
Appendix B

Solutions to Exercises

B.1 Exercises from Lecture 1

Exercise 1.1. We should prove that x is robust feasible if and only if it can be extended, by
properly chosen u, v ≥ 0 such that u − v = x, to a feasible solution to (1.6.1). First, let x be
robust feasible, and let ui = max[xi, 0], vi = max[−xi, 0]. Then u, v ≥ 0 and u− v = x. Besides
this, since x is robust feasible and uncertainty is element-wise, we have for every i

∑

j

max
Aij≤aij≤Aij

aijxj ≤ bi. (∗)

With our u, v we clearly have maxAij≤aij≤Aij
aijxj = [Aijuj − Aijvj ], so that by (∗) we have

Au−Av ≤ b, so that (x, u, v) is a feasible solution of (1.6.1).
Vice versa, let (x, u, v) be feasible for (1.6.1), and let us prove that x is robust feasible for the

original uncertain problem, that is, that the relations (∗) take place. This is immediate, since
from u, v ≥ 0 and x = u− v it clearly follows that maxAij≤aij≤Aij

aijxj ≤ Aijuj −Aijvj , so that
the validity of (∗) is ensured by the constraints of (1.6.1). The respective RCs are (equivalent
to)

[an; bn]T [x;−1] + ρ‖P T [x;−1]‖q ≤ 0, q = p
p−1 (a)

[an; bn]T [x;−1] + ρ‖(P T [x;−1])+‖q ≤ 0, q = p
p−1 (b)

[an; bn]T [x;−1] + ρ‖P T [x;−1]‖∞ ≤ 0 (c)

where for a vector u = [u1; ...; uk] the vector (u)+ has the coordinates max[ui, 0], i = 1, ..., k.
Comment to (c): The uncertainty set in question is nonconvex; since the RC remains intact when
a given uncertainty set is replaced with its convex hull, we can replace the restriction ‖ζ‖p ≤ ρ
in (c) with the restriction ζ ∈ Conv{ζ : ‖ζ‖p ≤ ρ} = {‖ζ‖1 ≤ ρ}, where the concluding equality
is due to the following reasons: on one hand, with p ∈ (0, 1) we have

‖ζ‖p ≤ ρ ⇔ ∑
i(|ζi|/ρ)p ≤ 1 ⇒ |ζi|/ρ ≤ 1∀i ⇒ |ζi|/ρ ≤ (|ζi|/ρ)p

⇒ ∑
i |ζi|/ρ ≤ ∑

i(|ζi|/ρ)p ≤ 1,

whence Conv{‖ζ‖p ≤ ρ} ⊂ {‖ζ‖1 ≤ ρ}. To prove the inverse inclusion, note that all extreme
points of the latter set (that is, vectors with all but one coordinates equal to 0 and the remaining
coordinate equal ±ρ) satisfy ‖ζ‖p ≤ 1.
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284 APPENDIX B. SOLUTIONS TO EXERCISES

Exercise 1.3: The RC can be represented by the system of conic quadratic constraints

[an; bn]T [x;−1] + ρ
∑

j ‖uj‖2 ≤ 0∑
j Q

1/2
j uj = P T [x;−1]

in variables x, {uj}J
j=1.

Exercise 1.4: • The RC of i-th problem is

min
x

{
−x1 − x2 : 0 ≤ x1 ≤ min

b∈Ui

b1, 0 ≤ x2 ≤ min
b∈Ui

b2, x1 + x2 ≥ p

}

We see that both RC’s are identical to each other and form the program

min
x
{−x1 − x2 : 0 ≤ x1, x2 ≤ 1/3, x1 + x2 ≥ p}

• When p = 3/4, all instances of P1 are feasible (one can set x1 = b1, x2 = b2), while the RC of
P2 is not so, so that there is a gap. In contrast to this, P2 has infeasible instances, and its RC
is infeasible; in this case, there is no gap.
• When p = 2/3, the (common) RC of the two problems P1, P2 is feasible with the unique
feasible solution x1 = x2 = 1/3 and the optimal value −2/3. Since every instance of P1 has a
feasible solution x1 = b1, x2 = b2, the optimal value of the instance is ≤ −b1 − b2 ≤ −1, so that
there is a gap. In contrast to this, the RC is an instance of P2, so that in this case there is no
gap.

Exercise 1.5: • Problem P2 has a constraint-wise uncertainty and is the constraint-wise en-
velope of P1.
• Proof for item 2: Let us prove first that if all the instances are feasible, then so is the RC.
Assume that the RC is infeasible. Then for every x ∈ X there exists i = ix and a realization
[aT

ix,x, bix,x] ∈ Uix of the uncertain data of i-th constraint such that

aT
ix,xx′ − bix,x > 0

when x′ = x and consequently when x′ belongs to a small enough neighborhood Ux of x. Since
X is a convex compact set, we can find a finite collection of xj ∈ X such that the corresponding
neighborhoods Uxj cover the entire X. In other words, we can points out finitely many linear
forms

f`(x) = aT
i`
x− bi` , ` = 1, ..., L,

such that [aT
i`
, bi` ] ∈ Ui` and the maximum of the forms over ` = 1, ..., L is positive at every point

x ∈ X. By standard facts on convexity it follows that there exists a convex combination of our
forms

f(x) =
L∑

`=1

λ`[aT
i`
x− bi` ]

which is positive everywhere on X. Now let Ii = {` : i` = i} and µi =
∑

`∈Ii
λ`. For i with

µi > 0, let us set

[aT
i , bi] =

∑

`∈Ii

λ`

µi
[ai` , bi` ],
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so that [aT
i , bi] ∈ Ui (since the latter set is convex). For i with µi = 0, let [aT

i , bi] be a whatever
point of Ui. Observe that by construction

f(x) ≡
m∑

i=1

µi[aT
i x− bi].

Now, since the uncertainty is constraint-wise, the matrix [A, b] with the rows [aT
i , bi] belongs to

U and thus corresponds to an instance of P. For this instance, we have

µT [Ax− b] = f(x) > 0 ∀x ∈ X,

so that no x ∈ X can be feasible for the instance; due to the origin of X, this means that the
instance we have built is infeasible, same as the RC.

Now let us prove that if all instances are feasible, then the optimal value of the RC is the
supremum, let it be called τ , of the optimal values of instances (this supremum clearly is achieved
and thus is the maximum of optimal values of instances). Consider the uncertain problem P ′
which is obtained from P by adding to every instance the (certain!) constraint cT x ≤ τ . The
resulting problem still is with constraint-wise uncertainty, has feasible instances, and feasible
solutions of an instance belong to X. By what we have already proved, the RC of P ′ is feasible;
but a feasible solution to the latter RC is a robust feasible solution of P with the value of the
objective ≤ τ , meaning that the optimal value in the RC of P is ≤ τ . Since the strict inequality
here is impossible due to the origin of τ , we conclude that the optimal value of the RC of P is
equal to the maximum of optimal values of instances of P, as claimed.

B.2 Exercises from Lecture 2

Exercise 2.1: W.l.o.g., we may assume t > 0. Setting φ(s) = cosh(ts)− [cosh(t)−1]s2, we get
an even function such that φ(−1) = φ(0) = φ(1) = 1. We claim that φ(s) ≤ 1 when −1 ≤ s ≤ 1.

Indeed, otherwise φ attains its maximum on [−1, 1] at a point s̄ ∈ (0, 1), and φ′′(s̄) ≤ 0. The

function g(s) = φ′(s) is convex on [0, 1] and g(0) = g(s̄) = 0. The latter, due to g′(s̄) ≤ 0, implies

that g(s) = 0, 0 ≤ s ≤ s̄. Thus, φ is constant on a nontrivial segment, which is not the case.

For a symmetric P supported on [−1, 1] with
∫

s2dP (s) ≡ ν̄2 ≤ ν2 we have, due to φ(s) ≤ 1,
−1 ≤ s ≤ 1:

∫
exp{ts}dP (s) =

∫ 1
−1 cosh(ts)dP (s)

=
∫ 1
−1[cosh(ts)− (cosh(t)− 1)s2]dP (s) + (cosh(t)− 1)

∫ 1
−1 s2dP (s)

≤ ∫ 1
−1 dP (s) + (cosh(t)− 1)ν̄2 ≤ 1 + (cosh(t)− 1)ν2,

as claimed in example 8. Setting h(t) = ln(ν2 cosh(t) + 1 − ν2), we have h(0) = h′(0) = 0,

h′′(t) = ν2(ν2+(1−ν2) cosh(t))
(ν2 cosh(t)+1−ν2)2

, maxt h′′(t) =

{
ν2, ν2 ≥ 1

3
1
4

[
1 + ν4

1−2ν2

]
≤ 1

3 , ν2 ≤ 1
3

, whence Σ(3)(ν) ≤ 1.

Exercise 2.2: Here are the results:
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n ε ttru tNrm tBll tBllBx tBdg

16 5.e-2 3.802 3.799 9.791 9.791 9.791

16 5.e-4 7.406 7.599 15.596 15.596 15.596

16 5.e-6 9.642 10.201 19.764 16.000 16.000

256 5.e-2 15.195 15.195 39.164 39.164 39.164

256 5.e-4 30.350 30.396 62.383 62.383 62.383

256 5.e-6 40.672 40.804 79.054 79.054 79.054

n ε ttru tE.7 tE.8 tE.9 tUnim

16 5.e-2 3.802 6.228 5.653 5.653 10.826

16 5.e-4 7.406 9.920 9.004 9.004 12.502

16 5.e-6 9.642 12.570 11.410 11.410 13.705

256 5.e-2 15.195 24.910 22.611 22.611 139.306

256 5.e-4 30.350 39.678 36.017 36.017 146.009

256 5.e-6 40.672 50.282 45.682 45.682 150.821

Exercise 2.3: Here are the results:

n ε ttru tNrm tBll tBllBx tBdg tE.7 tE.8

16 5.e-2 4.000 6.579 9.791 9.791 9.791 9.791 9.791
16 5.e-4 10.000 13.162 15.596 15.596 15.596 15.596 15.596
16 5.e-6 14.000 17.669 19.764 16.000 16.000 19.764 19.764

256 5.e-2 24.000 26.318 39.164 39.164 39.164 39.164 39.164
256 5.e-4 50.000 52.649 63.383 62.383 62.383 62.383 62.383
256 5.e-6 68.000 70.674 79.054 79.054 79.054 79.053 79.053

Exercise 2.4: In the case of (a), the optimal value is ta =
√

nErfInv(ε), since for a feasible
x we have ξn[x] ∼ N (0, n). In the case of (b), the optimal value is tb = nErfInv(nε). Indeed,
the rows in Bn are of the same Euclidean length and are orthogonal to each other, whence the
columns are orthogonal to each other as well. Since the first column of Bn is the all-one vector,
the conditional on η distribution of ξ =

∑
j ζ̂j has the mass 1/n at the point nη and the mass

(n − 1)/n at the origin. It follows that the distribution of ξ is the convex combination of the
Gaussian distribution N (0, n2) and the unit mass, sitting at the origin, with the weights 1/n
and (n− 1)/n, respectively, and the claim follows.

The numerical results are as follows:

n ε ta tb tb/ta

10 1.e-2 7.357 12.816 1.74
100 1.e-3 30.902 128.155 4.15

1000 1.e-4 117.606 1281.548 10.90

Exercise 2.5: In the notation of section 2.4.2, we have

Φ(w) ≡ ln (E{exp{∑` w`ζ`}}) =
∑

` λ`(exp{w`} − 1)
= maxu[wT u− φ(u)],

φ(u) = maxw[uT w − Φ(w)] =
{ ∑

`[u` ln(u`/λ`)− u` + λ`], u ≥ 0
+∞, otherwise.

Consequently, the Bernstein approximation is

inf
β>0

[
z0 + β

∑

`

λ`(exp{w`/β} − 1) + β ln(1/ε)

]
≤ 0,
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or, in the RC form,

z0 + max
u

{
wT u : u ∈ Zε = {u ≥ 0,

∑

`

[u` ln(u`/λ`)− u` + λ`] ≤ ln(1/ε)}
}
≤ 0.

Exercise 2.6: w(ε) is the optimal value in the chance constrained optimization problem

min
w0

{
w0 : Prob{−w0 +

L∑

`=1

c`ζ` ≤ 0} ≥ 1− ε

}
,

where ζ` are independent Poisson random variables with parameters λ`.
When all c` are integral in certain scale, the random variable ζL =

∑L
`=1 c`ζ` is also integral

in the same scale, and we can compute its distribution recursively in L:

p0(i) =
{

1, i = 0
0, i 6= 0

, pk(i) =
∞∑

j=0

pk−1(i− c`j)
λj

k

j!
exp{−λk};

(in computations,
∑∞

j=0 should be replaced with
∑N

j=0 with appropriately large N).
With the numerical data in question, the expected value of per day requested cash is cT λ =
7, 000, and the remaining requested quantities are listed below:

ε
1.e-1 1.e-2 1.e-3 1.e-4 1.e-5 1.e-6

w(ε) 8,900 10,800 12,320 13,680 14,900 16,060

CVaR
9,732
+9.3%

11,451
+6.0%

12,897
+4.7%

14,193
+3.7%

15,390
+3.3%

16,516
+2.8%

BCV
9,836

+10.5%
11,578
+7.2%

13,047
+5.9%

14,361
+5.0%

15,572
+4.5%

16,709
+4.0%

B
10,555
+18.6%

12,313
+14.0%

13,770
+11.8%

15,071
+10.2%

16,270
+9.2%

17,397
+8.3%

E
8,900
+0.0%

10,800
+0.0%

12,520
+1.6%

17,100
+25.0%

— —

“BCV” stands for the bridged Bernstein-CVaR, “B” — for the Bernstein,
and “E” — for the (1− ε)-reliable empirical bound on w(ε). The BCV
bound corresponds to the generating function γ16,10(·), see p. 64. The
percents represent the relative differences between the bounds and w(ε).
All bounds are right-rounded to the closest integers.

Exercise 2.7: The results of computations are as follows (as a benchmark, we display also the
results of Exercise 2.6 related to the case of independent ζ1, ..., ζL):

ε
1.e-1 1.e-2 1.e-3 1.e-4 1.e-5 1.e-6

Exer. 2.6 8,900 10,800 12,320 13,680 14,900 16,060

Exer. 2.7,
lower bound

11,000
+23.6%

15,680
+45.2%

19,120
+55.2%

21,960
+60.5%

26,140
+75.4%

28,520
+77.6%

Exer. 2.7,
upper bound

13,124
+47.5%

17,063
+58.8%

20,507
+66.5%

23,582
+72.4%

26,588
+78.5%

29,173
+81.7%

Percents display relative differences between the bounds and w(ε)
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Exercise 2.8. Part 1: By Exercise 2.5, the Bernstein upper bound on w(ε) is

Bλ(ε) = inf {w0 : infβ>0 [−w0 + β
∑

` λ`(exp{c`/β} − 1) + β ln(1/ε)] ≤ 0}
= infβ>0 [β

∑
` λ`(exp{c`/β} − 1) + β ln(1/ε)]

The “ambiguous” Bernstein upper bound on w(ε) is therefore

BΛ(ε) = maxλ∈Λ infβ>0 [β
∑

` λ`(exp{c`/β} − 1) + β ln(1/ε)]
= infβ>0 β [maxλ∈Λ

∑
` λ`(exp{c`/β} − 1) + ln(1/ε)]

(∗)

where the swap of infβ>0 and maxλ∈Λ is justified by the fact that the function β
∑

` λ`(exp{c`/β}−
1) + β ln(1/ε) is concave in λ, convex in β and by the compactness and convexity of Λ.

Part 2: We should prove that if Λ is a convex compact set in the domain λ ≥ 0 such that
for every affine form f(λ) = f0 + eT λ one has

max
λ∈Λ

f(λ) ≤ 0 ⇒ Probλ∼P {f(λ) ≤ 0} ≥ 1− δ, (!)

then, setting w0 = BΛ(ε), one has

Probλ∼P

{
λ : Probζ∼Pλ1

×...×PλL

{∑

`

ζ`c` > w0

}
> ε

}
≤ δ. (?)

It suffices to prove that under our assumptions on Λ inequality (?) is valid for all w0 > BΛ(ε).
Given w0 > BΛ(ε) and invoking the second relation in (∗), we can find β̄ > 0 such that

β̄

[
max
λ∈Λ

∑

`

λ`(exp{c`/β̄} − 1) + ln(1/ε)

]
≤ w0,

or, which is the same,

[−w0 + β̄ ln(1/ε)] + max
λ∈Λ

∑

`

λ`[β̄(exp{c`/β̄} − 1)] ≤ 0,

which, by (!) as applied to the affine form

f(λ) = [−w0 + β̄ ln(1/ε)] +
∑

`

λ`[β̄(exp{c`/β̄} − 1)],

implies that
Probλ∼P {f(λ) > 0} ≤ δ. (∗∗)

It remains to note that when λ ≥ 0 is such that f(λ) ≤ 0, the result of Exercise 2.5 states that

Probζ∼Pλ1
×...×Pλm

{
−w0 +

∑

`

ζ`c` > 0

}
≤ ε.

Thus, when ω0 > BΛ(ε), the set of λ’s in the left hand side of (?) is contained in the set
{λ ≥ 0 : f(λ) > 0}, and therefore (?) is readily given by (∗∗).
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B.3 Exercises from Lecture 3

Exercise 3.1: Let S[·] be a safe tractable approximation of (CZ∗ [·]) tight within the factor
ϑ. Let us verify that S[λγρ] is a safe tractable approximation of (CZ [ρ]) tight within the factor
λϑ. All we should prove is that (a) if x can be extended to a feasible solution to S[λγρ], then
x is feasible for (CZ [ρ]), and that (b) if x cannot be extended to a feasible solution to S[λγρ],
then x is not feasible for (CZ [λϑρ]). When x can be extended to a feasible solution of S[λγρ],
x is feasible for (CZ∗ [λγρ]), and since ρZ ⊂ λγρZ∗, x is feasible for (CZ [ρ]) as well, as required
in (a). Now assume that x cannot be extended to a feasible solution of S[λγρ]. Then x is not
feasible for (CZ∗ [ϑλγρ]), and since the set ϑλγρZ∗ is contained in ϑλρZ, x is not feasible for
(CZ [(ϑλ)ρ]), as required in (b). ¤

Exercise 3.2: 1) Consider the ellipsoid

Z∗ = {ζ : ζT [
∑

i

Qi]ζ ≤ M}.

We clearly have M−1/2Z∗ ⊂ Z ⊂ Z∗; by assumption, (CZ∗ [·]) admits a safe tractable approxi-
mation tight within the factor ϑ, and it remains to apply the result of Exercise 3.1.

2) This is a particular case of 1) corresponding to ζT Qiζ = ζ2
i , 1 ≤ i ≤ M = dim ζ.

3) Let Z =
M⋂
i=1

Ei, where Ei are ellipsoids. Since Z is symmetric w.r.t. the origin, we also

have Z =
M⋂
i=1

[Ei ∩ (−Ei)]. We claim that for every i, the set Ei ∩ (−Ei) contains an ellipsoid Fi

centered at the origin and such that Ei ∩ (−Ei) ⊂
√

2Fi, and that this ellipsoid Fi can be easily
found. Believing in the claim, we have

Z∗ ≡
M⋂

i=1

Fi ⊂ Z ⊂
√

2
M⋂

i=1

Fi.

By 1), (CZ∗ [·]) admits a safe tractable approximation with the tightness factor ϑ
√

M ; by Exercise
3.1, (CZ [·]) admits a safe tractable approximation with the tightness factor ϑ

√
2M .

It remains to support our claim. For a given i, applying nonsingular linear transformation
of variables, we can reduce the situation to the one where Ei = B + e, where B is the unit
Euclidean ball, centered at the origin, and ‖e‖2 < 1 (the latter inequality follows from 0 ∈
intZ ⊂ int(Ei ∩ (−Ei))). The intersection G = Ei ∩ (−Ei) is a set that is invariant w.r.t.
rotations around the axis Re; a 2-D cross-section H of G by a 2D plane Π containing the axis is
a 2-D solid symmetric w.r.t. the origin. It is well known that for every symmetric w.r.t. 0 solid
Q in Rd there exists a centered at 0 ellipsoid E such that E ⊂ Q ⊂

√
dE. Therefore there exists

(and in fact can easily be found) an ellipsis I, centered at the origin, that is contained in H and
is such that

√
2I contains H. Now, the ellipsis I is the intersection of Π and an ellipsoid Fi that

is invariant w.r.t. rotations around the axis Re, and Fi clearly satisfies the required relations
Fi ⊂ Ei ∩ (−Ei) ⊂

√
2Fi. 1

1In fact, the factor
√

2 in the latter relation can be reduced to 2/
√

3 <
√

2, see Solution to Exercise 3.4.
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Exercise 3.3: With y given, all we know about x is that there exists ∆ ∈ Rp×q with ‖∆‖2,2 ≤ ρ
such that y = Bn[x; 1] + LT ∆R[x; 1], or, denoting w = ∆R[x; 1], that there exists w ∈ Rp with
wT w ≤ ρ2[x; 1]T RT R[x; 1] such that y = Bn[x; 1] + LT w. Denoting z = [x; w], all we know
about the vector z is that it belongs to a given affine plane Az = a and satisfies the quadratic
inequality zTCz + 2cT z + d ≤ 0, where A = [An, L

T ], a = y − bn, and

[ξ;ω]TC[ξ;ω] + 2cT [ξ; ω] + d ≡ ωT ω − ρ2[ξ; 1]T RT R[ξ; 1], [ξ; ω] ∈ Rn+p.

Using the equations Az = a, we can express the n + p z-variables via k ≤ n + p u-variables:

Az = a ⇔ ∃u ∈ Rk : z = Eu + e.

Plugging z = Eu + e into the quadratic constraint zTCz + 2cT z + d ≤ 0, we get a quadratic
constraint uT Fu + 2fT u + g ≤ 0 on u. Finally, the vector Qx we want to estimate can be
represented as Pu with easily computable matrix P . The summary of our developments is as
follows:

(!) Given y and the data describing B, we can build k, a matrix P and a quadratic
form uT Fu + 2fT u + g ≤ 0 on Rk such that the problem of interest becomes the
problem of the best, in the worst case, ‖ · ‖2-approximation of Pu, where unknown
vector u ∈ Rk is known to satisfy the inequality uT Fu + 2fT u + g ≤ 0.

By (!), our goal is to solve the semi-infinite optimization program

min
t,v

{
t : ‖Pu− v‖2 ≤ t∀(u : uT Fu + 2fT u + g ≤ 0)

}
. (∗)

Assuming that infu
[
uT Fu + 2fT u + g

]
< 0 and applying the inhomogeneous version of S-

Lemma, the problem becomes

min
t,v,λ

{
t ≥ 0 :

[
λF − P T P λf − P T v

λfT − vT P λg + t2 − vT v

]
º 0, λ ≥ 0

}
.

Passing from minimization of t to minimization of τ = t2, the latter problem becomes the
semidefinite program

min
τ,v,λ,s



τ :

vT v ≤ s, λ ≥ 0[
λF − P T P λf − P T v

λfT − vT P λg + τ − s

]
º 0



 .

In fact, the problem of interest can be solved by pure Linear Algebra tools, without Semidefinite
optimization. Indeed, assume for a moment that P has trivial kernel. Then (∗) is feasible if
and only if the solution set S of the quadratic inequality φ(u) ≡ uT Fu + 2fT u + g ≤ 0 in
variables u is nonempty and bounded, which is the case if and only if this set is an ellipsoid
(u − c)T Q(u − c) ≤ r2 with Q Â 0 and r ≥ 0; whether this indeed is the case and what are c,
Q, r, if any, can be easily found out by Linear Algebra tools. The image PS of S under the
mapping P also is an ellipsoid (perhaps “flat”) centered at v∗ = Pc, and the optimal solution
to (∗) is (t∗, v∗), where t∗ is the largest half-axis of the ellipsoid PS. In the case when P has
a kernel, let E be the orthogonal complement to KerP , and P̂ be the restriction of P onto E;
this mapping has a trivial kernel. Problem (∗) clearly is equivalent to

min
t,v

{
t : ‖P̂ û− v‖2 ≤ t∀(û ∈ E : ∃w ∈ KerP : φ(û + w) ≤ 0

}
.
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The set
Û = {û ∈ E : ∃w ∈ KerP : φ(û + w) ≤ 0}

clearly is given by a single quadratic inequality in variables û ∈ E, and (∗) reduces to a similar
problem with E in the role of the space where u lives and P̂ in the role of P , and we already
know how to solve the resulting problem.

Exercise 3.4: In view of Theorem 3.9, all we need to verify is that Z can be “safely approx-
imated” within an O(1) factor by an intersection Ẑ of O(1)J ellipsoids centered at the origin:
there exists Ẑ = {η : ηT Q̂jη ≤ 1, 1 ≤ j ≤ Ĵ} with Q̂j º 0,

∑
j Q̂j Â 0 such that

θ−1Ẑ ⊂ Z ⊂ Ẑ,

with an absolute constant θ and Ĵ ≤ O(1)J . Let us prove that the just formulated statement
holds true with Ĵ = J and θ =

√
3/2. Indeed, since Z is symmetric w.r.t. the origin, setting

Ej = {η : (η − aj)T Qj(η − aj) ≤ 1}, we have

Z =
J⋂

j=1

Ej =
J⋂

j=1

(−Ej) =
J⋂

j=1

(Ej ∩ [−Ej ]);

all we need is to demonstrate that every one of the sets Ej∩ [−Ej ] is in between two proportional
ellipsoids centered at the origin with the larger one being at most 2/

√
3 multiple of the smaller

one. After an appropriate linear one-to-one transformation of the space, all we need to prove is
that if E = {η ∈ Rd : (η1 − r)2 +

∑k
j=2 η2

j ≤ 1} with 0 ≤ r < 1, then we can point out the set
F = {η : η2

1/a2 +
∑k

j=2 η2
j /b2 ≤ 1} such that

√
3

2
F ⊂ E ∩ [−E] ⊂ F.

When proving the latter statement, we lose nothing when assuming k = 2. Renaming η1

as y, η2 as x and setting h = 1 − r ∈ (0, 1] we should prove that the “loop” L = {[x; y] :
[|y|+ (1− h)]2 + x2 ≤ 1} is in between two proportional ellipses centered at the origin with the
ratio of linear sizes θ ≤ 2/

√
3. Let us verify that we can take as the smaller of these ellipses the

ellipsis

E = {[x; y] : y2/h2 + x2/(2h− h2) ≤ µ2}, µ =

√
3− h

4− 2h
,

and to choose θ = µ−1 (so that θ ≤ 2/
√

3 due to 0 < h ≤ 1). First, let us prove that E ⊂ L.
This inclusion is evident when h = 1, so that we can assume that 0 < h < 1. Let [x; y] ∈ E , and
let λ = 2(1−h)

h . We have

y2/h2 + x2/(2h− h2) ≤ µ2 ⇒
{

y2 ≤ h2[µ2 − x2/(2h− h2)] (a)
x2 ≤ µ2h(2− h) (b)

;

(|y|+ (1− h))2 + x2 = y2 + 2|y|(1− h) + (1− h)2 ≤ y2 +
[
λy2 + 1

λ(1− h)2
]

+(1− h)2 = y2 2−h
h + (2−h)(1−h)

2 + x2

≤
[
µ2 − x2

h(2−h)

]
(2h− h2) + (2−h)(1−h)

2 + x2 ≡ q(x2),

where the concluding ≤ is due to (a). Since 0 ≤ x2 ≤ µ2(2h− h2) by (b), q(x2) is in-between its
values for x2 = 0 and x2 = µ2(2h− h2), and both these values with our µ are equal to 1. Thus,
[x; y] ∈ L.
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It remains to prove that µ−1E ⊃ L, or, which is the same, that when [x; y] ∈ L, we have
[µx; µy] ∈ E . Indeed, we have

[|y|+ (1− h)]2 + x2 ≤ 1 ⇒ |y| ≤ h & x2 ≤ 1− y2 − 2|y|(1− h)− (1− h)2

⇒ x2 ≤ 2h− h2 − y2 − 2|y|(1− h)

⇒ µ2
[

y2

h2 + x2

2h−h2

]
= µ2 y2(2−h)+hx2

h2(2−h)
≤ µ2 h2(2−h)+2(1−h)[

≤0︷ ︸︸ ︷
y2 − |y|h]

h2(2−h)
≤ µ2

⇒ [x; y] ∈ E ,

as claimed.

Exercise 3.5: 1) We have

EstErr = sup
v∈V,A∈A

√
vT (GA− I)T (GA− I)v + Tr(GT ΣG)

= sup
A∈A

sup
u:uT u≤1

√
uT Q−1/2(GA− I)T (GA− I)Q−1/2u + Tr(GT ΣG)

[substitution v = Q−1/2u]

=
√

sup
A∈A

‖(GA− I)Q−1/2‖2
2,2 + Tr(GT ΣG).

By the Schur Complement Lemma, the relation ‖(GA−I)Q−1/2‖2,2 ≤ τ is equivalent to the LMI[
τI [(GA− I)Q−1/2]T

(GA− I)Q−1/2 τI

]
, and therefore the problem of interest can be posed as

the semi-infinite semidefinite program

min
t,τ,δ,G



t :

√
τ2 + δ2 ≤ t,

√
Tr(GT ΣG) ≤ δ[

τI [(GA− I)Q−1/2]T

(GA− I)Q−1/2 τI

]
º 0∀A ∈ A



 ,

which is nothing but the RC of the uncertain semidefinite program


 min

t,τ,δ,G



t :

√
τ2 + δ2 ≤ t,

√
Tr(GT ΣG) ≤ δ[

τI [(GA− I)Q−1/2]T

(GA− I)Q−1/2 τI

]
º 0



 : A ∈ A



 .

In order to reformulate the only semi-infinite constraint in the problem in a tractable form, note
that with A = An + LT ∆R we have

N (A) :=
[

τI [(GA− I)Q−1/2]T

(GA− I)Q−1/2 τI

]

=
[

τI [(GAn − I)Q−1/2]T

(GAn − I)Q−1/2 τI

]

︸ ︷︷ ︸
Bn(G)

+LT (G)∆R+RT ∆TL(G),

L(G) =
[
0p×n, LGT

]
,R =

[
RQ−1/2, 0q×n

]
.

Invoking Theorem 3.12, the semi-infinite LMI N (A) º 0 ∀A ∈ A is equivalent to

∃λ :
[

λIp ρL(G)
ρLT (G) Bn(G)− λRTR

]
º 0,
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and thus the RC is equivalent to the semidefinite program

min
t,τ,

δ,λ,G





t :

√
τ2 + δ2 ≤ t,

√
Tr(GT ΣG) ≤ δ


λIp ρLGT

τIn − λQ−1/2RT RQ−1/2 Q−1/2(AT
n GT − In)

ρGLT (GAn − In)Q−1/2 τIn


 º 0





.

2): Setting v = UT v̂, ŷ = W T y, ξ̂ = W T ξ, our estimation problem reduces to the exactly the
same problem, but with Diag{a} in the role of An and the diagonal matrix Diag{q} in the role
of Q; a linear estimate Ĝŷ of v̂ in the new problem corresponds to the linear estimate UT ĜW T y,
of exactly the same quality, in the original problem. In other words, the situation reduces to the
one where An and Q are diagonal positive semidefinite, respectively, positive definite matrices;
all we need is to prove that in this special case we lose nothing when restricting G to be diagonal.
Indeed, in the case in question the RC reads

min
t,τ,

δ,λ,G





t :

√
τ2 + δ2 ≤ t, σ

√
Tr(GT G) ≤ δ


λIn ρGT

τIn − λDiag{µ} Diag{ν}GT −Diag{η}
ρG GDiag{ν} −Diag{η} τIn


 º 0





(∗)

where µi = q−1
i , νi = ai/

√
qi and ηi = 1/

√
qi. Replacing the G-component in a feasible solution

with EGE, where E is a diagonal matrix with diagonal entries ±1, we preserve feasibility (look
what happens when you multiply the matrix in the LMI from the left and from the right by
Diag{I, I, E}). Since the problem is convex, it follows that whenever a collection (t, τ, δ, λ,G) is
feasible for the RC, so is the collection obtained by replacing the original G with the average of
the matrices ET GE taken over all 2n diagonal n×n matrices with diagonal entries ±1, and this
average is the diagonal matrix with the same diagonal as the one of G. Thus, when An and Q
are diagonal and L = R = In (or, which is the same in our situation, L and R are orthogonal),
we lose nothing when restricting G to be diagonal.

Restricted to diagonal matrices G = Diag{g}, the LMI constraint in (∗) becomes a bunch of
3× 3 LMIs 


λ 0 ρgi

0 τ − λµi νigi − ηi

ρgi νigi − ηi τ


 º 0, i = 1, ..., n,

in variables λ, τ, gi. Assuming w.l.o.g. that λ > 0 and applying the Schur Complement Lemma,
these 3× 3 LMIs reduce to 2× 2 matrix inequalities

[
τ − λµi νigi − ηi

νigi − ηi τ − ρ2g2
i /λ

]
º 0, i = 1, ..., n.

For given τ, λ, every one of these inequalities specifies a segment ∆i(τ, λ) of possible value of gi,
and the best choice of gi in this segment is the point gi(τ, λ) of the segment closest to 0 (when
the segment is empty, we set gi(τ, λ) = ∞). Note that gi(τ, λ) ≥ 0 (why?). It follows that (∗)
reduces to the convex (due to its origin) problem

min
τ,λ≥0





√
τ2 + σ2

∑

i

g2
i (τ, λ)





with easily computable convex nonnegative functions gi(τ, λ).
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Exercise 3.6: 1) Let λ > 0. For every ξ ∈ Rn we have ξT [pqT + qpT ]ξ = 2(ξT p)(ξT q) ≤
λ(ξT p)2 + 1

λ(ξT q)2 = ξT [λppT + 1
λqqT ]ξ, whence pqT +qpT ¹ λppT + 1

λqqT . By similar argument,
−[pqT + qpT ] ¹ λppT + 1

λqqT . 1) is proved.
2) Observe, first, that if λ(A) is the vector of eigenvalues of a symmetric matrix A, then

‖λ(pqT + qpT )‖1 = 2‖p‖2‖q‖2. Indeed, there is nothing to verify when p = 0 or q = 0; when
p, q 6= 0, we can normalize the situation to make p a unit vector and then to choose the orthogonal
coordinates in Rn in such a way that p is the first basic orth, and q is in the linear span of the
first two basic orths. With this normalization, the nonzero eigenvalues of A are exactly the same

as the eigenvalues of the 2×2 matrix
[

2α β
β 0

]
, where α and β are the first two coordinates of q

in our new orthonormal basis. The eigenvalues of the 2×2 matrix in question are α±
√

α2 + β2,
and the sum of their absolute values is 2

√
α2 + β2 = 2‖q‖2 = 2‖p‖2‖q‖2, as claimed.

To prove 2), let us lead to a contradiction the assumption that Y, p, q 6= 0 are such that
Y º ±[pqT + qpT ] and there is no λ > 0 such that Y − λppT − 1

λqqT º 0, or, which is the same
by the Schur Complement Lemma, the LMI

[
Y − λppT q

qT λ

]
º 0

in variable λ has no solution, or, equivalently, the optimal value in the (clearly strictly feasible)
SDO program

min
t,λ

{
t :

[
tI + Y − λppT q

qT λ

]
º 0

}

is positive. By semidefinite duality, the latter is equivalent to the dual problem possessing a
feasible solution with a positive value of the dual objective. Looking at the dual, this is equivalent
to the existence of a matrix Z ∈ Sn and a vector z ∈ Rn such that

[
Z z
zT pT Zp

]
º 0, Tr(ZY ) < 2qT z.

Adding, if necessary, to Z a small positive multiple of the unit matrix, we can assume w.l.o.g.
that Z Â 0. Setting Ȳ = Z1/2Y Z1/2, p̄ = Z1/2p, q̄ = Z1/2q, z̄ = Z−1/2z, the above relations
become [

I z̄
z̄T p̄T p̄

]
º 0,Tr(Ȳ ) < 2q̄T z̄. (∗)

Observe that from Y º ±[pqT + qpT ] it follows that Ȳ º ±[p̄q̄T + q̄p̄T ]. Looking at what
happens in the eigenbasis of the matrix [p̄q̄T + q̄p̄T ], we conclude from this relation that Tr(Ȳ ) ≥
‖λ(p̄q̄T + q̄p̄T )‖1 = 2‖p̄‖2‖q̄‖2. On the other hand, the matrix inequality in (∗) implies that
‖z̄‖2 ≤ ‖p̄‖2, and thus Tr(Ȳ ) < 2‖p̄‖2‖q̄‖2 by the second inequality in (∗). We have arrived at
a desired contradiction.

3) Assume that x is such that all L`(x) are nonzero. Assume that x can be extended to a
feasible solution Y1, ..., YL, x of (3.7.2). Invoking 2), we can find λ` > 0 such that Y` º λ`R

T
` R` +

1
λ`

LT
` (x)L`(x). Since An(x)−ρ

∑
` Y` º 0, we have [An(x)−ρ

∑
` λ`R

T
` R`]−

∑
`

ρ
λ`

LT
` (x)L`(x) º

0, whence, by the Schur Complement Lemma, λ1, ..., λL, x are feasible for (3.7.3). Vice versa,
if λ1, ..., λL, x are feasible for (3.7.3), then λ` > 0 for all ` due to L`(x) 6= 0, and, by the same
Schur Complement Lemma, setting Y` = λ`R

T
` R` + 1

λ`
LT

` (x)L`(x), we have

An(x)− ρ
∑

`

Y` º 0,
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while Y` º ± [
LT

` (x)R` + RT
` L`(x)

]
, that is, Y1, ..., YL, x are feasible for (3.7.2).

We have proved the equivalence of (3.7.2) and (3.7.3) in the case when L`(x) 6= 0 for all `.
The case when some of L`(x) vanish is left to the reader.

Exercise 3.7: A solution might be as follows. The problem of interest is

min
G,t

{t : t ≥ ‖(GA− I)v + Gξ‖2 ∀(v ∈ V, ξ ∈ Ξ, A ∈ A)}
m

min
G,t

{
t : uT (GA− I)v + uT Gξ ≤ t∀




u, v, ξ :

uT u ≤ 1
vT Piv ≤ 1,

1 ≤ i ≤ I
ξT Qjξ ≤ ρ2

ξ ,

1 ≤ j ≤ J



∀A ∈ A

}
.

(∗)

Observing that

uT [GA− I]v + uT Gξ = [u; v; ξ]T




1
2 [GA− I] 1

2G
1
2 [GA− I]T

1
2GT


 [u; v; ξ],

for A fixed, a sufficient condition for the validity of the semi-infinite constraint in (∗) is the
existence of nonnegative µ, νi, ωj such that




µI ∑
i νiPi ∑

j ωjQj


 º




1
2 [GA− I] 1

2G
1
2 [GA− I]T

1
2GT




and µ+
∑

i νi+ρ2
ξ

∑
j ωj ≤ t. It follows that the validity of the semi-infinite system of constraints

µ +
∑

i νi + ρ2
ξ

∑
j ωj ≤ t, µ ≥ 0, νi ≥ 0, ωj ≥ 0


µI ∑

i νiPi ∑
j ωjQj


 º




1
2 [GA− I] 1

2G
1
2 [GA− I]T

1
2GT




∀A ∈ A

(!)

in variables t, G, µ, νi, ωj is a sufficient condition for (G, t) to be feasible for (∗). The only
semi-infinite constraint in (!) is in fact an LMI with structured norm-bounded uncertainty:




µI ∑
i νiPi ∑

j ωjQj




−



1
2 [GA− I] 1

2G
1
2 [GA− I]T

1
2GT


 º 0 ∀A ∈ A

m


µI − 1
2 [GAn − I] − 1

2G
− 1

2 [GAn − I]T
∑

i νiPi

− 1
2GT

∑
j ωjQi




︸ ︷︷ ︸
B(µ,ν,ω,G)

+
∑L

`=1[L`(G)T ∆`R` +RT
` ∆T

` L`(G)] º 0
∀ (‖∆`‖2,2 ≤ ρA, 1 ≤ ` ≤ L) ,

L`(G) = 1
2

[
L`G

T , 0p`×n, 0p`×m

]
, R` = [0q`×n, R`, 0q`×m] .
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Figure B.1: Results for Exercise 4.1.

Invoking Theorem 3.13, we end up with the following safe tractable approximation of (∗):

min
t,G,µ,νi,ωj ,λ`,Y`

t

s.t.
µ +

∑
i νi + ρ2

ξ

∑
j ωj ≤ t, µ ≥ 0, νi ≥ 0, ωj ≥ 0[

λ`I L`(G)
LT

` (G) Y` − λ`RT
` R`

]
º 0, 1 ≤ ` ≤ L

B(µ, ν, ω, G)− ρA
∑L

`=1 Y` º 0.

B.4 Exercises from Lecture 4

Exercise 4.1: A solution might be as follows. We define the normal range of the uncertain
cost vector as the box Z = {c′ : 0 ≤ c′ ≤ c}, where c is the current cost, the cone L as

L = {ζ ∈ Rn : ζ ≥ 0, ζj = 0 whenever vj = 0}

and equip Rn with the norm

‖ζ‖v = max
j
|ζ|j/v̄j , v̄j =

{
vj , vj > 0
1, vj = 0

With this setup, the model becomes

Opt(α) = min
x

{
cT x : Px ≥ b, x ≥ 0, vT x ≤ α

}
.

With the data of the Exercise, computation says that the minimal value of α for which the
problem is feasible is α = 160 and that the bound on the sensitivity becomes redundant when
α ≥ α = 320. The tradeoff between α ∈ [α, α] is shown on the left plot in figure B.1; the right
plot depicts the solutions for α = α = 160 (magenta), α = α = 320 (blue) and α = 180 (green).



B.4. EXERCISES FROM LECTURE 4 297

Exercise 4.2: 1) With φ(ρ) = tau + αρ problem (!) does not make sense, meaning that it is
always infeasible, unless E = {0}. Indeed, otherwise g contains a nonzero vector g, and assuming
(!) feasible, we should have for certain τ and α

[
2(τ + αρ) fT + ρgT

f + ρg A(t)

]
º 0 ∀ρ > 0

or, which is the same,
[

2ρ−1τ + 2ρ−1α ρ−1fT + gT

ρ−1f + g A(t)

]
º 0 ∀ρ > 0.

passing to limit as ρ → +∞, the matrix
[

0 gT

g A(t)

]
should be º 0, which is not the case when

g 6= 0.
The reason why the GRC methodology does not work in our case is pretty simple: we are

not applying this methodology, we are doing something else. Indeed, with the GRC approach,
we would require the validity of the semidefinite constraints

[
τ fT + ρgT

f + ρg A(t)

]
≥ 0, f ∈ F , g ∈ E

for all f ∈ F in the case of ρ = 0 and were allowing “controlled deterioration” of these constraints
when ρ > 0:

dist
([

τ fT + ρgT

f + ρg A(t)

]
,Sm+1

+

)
≤ αρ ∀(f ∈ F , g ∈ E).

When τ and α are large enough, this goal clearly is feasible. In the situation described in item
1) of Exercise, our desire is completely different: we want to keep the semidefinite constraints
feasible, compensating for perturbations ρg by replacing the compliance τ with τ + αρ. As it is
shown by our analysis, this goal is infeasible – the “compensation in the value of compliance”
should be at least quadratic in ρ.

2) With φ(ρ) = (
√

τ +
√

αρ)2, problem (!) makes perfect sense; moreover, given τ ≥ 0,
α ≥ 0, t ∈ T is feasible for (!) if and only if the system of relations

(a)
[

2τ fT

f A(t)

]
º 0 ∀f ∈ F

(b)
[

2α gT

g A(t)

]
º 0 ∀g ∈ E

Since F is finite, (a) is just a finite collection of LMIs in t, τ ; and since E is a centered at the
origin ellipsoid, the results of section 3.4.2 allow to convert the semi-infinite LMI (b) into an
equivalent tractable system of LMIs, so that (a), (b) is computationally tractable.

The claim that t is feasible for the semi-infinite constraint
[

2(
√

τ +
√

αρ)2 fT + ρgT

f + ρg A(t)

]
≥ 0∀(f ∈ F , g ∈ E, ρ ≥ 0) (∗)

if and only if t satisfies (a) and (b) is evident. Indeed, if t is feasible for the latter semi-infinite
LMI, t indeed satisfies (a) and (b) – look what happens when ρ = 0 and when ρ → ∞. Vice
versa, assume that t satisfies (a) and ()b), and let us prove that t satisfies (∗) as well. Indeed,



298 APPENDIX B. SOLUTIONS TO EXERCISES

given ρ > 0, let us set µ =
√

τ√
τ+ρ

√
α
, ν = 1 − µ = ρ

√
α√

τ+ρ
√

α
and s = µ

ν ρ. For f ∈ F and g ∈ E

from (a), (b) it follows that
[

2τ fT

f A(t)

]
º 0,

[
2s2α sgT

sg A(t)

]
º 0;

or, which is the same by the Schur Complement Lemma, for every ε > 0 one has

‖[A(t) + εI]−1/2f‖2 ≤
√

2τ , ‖[A(t) + εI]−1/2g‖2 ≤
√

2α,

whence, by the triangle inequality,

‖[A(t) + εI]−1/2[f + ρg]‖2 ≤
√

2τ +
√

2αρ,

meaning that [
[
√

2τ +
√

2αρ]2 fT + ρgT

f + ρg A(t) + εI

]
º 0.

The latter relation holds true for all (ε > 0, f ∈ F , g ∈ E), and thus t is feasible for (∗).

Exercise 4.3: 1) The worst-case error of a candidate linear estimate gT y is

max
z,ξ:‖z‖2≤1,‖ξ2‖≤1

‖(Az + ξ)T g − fT z‖2,

so that the problem of building the best, in the minimax sense, estimate reads

min
τ,G

{
τ : |(Az + ξ)T g − fT z| ≤ τ ∀([z; ξ] : ‖z‖2 ≤ 1, ‖ξ‖2 ≤ 1)

}
,

which is nothing but the RC of the uncertain Least Squares problem
{

min
τ,g

{
τ : (Az + ξ)T g − fT z ≤ τ, fT z − (Az + ξ)T g ≤ τ

}
: ζ := [z; ξ] ∈ Z = B × Ξ

}
(∗)

in variables g, τ with certain objective and two constraints affinely perturbed by ζ = [z; ξ] ∈
B × Ξ. The equivalent tractable reformulation of this RC clearly is

min
τ,g

{
τ : ‖AT g − f‖2 + ‖g‖ ≤ τ

}
.

2) Now we want of our estimate to satisfy the relations

∀(ρz ≥ 0, ρξ ≥ 0) : |(Az + ξ)T g− fT z| ≤ τ + αzρz + αξρξ, ∀(z : ‖z‖2 ≤ 1 + ρz, ξ : ‖ξ‖2 ≤ 1 + ρξ),

or, which is the same,

∀[z; ξ] : |(Az + ξ)T g − fT z| ≤ τ + αzdist‖·‖2(z, B) + αξdist‖·|2(ξ, Ξ).

This is exactly the same as to say that g should be feasible for the GRC of the uncertainty-
affected inclusion

(Az + ξ)T g − fT z ∈ Q = [−τ, τ ].

in the case where the uncertain perturbations are [z; ξ], the perturbation structure for z is given
by Zz = B,Lz = Rn and the norm on Rn is ‖ · ‖2, and the perturbation structure for ξ is given
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by Zξ = Ξ, Lξ = Rm and the norm on Rm is ‖ · ‖2. Invoking Proposition 4.2, g is feasible for
our GRC if and only if

(a) (Az + ξ)T g − fT z ∈ Q ∀(z ∈ B, ξ ∈ Ξ)
(b.1) |(AT g − f)T z| ≤ αz ∀(z : ‖z‖2 ≤ 1)
(b.2) |ξT g| ≤ αξ ∀(ξ : ‖ξ‖2 ≤ 1)

or, which is the same, g meets the requirements if and only if

‖AT g − f‖2 + ‖g‖2 ≤ τ, ‖AT g − f‖2 ≤ αz, ‖g‖2 ≤ αξ.

Exercise 4.4: 1) The worst-case error of a candidate linear estimate Gy is

max
z,ξ:‖z‖2≤1,‖ξ2‖≤1

‖G(Az + ξ)− Cz‖2,

so that the problem of building the best, in the minimax sense, estimate reads

min
τ,G

{τ : ‖G(Az + ξ)− Cz‖2 ≤ τ ∀([z; ξ] : ‖z‖2 ≤ 1, ‖ξ‖2 ≤ 1)} ,

which is nothing but the RC of the uncertain Least Squares problem
{

min
τ,g

{τ : ‖G(Az + ξ)− Cz‖2 ≤ τ} : ζ := [z; ξ] ∈ Z = B × Ξ
}

(∗)

in variables G, τ . The body of the left hand side of the uncertain constraint is

G(Az + ξ)− Cz = LT
1 (G)zR1 + LT

2 (G)ξR2, L1(G) = AT GT − CT , R1 = 1, L2(G) = GT , R2 = 1

that is, we deal with structured norm-bounded uncertainty with two full uncertain blocks: n×1
block z and m×1 block ξ, the uncertainty level ρ being 1 (see section 3.3.1). Invoking Theorem
3.4, the system of LMIs




u0 − λ uT

u U GA− C

[GA− C]T λI


 º 0,




v0 − µ vT

v V G

GT µI


 º 0

[
τ − u0 − v0 −uT − vT

−u− v τI − U − V

]
º 0

(S)

in variables G, τ, λ, µ, u0, u, U, v0, v, V is a tight within the factor π/2 safe tractable approxima-
tion of the RC.

2) Now we want of our estimate to satisfy the relations

∀(ρz ≥ 0, ρξ ≥ 0) : ‖G(Az + ξ)−Cz‖2 ≤ τ + αzρz + αξρξ, ∀(z : ‖z‖2 ≤ 1 + ρz, ξ : ‖ξ‖2 ≤ 1 + ρξ),

or, which is the same,

∀[z; ξ] : ‖G(Az + ξ)− Cz‖2 ≤ τ + αzdist‖·‖2(z,B) + αξdist‖·‖2(ξ, Ξ).
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This is exactly the same as to say that G should be feasible for the GRC of the uncertainty-
affected inclusion

G(Az + ξ)− Cz ∈ Q = {w : ‖w‖2 ≤ τ}

in the case where the uncertain perturbations are [z; ξ], the perturbation structure for z is given
by Zz = B,Lz = Rn, the perturbation structure for ξ is given by Zξ = Ξ,Lξ = Rm, the global
sensitivities w.r.t. z, ξ are, respectively, αz, αξ, and all norms in the GRC setup are the standard
Euclidean norms on the corresponding spaces. Invoking Proposition 4.2, G is feasible for our
GRC if and only if

(a) ‖G(Az + ξ)− Cz‖2 ∈ Q ∀(z ∈ B, ξ ∈ Ξ)
(b) ‖(GA− C)z‖2 ≤ αz ∀(z : ‖z‖2 ≤ 1)
(c) ‖Gξ‖2 ≤ αξ ∀(ξ : ‖ξ‖2 ≤ 1).

(b), (c) merely say that
‖GA− I‖2,2 ≤ αz, ‖G‖2,2 ≤ αξ,

while (a) admits the safe tractable approximation (S).

B.5 Exercises from Lecture 5

Exercise 5.1: From state equations (5.5.1) coupled with control law (5.5.3) it follows that

wN = WN [Ξ]ζ + wN [Ξ],

where Ξ = {U z
t , Ud

t , u0
t }N

t=0 is the “parameter” of the control law (5.5.3), and WN [Ξ], wN [Ξ] are
matrix and vector affinely depending on Ξ. Rewriting (5.5.2) as the system of linear constraints

eT
j wN − fj ≤ 0, j = 1, ..., J,

and invoking Proposition 4.1, the GRC in question is the semi-infinite optimization problem

minΞ,α α
subject to

eT
j [WN [Ξ]ζ + wN [Ξ]]− fj ≤ 0 ∀(ζ : ‖ζ − ζ̄‖s ≤ R) (aj)

eT
j WN [Ξ]ζ ≤ α ∀(ζ : ‖ζ‖r ≤ 1) (bj)

1 ≤ j ≤ J.

This problem clearly can be rewritten as

minΞ,α α
subject to

R‖W T
N [Ξ]ej‖s∗ + eT

j [WN [Ξ]ζ̄ + wN [Ξ]]− fj ≤ 0, 1 ≤ j ≤ J

‖W T
N [Ξ]ej‖r∗ ≤ α, 1 ≤ j ≤ J

where
s∗ =

s

s− 1
, r∗ =

r

r − 1
.
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Exercise 5.2: The AAGRC is equivalent to the convex program

minΞ,α α
subject to

R‖W T
N [Ξ]ej‖s∗ + eT

j [WN [Ξ]ζ̄ + wN [Ξ]]− fj ≤ 0, 1 ≤ j ≤ J

‖[W T
N [Ξ]ej ]d,+‖r∗ ≤ α, 1 ≤ j ≤ J

where
s∗ =

s

s− 1
, r∗ =

r

r − 1

and for a vector ζ = [z; d0; ...; dN ] ∈ RK , [ζ]d,+ is the vector obtained from ζ by replacing the
z-component with 0, and replacing every one of the d-components with the vector of positive
parts of its coordinates, the positive part of a real a being defined as max[a, 0].

Exercise 5.3: 1) For ζ = [z; d0; ...; d15] ∈ Z + L, a control law of the form (5.5.3) can be
written down as

ut = u0
t +

t∑

τ=0

utτdτ ,

and we have

xt+1 =
t∑

τ=0

[
u0

τ − dτ +
τ∑

s=0

uτsds

]
=

t∑

τ=0

u0
τ +

t∑

s=0

[
t∑

τ=s

uτs − 1

]
ds.

Invoking Proposition 4.1, the AAGRC in question is the semi-infinite problem

min{u0
t ,utτ},α α

subject to
(ax) |θ [∑t

τ=0 u0
τ

] | ≤ 0, 0 ≤ t ≤ 15
(au) |u0

t | ≤ 0, 0 ≤ t ≤ 15
(bx) |θ ∑t

s=0

[∑t
τ=s uτs − 1

]
ds| ≤ α

∀(0 ≤ t ≤ 15, [d0; ...; d15] : ‖[d0; ...; d15]‖2 ≤ 1)
(bu) |∑t

τ=0 utτdτ | ≤ α
∀(0 ≤ t ≤ 15, [d0; ...; d15] : ‖[d0; ...; d15]‖2 ≤ 1)

We see that the desired control law is linear (u0
t = 0 for all t), and the AAGRC is equivalent to

the conic quadratic problem

min
{utτ},α



α :

√∑t
s=0

[∑t
τ=s uτs − 1

]2 ≤ θ−1α, 0 ≤ t ≤ 15√∑t
τ=0 u2

τt ≤ α, 0 ≤ t ≤ 15



 .

2) In control terms, we want to “close” our toy linear dynamical system, where the initial state
is once and for ever set to 0, by a linear state-based non-anticipative control law in such a way
that the states x1, ..., x16 and the controls u1, ..., u15 in the closed loop system are “as insensitive
to the perturbations d0, ..., d15 as possible,” while measuring the changes in the state-control
trajectory

w15 = [0;x1; ...; x16; u1, ..., u15]

in the weighted uniform norm ‖w15‖∞,θ = max[θ‖x‖∞, ‖u‖∞], and measuring the changes in the
sequence of disturbances [d0; ...; d15] in the “energy” norm ‖[d0; ...; d15]‖2. Specifically, we are
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interested to find a linear non-anticipating state-based control law that results in the smallest
possible constant α satisfying the relation

∀∆d15 : ‖∆w15‖∞,θ ≤ α‖∆d15‖2,

where ∆d15 is a shift of the sequence of disturbances, and ∆w15 is the induced shift in the
state-control trajectory.
3) The numerical results are as follows:

θ α

1.e6 4.0000
10 3.6515
2 2.8284
1 2.3094

Exercise 5.4: 1) Denoting by xij
γ the amount of information in the traffic from i to j travelling

through γ, by qγ the increase in the capacity of arc γ, and by O(k), I(k) — the sets of outgoing,
resp., incoming, arcs for node k, the problem in question becomes

min
{x

ij
γ },

{qγ}





∑

γ∈Γ

cγqγ :

∑
(i,j)∈J xij

γ ≤ pγ + qγ ∀γ
∑

γ∈O(k) xij
γ −

∑
γ∈I(k) xij

γ =





dij , k = i
−dij , k = j
0, k 6∈ {i, j}

∀((i, j) ∈ J , k ∈ V )
qγ ≥ 0, xij

γ ≥ 0 ∀((i, j) ∈ J , k ∈ V )





. (∗)

2) To build the AARC of (∗) in the case of uncertain traffics dij , it suffices to plug into
(∗), instead of decision variables xij

γ , affine functions Xij
γ (d) = ξij,0

γ +
∑

(µ,ν)∈J ξijµν
γ dµν of d =

{dij : (i, j) ∈ J } (in the case of (a), the functions should be restricted to be of the form
Xij

γ (d) = ξij,0
γ + ξij

γ dij) and to require the resulting constraints in variables qγ , ξijµν
γ to be valid

for all realizations of d ∈ Z. The resulting semi-infinite LO program is computationally tractable
(as the AARC of an uncertain LO problem with fixed recourse, see section 5.3.1).

3) Plugging into (∗), instead of variables xij
γ , affine decision rules Xij

γ (d) of the just indicated
type, the constraints of the resulting problem can be split into 3 groups:

(a)
∑

(i,j)∈J Xij
γ (d) ≤ pγ + qγ ∀γ ∈ Γ

(b)
∑

(i,j)∈J
γ∈Γ

Rij
γ Xij

γ (d) = r(d)

(c) qγ ≥ 0, Xij
γ (d) ≥ 0∀((i, j) ∈ J , γ ∈ Γ).

In order to ensure the feasibility of a given candidate solution for this system with probability
at least 1 − ε, ε < 1, when d is uniformly distributed in a box, the linear equalities (b) must
be satisfied for all d’s, that is, (b) induces a system Aξ = b of linear equality constraints on
the vector ξ of coefficients of the affine decision rules Xij

γ (·). We can use this system of linear
equations, if it is feasible, in order to express ξ as an affine function of a shorter vector η of “free”
decision variables, that is, we can easily find H and h in such a way that Aξ = b is equivalent to
the existence of η such that ξ = Hη + h. We can now plug ξ = Hη + h into (a), (c) and forget
about (b), thus ending up with a system of constraints of the form

(a′) a`(η, q) + αT
` (η, q)d ≤ 0, 1 ≤ ` ≤ L = Card(Γ)(Card(J ) + 1),

(b′) q ≥ 0
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with a`, α` affine in [η; q] (the constraints in (a′) come from the Card(Γ) constraints in (a) and
the Card(Γ)Card(J ) constraints Xij

γ (d) ≥ 0 in (c)).
In order to ensure the validity of the uncertainty-affected constraints (a′), as evaluated at a

candidate solution [η; q], with probability at least 1 − ε, we can use either the techniques from
Lecture 2, or the techniques from section 3.6.4.




