
Linear Optimization Problem, its Data and
Structure

♣ Linear Optimization problem:

min
x

{
cTx + d : Ax ≤ b

}
(LO)

• x ∈ Rn: vector of decision variables,
• c ∈ Rn and d ∈ R form the objective,
• A: an m× n constraint matrix,
• b ∈ Rm: right hand side.

♠ Problem’s structure: its sizes m, n.
♠ Problem’s data: (c, d, A, b).

Data Uncertainty

♣ The data of typical real world LOs are partially
uncertain — not known exactly when the problem
is being solved.
♠ Sources of data uncertainty:

• Prediction errors. Some of data entries (fu-
ture demands, returns, etc.) do not exist
when the problem is solved and hence are
replaced with their forecasts.



•Measurement errors: Some of the data (pa-
rameters of technological devices and pro-
cesses, contents associated with raw materi-
als, etc.) cannot be measured exactly, and
their true values drift around the measured
“nominal” values.
• Implementation errors: Some of the deci-
sion variables (planned intensities of techno-
logical processes, parameters of physical de-
vices we are designing, etc.) cannot be imple-
mented exactly as computed. The implemen-
tation errors are equivalent to artificial data uncer-
tainties.

Indeed, the impact of implementation errors
xj 7→ (1 + εj)xj + δj on the validity of the con-
straint

ai1x1 + ... + ainxn ≤ bi

is as if there were no implementation errors,
but the data of the constraint was subject to
perturbations

aij 7→ (1 + εj)aij, bi 7→ bi −
∑
j

aijδj.



Data Uncertainty: Traditional Treatment and
Dangers

♣ Traditionally,
♠ “small” (fractions of percents) data uncertainty
is just ignored, the problem is solved “as it is” –
with the nominal data, and the resulting nominal
optimal solution is forwarded to the end user;
♠ “large” data uncertainty is assigned with a prob-
ability distribution and is treated via Stochastic
Programming techniques.

♠ Fact: in many cases, even small data uncertainty can
make the nominal solution heavily infeasible and thus prac-
tically meaningless.



♣ Example: Antenna Design
♠ [Physics:] Directional density of energy transmitted
by an monochromatic antenna placed at the origin is pro-
portional to |D(δ)|2, where the antenna’s diagram D(δ) is
a complex-valued function of 3-D direction (unit 3-D vec-
tor) δ.
♠ [Physics:] For an antenna array — a complex an-
tenna comprised of a number of antenna elements,
the diagram is

D(δ) =
∑

j
xjDj(δ) (∗)

• Dj(·): diagrams of elements
• xj: complex weights – design parameters responsi-
ble for how the elements in the array are invoked.

♠Antenna Design problem: Given diagramsD1(·), ..., Dn(·)
and a target diagram D∗(·), find the weights xi ∈ C such
that the synthesized diagram (∗) is as close as possible to
the target diagram D∗(·).
♥ When Dj(·), D∗(·), same as the weights, are real
and the “closeness’ is quantified by the uniform
norm on a finite grid Γ of directions, Antenna De-
sign becomes the LO problem

min
x∈Rn,τ

{
τ : −τ ≤ D∗(δ)−

∑
j
xjDj(δ) ≤ τ ∀δ ∈ Γ

}
.



♠ Example: Consider planar antenna array com-
prised of 10 elements (circle surrounded by 9 rings
of equal areas) in the plane XY (Earth’s surface”),
and our goal is to send most of the energy “up,”
along the 12o cone around the Z-axis:

• Diagram of a ring {z = 0, a ≤
√
x2 + y2 ≤ b}:

Da,b(θ) = 1
2

b∫
a

[
2π∫
0

r cos
(
2πrλ−1 cos(θ) cos(φ)

)
dφ

]
dr,

• θ: altitude angle • λ: wavelength
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• Nominal design problem:

τ∗ = min
x∈R10,τ

{
τ : −τ ≤ D∗(θi)−

∑10
j=1 xjDj(θi) ≤ τ, 1 ≤ i ≤ 240, θi = iπ

480

}
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But: The design variables are characteristics of physical
devices and as such they cannot be implemented exactly as
computed. What happens when there are implementation
errors:

xfact
j = (1 + ξj)x

comp
j , ξj ∼ Uniform[−ρ, ρ]

with small ρ?
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Dream Reality
ρ = 0 ρ = 0.0001 ρ = 0.001 ρ = 0.01
value min mean max min mean max min mean max

‖ · ‖∞-distance
to target

0.059 1.280 5.671 14.04 11.42 56.84 176.6 39.25 506.5 1484

energy
concentration

85.1% 0.5% 16.4% 51.0% 0.1% 16.5% 48.3% 0.5% 14.9% 47.1%

Quality of nominal antenna design: dream and reality. Data over 100 samples of

actuation errors per each uncertainty level ρ.

♠ Conclusion: Nominal optimal design is completely
meaningless...



♣ Example: NETLIB Case Study.
♠ NETLIB: a collection of LO problems for testing
LO algorithms.
♠ Constraint # 372 of the NETLIB problem
PILOT4:

aTx ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829 − 1.526049x830
−0.031883x849 − 28.725555x850 − 10.792065x851 − 0.19004x852 − 2.757176x853
−12.290832x854 + 717.562256x855 − 0.057865x856 − 3.785417x857 − 78.30661x858
−122.163055x859 − 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863
−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870 − 0.401597x871
+x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

(C)

The related nonzero coordinates in the optimal so-
lution x∗ of the problem as reported by CPLEX are:

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100 x∗828 = 3624.613324098961
x∗829 = 18.20205065283259 x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

This solution makes (C) an equality within ma-
chine precision.
♠ Note: The coefficients in a, except for the coef-
ficient 1 at x880, are “ugly reals” like -15.79081 or
-84.644257. Ugly coefficients characterize certain
technological devices and processes; as such they
could hardly be known to high accuracy and coincide
with the “true” data within accuracy of 3-4 digits,
not more.
Question: Assuming that the ugly entries in a are 0.1%-
accurate approximations of the true data ã, what is the
effect of this uncertainty on the validity of the “true” con-
straint ãTx ≥ b as evaluated at x∗?



Answer:
• The minimum, over all 0.1% perturbations a 7→ ã
of ugly entries in a, value of ãTx∗ − b, is < −104.9,
that is, with 0.1% perturbations of ugly coefficients, the
violation of the constraint as evaluated at the nominal so-
lution can be as large as 450% of the right hand side!
• With independent random 0.1%-perturbations of
ugly coefficients,
— the violation of the constraint at average is as
large as 125% of the right hand side;
— the probability of violating the constraint by at
least 150% of the right hand side is as large as 0.18.
♣ Among 90 NETLIB problems, perturbing ugly
coefficients by just 0.01% results in violating some
of the constraints, as evaluated at nominal optimal
solutions,
— by more than 50% – in 13 problems,
— by more than 100% – in 6 problems.
— by 210,000% – in PILOT4.



♣ Conclusion: In applications of LO, there exists a real
need of a technique capable of detecting cases when data
uncertainty can heavily affect the quality of the nominal
solution, and in these cases to generate a “reliable” solu-
tion, one that is immunized against uncertainty.
Robust Optimization is aimed at satisfying the
above need.

Uncertain Linear Optimization Problems

♣ Definition: An uncertain LO problem is a collection{
min
x

{
cTx + d : Ax ≤ b

}}
(c,d,A,b)∈U

(LOU)

of LO problems (instances) min
x

{
cTx + d : Ax ≤ b

}
of

common structure (i.e., with common numbers m of con-
straints and n of variables) with the data varying in a given
uncertainty set U ⊂ R(m+1)×(n+1).

♠ Usually we assume that the uncertainty set is
parameterized, in an affine fashion, by perturbation
vector ζ varying in a given perturbation set Z:

U =

{[
cT d

A b

]
=

[
cT0 d0
A0 b0

]
︸ ︷︷ ︸

nominal
data D0

+
L∑̀
=1

ζ`

[
cT` d`
A` b`

]
︸ ︷︷ ︸

basic
shifts D`

: ζ ∈ Z ⊂ RL

}
.



Example: When speaking about PILOT4, we tacitly
used the following model of uncertainty:
Uncertainty affects only the ‘ugly” coefficients {aij :
(i, j) ∈ J } in the constraint matrix, and every one of
them is allowed to run, independently of all other
coefficients, through the interval

[an
ij − ρij|an

ij|, an
ij + ρij|an

ij|]

• an
ij: nominal values of the data

• ρij: perturbation levels (which in the experiment
were set to ρ = 0.001).

• Perturbation set: The box

{ζ = {ζij}(i,j)∈J : −ρij ≤ ζij ≤ ρij}

• Parameterization of the data by perturbation
vector:[

cT d
A b

]
=

[
[cn]T dn

An bn

]
+
∑

(i,j)∈J

ζij

[
eie

T
j

]



{
min
x

{
cTx + d : Ax ≤ b

}}
(c,d,A,b)∈U

U =

{[
cT0 d0
A0 b0

]
︸ ︷︷ ︸

nominal
data D0

+
L∑̀
=1

ζ`

[
cT` d`
A` b`

]
︸ ︷︷ ︸

basic
shifts D`

: ζ ∈ Z ⊂ RL

}
. (LOU)

♣ There is no universally defined notion of a “so-
lution to a family of optimization problems,” like
(LOU).
Consider “decision environment” as follows:

A.1. All decision variables in (LOU) repre-
sent “here and now” decisions; they should
be assigned specific numerical values as a re-
sult of solving the problem before the actual
data “reveals itself.”
A.2. The decision maker is fully responsi-
ble for consequences of the decisions to be
made when, and only when, the actual data
is within the prespecified uncertainty set U .
A.3. The constraints in (LOU) are hard —
we cannot tolerate violations of constraints,
even small ones, when the data is in U .



{
min
x

{
cTx + d : Ax ≤ b

}}
(c,d,A,b)∈U

(LOU)

♣ In the above decision environment, the only
meaningful candidate solutions to (LOU) are the ro-
bust feasible ones.
Definition: x ∈ Rn is called a robust feasible solution to
(LOU), if x is feasible for all instances:

Ax ≤ b ∀(c, d, A, b) ∈ U .

Indeed, by A.1 a meaningful candidate solu-
tion should be independent of the data, i.e.,
it should be just a fixed vector x. By A.2-3,
it should satisfy the constraints, whatever be
a realization of the data from U .

♠ Acting in the same “worst-case-oriented” fash-
ion, it makes sense to quantify the quality of a can-
didate solution x by the guaranteed (the worst, over
the data from U) value of the objective:

sup{cTx + d : (c, d, A, b) ∈ U}



{
min
x

{
cTx + d : Ax ≤ b

}}
(c,d,A,b)∈U

(LOU)

♠ Now we can associate with (LOU) the problem of
finding the best, in terms of the guaranteed value of the
objective, among the robust feasible solutions:

min
t,x

{
t : cTx + d ≤ t, Ax ≤ b ∀(c, d, A, b) ∈ U

}
(RC)

This is called the Robust Counterpart of (LOU).
Note: Passing from LOs of the form

min
x

{
cTx + d : Ax ≤ b

}
to their equivalents

min
t,x

{
t : cTx + d ≤ t, Ax ≤ b

}
we always may assume that the objective is certain,
and the RC respects this equivalence.
⇒ We lose nothing by assuming the objective in (LOU)
certain, in which case we can think of U as of the set in
the space Rm×(n+1) of the [A, b]-data, and the RC reads

min
x

{
cTx : Ax ≤ b ∀[A, b] ∈ U

}
. (RC)



{
min
x

{
cTx : Ax ≤ b

}}
(A,b)∈U

(LOU)

⇓
minx

{
cTx : Ax ≤ b ∀[A, b] ∈ U

}
(RC)

♣ Fact I: The RC of uncertain LO with certain objective
is a purely constraint-wise construction: when building the
RC, we replace every constraint aTi x ≤ bi of the instances
with its RC

aTi x ≤ bi ∀[aTi , bi] ∈ Ui (RCi)

where Ui is the projection of the uncertainty set U on the
space of data [aTi , bi] of i-th constraint.
♣ Fact II: The RC remains intact when extending the
uncertainty set U to its closed convex hull.
When (LOU) has certain objective, the RC remains intact
when extending U to the direct product of closed convex
hulls of Ui. Thus, the transformation

U 7→ U+ = [cl Conv(U1)]× ...× [cl Conv(Um)]

keeps the RC intact.

♠ From now on, we always assume uncertainty set U con-
vex, and perturbation set Z – convex and closed.



{
min
x

{
cTx : Ax ≤ b

}}
[A,b]∈U

(LOU)

⇓
minx

{
cTx : Ax ≤ b ∀[A, b] ∈ U

}
(RC)

♣ The central questions associated with the con-
cept of RC are:

A. What is the “computational status” of the RC? When
is it possible to process the RC efficiently?

— to be addressed in-depth below.

B. How to come-up with meaningful uncertainty sets?

— modeling issue to be partly addressed in the
sequel.



min
x

{
cTx : Ax ≤ b ∀[A, b] ∈ U

}
(RC)

♣ Potentially bad news: The RC is a semi-infinite opti-
mization problem (finitely many variables, infinitely many
constraints) and as such can be computationally tractable.
Example: Consider an “essentially linear” semi-
infinite constraint

‖Px− p‖1 ≤ 1, ∀[P, p] ∈ U
U = {[P∗, p] : p = Bζ, ‖ζ‖2 ≤ 1}

To check whether x = 0 is robust feasible is the
same as to check whether

max
ζ:‖ζ‖2≤1

‖Bζ‖1 ≤ 1. (!)

(!) is equivalent to
1 ≥ max

‖ζ‖2≤1
‖Bζ‖1 = max

z:‖z‖∞≤1,ζ:‖ζ‖2≤1
zTBζ

= max
z:‖z‖∞≤1

max
ζ:‖ζ‖2≤1

ζT [BTz]︸ ︷︷ ︸
‖BT z‖2

=
√

max
z:‖z‖∞≤1

zT [BBT ]z

Since BBT can be an arbitrary symmetric pos-
itive semidefinite matrix, and finding the maxi-
mum of a nonnegative quadratic form over the box
{‖z‖∞ ≤ 1} is NP-hard, even when relative accuracy
like 4% is sought, checking (!) is heavily computation-
ally intractable.



min
x

{
cTx : Ax ≤ b ∀[A, b] ∈ U

}
(RC)

♣ Good news: The RC of an uncertain LO problem is
computationally tractable, provided the uncertainty set U
is so.

Explanation, I: The RC can be written down
as the optimization problem

min
x

{
cTx : fi(x) ≤ 0, i = 1, ...,m

}
fi(x) = sup

[A,b]∈U
[aTi x− bi]

• The functions fi(x) are convex (due to their
origin) and efficiently computable (as max-
ima of affine functions over computationally
tractable convex sets).
• Thus, the RC is a Convex Programming
program with efficiently computable objec-
tive and constraints, and problems of this
type are efficiently solvable.



♣ The above “reasoning” refers to the notions of
computationally tractable problem/convex set and on
the fact that maximizing linear objective over a compu-
tationally tractable convex set, in particular, a convex
set given by finitely many efficiently computable
convex constraints, is a computationally tractable prob-
lem. While these notions and results can be rig-
orously defined and justified, it makes sense to
present a somehow restricted “practical” version
of them, highly instructive by its own rights and
not requiring tedious an lengthy excursions to the
complexity theory of continuous optimization.



♣ Recaling that the RC is a “constraint-wise”
construction, all we need is to reformulate in a
tractable form a single semi-infinite constraint

∀α = [a; b] ∈ {α0 +Aζ : ζ ∈ Z} ⊂ Rn+1 :
αT [x; 1] ≡ aTx + b ≤ 0.

(∗)

♠ Consider several instructive cases when tractable
reformulation of (∗) is easy – does not require any
theory.
1. Scenario uncertainty Z = Conv{ζ1, ..., ζN}. Set-
ting αj = α0 +Aζj, 1 ≤ j ≤ N , we get

U = Conv{α1, ..., αN}

and therefore

(∗)⇔{αj[x; 1] ≤ 0, 1 ≤ j ≤ N}

2. ‖·‖p-uncertainty Z = {ζ ∈ RL : ‖ζ‖p ≤ 1}. We have

αT [x; 1] ≤ 1∀α ∈ U
⇔ [α0 +Aζ ]T [x; 1] ≤ 0∀(ζ : ‖ζ‖p ≤ 1)
⇔ αT0 [x; 1] + max

‖ζ‖p≤1
ζT [AT [x; 1]] ≤ 0

⇔ αT0 [x; 1] + ‖AT [x; 1]‖p∗ ≤ 0, 1
p + 1

p∗
= 1



∀α = [a; b] ∈ {α = α0 +Aζ : ζ ∈ Z} ⊂ Rn+1 :
αT [x; 1] := aTx + b ≤ 0.

(∗)

3. Intersection of simple perturbation sets: Z =⋂k
i=1Zi. Let Zi, 0 ∈ Zi, 1 ≤ i ≤ k be convex compact

sets such that
⋂k
i=1 intZi 6= ∅.

Fact from Convex Analysis: For Z,Zi as above,

max
ζ∈Z

βTζ= min
β1,...,βk,

β1+...+βk=β

k∑
i=1

max
ζ∈Zi

βTi ζ.

Therefore,

αT [x; 1] ≤ 0 ∀α ∈ U
⇔ αT0 [x; 1] + [Aζ ]T [x; 1] ≤ 0∀ζ ∈ Z
⇔ αT0 [x; 1] + max

ζ∈Z
ζT [AT [x; 1]] ≤ 0

⇔ ∃β1, ..., βk :

{
β1 + ... + βk = AT [x; 1] (a)

αT0 [x; 1] +
∑k

i=1 max
ζ∈Zi

βTi ζ ≤ 0 (b)

Thus, (∗) is represented by the system{
β1 + ... + βk = AT [x; 1] (a)

αT0 [x; 1] +
∑k

i=1 max
ζ∈Zi

βTi ζ ≤ 0 (b) (S)

of constraints in variables x, β1, ..., βk, meaning that x
can be extended to a feasible solution of (S) if and only if
x is feasible for (∗).



When Z =
k⋂
i=1

Zi, 0 ∈ Z,
⋂
i intZi 6= ∅, the system{

β1 + ... + βk = AT [x; 1] (a)

αT0 [x; 1] +
∑k

i=1 max
ζ∈Zi

βTi ζ ≤ 0 (b) (S)

of convex constraints in variables x, β1, ..., βk repre-
sents the semi-infinite constraint

αT [x; 1] ≤ 0 ∀α ∈ {α0 +Aζ : ζ ∈ Z}

Note: When Zi are simple, so that the convex functions
fi(βi) = max

ζ∈Zi
βTi ζ are available in closed analytic form, (S)

is a system of explicitly given convex constraints.
Example: Ball-Box-Budgeted uncertainty
Z = {ζ : ‖ζ‖∞ ≤ Ω∞}

⋂
{ζ : ‖ζ‖2 ≤ Ω2}

⋂
{ζ : ‖ζ‖1 ≤ Ω1}.

Here
f1(β) = max

ζ:‖ζ‖∞≤Ω∞
βTζ = Ω∞‖β‖1,

f2(β) = max
ζ:‖ζ‖2≤Ω2

βTζ = Ω2‖β‖2,

f3(β) = max
ζ:‖ζ‖1≤Ω1

βTζ = Ω1‖β‖∞,

and thus (S) is equivalent to the system of convex
constraints{

β1 + β2 + β3 = AT [x; 1]
αT0 [x; 1] + Ω∞‖β1‖1 + Ω2‖β2‖2 + Ω1‖β3‖∞ ≤ 0



General Well-Structured Case
Definition. Let us say that a set X ⊂ RN is well-
structured, if it admits a well-structured representation
— a representation of the form

X =

x ∈ RN : ∃u ∈ RM :


A0x + B0u + c0 = 0
A1x + B1u + c1 ∈ K1

· · ·
AKx + Bku + ck ∈ KK

 ,

where Kk, for every k ≤ K, is a simple cone, specifically,
— either nonnegative orthant Rm

+ = {x ∈ Rm : x ≥ 0}, m = mk,
— or a Lorentz cone Lm = {x ∈ Rm : xm ≥

√
x21 + ...+ x2m−1},

m = mk,
— or a Semidefinite cone Sm+ — the cone of positive
semidefinite matrices in the space Sm of real symmetric
m×m matrices, m = mk.



Example 1: The set X = {x ∈ RN : ‖x‖1 ≤ 1} admits
polyhedral representation

X = {x ∈ RN : ∃u ∈ RN :−ui ≤ xi ≤ ui,
∑

i ui ≤ 1}

=


x ∈ Rn : ∃u ∈ RN : A1x+B1u+ c1 ≡



u1 − x1
u1 + x1

...
uN − xN
uN + xN
1−

∑
i ui


∈ R2N+1

+


Example 2: The set X = {x ∈ R4

+ : x1x2x3x4 ≥ 1} admits
conic quadratic representation

X =

x ∈ R4
+ : ∃u ∈ R3 :

 0 ≤ u1 ≤
√
x1x2

0 ≤ u2 ≤
√
x3x4

1 ≤ u3 ≤
√
u1u2


=

x ∈ Rn : ∃u ∈ R3 :


[x1;x2;x3;x4;u1;u2;u3 − 1] ∈ R7

+

[2u1;x1 − x2;x1 + x2] ∈ L3

[2u2;x3 − x4;x3 + x4] ∈ L3

[2u3;u1 − u2;u1 + u2] ∈ L3


Example 3: The set X of m×n matrices X with nuclear
norm (sum of singular values) ≤ 1 admits semidefinite rep-
resentation

X =

{
X ∈ Rm×n : ∃u = (U ∈ Sm, V ∈ Sn) :

Tr(U) + Tr(V ) ≤ 2[
U X
XT V

]
� 0

}
.



X =

x ∈ RN : ∃u ∈ RM :


A0x+B0u+ c0 = 0
A1x+B1u+ c1 ∈ K1

· · ·
AKx+Bku+ ck ∈ KK

 , (∗)

♣ Good news on well-structured representations:
• Computational tractability: Minimizing a linear ob-
jective over a set given by (∗) reduces to solving a well-
structured conic program

min
x,u

cTx :


A0x+B0u+ c0 = 0
A1x+B1u+ c1 ∈ K1

· · ·
AKx+Bku+ ck ∈ KK

 ,

and thus can be done in a theoretically (and to some extent
— also practically) efficient manner by polynomial time in-
terior point algorithms.
• Extremely powerful expressive abilities: w.-s.r.’s
admit a simple fully algorithmic calculus which makes
it easy to build a w.-s.r. for the result of a convexity-
preserving operation with convex sets (like taking intersec-
tions, direct sums, affine images, inverse affine images, polars,
etc.) via w.-s.r.’s of the operands.
As a result, for all practical purposes, all computation-
ally tractable convex sets arising in Optimization admit
explicit w.-s.r.’s.



♣ The RC Tractability Theorem: Let the perturbation
set Z of a semi-infinite linear inequality

αT [x; 1] ≤ 0 ∀α ∈ {α0 +Aζ : ζ ∈ Z} (∗)

be nonempty and be given by w.-s.r.

Z =

ζ ∈ RL : ∃u ∈ RM :


A0ζ +B0u+ c0 = 0
A1ζ +B1u+ c1 ∈ K1

· · ·
AKζ +Bku+ ck ∈ KK

 (!)

When not all the cones Kk are nonnegative orthants, as-
sume that (!) is strictly feasible, that is, there exist ζ̄ and
ū such that

A0ζ̄ +B0ū+ c0 = 0 & Akζ̄ +Bkū+ ck ∈ intKk, 1 ≤ k ≤ K.

Then the feasible set X of (∗) admits an explicit w.-s.r.,
specifically,

X =

x : ∃z = [z0; ...; zK] :


∑K

k=0A
∗
kz

k +AT [x; 1] = 0∑K
k=0B

∗
kz

k = 0

αT0 [x; 1] +
∑K

k=0〈zk, ck〉 ≤ 0
zk ∈ Kk, 1 ≤ k ≤ K


Here for a linear map e 7→ Be from a Euclidean space
(E, 〈·, ·〉E) to a Euclidean space (F, 〈·, ·〉F ) the adjoint map
f 7→ B∗f : F → E is given by

〈f,Be〉F ≡ 〈B∗f, e〉E



Proof heavily utilizes the Conic Duality Theorem
which answers the following question:
♣ Consider a conic program

Opt(P ) = min
y

〈c, y〉 :

 A0y − b0 = 0
Aky − bk ∈ Kk,
1 ≤ k ≤ K

 , (P )

where Kk are cones (closed, convex, pointed and
with a nonempty interior) in Euclidean spaces Ek,
1 ≤ k ≤ K.
How to bound from below, in a systematic way, the
optimal value of the program?
♠ Consider an approach as follows. Let

K∗k = {u ∈ Ek : 〈u, v〉 ≥ 0 ∀v ∈ Kk}

be the cones dual to Kk. Let us choose z0 ∈ Rdim b0

and zk ∈ K∗k, 1 ≤ k ≤ K, and let y be feasible for
(P ). By feasibility, we have

〈zk, Aky − bk〉 ≥ 0, 0 ≤ k ≤ K,

or, which is the same,

〈A∗kzk, y〉 ≥ 〈zk, bk〉, 0 ≤ k ≤ K.

Summing up, we get

〈
∑K

k=0
A∗kz

k, y〉 ≥
∑K

k=0
〈zk, bk〉.



Opt(P ) = min
y

〈c, y〉 :

 A0y − b0 = 0
Aky − bk ∈ Kk,
1 ≤ k ≤ K

 , (P )

Intermediate summary: Whenever z0 ∈ Rdim b0 and
zk ∈ K∗k, 1 ≤ k ≤ K, every feasible solution y of (P )
satisfies the inequality

〈
∑K

k=0
A∗kz

k, y〉 ≥
∑K

k=0
〈zk, bk〉. (∗)

Conclusion: When the left hand side in (∗) is identi-
cally in y ∈ RN equal to 〈c, y〉, the right hand side in (∗)
is a lower bound on Opt(P ). In other words, The opti-
mal value Opt(D) in the conic dual of (P ), that is, in the
problem

Opt(D) = max
{zk}


K∑
k=0

〈zk, bk〉 :

zk ∈ K∗k,
1 ≤ k ≤ K
K∑
k=0

A∗kz
k = c

 (D)

is a lower bound on Opt(P ). [“Weak Duality”]

♣ Conic Duality Theorem: If (P ) is strictly feasible
and below bounded, then (D) is solvable, and Opt(P ) =
Opt(D).

Note: When Kk = Rmk
+ for all k, “strict feasibility” can

be weakened to “feasibility.”



αT [x; 1] ≤ 0 ∀α ∈ {α0 +Aζ : ζ ∈ Z} (∗)

Z =

ζ ∈ RL : ∃u ∈ RM :


A0ζ +B0u+ c0 = 0
A1ζ +B1u+ c1 ∈ K1

· · ·
AKζ +Bku+ ck ∈ KK

 (!)

Observe that x is feasible for (∗) iff

Opt(P ) := min
ζ∈Z

{
[−Aζ ]T [x; 1]

}
≥ αT0 [x; 1],

or, which is the same, iff

Opt(P ) := min
ζ,u

[−AT [x; 1]]Tζ :


A0ζ +B0u+ c0 = 0
A1ζ +B1u+ c1 ∈ K1

· · ·
AKζ +Bku+ ck ∈ KK


≥ αT0 [x; 1]

By CDT, and noting that K∗k = Kk for our cones,
this is the case iff the problem

max
[z0;...;zK ]

−
L∑
k=0

〈zk, ck〉 :


∑K

k=0A
∗
kz

k = −AT [x; 1]∑K
k=0B

∗
kz

k = 0
zk ∈ Kk, 1 ≤ k ≤ K


has a solution with the value of the objective ≥
αT0 [x; 1].



• Thus, x is feasible for (∗) iff there exists z =
[z0; ...; zK] such that

αT0 [x; 1] +
∑K

k=0〈zk, ck〉 ≤ 0∑K
k=0A

∗
kz

k +AT [x; 1] = 0∑K
k=0B

∗
kz

k = 0
zk ∈ Kk, 1 ≤ k ≤ K

�



How it Works: Antenna Design

min
τ,x

{
τ : −τ ≤ D∗(θi)−

∑10
j=1 xjDj(θi) ≤ τ, 1 ≤ i ≤ I

}
xj 7→ (1 + ζj)xj, −ρ ≤ ζj ≤ ρ

⇒ min
τ,x

{
τ :

D∗(θi)−
∑

j xjDj(θi)−ρ
∑
j

|xj||Dj(θi)| ≥ −τ

D∗(θi)−
∑

j xjDj(θi)+ρ
∑

j |xj||Dj(θi)| ≤ τ
, 1 ≤ i ≤ I

}
(RC)

♠ Solving (RC) at uncertainty level ρ = 0.01, we
arrive at robust design. The robust optimal value is
0.0815 (39% more than the nominal optimal value
0.0589).
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ρ = 0.01 ρ = 0.05 ρ = 0.1
“Dream and reality,” robust optimal design: samples of 100 actual diagrams (red)

for different uncertainty levels. Blue: the target diagram.

Reality
ρ = 0.01 ρ = 0.05 ρ = 0.1

min mean max min mean max min mean max

‖ · ‖∞-distance
to target

0.075 0.078 0.081 0.077 0.088 0.114 0.082 0.113 0.216

energy
concentration

70.3% 72.3% 73.8% 63.6% 71.6%6 79.3% 52.2% 70.8% 87.5%

Robust optimal design, data over 100 samples of actuation errors per each uncer-

tainty level ρ. For nominal design with ρ = 0.001, the average ‖ · ‖∞-distance to

target is 56.8, and energy concentration is 16.5%.



How it Works: NETLIB Case Study

♣ At uncertainty level ρ = 0.001, the RCs of all 90
NETLIB problems are feasible, and the robust optimal
values of all problems are within 1% of their nominal op-
timal values.



Robust Linear Optimization
and

Chance Constraints

{
αT [x; 1] ≡ aTx + b ≤ 0

}
, α: uncertain (ULC)

⇒ αT [x; 1] ≤ 0 ∀α ∈ U (RC)

♣ Question: How to specify an uncertainty set?

♠ Answer: This is a modeling, heavily application-
dependent, issue and as such it is beyond the scope of
the RO theory.

♠ However: Sometimes we already have an uncertainty
model, but a stochastic one rather than a model given in
terms of an uncertainty/perturbation set.

♠ Claim: Given a stochastic uncertainty model, we can
gain a lot by “translating” it into the RO paradigm.



{
αT [x; 1] ≡ aTx + b ≤ 0

}
, α: uncertain (ULC)

♣ With the RO approach, we
• assume α = [a; b] to be affinely parameterized by a per-
turbation vector ζ:

α = α0 +
∑L

`=1
ζ`α` (∗)

• assume that ζ runs through a given perturbation set
Z ⊂ RL, and
• require from (ULC) to be valid for all realizations of α
associated with ζ ∈ Z.
The x’s satisfying the latter requirement are treated as
“uncertainty-immunized.”

♠ With the Chance Constrained Stochastic Opti-
mization approach, we also assume (∗), but
• instead of specifying the range Z of ζ, treat ζ as a ran-
dom variable with (partially) known distribution, and
• associate with (ULC) the chance constraint

Prob

{
ζ :
[
α0 +

∑L
`=1 ζ`α`

]T
[x; 1] > 0

}
≤ ε (ChC)

where ε� 1 is a given tolerance.
The x’s satisfying the latter requirement are treated as
“uncertainty-immunized.”



{
αT [x; 1] ≡ aTx + b ≤ 0

}
, α: uncertain (ULC)

⇒ Prob

{
ζ :
[
α0 +

∑L
`=1 ζ`α`

]T
[x; 1] > 0

}
≤ ε (ChC)

♣ Chance Constraints: pro & con
Good news on chance constraints: ignoring the con-
sequences of “rare events,” our decision-making becomes
less conservative than with the worst-case oriented RO ap-
proach.

Bad news on chance constraints: passing from an un-
certain constraint (ULC) to its chance constrained version
makes sense under four if’s as follows:
• If there are reasons to believe that uncertain data indeed
are of stochastic nature, which not always is the case
E.g., when uncertainty comes from measurement er-
rors, even those involving randomness, it perhaps
makes sense to speak about distribution of nominal
(measured) data, given the true data, but not about
distribution of the true data, given the measurements.



{
αT [x; 1] ≡ aTx + b ≤ 0

}
, α: uncertain (ULC)

⇒ Prob

{
ζ :
[
α0 +

∑L
`=1 ζ`α`

]T
[x; 1] > 0

}
≤ ε (ChC)

• If we are smart enough to identify the underlying data
distribution.
While the latter indeed is the case in some Engi-
neering applications (Communications, Signal Pro-
cessing, Control,...), it typically is not the case in
“decision-making proper.” Given the “curse of di-
mensionality” when identifying multivariate distri-
butions from historical data, assigning the uncertain
data a particular distribution more often than not is an
act of faith rather than a solid inference from the experi-
mental data.

• If we are satisfied with probabilistic guarantees like
“with such and such x, the probability of a disaster is
≤ 1.e-4 (or ≤ 1.e-8)”
Probabilistic guarantees usually make sense if the
situation repeats itself many times. Their attrac-
tiveness in the single-outcome situation is much more
problematic.

• If we are smart enough to process (ChC) in a computa-
tionally efficient manner.



{
αT [x; 1] ≡ aTx + b ≤ 0

}
, α: uncertain (ULC)

⇒
[
α0 +

∑L
`=1 ζ`α`

]T
[x; 1] ≤ 0 (RC)

⇒ Prob

{
ζ :
[
α0 +

∑L
`=1 ζ`α`

]T
[x; 1] > 0

}
≤ ε (ChC)

♠ We have seen that (RC) is computationally
tractable whenever the (convex) perturbation set
Z is so.
Unfortunately, there are no similar “general tracta-
bility results” for (ChC); as a matter of fact, more
often than not, chance constraints are computationally in-
tractable.
Reasons for intractability:
A. The Analysis problem associated with (ChC):
“given x, check whether x is feasible for (ChC)” usually
is difficult: as a rule, the required probability is
not available in a closed analytical form, while accu-
rate numerical multi-dimensional integration is pro-
hibitively time-consuming.

Theorem [L. Khachiyan] Consider the function

vol(a) = mesL{ζ ∈ RL : 0 ≤ ζ` ≤ 1 ∀`, aTζ ≥ 1}

where a is an integral vector. Unless P=NP, no algorithm,
given on input a and δ > 0, is capable to compute vol(a)
within accuracy δ in time polynomial in the bit length of
a and in ln(1/δ).



Prob

{
ζ :
[
α0 +

∑L
`=1 ζ`α`

]T
[x; 1] > 0

}
≤ ε (ChC)

♠ Note: One can evaluate the probability in (ChC)
by Monte Carlo simulation. However, the required
sample size should be of order of 1/ε and thus is
prohibitively large for small ε, like ε = 1.e-6 or ε = 1.e-
8.
Question: Should we bother about small ε?
Answer: Sometimes this is a must. Think about
• reliability of the steering mechanism in your car
• an LO problem with 10,000 randomly perturbed
hard constraints

B. The feasible set of (ChC) typically is non-
convex, which makes problematic efficient mini-
mization of linear objectives under (systems of)
chance constraints.

Note: Essentially, the only known generic case
where neither one of the above difficulties A, B
occurs is the case of ζ ∼ N (µ,Σ) and ε ≤ 1/2. Here
(ChC) is equivalent to

[α0 +
L∑̀
=1

µ`α`]
T [x; 1] + ErfInv(ε)

√
[x; 1]TAΣAT [x; 1] ≤ 0,

• A = [α1, ..., αL] •
∞∫

ErfInf(r)

e−s
2/2

√
2π
ds ≡ r



Prob

{
ζ :
[
α0 +

∑L
`=1 ζ`α`

]T
[x; 1] > 0

}
≤ ε (ChC)

Note: The body
[
α0 +

∑L
`=1ζ`α`

]T
[x; 1] of (ChC)

can be rewritten as

w0[x] +
∑L

`=1
ζ`w`[x]

where w0[x], ..., wL[x] are affine functions of x.
♣ When (ChC) “as it is” is computationally in-
tractable, we can replace it with its safe tractable
convex approximation defined as follows:
Definition. A safe convex approximation of the chance
constraint

Prob{w0 +
∑L

`=1
ζ`w` > 0} ≤ ε (#)

in variables w is a convex subset W of the set of feasible
solutions to (#).

Such an approximation is called tractable, if W is com-
putationally tractable, i.e., it is given by an explicit fi-
nite system S of efficiently computable convex constraints
fi(w, v) ≤ 0, i ≤ I in variables w and additional variables
v.



Prob
{
ζ :

≡w0[x]+
∑m
`=1 ζ`w`[x]︷ ︸︸ ︷[

α0 +
∑L

`=1
ζ`α`

]T
[x; 1] > 0

}
≤ ε (ChC)

⇒ Prob{w0 +
∑L

`=1 ζ`w` > 0} ≤ ε (#)

Note: Given a safe tractable convex approximation
fi(w, v) ≤ 0, i ≤ I of (#), the system of explicit efficiently
computable convex constraints

gi(x, v) ≡ fi(w[x], v) ≤ 0, i ≤ I

in variables x, v possesses the following properties:
• [tractability] it is computationally tractable
• [safety] whenever x can be extended to a feasible solu-
tion to the system, x is feasible for the chance constraint
(ChC).
Conclusion: Given a Chance Constrained LO prob-
lem with certain objective and replacing every
chance constraint with its safe convex tractable ap-
proximation, we end up with an efficiently solvable
convex optimization problem which is a safe ap-
proximation of the problem of interest: every feasi-
ble solution to the approximation is feasible for the chance
constrained problem.



Safe Tractable Approximations of Scalar Chance
Constraints and Robust Optimization

Prob{w0 +

L∑
`=1

ζ`w` > 0} ≤ ε (#)

♣ From now on, let ζi be with finite means.
Observation: The feasible set W+ of (#) is
• conic: w ∈ W+, t ≥ 0⇒ tw ∈ W+

• closed
• possesses a nonempty interior, specifically,

e := [−1; 0; ...; 0] ∈ intW+.
Definition: A safe convex approximation of (#) (i.e. a
convex set W ⊂ W+) is called normal, if it inherits the
above properties of W+, that is, it is conic, closed and
e ∈ intW .
Conclusion: A normal safe convex approximation of (#)
is a closed convex cone W ⊂ RL+1 which is contained in
the feasible set of (#) and is such that e ∈ intW .



Prob{w0 +
∑L

`=1
ζ`w` > 0} ≤ ε (#)

Conclusion: A safe convex approximation of (#) is a
closed convex cone W ⊂ RL+1 which is contained in the
feasible set of (#) and is such that e = [−1; 0; ...; 0] ∈ intW .
Facts: Let K ⊂ RL+1 be a cone.
• K is the dual of another cone, specifically, of its
dual cone K∗ = {v ∈ RL+1 : vTw ≥ 0 ∀w ∈ K}:

K = {w ∈ RL+1 : wTv ≥ 0 ∀v ∈ K∗}

• If f ∈ intK, then V = {v ∈ K∗ : fTv = 1} is a convex
compact set and

K = {w ∈ RL+1 : vTw ≥ 0 ∀v ∈ V }

♠ Let W be a normal safe convex approximation of
(#). Applying Facts to W in the role of K and e in
the role of f , we get the following:
There exists a convex compact set V ⊂ RL+1, specifically,
the set

V = {v = [v0; v1; ...; vL] ∈ W∗ : [−1; 0; ...; 0]Tv = 1}
= {v = [−1; v1; ...; vL] ∈ W∗} = {[−1;−z] : z ∈ Z ⊂ RL}

such that

W = {w ∈ RL+1 : vTw ≥ 0 ∀v ∈ V }
= {[w0; ...;wL] ∈ RL+1 : w0 +

∑L
`=1 z`w` ≤ 0 ∀z ∈ Z}



Prob{w0 +
∑L

`=1
ζ`w` > 0} ≤ ε (#)

♠ We have arrived at the following
Proposition: Every normal safe convex approximation
W of (#) is of the Robust Counterpart form: there exists
a convex compact set Z ⊂ RL such that

W = {[w0;w1; ...;wL] : w0 +

L∑
`=1

zLwL ≤ 0 ∀z ∈ Z}

that is, W is the set of robust feasible solutions to the
uncertainty-affected inequality

w0 +

L∑
`=1

z`w` ≤ 0,

in variables w, the uncertain coefficients being z1, ..., zL,
and the perturbation set being Z.
On a closest inspection,
The convex compact set Z associated with a normal safe
convex approximation of (#) is computationally tractable
whenever the approximation itself is so.



♣ For the time being, we were speaking on the
chance constraints of the form

Prob{w0 +

L∑
`=1

ζ`w` > 0} ≤ ε

tacitly assuming that the probability distribution of ζ
is fixed. In reality, more often than not the proba-
bility distribution P of ζ is only partially known —
all we know is that P belongs to a given family P of
probability distributions on RL. Whenever this is the
case, it is natural to associate with randomly per-
turbed constraint its ambiguously chance constrained
version

∀P ∈ P :Probζ∼P

{
w0 +

L∑
`=1

ζ`w` > 0

}
≤ ε (!)

Assuming from now on that ζ is “P uniformly
summable:”

sup
P∈P

Eζ∼P{‖ζ‖} <∞,

the notions of normal/safe/convex/tractable ap-
proximation of a “usual” chance constraint word
by word extend to the case of ambiguous chance
constraint, and Proposition extends on this case as
well.



p(w) :=sup
P∈P

Probζ∼P{w0 +

L∑
`=1

ζ`w` > 0} ≤ ε (!)

Generating-Function-Based Safe Convex
Approximation of Chance Constraint

♣ Definition: A generator is a convex function γ(·) on
the axis such that γ(s)→ 0 as s→ −∞ and γ(0) ≥ 1.
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γ(s) = max[1 + s, 0] γ(s) = exp{s}
♠ Observation: Let γ(·) be a generator. Then the
function

ΨP (w) = Eζ∼P

{
γ(w0 +

L∑
`=1

ζ`w`)

}
: RL+1 → R ∪ {+∞}

is convex and lower semi-continuous (l.s.-c.), and
this function is an upper bound on p(w). Conse-
quently, the function

Ψ(w) = sup
P∈P

ΨP (w)

is a convex l.s.-c. upper bound on p(w).
♠ Further, we clearly have α > 0 ⇒ p(w) = p(w/α),
whence α > 0⇒ Ψ(w/α) ≥ p(w) ∀w.



p(w) := sup
P∈P

Probζ∼P{w0 +
∑L

`=1 ζ`w` > 0} ≤ ε (!)

γ(·) : R→ R+ : convex, γ(−∞) = 0, γ(0) ≥ 1

⇒ Ψ(w) := sup
P∈P

Eζ∼P

{
γ(w0 +

∑L
`=1 ζ`w`)

}
≥ p(w) (+)

Corollary. The system

αΨ(w/α)− αε ≤ 0, α > 0 (S)

in variables w, α is a system of convex constraints which
is a safe convex approximation of (!): whenever w can be
extended by properly chosen α to a feasible solution of (S),
w is feasible for (!).
Proof. Ψ(w) is convex by its origin, which, by a
well-known fact of Convex Analysis, implies that
αΨ(w/α) is convex in w, α in the domain α > 0.
Thus, (S) is indeed a system of convex constraints
in variables w, α.
Now let (w, α) be feasible for (S). Then Ψ(w/α) ≤ ε,
whence p(w/α) ≤ ε as well. Since p(w) = p(w/α) ≤ ε,
w is feasible for (!), Q.E.D.
♠ A simple technical exercise allows to strengthen
Corollary to the following
Proposition.The convex constraint

G(w) := inf
α>0
{αΨ(w/α)− αε}≤ 0

is a safe convex approximation of (!).



p(w) := sup
P∈P

Probζ∼P{w0 +
∑L

`=1 ζ`w` > 0} ≤ ε (!)

γ(·) : R→ R+ : convex, γ(0) ≥ 1, γ(−∞) = 0

⇒ Ψ(w) := sup
P∈P

Eζ∼P

{
γ(w0 +

∑L
`=1 ζ`w`)

}
≥ p(w) (+)

Corollary of Proposition: Let Ψ+(·) be a convex upper
bound on Ψ(·). Then the system of convex constraints in
variables w, α

αΨ+(w/α)− αε ≤ 0, α > 0 (S)

and the convex constraint

G+(w) := inf
α>0

{
αΨ+(w/α)− αε

}
≤ 0

are safe convex approximations of (!).



♣ Example: Assume that ζ` are known to be independent
zero mean and taking values in [−1, 1], or, equivalently,
P is comprised of product-type distributions P with zero
mean marginals P` supported on [−1, 1].
♠ Let us apply the above approximation scheme
with the generator γ(s) = exp{s}. When P = P1 ×
...× PL ∈ P, we have

ΨP (w) = Eζ∼P1×...×PL{exp{w0 +
∑L

`=1 ζ`w`}}

= exp{w0}
L∏̀
=1

Eζ`∼P`{exp{ζ`w`}}.

Lemma: Let Q be a zero mean distribution supported on
[−1, 1]. Then∫

exp{ts}dQ(s) ≤ cosh(t) ≤ exp{t2/2}. (∗)

Proof. The inequality cosh(t) ≤ exp{t2/2} is evi-
dent. To prove that

∫
exp{ts}dQ(s) ≤ cosh(t), let

f (s) = exp{ts} − s sinh(t). Since Q is with zero mean
and is supported on [−1, 1], we have∫

exp{ts}dQ(s) =
∫
f (s)dQ(s)

≤ max
−1≤s≤1

f (s) = max
s=±1

f (s) = cosh(t).

Note: When Q is uniform on {−1; 1}, the first inequality
in (∗) becomes equality.



♠ We see that we are in the situation

Ψ(w) = exp{w0}
L∏̀
=1

cosh(w`)

≤ Ψ+(w) := exp{w0 + 1
2

∑L
`=1w

2
`}.

⇒ For our P, the safe convex approximation of the
chance constraint

∀(P ∈ P) : Probζ∼P{w0 +

L∑
`=1

ζ`w` > 0} ≤ ε

reads

inf
α>0

α

[
exp{α−1w0 +

α−2

2

∑L

`=1
w2
`} − ε

]
︸ ︷︷ ︸

f(α)

≤ 0. (∗)

♥ Assuming w2
1 + ... + w2

L > 0, we have f (α) → ∞ as
α→ +∞ and as α→ +0

⇒ (∗) is equivalent to ∃α > 0 : α−1w0+α−2

2

L∑̀
=1

ω2
` ≤ ln(ε),

or, which is the same, to

w0 +
√

2 ln(1/ε)

√∑L

`=1
w2
` ≤ 0. (+)

♥ When w1 = ... = wL = 0, (∗) also is equivalent to
(+).



♠ Bottom line: When ζ` are independent zero mean ran-
dom variables taking values in [−1, 1], the conic quadratic
inequality

w0 +
√

2 ln(1/ε)

√∑L

`=1
w2
` ≤ 0. (+)

is a safe tractable approximation of the chance constraint

Prob{w0 +

L∑
`=1

ζ`w` > 0} ≤ ε

♠ Observation: The constraint (+) is the RC

w0 +

L∑
`=1

a`w` ≤ 0 ∀a ∈ U

of the uncertain constraint

w0 +

L∑
`=1

a`w` ≤ 0

in variables w, with the ball

U = {a : ‖a‖2 ≤
√

2 ln(1/ε)}

in the role of the uncertainty set.



∀(P ∈ P) : Probζ∼P{w0 +

L∑
`=1

ζ`w` > 0} ≤ ε (!)

♣ Discussion. The simplest RO-based way to safely
approximate (!) is as follows:
•We choose as the uncertainty set U a convex com-
pact set U ε which “(1− ε)-supports” all distributions
from P:

∀(P ∈ P) : Probζ∼P{ζ 6∈ U ε} ≤ ε.

• We set U = U ε, thus ensuring that

w0 +
∑L

`=1 a`w` ≤ 0 ∀a ∈ U ε

⇒ ∀(P ∈ P) : Probζ∼P

{
w0 +

∑L
`=1ζ`w` > 0

}
≤ ε.



♠ Note: The perturbation set

U = {a : ‖a‖2 ≤ Ω :=
√

2 ln(1/ε)}

yielded by our approximation scheme is, for ε fixed and L large,
incomparably smaller than any (1− ε)-support U ε of the dis-
tributions from P .

For example, with ε = 1.e-6 we have Ω = 5.26, and
• When L > Ω2 = 27.63 and P is the uniform
distribution on the vertices of [−1, 1]L, we have
P{ζ ∈ U} = 0;
• When ε < 1/2, the Euclidean diameter of every
(1 − ε)-support of the distributions from P is at
least 2

√
L, while the Euclidean diameter of U is

just 2Ω ≈ 10.51;
• The ratio of the volume of an (1 − ε)-support of
distributions from P to the volume of U exponen-
tially grows with L when L ≥ 60; for L = 256 this
ratio is as large as 2 · 1044.



The Least Conservative Implementation:
Conditional Value At Risk

∀(P ∈ P) : Probζ∼P{w0 +
∑L

`=1 ζ`w` > 0}≤ ε (!)
γ(·) : convex, γ(−∞) = 0, γ(0) ≥ 1

⇒ Ψ(w) = sup
P∈P

Eζ∼P

{
γ
(
w0 +

∑L
`=1 ζ`w`

)}
⇒ G(w) := inf

α>0
α[Ψ(w/α)− ε] ≤ 0 (Appr)

♣ Question: What is the best choice of γ(·) ?
♠ Answer: As far as the conservatism of (Appr) is con-
cerned, the best choice of γ(·) is

γ(s) = max[1 + s, 0]
[or γ(s) = max[1 + αs, 0] with α > 0]

Indeed, when γ(0) > 1, the conservatism is reduced
by

γ(·)← γ(·)/γ(1).
Assuming γ(0) = 1 and setting α = γ′(+0), we get α >
0 and γ(s) ≥ 1 + αs. Since γ(s) ≥ 0 (as a generator),
we get γ(s) ≥ γ̄(s) = max[1 +αs, 0]. γ̄(·) is a legitimate
generator, and since γ(·) ≥ γ̄(·), passing from γ to γ̄
can only reduce the conservatism of (Appr).



∀(P ∈ P) : Probζ∼P{w0 +
∑L

`=1 ζ`w` > 0}≤ ε (!)
γ(·) : convex, γ(−∞) = 0, γ(0) ≥ 1

⇒ Ψ(w) = sup
P∈P

Eζ∼P

{
γ
(
w0 +

∑L
`=1 ζ`w`

)}
⇒ G(w) := inf

α>0
α[Ψ(w/α)− ε] ≤ 0 (Appr)

♠ On a closest inspection, when P = {P} the ap-
proximation (Appr) associated with γ(s) = max[1+s, 0]
reads

min
a

[
a +

1

ε
E

{
max[w0 − a +

∑L

`=1
ζ`w`, 0]

}]
︸ ︷︷ ︸

=:CVaRε[w0+
∑L
`=1 ζ`w`]

≤ 0

This is the well-known Conditional Value at Risk safe
convex approximation of (!) originating from Rock-
afellar et al.
♠ Bad news on the CVaR approximation: This ap-
proximation typically is computationally intractable.
Two basic exceptions are:
• ζ ∼ N (a,Q) — of no interest: here (!) by itself is
an explicit convex constraint on w, and no approx-
imations are necessary
• ζ takes moderately many values ζ1, ..., ζN with
known probabilities π1, ..., πN .



♠ When ζ takes moderately many values ζ1, ..., ζN

with known probabilities π1, ..., πN , the CVaR ap-
proximation of the chance constraint reads

min
a

{
a +

1

ε

∑
i

πi max

[
w0 − a +

L∑
`=1

ζ i`w`, 0

]}
≤ 0

♥ The RC form of this approximation is

w0 +

L∑
`=1

a`w` ≤ 0 ∀a ∈ U =

{
N∑
i=1

uiζ
i :

0 ≤ ui ≤ πi
ε∑

i ui = 1

}



“Tractable Case”: Bernstein Approximation

∀(P ∈ P) : Probζ∼P{w0 +
∑L

`=1
ζ`w` > 0}≤ ε (!)

♣ Assume that
Brn.1 Random perturbations ζ1, ..., ζL are indepen-
dent and their distributions P` belong to given fam-
ilies P` of probability distributions on the axis;
Brn.2 We can point out convex l.s.-c. upper bounds
Φ+
` on logarithmic moment-generating functions of

distributions from P`:
Φ+
` (t) ≥ ln

(
Eζ`∼P` {exp{tζ`}}

)
∀P` ∈ P`

⇒ Φ+(w) =
∑L

`=1 Φ+
` (ω`)

♠ Taking γ(s) = exp{s} and applying our approxi-
mation scheme in logarithmic scale, we arrive at
Theorem: In the case of Brn.1-2, (!) admits safe convex
approximation given by the convex constraint

H+(w) := inf
α>0

α [w0/α + Φ+(w/α) + ln(1/ε)]≤ 0

This approximation is tractable, provided that the l.s.-c.
convex functions Φ+

` (·) are efficiently computable. Assum-
ing 0 ∈ intDom Φ+, the approximation is of the RC form:

H+(w) ≤ 0⇔ w0 + aT [w1; ...;wl] ≤ 0 ∀a ∈ U ,
where U is a nonempty convex compact set. When

Φ+(w) = supz
[
[w1; ...;wL]T [Bz + b]− φ(z)

]
for a l.s.-c. convex function φ(·) with bounded level sets,
one can take

U = {Bz + b : φ(z) ≤ ln(1/ε)}.



∀(P ∈ P) : Probζ∼P

{
w0 +

∑L
`=1ζ`w` > 0

}
≤ ε (!)

Example 1: ζ` ∼ N (µ`, σ
2
` ) are independent; we know

lower and upper bounds µ
`
, µ` on µ` and upper bounds σ`

on σ`.
Building Bernstein approximation of (!):

P` = {N (µ, σ2) : µ
`
≤ µ ≤ µ`, σ ≤ σ`}

⇒ Φ+
` (t) := sup

P`∈P`
ln
(
Eζ`∼P`{exp{tζ`}}

)
= max[µ

`
t, µ`t] + σ2

`t
2/2

= max
0≤λ≤1

{
[λµ

`
+ (1− λ)µ`]t + σ2

`t
2/2
}

= max
0≤λ≤1

max
v

{
vt− [λµ

`
+ (1− λ)µ` − v]2/(2σ2)

}
= max

v

{
vt−min0≤λ≤1[λµ

`
+ (1− λ)µ` − v]2/(2σ2)

}
= max

v

{
vt− dist2(v, [µ

`
, µ`])/(2σ2

`)
}

⇒ The Bernstein approximation is

w0 +
∑L

`=1 max[µ
`
w`, µ`w`] +

√
2 ln(1/ε)

√∑L
`=1 σ

2
`w

2
` ≤ 0

♠ The uncertainty set U participating in the RC represen-
tation of the Bernstein approximation is
U = {a ∈ RL :

∑L
`=1dist2(a`, [µ`, µ`])/(2σ2

`) ≤ ln(1/ε)},
which is the arithmetic sum of the box {µ ≤ a ≤ µ} and

the ellipsoid

{
a :
√∑L

`=1a
2
`/σ

2
` ≤

√
2 ln(1/ε)

}
.

♥ µ
`

= µ` for all ` ⇒ the uncertainty set is ellipsoid.



∀(P ∈ P) : Probζ∼P

{
w0 +

∑L
`=1ζ`w` > 0

}
≤ ε (!)

Example 2: ζ` are independent, supported on [−1, 1] and
with given bounds on expectations: E{ζi} ∈ [µ−i , µ

+
i ] (by

“scaling” ζ` ← a` + b`ζ` this covers the case of independent ζ`
with partially known means and known finite ranges).
♣ The uncertainty set U associated with the RC
form of Bernstein approximation of (!) is

UEntropy =

{
ζ :
∑L

`=1
φ`(ζ`) ≤ 2 ln(1/ε)

}

φ`(s) =


(1 + s) ln

(
1+s

1+µ−`

)
+ (1− s) ln

(
1−s

1−µ−`

)
,−1 ≤ s ≤ µ−`

0 , µ−` ≤ s ≤ µ+
`

(1 + s) ln
(

1+s
1+µ+

`

)
+ (1− s) ln

(
1−s

1−µ+
`

)
, µ+

` ≤ s ≤ 1

+∞ , |s| > 1
• The Entropy approximation of (!) is given by a system
of explicit efficiently computable convex constraints.
♣ The Entropy uncertainty can be extended to the
Ball-Box one:

UBB =
[
{µ− ≤ ζ ≤ µ+} +

{
‖ζ‖2 ≤

√
2 ln(1/ε)

}]⋂
{‖ζ‖∞ ≤ 1}

• The BallBox approximation of (!) is given by a system
of conic quadratic constraints.
♣ The BallBox uncertainty can be extended to Bud-
geted uncertainty

UBdg =
[
{µ− ≤ ζ ≤ µ+} +

{
‖ζ‖1 ≤

√
2 ln(1/ε)m

}]⋂
{‖ζ‖∞ ≤ 1}

• The Budgeted approximation of (!) is given by a system
of linear constraints.



∀(P ∈ P) : Probζ∼P

{
w0 +

∑L
`=1ζ`w` > 0

}
≤ ε (!)

♣ Finally, the Budgeted uncertainty can be ex-
tended to Box uncertainty

UBox = {ζ : ‖ζ‖∞ ≤ 1}
which ignores any information on the distribution
of ζ aside of its support.
• The Box approximation of (!) is given by a system of
linear constraints.

Example 2: Random 2D central cross-sections of perturba-
tion sets corresponding to various approximations, L = 256

• black: Box approximation

• cyan: Budgeted approximation

• magenta: Ball-Box approximation

• yellow: Entropy approximation



Illustration: Portfolio selection

There are L = 200 assets with independent random
yearly returns r`. It is known that
• For ` ≤ 199, return r` has expectation µ` = 1.05 +
0.3200−`

199 and varies in [µ` − σ`, µ` + σ`], σ` = 0.05 +

0.6200−`
199 ;

• For ` = 200, r` ≡ 1.05 [“money in the bank”].

We want to distribute $1 between the assets in order
to maximize the Value-at-0.5%-Risk of the portfolio in
a year from now, that is, we want to solve the chance
constrained problem

max
t,x

{
t :

Prob
{∑L

`=1 r`x` < t
}
≤ ε = 0.005

x ≥ 0,
∑

` x` = 1

}

♠ Setting r` = µ` + σ`ζ`, the random variables ζ` are
independent zero mean and take values in [−1, 1].
The problem of interest now reads

max
t,x

{
t :

x ≥ 0,
∑

` x` = 1
Prob{w0[x, t] +

∑n
`=1 ζ`w`[x, t] > 0} ≤ ε

}
,

w0[x, t] = t−
∑L

`=1 µ`x`, w`[x, t] = −σ`x`
Replacing the chance constraint with its safe tractable
approximation and solving the resulting convex
program, we get a feasible suboptimal solution to
the problem of interest.
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Means and ranges of returns
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Distributions of $1 between assets
• blue: Budgeted approximation
• magenta: Ball-Box approximation
• red: Entropy approximation
• The Box approximation (not shown) leads to

the solution “keep all money in the bank.”

Approx. Box Budgeted Ball-Box Entropy
Opt. Val. 1.0500 1.1012 1.1200 1.1209



Beyond the Scope of Affinely Perturbed Chance
Constraints with Independent Perturbations:
Lagrangian Relaxation of Chance Constraint

♣ As far as tractable approximations are concerned,
our construction imposes on ζ` the requirements to
be independent and to enter affinely the body of the
chance constraint.
Consider a different situation, where
• the random perturbations ζ` enter the body of
chance constraint quadratically (decision variables
still enter it linearly), and
• we have partial information on the marginal dis-
tributions P` of ζ`, on their covariances, and on the
domain of ζ, but no more than that.
♠ Thus, from now on our chance constraint is

∀(P ∈ P) :

Probζ∼P
{
ζTU [x]ζ + 2ζTv[x] + w[x]︸ ︷︷ ︸

=Tr(W [x]Z[ζ])

> 0
}
≤ ε

W [x] =

[
U [x] v[x]
vT [x] w[x]

]
, Z[ζ ] =

[
ζζT ζ
ζT 1

]
where W [x] is affine in x.



∀(P ∈ P) : Probζ∼P {Tr(WZ[ζ ]) > 0} ≤ ε (!)

As about P, we assume that this family is com-
prised of all distributions on RL such that
• the marginal distributions P` belong to known families
P` of probability distributions on the axis,
• the covariance matrix V = E {Z[ζ ]} of ζ is known to
belong to a given closed convex subset V of the positive
semidefinite cone,
• ζ is supported on a set S given by a finite list of quadratic
constraints:

Tr(AiZ[ζ ]) ≤ 0, i = 1, ..., I.



∀(P ∈ P) : Probζ∼P {Tr(WZ[ζ ]) > 0} ≤ ε (!)
P : ζ` ∼ P` ∈ P`, Eζ∼P{Z[ζ ]} ∈ V

∀P ∈ P : supp(P ) ⊂ S = {z : Tr(AiZ[z]) ≤ 0, i ≤ I}
♣ The idea of our approximation scheme inspired by Bert-
simas, Popescu and Sethuraman, is as follows:
• We build a mechanism which produces pairs (f (z) :
RL → R, λ > 0) such that
A. f (z) ≥ 0 on S
B. f (z) ≥ λ whenever z ∈ S and Tr(WZ[z]) > 0
C. We can point out an upper bound Ψ[f ] on sup

P∈P
Eζ∼P{f (ζ)}.

Clearly, for a pair (f (·), λ) produced by our mecha-
nism for every P ∈ P we have

Ψ[f ] ≥
∫
f (z)dP (z) =

∫
S

f (z)dP (z) ≥
∫
z∈S:

Tr(WZ[z])>0

f (z)dP (z)

≥ λProbζ∼P{Tr(WZ[ζ ]) > 0},
so that the condition

Ψ[f ] ≤ λε (+)

is sufficient for the validity of (!).
We impose on the “free parameters” of our con-
struction the requirement to ensure (+), thus ar-
riving at a safe approximation of (!).



♠ Implementation:
C: The simplest way to ensure the possibility to
bound from above sup

P∈P

∫
f (z)dP (z) is to stick to “sim-

ple” f , e.g., those of the form

f (z) =

L∑
`=1

f`(z`) + Tr(FZ[z]), (∗)

which allows to take

Ψ[f ] =

L∑
`=1

sup
P`∈P`

∫
f`(s)dP`(s) + sup

V ∈V
Tr(FV ).

A: The simplest way to ensure that a function f of
the form (∗) is ≥ 0 on S = {z : Tr(AiZ[z]) ≤ 0, i ≤ I}
is to ensure that

f`(s) ≥ a` + 2b`s + c`s
2, 1 ≤ ` ≤ L (a)

and that the quadratic form of z

L∑
`=1

[a` + 2b`z` + c`z
2
` ] + Tr(FZ[z]) +

I∑
i=1

µiTr(AiZ[z])

where the parameters µi are ≥ 0, is nonnegative every-
where, which amounts to the matrix inequality[

Diag{c1, ..., cL} b
bT

∑
` a`

]
+ F +

I∑
i=1

µiAi � 0



f (z) =

L∑
`=1

f`(z`) + Tr(FZ[z]), (∗)

B: The simplest way to ensure that a function f
of the form (∗) is ≥ λ on S = {z : Tr(AiZ[z]) ≤ 0, i ≤
I,Tr(WZ[z]) > 0} is to ensure that

f`(s) ≥ p` + 2q`s + r`s
2, 1 ≤ ` ≤ L (b)

and that the quadratic form of z∑L
`=1[p` + 2q`z` + r`z

2
` ] + Tr(FZ[z]) +

∑I
i=1 νiTr(AiZ[z])
−Tr(WZ[z])− λ

where the parameters νi are ≥ 0, is nonnegative every-
where, which amounts to the matrix inequality[

Diag{r1, ..., rL} q
qT

∑
` p` − λ

]
+ F −W +

I∑
i=1

νiAi � 0



∀(P ∈ P) : Probζ∼P {Tr(WZ[ζ ]) > 0} ≤ ε (!)
P : ζ` ∼ P` ∈ P`, Eζ∼P{Z[ζ ]} ∈ V

∀P ∈ P : supp(P ) ⊂ S = {z : Tr(AiZ[z]) ≤ 0, i ≤ I}
♠ We have arrived at the following
Theorem:The system of convex constraints in variables
W , λ, {a`, b`, c`, p`, q`, r`}L`=1, {µi, νi}Ii=1, F ∈ SL+1, θ

(a)

[
Diag{c1, ..., cL} b

bT
∑

` a`

]
+ F +

∑I
i=1 µiAi � 0

(b)

[
Diag{r1, ..., rL} q

qT
∑

` p` − λ

]
+ F

−W +
∑I

i=1 νiAi � 0

(c)

[
λ 1
1 θ

]
� 0 [says that λ > 0]

(d)
L∑̀
=1

sup
P`∈P`

∫
max[a` + 2b`s + c`s

2, p` + 2q`s + r`s
2]dP`(s)

+ max
V ∈V

Tr(FV ) ≤ λε

(e) µi ≥ 0, νi ≥ 0

is a safe convex approximation of the chance constraint
(!). This approximation is tractable, provided that the
suprema in (d) are efficiently computable.



♣ How it works? Portfolio Selection revisited.

There are L assets with random yearly returns
r` = 1 + µ` + σ`ζ`, 1 ≤ ` ≤ L, where µ` ≥ 0 and
σ` ≥ 0 are known expected gains and their variabil-
ities, and ζ` are random perturbations taking values
in [−1, 1]. Given partial information on the distri-
bution of ζ = [ζ1; ...; ζL], we want to distribute $1
between the assets in order to maximize the guar-
anteed value-at-ε-risk of the profit

∑
`[µ` + σ`ζ`]x`:

maxx,t

{
t :

Probζ∼P

{∑15
`=1[µ` + σ`ζ`]x` < t

}
≤ 0.01 ∀P ∈ P

x ≥ 0,
∑15

`=1 x` = 1

}



♥ In the experiments, we set L = 15, ε = 0.01,

µ` = 0.001 + 0.9
`− 1

L− 1
, σ` =

(
0.9 + 0.2

`− 1

L− 1

)
µ`

and consider 3 concurrent hypotheses on ζ:
A: ζ1, ..., ζ15 ∈ [−1, 1] are zero mean and independent
B: ζ1, ..., ζ15 ∈ [−1, 1] are zero mean and uncorrelated
C: ζ1, ..., ζ15 ∈ [−1, 1] are zero mean
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• Expectations and ranges of returns • Portfolios: A (magenta), B, C (blue)

Hypothesis Approximation Guaranteed value-at-1%-risk

A Bernstein 0.0552
B Lagrangian 0.0101
C Lagrangian 0.0101

♣ Facts:
• The single-asset portfolio given in the cases of

B, C by Lagrangian approximation is exactly optimal
in these cases
• Diversified portfolio given in the case of A by

Bernstein approximation can exhibit negative profit
if the true case is B



Explanation: A, B, C postulate that ζi ∈ [−1, 1]
are zero mean. A postulates that ζi are indepen-
dent, and B – that ζi are uncorrelated. There ex-
ists a distribution Pbad of ζ compatible with B where
“crisis” ζ = [−1;−1; ...;−1] happens with probability
> 1%.
⇒ Under hypotheses B, C, the guaranteed value-at-

1%-risk for any portfolio cannot be better than its profit
in the case of crisis. As a matter of fact, in our problem
Lagrangian approximation maximizes the profit of a port-
folio in the case of crisis.
Note: Assuming yearly returns of assets i.i.d. over
time, it takes > 100 years to distinguish, with relia-
bility 99%, between A and Pbad.



Uncertain Conic Quadratic and Semidefinite
Optimization

♣ “Canonical” Conic problem:

min
x

cTx + d :
A1x + b1 ∈ K1

· · ·
AIx + bI ∈ KI

 (CP)

• x: decision vector
•Ki: simple cone: nonnegative orthant Rm

+ , or Lorentz cone

Lm = {y ∈ Rm : ym ≥
√
y2

1 + ... + y2
m−1}, or Semidefinite

cone Sm+ comprised of positive semidefinite symmetric m×
m matrices, with m = mi.

• Structure of (CP ): the collection of cones K1, ...,KI

• Data of (CP ): c, d, A1, b1, ..., AI, bI



min
x

cTx + d :
A1x + b1 ∈ K1

· · ·
AIx + bI ∈ KI

 (CP)

♠ Uncertain canonical conic problem P: a collec-
tion of canonical conic programs (“instances”) with com-
mon structure and with the data running through a given
uncertainty set U .

♠ We always assume that the data is affinely parameter-
ized by a perturbation vector ζ running through perturba-
tion set Z:

U =

{
(c[ζ ], d[ζ ], A1[ζ ], ..., bI [ζ ]) := (c0, d0, A0

1, ..., b
0
I)

+
∑L

`=1 ζ`(c
`, d`, A`

1, ..., b
`
I) : ζ ∈ Z

}
♠ Robust Counterpart of uncertain canonical conic
problem P : the problem

min
t,x

t :

t− c[ζ ]Tx− d[ζ ] ∈ R+

A1[ζ ]x + b1[ζ ] ∈ K1

...
AI [ζ ]x + bI [ζ ] ∈ KI

 ∀ζ ∈ Z
 (RC)



min
x

cTx + d :
A1x + b1 ∈ K1

· · ·
AIx + bI ∈ KI


(c,d,A1,...,bI)∈U

U =

{
(c[ζ ], d[ζ ], A1[ζ ], ..., bI [ζ ]) := (c0, d0, A0

1, ..., b
0
I)

+
∑L

`=1 ζ`(c
`, d`, A`

1, ..., b
`
I) : ζ ∈ Z

}
(UCP)

♠ Same as in the LO case, we w.l.o.g. can assume the
objective to be certain (and then skip d), in which case the RC
becomes

min
x

cTx :
A1[ζ ]x + b1[ζ ] ∈ K1

...
AI [ζ ]x + bI [ζ ] ∈ KI

 ∀ζ ∈ Z
 (RC)

Note: Same as in LO, the RC remains intact when extending
Z to its closed convex hull
⇒ From now on, we always assume Z to be convex and
closed.
♠ Same as in the LO case, the RC of (UCP) with certain
objective is a constraint-wise construction, and we can focus
on the RC

A[ζ ]x + b[ζ ] ∈ K (RC)

of a single uncertain conic constraint.



A[ζ ]x + b[ζ ] ∈ K ∀ζ ∈ Z
[A[ζ ], b[ζ ]] = [A0, b0] +

∑L
`=1 ζ`[A

`, b`]
(RC)

♣ Questions of primary importance:
• When the semi-infinite conic constraint (RC) is computa-
tionally tractable?
• What to do when (RC) is intractable?
♠ Fact: Tractability of (RC) depends on “tradeoff” between
the geometries of the perturbation set Z and the cone K: the
simpler is Z , the more complicated can be K.
• When K is as simple as possible – just a nonnegative or-
thant (uncertain LO), Z can be a whatever computationally
tractable convex set, e.g., one given by well-structured conic
representation.
• When Z is as simple as possible:

Z = Conv
{
ζ1, ..., ζN

}
(scenario uncertainty), (RC) is equivalent to

A[ζ i]x + b[ζ i] ∈ K, i = 1, ..., N,

that is, (RC) is tractable whenever the cone K is so (as is the
case for nonnegative orthants, Lorentz and Semidefinite cones
we are interested in).



A[ζ ]x + b[ζ ] ∈ K ∀ζ ∈ Z
[A[ζ ], b[ζ ]] = [A0, b0] +

∑L
`=1 ζ`[A

`, b`]
(RC)

• In the “in-between” situations, tractability of (RC) is a “rare
commodity:”
• When K is the Lorentz cone, (RC) is tractable when Z is
an ellipsoid, and is intractable when Z is a box.
Indeed, checking feasibility of x = 0 for the semi-infinite Least
Squares inequality

‖Ax + b‖2 ≤ 1 ∀b ∈ U = {Bζ : ‖ζ‖∞ ≤ 1}
⇔ [Ax + Bζ ; 1] ∈ Lm+1 ∀ζ, ‖ζ‖∞ ≤ 1

reduces to checking whether ‖Bζ‖2 ≤ 1 for all ζ with ‖ζ‖∞ ≤
1, or, equivalently, to the maximization of the positive semidef-
inite quadratic form ζT [BTB]ζ over the unit box, which is NP-
hard even when accuracy of 4% is sought.
•When K is a Semidefinite cone, (RC) is intractable when Z
is either an ellipsoid or a box.
♠ As a result, In Robust Conic Optimization the goals of
primary importance are
• To discover special cases where (RC) is tractable, and
• To build tight safe tractable approximations to (RC)
when (RC) “‘as it is” is intractable.



A[ζ ]x + b[ζ ] ∈ K ∀ζ ∈ Z
[A[ζ ], b[ζ ]] = [A0, b0] +

∑L
`=1 ζ`[A

`, b`]
(RC)

Definition. A system S of efficiently computable convex
constraints in variables x and, perhaps, additional variables
u is called a safe tractable approximation of (RC) if the
projection X [S ] of the feasible set of the system on the plane
of x-variables is contained in the feasible set of (RC), that is,

(x, u) is feasible for S ⇒ x is feasible for (RC)

♥ Replacing the RC’s of the conic constraints in an uncertain
conic problem P with their safe tractable approximations, we
end up with a computationally tractable problem such that
(the x-components of) its feasible solutions are feasible for the
RC of the uncertain problem.
♠ Question: How to quantify “tightness” of a safe approxi-
mation?
♠ Answer: Assume, as it usually is the case, that 0 ∈ Z
(ζ = 0 corresponds to the nominal data).
⇒ We can embed (RC) in a parametric family of RC’s

A[ζ ]x + b[ζ ] ∈ K ∀ζ ∈ Zρ := ρZ (RC[ρ])

As the uncertainty level ρ grows, the perturbation set Zρ
extends, and the feasible set Xρ of (RC[ρ]) shrinks.



A[ζ ]x + b[ζ ] ∈ K ∀ζ ∈ Zρ := ρZ (RC[ρ])

Definition: A safe tractable approximation of (RC[ρ]) is a
system S [ρ] of efficiently computable convex constraints, de-
pending on ρ ≥ 0 as on a parameter, in variables x and ad-
ditional variables u such that the projection Xρ of the feasible
set of S [ρ] on the plane of x-variables is, for every ρ ≥ 0, con-
tained in the feasible set Xρ of (RC[ρ]).
Such an approximation is called ϑ-tight, if

∀ρ ≥ 0 : Xρ ⊃ Xρ ⊃ Xϑρ.

Equivalently: S [·] is ϑ-tight safe approximation of (RC[·]),
if, for every ρ ≥ 0,
• [safety] whenever x can be extended to a feasible solution to
S [ρ], x is feasible for (RC[ρ]), and
• [tightness] whenever x cannot be extended to a feasible so-
lution to S [ρ], x is not feasible for (RC[ϑρ]).
•We call an approximation scheme tight, if its tightness factor
is independent of the numerical values of the data specifying
Z .



Example: The semi-infinite Least Squares inequality with
box uncertainty

∀ζ, ‖ζ‖∞ ≤ ρ : ‖A[ζ ]x + b[ζ ]‖2 ≤ τ
m

[A[ζ ]x + b[ζ ]; τ ] ∈ Lm+1 ∀ζ, ‖ζ‖∞ ≤ ρ (RC[ρ])

[A[ζ ], b[ζ ]] = [A0, b0] +
∑L

`=1 ζ`[A
`, b`]

is, in general, computationally intractable. It, however, admits
a tight within the factor π/2 safe tractable approximation[

τ [A0x + b0]T

A0x + b0 τI

]
− ρ

L∑̀
=1

Y` � 0

Y` � ±
[

[A`x + b`]T

A`x + b`

]
� 0, 1 ≤ ` ≤ L

S [ρ]

(variables are x and symmetric matrices Y1, ..., YL).
♥ As far as the x-components of feasible solutions are con-
cerned, the above system can be replaced with a system with
a much smaller number of variables, namely

τ −
∑L

`=1 λ` [A0x + b0]T

A0x + b0 τIm A1x + b1 ... ALx + bL

[A1x + b1]T λ1
... . . .

[ALx + bL]T λL

 � 0

(variables are x and λ1, ..., λL).



Note: Let P be an uncertain canonical conic problem with
certain objective. Assume that the RC’s of all conic constraints
of P admit ϑ-tight safe tractable approximations. Then the
optimal value OptAppr(ρ) of the resulting safe tractable approx-
imation of P , treated as a function of the uncertainty level ρ,
satisfies

OptP(ρ) ≤ OptAppr(ρ) ≤ OptP(ϑρ).



Tractable Reformulations and Tight Tractable
Approximations of Semi-Infinite Conic Quadratic

Inequalities

♣ The fact that a vector [Ax + b; cTx + d] ∈ Rm+1 affinely
depending on x belongs to the Lorentz cone Lm+1 can be equiv-
alently represented by conic quadratic inequality (c.q.i.)

‖Ax + b‖2 ≤ cTx + d (CQI)

When [A, b; cT , d] are affinely parameterized by a perturbation
vector ζ :

[A, b; cT , d] = [A[ζ ], b[ζ ]; cT [ζ ], d[ζ ]]

= [A0, b0; [c0]T , d0] +
∑L

`=1 ζ`[A
`, b`; [c`]T , d`]

and we want the inclusion [Ax + b; cTx + d] ∈ Lm+1 (or,
equivalently, the c.q.i. (CQI)) to hold true for all ζ ∈ Z , we
end up with semi-infinite c.q.i.

‖A[ζ ]x + b[ζ ]‖2 ≤ cT [ζ ]x + d[ζ ] ∀ζ ∈ Z (RC)

Note: Convex quadratic constraint

xTATAx + 2bTx + c ≤ 0,

the data being A, b, c, is equivalent to the c.q.i.

‖[2Ax; 1 + 2bTx + c]‖2 ≤ 1− 2bTx− c

⇒What follows covers, in particular, the RC’s of uncertainty-
affected convex quadratic constraints.



‖A[ζ ]x + b[ζ ]‖2 ≤ cT [ζ ]x + d[ζ ] ∀ζ ∈ Z (RC)

♠ Aside of the trivial case of scenario-generated perturba-
tion set Z , essentially the only known generic case when
(RC) is computationally tractable/admits tight computation-
ally tractable approximation independently of any assump-
tions on how the affine perturbations enter the problem is
the case of an ellipsoid Z .
All other tractability results known to us deal with the case of
semi-infinite Least Squares inequality

‖A[ζ ]x + b[ζ ]‖2 ≤ τ ∀ζ ∈ Z

in variables x, τ , or, which is the same, with the case when
the right hand side in (RC) is not affected by the uncertainty,
since in this case (RC) is equivalent to

‖A[ζ ]x + b[ζ ]‖2 ≤ τ ∀ζ ∈ Z & τ ≤ cTx + d

and tractable reformulation/building tight safe tractable ap-
proximation of the latter system reduces to the same problem
for the “troublemaking” semi-infinite Least Squares inequality.



‖A[ζ ]x + b[ζ ]‖2 ≤ cT [ζ ]x + d[ζ ] ∀ζ ∈ Z (RC)

♥ Note: (RC) with side-wise uncertainty, where the pertur-
bation setZ is the productZ left×Z right of sets of perturbations
affecting the left- and the right hand side data, reduces to the
system of semi-infinite constraints

(a) ‖A[ζ left]x + b[ζ left]‖2 ≤ τ ∀ζ left ∈ Z left,
(b) cT [ζright]x + d[ζright] ≥ τ ∀ζright ∈ Zright

in variables x, τ .
• Whenever the right hand side perturbation set is tractable,
the semi-infinite constraint (b) is computationally tractable
⇒ All we need to process the RC efficiently is to build a
tractable reformulation/tight tractable approximation of
the semi-infinite Least Squares inequality (a).



‖A[ζ ]x + b[ζ ]‖2 ≤ cT [ζ ]x + d[ζ ] ∀ζ ∈ Z (RC)

Tractable Case I: Z is an Ellipsoid
♣W.l.o.g. we can assume that the ellipsoid Z is just the unit
ball centered at the origin:

Z = {ζ ∈ RL : ‖ζ‖2 ≤ 1}.

♠ A well-structured representation of (the feasible set of) (RC)
was recently found by R. Hildenbrandt
(Highly nontrivial construction with highly nontrivial justifi-
cation.)
♠ We restrict ourselves with an easy demonstration that Z
being the ball, the feasible set X of (RC) (which clearly is
a closed convex set) admits an efficient Separation oracle –
a routine which, given on input x, reports whether x ∈ X,
and if it is not the case, returns a separator - a linear form
e such that

eTx > max
x′∈X

eTx′.

Note: Given an efficient Separation oracle for X , we can use,
say, the Ellipsoid method to solve efficiently convex problems
of the form

min
x∈X
{f (x) : gi(x) ≤ 0, i = 1, ...,m}

provided that f and gi are efficiently computable.



X =
{
x : ‖A[ζ ]x + b[ζ ]‖2 ≤ cT [ζ ]x + d[ζ ] ∀ζ, ‖ζ‖2 ≤ 1

}
(RCBall)

♠ Since A[ζ ],..., d[ζ ] are affine in ζ , (RCBall) reads

X = {x : ‖α[x]ζ + β[x]‖2 ≤ γT [x]ζ + δ[x] ∀ζ, ‖ζ‖2 ≤ 1}

with α[x],...,δ[x] affine in x.
♣ Clearly, x ∈ X iff
A. ‖ζ‖2 ≤ 1→ γT [x]ζ + δ[x] ≥ 0 ⇔ ‖γ[x]‖2 ≤ δ[x]
and
B. The quadratic form of ζ: ζTP [x]ζ + 2pT [x]ζ + q[x]
≡ [γT [x]ζ + δ[x]]2 − ‖α[x]ζ + β[x]‖2

2 is ≥ 0 on the domain
ζTζ ≤ 1.
♣ Miracle # 1: S-Lemma: Consider two quadratic
forms

f (z) = zTAz + 2aTz + α, g(z) = zTBz + 2bTz + β

and let the set {z : g(z) > 0} be nonempty. Then the
implication

g(z) ≥ 0⇒ f (z) ≥ 0

holds true iff ∃λ ≥ 0 : f (z) ≥ λg(z) ∀z, that is, iff

∃λ ≥ 0 :

[
A− λB a− λb
[a− λb]T α− λβ

]
� 0.



X = {x : ‖α[x]ζ + β[x]‖2 ≤ γT [x]ζ + δ[x] ∀ζ, ‖ζ‖2 ≤ 1}

♠ x ∈ X iff the following two properties take place:
A. ‖γ[x]‖2 ≤ δ[x]
B. g(z) = 1− zTz ≥ 0⇒ f (z) := zTP [x]z + 2pT [x]z + q[x]

⇔ ∃λ > 0 :

[
P [x] + λI p[x]
pT [x] q[x]− λ

]
� 0

♥ Given x, we can easily verify A and B; if both the properties
hold true, we report that x ∈ X .
• Now let either A, or B, or both do not take place. On
a closest inspection, here we can find efficiently ζ̄ , ‖ζ̄‖2 ≤ 1,
such that the vector

ȳ = [α[x]ζ̄ + β[x]; γT [x]ζ̄ + δ[x]]

does not belong to Lm+1, and thus can be easily separated
from Lm+1, That is, we can efficiently build η ∈ RL+1 such
that

ηT ȳ > s := sup
y∈Lm+1

ηTy.

⇒ The affine form e[ξ] = ηT [α[ξ]ζ̄ + β[ξ]; γT [ξ]ζ̄ + δ[ξ]] sep-
arates x and X , and we can return this form as a required
separator.



Tractable Case II: Semi-Infinite Least Squares
Inequality with Unstructured Norm-Bounded

Uncertainty

‖A[ζ ]x + b[ζ ]‖2 ≤ τ ∀ζ ∈ Z (RC)

Definition: We say that the uncertainty in (RC) is unstruc-
tured norm-bounded, if
• Z is the set of p × q matrices of matrix norm ‖ · ‖2,2 not
exceeding 1
• A[ζ ]x + b[ζ ] ≡ A0x + b0+LT [x]ζR[x] with matrices L[x],
R[x] of appropriate sizes affinely depending on x and such that
either L[x], or R[x] is constant.
♠ Example: Z is an ellipsoid. W.l.o.g. we can assume
that Z = {ζ ∈ RL : ‖ζ‖2 ≤ 1}, that is, Z is comprised of
L× 1 matrices ζ of norm ≤ 1. We have

A[ζ ]x + b[ζ ] ≡ α[x]ζ + β[x]

with affine in x α[x] and β[x], and we can set

A0x + b0 = β[x], LT [x] = α[x], R[x] = 1.



‖A[ζ ]x + b[ζ ]‖2 ≤ τ ∀ζ ∈ Rp×q : ‖ζ‖2,2 ≤ 1
A[ζ ]x + b[ζ ] ≡ A0x + b0 + LT [x]ζR[x]

(RC)

Theorem: When R[x] is independent of x, (RC) can be
represented equivalently by the Linear Matrix Inequality τ − λRTR [A0x + b0]T

A0x + b0 τIm LT [x]
L[x] λIp

 � 0,

in variables x, λ.
When L[x] is independent of x, (RC) can be represented
equivalently by the LMI τ [A0x + b0]T RT [x]

A0x + b0 τIm − λLTL
R[x] λIq

 � 0

in variables x, λ.
Proof: to be given later.



Example [Robust Linear Estimation] Given noisy observa-
tion

w = [A + B∆C]v + ξ [ξ ∼ N (0,Σ)]

of unknown signal v known to belong to a given ellipsoid
{v : vTQv ≤ R2}, estimate the value at v of a given linear
form 〈f, ·〉.
Here: • A,B,C are given matrices, • ∆ is unknown pertur-
bation known to be norm-bounded: ‖∆‖2,2 ≤ ρ with a given
ρ.
We restrict ourselves with linear in w estimates xTw
(x is the weight vector to be found) and want to minimize
the worst-case expected squared recovery error. Thus, our
problem is

min
x

 max
v:vTQv≤R2

∆:‖∆‖2,2≤ρ

√
E
{

(fTv − xT [[A + B∆C]v + ξ])2
}

We have
E
{(
fTv − xT [[A+B∆C]v + ξ]

)2}
=
[
vT [f − [AT + CT∆TBT ]x]

]2
+ xTΣx

⇒ max
v:vTAQv≤R2

E
{(
fTv − xT [[A+B∆C]v + ξ]

)2}
= R2[f − [AT + CT∆TBT ]x]TQ−1[f − [AT + CT∆TBT ]x] + xTΣx.

⇒ the problem of interest is

min
x,τ,s,r

r :
‖Σ1/2x‖2 ≤ s,

√
R2τ 2 + s2 ≤ r

‖Q−1/2[f − [AT + CT∆TBT ]x]‖2 ≤ τ
∀∆, ‖∆‖2,2 ≤ ρ

.



min
x,τ,s,r

r :
‖Σ1/2x‖2 ≤ s,

√
R2τ 2 + s2 ≤ r

‖Q−1/2[f − [AT + CT∆TBT ]x]‖2 ≤ τ
∀∆, ‖∆‖2,2 ≤ ρ

.
♠ The only “troublemaker” is the semi-infinite Least Squares
inequality

‖Q−1/2[f − [AT + CT∆TBT ]x]‖2

≡ ‖
A0x+b0︷ ︸︸ ︷

Q−1/2[f − ATx] +

LT ζR[x],ζ=∆T /ρ︷ ︸︸ ︷
[−Q−1/2CT∆TBTx] ‖2 ≤ τ

∀ζ : ‖ζ‖2,2 ≤ 1

Passing to its tractable reformulation, the problem of interest
becomes an explicit canonical conic program

min
x,τ,r,s,λ

r :

‖Σ1/2x‖2 ≤ s,
√
R2τ 2 + s2 ≤ r τ [Q−1/2[f − ATx]]T ρxTB

Q−1/2[f − ATx] τI − λQ−1/2CTCQ−1/2

ρBTx λI

 � 0





Tight Approximation of Semi-Infinite Least
Squares Inequality with Structured

Norm-Bounded Uncertainty

‖A[ζ ]x + b[ζ ]‖2 ≤ τ ∀ζ ∈ ρZ (RC)

Definition: We say that the uncertainty in (RC) is struc-
tured norm-bounded, if
• Z is the set of collections of L p`× q` matrices ζ` of matrix
norm ‖ · ‖2,2 not exceeding 1

• A[ζ ]x+ b[ζ ] ≡ A0x+ b0+
∑L

`=1L
T
` [x]ζ`R`[x] with matrices

L`[x], R`[x] of appropriate sizes affinely depending on x and
such that for every `, either L`[x], or R`[x] is constant.
♠ Example: Z is a box. W.l.o.g. we can assume that
Z = {ζ ∈ RL : ‖ζ‖∞ ≤ 1}, that is, Z is comprised of L 1× 1
matrices ζ` = ζ` of norm ≤ 1. We have

A[ζ ]x + b[ζ ] ≡
∑L

`=1
ζ`α`[x] + β[x]

with affine in x α`[x] and β[x], and we can set

A0x + b0 = β[x], LT` [x] = α`[x], R`[x] = 1.



‖A[ζ ]x + b[ζ ]‖2

≡ ‖A0x + b0 +
∑L

`=1L
T
` [x]ζ`R`[x]‖2 ≤ τ ∀ζ ∈ ρZ,

Z = {ζ = (ζ1, ..., ζL) : ζ` ∈ Rp`×q`, ‖ζ`‖2,2 ≤ 1}.
(RC)

Theorem: Semi-infinite Least Squares inequality with
structured norm-bounded uncertainty admits safe tractable
approximation given by an explicit system of LMIs and
tight within the factor π/2. This approximation is precise
when L = 1 (i.e., in the case of unstructured norm-bounded
perturbation).
Explicit representation of the approximation and its jus-
tification will be presented later.



Example: Antenna Design with Least Squares fit. When
speaking on Robust LO, we have considered the Antenna De-
sign problem with uniform fit. Now consider similar problem
with Least Squares fit:

min
x,τ

{
τ : ‖D∗ −

∑10
`=1 x`D`‖2,w ≤ τ

}
 x` 7→ (1 + ζ`)x`, ζ` ∈ [−ρ, ρ]

m
D` 7→ (1 + ζ`)D`, ζ` ∈ [−ρ, ρ]


• D∗, D1, ..., D10: restrictions onto the grid δi = iπ/480,
1 ≤ i ≤ 240 of altitude angles of the target diagram and
the diagrams of 10 antenna elements.
• ‖D‖2

2,w = 1
240

∑240
i=1 cos(θi)D

2(θi)
Origin of weights: Physically, diagrams in question are func-
tions on the upper hemisphere S depending solely of the al-
titude angle, and our weighted 2-norm mimics the standard
norm of L2(S).



min
τ,x

{
τ : ‖D∗ −

∑10
`=1 x`(1 + ζ`)D`‖2,w ≤ τ

}
−ρ ≤ ζ` ≤ ρ, 1 ≤ ` ≤ 10

♠ Nominal optimal design, same as in the case of uni-
form fit, is a complete disaster when implementation errors are
present:
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“Dream and reality,” nominal optimal design: samples of 100
actual diagrams (red) for different uncertainty levels. Blue:

the target diagram
Dream Reality
ρ = 0 ρ = 0.0001 ρ = 0.001 ρ = 0.01
value min mean max min mean max min mean max

‖ · ‖2,w
distance
to target

0.011 0.077 0.424 0.957 1.177 4.687 9.711 8.709 45.15 109.5

energy
concen-
tration

99.4% 0.23% 20.1% 77.7% 0.70 19.5% 61.5% 0.53% 18.9% 61.5%

Quality of nominal antenna design. Data over 100 samples of
actuation errors per each value of ρ.



min
τ,x

{
τ : ‖D∗ −

10∑
`=1

x`(1 + ζ`)D`‖2,w ≤ τ∀ζ, ‖ζ‖∞ ≤ ρ

}
RC

♠ We are in the case of box (and thus – structured norm-
bounded) uncertainty, whence (RC) admits a tight, within the
factor π/2, tractable approximation. The approximation reads

min
τ,x,γ

τ

s.t. τ −∑L
ν=1 γν [WDx− b]T

WDx− b τI ρWDDiag{x}
ρ[WDDiag{x}]T Diag{γ1, ..., γ10}

 � 0

where:

• D = [Di` = D`(θi)] 1≤`≤10,
1≤i≤240

,

• W = Diag{cos(θ1), ..., cos(θ240)}/
√

240
• b = WD∗



Setting ρ = 0.01, we end up with robust design which with-
stands implementation errors incomparably better than the
nominal one:
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“Dream and reality,” robust optimal design: samples of 100
of actual diagrams (red) for different uncertainty levels. Blue:

the target diagram.
Reality

ρ = 0.01 ρ = 0.05 ρ = 0.1
min mean max min mean max min mean max

‖ · ‖2,w
distance
to target

0.021 0.021 0.021 0.021 0.023 0.030 0.021 0.030 0.048

energy
concen-
tration

96.5% 96.7% 96.9% 93.0% 95.8% 96.8% 80.6% 92.9% 96.7%

Quality of robust antenna design. Data over 100 samples of
actuation errors per each value of ρ.

For comparison: For nominal design, with ρ = 0.001, the
average ‖ · ‖2,w-distance of the actual diagram to target is as
large as 4.69, and the expected energy concentration is as low
as 19.5%.



♠ How conservative is our safe tractable approxi-
mation?
• The robust design was obtained from safe tractable approx-
imation of the true RC rather than from the RC itself⇒ the
guaranteed value ApprOpt(0.01) = 0.0212 of the objective can
be larger than the true optimal value RobOpt(0.01) of the RC
at the uncertainty level 0.01. How large is the loss in optimal-
ity?
• Our approximation is tight within the factor π/2. This
means only that

RobOpt(0.01) ≤ ApprOpt(0.01) ≤ RobOpt(0.01 · π/2)

and does not allow to make any conclusion on how far is
ApprOpt(0.01) from RobOpt(0.01).

• The nominal optimal value NomOpt = 0.011 is a lower
bound on RobOpt(0.01)⇒ ApprOpt(0.01) = 0.0212 is within
90% of the true robust optimal value.

• Fortunately, our perturbation set is a box in R10 and thus
can be treated as a set given by a large, but not prohibitively
so, number 210 = 1024 of scenarios. This allows to compute
the true robust optimal value exactly, and it turns out to be
by just 0.2% worse than its upper bound ApprOpt(0.01).



Tight Tractable Approximation of Semi-Infinite
Least Squares Inequality with

⋂
-Ellipsoidal

Perturbation Set

‖A[ζ ]x− b[ζ ]‖2 ≡ ‖α[x]ζ + β[x]‖2 ≤ τ ∀ζ ∈ ρZ RC

♣ Consider the case of
⋂

-ellipsoidal perturbations

Z = {ζ ∈ RL : ζTQjζ ≤ 1, 1 ≤ j ≤ J}
[Qj � 0,

∑
jQj � 0]

Geometrically: Z is bounded and is the intersection of J
ellipsoids/elliptic cylinders centered at the origin.
Examples: • Unit ball; • A polytope Z , 0 ∈ intZ , symmet-
ric w.r.t. the origin (e.g., a box centered at the origin). Indeed,
such a polytope can be represented as Z = {ζ : (qTj ζ)2 ≤
1, 1 ≤ j ≤ J}.
♠ Deriving the approximation. We ask when

{ζTQjζ ≤ ρ2, 1 ≤ j ≤ J} ⇒ ‖α[x]ζ + β[x]‖2
2 ≤ τ 2,

or, equivalently, when

{ζTQjζ ≤ ρ2, 1 ≤ j ≤ J, t2 ≤ 1}
⇒ ‖α[x]ζ + tβ[x]‖2

2 ≤ τ 2 (!)

An evident sufficient condition for (!) is:

∃{λj ≥ 0}Jj=0 :

 λ0 + ρ2λ1 + ... + ρ2λJ ≤ τ 2

λ0t
2 + λ1ζ

TQ1ζ + ... + λJζ
TQjζ

≥ ‖α[x]ζ + tβ[x]‖2
2 ∀(t, ζ).



‖A[ζ ]x− b[ζ ]‖2 ≡ ‖α[x]ζ + β[x]‖2 ≤ τ
∀ζ : ζTQjζ ≤ ρ2, 1 ≤ j ≤ J

RC

♥Assuming τ > 0 and setting µj = λj/τ , the above sufficient
condition for the validity of (RC) reads

∃µj ≥ 0, 0 ≤ j ≤ J :

(a) µ0 + ρ2
∑J

j=1 µj ≤ τ

(b)

[
µ0 ∑J

j=1 µjQj

]
− 1

τ [β[x], α[x]]T [β[x], α[x]] � 0

Now let us use

Miracle # 2: Schur Complement Lemma: A sym-

metric block matrix P =

[
A B
BT C

]
with C � 0 is � 0 iff

A−BC−1BT � 0.
Proof: P � 0 iff [u; v]TP [u; v] ≥ 0 for all u, v, that is,
iff min

v
[u; v]TP [u; v] ≥ 0 for all u. Since C � 0, the latter

minimum is uT [A−BC−1BT ]u. �
♥ Thus, a sufficient condition for (x, τ > 0) to satisfy (RC) is

∃{µj ≥ 0}Jj=0 :

 µ0 βT [x]∑J
j=1 µjQj α

T [x]

β[x] α[x] τI

 � 0

µ0 ≤ τ − ρ2
∑J

j=1 µj



‖A[ζ ]x− b[ζ ]‖2 ≡ ‖α[x]ζ + β[x]‖2 ≤ τ
∀ζ : ζTQjζ ≤ ρ2, 1 ≤ j ≤ J

RC

♥ We have proved the first part of the following
Theorem. (i) The explicit system of convex constraints τ − ρ2

∑J
j=1 µj βT [x]∑J

j=1 µjQj α
T [x]

β[x] α[x] τI

 � 0 (+)

in variables x, τ, µ1, ..., µJ is a safe tractable approximation
of (RC) — whenever (x, τ ) can be extended to a feasible
solution of (+), this pair is feasible for (RC).

(ii) The approximation is precise when J = 1, and is
tight within the factor O(1)

√
ln(J) otherwise.



Tractable Reformulations/Tight Safe Tractable
Approximations of Semi-Infinite Linear Matrix

Inequalities

♣ Here we are interested in tractable reformulations/tight safe
tractable approximations of a semi-infinite Linear Matrix In-
equality

A[ζ, x] � 0 ∀ζ ∈ ρZ (RC)

where A[ζ, x] is a symmetric matrix which is bi-affine in x and
in ζ :

A[ζ, x] ≡ A0[ζ ] +

n∑
j=0

xjAj[ζ ] ≡ α0[x] +

d∑
i=1

ζiαi[x],

where the symmetric matrices Aj[ζ ] and αi[x] are affine in
their arguments.
♠ As a matter of fact, aside of the “universally tractable”
(and trivial) case of scenario-generated Z , in the LMI case no
“universally good” – leading to tractable or “nearly so” (i.e.,
admitting tight safe tractable approximations) – geometries of
Z are known.
♠ All known to us generic tractability results impose structural
restrictions on how the uncertainty enters the body of the LMI,
specifically, they assume norm-bounded , structured or not.
model of perturbations



A[ζ, x] � 0 ∀ζ ∈ ρZ (RC)

Definition: We say that (RC) is with norm-bounded per-
turbations, if
A. Z is comprised of collections ζ = {ζ1, ..., ζL} of matrices
ζ` ∈ Rp`×q` of the spectral norm not exceeding 1.
In addition, prescribed part of the matrices ζ` — those with
indices from a given set Is — are marked as “scalar perturba-
tion blocks” and should be scalar – proportional to the unit
matrix (for those `, of course, p` = q`). The remaining “full
perturbation blocks” ζ` in ζ can be arbitrary p`× q` matrices
of norm ≤ 1. Thus,

Z =

ζ = {ζ1, ..., ζL} :
ζ` ∈ Rp`×q` ∀`
‖ζ`‖2,2 ≤ 1 ∀`
ζ` ∈ R · Ip`, ` ∈ Is


B. The body A[ζ, x] of (RC) is

A[ζ, x] = A0[x] +

L∑
`=1

[
LT` [x]ζ`R`[x] + RT

` [x][ζ`]TL`[x]
]
,

where L`[x], R`[x] are affine in x and for every ` at least one
of these matrices is constant.
Note: W.l.o.g. we assume that R`[x] ≡ R` for all `.
• Norm-bounded uncertainty is called structured, if L > 1,
and unstructured otherwise.



♣ Relation to norm-bounded uncertainty in c.q.i.
♠ The Lorentz cone Lm can be represented as the intersection
of the semidefinite cone Sm+ and a linear subspace. Specifically,
by the Schur Complement Lemma

[u; t] ∈ Lm ⇔ Arrow(u, t) :=

[
t uT

u tIm−1

]
� 0

♠ Consequently, a semi-infinite c.q.i. can be reformulated
equivalently as a semi-infinite LMI. In particular, a semi-
infinite Least Squares inequality is equivalent to an “arrow”
semi-infinite LMI with uncertainty-affected off-diagonal entries
of the first row and column:

‖A[ζ ]x + b[ζ ]‖2 ≤ τ ∀ζ ∈ ρZ

⇔ A[ζ, x] :=

[
τ [A[ζ ]x + b]T

A[ζ ]x + b τI

]
� 0 ∀ζ ∈ ρZ

With this correspondence, norm-bounded uncertainty in the
semi-infinite Least Squares inequality:

A[ζ ]x + b[ζ ] = A0x + b0 +

L∑
`=1

LT` [x]ζ`R`[x]

induces norm-bounded uncertainty with no scalar pertur-
bation blocks in the semi-infinite LMI:

A[ζ, x] = Arrow(A0x + b, τ )

+
∑L

`=1

[
LT` [x]ζ`R`[x] +RT

` [x][ζ`]TL`[x]
]
.



♠ As a consequence, every result on tractability/tight safe
tractable approximation of semi-infinite LMI with unstruc-
tured or structured norm-bounded uncertainty induces
similar results on semi-infinite Least Squares inequalities,
and this is how the results of the latter type we have mentioned
in the “c.q.i.-part” were obtained.



Derivation of Tight Safe Tractable Approximation
of Semi-Infinite LMI with Norm-Bounded

Uncertainty

A0[x] +
∑L

`=1[LT` [x]ζ`R` + RT
` [ζ`]TL`[x]] � 0

∀{ζ` ∈ Rp`×q`} : ‖ζ`‖2,2 ≤ ρ ∀`, ζ` ∈ R · Ip` ∀` ∈ Is
(RC)

The idea is pretty simple: an evident sufficient condition for
x to be feasible for (RC) is existence of matrices Y` such that

(a) Y` � [LT` [x]ζ`R` + RT
` [ζ`]TL`[x]]

∀ζ` = λ`Ip` : ‖ζ`‖2,2 ≤ 1, ` ∈ Is

(b) Y` � [LT` [x]ζ`R` + RT
` [ζ`]TL`[x]]

∀ζ` : ‖ζ`‖2,2 ≤ 1, ` 6∈ Is

(c) A0[x]− ρ
∑L

`=1 Y` � 0

(!)

• “Semi-infinite” LMIs (a) are equivalent to finite system of
LMIs

Y` � ±[LT` [x]R` + RT
` L`[x]], ` ∈ Is (A)

• From S-Lemma one can derive without much thought that
semi-infinite LMIs (b) can be represented equivalently by finite
system of LMIs[

Y` − λ`RT
` R` L

T
` [x]

L`[x] λIp`

]
� 0, ` 6∈ Is (B)



A0[x] +
∑L

`=1[LT` [x]ζ`R` + RT
` [ζ`]TL`[x]] � 0

∀{ζ` ∈ Rp`×q`} : ‖ζ`‖2,2 ≤ ρ ∀`, ζ` ∈ R · Ip` ∀` ∈ Is
(RC)

We have arrived at the first part of the following
Theorem: (i) The explicit system of LMIs

(a) Y` � ±[LT` [x]R` + RT
` L`[x]], ∀` ∈ Is

(b)

[
Y` − λ`RT

` R` L
T
` [x]

L`[x] λIp`

]
� 0, ` 6∈ Is

(c) A0[x]− ρ
∑L

`=1 Y ` � 0

in variables x, λ` ∈ R, ` 6∈ Is, Y`, 1 ≤ ` ≤ L, is a safe
tractable approximation of (RC).
(ii) This approximation is exact when L = 1 (unstructured
norm-bounded perturbations) and is tight within factor π/2
when L > 1, provided that there are no nontrivial (with
p` > 1) scalar perturbation blocks.

When there are nontrivial scalar perturbation blocks,
the tightness factor of the approximation is a universal
function ϑ(µ) of µ = 2 max`∈Is p` such that

ϑ(µ) ≤
√
πµ/2.



♣ Example: Robust Truss Topology Design
• A truss is a mechanical construction, like electric mast, rail-
road bridge, or Eiffel Tower, comprised of thin elastic bars
linked to each other at nodes.
• Under external load, the truss deforms until the internal
forces caused by the deformation compensate the external
forces. At the resulting static equilibrium, the truss capaci-
tates certain energy, called compliance. Compliance is a nat-
ural measure of the rigidity of the truss w.r.t. a load: the less
the compliance, the more rigid is the truss.
• In a Truss Topology Design problem, one is given
A. A list of tentative nodes – an m-point grid in Rd (d =
2/d = 3), along with boundary conditions which declare some
nodes partially or completely fixed by supports, and thus define
for every i ≤ m a linear subspace Vi ⊂ Rd of virtual displace-
ments of node i. A virtual displacement of the nodal set is
a collection of allowed displacements of the nodes, and these

virtual displacements form a linear space V =
m⊕
i=1

Vi;

B. A collection of n tentative bars – pairs of nodes which can
be linked by a bar;
C. A finite set F of loading scenarios – vectors f ∈ V com-
prised of external forces acting at the nodes and representing
the load in question.



The goal in a TTD problem is to assign the with non-
negative volumes t = [t1; ...; tn]∈ T in a way which mini-
mizes the worst, over loading scenarios, compliance of the
construction w.r.t. a scenario. Here T ⊂ Rn

+ is a given poly-
tope of admissible designs, most typically – just the simplex
{t ≥ 0,

∑
i ti ≤ w}, where w is an a priori upper bound on

the weight of the construction.
♠ Mathematically, the fact that the compliance of a truss t
w.r.t. a load f ∈ V is ≤ τ is expressed as[

2τ fT

f A(t)

]
� 0,

where

A(t) =

n∑
i=1

tibib
T
i

is the stiffness matrix of the truss; bi ∈ V are readily given
by the geometry of the nodal set.
Thus, the TTD problem is the semidefinite program

min
τ,t

{
τ :

[
2τ fT

f A(t)

]
� 0, f ∈ F

}
.

♠ In TTD, one starts with a dense nodal grid and allows for
all pair connections of nodes with bars. At optimality, most of
the bars get zero volume, thus revealing the optimal topology
of the construction, along with its optimal sizing.



♠ The set of loading scenarios F usually is comprised of small
(1-2-3) number of “loads of interest.” In reality, the truss will
be subject to small “unforeseen occasional loads” which can
crush it:

f f

(a): 9×9 nodal grid with
most left nodes fixed and
the load of interest. M =
144 degrees of freedom.

(b): 2,039 tentative bars

(c): Single-load optimal design,
12 nodes, 24 bars. Compliance
w.r.t. load of interest 1.00.

(d): Deformation of nominal design
under the load of interest f .

(e): Deformation of nominal design
under “occasional” load 108 times
less than f .

(f): “Dotted lines”: positions of nodes in
deformed nominal design, sample
of 100 loads ∼ N (0, 10−16I20)



♠ To avoid potential instability of the designed truss w.r.t.
small occasional loads, it makes sense to control its compli-
ance w.r.t. both loads of actual interest and all “occasional”
loads of norm ≤ ρ.
• Question: Where should the occasional loads be ap-
plied? Usually, most of the nodes from the original grid are
not used in the resulting construction; why to bother about
forces acting at nonexisting nodes?
Possible answer: When “robustifying” the nominal design,
we can choose, as the nodal set, the nodes actually used in
this design and to allow the occasional loads to act at all these
nodes.
• Question: How to choose ρ?
Possible answer: Let τ∗ be the nominal optimal value in
the TTD problem, and let τ+ > τ∗ be the compliance “we
are ready to tolerate.” When robustifying the nominal design,
we can look for the design which ensures, for as large ρ as
possible, that the compliance w.r.t. the loads of interest and
all occasional loads g with ‖g‖2 ≤ ρ is ≤ τ+.



♠ The resulting Robust TTD problem reads

ρ∗ = max
ρ,t

ρ :

[
2τ+ fT

f A(t)

]
� 0 ∀f ∈ F[

2τ+ ζT

ζ A(t)

]
� 0 ∀ζ, ‖ζ‖2 ≤ ρ

t ∈ T

 . (∗)

Note: Let M = dim ζ be the number of degrees of freedom
in the (reduced) nodal set. The body of the semi-infinite LMI
in (∗) is [

2τ+ fT

f A(t)

]
=
[

2τ+

A(t)

]

+

LT︷ ︸︸ ︷
[0M×1, IM ]T ζ

R︷ ︸︸ ︷
[1, 01×M ] +RTζTL,

with ζ ∈ Rm×1, so that ‖ζ‖2,2 = ‖ζ‖2

⇒ We are in the case of unstructured norm-bounded un-
certainty and thus (∗) admit a tractable reformulation,
namely,

max
ρ,t,s

ρ :

[
2τ+ fT

f A(t)

]
� 0 ∀f ∈ F

A(t) � sIM ,

[
2τ+ ρ
ρ s

]
� 0

t ∈ T

 . (!)



♠ Applying the outlined approach in the console design, we
set τ+ = 1.025τ∗ = 1.025 and end up with ρ∗ = 0.362. The
resulting design, being only marginally inferior to the nomi-
nally optimal one as far as the load of interest is concerned, is
incomparably more rigid w.r.t. occasional loads.

nominal design robust design



f f

(a): reduced 12-node set with
most left nodes fixed and the
load of interest. M = 20
degrees of freedom.

(b): 54 tentative bars

(c): Robust optimal design, 12
nodes, 24 bars. Compliance
w.r.t. load of interest 1.025.

(d): Deformation of robust design
under the load of interest.

(e): Deformation of robust design
under “occasional” load 10 times
less than the load of interest.

(f): “Bold dots”: positions of nodes
in deformated robust design over
100 loads ∼ N (0, 10−2I20)

Robust design of a console



Applications in Robust Control

♣ Semi-infinite LMIs arise on numerous occasions in Robust
Control.
Example: Lyapunov Stability Analysis. Consider an
uncertain time-varying linear dynamic system

ẋ(t) = Atx(t),

where At for all t is known to belong to a given convex compact
set U . How to certify that the system is stable, that is, all
trajectories of (all realizations of) the system go to 0 as t →
∞?
♠ The standard sufficient stability condition is existence of
Lyapunov Stability Certificate: a matrix X such that

X � 0 & ATX + XA ≺ 0 ∀A ∈ U .

Indeed, given and LSC X , by compactness of U

∃α > 0 : ATX + XA � −αX ∀A ∈ A

whence for every trajectory

d
dt[x

T (t)Xx(t)] = xT (t)[AT
t X + XAt]x(t) ≤ −α[xT (t)Xx(t)]
⇓

xT (t)Xx(t) ≤ exp{−αt}xT (0)Xx(0)⇒ x(t)→ 0, t→∞.
♠ Note: Existence of an LSC is equivalent to the feasibility
of the semi-infinite Lyapunov LMI

X � I, ATX + XA � −I ∀A ∈ U



X � I, ATX + XA � −I ∀A ∈ U
♠ In many Control applications, U is given by norm-bounded
perturbations:

U = Uρ = An + ρZ,

Z =

A =
∑L

`=1 P`ζ
`Q` :

ζ` ∈ Rp`×q`

‖ζ`‖2,2 ≤ 1 ∀`
ζ` ∈ RI, ` ∈ Is


Example 1: Interval uncertainty. In this case

Uρ = {A : |Aij − An
ij| ≤ ρdij},

that is,

Z = {Z =
∑
i,j

dijeiζ
ijeTj : |ζ ij| ≤ 1 ∀i, j}

(full 1× 1 perturbation blocks).



Example 2: Closed loop dynamical system. Consider
a time invariant Linear Dynamical system “closed” by a linear
feedback control:

ẋ(t) = Px(t) + Qu(t) + Tξ(t) [state equations]
y(t) = Rx(t) + Uξ(t) [observed outputs]
u(t) = Sy(t) [feedback]
⇒
ẋ(t) = [P + QSR]x(t) + [T + QSU ]ξ(t) [closed loop]

When one (or more) of the matrices P,Q,R, S drifts with
time around its nominal value, the system becomes uncertain.
Assuming norm-bounded uncertainty in P,Q,R, S:

‖ζP := Pt − P‖2,2 ≤ ρdP , ..., ‖ζS := St − S‖2,2 ≤ ρδS

we can approximate the range Uρ of the matrix

At = Pt + QtStRt

of the closed loop system by the norm-bounded perturbation
set:

Uρ ≈ [P + QSR] + ρZ,
Z = {ζP + ζQSR + QζSR + QSζR :

‖ζP‖2,2 ≤ 1, ..., ‖ζS‖2,2 ≤ 1}
(this approximation is exact when only one of the matrices
P,Q,R, S is subject to drift).



A[A,X ] := −I − ATX −XA � 0 ∀A ∈ Uρ (L)

Uρ = An + ρZ,

Z =

∑L
`=1 P`ζ

`Q` :
ζ` ∈ Rp`×q`

‖ζ`‖2,2 ≤ 1 ∀`
ζ` ∈ RI, ` ∈ Is

 (NB)

Observation: Norm-bounded uncertainty (NB) induces
norm-bounded uncertainty in the Lyapunov LMI (L), the
number, sizes and types (full/scalar) of the perturbation
blocks being preserved.
Corollary: When L = 1 (unstructured norm-bounded un-
certainty, case A), (L) admits a tractable reformulation, oth-
erwise:

— when there are no nontrivial (p` > 1) scalar pertur-
bations blocks (case B), (L) admits tight within the factor
π/2 safe tractable approximation,

— otherwise (case C) (L) admits a safe tractable approx-
imation tight within factor ϑ(µ) ≤

√
πµ/2, µ = 2 max

`∈Is
p`.

♥ In particular, The Lyapunov Stability Radius of (An,Z)
– the largest ρ for which (L) has a positive definite solution
X – admits an efficiently computable lower bound which
is
— exact in case A,
— tight within the factor π/2 in case B,
— tight within the factor ϑ(µ) in case C.



Globalized Robust Counterparts
♣ We are about to reconsider two of the ba-
sic assumptions on the “decision environment” we
made, namely, that
A.2. The decision maker is fully responsible for
consequences of the decisions to be made when,
and only when, the actual data is within the pre-
specified uncertainty set U .
A.3. The constraints are hard — we cannot toler-
ate violations of constraints, even small ones, when
the data is in U .
E.g., the mail traffic (or shopping) around Christ-
mas is much higher than during the rest of the year.
When following A.2-3 literally, when designing the
corresponding service capacities, we should
— either completely ignore Christmas and orient
ourselves towards the most-of-the-year load on the
system,
— or design the system as if the Christmas load
could happen every day.

• Both these extremes hardly are wise.



♠ What we want now is to “immunize” against
data uncertainty in the case when
— the data are allowed to run out of the uncer-
tainty set, and
— we allow for controlled violation of the constraints
when it happens.
♠ Pursuing this goal, we, as always, can focus on a
single uncertainty-affected conic constraint, which
now is convenient to write down in the form of

A[ζ ]x + b[ζ ] ∈ Q=

{
y :

Piy + pi ∈ Ki,
1 ≤ i ≤ I

}
⊂ F (UCC)

A[ζ ], b[ζ ] are affine in their arguments.
♣ We assume that the “physically possible” per-
turbations ζ run through the set

Z + L ⊂ E = RL, (Pert)

• Z: closed convex “normal range” of ζ
• L: closed convex cone.
Definition: x is robust feasible for (UCC), (Pert) with
global sensitivity α, if

dist(A[ζ ]x + b[ζ ],Q) ≤ αdist(ζ,Z|L) ∀ζ ∈ Z + L dist(y,Q) = min
y′∈Q
‖y − y′‖F ;

dist(z,Z|L) = inf
z′
{‖z − z′‖E : z′ ∈ Z, z − z′ ∈ L}





A[ζ ]x + b[ζ ] ∈ Q (UCC)

x is robust feasible for (UCC) with global sensitivity α
⇔ dist(A[ζ ]x + b[ζ ],Q) ≤ αdist(ζ,Z|L) ∀ζ ∈ Z + L

Clearly, if x is robust feasible for (UCC) with a whatever
global sensitivity, x is robust feasible for (UCC), the un-
certainty set being Z.
♠ Given an uncertain conic problem with certain
objective

P =
{

min
x

{
cTx : Ai[ζ ]x + bi[ζ ] ∈ Qi, i = 1, ...,m

}
ζ

}
and a perturbation structure, that is, Z, L and norms
used to measure the participating distances, the
Globalized Robust Counterpart of the uncertain prob-
lem is the semi-infinite conic problem

min
x

{
cTx :

dist(Ai[ζ ]x + bi[ζ ],Qi) ≤ αidist(ζ,Z|L)
∀ζ ∈ Z + L

}
(GRC)

where αi ≥ 0 are given parameters.
♥Alternatively, we can treat x and αi as the decision
variables and to optimize a new convex objective,
depending both on x and αi, under the same semi-
infinite constraints as in (GRC), and, perhaps, ad-
ditional certain constraints on x and αi.



♠ Sometimes it makes sense to “add some struc-
ture” to the perturbations, specifically, to assume
that

ζ = [ζ1; ...; ζk] ∈ [Z1 × ...×ZK]︸ ︷︷ ︸
Z

+ [L1 × ...× LK]︸ ︷︷ ︸
L

(Zk are closed convex sets, Lk are closed convex
cones) and to define the GRC of an uncertain conic
constraint

A[ζ ]x + b[ζ ] ∈ Q

as

∀ζ ∈ Z + L :dist(A[ζ ]x + b[ζ ],Q) ≤
K∑
k=1

αkdist(ζk,Zk|Lk).



GRC of Scalar Linear Inequality
♣ Consider the GRC of an uncertain scalar linear
inequality

dist(aT [ζ ]x + b[ζ ],R−) ≤ αdist(ζ,Z|L) ∀ζ ∈ Z + L
(ULC)

♠ Since a[ζ ], b[ζ ] are affine in ζ, we have

a[ζ ]x + b[ζ ] ≡ ωT [x]ζ + γ[x]

with ω[x], γ[x] affine in x.
Theorem: Semi-infinite inequality (ULC) is equivalent to
the pair of semi-infinite inequalities

(a) ωT [x]ζ + γ[x] ≤ 0 ∀ζ ∈ Z
(b) ωT [x]ζ ≤ α ∀ζ ∈ L1 = {ζ ∈ L : ‖ζ‖E ≤ 1}.

In particular, (GRC) is computationally tractable, provided
that Z , L and ‖ · ‖ = ‖ · ‖E are so.



♠ Illustration: ‖ · ‖∞ Antenna Design via GRC.
• ‖ · ‖∞ Antenna Design is the uncertain LO{

min
x,τ
{τ : −τ1 ≤ d−D(I + Diag{ζ})x ≤ τ1} : ‖ζ‖∞ ≤ ρ

}
[D : m× n]

♠ The robust performance of a design x is
Fx(ρ) = max

ζ:‖ζ‖∞≤ρ
‖d−D(I + Diag{ζ})x‖∞.

This is a convex nondecreasing function of ρ.
♠ Let us fix an uncertainty level ρ̄ ≥ 0 and set
Z = {ζ : ‖ζ‖∞ ≤ ρ̄}, L = Rn, ‖ζ‖E ≡ ‖ζ‖∞.
Note: A pair (x, τ ) is robust feasible, with global sensi-
tivity α, for the Antenna Design problem iff τ ≥ Fx(ρ̄)
and

α ≥ α(x) := lim
ρ→∞

d

dρ
Fx(ρ) = max

1≤i≤m

∑n

j=1
|Dij||xj|

⇒ Fx(ρ̄), α(x) imply a “global” upper bound on the
robust performance of x:

∀ρ ≥ 0 : Fx(ρ) ≤ Fx(ρ̄) + α(x) max [0, ρ− ρ̄] .

Invoking the easily computable quantity Fx(0), we
can improve this bound to

Fx(ρ) ≤
{ ρ̄−ρ

ρ̄ Fx(0) + ρ
ρ̄Fx(ρ̄), 0 ≤ ρ < ρ̄

Fx(ρ̄) + α(x)[ρ− ρ̄], ρ ≥ ρ̄



Fx(ρ) ≤
{ ρ̄−ρ

ρ̄ Fx(0) + ρ
ρ̄Fx(ρ̄), 0 ≤ ρ < ρ̄

Fx(ρ̄) + α(x)[ρ− ρ̄], ρ ≥ ρ̄
(UB)
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Robust performance of a design
and its upper bound (UB) with ρ̄ = 0.01

♠ When solving Antenna Design problem, our
ideal goal would be to optimize in x the robust
performance Fx(ρ) for all ρ simultaneously, which of
course is impossible.
♠With the usual RC approach we fix the uncertainty
level ρ = ρ̄ and optimize the robust performance at this
level. This makes sense when we know reasonably
well the uncertainty level we intend to work with.
♠ When the range of possible uncertainty levels is wide, it
can be more to the point to look for a “good global upper
bound” (UB) on the robust performance.



Example: Given a “reference uncertainty level” ρ̄,
we can act as follows:
• We solve the RC of the problem, thus finding
the best robust performance φ(ρ̄) = minx Fx(ρ̄) at the
reference uncertainty level ρ = ρ̄;
•We then allow for controlled deterioration of the robust
performance at the reference uncertainty level and choose
among the corresponding designs the one with the smallest
global sensitivity, i.e. solve the problems

xδ ∈ Argmin
x
{α(x) : Fx(ρ̄) ≤ (1 + δ)φ(ρ̄)} (Pδ)

for several values of δ. The larger δ, the worse is the
robust performance of xδ at the uncertainty level ρ̄, and
the smaller is the (upper bound on the) rate at which the
robust performance deteriorates when ρ ≥ ρ̄ grows.
• The arising tradeoff “robust performance at the
reference uncertainty level” vs. “deterioration of
robust performance as the uncertainty level grows”
can be resolved by the end-user.



Illustration: Set ρ̄ = 0. Here (Pδ) is a simple LO
program:

xδ ∈ Argmin
x

{
max

1≤i≤m

∑n
j=1 |Dij||xj| :

‖d−Dx‖∞ ≤ (1 + δ) min
u
‖d−Du‖∞, ∀i

}
♥ Here are the optimal values in (Pδ) (≡ global
sensitivities of the designs xδ):

δ 0 0.2 0.3 0.4 0.5
α(xδ) 2.6× 105 3.8134 1.9916 0.9681 0.9379
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Red and magenta: upper bounds Fxδ(0) + α(xδ)ρ
on Fxδ(ρ)
Blue: upper bound on the robust performance of the
robust optimal design associated with ρ = 0.01.



Globalized Robust Counterparts of Conic Constraints
♣ Entity of interest: semi-infinite conic constraint

∀ζ ∈ Z + L :dist(A[ζ ]x + b[ζ ],Q) ≤
K∑
k=1

αkdist(ζk,Zk|Lk).

(GRC)
• Q = {y : Piy + qi ∈ Ki, 1 ≤ i ≤ I}

[Ki : Rmi
+ /L

mi/Smi
+ ]

• Zk ⊂ RLk: closed convex set
• Lk ⊂ RLk: closed convex cone
Note: A[ζ ]x + b[ζ ] ≡

∑K
k=1 Ωk[x]ζk + γ[x] with Ωk[x], γ[x]

affine in x.
♠ Equivalent reformulation of (GRC)
• Recessive cone Rec(X) of a closed convex set X:
the set of all directions d such that ȳ+td ∈ X ∀t > 0 for some
(and then for all) ȳ ∈ X.
Examples: A. X is bounded ⇒ Rec(X) = {0}
B. X is a cone ⇒ Rec(X) = X
Theorem: (x, α ≥ 0) is feasible for (GRC) if and only if

(a) A[ζ ]x + b[ζ ] ∈ Q ∀ζ ∈ Z1 × ...×ZK
(b) Ψk(x) := sup

ζk∈Lk1

dist(Ωk[x]ζk,Rec(Q)) ≤ αk, k ≤ K

[Lk1 = {ζk ∈ Lk : ‖ζk‖(k) ≤ 1}]



♠ We have reduced the Globalized Robust Coun-
terpart (GRC) of an uncertain conic constraint to a
pair of semi-infinite conic constraints (a), (b), and
such a system not necessarily is tractable. What to
do when (a) - (b) is intractable?
As in the case of RC, assume that 0 ∈ Zk, k ≤ K,
and embed (GRC) into a single-parametric family
of semi-infinite conic constraints

∀ζ ∈ ρZ + L :

dist(
K∑
k=1

Ωk[x]ζk + γ[x],Q) ≤
K∑
k=1

αkdist(ζk, ρZk|Lk)
(GRC)

m
(aρ) A[ζ ]x + b[ζ ] ∈ Q ∀ζ ∈ ρZ1 × ...× ρZK
(b) Ψk(x) := sup

ζk∈Lk1

dist(Ωk[x]ζk,Rec(Q)) ≤ αk, k ≤ K

[Lk1 = {ζk ∈ Lk : ‖ζk‖(k) ≤ 1}]
and let us look for tight tractable approximations of
(aρ) and (b).



(aρ) A[ζ ]x + b[ζ ] ∈ Q∀ζ ∈ ρZ1 × ...× ρZK
(b) Ψk(x) := sup

ζk∈Lk1

dist(Ωk[x]ζk,Rec(Q)) ≤ αk, ∀k

(GRCρ)
• We already know what a ϑ-tight safe tractab-
le approximation of (aρ) is: a system Sρ of efficiently
computable convex constraints on x and additional variables
such that
— if ρ ≥ 0 and x are such that x can be extended to a feasible
solution of Sρ, x is feasible for (aρ);
— if ρ ≥ 0 and x are such that x cannot be extended to a
feasible solution of Sρ, x is not feasible for (aϑρ)
• By definition, a safe κ-tight tractable approximation of
(b) is a collection of efficiently computable convex upper
bounds Φk on Ψk such that Φk(x) ≤ κΨk(x) for every x.
♣ Replacing (aρ) with a ϑ-tight s.t.a. Sρ, and (b) with a κ-
tight s.t.a. Φk(x) ≤ αk, k ≤ K, we get a tractable system S+

ρ

of convex constraints on x, α1, ..., αK and additional variables
such that
— if ρ and (x, α) are such that (x, α) can be extended to a
feasible solution of Z+

ρ , (x, α) is feasible for (GRCρ).
— if ρ and (x, α) are such that (x, α) cannot be extended to a
feasible solution of Z+

ρ , (x, κ−1α) is not feasible for (GRCϑ−1ρ).



Tight Approximations of Ψk

♣ Situation: We are given
• Euclidean space F with closed convex cone KF and norm
‖ · ‖F
• Euclidean space E with closed convex cone KE and norm
‖ · ‖E
• A linear mapping x 7→ Ax : E → F .
♠ Goal: to build a tight efficiently computable convex upper
bound Φ[A] on the function

Ψ[A] = max
e

{
dist‖·‖F (Ae,KF ) : e ∈ KE, ‖e‖E ≤ 1

}
Fact: The resulting problem admits a kind of duality.
♥ Definition: Let B be a Euclidean space with a norm ‖·‖.
The conjugate to ‖ · ‖ norm is defined as

‖z‖∗ = max
y:‖y‖≤1

〈z, y〉

In fact, ‖ · ‖∗ is the smallest norm on B such that
〈x, y〉 ≤ ‖z‖∗‖y‖ ∀y, z.

Example 1: When B is Rn with the standard inner prod-
uct, p ∈ [1,∞] and ‖ · ‖ = ‖ · ‖p, one has ‖ · ‖∗ = ‖ · ‖q with
1
p + 1

q = 1.

Example 2: When B is Rm×n with the standard inner prod-
uct, p ∈ [1,∞] and ‖Y ‖ = ‖σ(Y )‖p, σ(Y ) being the vector of
singular values of Y , one has ‖Z‖∗ = ‖σ(Z)‖q with 1

p + 1
q = 1.

Fact: (‖ · ‖∗)∗ = ‖ · ‖.



max
e

{
dist‖·‖F (Ae,KF ) : e ∈ KE, ‖e‖E ≤ 1

}
(∗)

Observe that

dist‖·‖F (Ae,KF ) = max
f

{
−〈Ae, f〉F : f ∈ KF

∗ , ‖f‖F,∗ ≤ 1
}

⇒
max
e

{
dist‖·‖F (Ae,KF ) : e ∈ KE, ‖e‖E ≤ 1

}
= max

e,f

{
− 〈Ae, f〉F︸ ︷︷ ︸

=〈A∗f,e〉E

:

{
e ∈ KE, ‖e‖E ≤ 1,
f ∈ KF

∗ , ‖f‖F,∗ ≤ 1
}

= max
f

{
dist‖·‖E,∗(A

∗f,KE
∗ ) : f ∈ KF

∗ , ‖f‖F,∗ ≤ 1
}

Thus: Quantity (∗) remains intact when one carries out
the following transformation of its data:
• A← A+ := A∗

• E ← E+ := F , KE ← KE
+ := KF

∗ ,
‖ · ‖E ← ‖ · ‖+

E := ‖ · ‖F,∗
• F ← F+ := E, KF ← KF

+ := KE
∗ ,

‖ · ‖F ← ‖ · ‖+
F := ‖ · ‖E,∗.

Conclusion: “Good cases” of (∗) — tuples
(E,KE, ‖ · ‖E, F,KF , ‖ · ‖F )

allowing for efficient computation (of a tight upper bound on)
the quantity (∗) as a function of A — are met in “conjugate
pairs” with members of a pair linked to each other by the
above transformation.



E,KE, BE = {‖e‖E ≤ 1} & F,KF , BF = {‖f‖F ≤ 1}
⇓

Ψ[A] = max
e∈BE∩KE

dist‖·‖F (Ae,KF )

♣ From now on we assume that KE, BE, K
F , BF are compu-

tationally tractable, and ask when Ψ[·] is efficiently computable
(or admits tight computable upper bound).

0) [Trivial case]
KE = {0}
KF = F

⇒ Ψ[A] ≡ 0

1)
KE = E,BE = Conv{e1, ..., eN}
KF = {0}, ‖f‖F = max

i≤N
|〈f, fi〉F |

⇒
Ψ[A] = max

i
dist‖·‖F (Aei, K

F )

Ψ[A] = max
i,e

{
〈Ae, fi〉F : ‖e‖E ≤ 1, e ∈ KE

}
Note: In the GRC context, KE is the cone L (or Lk), and
KF is the recessive cone of Q. Therefore 1) implies, e.g., that
the GRC of uncertain conic constraint is tractable when

— L = E and ‖ · ‖E = ‖ · ‖1, or when
— Q is bounded and ‖ · ‖F = ‖ · ‖∞



2) KE = E,KF = {0} [self-conjugate case]. In the GRC
context this relates to L = E, Q bounded. Here

Ψ[A] = max
e
{‖Ae‖F : ‖e‖E ≤ 1} =: ‖A‖E,F .

♥ We know 3 generic cases when ‖A‖E,F is efficiently com-
putable:
• BE = Conv{e1, ..., eN}
⇒ ‖A‖E,F = maxi ‖Aei‖F
• BF = {f : 〈f, fi〉F ≤ 1, i ≤ N}
⇒ ‖A‖E,F = max

i,e
{〈A∗fi, e〉E : ‖e‖E ≤ 1}

• ‖ · ‖E = ‖ · ‖2, ‖ · ‖F = ‖ · ‖2

⇒ ‖A‖E,F =
√
λmax(A∗A)

♥ When ‖ · ‖E = ‖ · ‖p, ‖ · ‖F = ‖ · ‖r, computing ‖A‖E,F is
provably NP-hard, provided that p > r. However, we have
Theorem [Nesterov] When p ≥ 2 ≥ r, ‖A‖E,F admits the
efficiently computable upper bound

min
µ,ν

{
‖µ‖ p

p−2
+ ‖ν‖ r

2−r

2
:

[
Diag{µ} AT

A Diag{ν}

]
� 0

}
,

and this bound is tight within the factor
[

2
√

3
π −

2
3

]−1

≈
2.2936.
• Depending on p, r, the tightness factor can be improved; e.g.,
when p =∞, r = 2, it reduces to

√
π/2.



3)

F = Rm, ‖ · ‖F = ‖ · ‖∞, KF =

u :
ui ≥ 0, i ∈ I+

ui ≤ 0, i ∈ I−
ui = 0, i ∈ I0


E = Rn, ‖ · ‖E = ‖ · ‖1, K

E =

v :
vj ≥ 0, j ∈ J+

vj ≤ 0, j ∈ J−
vj = 0, j ∈ J0



⇒

Ψ[A] = max
u∈U

max
e∈KE ,‖e‖E≤1

uTe,

U = {−fi}i∈I+ ∪ {fi}i∈I− ∪ {±fi}i∈I0
[fi: basic orths in F ]

Ψ[A] = max
v∈V

dist‖·‖F (Av,KF ),

V = {ej}j∈J+ ∪ {−ej}j∈J− ∪ {±ej}j 6∈(J+∪J−∪J0)

[ej: basic orths in E]



4)

F = Rm, KF = Lm, ‖ · ‖F = ‖ · ‖2,
KE = E = Rn, ‖ · ‖E = ‖ · ‖2

F = Rn, KF = {0}, ‖ · ‖F = ‖ · ‖2,
E = Rm, KE = Lm, ‖ · ‖E = ‖ · ‖2

⇒
Ψ[A] ≤ ‖A∗Diag{

√
3
2Im−1,

√
3

2 }‖2,2 ≤
√

3/2Ψ[A]

Ψ[A] ≤ ‖ADiag{
√

3
2Im−1,

√
3

2 }‖2,2 ≤
√

3/2Ψ[A]

Explanation: Assuming E = Rm, ‖ · ‖E = ‖ · ‖2, K
E =

Lm, F = Rn, KF = {0}, ‖ · ‖F = ‖ · ‖2, we have

Ψ[A] = max
v

{
‖Av‖2 :

v ∈ Lm,
‖v‖2 ≤ 1

}
= max

v
{‖Av‖2 : v ∈ B} ,

B := Conv{{v ∈ Lm, ‖v‖2 ≤ 1} ∪ {v ∈ −Lm, ‖v‖2 ≤ 1}},

⇒ Ψ[A] is the operator norm of A induced by the norm
‖ · ‖E with the unit ball B in E and the Euclidean
norm in F . The norm ‖v‖E can be approximated
within the factor

√
3/2 by the Euclidean norm√

v2
1 + ... + v2

m−1 + 2v2
m:

Blue: set B

and the result follows.



♠ Illustration: Least Squares Antenna Design via
GRC.
• ‖ · ‖2 Antenna Design is the uncertain Least
Squares problem with instances

min
x,τ

{
τ : [h−H(I + Diag{ζ})x; τ ] ∈ Q ≡ Lm+1︸ ︷︷ ︸

⇔ ‖h−H(I + Diag{ζ})x‖2 ≤ τ

}
• H : m× n • ζ : data perturbation

♠ The robust performance of a design x is

Fx(ρ) = max
ζ:‖ζ‖∞≤ρ

‖h−H(I + Diag{ζ})x‖2.

This is a convex nondecreasing function of ρ.

♠ Let us fix an uncertainty level ρ̄ ≥ 0 and set
‖ ·‖F = ‖ ·‖2, Z = {ζ : ‖ζ‖∞ ≤ ρ̄}, L = Rn, ‖ ·‖E ≡ ‖·‖∞.

Note: A pair (x, τ ) is robust feasible, with global sensi-
tivity α, for the Least Squares Antenna Design problem,
iff τ ≥ Fx(ρ̄) and

α ≥ α(x) := max
‖ζ‖∞≤1

dist‖·‖2([D[x]ζ ; 0],Lm+1)

D[x] = HDiag{x}

Observation: dist‖·‖2([u; 0]; Lm+1) = 2−1/2‖u‖2.
Observation:
lim
ρ→∞

d
dρFx(ρ) = limρ→∞ Fx(ρ)/ρ = max

‖ζ‖∞≤1
‖D[x]ζ‖2.

⇒ lim
ρ→∞

d
dρFx(ρ) = 21/2α(x)



Conclusion: similarly to the LO case, Fx(0), Fx(ρ̄) and α(x)
produce a global upper bound on Fx(·):

Fx(ρ) ≤
{ ρ̄−ρ

ρ̄ Fx(0) + ρ
ρ̄Fx(ρ̄), 0 ≤ ρ < ρ̄

Fx( ¯rho) + 21/2α(x)[ρ− ρ̄], ρ ≥ ρ̄

⇒ when the uncertainty level ρ̄ we should work with is only
vaguely known, we can use the GRC methodology to optimize,
to some extent, a global upper bound on the robust perfor-
mance, similarly to what we did in the ‖ · ‖∞ Antenna Design.



Tractability Issues
♣ In contrast to the LO case, now neither Fx(ρ),
nor α(x) is easy to compute. However, these quanti-
ties admit tight tractable upper bounds:

• Fx(ρ) = max
‖ζ‖∞
‖h−H(I + Diag(ζ))x︸ ︷︷ ︸

h−Hx+D[x]ζ

‖2

= max
η,t:‖[η;t]‖∞≤1

‖ρD[x]η + t[h−Hx]‖2

= ‖[ρD[x], h−Hx]‖∞,2.
By Nesterov’s Norm Bound Theorem, the efficiently
computable quantity

F̂x(ρ) = min
µ,ν

{
‖µ‖1 + ν

2
:

[
νIm [ρD[x], h−Hx]

[ρD[x], h−Hx]T Diag{µ}

]
� 0
}

is a tight within the factor
√
π/2 upper bound on Fx(ρ).

Note: same as Fx(ρ), F̂x(ρ) is a convex nondecreasing func-
tion of ρ ≥ 0.

• α(x) = max
‖ζ‖∞≤1

dist‖·‖2([D[x]ζ ; 0],Lm+1)

= 2−1/2 max
‖ζ‖∞≤1

‖D[x]ζ‖2 = 2−1/2‖D[x]‖∞,2

⇒ the efficiently computable quantity

α̂(x) = min
µ,ν

{
‖µ‖1+ν

2
√

2
:
[

νIm D[x]

DT [x] Diag{µ}

]
� 0
}

is a tight within the factor
√
π/2 upper bound on α(x).

Note: α̂(x) = 2−1/2 lim
ρ→∞

d
dρF̂x(ρ).



♣ Summary: the efficiently computable quantities F̂x(ρ),
α̂(x) are tight, within the factor

√
π/2, upper bounds on

Fρ(x), α(x), respectively.

Since F̂x(ρ) is convex and nondecreasing in ρ and

α̂(x) = 2−1/2 lim
ρ→∞

d
dρF̂x(ρ), we have

Fx(ρ) ≤

{
ρ̄−ρ
ρ̄ F̂x(ρ̄) + ρ

ρ̄F̂x(0), 0 ≤ ρ < ρ̄

F̂x(ρ) + 21/2α̂(x)[ρ− ρ̄], ρ ≥ ρ̄

and we can optimize, to some extent, the right
hand side in order to ensure a desirable robust per-
formance of our design in a wide range of values of
ρ.



♠ Illustration: Setting ρ̄ = 0, we solve the problems

β(δ) = min
x

{
α̂(x) : F̂x(0) ≡ ‖h−Hx‖2

≤ (1 + δ) min
u
‖h−Hu‖2

}
for several values of δ, thus getting global upper bounds

F̂xδ(0) + 21/2β(δ)ρ (∗)

on the robust performances of the resulting designs. The end-
user could then choose the design he finds the most appropri-
ate.

δ 0 0.25 0.50 0.75 1.00 1.25
β(δ) 9441.4 14.883 1.7165 0.6626 0.1684 0.1025
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Red and Magenta: bounds (∗) for the values of δ from the
table.
Blue: Bound on global performance of the RC design corre-
sponding to ρ = 0.01 (global sensitivity ≤ 0.3962).



Intermediate Summary
♣ So far,
♠We have defined the notion of uncertain conic prob-
lem – a family P of instances

min
x

cTx :
A1[ζ ]x + b1[ζ ] ∈ K1

..........
Am[ζ ]x + bm[ζ ] ∈ Km

 , ζ ∈ Z

with the data A1, b1, ..., Am, bm affinely parameterized
by the perturbation ζ running through a given pertur-
bation set Z. Here Ki are simple cones, specifically,
nonnegative rays (uncertain LO), or Lorentz/Semide-
finite cones (uncertain CQO/SDO), and Z w.l.o.g.
can be assumed convex and closed.

♠ We associated with uncertain problem P its Ro-
bust Counterpart – the semi-infinite convex problem

min
x

cTx :
A1[ζ ]x + b1[ζ ] ∈ K1

..........
Am[ζ ]x + bm[ζ ] ∈ Km

∀ζ ∈ Z
 (RC)

and treated the optimal solution of (RC) as the
best “uncertainty-immunized” solution to the un-
certain problem of interest.



min
x

cTx :
A1[ζ ]x + b1[ζ ] ∈ K1

..........
Am[ζ ]x + bm[ζ ] ∈ Km

∀ζ ∈ Z
 (RC)

♠ The major theoretical issue we focused on was
the one of computational tractability of the RC. We
have seen that this crucial property
— always takes place in uncertain LO, provided that
the perturbation set Z is computationally tractable,
— takes place in the case of scenario uncertainty
Z = Conv{ζ1, ..., ζN},
— sometimes takes place in Uncertain CQO/SDO.

In the case of Uncertain CQO/SDO, we have listed
known “solvable cases” (same as “nearly solvable” ones
– those where the RC admits a tight safe tractable ap-
proximation), and we have seen that these (nearly) solv-
able cases cover a reasonably wide variety of interesting
and important applications.
• I believe building tractable reformulations/tight safe
tractable approximations of the RC (or, which is the
same, of semi-infinite conic constraints) is a rich, chal-
lenging and nontrivial research area.



Challenges: Adjustable Robust Optimization
♣ Aside of applications of the RO methodology in
various subject areas, an important venue of the
RO-related research is extending the RO methodology
beyond the scope of the RC approach as presented so far.

The most important in this respect is, we believe,
passing to Adjustable Robust Optimization, where the
decision variables are allowed to “adjust themselves”, to
come extent, to the true values of the uncertain data.
♠ One of the central assumptions which led us to
the notion of Robust Counterpart reads:

A.1. All decision variables in uncertain problem repre-
sent “here and now” decisions; they should be assigned
specific numerical values as a result of solving the prob-
lem before the actual data “reveals itself.”

While being adequate to many decision making sit-
uations, A.1 is not a “universal truth.”



♠ In some cases, not all decision variables represent
“here and now” decisions. In dynamical decision mak-
ing some of the variables represent “wait and see”
decisions and as such can depend on the portion
of the true data which “reveals itself” before the
moment when the decision is being made.
Example: In an inventory affected by uncertain demand,
there are no reasons to specify all replenishment orders in ad-
vance; the true time to specify the replenishment order of pe-
riod t is the beginning of this period, and thus we can allow this
order to depend on the actual demands in periods 1, ..., t− 1.
♠ Usually, not all decision variables represent actual deci-
sions; there exist also “analysis” (or slack) variables
which do not represent decisions at all and are used
to convert the problem into a desired form, e.g.,
one of a LO problem. Since the analysis variables do
not represent actual decisions, why not to allow them to
depend on the entire true data?



Example: The convex constraint
∑

i |aTi x− bi| ≤ τ can be
represented by a system of linear constraints

−yi ≤ aTi x− bi ≤ yi,
∑

i
yi ≤ τ. (∗)

When the data ai, bi are uncertain and xj represent “here and
now” decisions and thus should be assigned values independent
of the true data, there are absolutely no reasons to impose
the same restriction on the slack variables y. To see the
difference,
• The “true” RC of the uncertain constraint∑

i |aTi [ζ ]x− bi[ζ ]| ≤ τ , ζ ∈ Z is∑
i |aTi [ζ ]x− bi[ζ ]| ≤ τ ∀ζ ∈ Z,

and the “true” robust feasible set is

{x : ∀ζ ∈ Z : ∃y : −yi ≤ aTi [ζ ]x− bi[ζ ] ≤ yi,
∑

i
yi ≤ τ}

(1)
• The RC of the uncertain system (∗) is

−yi ≤ aTi [ζ ]x− bi[ζ ] ≤ yi,
∑

i yi ≤ τ ∀ζ ∈ Z,
and the robust feasible set is

{x : ∃y : ∀ζ ∈ Z : −yi ≤ aTi [ζ ]x− bi[ζ ] ≤ yi,
∑

i
yi ≤ τ}

(2)
(2) is smaller than (1), and the difference can be
dramatic:

|x + ζ| + |x− ζ| ≤ 2, ζ ∈ [−1, 1]⇒
{

(1) = {−1 ≤ x ≤ 1}
(2) = {0}



P =

min
x
{cT [ζ ]x + d[ζ ] :

n∑
j=1

xjAj[ζ ] ≤ b[ζ ]} : ζ ∈ Z


Adjustable and Affinely Adjustable Robust Counterpart
♣ In order to allow for the decision variables in
P to “adjust themselves,” to some extent, to the
true values of the uncertain data, we could act as
follows:
•We fix matrices Pj and allow the decision variable
xj to be an arbitrary function of the “portion” Pjζ
of the true data: xj = Xj(Pjζ)
• We plug the decision rules Xj(Pjζ) into P and re-
quire them to be robust feasible:∑n

j=1
Xj(Pjζ)Aj[ζ ] ≤ b[ζ ] ∀ζ ∈ Z

• We associate with uncertain problem P its Ad-
justable Robust Counterpart

min
t,Xj(·)

{
t :

∑
j cj[ζ ]Xj(Pjζ) + d[ζ ] ≤ t∑
jXj(Pjζ)Aj[ζ ] ≤ b[ζ ]

}
∀ζ ∈ Z

}
(ARC)

Note: When the decision rules Xj(·) are restricted to be
constant, (ARC) recovers the usual RC of P .



P =
{

min
x
{cT [ζ ]x + d[ζ ] :

∑n

j=1
xjAj[ζ ] ≤ b[ζ ]} : ζ ∈ Z

}
⇒

min
t,Xj(·)

{
t :

∑
j cj[ζ ]Xj(Pjζ) + d[ζ ] ≤ t∑
jXj(Pjζ)Aj[ζ ] ≤ b[ζ ]

}
∀ζ ∈ Z

}
(ARC)

♠ While perfectly well suited to capture the ad-
justability, if any, of decision variables to the true
data, (ARC) has a severe built-in drawback: it is
a “genuine” infinite-dimensional problem, and as such is,
in general, severely computationally intractable. It is
unclear even how to represent candidate decision
rules – which are functions of many variables! –
in a computer. Seemingly the only techniques allowing to
handle ARC are offered by Dynamic Programming, and thus
suffer from the “curse of dimensionality.”
♠ Remedy: to restrict ourselves with parametric decision
rules, specifically, with affine ones:

Xj(Pjζ) ≡ ξj + ηTj Pjζ.

♥ Restricted to affine decision rules, the ARC be-
comes a finite-dimensional semi-infinite problem

min
t,ξj ,ηj

{
t :

∑
j cj[ζ ][ξj + ηTj Pjζ ] + d[ζ ] ≤ t∑
j[ξj + ηTj Pjζ ]Aj[ζ ] ≤ b[ζ ]

}
∀ζ ∈ Z

}
called the Affinely Adjustable RC of the uncertain
problem P.



min
t,ξj ,ηj

{
t :

∑
j cj[ζ ][ξj + ηTj Pjζ ] + d[ζ ] ≤ t∑
j[ξj + ηTj Pjζ ]Aj[ζ ] ≤ b[ζ ]

}
∀ζ ∈ Z

}
(AARC)

Definition: We say that P is with fixed recourse, if the
coefficients cj[ζ ], Aj[ζ ] of every adjustable (i.e., with Pj 6= 0)
variable xj are in fact certain.

Observation: Under fixed recourse, (AARC) is of the same
structure as the RC of P , specifically, is a problem with linear
objective and bi-affine in ζ ∈ Z and in (x, t) constraints.

We have arrived at the following

Theorem 1: The AARC of an uncertain LO problem
with fixed recourse is computationally tractable, provided
the perturbation set Z is so.

Theorem 2: The AARC of an uncertain LO problem
with non-fixed recourse and with ∩-ellipsoidal perturba-
tion set Z = Zρ = {ζ : ζTQjζ ≤ ρ2, 1 ≤ j ≤ J}
[Qj � 0,

∑
jQj � 0] admits a safe tractable approxima-

tion tight within the factor O(1)
√

ln(J + 1). When J = 1,
the approximation is exact.

Note: the conclusion of Theorem 2 remains valid when the de-
cision rules for “fixed recourse” xj (those which enter the prob-
lem solely with certain coefficients) are allowed to be quadratic
in Pjζ , and the decision rules for the “non-fixed-recourse” vari-
ables are allowed to be affine in Pjζ .



♣ How it works: Inventory Problem. A single-product
inventory comprised of a warehouse and I factories evolves over
time horizon 1, ..., N . The inventory is affected by uncertain
demand d = [d1; ...; dN ] varying in a given domain D. No
backlogged demand is allowed. Let
• xt be the inventory level at the beginning of period t,
• wit be the amount of product, ordered from and delivered
by factory # i in period t.
Given the initial state x1 of the inventory, bounds on the
inventory levels and on the instant and cumulative replen-
ishment orders, we want to minimize the worst, over the
demand trajectories from D, overall ordering cost:

min
C,x,w

C [total ordering cost]

s.t. C ≥
∑N

t=1

∑I
i=1 citwit [cost description]

xt+1 = xt +
∑I

i=1wit − dt [state equations]
X ≤ xt ≤ X [bounds on states]
0 ≤ wit ≤ Wit bounds on orders]

0 ≤
∑N

τ=1wit ≤ Ŵi [bounds on accumulated orders]

♠ Applying the AARC approach, we
• allow to our actual “wait and see decisions” wit
to depend affinely on Ptd ≡ [d1; ...; dt−1]: wit = pit +∑

τ<t q
τ
itdτ

• allow to the “analysis variables” x2,...,xN+1 to be
arbitrary affine functions of d: xt = ξt + ηTt d;
• treat C as the only non-adjustable variable.



We plug the decision rules into the model and re-
quire the constraints to be satisfied for all d ∈ D,
thus ending up with the semi-infinite LO problem

min
C,ξtηt,
pit,q

τ
it

C

s.t. C ≥
∑N

t=1

∑I
i=1 cit [pit +

∑
τ<t q

τ
itdτ ]

ξt+1 + ηTt+1d = ξt + ηTt d +
∑I

i=1[pit +
∑

τ<t q
τ
itdτ ]− dt

X ≤ ξt + ηTt d ≤ X

0 ≤
∑I

i=1[pit +
∑

τ<t q
τ
itdτ ] ≤ Wit

0 ≤
∑N

t=1[pit +
∑

τ<t q
τ
itdτ ] ≤ Ŵi

where the constraints should be satisfied for all d ∈ D.
•Note: We are in the situation of fixed recourse⇒ the AARC
is tractable, provided that D is so.
• Note: We could handle easily a much more complicated
problem (many products, additional components in the cost
function, probabilistic constraints, etc., etc.) All what mat-
ters is that the underlying problem is uncertain LO with
uncertainty affecting the right hand sides of constraints
only (and thus not affecting coefficients of adjustable vari-
ables).



♣ Numerical illustration: N = 48, I = 3, D is a box:
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♥

We ran several hundreds of simulations and com-
pared the average replenishment cost incurred by
optimal affine decision rules with utopian cost we
could pay when knowing in advance the demand tra-
jectory and optimizing accordingly our policy. This
comparison (biased against affine decision rules)
shows a surprisingly high quality of these rules:

AARC-based cost Utopian cost
Uncertainty Mean Std Mean Std

2.5% 33974 190 33878(-0.3%) 194
5% 34063 432 33864(-0.6%) 454
10% 34471 595 34009(-1.6%) 621
20% 35121 1458 33958(-3.4%) 1541

Note: With our setup, the RC is infeasible already at the 5%
uncertainty level.



♥ There is significant evidence that affine deci-
sion rules indeed work well in multi-stage Inven-
tory problems.

♣ Recent (difficult!) result of Bertsimas, Iancu and
Parrilo states that For a single-product Inventory with
the cost function

∑N
t=1[ctwt + ht(xt)] (ct > 0, ht(·) are con-

vex), state equations

xt = xt−1 + wt − dt
bounds W t ≤ wt ≤ W t on replenishment orders and a box
D in the role of the set of uncertain demand trajectories,
the ARC is equivalent to the AARC, that is, the optimal,
in terms of the worst-case management cost, decision rules
can be chosen to be affine in the respective parts of the de-
mand trajectory.

While this theoretical result cannot be extended to a more
general settings of the Inventory problem (say, it fails to be
true when bounds on accumulated orders are added, and/or
the box uncertainty set is replaced with a more general one),
AARC, practically speaking, seems to be a good technique for
worst-case oriented Inventory management.

Note: When passing from minimizing the worst-case
management cost to minimizing the average one, affine de-
cision rules become by far non-optimal already for pretty
simple Inventory models.



♣ Assume we want to solve a “restricted ARC”
on an Uncertain LO problem with fixed recourse,
that is, its ARC where the decision rules are re-
stricted to reside in a given class (e.g., to be affine,
or quadratic, or polynomial,... in their arguments).
• When restricted to affine decision rules, the ARC becomes
easy. Is the affinity an actual restriction here?
♠ Assume that instead of affine decision rules
xj = ξj +ηTj Pjζ we indent to use rules from a general
parametric family:

xj =
∑

`
ηj`fj`(Pjζ) (∗)

• fj`(·): “basic functions” • ηj`: free parameters.
♥Augmenting the perturbation ζ by the entries ζj` = fj`(Pjζ),
that is, extending ζ to the new perturbation vector

ζ̂ [ζ ] = [ζ ; {fj`(Pjζ)}j,`],

decision rules (∗) become affine in the new perturbation. Thus,
for all practical purposes all parametric decision rules can be
thought of as affine ones.
!!! Bottleneck: The AARC of an Uncertain LO with
fixed recourse is easy due to both affinity of the decision
rules and the assumption (which we always made) that
the perturbation set Z is tractable. Passing from ζ to
its nonlinear transform ζ̂ [ζ ], the perturbation set becomes

Ẑ = Conv{ζ̂ [ζ ] : ζ ∈ Z} and can easily lose tractability.



Good case: Quadratic decision rules, Z is an el-

lipsoid. Here ζ̂ [ζ ] =

[
ζT

ζ ζζT

]
. Assuming Z = {ζ :

‖ζ‖2 ≤ 1}, Ẑ := Conv{ζ̂ [ζ ] : ζ ∈ Z} is computationally
tractable:

Ẑ =

{[
ζT

ζ Z

]
:

[
1 ζT

ζ Z

]
� 0, Tr(Z) ≤ 1

}
Semi-Good case: Quadratic decision rules, ∩-ellip-
soidal uncertainty. Here

Z = {ζ : ζTQjζ ≤ 1, 1 ≤ j ≤ J}
[J > 1, Qj � 0,

∑
jQj � 0]

and ζ̂ [·] is as above. Now the set

Ẑ = Conv{ζ̂ [ζ ] : ζ ∈ Z}

can be intractable, but it admits an outer tractable
approximation:

Ẑ ⊂Z̃ =

{[
ζT

ζ Z

]
:

[
1 ζT

ζ Z

]
� 0, Tr(ZQj) ≤ 1, 1 ≤ j ≤ J

}
which is tight within factor ϑ = O(1) ln(J):

ϑ−1Z̃⊂ Ẑ ⊂Z̃.



Generic Application: Synthesis of Linear Controllers
♣ Consider time-varying discrete time linear dy-
namical system

x0 = z [initial state]

xt+1 = Atxt + Btut + Rtdt

 state equations
• xt: state • ut: control
• dt: external disturbance


yt = Ctxt + Dtdt [observed output]

“closed” by affine output-based control law

ut = gt +
∑t

τ=0
Gτ
t yτ . (∗)

♠ Given finite time horizon 0 ≤ t ≤ N , we want
to specify a control law (∗) which ensures that the
state-control trajectory w = [x0; ...xN+1;u0; ...;uN ] satis-
fies given design specifications

Aw ≤ b (!)

robustly w.r.t. the “perturbation” ζ = [z; d0; ...; dN ]
running through a given set Z.
Good news: by linearity of the system and the control law,
the trajectory is affine in ζ .
⇒ The Analysis problem: check whether a given control
law (∗) robustly meets the design specifications reduces to
verifying whether a system of affine constraints on ζ is satisfied
by all ζ ∈ Z . This is easy, provided Z is tractable.



x0 = z
xt+1 = Atxt + Btut + Rtdt
yt = Ctxt + Dtdt

(S)

ut = gt +
∑t

τ=0
Gτ
t yτ (∗)

Bad news: the trajectory is highly nonlinear in the param-
eters γ = {gt, Gτ

t } of the control law (∗)
⇒ The Synthesis problem: find control law (∗), if it exists,
which robustly meets the design specifications seems to be
intractable.
Remedy: pass to affine purified-output-based control laws.
♠ Consider, along with system (S) “closed” by
some control law, its model

x̂0 = 0
x̂t+1 = Atx̂t + Btut
ŷt = Ctx̂t

(M)

which we “feed” by the same controls ut as (S). We
can run the model in an on-line fashion, and thus
at time t, before the decision on ut should be made,
we have in our disposal purified output vt = yt − ŷt
Observation: purified outputs are independent on the
control law known in advance affine functions of ζ.
Indeed, setting ∆t = xt − x̂t, we clearly have

vt = Ct∆t + Dtdt, ∆0 = z, ∆t+1 = At∆t + Rtdt.



System: Model:
x0 = z

xt+1 = Atxt + Btut + Rtdt
yt = Ctxt + Dtdt

(S)
x̂0 = 0

x̂t+1 = Atx̂t + Btut
ŷt = Ctx̂t

(M)

Purified outputs: vt = yt − ŷt

ut =

{
gt +

∑t
τ=0G

τ
t yτ [output-based affine law] (∗)

ht +
∑t

τ=0H
τ
t vt [purified-output-based affine law] (+)

Facts:
♥ Purified-Output-Bbased (POB) affine laws are equiva-
lent to the output-based affine laws: every mapping ζ → w
which can be obtained when “closing” (S) by a law (∗), can
be obtained by closing (S) by a law (+), and vice versa.
♥When (S) is closed by a purified-output-based affine con-
trol law (+), the trajectory w = W [ζ, η] becomes bi-affine
in ζ and in the parameters η = {ht, Hτ

t } of the control law.
♥ As a result, Sticking to purified-output-based control
laws, the Synthesis problem

Given design specifications Aw ≤ b on the state-
control trajectory, find a control law, if one exists,
which meets these specifications robustly w.r.t. ζ =
[z; d0; ...; dN ] ∈ Z

becomes an efficiently solvable system of semi-infinite
affinely perturbed linear constraints on η.



How it Works: Control of 3-Level Serial Inventory

F 3 2 1

3−LEVEL SERIAL  INVENTORY

• Level 1 supplies extrnal demand
• Level 2 supplies Level 1
• Level 3 supplies Level 2 and is supplied from Factory
• There is 2-period delay in executing replenishment orders

The Inventory can be modeled as the 9-state LDS

x1(t + 1) = x1(t) + x2(t) −dt
x2(t + 1) = x3(t)
x3(t + 1) = u1(t)
x4(t + 1) = x4(t) + x5(t) −u1(t)
x5(t + 1) = x6(t)
x6(t + 1) = u2(t)
x7(t + 1) = x7(t) + x8(t) −u2(t)
x8(t + 1) = x9(t)
x9(t + 1) = u3(t)

y(t) = x(t)

• x1, x2, x3 — inventory levels
• ui — replenishment orders • dt — demands



♣ It is well known that serial inventories with de-
lays suffer from bullwhip effect: variations in exter-
nal demand result in much larger variations in the
inventory levels, especially in the one closest to the
factory, thus badly affecting the production:

♠ This is what happens with “naive” feedback:
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Bullwhip effect
Top: time-dependent demand varying in [−1, 1]
Middle: replenishment orders u1(t), u2(t), u3(t)
Bottom: inventory levels (green: #1, blue: #2, red: #3)

♠ Note: variations of the demand in the range [−1, 1] result
in huge (hundreds!) oscillations in the level #3 and in the
replenishment orders.



♥ To reduce the bullwhip effect, we can look for the
best — with the largest decay rate as certified by
Lyapunov Stability Certificate — linear feedback.
With this control, the picture looks much better:
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Good linear feedback
Top: time-dependent demand varying in [−1, 1]
Middle: replenishment orders u1(t), u2(t), u3(t)
Bottom: inventory levels (green: #1, blue: #2, red: #3)

But: At the very beginning, we still have unpleasant jumps
in the inventory levels and replenishment orders.



♥ To improve the behaviour of the process in the
beginning, we can use purified-output-based affine
control aimed at minimizing the initial jumps and
converging to the above feedback control. This is
what we get:
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Combined p.o.b./feedback control
Top: time-dependent demand varying in [−1, 1]
Middle: replenishment orders u1(t), u2(t), u3(t)
Bottom: inventory levels (green: #1, blue: #2, red: #3)



♥ This is what we gain in the beginning, while
loosing nothing in the long run:
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combined p.o.b/feedback control (right)
Top: time-dependent demand varying in [−1, 1]
Middle: replenishment orders u1(t), u2(t), u3(t)
Bottom: inventory levels (green: #1, blue: #2, red: #3)



Handling Infinite-Horizon Design Specifications
♣ Let the open loop system be time-invariant:

x0 = z
xt+1 = Axt + But + Rdt
yt = Cxt + Ddt

, t = 0, 1, ...

and stable: the spectral radius of A is < 1.
♠ Let us use nearly time-invariant affine POB control:

ut = ht +
∑k−1

s=0H
t
svt−s

for t ≥ N∗ : ht = 0 & H t
τ = Hτ

N∗: stabilization time.



xt+1 = Axt + But + Rdt
yt = Cxt + Ddt

, t = 0, 1, ...

ut = ht +
∑k−1

s=0H
t
svt−s

for t ≥ N∗ : ht = 0 & H t
τ = Hτ

♠ Setting

δt = xt − x̂t, H = [H0, ..., Hk−1],

for t ≥ N∗, evolution of the closed loop system will
be given by the time-invariant LDS

ωt+1︷ ︸︸ ︷
xt+1

δt+1

δt
...

δt−k+2

 =

A+[H ]︷ ︸︸ ︷
A BH0C BH1C . . . BHk−1C

A
A

. . .

A

ωt

+

R+[H ]︷ ︸︸ ︷
R BH0D BH1D . . . BHk−1D

R

R
. . .

R



dt︷ ︸︸ ︷
dt
dt
dt−1
...
dt−k+1


ut =

∑k−1
ν=0Hν[Cδt−ν +Ddt−ν].

♠ Facts:
• The matrix A+[H ] is affine in H and is stable for all H
• The resolvent

RH(s) := (sI − A+[H ])−1 [s ∈ C]
has all its singularities in spectrum of A and is affine in H.



xt+1 = Axt + But + Rdt
yt = Cxt + Ddt

, t = 0, 1, ...

ut = ht +
∑k−1

s=0H
t
svt−s

for t ≥ N∗ : ht = 0 & H t
τ = Hτ

♣ Starting with time N∗, the closed loop system
can be “embedded” into the time-invariant LDS

ωt+1 = A+[H ]ωt + R+[H ]dt

ut =
∑k−1

ν=0Hν[Cδt−ν + Ddt−ν]

♠ Let s ∈ C differ from 0 and from all eigenvalues
of A, and let the external disturbance be

dt = stf, t = 0, 1, ...
♠ Facts:
• As t→∞, the state-control trajectory [xt;ut] approaches
the trajectory

stHx,u(s)f .
The transfer matrix Hx,u(s) is easy to compute: setting
RA(s) = (sI − A)−1, one has

Hxu(s) =



Hx(s)︷ ︸︸ ︷
RA(s)

[
R +

∑k−1

ν=0
s−νBHν [D + CRA(s)R]

]
[∑k−1

ν=0
s−νHν

]
[D + CRA(s)R]︸ ︷︷ ︸

Hu(s)


The transfer matrix has all its singularities in the spec-
trum of A and is affine in the steady-state parameters
H = [H0, ..., Hk−1] of the POB control law we use.



xt+1 = Axt + But + Rdt
yt = Cxt + Ddt

, t = 0, 1, ...

ut = ht +
∑k−1

s=0H
t
svt−s

for t ≥ N∗ : ht = 0 & H t
τ = Hτ

♠ The transfer matrix of the closed loop system
has all its singularities in the spectrum of (stable)
A and is affine in the parameters H = [H0, ..., Hk−1] of the
POB affine control law we use.
⇒ Let the design specifications on asymptotic behaviour
of the closed loop system be given by convex constraints
on the transfer matrix. Then design of the POB affine
control law meeting these specifications reduces to Convex
Programming.
• After the above design specifications are met, we can fur-
ther adjust the “transitional behaviour” of the closed loop
system by modifying the resulting POB on finite horizon
0 ≤ t ≤ N∗, which again reduces to Convex Programming.



Example: Discrete time H∞ control.
♣ Discrete time H∞ design specifications impose
constraints on the transfer matrix along the unit
circumference s = exp{ıω}, 0 ≤ ω ≤ 2π, that is, on
the steady state response of the closed loop system
to harmonic oscillations in the role of disturbances.

Let the only nonzero entry in the disturbances be the
j-th one, and let it be a harmonic oscillation of unit
amplitude and frequency ω. Induced steady-state be-
havior of i-th state is the harmonic oscillation of the
same frequency with the amplitude |(Hx(exp{ıω}))ij|
and the phase shifted by arg(Hx(exp{ıω})ij).
⇒ The state-to-input responses (Hx(exp{ıω}))ij ex-
plain the steady-state behavior of states when input
is comprised of harmonic oscillations, and similarly
for control-to-input responses (Hu(exp{ıω}))ij.

♠ A wide spectrum of H∞ design specifications are
given by the systems of constraints of the form

∀(s = exp{ıω} : ω ∈ ∆i ⊂ [0, 2π]) :
‖Gi(s)− Li(s)Hxy(s)Ri(s)‖ ≤ τi, 1 ≤ i ≤ m

• Gi(s), Li(s), Ri(s): rational in s matrix-valued
functions with no singularities on |s| = 1

• ∆i: given segments • ‖ · ‖: standard matrix norm.

♥These specifications reduce to explicit convex constraints
on the parameters H of the affine POB control law we
intend to use and thus are tractable



Control of 3-Level Serial Inventory (continued)

F 3 2 1

3−LEVEL SERIAL  INVENTORY

♣ Minimizing the maximal, over frequencies, mag-
nitude of the frequency response of level 3 orders
to the demand, we get results as follows:
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Magnitudes of frequency responses
• Magenta: naive linear feedback
• Blue: optimal POB affine control with k = 1
• Red: optimal POB affine control with k = 6
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We have dramatically reduced and inverted
the bullwhip effect!

maximal magnitudes: 10.11/3.08

maximal magnitudes: 51.19/0.74

maximal magnitudes: 259.1/0.70

maximal magnitudes: 129.5/1.00


