risk simple test deciding on a pair of “convex” compos-
ite hypotheses on the distribution of a discrete random variable. While it seems
an attractive result, we believe by itself this result is useless, since usually in the
testing problem in question a single observation by far is not enough for a reason-
able inference; such an inference requires observing several independent realizations
ω1, ..., ωK of the random variable in question. And construction presented in Exer-
cise 2.57 says nothing on how to adjust the test to the case of repeated observation.
Of course, when ωK = (ω1, ..., ωK) is K-element i.i.d. sample drawn from a proba-
bility distribution p on Ω = {1, ..., d}, ωK can be thought of as a single observation
of discrete random variable taking value in the set ΩK = Ω× ...× Ω︸ ︷︷ ︸

K

, the prob-

ability distribution pK of ωK being readily given by p; so why not to apply the
construction from Exercise 2.57 to ωK in the role of ω? On a close inspection,
this idea fails. One serious reason for this failure is that the cardinality of ΩK

(which, among other factors, is responsible for the computational complexity of
building the test in Exercise 2.57) blows up exponentially as K grows. Another,
even more serious, complication is that pK depends on p nonlinearly, so that the
family of distributions pK of ωK induced by a convex family of distributions p of
ω, convexity meaning that p’s in question fill a convex subset of the probabilistic
simplex, is not convex; and convexity of the sets B, W in the context of Exercise
2.57 is crucial. Thus, passing from single realization of discrete random variable
to the sample of K > 1 independent realizations of the variable results in severe
structural and quantitative complications “killing,” at least at the first glance, the
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approach undertaken in Exercise 2.57.
In spite of the above pessimistic conclusions, the single-observation test from

Exercise 2.57 admits a meaningful multi-observation modification, which is the
subject of our next Exercise.

Exercise 2.58. There is a straightforward way to use the optimal, in terms of its to-
tal risk, single-observation test built in Exercise 2.57 in the “multi-observation” en-
vironment. Specifically, following the notation from Exercise 2.57, let ρ ∈ Rd, p∗, q∗

be the entities built in this Exercise, so that p∗ ∈ B, q∗ ∈W , all entries in ρ belong
to [−1, 1], and

{ρT p ≥ α := ρT p∗ ∀p ∈ B} & {ρT q ≤ β := ρT q∗ ∀q ∈W}
& α− β = ρT [p∗ − q∗] = ‖p∗ − q∗‖1.

Given an i.i.d. sample ωK = (ω1, ..., ωK) with ωt ∼ p, where p ∈ B ∪ W , we
could try to decide on the hypotheses H1 : p ∈ B, H2 : p ∈ W as follows. Let us
set ζt = ρωt . For large K the observable, given ωK , quantity ζK := 1

K

∑K
t=1 ζt,

by the Law of Large Numbers, will be with overwhelming probability close to
Eω∼p{ρω} = ρT p, and the latter quantity is ≥ α when p ∈ B and is ≤ β < α when
p ∈ W . Consequently, selecting a “comparison level” ` ∈ (β, α), we can decide on
the hypotheses p ∈ B vs. p ∈W by computing ζK , comparing the result with `, and
accepting the hypothesis p ∈ B when ζK ≥ `, otherwise accepting the alternative
p ∈W . The goal of this Exercise is to quantify the above qualitative considerations.
To this end let us fix ` ∈ (β, α) and K and ask ourselves the following questions:

A. For p ∈ B, how to upper-bound the probability ProbpK{ζK ≤ `} ?
B. For p ∈W , how to upper-bound the probability ProbpK{ζK ≥ `} ?

Here pK is the probability distribution of the i.i.d. sample ωK = (ω1, ..., ωK) with
ωt ∼ p.

The simplest way to answer these questions is to use Bernstein’s bounding
scheme. Specifically, to answer question A, let us select γ ≥ 0 and observe that for
every probability distribution p on {1, 2, ..., d} it holds

ProbpK
{
ζK ≤ `

}︸ ︷︷ ︸
πK,−[p]

exp{−γ`} ≤ EpK

{
exp{−γζK}

}
=

[
d∑
i=1

pi exp{− 1

K
γρi}

]K
,

whence

ln(πK,−[p]) ≤ K ln

(
d∑
i=1

pi exp{− 1

K
γρi}

)
+ γ`,

implying, via substitution γ = µK, that

∀µ ≥ 0 : ln(πK,−[p]) ≤ Kψ−(µ, p), ψ−(µ, p) = ln

(
d∑
i=1

pi exp{−µρi}

)
+ µ`.

Similarly, setting πK,+[p] = ProbpK
{
ζK ≥ `

}
, we get

∀ν ≥ 0 : ln(πK,+[p]) ≤ Kψ+(ν, p), ψ+(ν, p) = ln

(
d∑
i=1

pi exp{νρi}

)
− ν`.
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Now goes the exercise:

1. Extract from the above observations that

Risk(T K,`|H1, H2) ≤ exp{Kκ}, κ = max

[
max
p∈B

inf
µ≥0

ψ−(µ, p),max
q∈W

inf
ν≥0

ψ+(ν, q)

]
,

where T K,` is the K-observation test which accepts the hypothesis H1 : p ∈ B
when ζK ≥ ` and accepts the hypothesis H2 : p ∈W otherwise.

2. Verify that ψ−(µ, p) is convex in µ and concave in p, and similarly for ψ+(ν, q),
so that

max
p∈B

inf
µ≥0

ψ−(µ, p) = inf
µ≥0

max
p∈B

ψ−(µ, p), max
q∈W

inf
ν≥0

ψ+(ν, q) = inf
ν≥0

max
q∈W

ψ+(ν, q)

Thus, computing κ reduces to minimizing on the nonnegative ray the convex
functions φ−(µ) = maxp∈B ψ+(µ, p) and φ+(ν) = maxq∈W ψ+(ν, q).

3. Prove that when ` = 1
2 [α+ β], one has

κ ≤ − 1

12
∆2, ∆ = α− β = ‖p∗ − q∗‖1. (2.205)

Note that the above test and the quantity κ responsible for the upper bound on its
risk depend, as on a parameter, on the “acceptance level” ` ∈ (β, α). The simplest
way to select a reasonable value of ` is to minimize κ over an equidistant grid
Γ ⊂ (β, α), of small cardinality, of values of `.

Now let us consider an alternative way to pass from a “good” single-observation
test to its multi-observation version. Our ”building block” now is the minimum risk
randomized single-observation test40, and its multi-observation modification is just
the majority version of this building block. Our first observation is that building
the minimum risk single-observation test reduces to solving a convex optimization
problem:

Exercise 2.59. Let, as above, B and W be nonempty nonintersecting closed convex
subsets of probabilistic simplex ∆d. Demonstrate that the problem of finding the
best, in terms of its risk, randomized single-observation test deciding on H1 : p ∈ B
vs. H2 : p ∈ W via observation ω ∼ p reduces to solving a convex optimization
problem. Write down this problem as an explicit LO program when B and W are
polyhedral sets given by polyhedral representations:

B = {p : ∃u : PBp+QBu ≤ aB},
W = {p : ∃u : PW p+QWu ≤ aW }.

We see that the “ideal building block” – the minimum-risk single-observation
test – can be built efficiently. What is at this point unclear, is whether this block is
of any use for majority modifications, that is, whether it is true that the risk of this
test is < 1/2 – this is what we need to get the possibility for low-risk testing from
repeated observations via majority version of the minimum-risk single-observation
test.

40this test can differ from the one built in Exercise 2.57 – the latter test is optimal in terms
of the sum, rather than the maximum, of its partial risks.
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Exercise 2.60. Extract from Exercise 2.57 that in the situation of this Section,
denoting by ∆ the optimal value in the optimization problem (2.201), one has

1. The risk of any single-observation test, deterministic or randomized alike, is
≥ 1

2 −
∆
4

2. There exists a single-observation randomized test with risk ≤ 1
2 −

∆
8 , and thus

the risk of the minimum risk single-observation test given by Exercise 2.59 does
not exceed 1

2 −
∆
8 < 1/2 as well.

Pay attention to the fact that ∆ > 0 (since, by assumption,. B and W do not
intersect).

The bottom line is that in the situation of this Section, given a target value ε of
risk and assuming stationary repeated observations are allowed, we have (at least)
three options to meet the risk specifications:

1. To start with the optimal, in terms of its total risk, single-observation detector
as explained in Exercise 2.57, and the to pass to its multi-observation version
built in Exercise 2.58;

2. To use the majority version of the minimum-risk randomized single-observation
test built in Exercise 2.59;

3. To use the test based on the minimum risk detector for B,W , as explained in
the main body of Lecture 2.

In all cases, the number K of observations should be specified as “presumably the
smallest” K ensuring that the risk of the resulting multi-observation test is at most
a given target ε; this K can be easily specified by utilizing the results on the risk
of a detector-based test in a Discrete o.s. from the main body of Lecture 2 along
with risk-related results of Exercises 2.58, 2.59.

Exercise 2.61. Run numerical experimentation to get an idea whether one of the
three options above always dominates other options (that is, requires smaller sample
of observations to ensure the same risk).

Now let us focus on theoretical comparison of the detector-based test and the
majority version of the minimum-risk single-observation test (options 1 and 2 above)
in the general situation described in the beginning of Section 2.10.3. Given ε ∈
(0, 1), the corresponding sample sizes, Kd and Km, are completely specified each
by its own “measure of closeness” between B and W . Specifically,

• For Kd, the closeness measure is

ρd(B,W ) = 1− max
p∈B,q∈W

∑
ω

√
pωqω; (2.206)

1 − ρd(B,W ) is the minimal risk of a detector for B,W , and for ρd(B,W ) and
ε small, we have Kd ≈ ln(1/ε)/ρd(B,W ) (why?).
• Given ε, Km is fully specified by the minimal risk ρ of simple randomized single-

observation test T deciding on the associated with B, W hypotheses; by Exercise
2.60, we have ρ = 1

2 − δ, where δ is within absolute constant factor of the
optimal value ∆ = minp∈B,q∈W ‖p − q‖1 of (2.201). The risk bound for the K-
observation majority version of T is the probability to get at least K/2 heads
in K independent tosses of coin with probability to get head in a single toss
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equal to ρ = 1/2 − δ. When ρ is not close to 0 and ε is small, the (1 − ε)-
quantile of the number of heads in our K coin tosses is Kρ+O(1)

√
K ln(1/ε) =

K/2−δK+O(1)
√
K ln(1/ε) (why?). Km is the smallest K for which this quantile

is < K/2, so that Km is of order of ln(1/ε)/δ2, or, which is the same, of order of
ln(1/ε)/∆2. We see that the “responsible for Km” closeness between B and W
is

ρm(B,W ) = ∆2 =

[
min

p∈B,q∈W
‖p− q‖1

]2

, (2.207)

and Km is of order of ln(1/ε)/ρm(B,W ).

The goal of the next exercise is to compare ρb and ρm.

Exercise 2.62. . Prove that in the situation of this Section one has

1

8
ρm(B,W ) ≤ ρd(B,W ) ≤ 1

2

√
ρm(B,W ). (2.208)

Relation (2.208) suggests that while Kd never is “much larger” than Km (this
we know in advance: in repeated version of Discrete o.s., properly built detector-
based test provably is nearly optimal), but Km could be much larger than Kd. This
indeed is the case:

Exercise 2.63. Given δ ∈ (0, 1/2), let B = {[δ; 0; 1 − δ]} and W = {[0; δ; 1 − δ]}.
Verify that in this case, the numbers of observations Kd and Km resulting in a given
risk ε� 1 of multi-observation tests, as functions of δ are proportional to 1/δ and
1/δ2, respectively. Compare the numbers when ε = 0.01 and δ ∈ {0.01; 0.05; 0.1}.

2.10.4 Miscellaneous exercises

Exercise 2.64. Prove that the conclusion in Proposition 2.20 remains true when the
test T in the premise of Proposition is randomized.

Exercise 2.65. Let p1(ω), p2(ω) be two positive probability densities, taken w.r.t. a
reference measure Π, on an observation space Ω, and let Pχ = {pχ}, χ = 1, 2. Find
the optimal, in terms of its risk, balanced detector for Pχ, χ = 1, 2.

Exercise 2.66. Recall that the exponential, with parameter µ > 0, distribution on
Ω = R+ is the distribution with the density pµ(ω) = µe−µω, ω ≥ 0. Given positive
reals α < β, consider two families of exponential distributions, P1 = {pµ : 0 <
µ ≤ α}, and P2 = {pµ : µ ≥ β}. Build the optimal, in terms of its risk, balanced
detector for P1, P2. What happens with the risk of the detector you have built
when the families Pχ, χ = 1, 2, are replaced with their convex hulls?

Exercise 2.67. [Follow-up to Exercise 2.66] Assume that the “lifetime” ζ of a light-
bulb is a realization of random variable with exponential distribution (i.e., the
density pµ(ζ) = µe−µζ , ζ ≥ 0; in particular, the expected lifetime of a lightbulb in
this model is 1/µ) 41. Given a lot of lightbulbs, you should decide whether they were

41In Reliability, probability distribution of the lifetime ζ of an organism or a technical device

is characterized by the failure rate λ(t) = limdt→+0
Prob{t≤ζ≤t+dt}
dt·Prob{ζ≥t} (so that for small dt, λ(t)dt

is the conditional probability to “die” in the time interval [t, t+dt] provided the lifetime is at least
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produced under normal conditions (resulting in µ ≤ α = 1) or under abnormal ones
(resulting in µ ≥ β = 1.5). To this end, you can select at random K lightbulbs and
test them. How many lightbulbs should you test in order to make a 0.99-reliable
conclusion? Answer this question in the situations when the observation ω in a test
is

1. the lifetime of a lightbulb (i.e., ω ∼ pµ(·))
2. the minimum ω = min[ζ, δ] of the lifetime ζ ∼ pµ(·) of a lightbulb and the allowed

duration δ > 0 of your test (i.e., if the lightbulb you are testing does not “die”
on time horizon δ, you terminate the test)

3. ω = χζ<δ, that is, ω = 1 when ζ < δ, and ω = 0 otherwise; here, as above,
ζ ∼ pµ(·) is the random lifetime of a lightbulb, and δ > 0 is the allowed test
duration (i.e., you observe whether or not a lightbulb “dies” on time horizon δ,
but do not register the lifetime when it is < δ).

Consider the values 0.25, 0.5, 1, 2, 4 of δ.

Exercise 2.68. [Follow-up to Exercise 2.67] In the situation of Exercise 2.67, build
a sequential test for deciding on Null hypothesis “the lifetime of a lightbulb from a
given lot is ζ ∼ pµ(·) with µ ≤ 1” (recall that pµ(z) is the exponential density µe−µz

on the ray {z ≥ 0}) vs. the alternative “the lifetime is ζ ∼ pµ(·) with µ > 1.” In this
test, you can select a number K of lightbulbs from the lot, switch them on at time
0 and record the actual lifetimes of the lightbulbs you are testing. As a result at the
end of (any) observation interval ∆ = [0, δ], you observe K independent realizations
of r.v. min[ζ, δ], where ζ ∼ pµ(·) with some unknown µ. In your sequential test,
you are welcome to make conclusions at the endpoints δ1 < δ2 < ... < δS of several
observation intervals.

Note: We deliberately skip details of problem’s setting; how you decide on these
missing details, is part of your solution to Exercise.

Exercise 2.69. In Section 2.6, we considered a model of elections where every mem-
ber of population was supposed to cast a vote. Enrich the model by incorporating
the option for a voter not to participate in the elections at all. Implement Sequential
test for the resulting model and run simulations.

Exercise 2.70. Work out the following extension of the DOP problem. You are
given two finite sets, Ω1 = {1, ..., I} and Ω2 = {1, ...,M}, along with L nonempty
closed convex subsets Y` of the set

∆IM = {[yim > 0]i,m :

I∑
i=1

M∑
m=1

yim = 1}

of all non-vanishing probability distributions on Ω = Ω1 × Ω2 = {(i,m) : 1 ≤ i ≤
I, 1 ≤ m ≤M}. The sets Y` are such that all distributions from Y` have a common

t). The exponential distribution corresponds to the case of failure rate independent of t; usually,
this indeed is nearly so except for ”very small” and “very large” values of t.
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marginal distribution θ` > 0 of i:

M∑
m=1

yim = θ`i , 1 ≤ i ≤ I, ∀y ∈ Y`, 1 ≤ ` ≤ L.

Your observations ω1, ω2, ... are sampled, independently of each other, from a dis-
tribution partly selected “by nature,” and partly – by you. Specifically, the nature
selects ` ≤ L and a distribution y ∈ Y`, and you select a positive I-dimensional
probabilistic vector q from a given convex compact subset Q of the positive part
of I-dimensional probabilistic simplex. Let y|i be the conditional, i being given,
distribution of m ∈ Ω2 induced by y, so that y|i is the M -dimensional probabilistic
vector with entries

[y|i]m =
yim∑
µ≤M yiµ

=
yim
θ`i

.

In order to generate ωt = (it,mt) ∈ Ω, you draw it at random from the distribution
q, and then the nature draws mt at random from the distribution y|it .

Given closeness relation C, your goal is to decide, up to closeness C, on the hy-
potheses H1, ...,HL, with H` stating that the distribution y selected by the nature
belongs to Y`. Given “observation budget” (a number K of observations ωk you
can use), you want to find a probabilistic vector q which results in the test with as
small C-risk as possible. Pose this Measurement Design problem as an efficiently
solvable convex optimization problem.

Exercise 2.71. [probabilities of deviations from the mean]
The goal of what follows is to present the most straightforward application of

simple families of distributions – bounds on probabilities of deviations of random
vectors from their means.

Let H ⊂ Ω = Rd,M,Φ be a regular data such that 0 ∈ intH, M is compact,
Φ(0;µ) = 0∀µ ∈ M, and Φ(h;µ) is differentiable at h = 0 for every µ ∈ M. Let,
further, P̄ ∈ S[H,M,Φ] and let µ̄ ∈M be a parameter of P̄ . Prove that

1. P̄ possesses expectation e[P̄ ], and

e[P̄ ] = ∇hΦ(0; µ̄)

2. For every linear form eTω on Ω it holds

π := P̄{ω : eT (ω − e[P̄ ]) ≥ 1} ≤ exp

{
sup
µ∈M

inf
t≥0:te∈H

[
Φ(te; µ̄)− teT∇hΦ(0; µ̄)− t

]}
.

(2.209)

Exercise 2.72. [testing convex hypotheses on mixtures] Consider the situation as
follows. For given positive integers K, L and for χ = 1, 2, given are

• nonempty convex compact signal sets Uχ ⊂ Rnχ

• regular data Hχk` ⊂ Rdk ,Mχ
k`,Φ

χ
k`, and affine mappings

uχ 7→ Aχk`[uχ; 1] : Rnχ → Rdk

such that
uχ ∈ Uχ ⇒ Aχk`[uχ; 1] ∈Mχ

k`,
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1 ≤ k ≤ K, 1 ≤ ` ≤ L,
• probability vectors µk = [µk1 ; ...;µkL], 1 ≤ k ≤ K.

We can associate with the outlined data families of probability distributions Pχ on
the observation space Ω = Rd1× ...×RdK as follows. For χ = 1, 2, Pχ is comprised
of all probability distributions P of random vectors ωK = [ω1; ...;ωK ] ∈ Ω generated
as follows:
We select

• a signal u ∈ Uχ,
• a collection of probability distributions Pk` ∈ S[Hχk`,M

χ
k`,Φ

χ
k`], 1 ≤ k ≤ K,

1 ≤ ` ≤ L, in such a way that Aχk`[uχ; 1] is a parameter of Pk`:

∀h ∈ Hχk` : ln
(
Eωk∼Pk`e

hTωk
)
≤ Φχk`(hk;Aχk`[uχ; 1]);

• we generate the components ωk, k = 1, ...,K, independently across k, from µk-
mixture Π[{Pk`}L`=1, µ] of distributions Pk`, ` = 1, ..., L, that is, draw at random,
from distribution µk on {1, ..., L}, index `, and then draw ωk from the distribution
Pk`.

Prove that setting

Hχ = {h = [h1; ...;hK ] ∈ Rd=d1+...+dK : hk ∈
L⋂
`=1

Hχk`, 1 ≤ k ≤ K},

Mχ = {0} ⊂ R,

Φχ(h;µ) =
∑K
k=1 ln

(∑L
`=1 µ

k
` max
uχ∈Uχ

Φχk`(hk;Aχk`[uχ; 1])

)
: Hχ ×Mχ → R,

we get regular data such that

Pχ ⊂ S[Hχ,Mχ,Φχ].

Explain how to use this observation to compute via Convex Programming affine
detector, along with its risk, for the families of distributions P1,P2.

Exercise 2.73. [mixture of sub-Gaussian distributions] Let P` be sub-Gaussian dis-
tributions on Rd with sub-Gaussianity parameters θ`,Θ, 1 ≤ ` ≤ L, with a com-
mon Θ-parameter, and let ν = [ν1; ...; νL] be a probabilistic vector. Consider the
ν-mixture P = Π[PL, ν] of distributions P`, so that ω ∼ P is generated as follows:
we draw at random from distribution ν index ` and then draw ω at random from
distribution P`. Prove that P is sub-Gaussian with sub-Gaussianity parameters
θ̄ =

∑
` ν`θ` and Θ̄, with (any) Θ̄ chosen to satisfy

Θ̄ � Θ +
6

5
[θ` − θ̄][θ` − θ̄]T ∀`,

in particular, according to any one of the following rules:

1. Θ̄ = Θ +
(

6
5 max` ‖θ` − θ̄‖22

)
Id,

2. Θ̄ = Θ + 6
5

∑
`(θ` − θ̄)(θ` − θ̄)T ,

3. Θ̄ = Θ + 6
5

∑
` θ`θ

T
` , provided that ν1 = ... = νL = 1/L,
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Exercise 2.74. The goal of this Exercise is to give a simple sufficient condition for
quadratic lift “to work” in the Gaussian case. Specifically, let Aχ, Uχ, Vχ, Gχ,
χ = 1, 2, be as in Section 2.9.3, with the only difference that now we do not assume
the compact sets Uχ to be convex, and let Zχ be convex compact subsets of the
sets Znχ , see (2.164), such that

[uχ; 1][uχ; 1]T ∈ Zχ ∀uχ ∈ Uχ, χ = 1, 2.

Augmenting the above data with Θ
(∗)
χ , δχ such that V = Vχ, Θ∗ = Θ

(χ)
∗ , δ = δχ

satisfy (2.165), χ = 1, 2, and invoking Proposition 2.46.ii, we get at our disposal a
quadratic detector φlift such that

Risk[φlift|G1,G2] ≤ exp{−SadVallift},

with SadVallift given by (2.172). A natural question is, when SadVallift is negative,
meaning that our quadratic detector indeed “is working” – its risk is < 1, implying
that when repeated observations are allowed, tests based upon this detector allow to
decide on the hypotheses Hχ : P ∈ Gχ, χ = 1, 2, on the distribution of observation
ζ ∼ P with a whatever small desired risk ε ∈ (0, 1). With our computation-
oriented ideology, this is not too important question, since we can answer it via
efficient computation. This being said, there is no harm in a “theoretical” answer
which could provide us with an additional insight. The goal of the Exercise is to
justify a simple result on the subject. Here is the Exercise:

In the situation in question, assume that V1 = V2 = {Θ∗}, which allows to set

Θ
(χ)
∗ = Θ∗, δχ = 0, χ = 1, 2. Prove that in the case in question a necessary and

sufficient condition for SadVallift to be negative is that the convex compact sets

Uχ = {BχZBTχ : Z ∈ Zχ} ⊂ Sd+1
+ , χ = 1, 2

do not intersect with each other.

Exercise 2.75. Prove if X is a nonempty convex compact set in Rd, then the func-
tion Φ̂(h;µ) given by (2.144) is real-valued and continuous on Rd×X and is convex
in h and concave in µ.

2.11 PROOFS

2.11.1 Proof of Claim in Remark 2.10

What we should prove is that is p = [p1; ...; pK ] ∈ B = [0, 1]K , then the probability
PM (p) of the event

The total number of heads in K independent coin tosses, with probability
pk to get head in k-th toss, is at least M

is a nondecreasing function of p: if p′ ≤ p′′, p′, p′′ ∈ B, then PM (p′) ≤ PM (p′′). To
see it, let us associate with p ∈ B a subset of B, specifically, Bp = {x ∈ B : 0 ≤
xk ≤ pk, 1 ≤ k ≤ K}, and a function χp(x) : B → {0, 1} which is equal to 0 at
every point x ∈ B where the number of entries xk satisfying xk ≤ pk is less than
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M , and is equal to 1 otherwise. It is immediately seen that

PM (p) ≡
∫
B

χp(x)dx (2.210)

(since with respect to the uniform distribution on B, the events Ek = {x ∈ B :
xk ≤ pk} are independent across k and have probabilities pk, and the right hand
side in (2.210) is exactly the probability, taken w.r.t. the uniform distribution on
B, of the event “at least M of the events E1,..., EK take place”). But the right
hand side in (2.33) clearly is nondecreasing in p ∈ B, since χp, by construction, is
the characteristic function of the set

B[p] = {x : at least M of the entries xk in x satisfy xk ≤ pk},

and these sets clearly grow when p is entrywise increased. 2

2.11.2 Proof of Proposition 2.8 in the case of quasi-stationary
K-repeated observations

2.11.2.A Situation and goal. We are in the case QS, see Section 2.2.3.1, of the
situation described in the beginning of Section 2.2.3; it suffices to verify that if H`,
` ∈ {1, 2}, is true, then the probability for T maj

K to reject H` is at most the quantity
εK defined in (2.25). Let us verify this statement in the case of ` = 1; the reasoning
for ` = 2 “mirrors” the one to follow.

It is clear that our situation and goal can be formulated as follows:

• “In the nature” there exists a random sequence ζK = (ζ1, ..., ζK) of driving fac-
tors and collection of deterministic functions θk(ζk = (ζ1, ..., ζk)) 42 such that
our k-th observation is ωk = θk(ζk). Besides this, the conditional, ζk−1 given,
distribution Pωk|ζk−1 of ωk always belongs to the family P1 comprised of distri-
butions of random vectors of the form x + ξ, where deterministic x belongs to
X1 and the distribution of ξ belongs to Pdγ .

• There exist deterministic functions χk : Ω→ {0, 1} and integer M, 1 ≤M ≤ K,
such that the test T maj

K , as applied to observation ωK = (ω1, ..., ωK), rejects H1

if and only if the number of ones among the quantities χk(ωk), 1 ≤ k ≤ K, is at
least M .
In the situation of Proposition 2.8, M =cK/2b and χk(·) are in fact independent
of k: χk(ω) = 1 if and only if φ(ω) ≤ 0 43.

• What we know is that the conditional, ζk−1 being given, probability of the event
χk(ωk = θk(ζk)) = 1 is at most ε?:

Pωk|ζk−1{ωk : χk(ωk) = 1} ≤ ε? ∀ζk−1.

42as always, given a K-element sequence, say, ζ1, ..., ζK , we write ζt, t ≤ K, as a shorthand
for the fragment ζ1, ..., ζt of this sequence.

43in fact, we need to write φ(ω) < 0 instead of φ(ω) ≤ 0; we replace the strict inequality with
its nonstrict version in order to make our reasoning applicable to the case of ` = 2, where nonstrict
inequalities do arise. Clearly, replacing in the definition of χk strict inequality with the nonstrict
one, we only increase the “rejection domain” of H1, so that upper bound on the probability of
this domain we are about to get automatically is valid for the true rejection domain.
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Indeed, Pωk|ζk−1 ∈ P1, that is Pωk|ζk−1 ∈ P1. As a result,

Pωk|ζk−1{ωk : φk(ωk) = 1} = Pωk|ζk−1{ωk : φ(ωk) ≤ 0}
= Pωk|ζk−1{ωk : φ(ωk) < 0} ≤ ε?,

where the second equality is due to the fact that φ(ω) is a nonconstant affine
function and Pωk|ζk−1 , along with all distributions from P1, has density, and
the inequality is given by the origin of ε? which upper-bounds the risk of the
single-observation test underlying T maj

K .

What we want to prove is that under the circumstances we have just summarized,
we have

PωK{ωK = (ω1, ..., ωK) : Card{k ≤ K : χk(ωk) = 1} ≥M}
≤ εM =

∑
M≤k≤K

(
K
k

)
εk?(1− ε?)K−k,

(2.211)

where PωK is the distribution of ωK = {ωk = θk(ζk−1)}Kk=1 induced by the distri-
bution of hidden factors. There is nothing to prove when ε? = 1, since in this case
εM = 1. Thus, we assume from now on that ε? < 1.

2.11.2.B Achieving the goal, step 1. Our reasoning, inspired by the one we
used to justify Remark 2.10, is as follows. Consider a sequence of random variables
ηk, 1 ≤ k ≤ K, uniformly distributed on [0, 1] and independent of each other and
of ζK , and consider new driving factors λk = [ζk; ηk] and new observations

µk = [ωk = θk(ζk); ηk] = Θk(λk = (λ1, ..., λk)) 44 (2.212)

driven by these new driving factors, and let

ψk(µk = [ωk; ηk]) = χk(ωk).

It is immediately seen that

• µk = [ωk = θk(ζk); ηk] is a deterministic function, Θk(λk), of λk, and the con-
ditional, λk−1 = [ζk−1; ηk−1] given, distribution Pµk|λk−1 of µk is the product
distribution Pωk|ζk−1 × U on Ω × [0, 1], where U is the uniform distribution on
[0, 1]. In particular,

πk(λk−1) := Pµk|λk−1{µk = [ωk; ηk] : χk(ωk) = 1} = Pωk|ζk−1{ωk : χk(ωk) = 1}
≤ ε?.

(2.213)
• We have

PλK{λK : Card{k ≤ K : ψk(µk = Θk(λk)) = 1} ≥M}
= PωK{ωK = (ω1, ..., ωK) : Card{k ≤ K : χk(ωk) = 1} ≥M},

(2.214)
where PωK is as in (2.211), and Θk(·) is defined in (2.212).

Now let us define ψ+
k (λk) as follows:

• when ψk(Θk(λk)) = 1, or, which is the same, χk(ωk = θk(ζk))) = 1, we set
ψ+
k (λk) = 1 as well;

• when ψk(Θk(λk)) = 0, or, which is the same, χk(ωk = θk(ζk)) = 0, we set
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ψ+
k (λk) = 1 whenever

ηk ≤ γk(λk−1) :=
ε? − πk(λk−1)

1− πk(λk−1)

and ψ+
k (λk) = 0 otherwise.

Let us make the following immediate observations:

(A) Whenever λk is such that ψk(µk = Θk(λk)) = 1, we have also ψ+
k (λk) = 1;

(B) The conditional, λk−1 = [ζk−1; ηk−1] being fixed, probability of the event

ψ+
k (λk) = 1

is exactly ε?.
Indeed, let Pλk|λk−1 be the conditional, λk−1 being fixed, distribution of λk. Let

us fix λk−1. The event E = {λk : ψ+
k (λk) = 1}, by construction, is the union of

two nonoverlapping events:

E1 = {λk = [ζk; ηk] : χk(θk(ζk)) = 1};
E2 = {λk = [ζk; ηk] : χk(θk(ζk)) = 0, ηk ≤ γk(λk)}.

Taking into account that the conditional, λk−1 fixed, distribution of µk = [ωk =
θk(ζk); ηk] is the product distribution Pωk|ζk−1×U , we conclude in view of (2.213)
that

Pλk|λk−1{E1} = Pωk|ζk−1{ωk : χk(ωk) = 1} = πk(λk−1),
Pλk|λk−1{E2} = Pωk|ζk−1{ωk : χk(ωk) = 0}U{η ≤ γk(λk−1)}

= (1− πk(λk−1))γk(λk−1),

which combines with the definition of γk(·) to imply (B).

2.11.2.C Achieving the goal, step 2. By (A) combined with (2.214) we have

PωK{ωK : Card{k ≤ K : χk(ωk) = 1} ≥M}
= PλK{λK : Card{k ≤ K : ψk(µk = Θk(λk)) = 1} ≥M}
≤ PλK{λK : Card{k ≤ K : ψ+

k (λk) = 1} ≥M},

and all we need to verify is that the first quantity in this chain is upper-bounded
by the quantity εM given by (2.211). Invoking the chain and (B), it is enough to
justify the following claim:

(!) Let λK = (λ1, ..., λK) be a random sequence with probability distribu-
tion P , let ψk(λk) take values 0 and 1 only, and let for every k ≤ K the
conditional, λk−1 being fixed, probability for ψ+

k (λk) to take value 1 is, for
all λk−1, equal to ε?. Then the P -probability of the event

{λK : Card{k ≤ K : ψ+
k (λk) = 1} ≥M}

is exactly equal to εM given by (2.211).

This is immediate. For integers k, m, 1 ≤ k ≤ K, m ≥ 0, Let χkm(λk) be the
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characteristic function of the event

{λk : Card{t ≤ k : ψ+
t (λt) = 1} = m},

and let
πkm = P{λK : χkm(λk) = 1}.

We have the following evident recurrence:

χkm(λk) = χk−1
m (λk−1)(1− ψ+

k (λk)) + χk−1
m−1(λk−1)ψ+

k (λk), k = 1, 2, ...

augmented by the “boundary conditions” χ0
m = 0, m > 0, χ0

0 = 1, χk−1
−1 = 0 for all

k ≥ 1. Taking expectation w.r.t. P and utilizing the fact that conditional, λk−1

being given, expectation of ψ+
k (λk) is, identically in λk−1, equal to ε?, we get

πkm = πk−1
m (1−ε?)+πk−1

m−1ε?, k = 1, ...,K, π0
m =

{
1, m = 0
0, m > 0

, πk−1
−1 = 0, k = 1, 2, ...

whence

πkm =

{ (
k
m

)
εm? (1− ε?)k−m, m ≤ k

0, m > k

and therefore

P{λK : Card{k ≤ K : ψ+
k (λk) = 1} ≥M} =

∑
M≤k≤K

πKk = εM ,

as required. 2

2.11.3 Proof of Proposition 2.40

All we need is to verify (2.134) and to check that the right hand side function in
this relation is convex. The latter is evident, since φX(h) + φX(−h) ≥ 2φX(0) = 0
and φX(h) + φX(−h) is convex. To verify (2.134), let us fix P ∈ P[X] and h ∈ Rd

and set
ν = hT e[P ],

so that ν is the expectation of hTω with ω ∼ P . Note that −φX(−h) ≤ ν ≤ φX(h),
so that (2.134) definitely holds true when φX(h) + φX(−h) = 0. Now let

η :=
1

2
[φX(h) + φX(−h)] > 0,

and let

a =
1

2
[φX(h)− φX(−h)] , β = (ν − a)/η.

Denoting by Ph the distribution of hTω induced by the distribution P of ω and
noting that this distribution is supported on [−φX(−h), φX(h)] = [a−η, a+η] and
has expectation ν, we get

β ∈ [−1, 1]

and

γ :=

∫
exp{hTω}P (dω) =

∫ a+η

a−η
[es − λ(s− ν)]Ph(ds)
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for all λ ∈ R. Hence,

ln(γ) ≤ inf
λ

ln

(
max

a−η≤s≤a+η
[es − λ(s− ν)]

)
= a+ inf

ρ
ln

(
max
−η≤t≤η

[et − ρ(t− [ν − a])]

)
= a+ inf

ρ
ln

(
max
−η≤t≤η

[et − ρ(t− ηβ)]

)
≤ a+ ln

(
max
−η≤t≤η

[et − ρ̄(t− ηβ)

)
with ρ̄ = (2η)−1(eη − e−η). The function g(t) = et− ρ̄(t− ηβ) is convex on [−η, η],
and

g(−η) = g(η) = cosh(η) + β sinh(η),

which combines with the above computation to yield the relation

ln(γ) ≤ a+ ln(cosh(η) + β sinh(η)), (2.215)

and all we need to verify is that

∀(η > 0, β ∈ [−1, 1]) : βη +
1

2
η2 − ln(cosh(η) + β sinh(η)) ≥ 0. (2.216)

Indeed, if (2.216) holds true (2.215) implies that

ln(γ) ≤ a+ βη +
1

2
η2 = ν +

1

2
η2,

which, recalling what γ, ν and η are, is exactly what we want to prove.
Verification of (2.216) is as follows. The left hand side in (2.216) is convex in β

for β > − cosh(η)
sinh(η) containing, due to η > 0, the range of β in (2.216). Furthermore,

the minimum of the left hand side of (2.216) over β > − coth(η) is attained when

β = sinh(η)−η cosh(η)
η sinh(η) and is equal to

r(η) =
1

2
η2 + 1− η coth(η)− ln(sinh(η)/η).

All we need to prove is that the latter quantity is nonnegative whenever η > 0. We
have

r′(η) = η − coth(η)− η(1− coth2(η))− coth(η) + η−1 = (η coth(η)− 1)2η−1 ≥ 0,

and since r(+0) = 0, we get r(η) ≥ 0 when η > 0. 2

2.11.4 Proof of Proposition 2.46

2.11.4.A Proof of Proposition 2.46.i

10. Let b = [0; ...; 0; 1] ∈ Rn+1, so that B =

[
A
bT

]
, and let A(u) = A[u; 1]. For

any u ∈ Rn, h ∈ Rd, Θ ∈ Sd+ and H ∈ Sd such that −I ≺ Θ1/2HΘ1/2 ≺ I we have
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Ψ(h,H;u,Θ) := ln
(
Eζ∼N (A(u),Θ)

{
exp{hT ζ + 1

2ζ
THζ}

})
= ln

(
Eξ∼N (0,I)

{
exp{hT [A(u) + Θ1/2ξ] + 1

2 [A(u) + Θ1/2ξ]TH[A(u) + Θ1/2ξ]}
})

= − 1
2 ln Det(I −Θ1/2HΘ1/2) + hTA(u) + 1

2A(u)THA(u)
+ 1

2 [HA(u) + h]TΘ1/2[I −Θ1/2HΘ1/2]−1Θ1/2[HA(u) + h]
= − 1

2 ln Det(I −Θ1/2HΘ1/2) + 1
2 [u; 1]T

[
bhTA+AThbT +ATHA

]
[u; 1]

+ 1
2 [u; 1]T

[
BT [H,h]TΘ1/2[I −Θ1/2HΘ1/2]−1Θ1/2[H,h]B

]
[u; 1]

(2.217)
due to

hTA(u) = [u; 1]T bhTA[u; 1] = [u; 1]TAThbT [u; 1], HA(u) + h = [H,h]B[u; 1].

Observe that when (h,H) ∈ Hγ , we have

Θ1/2[I −Θ1/2HΘ1/2]−1Θ1/2 = [Θ−1 −H]−1 � [Θ−1
∗ −H]−1,

so that (2.217) implies that for all u ∈ Rn, Θ ∈ V, and (h,H) ∈ Hγ ,

Ψ(h,H;u,Θ) ≤ − 1
2 ln Det(I −Θ1/2HΘ1/2)

+ 1
2 [u; 1]T

[
bhTA+AThbT +ATHA+BT [H,h]T [Θ−1

∗ −H]−1[H,h]B
]︸ ︷︷ ︸

Q[H,h]

[u; 1]

= − 1
2 ln Det(I −Θ1/2HΘ1/2) + 1

2Tr(Q[H,h]Z(u))
≤ − 1

2 ln Det(I −Θ1/2HΘ1/2) + ΓZ(h,H),
ΓZ(h,H) = 1

2φZ(Q[H,h])
(2.218)

(we have taken into account that Z(u) ∈ Z when u ∈ U (premise of the proposition)
and therefore Tr(Q[H,h]Z(u)) ≤ φZ(Q[H,h])).

20. We need the following

Lemma 2.76. Let Θ∗ be a d× d symmetric positive definite matrix, let δ ∈ [0, 2],
and let V be a closed convex subset of Sd+ such that

Θ ∈ V ⇒ {Θ � Θ∗} & {‖Θ1/2Θ
−1/2
∗ − I‖ ≤ δ} (2.219)

(cf. (2.165)). Let also Ho := {H ∈ Sd : −Θ−1
∗ ≺ H ≺ Θ−1

∗ }. Then

∀(H,Θ) ∈ Ho × V :
G(H; Θ) := − 1

2 ln Det(I −Θ1/2HΘ1/2)

≤ G+(H; Θ) := − 1
2 ln Det(I −Θ

1/2
∗ HΘ

1/2
∗ ) + 1

2Tr([Θ−Θ∗]H)

+ δ(2+δ)

2(1−‖Θ1/2
∗ HΘ

1/2
∗ ‖)
‖Θ1/2
∗ HΘ

1/2
∗ ‖2F ,

(2.220)

where ‖ · ‖ is the spectral, and ‖ · ‖F - the Frobenius norm of a matrix. In addition,
G+(H,Θ) is continuous function on Ho×V which is convex in H ∈ Ho and concave
(in fact, affine) in Θ ∈ V

Proof. Let us set
d(H) = ‖Θ1/2

∗ HΘ
1/2
∗ ‖,
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so that d(H) < 1 for H ∈ Ho. For H ∈ Ho and Θ ∈ V fixed we have

‖Θ1/2HΘ1/2‖ = ‖[Θ1/2Θ
−1/2
∗ ][Θ

1/2
∗ HΘ

1/2
∗ ][Θ1/2Θ

−1/2
∗ ]T ‖

≤ ‖Θ1/2Θ
−1/2
∗ ‖2‖Θ1/2

∗ HΘ
1/2
∗ ‖ ≤ ‖Θ1/2

∗ HΘ
1/2
∗ ‖ = d(H)

(2.221)

(we have used the fact that 0 � Θ � Θ∗ implies ‖Θ1/2Θ
−1/2
∗ ‖ ≤ 1). Noting that

‖AB‖F ≤ ‖A‖‖B‖F , computation completely similar to the one in (2.221) yields

‖Θ1/2HΘ1/2‖F ≤ ‖Θ1/2
∗ HΘ

1/2
∗ ‖F =: D(H) (2.222)

Besides this, setting F (X) = − ln Det(X) : int Sd+ → R and equipping Sd with the

Frobenius inner product, we have ∇F (X) = −X−1, so that with R0 = Θ
1/2
∗ HΘ

1/2
∗ ,

R1 = Θ1/2HΘ1/2, and ∆ = R1 − R0, we have for properly selected λ ∈ (0, 1) and
Rλ = λR0 + (1− λ)R1:

F (I −R1) = F (I −R0 −∆) = F (I −R0) + 〈∇F (I −Rλ),−∆〉
= F (I −R0) + 〈(I −Rλ)−1,∆〉
= F (I −R0) + 〈I,∆〉+ 〈(I −Rλ)−1 − I,∆〉.

We conclude that

F (I −R1) ≤ F (I −R0) + Tr(∆) + ‖I − (I −Rλ)−1‖F ‖∆‖F . (2.223)

Denoting by µi the eigenvalues of Rλ and noting that ‖Rλ‖ ≤ max[‖R0‖, ‖R1‖] =
d(H) (see (2.221)), we have |µi| ≤ d(H), and therefore eigenvalues νi = 1− 1

1−µi =

− µi
1−µi of I − (I −Rλ)−1 satisfy |νi| ≤ |µi|/(1− µi) ≤ |µi|/(1− d(H)), whence

‖I − (I −Rλ)−1‖F ≤ ‖Rλ‖F /(1− d(H)).

Noting that ‖Rλ‖F ≤ max[‖R0‖F , ‖R1‖F ] ≤ D(H), see (2.222), we conclude that
‖I − (I −Rλ)−1‖F ≤ D(H)/(1− d(H)), so that (2.223) yields

F (I −R1) ≤ F (I −R0) + Tr(∆) +D(H)‖∆‖F /(1− d(H)). (2.224)

Further, by (2.165) the matrix D = Θ1/2Θ
−1/2
∗ − I satisfies ‖D‖ ≤ δ, whence

∆ = Θ1/2HΘ1/2︸ ︷︷ ︸
R1

−Θ
1/2
∗ HΘ

1/2
∗︸ ︷︷ ︸

R0

= (I+D)R0(I+DT )−R0 = DR0+R0D
T+DR0D

T .

Consequently,

‖∆‖F ≤ ‖DR0‖F + ‖R0D
T ‖F + ‖DR0D

T ‖F ≤ [2‖D‖+ ‖D‖2]‖R0‖F
≤ δ(2 + δ)‖R0‖F = δ(2 + δ)D(H).

This combines with (2.224) and the relation

Tr(∆) = Tr(Θ1/2HΘ1/2 −Θ
1/2
∗ HΘ

1/2
∗ ) = Tr([Θ−Θ∗]H)



184

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 2

to yield

F (I −R1) ≤ F (I −R0) + Tr([Θ−Θ∗]H) +
δ(2 + δ)

1− d(H)
‖Θ1/2
∗ HΘ

1/2
∗ ‖2F ,

and we arrive at (2.220). It remains to prove that G+(H; Θ) is convex-concave and
continuous on Ho × V. The only component of this claim which is not completely
evident is convexity of the function in H ∈ Ho; to see that it is the case, note
that ln Det(S) is concave on the interior of the semidefinite cone, the function

f(u, v) = u2

1−v is convex and nondecreasing in u, v in the convex domain Π =

{(u, v) : u ≥ 0, v < 1}, and the function
‖Θ1/2
∗ HΘ1/2

∗ ‖
2
F

1−‖Θ1/2
∗ HΘ

1/2
∗ ‖

is obtained from f by

convex substitution of variables H 7→ (‖Θ1/2
∗ HΘ

1/2
∗ ‖F , ‖Θ1/2

∗ HΘ
1/2
∗ ‖) mapping Ho

into Π. 2

.

30. Combining (2.220), (2.218), (2.167) and the origin of Ψ, see (2.217), we arrive
at

∀((u,Θ) ∈ U × V, (h,H) ∈ Hγ = H) :
ln
(
Eζ∼N (A[u;1],Θ)

{
exp{hT ζ + 1

2ζ
THζ}

})
≤ ΦA,Z(h,H; Θ),

as claimed in (2.170).

40. Now let us check that ΦA,Z(h,H; Θ) : H × V → R is continuous and convex-
concave. Recalling that the function G+(H; Θ) from (2.220) is convex-concave and
continuous onHo×V, all we need to verify is that ΓZ(h,H) is convex and continuous
on H. Recalling that Z is nonempty compact set, the function φZ(·) : Sd+1 → R
is continuous, implying the continuity of ΓZ(h,H) = 1

2φZ(Q[H,h]) on H = Hγ
(Q[H,h] is defined in (2.218)). To prove convexity of ΓZ , note that Z is contained
in Sn+1

+ , implying that φZ(·) is convex and �-monotone. On the other hand, by
Schur Complement Lemma, we have

S := {(h,H,G) : G � Q[H,h], (h,H) ∈ Hγ}

=

{
(h,H,G) :

[
G− [bhTA+AThbT +ATHA] BT [H,h]T

[H,h]B Θ−1
∗ −H

]
� 0,

(h,H) ∈ Hγ
}
,

implying that S is convex. Since φZ(·) is �-monotone, we have

{(h,H, τ) : (h,H) ∈ Hγ , τ ≥ ΓZ(h,H)}
= {(h,H, τ) : ∃G : G � Q[H,h], 2τ ≥ φZ(G), (h,H) ∈ Hγ},

and we see that the epigraph of ΓZ is convex (since the set S and the epigraph of
φZ are so), as claimed.

50. It remains to prove that ΦA,Z is coercive in H,h. Let Θ ∈ V and (hi, Hi) ∈ Hγ
with ‖(hi, Hi)‖ → ∞ as i → ∞, and let us prove that ΦA,Z(hi, Hi; Θ) → ∞.
Looking at the expression for ΦA,Z(hi, Hi; Θ), it is immediately seen that all terms
in this expression, except for the terms coming from φZ(·), remain bounded as
i grows, so that all we need to verify is that the φZ(·)-term goes to ∞ as i →
∞. Observe that Hi are uniformly bounded due to (hi, Hi) ∈ Hγ , implying that
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‖hi‖2 → ∞ as i → ∞. Denoting e = [0; ...; 0; 1] ∈ Rd+1 and, as before, b =
[0; ...; 0; 1] ∈ Rn+1, note that, by construction, BT e = b. Now let W ∈ Z, so
that Wn+1,n+1 = 1. Taking into account that the matrices [Θ−1

∗ − Hi]
−1 satisfy

αId � [Θ−1
∗ −Hi]

−1 � βId for some positive α, β due to Hi ∈ Hγ , observe that[[
Hi hi
hTi

]
+ [Hi, hi]

T
[Θ−1
∗ −Hi]

−1 [Hi, hi]

]
︸ ︷︷ ︸

Qi

=
[
hTi [Θ−1

∗ −Hi]
−1hi

]︸ ︷︷ ︸
αi‖hi‖22

eeT +Ri,

where αi ≥ α > 0 and ‖Ri‖F ≤ C(1 + ‖hi‖2). As a result,

φZ(BTQiB) ≥ Tr(WBTQiB) = Tr(WBT [αi‖hi‖22eeT +Ri]B)

= αi‖hi‖22 Tr(WbbT )︸ ︷︷ ︸
=Wn+1,n+1=1

−‖BWBT ‖F ‖Ri‖F

≥ α‖hi‖22 − C(1 + ‖hi‖2)‖BWBT ‖F ,

and the concluding quantity tends to∞ as i→∞ due to ‖hi‖2 →∞, i→∞. Part
(i) is proved.

2.11.4.B Proof of Proposition 2.46.ii

By (i) the function Φ(h,H; Θ1,Θ2) is continuous and convex-concave on the domain
(H1 ∩H2)︸ ︷︷ ︸

H

× (V1 × V2)︸ ︷︷ ︸
V

and are coercive in (h,H), while H and V are closed and

convex, and V in addition is compact, saddle point problem (2.172) is solvable
(Sion-Kakutani Theorem, a.k.a. Theorem 2.24). Now let (h∗, H∗; Θ∗1,Θ

∗
2) be a

saddle point. To prove (2.174), let P ∈ G1, that is, P = N (A1[u; 1],Θ1) for some
Θ1 ∈ V1 and some u with [u; 1][u; 1]T ∈ Z1. Applying (2.170) to the first collection
of data, with a given by (2.173), we get the first ≤ in the following chain:

ln
(∫

e−
1
2ω

TH∗ω−ωTh∗−aP (dω)
)
≤ ΦA1,Z1

(−h∗,−H∗; Θ1)− a
≤︸︷︷︸
(a)

ΦA1,Z1(−h∗,−H∗; Θ∗1)− a =︸︷︷︸
(b)

SV ,

where (a) is due to the fact that ΦA1,Z1(−h∗,−H∗; Θ1)+ΦA2,Z2(h∗, H∗; Θ2) attains
its maximum over (Θ1,Θ2) ∈ V1 × V2 at the point (Θ∗1,Θ

∗
2), and (b) is due to the

origin of a and the relation SV = 1
2 [ΦA1,Z1

(−h∗,−H∗; Θ∗1) + ΦA2,Z2
(h∗, H∗; Θ∗2)].

The bound in (2.174.a) is proved. Similarly, let P ∈ G2, that is, P = N (A2[u; 1],Θ2)
for some Θ2 ∈ V2 and some u with [u; 1][u; 1]T ∈ Z2. Applying (2.170) to the second
collection of data, with the same a as above, we get the first ≤ in the following
chain:

ln
(∫

e
1
2ω

TH∗ω+ωTh∗+aP (dω)
)
≤ ΦA2,Z2

(h∗, H∗; Θ2) + a

≤︸︷︷︸
(a)

ΦA2,Z2
(h∗, H∗; Θ∗2) + a =︸︷︷︸

(b)

SV ,

with exactly the same as above justification of (a) and (b). The bound in (2.174.b)
is proved. 2
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2.11.5 Proof of Proposition 2.49

2.11.5.A Preliminaries

We start with the following result:

Lemma 2.77. Let Θ̄ be a positive definite d× d matrix, and let

u 7→ C(u) = A[u; 1]

be an affine mapping from Rn into Rd. Finally, let h ∈ Rd, H ∈ Sd and P ∈ Sd

satisfy the relations
0 � P ≺ Id & P � Θ̄1/2HΘ̄1/2. (2.225)

Then, setting B =

[
A

0, ..., 0, 1

]
, for every u ∈ Rn it holds

ζ ∼ SG(C(u), Θ̄)⇒ ln
(
Eζ

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ − 1

2 ln Det(I − P )

+ 1
2 [u; 1]TBT

[[
H h

hT

]
+ [H,h]

T
Θ̄1/2[I − P ]−1Θ̄1/2 [H,h]

]
B[u; 1]

(2.226)
Equivalently (set G = Θ̄−1/2P Θ̄−1/2): Whenever h ∈ Rd, H ∈ Sd and G ∈ Sd

satisfy the relations
0 � G ≺ Θ̄−1 & G � H, (2.227)

one has for every for every u ∈ Rn:

ζ ∼ SG(C(u), Θ̄)⇒ ln
(
Eζ

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ − 1

2 ln Det(I − Θ̄1/2GΘ̄1/2)

+ 1
2 [u; 1]TBT

[[
H h

hT

]
+ [H,h]

T
[Θ̄−1 −G]−1 [H,h]

]
B[u; 1]

(2.228)

Proof. 10. Let us start with the following observation:

Lemma 2.78. Let Θ ∈ Sd+ and S ∈ Rd×d be such that SΘST ≺ Id. Then for
every ν ∈ Rd one has

ln
(
Eξ∼SG(0,Θ)

{
eν
TSξ+ 1

2 ξ
TSTSξ

})
≤ ln

(
Ex∼N (ν,Id)

{
e

1
2x
TSΘST x

})
= − 1

2 ln Det(Id − SΘST ) + 1
2ν

T
[
SΘST (Id − SΘST )−1

]
ν.

(2.229)

Indeed, let ξ ∼ SG(0,Θ) and x ∼ N (ν, Id) be independent. We have

Eξ

{
eν
TSξ+ 1

2 ξ
TSTSξ

}
=︸︷︷︸
a

Eξ

{
Ex

{
e[Sξ]T x

}}
= Ex

{
Eξ

{
e[ST x]T ξ

}}
≤︸︷︷︸
b

Ex

{
e

1
2x
TSΘST x

}
,

where a is due to x ∼ N (ν, Id) and b is due to ξ ∼ SG(0,Θ). We have verified the
inequality in (2.229); the equality in (2.229) is given by direct computation. 2

20. Now, in the situation described in Lemma 2.77, by continuity it suffices to
prove (2.226) in the case when P � 0 in (2.225) is replaced with P � 0. Under the
premise of Lemma, given u ∈ Rn and assuming P � 0, let us set µ = C(u) = A[u; 1],
ν = P−1/2Θ̄1/2[Hµ + h], S = P 1/2Θ̄−1/2, so that SΘ̄ST = P ≺ Id, and let
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G = Θ̄−1/2P Θ̄−1/2, so that G � H. Let ζ ∼ SG(µ, Θ̄). Representing ζ as ζ = µ+ξ
with ξ ∼ SG(0, Θ̄), we have

ln
(
Eζ

{
eh
T ζ+ 1

2 ζ
THζ

})
= hTµ+ 1

2µ
THµ+ ln

(
Eξ

{
e[h+Hµ]T ξ+ 1

2 ξ
THξ

})
≤ hTµ+ 1

2µ
THµ+ ln

(
Eξ

{
e[h+Hµ]T ξ+ 1

2 ξ
TGξ

})
[since G � H]

= hTµ+ 1
2µ

THµ+ ln
(
Eξ

{
eν
TSξ+ 1

2 ξ
TSTSξ

})
[since ST ν = h+Hµ and G = STS]

≤ hTµ+ 1
2µ

THµ− 1
2 ln Det(Id − SΘ̄ST ) + 1

2ν
T
[
SΘ̄ST (Id − SΘ̄ST )−1

]
ν

[by Lemma 2.78 with Θ = Θ̄]
= hTµ+ 1

2µ
THµ− 1

2 ln Det(Id − P ) + 1
2 [Hµ+ h]T Θ̄1/2(Id − P )−1Θ̄1/2[Hµ+ h]

[plugging in S and ν]

It is immediately seen that the concluding quantity in this chain is nothing but the
right hand side quantity in (2.226). 2

2.11.5.B Completing proof of Proposition 2.49.

10. Let us prove (2.184.a). By Lemma 2.77 (see (2.228)) applied with Θ̄ = Θ∗,
setting C(u) = A[u; 1], we have

∀
(
(h,H) ∈ H, G : 0 � G � γ+Θ−1

∗ , G � H,u ∈ Rn : [u; 1][u; 1]T ∈ Z
)

:

ln
(
Eζ∼SG(C(u),Θ∗)

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ − 1

2 ln Det(I −Θ
1/2
∗ GΘ

1/2
∗ )

+ 1
2 [u; 1]TBT

[[
H h

hT

]
+ [H,h]

T
[Θ−1
∗ −G]−1 [H,h]

]
B[u; 1]

≤ − 1
2 ln Det(I −Θ

1/2
∗ GΘ

1/2
∗ )

+ 1
2φZ

(
BT

[[
H h

hT

]
+ [H,h]

T
[Θ−1
∗ −G]−1 [H,h]

]
B
)

= ΨA,Z(h,H,G),

(2.230)
implying, due to the origin of ΦA,Z , that under the premise of (2.230) we have

ln
(
Eζ∼SG(C(u),Θ∗)

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ ΦA,Z(h,H), ∀(h,H) ∈ H.

Taking into account that when ζ ∼ SG(C(u),Θ) with Θ ∈ V, we have also ζ ∼
SG(C(u),Θ∗), (2.184.a) follows.

20. Now let us prove (2.184.b). All we need is to verify the relation

∀
(
(h,H) ∈ H, G : 0 � G � γ+Θ−1

∗ , G � H,u ∈ Rn : [u; 1][u; 1]T ∈ Z,Θ ∈ V
)

:

ln
(
Eζ∼SG(C(u),Θ)

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ Ψδ

A,Z(h,H,G; Θ);

(2.231)
with this relation at our disposal (2.184.b) can be obtained by the same argument
as the one we used in item 10 to derive (2.184.a).

To establish (2.231), let us fix h,H,G, u,Θ satisfying the premise of (2.231);
note that under the premise of Proposition 2.49.i, we have 0 � Θ � Θ∗. Now
let λ ∈ (0, 1), and let Θλ = Θ + λ(Θ∗ − Θ), so that 0 ≺ Θλ � Θ∗, and let

δλ = ‖Θ1/2
λ Θ

−1/2
∗ − I‖, so that δλ ∈ [0, 2]. We have 0 � G � γ+Θ−1

∗ � γ+Θ−1
λ that

is, H,G satisfy (2.227) w.r.t. Θ̄ = Θλ. As a result, for our h,G,H, u and the just
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defined Θ̄ relation (2.228) holds true:

ζ ∼ SG(C(u),Θλ)⇒
ln
(
Eζ

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ − 1

2 ln Det(I −Θ
1/2
λ GΘ

1/2
λ )

+ 1
2 [u; 1]TBT

[[
H h

hT

]
+ [H,h]

T
[Θ−1
λ −G]−1 [H,h]

]
B[u; 1]

≤ − 1
2 ln Det(I −Θ

1/2
λ GΘ

1/2
λ )

+ 1
2φZ

(
BT

[[
H h

hT

]
+ [H,h]

T
[Θ−1
λ −G]−1 [H,h]

]
B
)

(2.232)

(recall that [u; 1][u; 1]T ∈ Z). As a result,

ζ ∼ SG(C(u),Θ)⇒ ln
(
Eζ

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ − 1

2 ln Det(I −Θ
1/2
λ GΘ

1/2
λ )

+ 1
2φZ

(
BT

[[
H h

hT

]
+ [H,h]

T
[Θ−1
∗ −G]−1 [H,h]

]
B
)

(2.233)

When deriving (2.233) from (2.232), we have used that

— Θ � Θλ, so that when ζ ∼ SG(C(u),Θ), we have also ζ ∼ SG(C(u),Θλ),

— 0 � Θλ � Θ∗ and G ≺ Θ−1
∗ , whence [Θ−1

λ −G]−1 � [Θ−1
∗ −G]−1,

— Z ⊂ Sn+1
+ , whence φZ is �-monotone: φZ(M) ≤ φZ(N) whenever M � N .

By Lemma 2.76 applied with Θλ in the role of Θ and δλ in the role of δ, we have

− 1
2 ln Det(I −Θ

1/2
λ GΘ

1/2
λ )

≤ − 1
2 ln Det(I −Θ

1/2
∗ GΘ

1/2
∗ ) + 1

2Tr([Θλ −Θ∗]G) + δλ(2+δλ)

2(1−‖Θ1/2
∗ GΘ

1/2
∗ ‖)
‖Θ1/2
∗ GΘ

1/2
∗ ‖2F .

Consequently, (2.233) implies that

ζ ∼ SG(C(u),Θ)⇒
ln
(
Eζ

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ − 1

2 ln Det(I −Θ
1/2
∗ GΘ

1/2
∗ ) + 1

2Tr([Θλ −Θ∗]G)

+ δλ(2+δλ)

2(1−‖Θ1/2
∗ GΘ

1/2
∗ ‖)
‖Θ1/2
∗ GΘ

1/2
∗ ‖2F

+ 1
2φZ

(
BT

[[
H h

hT

]
+ [H,h]

T
[Θ−1
∗ −G]−1 [H,h]

]
B
)
.

The resulting inequality holds true for all small positive λ; taking lim inf of the
right hand side as λ→ +0, and recalling that Θ0 = Θ, we get

ζ ∼ SG(C(u),Θ)⇒
ln
(
Eζ

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ − 1

2 ln Det(I −Θ
1/2
∗ GΘ

1/2
∗ ) + 1

2Tr([Θ−Θ∗]G)

+ δ(2+δ)

2(1−‖Θ1/2
∗ GΘ

1/2
∗ ‖)
‖Θ1/2
∗ GΘ

1/2
∗ ‖2F

+ 1
2φZ

(
BT

[[
H h

hT

]
+ [H,h]

T
[Θ−1
∗ −G]−1 [H,h]

]
B
)

(note that under the premise of Proposition 2.49.i we clearly have lim infλ→+0 δλ ≤
δ). The right hand side of the resulting inequality is nothing but Ψδ

A,Z(h,H,G; Θ),
see (2.183), and we arrive at the inequality required in the conclusion of (2.231).

30. To complete the proof of Proposition 2.49.i, it remains to prove that the
functions ΦA,Z , ΦδA,Z possess the announced in Proposition continuity, convexity-

concavity, and coerciveness properties. Let us verify that this indeed is so for ΦδA,Z ;



HYPOTHESIS TESTING

StatOpt˙LN˙NS January 21, 2019 7x10

189

reasoning to follow, with evident simplifications, is applicable to ΦA,Z as well.
Observe, first, that by exactly the same reasons as in item 40 of the proof

of Proposition 2.46, the function Ψδ
A,Z(h,H,G; Θ) is real valued, continuous and

convex-concave on the domain

Ĥ × V = {(h,H,G) : −γ+Θ−1
∗ � H � γ+Θ−1

∗ , 0 � G � γ+Θ−1
∗ , H � G} × V.

The function ΦδA,Z(h,H; Θ) : H × V → R is obtained from Ψδ(h,H,G; Θ) by the

following two operations: we first minimize Ψδ
A,Z(h,H,G; Θ) overG linked to (h,H)

by the convex constraints 0 � G � γ+Θ−1
∗ and G � H, thus obtaining a function

Φ̄(h,H; Θ) : {(h,H) : −γ+Θ−1
∗ � H � γ+Θ−1

∗ }︸ ︷︷ ︸
H̄

×V → R ∪ {+∞} ∪ {−∞}.

Second, we restrict the function Φ̄(h,H; Θ) from H̄×V onto H×V. For (h,H) ∈ H̄,
the set of G’s linked to (h,H) by the above convex constraints clearly is a nonempty
compact set; as a result, Φ̄ is real-valued convex-concave function on H̄ × V. From
continuity of Ψδ

A,Z on its domain it immediately follows that Ψδ
A,Z is bounded and

uniformly continuous on every bounded subset of this domain, implying by evident
reasons that Φ̄(h,H; Θ) is bounded in every domain of the form B̄×V, where B̄ is
a bounded subset of H̄, and is continuous on B̄×V in Θ ∈ V with properly selected
modulus of continuity independent of (h,H) ∈ B̄. Besides this, by construction,
H ⊂ int H̄, implying that if B is a convex compact subset of H, it belongs to the
interior of a properly selected convex compact subset B̄ of H̄. Since Φ̄ is bounded on
B̄×V and is convex in (h,H), the function Φ̄ is Lipschitz continuous in (h,H) ∈ B
with Lipschitz constant which can be selected to be independent of Θ ∈ V. Taking
into account that H is convex and closed, the bottom line is that ΦδA,Z is not just
real-valued convex-concave function on the domain H×V, it is also continuous on
this domain.

Coerciveness of ΦδA,Z(h,H; Θ) in (h,H) is proved in exactly the same fashion

as the similar property of function (2.167), see item 50 in the proof of Proposition
2.46. The proof of item (i) of Proposition 2.49 is complete.

40. Item (ii) of Proposition 2.49 can be derived from item (i) of Proposition in
exactly the same fashion as when proving Proposition 2.46. 2
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Estimating Functions via Hypothesis Testing

In this Lecture we apply the hypothesis testing techniques developed in Lecture 2
to estimating properly structured scalar functionals in simple o.s.’s (Section 3.2)
and beyond (Section 3.4).

3.1 ESTIMATING LINEAR FORMS ON UNIONS OF CONVEX

SETS

3.1.1 The problem

Let O = ((Ω,Π), {pµ(·) : µ ∈M},F) be a simple observation scheme. The problem
we are interested in this section is as follows:

We are given a positive integer K and I nonempty convex compact sets
Xj ⊂ Rn, along with affine mappings Aj(·) : Rn → RM such that Aj(x) ∈
M whenever x ∈ Xj , 1 ≤ j ≤ I. In addition, we are given a linear function
gTx on Rn.

Given random observation

ωK = (ω1, ..., ωK)

with ωk drawn, independently across k, from pAj(x) with j ≤ I and x ∈ Xj ,

we want to recover gTx. It should be stressed that we do not know neither
j nor x underlying our observation.

Given reliability tolerance ε ∈ (0, 1), we quantify the performance of a candidate
estimate – a Borel function ĝ(·) : Ω→ R – by the worst case, over j and x, width
of (1− ε)-confidence interval, Specifically, we say that ĝ(·) is (ρ, ε)-reliable, if

∀(j ≤ I, x ∈ Xj) : Probω∼pAj(x)
{|ĝ(ω)− gTx| > ρ} ≤ ε.

We define ε-risk of the estimate as

Riskε[ĝ] = inf {ρ : ĝ is (ρ, ε)-reliable} ;

note that ĝ is the smallest ρ such that ĝ is (ρ, ε)-reliable.
We remark that the technique we are about to use originates from [86] where

recovery, in a simple o.s., of a linear form on a convex compact set (i.e., the case
I = 1 of the estimation problem at hand) was considered; it was proved that in this
situation the estimate

ĝ(ωK) =
∑
k

φ(ωk) + κ

with properly selected φ ∈ F and κ ∈ R is near-optimal; for Gaussian o.s. similar
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fact was discovered, by different technique, by D. Donoho [44] as early as in 1994.

3.1.2 The estimate

In the sequel, we associate with the simple o.s. O = ((Ω,Π), {pµ(·) : µ ∈M},F)
in question the function

ΦO(φ;µ) = ln

(∫
eφ(ω)pµ(ω)Π(dω)

)
: F ×M→ R.

Recall that by definition of a simple o.s., this function is real-valued on its domain
and is concave in µ ∈ M, convex in φ ∈ F , and continuous on F ×M (the latter
follows from convexity-concavity and relative openness of M and F).

Let us associate with a pair (i, j), 1 ≤ i, j ≤ I, the functions

Φij(α, φ;x, y) = 1
2

[
KαΦO(φ/α;Ai(x)) +KαΦO(−φ/α;Aj(y))

+gT (y − x) + 2α ln(2I/ε)
]

: {α > 0, φ ∈ F} × [Xi ×Xj ]→ R,
Ψij(α, φ) = max

x∈Xi,y∈Xj
Φij(α, φ;x, y)

= 1
2 [Ψi,+(α, φ) + Ψj,−(α, φ)] : {α > 0} × F → R,

Ψ`,+(β, ψ) = max
x∈X`

[
KβΦO(ψ/β;A`(x))− gTx+ β ln(2I/ε)

]
:

{β > 0, ψ ∈ F} → R,
Ψ`,−(β, ψ) = max

x∈X`

[
KβΦO(−ψ/β;A`(x)) + gTx+ β ln(2I/ε)

]
:

{β > 0, ψ ∈ F} → R.
(3.1)

Note that the function αΦO(φ/α;Ai(x)) is obtained from continuous convex-concave
function ΦO(·, ·) by projective transformation in the convex argument, and affine
substitution in the concave argument, so that the former function is convex-concave
and continuous on the domain {α > 0, φ ∈ X} × Xi. By similar argument,
the function αΦO(−φ/α;Aj(y)) is convex-concave and continuous on the domain
{α > 0, φ ∈ F} ×Xj . These observations combine with compactness of Xi, Xj to
imply that Ψij(α, φ) is real-valued continuous convex function on the domain

F+ = {α > 0} × F .

Observe that functions Ψii(α, φ) are nonnegative on F+. Indeed, selecting somehow
x̄ ∈ Xi, and setting µ = Ai(x̄), we have

Ψii(α, φ) ≥ Φii(α, φ; x̄, x̄) = α
2 [K[ΦO(φ/α;µ) + ΦO(−φ/α;µ)] + 2 ln(2I/ε)]

= α
2

[
K ln

([∫
exp{φ(ω)/α}pµ(ω)Π(dω)

][ ∫
exp{−φ(ω)/α}pµ(ω)Π(dω)

]
︸ ︷︷ ︸

≥[
∫

exp{ 1
2φ(ω)/α} exp{− 1

2φ(ω)/α}pµ(ω)Π(dω)]2=1

)

+2 ln(2I/ε)

]
≥ α ln(2I/ε) > 0

(we have used Cauchy inequality).
Functions Ψij give rise to convex and feasible optimization problems

Optij = Optij(K) = min
(α,φ)∈F+

Ψij(α, φ). (3.2)
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By its origin, Optij is either a real, or −∞; by the observation above, Optii are
nonnegative. Our estimate is as follows.

1. For 1 ≤ i, j ≤ I, we select somehow feasible solutions αij , φij to problems (3.2)
(the less the values of the corresponding objectives, the better) and set

ρij = Ψij(αij , φij) = 1
2 [Ψi,+(αij , φij) + Ψj,−(αij , φij)]

κij = 1
2 [Ψj,−(αij , φij)−Ψi,+(αij , φij)]

gij(ω
K) =

∑K
k=1 φij(ωk) + κij

ρ = max1≤i,j≤I ρij

(3.3)

2. Given observation ωK , we specify the estimate ĝ(ωK) as follows:

ri = maxj≤I gij(ω
K)

cj = mini≤I gij(ω
K)

ĝ(ωK) = 1
2 [mini≤I ri + maxj≤I cj ] .

(3.4)

3.1.3 Main result

Proposition 3.1. The ε-risk of the estimate we have built can be upper-bounded
as follows:

Riskε[ĝ] ≤ ρ. (3.5)

Proof. Let the common distribution p of independent across k components ωk
in observation ωK be pA`(u) for some ` ≤ I and u ∈ X`. Let us fix these ` and u,
let µ = A`(u), and let pK stand for the distribution of ωK .

10. We have

Ψ`,+(α`j , φ`j) = maxx∈X`
[
Kα`jΦO(φ`j/α`j , A`(x))− gTx

]
+ α`j ln(2I/ε)

≥ Kα`jΦO(φ`j/α`j , µ)− gTu+ α`j ln(2I/ε) [since u ∈ X` and µ = A`(u)]
= Kα`j ln

(∫
exp{φ`j(ω)/α`j}pµ(ω)Π(dω)

)
− gTu+ α`j ln(2I/ε)

[by definition of ΦO]

= α`j ln
(
EωK∼pK

{
exp{α−1

`j

∑
k φ`j(ωk)}

})
− gTu+ α`j ln(2I/ε)

= α`j ln
(
EωK∼pK

{
exp{α−1

`j [g`j(ω
K)− κ`j ]}

})
− gTu+ α`j ln(2I/ε)

= α`j ln
(
EωK∼pK

{
exp{α−1

`j [g`j(ω
K)− gTu− ρ`j ]}

})
+ ρ`j − κ`j + α`j ln(2I/ε)

≥ α`j ln
(
ProbωK∼pK

{
g`j(ω

K) > gTu+ ρ`j
})

+ ρ`j − κ`j + α`j ln(2I/ε)
⇒
α`j ln

(
ProbωK∼pK

{
g`j(ω

K) > gTu+ ρ`j
})
≤ Ψ`,+(α`j , φ`j) + κ`j − ρ`j + α`j ln( ε

2I
)

= α`j ln( ε
2I

) [by (3.3)]

and we arrive at

ProbωK∼pK
{
g`j(ω

K) > gTu = ρ`j
}
≤ ε

2I
. (3.6)
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Similarly,

Ψ`,−(αi`, φi`) = maxy∈X`
[
Kαi`ΦO(−φi`/αi`, A`(y)) + gT y

]
+ αi` ln(2I/ε)

≥ Kαi`ΦO(−φi`/αi`, µ) + gTu+ αi` ln(2I/ε) [since u ∈ X` and µ = A`(u)]
= Kαi` ln

(∫
exp{−φi`(ω)/αi`}pµ(ω)Π(dω)

)
+ gTu+ αi` ln(2I/ε)

[by definition of ΦO]
= αi` ln

(
EωK∼pK

{
exp{−α−1

i`

∑
k φi`(ωk)}

})
+ gTu+ αi` ln(2I/ε)

= αi` ln
(
EωK∼pK

{
exp{α−1

i` [−gi`(ωK) + κi`]}
})

+ gTu+ αi` ln(2I/ε)
= αi` ln

(
EωK∼pK

{
exp{α−1

i` [−gi`(ωK) + gTu− ρi`]}
})

+ ρi` + κi` + αi` ln(2I/ε)
≥ αi` ln

(
ProbωK∼pK

{
gi`(ω

K) < gTu− ρi`
})

+ ρi` + κi` + αi` ln(2I/ε)
⇒
αi` ln

(
ProbωK∼pK

{
gi`(ω

K) < gTu− ρi`
})
≤ Ψ`,−(αi`, φi`)− κi` − ρi` + αi` ln( ε

2I
)

= αi` ln( ε
2I

) [by (3.3)]

and we arrive at

ProbωK∼pK
{
gi`(ω

K) < gTu− ρi`
}
≤ ε

2I
. (3.7)

20. Let

E = {ωK : g`j(ω
K) ≤ gTu+ ρ`j , gi`(ω

K) ≥ gTu− ρi`, 1 ≤ i, j ≤ I}.

From (3.6), (3.7) and the union bound it follows that pK-probability of the event E
is ≥ 1− ε. As a result, all we need to complete the proof of Proposition is to verify
that

ωK ∈ E ⇒ |ĝ(ωK)− gTu| ≤ ρ. (3.8)

Indeed, let us fix ωK ∈ E , and let E be the I×I matrix with entries Eij = gij(ω
K),

1 ≤ i, j ≤ I. The quantity ri, see (3.4), is the maximum of entries in i-th row of E,
and the quantity cj is the minimum of entries in j-th column of E; in particular,
ri ≥ Eij ≥ cj for all i, j, implying that ri ≥ cj for all i, j. Now, since ωK ∈ E , we
have E`` = g``(ω

K) ≥ gTu−ρ`` ≥ gTu−ρ and E`j = g`j(ω
K) ≤ gTu+ρ`j ≤ gTu+ρ

for all j, implying that r` = maxj E`j ∈ ∆ = [gTu − ρ, gTu + ρ]. Similarly, ω ∈ E
implies that E`` = g``(ω

K) ≤ gTu + ρ and Ei` = gi`(ω
K) ≥ gTu − ρi` ≥ gTu − ρ

for all i, implying that c` = miniEi` ∈ ∆. We see that both r` and c` belong to
∆; since r∗ := mini ri ≤ r` and, as have already seen, ri ≥ c` for all i, we conclude
that r∗ ∈ ∆. By similar argument, c∗ := maxj cj ∈ ∆ as well. By construction,
ĝ(ωK) = 1

2 [r∗ + c∗], that is, ĝ(ωK) ∈ ∆, and the conclusion in (3.8) indeed takes
place. 2

3.1.4 Near-optimality

Observe that properly selecting φij and αij we can make, in a computationally
efficient manner, the upper bound ρ on the ε-risk of the above estimate arbitrarily
close to

Opt(K) = max
1≤i,j≤I

Optij(K).

We are about to demonstrate that the quantity Opt(K) “nearly lower-bounds” the
minimax optimal ε-risk

Risk∗ε (K) = inf
ĝ(·)

Riskε[ĝ],
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the infimum being taken over all K-observation Borel estimates. The precise state-
ment is as follows:

Proposition 3.2. In the situation of this Section, let ε ∈ (0, 1/2) and K̄ be a
positive integer. Then for every integer K satisfying

K/K̄ >
2 ln(2I/ε)

ln( 1
4ε(1−ε) )

one has
Opt(K) ≤ Risk∗ε (K̄). (3.9)

In addition, in the special case where for every i, j there exists xij ∈ Xi ∩Xj such
that Ai(xij) = Aj(xij) one has

K ≥ K̄ ⇒ Opt(K) ≤ 2 ln(2I/ε)

ln( 1
4ε(1−ε) )

Risk∗ε (K̄). (3.10)

Proof. 10. Observe that Optij(K) is the saddle point value in the convex-
concave saddle point problem:

Optij(K) = inf
α>0,φ∈F

max
x∈Xi,y∈Xj

[
1
2Kα {ΦO(φ/α;Ai(x)) + ΦO(−φ/α;Aj(y))}

+ 1
2g
T [y − x] + α ln(2I/ε)

]
.

The domain of the maximization variable is compact and the cost function is con-
tinuous on its domain, whence, by Sion-Kakutani Theorem, we have also

Optij(K) = max
x∈Xi,y∈Xj

Θij(x, y),

Θij(x, y) = inf
α>0,φ∈F

[
1
2Kα {ΦO(φ/α;Ai(x)) + ΦO(−φ/α;Aj(y))}

+α ln(2I/ε)

]
+ 1

2g
T [y − x].

(3.11)

We have

Θij(x, y) = inf
α>0,ψ∈F

[
1
2Kα {ΦO(ψ;Ai(x)) + ΦO(−ψ;Aj(y))}

+ 1
2g
T [y − x] + α ln(2I/ε)

]
= inf

α>0

[
1
2αK inf

ψ∈F
{ΦO(ψ;Ai(x)) + ΦO(−ψ;Aj(y))}+ α ln(2I/ε)

]
+ 1

2g
T [y − x]

Given x ∈ Xi, y ∈ Xj and setting µ = Ai(x), ν = Aj(y), we obtain

inf
ψ∈F

[ΦO(ψ;Ai(x)) + ΦO(−ψ;Aj(y))] = inf
ψ∈F

[
ln

(∫
exp{ψ(ω)}pµ(ω)P (dω)

)
+ ln

(∫
exp{−ψ(ω)}pν(ω)P (dω)

)]
.
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Since O is a good o.s., the function ψ̄(ω) = 1
2 ln(pν(ω)/pµ(ω)) belongs to F , and

inf
ψ∈F

[
ln

(∫
exp{ψ(ω)}pµ(ω)P (dω)

)
+ ln

(∫
exp{−ψ(ω)}pν(ω)P (dω)

)]
= inf

δ∈F

[
ln

(∫
exp{ψ̄(ω) + δ(ω)}pµ(ω)P (dω)

)
+ ln

(∫
exp{−ψ̄(ω)− δ(ω)}pν(ω)P (dω)

)]
= inf

δ∈F

[
ln

(∫
exp{δ(ω)}

√
pµ(ω)pν(ω)P (dω)

)
+ ln

(∫
exp{−δ(ω)}

√
pµ(ω)pν(ω)P (dω)

)]
︸ ︷︷ ︸

f(δ)

.

Observe that f(δ) clearly is a convex and even function of δ ∈ F ; as such, it attains
its minimum over δ ∈ F when δ = 0. The bottom line is that

inf
ψ∈F

[ΦO(ψ;Ai(x)) + ΦO(−ψ;Aj(y))] = 2 ln

(∫ √
pAi(x)(ω)pAj(y)(ω)P (dω)

)
,

(3.12)
and

Θij(x, y) = inf
α>0

α

[
K ln

(∫ √
pAi(x)(ω)pAj(y)(ω)P (dω)

)
+ ln(2I/ε)

]
+

1

2
gT [y − x]

=

{
1
2
gT [y − x] ,K ln

(∫ √
pAi(x)(ω)pAj(y)(ω)P (dω)

)
+ ln(2I/ε) ≥ 0,

−∞, otherwise.

This combines with (3.11) to imply that

Optij(K) = max
x,y

{
1

2
gT [y − x] : x ∈ Xi, y ∈ Xj ,

[∫ √
pAi(x)(ω)pAj(y)(ω)P (dω)

]K
≥

ε

2I

}
.

(3.13)

20. We claim that under the premise of Proposition, for all i, j, 1 ≤ i, j ≤ I, one
has

Optij(K) ≤ Risk∗ε (K̄),

implying the validity of (3.9). Indeed, assume that for some pair i, j the opposite
inequality holds true:

Optij(K) > Risk∗ε (K̄),

and let us lead this assumption to a contradiction. Under our assumption opti-
mization problem in (3.13) has a feasible solution (x̄, ȳ) such that

r :=
1

2
gT [ȳ − x̄] > Risk∗ε (K̄), (3.14)

implying, due to the origin of Risk∗ε (K̄), that there exists an estimate ĝ(ωK̄) such
that for µ = Ai(x̄), ν = Aj(ȳ) it holds

ProbωK̄∼pK̄ν

{
ĝ(ωK̄) ≤ 1

2g
T [x̄+ ȳ]

}
≤ ProbωK̄∼pK̄ν

{
|ĝ(ωK̄)− gT ȳ| ≥ r

}
≤ ε

ProbωK̄∼pK̄µ

{
ĝ(ωK̄) ≥ 1

2g
T [x̄+ ȳ]

}
≤ ProbωK̄∼pK̄µ

{
|ĝ(ωK̄)− gT x̄| ≥ r

}
≤ ε,

so that we can decide on two simple hypotheses stating that observation ωK̄ obeys
distribution pK̄µ , resp., pK̄ν , with risk ≤ ε. Therefore,∫

min
[
pK̄µ (ωK̄), pK̄ν (ωK̄)

]
P K̄(dωK̄) ≤ 2ε.



196

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 3

Hence, when setting pK̄θ (ωK̄) =
∏
k pθ(ωk) and P K̄ = P × ...× P︸ ︷︷ ︸

K̄

, we have

[∫ √
pµ(ω)pν(ω)P (dω)

]K̄
=
∫ √

pK̄µ (ωK̄)pK̄ν (ωK̄)P K̄(dωK̄)

=
∫ √

min
[
pK̄µ (ωK̄), pK̄ν (ωK̄)

]√
max

[
pK̄µ (ωK̄), pK̄ν (ωK̄)

]
P K̄(dωK̄)

≤
[∫

min
[
pK̄µ (ωK̄), pK̄ν (ωK̄)

]
P K̄(dωK̄)

]1/2 [∫
max

[
pK̄µ (ωK̄), pK̄ν (ωK̄)

]
P K̄(dωK̄)

]1/2
=

[∫
min

[
pK̄µ (ωK̄), pK̄ν (ωK̄)

]
P K̄(dωK̄)

]1/2
×
[∫ [

pK̄µ (ωK̄) + pK̄ν (ωK̄)−min
[
pK̄µ (ωK̄), pK̄ν (ωK̄)

]]
P K̄(dωK̄)

]1/2
=

[∫
min

[
pK̄µ (ωK̄), pK̄ν (ωK̄)

]
P K̄(dωK̄)

]1/2 [
2−

∫
min

[
pK̄µ (ωK̄), pK̄ν (ωK̄)

]
P K̄(dωK̄)

]1/2
≤ 2

√
ε(1− ε).

Consequently, [∫ √
pµ(ω)pν(ω)P (dω)

]K
≤ [2

√
ε(1− ε)]K/K̄ <

ε

2I
,

which is the desired contradiction (recall that µ = Ai(x̄), ν = Aj(ȳ) and (x̄, ȳ) is
feasible for (3.13)).

30. Now let us prove that under the premise of Proposition, (3.10) takes place. To
this end let us set

wij(s) = max
x∈Xj ,y∈Xj

{
1

2
gT [y − x] : K̄ ln

(∫ √
pAi(x)(ω)pAj(y)(ω)P (dω)

)
︸ ︷︷ ︸

H(x,y)

+s ≥ 0

}
.

(3.15)
As we have seen in item 10, see (3.12), one has

H(x, y) = inf
ψ∈F

1

2
[ΦO(ψ;Ai(x)) + ΦO(−ψ,Aj(y))] ,

that is, H(x, y) is the infimum of a parametric family of concave functions of (x, y) ∈
Xi ×Xj and as such is concave. Besides this, the optimization problem in (3.15)
is feasible whenever s ≥ 0, a feasible solution being y = x = xij . At this feasible
solution we have gT [y − x] = 0, implying that wij(s) ≥ 0 for s ≥ 0. Observe also
that from concavity of H(x, y) it follows that wij(s) is concave on the ray {s ≥ 0}.
Finally, we claim that

wij(s̄) ≤ Risk∗ε (K̄), s̄ = − ln(2
√
ε(1− ε)). (3.16)

Indeed, wij(s) is nonnegative, concave and bounded (since Xi, Xj are compact) on
R+, implying that wij(s) is continuous on {s > 0}. Assuming, on the contrary
to our claim, that wij(s̄) > Risk∗ε (K̄), there exists s′ ∈ (0, s̄) such that wij(s

′) >
Risk∗ε (K̄) and thus there exist x̄ ∈ Xi, ȳ ∈ Xj such that (x̄, ȳ) is feasible for the
optimization problem specifying wij(s

′) and (3.14) takes place. We have seen in
item 20 that the latter relation implies that for µ = Ai(x̄), ν = Aj(ȳ) it holds[∫ √

pµ(ω)pν(ω)P (dω)

]K̄
≤ 2
√
ε(1− ε),
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that is,

K̄ ln

(∫ √
pµ(ω)pν(ω)P (dω)

)
+ s̄ ≤ 0,

whence

K̄ ln

(∫ √
pµ(ω)pν(ω)P (dω)

)
+ s′ < 0,

contradicting the fact that (x̄, ȳ) is feasible for the optimization problem specifying
wij(s

′).
It remains to note that (3.16) combines with concavity of wij(·) and the relation

wij(0) ≥ 0 to imply that

wij(ln(2I/ε)) ≤ ϑwij(s̄) ≤ ϑRisk∗ε (K̄), ϑ = ln(2I/ε)/s̄ =
2 ln(2I/ε)

ln([4ε(1− ε)]−1)
.

Invoking (3.13), we conclude that

Optij(K̄) = wij(ln(2I/ε)) ≤ ϑRisk∗ε (K̄)∀i, j.

Finally, from (3.13) it immediately follows that Optij(K) is nonincreasing in K
(since as K grows, the feasible set of the right hand side optimization problem in
(3.13) shrinks), that is,

K ≥ K̄ ⇒ Opt(K) ≤ Opt(K̄) = max
i,j

Optij(K̄) ≤ ϑRisk∗ε (K̄),

and (3.10) follows. 2

3.1.5 Illustration

We illustrate our construction on the simplest possible example – one where Xi =
{xi} are singletons in Rn, i = 1, ..., I, the observation scheme is Gaussian. Thus,
setting yi = Ai(xi) ∈ Rm, the observation’s components ωk, 1 ≤ k ≤ K, stemming
from signal xi, are drawn, independently of each other, from the normal distribution
N (yi, Im). The family F of functions φ associated with Gaussian o.s. is the family
of all affine functions φ(ω) = φ0 + ϕTω on the observation space (which at present
is Rm); we identify φ ∈ F with the pair (φ0, ϕ). The function ΨO associated with
the Gaussian observation scheme with m-dimensional observations is

ΦO(φ;µ) = φ0 + ϕTµ+
1

2
ϕTϕ : (R×Rm)×Rm → R,

a straightforward computation shows that in the case in question, setting

θ = ln(2I/ε),



198

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 3

we have

Ψi,+(α, φ) = Kα
[
φ0 + ϕT yi/α+ 1

2ϕ
Tϕ/α2

]
+ αθ − gTxi

= Kφ0 +KϕT yi − gTxi + K
2αϕ

Tϕ+ αθ
Ψj,−(α, φ) = −Kφ0 −KϕT yj + gTxj + K

2αϕ
Tϕ+ αθ

Optij = infα>0,φ
1
2 [Ψi,+(α, φ) + Ψj,−(α, φ)]

= 1
2g
T [xj − xi] + infϕ

[
K
2 ϕ

T [yi − yj ] + infα>0

[
K
2αϕ

Tϕ+ αθ
]]

= 1
2g
T [xj − xi] + infϕ

[
K
2 ϕ

T [yi − yj ] +
√

2Kθ‖ϕ‖2
]

=

{
1
2g
T [xj − xi], ‖yi − yj‖2 ≤ 2

√
2θ/K

−∞, ‖yi − yj‖2 > 2
√

2θ/K.
(3.17)

We see that we can safely set φ0 = 0 and that setting

I = {(i, j) : ‖yi − yj‖2 ≤ 2
√

2θ/K},

Optij(K) is finite iff (i, j) ∈ I and is −∞ otherwise; in both cases, the optimization
problem specifying Optij has no optimal solution. Indeed, this clearly is the case
when (i, j) 6∈ I; when (i, j) ∈ I, a minimizing sequence is, e.g., φ0 ≡ 0, ϕ ≡ 0,
αi → 0, but its limits is not in the minimization domain (on this domain, α should
be positive). Coping with this case was exactly the reason why in our construction
we required from φij , αij to be feasible, and not necessary optimal, solutions to
the optimization problems in question). In the illustration under consideration, the
simplest way to overcome the difficulty is to restrict the optimization domain F+

in (3.2) with its compact subset {α ≥ 1/R, φ0 = 0, ‖ϕ‖2 ≤ R} with large R, like
R = 1010 or 1020. With this approach, we specify the entities participating in (3.3)
as

φij(ω) = ϕTijω, ϕij =

{
0, (i, j) ∈ I
−R[yi − yj ]/‖yi − yj‖2, (i, j) 6∈ I

αij =

{
1/R, (i, j) ∈ I√

K
2θR, (i, j) 6∈ I

(3.18)

resulting in

κij = 1
2

[Ψj,−(αij , φij)−Ψi,+(αij , φij)]

= 1
2

[
−KϕTijyj + gT xj + K

2αij
ϕTijϕij + αijθ −KϕTijyi + gT xi − K

2αij
ϕTijϕij − αijθ

]
= 1

2
gT [xi + xj ]− K

2
ϕTij [yi + yj ]

ρij = 1
2

[Ψi,+(αij , φij) + Ψj,−(αij , φij)]

= 1
2

[
KϕTijyi − gT xi + K

2αij
ϕTijϕij + αijθ −KϕTijyj + gT xj + K

2αij
ϕTijϕij + αijθ

]
= K

2αij
ϕTijφij + αijθ + 1

2
gT [xj − xi] + K

2
ϕTij [yi − yj ]

=

{ 1
2
gT [xj − xi] +R−1θ, (i, j) ∈ I

1
2
gT [xj − xi] + [

√
2Kθ − K

2
‖yi − yj‖2]R, (i, j) 6∈ I

(3.19)

In the numerical experiments we are about to report we used n = 20, m = 10, and
I = 100, with xi, i ≤ I, drawn independently of each other from N (0, In), and
yi = Axi with randomly generated matrix A (specifically, matrix with independent
N (0, 1) entries normalized to have unit spectral norm), and used R = 1020; the
linear form to be recovered was just the first coordinate of x. The results of typical
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experiment are as follows:

K maxi,j ρij
Empirical recovery error

[mean/median/max]

2 2.541 0.9243/0.8292/2.541
4 2541 0.9859/0.9066/2.541
8 2.541 0.8057/0.7316/2.541

16 2.541 0.6807/0.6567/2.115
32 1.758 0.3630/0.2845/1.758
64 0.954 0.0860/0.0000/0.954

128 0.000 0.0000/0.0000/0.000
256 0.000 0.0000/0.0000/0.000

For every K, the empirical recovery errors shown in the table stem from 20 ex-
periments, with the signal underlying an experiment selected at random among
x1, ..., x100.

3.2 ESTIMATING N-CONVEX FUNCTIONS ON UNIONS OF

CONVEX SETS

In this Section, we apply our testing machinery to the estimation problem as follows.

Given are:

• a simple o.s. O = (Ω,Π; {pµ : µ ∈M};F),
• a signal space X ⊂ Rn along with affine encoding x 7→ A(x) : X →M,
• a real-valued function f on X.

Given observation ω ∼ pA(x∗) stemming from unknown signal x∗ known to
belong to X, we want to recover f(x∗).

Our approach imposes severe restrictions on f (satisfied, e.g., when f is linear, or
linear-fractional, or is the maximum of several linear functions); as a compensation,
we allow for rather “complex” X – finite unions of convex sets.

3.2.1 Outline

The approach we intend to develop is, in nutshell, extremely simple; its formal
description, however, turns to be lengthy and obscures, to some extent, the simple
ideas underlying the construction. By this reason, it makes sense to start with
informal outline of the strategy underlying the forthcoming developments. Consider
the situation where the signal space X is the 2D rectangle depicted on the top of
Figure 3.1.(a), and let the function to be recovered be f(u) = u1. Thus, “the
nature” has somehow selected x in the rectangle, and we observe, say, Gaussian
random variable with the mean A(x) and known covariance matrix, where A(·) is
a given affine mapping. Note that hypotheses f(x) ≥ b and f(x) ≤ a translate
into convex hypotheses on the expectation of the observed Gaussian r.v., so that
we can use out hypothesis testing machinery to decide on hypotheses of this type
and to localize f(x) in a (hopefully, small) segment by a Bisection-type process.
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(a) (b) (c)

Figure 3.1: Bisection via Hypothesis Testing

Before describing the process, let us make a terminological agreement. In the sequel
we shall use pairwise hypothesis testing in the situation where it may happen the
neither one of the hypotheses H1, H2 we are deciding upon is true. In this case,
we will say that the outcome of a test is correct, if the rejected hypothesis indeed
is wrong (the accepted hypothesis can be wrong as well, but the latter can happen
only in the case when both our hypotheses are wrong).

This is how our Bisection could look like.

1. Were we able to decide reliably on the Blue and Red hypotheses on Figure
3.1.(a), that is, to understand via observations whether x belongs to the left or
to the right half of the original rectangle, our course of actions would be clear:
depending on this decision, we would replace our original rectangle with a smaller
rectangle localizing x, as shown on Figure 3.1.(a), and then iterate this process.
The difficulty, of course, is that our Red and Blue hypotheses intersect, so that is
impossible to decide on them reliably.

2. In order to make Red and Blue hypotheses distinguishable from each other, we
could act as shown on Figure 3.1.(b), by shrinking a little bit the blue and the red
rectangles and inserting between the resulting rectangles the green “no-man land.”
Assuming that the width of the green rectangle allows to decide reliably on our
new Blue and Red hypotheses and utilizing available observation, we can localize x
either in the blue, or in the red rectangles as shown on Figure 3.1.(b). Specifically,
assume that our “Red vs. Blue” test rejected correctly the red hypothesis. Then
x can be located either in blue, or in green rectangles shown on the top of the
figure, and thus x is in the new blue localizer which is the union of the blue and the
green original rectangles. Similarly, if our test rejects correctly the blue hypothesis,
then we can take, as the new localizer of x, the union of the original red and green
rectangles, as shown on Figure 3.1.(b). Note that our localization is as reliable as
our test is, and that it reduces the width of localizer by factor close to 2, provided
the width of the green rectangle is small as compared to the width of the original
“tricolor” localizer of x. We can iterate this process, with the new – smaller –
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localizer in the role of the old till arriving at a localizer so narrow that “no-man
land” part of it (this part cannot be too narrow, since it should allow for reliable
decision on the current blue and red hypotheses) becomes too large to allow for
significant progress in localizer’s width.

The bottleneck of this approach is where to take observations to be used in our
subsequent tests. In principle, we could use in all of them the initial observation; the
difficulty with this approach is, that the hypotheses we need to decide upon depend
on the observations (e.g., when x belongs to the green part of the “tricolor” rectangle
on Figure 3.1, deciding on Blue vs. Red can, depending on observation, lead to
accepting either red or blue hypothesis, thus leading to different updated localizers),
and we arrive at the situation when we should decide on random hypotheses via
observation statistically depending on these hypotheses – a mess we have no idea
how to analyze. To circumvent this difficulty, we could use in every one of the
tests its own observation drawn, independently of the previous observations, from
the distribution pA(x). However, to do this, we need repeated observations to be
allowed, and the number of observations we will use will be proportional to the
number of tests we intend to run.

3. Finally, there is a theoretically sound way to implement Bisection based on a
single observation, and this is what we intend to do. The policy we use now is
as follows: given current localizer for x (at the first step - our initial rectangle),
we consider two “tricolor” partitions of it depicted at the top of Figure 3.1.(c). In
the first partition, the blue rectangle is the left half of the original rectangle, in
the second the red rectangle is the right half of the original rectangle. We then
run two Blue vs. Red tests, the first on the pair of Blue and Red hypotheses
stemming from the first partition, and the second on the pair of Blue and Red
hypotheses stemming from the second partition. Assuming that in both tests the
rejected hypotheses indeed were wrong, the results of these tests allow us to make
conclusions as follows:

• when both tests reject red hypotheses from the corresponding pairs, x is located
in the left half of the initial rectangle (since otherwise in the second test the
rejected hypothesis were in fact true, contradicting to the assumption that both
tests make no wrong rejections);

• when both tests reject blue hypotheses from the corresponding pairs, x is located
in the right half of the original rectangle (by the same reasons as in the previous
case);

• when the tests “disagree,” rejecting hypotheses of different colors, x is located in
the union of the two green rectangles we deal with. Indeed, otherwise x should
be either in the blue rectangles of both our “tricolors,” or in the red rectangles of
both of them. Since we have assumed that in both tests no wrong rejections took
place, in the first case both tests must reject red hypotheses, and in the second
both should reject blue ones, while in fact neither one of these two options took
place.

Now, in the first two cases we can safely say to which one of “halves” – left or
right – of the initial rectangle x belongs, and take this half as our new localizer.
In the third case, we take as a new localizer for x the green rectangle shown on
the bottom of Figure 3.1 and terminate our estimation process – the new localizer
already is narrow! Now, in the proposed algorithm, unless we terminate at the very
first step, we carry out the second step exactly in the same fashion as the first one,
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with the localizer of x yielded by the first step in the role of the initial localizer,
then carry out, in the same fashion, the third step, etc., until termination either due
to running into a disagreement, or due to reaching a prescribed number of steps.
Upon termination, we return the last localizer for x which we have built, and claim
that f(x) = x1 belongs to the projection of this localizer onto the x1-axis. In all
tests from the above process, we use the same observation. Note that in our current
situation, in contrast to the one we have discussed earlier, re-utilizing a single
observation creates no difficulties, since with no wrong rejections in the pairwise
tests we use, the pairs of hypotheses participating in the tests are not random at all
– they are uniquely defined by f(x) = x1! Indeed, with no wrong rejections, prior
to termination everything is as if we were running perfect Bisection, that is, were
updating subsequent rectangles ∆t containing x according to the rules

• ∆1 is a given in advance rectangle containing x,
• ∆t+1 is either the left, or the right half of ∆t, depending on which one of these

two halves contains x.

Thus, given x and with no wrong rejections, the situation is as if a single observation
were used in a number L of tests “in parallel” rather than sequentially, and the only
elaboration caused by the sequential nature of our process is in “risk accumulation”
– we want the probability of error in one or more of our L tests to be less than the
desired risk ε of wrong “bracketing” of f(x), implying, for absence of something
better, that the risks of the individual tests should be at most ε/L. These risks,
in turn, define the allowed width of “no man land” zones, and thus – the accuracy
to which f(x) can be estimated. It should be noted that the number L of steps of
Bisection always is a moderate integer (since otherwise the width of “no-man land”
zone, which at the concluding Bisection steps is of order of 2−L, will be by far too
small to allow for deciding on the concluding pairs of our hypotheses with risk ε/L,
at least when our observations possess non-negligible volatility). As a result, “the
price” of Bisection turns out to be low as compared to the case where every test
uses its own observation.

We have outlined the strategy we are about to implement. From the outline
it is clear that all what matters is our ability to decide on the pairs of hypotheses
{x ∈ X : f(x) ≤ a} and {x ∈ X : f(X) ≥ b}, with a and b given, via observation
drawn from pA(x). In our outline, these were convex hypotheses in Gaussian o.s.,
and in this case we can use detector-based pairwise tests yielded by Theorem 2.25.
Applying the machinery developed in Section 2.5.1, we could also handle the case
when the sets {x ∈ X : f(x) ≤ a} and {x ∈ X : f(X) ≥ b} are unions of a moderate
number of convex sets (e.g., f is affine, and X is the union of a number of convex
sets), the o.s. in question still being simple, and this is the situation we intend to
consider.

3.2.2 Estimating N-convex functions: problem’s setting

In the rest of this Section, we consider the situation as follows. Given are:

1. simple o.s. O = ((Ω, P ), {pµ(·) : µ ∈M},F),
2. convex compact set X ⊂ Rn along with a collection of I convex compact sets
Xi ⊂ X ,

3. affine “encoding” x 7→ A(x) : X →M,
4. a continuous function f(x) : X → R which is N -convex, meaning that for every
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a ∈ R the sets X a,≥ = {x ∈ X : f(x) ≥ a} and X a,≤ = {x ∈ X : f(x) ≤ a} can
be represented as the unions of at most N closed convex sets X a,≥ν , X a,≤ν :

X a,≥ =

N⋃
ν=1

X a,≥ν , X a,≤ =

N⋃
ν=1

X a,≤ν . (3.20)

For some unknown x known to belong to X =
I⋃
i=1

Xi, we have at our disposal

observation ωK = (ω1, ..., ωK) with i.i.d. ωt ∼ pA(x)(·), and our goal is to estimate
from this observation the quantity f(x).

Given tolerances ρ > 0, ε ∈ (0, 1), let us call a candidate estimate f̂(ωK)
(ρ, ε)-reliable, if for every x ∈ X, with the pA(x)-probability at least 1 − ε it holds

|f̂(ωK)− f(x)| ≤ ρ or, which is the same, if

∀(x ∈ X) : ProbωK∼pA(x)×...×pA(x)

{
|f̂(ωK)− f(x)| > ρ

}
≤ ε. (3.21)

3.2.2.1 Examples of N -convex functions

Example 3.3. [Minima and Maxima of linear-fractional functions] Every function

which can be obtained from linear-fractional functions gν(x)
hν(x) (gν , hν are affine func-

tions on X and hν are positive on X ) by taking maxima and minima is N -convex
for appropriately selected N due to the following immediate observations:

• linear-fractional function g(x)
h(x) with positive on X denominator is 1-convex on X ;

• if f(x) is N -convex, so is −f(x);
• if fi(x) is Ni-convex, i = 1, 2, ..., I, then f(x) = max

i
fi(x) is N -convex with

N = max[
∏
i

Ni,
∑
i

Ni],

due to

{x ∈ X : f(x) ≤ a} =
I⋂
i=1

{x : fi(x) ≤ a},

{x ∈ X : f(x) ≥ a} =
I⋃
i=1

{x : fi(x) ≥ a}.

The first right hand side set is the intersection of I unions of convex sets with Ni
components in i-th union, and thus is the union of

∏
iNi convex sets; the second

right hand side set is the union of I unions, Ni components in i-th of them, of
convex sets, and thus is the union of

∑
iNi convex sets.

Example 3.4. [Conditional quantile]. Let S = {s1 < s2 < ... < sN} ⊂ R and T
be a finite set, and let X be a convex compact set in the space of nonvanishing
probability distributions on S × T . Given τ ∈ T , consider the conditional, by the
condition t = τ , distribution qτ [p] of s ∈ S induced by a distribution p(·, ·) ∈ X :

(qτ [p])µ =
p(µ, τ)∑N
ν=1 p(ν, τ)

.
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For a nonvanishing probability distribution q on S and α ∈ (0, 1), let χα(q) be the
regularized α-quantile of q defined as follows: we pass from q to the distribution
on [s1, sN ] by spreading uniformly the mass qν , 1 ≤ ν < N , over [sν , sν+1], and
assigning mass qN to the point sN ; χα(q) is the usual α-quantile of the resulting
distribution q̄:

χα(q) = min {s ∈ [s1, sN ] : q̄{(s, sN ]} ≤ α}

The function χα(qτ [p]) : X → R turns out to be 2-convex, see Section 3.6.2.

3.2.3 Bisection Estimate: Construction

While the construction to be presented admits numerous refinements, we focus here
on its simplest version as follows.

3.2.3.1 Preliminaries

Upper and lower feasibility/infeasibility, sets Za,≥i and Za,≤i . Let a be a
real. We associate with a the collection of upper a-sets defined as follows: we look at
the sets Xi∩X a,≥ν , 1 ≤ i ≤ I, 1 ≤ ν ≤ N , and arrange the nonempty sets from this

family into a sequence Za,≥i , 1 ≤ i ≤ Ia,≥, where Ia,≥ = 0 if all sets in the family
are empty; in the latter case, we call a upper-infeasible, otherwise upper-feasible.
Similarly, we associate with a the collection of lower a-sets Za,≤i , 1 ≤ i ≤ Ia,≤ by
arranging into a sequence all nonempty sets from the family Xi ∩ X a,≤ν , and call
a lower-feasible or lower-infeasible depending on whether Ia,≤ is positive or zero.
Note that upper and lower a-sets are nonempty convex compact sets, and

Xa,≥ := {x ∈ X : f(x) ≥ a} =
⋃

1≤i≤Ia,≥
Za,≥i ,

Xa,≤ := {x ∈ X : f(x) ≤ a} =
⋃

1≤i≤Ia,≤
Za,≤i .

(3.22)

Right-side tests. Given a segment ∆ = [a, b] of positive length with lower-feasible
a, we associate with this segment right-side test – a function T K∆,r(ωK) taking values
red and blue, and risk σ∆,r ≥ 0 – as follows:

1. if b is upper-infeasible, T K∆,r(·) ≡ blue and σ∆,r = 0.

2. if b is upper-feasible, the collections {A(Zb,≥i )}i≤Ib,≥ (“red sets”), {A(Za,≤j )}j≤Ia,≤
(“blue sets”), are nonempty, and the test is given by the construction from Sec-
tion 2.5.1 as applied to these sets and the stationary K-repeated version of O in
the role of O, specifically,

• for 1 ≤ i ≤ Ib,≥, 1 ≤ j ≤ Ia,≤, we build the detectors

φKij∆(ωK) =

K∑
t=1

φij∆(ωt),
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with φij∆(ω) given by

(rij∆, sij∆) ∈ Argmin
r∈Zb,≥i ,s∈Za,≤j

ln
(∫

Ω

√
pA(r)(ω)pA(s)(ω)Π(dω)

)
,

φij∆(ω) = 1
2 ln

(
pA(rij∆)(ω)/pA(sij∆)(ω)

)
(3.23)

set

εij∆ =

∫
Ω

√
pA(rij∆)(ω)pA(sij∆)(ω)Π(dω) (3.24)

and build the Ib,≥ × Ia,≤ matrix E∆,r = [εKij∆] 1≤i≤Ib,≥
1≤j≤Ia,≤

;

• σ∆,r is defined as the spectral norm of E∆,r. We compute the Perron-Frobenius

eigenvector [g∆,r;h∆,r] of the matrix

[
E∆,r

ET∆,r

]
, so that (see Section

2.5.1.2)
g∆,r > 0, h∆,r > 0, σ∆,rg

∆,r = E∆,rh
∆,r,

σ∆,rh
∆,r = ET∆,rg

∆,r.

Finally, we define the matrix-valued function

D∆,r(ω
K) = [φKij∆(ωK) + ln(h∆,r

j )− ln(g∆,r
i )] 1≤i≤Ib,≥

1≤j≤Ia,≤

.

Test T K∆,r(ωK) takes value red iff the matrix D∆,r(ω
K) has a nonnegative row,

and takes value blue otherwise.

Given δ > 0, κ > 0, we call segment ∆ = [a, b] δ-good (right), if a is lower-feasible,
b > a, and σ∆,r ≤ δ. We call a δ-good (right) segment ∆ = [a, b] κ-maximal, if the
segment [a, b− κ] is not δ-good (right).

Left-side tests. The “mirror” version of the above is as follows. Given a segment
∆ = [a, b] of positive length with upper-feasible b, we associate with this segment
left-side test – a function T K∆,l(ωK) taking values red and blue, and risk σ∆,l ≥ 0 –
as follows:

1. if a is lower-infeasible, T K∆,l(·) ≡ red and σ∆,l = 0.

2. if a is lower-feasible, we set T K∆,l ≡ T K∆,r, σ∆,l = σ∆,r.

Given δ > 0, κ > 0, we call segment ∆ = [a, b] δ-good (left), if b is upper-feasible,
b > a, and σ∆,l ≤ δ. We call a δ-good (left) segment ∆ = [a, b] κ-maximal, if the
segment [a+ κ, b] is not δ-good (left).

Explanation: When a < b and a is lower-feasible, b is upper-feasible, so that the
sets

Xa,≤ = {x ∈ X : f(x) ≤ a}, Xb,≥ = {x ∈ X : f(x) ≥ b}

are nonempty, the right-side and the left-side tests T K∆,l, T K∆,r are identical to each
other and coincide with the minimal risk test, built as explained in Section 2.5.1,
deciding, via stationary K-repeated observations, on the “color” of the distribution
pA(x) underlying observations – whether this color is blue (“blue” hypothesis stating

that x ∈ X and f(x) ≤ a, whence A(x) ∈
⋃

1≤i≤Ia,≤
A(Za,≤i )), or red (“red” hypoth-

esis, stating that x ∈ X and f(x) ≥ b, whence A(x) ∈
⋃

1≤i≤Ib,≥
A(Zb,≥i )). When a is
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lower-feasible and b is not upper-feasible, the red one of the above two hypotheses
is empty, and the left-side test associated with [a, b], naturally, always accepts the
blue hypothesis; similarly, when a is lower-infeasible and b is upper-feasible, the
right-side test associated with [a, b] always accepts the red hypothesis.

A segment [a, b] with a < b is δ-good (left), if the corresponding to the segment
“red” hypothesis is nonempty, and the left-hand side test T K∆` associated with [a, b]
decides on the “red” and the “blue” hypotheses with risk ≤ δ, and similarly for
δ-good (right) segment [a, b].

3.2.4 Building the Bisection estimate

3.2.4.1 Control parameters

The control parameters of our would-be Bisection estimate are

1. positive integer L – the maximum allowed number of bisection steps,
2. tolerances δ ∈ (0, 1) and κ > 0.

3.2.4.2 Bisection estimate: construction

The estimate of f(x) (x is the signal underlying our observations: ωt ∼ pA(x)) is
given by the following recurrence run on the observation ω̄K = (ω̄1, ..., ω̄K) which
we have at our disposal:

1. Initialization. We find a valid upper bound b0 on maxu∈X f(u) and valid lower
bound a0 on minu∈X f(u) and set ∆0 = [a0, b0]. We assume w.l.o.g. that a0 < b0,
otherwise the estimation is trivial.
Note: f(a) ∈ ∆0.

2. Bisection Step `, 1 ≤ ` ≤ L. Given localizer ∆`−1 = [a`−1, b`−1] with a`−1 <
b`−1, we act as follows:

a) We set c` = 1
2 [a`−1 + b`−1]. If c` is not upper-feasible, we set ∆` = [a`−1, c`]

and pass to 2e, and if c` is not lower-feasible, we set ∆` = [c`, b`−1] and pass
to 2e.
Note: In the latter two cases, ∆`\∆`−1 does not intersect with f(X); in par-
ticular, in these cases f(x) ∈ ∆` provided that f(x) ∈ ∆`−1.

b) When c` is both upper- and lower-feasible, we check whether the segment
[c`, b`−1] is δ-good (right). If it is not the case, we terminate and claim that
f(x) ∈ ∆̄ := ∆`−1, otherwise find v`, c` < v` ≤ b`−1, such that the segment
∆,rg
` = [c`, v`] is δ-good (right) κ-maximal.

Note: In terms of the outline of our strategy presented in Section 3.2.1, ter-
mination when the segment [c`, b`−1] is not δ-good (right) corresponds to the
case when the current localizer is too small to allow for “no-man land” wide
enough to ensure low-risk decision on the blue and the red hypotheses.
Note: To find v`, we look one by one at the candidates with vk` = b`−1 − kκ,
k = 0, 1, ... until arriving for the first time at segment [c`, v

k
` ] which is not

δ-good (right), and take, as v`, the quantity vk−1 (when v` indeed is sought,
we clearly have k ≥ 1, so that our recipe for building v` is well-defined and
clearly meets the above requirements on v`).

c) Similarly, we check whether the segment [a`−1, c`] is δ-good (left). If it is
not the case, we terminate and claim that f(x) ∈ ∆̄ := ∆`−1, otherwise find
u`, a`−1 ≤ u` < c`, such that the segment ∆`,lf = [u`, c`] is δ-good (left)
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κ-maximal.
Note: The rules for building u` are completely similar to those for v`.

d) We compute T K∆`,rg,r
(ω̄K) and T K∆`,lf ,l

(ω̄K). If T K∆`,rg,r
(ω̄K) = T K∆`,lf ,l

(ω̄K)

(“consensus”), we set

∆` = [a`, b`] =

{
[c`, b`−1], T K∆`,rg,r

(ω̄K) = red,

[a`−1, c`], T K∆`,rg,r
(ω̄K) = blue

(3.25)

and pass to 2e. Otherwise (“disagreement”) we terminate and claim that
f(x) ∈ ∆̄ = [u`, v`].

e) When arriving at this rule, ∆` is already built. When ` < L, we pass to step
`+ 1, otherwise we terminate with the claim that f(x) ∈ ∆̄ := ∆L.

3. Output of the estimation procedure is the segment ∆̄ built upon termination
and claimed to contain f(x), see rules 2b–2e; the midpoint of this segment is the
estimate of f(x) yielded by our procedure.

3.2.5 Bisection estimate: Main result

Our main result on Bisection is as follows:

Proposition 3.5. Consider the situation described in the beginning of Section
3.2.2, and let ε ∈ (0, 1/2) be given. Then

(i) [reliability of Bisection] For every positive integer L and every κ > 0,
Bisection with control parameters L,

δ =
ε

2L
,

κ is (1− ε)-reliable: for every x ∈ X, the pA(x)-probability of the event

f(x) ∈ ∆̄

(∆̄ is the output of Bisection as defined above) is at least 1− ε.
(ii) [near-optimality] Let ρ > 0 and positive integer K̄ be such that in the nature

there exists a (ρ, ε)-reliable estimate f̂(·) of f(x), x ∈ X :=
⋃
i≤I Xi, via stationary

K̄-repeated observation ωK̄ with ωk ∼ pA(x), 1 ≤ k ≤ K̄. Given ρ̂ > 2ρ, the
Bisection estimate utilizing stationary K-repeated observations, with

K =c 2 ln(2LNI/ε)

ln(1/ε)− ln(4(1− ε))
K̄b, (3.26)

the control parameters of the estimate being

L =clog2

(
b0 − a0

2ρ̂

)
b, δ =

ε

2L
, κ = ρ̂− 2ρ, (3.27)

is (ρ̂, ε)-reliable. Not that K is only “slightly larger” than K̄.

For proof, see Section 3.6.1.
Note that the running time K of Bisection estimate as given by (3.26) is just by

(at most) logarithmic in N , I, L, 1/ε factor larger than K̄; note also that L is just
logarithmic in 1/ρ. Assume, e.g., that for some γ > 0 “in the nature” there exist
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(εγ , ε) reliable estimates, parameterized by ε ∈ (0, 1/2), with K̄ = K̄(ε). Bisection
with the volume of observation and control parameters given by (3.26) (3.27), where
ρ̄ = 3ρ = 3εγ and K̄ = K̄(ε), is (3εγ , ε)-reliable and requires K = K(ε)-repeated
observations with limε→+0K(ε)/K̄(ε) ≤ 2.

3.2.6 Illustration

To illustrate bisection-based estimation of N -convex functional, consider the situa-
tion as follows45. There are M devices (“receivers”) recording a signal u known to
belong to a given convex compact and nonempty set U ⊂ Rn; the output of i-th
receiver is the vector

yi = Aiu+ σξ ∈ Rm [ξ ∼ N (0, Im)]

where Ai are given m × n matrices; you may think about M allowed positions of
a single receiver, and on yi – as on the output of receiver when the latter is in
position i. Our observation ω is one of the vectors yi, 1 ≤ i ≤M with unknown to
us index i (“we observe a noisy record of signal, but do not know the position in
which this record was taken”). Given ω, we want to recover a given linear function
g(x) = eTu of the signal.

The problem can be modeled as follows. Consider the sets

Xi = {x = [x1; ...;xM ] ∈ RMn = Rn × ...×Rn︸ ︷︷ ︸
M

: xj = 0, j 6= i;xi ∈ U}

along with the linear mapping

A[x1; ...;xM ] =

M∑
i=1

Aix
i : RMn → Rm

and linear function

f([x1; ...;xM ]) = eT
∑
i

xi : RMn → R,

and let X be a convex compact set in RMn containing all the sets Xi, 1 ≤ i ≤
m. Observe that the problem we are interested in is nothing but the problem of
recovering f(x) via observation

ω = Ax+ σξ, ξ ∼ N (0, Im), (3.28)

where the unknown signal x is known to belong to the union
⋃M
i=1Xi of known

convex compact sets Xi. As a result,our problem can be solved via the machinery
we have developed.

Numerical illustration. In the numerical results to be reported, we used n = 128,
m = 64 and M = 2. The data was generated as follows:

• The set U ⊂ R128 of candidate signals was comprised by restrictions onto equidis-
tant (n = 128)-point grid in [0, 1] of twice differentiable functions h(t) of continu-

45Our local goal is to illustrate a mathematical construction rather than to work out a partic-
ular application; the reader is welcome to invent a plausible “covering story” for this construction.
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Characteristic min median mean max

error bound 0.008 0.015 0.014 0.015
actual error 0.001 0.002 0.002 0.005

# of Bisection steps 5 7.00 6.60 8

Table 3.1: Experiments with Bisection, data over 10 experiments, σ = 0.01. In
the table, “error bound” is half-length of final localizer, which is an 0.99-reliable
upper bound on the estimation error, and “actual error” is the actual estimation
error.

ous argument t ∈ [0, 1] satisfying the relations |h(0)| ≤ 1, |h′(0)| ≤ 1, |h′′(t)| ≤ 1,
0 ≤ t ≤ 1, which for the discretized signal u = [h(0);h(1/n);h(2/n); ...;h(1 −
1/n)] translates to the system of convex constraints

|u1| ≤ 1, n|u2 − u1| ≤ 1, n2|ui+1 − 2ui + ui−1| ≤ 1, 2 ≤ i ≤ n− 1.

• We were interested to recover the discretized counterpart of the integral
∫ 1

0
h(t)dt,

specifically, dealt with e = ē, ēTu = α
∑n
i=1 ui. The normalizing constant α was

selected to ensure maxu∈U ē
Tu = 1, minu∈U ē

Tu = −1, allowing to run Bisection
with ∆0 = [−1; 1].
• We generated A1 as (m = 64)× (n = 128) matrix with singular values σi = θi−1,

1 ≤ i ≤ m, with θ selected from the requirement σm = 0.1. The system of left
singular vectors of A1 was obtained from the system of basic orths in Rn by
random rotation.
Matrix A2 was selected as A2 = A1S, where S was “reflection w.r.t. the axis ē”,
that is,

Sē = ē & Sh = −h whenever h is orthogonal to ē. (3.29)

Signals u underlying the observations were selected in U at random.
• The reliability 1 − ε of our estimate was set to 0.99, and the maximal allowed

number L of Bisection steps was set to 8. We used single observation (3.28) (i.e.,
used K = 1 in our general scheme) with σ set to 0.01.

The results of our experiments are presented in Table 3.1. Note that in the problem
we are considering, there exists an intrinsic obstacle for high accuracy estimation
even in the case of noiseless observations and invertible matrices Ai, i = 1, 2 (recall
that we are in the case of M = 2). Indeed, assume that there exist u ∈ U , u′ ∈ U
such that A1u = A2u

′ and eTu 6= eTu′. In this case, when the signal is u and the
(noiseless) observation is A1u, the true quantity to be estimated is eTu, and when
the signal is u′ and the observation is A2u

′, the true quantity to be estimated is
eTu′ 6= eTu. Since we do not know which of the matrices, A1 or A2, underlies the
observation and A1u = A2u

′, there is no way to distinguish between the two cases
we have described, implying that the quantity

ρ = max
u,u′∈U

{
1

2
|eT (u− u′)| : A1u = A2u

′
}

(3.30)

is a lower bound on the worst-case, over signals from U , error of a reliable recovery
of eTu, independently of how small is the noise. In the reported experiments, we
used A2 = A1S with S linked to e = ē, see (3.29); with this selection of S, e = ē
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Characteristic min median mean max

error bound 0.057 0.457 0.441 1.000
actual error 0.001 0.297 0.350 1.000

# of Bisection steps 1 1.00 2.20 5

“Difficult” signals, data over 10 experiments

ρ 0.0223 0.0281 0.1542 0.1701 0.2130 0.2482 0.2503 0.4999 0.6046 0.9238
error

bound
0.0569 0.0625 0.2188 0.2393 0.4063 0.5078 0.5156 0.6250 0.7734 1.0000

Error bound vs. ρ, experiments sorted according to the values of ρ

Characteristic min median mean max

error bound 0.016 0.274 0.348 1.000
actual error 0.005 0.066 0.127 0.556

# of Bisection steps 1 2.00 2.80 7

Random signals, data over 10 experiments

ρ 0.0100 0.0853 0.1768 0.2431 0.2940 0.3336 0.3365 0.5535 0.6300 0.7616
error

bound
0.0156 0.1816 0.3762 0.4375 0.6016 0.0293 0.0313 0.6875 0.1250 1.0000

Error bound vs. ρ, experiments sorted according to the values of ρ

Table 3.2: Experiments with randomly selected linear form, σ = 0.01

and A2, were A1 invertible, the lower bound ρ would be just trivial – zero. In fact,
our A1 was not invertible, resulting in a positive ρ; computation shows, however,
that with our data, this positive ρ is negligibly small (about 2.0e-5). When we
destroy the link between e and S, the estimation problem can become intrinsically
more difficult, and the performance of our estimation procedure can deteriorate.
Let us look what happens when we keep A1 and A2 = A1S exactly as they are, but
replace the linear form ēTu to be estimated with eTu, e being randomly selected e
46. The corresponding data are presented in Table 3.2. The data in the top part
of Table relate to the case of “difficult” signals u – those participating in forming
the lower bound (3.30) on the recovery error, while the data in the bottom part
of Table relate to randomly selected signals 47. We see that when recovering the
value of a randomly selected linear form, the error bounds indeed deteriorate, as
compared to those in Table 3.1. We see also that the resulting error bounds are in
reasonably good agreement with the lower bound ρ, illustrating the basic property
of nearly optimal estimates: the guaranteed performance of an estimate can be bad
or good, but it always is nearly as good as is possible under the circumstances. As
about actual estimation errors, they in some experiments were essentially less than
the error bounds, especially when random signals were used. This phenomenon, of
course, should not be overestimated; remember that even a broken clock twice a
day shows the correct time.

46in the experiments to be reported, e was selected as follows: we start with a random unit
vector drawn from the uniform distribution on the unit sphere in Rn and then normalize it to
make maxu∈U e

Tu−minu∈U e
Tu = 2.

47specifically, to generate a signal u, we drew a point ū at random, from the uniform distri-
bution on the sphere of radius 10

√
n, and took as u the ‖ · ‖2-closest to ū point of U .
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3.2.7 Estimating N-convex functions: an alternative

Observe that the problem of estimating an N -convex function on the union of
convex sets posed in Section 3.2.2 can be processed not only by Bisection. An
alternative is as follows. In the notation from Section 3.2.2, we start with computing
the range ∆ of function f on the set X =

⋃
i≤I

Xi, that is, we compute the quantities

f = min
x∈X

f(x), f = max
x∈X

f(x)

and set ∆ = [f, f ]. We assume that this segment is not a singleton, otherwise
estimating f is trivial. Further, we split ∆ in a number L of consecutive bins –
segments ∆` of equal length δL = (f−f)/L. δL will be the accuracy of our estimate;
given a desired accuracy, we can select L accordingly. We now consider the sets

Xi` = {x ∈ Xi : f(x) ∈ ∆`}, 1 ≤ i ≤ I, 1 ≤ ` ≤ L.

Since f is N -convex, every one of these sets is the union of Mi` ≤ N2 convex
compact sets Xi`j , 1 ≤ j ≤ Mi`. Thus, we get at our disposal a collection of
at most ILN2 convex compact sets; let us eliminate from this collection empty
sets and arrange the nonempty ones into a sequence Y1, ..., YM , M ≤ ILN2. Note
that

⋃
s≤M Ys = X, so that the goal posed in Section 3.2.2 can be reformulated as

follows:

For some unknown x known to belong to X =
M⋃
s=1

Ys, we have at our dis-

posal observation ωK = (ω1, ..., ωK) with i.i.d. ωt ∼ pA(x)(·); our goal is to
estimate from this observation the quantity f(x).

The sets Ys give rise to M hypotheses H1, ...,HM on the distribution of our obser-
vations ωt, 1 ≤ t ≤ K; according to Hs, ωt ∼ pA(x)(·) with some x ∈ Ys.

Let us define a closeness C on the set of our M hypotheses as follows. Given
s ≤M , the set Ys is some Xi(s)`(s)j(s); we say that two hypotheses, Hs and Hs′ , are
C-close, if the segments ∆`(s) and ∆`(s′) intersect. Observe that when Hs and Hs′

are not C-close, the convex compact sets Ys, Y
′
s do not intersect, since the values of

f on Ys belong to ∆`(s), the values of f on Ys′ belong to ∆`(s′), and the segments
∆`(s) and ∆`(s′) do not intersect.

Now let us apply to the hypotheses H1, ...,HM our machinery for testing up to
closeness C, see Section 2.5.2. Assuming that whenever Hs and Hs′ are not C-close,
the risks εss′ defined in Section 2.5.2.2 are < 1 48, we, given tolerance ε ∈ (0, 1), can
find K = K(ε) such that stationary K-repeated observation ωK allows to decide
(1−ε)-reliably on H1, ...,HM up to closeness C. As applied to ωK , the corresponding
test T K will accept some (perhaps, none) of the hypotheses, let the indexes of the

accepted hypotheses form set S = S(ωK). We convert S into an estimate f̂(ωK) of
f(x), x ∈ X =

⋃
s≤M Ys being the signal underlying our observation, as follows:

• when S is empty, the estimate is, say (f + f)/2;

48In our standard simple o.s.’s, this is the case whenever for s, s′ in question the images of
Ys and Ys′ under the mapping x 7→ A(x) do not intersect; this definitely is the case when A(·) is
an embedding, since for our s, s′, Ys and Ys′ do not intersect.



212

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 3

• when S is nonempty, we take the union ∆(S) of the segments ∆`(s), s ∈ S, and
our estimate is the average of the largest and the smallest elements of ∆(S).

It is immediately seen (check it!) that if the signal x underlying our stationary K-
repeated observation ωK belongs to some Ys∗ , so that the hypothesis Hs∗ is true,
and the outcome S of T K contains s∗ and is such that for all s ∈ S Hs and Hs∗

are C-close to each other, we have |f(x) − f̂(ωK)| ≤ δL. Note that since C-risk of

T K is ≤ ε, the pA(x)-probability to get |f(x)− f̂(ωK)| ≤ δL is at least 1− ε.

3.2.7.1 Numerical illustration

Our illustration deals with the situation when I = 1, X = X1 is a convex compact
set, and f(x) is fractional-linear: f(x) = aTx/cTx with positive on X denominator.
Specifically, assume we are given noisy measurements of voltages Vi at some nodes
i and currents Iij in some arcs (i, j) of an electric circuit, and want to recover the

resistance of a particular arc (̂i, ĵ):

rîĵ =
Vĵ − Vî
Iîĵ

.

In our experiment, we work with the data as follows:

input node (# 1)

output node (# 8)

x = [voltages at nodes; currents in arcs]
Ax = [observable voltages; observable currents]

• Currents are measured in blue arcs only
• Voltages are measured in magenta nodes only
• We want to recover resistance of red arc

• X :


conservation of current, except for nodes ##1,8
zero voltage at node #1, nonnegative currents
current in red arc at least 1, total of currents at most 33
Ohm Law, resistances of arcs between 1 and 10

We are in the situation N = 1, I = 1, implying M = L. When using L = 8, the
projections of the sets Ys, 1 ≤ s ≤ L = 8 onto the 2D plane of variables (Vĵ−Vî, Iîĵ)
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are the “stripes” shown below:

I
îĵ

V
ĵ
− V

î

The range of the unknown resistance turns out to be ∆ = [1, 10].
In our experiment we worked with ε = 0.01. Instead of looking for K such

that K-repeated observation allows to recover 0.99-reliably the resistance in the
arc of interest within accuracy |∆|/L, we looked for the largest observation noise
σ allowing to achieve the desired recovery with single observation. The results for
L = 8, 16, 32 are as follows

L 8 16 32

δL 9/8 ≈ 1.13 9/16 ≈ 0.56 9/32 ≈ 0.28

σ 0.024 0.010 0.005

σopt/σ ≤ 1.31 1.31 1.33

σ 0.031 0.013 0.006

σopt/σ ≤ 1.01 1.06 1.08

In the table:

• σopt is the largest σ for which “in the nature” there exists a test deciding on
H1, ...,HL with C-risk ≤ 0.01;
• Red data: Risks εss′ of pairwise tests are bounded via risks of optimal detectors,
C-risk of T is bounded by∣∣∣∣∣∣[εss′χss′ ]Ls,s′=1

∣∣∣∣∣∣
2,2
, χss′ =

{
1, (s, s′) 6∈ C
0, (s, s′) ∈ C ,

see Proposition 2.33;
• Brown data: Risks εss′ of pairwise tests are bounded via error function, C-risk of
T is bounded by

max
s

∑
s′:(s,s′)6∈C

εss′

(check that in the case of Gaussian o.s., this indeed is a legitimate risk bound).
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Figure 3.2: A circuit (9 nodes, 16 arcs). Red: arc of interest; Green: arcs with
measured currents and nodes with measured voltages.

3.2.7.2 Estimating dissipated power

The alternative approach to estimating N -convex functions proposed in Section
3.2.7 can be combined with quadratic lifting from Section 2.9 to yield, under favor-
able circumstances, estimates of quadratic and quadratic fractional functions. We
are about to consider an instructive example of this sort. Figure 3.2 represent a DC
electrical circuit. We have access to repeated noisy measurements of currents in
green arcs and voltages at green nodes, with the voltage of the ground node equal
to 0. The arcs are somehow oriented; this orientation, however, is of no relevance in
our context and therefore is not displayed. Our goal is to use these observations to
estimate the power dissipated in a given “arc of interest.” Our a priori information
is as follows:

• the (unknown) resistances of arcs are known to belong to a given range [r,R],
with 0 < r < R <∞;
• the currents and the voltages are linked by Kirchhoff Laws:

– at every node, the sum of currents in the outgoing arcs is equal to the sum
of currents in the incoming arcs plus the external current at the node.
In our circuit, there are just two external currents, one at the ground node
and one at the input node marked by dashed line.

– the voltages and the currents are linked by Ohm’s Law: for every (inner)
arc γ, we have

Iγrγ = Vj(γ) − Vi(γ)

where Iγ is the current in the arc, rγ is the arc’s resistance, Vs is the voltage
at node s, and i(γ), j(γ) are the initial and the final nodes linked by arc γ;

• magnitudes of all currents and voltages are bounded by 1.

We assume that the measurements of observable currents and voltages are affected
by zero mean Gaussian noise with scalar covariance matrix θ2I, with unknown θ
from a given range [σ, σ].
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Processing the problem. We specify the “signal” underlying our observation as
the collection u of the voltages at our 9 nodes and currents Iγ in our 16 (inner) arcs
γ, augmented by external current Io at the input node (so that −Io is the external
current at the ground node), so that our single-time observation is

ζ = Au+ θξ, (3.31)

where A extracts from u four entries, ξ ∼ N (0, I4), and θ ∈ [σ, σ]. Our a priori
information on u states that u belongs to the compact set U given by the quadratic
constraints, namely, as follows:

U =

u = {Iγ , Io, Vi} :

I2
γ ≤ 1, V 2

i ≤ 1 ∀γ, i;uTJTJu = 0
[Vj(γ) − Vi(γ)]

2/R− Iγ [Vj(γ) − Vi(γ)] ≤ 0
Iγ [Vj(γ) − Vi(γ)]− [Vj(γ) − Vi(γ)]

2/r ≤ 0

}
∀γ (a)

rI2
γ − Iγ [Vj(γ) − Vi(γ)] ≤ 0

Iγ [Vj(γ) − Vi(γ)]−RI2
γ ≤ 0

}
∀γ (b)


(3.32)

where Ju = 0 expresses the first Kirchhoff’s Law, and quadratic constraints (a), (b)
account for the Ohm’s Law in the situation when we do not know the resistances,
just the range [r,R] of them. Note that the groups (a), (b) of constraints in (3.32)
are “logical consequences” of each other, and thus one of groups seems to be re-
dundant. However, on a closest inspection, valid on U quadratic inequalities are
indeed redundant in our context, that is, do not tighten the outer approximation
Z of Z[U ], only when these inequalities can be obtained from the inequalities we
do include into the description of Z “in a linear fashion” – by taking weighted sum
with nonnegative coefficients; this is not how (b) is obtained from (a). As a result,
to get a smaller Z, it makes sense to keep both (a) and (b).

The dissipated power we are interested to estimate is the quadratic function

f(u) = Iγ∗ [Vj∗ − Vi∗ ] = [u; 1]TG[u; 1]

where γ∗ = (i∗, j∗) is the arc of interest, and G ∈ Sn+1, n = dim u, is a properly
built matrix.

In order to build an estimate, we “lift quadratically” the observations:

ζ 7→ ω = (ζ, ζζT )

and pass from the domain U of actual signals to the outer approximation Z of the
quadratic lifting of U :

Z := {Z ∈ Sn+1 : Z � 0, Zn+1,n+1 = 1,Tr(QsZ) ≤ cs, 1 ≤ s ≤ S}
⊃

{
[u; 1][u; 1]T : u ∈ V

}
,

where the matrix Qs ∈ Sn+1 represents the left hand side Fs(u) of s-th quadratic
constraint participating in the description (3.32) of U : Fs(u) ≡ [u; 1]TQs[u; 1], and
cs is the right hand side of s-th constraint.

We process the problem similarly to what was done in Section 3.2.7.1, where
our goal was to estimate a fractional-linear function. Specifically,

1. We compute the range of f on U ; the smallest value f of f on U clearly is zero,
and an upper bound on the maximum of f(u) over u ∈ U , is the optimal value
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in the convex optimization problem

f = max
Z∈Z

Tr(GZ)

2. Given a positive integer L, we split the range [f, f ] into L segments ∆` =

[a`−1, a`] of equal length δL = (f − f)/L and define convex compact sets

Z` = {Z ∈ Z : a`−1 ≤ Tr(GZ) ≤ a`}, 1 ≤ ` ≤ L,

so that
u ∈ U, f(u) ∈ ∆` ⇒ [u; 1][u; 1]T ∈ Z`, 1 ≤ ` ≤ L;

3. We specify L quadratically constrained hypotheses H1, ...,HL on the distribution
of observation (3.31), with H` stating that ζ ∼ N (Au, θ2I4) with some u ∈ U
satisfying f(u) ∈ ∆` (so that [u; 1][u; 1]T ∈ Z`), and θ belongs to the above
segment [σ, σ]].
We equip our hypotheses with closeness relation C, specifically, say that H`, H`′

are C-close if and only if the segments ∆` and ∆`′ intersect.
4. We use Proposition 2.46.ii to build quadratic in ζ detectors φ``′ for the families

of distributions obeying H` and H`′ , respectively, along with upper bounds ε``′

on the risks of these detectors, and then use the machinery from Section 2.5.2
to find the smallest K and a test T KC , based on stationary K-repeated version
of observation (3.31), capable to decide on H1, ...,HL with C-risk ≤ ε, where
ε ∈ (0, 1) is a given tolerance.

Finally, given stationary K-repeated observation (3.31), we apply to it test T KC ,
look at the hypotheses, if any, accepted by the test, and build the union ∆ of
the corresponding segments ∆`. If ∆ = ∅, we estimate f(u) by the midpoint of
the range [f, f ] of power, otherwise the estimate is the mean of the largest and
the smallest points in ∆. It is easily seen (check it!) that for this estimate, the
probability for the estimation error to be > δ` is ≤ ε.

Numerical results we are about to report deal with the circuit presented on
Figure 3.2; we used σ = 0.01, σ = σ/

√
2, [r,R] = [1, 2], ε = 0.01, and L = 8. The

numerical results are as follows. The range [f, f ] of the dissipated power turned
out to be [0, 0.821], so that the estimate we have built with reliability 0.99 recovers
the dissipated power within accuracy 0.103. The resulting value of K was K = 95.

In a series of 500 simulations, the actual recovery error all the time was less
than the bound 0.103, and the average error was as small as 0.041.

3.3 ESTIMATING LINEAR FORMS

We are about to demonstrate that the techniques developed in Section 2.8 can
be applied to building estimates of linear and quadratic forms of the parameters
of observed distributions. As compared to the machinery of Section 3.2, our new
approach has somehow restricted scope: we cannot estimate anymore general N -
convex functions and/or handle domains which are unions of convex sets; now we
need the function to be linear (perhaps, after quadratic lifting of observations) and
the domain to be convex. As a compensation, the new approach, when applicable,
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seems to be cheaper computationally: the estimate is yielded by solving a single
convex problem, while the techniques developed so far require solving several (per-
haps even few tens) of problems of similar structure and complexity. In this Section,
we focus on estimating linear forms; estimating quadratic forms will be our subject
in Section 3.4.

3.3.1 Situation and goal

Consider the situation as follows: given are Euclidean spaces Ω = EH , EM , EX
along with

• regular data H ⊂ EH ,M⊂ EM ,Φ(·; ·) : H×M→ R, with 0 ∈ intH,
• a nonempty convex compact set X ⊂ EX ,
• an affine mapping x 7→ A(x) : EX → EM such that A(X ) ⊂M,
• a continuous convex calibrating function υ(x) : X → R
• a vector g ∈ EX and a constant c specifying the linear form G(x) = 〈g, x〉 + c :
EX → R 49,

• a tolerance ε ∈ (0, 1).

These data specify, in particular, the family

P = S[H,M,Φ]

of probability distributions on Ω = EH , see Section 2.8.1.1. Given random observa-
tion

ω ∼ P (·) (3.33)

where P ∈ P is such that

∀h ∈ H : ln

(∫
EH

e〈h,ω〉P (dω)

)
≤ Φ(h;A(x)) (3.34)

for some x ∈ X (that is, A(x) is a parameter, as defined in Section 2.8.1.1, of
distribution P ), we want to recover the quantity G(x).

ε-risk. Given ρ > 0, we call an estimate ĝ(·) : EH → R (ρ, ε, υ(·))-accurate, if for
all pairs x ∈ X , P ∈ P satisfying (3.34) it holds

Probω∼P {|ĝ(ω)−G(x)| > ρ+ υ(x)} ≤ ε. (3.35)

If ρ∗ is the infimum of those ρ for which estimate ĝ is (ρ, ε, υ(·))-accurate, then
clearly ĝ is (ρ∗, ε, υ(·))-accurate; we shall call ρ∗ the ε-risk of the estimate ĝ taken
w.r.t. the data G(·), X , υ(·) and (A,H,M,Φ):

Riskε(ĝ(·)|G,X , υ,A,H,M,Φ) = min

{
ρ : Probω∼P {ω : |ĝ(ω)−G(x)| > ρ+ υ(x)} ≤ ε

∀(x, P ) :

{
P ∈ P, x ∈ X
ln
(∫

eh
TωP (dω)

)
≤ Φ(h;A(x))∀h ∈ H

}
.

(3.36)

49from now on, 〈u, v〉 denotes the inner product of vectors u, v belonging to a Euclidean
space; what is this space, it always will be clear from the context.



218

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 3

When G,X, υ,A,H,M,Φ are clear from the context, we shorten

Riskε(ĝ(·)|G,X, υ,A,H,M,Φ)

to Riskε(ĝ(·)).
Given the data listed in the beginning of this section, we are about to build,

in a computationally efficient fashion, an affine estimate ĝ(ω) = 〈h∗, ω〉 + κ along
with ρ∗ such that the estimate is (ρ∗, ε, υ(·))-accurate.

3.3.2 Construction & Main results

Let us set
H+ = {(h, α) : h ∈ EH , α > 0, h/α ∈ H}

so that H+ is a nonempty convex set in EH ×R+, and let

(a) Ψ+(h, α) = sup
x∈X

[αΦ(h/α,A(x))−G(x)− υ(x)] : H+ → R,

(b) Ψ−(h, β) = sup
x∈X

[βΦ(−h/β,A(x)) +G(x)− υ(x)] : H+ → R,
(3.37)

so that Ψ± are convex real-valued functions on H+ (recall that Φ is convex-concave
and continuous on H×M, while A(X ) is a compact subset of M).

Our starting point is pretty simple:

Proposition 3.6. Given ε ∈ (0, 1), let h̄, ᾱ, β̄, κ̄, ρ̄ be a feasible solution to the
system of convex constraints

(a1) (h, α) ∈ H+

(a2) (h, β) ∈ H+

(b1) α ln(ε/2) ≥ Ψ+(h, α)− ρ+ κ
(b2) β ln(ε/2) ≥ Ψ−(h, β)− ρ− κ

(3.38)

in variables h, α, β, ρ, κ. Setting

ĝ(ω) = 〈h̄, ω〉+ κ̄,

we get an estimate with ε-risk at most ρ̄.

Proof. Let ε ∈ (0, 1), h̄, ᾱ, β̄, κ̄, ρ̄ satisfy the premise of Proposition, and let
x ∈ X,P satisfy (3.34). We have

Probω∼P {ĝ(ω) > G(x) + ρ̄+ υ(x)} = Probω∼P

{
〈h̄,ω〉
ᾱ > G(x)+ρ̄−κ̄+υ(x)

ᾱ

}
⇒ Probω∼P {ĝ(ω) > G(x) + ρ̄+ υ(x)} ≤

[∫
e〈h̄,ω〉/ᾱP (dω)

]
e−

G(x)+ρ̄−κ̄+υ(x)
ᾱ

≤ eΦ(h̄/ᾱ,A(x))e−
G(x)+ρ̄−κ̄+υ(x)

ᾱ

⇒ ᾱ ln (Probω∼P {ĝ(ω) > G(x) + ρ̄+ υ(x)})
≤ ᾱΦ(h̄/ᾱ,A(x))−G(x)− ρ̄− υ(x) + κ̄
≤ Ψ+(h̄, ᾱ)− ρ̄+ κ̄ [by definition of Ψ+ and due to x ∈ X]
≤ ᾱ ln(ε/2) [by (b1)]

⇒ Probω∼P {ĝ(ω) > G(x) + ρ̄+ υ(x)} ≤ ε/2,
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and similarly

Probω∼P {ĝ(ω) < G(x)− ρ̄− υ(x)} = Probω∼P

{
−〈h̄,ω〉
β̄

> −G(x)+ρ̄+κ̄+υ(x)

β̄

}
⇒ Probω∼P {ĝ(ω) < G(x)− ρ̄− υ(x)} ≤

[∫
e−〈h̄,ω〉/β̄P (dω)

]
e
−−G(x)+ρ̄+κ̄+υ(x)

β̄

≤ eΦ(−h̄/β̄,A(x))e
G(x)−ρ̄−κ̄−υ(x)

β̄

⇒ β̄ ln (Probω∼P {ĝ(ω) < G(x)− ρ̄− υ(x)})
≤ β̄Φ(−h̄/β̄,A(x)) +G(x)− ρ̄− κ̄ − υ(x)
≤ Ψ−(h̄, β̄)− ρ̄− κ̄ [by definition of Ψ− and due to x ∈ X]
≤ β̄ ln(ε/2) [by (b2)]

⇒ Probω∼P {ĝ(ω) < G(x)− ρ̄− υ(x)} ≤ ε/2.
2

Corollary 3.7. In the situation described in Section 3.3.1, let Φ satisfy the relation

Φ(0;µ) ≥ 0 ∀µ ∈M. (3.39)

Then

Ψ̂+(h) := infα {Ψ+(h, α) + α ln(2/ε) : α > 0, (h, α) ∈ H+}
= supx∈X infα>0,(h,α)∈H+ [αΦ(h/α,A(x))−G(x)− υ(x) + α ln(2/ε)] , (a)

Ψ̂−(h) := infα {Ψ−(h, α) + α ln(2/ε) : α > 0, (h, α) ∈ H+}
= supx∈X infα>0,(h,α)∈H+ [αΦ(−h/α,A(x)) +G(x)− υ(x) + α ln(2/ε)] . (b)

(3.40)

and functions Ψ̂± : EH → R are convex. Furthermore, let h̄, κ̄, ρ̃ be a feasible
solution to the system of convex constraints

Ψ̂+(h) ≤ ρ− κ, Ψ̂−(h) ≤ ρ+ κ (3.41)

in variables h, ρ, κ. Then, setting

ĝ(ω) = 〈h̄, ω〉+ κ̄,

we get an estimate of G(x), x ∈ X, with ε-risk at most Ψ̂(h̄):

Riskε(ĝ(·)|G,X, υ,A,H,M,Φ) ≤ Ψ̂(h̄). (3.42)

Relation (3.41) (and thus – the risk bound (3.42)) clearly holds true when h̄ is a
candidate solution to the convex optimization problem

Opt = min
h

{
Ψ̂(h) :=

1

2

[
Ψ̂+(h) + Ψ̂−(h)

]}
, (3.43)

ρ̄ = Ψ̂(h̄), and

κ̄ =
Ψ̂−(h̄)− Ψ̂+(h̄)

2
.

As a result, properly selecting h̄, we can make (an upper bound on) the ε-risk of
estimate ĝ(·) arbitrarily close to Opt, and equal to Opt when optimization problem
(3.43) is solvable.
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Proof. Let us first verify the equalities in (3.40). The function

Θ+(h, α;x) = αΦ(h/α,A(x))−G(x)− υ(x) + α ln(2/ε) : H+ ×X → R

is convex-concave and continuous, and X is compact, whence by Sion-Kakutani
Theorem

Ψ̂+(h) := infα {Ψ+(h, α) + α ln(2/ε) : α > 0, (h, α) ∈ H+}
= infα>0,(h,α)∈H+ maxx∈X Θ+(h, α;x)
= supx∈X infα>0,(h,α)∈H+ Θ+(h, α;x)
= supx∈X infα>0,(h,α)∈H+ [αΦ(h/α,A(x))−G(x)− υ(x) + α ln(2/ε)] ,

as required in (3.40.a). As we know, Ψ+(h, α) is real-valued continuous function on

H+, so that Ψ̂+ is convex on EH , provided that the function is real-valued. Now,
let x̄ ∈ X , and let e be a subgradient of φ(h) = Φ(h;A(x)) taken at h = 0. For
h ∈ EH and all α > 0 such that (h, α) ∈ H+ we have

Ψ+(h, α) ≥ αΦ(h/α;A(x̄))−G(x̄)− υ(x̄) + α ln(2/ε)
≥ α[Φ(0;A(x̄)) + 〈e, h/α〉]−G(x̄)− υ(x̄) + α ln(2/ε)
≥ 〈e, h〉 −G(x̄)− υ(x̄)

(we have used (3.39)), and therefore Ψ+(h, α) is bounded below on the set {α > 0 :
h/α ∈ H}; in addition, this set is nonempty, since H contains a neighbourhood of

the origin. Thus, Ψ̂+ is real-valued and convex on EH . Verification of (3.40.b) and

of the fact that Ψ̂−(h) is real-valued convex function on EH is completely similar.
Now, given a feasible solution (h̄, κ̄, ρ̃) to (3.41), let us select somehow ρ̄ > ρ̃.

Taking into account the definition of Ψ̂±, we can find ᾱ and β̄ such that

(h̄, ᾱ) ∈ H+ & Ψ+(h̄, ᾱ) + ᾱ ln(2/ε) ≤ ρ̄− κ̄,
(h̄, β̄) ∈ H+ & Ψ−(h̄, β̄) + β̄ ln(2/ε) ≤ ρ̄+ κ̄,

implying that the collection (h̄, ᾱ, β̄, κ̄, ρ̄) is a feasible solution to (3.38). Invoking
Proposition 3.6, we get

Probω∼P {ω : |ĝ(ω)−G(x)| > ρ̄+ υ(x)} ≤ ε

for all (x ∈ X,P ∈ P) satisfying (3.34). Since ρ̄ can be selected arbitrarily close to
ρ̃, ĝ(·) indeed is a (ρ̃, ε, υ(·))-accurate estimate. 2

3.3.3 Estimation from repeated observations

Assume that in the situation described in section 3.3.1 we have access to K observa-
tions ω1, ..., ωK sampled, independently of each other, from a probability distribu-
tion P , and are allowed to build our estimate based on these K observations rather
than on a single observation. We can immediately reduce this new situation to the
previous one, just by redefining the data. Specifically, given initial data H ⊂ EH ,
M⊂ EM , Φ(·; ·) : H×M→ R, X ⊂ X ⊂ EX , A(·), G(x) = gTx+c, see section 3.3.1
and a positive integer K, let us update part of the data, specifically, replaceH ⊂ EH
with HK := H× ...×H︸ ︷︷ ︸

K

⊂ EKH := EH × ...× EH︸ ︷︷ ︸
K

and replace Φ(·, ·) : H ×M → R

with ΦK(hK = (h1, ..., hK);µ) =
∑K
i=1 Φ(hi;µ) : HK ×M→ R. It is immediately
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seen that the updated data satisfy all requirements imposed on the data in section
3.3.1, and that whenever a Borel probability distribution P on EH and x ∈ X are
linked by (3.34), the distribution PK of K-element i.i.d. sample ωK = (ω1, ..., ωK)
drawn from P and x are linked by the relation

∀hK = (h1, ..., hK) ∈ HK :

ln
(∫
EKH

e〈h
K ,ωK〉PK(dωK)

)
=

∑
i ln
(∫
EH e〈hi,ωi〉P (dωi)

)
≤ ΦK(hK ;A(x)).

(3.44)

Applying to our new data the construction from section 3.3.2, we arrive at “repeated
observations” versions of Proposition 3.6 and Corollary 3.7. Note that the result-
ing convex constraints/objectives are symmetric w.r.t. permutations functions of
the components h1, ..., hK of hK , implying that we lose nothing when restricting
ourselves with collections hK with equal to each other components; it is convenient
to denote the common value of these components h/K. With these observations,
Proposition 3.6 and Corollary 3.7 become the statements as follows (we use the
assumptions and the notation from the previous sections):

Proposition 3.8. Given ε ∈ (0, 1) and positive integer K, let

(a) Ψ+(h, α) = sup
x∈X

[αΦ(h/α,A(x))−G(x)− υ(x)] : H+ → R,

(b) Ψ−(h, β) = sup
x∈X

[βΦ(−h/β,A(x)) +G(x)− υ(x)] : H+ → R,

and let h̄, ᾱ, β̄, κ̄, ρ̄ be a feasible solution to the system of convex constraints

(a1) (h, α) ∈ H+

(a2) (h, β) ∈ H+

(b1) αK−1 ln(ε/2) ≥ Ψ+(h, α)− ρ+ κ
(b2) βK−1 ln(ε/2) ≥ Ψ−(h, β)− ρ− κ

(3.45)

in variables h, α, β, ρ, κ. Setting

ĝ(ωK) = 〈h̄, 1

K

K∑
i=1

ωi〉+ κ̄,

we get an estimate of G(x) via independent K-repeated observations

ωi ∼ P, i = 1, ...,K

with ε-risk on X not exceeding ρ̄, meaning that whenever x ∈ X and a Borel
probability distribution P on EH are linked by (3.34), one has

ProbωK∼PK
{
ωK : |ĝ(ωK)−G(x)| > ρ̄+ υ(x)

}
≤ ε. (3.46)

Corollary 3.9. In the situation described in the beginning of section 3.3.1, let Φ
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satisfy the relation (3.39), and let a positive integer K be given. Then

Ψ̂+(h) := inf
α

{
Ψ+(h, α) +K−1α ln(2/ε) : α > 0, (h, α) ∈ H+

}
= sup

x∈X
inf

α>0,(h,α)∈H+

[
αΦ(h/α,A(x))−G(x)− υ(x) +K−1α ln(2/ε)

]
, (a)

Ψ̂−(h) := infα
{

Ψ−(h, α) +K−1α ln(2/ε) : α > 0, (h, α) ∈ H+
}

= sup
x∈X

inf
α>0,(h,α)∈H+

[
αΦ(−h/α,A(x)) +G(x)− υ(x) +K−1α ln(2/ε)

]
. (b)

(3.47)

and functions Ψ̂± : EH → R are convex. Furthermore, let h̄, κ̄, ρ̃ be a feasible
solution to the system of convex constraints

Ψ̂+(h) ≤ ρ− κ, Ψ̂−(h) ≤ ρ+ κ (3.48)

in variables h, ρ, κ. Then, setting

ĝ(ωK) = 〈h̄, 1

K

K∑
i=1

ωi〉+ κ̄,

we get an estimate of G(x), x ∈ X, with ε-risk at most Ψ̂(h̄), meaning that whenever
x ∈ X and a Borel probability distribution P on EH are linked by (3.34), relation
(3.46) holds true.

Relation (3.48) clearly holds true when h̄ is a candidate solution to the convex
optimization problem

Opt = min
h

{
Ψ̂(h) :=

1

2

[
Ψ̂+(h) + Ψ̂−(h)

]}
, (3.49)

ρ̄ = Ψ̂(h̄) and

κ̄ =
Ψ̂−(h̄)− Ψ̂+(h̄)

2
.

As a result, properly selecting h̄, we can make (an upper bound on) the ε-risk of
estimate ĝ(·) arbitrarily close to Opt, and equal to Opt when optimization problem
(3.49) is solvable.

From now on, if otherwise is not explicitly stated, we deal with K-repeated
observations; to get back to single-observation case, it suffices to set K = 1.

3.3.4 Application: Estimating linear form of sub-Gaussianity
parameters

Consider the simplest case of the situation from sections 3.3.1, 3.3.3, where

• H = EH = Rd, M = EM = Rd × Sd+, Φ(h;µ,M) = hTµ+ 1
2h

TMh : Rd × (Rd ×
Sd+) → R, so that S[H,M,Φ] is the family of all sub-Gaussian distributions on
Rd;
• X = X ⊂ EX = Rnx is a nonempty convex compact set, and
• A(x) = (Ax+a,M(x)), where A is d×nx matrix, and M(x) is affinely depending

on x symmetric d× d matrix such that M(x) is � 0 when x ∈ X,
• υ(x) is a convex continuous function on X ,
• G(x) is an affine function on EX .
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In the case in question (3.39) clearly takes place, and the left hand sides in the
constraints (3.48) are

Ψ̂+(h) = sup
x∈X

inf
α>0

{
hT [Ax+ a] + 1

2α
hTM(x)h+K−1α ln(2/ε)−G(x)− υ(x)

}
= max

x∈X

{√
2K−1 ln(2/ε)[hTM(x)h] + hT [Ax+ a]−G(x)− υ(x)

}
,

Ψ̂−(h) = sup
x∈X

inf
α>0

{
−hT [Ax+ a] + 1

2α
hTM(x)h+K−1α ln(2/ε) +G(x)− υ(x)

}
= max

x∈X

{√
2K−1 ln(2/ε)[hTM(x)h]− hT [Ax+ a] +G(x)− υ(x)

}
.

Thus, system (3.48) reads

aTh+ max
x∈X

[√
2K−1 ln(2/ε)[hTM(x)h] + hTAx−G(x)− υ(x)

]
≤ ρ− κ,

−aTh+ max
x∈X

[√
2K−1 ln(2/ε)[hTM(x)h]− hTAx+G(x)− υ(x)

]
≤ ρ+ κ.

We arrive at the following version of Corollary 3.9:

Proposition 3.10. In the situation described in the beginning of section 3.3.4,
given ε ∈ (0, 1), let h̄ be a feasible solution to the convex optimization problem

Opt = min
h∈Rd

Ψ̂(h),

Ψ̂(h) := 1
2

[
Ψ̂+(h)︷ ︸︸ ︷

max
x∈X

[√
2K−1 ln(2/ε)[hTM(x)h] + hTAx−G(x)− υ(x)

]
+ aTh

+ max
y∈X

[√
2K−1 ln(2/ε)[hTM(y)h]− hTAy +G(y)− υ(y)

]
− aTh︸ ︷︷ ︸

Ψ̂−(h)

]}
.

(3.50)

Then, setting

κ̄ =
1

2

[
Ψ̂−(h̄)− Ψ̂+(h̄)

]
, ρ̄ = Ψ̂(h̄), (3.51)

the affine estimate

ĝ(ωK) =
1

K

K∑
i=1

h̄Tωi + κ̄

has ε-risk, taken w.r.t. the data listed in the beginning of this section, at most ρ̄.

It is immediately seen that optimization problem (3.50) is solvable, provided
that ⋂

x∈X
Ker(M(x)) = {0},

and an optimal solution h∗ to the problem, taken along with

κ∗ =
1

2

[
Ψ̂−(h∗)− Ψ̂+(h∗)

]
, (3.52)

yields the affine estimate

ĝ∗(ω) =
1

K

K∑
i=1

hT∗ ωi + κ∗
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with ε-risk, taken w.r.t. the data listed in the beginning of this section, at most
Opt.

3.3.4.1 Consistency

Assuming υ(x) ≡ 0, we can easily answer the natural question “when the proposed
estimation scheme is consistent”, meaning that for every ε ∈ (0, 1), it allows to
achieve arbitrarily small ε-risk, provided that K is large enough. Specifically, de-
noting by gTx the linear part of G(x): G(x) = gTx + c, from Proposition 3.10 it
is immediately seen that a sufficient condition for consistency is the existence of
h̄ ∈ Rd such that h̄TAx = gTx for all x ∈ X − X , or, equivalently, the condition
that g is orthogonal to the intersection of the kernel of A with the linear span of
X − X . Indeed, under this assumption, for every fixed ε ∈ (0, 1) we clearly have

limK→∞ Φ̂(h̄) = 0, implying that limK→∞Opt = 0, with Ψ̂ and Opt given by
(3.50). Still assuming υ(x) ≡ 0, the condition in question is necessary for consis-
tency as well, since when the condition is violated, we have Ax′ = Ax′′ for properly
selected x′, x′′ ∈ X with G(x′) 6= G(x′′), making low risk recovery of G(x), x ∈ X ,
impossible already in the case of zero noisy component in observations50.

3.3.4.2 Direct product case

Further simplifications are possible in the direct product case, where, in addition to
what was assumed in the beginning of section 3.3.4,

• EX = EU × EV and X = U × V , with convex compact sets U ⊂ EU = Rnu and
V ⊂ EV = Rnv ,

• A(x = (u, v)) = [Au+ a,M(v)] : U × V → Rd × Sd, with M(v) � 0 for v ∈ V ,
• G(x = (u, v)) = gTu+ c depends solely on u, and
• υ(x = (u, v)) = %(u) depends solely on u.

It is immediately seen that in the direct product case problem (3.50) reads

Opt = min
h∈Rd

{
φU (ATh− g) + φU (−ATh+ g)

2
+ max

v∈V

√
2K−1 ln(2/ε)hTM(v)h

}
,

(3.53)
where

φU (f) = max
u∈U

[
uT f − %(u)

]
. (3.54)

Assuming
⋂
v∈V Ker(M(v)) = {0}, the problem is solvable, and its optimal solution

h∗ produces affine estimate

ĝ∗(ω
K) =

1

K

∑
i

hT∗ ωi + κ∗, κ∗ =
1

2
[φU (−ATh+ g)− φU (ATh− g)]− aTh∗ + c

with ε-risk ≤ Opt.

Near-optimality In addition to the assumption that we are in the direct product
case, assume that υ(·) ≡ 0 and, for the sake of simplicity, that M(v) � 0 whenever

50Note that in Gaussian case with M(x) depending on x the above condition is, in general, not
necessary for consistency, since a nontrivial information on x (and thus on G(x)) can, in principle,
be extracted from the covariance matrix M(x) which can be estimated from observations.
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v ∈ V . In this case (3.50) reads

Opt = min
h

max
v∈V

{
Θ(h, v) :=

1

2
[φU (ATh− g) + φU (−ATh+ g)] +

√
2K−1 ln(2/ε)hTM(v)h

}
,

whence, taking into account that Θ(h, v) clearly is convex in h and concave in v,
while V is a convex compact set, by Sion-Kakutani Theorem we get also

Opt = max
v∈V

[
Opt(v) = min

h

1

2
[φU (ATh− g) + φU (−ATh+ g)] +

√
2K−1 ln(2/ε)hTM(v)h

]
.

(3.55)

Now consider the problem of recovering gTu from observation ωi, i ≤ K, indepen-
dently of each other sampled from N (Au+a,M(v)), where unknown u is known to
belong to U and v ∈ V is known. Let ρε(v) be the minimax ε-risk of the recovery:

ρε(v) = inf
ĝ(·)

{
ρ : ProbωK∼[N (Au+a,M(v))]K{ωK : |ĝ(ωK)− gTu| > ρ} ≤ ε ∀u ∈ U

}
,

where inf is taken over all Borel functions ĝ(·) : RKd → R. Invoking [86, Theorem
3.1], it is immediately seen that whenever ε < 1/4, one has

ρε(v) ≥

[
2 ln(2/ε)

ln
(

1
4ε

) ]−1

Opt(v).

Since the family SG(U, V ) of all sub-Gaussian, with parameters (Au+a,M(v)), u ∈
U , v ∈ V , distributions on Rd contains all Gaussian distributions N (Au+a,M(v))
induced by (u, v) ∈ U × V , we arrive at the following conclusion:

Proposition 3.11. In the just described situation, the minimax optimal ε-risk

Riskopt
ε (K) = inf

ĝ(·)
Riskε(ĝ(·)),

of recovering gTu from K-repeated i.i.d. sub-Gaussian, with parameters (Au +
a,M(v)), (u, v) ∈ U × V , random observations is within a moderate factor of the
upper bound Opt on the ε-risk, taken w.r.t. the same data, of the affine estimate
ĝ∗(·) yielded by an optimal solution to (3.53), namely,

Opt ≤ 2 ln(2/ε)

ln
(

1
4ε

) Riskopt
ε .

3.3.4.3 Numerical illustration

The numerical illustration we are about to discuss models the situation when we
want to recover a linear form of a signal x known to belong to a given convex
compact subset X via indirect observations Ax affected by sub-Gaussian “relative
noise,” meaning that the variance of observation is the larger the larger is the signal.
Specifically, our observation is

ω ∼ SG(Ax,M(x)),
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where

x ∈ X =
{
x ∈ Rn : 0 ≤ xj ≤ j−α, 1 ≤ j ≤ n

}
, M(x) = σ2

n∑
j=1

xjΘj (3.56)

where A ∈ Rd×n and Θj ∈ Sd+, j = 1, ..., n, are given matrices; the linear form to be
recovered from observation ω is G(x) = gTx. The entities g,A, {Θj}nj=1 and reals
α ≥ 0 (“degree of smoothness”), σ > 0 (“noise intensity”) are parameters of the
estimation problem we intend to process. The parameters g,A,Θj were generated
as follows:

• g ≥ 0 was selected at random and then normalized to have

max
x∈X

gTx = max
x,y∈X

gT [x− y] = 2;

• we dealt with n > d (“deficient observations”); the d nonzero singular values

of A were set to θ−
i−1
d−1 , where “condition number” θ ≥ 1 is a parameter; the

orthonormal systems U and V of the first d left, respectively, right singular
vectors of A were drawn at random from rotationally invariant distributions;
• the positive semidefinite d × d matrices Θj were orthogonal projectors on ran-

domly selected subspaces in Rd of dimension bd/2c;
• in all our experiments, we dealt with single-observation case K = 1, and used
υ(·) ≡ 0.

Note that X possesses ≥-largest point x̄, whence M(x) � M(x̄) whenever x ∈ X;
as a result, sub-Gaussian distributions with matrix parameter M(x), x ∈ X, can
be thought also to have matrix parameter M(x̄). One of the goals of experiment
to be reported was to understand how much would be lost were we replacing M(·)
with M̂(x) ≡ M(x̄), that is, were we ignoring the fact that small signals result in
low-noise observations.

In the experiment to be reported, we use d = 32, m = 48, α = 2, θ = 2, and
σ = 0.01. Utilizing these parameters, we generated at random, as described above,
10 collections {g,A,Θj , j ≤ d}, thus arriving at 10 estimation problems. For every
one of these problems, we used the outlined machinery to build affine in ω estimate
of gTx as yielded by optimal solution to (3.50), and computed upper bound Opt on
(ε = 0.01)-risk of this estimate. In fact, for every one of the 10 generated estimation
problems, we build two estimates and two risk bounds: the first – for the problem
“as is,” and the second – for the aforementioned “direct product envelope” of the
problem, where the mapping x 7→M(x) is replaced with x 7→ M̂(x) := M(x̄). The
results are as follows:

min median mean max

0.138 0.190 0.212 0.299
0.150 0.210 0.227 0.320

0.01-Risk, data over 10 estimation problems [d = 32,m = 48, α = 2, θ = 2, σ = 0.1]
First row: ω ∼ SG(Ax,M(x)). Second row: ω ∼ SG(Ax,M(x̄))

Pay attention to “amplification of noise” in the estimate (about 20 times the level
σ of observation noise) and significant variability of risk across the experiments;
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seemingly, both these phenomena stem from the fact that we have highly deficient
observations (n/d = 1.5) combined with “random interplay” between the directions
of coordinate axes in Rm (along these directions, X becomes more and more thin)
and the orientation of the 16-dimensional kernel of A.

3.4 ESTIMATING QUADRATIC FORMS VIA QUADRATIC

LIFTING

In the situation of Section 3.33, passing from “original” observations (3.33) to their
quadratic lifting: we can use the just developed machinery to estimate quadratic
forms of the underlying parameters rather than linear ones. We are about to investi-
gate the related possibilities in the cases of Gaussian and sub-Gaussian observations.

3.4.1 Estimating quadratic forms, Gaussian case

3.4.1.1 Preliminaries

Consider the situation where we are given

• a nonempty bounded set U in Rm;
• a nonempty convex compact subset V of the positive semidefinite cone Sd+;
• a matrix Θ∗ � 0 such that Θ∗ � Θ for all Θ ∈ V;
• an affine mapping u 7→ A[u; 1] : Rm → Ω = Rd, where A is a given d× (m+ 1)

matrix,
• a convex continuous function %(·) on Sm+1

+ .

A pair (u ∈ U,Θ ∈ V) specifies Gaussian random vector ζ ∼ N (A[u; 1],Θ) and thus
specifies probability distribution P [u,Θ] of (ζ, ζζT ). Let Q(U,V) be the family of
probability distributions on Ω = Rd × Sd stemming in this fashion from Gaussian
distributions with parameters from U ×V. Our goal is to cover the family Q(U,V)
by a family of the type S[N,M,Φ].

It is convenient to represent a linear form on Ω = Rd × Sd as

hT z +
1

2
Tr(HZ),

where (h,H) ∈ Rd × Sd is the “vector of coefficients” of the form, and (z, Z) ∈
Rd × Sd is the argument of the form.

We assume that for some δ ∈ [0, 2] it holds

‖Θ1/2Θ
−1/2
∗ − I‖ ≤ δ ∀Θ ∈ V, (3.57)

where ‖ · ‖ is the spectral norm (cf. (2.165). Finally, we set B =

[
A
bT

]
and

Z+ = {W ∈ Sm+1
+ : Wm+1,m+1 = 1}. (3.58)

The statement below is a straightforward reformulation of Proposition 2.46.i:
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Proposition 3.12. In the just described situation, let us select γ ∈ (0, 1) and set

H = Hγ := {(h,H) ∈ Rd × Sd : −γΘ−1
∗ � H � γΘ−1

∗ },
M+ = V × Z+,

Φ(h,H; Θ, Z) = − 1
2

ln Det(I −Θ
1/2
∗ HΘ

1/2
∗ ) + 1

2
Tr([Θ−Θ∗]H)

+ δ(2+δ)

2(1−‖Θ1/2
∗ HΘ

1/2
∗ ‖)

‖Θ1/2
∗ HΘ

1/2
∗ ‖2F

+Γ(h,H;Z) : H×M+ → R
[‖ · ‖ is the spectral, and ‖ · ‖F is the Frobenius norm],

Γ(h,H;Z) = 1
2
Tr
(
Z[bhTA+AThbT +ATHA+BT [H,h]T [Θ−1

∗ −H]−1[H,h]B]
)

= 1
2
Tr

(
Z

(
BT

[[
H h

hT

]
+ [H,h]T [Θ−1

∗ −H]−1 [H,h]

]
B

))
.

(3.59)
Then H,M+,Φ form a regular data, and for every (u,Θ) ∈ Rm × V it holds

∀(h,H) ∈ H : ln
(
Eζ∼N (C(u),Θ)

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ Φ(h,H; Θ, [u; 1][u; 1]T ). (3.60)

Besides this, function Φ(h,H; Θ, Z) is coercive in the convex argument: when-
ever (Θ, Z) ∈ M and (hi, Hi) ∈ H and ‖(hi, Hi)‖ → ∞ as i → ∞, we have
Φ(hi, Hi; Θ, Z)→∞, i→∞.

3.4.1.2 Estimating quadratic form: Situation & goal

We are interested in the situation as follows: we are given a sample ζK = (ζ1, ..., ζK)
of independent across i and identically distributed random observations

ζi ∼ N (A[u; 1],M(v)), 1 ≤ i ≤ K, (3.61)

where

• (u, v) is unknown “signal” known to belong to a given set U × V , where

– U ⊂ Rm is a compact set, and

– V ⊂ Rk is a compact convex set;

• A is a given d × (m + 1) matrix, and v 7→ M(v) : Rk → Sd is affine mapping
such that M(v) � 0 whenever v ∈ V .

We are also given a convex calibrating function %(Z) : Sm+1
+ → R and “functional

of interest”
F (u, v) = [u; 1]TQ[u; 1] + qT v, (3.62)

where Q and q are known (m+ 1)× (m+ 1) symmetric matrix and k-dimensional
vector, respectively. Our goal is to recover F (u, v), for unknown (u, v) known to
belong to U × V , via observation (3.61). Given a tolerance ε ∈ (0, 1), we quantify
the quality of a candidate estimate ĝ(ζK) of F (u, v) by the smallest ρ such that for
all (u, v) ∈ U × V it holds

ProbζK∼N (A[u;1],M(v))×...×N (A[u;1],M(v))

{
|ĝ(ζK)− F (u, v) ρ+ %([u; 1][u; 1]T )

}
≤ ε.

(3.63)
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3.4.1.3 Construction & Result

Let
V = {M(v) : v ∈ V },

so that V is a convex compact subset of the positive semidefinite cone Sd+1
+ . Let

us select somehow

1. a matrix Θ∗ � 0 such that Θ∗ � Θ, for all Θ ∈ V;
2. a convex compact subset Z of the set Z+ = {Z ∈ Sm+1

+ : Zm+1,m+1 = 1} such
that [u; 1][u; 1]T ∈ Z for all u ∈ U ;

3. a real γ ∈ (0, 1) and a nonnegative real δ such that (3.57) takes place.

We further set (cf. Proposition 3.12)

B =

[
A

[0, ..., 0, 1]

]
∈ R(d+1)×(m+1),

H = Hγ := {(h,H) ∈ Rd × Sd : −γΘ−1
∗ � H � γΘ−1

∗ },
M = V × Z,

Φ(h,H; Θ, Z) = − 1
2

ln Det(I −Θ
1/2
∗ HΘ

1/2
∗ ) + 1

2
Tr([Θ−Θ∗]H)

+ δ(2+δ)

2(1−‖Θ1/2
∗ HΘ

1/2
∗ ‖)

‖Θ1/2
∗ HΘ

1/2
∗ ‖2F

+Γ(h,H;Z) : H×M→ R
[‖ · ‖ is the spectral, and ‖ · ‖F is the Frobenius norm],

Γ(h,H;Z) = 1
2
Tr
(
Z[bhTA+AThbT +ATHA+BT [H,h]T [Θ−1

∗ −H]−1[H,h]B]
)

= 1
2
Tr

(
Z

(
BT

[[
H h

hT

]
+ [H,h]T [Θ−1

∗ −H]−1 [H,h]

]
B

))
(3.64)

and treat, as our observation, the quadratic lift of observation (3.61), that is, our
observation is

ωK = {ωi = (ζi, ζiζ
T
i )}Ki=1, ζi ∼ N (A[u; 1],M(v)) are independent across i.

(3.65)
Note that by Proposition 3.12, function Φ(h,H; Θ, Z) : H×M→ R is continu-

ous convex-concave function which is coercive in convex argument and is such that

∀(u ∈ U, v ∈ V, (h,H) ∈ H) :

ln
(
Eζ∼N (A[u;1],M(v))

{
e

1
2 ζ
THζ+hT ζ

})
≤ Φ(h,H;M(v), [u; 1][u; 1]T ).

(3.66)

We are about to demonstrate that as far as estimating the functional of interest
(3.62) at a point (u, v) ∈ U × V via observation (3.65) is concerned, we are in
the situation considered in Section 3.3 and can use the machinery developed there.
Indeed, let us specify the data introduced in section 3.3.1 and participating in the
constructions of section 3.3 as follows:

• H = {f = (h,H) ∈ H} ⊂ EH = Rd×Sd, with H defined in (3.64), and the inner
product on EH defined as

〈(h,H), (h′, H ′)〉 = hTh′ +
1

2
Tr(HH ′),

EM = Sd+1 × Sm+1, and M, Φ are as defined in (3.64);
• EX = Rk × Sd+1, X := {x = (v, Z) : v ∈ V,Z = [u; 1][u; 1]T , u ∈ U} ⊂ X :=
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{x = (v, Z) ∈ V ×Z};
• A(x) = A(v, Z) = (M(v), Z); note that A is affine mapping from EX into EM

mapping X into M, as required in section 3.3. Observe that when u ∈ U and
v ∈ V , the distribution P = Pu,v of observation ω defined by (3.65) satisfies the
relation

∀(f = (h,H) ∈ H) :

ln
(
Eω∼P

{
e〈f,ω〉

})
= ln

(
Eζ∼N (A[u;1],M(v))

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ Φ(h,H;M(v), [u; 1][u; 1]T ),

(3.67)

see (3.66);
• υ(x = (v, Z)) = %(Z) : X → R,
• we define affine functional G(x) on EX by the relation

〈g, x := (v, Z)〉 = qT v + Tr(QZ),

see (3.62). As a result, for x ∈ X, that is, for x = (v, [u; 1][u; 1]T ) with v ∈ V
and u ∈ U we have

F (u, v) = G(x). (3.68)

Applying to the just specified data Corollary 3.9 (which is legitimate, since our Φ
clearly satisfies (3.39)), we arrive at the result as follows:

Proposition 3.13. In the just described situation, let us set

Ψ̂+(h,H)

:= inf
α

{
max

(v,Z)∈V×Z

[
αΦ(h/α,H/α;M(v), Z)−G(v, Z)− %(Z) +K−1α ln(2/ε)

]
:

α > 0,−γαΘ−1
∗ � H � γαΘ−1

∗

}
= max

(v,Z)∈V×Z
inf
α>0,

−γαΘ
−1
∗ �H�γαΘ

−1
∗

[
αΦ(h/α,H/α;M(v), Z)−G(v, Z)− %(Z)

+K−1α ln(2/ε)

]
,

Ψ̂−(h,H)

:= inf
α

{
max

(v,Z)∈V×Z

[
αΦ(−h/α,−H/α;M(v), Z) +G(v, Z)− %(Z) +K−1α ln(2/ε)

]
:

α > 0,−γαΘ−1
∗ � H � γαΘ−1

∗

}
= max

(v,Z)∈V×Z
inf
α>0,

−γαΘ
−1
∗ �H�γαΘ

−1
∗

[
αΦ(−h/α,−H/α;M(v), Z) +G(v, Z)− %(Z)

+K−1α ln(2/ε)

]
.

(3.69)

so that the functions Ψ̂±(h,H) : Rd ×Sd → R are convex. Furthermore, whenever
h̄, H̄, ρ̄, κ̄ form a feasible solution to the system of convex constraints

Ψ̂+(h,H) ≤ ρ− κ, Ψ̂−(h,H) ≤ ρ+ κ (3.70)
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in variables (h,H) ∈ Rd × Sd, ρ ∈ R, κ ∈ R, setting

ĝ(ζK := (ζ1, ..., ζK)) =
1

K

K∑
i=1

[
hT ζi +

1

2
ζTi Hζi

]
+ κ̄, (3.71)

we get an estimate of the functional of interest F (u, v) = [u; 1]TQ[u; 1] + qT v via
K independent observations

ζi ∼ N (A[u; 1],M(v)), i = 1, ...,K,

with the following property:

∀(u, v) ∈ U × V :
ProbζK∼[N (A[u;1],M(v))]K

{
|F (u, v)− ĝ(ζK)| > ρ̄+ %([u; 1][u; 1]T )

}
≤ ε. (3.72)

Proof. Under the premise of Proposition, let us fix u ∈ U , v ∈ V , so that x :=
(v, Z := [u; 1][u; 1]T ) ∈ X. Denoting, as above, by P = Pu,v the distribution of
ω := (ζ, ζζT ) with ζ ∼ N (A[u; 1],M(v)), and invoking (3.67), we see that for just
defined (x, P ), relation (3.34) takes place. Applying Corollary 3.9, we conclude that

ProbζK∼[N (A[u;1],M(v))]K
{
|ĝ(ζK)−G(x)| > ρ̄+ %([u; 1][u; 1]T )

}
≤ ε.

It remains to note that by construction for x = (v, Z) in question it holds

G(x) = qT v + Tr(QZ) = qT v + Tr(Q[u; 1][u; 1]T ) = qT v + [u; 1]TQ[u, 1] = F (u, v).
2

An immediate consequence of Proposition 3.13 is as follows:

Corollary 3.14. Under the premise and in the notation of Proposition 3.13, let
(h,H) ∈ Rd × Sd. Setting

ρ = 1
2

[
Ψ̂+(h,H) + Ψ̂−(h,H)

]
,

κ = 1
2

[
Ψ̂−(h,H)− Ψ̂+(h,H)

]
,

(3.73)

the ε-risk of estimate (3.71) does not exceed ρ.

Indeed, with ρ and κ given by (3.73), h,H, ρ,κ satisfy (3.70).

3.4.1.4 Consistency

We are about to present a simple sufficient condition for the estimator suggested
by Proposition 3.13 to be consistent, in the sense of Section 3.3.4.1. Specifically, in
the situation and with the notation from Sections 3.4.1.1, 3.4.1.3 assume that

A.1. %(·) ≡ 0,
A.2. V = {v̄} is a singleton, which allows to set Θ∗ = M(v̄), to satisfy (3.57) with

δ = 0, and to assume w.l.o.g. that

F (u, v) = [u; 1]TQ[u; 1], G(Z) = Tr(QZ);

A.3. the first m columns of the d× (m+ 1) matrix A are linearly independent.
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By A.3, the columns of (d+ 1)× (m+ 1) matrix B, see (3.64), are linearly indepen-
dent, so that we can find (m+ 1)× (d+ 1) matrix C such that CB = Im+1. Let us
define (h̄, H̄) ∈ Rd × Sd from the relation[

H̄ h̄

h̄T

]
= 2(CTQC)o, (3.74)

where for (d+ 1)× (d+ 1) matrix S, So is the matrix obtained from S by zeroing
our the entry in the cell (d+ 1, d+ 1).

The consistency of our estimation machinery is given by the following simple
statement:

Proposition 3.15. In the just described situation and under assumptions A.1-3,
given ε ∈ (0, 1), consider the estimate

ĝK,ε(ζ
K) =

1

K

K∑
k=1

[h̄T ζk +
1

2
ζT H̄ζk] + κK,ε,

where

κK,ε =
1

2

[
Ψ̂−(h̄, H̄)− Ψ̂+(h̄, H̄)

]
and Ψ̂± = Ψ̂K,ε

± are given by (3.69). Then the ε-risk of ĝK,ε(·) goes to 0 as K →∞.

For proof, see Section 3.6.3.

3.4.1.5 A modification

In the situation described in the beginning of this Section, let a set W ⊂ U × V be
given, and assume we are interested in recovering functional of interest (3.62) at
points (u, v) ∈ W only. When reducing the “domain of interest” U × V to W , we
hopefully can reduce the achievable ε-risk of recovery. To utilize for this purpose
the machinery we have developed, assume that we can point our a convex compact
set W ⊂ V ×Z such that

(u, v) ∈W ⇒ (v, [u; 1][u; 1]T ) ∈ W

A straightforward inspection justifies the following

Remark 3.16. In the just described situation, the conclusion of Proposition 3.13
remains valid when the set U × V participating in (3.72) and in relations (3.69)
is reduced to W. This modification enlarges the feasible set of (3.70) and thus
reduces the achievable values of risk bound ρ̄.

3.4.2 Estimating quadratic form, sub-Gaussian case

3.4.2.1 Situation

In the rest of this Section we are interested in the situation is as follows: we are
given i.i.d. random observations

ζi ∼ SG(A[u; 1],M(v)), i = 1, ...,K, (3.75)
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where ζ ∼ SG(µ,Θ) means that ζ is sub-Gaussian with parameters µ ∈ Rd, Θ ∈
Sd+, and

• (u, v) is unknown “signal” known to belong to a given set U × V , where

– U ⊂ Rm is a compact set, and

– V ⊂ Rk is a compact convex set;

• A is a given d× (m+ 1) matrix, and v 7→ M(v) : Rk → Sd+1 is affine mapping
such that M(v) � 0 whenever v ∈ V .

We are also given a convex calibrating function %(Z) : Sm+1
+ → R and “functional

of interest”
F (u, v) = [u; 1]TQ[u; 1] + qT v, (3.76)

where Q and q are known (m+ 1)× (m+ 1) symmetric matrix and k-dimensional
vector, respectively. Our goal is to recover F (u, v), for unknown (u, v) known to
belong to U × V , via observation (3.75).

Note that the only difference of our present situation with the one considered in
Section 3.4.1.1 is that now we allow for sub-Gaussian, and not necessary Gaussian,
observations.

3.4.2.2 Construction & Result

Let
V = {M(v) : v ∈ V },

so that V is a convex compact subset of the positive semidefinite cone Sd+. Let us
select somehow

1. a matrix Θ∗ � 0 such that Θ∗ � Θ, for all Θ ∈ V;
2. a convex compact subset Z of the set Z+ = {Z ∈ Sm+1

+ : Zm+1,m+1 = 1} such
that [u; 1][u; 1]T ∈ Z for all u ∈ U ;

3. reals γ, γ+ ∈ (0, 1) with γ < γ+ (say, γ = 0.99, γ+ = 0.999).

Preliminaries Given the data of the above description and δ ∈ [0, 2], we set (cf.
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Proposition 3.12)

H = Hγ := {(h,H) ∈ Rd × Sd : −γΘ−1
∗ � H � γΘ−1

∗ },

B =

[
A

[0, ..., 0, 1]

]
∈ R(d+1)×(m+1),

M = V × Z,
Ψ(h,H,G;Z) = − 1

2
ln Det(I −Θ

1/2
∗ GΘ

1/2
∗ )

+ 1
2
Tr

(
ZBT

[[
H h

hT

]
+ [H,h]T [Θ−1

∗ −G]−1[H,h]

]
B

)
:(

H× {G : 0 � G � γ+Θ−1
∗ }
)
×Z → R,

Ψδ(h,H,G; Θ, Z) = − 1
2

ln Det(I −Θ
1/2
∗ GΘ

1/2
∗ ) + 1

2
Tr([Θ−Θ∗]G)

+ δ(2+δ)

2(1−‖Θ1/2
∗ GΘ

1/2
∗ ‖)

‖Θ1/2
∗ GΘ

1/2
∗ ‖2H

+ 1
2
Tr

(
ZBT

[[
H h

hT

]
+ [H,h]T [Θ−1

∗ −G]−1[H,h]

]
B

)
:(

H× {G : 0 � G � γ+Θ−1
∗ }
)
× ({0 � Θ � Θ∗} × Z)→ R,

Φ(h,H;Z) = min
G

{
Ψ(h,H,G;Z) : 0 � G � γ+Θ−1

∗ , G � H
}

: H×Z → R,

Φδ(h,H; Θ, Z) = min
G

{
Ψδ(h,H,G; Θ, Z) : 0 � G � γ+Θ−1

∗ , G � H
}

:

H× ({0 � Θ � Θ∗} × Z)→ R.

(3.77)

The following statement is straightforward reformulation of Proposition 2.49.i:

Proposition 3.17. In the situation described in Section 3.4.2.1, we have
(i) Φ is well-defined real-valued continuous function on the domain H×Z; the

function is convex in (h,H) ∈ H, concave in Z ∈ Z, and Φ(0;Z) ≥ 0. Furthermore,
let (h,H) ∈ H, u ∈ U , v ∈ V , and let ζ ∼ SG(A[u; 1],M(v)). Then

ln

(
Eζ

{
exp{hT ζ +

1

2
ζTHζ}

})
≤ Φ(h,H; [u; 1][u; 1]T ). (3.78)

(ii) Let V be a convex compact subset of Sd+ such that M(v) ∈ V for all v ∈ V ,
and let δ ∈ [0, 2] be such that

Θ ∈ V ⇒ {Θ � Θ∗} & {‖Θ1/2Θ
−1/2
∗ − I‖ ≤ δ}. (3.79)

Then Φδ(h,H; Θ, Z) is well-defined real-valued continuous function on the domain
H × (V × Z); the function is convex in (h,H) ∈ H, concave in (Θ, Z) ∈ V × Z,
and Φδ(0; Θ, Z) ≥ 0. Furthermore, let (h,H) ∈ H, u ∈ U , v ∈ V , and let ζ ∼
SG(A[u; 1],M(v)). Then

ln

(
Eζ

{
exp{hT ζ +

1

2
ζTHζ}

})
≤ Φδ(h,H;M(v), [u; 1][u; 1]T ). (3.80)

The estimate. We estimate the functional of interest similarly to the case of
Gaussian observations. Specifically, let us pass from observations (3.75) to their
quadratic lifts, so that our observations become

ωi = (ζi, ζiζ
T
i ), 1 ≤ i ≤ K, ζi ∼ SG(A[u; 1],M(v)) are i.i.d. (3.81)

As in the Gaussian case, we find ourselves in the situation considered in section
3.3.3 and can use the machinery developed there. Indeed, let us specify the data
introduced in section 3.3.1 and participating in the constructions of section 3.3 as
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follows:

• H = {f = (h,H) ∈ H} ⊂ EH = Rd×Sd, with H defined in (3.77), and the inner
product on EH defined as

〈(h,H), (h′, H ′)〉 = hTh′ +
1

2
Tr(HH ′),

EM = Sm+1, and M, Φ are as defined in (3.77);
• EX = Rk × Sd+1, X := {(v, Z) : v ∈ V,Z = [u; 1][u; 1]T , u ∈ U} ⊂ X := {(v, Z) :
v ∈ V,Z ∈ Z};
• A(x) = A(v, Z) = (M(v), Z); note that A is affine mapping from EX into EM

mapping X into M, as required in section 3.3. Observe that when u ∈ U and
v ∈ V , the distribution P = P of observation ωi defined by (3.81) satisfies the
relation

∀(f = (h,H) ∈ H) :

ln
(
Eω∼P

{
e〈f,ω〉

})
= ln

(
Eζ∼SG(A[u;1],M(v))

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ Φ(h,H; [u; 1][u; 1]T ),

(3.82)

see (3.78). Moreover, in the case of (3.79), we have also

∀(f = (h,H) ∈ H) :

ln
(
Eω∼P

{
e〈f,ω〉

})
= ln

(
Eζ∼SG(A[u;1],M(v))

{
eh
T ζ+ 1

2 ζ
THζ

})
≤ Φδ(h,H;M(v), [u; 1][u; 1]T ),

(3.83)

see (3.80);
• we set υ(x = (v, Z)) = %(Z),
• we define affine functional G(x) on EX by the relation

G(x := (v, Z)) = qT v + Tr(QZ),

see (3.76). As a result, for x ∈ X, that is, for x = (v, [u; 1][u; 1]T ) with v ∈ V
and u ∈ U we have

F (u, v) = G(x). (3.84)

The result. Applying to the just specified data Corollary 3.9 (which is legitimate,
since our Φ clearly satisfies (3.39)), we arrive at the result as follows:

Proposition 3.18. In the situation described in Section 3.4.2.1, let us set

Ψ̂+(h,H) := inf
α

{
max

(v,Z)∈V×Z

[
αΦ(h/α,H/α;Z)−G(v, Z)− %(Z) + αK−1 ln(2/ε)

]
:

α > 0,−γαΘ−1
∗ � H � γαΘ−1

∗

}
= max

(v,Z)∈V×Z
inf
α>0,

−γαΘ
−1
∗ �H�γαΘ

−1
∗

[
αΦ(h/α,H/α;Z)−G(v, Z)− %(Z) + αK−1 ln(2/ε)

]
,

Ψ̂−(h,H) := inf
α

{
max

(v,Z)∈V×Z

[
αΦ(−h/α,−H/α;Z) +G(v, Z)− %(Z) + αK−1 ln(2/ε)

]
:

α > 0,−γαΘ−1
∗ � H � γαΘ−1

∗

}
= max

(v,Z)∈V×Z
inf
α>0,

−γ̂dαΘ
−1
∗ �H�γ̂dαΘ

−1
∗

[
αΦ(−h/α,−H/α;Z) +G(v, Z)− %(Z) + αK−1 ln(2/ε)

]
.

(3.85)
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so that the functions Ψ̂±(h,H) : Rd×Sd → R are convex. Furthermore, whenever
h̄, H̄, ρ̄, κ̄ form a feasible solution to the system of convex constraints

Ψ̂+(h,H) ≤ ρ− κ, Ψ̂−(h,H) ≤ ρ+ κ (3.86)

in variables (h,H) ∈ Rd × Sd, ρ ∈ R, κ ∈ R, setting

ĝ(ζK) =
1

K

K∑
i=1

[
hT ζi +

1

2
ζTi Hζi

]
+ κ̄,

we get an estimate of the functional of interest F (u, v) = [u; 1]TQ[u; 1] + qT v via
i.i.d. observations

ζi ∼ SG(A[u; 1],M(v)), 1 ≤ i ≤ K,

with the following property:

∀(u, v) ∈ U × V :
ProbζK∼[SG(A[u;1],M(v))]K

{
|F (u, v)− ĝ(ζK)| > ρ̄+ %([u; 1][u; 1]T )

}
≤ ε, (3.87)

Proof. Under the premise of Proposition, let us fix u ∈ U , v ∈ V , so that x :=
(v, Z := [u; 1][u; 1]T ) ∈ X. Denoting by P the distribution of ω := (ζ, ζζT ) with
ζ ∼ SG(A[u; 1],M(v)), and invoking (3.82), we see that for just defined (x, P ),
relation (3.34) takes place. Applying Corollary 3.9, we conclude that

ProbζK∼[N (A[u;1],M(v))]K
{
|ĝ(ζK)−G(x)| > ρ̄+ %([u; 1][u; 1]T )

}
≤ ε.

It remains to note that by construction for x = (v, Z) in question it holds

G(x) = qT v + Tr(QZ) = qT v + Tr(Q[u; 1][u; 1]T ) = qT v + [u; 1]TQ[u, 1] = F (u, v).
2

Remark 3.19. In the situation described in section 3.4.2.1, let δ ∈ [0, 2] be such
that

‖Θ1/2Θ
−1/2
∗ − I‖ ≤ δ ∀Θ ∈ V.

Then the conclusion of Proposition 3.18 remains valid when the function Φ in (3.85)
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is replaced with the function Φδ, that is, when Ψ̂± are defined as

Ψ̂+(h,H) := inf
α

{
max

(v,Z)∈V×Z

[
αΦδ(h/α,H/α;M(v), Z)−G(v, Z)− %(Z) + αK−1 ln(2/ε)

]
:

α > 0,−γαΘ−1
∗ � H � γαΘ−1

∗

}
= max

(v,Z)∈V×Z
inf
α>0,

−γαΘ
−1
∗ �H�γαΘ

−1
∗

[
αΦδ(h/α,H/α;M(v), Z)−G(v, Z)− %(Z)

+αK−1 ln(2/ε)

]
,

Ψ̂−(h,H) := inf
α

{
max

(v,Z)∈V×Z

[
αΦδ(−h/α,−H/α;M(v), Z) +G(v, Z)− %(Z) + αK−1 ln(2/ε)

]
:

α > 0,−γαΘ−1
∗ � H � γαΘ−1

∗

}
= max

(v,Z)∈V×Z
inf
α>0,

−γ̂dαΘ
−1
∗ �H�γ̂dαΘ

−1
∗

[
αΦδ(−h/α,−H/α;M(v), Z) +G(v, Z)− %(Z)

+αK−1 ln(2/ε)

]
.

(3.88)

To justify Remark 3.19, it suffices to use in the proof of Proposition 3.18 relation
(3.83) in the role of (3.82). Note that what is better in terms of the risk of the
resulting estimate – Proposition 3.18 “as is” or its modification presented in Remark
3.19 – depends on the situation, so that it makes sense to keep in mind both options.

3.4.2.3 Numerical illustration, direct observations

The problem. Our initial illustration is deliberately selected to be extremely
simple: given direct noisy observations

ζ = u+ ξ

of unknown signal u ∈ Rm known to belong to a given set U , we want to recover
the “energy” uTu of u; what we are interested in, is the quadratic in ζ estimate
with as small ε-risk on U as possible; here ε ∈ (0, 1) is a given design parameter.
The details of our setup are as follows:

• U is the “spherical layer” U = {u ∈ Rm : r2 ≤ uTu ≤ R2}, where r,R, 0 ≤
r < R < ∞ are given. As a result, the “main ingredient” in constructions from
sections 3.4.1.3, 3.4.2.2 – the convex compact subset Z of the set {Z ∈ Sm+1

+ :
Zm+1,m+1 = 1} containing all matrices [u; 1][u; 1]T , u ∈ U , can be specified as

Z = {Z ∈ Sm+1
+ : Zm+1,m+1 = 1, 1 + r2 ≤ Tr(Z) ≤ 1 +R2};

• ξ is either ∼ N (0,Θ) (Gaussian case), or ∼ SG(0,Θ) (sub-Gaussian case), with
matrix Θ known to be diagonal with diagonal entries satisfying θσ2 ≤ Θii ≤ σ2,
1 ≤ i ≤ d = m, with known θ ∈ [0, 1] and σ2 > 0;

• the calibrating function %(Z) is %(Z) = ς(
∑m
i=1 Zii), where ς is a convex contin-

uous real-valued function on R+. Note that with this selection, the claim that
ε-risk of an estimate ĝ(·) is ≤ ρ means that whenever u ∈ U , one has

Prob{|ĝ(u+ ξ)− uTu| > ρ+ ς(uTu)} ≤ ε. (3.89)
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Processing the problem. It is easily seen that in the situation in question the
machinery of sections 3.4.1, 3.4.2 boils down to the following:

1. We lose nothing when restricting ourselves with estimates of the form

ĝ(ζ) =
1

2
ηζT ζ + κ, (3.90)

with properly selected scalars η and κ;
2. In Gaussian case, η and κ are yielded by the convex optimization problem with

just 3 variables α+, α−, η, namely the problem

min
α±,η

{
Ψ̂(α+, α−, η) = 1

2

[
Ψ̂+(α+, η) + Ψ̂−(α−, η)

]
: σ2|η| < α±

}
,

Ψ̂+(α+, η) = −dα+

2 ln(1− σ2η/α+) + d
2σ

2(1− θ) max[−η, 0] + dδ(2+δ)σ4η2

2(α+−σ2|η|)

+ max
r2≤t≤R2

[[
α+η

2(α+−σ2η) − 1
]
t− ς(t)

]
+ α+ ln(2/ε)

Ψ̂−(α+, η) = −dα−2 ln(1 + σ2η/α−) + d
2σ

2(1− θ) max[η, 0] + dδ(2+δ)σ4η2

2(α−−σ2|η|)

+ max
r2≤t≤R2

[[
− α−η

2(α−+σ2η) + 1
]
t− ς(t)

]
+ α− ln(2/ε) ,

(3.91)
where δ = 1−

√
θ. Specifically, the η-component of a feasible solution to (3.91)

augmented by the quantity

κ =
1

2

[
Ψ̂−(α−, η)− Ψ̂+(α+, η)

]
yields estimate (3.90) with ε-risk on U not exceeding Ψ̂(α+, α−, η);

3. In sub-Gaussian case, η and κ are yielded by convex optimization problem with
just 5 variables, α±, g±, η, namely, the problem

min
α±,g±,η

{
Ψ̂(α±, g±, η) = 1

2

[
Ψ̂+(α+, λ+, g+η) + Ψ̂−(α−, λ−, g−, η)

]
:

0 ≤ σ2g± ≤ γα±, σ2η ≥ −α+, σ
2η ≤ α−, η ≤ g+, −η ≤ g−

}
,

Ψ̂+(α+, g+, η) = − dα+

2
ln(1− σ2g+)

+α+ ln(2/ε) + max
r2≤t≤R2

[[
σ2η2

2(α+−g+)
+ 1

2
η − 1

]
r − ς(t)

]
Ψ̂−(α−, g−, η) = − dα−

2
ln(1− σ2g−)+

α− ln(2/ε) + max
r2≤t≤R2

[[
σ2η2

2(α−−g−)
− 1

2
η + 1

]
r − ς(t)

]
(3.92)

where γ ∈ (0, 1) is construction’s parameter (we used γ = 0.99). Specifically, the
η-component of a feasible solution to (3.92) augmented by the quantity

κ =
1

2

[
Ψ̂−(α−, g−, η)− Ψ̂+(α+, g+, η)

]
yields estimate (3.90) with ε-risk on U not exceeding Ψ̂(α±, g±, η).

Note that the Gaussian case of our “energy estimation” problem is well studied
in the literature, mainly in the case ξ ∼ N (0, σ2Im) of white Gaussian noise with
exactly known variance σ2; available results investigate analytically the interplay
between the dimension m of signal, noise intensity σ2 and the parameters R, r and
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d r R θ
Relative 0.01-risk,

Gaussian case
Relative 0.01-risk,
sub-Gaussian case

Optimality ratio

64 0 16 1 0.34808 0.44469 1.22
64 0 16 0.5 0.43313 0.44469 1.48
64 0 128 1 0.04962 0.05181 1.28
64 0 128 0.5 0.05064 0.05181 1.34
64 8 80 1 0.07827 0.08376 1.28
64 8 80 0.5 0.08095 0.08376 1.34

256 0 32 1 0.19503 0.30457 1.28
256 0 32 0.5 0.26813 0.30457 1.41
256 0 512 1 0.01264 0.01314 1.28
256 0 512 0.5 0.01289 0.01314 1.34
256 16 160 1 0.03996 0.04501 1.28
256 16 160 0.5 0.04255 0.04501 1.34

1024 0 64 1 0.10272 0.21923 1.28
1024 0 64 0.5 0.17032 0.21923 1.34
1024 0 2048 1 0.00317 0.00330 1.28
1024 0 2048 0.5 0.00324 0.00330 1.34
1024 32 320 1 0.02019 0.02516 1.28
1024 32 320 0.5 0.02273 0.02516 1.41

Table 3.3: Recovering signal’s energy from direct observations

offer provably optimal, up to absolute constant factors, estimates. A nice property
of the proposed approach is that (3.91) automatically takes care of the parameters
and results in estimates with seemingly near-optimal performance, as is witnessed
by the numerical results we are about to present.

Numerical results. In the first series of experiments, we used the trivial calibrat-
ing function: ς(·) ≡ 0.

A typical sample of numerical results is presented in Table 3.3. To avoid large
numbers, we display in the table relative 0.01-risk achievable with our machinery,
that is, the plain risk divided by R2; keeping this in mind, one should not be
surprised that when extending the range [r,R] of allow norms of the observed
signal, all other components of the setup being fixed, the relative risk can decrease
(the actual risk, of course, can only increase). Note that in all our experiments σ
was set to 1.

Along with the values of the relative 0.01-risk, we present also the values of
“optimality ratios” – the ratios of the relative risks achievable with our machinery
in the Gaussian case to the (lower bounds on the) the best possible under circum-
stances relative 0.01-risks. These lower bounds are obtained as follows. Let us
select somehow values r1 < r2 in the allowed under the circumstances range [r,R]
of ‖u‖2, and two values, σ1, σ2, in the allowed range [θσ, σ] = [θ, 1] of values of
diagonal entries in diagonal matrices Θ, and consider two distributions of observa-
tions P1 and P2 as follows: Pχ is the distribution of random vector x + ζ, where
x and ξ are independent, x is uniformly distributed on the sphere ‖x‖2 = rχ and
ζ ∼ N (0, σ2

χId). It is immediately seen that whenever the two simple hypotheses
ω ∼ P1, and ω ∼ P2, cannot be decided upon via a single observation by a test
with total risk ≤ 2ε (with the total risk of a test defined as the sum, over the two
hypotheses in question, of probabilities for the test to reject the hypothesis when

it is true), the quantity δ =
r2
2−r

2
1

2 is a lower bound on the optimal ε-risk, Risk∗ε ,
defined as the infimum, over all estimates recovering ‖u‖22 via single observation
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ω = u + ζ, of the ε-risk of the estimate, where the ε-risk is taken w.r.t. u running
through the spherical layer U = {u : r2 ≤ uTu ≤ R2}, and the covariance matrices
Θ of Gaussian zero mean noise running through the set of scalar matrices with
diagonal entries varying in [θ, 1]. In other words, denoting by pχ(·) the density of
Pχ, we have

0.02 <

∫
Rd

min[p1(ω), p2(ω)]dω ⇒ Risk∗0.01 ≥
r2
2 − r2

1

2
.

Now, the densities pχ are spherically symmetric, whence, denoting by qχ(·) the
univariate density of the energy ωTω of observation ω ∼ Pχ, we have∫

Rd

min[p1(ω), p2(ω)]dω =

∫ ∞
0

min[q1(s), q2(s)]ds,

so that

0.02 <

∫ ∞
0

min[q1(s), q2(s)]ds⇒ Risk∗0.01 ≥
r2
2 − r2

1

2
. (3.93)

Now, on a closest inspection, qχ is the convolution of two univariate densities repre-
sentable by explicit computation-friendly formulas, implying that given r1, r2, σ1, σ2,
we can check numerically whether the premise in (3.93) indeed takes place, and

whenever the latter is the case, the quantity
r2
2−r

2
1

2 is a lower bound on Risk∗0.01. In
our experiments, we used a simple search strategy (not described here) aimed at
crude maximizing this bound in r1, r2, σ1, σ2 and used the resulting lower bounds
on Risk∗0.01 to compute the optimality ratios presented in the table51.

We believe that quite moderate values of the optimality ratios presented in the
table (these results are typical for a much larger series of experiments we have
conducted) witness quite good performance of our machinery.
Optimizing the relative risk. The “relative risk” displayed in Table 3.3 is the
corresponding to the trivial calibrating function 0.01-risk in recovery uTu divided
by the largest value R2 of this risk allowed by the inclusion u ∈ U . When R is large,
low relative risk can correspond to pretty high “actual” risk. For example, with
d := dim u = 1024, θ = 1, and U = {u ∈ Rd : ‖u‖2 ≤ 1.e6}, the 0.01-risk becomes
as large as ρ ≈ 6.5e6; for “relatively small” signals, like uTu ≈ 104, recovering uTu
within accuracy ρ does not make much sense. In order to allow for “large” domains
U , it makes sense to pass from the trivial calibrating function to a nontrivial one,
like ς(t) = αt, with small positive α. With this calibrating function, (3.89) reads

Prob
{
|ĝ(u+ ξ)− uTu| > ρ+ αuTu

}
≤ ε.

It turns out that (quite reasonable when U is large) “relative” characterization of
risk results in much smaller values of ρ as compared to the case α = 0 of “plain”

51The reader should not be surprised by “narrow numerical spectrum” of optimality ratios
displayed in Table 3.3: our lower bounding scheme was restricted to identify actual optimality
ratios among the candidate values 1.05i, i = 1, 2, ...
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risk. Here is instructive numerical data:

r R 0.01-Risk, α = 0 0.01-Risk, α = 0.01 0.01-Risk, α = 0.1

0 1.e7 6.51e7/6.51e7 1.33e3/1.58e3 474/642
1.e2 1.e7 6.51e7/6.51e7 1.33e3/1.58e3 −123/92.3
1.1e3 1.e7 6.51e7/6.51e7 −4.73e3/−4.48e3 −1.14e5/−1.14e5

U = {u ∈ R1024 : r ≤ ‖u‖2 ≤ R}, θ = 1/2
Left/Right: risks in Gaussian/sub-Gaussian cases

3.4.2.4 Numerical illustration, indirect observations

The problem. The estimation problem we are about to process numerically is as
follows. Our observations are

ζ = Au+ ξ, (3.94)

where

• A is a given d×m matrix, with m > d (“under-determined observations”),
• u ∈ Rm is a signal known to belong to a compact set U ,
• ξ ∼ N (0,Θ) (Gaussian case) of ξ ∼ SG(0,Θ) (sub-Gaussian case) is the obser-

vation noise; Θ is positive semidefinite d× d matrix known to belong to a given
convex compact set V ⊂ Sd+.

Our goal is to recover the energy

F (u) =
1

m
‖u‖22

of the signal from a single observation (3.94).
In our experiment, the data is specified as follows:

1. We think of u ∈ Rm as of discretization of a smooth function x(t) of continuous
argument t ∈ [0; 1]: ui = x( im ), 1 ≤ i ≤ m. We set U = {u : ‖Su‖2 ≤ 1},
where u 7→ Su is the finite-difference approximation of the mapping x(·) 7→
(x(0), x′(0), x′′(·)), so that U is a natural discrete-time analogy of the Sobolev-

type ball {x : [x(0)]2 + [x′(0)]2 +
∫ 1

0
[x′′(t)]2dt ≤ 1}.

2. d × m matrix A is of the form UDV T , where U and V are randomly selected
d × d and m × m orthogonal matrices, and the d diagonal entries in diagonal

d×m matrix D are of the form θ−
i−1
d−1 , 1 ≤ i ≤ d; the “condition number” θ of

A is design parameter.
3. The set V of allowed matrices Θ is the set of all diagonal d × d matrices with

diagonal entries varying from 0 to σ2, where the “noise intensity” σ is design
parameter.

Processing the problem. Our estimating problem clearly is covered by the setups
considered in sections 3.4.1 (Gaussian case) and 3.4.2 (sub-Gaussian case); in terms
of these setups, it suffices to specify Θ∗ as σ2Id, M(v) as the identity mapping of
V onto itself, the mapping u 7→ A[u; 1] as the mapping u 7→ Pu, and the set Z
(which should be a convex compact subset of the set {Z ∈ Sd+1

+ : Zd+1,d+1 = 0}
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containing all matrices of the form [u; 1][u; 1]T , u ∈ U) as the set

Z = {Z ∈ Sd+1
+ : Zd+1,d+1 = 1,Tr

(
ZDiag{STS, 0}

)
≤ 1}.

As suggested by Propositions 3.13 (Gaussian case) and 3.18 (sub-Gaussian case),
the linear in “lifted observation” ω = (ζ, ζζT ) estimates of F (u) = 1

m‖u‖
2
2 stem

from the optimal solution (h∗, H∗) to the convex optimization problem

Opt = min
h,H

1

2

[
Ψ̂+(h,H) + Ψ̂−(h,H)

]
, (3.95)

with Ψ̂±(·) given by (3.69) in the Gaussian, and by (3.85) in the sub-Gaussian
cases, with the number K of observations in (3.69), (3.85) set to 1. The resulting
estimate is

ζ 7→ hT∗ ζ +
1

2
ζTH∗ζ + κ, κ =

1

2

[
Ψ̂−(h∗, H∗)− Ψ̂+(h∗, H∗)

]
(3.96)

and the ε-risk of the estimate is (upper-bounded by) Opt.
Problem (3.95) is a well-structured convex-concave saddle point problem and

as such is beyond the “immediate scope” of the standard Convex Programming
software toolbox primarily aimed at solving well-structured convex minimization
problems. However, applying conic duality, one can easily eliminate in (3.69), (3.85)
the inner maxima over v, Z and end up with reformulation which can be solved
numerically by CVX [69], and this is how (3.95) was processed in our experiments.

Numerical results. In the experiments to be reported, we used the trivial cali-
brating function: %(·) ≡ 0.

Table 3.4 displays typical numerical results of our experiments. To give an
impression of the performance of our approach, we present, along with the upper
risk bounds for the estimates yielded by our machinery, simple lower bounds on
ε-risk achievable under the circumstances. The origin of the lower bounds is as
follows. Assume we are speaking about ε-risk and have at our disposal a signal
w ∈ U , and let t(w) = ‖Aw‖2, ρ = 2σErfInv(ε), where ErfInv is the inverse error-
function:

Probξ∼N (0,1){ξ > ErfInv(ε)} = ε.

Setting θ(w) = max[1 − ρ/t(w), 0], observe that w′ := θ(w)w ∈ U and ‖Aw −
Aw′‖2 ≤ ρ, which, due to the origin of ρ, implies that there is no way to decide via
observation Au+ξ, ξ ∼ N (0, σ2), with risk < ε on the two simple hypotheses u = w
and u = w′. As an immediate consequence, the quantity φ(w) := 1

2 [‖w‖22−‖w′‖22] =
‖w‖22[1 − θ2(w)]/2 is a lower bound on the ε-risk, on U , of a whatever estimate of
‖u‖22. We can now try to maximize the resulting lower risk bound over U , thus
arriving at the lower bound

LwBnd = max
w∈U

{
1

2
‖w‖22(1− θ2(w))

}
.

On a closest inspection, the latter problem is not a convex one, which does not
prevent building a suboptimal solution to this problem, and this is how the lower
risk bounds in Table 3.4 were built (we omit the details). We see that the ε-risks
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d,m Opt, Gaussian case Opt, sub-Gaussian case LwBnd

8, 12 0.1362(+65%) 0.1382(+67%) 0.0825
16, 24 0.1614(+53%) 0.1640(+55%) 0.1058
32, 48 0.0687(+46%) 0.0692(+48%) 0.0469

Table 3.4: Upper bound (Opt) on the 0.01-risk of estimate (3.96), (3.95) vs.
lower bound (LwBnd) on 0.01-risk achievable under the circumstances. In the
experiments, σ = 0.025 and θ = 10. Data in parentheses: excess of Opt over
LwBnd.
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Figure 3.3: Histograms of recovery errors in experiments, data over 1000 simula-
tions per experiment.

of our estimates are within a moderate factor from the optimal ones.
Figure 3.3 shows empirical error distributions of the estimates built in the three

experiments reported in Table 3.4. When simulating the observations and esti-
mates, we used N (0, σ2Id) obse4rvation noise and selected signals in U by max-
imizing over U randomly selected linear forms. Finally, we note that with our
design parameters d,m, θ, σ fixed, we still deal with a family of estimation prob-
lems rather than with a single problem, the reason being that our U is ellipsoid
with essentially different from each other half-axes, and achievable risks heavily
depend on how the right singular vectors of A are oriented with respect to the
directions of the half-axes of U , so that the risks of our estimates vary significantly
from instance to instance even when the design parameters are fixed. Note also
that the “sub-Gaussian experiments” were conducted on exactly the same data as
“Gaussian experiments” of the same sizes d,m.
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3.5 EXERCISES FOR LECTURE 3

† marks more difficult exercises.

Exercise 3.20. . The goal of what follows is to refine the change detection pro-
cedure (let us refer to it as to “basic”) developed in Section 2.9.6.1. The idea is
pretty simple. With the notation from Section 2.9.6.1, in basic procedure, when
testing the null hypothesis H0 vs. signal hypothesis Hρ

t , we looked at the difference
ζt = ωt − ω1 and were trying to decide whether the energy of the deterministic
component xt − x1 of ζt is 0, as is the case under H0, or is ≥ ρ2, as is the case
under Hρ

t . Note that if σ ∈ [σ, σ] is the actual intensity of the observation noise,
then the noise component of ζt is N (0, 2σ2Id); other things being equal, the large
is the noise in ζt, the larger should be ρ to allow for a reliable, with a given relia-
bility level, decision of this sort. Now note that under the hypothesis Hρ

t , we have
x1 = ... = xt−1, so that the deterministic component of the difference ζt = ωt − ω1

is exactly the same as for the difference ζ̃t = ωt − 1
t−1

∑t−1
s=1 ωs, while the noise

component in ζ̃t is N (0, σ2
t Id) with σ2

t = σ2 + 1
t−1σ

2 = t
t−1σ

2; thus, the intensity

of noise in ζ̃t is at most the one in ζt, and this intensity, in contrast to the one for
ζt, decreases as t grows. Now goes the exercise:
Let reliability tolerances ε, ε ∈ (0, 1) be given, and let our goal be to design a
system of inferences Tt, t = 2, 3, ...,K, which, when used in the same fashion as
tests T κt were used in Basic procedure, results in false alarm probability at most
ε and in probability to miss a change of energy ≥ ρ2 at most ε; needless to say,
we want to achieve this goal with as small ρ as possible. Think how to utilize the
above observation to refine Basic procedure by hopefully reducing (and provably
not increasing) the required value of ρ. Implement the Basic and the refined change
detection procedures and compare their quality (the resulting values of ρ) on, say,
the data used in the experiment reported in Section 2.9.6.1.

Exercise 3.21. In the situation of Section 3.3.4, design of a “good” estimate is
reduced to solving convex optimization problem (3.50). Note that the objective in
this problem is, in a sense, “implicit” – the design variable is f , and the objective is
obtained from an explicit convex-concave function of f and (x, y) by maximization
over (x, y). While there exist solvers capable to process problems of this type
efficiently; however, commonly used of-the-shelf solvers, like cvx, cannot handle
problems like (3.50). The goal of the exercise to follow is to reformulate (3.50) as
a semidefinite program, thus making it amenable for cvx.

On an immediate inspection, the situation we are interested in is as follows. We
are given

• a nonempty convex compact set X ⊂ Rn along with affine function M(x) taking
values in Sd and such that M(x) � 0 when x ∈ X, and
• affine function F (f) : Rd → Rn.

Given γ > 0, this data gives rise to the convex function

Ψ(f) = max
x∈X

{
FT (f)x+ γ

√
fTM(x)f

}
,

and we want to find a “nice” representation of this function, specifically, want to
represent the inequality τ ≥ Ψ(f) by a bunch of LMI’s in variables τ , f , and
perhaps additional variables.
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To achieve our goal, we assume in the sequel that the set

X+ = {(x,M) : x ∈ X,M = M(x)}

can be described by a system of linear and semidefinite constraints in variables
x,M and additional variables, specifically, the system

(a) si − aTi x− bTi ξ − Tr(CiM) ≥ 0, i ≤ I
(b) S −A(x)− B(ξ)− C(M) � 0
(c) M � 0

where A(·),B(·), C(·) are affine functions taking values in SN . We assume that
this system of constraints is essentially strictly feasible, meaning that there exists
a feasible solution at which the semidefinite constraints (b), (c) are satisfied strictly
(i.e., the left hand sides of the LMI’s are positive definite).

Now goes the exercise:

1. Check that Ψ(f) is the optimal value in a semidefinite program, specifically,

Ψ(f) = max
x,M,ξ,t

F
T (f)x+ γt :


si − aTi x− bTi ξ − Tr(CiM) ≥ 0, i ≤ I (a)
S −A(x)− B(ξ)− C(M) � 0 (b)
M � 0 (c)[
fTMf t

t 1

]
� 0 (d)

 .

(P )

2. Passing from (P ) to the semidefinite dual of (P ), build explicit semidefinite
representation of Ψ, that is, an explicit system S of LMI’s in variables f , τ and
additional variables u such that

{τ ≥ Ψ(f)} ⇔ {∃u : (τ, f, u) satisfies S}.

Exercise 3.22. † Consider the situation as follows: given an m×n “sensing matrix”
A which is stochastic– with columns from the probabilistic simplex ∆m = {v ∈ Rm :
v ≥ 0,

∑
i vi = 1} and a nonempty closed subset U of ∆n, we observe M -element,

M > 1, i.i.d. sample ζM = (ζ1, ..., ζM ) with ζk drawn from the discrete distribution
Au∗, where u∗ is an unknown probabilistic vector (“signal”) known to belong to
U . We treat the discrete distribution Au, u ∈ ∆n, as a distribution on the vertices
e1, ..., em of ∆m, so that possible values of ζk are basic orths e1, ..., em in Rm. Our
goal is to recover the value at u∗ of a given quadratic form

F (u) = uTQu+ 2qTu.

Observe that for u ∈ ∆n, we have u = [uuT ]1n, where 1k is the all-ones vector in
Rk. This observation allows to rewrite F (u) as a homogeneous quadratic form:

F (u) = uT Q̄u, Q̄ = Q+ [q1Tn + 1nq
T ]. (3.97)

The goal of Exercise is to follow the approach developed in Section 3.4.1 for the
Gaussian case in order to build an estimate ĝ(ζM ) of F (u), specifically, estimate as
follows.

Let
JM = {(i, j) : 1 ≤ i < j ≤M}, JM = Card(JM ).
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For ζM = (ζ1, ..., ζM ) with ζk ∈ {e1, ..., em}, 1 ≤ k ≤M , let

ωij [ζ
M ] =

1

2
[ζiζ

T
j + ζjζ

T
i ], (i, j) ∈ JM .

The estimates we are interested in are of the form

ĝ(ζM ) = Tr

(
h

[
1

JM

∑
(i,j)∈JM

ωij [ζ
M ]

]
︸ ︷︷ ︸

ω[ζM ]

)
+ κ (3.98)

where h ∈ Sm and κ ∈ R are the parameters of the estimate.

Now goes the exercise:

1. Verify that when ζk’s stem from signal u ∈ U , the expectation of ω[ζM ] is a linear
image Az[u]AT of the matrix z[u] = uuT ∈ Sn: denoting by PMu the distribution
of ζM , we have

EζM∼PMu {ω[ζM ]} = Az[u]AT . (3.99)

Check that when setting

Zk = {ω ∈ Sk : ω � 0, ω ≥ 0,1Tk ω1k = 1},

where x ≥ 0 for a matrix x means that x is entrywise nonnegative, the image of
Zn under the mapping z 7→ AzAT is contained in Zm.

2. Let ∆k = {z ∈ Sk : z ≥ 0,1Tnz1n = 1}, so that Zk is the set of all positive
semidefinite matrices form ∆k. For µ ∈ ∆m, let Pµ be the distribution of the
random matrix w taking values in Sm, namely, as follows: the possible values of
w are matrices of the form eij = 1

2 [eie
T
j + eje

T
i ], 1 ≤ i ≤ j ≤ m; for every i ≤ m,

w takes value eii with probability µii, and for every i, j with i < j, w takes value
eij with probability 2µij . Further, let us set

Φ1(h;µ) = ln

 m∑
i,j=1

µij exp{hij}

 : Sm ×∆m → R, (3.100)

so that Φ1 is a continuous convex-concave function on Sm ×∆m.

2.1. Prove that

∀(h ∈ Sm, µ ∈ Zm) : ln
(
Ew∼Pµ {exp{Tr(hw)}}

)
= Φ1(h;µ). (3.101)

2.2. Derive from 2.1 that setting

K = K(M) = bM/2c, ΦM (h;µ) = KΦ1(h/K;µ) : Sm ×∆m → R,

ΦM is a continuous convex-concave function on Sm ×∆m such ΦK(0;µ) = 0
for all µ ∈ Zm, and whenever u ∈ U , the following holds true:

Let PMu be the distribution of ζM = (ζ1, ..., ζM ) with independent blocks
ζk ∼ Au, and let Pu,M is the distribution of ω = ω[ζM ], ζM ∼ PMu . Then
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∀(u ∈ U, h ∈ Sm) :
ln
(
Eω∼Pu,M {exp{Tr(hω)}}

)
≤ ΦM (h;Az[u]AT ), z[u] = uuT .

(3.102)

3. Combine the above observations with Corollary 3.7 to arrive at the following
result:

Proposition 3.23. In the situation in question, let Z be a convex compact subset
of Zn such that uuT ∈ Z for all u ∈ U . Given ε ∈ (0, 1), let

Ψ+(h, α) = max
z∈Z

[
αΦM (h/α,AzAT )− Tr(Q̄z)

]
: Sm × {α > 0} → R,

Ψ−(h, α) = max
z∈Z

[
αΦM (−h/α,AzAT ) + Tr(Q̄z)

]
: Sm × {α > 0} → R

Ψ̂+(h) := infα>0 {Ψ+(h, α) + α ln(2/ε)}
= max

z∈Z
inf
α>0

[
αΦM (h/α,AzAT )− Tr(Q̄z) + α ln(2/ε)

]
= max

z∈Z
inf
β>0

[
βΦ1(h/β,AzAT )− Tr(Q̄z) + β

K
ln(2/ε)

]
[β = Kα],

Ψ̂−(h) := inf
α>0
{Ψ−(h, α) + α ln(2/ε)}

= max
z∈Z

inf
α>0

[
αΦM (−h/α,AzAT ) + Tr(Q̄z) + α ln(2/ε)

]
= max

z∈Z
inf
β>0

[
βΦ1(−h/β,AzAT ) + Tr(Q̄z) + β

K
ln(2/ε)

]
[β = Kα].

(3.103)

The functions Ψ̂± are real valued and convex on Sm, and every candidate solution
h to the convex optimization problem

Opt = min
h

{
Ψ̂(h) :=

1

2

[
Ψ̂+(h) + Ψ̂−(h)

]}
, (3.104)

induces the estimate

ĝh(ζM ) = Tr(hω[ζM ]) + κ(h), κ(h) =
Ψ̂−(h)− Ψ̂+(h)

2

of the functional of interest (3.97) via observation ζM with ε-risk on U not ex-

ceeding ρ = Ψ̂(h):

∀(u ∈ U) : ProbζM∼PMu {|F (u)− ĝh(ζM )| > ρ} ≤ ε.

4. Consider an alternative way to estimate F (u), namely, as follows. Let u ∈ U .
Given a pair of independent observations ζ1, ζ2 drawn from distribution Au, let
us convert them into the symmetric matrix ω1,2[ζ2] = 1

2 [ζ1ζ
T
2 +ζ2ζ

T
1 ]. The distri-

bution Pu,2 of this matrix is exactly the distribution Pµ(z[u]), see item B, where
µ(z) = AzAT : ∆n → ∆m. Now, given M = 2K observations ζ2K = (ζ1, ..., ζ2K)
stemming from signal u, we can split them into K consecutive pairs giving rise
to K observations ωK = (ω1, ..., ωK), ωk = ω[[ζ2k−1; ζ2k]] drawn independently
of each other from probability distribution Pµ(z[u]), and the functional of interest
(3.97) is a linear function Tr(Q̄z[u]) of z[u]. Assume that we are given a set Z
as in the premise of Proposition 3.23. Observe that we are in the situation as
follows:

GivenK independent identically distributed observations ωK = (ω1, ..., ωK)
with ωk ∼ Pµ(z), where z is unknown signal known to belong to Z, we
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want to recover the value at z of linear function G(v) = Tr(Q̄v) of v ∈ Sn.
Besides this, we know that Pµ, for every µ ∈ ∆m, satisfies the relation

∀(h ∈ Sm) : ln
(
Eω∼Pµ{exp{Tr(hω)}}

)
≤ Φ1(h;µ).

This situation is the one of Section 3.3.3, with the data specified as

H = EH = Sm,M = ∆m ⊂ EM = Sm,Φ = Φ1,
X := {z[u] : u ∈ U} ⊂ X := Z ⊂ EX = Sn,A(z) = AzAT ,

and we can use the machinery developed in this Section on order to upper-bound
ε-risk of affine estimate

Tr

(
h

1

K

K∑
k=1

ωk

)
+ κ

of G(z[u]) and to build the best, in terms of the upper risk bound, estimate, see
Corollary 3.9. On a closest inspection (carry it out!), the associated with the

above data functions Ψ̂± arising in (3.49) are exactly the functions Ψ̂± specified
in Proposition 3.23 for M = 2K. Thus, the just outlined approach to estimating
F (u) via stemming from u ∈ U observations ζ2K results in a family of estimates

g̃h(ζ2K) = Tr

(
h

1

K

K∑
k=1

ω[[ζ2k−1; ζ2k]]

)
+ κ(h), h ∈ Sm

and the upper bound on ε-risk of estimate g̃h is Ψ̂(h), where Ψ̂(·) is associated
with M = 2K according to Proposition 3.23, that is, is exactly the same as
the offered by Proposition upper bound on the ε-risk of the estimate ĝh. Note,
however, that the estimates g̃h and ĝh are not identical:

g̃h(ζ2K) = Tr
(
h 1
K

∑K
k=1 ω2k−1,2k[ζ2K ]

)
+ κ(h),

ĝh(ζ2K) = Tr
(
h 1
K(2K−1)

∑
1≤i<j≤2K ωij [ζ

2K ]
)

+ κ(h).

Now goes the question:
•Which one of the estimates g̃h, ĝh would you prefer, that is, which one of these
estimates, in your opinion, exhibits better practical performance?
To check your intuition, test performances of the estimates by simulation. Here
is the story underlying the recommended simulation model:

“Tomorrow, tomorrow not today, all the lazy people say.” Does it make
sense to be lazy? Imagine you are supposed to do some job, and should
decide whether to do it today, or tomorrow. The reward for the job is
drawn by nature at random, with unknown to you time-invariant distri-
bution u on n-element set {r1, ..., rn}, with r1 ≤ r2 ≤ ... ≤ rn. Given
2K historical observations of the rewards, what is better – to do the job
today or tomorrow, that is, is the probability of tomorrow reward to be
at least the today one greater than 0.5? What is this probability? How
to estimate it from historical data?

Pose the above problem as the one of estimating a quadratic functional uT Q̄u of
distribution u from direct observations (m = n,A = In). Pick u ∈ ∆n at random
and run simulations to check which one of the estimates ĝh, g̃h works better. To
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avoid the necessity to solve optimization problem (3.104), you can use h = Q̄,
resulting in unbiased estimate of uT Q̄u.

Exercise 3.24. † What follows is a variation of Exercise 3.22. Consider the situation
as follows: We observe K realizations ηk, k ≤ K, of discrete random variable with p
possible values, and L ≥ K realizations ζ`, ` ≤ L, of discrete random variable with
q possible values. All realizations are independent of each other; ηk’s are drawn
from distribution Pu, and ζ` – from distribution Qv, where P ∈ Rp×r, Q ∈ Rq×s

are given stochastic “sensing matrices,” and u, v are unknown “signals” known
to belong to given subsets U , resp., V of probabilistic simplexes ∆r, resp., ∆s.
Our goal is to recover from observations {ηk, ζ`} the value at u, v of a given linear
function

F (u, v) = uTFv = Tr(F [uvT ]T ). (3.105)

The “covering story” could be as follows. Imagine that there are two possible
actions, say, administering to a patient drug A and drug B. Let u is the
probability distribution of a (somehow quantified) outcome of the first action,
and v be similar distribution for the second action. Observing what happens
when the first action is utilized K, and the second – L times, we could ask
ourselves what is the probability of an outcome of the first action to be
better than an outcome of the second action. This amounts to computing
the probability p of the event “η > ζ,” where η, ζ are independent of each
other discrete real-valued random variables with distributions u, resp., v, and
p is a linear function of the “joint distribution” uvT of η, ζ. This story gives
rise to the aforementioned estimation problem with the unit sensing matrices
P , Q. Assuming that there are “measurement errors” – instead of observing
action’s outcome “as is,” we observe a realization of random variable with
distribution depending, in a prescribed fashion, on the outcome.

As always, we encode the p possible values of ηk by the basic orths e1, ..., ep in Rp,
and the q possible values of ζ – by the basic orths f1, ..., fq in Rq.

We intend to focus on estimates of the form

ĝh,κ(ηK , ζL) =

[
1

K

∑
k

ηk

]T
h

[
1

L

∑
`

ζ`

]
+ κ [h ∈ Rp×q, κ ∈ R]

This is what you are supposed to do:

1. (cf. item B in Exercise 3.22) Denoting by ∆mn the set of nonnegative m × n
matrices with unit sum of all entries (i.e., the set of all probability distributions
on {1, ...,m} × {1, ..., n}) and assuming L ≥ K, let us set

A(z) = PzQT : Rr×s → Rp×q

and

Φ(h;µ) = ln
(∑p

i=1

∑q
j=1 µij exp{hij}

)
: Rp×q ×∆pq → R,

ΦK(h;µ) = KΦ(h/K;µ) : Rp×q ×∆pq → R.

Verify that A maps ∆rs into ∆pq, Φ and ΦK are continuous convex-concave
functions on their domains, and that for every u ∈ ∆r, v ∈ ∆s, the following



250

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 3

holds true:

(!) When ηK = (η1, ..., ηK , ζL = (ζ1, ..., ζK) with mutually independent
η1, ..., ζL such that ηk ∼ Pu, η` ∼ Qv for all k, `, we have

ln

Eη,ζ

exp


[

1

K

∑
k

ηk

]T
h

[
1

L

∑
`
ζ`

]

 ≤ ΦK(h;A(uvT )).

(3.106)

2. Combine (!) with Corollary 3.7 to arrive at the following analogy of Proposition
3.23:

Proposition 3.25. In the situation in question, let Z be a convex compact subset
of ∆rs such that uvT ∈ Z for all u ∈ U , v ∈ V . Given ε ∈ (0, 1), let

Ψ+(h, α) = max
z∈Z

[
αΦK(h/α, PzQT )− Tr(FzT )

]
: Rp×q × {α > 0} → R,

Ψ−(h, α) = max
z∈Z

[
αΦK(−h/α, PzQT ) + Tr(FzT )

]
: Rp×q × {α > 0} → R

Ψ̂+(h) := infα>0 {Ψ+(h, α) + α ln(2/ε)}
= max

z∈Z
inf
α>0

[
αΦK(h/α, PzQT )− Tr(FzT ) + α ln(2/ε)

]
= max

z∈Z
inf
β>0

[
βΦ(h/β, PzQT )− Tr(FzT ) + β

K
ln(2/ε)

]
[β = Kα],

Ψ̂−(h) := inf
α>0
{Ψ−(h, α) + α ln(2/ε)}

= max
z∈Z

inf
α>0

[
αΦK(−h/α, PzQT ) + Tr(FzT ) + α ln(2/ε)

]
= max

z∈Z
inf
β>0

[
βΦ(−h/β, PzQT ) + Tr(FzT ) + β

K
ln(2/ε)

]
[β = Kα].

(3.107)

The functions Ψ̂± are real valued and convex on Rp×q, and every candidate
solution h to the convex optimization problem

Opt = min
h

{
Ψ̂(h) :=

1

2

[
Ψ̂+(h) + Ψ̂−(h)

]}
, (3.108)

induces the estimate

ĝh(ηK , ζL) = Tr

(
h
[[

1
K

∑
k ηk

] [
1
L

∑
` ζ − `

]T ]T)
+ κ(h),

κ(h) = Ψ̂−(h)−Ψ̂+(h)
2

of the functional of interest (3.105) via observation ηK , ζL with ε-risk on U × V
not exceeding ρ = Ψ̂(h):

∀(u ∈ U, v ∈ V ) : Prob{|F (u, v)− ĝh(ηK , ζL)| > ρ} ≤ ε,

the probability being taken w.r.t. the distribution of observations ηK , ζL stemming
from signals u, v.

Exercise 3.26. [recovering mixture weights] The problem to be addressed in this
Exercise is as follows. We are given K probability distributions P1, ..., PK on obser-
vation space Ω, and let these distributions have densities pk(·) w.r.t. some reference
measure Π on Ω; we assume that

∑
k pk(·) is positive on Ω. We are given also N

independent observations
ωt ∼ Pµ, t = 1, ..., N,
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drawn from distribution

Pµ =

K∑
k=1

µkPk,

where µ is unknown “signal known to belong to the probabilistic simplex ∆K =
{µ ∈ RK : µ ≥ 0,

∑
k µk = 1}. Given ωN = (ω1, ..., ωN ), we want to recover the

linear image Gµ of µ, where G ∈ Rν→K is given.
We intend to measure the risk of a candidate estimate Ĝ(ωN ) : Ω× ...×Ω→ Rν

by the quantity

Risk[Ĝ(·)] = sup
µ∈∆

[
EωN∼Pµ×...×Pµ

{
‖Ĝ(ωN )−Gµ‖22

}]1/2

3.26.A. Recovering linear form. Let us start with the case when G = gT is
1×K matrix.

3.26.A.1. Preliminaries. To motivate the construction to follow, consider the
case when Ω is a finite set (obtained, e.g., by “fine discretization” of the “true”
observation space). In this situation our problem becomes an estimation problem
in Discrete o.s., specifically, as follows: given stationary N -repeated observation
stemming from discrete probability distribution Pµ affinely parameterized by signal
µ ∈∆K , we want to recover a linear form of µ. It is shown in [86] that in this case
(same as when recovering linear forms of signals observed via other simple o.s.’s),
a nearly optimal in terms of its risk estimate (see [86] for details) is of the form

ĝ(ωN ) =
1

N

N∑
t=1

Φ(ωt), (3.109)

with properly selected Φ; this “proper selection” is obtained by the techniques of
Section 3.3 as applied to regular data specifying discrete distributions, see Section
2.8.1.2 The difficulty with this approach is that as far as computations are con-
cerned, optimal design of Φ requires solving convex optimization problem of design
dimension of order of the cardinality of G, and this cardinality could be huge already
when d is in the range of tens. By this reason, we intend to simplify the outlined
approach: the only thing we intend to inherit from the optimality results of [86] is
the simple structure (3.109) of the estimator; taking this structure for granted, we
intend to develop an alternative to [86] and the construction from Section 3.3 way
to design Φ. With these alternative designs, we have no theoretical guarantees for
the resulting estimates to be near-optimal; we sacrifice these guarantees in order to
reduce dramatically the computational effort of building the estimates.

3.26.A.2. Generic estimate. Let us select somehow L functions F`(·) on Ω such
that ∫

F 2
` (ω)pk(ω)Π(dω) <∞, 1 ≤ ` ≤ L, 1 ≤ k ≤ K (3.110)

With λ ∈ RL, consider estimate of the form

ĝλ(ωN ) =
1

N

N∑
t=1

Φλ(ωt), Φλ(ω) =
∑
`

λ`F`(ω). (3.111)
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1. Prove that
Risk[ĝλ] ≤ Risk(λ)

:= max
k≤K

[
1
N

∫
[
∑
` λ`F`(ω)]

2
pk(ω)Π(dω)

+
[∫

[
∑
` λ`F`(ω)] pk(ω)Π(dω)− gT ek

]2 ]1/2

= max
k≤K

[
1
N λ

TWkλ+ [eTk [Mλ− g]]2
]1/2

,

(3.112)

where

M =
[
Mk` :=

∫
F`(ω)pk(ω)Π(dω)

]
k≤K
`≤L

,

Wk =
[
[Wk]``′ :=

∫
F`(ω)F`′(ω)pk(ω)Π(dω)

]
`≤L
`′≤L

, 1 ≤ k ≤ K.

and e1, ..., eK are the standard basic orths in RK .

Note that Risk(λ) is a convex function of λ; this function is easy to compute,
provided the matrices M and Wk, k ≤ K, are available. Assuming this is the case,
we can solve the convex optimization problem

Opt = min
λ∈RK

Risk(λ) (3.113)

and use the estimate (3.111) associated with optimal solution to this problem; the
risk of this estimate will be upper-bounded by Opt.

3.26.A.3. Implementation. The question we arrive at is the “Measurement
Design” question: what is a “presumably good,” in terms of the (upper bound
Opt on the) risk of the estimate (3.111) yielded by an optimal solution to (3.113),
selection of L and of the functions F`, 1 ≤ ` ≤ L ? We are about to consider three
related options – naive, basic, and Maximum Likelihood (ML).

Naive option is to take F` = p`, 1 ≤ ` ≤ L = K, assuming that this selection
meets (3.110). For the sake of definiteness, consider the “Gaussian case,” where Ω =
Rd, Π is the Lebesgue measure, and pk is Gaussian distribution with parameters
νk, Σk:

pk(ω) =
exp{− 1

2 (ω − νk)TΣ−1
k (ω − νk)}√

(2π)dDet(Σk)
.

In this case, the Naive option leads to easily computable matrices M and Wk

appearing in (3.112).

2. Check that in the Gaussian case, setting

Σk` = [Σ−1
k + Σ−1

` ]−1,
Σk`m = [Σ−1

k + Σ−1
` + Σ−1

m ]−1,
χk = Σ−1

k νk,

αk` =

√
Det(Σk`)√

(2π)dDet(Σk)Det(Σ`)
,

βk`m =

√
Det(Σk`m)

(2π)d
√

Det(Σk)Det(Σ`)Det(Σm)
,
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we have

Mk` :=
∫
p`(ω)pk(ω)Π(dω)

= αk` exp
{

1
2

[
[χk + χ`]

TΣk`[χk + χ`]− χTk Σkχk − χT` Σ`χ`
]}
,

[Wk]`m :=
∫
p`(ω)pm(ω)pk(ω)Π(dω)

= βk`m exp
{

1
2

[
[χk + χ` + χm]TΣk`m[χk + χ` + χm]

−χTk Σkχk − χT` Σ`χ` − χTmΣmχm
]}
.

Basic option. On a close inspection, Naive option does not make much sense:
when replacing the reference measure Π with another measure Π′ which has positive
density θ(·) w.r.t. Π, the densities pk are updated according to pk(·) 7→ p′k(·) =
θ(·)p(·), so that selecting F ′` = p′`, the matrices M and Wk become M ′ and W ′k
with

M ′k` =
∫ pk(ω)p`(ω)

θ2(ω) Π′(dω) =
∫ pk(ω)p`(ω)

θ(ω) Π(dω),

[W ′k]`m =
∫ pk(ω)p`(ω)pm(ω)

θ3(ω) Π′(dω) =
∫ pk(ω)p`(ω)

θ2(ω) Π(dω).

We see that in general M 6= M ′ and Wk 6= W ′k, which makes the Naive option
unnatural. Basic option is to take

L = K, F`(ω) = π(ω) :=
p`(ω)∑
k pk(ω)

.

The motivation is that the functions F` remain intact when replacing Π with Π′,
so that here M = M ′ and Wk = W ′k, which is natural. Besides this, there are
statistical arguments in favor of Basic option, namely, as follows. Let Π∗ be the
measure with the density

∑
k pk(·) w.r.t. Π; taken w.r.t. Π∗, the densities of Pk

are exactly the above πk(·), and
∑
k πk(ω) ≡ 1. Now, (3.112) says that the risk of

estimate ĝλ can be upper-bounded by the function Risk(λ) defined in (3.112), and
this function, in turn, can be upper-bounded by the function

Risk+(λ) :=

[
1
N

∑
k

∫
[
∑
` λ`F`(ω)]

2
pk(ω)Π(dω)

+ maxk
[∫

[
∑
k λ`F`(ω)] pk(ω)Π(dω)− gT ek

]2 ]1/2

=

[
1
N

∫
[
∑
` λ`F`(ω)]

2
Π∗(dω)

+ maxk
[∫

[
∑
k λ`F`(ω)]πk(ω)Π∗(dω)− gT ek

]2 ]1/2

≤ Risk(λ)

(we just have said that the maximum of K nonnegatve quantities is at least their
sum, and the latter is at most K times the maximum of the quantities). Con-
sequently, the risk of the estimate (3.111) stemming from an optimal solution to
(3.113) can be upper-bounded by the quantity

Opt+ := min
λ

Risk+(λ) [≥ Opt := max
λ

Risk(λ)].

Now goes the punchline:

3.1. Prove that both the quantities Opt defined in (3.113) and the above Opt+ depend
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only on the linear span of the functions F`, ` = 1, ..., L, not on how the functions
F` are selected in this span.

3.2. Prove that the selection F` = π`, 1 ≤ ` ≤ L = K, minimizes Opt+ among all
possible selections L, {F`}L`=1 satisfying (3.110).

Conclude that the selection F` = π`, 1 ≤ ` ≤ L = K, while not necessary optimal
in terms of Opt, definitely is meaningful: this selection optimizes the natural upper
bound Opt+ on Opt. Observe that Opt+ ≤ KOpt, so that optimizing instead of
Opt the upper bound Opt+, although crude, is not completely meaningless.

A downside of Basic option is that it seems problematic to get closed form
expressions for the associated matrices M and Wk, see (3.112). For example, in the
Gaussian case, Naive choice of F`’s allows to represent M and Wk in an explicit
closed form; in contrast to this, when selecting F` = π`, ` ≤ L = K, seemingly the
only way to get M and Wk is to use Monte-Carlo simulations. This being said, we
indeed can use Monte-Carlo simulations to compute M and Wk, provided we can
sample from distributions P1, ..., PK . In this respect, it should be stressed that with
F` ≡ π`, the entries in M and Wk are expectations, w.r.t. P1, ..., PK , of bounded in
magnitude by 1, and thus well-suited for Monte-Carlo simulation, functions of ω.

Maximum Likelihood option. This choice of {F`}`≤L follows the idea of dis-
cretization Exercise was started with. Specifically, we split Ω into L cells Ω1, ...,ΩL
in such a way that the intersection of any two different cells is of Π-measure zero,
and treat as our observations not the actual observations ωt, but the indexes of
the cells ωt’s belong to. With our estimation scheme, this is the same as to select
F` as the characteristic function of Ω`, ` ≤ L Assuming that for distinct k, k′ the
densities Pk, pk′ differ from each other Π-almost surely, the simplest discretization
independent of how the reference measure is selected is the Maximum Likelihood
discretization

Ω` = {ω : max
k

pk(ω) = p`(ω)}, 1 ≤ ` ≤ L = K;

with the ML option, we take, as F`’s, the characteristic functions of the just defined
sets Ω`, 1 ≤ ` ≤ L = K. Same as with Basic option, the matrices M and Wk

associated with ML option can be found by Monte-Carlo simulation.
We have discussed 3 simple options for selecting F`’s. In applications, one can

compute the upper risk bounds Opt, see (3.113), associated with every one of these
three options, and to use the option with the best – the smallest – risk bound.
Alternatively, one can take as {F`, ` ≤ L} the union of the three collections yielded
by the above options (and, perhaps, further extend this union). Note that the
larger is the collection of F`’s, the smaller is the associated Opt, so that the only
price for combining different selections is in increasing the computational cost of
solving (3.113).

3.26.A.4. Illustration. Now goes the experimental part of Exercise:

4.1. Run numerical experiments aimed at comparing with each other the estimates
yielded by the above three options (Naive, Basic, ML). Recommended setup:

• d = 8, K = 90;
• Gaussian case with the covariance matrices Σk of Pk selected at random:

Sk = rand(d, d), Σk =
SkS

T
k

‖Sk‖2
[‖ · ‖: spectral norm]



ESTIMATING FUNCTIONS VIA HYPOTHESIS TESTING

StatOpt˙LN˙NS January 21, 2019 7x10

255

and the expectations νk of Pk selected at random from N (0, σ2Id), with σ =
0.1;
• values of N : {10s, 1 = 0, 1, ..., 5};
• linear form to be recovered: gTµ ≡ µ1.

4.2†. Utilize Cramer-Rao lower risk bound (see Proposition 4.77, Exercise 4.75) to
upper-bound the level of conservatism Opt

Risk∗
of the estimates built in item 4.1.

Here Risk∗ is the minimax risk in our estimation problem:

Risk∗ = inf
ĝ(·)

sup
µ∈∆

[
EωN∼Pµ×...×Pµ

{
|ĝ(ωN )− gTµ|2

}]1/2
,

where inf is taken over all estimates.

3.26.B. Recovering linear images. Now consider the case when G is a general-
type ν × K matrix. The analogy of the estimate ĝλ(·) is now as follows: with
somehow chosen F1, ..., FL satisfying (3.110), we select a ν × L matrix Λ = [λi`],
set

ΦΛ(ω) = [
∑

`
λ1`F`(ω);

∑
`
λ2`F`(ω); ...;

∑
`
λν`F`(ω)]

and estimate Gµ by

ĜΛ(ωN ) =
1

N

N∑
t=1

Φλ(ωt).

5. Prove the following analogy of the results of item 3.26.A:

Proposition 3.27. The risk of the proposed estimator can be upper-bounded as
follows:

Risk[ĜΛ] := maxµ∈∆K

[
EωN∼Pµ×...×Pµ

{
‖Ĝ(ωN )−Gµ‖22

}]1/2
≤ Risk(Λ) := maxk≤K Ψ(Λ, ek),

Ψ(Λ, µ) =
[

1
N

∑K
k=1 µkEω∼Pk

{
‖ΦΛ(ω)‖22

}
+ ‖[ψΛ −G]µ‖22

]1/2
=

[
‖[ψΛ −G]µ‖22 + 1

N

∑K
k=1 µk

∫
[
∑
i≤ν [

∑
` λi`F`(ω)]2]Pk(dω)

]1/2
,

(3.114)
where

Colk[ψΛ] = Eω∼Pk(·)ΦΛ(ω) =

 ∫
[
∑
` λ1`F`(ω)]Pk(dω)

· · ·∫
[
∑
` λν`F`(ω)]Pk(dω)

 , 1 ≤ k ≤ K

and e1, ..., eK are the standard basic orths in RK .

Note that exactly the same reasoning as in the case of Gµ ≡ gTµ demonstrates that
a reasonable way to select L and F`, ` = 1, ..., L, is to set L = K and F`(·) = π`(·),
1 ≤ ` ≤ L.
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3.6 PROOFS

3.6.1 Proof of Proposition 3.5

3.6.1.1 Proof of Proposition 3.5.i

We call step ` essential, if at this step rule 2d is invoked.

10. Let x ∈ X be the true signal underlying our observation ω̄K , so that ω̄1, ..., ω̄K
are independently of each other drawn from the distribution pA(x). Consider the
“ideal” estimate given by exactly the same rules as the procedure above (in the
sequel, we call the latter the “true” one), up to the fact that the role of the tests
T K∆`,rg,r

(·), T K∆`,lf ,l
(·) in rule 2d is played by the “tests”

T̂∆`,rg,r = T̂∆`,lf ,l =

{
red, f(x) > c`
blue, f(x) ≤ c`

Marking by ∗ the entities produced by the resulting fully deterministic procedure,
we arrive at nested sequence of segments ∆∗` = [a∗` , b

∗
` ], 0 ≤ ` ≤ L∗ ≤ L, along

with subsegments ∆∗`,rg = [c∗` , v
∗
` ], ∆∗`,lf = [u∗` , c

∗
` ] of ∆∗`−1, defined for all ∗-essential

values of `, and the output segment ∆̄∗ claimed to contain f(x). Note that the ideal
procedure cannot terminate due to arriving at a disagreement, and that f(x), as is
immediately seen, is contained in all segments ∆∗` , 0 ≤ ` ≤ L∗, same as f(x) ∈ ∆̄∗.

Let L∗ be the set of all ∗-essential values of `. For ` ∈ L∗, let the event E`[x]
parameterized by x be defined as follows:

E`[x] =


{ωK : T K∆∗`,rg,r(ω

K) = red or T K∆∗`,lf ,l(ω
K) = red}, f(x) ≤ u∗`

{ωK : T K∆∗`,rg,r(ω
K) = red}, u∗` < f(x) ≤ c∗`

{ωK : T K∆∗`,lf ,l(ω
K) = blue}, c∗` < f(x) < v∗`

{ωK : T K∆∗`,rg,r(ω
K) = blue or T K∆∗`,lf ,l(ω

K) = blue}, f(x) ≥ v∗`
(3.115)

20. Observe that by construction and in view of Proposition 2.31 we have

∀` ∈ L∗ : ProbωK∼pA(x)×...×pA(x)
{E`[x]} ≤ 2δ. (3.116)

Indeed, let ` ∈ L∗.
• When f(x) ≤ u∗` , we have x ∈ X and f(x) ≤ u∗` ≤ c∗` , implying that E`[x]

takes place only when either the left-side test T K∆∗
`,lf

,l, or the right side test

T K∆∗
`,rg

,r, or both, accepted wrong – red – hypotheses from the pairs of red and

blue hypotheses the tests were applied to. Since the corresponding intervals
([u∗` , c

∗
` ] for the left side test, [c∗` , v

∗
` ] for the right side one) are δ-good left/right,

respectively, the risks of the tests do not exceed δ, and the pA(x)-probability of
the event E`[x] is at most 2δ;

• when u∗` < f(x) ≤ c∗` , the event E`[x] takes place only when the right side test
T K∆∗

`,rg
,r accepts wrong – red – of the hypotheses from the pair it is applied to;

similarly to the above, this can happen with pA(x)-probability at most δ;
• when c` < f(x) ≤ v`, the event E`[x] takes place only when the left-side test
T K∆∗

`,lf
,l accepted wrong – blue – hypothesis from the pair it was applied to, which

again happens with pA(x)-probability ≤ δ;
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• finally, when f(x) > v`, the event E`[x] takes place only when either the left-
side test T K∆∗

`,lf
,l, or the right side test T K∆∗

`,rg
,r, or both, accepted wrong – blue

– hypotheses from the pairs of red and blue hypotheses the tests were applied
to; same as above, this can happen with pA(x)-probability at most 2δ.

30. Let L̄ = L̄(ω̄K) be the last step of the “true” estimating procedure as run on
the observation ω̄K . We claim that the following holds true:

(!) Let E :=
⋃
`∈L∗ E`[x], so that the pA(x)-probability of the event E, the

observations stemming from x, is at most

2δL = ε

by (3.116). Assume that ω̄K 6∈ E. Then L̄(ω̄K) ≤ L∗, and just two cases
are possible:

(!.A) The true estimating procedure was not terminated due to arriving
at disagreement. In this case L∗ = L̄(ω̄K) and the trajectories of the ideal
and the true procedures are identical (the same localizers, essential steps, the
same output segments, etc.), and in particular f(x) ∈ ∆̄, or

(!.B) The true estimating procedure was terminated due to arriving at a
disagreement. Then ∆` = ∆∗` for ` < L̄, and f(x) ∈ ∆̄.

In view of A, B the pA(x)-probability of the event f(x) ∈ ∆̄ is at least
1− ε, as claimed in Proposition 3.5.

To prove (!), note that the actions at step ` in the ideal and the true procedures
depend solely on ∆`−1 and on the outcome of rule 2d. Taking into account that
∆0 = ∆∗0, all we need to verify is the following claim:

(!!) Let ω̄K 6∈ E, and let ` ≤ L∗ be such that ∆`−1 = ∆∗`−1, whence also
u` = u∗` , c` = c∗` , v` = v∗` . Assume that ` is essential (given that ∆`−1 =
∆∗`−1, this may happen if and only if ` is ∗-essential as well). Then either

C. At step ` the true procedure is terminated due to disagreement, in
which case f(x) ∈ ∆̄, or

D. At step ` there was no disagreement, in which case ∆` as given by
(3.25) is identical to ∆∗` as given by the ideal counterpart of (3.25) in the
case of ∆∗`−1 = ∆`−1, that is, by the rule

∆∗` =

{
[c`, b`−1], f(x) > c`,
[a`−1, c`], f(x) ≤ c`

(3.117)

To verify (!!), let ω̄K and ` satisfy the premise of (!!). Note that due to ∆`−1 =
∆∗`−1 we have u` = u∗` , c` = c∗` , and v` = v∗` , and thus also ∆∗`,lf = ∆`,lf , ∆∗`,rg =
∆`,rg. Consider first the case when at the step ` the true estimation procedure is
terminated due to disagreement, so that T K∆∗`,lf ,l(ω̄

K) 6= T K∆∗`,rg,r(ω̄
K). Assuming for

a moment that f(x) < u` = u∗` , the relation ω̄K 6∈ E`[x] combines with (3.115)
to imply that T K∆∗`,rg,r(ω̄

K) = T K∆∗`,lf ,l(ω̄
K) = blue, which under disagreement is

impossible. Assuming f(x) > v` = v∗` , the same argument results in T K∆∗`,rg,r(ω̄
K) =

T K∆∗`,lf ,l(ω̄
K) = red, which again is impossible. We conclude that in the case in

question u` ≤ f(x) ≤ v`, i.e., f(x) ∈ ∆̄, as claimed in C. C is proved.
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Now let in the true estimating procedure there was a consensus at the step `.
The relation ω̄K 6∈ E`[x] implies that one of the following four options takes place:

1. T K∆∗`,rg,r(ω̄
K) = blue and f(x) ≤ u` = u∗` ,

2. T K∆∗`,rg,r(ω̄
K) = blue and u` < f(x) ≤ c` = c∗` ,

3. T K∆∗`,lf ,l(ω̄
K) = red and c` < f(x) < v` = v∗` ,

4. T K∆∗`,lf ,l(ω̄
K) = red and v` ≤ f(x),

In situations 1-2 and due to consensus at the step `, (3.25) says that ∆` = [a`−1, c`],
which combines with (3.117) and v` = v∗` to imply that ∆` = ∆∗` . Similarly, in
situations 3-4 and due to consensus at the step `, (3.25) says that ∆` = [c`, b`−1],
which combines with u` = u∗` and (3.117) to imply that ∆` = ∆∗` . B is proved. 2

3.6.1.2 Proof of Proposition 3.5.ii

There is nothing to prove when b0−a0

2 ≤ ρ̂, since in this case the estimate a0+b0
2

which does not use observations at all is (ρ̂, 0)-reliable. From now on we assume
that b0 − a0 > 2ρ̂, implying that L is positive integer.

10. Observe, first, that if a, b are such that a is lower-feasible, b is upper-feasible,
and b − a > 2ρ, then for every i ≤ Ib,≥ and j ≤ Ia,≤ there exists a test, based
on K̄ observations, which decides upon the hypotheses H1, H2, stating that the
observations are drawn from pA(x) with x ∈ Zb,≥i (H1) and with x ∈ Za,≤j (H2)
with risk at most ε. Indeed, it suffices to consider the test which accepts H1 and
rejects H2 when f̂(ωK̄) ≥ a+b

2 and accepts H2 and rejects H1 otherwise.

20. With parameters of Bisection chosen according to (3.27), by already proved
Proposition 3.5.i, we have

E.1: For every x ∈ X, the pA(x)-probability of the event f(x) ∈ ∆̄, ∆̄ being
the output segment of our Bisection, is at least 1− ε.

30. We claim also that

F.1. Every segment ∆ = [a, b] with b− a > 2ρ and lower-feasible a is δ-good (right),
F.2. Every segment ∆ = [a, b] with b− a > 2ρ and upper-feasible b is δ-good (left),
F.3. Every κ-maximal δ-good (left or right) segment has length at most 2ρ + κ = ρ̂.

As a result, for every essential step `, the lengths of the segments ∆`,rg and ∆`,lf

do not exceed ρ̂.

Let us verify F.1 (verification of F.2 is completely similar, and F.3 is an immediate
consequence of the definitions and F.1-2). Let [a, b] satisfy the premise of F.1. It
may happen that b is upper-infeasible, whence ∆ = [a, b] is 0-good (right), and we
are done. Now let b be upper-feasible. As we have already seen, whenever i ≤ Ib,≥
and j ≤ Ia,≤, the hypotheses stating that ωk are sampled from pA(x) for some

x ∈ Zb,≥i , resp., from some x ∈ Za,≤j , can be decided upon with risk ≤ ε, implying,
same as in the proof of Proposition 2.29, that

εij∆ ≤ [2
√
ε(1− ε)]1/K̄
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whence, taking into account that the column and the row sizes of E∆,r do not
exceed NI,

σ∆,r ≤ NI max
i,j

εKij∆ ≤ NI[2
√
ε(1− ε)]K/K̄ ≤ ε

2L
= δ

(we have used (3.27)), that is, ∆ indeed is δ-good (right).

40. Let us fix x ∈ X and consider a trajectory of Bisection, the observation being
drawn from pA(x). The output ∆̄ of the procedure is given by one of the following
options:

1. At some step ` of Bisection, the process was terminated according to rules in 2b
or 2c. In the first case, the segment [c`, b`−1] has lower-feasible left endpoint and
is not δ-good (right), implying by F.1 that the length of this segment (which is
1/2 of the length of ∆̄ = ∆`−1) is ≤ 2ρ, so that the length |∆̄| of ∆̄ is at most
4ρ ≤ 2ρ̂. The same conclusion, by completely similar argument, holds true when
the process was terminated at step ` according to rule 2c.

2. At some step ` of Bisection, the process was terminated due to disagreement. In
this case, by F.3, we have |∆̄| ≤ 2ρ̂.

3. Bisection was terminated at step L, and ∆̄ = ∆L. In this case, termination
clauses in rules 2b, 2c and 2d were never invoked, clearly implying that |∆s| ≤
1
2 |∆s−1|, 1 ≤ s ≤ L, and thus |∆̄| = |∆L| ≤ 1

2L
|∆0| ≤ 2ρ̂ (see (3.27)).

Thus, along with E.1 we have

E.2: It always holds |∆̄| ≤ 2ρ̂,

implying that whenever the signal x ∈ X underlying observations and the output
segment ∆̄ are such that f(x) ∈ ∆̄, the error of the Bisection estimate (which is the
midpoint of ∆̄) is at most ρ̂. Invoking E.1, we conclude that the Bisection estimate
is (ρ̂, ε)-reliable. 2

3.6.2 2-convexity of conditional quantile

A. Let Q be the family of non-vanishing probability distributions on S = {s1 <
s2 < ... < sM} ⊂ R. For q ∈ Q, let

`m(q) =

M∑
i=m

qi, 1 ≤ m ≤M,

so that 1 = `1(q) > `2(q) > ... > `M (q) > 0.
Given α ∈ [0, 1], let us define (regularized) α-quantile of q ∈ Q, χα(q), as follows:

• if `M (q) > α, we set χα(q) = sM ;
• otherwise, there exists m ∈ {1, ...,M − 1} such that `m(q) ≥ α ≥ `m+1(q). We

select an m with this property, set

β =
α− `m+1(q)

`m(q)− `m+1(q)
,
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so that β ∈ [0, 1] and β`m(q) + (1− β)`m+1(q) = α, and set

χα(q) = βsm + (1− β)sm+1.

Note that for some q, the above m is not uniquely defined; this happens if and only
if `µ(q) = α for some µ, 1 < µ < M , in which case there are exactly two options
for selecting m, one m = µ, and another m = µ− 1. The first option results in

β =
α− `µ+1(q)

`µ(q)− `µ+1(q)
=
`µ(q)− `µ+1(q)

`µ(q)− `µ+1(q)
= 1⇒ βsm + (1− β)sm+1 = sµ,

and the second option results in

β =
α− `µ(q)

`µ−1(q)− `µ(q)
=

`µ(q)− `µ(q)

`µ−1(q)− `µ(q)
= 0⇒ βsm + (1− β)sm+1 = sµ;

Thus, in spite of the fact that m above is not always uniquely defined by α, q, χα(q)
is well defined – the value we assign to χα(q) according to the above construction
is independent of how the required m is selected.

B. From what was said so far, it is immediately seen that for s1 ≤ s < sM , the
relation χα(q) = s is equivalent to the relation

(!) For some m ∈ {1, ...,M − 1}, we have `m(q) ≥ α ≥ `m+1(q) and
[α−`m+1(q)]sm+[`m(q)−α]sm+1

`m(q)−`m+1(q) = s.

C. Let θq(s), s1 ≤ s ≤ sM , be the piecewise linear version to the cumulative distri-
bution of q, that is, the piecewise linear function on ∆ = [s1, sM ] with breakpoints
at s1, ..., sM and such that θq(sm) = `m(q), 1 ≤ m ≤M ; this is a strictly decreasing
function mapping ∆ onto ∆+ := [`M (q), 1]. For given q, χα(q), as a function of
α ∈ [0, 1], is obtained from the inverse of θq(·) by extending this inverse from its
natural domain ∆+ ⊂ [0, 1] to the entire [0, 1] by the value SM to the left of the left
endpoint, `M (q), of ∆+. As a consequence of this representation, it is immediately
seen that χα(q) is continuous in (α, q) ∈ [0, 1] × Q. Note that χα(q) takes all its
values in ∆ = [s1, sM ].

Note that we have demonstrated the equivalence between the definition of χα(·)
via “spreading masses” used in Section 3.2.2.1 and the definition we started with
in this Section.

D. Let us fix α ∈ (0, 1). Given s ∈ ∆, let us look at the set Q−s := {q ∈ Q : χα(q) ≤
s}. This set is as follows:

1. When s = sM , we have Q−s = Q.
2. Now let s ∈ ∆ be < sM , so that s ∈ [s1, sM ). Then for some µ = µ(s) ∈
{1, ...,M − 1} we have sµ ≤ s < sµ+1. We claim that now the set Q−s is the
union of two convex sets:

Q−s = A ∪B,
A = {q ∈ Q : `µ(q) ≤ α},

B =

{
q ∈ Q :

`µ(q) ≥ α, `µ+1(q) ≤ α,
[α− `µ+1(q)]sµ + [`µ(q)− α]sµ+1 ≤ s[`µ(q)− `µ+1(q)]

}
(3.118)
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Indeed, when q ∈ A, then µ > 1, since `1(q) = 1 > α; thus, `1(q) > α and
`µ(q) ≤ α, so that we can find m ∈ {1, ..., µ−1} such that `m(q) ≥ α ≥ `m+1(q).
By A, it implies that χα(q) is a convex combination of sm and sm+1, and both
these quantities are ≤ sµ ≤ s, so that χα(q) ≤ s as well, i.e., q ∈ Q−s ; thus,
A ⊂ Q−s . Now let q ∈ B. In this case we have `µ(q) ≥ α, `µ+1(q) ≤ α,
implying that when specifying χα(q) by A, we can take m = µ, resulting, by

(!), in χα(q) =
[α−`µ+1(q)]sµ+[`µ(q)−α]sµ+1

`µ(q)−`µ+1(q) . The latter expression, by the third

inequality in the description of B, is ≤ s, and we end up with χα(q) ≤ s and
thus q ∈ Q−s . Thus, A ∪ B ⊂ Q−s . To verify the inverse inclusion, let q ∈ Q
be such that χα(q) ≤ s, and let us verify that q ∈ A ∪ B. It may happen that
`µ(q) ≤ α; then q ∈ A, and we are done. Now assume that `µ(q) > α. Observe
that in this case `µ+1(q) ≤ α, since otherwise, by A, we would have χα(q) ≥ sµ+1,
while we are in the case χα(q) ≤ s < sµ+1. Thus, `µ(q) ≥ α ≥ `µ+1(q), i.e., q
satisfies the first two inequalities from the description of B. As a result, by (!),

it holds χα(q) =
[α−`µ+1(q)]sµ+[`µ(q)−α]sµ+1

`µ(q)−`µ+1(q) , which combines with χα(q) ≤ s to

imply the validity at q of the third inequality in the description of B, and we are
done.

The bottom line is that Q−s is the union of two closed in Q convex sets, A and B.
Now let us look at the set Q+

s = {q ∈ Q : χα(q) ≥ s}, where s ∈ ∆. This set is
as follows:

1. When s = sM , Q+
s , by A, is exactly the set {q ∈ Q : `M (q) ≥ α}.

2. Now let s ∈ ∆ be < sM , so that for some µ = µ(s) ∈ {1, ...,M − 1} we have
sµ ≤ s < sµ+1. We claim that now the set Q+

s is the union of two convex sets:

Q+
s = A′ ∪B′,

A′ = {q ∈ Q : `µ+1(q) ≥ α},

B′ =

q ∈ Q :
`µ(q) ≥ α,
`µ+1(q) ≤ α,
[α− `µ+1(q)]sµ + [`µ(q)− α]sµ+1 ≥ s[`µ(q)− `µ+1(q)]


(3.119)

Indeed, if q ∈ A′, then, by A, we either have χα(q) = sM > s, or m in A can be

chosen to be ≥ µ + 1 implying by A that χα(q) ≥ sµ+1 > s; thus, A′ ⊂ Q+
s . Now let

q ∈ B′. From the first two inequalities in the description of B′, by (!), we conclude that

χα(q) =
[α−`µ+1(q)]sµ+[`µ(q)−α]sµ+1

`µ(q)−`µ+1(q)
, and the latter quantity, by the third inequality in

the description of B′, is ≥ s, implying that q ∈ Q+
s . Thus, B′ ⊂ Q+

s , and we see that

A′ ∪ B′ ⊂ Q+
s . To verify the inverse inclusion, let q ∈ Q be such that χα(q) ≥ s,

and let us prove that χ ∈ A′ ∪ B′. It may happen that `µ+1(q) ≥ α, in which case

q ∈ A′, and we are done. Now let `µ+1(q) < α. We claim that `µ(q) ≥ α. Indeed,

otherwise m in A is < µ, implying by A χα(q) ≤ sm+1 ≤ sµ; the equality χα(q) = sµ
would be possible only when m = µ − 1 and β, as defined in A, is equal to 0, that is,

α = `m+1(q) = `µ(q), which is not the case. Thus, under assumption `µ(q) < α it holds

χα(q) < sµ, which is impossible due to sµ ≤ s and χα(q) ≥ s. Thus, we are in the

case when `µ(q) ≥ α > `µ+1(q), that is, the first two inequalities in the description of

B′ hold true, which, by (!), implies that χα(q) =
[α−`µ+1(q)]sµ+[`µ(q)−α]sµ+1

`µ(q)−`µ+1(q)
; the latter

combines with χα(q) ≥ s to imply that q satisfies the third inequality in the description

of B′, that is, q ∈ B′, and we are done.

The bottom line is that Q+
s is the union of two closed in Q convex sets, A′ and B′.

We have arrived at the following
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Proposition 3.28. Let S = {s1 < s2 < ... < sM} be a finite subset of R, T be a
finite set, and P be the set of non-vanishing probability distributions on Ω = S×T .
Given τ ∈ T and α ∈ (0, 1), let ζτ,α(p) : P → [s1, sM ] be the α-quantile of the
conditional distribution on S induced by a distribution p ∈ P and the condition
t = τ :

ζτ,α(p) = χα(qτ [p]), (qτ [p])m =
p(m, τ)∑M
µ=1 p(µ, τ)

, 1 ≤ m ≤M.

The function ζτ,α(·) is 2-convex on P: for every s ∈ [s1, sM ), selecting µ ∈
{1, ...,M − 1} in such a way that sµ ≤ s < sµ+1, we have

{p ∈ P : ζτ,α(p) ≤ s} = {p ∈ P : `µ(p)− α`(p) ≤ 0}⋃{
p ∈ P :

`µ(p) ≥ α`(p) ≥ `µ+1(p),
[α`(p)− `µ+1(p)]sµ + [`µ(p)− α`(p)]sµ+1 ≤ s[`µ(p)− `µ+1(p)]

}
,

{p ∈ P : ζτ,α(p) ≥ s} = {p ∈ P : `µ+1(p)− α`(p) ≥ 0}⋃{
p ∈ P :

`µ(p) ≥ α`(p) ≥ `µ+1(p),
[α`(p)− `µ+1(p)]sµ + [`µ(p)− α`(p)]sµ+1 ≥ s[`µ(p)− `µ+1(p)]

}
,

where

`m(p) =

M∑
i=m

p(i, τ), `(p) =

M∑
m=1

p(m, τ),

and

s < s1 ⇒
{
{p ∈ P : ζτ,α(p) ≤ s} = ∅,
{p ∈ P : ζτ,α(p) ≥ s} = P,

s = sM ⇒
{
{p ∈ P : ζτ,α(p) ≤ s} = P,
{p ∈ P : ζτ,α(p) ≥ s} = {p ∈ P : `M (p) ≥ α`(p)},

s > sM ⇒
{
{p ∈ P : ζτ,α(p) ≤ s} = P,
{p ∈ P : ζτ,α(p) ≥ s} = ∅

Indeed, it suffices to apply (3.119) and (3.118) to q = qτ [p]. 2

3.6.3 Proof of Proposition 3.15

Let us fix ε ∈ (0, 1). Setting

ρK =
1

2

[
Ψ̂K,ε

+ (h̄, H̄) + Ψ̂K,ε
− (h̄, H̄)

]
and invoking Corollary 3.14, all we need to prove is that in the case of A.1-3 one
has

lim sup
K→∞

[
Ψ̂K,ε

+ (h̄, H̄) + Ψ̂K,ε
− (h̄, H̄)

]
≤ 0. (3.120)
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To this end note that in our current situation, (3.64) and (3.69) simplify to

Φ(h,H;Z) = − 1
2

ln Det(I −Θ
1/2
∗ HΘ

1/2
∗ )

+ 1
2

Tr

(
Z

(
BT

[[
H h

hT

]
+ [H,h]T [Θ−1

∗ −H]−1 [H,h]

]
B

)
︸ ︷︷ ︸

Q(h,H)

)
,

Ψ̂K,ε+ (h,H) = inf
α

{
max
Z∈Z

[
αΦ(h/α,H/α;Z)− Tr(QZ) +K−1α ln(2/ε)

]
:

α > 0,−γαΘ−1
∗ � H � γαΘ−1

∗

}
,

Ψ̂K,ε− (h,H) = inf
α

{
max
Z∈Z

[
αΦ(−h/α,−H/α;Z) + Tr(QZ) +K−1α ln(2/ε)

]
:

α > 0,−γαΘ−1
∗ � H � γαΘ−1

∗

}
,

whence[
Ψ̂K

+ (h̄, H̄) + Ψ̂K
− (h̄, H̄)

]
≤ inf

α

{
max

Z1,Z2∈Z

[
αΦ(h̄/α, H̄/α;Z1)− Tr(QZ1)

+Φ(−h̄/α,−H̄/α;Z1) + Tr(QZ2) + 2K−1α ln(2/ε)

]
:

α > 0,−γαΘ−1
∗ � H̄ � γαΘ−1

∗

}
= inf

α
max

Z1,Z2∈Z

{
− 1

2
α ln Det

(
I − [Θ

1/2
∗ H̄Θ

1/2
∗ ]2/α2

)
+ 2K−1α ln(2/ε)

+Tr(Q[Z2 − Z1]) + 1
2

[
αTr

(
Z1Q(h̄/α, H̄/α)

)
+ αTr

(
Z2Q(−h̄/α,−H̄/α)

)]
:

α > 0,−γαΘ−1
∗ � H̄ � γαΘ−1

∗

}
= inf

α
max

Z1,Z2∈Z

{
− 1

2
α ln Det

(
I − [Θ

1/2
∗ H̄Θ

1/2
∗ ]2/α2

)
+ 2K−1α ln(2/ε)

+ 1
2
Tr
(
Z1B

T [H̄, h̄]T [αΘ−1
∗ − H̄]−1[H̄, h̄]B

)
+ 1

2
Tr
(
Z2B

T [H̄, h̄]T [αΘ−1
∗ + H̄]−1[H̄, h̄]B

)
+ Tr(Q[Z2 − Z1]) +

1

2
Tr([Z1 − Z2]BT

[
H̄ h̄

h̄T

]
B)︸ ︷︷ ︸

T (Z1,Z2)

:

α > 0,−γαΘ−1
∗ � H̄ � γαΘ−1

∗

}
(3.121)

By (3.74) we have 1
2B

T

[
H̄ h̄

h̄T

]
B = BT [CTQC + J ]B, where the only nonzero

entry, if any, in (d + 1) × (d + 1) matrix J is in the cell (d + 1, d + 1). Due to the
structure of B, see (3.64), we conclude that the only nonzero element, if any, in
J̄ = BTJB is in the cell (m+ 1,m+ 1), and that

1

2
BT
[
H̄ h̄

h̄T

]
B = (CB)TQ(CB) + J̄ = Q+ J̄

(recall that CB = Im+1). Now, when Z1, Z2 ∈ Z, the entries of Z1, Z2 in the cell
(m+ 1,m+ 1) both are equal to 1, whence

1

2
Tr([Z1−Z2]BT

[
H̄ h̄

h̄T

]
B) = Tr([Z1−Z2]Q)+Tr([Z1−Z2]J̄) = Tr([Z1−Z2]Q),
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implying that the quantity T (Z1, Z2) in (3.121) is zero, provided Z1, Z2 ∈ Z. Con-
sequently, (3.121) becomes[

Ψ̂K
+ (h̄, H̄) + Ψ̂K

− (h̄, H̄)
]
≤ inf

α
max

Z1,Z2∈Z

{
− 1

2
α ln Det

(
I − [Θ

1/2
∗ H̄Θ

1/2
∗ ]2/α2

)
+2K−1α ln(2/ε) + 1

2
Tr
(
Z1B

T [H̄, h][αΘ−1
∗ − H̄]−1[H̄, h̄]TB

)
+ 1

2
Tr
(
Z2B

T [H̄, h̄]T [αΘ−1
∗ + H̄]−1[H̄, h̄]B

)
: α > 0,−γαΘ−1

∗ � H̄ � γαΘ−1
∗

} (3.122)

Now, for appropriately selected independent of K real c we have

− 1
2α ln Det

(
I − [Θ

1/2
∗ H̄Θ

1/2
∗ ]2/α2

)
≤ c/α,

1
2Tr

(
Z1B

T [H̄, h̄]T [αΘ−1
∗ − H̄]−1[H̄, h̄]B

)
+ 1

2Tr
(
Z2B

T [H̄, h̄]T [αΘ−1
∗ + H̄]−1[H̄, h̄]B

)
≤ c/α ∀Z1, Z2 ∈ Z

(recall that Z is bounded). Consequently, given ω > 0, we can find α = αω > 0
large enough to ensure that

−γαωΘ−1
∗ � H̄ � γαωΘ−1

∗ & 2c/αω ≤ ω,

which combines with (3.122) to imply that[
Ψ̂K

+ (h̄, H̄) + Ψ̂K
− (h̄, H̄)

]
≤ ω + 2K−1αω ln(2/ε),

and (3.120) follows. 2
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Lecture Four

Signal Recovery from Gaussian Observations and Beyond

OVERVIEW

In this lecture we address one of the most basic problems of High-Dimensional
Statistics, specifically, as follows: given positive definite m ×m matrix Γ, m × n
matrix A, ν × n matrix B, and indirect noisy observation

ω = Ax+ ξ
[A : m× n, ξ ∼ N (0,Γ)]

(4.1)

of unknown “signal” x known to belong to a given convex compact subset X of
Rn, we want to recover the image Bx ∈ Rν of x under a given linear mapping.
We focus first on the case where the quality of a candidate recovery ω 7→ x̂(ω) is
quantified by its worst-case, over x ∈ X , expected ‖ · ‖22-error, that is, by the risk

Risk[x̂(·)|X ] = sup
x∈X

√
Eξ∼N (0,Γ) {‖x̂(Ax+ ξ)−Bx‖22}. (4.2)

The simplest and the most studied type of recovery is affine one: x̂(ω) = HTω+h;
assuming X symmetric w.r.t. the origin, we lose nothing when passing from affine
estimates to linear ones – those of the form x̂H(ω) = HTω. An advantage of
linear estimates is that under favorable circumstances (e.g., when X is an ellipsoid),
minimizing risk over linear estimates is an efficiently solvable problem, and there
exists huge literature on optimal in terms of their risk linear estimates (see, e.g.,
[95, 96, 129, 130, 41, 54, 123, 3] and references therein). Moreover, in the case
of signal recovery from direct observations in white Gaussian noise (the case of
B = A = In, Γ = σ2In), there is huge body of results on near-optimality of properly
selected linear estimates among all possible recovery routines, see, e.g., [81, 141]
and references therein; a typical result of this type states that when recovering
x ∈ X from direct observation ω = x+ σξ, ξ ∼ N (0, Im) and X being an ellipsoid
of the form

{x ∈ Rn :
∑
j

j2αx2
j ≤ L2},

or the box
{x ∈ Rn : jα|xj | ≤ L, j ≤ n},

with fixed L < ∞ and α > 0, the ratio of the risk of a properly selected linear
estimate to the minimax risk

Riskopt[X ] := inf
x̂(·)

Risk[x̂|X ] (4.3)

(the infimum is taken over all estimates, not necessarily linear) remains bounded,
or even tends to 1, as σ → +0, and this happens uniformly in n, α and L being
fixed. Similar “near-optimality” results are known for “diagonal” case, where X
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is the above ellipsoid/box and A, B, Γ are diagonal matrices. To the best of our
knowledge, the only “general” (that is, not imposing severe restrictions on how the
geometries of X , A, B, Γ are linked to each other) result on optimality of linear
estimates is due to D. Donoho who proved [44, 50] that when recovering a linear
form (i.e., in the case of one-dimensional Bx), the best, over all linear estimates,
risk is within the factor 1.2 of the minimax risk.

The goal of this lecture is to establish a rather general result on near-optimality
of properly built linear estimates as compared to all possible estimates. A result of
this type is bound to impose some restrictions on X , since there are cases (e.g., the
one of a high-dimensional ‖·‖1-ball X ) where linear estimates are by far nonoptimal.
Our restrictions on X reduce to the existence of a special type representation of
X and are satisfied, e.g., when X is the intersection of K < ∞ ellipsoids/elliptic
cylinders:

X = {x ∈ Rn : xTRkx ≤ 1, 1 ≤ k ≤ K}.
[Rk � 0,

∑
k Rk � 0]

(4.4)

in particular, X can be a symmetric w.r.t. the origin compact polytope given
by 2K linear inequalities −1 ≤ sTk x ≤ 1, 1 ≤ k ≤ K, or, equivalently, X =
{x : xT (rkr

T
k )︸ ︷︷ ︸

Rk

x. ≤ 1, k ≤ K}. Another instructive example is a set of the form

X = {x : ‖Sx‖p ≤ L}, where p ≥ 2 and S is a matrix with trivial kernel. It should
be stressed than while imposing some restrictions on X , we require nothing from
A, B, and Γ, aside of positive definiteness of the latter matrix. Our main result
(Proposition 4.5) states, in particular, that with X given by (4.4) and arbitrary
A, B, the risk of properly selected linear estimate x̂H∗ with both H∗ and the risk
efficiently computable, satisfies the bound

Risk[x̂H∗ |X ] ≤ O(1)
√

ln(K + 1)Riskopt[X ], (∗)

Riskopt[X ] is the minimax risk, and O(1) is an absolute constant. Note that the
outlined result is an “operational” one – the risk of provably nearly optimal estimate
and the estimate itself are given by efficient computation. This is in sharp contrast
with traditional results of non-parametric statistics, where near-optimal estimates
and their risks are given in a “closed analytical form,” at the price of severe re-
strictions on the structure of the “data” X , A, B, Γ. This being said, it should be
stressed that one of the crucial components in our construction is quite classical –
this is the idea, going back to M.S. Pinsker [124], to bound from below the minimax
risk via Bayesian risk associated with properly selected Gaussian prior52.

The main body of the lecture originates from [92, 90] is organized as follows.
Section 4.1 presents basic results on Conic Programming and Conic Duality – the
main optimization tools utilized in all subsequent constructions and proofs. Sec-
tion 4.2 contains problem formulation (Section 4.2.1), construction of the linear
estimate we deal with (Section 4.2.2) and the central result on near-optimality of
this estimate (Section 4.2.3). We discuss also the “expressive abilities” of the family

52[124] addresses the problem of ‖ · ‖2-recovery of a signal x from direct observations (A =
B = I) in the case when X is a high-dimensional ellipsoid with “regularly decreasing half-axes,”
like X = {x ∈ Rn :

∑
j j

2αx2
j ≤ L2} with α > 0. In this case Pinsker’s construction shows that as

σ → +0, the risk of properly built linear estimate is, uniformly in n, (1 + o(1)) times the minimax
risk. This is much stronger than (∗), and it seems to be unlikely that a similarly strong result
holds true in the general case underlying (∗).
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of sets (we call them ellitopes) to which our main result applies. In Section 4.2.5,
we show that the key argument underlying the proof of our main result can be used
beyond the scope of statistics, specifically, when quantifying the approximation ra-
tio of the semidefinite relaxation bound on the maximum of a quadratic form over
an ellitope. In Section 4.3 we extend the results of previous sections from ellitopes
to their “matrix analogies” – spectratopes in the role of signal sets, passing simul-
taneously from ‖ · ‖2 as the norm in which the recovery error is measured to an
arbitrary spectratopic norm – one for which the unit ball of the conjugate norm is a
spectratope; in addition, we allow for observation noise to have nonzero mean and
to be non-Gaussian. Concluding Section 4.5 deals with “uncertain-but-bounded”
observation noise, that is, noise selected “by nature,” perhaps in an adversarial
fashion, from a given bounded set.

4.1 PRELIMINARIES: EXECUTIVE SUMMARY ON CONIC

PROGRAMMING

4.1.1 Cones

A cone in Euclidean space E is a nonempty set K which is closed w.r.t. taking
conic combinations of its elements, that is, linear combinations with nonnegative
coefficients. Equivalently: K ⊂ E is a cone if K is nonempty, and

• x, y ∈ K ⇒ x+ y ∈ K;
• x ∈ K,λ ≥ 0⇒ λx ∈ K.

It is immediately seen (check it!) that a cone is a convex set. We call a cone
K regular, if it is closed, pointed (that is, does not contain lines, or, equivalently,
K
⋂

[−K] = {0}) and possesses a nonempty interior.
Given a cone K ⊂ E, we can associate with it its dual cone K∗ defined as

K∗ = {y ∈ E : 〈y, x〉 ≥ 0 ∀x ∈ K};

it is immediately seen that whatever be K, K∗ is a closed cone, and K ⊂ (K∗)∗.
It is well known that

• if K is a closed cone, it holds K = (K∗)∗;
• K is a regular cone if and only if K∗ is so.

Examples of “useful in applications” regular cones are as follows:

1. Nonnegative orthants Rd
+ = {x ∈ Rd : x ≥ 0}

2. Lorentz cones Ld+ = {x ∈ Rd : xn ≥
√∑n−1

i=1 x
2
i };

3. Semidefinite cones Sd+ comprised of positive semidefinite symmetric d× d matri-
ces; Semidefinite cone Sd+ lives in the space Sd of symmetric matrices equipped

with the Frobenius inner product 〈A,B〉 = Tr(ABT ) = Tr(AB) =
∑d
i,j=1AijBij ,

A,B ∈ Sd.
All listed so far cones are self-dual.

4. Let ‖ · ‖ be a norm on Rn. The set {[x; t] ∈ Rn×R : t ≥ ‖x‖} is a regular cone,
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and the dual cone is {[y; τ ] : ‖y‖∗ ≤ τ}, where

‖y‖∗ = max
x
{xT y : ‖x‖ ≤ 1}

is the norm on Rn conjugate to ‖ · ‖.

Another useful for the sequel example of a regular cone is the conic hull of a
convex compact set defined as follows. Let T be a convex compact set with a
nonempty interior in Euclidean space E. We can associate with T its closed conic
hull

T = cl
{

[t; τ ] ∈ E+ = E ×R : τ > 0, t/τ ∈ T
}︸ ︷︷ ︸

Ko(T )

.

It is immediately seen that T is a regular cone (check it!), and that to get this
cone, one should add to the convex set Ko(T ) the origin in E+. It is also clear
that one can “see T in T:” – T is nothing but the cross-section of the cone T by
the hyperplane τ = 1 in E+ = {[t; τ ]}:

T = {t ∈ E : [t; 1] ∈ T}

It is easily seen (check it!) that the cone T∗ dual to T is given by

T∗ = {[g; s] ∈ E+ : s ≥ φT (−g)},

where
φT (g) = max

t∈T
〈g, t〉

is the support function of T .

4.1.2 Conic problems and their duals

Given regular cones Ki ⊂ Ei, 1 ≤ i ≤ m, consider optimization problem of the
form

Opt(P ) = min

{
〈c, x〉 :

Aix− bi ∈ Ki, i = 1, ...,m
Rx = r

}
, (P )

where x 7→ Aix − bi are affine mappings acting from some Euclidean space E to
the spaces Ei where the cones Ki live. Problem in this form is called a conic
problem on the cones K1, ...,Km; the constraints Aix − bi ∈ Ki on x are called
conic constraints. We call a conic problem (P ) strictly feasible, if it admits a
strictly feasible solution x̄, meaning that x̄ satisfies the equality constraints and
satisfies strictly: Aix̄− bi ∈ intKi – the conic constraints.

One can associate with conic problem (P ) its dual, which also is a conic problem.
The origin of the dual problem is the desire to obtain in a systematic way – by linear
aggregation of conic constraints – lover bounds on the optimal value Opt(P ) of the
primal problem (P ). Linear aggregation of constraints works as follows: let us
equip every one of conic constraints Aix− bi ∈ Ki with aggregation weight, called
Lagrange multiplier, yi restricted to reside in the cone K∗i dual to Ki. Similarly, we
equip the system Rx = r of equality constraints in (P ) with Lagrange multiplier z
– a vector of the same dimension as r. Now let x be a feasible solution to the conic
problem, and let yi ∈ K∗i , i ≤ m, z be Lagrange multipliers. By the definition of
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the dual cone and due to Aix− bi ∈ Ki, yi ∈ K∗i we have

〈yi, Aix〉 ≥ 〈yi, bi〉, 1 ≤ i ≤ m

and of course
zTRx ≥ rT z.

Summing all resulting inequalities up, we arrive at the scalar linear inequality

〈R∗z +
∑
i

A∗i yi, x〉 ≥ rT z +
∑
i

〈bi, yi〉 (!)

where A∗i are the conjugates to Ai: 〈y,Aix〉Ei ≡ 〈A∗i y, x〉E , and R∗ is the conjugate
of R. By its origin, (!) is a consequence of the system of constraints in (P ) and as
such is satisfied everywhere on the feasible domain of the problem. If we are lucky
to get, as the linear function of x in the left hand side of (!), the objective of (P ),
that is, if

R∗z +
∑
i

A∗i yi = c,

(!) imposes a lower bound on the objective of the primal conic problem (P ) every-
where on the feasible domain of the primal problem, and the conic dual of (P ) is
the problem

Opt(D) = max
yi,z

{
rT z +

∑
i

〈bi, yi〉 :
yi ∈ K∗i , 1 ≤ i ≤ m
R∗z +

∑m
i=1A

∗
i yi = c

}
(D)

of maximizing this lower bound on Opt(P ).
The relations between the primal and the dual conic problems are the subject

of the standard Conic Duality Theorem as follows:

Theorem 4.1. [Conic Duality Theorem] Consider conic problem (P ) (where all
Ki are regular cones) along with its dual problem (D). Then

1. Duality is symmetric: the dual problem (D) is conic, and the conic dual of (D)
is (equivalent to) (P );

2. Weak duality: It always holds Opt(D) ≤ Opt(P )
3. Strong duality: If one of the problems (P ), (D) is strictly feasible and bounded53,

then the other problem in the pair is solvable, and the optimal values of the
problems are equal to each other. In particular, if both (P ) and (D) are strictly
feasible, then both problems are solvable with equal optimal values.

Remark 4.2. While Conic Duality Theorem in the just presented form meets all
our subsequent needs, it makes sense to note that in fact Strong Duality part
of the theorem can be strengthened by replacing strict feasibility with “essential
strict feasibility” defined as follows: conic problem in the form of (P ) (or, which is
the same, form of (D)) is called essentially strictly feasible, if it admits a feasible
solution x̄ which satisfies strictly the non-polyhedral conic constraints, that is, Aix̄−

53For a minimization problem, boundedness means that the objective is bounded from below
on the feasible set, for a maximization problem – that it is bounded from above on the feasible
set.
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bi ∈ intKi for all i for which the cone Ki is not polyhedral – is not given by a finite
list of homogeneous linear inequality constraints.

The proof of Conic Duality Theorem can be found in numerous sources, e.g., in
[116, Section 7.1.3].

4.1.3 Schur Complement Lemma

We will use the following extremely useful fact:

Lemma 4.3. [Schur Complement Lemma] Symmetric block matrix

A =

[
P QT

Q R

]
with R � 0 is positive (semi)definite if and only if the matrix P −QTR−1Q is so.

Proof. With u, v of the same sizes as P , respectively, R, we have

min
v

[u; v]
T
A [u; v] = uT [P −QTR−1Q]u

(direct computation utilizing the fact that R � 0). It follows that the quadratic
form associated with A is nonnegative everywhere if and only if the quadratic form
with the matrix [P−QTR−1Q] is nonnegative everywhere (since the latter quadratic
form is obtained from the former one by partial minimization). 2

4.2 NEAR-OPTIMAL LINEAR ESTIMATION

4.2.1 Situation and goal

Given m × n matrix A, ν × n matrix B, and m ×m matrix Γ � 0, consider the
problem of estimating linear image Bx of unknown signal x known to belong to a
given set X ⊂ Rn via noisy observation

ω = Ax+ ξ, ξ ∼ N (0,Γ), (4.5)

where ξ is the observation noise. A candidate estimate in this case is a (Borel)
function x̂(·) : Rm → Rν , and the performance of such an estimate in what follows
will be quantified by the Euclidean risk Risk[x̂|X ] defined by (4.2).

4.2.1.1 Ellitopes

From now on we assume that X ⊂ Rn is a set given by

X =
{
x ∈ Rn : ∃(y ∈ Rn̄, t ∈ T ) : x = Py, yTRky ≤ tk, 1 ≤ k ≤ K

}
, (4.6)

where

• P is an n× n̄ matrix,
• Rk � 0 are n̄× n̄ matrices with

∑
k Rk � 0,
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• T is a nonempty computationally tractable54 convex compact subset of RK
+

intersecting the interior of RK
+ and such that T is monotone, meaning that

the relations 0 ≤ τ ≤ t and t ∈ T imply that τ ∈ T .55 Note that under our
assumptions int T 6= ∅.

In the sequel, we refer to a set of the form (4.6) with data [P, {Rk, 1 ≤ k ≤
K}, T ] satisfying just formulated assumptions as to an ellitope, and to (4.6) – as
to ellitopic representation of X . Here are instructive examples of ellitopes (in all
these examples, P is the identity mapping; in the sequel, we call ellitopes of this
type basic ones):

• when K = 1, T = [0, 1] and R1 � 0, X is the ellipsoid {x : xTR1x ≤ 1};
• when K ≥ 1, T = {t ∈ RK : 0 ≤ tk ≤ 1, k ≤ K}, and X is the intersection⋂

1≤k≤K

{x : xTRkx ≤ 1}

of centered at the origin ellipsoids/elliptic cylinders. In particular, when U is
a K × n matrix of rank n with rows uTk , 1 ≤ k ≤ K, and Rk = uku

T
k , X is

symmetric w.r.t. the origin polytope {x : ‖Ux‖∞ ≤ 1};
• when U , uk and Rk are as in the latter example and T = {t ∈ RK

+ :
∑
k t
p/2
k ≤ 1}

for some p ≥ 2, we get X = {x : ‖Ux‖p ≤ 1}.

It should be added that the family of ellitope-representable sets is quite rich: this
family admits a “calculus”, so that more ellitopes can be constructed by taking
intersections, direct products, linear images (direct and inverse) or arithmetic sums
of ellitopes given by the above examples. In fact, the property to be an ellitope
is preserved by all basic operations with sets preserving convexity and symmetry
w.r.t. the origin, see Section 4.8.

As another instructive, in the context of non-parametric statistics, example
of an ellitope, consider the situation where our signals x are discretizations of
functions of continuous argument running through a compact d-dimensional domain
D, and the functions f we are interested in are those satisfying a Sobolev-type
smoothness constraint – an upper bound on the Lp(D)-norm of Lf , where L is
a linear differential operator with constant coefficients. After discretization, this
restriction can be modeled as ‖Lx‖p ≤ 1, with properly selected matrix L. As we
already know from the above example, when p ≥ 2, the set X = {x : ‖Lx‖p ≤ 1} is
an ellitope, and as such is captured by our machinery. Note also that by the outlined
calculus, imposing on the functions f in question several Sobolev-type smoothness
constraints with parameters p ≥ 2, still results in a set of signals which is an ellitope.

54for all practical purposes, it suffices to assume that T is given by an explicit semidefinite
representation

T = {t : ∃w : A(t, w) � 0},
where A(t, w) is a symmetric and affine in t, w matrix.

55The latter relation is “for free” – given a nonempty convex compact set T ⊂ RK
+ , the right

hand side of (4.6) remains intact when passing from T to its “monotone hull” {τ∈ RK
+ :∃t ∈ T :

τ ≤ t} which already is a monotone convex compact set.
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4.2.1.2 Estimates and their risks

In the outlined situation, a candidate estimate is a Borel function x̂(·) : Rm → Rν ;
given observation (4.5), we recover w = Bx as x̂(ω). In the sequel, we quantify the
quality of an estimate by its worst-case, over x ∈ X , expected ‖ · ‖22 recovery error:

Risk[x̂|X ] = sup
x∈X

[
Eξ∼N (0,Γ)

{
‖x̂(Ax+ ξ)−Bx‖22

} ]1/2
(4.7)

and define the optimal, or the minimax, risk as

Riskopt[X ] = inf
x̂(·)

Risk[x̂|X ], (4.8)

where inf is taken over all Borel candidate estimates.

4.2.1.3 Main goal

Main goal of what follows is to demonstrate that a linear in ω estimate

x̂H(ω) = HTω (4.9)

with properly selected efficiently computable matrix H is near-optimal in terms of
its risk.

Our initial observation is that when replacing matrices A and B with AP and
BP , respectively, we pass from the initial estimation problem of interest – one
where the signal set X is given by (4.6), and we want to recover Bx, x ∈ X , via
observation (4.5), to the transformed problem, where the signal set is

X̄ = {y ∈ Rn̄ : ∃t ∈ T : yTRky ≤ tk, 1 ≤ k ≤ K},

and we want to recover [BP ]y, y ∈ X̄, via observation

ω = [AP ]y + ξ.

It is obvious that the considered families of estimates (the family of all linear and
the family of all estimates), same as the risks of the estimates, remain intact under
this transformation; in particular,

Risk[x̂|X ] = sup
y∈X̄

[
Eξ{‖x̂([AP ] y + ξ)− [BP ] y‖22}

]1/2
.

Therefore, to save notation, from now on, unless explicitly stated otherwise, we
assume that matrix P is identity, so that X is the basic ellitope

X =
{
x ∈ Rn : ∃t ∈ T , xTRkx ≤ tk, 1 ≤ k ≤ K

}
. (4.10)

We assume in the sequel that B 6= 0, since otherwise one has Bx = 0 for all x ∈ X ,
and the estimation problem is trivial.

4.2.2 Building linear estimate

We start with building a “presumably good” linear estimate. Restricting ourselves
to linear estimates (4.9), we may be interested in the estimate with the smallest
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risk, that is, associated with a ν ×m matrix H which is an optimal solution to the
optimization problem

min
H

{
R(H) := Risk2[x̂H |X ]

}
We have

R(H) = max
x∈X

Eξ{‖HTω −Bx‖22} = Eξ{‖HT ξ‖22}+ max
x∈X
‖HTAx−Bx‖22

= Tr(HTΓH) + max
x∈X

xT (HTA−B)T (HTA−B)x.

This function, while convex, can be hard to compute. For this reason, we use a
linear estimate yielded by minimizing an efficiently computable convex upper bound
on R(H) which is built as follows. Let φT be the support function of T :

φT (λ) = max
t∈T

λT t : RK → R.

Observe that whenever λ ∈ RK
+ and H are such that

(B −HTA)T (B −HTA) �
∑
k

λkRk, (4.11)

for x ∈ X it holds
‖Bx−HTAx‖22 ≤ φT (λ). (4.12)

Indeed, in the case of (4.11) and with y ∈ X , there exists t ∈ T such
that yTRky ≤ tk for all t, and consequently the vector t̄ with the entries
t̄k = yTRky also belongs to T , whence

‖Bx−HTAx‖22 = ‖Bx−HTAx‖22 ≤
∑
k

λkx
TRkx = λT t̄ ≤ φT (λ),

which combines with (4.10) to imply (4.12).

From (4.12) it follows that if H and λ ≥ 0 are linked by (4.11), then

Risk2[x̂H |X ] = max
x∈X

E
{
‖Bx−HT (Ax+ ξ)‖22

}
= Tr(HTΓH) + max

x∈X
‖[B −HTA]x‖22

≤ Tr(HTΓH) + φT (λ).

We see that the efficiently computable convex function

R̂(H) = inf
λ

{
Tr(HTΓH) + φT (λ) : (B −HTA)T (B −HTA) �

∑
k

λkRk, λ ≥ 0

}

(which clearly is well defined due to compactness of T combined with
∑
k Rk � 0)

is an upper bound on R(H).56 We have arrived at the following result:

56It is well known that when K = 1 (i.e., X is n ellipsoid), the above bounding scheme is

exact: R(·) ≡ R̂(·). For more complicated X ’s, R̂(·) could be larger than R(·), although the ratio
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Proposition 4.4. In the situation of this Section, the risk of the “presumably
good” linear estimate x̂H∗(ω) = HT

∗ ω yielded by an optimal solution (H∗, λ∗) to the
(clearly solvable) convex optimization problem

Opt = min
H,λ

{
Tr(HTΓH) + φT (λ) : (B −HTA)T (B −HTA) �

∑
k

λkRk, λ ≥ 0

}
= min

H,λ

{
Tr(HTΓH) + φT (λ) :

[ ∑
k λkRk BT −ATH

B −HTA Iν

]
� 0, λ ≥ 0

}
(4.13)

is upper-bounded by
√

Opt.

4.2.2.1 Illustration: Recovering temperature distribution

Situation: A square steel plate was somehow heated at time 0 and left to cool, the
temperature along the perimeter of the plate being all the time kept zero. At time
t1, we measure the temperatures at m points of the plate, and want to recover the
distribution of the temperature along the plate at another given time t0, 0 < t0 < t1.

Physics, after suitable discretization of spatial variables, offers the following
model of our situation. We represent the distribution of temperature at time t as
(2N − 1) × (2N − 1) matrix U(t) = [uij(t)]

2N−1
i,j=1 , where uij(t) is the temperature,

at time t, at the point

Pij = (pi, pj), pk = k/N − 1, 1 ≤ i, j ≤ 2N − 1

of the plate (in our model, this plate occupies the square S = {(p, q) : |p| ≤ 1, |q| ≤
1}). Here positive integer N is responsible for spatial discretization.

For 1 ≤ k ≤ 2N − 1, let us specify functions φk(s) on the segment −1 ≤ s ≤ 1
as follows:

φ2`−1(s) = c2`−1 cos(ω2`−1s), φ2`(s) = c2` sin(ω2`s), ω2`−1 = (`− 1/2)π, ω2` = `π,

where ck are readily given by the normalization condition
∑2N−1
i=1 φ2

k(pi) = 1; note
that φk(±1) = 0. It is immediately seen that the matrices

Φk` = [φk(pi)φ`(pj)]
2N−1
i,j=1 , 1 ≤ k, ` ≤ 2N − 1

form an orthonormal basis in the space of (2N − 1) × (2N − 1) matrices, so that
we can write

U(t) =
∑

k,`≤2N−1

xk`(t)Φ
k`.

The advantage of representing temperature fields in the basis {Φk`}k,`≤2N−1 stems
from the fact that in this basis the heat equation governing evolution of the tem-
perature distribution in time becomes extremely simple, just

d

dt
xk`(t) = −(ω2

k + ω2
` )xk`(t)⇒ xk`(t) = exp{−(ω2

k + ω2
` )t}xk` 57

R̂(·)/R(·) is bounded by O(log(K)), see Section 4.2.5.
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Now we can convert the situation into the one considered in our general estimation
scheme, namely, as follows:

• We select somehow the discretization parameter N and treat x = {xk`(0), 1 ≤
k, ` ≤ 2N − 1} as the signal underlying our observations.
In every potential application, we can safely upper-bound the magnitudes of the
initial temperatures and thus the magnitude of x, say, by a constraint of the form∑

k,`

x2
k`(0) ≤ R2

with properly selected R, which allows to specify the domain X of the signal as
the Euclidean ball:

X = {x ∈ R(2N−1)×(2N−1) : ‖x‖22 ≤ R2}. (4.14)

• Let the measurements of the temperature at time t1 be taken along the points
Pi(ν),j(ν), 1 ≤ ν ≤ m 58, and let them be affected by N (0, σ2Im)-noise, so that
our observation is

ω = A(x) + ξ, ξ ∼ N (0, σ2Im),

where x 7→ A(x) is the linear mapping from R(2N−1)×(2N−1) into Rm given by

[A(x)]ν =

2N−1∑
k,`=1

e−(ω2
k+ω2

` )t1φk(pi(ν))φ`(pj(ν))xk`(0). (4.15)

• What we want to recover, are the temperatures at time t0 taken along some grid,
say, the square (2K − 1) × (2K − 1) grid {Qij = (ri, rj), 1 ≤ i, j ≤ 2K − 1},
where ri = i/K − 1, 1 ≤ i ≤ 2K − 1. In other words, we want to recover B(x),
where the linear mapping x 7→ B(x) from R(2N−1)×(2N−1) into R(2K−1)×(2K−1)

is given by

[B(x)]ij =

2N−1∑
k,`=1

e−(ω2
k+ω2

` )t0φk(ri)φ`(rj)xk`(0).

Ill-posedness. Our problem is a typical example of ill-posed inverse problem,
where one wants to recover a past state of dynamical system converging exponen-
tially fast to equilibrium and thus “forgetting rapidly” its past. More specifically,
in our situation ill-posedness stems from the fact that, as is clearly seen from (4.15),
contributions of “high frequency” (i.e., with large ω2

k + ω2
` ) components xk`(0) of

the signal to A(x) decrease exponentially fast, with high decay rate, as t1 grows.
As a result, high frequency components xk`(0) are impossible to recover from noisy
observations of A(x), unless the corresponding time instant t1 is very small. As a
kind of compensation, contributions of high frequency components xk`(0) to B(x)
are very small, provided t0 is not too small, implying that there is no necessity to
recover well high frequency components, provided they are not huge. Our linear
estimate, roughly speaking, seeks for the best tradeoff between these two opposite

58the construction can be easily extended to allow for measurement points outside of the grid
{Pij}.
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U∗ :
‖U∗‖2 = 2.01
‖U∗‖∞ = 0.347

Û :
‖Û − U∗‖2 = 0.318

‖Û − U∗‖∞ = 0.078
Ũ :

‖Ũ − U∗‖2 = 44.82

‖Ũ − U∗‖∞ = 12.47

Figure 4.1: True distribution of temperature U∗ = B(x) at time t0 = 0.01 (left)

along with its recovery Û via optimal linear estimate (center) and the “naive”

recovery Ũ (right).

phenomena, utilizing (4.14) as the source of upper bounds on the magnitudes of
high frequency components of the signal.

Numerical results. In the experiment to be reported, we used N = 32, m = 100,
K = 6, t0 = 0.01, t1 = 0.03 (i.e., temperature is measured at time 0.03 at 100 points
selected at random on 63×63 square grid, and we want to recover the temperatures
at time 0.01 along 11× 11 square grid). We used R = 15, that is,

X = {[xk`]63
k,`=1 :

∑
k,`

x2
k` ≤ 225},

and σ = 0.001.
Under the circumstances, the risk of the best linear estimate turns out to be

0.3968. Figure 4.1 shows a sample temperature distribution B(x) = U∗(t0) at time

t0 stemming from a randomly selected signal x ∈ X along with the recovery Û(t0)

of U∗ by the optimal linear estimate and the naive “least squares” recovery Ũ(t0) of
U∗. The latter is defined as B(x∗), where x∗ is the least squares recovery of signal
underlying observation ω:

x = x∗(ω) := argmin
x
‖A(x)− ω‖2.

Pay attention to the dramatic difference in performances of the “naive least
squares” and the optimal linear estimate

4.2.3 Near-optimality of x̂H∗

Proposition 4.5. The efficiently computable linear estimate x̂H∗(ω) = HT
∗ ω yielded

by an optimal solution to the optimization problem (4.13) is nearly optimal in terms
of its risk:

Risk[x̂H∗ |X ] ≤
√

Opt ≤ 64
√

(3 + 18 ln 2)(3 lnK + 18 ln 2)Riskopt[X ], (4.16)

where the minimax optimal risk Riskopt[X ] is given by (4.8).
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For proof, see Section 4.10.5.

4.2.3.1 Relaxing the symmetry requirement

Sets X of the form (4.6) – we called them ellitopes – are symmetric w.r.t. the
origin convex compacts of special structure. This structure is rather flexible, but
the symmetry is “built in.” We are about to demonstrate that, to some extent,
the symmetry requirement can be somehow relaxed. Specifically, assume instead
of (4.6) that the convex compact set X known to contain the signals x underlying
observations (4.5) can be “sandwiched” by two known to us and similar to each
other, with coefficient α ≥ 1, ellitopes:{

x ∈ Rn : ∃(y ∈ Rn̄, t ∈ T ) : x = Py & yTSky ≤ tk, 1 ≤ k ≤ K
}︸ ︷︷ ︸

X

⊂ X ⊂ αX ,

with Sk and T possessing the properties postulated in Section 4.2.1. Let Opt and
H∗ be the optimal value and optimal solution of the optimization problem (4.13)
associated with the data S1, ..., SK , T and matrices Ā = AP , B̄ = BP in the role
of A, B, respectively. It is immediately seen that the risk Risk[x̂H∗ |X ] of the linear
estimate x̂H∗(ω) is at most α

√
Opt. On the other hand, we have Riskopt[X ] ≤

Riskopt[X ], and by Proposition 4.5 also
√

Opt ≤ O(1)
√

ln(2K)Riskopt[X ]. Taken
together, these relations imply that

Risk[x̂H∗ |X ] ≤ O(1)α
√

ln(2K)Riskopt[X ]. (4.17)

In other words, as far as the “level of nonoptimality” of efficiently computable
linear estimates is concerned, signal sets X which can be approximated by ellitopes
within a factor α of order of 1 are nearly as good as the ellitopes. To give an
example: it is known that whenever the intersection X of K elliptic cylinders
{x : (x − ck)TSk(x − ck) ≤ 1}, Sk � 0, concentric or not, is bounded and has
a nonempty interior, X can be approximated by an ellipsoid within the factor
α = K + 2

√
K 59. Assuming w.l.o.g. that the approximating ellipsoid is centered

at the origin, the level of nonoptimality of a linear estimate is bounded by (4.17)
with O(1)K in the role of α. Note that bound (4.17) rapidly deteriorates when α
grows, and this phenomenon to some extent “reflects the reality.” For example, a
perfect simplex X inscribed into the unit sphere in Rn is in-between two centered
at the origin Euclidean balls with the ratio of radii equal to n (i.e. α = n). It is
immediately seen that with A = B = I, Γ = σ2I, in the range σ ≤ nσ2 ≤ 1 of
values of n and σ, we have

Riskopt[X ] ≈
√
σ, Riskopt[x̂H∗ |X ] = O(1)

√
nσ,

with ≈ meaning “up to logarithmic in n/σ factor.” In other words, for large nσ
linear estimates indeed are significantly (albeit not to the full extent of (4.17))

59specifically, setting F (x) = −
∑K
k=1 ln(1− (x− ck)TSk(x− ck)) : intX → R and denoting

by x̄ the analytic center argminx∈intXF (x), one has

{x : (x− x̄)TF ′′(x̄)(x− x̄) ≤ 1} ⊂ X ⊂ {x : (x− x̄)TF ′′(x̄)(x− x̄) ≤ [K + 2
√
K]2}.
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outperformed by nonlinear ones.
Another “bad for linear estimates” situation suggested by (4.16) is the one where

the description (4.6) of X , albeit possible, requires a huge value of K. Here again
(4.16) reflects to some extent the reality: when X is the unit `1 ball in Rn, (4.6)
takes place with K = 2n−1; consequently, the factor at Riskopt[X ] in the right hand
side of (4.16) becomes at least

√
n. On the other hand, with A = B = I, Γ = σ2I,

in the range σ ≤ nσ2 ≤ 1 of values of n, σ, the risks Riskopt[X ], Riskopt[x̂H∗ |X ] are
basically the same as in the case of X being the perfect simplex inscribed into the
unit sphere in Rn, and linear estimates indeed are “heavily non-optimal” when nσ
is large.

4.2.4 Numerical illustration

The “non-optimality factor” θ in the upper bound
√

Opt ≤ θRiskopt[X ] from Propo-
sition 4.5, while logarithmic, seems to be unpleasantly large. On a closest inspec-
tion, one can get less conservative bounds on non-optimality factors. Omitting the
details, here are some numerical results. In the six experiments to be reported, we
used n = m = ν = 32 and Γ = σ2Im. In the first triple of experiments, X was the
ellipsoid

X = {x ∈ R32 :

32∑
j=1

j2x2
j ≤ 1},

that is, P was the identity, K = 1, S1 =
∑32
j=1 j

2eje
T
j (ej were basic orths), and

T = [0, 1]. In the second triple of experiments, X was the box circumscribed around
the above ellipsoid:

X = {x ∈ R32 : j|xj | ≤ 1, 1 ≤ j ≤ 32}
[P = I,K = 32, Sk = k2eke

T
k , k ≤ K, T = [0, 1]K ]

In all six experiments, B was the identity, and A was a common for all experiments
randomly rotated matrix with singular values λj , 1 ≤ j ≤ 32, forming a geometric
progression, with λ1 = 1 and λ32 = 0.01. Experiments in a triple differed by the
values of σ (0.01,0.001,0.0001).

The results of the experiments are presented in Table 4.1, where, as above,√
Opt is the given by (4.13) upper bound on the risk Risk[x̂H∗ |X] of recovering

Bx = x, x ∈ X, by the linear estimate yielded by (4.9), (4.13), LwB is the lower
bound on Riskopt[X] built as explained above, and the numbers in the last column
are (conservative estimates of the) “levels of nonoptimality” of the linear estimates.

4.2.5 Byproduct on semidefinite relaxation

A byproduct of our main observation (Section 4.2.3) we are about to present has
nothing to do with statistics; it relates to the quality of the standard semidefinite
relaxation. Specifically, given a quadratic from xTCx and an ellitope X represented
by (4.6), consider the problem

Opt∗ = max
x∈X

xTCx = max
y∈X̄

yTPTCPy. (4.18)
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## X σ
√

Opt LwB
√

Opt/LwB

1 ellipsoid 1.0e-2 0.288 0.153 1.88
2 ellipsoid 1.0e-3 0.103 0.060 1.71
3 ellipsoid 1.0e-4 0.019 0.018 1.06

4 box 1.0e-2 0.698 0.231 3.02
5 box 1.0e-3 0.163 0.082 2.00
6 box 1.0e-4 0.021 0.020 1.06

Table 4.1: Performance of linear estimates (4.9), (4.13), m = n = 32, B = I.

This problem can be NP-hard (this is already so when X is the unit box and C is
positive semidefinite); however, Opt admits an efficiently computable upper bound
given by semidefinite relaxation as follows: whenever λ ≥ 0 is such that

PTCP �
K∑
k=1

λkSk,

for y ∈ X̄ we clearly have

[Py]TCPy ≤
∑
k

λky
TSky ≤ φT (λ)

due to the fact that the vector with the entries yTSky, 1 ≤ k ≤ K, belongs to T .
As a result, the efficiently computable quantity

Opt = min
λ

{
φT (λ) : λ ≥ 0, PTCP �

∑
k

λkSk

}
(4.19)

is an upper bound on Opt∗. We have the following

Proposition 4.6. Let C be a symmetric n× n matrix and X be given by ellitopic
representation (4.6), and let Opt∗ and Opt be given by (4.18) and(4.19). Then

Opt

3 ln(
√

3K)
≤ Opt∗ ≤ Opt. (4.20)

For proof, see Section 4.10.2.

4.3 FROM ELLITOPES TO SPECTRATOPES

So far, the domains of signals we dealt with were ellitopes. In this section we
demonstrate that basically all our constructions and results can be extended onto
a much wider family of signal domains, namely, spectratopes.
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4.3.1 Spectratopes: definition and examples

We call a set X ⊂ Rn a basic spectratope, if it admits simple spectratopic represen-
tation – representation of the form

X =
{
x ∈ Rn : ∃t ∈ T : R2

k[x] � tkIdk , 1 ≤ k ≤ K
}

(4.21)

where

S.1. Rk[x] =
∑n
i=1 xiR

ki are symmetric dk×dk matrices linearly depending on x ∈ Rn

(i,e., “matrix coefficients” Rki belong to Sn)
S.2. T ∈ RK

+ is the set with the same properties as in the definition of an ellitope,
that is, T is a convex compact subset of RK

+ which contains a positive vector
and is monotone:

0 ≤ t′ ≤ t ∈ T ⇒ t′ ∈ T .

S.3. Whenever x 6= 0, it holds Rk[x] 6= 0 for at least one k ≤ K.

An immediate observation (check it!) is as follows:

Remark 4.7. By Schur Complement Lemma, the set (4.21) given by data satisfying
S.1-2 can be represented as

X =

{
x ∈ Rn : ∃t ∈ T :

[
tkIdk Rk[x]
Rk[x] Idk

]
� 0, k ≤ K

}
By the latter representation, X is nonempty, closed, convex, symmetric w.r.t. the
origin and contains a neighbourhood of the origin. This set is bounded if and only
if the data, in addition to S.1-2, satisfies S.3.

A spectratope X ⊂ Rν is a set represented as linear image of a basic spectratope:

X = {x ∈ Rν : ∃(y ∈ Rn, t ∈ T ) : x = Py,R2
k[y] � tkIdk , 1 ≤ k ≤ K}, (4.22)

where P is a ν × n matrix, and Rk[·], T are as in S.1-3.
We associate with a basic spectratope (4.21), S.1-3 the following entities:

1. The size

D =

K∑
k=1

dk;

2. Linear mappings

Q 7→ Rk[Q] =
∑
i,j

QijR
kiRkj : Sn → Sdk (4.23)

As is immediately seen, we have

Rk[xxT ] ≡ R2
k[x], (4.24)

implying that Rk[Q] � 0 whenever Q � 0, whence Rk[·] is �-monotone:

Q′ � Q⇒ Rk[Q′] � Rk[Q]. (4.25)
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Besides this, we have

Q � 0⇒ Eξ∼N (0,Q){R2
k[ξ]} = Eξ∼N (0,Q){Rk[ξξT ]} = Rk[Q], (4.26)

where the first equality is given by (4.24).
3. Linear mappings Λk 7→ R∗k[Λk] : Sdk → Sn given by

[R∗k[Λk]]ij =
1

2
Tr(Λk[RkiRkj +RkjRki]), 1 ≤ i, j ≤ n. (4.27)

It is immediately seen that R∗k[·] is the conjugate of Rk[·]:

〈Λk,Rk[Q]〉F = Tr(ΛkRk[Q]) = Tr(R∗k[Λk]Q) = 〈R∗k[Λk], Q〉F , (4.28)

where 〈A,B〉F = Tr(AB) is the Frobenius inner product of symmetric matrices.
Besides this, we have

Λk � 0⇒ R∗k[Λk] � 0. (4.29)

Indeed, R∗k[Λk] is linear in Λk, so that it suffices to verify (4.29) for dyadic
matrices Λk = ffT ; for such a Λk, (4.27) reads

(R∗k[ffT ])ij = [Rkif ]T [Rkjf ],

that is, R∗k[ffT ] is a Gram matrix and as such is � 0. Another way to arrive at
(4.29) is to note that when Λk � 0 and Q = xxT , the first quantity in (4.28) is
nonnegative by (4.24), and therefore (4.28) states that xTR∗k[Λk]x ≥ 0 for every
x, implying R∗k[Λk] � 0.

4. The linear space ΛK = Sd1 × ... × SdK of all ordered collections Λ = {Λk ∈
Sdk}k≤K along with the linear mapping

Λ 7→ λ[Λ] := [Tr(Λ1); ...; Tr(ΛK)] : ΛK → RK . (4.30)

4.3.1.1 Examples of spectratopes

Example 1: Ellitopes. Every ellitope

X = {x ∈ Rν : ∃(y ∈ Rn, t ∈ T ) : x = Py, yTSky ≤ tk, k ≤ K}
[Sk � 0,

∑
k Sk � 0]

is a spectratope as well. Indeed, let Sk =
∑rk
j=1 skjs

T
kj , rk = Rank(Sk), be a dyadic

representation of the positive semidefinite matrix Sk, so that

yTSky =
∑
j

(sTkjy)2 ∀y,

and let

T̂ = {{tkj ≥ 0, 1 ≤ j ≤ rk, 1 ≤ k ≤ K} : ∃t ∈ T :
∑
j tkj ≤ tk},

Rkj [y] = sTkjy ∈ S1 = R.

We clearly have

X = {x ∈ Rν : ∃({tkj} ∈ T̂ , y) : x = Py,R2
kj [y] � tkjI1 ∀k, j}



282

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 4

and the right hand side is a legitimate spectratopic representation of X .

Example 2: “Matrix box.” Let L be a positive definite d× d matrix. Then the
“matrix box”

X = {X ∈ Sd : −L � X � L} = {X ∈ Sd : −Id � L−1/2XL−1/2 � Id}
= {X ∈ Sd : R2[X] := [L−1/2XL−1/2]2 � Id}

is a basic spectratope (augment R1[·] := R[·] with K = 1, T = [0, 1]). As a result,
a bounded set X ⊂ Rν given by a system of “two-sided” Linear Matrix Inequalities,
specifically,

X = {x ∈ Rν : ∃t ∈ T : −
√
tkLk � Sk[x] �

√
tkLk, k ≤ K}

where Sk[x] are symmetric dk × dk matrices linearly depending on x, Lk � 0 and
T satisfies S.2, is a basic spectratope:

X = {x ∈ Rν : ∃t ∈ T : R2
k[x] ≤ tkIdk , k ≤ K} [Rk[x] = L

−1/2
k Sk[x]L

−1/2
k ]

Same as ellitopes, spectratopes admit fully algorithmic calculus, see Section 4.8.

4.3.2 Semidefinite relaxation on spectratopes

Now let us extend to our current situation Proposition 4.6. The extension reads as
follows:

Proposition 4.8. Let C be a symmetric n×n matrix and X be given by spectratopic
representation

X = {x ∈ Rn : ∃y ∈ Rµ, t ∈ T : x = Py,R2
k[y] � tkIdk , k ≤ K}, (4.31)

let
Opt = max

x∈X
xTCx

and

Opt∗ = min
Λ={Λk}k≤K

{
φT (λ[Λ]) : Λk � 0, PTCP �

∑
kR∗k[Λk]

}
[λ[Λ] = [Tr(Λ1); ...; Tr(ΛK)]]

(4.32)

Then (4.32) is solvable, and

Opt ≤ Opt∗ ≤ 2 max[ln(2D), 1]Opt, D =
∑
k

dk. (4.33)

Proof. In what follows we restrict ourselves with proving the easy and instructive
part of Proposition, namely, the left inequality in (4.33); remaining claims will be
proved in Section 4.10.3.

The left inequality in (4.33) is readily given by the following

Lemma 4.9. Let X be spectratope (4.31) and Q ∈ Sn. Whenever Λk ∈ Sdk+ and
τ ≥ 0 satisfy

PTQP �
∑
k

R∗k[Λk],
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we have
x ∈ X ⇒ xTQx ≤ φT (λ[Λ]), λ[Λ] = [Tr(Λ1); ...; Tr(ΛK)].

Proof of Lemma: Let x ∈ X , so that for some t ∈ T and y it holds

x = Py, R2
k[y] � tkIdk ∀k ≤ K

Consequently,

xTQx = yTPTQPy ≤ yT
∑
kR∗k[Λk]y =

∑
k Tr(R∗k[Λk][yyT ])

=
∑
k Tr(ΛkRk[yyT ]) [by (4.28)]

=
∑
k Tr(ΛkR

2
k[y]) [by (4.24)]

≤
∑
k tkTr(ΛkIdk) [since Λk � 0 and R2

k[y] � tkIdk ]
≤ φT (λ[Λ]) 2

4.3.3 Linear estimates beyond ellitopic signal sets and ‖ · ‖2-risk

In Section 4.2, we have developed a computationally efficient scheme for building
“presumably good” linear estimates of the linear image Bx of unknown signal x
known to belong to a given ellitope X in the case when the (squared) risk is defined
as the worst, w.r.t. x ∈ X , expected squared Euclidean norm ‖ · ‖2. We are
about to extend these results to the case when X is a spectratope, and the norm
used to measure the recovery error, while not being completely arbitrarily, is not
necessarily ‖ · ‖2, with the ultimate goal to demonstrate that the resulting linear
estimates are not just “presumably good,” but possess near-optimality properties
completely similar to those stated in Propositions 4.5. Besides this, in what follows
we somehow relax our assumptions on observation noise.

4.3.3.1 Situation and goal

In what follows we consider the problem of recovering the image Bx ∈ Rν of a
signal x ∈ Rn known to belong to a given spectratope

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] � tkIdk , 1 ≤ k ≤ K} (4.34)

from noisy observation
ω = Ax+ ξ, (4.35)

where A is a known m× n matrix, and ξ is random observation noise.

Observation noise. In typical signal processing applications, the distribution of
noise is fixed and is part of the data of the estimation problem. In order to cover
some applications (e.g., the one in Section 4.3.3.7), we allow for “ambiguous” noise
distributions; all we know is that this distribution belongs to a family P of Borel
probability distributions on Rm associated with a given convex compact subset Π of
the interior of the cone Sm+ of positive semidefinite m×m matrices, “association”
meaning that the matrix of second moments of every distribution P ∈ P is �-
dominated by a matrix from Π:

P ∈ P ⇒ ∃Q ∈ Π : Var[P ] := Eξ∼P {ξξT } � Q. (4.36)

Actual distribution of noise in (4.35) is somehow selected from P by nature (and
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may, e.g., depend on x).
In the sequel, for a probability distribution P on Rm we write P ≪ Π to express

the fact that the matrix of second moments of P is �-dominated by a matrix from
Π:

{P ≪ Π} ⇔ {∃Θ ∈ Π : Var[P ] � Θ}.

Quantifying risk. Given Π and a norm ‖ · ‖ on Rν , we quantify the quality of a
candidate estimate x̂(·) : Rm → Rν by its (Π, ‖ · ‖)-risk on X defined as

RiskΠ,‖·‖[x̂|X ] = sup
x∈X ,P≪Π

Eξ∼P {‖x̂(Ax+ ξ)−Bx‖} . (4.37)

Goal. As before, our focus is on linear estimates – estimates of the form

x̂H(ω) = HTω

given by m × ν matrices H; our ultimate goal is to demonstrate that under some
restrictions on the signal domain X , “presumably good” linear estimate yielded
by an optimal solution to an efficiently solvable convex optimization problem is
near-optimal in terms of its risk among all estimates, linear and nonlinear alike.

4.3.3.2 Assumptions

Preliminaries: conjugate norms. Recall that a norm ‖ · ‖ on a Euclidean space
E , e.g., on Rk, gives rise to its conjugate norm

‖y‖∗ = max
x
{〈y, x〉 : ‖x‖ ≤ 1},

where 〈·, ·〉 is the inner product in E . Equivalently, ‖ · ‖∗ is the smallest norm such
that

〈x, y〉 ≤ ‖x‖‖y‖∗ ∀x, y. (4.38)

It is well known that taken twice, norm conjugation recovers the initial norm:
(‖ · ‖∗)∗ is exactly ‖ · ‖; in other words,

‖x‖ = max
y
{〈x, y〉 : ‖y‖∗ ≤ 1}.

The standard examples are the conjugates to the standard `p-norms on E = Rk,
p ∈ [1,∞]; it turns out that

(‖ · ‖p)∗ = ‖ · ‖p∗,

where p∗ ∈ [1,∞] is linked to p ∈ [1,∞] by the symmetric relation

1

p
+

1

p∗
= 1,

so that 1∗ = ∞, ∞∗ = 1, 2∗ = 2; the corresponding version of inequality (4.38) is
called Hölder inequality – an extension of the Cauchy-Schwartz inequality dealing
with the case ‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2.
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Assumptions. From now on we make the following assumptions:

Assumption A: The unit ball B∗ of the norm ‖·‖∗ conjugate to the norm ‖·‖
participating in the formulation of our estimation problem is a spectratope:

B∗ = {z ∈ Rν : ∃y ∈ Y : z = My},
Y := {y ∈ Rq : ∃r ∈ R : S2

` [y] � r`If` , 1 ≤ ` ≤ L}, (4.39)

where the right hand side data are as required in a spectratopic representa-
tion.

Note that Assumption A is satisfied when ‖ · ‖ = ‖ · ‖p with p ∈ [1, 2]: in this case,

B∗ = {u ∈ Rν : ‖u‖p∗ ≤ 1}, p∗ =
p

p− 1
∈ [2,∞],

so that B∗ is an ellitope, see Section 4.2.1.1, and thus is a spectratope . Another
potentially useful example of norm ‖ · ‖ which obeys Assumption A is the nuclear
norm ‖V ‖Sh,1 on the space Rν = Rp×q of p × q matrices – the sum of singular
values of a matrix V ; the conjugate norm is the spectral norm ‖ · ‖ = ‖ · ‖Sh,∞ on
Rν = Rp×q, and the unit ball of the latter norm is a spectratope:

{X ∈ Rp×q : ‖X‖ ≤ 1} = {X : ∃t ∈ T = [0, 1] : R2[X] � tIp+q},

R[X] =

[
XT

X

]
.

Besides Assumption A, we make

Assumption B: The signal set X is a basic spectratope:

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] � tkIdk , 1 ≤ k ≤ K}, (4.40)

where the right hand side data are as required in a spectratopic representa-
tion.

Note: Similar to ellitopic situation of Section 4.2.1.3, the in our context situation
where the s9ignal set is a basic spectratope can be straightforwardly reduces to the
one where X is a basic spectratope.

In addition we make the following regularity assumption:

Assumption R: All matrices from Π are positive definite.
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4.3.3.3 Building linear estimate

Let H ∈ Rm×ν . We clearly have

RiskΠ,‖·‖[x̂H(·)|X ] = sup
x∈X,P≪Π

Eξ∼P
{
‖[B −HTA]x−HT ξ‖

}
≤ supinX ‖[B −HTA]x‖+ supP≪Π Eξ∼P

{
‖HT ξ‖

}
= ‖B −HTA‖X ,‖·‖ + ΨΠ(H),

where
‖V ‖X ,‖·‖ = maxx {‖V x‖ : x ∈ X} : Rk×n → R,

ΨΠ(H) = sup
P≪Π

Eξ∼P
{
‖HT ξ‖

}
.

(4.41)
Same as in Section 4.2.2, we need to derive efficiently computable convex upper
bounds on the norm ‖ · ‖X ,‖·‖ and the function ΨΠ, which, while being convex, can
be difficult to compute.

4.3.3.4 Upper-bounding ‖ · ‖X ,‖·‖
With Assumptions A, B in force, consider the spectratope

Z := X × Y = {[x; y] ∈ Rn ×Rq : ∃s = [t; r] ∈ T ×R :
R2
k[x] � tkIdk , 1 ≤ k ≤ K,S2

` [y] � r`If` , 1 ≤ ` ≤ L}
= {w = [x; y] ∈ Rn ×Rq : ∃s = [t; r] ∈ S = T ×R : U2

i [w] � siIgi ,
1 ≤ i ≤ I = K + L}

(4.42)
with Ui[·] readily given by Rk[·] and S`[·]. Given a ν × n matrix V and setting

W [V ] =
1

2

[
V TM

MTV

]
we have

‖V ‖X ,‖·‖ = max
x∈X
‖V x‖ = max

x∈X ,z∈B∗
zTV x = max

x∈X ,y∈Y
yTMTV x = max

w∈Z
wTW [V ]w.

Applying Proposition 4.8, we arrive at the following

Corollary 4.10. In the just defined situation, the efficiently computable convex
function

‖V ‖+X ,‖·‖ = min
Λ,Υ

{
φT (λ[Λ]) + φR(λ[Υ]) :

Λ = {Λk ∈ Sdk+ }k≤K ,Υ = {Υ` ∈ Sf`+ }`≤L,[ ∑
kR∗k[Λk] 1

2V
TM

1
2M

TV
∑
` S∗` [Υ`]

]
� 0

}
 φT (λ) = max

t∈T
λT t, φR(λ) = max

r∈R
λT r, λ[{Ξ1, ...,ΞN}] = [Tr(Ξ1); ...; Tr(ΞN )],

[R∗k[Λk]]ij = 1
2
Tr(Λk[Rkik R

kj
k +Rkjk R

ki
k ]), where Rk[x] =

∑
i xiR

ki,

[S∗` [Υ`]]ij = 1
2
Tr(Υ`[S

`i
` S

`j
` + S`j` S

`i
` ]), where S`[y] =

∑
i yiS

`i.


(4.43)
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is a norm on Rν×n, and this norm is a tight upper bound on ‖ · ‖X ,‖·‖, namely,

∀V ∈ Rν×n : ‖V ‖X ,‖·‖ ≤ ‖V ‖+X ,‖·‖ ≤ 2 max[ln(2D), 1]‖V ‖X ,‖·‖,
D =

∑
k dk +

∑
` f`.

(4.44)

4.3.3.5 Upper-bounding ΨΠ(·)

We are about to derive an efficiently computable convex upper bound on the func-
tion ΨΠ stemming from any norm obeying Assumption B. The underlying obser-
vation is as follows:

Lemma 4.11. Let V be a m×ν matrix, Q ∈ Sm+ , and P be a probability distribution
on Rm with Var[P ] � Q. Let, further, ‖ · ‖ be a norm on Rν with the unit ball B∗
of the conjugate norm ‖ · ‖∗ given by (4.39). Finally, let Υ = {Υ` ∈ Sf`+ }`≤L and
a matrix Θ ∈ Sm satisfy the constraint[

Θ 1
2VM

1
2M

TV T
∑
` S∗` [Υ`]

]
� 0 (4.45)

(for notation, see (4.39), (4.43)). Then

Eη∼P {‖V T η‖} ≤ Tr(QΘ) + φR(λ[Υ]). (4.46)

Proof is immediate. In the case of (4.45), we have

‖V T ξ‖ = max
z∈B∗

zTV T ξ = max
y∈Y

yTMTV T ξ

≤ max
y∈Y

[
ξTΘξ +

∑
` y

TS∗` [Υ`]y
]

[by (4.45)]

= max
y∈Y

[
ξTΘξ +

∑
` Tr(S∗` [Υ`]yy

T )
]

= max
y∈Y

[
ξTΘξ +

∑
` Tr(Υ`S

2
` [y])

]
[by (4.24) and (4.28)]

= ξTΘξ + max
y,r

{∑
` Tr(Υ`S

2
` [y]) : S2

` [y] � r`If` , ` ≤ L, r ∈ R
}

[by (4.39)]

≤ ξTΘξ + max
r∈R

∑
` Tr(Υ`)r` [by Υ` � 0]

≤ ξTΘξ + φR(λ[Υ]).

Taking expectation of both sides of the resulting inequality w.r.t. distribution P
of ξ and taking into account that Tr(Var[P ]Θ) ≤ Tr(QΘ) due to Θ � 0 (by (4.45))
and Var[P ] � Q, we get (4.46). 2

Note that when P = N (0, Q), the smallest possible upper bound on Eη∼P {‖V T η‖}
which can be extracted from Lemma 4.11 (this bound is efficiently computable) is
tight, see Lemma 4.17 below.

An immediate consequence is

Corollary 4.12. Let
Γ(Θ) = max

Q∈Π
Tr(QΘ) (4.47)
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and

ΨΠ(H) = min
{Υ`}`≤L,Θ∈Sm

{
Γ(Θ) + φR(λ[Υ]) : Υ` � 0∀`,

[
Θ 1

2
HM

1
2
MTHT ∑

` S
∗
` [Υ`]

]
� 0

}
(4.48)

Then ΨΠ(·) : Rm×ν → R is efficiently computable convex upper bound on ΨΠ(·).

Indeed, given Lemma 4.11, the only non-evident part of the corollary is that ΨΠ(·)
is a well-defined real-valued function, which is readily given by Lemma 4.89.

Remark 4.13. When Υ = {Υ`}`≤L, Θ is a feasible solution to the right hand side
problem in (4.48) and s > 0, the pair Υ′ = {sΥ`}`≤L, Θ′ = s−1Θ also is a feasible
solution; since φR(·) and Γ(·) are positive homogeneous of degree 1, we conclude
that ΨΠ is in fact the infimum of the function

2
√

Γ(Θ)φR(λ[Υ]) = inf
θ>0

[
s−1Γ(Θ) + sφR(λ[Υ])

]
over Υ,Θ satisfying the constraints of the problem (4.48).

In addition, for every feasible solution Υ = {Υ`}`≤L, Θ to the problem (4.48)

with M[Υ] :=
∑
` S∗` [Υ`] � 0, the pair Υ, Θ̂ = 1

4
HMM−1[Υ]MTHT is feasible

for the problem as well and 0 � Θ̂ � Θ (Schur Complement Lemma), so that

Γ(Θ̂) ≤ Γ(Θ). As a result,

ΨΠ(H) = inf
Υ

{
1
4
Γ(HMM−1[Υ]MTHT ) + φR(λ[Υ]) :

Υ = {Υ` ∈ Sf`+ }`≤L,M[Υ] � 0

}
. (4.49)

Illustration. Consider the case when ‖u‖ = ‖u‖p with p ∈ [1, 2], and let us apply
the just described scheme for upper-bounding ΨΠ, assuming {Q} ⊂ Π ⊂ {S ∈ Sm+ :
S � Q} for some given Q � 0, so that Γ(Θ) = Tr(QΘ), Θ � 0. The unit ball of
the norm conjugate to ‖ · ‖, that is, the norm ‖ · ‖q, q = p

p−1 ∈ [2,∞], is the basic

spectratope (in fact, ellitope)

B∗ = {y ∈ Rµ : ∃r ∈ R := {Rν
+ : ‖r‖q/2 ≤ 1} : S2

` [y] ≤ r`, 1 ≤ ` ≤ L = ν},
S`[y] = y`.

As a result, Υ’s from Remark 4.13 are collections of ν positive semidefinite 1 ×
1 matrices, and we can identify them with ν-dimensional nonnegative vectors υ,
resulting in λ[Υ] = υ and M[Υ] = Diag{υ}. Besides this, for nonnegative υ we
clearly have φR(υ) = ‖υ‖p/(2−p). The optimization problem in (4.49) now reads

ΨΠ(H) = inf
υ∈Rν

{
1
4
Tr(VDiag−1{υ}V T ) + ‖υ‖p/(2−p) : υ > 0

}
[V = Q1/2H]

After setting a` = ‖Col`[V ]‖2, (4.49) becomes

ΨΠ(H) = inf
υ>0

{
1

4

∑
`

a2
`

υ`
+ ‖υ‖p/(2−p)

}
.

This results in ΨΠ(H) = ‖[a1; ...; aµ]‖p. Recalling what a` and V are, we end up
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with

∀P,Var[P ] � Q :
Eξ∼P {‖HT ξ‖} ≤ ΨΠ(H) :=

∥∥[‖Row1[HTQ1/2]‖2; . . . ; ‖Rowν [HTQ1/2]‖2
]∥∥
p
,

4.3.3.6 Putting things together

An immediate summary of Corollaries 4.10, 4.12 is the following recipe for building
“presumably good” linear estimate:

Proposition 4.14. In the situation of Section 4.3.3.1 and under Assumptions A,
B, R (see Section 4.3.3.2) consider the convex optimization problem (for notation,
see (4.43) and (4.47))

Opt = min
H,Λ,Υ,Υ′,Θ

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + Γ(Θ) :

Λ = {Λk � 0, k ≤ K},Υ = {Υ` � 0, ` ≤ L},Υ′ = {Υ′` � 0, ` ≤ L},[ ∑
kR
∗
k[Λk] 1

2
[BT −ATH]M

1
2
MT [B −HTA]

∑
` S
∗
` [Υ`]

]
� 0,[

Θ 1
2
HM

1
2
MTHT ∑

` S
∗
` [Υ′`]

]
� 0


(4.50)

The problem is solvable, and the H-component H∗ of its optimal solution yields
linear estimate x̂H∗(ω) = HT

∗ ω such that

RiskΠ,‖·‖[x̂H∗(·)|X ] ≤ Opt. (4.51)

Note that the only claim in Proposition 4.14 which is not an immediate con-
sequence of Corollaries 4.10, 4.12 is that problem (4.50) is solvable; this claim is
readily given by the fact that the objective clearly is coercive on the feasible set
(recall that Γ(Θ) is coercive on Sm+ due to Π ⊂ int Sm+ and that y 7→My is an onto
mapping, since B∗ is full-dimensional).

4.3.3.7 Illustration: covariance matrix estimation

Suppose that we observe a sample

ηT = {ηk = Aξk}k≤T (4.52)

where A is a given m× n matrix, and ξ1, ..., ξT are sampled, independently of each
other, from zero mean Gaussian distribution with unknown covariance matrix ϑ
known to satisfy

γϑ∗ � ϑ � ϑ∗, (4.53)

where γ ≥ 0 and ϑ∗ � 0 are given. Our goal is to recover ϑ, and the norm on Sn

in which recovery error is measured satisfies Assumption A′.

Processing the problem. We can process the just outlined problem as follows.

1. We represent the set {ϑ ∈ Sn+ : γϑ∗ � ϑ � ϑ∗} as the image of the matrix
box

V = {v ∈ Sn : ‖v‖Sh,∞ ≤ 1} [‖ · ‖Sh,∞: spectral norm]
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under affine mapping, specifically, we set

ϑ0 =
1 + γ

2
ϑ∗, σ =

1− γ
2

and treat the matrix

v = σ−1ϑ
−1/2
∗ (ϑ− ϑ0)ϑ

−1/2
∗

[
⇔ ϑ = ϑ0 + σϑ

1/2
∗ vϑ

1/2
∗

]
as the signal underlying our observations. Note that our a priori information on ϑ
reduces to v ∈ V.

2. We pass from observations ηk to “lifted” observations ηkη
T
k ∈ Sm, so that

E{ηkηTk } = E{AξkξTk AT } = AϑAT = A (ϑ0 + σAϑ
1/2
∗ vϑ

1/2
∗ )︸ ︷︷ ︸

ϑ[v]

AT ,

and treat as “actual” observations the matrices

ωk = ηkη
T
k −Aϑ0A

T .

We have60

ωk = Av + ζk with Av = σAϑ
1/2
∗ vϑ

1/2
∗ AT and ζk = ηkη

T
k −Aϑ[v]AT . (4.54)

Observe that random matrices ζ1, ..., ζT are i.i.d. with zero mean and covariance
mapping Q[v] (that of random matrix-valued variable ζ = ηηT − E{ηηT }, η ∼
N (0, Aϑ[v]AT )).

3. Let us �-upper-bound the covariance mapping of ζ. Observe that Q[v] is a
symmetric linear mapping of Sm into itself given by

〈h,Q[v]h〉 = E{〈h, ζ〉2} = E{〈h, ηηT 〉2} − 〈h,E{ηηT }〉2, h ∈ Sm.

Given v ∈ V, let us set θ = ϑ[v], so that 0 � θ � θ∗, and let H(h) = θ1/2AThAθ1/2.
We have

〈h,Q[v]h〉 = Eξ∼N (0,θ){Tr2(hAξξTAT )} − Tr2(hEξ∼N (0,θ){AξξTAT })
= Eχ∼N (0,In){Tr2(hAθ1/2χχT θ1/2AT ))} − Tr2(hAθAT )
= Eχ∼N (0,In){(χTH(h)χ)2} − Tr2(H(h)).

60In our current considerations, we need to operate with linear mappings acting from Sp to
Sq . We treat Sk as Euclidean space equipped with the Frobenius inner product 〈u, v〉 = Tr(uv)
and denote linear mappings from Sp into Sq by capital calligraphic letters, like A, Q, etc. Thus,
A in (4.54) denotes the linear mapping which, on a closest inspection, maps matrix v ∈ Sn into
the matrix Av = A[ϑ[v]− ϑ[0]]AT .
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We have H(h) = UDiag{λ}UT with orthogonal U , so that

Eχ∼N (0,In){(χTH(h)χ)2} − Tr2(H(h))
= Eχ̄:=UTχ∼N (0,In){(χ̄TDiag{λ}χ̄)2} − (

∑
i λi)

2

= Eχ̄∼N (0,In){(
∑
i λiχ̄

2
i )

2} − (
∑
i λi)

2 =
∑
i 6=j λiλj + 3

∑
i λ

2
i − (

∑
i λi)

2

= 2
∑
i λ

2
i = 2Tr([H(h)]2).

Thus,

〈h,Q[v]h〉 = 2Tr([H(h)]2) = 2Tr(θ1/2AThAθAThAθ1/2)
≤ 2Tr(θ1/2AThAθ∗A

ThAθ1/2) [since 0 � θ � θ∗]
= 2Tr(θ

1/2
∗ AThAθAThAθ

1/2
∗ ) ≤ 2Tr(θ

1/2
∗ AThAθ∗A

ThAθ
1/2
∗ )

= 2Tr(θ∗A
ThAθ∗A

ThA).

We conclude that

∀v ∈ V : Q[v] � Q, 〈e,Qh〉 = 2Tr(ϑ∗A
ThAϑ∗A

T eA), e, h ∈ Sm. (4.55)

4. To continue, we need to set some additional notation to be used when
operating with Euclidean spaces Sp, p = 1, 2, ...

• We denote p̄ = p(p+1)
2 = dim Sp, Ip = {(i, j) : 1 ≤ i ≤ j ≤ p}, and for (i, j) ∈ Ip

set

eijp =

{
eie

T
i , i = j

1√
2
[eie

T
j + eje

T
i ], i < j

,

where ei are the standard basic orths in Rp. Note that {eijp : (i, j) ∈ Ip} is the
standard orthonormal basis in Sp. Given v ∈ Sp, we denote by Xp(v) the vector
of coordinates of v in this basis:

Xp
ij(v) = Tr(veijp ) =

{
vii, i = j√

2vij , i < j
, (i, j) ∈ Ip.

Similarly, for x ∈ Rp̄, we index the entries in x by pairs ij, (i, j) ∈ Ip, and set
Vp(x) =

∑
(i,j)∈Ip xije

ij
p , so that v 7→ Xp(v) and x 7→ Vp(x) are inverse to each

other linear norm-preserving maps identifying the Euclidean spaces Sp and Rp̄

(recall that the inner products on these spaces are, respectively, the Frobenius
and the standard one).

• Recall that V is the matrix box {v ∈ Sn : v2 � In} = {v ∈ Sn : ∃t ∈ T := [0, 1] :
v2 � tIn}. We denote by X the image of V under the mapping Xn:

X = {x ∈ Rn̄ : ∃t ∈ T : R2[x] � tIn}, R[x] =
∑

(i,j)∈In

xije
ij
n , n̄ =

1

2
n(n+ 1).

Note that X is a basic spectratope of size n.

Now we can assume that the signal underlying our observations is x ∈ X , and the
observations themselves are

wk = Xm(ωk) = Xm(AVn(x))︸ ︷︷ ︸
=:Ax

+zk, zk = Xm(ζk).
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Note that zk ∈ Rm̄, 1 ≤ k ≤ T , are zero mean i.i.d. random vectors with covariance
matrix Q[x] satisfying, in view of (4.55), the relation

Q[x] � Q, where Qij,k` = 2Tr(ϑ∗A
T eijmAϑ∗A

T ek`mA), (i, j) ∈ Im, (k, `) ∈ Im.

Our goal is to estimate ϑ[v]− ϑ[0], or, what is the same, to recover

Bx := Xn(ϑ[Vn(x)]− ϑ[0]).

We assume that the norm in which the estimation error is measured is “transferred”
from Sn to Rn̄; we denote the resulting norm on Rn̄ by ‖ · ‖ and assume that the
unit ball B∗ of the conjugate norm ‖ · ‖∗ is given by spectratopic representation:

{u ∈ Rn̄ : ‖u‖∗ ≤ 1} = {u ∈ Rn̄ : ∃y ∈ Y : u = My},
Y := {y ∈ Rq : ∃r ∈ R : S2

` [y] � r`If` , 1 ≤ ` ≤ L}. (4.56)

The formulated description of the estimation problem fit the premises of Proposition
4.14, specifically:

• the signal x underlying our observation w(T ) = [w1; ...;wT ] is known to belong
to basic spectratope X ∈ Rn̄, and the observation itself is of the form

w(T ) = A
(T )
x+ z(T ), A

(T )
= [A; ...;A︸ ︷︷ ︸

T

], z(T ) = [z1; ...; zT ];

• the noise z(T ) is zero mean, and its covariance matrix is � QT := Diag{Q, ..., Q︸ ︷︷ ︸
T

},

which allows to set Π = {QT };
• our goal is to recover Bx, and the norm ‖ · ‖ in which the recovery error is

measured satisfies (4.56).

Proposition 4.14 supplies the linear estimate

x̂(w(T )) =

T∑
k=1

HT
∗kwk,

of Bx with H∗ = [H∗1; ...;H∗T ] stemming from the optimal solution to the convex
optimization problem

Opt = min
H=[H1;...;HT ],Λ,Υ

{
Tr(Λ) + φR(λ[Υ]) + Ψ{QT }(H1, ..., HT ) :

Λ ∈ Sn+,Υ = {Υ` � 0, ` ≤ L},[
R∗[Λ] 1

2
[B

T −AT
∑
kHk]M

1
2
MT [B − [

∑
kHk]TA]

∑
` S
∗
` [Υ`]

]
� 0

 ,

(4.57)

where

R∗[Λ] ∈ Sn̄ : (R∗[Λ])ij,k` = Tr(Λeijn e
k`
n ), (i, j) ∈ In, (k, `) ∈ In,
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and, cf. (4.48),

Ψ{QT }(H1, ..., HT ) = min
Υ′,Θ

{
Tr(QTΘ) + φR(λ[Υ′]) : Θ ∈ SmT , Υ′ = {Υ′` � 0, ` ≤ L},[

Θ 1
2
[H1M ; ...;HTM ]

1
2
[MTHT

1 , ...,M
THT

T ]
∑
` S
∗
` [Υ′`]

]
� 0

}
,

5. Evidently, the function Ψ{QT }([H1, ...,HT ]) remains intact when permuting
H1, ...,HT ; with this in mind, it is clear that permuting H1, ...,HT and keeping
intact Λ and Υ is a symmetry of (4.57) – such a transformation maps feasible
set onto itself and preserves the value of the objective. Since (4.57) is convex
and solvable, it follows that there exists an optimal solution to the problem with
H1 = ... = HT = H. On the other hand,

Ψ{QT }(H, ...,H)

= min
Υ′,Θ

{
Tr(QTΘ) + φR(λ[Υ′]) : Θ ∈ SmT , Υ′ = {Υ′` � 0, ` ≤ L}[

Θ 1
2 [HM ; ...;HM ]

1
2 [MTHT , ...,MTHT ]

∑
` S∗` [Υ′`]

]
� 0

}
,

= inf
Υ′,Θ

{
Tr(QTΘ) + φR(λ[Υ′]) : Θ ∈ SmT , Υ′ = {Υ′` � 0, ` ≤ L},[

Θ 1
2 [HM ; ...;HM ]

1
2 [MTHT , ...,MTHT ]

∑
` S∗` [Υ′`]

]
� 0

}
= inf

Υ′,Θ

{
Tr(QTΘ) + φR(λ[Υ′]) : Θ ∈ SmT , Υ′ = {Υ′` � 0, ` ≤ L},

Θ � 1
4 [HM ; ...;HM ] [

∑
` S∗` [Υ′`]]

−1
[HM ; ...;HM ]T

}
= inf

Υ′

{
φR(λ[Υ′]) + T

4 Tr
(
QHM [

∑
` S∗` [Υ′`]]

−1
MTHT

)
: Υ′ = {Υ′` � 0, ` ≤ L}

}
[due to QT = Diag{Q, ..., Q}]

= min
Υ′,G

{
TTr(QG) + φR(λ[Υ′]) : G ∈ Sm, Υ′ = {Υ′` � 0, ` ≤ L},[

G 1
2HM

1
2M

THT
∑
` S∗` [Υ′`]

]
� 0

}
(4.58)

(we have used Schur Complement Lemma combined with the fact that
∑
` S∗` [Υ′`] �

0 whenever Υ′` � 0 for all `, see Lemma 4.89).
In view of the above observations, when replacing variables H and G with

H = TH and G = T 2G, respectively, problem (4.57), (4.58) becomes

Opt = min
H,G,Λ,Υ,Υ′

{
Tr(Λ) + φR(λ[Υ]) + φR(λ[Υ′]) + 1

T Tr(QG) :

Λ ∈ Sn+,Υ = {Υ` � 0, ` ≤ L},Υ′ = {Υ′` � 0, ` ≤ L},[
R∗[Λ] 1

2 [B
T −ATH]M

1
2M

T [B −HT
A]

∑
` S∗` [Υ`]

]
� 0,[

G 1
2HM

1
2M

TH
T ∑

` S∗` [Υ′`]

]
� 0


,

(4.59)
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and the estimate

x̂(wT ) =
1

T
H
T

T∑
k=1

wk

stemming from an optimal solution to (4.59) satisfies

RiskΠ,‖·‖[x̂|X ] ≤ Opt,

where Π = {QT }.

4.3.3.8 Estimation from repeated observations

Consider the special case of the situation from Section 4.3.3.1, the case where
observation ω in (4.35) is T -element sample: ω = [ω̄1; ...; ω̄T ] with components

ω̄t = Āx+ ξt, t = 1, ..., T

and ξt are i.i.d. observation noises with zero mean distribution P̄ satisfying P̄ ≪ Π̄
for some convex compact set Π̄ ⊂ int Sm̄+ . In other words, we are in the situation
where

A = [Ā; ...; Ā︸ ︷︷ ︸
T

] ∈ Rm×n for some Ā ∈ Rm̄×n and m = Tm̄,

Π = {Q = Diag{Q̄, ..., Q̄︸ ︷︷ ︸
T

}, Q̄ ∈ Π̄}

The same argument as used in item 5 of Section 4.3.3.7 justifies the following

Proposition 4.15. In the situation in question and under Assumptions A, B, R
the linear estimate of Bx yielded by an optimal solution to problem (4.50) can be
found as follows. We consider the convex optimization problem

Opt = min
H̄,Λ,Υ,Υ′,Θ̄

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + 1

T Γ(Θ̄) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L},[ ∑
kR∗k[Λk] 1

2 [BT −AT H̄]M
1
2M

T [B − H̄TA]
∑
` S∗` [Υ`]

]
� 0,[

Θ̄ 1
2H̄M

1
2M

T H̄T
∑
` S∗` [Υ′`]

]
� 0


(4.60)

where
Γ(Θ̄) = max

Q̄∈Π̄
Tr(Q̄Θ̄).

The problem is solvable, and the estimate in question is yielded by the H̄-component
H̄∗ of the optimal solution according to

x̂([ω̄1; ...; ω̄T ]) =
1

T
H̄T
∗

T∑
t=1

ω̄t.

The provided by Proposition 4.14 upper bound on the risk RiskΠ,‖·‖[x̂(·)|X ] of this

estimate is Opt.

The advantage of this result as compared to what is stated under the circumstances
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by Proposition 4.14 is that the sizes of optimization problem (4.60) are independent
of T .

4.3.3.9 Near-optimality in Gaussian case

The risk of the linear estimate x̂H∗(·) constructed in (4.50), (4.51) can be compared
to the minimax optimal risk of recovering Bx, x ∈ X , from observations corrupted
by zero mean Gaussian noise with covariance matrix from Π; formally, this minimax
optimal risk is defined as

RiskOptΠ,‖·‖[X ] = sup
Q∈Π

inf
x̂(·)

[
sup
x∈X

Eξ∼N (0,Q){‖Bx− x̂(Ax+ ξ)‖}
]

(4.61)

where the infimum is taken over all estimates.

Proposition 4.16. Under the premise and in the notation of Proposition 4.14, we
have

RiskOptΠ,‖·‖[X ] ≥ Opt

64
√

(2 lnF + 10 ln 2)(2 lnD + 10 ln 2)
. (4.62)

where
D =

∑
k

dk, F =
∑
`

f`. (4.63)

Thus, the upper bound Opt on the risk RiskΠ,‖·‖[x̂H∗ |X ] of the presumably good
linear estimate x̂H∗ yielded by an optimal solution to optimization problem (4.50)
is within logarithmic in the sizes of spectratopes X and B∗ factor from the Gaussian
minimax risk RiskOptΠ,‖·‖[X ].

For the proof, see Section 4.10.5. The key component of the proof is the following
important by its own right fact (for proof, see Section 4.10.4):

Lemma 4.17. Let Y be an N × ν matrix, let ‖ · ‖ be a norm on Rν such that the
unit ball B∗ of the conjugate norm is the spectratope (4.39), and let ζ ∼ N (0, Q)
for some positive semidefinite N × N matrix Q. Then the best upper bound on
ψQ(Y ) := E{‖Y T ζ‖} yielded by Lemma 4.11, that is, the optimal value Opt[Q] in
the convex optimization problem (cf. (4.48))

Opt[Q] = min
Θ,Υ

{
φR(λ[Υ]) + Tr(QΘ) : Υ = {Υ` � 0, 1 ≤ ` ≤ L}, Θ ∈ SN ,[

Θ 1
2YM

1
2M

TY T
∑
` S∗` [Υ`]

]
� 0

}
(4.64)

(for notation, see Lemma 4.11 and (4.43)) satisfies the identity

∀(Q � 0) :

Opt[Q] = Opt[Q] := min
G,Υ={Υ`,`≤L}

{
φR(λ[Υ]) + Tr(G) : Υ` � 0,[

G 1
2
Q1/2YM

1
2
MTY TQ1/2 ∑

` S
∗
` [Υ`]

]
� 0

}
,

(4.65)

and is a tight bound on ψQ(Y ), namely,

ψQ(Y ) ≤ Opt[Q] ≤ 22
√

2 lnF + 10 ln 2ψQ(Y ), (4.66)
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where F =
∑
` f` is the size of the spectratope (4.39). Besides this, for all κ ≥ 1

one has

Probζ

{
‖Y T ζ‖ ≥ Opt[Q]

4κ

}
≥ βκ := 1− e3/8

2
− 2Fe−κ

2/2. (4.67)

In particular, when selecting κ =
√

2 lnF + 10 ln 2, we obtain

Probζ

{
‖Y T ζ‖ ≥ Opt[Q]

4
√

2 lnF + 10 ln 2

}
≥ βκ = 0.2100 > 3

16 (4.68)

4.4 LINEAR ESTIMATES OF STOCHASTIC SIGNALS

In the recovery problem considered so far in this Lecture, the signal x underlying
observation ω = Ax + ξ was “deterministic uncertain but bounded” – all a priori
information on x was that x ∈ X for a given signal set X . There is a well-known
alternative model, where the signal x has a random component, specifically,

x = [η;u]

where the “stochastic component” η is random with (partly) known probability
distribution Pη, and the “deterministic component” u is known to belong to a
given set X . As a typical example, consider linear dynamical system given by

yt+1 = Ptyt + ηt + ut
ωt = Ctyt + ξt

, 1 ≤ t ≤ K, (4.69)

where yt, ηt, ut are, respectively, the state, the random “process noise,” and the
deterministic “uncertain but bounded” disturbance affecting the system at time t,
ωt is the output – it is what we observe at time t, and ξt is the observation noise.
We assume that the matrices Pt, Ct are known in advance. Note that the trajectory

y = [y1; ...; yK ]

of the states depends not only on the trajectories of process noises ηt and distur-
bances ut, but also on the initial state y1, which can be modeled as a realization of
either the initial noise η0, or the initial disturbance u0. When ut ≡ 0, y1 = η0 and
the random vectors {ηt, 0 ≤ t ≤ K, ξt, 1 ≤ t ≤ K} are independent of each other
zero mean Gaussian, (4.69) is the model underlying the famous Kalman filter.

Now, given model (4.69), we can use the equations of the model to represent
the trajectory of the states as linear image of the trajectory of noises η = {ηt} and
the trajectory of disturbances u = {ut}:

y = Pη +Qu

(recall that the initial state is either the component η0 of η, or the component u0

of u), and our “full observation” becomes

ω = [ω1; ...;ωK ] = A[η;u] + ξ, ξ = [ξ1, ..., ξK ].
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A typical statistical problem associated with the outlined situation is to estimate
the linear image B[η;u] of the “signal” x = [η;u] underlying our observation. For
example, when speaking about (4.69), the goal could be to recover yK+1 (“fore-
cast”).

We arrive at the following estimation problem:

Given noisy observation
ω = Ax+ ξ ∈ Rm

of signal x = [η;u] with random component η ∈ Rk and deterministic com-
ponent u known to belong to a given set X ⊂ Rn, we want to recover the
image Bx ∈ Rν of the signal. Here A and B are given matrices, η is inde-
pendent of ξ, and we have a priori (perhaps, incomplete) information on the
probability distribution Pη of η, specifically, know that Pη ∈ Pη for a given
family Pη of probability distributions. Similarly, we assume that what we
know about the noise ξ is that its distribution belongs to a given family Pξ
of distributions on the observation space.

Given a norm ‖ · ‖ on the image space of B, it makes sense to specify the risk of
a candidate estimate x̂(ω) by taking expectation of the recovery error ‖x̂(A[η;u] +
ξ) − B[η;u]‖ over both ξ and η and then taking supremum of the result over the
allowed distributions of η, ξ and over u ∈ X :

Risk‖·‖[x̂] = sup
u∈X

sup
Pξ∼Pξ,Pη∼Pη

E[ξ;η]∼Pξ×Pη {‖x̂(A[η;u] + ξ)−B[η;u]‖} .

When ‖ · ‖ = ‖ · ‖2 and all distributions from Pξ and Pη are with zero means and
finite covariance matrices, it is technically more convenient to operate with the
Euclidean risk

RiskEucl[x̂] =

[
sup
u∈X

sup
Pξ∼Pξ,Pη∼Pη

E[ξ;η]∼Pξ×Pη
{
‖x̂(A[η;u] + ξ)−B[η;u]‖22

}]1/2

.

Our goal in this Section is to show that as far as the design of “presumably good”
linear estimates x̂(ω) = HTω is concerned, the techniques developed so far can be
straightforwardly extended from the case of signals with no random component to
the one where this component is present.

4.4.1 Minimizing Euclidean risk

For the time being, assume that Pξ is comprised of all probability distributions
P on Rm with zero mean and covariance matrices Cov[P ] = Eξ∼P {ξξT } running
through a computationally tractable convex compact subset Qξ ⊂ int Sm+ , and Pη is
comprised of all probability distributions P on Rµ with zero mean and covariance
matrices running through a computationally tractable convex compact subset Qη ⊂
int Sµ+. Let, in addition, X be a basic spectratope:

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] � tkIdk , k ≤ K}

with our standard restrictions on T and Rk[·]. Let us derive efficiently solvable
convex optimization problem “responsible” for presumably good, in terms of its
Euclidean risk, linear estimate.
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For a linear estimate HTω, u ∈ X , Pξ ∈ Pξ, Pη ∼ Pη, denoting by Qξ and
Qη the covariance matrices of Pξ and Pη, and partitioning A as A = [Aη, Au] and
B = [Bη, Bu] according to the partition x = [η;u], we have

E[ξ;η]∼Pξ×Pη
{
‖HT (A[η;u] + ξ)−B[η;u]‖22

}
= E[ξ;η]∼Pξ×Pη

{
‖[HTAη −Bη]η +HT ξ + [HTAu −Bu]u‖22

}
= uT [Bu −HTAu]T [Bu −HTAu]u+ Eξ∼Pξ

{
Tr(HT ξξTH)

}
+Eη∼Pη

{
Tr([Bη −HTAη]ηηT [Bη −HTAη]T )

}
= uT [Bu −HTAu]T [Bu −HTAu]u+ Tr(HTQξH) + Tr([Bη −HTAη]Qη[Bη −HTAη]T ),

whence the squared Euclidean risk of the linear estimate x̂H(ω) = HTω is

Risk2
Eucl[x̂H ] = Φ(H) + Ψξ(H) + Ψη(H),

Φ(H) = max
u∈X

uT [Bu −HTAu]T [Bu −HTAu]u,

Ψξ(H) = max
Q∈Qξ

Tr(HTQH),

Ψη(H) = maxQ∈Qη Tr([Bη −HTAη]Q[Bη −HTAη]T ).

Functions Ψξ and Ψη are convex and efficiently computable, function Φ(H), by
Proposition 4.8, admits efficiently computable convex upper bound

Φ(H) = minΛ

{
φT (λ[Λ]) : Λ = {Λk � 0, k ≤ K},

[Bu −HTAu]T [Bu −HTAu] �
∑
kR∗k[Λk]

}
tight within the factor 2 max[ln(2D), 1] (for notation, see Proposition 4.8), so that
the efficiently solvable convex problem yielding presumably good linear estimate is

Opt = min
H

[
Φ(H) + Ψξ(H) + Ψη(H)

]
;

the Euclidean risk of the linear estimate HT
∗ ω yielded by the optimal solution to the

problem is upper-bounded by
√

Opt and is within factor
√

2 max[ln(2
∑
kDk), 1]

of the minimal Euclidean risk achievable with linear estimates.

4.4.2 Minimizing ‖ · ‖-risk

Now let Pξ be comprised of all probability distributions P on Rm with matrices of
second moments Var[P ] = Eξ∼P {ξξT } running through a computationally tractable
convex compact subset Qξ ⊂ int Sm+ , and Pη be comprised of all probability dis-
tributions P on Rµ with matrices of second moments Var[P ] running through a
computationally tractable convex compact subset Qη ⊂ int Sµ+. Let, same as above,
X be a basic spectratope:

X = {u ∈ Rn : ∃t ∈ T : R2
k[u] � tkIdk , k ≤ K},

and let ‖·‖ be such that the unit ball B∗ of the conjugate norm ‖·‖∗ is a spectratope:

B∗ = {y : ‖y‖∗ ≤ 1} = {y ∈ Rν : ∃(r ∈ R, z ∈ RN ) : y = Mz, S2
` [z] � r`If` , ` ≤ L},

with our standard restrictions on T ,R, Rk[·], S`[·]. Here the efficiently solvable
convex optimization problem “responsible” for presumably good, in terms of its
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risk Risk‖·‖, linear estimate can be built as follows.
For a linear estimate HTω, u ∈ X , Pξ ∈ Pξ, Pη ∈ Pη, denoting by Qξ and Qη

the matrices of second moments of Pξ and Pη, and partitioning A as A = [Aη, Au]
and B = [Bη, Bu] according to the partition x = [η;u], we have

E[ξ;η]∼Pξ×Pη
{
‖HT (A[η;u] + ξ)−B[η;u]‖

}
= E[ξ;η]∼Pξ×Pη

{
‖[HTAη −Bη]η +HT ξ + [HTAu −Bu]u‖

}
≤ ‖[Bu −HTAu]u‖+ Eξ∼Pξ

{
‖HT ξ‖

}
+ Eη∼Pη

{
‖[Bη −HTAη]η‖

}
.

It follows that for a linear estimate x̂H(ω) = HTω one has

Risk‖·‖[x̂H ] ≤ Φ(H) + Ψξ(H) + Ψη(H),
Φ(H) = maxu∈X ‖[Bu −HTAu]u‖,

Ψξ(H) = supPξ∈Pξ Eξ∼Pξ{‖HT ξ‖},
Ψη(H) = supPη∈Pη Eξ∼Pξ{‖[Bη −HTAη]η‖}.

As was shown in Section 4.3.3.3, the functions Φ, Ψξ, Ψη admit efficiently com-
putable upper bounds as follows (for notation, see Section 4.3.3.3):

Φ(H) ≤ Φ(H) := min
Λ,Υ

{
φT (λ[Λ]) + φR(λ[Υ]) :

Λ = {Λk � 0, k ≤ K},Υ = {Υ` � 0, ` ≤ L}[ ∑
kR
∗
k[Λk] 1

2
[BTu −ATuH]M

1
2
MT [Bu −HTAu]

∑
` S`[Υ`]

]
� 0

}
;

Ψξ(H) ≤ Ψξ(H) := min
Υ,G

φR[λ[Υ]) + Γξ(G) :

Υ = {Υ` � 0, ` ≤ L}[
G 1

2
HM

1
2
MTHT ∑

` S`[Υ`]

]
� 0,

 ,

Γξ(G) = maxQ∈Qξ Tr(GQ);

Ψη(H) ≤ Ψη(H) := min
Υ,G

{
φR[λ[Υ]) + Γη(G) :

Υ = {Υ` � 0, ` ≤ L},[
G 1

2
[BTη −ATηH]M

1
2
MT [Bη −HTAη]

∑
` S`[Υ`]

]
� 0,

}
,

Γη(G) = maxQ∈Qη Tr(GQ),

and these bounds are reasonably tight (for details on tightness, see Proposition 4.8
and Lemma 4.17). As a result, to get a presumably good linear estimate, one needs
to solve the efficiently solvable convex optimization problem

Opt = min
H

[
Φ(H) + Ψξ(H) + Ψη(H)

]
;

the linear estimate x̂H∗ = HT
∗ ω yielded by an optimal solution H∗ to this problem

admits the risk bound
Risk‖·‖[x̂H∗ ] ≤ Opt.

Note that the above derivation did not use independence of ξ and η at all.
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4.5 LINEAR ESTIMATION UNDER

UNCERTAIN-BUT-BOUNDED NOISE

So far, the main subject of our interest was recovering (linear images of) signals via
indirect observations of these signals corrupted by random noise. In this section,
we focus on alternative observation schemes – those with “uncertain-but-bounded”
and with “mixed” noise.

4.5.1 Uncertain-but-bounded noise

Consider recovering problem where one, given observation

ω = Ax+ η (4.70)

of unknown signal x known to belong to a given signal set X , wants to recover linear
image Bx of x. Here A and B are given m× n and ν × n matrices. The situation
looks exactly as before; the difference with our previous considerations is that now
we do not assume the observation noise to be random; all we assume about η is that
it belongs to a given compact set H (“uncertain-but-bounded observation noise”).
In the situation in question, a natural definition of the risk on X of a candidate
estimate ω 7→ x̂(ω) is

RiskH,‖·‖[x̂|X ] = sup
x∈X,η∈H

‖Bx− x̂(Ax+ η)‖ (4.71)

(“H-risk”).
We are about to prove that when X , H and the unit ball B∗ of the norm ‖ · ‖∗

conjugate to ‖ · ‖ is are spectratopes, which we assume from now on, an efficiently
computable linear estimate is near-optimal in terms of its H-risk.

Our initial observation is that the situation in question reduces straightforwardly
to the one where there is no observation noise at all. Indeed, let Y = X ×H; then
Y is a spectratope, and we lose nothing when assuming that the signal underlying
observation ω is y = [x; η] ∈ Y:

ω = Ax+ η = Āy, Ā = [A, Im],

while the entity to be recovered is

Bx = B̄y, B̄ = [B, 0ν×m].

With these conventions, the H-risk of a candidate estimate x̂(·) : Rm → Rν be-
comes the quantity

Risk‖·‖[x̂|X ×H] = sup
y=[x;η]∈X×H

‖B̄y − x̂(Āy)‖,

that is, we indeed arrive at the situation where the observation noise is identically
zero.

To avoid messy notation, let us assume that the outlined reduction has been
carried out in advance, so that

(!) The problem of interest is to recover the linear image Bx ∈ Rν of
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an unknown signal x known to belong to a given spectratope X (which, as
always, we can assume w.l.o.g. to be basic) from noiseless observation

ω = Ax ∈ Rm,

and the risk of a candidate estimate is defined as

Risk‖·‖[x̂|X ] = sup
x∈X
‖Bx− x̂(Ax)‖,

where ‖ · ‖ is a given norm with a spectratope B∗, see (4.39), as the unit ball
of the conjugate norm:

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] � tkIdk , k ≤ K},

B∗ = {z ∈ Rν : ∃y ∈ Y : z = My},
Y := {y ∈ Rq : ∃r ∈ R : S2

` [y] � r`If` , 1 ≤ ` ≤ L},
(4.72)

with our standard restrictions on T ,R and Rk[·], S`[·].

4.5.1.1 Building linear estimate

Let us build a presumably good linear estimate. For a linear estimate x̂H(ω) =
HTω, we have

Risk‖·‖[x̂H |X ] = max
x∈X
‖(B −HTA)x‖

= max
[u;x]∈B∗×X

[u;x]T
[

1
2 (B −HTA)

1
2 (B −HTA)T

]
[u;x].

Applying Proposition 4.8, we arrive at the following

Proposition 4.18. In the situation of this section, consider the convex optimiza-
tion problem

Opt# = min
H,Υ={Υ`},Λ={Λk}

{
φR(λ[Υ]) + φT (λ[Λ]) : Υ` � 0, Λk � 0, ∀(`, k)[ ∑

kR∗k[Λk] 1
2 [B −HTA]TM

1
2M

T [B −HTA]
∑
` S∗` [Υ`]

]
� 0

}
,
(4.73)

where R∗k[·], S∗` [·] are induced by Rk[·], S`[·], respectively, as explained in Section
4.3.1. The problem is solvable, and the risk of the linear estimate x̂H∗(·) yielded by
the H-component of an optimal solution does not exceed Opt#.

For proof, see Section 4.10.6.1.

4.5.1.2 Near-optimality

Proposition 4.19. The linear estimate x̂H∗ yielded by Proposition 4.18 is near-
optimal in terms of its risk:

Risk‖·‖[x̂H∗ |X ] ≤ Opt# ≤ O(1) ln(D)Riskopt[X ], D =
∑
k

dk +
∑
`

f`, (4.74)
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where Riskopt[X ] is the minimax optimal risk:

Riskopt[X ] = inf
x̂

Risk‖·‖[x̂|X ],

where inf is taken w.r.t. all Borel estimates.

Remark 4.20. When X and B∗ are ellitopes rather than spectratopes:

X = {x ∈ Rn : ∃t ∈ T , y : x = Py, yTRky ≤ tk, k ≤ K},
B∗ := {u ∈ Rν : ‖u‖∗ ≤ 1} = {u ∈ Rν : ∃r ∈ R, z : u = Mz, zTS`z ≤ r`, ` ≤ L}

[Rk � 0,
∑
k Rk � 0, S` � 0,

∑
` S` � 0]

(4.75)
problem (4.73) becomes

Opt# = min
H,λ,µ

{
φR(µ) + φT (λ) : λ ≥ 0, µ ≥ 0,[ ∑

k λkRk
1
2 [B −HTA]TM

1
2M

T [B −HTA]
∑
` µ`S`

]
� 0

} , (4.76)

and (4.74) can be strengthened to

Risk‖·‖[x̂H∗ |X ] ≤ Opt# ≤ O(1) ln(K + L)Riskopt[X ]. (4.77)

For proofs, see Section 4.10.6.

4.5.1.3 Nonlinear estimation

Uncertain-but-bounded model of observation error makes it easy to point out an
efficiently computable near-optimal nonlinear estimate. Specifically, in the situation
described in the beginning of Section 4.5.1, assume that the range of observation
error η is

H = {η ∈ Rm : ‖η‖(m) ≤ σ}, (4.78)

where ‖ · ‖(m), σ > 0 are a given norm on Rm and a given error bound, and let us
measure the recovery error by a given norm ‖ · ‖(ν) on Rν . We can immediately
point out a (nonlinear) estimate optimal, in terms of its H-risk, within factor 2,
specifically, the estimate x̂∗ defined as follows:

Given ω, we solve the feasibility problem

find x ∈ X : ‖Ax− ω‖(m) ≤ σ (F [ω])

find a feasible solution xω to the problem, and set x̂∗(ω) = Bxω.

Note that the estimate is well defined, since (F [ω]) clearly is solvable, with one
of the feasible solutions being the true signal underlying observation ω. When X
is a computationally tractable convex compact set, and ‖ · ‖(m) is an efficiently
computable norm, a feasible solution to (F [ω]) can be found in a computationally
efficient fashion. Let us make the following immediate observation:
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Proposition 4.21. The estimate x̂∗ is optimal within factor 2:

RiskH[x̂∗|X ] ≤ Opt∗ := supx,y
{
‖Bx−By‖(ν) : x, y ∈ X , ‖A(x− y)‖(m) ≤ 2σ

}
≤ 2Riskopt,H,

(4.79)
where Riskopt,H is the infimum, over all estimates, of H-risks of the estimate.

The proof of Proposition is the subject of Exercise 4.44.

4.5.1.4 Quantifying risk

Note that Proposition 4.21 does not impose restrictions on X and the norms ‖·‖(m),
‖ · ‖(ν).

The only - but essential – shortcoming of the estimate x̂∗ is that we do not know,
in general, what is its H-risk. From (4.79) it follows that this risk is tightly (namely,
within factor 2) upper-bounded by Opt∗, but this quantity, being the maximum of a
convex function over some domain, can be difficult to compute. Aside from handful
of special cases where this difficulty does not arise, there is a generic situation when
Opt∗ can be tightly upper-bounded by efficient computation. This is the situation
where X is the spectratope defined in (4.72), ‖ · ‖(m) is such that the unit ball of
this norm is a basic spectratope:

B(m) := {u : ‖u‖(m) ≤ 1} = {u ∈ Rm : ∃p ∈ P : Q2
j [u] � pjIej , 1 ≤ j ≤ J},

and the unit ball of the norm ‖·‖(ν),∗ conjugate to the norm ‖·‖(ν) is a spectratope:

B∗(ν) := {v ∈ Rν : ‖v‖(ν),∗ ≤ 1}
= {v : ∃(w ∈ RN , r ∈ R) : v = Mw,S2

` [w] � r`If` , 1 ≤ ` ≤ L},

with our usual restrictions on P, R, Qj [·], S`[·].

Proposition 4.22. In the situation in question, consider convex optimization prob-
lem

Opt = min
Λ={Λk,k≤K},
Υ={Υ`,`≤L},
Σ={Σj ,j≤J}

{
φT (λ[Λ]) + φR(λ[Υ]) + σ2φP(λ[Σ]) + φR(λ([Σ]) :

Λk � 0,Υ` � 0,Σj � 0 ∀(k, `, j),[ ∑
` S∗` [Υ`] MTB
BTM

∑
kR∗k[Λk] +AT [

∑
j Q∗j [Σj ]]A

]
� 0

}
(4.80)

where R∗k[·] are associated with the mappings x 7→ Rk[x] according to (4.27), and
S∗` [·] and Q∗j [·] are associated in the same fashion with the mappings w 7→ S`[w]
and u 7→ Qj [u], respectively, and φT , φR, φP are the support functions of the
corresponding sets T , R, P.

The optimal value in (4.80) is an efficiently computable upper bound on the
quantity Opt# defined in (4.79), and this bound is tight within factor

2 max[ln(2D), 1], D =
∑
k

dk +
∑
`

f` +
∑
j

ej . (4.81)

Proof of Proposition is the subject of Exercise 4.45.
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4.5.2 Mixed noise

So far, we have considered separately the cases of random and uncertain-but-
bounded observation noises in (4.35). Note that both these observation schemes
are covered by the following “mixed” scheme:

ω = Ax+ ξ + η, (4.82)

where, as above, A is a given m × n matrix, x us unknown deterministic signal
known to belong to a given signal set X , ξ is random noise with distribution known
to belong to a family P of Borel probability distributions on Rm satisfying (4.36)
for a given convex compact set Π ⊂ int Sm+ , and η is “uncertain-but-bounded”
observation error known to belong to a given set H. As before, our goal is to
recover Bx ∈ Rν via observation ω. In our present situation, given a norm ‖ · ‖ on
Rν , we can quantify the performance of a candidate estimate ω 7→ x̂(ω) : Rm → Rν

by its risk

RiskΠ,H,‖·‖[x̂|X ] = sup
x∈X ,P≪Π,η∈H

Eξ∼P {‖Bx− x̂(Ax+ ξ + η)‖}.

Observe that the estimation problem associated with “mixed” observation scheme
straightforwardly reduces to similar problem for random observation scheme, by
the same trick we have used in Section 4.5 to eliminate observation noise at all.
Indeed, let us treat x+ = [x; η] ∈ X+ := X ×H and X+ as the new signal/signal set
underlying our observation, and set Āx+ = Ax+ η, B̄x+ = Bx, where x+ = [x; η].
With these conventions, the “mixed” observation scheme reduces to

ω = Āx+ + ξ,

and for every candidate estimate x̂(·) it clearly holds

RiskΠ,H,‖·‖[x̂|X ] = RiskΠ,‖·‖[x̂|X+],

and we arrive at the situation of Section 4.3.3.1. Assuming that X and H are spec-
tratopes, so is X+, meaning that all results of Section 4.3.3 on building presumably
good linear estimates and their near-optimality are applicable to our present setup.

4.6 BEYOND THE SCOPE OF LINEAR ESTIMATION:

POLYHEDRAL ESTIMATE

4.6.1 Motivation

So far, in this Lecture we were considering the estimation problem as follows:

We want to recover the image Bx ∈ Rν of unknown signal x known to belong
to signal set X ⊂ Rn from a noisy observation

ω = Ax+ ξx ∈ Rm,

where ξx is observation noise; index x in ξx indicates that the distribution
Px of the observation noise may depend on x. Here X is a given nonempty
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convex compact set, and A and B are given m × n and ν × n matrices; in
addition, we are given a norm ‖ · ‖ on Rν in which the recovery error is
measured.

We have seen that if X is an ellitope/spectratope, then, under reasonable assump-
tions on observation noise and ‖ · ‖, an appropriate efficiently computable linear in
ω estimate is near-optimal. Note that the ellitopic/spectratopic structure of X is
crucial here. What follows is motivated by the desire to build an alternative es-
timation scheme which works beyond the ellitopic/spectratopic case, where linear
estimates can become “heavily nonoptimal.”

Motivating example. Consider the simply-looking problem of recovering Bx = x
in ‖·‖2-norm from direct observations (Ax = x) corrupted by the standard Gaussian
noise ξ ∼ N (0, σ2I), and let X be the unit ‖ · ‖1=ball:

X = {x ∈ Rn :
∑
i

|xi| ≤ 1}.

In this situation, building the optimal, in terms of the worst-case, over x ∈ X ,
expected squared risk linear estimate x̂H(ω) = HTω is extremely simple:

Risk2[x̂H |X ] := maxx∈X E
{
‖x̂H(ω −Bx‖22

}
= maxx∈X

{
‖[I −HT ]x‖22 + σ2Tr(HHT )

}
= maxi≤n ‖Coli[I −HT ]‖22 + σ2Tr(HHT ).

Clearly, the optimal H is just a scalar matrix hI, the optimal h is the minimizer
of the univariate quadratic function (1−h)2 +σ2nh2, and the best achievable with
linear estimates squared risk is

R2 = min
h

[
(1− h)2 + σ2nh2

]
=

nσ2

1 + nσ2
.

On the other hand, consider nonlinear estimate as follows. Given σ, “safety factor”
ρ ≥ 1 and observation ω, specify the estimate x̂(ω) as an optimal solution to the
optimization problem

Opt(ω) = min
y∈X
‖y − ω‖∞.

Note that the probability for the true signal to satisfy ‖x − ω‖∞ ≤ ρσ is at least
1 − p, p = 2n exp{−ρ2/2}, and if this event E happens, then both x and x̂ belong
to the box {y : ‖y − ω‖∞ ≤ ρσ}, implying that ‖x − x̂‖∞ ≤ 2ρσ; in addition, we
always have ‖x− x̂‖2 ≤ ‖x− x̂‖1 ≤ 2, since x ∈ X and x̂ ∈ X . We therefore have

‖x− x̂‖2 ≤
√
‖x− x̂‖∞‖x− x̂‖1 ≤

{
2
√
ρσ, ω ∈ E

2, ω 6∈ E ,

whence
E
{
‖x̂− x‖22

}
≤ 4ρσ + 4p ≤ 4ρσ + 8n exp{−ρ2/2}. (∗)

Assuming σ ≤ 2n exp{−1/2} and specifying ρ as
√

2 ln(2n/σ), we get ρ ≥ 1 and
2n exp{−ρ2/2} ≤ σ, implying that the right hand side in (∗) is at most 8ρσ. In
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other words, for our nonlinear estimate x̂(ω) it holds

Risk2[x̂|X ] ≤ 8
√

ln(2n/σ)σ.

When nσ2 is of order of 1, the latter bound on the squared risk is of order of
σ
√

ln(1/σ), while the best squared risk achievable with linear estimates under the
circumstances is of order of 1. We conclude that when σ is small and n is large
(specifically, is of order of 1/σ2), the best linear estimate is by far inferior as com-
pared to our nonlinear estimate – the ratio of the corresponding squared risks is

as large as O(1)

σ
√

ln(1/σ)
– the factor which is “by far” worse than the nonoptimality

factor in the case of ellitope/spectratope X .
The construction of the nonlinear estimate x̂ which we have built61 admits a

natural extension yielding what we shall call polyhedral estimate, and our present
goal is to design and to analyse presumably good polyhedral estimate.

4.6.2 Generic polyhedral estimate

A generic polyhedral estimate is as follows:

Given the data A ∈ Rm×n, B ∈ Rν×n,X ⊂ Rn of our recovery problem
(where X is a computationally tractable convex compact set) and a “relia-
bility tolerance” ε ∈ (0, 1), we specify somehow positive integer N and N
linear forms hT` z on the space Rm where observations live. These forms
define linear forms gT` x := hT` Ax on the space of signals Rn. Assuming
that the observation noise ξx is zero mean for every x ∈ X , the “plug-in”
estimates hT` ω are unbiased estimates of the forms gTi x. Assume that the
vectors h` are selected in such a way that

∀(x ∈ X ) : Prob{|hT` ξx| > 1} ≤ ε/N. (4.83)

In this situation, setting H = [h1, ..., hN ] (in the sequel, H is referred to as
contrast matrix), we can be sure that whatever be signal x ∈ X underlying
our observation ω = Ax+ξx, the observable vector HTω satisfies the relation

Prob
{
‖HTω −HTAx‖∞ > 1

}
≤ ε. (4.84)

With the polyhedral estimation scheme, we act as if all information about
x contained in our observation ω were represented by Hω, and we estimate
Bx by Bx̄, where x̄ = x̄(ω) is a (whatever) vector from X compatible with
this information, specifically, such that

‖HTω −HTAx̄‖∞ ≤ 1.

Note that while the latter relation, up to probability mass ε of “bad noise
realizations,” is satisfied by the signal x underlying observation ω, in which
case the problem of finding x̄ ∈ X satisfying this relation is feasible, this
problem with positive probability could be infeasible. To circumvent this

61in fact, this estimate is nearly optimal under the circumstances in a meaningful range of
values of n and σ).
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difficulty, let us define x̄ as

x̄ ∈ Argmin
u

{
‖HTω −HTAu‖∞ : u ∈ X

}
(4.85)

so that x̄ always is well defined and belongs to X , and estimate Bx by Bx̄.

A polyhedral estimate is specified by m × N contrast matrix H =
[h1, ..., hN ] with columns h` satisfying (4.83) and is as follows: given
observation ω, we build x̄ = x̄(ω) ∈ X according to (4.85) and esti-
mate Bx by x̂H(ω) = Bx̄(ω).

The rationale behind polyhedral estimation scheme is the desire to reduce
complex estimating problems to those of estimating linear forms. To the
best of our knowledge, this approach was first used in [114, Section 2] in
connection with recovering (restrictions on regular grids of) multivariate
functions from Sobolev balls from direct observations.

(ε, ‖ · ‖)-risk. Given a desired “reliability tolerance” ε ∈ (0, 1), it is convenient to
quantify the performance of polyhedral estimate by its (ε, ‖ · ‖)-risk

Riskε,‖·}[x̂(·)|X ] = inf {ρ : Prob {‖Bx− x̂(Ax+ ξx)‖ > ρ} ≤ ε∀x ∈ X} , (4.86)

that is, the worst, over x ∈ X , size of “(1 − ε)-reliable ‖ · ‖-confidence interval”
associated with a candidate estimate x̂(·).

An immediate observation is as follows:

Proposition 4.23. In the situation in question, denoting by Xs = 1
2 (X − X )

the symmeterization of X , given a contrast matrix H = [h1, ..., hN ] with columns
satisfying (4.83) the quantity

R[H] = max
z

{
‖Bz‖ : ‖HTAz‖∞ ≤ 2, z ∈ 2Xs

}
(4.87)

is an upper bound on the (ε, ‖ · ‖)-risk of the polyhedral estimate x̂H(·):

Riskε,‖·‖[x̂
H |X ] ≤ R[H]. (4.88)

Proof is immediate. Let us fix x ∈ X , and let E be the set of all realizations
of ξx such that ‖HT ξx‖∞ ≤ 1, so that Px(E) ≥ 1 − ε by (4.84). Let us fix a
realization ξ ∈ E of the observation noise, and let ω = Ax + ξ, x̄ = x̄(Ax + ξ).
Then u = x is a feasible solution to the optimization problem (4.85) with the
value of the objective ≤ 1, implying that the value of this objective at the optimal
solution x̄ to the problem is ≤ 1 as well, so that ‖HTA[x − x̄]‖∞ ≤ 2. Besides
this, z = x − x̄ ∈ 2Xs. We see that z is a feasible solution to (4.87), whence
‖B[x− x̄]‖ = ‖Bx− x̂(ω)‖ ≤ R[H]. It remains to note that the latter relation holds
true whenever ω = Ax+ξ with ξ ∈ E , and the Px-probability of the latter inclusion
is at least 1− ε, whatever be x ∈ X . 2

What is ahead. The basic questions associated with the design of polyhedral
estimates are as follows:

1. Given the data of our estimation problem and a tolerance δ ∈ (0, 1), how to find
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a set Hδ of vectors h ∈ Rm satisfying the relation

∀(x ∈ X ) : Prob
{
|hT ξx| > 1

}
≤ δ. (4.89)

With our approach, after the decision on the number N of columns in a contrast
matrix has been made, we are free to select these columns as we want from the
set Hδ, with δ = ε/N , ε being a given reliability tolerance of the estimate we are
designing. Thus, the larger is Hδ, the better for us.

2. The upper bound R[H] on the (ε, ‖ · ‖)-risk of the polyhedral estimate x̂H is, in
general, difficult to compute – this is the maximum of a convex function over
a computationally tractable convex set. Thus, similarly to the case of linear
estimates, we need techniques for computationally efficient upper bounding of
R[·].

3. With “raw materials” (sets Hδ) and efficiently computable upper bounds on the
risk of candidate polyhedral estimates at our disposal, how to design the best,
in terms of (the upper bound on) its risk, polyhedral estimate?

We are about to consider these questions one by one.

4.6.3 Specifying sets Hδ for basic observation schemes

Seemingly the only way to specify reasonable sets Hδ goes via making assumptions
on the distributions of observation noises we want to handle. In the sequel we
restrict ourselves with 3 special cases as follows:

• Sub-Gaussian case: For every x ∈ X , the observation noise ξx is sub-Gaussian
with parameters (0, σ2Im), where σ > 0.
• Discrete case: X is a convex compact subset of the probabilistic simplex ∆n =
{x ∈ Rn : x ≥ 0,

∑
i xi = 1}, A is column-stochastic matrix, and

ω =
1

K

K∑
k=1

ζk

with independent across k ≤ K random vectors ζk, with ζk taking value ei with
probability [Ax]i, i = 1, ....,m, ei being the basic orths in Rm.
• Poisson case: X is a convex compact subset of the nonnegative orthant Rn

+, A is
entrywise nonnegative, and the observation ω stemming from x ∈ X is random
vector with independent across i entries ωi ∼ Poisson([Ax]i].

The associated sets Hδ can be built as follows.

4.6.3.1 Sub-Gaussian case

When h ∈ Rn is deterministic and ξ is sub-Gaussian with parameters 0, σ2In, we
have

Prob{|hT ξ| > 1} ≤ 2 exp{− 1

2σ2‖h‖22
}.

Indeed, when h 6= 0 and γ > 0, we have

Prob{hT ξ > 1} ≤ exp{−γ}E
{

exp{γhT ξ}
}
≤ exp{ 1

2
σ2γ2‖h‖22 − γ};
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minimizing the resulting bound in γ > 0, we get Prob{hT ξ > 1} ≤ exp{− 1
2‖h‖22σ2 };

the same reasoning as applied to −h in the role of h results in Prob{hT ξ < −1} ≤
exp{− 1

2‖h‖22σ2 }.

Consequently

pG(h) := σ
√

2 ln(2/δ)︸ ︷︷ ︸
ϑG

‖h‖2 ≤ 1⇒ Prob{|hT ξ| > 1} ≤ δ, (4.90)

and we can set
Hδ = HGδ := {h : pG(h) ≤ 1}. (4.91)

4.6.3.2 Discrete case

Given x ∈ X , setting µ = Ax and ηk = ζk − µ, we get

ω = Ax+
1

K

K∑
k=1

ηk︸ ︷︷ ︸
ξx

.

Given h ∈ Rm,

hT ξx =
1

K

∑
k

hT ηk︸ ︷︷ ︸
χk

.

Random variables χ1, ..., χK are independent zero mean and clearly satisfy

E
{
χ2
k

}
≤
∑
i

[Ax]ih
2
i , |χk| ≤ 2‖h‖∞.

Applying Bernstein Inequality62, we get

Prob{|hT ξx| > 1} = Prob{
∑
k

χk > K} ≤ exp{− K

2
∑
i[Ax]ih2

i + 4
3‖h‖∞

}. (4.92)

Setting
pD(h) =

√
ϑ2
D maxx∈X

∑
i[Ax]ih2

i + %2
D‖h‖2∞,

ϑD = 2
√

2 ln(2/δ)
K ,

%D = 8 ln(2/δ)
3K ,

(4.93)

we, after completely straightforward computation, conclude from (4.92) that

pD(h) ≤ 1⇒ Prob{|hT ξx| > 1} ≤ δ, ∀x ∈ X . (4.94)

62Classical Bernstein Inequality states that if X1, ..., XK are independent zero mean scalar
random variables with finite variances σ2

k such that |Xk| ≤M a.s., then for every t > 0 one has

Prob{X1 + ...+Xk > t} ≤ exp{−
t2

2[
∑
k σ

2
k + 1

3
Mt]
}.
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Thus, in the Discrete case we can set

Hδ = HDδ := {h : pD(h) ≤ 1}. (4.95)

4.6.3.3 Poisson case

In the Poisson case, for x ∈ X , setting µ = Ax, we have

ω = Ax+ ξx, ξx = ω − µ.

It turns out that for every h ∈ Rm one has

∀t ≥ 0 : Prob
{
|hT ξx| ≥ t

}
≤ 2 exp{− t2

3[
∑
i h

2
iµi+‖h‖∞t]

} (4.96)

(for verification, see Section 4.10.7). As a result, we conclude via a straightforward
computation that setting

pP (h) =
√
ϑ2
P maxx∈X

∑
i[Ax]ih2

i + %2
P ‖h‖2∞,

ϑP =
√

6 ln(2/δ),
%P = 6 ln(2/δ),

(4.97)

we ensure that

pP (h) ≤ 1⇒ Prob{|hT ξx| > 1} ≤ δ, ∀x ∈ X . (4.98)

Thus, in the Poisson case we can set

Hδ = HPδ := {h : pP (h) ≤ 1}. (4.99)

4.6.4 Efficient upper-bounding of R[H] and Contrast Design, I.

The scheme for upper-bounding R[H] to be presented in this Section (an alternative,
completely different, scheme will be presented in Section 4.6.5) is motivated by what
happens in our Motivating example. Namely, there is a special case of (4.87) where
R[H] is easy to compute – the case when ‖ · ‖ is the uniform norm ‖ · ‖∞, whence

R[H] = R̂[H] := 2 max
i≤ν

max
x

{
RowT

i [B]x : x ∈ Xs, ‖HTAx‖∞ ≤ 1
}

is just the maximum of ν efficiently computable convex functions. It turns out that
when ‖ · ‖ = ‖ · ‖∞, it is easy not only to compute R[H], but to optimize this risk
bound in H as well63. These observations underly the forthcoming developments
in this Section: under appropriate assumptions, we bound the risk of a polyhedral
estimate stemming from a contrast matrix H via the efficiently computable quantity
R̂[H] and then show that the resulting risk bounds can be efficiently optimized
w.r.t. H. We shall also see that in some “simple for analytical analysis” situations,
like the one of Motivating example, the resulting estimates turn out to be nearly

63On a closest inspection, in the situation of Motivating example the ‖ · ‖∞-optimal contrast

matrix H is proportional to the unit matrix, and the quantity R̂[H] can be translated into upper
bound on, say, ‖ · ‖2-risk of the associated polyhedral estimate; these are the estimate and the
risk bound we dealt with when discussing Motivating example.
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minimax optimal.

4.6.4.1 Assumptions

We continue to stay within the setup introduced in Section 4.6.1 which we now
augment with the following assumptions:

A.1. ‖ · ‖ = ‖ · ‖r with r ∈ [1,∞].
A.2. We have at our disposal a sequence γ = {γi > 0, i ≤ ν} and ρ ∈ [1,∞] such

that the image of Xs under the mapping x 7→ Bx is contained in the “scaled
‖ · ‖ρ-ball”

Y = {y ∈ Rν : ‖Diag{γ}y‖ρ ≤ 1}. (4.100)

4.6.4.2 Simple observation

Let BT` be `-th row in B, 1 ≤ ` ≤ ν. Let us make the following observation:

Proposition 4.24. In the situation described in Section 4.6.1 and with Assump-
tions A.1-2 in force, let ε ∈ (0, 1) and a positive real N ≥ ν be given, and let p(·)
be a norm on Rm such that

∀(h : p(h) ≤ 1, x ∈ X ) : Prob{|hT ξx| > 1} ≤ ε/N. (4.101)

Let, next, a matrix H = [H1, ...,Hν ] with H` ∈ Rm×m` , m` ≥ 1, and positive reals
ς`, ` ≤ ν, satisfy the relations

(a) p(Colj [H]) ≤ 1, 1 ≤ j ≤ N ;
(b) maxx

{
BT` x : x ∈ Xs, ‖HT

` Ax‖∞ ≤ 1
}
≤ ς`, 1 ≤ ` ≤ ν. (4.102)

Then the quantity R[H] as defined in (4.87) can be upper-bounded as follows:

R[H] ≤ Ψ(ς) := 2 maxw {‖[w1/γ1; ...;wν/γν ]‖r : ‖w‖ρ ≤ 1, 0 ≤ w` ≤ γ`ς`, ` ≤ ν} ,
(4.103)

which combines with Proposition 4.23 to imply that

Riskε,‖·‖[x̂
H |X ] ≤ Ψ(ς). (4.104)

Function Ψ is a nondecreasing on the nonnegative orthant and is easy to compute.

Proof. Let z = 2z̄ be a feasible solution to (4.87), so that z̄ ∈ Xs and
‖HTAz̄‖∞ ≤ 1. Let y = Bz̄, so that y ∈ Y (see (4.100)) due to z̄ ∈ Xs and
A.2. Thus, ‖Diag{γ}y‖p ≤ 1. Besides this, by (4.102.b) relations z̄ ∈ Xs and
‖HTAz̄‖∞ ≤ 1 combine with the symmetry of Xs w.r.t. the origin to imply that

|y`| = |BT` z̄| ≤ ς`, ` ≤ ν.

Taking into account that ‖ · ‖ = ‖ · ‖r by A.1, we see that

R[H] = maxz
{
‖Bz‖r : z ∈ 2Xs, ‖HTAz‖∞ ≤ 2

}
≤ 2 maxy {‖y‖r : |y`| ≤ ς`, ` ≤ ν, & ‖Diag{γ}y‖ρ ≤ 1}
= 2 maxw {‖[w1/γ1; ...;wν/γν ]‖r : ‖w‖ρ ≤ 1, 0 ≤ w` ≤ γ`ς`, ` ≤ ν} ,

as stated in (4.103).
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The fact that Ψ is nondecreasing on the nonnegative orthant is evident. Com-
puting Ψ can be carried out as follows:

1. When r = ∞, we need to compute max`≤ν maxw{w`/γ` : ‖w‖ρ ≤ 1, 0 ≤ wj ≤
γjςj , j ≤ ν}, so that computing Ψ reduces to solving ν simple convex optimization
problems;

2. When ρ =∞, we clearly have Ψ(ς) = ‖[w̄1/γ1; ...; w̄ν/γν ]‖r, w̄` = min[1, γ`ς`];
3. When 1 ≤ r, ρ <∞, passing from variables w` to variables u` = wρ` , we get

Ψr(ς) = 2r max
u

{∑
`

γ−r` u
r/ρ
` :

∑
`

u` ≤ 1, 0 ≤ u` ≤ (γ`ς`)
ρ

}
.

When r ≤ ρ, the right hand side problem here is the easily solvable problem of
maximizing a simple concave function over a simple convex compact set. When
∞ > r > ρ, the right hand side problem can be solved by Dynamic Programming.
2

4.6.4.3 Specifying contrasts

Risk bound (4.104) allows for an easy design of contrast matrices. Recalling that
Ψ is monotone on the nonnegative orthant, all we need is to select h`’s satisfying
(4.102) and resulting in the smallest possible ς`’s, which is what we are about to
do now.

Preliminaries. Given a vector b ∈ Rm and a norm s(·) on Rm, consider convex-
concave saddle point problem

Opt = inf
g∈Rm

max
x∈Xs

φ(g, x) := [b−AT g]Tx+ s(g) (SP )

along with the induced primal and dual problems

Opt(P ) = infg∈Rm

[
φ(g) := maxx∈Xs

φ(g, x)
]

(P )
= infg∈Rm

[
s(g) + maxx∈Xs

[b−AT g]Tx
]

Opt(D) = maxx∈Xs

[
φ(g) := infg∈Rm φ(g, x)

]
(D)

= maxx∈Xs

[
infg∈Rm

[
bTx− [Ax]T g + s(g)

]]
= maxx

[
bTx : x ∈ Xs, q(Ax) ≤ 1

]
where q(·) is the norm conjugate to s(·) (we have used the evident fact that
infg∈Rm [fT g+s(g)] is either −∞ or 0 depending on whether q(f) > 1 or q(f) ≤ 1).
Since Xs is compact, we have Opt(P ) = Opt(D) = Opt by Sion-Kakutani Theo-
rem. Besides this, (D) is solvable (evident) and (P ) is solvable as well, since φ(g) is
continuous due to the compactness of Xs and φ(g) ≥ s(g), so that φ(·) has bounded
level sets. Let ḡ be an optimal solution to (P ), and x̄ be an optimal solution to
(D), and let h̄ be s(·)-unit normalization of ḡ, so that s(h̄) = 1 and ḡ = s(ḡ)h̄. Now
let us make the observation as follows:

Observation 4.25. In the situation in question, we have

max
x

{
|bTx| : x ∈ Xs, |h̄TAx| ≤ 1

}
≤ Opt. (4.105)

In addition, whatever be a matrix G = [g1, ..., gM ] ∈ Rm×M with s(gj) ≤ 1, j ≤M ,
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one has

max
x

{
|bTx| : x ∈ Xs, ‖GTAx‖∞ ≤ 1

}
= max

x

{
bTx : x ∈ Xs, ‖GTAx‖∞ ≤ 1

}
≥ Opt.

(4.106)

Proof. Let x be a feasible solution to the left hand side problem in (4.105).
Replacing, if necessary, x with −x, we can assume that |bTx| = bTx. We now have

|bTx| = bTx = [ḡTAx− s(ḡ)] + [b−AT ḡ]Tx+ s(ḡ)︸ ︷︷ ︸
≤φ(ḡ)

≤ Opt(P ) + [s(ḡ)h̄TAx− s(ḡ)]

≤ Opt(P ) + s(ḡ) |h̄TAx|︸ ︷︷ ︸
≤1

−s(ḡ) ≤ Opt(P ) = Opt,

as claimed in (4.105). Now, the equality in (4.106) is due to the symmetry of Xs

w.r.t. the origin. To verify inequality in (4.106), note that x̄ satisfies the relations
x̄ ∈ Xs and q(Ax̄) ≤ 1, implying, due to the fact that the columns of G are of
s(·)-norm ≤ 1, that x̄ is a feasible solution to the optimization problems in (4.106).
As a result, the second quantity in (4.106) is at least bT x̄ = Opt(D) = Opt, and
(4.106) follows. 2

Designing contrast. With upper-bounding the risk of a polyhedral estimate via
Proposition 4.24, Observation 4.25 basically resolves the the associated contrast
design problem, at least in the case of Sub-Gaussian, Discrete, and Poisson obser-
vation schemes. Indeed, in these cases, when designing contrast matrix with N
columns, with our approach we are supposed to select its columns in the respective
sets Hε/N , see Section 4.6.3. Note that these sets, while shrinking as N grows,
are “nearly independent” of N , since the norms pG, pD, pP participating in the
description of the respective sets HGδ , HDδ , HPδ depend on 1/δ just via logarithmic
in 1/δ factors. It follows that we lose nearly nothing when assuming that N ≥ ν.
Let us act as follows:

We set N = ν, specify p̄(·) as the norm (pG, or pD, or pP ) associated with
the observation scheme (Sub-Gaussian, or Discrete, or Poisson) in question
and with δ = ε/ν, and solve ν convex optimization problems

Opt` = ming∈Rm

[
φ`(g) := maxx∈Xs

φ`(g, x)
]

(P`)
φ`(g, x) = [B` −AT g]Tx+ p̄(g)

Next, we convert optimal solution g` to (P`) into vector h` ∈ Rm by repre-
senting g` = p̄(g`)h` with p̄(h`) = 1, and set H` = h`. As a result, we get
m × ν contrast matrix H = [h1, ..., hν ] which, taken along with N = ν, the
quantities

ς` = Opt`, 1 ≤ ` ≤ ν, (4.107)

and with p(·) ≡ p̄(·), in view of Observation 4.25 as applied with s(·) ≡ p̄(·)
satisfies the premise of Proposition 4.24.

Consequently, by Proposition 4.24 we have

Riskε,‖·‖[x̂
H |X ] ≤ Ψ([Opt1; ...; Optν ]). (4.108)

Within the framework set by Proposition 4.24, optimality of the outlined contrast
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design stems from Observation 4.25 which states that when N ≥ ν and the columns
of m×N contrast matrix H = [H1, ...,Hν ] belong to the set Hδ/N associated with
the observation scheme in question (Sub-Gaussian, or Discrete, or Poisson), i.e.,
the norm p(·) in Proposition is the norm pG, or pD, or pP associated with δ = ε/N ,
the quantities ς` participating in (4.102.b) cannot be less than Opt`.

Indeed, we are in the situation when the norm p(·) from Proposition 4.24 is ≥ the

norm p̄(·) participating in (P`) (since ε/N ≤ ε/ν), implying, by (4.102.a), that

the columns of matrix H obeying the premise of Proposition satisfy the relation

p̄(Colj [H]) ≤ 1. Invoking the second part of Observation 4.25 with s(·) ≡ p̄(·),
b = B`, and G = H`, and looking at (4.102.b), we conclude that ς` ≥ Opt` for all

`, as claimed.

Since the bound on the risk of a polyhedral estimate offered by Proposition 4.24
is the better the less are ς`’s, we see that as far as this bound is concerned, the
outlined design procedure is the best possible, provided N ≥ ν.

An attractive feature of the contrast design we have just presented is that it is
completely independent of the entities participating in assumptions A.1-2 – these
entities affect theoretical risk bounds of the resulting polyhedral estimate, but not
the estimate itself.

4.6.4.4 Illustration: Diagonal case

Let us consider the diagonal case of our estimation problem, where

• X = {x ∈ Rn : ‖Dx‖ρ ≤ 1}, where D is diagonal matrix with positive diagonal
entries D`` =: δ`,
• m = ν = n, and A and B are diagonal matrices with diagonal entries 0 < A`` =:
α`, 0 < B`` =: β`,
• ‖ · ‖ = ‖ · ‖r,
• We are in Sub-Gaussian case, that is, observation noise ξx is (0, σ2In)-sub-

Gaussian for every x ∈ X .

Let us implement the approach developed so far.

1. Given reliability tolerance ε, we set

δ = ε/n, H = HGδ = {h ∈ Rn : pG(h) := ϑG‖h‖2 ≤ 1},
ϑG := σ

√
2 ln(2/δ) = σ

√
2 ln(2n/ε);

(4.109)

2. We solve ν = n convex optimization problems (P`) associated with p̄(·) ≡ pG(·),
which is immediate: the resulting contrast matrix is just

H = ϑ−1
G In,

and
Opt` = ς` := β` min[ϑG/α`, 1/δ`]. (4.110)

Risk analysis. The (ε, ‖ · ‖)-risk of the resulting polyhedral estimate x̂(·) can be
bounded by Proposition 4.24. Note that setting

γ` = δ`/β`, 1 ≤ ` ≤ n, (4.111)
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we meet assumptions A.1-2, and the above H,N = n, ς` satisfy the premise of
Proposition 4.24. By this Proposition,

Riskε,‖·‖r [x̂
H |X ] ≤ Ψ := 2 max

w
{‖[w1/γ1; ...;wn/γn]‖r : ‖w‖ρ ≤ 1, 0 ≤ w` ≤ γ`ς`} .

(4.112)
Let us work out what happens in the simple case where

1 ≤ ρ ≤ r <∞ (a)
α`/δ` and β`/α` are nonincreasing in ` (b)

(4.113)

Proposition 4.26. In the just defined simple case, let n = n when

n∑
i=1

(ϑGδ`/α`)
s ≤ 1,

otherwise let n be the smallest integer such that

n∑
i=1

(ϑGδ`/α`)
ρ
> 1, (4.114)

with ϑG given by (4.109). Then for the contrast matrix H = ϑ−1
G In we have built

one has

Riskε,‖·‖r [x̂
H |X ] ≤ Ψ ≤ 2

[∑n

`=1
(ϑGβ`/α`)

r
]1/r

(4.115)

Proof. Consider optimization problem specifying Ψ in (4.112). Setting θ =
r/ρ ≥ 1, let us pass in this problem from variables w` to variables z` = wρ` , so that

Ψr = 2r maxz
{∑

` z
θ
` (β`/δ`)

r :
∑
` z` ≤ 1, 0 ≤ z` ≤ (δ`ς`/β`)

ρ
}
≤ 2rΓ,

Γ = maxz
{∑

` z
θ
` (β`/δ`)

r :
∑
` z` ≤ 1, 0 ≤ z` ≤ χ` := (ϑGδ`/α`)

ρ
}
.

Γ is the optimal value in the problem of maximizing a convex (since θ ≥ 1) function∑
` z

θ
` (β`/δ`)

r over a bounded polyhedral set, so that the maximum is achieved at an
extreme point z̄ of the feasible set. The (clearly nonempty) set I of positive entries
in z̄, by the standard characterization of extreme points, is as follows: denoting
by I ′ the set of indexes ` ∈ I such that z̄` is on its upper bound: z̄` = χ`, the
cardinality |I ′| of I ′ is at least |I| − 1. Since

∑
`∈I′ z̄` =

∑
`∈I′ χ` ≤ 1 and χ` are

nondecreasing in ` by (4.113.b), we conclude that

|I′|∑
`=1

χ` ≤ 1,

implying that |I ′| < n provided that n < n, so that in this case |I| ≤ n; and of
course |I| ≤ n when n = n. Next, we have

Γ =
∑
`∈I

z̄θ` (β`/δ`)
r ≤

∑
`∈I

χθ` (β`/δ`)
r =

∑
`∈I

(ϑGβ`/α`)
r,

and since β`/α` is nonincreasing in ` and |I| ≤ n, the latter quantity is at most
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∑n
`=1(ϑGβ`/α`)

r. 2

Illustration. Consider the case when

0 <
√

ln(n/σ)σ ≤ 1, α` = `−α, β` = `−β , δ` = `δ (4.116)

with
β ≥ α ≥ 0, δ ≥ 0, (β − α)r < 1. (4.117)

In this case for large n, namely,

n ≥ O(ϑ
− 1
α+δ+1/ρ

G ) [ϑG =
√

2 ln(2n/ε)σ] (4.118)

(here and in what follows, the factors hidden in O(·) depend solely on α, β, δ, r, ρ)
we get

n = O(ϑ
− 1
α+δ+1/ρ

G ) = O(ϑ
− 1
ᾱ+1/ρ

G ), ᾱ = α+ δ,

resulting in

Riskε,‖·‖r [x̂|X ] ≤ O(ϑ
β̄+1/ρ−1/r
ᾱ+1/ρ

G ), β̄ = β + δ. (4.119)

Setting x = Diag{δ−1
1 , ..., δ−1

n }y, ᾱ = α + δ, β̄ = β + δ and treating of y, rather
than x, as the signal underlying our observation, the problem becomes the similar
problem with ᾱ, β̄, δ̄ = 0, X̄ = {x : ‖x‖s ≤ 1} in the role of α, β, δ,X , respectively,
and Ā = Diag{`−ᾱ, ` ≤ n}, B̄ = Diag{`−β̄ , ` ≤ n}, in the role of A and B. Now,
setting

m = O(σ−
1

ᾱ+1/ρ ) ≈ n

and strengthening (4.118) to n ≥ O(σ−
1

α+δ+1/ρ ), observe that when ϑG ≤ O(1), X̄
contains the “coordinate box”

X̂ = {x : |x`| ≤ m−1/ρ,m/2 ≤ ` ≤ m, x` = 0 otherwise}

of dimension ≥ m/2 such that ‖Āy‖2 ≤ O(1)m−ᾱ‖y‖2 and ‖B̄y‖r ≥ O(1)m−β̄‖y‖r
when y ∈ X̂. This observation straightforwardly combines with Fano inequality64;
to imply that when ε � 1, the minimax optimal, w.r.t. the family of all Borel
estimates, the signal set being X̂ ⊂ X , (ε, ‖ · ‖r)-risk is at least

O(σ
β̄+1/ρ−1/r
ᾱ+1/ρ ),

i.e., is just by a logarithmic in n/ε factor better than the upper bound (4.119) on
the risk of our polyhedral estimate; thus, in the case under consideration the latter
estimate is nearly minimax optimal.

4.6.5 Efficient upper-bounding of R[H] and Contrast Design, II.

4.6.5.1 Outline

Below we develop an approach to the design of polyhedral estimates which is an
alternative to the one of Section 4.6.4. Our new approach resembles the one we

64For the classical Fano inequality see, e.g., [58].
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have developed to build presumably good linear estimates; here is a “high level”
outline of similarities and differences of what we are about to develop and what
was done for linear estimates.

In the simplest case of linear estimation considered in Section 4.2, where the
signal set X = Xs was an ellitope, we represented the (squared) ‖ · ‖2-risk of a
candidate linear estimate x̂H(ω) = HTω as the sum of an easy-to-compute convex
function Tr(HTΓH) and the difficult to compute function

Φ(H) = max
x∈X

xT [B −HTA]T [B −HTA]x.

We then used semidefinite relaxation to upper-bound this difficult to compute func-
tion by an efficiently computable convex function Φ(H); minimizing the sum of the
latter function and Tr(HTΓH), we arrived at the desired linear estimate. Thus,
the basic technique underlying our design was upper-bounding of the maximum of
a quadratic form, depending on H as on parameter, over X ; what we were seeking
for was a bounding scheme allowing to optimize the bound in H efficiently.

Now, the design of a presumably good polyhedral estimate also reduces to min-
imizing w.r.t. the parameter the maximum of a parametric quadratic form. Specif-
ically, the (upper bound on) the risk R[H] of a candidate polyhedral estimate x̂H

given by (4.87) is nothing but

R[H] = 2 max
[u;z]

{
[u; z]T

[
1
2B

1
2B

T

]
︸ ︷︷ ︸

B+

[u; z] :
u ∈ B∗, z ∈ Xs,
zTATh`h

T
` Az ≤ 1, ` ≤ N

}
,

(4.120)
where B∗ is the unit ball of the norm conjugate to ‖ · ‖ and h` are the columns
of m×N contrast matrix H. The difference with the design of linear estimates is
twofold:

• our “design parameter” – the contrast matrix H – affects the constraints of the
optimization problem specifying R[H] rather than the objective of the optimiza-
tion problem specifying Φ(H);

• Design of presumably good linear estimate reduces to unconstrained minimization
of Φ(H) + Tr(HTΓH), while now we need to minimize (efficiently computable
upper bound on) R[H] under the restriction on H – the columns h` of this matrix
should satisfy (4.83).

The strategy we intend to use in order to handle the above issues can be outlined
as follows. Assume we have at our disposal a technique for bounding quadratic
forms on the set B∗×Xs, so that we have at our disposal an efficiently computable
convex function M(M) on Sn+ν such that

M(M) ≥ max
[u;z]∈B∗×Xs

[u; z]TM [u; z] ∀M ∈ Sn+ν . (4.121)

When λ ∈ RN
+ , the constraints zTATh`h

T
` Az ≤ 1 in (4.120) can be aggregated to

yield the quadratic constraint

zTATΘλAz ≤ µλ, Θλ = HDiag{λ}HT , µλ =
∑
`

λ`.



318

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 4

Observe that for every λ ≥ 0 we have

R[H] ≤ 2M
([

1
2B

1
2B

T −ATΘA

]
︸ ︷︷ ︸

B+[Θ]

)
+ 2µλ. (4.122)

Indeed, let [u; z] be a feasible solution to the optimization problem (4.120) speci-
fying R[H]. Then

[u; z]TB+[u; z] = [u; z]TB+[Θλ][u; z] + zTATΘλAz;

the first term in the right hand side is ≤M(B+[Θλ]) since [u; z] ∈ B∗×Xs, and the

second term in the right hand side, as we have already seen is ≤ µλ, and (4.122)

follows.

Now assume that we have at our disposal a computationally tractable cone

H ⊂ SN+ ×R+

satisfying the following assumption:

C. Whenever (Θ, ν) ∈ H, we can efficiently find an n × N matrix H =
[h1, ..., hN ] and a nonnegative vector λ ∈ RN

+ such that

the columns h` of H satisfy (4.83) (a)
Θ = HDiag{λ}HT (b)∑
i λi ≤ µ (c)

(4.123)

The following simple observation is crucial for us:

Proposition 4.27. Consider the estimation problem posed in Section 4.6.1, and
let efficiently computable convex function M and computationally tractable closed
convex cone H satisfy (4.121) (where B∗ is the unit ball of the norm conjugate
to the norm ‖ · ‖ in which the recovery error is measured) and Assumption C,
respectively. Consider the convex optimization problem

Opt = minτ,Θ,µ {2τ + 2µ : (Θ, µ) ∈ H,M(B+[Θ]) ≤ τ}[
B+[Θ] =

[
1
2B

1
2B

T −ATΘA

]]
(4.124)

Given a feasible solution (τ,Θ, µ) to this problem, by C we can efficiently convert
it to (H,λ) such that H = [h1, ..., hN ] with h` satisfying (4.83) and λ ≥ 0 with∑
` λ` ≤ µ. We have

R[H] ≤ 2τ + 2µ,

whence the (ε, ‖ · ‖)-risk of the polyhedral estimate x̂H satisfies the bound

Riskε,‖·‖[x̂
H |X ] ≤ 2τ + 2µ. (4.125)

As a result, we can build efficiently polyhedral estimates with (ε, ‖·‖)-risk arbitrarily
close to Opt (and with risk exactly Opt, provided problem (4.124) is solvable).

Proof is readily given by the reasoning preceding Proposition. Indeed, with
τ,Θ, µ,H, λ as described in Proposition, the columns h` of H satisfy (4.83) by C,
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implying, by Proposition 4.23, that Riskε,‖·‖[x̂
H |X ] ≤ R[H]. Besides this, C says

that for our H,λ it holds Θ = Θλ and µλ ≤ µ, so that (4.122) combines with
the constraints of (4.124) to imply that R[H] ≤ 2τ + 2µ, and (4.125) follows by
Proposition 4.23. 2

With the approach we are developing now, presumably good polyhedral esti-
mates will be given by (nearly) optimal solutions to (4.124). To apply this approach,
we need to develop techniques for building cones H satisfying C and for building ef-
ficiently computable functionsM(·) satisfying (4.121). These tasks are the subjects
of the sections to follow.

4.6.5.2 Specifying cones H

We are about to specify cones H in the case when the number N of columns in the
candidate contrast matrices is m and under the following assumption on the given
reliability tolerance ε and observation scheme in question:

D. The observation scheme in question is such that for properly built com-
putationally tractable convex compact subset Z ⊂ Rm

+ intersecting int Rm
+ ,

the norm

p(h) =

√
max
z∈Z

∑
i

zih2
i

induced by Z satisfies the relation

p(h) ≤ 1⇒ Prob{|hT ξx| > 1} ≤ ε/m ∀x ∈ X .

Note that condition D is satisfied for Sub-Gaussian, Discrete, and Poisson obser-
vation schemes: according to the results of Section 4.6.3,

• in the Sub-Gaussian case, it suffices to take

Z = {2σ2 ln(2m/ε)[1; ...; 1]};

• in the Discrete case, it suffices to take

Z = 8 ln(2m/ε)
K AX + 64 ln2(2m/ε)

9K2 ∆m,
AX = {Ax : x ∈ X}, ∆m = {y ∈ Rm : y ≥ 0,

∑
i yi = 1}

• in the Poisson case, it suffices to take

Z = 6 ln(2m/ε)AX + 36 ln2(2m/ε)∆m,

with the same AX and ∆m as in Discrete case.

Note that in all these cases Z only “marginally” – logarithmically – depends on ε
and m.

Under Assumption D, the cone H can be built as follows:

• When Z is a singleton: Z = {z̄}, so that p(·) is scaled Euclidean norm, we set

H = {(Θ, µ) ∈ Sm+ ×R+ : µ ≥
∑
i

z̄iΘii}.
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Given (Θ, µ) ∈ H, the m×m matrix H and λ ∈ Rm
+ are built as follows: setting

S = Diag{
√
z̄1, ...,

√
z̄m}, we compute the eigenvalue decomposition of the matrix

SΘS:
SΘS = UDiag{λ}UT ,

where U is orthonormal, and setH = S−1U , thus ensuring that Θ = HDiag{λ}HT .
Since µ ≥

∑
i z̄iΘii, we have

∑
i λi = Tr(SΘS) ≤ µ. Finally, a column h of H is

of the form S−1f with ‖·‖2-unit vector f , implying that p(h) =
√∑

i z̄i[S
−1f ]2i =√∑

i f
2
i = 1, so that h satisfies (4.83) by D.

• When Z is not a singleton, we set

φ(r) = maxz∈Z z
T r,

κ = 6 ln(2
√

3m2),
H = {(Θ, µ) ∈ Sm+ ×R+ : µ ≥ κφ(dg(Θ))),

(4.126)

where dg(Q) is the diagonal of a (square) matrix Q. Note that φ(r) > 0 whenever
r ≥ 0, r 6= 0, since Z contains a positive vector.
The justification of this construction and the efficient (randomized) algorithm
for converting a pair (Θ, µ) ∈ H into (H,λ) satisfying, along with Θ, µ), the
requirements of C are given by the following

Lemma 4.28. (i) Whenever H is an m×m matrix with columns h` satisfying
p(h`) ≤ 1 and λ ∈ Rm

+ , we have

(Θλ = HDiag{λ}HT , µ = κ
∑
i

λi) ∈ H.

(ii) Given (Θ, µ) ∈ H with Θ 6= 0, we find decomposition Θ = QQT with
m×m matrix A, fix an orthonormal m×m matrix V with magnitudes of entries
not exceeding

√
2/m (e.g., the orthonormal scaling of the matrix of the cosine

transform). When µ > 0, we set λ = µ
m [1; ...; 1] ∈ Rm and consider the random

matrix

Hχ =

√
m

µ
QDiag{χ}V,

where χ is the m-dimensional Rademacher random vector. We have

HχDiag{λ}HT
χ ≡ Θ, λ ≥ 0,

∑
i

λi = µ. (4.127)

Moreover, probability of the event

p(Col`[Hχ]) ≤ 1 ∀` ≤ m (4.128)

is at least 1/2. Thus, generating independent samples of χ and terminating with
H = Hχ when the latter matrix satisfies (4.128), we with probability 1 terminate
with (H,λ) satisfying C, and the probability for the procedure to terminate in
course of the first M = 1, 2, ... steps is at least 1− 2−M .
When µ = 0, we have Θ = 0 (since µ = 0 implies φ(dg(Θ)) = 0, which with
Θ � 0 is possible only when Θ = 0); thus, when µ = 0, we set H = 0m×m and
λ = 0m×1.
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Note that Lemma states, essentially, that the cone H is a tight, up to logarithmic
in m factor, inner approximation of the set(Θ, µ) : ∃(λ ∈ Rm

+ , H ∈ Rm×m) :
Θ = HDiag{λ}HT ,
p(Col`[H]) ≤ 1, ` ≤ m,
µ ≥

∑
` λ`


For proof, see Section 4.10.8.

4.6.5.3 Specifying functions M

In this section we focus on computationally efficient upper-bounding of maxima
of quadratic forms over symmetric w.r.t. the origin convex compact sets, with
ultimate goal to specify “presumably good” efficiently computable convex function
M(·) satisfying (4.121). What we intend to use to this end, is a kind of semidefinite
relaxation.

Cones compatible with convex sets. Given a nonempty convex compact set
Y ⊂ RN , we say that a cone Y is compatible with Y, if

• Y is a closed convex computationally tractable cone contained in SN+ ×R+

• one has
∀(V, τ) ∈ Y : max

y∈Y
yTV y ≤ τ (4.129)

• Y contains a pair (V, τ) with V � 0.
• relations (V, τ) ∈ Y and τ ′ ≥ τ imply that (V, τ ′) ∈ Y 65.

We call a cone Y sharp, if Y is a closed convex cone contained in SN+ ×R+ and
such that the only pair (V, τ) ∈ Y with τ = 0 is the pair (0, 0), or, equivalently, a
sequence {(Vi, τi) ∈ Y, i ≥ 1} is bounded if and only if the sequence {τi, i ≥ 1} is
bounded.

Note that whenever the linear span of Y is the entire RN , every compatible
with Y cone is sharp.

Observe that if Y ⊂ RN is a nonempty convex compact set and Y is a cone
compatible with a shift Y − a of Y, then Y is compatible with Ys.

Indeed, when shifting a set Y, its symmeterization 1
2
[Y − cY ] remains intact, so

that we can assume that Y is compatible with Y. Now let (V, τ) ∈ Y and y, y′ ∈ Y.
We have

[y − y′]TV [y − y′] + [y + y′]TV [y + y′]︸ ︷︷ ︸
≥0

= 2[yTV y + [y′]TV y′] ≤ 4τ,

whence for z = 1
2
[y − y′] it holds zTV z ≤ τ . Since every z ∈ Ys is of the form

1
2
[y − y′] with y, y′ ∈ Y, the claim follows.

65the latter requirement is “for free” – passing from a computationally tractable closed convex
cone Y ⊂ SN+ ×R+ satisfying (4.129) only to the cone Y+ = {(V, τ) : ∃τ̄ ≤ τ : (V, τ̄) ∈ Y}, we
get a larger than Y cone compatible with Y. It will be clear from the sequel that in our context,
the larger is a cone compatible with Y, the better, so that this extension makes no harm.
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Note that the claim can be “nearly inverted:” ix 0 ∈ Y and Y compatible with
Ys, then the “widening” of Y – the cone

Y+ = {(V, τ) : (V, τ/4) ∈ Y}

is compatible with Y (evident, since when 0 ∈ Y, every vector from Y is propor-

tional, with coefficient 2, to a vector from Ys).

Building functions M. The role of compatibility in our context becomes clear
from the following observation:

Proposition 4.29. In the situation described in Section 4.6.1, assume that we
have at our disposal cones X and U compatible, respectively, with Xs and with the
unit ball

B∗ = {v ∈ Rν : ‖u‖∗ ≤ 1}

of the norm ‖ · ‖∗ conjugate to the norm ‖ · ‖. Given M ∈ Sn+ν , let us set

M(M) = inf
X,t,U,s

{t+ s : (X, t) ∈ X, (U, s) ∈ U,Diag{U,X} �M} (4.130)

Then M is real-valued efficiently computable convex function on Sn+ν such that
(4.121) takes place: for every M ∈ Sn+ν it holds

M(M) ≥ max
[u;z]∈B∗×Xs

[u; z]TM [u; z].

In addition, when X and U are sharp, problem (4.130) is solvable.

Proof is immediate. Given that the objective of the optimization problem spec-
ifying M(M) is nonnegative on the feasible set, the fact that M is real-valued is
equivalent to problem’s feasibility, and the latter is readily given by that fact that
X is a cone containing a pair (X, t) with X � 0 and similar fact for U. Convexity
of M is evident. To verify (4.121), let (X, t, U, s) form a feasible solution to the
optimization problem in (4.130). When [u; z] ∈ B∗ ×Xs we have

[u; z]TM [u; z] ≤ uTUu+ zTXz ≤ s+ t,

where the first inequality is due to the �-constraint in (4.130), and the second is due
to the fact that U is compatible with B∗, and X is compatible with Xs. Since the
resulting inequality holds true for all feasible solutions to the optimization problem
in (4.130), (4.121) follows. Finally, when X and U are sharp, (4.130) is a feasible
conic problem with bounded level sets of the objective and as such is solvable. 2

4.6.5.4 Putting things together

Combining Propositions 4.29 and 4.27, we arrive at the following recipe for designing
presumably good polyhedral estimates:

Proposition 4.30. In the situation of Section 4.6.1, assume that we have at our
disposal cones X and U compatible, respectively, with Xs and with the unit ball
B∗ of the norm conjugate to ‖ · ‖. Given reliability tolerance ε ∈ (0, 1), assume
that we have at our disposal a positive integer N and a computationally tractable
cone H satisfying, along with ε, Assumption C. Consider (clearly feasible) convex
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optimization problem

Opt = min
Θ,µ,X,t,U,s

f(t, s, µ) := 2(t+ s+ µ) :
(Θ, µ) ∈ H, (X, t) ∈ X, (U, s) ∈ U[

U 1
2B

1
2B

T ATΘA+X

]
� 0


(4.131)

Given a feasible solution Θ, µ,X, t, U, s and invoking C, we can convert, in a com-
putationally efficient manner, (Θ, µ) into (H,λ) such that the columns of the m×N
contrast matrix satisfy (4.83), Θ = HDiag{λ}HT , and µ ≥

∑
` λ`. The (ε, ‖ · ‖)-

risk of the polyhedral estimate x̂H satisfies the bound

Riskε,‖·‖[x̂
H |X ] ≤ f(t, s, µ). (4.132)

In particular, we can build, in a computationally efficient manner, polyhedral esti-
mates with risks arbitrarily close to Opt (and with risk Opt, provided that (4.131)
is solvable).

Proof. Let Θ, µ,X, t, U, s form a feasible solution to (4.131). By the semidefinite
constraint in (4.131) we have

0 �
[

U − 1
2B

− 1
2B

T ATΘA+X

]
= Diag{U,X} −

[
1
2B

1
2B

T −ATΘA

]
︸ ︷︷ ︸

=:M

,

whence by Proposition 4.29 for the functionM defined in this proposition one has

M(M) ≤ t+ s.

SinceM, by the same Proposition 4.29, satisfies (4.121), invoking Proposition 4.27
we arrive at

R[H] ≤ 2(µ+M(M)) ≤ f(t, s, µ),

implying by Proposition 4.23 the target relation (4.132). 2

4.6.5.5 Compatibility: basic examples and calculus

What is crucial for the design of presumably good polyhedral estimates via the
recipe described in Proposition 4.30, is our ability to equip convex “sets of interest”
(in our context, these are the symmeterization Xs of the signal set and the unit
ball B∗ of the norm conjugate to the norm ‖ · ‖ in which the recovery error is
measured) with cones compatible with these sets66. We are about to discuss two
major sources of these cones, namely (a) spectratopes/ellitopes, and (b) absolute
norms. We develop also “compatibility calculus” which allows to build, in a fully
algorithmic fashion, cones compatible with the results of basic convexity-preserving
operations with convex sets from the cones compatible with the operands.

In view of Proposition 4.30, the larger are the cones X and U compatible with
Xs and B∗, the better – the wider is the optimization domain in (4.131) and,
consequently, the less is (the best) risk bound achievable with the recipe presented

66recall that we already know how to specify the second element of the construction, the cone
H.
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in the proposition. Given convex compact set Y ∈ RN , the “ideal” – the largest
candidate to the role of the cone compatible with Y would be

Y∗ = {(V, τ) ∈ SN+ ×R+ : τ ≥ max
y∈Y

yTV y}.

This cone, however, typically is intractable, which enforces us to look for “as large
as possible” tractable inner approximations of Y∗.

4.6.5.5.A. Cones compatible with ellitopes/spectratopes are readily given
by semidefinite relaxation. Specifically, when

Y = {y ∈ RN : ∃(r ∈ R, z ∈ RK) : y = Mz,R2
` [z] � r`Id` , ` ≤ L}[

R`[z] =
∑
j zjR

`j , R`j ∈ Sd`
]

with our standard restrictions on R, invoking Proposition 4.8 it is immediately seen
that the set

Y = {(V, τ) ∈ SN+ ×R+ : ∃Λ = {Λ` ∈ S
d`
+ , ` ≤ L} : MTVM �

∑̀
R∗[Λ`], φR(λ[Λ]) ≤ τ}[

[R∗` [Λ`]]ij = Tr(R`iΛ`R
`j), λ[Λ] = [Tr(Λ1); ...; Tr(ΛL)]), φR(λ) = max

r∈R
rTλ

]
(4.133)

is a closed convex cone which is compatible with Y.
Similarly, when Y is an ellitope:

Y = {y ∈ RN : ∃(r ∈ R, z ∈ RK) : y = Mz, zTR`z ≤ r`, ` ≤ L}

with our standard restrictions on R and R`, invoking Proposition 4.6, the set

Y = {(V, τ) ∈ SN ×R+ : ∃λ ∈ RL
+ : MTVM �

∑
`

λ`R`, φR(λ) ≤ τ} (4.134)

is compatible with Y. In both cases, Y is sharp, provided that the image space of
M is the entire RN .

Note that in both these cases Y is a reasonably tight inner approximation of
Y∗: whenever (V, τ) ∈ Y∗, we have (V, θτ) ∈ Y, with a moderate θ (specifically,
θ = O(1) ln(2

∑
` d`) in the spectratopic, and θ = O(1) ln(2L) in the ellitopic case,

see Propositions 4.8, 4.6, respectively).

4.6.5.5.B. Compatibility via absolute norms.
Preliminaries. Recall that a norm p(·) on RN is called absolute, if p(x) is a function
of the vector abs[x] := [|x1|; ...; |xN |] of the magnitudes of entries in x. It is well
known that an absolute norm p is monotone on RN

+ , so that abs[x] ≤ abs[x′] implies
that p(x) ≤ p(x′), and that the norm

p∗(x) = max
y:p(y)≤1

xT y

conjugate to p(·) is absolute along with p.
Let us say that an absolute norm r(·) fits an absolute norm p(·) on RN , if for

every vector x with p(x) ≤ 1 the entrywise square [x]2 = [x2
1; ...;x2

N ] of x satisfies
r([x]2) ≤ 1. For example, the largest norm r(·) which fits the absolute norm
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p(·) = ‖ · ‖s, s ∈ [1,∞], is

r(·) =

{
‖ · ‖1, 1 ≤ s ≤ 2
‖ · ‖s/2, s ≥ 2

An immediate observation is that an absolute norm p(·) on RN can be “lifted” to
a norm on SN , specifically, the norm

p+(Y ) = p([p([Col1[Y ]); ...; p(ColN [Y ])]) : SN → R+, (4.135)

where Colj [Y ] is jth column in Y . It is immediately seen that when p is an absolute
norm, the right hand side in (4.135) indeed is a norm on SN satisfying the identity

p+(xxT ) = p2(x), x ∈ RN . (4.136)

Absolute norms and compatibility. Our interest in absolute norms is motivated by
the following immediate

Observation 4.31. Let p(·) be an absolute norm on RN , and r(·) be another
absolute norm which fits p(·), both norms being computationally tractable. These
norms give rise to the computationally tractable and sharp closed convex cone

P = Pp(·),r(·) =

{
(V, τ) ∈ SN+ ×R+ : ∃(W ∈ SN , w ∈ RN

+ ) :
V �W + Diag{w}
[p+]∗(W ) + r∗(w) ≤ τ

}
,

(4.137)

where [p+]∗(·) is the norm on SN conjugate to the norm p+(·), and r∗(·) is the
norm on RN conjugate to the norm r(·), and this cone is compatible with the unit
ball of the norm p(·) (and thus – with any convex compact subset of the latter ball).

Verification is immediate. The fact that P is a computationally tractable and closed
convex cone is evident. Now let (V, τ) ∈ P, so that V � 0 and V � W + Diag{w}
with [p+]∗(W ) + r∗(w) ≤ τ . For x with p(x) ≤ 1 we have

xTV x ≤ xT [W + Diag{w}]x = Tr(W [xxT ]) + wT [x]2

≤ p+(xxT )[p+]∗(W ) + r([x]2)r∗(w) = p2(x)[p+]∗(W ) + r∗(w)
≤ [p+]∗(W ) + r∗(w) ≤ τ

(we have used (4.137)), whence xTV x ≤ τ for all x with p(x) ≤ 1. 2

Let us look what is our construction in the case when p(·) = ‖ · ‖s, s ∈ [1,∞],
which allows to take r(·) = ‖ · ‖s̄, s̄ = max[s/2, 1]. Setting s∗ = s

s−1 , s̄∗ = s̄
s̄−1 , we

clearly have

[p+]∗(W ) = ‖W‖s∗ :=

{ (∑
i,j |Wij |s∗

)1/s∗
, s∗ <∞

maxi,j |Wij |, s∗ =∞
, r∗(w) = ‖w‖s̄∗ ,

(4.138)
resulting in

Ps : = P‖·‖s,‖·‖s̄

=

{
(V, τ) : V ∈ SN+ ,∃(W ∈ SN , w ∈ RN

+ ) :
V �W + Diag{w},
‖W‖s∗ + ‖w‖s̄∗ ≤ τ

}
,

(4.139)
and Observation 4.31 says that Ps is compatible with the unit ball of ‖ · ‖s-norm
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on RN (and therefore with every closed convex subset of this ball).
When s = 1, that is, s∗ = s̄∗ =∞, (4.139) results in

P1 =

{
(V, τ) : V � 0,∃(W ∈ SN , w ∈ RN

+ ) :
V �W + Diag{w},
‖W‖∞ + ‖w‖∞ ≤ τ

}
= {(V, τ) : V � 0, ‖V ‖∞ ≤ τ},

(4.140)
and it is easily seen that the situation is a good as it could be, namely,

P1 = {(V, τ) : V � 0, max
‖x‖1≤1

xTV x ≤ τ}.

It can be shown (see Section 4.10.9) that when s ∈ [2,∞], so that s̄∗ = s
s−2 , (4.139)

results in

Ps = {(V, τ) : V � 0,∃(w ∈ RN
+ ) : V � Diag{w} & ‖w‖ s

s−2
≤ τ}. (4.141)

Note that
P2 = {(V, τ) : V � 0, ‖V ‖Sh,∞ ≤ τ}

and this is exactly the largest cone compatible with the unit Euclidean ball.
When s ≥ 2, the unit ball Y of the norm ‖ · ‖s is an ellitope:

{y ∈ RN : ‖y‖s ≤ 1} = {y ∈ RN : ∃(t ≥ 0, ‖t‖s̄ ≤ 1) : yTR`y := y2
` ≤ t`, ` ≤ L = N},

so that one of the cones compatible with Y is given by (4.134) with the identity
matrix in the role of M . It goes without surprise that, as it is immediately seen,
the latter cone is nothing but the cone given by (4.141).

4.6.5.5.C. Calculus of compatibility. Cones compatible with convex sets admit
a kind of fully algorithmic calculus with the rules as follows (verification of the rules
is straightforward and is skipped):

1. [passing to a subset] When Y ′ ⊂ Y are convex compact subsets of RN and a
cone Y is compatible with Y, the cone is compatible with Y ′ as well.

2. [finite intersection] Let cones Yj be compatible with convex compact sets Yj ⊂
RN , j = 1, ..., J . Then the cone

Y = cl{(V, τ) ∈ SN+ ×R+ : ∃((Vj , τj) ∈ Yj , j ≤ J) : V �
∑
j

Vj ,
∑
j

τj ≤ τ}

is compatible with Y =
⋂
j

Yj . The closure operation can be skipped whenever

all cones Yj are sharp, in which case Y is sharp as well.
3. [convex hulls of finite union] Let cones Yj be compatible with convex compact

sets Yj ⊂ RN , j = 1, ..., J , and let there exist (V, τ) such that V � 0 and

(V, τ) ∈ Y :=
⋂
j

Yj .

Then Y is compatible with Y = Conv{
⋃
j

Yj} and is sharp, provided that all Yj .

4. [direct product] Let cones Yj be compatible with convex compact sets Yj ⊂ RNj ,
j = 1, ..., J . Then the cone

Y = {(V, τ) ∈ SN1+...+NJ
+ ×R+ : ∃((Vj , τj) ∈ Yj : V � Diag{V1, ..., VJ} & τ ≥

∑
j

τj}
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is compatible with Y = Y1 × ... × YJ . This cone is sharp, provided that all Yj

are so.
5. [linear image] Let cone Y be compatible with convex compact set Y ⊂ RN , let
A be a K ×N matrix, and let Z = AY. The cone

Z = cl{(V, τ) ∈ SK+ ×R+ : ∃U � ATV A : (U, τ) ∈ Y}

is compatible with Z. The closure operation can be skipped whenever Y is either
sharp, or complete, completeness meaning that (V, τ) ∈ Y and 0 � V ′ � V imply
that (V ′, τ) ∈ Y 67. The cone Z is sharp, provided Y is so and the rank of A is
K.

6. [inverse linear image] Let cone Y be compatible with convex compact set Y ⊂
RN , let A be a N × K matrix with trivial kernel, and let Z = A−1Y := {z ∈
RK : Az ∈ Y}. The cone

Z = cl{(V, τ) ∈ SK+ ×R+ : ∃U : ATUA � V & (U, τ) ∈ Y}

is compatible with Z. The closure operations can be skipped whenever Y is
sharp, in which case Z is sharp as well.

7. [arithmetic summation] Let cones Yj be compatible with convex compact sets
Yj ⊂ RN , j = 1, ..., J . Then the arithmetic sum Y = Y1 + ...+YJ of the sets Yj
can be equipped with compatible cone readily given by the cones Yj ; this cone
is sharp, provided all Yj are so.
Indeed, the arithmetic sum of Yj is the linear image of the direct product of Yj ’s
under the mapping [y1; ...; yJ ] 7→ y1 + ...+ yJ , and it remains to combine rules 4
and 5; note the cone yielded by rule 4 is complete, so that when applying rule 5,
the closure operation can be skipped.

4.6.5.6 Spectratopic Sub-Gaussian case

As an instructive application of the approach developed so far in Section 4.6.5,
consider the special case of the estimation problem posed in Section 4.6.1, where

1. The signal set X and the unit ball B∗ of the norm conjugate to ‖ · ‖ are spec-
tratopes:

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] � tkIdk , 1 ≤ k ≤ K},

B∗ = {z ∈ Rν : ∃y ∈ Y : z = My},
Y := {y ∈ Rq : ∃r ∈ R : S2

` [y] � r`If` , 1 ≤ ` ≤ L},

(cf. Assumptions A, B in Section 4.3.3.2; as always, we lose nothing when
assuming spectratope X to be basic).

2. For every x ∈ X , observation noise ξx is (0, σ2Im)-sub-Gaussian.

Given reliability tolerance ε ∈ (0, 1) and looking for a polyhedral estimate with
m × m contrast matrix H, the design recipe suggested by Proposition 4.30 is as
follows:

• When building the cone H meeting Assumption C according to the construction

67note that if Y is compatible with Y, the completion of Y – the set Y = {(V, τ) : ∃U : 0 �
V � U, (U, τ) ∈ Y} is a complete cone compatible with Y.
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from Section 4.6.5.2, we set

Z = {ϑ2[1; ...; 1]}, ϑ = σκ, κ =
√

2 ln(2m/ε),

thus arriving at

H = {(Θ, µ) ∈ Sm+ ×R+ : σ2κ2Tr(Θ) ≤ µ}

• We specify the cones X and U compatible with Xs = X , B∗, respectively, ac-
cording to (4.133).

The resulting problem (4.131), after immediate straightforward simplifications,
reads

Opt = min
Θ,U,Λ,Υ

{
2
[
φR(λ[Υ]) + φT (λ[Λ]) + σ2κ2Tr(Θ)

]
:

Θ � 0, U � 0,Λ = {Λk � 0, k ≤ K},Υ = {Υ` � 0, ` ≤ L},[
U 1

2B
1
2B

T ATΘA+
∑
kR∗k[Λk]

]
� 0, MTUM �

∑
` S∗` [Υ`]

} ,

where, as always,

[R∗k[Λk]]ij = Tr(RkiΛkR
kj) [Rk[x] =

∑
i xiR

ki]
[S∗` [Υ`]]ij = Tr(S`iΥ`S

`j) [S`[u] =
∑
i uiS

`i]

λ[Λ] = [Tr(Λ1); ...; Tr(ΛK)], λ[Υ] = [Tr(Υ1); ...; Tr(ΥL)], φW (f) = maxw∈W wT f.

We are about to demonstrate that the polyhedral estimate yielded by the efficiently
computable (high accuracy near-) optimal solution to the above problem is near-
optimal in the minimax sense.

Observe that the matrices Q :=

[
U 1

2B
1
2B

T ATΘA+
∑
kR∗k[Λk]

]
and

[
MTUM 1

2M
TB

1
2B

TM ATΘA+
∑
kR∗k[Λk]

]
=

[
MT

In

]
Q

[
M

In

]
simultaneously are/are not positive semidefinite due to the fact that the image
space of M contains the full-dimensional set B∗ and thus is the entire Rν , so that

the image space of

[
M

In

]
is the entire Rν ×Rn. Therefore

Opt = min
Θ,U,Λ,Υ

{
2
[
φR(λ[Υ]) + φT (λ[Λ]) + σ2κ2Tr(Θ)

]
:

Θ � 0, U � 0,Λ = {Λk � 0, k ≤ K},Υ = {Υ` � 0, ` ≤ L},[
MTUM 1

2M
TB

1
2B

TM ATΘA+
∑
kR∗k[Λk]

]
� 0, MTUM �

∑
` S∗` [Υ`]

}
(4.142)

Next, if a collection Θ, U, {Λk}, {Υ`} is a feasible solution to the latter problem and
θ > 0, the scaled collection θΘ, θ−1U, {θΛk}, {θ−1Υ`} also is a feasible solution to
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the problem; optimizing with respect to scaling, we get

Opt = inf
Θ,U,Λ,Υ

{
4
√
φR(λ[Υ]) [φT (λ[Λ] + σ2κ2Tr(Θ)] :

Θ � 0, U � 0,Λ = {Λk � 0, k ≤ K},Υ = {Υ` � 0, ` ≤ L},[
MTUM 1

2M
TB

1
2B

TM ATΘA+
∑
kR∗k[Λk]

]
� 0, MTUM �

∑
` S∗` [Υ`]

}
≤ 2κOpt+,

Opt+ = inf
Θ,U,Λ,Υ

{
2
√
φR(λ[Υ]) [φT (λ[Λ]) + σ2Tr(Θ)] :

Θ � 0, U � 0,Λ = {Λk � 0, k ≤ K},Υ = {Υ` � 0, ` ≤ L},[
MTUM 1

2M
TB

1
2B

TM ATΘA+
∑
kR∗k[Λk]

]
� 0, MTUM �

∑
` S∗` [Υ`]

}
[note that κ > 1]

(4.143)
On the other hand, consider the optimization problem which under the circum-
stances is responsible for building presumably good linear estimate, that is, the
problem

Opt∗ = min
Θ,H,Λ,Υ′,Υ′′

{
φT (λ[Λ]) + φR(λ[Υ′]) + φR(λ[Υ′′]) + σ2Tr(Θ) :

Λ = {Λk � 0, k ≤ K},Υ′ = {Υ′` � 0, ` ≤ L},Υ′′ = {Υ′′` � 0, ` ≤ L},[ ∑
` S∗` [Υ′`]

1
2M

T [B −HTA]
1
2 [B −HTA]TM

∑
kR∗k[Λk]

]
� 0,[ ∑

` S∗` [Υ′′` ] 1
2M

THT

1
2HM Θ

]
� 0

}

(cf. (4.50)). Clearly, strengthening Λk � 0 to Λk � 0, we still have

Opt∗ = inf
Θ,H,Λ,Υ′,Υ′′

{
φT (λ[Λ]) + φR(λ[Υ′]) + φR(λ[Υ′′]) + σ2Tr(Θ) :

Λ = {Λk � 0, k ≤ K},Υ′ = {Υ′` � 0, ` ≤ L},Υ′′ = {Υ′′` � 0, ` ≤ L},[ ∑
` S∗` [Υ′`]

1
2M

T [B −HTA]
1
2 [B −HTA]TM

∑
kR∗k[Λk]

]
� 0,[ ∑

` S∗` [Υ′′` ] 1
2M

THT

1
2HM Θ

]
� 0

}

(4.144)
Now let Θ, H,Λ,Υ′,Υ′′ be a feasible solution to the latter problem. By the second
semidefinite constraint in (4.144) we have[ ∑

` S
∗
` [Υ′′` ] 1

2
MTHTA

1
2
ATHM ATΘA

]
=

[
I

A

]T [ ∑
` S
∗
` [Υ′′` ] 1

2
MTHT

1
2
HM Θ

] [
I

A

]
� 0,

which combines with the first semidefinite constraint in (4.144) to imply that[ ∑
` S∗` [Υ′` + Υ′′` ] 1

2M
TB

1
2B

TM ATΘA+
∑
kR∗k[Λk]

]
� 0.

By the Schur Complement Lemma (applicable due to ATΘA +
∑
kR∗k[Λk] �∑

kR∗k[Λk] � 0, where the concluding � is due to Lemma 4.89 and Λk � 0),
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this relation implies that setting

Υ` = Υ′` + Υ′′` ,

we have ∑
`

S∗` [Υ`] �MT

[
1

4
B[ATΘA+

∑
k

R∗k[Λk]]−1BT

]
︸ ︷︷ ︸

U

M.

By the same Schur Complement Lemma, for the just defined U � 0 it holds[
MTUM 1

2M
TB

1
2B

TM ATΘA+
∑
kR∗k[Λk]

]
� 0,

and in addition
MTUM �

∑
`

S∗` [Υ`]

by the origin of U . We conclude that

(Θ, U,Λ,Υ := {Υ` = Υ′` + Υ′′` , ` ≤ L})

is a feasible solution to optimization problem specifying Opt+, see (4.142), and that
the value of the objective of the latter problem at this feasible solution is

2
√
φR(λ[Υ′] + λ[Υ′′]) [φT (λ[Λ]) + σ2Tr(Θ)]

≤ φR(λ[Υ′] + λ[Υ′′]) + φT (λ[Λ]) + σ2Tr(Θ)
≤ φR(λ[Υ′]) + φR(λ[Υ′′]) + φT (λ[Λ]) + σ2Tr(Θ),

the concluding quantity in the chain being the value of the objective of problem
(4.144) at the feasible solution Θ, H,Λ,Υ′,Υ′′ to this problem. Since the resulting
inequality holds true for every feasible solution to (4.144), we conclude that Opt+ ≤
Opt∗, whence

Opt ≤ 2κOpt∗ = 2
√

2 ln(2m/ε)Opt∗. (4.145)

This is a really good news. Indeed, from the proof of Proposition 4.16 it follows
that under the circumstances, Opt∗ is within logarithmic factor of the minimax
optimal ( 1

8 , ‖ · ‖)-risk corresponding to the independent of x Gaussian noise: ξx ∼
N (0, σ2Im) for all x:

Opt∗ ≤ O(1) ln (
∑
k dk +

∑
` f`) RiskOpt1/8,

RiskOptε = inf
x̂(·)

sup
x∈X

inf
{
ρ : Probξ∼N (0,σ2I){‖Bx− x̂(Ax+ ξ)‖ > ρ} ≤ ε∀x ∈ X

}
(4.146)

Since the minimax optimal (ε, ‖ · ‖)-risk clearly can only grow when ε decreases, we
conclude that

When ε ≤ 1/8, the presumably good polyhedral estimate yielded by a feasible
near optimal, in terms of the objective, solution to problem (4.142) is mini-
max optimal within the logarithmic factor O(1) ln(

∑
k dk+

∑
` f`)

√
ln(2m/ε).
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4.6.6 Numerical illustration

To illustrate our developments, we are about to present numerical comparison of
presumably good linear and polyhedral estimates. Our setup is deliberately simple:
the signal set X is just the unit box {x ∈ Rn : ‖x‖∞ ≤ 1}, B ∈ Rn×n is “numerical
double integration:”

Bij =

{
δ2(i− j + 1), j ≤ i
0, j > i

,

so that x, modulo boundary effects, is the second order finite difference derivative
of y = Bx:

xi =
yi − 2yi−1 + yi−2

δ2
, 2 < i ≤ n,

and Ax is comprised of m randomly selected entries of Bx. The observation is

ω = Ax+ ξ, ξ ∼ N (0, σ2Im).

and the recovery norm is ‖ · ‖2. In other words, we want to recover the restriction
of twice differentiable function of one variable on the n-point regular grid on the
segment ∆ = [0, nδ] from noisy observations of this restriction taken along m ran-
domly selected points of the grid. A priori information on the function is that the
magnitude of its second order derivative does not exceed 1.

Note that both presumably good linear and polyhedral estimates x̂H , x̂H yielded
under the circumstances by Propositions 4.16, resp., 4.29, are near-optimal in the
minimax sense in terms of their ‖·‖2-, resp., (ε, ‖·‖2)-risk. The goal of our numerical
illustration is to compare the empirical performance of the estimates as exhibited
in simulation. Note that alternative comparison – via theoretical upper risk bounds
of the estimates established in Propositions 4.16 and 4.29 – does not make much
sense, since these are bounds on different from each other risks Risk{σ2Im},‖·‖2 and
Riskε,‖·‖2 .

In the experiments to be reported, we used n = 64, m = 32, δ = 4/n (i.e.,
∆ = [0, 4]); the reliability parameter for the polyhedral estimate was set to ε = 0.1.
We looked through the values {0.1, 0.01, 0.001, 0.0001} of noise intensity σ; for every
one of these values, we generated at random 20 signals x from X and recorded the
‖ · ‖2-recovery errors of the linear and the polyhedral estimates. In addition to
testing the nearly optimal polyhedral estimate PolyI yielded by Proposition 4.29,
we tested the performance of the polyhedral estimate PolyII yielded under the
circumstances by construction from Section 4.6.4. The observed ‖ · ‖2-recovery
errors of our three estimates, sorted in the non-descending order, are represented
on Figure 4.2. We see that the empirical performances of all three estimates are
rather similar, with a clear tendency for the polyhedral estimates to outperform
the linear one as the noise level goes to 0. In addition, the estimate PolyII seems to
work better than, or at the very worst similarly to, PolyI, in spite of the fact that
in the situation in question the estimate PolyI, in contrast to PolyII, is provably
near-optimal.
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Figure 4.2: Recovery errors for near-optimal linear estimate (red) and the polyhe-
dral estimates yielded by Proposition 4.29 (PolyI, blue) and by construction from
Section 4.6.4 (PolyII, cyan).

4.7 RECOVERING SIGNALS FROM NONLINEAR

OBSERVATIONS BY STOCHASTIC OPTIMIZATION

The ”common denominator” of all estimation problems considered so far in Lecture
4 is that what we observed was obtained by adding noise to the linear image of the
unknown signal we want to recover. In this section we intend to consider the signal
recovery problem in the case where the observation is obtained by adding noise to
a nonlinear transformation of the signal.

4.7.1 Problem’s setting

Motivating example for what follows is what is called logistic regression model,
where

• the unknown signal to be recovered is a vector x known to belong to a given
signal set X ⊂ Rn, which we assume to be a nonempty convex compact set;
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• our observation
ωK = {ωk = (ηk, yk), 1 ≤ k ≤ K}

stemming from a signal x is as follows:

– the regressors η1, ..., ηK are i.i.d. realizations of n-dimensional random vec-
tor η with distribution Q independent of x and such that Q possesses finite
and positive definite matrix Eη∼Q{ηηT } of second moments;

– the labels yk are generated as follows: yk is independent of the ”history”
η1, ..., ηk−1, y1, ..., yk−1 random variable taking values 0 and 1, and the prob-
ability, ηk given, for yk to take value 1 is φ(ηTk x), where

φ(s) =
exp{s}

1 + exp{s}
.

In this model, the standard (and very well studied) way to recover the signal x
underlying observations is to use Maximum Likelihood (ML) estimate: the condi-
tional, given observed regressors ηk, k ≤ K, probability to get the observed labels
as a function of a candidate signal z is

p(z, ωK) =
∑K
k=1

[
yk ln

(
exp{ηTk z}

1+exp{ηTk z}

)
+ (1− yk) ln

(
1

1+exp{ηTk x}

)]
= [

∑
k ykηk]

T
z −

∑
k ln

(
1 + exp{ηTk z}

}
,

(4.147)

and the ML estimate of the “true” signal x underlying our observation ωK is ob-
tained by maximizing the log-likelihood p(z, ωK) over z ∈ X :

x̂ML(ωK) ∈ Argmax
z∈X

p(z, ωK), (4.148)

which is a convex optimization problem.

The problem we intend to consider can be viewed as a natural generalization of
the just presented logistic regression and is as follows:

Our observation depends on unknown signal x known to belong to a given
convex compact set X ⊂ Rn and is

ωK = {ωk = (ηk, yk), 1 ≤ k ≤ K} (4.149)

with ωk, 1 ≤ k ≤ K which are i.i.d. realizations of a random pair (η, y) with
the distribution Px such that

• the regressor η is a random n × m matrix with some independent of x
probability distribution Q;

• the label y is m-dimensional random vector such that the conditional, η
given, distribution of y induced by Px is with the mean f(ηTx):

E|η{y} = f(ηTx), (4.150)

where E|η is the conditional, η given, distribution of y stemming from the
distribution Px of ω = (η, y), and f(·) : Rm → Rm is a given mapping.

Note that the logistic regression model corresponds to the case where m = 1,
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f(s) = exp{s}
1+exp{s} , and y takes values 0,1, with the conditional, η given, probability

to take value 1 equal to f(ηTx).
Another meaningful example is the one where

y = f(ηTx) + ξ,

where ξ is independent of η random vector with zero mean, say, ξ ∼ N (0, σ2Im).
Note that in the latter case the ML estimate of the signal x underlying observations
is

x̂ML(ωK) ∈ Argmin
z∈X

∑
k

‖yk − f(ηTk z)‖22. (4.151)

In contrast to what happens with logistic regression, now the optimization prob-
lem – “nonlinear Least Squares” – responsible for the ML estimate typically is
nonconvex and can be computationally difficult.

We intend to impose on the data of the estimation problem we have just de-
scribed (namely, on X , f(·), and the distributions Px, x ∈ X , of the pair (η, y))
assumptions which allow to reduce our estimation problem to a problem with con-
vex structure — strongly monotone variational inequality represented by stochastic
oracle, which will allow at the end of the day to get consistent estimate, with explicit
”finite sample” accuracy guarantees, of the signal we want to recover.

4.7.2 Assumptions

Preliminaries: monotone vector fields. A monotone vector field on Rm is a
single-valued everywhere defined mapping g(·) : Rm → Rm which possesses the
monotonicity property

[g(z)− g(z′)]T [z − z′] ≥ 0 ∀z, z′ ∈ Rm.

We say that such a field is monotone with modulus κ ≥ 0 on a closed convex set
Z ⊂ Rm, if

[g(z)− g(z′)]T [z − z′] ≥ κ‖z − z′‖22,∀z z′ ∈ Z,

and say that g is strongly monotone on Z if the modulus of monotonicity of g on
Z is positive. It is immediately seen that for a monotone vector field which is
continuously differentiable on a closed convex set Z with a nonempty interior, the
necessary and sufficient condition for being monotone with modulus κ on the set
is

dT f ′(z)d ≥ κdT d ∀(d ∈ Rn, z ∈ Z). (4.152)

Basic examples of monotone vector fields are:

• gradient fields ∇φ(x) of continuously differentiable convex functions of m vari-
ables or, more generally the vector fields [∇xφ(x, y);−∇yφ(x, y)] stemming from
continuously differentiable functions φ(x, y) which are convex in x and concave
in y;

• “diagonal” vector fields f(x) = [fi(x1); f2(x2); ...; fm(xm)] with monotonically
nondecreasing univariate components fi(·). If, in addition, fi(·) are continuously
differentiable with positive derivatives, then the associated filed f is strongly
monotone on every compact convex subset of Rm, the monotonicity modulus
depending on the subset.
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Monotone vector fields on Rn admit simple calculus which includes, in particular,
the following two rules:

I. [affine substitution of argument]: If f(·) is monotone vector field on Rm and A
is an n×m matrix, the vector field

g(x) = Af(ATx+ a)

is monotone on Rn; if, in addition, f is monotone with modulus κ ≥ 0 on a closed
convex set Z ⊂ Rm and X ⊂ Rn is closed, convex, and such that ATx+ a ∈ Z
whenever x ∈ X, g is monotone with modulus σ2κ on X, where σ is the minimal
singular value of AT .

II. [summation]: If S is a Polish space, f(x, s) : Rm × S → Rm is a Borel vector-
valued function which is monotone in x for every s ∈ S and µ(ds) is a Borel
probability measure on S such that the vector field

F (x) =

∫
S

f(x, s)µ(ds)

is well defined for all x, then F (·) is monotone. If, in addition, X is a closed
convex set in Rm and f(·, s) is monotone on X with Borel in s modulus κ(s) for
every s ∈ S, then F is monotone on X with modulus

∫
S
κ(s)µ(ds).

Assumptions. In what follows, we make the following assumptions on the data of
the estimation problem posed in Section 4.7.1:

• A.1. The vector field f(·) is continuous and monotone, and the vector field

F (z) = Eη∼Q
{
ηf(ηT z)

}
is well defined (and therefore is monotone along with f by I, II);

• A.2. The signal set X is a nonempty convex compact set, and the vector field
F is monotone with positive modulus κ on X ;

• A.3. For properly selected M <∞ and every x ∈ X it holds

E(η,y)∼Px
{
‖ηy‖22

}
≤M2. (4.153)

A simple sufficient condition for the validity of Assumptions A.1-3 with properly
selected M <∞ and κ > 0 is as follows:

• The distribution Q of η has finite moments of all orders, and Eη∼Q{ηηT } � 0;
• f is continuously differentiable, and dT f ′(z)d > 0 for all d 6= 0 and all z. Besides

this, f is with polynomial growth: for some constants C ≥ 0 and p ≥ 0 and all
z one has ‖f(z)‖2 ≤ C(1 + ‖z‖p2).

Verification of sufficiency is straightforward.

4.7.3 Main observation

The main observation underlying the construction we are about to build is as fol-
lows.



336

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 4

Observation 4.32. With Assumptions A.1-3 in force, let us associate with pair
(η, y) ∈ Rn×m ×Rm the vector field

G(η,y)(z) = ηf(ηT z)− ηy : Rn → Rn. (4.154)

For every x ∈ X , denoting by Px the common distribution of observations (4.149)
stemming from signal x ∈ X , we have

E(η,y)∼Px
{
G(η,y)(z)

}
= F (z)− F (x) ∀z ∈ Rn (a)

‖F (z)‖2 ≤ M ∀z ∈ X (b)
E(η,y)∼Px

{
‖G(η,y)(z)‖22

}
≤ 4M2 ∀z ∈ X (c)

(4.155)

Proof is immediate. Specifically, let x ∈ X . Then, taking into account that the
marginal distribution of η induced by distribution Px of (η, y) is Q and denoting
by E|η the conditional, η given, expectation over y induced by Px, we have

E(η,y)∼Px{ηy} = Eη∼Q
{
E|η{ηy}

}
= Eη

{
ηf(ηTx)

}
= F (x)

(we have used (4.150) and the definition of F ), whence,

E(η,y)∼Px
{
G(η,y)(z)

}
= E(η,y)∼Px

{
ηf(ηT z)− ηy

}
= E(η,y)∼Px

{
ηf(ηT z)

}
− F (x)

= Eη∼Q
{
ηf(ηT z)

}
− F (x) = F (z)− F (x),

as stated in (4.155.a). Besides this, for x, z ∈ X , denoting by P z|η the conditional,

η given, distribution of y induced by the distribution Pz of (η, y), and taking into
account that the marginal distribution of η induced by Pz is Q, we have

E(η,y)∼Px{‖ηf(ηT z)‖22} = Eη∼Q
{
‖ηf(ηT z)‖22

}
= Eη∼Q

{
‖Ey∼P z|η{ηy}‖

2
2

}
[since Ey∼P z|η{y} = f(ηT z)]

≤ Eη∼Q

{
Ey∼P z|η

{
‖ηy‖22

}}
[by Jensen’s inequality]

= E(~η,y)∼Pz
{
‖ηy‖22

}
≤M2 [by A.3 due to z ∈ X ].

This combines with the relation E(η,y)∼Px{‖ηy‖22} ≤M2 given by A.3 due to x ∈ X
to imply (4.155.b) and (4.155.c). 2

The consequences. Our goal is to recover the signal x ∈ X underlying observa-
tions (4.149), and under assumptions A.1-3, x is a root of the monotone vector
field

G(z) = F (z)− F (x), F (z) = Eη∼Q
{
ηf(ηT z)

}
, (4.156)

and we know that this root belongs to X ; moreover, since G(·) is strongly monotone
on X along with F (·), this root is unique. Now, finding a root, known to belong
to a given convex compact set X , of a strongly monotone on this set vector field
G is known to be a computationally tractable problem, provided we have access to
”oracle” which, given on input a point z ∈ X , returns the value G(z) of the filed at
the point. In the situation we are interested in the latter is not exactly the case:
the field G is the expectation of a random field:

G(z) = E(η,y)∼Px
{
ηf(ηT z)− ηy

}
,

and we do not know a priori what is the distribution over which the expectation is
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taken. We, however, can sample from this distribution – the samples are exactly
the observations (4.149), and we can use these samples to approximate somehow
G and use this approximation to approximate the signal x. The two standard
ways to implement this idea are to use Sample Average Approximation (SAA) and
Stochastic Approximation (SA). We are about to consider these two techniques as
applied to the situation we are in.
Sample Average Approximation. The idea underlying SAA is quite transpar-
ent: given observations (4.149), let us approximate the field of interest G with its
empirical counterpart

GωK (z) =
1

K

K∑
k=1

[
ηkf(ηTk z)− ηkyk

]
.

By the Law of Large Numbers, as K → ∞, the empirical field GωK converges
to the field of interest G, so that under mild regularity assumptions, when K is
large, GωK , with overwhelming probability, will be uniformly on X close to G,
which, due to strong monotonicity of G, would imply that a “near-zero” of GωK
on X will be close to the zero x of G, which is nothing but the signal we want to
recover. The only question is how to define a “near-zero” of GωK on X 68. The
most convenient in our context notion of a “near-zero” is the concept of a weak
solution to a Variational Inequality with monotone operator, defined as follows (we
restrict the general definition to the situation we are interested in):

Let X ⊂ Rn be a nonempty convex compact set, and H(z) : X → Rn be
a monotone (i.e., [H(z) −H(z′)]T [z − z′] ≥ 0 for all z, z′ ∈ X ) vector field.
A vector z∗ ∈ X is called a weak solution to the variational inequality (VI)
associated with H,X when

HT (z)(z − z∗) ≥ 0 ∀z ∈ X .

Let X ⊂ Rn be a nonempty convex compact set and H be monotone on X . It is
well known that

• The VI associated with H,X (let us denote it VI(H,X )) always has a weak
solution. Besides this, it is clear that if z̄ ∈ X is a root of H, then z̄ is a weak
solution to VI(H,X ) 69.

• When H is continuous on X , every weak solution z̄ to VI(H,X ) is also a strong
solution, meaning that

HT (z̄)(z − z̄) ≥ 0 ∀z ∈ X . (4.157)

Indeed, (4.157) clearly holds true when z = z̄. Assuming z 6= z̄ and setting
zt = z̄+t(z−z̄), 0 < t ≤ 1, we have HT (zt)(zt−z̄) ≥ 0 (since z̄ is a weak solution),
whence HT (zt)(z − z̄) ≥ 0 (since z − z̄ is a positive multiple of zt − z̄). Passing
to limit as t → +0 and invoking the continuity of H, we get HT (z̄)(z − z̄) ≥ 0,
as claimed.

68note that we in general cannot define a “near-zero” of GωK on X as a root of GωK on this
set – while G does have root belonging to X , nobody told us that the same holds true for GωK .

69indeed, when z̄ ∈ X and H(z̄) = 0, monotonicity of H implies that HT (z)[z − z̄] =
[H(z)−H(z̄)]T [z − z̄] ≥ 0 for all z ∈ X , that is, z̄ is a weak solution to the VI.
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• When H is the gradient field of a continuously differentiable convex function on
X (such a field indeed is monotone), weak (or, which in the case of continuous
H is the same, strong) solutions to VI(H,X ) are exactly the minimizers of the
function on X .

In the sequel, we heavily exploit the following simple and well known fact:

Lemma 4.33. Let X be a convex compact set, H be a monotone vector field on X
with monotonicity modulus κ > 0, and let z̄ be a weak solution to VI(H,X ). Then
the weak solution to VI(H,X ) is unique. Besides this,

HT (z)[z − z̄] ≥ κ‖z − z̄‖22. (4.158)

Proof: Under the premise of Lemma, let z ∈ X and let z̄ be a weak solution to
VI(H,X ) (recall that it does exist). Setting zt = z̄+ t(z− z̄), for t ∈ (0, 1) we have

HT (z)[z − zt] ≥ HT (zt)[z − zt] + κ‖z − zt‖2 ≥ κ‖z − zt‖2,

where the first ≥ is due to strong monotonicity of H, and the second ≥ is due to the
fact that HT (zt)[z− zt] is proportional, with positive coefficient, to HT (zt)[zt− z̄],
and the latter quantity is nonnegative since z̄ is a weak solution to the VI in
question. We end up with HT (z)(z− zt) ≥ κ‖z− zt‖22; passing to limit as t→ +0,
we arrive at (4.158). To prove uniqueness of a weak solution, assume that aside
of the weak solution z̄ there exists a weak solution z̃ distinct form z̄, and let us
set z′ = 1

2 [z̄ + z̃]. Since both z̄ and z̃ are weak solutions, both the quantities
HT (z′)[z′− z̄] and HT (z′)[z′− z̃] should be nonnegative, and since the sum of these
quantities is 0, both of them are zero; applying (4.158) to z = z′, we get z′ = z̄,
whence z̃ = z̄ as well. 2

Now let us come back to the estimation problem we are considering, and let As-
sumptions A.1-3 be satisfied. Note that then the vector fields G(ηk,yk)(z) defined in
(4.154), and therefore the vector field GωK (z) are continuous and monotone. With
the SAA estimation, we compute a weak solution x̂(ωK) to VI(GωK ,X ) and treat
it as the SAA estimate of signal x underlying observations (4.149). Since the vector
field GωK (·) is monotone and its values at given points are efficiently computable,
provided the values of f are so, computing a (whatever high accuracy approxima-
tion to) a weak solution to VI(GωK ,X ) is a computationally tractable problem (see,
e.g., [118]). Moreover, utilizing the techniques from [133, Chapter 5], under mild
additional to A.1-3 regularity assumptions one can get non-asymptotical upper
bound on, say, the expected ‖ · ‖22-deviation of the SAA estimate from the true
signal x as a function of the sample size K and find out the rate at which this
bound converges to 0 as K →∞; this analysis, however, goes beyond our scope.

Let us look what is the SAA estimate in the logistic regression model. In this
case we have

G(ηk,yk)(z) =
[

exp{ηTk z}
1+exp{ηTk z}

− yk
]
ηk,

GωK (z) = 1
K

∑K
k=1

[
exp{ηTk z}

1+exp{ηTk z}
− yk

]
ηk

= 1
K∇z

∑
k

[
ln
(
1 + exp{ηTk z}

)
− ykηTk z

]
,

that is, GωK (z) is proportional, with negative coefficient (−1/K), to the gradient
field of the log-likelihood p(z, ωK), see (4.147). As a result, in the case in question
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the weak solutions to VI(GωK ,X ) are exactly the maximizers of the log-likelihood
p(z, ωK) over z ∈ X , that is, for the logistic regression the SAA estimate is nothing
but the Maximum Likelihood estimate x̂ML(ωK) as defined in (4.148). Note that this
phenomenon is specific for the logistic regression model70. Say, in the ”nonlinear
least squares” example described in Section 4.7.1 with (for the sake of simplicity,
scalar) monotone f(·) the vector field GωK (·) is given by

GωK (z) =
1

K

K∑
k=1

[
f(ηTk z)− yk

]
ηk

which is quite different (provided that f is nonlinear) from the gradient field

ΓωK (z) = 2

K∑
k=1

f ′(ηTk z)
[
f(ηTk z)− yk

]
ηk

of the minus log-likelihood appearing in (4.151). As a result, in this case the ML
estimate (4.151) is, in general, different from the SAA estimate, especially when
taking into account that the SAA estimate, in contrast to the ML one, is easy to
compute.

Stochastic Approximation estimate. The Stochastic Approximation (SA) estimate
stems from a simple algorithm – Subgradient Descent – for solving variational in-
equality VI(G,X ). Were the values of the vector field G(·) are available, one could
approximate a root x ∈ X of this VI by running the recurrence

zk+1 = ProjX [zk − γkG(zk)], k = 1, 2, ...,K,

where

• ProjX [z] is the metric projection of Rn onto X :

ProjX [z] = argmin
u∈X

‖z − u‖2;

• γk > 0 are properly selected stepsizes;
• the starting point z1 is an arbitrary point of X .

70The equality between the SAA and the ML estimates in the case of logistic regression is
due to the fact that the logistic sigmoid f(s) = exp{s}/(1 + exp{s}) “happens” to satisfy the
identity f ′(s) = f(s)(1 − f(s)). When replacing in the logistic model the above sigmoid with
f(s) = φ(s)/(1 + φ(s)), with differentiable monotonically nondecreasing positive φ(·), the SAA
estimate becomes the weak solution to VI(Φ,X ) with

Φ(z) =
∑
k

[
φ(ηTk z)

1 + φ(ηTk z)
− yk

]
ηk,

while the gradient field of the quantity we want to minimize when computing the ML estimate
(this quantity is the minus log-likelihood −

∑
k

[
yk ln(f(ηTk z)) + (1− yk) ln(1− f(ηTk z))

]
) is

Ψ(z) =
∑
k

φ′(ηTk z)

φ(ηTk z)

[
φ(ηTk z)

1 + φ(ηTk z)
− yk

]
ηk;

when k > 1 and φ is not an exponent, Φ and Ψ are “essentially different,” so that the SAA
estimate typically will differ from the ML one.
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It is well known that under Assumptions A.1-3 this recurrence with properly se-
lected stepsizes and started at a point from X allows to approximate the root of
G (in fact, the unique weak solution to VI(G,X )) to a whatever high accuracy,
provided K is large enough. We, however, are in the situation when the actual
values of G are not available; the standard way to cope with this difficulty is to
replace in the above recurrence the “unobservable” values G(zk) of G with their
unbiased random estimates G(ηk,yk)(zk). This modification gives rise to Stochastic
Approximation (coming back to [93]) – the recurrence

zk+1 = ProjX [zk − γkG(ηk,yk)(zk)], 1 ≤ k ≤ K, (4.159)

where z1 is a once for ever chosen point from X , and γk > 0 are deterministic.
What is on our agenda now is the (perfectly well known) convergence analysis

of SA under assumptions A.1-3. To this end observe that zk are deterministic
functions of the initial fragments ωk−1 = {ωt, 1 ≤ t < k} of our sequence of
observations ωK = {ωk = (ηk, yk), 1 ≤ k ≤ K}:

zk = Zk(ωk−1).

Let us set

Dk =
1

2
‖Zk(ωk−1)− x‖22, dk = Eωk−1∼Px×...×Px{Dk(ωk−1)},

where x ∈ X is the signal underlying observations (4.149). Note that, as it is well
known, the metric projection onto a closed convex set X possesses the property as
follows:

∀(z ∈ Rn, u ∈ X ) : ‖ProjX [z]− u‖2 ≤ ‖z − u‖2.
Consequently, for 1 ≤ k ≤ K it holds

Dk+1(ωk) = 1
2
‖ProjX [Zk(ωk−1)− γkGωk (Zk(ωk−1))]− x‖22

≤ 1
2
‖Zk(ωk−1)− γkGωk (Zk(ωk−1))− x‖22

= 1
2

[
‖Zk(ωk−1)− x‖22 − γkGTωk (Zk(ωk−1))[Zk(ωk−1)− x] + 1

2
γ2
k‖Gωk (Zk(ωk−1))‖22

]
.

Taking expectations w.r.t. ωk ∼ Px × ...× Px︸ ︷︷ ︸
Pkx

of both sides of the resulting inequal-

ity and keeping in mind relations (4.155) along with the fact that Zk takes values
in X , we get

dk+1 ≤ dk − γkEωk−1∼Pk−1
x

{
GT (Zk(ωk−1))[Zk(ωk−1)− x]

}
+ 2γ2

kM
2. (4.160)

Recalling that we are in the case when G is strongly monotone, with modulus κ > 0,
on X , x is the weak solution VI(G,X ), and Zk takes values in X , invoking (4.158),
the expectation in (4.160) is at least κdk, and we arrive at the relation

dk+1 ≤ (1− κγk)dk + 2γ2
kM

2. (4.161)

Let us set

S =
8M2

κ2
, γk =

κS
4M2(k + 1)

=
2

κ(k + 1)
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and verify by induction in k that for k = 1, 2, ...,K + 1 it holds

dk ≤
S

k + 1
. (∗k)

Base k = 1. Let D be the ‖ · ‖2-diameter of X , and z± ∈ Z be such that
‖z+ − z−‖2 = D. By (4.155) we have ‖F (z)‖2 ≤ M for all z ∈ X , and by strong
monotonicity of G(·) on X we have

[G(z+)−G(z−)]T [z+ − z−] = [F (z+)− F (z−)][z+ − z−] ≥ κ‖z+ − z−‖22 = κD2;

By Cauchy inequality, the left hand side in the concluding ≥ is at most 2MD, and
we get

D ≤ 2M

κ
,

whence S ≥ 2D2, so that S
2 ≥ D

2. On the other hand, due to the origin d1 we have
d1 ≤ D2. Thus, (∗1) holds true.
Inductive step (∗k) ⇒ (∗k+1). Now assume that (∗k) holds true for some k,
1 ≤ k ≤ K, and let us prove that (∗k+1) holds true as well. Observe that κγk =
2/(k + 1) ≤ 1, so that

dk+1 ≤ dk(1− κγk) + 2γ2
kM

2 [by (4.161)]
≤ S

k+1 (1− κγk) + 2γ2
kM

2 [by (∗k) and due to κγk ≤ 1]

= S
k+1

[
1− 2

k+1

]
+ 8M2

κ2(k+1)2 = 8M2(k−1)
κ2(k+1)2 + 8M2

κ2(k+1)2

= 8kM2

κ2(k+1)2 = S
k+2

k(k+2)
(k+1)2 = S

k+2
k2+2k
k2+2k+1 ≤

S
k+2 ,

so that (∗k+1) hods true. Induction is complete. Recalling what dk is, we have
arrived at the following

Proposition 4.34. Under Assumptions A.1-3 and with the stepsizes

γk =
2

κ(k + 1)
, k = 1, 2, ... (4.162)

for every signal x ∈ X the sequence of estimates x̂k(ωk) = zk+1 with zk = Zk(ωk)
given by the SA recurrence (4.159) and ωk = (ηk, yk) given by (4.149) for every k
one has

Eωk∼Pkx

{
‖x̂k(ωk)− x‖22

}
≤ 16M2

κ2(k + 2)
, k = 1, 2, ... (4.163)

Px being the distribution of (η, y) stemming from signal x.

4.7.4 Numerical illustration

To illustrate the above developments, we present here results of some numerical
experiments. Our setup is deliberately simplistic and is as follows:

• X = {x ∈ Rn : ‖x‖2 ≤ 1};
• the distribution Q of η is N (0, In);
• f is the monotone vector field on R given by one of the following four options:
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A. f(s) = exp{s}/(1 + exp{s});
B. f(s) = s;

C. f(s) = max[s, 0];

D. f(s) = min[1,max[s, 0]].

• conditional, η given, distribution of y induced by Px is

– Bernoulli distribution with probability f(ηTx) of outcome 1 in the case of
A (i.e., A results in the logistic model),

– Gaussian distribution N (f(ηTx), In) in cases B – D.

The dimension n in all or experiments was set to 100, and the number of observa-
tions K took values 1000, 10000, and 50000. The signal x underlying observations
(4.149) in a particular experiment was selected at random from the uniform distri-
bution on the unit sphere (which is the boundary of our X ).

In a particular experiment, we computed the SAA and the SA estimates (note
that in the cases A, B the SAA estimate is the Maximum Likelihood estimate as
well).

In SA, the stepsizes γk were selected according to (4.162) with “empirically
selected” κ . Specifically, given observations ωk = (ηk, yk), k ≤ K, see (4.149), we
used them to build the SA estimate in two stages:
— training stage, where we generate at random “training signal” x′ ∈ X and then
generate labels y′k as if x′ were the actual signal; for example, in the case of A
y′k is assigned value 1 with probability f(ηTk x

′) and value 0 with complementary
probability. After “training signal” and associated labels are generated, we run on
the resulting artificial observations SA with different values of κ, look how well
the resulting estimate recovers x′, and select the value of κ resulting in the best
recovery;
— execution stage, where we run on the actual data SA with stepsizes (4.162)
specified by κ found at the training stage.

The results of typical numerical experiments are as follows:

case K error, SAA cpu, SAA error, SA cpu, SA

A 1000 0.678 7.2 0.677 1.04
A 10000 0.201 93.8 0.213 3.5
A 50000 0.100 520.0 0.102 15.6

B 1000 0.290 4.3 0.325 0.9
B 10000 0.106 69.4 0.106 1.9
B 50000 0.049 397.5 0.0.49 8.8

C 1000 0.611 4.0 0.656 0.3
C 10000 0.216 76.1 0.223 1.5
C 50000 0.095 420.0 0.098 7.0

D 1000 0.719 4.8 0.743 0.3
D 10000 0.268 72.4 0.280 1.5
D 50000 0.111 425.6 0.112 9.3

recovery error in ‖ · ‖2, cpu time in sec

Note that the cpu time for SA includes both the training and the execution stages.
The conclusion from these (simplistic!) experiments is that as far as estimation
quality is concerned, the SAA estimate marginally outperforms the SA one, while

In principle, we could get (lower bounds on) the modules of strong monotonicity of the vectors
fields F (·) we are interested in analytically, but this would be boring and conservative.
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being essentially more time consuming. Note also that the observed in our experi-
ments dependence of recovery errors on K is consistent with the convergence rate
O(1/

√
K) established by Proposition 4.34.

4.7.5 ”Single-observation” case

Let us look at the special case of our estimation problem where the sequence
η1, ..., ηK of regressors in (4.149) is deterministic. At the first glance, this situ-
ation goes beyond our setup, where the regressors should be i.i.d. drawn from some
distribution Q. We can, however, circumvent this ”contradiction” by saying that
now we are speaking about single-observation case with the regressor being the
matrix [η1, ..., ηK ] and Q being a degenerate distribution – the one supported at a
singleton. Specifically, consider the case where our observation is

ω = (η, y) ∈ Rn×mK ×RmK (4.164)

(m,n,K are given positive integers), and the distribution Px of observation stem-
ming from a signal x ∈ Rn is as follows:

• η is a given independent of x deterministic matrix;
• y is random, and the distribution of y induced by Px is with mean φ(ηx), where
φ : RmK → RmK is a given mapping.

As an instructive example linking our current setup with the previous one, one can
consider the case where η = [η1, ..., ηK ] with n×m deterministic “individual regres-
sors” ηk, y = [y1; ...; yK ] with random “individual labels” yk ∈ Rm independent, x
given, across k and such that the induced by x expectations of yk are f(ηTk x) for
some f : Rm → Rm, and to set φ([u1; ...;uK ]) = [f(u1); ...; f(uK)]. The resulting
“single observation” model is a natural analogy of the K-observation model con-
sidered so far, the only difference being that the individual regressors now form a
fixed deterministic sequence rather than to be i.i.d. samples of some random n×m
matrix.

As everywhere in this section, our goal is to use observation (4.164) to recover
the (unknown) signal x underlying, as explained above, the distribution of the
observation. Formally, we are now in the case K = 1 of our previous recovery
problem where Q is supported on a singleton {η} and can use the constructions
developed so far. Specifically,

• The vector field F (z) associated with our problem (it used to be Eη∼Qηf(ηT z)})
is

F (z) = ηφ(ηT z),

and the vector field
G(z) = F (z)− F (x),

x being the signal underlying observation (4.164), is

G(z) = E(η,y)∼Px{F (z)− ηy}

(cf. (4.156)); as before, the signal we are interested to recover is a zero of the
latter field. Note that now the vector field F (z) is observable, while before it
was the expectation of an observable vector field, and the vector field G still is
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the expectation, over Px, of an observable vector field:

G(z) = E(η,y)∼Px{ηφ(ηT z)− ηy︸ ︷︷ ︸
Gy(z)

},

cf. Observation 4.32.
• Assumptions A.1-2 now read

A.1′ The vector field φ(·) : RmK ×RmK is continuous and monotone, so that
F (·) is continuous and monotone as well,

A.2′ X is a nonempty compact convex set, and F is strongly monotone, with
modulus κ > 0, on X ;

as before, a simple sufficient condition for the validity of the above monotonicity
assumptions is positive definiteness of the matrix ηηT plus strong monotonicity of
φ on every bounded set.

• For our present purposes, it makes sense to reformulate assumption A.3 in the
following equivalent form:

A.3′ For properly selected σ ≥ 0 and every x ∈ X it holds

E(η,y)∼Px{‖η[y − φ(ηTx)]‖22} ≤ σ2.

In our present situation the SAA x̂(y) is the unique weak solution to VI(Gy,X ),
and we can easily quantify the quality of this estimate:

Proposition 4.35. In the situation in question and under Assumptions A.1′-3′

for every x ∈ X and every realization (η, y) of induced by x observation (4.164)
one has

‖x̂(y)− x‖2 ≤ κ−1‖ η[y − φ(ηTx)]︸ ︷︷ ︸
∆(x,y)

‖2, (4.165)

whence also
E(η,y)∼Px{‖x̂(y)− x‖22} ≤ σ2/κ2. (4.166)

Proof. Let x ∈ X be the signal underlying observation (4.164), and G(z) =
F (z)− F (x) be the associated vector field G. We have

Gy(z) = F (z)−ηy = F (z)−F (x)+[F (x)−ηy] = G(z)−η[y−φ(ηTx)] = G(z)−∆(x, y).

For y fixed, z̄ = x̂(y) is the weak, and therefore the strong (sinceGy(·) is continuous)
solution to VI(Gy,X ), implying, due to x ∈ X , that

0 ≤ GTy (z̄)[x− z̄] = GT (z̄)[x− z̄]−∆T (y)[x− z̄],

whence
−GT (z̄)[x− z̄] ≤ −∆T (x, y)[x− z̄].

Besides this, G(x) = 0, whence GT (x)[x− z̄] = 0, and we arrive at

[G(x)−G(z̄)]T [x− z̄] ≤ −∆T (x, y)[x− z̄].
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K λ Err = ‖x̂− x‖2 Err/[λ
√
n/K] K λ Err = ‖x̂− x‖2 Err/[λ

√
n/K]

100 1.0 0.886 0.89 8100 1.0 0.239 2.15
100 0.1 0.685 6.85 8100 0.1 0.031 2.79

900 1.0 0.572 1.72 72900 1.0 0.080 2.17
900 0.1 0.098 2.95 72900 0.1 0.009 2.44

Table 4.2: Performance of SAA recovery, n = 100, m = 1

whence also
κ‖x− z̄‖22 ≤ −∆T (x, y)[x− z̄]

(recall that G, along with F , is strongly monotone with modulus κ on X and
x, z̄ ∈ X ). Applying the Cauchy inequality, we arrive at (4.165). 2

Example. Consider the case where m = 1, φ is strongly monotone, with modulus
κφ > 0, on the entire RK , and η in (4.164) is drawn from “Gaussian ensemble”
– the rows ηTk of the n ×K matrix η are independently of each other drawn from
N (0, In). Assume also that the observation noise is Gaussian:

y = φ(ηTx) + λξ, ξ ∼ N (0, IK).

It is well known that when K/n ≥ 1, the minimal singular value of the n×n matrix
ηηT with overwhelming as K/n → ∞ probability is at least O(1)K, implying
that when K/n � 1, the typical modulus of strong monotonicity of F (·) is κ ≥
O(1)Kκφ. Besides this, in our situation the Frobenius norm of η with overwhelming

as K/n→∞ probability is at most O(1)
√
nK. In other words, when K/n is large,

“typical” recovery problem from the ensemble we have just described satisfies the
premise of Proposition 4.35 with κ = O(1)Kκφ and σ2 = O(λ2nK). As a result,
(4.166) becomes the bound

E(η,y)∼Px{‖x̂(y)− x‖22} ≤ O(1)
λ2n

κ2
φK

. [K � n]

It is well known that in the standard case of linear regression, where φ(x) = κφx,
the resulting bound is near-optimal, provided X is large enough.

Numerical illustration to follow deals with the situation described in the Exam-
ple above, where we set m = 1, n = 100 and use

φ(u) = arctan[u] := [arctan(u1); ...; arctan(uK)] : RK → RK .

The set X is just the unit ball {x ∈ Rn : ‖x‖2 ≤ 1}; in a particular experiment,
η was chosen at random from the Gaussian ensemble as described above, and the
signal x ∈ X underlying observation (4.164) was drawn at random. The observation
noise y − φ(ηTx) was N (0, λ2IK). The typical simulation results are presented in
Table 4.2 and on Figure 4.3.
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Figure 4.3: Performance of SAA recovery, m = 100, m = 1
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4.8 APPENDIX: CALCULUS OF ELLITOPES/SPECTRATOPES

We present here the rules of the calculus of ellitopes/spectratopes. We formulate
these rules for ellitopes; the “spectratopic versions” of the rules are straightforward
modifications of the “ellitopic versions.”

• Intersection X =
I⋂
i=1

Xi of ellitopes

Xi = {x ∈ Rn : ∃(yi ∈ Rni , ti ∈ Ti) : x = Piy
i & [yi]TRiky

i ≤ tik, 1 ≤ k ≤ Ki}

is an ellitope. Indeed, this is evident when X = {0}. Assuming X 6= {0}, we
have

X = {x ∈ Rn : ∃(y = [y1; ...; yI ] ∈ Y, t = (t1, ..., tI) ∈ T = T1 × ...× TI) :

x = Py := P1y
1 & [yi]TRiky

i︸ ︷︷ ︸
yTR+

iky

≤ tik, 1 ≤ k ≤ Ki, 1 ≤ i ≤ I},

Y = {[y1; ...; yI ] ∈ Rn1+...+nI : Piy
i = P1y

1, 2 ≤ i ≤ I}

(note that Y can be identified with Rn̄ with a properly selected n̄ > 0).

• Direct product X =
I∏
i=1

Xi of ellitopes

Xi = {xi ∈ Rni : ∃(yi ∈ Rn̄i , ti ∈ Ti) :
xi = Piy

i, 1 ≤ i ≤ I & [yi]TRiky
i ≤ tik, 1 ≤ k ≤ Ki}

is an ellitope:

X = {[x1; ...;xI ] ∈ Rn1 × ...×RnI : ∃
(

y = [y1; ...; yI ] ∈ Rn̄1+...n̄I

t = (t1, ..., tI) ∈ T = T1 × ...× TI

)
)

x = Py := [P1y
1; ...;PIy

I ], [yi]TRiky
i︸ ︷︷ ︸

yT S+
ik
y

≤ tik, 1 ≤ k ≤ Ki, 1 ≤ i ≤ I}

• The linear image Z = {Rx : x ∈ X}, R ∈ Rp×n, of an ellitope X = {x ∈ Rn :
∃(y ∈ Rn̄, t ∈ T ) : x = Py & yTRky ≤ tk, 1 ≤ k ≤ K} is an ellitope:

Z = {z ∈ Rp : ∃(y ∈ Rn̄, t ∈ T ) : z = [RP ]y & yTRky ≤ tk, 1 ≤ k ≤ K}.

• The inverse linear image Z = {z ∈ Rq : Rz ∈ X}, R ∈ Rn×q, of an ellitope
X = {x ∈ Rn : ∃(y ∈ Rn̄, t ∈ T ) : x = Py & yTRky ≤ tk, 1 ≤ k ≤ K} under
linear mapping z 7→ Rz : Rq → Rn is an ellitope, provided that the mapping is
an embedding: KerR = {0}. Indeed, setting E = {y ∈ Rn̄ : Py ∈ ImR}, we get
a linear subspace in Rn̄; if E = {0}, Z = {0} is a spectratope; if E 6= {0}, we
have

Z = {z ∈ Rq : ∃(y ∈ E, t ∈ T ) : z = P̄ y & yTRky ≤ tk, 1 ≤ k ≤ K},
P̄ : P̄ y = ΠR, where Π : ImR→ Rq is the inverse of z 7→ Rz : Rq → ImR

(E can be identified with some Rk, and Π is well defined since R is an embed-
ding).

• The arithmetic sum X = {x =
∑I
i=1 x

i : xi ∈ Xi, 1 ≤ i ≤ I}, of ellitopes Xi is
an ellitope, with representation readily given by those of X1, ...,XI .
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Indeed, X is the image of X1 × ... × XI under the linear mapping [x1; ...;xI ] 7→
x1 + .... + xI , and taking direct products and images under linear mappings
preserve ellitopes.
• “S-product.” Let Xi = {xi ∈ Rni : ∃(yi ∈ Rn̄i , ti ∈ Ti) : xi = Piy

i, 1 ≤ i ≤
I & [yi]TRiky

i ≤ tik, 1 ≤ k ≤ Ki} be ellitopes, and let S be a convex compact
set in RI

+ which intersects the interior of RI
+ and is monotone: 0 ≤ s′ ≤ s ∈ S

implies s′ ∈ S. We associate with S the set

S1/2 =
{
s ∈ RI

+ : [s2
1; ...; s2

I ] ∈ S
}

of entrywise square roots of points from S; clearly, S1/2 is a convex compact set.
Xi and S specify the S-product of the sets Xi, i ≤ I, defined as the set

Z =
{
z = [z1; ...; zI ] : ∃(s ∈ S1/2, xi ∈ Xi, i ≤ I) : zi = six

i, 1 ≤ i ≤ I
}
,

or, equivalently,

Z =

{
z = [z1; ...; zI ] : ∃(r = [r1; ...; rI ] ∈ R, y1, ..., yI) :

zi = Piyi ∀i ≤ I, [yi]TRikyi ≤ rik ∀(i ≤ I, k ≤ Ki)

}
,

R = {[r1; ...; rI ] ≥ 0 : ∃(s ∈ S1/2, ti ∈ Ti) : ri = s2
i t
i ∀i ≤ I}.

We claim that Z is an ellitope. All we need to verify to this end is that the set
R is as it should be in an ellitopic representation, that is, that R is compact
and monotone subset of Rn̄1+...+n̄I

+ containing a strictly positive vector (all this
is evident), and that R is convex. To verify convexity, let Ti = cl{[ti; τi] : τi >
0, ti/τi ∈ Ti} be the conic hulls of Ti’s. We clearly have

R = {[r1; ...; rI ] : ∃s ∈ S1/2 : [ri; s2
i ] ∈ Ti, i ≤ I}

= {[r1; ...; rI ] : ∃σ ∈ S : [ri;σi] ∈ Ti, i ≤ I},

where the concluding equality is due to the origin of S1/2. The concluding set
in the above chain clearly is convex, and we are done.
As an example, consider the situation where the ellitopes Xi posses nonempty
interiors and thus can be thought of as the unit balls of norms ‖ · ‖(i) on the
respective spaces Rn̄i , and let S = {s ∈ RI

+ : ‖s‖p/2 ≤ 1}, where p ≥ 2. In this

situation, S1/2 = {s ∈ RIU+ : ‖s‖p ≤ 1}, whence Z is the unit ball of the “block
p-norm”

‖[z1; ...; zI ]‖ = ‖
[
‖z1‖(1); ...; ‖zI‖(I)

]
‖p.

Note also that the usual direct product of I ellitopes is their S-product, with
S = [0, 1]I .
• “S-weighted sum.” Let Xi ⊂ Rn be ellitopes, 1 ≤ i ≤ I, and let S ⊂ RI+, S1/2

be the same as in the previous item. Then the S-weighted sum of the sets Xi,
defined as

X = {x : ∃(s ∈ S1/2, xi ∈ Xi, i ≤ I) : x =
∑
i

six
i}

is an ellitope. Indeed, the set in question is the image of the S-product of Xi
under the linear mappings [z1; ...; zI ] 7→ z1 + ...+ zI , and taking S-products and
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linear images preserves the property to be an ellitope.

It should be stressed that the outlined “calculus rules” are fully algorithmic: repre-
sentation (4.6) of the result of an operation is readily given by the representations
(4.6) of the operands.

4.9 EXERCISES FOR LECTURE 4

† marks more difficult exercises.

4.9.1 Linear Estimates vs. Maximum Likelihood

Exercise 4.36. . Consider the problem posed in the beginning of Lecture 4: Given
observation

ω = Ax+ σξ, ξ ∼ N (0, I)

of unknown signal x known to belong to a given signal set X ⊂ Rn, we want to
recover Bx.

Let us restrict ourselves with the case where A is square and invertible matrix,
B is the identity, and X is a computationally tractable convex compact set. As
far as computational aspects are concerned, the situation is well suited for utilizing
the “magic wand” of Statistics – the Maximum Likelihood (ML) estimate where the
recovery of x is

x̂ML(ω) = argmin
y∈X

‖ω −Ay‖2 (ML)

– the signal which maximizes, over y ∈ X , the likelihood (the probability density)
to get the observation we actually got. Indeed, with computationally tractable X ,
(ML) is an explicit convex, and therefore efficiently solvable, optimization problem.
Given the exclusive role played by ML estimate in Statistics, perhaps the first
question about our problem of interest is: how good in the situation in question is
the ML estimate?

The goal of what follows is to demonstrate that in the situation we are interested
in, the ML estimate can be “heavily nonoptimal,” and this may happen even when
the techniques we develop in Lecture 4 do result in efficiently computable near-
optimal linear estimate.

To justify the claim, investigate the risk (4.2) of the ML estimate in the case
when

X = {x ∈ Rn : x2
1 + ε−2

n∑
i=2

x2
i ≤ 1} & A = Diag{1, 1/ε, ..., 1/ε},

ε and σ are small, and n is large, specifically, σ2(n − 1) ≥ 2. Accompany your
theoretical analysis by numerical experiments – compare the empirical risks of the
ML estimate with theoretical and empirical risks of the optimal under the circum-
stances linear estimate.
Recommended setup: n runs through {256, 1024, 2048} and ε = σ run through
{0.01; 0.05; 0.1}, and signal x is generated as

x = [cos(φ); sin(φ)εζ],
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where φ ∼ Uniform[0, 2π] and random vector ζ is independent of φ and is dis-
tributed uniformly on the unit sphere in Rn−1.

4.9.2 Measurement Design in Signal Recovery

Exercise 4.37. [Measurement Design in Gaussian o.s.] As a preamble to the Exer-
cise, please read the story about possible “physics” of Gaussian o.s. from Section
2.7.3.3. The summary of this story is as follows:
We consider the Measurement Design version of signal recovery in Gaussian o.s.,
specifically, we are allowed to use observations

ω = Aqx+ σξ [ξ ∼ N (0, Im)]

where
Aq = Diag{√q1,

√
q2, ...,

√
qm}A,

with a given A ∈ Rm×n and vector q which we can select in a given convex compact
set Q ⊂ Rm

+ . The signal x underlying the observation is known to belong to a given
ellitope X . Your goal is to select q ∈ Q and a linear recovery ω 7→ GTω of the
image Bx of x ∈ X , with B given, resulting in the minimal worst-case, over x ∈ X ,
expected ‖ · ‖22 recovery risk. Modify, according to this goal, problem (4.13). Is
it possible to end up with a tractable problem? Work out in full details the case
when Q = {q ∈ Rm

+ :
∑
i qi = m}.

Exercise 4.38. [follow-up to Exercise 4.37] A translucent bar of length n = 32 is
comprised of 32 consecutive segments of length 1 each, with density ρi of i-th
segment known to belong to the interval [µ− δi, µ+ δi].

Sample translucent bar

The bar is lightened from the left end; when light passes through a segment with
density ρ, light’s intensity is reduced by factor e−αρ. The intensity of light at the
left endpoint of the bar is 1. You can scan the segments one by one from left to
right and measure light intensity `i at the right endpoint of i-th segment for time qi;
the result zi of the measurement is `ie

σξi/
√
qi , where ξi ∼ N (0, 1) are independent

across i. The total time budget is n, and you are interested to recover the m = n/2-
dimensional vector of densities of the right m segments. Build optimization problem
responsible for near-optimal linear recovery with and without Measurement Design
(with no Measurement Design, each segment is observed during unit time) and
compare the resulting near-optimal risks.
Recommended data:

α = 0.01, δi = 1.2 + cos(4π(i− 1)/n), µ = 1.1 max
i
δi, σ = 0.001.

Exercise 4.39. Let X ⊂ Rn be a convex compact set, let b ∈ Rn, and let A be an
m × n matrix. Consider the problem of affine recovery ω 7→ hTω + c of the linear
function Bx = bTx of x ∈ X from indirect observation

ω = Ax+ σξ, ξ ∼ N (0, Im).

Given tolerance ε ∈ (0, 1), we are interested to minimize the worst-case, over x ∈ X,



SIGNAL RECOVERY FROM GAUSSIAN OBSERVATIONS AND BEYOND

StatOpt˙LN˙NS January 21, 2019 7x10

351

width of (1− ε) confidence interval, that is, the smallest ρ such that

Prob{ξ : bTx−fT (Ax+σξ) > ρ} ≤ ε/2 & Prob{ξ : bTx−fT (Ax+σξ) < ρ} ≤ ε/2 ∀x ∈ X.

Pose the problem as a convex optimization problem and consider in details the case
where X is the box {x ∈ Rn : aj |xj | ≤ 1, 1 ≤ j ≤ n}, where aj > 0 for all j.

Exercise 4.40. Let X be an ellitope in Rn:

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, 1 ≤ k ≤ K}

with our usual restrictions on Sk and T . Let, further, m be a given positive integer,
and x 7→ Bx : Rn → Rν be a given linear mapping. Consider the Measurement
Design problem where you are looking for a linear recovery ω 7→ x̂H(ω) := HTω of
Bx, x ∈ X, from observation

ω = Ax+ σξ [σ > 0 is given and ξ ∼ N (0, Im)]

in which the m × n sensing matrix A is under your control – it is allowed to be
a whatever m × n matrix of spectral norm not exceeding 1. You are interested to
select H and A in order to minimize the worst case, over x ∈ X, expected ‖ · ‖22
recovery error. Similarly to (4.13), this problem can be posed as

Opt = minH,λ,A

{
σ2Tr(HTH) + φT (λ) :[ ∑

k λkSk BT −ATH
B −HTA Iν

]
� 0, ‖A‖ ≤ 1, λ ≥ 0

}
,

(4.167)

where ‖·‖ stands for the spectral norm. The objective in this problem is the (upper
bound on the) squared risk Risk2[x̂H |X], the sensing matrix being A. The problem
is nonconvex, since the matrix participating in the semidefinite constraint is bilinear
in H and A.

A natural way to handle an optimization problem with bilinear in the decision
variables u, v objective and/or constraints is to use “alternating minimization,”
where one alternates optimization in v for u fixed and optimization in u for v fixed,
where the value of the variable fixed in a round is the result of optimization w.r.t.
this variable in the previous round. Alternating minimizations are carried out until
the value of the objective (which in the outlined process definitely improves from
round to round) stops to improve (or nearly so). Since the algorithm not necessarily
converges to the globally optimal solution to the problem of interest, it makes sense
to run the algorithm several times from different, say, randomly selected, starting
points.

Now goes the Exercise.

1. Implement Alternating Minimization as applied to (4.167) and look how it works.
You could restrict your experimentation to the case where the sizes m,n, ν are
quite moderate, in the range of tens, and X is either the box {x : j2γx2

j ≤ 1, 1 ≤
j ≤ n}, or the ellipsoid {x :

∑n
j=1 j

2γx2
j ≤ 1}, where γ is a nonnegative parameter

(you could try γ = 0, 1, 2, 3). As about B, you could generate it at random, or
enforce B to have prescribed singular values, say, σj = j−θ, 1 ≤ j ≤ ν, and
randomly selected system of singular vectors.
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2. Identify cases where a globally optimal solution to (4.167) is easy to identify and
use this in order to understand how reliable is Alternating minimization in the
application in question, reliability meaning the ability to identify near-optimal,
in terms of the objective, solutions.
If you are not satisfied with Alternating Minimization “as it is,” try to improve
it.

3. Modify (4.167) and your experimentation to cover the cases where the restriction
‖A‖ ≤ 1 on the sensing matrix is replaced with one of the following restrictions:

• ‖Rowi[A]‖2 ≤ 1, 1 ≤ i ≤ m
• |Aij | ≤ 1 for all i, j

(note that these two types of restrictions mimic what happens if you are inter-
ested to recover (linear image of) the vector of parameters in a linear regression
model from noisy observations of model’s outputs at m points which you are
allowed to select in the unit ball, resp., unit box).

4. [Embedded Exercise] Recall that a ν × n matrix G admits singular value de-
composition G = UDV T with orthogonal matrices U ∈ Rν×ν and V ∈ Rn×n

and diagonal ν × n matrix D with nonnegative and nonincreasing diagonal en-
tries 71. These entries are uniquely defined by G and are called singular values
σi(G), 1 ≤ i ≤ min[ν, n]. These singular values admit characterization similar to
variational characterization of eigenvalues of a symmetric matrix, see, e.g., [11,
Section A.7.3]:

Theorem 4.41. [VCSV - Variational Characterization of Singular Values] For
ν × n matrix G it holds

σi(G) = min
E∈Ei

max
e∈E,‖e‖2=1

‖GE‖2, 1 ≤ i ≤ min[ν, n], (4.168)

where Ei is the family of all subspaces in Rn of codimension i− 1.

Corollary 4.42. [SVI - Singular Value Interlacement] Let G and G′ be ν × n
matrices, and let k = Rank(G′G′). Then

σi(G) ≥ σi+k(G′), 1 ≤ i ≤ min[ν, n],

where, by definition, singular values of a ν × n matrix with indexes > min[ν, n]
are zeros.

We denote by σ(G) the vector of singular values of G arranged in the nonincreas-
ing order. The function ‖G‖Sh,p = ‖σ(G)‖p is called Shatten p-norm of matrix
G; this indeed is a norm on the space of ν ×n matrices, and the conjugate norm
is ‖ ·‖Sh,q, with 1

p + 1
q = 1. An easy and important consequence of Corollary 4.42

is the following fact:

Corollary 4.43. Given a ν × n matrix G, an integer k, 0 ≤ k ≤ min[ν, n], and
p ∈ [1,∞], (one of) the best approximations of G in the Shatten p-norm among
matrices of rank ≤ k is obtained from G by zeroing our all but k largest singular
values, that is, the matrix Gk =

∑k
i=1 σi(G)Coli[U ]ColTi [V ], where G = UDV T

71By definition, diagonality of a rectangular matrix D means that all entries Dij in D with
i 6= j are zeros.
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is the singular value decomposition of G.

Now goes the Embedded Exercise:
Prove Theorem 4.41 and Corollaries 4.42 and 4.43.

5. Consider the Measurement Design problem (4.167) in the case when X is an
ellipsoid:

X = {x ∈ Rn :

n∑
j=1

x2
i /a

2
j ≤ 1}

A is restricted to be m × n matrix of spectral norm not exceeding 1, and there
is no noise in observations: σ = 0, and find an optimal solution to this problem.
Think how this result can be used to get a hopefully good starting point for
Alternating Minimization in the case when X is an ellipsoid and σ is small.

Exercise 4.44. Prove Proposition 4.21.

Exercise 4.45. Prove Proposition 4.22.

4.9.3 Around semidefinite relaxation

Exercise 4.46. Let X be an ellitope:

X = {x ∈ Rn : ∃(y ∈ RN , t ∈ T ) : x = Py, yTSky ≤ tk, k ≤ K}

with our standard restrictions on T and Sk. Representing Sk =
∑rk
j=1 skjs

T
kj , we

can pass from initial ellitopic representation of X to the spectratopic representation
of the same set:

X = {x ∈ Rn : ∃(y ∈ RN , t+ ∈ T +) : x = Py, [sTkjx]2 � t+kjI1, 1 ≤ k ≤ K, 1 ≤ j ≤ rk}[
T + = {t+ = {t+kj ≥ 0} : ∃t ∈ T :

∑rk
j=1 t

+
kj ≤ tk, 1 ≤ k ≤ K}

]
If now C is a symmetric n× n matrix and Opt = maxx∈X x

TCx, we have

Opt∗ ≤ Opte := min
λ={λk∈R+}

{
φT (λ) : PTCP �

∑
k λkSk

}
Opt∗ ≤ Opts := min

Λ={Λkj∈R+}

{
φT +(Λ) : PTCP �

∑
k,j Λkjskjs

T
kj

}
where the first relation is yielded by ellitopic representation of X and Proposition
4.6, and the second, on a closest inspection (carry this inspection out!) – by the
spectratopic representation of X and Proposition 4.8. Now goes Exercise:
Prove that Opte = Opts.

Exercise 4.47. [estimating Kolmogorov widths of sperctratopes/ellitopes]

4.47.A Preliminaries: Kolmogorov and Gelfand widths. Let X be a convex
compact set in Rn, and let ‖ · ‖ be a norm on Rn. Given a linear subspace E in
Rn, let

dist‖·‖(x,E) = min
z∈E
‖x− z‖ : Rn → R+

be the ‖ · ‖-distance from x to E. The quantity

dist‖·‖(X , E) = max
x∈X

dist‖·‖(x,E)
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can be viewed as the worst-case ‖ · ‖-accuracy to which vectors from X can be
approximated by vectors from E. Given positive integer m ≤ n and denoting by
Em the family of all linear subspaces in Rm of dimension m, the quantity

δm(X , ‖ · ‖) = min
E∈Em

dist‖·‖(X , E)

can be viewed as the best achievable quality of approximation, in ‖ · ‖, of vectors
from X by vectors from an m-dimensional linear subspace of Rn; this quantity is
called m-th Kolmogorov width of X taken w.r.t. ‖ · ‖.

Observe that one has

dist‖·‖(x,E) = maxξ{ξTx : ‖ξ‖∗ ≤ 1, ξ ∈ E⊥},
dist‖·‖(X , E) = max

x∈X ,
‖ξ‖∗≤1,ξ∈E⊥

ξTx (!)

where E⊥ is the orthogonal complement to E.

1. Prove (!).
Hint: Represent dist‖·‖(x,E) as the optimal value in a conic problem on the cone
K = {[x; t] : t ≥ ‖x‖} and use Conic Duality Theorem.

Now consider the case when X is the unit ball of some norm ‖ · ‖X . In this case
(!) combines with the definition of Kolmogorov width to imply that

δm(X , ‖ · ‖) = min
E∈Em

dist‖·‖(x,E) = min
E∈Em

max
x∈X

max
y∈E⊥,‖y‖∗≤1

yTx

= min
E∈Em

dist‖·‖(x,E) = min
E∈Em

max
y∈E⊥,‖y‖∗≤1

max
x:‖x‖X≤1

yTx

= min
F∈En−m

max
y∈F,‖y‖∗≤1

‖y‖X ,∗,
(4.169)

where ‖·‖X ,∗ is the norm conjugate to ‖·‖X . Note that when Y is a convex compact
set in Rn and | · | is a norm on Rn, the quantity

dm(Y, | · |) = min
F∈En−m

max
y∈Y∩F

|y|

has a name – it is called the m-th Gelfand width of Y taken w.r.t. | · |. “Duality
relation” (4.169) states that

When X , Y are the unit balls of the respective norms ‖ · ‖X , ‖ · ‖Y , for every
m < n m-th Kolmogorov width of X taken w.r.t. ‖ · ‖Y,∗ is the same as m-th
Gelfand width of Y taken w.r.t. ‖ · ‖X ,∗.

The goal of the remaining part of Exercise is to use our results on the quality
of semidefinite relaxation on ellitopes/spectratopes to infer efficiently computable
upper bounds on Kolmogorov widths of a given set X ⊂ Rn. In the sequel we
assume that

• X is a spectratope:

X = {x ∈ Rn : ∃(t ∈ T , u) : x = Pu,R2
k[u] � tkIdk , k ≤ K};
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• The unit ball B∗ of the norm conjugate to ‖ · ‖ is a spectratope:

B∗ = {y : ‖y‖∗ ≤ 1} = {y ∈ Rn : ∃(r ∈ R, z) : y = Mz, S2
` [z] � r`If` , ` ≤ L}.

with our usual restrictions on T ,R and Rk[·], S`[·].

4.47.B Simple case: ‖·‖ = ‖·‖2. We start with the simple case where ‖·‖ = ‖·‖2,
so that B∗ is the ellitope {y : yT y ≤ 1}.

Let D =
∑
k dk be the size of the spectratope X , and let

κ = 2 max[ln(2D), 1].

Given integer m < n, consider convex optimization problem

Opt(m) = minΛ={Λk,k≤K},Y

{
φT (λ[Λ]) :

Λk � 0∀k,
∑
k S∗k [Λk] � PTY P, 0 � Y � In,Tr(Y ) = n−m

}
(Pm)

2. Prove the following

Proposition 4.48. Whenever 1 ≤ µ ≤ m < n, one has

Opt(m) ≤ κδ2
m(X , ‖ · ‖2) & δ2

m(X , ‖ · ‖2) ≤ m+ 1

m+ 1− µ
Opt(µ). (4.170)

Moreover, the above upper bounds on δm(X , ‖ · ‖2) are “constructive”, meaning
that an optimal solution to (Pµ), µ ≤ m, can be straightforwardly converted into
a linear subspace Em,µ of dimension m such that

dist‖·‖2(X , Em,µ) ≤
√

m+ 1

m+ 1− µ
Opt(µ).

Finally, Opt(µ) is nonincreasing in µ.

4.47.C General case. Now consider the case when both X and the unit ball B∗
of the norm conjugate to ‖ · ‖ are spectratopes. As you are about to see, this case
is essentially more difficult than the case of ‖ · ‖ = ‖ · ‖2, but something still can be
done.

3. Prove the following statement:

(!!) Given m < n, let Y be an orthoprojector of Rn of rank n −m, and
let collections Λ = {Λk � 0, k ≤ K} and Υ = {Υ` � 0, ` ≤ L} satisfy the
relation [ ∑

kR∗k[Λk] 1
2P

TYM
1
2M

TY P
∑
` S∗` [Υ`]

]
� 0. (4.171)

Then
dist‖·‖(X ,KerY ) ≤ φT (λ[Λ]) + φR(λ[Υ]). (4.172)
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As a result,

δm(X , ‖ · ‖) ≤ dist‖·‖(X ,KerY )

≤ Opt := min
Λ={Λk,k≤K},Υ={Υ`,`≤L}

{
φT (λ[Λ]) + φR(λ[Υ]) :{

Λk � 0 ∀k,Υ` � 0 ∀`,[ ∑
kR
∗
k[Λk] 1

2P
TYM

1
2M

TY P
∑
` S
∗
` [Υ`]

]
� 0

}
.

(4.173)

4. Prove the following statement:

(!!!) Let m,n, Y be as in (!!). Then

δm(X , ‖ · ‖) ≤ dist‖·‖(X ,KerY )

≤ Ôpt := min
ν,Λ={Λk,k≤K},Υ={Υ`,`≤L}

{
φT (λ[Λ]) + φR(λ[Υ]) :{

ν ≥ 0,Λk � 0 ∀k,Υ` � 0 ∀`,[ ∑
kR
∗
k[Λk] 1

2P
TM

1
2M

TP
∑
` S
∗
` [Υ`] + νMT (I − Y )M

]
� 0

}
.

(4.174)

and Ôpt ≤ Opt, with Opt given by (4.173).

Statements (!!), (!!!) suggest the following policy for upper-bounding the Kol-
mogorov width δm(X , ‖ · ‖):

A. First, we select an integer µ, 1 ≤ µ < n, and solve the convex optimization
problem

min
Λ,Υ,Y

φT (λ[Λ]) + φR(λ[Υ]) :


Λ = {Λk � 0, k ≤ K},Υ = {Υ` � 0, ` ≤ L},
0 � Y � I,Tr(Y ) = n− µ[ ∑

kR
∗
k[Λk] 1

2P
TYM

1
2M

TY P
∑
` S
∗
` [Υ`]

]
� 0


(Pµ)

B. Next, we take the Y -component Y µ of the optimal solution to (Iµ) and “round”
it to a orthoprojector Y of rank n − m in the same fashion as in the case of
‖ · ‖ = ‖ · ‖2, that is, keep the eigenvectors of Y µ intact and replace m smallest
eigenvalues with zeros, and all remaining eigenvalues with ones.

C. Finally, we solve the convex optimization problem

Optm,µ = minΛ,Υ,ν

{
φT (λ[Λ]) + φR(λ[Υ]) :{

ν ≥ 0,Λ = {Λk � 0, k ≤ K},Υ = {Υ` � 0, ` ≤ L},[ ∑
kR
∗
k[Λk] 1

2P
TM

1
2M

TP
∑
` S
∗
` [Υ`] + νMT (I − Y )M

]
� 0

} (Pm,µ)

By (!!!), Optm,µ is an upper bound on the Kolmogorov width δm(X , ‖ · ‖) (and
in fact – also on dist‖·‖(X ,KerY )).

Pay attention to complications incurred by passing from the simple case ‖·‖ = ‖·‖2
to the case of general norm ‖ · ‖ with spectratope as the unit ball of the conjugate
norm. Indeed, Proposition 4.48 gives both a lower bound

√
Opt(m)/κ on the m-th

Kolmogorov width of X w.r.t. ‖·‖2, and a family of upper bounds
√

m+1
m+1−µOpt(µ),

1 ≤ µ ≤ m, on this width. As a result, we can approximate X by m-dimensional
subspaces in the Euclidean norm in a “nearly optimal” fashion. Indeed, if for some
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ε and k it holds δk(X , ‖ · ‖2) ≤ ε, then Opt(k) ≤ κε2 by Proposition 4.48 as applied
with m = k. On the other hand, assuming k < n/2, the same Proposition when
applied with m = 2k and µ = k says that

dist‖·‖2(X , Em,k) ≤
√

2k + 1

k + 1
Opt(k) ≤

√
2
√

Opt(k) ≤
√

2κε.

Thus, if “in the nature” X can be approximated by k-dimensional subspace within
‖ · ‖2-accuracy ε, we can efficiently get approximation of “nearly the same quality”
(
√

2κε instead of ε; recall that κ is just logarithmic in D) and “nearly the same
dimension” (2k instead of k).

Neither one of these options is preserved when passing from the Euclidean norm
to a general one: in the latter case, we do not have neither lower bounds on Kol-
mogorov widths, just upper ones, nor understanding of how tight our upper bounds
are.

Now – the concluding questions:

5. Why in step A of the above bounding policy we utilize statement (!!) rather than

less conservative (since Ôpt ≤ Opt) statement (!!!) ?
6. Implement the above scheme numerically and run experiments.

Recommended setup:

• Given positive integers n and κ and a real σ > 0, specify X as the set of
n-dimensional vectors x which can be obtained when restricting a function f
of continuous argument t ∈ [0, 1] onto n-point equidistant grid {ti = i/n}ni=1,
and impose on f the smoothness restriction that |f (k)(t)| ≤ σk, 0 ≤ t ≤ 1,
k = 0, 1, 2, ..., κ; translate this description on f into a bunch of two-sided linear
constraints on x, specifically, the constraints

|dT(k)[xi;xi+1; ...;xi+k]| ≤ σk, 1 ≤ i ≤ n− k, 0 ≤ k ≤ κ,

where d(k) ∈ Rk+1 is the vector of coefficients of finite-difference approxima-
tion, with resolution 1/n, of k-th derivative:

d(0) = 1, d(1) = n[−1; 1], d(2) = n2[1;−2; 1], d(3) = n3[−1; 3;−3; 1],
d(4) = n4[1;−4; 6;−4; 1], ...

• Recommended parameters: n = 32, m = 8, κ = 5, σ ∈ {0.25, 0.5; 1, 2, 4}.
• Run experiments with ‖ · ‖ = ‖ · ‖1 and ‖ · ‖ = ‖ · ‖2.

Exercise 4.49. Prove Proposition 4.51

Exercise 4.50. † [more on semidefinite relaxation] The goal of this Exercise is to
extend SDP relaxation beyond ellitopes/spectratopes.

SDP relaxation is aimed at upper-bounding the quantity

OptX (B) = max
x∈X

xTBx, [B ∈ Sn]

where X ⊂ Rn is a given set (which we from now on assume to be nonempty convex
compact). To this end we look for a computationally tractable convex compact set
U ⊂ Sn such that for every x ∈ X it holds xxT ∈ U ; in this case, we refer to U as
to a set matching X (equivalent wording: ”U matches X”). Given such a set U , the
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optimal value in the convex optimization problem

OptU (B) = max
U∈U

Tr(BU) (4.175)

is an efficiently computable convex upper bound on OptX (B).
Given U matching X , we can pass from U to the conic hull of U – to the set

U[U ] = cl{(U, µ) ∈ Sn ×R+ : µ > 0, U/µ ∈ U}

which, as it is immediately seen, is a closed convex cone contained in Sn×R+; the
only point (U, µ) in this cone with µ = 0 has U = 0 (since U is compact), and

U = {U : (U, 1) ∈ U} = {U : ∃µ ≤ 1 : (U, µ) ∈ U}

so that the definition of OptU can be rewritten equivalently as

OptU (B) = min
U,µ
{Tr(BU) : (U, µ) ∈ U, µ ≤ 1} .

The question, of course, is where to take a set U matching X , and the answer
depends on what we know about X . For example, when X is a basic ellitope:

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}

with our usual restrictions on T and Sk, it is immediately seen that

x ∈ X ⇒ xxT ∈ U = {U ∈ Sn : U � 0,∃t ∈ T : Tr(USk) ≤ tk, k ≤ K}.

Similarly, when X is a basic spectratope:

X = {x ∈ Rn : ∃t ∈ T : S2
k[x] � tkIdk , k ≤ K}

with our usual restrictions on T and Sk[·], it is immediately seen that

x ∈ X ⇒ xxT ∈ U = {U ∈ Sn : U � 0,∃t ∈ T : Sk[U ] � tkIdk , k ≤ K}.

One can verify that the semidefinite relaxation bounds on the maximum of a
quadratic form on an ellitope/spectratope X derived in Sections 4.2.5 (for elli-
topes) and 4.3.2 (for spectratopes) are nothing but the bounds (4.175) associated
with the just defined U .

4.50.A Matching via absolute norms. There are other ways to specify a set
matching X . The seemingly simplest of them is as follows. Let p(·) be an absolute
norm on Rn (recall that it is a norm p(x) which depends solely on abs[x], where
abs[x] is the vector comprised of the magnitudes of entries in x). We can convert
p(·) into the norm p+(·) on the space Sn, namely, a

p+(U) = p([p(Col1[U ]); ...; p(Coln[U ])]) [U ∈ Sn]

1.1. Prove that p+ indeed is a norm on Sn, and p+(xxT ) = p2(x). Denoting by
q(·) the norm conjugate to p(·), what is the relation between the norm (p+)∗(·)
conjugate to p+(·) and the norm q+(·) ?

1.2. Derive from 1.1 that whenever p(·) is an absolute norm such that X is contained
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in the unit ball Bp(·) = {x : p(x) ≤ 1} of the norm p, the set

Up(·) = {U ∈ Sn : U � 0, p+(U) ≤ 1}

is matching X . If, in addition,

X ⊂ {x : p(x) ≤ 1, Px = 0}, (4.176)

then the set

Up(·),P = {U ∈ Sn : U � 0, p+(U) ≤ 1, PU = 0}

is matching X .
Assume that in addition to p(·), we have at our disposal a computationally
tractable closed convex set D such that whenever p(x) ≤ 1, the vector [x]2 :=
[x2

1; ...;x2
n] belongs to D; in the sequel we call such a set D square-dominating

p(·). For example, when p(·) = ‖ · ‖r, we can take

D =

{
{y ∈ Rn

+ :
∑
i y1 ≤ 1}, r ≤ 2

{y ∈ Rn
+ : ‖y‖r/2 ≤ 1}, r > 2

.

Prove that in this situation the above construction can be refined: whenever X
satisfies (4.176), the set

UDp(·),P = {U ∈ Sn : U � 0, p+(U) ≤ 1, PU = 0,dg(U) ∈ D}
[dg(U) = [U11;U22; ...;Unn]]

matches X .
Note: in the sequel, we suppress P in the notation Up(·),P and UDp(·),P when
P = 0; thus, Up(·) is the same as Up(·),0.

1.3. Check that when p(·) = ‖ · ‖r with r ∈ [1,∞], one has

p+(U) = ‖U‖r :=

{
(
∑
i,j |Uij |r)1/r, 1 ≤ r <∞,

maxi,j |Uij |, r =∞ ,

1.4. Let X = {x ∈ Rn : ‖x‖1 ≤ 1} and p(x) = ‖x‖1, so that X ⊂ {x : p(x) ≤ 1}, and

Conv{[x]2 : x ∈ X} ⊂ D = {y ∈ Rn
+ :
∑
i

y1 = 1}. (4.177)

What are the bounds OptUp(·)
(B) and OptUD

p(·)
(B) ? Is it true that the former

(the latter) of the bounds is precise? Is it true that the former (the latter) of the
bounds is precise when B � 0 ?

1.5. Let X = {x ∈ Rn : ‖x‖2 ≤ 1} and p(x) = ‖x‖2, so that X ⊂ {x : p(x) ≤ 1}
and (4.177) holds true. What are the bounds OptUp(·)

(B) and OptUD
p(·)

(B) ? Is

it true that the former (the latter) of the bounds is precise?
1.6. Let X ⊂ Rn

+ be closed, convex, bounded, and with a nonempty interior. Verify
that the set

X+ = {x ∈ Rn : ∃y ∈ X : abs[x] ≤ y}

is the unit ball of an absolute norm pX , and this is the largest absolute norm
p(·) such that X ⊂ {x : p(x) ≤ 1}. Derive from this observation that the norm
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pX (·) is the best (i.e., resulting in the least conservative bounding scheme) among
absolute norms which allow to upper-bound OptX (B) via the construction from
item 1.2.

4.50.B “Calculus of matchings.” Observe that matching we have introduced
admits a kind of “calculus.” Specifically, consider the situation as follows: for
1 ≤ ` ≤ L, we are given

• nonempty convex compact sets X` ⊂ Rn` , 0 ∈ X`, along with matching X` convex
compact sets U` ⊂ Sn` giving rise to the closed convex cones

U` = cl{(U`, µ`) ∈ Sn` ×R+ : µ` > 0, µ−1
` U` ∈ U`}

We denote by ϑ`(·) the Minkovski functions of X`:

ϑ`(y
`) = inf{t : t > 0, t−1y` ∈ X`} : Rn` → R ∪ {+∞};

note that X` = {y` : ϑ`(y
`) ≤ 1};

• n` × n matrices A` such that
∑
`A

T
` A` � 0.

On the top of it, we are given a monotone convex set T ⊂ RL
+ intersecting the

interior of RL
+.

These data specify the convex set

X = {x ∈ Rn : ∃t ∈ T : ϑ2
`(A`x) ≤ t`, ` ≤ L} (∗)

2.1. Prove the following

Lemma 4.51. In the situation in question, the set

U =
{
U ∈ Sn : U � 0 & ∃t ∈ T : (A`UA

T
` , t`) ∈ U`, ` ≤ L

}
is a closed and bounded convex set which matches X . As a result, the efficiently
computable quantity

OptU (B) = max
U
{Tr(BU) : U ∈ U}

is an upper bound on
OptX (B) = max

x∈X
xTBx.

2.2. Prove that if X ⊂ Rn is a nonempty convex compact set, U is m× n matrix of
rank m, and U is matching X , then the set V = {V ∈ Sm : V � 0, PV PT ∈ U}
matches Y = {y : ∃x ∈ X : y = Px}.

2.3. Consider the “direct product” case where X = X1 × ... × XL; specifying A` as
the matrix which “cuts of” a block vector x = [x1; ...;xL] ∈ Rn1 × ...×RnL `-th
block: A`x = x` and setting T = [0, 1]L, we cover this situation by the setup
under consideration. In the direct product case, the construction from item 2.1
is as follows: given the sets U` matching X`, we build the set

U = {U = [U ``
′
∈ Rn`×n`′ ]`,`′≤L ∈ Sn1+...+nL : U � 0, U `` ∈ U`, ` ≤ L}
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and claim that this set matches X .
Could we be less conservative? While we do not know how to be less conservative
in general, we do know how to be less conservative in the special case when U`
are built via the “absolute norm” machinery. Specifically, let p`(·) : Rn` → R+,
` ≤ L, be absolute norms, let sets D` be square-dominating p`(·), let

X ` ⊂ X̂` = {x` ∈ Rn` : P`x` = 0, p`(x
`) ≤ 1},

and let U` = {U ∈ Sn` : U � 0, P`U = 0, p+
` (U) ≤ 1,dg(U) ∈ D`}. In this case

the above construction results in

U =

{
U = [U ``

′ ∈ Rn`×n`′ ]`,`′≤L ∈ Sn1+...+nL :

U � 0, P`U
`` = 0, p+

` (U ``) ≤ 1,dg(U ``) ∈ D`, ` ≤ L
}
.

Now let

p([x1; ...;xL]) = max[p1(x1), ..., pL(xL)] : Rn1 × ...×RnL → R,

so that p is an absolute norm and X ⊂ {x = [x1; ...;xL] : p(x) ≤ 1, P`x
` = 0, ` ≤

L}.
Prove that in fact the set

U =

{
U = [U ``

′ ∈ Rn`×n`′ ]`,`′≤L ∈ Sn1+...+nL :

U � 0, P`U
`` = 0,dg(U ``) ∈ D`, ` ≤ L, p+(U) ≤ 1

}
matches X , and that we always have U ⊂ U . Verify that in general this inclusion
is strict.

4.50.C Illustration: Nullspace property revisited. Recall sparsity-oriented
signal recovery via `1 minimization from Lecture 1: Given m× n sensing matrix A
and (noiseless) observation y = Aw of unknown signal w known to have at most s
nonzero entries, we recover w as

ŵ ∈ Argmin
z

{‖z‖1 : Az = y} .

Matrix A is called s-good, if whenever y = Aw with s-sparse w, the only optimal
solution to the right hand side optimization problem is w. The (difficult to verify!)
necessary and sufficient condition for s-goodness is the Nullspace property:

Opt := max
z

{
‖z‖(s) : z ∈ KerA, ‖z‖1 ≤ 1

}
< 1/2,

where ‖z‖(k) is the sum of the k largest entries in the vector abs[z]. A verifiable
sufficient condition for s-goodness is

Ôpt := min
H

max
j
‖Colj [I −HTA]‖(s) < 1/2, (!)
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the reason being that, as it is immediately seen, Ôpt is an upper bound on Opt
(see Proposition 1.9 with q = 1).

An immediate observation is that Opt is nothing but the maximum of quadratic
form on appropriate convex compact set. Specifically, let

X = {[u; v] ∈ Rn ×Rn : Au = 0, ‖u‖1 ≤ 1,
∑
i |vi| ≤ s, ‖v‖∗ ≤ 1},

B =

[
1
2In

1
2In

]
.

Then

OptX (B) = max
[u;v]∈X

[u; v]TB[u; v]

= max
u,v

{
uT v : Au = 0, ‖u‖1 ≤ 1,

∑
i |vi| ≤ s, ‖v‖∞ ≤ 1

}
=︸︷︷︸
(a)

maxu
{
‖u‖(s) : Au = 0, ‖u‖1 ≤ 1

}
= Opt,

where (a) is due to the well known fact (prove it!) that whenever s is a positive
integer ≤ n, the extreme points of the set

V = {v ∈ Rn :
∑
i

|vi| ≤ s, ‖v‖∞ ≤ 1}

are exactly the vectors with at most s nonzero entries, the nonzero entries being
±1; as a result

∀(z ∈ Rn) : max
v∈V

zT v = ‖z‖(s).

Now, V is the unit ball of the absolute norm

r(v) = min {t : ‖v‖1 ≤ st, ‖v‖∞ ≤ t} ,

so that X is contained in the unit ball B of the absolute norm on R2n specified as

p([u; v]) = max {‖u‖1, r(v)} [u, v ∈ Rn],

specifically,
X = {[u; v] : p([u, v]) ≤ 1, Au = 0} .

As a result, whenever x = [u; v] ∈ X , the matrix

U = xxT =

[
U11 = uuT U12 = uvT

U21 = vuT U22 = vvT

]
satisfies the condition p+(U) ≤ 1 (see item 1.2 above). In addition, this matrix
clearly satisfies the condition

A[U11, U12] = 0.

It follows that the set

U = {U =

[
U11 U12

U21 U22

]
∈ S2n : U � 0, p+(U) ≤ 1, AU11 = 0, AU12 = 0}
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(which clearly is a nonempty convex compact set) matches X . As a result, the
efficiently computable quantity

Opt = max
U∈U

Tr(BU)

= max
U

{
Tr(U12) : U =

[
U11 U12

U21 U22

]
� 0, p+(U) ≤ 1, AU11 = 0, AU12 = 0

}
(!!)

is an upper bound on Opt, so that the verifiable condition

Opt < 1/2

is sufficient for s-goodness of A.
Now goes the concluding part of Exercise:

3.1. Prove that Opt ≤ Ôpt, so that (!!) is less conservative than (!).
Hint: Apply Conic Duality to verify that

Ôpt = max
V

{
Tr(V ) : V ∈ Rn×n, AV = 0,

n∑
i=1

r(Coli[V
T ]) ≤

}
(!!!)

3.2. Run simulations with randomly generated Gaussian matrices A and play with
different values of s to compare Ôpt and Opt. To save time, you can use toy
sizes m,n, say, m = 18, n = 24.

4.9.4 Around Propositions 4.4 and 4.14

4.9.4.1 Optimizing linear estimates on convex hulls of unions of spectratopes

Exercise 4.52. [optimizing linear estimates on convex hull of union of spectratopes]
Let

• X1, ...,XJ be spectratopes in Rn:

Xj = {x ∈ Rn : ∃(y ∈ RNj , t ∈ Tj) : x = Pjy,R
2
kj [y] � tkIdkj ,≤ Kj}, 1 ≤ j ≤ J[

Rkj [y] =
∑Nj
i=1 yiR

kji
]

• A ∈ Rm×n and B ∈ Rν×n be given matrices,
• ‖ · ‖ be a norm on Rν such that the unit ball B∗ of the conjugate norm ‖ · ‖∗ is

a spectratope:

B∗ := {u : ‖u‖∗ ≤ 1}
= {u ∈ Rν : ∃(z ∈ RN , r ∈ R) : u = Mz, S2

` [z] � r`If` , ` ≤ L}[
S`[z] =

∑N
i=1 ziS

`i
]

• Π be a convex compact subset of the interior of the positive semidefinite cone
Sm+ ,

with our standard restrictions on Rkj [·], S`[·], Tj , R. Let, further,

X = Conv

⋃
j

Xj


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be the convex hull of the union of spectratopes Xj . Consider the situation where
we, given observation

ω = Ax+ ξ

of unknown signal x known to belong to X , want to recover Bx. We assume that
the matrix of second moments of noise is �-dominated by a matrix from Π, and
quantify the performance of a candidate estimate x̂(·) by its ‖ · ‖-risk

RiskΠ,‖·‖[x̂|X ] = sup
x∈X

sup
P :P≪Π

Eξ∼P {‖Bx− x̂(Ax+ ξ)‖}

where P ≪ Π means that the matrix Var[P ] = Eξ∼P {ξξT } of second moments of
distribution P is �-dominated by a matrix from Π.

Prove the following

Proposition 4.53. In the situation in question, consider convex optimization problem

Opt = min
H,Θ,Λj ,Υj ,Υ′

{
max
j

[
φTj (λ[Λj ]) + φR(λ[Υj ])

]
+ φR(λ[Υ′]) + ΓΠ(Θ) :

Λj = {Λjk � 0, j ≤ Kj}, j ≤ J,
Υj = {Υj

` � 0, ` ≤ L}, j ≤ J,Υ′ = {Υ′` � 0, ` ≤ L}[ ∑
kR
∗
kj [Λ

j
k] 1

2
PTj [BT −ATH]M

1
2
MT [B −HTA]Pj

∑
` S
∗
` [Υj

` ]

]
� 0, j ≤ J,[

Θ 1
2
HM

1
2
MTHT ∑

` S
∗
` [Υ′`]

]
� 0

}
,

(4.178)
where, as usual,

φTj (λ) = max
t∈Tj

tTλ, φR(λ) = max
r∈R

rTλ,

ΓΠ(Θ) = max
Q∈Π

Tr(QΘ), λ[U1, ..., Us] = [Tr(U1); ...; Tr(US)],

S∗` [·] : Sf` → SN : S∗` [U ] =
[
Tr(S`pUS`q)

]
p,q≤N ,

R∗kj [·] : Sdkj → SNj : R∗kj [U ] =
[
Tr(RkjpURkjq)

]
p,q≤Nj

Problem (4.178) is solvable, and H-component H∗ of its optimal solution gives rise
to linear estimate x̂H∗(ω) = HT

∗ ω such that

RiskΠ,‖·‖[x̂H∗ |X ] ≤ Opt. (4.179)

Moreover, the estimate x̂H∗ is near-optimal among linear estimates:

Opt ≤ O(1) ln(D + F )RiskOptlin[
D = maxj

∑
k≤Kj dkj , F =

∑
`≤L f`

]
(4.180)

where
RiskOptlin = inf

H
sup

x∈X ,Q∈Π
Eξ∼N (0,Q)

{
‖Bx−HT (Ax+ ξ)‖

}
is the best risk achievable under the circumstances with linear estimates under zero
mean Gaussian noise with covariance matrix restricted to belong to Π.

It should be stressed that convex hull of unions of spectratopes not necessarily is
a spectratope, and that Proposition states that the linear estimate stemming from
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(4.178) is near-optimal only among linear, and not among all estimates (the latter
can indeed be not the case).

4.9.4.2 Recovering nonlinear vector-valued functions

Exercise 4.54. † [estimating nonlinear vector-valued functions] Consider situation
as follows: We are given a noisy observation

ω = Ax+ ξx [A ∈ Rν×n]

of the linear image Ax of an unknown signal x known to belong to a given spec-
tratope X ⊂ Rn; here ξx is the observation noise with distribution Px which can
depend on x. Similarly to Section 4.3.3, we assume that we are given a compu-
tationally tractable convex compact set Π ⊂ int Sν+ such that for every x ∈ X ,
Var[Px] � Θ for some Θ ∈ Π, cf. (4.36). What we want is to recover the value f(x)
of a given vector-valued function f : X → Rν , and we measure the recovery error
in a given norm | · | on Rν .

4.54.A Preliminaries and Main observation. Let ‖ · ‖ be a norm on Rn, and
g(·) : X → Rν be a function. Recall that the function is called Lipschitz continuous
on X w.r.t. the pair of norms ‖ · ‖ on the argument and | · | on the image spaces,
if there exist L <∞ such that

|g(x)− g(y)| ≤ L‖x− y‖ ∀(x, y ∈ X );

every L with this property is called Lipschitz constant of g. It is well known that
in our finite-dimensional situation, the property of g to be Lipschitz continuous is
independent of how the norms ‖ · ‖, | · | are selected; this selection affects only the
value(s) of Lipschitz constant(s).

Assume from now on that the function of interest f is Lipschitz continuous on
X . Let us call a norm ‖ · ‖ on Rn appropriate for f , is f is Lipschitz continuous
with constant 1 on X w.r.t. ‖ · ‖, | · |. Our immediate observation is as follows:

Observation 4.55. In the situation in question, let ‖ · ‖ be appropriate for f . Then
recovering f(x) is not more difficult than recovering x in the norm ‖ · ‖: every
estimate x̂(ω) of x via ω which takes all its values in X induces the “plug-in”
estimate

f̂(ω) = f(x̂(ω))

of f(x), and the ‖ · ‖-risk

Risk‖·‖[x̂|X ] = sup
x∈X

Eξ∼Px {‖x̂(Ax+ ξ)− x‖}

of estimate x̂ upper-bounds the | · |-risk

Risk|·|[f̂ |X ] = sup
x∈X

Eξ∼Px

{
‖f̂(Ax+ ξ)− f(x)‖

}
of the induced by x̂ estimate f̂ :

Risk|·|[f̂ |X ] ≤ Risk‖·‖[x̂|X ].
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When f is defined and Lipschitz continuous with constant 1 w.r.t. ‖ · ‖, | · | on the
entire Rn, the conclusion remains true without the assumption that x̂ takes all its
values in X .

4.54.B Consequences. Observation 4.55 suggests the following simple approach
to solving the estimation problem we started with: assuming that we have at our
disposal a norm ‖ · ‖ on Rn such that

• ‖ · ‖ is appropriate for f , and
• ‖ · ‖ is good, goodness meaning that the unit ball B∗ of the norm ‖ · ‖∗ conjugate

to ‖ · ‖ is a spectratope given by explicit spectratopic representation,

we use the machinery of linear estimation developed in Section 4.3.3 to build a
near-optimal, in terms of its ‖ · ‖-risk, linear estimate of x via ω, and convert
this estimate in an estimate of f(x); by Observation, the | · |- risk of the resulting
estimate is upper-bounded by ‖ · ‖-risk of the underlying linear estimate. The just
outlined construction needs a small correction: in general, the linear estimate x̃(·)
yielded by Proposition 4.14 (same as any nontrivial – not identically zero – linear
estimate) is not guaranteed to take all its values in X , which is, in general, required
for Observation to be applicable. This correction is easy: it is enough to convert x̃
into the estimate x̂ defined by

x̂(ω) ∈ Argmin
u∈X

‖u− x̃(ω)‖.

This transformation preserves efficient computability of the estimate, and ensures
that the corrected estimate takes all its values in X , so that Observation is appli-
cable to x̂; at the same time, “correction” x̃ 7→ x̂ nearly preserves the ‖ · ‖-risk:

Risk‖·‖[x̂|X ] ≤ 2Risk‖·‖[x̃|X ]. (∗)

Note that when ‖ · ‖ is a (general-type) Euclidean norm: ‖x‖2 = xTQx for some
Q � 0, factor 2 in the right hand side can be discarded.

1. Justify (∗).

4.54.C How to select ‖·‖. When implementing the outlined approach, the major
question is how to select a norm ‖ · ‖ appropriate for f . An ideal for our purposes
choice would be to select the smallest among the norms appropriate for f (such a
norm does exist under pretty mild assumptions), since the smaller ‖·‖, the smaller is
the ‖ ·‖-risk of an estimate of x. This ideal can be achieved in rare cases only: first,
it could be difficult to identify the smallest among the norms appropriate for f , and
second, our machinery requires from ‖ · ‖ to have an explicitly given spectratope as
the unit ball of the conjugate norm. Let us look at a couple of “favorable cases,”
where the just outlined difficulties can be (partially) avoided.

Example 1: a norm-induced f . Let us start with the important by its own
right case when f is a scalar functional which itself is a norm, and this norm has a
spectratope as the unit ball of the conjugate norm, as is the case when f(·) = ‖ ·‖r,
r ∈ [1, 2], or when f(·) is the nuclear norm. In this case the smallest of the norms
appropriate for f clearly is f itself, and no one of the outlined difficulties arises. As



SIGNAL RECOVERY FROM GAUSSIAN OBSERVATIONS AND BEYOND

StatOpt˙LN˙NS January 21, 2019 7x10

367

an extension, when f(x) is obtained from a good norm ‖·‖ by operations preserving
Lipschitz continuity and constant, like f(x) = ‖x − c‖, or f(x) =

∑
i ai‖x − ci‖,∑

i |ai| ≤ 1, or
f(x) = sup / inf

c∈C
‖x− c‖,

or even something like

f(x) = sup / inf
α∈A

{
sup / inf
c∈Cα

‖x− c‖

}

it seems natural to use this norm in our construction, although now this, perhaps,
is not the smallest of the norms appropriate for f .

Now let us address the general case. Note that in principle the smallest of
the norms appropriate for a given Lipschitz continuous f admits a description.
Specifically, assume that X has a nonempty interior (this is w.l.o.g. – we can always
replace Rn with the linear span of X ). A well-known fact of Analysis (Rademacher
Theorem) states that in this situation (more generally, when X is convex with a
nonempty interior), a Lipschitz continuous f is differentiable almost everywhere in
X o = intX , and f is Lipschitz continuous with constant 1 w.r.t. a norm ‖ · ‖ if and
only if

‖f ′(x)‖‖·‖→|·| ≤ 1

whenever x ∈ X o is such that the derivative (a.k.a. Jacobian) of f at x exists; here
‖Q‖‖·‖→|·| is the matrix norm of a ν × n matrix Q induced by the norms ‖ · ‖ on
Rn and | · | on Rν :

‖Q‖‖·‖→|·| := max
‖x‖≤1

|Qx| = max
‖x‖≤1
|y|∗≤1

yTQx = max
|y∗|≤1

[‖x‖∗]∗≤1

xTQT y = ‖QT|·|∗→‖·‖∗ ,

where ‖ · ‖∗, | · |∗ are the conjugates of ‖ · ‖, | · |.

2. Prove that a norm ‖ · ‖ is appropriate for f if and only if the unit ball of the
conjugate to ‖ · ‖ norm contains the set

Bf,∗ = cl Conv{z : ∃(x ∈ Xo, y, |y|∗ ≤ 1) : z = [f ′(x)]T y},

where Xo is the set of all x ∈ X o where f ′(x) exists. Geometrically: Bf,∗ is the
closed convex hull of the union of all images of the unit ball B∗ of | · |∗ under the
linear mappings y 7→ [f ′(x)]T y stemming from x ∈ Xo.
Equivalently: ‖ · ‖ is appropriate for f if and only if

‖u‖ ≥ ‖u‖f := max
z∈Bf,∗

zTu. (!)

Check that ‖u‖f is a norm, provided that Bf,∗ (this set by construction is a
symmetric w.r.t. the origin convex compact set) possesses a nonempty interior;
whenever this is the case, ‖u‖f is the smallest of the norms appropriate for f .
Derive from the above that the norms ‖ · ‖ we can use in our approach are the
norms on Rn for which the unit ball of the conjugate norm is a spectratope
containing Bf,∗.
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Example 2. Consider the case of componentwise quadratic f :

f(x) = [
1

2
xTQ1x;

1

2
xTQ2x; ...;

1

2
xTQνx] [Qi ∈ Sn]

and |u| = ‖u‖q with q ∈ [1, 2] 72. In this case

B∗ = {u ∈ Rν : ‖u‖p ≤ 1}, p =
q

q − 1
∈ [2,∞[, and f ′(x) =

[
xTQ1;xTQ2; ...;xTQν

]
.

Setting S = {s ∈ Rν
+ : ‖s‖p/2 ≤ 1} and S1/2 = {s ∈ Rν

+ : [s2
1; ...; s2

ν ] ∈ S} = {s ∈
Rν

+ : ‖s‖p ≤ 1}, the set

Z = {[f ′(x)]Tu : x ∈ X , u ∈ B∗}

is contained in the set

Y = {y ∈ Rn : ∃(s ∈ S1/2, xi ∈ X , i ≤ ν) : y =
∑
i

siQixi},

and the set Y is a spectratope with spectratopic representation readily given by the
one of X ; indeed, Y is nothing but the S-sum of the spectratopes QiX , i = 1, ..., ν,
see Section 4.54. As a result, we can use the spectratope Y (when intY 6= ∅) or
the arithmetic sum of Y with a small Euclidean ball (when intY = ∅) to build an
estimate of f(·).

3.1. As a simple illustration, work out the problem of recovering the value of a scalar
quadratic form

f(x) = xTMx, M = Diag{iα, i = 1, ..., n}
[ν = 1, | · | is the usual absolute value]

from noisy observation

ω = Ax+ ση, A = Diag{iβ , i = 1, ..., n}, η ∼ N (0, In)

of a signal x known to belong to the ellipsoid

X = {x ∈ Rn : ‖Px‖2 ≤ 1}, P = Diag{iγ , i = 1, ..., n},

where α, β, γ are given reals satisfying

2α− γ − 2β < −1.

You could start with the simplest unbiased estimate

x̃(ω) = [1−βω1; 2−βω2; ...;n−βωn]

of x.

72to save notation, we assume that the linear parts in the components of fi are trivial – just
zeros. In this respect, note that we always can subtract from f a whatever linear mapping and
reduce our estimation problem to those of estimating separately the values at the signal x of the
modified f and the linear mapping we have subtracted (we know how to solve the latter problem
reasonably well).
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3.2. Work out the problem of recovering the norm

f(x) = ‖Mx‖p, M = Diag{iα, i = 1, ..., n}, p ∈ [1, 2],

from the same observations as in item 3.1 and with

X = {x : ‖Px‖r ≤ 1}, P = dg{iγ , i = 1, ..., n}, r ∈ [2,∞].

4.9.4.3 Suboptimal linear estimation

Exercise 4.56. † [recovery of large-scale signals] When building presumably good
linear recovery of the image Bx ∈ Rν of signal x ∈ X from observation

ω = Ax+ σξ ∈ Rm

in the simplest case where X = {x ∈ Rn : xTSx ≤ 1} is an ellipsoid (so that
S � 0), the recovery error is measured in ‖ · ‖2, and ξ ∼ N (0, Im), problem (4.13)
reduces to

Opt = min
H,λ

{
λ+ σ2‖H‖2F :

[
λS BT −ATH

B −HTA Iν

]
� 0

}
, (4.181)

where ‖ · ‖F is the Frobenius norm of a matrix. An optimal solution H∗ to this
problem results in the linear estimate x̂H∗(ω) = HT

∗ ω satisfying the risk bound

Risk[x̂H∗ |X ] := max
x∈X

√
E{‖Bx−HT

∗ (Ax+ σξ)‖22} ≤
√

Opt.

Now, (4.181) is an efficiently solvable convex optimization problem. However, when
the sizes m,n of the problem are large, solving the problem by the standard opti-
mization techniques could become prohibitively time-consuming. The goal of what
follows is to develop relatively computationally cheap technique for finding a hope-
fully good suboptimal solution to (4.181). In the sequel, we assume that A 6= 0,
otherwise (4.181) is trivial.

1. Prove that problem (4.181) can be reduced to similar problem with S = In and
diagonal positive semidefinite matrix A, the reduction requiring several singular
value decompositions and multiplications of matrices of the same sizes as those
of A,B, S.

2. By item 1, we can assume from the very beginning that S = I and A =
Diag{α1, ..., αn} with 0 ≤ α1 ≤ α2 ≤ ... ≤ αn. Passing in (4.181) from vari-
ables λ,H to variables τ =

√
λ,G = HT , the problem becomes

Opt = min
G,τ

{
τ2 + σ2‖G‖2F : ‖B −GA‖ ≤ τ

}
, (4.182)

where ‖ · ‖ is the spectral norm. Now consider the construction as follows:

• We build a partition {1, ..., n} = I0 ∪ I1 ∪ ... ∪ IK of the index set {1, ..., n}
into consecutive segments in such a way that
(a) I0 is the set of those i, if any, for which αi = 0, and Ik 6= ∅ when k ≥ 1,
(b) for k ≥ 1 the ratios αj/αi, i, j ∈ Ik, do not exceed a θ > 1 (θ is the
parameter of our construction), while
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(c) for 1 ≤ k < k′ ≤ K, the ratios αj/αi, i ∈ Ik, j ∈ Ik′ , are > θ.
The recipe for building the partition is self-evident, and we clearly have

K ≤ ln(α/α)/ ln(θ) + 1,

where α is the largest of αi, and α is the smallest of those αi which are positive.
• For 1 ≤ k ≤ K, we denote by ik the first index in Ik, set αk = αik , nk =

Card Ik, and define Ak as nk × nk diagonal matrix with diagonal entries αi,
i ∈ Ik.

Now, given ν × n matrix C, let us specify Ck, 0 ≤ k ≤ K, as ν × nk submatrix
of C comprised of columns with indexes from Ik, and consider the following
parametric optimization problems:

Opt∗k(τ) = minGk∈Rν×nk

{
‖Gk‖2F : ‖Bk −GkAk‖ ≤ τ

}
(P ∗k [τ ])

Optk(τ) = minGk∈Rν×nk

{
‖Gk‖2F : ‖Bk − αkGk‖ ≤ τ

}
(Pk[τ ])

where τ ≥ 0 is the parameter, and 1 ≤ k ≤ K.
Justify the following simple observations:

2.1. Gk is feasible for (Pk[τ ]) if and only if the matrix

G∗k = αkGkA
−1
k

is feasible for (P ∗k [τ ]), and ‖G∗k‖F ≤ ‖Gk‖F ≤ θ‖G∗k‖F , implying that

Opt∗k(τ) ≤ Optk(τ) ≤ θ2Opt∗k(τ);

2.2. Problems (Pk[τ ]) is easy to solve: if Bk = UkDkV
T
k is singular value decom-

position of Bk and σk`, 1 ≤ ` ≤ νk := min[ν, nk], are diagonal entries of Dk,
then an optimal solution to (Pk[τ ]) is

Ĝk[τ ] = [αk]−1UkDk[τ ]V Tk ,

where Dk[τ ] is obtained from Dk by truncating σk` 7→ [σk` − τ ]+ of diagonal
entries and keeping zero the off-diagonal entries (from now on, a+ = max[a, 0],
a ∈ R). The optimal value in (Pk[τ ]) is

Optk(τ) = [αk]−2
νk∑
`=1

[σk` − τ ]2+.

2.3. If (τ,G) is feasible solution to (4.182), then τ ≥ τ := ‖B0‖ and the matrices
Gk, 1 ≤ k ≤ K, are feasible solutions to problems (P ∗k [τ ]), implying that∑

k

Opt∗k(τ) ≤ ‖G‖2F ,

and nearly vice versa: if τ ≥ τ , Gk, 1 ≤ k ≤ K, are feasible solutions to
problems (P ∗k [τ ]), and

K+ =

{
K, I0 = ∅
K + 1, I0 6= ∅

,
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then the matrix G = [0ν×n0
, G1, ..., Gk] taken along with τ+ =

√
K+τ form a

feasible solution to (4.182).

Extract from these observations that if τ∗ is an optimal solution to the convex
optimization problem

min
τ

{
θ2τ2 + σ2

K∑
k=1

Optk(τ) : τ ≥ τ

}
(4.183)

and Gk,∗ are optimal solutions to the problems (Pk[τ∗]), then the pair

τ̂ =
√
K+τ∗, Ĝ = [0ν×n0 , G

∗
1,∗, ..., G

∗
K,∗] [G∗k,∗ = αkGk,∗A

−1
k ]

is a feasible solution to (4.182), and the value of the objective of the latter
problem at this feasible solution is within the factor max[K+, θ

2] of the true

optimal value Opt of this problem. As a result, Ĝ gives rise to a linear estimate
with risk on X which is within factor max[

√
K+, θ] of the risk

√
Opt of the

“presumably good” linear estimate yielded by an optimal solution to (4.181).

Pay attention to the facts that

• After carrying out singular value decompositions of matrices Bk, 1 ≤ k ≤ K,
specifying τ∗ and Gk,∗ requires solving univariate convex minimization problem
with easy to compute objective, so that the problem can be easily solved, e.g.,
by bisection;
• The computationally cheap suboptimal solution we end up with is not that bad,

since K is “moderate” – just logarithmic in the condition number α/α of A.

Your next task is a follows:

3. To get an idea of the performance of the proposed synthesis of “suboptimal”
linear estimation, run numerical experiments as follows:

• select somehow n and generate at random the n× n data matrices S, A, B
• for “moderate” values of n compute both the presumably good linear esti-

mate by solving (4.13)73 and the suboptimal estimate as yielded by the above
construction and compare their risk bounds and the associated CPU times.
For “large” n, where solving (4.13) becomes prohibitively time consuming,
compute only suboptimal estimate in order to get an impression how the cor-
responding CPU time grows with n.

Recommended setup:

• range of n: 50, 100 (“moderate” values), 1000, 2000 (“large” values)
• range of σ: {1.0, 0.01, 0.0001}
• generation of S, A, B: generate the matrices at random according to

S = USDiag{1, 2, ..., n}UTS , A = UADiag{µ1, ..., µn}V TA ,
B = UBDiag{µ1, ..., µn}V TB ,

73When X is an ellipsoid, semidefinite relaxation bound on the maximum of a quadratic form
over x ∈ X is exact, so that we are in the case when an optimal solution to (4.13) yields the best,
in terms of risk on X , linear estimate.
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where US , UA, VA, UB , VB are random orthogonal n×n matrices, and µi form
a geometric progression with µ1 = 0.01 and µn = 1.

You could run the above construction for several values of θ and select the best,
in terms of its risk bound, of the resulting suboptimal estimates.

4.56.A Simple case. There is a trivial case where (4.182) is really easy; this is the
case in the singular value decompositions of A and B the right orthogonal factors
are the same, that is, when

B = WFV T , A = UDV T

with orthogonal n×n matrices W,U, V and diagonal F,D. This, at the first glance,
very special case is in fact of some importance – it covers the denoising situation
where B = A, so that our goal is to denoise our observation of Ax given a priori
information x ∈ X on x. In this situation, setting WTHTU = G, problem (4.182)
becomes

Opt = min
G

{
‖F −GD‖2 + σ2‖G‖2F

}
. (4.184)

Now goes the concluding part of Exercise:

4. Prove that in the situation in question an optimal solution G∗ to (4.184) can
be selected to be diagonal, with diagonal entries γi, 1 ≤ i ≤ n, yielded by the
optimal solution to the optimization problem

Opt = min
γ

{
f(G) := max

i≤n
(φi − γiδi)2 + σ2

n∑
i=1

γ2
i

}
[φi = Fii, δi = Dii]

Exercise 4.57. † [image reconstruction – follow-up to Exercise 4.56] A grayscale
image can be represented by m×n matrix x = [xpq] 0≤p<m,

0≤q<n
with entries in the range

[−x, x], with x = 255/2 74. Taking picture can be modeled as observing in noise
the 2D convolution x ? κ of image x with known blurring kernel κ = [κuv] 0≤u≤2µ,

0≤v≤2ν
,

so that the observation is the random matrix

ω =
[
ωrs =

∑
0≤u≤2µ,0≤v≤2ν
0≤p<m,0≤q<n:
u+p=r,v+q=s

xpqκuv︸ ︷︷ ︸
[x?κ]rs

+σξrs
]

0≤r<m+2µ,
0≤s<n+2ν

,

where independent of each other random variables ξrs ∼ N (0, 1) form observation
noise75. Our goal is to build a presumably good linear estimate of x via ω. To
apply the machinery developed in Section 4.2.2, we need to cover the set of signals
x allowed by our a priori assumptions by an ellitope X , to decide in which norm
we want to recover x, and then solve the associated optimization problem (4.13).
The difficulty, however, is that the dimension of this problem formally will be huge
– with 256 × 256 images (a rather poor resolution!), matrix H we are looking for

74The actual grayscale image is a matrix with entries, representing pixels’ light intensities,
in the range [0, 255]. It is convenient for us to represent this actual image as the shift, by x, of a
matrix with entries in [−x, x].

75pay attention to the fact that everywhere in this Exercise indexing of elements of 2D arrays
starts from 0, and not from 1!
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is of the size dim ω × dim x = ((256 + 2µ)(256 + 2ν)) × 2562 ≥ 4.295 × 109; it
is impossible just to store such a matrix in the memory of a usual computer, not
speaking about optimizing w.r.t. such a matrix. By this reason, in what follows we
develop a “practically,” and not just theoretically, efficiently computable estimate.

4.57.A The construction. Our key observation is that when passing from rep-
resentations of x and ω “as they are” to their Discrete Fourier Transforms, the
situation simplifies dramatically. Specifically, for matrices y, x of the same sizes, let
y • z be the entrywise product of y and z: [y • z]pq = ypqzpq. Setting

α = 2µ+m, β = 2ν + n,

let Fα,β be the 2D discrete Fourier Transform – a linear mapping from the space
Cα×β onto itself given by

[Fα,βy]rs =
1√
αβ

∑
0≤p<α,
0≤q<β

ypq exp {−2πir/α− 2πis/β} ,

where i is the imaginary unit. It is well known that it is a unitary transformation
which is easy-to-compute (it can be computed in O(αβ ln(αβ)) arithmetic opera-
tions) which “nearly diagonalizes” the convolution: whenever x ∈ Rm×n, setting

x+ =

[
x 0m×2ν

02µ×n 02µ×2ν

]
∈ Rα×β ,

we have
Fα,β(x ? κ) = χ • [Fα,βx

+]

with easy-to-compute χ 76. Now, let δ be another (2µ+ 1)× (2ν + 1) kernel, with
the only nonzero entry, equal to 1, in the position (µ, ν) (recall that numeration of
indexes starts from 0); then

Fα,β(x ? δ) = θ • [Fα,βx
+]

with easy-to-compute θ. Now consider the auxiliary estimation problem as follows:

Given R > 0 and noisy observation

ω̂ = χ • x̂+ σ Fα,βξ︸ ︷︷ ︸
η

[ξ = [ξrs] with independent ξrs ∼ N (0, 1)],

of signal x̂ ∈ Cα×β known to satisfy ‖x̂‖2 ≤ R, we want to recover, in the
Frobenius norm ‖ · ‖2, the matrix θ • x̂.

Treating signals x̂ and noises η as long vectors rather than matrices and taking into
account that Fα,β is a unitary transformation, we see that our auxiliary problem
is nothing but the problem of recovery, in ‖ · ‖2-norm, of the image Θz of signal
z known to belong to the centered at the origin Euclidean ball ZR of radius R in

76Specifically, χ =
√
αβFα,βκ

+, where κ+ is the α× β matrix with κ as (2µ+ 1)× (2ν + 1)
North-Western block and zeros outside this block.
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Cαβ , from noisy observation
ζ = Az + ση,

where Θ and A are diagonal matrices with complex entries, and η is random
complex-valued noise with zero mean and unit covariance matrix. Exactly the same
argument as in the real case demonstrates that as far as linear estimates ẑ = Hζ
are concerned, we lose nothing when restricting ourselves with diagonal matrices
H = Diag{h}, and the best, in terms of its worst-case over z ∈ ZR expected ‖ · ‖22
error, estimate corresponds to h solving the optimization problem

R2 max
`≤αβ

|Θ`` − h`A``|2 + σ2
∑
`≤αβ

|h`|2.

Coming back to the initial setting of our auxiliary estimation problem, we conclude
that the best linear recovery of θ • x̂ via ω̂ is given by

ẑ = h • ω̂,

where h is an optimal solution to the optimization problem

Opt = min
h∈Cα×β

{
R2 max

r,s
|θrs − hrsχrs|2 + σ2

∑
r,s

|hrs|2
}
, (!)

and the ‖ · ‖2-risk

RiskR[ẑ] = max
‖x̂‖2≤R

E {‖θ • x̂− h • [χ • x̂+ ση]‖2}

of this estimate does not exceed
√

Opt.
Now goes your first task:

1.1. Prove that the above h induces the estimate

ŵ(ω) = F−1
α,β [h • [Fα,βω]]

of x ? δ, x ∈ XR = {x ∈ Rm×n : ‖x‖2 ≤ R}, via observation ω = x ? κ+ σξ, with
risk

Risk[ŵ|R] = max
x∈Rm×n:‖x‖2≤R

E {‖x ? δ − ŵ(x ? κ+ σξ)‖2}

not exceeding
√

Opt. Pay attention to the fact that x itself is nothing but a
block in x?δ; note also that in order for XR to cover all images we are interested
in, it suffices to take R =

√
mnx.

1.2. Prove that finding optimal solution to (!) is easy – the problem is in fact just
one-dimensional one!

1.3. What are the sources, if any, of the conservatism of the estimate ŵ we have built
as compared to the linear estimate given by an optimal solution to (4.13) ?

1.4. Think how to incorporate in the above construction a small number L (say, 5-10)
of additional a priori constraints on x of the form

‖x ? κ`‖2 ≤ R`,

where κ` ∈ R(2µ+1)×(2ν+1), and a priori upper bounds urs on the magnitudes of
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Fourier coefficients of x+:

|[Fαβx+]rs| ≤ urs, 0 ≤ r < α, 0 ≤ s < β.

4.57.B Mimicking Total Variation constraints. For an m × n image x ∈
Rm×n, its (anisotropic) total variation is defined as the `1 norm of the “discrete
gradient field” of x:

TV(x) =

m−1∑
p=0

n∑
q=0

|xp+1,q − xp,q|︸ ︷︷ ︸
TVa(x)

+

m∑
p=0

n−1∑
q=0

|xp,q+1 − xp,q|︸ ︷︷ ︸
TVb(x)

.

A well established experimental fact is that for naturally arising images, their total
variation is essentially less than what could be expected given the magnitudes of
entries in x and the sizes m,n of the image. As a result, it is tempting to incorporate
a priori upper bounds on total variation of the image into an image reconstruction
procedure. We are about to explain how this can be done in our context. Un-
fortunately, while an upper bound on total variation is a convex constraint on the
image, incorporating this constraint into our construction would completely destroy
its “practical computability.” What we can do, is to guess that bounds on TVa,b(x)
can be somehow mimicked by bounds on the energy of two convolutions: one with
kernel κa ∈ R(2µ+1)×(2ν+1) with the only nonzero entries

[κa]µ,ν = −1, [κa]µ+1,ν = 1,

and the other one with kernel κb ∈ R(2µ+1)×(2ν+1) with the only nonzero entries

[κb]µ,ν = −1, [κb]µ,ν+1 = 1

(recall that the indexes start from 0, and not from 1). Note that x ? κa and x ? κb
are “discrete partial derivatives” of x ? δ.

For a small library of grayscale m×n images x we dealt with, experiment shows
that, in addition to the energy constraint ‖x‖2 ≤ R =

√
mnx, the images satisfy

the constraints
‖x ? κa‖2 ≤ γR, ‖x ? κb‖2 ≤ γ2R (∗)

with small γ2, specifically, γ2 = 0.25. In addition, it turns out that the ∞-norms
of the Fourier transforms of x ? κa and x ? κb for these images are much less than
one could expect looking at the energy of the transform’s argument. Specifically,
for all images x from the library it holds

‖Fαβ [x ? κa]‖∞ ≤ γ∞R,
‖Fαβ [x ? κb]‖∞ ≤ γ∞R,

, ‖{zrs}r,s‖∞ = max
r,s
|zrs| (∗∗)

with γ∞ = 0.01 77. Now, relations (∗∗) read

max[|ωars|, |ωbrs|]|Fαβx+]rs| ≤ γ∞R ∀r, s

77note that from (∗) it follows that (∗∗) holds true with γ∞ = γ2, while with our empirical
γ’s, γ∞ is 25 times smaller than γ2.
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with easy-to-compute ωa and ωb, and in addition |[Fαβx+]rs| ≤ R due to ‖Fαβx+‖2 =
‖x+‖2 ≤ R. We arrive at the bounds

|[Fαβx+]rs| ≤ min
[
1, 1/|ωars|, 1/|ωbrs|

]
R ∀r, s.

on the magnitudes of entries in Fαβx
+, and can utilize item 1.4 to incorporate these

bounds, along with relations (∗),
Now goes the exercise:

2. Write software implementing the outlined deblurring and denoising image recon-
struction routine and run numerical experiments.
Recommended kernel κ: set µ =cm/32b, ν =cn/32b, start with

κuv =
1

(2µ+ 1)(2ν + 1)
+

{
∆, u = µ, v = ν
0, otherwise

, 0 ≤ u ≤ 2µ, 0 ≤ v ≤ 2ν,

and then normalize this kernel to make the sum of entries equal to 1. In this
description, ∆ ≥ 0 is control parameter responsible for well-posedness of the
auxiliary estimation problem we end up with: the smaller is ∆, the smaller is
minr,s |χrs| (note that when decreasing the magnitudes of χrs, we increase the
optimal value in (!)).
We recommend to compare what happens when ∆ = 0 with what happens when
∆ = 0.25, same as compare the estimates accounting and not accounting for the
constraints (∗), (∗∗). On the top of it, you can compare your results with what
is given by “`1-minimization recovery” described as follows:

As we remember from item 4.57.A, our problem of interest can be equiv-
alently reformulated as recovering the image Θz of a signal z ∈ Cαβ from
noisy observation ω̂ = Az + ση, where Θ and A are diagonal matrices,
and η is the zero mean complex Gaussian noise with unit covariance ma-
trix. In other words, the entries η` in η are independent of each other
real two-dimensional Gaussian vectors with zero mean and the covariance
matrix 1

2I2. Given a reasonable “reliability tolerance” ε, say, ε = 0.1,
we can easily point out the smallest “confidence radius” ρ such that for
ζ ∼ N (0, 1

2I2) it holds Prob{‖ζ‖2 > ρ} ≤ ε
αβ , implying that for every ` it

holds
Probη {|ω̂` −A`z`| > σρ} ≤ ε

αβ
,

and therefore
Probη {‖ω̂ −Az‖∞ > σρ} ≤ ε.

We now can easily find the smallest, in ‖ · ‖1, vector ẑ = ẑ(ω) which is
“compatible with our observation,” that is, satisfies the constraint

‖ω̂ −Aẑ‖∞ ≤ σρ,

and take Θẑ as the estimate of the “entity of interest” Θz (cf. Regular `1
recovery from Section 1.2.3).
Note that this recovery needs no a priori information on z.

Exercise 4.58. [classical periodic nonparametric deconvolution] In classical univari-
ate nonparametric regression, one is interested to recover a function f(t) of con-
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tinuous argument t ∈ [0, 1] from noisy observations ωi = f(i/n) + σηi, 0 ≤ i ≤ n,
where ηi ∼ N (0, 1) are independent across i observation noises. Usually, a priory
restrictions on f are smoothness assumptions – existence of κ continuous derivatives
satisfying the a priori upper bounds(∫ 1

0

|f (k)(t)|pkdt
)1/pk

≤ Lk, 0 ≤≤ κ,

on their Lpk -norms. The risk of an estimate is defined as the supremum, over f ’s of
given smoothness, expected Lr-norm of the recovery error; the primary emphasis of
classical studies here was how the minimax optimal (i.e., the best, over estimates)
risk goes to 0 as the number of observations n goes to infinity, what are near-optimal
estimates, etc. Many of these studies were dealing with periodic case – one where
f can be extended on the entire real axis as κ times continuously differentiable
function, or, which is the same, when f is treated as a smooth function on the
circumference of length 1 rather than on the unit segment [0, 1]. While being slightly
simpler for analysis than the general case, the periodic case turned out to be highly
instructive: what was established for the latter, usually extended straightforwardly
to the former.

What you are about to do in this Exercise, is to apply our machinery of building
linear estimates to the outlined recovery of smooth univariate periodic regressing
functions.

4.58.A. Setup. What follows is aimed at handling restrictions of smooth functions
on the unit (i.e., of unit length) circumference C onto an equidistant n-point grid Γn
on the circumference. These restrictions form the usual n-dimensional coordinate
space Rn; it is convenient to index the entries in f ∈ Rn starting from 0 rather
than from 1. We equip Rn with two linear operators:

• Cyclic shift (in the sequel – just shift) ∆:

∆ · [f0; f1; ... : fn−2; fn−1] = [fn−1; f0; f1; ...; fn−2],

and
• Derivative D:

D = n[I −∆];

Treating f ∈ Rn as a restriction of a function F on C onto Γn, Df is the finite-
difference version of the first order derivative of the function, and the norms

|f |p = n−1/p‖f‖p, p ∈ [1,∞]

are the discrete versions of the Lp-norms of F .

Next, we can associate with χ ∈ Rn the operator
∑n−1
i=0 χi∆

i; the image of
f ∈ Rn under this operator is denoted χ ? f and is called (cyclic) convolution of χ
and f .

The problem we intend to focus on is as follows:

Given are:

• smoothness data represented by a nonnegative integer κ and two collec-
tions: {Lι > 0 : 0 ≤ ι ≤ κ}, {pι ∈ [2,∞], 0 ≤ ι ≤ κ}. The smoothness
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data specify the set

F = {f ∈ Rn : |f |pι ≤ Lι, 0 ≤ ι ≤ κ}

of signals we are interested in (this is the discrete analogy of periodic
Sobolev ball – the set of κ times continuously differentiable functions on
C with derivatives of orders up to κ bounded, in integral pι-norms, by
given quantities Lι;
• two vectors α ∈ Rn (sensing kernel) and β ∈ Rn (decoding kernel);
• positive integer σ (noise intensity) and a real q ∈ [1, 2].

These data define the estimation problem as follows: given noisy observation

ω = α ? f + ση

of unknown signal f known to belong to F , where η ∈ Rn is random obser-
vation noise, we want to recover β ? f in norm | · |q.

The only assumption on the noise is that

Var[η] := E
{
ηηT

}
� In.

The risk of a candidate estimate f̂ is defined as

Riskr[f̂ |F ] = sup
f∈F,

η:Cov[η]�In

Eη

{
|β ? f − f̂(α ? f + ση)|q

}
.

Now goes the exercise:

1. Check that the situation in question fits the framework of Section 4.3.3 and figure
out to what, under the circumstances, boils down the optimization problem (4.50)

responsible for the presumably good linear estimate f̂H(ω) = HTω.
2. Prove that in the case in question the linear estimate yielded by an appropriate

optimal solution to (4.50) is just the cyclic convolution

f̂(ω) = h ? ω

and work out a computationally cheap way to identify h.
3. Implement your findings in software and run simulations. You could, in partic-

ular, consider the denoising problem (that is, the one where α ? x ≡ β ? x ≡ x)
and compare numerically the computed risks of your estimates with the classical
result on the limits of performance in recovering smooth univariate regression
functions; according to this results, in the situation in question and under the
natural assumption that Lι are nondecreasing in ι, the minimax optimal risk, up

to a factor depending solely on κ, is (σ2/n)
κ

2κ+1L
1

2κ+1
κ .

4.9.4.4 Probabilities of large deviations in linear estimation under sub-Gaussian
noise

Exercise 4.59. The goal of Exercise is to derive bounds for probabilities of large
deviations for estimates yielded by Proposition 4.14.

1. Prove the following fact:
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Lemma 4.60. Let Θ, Q ∈ Sm+ , with Q � 0, and let ξ be sub-Gaussian, with
parameters (µ, S), random vector, where µ and S satisfy µµT + S � Q. Setting
ρ = Tr(ΘQ), we have

Eξ

{
exp{ 1

8ρ
ξTΘξ}

}
≤
√

2 exp{1/4}. (4.185)

As a result, for t > 0 it holds

Prob{
√
ξTΘξ ≥ t√ρ} ≤

√
2 exp{1/4} exp{−t2/8}, t ≥ 0. (4.186)

Hint: You could use the same trick as in the proof of Lemma 2.78.

2. Recall that (proof of) Proposition 4.14 states that in the situation of Section
4.3.3.1 and under Assumptions A′, R, for every feasible solution (H,Λ,Υ,Υ′,Θ)
to the optimization problem78

Opt = min
H,Λ,Υ,Υ′,Θ

{
φT (λ[Λ]) + φR(λ[Υ])︸ ︷︷ ︸

A=A(Λ,Υ)

+φR(λ[Υ′]) + ΓΠ(Θ)︸ ︷︷ ︸
B=B(Θ,Υ′)

:

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L},[ ∑
kR
∗
k[Λk] 1

2
[BT −ATH]M

1
2
MT [B −HTA]

∑
` S
∗
` [Υ`]

]
� 0,[

Θ 1
2
HM

1
2
MTHT ∑

` S
∗
` [Υ′`]

]
� 0

 ,

(4.187)

one has

max
x∈X
‖[B −HTA]x‖ ≤ A & max

P :Var[P ]≪Π
Eξ∼P

{
‖HT ξ‖

}
≤ B, (4.188)

implying that the linear estimate x̂H(ω) = HTω satisfies the risk bound

RiskΠ,‖·‖[x̂H(·)|X ] ≤ A+ B. (4.189)

Prove the following

Proposition 4.61. Let H,Λ,Υ,Υ′,Θ) be a feasible solution to (4.187), and let
x̂H(ω) = HTω. Let, further, P be sub-Gaussian, with parameters (µ, S) satisfy-
ing

µµT + S ≪ Π

probability distribution on Rm. Finally, let x ∈ X . Then
(i) One has

Eξ∼P {‖Bx− x̂H(Ax+ ξ)‖} ≤ A∗ + B∗,
A∗ = A∗(Λ,Υ) := 2

√
φT (λ[Λ])φR(λ[Υ]) ≤ A(Λ,Υ) := φT (λ[Λ]) + φR(λ[Υ])

B∗ = B∗(Θ,Υ′) := 2
√

ΓΠ(Θ)φR(λ[Υ′]) ≤ B(Θ,Υ′) := ΓΠ(Θ) + φR(λ[Υ′])

78for notation, see Section 4.3.3.1, (4.43), and (4.47). For reader’s convenience, we recall
part of this notation: for a probability distribution P on Rm, Var[P ] = Eξ∼P {ξT ξ}, Π is a
convex compact subset of int Sm+ , Q ≪ Π means that Q � Q′ for some Q′ ∈ Π, and ΓΠ(Θ) =
maxQ∈Π Tr(ΘQ).
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(ii) For every ε ∈ (0, 1) one has

Probξ∼P {ξ : ‖Bx− x̂H(Ax+ ξ)‖ > A∗ + θεB∗} ≤ ε, θε = 2

√
2 ln(
√

2e1/4/ε),

(4.190)
with A∗, B∗ defined in (i).

3. Assume we are given observation ω = Ax+ξ of unknown signal x known to belong
to a given spectratope X ⊂ Rn and want to recover the signal, quantifying the
error of a candidate recovery x̂ as maxk≤K ‖Bk(x̂−x)‖(k), where Bk ∈ Rνk×n are
given matrices, and ‖ · ‖(k) are given norms on Rνk (for example, x can represent
a discretization of a continuous-time signal, and Bkx can be finite-difference
approximations of signal’s derivatives). As about observation noise ξ, assume,
same as in item 2, that it is independent of signal x and is sub-Gaussian with
sub-Gaussianity parameters µ, S satisfying µµT + S � Q, for some given matrix
Q � 0. Finally, assume that the unit balls of the norms conjugate to the norms
‖ · ‖(k) are spectratopes. In this situation, Proposition 4.14 provides us with K

efficiently computable linear estimates x̂k(ω) = HT
k ω : Rdim ω → Rνk along with

upper bounds Optk on their risks maxx∈X E
{
‖Bkx− x̂k(Ax+ ξ)‖(k)

}
. Think

how, given reliability tolerance ε ∈ (0, 1), assemble these linear estimates into a
single estimate x̂(ω) : Rdim ω → Rn such that for every x ∈ X , the probability
of the event

‖Bk(x̂(Ax+ ξ)− x)‖(k) ≤ θOptk, 1 ≤ k ≤ K, (!)

is at least 1− ε, for some moderate (namely, logarithmic in K and 1/ε) “assem-
bling price” θ.

Exercise 4.62. † Prove that if ξ is uniformly distributed on the unit sphere {x :
‖x‖2 = 1} in Rn, then ξ is sub-Gaussian with parameters (0, 1

nIn).

4.9.4.5 Linear recovery under signal-dependent noise

Exercise 4.63. [signal recovery in signal-dependent noise] Consider the situation as
follows: we observe a realization ω of m-dimensional random vector

ω = Ax+ ξx,

where

• x is unknown signal belonging to a given signal set, specifically, spectratope
(which, as always in these cases, we can assume to be basic)

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] � tkIdk , k ≤ K}

with our usual restrictions on T and Rk[·];
• ξx is observation noise with distribution which can depend on x; all we know is

that
Var[ξx] := E{ξxξTx } � C[x],

where the entries of symmetric matrix C[x] are quadratic in x. We assume in the
sequel that signals x belong to the subset

XC = {x ∈ X : C[x] � 0}
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of X ;
• Our goal is to recover Bx, with given B ∈ Rν×n, in a given norm ‖ · ‖ such that

the unit ball B∗ of the conjugate norm is a spectratope:

B∗ = {u : ‖u‖∗ ≤ 1} = MV,V = {v : ∃r ∈ R : S2
` [v] � r`If` , ` ≤ L}.

As always, we quantify the performance of a candidate estimate x̂(ω) : Rm → Rν

by the risk

Risk‖·‖[x̂|XC ] = sup
x∈XC

sup
ξx:Cov[ξx]�C[x]

E {‖Bx− x̂(Ax+ ξx)‖} .

1. Utilize semidefinite relaxation to build, in a computationally efficient fashion, a
“presumably good” linear estimate, specifically, prove the following

Proposition 4.64. In the situation in question, for G ∈ Sm let us define α0[G] ∈ R,
α1[G] ∈ Rn, α2[G] ∈ Sn from the identity

Tr(C[x]G) = α0[G] + αT1 [G]x+ xTα2[G]x ∀(x ∈ Rn, G ∈ Sm),

so that αχ[G] are affine in G. Consider convex optimization problem

Opt = min
H,µ,D,Λ,Υ,Υ′,G

{
µ+ φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) :

Λ = {Λk ∈ S
dk
+ , k ≤ K},Υ = {Υ` ∈ S

f`
+ , ` ≤ L},Υ′ = {Υ′` ∈ S

f`
+ , ` ≤ L}, D ∈ Sm+ α0[G] 1

2
αT1 [G]

1
2
α1[G] α2[G] 1

2
[BT −ATH]M

1
2
MT [B −HTA]


�

 µ− α0[D] − 1
2
αT1 [D]

− 1
2
α1[D]

∑
kR∗k[Λk]− α2[D] ∑

` S∗` [Υ`]


[

G 1
2
HM

1
2
MTHT

∑
` S∗` [Υ′`]

]
� 0

}
 [R∗k[Λk]]ij = Tr(Λk

1
2 [RkiRkj +RkjRki]), where Rk[x] =

∑
j xjR

kj

[S∗` [Υ`]]ij = Tr(Υ`
1
2 [S`iS`j + S`jS`i]), where S`[v] =

∑
j vjS

`j

λ[{Zi, i ≤ I}] = [Tr(Z1); ...; Tr(ZI)], φA(q) = maxs∈A q
T s


Whenever H,µ,D,Λ,Υ,Υ′, G is feasible for the problem, one has

Risk‖·‖[Ĥ(·)|XC ] ≤ µ+ φT (λ[Υ]) + φR(λ[Υ]) + φR(λ[Υ′]).

2. Work out the following special case of the above situation dealing with Poisson
Imaging, see Section 2.4.3.2: your observation is m-dimensional random vector
with independent Poisson entries, the vector of parameters of the corresponding
Poisson distributions being Py; here P is m × n entrywise nonnegative matrix,
and the unknown signal y is known to belong to a given box Y = {y ∈ Rn :
a ≤ y ≤ a}, where 0 ≤ a < a. You want to recover y in ‖ · ‖p-norm with given
p ∈ [1, 2].
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4.9.5 Signal recovery in Discrete and Poisson observation schemes

Exercise 4.65. † The goal of what follows is to “transfer” the constructions of linear
estimates to the case of multiple indirect observations of discrete random variables.
Specifically, we are interested in the situation where

• Our observation is a K-element sample ωK = (ω1, .., ωK) with independent iden-
tically distributed components ωk taking values in m-element set; as always, we
encode the points from this m-element set by the standard basic orths e1, ..., em
in Rm.
• The (common for all k) probability distribution of ωk is Ax, where x is unknown

“signal” – n-dimensional probabilistic vector known to belong to a closed convex
subset X of n-dimensional probabilistic simplex ∆n = {x ∈ Rn : x ≥ 0,

∑
i xi =

1}, and A is a given m×n column-stochastic matrix (i.e., entrywise nonnegative
matrix with unit column sums).
• Our goal is to recover Bx, where B is a given ν × n matrix, and we quantify a

candidate estimate x̂(ωK) : RmK → Rν by its risk

Risk‖·‖[x̂|X ] = sup
x∈X

EωK∼[Ax]×...×[Ax]

{
‖Bx− x̂(ωK)‖

}
,

where ‖ · ‖ is a given norm on Rν .

What we intend to use are linear estimates – estimates of the form

x̂H(ωK) = HT

[
1

K

K∑
k=1

ωk

]
︸ ︷︷ ︸

ω̂K [ωK ]

, (4.191)

where H ∈ Rm×ν .

1. In the main body of Lecture 4, X always was assumed to be symmetric w.r.t.
the origin, which easily implies that we gain nothing when passing from linear
estimates to affine ones (sums of linear estimates and constants). Now we are
in the case when X can be “heavily asymmetric,” which, in general, can make
“genuinely affine” estimates more preferable than linear ones. Show that in the
case in question, we still lose nothing when restricting ourselves with linear,
rather than affine, estimates.

4.65.A Observation scheme revisited. When observation ωK stems from a
signal x ∈∆n, we have

ω̂K [ωK ] = Ax+ ξx,

where

ξx =
1

K

K∑
k=1

[ωk −Ax]

is the average of K independent identically distributed zero mean random vectors
with common covariance matrix Q[x].

2. Check that
Q[x] = Diag{Ax} − [Ax][Ax]T ,
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and derive from this fact that the covariance matrix of ξx is

QK [x] =
1

K
Q[x].

Setting

Π = ΠX = {Q =
1

K
Diag{Ax} : x ∈ X},

check that ΠX is a convex compact subset of the positive semidefinite cone Sm+ ,
and that whenever x ∈ X , one has Q[x] � Q for some Q ∈ Π.

4.65.B Upper-bounding risk of a linear estimate. We can upper-bound the
risk of a linear estimate x̂H as follows:

Risk‖·‖[x̂H |X ] = supx∈X EωK∼[Ax]×...×[Ax]

{
‖Bx−HT ω̂K [ωK ]‖

}
= supx∈X Eξx

{
‖[Bx−HTA]x−HT ξx‖

}
≤ sup

x∈X
‖[B −HTA]x‖︸ ︷︷ ︸

Φ(H)

+ sup
ξ:Cov[ξ]∈ΠX

Eξ

{
‖HT ξ‖

}
︸ ︷︷ ︸

ΨX (H)

.

As in the main body of Lecture 4, we intend to build a “presumably good” linear
estimate by minimizing over H the sum of efficiently computable upper bounds

Φ(H) on Φ(H) and Ψ
X

(H) on ΨX (H).
Assuming from now on that the unit ball B∗ of the norm conjugate to ‖ · ‖ is a

spectratope:

B∗ := {u : ‖u‖∗ ≤ 1} = {u : ∃r ∈ R, y : u = My,S2
` [y] � r`If` , ` ≤ L}

with our usual restrictions of R and S`, we can take, as Ψ
X

(·), the function (4.48).
What we intend to focus on, is efficient upper-bounding of Φ(·).

To simplify our task, we from now on focus on the case when X is cut off ∆n

by a bunch of linear inequalities:

X = {x ∈∆n : Gx ≤ g, Ex = e} [G ∈ Rp×n, E ∈ Rq×n]

Observe that replacing G with G − 1Tp g and E with E − 1Tq e, we can reduce the
situation to the one when all linear constraints in question are homogeneous, that
is,

X = {x ∈∆n : Gx ≤ 0, Ex = 0}.

which is what we assume from now on. Setting

F = [G;E;−E] ∈ R(p+2q)×n,

we have also
X = {x ∈∆n : Fx ≤ 0}.

We assume also that X is nonempty. Finally, for the sake of some of the construc-
tions to follow, in addition to what was already assumed about the norm ‖ · ‖, let
us assume that this norm is absolute, that is, ‖u‖ depends only on the vector of
magnitudes of entries in u. From this assumption it immediately follows that if
0 ≤ u ≤ u′, then ‖u‖ ≤ ‖u′‖ (why?).
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4.65.C Bounding Φ, simple case. Defining the simple case as the one where
there are no linear constraints (formally, G and E are zero matrices), observe that
in this case bounding Φ is trivial:

3. Prove that in the simple case Φ is convex and efficiently computable “as is:”

Φ(H) = max
i≤n
‖(B −HTA)gi‖,

where g1, ..., gn are the standard basic orths in Rn.

4.65.D Lagrange upper bound on Φ.

4. Observing that when µ ∈ Rp+2q
+ , the function

‖(B −HTA)x‖ − µTFx

of x is convex in x ∈ ∆n and overestimates ‖(B − HTA)x‖ everywhere on X ,
conclude that the efficiently computable convex function

ΦL(H) = min
µ

max
i≤n
{‖(B −HTA)gi‖ − µTFgi : µ ≥ 0}

upper-bounds Φ(H). In the sequel, we call this function the Lagrange upper bound
on Φ.

4.65.E Basic upper bound on Φ. For vectors u, v of the same dimension, say,
k, let Max[u, v] stand for the entrywise maximum of u, v:

[Max[u, v]]i = max[ui, vi],

and let
[u]+ = Max[u, 0k],

where 0k is the k-dimensional zero vector.

5.1. Let Λ+ ≥ 0 and Λ− ≥ 0 be ν × (p+ 2q) matrices, Λ ≥ 0 meaning that matrix Λ
is entrywise nonnegative. Prove that whenever x ∈ X , one has

‖(B −HTA)x‖ ≤ B(x,H,Λ+,Λ−)
:= min

t

{
‖t‖ : t ≥ Max

[
[(B −HTA)x− Λ+Fx]+, [−(B −HTA)x− Λ−Fx]+

]}
and that B(x,H,Λ+,Λ−) is convex in x.

5.2. Derive from 5.1 that whenever Λ± are as in 5.1, one has

Φ(H) ≤ B+(H,Λ+,Λ−) := max
i≤n
B(gi, H,Λ+,Λ−),

where, as in item 3, g1, ..., gn are the standard basic orths in Rn. Conclude that

Φ(H) ≤ ΦB(H) = inf
Λ±

{
B+(H,Λ+,Λ−) : Λ± ∈ R

ν×(p+2q)
+

}
and that ΦB is convex and real-valued. In the sequel we refer to ΦB(·) as to the
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Basic upper bound on Φ(·).

4.65.F Sherali-Adams upper bound on Φ. The approach we intend to consider
now is the one which we used in Lecture 1, Section 1.3.2, when explaining the origin
of the verifiable sufficient condition for s-goodness, see p. 26. Specifically, setting

W =

[
G I
E

]
,

let us introduce slack variable z ∈ Rp and rewrite the description of X as

X = {x ∈∆n : ∃z ≥ 0 : W [x; z] = 0},

so that X is the projection of the polyhedral set

X+ = {[x; z] : x ∈∆n, z ≥ 0,W [x; z] = 0}

on the x-space. Projection of X+ on the z-space is a nonempty (since X is so) and
clearly bounded subset of the nonnegative orthant Rp

+, and we can in many ways
cover Z by the simplex

∆[α] = {z ∈ Rp : z ≥ 0,
∑
i

αizi ≤ 1},

where all αi are positive.

6.1. Let α > 0 be such that Z ⊂ ∆[α]. Prove that

X+ = {[x; z] : W [x; z] = 0, [x; z] ∈ Conv{vij = [gi;hj ], 1 ≤ i ≤ n, 0 ≤ j ≤ p}} ,
(!)

where gi are the standard basic orhts in Rn, h0 = 0 ∈ Rp, and αjhj, 1 ≤ j ≤ p,
are the standard basic orths in Rp.

6.2. Derive from 5.1 that the efficiently computable convex function

ΦSA(H) = inf
C

max
i,j

{
‖(B −HTA)gi + CTWvij‖ : C ∈ R(p+q)×ν

}
is an upper bound on Φ(H). In the sequel, we refer to this bound as to the
Sherali-Adams one.

4.65.G Combined bound. We can combine the above bounds, specifically, as
follows:

7. Prove that the efficiently computable convex function

ΦLBS(H) = inf
(Λ±,C±,µ,µ+)∈R

maxi,j Gij(H,Λ±, C±, µ, µ+),

where

Gij(H,Λ±, C±, µ, µ+) := −µTFgi + µT+Wvij + min
t

{
‖t‖ :

t ≥ Max
[
[(B −HTA− Λ+F )gi + CT+Wvij ]+, [(−B +HTA− Λ−F )gi + CT−Wvij ]+

]}
,

R = {(Λ±, C±, µ, µ+) : Λ± ∈ R
ν×(p+2q)
+ , C± ∈ R(p+q)×ν , µ ∈ Rp+2q

+ , µ+ ∈ Rp+q}
(#)
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is an upper bound on Φ(H), and that this Combined bound is at least as good as
the Lagrange, the Basic, and the Sherali-Adams ones.

4.65.H How to select α? A shortcoming of the Sherali-Adams and the combined
upper bounds on Φ is the presence of a “degree of freedom” – the positive vector α.
Intuitively, we would like to select α to make the simplex ∆[α] ⊃ Z to be “as small
as possible.” It is unclear, however, what “as small as possible” in our context is,
not speaking about how to select the required α after we agree how we measure
the “size” of ∆[α]. It turns out, however, that we can select efficiently α resulting
in the smallest volume ∆[α].

8. Prove that minimizing the volume of ∆[α] ⊃ Z in α reduces to solving the fol-
lowing convex optimization problem:

inf
α,u,v

{
−

p∑
s=1

ln(αs) : 0 ≤ α ≤ −v,ETu+GT v ≤ 1n

}
(∗)

9. Run numerical experiments to get an impression of the quality of the above
bounds. It makes sense to generate problems where we know in advance the
actual value of Φ, specifically, to take

X = {x ∈∆n : x ≥ a} (a)

with a ≥ 0 such that
∑
i ai ≤ 1. In this case, we can easily list the extreme point

of X (how?) and thus can easily compute Φ(H).
In your experiments, you can use the matrices stemming from “presumably good”
linear estimates yielded by the optimization problems

Opt = min
H,Υ,Θ

Φ(H) + φR(λ[Υ]) + ΓX (Θ) :
Υ = {Υ` � 0, ` ≤ L}[

Θ 1
2HM

1
2M

THT
∑
` S∗` [Υ`]

]
� 0

 ,

ΓX (Θ) = 1
K max

x∈X
Tr(Diag{Ax}Θ),

(P )
see Corollary 4.12, with the actual Φ (which with our X is available), or the upper
bounds on Φ (Lagrange, Basic, Sherali-Adams, and Combined) in the role of Φ.
Note that it makes sense to test 7 bounds rather than 4 of them. Specifically, with
additional constraints on the optimization variables in (#), we can get, aside of
“pure” Lagrange, Basic, and Sherali-Adams bounds and their “three-component
combination” (Combined bound), pairwise combinations of the pure bounds as
well. For example, to combine Lagrange and Sherali-Adams bound, it suffices to
add to (#) the constraints Λ± = 0.

Exercise 4.66. The exercise to follow deals with recovering discrete probability dis-
tributions in Wasserstein norm.

Wasserstein distance between probability distributions extremely popular in to-
day Statistics is defined as follows79. Consider discrete random variables taking

79What we intend to consider, stems from the Wasserstein 1-distance between discrete prob-
ability distributions; this is a particular case of the general Wasserstein p-distance between (not
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values in finite observation space Ω = {1, 2, ..., n} which is equipped with metric
{dij : 1 ≤ i, j ≤ n} satisfying the standard axioms of a metric80. As always,
we identify probability distributions on Ω with n-dimensional probabilistic vectors
p = [p1; ...; pn], where pi is the probability mass assigned by p to i ∈ Ω. The
Wasserstein distance between probability distributions p and q is defined as

W (p, q) = min
x=[xij ]

∑
i

dijxij : xij ≥ 0,
∑
j

xij = pi,
∑
i

xij = qj ∀1 ≤ i, j ≤ n


In other words, think about p and q as about two distributions of unit mass between
the points of Ω, and about the problem of transporting masses assigned to points
by distribution p from point to point in order to get the distribution q. Denoting
by xij the mass transported from point i to point j, the constraints

∑
j xij = pi say

that the total mass taken from point i is exactly pi, the constraints
∑
i pij = qj say

that as the result of transportation, the mass at point j will be exactly qj , and the
constraints xij ≥ 0 reflect the fact that transport of a negative mass is forbidden.
Assuming that the cost of transporting a mass µ from point i to point j is dijµ, the
Wasserstein distance W (p, q) between p and q is the cheapest transportation plan
which converts p into q. As compared to other natural distances between discrete
probability distributions, like ‖p−q‖1, the advantage of the Wasserstein distance is
that it allows to model the situation (indeed arising in some applications) where the
effect, measured in terms of intended application, of changing probability masses of
points from Ω is small when the probability mass of a point is redistributed among
close points.

Now goes the first part of the exercise:

1. Let p, q be two probability distributions. Prove that

W (p, q) = max
f∈Rn

{∑
i

fi(pi − qi) : |fi − fj | ≤ dij ∀i, j

}
(4.192)

Treating a vector f ∈ Rn as a function on Ω, the value of the function at a point
i ∈ Ω being fi, (4.192) admits a very transparent interpretation: the Wasserstein
distance W (p, q) between probability distributions p, q is the maximum of inner
products of p − q and Lipschitz continuous, with constant 1 w.r.t. the metric d,
functions f on Ω. When shifting f by a constant, the inner product remains intact
(since p− q is a vector with zero sum of entries), and therefore, denoting by

D = max
i,j

dij

the d-diameter of Ω, we have

W (p, q) = max
f

{
fT (p− q) : |fi − fj | ≤ dij ∀i, j, |fi| ≤ D/2∀i

}
, (4.193)

the reason being that every Lipschitz continuous, with constant 1 w.r.t. metric d,

necessarily discrete) probability distributions.
80specifically, dij = dji ≥ 0, with dij = 0 if and only if i = j, and the Triangle inequality

dik ≤ dij + djk for all triples i, j, k.
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function f on Ω can be shifted by a constant to ensure ‖f‖∞ ≤ D/2 (look what
happens when the shift ensures that mini fi = −D/2).

Representation (4.193) shows that the Wasserstein distance is generated by a
norm on Rn: for all probability distributions on Ω one has

W (p, q) = ‖p− q‖W ,

where ‖ · ‖W is the Wasserstein norm on Rn given by

‖x‖W = max
f∈B∗

fTx,

B∗ =
{
u ∈ Rn : uTSiju ≤ 1, 1 ≤ i ≤ j ≤ n

}
,

Sij =

{
d−2
ij [ei − ej ][ei − ej ]T , 1 ≤ i < j ≤ n

4D−2eie
T
i , 1 ≤ i = j ≤ n ,

(4.194)

where e1, ..., en are the standard basic orths in Rn.
The next portion of Exercise is as follows:

2. Let us equip n-element set Ω = {1, ..., d} with the metric dij =

{
2, i 6= j
0, i = j

.

What is the associated Wasserstein norm?

Note that the set B∗ in (4.194) is the unit ball of the norm conjugate to ‖ · ‖W ,
and as we see, this set is a basic ellitope. As a result, the estimation machinery
developed in Lecture 4 is well-suited for recovering discrete probability distributions
in Wasserstein norm. This observation motivates the concluding part of Exercise:

3. Consider the situation as follows: Given m× n column-stochastic matrix A and
ν × n column-stochastic matrix B, we observe K independent of each other
samples ωk, 1 ≤ k ≤ K, drawn from discrete probability distribution Ax ∈
∆m

81, x ∈ ∆n being unknown “signal” underlying observations; as always,
realizations of ωk are identified with respective vertices f1, ..., fm of ∆m. Our
goal is to use the observations to recover the distribution Bx ∈∆ν . We are given
a metric d on the set Ων = {1, 2, ..., ν} of indexes of entries in Bx, and measure
the recovery error in the associated with d Wasserstein norm ‖ · ‖W .
Build explicit convex optimization problem responsible for “presumably good”
linear recovery of the form

x̂H =
1

K
HT

K∑
k=1

ωk.

Exercise 4.67. [follow-up to Exercise 4.65] In Exercise 4.65, we have built a “pre-
sumably good” linear estimate x̂H∗(·), see (4.191), yielded by the H-component H∗
of an optimal solution to problem (P ), see p. 386; the optimal value Opt in this
problem is an upper bound on the risk Risk‖·‖[x̂H∗ |X ] (here and in what follows we
use the same notation and impose the same assumptions as in Exercise 4.65). Now,
Risk‖·‖ is the worst, w.r.t. signals x ∈ X underlying our observations, expected
norm of the recovery error. It makes sense also to provide upper bounds on the
probabilities of deviations of error’s magnitude from its expected value, and this is

81as always, ∆ν ⊂ Rν is the probabilistic simplex in Rν .
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the problem we intend to focus on, cf. Exercise 4.59.
Now goes the exercise:

1) Prove the following

Lemma 4.68. Let Q ∈ Sm+ , let K be a positive integer, and let p ∈ ∆m. Let,
further, ωK = (ω1, ..., ωK) be i.i.d. random vectors, with ωk taking the value ej
(e1, ..., em are the standard basic orths in Rm) with probability pj. Finally, let

ξk = ωk − E{ωk} = ωk − p, and ξ̂ = 1
K

∑K
k=1 ξk. Then for every ε ∈ (0, 1) it

holds

Prob

{
‖ξ̂‖22 ≤

12 ln(2m/ε)

K

}
≤ ε.

Hint: use the classical
Bernstein inequality: Let X1, ..., XK be independent zero mean random vari-
ables taking values in [−M,M ], and let σ2

k = E{X2
k}. Then for every t ≥ 0 one

has

Prob

{∑K

k=1
Xk ≥ t

}
≤ exp{− t2

2[
∑
k σ

2
k + 1

3Mt]
}.

2) Consider the situation described in Exercise 4.65 with X = ∆n, specifically,

• Our observation is a sample ωK = (ω1, ..., ωK) with i.i.d. components ωk ∼
Ax, where X ∈∆n is unknown n-dimensional probabilistic vector, A is m×n
stochastic matrix (nonnegative matrix with unit column sums), and ω ∼ Ax
means that ω is random vector taking value ei (ei are standard basic orths in
Rm) with probability [Ax]i, 1 ≤ i ≤ m;
• Our goal is to recover Bx in a given norm ‖ · ‖; here B is a given ν×n matrix.
• We assume that the unit ball B∗ of the norm ‖ · ‖∗ conjugate to ‖ · ‖ is a

spectratope:

B∗ = {u = My, y ∈ Y}, Y = {y ∈ RN : ∃r ∈ R : S2
` [y] � r`If` , ` ≤ L}.

Our goal is to build a presumably good linear estimate

x̂H(ωK) = HT ω̂[ωK ], ω̂[ωK ] =
1

K

∑
k

ωk.

Prove the following

Proposition 4.69. Let H,Θ,Υ be a feasible solution to the convex optimization prob-
lem

minH,Θ,Υ

Φ(H) + φR(λ[Υ]) + Γ(Θ)/K :
Υ = {Υ` � 0, ` ≤ L}[

Θ 1
2HM

1
2M

THT
∑
` S∗` [Υ`]

]
� 0

 ,

Φ(H) = maxj≤n ‖Colj [B −HTA]‖, Γ(Θ) = maxx∈∆n Tr(Diag{Ax}Θ).
(4.195)

Then
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(i) For every x ∈∆n it holds

EωK∼Ax×...×Ax
{
‖Bx− x̂H(ωK)‖

}
≤ Φ(H) + 2K−1/2

√
φR(λ[Υ])Γ(Θ)[

≤ Φ(H) + φR(λ[Υ]) + Φ(H) + Γ(Θ)/K

]
(4.196)

(ii) Let ε ∈ (0, 1). For every x ∈∆n with

γ = 2
√

3 ln(2m/ε)

one has

ProbωK∼Ax×...×Ax

{
‖Bx− x̂H(ωK)‖ > Φ(H) + 2γK−1/2

√
φR(λ[Υ])‖Θ‖Sh,∞

}
≥ 1− ε.

(4.197)

3) Look what happens when ν = m = n, A and B are the unit matrices, and
H = I, i.e., we want to understand how good is recovery of a discrete probability
distribution by empirical distribute derive from K-element i.i.d. sample drawn
from this distribution. Take, as ‖ · ‖, the norm ‖ · ‖p with p ∈ [1, 2], and show
that for every x ∈∆n and every ε ∈ (0, 1) one has

∀(x ∈∆n) :

E
{
‖x− x̂I(ωK)‖p

}
≤ n

1
p−

1
2K−

1
2 (a)

Prob
{
‖x− x̂I(ωK)‖p > 2

√
3 ln(2n/ε)n

1
p−

1
2K−

1
2

}
≥ 1− ε (b)

. (4.198)

Exercise 4.70. [follow-up to Exercise 4.65] Consider the situation as follows. A
retailer sells n items by offering customers via internet bundles of m < n items,
so that an offer is an m-element subset B of the set S = {1, ..., n} of the items.
A customer has private preferences represented by a subset P of S – customer’s
preference set. We assume that if an offer B intersects with the preference set P of
a customer, the latter buys an item drawn at random from the uniform distribution
on B ∩ P , and if B ∩ P = ∅, the customer declines the offer. In the pilot stage we
are interested in, the seller learns the market by selecting, one by one, K customers
and making offers to them. Specifically, the seller draws k-th customer, k ≤ K, at
random from the uniform distribution on the population of customers, and makes
the selected customer an offer drawn at random from the uniform distribution on
the set Sm,n of all m-item offers. What is observed in k-th experiment, is the item,
if any, bought by customer, and what we want is to make statistical inferences from
these observations.

The outlined observation scheme can be formalized as follows. Let S be the set of
all subsets of the n-element set, so that S is of cardinality N = 2n. The population
of customers induces a probability distribution p on S: for P ∈ S, pP is the fraction
of customers with the preference set being P ; we refer to p as to the preference
distribution. An outcome of a single experiment can be represented by a pair (ι, B),
where B ∈ Sm,n is the offer used in the experiment, and ι is either 0 (“nothing is
bought”, P ∩ B = ∅), or a point from P ∩ B, the item which was bought, when
P ∩ B 6= ∅. Note that AP is a probability distribution on the (M = (m + 1)

(
n
m

)
)-

element set Ω = {(ι, B)} of possible outcomes. As a result, our observation scheme
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is fully specified by known to us M × N column-stochastic matrix A with the
columns AP indexed by P ∈ S. When a customer is drawn at random from the
uniform distribution on the population of customers, the distribution of the outcome
clearly is Ap, where p is the (unknown) preference distribution. Our inferences
should be based on K-element sample ωK = (ω1, ..., ωK), with ω1, .., ωK drawn,
independently of each other, from the distribution Ap.

Now we can pose various inference problems, e.g., the one of recovering p. We,
however, intend to focus on a simpler problem – one of recovering Ap. In terms of
our story, this makes sense: when we know Ap, we know, e.g., what is the probability
for every offer to be “successful” (something indeed is bought) and/or to result in
a specific profit, etc. With this knowledge at hand, the seller can pass from “blind”
offering policy (drawing an offer at random from the uniform distribution on the
set Sm,n) to something more rewarding.

Now goes the exercise:

1. Use the results of Exercise 4.65 to build “presumably good” linear estimate

x̂H(ωK) = HT

[
1

K

K∑
k=1

ωk

]

of Ap ( as always, we encode observations ω, which are elements of M -element
set Ω, by standard basic orths in RM ). As the norm ‖·‖ quantifying the recovery
error, use ‖ · ‖1 and/or ‖ · ‖2. In order to avoid computational difficulties, use
small m and n (e.g., m = 3 and n = 5). Compare your results with those for the

straightforward estimate 1
K

∑K
k=1 ωk (the empirical distribution of ω ∼ Ap).

2. Assuming that the “presumably good” linear estimate outperforms the straight-
forward one, how could this phenomenon be explained? Note that we have no
nontrivial a priori information on p!

Exercise 4.71. [Poisson Imaging] Poisson Imaging Problem is to recover an un-
known signal observed via Poisson observation scheme. More specifically, assume
that our observation is a realization of random vector ω ∈ Rm

+ with independent
of each other Poisson entries ωi = Poisson([Ax]i). Here A is a given entrywise
nonnegative m × n matrix, and x is unknown signal known to belong to a given
compact convex subset X of Rn

+. Our goal is to recover in a given norm ‖ · ‖ the
linear image Bx of x, where B is a given ν × n matrix.

We assume in the sequel that X is a subset cut off the n-dimensional proba-
bilistic simplex ∆n by a bunch of linear equality and inequality constraints. The
assumption X ⊂∆n is not too restrictive. Indeed, assume that we know in advance
a linear inequality

∑
i αixi ≤ 1 with positive coefficients which is valid on X 82.

Introducing slack variable s given by
∑
i αixi + s = 1, we can pass from signal

x to the new signal [α1x1; ...;αnxn; s], which, after straightforward modification
of matrices A and B, brings the situation to the one where X is a subset of the
probabilistic simplex.

Our goal in the sequel is to build a presumably good linear estimate x̂H(ω) =
HTω of Bx. Acting in the same fashion as in Exercise 4.65, we start with upper-

82For example, in PET, see Section 2.4.3.2, where x is the density of radioactive tracer
injected to the patient taking the PET procedure, we know in advance the total amount

∑
i vixi

of the tracer, vi being the volumes of voxels.
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bounding the risk of a linear estimate. Specifically, representing

ω = Ax+ ξx,

we arrive at zero mean observation noise ξx with independent of each other entries
[ξx]i = ωi − [Ax]i and covariance matrix Diag{Ax}. We now can upper-bound the
risk of a linear estimate x̂H(·) in the same fashion as in Exercise 4.65. Specifically,
denoting by ΠX the set of all diagonal matrices Diag{Ax}, x ∈ X and by Pi,x the
Poisson distribution with parameter [Ax]i, we have

Risk‖·‖[x̂H |X ] = supx∈X Eω∼P1,x×...×Pm,x
{
‖Bx−HT ω̂K [ωK ]‖

}
= supx∈X Eξx

{
‖[Bx−HTA]x−HT ξx‖

}
≤ sup

x∈X
‖[B −HTA]x‖︸ ︷︷ ︸

Φ(H)

+ sup
ξ:Cov[ξ]∈ΠX

Eξ

{
‖HT ξ‖

}
︸ ︷︷ ︸

ΨX (H)

.

In order to build a presumably good linear estimate, it suffices to build efficiently

computable convex in H upper bounds Φ(H) on Φ(H) and Ψ
X

(H) on ΨX (H). and
then take as H an optimal solution to the convex optimization problem

Opt = min
H

[
Φ(H) + Ψ

X
(H)

]
.

Same as in Exercise 4.65, assume from now on that ‖ · ‖ is an absolute norm, and
the unit ball B∗ of the conjugate norm is a spectratope:

B∗ := {u : ‖u‖∗ ≤ 1} = {u : ∃r ∈ R, y : u = My,S2
` [y] � r`If` , ` ≤ L}

Observe that

• In order to build Φ, we can use exactly the same techniques as those developed
in Exercise 4.65. Indeed, as far as building Φ is concerned, the only difference
between our present situation and the one of Exercise4.65 is that in the latter, A
was column-stochastic matrix, while now A is just entrywise nonnegative matrix.
Note, however, that when upper-bounding Φ in Exercise 4.65, we never used the
fact that A is column-stochastic.
• In order to upper-bound ΨX , we can use the same bound (4.48) as in Exercise

4.65.

The bottom line is that in order to build a presumably good linear estimate, we
need to solve the convex optimization problem

Opt = min
H,Υ,Θ

Φ(H) + φR(λ[Υ]) + ΓX (Θ) :
Υ = {Υ` � 0, ` ≤ L}[

Θ 1
2HM

1
2M

THT
∑
` S∗` [Υ`]

]
� 0

 ,

ΓX (Θ) = max
x∈X

Tr(Diag{Ax}Θ),

(P )
(cf. problem (P ) on p. 386) with Φ yielded by a whatever construction from
Exercise 4.65, e.g., the least conservative Combined upper bound on Φ.

What in our present situation differs significantly from the situation of Exercise
4.65, are the bounds on probabilities of large deviations established in Exercise
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4.67, and the goal of what follows is to establish these bounds for Poisson Imaging.
Here is what you are supposed to do:

1. Let ω bem-dimensional random vector with independent entries ωi ∼ Poisson(µi),
and let µ = [µ1; ...;µm]. Prove that whenever h ∈ Rm, γ > 0, and δ ≥ 0, one has

ln
(
Prob{hTω > hTµ+ δ}

)
≤
∑
i

[exp{γhi} − 1]µi − γhTµ− γδ. (∗)

2. Taking for granted that ex ≤ 1 + x + 3
4x

2 when |x| ≤ 2/3, prove that in the
situation of item 1 one has

0 ≤ γ ≤ 2

3‖h‖∞
⇒ ln

(
Prob{hTω > hTµ+ δ}

)
≤ 3

4
γ2
∑
i

h2
iµi − γδ. (#)

Derive from the latter fact that

Prob
{
hTω > hTµ+ δ

}
≤ exp{− δ2

3[
∑
i h

2
iµi + ‖h‖∞δ]

}. (##)

and conclude that

Prob
{
|hTω − hTµ| > δ

}
≤ 2 exp{− δ2

3[
∑
i h

2
iµi + ‖h‖∞δ]

}. (!)

3. Extract from (!) the following

Proposition 4.72. In the situation and under the assumptions of Exercise 4.71,
let Opt be the optimal value, and H,Υ,Θ be a feasible solution to problem (P ).
Whenever x ∈ X and ε ∈ (0, 1), denoting by Px the distribution of observations
stemming from x (i.e., the distribution of random vector ω with independent
entries ωi ∼ Poisson([Ax]i)), one has

E {‖Bx− x̂H(ω)‖} ≤ Φ(H)+2
√
φR(λ[Υ])Tr(Diag(Ax}Θ) ≤ Φ(H)+φR(λ[Υ])+ΓX (Θ)

(4.199)
and

Probω∼Px

{
‖Bx− x̂H(ω)‖ ≤ Φ(H)

+2
√

2
√

9 ln2(2m/ε)Tr(Θ) + 3 ln(2m/ε)Tr(Diag{Ax}Θ)
√
φR(λ[Υ])

}
≥ 1− ε.

(4.200)

Note that in the case of [Ax]i ≥ 1 for all x ∈ X and all i we have Tr(Θ) ≤
Tr(Diag{Ax}Θ), so that in this case the Px-probability of the event{

ω : ‖Bx− x̂H(ω)‖ ≤ Φ(H) +O(1) ln(2m/ε)
√
φR(λ[Υ])ΓX (Θ)

}
is at least 1− ε.

Exercise 4.73. [rudimentary discrete stochastic optimization] Let us revisit the
story of Exercise 4.70 (in the sequel, we refer to this story as to the learning one).
From the computational viewpoint, a bottleneck in problem’s setup is that already
moderate, but not quite small, number n of items and cardinality m of offers lead
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to huge cardinality M of the set where the observations take their values; for ex-
ample, with m = 10 and n = 100, we get M = 190, 413, 404, 020, 840 ≈ 1.9 · 1014;
it is problematic even to write down an approximation to a distribution on the
set of that huge cardinality, not speaking about inferring an approximation from
observations.

The goal of the exercise to follow is to modify problem’s setup to allow for a
kind of tractable solution. Specifically, consider the situation as follows: we have
at our disposal

1) A finite set of actions I of (perhaps, huge) cardinality M , such that we can
sample from the uniform distribution on the set
In the learning story, the actions are offers – collections of a given number m
of elements selected from a given n-element set; when m and n are moderate
numbers, it is easy to draw an order at random from the uniform distribution
(how?), in spite of the fact that the cardinality M =

(
n
m

)
of the set of offers can

be astronomically large.
2) A ground set G of moderate cardinality ν along with a profit vector c ∈ Rν .

In the learning story, the ground set is the set of possible outcomes of an offer
made to a customer, that is, the serial number of the bought item, if any, bought
by the customer, or 0, if no item is bought; thus, ν = n + 1, and the ground
set is G = {0, 1, ..., n}. Now, we can specify cj , 1 ≤ j ≤ n, as the seller’s profit
when item j is bought, and set c0 = 0 (or, perhaps, to make c0 the minus cost
of making an offer, if any).

3) We assume that “in the nature” every action χ is associated with a probability
distribution pχ on the ground set supported on known to us given χ subset Gχ
of G. We do not know what exactly pχ is, but can sample from this distribution.
Specifically, when making an observation, we select at our will χ ∈ I and observe
a realization of random variable ω ∼ pχ.
In the learning story, pχ is the distribution of outcomes of offer χ induced by
the unknown preference distribution p of customers, and Gχ = {0, χ1, ..., χm},
where χ = {χ1, ..., χm} is the offer.

Now, in the learning story we were interested to recover the distribution of pairs
(i, χ) (i ∈∈ {0}∪χ is an outcome of offer χ) induced by the uniform distribution on
the set of offers χ and the unknown preference distribution of customers; as we have
already mentioned, when M is huge, this goal cannot be achieved – we cannot even
write down a candidate solution! Instead, let us look at a different goal: identifying
the action χ ∈ I resulting in the largest, over χ ∈ I, expected profit

πχ =
∑
j∈Gχ

cjp
χ
j .

Note that πχ, χ ∈ I, are well defined in our general setup 1) – 3), not only in the
learning story. The problem we are interested in now is exactly the one of max-
imizing πχ over χ ∈ I via K observations ωK = (ω1, ..., ωK), with ωk generated
as follows: we select action χk (which should depend solely on the observations
ω1, ..., ωk−1), and then “the nature” shows us ωk drawn at random from the distri-
bution pχk .

Literally speaking, the problem we have just posed still is intractable. Indeed,
with our setup, there is not enough structure to relate to each other distributions
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pχ associate with different actions χ; consequently, seemingly the only way to select
the best action is to implement all of them one by one, observing the outcomes of
a particular action long enough to be able to estimate πχ reliably; of course, such a
brute force optimization is completely impossible when M is huge. What we intend
to do is to relax this problem, namely, as follows: instead of looking for the action
with the best possible expected profit, let us look for an action with the expected
profit belonging to the top δ-fraction of the profits {πχ : χ ∈ I}. Specifically, let us
select “small, but not very small” threshold δ ∈ (0, 1), like δ = 0.1 or δ = 0.01, and
let π∗(δ) be the (1− δ)-quantile of the set {πχ : χ ∈ I}, that is, the largest s such
the cardinality of the set χ ∈ I : πχ ≥ s} is at least δM . In other words, setting
Mδ = Floor((1 − δ)M) and arranging πχ, χ ∈ I, in a non-descending order, π∗(δ)
is the Mδ-th element in this arrangement. The “relaxed” goal we are aiming at is

(!) Given δ ∈ (0, 1), we need to identify reliably an action χ ∈ I such that
πχ ≥ π∗(δ).

Achieving (!) reduces to the purely statistical problem of estimating πχ for χ’s
belonging to a set of moderate, provided δ is not very small, cardinality due to the
following immediate
Observation: Let an “optimization threshold” δ ∈ (0, 1) and a “reliability thresh-
old” ε ∈ (0, 1) be given, and let

J = J(ε, δ) = Ceil

(
ln(1/ε)

ln(1/(1− δ))

)
.

Let, next, J be a random subset of I comprised of the samples χ1, ..., χJ drawn,
independently of each other, from the uniform distribution on I, so that the cardi-
nality K of J is at most J , and let

π∗[J ] = max
χ∈J

πχ.

Then
Prob{π∗[J ] ≥ π∗(δ)} ≥ 1− ε.

Consequently, a maximizer χ∗ = χ∗[J ] of πχ over χ ∈ J , up to probability of bad
sampling ≤ ε, satisfies the relation πχ∗ ≥ π∗(δ).

This is your first task:

1. Justify Observation.

Observation suggests the following approach to achieving (!): given optimality tol-
erance δ and reliability tolerance ε, we generate a random subset J = {χ1, ..., χK}
of I as explained in Observation, and implement actions χ ∈ J , several times each,
in order to estimate the expected profits πχ for all χ ∈ J , and then select the
“seemingly best,” as suggested by the estimated profits, action.

We are about to consider two implementations of the just outlined strategy.

4.73.A Single-stage estimation. Given J and the total number Ntot of observa-
tions, we distribute the “observation resource” Ntot equally between the K actions
from J , thus arriving at

N = Floor(Ntot/K).
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observations per action. Then we implement one by one the K actions from I, N
times each, and use these observations to build confidence intervals ∆χ, χ ∈ J ,
for the respective expected profits πχ. When building these intervals, we set the
underlying confidence levels to be equal to 1−ε̂/K, where ε̂ ∈ (0, 1) is the additional
to ε “reliability tolerance” we use; with these reliability levels we have

Prob{∃χ ∈ J : πχ 6∈ ∆χ} ≤ ε̂.

We can now select, as a candidate to the role of the best action from J , the action
χ̂ corresponding to the largest, over χ ∈ J , midpoint of the confidence interval ∆χ.

The outlined implementation gives rise to two questions:

A. How good is the resulting action χ̂ ?
B. How to build the intervals ∆χ?

As far as A is concerned, your task is as follows:

2.1. Let σχ be the length of ∆χ. Prove that

Prob{πχ̂ < π∗[J ]− [σχ̂ + max
χ∈J

σχ]} ≤ ε̂, (#)

where Prob is taken w.r.t. the conditional, J given, probability distribution of
our observations.

As about question B, it reduces to the question of how to estimate a linear
function hT p of unknown d-dimensional probabilistic vector p via stationary K-
repeated observation ξK = (ξ1, ..., ξK) drawn from p. This problem was considered
in Section 3.3.3, and we refer to this Section for the terminology we use now. Note
that in our present situation, we need to solve the problem for several h’s and d’s
(specifically, for h’s obtained by restricting the profit vector c on the set Gχ of
indexes, with χ running through J ). Now, the constructions from Section 3.3.3
yield both a “presumably good” linear estimate of hT p and an upper bound on the
risk of the estimate. To reduce the computational burden, let us restrict ourselves
with the simplest estimate hT ξ̂[ξK ], where

ξ̂[ξK ] =
1

K

K∑
k=1

ξk

(as always, we encode realizations ξk of discrete random variable taking values in
d-element set by the standard basic orths in Rd).

The related exercise is as follows:

2.2 Prove the following version of Corollary 3.9:

Corollary 4.74. Let h ∈ Rd, positive integer K and tolerance ε̄ ∈ (0, 1) be given,
and let ξ1, ..., ξK be drawn independently of each other from a discrete probability
distribution p ∈∆d. For g ∈ Rd, let

Optε̄,K(g) = inf
β>0

{
β

K
ln(2/ε̄) + max

p∈∆d

[
β ln

(∑
i

pi exp{gi/β}

)
− gT p

]}
.
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Next, for a sequence ξK = (ξ1, ..., ξK) of basic orths in Rd, let

∆[ξK ] =
[
hT ξ̂[ξK ]−Optε̄,K(−h), hT ξ̂[ξK ] + Optε̄,K(h)

]
.

Then for every p ∈∆d it holds

ProbξK∼p×...×p
{
ξK : hT p 6∈ ∆[ξK ]

}
≤ ε̄.

4.73.B Multi-stage estimation. With this strategy we, given J and additional
to ε reliability tolerance ε̂ ∈ (0, 1), select somehow

• a (positive integer) number of stages L,
• positive integers Nini and grow factor γ,

We split ε̂ into L parts, that is, find positive reals ε̂`, 1 ≤ ` ≤ L such that

ε̂ =

L∑
`=1

ε̂`

and run one by one L stages as follows:

• At a beginning of stage `, we have at our disposal a nonempty set J` ⊂ J
comprised of K` distinct from each other elements χ`j , 1 ≤ j ≤ K`, with J1 = J .

• We set N` = γ`−1Nini and implement, one by one, each one of K`−1 actions from
the set J`−1, collecting N` observations per action, and use these observations to
build confidence intervals ∆`

χ`j
for the quantities πχ`j , 1 ≤ j ≤ K`, the confidence

levels being 1 − ε̂`/K`. These intervals are built exactly in the same fashion as
in the single-stage procedure, with N` playing the role of N .

• When ` < L, we build J`+1 as follows. Let us say that χ`j is dominated, if
there exists a confidence interval ∆`

χ`j′
which is strictly to the right of the right

endpoint of ∆`
χ`j

. There clearly exist non-dominated χ`j ’s (e.g., the one with the

largest, among all confidence intervals built at the stage, right endpoint); the set
J`+1 is comprised of all non-dominated χ`j ’s. After J`+1 is built, we pass to the
stage `+ 1.

• When ` = L, we select among all intervals ∆L
χLj one with the largest midpoint,

and output the corresponding χLj =: χ̂.

Now goes the exercise:

3. Prove that the resulting χ̂ meets the same quality guarantees as the output of
the single-stage procedure, specifically

Prob{πχ̂ < π∗[J ]− [σχ̂ + max
j≤KL

σχLj ]} ≤ ε̂, (##)

where σχ`j is the width of the confidence interval ∆L
χLj , and Prob is taken w.r.t.

the conditional, J given, probability distribution of our observations.

Remark. The rationale underlying the multi-stage procedure is quite transparent:
we hope that a significant part of actions (those “heavily bad”) will be eliminated
at early stages taking (since N` grow with `) small part of the total number Ntot =



398

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 4

∑
`K`N` of observations. If it indeed will be the case, then the “major part” of the

total number of observations will be spent on a “promising part” of actions, thus
improving the quality of the results as compared to the case when our “observation
resource” Ntot is equally distributed between all actions form J , good and bad
alike.

Your final task is as follows:

4. Implement single- and multi-stage procedures and run simulations in order to
get an impression what is better.
Here is the recommended setup (mimicking the learning problem):

• the action set is comprised of all (m = 10)-element subsets of (n = 100)-
element set;
• the ground set is {0, 1, ..., n = 100}, and ci = i, 0 ≤ i ≤ n;
• the support Gχ of the probability distribution pχ , χ = {χ1, χ2, ..., χm} with

distinct from each other elements χj ∈ {1, ..., n}, is {0, χ1, ..., χm};
• δ = 0.05, ε = ε̂ = 0.01.

When simulating the above procedures, you need to associate with every action
χ ∈ J a probability distribution supported on Gχ; the simplest way is to select the
required distributions at random.

4.9.6 Numerical lower-bounding minimax risk

Exercise 4.75. † [numerical lower bounding minimax risk]

4.75.A. Motivation. From the theoretical viewpoint, the results on near-optimality
of presumably good linear estimates stated in Propositions 4.5, 4.16 seem to be
pretty strong and general. This being said, for a practically oriented user the
“nonoptimality factors” arising in these propositions can be too large to make
practical sense. This practical drawback of our theoretical results is not too crucial
– what matters in applications, is whether the risk of a proposed estimate is appro-
priate for the application in question, and not by how much it could be improved
were we smart enough to build the “ideal” estimate; results of the latter type from
practical viewpoint offer no more than some “moral support.” Nevertheless, the
“moral support” has its value, and it makes sense to strengthen it by improving the
lower risk bounds as compared to those underlying Propositions 4.5, 4.16. In this
respect, an appealing idea is to pass from lower risk bounds yielded by theoretical
considerations to computation-based ones. The goal of this exercise is to develop
some methodology yielding computation-based lower risk bounds. We start with
the main ingredient of this methodology – the classical Cramer-Rao bound.

4.75.B. Cramer-Rao bound. Consider the situation as follows: we are given

• an observation space Ω equipped with reference measure Π, basic examples being
(A) ω = Rm with Lebesgue measure Π, and (B) (finite our countable) discrete
set Ω with counting measure Π;
• a convex compact set Θ ⊂ Rk and a family Π = {p(ω, θ) : θ ∈ Θ} of probability

densities, taken w.r.t. Π.
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Our goal is, given an observation ω ∼ p(·, θ) stemming from unknown θ known to

belong to Θ, to recover θ. We quantify the risk of a candidate estimate θ̂ as

Risk[θ̂|Θ] = sup
θ∈Θ

(
Eω∼p(·,θ)

{
‖θ̂(ω)− θ‖22

})1/2

, (4.201)

and define the “ideal” minimax risk as

Riskopt = inf
θ̂

Risk[θ̂],

the infimum being taken w.r.t. all estimates, or, which is the same, all bounded
estimates (indeed, passing from a candidate estimate θ̂ to the projected estimate

θ̂Θ(ω) = argminθ∈Θ ‖θ̂(ω − θ‖2 we can only reduce the risk of an estimate.
The classical Cramer-Rao inequality, which we intend to use, is certain relation

between the covariance matrix of a bounded estimate and its bias; this relation is
valid under mild regularity assumptions on the family Π, specifically, as follows:

1) p(ω, θ) > 0 for all ω ∈ Ω, θ ∈ U , and p(ω, θ) is differentiable in θ, the with
∇θp(ω, θ) continuous in θ ∈ Θ;

2) The Fisher Information matrix

I(θ) =

∫
Ω

∇θp(ω, θ)[∇θp(ω, θ)]T

p(ω, θ)
Π(dω)

is well defined for all θ ∈ Θ;
3) There exists function M(ω) ≥ 0 such that

∫
Ω
M(ω)Π(dω) <∞ and

‖∇θp(ω, θ)‖2 ≤M(ω) ∀ω ∈ Ω, θ ∈ Θ.

The derivation of the Cramer-Rao bound is as follows. Let θ̂(ω) be a bounded
estimate, and let

φ(θ) = [φ1(θ); ...;φk(θ)] =

∫
Ω

θ̂(ω)p(ω, θ)Π(dω)

be the expected value of the estimate. By item 3, φ(θ) is differentiable on Θ, with

the Jacobian φ′(θ) =
[
∂φi(θ)
∂θj

]
i,j≤k

given by

φ′(θ)h =

∫
Ω

θ̂(ω)hT∇θp(ω, θ)Π(dω), h ∈ Rk.

Besides this, recalling that
∫

Ω
p(ω, θ)Π(dω) ≡ 1 and invoking item 3, we have∫

Ω
hT∇θp(ω, θ)Π(dω) = 0, whence, in view of the previous equality,

φ′(θ)h =

∫
Ω

[θ̂(ω)− φ(θ)]hT∇θp(ω, θ)Π(dω), h ∈ Rk.
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Therefore for all g, h ∈ Rk we have

[gTφ′(θ)h]2 =
[∫
ω

[gT (θ̂ − φ(θ)][hT∇θp(ω, θ)/p(ω, θ)]p(ω, θ)Π(dω)
]2

≤
[∫

Ω
gT [θ̂ − φ(θ)][θ̂ − φ(θ)]T gp(ω, θ)Π(dω)

]
×
[∫

Ω
[hT∇θp(ω, θ)/p(ω, θ)]2p(ω, θ)Π(dω)

]
[Cauchy’s Inequality]

=
[
gTCovθ̂(θ)g

] [
hTI(θ)h

]
,

where Covθ̂(θ) is the covariance matrix Eω∼p(·,θ)

{
[θ̂(ω)− φ(θ)][θ̂(ω)− φ(θ)]T

}
of

θ̂(ω) induced by ω ∼ p(·, θ). We have arrived at the inequality[
gTCovθ̂(θ)g

] [
hTI(θ)h

]
≥ [gTφ′(θ)h]2 ∀(g, h ∈ Rk, θ ∈ Θ). (∗)

For θ ∈ Θ fixed, let J be a positive definite matrix such that J � I(θ), whence by
(∗) it holds [

gTCovθ̂(θ)g
] [
hTJ h

]
≥ [gTφ′(θ)h]2 ∀(g, h ∈ Rk). (∗∗)

For g fixed, the maximum of the right hand side quantity in (∗∗) over h satisfying
hTJ h ≤ 1 is gTφ′(θ)J−1[φ′(θ]T g, and we arrive at the Cramer-Rao inequality

∀(θ ∈ Θ,J � I(θ),J � 0) : Covθ̂(θ) � φ
′(θ)J−1[φ′(θ]T[

Covθ̂(θ) = Eω∼p(·,θ)

{
[θ̂ − φ(θ)][θ̂ − φ(θ)]T

}
, φ(θ) = Eω∼p(·),θ)

{
θ̂(ω)

}]
(CR)

which holds true for every bounded estimate θ̂(·). Note also that for every θ ∈ Θ
and every bounded estimate x we have

Risk2[θ̂] ≥ Eω∼p(·,θ)

{
‖θ̂(ω)− θ‖22

}
= Eω∼p(·,θ)

{
‖[θ̂(ω)− φ(θ)] + [φ(θ)− θ]‖22

}
= Eω∼p(·,θ)

{
‖θ̂(ω)− φ(θ)‖22

}
− 2 Eω∼p(·,θ)

[
[θ̂(ω)− φ(θ)]T [φ(θ)− θ)]

}
︸ ︷︷ ︸

=0

+‖φ(θ)− θ)‖22
= Tr(Covθ̂(θ)) + ‖φ(θ)− θ‖22,

whence, in view of (CR), for every bounded estimate θ̂ it holds

∀(J � 0 : J � I(θ)∀θ ∈ Θ) :

Risk2[θ̂] ≥ supθ∈Θ

[
Tr(φ′(θ)J−1[φ′(θ)]T ) + ‖φ(θ)− θ‖22

][
φ(θ) = Eω∼p(·,θ){θ̂(ω)}

] (4.202)

The fact that we were speaking about estimating “the entire” θ rather than a given
vector-valued function f(θ) : Θ→ Rν plays no special role, and in fact the Cramer-
Rao inequality admits the following modification (yielded by a reasoning completely
similar to the one we just have carried out):

Proposition 4.76. In the situation described in the beginning of item 4.75.B and
under assumptions 1) – 3) of this item, let f(·) : Θ → Rν be a bounded Borel

function, and let f̂(ω) be a bounded estimate of f(ω) via observation ω ∼ p(·, θ).
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Then, setting

φ(θ) = Eω∼p(·,θ)

{
f̂(θ)

}
, Covf̂ (θ) = Eω∼p(·,θ)

{
[f̂(ω)− φ(θ)][f̂(ω)− φ(θ)]T

}
[θ ∈ Θ]

one has
∀(θ ∈ Θ,J � I(θ),J � 0) : Covf̂ (θ) � φ′(θ)J−1[φ′(θ)]T .

As a result, setting

Risk[f̂ ] = sup
θ∈Θ

[
Eω∼p(·,θ)

{
‖f̂(ω)− f(θ)‖22

}]1/2
,

it holds

∀(J � 0 : J � I(θ)∀θ ∈ Θ) :

Risk2[f̂ ] ≥ supθ∈Θ

[
Tr(φ′(θ)J−1[φ′(θ)]T ) + ‖φ(θ)− f(θ)‖22

]
Now goes the first part of the exercise:

1. Derive from (4.202) the following

Proposition 4.77. In the situation of item 4.75.B, let

• Θ ⊂ Rk be ‖ · ‖2-ball of radius r > 0,
• the family P be such that I(θ) � J for some J � 0 and all θ ∈ Θ.

Then the minimax optimal risk satisfies the bound

Riskopt ≥
rk

r
√

Tr(J ) + k
. (4.203)

In particular, when J = α−1Ik, we have

Riskopt ≥
r
√
αk

r +
√
αk

. (4.204)

Hint. Assuming w.l.o.g. that Θ is centered at the origin, and given a bounded
estimate θ̂ with risk R, let φ(θ) be associated with the estimate via (4.202).
Select γ ∈ (0, 1) and consider two cases: (a): there exists θ ∈ ∂Θ such that
‖φ(θ) − θ‖2 > γr, and (b): ‖φ(θ) − θ‖2 ≤ γr for all θ ∈ ∂Θ. In the case of (a),
lower-bound R by maxθ∈Θ ‖φ(θ)−θ‖2, see (4.202). In the case of(b), lower-bound
R2 by maxθ∈Θ Tr(φ′(θ)J−1[φ′(θ)]T ), see (4.202), and use Divergence theorem to
lower-bound the latter quantity in terms of the flux of the vector field φ(·) over
∂Θ.
When implementing the above strategy, you could find useful the following fact
(prove it!)

Lemma 4.78. Let Φ be an n× n matrix, and J be a positive semidefinite n× n
matrix. Then

Tr(ΦJ−1ΦT ) ≥ Tr2(Φ)/Tr(J ).
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4.75.C. Application to signal recovery. Proposition 4.77 allows to build
computation-based lower risk bounds in the signal recovery problem considered
in Section 4.2, specifically, the problem where one wants to recover the linear image
Bx of unknown signal x known to belong to a given ellitope

X = {x ∈ Rn : ∃t ∈ T : xTS`x ≤ t`, ` ≤ L}

(with our usual restriction on S` and T ) via observation

ω = Ax+ σξ, ξ ∼ N (0, Im),

and the risk of a candidate estimate, same as in Section 4.2, is defined according
to (4.201)83. It is convenient to assume that the matrix B (which in our general
setup can be an arbitrary ν×n matrix) is a nonsingular n×n matrix84 Under this
assumption, setting

Y = B−1X = {y ∈ Rn : ∃t ∈ T : yT [B−1]TS`B
−1y ≤ t`, ` ≤ L}

and Ā = AB−1, we lose nothing when replacing the sensing matrix A with Ā and
treating as our signal y ∈ Y rather than X ; thus, we have reduced the situation
to the one where A is replaced with Ā, X with Y, and B with the unit matrix In.
For the sake of simplicity, we assume from now on that A (and therefore Ā) is with
trivial kernel. Finally, let S̃` � S` be close to Sk positive definite matrices, e.g.,
S̃` = S` + 10−100In; setting S̄` = [B−1]T S̃`B

−1 and

Ȳ = {y ∈ Rn : ∃t ∈ T : yT S̄`y ≤ t`, ` ≤ L},

observe that S̄` � 0 and Ȳ ⊂ Y; this, any lower bound on the ‖ · ‖2-risk of re-
covery y ∈ Ȳ via observation ω = AB−1y + σξ, ξ ∼ N (0, Im), automatically is a
lower bound on the minimax risk Riskopt corresponding to our original problem of
interest.

Now assume that we can point out a k-dimensional linear subspace E in Rn

and positive reals r, γ such that

(i) the centered at the origin ‖ · ‖2-ball Θ = {θ ∈ E : ‖θ‖2 ≤ r} is contained in Ȳ ;
(ii) The restriction ĀE of Ā onto E satisfies the relation

Tr(Ā∗EĀE) ≤ γ

(Ā∗E : Rm → E is the conjugate of the linear map ĀE : E → Rm).

Consider the auxiliary estimation problem obtained from the (reformulated) prob-
lem of interest by replacing the signal set Ȳ with Θ. Since Θ ⊂ Ȳ, the minimax

83In fact, the approach to be developed can be applied to signal recovery problems involving
Discrete/Poisson observation schemes, different from ‖ · ‖2 norms used to measure the recovery
error, signal-dependent noises, etc.

84This assumption is nonrestrictive. Indeed, when B ∈ Rν×n with ν < n, we can add to
B n − ν zero rows, which keeps our estimation problem intact. When ν ≥ n, we can add to B
a small perturbation to ensure KerB = {0}, which, for small enough perturbation, again keeps
our estimation problem basically intact. It remains to note that when KerB = {0}. we can
replace Rν with the image space of B, which again does not affect the estimation problem we are
interested in.
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risk in the auxiliary problem is a lower bound on the minimax risk Riskopt we are
interested in. On the other hand, the auxiliary problem is nothing but the problem
of recovering parameter θ ∈ Θ from observation ω ∼ N (Āθ, σ2I), which is nothing
but a special case of the problem considered in item 4.75.B; as is immediately seen,
the Fisher Information matrix in this problem is independent of θ and is σ−2Ā∗EĀE :

eTI(θ)e = σ−2eT Ā∗EĀEe, e ∈ E.

Invoking Proposition 4.77, we arrive at the lower bound on the minimax risk in the
auxiliary problem (and thus – in the problem of interest as well):

Riskopt ≥
rσk

r
√
γ + σk

. (4.205)

The resulting risk bound depends on r, k, γ and is the larger the smaller is γ and
the larger are k and r.

Lower-bounding Riskopt. In order to extract from the just outlined bounding
scheme its best, we need a mechanism which allows to generate k-dimensional
“disks” Θ ⊂ Ȳ along with associated quantities r, γ. In order to design such a
mechanism, it is convenient to represent k-dimensional linear subspaces of Rn as
the image spaces of orthogonal n × n projectors P of rank k. Such a projector P
gives rise to the contained in Ȳ disk ΘP of the radius r = rP , where rP is the
largest ρ such that the set {y ∈ Rn : yTPy ≤ ρ2} is contained in Ȳ (“condition
C(r)”), and we can equip the disk with γ satisfying (ii) if and only if

Tr(PĀT ĀP ) ≤ γ,

or, which is the same (recall that P is orthogonal projector)

Tr(ĀP ĀT ) ≤ γ (4.206)

(“condition D(γ)”). Now, when P is a nonzero orthogonal projector, the simplest
sufficient condition for the validity of C(r) is the existence of t ∈ T such that

∀(y ∈ Rn, ` ≤ L) : yTPS̄`Py ≤ t`r−2yTPy,

or, which is the same,

∃s : r2s ∈ T & PS̄`P � s`P, ` ≤ L. (4.207)

We are about to rewrite (4.206), (4.207) as a system of linear matrix inequalities.
This is what you are supposed to do:

2.1. Prove the following simple fact:

Observation 4.79. Let Q be a positive definite and R be a nonzero positive
semidefinite matrix, and s be a real. Then

RQR � sR

if and only if
sQ−1 � R.
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2.2. Extract from Observation the conclusion as follows. Let T be the conic hull of
T :

T = cl{[s; τ ] : τ > 0, s/τ ∈ T } = {[s; τ ] : τ > 0, s/τ ∈ T } ∪ {0}.

Consider the system of constraints

s`S̄
−1
` � P, ` ≤ L & Tr(ĀP ĀT ) ≤ γ

P is orthogonal projector of rank k ≥ 1
(#)

in variables [s; τ ] ∈ T, k, γ and P . Every feasible solution to this system gives
rise to k-dimensional Euclidean subspace E ⊂ Rn (the image space of P ) such
that the centered at the origin Euclidean ball Θ in E of radius

r = 1/
√
τ

taken along with γ satisfy the conditions (i) - (ii). Consequently, this feasible
solution yields the lower bound

Riskopt ≥ ψσ,k(γ, τ) :=
σk

√
γ + σ

√
τk

on the minimax risk in the problem of interest.

An “ideal” way to utilize item 2.2 to lower-bound Riskopt would be to look
through k = 1, ..., n and for every k to maximize the lower risk bound ψσ,k(γ, τ)
under constraints (#), thus arriving at the problem

min
[s;τ ],γ,P

{
σ

ψσ,k(γ, τ)
=
√
γ/k + σ

√
τ :

s`S̄
−1
` � P, ` ≤ L & Tr(ĀP ĀT ) ≤ γ

P is orthogonal projector of rank k

}
(Pk)

This problem seems to be computationally intractable, since the constraints of (Pk)
include the nonconvex restriction on P to be an orthogonal projector of rank k. A
natural convex relaxation of this restriction is

0 � P � In, Tr(P ) = k.

The (minor) remaining difficulty is that the objective in (P ) is nonconvex. Note,
however, that to minimize

√
γ/k + σ

√
τ is basically the same as to minimize the

convex function γ/k2 + σ2τ which is a tight “proxy” of the squared objective of
(Pk). We arrive at convex “proxy” of (Pk) – the problem

min
[s;τ ],γ,P

{
γ/k2 + σ2τ :

[s; τ ] ∈ T, 0 � P � In,Tr(P ) = k
s`S̄
−1
` � P, ` ≤ L,Tr(ĀP ĀT ) ≤ γ

}
(P [k])

k = 1, ..., n. Problem (P [k]) clearly is solvable, and the P -component P (k) of its

optimal solution gives rise to a bunch of orthogonal projectors P
(k)
κ , κ = 1, ..., n

obtained from P (k) by “rounding” – to get P
(k)
κ , we replace the κ leading eigenvalues

of P (k) with ones, and the remaining eigenvalues – with zeros, while keeping the
eigenvectors intact. We can now for every κ = 1, ..., n fix the P -variable in (Pk) as

P
(k)
κ and solve the resulting problem in the remaining variables [s; τ ] and γ, which

is easy – with P fixed, the problem clearly reduces to the one of minimizing τ under
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the convex constraints
s`S̄
−1
` � P, ` ≤ L, [s; τ ] ∈ T

on [s; τ ]. As a result, for every k ∈ {1, ..., n}, we get n lower bounds on Riskopt,
that is, total of n2 lower risk bounds, of which we select the best – the largest.

Now goes the next part of the exercise:

3. Implement the outlined methodology numerically and compare the lower bound
on the minimax risk with the upper risk bounds of presumably good linear esti-
mates yielded by Proposition 4.4.
Recommended setup:

• Sizes: m = n = ν = 16
• A, B: B = In, A = Diag{a1, ..., an} with ai = i−α and α running through
{0, 1, 2};
• X = {x ∈ Rn : xTS`x ≤ 1, ` ≤ L} (i.e., T = [0, 1]L) with randomly generated
S`.
Range of L: {1, 4, 16}. For L in this range, you can generate S`, ` ≤ L, as
S` = R`R

T
` with R` = randn(n, p), where p =cn/Lb.

• Range of σ: {1.0, 0.1, 0.01, 0.001, 0.0001}

4.75.D. More on Cramer-Rao risk bound. Let us fix µ ∈ (1,∞) and a norm
‖ · ‖ on Rk, and let ‖ · ‖∗ be the norm conjugate to ‖ · ‖, and µ∗ = µ

µ−1 . Assume

that we are in the situation of item 4.75.B and under assumptions 1) and 3) from
this item; as about assumption 2) we now replace it with the assumption that the
quantity

I‖·‖∗,µ∗(θ) :=
[
Eω∼p(·,θ) {‖∇θp(ω, θ)‖µ∗∗ }

]1/µ∗
is well defined and bounded on Θ; in the sequel, we set

I‖·‖∗,µ∗ = sup
θ∈Θ
I‖·‖∗,µ∗(θ).

4. Prove the following variant of Cramer-Rao risk hound:

Proposition 4.80. In the situation described in the beginning of item 4.75.D, let
Θ ⊂ Rk be a ‖ · ‖-ball of radius r. Then the minimax ‖ · ‖-risk of recovering θ ∈ Θ
via observation ω ∼ p(·, θ) can be lower-bounded as

Riskopt,‖·‖[Θ] := inf
θ̂(·)

sup
θ∈Θ

[
Eω∼p(·,θ)

{
‖θ̂(ω)− θ‖µ

}]1/µ
≥ rk

rI‖·‖∗,µ∗+k ,

I‖·‖∗,µ∗ = max
θ∈Θ

[
I‖·‖∗,µ∗(θ) :=

[
Eω∼p(·,θ) {‖∇θ ln(p(ω, θ))‖µ∗∗ }

]1/µ∗] (4.208)

Example I: Gaussian case, estimating shift. Let µ = 2, and let p(ω, θ) =
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N (Aθ, σ2Im) with A ∈ Rm×k. Then

∇θ ln(p(ω, θ)) = σ−2AT (ω −Aθ)⇒∫
‖∇θ ln(p(ω, θ))‖2∗p(ω, θ)dω = σ−4

∫
‖AT (ω −Aθ)‖2∗p(ω, θ)dω

= σ−4 1
[
√

2πσ]m

∫
‖ATω‖2∗ exp{−ω

Tω
2σ2 }dω

= σ−4 1
[2π]m/2

∫
‖ATσξ‖2∗ exp{−ξT ξ/2}dξ

= σ−2 1
[2π]m/2

∫
‖AT ξ‖2∗ exp{−ξT ξ/2}dξ

whence
I‖·‖∗,2 = σ−1

[
Eξ∼N (0,Im)

{
‖AT ξ‖2∗

}]1/2︸ ︷︷ ︸
γ‖·‖(A)

.

Consequently, assuming Θ to be ‖ · ‖-ball of radius r in Rk, lower bound (4.208)
becomes

Riskopt,‖·‖[Θ] ≥ rk

rI‖·‖∗ + k
=

rk

rσ−1γ‖·‖(A) + k
=

rσk

rγ‖·‖(A) + σk
. (4.209)

The case of direct observations. Just to see how it works, consider the case
m = k, A = Ik of direct observations, and let Θ = {θ ∈ Rk : ‖θ‖ ≤ r}. Then

• We have γ‖·‖1(Ik) ≤ O(1)
√

ln(n), whence the ‖ · ‖1-risk bound is

Riskopt,‖·‖1 [Θ] ≥ O(1)
rσk

r
√

ln(n) + σk
; [Θ = {θ ∈ Rk : ‖θ − a‖1 ≤ r}]

• We have γ‖·‖2(Ik) =
√
k, whence the ‖ · ‖2-risk bound is

Riskopt,‖·‖2 [Θ] ≥ rσ
√
k

r + σ
√
k

; [Θ = {θ ∈ Rk : ‖θ − a‖2 ≤ r}]

• We have γ‖·‖∞(Ik) ≤ O(1)k, whence the ‖ · ‖-risk bound is

Riskopt,‖·‖2 [Θ] ≥ O(1)
rσ

r + σ
. [Θ = {θ ∈ Rk : ‖θ − a‖∞ ≤ r}]

In fact, the above examples are basically covered by the following

Observation 4.81. Let ‖ · ‖ be a norm on Rk, and let

Θ = {θ ∈ Rk : ‖θ‖ ≤ r}.

Consider the problem of recovering signal θ ∈ Θ via observation ω ∼ N (θ, σ2Ik),
let

Risk‖·‖[θ̂|Θ] = sup
θ∈Θ

(
Eω∼N (θ,σ2I)

{
‖θ̂(ω)− θ‖2

})1/2

be the ‖ · ‖-risk of an estimate θ̂(·), and let

Riskopt,‖·‖[Θ] = inf
θ̂(·)

Risk‖·‖[θ̂|Θ]
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be the associated minimax risk.
Assume that the norm ‖ · ‖ is absolute and symmetric w.r.t permutation of

coordinates. Then

Riskopt,‖·‖[Θ] ≥ rσk

2
√

ln(ek)rα∗ + σk
, α∗ = ‖[1; ...; 1]‖∗. (4.210)

Here is the concluding part of the exercise:

5. Prove Observation and compare the lower risk bound from Observation with the
‖ · ‖-risk of the “plug-in” estimate χ̂(ω) ≡ ω.

Example II: Gaussian case, estimating covariance. Let µ = 2, let K be a
positive integer, and let our observation ω be a collection of K i.i.d. samples ωt ∼
N (0, θ), 1 ≤ t ≤ K, with unknown θ known to belong to a given convex compact
subset Θ of the interior of the positive semidefinite cone Sn+. Given ω1,...,ωK , we
want to recover θ in the Shatten norm ‖ · ‖Sh,s with s ∈ [1,∞]. Our estimation
problem is covered by the setup of Exercise 4.75 with P comprised of the product
probability densities p(ω, θ) =

∏K
t=1 g(ωt, θ), θ ∈ Θ, where g(·, θ) is the density of

N (0, θ). We have

∇θ ln(p(ω, θ)) = 1
2

∑
t∇θ ln(g(ωt, θ)) = 1

2

∑
t

[
θ−1ωtω

T
t θ
−1 − θ−1

]
= 1

2θ
−1/2

[∑
t

[
[θ−1/2ωt][θ

−1/2ωt]
T − In

]]
θ−1/2 (4.211)

With some effort it can be proved that when

K ≥ n,

which we assume from now on, for independent across t random vectors ξ1, ..., ξK
sampled from the standard Gaussian distribution N (0, In) for every u ∈ [1,∞] one
has [

E

{
‖
K∑
t=1

[ξtξ
T
t − In]‖2Sh,u

}]1/2

≤ Cn 1
2 + 1

u

√
K (4.212)

with appropriate absolute constant C. Consequently, for θ ∈ Θ and all u ∈ [1,∞]
we have

Eω∼p(·,θ)

{
‖∇θ ln(p(ω, θ))‖2Sh,u

}
= 1

4Eω∼p(·,θ)

{
‖θ−1/2

[∑
t

[
[θ−1/2ωt][θ

−1/2ωt]
T − In

]]
θ−1/2‖2Sh,u

}
[by (4.211)]

= 1
4Eξ∼p(·,In)

{
‖θ−1/2

[∑
t

[
ξtξ

T
t − In

]]
θ−1/2‖2Sh,u

}
[setting θ−1/2ωt = ξt]

≤ 1
4‖θ
−1/2‖4Sh,∞Eξ∼p(·,In)

{
‖
∑
t

[
ξtξ

T
t − In

]
‖2Sh,u

}
[since ‖AB‖Sh,u‖ ≤ ‖A‖Sh,∞‖B‖Sh,u]

≤ 1
4‖θ
−1/2‖4Sh,∞

[
Cn

1
2 + 1

u

√
K
]2

[by (4.212)]

and we arrive at[
Eω∼p(·,θ)

{
‖∇θ ln(p(ω, θ))‖2Sh,u

}]1/2 ≤ C

2
‖θ−1‖Sh,∞n

1
2 + 1

u

√
K. (4.213)
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Now assume that Θ is ‖ · ‖Sh,s-ball of radius r < 1 centered at In:

Θ = {θ ∈ Sn : ‖θ − In‖Sh,s ≤ r}. (4.214)

In this case the estimation problem from Example II is the scope of Proposition
4.80, and the quantity I‖·‖∗,2 as defined in (4.208) can be upper-bounded as follows:

I‖·‖∗,2 = max
θ∈Θ

[
Eω∼p(·,θ)

{
‖∇θ ln(p(ω, θ))‖2Sh,s∗

}]1/2
≤ O(1)n

1
2 + 1

s∗
√
K maxθ∈Θ ‖θ−1‖Sh,∞ [see (4.213)]

≤ O(1)n
1
2

+ 1
s∗
√
K

1−r .

We can now use Proposition 4.80 to lower-bound the minimax ‖ · ‖Sh,s-risk, thus
arriving at

Riskopt,‖·‖Sh,s
[Θ] ≥ O(1)

n(1− r)r√
Kn

1
2−

1
s r + n(1− r)

(4.215)

(note that we are in the case of k = dim θ = n(n+1)
2 ).

Let us compare this lower risk bound with the ‖ · ‖Sh,s-risk of the “plug-in”
estimate

θ̂(ω) =
1

K

K∑
t=1

ωtω
T
t .

Assuming θ ∈ Θ, we have

Eω∼p(·,θ)

{
‖K[θ̂(ω)− θ]‖2Sh,s

}
= Eω∼p(·,θ)

{
‖
∑
t[ωtω

T
t − θ]‖2Sh,s

}
= Eω∼p(·,θ)

{
‖θ1/2

[∑
t[[θ
−1/2ωt][θ

−1/2ωt]
T − In]

]
θ1/2‖2Sh,s

}
= Eξ∼p(·,In)

{
‖θ1/2

[∑
t[ξtξ

T
t − In]

]
θ1/2‖2Sh,s

}
≤ ‖θ1/2‖4Sh,∞Eξ∼p(·,In)

{
‖
∑
t[ξtξ

T
t − In]‖2Sh,s

}
≤ ‖θ1/2‖4Sh,∞

[
Cn

1
2 + 1

s

√
K
]2
, [see (4.212)]

and we arrive at

Risk‖·‖Sh,s
[θ̂|Θ] ≤ O(1) max

θ∈Θ
‖θ‖Sh,∞

n
1
2 + 1

s

√
K

. (4.216)

In the case of (4.214), the latter bound becomes

Risk‖·‖Sh,s
[θ̂|Θ] ≤ O(1) max

θ∈Θ
‖θ‖Sh,∞

n
1
2 + 1

s

√
K

. (4.217)

For the sake of simplicity, assume that r in (4.214) is 1/2 (what actually matters
below is that r ∈ (0, 1) is bounded away from 0 and from 1). In this case the lower
bound (4.215) on the minimax ‖ · ‖Sh,s-risk reads

Riskopt,‖·‖Sh,s
[Θ] ≥ O(1) min

[
n

1
2 + 1

s

√
K

, 1

]
.
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When K is “large:” K ≥ n1+ 2
s , this lower bound matches, within an absolute

constant factor, the upper bound (4.217) on the risk of the plug-in estimate, so that

the latter estimate is near-optimal. When K < n1+ 2
s , the lower risk bound becomes

O(1), so that here a nearly optimal estimate is the trivial estimate θ̂(ω) ≡ In.

Exercise 4.82. † [follow-up to Exercise 4.75]

1. Prove the following version of Proposition 4.77:

Proposition 4.83. In the situation of item 4.75.B and under assumptions 1) – 3)
from this item, let

• ‖ · ‖ be a norm on Rk such that

‖θ‖2 ≤ κ‖θ‖ ∀θ ∈ Rk

• Θ ⊂ Rk be ‖ · ‖-ball of radius r > 0,
• the family P be such that I(θ) � J for some J � 0 and all θ ∈ Θ.

Then the minimax optimal risk

Riskopt,‖·‖ = inf
θ̂(·)

(
sup
θ∈Θ

Eω∼p(·,θ)

{
‖θ − θ̂(ω)‖2

})1/2

of recovering parameter θ ∈ Θ from observation ω ∼ p(·, θ) in the norm ‖ · ‖
satisfies the bound

Riskopt,‖·‖ ≥
rk

rκ
√

Tr(J ) + k
. (4.218)

In particular, when J = α−1Ik, we get

Riskopt,‖·‖ ≥
r
√
αk

rκ+
√
αk

. (4.219)

2. Apply Proposition 4.83 to get lower bounds on the minimax ‖ · ‖-risk in the
following estimation problems:

2.1. Given indirect observation ω = Aθ + σξ, ξ ∼ N (0, Im) of unknown vector θ
known to belong to Θ = {θ ∈ Rk : ‖θ‖p ≤ r} with given A, KerA = {0},
p ∈ [2,∞], r > 0, we want to recover θ in ‖ · ‖p.

2.2. Given indirect observation ω = LθR + σξ, where θ is unknown µ × ν matrix
known to belong to the Shatten norm ball Θ ∈ Rµ×ν : ‖θ‖Sh,p ≤ r, we want to
recover θ in ‖ · ‖Sh,p. Here L ∈ Rm×µ,KerL = {0} and R = Rν×n,KerRT =
{0} are given matrices, p ∈ [2,∞], and ξ is random Gaussian m × n matrix
(i.e., the entries in ξ are independent of each other N (0, 1) random variables).

2.3. Given K-repeated observation ωK = (ω1, ..., ωK) with i.i.d. components ωt ∼
N (0, θ), 1 ≤ t ≤ K, with unknown θ ∈ Sn known to belong to the matrix box
Θ = {θ : β−In � θ � β+In} with given 0 < β− < β+ <∞, we want to recover
θ in the spectral norm.
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4.9.7 Around S-Lemma

Exercise 4.84. Proposition 4.6 provides us with upper bound on the quality of
semidefinite relaxation as applied to the problem of upper-bounding the maximum
of a homogeneous quadratic form over an ellitope. Extend the construction to the
case when an inhomogeneous quadratic form is maximized over a shifted ellitope,
so that quantity to upper-bound is

Opt = max
x∈X

[
f(x) := xTAx+ 2bTx+ c

]
, X = {x : ∃(y, t ∈ T ) : x = Py+p, yTSky ≤ tk, 1 ≤ k ≤ K}

with our standard assumptions on Sk and T .
Note: X is centered at p, and a natural upper bound on Opt is

Opt ≤ f(p) + Ôpt,

where Ôpt is an upper bound on the quantity

Opt = max
x∈X

[f(x)− f(p)] ;

what you are interested to upper-bound, is the ratio Ôpt/Opt.

S-Lemma is a classical result of extreme importance in Semidefinite Optimization.
Basically, Lemma states that when the ellitope X in Proposition 4.6 is just an
ellipsoid, (4.20) can be strengthen to Opt = Opt∗. In fact, S-Lemma is even
stronger:

Lemma 4.85. [S-Lemma] Consider two quadratic forme f(x) = xTAx+2aTx+α,
g(x) = xTBx+ 2bTx+ β such that g(x̄) < 0 for some x̄. Then the implication

g(x) ≤ 0⇒ f(x) ≤ 0

takes place if and only if for some λ ≥ 0 it holds f(x) ≤ λg(x) for all x, or, which
is the same, if and only if Linear Matrix Inequality[

λB −A λb− a
λbT − aT λβ − α

]
� 0

in scalar variable λ has a nonnegative solution.

Proof of S-Lemma can be found, e.g., in [11, Section 3.5.2]
The goal of subsequent exercises is to get “tight” tractable outer approximations

of sets obtained from ellitopes by quadratic lifting. We fix an ellitope

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, 1 ≤ k ≤ K} (4.220)

where, as always, Sk are positive semidefinite matrices with positive definite sum,
and T is a computationally tractable convex compact subset in Rk

+ such that t ∈ T
implies t′ ∈ T whenever 0 ≤ t′ ≤ t and T contains a positive vector.

Exercise 4.86. Let us associate with ellitope X given by (4.220) the sets

X = Conv{xxT : x ∈ X}, X̂ = {Y ∈ Sn : Y � 0,∃t ∈ T : Tr(SkY ) ≤ tk, 1 ≤ k ≤ K},
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so that X , X̂ are convex compact sets containing the origin, and X̂ is computation-
ally tractable along with T . Prove that

1. When K = 1, we have X = X̂ ;
2. We always have X ⊂ X̂ ⊂ 4 ln(5K)X .

Exercise 4.87. For x ∈ Rn let Z(x) = [x; 1][x; 1]T , Zo[x] =

[
xxT x
xT

]
. Let

C =

[
1

]
,

and let us associate with ellitope X given by (4.220) the sets

X+ = Conv{Zo[x] : x ∈ X},

X̂+ = {Y =

[
U u

uT

]
∈ Sn+1 : Y + C � 0, ∃t ∈ T : Tr(SkU) ≤ tk, 1 ≤ k ≤ K},

so that X+, X̂+ are convex compact sets containing the origin, and X̂+ is compu-
tationally tractable along with T . Prove that

1. When K = 1, we have X+ = X̂+;
2. We always have X+ ⊂ X̂+ ⊂ 4 ln(5(K + 1))X+.

4.9.8 Estimation by stochastic optimization

Exercise 4.88. Consider the following “multinomial” version of logistic regression
problem from Section 4.7.1:
For k = 1, ...,K, we observe pairs

(ζk, `k) ∈ Rn × {0, 1, ...,m} (4.221)

drawn independently of each other from a probability distribution Px parameterized
by an unknown signal x = [x1; ...;xm] ∈ Rn × ...×Rn in the following fashion:

• The probability distribution of regressor ζ induced by the distribution Sx of (ζ, `)
is a once for ever fixed independent of x distribution R on Rn with finite second
order moments and positive definite matrix Z = Eζ∼R{ζζT } of second order
moments;

• The conditional, ζ given, probability distribution of label ` induced by the dis-
tribution Sx of (ζ, `) is the distribution of discrete random variable taking value
ι ∈ {0, 1, ...,m} with probability

pι =

{
exp{ζT xι}

1+
∑m
i=1 exp{ζT xi} , 1 ≤ ι ≤ m

1
1+
∑m
i=1 exp{ζT xi} , ι = 0

[x = [x1; ...;xm]]

Given a nonempty convex compact set X ∈ Rmn known to contain the (unknown)
signal x underlying observations (4.221), we want to recover x. Note that the
recovery problem associated with the standard logistic regression model is the case
m = 1 of the just defined problem.

Your task is to process the above recovery problem via the approach developed
in Section 4.7 and to compare the resulting SAA estimate with the Maximum
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Likelihood estimate.

4.10 PROOFS

4.10.1 Preliminaries

4.10.1.1 Technical lemma

Lemma 4.89. Given basic spectratope

X = {x ∈ Rn : ∃t ∈ T : R2
k[x] � tkIdk , 1 ≤ k ≤ K} (4.222)

and a positive definite n× n matrix Q and setting Λk = Rk[Q], we get a collection
of positive semidefinite matrices, and

∑
kR∗k(Λk) is positive definite.

As a corollaries,
(i) whenever Mk, k ≤ K, are positive definite matrices, the matrix

∑
kR∗k[Mk]

is positive definite;
(ii) the set QT = {Q � 0 : Rk[Q] � TIdk , k ≤ K} is bounded for every T .

Proof. Let us prove the first claim, Assuming the opposite, we would be able to
find a nonzero vector y such that

∑
k y

TR∗k(Λk)y ≤ 0, whence

0 ≥
∑
k

yTR∗k(Λk)y =
∑
k

Tr(R∗k[Λk][yyT ]) =
∑
k

Tr(ΛkRk[yyT ])

(we have used (4.28), (4.24)). Since Λk = Rk[Q] � 0 due to Q � 0, see (4.25),
it follows that Tr(ΛkRk[yyT ]) = 0 for all k. Now, the linear mapping Rk[·]
is �-monotone, and Q is positive definite, implying that Q � rkyy

T for some
rk > 0, whence Λk � rkRk[yyT ], and therefore Tr(ΛkRk[yyT ]) = 0 implies that
Tr(Rk[yyT ]) = 0, that is, Rk[yyT ] = R2

k[y] = 0. Since Rk[·] takes values in Sdk ,
we get Rk[y] = 0 for al k, which is impossible due to y 6= 0 and property S.3, see
Section 4.3.1.

To verify (i), note that when Mk are positive definite, we can find γ > 0 such
that Λk � γMk for all k ≤ K; invoking (4.29), we conclude thatR∗k[Λk] � γR∗k[Mk],
whence

∑
kR∗k[Mk] is positive definite along with

∑
kR∗k[Λk].

To verify (ii), assume, on the contrary to what should be proved, that QT is
unbounded. Since QT is closed and convex, it mush possess a nonzero recessive
direction, that is, there should exist nonzero positive semidefinite matrix D such
that Rk[D] � 0 for all k. Selecting positive definite matrices Mk, the matrices
R∗k[Mk] are positive semidefinite (see Section 4.3.1), and their sum S is positive
definite by (i). We have

0 ≥
∑
k

Tr(Rk[D]Mk) =
∑
k

Tr(DR∗k[Mk]) = Tr(DS),

where the first inequality is due to Mk � 0, and the first equality is due to (4.28).
The resulting inequality is impossible due to 0 6= D � 0 and S � 0, which is a
desired contradiction. 2



SIGNAL RECOVERY FROM GAUSSIAN OBSERVATIONS AND BEYOND

StatOpt˙LN˙NS January 21, 2019 7x10

413

4.10.1.2 Noncommutative Khintchine Inequality

We will use deep result from Functional Analysis (“Noncommutative Khintchine
Inequality”) due to Lust-Piquard [105], Pisier [125] and Buchholz [25], see [140,
Theorem 4.6.1]:

Theorem 4.90. Let Qi ∈ Sn, 1 ≤ i ≤ I, and let ξi, i = 1, ..., I, be independent
Rademacher (±1 with probabilities 1/2) or N (0, 1) random variables. Then for all
t ≥ 0 one has

Prob

{∥∥∥∥∥
I∑
i=1

ξiQi

∥∥∥∥∥ ≥ t
}
≤ 2n exp

{
− t2

2vQ

}
where ‖ · ‖ is the spectral norm, and vQ =

∥∥∥∑I
i=1Q

2
i

∥∥∥ .
We need the following immediate consequence of Theorem:

Lemma 4.91. Given spectratope (4.21), let Q ∈ Sn+ be such that

Rk[Q] � ρtkIdk , 1 ≤ k ≤ K, (4.223)

for some t ∈ T and some ρ ∈ (0, 1]. Then

Probξ∼N (0,Q){ξ 6∈ X} ≤ min
[
2De−

1
2ρ , 1

]
, D :=

K∑
k=1

dk.

Proof. When setting ξ = Q1/2η, η ∼ N (0, In), we have

Rk[ξ] = Rk[Q1/2η] =:

n∑
i=1

ηiR̄
ki = R̄k[η]

with ∑
i

[R̄ki]2 = Eη∼N (0,In)

{
R̄2
k[η]
}

= Eξ∼N (0,Q)

{
R2
k[ξ]
}

= Rk[Q] � ρtkIdk

due to (4.26). Hence, by Theorem 4.90

Probξ∼N (0,Q){‖Rk[ξ]‖2 ≥ tk} = Probη∼N (0,In){‖R̄k[ζ]‖2 ≥ tk} ≤ 2dke
− 1

2ρ .

We conclude that

Probξ∼N (0,Q){ξ 6∈ X} ≤ Probξ∼N (0,Q){∃k : ‖Rk[ξ]‖2 > tk} ≤ 2De−
1
2ρ . 2

The ellitopic version of Lemma 4.91 is as follows:

Lemma 4.92. Given ellitope (4.10), let Q ∈ Sn+ be such that

Tr(RkQ) ≤ ρtk, 1 ≤ k ≤ K, (4.224)

for some t ∈ T and some ρ ∈ (0, 1]. Then

Probξ∼N (0,Q){ξ 6∈ X} ≤ 2K exp{− 1

3ρ
}.
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Proof. Observe that if P ∈ Sn+ satisfies Tr(R) ≤ 1, we have

Eη∼N (0,In)

{
exp{1

3
ηTPη}

}
≤
√

3. (4.225)

Indeed, we lose nothing when assuming that P = Diag{λ1, ..., λn} with λi ≥ 0,∑
i λi ≤ 1. In this case

Eη∼N (0,In)

{
exp{1

3
ηTPη}

}
= f(λ) := Eη∼N (0,In)

{
exp{1

3

∑
i

λiη
2
i }

}
.

Function f is convex, so that its maximum on the simplex {λ ≥ 0 :
∑
i λi ≤ 1} is

achieved at a vertex, that is,

f(λ) ≤ Eη∼N (0,1)

{
exp{1

3
η2}
}

=
√

3;

(4.225) is proved. Note that (4.225) implies that

Probη∼N (0,In)

{
η : ηTPη > s

}
<
√

3 exp{−s/3}, s ≥ 0. (4.226)

Now let Q and t satisfy lemma’s premise. Setting ξ = Q1/2η, η ∼ N (0, In), for
k ≤ K such that tk > 0 we have

ξTRkξ = ρtkη
TPkη, Pk := [ρtk]−1Q1/2RkQ

1/2 � 0 & Tr(Pk) = [ρtk]−1Tr(QRk) ≤ 1,

so that

Probξ∼N (0,Q)

{
ξ : ξTRkξ > sρtk

}
= Probη∼N (0,In)

{
ηTPkη > s

}
<
√

3 exp{−s/3},
(4.227)

where the inequality is due to (4.226). Relation (4.227) was established for k with
tk > 0; it is trivially true when tk = 0, since in this case Q1/2RkQ

1/2 = 0 due to
Tr(QRk) ≤ 0 and Rk, Q ∈ Sn+. Setting s = 1/ρ, we get from (4.227) that

Probx∼N (0,Q)

{
ξTRkξ > tk

}
≤
√

3 exp{− 1

3ρ
}, k ≤ K,

and (4.226) follows due to the union bound. 2

4.10.1.3 Anderson’s Lemma

Below we use a simply-looking, but by far nontrivial, fact

Andesron’s Lemma [1]. Let f be a nonnegative even (f(x) ≡ f(−x)) summable
function on RN such that the level sets {x : f(x) ≥ t} are convex for all t. and let
X ⊂ Rn be a symmetric w.r.t. the origin closed convex set. Then for every y ∈ Rn∫

X+ty

f(z)dz

is a nonincreasing function of t ≥ 0. In particular, if ζ is a zero mean n-dimensional
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Gaussian random vector, then for every y ∈ Rn

Prob{ζ 6∈ y +X} ≥ Prob{ζ 6∈ X}

whence also for every norm ‖ · ‖ on Rn it holds

Prob{ζ : ‖ζ − y‖ > ρ} ≥ Prob{ζ : ‖ζ‖ > ρ} ∀(y ∈ Rn, ρ ≥ 0).

4.10.2 Proof of Proposition 4.6

We need the following

Lemma 4.93. Let S be positive semidefinite n̄ × n̄ matrix with trace ≤ 1 and ξ
be n̄-dimensional Rademacher random vector (i.e., the entries in ξ are independent
and take values ±1 with probabilities 1/2).Then

E
{

exp
{
ζTSζ/3

}}
≤
√

3, (4.228)

implying that
Prob{ξTSξ > s} ≤

√
3 exp{−s/3}, s ≥ 0.

Proof. Let S =
∑
i σih

i[hi]T be the eigenvalue decomposition of S, so that
[hi]Thi = 1, σi ≥ 0, and

∑
i σi ≤ 1. The function

F (σ1, ..., σn̄) = E
{

e
1
3

∑
iσiξ

Thi[hi]T ξ
}

is convex on the simplex {σ ≥ 0,
∑
i σi ≤ 1} and thus attains it maximum over the

simplex at a vertex, implying that for some f = hi, fT f = 1, it holds

E{e 1
3 ξ
TSξ} ≤ E{e 1

3 (fT ξ)2

}.

Let ζ ∼ N (0, 1) be independent of ξ. We have

Eξ

{
exp{ 1

3 (fT ξ)2}
}

= Eξ

{
Eζ

{
exp{[

√
2/3fT ξ]ζ}

}}
= Eζ

{
Eξ

{
exp{[

√
2/3fT ξ]ζ}

}}
= Eζ

{
N∏
j=1

Eξ

{
exp{

√
2/3ζfjξj}

}}

= Eζ

{
N∏
j=1

cosh(
√

2/3ζfj)

}
≤ Eζ

{
N∏
j=1

exp{ζ2f2
j /3}

}
= Eζ

{
exp{ζ2/3}

}
=
√

3

2

20. The right inequality in (4.20) has been justified in Section 4.2.5. To prove the
left inequality in (4.20), let T be the closed conic hull of T (see Section 4.1.1), and
consider the conic problem

Opt∗ = max
Q,t

{
Tr(PTCPQ) : Q � 0,Tr(QSk) ≤ tk ∀k ≤ K, [t; 1] ∈ T

}
. (4.229)



416

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 4

We claim that
Opt = Opt∗. (4.230)

Indeed, (4.229) clearly is a strictly feasible and bounded conic problem; so that its
optimal value is equal to the one in its conic dual (Conic Duality Theorem). Taking
into account that the cone T∗ dual to T is {[g; s] : s ≥ φT (−g)}, see Section 4.1.1,
we therefore get

Opt∗

= min
λ,[g;s],L

{
s :

Tr([
∑
k λkSk − L]Q)−

∑
k[λk + gk]tk = Tr(PTCPQ) ∀(Q, t),

λ ≥ 0, L � 0, s ≥ φT (−g)

}
= min
λ,[g;s],L

{
s :

∑
k λkSk − L = PTCP, g = −λ,

λ ≥ 0, L � 0, s ≥ φT (−g)

}
= min

λ

{
φT (λ) :

∑
k λkSk � PTCP, λ ≥ 0

}
= Opt,

as claimed.

30. With Lemma 4.93 and (4.230) at our disposal, we can now complete the proof of
Proposition 4.6 by adjusting the technique from [119]. Specifically, problem (4.229)
clearly is solvable; let Q∗, t

∗ be an optimal solution to the problem. Next, let us

set R∗ = Q
1/2
∗ , C̄ = R∗P

TCPR∗, let C̄ = UDUT be the eigenvalue decomposition
of C̄, and let S̄k = UTR∗SkR∗U . Observe that

Tr(D) = Tr(R∗P
TCPR∗) = Tr(Q∗P

TCP ) = Opt∗ = Opt,

Tr(S̄k) = Tr(R∗SkR∗) = Tr(Q∗Sk) ≤ t∗k.

Now let ξ be Rademacher random vector. For k with t∗k > 0, applying Lemma 4.93
to matrices S̄k/t

∗
k, we get for s > 0

Prob{ξT S̄kξ > st∗k} ≤
√

3 exp{−s/3}; (4.231)

if k is such that t∗k = 0, we have Tr(S̄k) = 0, that is, S̄k = 0, and (4.231) holds true
as well. Now let

s∗ = 3 ln(
√

3K),

so that
√

3 exp{−s/3} < 1/K when s > s∗. The latter relation combines with
(4.231) to imply that for every s > s∗ there exists a realization ξ̄ of ξ such that

ξ̄T S̄k ξ̄ ≤ st∗k ∀k.

Let us set ȳ = 1√
s
R∗Uξ̄. Then

ȳTSkȳ = s−1ξ̄TUTR∗SkR∗Uξ̄ = s−1ξ̄T S̄k ξ̄ ≤ t∗k ∀k

implying that ȳ ∈ X̄, and

ȳTPTCPȳ = s−1ξ̄TUTR∗CR∗Uξ̄ = s−1ξ̄TDξ̄ = s−1Tr(D) = s−1Opt.

Thus, maxy∈X̄ y
TPTCPy ≥ s−1Opt whenever s > s∗, which implies the left in-

equality in (4.20). 2
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4.10.3 Proof of Proposition 4.8

Proof follows the lines of the proof of Proposition 4.6. First, passing from C to the
matrix C̄ = PTCP , the situation clearly reduces to the one where P = I, which we
assume in the sequel. Second, from Lemma 4.89 and the fact that the level sets of
φT (·) on the nonnegative orthant are bounded (since T contains a positive vector)
it immediately follows that problem (4.32) is feasible with bounded level sets of the
objective, so that the problem is solvable. The left inequality in (4.33) was proved
in Section 4.3.2. Thus, all we need is to prove the right inequality in (4.33).

1o. Let T be the closed conic hull of T (see Section 4.1.1). Consider the conic
problem

Opt# = max
Q,t

{
Tr(C̄Q) : Q � 0,Rk[Q] � tkIdk ∀k ≤ K, [t; 1] ∈ T

}
. (4.232)

This problem clearly is strictly feasible; by Lemma 4.89, the feasible set of the
problem is bounded, so that the problem is solvable. We claim that

Opt# = Opt∗. (4.233)

Indeed, (4.232) is a strictly feasible and bounded conic problem, so that its optimal
value is equal to the one in its conic dual, x that is,

Opt# = min
Λ={Λk}k≤K ,[g;s],L

s :
Tr([

∑
kR∗k[Λk]− L]Q)−

∑
k[Tr(Λk) + gk]tk

= Tr(C̄Q) ∀(Q, t),
Λk � 0 ∀k, L � 0, s ≥ φT (−g)


= min

Λ,[g;s],L

{
s :

∑
kR∗k[Λk]− L = C̄, g = −λ[Λ],

Λk � 0 ∀k, L � 0, s ≥ φT (−g)

}
= min

Λ

{
φT (λ[Λ]) :

∑
kR∗k[Λk] � C̄,Λk � 0 ∀k

}
= Opt∗.

as claimed.

2o. Problem (4.232), as we already know, is solvable; let Q∗, t
∗ be an optimal

solution to the problem. Next, let us set R∗ = Q
1/2
∗ , Ĉ = R∗C̄R∗, and let Ĉ =

UDUT be the eigenvalue decomposition of Ĉ, so that the matrix D = UTR∗C̄R∗U
is diagonal, and the trace of this matrix is Tr(R∗C̄R∗) = Tr(C̄Q∗) = Opt# = Opt∗,
Now let V = R∗U , and let ξ = V η, where η is n-dimensional random Rademacher
vector (independent entries taking values ±1 with probabilities 1/2). We have

ξT C̄ξ = ηT [V T C̄V ]η = ηT [UTR∗C̄R∗U ]η = ηTDη ≡ Tr(D) = Opt∗, (4.234)

(recall that D is diagonal) and

Eξ{ξξT } = Eη{V ηηTV T } = V V T = R∗UU
TR∗ = R2

∗ = Q∗.

From the latter relation,

Eξ

{
R2
k[ξ]
}

= Eξ

{
Rk[ξξT ]

}
= Rk[Eξ{ξξT }] = Rk[Q∗] � t∗kIdk , 1 ≤ k ≤ K.

(4.235)
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On the other hand, with properly selected symmetric matrices R̄kj we have

Rk[V y] =
∑
i

R̄kiyi

identically in y ∈ Rn, whence

Eξ
{
R2
k[ξ]
}

= Eη
{
R2
k[V η]

}
= Eη

{[∑
i
ηiR̄

ki
]2}

=
∑
i,j

Eη{ηiηj}R̄kiR̄kj =
∑
i

[R̄ki]2.

This combines with (4.235) to imply that∑
i

[R̄ki]2 � t∗kIdk , 1 ≤ k ≤ K. (4.236)

3o. Let us fix k ≤ K. Assuming t∗k > 0 and applying Theorem 4.90, we derive from
(4.236) that

Prob{η : ‖R̄k[η]‖2 > t∗k/ρ} < 2dke
− 1

2ρ ,

and recalling the relation between ξ and η, we arrive at

Prob{ξ : ‖Rk[ξ]‖2 > t∗k/ρ} < 2dke
− 1

2ρ ∀ρ ∈ (0, 1]. (4.237)

Note that when t∗k = 0 (4.236) implies R̄ki = 0 for all i, so that Rk[ξ] = R̄k[η] = 0,
and (4.237) holds for those k as well.

Now let us set ρ = 1
2 max[ln(2D),1] . For this ρ, the sum over k ≤ K of the right

hand sides in inequalities (4.237) is ≤ 1, implying that there exists a realization ξ̄
of ξ such that

‖Rk[ξ̄]‖2 ≤ t∗k/ρ, ∀k,

or, equivalently,
x̄ := ρ1/2P ξ̄ ∈ X ,

implying that
Opt ≥ x̄TCx̄ = ρξT C̄ξ = ρOpt∗

(the concluding equality is due to (4.234)), and we arrive at the right inequality in
(4.33). 2

4.10.4 Proof of Lemma 4.17

1o. Let us verify (4.65). When Q � 0, passing from variables (Θ,Υ) in problem
(4.64) to the variables (G = Q1/2ΘQ1/2,Υ), the problem becomes exactly the
optimization problem in (4.65), implying that Opt[Q] = Opt[Q] when Q � 0. As
it is easily seen, both sides in this equality are continuous in Q � 0, and (4.65)
follows.

2o. Let us set ζ = Q1/2η with η ∼ N (0, IN ) and Z = Q1/2Y . Let us show that
when κ ≥ 1 one has

Probη{‖ZT η‖ ≥ δ̄} ≥ βκ := 1− e3/8

2
− 2Fe−κ

2/2, δ̄ =
Opt[Q]

4κ
, (4.238)
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where

[Opt[Q] =] Opt[Q] := min
Θ,Υ={Υ`,`≤L}

{
φR(λ[Υ]) + Tr(Θ) :

Υ` � 0,

[
Θ 1

2ZM
1
2M

TZT
∑
` S∗` [Υ`]

]
� 0

}
(4.239)

3o. Let us represent Opt[Q] as the optimal value of a conic problem. Setting

K = cl{[r; s] : s > 0, r/s ∈ R},

we ensure that

R = {r : [r; 1] ∈ K}, K∗ = {[g; s] : s ≥ φR(−g)},

where K∗ is the cone dual to K. Consequently, (4.239) reads

Opt[Q] = min
Θ,Υ,θ

θ + Tr(Θ) :

Υ` � 0, 1 ≤ ` ≤ L (a)[
Θ 1

2ZM
1
2M

TZT
∑
` S∗` [Υ`]

]
� 0 (b)

[−λ[Υ]; θ] ∈ K∗ (c)

 . (P )

4o. Now let us prove that there exists matrix W ∈ Sq+ and r ∈ R such that

S`[W ] � r`If` , ` ≤ L, (4.240)

and
Opt[Q]≤

∑
i

σi(ZMW 1/2), (4.241)

where σ1(·) ≥ σ2(·) ≥ ... are singular values.
To get the announced result, let us pass from problem (P ) to its conic dual.

Applying Lemma 4.89 we conclude that (P ) is strictly feasible; in addition, (P )
clearly is bounded, so that the dual to (P ) problem (D) is solvable with optimal

value Opt[Q]. Let us build (D). Denoting by Λ` � 0, ` ≤ L,

[
G −R
−RT W

]
�

0, [r; τ ] ∈ K the Lagrange multipliers for the respective constraints in (P ), and
aggregating these constraints, the multipliers being the aggregation weights, we
arrive at the following aggregated constraint:

Tr(ΘG) + Tr(W
∑
` S∗` [Υ`]) +

∑
` Tr(Λ`Υ`)−

∑
` r`Tr(Υ`) + θτ ≥ Tr(ZMRT ).

To get the dual problem, we impose on the Lagrange multipliers, in addition to
the initial conic constraints like Λ` � 0, 1 ≤ ` ≤ L, the restriction that the left
hand side in the aggregated constraint, identically in Θ, Υ` and θ, is equal to the
objective of (P ), that is,

G = I, S`[W ] + Λ` − r`If` = 0, 1 ≤ ` ≤ L, τ = 1,
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and maximize, under the resulting restrictions, the right-hand side of the aggregated
constraint. After immediate simplifications, we arrive at

Opt[Q] = max
W,R,r

{
Tr(ZMRT ) : W � RTR, r ∈ R,S`[W ] � r`If` , 1 ≤ ` ≤ L

}
(note that r ∈ R is equivalent to [r; 1] ∈ K, and W � RTR is the same as[

I −R
−RT W

]
� 0). Now, to say that RTR � W is exactly the same as to say

that R = SW 1/2 with the spectral norm ‖S‖Sh,∞ of S not exceeding 1, so that

Opt[Q] = max
W,S,r

{
Tr([ZM [SW 1/2]T )︸ ︷︷ ︸

=Tr([ZMW1/2]ST )

: W � 0, ‖S‖Sh,∞ ≤ 1, r ∈ R,S`[W ] � r`If` , ` ≤ L
}

and we can immediately eliminate the S-variable, using the well-known fact that
for every p× q matrix J , it holds

max
S∈Rp×q,‖S‖Sh,∞≤1

Tr(JST ) = ‖J‖Sh,1,

where ‖J‖Sh,1 is the nuclear norm (the sum of singular values) of J . We arrive at

Opt[Q] = max
W,r

{
‖ZMW 1/2‖Sh,1 : r ∈ R,W � 0,S`[W ] � r`Id` , ` ≤ L

}
.

The resulting problem clearly is solvable, and its optimal solution W ensures the
target relations (4.240) and (4.241).

5o. Given W satisfying (4.240) and (4.241), let UJV = W 1/2MTZT be the singular
value decomposition of W 1/2MTZT , so that U and V are, respectively, q × q and
N ×N orthogonal matrices, J is q ×N matrix with diagonal σ = [σ1; ...;σp], p =
min[q,N ], and zero off-diagonal entries; the diagonal entries σi, 1 ≤ i ≤ p are the
singular values of W 1/2MTZT , or, which is the same, of ZMW 1/2. Therefore, we
have ∑

i

σi ≥ Opt[Q]. (4.242)

Now consider the following construction. Let η ∼ N (0, IN ); we denote by υ the
vector comprised of the first p entries in V η; note that υ ∼ N (0, Ip), since V
is orthogonal. We then augment, if necessary, υ by q − p independent of each
other and of η N (0, 1) random variables to obtain a q-dimensional normal vector
υ′ ∼ N (0, Iq), and set χ = Uυ′; because U is orthogonal we also have χ ∼ N (0, Iq).
Observe that

χTW 1/2MTZT η = χTUJV η = [υ′]TJυ =

p∑
i=1

σiυ
2
i . (4.243)

To continue we need two simple observations.

(i) One has

α := Prob

{
p∑
i=1

σiυ
2
i <

1
4

p∑
i=1

σi

}
≤ e3/8

2
[= 0.7275...]. (4.244)
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The claim is evident when σ :=
∑
i σi = 0. Now let σ > 0, and let us apply the

Cramer bounding scheme. Namely, given γ > 0, consider the random variable

ω = exp

{
1
4
γ
∑
i

σi − γ
∑
i

σiυ
2
i

}
.

Note that ω > 0 a.s., and is > 1 when
∑p
i=1 σiυ

2
i <

1
4

∑p
i=1 σi, so that α ≤ E{ω},

or, equivalently, thanks to υ ∼ N (0, Ip),

ln(α) ≤ ln(E{ω}) = 1
4
γ
∑
i

σi +
∑
i

ln
(
E{exp{−γσiυ2

i }}
)
≤ 1

4
γσ − 1

2

∑
i

ln(1 + 2γσi).

Function −
∑
i ln(1 + 2γσi) is convex in [σ1; ...;σp] ≥ 0, therefore, its maximum

over the simplex {σi ≥ 0, i ≤ p,
∑
i σi = σ} is attained at a vertex, and we get

ln(α) ≤ 1
4
γσ − 1

2
ln(1 + 2γσ).

Minimizing the right hand side in γ > 0, we arrive at (4.244).
(ii) Whenever κ ≥ 1, one has

Prob{‖MW 1/2χ‖∗ > κ} ≤ 2F exp{−κ2/2}, (4.245)

with F given by (4.63).
Indeed, setting ρ = 1/κ2 ≤ 1 and ω =

√
ρW 1/2χ, we get ω ∼ N (0, ρW ). Let us

apply Lemma 4.91 to Q = ρW , R in the role of T , L in the role of K, and S`[·]
in the role of Rk[·]. Denoting

Y := {y : ∃r ∈ R : S2
` [y] � r`If` , ` ≤ L},

we have S`[Q] = ρS`[W ] � ρr`If` , ` ≤ L, with r ∈ R (see (4.240)), so we are
under the premise of Lemma 4.91 (with Y in the role of X and therefore with F
in the role of D). Applying the lemma, we conclude that

Prob
{
χ : κ−1W 1/2χ 6∈ Y

}
≤ 2F exp{−1/(2ρ)} = 2F exp{−κ2/2}.

Recalling that B∗ = MY, we see that Prob{χ : κ−1MW 1/2χ 6∈ B∗} is indeed
upper-bounded by the right hand side of (4.245), and (4.245) follows.

Now, for κ ≥ 1, let

Eκ =

{
(χ, η) : ‖MW 1/2χ‖∗ ≤ κ,

∑
i

σiυ
2
i ≥ 1

4

∑
i

σi

}
.

For (χ, η) ∈ Eκ we have

κ‖ZT η‖ ≥ ‖MW 1/2χ‖∗‖ZT η‖ ≥ χTW 1/2MTZT η =
∑
i

σiυ
2
i ≥ 1

4

∑
i

σi ≥ 1
4
Opt[Q],

(we have used (4.243) and (4.242)). On the other hand, due to (4.244) and (4.245),

Prob{Eκ} ≥ βκ , (4.246)
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and we arrive at (4.67). The latter relation clearly implies (4.68) which, in turn,
implies the right inequality in (4.66). 2

4.10.5 Proofs of Propositions 4.5, 4.16, 4.19

Below, we focus on the proof of Proposition 4.16; Propositions 4.5, 4.19 will be
derived from it in Sections 4.10.5.2, 4.10.6.2, respectively.

4.10.5.1 Proof of Proposition 4.16

In what follows, we use the assumptions and the notation of Proposition 4.16.

10. Let

Φ(H,Λ,Υ,Υ′,Θ;Q) = φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + Tr(QΘ) :M×Π→ R,

where

M =

{
(H,Λ,Υ,Υ′,Θ) :

Λ = {Λk � 0, k ≤ K},
Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L}[ ∑

kR∗k[Λk] 1
2 [BT −ATH]M

1
2M

T [B −HTA]
∑
` S∗` [Υ`]

]
� 0[

Θ 1
2HM

1
2M

THT
∑
` S∗` [Υ′`]

]
� 0


Looking at (4.50), we conclude immediately that the optimal value Opt in (4.50)
is nothing but

Opt = min
(H,Λ,Υ,Υ′,Θ)∈M

[
Φ(H,Λ,Υ,Υ′,Θ) := max

Q∈Π
Φ(H,Λ,Υ,Υ′,Θ;Q)

]
. (4.247)

Note that the sets M and Π are closed and convex, Π is compact, and Φ is a
continuous convex-concave function on M× Π. In view of these observations, the
fact that Π ⊂ int Sm+ combines with the Sion-Kakutani Theorem to imply that Φ
possesses saddle point (H∗,Λ∗,Υ∗,Υ

′
∗,Θ∗;Q∗) (min in (H,Λ,Υ,Υ′,Θ), max in Q)

onM×Π, whence Opt is the saddle point value of Φ by (4.247). We conclude that
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for properly selected Q∗ ∈ Π it holds

Opt = min
(H,Λ,Υ,Υ′,Θ)∈M

Φ(H,Λ,Υ,Υ′,Θ;Q∗)

= min
H,Λ,Υ,Υ′,Θ

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + Tr(Q∗Θ) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L}[ ∑
kR
∗
k[Λk] 1

2
[BT −ATH]M

1
2
MT [B −HTA]

∑
` S
∗
` [Υ`]

]
� 0,[

Θ 1
2
HM

1
2
MTHT ∑

` S
∗
` [Υ′`]

]
� 0


= min
H,Λ,Υ,Υ′,G

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + Tr(G) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L}[ ∑
kR
∗
k[Λk] 1

2
[BT −ATH]M

1
2
MT [B −HTA]

∑
` S
∗
` [Υ`]

]
� 0,[

G 1
2
Q

1/2
∗ HM

1
2
MTHTQ

1/2
∗

∑
` S
∗
` [Υ′`]

]
� 0


= min
H,Λ,Υ

{
φT (λ[Λ]) + φR(λ[Υ]) + Ψ(H) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}[ ∑
kR
∗
k[Λk] 1

2
[BT −ATH]M

1
2
MT [B −HTA]

∑
` S
∗
` [Υ`]

]
� 0

 ,

Ψ(H) := min
G,Υ′

{
φR(λ[Υ′]) + Tr(G) : Υ′ = {Υ′` � 0, ` ≤ L},[

G 1
2
Q

1/2
∗ HM

1
2
MTHTQ

1/2
∗

∑
` S
∗
` [Υ′`]

]
� 0

}
(4.248)

where Opt is given by (4.50), and the equalities are due to (4.64) and (4.65).
From now on we assume that the observation noise ξ in observation (4.35) is

ξ ∼ N (0, Q∗). Besides this, we assume that B 6= 0, since otherwise the conclusion
of Proposition 4.16 is evident.

20. ε-risk. In Proposition 4.16, we are speaking about ‖ · ‖-risk of an estimate
– the maximal, over signals x ∈ X , expected norm ‖ · ‖ of the error in recovering
Bx; what we need to prove that the minimax optimal risk RiskOptΠ,‖·‖[X ] as given
by (4.61) can be lower-bounded by a quantity “of order of” Opt. To this end, of
course, it suffices to build such a lower bound for the quantity

RiskOpt‖·‖ := inf
x̂(·)

[
sup
x∈X

Eξ∼N (0,Q∗){‖Bx− x̂(Ax+ ξ)‖}
]
,

since this quantity is a lower bound on RiskOptΠ,‖·‖. Technically, it is more conve-
nient to work with the ε-risk defined in terms of “‖ · ‖-confidence intervals” rather
than in terms of the expected norm of the error. Specifically, in the sequel we will
heavily use the minimax ε-risk defined as

RiskOptε = inf
x̂,ρ

{
ρ : Probξ∼N (0,Q∗){‖Bx− x̂(Ax+ ξ)‖ ≤ ε ∀x ∈ X

}
(4.249)

When ε ∈ (0, 1) is once for ever fixed (in the sequel, we use ε = 1
8 ), ε-risk lower-

bounds RiskOpt‖·‖, since by evident reasons

RiskOpt‖·‖ ≥ εRiskOptε. (4.250)
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Consequently, all we need in order to prove Proposition 4.16 is to lower-bound
RiskOpt 1

8
by a “not too small” multiple of Opt, and this is what we are achieving

below.

3o. Let W be a positive semidefinite n × n matrix, let η ∼ N (0,W ) be random
signal, and let ξ ∼ N (0, Q∗) be independent of η; vectors (η, ξ) induce random
vector

ω = Aη + ξ ∼ N (0, AWAT +Q∗).

Consider the Bayesian version of the estimation problem where given ω we are
interested to recover Bη. Recall that, because [ω;Bη] is zero mean Gaussian, the
conditional expectation E|ω{Bη} of Bη given ω is linear in ω: E|ω{Bη} = H̄Tω for
some H̄ depending on W only85. Therefore, denoting by P|ω conditional, ω given,
probability distribution, for any ρ > 0 and estimate x̂(·) one has

Probη,ξ{‖Bη − x̂(Aη + ξ)‖ ≥ ρ} = Eω

{
Prob|ω{‖Bη − x̂(ω)‖ ≥ ρ}

}
≥ Eω

{
Prob|ω{‖Bη −E|ω{Bη}‖ ≥ ρ}

}
= Probη,ξ{‖Bη − H̄T (Aη + ξ)‖ ≥ ρ},

(4.251)
with the inequality given by the Anderson Lemma as applied to the shift of the
Gaussian distribution P|ω by its mean. Applying the Anderson Lemma again we
get

Probη,ξ{‖Bη − H̄T (Aη + ξ)‖ ≥ ρ} = Eξ

{
Probη{‖(B − H̄TA)η − H̄T ξ‖ ≥ ρ}

}
≥ Probη{‖(B − H̄TA)η‖ ≥ ρ},

and, by “symmetric” reasoning,

Probη,ξ{‖Bη − H̄T (Aη + ξ)‖ ≥ ρ} ≥ Probξ{‖H̄T ξ‖ ≥ ρ}.

We conclude that for any x̂(·)

Probη,ξ{‖Bη − x̂(ω)‖ ≥ ρ}
≥ max

{
Probη{‖(B − H̄TA)η‖ ≥ ρ}, Probξ{‖H̄T ξ‖ ≥ ρ}

}
.

(4.252)

4o. Let H be m × ν matrix. Applying Lemma 4.17 to N = m, Y = H̄, Q = Q∗,
we get from (4.67)

Probξ∼N (0,Q∗){‖H
T ξ‖ ≥ [4κ]−1Ψ(H̄)} ≥ βκ (4.253)

where Ψ(H) is defined by (4.248). Similarly, applying Lemma 4.17 to N = n,
Y = (B − H̄TA)T , Q = W , we obtain

Probη∼N (0,W ){‖(B − H̄TA)η‖ ≥ [4κ]−1Φ(W, H̄)} ≥ βκ (4.254)

85We have used the following standard fact: let ζ = [ω; η] ∼ N (0, S), the covariance matrix
of the marginal distribution of ω being nonsingular. Then the conditional, ω given, distribution
of η is Gaussian with mean linearly depending on ω and covariance matrix independent of ω.
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where

Φ(W,H) = min
Υ={Υ`,`≤L},Θ

{
Tr (WΘ) + φR(λ[Υ]) : Υ` � 0 ∀`,[

Θ 1
2 [BT −ATH]M

1
2M

T [B −HTA]
∑
` S∗` [Υ`]

]
� 0

}
.

(4.255)
Let us put ρ(W, H̄) = [8κ]−1[Ψ(H̄) + Φ(W, H̄)]; when combining (4.254) with
(4.253) we conclude that

max
{

Probη{‖(B − H̄TA)η‖ ≥ ρ(W, H̄)}, Probξ{‖H̄T ξ‖ ≥ ρ(W, H̄)}
}
≥ βκ ,

and the same inequality holds if ρ(W, H̄) is replaced with the smaller quantity

ρ̄(W ) = [8κ]−1 inf
H

[Ψ(H) + Φ(W,H)].

Now, the latter bound combines with (4.252) to imply the following result:

Lemma 4.94. Let W be a positive semidefinite n × n matrix, and κ ≥ 1. Then
for any estimate x̂(·) of Bη given observation ω = Aη + ξ, one has

Probη,ξ{‖Bη− x̂(ω)‖ ≥ [8κ]−1 inf
H

[Ψ(H) + Φ(W,H)]} ≥ βκ = 1− e3/8

2
− 2Fe−κ

2/2

where Ψ(H) and Φ(W,H) are defined, respectively, by (4.248) and (4.255).
In particular, for

κ = κ̄ :=
√

2 lnF + 10 ln 2 (4.256)

the latter probability is > 3/16.

5o. For 0 < κ ≤ 1, let us set

(a) Wκ = {W ∈ Sn+ : ∃t ∈ T : Rk[W ] � κtkIdk , 1 ≤ k ≤ K},

(b) Z =

(Υ = {Υ`, ` ≤ L},Θ, H) :

Υ` � 0∀`,[
Θ 1

2
[BT −ATH]M

1
2
MT [B −HTA]

∑
` S∗` [Υ`]

]
� 0

 .

(4.257)
Note thatWκ is a nonempty convex compact (by Lemma 4.89) set such thatWκ =
κW1, and Z is a nonempty closed convex set. Consider the parametric saddle point
problem

Opt(κ) = max
W∈Wκ

min
(Υ,Θ,H)∈Z

[
E(W ; Υ,Θ, H) := Tr(WΘ) + φR(λ[Υ]) + Ψ(H)

]
.

(4.258)
This problem is convex-concave; utilizing the fact thatWκ is compact and contains
positive definite matrices, it is immediately seen that the Sion-Kakutani theorem
ensures the existence of a saddle point whenever κ ∈ (0, 1]. We claim that

0 < κ ≤ 1⇒ Opt(κ) ≥
√
κOpt(1). (4.259)
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Indeed, Z is invariant w.r.t. scalings

(Υ = {Υ`, ` ≤ L},Θ, H) 7→ (θΥ := {θΥ`, ` ≤ L}, θ−1Θ, H), [θ > 0].

When taking into account that φR(λ[θΥ]) = θφR(λ[Υ]), we get

E(W ) := min
(Υ,Θ,H)∈Z

E(W ; Υ,Θ, H) = min
(Υ,Θ,H)∈Z

inf
θ>0

E(W ; θΥ, θ−1Θ, H)

= min
(Υ,Θ,H)∈Z

[
2
√

Tr(WΘ)φR(λ[Υ]) + Ψ(H)
]
.

Because Ψ is nonnegative we conclude that whenever W � 0 and κ ∈ (0, 1], one
has

E(κW ) ≥
√
κE(W ),

which combines with Wκ = κW1 to imply that

Opt(κ) = max
W∈Wκ

E(W ) = max
W∈W1

E(κW ) ≥
√
κ max
W∈W1

E(W ) =
√
κOpt(1),

and (4.259) follows.

6o. We claim that
Opt(1) = Opt, (4.260)

where Opt is given by (4.50) (and, as we have seen, by (4.248) as well). Note that
(4.260) combines with (4.259) to imply that

0 < κ ≤ 1⇒ Opt(κ) ≥
√
κOpt. (4.261)

Verification of (4.260) is given by the following computation. By the Sion-Kakutani
Theorem,

Opt(1) = max
W∈W1

min
(Υ,Θ,H)∈Z

{
Tr(WΘ) + φR(λ[Υ]) + Ψ(H)

}
= min

(Υ,Θ,H)∈Z
max
W∈W1

{
Tr(WΘ) + φR(λ[Υ]) + Ψ(H)

}
= min

(Υ,Θ,H)∈Z

{
Ψ(H) + φR(λ[Υ]) + max

W

{
Tr(ΘW ) :

W � 0,∃t ∈ T : Rk[W ] � tkIdk , k ≤ K
}}

= min
(Υ,Θ,H)∈Z

{
Ψ(H) + φR(λ[Υ]) + max

W,t

{
Tr(ΘW ) :

W � 0, [t; 1] ∈ T,Rk[W ] � tkIdk , k ≤ K
}}

,

where T is the closed conic hull of T . Now, using Conic Duality combined with the
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fact that T∗ = {[g; s] : s ≥ φT (−g)} we obtain

max
W,t
{Tr(ΘW ) : W � 0, [t; 1] ∈ K[T ], Rk[W ] � tkIdk , k ≤ K}

= min
Z,[g;s],Λ={Λk}

s :


Z � 0, [g; s] ∈ (K[T ])∗, Λk � 0, k ≤ K
−Tr(ZW )− gT t+

∑
k Tr(R∗k[Λk]W )

−
∑
k tkTr(Λk) = Θ

∀(W ∈ Sn, t ∈ RK)


= min

Z,[g;s],Λ={Λk}

{
s :

{
Z � 0, s ≥ φT (−g), Λk � 0, k ≤ K
Θ =

∑
kR∗k[Λk]− Z, g = −λ[Λ]

}
= min

Λ

{
φT (λ[Λ]) : Λ = {Λk � 0, k ≤ K}, Θ �

∑
k

R∗k[Λk]

}
,

and we arrive at

Opt(1) = min
Υ,Θ,H,Λ

{
Ψ(H) + φR(λ[Υ]) + φT (λ[Λ]) :

Υ = {Υ` � 0, ` ≤ L},Λ = {Λk � 0, k ≤ K},
Θ �

∑
kR∗k[Λk],[

Θ 1
2 [BT −ATH]M

1
2M

T [B −HTA]
∑
` S∗` [Υ`]

]
� 0

}

= min
Υ,H,Λ

{
Ψ(H) + φR(λ[Υ]) + φT (λ[Λ]) :

Υ = {Υ` � 0, ` ≤ L},Λ = {Λk � 0, k ≤ K}[ ∑
kR∗k[Λk] 1

2 [BT −ATH]M
1
2M

T [B −HTA]
∑
` S∗` [Υ`]

]
� 0

}
= Opt [see (4.248)].

7o. Now we can complete the proof. For κ ∈ (0, 1], let Wκ be the W -component of
a saddle point solution to the saddle point problem (4.258). Then, by (4.261),

√
κOpt ≤ Opt(κ) = min

(Υ,Θ,H)∈Z

{
Tr(WκΘ) + φR(λ[Υ]) + Ψ(H)

}
= min

H

{
Φ(Wκ, H) + Ψ(H)

} (4.262)

On the other hand, when applying Lemma 4.91 to Q = Wκ and ρ = κ, we obtain,
in view of relations 0 < κ ≤ 1, Wκ ∈ Wκ,

δ(κ) := Probζ∼N (0,In){W 1/2
κ ζ 6∈ X} ≤ 2De−

1
2κ , (4.263)

with D given by (4.63). In particular, when setting

κ̄ =
1

2 lnD + 10 ln 2
(4.264)

we obtain δκ ≤ 1/16. Therefore,

Probη∼N (0,Wκ̄){η 6∈ X} ≤ 1
16 . (4.265)
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Now let

%∗ :=
Opt

8
√

(2 lnF + 10 ln 2)(2 lnD + 10 ln 2)
. (4.266)

All we need in order to achieve our goal, that is, to justify (4.62), is to show that

RiskOpt 1
8
≥ %∗, (4.267)

since given the latter relation, (4.62) will be immediately given by (4.250) as applied
with ε = 1

8 .
To prove (4.267), assume, on the contrary to what should be proved, that the

1
8 -risk is < %∗, and let x̄(·) be an estimate with 1

8 -risk ≤ %∗. We can utilize x̄ to
estimate Bη, in the Bayesian problem of recovering Bη from observation ω = Aη+ξ,
(η, ξ) ∼ N (0,Σ) with Σ = Diag{Wκ̄, Q∗}. From (4.265) we conclude that

Prob(η,ξ)∼N (0,Σ){‖Bη − x̄(Aη + ξ)‖ > %∗}
≤ Prob(η,ξ)∼N (0,Σ){‖Bη − x̄(Aη + ξ)‖ > %∗, η ∈ X}+ Probη∼N (0,Wκ̄){η 6∈ X}
≤ 1

8 + 1
16 = 3

16 .
(4.268)

On the other hand, by (4.262) we have

min
H

[Φ(Wκ̄, H) + Ψ(H)] = Opt(κ̄) ≥
√
κ̄Opt = [8κ̄]%∗

with κ̄ given by (4.256), so by Lemma 4.94, for any estimate x̂(·) of Bη via obser-
vation ω = Ax+ ξ it holds

Probη,ξ{‖Bη − x̂(Aη + ξ)‖ ≥ %∗} ≥ βκ̄ > 3/16;

in particular, this relation should hold true for x̂(·) ≡ x̄(·), but the latter is impos-
sible: the 1

8 -risk of x̄ is ≤ %∗, see (4.268). 2

4.10.5.2 Proof of Proposition 4.5

We shall extract Proposition 4.5 from the following result, meaningful by its own
right (it can be considered as “ellitopic refinement” of Proposition 4.16):

Proposition 4.95. Consider recovery of the linear image Bx ∈ Rν of unknown
signal x known to belong to a given signal set X ⊂ Rn from noisy observation

ω = Ax+ ξ ∈ Rm [ξ ∼ N (0,Γ), Γ � 0]

the recovery error being measured in a norm ‖ · ‖ on Rν . Assume that X and the
unit ball B∗ of the norm ‖ · ‖∗ conjugate to ‖ · ‖ are ellitopes:

X = {x ∈ Rn : ∃t ∈ T : xTRkx ≤ tk, k ≤ K}
B∗ = {y ∈ Rν : ∃(r ∈ R, y) : u = My, yTS`y ≤ r`, ` ≤ L}

(4.269)

with our standard restrictions on T , R, Rk and S` (as always, we lose nothing
when assuming that the ellitope X is basic).
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Consider the optimization problem

Opt# = min
Θ,H,λ,µ,µ′

{
φT (λ) + φR(µ) + φR(µ′) + Tr(ΓΘ) :

λ ≥ 0, µ ≥ 0, µ′ ≥ 0[ ∑
k λkRk

1
2
[B −HTA]TM

1
2
MT [B −HTA]

∑
` µ`S`

]
� 0[

Θ 1
2
HM

1
2
MTHT ∑

` µ
′
`S`

]
� 0

} (4.270)

The problem is solvable, and the linear estimate x̂H∗(ω) = HT
∗ ω yielded by the

H-component of an optimal solution to the problem satisfies the risk bound

RiskΓ,‖·‖[x̂H∗ |X ] := max
x∈X

Eξ∼N (0,Γ) {‖Bx− x̂H∗(Ax+ ξ)‖} ≤ Opt#.

Besides this, the estimate is near-optimal:

Opt# ≤ 64
√

(3 lnK + 15 ln 2)(3 lnL+ 15 ln 2)RiskOpt, (4.271)

where RiskOpt is the minimax optimal risk:

RiskOpt = inf
x̂

sup
x∈X

Eξ∼N (0,Γ) {‖Bx− x̂(Ax+ ξ)‖} ,

the infimum being taken w.r.t. all estimates.

Proposition 4.95 ⇒ Proposition 4.5: The situation considered in Proposition
4.5 is the special case of the situation considered in Proposition 4.95, namely, the
case when B∗ is the standard Euclidean ball:

B∗ = {u ∈ Rν : uTu ≤ 1}.
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In this case, problem (4.270) reads

Opt# = min
Θ,H,λ,µ,µ′

{
φT (λ) + µ+ µ′ + Tr(ΓΘ) :

λ ≥ 0, µ ≥ 0, µ′ ≥ 0[ ∑
k λkRk

1
2
[B −HTA]T

1
2
[B −HTA] µIν

]
� 0[

Θ 1
2
H

1
2
HT µ′Iν

]
� 0

}

= min
Θ,H,λ,µ,µ′

{
φT (λ) + µ+ µ′ + Tr(ΓΘ) :

λ ≥ 0, µ ≥ 0, µ′ ≥ 0
µ [
∑
k λkRk] � 1

4 [B −HTA]T [B −HTA]
µ′Θ � 1

4HH
T

}
[Schur Complement Lemma]

= min
λ′,H

{√
φT (λ′) +

√
Tr(HΓHT ) :

λ′ ≥ 0,

[ ∑
k λ
′
kRk [B −HTA]T

[B −HTA] Iν

]
� 0

}
[by eliminating µ, µ′; note that φT (·)
is positively homogeneous of degree 1]

Comparing the resulting representation of Opt# with (4.13), we see that the upper

bound
√

Opt on the risk of the linear estimate x̂H∗ appearing in (4.16) is ≤ Opt#.
Combining this observation with (4.271) and the evident relation

RiskOpt = inf x̂ supx∈X Ex∼N (0,Γ) {‖Bx− x̂(Ax+ ξ)‖2}
≤ inf x̂

√
supx∈X Ex∼N (0,Γ) {‖Bx− x̂(Ax+ ξ)‖2} = Riskopt,

(recall that we are in the case of ‖ · ‖ = ‖ · ‖2), we arrive at (4.16) and thus justify
Proposition 4.5. 2

Proof of Proposition 4.95. It is immediately seen that problem (4.270) is nothing
but problem (4.50) in the case when the spectratopes X ,B∗ and the set Π partici-
pating in Proposition 4.14 are, respectively, the ellitopes given by (4.269), and the
singleton {Γ}. Thus, Proposition 4.95 is, essentially, the special case of Proposition
4.16. The only refinement in Proposition 4.95 as compared to Proposition 4.16 is
the form of the logarithmic “non-optimality” factor in (4.271); similar factor in
Proposition 4.16 is expressed in terms of spectratopic sizes D, F of X and B (the
total ranks of matrices Rk, k ≤ K, and S`, ` ≤ L, in the case of (4.269)), while in
(4.271) the nonoptimality factor is expressed in terms of ellitopic sizes K, L of X
and B∗. Strictly speaking, to arrive at this (slight – the sizes in question are under
logs) refinement, we were supposed to reproduce, with minimal modifications, the
reasoning of items 20 – 70 of Section 4.10.5.1, with Γ in the role of Q∗, and slightly
refine Lemma 4.17 underlying this reasoning. It would be counter-productive to
carry out this course of actions literally; instead, we intend to indicate “local modi-
fications” to be made in the proof of Proposition 4.16 in order to prove Proposition
4.95. Here are the modifications:

A. The collections of matrices Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L} should
be substituted by collections of nonnegative reals λ ∈ RK

+ , resp., µ ∈ RL
+, and
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vectors λ[Λ], λ[Υ] – with vectors λ, resp. µ. Expressions like Rk[W ], R∗k[Λk],
S∗` [Υ`] should be replaced, respectively, with Tr(RkW ), λkRk, µ`S`. Finally, Q∗
should be replaced with Γ, and scalar matrices, like tkIdk , should be replaced
with the corresponding reals, like tk.

B. The role of Lemma 4.17 is now played by

Lemma 4.96. Let Y be an N × ν matrix, let ‖ · ‖ be a norm on Rν such that
the unit ball B∗ of the conjugate norm is the ellitope (4.269):

B∗ = {y ∈ Rν : ∃(r ∈ R, y) : u = My, yTS`y ≤ r`, ` ≤ L}, (4.269)

and let ζ ∼ N (0, Q) for some positive semidefinite N × N matrix Q. Then the
best upper bound on ψQ(Y ) := E{‖Y T ζ‖} yielded by Lemma 4.11, that is, the
optimal value Opt[Q] in the convex optimization problem (cf. (4.48))

Opt[Q] = min
Θ,µ

{
φR(µ) + Tr(QΘ) : µ ≥ 0,

[
Θ 1

2YM
1
2M

TY T
∑
` µ`R`

]
� 0

}
(4.272)

satisfies the identity

∀(Q � 0) :

Opt[Q] = Opt[Q] := min
G,µ

{
φR(µ) + Tr(G) : µ ≥ 0,

[
G 1

2
Q1/2YM

1
2
MTY TQ1/2 ∑

` µ`R`

]
� 0

}
,

(4.273)

and is a tight bound on ψQ(Y ), namely,

ψQ(Y ) ≤ Opt[Q] ≤ 22
√

3 lnL+ 15 ln 2ψQ(Y ), (4.274)

where L is the size of the ellitope B∗, see (4.269). Besides this, for all κ ≥ 1
one has

Probζ

{
‖Y T ζ‖ ≥ Opt[Q]

4κ

}
≥ βκ := 1− e3/8

2
− 2Le−κ

2/3. (4.275)

In particular, when selecting κ =
√

3 lnL+ 15 ln 2, we obtain

Probζ

{
‖Y T ζ‖ ≥ Opt[Q]

4
√

3 lnL+ 15 ln 2

}
≥ βκ = 0.2100 > 3

16 . (4.276)

The proof of Lemma 4.96 follows the one of Lemma 4.17, with Lemma 4.92
substituting Lemma 4.91.

Proof of Lemma 4.96

1o.

Relation (4.273) can be verified exactly in the same fashion as in the case of Lemma
4.17.



432

StatOpt˙LN˙NS January 21, 2019 7x10

LECTURE 4

2o.

Let us set ζ = Q1/2η with η ∼ N (0, IN ) and Z = Q1/2Y . Let us show that when
κ ≥ 1 one has

Probη{‖ZT η‖ ≥ δ̄} ≥ βκ := 1− e3/8

2
− 2Le−κ

2/3, δ̄ =
Opt[Q]

4κ
, (4.277)

where

[Opt[Q] =] Opt[Q] := min
Θ,µ

{
φR(µ) + Tr(Θ) : µ ≥ 0,

[
Θ 1

2ZM
1
2M

TZT
∑
` µ`R`

]
� 0

}
(4.278)

3o.

Let us represent Opt[Q] as the optimal value of a conic problem. Setting

K = cl{[r; s] : s > 0, r/s ∈ R},

we ensure that

R = {r : [r; 1] ∈ K}, K∗ = {[g; s] : s ≥ φR(−g)},

where K∗ is the cone dual to K. Consequently, (4.278) reads

Opt[Q] = min
Θ,Υ,θ

θ + Tr(Θ) :

µ ≥ 0 (a)[
Θ 1

2ZM
1
2M

TZT
∑
` µ`S`

]
� 0 (b)

[−µ; θ] ∈ K∗ (c)

 . (P )

4o.

Now let us prove that there exists matrix W ∈ Sq+ and r ∈ R such that

Tr(WS`) ≤ r`, ` ≤ L, (4.279)

and
Opt[Q]≤

∑
i

σi(ZMW 1/2), (4.280)

where σ1(·) ≥ σ2(·) ≥ ... are singular values.
To get the announced result, let us pass from problem (P ) to its conic dual.

Applying Lemma 4.89 we conclude that (P ) is strictly feasible; in addition, (P )
clearly is bounded, so that the dual to (P ) problem (D) is solvable with optimal

value Opt[Q]. Let us build (D). Denoting by λ` ≥ 0, ` ≤ L,

[
G −R
−RT W

]
�

0, [r; τ ] ∈ K the Lagrange multipliers for the respective constraints in (P ), and
aggregating these constraints, the multipliers being the aggregation weights, we
arrive at the following aggregated constraint:

Tr(ΘG) + Tr(W
∑
` µ`S`) +

∑
` λ`µ` −

∑
` r`µ` + θτ ≥ Tr(ZMRT ).
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To get the dual problem, we impose on the Lagrange multipliers, in addition to
the initial conic constraints like λ` ≥ 0, 1 ≤ ` ≤ L, the restriction that the left
hand side in the aggregated constraint, identically in Θ, µ` and θ, is equal to the
objective of (P ), that is,

G = I, Tr(WS`) + λ` − r` = 0, 1 ≤ ` ≤ L, τ = 1,

and maximize, under the resulting restrictions, the right-hand side of the aggregated
constraint. After immediate simplifications, we arrive at

Opt[Q] = max
W,R,r

{
Tr(ZMRT ) : W � RTR, r ∈ R,Tr(WS`) ≤ r`, 1 ≤ ` ≤ L

}
(note that r ∈ R is equivalent to [r; 1] ∈ K, and W � RTR is the same as[

I −R
−RT W

]
� 0). Now, to say that RTR � W is exactly the same as to say

that R = SW 1/2 with the spectral norm ‖S‖Sh,∞ of S not exceeding 1, so that

Opt[Q] = max
W,S,r

{
Tr([ZM [SW 1/2]T )︸ ︷︷ ︸

=Tr([ZMW1/2]ST )

: W � 0, ‖S‖Sh,∞ ≤ 1, r ∈ R,Tr(WS`) ≤ r`, ` ≤ L
}

and we can immediately eliminate the S-variable, using the well-known fact that
for every p× q matrix J , it holds

max
S∈Rp×q,‖S‖Sh,∞≤1

Tr(JST ) = ‖J‖Sh,1,

where ‖J‖Sh,1 is the nuclear norm (the sum of singular values) of J . We arrive at

Opt[Q] = max
W,r

{
‖ZMW 1/2‖Sh,1 : r ∈ R,W � 0,Tr(WS`) ≤ r`, ` ≤ L

}
.

The resulting problem clearly is solvable, and its optimal solution W ensures the
target relations (4.279) and (4.280).

5o.

Given W satisfying (4.279) and (4.280), let UJV = W 1/2MTZT be the singular
value decomposition of W 1/2MTZT , so that U and V are, respectively, q × q and
N ×N orthogonal matrices, J is q ×N matrix with diagonal σ = [σ1; ...;σp], p =
min[q,N ], and zero off-diagonal entries; the diagonal entries σi, 1 ≤ i ≤ p are the
singular values of W 1/2MTZT , or, which is the same, of ZMW 1/2. Therefore, we
have ∑

i

σi ≥ Opt[Q]. (4.281)

Now consider the following construction. Let η ∼ N (0, IN ); we denote by υ the
vector comprised of the first p entries in V η; note that υ ∼ N (0, Ip), since V
is orthogonal. We then augment, if necessary, υ by q − p independent of each
other and of η N (0, 1) random variables to obtain a q-dimensional normal vector
υ′ ∼ N (0, Iq), and set χ = Uυ′; because U is orthogonal we also have χ ∼ N (0, Iq).
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Observe that

χTW 1/2MTZT η = χTUJV η = [υ′]TJυ =

p∑
i=1

σiυ
2
i . (4.282)

To continue we need two simple observations.

(i) One has

α := Prob

{
p∑
i=1

σiυ
2
i <

1
4

p∑
i=1

σi

}
≤ e3/8

2
[= 0.7275...]. (4.283)

The claim is evident when σ :=
∑
i σi = 0. Now let σ > 0, and let us apply the

Cramer bounding scheme. Namely, given γ > 0, consider the random variable

ω = exp

{
1
4
γ
∑
i

σi − γ
∑
i

σiυ
2
i

}
.

Note that ω > 0 a.s., and is > 1 when
∑p
i=1 σiυ

2
i <

1
4

∑p
i=1 σi, so that α ≤ E{ω},

or, equivalently, thanks to υ ∼ N (0, Ip),

ln(α) ≤ ln(E{ω}) = 1
4
γ
∑
i

σi +
∑
i

ln
(
E{exp{−γσiυ2

i }}
)
≤ 1

4
γσ − 1

2

∑
i

ln(1 + 2γσi).

Function −
∑
i ln(1 + 2γσi) is convex in [σ1; ...;σp] ≥ 0, therefore, its maximum

over the simplex {σi ≥ 0, i ≤ p,
∑
i σi = σ} is attained at a vertex, and we get

ln(α) ≤ 1
4
γσ − 1

2
ln(1 + 2γσ).

Minimizing the right hand side in γ > 0, we arrive at (4.283).
(ii) Whenever κ ≥ 1, one has

Prob{‖MW 1/2χ‖∗ > κ} ≤ 2L exp{−κ2/3}, (4.284)

with L coming from (4.269).
Indeed, setting ρ = 1/κ2 ≤ 1 and ω =

√
ρW 1/2χ, we get ω ∼ N (0, ρW ). Let us

apply Lemma 4.92 to Q = ρW , R in the role of T , L in the role of K, and S`’s
in the role of Rk’s. Denoting

Y := {y : ∃r ∈ R : yTS`y � r`, ` ≤ L},

we have Tr(QS`) = ρTr(WS`) = ρTr(WS`) ≤ ρr`, ` ≤ L, with r ∈ R (see
(4.279)), so we are under the premise of Lemma 4.92 (with Y in the role of X
and therefore with L in the role of K). Applying the lemma, we conclude that

Prob
{
χ : κ−1W 1/2χ 6∈ Y

}
≤ 2L exp{−1/(3ρ)} = 2L exp{−κ2/3}.

Recalling that B∗ = MY, we see that Prob{χ : κ−1MW 1/2χ 6∈ B∗} is indeed
upper-bounded by the right hand side of (4.284), and (4.284) follows.
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Now, for κ ≥ 1, let

Eκ =

{
(χ, η) : ‖MW 1/2χ‖∗ ≤ κ,

∑
i

σiυ
2
i ≥ 1

4

∑
i

σi

}
.

For (χ, η) ∈ Eκ we have

κ‖ZT η‖ ≥ ‖MW 1/2χ‖∗‖ZT η‖ ≥ χTW 1/2MTZT η =
∑
i

σiυ
2
i ≥ 1

4

∑
i

σi ≥ 1
4
Opt[Q],

(we have used (4.282) and (4.281)). On the other hand, due to (4.283) and (4.284),

Prob{Eκ} ≥ βκ , (4.285)

and we arrive at (4.275). The latter relation clearly implies (4.276) which, in turn,
implies the right inequality in (4.274). 2

C. As a result of substituting Lemma 4.17 with Lemma 4.96, the analogy of Lemma
4.94 used in item 40 of the proof of Proposition 4.16 now reads as follows:

Lemma 4.97. Let W be a positive semidefinite n× n matrix, and κ ≥ 1. Then
for any estimate x̂(·) of Bη given observation ω = Aη + ξ, one has

Probη,ξ{‖Bη−x̂(ω)‖ ≥ [8κ]−1 inf
H

[Ψ(H)+Φ(W,H)]} ≥ βκ = 1− e
3/8

2
−2Le−κ

2/3

where Ψ(H) and Φ(W,H) are defined, respectively, by (4.248) and (4.255).
In particular, for

κ = κ̄ :=
√

3 lnK + 15 ln 2 (4.286)

the latter probability is > 3/16.

D. Reference to Lemma 4.91 in item 70 of the proof should be substituted with
reference to Lemma 4.92, resulting in replacing

• relation (4.263 with the relation

δ(κ) := Probζ∼N (0,In){W 1/2
κ ζ 6∈ X} ≤ 3Ke−

1
3κ ,

• relation (4.264) with the relation

κ̄ =
1

3 lnK + 15 ln 2
;

• relation (4.266) – with the relation

%∗ :=
Opt

8
√

(3 lnL+ 15 ln 2)(3 lnK + 15 ln 2)
.
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4.10.6 Proofs of Propositions 4.18, 4.19, and justification of Remark
4.20

4.10.6.1 Proof of Proposition 4.18

The only claim in Proposition which is not an immediate consequence of Proposition
4.8 is that problem (4.73) is solvable; let us justify this claim. Let F = ImA.
Clearly, feasibility of a candidate solution (H,Λ,Υ) to the problem depends solely
on the restriction of the linear mapping z 7→ HT z onto F , so that adding to
the constraints of the problem the requirement that the restriction of this linear
mapping on the orthogonal complement of F in Rm is identically zero, we get
an equivalent problem. It is immediately seen that in the resulting problem, the
feasible solutions with the value of the objective ≤ a for every a ∈ R form a compact
set, so that the latter problem (and thus – the original one) indeed is solvable. 2

4.10.6.2 Proof of Proposition 4.19

We are about to derive Proposition 4.19 from Proposition 4.16. Observe that in
the situation of the latter Proposition, setting formally Π = {0}, problem (4.50)
becomes problem (4.73), so that Proposition 4.19 looks as the special case Π =
{0} of Proposition 4.16. However, the premise of the latter Proposition forbids
specializing Π as {0} – this would violate the regularity assumption R which is part
of the premise. The difficulty, however, can be easily resolved. Assume w.l.o.g. that
the image space of A is the entire Rm (otherwise we could from the very beginning
replace Rm with the image space of A, and let us pass our current noiseless recovery
problem of interest (!) to its “noisy modification,” the differences with (!) being

• noisy observation ω = Ax+ σξ, σ > 0, ξ ∼ N (0, I)m);
• risk quantification of a candidate estimate x̂(·) according to

Riskσ‖·‖[x̂(Ax+ σξ)|X ] = sup
x∈X

Eξ∼N (0,Im) {‖Bx− x̂(Ax+ σξ)}} ,

the corresponding minimax optimal risk being

RiskOptσ‖·‖[X ] = inf
x̂(·)

Riskσ‖·‖[x̂(Ax+ σξ)|X ]

Proposition 4.16 does apply to the modified problem – it suffices to specify Π as
{σ2Im}; according to this Proposition, the quantity

Opt[σ] = min
H,Λ,Υ,Υ′,Θ

{
φT (λ[Λ]) + φR(λ[Υ]) + φR(λ[Υ′]) + σ2Tr(Θ) :

Λ = {Λk � 0, k ≤ K}, Υ = {Υ` � 0, ` ≤ L}, Υ′ = {Υ′` � 0, ` ≤ L},[ ∑
kR
∗
k[Λk] 1

2
[BT −ATH]M

1
2
MT [B −HTA]

∑
` S
∗
` [Υ`]

]
� 0,[

Θ 1
2
HM

1
2
MTHT ∑

` S
∗
` [Υ′`]

]
� 0


satisfies the relation

Opt[σ] ≤ O(1) ln(D)RiskOptσ‖·‖[X ] (4.287)

with D defined in (4.74). Looking at problem (4.73) we immediately conclude that
Opt# ≤ Opt[σ]. Thus, all we need in order to extract the target relation (4.74) from
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(4.287) is to prove that the minimax optimal risk Riskopt[X ] defined in Proposition
4.19 satisfies the relation

lim inf
σ→+0

RiskOptσ‖·‖[X ] ≤ Riskopt[X ]. (4.288)

To prove this relation let us fix r > Riskopt[X ], so that for some Borel estimate x̂(·)
it holds

sup
x∈X
‖Bx− x̂(Ax)‖ < r. (4.289)

Were we able to ensure that x̂(·) is bounded and continuous, we would be done,
since in this case, due to compactness of X , it clearly holds

lim infσ→+0 RiskOptσ‖·‖[X ]

≤ lim infσ→+0 supx∈X Eξ∼N (0,Im) {‖Bx− x̂(Ax+ σξ)‖}
≤ supx∈X ‖Bx− x̂(Ax)‖ < r,

and since r > Riskopt[X ] is arbitrary, (4.288) would follow. Thus, all we need to do
is to verify that given Borel estimate x̂(·) satisfying (4.289), we can update it into
a bounded and continuous estimate satisfying the same relation. Verification is as
follows:

1. Setting β = maxx∈X ‖Bx‖ and replacing estimate x̂ with its truncation

x̃(ω) =

{
x̂(ω), ‖x̂(ω)‖ ≤ 2β
0, otherwise

we only reduce the norm of the recovery error, whatever be a signal from X ; at
the same time, x̃ is Borel and bounded. Thus, we lose nothing when assuming
in the rest of the proof that x̂(·) is Borel and bounded.

2. For ε > 0, let x̂ε(ω) = (1 + ε)x̂(ω/(1 + ε)) and let Xε = (1 + ε)X . Observe that

supx∈Xε ‖Bx− x̂ε(Ax)‖ = supy∈X ‖B[1 + ε]y − x̂ε(A[1 + ε]y)‖
= supy∈X ‖B[1 + ε]y − [1 + ε]x̂(Ay)‖ = [1 + ε] supy∈X ‖By − x̂(Ay)‖,

implying, in view of (4.289), that for small enough positive ε we have

r̄ := sup
x∈Xε

‖Bx− x̂ε(Ax)‖ < r. (4.290)

3. Finally, let A† be the pseudoinverse of A, so that AA†z = z for every z ∈ Rm

(recall that the image space of A is the entire Rm). Given ρ > 0, let θρ(·) be a
nonnegative smooth function on Rm with integral 1 such that θρ vanishes outside
of the ball of radius ρ centered at the origin, and let

x̂ε,ρ(ω) =

∫
Rm

x̂ε(ω − z)θρ(z)dz

be the convolution of x̂ε and θρ; since x̂ε(·) is Borel and bounded, this convolution
is well-defined smooth function on Rm. Since X contains a neighbourhood of
the origin, for all small enough ρ > 0, all z from the support of θρ and all x ∈ X
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the point x−A†z belongs to Xε. For such a ρ and any x ∈ X we have

‖Bx− x̂ε(Ax− z)‖ = ‖Bx− x̂ε(A[x−A†z])‖
≤ ‖BA†z‖+ ‖B[x−A†z]− x̂ε(A[x−A†z])‖
≤ Cρ+ r̄

with properly selected constant C independent of ρ (we have used (4.290); note
that for our ρ and x, x − A†z ∈ Xε). We conclude that for properly selected
r′ < r, ρ > 0 and all x ∈ X we have

‖Bx− x̂ε(Ax− z)‖ ≤ r′ ∀(z ∈ supp θρ),

implying, by construction of x̂ε,ρ, that

∀(x ∈ X ) : ‖Bx− x̂ε,ρ(Ax)‖ ≤ r′ < r.

The resulting estimate x̂ε,ρ is the continuous and bounded estimate satisfying
(4.289) we were looking for. 2

4.10.6.3 Justification of Remark 4.20

Justification of Remark is given by repeating word by word the proof of Proposition
4.19, with Proposition 4.95 in the role of Proposition 4.16.

4.10.7 Proof of (4.96)

Let h ∈ Rm, and let ω be random vector with independent across i entries ωi ∼
Poisson(µi). Taking into account that ωi are independent across i, we have

E
{

exp{γhTω}
}

=
∏
i E {γhiωi} =

∏
i exp{[exp{γhi} − 1]µi}

= exp{
∑
i[exp{γhi} − 1]µi},

whence by Tschebyshev inequality for γ ≥ 0 it holds

Prob{hTω > hTµ+ t} = Prob{γhTω > γhTµ+ γt}
≤ E

{
exp{γhTω}

}
exp{−γhTµ− γt} ≤ exp{

∑
i[exp{γhi} − 1]µi − γhTµ− γt},

(4.291)
Now, it is easily seen that when |s| ≤ 2/3, one has es ≤ 1+s+ 3

4s
2, which combines

with (4.291) to imply that

0 ≤ γ ≤ 2

3‖h‖∞
⇒ ln

(
Prob{hTω > hTµ+ t}

)
≤ 3

4
γ2
∑
i

h2
iµi − γt. (4.292)

Minimizing the right hand side in this inequality in γ ∈ [0, 2
3‖h‖∞], we get

Prob
{
hTω > hTµ+ t

}
≤ exp{− t2

3[
∑
i h

2
iµi + ‖h‖∞t]

}.

This inequality combines with the same inequality applied to −h in the role of h
to imply (4.96). 2
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4.10.8 Proof of Lemma 4.28

(i): When p(Col`[H])) ≤ 1 for all ` and λ ≥ 0, denoting by [h]2 the vector comprised
of squares of the entries in h, we have

φ(dg(HDiag{λ}HT )) = φ(
∑
` λ`[Col`[H]]2) ≤

∑
` λ`φ([Col`[H]]2)

=
∑
` λ`p

2(Col`[H]) ≤
∑
` λ`,

implying that (HTDiag{λ}HT ,κ
∑
` λ`) belongs to H.

(ii): Let Θ, µ,Q, V be as stated in (ii); there is nothing to prove when µ = 0, thus
assume that µ > 0. Let d = dg(Θ), so that

di =
∑
j

Q2
ij & κφ(d) ≤ µ (4.293)

(the second relation is due to (Θ, µ) ∈ H). (4.127) is evident. We have

[Hχ]ij =
√
m/µ[Gχ]ij , Gχ = QDiag{χ}V =

[
m∑
k=1

QikχkVkj

]
i,j

.

We claim that

∀γ > 0 : Prob
{

[Gχ]2ij > 3γdi/m
}
≤
√

3 exp{−γ/2}. (4.294)

Indeed, there is nothing to prove when di = 0, since in this case Qij = 0 for all j and
therefore [Gχ]ij ≡ 0. When di > 0, by homogeneity in Q it suffices to verify (4.294)
when di/m = 1/3. Assuming that this is the case, let η ∼ N (0, 1) be independent
of χ. We have

Eη {Eχ{exp{η[Gχ]ij}}} = Eη {
∏
k cosh(ηQikVkj)} ≤ Eη

{∏
k exp{ 1

2η
2Q2

ikV
2
kj}
}

= Eη

{
exp{ 1

2η
2
∑

k
Q2
ikV

2
kj︸ ︷︷ ︸

≤2di/m

}
}
≤ Eη

{
η2di/m

}
= Eη

{
exp{η2/3}

}
=
√

3,

and

Eχ {Eη{exp{η[Gχ]ij}}} = Eχ

{
exp{1

2
[Gχ]2ij}

}
,

implying that

Eχ

{
exp{1

2
[Gχ]2ij}

}
≤
√

3.

Therefore in the case of di/m = 1/3 for all s > 0 it holds

Prob{χ : [Gχ]2ij > s} ≤
√

3 exp{−s/2},

and (4.294) follows. Recalling the relation between H and G, we get from (4.294)
that

∀γ > 0 : Prob{χ : [Hχ]2ij > 3γdi/µ} ≤
√

3 exp{−γ/2},
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By this inequality, with κ given by (4.126) the probability of the event

∀i, j : [Hχ]2ij ≤ κ
di
µ

is at least 1/2. Let this event take place; in this case we have [Col`[H]]2 ≤ κd/µ,
whence, due to what the norm p(·) is, p2(Col`[H]) ≤ κφ(d)/µ ≤ 1 (see the second
relation in (4.293)). Thus, the probability of the event (4.128) is at least 1/2. 2

4.10.9 Justification of (4.141)

Given s ∈ [2,∞] and setting s̄ = s/2, s∗ = s
s−1 , s̄∗ = s̄

s̄−1 , we want to prove that

{(V, τ) ∈ SN+ ×R+ : ∃(W ∈ SN , w ∈ RN
+ ) : V �W + Diag{w} & ‖W‖s∗ + ‖w‖s̄∗ ≤ τ}

= {(V, τ) ∈ SN+ ×R+ : ∃w ∈ RN
+ : V � Diag{w}, ‖w‖s̄∗ ≤ τ}.

To this end it clearly suffices to check that whenever W ∈ SN , there exists w ∈ RN

satisfying
W � Diag{w}, ‖w‖s̄∗ ≤ ‖W‖s∗ .

The latter claim is nothing but the claim that whenever W ∈ SN and ‖W‖s∗ ≤ 1,
the conic optimization problem

Opt = min
t,w
{t : t ≥ ‖w‖s̄∗ ,Diag{w} �W} (4.295)

is solvable (which is evident) with optimal value ≤ 1. To see that the latter indeed
is the case, note that the problem clearly is strictly feasible, whence its optimal
value is the same as the optimal value in the conic problem

Opt = maxP
{

Tr(PW ) : P � 0, ‖dg{P}‖s̄∗/(s̄∗−1) ≤ 1
}

[dg{P} = [P11;P22; ...;PNN ]]

dual to (4.295). Since Tr(PW ) ≤ ‖P‖s∗/(s∗−1)‖W‖s∗ ≤ ‖P‖s∗/(s∗−1), recalling
what s∗ and s̄∗ are, our task boils down to verifying that when a matrix P � 0
satisfies ‖dg{P )‖s/2 ≤ 1, one has also ‖P‖s ≤ 1, which is immediate: since P is

positive semidefinite, we have |Pij | ≤ P 1/2
ii P

1/2
jj , whence, assuming s <∞,

‖P‖ss =
∑
i,j

|Pij |s ≤
∑
i,j

P
s/2
ii P

s/2
jj =

(∑
i

P
s/2
ii

)2

≤ 1.

When s = ∞, the same argument says that ‖P‖∞ = maxi,j |Pij | = maxi |Pii| =
‖dg{P}‖∞. 2
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