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Preface

Subject. The data of optimization problems of real world origin typically is uncertain - not
known exactly when the problem is solved. With the traditional approach, “small” (fractions of
percents) data uncertainty is merely ignored, and the problem is solved as if the nominal data
— our guesses for the actual data — were identical to the actual data. However, experiments
demonstrate that already pretty small perturbations of uncertain data can make the nominal
(i.e., corresponding to the nominal data) optimal solution heavily infeasible and thus practically
meaningless. For example, in 13 of 90 LP programs from the NETLIB library, 0.01% random
perturbations of uncertain data lead to more than 50% violations of some of the constraints as
evaluated at the nominal optimal solutions. Thus, in applications there is an actual need in a
methodology which produces robust, “immunized against uncertainty” solutions. Essentially,
the only traditional methodology of this type is offered by Stochastic Programming, where
one assigns data perturbations a probability distribution and replaces the original constraints
with their “chance versions”, imposing on a candidate solution the requirement to satisfy the
constraints with probability ≥ 1−ε, ε� 1 being a given tolerance. In many cases, however, there
is no natural way to assign the data perturbations with a probability distribution; besides this,
Chance Constrained Stochastic Programming typically is computationally intractable – aside of
a small number of special cases, chance constrained versions of simple – just linear – constraints
are nonconvex and difficult to verify, which makes optimization under these constraints highly
problematic.

Robust Optimization can be viewed as a complementary to Stochastic Programming ap-
proach to handling optimization problems with uncertain data. Here one uses “uncertain-but-
bounded” model of data perturbations, allowing the uncertain data to run through a given
uncertainty set, and imposes on a candidate solution the requirement to be robust feasible – to
satisfy the constraints whatever be a realization of the data from this set. Assuming that the
objective is certain (i.e., is not affected by data perturbations; in fact, this assumption does not
restrict generality), one then looks for the robust optimal solution — a robust feasible solution
with as small value of the objective as possible. With this approach, one associates with the
original uncertain problem its Robust Counterpart – the problem of building the robust optimal
solution. Originating from Soyster (1973) and completely ignored for over two decades after its
birth, the Robust Optimization was “reborn” circa 1997 and during the last decade became one
of the most rapidly developing areas in Optimization. The mini-course in question is aimed at
overview of basic concepts and recent developments in this area.

The contents. Our course will be focused on the basic theory of Robust Optimization, specif-
ically, on

• Motivation and detailed presentation of the Robust Optimization paradigm, including
in-depth investigation of the outlined notion of the Robust Counterpart of an uncertain
optimization problem and its recent extensions (Adjustable and Globalized Robust Coun-
terparts);

• Computational tractability of Robust Counterparts. In order to be a working tool rather
than wishful thinking, the RC (which by itself is a specific optimization problem) should
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be efficiently solvable. This, as a minimum, requires efficient solvability of every certain
instance of the uncertain problem in question; to meet this requirement, we restrict our-
selves in our course with uncertain conic optimization, specifically, with uncertain Linear,
Conic Quadratic and Semidefinite Optimization problems. Note, however, that tractabil-
ity of instances is necessary, but by far not sufficient for the RC to be tractable. Indeed,
the RC of an uncertain conic problem is a semi-infinite program: every conic constraint of
the original problem gives rise to infinitely many “commonly structured” conic constraints
parameterized by the data running through the uncertainty set. It turns out that the
tractability of the RC of an uncertain conic problem depends on interplay between the
geometries of the underlying cones and uncertainty sets. It will be shown that “uncertain
Linear Optimization is tractable” — the RC of an uncertain LO is tractable whenever
the uncertainty set is so; this is the major good news about Robust Optimization and
its major advantage as compared to Stochastic Programming. In contrast to this, the
tractability of the RC of an uncertain Conic Quadratic or Semidefinite problem is a “rare
commodity;” the related goal of the course is to overview a number of important cases
where the RCs of uncertain Conic Quadratic/Semidefinite problems are tractable or admit
“tight”, in certain precise sense, tractable approximations.

• Links with Chance Constrained Linear/Conic Quadratic/Semidefinite Optimization. As it
was already mentioned, chance constrained versions of randomly perturbed optimization
problems, even as simple as Linear Programming ones, usually are computationally in-
tractable. It turns out that Robust Optimization offers an attractive way to build “safe,”
in certain natural sense, tractable approximations of chance constrained LO/CQO/SDO
problems. As a result, information on the stochastic properties of data perturbations,
when available, allows to build meaningful (and often highly nontrivial) uncertainty sets.

Prerequisites. Participants are expected to possess basic mathematical culture and to know
the most elementary facts from Linear Algebra, Convex Optimization and Probabilities; all
more specific and more advanced facts we intend to use (Conic Duality, Semidefinite Relaxation,
Concentration Inequalities,...) will be explained in the course.

Textbook. The course is covered by these Lecture Notes and more than covered by the book
A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization, Princeton University Press,
2009 (freely available at http://sites.google.com/site/robustoptimization)
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Lecture 1

Robust Linear Optimization:
Motivation, Concepts, Tractability

In this lecture, we introduce the concept of the uncertain Linear Optimization problem and its
Robust Counterpart, and study the computational issues associated with the emerging opti-
mization problems.

1.1 Data Uncertainty in Linear Optimization

1.1.1 Linear Optimization Problem, its data and structure

The Linear Optimization (LO) problem is

min
x

{
cTx+ d : Ax ≤ b

}
; (1.1.1)

here x ∈ R
n is the vector of decision variables, c ∈ R

n and d ∈ R form the objective, A is an
m× n constraint matrix, and b ∈ R

m is the right hand side vector.

Clearly, the constant term d in the objective, while affecting the optimal value, does not

affect the optimal solution, this is why it is traditionally skipped. When treating the LO

problems with uncertain data there are good reasons not to neglect this constant term.

When speaking about optimization (or whatever other) problems, we usually distinguish between
problems’s structure and problems’s data. When asked “what is the data of the LO problem
(1.1.1),” everybody will give the same answer: “the data of the problem are the collection
(c, d,A, b).” . As about the structure of (1.1.1), it, given the form in which we write the
problem down, is specified by the number m of constraints and the number n of variables.

Usually not all constraints of an LO program, as it arises in applications, are of the form

aTx ≤ const; there can be linear “≥” inequalities and linear equalities as well. Clearly, the

constraints of the latter two types can be represented equivalently by linear “≤” inequalities,

and we will assume henceforth that these are the only constraints in the problem.

1
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1.1.2 Data uncertainty: sources

Typically, the data of real world LOs is not known exactly when the problem is being solved.
The most common reasons for data uncertainty are as follows:

• Some of data entries (future demands, returns, etc.) do not exist when the problem is
solved and hence are replaced with their forecasts. These data entries are thus subject to
prediction errors;

• Some of the data (parameters of technological devices/processes, contents associated with
raw materials, etc.) cannot be measured exactly, and their true values drift around the
measured “nominal” values; these data are subject to measurement errors;

• Some of the decision variables (intensities with which we intend to use various technological
processes, parameters of physical devices we are designing, etc.) cannot be implemented
exactly as computed. The resulting implementation errors are equivalent to appropriate
artificial data uncertainties.

Indeed, the contribution of a particular decision variable xj to the left hand side of constraint i

is the product aijxj . A typical implementation error can be modeled as xj 7→ (1 + ξj)xj + ηj ,

where ξj is the multiplicative, and ηj is the additive component of the error. The effect of this

error is as if there were no implementation error at all, but the coefficient aij got the multiplicative

perturbation: aij 7→ aij(1 + ξj), and the right hand side bi of the constraint got the additive

perturbation bi 7→ bi − ηjaij .

1.1.3 Data uncertainty: dangers

In the traditional LO methodology, a small data uncertainty (say, 0.1% or less) is just ignored;
the problem is solved as if the given (“nominal”) data were exact, and the resulting nominal
optimal solution is what is recommended for use, in hope that small data uncertainties will
not affect significantly the feasibility and optimality properties of this solution, or that small
adjustments of the nominal solution will be sufficient to make it feasible. In fact these hopes
are not necessarily justified, and sometimes even small data uncertainty deserves significant
attention. We are about to present two instructive examples of this type.

Motivating example I: Synthesis of Antenna Arrays.

Consider a monochromatic transmitting antenna placed at the origin. Physics says that

1. The directional distribution of energy sent by the antenna can be described in terms of
antenna’s diagram which is a complex-valued function D(δ) of a 3D direction δ. The
directional distribution of energy sent by the antenna is proportional to |D(δ)|2.

2. When the antenna is comprised of several antenna elements with diagrams D1(δ),..., Dk(δ),
the diagram of the antenna is just the sum of the diagrams of the elements.

In a typical Antenna Design problem, we are given several antenna elements with diagrams
D1(δ),...,Dn(δ) and are allowed to multiply these diagrams by complex weights xi (which in
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reality corresponds to modifying the output powers and shifting the phases of the elements). As
a result, we can obtain, as a diagram of the array, any function of the form

D(δ) =
n∑

j=1

xjDj(δ),

and our goal is to find the weights xj which result in a diagram as close as possible, in a
prescribed sense, to a given “target diagram” D∗(δ).

Example 1.1 Antenna Design Consider a planar antenna comprised of a central circle and 9
concentric rings of the same area as the circle (figure 1.1.a) in the XY -plane (“Earth’s surface”).
Let the wavelength be λ = 50cm, and the outer radius of the outer ring be 1 m (twice the
wavelength).

One can easily see that the diagram of a ring {a ≤ r ≤ b} in the plane XY (r is the distance
from a point to the origin) as a function of a 3-dimensional direction δ depends on the altitude
(the angle θ between the direction and the plane) only. The resulting function of θ turns out to
be real-valued, and its analytic expression is

Da,b(θ) =
1

2

b∫

a




2π∫

0

r cos
(
2πrλ−1 cos(θ) cos(φ)

)
dφ


 dr.

Fig. 1.1.b represents the diagrams of our 10 rings for λ = 50cm.
Assume that our goal is to design an array with a real-valued diagram which should be axial

symmetric with respect to the Z-axis and should be “concentrated” in the cone π/2 ≥ θ ≥
π/2 − π/12. In other words, our target diagram is a real-valued function D∗(θ) of the altitude
θ with D∗(θ) = 0 for 0 ≤ θ ≤ π/2 − π/12 and D∗(θ) somehow approaching 1 as θ approaches
π/2. The target diagram D∗(θ) used in this example is given in figure 1.1.c (blue).

Let us measure the discrepancy between a synthesized diagram and the target one by the
Tschebyshev distance, taken along the equidistant 240-point grid of altitudes, i.e., by the quan-
tity

τ = max
i=1,...,240

∣∣D∗(θi)−
10∑

j=1

xj Drj−1,rj(θi)︸ ︷︷ ︸
Dj(θi)

∣∣, θi =
iπ

480
.

Our design problem is simplified considerably by the fact that the diagrams of our “building
blocks” and the target diagram are real-valued; thus, we need no complex numbers, and the
problem we should finally solve is

min
τ∈R,x∈R10



τ : −τ ≤ D∗(θi)−

10∑

j=1

xjDj(θi) ≤ τ, i = 1, ..., 240



 . (1.1.2)

This is a simple LP program; its optimal solution x∗ results in the diagram depicted at figure
1.1.c (magenta). The uniform distance between the actual and the target diagrams is ≈ 0.0589
(recall that the target diagram varies from 0 to 1).
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Figure 1.1: Synthesis of antennae array.
(a): 10 array elements of equal areas in the XY -plane; the outer radius of the largest ring is
1m, the wavelength is 50cm.
(b): “building blocks” — the diagrams of the rings as functions of the altitude angle θ.
(c): the target diagram (blue) and the synthesized diagram (magenta).
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Figure 1.2: “Dream and reality,” nominal optimal design: samples of 100 actual diagrams (red)
for different uncertainty levels. Blue: the target diagram
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Dream Reality
ρ = 0 ρ = 0.0001 ρ = 0.001 ρ = 0.01
value min mean max min mean max min mean max

‖ · ‖∞-distance
to target

0.059 1.280 5.671 14.04 11.42 56.84 176.6 39.25 506.5 1484

energy
concentration

85.1% 0.5% 16.4% 51.0% 0.1% 16.5% 48.3% 0.5% 14.9% 47.1%

Table 1.1: Quality of nominal antenna design: dream and reality. Data over 100 samples of
actuation errors per each uncertainty level ρ.

Now recall that our design variables are characteristics of certain physical devices. In reality,
of course, we cannot tune the devices to have precisely the optimal characteristics x∗j ; the best

we may hope for is that the actual characteristics xfctj will coincide with the desired values x∗j
within a small margin ρ, say, ρ = 0.1% (this is a fairly high accuracy for a physical device):

xfctj = (1 + ξj)x
∗
j , |ξj | ≤ ρ = 0.001.

It is natural to assume that the actuation errors ξj are random with the mean value equal to 0;
it is perhaps not a great sin to assume that these errors are independent of each other. Note
that as it was already explained, the consequences of our actuation errors are as if there were
no actuation errors at all, but the coefficients Dj(θi) of variables xj in (1.1.2) were subject to
perturbations Dj(θi) 7→ (1 + ξj)Dj(θi).

Since the actual weights differ from their desired values x∗j , the actual (random) diagram
of our array of antennae will differ from the “nominal” one we see on figure 1.1.c. How large
could be the difference? Looking at figure 1.2, we see that the difference can be dramatic. The
diagrams corresponding to ρ > 0 are not even the worst case: given ρ, we just have taken as
{ξj}10j=1 100 samples of 10 independent numbers distributed uniformly in [−ρ, ρ] and have plotted
the diagrams corresponding to xj = (1 + ξj)x

∗
j . Pay attention not only to the shape, but also

to the scale (table 1.1): the target diagram varies from 0 to 1, and the nominal diagram (the
one corresponding to the exact optimal xj) differs from the target by no more than by 0.0589
(this is the optimal value in the “nominal” problem (1.1.2)). The data in table 1.1 show that
when ρ = 0.001, the typical ‖ · ‖∞ distance between the actual diagram and the target one is
by 3 (!) orders of magnitude larger. Another meaningful way, also presented in table 1.1, to
understand what is the quality of our design is via energy concentration – the fraction of the total
emitted energy which “goes up,” that is, is emitted along the spatial angle of directions forming
angle at most π/12 with the Z-axis. For the nominal design, the dream (i.e., with no actuation
errors) energy concentration is as high as 85% – quite respectable, given that the spatial angle
in question forms just 3.41% of the entire hemisphere. This high concentration, however, exists
only in our imagination, since actuation errors of magnitude ρ as low as 0.01% reduce the average
energy concentration (which, same as the diagram itself, now becomes random) to just 16%; the
lower 10% quantile of this random quantity is as small as 2.2% – 1.5 times less than the fraction
(3.4%) which the “going up” directions form among all directions. The bottom line is that “un
reality” our nominal optimal design is completely meaningless.
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Motivating example II: NETLIB Case Study

NETLIB includes about 100 not very large LOs, mostly of real-world origin, used as the standard
benchmark for LO solvers. In the study to be described, we used this collection in order to
understand how “stable” are the feasibility properties of the standard – “nominal” – optimal
solutions with respect to small uncertainty in the data. To motivate the methodology of this
“case study”, here is the constraint # 372 of the problem PILOT4 from NETLIB:

aTx ≡ −15.79081x826− 8.598819x827 − 1.88789x828 − 1.362417x829 − 1.526049x830
−0.031883x849− 28.725555x850 − 10.792065x851− 0.19004x852 − 2.757176x853
−12.290832x854 + 717.562256x855− 0.057865x856 − 3.785417x857 − 78.30661x858
−122.163055x859− 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863
−84.644257x864− 122.459045x865− 43.15593x866 − 1.712592x870 − 0.401597x871
+x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

(C)

The related nonzero coordinates in the optimal solution x∗ of the problem, as reported by CPLEX

(one of the best commercial LP solvers), are as follows:

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100 x∗828 = 3624.613324098961
x∗829 = 18.20205065283259 x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

The indicated optimal solution makes (C) an equality within machine precision.
Observe that most of the coefficients in (C) are “ugly reals” like -15.79081 or -84.644257.

We have all reasons to believe that coefficients of this type characterize certain technological
devices/processes, and as such they could hardly be known to high accuracy. It is quite natural
to assume that the “ugly coefficients” are in fact uncertain – they coincide with the “true” values
of the corresponding data within accuracy of 3-4 digits, not more. The only exception is the
coefficient 1 of x880 – it perhaps reflects the structure of the underlying model and is therefore
exact – “certain”.

Assuming that the uncertain entries of a are, say, 0.1%-accurate approximations of unknown
entries of the “true” vector of coefficients ã, we looked what would be the effect of this uncertainty
on the validity of the “true” constraint ãTx ≥ b at x∗. Here is what we have found:
• The minimum (over all vectors of coefficients ã compatible with our “0.1%-uncertainty

hypothesis”) value of ãTx∗ − b, is < −104.9; in other words, the violation of the constraint can
be as large as 450% of the right hand side!
• Treating the above worst-case violation as “too pessimistic” (why should the true values of

all uncertain coefficients differ from the values indicated in (C) in the “most dangerous” way?),
consider a more realistic measure of violation. Specifically, assume that the true values of the
uncertain coefficients in (C) are obtained from the “nominal values” (those shown in (C)) by
random perturbations aj 7→ ãj = (1 + ξj)aj with independent and, say, uniformly distributed
on [−0.001, 0.001] “relative perturbations” ξj. What will be a “typical” relative violation

V =
max[b− ãTx∗, 0]

b
× 100%

of the “true” (now random) constraint ãTx ≥ b at x∗? The answer is nearly as bad as for the
worst scenario:
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Prob{V > 0} Prob{V > 150%} Mean(V )

0.50 0.18 125%

Table 2.1. Relative violation of constraint # 372 in PILOT4

(1,000-element sample of 0.1% perturbations of the uncertain data)

We see that quite small (just 0.1%) perturbations of “clearly uncertain” data coefficients can
make the “nominal” optimal solution x∗ heavily infeasible and thus – practically meaningless.

A “case study” reported in [8] shows that the phenomenon we have just described is not an
exception – in 13 of 90 NETLIB Linear Programming problems considered in this study, already
0.01%-perturbations of “ugly” coefficients result in violations of some constraints as evaluated
at the nominal optimal solutions by more than 50%. In 6 of these 13 problems the magnitude
of constraint violations was over 100%, and in PILOT4 — “the champion” — it was as large as
210,000%, that is, 7 orders of magnitude larger than the relative perturbations in the data.

The conclusion is as follows:

In applications of LO, there exists a real need of a technique capable of detecting
cases when data uncertainty can heavily affect the quality of the nominal solution,
and in these cases to generate a “reliable” solution, one that is immunized against
uncertainty.

We are about to introduce the Robust Counterpart approach to uncertain LO problems aimed
at coping with data uncertainty.

1.2 Uncertain Linear Problems and their Robust Counterparts

1.2.1 Uncertain LO problem

Definition 1.1 An uncertain Linear Optimization problem is a collection

{
min
x

{
cTx+ d : Ax ≤ b

}}
(c,d,A,b)∈U

(LOU )

of LO problems (instances) min
x

{
cTx+ d : Ax ≤ b

}
of common structure (i.e., with common

numbers m of constraints and n of variables) with the data varying in a given uncertainty set

U ⊂ R
(m+1)×(n+1).

We always assume that the uncertainty set is parameterized, in an affine fashion, by perturbation
vector ζ varying in a given perturbation set Z:

U =

{[
cT d
A b

]
=

[
cT0 d0
A0 b0

]

︸ ︷︷ ︸
nominal
data D0

+
L∑

`=1

ζ`

[
cT` d`
A` b`

]

︸ ︷︷ ︸
basic

shifts D`

: ζ ∈ Z ⊂ RL

}
. (1.2.1)

For example, when speaking about PILOT4, we, for the sake of simplicity, tacitly
assumed uncertainty only in the constraint matrix, specifically, as follows: every
coefficient aij is allowed to vary, independently of all other coefficients, in the interval
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[anij−ρij|anij |, anij+ρij |anij |], where anij is the nominal value of the coefficient — the one
in the data file of the problem as presented in NETLIB, and ρij is the perturbation
level, which in our experiment was set to 0.001 for all “ugly” coefficients anij and
was set to 0 for “nice” coefficients, like the coefficient 1 at x880. Geometrically, the
corresponding perturbation set is just a box

ζ ∈ Z = {ζ = {ζij ∈ [−1, 1]}i,j:anij is ugly},

and the parameterization of the aij-data by the perturbation vector is

aij =

{
anij(1 + ζij), anij is ugly

anij, otherwise

Remark 1.1 If the perturbation set Z in (1.2.1) itself is represented as the image of another set
Ẑ under affine mapping ξ 7→ ζ = p+Pξ, then we can pass from perturbations ζ to perturbations
ξ:

U =

{[
cT d

A b

]
= D0 +

L∑
`=1

ζ`D` : ζ ∈ Z
}

=

{[
cT d

A b

]
= D0 +

L∑
`=1

[p` +
K∑
k=1

P`kξk]D` : ξ ∈ Ẑ
}

=

{[
cT d

A b

]
=

[
D0 +

L∑

`=1

p`D`

]

︸ ︷︷ ︸
D̂0

+
K∑
k=1

ξk

[
L∑

`=1

P`kD`

]

︸ ︷︷ ︸
D̂k

: ξ ∈ Ẑ
}
.

It follows that when speaking about perturbation sets with simple geometry (parallelotopes, ellip-
soids, etc.), we can normalize these sets to be “standard.” For example, a parallelotope is by
definition an affine image of a unit box {ξ ∈ R

k : −1 ≤ ξj ≤ 1, j = 1, ..., k}, which gives us the
possibility to work with the unit box instead of a general parallelotope. Similarly, an ellipsoid
is by definition the image of a unit Euclidean ball {ξ ∈ R

k : ‖x‖22 ≡ xTx ≤ 1} under affine
mapping, so that we can work with the standard ball instead of the ellipsoid, etc. We will use
this normalization whenever possible.

1.2.2 Robust Counterpart of Uncertain LO

Note that a family of optimization problems like (LOU), in contrast to a single optimization
problem, is not associated by itself with the concepts of feasible/optimal solution and optimal
value. How to define these concepts depends on the underlying “decision environment.” Here
we focus on an environment with the following characteristics:

A.1. All decision variables in (LOU ) represent “here and now” decisions; they should
be assigned specific numerical values as a result of solving the problem before
the actual data “reveals itself.”

A.2. The decision maker is fully responsible for consequences of the decisions to be
made when, and only when, the actual data is within the prespecified uncer-
tainty set U given by (1.2.1).
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A.3. The constraints in (LOU ) are “hard” — we cannot tolerate violations of con-
straints, even small ones, when the data is in U .

Note that A.1 – A.3 are assumptions on our decision environment (in fact, the strongest ones
within the methodology we are presenting); while being meaningful, these assumptions in no
sense are automatically valid; In the mean time, we shall consider relaxed versions of these
assumptions and consequences of these relaxations.

Assumptions A.1 — A.3 determine, essentially in a unique fashion, what are the meaningful,
“immunized against uncertainty,” feasible solutions to the uncertain problem (LOU). By A.1,
these should be fixed vectors; by A.2 and A.3, they should be robust feasible, that is, they
should satisfy all the constraints, whatever the realization of the data from the uncertainty set.
We have arrived at the following definition.

Definition 1.2 A vector x ∈ R
n is a robust feasible solution to (LOU ), if it satisfies all realiza-

tions of the constraints from the uncertainty set, that is,

Ax ≤ b ∀(c, d,A, b) ∈ U . (1.2.2)

As for the objective value to be associated with a robust feasible) solution, assumptions A.1 —
A.3 do not prescribe it in a unique fashion. However, “the spirit” of these worst-case-oriented
assumptions leads naturally to the following definition:

Definition 1.3 Given a candidate solution x, the robust value ĉ(x) of the objective in (LOU )
at x is the largest value of the “true” objective cTx+ d over all realizations of the data from the
uncertainty set:

ĉ(x) = sup
(c,d,A,b)∈U

[cTx+ d]. (1.2.3)

After we agree what are meaningful candidate solutions to the uncertain problem (LOU) and how
to quantify their quality, we can seek the best robust value of the objective among all robust
feasible solutions to the problem. This brings us to the central concept of our methodology,
Robust Counterpart of an uncertain optimization problem, which is defined as follows:

Definition 1.4 The Robust Counterpart of the uncertain LO problem (LOU) is the optimization
problem

min
x

{
ĉ(x) = sup

(c,d,A,b)∈U
[cTx+ d] : Ax ≤ b ∀(c, d,A, b) ∈ U

}
(1.2.4)

of minimizing the robust value of the objective over all robust feasible solutions to the uncertain
problem.

An optimal solution to the Robust Counterpart is called a robust optimal solution to (LOU),
and the optimal value of the Robust Counterpart is called the robust optimal value of (LOU).

In a nutshell, the robust optimal solution is simply “the best uncertainty-immunized” solution
we can associate with our uncertain problem.
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1.2.3 More on Robust Counterparts

We start with several useful observations.
A. The Robust Counterpart (1.2.4) of LOU can be rewritten equivalently as the problem

min
x,t

{
t :

cTx− t ≤ −d
Ax ≤ b

}
∀(c, d,A, b) ∈ U

}
. (1.2.5)

Note that we can arrive at this problem in another fashion: we first introduce the extra variable
t and rewrite instances of our uncertain problem (LOU ) equivalently as

min
x,t

{
t :

cTx− t ≤ −d
Ax ≤ b

}
,

thus arriving at an equivalent to (LOU) uncertain problem in variables x, t with the objective t
that is not affected by uncertainty at all. The RC of the reformulated problem is exactly (1.2.5).
We see that

An uncertain LO problem can always be reformulated as an uncertain LO problem
with certain objective. The Robust Counterpart of the reformulated problem has the
same objective as this problem and is equivalent to the RC of the original uncertain
problem.

As a consequence, we lose nothing when restricting ourselves with uncertain LO programs with
certain objectives and we shall frequently use this option in the future.

We see now why the constant term d in the objective of (1.1.1) should not be neglected, or,

more exactly, should not be neglected if it is uncertain. When d is certain, we can account

for it by the shift t 7→ t − d in the slack variable t which affects only the optimal value,

but not the optimal solution to the Robust Counterpart (1.2.5). When d is uncertain, there

is no “universal” way to eliminate d without affecting the optimal solution to the Robust

Counterpart (where d plays the same role as the right hand sides of the original constraints).

B. Assuming that (LOU ) is with certain objective, the Robust Counterpart of the problem is

min
x

{
cTx+ d : Ax ≤ b, ∀(A, b) ∈ U

}
(1.2.6)

(note that the uncertainty set is now a set in the space of the constraint data [A, b]). We see
that

The Robust Counterpart of an uncertain LO problem with a certain objective is a
purely “constraint-wise” construction: to get RC, we act as follows:

• preserve the original certain objective as it is, and

• replace every one of the original constraints

(Ax)i ≤ bi ⇔ aTi x ≤ bi (Ci)

(aTi is i-th row in A) with its Robust Counterpart

aTi x ≤ bi ∀[ai; bi] ∈ Ui, RC(Ci)
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where Ui is the projection of U on the space of data of i-th constraint:

Ui = {[ai; bi] : [A, b] ∈ U}.

In particular,

The RC of an uncertain LO problem with a certain objective remains intact when
the original uncertainty set U is extended to the direct product

Û = U1 × ...× Um
of its projections onto the spaces of data of respective constraints.

Example 1.2 The RC of the system of uncertain constraints

{x1 ≥ ζ1, x2 ≥ ζ2} (1.2.7)

with ζ ∈ U := {ζ1 + ζ2 ≤ 1, ζ1, ζ2 ≥ 0} is the infinite system of constraints

x1 ≥ ζ1, x1 ≥ ζ2 ∀ζ ∈ U ;

on variables x1, x2. The latter system is clearly equivalent to the pair of constraints

x1 ≥ max
ζ∈U

ζ1 = 1, x2 ≥ max
ζ∈U

ζ2 = 1. (1.2.8)

The projections of U to the spaces of data of the two uncertain constraints (1.2.7) are the segments

U1 = {ζ1 : 0 ≤ ζ1 ≤ 1}, U2 = {ζ2 : 0 ≤ ζ2 ≤ 1}, and the RC of (1.2.7) w.r.t. the uncertainty set

Û = U1 × U2 = {ζ ∈ R2 : 0 ≤ ζ1, ζ2 ≤ 1} clearly is (1.2.8).

The conclusion we have arrived at seems to be counter-intuitive: it says that it is immaterial

whether the perturbations of data in different constraints are or are not linked to each other,

while intuition says that such a link should be important. We shall see later (lecture 5) that

this intuition is valid when a more advanced concept of Adjustable Robust Counterpart is

considered.

C. If x is a robust feasible solution of (Ci), then x remains robust feasible when we extend the
uncertainty set Ui to its convex hull Conv(Ui). Indeed, if [āi; b̄i] ∈ Conv(Ui), then

[āi; b̄i] =

J∑

j=1

λj[a
j
i ; b

j
i ],

with appropriately chosen [aji ; b
j
i ] ∈ Ui, λj ≥ 0 such that

∑
j
λj = 1. We now have

āTi x =
J∑

j=1

λj [a
j
i ]
Tx ≤

∑

j

λjb
j
i = b̄i,

where the inequality is given by the fact that x is feasible for RC(Ci) and [aji ; b
j
i ] ∈ Ui. We see

that āTi x ≤ b̄i for all [āi; b̄i] ∈ Conv(Ui), QED.
By similar reasons, the set of robust feasible solutions to (Ci) remains intact when we extend

Ui to the closure of this set. Combining these observations with B, we arrive at the following
conclusion:
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The Robust Counterpart of an uncertain LO problem with a certain objective re-
mains intact when we extend the sets Ui of uncertain data of respective constraints
to their closed convex hulls, and extend U to the direct product of the resulting sets.

In other words, we lose nothing when assuming from the very beginning that the
sets Ui of uncertain data of the constraints are closed and convex, and U is the direct
product of these sets.

In terms of the parameterization (1.2.1) of the uncertainty sets, the latter conclusion means that

When speaking about the Robust Counterpart of an uncertain LO problem with a
certain objective, we lose nothing when assuming that the set Ui of uncertain data
of i-th constraint is given as

Ui =
{
[ai; bi] = [a0i ; b

0
i ] +

Li∑

`=1

ζ`[a
`
i ; b

`
i ] : ζ ∈ Zi

}
, (1.2.9)

with a closed and convex perturbation set Zi.

D. An important modeling issue. In the usual — with certain data — Linear Optimization,
constraints can be modeled in various equivalent forms. For example, we can write:

(a) a1x1 + a2x2 ≤ a3
(b) a4x1 + a5x2 = a6
(c) x1 ≥ 0, x2 ≥ 0

(1.2.10)

or, equivalently,
(a) a1x1 + a2x2 ≤ a3
(b.1) a4x1 + a5x2 ≤ a6
(b.2) −a5x1 − a5x2 ≤ −a6
(c) x1 ≥ 0, x2 ≥ 0.

(1.2.11)

Or, equivalently, by adding a slack variable s,

(a) a1x1 + a2x2 + s = a3
(b) a4x1 + a5x2 = a6
(c) x1 ≥ 0, x2 ≥ 0, s ≥ 0.

(1.2.12)

However, when (part of) the data a1, ..., a6 become uncertain, not all of these equivalences
remain valid: the RCs of our now uncertainty-affected systems of constraints are not equivalent
to each other. Indeed, denoting the uncertainty set by U , the RCs read, respectively,

(a) a1x1 + a2x2 ≤ a3
(b) a4x1 + a5x2 = a6
(c) x1 ≥ 0, x2 ≥ 0



 ∀a = [a1; ...; a6] ∈ U . (1.2.13)

(a) a1x1 + a2x2 ≤ a3
(b.1) a4x1 + a5x2 ≤ a6
(b.2) −a5x1 − a5x2 ≤ −a6
(c) x1 ≥ 0, x2 ≥ 0




∀a = [a1; ...; a6] ∈ U . (1.2.14)
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(a) a1x1 + a2x2 + s = a3
(b) a4x1 + a5x2 = a6
(c) x1 ≥ 0, x2 ≥ 0, s ≥ 0



 ∀a = [a1; ...; a6] ∈ U . (1.2.15)

It is immediately seen that while the first and the second RCs are equivalent to each other,1

they are not equivalent to the third RC. The latter RC is more conservative than the first two,
meaning that whenever (x1, x2) can be extended, by a properly chosen s, to a feasible solution
of (1.2.15), (x1, x2) is feasible for (1.2.13)≡(1.2.14) (this is evident), but not necessarily vice
versa. In fact, the gap between (1.2.15) and (1.2.13)≡(1.2.14) can be quite large. To illustrate
the latter claim, consider the case where the uncertainty set is

U = {a = aζ := [1 + ζ; 2 + ζ; 4− ζ; 4 + ζ; 5− ζ; 9] : −ρ ≤ ζ ≤ ρ},

where ζ is the data perturbation. In this situation, x1 = 1, x2 = 1 is a feasible solution to
(1.2.13)≡(1.2.14), provided that the uncertainty level ρ is ≤ 1/3:

(1 + ζ) · 1 + (2 + ζ) · 1 ≤ 4− ζ ∀(ζ : |ζ| ≤ ρ ≤ 1/3) &(4 + ζ) · 1 + (5− ζ) · 1 = 9 ∀ζ.

At the same time, when ρ > 0, our solution (x1 = 1, x2 = 1) cannot be extended to a feasible
solution of (1.2.15), since the latter system of constraints is infeasible and remains so even after
eliminating the equality (1.2.15.b).

Indeed, in order for x1, x2, s to satisfy (1.2.15.a) for all a ∈ U , we should have

x1 + 2x2 + s+ ζ[x1 + x2] = 4− ζ ∀(ζ : |ζ| ≤ ρ);

when ρ > 0, we therefore should have x1 + x2 = −1, which contradicts (1.2.15.c)

The origin of the outlined phenomenon is clear. Evidently the inequality a1x1+a2x2 ≤ a3, where
all ai and xi are fixed reals, holds true if and only if we can “certify” the inequality by pointing
out a real s ≥ 0 such that a1x1+ a2x2+ s = a3. When the data a1, a2, a3 become uncertain, the
restriction on (x1, x2) to be robust feasible for the uncertain inequality a1x1 + a2x2 ≤ a3 for all
a ∈ U reads, “in terms of certificate,” as

∀a ∈ U ∃s ≥ 0 : a1x1 + a2x2 + s = a3,

that is, the certificate s should be allowed to depend on the true data. In contrast to this, in
(1.2.15) we require from both the decision variables x and the slack variable (“the certificate”)
s to be independent of the true data, which is by far too conservative.

What can be learned from the above examples is that when modeling an uncertain LO prob-
lem one should avoid whenever possible converting inequality constraints into equality ones, un-
less all the data in the constraints in question are certain. Aside from avoiding slack variables,2

this means that restrictions like “total expenditure cannot exceed the budget,” or “supply should
be at least the demand,” which in LO problems with certain data can harmlessly be modeled
by equalities, in the case of uncertain data should be modeled by inequalities. This is in full

1Clearly, this always is the case when an equality constraint, certain or uncertain alike, is replaced with a pair
of opposite inequalities.

2Note that slack variables do not represent actual decisions; thus, their presence in an LO model contradicts
assumption A.1, and thus can lead to too conservative, or even infeasible, RCs.
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accordance with common sense saying, e.g., that when the demand is uncertain and its satis-
faction is a must, it would be unwise to forbid surplus in supply. Sometimes a good for the RO
methodology modeling requires eliminating “state variables” — those which are readily given by
variables representing actual decisions — via the corresponding “state equations.” For example,
time dynamics of an inventory is given in the simplest case by the state equations

x0 = c
xt+1 = xt + qt − dt, t = 0, 1, ..., T,

where xt is the inventory level at time t, dt is the (uncertain) demand in period [t, t + 1), and
variables qt represent actual decisions – replenishment orders at instants t = 0, 1, ..., T . A wise
approach to the RO processing of such an inventory problem would be to eliminate the state
variables xt by setting

xt = c+

t−1∑

τ=1

qτ , t = 0, 1, 2, ..., T + 1,

and to get rid of the state equations. As a result, typical restrictions on state variables (like
“xt should stay within given bounds” or “total holding cost should not exceed a given bound”)
will become uncertainty-affected inequality constraints on the actual decisions qt, and we can
process the resulting inequality-constrained uncertain LO problem via its RC.3

1.2.4 What is Ahead

After introducing the concept of the Robust Counterpart of an uncertain LO problem, we
confront two major questions:

1. What is the “computational status” of the RC? When is it possible to process the RC
efficiently?

2. How to come-up with meaningful uncertainty sets?

The first of these questions, to be addressed in depth in section 1.3, is a “structural” one:
what should be the structure of the uncertainty set in order to make the RC computationally
tractable? Note that the RC as given by (1.2.5) or (1.2.6) is a semi-infinite LO program, that
is, an optimization program with simple linear objective and infinitely many linear constraints.
In principle, such a problem can be “computationally intractable” — NP-hard.

Example 1.3 Consider an uncertain “essentially linear” constraint

{‖Px− p‖1 ≤ 1}[P ;p]∈U , (1.2.16)

where ‖z‖1 =
∑
j

|zj|, and assume that the matrix P is certain, while the vector p is uncertain and is

parameterized by perturbations from the unit box:

p ∈ {p = Bζ : ‖ζ‖∞ ≤ 1} ,

where ‖ζ‖∞ = max
`
|ζ`| and B is a given positive semidefinite matrix. To check whether x = 0 is robust

feasible is exactly the same as to verify whether ‖Bζ‖1 ≤ 1 whenever ‖ζ‖∞ ≤ 1; or, due to the evident

3For more advanced robust modeling of uncertainty-affected multi-stage inventory, see lecture 5.
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relation ‖u‖1 = max
‖η‖∞≤1

ηTu, the same as to check whether max
η,ζ

{
ηTBζ : ‖η‖∞ ≤ 1, ‖ζ‖∞ ≤ 1

}
≤ 1. The

maximum of the bilinear form ηTBζ with positive semidefinite B over η, ζ varying in a convex symmetric

neighborhood of the origin is always achieved when η = ζ (you may check this by using the polarization

identity ηTBζ = 1
4 (η+ ζ)

TB(η+ ζ)− 1
4 (η− ζ)TB(η− ζ)). Thus, to check whether x = 0 is robust feasible

for (1.2.16) is the same as to check whether the maximum of a given nonnegative quadratic form ζTBζ

over the unit box is ≤ 1. The latter problem is known to be NP-hard,4 and therefore so is the problem

of checking robust feasibility for (1.2.16).

The second of the above is a modeling question, and as such, goes beyond the scope of
purely theoretical considerations. However, theory, as we shall see in section 2.1, contributes
significantly to this modeling issue.

1.3 Tractability of Robust Counterparts

In this section, we investigate the “computational status” of the RC of uncertain LO problem.
The situation here turns out to be as good as it could be: we shall see, essentially, that the RC
of the uncertain LO problem with uncertainty set U is computationally tractable whenever the
convex uncertainty set U itself is computationally tractable. The latter means that we know in
advance the affine hull of U , a point from the relative interior of U , and we have access to an
efficient membership oracle that, given on input a point u, reports whether u ∈ U . This can be
reformulated as a precise mathematical statement; however, we will prove a slightly restricted
version of this statement that does not require long excursions into complexity theory.

1.3.1 The Strategy

Our strategy will be as follows. First, we restrict ourselves to uncertain LO problems with a
certain objective — we remember from item A in Section 1.2.3 that we lose nothing by this
restriction. Second, all we need is a “computationally tractable” representation of the RC of a
single uncertain linear constraint, that is, an equivalent representation of the RC by an explicit
(and “short”) system of efficiently verifiable convex inequalities. Given such representations for
the RCs of every one of the constraints of our uncertain problem and putting them together (cf.
item B in Section 1.2.3), we reformulate the RC of the problem as the problem of minimizing
the original linear objective under a finite (and short) system of explicit convex constraints, and
thus — as a computationally tractable problem.

To proceed, we should explain first what does it mean to represent a constraint by a system
of convex inequalities. Everyone understands that the system of 4 constraints on 2 variables,

x1 + x2 ≤ 1, x1 − x2 ≤ 1,−x1 + x2 ≤ 1,−x1 − x2 ≤ 1, (1.3.1)

represents the nonlinear inequality
|x1|+ |x2| ≤ 1 (1.3.2)

4In fact, it is NP-hard to compute the maximum of a nonnegative quadratic form over the unit box with
inaccuracy less than 4% [55].
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in the sense that both (1.3.2) and (1.3.1) define the same feasible set. Well, what about the
claim that the system of 5 linear inequalities

−u1 ≤ x1 ≤ u1,−u2 ≤ x2 ≤ u2, u1 + u2 ≤ 1 (1.3.3)

represents the same set as (1.3.2)? Here again everyone will agree with the claim, although we
cannot justify the claim in the former fashion, since the feasible sets of (1.3.2) and (1.3.3) live
in different spaces and therefore cannot be equal to each other!

What actually is meant when speaking about “equivalent representations of problems/con-
straints” in Optimization can be formalized as follows:

Definition 1.5 A set X+ ⊂ R
n
x×R

k
u is said to represent a set X ⊂ R

n
x, if the projection of X+

onto the space of x-variables is exactly X, i.e., x ∈ X if and only if there exists u ∈ R
k
u such

that (x, u) ∈ X+:
X =

{
x : ∃u : (x, u) ∈ X+

}
.

A system of constraints S+ in variables x ∈ R
n
x, u ∈ R

k
u is said to represent a system of

constraints S in variables x ∈ R
n
x, if the feasible set of the former system represents the feasible

set of the latter one.

With this definition, it is clear that the system (1.3.3) indeed represents the constraint (1.3.2),
and, more generally, that the system of 2n + 1 linear inequalities

−uj ≤ xj ≤ uj, j = 1, ..., n,
∑

j

uj ≤ 1

in variables x, u represents the constraint

∑

j

|xj| ≤ 1.

To understand how powerful this representation is, note that to represent the same constraint
in the style of (1.3.1), that is, without extra variables, it would take as much as 2n linear
inequalities.

Coming back to the general case, assume that we are given an optimization problem

min
x
{f(x) s.t. x satisfies Si, i = 1, ...,m} , (P)

where Si are systems of constraints in variables x, and that we have in our disposal systems S+i
of constraints in variables x, vi which represent the systems Si. Clearly, the problem

min
x,v1,...,vm

{
f(x) s.t. (x, vi) satisfies S+i , i = 1, ...,m

}
(P+)

is equivalent to (P): the x component of every feasible solution to (P+) is feasible for (P) with
the same value of the objective, and the optimal values in the problems are equal to each other,
so that the x component of an ε-optimal (in terms of the objective) feasible solution to (P+) is
an ε-optimal feasible solution to (P). We shall say that (P+) represents equivalently the original
problem (P). What is important here, is that a representation can possess desired properties
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that are absent in the original problem. For example, an appropriate representation can convert
the problem of the form min

x
{‖Px − p‖1 : Ax ≤ b} with n variables, m linear constraints,

and k-dimensional vector p, into an LO problem with n + k variables and m + 2k + 1 linear
inequality constraints, etc. Our goal now is to build a representation capable of expressing
equivalently a semi-infinite linear constraint (specifically, the robust counterpart of an uncertain
linear inequality) as a finite system of explicit convex constraints, with the ultimate goal to use
these representations in order to convert the RC of an uncertain LO problem into an explicit
(and as such, computationally tractable) convex program.

The outlined strategy allows us to focus on a single uncertainty-affected linear inequality —
a family {

aTx ≤ b
}
[a;b]∈U , (1.3.4)

of linear inequalities with the data varying in the uncertainty set

U =

{
[a; b] = [a0; b0] +

L∑

`=1

ζ`[a
`; b`] : ζ ∈ Z

}
(1.3.5)

— and on “tractable representation” of the RC

aTx ≤ b ∀
(
[a; b] = [a0; b0] +

L∑

`=1

ζ`[a
`; b`] : ζ ∈ Z

)
(1.3.6)

of this uncertain inequality.
By reasons indicated in item C of Section 1.2.3, we assume from now on that the associated

perturbation set Z is convex.

1.3.2 Tractable Representation of (1.3.6): Simple Cases

We start with the cases where the desired representation can be found by “bare hands,” specif-
ically, the cases of interval and simple ellipsoidal uncertainty.

Example 1.4 Consider the case of interval uncertainty, where Z in (1.3.6) is a box. W.l.o.g. we can
normalize the situation by assuming that

Z = Box1 ≡ {ζ ∈ R
L : ‖ζ‖∞ ≤ 1}.

In this case, (1.3.6) reads

[a0]Tx+
L∑

`=1

ζ`[a
`]Tx ≤ b0 +

L∑
`=1

ζ`b
` ∀(ζ : ‖ζ‖∞ ≤ 1)

⇔
L∑

`=1

ζ`[[a
`]Tx− b`] ≤ b0 − [a0]Tx ∀(ζ : |ζ`| ≤ 1, ` = 1, ..., L)

⇔ max
−1≤ζ`≤1

[
L∑

`=1

ζ`[[a
`]Tx− b`]

]
≤ b0 − [a0]Tx

The concluding maximum in the chain is clearly
L∑

`=1

|[a`]Tx− b`|, and we arrive at the representation of

(1.3.6) by the explicit convex constraint

[a0]Tx+
L∑

`=1

|[a`]Tx− b`| ≤ b0, (1.3.7)



18 LECTURE 1: ROBUST LO: MOTIVATION, CONCEPTS, TRACTABILITY

which in turn admits a representation by a system of linear inequalities:




−u` ≤ [a`]Tx− b` ≤ u`, ` = 1, ..., L,

[a0]
T
x+

L∑
`=1

u` ≤ b0. (1.3.8)

Example 1.5 Consider the case of ellipsoidal uncertainty where Z in (1.3.6) is an ellipsoid. W.l.o.g.
we can normalize the situation by assuming that Z is merely the ball of radius Ω centered at the origin:

Z = BallΩ = {ζ ∈ R
L : ‖ζ‖2 ≤ Ω}.

In this case, (1.3.6) reads

[a0]Tx+
L∑

`=1

ζ`[a
`]Tx ≤ b0 +

L∑
`=1

ζ`b
` ∀(ζ : ‖ζ‖2 ≤ Ω)

⇔ max
‖ζ‖2≤Ω

[
L∑

`=1

ζ`[[a
`]Tx− b`]

]
≤ b0 − [a0]Tx

⇔ Ω

√
L∑

`=1

([a`]Tx− b`)2 ≤ b0 − [a0]Tx,

and we arrive at the representation of (1.3.6) by the explicit convex constraint (“conic quadratic inequal-
ity”)

[a0]Tx+Ω

√√√√
L∑

`=1

([a`]Tx− b`)2 ≤ b0. (1.3.9)

1.3.3 Tractable Representation of (1.3.6): General Case

Now consider a rather general case when the perturbation set Z in (1.3.6) is given by a conic
representation (cf. section A.2.4 in Appendix):

Z =
{
ζ ∈ R

L : ∃u ∈ R
K : Pζ +Qu+ p ∈ K

}
, (1.3.10)

whereK is a closed convex pointed cone in R
N with a nonempty interior, P,Q are given matrices

and p is a given vector.
In the case when K is not a polyhedral cone, assume that this representation is strictly

feasible:
∃(ζ̄ , ū) : P ζ̄ +Qū+ p ∈ intK. (1.3.11)

In fact, in the sequel we would lose nothing by further restricting K to be a canonical cone
– (finite) direct product of “simple” cones K1, ...,KS :

K = K1 × ...×KS , (1.3.12)

where every Ks is

• either the nonnegative orthant Rn
+ = {x = [x1; ...;xn] ∈ Rn : xi ≥ 0 ∀i},

• or the Lorentz cone Ln = {x = [x1; ...;xn] ∈ Rn : xn ≥
√∑n−1

i=1 x
2
i },
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• or the semidefinite cone Sn
+. This cone “lives” in the space Sn of real symmetric n×n

matrices equipped with the Frobenius inner product 〈A,B〉 = Tr(AB) = Tr(ABT ) =∑
i,j AijBij ; the cone itself is comprised of all positive semidefinite symmetric n × n

matrices.

As a matter of fact,

• the family F of all convex sets admitting conic representations involving canonical cones
is extremely nice – it is closed w.r.t. all basic operations preserving convexity, like taking
finite intersections, arithmetic sums, images and inverse images under affine mappings,
etc. Moreover, conic representation of the result of such an operation is readily given by
conic representation of the operands; see section A.2.4 for the corresponding “calculus.”
As a result, handling convex sets from the family in question is fully algorithmic and
computationally efficient;

• the family F is extremely wide: as a matter of fact, for all practical purposes one
can think of F as of the family of all computationally tractable convex sets arising in
applications.

Theorem 1.1 Let the perturbation set Z be given by (1.3.10), and in the case of non-polyhedral
K, let also (1.3.11) take place. Then the semi-infinite constraint (1.3.6) can be represented by
the following system of conic inequalities in variables x ∈ R

n, y ∈ R
N :

pT y + [a0]Tx ≤ b0,
QT y = 0,
(P T y)` + [a`]Tx = b`, ` = 1, ..., L,
y ∈ K∗,

(1.3.13)

where K∗ = {y : yT z ≥ 0∀z ∈ K} is the cone dual to K.

Proof. We have
x is feasible for (1.3.6)

⇔ sup
ζ∈Z

{
[a0]Tx− b0︸ ︷︷ ︸

d[x]

+
L∑

`=1

ζ`

[
[a`]Tx− b`

]

︸ ︷︷ ︸
c`[x]

}
≤ 0

⇔ sup
ζ∈Z

{
cT [x]ζ + d[x]

}
≤ 0

⇔ sup
ζ∈Z

cT [x]ζ ≤ −d[x]

⇔ max
ζ,v

{
cT [x]ζ : Pζ +Qv + p ∈ K

}
≤ −d[x].

The concluding relation says that x is feasible for (1.3.6) if and only if the optimal value in the
conic program

max
ζ,v

{
cT [x]ζ : Pζ +Qv + p ∈K

}
(CP)

is ≤ −d[x]. Assume, first, that (1.3.11) takes place. Then (CP) is strictly feasible, and therefore,
applying the Conic Duality Theorem (Theorem A.1), the optimal value in (CP) is ≤ −d[x] if
and only if the optimal value in the conic dual to the (CP) problem

min
y

{
pTy : QT y = 0, P T y = −c[x], y ∈ K∗

}
, (CD)
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is attained and is ≤ −d[x]. Now assume that K is a polyhedral cone. In this case the usual
LO Duality Theorem, (which does not require the validity of (1.3.11)), yields exactly the same
conclusion: the optimal value in (CP) is ≤ −d[x] if and only if the optimal value in (CD) is
achieved and is ≤ −d[x]. In other words, under the premise of the Theorem, x is feasible for
(1.3.6) if and only if (CD) has a feasible solution y with pT y ≤ −d[x]. �

Observing that nonnegative orthants, Lorentz and Semidefinite cones are self-dual, and thus
their finite direct products, i.e., canonical cones, are self-dual as well,5 we derive from Theorem
1.1 the following corollary:

Corollary 1.1 Let the nonempty perturbation set in (1.3.6) be:
(i) polyhedral, i.e., given by (1.3.10) with a nonnegative orthant RN

+ in the role of K, or
(ii) conic quadratic representable, i.e., given by (1.3.10) with a direct product Lk1 × ...×Lkm

of Lorentz cones Lk = {x ∈ R
k : xk ≥

√
x21 + ...+ x2k−1} in the role of K, or

(iii) semidefinite representable, i.e., given by (1.3.10) with the positive semidefinite cone Sk
+

in the role of K.

In the cases of (ii), (iii) assume in addition that (1.3.11) holds true. Then the Robust Counterpart
(1.3.6) of the uncertain linear inequality (1.3.4) — (1.3.5) with the perturbation set Z admits
equivalent reformulation as an explicit system of

— linear inequalities, in the case of (i),
— conic quadratic inequalities, in the case of (ii),
— linear matrix inequalities, in the case of (iii).

In all cases, the size of the reformulation is polynomial in the number of variables in (1.3.6) and
the size of the conic description of Z, while the data of the reformulation is readily given by the
data describing, via (1.3.10), the perturbation set Z.

Remark 1.2 A. Usually, the cone K participating in (1.3.10) is the direct product of simpler
cones K1, ...,KS , so that representation (1.3.10) takes the form

Z = {ζ : ∃u1, ..., uS : Psζ +Qsu
s + ps ∈ Ks, s = 1, ..., S}. (1.3.14)

In this case, (1.3.13) becomes the system of conic constraints in variables x, y1, ..., yS as follows:

S∑
s=1

pTs y
s + [a0]Tx ≤ b0,

QT
s y

s = 0, s = 1, ..., S,
S∑

s=1
(P T

s y
s)` + [a`]Tx = b`, ` = 1, ..., L,

ys ∈ Ks
∗, s = 1, ..., S,

(1.3.15)

where Ks
∗ is the cone dual to Ks.

B. Uncertainty sets given by LMIs seem “exotic”; however, they can arise under quite realistic
circumstances, see section 1.5.

5Since the cone dual to a direct product of cones Ks clearly is the direct product of cones Ks
∗ dual to Ks.
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Examples

We are about to apply Theorem 1.1 to build tractable reformulations of the semi-infinite in-
equality (1.3.6) in two particular cases. While at a first glance no natural “uncertainty models”
lead to the “strange” perturbation sets we are about to consider, it will become clear later that
these sets are of significant importance — they allow one to model random uncertainty.

Example 1.6 Z is the intersection of concentric co-axial box and ellipsoid, specifically,

Z = {ζ ∈ R
L : −1 ≤ ζ` ≤ 1, ` ≤ L,

√√√√
L∑

`=1

ζ2` /σ
2
` ≤ Ω}, (1.3.16)

where σ` > 0 and Ω > 0 are given parameters.
Here representation (1.3.14) becomes

Z = {ζ ∈ R
L : P1ζ + p1 ∈ K1, P2ζ + p2 ∈ K2},

where
• P1ζ ≡ [ζ; 0], p1 = [0L×1; 1] and K1 = {(z, t) ∈ R

L×R : t ≥ ‖z‖∞}, whence K1
∗ = {(z, t) ∈ R

L×R :
t ≥ ‖z‖1};
• P2ζ = [Σ−1ζ; 0] with Σ = Diag{σ1, ..., σL}, p2 = [0L×1; Ω] and K2 is the Lorentz cone of the

dimension L+ 1 (whence K2
∗ = K2)

Setting y1 = [η1; τ1], y
2 = [η2; τ2] with one-dimensional τ1, τ2 and L-dimensional η1, η2, (1.3.15) becomes

the following system of constraints in variables τ , η, x:

(a) τ1 +Ωτ2 + [a0]Tx ≤ b0,
(b) (η1 +Σ−1η2)` = b` − [a`]Tx, ` = 1, ..., L,
(c) ‖η1‖1 ≤ τ1 [⇔ [η1; τ1] ∈ K1

∗],
(d) ‖η2‖2 ≤ τ2 [⇔ [η2; τ2] ∈ K2

∗].

We can eliminate from this system the variables τ1, τ2 — for every feasible solution to the system, we
have τ1 ≥ τ̄1 ≡ ‖η1‖1, τ2 ≥ τ̄2 ≡ ‖η2‖2, and the solution obtained when replacing τ1, τ2 with τ̄1, τ̄2 still
is feasible. The reduced system in variables x, z = η1, w = Σ−1η2 reads

L∑
`=1

|z`|+Ω
√∑

`

σ2
`w

2
` + [a0]Tx ≤ b0,

z` + w` = b` − [a`]Tx, ` = 1, ..., L,

(1.3.17)

which is also a representation of (1.3.6), (1.3.16).

Example 1.7 [“budgeted uncertainty”] Consider the case where Z is the intersection of ‖ · ‖∞- and
‖ · ‖1-balls, specifically,

Z = {ζ ∈ R
L : ‖ζ‖∞ ≤ 1, ‖ζ‖1 ≤ γ}, (1.3.18)

where γ, 1 ≤ γ ≤ L, is a given “uncertainty budget.”
Here representation (1.3.14) becomes

Z = {ζ ∈ R
L : P1ζ + p1 ∈ K1, P2ζ + p2 ∈ K2},

where
• P1ζ ≡ [ζ; 0], p1 = [0L×1; 1] and K1 = {[z; t] ∈ RL × R : t ≥ ‖z‖∞}, whence K1

∗ = {[z; t] ∈ RL × R :
t ≥ ‖z‖1};
• P2ζ = [ζ; 0], p2 = [0L×1; γ] and K2 = K1

∗ = {[z; t] ∈ RL × R : t ≥ ‖z‖1}, whence K2
∗ = K1.
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Setting y1 = [z; τ1], y
2 = [w; τ2] with one-dimensional τ and L-dimensional z, w, system (1.3.15) becomes

the following system of constraints in variables τ1, τ2, z, w, x:

(a) τ1 + γτ2 + [a0]Tx ≤ b0,
(b) (z + w)` = b` − [a`]Tx, ` = 1, ..., L,
(c) ‖z‖1 ≤ τ1 [⇔ [η1; τ1] ∈ K1

∗],
(d) ‖w‖∞ ≤ τ2 [⇔ [η2; τ2] ∈ K2

∗].

Same as in Example 1.6, we can eliminate the τ -variables, arriving at a representation of (1.3.6), (1.3.18)
by the following system of constraints in variables x, z, w:

L∑
`=1

|z`|+ γmax
`
|w`|+ [a0]Tx ≤ b0,

z` + w` = b` − [a`]Tx, ` = 1, ..., L,

(1.3.19)

which can be further converted into the system of linear inequalities in z, w and additional variables.

1.4 How it Works: Motivating Examples Revisited

In this section, we outline the results of Robust Optimization methodology as applied to our
“motivating examples.”

1.4.1 Robust Synthesis of Antenna Arrays

In the situation of the Antenna Design problem (1.1.2), the “physical” uncertainty comes from
the actuation errors xj 7→ (1+ ξj)xj ; as we have already explained, these errors can be modeled
equivalently by the perturbations Dj(θi) 7→ Dij = (1 + ξj)Dj(θi) in the coefficients of xj.
Assuming that the errors ξj are bounded by a given uncertainty level ρ, and that this is the only
a priori information on the actuation errors, we end up with the uncertain LO problem



min

x,τ



τ : −τ ≤

J=10∑

j=1

Dijxj −D∗(θi) ≤ τ, 1 ≤ i ≤ I = 240



 : |Dij −Dj(θi)| ≤ ρ|Dj(θi)|



 .

The Robust Counterpart of the problem is the semi-infinite LO program

min
x,τ



τ : −τ ≤

∑

j

Dijxj ≤ τ, 1 ≤ i ≤ I ∀Dij ∈ [Gij, Gij ]



 (1.4.1)

with Gij = Gj(θi) − ρ|Gj(θi)|, Gij = Gj(θi) + ρ|Gj(θi)|. The generic form of this semi-infinite
LO is

min
y

{
cT y : Ay ≤ b∀[A, b] : [A, b] ≤ [A, b] ≤ [A, b]

}
(1.4.2)

where ≤ for matrices is understood entrywise and [A, b] ≤ [A, b] are two given matrices. This is a
very special case of polyhedral uncertainty set, so that our theory says that the RC is equivalent
to an explicit LO program. In fact we can point out (one of) LO reformulation of the Robust
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Figure 1.3: “Dream and reality,” robust optimal design: samples of 100 actual diagrams (red)
for different uncertainty levels. Blue: the target diagram.

Reality
ρ = 0.01 ρ = 0.05 ρ = 0.1

min mean max min mean max min mean max
‖ · ‖∞-distance

to target
0.075 0.078 0.081 0.077 0.088 0.114 0.082 0.113 0.216

energy
concentration

70.3% 72.3% 73.8% 63.6% 71.6%6 79.3% 52.2% 70.8% 87.5%

Table 1.2: Quality of robust antenna design. Data over 100 samples of actuation errors per each
uncertainty level ρ.
For comparison: for nominal design, with the uncertainty level as small as ρ = 0.001, the
average ‖ · ‖∞-distance of the actual diagram to target is as large as 56.8, and the expected
energy concentration is as low as 16.5%.

Counterpart without reference to any theory: it is immediately seen that (1.4.2) is equivalent
to the LO program

min
y,z

{
cT y : Az +A(y + z) ≤ b, z ≥ 0, y + z ≥ 0

}
. (1.4.3)

Solving (1.4.1) for the uncertainty level ρ = 0.01, we end up with the robust optimal value
0.0815, which, while being by 39% worse than the nominal optimal value 0.0589 (which, as we
have seen, exists only in our imagination and says nothing about the actual performance of
the nominal optimal design), still is reasonably small. Note that the robust optimal value, in
sharp contrast with the nominally optimal one, does say something meaningful about the actual
performance of the underlying robust design. In our experiments, we have tested the robust
optimal design associated with the uncertainty level ρ = 0.01 versus actuation errors of this
and larger magnitudes. The results are presented on figure 1.3 and in table 1.2. Comparing
these figure and table with their “nominal design” counterparts, we see that the robust design
is incomparably better than the nominal one.



24 LECTURE 1: ROBUST LO: MOTIVATION, CONCEPTS, TRACTABILITY

NETLIB Case Study

The corresponding uncertainty model (“ugly coefficients aij in the constraint matrix indepen-
dently of each other vary in the segments [anij − ρ|anij |, anij + ρ|anij|], ρ > 0 being the uncertainty
level) clearly yields the RCs of the generic form (1.4.2). As explained above, these RCs can
be straightforwardly converted to explicit LO programs which are of nearly the same sizes and
sparsity as the instances of the uncertain LPs in question. It turns out that at the uncertainty
level 0.1% (ρ = 0.001), all these RCs are feasible, that is, we can immunize the solutions against
this uncertainty. Surprisingly, this immunization is “nearly costless” – the robust optimal values
of all 90 NETLIB LOs considered in [8] remain within 1% margin of the nominal optimal values.
For further details, including what happens at larger uncertainty levels, see [8].

1.5 Non-Affine Perturbations

In the first reading this section can be skipped.
So far we have assumed that the uncertain data of an uncertain LO problem are affinely

parameterized by a perturbation vector ζ varying in a closed convex set Z. We have seen that
this assumption, combined with the assumption that Z is computationally tractable, implies
tractability of the RC. What happens when the perturbations enter the uncertain data in a
nonlinear fashion? Assume w.l.o.g. that every entry a in the uncertain data is of the form

a =
K∑

k=1

cakfk(ζ),

where cak are given coefficients (depending on the data entry in question) and f1(ζ), ..., fK(ζ) are
certain basic functions, perhaps non-affine, defined on the perturbation set Z. Assuming w.l.o.g.
that the objective is certain, we still can define the RC of our uncertain problem as the problem
of minimizing the original objective over the set of robust feasible solutions, those which remain
feasible for all values of the data coming from ζ ∈ Z, but what about the tractability of this RC?
An immediate observation is that the case of nonlinearly perturbed data can be immediately
reduced to the one where the data are affinely perturbed. To this end, it suffices to pass from
the original perturbation vector ζ to the new vector

ζ̂[ζ] = [ζ1; ...; ζL; f1(ζ); ...; fK(ζ)].

As a result, the uncertain data become affine functions of the new perturbation vector ζ̂ which
now runs through the image Z̃ = ζ̂[Z] of the original uncertainty set Z under the mapping
ζ 7→ ζ̂[ζ]. As we know, in the case of affine data perturbations the RC remains intact when
replacing a given perturbation set with its closed convex hull. Thus, we can think about our
uncertain LO problem as an affinely perturbed problem where the perturbation vector is ζ̂, and
this vector runs through the closed convex set Ẑ = clConv(ζ̂[Z]). We see that formally speaking,
the case of general-type perturbations can be reduced to the one of affine perturbations. This,
unfortunately, does not mean that non-affine perturbations do not cause difficulties. Indeed, in
order to end up with a computationally tractable RC, we need more than affinity of perturbations
and convexity of the perturbation set — we need this set to be computationally tractable. And
the set Ẑ = clConv(ζ̂[Z]) may fail to satisfy this requirement even when both Z and the
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nonlinear mapping ζ 7→ ζ̂[ζ] are simple, e.g., when Z is a box and ζ̂ = [ζ; {ζ`ζr}L`,r=1], (i.e., when
the uncertain data are quadratically perturbed by the original perturbations ζ).

We are about to present two generic cases where the difficulty just outlined does not occur
(for justification and more examples, see section 5.3.2).
Ellipsoidal perturbation set Z, quadratic perturbations. Here Z is an ellipsoid, and
the basic functions fk are the constant, the coordinates of ζ and the pairwise products of
these coordinates. This means that the uncertain data entries are quadratic functions of the
perturbations. W.l.o.g. we can assume that the ellipsoid Z is centered at the origin: Z = {ζ :

‖Qζ‖2 ≤ 1}, where KerQ = {0}. In this case, representing ζ̂[ζ] as the matrix

[
ζT

ζ ζζT

]
, we

have the following semidefinite representation of Ẑ = clConv(ζ̂[Z]):

Ẑ =

{[
wT

w W

]
:

[
1 wT

w W

]
� 0,Tr(QWQT ) ≤ 1

}

(for proof, see Lemma 5.4).
Separable polynomial perturbations. Here the structure of perturbations is as follows: ζ
runs through the box Z = {ζ ∈ R

L : ‖ζ‖∞ ≤ 1}, and the uncertain data entries are of the form

a = pa1(ζ1) + ...+ paL(ζL),

where pa` (s) are given algebraic polynomials of degrees not exceeding d; in other words, the
basic functions can be split into L groups, the functions of `-th group being 1 = ζ0` , ζ`, ζ

2
` , ..., ζ

d
` .

Consequently, the function ζ̂[ζ] is given by

ζ̂[ζ] = [[1; ζ1; ζ
2
1 ; ...; ζ

d
1 ]; ...; [1; ζL; ζ

2
L; ...; ζ

d
L]].

Setting P = {ŝ = [1; s; s2; ...; sd] : −1 ≤ s ≤ 1}, we conclude that Z̃ = ζ̂[Z] can be identified
with the set PL = P × ...× P︸ ︷︷ ︸

L

, so that Ẑ is nothing but the set P × ...× P︸ ︷︷ ︸
L

, where P = Conv(P ).

It remains to note that the set P admits an explicit semidefinite representation, see Lemma 5.2.

1.6 Exercises

Exercise 1.1 Prove the fact stated in the beginning of section 1.4.1:

(!) The RC of an uncertain LO problem with certain objective and simple interval
uncertainty in the constraints — the uncertain problem

P =
{
min
x

{
cTx : Ax ≤ b

}
, [A, b] ≤ [A, b] ≤ [A, b]

}

is equivalent to the explicit LO program

min
u,v

{
cTx : Au−Av ≤ b, u ≥ 0, v ≥ 0, u− v = x

}
(1.6.1)
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Exercise 1.2 Represent the RCs of every one of the uncertain linear constraints given below:

aTx ≤ b, [a; b] ∈ U = {[a; b] = [an; bn] + Pζ : ‖ζ‖p ≤ ρ}
[p ∈ [1,∞]] (a)

aTx ≤ b, [a; b] ∈ U = {[a; b] = [an; bn] + Pζ : ‖ζ‖p ≤ ρ, ζ ≥ 0}
[p ∈ [1,∞]] (b)

aTx ≤ b, [a; b] ∈ U = {[a; b] = [an; bn] + Pζ : ‖ζ‖p ≤ ρ}
[p ∈ (0, 1)] (c)

as explicit convex constraints.

Exercise 1.3 Represent in tractable form the RC of uncertain linear constraint

aTx ≤ b

with ∩-ellipsoidal uncertainty set

U = {[a, b] = [an; bn] + Pζ : ζTQjζ ≤ ρ2, 1 ≤ j ≤ J},

where Qj � 0 and
∑

j Qj � 0.

The goal of subsequent exercises is to find out whether there is a “gap” between feasibil-
ity/optimality properties of instances of an uncertain LO problem

P =
{
min
x

{
cTx : Ax ≤ b

}
: [A, b] ∈ U

}

and similar properties of its RC

Opt = min
x

{
cTx : Ax ≤ b ∀[A, b] ∈ U

}
. (RC)

Specifically, we want to answer the following questions:

• Is it possible that every instance of P is feasible, while (RC) is not so?

• Is it possible that (RC) is feasible, but its optimal value is worse than those of all instances?

• Under which natural conditions feasibility of (RC) is equivalent to feasibility of all in-
stances, and the robust optimal value is the maximum of optimal values of instances.

Exercise 1.4 Consider two uncertain LO problems

P1 =
{
min
x
{−x1 − x2 : 0 ≤ x1 ≤ b1, 0 ≤ x2 ≤ b2, x1 + x2 ≥ p} : b ∈ U1

}
,

U1 = {b : 1 ≥ b1 ≥ 1/3, 1 ≥ b2 ≥ 1/3, b1 + b2 ≥ 1},
P2 =

{
min
x
{−x1 − x2 : 0 ≤ x1 ≤ b1, 0 ≤ x2 ≤ b2, x1 + x2 ≥ p} : b ∈ U2

}
,

U2 = {b : 1 ≥ b1 ≥ 1/3, 1 ≥ b2 ≥ 1/3}.

(p is a parameter).

1. Build the RC’s of the problems.
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2. Set p = 3/4. Is there a gap between feasibility properties of the instances of P1 and those
of the RC of P1? Is there a similar gap in the case of P2?

3. Set p = 2/3. Is there a gap between the largest of the optimal values of instances of P1
and the optimal value of the RC? Is there a similar gap in the case of P2?

The results of Exercise 1.4 demonstrate that there could be a huge gap between feasibil-
ity/optimality properties of the RC and those of instances. We are about to demonstrate that
this phenomenon does not occur in the case of a “constraint-wise” uncertainty.

Definition 1.6 Consider an uncertain LO problem with certain objective

P =
{
min
x

{
cTx : Ax ≤ b

}
: [A, b] ∈ U

}

with convex compact uncertainty set U , and let Ui be the projection of U on the set of data of
i-th constraint:

Ui =
{
[aTi , bi] : ∃[A, b] ∈ U such that [aTi , bi] is i-th row in [A, b]

}
.

Clearly, U ⊂ U+ =
∏

i Ui. We call uncertainty constraint-wise, if U = U+, and call the uncertain
problem, obtained from P by extending the original uncertainty set U the constraint-wise envelope
of P.

Note that by claim on p. 11, when passing from uncertain LO problem to its constraint-wise
envelope, the RC remains intact.

Exercise 1.5 1. Consider the uncertain problems P1 and P2 from Exercise 1.4. Which
one of them, if any, has constraint-wise uncertainty? Which one of them, if any, is the
constraint-wise envelope of the other problem?

2. ∗ Let P be an uncertain LO program with constraint-wise uncertainty such that the feasible
sets of all instances belong to a given in advance convex compact set X (e.g., all instances
share common system of certain box constraints). Prove that in this case there is no
gap between feasibility/optimality properties of instances and those of the RC: the RC if
feasible if and only if all instances are so, and in this case the optimal value of the RC is
equal to the maximum, over the instances, of the optimal values of the instances.
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Lecture 2

Robust Linear Optimization and
Chance Constraints

2.1 How to Specify an Uncertainty Set

The question posed in the title of this section goes beyond general-type theoretical considerations
— this is mainly a modeling issue that should be resolved on the basis of application-driven
considerations. There is however a special case where this question makes sense and can, to
some extent, be answered — this is the case where our goal is not to build an uncertainty
model “from scratch,” but rather to translate an already existing uncertainty model, namely, a
stochastic one, to the language of “uncertain-but-bounded” perturbation sets and the associated
robust counterparts. By exactly the same reasons as in the previous section, we can restrict our
considerations to the case of a single uncertainty-affected linear inequality – a family

{
aTx ≤ b

}
[a;b]∈U , (1.3.4)

of linear inequalities with the data varying in the uncertainty set

U =

{
[a; b] = [a0; b0] +

L∑

`=1

ζ`[a
`; b`] : ζ ∈ Z

}
. (1.3.5)

of this uncertain inequality.
Probabilistic vs. “uncertain-but-bounded” perturbations. When building the RC

aTx ≤ b ∀
(
[a; b] = [a0; b0] +

L∑

`=1

ζ`[a
`; b`] : ζ ∈ Z

)
(1.3.6)

of uncertain linear inequality (1.3.4), we worked with the so called “uncertain-but-bounded”
data model (1.3.5) — one where all we know about the possible values of the data [a; b] is their
domain U defined in terms of a given affine parameterization of the data by perturbation vector
ζ varying in a given perturbation set Z. It should be stressed that we did not assume that
the perturbations are of a stochastic nature and therefore used the only approach meaningful
under the circumstances, namely, we looked for solutions that remain feasible whatever the data
perturbation from Z. This approach has its advantages:

29
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1. More often than not there are no reasons to assign the perturbations a stochastic nature.

Indeed, stochasticity makes sense only when one repeats a certain action many times, or
executes many similar actions in parallel; here it might be reasonable to think of frequen-
cies of successes, etc. Probabilistic considerations become, methodologically, much more
problematic when applied to a unique action, with no second attempt possible.

2. Even when the unknown data can be thought of as stochastic, it might be difficult, espe-
cially in the large-scale case, to specify reliably data distribution. Indeed, the mere fact
that the data are stochastic does not help unless we possess at least a partial knowledge
of the underlying distribution.

Of course, the uncertain-but-bounded models of uncertainty also require a priori knowl-
edge, namely, to know what is the uncertainty set (a probabilistically oriented person could
think about this set as the support of data distribution, that is, the smallest closed set in
the space of the data such that the probability for the data to take a value outside of this
set is zero). Note, however, that it is much easier to point out the support of the relevant
distribution than the distribution itself.

With the uncertain-but-bounded model of uncertainty, we can make clear predictions like “with
such and such behavior, we definitely will survive, provided that the unknown parameters will
differ from their nominal values by no more than 15%, although we may die when the variation
will be as large as 15.1%.” In case we do believe that 15.1% variations are also worthy to worry
about, we have an option to increase the perturbation set to take care of 30% perturbations in the
data. With luck, we will be able to find a robust feasible solution for the increased perturbation
set. This is a typical engineering approach — after the required thickness of a bar supporting
certain load is found, a civil engineer will increase it by factor like 1.2 or 1.5 “to be on the
safe side” — to account for model inaccuracies, material imperfections, etc. With a stochastic
uncertainty model, this “being on the safe side” is impossible — increasing the probability of
certain events, one must decrease simultaneously the probability of certain other events, since
the “total probability budget” is once and for ever fixed. While all these arguments demonstrate
that there are situations in reality when the uncertain-but-bounded model of data perturbations
possesses significant methodological advantages over the stochastic models of uncertainty, there
are, of course, applications (like communications, weather forecasts, mass production, and, to
some extent, finance) where one can rely on probabilistic models of uncertainty. Whenever this
is the case, the much less informative uncertain-but-bounded model and associated worst-case-
oriented decisions can be too conservative and thus impractical. The bottom line is that while
the stochastic models of data uncertainty are by far not the only meaningful ones, they definitely
deserve attention. Our goal in this lecture is to develop techniques that are capable to utilize, to
some extent, knowledge of the stochastic nature of data perturbations when building uncertainty-
immunized solutions. This goal will be achieved via a specific “translation” of stochastic models
of uncertain data to the language of uncertain-but-bounded perturbations and the associated
robust counterparts. Before developing the approach in full detail, we will explain why we choose
such an implicit way to treat stochastic uncertainty models instead of treating them directly.
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2.2 Chance Constraints and their Safe Tractable Approxima-
tions

The most direct way to treat stochastic data uncertainty in the context of uncertain Linear
Optimization is offered by an old concept (going back to 50s [38]) of chance constraints. Consider
an uncertain linear inequality

aTx ≤ b, [a; b] = [a0; b0] +

L∑

`=1

ζ`[a
`; b`] (2.2.1)

(cf. (1.3.4), (1.3.5)) and assume that the perturbation vector ζ is random with, say, completely
known probability distribution P . Ideally, we would like to work with candidate solutions x
that make the constraint valid with probability 1. This “ideal goal,” however, means coming
back to the uncertain-but-bounded model of perturbations; indeed, it is easily seen that a given
x satisfies (2.2.1) for almost all realizations of ζ if and only if x is robust feasible w.r.t. the
perturbation set that is the closed convex hull of the support of P . The only meaningful way
to utilize the stochasticity of perturbations is to require a candidate solution x to satisfy the
constraint for “nearly all” realizations of ζ, specifically, to satisfy the constraint with probability
at least 1 − ε, where ε ∈ (0, 1) is a prespecified small tolerance. This approach associates with
the randomly perturbed constraint (2.2.1) the chance constraint

p(x) := Probζ∼P

{
ζ : [a0]Tx+

L∑

`=1

ζ`[a
`]Tx > b0 +

L∑

`=1

ζ`b
`

}
≤ ε, (2.2.2)

where Probζ∼P is the probability associated with the distribution P . Note that (2.2.2) is a usual
certain constraint. Replacing all uncertainty-affected constraints in an uncertain LO problem
with their chance constrained versions and minimizing the objective function, (which we, w.l.o.g.,
may assume to be certain) under these constraints, we end up with the chance constrained version
of (LOU), which is a deterministic optimization problem.

Strictly speaking, from purely modeling viewpoint the just outlined scheme of passing from
an uncertain LO problem with stochastic uncertainty

P =

{
min
x

{
cTx : Aζx ≤ bζ

}
: [Aζ , bζ ] = [A0, b0] +

L∑

`=1

ζ`[A
`, b`], ζ ∼ P

}

(we have assumed w.l.o.g. that the objective is certain) to its chance constrained version

min
x

{
cTx : Probζ∼P {(Aζx)i ≤ (bζ)i} ≥ 1− ε, 1 ≤ i ≤ m := dim bζ

}
(2.2.3)

is neither the only natural, nor the most natural one. When the constraints are hard, a
candidate solution is meaningless when it violates at least one of the constraints, so that a
natural chance constrained version of P would be

min
x

{
cTx : Probζ∼P {(Aζx)i ≤ (bζ)i ∀i} ≥ 1− ε

}
. (2.2.4)

The latter problem is not the same as (2.2.3): while it is true that a feasible solution to
(2.2.3) is feasible for (2.2.4) as well, the inverse statement usually is not true. All we can
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say in general about a feasible solution x to (2.2.4) is that x is feasible for a relaxed version
of (2.2.3), specifically, the one where ε is increased to kε, k ≤ m being the number of scalar
linear constraints in P which indeed are affected by uncertainty.

In spite of this drawback, the chance constrained model (2.2.3) is the major entity of interest
in Chance Constrained LO. The underlying rationale is as follows:

• As we shall see in a while, aside of a handful of very special particular cases, numerical
processing of the constraint-wise chance constrained problem is a highly challenging
task; these challenges are amplified drastically when passing from this problem to the
“true” chance constrained problem (2.2.4).

• As we have already seen, one can approximate the “true” chance constrained problem
(2.2.4) with problem (2.2.3); to this end, it suffices to associate the latter problem with
a smaller tolerance than the one required in (2.2.4), namely, to reset ε to ε/k. With
this approximation (which is much simpler than (2.2.4)), we “stay at the safe side” –
what is feasible for approximation, clearly is feasible for the true problem (2.2.4) as
well. At the same time, in many cases, especially when ε is small, it turns out that the
conservatism built into the approximation nearly does not affect the optimal value we
can achieve.

In this lecture, we focus solely on the chance constrained model (2.2.3), or, which is the

same, on the chance constrained version (2.2.2) of a single scalar linear inequality affected

by stochastic uncertainty; some results on handling chance constrained problems of the form

(2.2.4) will be presented in lecture 3 (section 3.6.4).

While passing from a randomly perturbed scalar linear constraint (2.2.1) to its chance con-
strained version (2.2.2) seems to be quite natural, this approach suffers from a severe drawback
— typically, it results in a severely computationally intractable problem. The reason is twofold:

1. Usually, it is difficult to evaluate with high accuracy the probability in the left hand side
of (2.2.2), even in the case when P is simple.

For example, it is known [61] that computing the left hand side in (2.2.2) is NP-hard already when

ζ` are independent and uniformly distributed in [−1, 1]. This means that unless P=NP, there is

no algorithm that, given on input a rational x, rational data {[a`; b`]}L`=0 and rational δ ∈ (0, 1),

allows to evaluate p(x) within accuracy δ in time polynomial in the bit size of the input. Unless

ζ takes values in a finite set of moderate cardinality, the only known general method to evaluate

p(x) is based on Monte-Carlo simulations; this method, however, requires samples with cardinality

of order of 1/δ, where δ is the required accuracy of evaluation. Since the meaningful values of this

accuracy are ≤ ε, we conclude that in reality the Monte-Carlo approach can hardly be used when

ε is like 0.0001 or less.

2. More often than not the feasible set of (2.2.2) is non-convex, which makes optimization
under chance constraints a highly problematic task.

Note that while the first difficulty becomes an actual obstacle only when ε is small enough, the

second difficulty makes chance constrained optimization highly problematic for “large” ε as well.

Essentially, the only known case when none of the outlined difficulties occur is the case where ζ
is a Gaussian random vector and ε < 1/2.
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Indeed, when ζ ∼ N (θ,Θ), the random quantity

ζx := [a0]Tx+

L∑

`=1

ζ`[a
`]Tx− b0 −

L∑

`=1

ζ`b
` (2.2.5)

also is a Gaussian random variable with the expectation E{ζx} = αT [x; 1] and the variance
E
{
(ζx − αT [x; 1])2

}
= σ2(x) := [x; 1]TQTQ[x; 1]; here α andQ are vector and matrix readily

given by the data {[a`; b`]}L`=0, θ, Θ of the chance constraint. Further, the chance constraint
(2.2.2) reads

Prob {ζx > 0} ≤ ε.
Assuming that 0 ≤ ε ≤ 1/2 and σ(x) > 0, the latter constraint is equivalent to the relation

Erf
(
−αT [x; 1]/σ(x)

)
≤ ε,

where

Erf(s) =
1√
2π

∫ ∞

s

exp{−r2/2}dr (2.2.6)

is the error function. Introducing the inverse error function

ErfInv(γ) = min {s : Erf(s) ≤ γ} , (2.2.7)

we see that our chance constraint is equivalent to −αT [x; 1]/σ(x) ≥ ErfInv(ε), or, which is
the same, to the conic quadratic constraint

αT [x; 1] + ErfInv(ε)‖Q[x; 1]‖2 ≤ 0 (2.2.8)

in variable x.1 It is immediately seen that this conclusion remains valid for when σ(x) = 0

as well.

Due to the severe computational difficulties associated with chance constraints, a natural
course of action is to replace a chance constraint with its computationally tractable safe approx-
imation. The latter notion is defined as follows:

Definition 2.1 Let {[a`; b`]}L`=0, P , ε be the data of chance constraint (2.2.2), and let S be a
system of convex constraints on x and additional variables v. We say that S is a safe convex
approximation of chance constraint (2.2.2), if the x component of every feasible solution (x, v)
of S is feasible for the chance constraint.

A safe convex approximation S of (2.2.2) is called computationally tractable, if the convex
constraints forming S are efficiently computable.

It is clear that by replacing the chance constraints in a given chance constrained optimization
problem with their safe convex approximations, we end up with a convex optimization problem in
x and additional variables that is a “safe approximation” of the chance constrained problem: the
x component of every feasible solution to the approximation is feasible for the chance constrained
problem. If the safe convex approximation in question is tractable, then the above approximating
program is a convex program with efficiently computable constraints and as such it can be
processed efficiently.

In the sequel, when speaking about safe convex approximations, we omit for the sake of
brevity the adjective “convex,” which should always be added “by default.”

1Since 0 < ε ≤ 1/2, we have ErfInv(ε) ≥ 0, so that (2.2.8) indeed is a conic quadratic constraint.
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2.2.1 Ambiguous Chance Constraints

Chance constraint (2.2.2) is associated with randomly perturbed constraint (2.2.1) and a given
distribution P of random perturbations, and it is reasonable to use this constraint when we do
know this distribution. In reality we usually have only partial information on P , that is, we
know only that P belongs to a given family P of distributions. When this is the case, it makes
sense to pass from (2.2.2) to the ambiguous chance constraint

∀(P ∈ P) : Probζ∼P

{
ζ : [a0]Tx+

L∑

`=1

ζ`[a
`]Tx > b0 +

L∑

`=1

ζ`b
`

}
≤ ε. (2.2.9)

Of course, the definition of a safe tractable approximation of chance constraint extends straight-
forwardly to the case of ambiguous chance constraint. In the sequel, we usually skip the adjective
“ambiguous”; what exactly is meant depends on whether we are speaking about a partially or
a fully known distribution P .

Next we present a simple scheme for the safe approximation of chance constraints.

2.3 The Generating-Function-Based Approximation Scheme

Preliminaries. Let us set

w = [w0;w1; ...;wL] ∈ R
L+1; Zw[ζ] = w0 +

L∑

`=1

w`ζ`

The random variable ζx appearing in (2.2.5) can be represented as Zw[x][ζ], where x 7→ w[x] is
an affine mapping readily given by the data of (2.2.2) and independent of the distribution of ζ.
All we need in order to get a safe (or safe and tractable) convex approximation of the chance
constraint (2.2.2) is a similar approximation of the chance constraint

p(w) := Probζ∼P {Zw[ζ] > 0} ≤ ε (2.3.1)

in variables w. Indeed, given such an approximation (which is a system of convex constraints
in variables w and additional variables) and carrying out the affine substitution of variables
w 7→ w[x], we end up with a desired approximation of (2.2.2). Thus, from now on we focus on
building a safe (or safe and tractable) convex approximation of the chance constraint (2.3.1).

2.3.1 The approach

Conceptually, the approach we are about to develop is extremely simple. The chance constraint
of interest (2.3.1) reads

p(w) := Probζ∼P {Zw[ζ] > 0} ≡
∫
χ(Zw[ζ])dP (ζ) ≤ ε, (2.3.2)

where χ(s) is the characteristic function of the positive ray:

χ(s) =

{
0, s ≤ 0
1, s > 0
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If χ(·) were convex (which is not the case), the left hand side in (2.3.2) would be a convex
function of w (since Zw[·] is affine in w), and thus (2.3.2) would be a convex constraint on w.
Now let γ(·) be a convex function on the axis which is everywhere ≥ χ(x). Then we clearly have

p(w) ≤ Ψ(w) :=

∫
γ(Zw[ζ])dP (ζ).

so that the constraint
Ψ(w) ≤ ε (2.3.3)

is a safe approximation of (2.3.1); since γ(·) is convex, the function Ψ(w) is convex in w, so that
(2.3.3) is safe convex approximation of the chance constraint of interest. If, in addition, Ψ(·) is
efficiently computable, this safe convex approximation is tractable.

The next step, which usually reduces dramatically the conservatism of the above approxi-
mation, is given by scaling. Specifically, observing that χ(s) = χ(α−1s) for every α > 0, we
conclude that if γ(·) is as above, then γ(α−1s) ≥ χ(s) for all s, whence

p(w) ≤ Ψ(α−1w)

and thus the constraint
αΨ(α−1w) − αε ≤ 0 [⇔ Ψ(α−1x) ≤ ε]

in variables α > 0 and w also is a safe convex approximation of the chance constraint (2.3.1) —
whenever w can be extended by some α > 0 to a feasible solution of this constraint, w is feasible
for (2.3.1). The punch line is that the constraint

αΨ(α−1w) − αε ≤ 0 (2.3.4)

we end up with is convex in variables w and α > 0.2

When implementing this scheme, it is convenient to impose on γ(·) and on the distribution
of ζ natural restrictions as follows:

(!) γ(·) : R→ R is a nonnegative monotone function such that γ(0) ≥ 1 and γ(s)→ 0
as s→ −∞.

These properties of γ clearly imply that γ(·) is a convex majorant of χ(·), so that γ indeed can
be used in the above approximation scheme. From now on, we refer to functions γ(·) satisfying
(!) as to generators, or generating functions.

We have seen that the condition

∃α > 0 : αΨ(α−1w)− αε ≤ 0

is sufficient for w to be feasible for the chance constraint (2.3.1). A simple technical exercise
(which exploits the fact that Ψ(·), due to its origin, is lower semicontinuous) shows that when
γ(·) is a generator, a weaker condition

G(w) := inf
α>0

[
αΨ(α−1w)− αε

]
≤ 0 (2.3.5)

2This is a well known fact: whenever f(w) : Rn → R∪{+∞} is a convex function, its projective transformation

F (w,α) = αf(α−1w) is convex in the domain α > 0.
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also is sufficient for w to be feasible for (2.3.1). Note that the function G(w) by its origin is
convex in w, so that (2.3.5) also is a safe convex approximation of (2.3.1). This approximation
is tractable, provided that G(w) is efficiently computable, which indeed is the case when Ψ(·) is
efficiently computable.

Our last observation is as follows: let γ(·) be a generator, and let, as above, Ψ(w) =∫
γ(Zw[ζ])dP (ζ), so that Ψ is convex and lower semicontinuous. Assume that instead of Ψ(·)

we use in the above approximation scheme a convex and lower semicontinuous function Ψ+(·)
which is an upper bound on Ψ(·):

Ψ(w) ≤ Ψ+(w) ∀w.

Replacing in (2.3.4) and in (2.3.5) the function Ψ with its upper bound Ψ+, we arrive at the
convex constraint

αΨ+(α−1w)− αε ≤ 0 (2.3.6)

in variables w and α > 0 and the convex constraint

G+(w) := inf
α>0

[
αΨ+(α−1w)− αε

]
≤ 0 (2.3.7)

which clearly also are safe convex approximations of the chance constraint of interest (2.3.1).

2.3.2 Main result

The summary of our findings (which we formulate in a form applicable to the case of ambiguous
version of (2.3.1)) is as follows:

Theorem 2.1 Consider an ambiguous chance constraint in variables w:

∀P ∈ P : Probζ∼P

{
Zw[ζ] := w0 +

L∑

`=1

w`ζ` > 0

}
≤ ε. (2.3.8)

Let γ(·) be a generator, and let Ψ+(w) : RL+1 → R ∪ {+∞} be a convex function such that

∀(P ∈ P, w) : Ψ+(w) ≥
∫
γ(Zw[ζ])dP (ζ). (2.3.9)

Then both the constraint (2.3.6) in variables w and α > 0 and the constraint (2.3.7) in variables
w are safe convex approximations of the ambiguous chance constraint (2.3.8). These approxi-
mations are tractable, provided that Ψ+ is efficiently computable.

2.3.3 Relations to Robust Optimization

We are about to demonstrate that under mild regularity assumptions the safe convex approxi-
mation (2.3.7) of the ambiguous chance constraint (2.3.8) admits a Robust Counterpart form:

(!!) There exists a convex nonempty compact set Z ∈ R
L such that

G+(w) ≤ 0⇔ ∀ζ ∈ Z : w0 +

L∑

`=1

ζ`w` ≤ 0. (2.3.10)
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Example 2.1 Let P be the set of all product-type probability distributions on R
L (that is,

ζ1, ..., ζL are independent whenever ζ ∼ P ∈ P) with zero mean marginal distributions P`

supported on [−1, 1]. Choosing as the generator the function γ(s) = exp{s}, let us compute an
appropriate Ψ+. This should be a convex function such that

∀w ∈ R
L+1 : Ψ+(w) ≥ Eζ∼P

{
exp{w0 +

L∑

`=1

ζ`w`}
}
∀P ∈ P.

Given P ∈ P, denoting by P` the marginal distributions of P and taking into account that P is
product-type, we get

Eζ∼P

{
exp{w0 +

L∑

`=1

ζ`w`}
}

= exp{w0}
L∏

`=1

Eζ`∼P`
{exp{w`ζ`}}.

Now let us use the following simple and well known fact:

Lemma 2.1 Let Q be a zero mean probability distribution on the axis supported on [−1, 1].
Then for every real t one has

Es∼Q{exp{ts}} ≤ cosh(t). (2.3.11)

Proof. Given t, let us set f(s) = exp{ts} − sinh(t)s. The function f is convex, so that its maximum on
[−1, 1] is attained at the endpoint and thus is equal to cosh(t) (since f(1) = f(−1) = cosh(t)). We now
have ∫

exp{ts}dQ(s) =
∫
f(s)dQ(s) [since Q is with zero mean]

≤ max|s|≤1 f(s) [since Q is supported on [−1, 1]]
= cosh(s).

�

Note that the bound in Lemma is sharp – the inequality in (2.3.11) becomes equality when Q
is the uniform distribution on {−1, 1}.

Invoking Lemma, we get

∀(P ∈ P, w ∈ R
L+1) : Eζ∼P {γ(Zw[ζ])} ≤ exp{w0}

L∏

`=1

cosh(w`) ≤ Ψ+(w) := exp{w0+
1

2

L∑

`=1

w2
`},

(2.3.12)
where the concluding ≤ is given by the evident inequality cosh(t) ≤ exp{t2/2} (look at the
Taylor expansions of both sides).

Now, if not all w`, ` ≥ 1, are zeros, we have αΨ+(α−1w) − αε → +∞ when α → +0 and
when α → +∞, that is, our w satisfies (2.3.7) is and only if αΨ+(α−1w) − αε ≤ 0 for certain

α > 0, that is, if and only if w0α
−1 + α−2

2

∑L
`=1w

2
` − ln(ε) ≤ 0 for certain α > 0. The latter is

the case if and only if

w0 +
√

2 ln(1/ε)

√√√√
L∑

`=1

w2
` ≤ 0. (2.3.13)

When w1 = w2 = ... = wL = 0, the relation (2.3.7) clearly takes place if and only if w0 ≤ 0.
The bottom line is that with our Ψ+, the condition (2.3.7) is equivalent to (2.3.13), and implies
that

Prob

{
w0 +

L∑

`=1

ζ`w` > 0

}
≤ ε.
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Note that we have established a useful proposition:

Proposition 2.1 [Azuma’s inequality] If ξ1, ...ξL are independent zero mean random vari-
ables taking values in respective segments [−σ`, σ`], 1 ≤ ` ≤ L, then for every Ω > 0

Prob





L∑

`=1

ξ` > Ω

√√√√
L∑

`=1

σ2
`



 ≤ exp{−Ω2/2}.

Indeed, setting ζ` = ξ`/σ` (so that ζ` ∈ [−1, 1] are independent zero mean), ε = exp{−Ω2/2}
(so that Ω =

√
2 ln(1/ε)) and w0 = −Ω

√∑L
`=1 σ

2
` , we get

w0 +
√
2 ln(1/ε)

√∑

`=1

σ2
` = 0,

whence, as we have demonstrated, Prob
{
w0 +

∑L

`=1
ζ`σ` > 0

︸ ︷︷ ︸
⇔∑

` ξ`>Ω
√∑

` σ
2
`

}
≤ ε = exp{−Ω2/2}, as

claimed in Azuma’z inequality.

Now note that (2.3.13) is nothing but

w0 + ζT [w1; ...;wl] ≤ 0 ∀(ζ : ‖ζ‖2 ≤
√

2 ln(1/ε)),

we see that in the case in question (!!) holds true with

Z = {ζ ∈ R
L : ‖ζ‖2 ≤

√
2 ln(1/ε)}. (2.3.14)

In particular, we have justified the usefulness of seemingly “artificial” perturbation sets – Eu-
clidean balls: these sets arise naturally when we intend to immunize solutions to a randomly
perturbed scalar linear constraint against “nearly all” random perturbations ζ, provided that
all we know about the distribution P of ζ is the inclusion P ∈ P. q

Before proving (!!), let us understand what this claim actually means. (!!) says that in order
to immunize a candidate solution to the randomly perturbed scalar linear constraint

Zw[ζ] := w0 +

L∑

`=1

ζ`w` ≤ 0 (2.3.15)

in variables w against “nearly all” realizations of random perturbation ζ (that is, to ensure
the validity of the constraint, as evaluated at our candidate solution, with probability ≥ 1 − ε,
whatever be a distribution P of ζ belonging to a given family P), it suffices to immunize the
solution against all realizations of ζ from a properly chosen convex compact set Z.

By itself, this fact is of no much value. Indeed, under mild assumptions on P we can point
out a compact convex set Z which is (1 − ε)-support of every distribution P ∈ P, that is,
P (RL\Z) ≤ ε for every P ∈ P. Whenever this is the case, every solution to the semi-infinite
linear inequality

Zw[ζ] ≤ 0 ∀ζ ∈ Z
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clearly satisfies the ambiguous chance constraint (2.3.8). The importance of the outlined ap-
proach is that it produces perturbation sets which, in principle, have nothing in common with
(1−ε)-supports of distributions from P and can be much smaller than these supports. The latter
is a good news, since the smaller is Z, the less conservative is the associates safe approximation
of the chance constraint (2.3.8).

What can be gained from our approach as compared to the naive “(1 − ε)-support” one,
can be well seen in the situation of Example 2.1, where we are speaking about product-type
distributions with zero mean supported on the unit box B∞ = {ζ ∈ RL : ‖ζ‖∞ ≤ 1}.
As we know, in this case our generator-based approximation scheme allows to take, as Z,
the centered at the origin Euclidean ball of radius

√
2 ln(1/ε). When L is large, this set

is much smaller than any set Ẑ which “(1 − ε)-supports” all distributions from P . For

example, when ε < 1/2 and Ẑ (1− ε)-supports just two distribution from P , specifically, the
uniform distribution on the vertices of B∞ and the uniform distribution on the entire B∞,
the diameter of Ẑ must be at least 2

√
L (why?), while the ratio of the diameters of Ẑ and

Z is at least κL =
√

L
2 ln(1/ε) . It is easily seen that the ratio of the average linear sizes3 of Ẑ

and Z is at least O(1)κL with an absolute constant O(1). Thus, when L�
√

2 ln(1/ε), Z is
“much less” than (any) (1− ε)-support of the distributions from P . It should be added that
when ζ is uniformly distributed on the vertices of B∞ and L >

√
2 ln(1/ε), the probability

for ζ to take value in Z is just 0...

One can argue that while for ε � 1 fixed and L large, our artificial uncertainty set – the

ball Z – while being much less than any (1− ε)-support of the distributions from P in terms

of diameter, average linear sizes, etc., is nevertheless larger than B∞ (which is the common

support of all distributions from P) in some directions. Well, we shall see in a while that in

the situation of Example 2.1 we lose nothing when passing from the ball Z to its intersection

with B∞; this intersection is, of course, smaller than B∞, whatever be the interpretation of

“smaller.”

Justifying (!!)

Assumptions. To proceed, we need to make mild regularity assumptions on the functions
Ψ+(w) we intend to use in the approximation scheme suggested by Theorem 2.1. Recall that the
theorem itself requires from Ψ+ to be a convex upper bound on the function Ψ(w) = sup

P∈P
ΨP (w),

ΨP (w) = Eξ∼P{γ(Zw[ζ])}. Observe that Ψ(·) possesses the following properties:

• Ψ : RL+1 → R+ ∪ {+∞} is convex and lower semicontinuous;

• 0 ∈ DomΨ and Ψ(0) ≥ 1;

• We have ∞ > Ψ([−t; 0; ...; 0]) → 0 as 0 ≤ t→∞.

From now on, we assume that the function Ψ+ we intend to use possesses similar properties,
specifically, that

A. [Ψ ≤]Ψ+ : RL+1 → R+ ∪ {+∞} is convex and lower semicontinuous;

3The average linear size of a body Q ⊂ R
L is, by definition (mesL(Q))1/L.
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B. 0 ∈ intDomΨ+ and Ψ+(0) ≥ 1 (note that we have strengthened 0 ∈ DomΨ to 0 ∈
intDomΨ+);

C. ∞ > Ψ+([−t; 0; ...; 0]) → 0 as 0 ≤ t→∞.

We refer to functions Ψ+ with the above properties as to regular.

Key fact. The following result is similar to [3, Lemma B.1.1]:

Lemma 2.2 Consider the situation of Theorem 2.1, and let Ψ+ be regular. Then the feasible
set W ⊂ R

L+1 of the constraint (2.3.7) is a closed convex cone with a nonempty interior, and
this interior contains the vector e = [−1; 0; ...; 0] ∈ R

L+1.

Proof. We know that

(+) The set
W o = {w : ∃α > 0αΨ+(w/α) − αε ≤ 0}

which clearly is conic, is convex and is contained in the feasible set W+ of the ambiguous
chance constraint (2.3.8),

and we want to prove that the set

W = {w : G+(w) := inf
α>0

{
αΨ+(w/α) − αε

}
≤ 0}

(a) is a closed convex cone contained in W+, and (b) contains a neighbourhood of the point e =
[−1; 0; ...; 0].
In order to derive (a), (b) from (+), it suffices to prove that

(c) W = clW o and (d) e ∈ intW o.

10. Let us first prove that W ⊂ clW o. Indeed, let w ∈W , and let us prove that w ∈ clW0. Since w ∈ W ,
we have for some sequence {αi > 0}:

lim
i→∞

αi[Ψ
+(w/αi)− ε] ≤ 0 (∗)

W.l.o.g. we can assume that either
A. ∃ᾱ = lim

i→∞
αi ∈ (0,∞), or

B. αi → +∞ as i→∞, or
C. αi → +0 as i→∞.

In the case of A we have

0 ≥ lim
i→∞

αi[Ψ
+(w/αi)− ε] ≥ ᾱ[Ψ+(w/ᾱ)− ε]

(recall that Ψ+ is lower semicontinuous), so that w ∈W o, as claimed.
In the case of B, by lower semicontinuity of Ψ+ we have lim inf

i→∞
Ψ+(w/αi) ≥ Ψ+(0) ≥ 1 > ε, whence

lim
i→∞

αi[Ψ
+(w/αi)− ε] = +∞, which is impossible.

In the case of C (∗) says that R+w ⊂ DomΨ+ and that Ψ+, by convexity, is nonincreasing along the
ray R+w and thus is bounded on this ray: ∃M ∈ [1,∞) : Ψ+(tw) ≤ M ∀t ≥ 0. Besides, Ψ+(se)→ 0 as
s→∞, so that we can find w̄ = s̄e ∈ DomΨ+ such that Ψ+(w̄) ≤ ε/3. Setting

zt =
tε

2M
w +

2M − ε
2M

w̄ =
ε

2M
[tw] +

[
1− ε

2M

]
w̄,
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we have Ψ+(zt) ≤ ε
2MΨ+(tw) +

[
1− ε

2M

]
Ψ+(w̄) ≤ ε

2 + Ψ+(w̄) < ε, whence zt ∈ W o for all t > 0. Since
W o is conic, we get

W o 3
[
tε

2M

]−1

zt = w +
2M − ε
tε

z̄ → w, t→∞,

and thus w ∈ clW o, as claimed.
20. We have already seen that W ⊂ clW o. To prove that W = clW o, it remains to verify that if
w = lim

i→∞
wi and wi ∈ W o, then w ∈ W . In other words, given that Ψ+(wi/αi) ≤ ε for some αi > 0 and

that w = lim
i
wi, we should prove that

inf
α>0

α[Ψ+(w/α)− ε] ≤ 0. (2.3.16)

There is nothing to prove when wi = w for some i; thus, we can assume that δi := ‖w − wi‖ > 0 for all
i. By assumption, 0 ∈ intDomΨ+ and Ψ+ is convex; thus, Ψ+ is bounded in a neighborhood of 0:

∃(ρ > 0,M <∞) : ‖z‖ ≤ ρ⇒ Ψ+(z) ≤M.

Setting

αi =
αiρ

δi + αiρ
, zi = αi(wi/αi) + (1− αi)

w − wi

δi
ρ,

direct computation shows that

zi =
ρ

δi + αiρ
w := w/γi, γi =

δi + αiρ

ρ
.

Besides this,
Ψ+(zi) ≤ αiΨ

+(wi/αi) + (1 − αi)Ψ
+(ρw−wi

δi
)

≤ αiε+ (1− αi)M,

⇒ Ψ+(zi)− ε = (1− αi)[M − ε] = δi
δi+αiρ

[M − ε]
⇒ γi[Ψ

+(w/γi)− ε] = γi[Ψ
+(zi)− ε] ≤ γi δi

δi+αiρ
[M − ε]

= δi
ρ [M − ε]→ 0, i→∞,

and the conclusion in (∗) follows.
30. We have proved (c). What remains to prove is that e ∈ intW . Indeed, Ψ+ is finite in a

neighborhood U of the origin and Ψ+(se)→ 0 as s→∞. It follows that for large enough value of s and
small enough value of α > 0 one has

w ∈ S := αU + (1− α)se⇒ Ψ+(w) ≤ ε,

that is, S ⊂ W o. Since S contains a neighborhood of s+e for an appropriate s+ > 0, s+e ∈ intW o, and
since W o is conic, we get e ∈ intW o ⊂ intW . �

Lemma 2.2 is the key to the proof of (!!). Indeed, since W is a closed convex cone and its
interior contains e, the set

Z =
{
z ∈ R

L+1 : zTw ≤ 0 ∀w ∈W, eT z = −1
}

that is, the intersection of the cone W− := {z : zTw ≤ 0∀w ∈ W} anti-dual to W with the
hyperplane Π = {z : eT z = −1}, is a nonempty convex compact set such that

W =
{
w : wT z ≤ 0 ∀z ∈ Z

}
. (2.3.17)
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Indeed, W ⊂ RL+1 is a closed convex cone and as such it is anti-dual of its anti-dual cone
W−. Besides this, W clearly is proper, i.e., differs from the entire RL+1, since otherwise
we would have −e = [1; 0; ...; 0] ∈ W , that is, [1; 0; ...; 0] would be a feasible solution to the
ambiguous chance constraint (2.3.8) (since all points from W are so), which of course is not
the case. Since W is proper and W = (W−)−, the anti-dual cone W− of W cannot be {0}.
Further, the hyperplane Π intersects all rays R+f spanned by nonzero vectors f ∈W−.

Indeed, for such an f , fT e′ ≤ 0 for all vectors e′ close enough to e (since f ∈ W− and

all vectors e′ close enough to e belong to W ); since f 6= 0, since f 6= 0, the relation

fT e′ ≤ 0 for all close enough to e vectors e′ implies that fT e < 0. The latter, in turn,

means that (tf)T e = −1 for properly chosen t > 0, that is, Π indeed intersects R+f .

Since W− 6= {0}, the set of nonzero f ∈W− is nonempty, and since for every f from this set
the ray R+f is contained in W− and intersects Π, the intersection Z of W− and Π is convex
and nonempty. Since both Πand W− are closed, Z is closed as well. To prove that the closed
set Z is compact, it suffices to prove that it is bounded, which is readily given by the fact
that e ∈ intW .

Indeed, assuming that Z is unbounded, there exists a sequence f1, f2, ... of points in Z

such that ‖fi‖2 → ∞, i → ∞. Since W− ⊃ Z is a cone, the unit vectors gi = fi/‖fi‖2
form a bounded sequence in W−, and passing to a subsequence, we can assume that

this sequence converges as i → ∞ to a (clearly unit) vector g. Since gi ∈ W− and W−

is closed, we have g ∈ W−. Further, we have eT fi = −1 for all i due to fi ∈ Π, whence

eT g = lim
i→∞

eT gi = 0. This is in a clear contradiction with the facts that e ∈ intW and

0 6= g ∈ W−, since from these facts it follows that gT e′ ≤ 0 for all e′ close to e, and

the latter in the case of 0 6= g and gT e = 0 clearly is impossible. Thus, assuming Z

unbounded, we arrive at a contradiction.

We have verified that Z is a nonempty convex compact set, and the only missing fact is

(2.3.17). The latter relation is nearly evident. Indeed, every w ∈ W clearly satisfies wT z ≤
0 ∀z ∈ Z due to the fact that Z ⊂W−. Vice versa, if wT z ≤ 0 ∀z ∈ Z, then wT f ≤ 0 for all

0 6= f ∈ W− (since, as we have already seen, a nonnegative multiple of such an f belongs to

Z). But then w ∈ (W−)− =W . Thus, the right hand side in (2.3.17) is exactly W .

Note that (2.3.17) is all we need to prove (!!). Indeed, since e = [−1; 0; ...; 0], we have Π = {z =
[z0; z1; ...; zL] : e

T z = −1} = {z = [1; z1; ...; zL]}. Consequently, (2.3.17) reads

W = {w = [w0;w1; ...;wL] : w
T z ≤ 0 ∀z ∈ Z} = {w = [w0; ...;wL] : w0 +

L∑

`=1

ζ`w` ≤ 0 ∀ζ ∈ Z},

where Z = {ζ ∈ R
L : [1; ζ] ∈ Z}. It remains to note that Z is a nonempty convex compact set

along with Z.

Building Z
We have justified (!!); note, however, that this claim is a kind of existence theorem – it just states
that a desired Z exists; at the same time, the construction of Z, as offered by the justification
of (!!), is rather complicated and, in general, difficult to carry out explicitly in the general
case. In fact, this is not a big deal: all that we finally interested in is the resulting convex
approximation (2.3.7) of the ambiguous chance constraint (2.3.8), along with conditions under
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which it is tractable, and this information is readily given by Theorem 2.1: the approximation
is (2.3.7), and it is tractable when Ψ+ is efficiently computable. Whether this approximation
is a Robust Counterpart one and what is the associated uncertainty set – these issues are more
academic and aesthetical than practical. For the sake of aesthetics, which is important by its
own right, here is a rather general case where Z can be pointed out explicitly. This is the
case where the function Ψ+ is regular and in addition we have in our disposal a Fenchel-type
representation of Ψ+, that is, representation of the form

Ψ+(w) = sup
u

{
wT [Bu+ b]− φ(u)

}
, (2.3.18)

where φ(·) is a lower semicontinuous convex function on certain R
m possessing bounded level

sets {u : φ(u) ≤ c}, c ∈ R, and B, b are a matrix and a vector of appropriate dimensions.

It is well known that every proper (i.e., with a nonempty domain) convex lower semicontin-
uous function f : Rn → R ∪ {+∞} admits Fenchel representation:

f(w) = sup
z

{
wT z − φ(z)

}
,

φ being the Fenchel transform of f :

φ(z) = sup
w

{
zTw − f(w)

}
.

The the latter function indeed is proper, convex and lower semicontinuous; it has bounded

level sets, provided that Dom f = Rn. It should be added that Fenchel-type (note: Fenchel-

type, not the Fenchel!) representations admit an “algorithmic calculus” and thus usually are

available in a closed form.

Proposition 2.2 [3, section 4.3.2] In the situation of Theorem 2.1, let Ψ+ be regular and given
by (2.3.18). Given ε, let us set

U = {u : φ(u) ≤ −ε}.
Then U is a nonempty compact convex set, and

G+(w) ≤ 0⇔ max
u∈U

wT (Bu+ b) ≤ 0 ∀u ∈ U . (2.3.19)

In other words, the safe convex approximation (2.3.7) of the ambiguous chance constraint (2.3.8)
is nothing but the Robust Counterpart of the uncertain linear constraint

L∑

`=0

z`w` ≤ 0, (2.3.20)

in variables w, the uncertainty set being

Z = {z = Bu+ b : u ∈ U}.

The Proposition is an immediate corollary of the following
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Lemma 2.3 Let H(w) : RL+1 → R ∪ {+∞} be a lower semicontinuous convex function such that
0 ∈ DomH, and a be a real such that H(0) > a, and let H admit a representation

H(w) = sup
u

[
wT [Bu+ b]− h(u)

]

with lower semicontinuous convex function h with bounded level sets. Then the set

U = {u : h(u) + a ≤ 0}

is a nonempty convex compact set, and

{w : inf
α>0

α[H(w/α) − a] ≤ 0} = {w : wT [Bu + b] ≤ 0 ∀u ∈ U}. (2.3.21)

Proof. 10. We have H(0) = − infu h(u) and this infinum is achieved (since h has bounded level sets and
is lower semicontinuous). Thus

∃u∗ : h(u∗) = −H(0) < −a,
whence the set U is nonempty. Its convexity and compactness follow from the fact that h is lower
semicontinuous, convex and has bounded level sets.
20. Let us denote by W`, Wr the left- and the right hand side sets in (2.3.21), and let us prove first that
W` ⊂ Wr. In other words, we should prove that if w 6∈ Wr, then w 6∈ W`. To this end note that for
w 6∈Wr there exists ū such that h(ū) + a ≤ 0 and wT [Bū+ b] > 0. It follows that

α > 0⇒ α[H(w/α) − a] ≥ α[(w/α)T [Bū+ b]− h(ū)− a] = wT [Bū+ b]− α[h(ū) + a] ≥ wT [Bū+ b],

and thus inf
α>0

α[H(w/α) − a] ≥ wT [Bū+ b] > 0, so that w 6∈W`, as claimed.

30. It remains to prove that if w ∈Wr, then w ∈W`. Let us fix w ∈Wr; we should prove that for every
δ > 0 there exists ᾱ > 0 such that

ᾱ[H(w/ᾱ)− a] ≤ δ. (2.3.22)

Observe, first, that whenever u ∈ U , there exists αu > 0 such that

wT [Bu+ b]− αu(h(u) + a) < δ/2

(since wT [Bu+ b] ≤ 0 due to w ∈Wr). Since −h(·) is upper semicontinuous, there exists a neighborhood
Vu of u such that

∀(u′ ∈ Vu) : wT [Bu′ + b]− αu(h(u
′) + a) < δ/2.

Since U is a compact set, we see that there exist finitely many positive reals α1, ..., αN such that

∀u ∈ U : min
1≤i≤N

[
wT [Bu + b]− αi[h(u) + a]

]
≤ δ/2. (2.3.23)

Now let R <∞ be such that ‖u− u∗‖2 ≤ R whenever u ∈ U , and let α+ > R‖BTw‖2

H(0)−a . We claim that

u 6∈ U ⇒ wT [Bu+ b]− α+[h(u) + a] ≤ 0. (2.3.24)

Indeed, let us fix u 6∈ U , and let us prove that the conclusion in (2.3.24) holds true for our u. There
is nothing to prove when u 6∈ Domh, thus assume that u ∈ Domh. Let ut = u∗ + t(u − u∗), and let
η(t) = h(ut) + a, 0 ≤ t ≤ 1. The function η(·) is convex, finite and lower semicontinuous on [0, 1] and
thus is continuous on this segment. Since η(0) = −H(0) + a < 0 and η(1) > 0 due to u 6∈ U , there exists
t̄ ∈ (0, 1) such that η(t̄) = 0, meaning that ut̄ ∈ U and thus wT [But̄ + b] ≤ 0. Since ‖ut̄ − u∗‖2 ≤ R, we
have

wT [Bu+ b] = wT

[
b+B

[
ut̄ +

1− t̄
t̄

(ut̄ − u∗)
]]
≤ 1− t̄

t̄
wTB[ut̄ − u∗] ≤

1− t̄
t̄

R‖BTw‖2.
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On the other hand, we have 0 = η(t̄) ≤ t̄η(1) + (1− t̄)η(0), whence

η(1) ≥ −1− t̄
t̄

η(0) =
1− t̄
t̄

[H(0)− a].

We conclude that wT [Bu+b]−α+[h(u)+a] ≤ 1−t̄
t̄ R‖BTw‖2−α+

1−t̄
t̄ [H(0)−a] ≤ 0, where the concluding

inequality is given by the definition of α+. We have proved (2.3.24).
30. Setting αN+1 = α+ and invoking (2.3.23), we see that

min
1≤i≤N+1

[
wT [Bu+ b]− αi[h(u) + a]

]
≤ δ/2 ∀u ∈ Domh,

meaning that

sup
u∈Domh

min
λ≥0,

∑N+1
i=1

λi=1

N+1∑

i=1

λi
[
wT [Bu+ b]− αi[h(u) + a]

]
≤ δ/2;

invoking Sion-Kakutani Theorem,4 we conclude that there exists a convex combination

N+1∑

i=1

λ∗i
[
wT [Bu+ b]− αi[h(u) + a]

]
= wT [Bu + b]− ᾱ[h(u) + a],

ᾱ =
∑N+1

i=1 λiαi > 0, such that wT [Bu + b]− ᾱ[h(u) + a] ≤ δ on the domain of h, meaning that

ᾱ[H(w/ᾱ)− a] = sup
u

[
wT [Bu+ b]− ᾱ[h(u) + a]

]
≤ δ,

as required in (2.3.22). �

The above Proposition has an “aesthetical drawback:” in (2.3.20), the coefficients of all
variables w0, ..., wL are uncertain, while in (2.3.8) the coefficient of w0 is certain – it is equal to
1. In [3, section 4.3.2] it is explained how to get rid of this drawback.

2.4 Implementing the Approximation Scheme

2.4.1 “Ideal implementation” and Conditional Value at Risk

A natural question in the situation of Theorem 2.1 is how to choose the best, if any, generator
γ(·) and the best Ψ∗. When all we are interested in is to minimize the conservatism of the
approximation (2.3.7) of the ambiguous chance constraint (2.3.8), the answer is clear: under
extremely mild boundedness assumptions, the best γ(·) and Ψ+(·) are

γ∗(s) = max[1 + s, 0], Ψ+
∗ (w) = sup

P∈P
Eζ∼P

{
γ∗(w0 +

L∑

`=1

ζ`w`)

}
. (2.4.1)

The regularity assumptions in question merely require the expectations Eζ∼P {‖ζ‖2} to be
bounded uniformly in P ∈ P. Note that in this case (which we assume to take place from
now on) Ψ+

∗ is regular and DomΨ+
∗ = R

L+1.

4This standard theorem of Convex Analysis reads as follows: Let X,Y be nonempty convex sets with X being

compact, and f(x, y) : X ×Y → R be a function which is convex and lower semicontinuous in x ∈ X and concave

and upper semicontinuous in y ∈ Y . Then inf
x∈X

supy∈Y f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).
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Indeed, after a generator is chosen, the best possible, in terms of the conservatism of the
resulting approximation of (2.3.8), choice of Φ+ clearly is

Φ+
γ = sup

P∈P
Eζ∼P {γ(Zw[ζ])} .

Now let γ be a generator. Since γ is convex and nonnegative, γ(0) ≥ 1 and γ(s) → 0 as
s→ −∞, we have a := γ′(0+) > 0. By convexity and due to γ(0) ≥ 1, we have γ(s) ≥ 1+as
for all s, and since γ is nonnegative, it follows that

γ(s) ≥ γ̄(s) := max[1 + as, 0] = γ∗(as).

By this inequality, replacing γ with γ∗(as) (the latter function is a generator due to a > 0), we

can only Φ+
γ , thus reducing the conservatism of (2.3.7). It remains to note Φ+

γ̄ (w) = Φ+
∗ (aw),

meaning that Φ+
γ̄ and Φ+

∗ lead to proportional to each other, with a positive coefficient,

functions G+ and thus – to the equivalent to each other approximations (2.3.7).

The case of known P . In the case when P = {P} is a singleton, the approximation (2.3.7)
associated with (2.4.1) after simple manipulations (carry them out!) takes the form

CVaRε(w) := inf
a∈R

[
a+

1

ε
E {[max[Zw[ζ]− a, 0]}

]
≤ 0. (2.4.2)

The left hand side in this relation is nothing but the famous Conditional Value at Risk, the level
of risk being ε, of the random variable Zw[ζ]. This is the best known so far convex in w upper
bound on the Value at Risk

VaRε(w) = min
a∈R
{a : Probζ∼P{Zw[ζ] > a} ≤ ε} .

of this random variable. Note that in the non-ambiguous case, the chance constraint (2.3.8) is
nothing but the constraint VaRε(w) ≤ 0, the CVaR approximation (2.4.2) is therefore obtained
from the “true” constraint by replacing VaRε(w) with its convex upper bound CVaRε(w).

While being safe and convex, the CVaR approximation typically is intractable: comput-
ing CVaRε(w) reduces to multi-dimensional integration; the only computationally meaningful
general technique for solving the latter problem is Monte Carlo simulation, and this technique
becomes prohibitively time consuming when ε is small, like 10−5 or less. Seemingly, the only
generic case when the CVaR approximation is tractable is the one where the distribution P of
ζ is supported on a finite set {ζ1, ..., ζN} of moderate cardinality N , so that

Ψ+
z (w) =

N∑

i=1

πimax

[
0, 1 + w0 +

L∑

`=1

ζ i`w`

]
[πi = Prob{ζ = ζ i}]

In this case, the RC representation of the CVaR approximation is

CVaRε(w) ≤ 0⇔ w0 +
∑L

`=1 ζ`w` ≤ 0 ∀ζ ∈ Z,
Z = {ζ =

∑N
i=1 uiζ

i : 0 ≤ ui ≤ πi/ε,
∑

i ui = 1},

see [3, Proposition 4.3.3].
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2.4.2 “Tractable case:” Bernstein Approximation

We are about to demonstrate that under reasonable assumptions on P, the generator γ(s) =
exp{s} which we have used in Example 2.1 results in computationally tractable approximation
(2.3.7) of the ambiguous chance constraint (2.3.8).

The assumptions in question are as follows:

Brn.1. P is comprised of all product-type probability distributions P = P1×...×PL with marginals
P` running, independently of each other, in respective families P`, 1 ≤ ` ≤ L; here P` is a
given family of probability distributions on R.

Brn.2. The functions
Φ∗
`(t) := sup

P`∈P`

ln (Es∼P`
{exp{ts}})

are convex and lower semicontinuous (this is automatic) and 0 ∈ intDomΦ∗
` (this indeed is

an assumption), and we have in our disposal efficiently computable lower semicontinuous
convex functions

Φ+
` (·) ≥ Φ∗

`(·)

with 0 ∈ intDomΦ+
` .

Under these assumptions, for every P = P1 × ...× PL ∈ P we have

Eζ∼P

{
exp{w0 +

L∑

`=1

ζ`w`}
}

= exp{w0}
L∏

`=1

Eζ`∼P`
{exp{w`ζ`}} ≤ exp{w0}

L∏

`=1

exp{Φ∗
`(w`)}.

It follows that setting

Ψ+(w) = exp{w0}
L∏

`=1

exp{Φ+
` (w`)},

we meet the requirements imposed on Ψ+ in Theorem 2.1, so that the condition

∃α > 0 : Ψ+(α−1w) ≤ ε (2.4.3)

is sufficient for w to satisfy (2.3.8).
Now let us proceed similarly to the derivation of (2.3.7), but not exactly so; it is now

convenient to rewrite (2.4.3) in the equivalent form

∃α > 0 : lnΨ+(α−1w) ≤ ln(ε).

Taking into account the structure of Ψ+, the latter condition reads

∃α > 0 : w0 + αΦ(α−1[w1; ...;wL]) + α ln(1/ε) ≤ 0

Φ(z) =
L∑

`=1

Φ+
` (z`)

(2.4.4)

Observe that Φ(w) by construction is convex and lower semicontinuous, 0 ∈ intDomΦ, and that
Φ(te)→ −∞ as t→ +∞; here, as above, e = [−1; 0; ...; 0] ∈ R

L+1. It is not difficult to see (see
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[3] for all proofs we are skipping here) that the sufficient condition (2.4.4) for w to satisfy (2.3.8)
can be weakened to

H(w) := w0 + infα>0

{
αΦ(α−1[w1; ...;wL]) + α ln(1/ε)

}

≡ w0 + inf
α>0

[∑L
`=1 αΦ

+
` (α

−1w`) + α ln(1/ε)
]
≤ 0

(2.4.5)

We shall call the latter sufficient condition for the validity of (2.3.8) the Bernstein approximation
of the ambiguous chance constraint (2.3.8). The main properties of this approximation are
“parallel” to those of (2.3.7). These properties are summarized in the following result (the proof
is completely similar to those of Lemma 2.2 and Proposition 2.2):

Theorem 2.2 Let assumptions Brn.1 – Brn.2 take place. Then
(i) (2.4.5) is a safe tractable convex approximation of the ambiguous chance constraint (2.3.8),

and the feasible set W of this approximation is a closed convex cone which contains the vector
e = [−1; 0; ...; 0] in its interior.

(ii) The approximation (2.4.5) is of the Robust Counterpart form:

W = {w : w0 +
L∑

`=1

ζ`w` ≤ 0 ∀ζ ∈ Z} (2.4.6)

with properly chosen nonempty convex compact uncertainty set Z. Assuming that Φ (see (2.4.4))
is given by Fenchel-type representation

Φ([w1; ...;wL]) = sup
u

[
[w1; ...;wL]

T (Bu+ b)− φ(u)
]

where φ is convex, lower semicontinuous and possesses bounded level sets, one can take

Z = {ζ = Bu+ b : φ(u) ≤ ln(1/ε)}.

2.5 Bernstein Approximation: Examples and Illustrations

In this section, we consider the Bernstein approximations of the ambiguous chance constraint
(2.3.8), the assumptions Brn.1 – Brn.2 being in force all the time. Thus, we all the time
speak about the case when ζ1, ..., ζL are independent, changing from example to example our
assumptions on what are the families P` where the marginal distributions of ζ` run.

2.5.1 Example 2.1 revisited: Entropy, Ball, Ball-Box, Budgeted and Box
approximations

Everywhere in this subsection we assume that the families P`, q ≤ ` ≤ L, are comprised of all
zero mean probability distributions supported on [−1, 1], cf. Example 2.1.5

5Note that by scalings ζ` 7→ a` + b`ζ` we can reduce to this case the one where ζ` take values from a known
segment, perhaps depending on `, and the expectation of ζ` is known to be the midpoint of the segment.
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Entropy approximation

When processing Example 2.1, we have seen that

Φ∗
` := sup

P`∈P`

ln (Eζ`∼P`
{exp{tζ`}}) = ln(cosh(t)).

Thus, the best – the least conservative under the circumstances – Bernstein approximation of
(2.3.8) is

w0 + inf
α>0

α

[
L∑

`=1

ln(cosh(α−1w`)) + ln(1/ε)

]
≤ 0. (2.5.1)

The corresponding function Φ, see Theorem 2.2, is Φ(z) =
∑L

`=1 ln(cosh(z`)). It is easy to find
the Fenchel representation of Φ:

Φ(z) = sup
u:‖u‖∞<1

[
zTu− 1

2

L∑

`=1

[(1 + u`) ln(1 + u`) + (1− u`) ln(1− u`)]
]
.

It follows that the set Z from the Robust Counterpart representation (2.4.6) of (2.5.1) is

ZEntr =
{
ζ ∈ R

L : ‖ζ‖∞ ≤ 1,
L∑

`=1

[(1 + ζ`) ln(1 + ζ`) + (1− ζ`) ln(1− ζ`)] ≤ 2 ln(1/ε)

}
.

(2.5.2)

Ball approximation

When processing Example 2.1, we, in fact, were applying the Bernstein approximation, but with

the majorant Φ+(z) = 1
2

L∑
`=1

z2` of the above Φ in the role of Φ, and ended up with the Robust

Counterpart type safe tractable approximation of (2.3.8) with the Euclidean ball ZBall = {z :
‖z‖2 ≤

√
2 ln(1/ε) in the role of Z. We can recover the latter approximation directly from the

Entropy one, by noting that (1 + s) ln(1 + s) + (1 − s) ln(1 − s) ≥ s2 when |s| ≤ 1, that is,

ZEntr ⊂ ZBall, so that the Ball approximation of (2.3.8) – the one with Z = Zball – is more
conservative than the Entropy one and thus is safe along with the latter. The explicit form of
the Ball approximation is

w0 +
√

2 ln(1/ε)

√√√√
L∑

`=1

w2
` ≤ 0,

and its Robust counterpart form is

w0 +

L∑

`=1

ζ`w` ≤ 0 ∀ζ ∈ ZBall
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Ball-Box approximation

As we have seen, the set ZEntr, which is clearly contained in the box ZBox = {z ∈ R
L : ‖z‖∞ ≤

1}, is contained also in the ball ZBall; it follows that when replacing the uncertainty set ZEntr
participating in the RC representation the entropy approximation with the larger set

ZBallBox = ZBall ∩ ZBox = {z ∈ R
L : ‖z‖∞ ≤ 1&‖z‖2 ≤

√
2 ln(1/ε)},

we get a safe tractable approximation of (2.3.8) which is more conservative than the Entropy
one and is less conservative than the plain Box approximation. An explicit representation of the
Ball-Box approximation of (2.3.8) is given by the conic quadratic constraint

w0 +
L∑

`=1

|w` − u`|+
√
2 ln(1/ε)

√√√√
L∑

`=1

u2` ≤ 0

in variables w and additional variables u.

The latter claim is an immediate conclusion of the following well known fact (prove it!): if
B,C are two convex compact sets with intersecting interiors in Rn, then for every c one has

max
x∈A∩B

cTx = min
a,b:a+b=c

[
max
x∈A

aTx+max
x∈B

bTx

]
.

Budgeted approximation

For every vector x ∈ R
L one has ‖x‖1 ≤

√
L‖x‖2; this, ZBallBox is contained in the set

ZBudg = ZBox ∩ {z : ‖z‖1 ≤
√

2L ln(1/ε)}. Using this set in the role of Z, we get what is
called Budgeted approximation of (2.3.8) which is more conservative than the Ball-Box one and
thus is safe. An explicit polyhedral representation of the Budgeted approximation is given by
the constraint

w0 +

L∑

`=1

|w` − u`|+
√

2L ln(1/ε) max
1≤`≤L

|u`| ≤ 0

in variables w and in additional variables u. While being more conservative than the Ball-Box
one, the Budgeted approximation, introduced by Bertsimas and Sim, is very popular, since the
approximating constraint can be represented by a system of linear inequality constraints, and
thus we do not leave the realm of Linear Optimization.

Box approximation

This is the extreme case of the above constructions, where we use, as Z, the box Zbox, thus
ignoring all information on the stochastic nature of perturbations and utilizing the only the

assumption that ζ always takes its values in Zbox. The polyhedral representation of the resulting
Box approximation of (2.3.8) is

w0 +
L∑

`=1

|w`| ≤ 0,
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and this approximation is more conservative (and can be much more conservative when L is
large) than all other approximations we have developed, except, perhaps the Ball one. As a
compensation, the Box approximation is independent of ε and on our assumption of independence
ζ`. When ε is “extremely small”, so that

√
2 ln(1/ε) ≥

√
L (for not too small L, these values of

ε are by far too small to be of any practical interest), all approximations we have built, except
for the Ball one, coincide with the Box approximation.

How it works: Single Period Portfolio Selection

Let us apply the outlined techniques to the following single-period portfolio selection problem:

There are 200 assets. Asset # 200 (”money in the bank”) has yearly return r200 =
1.05 and zero variability. The yearly returns r`, ` = 1, ..., 199 of the remaining assets
are independent random variables taking values in the segments [µ` − σ`, µ` + σ`]
with expected values µ`; here

µ` = 1.05 + 0.3
200 − `
199

, σ` = 0.05 + 0.6
200 − `
199

, ` = 1, ..., 199.

The goal is to distribute $1 between the assets in order to maximize the value-at-risk
of the resulting portfolio, the required risk level being ε = 0.5%.

We want to solve the uncertain LO problem

max
y,t

{
t :

199∑

`=1

r`y` + r200y200 − t ≥ 0,

200∑

`=0

y` = 1, y` ≥ 0∀`
}
,

where y` is the capital to be invested in asset # `. The uncertain data are the returns r`,
` = 1, ..., 199; their natural parameterization is

r` = µ` + σ`ζ`,

where ζ`, ` = 1, ..., 199, are independent random perturbations with zero mean varying in the
segments [−1, 1]. Setting x = [y;−t] ∈ R

201, the problem becomes

minimize x201
subject to

(a) [a0 +
199∑
`=1

ζ`a
`]Tx− [b0 +

199∑
`=1

ζ`b
`] ≤ 0

(b)
200∑
j=1

x` = 1

(c) x` ≥ 0, ` = 1, ..., 200

(2.5.3)

where
a0 = [−µ1;−µ2; ...;−µ199;−r200;−1];
a` = σ` · [0`−1,1; 1; 0201−`,1], 1 ≤ ` ≤ 199;

b` = 0, 0 ≤ ` ≤ 199.

(2.5.4)
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Figure 2.1: Robust solutions to portfolio selection problem. Along the x-axis: indices 1,2,...,200
of the assets. a: expected returns, b: upper and lower endpoints of the return ranges, c: invested
capital for ball-box RC, %, d: invested capital for Budgeted RC, %.

The only uncertain constraint in the problem is the inequality (2.5.3.a), and this constraint fits
the framework of Example 2.1. We consider 3 of the above safe tractable approximations of the
chance version of this constraint, with ε set to 0.005, which results in Ω :=

√
2 ln(1/ε) ≈ 3.255.

We consider three of the above safe tractable approximations of the uncertain constraint in
question – the Box, the Ball-Box and the Budgeted ones.
Box approximation. With this approximation, the resulting robust version of the problem of
interest after straightforward computations becomes the LO program

max
y,t




t :

199∑
`=1

(µ` − σ`)y` + 1.05y200 ≥ t
200∑
`=1

y` = 1, y ≥ 0





; (2.5.5)

as it should be expected, this is nothing but the instance of our uncertain problem corresponding
to the worst possible values r` = µ` − σ`, ` = 1, ..., 199, of the uncertain returns. Since these
values are less than the guaranteed return for money, the robust optimal solution prescribes to
keep our initial capital in the bank, with a guaranteed yearly return of 1.05, that is, a guaranteed
profit of 5%.
Ball-Box approximation. Here the robust version of the problem of interest is the conic
quadratic program

max
y,z,w,t




t :

199∑
`=1

µ`y` + 1.05y200 −
199∑
`=1

|z`| − 3.255

√
199∑
`=1

w2
` ≥ t

z` + w` = σ`y`, ` = 1, ..., 199,
200∑
`=1

y` = 1, y ≥ 0




. (2.5.6)

The robust optimal value is 1.1200, meaning 12.0% profit with risk as low as ε = 0.5%. The
distribution of capital between assets is depicted in figure 2.1.
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Budgeted RC. Here the robust version of the problem of interest is the LO problem

max
y,z,w,t




t :

199∑
`=1

µ`y` + 1.05y200 −
199∑
`=1

|z`| − 45.921 max
1≤`≤199

|w`| ≥ t

z` + w` = σ`y`, ` = 1, ..., 199,
200∑
`=1

y` = 1, y ≥ 0




. (2.5.7)

The robust optimal value is 1.1014, meaning 10.1% profit with risk as low as ε = 0.5%. The
distribution of capital between assets is depicted in figure 2.1.
Discussion. First, we see how useful stochastic information might be — with risk as low as
0.5%, the value-at-risk of the portfolio profits yielded by the Ball-Box (12%) and the Budgeted
(10%) approximations are twice as large as the profit guaranteed by the box approximation
(5%). Note also that both the Ball-Box and the Budgeted approximations suggest “active”
investment decisions, while the box RC suggests keeping the initial capital in bank. Second, the
Budgeted RC, as it should be, is more conservative than the ball-box one. Finally, we should
remember that the actual risk associated with the portfolio designs offered by the Ball-Box and
the Budgeted approximations (that is, the probability for the actual total yearly return to be
less than the corresponding robust optimal value) is at most the required 0.5%, and is likely to
be less than this amount; indeed, all our approximations are safe and thus conservative.

It is interesting to find out how small the actual risk is. The answer, of course, depends
on the actual probability distributions of uncertain returns (recall that in our model, we pos-
tulated only partial knowledge of these distributions, specifically, knowledge of their supports
and expectations). Assuming that “in reality” ζ`, ` = 1, ..., 199, take only their extreme values
±1, with probability 1/2 each, and carrying out a Monte-Carlo simulation with a sample of
1,000,000 realizations, we found that the actual risk for the “Ball-Box” portfolio is less than
the required risk 0.5% by factor 10, and for the “Budgeted” portfolio, by factor 50. Based on
this observation, it seems plausible that we can reduce our conservatism by “tuning,” that is,
by replacing the required risk in the approximations with a larger quantity, in hope that the
resulting actual risk, (which can be evaluated via simulation), will still be below the required
level. With this tuning, reducing the coefficient 3.255 in (2.5.6) to 2.589, one ends up with
the robust optimal value 1.1470 (that is, with a profit of 14.7% instead of the initial 12.0%),
while keeping the empirical risk (as evaluated over 500,000 realization sample) still as low as
0.47%. Similarly, reducing the “uncertainty budget” 45.921 in (2.5.7) to 30.349, we increase the
robust optimal value from 1.1012 to 1.1395 (i.e., increase profit from 10.12% to 13.95%), with
the empirical risk as low as 0.42%.

2.5.2 More examples

Under assumption Brn.1, which is in force in what follows, all we need in order to apply to (2.3.8)
the Bernstein approximation scheme in a computationally efficient fashion are efficiently com-
putable convex upper bounds Φ+

` (·) : R → R on the worst-case, over P`, logarithmic moment-
generating functions

Φ∗
`(t) = sup

P`∈P`

ln (Eζ`∼P`
{exp{tζ`}}} .

The “ideal case” here is the one when we can choose as Φ+
` the functions Φ∗

` themselves, thus
arriving at the least conservative, under circumstances, versions of the Bernstein approximation.
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We are about to list a number of these “ideal cases.” Below ` is a fixed index from {1, ..., L}. We
skip the proofs of the claims to follow; all these proofs can be found in [3, Chapter 2]. More to
the point, finding the proofs can be considered as a series of instructive exercises for the reader.
Note that in the examples to follow, to avoid messy formulas, we normalize the situation “to the
largest possible extent;” e.g., when speaking about the case when all distributions from P` are
supported on a common finite segment, we restrict ourselves with the case when this segment is
[−1, 1], keeping in mind that the results can be extended straightforwardly from this normalized
case to the general one by appropriate scaling ζ` 7→ a`ζ` + b`.

1. Gaussian distributions. Let P` be the set of all Gaussian probability distributions on the
axis with expectation µ varying in a given finite segment [µ−` , µ

+
` ] and the standard devi-

ation bounded by a given finite and positive quantity ν`. In this case

Φ∗
`(t) = max

µ−
` ≤µ≤µ+

`

µt+
ν2`
2
t2.

2. Bounded support: P` is comprised of all probability distributions supported on [−1, 1].
Here

Φ∗
`(t) = |t|.

3. Bounded support plus unimodality: P` is comprised of all probability distributions sup-
ported on −1, 1] which are unimodal, that is, are convex combinations of two probability
distributions: one is the unit mass at the origin, and the other one has density p(·) which
vanishes outside [−1, 1] and is nondecreasing to the left of 0 and nonincreasing to the right
of 0. Here

Φ∗
`(t) = ln

(
exp{|t|} − 1

|t|

)
.

4. Bounded support plus unimodality plus symmetry: P` is comprised of all symmetric w.r.t.
0 distributions from the previous item. Here

Φ∗
`(t) = ln

(
sinh(t)

t

)
.

5. Bounded support plus symmetry: P` is comprised of all symmetric probability distribu-
tions supported on [−1, 1]. Here

Φ∗
`(t) = ln(cosh(t)),

cf. Example 2.1.

6. Range and expectation information: P` is comprised of all probability distributions sup-

ported on [−1, 1] with expectations belonging to a given segment [µ−` , µ
+
` ] ⊂ [−1, 1]. Here

Φ∗
`(t) = max

µ−
` ≤µ≤µ+

`

log (cosh(t) + µ sinh(t)) .
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7. Range, expectation and variance information: P` is comprised of all probability distribu-

tions P` supported on [−1, 1] with expectations belonging to a given segment [µ−` , µ
+
` ]

and with variances Eζ`∼P`
{ζ2` } not exceeding a given quantity ν2` > 0. Assuming that

|µ±` | ≤ ν` ≤ 1, which is w.l.o.g. (why?), we have

Φ∗
`(t) =





max
µ−
` ≤µ≤µ+

`

ln

(
(1−µ)2 exp{tµ−ν2`

1−µ
}+(ν2`−µ2) exp{t}

1−2µ+ν2`

)
, t ≥ 0

max
µ−
` ≤µ≤µ+

`

ln

(
(1+µ)2 exp{tµ+ν2`

1+µ
}+(ν2`−µ2) exp{−t}

1+2µ+ν2`

)
, t ≤ 0

8. Range, symmetry and variance information: P` is comprised of all symmetric w.r.t. 0
probability distributions supported on [−1, 1] with variance not exceeding a given quantity
ν2` . Assuming w.l.o.g. that 0 ≤ ν` ≤ 1, we have

Φ∗
`(t) = ln

(
t2 cosh(t) + 1− t2

)
.

9. Range, symmetry, unimodality and variance information: P` is comprised of all symmetric
and unimodal w.r.t. 0 probability distributions supported on [−1, 1] with variance not
exceeding a given quantity ν2` . Assuming w.l.o.g. that 0 ≤ ν` ≤ 1/

√
3 (this is the largest

possible variance of a symmetric and unimodal w.r.t. 0 random variable supported on
[−1, 1]), we have

Φ∗
`(t) = ln

(
1− 3ν2` + 3ν2`

sinh(t)

t

)
.

Note that the above list seemingly is rich enough for typical applications. When implementing
Bernstein approximation, one can use the above “knowledge” as it is, thus arriving at safe
tractable approximations of the structure depending on what we know about every one of P`.
There exists also another way to utilize the above knowledge, slightly more conservative, but
with the definite advantage that the resulting approximation always is of the same nice structure
– it is a conic quadratic optimization program. Specifically, it is easily seen that in the situations
we have listed, the functions Φ∗

`(t) admits a majorant of the form

Φ+
` (t) = max

[
χ−
` t, χ

+
` t
]
+
σ2`
2
t2, 1 ≤ ` ≤ L, (2.5.8)

with easy-to-compute parameters χ±
` , σ` > 0. The values of χ±

` and σ` are presented in table
2.1 (in all cases from the above list where σ` is given by an efficient computation rather than
by an explicit value, we replace σ` with its valid upper bound). Now, we are in our right to use
in the Bernstein approximation scheme in the role of Φ+

` the functions (2.5.8), thus arriving at
the approximation

H(w) := inf
α>0

[
w0 + α

L∑

`=1

[
max[χ−

` w`/α, χ
+
` w`/α] +

σ2`w
2
`

2α2

]
+ α ln(1/ε)

]
≤ 0,

which is nothing but the explicit convex constraint

w0 +
L∑

`=1

max[χ−
` w`, χ

+
` w`] +

√
2 ln(1/ε)

√√√√
L∑

`=1

σ2`w
2
` ≤ 0 (2.5.9)
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case in the list χ−
` χ+

` σ`

1 µ−` µ+` ν`
2 −1 1 0

3 −1
2

1
2

√
1/12

4 0 0
√

1/3

5 0 0 1

6 µ−` µ+` ≤ 1

7 µ−` µ+` ≤ 1

8 0 0 ≤ 1

9 0 0 ≤
√

1/3

Table 2.1: Parameters χ±
` , σ` for the listed cases

in variables w; by its origin this constraint is a safe tractable approximation of the ambiguous
chance constraint (2.3.8) in question. Note also that this approximation can be straightforwardly
represented by a system of conic quadratic inequalities.
The Robust Counterpart from of (2.5.9) is

w0 +
∑L

`=1 ζ`w` ≤ 0 ∀ζ ∈ Z,
Z = {ζ = u+ v : χ−

` ≤ u` ≤ χ+
` , ` = 1, ..., L,

∑L
`=1 v

2
` /σ

2
` ≤ 2 ln(1/ε)}, (2.5.10)

that is, the corresponding perturbation set is the arithmetic sum of the box {u : [χ−
1 ; ...;χ

−
L ] ≤

u ≤ [χ+
1 ; ...;χ

+
L ]} and the ellipsoid {v :

∑L
`=1 v

2
`/σ

2
` ≤ 2 ln(1/ε)}; here, as always, v2` /02 is either

+∞ or 0, depending on whether or not v` > 0).

Refinements in the bounded case

Assume that we are in the situation of the previous item and that, in addition, all P` are
comprised of distributions supported on [−1, 1] (or, equivalently, for every ` ≤ 1, one of cases 2
– 9 takes place). In this case, all distributions P ∈ P are supported on the unit box B∞ = {ζ ∈
R
L : ‖ζ‖∞ ≤ 1}. It is natural to guess, and is indeed true that in this case the above Z can be

reduced to Z− = Z ∩B∞, so that the Robust Counterpart of the uncertain linear constraint

w0 +

L∑

`=1

ζ`w` ≤ 0,

the uncertainty set being Z−, still is a safe tractable approximation of (2.3.8).

When proving the latter claim, assume for the sake of simplicity that for every ` either
χ−
` < χ+

` , or σ` > 0, or both (on a closest inspection, the general case easily reduces to the
latter one). Taking into account that 1 ≤ χ−

` ≤ χ+
` ≤ 1 for all `, it is easily seen that in the

case in question the interiors of the convex compact sets Z and B∞ have a point in common.
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This, in view of the basic fact of convex analysis we have already mentioned, implies the
equivalence

∀w = [w0; w̄] ∈ RL+1 :

ζT w̄ ≤ −w0 ∀ζ ∈ Z−
A(w) ⇔ ∃a : max

ζ∈Z
aT ζ + max

ζ∈B∞

[w̄ − a]T ζ ≤ −w0
B(w,a)

.

Now, all we want to prove is that whenever w = [w0; w̄] satisfies A(w), w is feasible for
(2.3.8). Assuming that w satisfies A(w), the above equivalence says that there exists a such
that w, a satisfy B(w, a), that is, such that

max
ζ∈Z

aT ζ ≤ ŵ0 := −‖w̄ − a‖1 − w0.

As we remember from our previous considerations, the latter inequality implies that

∀P ∈ P : Probζ∼P

{
w0 + ‖w̄ − a‖1 + ζT a > 0

}
≤ ε. (2.5.11)

When ζ belongs to the support of P , we have ‖ζ‖∞ ≤ 1 and thus ζT [w̄ − a] ≤ ‖w̄ − a‖1, so
that

w0 + ζT w̄ = w0 + ζT [w̄ − a] + ζT a ≤ w0 + ‖w̄ − a‖1 + ζT a,

which combines with (2.5.11) to imply that w is feasible for (2.3.8), as claimed.

2.5.3 Approximating Quadratically Perturbed Linear Constraint

Till now, we were focusing on Bernstein approximation of (the chance constrained version of) a
scalar linear constraint f(x, ζ) ≤ 0 affinely perturbed by random perturbation ζ (i.e., with f bi-
affine in x and in ζ). Note that in principle the generating-function-based approximation scheme
(and in particular Bernstein approximation) could handle non-affine random perturbations; what
is difficult in the non-affine case (same as in the affine one, aside of the situation covered by
assumptions Brn.1-2), is to get a computationally tractable and a reasonably tight upper bound
on the function Ψ∗(x) = supP∈P E{γ(f(x, ζ))}. There is, however, a special case where the
latter difficulty does not occur – this is the case when f(x, ζ) is affine in x and quadratic in ζ,
and ζ is a Gaussian random vector. We are about to consider this special case. Thus, we assume
that the constraint in question is

ζTWζ + 2[w1; ...;wL]ζ + w0 ≤ 0 (2.5.12)

where the symmetric matrixW and vector w = [w0;w1; ...;wL] are affine in the decision variables
x, and ζ ∈ R

L is a Gaussian random vector. We lose nothing by assuming that the decision
variables are (W,w) themselves, and that ζ ∼ N (0, IL).

We start with the following observation (which can be justified by a straightforward compu-
tation):

Lemma 2.4 Let ζ ∼ N (0, I), and let

ξ = ξW,w = ζTWζ + 2[w1; ...;wL]
T ζ + w0.

Then ln
(
E
{
exp{ξW,w}

})
= F (W,w), where

F (W,w) = w0 − 1
2 lnDet(I − 2W ) + 2bT (I − 2W )−1[w1; ...;wL]

DomF = {(W,w) ∈ SL × R
L+1 : 2W ≺ I} (2.5.13)
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Applying the Bernstein approximation scheme, we arrive at the following result:

Theorem 2.3 [3, Theorem 4.5.9] Let

Φ(α,W,w) = αF (α−1(W,w))

= α

[
− 1

2 lnDet(I − 2α−1W ) + 2α−2[w1; ...;wL]
T (I − 2α−1W )−1[w1; ...;wL]

]
+ w0

[DomΦ = {(α,W,w) : α > 0, 2W ≺ αI}] ,
Wo = {(W,w) : ∃α > 0 : Φ(α,W,w) + α ln(1/ε) ≤ 0} , W = clWo.

(2.5.14)

Then W is the solution set of the convex inequality

H(W,w) ≡ inf
α>0

[Φ(α,W,w) + α ln(1/ε)] ≤ 0. (2.5.15)

If ζ ∼ N (0, I), then this inequality is a safe tractable approximation of the chance constraint

Probζ∼N (0,IL)

{
ζTWζ + 2[w1; ...;wL]

T ζ +w0 > 0
}
≤ ε. (2.5.16)

Application: A useful inequality

Let W be a symmetric L×L matrix and w be an L-dimensional vector. Consider the quadratic
form

f(s) = sTWs+ 2wT s,

and let ζ ∼ N (0, I). We clearly have E{f(ζ)} = Tr(W ). Our goal is to establish a simple bound
on Prob{f(ζ)− Tr(W ) > t}, and here is this bound:

Proposition 2.3 Let λ be the vector of eigenvalues of W . Then

∀Ω > 0 : Probζ∼N (0,I)

{
[ζTWζ + 2wT ζ]− Tr(W ) > Ω

√
λTλ+ wTw

}

≤ exp

{
− Ω2

√
λTλ+wTw

4
(
2
√

λT λ+wTw+‖λ‖∞Ω
)

}
(2.5.17)

(by definition, the right hand side is 0 when W = 0, w = 0).

Proof. The claim is clearly true in the trivial case of W = 0, w = 0, thus assume that f is not
identically zero. Passing to the orthonormal eigenbasis of W , we can w.l.o.g. assume that W is
diagonal with diagonal entries λ1, ..., λL. Given Ω > 0, let us set s = Ω

√
λTλ+ wTw and let

γ =
s

2 (2(λTλ+ wTw) + ‖λ‖∞s)
,

so that

0 < γ & 2γW ≺ I &
4γ(λTλ+ wTw)

1− 2γ‖λ‖∞
= s. (2.5.18)
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Applying Theorem 2.3 with w0 = −[Tr(W ) + s] and specifying β as 1/γ, we get

Prob{f(ζ) > Tr(W ) + s}
≤ exp

{
−γs+∑L

`=1

(
−1

2 ln(1− 2γλ`) + 2γ2
w2

`
1−2γλ`

− γλ`
)}

≤ exp
{
−γs+∑L

`=1

(
γλ`

1−2γλ`
+ 2γ2

w2
`

1−2γλ`
− γλ`

)}

[since ln(1− δ) + δ
1−δ ≥ ln(1) = 0 by the concavity of ln(·)]

= exp
{
−γs+∑L

`=1

(
2γ2(λ2

`+w2
` )

1−2γλ`

)}
≤ exp

{
−γs+ 2γ2(λT λ+wTw)

1−2γ‖λ‖∞

}

≤ exp{−γs
2 }

[by (2.5.18)] .

Substituting the values of γ and s, we arrive at (2.5.17). �

Application: Linearly perturbed Least Squares inequality

Consider a chance constrained linearly perturbed Least Squares inequality

Prob {‖A[x]ζ + b[x]‖2 ≤ c[x]} ≥ 1− ε, (2.5.19)

where A[x], b[x], c[x] are affine in the variables x and ζ ∼ N (0, I). Taking squares of both sides
in the body of the constraint, this inequality is equivalent to

∃U, u, u0 :[
U uT

u u0

]
�
[
AT [x]A[x] AT [x]b[x]

bT [x]A[x] bT [x]b[x]− c2[x]

]
& Prob

{
ζTUζ + 2

L∑
`=1

u`ζ` + u0 > 0

}
≤ ε.

Assuming c[x] > 0, passing from U, u variables to W = c−1[x]U, w = c−1[x]u, and dividing both
sides of the LMI by c[x], this can be rewritten equivalently as

∃(W,w,w0) :[
W wT

w w0 + c[x]

]
� c−1[x][A[x], b[x]]T [A[x], b[x]] & Prob

{
ζTWζ + 2

L∑
`=1

w`ζ` + w0 > 0

}
≤ ε.

The constraint linkingW,w and x is, by the Schur Complement Lemma, nothing but the Linear
Matrix Inequality 


W [w1; ...;wL] AT [x]

[w1, ..., wL] w0 + c[x] bT [x]

A[x] b[x] c[x]I


 � 0. (2.5.20)

Invoking Theorem 2.3, we arrive at the following

Corollary 2.1 The system of convex constraints (2.5.20) and (2.5.15) in variables W,w, x is a
safe tractable approximation of the chance constrained Least Squares Inequality (2.5.19).

Note that while we have derived this Corollary under the assumption that c[x] > 0, the result
is trivially true when c[x] = 0, since in this case (2.5.20) already implies that A[x] = 0, b[x] = 0
and thus (2.5.19) holds true.
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2.6 Beyond the Case of Independent Linear Perturbations

Situation and goal

Until now, we were mainly focusing on the chance constrained version of a scalar linear constraint
affinely affected random perturbations with independent components. Now let us consider the
situation where

A. The uncertainty-affected constraint still is scalar and affine in the decision variables, but
is quadratic in perturbations.

A generic form of such a constraint is

[ζ; 1]TW [ζ; 1] ≤ 0, (2.6.1)

where W ∈ SL+1 is affine in the decision variables, and ζ ∈ R
L is random perturba-

tion vector. We lose nothing by assuming that our decision variable is the symmetric
matrix W itself.

B. We are interested in the ambiguously chance constrained version of (2.6.1), specifically, in
the constraint

sup
P∈P

Probζ∼P

{
[ζ; 1]TW [ζ; 1] > 0

}
≤ ε (2.6.2)

in variable W , where ε ∈ (0, 1) is a given tolerance, and P is a given family of probability
distributions on R

L. We assume that our a priori knowledge of P reduces to

B.1: partial knowledge of marginal distributions of ζ = [ζ1; ...; ζL]. Specifically, we
are given families P`, 1 ≤ ` ≤ L, of probability distributions on the axis such that
P` contains the distribution P` of ζ`. We assume that sup

P∈P`

∫
s2dP`(s) <∞ for all `;

B.2: partial knowledge of the expectation and the covariance matrix of ζ. Specifi-
cally, we are given a closed convex set V in the cone of symmetric (L+ 1)× (L+ 1)
positive semidefinite matrices which contains the matrix

Vζ = E

{[
ζζT ζ

ζT 1

]}
;

B.3: partial knowledge of the support of ζ. Specifically, we assume that we are given
a system of quadratic (not necessarily convex) constraints

A(u) ≡




uTA1u+ 2aT1 u+ α1
...

uTAmu+ 2aTmu+ αm


 ≤ 0 (2.6.3)

such that ζ is supported on the solution set of this system.

Given this information, we want to build a safe tractable approximation of (2.6.2).
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The approach

The approach we intend to use can be traced to [27, 28] and resembles the distance-generating-
function approximation scheme from section 2.3; by reasons to become clear soon, we call this
approach Lagrangian approximation. Specifically, let P be the distribution of ζ. Our a priori
information allows to bound from above the expectation over P of a function of the form

γ(u) = [u; 1]TΓ[u; 1] +
L∑

`=1

γ`(u`); (2.6.4)

indeed, we have

Eζ∼P{γ(ζ)} = Tr(VζΓ) +

L∑

`=1

Eζ∼Pγ`(ζ`) ≤ sup
V ∈V

Tr(V Γ) +

L∑

`=1

sup
P`∈P`

Eζ`∼P`
{γ`(ζ`)} . (2.6.5)

Assuming that

γ.1: γ(·) ≥ 0 on the support of ζ,

and that for some λ > 0 we have

γ.2: γ(·) ≥ λ on the part of the support of ζ where [ζ; 1]TW [ζ; 1] > 0,

the left hand side in (2.6.5) is an upper bound on λProb{[ζ; 1]TW [ζ; 1] > 0}. It follows that
under the conditions γ.1-2 we have

sup
V ∈V

Tr(V Γ) +

L∑

`=1

sup
P`∈P`

Eζ`∼P`
{γ`(ζ`)} ≤ λε⇒ sup

P∈P
Probζ∼P

{
[ζ; 1]TW [ζ; 1] > 0

}
≤ ε. (2.6.6)

Now, the simplest way to impose on a function γ(·) of the form (2.6.4) condition γ.1 is to require
from it to satisfy the relation

γ(u) + µTA(u) ≥ 0 ∀u
with some µ ≥ 0 (this is called Lagrangian relaxation). Now,

γ(u) + µTA(u) =
L∑

`=1

γ`(u`) +
[
[u; 1]TΓ[u; 1] + µTA(u)

]

is a separable perturbation of a quadratic function. The simplest (and seemingly the only
tractable) way to enforce global nonnegativity of such a perturbation is to require from the
perturbation term 2

∑
`

γ`(u`) to majorate a separable quadratic function f(u) of u such that

f(u) +
[
[u; 1]TΓ[u; 1] + µTA(u)

]
≥ 0 for all u. Thus, a sufficient condition for γ(·) to satisfy the

condition γ.1 is
γ̂.1: there exist p`, q`, r` such that

γ`(s) ≥ p` + 2q`s+ r`s
2 ∀s ∈ R, 1 ≤ ` ≤ L (2.6.7)
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and ∑

`

(p` + 2q`u` + r`u
2
`) + [u; 1]TΓ[u; 1] + µTA(u) ≥ 0 ∀u. (2.6.8)

Observing that

µTA(u) = [u; 1]TA(µ)[u; 1], A(µ) =

[ ∑m
i=1 µiAi

∑m
i=1 µiai∑m

i=1 µia
T
i

∑m
i=1 αi

]
,

relation (2.6.8) is equivalent to

Γ +A(µ) +

[
Diag{r1, ..., rL} [q1; ...; qL]

[q1, ..., qL]
∑L

`=1 p`

]
� 0. (2.6.9)

The bottom line is that the existence of {p`, q`, r`}L`=1 and µ ≥ 0 making (2.6.7) and (2.6.9) valid
is sufficient for γ(·) to satisfy γ.1.

By similar reasons, a sufficient condition for (γ, λ > 0) to satisfy γ.2 is given by the existence
of {p′`, q′`, r′`}L`=1 and µ′ ≥ 0 such that

γ`(s) ≥ p′` + 2q′`s+ r′`s
2 ∀s ∈ R, 1 ≤ ` ≤ L (2.6.10)

and ∑

`

(p′` + 2q′`u` + r′`u
2
` ) + [u; 1]TΓ[u; 1] + [µ′]TA(u) ≥ λ+ [u; 1]TW [u; 1] ∀u. 6

The latter restriction can be represented equivalently by the matrix inequality

Γ +A(µ′) +
[
Diag{r′1, ..., r′L} [q′1; ...; q

′
L]

[q′1, ..., q
′
L]

∑L
`=1 p

′
` − λ

]
−W � 0. (2.6.11)

The result

Observing that the best – resulting in the smallest possible γ`(·) – way to ensure (2.6.7), (2.6.10)
is to set

γ`(s) = max[p` + 2q`s+ r`s
2, p′` + 2q′`s+ r′`s

2],

we arrive at the following result:

Theorem 2.4 In the situation A, B the system of convex constraints

(a1) Γ +A(µ) +

[
Diag{r1, ..., rL} [q1; ...; qL]

[q1, ..., qL]
∑L

`=1 p`

]
� 0

(a2) µ ≥ 0

(b.1) Γ +A(µ′) +
[
Diag{r′1, ..., r′L} [q′1; ...; q

′
L]

[q′1, ..., q
′
L]

∑L
`=1 p

′
` − λ

]
−W � 0

(b.2) µ′ ≥ 0

(c.1) sup
V ∈V

Tr(V Γ) +
∑L

`=1 sup
P`∈P`

∫
max[p` + 2q`s+ r`s

2, p′` + 2q′`s+ r′`s
2]dP`(s) ≤ λε

(c.2)

[
λ 1

1 ν

]
� 0 [this just says that λ > 0]

(2.6.12)

6In fact we could assign the term [u; 1]TW [u; 1] with a positive coefficient. On the closest inspection, however,
this does not increase flexibility of our construction.
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Hypothesis Approximation Guaranteed profit-at-1%-risk

A Bernstein 0.0552

B, C Lagrangian 0.0101

Table 2.2: Optimal values in various approximations of (2.6.13).

in variables W ∈ SL+1,Γ ∈ SL+1, {p`, q`, r`, p′`, q′`, r′`}L`=1, µ ∈ R
m, µ′ ∈ R

m, λ ∈ R, ν ∈ R is a
safe approximation of the ambiguous chance constraint (2.6.1). This approximation is tractable,
provided that all suprema in (c.1) are efficiently computable.

How it works

To illustrate the techniques we have developed, consider an instance of the Portfolio Selection
problem as follows:

There are L = 15 assets with random yearly returns r` = 1 + µ` + σ`ζ`, 1 ≤ ` ≤ L,
where µ` ≥ 0 and σ` ≥ 0 are expected gains and their variabilities given by

µ` = 0.001 + 0.9
`− 1

14
, σ` =

[
0.9 + 0.2

`− 1

14

]
µ`, 1 ≤ ` ≤ 15,

and ζ` are random perturbations taking values in [−1, 1]. Given partial information
on the distribution of ζ = [ζ1; ...; ζL], we want to distribute $1 between the assets in
order to maximize the guaranteed value-at-ε-risk of the profit.

This is the ambiguously chance constrained problem

Opt = max
t,x

{
t : Probζ∼P

{
15∑

`=1

µ`x` +

15∑

`=1

ζ`σ`x` ≥ t
}
≥ 0.99 ∀P ∈ P, x ≥ 0,

15∑

`=1

x` = 1

}

(2.6.13)
Consider three hypotheses A, B, C about P. In all of them, ζ` are zero mean and supported on
[−1, 1], so that the domain information is given by the quadratic inequalities ζ2` ≤ 1, 1 ≤ ` ≤ 15;
this is exactly what is stated by C. In addition, A says that ζ` are independent, and B says that
the covariance matrix of ζ is proportional to the unit matrix. Thus, the sets V associated with the
hypotheses are, respectively, {V ∈ SL+1

+ : V`` ≤ V00 = 1, Vk` = 0, k 6= `}, {V ∈ SL+1
+ : 1 = V00 ≥

V11 = V22 = ... = VLL, Vk` = 0, k 6= `}, and {V ∈ SL+1
+ : V`` ≤ V00 = 1, V0` = 0, 1 ≤ ` ≤ L},

where Sk
+ is the cone of positive semidefinite symmetric k × k matrices. Solving the associated

safe tractable approximations of the problem, specifically, the Bernstein approximation in the
case of A, and the Lagrangian approximations in the cases of B, C, we arrive at the results
displayed in table 2.2 and on figure 2.2.

Note that in our illustration, the (identical to each other) single-asset portfolios yielded by
the Lagrangian approximation under hypotheses B, C are exactly optimal under circumstances.
Indeed, on a closest inspection, there exists a distribution P∗ compatible with hypothesis B (and
therefore – with C as well) such that the probability of “crisis,” where all ζ` simultaneously are
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Figure 2.2: Data and results for portfolio allocation.

equal to −1, is ≥ 0.01. It follows that under hypotheses B, C, the worst-case, over P ∈ P,
profit at 1% risk of any portfolio cannot be better than the profit of this portfolio in the case
of crisis, and the latter quantity is maximized by the single-asset portfolio depicted on figure
2.2. Note that the Lagrangian approximation turns out to be “intelligent enough” to discover
this phenomenon and to infer its consequences. A couple of other instructive observations is as
follows:

• the diversified portfolio yielded by the Bernstein approximation in the case of crisis exhibits
negative profit, meaning that under hypotheses B, C its worst-case profit at 1% risk is
negative;

• assume that the yearly returns are observed on a year-by-year basis, and the year-by-year
realizations of ζ are independent and identically distributed. It turns out that it takes
over 100 years to distinguish, with reliability 0.99, between hypothesis A and the “bad”
distribution P∗ via the historical data.

To put these observations into proper perspective, note that it is extremely time-consuming to
identify, to reasonable accuracy and with reasonable reliability, a multi-dimensional distribution
directly from historical data, so that in applications one usually postulates certain parametric
form of the distribution with a relatively small number of parameters to be estimated from
the historical data. When dim ζ is large, the requirement on the distribution to admit a low-
dimensional parameterization usually results in postulating some kind of independence. While in
some applications (e.g., in telecommunications) this independence in many cases can be justified
via the “physics” of the uncertain data, in Finance and other decision-making applications
postulating independence typically is an “act of faith” which is difficult to justify experimentally,
and we believe a decision-maker should be well aware of the dangers related to these “acts of
faith.”

2.6.1 A Modification

Situation and Goal

Assume that our losses in certain uncertainty-affected decision process are of the form

L(x, ζ) = f([ζ; 1]TW [x][ζ; 1]),
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where x is the decision vector, ζ = [ζ1; ...; ζL] ∈ R
L is a random perturbation, W [x] is affine in

x and f(s) is a convex piecewise linear function:

f(s) = max
1≤j≤J

[aj + bjs],

and we want the expected loss E{L(x, ζ)} to be ≤ a given bound τ .

For example, let

[ζ; 1]TW [x][ζ; 1] ≡
L∑

`=1

ζ`x`

be the would-be value of a portfolio (that is, x` is the initial capital invested in asset
`, and ζ` is the return of this asset), and let −f(s) be our utility function; in this
case, the constraint

E{L(x, ζ)} ≤ τ
models the requirement that the expected utility of an investment x is at least a
given quantity −τ .

Our goal is to build a safe convex approximation of the ambiguous form of our bound:

sup
P∈P

Eζ∼P{L(x, ζ)} ≡ sup
P∈P

Eζ∼P

{
max
1≤j≤J

[aj + bj[ζ; 1]
TW [x][ζ; 1]]

}
≤ τ, (2.6.14)

that is, to find a system S of convex constraints in variables x, τ and, perhaps, additional
variables u such that whenever (x, τ, u) is feasible for S, (x, τ) satisfy (2.6.14).

When achieving this goal, we lose nothing when assuming that our variable is W itself, and
we can further extend our setting by allowing differentW in different terms aj+bj[ζ; 1]

TW [ζ; 1].
With these modifications, our goal becomes to find a safe convex approximation to the constraint

sup
P∈P

Eζ∼P

{
max
1≤j≤J

[aj + bj [ζ; 1]
TWj [ζ; 1]]

}
≤ τ (2.6.15)

in matrix variables W1, ...,WJ and scalar variable τ .
As about the set P of possible distributions of ζ, we keep the assumptions B.1-3.

The Approximation

We follow the same approach as above. Specifically, if γ(·) is a function of the form (2.6.4)
satisfying the conditions

γj .3: γ(u) ≥ aj + bj [u; 1]
TWj[u; 1] for every u from the support of ζ

for all j ≤ J , then the quantity

Eζ∼P{γ(ζ)} = Tr(VζΓ) +
L∑

`=1

Eζ`∼P`
{γ`(ζ`)}
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(P` are the marginals of the distribution P of ζ) is an upper bound on

Eζ∼P

{
max
1≤j≤J

[aj + bj[ζ; 1]
TWj[ζ; 1]]

}
,

so that the validity of the inequality

sup
V ∈V

Tr(V Γ) +

L∑

`=1

sup
P`∈P`

Eζ`∼P`
{γ`(ζ`)} ≤ τ (2.6.16)

is a sufficient condition for the validity of the target inequality (2.6.15). In order to “optimize
this condition in γ”, we, same as above, observe that a simple sufficient condition for γ(·) to
satisfy the condition γj .3 for a given j is the existence of reals pj`, qj`, rj`, 1 ≤ ` ≤ L, and
nonnegative vector µj ∈ R

m such that

γ`(s) ≥ pj` + 2qj`s+ rj`s
2 ∀s ∈ R, 1 ≤ ` ≤ L,

and

[u; 1]TΓ[u; 1] +
L∑

`=1

[pj` + 2qj`u` + rj`u
2
` ] + [µj ]TA(u) ≥ aj + bj [u; 1]

TWj [u; 1] ∀u;

the latter restriction is equivalent to the matrix inequality

Γ +A(µj) +

[
Diag{rj1, ..., rjL} [qj1; ...; qjL]

[qj1, ..., qjL]
∑L

`=1 pj` − aj

]
− bjWj � 0. (Mj)

We have arrived at the following result:

Theorem 2.5 The system of convex constraints

(a.1) (M1)&(M2)&...&(MJ )
(a.2) µj ≥ 0, 1 ≤ j ≤ J
(b) sup

V ∈V
Tr(V Γ) +

L∑
`=1

sup
P`∈P`

Es∼P`

{
max
1≤j≤J

[pj` + 2qj`s+ rj`s
2]

}
≤ τ

(2.6.17)

in variables τ , {Wj}j≤J , Γ ∈ SL+1, {pj`, qj`, rj`} j≤J,
`≤L

, {µj ∈ R
m}j≤J is a safe convex approxi-

mation of the constraint (2.6.15). This approximation is tractable, provided that all suprema in
(b) are efficiently computable.

A special case. Assume that we are in the “utility case:”

[ζ; 1]TW1[ζ; 1] ≡ ... ≡ [ζ1]
TWJ [ζ; 1] ≡

L∑

`=1

ζjwj

and that all P` are singletons – we know exactly the distributions of ζ`. Let also V be comprised
of all positive semidefinite matrices, which is the same as to say that we have no information on
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inter-dependencies different entries in ζ. Finally, assume that we have no domain information
on ζ, so that A(·) ≡ 0. It turns out that in this special case our approximation is precise: given

a collection of decision variables w1, ..., wL and setting W [w] =

[
1
2 [w1; ...;wL]

1
2 [w1, ..., wL]

]
,

1 ≤ j ≤ J (which ensures that [ζ; 1]TW [ζ; 1] ≡ ∑` ζ`w`), the collection ({Wj = W [w]}j≤L, τ)
can be extended to a feasible solution of (2.6.17) if and only if (2.6.15) holds true. In fact, this
conclusion remains true when we replace (2.6.17) with the simpler system of constraints

(a)
∑L

`=1 pj` ≥ aj, 1 ≤ j ≤ J
(b)

L∑
`=1

Es∼P`

{
max
1≤j≤J

[pj` + bjwjs]

}
≤ τ

in variables τ , w, {pi`, qj`}L`=1. This system is obtained from (2.6.17) by setting Γ = 0, rj` ≡ 0
and eliminating the (immaterial now) terms with µj; the resulting system of constraints implies
that 2qj` = wj for all `, which allows to eliminate q-variables. This result of [3, Chapter
4] is a reformulation of the surprising result, established in [42], which states that for every
piecewise linear convex function f(·) on the axis the maximum of the quantity

∫
f(
∑L

`=1 η`)dP (η)
over all distributions P on R

L with given marginals P1, ..., PL is achieved when η1, ..., ηL are
comonotone, that is, they are deterministic nonincreasing transformations of a single random
variable uniformly distributed on [0, 1].

2.7 More...

In the first reading this section can be skipped.

2.7.1 Bridging the Gap between the Bernstein and the CVaR Approximations

The Bernstein approximation of a chance constraint (2.3.8) is a particular case of the general generating-
function-based scheme for building a safe convex approximation of the constraint, and we know that this
particular approximation is not the best in terms of conservatism. What makes it attractive, is that under
certain structural assumptions (namely, those of independence of ζ1, ..., ζL plus availability of efficiently
computable convex upper bounds on the functions ln(E{exp{sζ`}})) this approximation is computation-
ally tractable. The question we now address is how to reduce, to some extent, the conservatism of the
Bernstein approximation without sacrificing computational tractability. The idea is as follows. Assume
that

A. We know exactly the distribution P of ζ (that is, P is a singleton), ζ1, ..., ζL are indepen-
dent, and we can compute efficiently the associated moment-generating functions

Ψ`(s) = E {exp{sζ`}} : C→ C.

Under this assumption, whenever γ(s) =
d∑

ν=0
cν exp{λνs} is an exponential polynomial, we can efficiently

compute the function

Ψ(w) = E

{
γ(w0 +

L∑

`=1

ζ`w`)

}
=

d∑

ν=0

cν exp{λνw0}
L∏

`=1

Ψ`(λνw`).

In other words,
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Figure 2.3: Generating function γ11,8(s) (middle curve) vs. exp{s} (top curve) and max[1+ s, 0]
(bottom curve). (a): −24 ≤ s ≤ 24, logarithmic scale along the y-axis; (b): −8 ≤ s ≤ 8, natural
scale along the y-axis.

(!) Whenever a generator γ(·) : R → R is an exponential polynomial, the associated upper
bound

inf
α>0

Ψ(αw), Ψ(w) = E

{
γ(w0 +

L∑

`=1

ζ`w`)

}

on the quantity p(w) = Prob{w0 +
∑L

`=1 ζ`w` > 0} is efficiently computable.

We now can utilize (!) in the following construction:

Given design parameters T > 0 (“window width”) and d (“degree of approximation”), we
build the trigonometric polynomial

χc∗(s) ≡
d∑

ν=0

[c∗ν exp{ıπνs/T }+ c∗ν exp{−ıπνs/T }]

by solving the following problem of the best uniform approximation:

c∗ ∈ Argmin
c∈Cd+1

{
max−T≤s≤T | exp{s}χc(s)−max[1 + s, 0]| :

0 ≤ χc(s) ≤ χc(0) = 1 ∀s ∈ R, exp{s}χc(s) is convex
and nondecreasing on [−T, T ]

}

and use in (!) the exponential polynomial

γd,T (s) = exp{s}χc∗(s). (2.7.1)

It can be immediately verified that

(i) The outlined construction is well defined and results in an exponential polynomial γd,T (s) which
is a generator and thus induces an efficiently computable convex upper bound on p(w).

(ii) The resulting upper bound on p(w) is ≤ the Bernstein upper bound associated, according to (!),
with γ(s) = exp{s}.

The generator γ11,8(·) is depicted in figure 2.3.
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The case of ambiguous chance constraint

A disadvantage of the improved Bernstein approximation as compared to the plain one is that the
improved approximation requires precise knowledge of the moment-generating functions E{exp{sζ`}},
s ∈ C, of the independent random variables ζ`, while the original approximation requires knowledge of
upper bounds on these functions and thus is applicable in the case of ambiguous chance constraints, those
with only partially known distributions of ζ`. Such partial information is equivalent to the fact that the
distribution P of ζ belongs to a given family P in the space of product probability distributions on RL.
All we need in this situation is a possibility to compute efficiently the convex function

Ψ∗
P(w) = sup

P∈P
Eζ∼P {γ(w0 +

L∑

`=1

ζ`w`)}

associated with P and with a given generator γ(·). When Ψ∗
P(·) is available, a computationally tractable

safe approximation of the ambiguous chance constraint

∀(P ∈ P) : Probζ∼P {w0 +

L∑

`=1

ζ`w` > 0} ≤ ε (2.7.2)

is
H(w) := inf

α>0

[
αΨ∗

P(α
−1z)− αε

]
≤ 0.

Now, in all applications of the “plain” Bernstein approximation we have considered so far the family P
was comprised of all product distributions P = P1 × ... × PL with P` running through given families P`

of probability distributions on the axis, and these families P` were “simple,” specifically, allowing us to
compute explicitly the functions

Ψ∗
` (t) = sup

P`∈P`

∫
exp{tζ`}dP`(ζ`).

With these functions at our disposal and with γ(s) = exp{s}, the function

Ψ∗
P(w) = sup

P∈P
E

{
exp{w0 +

L∑

`=1

ζ`w`}
}

is readily available — it is merely exp{w0}
∏L

`=1Ψ
∗
` (w`). Note, however, that when γ(·) is an exponential

polynomial rather than the exponent, the associated function Ψ∗
P(w) does not admit a simple repre-

sentation via the functions Ψ∗
` (·). Thus, it is indeed unclear how to implement the improved Bernstein

approximation in the case of an ambiguous chance constraint.
Our current goal is to implement the improved Bernstein approximation in the case of a particular

ambiguous chance constraint (2.7.2), namely, in the case when P is comprised of all product distributions
P = P1 × ...× PL with the marginal distributions P` satisfying the restrictions

suppP` ⊂ [−1, 1] & µ−
` ≤ Eζ`∼P`

{ζ`} ≤ µ+
` (2.7.3)

with known µ±
` ∈ [−1, 1] (cf. item 6 on p. 54).

The result is as follows:

Proposition 2.4 [3, Proposition 4.5.4] For the just defined family P and for every generator γ(·) one
has

Ψ∗
P(w) = Eζ∼Pw

{
γ(w0 +

L∑

`=1

ζ`w`)

}
,
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where Pw = Pw1
1 × ...× PwL

L and P s
` is the distribution supported at the endpoints of [−1, 1] given by

P s
` {1} = 1− P s

` {−1} =
{

1+µ+
`

2 , s ≥ 0
1+µ−

`

2 , s < 0
;

In particular, when γ(·) ≡ γd,T (·), the function Ψ∗
P(w) is efficiently computable.

Illustration I

To illustrate our findings, assume that all our a priori information on the random perturbations ζ` in
(2.7.2) is that they are independent, supported on [−1, 1] and with zero means (cf. Example 2.1. Let us
overview the safe approximations to the corresponding ambiguous chance constraint

∀(P = P1 × ...× PL ∈ P) : Probζ∼P

{
w0 +

L∑

`=1

ζ`w` > 0

}
≤ ε, (2.7.4)

where P is the family of all product distributions with zero mean marginals supported on [−1, 1]. Note
that on a closest inspection, the results yielded by all approximation schemes to be listed below remain
intact when instead of the ambiguous chance constraint we were speaking about the usual one, with ζ
distributed uniformly on the vertices of the unit box {ζ : ‖ζ‖∞ ≤ 1}.

We are about to outline the approximations, ascending in their conservatism and descending in their
complexity. When possible, we present approximations in both the “inequality form” (via an explicit
system of convex constraints) and in the “Robust Counterpart form”

{w : w0 + ζT [w1; ...;wL] ≤ 0 ∀ζ ∈ Z}.

• CVaR approximation [section 2.4.1]

inf
α>0

[
max

P1×...×PL∈P

∫
max[α+ w0 +

L∑

`=1

ζ`w`, 0]dP1(ζ1)...dPL(ζL)− αε
]
≤ 0 (2.7.5)

While being the least conservative among all generation-function-based approximations, the CVaR ap-
proximation is in general intractable. It remains intractable already when passing from the ambiguous
chance constraint case to the case where ζ` are, say, uniformly distributed on [−1, 1] (which corresponds

to replacing max
P1×...×PL∈P

∫
. . . dP1(ζ1)...dPL(ζ`) in (2.7.5) with

∫

‖ζ‖∞≤1

. . . dζ).

We have “presented” the inequality form of the CVaR approximation. By the results of section
2.3.3, this approximation admits a Robust Counterpart form; the latter “exists in the nature,” but is
computationally intractable, and thus of not much use.
• Bridged Bernstein-CVaR approximation [p. 68 and Proposition 2.4]

inf
α>0

[
αΨd,T (α

−1w) − αε
]
≤ 0,

Ψd,T (w) =
∑

ε`=±1,1≤`≤L

2−Lγd,T

(
w0 +

∑L
`=1 ε`w`

)
,

(2.7.6)

where d, T are parameters of the construction and γd,T is the exponential polynomial (2.7.1). Note that
we used Proposition 2.4 to cope with the ambiguity of the chance constraint of interest.

In spite of the disastrous complexity of the representation (2.7.6), the function Ψd,T is efficiently
computable (via the recipe from Proposition 2.4, and not via the formula in (2.7.6)). Thus, our approx-
imation is computationally tractable. Recall that this tractable safe approximation is less conservative
than the plain Bernstein one.
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Due to the results of section 2.3.3, approximation (2.7.5) admits a Robust Counterpart representation

that now involves a computationally tractable uncertainty set ZBCV; this set, however, seems to have
no explicit representation.
• Bernstein approximation [section 2.5.1]

inf
α>0

[
w0 +

∑L
`=1 α ln

(
cosh(α−1w`)

)
+ α ln(1/ε)

]
≤ 0

⇔ w0 +
∑L

`=1 ζ`w` ≤ 0 ∀ζ ∈ ZEntr = {ζ :∑L
`=1 φ(ζ`) ≤ 2 ln(1/ε)}

[φ(u) = (1 + u) ln(1 + u) + (1 − u) ln(1 − u), Domφ = [−1, 1]] .
(2.7.7)

• Ball-Box approximation [section 2.5.1]

∃u : w0 +
∑L

`=1 |w` − u`|+
√
2 ln(1/ε)

√∑L
`=1 u

2
` ≤ 0

⇔ w0 +
∑L

`=1 ζ`w` ≤ 0 ∀ζ ∈ ZBallBox :=




ζ ∈ RL :

|ζ`| ≤ 1, ` = 1, ..., L,√
L∑

`=1

ζ2` ≤
√
2 ln(1/ε)





. (2.7.8)

• Budgeted approximation [section 2.5.1]

∃u, v : z = u+ v, v0 +
∑L

`=1 |v`| ≤ 0, u0 +
√
2L ln(1/ε)max

`
|u`| ≤ 0

⇔ w0 +
∑L

`=1 ζ`w` ≤ 0 ∀ζ ∈ ZBdg :=

{
ζ ∈ RL :

|ζ`| ≤ 1, ` = 1, ..., L,∑L
`=1 |ζ`| ≤

√
2L ln(1/ε)

}
.

(2.7.9)

The computationally tractable uncertainty sets we have listed form a chain:

ZBCV ⊂ ZBrn ⊂ ZBlBx ⊂ ZBdg.

Figure 2.4, where we plot a random 2-D cross-section of our nested uncertainty sets, gives an impression
of the “gaps” in this chain.

Illustration II

In this illustration we use the above approximation schemes to build safe approximations of the ambigu-
ously chance constrained problem

Opt(ε) = max

{
w0 : max

P1×...×PL∈P
Prob{w0 +

L∑

`=1

ζ`w` > 0} ≤ ε, w1 = ... = wL = 1

}
(2.7.10)

where, as before, P is the set of L-element tuples of probability distributions supported on [−1, 1] and
possessing zero means. Due to the simplicity of our chance constraint, here we can build efficiently the
CVaR-approximation of the problem. Moreover, we can solve exactly the chance constrained problem

Opt+(ε) = max

{
w0 : max

ζ∼U
Prob{w0 +

L∑

`=1

ζ`w` > 0} ≤ ε, w1 = ... = wL = 1

}

where U is the uniform distribution on the vertices of the unit box {ζ : ‖ζ‖∞ ≤ 1}. Clearly, Opt+(ε) is an
upper bound on the true optimal value Opt(ε) of the ambiguously chance constrained problem (2.7.10),
while the optimal values of our approximations are lower bounds on Opt(ε). In our experiment, we used
L = 128. The results are depicted in figure 2.5 and are displayed in table 2.3.
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Figure 2.4: Intersection of uncertainty sets, underlying various approximation schemes in Illus-
tration I, with a random 2-D plane. From inside to outside:
– Bridged Bernstein-CVaR approximation, d = 11, T = 8;

– Bernstein approximation;

– Ball-Box approximation;

– Budgeted approximation;

– “worst-case” approximation with the support {‖ζ‖∞ ≤ 1} of ζ in the role of the uncertainty set.

ε Opt+(ε) OptV (ε) OptIV (ε) OptIII(ε) OptII(ε) OptI(ε)

10−12 −76.00 −78.52 (−3.3%) −78.88 (−0.5%) −80.92 (−3.1%) −84.10 (−7.1%) −84.10 (−7.1%)
10−11 −74.00 −75.03 (−1.4%) −75.60 (−0.8%) −77.74 (−3.6%) −80.52 (−7.3%) −80.52 (−7.3%)
10−10 −70.00 −71.50 (−2.1%) −72.13 (−0.9%) −74.37 (−4.0%) −76.78 (−7.4%) −76.78 (−7.4%)
10−9 −66.00 −67.82 (−2.8%) −68.45 (−0.9%) −70.80 (−4.4%) −72.84 (−7.4%) −72.84 (−7.4%)
10−8 −62.00 −63.88 (−3.0%) −64.49 (−1.0%) −66.97 (−4.8%) −68.67 (−7.5%) −68.67 (−7.5%)
10−7 −58.00 −59.66 (−2.9%) −60.23 (−1.0%) −62.85 (−5.4%) −64.24 (−7.7%) −64.24 (−7.7%)
10−6 −54.00 −55.25 (−2.3%) −55.60 (−0.6%) −58.37 (−5.7%) −59.47 (−7.6%) −59.47 (−7.6%)
10−5 −48.00 −49.98 (−4.1%) −50.52 (−1.1%) −53.46 (−7.0%) −54.29 (−8.6%) −54.29 (−8.6%)
10−4 −42.00 −44.31 (−5.5%) −44.85 (−1.2%) −47.97 (−8.3%) −48.56 (−9.6%) −48.56 (−9.6%)
10−3 −34.00 −37.86(−11.4%) −38.34 (−1.2%) −41.67(−10.1%) −42.05(−11.1%) −42.05(−11.1%)
10−2 −26.00 −29.99(−15.4%) −30.55 (−1.9%) −34.13(−13.8%) −34.34(−14.5%) −34.34(−14.5%)
10−1 −14.00 −19.81(−41.5%) −20.43 (−3.1%) −24.21(−22.2%) −24.28(−22.5%) −24.28(−22.5%)

Table 2.3: Comparing various safe approximations of the ambiguously chance constrained prob-
lem (2.7.10). OptI(ε) through OptV (ε) are optimal values of the Ball, Ball-Box (or, which in the
case of (2.7.10) is the same, the Budgeted), Bernstein, Bridged Bernstein-CVaR and the CVaR
approximations, respectively. Numbers in parentheses in column “OptV (ε)” refer to the conser-
vativeness of the CVaR-approximation as compared to Opt+(·), and in remaining columns to the
conservativeness of the corresponding approximation as compared to the CVaR approximation.
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Figure 2.5: Optimal values of various approximations of (2.7.10) with L = 128 vs. ε.
From bottom to top:
– Budgeted and Ball-Box approximations
– Bernstein approximation
– Bridged Bernstein-CVaR approximation, d = 11, T = 8
– CVaR-approximation
– Opt+(ε)
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2.7.2 Majorization

One way to bound from above the probability

Prob

{
w0 +

L∑

`=1

w`ζ` > 0

}

for independent random variables ζ` is to replace ζ` with “more diffused” random variables ξ` (mean-
ing that the probability in question increases when we replace ζ` with ξ`) such that the quantity

Prob

{
w0 +

L∑
`=1

w`ξ` > 0

}
, (which now is an upper bound on probability in question), is easy to handle.

Our goal here is to investigate the outlined approach in the case of random variables with symmetric and
unimodal w.r.t. 0 probability distributions. In other words, the probability distributions P in question
are such that for any measurable set A on the axis

P (A) = χ(A) +

∫

A

p(s)ds,

where p is an even nonnegative and nonincreasing on the nonnegative ray density of P ,
∫
p(s)ds :=

1 − α ≤ 1, and χ(A) is either α (when 0 ∈ A), or 0 (otherwise). We say that such a distribution P is
regular, if there is no mass at the origin: α = 0.

In what follows, we denote the family of densities of all symmetric and unimodal w.r.t. 0 random
variables by P , and the family of these random variables themselves by Π.

If we want the outlined scheme to work, the notion of a “more diffused” random variable should
imply the following: If p, q ∈ P and q is “more diffused” than p, then, for every a ≥ 0, we should have
∞∫
a

p(s)ds ≤
∞∫
a

q(s)ds. We make this requirement the definition of “more diffused”:

Definition 2.2 Let p, q ∈ P. We say that q is more diffused than p (notation: q �m p, or p �m q) if

∀a ≥ 0 : P (a) :=

∞∫

a

p(s)ds ≤ Q(a) :=

∞∫

a

q(s)ds.

When ξ, η ∈ Π, we say that η is more diffuse than ξ (notation: η �m ξ), if the corresponding densities
are in the same relation.

It is immediately seen that the relation �m is a partial order on P ; this order is called “monotone
dominance.” It is well known that an equivalent description of this order is given by the following

Proposition 2.5 Let π, θ ∈ Π, let ν, q be the probability distribution of θ and the density of θ, and let
µ, p be the probability distribution and the density of π. Finally, letMb be the family of all continuously
differentiable even and bounded functions on the axis that are nondecreasing on R+. Then θ �m π if and
only if ∫

f(s)dν(s) ≥
∫
f(s)dµ(s)ds ∀f ∈Mb, (2.7.11)

same as if and only if ∫
f(s)q(s)ds ≥

∫
f(s)p(s)ds ∀f ∈Mb. (2.7.12)

Moreover, when (2.7.11) takes place, the inequalities in (2.7.11), (2.7.12) hold true for every even function
on the axis that is nondecreasing on R+.
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Example 2.2 Let ξ ∈ Π be a random variable that is supported on [−1, 1], ζ be uniformly distributed
on [−1, 1] and η ∼ N (0, 2/π). Then ξ �m ζ �m η.

Indeed, let p(·), q(·) be the densities of random variables π, θ ∈ Π. Then the functions P (t) =
∞∫
t

p(s)ds,

Q(t) =
∞∫
t

q(s)ds of t ≥ 0 are convex, and π �m θ iff P (t) ≤ Q(t) for all t ≥ 0. Now let π ∈ Π be

supported on [−1, 1] and θ be uniform on [−1, 1]. Then P (t) is convex on [0,∞) with P (0) ≤ 1/2 and
P (t) ≡ P (1) = 0 for t ≥ 1, while Q(t) = 1

2 max[1 − t, 0] when t ≥ 0. Since Q(0) ≥ P (0), Q(1) = P (1), P
is convex, and Q is linear on [0, 1], we have P (t) ≤ Q(t) for all t ∈ [0, 1], whence P (t) ≤ Q(t) for all t ≥ 0,
and thus π �m θ. Now let π be uniform on [−1, 1], so that P (t) = 1

2 max[1− t, 0], and θ be N (0, 2/π), so
that Q(t) is a convex function and therefore Q(t) ≥ Q(0)+Q′(0)t = (1− t)/2 for all t ≥ 0. This combines
with Q(t) ≥ 0, t ≥ 0, to imply that P (t) ≤ Q(t) for all t ≥ 0 and thus π �m θ.

Our first majorization result is as follows:

Proposition 2.6 [3, Proposition 4.4.5] Let w0 ≤ 0, w1, ..., wL be deterministic reals, {ζ`}L`=1 be inde-
pendent random variables with unimodal and symmetric w.r.t. 0 distributions, and {η`}L`=1 be a similar
collection of independent random variables such that η` �m ζ` for every `. Then

Prob{w0 +
L∑

`=1

w`ζ` > 0} ≤ Prob{w0 +
L∑

`=1

w`η` > 0}. (2.7.13)

If, in addition, η` ∼ N (0, σ2
` ), ` = 1, ..., L, then, for every ε ∈ (0, 1/2], one has

w0 + ErfInv(ε)

√√√√
L∑

`=1

σ2
`w

2
` ≤ 0⇒ Prob{w0 +

L∑

`=1

ζ`w` > 0} ≤ ε, (2.7.14)

where ErfInv(·) is the inverse error function (2.2.7).

Relation (2.7.14) seems to be the major “yield” we can extract from Proposition 2.6, since the case of
independent N (0, σ2

` ) random variables η` is, essentially, the only interesting case for which we can easily

compute Prob{w0 +
L∑

`=1

w`η` > 0} and the chance constraint Prob{w0 +
L∑

`=1

w`η` > 0} ≤ ε for ε ≤ 1/2 is

equivalent to an explicit convex constraint, specifically,

w0 + ErfInv(ε)

√√√√
L∑

`=1

σ2
`w

2
` ≤ 0. (2.7.15)

Comparison with (2.5.9). Assume that independent random variables ζ` ∈ Π, ` = 1, ..., L, admit
“Gaussian upper bounds” η` �m ζ` with η` ∼ N (0, σ2

` ). Then

E{exp{tζell}} = E{cosh(tζ`)} [since ζ` is symmetrically distributed]
≤ E{cosh(tη`)} [since η` �m ζ`]
= exp{t2σ2

`/2},

meaning that the logarithmic moment-generating functions ln (E {exp{tζ`}}) of ζ` admit upper bounds
(2.5.8) with χ±

` = 0 and the above σ`. Invoking the results of section (2.5.2), the chance constraint

Prob{w0 +
L∑

`=1

ζ`w` > 0} ≤ ε
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admits a safe tractable approximation

w0 +
√
2 ln(1/ε)

√√√√
L∑

`=1

σ2
`w

2
` ≤ 0

obtained from (2.5.9) by setting χ±
` = 0. This approximation is slightly more conservative than (2.7.14),

since ErfInv(ε) ≤
√
2 ln(1/ε); note, however, that the ratio of the latter two quantities goes to 1 as ε→ 0.

Majorization Theorem

Proposition 2.6 can be rephrased as follows:

Let {ζ`}L`=1 be independent random variables with unimodal and symmetric w.r.t. 0 dis-
tributions, and {η`}L`=1 be a similar collection of independent random variables such that
η` �m ζ` for every `. Given a deterministic vector z ∈ RL and w0 ≤ 0, consider the “strip”

S = {x ∈ R
L : |zTx| ≤ −w0}.

Then
Prob{[ζ1; ...; ζL] ∈ S} ≥ Prob{[η1; ...; ηL] ∈ S}.

It turns out that the resulting inequality holds true for every closed convex set S that is symmetric w.r.t.
the origin.

Theorem 2.6 [3, Theorem 4.4.6] Let {ζ`}L`=1 be independent random variables with unimodal and sym-
metric w.r.t. 0 distributions, and {η`}L`=1 be a similar collection of independent random variables such
that η` �m ζ` for every `. Then for every closed convex set S ⊂ R

L that is symmetric w.r.t. the origin
one has

Prob{[ζ1; ...; ζL] ∈ S} ≥ Prob{[η1; ...; ηL] ∈ S}. (2.7.16)

Example 2.3 Let ξ ∼ N (0,Σ) and η ∼ N (0,Θ) be two Gaussian random vectors taking values in Rn

and let Σ � Θ. We claim that for every closed convex set S ⊂ Rn symmetric w.r.t. 0 one has

Prob{ξ ∈ S} ≥ Prob{η ∈ S}.

Indeed, by continuity reasons, it suffices to consider the case when Θ is nondegenerate. Passing from
random vectors ξ, η to random vectors Aξ,Aη with properly defined nonsingular A, we can reduce the
situation to the one where Θ = I and Σ is diagonal, meaning that the densities p(·) of ξ and q of η are
of the forms

p(x) = p1(x1)...pn(xn), q(x) = q1(x1)...qn(xn),

with pi(s) being the N (0,Σii) densities, and qi(s) being the N (0, 1) densities. Since Σ � Θ = I, we have
Σii ≤ 1, meaning that pi �m qi for all i. It remains to apply the Majorization Theorem.

2.8 Exercises

Exercise 2.1 Prove the claim in example 8, section 2.5.2.
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Exercise 2.2 Consider a toy chance constrained LO problem:

min
x,t

{
t : Prob{

n∑

j=1

ζjxj

︸ ︷︷ ︸
ξn[x]

≤ t} ≥ 1− ε, 0 ≤ xi ≤ 1,
∑

j

xj = n
}

(2.8.1)

where ζ1, ..., ζn are independent random variables uniformly distributed in [−1, 1].
1. Find a way to solve the problem exactly, and find the true optimal value ttru of the problem

for n = 16, 256 and ε = 0.05, 0.0005, 0.000005.
Hint: The deterministic constraints say that x1 = ... = xn = 1. All we need is an efficient way

to compute the probability distribution Prob{ξn < t} of the sum ξn of n independent random

variables uniformly distributed on [−1, 1]. The density of ξn clearly is supported on [−n, n] and is

a polynomial of degree n− 1 in every one of the segments [−n+ 2i,−n+ 2i+ 2], 0 ≤ i < n. The

coefficients of these polynomials can be computed via a simple recursion in n.

2. For the same pairs (n, ε) as in i), compute the optimal values of the tractable approxima-
tions of the problem as follows:

(a) tNrm — the optimal value of the problem obtained from (2.8.1) when replacing the
“true” random variable ξn[x] with its “normal approximation” — a Gaussian random
variable with the same mean and standard deviation as those of ξn[x];

(b) tBll — the optimal value of the Ball approximation of (2.8.1), p. 49, section 2.5.1;

(c) tBllBx — the optimal value of the Ball-Box approximation of (2.8.1), p. 50, section
2.5.1;

(d) tBdg — the optimal value of the Budgeted approximation of (2.8.1), p. 50, section
2.5.1;

(e) tE.7 — the optimal value of the safe tractable approximation of (2.8.1) suggested by
example 7 in section 2.5.2, where you set µ± = 0 and ν = 1/

√
3;

(f) tE.8 — the optimal value of the safe tractable approximation of (2.8.1) suggested by
example 8 in section 2.5.2, where you set ν = 1/

√
3;

(g) tE.9 — the optimal value of the safe tractable approximation of (2.8.1) suggested by
example 9 in section 2.5.2, where you set ν = 1/

√
3;

(h) tUnim — the optimal value of the safe tractable approximation of (2.8.1) suggested
by example 3 in section 2.5.2.

Think of the results as compared to each other and to those of i).

Exercise 2.3 Consider the chance constrained LO problem (2.8.1) with independent ζ1, ..., ζn
taking values ±1 with probability 0.5.

1. Find a way to solve the problem exactly, and find the true optimal value ttru of the problem
for n = 16, 256 and ε = 0.05, 0.0005, 0.000005.

2. For the same pairs (n, ε) as in i), compute the optimal values of the tractable approxima-
tions of the problem as follows:
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(a) tNrm — the optimal value of the problem obtained from (2.8.1) when replacing the
“true” random variable ξn with its “normal approximation” — a Gaussian random
variable with the same mean and standard deviation as those of ξn;

(b) tBll — the optimal value of the Ball approximation of (2.8.1), p. 49, section 2.5.1;

(c) tBllBx — the optimal value of the Ball-Box approximation of (2.8.1), p. 50, section
2.5.1;

(d) tBdg — the optimal value of the Budgeted approximation of (2.8.1), p. 50, section
2.5.1;

(e) tE.7 — the optimal value of the safe tractable approximation of (2.8.1) suggested by
example 7, section 2.5.2, where you set µ± = 0 and ν = 1;

(f) tE.8 — the optimal value of the safe tractable approximation of (2.8.1) suggested by
example 8, section 2.5.2, where you set ν = 1.

Think of the results as compared to each other and to those of i).

Exercise 2.4 A) Verify that whenever n = 2k is an integral power of 2, one can build an n×n
matrix Bn with all entries ±1, all entries in the first column equal to 1, and with rows that are
orthogonal to each other.

Hint: Use recursion B20 = [1]; B2k+1 =

[
B2k B2k

B2k −B2k

]
.

B) Let n = 2k and ζ̂ ∈ R
n be the random vector as follows. We fix a matrix Bn from A). To

get a realization of ζ, we generate random variable η ∼ N (0, 1) and pick at random (according
to uniform distribution on {1, ..., n}) a column in the matrix ηBn; the resulting vector is a
realization of ζ̂ that we are generating.

B.1) Prove that the marginal distributions of ζj and the covariance matrix of ζ̂ are exactly

the same as for the random vector ζ̃ ∼ N (0, In). It follows that most primitive statistical tests
cannot distinguish between the distributions of ζ̂ and ζ̃.

B.2) Consider problem (2.8.1) with ε < 1/(2n) and compute the optimal values in the cases
when (a) ζ is ζ̃, and (b) ζ is ζ̂. Compare the results for n = 10, ε = 0.01; n = 100, ε = 0.001;
n = 1000, ε = 0.0001.

Exercise 2.5 Let ζ`, 1 ≤ ` ≤ L, be independent Poisson random variables with parameters λ`,

(i.e., ζ` takes nonnegative integer value k with probability
λk
`
k! e

−λ`). Build Bernstein approxima-
tion of the chance constraint

Prob{z0 +
L∑

`=1

w`ζ` ≤ 0} ≥ 1− ε.

What is the associated uncertainty set Zε as given by Theorem 2.2?

Exercise 2.6 The stream of customers of an ATM can be split into L groups, according to
the amounts of cash c` they are withdrawing. The per-day number of customers of type ` is a
realization of Poisson random variable ζ` with parameter λ`, and these variables are independent
of each other. What is the minimal amount of cash w(ε) to be loaded in the ATM in the morning
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in order to ensure service level 1 − ε, (i.e., the probability of the event that not all customers
arriving during the day are served should be ≤ ε)?

Consider the case when

L = 7, c = [20; 40; 60; 100; 300; 500; 1000], λ` = 1000/c`

and compute and compare the following quantities:

1. The expected value of the per-day customer demand for cash.

2. The true value of w(ε) and its CVaR-upper bound (utilize the integrality of c` to compute
these quantities efficiently).

3. The bridged Bernstein - CVaR, and the pure Bernstein upper bounds on w(ε).

4. The (1−ε)-reliable empirical upper bound on w(ε) built upon a 100,000-element simulation
sample of the per day customer demands for cash.

The latter quantity is defined as follows. Assume that given an N -element sample {ηi}Ni=1 of inde-

pendent realizations of a random variable η, and a tolerance δ ∈ (0, 1), we want to infer from the

sample a “(1 − δ)-reliable” upper bound on the upper ε quantile qε = min {q : Prob{η > q} ≤ ε}
of η. It is natural to take, as this bound, the M -th order statistics SM of the sample, (i.e., M -th

element in the non-descending rearrangement of the sample), and the question is, how to choose

M in order for SM to be ≥ qε with probability at least 1 − δ. Since Prob{η ≥ qε} ≥ ε, the

relation SM < qε for a given M implies that in our sample of N independent realizations ηi of η

the relation {ηi ≥ qε} took place at most N −M times, and the probability of this event is at

most pM =
∑N−M

k=0

(
N
k

)
εk(1− ε)N−k. It follows that if M is such that pM ≤ δ, then the event in

question takes place with probability at most δ, i.e., SM is an upper bound on qε with probability

at least 1− δ. Thus, it is natural to choose M as the smallest integer ≤ N such that pM ≤ δ. Note
that such an integer not necessarily exists — it may happen that already pN > δ, meaning that

the sample size N is insufficient to build a (1 − δ)-reliable upper bound on qε.

Carry out the computation for ε = 10−k, 1 ≤ k ≤ 6. 7

Exercise 2.7 Consider the same situation as in Exercise 2.6, with the only difference that now
we do not assume the Poisson random variables ζ` to be independent, and make no assumptions
whatsoever on how they relate to each other. Now the minimal amount of “cash input” to the
ATM that guarantees service level 1 − ε is the optimal value ŵ(ε) of the “ambiguously chance
constrained” problem

min

{
w0 : Probζ∼P{

∑

`

c`ζ` ≤ w0} ≥ 1− ε ∀P ∈ P
}
,

where P is the set of all distributions P on R
L with Poisson distributions with parameters

λ1, ..., λL as their marginals.

7Of course, in our ATM story the values of ε like 0.001 and less make no sense. Well, you can think about an
emergency center and requests for blood transfusions instead of an ATM and dollars.
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By which margin can ŵ(ε) be larger than w(ε)? To check your intuition, use the same data
as in Exercise 2.6 to compute
– the upper bound on ŵ(ε) given by Theorem 2.4;
– the lower bound on ŵ(ε) corresponding to the case where ζ1, ..., ζL are comonotone, (i.e., are
deterministic nondecreasing functions of the same random variable η uniformly distributed on
[0, 1], cf. p. 67).
Carry out computations for ε = 10−k, 1 ≤ k ≤ 6.

Exercise 2.8 1) Consider the same situation as in Exercise 2.6, but assume that the nonnegative
vector λ = [λ1; ...;λL] is known to belong to a given convex compact set Λ ⊂ {λ ≥ 0}. Prove
that with

BΛ(ε) = max
λ∈Λ

inf

{
w0 : inf

β>0

[
−w0 + β

∑

`

λ`(exp{c`/β} − 1)− β ln(1/ε)
]
≤ 0

}

one has

∀λ ∈ Λ : Probζ∼Pλ1
×...×PλL

{∑

`

c`ζ` > BΛ(ε)

}
≤ ε,

where Pµ stands for the Poisson distribution with parameter µ. In other words, initial charge of
BΛ(ε) dollars is enough to ensure service level 1− ε, whatever be the vector λ ∈ Λ of parameters
of the (independent of each other) Poisson streams of customers of different types.

2) In 1), we have considered the case when λ runs through a given “uncertainty set” Λ, and
we want the service level to be at least 1− ε, whatever be λ ∈ Λ. Now consider the case when we
impose a chance constraint on the service level, specifically, assume that λ is picked at random
every morning, according to a certain distribution P on the nonnegative orthant, and we want
to find a once and forever fixed morning cash charge w0 of the ATM such that the probability
for a day to be “bad” (such that the service level in this day drops below the desired level 1− ε)
is at most a given δ ∈ (0, 1). Now consider the chance constraint

Probλ∼P{z0 +
∑

`

λ`z` > 0} ≤ δ

in variables z0, ..., zL, and assume that we have in our disposal a Robust Counterpart type safe
convex approximation of this constraint, i.e., we know a convex compact set Λ ⊂ {λ ≥ 0} such
that

∀(z0, ..., zL) : z0 +max
λ∈Λ

∑

`

λ`z` ≤ 0⇒ Probλ∼P{z0 +
∑

`

λ`z` > 0} ≤ δ.

Prove that by loading the ATM with BΛ(ε) dollars in the morning, we ensure that the probability
of a day to be bad is ≤ δ.



Lecture 3

Robust Conic Quadratic and
Semidefinite Optimization

In this lecture, we extend the RO methodology onto non-linear convex optimization problems,
specifically, conic ones.

3.1 Uncertain Conic Optimization: Preliminaries

3.1.1 Conic Programs

A conic optimization (CO) problem (also called conic program) is of the form

min
x

{
cTx+ d : Ax− b ∈ K

}
, (3.1.1)

where x ∈ R
n is the decision vector, K ⊂ R

m is a closed pointed convex cone with a nonempty
interior, and x 7→ Ax − b is a given affine mapping from R

n to R
m. Conic formulation is one

of the universal forms of a Convex Programming problem; among the many advantages of this
specific form is its “unifying power.” An extremely wide variety of convex programs is covered
by just three types of cones:

1. Direct products of nonnegative rays, i.e., K is a non-negative orthant R
m
+ . These cones

give rise to Linear Optimization problems

min
x

{
cTx+ d : aTi x− bi ≥ 0, 1 ≤ i ≤ m

}
.

2. Direct products of Lorentz (or Second-order, or Ice-cream) cones Lk = {x ∈ R
k : xk ≥√∑k−1

j=1 x
2
j}. These cones give rise to Conic Quadratic Optimization (called also Second

Order Conic Optimization). The Mathematical Programming form of a CO problem is

min
x

{
cTx+ d : ‖Aix− bi‖2 ≤ cTi x− di, 1 ≤ i ≤ m

}
;

81
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here i-th scalar constraint (called Conic Quadratic Inequality) (CQI) expresses the fact
that the vector [Aix; c

T
i x]− [bi; di] that depends affinely on x belongs to the Lorentz cone

Li of appropriate dimension, and the system of all constraints says that the affine mapping

x 7→
[
[A1x; c

T
1 x]; ...; [Amx; c

T
mx]

]
− [[b1; d1]; ..., ; [bm; dm]]

maps x into the direct product of the Lorentz cones L1 × ...× Lm.

3. Direct products of semidefinite cones Sk
+.

Sk
+ is the cone of positive semidefinite k × k matrices; it “lives” in the space Sk

of symmetric k× k matrices. We treat Sk as Euclidean space equipped with the

Frobenius inner product 〈A,B〉 = Tr(AB) =
k∑

i,j=1
AijBij .

The family of semidefinite cones gives rise to Semidefinite Optimization (SDO) — opti-
mization programs of the form

min
x

{
cTx+ d : Aix−Bi � 0, 1 ≤ i ≤ m

}
,

where

x 7→ Aix−Bi ≡
n∑

j=1

xjA
ij −Bi

is an affine mapping from R
n to Ski (so that Aij and Bi are symmetric ki × ki matrices),

and A � 0 means that A is a symmetric positive semidefinite matrix. The constraint
of the form “a symmetric matrix affinely depending on the decision vector should be
positive semidefinite” is called an LMI — Linear Matrix Inequality. Thus, a Semidefinite
Optimization problem (called also semidefinite program) is the problem of minimizing a
linear objective under finitely many LMI constraints. One can rewrite an SDO program
in the Mathematical Programming form, e.g., as

min
x

{
cTx+ d : λmin(Aix−Bi) ≥ 0, 1 ≤ i ≤ m

}
,

where λmin(A) stands for the minimal eigenvalue of a symmetric matrix A, but this refor-
mulation usually is of no use.

Keeping in mind our future needs related to Globalized Robust Counterparts, it makes sense to
modify slightly the format of a conic program, specifically, to pass to programs of the form

min
x

{
cTx+ d : Aix− bi ∈ Qi, 1 ≤ i ≤ m

}
, (3.1.2)

where Qi ⊂ R
ki are nonempty closed convex sets given by finite lists of conic inclusions:

Qi = {u ∈ R
ki : Qi`u− qi` ∈ Ki`, ` = 1, ..., Li}, (3.1.3)

with closed convex pointed cones Ki`. We will restrict ourselves to the cases where Ki` are
nonnegative orthants, or Lorentz, or Semidefinite cones. Clearly, a problem in the form (3.1.2)
is equivalent to the conic problem

min
x

{
cTx+ d : Qi`Aix− [Qi`bi + qi`] ∈ Ki` ∀(i, ` ≤ Li)

}



3.1. UNCERTAIN CONIC OPTIMIZATION: PRELIMINARIES 83

We treat the collection (c, d, {Ai, bi}mi=1) as natural data of problem (3.1.2). The collection of
sets Qi, i = 1, ...,m, is interpreted as the structure of problem (3.1.2), and thus the quantities
Qi`, qi` specifying these sets are considered as certain data.

3.1.2 Uncertain Conic Problems and their Robust Counterparts

Uncertain conic problem (3.1.2) is a problem with fixed structure and uncertain natural data
affinely parameterized by a perturbation vector ζ ∈ R

L

(c, d, {Ai, bi}mi=1) = (c0, d0, {A0
i , b

0
i }mi=1) +

L∑

`=1

ζ`(c
`, d`, {A`

i , b
`
i}mi=1). (3.1.4)

running through a given perturbation set Z ⊂ R
L.

Robust Counterpart of an uncertain conic problem

The notions of a robust feasible solution and the Robust Counterpart (RC) of uncertain problem
(3.1.2) are defined exactly as in the case of an uncertain LO problem (see Definition 1.4):

Definition 3.1 Let an uncertain problem (3.1.2), (3.1.4) be given and let Z ⊂ R
L be a given

perturbation set.
(i) A candidate solution x ∈ R

n is robust feasible, if it remains feasible for all realizations of
the perturbation vector from the perturbation set:

x is robust feasible
m

[A0
i +

L∑
`=1

ζ`A
`
i ]x− [b0i +

L∑
`=1

ζ`b
`
i ] ∈ Qi ∀ (i, 1 ≤ i ≤ m, ζ ∈ Z) .

(ii) The Robust Counterpart of (3.1.2), (3.1.4) is the problem

min
x,t




t :

[c0 +
L∑

`=1

ζ`c
`]Tx+ [d0 +

L∑
`=1

ζ`d
`]− t ∈ Q0 ≡ R−,

[A0
i +

L∑
`=1

ζ`A
`
i ]x− [b0i +

L∑
`=1

ζ`b
`
i ] ∈ Qi, 1 ≤ i ≤ m




∀ζ ∈ Z





(3.1.5)

of minimizing the guaranteed value of the objective over the robust feasible solutions.

As in the LO case, it is immediately seen that the RC remains intact when the perturbation
set Z is replaced with its closed convex hull; so, from now on we assume the perturbation set
to be closed and convex. Note also that the case when the entries of the uncertain data [A; b]
are affected by perturbations in a non-affine fashion in principle could be reduced to the case
of affine perturbations (see section 1.5); however, we do not know meaningful cases beyond
uncertain LO where such a reduction leads to a tractable RC.
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3.1.3 Robust Counterpart of Uncertain Conic Problem: Tractability

In contrast to uncertain LO, where the RC turn out to be computationally tractable whenever
the perturbation set is so, uncertain conic problems with computationally tractable RCs are a
“rare commodity.” The ultimate reason for this phenomenon is rather simple: the RC (3.1.5)
of an uncertain conic problem (3.1.2), (3.1.4) is a convex problem with linear objective and
constraints of the generic form

P (y, ζ) = π(y) + Φ(y)ζ = φ(ζ) + Φ(ζ)y ∈ Q, (3.1.6)

where π(y),Φ(y) are affine in the vector y of the decision variables, φ(ζ),Φ(ζ) are affine in
the perturbation vector ζ, and Q is a “simple” closed convex set. For such a problem, its
computational tractability is, essentially, equivalent to the possibility to check efficiently whether
a given candidate solution y is or is not feasible. The latter question, in turn, is whether the
image of the perturbation set Z under an affine mapping ζ 7→ π(y)+Φ(y)ζ is or is not contained
in a given convex set Q. This question is easy when Q is a polyhedral set given by an explicit
list of scalar linear inequalities aTi u ≤ bi, i = 1, ..., I (in particular, when Q is a nonpositive ray,
that is what we deal with in LO), in which case the required verification consists in checking
whether the maxima of I affine functions aTi (π(y) + Φ(y)ζ) − bi of ζ over ζ ∈ Z are or are
not nonnegative. Since the maximization of an affine (and thus concave!) function over a
computationally tractable convex set Z is easy, so is the required verification. When Q is given
by nonlinear convex inequalities ai(u) ≤ 0, i = 1, ..., I, the verification in question requires
checking whether the maxima of convex functions ai(π(y) + Φ(y)ζ) over ζ ∈ Z are or are not
nonpositive. A problem of maximizing a convex function f(ζ) over a convex set Z can be
computationally intractable already in the case of Z as simple as the unit box and f as simple
as a convex quadratic form ζTQζ. Indeed, it is known that the problem

max
ζ

{
ζTBζ : ‖ζ‖∞ ≤ 1

}

with positive semidefinite matrix B is NP-hard; in fact, it is already NP-hard to approximate
the optimal value in this problem within a relative accuracy of 4%, even when probabilistic
algorithms are allowed [55]. This example immediately implies that the RC of a generic un-
certain conic quadratic problem with a perturbation set as simple as a box is computationally
intractable.

Indeed, consider a simple-looking uncertain conic quadratic inequality

‖0 · y +Qζ‖2 ≤ 1

(Q is a given square matrix) along with its RC, the perturbation set being the unit box:

‖0 · y +Qζ‖2 ≤ 1 ∀(ζ : ‖ζ‖∞ ≤ 1). (RC)

The feasible set of the RC is either the entire space of y-variables, or is empty, which depends
on whether or not one has

max
‖ζ‖∞≤1

ζTBζ ≤ 1. [B = QTQ]

Varying Q, we can get, as B, an arbitrary positive semidefinite matrix of a given size. Now,

assuming that we can process (RC) efficiently, we can check efficiently whether the feasible
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set of (RC) is or is not empty, that is, we can compare efficiently the maximum of a positive

semidefinite quadratic form over the unit box with the value 1. If we can do it, we can

compute the maximum of a general-type positive semidefinite quadratic form ζTBζ over the

unit box within relative accuracy ε in time polynomial in the dimension of ζ and ln(1/ε) (by

comparing max‖ζ‖∞≤1 λζ
TBζ with 1 and applying bisection in λ > 0). Thus, the NP-hard

problem of computing max‖ζ‖∞≤1 ζ
TBζ, B � 0, within relative accuracy ε = 0.04 reduces

to checking feasibility of the RC of a CQI with a box perturbation set, meaning that it is

NP-hard to process the RC in question.

The unpleasant phenomenon we have just outlined leaves us with only two options:
A. To identify meaningful particular cases where the RC of an uncertain conic problem is

computationally tractable; and
B. To develop tractable approximations of the RC in the remaining cases.
Note that the RC, same as in the LO case, is a “constraint-wise” construction, so that

investigating tractability of the RC of an uncertain conic problem reduces to the same question
for the RCs of the conic constraints constituting the problem. Due to this observation, from
now on we focus on tractability of the RC

∀(ζ ∈ Z) : A(ζ)x+ b(ζ) ∈ Q

of a single uncertain conic inequality.

3.1.4 Safe Tractable Approximations of RCs of Uncertain Conic Inequalities

In sections 3.2, 3.4 we will present a number of special cases where the RC of an uncertain
CQI/LMI is computationally tractable; these cases have to do with rather specific perturbation
sets. The question is, what to do when the RC is not computationally tractable. A natural
course of action in this case is to look for a safe tractable approximation of the RC, defined as
follows:

Definition 3.2 Consider the RC

A(ζ)x+ b(ζ)︸ ︷︷ ︸
≡α(x)ζ+β(x)

∈ Q ∀ζ ∈ Z (3.1.7)

of an uncertain constraint
A(ζ)x+ b(ζ) ∈ Q. (3.1.8)

(A(ζ) ∈ R
k×n, b(ζ) ∈ R

k are affine in ζ, so that α(x), β(x) are affine in the decision vector x).
We say that a system S of convex constraints in variables x and, perhaps, additional variables
u is a safe approximation of the RC (3.1.7), if the projection of the feasible set of S on the space
of x variables is contained in the feasible set of the RC:

∀x : (∃u : (x, u) satisfies S)⇒ x satisfies (3.1.7).

This approximation is called tractable, provided that S is so, (e.g., S is an explicit system of
CQIs/LMIs or, more generally, the constraints in S are efficiently computable).
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The rationale behind the definition is as follows: assume we are given an uncertain conic problem
(3.1.2) with vector of design variables x and a certain objective cTx (as we remember, the latter
assumption is w.l.o.g.) and we have at our disposal a safe tractable approximation Si of i-th
constraint of the problem, i = 1, ...,m. Then the problem

min
x,u1,...,um

{
cTx : (x, ui) satisfies Si, 1 ≤ i ≤ m

}

is a computationally tractable safe approximation of the RC, meaning that the x-component of
every feasible solution to the approximation is feasible for the RC, and thus an optimal solution
to the approximation is a feasible suboptimal solution to the RC.

In principle, there are many ways to build a safe tractable approximation of an uncertain
conic problem. For example, assuming Z bounded, which usually is the case, we could find a
simplex ∆ = Conv{ζ1, ..., ζL+1} in the space R

L of perturbation vectors that is large enough to
contain the actual perturbation set Z. The RC of our uncertain problem, the perturbation set
being ∆, is computationally tractable (see section 3.2.1) and is a safe approximation of the RC
associated with the actual perturbation set Z due to ∆ ⊃ Z. The essence of the matter is, of
course, how conservative an approximation is: how much it “adds” to the built-in conservatism
of the worst-case-oriented RC. In order to answer the latter question, we should quantify the
“conservatism” of an approximation. There is no evident way to do it. One possible way could
be to look by how much the optimal value of the approximation is larger than the optimal value
of the true RC, but here we run into a severe difficulty. It may well happen that the feasible
set of an approximation is empty, while the true feasible set of the RC is not so. Whenever this
is the case, the optimal value of the approximation is “infinitely worse” than the true optimal
value. It follows that comparison of optimal values makes sense only when the approximation
scheme in question guarantees that the approximation inherits the feasibility properties of the
true problem. On a closer inspection, such a requirement is, in general, not less restrictive than
the requirement for the approximation to be precise.

The way to quantify the conservatism of an approximation to be used in this book is as
follows. Assume that 0 ∈ Z (this assumption is in full accordance with the interpretation of
vectors ζ ∈ Z as data perturbations, in which case ζ = 0 corresponds to the nominal data). With
this assumption, we can embed our closed convex perturbation set Z into a single-parametric
family of perturbation sets

Zρ = ρZ, 0 < ρ ≤ ∞, (3.1.9)

thus giving rise to a single-parametric family

A(ζ)x+ b(ζ)︸ ︷︷ ︸
≡α(x)ζ+β(x)

∈ Q ∀ζ ∈ Zρ (RCρ)

of RCs of the uncertain conic constraint (3.1.8). One can think about ρ as perturbation level;
the original perturbation set Z and the associated RC (3.1.7) correspond to the perturbation
level 1. Observe that the feasible set Xρ of (RCρ) shrinks as ρ grows. This allows us to quantify
the conservatism of a safe approximation to (RC) by “positioning” the feasible set of S with
respect to the scale of “true” feasible sets Xρ, specifically, as follows:

Definition 3.3 Assume that we are given an approximation scheme that puts into correspon-
dence to (3.1.9), (RCρ) a finite system Sρ of efficiently computable convex constraints on variables
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x and, perhaps, additional variables u, depending on ρ > 0 as on a parameter, in such a way
that for every ρ the system Sρ is a safe tractable approximation of (RCρ), and let X̂ρ be the
projection of the feasible set of Sρ onto the space of x variables.

We say that the conservatism (or “tightness factor”) of the approximation scheme in question
does not exceed ϑ ≥ 1 if, for every ρ > 0, we have

Xϑρ ⊂ X̂ρ ⊂ Xρ.

Note that the fact that Sρ is a safe approximation of (RCρ) tight within factor ϑ is equivalent
to the following pair of statements:

1. [safety] Whenever a vector x and ρ > 0 are such that x can be extended to a feasible
solution of Sρ, x is feasible for (RCρ);

2. [tightness] Whenever a vector x and ρ > 0 are such that x cannot be extended to a feasible
solution of Sρ, x is not feasible for (RCϑρ).

Clearly, a tightness factor equal to 1 means that the approximation is precise: X̂ρ = Xρ for
all ρ. In many applications, especially in those where the level of perturbations is known only
“up to an order of magnitude,” a safe approximation of the RC with a moderate tightness factor
is almost as useful, from a practical viewpoint, as the RC itself.

An important observation is that with a bounded perturbation set Z = Z1 ⊂ R
L that is sym-

metric w.r.t. the origin, we can always point out a safe computationally tractable approximation
scheme for (3.1.9), (RCρ) with tightness factor ≤ L.
Indeed, w.l.o.g. we may assume that intZ 6= ∅, so that Z is a closed and bounded convex set symmetric
w.r.t. the origin. It is known that for such a set, there always exist two similar ellipsoids, centered
at the origin, with the similarity ratio at most

√
L, such that the smaller ellipsoid is contained in Z,

and the larger one contains Z. In particular, one can choose, as the smaller ellipsoid, the largest volume
ellipsoid contained in Z; alternatively, one can choose, as the larger ellipsoid, the smallest volume ellipsoid
containing Z. Choosing coordinates in which the smaller ellipsoid is the unit Euclidean ball B, we
conclude that B ⊂ Z ⊂

√
LB. Now observe that B, and therefore Z, contains the convex hull Z = {ζ ∈

R
L : ‖ζ‖1 ≤ 1} of the 2L vectors ±e`, ` = 1, ..., L, where e` are the basic orths of the axes in question.

Since Z clearly contains L−1/2B, the convex hull Ẑ of the vectors ±Le`, ` = 1, ..., L, contains Z and is
contained in LZ. Taking, as Sρ, the RC of our uncertain constraint, the perturbation set being ρẐ, we
clearly get an L-tight safe approximation of (3.1.9), (RCρ), and this approximation is merely the system
of constraints

A(ρLe`)x+ b(ρLe`) ∈ Q, A(−ρLe`)x+ b(−ρLe`) ∈ Q, ` = 1, ..., L,

that is, our approximation scheme is computationally tractable.

3.2 Uncertain Conic Quadratic Problems with Tractable RCs

In this section we focus on uncertain conic quadratic problems (that is, the sets Qi in (3.1.2)
are given by explicit lists of conic quadratic inequalities) for which the RCs are computationally
tractable.
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3.2.1 A Generic Solvable Case: Scenario Uncertainty

We start with a simple case where the RC of an uncertain conic problem (not necessarily a conic
quadratic one) is computationally tractable — the case of scenario uncertainty.

Definition 3.4 We say that a perturbation set Z is scenario generated, if Z is given as the
convex hull of a given finite set of scenarios ζ(ν):

Z = Conv{ζ(1), ..., ζ(N)}. (3.2.1)

Theorem 3.1 The RC (3.1.5) of uncertain problem (3.1.2), (3.1.4) with scenario perturbation
set (3.2.1) is equivalent to the explicit conic problem

min
x,t




t :

[c0 +
L∑

`=1

ζ
(ν)
` c`]Tx+ [d0 +

L∑
`=1

ζ
(ν)
` d`]− t ≤ 0

[A0
i +

L∑
`=1

ζ
(ν)
` A`

i ]
Tx− [b0 +

L∑
`=1

ζ
(ν)
` b`] ∈ Qi,

1 ≤ i ≤ m




, 1 ≤ ν ≤ N





(3.2.2)

with a structure similar to the one of the instances of the original uncertain problem.

Proof. This is evident due to the convexity of Qi and the affinity of the left hand sides of the
constraints in (3.1.5) in ζ. �

The situation considered in Theorem 3.1 is “symmetric” to the one considered in lecture 1,
where we spoke about problems (3.1.2) with the simplest possible sets Qi — just nonnegative
rays, and the RC turns out to be computationally tractable whenever the perturbation set is
so. Theorem 3.1 deals with another extreme case of the tradeoff between the geometry of the
right hand side sets Qi and that of the perturbation set. Here the latter is as simple as it could
be — just the convex hull of an explicitly listed finite set, which makes the RC computationally
tractable for rather general (just computationally tractable) sets Qi. Unfortunately, the second
extreme is not too interesting: in the large scale case, a “scenario approximation” of a reasonable
quality for typical perturbation sets, like boxes, requires an astronomically large number of
scenarios, thus preventing listing them explicitly and making problem (3.2.2) computationally
intractable. This is in sharp contrast with the first extreme, where the simple sets were Qi —
Linear Optimization is definitely interesting and has a lot of applications.

In what follows, we consider a number of less trivial cases where the RC of an uncertain conic
quadratic problem is computationally tractable. As always with RC, which is a constraint-wise
construction, we may focus on computational tractability of the RC of a single uncertain CQI

‖A(ζ)y + b(ζ)︸ ︷︷ ︸
≡α(y)ζ+β(y)

‖2 ≤ cT (ζ)y + d(ζ)︸ ︷︷ ︸
≡σT (y)ζ+δ(y)

, (3.2.3)

where A(ζ) ∈ R
k×n, b(ζ) ∈ R

k, c(ζ) ∈ R
n, d(ζ) ∈ R are affine in ζ, so that α(y), β(y), σ(y), δ(y)

are affine in the decision vector y.
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3.2.2 Solvable Case I: Simple Interval Uncertainty

Consider uncertain conic quadratic constraint (3.2.3) and assume that:

1. The uncertainty is side-wise: the perturbation set Z = Z left ×Zright is the direct product
of two sets (so that the perturbation vector ζ ∈ Z is split into blocks η ∈ Z left and
χ ∈ Zright), with the left hand side data A(ζ), b(ζ) depending solely on η and the right
hand side data c(ζ), d(ζ) depending solely on χ, so that (3.2.3) reads

‖A(η)y + b(η)︸ ︷︷ ︸
≡α(y)η+β(y)

‖2 ≤ cT (χ)y + d(χ)︸ ︷︷ ︸
≡σT (y)χ+δ(y)

, (3.2.4)

and the RC of this uncertain constraint reads

‖A(η)y + b(η)‖2 ≤ cT (χ)y + d(χ) ∀(η ∈ Z left, χ ∈ Zright); (3.2.5)

2. The right hand side perturbation set is as described in Theorem 1.1, that is,

Zright = {χ : ∃u : Pχ+Qu+ p ∈ K} ,
where either K is a closed convex pointed cone, and the representation is strictly feasible,
or K is a polyhedral cone given by an explicit finite list of linear inequalities;

3. The left hand side uncertainty is a simple interval one:

Z left =
{
η = [δA, δb] : |(δA)ij | ≤ δij , 1 ≤ i ≤ k, 1 ≤ j ≤ n,
|(δb)i| ≤ δi, 1 ≤ i ≤ k

}
,

[A(ζ), b(ζ)] = [An, bn] + [δA, δb].

In other words, every entry in the left hand side data [A, b] of (3.2.3), independently of all
other entries, runs through a given segment centered at the nominal value of the entry.

Proposition 3.1 Under assumptions 1 – 3 on the perturbation set Z, the RC of the uncertain
CQI (3.2.3) is equivalent to the following explicit system of conic quadratic and linear constraints
in variables y, z, τ, v:

(a)
τ + pT v ≤ δ(y), P T v = σ(y),
QT v = 0, v ∈ K∗

(b)
zi ≥ |(Any + bn)i|+ δi +

n∑
j=1
|δijyj|, i = 1, ..., k

‖z‖2 ≤ τ

(3.2.6)

where K∗ is the cone dual to K.

Proof. Due to the side-wise structure of the uncertainty, a given y is robust feasible if and only
if there exists τ such that

(a) τ ≤ min
χ∈Zright

{
σT (y)χ+ δ(y)

}

= min
χ,u

{
σT (y)χ : Pχ+Qu+ p ∈ K

}
+ δ(y),

(b) τ ≥ max
η∈Zleft

‖A(η)y + b(η)‖2
= max

δA,δb
{‖[Any + bn] + [δAy + δb]‖2 : |δA|ij ≤ δij , |δbi| ≤ δi} .
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By Conic Duality, a given τ satisfies (a) if and only if τ can be extended, by properly chosen v,
to a solution of (3.2.6.a); by evident reasons, τ satisfies (b) if and only if there exists z satisfying
(3.2.6.b). �

3.2.3 Solvable Case II: Unstructured Norm-Bounded Uncertainty

Consider the case where the uncertainty in (3.2.3) is still side-wise (Z = Z left×Zright) with the
right hand side uncertainty set Zright as in section 3.2.2, while the left hand side uncertainty is
unstructured norm-bounded, meaning that

Z left =
{
η ∈ R

p×q : ‖η‖2,2 ≤ 1
}

(3.2.7)

and either
A(η)y + b(η) = Any + bn + LT (y)ηR (3.2.8)

with L(y) affine in y and R 6= 0, or

A(η)y + b(η) = Any + bn + LT ηR(y) (3.2.9)

with R(y) affine in y and L 6= 0. Here

‖η‖2,2 = max
u
{‖ηu‖2 : u ∈ R

q, ‖u‖2 ≤ 1}

is the usual matrix norm of a p× q matrix η (the maximal singular value),

Example 3.1
(i) Imagine that some p× q submatrix P of the left hand side data [A, b] of (3.2.4) is uncertain and

differs from its nominal value Pn by an additive perturbation ∆P =MT∆N with ∆ having matrix norm
at most 1, and all entries in [A, b] outside of P are certain. Denoting by I the set of indices of the rows
in P and by J the set of indices of the columns in P , let U be the natural projector of Rn+1 on the
coordinate subspace in Rn+1 given by J , and V be the natural projector of Rk on the subspace of Rk

given by I (e.g., with I = {1, 2} and J = {1, 5}, Uu = [u1;u5] ∈ R2 and V u = [u1;u2] ∈ R2). Then the
outlined perturbations of [A, b] can be represented as

[A(η), b(η)] = [An, bn] + V TMT
︸ ︷︷ ︸

LT

η (NU)︸ ︷︷ ︸
R

, ‖η‖2,2 ≤ 1,

whence, setting Y (y) = [y; 1],

A(η)y + b(η) = [Any + bn] + LT η [RY (y)]︸ ︷︷ ︸
R(y)

,

and we are in the situation (3.2.7), (3.2.9).
(ii) [Simple ellipsoidal uncertainty] Assume that the left hand side perturbation set Z left is a p-

dimensional ellipsoid; w.l.o.g. we may assume that this ellipsoid is just the unit Euclidean ball B = {η ∈
Rp : ‖η‖2 ≤ 1}. Note that for vectors η ∈ Rp = Rp×1 their usual Euclidean norm ‖η‖2 and their matrix
norm ‖η‖2,2 are the same. We now have

A(η)y + b(η) = [A0y + b0] +

p∑

`=1

η`[A
`y + b`] = [Any + bn] + LT (y)ηR,

where An = A0, bn = b0, R = 1 and L(y) is the matrix with the rows [A`y + b`]T , ` = 1, ..., p. Thus, we

are in the situation (3.2.7), (3.2.8).
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Theorem 3.2 The RC of the uncertain CQI (3.2.4) with unstructured norm-bounded uncer-
tainty is equivalent to the following explicit system of LMIs in variables y, τ, u, λ:
(i) In the case of left hand side perturbations (3.2.7), (3.2.8):

(a) τ + pT v ≤ δ(y), P T v = σ(y), QT v = 0, v ∈ K∗

(b)




τIk LT (y) Any + bn

L(y) λIp
[Any + bn]T τ − λRTR


 � 0.

(3.2.10)

(ii) In the case of left hand side perturbations (3.2.7), (3.2.9):

(a) τ + pT v ≤ δ(y), P T v = σ(y), QT v = 0, v ∈ K∗

(b)



τIk − λLTL Any + bn

λIq R(y)

[Any + bn]T RT (y) τ


 � 0.

(3.2.11)

Here K∗ is the cone dual to K.

Proof. Same as in the proof of Proposition 3.1, y is robust feasible for (3.2.4) if and only if
there exists τ such that

(a) τ ≤ min
χ∈Zright

{
σT (y)χ+ δ(y)

}

= min
χ,u

{
σT (y)χ : Pχ+Qu+ p ∈ K

}
,

(b) τ ≥ max
η∈Zleft

‖A(η)y + b(η)‖2,
(3.2.12)

and a given τ satisfies (a) if and only if it can be extended, by a properly chosen v, to a solution
of (3.2.10.a)⇔(3.2.11.a). It remains to understand when τ satisfies (b). This requires two basic
facts.

Lemma 3.1 [Semidefinite representation of the Lorentz cone] A vector [y; t] ∈ R
k × R belongs

to the Lorentz cone Lk+1 = {[y; t] ∈ R
k+1 : t ≥ ‖y‖2} if and only if the “arrow matrix”

Arrow(y, t) =

[
t yT

y tIk

]

is positive semidefinite.

Proof of Lemma 3.1: We use the following fundamental fact:

Lemma 3.2 [Schur Complement Lemma] A symmetric block matrix

A =

[
P QT

Q R

]

with R � 0 is positive (semi)definite if and only if the matrix

P −QTR−1Q

is positive (semi)definite.
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Schur Complement Lemma ⇒ Lemma 3.1: When t = 0, we have [y; t] ∈ Lk+1 iff y = 0, and
Arrow(y, t) � 0 iff y = 0, as claimed in Lemma 3.1. Now let t > 0. Then the matrix tIk is
positive definite, so that by the Schur Complement Lemma we have Arrow(y, t) � 0 if and only
if t ≥ t−1yT y, or, which is the same, iff [y; t] ∈ Lk+1. When t < 0, we have [y; t] 6∈ Lk+1 and
Arrow(y, t) 6� 0. �

Proof of the Schur Complement Lemma: Matrix A = AT is � 0 iff uTPu+2uTQT v+ vTRv ≥ 0
for all u, v, or, which is the same, iff

∀u : 0 ≤ min
v

{
uTPu+ 2uTQT v + vTRv

}
= uTPu− uTQTR−1Qu

(indeed, since R � 0, the minimum in v in the last expression is achieved when v = R−1Qu).
The concluding relation ∀u : uT [P −QTR−1Q]u ≥ 0 is valid iff P −QTR−1Q � 0. Thus, A � 0
iff P −QTR−1Q � 0. The same reasoning implies that A � 0 iff P −QTR−1Q � 0. �

We further need the following fundamental result:
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Lemma 3.3 [S-Lemma]
(i) [homogeneous version] Let A,B be symmetric matrices of the same size such that x̄TAx̄ >

0 for some x̄. Then the implication

xTAx ≥ 0⇒ xTBx ≥ 0

holds true if and only if
∃λ ≥ 0 : B � λA.

(ii) [inhomogeneous version] Let A,B be symmetric matrices of the same size, and let the
quadratic form xTAx+ 2aTx+ α be strictly positive at some point. Then the implication

xTAx+ 2aTx+ α ≥ 0⇒ xTBx+ 2bTx+ β ≥ 0

holds true if and only if

∃λ ≥ 0 :

[
B − λA bT − λaT
b− λa β − λα

]
� 0.

For proof of this fundamental Lemma, see, e.g., [9, section 4.3.5].
Coming back to the proof of Theorem 3.2, we can now understand when a given pair τ, y

satisfies (3.2.12.b). Let us start with the case (3.2.8). We have

(y, τ) satisfies (3.2.12.b)

⇔ [

ŷ︷ ︸︸ ︷
[Any + bn]+LT (y)ηR; τ ] ∈ Lk+1 ∀(η : ‖η‖2,2 ≤ 1)

[by (3.2.8)]

⇔
[

τ ŷT +RT ηTL(y)

ŷ + LT (y)ηR τIk

]
� 0 ∀(η : ‖η‖2,2 ≤ 1)

[by Lemma 3.1]

⇔ τs2 + 2srT [ŷ + LT (y)ηR] + τrT r ≥ 0 ∀[s; r] ∀(η : ‖η‖2,2 ≤ 1)

⇔ τs2 + 2sŷT r + 2 min
η:‖η‖2,2≤1

[
s(ηTL(y)r)TR

]
+ τrT r ≥ 0 ∀[s; r]

⇔ τs2 + 2sŷT r − 2‖L(y)r‖2‖sR‖2 + τrT r ≥ 0 ∀[s; r]

⇔ τrT r + 2(L(y)r)T ξ + 2srT ŷ + τs2 ≥ 0 ∀(s, r, ξ : ξT ξ ≤ s2RTR)

⇔ ∃λ ≥ 0 :




τIk LT (y) ŷ

L(y) λIp
ŷT τ − λRTR


 � 0

[by the homogeneous S-Lemma; note that R 6= 0].

The requirement λ ≥ 0 in the latter relation is implied by the LMI in the relation and is therefore
redundant. Thus, in the case of (3.2.8) relation (3.2.12.b) is equivalent to the possibility to extend
(y, τ) to a solution of (3.2.10.b).
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Now let (3.2.9) be the case. We have

(y, τ) satisfies (3.2.12.b)

⇔ [

ŷ︷ ︸︸ ︷
[Any + bn]+LT ηR(y); τ ] ∈ Lk+1 ∀(η : ‖η‖2,2 ≤ 1) [by (3.2.9)]

⇔
[

τ ŷT +RT (y)ηTL

ŷ + LT ηR(y) τIk

]
� 0 ∀(η : ‖η‖2,2 ≤ 1)

[by Lemma 3.1]

⇔ τs2 + 2srT [ŷ + LT ηR(y)] + τrT r ≥ 0 ∀[s; r] ∀(η : ‖η‖2,2 ≤ 1)

⇔ τs2 + 2sŷT r + 2 min
η:‖η‖2,2≤1

[
s(ηTLr)TR(y)

]
+ τrT r ≥ 0 ∀[s; r]

⇔ τs2 + 2sŷT r − 2‖Lr‖2‖sR(y)‖2 + τrT r ≥ 0 ∀[s; r]

⇔ τrT r + 2sRT (y)ξ + 2srT ŷ + τs2 ≥ 0 ∀(s, r, ξ : ξT ξ ≤ rTLTLr)

⇔ ∃λ ≥ 0 :



τIk − λLTL ŷ

λIq R(y)

ŷT RT (y) τ


 � 0

[by the homogeneous S-Lemma; note that L 6= 0].

As above, the restriction λ ≥ 0 is redundant. We see that in the case of (3.2.9) relation (3.2.12.b)
is equivalent to the possibility to extend (y, τ) to a solution of (3.2.11.b). �

3.2.4 Solvable Case III: Convex Quadratic Inequality with Unstructured
Norm-Bounded Uncertainty

A special case of an uncertain conic quadratic constraint (3.2.3) is a convex quadratic constraint

(a) yTAT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ)
m

(b) ‖[2A(ζ)y; 1− 2yT b(ζ)− c(ζ)]‖2 ≤ 1 + 2yT b(ζ) + c(ζ).
(3.2.13)

Here A(ζ) is k × n.
Assume that the uncertainty affecting this constraint is an unstructured norm-bounded one, meaning

that
(a) Z = {ζ ∈ Rp×q : ‖ζ‖2,2 ≤ 1},

(b)




A(ζ)y
yT b(ζ)
c(ζ)


 =




Any
yT bn

cn


+ LT (y)ζR(y),

(3.2.14)

where L(y), R(y) are matrices of appropriate sizes affinely depending on y and such that at least one
of the matrices is constant. We are about to prove that the RC of (3.2.13), (3.2.14) is computationally
tractable. Note that the just defined unstructured norm-bounded uncertainty in the data of convex
quadratic constraint (3.2.13.a) implies similar uncertainty in the left hand side data of the equivalent
uncertain CQI (3.2.13.a). Recall that Theorem 3.2 ensures that the RC of a general-type uncertain CQI
with side-wise uncertainty and unstructured norm-bounded perturbations in the left hand side data is
tractable. The result to follow removes the requirement of “side-wiseness” of the uncertainty at the
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cost of restricting the structure of the CQI in question — now it should come from an uncertain convex
quadratic constraint. Note also that the case we are about to consider covers in particular the one when
the data (A(ζ), b(ζ), c(ζ)) of (3.2.13.a) are affinely parameterized by ζ varying in an ellipsoid (cf. Example
3.1.(ii)).

Proposition 3.2 Let us set L(y) = [LA(y), Lb(y), Lc(y)], where Lb(y), Lc(y) are the last two columns
in L(y), and let

L̂T (y) =
[
LT
b (y) +

1
2L

T
c (y);L

T
A(y)

]
, R̂(y) = [R(y), 0q×k],

A(y) =
[

2yT bn + cn [Any]T

Any Ik

]
,

(3.2.15)

so that A(y), L̂(y) and R̂(y) are affine in y and at least one of the latter two matrices is constant.
The RC of (3.2.13), (3.2.14) is equivalent to the explicit LMI S in variables y, λ as follows:

(i) In the case when L̂(y) is independent of y and is nonzero, S is

[
A(y)− λL̂T L̂ R̂T (y)

R̂(y) λIq

]
� 0; (3.2.16)

(ii) In the case when R̂(Y ) is independent of y and is nonzero, S is

[
A(y)− λR̂T R̂ L̂T (y)

L̂(y) λIp

]
� 0; (3.2.17)

(iii) In all remaining cases (that is, when either L̂(y) ≡ 0, or R̂(y) ≡ 0, or both), S is

A(y) � 0. (3.2.18)

Proof. We have

yTAT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ) ∀ζ ∈ Z

⇔
[

2yT b(ζ) + c(ζ) [A(ζ)y]T

A[ζ]y Ik

]
� 0 ∀ζ ∈ Z

[Schur Complement Lemma]

⇔

A(y)︷ ︸︸ ︷[
2yT bn + cn [Any]T

Any I

]

+

B(y,ζ)︷ ︸︸ ︷[
2LT

b (y)ζR(y) + LT
c (y)ζR(y) RT (y)ζTLA(y)

LT
A(y)ζR(y)

]
� 0 ∀(ζ : ‖ζ‖2,2 ≤ 1)

[by (3.2.14)]

⇔ A(y) + L̂T (y)ζR̂(y) + R̂T (y)ζT L̂(y) � 0 ∀(ζ : ‖ζ‖2,2 ≤ 1) [by (3.2.15)].

Now the reasoning can be completed exactly as in the proof of Theorem 3.2. Consider, e.g., the case of
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(i). We have

yTAT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ) ∀ζ ∈ Z

⇔ A(y) + L̂T ζR̂(y) + R̂T (y)ζT L̂ � 0 ∀(ζ : ‖ζ‖2,2 ≤ 1) [already proved]

⇔ ξTA(y)ξ + 2(L̂ξ)T ζR̂(y)ξ ≥ 0 ∀ξ ∀(ζ : ‖ζ‖2,2 ≤ 1)

⇔ ξTA(y)ξ − 2‖L̂ξ‖2‖R̂(y)ξ‖2 ≥ 0 ∀ξ

⇔ ξTA(y)ξ + 2ηT R̂(y)ξ ≥ 0 ∀(ξ, η : ηT η ≤ ξT L̂T L̂ξ)

⇔ ∃λ ≥ 0 :

[
A(y)− λL̂T L̂ R̂T (y)

R̂(y) λIq

]
� 0 [S-Lemma]

⇔ ∃λ :

[
A(y)− λL̂T L̂ R̂T (y)

R̂(y) λIq

]
� 0,

and we arrive at (3.2.16). �

3.2.5 Solvable Case IV: CQI with Simple Ellipsoidal Uncertainty

The last solvable case we intend to present is of uncertain CQI (3.2.3) with an ellipsoid as the
perturbation set. Now, unlike the results of Theorem 3.2 and Proposition 3.2, we neither assume
the uncertainty side-wise, nor impose specific structural restrictions on the CQI in question.
However, whereas in all tractability results stated so far we ended up with a “well-structured”
tractable reformulation of the RC (mainly in the form of an explicit system of LMIs), now the
reformulation will be less elegant: we shall prove that the feasible set of the RC admits an
efficiently computable separation oracle — an efficient computational routine that, given on
input a candidate decision vector y, reports whether this vector is robust feasible, and if it is
not the case, returns a separator — a linear form eT z on the space of decision vectors such that

eT y > sup
z∈Y

eT z,

where Y is the set of all robust feasible solutions. Good news is that equipped with such a
routine, one can optimize efficiently a linear form over the intersection of Y with any convex
compact set Z that is itself given by an efficiently computable separation oracle. On the negative
side, the family of “theoretically efficient” optimization algorithms available in this situation is
much more restricted than the family of algorithms available in the situations we encountered so
far. Specifically, in these past situations, we could process the RC by high-performance Interior
Point polynomial time methods, while in our present case we are forced to use slower black-box-
oriented methods, like the Ellipsoid algorithm. As a result, the design dimensions that can be
handled in a realistic time can drop considerably.

We are about to describe an efficient separation oracle for the feasible set

Y = {y : ‖α(y)ζ + β(y)‖2 ≤ σT (y)ζ + δ(y) ∀(ζ : ζT ζ ≤ 1)} (3.2.19)

of the uncertain CQI (3.2.3) with the unit ball in the role of the perturbation set; recall that
α(y), β(y), σ(y), δ(y) are affine in y.
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Observe that y ∈ Y if and only if the following two conditions hold true:

0 ≤ σT (y)ζ + δ(y) ∀(ζ : ‖ζ‖2 ≤ 1)
⇔ ‖σ(y)‖2 ≤ δ(y) (a)

(σT (y)ζ + δ(y))2 − [α(y)ζ + β(y)]T [α(y)ζ + β(y)] ≥ 0
∀(ζ : ζT ζ ≤ 1)

⇔ ∃λ ≥ 0 :

Ay(λ) ≡




λIL + σ(y)σT (y)
−αT (y)α(y)

δ(y)σT (y)
−βT (y)α(y)

δ(y)σ(y)
−αT (y)β(y)

δ2(y)− βT (y)β(y)
−λ


 � 0 (b)

(3.2.20)

where the second ⇔ is due to the inhomogeneous S-Lemma. Observe that given y, it is easy to
verify the validity of (3.2.20). Indeed,

1. Verification of (3.2.20.a) is trivial.

2. To verify (3.2.20.b), we can use bisection in λ as follows.
First note that any λ ≥ 0 satisfying the matrix inequality (MI) in (3.2.20.b) clearly should
be ≤ λ+ ≡ δ2(y) − βT (y)β(y). If λ+ < 0, then (3.2.20.b) definitely does not take place,
and we can terminate our verification. When λ+ ≥ 0, we can build a shrinking sequence
of localizers ∆t = [λt, λt] for the set Λ∗ of solutions to our MI, namely, as follows:

• We set λ0 = 0, λ0 = λ+, thus ensuring that Λ∗ ⊂ ∆0.

• Assume that after t− 1 steps we have in our disposal a segment ∆t−1, ∆t−1 ⊂ ∆t−2 ⊂
... ⊂ ∆0, such that Λ∗ ⊂ ∆t−1. Let λt be the midpoint of ∆t−1. At step t, we check
whether the matrix Ay(λt) is � 0; to this end we can use any one from the well-known
Linear Algebra routines capable to check in O(k3) operations positive semidefiniteness of
a k × k matrix A, and if it is not the case, to produce a “certificate” for the fact that
A 6� 0 — a vector z such that zTAz < 0. If Ay(λt) � 0, we are done, otherwise we
get a vector zt such that the affine function ft(λ) ≡ zTt Ay(λ)zt is negative when λ = λt.
Setting ∆t = {λ ∈ ∆t−1 : ft(λ) ≥ 0}, we clearly get a new localizer for Λ∗ that is at least
twice shorter than ∆t−1; if this localizer is nonempty, we pass to step t+ 1, otherwise we
terminate with the claim that (3.2.20.b) is not valid.

Since the sizes of subsequent localizers shrink at each step by a factor of at least 2, the
outlined procedure rapidly converges: for all practical purposes1 we may assume that the
procedure terminates after a small number of steps with either a λ that makes the MI in
(3.2.20) valid, or with an empty localizer, meaning that (3.2.20.b) is invalid.

So far we built an efficient procedure that checks whether or not y is robust feasible (i.e., whether
or not y ∈ Y ). To complete the construction of a separation oracle for Y , it remains to build a
separator of y and Y when y 6∈ Y . Our “separation strategy” is as follows. Recall that y ∈ Y
if and only if all vectors vy(ζ) = [α(y)ζ + β(y);σT (y)ζ + δ(y)] with ‖ζ‖2 ≤ 1 belong to the
Lorentz cone Lk+1, where k = dimβ(y). Thus, y 6∈ Y if there exists ζ̄ such that ‖ζ̄‖2 ≤ 1 and
vy(ζ̄) 6∈ Lk+1. Given such a ζ̄, we can immediately build a separator of y and Y as follows:

1We could make our reasoning precise, but it would require going into tedious technical details that we prefer
to skip.
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1. Since vy(ζ̄) 6∈ Lk+1, we can easily separate vy(ζ̄) and Lk+1. Specifically, setting vy(ζ̄) =
[a; b], we have b < ‖a‖2, so that setting e = [a/‖a‖2;−1], we have eT vy(ζ̄) = ‖a‖2 − b > 0,
while eTu ≤ 0 for all u ∈ Lk+1.

2. After a separator e of vy(ζ̄) and Lk+1 is built, we look at the function φ(z) = eT vz(ζ̄).
This is an affine function of z such that

sup
z∈Y

φ(z) ≤ sup
u∈Lk+1

eTu < eT vy(ζ̄) = φ(y)

where the first ≤ is given by the fact that vz(ζ̄) ∈ Lk+1 when z ∈ Y . Thus, the homoge-
neous part of φ(·), (which is a linear form readily given by e), separates y and Y .

In summary, all we need is an efficient routine that, in the case when y 6∈ Y , i.e.,

Ẑy ≡ {ζ̄ : ‖ζ̄‖2 ≤ 1, vy(ζ̄) 6∈ Lk+1} 6= ∅,

finds a point ζ̄ ∈ Ẑy (“an infeasibility certificate”). Here is such a routine. First, recall that our
algorithm for verifying robust feasibility of y reports that y 6∈ Y in two situations:
• ‖σ(y)‖2 > δ(y). In this case we can without any difficulty find a ζ̄, ‖ζ̄‖2 ≤ 1, such that

σT (y)ζ̄ + δ(y) < 0. In other words, the vector vy(ζ̄) has a negative last coordinate and therefore
it definitely does not belong to Lk+1. Such a ζ̄ is an infeasibility certificate.
• We have discovered that (a) λ+ < 0, or (b) got ∆t = ∅ at a certain step t of our bisection

process. In this case building an infeasibility certificate is more tricky.
Step 1: Separating the positive semidefinite cone and the “matrix ray” {Ay(λ) : λ ≥
0}. Observe that with z0 defined as the last basic orth in R

L+1, we have f0(λ) ≡ zT0 Ay(λ)z0 < 0
when λ > λ+. Recalling what our bisection process is, we conclude that in both cases (a),
(b) we have at our disposal a collection z0, ..., zt of (L + 1)-dimensional vectors such that with
fs(λ) = zTs Ay(λ)zs we have f(λ) ≡ min [f0(λ), f1(λ), ..., ft(λ)] < 0 for all λ ≥ 0. By construction,
f(λ) is a piecewise linear concave function on the nonnegative ray; looking at what happens at
the maximizer of f over λ ≥ 0, we conclude that an appropriate convex combination of just two
of the “linear pieces” f0(λ), ..., ft(λ) of f is negative everywhere on the nonnegative ray. That
is, with properly chosen and easy-to-find α ∈ [0, 1] and τ1, τ2 ≤ t we have

φ(λ) ≡ αfτ1(λ) + (1− α)fτ2(λ) < 0 ∀λ ≥ 0.

Recalling the origin of fτ (λ) and setting z1 =
√
αzτ1 , z

2 =
√
1− αzτ2 , Z = z1[z1]T + z2[z2]T , we

have
0 > φ(λ) = [z1]TAy(λ)z

1 + [z2]TAy(λ)z
2 = Tr(Ay(λ)Z) ∀λ ≥ 0. (3.2.21)

This inequality has a simple interpretation: the function Φ(X) = Tr(XZ) is a linear form on
SL+1 that is nonnegative on the positive semidefinite cone (since Z � 0 by construction) and is
negative everywhere on the “matrix ray” {Ay(λ) : λ ≥ 0}, thus certifying that this ray does not
intersect the positive semidefinite cone (the latter is exactly the same as the fact that (3.2.20.b)
is false).
Step 2: from Z to ζ̄. Relation (3.2.21) says that an affine function φ(λ) is negative everywhere
on the nonnegative ray, meaning that the slope of the function is nonpositive, and the value at
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the origin is negative. Taking into account (3.2.20), we get

ZL+1,L+1 ≥
L∑

i=1

Zii, Tr(Z




σ(y)σT (y)
−αT (y)α(y)

δ(y)σT (y)
−βT (y)α(y)

δ(y)σ(y)
−αT (y)β(y)

δ2(y)− βT (y)β(y)




︸ ︷︷ ︸
Ay(0)

) < 0. (3.2.22)

Besides this, we remember that Z is given as z1[z1]T + z2[z2]T . We claim that

(!) We can efficiently find a representation Z = eeT + ffT such that e, f ∈ LL+1.

Taking for the time being (!) for granted, let us build an infeasibility certificate. Indeed, from
the second relation in (3.2.22) it follows that either Tr(Ay(0)ee

T ) < 0, or Tr(Ay(0)ff
T ) < 0, or

both. Let us check which one of these inequalities indeed holds true; w.l.o.g., let it be the first
one. From this inequality, in particular, e 6= 0, and since e ∈ LL+1, we have eL+1 > 0. Setting
ē = e/eL+1 = [ζ̄; 1], we have Tr(Ay(0)ēē

T ) = ēTAy(0)ē < 0, that is,

δ2(y)− βT (y)β(y) + 2δ(y)σT (y)ζ̄ − 2βT (y)α(y)ζ̄ + ζ̄Tσ(y)σT (y)ζ̄

−ζ̄TαT (y)α(y)ζ̄ < 0,

or, which is the same,

(δ(y) + σT (y)ζ̄)2 < (α(y)ζ̄ + β(y))T (α(y)ζ̄ + β(y)).

We see that the vector vy(ζ̄) = [α(y)ζ̄ + β(y);σT (y)ζ̄ + δ(y)] does not belong to LL+1, while
ē = [ζ̄; 1] ∈ LL+1, that is, ‖ζ̄‖2 ≤ 1. We have built a required infeasibility certificate.

It remains to justify (!). Replacing, if necessary, z1 with −z1 and z2 with −z2, we can assume that
Z = z1[z1]T + z2[z2]T with z1 = [p; s], z2 = [q; r], where s, r ≥ 0. It may happen that z1, z2 ∈ LL+1

— then we are done. Assume now that not both z1, z2 belong to LL+1, say, z1 6∈ LL+1, that is,

0 ≤ s < ‖p‖2. Observe that ZL+1,L+1 = s2 + r2 and
L∑

i=1

Zii = pT p+ qT q; therefore the first relation in

(3.2.22) implies that s2 + r2 ≥ pT p + qT q. Since 0 ≤ s < ‖p‖2 and r ≥ 0, we conclude that r > ‖q‖2.
Thus, s < ‖p‖2, r > ‖q‖2, whence there exists (and can be easily found) α ∈ (0, 1) such that for the
vector e =

√
αz1 +

√
1− αz2 = [u; t] we have eL+1 =

√
e21 + ...+ e2L. Setting f = −

√
1− αz1 +√αz2,

we have eeT + ffT = z1[z1]T + z2[z2]T = Z. We now have

0 ≤ ZL+1,L+1 −
L∑

i=1

Zii = e2L+1 + f2
L+1 −

L∑

i=1

[e2i + f2
i ] = f2

L+1 −
L∑

i=1

f2
i ;

thus, replacing, if necessary, f with −f , we see that e, f ∈ LL+1 and Z = eeT + ffT , as required in (!).

Semidefinite Representation of the RC of an Uncertain CQI with Simple Ellipsoidal
Uncertainty

This book was nearly finished when the topic considered in this section was significantly advanced
by R. Hildebrand [56, 57] who discovered an explicit SDP representation of the cone of “Lorentz-
positive” n×m matrices (real m× n matrices that map the Lorentz cone Lm into the Lorentz
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cone Ln). Existence of such a representation was a long-standing open question. As a byproduct
of answering this question, the construction of Hildebrand offers an explicit SDP reformulation
of the RC of an uncertain conic quadratic inequality with ellipsoidal uncertainty.
The RC of an uncertain conic quadratic inequality with ellipsoidal uncertainty and
Lorentz-positive matrices. Consider the RC of an uncertain conic quadratic inequality with
simple ellipsoidal uncertainty; w.l.o.g., we assume that the uncertainty set Z is the unit Euclidean
ball in some R

m−1, so that the RC is the semi-infinite constraint of the form

B[x]ζ + b[x] ∈ Ln ∀(ζ ∈ R
m−1 : ζT ζ ≤ 1), (3.2.23)

with B[x], b[x] affinely depending on x. This constraint is clearly exactly the same as the
constraint

B[x]ξ + τb[x] ∈ Ln ∀([ξ; τ ] ∈ Lm).

We see that x is feasible for the RC in question if and only if the n×m matrixM [x] = [B[x], b[x]]
affinely depending on x is Lorentz-positive, that is, maps the cone Lm into the cone Ln. It follows
that in order to get an explicit SDP representation of the RC, is suffices to know an explicit
SDP representation of the set Pn,m of n×m matrices mapping Lm into Ln.
SDP representation of Pn,m as discovered by R. Hildebrand (who used tools going far beyond
those used in this book) is as follows.

A. Given m,n, we define a linear mapping A 7→ W(A) from the space R
n×m of real n ×m

matrices into the space SN of symmetric N ×N matrices with N = (n− 1)(m− 1), namely, as
follows.

Let Wn[u] =




un + u1 u2 · · · un−1

u2 un − u1
...

. . .

un−1 un − u1


, so that Wn is a symmetric (n − 1) ×

(n − 1) matrix depending on a vector u of n real variables. Now consider the Kronecker

product W [u, v] =Wn[u]
⊗
Wm[v]. 2 W is a symmetric N ×N matrix with entries that are

bilinear functions of u and v variables, so that an entry is of the form “weighted sum of pair

products of the u and the v-variables.” Now, given an n ×m matrix A, let us replace pair

products uivk in the representation of the entries in W [u, v] with the entries Aik of A. As

a result of this formal substitution, W will become a symmetric (n − 1) × (m − 1) matrix

W(A) that depends linearly on A.

B. We define a linear subspace Lm,n in the space SN as the linear span of the Kronecker
products S

⊗
T of all skew-symmetric real (n−1)× (n−1) matrices S and skew-symmetric real

(m−1)× (m−1) matrices T . Note that the Kronecker product of two skew-symmetric matrices
is a symmetric matrix, so that the definition makes sense. Of course, we can easily build a basis
in Lm,n — it is comprised of pairwise Kronecker products of the basic (n− 1)-dimensional and
(m− 1)-dimensional skew-symmetric matrices.

The Hildebrand SDP representation of Pn,m is given by the following:

2Recall that the Kronecker product A
⊗
B of a p× q matrix A and an r × s matrix B is the pr × qs matrix

with rows indexed by pairs (i, k), 1 ≤ i ≤ p, 1 ≤ k ≤ r, and columns indexed by pairs (j, `), 1 ≤ j ≤ q, 1 ≤ ` ≤ s,
and the ((i, k), (j, `))-entry equal to AijBk`. Equivalently, A

⊗
B is a p × q block matrix with r × s blocks, the

(i, j)-th block being AijB.
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Theorem 3.3 [Hildebrand [57, Theorem 5.6]] Let min[m,n] ≥ 3. Then an n × m matrix A
maps Lm into Ln if and only if A can be extended to a feasible solution to the explicit system of
LMIs

W(A) +X � 0, X ∈ Lm,n

in variables A,X.

As a corollary,

When m− 1 := dim ζ ≥ 2 and n := dim b[x] ≥ 3, the explicit (n − 1)(m − 1) × (n − 1)(m − 1)
LMI

W([B[x], b[x]]) +X � 0 (3.2.24)

in variables x and X ∈ Lm,n is an equivalent SDP representation of the semi-infinite conic
quadratic inequality (3.2.23) with ellipsoidal uncertainty set.

The lower bounds on the dimensions of ζ and b[x] in the corollary do not restrict generality —
we can always ensure their validity by adding zero columns to B[x] and/or adding zero rows to
[B[x], b[x]].

3.2.6 Illustration: Robust Linear Estimation

Consider the situation as follows: we are given noisy observations

w = (Ip +∆)z + ξ (3.2.25)

of a signal z that, in turn, is the result of passing an unknown input signal v through a given
linear filter: z = Av with known p× q matrix A. The measurements contain errors of two kinds:
• bias ∆z linearly depending on z, where the only information on the bias matrix ∆ is given

by a bound ‖∆‖2,2 ≤ ρ on its norm;
• random noise ξ with zero mean and known covariance matrix Σ = E{ξξT }.

The goal is to estimate a given linear functional fTv of the input signal. We restrict ourselves
with estimators that are linear in w:

f̂ = xTw,

where x is a fixed weight vector. For a linear estimator, the mean squares error is

EstErr =
√

E{(xT [(I +∆)Av + ξ]− fTv)2}

=

√
([AT (I +∆T )x− f ]T v)2 + xTΣx.

Now assume that our a priori knowledge of the true signal is that vTQv ≤ R2, where Q � 0
and R > 0. In this situation it makes sense to look for the minimax optimal weight vector
x that minimizes the worst, over v and ∆ compatible with our a priori information, mean
squares estimation error. In other words, we choose x as the optimal solution to the following
optimization problem

min
x

max
v:vTQv≤R2

∆:‖∆‖2,2≤ρ

((
[AT (I +∆T )︸ ︷︷ ︸

S

x− f ]T v
)2

+ xTΣx
)1/2

. (P )
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Now,
max

v:vTQv≤R2
[Sx− f ]T v = max

u:uTu≤1
[Sx− f ]T (RQ−1/2u)

= R‖Q−1/2Sx−Q−1/2f︸ ︷︷ ︸
f̂

‖2,

so that (P ) reduces to the problem

min
x

√
xTΣx+R2 max

‖∆‖2,2≤ρ
‖Q−1/2AT (I +∆T )︸ ︷︷ ︸

B

x− f̂‖22,

which is exactly the RC of the uncertain conic quadratic program

min
x,t,r,s

{
t :

√
r2 + s2 ≤ t, ‖Σ1/2x‖2 ≤ r,
‖Bx− f̂‖2 ≤ R−1s

}
, (3.2.26)

where the only uncertain element of the data is the matrix B = Q−1/2AT (I + ∆T ) running
through the uncertainty set

U = {B = Q−1/2AT

︸ ︷︷ ︸
Bn

+ρQ−1/2AT ζ, ζ ∈ Z = {ζ ∈ R
p×p : ‖ζ‖2,2 ≤ 1}}. (3.2.27)

The uncertainty here is the unstructured norm-bounded one; the RC of (3.2.26), (3.2.27) is
readily given by Theorem 3.2 and Example 3.1.(i). Specifically, the RC is the optimization
program

min
x,t,r,s,λ




t :

√
r2 + s2 ≤ t, ‖Σ1/2x‖2 ≤ r,


R−1sIq − λρ2BnBT

n Bnx− f̂
λIp x

[Bnx− f̂ ]T xT R−1s


 � 0




, (3.2.28)

which can further be recast as an SDP.
Next we present a numerical illustration.

Example 3.2 Consider the problem as follows:

A thin homogeneous iron plate occupies the 2-D square D = {(x, y) : 0 ≤ x, y ≤ 1}. At time
t = 0 it was heated to temperature T (0, x, y) such that

∫
D
T 2(0, x, y)dxdy ≤ T 2

0 with a given
T0, and then was left to cool; the temperature along the perimeter of the plate is kept at the
level 0o all the time. At a given time 2τ we measure the temperature T (2τ, x, y) along the
2-D grid

Γ = {(uµ, uν) : 1 ≤ µ, ν ≤ N}, uk = frack − 1/2N

The vector w of measurements is obtained from the vector

z = {T (2τ, uµ, uν) : 1 ≤ µ, ν ≤ N}

according to (3.2.25), where ‖∆‖2,2 ≤ ρ and ξµν are independent Gaussian random variables
with zero mean and standard deviation σ. Given the measurements, we need to estimate the
temperature T (τ, 1/2, 1/2) at the center of the plate at time τ .
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It is known from physics that the evolution in time of the temperature T (t, x, y) of a homogeneous
plate occupying a 2-D domain Ω, with no sources of heat in the domain and heat exchange solely
via the boundary, is governed by the heat equation

∂

∂t
T = −

(
∂2

∂x2
+

∂2

∂y2

)
T

(In fact, in the right hand side there should be a factor γ representing material’s properties, but
by an appropriate choice of the time unit, this factor can be made equal to 1.) For the case of
Ω = D and zero boundary conditions, the solution to this equation is as follows:

T (t, x, y) =
∞∑

k,`=1

ak` exp{−(k2 + `2)π2t} sin(πkx) sin(π`y), (3.2.29)

where the coefficients ak` can be obtained by expanding the initial temperature into a series in
the orthogonal basis φk`(x, y) = sin(πkx) sin(π`y) in L2(D):

ak` = 4

∫

D

T (0, x, y)φk`(x, y)dxdy.

In other words, the Fourier coefficients of T (t, ·, ·) in an appropriate orthogonal spatial basis
decrease exponentially as t grows, with the “decay time” (the smallest time in which every one
of the coefficients is multiplied by factor ≤ 0.1) equal to

∆ =
ln(10)

2π2
.

Setting vk` = ak` exp{−(k2 + `2)π2τ}, the problem in question becomes to estimate

T (τ, 1/2, 1/2) =
∑

k,`

vk`φk`(1/2, 1/2)

given observations

w = (I +∆)z + ξ, z = {T (2τ, uµ, uν) : 1 ≤ µ, ν ≤ N},
ξ = {ξµν ∼ N (0, σ2) : 1 ≤ µ, ν ≤ N}

(ξµν are independent).
Finite-dimensional approximation. Observe that

ak` = exp{π2(k2 + `2)τ}vk`

and that

∑

k,`

v2k` exp{2π2(k2 + `2)τ} =
∑

k,`

a2k` = 4

∫

D
T 2(0, x, y)dxdy ≤ 4T 2

0 . (3.2.30)

It follows that
|vk`| ≤ 2T0 exp{−π2(k2 + `2)τ}.
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Now, given a tolerance ε > 0, we can easily find L such that

∑

k,`:k2+`2>L2

exp{−π2(k2 + `2)τ} ≤ ε

2T0
,

meaning that when replacing by zeros the actual (unknown!) vk` with k
2 + `2 > L2, we change

temperature at time τ (and at time 2τ as well) at every point by at most ε. Choosing ε really
small (say, ε = 1.e-16), we may assume for all practical purposes that vk` = 0 when k2+`2 > L2,
which makes our problem a finite-dimensional one, specifically, as follows:

Given the parameters L, N , ρ, σ, T0 and observations

w = (I +∆)z + ξ, (3.2.31)

where ‖∆‖2,2 ≤ ρ, ξµν ∼ N (0, σ2) are independent, z = Av is defined by the relations

zµν =
∑

k2+`2≤L2

exp{−π2(k2 + `2)τ}vk`φk`(uµ, uν), 1 ≤ µ, ν ≤ N,

and v = {vk`}k2+`2≤L2 is known to satisfy the inequality

vTQv ≡
∑

k2+`2≤L2

v2k` exp{2π2(k2 + `2)τ} ≤ 4T 2
0 ,

estimate the quantity ∑

k2+`2≤L2

vk`φk`(1/2, 1/2),

where φk`(x, y) = sin(πkx) sin(π`y) and uµ = µ−1/2
N .

The latter problem fits the framework of robust estimation we have built, and we can recover
T = T (τ, 1/2, 1/2) by a linear estimator

T̂ =
∑

µ,ν

xµνwµν

with weights xµν given by an optimal solution to the associated problem (3.2.28).
Assume, for example, that τ is half of the decay time of our system:

τ =
1

2

ln(10)

2π2
≈ 0.0583,

and let
T0 = 1000, N = 4.

With ε = 1.e-15, we get L = 8 (this corresponds to just 41-dimensional space for v’s). Now
consider four options for ρ and σ:

(a) ρ = 1.e-9, σ = 1.e-9
(b) ρ = 0, σ = 1.e-3
(c) ρ = 1.e-3, σ = 1.e-3
(d) ρ = 1.e-1, σ = 1.e-1
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In the case of (a), the optimal value in (3.2.28) is 0.0064, meaning that the expected squared

error of the minimax optimal estimator never exceeds (0.0064)2. The minimax optimal weights
are 



6625.3 −2823.0 −2.8230 6625.3
−2823.0 1202.9 1202.9 −2823.0
−2823.0 1202.9 1202.9 −2823.0
6625.3 −2823.0 −2823.0 6625.3


 (A)

(we represent the weights as a 2-D array, according to the natural structure of the observations).
In the case of (b), the optimal value in (3.2.28) is 0.232, and the minimax optimal weights are




−55.6430 −55.6320 −55.6320 −55.6430
−55.6320 56.5601 56.5601 −55.6320
−55.6320 56.5601 56.5601 −55.6320
−55.6430 −55.6320 −55.6320 −55.6430


 . (B)

In the case of (c), the optimal value in (3.2.28) is 8.92, and the minimax optimal weights are




−0.4377 −0.2740 −0.2740 −0.4377
−0.2740 1.2283 1.2283 −0.2740
−0.2740 1.2283 1.2283 −0.2740
−0.4377 −0.2740 −0.2740 −0.4377


 . (C)

In the case of (d), the optimal value in (3.2.28) is 63.9, and the minimax optimal weights are




0.1157 0.2795 0.2795 0.1157
0.2795 0.6748 0.6748 0.2795
0.2795 0.6748 0.6748 0.2795
0.1157 0.2795 0.2795 0.1157


 . (D)

Now, in reality we can hardly know exactly the bounds ρ, σ on the measurement errors.
What happens when we under- or over-estimate these quantities? To get an orientation, let
us use every one of the weights given by (A), (B), (C), (D) in every one of the situations (a),
(b), (c), (d). This is what happens with the errors (obtained as the average of observed errors
over 100 random simulations using the “nearly worst-case” signal v and “nearly worst-case”
perturbation matrix ∆):

(a) (b) (c) (d)

(A) 0.001 18.0 6262.9 6.26e5

(B) 0.063 0.232 89.3 8942.7

(C) 8.85 8.85 8.85 108.8

(D) 8.94 8.94 8.94 63.3

We clearly see that, first, in our situation taking into account measurement errors, even pretty
small ones, is a must (this is so in all ill-posed estimation problems — those where the condition
number of Bn is large). Second, we see that underestimating the magnitude of measurement
errors seems to be much more dangerous than overestimating them.
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3.3 Approximating RCs of Uncertain Conic Quadratic Prob-
lems

In this section we focus on tight tractable approximations of uncertain CQIs — those with
tightness factor independent (or nearly so) of the “size” of the description of the perturbation
set. Known approximations of this type deal with side-wise uncertainty and two types of the
left hand side perturbations: the first is the case of structured norm-bounded perturbations
to be considered in section 3.3.1, while the second is the case of ∩-ellipsoidal left hand side
perturbation sets to be considered in section 3.3.2.

3.3.1 Structured Norm-Bounded Uncertainty

Consider the case where the uncertainty in CQI (3.2.3) is side-wise with the right hand side
uncertainty as in section 3.2.2, and with structured norm-bounded left hand side uncertainty,
meaning that

1. The left hand side perturbation set is

Z left
ρ = ρZ left

1 =




η = (η1, ..., ηN ) :

ην ∈ R
pν×qν ∀ν ≤ N

‖ην‖2,2 ≤ ρ∀ν ≤ N
ην = θνIpν , θν ∈ R, ν ∈ Is





(3.3.1)

Here Is is a given subset of the index set {1, ..., N} such that pν = qν for ν ∈ Is.
Thus, the left hand side perturbations η ∈ Z left

1 are block-diagonal matrices with pν × qν
diagonal blocks ην , ν = 1, ..., N . All of these blocks are of matrix norm not exceeding 1,
and, in addition, prescribed blocks should be proportional to the unit matrices of appro-
priate sizes. The latter blocks are called scalar, and the remaining — full perturbation
blocks.

2. We have

A(η)y + b(η) = Any + bn +

N∑

ν=1

LT
ν (y)η

νRν(y), (3.3.2)

where all matrices Lν(y) 6≡ 0, Rν(y) 6≡ 0 are affine in y and for every ν, either Lν(y), or
Rν(y), or both are independent of y.

Remark 3.1 W.l.o.g., we assume from now on that all scalar perturbation blocks are of the size
1× 1: pν = qν = 1 for all ν ∈ Is.

To see that this assumption indeed does not restrict generality, note that if ν ∈ Is, then in
order for (3.3.2) to make sense, Rν(y) should be a pν × 1 vector, and Lν(y) should be a pν × k
matrix, where k is the dimension of b(η). Setting R̄ν(y) ≡ 1, L̄ν(y) = RT

ν (y)Lν(y), observe that
L̄ν(y) is affine in y, and the contribution θνL

T
ν (y)Rν(y) of the ν-th scalar perturbation block

to A(η)y + b(η) is exactly the same as if this block were of size 1 × 1, and the matrices Lν(y),
Rν(y) were replaced with L̄ν(y), R̄ν(y), respectively.
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Note that Remark 3.1 is equivalent to the assumption that there are no scalar perturbation
blocks at all — indeed, 1×1 scalar perturbation blocks can be thought of as full ones as well. 3.

Recall that we have already considered the particular caseN = 1 of the uncertainty structure.
Indeed, with a single perturbation block, that, as we just have seen, we can treat as a full one,
we find ourselves in the situation of side-wise uncertainty with unstructured norm-bounded left
hand side perturbation (section 3.2.3). In this situation the RC of the uncertain CQI in question
is computationally tractable. The latter is not necessarily the case for general (N > 1) structured
norm-bounded left hand side perturbations. To see that the general structured norm-bounded
perturbations are difficult to handle, note that they cover, in particular, the case of interval
uncertainty, where Z left

1 is the box {η ∈ R
L : ‖η‖∞ ≤ 1} and A(η), b(η) are arbitrary affine

functions of η.

Indeed, the interval uncertainty

A(η)y + b(η) = [Any + bn] +
N∑
ν=1

ην [A
νy + bν ]

= [Any + bn] +
N∑
ν=1

[Aνy + bν ]︸ ︷︷ ︸
LT
ν (y)

·ην · 1︸︷︷︸
Rν(y)

,
(3.3.3)

is nothing but the structured norm-bounded perturbation with 1 × 1 perturbation
blocks.

From the beginning of section 3.1.3 we know that the RC of uncertain CQI with side-wise un-
certainty and interval uncertainty in the left hand side in general is computationally intractable,
meaning that structural norm-bounded uncertainty can be indeed difficult.

Approximating the RC of Uncertain Least Squares Inequality

We start with deriving a safe tractable approximation of the RC of an uncertain Least Squares
constraint

‖A(η)y + b(η)‖2 ≤ τ, (3.3.4)

with structured norm-bounded perturbation (3.3.1), (3.3.2).
Step 1: reformulating the RC of (3.3.4), (3.3.1), (3.3.2) as a semi-infinite LMI. Given
a k-dimensional vector u (k is the dimension of b(η)) and a real τ , let us set

Arrow(u, t) =

[
τ uT

u τIk

]
.

Recall that by Lemma 3.1 ‖u‖2 ≤ τ if and only if Arrow(u, τ) � 0. It follows that the RC of
(3.3.4), (3.3.1), (3.3.2), which is the semi-infinite Least Squares inequality

‖A(η)y + b(η)‖2 ≤ τ ∀η ∈ Z left
ρ ,

3A reader could ask, why do we need the scalar perturbation blocks, given that finally we can get rid of them
without loosing generality. The answer is, that we intend to use the same notion of structured norm-bounded
uncertainty in the case of uncertain LMIs, where Remark 3.1 does not work.
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can be rewritten as
Arrow(A(η)y + b(η), τ) � 0 ∀η ∈ Z left

ρ . (3.3.5)

Introducing k × (k + 1) matrix L = [0k×1, Ik] and 1× (k + 1) matrix R = [1, 0, ..., 0], we clearly
have

Arrow(A(η)y + b(η), τ) = Arrow(Any + bn, τ)

+
N∑
ν=1

[
LTLT

ν (y)η
νRν(y)R+RTRT

ν (y)[η
ν ]TLν(y)L

]
.

(3.3.6)

Now, since for every ν, either Lν(y), or Rν(y), or both, are independent of y, renaming, if
necessary [ην ]T as ην , and swapping Lν(y)L and Rν(y)R, we may assume w.l.o.g. that in the
relation (3.3.6) all factors Lν(y) are independent of y, so that the relation reads

Arrow(A(η)y + b(η), τ) = Arrow(Any + bn, τ)

+
N∑
ν=1

[
LTLT

ν︸ ︷︷ ︸
L̂T
ν

ην Rν(y)R︸ ︷︷ ︸
R̂ν(y)

+R̂T
ν (y)[η

ν ]T L̂ν

]

where R̂ν(y) are affine in y and L̂ν 6= 0. Observe also that all the symmetric matrices

Bν(y, η
ν) = L̂T

ν η
νR̂ν(y) + R̂T

ν (y)[η
ν ]T L̂ν

are differences of two matrices of the form Arrow(u, τ) and Arrow(u′, τ), so that these are
matrices of rank at most 2. The intermediate summary of our observations is as follows:

(#): The RC of (3.3.4), (3.3.1), (3.3.2) is equivalent to the semi-infinite LMI

Arrow(Any + bn, τ)︸ ︷︷ ︸
B0(y,τ)

+
N∑
ν=1

Bν(y, η
ν) � 0 ∀

(
η :

ην ∈ R
pν×qν ,

‖ην‖2,2 ≤ ρ∀ν ≤ N

)

[
Bν(y, η

ν) = L̂T
ν η

νR̂ν(y) + R̂T
ν (y)[η

ν ]T L̂ν , ν = 1, ..., N
pν = qν = 1∀ν ∈ Is

]
(3.3.7)

Here R̂(y) are affine in y, and for all y, all ν ≥ 1 and all ην the ranks of the matrices Bν(y, η
ν)

do not exceed 2.
Step 2. Approximating (3.3.7). Observe that an evident sufficient condition for the validity
of (3.3.7) for a given y is the existence of symmetric matrices Yν , ν = 1, ..., N , such that

Yν � Bν(y, η
ν)∀ (ην ∈ Zν = {ην : ‖ην‖2,2 ≤ 1; ν ∈ Is ⇒ ην ∈ RIpν}) (3.3.8)

and

B0(y, τ)− ρ
N∑

ν=1

Yν � 0. (3.3.9)

We are about to demonstrate that the semi-infinite LMIs (3.3.8) in variables Yν , y, τ can be
represented by explicit finite systems of LMIs, so that the system S0 of semi-infinite constraints
(3.3.8), (3.3.9) on variables Y1, ..., YN , y, τ is equivalent to an explicit finite system S of LMIs.
Since S0, due to its origin, is a safe approximation of (3.3.7), so will be S, (which, in addition,
is tractable). Now let us implement our strategy.
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10. Let us start with ν ∈ Is. Here (3.3.8) clearly is equivalent to just two LMIs

Yν � Bν(y) ≡ L̂T
ν R̂ν(y) + R̂T

ν (y)L̂ν & Yν � −Bν(y). (3.3.10)

20. Now consider relation (3.3.8) for the case ν 6∈ Is. Here we have

(Yν , y) satisfies (3.3.8)

⇔ uTYνu ≥ uTBν(y, η
ν)u ∀u∀(ην : ‖ην‖2,2 ≤ 1)

⇔ uTYνu ≥ uT L̂T
ν η

νR̂ν(y)u+ uT R̂T
ν (y)[η

ν ]T L̂νu ∀u∀(ην : ‖ην‖2,2 ≤ 1)

⇔ uTYνu ≥ 2uT L̂T
ν η

νR̂ν(y)u ∀u∀(ην : ‖ην‖2,2 ≤ 1)

⇔ uTYνu ≥ 2‖L̂νu‖2‖R̂(y)u‖2 ∀u
⇔ uTYνu− 2ξT R̂ν(y)u ∀(u, ξ : ξT ξ ≤ uT L̂T

ν L̂νu)

Invoking the S-Lemma, the concluding condition in the latter chain is equivalent to

∃λν ≥ 0 :

[
Yν − λν L̂T

ν L̂ν −R̂T
ν (y)

−R̂ν(y) λνIkν

]
� 0, (3.3.11)

where kν is the number of rows in R̂ν(y).
We have proved the first part of the following statement:

Theorem 3.4 The explicit system of LMIs

Yν � ±(L̂T
ν R̂ν(y) + R̂T

ν (y)L̂ν), ν ∈ Is[
Yν − λνL̂T

ν L̂ν R̂T
ν (y)

R̂ν(y) λνIkν

]
� 0, ν 6∈ Is

Arrow(Any + bn, τ)− ρ
N∑
ν=1

Yν � 0

(3.3.12)

(for notation, see (3.3.7)) in variables Y1, ..., YN , λν , y, τ is a safe tractable approximation of the
RC of the uncertain Least Squares inequality (3.3.4), (3.3.1), (3.3.2). The tightness factor of this
approximation never exceeds π/2, and equals to 1 when N = 1.

Proof. By construction, (3.3.12) indeed is a safe tractable approximation of the RC of (3.3.4),

(3.3.1), (3.3.2) (note that a matrix of the form

[
A B
BT A

]
is � 0 if and only if the matrix

[
A −B
−BT A

]
is so). By Remark and Theorem 3.2, our approximation is exact when N = 1.

The fact that the tightness factor never exceeds π/2 is an immediate corollary of the real case
Matrix Cube Theorem (Theorem A.7), and we use the corresponding notation in the rest of the
proof. Observe that a given pair (y, τ) is robust feasible for (3.3.4), (3.3.1), (3.3.2) if and only
if the matrices B0 = B0(y, τ), Bi = Bνi(y, 1), i = 1, ..., p, Lj = L̂µj , Rj = R̂µj (y), j = 1, ..., q,
satisfy A(ρ); here Is = {ν1 < ... < νp} and {1, ..., L}\Is = {µ1 < ... < µq}. At the same time,
the validity of the corresponding predicate B(ρ) is equivalent to the possibility to extend y to a
solution of (3.3.12) due to the origin of the latter system. Since all matrices Bi, i = 1, ..., p, are
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of rank at most 2 by (#), the Matrix Cube Theorem implies that if (y, τ) cannot be extended to
a feasible solution to (3.3.12), then (y, τ) is not robust feasible for (3.3.4), (3.3.1), (3.3.2) when
the uncertainty level is increased by the factor ϑ(2) = π

2 . �

Illustration: Antenna Design revisited. Consider the Antenna Design example (Example
1.1) and assume that instead of measuring the closeness of a synthesized diagram to the target
one in the uniform norm, as was the case in section 1.1.3, we want to use the Euclidean norm,
specifically, the weighted 2-norm

‖f(·)‖2,w =

(
m∑

i=1

f2(θi)µi

)1/2

[θi =
iπ
2m , 1 ≤ i ≤ m = 240, µi =

cos(θi)∑m
s=1 cos(θs)

]

To motivate the choice of weights, recall that the functions f(·) we are interested in are

restrictions of diagrams (and their differences) on the equidistant L-point grid of altitude

angles. The diagrams in question are, physically speaking, functions of a 3D direction from

the upper half-space (a point on the unit 2D hemisphere) which depend solely on the altitude

angle and are independent of the longitude angle. A “physically meaningful” L2-norm here

corresponds to uniform distribution on the hemisphere; after discretization of the altitude

angle, this L2 norm becomes our ‖ · ‖2.

with this measure of discrepancy between a synthesized and the target diagram, the problem of
interest becomes the uncertain problem

{
min
y,τ
{τ : ‖WD[I +Diag{η}]y − b‖2 ≤ τ} : η ∈ ρZ

}
, Z = {η ∈ R

L=10 : ‖η‖∞ ≤ 1}, (3.3.13)

where

• D = [Dij = Dj(θi)] 1≤i≤m=240,
1≤j≤L=10

] is the matrix comprised of the diagrams of L = 10 antenna

elements (central circle and surrounding rings), see section 1.1.3,

• W = Diag{√µ1, ...,√µm}, so that ‖Wz‖2 = ‖z‖2,w, and b =W [D∗(θ1); ...;D∗(θm)] comes
from the target diagram D∗(·), and

• η is comprised of actuation errors, and ρ is the uncertainty level.

Nominal design. Solving the nominal problem (corresponding to ρ = 0), we end up with the
nominal optimal design which “in the dream” – with no actuation errors – is really nice (figure
3.1, case of ρ = 0): the ‖ · ‖2,w-distance of the nominal diagram to the target is as small as
0.0112, and the energy concentration for this diagram is as large as 99.4%. Unfortunately, the
data in figure 3.1 and table 3.1 show that “in reality,” with the uncertainty level as small as
ρ = 0.01%, the nominal design is a complete disaster.

Robust design. Let us build a robust design. The set Z is a unit box, that is, we are in
the case of interval uncertainty, or, which the same, structured norm-bounded uncertainty with
L = 10 scalar perturbation blocks η`. Denoting `-th column of WD by [WD]`, we have

WD[I +Diag{η}]y − b = [WDy − b] +
L∑

`=1

η` [y`[WD]`] ,
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Figure 3.1: “Dream and reality,” nominal optimal design: samples of 100 actual diagrams (red)
for different uncertainty levels. Blue: the target diagram

Dream Reality
ρ = 0 ρ = 0.0001 ρ = 0.001 ρ = 0.01
value min mean max min mean max min mean max

‖ · ‖2,w-distance
to target

0.011 0.077 0.424 0.957 1.177 4.687 9.711 8.709 45.15 109.5

energy
concentration

99.4% 0.23% 20.1% 77.7% 0.70% 19.5% 61.5% 0.53% 18.9% 61.5%

Table 3.1: Quality of nominal antenna design: dream and reality. Data over 100 samples of
actuation errors per each uncertainty level ρ.
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that is, taking into account (3.3.3), we have in the notation of (3.3.2):

Any + bn =WDy − b, Lν(y) = yν [WD]Tν , η
ν ≡ ην , Rν(y) ≡ 1, 1 ≤ ν ≤ N ≡ L = 10,

so that in the notation of Theorem 3.4 we have

R̂ν(y) = [0, yν [WD]Tν ], L̂ν = [1, 01×n], kν = 1, ., 1 ≤ ν ≤ N ≡ L.

Since we are in our right to treat all perturbation blocks as scalar, a tight within the factor π/2
safe tractable approximation, given by Theorem 3.4, of the RC of our uncertain Least Squares
problem reads

min
τ,y,Y1,...,YL

{
τ : Arrow(WDy − b, τ)− ρ

L∑

ν=1

Yν � 0, Yν � ±
[
L̂T
ν R̂ν(y) + R̂T

ν (y)L̂ν

]
, 1 ≤ ν ≤ L

}
.

(3.3.14)
This problem simplifies dramatically due to the following simple fact (see Exercise 3.6):

(!) Let a, b be two vectors of the same dimension with a 6= 0. Then Y � abT + baT

if and only if there exists λ ≥ 0 such that Y � λaaT + 1
λbb

T .
Here, by definition, 1

0bb
T is undefined when b 6= 0 and is the zero matrix when b = 0.

By (!), a pair (τ, y) can be extended, by properly chosen Yν , ν = 1, ..., L, to a feasible solution
of (3.3.14) if and only if there exist λν ≥ 0, 1 ≤ ν ≤ L, such that Arrow(WDy − b, τ) −
ρ
∑

ν

[
λν L̂

T
ν L̂ν + λ−1

ν R̂T
ν (y)R̂ν(y)

]
� 0, which, by the Schur Complement Lemma is equivalent

to [
Arrow(WDy − b, τ)−∑

ν
ρλνL̂

T
ν L̂ν ρ[R̂T

1 (y), ..., R̂
T
L(y)]

ρ[R̂1(y); ...; R̂L(y)] ρDiag{λ1, ..., λL}

]
� 0.

Thus, problem (3.3.14) is equivalent to

min
τ,y,γ

{
τ :

[
Arrow(WDy − b, τ)−∑

ν
γνL̂

T
ν L̂ν ρ[R̂T

1 (y), ..., R̂
T
L(y)]

ρ[R̂1(y); ...; R̂L(y)] Diag{γ1, ..., γL}

]
� 0

}
(3.3.15)

(we have set γν = ρλν). Note that we managed to replace every matrix variable Yν in (3.3.14)
with a single scalar variable λν in (3.3.15). Note that this dramatic simplification is possible
whenever all perturbation blocks are scalar.

With our particular L̂ν and R̂ν(y) the resulting problem (3.3.15) reads

min
τ,y,γ



τ :



τ −∑L

ν=1 γν [WDy − b]T
WDy − b τIm ρ[y1[WD]1, ..., yL[WD]L]

ρ[y1[WD]1, ..., yL[WD]L]
T Diag{γ1, ..., γL}


 � 0



 .

(3.3.16)
We have solved (3.3.16) at the uncertainty level ρ = 0.01, thus getting a robust design.

The optimal value in (3.3.16) is 0.02132 – while being approximately 2 times worse than the
nominal optimal value, it still is pretty small. We then tested the robust design against actuation
errors of magnitude ρ = 0.01 and larger. The results, summarized in figure 3.2 and table 3.2,
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Figure 3.2: “Dream and reality,” robust optimal design: samples of 100 of actual diagrams (red)
for different uncertainty levels. Blue: the target diagram.

Reality
ρ = 0.01 ρ = 0.05 ρ = 0.1

min mean max min mean max min mean max
‖ · ‖2,w-distance

to target
0.021 0.021 0.021 0.021 0.023 0.030 0.021 0.030 0.048

energy
concentration

96.5% 96.7% 96.9% 93.0% 95.8% 96.8% 80.6% 92.9% 96.7%

Table 3.2: Quality of robust antenna design. Data over 100 samples of actuation errors per each
uncertainty level ρ.
For comparison: for nominal design, with the uncertainty level as small as ρ = 0.001, the
average ‖ · ‖2,w-distance of the actual diagram to target is as large as 4.69, and the expected
energy concentration is as low as 19.5%.
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allow for the same conclusions as in the case of LP-based design, see p. 23. Recall that
(3.3.16) is not the “true” RC of our uncertain problem, is just a safe approximation, tight
within the factor π/2, of this RC. All we can conclude from this is that the value τ∗ = 0.02132
of τ yielded by the approximation (that is, the guaranteed value of the objective at our robust
design, the uncertainty level being 0.01) is in-between the true robust optimal values Opt∗(0.01)
and Opt∗(0.01π/2) at the uncertainty levels 0.01 and 0.01π/2, respectively. This information
does not allow for meaningful conclusions on how far away is τ∗ from the true robust optimal
value Opt∗(0.01); at this point, all we can say in this respect is that Opt∗(0, 01) is at least
the nominal optimal value Opt∗(0) = 0.0112, and thus the loss in optimality caused by our
approximation is at most by factor τ∗/Opt∗(0) = 1.90. In particular, we cannot exclude that
with our approximation, we lose as much as 90% in the value of the objective. The reality,
however, is by far not so bad. Note that our perturbation set – the 10-dimensional box – is a
convex hull of 1024 vertices, so we can think about our uncertainty as of the scenario one (section
3.2.1) generated by 1024 scenarios. This number is still within the grasp of the straightforward
scheme proposed in section 3.2.1, and thus we can find in a reasonable time the true robust
optimal value Opt∗(0.01), which turns out to be 0.02128. We see that the actual loss in the
value of the objective caused by approximation its really small – it is less than 0.2%.

Least Squares Inequality with Structured Norm-Bounded Uncertainty, Complex
Case

The uncertain Least Squares inequality (3.3.4) with structured norm-bounded perturbations
makes sense in the case of complex left hand side data as well as in the case of real data.
Surprisingly, in the complex case the RC admits a better in tightness factor safe tractable
approximation than in the real case (specifically, the tightness factor π

2 = 1.57... stated in
Theorem 3.4 in the complex case improves to 4

π = 1.27...). Consider an uncertain Least Squares
inequality (3.3.4) where A(η) ∈ C

m×n, b(η) ∈ C
m and the perturbations are structured norm-

bounded and complex, meaning that (cf. (3.3.1), (3.3.2))

(a) Z left
ρ = ρZ left

1 =




η = (η1, ..., ηN ) :

ην ∈ C
pν×qν , ν = 1, ..., N

‖ην‖2,2 ≤ ρ, ν = 1, ..., N

ην = θνIpν , θν ∈ C, ν ∈ Is




,

(b) A(ζ)y + b(ζ) = [Any + bn] +
N∑
ν=1

LH
ν (y)ηνRν(y),

(3.3.17)

where Lν(y), Rν(y) are affine in [<(y);=(y)] matrices with complex entries such that for every ν
at least one of these matrices is independent on y and is nonzero, and BH denotes the Hermitian
conjugate of a complex-valued matrix B: (BH)ij = Bji, where z is the complex conjugate of a
complex number z.

Observe that by exactly the same reasons as in the real case, we can assume w.l.o.g. that
all scalar perturbation blocks are 1 × 1, or, equivalently, that there are no scalar perturbation
blocks at all, so that from now on we assume that Is = ∅.

The derivation of the approximation is similar to the one in the real case. Specifically, we
start with the evident observation that for a complex k-dimensional vector u and a real t the
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relation
‖u‖2 ≤ t

is equivalent to the fact that the Hermitian matrix

Arrow(u, t) =

[
t uH

u tIk

]

is � 0; this fact is readily given by the complex version of the Schur Complement Lemma:

a Hermitian block matrix

[
P QH

Q R

]
with R � 0 is positive semidefinite if and only if the

Hermitian matrix P −QHR−1Q is positive semidefinite (cf. the proof of Lemma 3.1). It follows
that (y, τ) is robust feasible for the uncertain Least Squares inequality in question if and only if

Arrow(Any + bn, τ)︸ ︷︷ ︸
B0(y,τ)

+
N∑
ν=1

Bν(y, η
ν) � 0∀ (η : ‖ην‖2,2 ≤ ρ∀ν ≤ N)

[
Bν(y, η

ν) = L̂H
ν η

νR̂ν(y) + R̂H
ν (y)[ην ]HL̂ν , ν = 1, ..., N

] (3.3.18)

where L̂ν are constant matrices, and R̂(y) are affine in [<(y);=(y)] matrices readily given by
Lν(y), Rν(y) (cf. (3.3.7) and take into account that we are in the situation Is = ∅). It follows
that whenever, for a given (y, τ), one can find Hermitian matrices Yν such that

Yν � Bν(y, η
ν) ∀(ην ∈ C

pν×qν : ‖ην‖2,2 ≤ 1), ν = 1, ..., N, (3.3.19)

and B0(y, τ) � ρ
N∑

ν=1
Yν , the pair (y, τ) is robust feasible.

Same as in the real case, applying the S-Lemma, (which works in the complex case as well as
in the real one), a matrix Yν satisfies (3.3.19) if and only if

∃λν ≥ 0 :

[
Yν − λνL̂H

ν L̂ν −R̂H
ν (y)

−R̂ν(y) λνIkν

]
,

where kν is the number of rows in R̂ν(y). We have arrived at the first part of the following
statement:

Theorem 3.5 The explicit system of LMIs
[
Yν − λνL̂H

ν L̂ν R̂H
ν (y)

R̂ν(y) λνIkν

]
� 0, ν = 1, ..., N,

Arrow(Any + bn, τ)− ρ
N∑
ν=1

Yν � 0

(3.3.20)

(for notation, see (3.3.18)) in the variables {Yi = Y H
i }, λν , y, τ is a safe tractable approximation

of the RC of the uncertain Least Squares inequality (3.3.4), (3.3.17). The tightness factor of this
approximation never exceeds 4/π, and is equal to 1 when N = 1.

Proof is completely similar to the one of Theorem 3.4, modulo replacing the real case of the
Matrix Cube Theorem (Theorem A.7) with its complex case (Theorem A.6).



116 LECTURE 3: ROBUST CONIC OPTIMIZATION

From Uncertain Least Squares to Uncertain CQI

Let us come back to the real case. We have already built a tight approximation for the RC
of a Least Squares inequality with structured norm-bounded uncertainty in the left hand side
data. Our next goal is to extend this approximation to the case of uncertain CQI with side-wise
uncertainty.

Theorem 3.6 Consider the uncertain CQI (3.2.3) with side-wise uncertainty, where the left
hand side uncertainty is the structured norm-bounded one given by (3.3.1), (3.3.2), and the right
hand side perturbation set is given by a conic representation (cf. Theorem 1.1)

Zright
ρ = ρZright

1 , Zright
1 = {χ : ∃u : Pχ+Qu+ p ∈K} , (3.3.21)

where 0 ∈ Zright
1 , K is a closed convex pointed cone and the representation is strictly feasible

unless K is a polyhedral cone given by an explicit finite list of linear inequalities, and 0 ∈ Zright
1 .

For ρ > 0, the explicit system of LMIs

(a) τ + ρpT v ≤ δ(y), P T v = σ(y), QTv = 0, v ∈ K∗

(b.1) Yν � ±(L̂T
ν R̂ν(y) + R̂T

ν (y)L̂ν), ν ∈ Is

(b.2)

[
Yν − λνL̂T

ν L̂ν R̂T
ν (y)

R̂ν(y) λνIkν

]
� 0, ν 6∈ Is

(b.3) Arrow(Any + bn, τ)− ρ
N∑
ν=1

Yν � 0

(3.3.22)

(for notation, see (3.3.7)) in variables Y1, ..., YN , λν , y, τ, v is a safe tractable approximation of
the RC of (3.2.4). This approximation is exact when N = 1, and is tight within the factor π

2
otherwise.

Proof. Since the uncertainty is side-wise, y is robust feasible for (3.2.4), (3.3.1), (3.3.2), (3.3.21),
the uncertainty level being ρ > 0, if and only if there exists τ such that

(c) σT (χ)y + δ(χ) ≥ τ ∀χ ∈ ρZright
1 ,

(d) ‖A(η)y + b(η)‖2 ≤ τ ∀η ∈ ρZ left
1 .

When ρ > 0, we have

ρZright
1 = {χ : ∃u : P (χ/ρ) +Qu+ p ∈ K} = {χ : ∃u′ : Pχ+Qu′ + ρp ∈ K};

from the resulting conic representation of ρZright
1 , same as in the proof of Theorem 1.1, we

conclude that the relations (3.3.22.a) represent equivalently the requirement (c), that is, (y, τ)
satisfies (c) if and only if (y, τ) can be extended, by properly chosen v, to a solution of (3.3.22.a).
By Theorem 3.4, the possibility to extend (y, τ) to a feasible solution of (3.3.22.b) is a sufficient
condition for the validity of (d). Thus, the (y, τ) component of a feasible solution to (3.3.22)
satisfies (c), (d), meaning that y is robust feasible at the level of uncertainty ρ. Thus, (3.3.22)
is a safe approximation of the RC in question.
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The fact that the approximation is precise when there is only one left hand side perturbation
block is readily given by Theorem 3.2 and Remark 3.1 allowing us to treat this block as full.
It remains to verify that the tightness factor of the approximation is at most π

2 , that is, to
check that if a given y cannot be extended to a feasible solution of the approximation for the
uncertainty level ρ, then y is not robust feasible for the uncertainty level π

2ρ (see comments after
Definition 3.3). To this end, let us set

τy(r) = inf
χ

{
σT (χ)y + δ(χ) : χ ∈ rZright

1

}
.

Since 0 ∈ Zright
1 by assumption, τy(r) is nonincreasing in r. Clearly, y is robust feasible at the

uncertainty level r if and only if

‖A(η)y + b(η)‖2 ≤ τy(r) ∀η ∈ rZ left
1 . (3.3.23)

Now assume that a given y cannot be extended to a feasible solution of (3.3.22) for the uncer-
tainty level ρ. Let us set τ = τy(ρ); then (y, τ) can be extended, by a properly chosen v, to
a feasible solution of (3.3.22.a). Indeed, the latter system expresses equivalently the fact that
(y, τ) satisfies (c), which indeed is the case for our (y, τ). Now, since y cannot be extended to a
feasible solution to (3.3.22) at the uncertainty level ρ, and the pair (y, τ) can be extended to a
feasible solution of (3.3.22.a), we conclude that (y, τ) cannot be extended to a feasible solution
of (3.3.22.b). By Theorem 3.4, the latter implies that y is not robust feasible for the semi-infinite
Least Squares constraint

‖A(η)y + b(η)‖2 ≤ τ = τy(ρ) ∀η ∈
π

2
ρZ left

1 .

Since τy(r) is nonincreasing in r, we conclude that y does not satisfy (3.3.23) when r = π
2ρ,

meaning that y is not robust feasible at the level of uncertainty π
2ρ. �

Convex Quadratic Constraint with Structured Norm-Bounded Uncertainty

Consider an uncertain convex quadratic constraint

(a) yTAT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ)
m

(b) ‖[2A(ζ)y; 1 − 2yT b(ζ)− c(ζ)]‖2 ≤ 1 + 2yT b(ζ) + c(ζ),
(3.2.13)

where A(ζ) is k × n and the uncertainty is structured norm-bounded (cf. (3.2.14)), meaning
that

(a) Zρ = ρZ1 =



ζ = (ζ1, ..., ζN ) :

ζν ∈ R
pν×qν

‖ζν‖2,2 ≤ ρ, 1 ≤ ν ≤ N
ζν = θνIpν , θν ∈ R, ν ∈ Is



 ,

(b)



A(ζ)y
yT b(ζ)
c(ζ)


 =



Any
yT bn

cn


+

N∑
ν=1

LT
ν (y)ζ

νRν(y)

(3.3.24)

where, for every ν, Lν(y), Rν(y) are matrices of appropriate sizes depending affinely on y and
such that at least one of the matrices is constant. Same as above, we can assume w.l.o.g. that
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all scalar perturbation blocks are 1× 1: pν = kν = 1 for all ν ∈ Is.
Note that the equivalence in (3.2.13) means that we still are interested in an uncertain CQI with structured

norm-bounded left hand side uncertainty. The uncertainty, however, is not side-wise, that is, we are in

the situation we could not handle before. We can handle it now due to the fact that the uncertain CQI

possesses a favorable structure inherited from the original convex quadratic form of the constraint.

We are about to derive a tight tractable approximation of the RC of (3.2.13), (3.3.24). The
construction is similar to the one we used in the unstructured case N = 1, see section 3.2.4.
Specifically, let us set Lν(y) = [Lν,A(y), Lν,b(y), Lν,c(y)], where Lν,b(y), Lν,c(y) are the last two
columns in Lν(y), and let

L̃T
ν (y) =

[
LT
ν,b(y) +

1
2L

T
ν,c(y);L

T
ν,A(y)

]
, R̃ν(y) = [Rν(y), 0qν×k],

A(y) =
[
2yT bn + cn [Any]T

Any I

]
,

(3.3.25)

so that A(y), L̃ν(y) and R̃ν(y) are affine in y and at least one of the latter two matrices is
constant.

We have

yTAT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ) ∀ζ ∈ Zρ

⇔
[

2yT b(ζ) + c(ζ) [A(ζ)y]T

A(ζ)y I

]
� 0 ∀ζ ∈ Zρ [Schur Complement Lemma]

⇔

A(y)︷ ︸︸ ︷[
2yT bn + cn [Any]T

Any I

]

+
N∑

ν=1

[
[2Lν,b(y) + Lν,c(y)]

T ζνRν(y) [LT
ν,A(y)ζ

νRν(y)]
T

LT
ν,A(y)ζ

νRν(y)

]

︸ ︷︷ ︸
=L̃T

ν (y)ζνR̃ν(y)+R̃T
ν (y)[ζν ]T L̃ν(y)

� 0 ∀ζ ∈ Zρ

[by (3.3.24)]

⇔ A(y) +
N∑

ν=1

[
L̃T
ν (y)ζ

νR̃ν(y) + R̃T
ν (y)[ζ

ν ]T L̃ν(y)
]
� 0 ∀ζ ∈ Zρ.

Taking into account that for every ν at least one of the matrices L̃ν(y), R̃ν(y) is independent
of y and swapping, if necessary, ζν and [ζν ]T , we can rewrite the last condition in the chain as

A(y) +
N∑

ν=1

[
L̂T
ν ζ

νR̂ν(y) + R̂T
ν (y)[ζ

ν ]T L̂ν

]
� 0 ∀(ζ : ‖ζν‖2,2 ≤ ρ) (3.3.26)

where L̂ν , R̂ν(y) are readily given matrices and R̂ν(y) is affine in y. (Recall that we are in
the situation where all scalar perturbation blocks are 1× 1 ones, and we can therefore skip the
explicit indication that ζν = θνIpν for ν ∈ Is). Observe also that similarly to the case of a Least

Squares inequality, all matrices
[
L̂T
ν ζ

νR̂ν(y) + R̂T
ν (y)[ζ

ν ]T L̂ν

]
are of rank at most 2. Finally, we

lose nothing by assuming that L̂ν are nonzero for all ν.
Proceeding exactly in the same fashion as in the case of the uncertain Least Squares inequality

with structured norm-bounded perturbations, we arrive at the following result (cf. Theorem 3.4):



3.3. APPROXIMATING RCS OF UNCERTAIN CONIC QUADRATIC PROBLEMS 119

Theorem 3.7 The explicit system of LMIs

Yν � ±(L̂T
ν R̂ν(y) + R̂T

ν (y)L̂ν), ν ∈ Is
[
Yν − λνL̂T

ν L̂ν R̂T
ν (y)

R̂ν(y) λνIkν

]
� 0, ν 6∈ Is

A(y)− ρ
L∑

ν=1
Yν � 0

(3.3.27)

(kν is the number of rows in R̂ν) in variables Y1, ..., YN , λν , y is a safe tractable approximation
of the RC of the uncertain convex quadratic constraint (3.2.13), (3.3.24). The tightness factor
of this approximation never exceeds π/2, and equals 1 when N = 1.

Complex case. The situation considered in section 3.3.1 admits a complex data version as
well. Consider a convex quadratic constraint with complex-valued variables and a complex-
valued structured norm-bounded uncertainty:

yHAH(ζ)A(ζ)y ≤ <{2yHb(ζ) + c(ζ)}

ζ ∈ Zρ = ρZ1 =



ζ = (ζ1, ..., ζN ) :

ζν ∈ C
pν×qν , 1 ≤ ν ≤ N

‖ζν‖2,2 ≤ ρ, 1 ≤ ν ≤ N
ν ∈ Is ⇒ ζν = θνIpν , θν ∈ C








A(ζ)y
yHb(ζ)
c(ζ)


 =




Any
yHbn

cn


+

N∑
ν=1

LH
ν (y)ζνRν(y),

(3.3.28)

where An ∈ C
k×m and the matrices Lν(y), Rν(y) are affine in [<(y);=(y)] and such that for

every ν, either Lν(y), or Rν(y) are independent of y. Same as in the real case we have just
considered, we lose nothing when assuming that all scalar perturbation blocks are 1× 1, which
allows us to treat these blocks as full. Thus, the general case can be reduced to the case where
Is = ∅, which we assume from now on (cf. section 3.3.1).

In order to derive a safe approximation of the RC of (3.3.28), we can act exactly in the same
fashion as in the real case to arrive at the equivalence

yHAH(ζ)A(ζ)y ≤ <{2yHb(ζ) + c(ζ)} ∀ζ ∈ Zρ

⇔

A(y)
︷ ︸︸ ︷[ <{2yHbn + cn} [Any]H

Any I

]

+
N∑

ν=1

[ <{2yHLν,b(y)ζ
νRν(y) + Lν,c(y)ζ

νRν(y)} RH
ν [ζν ]HLν,A(y)

LH
ν,A(y)ζ

νRν(y)

]
� 0

∀(ζ : ‖ζν‖2,2 ≤ ρ, 1 ≤ ν ≤ N)

where Lν(y) = [Lν,A(y), Lν,b(y), Lν,c(y)] and Lν,b(y), Lν,c(y) are the last two columns in Lν(y).
Setting

L̃H
ν (y) =

[
LH
ν,b(y) +

1

2
LH
ν,c(y);L

H
ν,A(y)

]
, R̃ν(y) = [Rν(y), 0qν×k]
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(cf. (3.3.25)), we conclude that the RC of (3.3.28) is equivalent to the semi-infinite LMI

A(y) +
N∑
ν=1

[
L̃H
ν (y)ζνR̃ν(y) + R̃H

ν (y)[ζν ]H L̃ν(y)
]
� 0

∀(ζ : ‖ζν‖2,2 ≤ ρ, 1 ≤ ν ≤ N).

(3.3.29)

As always, swapping, if necessary, ζν and [ζν ]H we may rewrite the latter semi-infinite LMI
equivalently as

A(y) +
N∑
ν=1

[
L̂H
ν ζ

νR̂ν(y) + R̂H
ν (y)[ζν ]H L̂ν

]
� 0

∀(ζ : ‖ζν‖2,2 ≤ ρ, 1 ≤ ν ≤ N),

where R̂ν(y) are affine in [<(y);=(y)] and L̂ν are nonzero. Applying the Complex case Matrix
Cube Theorem (see the proof of Theorem 3.5), we finally arrive at the following result:

Theorem 3.8 The explicit system of LMIs
[
Yν − λνL̂H

ν L̂ν R̂H
ν (y)

R̂ν(y) λνIkν

]
� 0, ν = 1, ..., N,

[ <{2yHbn + cn} [Any]H

Any I

]
− ρ

N∑
ν=1

Yν � 0

(3.3.30)

(kν is the number of rows in R̂ν(y)) in variables Y1 = Y H
1 , ..., YN = Y H

N , λν ∈ R, y ∈ C
m is

a safe tractable approximation of the RC of the uncertain convex quadratic inequality (3.3.28).
The tightness of this approximation is ≤ 4

π , and is equal to 1 when N = 1.

3.3.2 The Case of ∩-Ellipsoidal Uncertainty

Consider the case where the uncertainty in CQI (3.2.3) is side-wise with the right hand side
uncertainty exactly as in section 3.2.2, and with ∩-ellipsoidal left hand side perturbation set,
that is,

Z left
ρ =

{
η : ηTQjη ≤ ρ2, j = 1, ..., J

}
, (3.3.31)

where Qj � 0 and
J∑

j=1
Qj � 0. When Qj � 0 for all j, Z left

ρ is the intersection of J ellipsoids

centered at the origin. When Qj = aja
T
j are rank 1 matrices, Z left is a polyhedral set symmetric

w.r.t. origin and given by J inequalities of the form |aTj η| ≤ ρ, j = 1, ..., J . The requirement
J∑

j=1
Qj � 0 implies that Z left

ρ is bounded (indeed, every η ∈ Z left
ρ belongs to the ellipsoid

ηT (
∑

j Qj)η ≤ Jρ2).
We have seen in section 3.2.3 that the case J = 1, (i.e., of an ellipsoid Z left

ρ centered at the
origin), is a particular case of unstructured norm-bounded perturbation, so that in this case
the RC is computationally tractable. The case of general ∩-ellipsoidal uncertainty includes the
situation when Z left

ρ is a box, where the RC is computationally intractable. However, we intend
to demonstrate that with ∩-ellipsoidal left hand side perturbation set, the RC of (3.2.4) admits
a safe tractable approximation tight within the “nearly constant” factor

√
(O(ln J)).
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Approximating the RC of Uncertain Least Squares Inequality

Same as in section 3.3.1, the side-wise nature of uncertainty reduces the task of approximating
the RC of uncertain CQI (3.2.4) to a similar task for the RC of the uncertain Least Squares
inequality (3.3.4). Representing

A(ζ)y + b(ζ) = [Any + bn]︸ ︷︷ ︸
β(y)

+

L∑

`=1

η`[A
`y + b`]

︸ ︷︷ ︸
α(y)η

(3.3.32)

where L = dim η, observe that the RC of (3.3.4), (3.3.31) is equivalent to the system of con-
straints

τ ≥ 0 & ‖β(y) + α(y)η‖22 ≤ τ2 ∀(η : ηTQjη ≤ ρ2, j = 1, ..., J)

or, which is clearly the same, to the system

(a) Aρ ≡ max
η,t

{
ηTαT (y)α(y)η + 2tβT (y)α(y)η : ηTQjη ≤ ρ2 ∀j, t2 ≤ 1

}

≤ τ2 − βT (y)β(y)
(b) τ ≥ 0.

(3.3.33)

Next we use Lagrangian relaxation to derive the following result:
(!) Assume that for certain nonnegative reals γ, γj , j = 1, ..., J , the homogeneous quadratic
form in variables η, t

γt2 +

J∑

j=1

γjη
TQjη −

[
ηTαT (y)α(y)η + 2tβT (y)α(y)η

]
(3.3.34)

is nonnegative everywhere. Then

Aρ ≡ max
η,t

{
ηTαT (y)α(y)η + 2tβT (y)α(y)η : ηTQjη ≤ ρ2, t2 ≤ 1

}

≤ γ + ρ2
J∑

j=1
γj.

(3.3.35)

Indeed, let F = {(η, t) : ηTQjη ≤ ρ2, j = 1, ..., J, t2 ≤ 1}. We have

Aρ = max
(η,t)∈F

{
ηTαT (y)α(y)η + 2tβT (y)α(y)η

}

≤ max
(η,t)∈F

{
γt2 +

J∑
j=1

γjη
TQjη

}

[since the quadratic form (3.3.34) is nonnegative everywhere]

≤ γ + ρ2
J∑

j=1

γj

[due to the origin of F and to γ ≥ 0, γj ≥ 0].
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From (!) it follows that if γ ≥ 0, γj ≥ 0, j = 1, ..., J are such that the quadratic form (3.3.34)
is nonnegative everywhere, or, which is the same, such that




γ −βT (y)α(y)

−αT (y)β(y)
J∑

j=1
γjQj − αT (y)α(y)


 � 0

and

γ + ρ2
J∑

j=1

γj ≤ τ2 − βT (y)β(y),

then (y, τ) satisfies (3.3.33.a). Setting ν = γ + βT (y)β(y), we can rewrite this conclusion as
follows: if there exist ν and γj ≥ 0 such that



ν − βT (y)β(y) −βT (y)α(y)

−αT (y)β(y)
J∑

j=1
γjQj − αT (y)α(y)


 � 0

and

ν + ρ2
J∑

j=1

γj ≤ τ2,

then (y, τ) satisfies (3.3.33.a).
Assume for a moment that τ > 0. Setting λj = γj/τ , µ = ν/τ , the above conclusion can be

rewritten as follows: if there exist µ and λj ≥ 0 such that



µ− τ−1βT (y)β(y) −τ−1βT (y)α(y)

−τ−1αT (y)β(y)
J∑

j=1
λjQj − τ−1αT (y)α(y)


 � 0

and

µ+ ρ2
J∑

j=1

λj ≤ τ,

then (y, τ) satisfies (3.3.33.a).
By the Schur Complement Lemma, the latter conclusion can further be reformulated as

follows: if τ > 0 and there exist µ, λj satisfying the relations

(a)




µ βT (y)
J∑

j=1
λjQj αT (y)

β(y) α(y) τI


 � 0

(b) µ+ ρ2
J∑

j=1
λj ≤ τ (c) λj ≥ 0, j = 1, ..., J

(3.3.36)

then (y, τ) satisfies (3.3.33.a). Note that in fact our conclusion is valid for τ ≤ 0 as well. Indeed,
assume that τ ≤ 0 and µ, λj solve (3.3.36). Then clearly τ = 0 and therefore α(y) = 0, β(y) = 0,
and thus (3.3.33.a) is valid. We have proved the first part of the following statement:
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Theorem 3.9 The explicit system of constraints (3.3.36) in variables y, τ , µ, λ1, ..., λJ is a
safe tractable approximation of the RC of the uncertain Least Squares constraint (3.3.4) with
∩-ellipsoidal perturbation set (3.3.31). The approximation is exact when J = 1, and in the case
of J > 1 the tightness factor of this approximation does not exceed

Ω(J) ≤ 9.19
√

ln(J). (3.3.37)

Proof. The fact that (3.3.36) is a safe approximation of the RC of (3.3.4), (3.3.31) is readily
given by the reasoning preceding Theorem 3.9. To prove that the approximation is tight within
the announced factor, note that the Approximate S-Lemma (Theorem A.8) as applied to the
quadratic forms in variables x = [η; t]

xTAx ≡
{
ηTαT (y)α(y)η + 2tβT (y)α(y)η

}
, xTBx ≡ t2,

xTBjx ≡ ηTQjη, 1 ≤ j ≤ J,

states that if J = 1, then (y, τ) can be extended to a solution of (3.3.36) if and only if (y, τ)
satisfies (3.3.33), that is, if and only if (y, τ) is robust feasible; thus, our approximation of the
RC of (3.3.4), (3.3.31) is exact when J = 1. Now let J > 1, and suppose that (y, τ) cannot be
extended to a feasible solution of (3.3.36). Due to the origin of this system, it follows that

SDP(ρ) ≡ min
λ,{λj}

{
λ+ ρ2

J∑
j=1

λj : λB +
∑
j
λjBj � A,λ ≥ 0, λj ≥ 0

}

> τ2 − βT (y)β(y).
(3.3.38)

By the Approximate S-Lemma, with appropriately chosen Ω(J) ≤ 9.19
√

ln(J) we have AΩ(J)ρ ≥
SDP(ρ), which combines with (3.3.38) to imply that AΩ(J)ρ > τ2 − βT (y)β(y), meaning that
(y, τ) is not robust feasible at the uncertainty level Ω(J)ρ (cf. (3.3.33)). Thus, the tightness
factor of our approximation does not exceed Ω(J). �

From Uncertain Least Squares to Uncertain CQI

The next statement can obtained from Theorem 3.9 in the same fashion as Theorem 3.6 has
been derived from Theorem 3.4.

Theorem 3.10 Consider uncertain CQI (3.2.3) with side-wise uncertainty, where the left hand
side perturbation set is the ∩-ellipsoidal set (3.3.31), and the right hand side perturbation set is
as in Theorem 3.6. For ρ > 0, the explicit system of LMIs

(a) τ + ρpT v ≤ δ(y), P T v = σ(y), QTv = 0, v ∈ K∗

(b.1)




µ βT (y)
J∑

j=1
λjQj αT (y)

β(y) α(y) I


 � 0

(b.2) µ+ ρ2
J∑

j=1
λj ≤ τ, λj � 0∀j

(3.3.39)
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in variables y, v, µ, λj , τ is a safe tractable approximation of the RC of the uncertain CQI. This
approximation is exact when J = 1 and is tight within the factor Ω(J) ≤ 9.19

√
ln(J) when

J > 1.

Convex Quadratic Constraint with ∩-Ellipsoidal Uncertainty

Now consider approximating the RC of an uncertain convex quadratic inequality

yTAT (ζ)A(ζ)y ≤ 2yT b(ζ) + c(ζ)[
(A(ζ), b(ζ), c(ζ)) = (An, bn, cn) +

L∑
`=1

ζ`(A
`, b`, c`)

]
(3.3.40)

with ∩-ellipsoidal uncertainty:

Zρ = ρZ1 = {ζ ∈ R
L : ζTQjζ ≤ ρ2} [Qj � 0,

∑

j

Qj � 0] (3.3.41)

Observe that

A(ζ)y = α(y)ζ + β(y),
α(y)ζ = [A1y, ..., ALy], β(y) = Any

2yT b(ζ) + c(ζ) = 2σT (y)ζ + δ(y),
σ(y) = [yT b1 + c1; ...; yT bL + cL], δ(y) = yT bn + cn

(3.3.42)

so that the RC of (3.3.40), (3.3.41) is the semi-infinite inequality

ζTαT (y)α(y)ζ + 2ζT
[
αT (y)β(y) − σ(y)

]
≤ δ(y) − βT (y)β(y) ∀ζ ∈ Zρ,

or, which is the same, the semi-infinite inequality

Aρ(y) ≡ max
ζ∈Zρ,t2≤1

ζTαT (y)α(y)ζ + 2tζT
[
αT (y)β(y)− σ(y)

]

≤ δ(y) − βT (y)β(y).
(3.3.43)

Same as in section 3.3.2, we have

Aρ(y) ≤ inf
λ,{λj}




λ+ ρ2

J∑
j=1

λj :

λ ≥ 0, λj ≥ 0, j = 1, ..., J
∀(t, ζ) :
λt2 + ζT (

J∑
j=1

λjQj)ζ ≥ ζTαT (y)α(y)ζ

+2tζT
[
αT (y)β(y) − σ(y)

]





= inf
λ,{λj}

{
λ+ ρ2

J∑
j=1

λj : λ ≥ 0, λj ≥ 0, j = 1, ..., J,

[
λ −[βT (y)α(y)− σT (y)]

−[αT (y)β(y)− σ(y)] ∑
j
λjQj − αT (y)α(y)

]
� 0

}
.

(3.3.44)
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We conclude that the condition

∃(λ ≥ 0, {λj ≥ 0}) :



λ+ ρ2
J∑

j=1
λj ≤ δ(y) − βT (y)β(y)

[
λ −[βT (y)α(y) − σT (y)]

−[αT (y)β(y) − σ(y)] ∑
j
λjQj − αT (y)α(y)

]
� 0

is sufficient for y to be robust feasible. Setting µ = λ+ βT (y)β(y), this sufficient condition can
be rewritten equivalently as

∃({λj ≥ 0}, µ) :





µ+ ρ2
J∑

j=1
λj ≤ δ(y)

[
µ− βT (y)β(y) −[βT (y)α(y) − σT (y)]

−[αT (y)β(y)− σ(y)] ∑
j
λjQj − αT (y)α(y)

]
� 0

(3.3.45)

We have [
µ− βT (y)β(y) −[βT (y)α(y) − σT (y)]

−[αT (y)β(y) − σ(y)] ∑
j
λjQj − αT (y)α(y)

]

=




µ σT (y)

σ(y)
J∑

j=1
λjQj


−

[
βT (y)
αT (y)

] [
βT (y)
αT (y)

]T
,

so that the Schur Complement Lemma says that
[

µ− βT (y)β(y) −[βT (y)α(y)− σT (y)]
−[αT (y)β(y)− σ(y)] ∑

j
λjQj − αT (y)α(y)

]
� 0

⇔




µ σT (y)] βT (y)

σ(y)
∑
j
λjQj αT (y)

β(y) α(y) I


 � 0.

The latter observation combines with the fact that (3.3.45) is a sufficient condition for the robust
feasibility of y to yield the first part of the following statement:

Theorem 3.11 The explicit system of LMIs in variables y, µ, λj :

(a)




µ σT (y)] βT (y)

σ(y)
∑
j
λjQj αT (y)

β(y) α(y) I


 � 0

(b) µ+ ρ2
J∑

j=1
λj ≤ δ(y) (c) λj ≥ 0, j = 1, ..., J

(3.3.46)

(for notation, see (3.3.42)) is a safe tractable approximation of the RC of (3.3.40), (3.3.41).
The tightness factor of this approximation equals 1 when J = 1 and does not exceed Ω(J) ≤
9.19

√
ln(J) when J > 1.

The proof of this theorem is completely similar to the proof of Theorem 3.9.
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3.4 Uncertain Semidefinite Problems with Tractable RCs

In this section, we focus on uncertain Semidefinite Optimization (SDO) problems for which
tractable Robust Counterparts can be derived.

3.4.1 Uncertain Semidefinite Problems

Recall that a semidefinite program (SDP) is a conic optimization program

min
x

{
cTx+ d : Ai(x) ≡

n∑
j=1

xjA
ij −Bi ∈ Ski

+ , i = 1, ...,m

}

m

min
x

{
cTx+ d : Ai(x) ≡

n∑
j=1

xjA
ij −Bi � 0, i = 1, ...,m

} (3.4.1)

where Aij , Bi are symmetric matrices of sizes ki × ki, Sk
+ is the cone of real symmetric positive

semidefinite k × k matrices, and A � B means that A,B are symmetric matrices of the same
sizes such that the matrix A − B is positive semidefinite. A constraint of the form Ax − B ≡∑
j
xjA

j−B � 0 with symmetric Aj , B is called a Linear Matrix Inequality (LMI); thus, an SDP

is the problem of minimizing a linear objective under finitely many LMI constraints. Another,
sometimes more convenient, setting of a semidefinite program is in the form of (3.1.2), that is,

min
x

{
cTx+ d : Aix− bi ∈ Qi, i = 1, ...,m

}
, (3.4.2)

where nonempty sets Qi are given by explicit finite lists of LMIs:

Qi = {u ∈ R
pi : Qi`(u) ≡

pi∑

s=1

usQ
si` −Qi` � 0, ` = 1, ..., Li}.

Note that (3.4.1) is a particular case of (3.4.2) where Qi = Ski
+ , i = 1, ...,m.

The notions of the data of a semidefinite program, of an uncertain semidefinite problem and
of its (exact or approximate) Robust Counterparts are readily given by specializing the general
descriptions from sections 3.1, 3.1.4, to the case when the underlying cones are the cones of
positive semidefinite matrices. In particular,
• The natural data of a semidefinite program (3.4.2) is the collection

(c, d, {Ai, bi}mi=1),

while the right hand side sets Qi are treated as the problem’s structure;
• An uncertain semidefinite problem is a collection of problems (3.4.2) with common structure

and natural data running through an uncertainty set; we always assume that the data are
affinely parameterized by perturbation vector ζ ∈ R

L running through a given closed and convex
perturbation set Z such that 0 ∈ Z:

[c; d] = [cn; dn] +
L∑

`=1

ζ`[c
`; d`];

[Ai, bi] = [Ani , b
n
i ] +

L∑
`=1

ζ`[A
`
i , b

`
i ], i = 1, ...,m

(3.4.3)
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• The Robust Counterpart of uncertain SDP (3.4.2), (3.4.3) at a perturbation level ρ > 0 is
the semi-infinite optimization program

min
y=(x,t)




t :

[[cn]Tx+ dn] +
L∑

`=1

ζ`[[c
`]Tx+ d`] ≤ t

[Ani x+ bni ] +
L∑

`=1

ζ`[A
`
ix+ b`i ] ∈ Qi, i = 1, ...,m




∀ζ ∈ ρZ





(3.4.4)

• A safe tractable approximation of the RC of uncertain SDP (3.4.2), (3.4.3) is a finite system
Sρ of explicitly computable convex constraints in variables y = (x, t) (and possibly additional

variables u) depending on ρ > 0 as a parameter, such that the projection Ŷρ of the solution set
of the system onto the space of y variables is contained in the feasible set Yρ of (3.4.4). Such

an approximation is called tight within factor ϑ ≥ 1, if Yρ ⊃ Ŷρ ⊃ Yϑρ. In other words, Sρ is a
ϑ-tight safe approximation of (3.4.4), if:

1. Whenever ρ > 0 and y are such that y can be extended, by a properly chosen u, to a
solution of Sρ, y is robust feasible at the uncertainty level ρ, (i.e., y is feasible for (3.4.4)).

2. Whenever ρ > 0 and y are such that y cannot be extended to a feasible solution to Sρ, y
is not robust feasible at the uncertainty level ϑρ, (i.e., y violates some of the constraints
in (3.4.4) when ρ is replaced with ϑρ).

3.4.2 Tractability of RCs of Uncertain Semidefinite Problems

Building the RC of an uncertain semidefinite problem reduces to building the RCs of the uncer-
tain constraints constituting the problem, so that the tractability issues in Robust Semidefinite
Optimization reduce to those for the Robust Counterpart

Aζ(y) ≡ An(y) +
L∑

`=1

ζ`A`(y) � 0 ∀ζ ∈ ρZ (3.4.5)

of a single uncertain LMI

Aζ(y) ≡ An(y) +
L∑

`=1

ζ`A`(y) � 0; (3.4.6)

here An(x), A`(x) are symmetric matrices affinely depending on the design vector y.
More often than not the RC of an uncertain LMI is computationally intractable. Indeed, we

saw in section 3 that intractability is typical already for the RCs of uncertain conic quadratic
inequalities, and the latter are very special cases of uncertain LMIs (due to the fact that Lorentz
cones are cross-sections of semidefinite cones, see Lemma 3.1). In the relatively simple case of
uncertain CQIs, we met just 3 generic cases where the RCs were computationally tractable,
specifically, the cases of

1. Scenario perturbation set (section 3.2.1);

2. Unstructured norm-bounded uncertainty (section 3.2.3);

3. Simple ellipsoidal uncertainty (section 3.2.5).
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The RC associated with a scenario perturbation set is tractable for an arbitrary uncertain conic
problem on a tractable cone; in particular, the RC of an uncertain LMI with scenario pertur-
bation set is computationally tractable. Specifically, if Z in (3.4.5) is given as Conv{ζ1, ..., ζN},
then the RC (3.4.5) is nothing but the explicit system of LMIs

An(y) +
L∑

`=1

ζ i`A`(y) � 0, i = 1, ..., N. (3.4.7)

The fact that the simple ellipsoidal uncertainty (Z is an ellipsoid) results in a tractable RC
is specific for Conic Quadratic Optimization. In the LMI case, (3.4.5) can be NP-hard even
with an ellipsoid in the role of Z. In contrast to this, the case of unstructured norm-bounded
perturbations remains tractable in the LMI situation. This is the only nontrivial tractable case
we know. We are about to consider this case in full details.

Unstructured Norm-Bounded Perturbations

Definition 3.5 We say that uncertain LMI (3.4.6) is with unstructured norm-bounded pertur-
bations, if

1. The perturbation set Z (see (3.4.3)) is the set of all p× q matrices ζ with the usual matrix
norm ‖ · ‖2,2 not exceeding 1;

2. “The body” Aζ(y) of (3.4.6) can be represented as

Aζ(y) ≡ An(y) +
[
LT (y)ζR(y) +RT (y)ζTL(y)

]
, (3.4.8)

where both L(·), R(·) are affine and at least one of these matrix-valued functions is in fact
independent of y.

Example 3.3 Consider the situation where Z is the unit Euclidean ball in RL (or, which is the same,
the set of L× 1 matrices of ‖ · ‖2,2-norm not exceeding 1), and

Aζ(y) =

[
a(y) ζTBT (y) + bT (y)

B(y)ζ + b(y) A(y)

]
, (3.4.9)

where a(·) is an affine scalar function, and b(·), B(·), A(·) are affine vector- and matrix-valued functions
with A(·) ∈ SM . Setting R(y) ≡ R = [1, 01×M ], L(y) = [0L×1, B

T (y)], we have

Aζ(y) =

[
a(y) bT (y)
b(y) A(y)

]

︸ ︷︷ ︸
An(y)

+LT (y)ζR(y) +RT (y)ζTL(y),

thus, we are in the case of an unstructured norm-bounded uncertainty.

A closely related example is given by the LMI reformulation of an uncertain Least Squares
inequality with unstructured norm-bounded uncertainty, see section 3.2.3.
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Let us derive a tractable reformulation of an uncertain LMI with unstructured norm-bounded
uncertainty. W.l.o.g. we may assume that R(y) ≡ R is independent of y (otherwise we can swap
ζ and ζT , swapping simultaneously L and R) and that R 6= 0. We have

y is robust feasible for (3.4.6), (3.4.8) at uncertainty level ρ

⇔ ξT [An(y) + LT (y)ζR+RT ζTL(y)]ξ ≥ 0 ∀ξ ∀(ζ : ‖ζ‖2,2 ≤ ρ)

⇔ ξTAn(y)ξ + 2ξTLT (y)ζRξ ≥ 0 ∀ξ ∀(ζ : ‖ζ‖2,2 ≤ ρ)

⇔ ξTAn(y)ξ + 2min‖ζ‖2,2≤ρξ
TLT (y)ζRξ

︸ ︷︷ ︸
=−ρ‖L(y)ξ‖2‖Rξ‖2

≥ 0 ∀ξ

⇔ ξTAn(y)ξ − 2ρ‖L(y)ξ‖2‖Rξ‖2 ≥ 0 ∀ξ

⇔ ξTAn(y)ξ + 2ρηTL(y)ξ ≥ 0 ∀(ξ, η : ηT η ≤ ξTRTRξ)

⇔ ∃λ ≥ 0 :

[
ρL(y)

ρLT (y) An(y)

]
� λ

[ −Ip
RTR

]
[S-Lemma]

⇔ ∃λ :

[
λIp ρL(y)

ρLT (y) An(y)− λRTR

]
� 0.

We have proved the following statement:

Theorem 3.12 The RC

An(y) + LT (y)ζR+RT ζTL(y) � 0 ∀(ζ ∈ R
p×q : ‖ζ‖2,2 ≤ ρ) (3.4.10)

of uncertain LMI (3.4.6) with unstructured norm-bounded uncertainty (3.4.8) (where, w.l.o.g.,
we assume that R 6= 0) can be represented equivalently by the LMI

[
λIp ρL(y)

ρLT (y) An(y)− λRTR

]
� 0 (3.4.11)

in variables y, λ.

Application: Robust Structural Design

Structural Design problem. Consider a “linearly elastic” mechanical system S that, math-
ematically, can be characterized by:

1. A linear space RM of virtual displacements of the system.

2. A symmetric positive semidefinite M × M matrix A, called the stiffness matrix of the
system.

The potential energy capacitated by the system when its displacement from the equilibrium
is v is

E =
1

2
vTAv.
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An external load applied to the system is given by a vector f ∈ R
M . The associated

equilibrium displacement v of the system solves the linear equation

Av = f.

If this equation has no solutions, the load destroys the system — no equilibrium exists; if the
solution is not unique, so is the equilibrium displacement. Both these “bad phenomena” can
occur only when A is not positive definite.

The compliance of the system under a load f is the potential energy capacitated by the
system in the equilibrium displacement v associated with f , that is,

Complf (A) =
1

2
vTAv =

1

2
vT f.

An equivalent way to define compliance is as follows. Given external load f , consider the concave
quadratic form

fT v − 1

2
vTAv

on the space R
M of virtual displacements. It is easily seen that this form either is unbounded

above, (which is the case when no equilibrium displacements exist), or attains its maximum. In
the latter case, the compliance is nothing but the maximal value of the form:

Complf (A) = sup
v∈RM

[
fT v − 1

2
vTAv

]
,

and the equilibrium displacements are exactly the maximizers of the form.
There are good reasons to treat the compliance as the measure of rigidity of the construction

with respect to the corresponding load — the less the compliance, the higher the rigidity. A
typical Structural Design problem is as follows:

Structural Design: Given

• the space R
M of virtual displacements of the construction,

• the stiffness matrix A = A(t) affinely depending on a vector t of design param-
eters restricted to reside in a given convex compact set T ⊂ R

N ,

• a set F ⊂ R
M of external loads,

find a construction t∗ that is as rigid as possible w.r.t. the “most dangerous” load
from F , that is,

t∗ ∈ Argmin
T∈T

{
ComplF (t) ≡ sup

f∈F
Complf (A(t))

}
.

Next we present three examples of Structural Design.

Example 3.4 Truss Topology Design. A truss is a mechanical construction, like railroad bridge,

electric mast, or the Eiffel Tower, comprised of thin elastic bars linked to each other at nodes. Some of

the nodes are partially or completely fixed, so that their virtual displacements form proper subspaces
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in R2 (for planar constructions) or R3 (for spatial ones). An external load is a collection of external

forces acting at the nodes. Under such a load, the nodes move slightly, thus causing elongations and

compressions in the bars, until the construction achieves an equilibrium, where the tensions caused in the

bars as a result of their deformations compensate the external forces. The compliance is the potential

energy capacitated in the truss at the equilibrium as a result of deformations of the bars.

A mathematical model of the outlined situation is as follows.
• Nodes and the space of virtual displacements. Let M be the nodal set, that is, a finite set

in R
d (d = 2 for planar and d = 3 for spatial trusses), and let Vi ⊂ R

d be the linear space
of virtual displacements of node i. (This set is the entire R

d for non-supported nodes, is {0}
for fixed nodes and is something in-between these two extremes for partially fixed nodes.) The
space V = R

M of virtual displacements of the truss is the direct product V = V1 × ... × Vm of
the spaces of virtual displacements of the nodes, so that a virtual displacement of the truss is a
collection of “physical” virtual displacements of the nodes.

Now, an external load applied to the truss can be thought of as a collection of external
physical forces fi ∈ R

d acting at nodes i from the nodal set. We lose nothing when assuming
that fi ∈ Vi for all i, since the component of fi orthogonal to Vi is fully compensated by the
supports that make the directions from Vi the only possible displacements of node i. Thus, we
can always assume that fi ∈ Vi for all i, which makes it possible to identify a load with a vector
f ∈ V . Similarly, the collection of nodal reaction forces caused by elongations and compressions
of the bars can be thought of as a vector from V .
• Bars and the stiffness matrix. Every bar j, j = 1, ..., N , in the truss links two nodes from
the nodal set M. Denoting by tj the volume of the j-th bar, a simple analysis, (where one
assumes that the nodal displacements are small and neglects all terms of order of squares of
these displacements), demonstrates that the collection of the reaction forces caused by a nodal
displacement v ∈ V can be represented as A(t)v, where

A(t) =
N∑

j=1

tjbjb
T
j (3.4.12)

is the stiffness matrix of the truss. Here bj ∈ V is readily given by the characteristics of the
material of the j-th bar and the “nominal,” (i.e., in the unloaded truss), positions of the nodes
linked by this bar.

In a typical Truss Topology Design (TTD) problem, one is given a ground structure — a
set M of tentative nodes along with the corresponding spaces Vi of virtual displacements and
the list J of N tentative bars, (i.e., a list of pairs of nodes that could be linked by bars), and
the characteristics of the bar’s material; these data determine, in particular, the vectors bj.
The design variables are the volumes tj of the tentative bars. The design specifications always
include the natural restrictions tj ≥ 0 and an upper bound w on

∑
j
tj, (which, essentially, is

an upper bound on the total weight of the truss). Thus, T is always a subset of the standard
simplex {t ∈ R

N : t ≥ 0,
∑
j
tj ≤ w}. There could be other design specifications, like upper

and lower bounds on the volumes of some bars. The scenario set F usually is either a singleton
(single-load TTD) or a small collection of external loads (multi-load TTD). With this setup, one
seeks for a design t ∈ T , that results in the smallest possible worst case, i.e., maximal over the
loads from F compliance.
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When formulating a TTD problem, one usually starts with a dense nodal set and allows for
all pair connections of the tentative nodes by bars. At an optimal solution to the associated
TTD problem, usually a pretty small number of bars get positive volumes, so that the solution
recovers not only the optimal bar sizing, but also the optimal topology of the construction.

Example 3.5 Free Material Optimization. In Free Material Optimization (FMO) one seeks to

design a mechanical construction comprised of material continuously distributed over a given 2-D or 3-D

domain Ω, and the mechanical properties of the material are allowed to vary from point to point. The

ultimate goal of the design is to build a construction satisfying a number of constraints (most notably,

an upper bound on the total weight) and most rigid w.r.t. loading scenarios from a given sample.

After finite element discretization, this (originally infinite-dimensional) optimization problem
becomes a particular case of the aforementioned Structural Design problem where:

• the space V = R
M of virtual displacements is the space of “physical displacements” of

the vertices of the finite element cells, so that a displacement v ∈ V is a collection of
displacements vi ∈ R

d of the vertices (d = 2 for planar and d = 3 for spatial constructions).
Same as in the TTD problem, displacements of some of the vertices can be restricted to
reside in proper linear subspaces of Rd;

• external loads are collections of physical forces applied at the vertices of the finite element
cells; same as in the TTD case, these collections can be identified with vectors f ∈ V ;

• the stiffness matrix is of the form

A(t) =

N∑

j=1

S∑

s=1

bjstjb
T
js, (3.4.13)

where N is the number of finite element cells and tj is the stiffness tensor of the material
in the j-th cell. This tensor can be identified with a p× p symmetric positive semidefinite
matrix, where p = 3 for planar constructions and p = 6 for spatial ones. The number S
and the M × p matrices bis are readily given by the geometry of the finite element cells
and the type of finite element discretization.

In a typical FMO problem, one is given the number of the finite element cells along with the
matrices bij in (3.4.13), and a collection F of external loads of interest. The design vectors are
collections t = (t1, ..., tN ) of positive semidefinite p × p matrices, and the design specifications
always include the natural restrictions tj � 0 and an upper bound

∑
j
cjTr(tj) ≤ w, cj > 0,

on the total weighted trace of tj ; this bound reflects, essentially, an upper bound on the total
weight of the construction. Along with these restrictions, the description of the feasible design
set T can include other constraints, such as bounds on the spectra of tj, (i.e., lower bounds on
the minimal and upper bounds on the maximal eigenvalues of tj). With this setup, one seeks
for a design t ∈ T that results in the smallest worst case, (i.e., the maximal over the loads from
F) compliance.

The design yielded by FMO usually cannot be implemented “as it is” — in most cases, it
would be either impossible, or too expensive to use a material with mechanical properties varying
from point to point. The role of FMO is in providing an engineer with an “educated guess” of
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what the optimal construction could possibly be; given this guess, engineers produce something
similar from composite materials, applying existing design tools that take into account finer
design specifications, (which may include nonconvex ones), than those taken into consideration
by the FMO design model.

Our third example, due to C. Roos, has nothing in common with mechanics — it is about
design of electrical circuits. Mathematically, however, it is modeled as a Structural Design
problem.

Example 3.6 Consider an electrical circuit comprised of resistances and sources of current. Mathe-
matically, such a circuit can be thought of as a graph with nodes 1, ..., n and a set E of oriented arcs.
Every arc γ is assigned with its conductance σγ ≥ 0 (so that 1/σγ is the resistance of the arc). The nodes
are equipped with external sources of current, so every node i is assigned with a real number fi — the
current supplied by the source. The steady state functioning of the circuit is characterized by currents
γ in the arcs and potentials vi at the nodes, (these potentials are defined up to a common additive
constant). The potentials and the currents can be found from the Kirchhoff laws, specifically, as follows.
Let G be the node-arc incidence matrix, so that the columns in G are indexed by the nodes, the rows are
indexed by the arcs, and Gγi is 1, −1 or 0, depending on whether the arc γ starts at node i, ends at this
node, or is not incident to the node, respectively. The first Kirchhoff law states that sum of all currents
in the arcs leaving a given node minus the sum of all currents in the arcs entering the node is equal to
the external current at the node. Mathematically, this law reads

GT  = f,

where f = (f1, ..., fn) and  = {γ}γ∈E are the vector of external currents and the vector of currents in
the arcs, respectively. The second law states that the current in an arc γ is σγ times the arc voltage —
the difference of potentials at the nodes linked by the arc. Mathematically, this law reads

 = ΣGv,Σ = Diag{σγ , γ ∈ E}.

Thus, the potentials are given by the relation

GTΣGv = f.

Now, the heat H dissipated in the circuit is the sum, over the arcs, of the products of arc currents and
arc voltages, that is,

H =
∑

γ

σγ((Gv)γ)
2 = vTGTΣGv.

In other words, the heat dissipated in the circuit, the external currents forming a vector f , is the maximum
of the convex quadratic form

2vT f − vTGTΣGv

over all v ∈ Rn, and the steady state potentials are exactly the maximizers of this quadratic form. In
other words, the situation is as if we were speaking about a mechanical system with stiffness matrix
A(σ) = GTΣG affinely depending on the vector σ ≥ 0 of arc conductances subject to external load f ,
with the steady-state potentials in the role of equilibrium displacements, and the dissipated heat in this
state in the role of (twice) the compliance.

It should be noted that the “stiffness matrix” in our present situation is degenerate — indeed,
we clearly have G1 = 0, where 1 is the vector of ones, (“when the potentials of all nodes
are equal, the currents in the arcs should be zero”), whence A(σ)1 = 0 as well. As a result,
the necessary condition for the steady state to exist is fT1 = 0, that is, the total sum of all
external currents should be zero — a fact we could easily foresee. Whether this necessary
condition is also sufficient depends on the topology of the circuit.
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A straightforward “electrical” analogy of the Structural Design problem would be to build a circuit of

a given topology, (i.e., to equip the arcs of a given graph with nonnegative conductances forming a design

vector σ), satisfying specifications σ ∈ S in a way that minimizes the maximal steady-state dissipated

heat, the maximum being taken over a given family F of vectors of external currents.

Structural Design as an uncertain Semidefinite problem. The aforementioned Struc-
tural Design problem can be easily posed as an SDP. The key element in the transformation of
the problem is the following semidefinite representation of the compliance:

Complf (A) ≤ τ ⇔
[
2τ fT

f A

]
� 0. (3.4.14)

Indeed,
Complf (A) ≤ τ

⇔ fTv − 1
2v

TAv ≥ τ ∀v ∈ R
M

⇔ 2τs2 − 2sfT v + vTAv ≥ 0 ∀([v, s] ∈ R
M+1)

⇔
[

2τ −fT
−f A

]
� 0

⇔
[
2τ fT

f A

]
� 0

where the last ⇔ follows from the fact that

[
2τ −fT
−f A

]
=

[
1

−I

] [
2τ fT

f A

] [
1

−I

]T
.

Thus, the Structural Design problem can be posed as

min
τ,t

{
τ :

[
2τ fT

f A(t)

]
� 0 ∀f ∈ F , t ∈ T

}
. (3.4.15)

Assuming that the set T of feasible designs is LMI representable, problem (3.4.15) is nothing
but the RC of the uncertain semidefinite problem

min
τ,t

{
τ :

[
2τ fT

f A(t)

]
� 0, t ∈ T

}
, (3.4.16)

where the only uncertain data is the load f , and this data varies in a given set F (or, which is
the same, in its closed convex hull cl Conv(F)). Thus, in fact we are speaking about the RC of
a single-load Structural Design problem, with the load in the role of uncertain data varying in
the uncertainty set U = clConv(F).

In actual design the set F of loads of interest is finite and usually quite small. For example,
when designing a bridge for cars, an engineer is interested in a quite restricted family of scenarios,
primarily in the load coming from many cars uniformly distributed along the bridge (this is,
essentially, what happens in rush hours), and, perhaps, in a few other scenarios (like loads
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coming from a single heavy car in various positions). With finite F = {f1, ..., fk}, we are in the
situation of a scenario uncertainty, and the RC of (3.4.16) is the explicit semidefinite program

min
τ,t

{
τ :

[
2τ [f i]T

f i A(t)

]
� 0, i = 1, ..., k, t ∈ T

}
.

Note, however, that in reality the would-be construction will be affected by small “occasional”
loads (like side wind in the case of a bridge), and the construction should be stable with respect
to these loads. It turns out, however, that the latter requirement is not necessarily satisfied by
the “nominal” construction that takes into consideration only the loads of primary interest. As
an instructive example, consider the design of a console.

Example 3.7 Figure 3.3.(c) represents optimal single-load design of a console with a 9× 9 nodal grid
on 2-D plane; nodes from the very left column are fixed, the remaining nodes are free, and the single
scenario load is the unit force f acting down and applied at the mid-node of the very right column (see
figure 3.3.(a)). We allow nearly all tentative bars (numbering 2,039), except for (clearly redundant) bars
linking fixed nodes or long bars that pass through more than two nodes and thus can be split into shorter
ones (figure 3.3.(b)). The set T of admissible designs is given solely by the weight restriction:

T = {t ∈ R
2039 : t ≥ 0,

2039∑

i=1

ti ≤ 1}

(compliance is homogeneous of order 1 w.r.t. t: Complf (λt) = λComplf (t), λ > 0, so we can normalize
the weight bound to be 1).

The compliance, in an appropriate scale, of the resulting nominally optimal truss (12 nodes, 24 bars)

w.r.t. the scenario load f is 1.00. At the same time, the construction turns out to be highly unstable w.r.t.

small “occasional” loads distributed along the 10 free nodes used by the nominal design. For example,

the mean compliance of the nominal design w.r.t. a random load h ∼ N (0, 10−9I20) is 5.406 (5.4 times

larger than the nominal compliance), while the “typical” norm ‖h‖2 of this random load is 10−4.5
√
20 —

more than three orders of magnitude less than the norm ‖f‖2 = 1 of the scenario load. The compliance

of the nominally optimal truss w.r.t. a “bad” load g that is 104 times smaller than f (‖g‖2 = 10−4‖f‖2)
is 27.6 — by factor 27 larger than the compliance w.r.t. f ! Figure 3.3.(e) shows the deformation of the

nominal design under the load 10−4g (that is, the load that is 108 (!) times smaller than the scenario

load). One can compare this deformation with the one under the load f (figure 3.3.(d)). Figure 3.3.(f)

depicts shifts of the nodes under a sample of 100 random loads h ∼ N (0, 10−16I20) — loads of norm by

7 plus orders of magnitude less than ‖f‖2 = 1.

To prevent the optimal design from being crushed by a small load that is outside of the set
F of loading scenarios, it makes sense to extend F to a more “massive” set, primarily by adding
to F all loads of magnitude not exceeding a given “small” uncertainty level ρ. A challenge here
is to decide where the small loads can be applied. In problems like TTD, it does not make sense
to require the would-be construction to be capable of carrying small loads distributed along
all nodes of the ground structure; indeed, not all of these nodes should be present in the final
design, and of course there is no reason to bother about forces acting at non-existing nodes. The
difficulty is that we do not know in advance which nodes will be present in the final design. One
possibility to resolve this difficulty to some extent is to use a two-stage procedure as follows:
• at the first stage, we seek for the “nominal” design — the one that is optimal w.r.t. the

“small” set F comprised of the scenario loads and, perhaps, all loads of magnitude ≤ ρ acting



136 LECTURE 3: ROBUST CONIC OPTIMIZATION

f f

(a): 9×9 nodal grid with
most left nodes fixed and
the load of interest. M =
144 degrees of freedom.

(b): 2,039 tentative bars

(c): Single-load optimal design,
12 nodes, 24 bars. Compliance
w.r.t. load of interest 1.00.

(d): Deformation of nominal design
under the load of interest.

(e): Deformation of nominal design
under “occasional” load 108 times
less than the load of interest.

(f): “Dotted lines”: positions of nodes in
deformed nominal design, sample
of 100 loads ∼ N (0, 10−16I20)

Figure 3.3: Nominal design.
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along the same nodes as the scenario loads — these nodes definitely will be present in the
resulting design;
• at the second stage, we solve the problem again, with the nodes actually used by the

nominal design in the role of our new nodal setM+, and extend F to the set F+ by taking the
union of F and the Euclidean ball Bρ of all loads g, ‖g‖2 ≤ ρ, acting alongM+.
We have arrived at the necessity to solve (3.4.15) in the situation where F is the union of a
finite set {f1, ..., fk} and a Euclidean ball. This is a particular case of the situation when F is
the union of S <∞ ellipsoids

Es = {f = f s +Bsζ
s : ζs ∈ R

ks , ‖ζs‖2 ≤ 1}

or, which is the same, Z is the convex hull of the union of S ellipsoids E1, ..., ES . The associated
“uncertainty-immunized” Structural Design problem (3.4.15) — the RC of (3.4.16) with Z in
the role of F — is clearly equivalent to the problem

min
t,τ

{
τ :

[
2τ fT

f A(t)

]
� 0 ∀f ∈ Es, s = 1, ..., S; t ∈ T

}
. (3.4.17)

In order to build a tractable equivalent of this semi-infinite semidefinite problem, we need to
build a tractable equivalent to a semi-infinite LMI of the form

[
2τ ζTBT + fT

Bζ + f A(t)

]
� 0 ∀(ζ ∈ R

k : ‖ζ‖2 ≤ ρ). (3.4.18)

But such an equivalent is readily given by Theorem 3.12 (cf. Example 3.3). Applying the recipe
described in this Theorem, we end up with a representation of (3.4.18) as the following LMI in
variables τ , t, λ: 


λIk ρBT

2τ − λ fT

ρB f A(t)


 � 0. (3.4.19)

Observe that when f = 0, (3.4.19) simplifies to

[
2τIk ρBT

ρB A(t)

]
� 0. (3.4.20)

Example 3.7 continued. Let us apply the outlined methodology to the Console example
(Example 3.7). In order to immunize the design depicted on figure 3.3.(c) against small occa-
sional loads, we start with reducing the initial 9× 9 nodal set to the set of 12 nodesM+ (figure
3.4.(a)) used by the nominal design, and allow for N = 54 tentative bars on this reduced nodal
set (figure 5.1.(b)) (we again allow for all pair connections of nodes, except for connections of
two fixed nodes and for long bars passing through more than two nodes). According to the
outlined methodology, we should then extend the original singleton F = {f} of scenario loads
to the larger set F+ = {f} ∪ Bρ, where Bρ is the Euclidean ball of radius ρ, centered at the
origin in the (M = 20)-dimensional space of virtual displacements of the reduced planar nodal
set. With this approach, an immediate question would be how to specify ρ. In order to avoid
an ad hoc choice of ρ, we modify our approach as follows. Recalling that the compliance of
the nominally optimal design w.r.t. the scenario load is 1.00, let us impose on our would-be
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“immunized” design the restriction that its worst case compliance w.r.t. the extended scenario
set Fρ = {f} ∪ Bρ should be at most τ∗ = 1.025, (i.e., 2.5% more than the optimal nominal
compliance), and maximize under this restriction the radius ρ. In other words, we seek for a
truss of the same unit weight as the nominally optimal one with “nearly optimal” rigidity w.r.t.
the scenario load f and as large as possible worst-case rigidity w.r.t. occasional loads of a given
magnitude. The resulting problem is the semi-infinite semidefinite program

max
t,ρ





ρ :

[
2τ∗ fT

f A(t)

]
� 0

[
2τ∗ ρhT

ρh A(t)

]
� 0 ∀(h : ‖h‖2 ≤ 1)

t � 0,
∑N

i=1 ti ≤ 1





.

This semi-infinite program is equivalent to the usual semidefinite program

max
t,ρ





ρ :

[
2τ∗ fT

f A(t)

]
� 0

[
2τ∗IM ρIM
ρIM A(t)

]
� 0

t � 0,
∑N

i=1 ti ≤ 1





(3.4.21)

(cf. (3.4.20)).
Computation shows that for Example 3.7, the optimal value in (3.4.21) is ρ∗ = 0.362; the

robust design yielded by the optimal solution to the problem is depicted in figure 3.4.(c). Along
with the differences in sizing of bars, note the difference in the structures of the robust and the
nominal design (figure 3.5). Observe that passing from the nominal to the robust design, we
lose just 2.5% in the rigidity w.r.t. the scenario load and gain a dramatic improvement in the
capability to carry occasional loads. Indeed, the compliance of the robust truss w.r.t. every load
g of the magnitude ‖g‖2 = 0.36 (36% of the magnitude of the load of interest) is at most 1.025;
the similar quantity for the nominal design is as large as 1.65×109 ! An additional evidence of
the dramatic advantages of the robust design as compared to the nominal one can be obtained
by comparing the pictures (d) through (f) in figure 3.3 with their counterparts in figure 3.4.

Applications in Robust Control

A major source of uncertain Semidefinite problems is Robust Control. An instructive example
is given by Lyapunov Stability Analysis/Synthesis.

Lyapunov Stability Analysis. Consider a time-varying linear dynamical system “closed”
by a linear output-based feedback:

(a) ẋ(t) = Atx(t) + Btu(t) +Rtdt [open loop system, or plant]
(b) y(t) = Ctx(t) +Dtdt [output]
(c) u(t) = Kty(t) [output-based feedback]

⇓
(d) ẋ(t) = [At +BtKtCt]x(t) + [Rt +BtKtDt]dt [closed loop system]

(3.4.22)
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f f

(a): reduced 12-node set with
most left nodes fixed and the
load of interest. M = 20
degrees of freedom.

(b): 54 tentative bars

(c): Robust optimal design, 12
nodes, 24 bars. Compliance
w.r.t. load of interest 1.025.

(d): Deformation of robust design
under the load of interest.

(e): Deformation of robust design
under “occasional” load 10 times
less than the load of interest.

(f): “Bold dots”: positions of nodes
in deformated robust design over
100 loads ∼ N (0, 10−2I20)

Figure 3.4: Robust design.
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Figure 3.5: Nominal (left) and robust (right) designs.

where x(t) ∈ R
n, u(t) ∈ R

m, dt ∈ R
p, y(t) ∈ R

q are respectively, the state, the control, the
external disturbance, and the output at time t, At, Bt, Rt, Ct, Dt are matrices of appropriate
sizes specifying the dynamics of the system; and Kt is the feedback matrix. We assume that
the dynamical system in question is uncertain, meaning that we do not know the dependencies
of the matrices At,...,Kt on t; all we know is that the collection Mt = (At, Bt, Ct,Dt, Rt,Kt) of
all these matrices stays all the time within a given compact uncertainty setM. For our further
purposes, it makes sense to think that there exists an underlying time-invariant “nominal”
system corresponding to known nominal values An,...,Kn of the matrices At, ...,Kt, while the
actual dynamics corresponds to the case when the matrices drift (perhaps, in a time-dependent
fashion) around their nominal values.

An important desired property of a linear dynamical system is its stability — the fact that
every state trajectory x(t) of (every realization of) the closed loop system converges to 0 as
t → ∞, provided that the external disturbances dt are identically zero. For a time-invariant
linear system

ẋ = Qnx,

the necessary and sufficient stability condition is that all eigenvalues of A have negative real
parts or, equivalently, that there exists a Lyapunov Stability Certificate (LSC) — a positive
definite symmetric matrix X such that

[Qn]TX +XQn ≺ 0.

For uncertain system (3.4.22), a sufficient stability condition is that all matrices

Q ∈ Q = {Q = AM +BMKMCM :M ∈M}

have a common LSC X, that is, there exists X � 0 such that

(a) QTX +XQT ≺ 0 ∀Q ∈ Q
m

(b) [AM +BMKMCM ]TX +X[AM +BMKMCM ] ≺ 0 ∀M ∈ M;
(3.4.23)

here AM ,...,KM are the components of a collection M ∈ M.
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The fact that the existence of a common LSC for all matrices Q ∈ Q is sufficient for the
stability of the closed loop system is nearly evident. Indeed, sinceM is compact, for every
feasible solution X � 0 of the semi-infinite LMI (3.4.23) one has

∀M ∈M : [AM +BMKMCM ]TX +X [AM +BMKMCM ] ≺ −αX (∗)

with appropriate α > 0. Now let us look what happens with the quadratic form xTXx along
a state trajectory x(t) of (3.4.22). Setting f(t) = xT (t)Xx(t) and invoking (3.4.22.d), we
have

f ′(t) = ẋT (t)Xx(t) + x(t)Xẋ(t)
= xT (t)

[
[At +BtKtCt]

TX +X [At +BtKtCt]
]
x(t)

≤ −αf(t),
where the concluding inequality is due to (∗). From the resulting differential inequality

f ′(t) ≤ −αf(t)

it follows that
f(t) ≤ exp{−αt}f(0)→ 0, t→∞.

Recalling that f(t) = xT (t)Xx(t) and X is positive definite, we conclude that x(t) → 0 as

t→∞.

Observe that the set Q is compact along with M. It follows that X is an LSC if and only if
X � 0 and

∃β > 0 : QTX +XQ � −βI ∀Q ∈ Q

⇔ ∃β > 0 : QTX +XQ � −βI ∀Q ∈ Conv(Q).
Multiplying such an X by an appropriate positive real, we can ensure that

X � I & QTX +XQ � −I ∀Q ∈ Conv(Q). (3.4.24)

Thus, we lose nothing when requiring from an LSC to satisfy the latter system of (semi-infinite)
LMIs, and from now on LSCs in question will be exactly the solutions of this system.

Observe that (3.4.24) is nothing but the RC of the uncertain system of LMIs

X � I & QTX +XQ � −I, (3.4.25)

the uncertain data being Q and the uncertainty set being Conv(Q). Thus, RCs arise naturally
in the context of Robust Control.

Now let us apply the results on tractability of the RCs of uncertain LMI in order to under-
stand when the question of existence of an LSC for a given uncertain system (3.4.22) can be
posed in a computationally tractable form. There are, essentially, two such cases — polytopic
and unstructured norm-bounded uncertainty.
Polytopic uncertainty. By definition, polytopic uncertainty means that the set Conv(Q) is
given as a convex hull of an explicit list of “scenarios” Qi, i = 1, ..., N :

Conv(Q) = Conv{Q1, ..., QN}.

In our context this situation occurs when the components AM , BM , CM ,KM of M ∈ M run,
independently of each other, through convex hulls of respective scenarios

SA = Conv{A1, ..., ANA}, SB = Conv{B1, ..., BNB},
SC = Conv{C1, ..., CNC}, SK = Conv{K1, ...,KNK};
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in this case, the set Conv(Q) is nothing but the convex hull of N = NANBNCNK “scenarios”
Qijk` = Ai +BjK`Ck, 1 ≤ i ≤ NA,...,1 ≤ ` ≤ NK .

Indeed, Q clearly contains all matrices Qijk` and therefore Conv(Q) ⊃ Conv({Qijk`}). On

the other hand, the mapping (A,B,C,K) 7→ A+BKC is polylinear, so that the image Q of

the set SA×SB×SC×SK under this mapping is contained in the convex set Conv({Qijk`}),
whence Conv({Qijk`}) ⊃ Conv(Q).

In the case in question we are in the situation of scenario perturbations, so that (3.4.25) is
equivalent to the explicit system of LMIs

X � I, [Qi]TX +XQi � −I, i = 1, ..., N.

Unstructured norm-bounded uncertainty. Here

Conv(Q) = {Q = Qn + UζV : ζ ∈ R
p×q, ‖ζ‖2,2 ≤ ρ}.

In our context this situation occurs, e.g., when 3 of the 4 matrices AM , BM , CM , KM , M ∈
M, are in fact certain, and the remaining matrix, say, AM , runs through a set of the form
{An +GζH : ζ ∈ R

p×q, ‖ζ‖2,2 ≤ ρ}.
In the case of unstructured norm-bounded uncertainty, the semi-infinite LMI in (3.4.25) is

of the form
QTX +XQ � −I ∀Q ∈ Conv(Q)

m
−I − [Qn]TX −XQn
︸ ︷︷ ︸

An(X)

+[−XU︸ ︷︷ ︸
LT (X)

ζ V︸︷︷︸
R

+RT ζTL(X)] � 0

∀(ζ ∈ R
p×q, ‖ζ‖2,2 ≤ ρ).

Invoking Theorem 3.12, (3.4.25) is equivalent to the explicit system of LMIs

X � I,
[

λIp ρUTX

ρXU −I − [Qn]TX −XQn − λV TV

]
� 0. (3.4.26)

in variables X,λ.

Lyapunov Stability Synthesis. We have considered the Stability Analysis problem, where
one, given an uncertain closed-loop dynamical system along with the associated uncertainty
set M, seeks to verify a sufficient stability condition. A more challenging problem is Stability
Synthesis: given an uncertain open loop system (3.4.22.a–b) along with the associated compact

uncertainty set M̂ in the space of collections M̂ = (A,B,C,D,R), find a linear output-based
feedback

u(t) = Ky(t)

and an LSC for the resulting closed loop system.
The Synthesis problem has a nice solution, due to [22], in the case of state-based feedback

(that is, Ct ≡ I) and under the assumption that the feedback is implemented exactly, so that
the state dynamics of the closed loop system is given by

ẋ(t) = [At +BtK]x(t) + [Rt +BtKDt]dt. (3.4.27)
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The pairs (K,X) of “feedback – LSC” that we are looking for are exactly the feasible solutions
to the system of semi-infinite matrix inequalities in variables X,K:

X � 0 & [A+BK]TX +X[A+BK] ≺ 0 ∀[A,B] ∈ AB; (3.4.28)

here AB is the projection of M̂ on the space of [A,B] data. The difficulty is that the system is
nonlinear in the variables. As a remedy, let us carry out the nonlinear substitution of variables
X = Y −1, K = ZY −1. With this substitution, (3.4.28) becomes a system in the new variables
Y,Z:

Y � 0 & [A+BZY −1]TY −1 + Y −1[A+BZY −1] ≺ 0 ∀[A,B] ∈ AB;
multiplying both sides of the second matrix inequality from the left and from the right by Y ,
we convert the system to the equivalent form

Y � 0, & AY + Y AT +BZ + ZTBT ≺ 0 ∀[A,B] ∈ AB.

Since AB is compact along with M̂, the solutions to the latter system are exactly the pairs
(Y,Z) that can be obtained by scaling (Y,Z) 7→ (λY, λZ), λ > 0, from the solutions to the
system of semi-infinite LMIs

Y � I & AY + Y AT +BZ + ZTBT � −I ∀[A,B] ∈ AB (3.4.29)

in variables Y,Z. When the uncertainty AB can be represented either as a polytopic, or as
unstructured norm-bounded, the system (3.4.29) of semi-infinite LMIs admits an equivalent
tractable reformulation.

3.5 Approximating RCs of Uncertain Semidefinite
Problems

3.5.1 Tight Tractable Approximations of RCs of Uncertain SDPs with Struc-
tured Norm-Bounded Uncertainty

We have seen that the possibility to reformulate the RC of an uncertain semidefinite program
in a computationally tractable form is a “rare commodity,” so that there are all reasons to
be interested in the second best thing — in situations where the RC admits a tight tractable
approximation. To the best of our knowledge, just one such case is known — the case of
structured norm-bounded uncertainty we are about to consider in this section.

Uncertain LMI with Structured Norm-Bounded Perturbations

Consider an uncertain LMI
Aζ(y) � 0 (3.4.6)

where the “body” Aζ(y) is bi-linear in the design vector y and the perturbation vector ζ. The
definition of a structured norm-bounded perturbation follows the path we got acquainted with
in section 3:
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Definition 3.6 We say that the uncertain constraint (3.4.6) is affected by structured norm-bo-
unded uncertainty with uncertainty level ρ, if

1. The perturbation set Zρ is of the form

Zρ =

{
ζ = (ζ1, ..., ζL) :

ζ` ∈ R, |ζ`| ≤ ρ, ` ∈ Is
ζ` ∈ R

p`×q` : ‖ζ`‖2,2 ≤ ρ, ` 6∈ Is

}
(3.5.1)

2. The body Aζ(y) of the constraint can be represented as

Aζ(y) = An(y) + ∑
`∈IS

ζ`A`(y)

+
∑
` 6∈Is

[
LT
` (y)ζ

`R` +RT
` [ζ

`]TL`(y)
]
,

(3.5.2)

where A`(y), ` ∈ Is, and L`(y), ` 6∈ Is, are affine in y, and R`, ` 6∈ Is, are nonzero.

Theorem 3.13 Given uncertain LMI (3.4.6) with structured norm-bounded uncertainty (3.5.1),
(3.5.2), let us associate with it the following system of LMIs in variables Y`, ` = 1, ..., L, λ`,
` 6∈ Is, y:

(a) Y` � ±A`(y), ` ∈ Is

(b)

[
λ`Ip` L`(y)

LT
` (y) Y` − λ`RT

` R`

]
� 0, ` 6∈ Is

(c) An(y)− ρ
L∑

`=1

Y` � 0

(3.5.3)

Then system (3.5.3) is a safe tractable approximation of the RC

Aζ(y) � 0 ∀ζ ∈ Zρ (3.5.4)

of (3.4.6), (3.5.1), (3.5.2), and the tightness factor of this approximation does not exceed ϑ(µ),
where µ is the smallest integer ≥ 2 such that µ ≥ max

y
Rank(A`(y)) for all ` ∈ Is, and ϑ(·) is a

universal function of µ such that

ϑ(2) =
π

2
, ϑ(4) = 2, ϑ(µ) ≤ π

√
µ/2, µ > 2.

The approximation is exact, if either L = 1, or all perturbations are scalar, (i.e., Is = {1, ..., L})
and all A`(y) are of ranks not exceeding 1.

Proof. Let us fix y and observe that a collection y, Y1, ..., YL can be extended to a feasible
solution of (3.5.3) if and only if

∀ζ ∈ Zρ :

{ −ρY` � ζ`A`(y), ` ∈ Is,

−ρY` � LT
` (y)ζ

`R` +RT
` [ζ

`]TL`(y), ` 6∈ Is
(see Theorem 3.12). It follows that if, in addition, Y` satisfy (3.5.3.c), then y is feasible for (3.5.4),
so that (3.5.3) is a safe tractable approximation of (3.5.4). The fact that this approximation is
tight within the factor ϑ(µ) is readily given by the real case Matrix Cube Theorem (Theorem
A.7). The fact that the approximation is exact when L = 1 is evident when Is = {1} and is
readily given by Theorem 3.12 when Is = ∅. The fact that the approximation is exact when all
perturbations are scalar and all matrices A`(y) are of ranks not exceeding 1 is evident. �
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Application: Lyapunov Stability Analysis/Synthesis Revisited

We start with the Analysis problem. Consider the uncertain time-varying dynamical system
(3.4.22) and assume that the uncertainty set Conv(Q) = Conv({AM +BMKMCM} :M ∈ M})
in (3.4.24) is an interval uncertainty, meaning that

Conv(Q) = Qn + ρZ, Z = {
L∑

`=1

ζ`U` : ‖ζ‖∞ ≤ 1},
Rank(U`) ≤ µ, 1 ≤ ` ≤ L.

(3.5.5)

Such a situation (with µ = 1) arises, e.g., when two of the 3 matrices Bt, Ct,Kt are certain,
and the remaining one of these 3 matrices, say, Kt, and the matrix At are affected by
entry-wise uncertainty:

{(AM ,KM ) : M ∈ M} =
{
(A,K) :

|Aij −Anij | ≤ ραij∀(i, j)
|Kpq −Kn

pq| ≤ ρκpq ∀(p, q)

}
,

In this case, denoting by Bn, Cn the (certain!) matrices Bt, Ct, we clearly have

Conv(Q) = An +BnKnCn︸ ︷︷ ︸
Qn

+ρ

{[∑
i,j

ξij [αijeie
T
j ]

+
∑
p,q
ηpq[κpqB

nfpg
T
q C

n]
]
: |ξij | ≤ 1, |ηpq| ≤ 1

}
,

where ei, fp, gq are the standard basic orths in the spaces Rdimx, Rdimu and R
dim y, respec-

tively. Note that the matrix coefficients at the “elementary perturbations” ξij , ηpq are of

rank 1, and these perturbations, independently of each other, run through [−1, 1] — exactly

as required in (3.5.5) for µ = 1.

In the situation of (3.5.5), the semi-infinite Lyapunov LMI

QTX +XQ � −I ∀Q ∈ Conv(Q)

in (3.4.24) reads

−I − [Qn]TX −XQn
︸ ︷︷ ︸

An(X)

+ρ
L∑

`=1

ζ` [−UT
` X −XU`]︸ ︷︷ ︸
A`(X)

� 0 ∀(ζ : |ζ`| ≤ 1, ` = 1, ..., L).

(3.5.6)

We are in the case of structured norm-bounded perturbations with Is = {1, ..., L}. Noting that
the ranks of all matrices A`(X) never exceed 2µ (since all U` are of ranks ≤ µ), the safe tractable
approximation of (3.5.6) given by Theorem 3.13 is tight within the factor ϑ(2µ). It follows, in
particular, that in the case of (3.5.5) with µ = 1, we can find efficiently a lower bound, tight
within the factor π/2, on the Lyapunov Stability Radius of the uncertain system (3.4.22) (that
is, on the supremum of those ρ for which the stability of our uncertain dynamical system can
be certified by an LSC). The lower bound in question is the supremum of those ρ for which the
approximation is feasible, and this supremum can be easily approximated to whatever accuracy
by bisection.
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We can process in the same fashion the Lyapunov Stability Synthesis problem in the
presence of interval uncertainty. Specifically, assume that Ct ≡ I and the uncertainty set
AB = {[AM , BM ] :M ∈ M} underlying the Synthesis problem is an interval uncertainty:

AB = [An, Bn] + ρ{
L∑

`=1

ζ`U` : ‖ζ‖∞ ≤ 1}, Rank(U`) ≤ µ ∀`. (3.5.7)

We arrive at the situation of (3.5.7) with µ = 1, e.g., when AB corresponds to entry-wise
uncertainty:

AB = [An, Bn] + ρ{H ≡ [δA, δB] : |Hij | ≤ hij ∀i, j}.

In the case of (3.5.7) the semi-infinite LMI in (3.4.29) reads

−I − [An, Bn][Y ;Z]− [Y ;Z]T [An, Bn]T︸ ︷︷ ︸
An(Y,Z)

+ρ
L∑

`=1

ζ` [−U`[Y ;Z]− [Y ;Z]TUT
` ]︸ ︷︷ ︸

A`(Y,Z)

� 0∀(ζ : |ζ`| ≤ 1, ` = 1, ..., L).
(3.5.8)

We again reach a situation of structured norm-bounded uncertainty with Is = {1, ..., L} and all
matrices A`(·), ` = 1, ..., L, being of ranks at most 2µ. Thus, Theorem 3.13 provides us with
a tight, within factor ϑ(2µ), safe tractable approximation of the Lyapunov Stability Synthesis
problem.
Illustration: Controlling a multiple pendulum. Consider a multiple pendulum (“a train”)
depicted in figure 3.6. Denoting by mi, i = 1, ..., 4, the masses of the “engine” (i = 1) and the
“cars” (i = 2, 3, 4, counting from right to left), Newton’s laws for the dynamical system in
question read

m1
d2

dt2
x1(t) = −κ1x1(t) +κ1x2(t) +u(t)

m2
d2

dt2x2(t) = κ1x1(t) −(κ1 + κ2)x2(t) +κ2x3(t)

m3
d2

dt2x3(t) = κ2x2(t) −(κ2 + κ3)x3(t) +κ3x4(t)

m4
d2

dt2
x4(t) = κ3x3(t) −κ3x4(t),

(3.5.9)

where xi(t) are shifts of the engine and the cars from their respective positions in the state of
rest (where nothing moves and the springs are neither shrunk nor expanded), and κi are the
elasticity constants of the springs (counted from right to left). Passing from masses mi to their
reciprocals µi = 1/mi and adding to the coordinates of the cars their velocities vi(t) = ẋi(t), we
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u
A A

Figure 3.6: “Train”: 4 masses (3 “cars” and “engine”) linked by elastic springs and sliding
without friction (aside of controlled force u) along “rail” AA.

can rewrite (3.5.9) as the system of 8 linear differential equations:

ẋ(t) =




1
1

1
1

−κ1µ1 κ1µ1

κ1µ2 −[κ1 + κ2]µ2 κ2µ2

κ2µ3 −[κ2 + κ3]µ3 κ3µ3

κ3µ4 −κ3µ4




︸ ︷︷ ︸
Aµ

x(t)

+




µ1




︸ ︷︷ ︸
Bµ

u(t)

(3.5.10)

where x(t) = [x1(t);x2(t);x3(t);x4(t); v1(t); v2(t); v3(t); v4(t)]. System (3.5.10) “as it is” (i.e.,
with trivial control u(·) ≡ 0) is unstable; not only it has a solution that does not converge to 0
as t→∞, it has even an unbounded solution (specifically, one where xi(t) = vt, vi(t) ≡ v, which
corresponds to uniform motion of the cars and the engine with no tensions in the springs). Let
us look for a stabilizing state-based linear feedback controller

u(t) = Kx(t), (3.5.11)

that is robust w.r.t. the masses of the cars and the engine when they vary in given segments
∆i, i = 1, ..., 4. To this end we can apply the Lyapunov Stability Synthesis machinery. Observe
that to say that the masses mi run, independently of each other, through given segments is
exactly the same as to say that their reciprocals µi run, independently of each other, through
other given segments ∆′

i; thus, our goal is as follows:

Stabilization: Given elasticity constants κi and segments ∆′
i ⊂ {µ > 0}, i =

1, ..., 4, find a linear feedback (3.5.11) and a Lyapunov Stability Certificate X for the
corresponding closed loop system (3.5.10), (3.5.11), with the uncertainty set for the
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system being
AB = {[Aµ, Bµ] : µi ∈ ∆′

i, i = 1, ..., 4}.

Note that in our context the Lyapunov Stability Synthesis approach is, so to speak, “doubly
conservative.” First, the existence of a common LSC for all matrices Q from a given compact
set Q is only a sufficient condition for the stability of the uncertain dynamical system

ẋ(t) = Qtx(t), Qt ∈ Q∀t,

and as such this condition is conservative. Second, in our train example there are reasons

to think of mi as of uncertain data (in reality the loads of the cars and the mass of the

engine could vary from trip to trip, and we would not like to re-adjust the controller as long

as these changes are within a reasonable range), but there is absolutely no reason to think

of these masses as varying in time. Indeed, we could perhaps imagine a mechanism that

makes the masses mi time-dependent, but with this mechanism our original model (3.5.9)

becomes invalid — Newton’s laws in the form of (3.5.9) are not applicable to systems with

varying masses and at the very best they offer a reasonable approximation of the true model,

provided that the changes in masses are slow. Thus, in our train example a common LSC for

all matrices Q = A+BK, [A,B] ∈ AB, would guarantee much more than required, namely,

that all trajectories of the closed loop system “train plus feedback controller” converge to 0

as t→∞ even in the case when the parameters µi ∈ ∆′
i vary in time at a high speed. This

is much more than what we actually need — convergence to 0 of all trajectories in the case

when µi ∈ ∆′
i do not vary in time.

The system of semi-infinite LMIs we are about to process in the connection of the Lyapunov
Stability Synthesis is

(a) [A,B][Y ;Z] + [Y ;Z]T [A,B]T � −αY, ∀[A,B] ∈ AB
(b) Y � I
(c) Y ≤ χI,

(3.5.12)

where α > 0 and χ > 1 are given. This system differs slightly from the “canonical” system
(3.4.29), and the difference is twofold:

• [major] in (3.4.29), the semi-infinite Lyapunov LMI is written as

[A,B][Y ;Z] + [Y ;Z]T [A,B]T � −I,

which is just a convenient way to express the relation

[A,B][Y ;Z] + [Y ;Z]T [A,B]T ≺ 0,∀[A,B] ∈ AB.

Every feasible solution [Y ;Z] to this LMI with Y � 0 produces a stabilizing feedback
K = ZY −1 and the common LSC X = Y −1 for all instances of the matrix Q = A+BK,
[A,B] ∈ AB, of the closed loop system, i.e.,

[A+BK]TX +X[A+BK] ≺ 0 ∀[A,B] ∈ AB.
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The latter condition, however, says nothing about the corresponding decay rate. In con-
trast, when [Y ;Z] is feasible for (3.5.12.a, b), the associated stabilizing feedbackK = ZY −1

and LSC X = Y −1 satisfy the relation

[A+BK]TX +X[A+BK] ≺ −αX ∀[A,B] ∈ AB,

and this relation, as we have seen when introducing the Lyapunov Stability Certificate,
implies that

xT (t)Xx(t) ≤ exp{−αt}xT (0)Xx(0), t ≥ 0,

which guarantees that the decay rate in the closed loop system is at least α. In our illus-
tration (same as in real life), we prefer to deal with this “stronger” form of the Lyapunov
Stability Synthesis requirement, in order to have a control over the decay rate associated
with the would-be controller.

• [minor] In (3.5.12) we impose an upper bound on the condition number (ratio of the
maximal and minimal eigenvalues) of the would-be LSC; with normalization of Y given by
(3.5.12.b), this bound is ensured by (3.5.12.c) and is precisely χ. The only purpose of this
bound is to avoid working with extremely ill-conditioned positive definite matrices, which
can cause numerical problems.

Now let us use Theorem 3.13 to get a tight safe tractable approximation of the semi-infinite
system of LMIs (3.5.12). Denoting by µni the midpoints of the segments ∆′

i and by δi the
half-width of these segments, we have

AB ≡ {[Aµ, Bµ] : µi ∈ ∆′
i, i = 1, ..., 4}

= {[Aµn , Bµn] +
4∑

`=1

ζ`U` : |ζ`| ≤ 1, ` = 1, ..., 4},
U` = δ`p`q

T
` ,

where p` ∈ R
8 has the only nonzero entry, equal to 1, in the position 4 + `, and




qT1
qT2
qT3
qT4


 =




−κ1 κ1 1

κ1 −[κ1 + κ2] κ2
κ2 −[κ2 + κ3] κ3

κ3 −κ3




Consequently, the analogy of (3.5.12) with uncertainty level ρ ((3.5.12) itself corresponds to
ρ = 1) is the semi-infinite system of LMIs

−αY − [Aµn , Bµn][Y ;Z]− [Y ;Z]T [Aµn , Bµn]
T

︸ ︷︷ ︸
An(Y,Z)

+ρ
4∑

`=1

ζ`(−δ`[p`qT` [Y ;Z] + [Y ;Z]T q`p
T
` ]︸ ︷︷ ︸

A`(Y,Z)

) � 0∀(ζ : |ζ`| ≤ 1, ` = 1, ..., 4)

Y � I8, Y � χI8

(3.5.13)
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in variables Y , Z (cf. (3.5.8)). The safe tractable approximation of this semi-infinite system of
LMIs as given by Theorem 3.13 is the system of LMIs

Y` � ±A`(Y,Z), ` = 1, ..., 4

An(Y,Z)− ρ
4∑

`=1

Y` � 0

Y � I8, Y � χI8

(3.5.14)

in variables Y,Z, Y1, ..., Y4. Since all U` are of rank 1 and therefore all A`(Y,Z) are of rank ≤ 2,
Theorem 3.13 states that this safe approximation is tight within the factor π/2.

Of course, in our toy example no approximation is needed — the set AB is a polytopic
uncertainty with just 24 = 16 vertices, and we can straightforwardly convert (3.5.13) into an
exactly equivalent system of 18 LMIs

An(Y, Z) � ρ
4∑

`=1

ε`A`(Y, Z), ε` = ±1, ` = 1, ..., 4

Y � I8, Y � χI8

in variables Y, Z. The situation would change dramatically if there were, say, 30 cars in our

train rather than just 3. Indeed, in the latter case the precise “polytopic” approach would

require solving a system of 231 + 2 = 2, 147, 483, 650 LMIs of the size 62 × 62 in variables

Y ∈ S62, Z ∈ R1×63, which is a bit too much... In contrast, the approximation (3.5.14) is

a system of just 31 + 2 = 33 LMIs of the size 62 × 62 in variables {Y` ∈ S62}31`=1, Y ∈ S62,

Z ∈ R1×63 (totally (31 + 1)62·632 + 63 = 60606 scalar decision variables). One can argue

that the latter problem still is too large from a practical perspective. But in fact it can be

shown that in this problem, one can easily eliminate the matrices Y` (every one of them can

be replaced with a single scalar decision variable, cf. Antenna example on p. 112), which

reduces the design dimension of the approximation to 31 + 62·63
2 + 63 = 2047. A convex

problem of this size can be solved pretty routinely.

We are about to present numerical results related to stabilization of our toy 3-car train. The
setup in our computations is as follows:

κ1 = κ2 = κ3 = 100.0;α = 0.01;χ = 108;
∆′

1 = [0.5, 1.5],∆′
2 = ∆′

3 = ∆′
4 = [1.5, 4.5],

which corresponds to the mass of the engine varying in [2/3, 2] and the masses of the cars varying
in [2/9, 2/3].

We computed, by a kind of bisection, the largest ρ for which the approximation (3.5.14) is
feasible; the optimal feedback we have found is

u = 107
[
− 0.2892x1 − 2.5115x2 + 6.3622x3 − 3.5621x4
−0.0019v1 − 0.0912v2 − 0.0428v3 + 0.1305v4

]
,

and the (lower bound on the) Lyapunov Stability radius of the closed loop system as yielded
by our approximation is ρ̂ = 1.05473. This bound is > 1, meaning that our feedback stabilizes
the train in the above ranges of the masses of the engine and the cars (and in fact, even in
slightly larger ranges 0.65 ≤ m1 ≤ 2.11, 0.22 ≤ m2,m3,m4 ≤ 0.71). An interesting question
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is by how much the lower bound ρ̂ is less than the Lyapunov Stability radius ρ∗ of the closed
loop system. Theory guarantees that the ratio ρ∗/ρ̂ should be ≤ π/2 = 1.570.... In our small
problem we can compute ρ∗ by applying the polytopic uncertainty approach, that results in
ρ∗ = 1.05624. Thus, in reality ρ∗/ρ̂ ≈ 1.0014, much better than the theoretical bound 1.570....
In figure 3.7, we present sample trajectories of the closed loop system yielded by our design, the
level of perturbations being 1.054 — pretty close to ρ̂ = 1.05473.
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Figure 3.7: Sample trajectories of the 3-car train.

3.6 Approximating Chance Constrained CQIs and LMIs

In the first reading this section can be skipped.
Below we develop safe tractable approximations of chance constrained randomly perturbed Conic
Quadratic and Linear Matrix Inequalities. For omitted proofs, see [3].
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3.6.1 Chance Constrained LMIs

We have considered the Robust of uncertain conic quadratic and semidefinite programs. Now we intend
to consider randomly perturbed CQPs and SDPs and to derive safe approximations of their chance
constrained versions (cf. section 2.1). From this perspective, it is convenient to treat chance constrained
CQPs as particular cases of chance constrained SDPs (such an option is given by Lemma 3.1), so that
in the sequel we focus on chance constrained SDPs. Thus, we are interested in a randomly perturbed
semidefinite program

min
y

{
cT y : An(y) + ρ

L∑

`=1

ζ`A`(y) � 0, y ∈ Y
}
, (3.6.1)

where An(y) and all A`(y) are affine in y, ρ ≥ 0 is the “perturbation level,” ζ = [ζ1; ...; ζL] is a random
perturbation, and Y is a semidefinite representable set. We associate with this problem its chance
constrained version

min
y

{
cT y : Prob

{
An(y) + ρ

L∑

`=1

ζ`A`(y) � 0

}
≥ 1− ε, y ∈ Y

}
(3.6.2)

where ε � 1 is a given positive tolerance. Our goal is to build a computationally tractable safe ap-
proximation of (3.6.2). We start with assumptions on the random variables ζ`, which will be in force
everywhere in the following:

Random variables ζ`, ` = 1, ..., L, are independent with zero mean satisfying either
A.I [“bounded case”] |ζ`| ≤ 1, ` = 1, ..., L,
or
A.II [“Gaussian case”] ζ` ∼ N (0, 1), ` = 1, ..., L.

Note that most of the results to follow can be extended to the case when ζ` are independent with zero
means and “light tail” distributions. We prefer to require more in order to avoid too many technicalities.

Approximating Chance Constrained LMIs: Preliminaries

The problem we are facing is basically as follows:

(?) Given symmetric matrices A,A1,...,AL, find a verifiable sufficient condition for the rela-
tion

Prob{
L∑

`=1

ζ`A` � A} ≥ 1− ε. (3.6.3)

Since ζ is with zero mean, it is natural to require A � 0 (this condition clearly is necessary when ζ is
symmetrically distributed w.r.t. 0 and ε < 0.5). Requiring a bit more, namely, A � 0, we can reduce the
situation to the case when A = I, due to

Prob{
L∑

`=1

ζ`A` � A} = Prob{
L∑

`=1

ζ`A
−1/2A`A

−1/2

︸ ︷︷ ︸
B`

� I}. (3.6.4)

Now let us try to guess a verifiable sufficient condition for the relation

Prob{
L∑

`=1

ζ`B` � I} ≥ 1− ε. (3.6.5)
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First of all, we do not lose much when strengthening the latter relation to

Prob{‖
L∑

`=1

ζ`B`‖ ≤ 1} ≥ 1− ε (3.6.6)

(here and in what follows, ‖ · ‖ stands for the standard matrix norm ‖ · ‖2,2). Indeed, the latter condition
is nothing but

Prob{−I �
L∑

`=1

ζ`B` � I} ≥ 1− ε,

so that it implies (3.6.5). In the case of ζ symmetrically distributed w.r.t. the origin, we have a “nearly
inverse” statement: the validity of (3.6.5) implies the validity of (3.6.6) with ε increased to 2ε.

The central observation is that whenever (3.6.6) holds true and the distribution of the random matrix

S =

L∑

`=1

ζ`B`

is not pathological, we should have
E{‖S2‖} ≤ O(1),

whence, by Jensen’s Inequality,
‖E{S2}‖ ≤ O(1)

as well. Taking into account that E{S2} =
L∑

`=1

E{ζ2` }B2
` , we conclude that when all quantities E{ζ2` } are

of order of 1, we should have ‖∑L
`=1B

2
` ‖ ≤ O(1), or, which is the same,

L∑

`=1

B2
` � O(1)I. (3.6.7)

By the above reasoning, (3.6.7) is a kind of a necessary condition for the validity of the chance constraint
(3.6.6), at least for random variables ζ` that are symmetrically distributed w.r.t. the origin and are “of
order of 1.” To some extent, this condition can be treated as nearly sufficient, as is shown by the following
two theorems.

Theorem 3.14 Let B1, ..., BL ∈ Sm be deterministic matrices such that

L∑

`=1

B2
` � I (3.6.8)

and Υ > 0 be a deterministic real. Let, further, ζ`, ` = 1, ..., L, be independent random variables taking
values in [−1, 1] such that

χ ≡ Prob

{
‖

L∑

`=1

ζ`B`‖ ≤ Υ

}
> 0. (3.6.9)

Then

∀Ω > Υ : Prob

{
‖

L∑

`=1

ζ`B`‖ > Ω

}
≤ 1

χ
exp{−(Ω−Υ)2/16}. (3.6.10)
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Proof. Let Q = {z ∈ RL : ‖∑
`

z`B`‖ ≤ 1}. Observe that

‖[
∑

`

z`B`]u‖2 ≤
∑

`

|z`|‖B`u‖2 ≤
(∑

`

z2`

)1/2(∑

`

uTB2
`u

)1/2

≤ ‖z‖2‖u‖2,

where the concluding relation is given by (3.6.8). It follows that ‖∑` z`B`‖ ≤ ‖z‖2, whence Q contains
the unit ‖ ·‖2-ball B centered at the origin in RL. Besides this, Q is clearly closed, convex and symmetric
w.r.t. the origin. Invoking the Talagrand Inequality (Theorem A.9), we have

E
{
exp{dist2‖·‖2

(ζ,ΥQ)/16}
}
≤ (Prob{ζ ∈ ΥQ})−1

=
1

χ
. (3.6.11)

Now, when ζ is such that ‖
L∑

`=1

ζ`B`‖ > Ω, we have ζ 6∈ ΩQ, whence, due to symmetry and convexity of

Q, the set (Ω−Υ)Q+ ζ does not intersect the set ΥQ. Since Q contains B, the set (Ω−Υ)Q+ ζ contains
‖ ·‖2-ball, centered at ζ, of the radius Ω−Υ, and therefore this ball does not intersect ΥQ either, whence
dist‖·‖2

(ζ,ΥQ) > Ω−Υ. The resulting relation

‖
L∑

`=1

ζ`B`‖ > Ω⇔ ζ 6∈ ΩQ⇒ dist‖·‖2
(ζ,ΥQ) > Ω−Υ

combines with (3.6.11) and the Tschebyshev Inequality to imply that

Prob{‖
L∑

`=1

ζ`B`‖ > Ω} ≤ 1

χ
exp{−(Ω−Υ)2/16}. �

Theorem 3.15 Let B1, ..., BL ∈ Sm be deterministic matrices satisfying (3.6.8) and Υ > 0 be a deter-
ministic real. Let, further, ζ`, ` = 1, ..., L, be independent N (0, 1) random variables such that (3.6.9)
holds true with χ > 1/2.

Then

∀Ω ≥ Υ : Prob{‖
L∑

`=1

ζ`B`‖ > Ω}

≤ Erf
(
ErfInv(1 − χ) + (Ω−Υ)max[1,Υ−1ErfInv(1 − χ)]

)

≤ exp{−Ω2Υ−2ErfInv2(1− χ)
2 },

(3.6.12)

where Erf(·) and ErfInv(·) are the error and the inverse error functions, see (2.2.6), (2.2.7).

Proof. Let Q = {z ∈ R
L : ‖∑` z`B`‖ ≤ Υ}. By the same argument as in the beginning of the proof of

Theorem 3.14, Q contains the centered at the origin ‖ · ‖2-ball of the radius Υ. Besides this, by definition
of Q we have Prob{ζ ∈ Q} ≥ χ. Invoking item (i) of Theorem A.10, Q contains the centered at the origin
‖ · ‖2-ball of the radius r = max[ErfInv(1 − χ),Υ], whence, by item (ii) of this Theorem, (3.6.12) holds
true. �

The last two results are stated next in a form that is better suited for our purposes.

Corollary 3.1 Let A,A1, ..., AL be deterministic matrices from Sm such that

∃{Y`}L`=1 :





[
Y` A`

A` A

]
� 0, 1 ≤ ` ≤ L

L∑
`=1

Y` � A
, (3.6.13)
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let Υ > 0, χ > 0 be deterministic reals and ζ1, ..., ζL be independent random variables satisfying either
A.I, or A.II, and such that

Prob{−ΥA �
L∑

`=1

ζ`A` � ΥA} ≥ χ. (3.6.14)

Then
(i) When ζ` satisfy A.I, we have

∀Ω > Υ : Prob{−ΩA �
L∑

`=1

ζ`A` � ΩA} ≥ 1− 1

χ
exp{−(Ω−Υ)2/16}; (3.6.15)

(ii) When ζ` satisfy A.II, and, in addition, χ > 0.5, we have

∀Ω > Υ : Prob{−ΩA �
L∑

`=1

ζ`A` � ΩA}

≥ 1− Erf
(
ErfInv(1 − χ) + (Ω−Υ)max

[
1,

ErfInv(1− χ)
Υ

])
,

(3.6.16)

with Erf(·), ErfInv(·) given by (2.2.6), (2.2.7).

Proof. Let us prove (i). Given positive δ, let us set Aδ = A + δI. Observe that the premise in (3.6.14)
clearly implies that A � 0, whence Aδ � 0. Now let Y` be such that the conclusion in (3.6.13) holds true.

Then

[
Y` A`

A` Aδ

]
� 0, whence, by the Schur Complement Lemma, Y` � A`[A

δ]−1A`, so that

∑

`

A`[A
δ]−1A` �

∑

`

Y` � A � Aδ.

We see that ∑

`

[
[Aδ]−1/2A`[A

δ]−1/2

︸ ︷︷ ︸
Bδ

`

]2 � I.

Further, relation (3.6.14) clearly implies that

Prob{−ΥAδ �
∑

`

ζ`A` � ΥAδ} ≥ χ,

or, which is the same,

Prob{−ΥI �
∑

`

ζ`B
δ
` � ΥI} ≥ χ.

Applying Theorem 3.14, we conclude that

Ω > Υ⇒ Prob{−ΩI �
∑

`

ζ`B
δ
` � ΩI} ≥ 1− 1

χ
exp{−(Ω−Υ)2/16},

which in view of the structure of Bδ
` is the same as

Ω > Υ⇒ Prob{−ΩAδ �
∑

`

ζ`A` � ΩAδ} ≥ 1− 1

χ
exp{−(Ω−Υ)2/16}. (3.6.17)

For every Ω > Υ, the sets {ζ : −ΩA1/t � ∑
`

ζ`A` � ΩA1/t}, t = 1, 2, ..., shrink as t grows, and their

intersection over t = 1, 2, ... is the set {ζ : −ΩA �∑
`

ζ`A` � ΩA}, so that (3.6.17) implies (3.6.15), and

(i) is proved. The proof of (ii) is completely similar, with Theorem 3.15 in the role of Theorem 3.14. �
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Comments. When A � 0, invoking the Schur Complement Lemma, the condition (3.6.13) is satisfied
iff it is satisfied with Y` = A`A

−1A`, which in turn is the case iff
∑
`

A`A
−1A` � A, or which is the same,

iff
∑
`

[A−1/2A`A
−1/2]2 � I. Thus, condition (3.6.4), (3.6.7) introduced in connection with Problem (?),

treated as a condition on the variable symmetric matrices A,A1, ..., AL, is LMI-representable, (3.6.13)
being the representation. Further, (3.6.13) can be written as the following explicit LMI on the matrices
A,A1, ..., AL:

Arrow(A,A1, ..., AL) ≡




A A1 ... AL

A1 A
...

. . .

AL A


 � 0. (3.6.18)

Indeed, when A � 0, the Schur Complement Lemma says that the matrix Arrow(A,A1, ..., AL) is � 0 if
and only if ∑

`

A`A
−1A` � A,

and this is the case if and only if (3.6.13) holds. Thus, (3.6.13) and (3.6.18) are equivalent to each other
when A � 0, which, by standard approximation argument, implies the equivalence of these two properties
in the general case (that is, when A � 0). It is worthy of noting that the set of matrices (A,A1, ..., AL)
satisfying (3.6.18) form a cone that can be considered as the matrix analogy of the Lorentz cone (look
what happens when all the matrices are 1× 1 ones).

3.6.2 The Approximation Scheme

To utilize the outlined observations and results in order to build a safe/“almost safe” tractable approxi-
mation of a chance constrained LMI in (3.6.2), we proceed as follows.

1) We introduce the following:

Conjecture 3.1 Under assumptions A.I or A.II, condition (3.6.13) implies the validity of (3.6.14) with
known in advance χ > 1/2 and “a moderate” (also known in advance) Υ > 0.

With properly chosen χ and Υ, this Conjecture indeed is true, see below. We, however, prefer not to stick to the

corresponding worst-case-oriented values of χ and Υ and consider χ > 1/2, Υ > 0 as somehow chosen parameters

of the construction to follow, and we proceed as if we know in advance that our conjecture, with the chosen Υ,

χ, is true. Eventually we shall explain how to justify this tactics.

2) Trusting in Conjecture 3.1, we have at our disposal constants Υ > 0, χ ∈ (0.5, 1] such that
(3.6.13) implies (3.6.14). We claim that modulo Conjecture 3.1, the following systems of LMIs in variables
y, U1, ..., UL are safe tractable approximations of the chance constrained LMI in (3.6.2):
In the case of A.I:

(a)

[
U` A`(y)

A`(y) An(y)

]
� 0, 1 ≤ ` ≤ L

(b) ρ2
L∑

`=1

U` � Ω−2An(y), Ω = Υ+ 4
√
ln(χ−1ε−1);

(3.6.19)

In the case of A.II:

(a)

[
U` A`(y)

A`(y) An(y)

]
� 0, 1 ≤ ` ≤ L

(b) ρ2
L∑

`=1

U` � Ω−2An(y), Ω = Υ+
max[ErfInv(ε)− ErfInv(1− χ),0]

max[1,Υ−1ErfInv(1− χ)]

≤ Υ+max [ErfInv(ε)− ErfInv(1− χ), 0] .

(3.6.20)
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Indeed, assume that y can be extended to a feasible solution (y,U1, ..., UL) of (3.6.19). Let us set A = Ω−1An(y),

A` = ρA`(y), Y` = Ωρ2U`. Then

[
Y` A`

A` A

]
� 0 and

∑
`

Y` � A by (3.6.19). Applying Conjecture 3.1 to the

matrices A,A1, ..., AL, we conclude that (3.6.14) holds true as well. Applying Corollary 3.1.(i), we get

Prob

{
ρ
∑
`

ζ`A`(y) 6� An(y)

}
= Prob

{∑
`

ζ`A` 6� ΩA

}

≤ χ−1 exp{−(Ω−Υ)2/16} = ε,

as claimed.

Relation (3.6.20) can be justified, modulo the validity of Conjecture 3.1, in the same fashion, with item (ii)

of Corollary 3.1 in the role of item (i).

3) We replace the chance constrained LMI problem (3.6.2) with the outlined safe (modulo the
validity of Conjecture 3.1) approximation, thus arriving at the approximating problem

min
y,{U`}




cT y :

[
U` A`(y)
A`(y) An(y)

]
� 0, 1 ≤ ` ≤ L

ρ2
∑
`

U` � Ω−2An(y), y ∈ Y




, (3.6.21)

where Ω is given by the required tolerance and our guesses for Υ and χ according to (3.6.19) or (3.6.20),
depending on whether we are in the case of a bounded random perturbation model (Assumption A.I) or
a Gaussian one (Assumption A.II).

We solve the approximating SDO problem and obtain its optimal solution y∗. If (3.6.21) were indeed
a safe approximation of (3.6.2), we would be done: y∗ would be a feasible suboptimal solution to the
chance constrained problem of interest. However, since we are not sure of the validity of Conjecture 3.1,
we need an additional phase — post-optimality analysis — aimed at justifying the feasibility of y∗ for
the chance constrained problem. Note that at this phase, we should not bother about the validity of
Conjecture 3.1 in full generality — all we need is to justify the validity of the relation

Prob{−ΥA �
∑

`

ζ`A` � ΥA} ≥ χ (3.6.22)

for specific matrices
A = Ω−1An(y∗), A` = ρA`(y∗), ` = 1, ..., L, (3.6.23)

which we have in our disposal after y∗ is found, and which indeed satisfy (3.6.13) (cf. “justification” of
approximations (3.6.19), (3.6.20) in item 2)).

In principle, there are several ways to justify (3.6.22):

1. Under certain structural assumptions on the matrices A, A` and with properly chosen χ,Υ, our
Conjecture 3.1 is provably true. Specifically, we shall see in section 3.6.4 that:

(a) when A, A` are diagonal, (which corresponds to the semidefinite reformulation of a Linear
Optimization problem), Conjecture 3.1 holds true with χ = 0.75 and Υ =

√
3 ln(8m) (recall

that m is the size of the matrices A,A1, ..., AL);

(b) when A, A` are arrow matrices, (which corresponds to the semidefinite reformulation of a
conic quadratic problem), Conjecture 3.1 holds true with χ = 0.75 and Υ = 4

√
2.

2. Utilizing deep results from Functional Analysis, it can be proved (see [3, Proposition B.5.2]) that
Conjecture 3.1 is true for all matrices A,A1, ..., AL when χ = 0.75 and Υ = 4

√
lnmax[m, 3]. It

should be added that in order for our Conjecture 3.1 to be true for all L and all m×m matrices
A,A1, ..., AL with χ not too small, Υ should be at least O(1)

√
lnm with appropriate positive

absolute constant O(1).
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In view of the above facts, we could in principle avoid the necessity to rely on any conjecture. However,
the “theoretically valid” values of Υ, χ are by definition worst-case oriented and can be too conservative
for the particular matrices we are interested in. The situation is even worse: these theoretically valid
values reflect not the worst case “as it is,” but rather our abilities to analyze this worst case and therefore
are conservative estimates of the “true” (and already conservative) Υ, χ. This is why we prefer to use a
technique that is based on guessing Υ, χ and a subsequent “verification of the guess” by a simulation-based
justification of (3.6.22).
Comments. Note that our proposed course of action is completely similar to what we did in section
2.2. The essence of the matter there was as follows: we were interested in building a safe approximation
of the chance constraint

L∑

`=1

ζ`a` ≤ a (3.6.24)

with deterministic a, a1, ..., aL ∈ R and random ζ` satisfying Assumption A.I. To this end, we used the
provable fact expressed by Proposition 2.1:

Whenever random variables ζ1, ..., ζL satisfy A.I and deterministic reals b, a1, ..., aL are such
that √√√√

L∑

`=1

a2` ≤ b,

or, which is the same,

Arrow(b, a1, ..., aL) ≡




b a1 ... aL
a1 b
...

. . .

aL b


 � 0,

one has

∀Ω > 0 : Prob

{
L∑

`=1

ζ`a` ≤ Ωb

}
≥ 1− ψ(Ω),

ψ(Ω) = exp{−Ω2/2}.
As a result, the condition

Arrow(Ω−1a, a1, ..., aL) ≡




Ω−1a a1 ... aL
a1 Ω−1a
...

. . .

aL Ω−1a


 � 0

is sufficient for the validity of the chance constraint

Prob

{∑

`

ζ`a` ≤ a
}
≥ 1− ψ(Ω).

What we are doing under Assumption A.I now can be sketched as follows: we are interested in building
a safe approximation of the chance constraint

L∑

`=1

ζ`A` � A (3.6.25)

with deterministic A,A1, ..., AL ∈ Sm and random ζ` satisfying Assumption A.I. To this end, we use the
following provable fact expressed by Theorem 3.14:
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Whenever random variables ζ1, ..., ζL satisfy A.I and deterministic symmetric matrices
B,A1, ..., AL are such that

Arrow(B,A1, ..., AL) ≡




B A1 ... AL

A1 B
...

. . .

AL B


 � 0, (!)

and

Prob{−ΥB �
∑

`

ζ`A` � ΥB} ≥ χ (∗)

with certain χ,Υ > 0, one has

∀Ω > Υ : Prob

{
L∑

`=1

ζ`A` � ΩB

}
≥ 1− ψΥ,χ(Ω),

ψΥ,χ(Ω) = χ−1 exp{−(Ω−Υ)2/16}.

As a result, the condition

Arrow(Ω−1A,A1, ..., AL) ≡




Ω−1A A1 ... AL

A1 Ω−1A
...

. . .

AL Ω−1A


 � 0

is a sufficient condition for the validity of the chance constraint

Prob

{∑

`

ζ`A` � A
}
≥ 1− ψΥ,χ(Ω),

provided that Ω > Υ and χ > 0, Υ > 0 are such that the matrices B,A1, ..., AL satisfy (∗).
The constructions are pretty similar; the only difference is that in the matrix case we need an

additional “provided that,” which is absent in the scalar case. In fact, it is automatically present in the
scalar case: from the Tschebyshev Inequality it follows that when B,A1, ..., AL are scalars, condition (!)
implies the validity of (∗) with, say, χ = 0.75 and Υ = 2. We now could apply the matrix-case result to
recover the scalar-case, at the cost of replacing ψ(Ω) with ψ2,0.75(Ω), which is not that big a loss.

Conjecture 3.1 suggests that in the matrix case we also should not bother much about “provided
that” — it is automatically implied by (!), perhaps with a somehow worse value of Υ, but still not too
large. As it was already mentioned, we can prove certain versions of the Conjecture, and we can also
verify its validity, for guessed χ, Υ and matrices B,A1, ..., AL that we are interested in, by simulation.
The latter is the issue we consider next.

Simulation-Based Justification of (3.6.22)

Let us start with the following simple situation: there exists a random variable ξ taking value 1 with
probability p and value 0 with probability 1 − p; we can simulate ξ, that is, for every sample size N ,
observe realizations ξN = (ξ1, ..., ξN ) of N independent copies of ξ. We do not know p, and our goal is to
infer a reliable lower bound on this quantity from simulations. The simplest way to do this is as follows:
given “reliability tolerance” δ ∈ (0, 1), a sample size N and an integer L, 0 ≤ L ≤ N , let

p̂N,δ(L) = min

{
q ∈ [0, 1] :

N∑

k=L

(
N

k

)
qk(1− q)N−k ≥ δ

}
.
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The interpretation of p̂N,δ(L) is as follows: imagine we are flipping a coin, and let q be the probability
to get heads. We restrict q to induce chances at least δ to get L or more heads when flipping the coin N
times, and p̂N,δ(L) is exactly the smallest of these probabilities q. Observe that

(L > 0, p̂ = p̂N,δ(L))⇒
N∑

k=L

(
N

k

)
p̂k(1− p̂)N−k = δ (3.6.26)

and that p̂N,δ(0) = 0.
An immediate observation is as follows:

Lemma 3.4 For a fixed N , let L(ξN ) be the number of ones in a sample ξN , and let

p̂(ξN ) = p̂N,δ(L(ξ
N )).

Then
Prob{p̂(ξN ) > p} ≤ δ. (3.6.27)

Proof. Let

M(p) = min



µ ∈ {0, 1, ..., N} :

N∑

k=µ+1

(
N

k

)
pk(1− p)N−k ≤ δ





(as always, a sum over empty set of indices is 0) and let Θ be the event {ξN : L(ξN ) > M(p)}, so that
by construction

Prob{Θ} ≤ δ.
Now, the function

f(q) =

N∑

k=M(p)

(
N

k

)
qk(1− q)N−k

is a nondecreasing function of q ∈ [0, 1], and by construction f(p) > δ; it follows that if ξN is such that
p̂ ≡ p̂(ξN ) > p, then f(p̂) > δ as well:

N∑

k=M(p)

(
N

k

)
p̂k(1− p̂)N−k > δ (3.6.28)

and, besides this, L(ξN ) > 0 (since otherwise p̂ = p̂N,δ(0) = 0 ≤ p). Since L(ξN ) > 0, we conclude from
(3.6.26) that

N∑

k=L(ξN )

(
N

k

)
p̂k(1− p̂)N−k = δ,

which combines with (3.6.28) to imply that L(ξN ) > M(p), that is, ξN in question is such that the event
Θ takes place. The bottom line is: the probability of the event p̂(ξN ) > p is at most the probability of
Θ, and the latter, as we remember, is ≤ δ. �

Lemma 3.4 says that the simulation-based (and thus random) quantity p̂(ξN ) is, with probability at
least 1− δ, a lower bound for unknown probability p ≡ Prob{ξ = 1}. When p is not small, this bound is
reasonably good already for moderate N , even when δ is extremely small, say, δ = 10−10. For example,
here are simulation results for p = 0.8 and δ = 10−10:

N 10 100 1, 000 10, 000 100, 000
p̂ 0.06032 0.5211 0.6992 0.7814 0.7908

.

Coming back to our chance constrained problem (3.6.2), we can now use the outlined bounding scheme
in order to carry out post-optimality analysis, namely, as follows:
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Acceptance Test: Given a reliability tolerance δ ∈ (0, 1), guessed Υ, χ and a solution
y∗ to the associated problem (3.6.21), build the matrices (3.6.23). Choose an integer N ,
generate a sample of N independent realizations ζ1, ..., ζN of the random vector ζ, compute
the quantity

L = Card{i : −ΥA �
L∑

`=1

ζi`A` � ΥA}

and set
χ̂ = p̂N,δ(L).

If χ̂ ≥ χ, accept y∗, that is, claim that y∗ is a feasible solution to the chance constrained
problem of interest (3.6.2).

By the above analysis, the random quantity χ̂ is, with probability ≥ 1 − δ, a lower bound on p ≡
Prob{−ΥA � ∑

`

ζ`A` � ΥA}, so that the probability to accept y∗ in the case when p < χ is at most

δ. When this “rare event” does not occur, the relation (3.6.22) is satisfied, and therefore y∗ is indeed
feasible for the chance constrained problem. In other words, the probability to accept y∗ when it is not
a feasible solution to the problem of interest is at most δ.

The outlined scheme does not say what to do if y∗ does not pass the Acceptance Test. A naive
approach would be to check whether y∗ satisfies the chance constraint by direct simulation. This approach
indeed is workable when ε is not too small (say, ε ≥ 0.001); for small ε, however, it would require an
unrealistically large simulation sample. A practical alternative is to resolve the approximating problem
with Υ increased by a reasonable factor (say, 1.1 or 2), and to repeat this “trial and error” process until
the Acceptance Test is passed.

A Modification

The outlined approach can be somehow streamlined when applied to a slightly modified problem (3.6.2),
specifically, to the problem

max
ρ,y

{
ρ : Prob

{
An(y) + ρ

L∑

`=1

ζ`A`(y) � 0

}
≥ 1− ε, cT y ≤ τ∗, y ∈ Y

}
(3.6.29)

where τ∗ is a given upper bound on the original objective. Thus, now we want to maximize the level of
random perturbations under the restrictions that y ∈ Y satisfies the chance constraint and is not too bad
in terms of the original objective.

Approximating this problem by the method we have developed in the previous section, we end up
with the problem

min
β,y,{U`}




β :

[
U` A`(y)

A`(y) An(y)

]
� 0, 1 ≤ ` ≤ L

∑
`

U` � βAn(y), cT y ≤ τ∗, y ∈ Y





(3.6.30)

(cf. (3.6.21); in terms of the latter problem, β = (Ωρ)−2, so that maximizing ρ is equivalent to minimizing
β). Note that this problem remains the same whatever our guesses for Υ, χ. Further, (3.6.30) is a so
called GEVP — Generalized Eigenvalue problem; while not being exactly a semidefinite program, it
can be reduced to a “short sequence” of semidefinite programs via bisection in β and thus is efficiently
solvable. Solving this problem, we arrive at a solution β∗, y∗, {U∗

` }; all we need is to understand what
is the “feasibility radius” ρ∗(y∗) of y∗ — the largest ρ for which (y∗, ρ) satisfies the chance constraint
in (3.6.29). As a matter of fact, we cannot compute this radius efficiently; what we will actually build
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is a reliable lower bound on the feasibility radius. This can be done by a suitable modification of the
Acceptance Test. Let us set

A = An(y∗), A` = β
−1/2
∗ A`(y∗), ` = 1, ..., L; (3.6.31)

note that these matrices satisfy (3.6.13). We apply to the matrices A,A1, ..., AL the following procedure:

Randomized r-procedure:

Input: A collection of symmetric matrices A,A1, ..., AL satisfying (3.6.13) and ε, δ ∈ (0, 1).

Output: A random r ≥ 0 such that with probability at least 1− δ one has

Prob{ζ : −A � r
L∑

`=1

ζ`A` � A} ≥ 1− ε. (3.6.32)

Description:

1. We choose a K-point grid Γ = {ω1 < ω2 < ... < ωK} with ω1 ≥ 1 and a reasonably
large ωK , e.g., the grid

ωk = 1.1k

and choose K large enough to ensure that Conjecture 3.1 holds true with Υ = ωK and
χ = 0.75; note that K = O(1) ln(lnm) will do;

2. We simulate N independent realizations ζ1, ..., ζN of ζ and compute the integers

Lk = Card{i : −ωkA �
L∑

`=1

ζi`A` � ωkA}.

We then compute the quantities

χ̂k = p̂N,δ/K(Lk), k = 1, ...,K,

where δ ∈ (0, 1) is the chosen in advance “reliability tolerance.”

Setting

χk = Prob{−ωkA �
L∑

`=1

ζ`A` � ωkA},

we infer from Lemma 3.4 that

χ̂k ≤ χk, k = 1, ..., K (3.6.33)

with probability at least 1− δ.

3. We define a function ψ(s), s ≥ 0, as follows.

In the bounded case (Assumption A.I), we set

ψk(s) =

{
1, s ≤ ωk

min
[
1, χ̂−1

k exp{−(s− ωk)
2/16}

]
, s > ωk;

In the Gaussian case (Assumption A.II), we set

ψk(s) =





1, if χ̂k ≤ 1/2 or s ≤ ωk,

Erf
(
ErfInv(1− χ̂k)

+(s− ωk)max[1, ω−1
k ErfInv(1− χ̂k)]

)
,

otherwise.
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In both cases, we set
ψ(s) = min

1≤k≤K
ψk(s).

We claim that
(!) When (3.6.33) takes place (recall that this happens with probability at least 1− δ),
ψ(s) is, for all s ≥ 0, an upper bound on 1− Prob{−sA �

L∑
`=1

ζ`A` � sA}.

Indeed, in the case of (3.6.33), the matrices A,A1, ..., AL (they from the very beginning are

assumed to satisfy (3.6.13)) satisfy (3.6.14) with Υ = ωk and χ = χ̂k; it remains to apply

Corollary 3.1.

4. We set

s∗ = inf{s ≥ 0 : ψ(s) ≤ ε}, r =
1

s∗

and claim that with this r, (3.6.32) holds true.

Let us justify the outlined construction. Assume that (3.6.33) takes place. Then, by (!), we have

Prob{−sA �
∑

`

ζ` � sA} ≥ 1− ψ(s).

Now, the function ψ(s) is clearly continuous; it follows that when s∗ is finite, we have ψ(s∗) ≤ ε, and therefore

(3.6.32) holds true with r = 1/s∗. If s∗ = +∞, then r = 0, and the validity of (3.6.32) follows from A � 0 (the

latter is due to the fact that A,A1, ..., AL satisfy (3.6.13)).

When applying the Randomized r-procedure to matrices (3.6.31), we end up with r = r∗ satisfying,
with probability at least 1 − δ, the relation (3.6.32), and with our matrices A,A1, ..., AL this relation
reads

Prob{−An(y∗) � r∗β−1/2
∗

L∑

`=1

ζ`A`(y∗) � An(y∗)} ≥ 1− ε.

Thus, setting

ρ̂ =
r∗√
β∗
,

we get, with probability at least 1− δ, a valid lower bound on the feasibility radius ρ∗(y∗) of y∗.

Illustration: Example 3.7 Revisited

Let us come back to the robust version of the Console Design problem (section 3.4.2, Example 3.7), where
we were looking for a console capable (i) to withstand in a nearly optimal fashion a given load of interest,
and (ii) to withstand equally well (that is, with the same or smaller compliance) every “occasional load”
g from the Euclidean ball Bρ = {g : ‖g‖2 ≤ ρ} of loads distributed along the 10 free nodes of the
construction. Formally, our problem was

max
t,r





r :

[
2τ∗ fT

f A(t)

]
� 0

[
2τ∗ rhT

rh A(t)

]
� 0 ∀(h : ‖h‖2 ≤ 1)

t ≥ 0,
∑N

i=1 ti ≤ 1





, (3.6.34)

where τ∗ > 0 and the load of interest f are given and A(t) =
N∑
i=1

tibib
T
i with N = 54 and known

(µ = 20)-dimensional vectors bi. Note that what is now called r was called ρ in section 3.4.2.
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Speaking about a console, it is reasonable to assume that in reality the “occasional load” vector is
random ∼ N (0, ρ2Iµ) and to require that the construction should be capable of carrying such a load
with the compliance ≤ τ∗ with probability at least 1 − ε, with a very small value of ε, say, ε = 10−10.
Let us now look for a console that satisfies these requirements with the largest possible value of ρ. The
corresponding chance constrained problem is

max
t,ρ




ρ :

[
2τ∗ fT

f A(t)

]
� 0

Probh∼N (0,I20)

{[
2τ∗ ρhT

ρh A(t)

]
� 0

}
≥ 1− ε

t ≥ 0,
∑N

i=1 ti ≤ 1




, (3.6.35)

and its approximation (3.6.30) is

min
t,β,{U`}20

`=1





β :

[
2τ∗ fT

f A(t)

]
� 0

[
U` E`

E` Q(t)

]
� 0, 1 ≤ ` ≤ µ = 20

µ∑
`=1

U` � βQ(t), t ≥ 0,
∑N

i=1 ti ≤ 1





, (3.6.36)

where E` = e0e
T
` + e`e

T
0 , e0, ..., eµ are the standard basic orths in Rµ+1 = R21, and Q(t) is the matrix

Diag{2τ∗, A(t)} ∈ Sµ+1 = S21.
Note that the matrices participating in this problem are simple enough to allow us to get without

much difficulty a “nearly optimal” description of theoretically valid values of Υ, χ (see section 3.6.4).
Indeed, here Conjecture 3.1 is valid with every χ ∈ (1/2, 1) provided that Υ ≥ O(1)(1 − χ)−1/2. Thus,
after the optimal solution tch to the approximating problem is found, we can avoid the simulation-based
identification of a lower bound ρ̂ on ρ∗(tch) (that is, on the largest ρ such that (tch, ρ) satisfies the chance
constraint in (3.6.35)) and can get a 100%-reliable lower bound on this quantity, while the simulation-
based technique is capable of providing no more than a (1 − δ)-reliable lower bound on ρ∗(tch) with
perhaps small, but positive δ. It turns out, however, that in our particular problem this 100%-reliable
lower bound on ρ∗(y∗) is significantly (by factor about 2) smaller than the (1 − δ)-reliable bound given
by the outlined approach, even when δ is as small as 10−10. This is why in the experiment we are about
to discuss, we used the simulation-based lower bound on ρ∗(tch).

The results of our experiment are as follows. The console given by the optimal solution to (3.6.36), let
it be called the chance constrained design, is presented in figure 3.8 (cf. figures 3.3, 3.4 representing the
nominal and the robust designs, respectively). The lower bounds on the feasibility radius for the chance
constrained design associated with ε = δ = 10−10 are presented in table 3.3; the plural (“bounds”) comes
from the fact that we worked with three different sample sizes N shown in table 3.3. Note that we can
apply the outlined techniques to bound from below the feasibility radius of the robust design trb — the
one given by the optimal solution to (3.6.34), see figure 3.4; the resulting bounds are presented in table
3.3.

Finally, we note that we can exploit the specific structure of the particular problem in question to
get alternative lower bounds on the feasibility radii of the chance constrained and the robust designs.
Recall that the robust design ensures that the compliance of the corresponding console w.r.t. any load
g of Euclidean norm ≤ r∗ is at most τ∗; here r∗ ≈ 0.362 is the optimal value in (3.6.34). Now, if ρ
is such that Probh∼N (0,I20){ρ‖h‖2 > r∗} ≤ ε = 10−10, then clearly ρ is a 100%-reliable lower bound
on the feasibility radius of the robust design. We can easily compute the largest ρ satisfying the latter
condition; it turns out to be 0.0381, 9% less than the best simulation-based lower bound. Similar
reasoning can be applied to the chance constrained design tch: we first find the largest r = r+ for which
(tch, r) is feasible for (3.6.34) (it turns out that r+ = 0.321), and then find the largest ρ such that
Probh∼N (0,I20){ρ‖h‖2 > r+} ≤ ε = 10−10, ending up with the lower bound 0.0337 on the feasibility
radius of the chance constrained design (25.5% worse than the best related bound in table 3.3).
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f f

(a): reduced 12-node set with
most left nodes fixed and the
load of interest. µ = 20
degrees of freedom.

(b): 54 tentative bars

(c): Chance constrained design,
12 nodes, 33 bars. Compliance
w.r.t. load of interest 1.025.

(d): Deformation of the design
under the load of interest.

(e): Deformation of the design
under “occasional” load 10
times less than the load of
interest.

(f): “Bold dots”: positions of nodes
in deformed design, sample of
100 loads ∼ N (0, 10−2I20)

Figure 3.8: Chance constrained design.
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Lower bound on feasibility radius

Design N = 10, 000 N = 100, 000 N = 1, 000, 000

chance constrained tch 0.0354 0.0414 0.0431
robust trb 0.0343 0.0380 0.0419

Table 3.3: (1− 10−10)-confident lower bounds on feasibility radii for the chance constrained and
the robust designs.

3.6.3 Gaussian Majorization

Under favorable circumstances, we can apply the outlined approximation scheme to random perturbations
that do not fit exactly neither Assumption A.I, nor AssumptionA.II. As an instructive example, consider
the case where the random perturbations ζ`, ` = 1, ..., L, in (3.6.1) are independent and symmetrically
and unimodally distributed w.r.t. 0. Assume also that we can point out scaling factors σ` > 0 such that
the distribution of each ζ` is less diffuse than the Gaussian N (0, σ2

` ) distribution (see Definition 2.2).
Note that in order to build a safe tractable approximation of the chance constrained LMI

Prob

{
An(y) +

L∑

`=1

ζ`A`(y) � 0

}
≥ 1− ε, (3.6.2)

or, which is the same, the constraint

Prob

{
An(y) +

L∑

`=1

ζ̃`Ã`(y) � 0

}
≥ 1− ε

[
ζ̃` = σ−1

` ζ`
Ã`(y) = σ`A`(y)

]

it suffices to build such an approximation for the symmetrized version

Prob{−An(y) �
L∑

`=1

ζ̃`Ã`(y) � An(y)} ≥ 1− ε (3.6.37)

of the constraint. Observe that the random variables ζ̃` are independent and possess symmetric and
unimodal w.r.t. 0 distributions that are less diffuse than the N (0, 1) distribution. Denoting by η`,
` = 1, ..., L, independent N (0, 1) random variables and invoking the Majorization Theorem (Theorem
2.6), we see that the validity of the chance constraint

Prob{−An(y) �
L∑

`=1

η`Ã`(y) � An(y)} ≥ 1− ε

— and this is the constraint we do know how to handle — is a sufficient condition for the validity
of (3.6.37). Thus, in the case of unimodally and symmetrically distributed ζ` admitting “Gaussian
majorants,” we can act, essentially, as if we were in the Gaussian case A.II.

It is worth noticing that we can apply the outlined “Gaussian majorization” scheme even in the case
when ζ` are symmetrically and unimodally distributed in [−1, 1] (a case that we know how to handle
even without the unimodality assumption), and this could be profitable. Indeed, by Example 2.2 (section
2.7.2), in the case in question ζ` are less diffuse than the random variables η` ∼ N (0, 2/π), and we can
again reduce the situation to Gaussian. The advantage of this approach is that the absolute constant
factor 1

16 in the exponent in (3.6.15) is rather small. Therefore replacing (3.6.15) with (3.6.16), even
after replacing our original variables ζ` with their less concentrated “Gaussian majorants” η`, can lead
to better results. To illustrate this point, here is a report on a numerical experiment:
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1) We generated L = 100 matrices A` ∈ S40, ` = 1, ..., L, such that
∑

`A
2
` � I, (which clearly implies

that A = I, A1, ..., AL satisfy (3.6.13));

2) We applied the bounded case version of the Randomized r procedure to the matrices A,A1, ..., AL

and the independent random variables ζ` uniformly distributed on [−1, 1], setting δ and ε to 10−10;

3) We applied the Gaussian version of the same procedure, with the same ε, δ, to the matrices
A,A1, ..., AL and independent N (0, 2/π) random variables η` in the role of ζ`.

In both 2) and 3), we used the same grid ωk = 0.01 · 100.1k, 0 ≤ k ≤ 40.
By the above arguments, both in 2) and in 3) we get, with probability at least 1−10−10, lower bounds

on the largest ρ such that

Prob{−I � ρ
∑L

`=1
ζ`A` � I} ≥ 1− 10−10.

Here are the bounds obtained:

Bounding Lower Bound
scheme N = 1000 N = 10000

2) 0.0489 0.0489
3) 0.185 0.232

We see that while we can process the case of uniformly distributed ζ` “as it is,” it is better to process it
via Gaussian majorization.

To conclude this section, we present another “Gaussian Majorization” result. Its advantage is that it
does not require the random variables ζ` to be symmetrically or unimodally distributed; what we need,
essentially, is just independence plus zero means. We start with some definitions. Let Rn be the space
of Borel probability distributions on R

n with zero mean. For a random variable η taking values in R
n,

we denote by Pη the corresponding distribution, and we write η ∈ Rn to express that Pη ∈ Rn. Let also
CFn be the set of all convex functions f on Rn with linear growth, meaning that there exists cf < ∞
such that |f(u)| ≤ cf (1 + ‖u‖2) for all u.

Definition 3.7 Let ξ, η ∈ Rn. We say that η dominates ξ (notation: ξ �c η, or Pξ �c Pη, or η �c ξ,
or Pη �c Pξ) if ∫

f(u)dPξ(u) ≤
∫
f(u)dPη(u)

for every f ∈ CFn.

Note that in the literature the relation �c is called “convex dominance.” The properties of the relation
�c we need are summarized as follows:

Proposition 3.3

1. �c is a partial order on Rn.

2. If P1, ..., Pk, Q1, ..., Qk ∈ Rn, and Pi �c Qi for every i, then
∑

i λiPi �c

∑
i λiQi for all nonnega-

tive λi with unit sum.

3. If ξ ∈ Rn and t ≥ 1 is deterministic, then tξ �c ξ.

4. Let P1, Q1 ∈ Rr, P2, Q2 ∈ Rs be such that Pi �c Qi, i = 1, 2. Then P1 × P2 �c Q1 × Q2. In
particular, if ξ1, ..., ξn, η1, ..., ηn ∈ R1 are independent and ξi �c ηi for every i, then [ξ1; ...; ξn] �c

[η1; ...; ηn].

5. If ξ1, ..., ξk, η1, ..., ηk ∈ Rn are independent random variables, ξi �c ηi for every i, and Si ∈ Rm×n

are deterministic matrices, then
∑

i Siξi �c

∑
i Siηi.
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6. Let ξ ∈ R1 be supported on [−1, 1] and η ∼ N (0, π/2). Then η �c ξ.

7. If ξ, η are symmetrically and unimodally distributed w.r.t. the origin scalar random variables with
finite expectations and η �m ξ (see section 2.7.2), then η �c ξ as well. In particular, if ξ has
unimodal w.r.t. 0 distribution and is supported on [−1, 1] and η ∼ N (0, 2/π), then η �c ξ (cf.
Example 2.2).

8. Assume that ξ ∈ Rn is supported in the unit cube {u : ‖u‖∞ ≤ 1} and is “absolutely symmetrically
distributed,” meaning that if J is a diagonal matrix with diagonal entries ±1, then Jξ has the same
distribution as ξ. Let also η ∼ N (0, (π/2)In). Then ξ �c η.

9. Let ξ, η ∈ Rr, ξ ∼ N (0,Σ), η ∼ N (0,Θ) with Σ � Θ. Then ξ �c η.

The main result here is as follows.

Theorem 3.16 [Gaussian Majorization [3, Theorem 10.3.3]] Let η ∼ N (0, IL), and let ζ ∈ RL be such
that ζ �c η. Let, further, Q ⊂ RL be a closed convex set such that

χ ≡ Prob{η ∈ Q} > 1/2.

Then for every γ > 1, one has

Prob{ζ 6∈ γQ} ≤ inf
1≤β<γ

1
γ−β

∞∫
β

Erf(rErfInv(1− χ))dr

≤ inf
1≤β<γ

1
2(γ−β)

∞∫
β

exp{−r2ErfInv2(1− χ)/2}dr,
(3.6.38)

where Erf(·), ErfInv(·) are given by (2.2.6), (2.2.7).
The assumption ζ �c η is valid, in particular, if ζ = [ζ1; ...; ζL] with independent ζ` such that Pζ` ∈ R1

and Pζ` �c N (0, 1).

3.6.4 Chance Constrained LMIs: Special Cases

We intend to consider two cases where it is easy to justify Conjecture 3.1. While the structural as-
sumptions on the matrices A,A1, ..., AL in these two cases seem to be highly restrictive, the results
are nevertheless important: they cover the situations arising in randomly perturbed Linear and Conic
Quadratic Optimization. We begin with a slight relaxation of Assumptions A.I–II:

Assumption A.III: The random perturbations ζ1, ..., ζL are independent, zero mean and
“of order of 1,” meaning that

E{exp{ζ2` }} ≤ exp{1}, ` = 1, ..., L.

Note that Assumption A.III is implied by A.I and is “almost implied” by A.II; indeed, ζ` ∼ N (0, 1)

implies that the random variable ζ̃` =
√
(1− e−2)/2ζ` satisfies E{exp{ζ̃2` }} ≤ exp{1}.

The Diagonal Case: Chance Constrained Linear Optimization

Theorem 3.17 Let A,A1, ..., AL ∈ Sm be diagonal matrices satisfying (3.6.13) and let the random vari-

ables ζ` satisfy Assumption A.III. Then, for every χ ∈ (0, 1), with Υ = Υ(χ) ≡
√
3 ln

(
2m
1−χ

)
one

has

Prob{−ΥA �
L∑

`=1

ζ`A` � ΥA} ≥ χ (3.6.39)

(cf. (3.6.14)). In the case of ζ` ∼ N (0, 1), relation (3.6.39) holds true with Υ = Υ(χ) ≡
√
2 ln

(
m

1−χ

)
.
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Proof. It is immediately seen that we lose nothing when assuming that A � 0 (cf. the proof of
Corollary 3.1). With this assumption, passing from diagonal matrices A,A` to the diagonal matrices
B` = A−1/2A`A

−1/2, the statement to be proved reads as follows:

If B` ∈ Sm are deterministic diagonal matrices such that
∑
`

B2
` � I and ζ` satisfy A.III,

then, for every χ ∈ (0, 1), one has

Prob{‖
L∑

`=1

ζ`B`‖ ≤
√
3 ln

(
2m

1− χ

)

︸ ︷︷ ︸
Υ(χ)

} ≥ χ. (3.6.40)

When ζ` ∼ N (0, 1), ` = 1, ..., L, the relation remains true with Υ(χ) reduced to√
2 ln(m/(1− χ)).

The proof of the latter statement is based on the standard argument used in deriving results on large
deviations of sums of “light-tail” independent random variables. First we need the following result.

Lemma 3.5 Let β`, ` = 1, ..., L, γ > 0 be deterministic reals such that
∑
`

β2
` ≤ 1. Then

∀Υ > 0 : Prob

{
|

L∑

`=1

β`ζ`| > Υ

}
≤ 2 exp{−Υ2/3}. (3.6.41)

Proof of Lemma 3.5. Observe, first, that whenever ξ is a random variable with zero mean such that
E{exp{ξ2}} ≤ exp{1}, one has

E{exp{γξ}} ≤ exp{3γ2/4}. (3.6.42)

Indeed, observe that by Holder Inequality the relation E
{
exp{ξ2}

}
≤ exp{1} implies that

E
{
exp{sξ2}

}
≤ exp{s} for all s ∈ [0, 1]. It is immediately seen that exp{x} − x ≤ exp{9x2/16} for

all x. Assuming that 9γ2/16 ≤ 1, we therefore have

E {exp{γξ}} = E {exp{γξ} − γξ} [ξ is with zero mean]

≤ E
{
exp{9γ2ξ2/16}

}

≤ exp{9γ2/16} [since 9γ2/16 ≤ 1]

≤ exp{3γ2/4},

as required in (3.6.42). Now let 9γ2/16 ≥ 1. For all γ we have γξ ≤ 3γ2/8 + 2ξ2/3, whence

E {exp{γξ}} ≤ exp{3γ2/8} exp{2ξ2/3} ≤ exp{3γ2/8 + 2/3}

≤ exp{3γ2/4} [since γ2 ≥ 16/9]

We see that (3.6.42) is valid for all γ.

We now have

E
{
exp{γ∑L

`=1 β`ζ`}
}
=

L∏
`=1

E {exp{γβ`ζ`}} [ζ1, ..., ζL are independent]

≤
L∏

`=1

exp{3γ2β2
` /4} [by Lemma]

≤ exp{3γ2/4} [since ∑` β
2
` ≤ 1].
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We now have
Prob

{∑L
`=1 β`ζ` > Υ

}

≤ minγ≥0 exp{−Υγ}E {exp{γ
∑

` β`ζ`}} [Tschebyshev Inequality]
≤ minγ≥0 exp{−Υγ + 3γ2/4} [by (3.6.42)]
= exp{−Υ2/3}.

Replacing ζ` with −ζ`, we get that Prob {∑` β`ζ` < −Υ} ≤ exp{−Υ2/3} as well, and (3.6.41) follows.
�

Proof of (3.6.39). Let si be the i-th diagonal entry in the random diagonal matrix S =
L∑

`=1

ζ`B`.

Taking into account that B` are diagonal with
∑
`

B2
` � I, we can apply Lemma 3.5 to get the bound

Prob{|si| > Υ} ≤ 2 exp{−Υ2/3};

since ‖S‖ = max
1≤i≤m

|si|, (3.6.40) follows.
Refinements in the case of ζ` ∼ N (0, 1) are evident: here the i-th diagonal entry si in the random diag-

onal matrix S =
∑
`

ζ`B` is ∼ N (0, σ2
i ) with σi ≤ 1, whence Prob{|si| > Υ} ≤ exp{−Υ2/2} and therefore

Prob{‖S‖ > Υ} ≤ m exp{−Υ2/2}, so that Υ(χ) in (3.6.40) can indeed be reduced to
√
2 ln(m/(1− χ)).

�

The case of chance constrained LMI with diagonal matricesAn(y), A`(y) has an important application
— Chance Constrained Linear Optimization. Indeed, consider a randomly perturbed Linear Optimization
problem

min
y

{
cT y : Aζy ≥ bζ

}
(3.6.43)

where Aζ , bζ are affine in random perturbations ζ:

[Aζ , bζ ] = [An, bn] +
L∑

`=1

ζ`[A
`, b`];

as usual, we have assumed w.l.o.g. that the objective is certain. The chance constrained version of this
problem is

min
y

{
cT y : Prob{Aζy ≥ bζ} ≥ 1− ε

}
. (3.6.44)

Setting An(y) = Diag{Any − bn}, A`(y) = Diag{A`y − b`}, ` = 1, ..., L, we can rewrite (3.6.44) equiva-
lently as the chance constrained semidefinite problem

min
y

{
cT y : Prob{Aζ(y) � 0} ≥ 1− ε

}
, Aζ(y) = An(y) +

∑

`

ζ`A`(y), (3.6.45)

and process this problem via the outlined approximation scheme. Note the essential difference between
what we are doing now and what was done in lecture 2. There we focused on safe approximation of chance
constrained scalar linear inequality, here we are speaking about approximating a chance constrained
coordinate-wise vector inequality. Besides this, our approximation scheme is, in general, “semi-analytic”
— it involves simulation and as a result produces a solution that is feasible for the chance constrained
problem with probability close to 1, but not with probability 1.

Of course, the safe approximations of chance constraints developed in lecture 2 can be used to process
coordinate-wise vector inequalities as well. The natural way to do it is to replace the chance constrained
vector inequality in (3.6.44) with a bunch of chance constrained scalar inequalities

Prob {(Aζy − bζ)i ≥ 0} ≥ 1− εi, i = 1, ...,m ≡ dim bζ, (3.6.46)
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where the tolerances εi ≥ 0 satisfy the relation
∑
i

εi = ε. The validity of (3.6.46) clearly is a sufficient

condition for the validity of the chance constraint in (3.6.44), so that replacing these constraints with
their safe tractable approximations from lecture 2, we end up with a safe tractable approximation of
the chance constrained LO problem (3.6.44). A drawback of this approach is in the necessity to “guess”
the quantities εi. The ideal solution would be to treat them as additional decision variables and to
optimize the safe approximation in both y and εi. Unfortunately, all approximation schemes for scalar
chance constraints presented in lecture 2 result in approximations that are not jointly convex in y, {εi}.
As a result, joint optimization in y, εi is more wishful thinking than a computationally solid strategy.
Seemingly the only simple way to resolve this difficulty is to set all εi equal to ε/m.

It is instructive to compare the “constraint-by-constraint” safe approximation of a chance constrained
LO (3.6.44) given by the results of lecture 2 with our present approximation scheme. To this end, let us
focus on the following version of the chance constrained problem:

max
ρ,y

{
ρ : cT y ≤ τ∗,Prob{Aρζy ≥ bρζ} ≥ 1− ε

}
(3.6.47)

(cf. (3.6.29)). To make things as simple as possible, we assume also that ζ` ∼ N (0, 1), ` = 1, ..., L.
The “constraint-by-constraint” safe approximation of (3.6.47) is the chance constrained problem

max
ρ,y

{
ρ : cT y ≤ τ∗,Prob{(Aρζy − bρζ)i ≥ 0} ≥ 1− ε/m

}
,

where m is the number of rows in Aζ . A chance constraint

Prob{(Aρζy − bρζ)i ≥ 0} ≥ 1− ε/m
can be rewritten equivalently as

Prob{[bn −Any]i + ρ

L∑

`=1

[b` −A`y]iζ` > 0} ≤ ε/m.

Since ζ` ∼ N (0, 1) are independent, this scalar chance constraint is exactly equivalent to

[bn −Any]i + ρErfInv(ε/m)

√∑

`

[b` −A`y]2i ≤ 0.

The associated safe tractable approximation of the problem of interest (3.6.47) is the conic quadratic
program

max
ρ,y




ρ : cT y ≤ τ∗,ErfInv(ε/m)

√∑

`

[b` − A`y]2i ≤ [Any − bn]i
ρ

, 1 ≤ i ≤ m




 . (3.6.48)

Now let us apply our new approximation scheme, which treats the chance constrained vector inequality
in (3.6.44) “as a whole.” To this end, we should solve the problem

min
ν,y,{U`}




ν :

cT y ≤ τ∗,
[

U` Diag{A`y − b`}
Diag{A`y − b`} Diag{Any − bn}

]
� 0,

1 ≤ ` ≤ L∑
`

U` � νDiag{Any − bn}, cT y ≤ τ∗




, (3.6.49)

treat its optimal solution y∗ as the y component of the optimal solution to the approximation and then
bound from below the feasibility radius ρ∗(y∗) of this solution, (e.g., by applying to y∗ the Randomized
r procedure). Observe that problem (3.6.49) is nothing but the problem

min
ν,y



ν :

L∑
`=1

[A`y − b]2i /[Any − bn]i ≤ ν[Any − bn]i, 1 ≤ i ≤ m,
Any − bn ≥ 0, cT y ≤ τ∗



 ,

where a2/0 is 0 for a = 0 and is +∞ otherwise. Comparing the latter problem with (3.6.48), we see that
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Problems (3.6.49) and (3.6.48) are equivalent to each other, the optimal values being related
as

Opt(3.6.48) =
1

ErfInv(ε/m)
√
Opt(3.6.49)

.

Thus, the approaches we are comparing result in the same vector of decision variables y∗,
the only difference being the resulting value of a lower bound on the feasibility radius of y∗.
With the “constraint-by-constraint” approach originating from lecture 2, this value is the
optimal value in (3.6.48), while with our new approach, which treats the vector inequality
Ax ≥ b “as a whole,” the feasibility radius is bounded from below via the provable version
of Conjecture 3.1 given by Theorem 3.17, or by the Randomized r procedure.

A natural question is, which one of these approaches results in a less conservative lower bound on the
feasibility radius of y∗. On the theoretical side of this question, it is easily seen that when the second
approach utilizes Theorem 3.17, it results in the same (within an absolute constant factor) value of ρ as
the first approach. From the practical perspective, however, it is much more interesting to consider the
case where the second approach exploits the Randomized r procedure, since experiments demonstrate
that this version is less conservative than the “100%-reliable” one based on Theorem 3.17. Thus, let
us focus on comparing the “constraint-by-constraint” safe approximation of (3.6.44), let it be called
Approximation I, with Approximation II based on the Randomized r procedure. Numerical experiments
show that no one of these two approximations “generically dominates” the other one, so that the best
thing is to choose the best — the largest — of the two respective lower bounds.

The Arrow Case: Chance Constrained Conic Quadratic Optimization

We are about to justify Conjecture 3.1 in the arrow-type case, that is, when the matrices A` ∈ Sm,
` = 1, ..., L, are of the form

A` = [efT
` + f`e

T ] + λ`G, (3.6.50)

where e, f` ∈ Rm, λ` ∈ R and G ∈ Sm. We encounter this case in the Chance Constrained Conic
Quadratic Optimization. Indeed, a Chance Constrained CQI

Prob{‖A(y)ζ + b(y)‖2 ≤ cT (y)ζ + d(y)} ≥ 1− ε, [A(·) : p× q]

can be reformulated equivalently as the chance constrained LMI

Prob{
[
cT (y)ζ + d(y) ζTAT (y) + bT (y)
A(y)ζ + b(y) (cT (y)ζ + d(y))I

]
� 0} ≥ 1− ε (3.6.51)

(see Lemma 3.1). In the notation of (3.6.1), for this LMI we have

An(y) =
[
d(y) bT (y)
b(y) d(y)I

]
, A`(y) =

[
c`(y) aT` (y)
a`(y) c`(y)I

]
,

where a`(y) in (3.6.50) is `-th column of A(y). We see that the matrices A`(y) are arrow-type (p+ 1)×
(p+ 1) matrices where e in (3.6.50) is the first basic orth in Rp+1, f` = [0; a`(y)] and G = Ip+1.

Another example is the one arising in the chance constrained Truss Topology Design problem, see
section 3.6.2.

The justification of Conjecture 3.1 in the arrow-type case is given by the following

Theorem 3.18 Let m×m matrices A1, ..., AL of the form (3.6.50) along with a matrix A ∈ Sm satisfy
the relation (3.6.13), and ζ` be independent with zero means and such that E{ζ2` } ≤ σ2, ` = 1, ..., L (under
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Assumption A.III, one can take σ =
√
exp{1} − 1). Then, for every χ ∈ (0, 1), with Υ = Υ(χ) ≡ 2

√
2σ√

1−χ

one has

Prob{−ΥA �
L∑

`=1

ζ`A` � ΥA} ≥ χ (3.6.52)

(cf. (3.6.14)). When ζ satisfies Assumption A.I, or ζ satisfies Assumption A.II and χ ≥ 6
7 , relation

(3.6.52) is satisfied with Υ = ΥI(χ) ≡ 2 + 4
√
3 ln 4

1−χ and with Υ = ΥII(χ) ≡
√
3
(
1 + 3 ln 1

1−χ

)
,

respectively.

Proof. First of all, when ζ`, ` = 1, ..., L, satisfy Assumption A.III, we indeed have E{ζ2` } ≤ exp{1} − 1
due to t2 ≤ exp{t2} − 1 for all t. Further, same as in the proof of Theorem 3.17, it suffices to consider
the case when A � 0 and to prove the following statement:

Let A` be of the form of (3.6.50) and such that the matrices B` = A−1/2A`A
−1/2 satisfy∑

`

B2
` � I. Let, further, ζ` satisfy the premise in Theorem 3.18. Then, for every χ ∈ (0, 1),

one has

Prob{‖
L∑

`=1

ζ`B`‖ ≤
2
√
2σ√

1− χ} ≥ χ. (3.6.53)

Observe that B` are also of the arrow-type form (3.6.50):

B` = [ghT` + h`g
T ] + λ`H [g = A−1/2e, h` = A−1/2f`, H = A−1/2GA−1/2]

Note that w.l.o.g. we can assume that ‖g‖2 = 1 and then rotate the coordinates to make g the first basic
orth. In this situation, the matrices B` become

B` =

[
q` rT`
r` λ`Q

]
; (3.6.54)

by appropriate scaling of λ`, we can ensure that ‖Q‖ = 1. We have

B2
` =

[
q2` + rT` r` q`r

T
` + λ`r

T
` Q

q`r` + λ`Qr` r`r
T
` + λ2`Q

2

]
.

We conclude that
L∑

`=1

B2
` � Im implies that

∑
`

(q2` + rT` r`) ≤ 1 and [
∑
`

λ2` ]Q
2 � Im−1; since ‖Q2‖ = 1, we

arrive at the relations
(a)

∑
` λ

2
` ≤ 1,

(b)
∑

`(q
2
` + rT` r`) ≤ 1.

(3.6.55)

Now let p` = [0; r`] ∈ Rm. We have

S[ζ] ≡∑` ζ`B` = [gT (
∑

`
ζ`p`

︸ ︷︷ ︸
ξ

) + ξT g] + Diag{
∑

`
ζ`q`

︸ ︷︷ ︸
θ

, (
∑

`
ζ`λ`

︸ ︷︷ ︸
η

)Q}

⇒ ‖S[ζ]‖ ≤ ‖gξT + ξgT ‖+max[|θ|, |η|‖Q‖] = ‖ξ‖2 +max[|θ|, |η|].

Setting

α =
∑

`

rT` r`, β =
∑

`

q2` ,
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we have α+ β ≤ 1 by (3.6.55.b). Besides this,

E{ξT ξ} =
∑

`,`′ E{ζ`ζ`′}pT` p`′ =
∑

` E{ζ2` }rT` r` [ζ` are independent zero mean]

≤ σ2
∑

` r
T
` r` = σ2α

⇒ Prob{‖ξ‖2 > t} ≤ σ2α
t2

∀t > 0 [Tschebyshev Inequality]

E{η2} =
∑

` E{ζ2` }λ2
` ≤ σ2

∑
` λ

2
` ≤ σ2 [ (3.6.55.a)]

⇒ Prob{|η| > t} ≤ σ2

t2
∀t > 0 [Tschebyshev Inequality]

E{θ2} =
∑

` E{ζ2` }q2` ≤ σ2β

⇒ Prob{|θ| > t} ≤ σ2β
t2

∀t > 0 [Tschebyshev Inequality].

Thus, for every Υ > 0 and all λ ∈ (0, 1) we have

Prob{‖S[ζ]‖ > Υ} ≤ Prob{‖ξ‖2 +max[|θ|, |η|] > Υ} ≤ Prob{‖ξ‖2 > λΥ}

+Prob{|θ| > (1− λ)Υ}+ Prob{|η| > (1 − λ)Υ}

≤ σ2

Υ2

[
α
λ2 + β+1

(1−λ)2

]
,

whence, due to α+ β ≤ 1,

Prob{‖S[ζ]‖ > Υ} ≤ σ2

Υ2
max
α∈[0,1]

min
λ∈(0,1)

[
α

λ2
+

2− α
(1− λ)2

]
=

8σ2

Υ2
;

with Υ = Υ(χ), this relation implies (3.6.52).
Assume now that ζ` satisfy Assumption A.I. We should prove that here the relation (3.6.52) holds

true with Υ = ΥI(χ), or, which is the same,

Prob {‖S[ζ]‖ > Υ} ≤ 1− χ, S[ζ] =
∑

`

ζ`B` =

[ ∑
` ζ`q`

∑
` ζ`r

T
`∑

` ζ`r` (
∑

` ζ`λ`)Q

]
. (3.6.56)

Observe that for a symmetric block-matrix P =

[
A BT

B C

]
we have ‖P‖ ≤ ‖

[
‖A‖ ‖B‖
‖B‖ ‖C‖

]
‖, and that

the norm of a symmetric matrix does not exceed its Frobenius norm, whence

‖S[ζ]‖2 ≤ |
∑

`

ζ`q`|2 + 2‖
∑

`

ζ`r`‖22 + |
∑

`

ζ`λ`|2 ≡ α[ζ] (3.6.57)

(recall that ‖Q‖ = 1). Let Eρ be the ellipsoid Eρ = {z : α[z] ≤ ρ2}. Observe that Eρ contains the
centered at the origin Euclidean ball of radius ρ/

√
3. Indeed, applying the Cauchy Inequality, we have

α[z] ≤
(∑

`

z2`

)[∑

`

q2` + 2
∑

`

‖r`‖22 +
∑

`

λ2`

]
≤ 3

∑

`

z2`

(we have used (3.6.55)). Further, ζ` are independent with zero mean and E{ζ2` } ≤ 1 for every `; applying
the same (3.6.55), we therefore get E{α[ζ]} ≤ 3. By the Tschebyshev Inequality, we have

Prob{ζ ∈ Eρ} ≡ Prob{α[ζ] ≤ ρ2} ≥ 1− 3

ρ2
.
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Invoking the Talagrand Inequality (Theorem A.9), we have

ρ2 > 3⇒ E

{
exp{

dist2‖·‖2
(ζ, Eρ)

16
}
}
≤ 1

Prob{ζ ∈ Eρ}
≤ ρ2

ρ2 − 3
.

On the other hand, if r > ρ and α[ζ] > r2, then ζ 6∈ (r/ρ)Eρ and therefore dist‖·‖2
(ζ, Eρ) ≥ (r/ρ −

1)ρ/
√
3 = (r − ρ)/

√
3 (recall that Eρ contains the centered at the origin ‖ · ‖2-ball of radius ρ/

√
3).

Applying the Tschebyshev Inequality, we get

r2 > ρ2 > 3⇒ Prob{α[ζ] > r2} ≤ E

{
exp{dist

2

‖·‖2
(ζ,Eρ)

16 }
}
exp{− (r−ρ)2

48 }

≤ ρ2 exp{− (r−ρ)2

48 }
ρ2−3 .

With ρ = 2, r = ΥI(χ) = 2 + 4
√
3 ln 4

1−χ this bound implies Prob{α[ζ] > r2} ≤ 1 − χ; recalling that
√
α[ζ] is an upper bound on ‖S[ζ]‖, we see that (3.6.52) indeed holds true with Υ = ΥI(χ).
Now consider the case when ζ ∼ N (0, IL). Observe that α[ζ] is a homogeneous quadratic form of

ζ: α[ζ] = ζTAζ, Aij = qiqj + 2rTi rj + λiλj . We see that the matrix A is positive semidefinite, and

Tr(A) =
∑

i(q
2
i + λ2i + 2‖ri‖22) ≤ 3. Denoting by µ` the eigenvalues of A, we have ζTAζ =

∑L
`=1 µ`ξ

2
` ,

where ξ ∼ N (0, IL) is an appropriate rotation of ζ. Now we can use the Bernstein scheme to bound from
above Prob{α[ζ] > ρ2}:

∀(γ ≥ 0,max
`
γµ` < 1/2) :

ln
(
Prob{α[ζ] > ρ2}

)
≤ ln

(
E
{
exp{γζTAζ}

}
exp{−γρ2}

)

= ln
(
E
{
exp{γ∑` µ`ξ

2
` }
})
− γρ2 =

∑
` ln
(
E
{
exp{γµ`ξ

2
` }
})
− γρ2

= − 1
2

∑
` ln(1 − 2µ`γ)− γρ2.

The concluding expression is a convex and monotone function of µ’s running through the box {0 ≤ µ` <
1
2γ }. It follows that when γ < 1/6, the maximum of the expression over the set {µ1, ..., µL ≥ 0,

∑
` µ` ≤ 3}

is − 1
2 ln(1− 6γ)− γρ2. We get

0 ≤ γ < 1

6
⇒ ln

(
Prob{α[ζ] > ρ2}

)
≤ −1

2
ln(1− 6γ)− γρ2.

Optimizing this bound in γ and setting ρ2 = 3(1+∆), ∆ ≥ 0, we get Prob{α[ζ] > 3(1+∆)} ≤ exp{− 1
2 [∆−

ln(1 + ∆)]}. It follows that if χ ∈ (0, 1) and ∆ = ∆(χ) ≥ 0 is such that ∆− ln(1 + ∆) = 2 ln 1
1−χ , then

Prob{‖S[ζ]‖ >
√
3(1 + ∆)} ≤ Prob{α[ζ] > 3(1 + ∆)} ≤ 1− χ.

It is easily seen that when 1 − χ ≤ 1
7 , one has ∆(χ) ≤ 3 ln 1

1−χ , that is, Prob{‖S[ζ]‖ >√
3
(
1 + 3 ln 1

1−χ

)
} ≤ 1− χ, which is exactly what was claimed in the case of Gaussian ζ. �

Application: Recovering Signal from Indirect Noisy Observations

Consider the situation as follows (cf. section 3.2.6): we observe in noise a linear transformation

u = As+ ρξ (3.6.58)
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of a random signal s ∈ Rn; here A is a givenm×nmatrix, ξ ∼ N (0, Im) is the noise, (which is independent
of s), and ρ ≥ 0 is a (deterministic) noise level. Our goal is to find a linear estimator

ŝ(u) = Gu ≡ GAs+ ρGξ (3.6.59)

such that
Prob{‖ŝ(u)− s‖2 ≤ τ∗} ≥ 1− ε, (3.6.60)

where τ∗ > 0 and ε � 1 are given. Note that the probability in (3.6.60) is taken w.r.t. the joint
distribution of s and ξ. We assume below that s ∼ N (0, C) with known covariance matrix C � 0.
Besides this, we assume that m ≥ n and A is of rank n. When there is no observation noise, we can
recover s from u in a linear fashion without any error; it follows that when ρ > 0 is small enough, there
exists G that makes (3.6.60) valid. Let us find the largest such ρ, that is, let us solve the optimization
problem

max
G,ρ
{ρ : Prob{‖(GA− In)s+ ρGξ‖2 ≤ τ∗} ≥ 1− ε} . (3.6.61)

Setting S = C1/2 and introducing a random vector θ ∼ N (0, In) independent of ξ (so that the random
vector [S−1s; ξ] has exactly the same N (0, In+m) distribution as the vector ζ = [θ; ξ]), we can rewrite
our problem equivalently as

max
G,ρ
{ρ : Prob{‖Hρ(G)ζ‖2 ≤ τ∗} ≥ 1− ε} , Hρ(G) = [(GA− In)S, ρG]. (3.6.62)

Let h`ρ(G) be the `-th column in the matrix Hρ(G), ` = 1, ..., L = m + n. Invoking Lemma 3.1, our
problem is nothing but the chance constrained program

max
G,ρ

{
ρ : Prob

{
L∑

`=1

ζ`A`
ρ(G) � τ∗An ≡ τ∗In+1

}
≥ 1− ε

}

A`
ρ(G) =

[
[h`ρ(G)]

T

h`ρ(G)

]
.

(3.6.63)

We intend to process the latter problem as follows:

A) We use our “Conjecture-related” approximation scheme to build a nondecreasing continuous func-
tion Γ(ρ)→ 0, ρ→ +0, and matrix-valued function Gρ (both functions are efficiently computable)
such that

Prob{‖(GA− In)s+ ρGξ‖2 > τ∗} = Prob{
L∑

`=1

ζ`A`
ρ(Gρ) 6� τ∗In+1} ≤ Γ(ρ). (3.6.64)

B) We then solve the approximating problem

max
ρ
{ρ : Γ(ρ) ≤ ε} . (3.6.65)

Clearly, a feasible solution ρ to the latter problem, along with the associated matrix Gρ, form a
feasible solution to the problem of interest (3.6.63). On the other hand, the approximating problem
is efficiently solvable: Γ(ρ) is nondecreasing, efficiently computable and Γ(ρ) → 0 as ρ → +0, so
that the approximating problem can be solved efficiently by bisection. We find a feasible nearly
optimal solution ρ̂ to the approximating problem and treat (ρ̂, Gρ̂) as a suboptimal solution to the
problem of interest. By our analysis, this solution is feasible for the latter problem.

Remark 3.2 In fact, the constraint in (3.6.62) is simpler than a general-type chance constrained conic
quadratic inequality — it is a chance constrained Least Squares inequality (the right hand side is affected
neither by the decision variables, nor by the noise), and as such it admits a Bernstein-type approximation
described in section 2.5.3, see Corollary 2.1. Of course, in the outlined scheme one can use the Bernstein
approximation as an alternative to the Conjecture-related approximation.
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Now let us look at steps A, B in more details.
Step A). We solve the semidefinite program

ν∗(ρ) = min
ν,G

{
ν :

L∑

`=1

(A`
ρ(G))

2 � νIn+1

}
; (3.6.66)

whenever ρ > 0, this problem clearly is solvable. Due to the fact that part of the matrices A`
ρ(G) are

independent of ρ, and the remaining ones are proportional to ρ, the optimal value is a positive continuous
and nondecreasing function of ρ > 0. Finally, ν∗(ρ)→ +0 as ρ→ +0 (look what happens at the point G
satisfying the relation GA = In).

Let Gρ be an optimal solution to (3.6.66). Setting A` = A`
ρ(Gρ)ν

− 1
2∗ (ρ), A = In+1, the arrow-type

matrices A,A1, ..., AL satisfy (3.6.13); invoking Theorem 3.18, we conclude that

χ ∈ [ 67 , 1)⇒ Prob{−Υ(χ)ν
1
2∗ (ρ)In+1 �

L∑
`=1

ζ`A`
ρ(Gρ) � Υ(χ)ν

1
2∗ (ρ)In+1}

≥ χ, Υ(χ) =

√
3
(
1 + 3 ln 1

1−χ

)
.

Now let χ and ρ be such that χ ∈ [6/7, 1) and Υ(χ)
√
ν∗(ρ) ≤ τ∗. Setting

Q = {z : ‖
L∑

`=1

z`A`
ρ(Gρ)‖ ≤ Υ(χ)

√
ν∗(ρ)},

we get a closed convex set such that the random vector ζ ∼ N (0, In+m) takes its values in Q with
probability ≥ χ > 1/2. Invoking Theorem A.10 (where we set α = τ∗/(Υ(χ)

√
ν∗(ρ))), we get

Prob

{
L∑

`=1

ζ`A`
ρ(Gρ) 6� τ∗In+1

}
≤ Erf

(
τ∗ErfInv(1−χ)√

ν∗(ρ)Υ(χ)

)

= Erf

(
τ∗ErfInv(1−χ)√
3ν∗(ρ)[1+3 ln 1

1−χ ]

)
.

Setting

Γ(ρ) = inf
χ




Erf




τ∗ErfInv(1 − χ)√
3ν∗(ρ)

[
1 + 3 ln 1

1−χ

]


 :

χ ∈ [6/7, 1),

3ν∗(ρ)
[
1 + 3 ln 1

1−χ

]
≤ τ2∗





(3.6.67)

(if the feasible set of the right hand side optimization problem is empty, then, by definition, Γ(ρ) = 1),
we ensure (3.6.64). Taking into account that ν∗(ρ) is a nondecreasing continuous function of ρ > 0 that
tends to 0 as ρ→ +0, it is immediately seen that Γ(ρ) possesses these properties as well.
Solving (3.6.66). Good news is that problem (3.6.66) has a closed form solution. To see this, note that
the matrices A`

ρ(G) are pretty special arrow type matrices: their diagonal entries are zero, so that these

(n+1)× (n+1) matrices are of the form

[
[h`ρ(G)]

T

h`ρ(G)

]
with n-dimensional vectors h`ρ(G) affinely

depending on G. Now let us make the following observation:

Lemma 3.6 Let f` ∈ Rn, ` = 1, ..., L, and ν ≥ 0. Then

L∑

`=1

[
fT
`

f`

]2
� νIn+1 (∗)

if and only if
∑
`

fT
` f` ≤ ν.
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Proof. Relation (∗) is nothing but

∑

`

[
fT
` f`

f`f
T
`

]
� νIn+1,

so it definitely implies that
∑
`

fT
` f` ≤ ν. To prove the inverse implication, it suffices to verify that the

relation
∑
`

fT
` f` ≤ ν implies that

∑
`

f`f
T
` � νIn. This is immediate due to Tr(

∑
`

f`f
T
` ) =

∑
`

fT
` f` ≤ ν,

(note that the matrix
∑
`

f`f
T
` is positive semidefinite, and therefore its maximal eigenvalue does not

exceed its trace). �

In view of Lemma 3.6, the optimal solution and the optimal value in (3.6.66) are exactly the same as
their counterparts in the minimization problem

ν = min
G

∑

`

[h`ρ(G)]
Th`ρ(G).

Thus, (3.6.66) is nothing but the problem

ν∗(ρ) = min
G

{
Tr((GA− In)C(GA − I)T ) + ρ2Tr(GGT )

}
. (3.6.68)

The objective in this unconstrained problem has a very transparent interpretation: it is the mean squared
error of the linear estimator ŝ = Gu, the noise intensity being ρ. The matrix G minimizing this objective
is called the Wiener filter; a straightforward computation yields

Gρ = CAT (ACAT + ρ2Im)−1,
ν∗(ρ) = Tr

(
(GρA− In)C(GρA− In)T + ρ2GρG

T
ρ

)
.

(3.6.69)

Remark 3.3 The Wiener filter is one of the oldest and the most basic tools in Signal Processing; it
is good news that our approximation scheme recovers this tool, albeit from a different perspective: we
were seeking a linear filter that ensures that with probability 1 − ε the recovering error does not exceed
a given threshold (a problem that seemingly does not admit a closed form solution); it turned out that
the suboptimal solution yielded by our approximation scheme is the precise solution to a simple classical
problem.

Refinements. The pair (ρ̂, GW = Gρ̂) (“W” stands for “Wiener”) obtained via the outlined approxima-
tion scheme is feasible for the problem of interest (3.6.63). However, we have all reason to expect that our
provably 100%-reliable approach is conservative — exactly because of its 100% reliability. In particular,
it is very likely that ρ̂ is a too conservative lower bound on the actual feasibility radius ρ∗(GW) — the
largest ρ such that (ρ,GW) is feasible for the chance constrained problem of interest. We can try to
improve this lower bound by the Randomized r procedure, e.g., as follows:

Given a confidence parameter δ ∈ (0, 1), we run ν = 10 steps of bisection on the segment ∆ = [ρ̂, 100ρ̂].
At a step t of this process, given the previous localizer ∆t−1 (a segment contained in ∆, with ∆0 = ∆),
we take as the current trial value ρt of ρ the midpoint of ∆t−1 and apply the Randomized r procedure
in order to check whether (ρt, GW) is feasible for (3.6.63). Specifically, we

• compute the L = m + n vectors h`ρt
(GW) and the quantity µt =

√
m+n∑
`=1

‖h`ρt
(GW)‖22. By Lemma

3.6, we have
L∑

`=1

[
A`

ρt
(GW)

]2 � µ2
t In+1,

so that the matrices A = In+1, A` = µ−1
t A`

ρt
(GW) satisfy (3.6.13);
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(K ∗ s)i = 0.2494si−1 + 0.5012si + 0.2494si+1

Figure 3.9: A scanner.

• apply to the matrices A,A1, ..., AL the Randomized r procedure with parameters ε, δ/ν, thus ending
up with a random quantity rt such that “up to probability of bad sampling ≤ δ/ν,” one has

Prob{ζ : −In+1 � rt
L∑

`=1

ζ`A` � In+1} ≥ 1− ε,

or, which is the same,

Prob{ζ : −µt

rt
In+1 �

L∑

`=1

ζ`A`
ρ(GW ) � µt

rt
In+1} ≥ 1− ε. (3.6.70)

Note that when the latter relation is satisfied and µt

rt
≤ τ∗, the pair (ρt, GW) is feasible for (3.6.63);

• finally, complete the bisection step, namely, check whether µt/rt ≤ τ∗. If it is the case, we take as
our new localizer ∆t the part of ∆t−1 to the right of ρt, otherwise ∆t is the part of ∆t−1 to the
left of ρt.

After ν bisection steps are completed, we claim that the left endpoint ρ̃ of the last localizer ∆ν is a lower
bound on ρ∗(GW). Observe that this claim is valid, provided that all ν inequalities (3.6.70) take place,
which happens with probability at least 1− δ.
Illustration: Deconvolution. A rotating scanning head reads random signal s as shown in figure 3.9.
The signal registered when the head observes bin i, 0 ≤ i < n, is

ui = (As)i + ρξi ≡
d∑

j=−d

Kjs(i−j)modn + ρξi, 0 ≤ i < n,

where r = pmodn, 0 ≤ r < n, is the remainder when dividing p by n. The signal s is assumed to
be Gaussian with zero mean and known covariance Cij = E{sisj} depending on (i − j)modn only
(“stationary periodic discrete-time Gaussian process”). The goal is to find a linear recovery ŝ = Gu and
the largest ρ such that

Prob[s;ξ] {‖G(As+ ρξ)− s‖2 ≤ τ∗} ≥ 1− ε.
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Admissible noise
level

Bernstein
approximation

Conjecture-related
approximation

Before refinement 1.92e-4 1.50e-4
After refinement (δ = 1.e-6) 3.56e-4 3.62e-4

Table 3.4: Results of deconvolution experiment.

Noise Prob{‖ŝ− s‖2 > τ∗}
level G = GB G = GW

3.6e-4 0 0
7.2e-4 6.7e-3 6.7e-3
1.0e-3 7.4e-2 7.5e-2

Table 3.5: Empirical value of Prob{‖ŝ − s‖2 > 0.8} based on 10,000 simulations.

We intend to process this problem via the outlined approach using two safe approximations of the chance
constraint of interest — the Conjecture-related and the Bernstein (see Remark 3.2). The recoverymatrices
and critical levels of noise as given by these two approximations will be denoted GW , ρW (”W” for
”Wiener”) and GB , ρB (”B” for ”Bernstein”), respectively.

Note that in the case in question one can immediately verify that the matrices ATA and C commute.
Whenever this is the case, the computational burden to compute GW and GB reduces dramatically.
Indeed, after appropriate rotations of x and y we arrive at the situation where both A and C are diagonal,
in which case in both our approximation schemes one loses nothing by restricting G to be diagonal. This
significantly reduces the dimensions of the convex problems we need to solve.

In the experiment we use

n = 64, d = 1, τ∗ = 0.1
√
n = 0.8, ε = 1.e-4;

C was set to the unit matrix, (meaning that s ∼ N (0, I64)), and the convolution kernel K is the one
shown in figure 3.9. After (GW , ρw) and (GB , ρB) were computed, we used the Randomized r procedure
with δ = 1.e-6 to refine the critical values of noise for GW and GB; the refined values of ρ are denoted
ρ̂W and ρ̂B, respectively.

The results of the experiments are presented in table 3.4. While GB and GW turned out to be close,
although not identical, the critical noise levels as yielded by the Conjecture-related and the Bernstein
approximations differ by ≈ 30%. The refinement increases these critical levels by a factor ≈ 2 and makes
them nearly equal. The resulting critical noise level 3.6e-4 is not too conservative: the simulation results
shown in table 3.5 demonstrate that at a twice larger noise level, the probability for the chance constraint
to be violated is by far larger than the required 1.e-4.

Modifications. We have addressed the Signal Recovery problem (3.6.58), (3.6.59), (3.6.60) in the
case when s ∼ N (0, C) is random, the noise is independent of s and the probability in (3.6.60) is taken
w.r.t. the joint distribution of ξ and s. Next we want to investigate two other versions of the problem.
Recovering a uniformly distributed signal. Assume that the signal s is

(a) uniformly distributed in the unit box {s ∈ Rn : ‖s‖∞ ≤ 1},
or

(b) uniformly distributed on the vertices of the unit box
and is independent of ξ. Same as above, our goal is to ensure the validity of (3.6.60) with as large
ρ as possible. To this end, let us use Gaussian Majorization. Specifically, in the case of (a), let s̃ ∼
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N (0, (2/π)I). As it was explained in section 3.6.3, the condition

Prob{‖(GA− I)s̃+ ρGξ‖2 ≤ τ∗} ≥ 1− ε

is sufficient for the validity of (3.6.60). Thus, we can use the Gaussian case procedure presented in section
3.6.4 with the matrix (2/π)I in the role of C; an estimator that is good in this case will be at least as
good in the case of the signal s.

In case of (b), we can act similarly, utilizing Theorem 3.16. Specifically, let s̃ ∼ N (0, (π/2)I) be
independent of ξ. Consider the parametric problem

ν(ρ) ≡ min
G

{π
2
Tr
(
(GA − I)(GA− I)T

)
+ ρ2Tr(GGT )

}
, (3.6.71)

ρ ≥ 0 being the parameter (cf. (3.6.68) and take into account that the latter problem is equivalent to
(3.6.66)), and let Gρ be an optimal solution to this problem. The same reasoning as on p. 177 shows
that

6/7 ≤ χ < 1⇒ Prob{(s̃, ξ) : ‖(GρA− I)s̃+ ρGρξ‖2 ≤ Υ(χ)ν
1/2
∗ (ρ)} ≥ χ,

Υ(χ) =

√
3
(
1 + 3 ln 1

1−χ

)
.

Applying Theorem 3.16 to the convex set Q = {(z, x) : ‖(GρA − I)z + ρGρx‖2 ≤ Υ(χ)ν
1/2
∗ (ρ) and the

random vectors [s; ξ], [s̃; ξ], we conclude that

∀
(

χ∈[6/7,1)
γ>1

)
: Prob{(s, ξ) : ‖(GρA− I)s+ ρGρξ‖2 > γΥ(χ)ν

1/2
∗ (ρ)}

≤ min
β∈[1,γ)

1
γ−β

∞∫
β

Erf(rErfInv(1− χ))dr.

We conclude that setting

Γ̃(ρ) = inf
χ,γ,β





1
γ−β

∞∫
β

Erf(rErfInv(1− χ))dr :
6/7 ≤ χ < 1, γ > 1

1 ≤ β < γ

γΥ(χ)ν
1/2
∗ (ρ) ≤ τ∗





[
Υ(χ) =

√
3
(
1 + 3 ln 1

1−χ

)]

(Γ̃(ρ) = 1 when the right hand side problem is infeasible), one has

Prob{(s, ξ) : ‖(GρA− I)s+ ρGρξ‖2 > τ∗} ≤ Γ̃(ρ)

(cf. p. 177). It is easily seen that Γ̃(·) is a continuous nondecreasing function of ρ > 0 such that Γ̃(ρ)→ 0
as ρ→ +0, and we end up with the following safe approximation of the Signal Recovery problem:

max
ρ

{
ρ : Γ̃(ρ) ≤ ε

}

(cf. (3.6.65)).
Note that in the above “Gaussian majorization” scheme we could use the Bernstein approximation,

based on Corollary 2.1, of the chance constraint Prob{‖(GA− I)s̃+ ρGξ‖2 ≤ τ∗} ≥ 1− ε instead of the
Conjecture-related approximation.
The case of deterministic uncertain signal. Up to now, signal s was considered as random and
independent of ξ, and the probability in (3.6.60) was taken w.r.t. the joint distribution of s and ξ; as
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a result, certain “rare” realizations of the signal can be recovered very poorly. Our current goal is to
understand what happens when we replace the specification (3.6.60) with

∀(s ∈ S) :
Prob{ξ : ‖Gu− s‖2 ≤ τ∗} ≡ Prob{ξ : ‖(GA− I)s+ ρGξ‖2 ≤ τ∗} ≥ 1− ε, (3.6.72)

where S ⊂ Rn is a given compact set.
Our starting point is the following observation:

Lemma 3.7 Let G, ρ ≥ 0 be such that

Θ ≡ τ2∗
max
s∈S

sT (GA− I)T (GA− I)s+ ρ2Tr(GTG)
≥ 1. (3.6.73)

Then for every s ∈ S one has

Probζ∼N (0,I) {‖(GA− I)s+ ρGζ‖2 > τ∗} ≤ exp
{
− (Θ−1)2

4(Θ+1)

}
. (3.6.74)

Proof. There is nothing to prove when Θ = 1, so that let Θ > 1. Let us fix s ∈ S and let g = (GA− I)s,
W = ρ2GTG, w = ρGT g. We have

Prob{‖(GA− I)s+ ρGζ‖2 > τ∗} = Prob
{
‖g + ρGζ‖22 > τ2∗

}

= Prob
{
ζT [ρ2GTG]ζ + 2ζT ρGT g > τ2∗ − gT g

}

= Prob
{
ζTWζ + 2ζTw > τ2∗ − gT g

}
.

(3.6.75)

Denoting by λ the vector of eigenvalues of W , we can assume w.l.o.g. that λ 6= 0, since otherwiseW = 0,
w = 0 and thus the left hand side in (3.6.75) is 0 (note that τ2∗ −gT g > 0 due to (3.6.73) and since s ∈ S),
and thus (3.6.74) is trivially true. Setting

Ω =
τ2∗ − gTg√
λTλ+ wTw

and invoking Proposition 2.3, we arrive at

Prob{‖(GA− I)s+ ρGζ‖2 > τ∗} ≤ exp

{
− Ω2

√
λT λ+wTw

4
[
2
√

λTλ+wTw+‖λ‖∞Ω
]
}

= exp
{
− [τ2

∗−gT g]2

4[2[λTλ+wTw]+‖λ‖∞[τ2
∗−gT g]]

}

= exp
{
− [τ2

∗−gT g]2

4[2[λTλ+gT [ρ2GGT ]g]+‖λ‖∞[τ2
∗−gT g]]

}

≤ exp
{
− [τ2

∗−gT g]2

4‖λ‖∞[2[‖λ‖1+gT g]+[τ2
∗−gT g]]

}
,

(3.6.76)

where the concluding inequality is due to ρ2GGT � ‖λ‖∞I and λTλ ≤ ‖λ‖∞‖λ‖1. Further, setting
α = gT g, β = Tr(ρ2GTG) and γ = α + β, observe that β = ‖λ‖1 ≥ ‖λ‖∞ and τ2∗ ≥ Θγ ≥ γ by (3.6.73).
It follows that

[τ2∗ − gTg]2
4‖λ‖∞ [2[‖λ‖1 + gTg] + [τ2∗ − gT g]]

≥ (τ2∗ − γ + β)2

4β(τ2∗ + γ + β)
≥ (τ2∗ − γ)2

4γ(τ2∗ + γ)
,

where the concluding inequality is readily given by the relations τ2∗ ≥ γ ≥ β > 0. Thus, (3.6.76) implies
that

Prob{‖(GA− I)s+ ρGζ‖2 > τ∗} ≤ exp

{
− (τ2∗ − γ)2
4γ(τ2∗ + γ)

}
≤ exp

{
− (Θ− 1)2

4(Θ + 1)

}
. �
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Lemma 3.7 suggests a safe approximation of the problem of interest as follows. Let Θ(ε) > 1 be given
by

exp{− (Θ− 1)2

4(Θ + 1)
} = ε [⇒ Θ(ε) = (4 + o(1)) ln(1/ε) as ε→ +0]

and let
φ(G) = max

s∈S
sT (GA− I)T (GA− I)s, (3.6.77)

(this function clearly is convex). By Lemma 3.7, the optimization problem

max
ρ,G

{
ρ : φ(G) + ρ2Tr(GTG) ≤ γ∗ ≡ Θ−1(ε)τ2∗

}
(3.6.78)

is a safe approximation of the problem of interest. Applying bisection in ρ, we can reduce this problem
to a “short series” of convex feasibility problems of the form

find G: φ(G) + ρ2Tr(GTG) ≤ γ∗. (3.6.79)

Whether the latter problems are or are not computationally tractable depends on whether the function
φ(G) is so, which happens if and only if we can efficiently optimize positive semidefinite quadratic forms
sTQs over S.
Example 3.8 Let S be an ellipsoid centered at the origin:

S = {s = Hv : vT v ≤ 1}

In this case, it is easy to compute φ(G) — this function is semidefinite representable:

φ(G) ≤ t⇔ max
s∈S

sT (GA− I)T (GA− I)s ≤ t

⇔ max
v:‖v‖2≤1

vT (HT (GA− I)T (GA− I)Hv ≤ t

⇔ λmax(H
T (GA− I)T (GA − I)H) ≤ t

⇔ tI −HT (GA− I)T (GA− I)H � 0⇔
[

tI HT (GA− I)T
(GA− I)H I

]
� 0,

where the concluding ⇔ is given by the Schur Complement Lemma. Consequently, (3.6.79) is the effi-
ciently solvable convex feasibility problem

Find G, t: t+ ρ2Tr(GTG) ≤ γ∗,
[

tI HT (GA− I)T
(GA − I)H I

]
� 0.

Example 3.8 allows us to see the dramatic difference between the case where we are interested in “highly
reliable with high probability” recovery of a random signal and “highly reliable” recovery of every
realization of uncertain signal. Specifically, assume that G, ρ are such that (3.6.60) is satisfied with
s ∼ N (0, In). Note that when n is large, s is nearly uniformly distributed over the sphere S of radius√
n (indeed, sT s =

∑
i

s2i , and by the Law of Large Numbers, for δ > 0 the probability of the event

{‖s‖2 6∈ [(1−δ)√n, (1+δ)√n]} goes to 0 as n→∞, in fact exponentially fast. Also, the direction s/‖s‖2
of s is uniformly distributed on the unit sphere). Thus, the recovery in question is, essentially, a highly
reliable recovery of random signal uniformly distributed over the above sphere S. Could we expect the
recovery to “nearly satisfy” (3.6.72), that is, to be reasonably good in the worst case over the signals
from S? The answer is negative when n is large. Indeed, a sufficient condition for (3.6.60) to be satisfied
is

Tr((GA− I)T (GA− I)) + ρ2Tr(GTG) ≤ τ2∗
O(1) ln(1/ε)

(∗)
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with appropriately chosen absolute constant O(1). A necessary condition for (3.6.72) to be satisfied is

nλmax((GA− I)T (GA− I)) + ρ2Tr(GTG) ≤ O(1)τ2∗ . (∗∗)

Since the trace of the n× n matrix Q = (GA− I)T (GA− I) can be nearly n times less than nλmax(Q),
the validity of (∗) by far does not imply the validity of (∗∗). To be more rigorous, consider the case when
ρ = 0 and GA− I = Diag{1, 0, ..., 0}. In this case, the ‖ · ‖2-norm of the recovering error, in the case of
s ∼ N (0, In), is just |s1|, and Prob{|s1| > τ∗} ≤ ε provided that τ∗ ≥

√
2 ln(2/ε), in particular, when

τ∗ =
√
2 ln(2/ε). At the same time, when s =

√
n[1; 0; ...; 0] ∈ S, the norm of the recovering error is

√
n,

which, for large n, is incomparably larger than the above τ∗.

Example 3.9 Here we consider the case where φ(G) cannot be computed efficiently, specifically, the case
where S is the unit box Bn = {s ∈ Rn : ‖s‖∞ ≤ 1} (or the set Vn of vertices of this box). Indeed, it is
known that for a general-type positive definite quadratic form sTQs, computing its maximum over the unit
box is NP-hard, even when instead of the precise value of the maximum its 4%-accurate approximation
is sought. In situations like this we could replace φ(G) in the above scheme by its efficiently computable

upper bound φ̂(G). To get such a bound in the case when S is the unit box, we can use the following
wonderful result:

Nesterov’s π
2 Theorem [76] Let A ∈ Sn

+. Then the efficiently computable quantity

SDP(A) = min
λ∈Rn

{∑

i

λi : Diag{λ} � A
}

is an upper bound, tight within the factor π
2 , on the quantity

Opt(A) = max
s∈Bn

sTAs.

Assuming that S is Bn (or Vn), Nesterov’s
π
2 Theorem provides us with an efficiently computable and

tight, within the factor π
2 , upper bound

φ̂(G) = min
λ

{∑

i

λi :

[
Diag(λ) (GA− I)T
GA− I I

]
� 0

}

on φ(G). Replacing φ(·) by its upper bound, we pass from the intractable problems (3.6.79) to their
tractable approximations

find G, λ:
∑

i

λi + ρ2Tr(GTG) ≤ γ∗,
[

Diag(λ) (GA − I)T
GA− I I

]
� 0; (3.6.80)

we then apply bisection in ρ to rapidly approximate the largest ρ = ρ∗, along with the associated G = G∗,
for which problems (3.6.80) are solvable, thus getting a feasible solution to the problem of interest.

3.7 Exercises

Exercise 3.1 Consider a semi-infinite conic constraint

∀(ζ ∈ ρZ) : a0[x] +
L∑

`=1

ζia`[x] ∈ Q (CZ [ρ])
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Assume that for certain ϑ and some closed convex set Z∗, 0 ∈ Z∗, the constraint (CZ∗ [·]) admits
a safe tractable approximation tight within the factor ϑ. Now let Z be a closed convex set that
can be approximated, up to a factor λ, by Z∗, meaning that for certain γ > 0 we have

γZ∗ ⊂ Z ⊂ (λγ)Z∗.

Prove that (CZ [·]) admits a safe tractable approximation, tight within the factor λϑ.

Exercise 3.2 Let ϑ ≥ 1 be given, and consider the semi-infinite conic constraint (CZ [·]) “as
a function of Z,” meaning that a`[·], 0 ≤ ` ≤ L, and Q are once and forever fixed. In what
follows, Z always is a solid (convex compact set with a nonempty interior) symmetric w.r.t. 0.

Assume that whenever Z is an ellipsoid centered at the origin, (CZ [·]) admits a safe tractable
approximation tight within factor ϑ (as it is the case for ϑ = 1 when Q is the Lorentz cone, see
section 3.2.5).

1. Prove that when Z is the intersection of M centered at the origin ellipsoids:

Z = {ζ : ζTQiζ ≤ 1, i = 1, ...,M} [Qi � 0,
∑

iQi � 0]

(CZ [·]) admits a safe tractable approximation tight within the factor
√
Mϑ.

2. Prove that if Z = {ζ : ‖ζ‖∞ ≤ 1}, then (CZ [·]) admits a safe tractable approximation
tight within the factor ϑ

√
dim ζ.

3. Assume that Z is the intersection of M ellipsoids not necessarily centered at the origin.
Prove that then (CZ [·]) admits a safe tractable approximation tight within a factor

√
2Mϑ.

Exercise 3.3 Consider the situation as follows (cf. section 3.2.6). We are given an observation

y = Ax+ b ∈ R
m

of unknown signal x ∈ R
n. The matrix B ≡ [A; b] is not known exactly; all we know is that

B ∈ B = {B = Bn + LT∆R : ∆ ∈ R
p×q, ‖∆‖2,2 ≤ ρ}. Build an estimate v of the vector Qx,

where Q is a given k × n matrix, that minimizes the worst-case, over all possible true values of
x, ‖ · ‖2 estimation error.

Exercise 3.4 Consider an uncertain Least Squares inequality

‖A(η)x + b(η)‖2 ≤ τ, η ∈ ρZ

where Z, 0 ∈ intZ, is a symmetric w.r.t. the origin convex compact set that is the intersection
of J > 1 ellipsoids not necessarily centered at the origin:

Z = {η : (η − aj)TQj(η − aj) ≤ 1, 1 ≤ j ≤ J} [Qj � 0,
∑

j Qj � 0]

Prove that the RC of the uncertain inequality in question admits a safe tractable approximation
tight within the factor O(1)

√
ln J (cf. Theorem 3.9).
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Exercise 3.5 [Robust Linear Estimation, see [44]] Let a signal v ∈ R
n be observed according

to
y = Av + ξ,

where A is an m× n matrix, known up to “unstructured norm-bounded perturbation”:

A ∈ A = {A = An + LT∆R : ∆ ∈ R
p×q, ‖∆‖2,2 ≤ ρ},

and ξ is a zero mean random noise with a known covariance matrix Σ. Our a priori information
on v is that

v ∈ V = {v : vTQv ≤ 1},
where Q � 0. We are looking for a linear estimate

v̂ = Gy

with the smallest possible worst-case mean squared error

EstErr = sup
v∈V,A∈A

(
E
{
‖G[Av + ξ]− v‖22

})1/2

(cf. section 3.2.6).
1) Reformulate the problem of building the optimal estimate equivalently as the RC of

uncertain semidefinite program with unstructured norm-bounded uncertainty and reduce this
RC to an explicit semidefinite program.

2) Assume that m = n, Σ = σ2In, and the matrices AT
nAn and Q commute, so that An =

VDiag{a}UT and Q = UDiag{q}UT for certain orthogonal matrices U, V and certain vectors
a ≥ 0, q > 0. Let, further, A = {An +∆ : ‖∆‖2,2 ≤ ρ}. Prove that in the situation in question
we lose nothing when looking for G in the form of

G = UDiag{g}V T ,

and build an explicit convex optimization program with just two variables specifying the optimal
choice of G.

Exercise 3.6
1) Let p, q ∈ R

n and λ > 0. Prove that λppT + 1
λqq

T � ±[pqT + qpT ].
2) Let p, q be as in 1) with p, q 6= 0, and let Y ∈ Sn be such that Y � ±[pqT + qpT ]. Prove

that there exists λ > 0 such that Y � λppT + 1
λqq

T .
3) Consider the semi-infinite LMI of the following specific form:

∀(ζ ∈ R
L : ‖ζ‖∞ ≤ 1) : An(x) + ρ

L∑

`=1

ζ`
[
LT
` (x)R` +RT

` L`(x)
]
� 0, (3.7.1)

where LT
` (x), R

T
` ∈ R

n, R` 6= 0 and L`(x) are affine in x, as is the case in Lyapunov Stability
Analysis/Synthesis under interval uncertainty (3.5.7) with µ = 1.

Prove that the safe tractable approximation, tight within the factor π/2, of (3.7.1), that is,
the system of LMIs

Y` � ±
[
LT
` (x)R` +RT

` L`(x)
]
, 1 ≤ ` ≤ L

An(x)− ρ
∑L

`=1 Y` � 0
(3.7.2)
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in x and in matrix variables Y1, ..., YL is equivalent to the LMI




An(x)− ρ
∑L

`=1 λ`R
T
` R` LT

1 (x) LT
2 (x) · · · LT

L(x)

L1(x) λ1/ρ
L2(x) λ2/ρ

...
. . .

LL(x) λL/ρ



� 0 (3.7.3)

in x and real variables λ1..., λL. Here the equivalence means that x can be extended to a feasible
solution of (3.7.2) if and only if it can be extended to a feasible solution of (3.7.3).

Exercise 3.7 Consider the Signal Processing problem as follows. We are given uncertainty-
affected observations

y = Av + ξ

of a signal v known to belong to a set V . Uncertainty “sits” in the “measurement error” ξ,
known to belong to a given set Ξ, and in A — all we know is that A ∈ A. We assume that V
and Ξ are intersections of ellipsoids centered at the origin:

V = {v ∈ R
n : vTPiv ≤ 1, 1 ≤ i ≤ I}, [Pi � 0,

∑
i Pi � 0]

Ξ = {ξ ∈ R
m : ξTQjξ ≤ ρ2ξ , 1 ≤ j ≤ J}, [Qj � 0,

∑
j Qj � 0]

and A is given by structured norm-bounded perturbations:

A = {A = An +

L∑

`=1

LT
` ∆`R`,∆` ∈ R

p`×q`, ‖∆`‖2,2 ≤ ρA}.

We are interested to build a linear estimate v̂ = Gy of v via y. The ‖ · ‖2 error of such an
estimate at a particular v is

‖Gy − v‖2 = ‖G[Av + ξ]− v‖2 = ‖(GA− I)v +Gξ‖2,

and we want to build G that minimizes the worst, over all v,A, ξ compatible with our a priori
information, estimation error

max
ξ∈Ξ,v∈V,A∈A

‖(GA − I)v +Gξ‖2.

Build a safe tractable approximation of this problem that seems reasonably tight when ρξ and
ρA are small.
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Lecture 4

Globalized Robust Counterparts of
Uncertain Linear and Conic
Problems

In this lecture we extend the concept of Robust Counterpart in order to gain certain control on
what happens when the actual data perturbations run out of the postulated perturbation set.

4.1 Globalized Robust Counterparts — Motivation and Defini-
tion

Let us come back to Assumptions A.1 – A.3 underlying the concept of Robust Counterpart
and concentrate on A.3. This assumption is not a “universal truth” — in reality, there are
indeed constraints that cannot be violated (e.g., you cannot order a negative supply), but also
constraints whose violations, while undesirable, can be tolerated to some degree, (e.g., sometimes
you can tolerate a shortage of a certain resource by implementing an “emergency measure” like
purchasing it on the market, employing sub-contractors, taking out loans, etc.). Immunizing
such “soft” constraints against data uncertainty should perhaps be done in a more flexible
fashion than in the usual Robust Counterpart. In the latter, we ensure a constraint’s validity
for all realizations of the data from a given uncertainty set and do not care what happens when
the data are outside of this set. For a soft constraint, we can take care of what happens in this
latter case as well, namely, by ensuring controlled deterioration of the constraint when the data
runs away from the uncertainty set. We are about to build a mathematically convenient model
capturing the above requirements.

4.1.1 The Case of Uncertain Linear Optimization

Consider an uncertain linear constraint in variable x

[a0 +

L∑

`=1

ζ`a
`]Tx ≤ [b0 +

L∑

`=1

ζ`b
`] (4.1.1)

189
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where ζ is the perturbation vector (cf. (1.3.4), (1.3.5)). Let Z+ be the set of all “physically
possible” perturbations, and Z ⊂ Z+ be the “normal range” of the perturbations — the one for
which we insist on the constraint to be satisfied. With the usual RC approach, we treat Z as
the only set of perturbations and require a candidate solution x to satisfy the constraint for all
ζ ∈ Z. With our new approach, we add the requirement that the violation of constraint in the
case when ζ ∈ Z+\Z (that is a “physically possible” perturbation that is outside of the normal
range) should be bounded by a constant times the distance from ζ to Z. Both requirements
— the validity of the constraint for ζ ∈ Z and the bound on the constraint’s violation when
ζ ∈ Z+\Z can be expressed by a single requirement

[a0 +

L∑

`=1

ζ`a
`]Tx− [b0 +

L∑

`=1

ζ`b
`] ≤ αdist(ζ,Z) ∀ζ ∈ Z+,

where α ≥ 0 is a given “global sensitivity.”
In order to make the latter requirement tractable, we add some structure to our setup.

Specifically, let us assume that:

(G.a) The normal range Z of the perturbation vector ζ is a nonempty closed convex
set;
(G.b) The set Z+ of all “physically possible” perturbations is the sum of Z and a
closed convex cone L:

Z+ = Z + L = {ζ = ζ ′ + ζ ′′ : ζ ′ ∈ Z, ζ ′′ ∈ L}; (4.1.2)

(G.c) We measure the distance from a point ζ ∈ Z+ to the normal range Z of the
perturbations in a way that is consistent with the structure (4.1.2) of Z+, specifically,
by

dist(ζ,Z | L) = inf
ζ′

{
‖ζ − ζ ′‖ : ζ ′ ∈ Z, ζ − ζ ′ ∈ L

}
, (4.1.3)

where ‖ · ‖ is a fixed norm on R
L.

In what follows, we refer to a triple (Z,L, ‖ · ‖) arising in (G.a–c) as a perturbation structure
for the uncertain constraint (4.1.1).

Definition 4.1 Given α ≥ 0 and a perturbation structure (Z,L,‖ · ‖), we say that a vector x is
a globally robust feasible solution to uncertain linear constraint (4.1.1) with global sensitivity α,
if x satisfies the semi-infinite constraint

[a0 +
L∑

`=1

ζ`a
`]Tx− [b0 +

L∑

`=1

ζ`b
`] ≤ α dist(ζ,Z|L) ∀ζ ∈ Z+ = Z + L. (4.1.4)

We refer to the semi-infinite constraint (4.1.4) as the Globalized Robust Counterpart (GRC) of
the uncertain constraint (4.1.1).

Note that global sensitivity α = 0 corresponds to the most conservative attitude where the
constraint must be satisfied for all physically possible perturbations; with α = 0, the GRC
becomes the usual RC of the uncertain constraint with Z+ in the role of the perturbation set.
The larger α, the less conservative the GRC.
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Now, given an uncertain Linear Optimization program with affinely perturbed data
{
min
x

{
cTx : Ax ≤ b

}
: [A, b] = [A0, b0] +

L∑

`=1

ζ`[A
`, b`]

}
(4.1.5)

(w.l.o.g., we assume that the objective is certain) and a perturbation structure (Z,L, ‖ · ‖), we
can replace every one of the constraints with its Globalized Robust Counterpart, thus ending up
with the GRC of (4.1.5). In this construction, we can associate different sensitivity parameters
α to different constraints. Moreover, we can treat these sensitivities as design variables rather
than fixed parameters, add linear constraints on these variables, and optimize both in x and
α an objective function that is a mixture of the original objective and a weighted sum of the
sensitivities.

4.1.2 The Case of Uncertain Conic Optimization

Consider an uncertain conic problem (3.1.2), (3.1.3):

min
x

{
cTx+ d : Aix− bi ∈ Qi, 1 ≤ i ≤ m

}
, (4.1.6)

where Qi ⊂ R
ki are nonempty closed convex sets given by finite lists of conic inclusions:

Qi = {u ∈ R
ki : Qi`u− qi` ∈ Ki`, ` = 1, ..., Li}, (4.1.7)

with closed convex pointed cones Ki`, and let the data be affinely parameterized by the pertur-
bation vector ζ:

(c, d, {Ai, bi}mi=1) = (c0, d0, {A0
i , b

0
i }mi=1) +

L∑

`=1

ζ`(c
`, d`, {A`

i , b
`
i}mi=1). (4.1.8)

When extending the notion of Globalized Robust Counterpart from the case of Linear Optimiza-
tion to the case of Conic one, we need a small modification. Assuming, same as in the former
case, that the set Z+ of all “physically possible” realizations of the perturbation vector ζ is of the
form Z+ = Z+L, where Z is the closed convex normal range of ζ and L is a closed convex cone,
observe that in the conic case, as compared to the LO one, the left hand side of our uncertain
constraint (4.1.6) is vector rather than scalar, so that a straightforward analogy of (4.1.4) does
not make sense. Note, however, that when rewriting (4.1.1) in our present “inclusion form”

[a0 +

L∑

`=1

ζ`a
`]Tx− [b0 +

L∑

`=1

ζ`b
`] ∈ Q ≡ R−, (∗)

relation (4.1.4) says exactly that the distance from the left hand side of (∗) to Q does not exceed
αdist(ζ,Z|L) for all ζ ∈ Z+L. In this form, the notion of global sensitivity admits the following
multi-dimensional extension:

Definition 4.2 Consider an uncertain convex constraint

[P0 +
L∑

`=1

ζ`P`]y − [p0 +
L∑

`=1

ζ`p
`] ∈ Q, (4.1.9)
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where Q is a nonempty closed convex subset in R
k. Let ‖ · ‖Q be a norm on R

k, ‖ · ‖Z be a norm
on R

L, Z ⊂ R
L be a nonempty closed convex normal range of perturbation ζ, and L ⊂∈ R

L be a
closed convex cone. We say that a candidate solution y is robust feasible, with global sensitivity
α, for (4.1.9), under the perturbation structure (‖ · ‖Q, ‖ · ‖Z ,Z,L), if

dist([P0 +
L∑

`=1

ζ`P`]y − [p0 +
L∑

`=1

ζ`p
`],Q) ≤ αdist(ζ,Z|L)
∀ζ ∈ Z+ = Z + L[

dist(u,Q) = min
v
{‖u− v‖Q : v ∈ Q}

dist(ζ,Z|L) = min
v
{‖ζ − v‖Z : v ∈ Z, ζ − v ∈ L}

]
.

(4.1.10)

Sometimes it is necessary to add some structure to the latter definition. Specifically, assume
that the space R

L where ζ lives is given as a direct product:

R
L = R

L1 × ...× R
LS

and let Zs ⊂ R
Ls , Ls ⊂ R

Ls , ‖ · ‖s be, respectively, closed nonempty convex set, closed convex
cone and a norm on R

Ls , s = 1, ..., S. For ζ ∈ R
L, let ζs, s = 1, ..., S, be the projections of ζ

onto the direct factors RLs of RL. The “structured version” of Definition 4.2 is as follows:

Definition 4.3 A candidate solution y to the uncertain constraint (4.1.9) is robust feasible with
global sensitivities αs, 1 ≤ s ≤ S, under the perturbation structure (‖ · ‖Q, {Zs,Ls, ‖ · ‖s}Ss=1), if

dist([P0 +
L∑

`=1

ζ`P`]y − [p0 +
L∑

`=1

ζ`p
`],Q) ≤

S∑
s=1

αsdist(ζ
s,Zs|Ls)

∀ζ ∈ Z+ = (Z1 × ...×ZS)︸ ︷︷ ︸
Z

+L1 × ...×LS︸ ︷︷ ︸
L


dist(u,Q) = min

v
{‖u− v‖Q : v ∈ Q}

dist(ζs,Zs|Ls) = min
vs
{‖ζs − vs‖s : vs ∈ Zs, ζs − vs ∈ Ls} .




(4.1.11)

Note that Definition 4.2 can be obtained from Definition 4.3 by setting S = 1. We refer
to the semi-infinite constraints (4.1.10), (4.1.11) as to Globalized Robust Counterparts of the
uncertain constraint (4.1.9) w.r.t. the perturbations structure in question. When building the
GRC of uncertain problem (4.1.6), (4.1.8), we first rewrite it as an uncertain problem

min
y=(x,t)





t :

cTx+ d− t ≡

[P00+
L∑

`=1

ζ`P0`]y−[p0
0+

L∑
`=1

ζ`p
`
0]

︷ ︸︸ ︷

[c0 +

L∑

`=1

ζ`c
`]Tx+ [d0 +

L∑

`=1

ζ`d
`]− t ∈ Q0 ≡ R−

Aix− bi ≡ [A0
i +

L∑

`=1

ζ`A
`
i ]x− [b0i +

L∑

`=1

ζ`b
`
i ]

︸ ︷︷ ︸
[Pi0+

L∑
`=1

ζ`Pi`]y−[p0
i+

L∑
`=1

ζ`p`
i ]

∈ Qi, 1 ≤ i ≤ m





with certain objective, and then replace the constraints with their Globalized RCs. The under-
lying perturbation structures and global sensitivities may vary from constraint to constraint.
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4.1.3 Safe Tractable Approximations of GRCs

A Globalized RC, the same as the plain one, can be computationally intractable, in which case
we can look for the second best thing — a safe tractable approximation of the GRC. This notion
is defined as follows (cf. Definition 3.2):

Definition 4.4 Consider the uncertain convex constraint (4.1.9) along with its GRC (4.1.11).
We say that a system S of convex constraints in variables y, α = (α1, ..., αS) ≥ 0, and, perhaps,
additional variables u, is a safe approximation of the GRC, if the projection of the feasible set
of S on the space of (y, α) variables is contained in the feasible set of the GRC:

∀(α = (α1, ..., αS) ≥ 0, y) :
(∃u : (y, α, u) satisfies S)⇒ (y, α) satisfies (4.1.11).

This approximation is called tractable, provided that S is so, (e.g., S is an explicit system of
CQIs/LMIs of, more general, the constraints in S are efficiently computable).

When quantifying the tightness of an approximation, we, as in the case of RC, assume that
the normal range Z = Z1 × ...×ZS of the perturbations contains the origin and is included in
the single-parametric family of normal ranges:

Zρ = ρZ, ρ > 0.

As a result, the GRC (4.1.11) of (4.1.9) becomes a member, corresponding to ρ = 1, of the
single-parametric family of constraints

dist([P0 +
L∑

`=1

ζ`P`]y − [p0 +
L∑

`=1

ζ`p
`],Q) ≤

S∑
s=1

αsdist(ζ
s,Zs|Ls)

∀ζ ∈ Zρ
+ = ρ(Z1 × ...×ZS)︸ ︷︷ ︸

Zρ

+L1 × ...× LS︸ ︷︷ ︸
L

(GRCρ)

in variables y, α. We define the tightness factor of a safe tractable approximation of the GRC
as follows (cf. Definition 3.3):

Definition 4.5 Assume that we are given an approximation scheme that associates with (GRCρ)
a finite system Sρ of efficiently computable convex constraints on variables y, α and, perhaps,
additional variables u, depending on ρ > 0 as a parameter. We say that this approximation
scheme is a safe tractable approximation of the GRC tight, within tightness factor ϑ ≥ 1, if

(i) For every ρ > 0, Sρ is a safe tractable approximation of (GRCρ): whenever (y, α ≥ 0)
can be extended to a feasible solution of Sρ, (y, α) satisfies (GRCρ);

(ii) Whenever ρ > 0 and (y, α ≥ 0) are such that (y, α) cannot be extended to a feasible
solution of Sρ, the pair (y, ϑ−1α) is not feasible for (GRCϑρ).

4.2 Tractability of GRC in the Case of Linear Optimization

As in the case of the usual Robust Counterpart, the central question of computational tractability
of the Globalized RC of an uncertain LO reduces to a similar question for the GRC (4.1.4) of
a single uncertain linear constraint (4.1.1). The latter question is resolved to a large extent by
the following observation:
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Proposition 4.1 A vector x satisfies the semi-infinite constraint (4.1.4) if and only if x satisfies
the following pair of semi-infinite constraints:

(a)

[
a0 +

L∑
`=1

ζ`a
`

]T
x ≤

[
b0 +

L∑
`=1

ζ`b
`

]
∀ζ ∈ Z

(b)

[
L∑

`=1

∆`a
`

]T
x ≤

[
L∑

`=1

∆`b
`

]
+ α ∀∆ ∈ Z̃ ≡ {∆ ∈ L : ‖∆‖ ≤ 1}.

(4.2.1)

Remark 4.1 Proposition 4.1 implies that the GRC of an uncertain linear inequality is equiva-
lent to a pair of semi-infinite linear inequalities of the type arising in the usual RC. Consequently,
we can invoke the representation results of section 1.3 to show that under mild assumptions on
the perturbation structure, the GRC (4.1.4) can be represented by a “short” system of explicit
convex constraints.

Proof of Proposition 4.1. Let x satisfy (4.1.4). Then x satisfies (4.2.1.a) due to dist(ζ,Z|L) =
0 for ζ ∈ Z. In order to demonstrate that x satisfies (4.2.1.b) as well, let ζ̄ ∈ Z and ∆ ∈ L with
‖∆‖ ≤ 1. By (4.1.4) and since L is a cone, for every t > 0 we have ζt := ζ̄ + t∆ ∈ Z + L and
dist(ζt,Z|L) ≤ ‖t∆‖ ≤ t; applying (4.1.4) to ζ = ζt, we therefore get

[
a0 +

L∑
`=1

ζ̄`a
`

]T
x+ t

[
L∑

`=1

∆`a
`

]T
x ≤

[
b0 +

L∑
`=1

ζ̄`b
`

]
+ t

[
L∑

`=1

∆`b
`

]
+ αt.

Dividing both sides in this inequality by t and passing to limit as t → ∞, we see that the
inequality in (4.2.1.b) is valid at our ∆. Since ∆ ∈ Z̃ is arbitrary, x satisfies (4.2.1.b), as
claimed.

It remains to prove that if x satisfies (4.2.1), then x satisfies (4.1.4). Indeed, let x satisfy
(4.2.1). Given ζ ∈ Z + L and taking into account that Z and L are closed, we can find ζ̄ ∈ Z
and ∆ ∈ L such that ζ̄ +∆ = ζ and t := dist(ζ,Z|L) = ‖∆‖. Representing ∆ = te with e ∈ L,
‖e‖ ≤ 1, we have

[
a0 +

L∑
`=1

ζ`a
`

]T
x−

[
b0 +

L∑
`=1

ζ`b
`

]

=

[
a0 +

L∑

`=1

ζ̄`a
`

]T
x−

[
b0 +

L∑

`=1

ζ̄`b
`

]

︸ ︷︷ ︸
≤0 by (4.2.1.a)

+

[
L∑

`=1

∆`a
`

]T
x−

[
L∑

`=1

∆`b
`

]

︸ ︷︷ ︸

= t




[

L∑
`=1

e`a
`

]T

x−
[

L∑
`=1

e`b
`

]



≤ tα by (4.2.1.b)

≤ tα = αdist(ζ,Z|L).

Since ζ ∈ Z + L is arbitrary, x satisfies (4.1.4). �

Example 4.1 Consider the following 3 perturbation structures (Z,L, ‖ · ‖):
(a) Z is a box {ζ : |ζ`| ≤ σ`, 1 ≤ ` ≤ L}, L = RL and ‖ · ‖ = ‖ · ‖1;
(b) Z is an ellipsoid {ζ :

L∑
`=1

ζ2` /σ
2
` ≤ Ω2}, L = RL

+ and ‖ · ‖ = ‖ · ‖2;
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(c) Z is the intersection of a box and an ellipsoid: Z = {ζ : |ζ`| ≤ σ`, 1 ≤ ` ≤ L,
L∑

`=1

ζ2` /σ
2
` ≤ Ω2},

L = RL, ‖ · ‖ = ‖ · ‖∞.
In these cases the GRC of (4.1.1) is equivalent to the finite systems of explicit convex inequalities as

follows:
Case (a):

(a) [a0]Tx+
L∑

`=1

σ`|[a`]Tx− b`| ≤ b0

(b) |[a`]Tx− b`| ≤ α, ` = 1, ..., L

Here (a) represents the constraint (4.2.1.a) (cf. Example 1.4), and (b) represents the constraint (4.2.1.b)
(why?)
Case (b):

(a) [a0]Tx+Ω

(
L∑

`=1

σ2
` ([a

`]Tx− b`)2
)1/2

≤ b0

(b)

(
L∑

`=1

max2[[a`]Tx− b`, 0]
)1/2

≤ α.

Here (a) represents the constraint (4.2.1.a) (cf. Example 1.5), and (b) represents the constraint (4.2.1.b).
Case (c):

(a.1) [a0]Tx+
L∑

`=1

σ`|z`|+Ω

(
L∑

`=1

σ2
`w

2
`

)1/2

≤ b0

(a.2) z` + w` = [a`]Tx− b`, ` = 1, ..., L

(b)
L∑

`=1

|[a`]Tx− b`| ≤ α.

Here (a.1–2) represent the constraint (4.2.1.a) (cf. Example 1.6), and (b) represents the constraint

(4.2.1.b).

4.2.1 Illustration: Antenna Design

We are about to illustrate the GRC approach by applying it to the Antenna Design problem
(Example 1.1), where we are interested in the uncertain LP problem of the form

{
min
x,τ
{τ : ‖d−D(I +Diag{ζ})x‖∞ ≤ τ} : ‖ζ‖∞ ≤ ρ

}
; (4.2.2)

here D is a given m × L matrix and d ∈ R
m is a given vector. The RC of the problem is

equivalent to

Opt(ρ) = min
x

{
Fx(ρ) := max

‖ζ‖∞≤ρ
‖d−D(I +Diag{ζ})x‖∞

}
(RCρ)

For a candidate design x, the function Fx(ρ) of the uncertainty level ρ has a very transparent
interpretation: it is the worst-case, over perturbations ζ with ‖ζ‖∞ ≤ ρ, loss (deviation of
the synthesized diagram from the target one) of this design. This clearly is a convex and
nondecreasing function of ρ.

Let us fix a “reference uncertainty level” ρ̄ ≥ 0 and equip our uncertain problem with the
perturbation structure

Z = {ζ : ‖ζ‖∞ ≤ ρ̄}, L = R
L, ‖ · ‖ = ‖ · ‖∞. (4.2.3)
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Figure 4.1: Bound (4.2.5) with ρ0 = 0.01 (blue) on the loss Fx(ρ) (red) associated with the
optimal solution x to (RC0.01). The common values of the bound and the loss at ρ0 = 0.01 is
the optimal value of (RC0.01).

With this perturbation structure, it can be immediately derived from Proposition 4.1 (do it!)
that a pair (τ, x) is a robust feasible solution to the GRC with global sensitivity α if and only if

τ ≥ Fx(ρ̄) & α ≥ α(x) = lim
ρ→∞

d

dρ
Fρ(x) = max

i≤m

L∑

j=1

|Dij ||xj |.

Note that the best (the smallest) value α(x) of global sensitivity which, for appropriately chosen
τ , makes (τ, x) feasible for the GRC depends solely on x; we shall refer to this quantity as to
the global sensitivity of x. Due to its origin, and since Fx(ρ) is convex and nondecreasing, α(x)
and a value of Fx(·) at a particular ρ = ρ0 ≥ 0 imply a piecewise linear upper bound on Fx(·):

∀ρ ≥ 0 : Fx(ρ) ≤
{
Fx(ρ0), ρ < ρ0
Fx(ρ0) + α(x)[ρ − ρ0], ρ ≥ ρ0 . (4.2.4)

Taking into account also the value of Fx at 0, we can improve this bound to

∀ρ ≥ 0 : Fx(ρ) ≤
{ ρ0−ρ

ρ0
Fx(0) +

ρ
ρ0
Fx(ρ0), ρ < ρ0

Fx(ρ0) + α(x)[ρ− ρ0], ρ ≥ ρ0
. (4.2.5)

In figure 4.1, we plot the latter bound and the true Fx(·) for the robust design built in section
1.4.1 (that is, the optimal solution to (RC0.01)), choosing ρ0 = 0.01. When designing a robust
antenna, our “ideal goal” would be to choose the design x which makes the loss Fx(ρ) as small
as possible for all values of ρ; of course, this goal usually cannot be achieved. With the usual
RC approach, we fix the uncertainty level at ρ̄ and minimize over x the loss at this particular
value of ρ, with no care of how rapidly this loss grows when the true uncertainty level ρ exceeds
our guess ρ̄. This makes sense when we understand well what is the uncertainty level at which
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δ 0 0.2 0.3 0.4 0.5

β∗(δ) 2.6× 105 3.8134 1.9916 0.9681 0.9379

Table 4.1: Tolerances δ and quantities β∗(δ) (the global sensitivities of the optimal solutions to
(4.2.6)). Pay attention to how huge is the global sensitivity β∗(0) of the nominal optimal design.
For comparison: the global sensitivity of the robust design built in section 1.4.1 is just 3.0379.

our system should work, which sometimes is not the case. With the GRC approach, we can, to
some extent, take care of both the value of Fx at ρ = ρ̄ and of the rate at which the loss grows
with ρ, thus making our design better suited to the situations when it should be used in a wide
range of uncertainty levels. For example, we can act as follows:

• We first solve (RCρ̄), thus getting the “reference” design x̄ with the loss at the uncertainty
level ρ̄ as small as possible, so that Fx̄(ρ̄) = Opt(RCρ̄);

• We then increase the resulting loss by certain percentage δ (say, δ = 0.1) and choose, as
the actual design, the solution to the minimization problem

min
x
{α(x) : Fx(ρ̄) ≤ (1 + δ)Opt(RCρ̄)} .

In other words, we allow for a controlled sacrifice in the loss at the “nominal” uncertainty
level ρ̄ in order to get as good as possible upper bound (4.2.4) on the loss in the range
ρ ≥ ρ̄.

In figure 4.2 and in table 4.1, we illustrate the latter approach in the special case when ρ̄ = 0.
In this case, we want from our design to perform nearly as well as (namely, within percentage
δ of) the nominally optimal design in the ideal case of no actuation errors, and optimize under
this restriction the global sensitivity of the design w.r.t. the magnitude of actuation errors.
Mathematically, this reduces to solving a simple LP problem

β∗(δ) = min
x



max

i≤m

L∑

j=1

|Dij ||xj | : ‖d−Dx‖∞ ≤ (1 + δ)min
u
‖d−Du‖∞



 . (4.2.6)

4.3 Tractability of GRC in the Case of Conic Optimization

4.3.1 Decomposition

Preliminaries

Recall the notion of the recessive cone of a closed and nonempty convex set Q:



198 LECTURE 4: GLOBALIZED RCS OF UNCERTAIN PROBLEMS

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 4.2: Red and magenta: bounds (4.2.4) on the losses for optimal solutions to (4.2.6) for
the values of δ listed in table 4.1; the bounds correspond to ρ0 = 0. Blue: bound (4.2.5) with
ρ0 = 0.01 on the loss Fx(ρ) associated with the optimal solution x to (RC0.01).

Definition 4.6 Let Q ⊂ R
k be a nonempty closed convex set and x̄ ∈ Q. The recessive cone

Rec(Q) of Q is comprised of all rays emanating from x̄ and contained in Q:

Rec(Q) = {h ∈ R
k : x̄+ th ∈ Q∀t ≥ 0}.

(Due to closedness and convexity of Q, the right hand side set in this formula is independent of
the choice of x̄ ∈ Q and is a nonempty closed convex cone in R

k.)

Example 4.2
(i) The recessive cone of a nonempty bounded and closed convex set Q is trivial: Rec(Q) = {0};
(ii) The recessive cone of a closed convex cone Q is Q itself;
(iii) The recessive cone of the set Q = {x : Ax− b ∈ K}, where K is a closed convex cone, is the set

{h : Ah ∈ K};
(iv.a) Let Q be a closed convex set and ei → e, i → ∞, ti ≥ 0, ti → ∞, i → ∞, be sequences of

vectors and reals such that tiei ∈ Q for all i. Then e ∈ Rec(Q).
(iv.b) Vice versa: every e ∈ Rec(Q) can be represented in the form of e = limi→∞ ei with vectors ei

such that iei ∈ Q.
Proof. (iv.a): Let x̄ ∈ Q. With our ei and ti, for every t > 0 we have x̄+ tei− t/tix̄ = (t/ti)(tiei)+ (1−
t/ti)x̄. For all but finitely many values of i, the right hand side in this equality is a convex combination
of two vectors from Q and therefore belongs to Q; for i → ∞, the left hand side converges to x̄ + te.
Since Q is closed, we conclude that x̄+ te ∈ Q; since t > 0 is arbitrary, we get e ∈ Rec(Q).
(iv.b): Let e ∈ Rec(Q) and x̄ ∈ Q. Setting ei = i−1(x̄+ ie), we have iei ∈ Q and ei → e as i→∞. �

The Main Result

The following statement is the “multi-dimensional” extension of Proposition 4.1:
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Proposition 4.2 A candidate solution y is feasible for the GRC (4.1.11) of the uncertain con-
straint (4.1.9) if and only if x satisfies the following system of semi-infinite constraints:

(a)

P (y,ζ)︷ ︸︸ ︷
[P0 +

∑L

`=1
ζ`P`]

T y − [p0 +
∑L

`=1
ζ`p

`] ∈ Q

∀ζ ∈ Z ≡ Z1 × ...×ZS

(bs) dist(

Φ(y)Esζs︷ ︸︸ ︷∑L

`=1
[P`y − p`](Esζ

s)`,Rec(Q)) ≤ αs

∀ζs ∈ Ls‖·‖s ≡ {ζ
s ∈ Ls : ‖ζs‖s ≤ 1}, s = 1, ..., S,

(4.3.1)

where Es is the natural embedding of R
Ls into R

L = R
L1 × ... × R

LS and dist(u,Rec(Q)) =
min

v∈Rec(Q)
‖u− v‖Q.

Proof. Assume that y satisfies (4.1.11), and let us verify that y satisfies (4.3.1). Relation
(4.3.1.a) is evident. Let us fix s ≤ S and verify that y satisfies (4.3.1.bs). Indeed, let ζ̄ ∈ Z
and ζs ∈ Ls‖·‖s . For i = 1, 2, ..., let ζi be given by ζri = ζ̄r, r 6= s, and ζsi = ζ̄s + iζs, so that

dist(ζri ,Zr|Lr) is 0 for r 6= s and is ≤ i for r = s. Since y is feasible for (4.1.11), we have

dist([P0 +
L∑

`=1

(ζi)`P`]y − [p0 +
L∑

`=1

(ζi)`p
`]

︸ ︷︷ ︸
P (y,ζi)=P (y,ζ̄)+iΦ(y)Esζs

,Q) ≤ αsi,

that is, there exists qi ∈ Q such that

‖P (y, ζ̄) + iΦ(y)Esζ
s − qi‖Q ≤ αsi.

From this inequality it follows that ‖qi‖Q/i remains bounded when i→∞; setting qi = iei and
passing to a subsequence {iν} of indices i, we may assume that eiν → e as ν → ∞; by item
(iv.a) of Example 4.2, we have e ∈ Rec(Q). We further have

‖Φ(y)Esζ
s − eiν‖Q = i−1

ν ‖iνΦ(y)Esζ − qiν‖Q
≤ i−1

ν

[
‖P (y, ζ̄) + iνΦ(y)Esζ

s − qiν‖Q + i−1
ν ‖P (y, ζ̄)‖Q

]

≤ αs + i−1
ν ‖P (y, ζ̄)‖Q,

whence, passing to limit as ν →∞, ‖Φ(y)Esζ
s− e‖Q ≤ αs, whence, due to e ∈ Rec(Q), we have

dist(Φ(y)Esζ
s,Rec(Q)) ≤ αs. Since ζ

s ∈ Ls‖·‖s is arbitrary, (4.3.1.bs) holds true.

Now assume that y satisfies (4.3.1), and let us prove that y satisfies (4.1.11). Indeed, given
ζ ∈ Z + L, we can find ζ̄s ∈ Zs and δs ∈ Ls in such a way that ζs = ζ̄s + δs and ‖δs‖s =
dist(ζs,Zs|Ls). Setting ζ̄ = (ζ̄1, ..., ζ̄S) and invoking (4.3.1.a), the vector ū = P (y, ζ̄) belongs to
Q. Further, for every s, by (4.3.1.bs), there exists δu

s ∈ Rec(Q) such that ‖Φ(y)Esδ
s− δus‖Q ≤

αs‖δs‖s = αsdist(ζ
s,Zs|Ls). Since P (y, ζ) = P (y, ζ̄) +

∑
s
Φ(y)Esδ

s, we have

‖P (y, ζ)− [ū+
∑

s

δus]

︸ ︷︷ ︸
v

‖Q ≤ ‖P (y, ζ̄)− ū︸ ︷︷ ︸
=0

‖Q +
∑

s

‖Φ(y)Esδ
s − δus‖Q︸ ︷︷ ︸

≤αsdist(ζs,Zs|Ls)

;
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since ū ∈ Q and δus ∈ Rec(Q) for all s, we have v ∈ Q, so that the inequality implies that

dist(P (y, ζ),Q) ≤
∑

s

αsdist(ζ
s,Zs|Ls).

Since ζ ∈ Z + L is arbitrary, y satisfies (4.1.11). �

Consequences of Main Result

Proposition 4.2 demonstrates that the GRC of an uncertain constraint (4.1.9) is equivalent to the
explicit system of semi-infinite constraints (4.3.1). We are well acquainted with the constraint
(4.3.1.a) — it is nothing but the RC of the uncertain constraint (4.1.9) with the normal range
Z of the perturbations in the role of the uncertainty set. As a result, we have certain knowledge
of how to convert this semi-infinite constraint into a tractable form or how to build its tractable
safe approximation. What is new is the constraint (4.3.1.b), which is of the following generic
form:

We are given
• an Euclidean space E with inner product 〈·, ·〉E , a norm (not necessarily the Euclidean

one) ‖ · ‖E , and a closed convex cone KE in E;
• an Euclidean space F with inner product 〈·, ·〉F , norm ‖ · ‖F and a closed convex cone KF

in F .
These data define a function on the space L(E,F ) of linear mappingsM from E to F , specifically,
the function

Ψ(M) = max
e

{
dist‖·‖F (Me,KF ) : e ∈ KE, ‖e‖E ≤ 1

}
,

dist‖·‖F (f,K
F ) = min

g∈KF
‖f − g‖F . (4.3.2)

Note that Ψ(M) is a kind of a norm: it is nonnegative, satisfies the requirement Ψ(λM) =
λΨ(M) when λ ≥ 0, and satisfies the triangle inequality Ψ(M + N ) ≤ Ψ(M) + Ψ(N ). The
properties of a norm that are missing are symmetry (in general, Ψ(−M) 6= Ψ(M)) and strict
positivity (it may happen that Ψ(M) = 0 for M 6= 0). Note also that in the case when
KF = {0}, KE = E, Ψ(M) = max

e:‖e‖E≤1
‖Me‖F becomes the usual norm of a linear mapping

induced by given norms in the origin and the destination spaces.
The above setting gives rise to a convex inequality

Ψ(M) ≤ α (4.3.3)

in variables M, α. Note that every one of the constraints (4.3.1.b) is obtained from a convex
inequality of the form (4.3.3) by affine substitution

M← Hs(y), α← αs

where Hs(y) ∈ L(Es, Fs) is affine in y. Indeed, (4.3.1.bs) is obtained in this fashion when
specifying

• (E, 〈·, ·〉E) as the Euclidean space where Zs,Ls live, and ‖ · ‖E as ‖ · ‖s;
• (F, 〈·, ·〉F ) as the Euclidean space where Q lives, and ‖ · ‖F as ‖ · ‖Q;
• KE as the cone Ls, and KF as the cone Rec(Q);
• H(y) as the linear map ζs 7→ Φ(y)Esζ

s.
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It follows that efficient processing of constraints (4.3.1.b) reduces to a similar task for the
associated constraints

Ψs(Ms) ≤ αs (Cs)
of the form (4.3.3). Assume, e.g., that we are smart enough to build, for certain ϑ ≥ 1,

(i) a ϑ-tight safe tractable approximation of the semi-infinite constraint (4.3.1.a) with Zρ =
ρZ1 in the role of the perturbation set. Let this approximation be a system Saρ of explicit
convex constraints in variables y and additional variables u;

(ii) for every s = 1, ..., S a ϑ-tight efficiently computable upper bound on the function Ψs(Ms),
that is, a system Ss of efficiently computable convex constraints on matrix variableMs,
real variable τs and, perhaps, additional variables us such that

(a) whenever (Ms, τs) can be extended to a feasible solution of Ss, we have Ψs(Ms) ≤ τs,
(b) whenever (Ms, τs) cannot be extended to a feasible solution of Ss, we have

ϑΨs(Ms) > τs.

In this situation, we can point out a safe tractable approximation, tight within the factor ϑ
(see Definition 4.5), of the GRC in question. To this end, consider the system of constraints in
variables y, α1, ..., αS , u, u

1, ..., uS as follows:

(y, u) satisfies Saρ and {(Hs(y), αs, u
s) satisfies Ss, s = 1, ..., S} , (Sρ)

and let us verify that this is a ϑ-tight safe computationally tractable approximation of the GRC.
Indeed, Sρ is an explicit system of efficiently computable convex constraints and as such is
computationally tractable. Further, Sρ is a safe approximation of the (GRCρ). Indeed, if (y, α)
can be extended to a feasible solution of Sρ, then y satisfies (4.3.1.a) with Zρ in the role of
Z (since (y, u) satisfies Saρ ) and (y, αs) satisfies (4.3.1.bs) due to (ii.a) (recall that (4.3.1.bs) is
equivalent to Ψs(Hs(y)) ≤ αs). Finally, assume that (y, α) cannot be extended to a feasible
solution of (Sρ), and let us prove that then (y, ϑ−1α) is not feasible for (GRCϑρ). Indeed, if
(y, α) cannot be extended to a feasible solution to Sρ, then either y cannot be extended to a
feasible solution of Saρ , or for certain s (y, αs) cannot be extended to a feasible solution of Ss.
In the first case, y does not satisfy (4.3.1.a) with Zϑρ in the role of Z by (i); in the second
case, ϑ−1αs < Ψs(Hs(y)) by (ii.b), so that in both cases the pair (y, ϑ−1α) is not feasible for
(GRCϑρ).

We have reduced the tractability issues related to Globalized RCs to similar issues for RCs
(which we have already investigated in the CO case) and to the issue of efficient bounding of
Ψ(·). The rest of this section is devoted to investigating this latter issue.

4.3.2 Efficient Bounding of Ψ(·)
Symmetry

We start with observing that the problem of efficient computation of (a tight upper bound on)
Ψ(·) possesses a kind of symmetry. Indeed, consider a setup

Ξ = (E, 〈·, ·〉E , ‖ · ‖E ,KE ;F, 〈·, ·〉F , ‖ · ‖F ,KF )
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specifying Ψ, and let us associate with Ξ its dual setup

Ξ∗ = (F, 〈·, ·〉F , ‖ · ‖∗F ,KF
∗ ;E, 〈·, ·〉E , ‖ · ‖∗E ,KE

∗ ),

where

• for a norm ‖ · ‖ on a Euclidean space (G, 〈·, ·〉G), its conjugate norm ‖ · ‖∗ is defined as

‖u‖∗ = max
v
{〈u, v〉G : ‖v‖ ≤ 1} ;

• For a closed convex cone K in a Euclidean space (G, 〈·, ·〉G), its dual cone is defined as

K∗ = {y : 〈y, h〉G ≥ 0 ∀h ∈ K}.

.

Recall that the conjugate to a linear map M ∈ L(E,F ) from Euclidean space E to Euclidean
space F is the linear mapM∗ ∈ L(F,E) uniquely defined by the identity

〈Me, f〉F = 〈e,M∗f〉E ∀(e ∈ E, f ∈ F );

representing linear maps by their matrices in a fixed pair of orthonormal bases in E, F , the
matrix representingM∗ is the transpose of the matrix representingM. Note that twice taken
dual/conjugate of an entity recovers the original entity: (K∗)∗ = K, (‖·‖∗)∗ = ‖·‖, (M∗)∗ =M,
(Ξ∗)∗ = Ξ.

Recall that the functions Ψ(·) are given by setups Ξ of the outlined type according to

Ψ(M) ≡ ΨΞ(M) = max
e∈E

{
dist‖·‖F (Me,KF ) : e ∈ KE, ‖e‖E ≤ 1

}
.

The aforementioned symmetry is nothing but the following simple statement:

Proposition 4.3 For every setup Ξ = (E, ...,KF ) and every M∈ L(E,F ) one has

ΨΞ(M) = ΨΞ∗(M∗).

Proof. Let H, 〈·, ·〉H be a Euclidean space. Recall that the polar of a closed convex set X ⊂ H,
0 ∈ X, is the set Xo = {y ∈ H : 〈y, x〉H ≤ 1 ∀x ∈ X}. We need the following facts:

(a) If X ⊂ H is closed, convex and 0 ∈ X, then so is Xo, and (Xo)o = X [87];
(b) If X ⊂ H is convex compact, 0 ∈ X, and KH ⊂ H is closed convex cone, then X +KH

is closed and
(X +KH)o = Xo ∩ (−KH

∗ ).

Indeed, the arithmetic sum of a compact and a closed set is closed, so that X +KH is closed,
convex, and contains 0. We have

f ∈ (X +KH)o ⇔ 1 ≥ sup
x∈X,h∈KH

〈f, x+ h〉H = sup
x∈X
〈f, x〉H + sup

h∈KH

〈f, h〉H ;

since KH is a cone, the concluding inequality is possible iff f ∈ Xo and f ∈ −KH
∗ .

(c) Let ‖ · ‖ be a norm in H. Then for every α > 0 one has ({x : ‖x‖ ≤ α})o = {x : ‖x‖∗ ≤
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1/α} (evident).
When α > 0, we have

ΨΞ(M) ≤ α
⇔

{
∀e ∈ KE ∩ {e : ‖e‖E ≤ 1} :
Me ∈ {f : ‖f‖F ≤ α} +KF [by definition]

⇔
{
∀e ∈ KE ∩ {e : ‖e‖E ≤ 1} :
Me ∈

[
[{f : ‖f‖F ≤ α}+KF ]o

]o [by (a)]

⇔





∀e ∈ KE ∩ {e : ‖e‖E ≤ 1} :
〈Me, f〉F ≤ 1 ∀f ∈ [{f : ‖f‖F ≤ α}+KF ]o︸ ︷︷ ︸

={f :‖f‖∗F≤α−1}∩(−KF
∗ )

[by (b), (c)]

⇔
{
∀e ∈ KE ∩ {e : ‖e‖E ≤ 1} :
〈e,M∗f〉E ≤ 1 ∀f ∈ {f : ‖f‖∗F ≤ α−1} ∩ (−KF

∗ )

⇔
{
∀e ∈ KE ∩ {e : ‖e‖E ≤ α−1} :
〈e,M∗f〉E ≤ 1 ∀f ∈ {f : ‖f‖∗F ≤ 1} ∩ (−KF

∗ )
[evident]

⇔
{
∀e ∈ [−(−KE

∗ )∗] ∩ [{e : ‖e‖∗E ≤ α}o] :
〈e,M∗f〉E ≤ 1 ∀f ∈ {f : ‖f‖∗F ≤ 1} ∩ (−KF

∗ )
[by (c)]

⇔
{
∀e ∈

[
(−KE

∗ ) + {e : ‖e‖∗E ≤ α}
]o

:
〈M∗f, e〉E ≤ 1 ∀f ∈ {f : ‖f‖∗F ≤ 1} ∩ (−KF

∗ )
[by (b)]

⇔
{
∀f ∈ {f : ‖f‖∗F ≤ 1} ∩ (−KF

∗ ) :
〈M∗f, e〉E ≤ 1∀e ∈ [(−KE

∗ ) + {e : ‖e‖∗E ≤ α}]o

⇔
{
∀f ∈ {f : ‖f‖∗F ≤ 1} ∩ (−KF

∗ ) :
M∗f ∈ (−KE

∗ ) + {e : ‖e‖∗E ≤ α}
[by (a)]

⇔
{
∀f ∈ K∗

F ∩ {f : ‖f‖∗F ≤ 1} :
M∗f ∈ KE

∗ + {e : ‖e‖∗E ≤ α}
⇔ ΨΞ∗(M∗) ≤ α. �

Good GRC setups

Proposition 4.3 says that “good” setups Ξ — those for which ΨΞ(·) is efficiently computable or
admits a tight, within certain factor ϑ, efficiently computable upper bound — always come in
symmetric pairs: if Ξ is good, so is Ξ∗, and vice versa. In what follows, we refer to members of
such a symmetric pair as to counterparts of each other. We are about to list a number of good
pairs. From now on, we assume that all components of a setup in question are “computationally
tractable,” specifically, that the cones KE, KF and the epigraphs of the norms ‖ · ‖E , ‖ · ‖F
are given by LMI representations (or, more general, by systems of efficiently computable convex
constraints). Below, we denote by BE andBF the unit balls of the norms ‖·‖E , ‖·‖F , respectively.
Here are several good GRC setups:

A: KE = {0}. The counterpart is
A∗: KF = F .

These cases are trivial: ΨΞ(M) ≡ 0.
B: KE = E, BE = Conv{e1, ..., eN }, the list {ei}Ni=1 is available. The counterpart is the case
B∗: KF = {0}, BF = {f : 〈f i, f〉F ≤ 1, i = 1, ..., N}, the list {f i}Ni=1 is available.
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Standard example for B is E = R
n with the standard inner product, KE = E, ‖e‖ = ‖e‖1 ≡∑

j
|ej |. Standard example for B∗ is F = R

m with the standard inner product, ‖f‖F = ‖f‖∞ =

max
j
|fj |.
The cases in question are easy. Indeed, in the case of B we clearly have

Ψ(M) = max
1≤j≤N

dist‖·‖F (Mei,K
F ),

and thus Ψ(M) is efficiently computable (as the maximum of a finite family of efficiently com-
putable quantities dist‖·‖F (Mei,K

F )). Assuming, e.g., that E, F are, respectively, R
m and

R
n with the standard inner products, and that KF , ‖ · ‖F are given by strictly feasible conic

representations:
KF = {f : ∃u : Pf +Qu ∈ K1},
{t ≥ ‖f‖F} ⇔

{
∃v : Rf + tr + Sv ∈ K2

}

the relation
Ψ(M) ≤ α

can be represented equivalently by the following explicit system of conic constraints

(a) Pf i +Qui ∈K1, i = 1, ..., N
(b) R(Mei − f i) + αr + Svi ∈ K2, i = 1, ..., N

in variablesM, α, ui, f i, vi. Indeed, relations (a) equivalently express the requirement f i ∈ KF ,
while relations (b) say that ‖Mei − f i‖F ≤ α.

C: KE = E, KF = {0}. The counterpart case is exactly the same.
In the case of C, Ψ(·) is the norm of a linear map from E to F induced by given norms on the
origin and the destination spaces:

Ψ(M) = max
e
{‖Me‖F : ‖e‖E ≤ 1} .

Aside of situations covered by B, B∗, there is only one generic situation where computing the
norm of a linear map is easy — this is the situation where both ‖ · ‖E and ‖ · ‖F are Euclidean
norms. In this case, we lose nothing by assuming that E = `n2 (that is, E is Rn with the standard

inner product and the standard norm ‖e‖2 =
√∑

i
e2i ), F = `m2 , and let M be the m× n matrix

representing the mapM in the standard bases of E and F . In this case, Ψ(M) = ‖M‖2,2 is the
maximal singular value ofM and as such is efficiently computable. A semidefinite representation
of the constraint ‖M‖2,2 ≤ α is [

αIn MT

M αIm

]
� 0.

Now consider the case when E = `np (that is, E is Rn with the standard inner product and the
norm

‖e‖p =





(
∑
j
|ej |p

)1/p

, 1 ≤ p <∞

max
j
|ej | , p =∞

,
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and F = `mr , 1 ≤ r, p ≤ ∞. Here again we can naturally identify L(E,F ) with the space R
m×n

of real m× n matrices, and the problem of interest is to compute

‖M‖p,r = max
e
{‖Me‖r : ‖e‖p ≤ 1} .

The case of p = r = 2 is the just considered “purely Euclidean” situation; the cases of p = 1
and of r = ∞ are covered by B, B∗. These are the only 3 cases when computing ‖ · ‖p,r is
known to be easy. It is also known that it is NP-hard to compute the matrix norm in question
when p > r. However, in the case of p ≥ 2 ≥ r there exists a tight efficiently computable upper
bound on ‖M‖p,r due to Nesterov [97, Theorem 13.2.4]. Specifically, Nesterov shows that when
∞ ≥ p ≥ 2 ≥ r ≥ 1, the explicitly computable quantity

Ψp,r(M) =
1

2
min
µ∈Rn

ν∈Rm

{
‖µ‖ p

p−2
+ ‖ν‖ r

2−r
:

[
Diag{µ} MT

M Diag{ν}

]
� 0

}

is an upper bound on ‖M‖p,r, and this bound is tight within the factor ϑ =
[
2
√
3

π − 2
3

]−1
≈

2.2936:

‖M‖p,r ≤ Ψp,r(M) ≤
[
2
√
3

π
− 2

3

]−1

‖M‖p,r

(depending on values of p, r, the tightness factor can be improved; e.g., when p = ∞, r = 2, it
is just

√
π/2 ≈ 1.2533...).

It follows that the explicit system of efficiently computable convex constraints

[
Diag{µ} MT

M Diag{ν}

]
� 0,

1

2

[
‖µ‖ p

p−2
+ ‖ν‖ r

2−r

]
≤ α (4.3.4)

in variables M , α, µ, ν is a safe tractable approximation of the constraint

‖M‖p,r ≤ α,

which is tight within the factor ϑ. In some cases the value of the tightness factor can be improved;
e.g., when p =∞, r = 2 and when p = 2, r = 1, the tightness factor does not exceed

√
π/2.

Most of the tractable (or nearly so) cases considered so far deal with the case when KF = {0}
(the only exception is the case B∗ that, however, imposes severe restrictions on ‖ · ‖E). In the
GRC context, that means that we know nearly nothing about what to do when the recessive
cone of the right hand side set Q in (4.1.6) is nontrivial, or, which is the same, Q is unbounded.
This is not that disastrous — in many cases, boundedness of the right hand side set is not
a severe restriction. However, it is highly desirable, at least from the academic viewpoint, to
know something about the case when KF is nontrivial, in particular, when KF is a nonnegative
orthant, or a Lorentz, or a Semidefinite cone (the two latter cases mean that (4.1.6) is an
uncertain CQI, respectively, uncertain LMI). We are about to consider several such cases.

D: F = `m∞, KF is a “sign” cone, meaning that KF = {u ∈ `m∞ : ui ≥ 0, i ∈ I+, ui ≤
0, i ∈ I−, ui = 0, i ∈ I0}, where I+, I−, I0 are given non-intersecting subsets of the index set
i = {1, ...,m}.
The counterpart is
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Figure 4.3: 2-D cross-sections of the solids B,
√

3/2B (ellipses) and Ds by a 2-D plane passing
through the common symmetry axis e1 = ... = em−1 = 0 of the solids.

D∗: E = `m1 , KE = {v ∈ `m1 : vj ≥ 0, j ∈ J+, vj ≤ 0, j ∈ J−, vj = 0, j ∈ J0}, where J+, J−,
J0 are given non-overlapping subsets of the index set {1, ...,m}.
In the case of D∗, assuming, for the sake of notational convenience, that J+ = {1, ..., p}, J− =
{p+ 1, ..., q}, J0 = {r + 1, ...,m} and denoting by ej the standard basic orths in `1, we have

B ≡ {v ∈ KE : ‖v‖E ≤ 1} = Conv{e1, ..., ep,−ep+1, ...,−eq ,±eq+1, ...,±er}
≡ Conv{g1, ..., gs}, s = 2r − q.

Consequently,
Ψ(M) = max

1≤j≤s
dist‖·‖F (Mgj ,KF )

is efficiently computable (cf. case B).

E: F = `m2 , KF = Lm ≡ {f ∈ `m2 : fm ≥
√

m−1∑
i=1

f2i }, E = `n2 , K
E = E.

The counterpart is
E∗: F = `n2 , K

F = {0}, E = `m2 , KE = Lm.
In the case of E∗, let D = {e ∈ KE : ‖e‖2 ≤ 1}, and let

B = {e ∈ E : e21 + ...+ e2m−1 + 2e2m ≤ 1}.

Let us represent a linear mapM : `m2 → `n2 by its matrix M in the standard bases of the origin
and the destination spaces. Observe that

B ⊂ Ds ≡ Conv{D ∪ (−D)} ⊂
√

3/2B (4.3.5)

(see figure 4.3). Now, let BF be the unit Euclidean ball, centered at the origin, in F = `m2 . By
definition of Ψ(·) and due to KF = {0}, we have

Ψ(M) ≤ α⇔MD ⊂ αBF ⇔ (MD ∪ (−MD)) ⊂ αBF ⇔MDs ⊂ αBF .

Since Ds ⊂
√

3/2B, the inclusion M(
√

3/2B) ⊂ αBF is a sufficient condition for the validity
of the inequality Ψ(M) ≤ α, and since B ⊂ Ds, this condition is tight within the factor

√
3/2.
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(Indeed, ifM(
√

3/2B) 6⊂ αBF , thenMB 6⊂
√

2/3αBF , meaning that Ψ(M) >
√

2/3α.) Not-
ing thatM(

√
3/2B) ≤ α if and only if ‖M∆‖2,2 ≤ α, where ∆ = Diag{

√
3/2, ...,

√
3/2,

√
3/4},

we conclude that the efficiently verifiable convex inequality

‖M∆‖2,2 ≤ α

is a safe tractable approximation, tight within the factor
√

3/2, of the constraint Ψ(M) ≤ α.
F: F = Sm, ‖ · ‖F = ‖ · ‖2,2, KF = Sm

+ , E = `n∞, KE = E.
The counterpart is

F∗: F = `n1 , K
F = {0}, E = Sm, ‖e‖E =

m∑
i=1
|λi(e)|, where λ1(e) ≥ λ2(e) ≥ ... ≥ λm(e) are

the eigenvalues of e, KE = Sm
+ .

In the case of F, givenM ∈ L(`n∞,Sm), let e1, ..., en be the standard basic orths of `n∞, and let
BE = {v ∈ `n∞ : ‖u‖∞ ≤ 1}. We have

{Ψ(M) ≤ α} ⇔
{
∀v ∈ BE ∃V � 0 : max

i
|λi(Mv − V )| ≤ α

}

⇔ {∀v ∈ BE :Mv + αIm � 0} .

Thus, the constraint
Ψ(M) ≤ α (∗)

is equivalent to

αI +
n∑

i=1

vi(Mei) � 0 ∀(v : ‖v‖∞ ≤ 1).

It follows that the explicit system of LMIs

Yi � ±Mei, i = 1, ..., n

αIm �
n∑

i=1
Yi

(4.3.6)

in variablesM, α, Y1, ..., Yn is a safe tractable approximation of the constraint (∗). Now let

Θ(M) = ϑ(µ(M)), µ(M) = max
1≤i≤n

Rank(Mei),

where ϑ(µ) is the function defined in the Real Case Matrix Cube Theorem, so that ϑ(1) = 1,
ϑ(2) = π/2, ϑ(4) = 2, and ϑ(µ) ≤ π

√
µ/2 for µ ≥ 1. Invoking this Theorem (see the proof of

Theorem 3.4), we conclude that the local tightness factor of our approximation does not exceed
Θ(M), meaning that if (M, α) cannot be extended to a feasible solution of (4.3.6), then

Θ(M)Ψ(M) > α.
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4.3.3 Illustration: Robust Least Squares Antenna Design

We are about to illustrate our findings by applying a GRC-based approach to the Least Squares
Antenna Design problem (see p. 110 and Example 1.1). Our motivation and course of actions
here are completely similar to those we used in the case of ‖ · ‖∞ design considered in section
4.2.1. At present, we are interested in the uncertain conic problem

{
min
x,τ

{
τ : [h−H(I +Diag{ζ})x; τ ] ∈ Lm+1

}
: ‖ζ‖∞ ≤ ρ

}

where H =WD ∈ R
m×L and h =Wd ∈ R

m are given matrix and vector, see p. 110. We equip
the problem with the same perturbation structure (4.2.3) as in the case of ‖ · ‖∞-design:

Z = {ζ ∈ R
L : ‖ζ‖∞ ≤ ρ̄}, L = R

L, ‖ζ‖ ≡ ‖ζ‖∞
and augment this structure with the ‖ ·‖2-norm on the embedding space Rm+1 of the right hand
side Q := Lm+1 of the conic constraint in question. Now the robust properties of a candidate
design x are fully characterized by the worst-case loss

Fx(ρ) = max
‖ζ‖∞≤ρ

‖H(I +Diag{ζ})x− h‖2,

which is a convex and nondecreasing function of ρ ≥ 0. Invoking Proposition 4.2, it is easily
seen that a par (τ, x) is feasible for the GRC of our uncertain problem with global sensitivity α
if and only if

Fρ̄(x) ≤ τ & α ≥ α(x) := maxζ
{
dist‖·‖2([D[x]ζ; 0],Lm+1) : ‖ζ‖∞ ≤ 1

}

D[x] = HDiag{x} ∈ R
m×L.

Similarly to the case of ‖ · ‖∞-synthesis, the minimal possible value α(x) of α depends solely on
x; we call it global sensitivity of a candidate design x. Note that Fx(·) and α(x) are linked by
the relation similar, although not identical to, the relation α(x) = lim

ρ→∞
d
dρFx(ρ) we had in the

case of ‖ · ‖∞-design; now this relation modifies to

α(x) = 2−1/2 lim
ρ→+∞

d

dρ
Fx(ρ).

Indeed, denoting β(x) = lim
ρ→+∞

d
dρFx(ρ) and taking into account the fact that Fx(·) is a

nondecreasing convex function, we have β(x) = lim
ρ→∞

Fx(ρ)/ρ. Now, from the structure of F

it immediately follows that lim
ρ→∞

Fx(ρ)/ρ = max
ζ
{‖D[x]ζ‖2 : ‖ζ‖∞ ≤ 1}. Observing that the

‖ · ‖2-distance from a vector [u; 0] ∈ Rm+1 to the Lorentz cone Lm+1 clearly is 2−1/2‖u‖2
and looking at the definition of α(x), we conclude that α(x) = 2−1/2β(x), as claimed.

Now, in the case of ‖ · ‖∞-synthesis, the quantities Fx(ρ) and α(x) were easy to compute,
which is not the case now. However, we can built tight within the factor

√
π/2 tractable upper

bounds on these quantities, namely, as follows.
We have

Fx(ρ) = max
ζ:‖ζ‖∞≤ρ

‖h−H(1 + Diag{ζ})x‖2 = max
ζ:‖ζ‖∞≤ρ

‖h−Hx+D[x]ζ‖2
= max

‖[t;η]‖∞≤1
‖t[h−Hx] + ρD[x]η‖2,
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and the concluding quantity is nothing but the norm of the linear map [t : ζ] 7→ [h −
Hx; ρD[x]][t; ζ] induced by the norm ‖ · ‖∞ in the origin and the norm ‖ · ‖2 in the destina-
tion spaces. By Nesterov’s theorem, see p. 205, the efficiently computable quantity

F̂x(ρ) = min
µ,ν

{‖µ‖1 + ν

2
:

[
νIm [h−Hx, ρD[x]]

[h−Hx, ρD[x]]T Diag{µ}

]
� 0

}
(4.3.7)

is a tight within the factor
√
π/2 upper bound on Fx(ρ); note that this bound, same as Fx(·)

itself, is a convex and nondecreasing function of ρ.
Further, we have

α(x) = max
‖ζ‖∞≤1

dist‖·‖2([D[x]ζ; 0],Lm+1) = 2−1/2 max
‖ζ‖∞≤1

‖D[x]ζ‖2,

that is, α(x) is proportional to the norm of the linear mapping ζ 7→ D[x]ζ induced by the
‖ · ‖∞-norm in the origin and by the ‖ · ‖2-norm in the destination spaces. Same as above, we
conclude that the efficiently computable quantity

α̂(x) = min
µ,ν

{‖µ‖1 + ν

2
√
2

:

[
νIm D[x]

DT [x] Diag{µ}

]
� 0

}
(4.3.8)

is a tight within the factor
√
π/2 upper bound on α(x). Note that F̂x(·) and α̂(x) are linked by

exactly the same relation as Fx(ρ) and α(x), namely,

α̂(x) = 2−1/2 lim
ρ→∞

d

dρ
F̂x(ρ)

(why?).
Similarly to the situation of section 4.2.1, the function F̂x(·) (and thus the true loss Fx(ρ))

admits the piecewise linear upper bound
{

ρ0−ρ
ρ0

F̂x(0) +
ρ
ρ0
F̂x(ρ0), 0 ≤ ρ < ρ0,

F̂x(ρ0) + 21/2α̂(x)[ρ− ρ0], ρ ≥ ρ0,
, (4.3.9)

ρ0 ≥ 0 being the parameter of the bound.
We have carried out numerical experiments completely similar to those reported in section

4.2.1, that is, built solutions to the optimization problems

β̂∗(δ) = min
x

{
α̂(x) : Fx(0) ≤ (1 + δ)min

u
‖Hu− h‖2

}
; (4.3.10)

the results are presented in figure 4.4 and table 4.2.

4.4 Illustration: Robust Analysis of Nonexpansive Dynamical

Systems

We are about to illustrate the techniques we have developed by applying them to the problem of
robust nonexpansiveness analysis coming from Robust Control; in many aspects, this problem
resembles the Robust Lyapunov Stability Analysis problem we have considered in sections 3.4.2
and 3.5.1.
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Figure 4.4: Red and magenta: bounds (4.3.9) on the losses for optimal solutions to (4.3.10) for
the values of δ listed in table 4.2; the bounds correspond to ρ0 = 0. Blue: bound (4.2.5) with
ρ0 = 0.01 on the loss Fx(ρ) associated with the robust design built in section 3.3.1.

δ 0 0.25 0.50 0.75 1.00 1.25

β̂∗(δ) 9441.4 14.883 1.7165 0.6626 0.1684 0.1025

Table 4.2: Tolerances δ and quantities β̂∗(δ) (tight within the factor π/2 upper bounds on
global sensitivities of the optimal solutions to (4.3.10)). Pay attention to how huge is the global
sensitivity (≥ 2β̂∗(0)/π) of the nominal Least Squares-optimal design. For comparison: the
global sensitivity of the robust design xr built in section 3.3.1 is ≤ α̂(xr) = 0.3962.
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4.4.1 Preliminaries: Nonexpansive Linear Dynamical Systems

Consider an uncertain time-varying linear dynamical system (cf. (3.4.22)):

ẋ(t) = Atx(t) +Btu(t)
y(t) = Ctx(t) +Dtu(t)

(4.4.1)

where x ∈ R
n is the state, y ∈ R

p is the output and u ∈ R
q is the control. The system is

assumed to be uncertain, meaning that all we know about the matrix Σt =

[
At Bt

Ct Dt

]
is that

at every time instant t it belongs to a given uncertainty set U .
System (4.4.1) is called nonexpansive (more precisely, robustly nonexpansive w.r.t. uncer-

tainty set U), if
t∫

0

yT (s)y(s)ds ≤
t∫

0

uT (s)u(s)ds

for all t ≥ 0 and for all trajectories of (all realizations of) the system such that z(0) = 0. In
what follows, we focus on the simplest case of a system with y(t) ≡ x(t), that is, on the case of
Ct ≡ I, Dt ≡ 0. Thus, from now on the system of interest is

ẋ(t) = Atx(t) +Btu(t)
[At, Bt] ∈ AB ⊂ R

n×m ∀t,
m = n+ q = dimx+ dimu.

(4.4.2)

Robust nonexpansiveness now reads

t∫

0

xT (s)x(s)ds ≤
t∫

0

uT (s)u(s)ds (4.4.3)

for all t ≥ 0 and all trajectories x(·), x(0) = 0, of all realizations of (4.4.2).
Similarly to robust stability, robust nonexpansiveness admits a certificate that is a matrix

X ∈ Sn
+. Specifically, such a certificate is a solution of the following system of LMIs in matrix

variable X ∈ Sm:

(a) X � 0
(b) ∀[A,B] ∈ AB :

A(A,B;X) ≡
[ −In −ATX −XA −XB

−BTX Iq

]
� 0.

(4.4.4)

The fact that solvability of (4.4.4) is a sufficient condition for robust nonexpansive-
ness of (4.4.2) is immediate: if X solves (4.4.4), x(·), u(·) satisfy (4.4.2) and x(0) = 0,
then

uT (s)u(s)− xT (s)x(s)− d
ds

[
xT (s)Xx(s)

]
= uT (s)u(s)− xT (s)x(s)

−[ẋT (s)Xx(s) + xT (s)Xẋ(s)] = uT (s)u(s)− xT (s)x(s)
−[Asx(s) +Bsu(s)]

TXx(s)− xT (s)X[Asx(s) +Bsu(s)]

=
[
xT (s), uT (s)

]
A(As, Bs;X)

[
x(s)
u(s)

]
≥ 0,
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whence

t > 0⇒
t∫
0

[uT (s)u(s)− xT (s)x(s)]ds ≥ xT (t)Xx(t) − xT (0)Xx(0)
= xT (t)Xx(t) ≥ 0.

It should be added that when (4.4.2) is time-invariant, (i.e., AB is a singleton) and
satisfies mild regularity conditions, the existence of the outlined certificate, (i.e., the
solvability of (4.4.4)), is sufficient and necessary for nonexpansiveness.

Now, (4.4.4) is nothing but the RC of the system of LMIs in matrix variable X ∈ Sn:

(a) X � 0
(b) A(A,B;X) ∈ Sm

+ ,
(4.4.5)

the uncertain data being [A,B] and the uncertainty set being AB. From now on we focus on the
interval uncertainty, where the uncertain data [A,B] in (4.4.5) is parameterized by perturbation
ζ ∈ R

L according to

[A,B] = [Aζ , Bζ ] ≡ [An, Bn] +

L∑

`=1

ζ`e`f
T
` ; (4.4.6)

here [An, Bn] is the nominal data and e` ∈ R
n, f` ∈ R

m are given vectors.
Imagine, e.g., that the entries in the uncertain matrix [A,B] drift, independently of each other, around

their nominal values. This is a particular case of (4.4.6) where L = nm, ` = (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

and the vectors e` and f` associated with ` = (i, j) are, respectively, the i-th standard basic orth in Rn

multiplied by a given deterministic real δ` (“typical variability” of the data entry in question) and the

j-th standard basic orth in Rm.

4.4.2 Robust Nonexpansiveness: Analysis via GRC

The GRC setup and its interpretation

We are about to consider the GRC of the uncertain system of LMIs (4.4.5) affected by interval
uncertainty (4.4.6). Our “GRC setup” will be as follows:

1. We equip the space R
L where the perturbation ζ lives with the uniform norm ‖ζ‖∞ =

max` |ζ`|, and specify the normal range of ζ as the box

Z = {ζ ∈ R
L : ‖ζ‖∞ ≤ r} (4.4.7)

with a given r > 0.

2. We specify the cone L as the entire E = R
L, so that all perturbations are “physically

possible.”

3. The only uncertainty-affected LMI in our situation is (4.4.5.b); the right hand side in this
LMI is the positive semidefinite cone Sn+m

+ that lives in the space Sm of symmetric m×m
matrices equipped with the Frobenius Euclidean structure. We equip this space with the
standard spectral norm ‖ · ‖ = ‖ · ‖2,2.
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Note that our setup belongs to what was called “case F” on p. 207.
Before processing the GRC of (4.4.5), it makes sense to understand what does it actually

mean that X is a feasible solution to the GRC with global sensitivity α. By definition, this
means three things:

A. X � 0;
B. X is a robust feasible solution to (4.4.5.b), the uncertainty set being

ABr ≡ {[Aζ , bζ ] : ‖ζ‖∞ ≤ r} ,

see (4.4.6); this combines with A to imply that if the perturbation ζ = ζt underlying [At, Bt]
all the time remains in its normal range Z = {ζ : ‖ζ‖∞ ≤ r}, the uncertain dynamical system
(4.4.2) is robustly nonexpansive.

C. When ρ > r, we have

∀(ζ, ‖ζ‖∞ ≤ ρ) : dist(A(Aζ , Bζ ;X),Sm
+ ) ≤ αdist(ζ,Z|L) = α(ρ− r),

or, recalling what is the norm on Sm,

∀(ζ, ‖ζ‖∞ ≤ ρ) : A(Aζ , Bζ ;X) � −α(ρ− r)Im. (4.4.8)

Now, repeating word for word the reasoning we used to demonstrate that (4.4.4) is sufficient for
robust nonexpansiveness of (4.4.2), one can extract from (4.4.8) the following conclusion:

(!) Whenever in uncertain dynamical system (4.4.2) one has [At, Bt] = [Aζt , Bζt ] and
the perturbation ζt remains all the time in the range ‖ζt‖∞ ≤ ρ, one has

(1− α(ρ− r))
t∫

0

xT (s)x(s)ds ≤ (1 + α(ρ− r))
t∫

0

uT (s)u(s)ds (4.4.9)

for all t ≥ 0 and all trajectories of the dynamical system such that x(0) = 0.

We see that global sensitivity α indeed controls “deterioration of nonexpansiveness” as the
perturbations run out of their normal range Z: when the ‖ · ‖∞ distance from ζt to Z all the
time remains bounded by ρ − r ∈ [0, 1α), relation (4.4.9) guarantees that the L2 norm of the
state trajectory on every time horizon can be bounded by constant times the L2 norm of the

control on the this time horizon. The corresponding constant
(
1+α(ρ−r)
1−α(ρ−r)

)1/2
is equal to 1 when

ρ = r and grows with ρ, blowing up to +∞ as ρ− r approaches the critical value α−1, and the
larger α, the smaller is this critical value.

Processing the GRC

Observe that (4.4.4) and (4.4.6) imply that

A(Aζ , Bζ ;X) = A(An, Bn;X) −∑L
`=1 ζ`

[
LT
` (X)R` +RT

` L`(X)
]
,

LT
` (X) = [Xe`; 0m−n,1] , R

T
` = f`.

(4.4.10)
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Invoking Proposition 4.2, the GRC in question is equivalent to the following system of LMIs in
variables X and α:

(a) X � 0

(b) ∀(ζ, ‖ζ‖∞ ≤ r) :
A(An, Bn;X) +

∑L
`=1 ζ`

[
LT
` (X)R` +RT

` L`(X)
]
� 0

(c) ∀(ζ, ‖ζ‖∞ ≤ 1) :
∑L

`=1 ζ`
[
LT
` (X)R` +RT

` L`(X)
]
� −αIm.

(4.4.11)

Note that the semi-infinite LMIs (4.4.11.b, c) are affected by structured norm-bounded uncer-
tainty with 1 × 1 scalar perturbation blocks (see section 3.5.1). Invoking Theorem 3.13, the
system of LMIs

(a) X � 0

(b.1) Y` � ±
[
LT
` (X)R` +RT

` L`(X)
]
, 1 ≤ ` ≤ L

(b.2) A(An, Bn;X)− r∑L
`=1 Y` � 0

(c.1) Z` � ±
[
LT
` (X)R` +RT

` L`(X)
]
, 1 ≤ ` ≤ L

(c.2) αIm −
∑L

`=1 Z` � 0

in matrix variables X, {Y`, Z`}L`=1 and in scalar variable α is a safe tractable approximation of
the GRC, tight within the factor π

2 . Invoking the result stated in (!) on p. 112, we can reduce
the design dimension of this approximation; the equivalent reformulation of the approximation
is the SDO program

minα

s.t.
X � 0



A(An, Bn;X) − r∑L
`=1 λ`R

T
` R` LT

1 (X) · · · LT
L(X)

L1(X) λ1/r
...

. . .

LL(X) λL/r


 � 0




αIm −
∑L

`=1 µ`R
T
` R` LT

1 (X) · · · LT
L(X)

L1(X) µ1
...

. . .

LL(X) µL


 � 0

(4.4.12)

in variable X ∈ Sm and scalar variables α, {λ`, µ`}L`=1. Note that we have equipped our (ap-
proximate) GRC with the objective to minimize the global sensitivity of X; of course, other
choices of the objective are possible as well.

Numerical illustration

The data. In the illustration we are about to present, the state dimension is n = 5, and the
control dimension is q = 2, so that m = dimx + dimu = 7. The nominal data (chosen at
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random) are as follows:

[An, Bn]

=M :=




−1.089 −0.079 −0.031 −0.575 −0.387 0.145 0.241
−0.124 −2.362 −2.637 0.428 1.454 −0.311 0.150
−0.627 1.157 −1.910 −0.425 −0.967 0.022 0.183
−0.325 0.206 0.500 −1.475 0.192 0.209 −0.282
0.238 −0.680 −0.955 −0.558 −1.809 0.079 0.132



.

The interval uncertainty (4.4.6) is specified as

[Aζ , bζ ] =M +
5∑

i=1

7∑

j=1

ζij |Mij |gi︸ ︷︷ ︸
ei

fTj ,

where gi, fj are the standard basic orths in R
5 and R

7, respectively; in other words, every entry
in [A,B] is affected by its own perturbation, and the variability of an entry is the magnitude of
its nominal value.
Normal range of perturbations. Next we should decide how to specify the normal range
Z of the perturbations, i.e., the quantity r in (4.4.7). “In reality” this choice could come from
the nature of the dynamical system in question and the nature of its environment. In our
illustration there is no “nature and environment,” and we specify r as follows. Let r∗ be the
largest r for which the robust nonexpansiveness of the system at the perturbation level r, (i.e.,
the perturbation set being the box Br = {ζ : ‖ζ‖∞ ≤ r}) admits a certificate. It would be
quite reasonable to choose, as the normal range of perturbations Z, the box Br∗ , so that the
normal range of perturbations is the largest one where the robust nonexpansiveness still can be
certified. Unfortunately, precise checking the existence of a certificate for a given box in the role
of the perturbation set means to check the feasibility status of the system of LMIs

(a) X � 0
(b) ∀(ζ, ‖ζ‖∞ ≤ r) : A(Aζ , Bζ ;X) � 0

in matrix variable X, with A(·, ·; ·) given in (4.4.4). This task seems to be intractable, so that we
are forced to replace this system with its safe tractable approximation, tight within the factor
π/2, specifically, with the system

X � 0


A(An, Bn;X)− r∑L
`=1 λ`R

T
` R` LT

1 (X) · · · LT
L(X)

L1(X) λ1/r
...

. . .

LL(X) λL/r


 � 0

(4.4.13)

in matrix variable X and scalar variables λ` (cf. (4.4.12)), with R`(X) and L` given by (4.4.10).
The largest value r1 of r for which the latter system is solvable (this quantity can be easily found
by bisection) is a lower bound, tight within the factor pi/2, on r∗, and this is the quantity we
use in the role of r when specifying the normal range of perturbations according to (4.4.7).

Applying this approach to the outlined data, we end up with

r = r1 = 0.0346.
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The results. With the outlined nominal and perturbation data and r, the optimal value in
(4.4.12) turns out to be

αGRC = 27.231.

It is instructive to compare this quantity with the global sensitivity of the RC-certificate XRC

of robust nonexpansiveness; by definition, XRC is the X component of a feasible solution to
(4.4.13) where r is set to r1. This X clearly can be extended to a feasible solution to our safe
tractable approximation (4.4.12) of the GRC; the smallest, over all these extensions, value of
the global sensitivity α is

αRC = 49.636,

which is by a factor 1.82 larger than αGRC. It follows that the GRC-based analysis of the
robust nonexpansiveness properties of the uncertain dynamical system in question provides us
with essentially more optimistic results than the RC-based analysis. Indeed, a feasible solution
(α, ...) to (4.4.12) provides us with the upper bound

C∗(ρ) ≤ Cα(ρ) ≡
{

1, 0 ≤ ρ ≤ r
1+α(ρ−r)
1−α(ρ−r) , r ≤ ρ < r + α−1 (4.4.14)

(cf. (4.4.9)) on the “existing in the nature, but difficult to compute” quantity

C∗(ρ) = inf

{
C :

∫ t
0 x

T (s)x(s)ds ≤ C
∫ t
0 u

T (s)u(s)ds ∀(t ≥ 0, x(·), u(·)) :

x(0) = 0, ẋ(s) = Aζsx(s) +Bζsu(s), ‖ζs‖∞ ≤ ρ∀s
}

responsible for the robust nonexpansiveness properties of the dynamical system. The upper
bounds (4.4.14) corresponding to αRC and αGRC are depicted on the left plot in figure 4.5 where
we see that the GRC-based bound is much better than the RC-based bound.

Of course, both the bounds in question are conservative, and their “level of conservatism” is diffi-
cult to access theoretically: while we do understand how conservative our tractable approximations to
intractable RC/GRC are, we have no idea how conservative the sufficient condition (4.4.4) for robust
nonexpansiveness is (in this respect, the situation is completely similar to the one in Lyapunov Stability
Analysis, see section 3.5.1). We can, however, run a brute force simulation to bound C∗(ρ) from below.
Specifically, generating a sample of perturbations of a given magnitude and checking the associated ma-
trices [Aζ , Bζ ] for nonexpansiveness, we can build an upper bound ρ1 on the largest ρ for which every
matrix [Aζ , Bζ ] with ‖ζ‖∞ ≤ ρ generates a nonexpansive time-invariant dynamical system; ρ1 is, of
course, greater than or equal to the largest ρ = ρ1 for which C∗(ρ) ≤ 1. Similarly, testing matrices Aζ for
stability, we can build an upper bound ρ∞ on the largest ρ = ρ∞ for which all matrices Aζ , ‖ζ‖∞ ≤ ρ,
have all their eigenvalues in the closed left hand side plane; it is immediately seen that C∗(ρ) =∞ when
ρ > ρ∞. For our nominal and perturbation data, simulation yields

ρ1 = 0.310, ρ∞ = 0.7854.

These quantities should be compared, respectively, to r1 = 0.0346, (which clearly is a lower bound on

the range ρ1 of ρ’s where C∗(ρ) ≤ 1) and r∞ = r1 + α−1
GRC (this is the range of values of ρ where the

GRC-originating upper bound (4.4.14) on C∗(ρ) is finite; as such, r∞ is a lower bound on ρ∞). We see

that in our numerical example the conservatism of our approach is “within one order of magnitude”:

ρ1/r1 ≈ 8.95 and ρ∞/r∞ ≈ 11.01.
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Figure 4.5: RC/GRC-based analysis: bounds (4.4.14) vs. ρ for α = αGRC (solid) and α = αRC

(dashed).

4.5 Exercises

Exercise 4.1 Consider a situation as follows. A factory consumes n types of raw materials,
coming from n different suppliers, to be decomposed into m pure components. The per unit
content of component i in raw material j is pij ≥ 0, and the necessary per month amount of
component i is a given quantity bi ≥ 0. You need to make a long-term arrangement on the
amounts of raw materials xj coming every month from each of the suppliers, and these amounts
should satisfy the system of linear constraints

Px ≥ b, P = [pij].

The current per unit price of product j is cj ; this price, however, can vary in time, and from the
history you know the volatilities vj ≥ 0 of the prices. How to choose xj ’s in order to minimize
the total cost of supply at the current prices, given an upper bound α on the sensitivity of the
cost to possible future drifts in prices?

Test your model on the following data:

n = 32,m = 8, pij ≡ 1/m, bi ≡ 1.e3,

cj = 0.8 + 0.2
√

((j − 1)/(n − 1)), vj = 0.1(1.2 − cj),

and build the tradeoff curve “supply cost with current prices vs. sensitivity.”

Exercise 4.2 Consider the Structural Design problem (p. 129 in section 3.4.2).

Recall that the nominal problem is

min
t,τ

{
τ : t ∈ T ,

[
2τ fT

f A(t)

]
� 0 ∀f ∈ F

}
(SD)

where T is a given compact convex set of admissible designs, F ⊂ Rm is a finite set of

loads of interest and A(t) is an m ×m symmetric stiffness matrix affinely depending on t.

Assuming that the load f “in reality” can run out of the set of scenarios F and thus can be

treated as uncertain data element, we can look for a robust design. For the time being, we



218 LECTURE 4: GLOBALIZED RCS OF UNCERTAIN PROBLEMS

have already considered two robust versions of the problem. In the first, we extended the set

F of actual loads of interest was extended to its union with an ellipsoid E centered at the

origin (and thus we were interested to minimize the worst, with respect to loads of interest

and all “occasional” loads from E, compliance of the construction. In the second (p. 163,

section 3.6.2), we imposed an upper bound τ∗ on the compliance w.r.t. the loads of interest

and chance constrained the compliance w.r.t. Gaussian occasional loads. Along with these

settings, it might make sense to control both the compliance w.r.t. loads of interest and its

deterioration when these loads are perturbed. This is what we intend to consider now.

Consider the following “GRC-type” robust reformulation of the problem: we want to find a
construction such that its compliance w.r.t. a load f + ρg, where f ∈ F , g is an occasional load
from a given ellipsoid E centered at the origin, and ρ ≥ 0 is a perturbation level, never exceeds
a prescribed function φ(ρ). The corresponding robust problem is the semi-infinite program

(!) Given φ(·), find t ∈ T such that

[
2φ(ρ) [f + ρg]T

f + ρg A(t)

]
� 0 ∀(f ∈ F , g ∈ E).

1. Let us choose φ(ρ) = τ+αρ – the choice straightforwardly inspired by the GRC methodol-
ogy. Does the corresponding problem (!) make sense? If not, why the GRC methodology
does not work in our case?

2. Let us set φ(ρ) = (
√
τ + ρ

√
α)2. Does the corresponding problem (!) make sense? If yes,

does (!) admit a computationally tractable reformulation?

Exercise 4.3 Consider the situation as follows:

Unknown signal z known to belong to a given ball B = {z ∈ R
n : zT z ≤ 1}, Q � 0,

is observed according to the relation

y = Az + ξ,

where y is the observation, A is a given m×n sensing matrix, and ξ is an observation
error. Given y, we want to recover a linear form fT z of z; here f is a given vector.
The normal range of the observation error is Ξ = {ξ ∈ R

m : ‖ξ‖2 ≤ 1}. We are
seeking for a linear estimate f̂(y) = gT y.

1. Formulate the problem of building the best, in the minimax sense (i.e., with the minimal
worst case, w.r.t. x ∈ B and ξ ∈ Ξ, recovering error), linear estimate as the RC of an
uncertain LO problem and build tractable reformulation of this RC.

2. Formulate the problem of building a linear estimate with the worst case, over signals z
with ‖z‖2 ≤ 1+ ρz and observation errors ξ with ‖ξ‖2 ≤ 1+ ρξ, risk for all ρz, ρξ ≥ 0, risk
admitting the bound τ +αzρz +αξρξ with given τ, αz, αxi; thus, we want “desired perfor-
mance” τ of the estimate in the normal range B×Ξ of [z; ξ] and “controlled deterioration
of this performance” when z and/or ξ run out of their normal ranges. Build a tractable
reformulation of this problem.
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Exercise 4.4 Consider situation completely similar to the one in Exercise 4.3, with the only
difference that now we want to build a linear estimate Gy of the vector Cz, C being a given
matrix, rather than to estimate a linear form of g.

1. Formulate the problem of building the best, in the minimax sense (i.e., with the minimal
worst case, w.r.t. z ∈ B and ξ ∈ Ξ, ‖·‖2-recovering error), linear estimate of Cz as the RC
of an uncertain Least Squares inequality and build a tight safe tractable approximation of
this RC.

2. Formulate the problem of building a linear estimate of Cz with the worst case, over signals
z with ‖z‖2 ≤ 1 + ρz and observation errors ξ with ‖ξ‖2 ≤ 1 + ρξ, risk admitting for all
ρz, ρξ ≥ 0 the bound τ + αzρz + αξρξ with given τ, αz , αxi. Find a tight safe tractable
approximation of this problem.
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Lecture 5

Adjustable Robust Multistage
Optimization

In this lecture we intend to investigate robust multi-stage linear and conic optimization.

5.1 Adjustable Robust Optimization: Motivation

Consider a general-type uncertain optimization problem — a collection

P =
{
min
x
{f(x, ζ) : F (x, ζ) ∈ K} : ζ ∈ Z

}
(5.1.1)

of instances — optimization problems of the form

min
x
{f(x, ζ) : F (x, ζ) ∈ K} ,

where x ∈ R
n is the decision vector, ζ ∈ R

L represents the uncertain data or data perturbation,
the real-valued function f(x, ζ) is the objective, and the vector-valued function F (x, ζ) taking
values in R

m along with a set K ⊂ R
m specify the constraints; finally, Z ⊂ R

L is the uncertainty
set where the uncertain data is restricted to reside.

Format (5.1.1) covers all uncertain optimization problems considered so far; more-
over, in these latter problems the objective f and the right hand side F of the
constraints always were bi-affine in x, ζ, (that is, affine in x when ζ is fixed, and
affine in ζ, x being fixed), and K was a “simple” convex cone (a direct product of
nonnegative rays/Lorentz cones/Semidefinite cones, depending on whether we were
speaking about uncertain Linear, Conic Quadratic or Semidefinite Optimization).
We shall come back to this “well-structured” case later; for our immediate purposes
the specific conic structure of instances plays no role, and we can focus on “general”
uncertain problems in the form of (5.1.1).

The Robust Counterpart of uncertain problem (5.1.1) is defined as the semi-infinite optimization
problem

min
x,t
{t : ∀ζ ∈ Z : f(x, ζ) ≤ t, F (x, ζ) ∈ K} ; (5.1.2)

221
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this is exactly what was so far called the RC of an uncertain problem.
Recall that our interpretation of the RC (5.1.2) as the natural source of robust/robust optimal

solutions to the uncertain problem (5.1.1) is not self-evident, and its “informal justification”
relies upon the specific assumptions A.1–3 on our “decision environment,” see page 9. We have
already relaxed somehow the last of these assumptions, thus arriving at the notion of Globalized
Robust Counterpart, lecture 4. What is on our agenda now is to revise the first assumption,
which reads

A.1. All decision variables in (5.1.1) represent “here and now” decisions; they should
get specific numerical values as a result of solving the problem before the actual data
“reveals itself” and as such should be independent of the actual values of the data.

We have considered numerous examples of situations where this assumption is valid. At the
same time, there are situations when it is too restrictive, since “in reality” some of the decision
variables can adjust themselves, to some extent, to the actual values of the data. One can point
out at least two sources of such adjustability: presence of analysis variables and wait-and-see
decisions.
Analysis variables. Not always all decision variables xj in (5.1.1) represent actual decisions;
in many cases, some of xj are slack, or analysis, variables introduced in order to convert the
instances into a desired form, e.g., the one of Linear Optimization programs. It is very natural
to allow for the analysis variables to depend on the true values of the data — why not?

Example 5.1 [cf. Example 1.3] Consider an “`1 constraint”

K∑

k=1

|aTk x− bk| ≤ τ ; (5.1.3)

you may think, e.g., about the Antenna Design problem (Example 1.1) where the “fit” between the
actual diagram of the would-be antenna array and the target diagram is quantified by the ‖ · ‖1 distance.
Assuming that the data and x are real, (5.1.3) can be represented equivalently by the system of linear
inequalities

−yk ≤ aTk x− bk ≤ yk,
∑

k

yk ≤ τ

in variables x, y, τ . Now, when the data ak, bk are uncertain and the components of x do represent “here

and now” decisions and should be independent of the actual values of the data, there is absolutely no

reason to impose the latter requirement on the slack variables yk as well: they do not represent decisions

at all and just certify the fact that the actual decisions x, τ meet the requirement (5.1.3). While we can,

of course, impose this requirement “by force,” this perhaps will lead to a too conservative model. It

seems to be completely natural to allow for the certificates yk to depend on actual values of the data —

it may well happen that then we shall be able to certify robust feasibility for (5.1.3) for a larger set of

pairs (x, τ).

Wait-and-see decisions. This source of adjustability comes from the fact that some of the
variables xj represent decisions that are not “here and now” decisions, i.e., those that should be
made before the true data “reveals itself.” In multi-stage decision making processes, some xj
can represent “wait and see” decisions, which could be made after the controlled system “starts
to live,” at time instants when part (or all) of the true data is revealed. It is fully legitimate to
allow for these decisions to depend on the part of the data that indeed “reveals itself” before
the decision should be made.
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Example 5.2 Consider a multi-stage inventory system affected by uncertain demand. The most in-

teresting of the associated decisions — the replenishment orders — are made one at a time, and the

replenishment order of “day” t is made when we already know the actual demands in the preceding days.

It is completely natural to allow for the orders of day t to depend on the preceding demands.

5.2 Adjustable Robust Counterpart

A natural way to model adjustability of variables is as follows: for every j ≤ n, we allow for xj
to depend on a prescribed “portion” Pjζ of the true data ζ:

xj = Xj(Pjζ), (5.2.1)

where P1, ..., Pn are given in advance matrices specifying the “information base” of the decisions
xj, and Xj(·) are decision rules to be chosen; these rules can in principle be arbitrary functions
on the corresponding vector spaces. For a given j, specifying Pj as the zero matrix, we force xj
to be completely independent of ζ, that is, to be a “here and now” decision; specifying Pj as the
unit matrix, we allow for xj to depend on the entire data (this is how we would like to describe
the analysis variables). And the “in-between” situations, choosing Pj with 1 ≤ Rank(Pj) < L
enables one to model the situation where xj is allowed to depend on a “proper portion” of the
true data.

We can now replace in the usual RC (5.1.2) of the uncertain problem (5.1.1) the independent
of ζ decision variables xj with functions Xj(Pjζ), thus arriving at the problem

min
t,{Xj(·)}nj=1

{t : ∀ζ ∈ Z : f(X(ζ), ζ) ≤ t, F (X(ζ), ζ) ∈ K} ,

X(ζ) = [X1(P1ζ); ...;Xn(Pnζ)].
(5.2.2)

The resulting optimization problem is called the Adjustable Robust Counterpart (ARC) of the
uncertain problem (5.1.1), and the (collections of) decision rules X(ζ), which along with certain
t are feasible for the ARC, are called robust feasible decision rules. The ARC is then the problem
of specifying a collection of decision rules with prescribed information base that is feasible for as
small t as possible. The robust optimal decision rules now replace the constant (non-adjustable,
data-independent) robust optimal decisions that are yielded by the usual Robust Counterpart
(5.1.2) of our uncertain problem. Note that the ARC is an extension of the RC; the latter is a
“trivial” particular case of the former corresponding to the case of trivial information base in
which all matrices Pj are zero.

5.2.1 Examples

We are about to present two instructive examples of uncertain optimization problems with
adjustable variables.
Information base induced by time precedences. In many cases, decisions are made sub-
sequently in time; whenever this is the case, a natural information base of the decision to be
made at instant t (t = 1, ..., N) is the part of the true data that becomes known at time t. As
an instructive example, consider a simple Multi-Period Inventory model mentioned in Example
5.2:
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Example 5.2 continued. Consider an inventory system where d products share common ware-
house capacity, the time horizon is comprised of N periods, and the goal is to minimize the total inventory
management cost. Allowing for backlogged demand, the simplest model of such an inventory looks as
follows:

minimize C [inventory management cost]
s.t.

(a) C ≥∑N
t=1

[
cTh,tyt + cTb,tzt + cTo,twt

]
[cost description]

(b) xt = xt−1 + wt − ζt, 1 ≤ t ≤ N [state equations]
(c) yt ≥ 0, yt ≥ xt, 1 ≤ t ≤ N
(d) zt ≥ 0, zt ≥ −xt, 1 ≤ t ≤ N
(e) wt ≤ wt ≤ wt, 1 ≤ t ≤ N
(f) qT yt ≤ r

(5.2.3)

The variables in this problem are:

• C ∈ R — (upper bound on) the total inventory management cost;

• xt ∈ Rd, t = 1, ..., N — states. i-th coordinate xit of vector xt is the amount of product of type i
that is present in the inventory at the time instant t (end of time interval # t). This amount can
be nonnegative, meaning that the inventory at this time has xit units of free product # i; it may
be also negative, meaning that the inventory at the moment in question owes the customers |xit|
units of the product i (“backlogged demand”). The initial state x0 of the inventory is part of the
data, and not part of the decision vector;

• yt ∈ Rd are upper bounds on the positive parts of the states xt, that is, (upper bounds on) the
“physical” amounts of products stored in the inventory at time t, and the quantity cTh,tyt is the

(upper bound on the) holding cost in the period t; here ch,t ∈ Rd
+ is a given vector of the holding

costs per unit of the product. Similarly, the quantity qT yt is (an upper bound on) the warehouse
capacity used by the products that are “physically present” in the inventory at time t, q ∈ Rd

+

being a given vector of the warehouse capacities per units of the products;

• zt ∈ Rd are (upper bounds on) the backlogged demands at time t, and the quantities cTb,tzt are

(upper bounds on) the penalties for these backlogged demands. Here cb,t ∈ Rd
+ are given vectors

of the penalties per units of the backlogged demands;

• wt ∈ Rd is the vector of replenishment orders executed in period t, and the quantities cTo,twt are

the costs of executing these orders. Here co,t ∈ Rd
+ are given vectors of per unit ordering costs.

With these explanations, the constraints become self-evident:

• (a) is the “cost description”: it says that the total inventory management cost is comprised of total
holding and ordering costs and of the total penalty for the backlogged demand;

• (b) are state equations: “what will be in the inventory at the end of period t (xt) is what was there
at the end of preceding period (xt−1) plus the replenishment orders of the period (wt) minus the
demand of the period (ζt);

• (c), (d) are self-evident;

• (e) represents the upper and lower bounds on replenishment orders, and (f) expresses the require-
ment that (an upper bound on) the total warehouse capacity qT yt utilized by products that are
“physically present” in the inventory at time t should not be greater than the warehouse capacity
r.
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In our simple example, we assume that out of model’s parameters

x0, {ch,t, cb,t, co,t, wt, wt}Nt=1, q, r, {ζt}Nt=1

the only uncertain element is the demand trajectory ζ = [ζ1; ...; ζN ] ∈ RdN , and that this trajectory is

known to belong to a given uncertainty set Z. The resulting uncertain Linear Optimization problem is

comprised of instances (5.2.3) parameterized by the uncertain data — demand trajectory ζ — running

through a given set Z.
As far as the adjustability is concerned, all variables in our problem, except for the replen-

ishment orders wt, are analysis variables. As for the orders, the simplest assumption is that wt

should get numerical value at time t, and that at this time we already know the past demands
ζt−1 = [ζ1; ...; ζt−1]. Thus, the information base for wt is ζ

t−1 = Ptζ (with the convention that
ζs = 0 when s < 0). For the remaining analysis variables the information base is the entire
demand trajectory ζ. Note that we can easily adjust this model to the case when there are
lags in demand acquisition, so that wt should depend on a prescribed initial segment ζτ(t)−1,
τ(t) ≤ t, of ζt−1 rather than on the entire ζt−1. We can equally easily account for the possibility,
if any, to observe the demand “on line,” by allowing wt to depend on ζt rather than on ζt−1.
Note that in all these cases the information base of the decisions is readily given by the natural
time precedences between the “actual decisions” augmented by a specific demand acquisition
protocol.

Example 5.3 Project management. Figure 5.1 is a simple PERT diagram— a graph representing a
Project Management problem. This is an acyclic directed graph with nodes corresponding to events, and
arcs corresponding to activities. Among the nodes there is a start node S with no incoming arcs and an
end node F with no outgoing arcs, interpreted as “start of the project” and “completion of the project,”
respectively. The remaining nodes correspond to the events “a specific stage of the project is completed,
and one can pass to another stage”. For example, the diagram could represent creating a factory, with
A, B, C being, respectively, the events “equipment to be installed is acquired and delivered,” “facility
#1 is built and equipped,” “facility # 2 is built and equipped.” The activities are jobs comprising the
project. In our example, these jobs could be as follows:

a: acquiring and delivering the equipment for facilities ## 1,2
b: building facility # 1
c: building facility # 2
d: installing equipment in facility # 1
e: installing equipment in facility # 2
f: training personnel and preparing production at facility # 1
g: training personnel and preparing production at facility # 2

The topology of a PERT diagram represents logical precedences between the activities and events:

a particular activity, say g, can start only after the event C occurs, and the latter event happens when

both activities c and e are completed.

In PERT models it is assumed that activities γ have nonnegative durations τγ (perhaps
depending on control parameters), and are executed without interruptions, with possible idle
periods between the moment when the start of an activity is allowed by the logical precedences
and the moment when it is actually started. With these assumptions, one can write down
a system of constraints on the time instants tν when events ν can take place. Denoting by
Γ = {γ = (µγ , νγ)} the set of arcs in a PERT diagram (µγ is the start- and νγ is the end-node
of an arc γ), this system reads

tµγ − tνγ ≥ τγ ∀γ ∈ Γ. (5.2.4)
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Figure 5.1: A PERT diagram.

“Normalizing” this system by the requirement

tS = 0,

the values of tF , which can be obtained from feasible solutions to the system, are achievable
durations of the entire project. In a typical Project Management problem, one imposes an
upper bound on tF and minimizes, under this restriction, coupled with the system of constraints
(5.2.4), some objective function.

As an example, consider the situation where the “normal” durations τγ of activities can be
reduced at certain price (“in reality” this can correspond to investing into an activity extra
manpower, machines, etc.). The corresponding model becomes

τγ = ζγ − xγ , cγ = fγ(xγ),

where ζγ is the “normal duration” of the activity, xγ (“crush”) is a nonnegative decision vari-
able, and cγ = fγ(xγ) is the cost of the crush; here fγ(·) is a given function. The associated
optimization model might be, e.g., the problem of minimizing the total cost of the crushes under
a given upper bound T on project’s duration:

min
x={xγ :γ∈Γ}

{tν}

{∑

γ

fγ(xγ) :
tµγ − tνγ ≥ ζγ − xγ
0 ≤ xγ ≤ xγ

}
∀γ ∈ Γ, tS = 0, tF ≤ T

}
, (5.2.5)

where xγ are given upper bounds on crushes. Note that when fγ(·) are convex functions, (5.2.5) is
an explicit convex problem, and when, in addition to convexity, fγ(·) are piecewise linear, (which
is usually the case in reality and which we assume from now on), (5.2.5) can be straightforwardly
converted to a Linear Optimization program.

Usually part of the data of a PERT problem are uncertain. Consider the simplest case when
the only uncertain elements of the data in (5.2.5) are the normal durations ζγ of the activi-
ties (their uncertainty may come from varying weather conditions, inaccuracies in estimating
the forthcoming effort, etc.). Let us assume that these durations are random variables, say,
independent of each other, distributed in given segments ∆γ = [ζ

γ
, ζγ ]. To avoid pathologies,

assume also that ζ
γ
≥ xγ for every γ (“you cannot make the duration negative”). Now (5.2.5)

becomes an uncertain LO program with uncertainties affecting only the right hand sides of the
constraints. A natural way to “immunize” the solutions to the problem against data uncertainty
is to pass to the usual RC of the problem — to think of both tγ and xγ as of variables with values
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to be chosen in advance in such a way that the constraints in (5.2.4) are satisfied for all values
of the data ζγ from the uncertainty set. With our model of the latter set the RC is nothing but
the “worst instance” of our uncertain problem, the one where ζγ are set to their maximum pos-
sible values ζγ . For large PERT graphs, such an approach is very conservative: why should we
care about the highly improbable case where all the normal durations — independent random
variables! — are simultaneously at their worst-case values? Note that even taking into account
that the normal durations are random and replacing the uncertain constraints in (5.2.5) by their
chance constrained versions, we essentially do not reduce the conservatism. Indeed, every one
of randomly perturbed constraints in (5.2.5) contains a single random perturbation, so that we
cannot hope that random perturbations of a constraint will to some extent cancel each other.
As a result, to require the validity of every uncertain constraint with probability 0.9 or 0.99 is
the same as to require its validity “in the worst case” with just slightly reduced maximal normal
durations of the activities.

A much more promising approach is to try to adjust our decisions “on line.” Indeed, we are
speaking about a process that evolves in time, with “actual decisions” represented by variables
xγ and tν ’s being the analysis variables. Assuming that the decision on xγ can be postponed
till the event µγ (the earliest time when the activity γ can be started) takes place, at that time
we already know the actual durations of the activities terminated before the event µγ , we could
then adjust our decision on xγ in accordance with this information. The difficulty is that we
do not know in advance what will be the actual time precedences between the events — these
precedences depend on our decisions and on the actual values of the uncertain data. For example,
in the situation described by figure 5.1, we, in general, cannot know in advance which one of the
events B, C will precede the other one in time. As a result, in our present situation, in sharp
contrast to the situation of Example 5.2, an attempt to fully utilize the possibilities to adjust the
decisions to the actual values of the data results in an extremely complicated problem, where not
only the decisions themselves, but the very information base of the decisions become dependent
on the uncertain data and our policy. However, we could stick to something in-between “no
adjustability at all” and “as much adjustability as possible.” Specifically, we definitely know
that if a pair of activities γ′, γ are linked by a logical precedence, so that there exists an oriented
route in the graph that starts with γ′ and ends with γ, then the actual duration of γ′ will be
known before γ can start. Consequently, we can take, as the information base of an activity γ, the
collection ζγ = {ζγ′ : γ′ ∈ Γ−(γ)}, where Γ−(γ) is the set of all activities that logically precede
the activity γ. In favorable circumstances, such an approach could reduce significantly the price
of robustness as compared to the non-adjustable RC. Indeed, when plugging into the randomly
perturbed constraints of (5.2.5) instead of constants xγ functions Xγ(ζ

γ), and requiring from
the resulting inequalities to be valid with probability 1− ε, we end up with a system of chance
constraints such that some of them (in good cases, even most of them) involve many independent
random perturbations each. When the functions Xγ(ζ

γ) are regular enough, (e.g., are affine),
we can hope that the numerous independent perturbations affecting a chance constraint will to
some extent cancel each other, and consequently, the resulting system of chance constraints will
be significantly less conservative than the one corresponding to non-adjustable decisions.
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5.2.2 Good News on the ARC

Passing from a trivial information base to a nontrivial one — passing from robust optimal
data-independent decisions to robust optimal data-based decision rules can indeed dramatically
reduce the associated robust optimal value.

Example 5.4 Consider the toy uncertain LO problem



min

x



x1 :

x2 ≥ 1
2ζx1 + 1 (aζ)

x1 ≥ (2− ζ)x2 (bζ)
x1, x2 ≥ 0 (cζ)



 : 0 ≤ ζ ≤ ρ



 ,

where ρ ∈ (0, 1) is a parameter (uncertainty level). Let us compare the optimal value of its non-adjustable

RC (where both x1 and x2 must be independent of ζ) with the optimal value of the ARC where x1 still

is assumed to be independent of ζ (P1ζ ≡ 0) but x2 is allowed to depend on ζ (P2ζ ≡ ζ).

A feasible solution (x1, x2) of the RC should remain feasible for the constraint (aζ) when
ζ = ρ, meaning that x2 ≥ ρ

2x1 + 1, and should remain feasible for the constraint (bζ) when
ζ = 0, meaning that x1 ≥ 2x2. The two resulting inequalities imply that x1 ≥ ρx1 + 2, whence
x1 ≥ 2

1−ρ . Thus, Opt(RC)≥ 2
1−ρ , whence Opt(RC)→∞ as ρ→ 1− 0.

Now let us solve the ARC. Given x1 ≥ 0 and ζ ∈ [0, ρ], it is immediately seen that x1 can be
extended, by properly chosen x2, to a feasible solution of (aζ) through (cζ) if and only if the pair
(x1, x2 =

1
2ζx1+1) is feasible for (aζ) through (cζ), that is, if and only if x1 ≥ (2− ζ)

[
1
2ζx1 + 1

]

whenever 1 ≤ ζ ≤ ρ. The latter relation holds true when x1 = 4 and ρ ≤ 1 (since (2 − ζ)ζ ≤ 1
for 0 ≤ ζ ≤ 2). Thus, Opt(ARC)≤ 4, and the difference between Opt(RC) and Opt(ARC) and
the ratio Opt(RC)/Opt(ARC) go to ∞ as ρ→ 1− 0.

5.2.3 Bad News on the ARC

Unfortunately, from the computational viewpoint the ARC of an uncertain problem more often
than not is wishful thinking rather than an actual tool. The reason comes from the fact that the
ARC is typically severely computationally intractable. Indeed, (5.2.2) is an infinite-dimensional
problem, where one wants to optimize over functions — decision rules — rather than vectors,
and these functions, in general, depend on many real variables. It is unclear even how to
represent a general-type candidate decision rule — a general-type multivariate function — in a
computer. Seemingly the only option here is sticking to a chosen in advance parametric family of
decision rules, like piece-wise constant/linear/quadratic functions of Pjζ with simple domains of
the pieces (say, boxes). With this approach, a candidate decision rule is identified by the vector
of values of the associated parameters, and the ARC becomes a finite-dimensional problem,
the parameters being our new decision variables. This approach is indeed possible and in fact
will be the focus of what follows. However, it should be clear from the very beginning that if
the parametric family in question is “rich enough” to allow for good approximation of “truly
optimal” decision rules (think of polynomial splines of high degree as approximations to “not too
rapidly varying” general-type multivariate functions), the number of parameters involved should
be astronomically large, unless the dimension of ζ is really small, like 1 — 3 (think of how many
coefficients there are in a single algebraic polynomial of degree 10 with 20 variables). Thus,
aside of “really low dimensional” cases, “rich” general-purpose parametric families of decision
rules are for all practical purposes as intractable as non-parametric families. In other words,
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when the dimension L of ζ is not too small, tractability of parametric families of decision rules
is something opposite to their “approximation abilities,” and sticking to tractable parametric
families, we lose control of how far the optimal value of the “parametric” ARC is away from
the optimal value of the “true” infinite-dimensional ARC. The only exception here seems to
be the case when we are smart enough to utilize our knowledge of the structure of instances
of the uncertain problem in question in order to identify the optimal decision rules up to a
moderate number of parameters. If we indeed are that smart and if the parameters in question
can be further identified numerically in a computationally efficient fashion, we indeed can end
up with an optimal solution to the “true” ARC. Unfortunately, the two “if’s” in the previous
sentence are big if’s indeed — to the best of our knowledge, the only generic situation when these
conditions are satisfied is one treated the Dynamic Programming techniques. It seems that these
techniques form the only component in the existing “optimization toolbox” that could be used
to process the ARC numerically, at least when approximations of a provably high quality are
sought. Unfortunately, the Dynamic Programming techniques are very “fragile” — they require
instances of a very specific structure, suffer from “curse of dimensionality,” etc. The bottom
line, in our opinion, is that aside of situations where Dynamic Programming is computationally
efficient, (which is an exception rather than a rule), the only hopefully computationally tractable
approach to optimizing over decision rules is to stick to their simple parametric families, even
at the price of giving up full control over the losses in optimality that can be incurred by such
a simplification.

Before moving to an in-depth investigation of (a version of) the just outlined “simple approx-
imation” approach to adjustable robust decision-making, it is worth pointing out two situations
when no simple approximations are necessary, since the situations in question are very simple
from the very beginning.

Simple case I: fixed recourse and scenario-generated uncertainty set

Consider an uncertain conic problem

P =
{
min
x

{
cTζ x+ dζ : Aζx+ bζ ∈K

}
: ζ ∈ Z

}
(5.2.6)

(Aζ , bζ , cζ , dζ are affine in ζ, K is a computationally tractable convex cone) and assume that

1. Z is a scenario-generated uncertainty set, that is, a set given as a convex hull of finitely
many “scenarios” ζs, 1 ≤ s ≤ S;

2. The information base ensures that every variable xj either is non-adjustable (Pj = 0), or
is fully adjustable (Pj = I);

3. We are in the situation of fixed recourse, that is, for every adjustable variable xj (one with
Pj 6= 0), all its coefficients in the objective and the left hand side of the constraint are
certain, (i.e., are independent of ζ).

W.l.o.g. we can assume that x = [u; v], where the u variables are non-adjustable, and the v
variables are fully adjustable; under fixed recourse, our uncertain problem can be written down
as

P =

{
min
u,v

{
pTζ u+ qT v + dζ : Pζu+Qv + rζ ∈ K

}
: ζ ∈ Conv{ζ1, ..., ζS}

}
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(pζ , dζ , Pζ , rζ are affine in ζ). An immediate observation is that:

Theorem 5.1 Under assumptions 1 – 3, the ARC of the uncertain problem P is equivalent to
the computationally tractable conic problem

Opt = min
t,u,{vs}Ss=1

{
t : pζsu+ qT vs + dζs ≤ t, Pζsu+Qvs + rζs ∈ K

}
. (5.2.7)

Specifically, the optimal values in the latter problem and in the ARC of P are equal. Moreover,
if t̄, ū, {v̄s}Ss=1 is a feasible solution to (5.2.7), then the pair t̄, ū augmented by the decision rule
for the adjustable variables:

v = V̄ (ζ) =

S∑

s=1

λs(ζ)v̄
s

form a feasible solution to the ARC. Here λ(ζ) is an arbitrary nonnegative vector with the unit
sum of entries such that

ζ =

S∑

s=1

λs(ζ)ζ
S. (5.2.8)

Proof. Observe first that λ(ζ) is well-defined for every ζ ∈ Z due to Z = Conv{ζ1, ..., ζS}.
Further, if t̄, ū, {v̄s} is a feasible solution of (5.2.7) and V̄ (ζ) is as defined above, then for every
ζ ∈ Z the following implications hold true:

t̄ ≥ pζs ū+ qT v̄s + dζs ∀s⇒ t̄ ≥∑s λs(ζ)
[
pTζs ū+ qT v̄s + dζs

]

= pTζ ū+ qT V̄ (ζ) + dζ ,

K 3 Pζs ū+Qv̄s + rζs ∀s⇒ K 3∑s λs(ζ) [Pζs ū+Qv̄s + rζs ]
= Pζ ū+QV̄ (ζ) + rζ

(recall that pζ , ..., rζ are affine in ζ). We see that (t̄, ū, V̄ (·)) is indeed a feasible solution to the
ARC

min
t,u,V (·)

{
t : pTζ u+ qTV (ζ) + dζ ≤ t, Pζu+QV (ζ) + rζ ∈ K∀ζ ∈ Z

}

of P. As a result, the optimal value of the latter problem is ≤ Opt. It remains to verify that
the optimal value of the ARC and Opt are equal. We already know that the first quantity is ≤
the second one. To prove the opposite inequality, note that if (t, u, V (·)) is feasible for the ARC,
then clearly (t, u, {vs = V (ζs)}) is feasible for (5.2.7). �

The outlined result shares the same shortcoming as Theorem 3.1 from section 3.2.1: scenario-
generated uncertainty sets are usually too “small” to be of much interest, unless the number L
of scenarios is impractically large. It is also worth noticing that the assumption of fixed recourse
is essential: it is easy to show (see [14]) that without it, the ARC may become intractable.

Simple case II: uncertain LO with constraint-wise uncertainty

Consider an uncertain LO problem

P =
{
min
x

{
cTζ x+ dζ : a

T
iζx ≤ biζ , i = 1, ...,m

}
: ζ ∈ Z

}
, (5.2.9)

where, as always, cζ , dζ , aiζ , biζ are affine in ζ. Assume that
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1. The uncertainty is constraint-wise: ζ can be split into blocks ζ = [ζ0; ...; ζm] in such a
way that the data of the objective depend solely on ζ0, the data of the i-th constraint
depend solely on ζ i, and the uncertainty set Z is the direct product of convex compact
sets Z0,Z1, ...,Zm in the spaces of ζ0, ..., ζm;

2. One can point out a convex compact set X in the space of x variables such that whenever
ζ ∈ Z and x is feasible for the instance of P with the data ζ, one has x ∈ X .
The validity of the latter, purely technical, assumption can be guaranteed, e.g., when the constraints

of the uncertain problem contain (certain) finite upper and lower bounds on every one of the decision

variables. The latter assumption, for all practical purposes, is non-restrictive.

Our goal is to prove the following

Theorem 5.2 Under the just outlined assumptions i) and ii), the ARC of (5.2.9) is equivalent
to its usual RC (no adjustable variables): both ARC and RC have equal optimal values.

Proof. All we need is to prove that the optimal value in the ARC is ≥ the one of the RC. When
achieving this goal, we can assume w.l.o.g. that all decision variables are fully adjustable — are
allowed to depend on the entire vector ζ. The “fully adjustable” ARC of (5.2.9) reads

Opt(ARC) = min
X(·),t

{
t :

cTζ0X(ζ) + dζ0 − t ≤ 0

aT
iζi
X(ζ)− biζi ≤ 0, 1 ≤ i ≤ m

∀(ζ ∈ Z0 × ...×Zm)

}

= inf

{
t : ∀(ζ ∈ Z0 × ...×Zm)∃x ∈ X :

αT
i,ζix− βit+ γi,ζi ≤ 0, 0 ≤ i ≤ m

}
,

(5.2.10)

(the restriction x ∈ X can be added due to assumption i)), while the RC is the problem

Opt(RC) = inf
{
t : ∃x ∈ X : αT

iζix− βit+ γiζi ≤ 0∀(ζ ∈ Z0 × ...×Zm)
}
; (5.2.11)

here αiζi , γiζi are affine in ζ i and βi ≥ 0.
In order to prove that Opt(ARC) ≥ Opt(RC), it suffices to consider the case when

Opt(ARC) < ∞ and to show that whenever a real t̄ is > Opt(ARC), we have t̄ ≥ Opt(RC).
Looking at (5.2.11), we see that to this end it suffices to lead to a contradiction the statement
that for some t̄ > Opt(ARC) one has

∀x ∈ X∃(i = ix ∈ {0, 1, ...,m}, ζ i = ζ ixx ∈ Zix) : α
T
ixζ

ix
x
x− βix t̄+ γixζixx > 0. (5.2.12)

Assume that t̄ > Opt(ARC) and that (5.2.12) holds. For every x ∈ X , the inequality

αT
ixζ

ix
x
y − βix t̄+ γixζixx > 0

is valid when y = x; therefore, for every x ∈ X there exist εx > 0 and a neighborhood Ux of x
such that

∀y ∈ Ux : αT
ixζ

ix
x
y − βix t̄+ γixζixx ≥ εx.
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Since X is a compact set, we can find finitely many points x1, ..., xN such that X ⊂
N⋃
j=1

Uxj .

Setting ε = minj εxj , i[j] = ixj , ζ[j] = ζ
i
xj

xj ∈ Zi[j], and

fj(y) = αT
i[j],ζ[j]y − βi[j]t̄+ γi[j],ζ[j],

we end up with N affine functions of y such that

max
1≤j≤N

fj(y) ≥ ε > 0 ∀y ∈ X .

Since X is a convex compact set and fj(·) are affine (and thus convex and continuous) func-
tions, the latter relation, by well-known facts from Convex Analysis (namely, the von Neumann
Lemma), implies that there exists a collection of nonnegative weights λj with

∑
j λj = 1 such

that

f(y) ≡
N∑

j=1

λjfj(y) ≥ ε ∀y ∈ X . (5.2.13)

Now let
ωi =

∑
j:i[j]=i λj , i = 0, 1, ...,m;

ζ̄ i =

{ ∑
j:i[j]=i

λj

ωi
ζ[j], ωi > 0

a point from Zi, ωi = 0
,

ζ̄ = [ζ̄0; ...; ζ̄m].

Due to its origin, every one of the vectors ζ̄ i is a convex combination of points from Zi and as
such belongs to Zi, since the latter set is convex. Since the uncertainty is constraint-wise, we
conclude that ζ̄ ∈ Z. Since t̄ > Opt(ARC), we conclude from (5.2.10) that there exists x̄ ∈ X
such that the inequalities

αT
iζ̄i x̄− βit̄+ γiζ̄i ≤ 0

hold true for every i, 0 ≤ i ≤ m. Taking a weighted sum of these inequalities, the weights being
ωi, we get ∑

i:ωi>0

ωi[α
T
iζ̄i x̄− βi t̄+ γiζ̄i ] ≤ 0. (5.2.14)

At the same time, by construction of ζ̄ i and due to the fact that αiζi , γiζi are affine in ζ i, for
every i with ωi > 0 we have

[αT
iζ̄i x̄− βi t̄+ γiζ̄i ] =

∑

j:i[j]=i

λj
ωi
fj(x̄),

so that (5.2.14) reads
N∑

j=1

λjfj(x̄) ≤ 0,

which is impossible due to (5.2.13) and to x̄ ∈ X . We have arrived at the desired contradiction.
�
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5.3 Affinely Adjustable Robust Counterparts

We are about to investigate in-depth a specific version of the “parametric decision rules” ap-
proach we have outlined previously. At this point, we prefer to come back from general-type
uncertain problem (5.1.1) to affinely perturbed uncertain conic problem

C =
{
min
x∈Rn

{
cTζ x+ dζ : Aζx+ bζ ∈ K

}
: ζ ∈ Z

}
, (5.3.1)

where cζ , dζ , Aζ , bζ are affine in ζ, K is a “nice” cone (direct product of nonnegative rays/Lorentz
cones/semidefinite cones, corresponding to uncertain LP/CQP/SDP, respectively), and Z is a
convex compact uncertainty set given by a strictly feasible SDP representation

Z =
{
ζ ∈ R

L : ∃u : P(ζ, u) � 0
}
,

where P is affine in [ζ;u]. Assume that along with the problem, we are given an information
base {Pj}nj=1 for it; here Pj are mj×n matrices. To save words (and without risk of ambiguity),
we shall call such a pair “uncertain problem C, information base” merely an uncertain conic
problem. Our course of action is to restrict the ARC of the problem to a specific parametric
family of decision rules, namely, the affine ones:

xj = Xj(Pjζ) = pj + qTj Pjζ, j = 1, ..., n. (5.3.2)

The resulting restricted version of the ARC of (5.3.1), which we call the Affinely Adjustable
Robust Counterpart (AARC), is the semi-infinite optimization program

min
t,{pj ,qj}nj=1

{
t :

∑n
j=1 c

j
ζ [pj + qTj Pjζ] + dζ − t ≤ 0∑n

j=1A
j
ζ [pj + qTj Pjζ] + bζ ∈K

}
∀ζ ∈ Z

}
, (5.3.3)

where cjζ is j-th entry in cζ , and A
j
ζ is j-th column of Aζ . Note that the variables in this problem

are t and the coefficients pj, qj of the affine decision rules (5.3.2). As such, these variables do not
specify uniquely the actual decisions xj; these decisions are uniquely defined by these coefficients
and the corresponding portions Pjζ of the true data once the latter become known.

5.3.1 Tractability of the AARC

The rationale for focusing on affine decision rules rather than on other parametric families is
that there exists at least one important case when the AARC of an uncertain conic problem is,
essentially, as tractable as the RC of the problem. The “important case” in question is the one
of fixed recourse and is defined as follows:

Definition 5.1 Consider an uncertain conic problem (5.3.1) augmented by an information base
{Pj}nj=1. We say that this pair is with fixed recourse, if the coefficients of every adjustable, (i.e.,
with Pj 6= 0), variable xj are certain:

∀(j : Pj 6= 0) : both cjζ and Aj
ζ are independent of ζ.
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For example, both Examples 5.1 (Inventory) and 5.2 (Project Management) are uncertain prob-
lems with fixed recourse.

An immediate observation is as follows:

(!) In the case of fixed recourse, the AARC, similarly to the RC, is a semi-infinite
conic problem — it is the problem

min
t,y={pj ,qj}

{
t :

ĉTζ y + dζ ≤ t
Âζy + bζ ∈ K

}
∀ζ ∈ Z

}
, (5.3.4)

with ĉζ , dζ , Âζ , bζ affine in ζ:

ĉTζ y =
∑

j c
j
ζ [pj + qTj Pjζ]

Âζy =
∑

j A
j
ζ [pj + qTj Pjζ].

[y = {[pj , qj ]}nj=1]

Note that it is exactly fixed recourse that makes ĉζ , Âζ affine in ζ; without this assumption,
these entities are quadratic in ζ.

As far as the tractability issues are concerned, observation (!) is the main argument in favor
of affine decision rules, provided we are in the situation of fixed recourse. Indeed, in the latter
situation the AARC is a semi-infinite conic problem, and we can apply to it all the results of
previous lectures related to tractable reformulations/tight safe tractable approximations of semi-
infinite conic problems. Note that many of these results, while imposing certain restrictions on
the geometries of the uncertainty set and the coneK, require from the objective (if it is uncertain)
and the left hand sides of the uncertain constraints nothing more than bi-affinity in the decision
variables and in the uncertain data. Whenever this is the case, the “tractability status” of the
AARC is not worse than the one of the usual RC. In particular, in the case of fixed recourse we
can:

1. Convert the AARC of an uncertain LO problem into an explicit efficiently solvable “well-
structured” convex program (see Theorem 1.1).

2. Process efficiently the AARC of an uncertain conic quadratic problem with (common to
all uncertain constraints) simple ellipsoidal uncertainty (see section 3.2.5).

3. Use a tight safe tractable approximation of an uncertain problem with linear objective and
convex quadratic constraints with (common for all uncertain constraints) ∩-ellipsoidal
uncertainty (see section 3.3.2): whenever Z is the intersection of M ellipsoids centered
at the origin, the problem admits a safe tractable approximation tight within the factor
O(1)

√
ln(M) (see Theorem 3.11).

The reader should be aware, however, that the AARC, in contrast to the usual RC, is not a
constraint-wise construction, since when passing to the coefficients of affine decision rules as our
new decision variables, the portion of the uncertain data affecting a particular constraint can
change when allowing the original decision variables entering the constraint to depend on the
uncertain data not affecting the constraint directly. This is where the words “common” in the
second and the third of the above statements comes from. For example, the RC of an uncertain
conic quadratic problem with the constraints of the form

‖Ai
ζx+ biζ‖2 ≤ xT ciζ + diζ , i = 1, ...,m,
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is computationally tractable, provided that the projection Zi of the overall uncertainty set Z
onto the subspace of data perturbations of i-th constraint is an ellipsoid (section 3.2.5). To get a
similar result for the AARC, we need the overall uncertainty set Z itself to be an ellipsoid, since
otherwise the projection of Z on the data of the “AARC counterparts” of original uncertain
constraints can be different from ellipsoids. The bottom line is that the claim that with fixed
recourse, the AARC of an uncertain problem is “as tractable” as its RC should be understood
with some caution. This, however, is not a big deal, since the “recipe” is already here: Under
the assumption of fixed recourse, the AARC is a semi-infinite conic problem, and in order to
process it computationally, we can use all the machinery developed in the previous lectures.
If this machinery allows for tractable reformulation/tight safe tractable approximation of the
problem, fine, otherwise too bad for us.” Recall that there exists at least one really important
case when everything is fine — this is the case of uncertain LO problem with fixed recourse.

It should be added that when processing the AARC in the case of fixed recourse, we can
enjoy all the results on safe tractable approximations of chance constrained affinely perturbed
scalar, conic quadratic and linear matrix inequalities developed in previous lectures. Recall that
these results imposed certain restrictions on the distribution of ζ (like independence of ζ1, ..., ζL),
but never required more than affinity of the bodies of the constraints w.r.t. ζ, so that these
results work equally well in the cases of RC and AARC.

Last, but not least, the concept of an Affinely Adjustable Robust Counterpart can be straight-
forwardly “upgraded” to the one of Affinely AdjustableGlobalized Robust Counterpart. We have
no doubts that a reader can carry out such an “upgrade” on his/her own and understands that
in the case of fixed recourse, the above “recipe” is equally applicable to the AARC and the
AAGRC.

5.3.2 Is Affinity an Actual Restriction?

Passing from arbitrary decision rules to affine ones seems to be a dramatic simplification. On a
closer inspection, the simplification is not as severe as it looks, or, better said, the “dramatics”
is not exactly where it is seen at first glance. Indeed, assume that we would like to use decision
rules that are quadratic in Pjζ rather than linear. Are we supposed to introduce a special notion
of a “Quadratically Adjustable Robust Counterpart“? The answer is negative. All we need is
to augment the data vector ζ = [ζ1; ...; ζL] by extra entries — the pairwise products ζiζj of the

original entries — and to treat the resulting “extended” vector ζ̂ = ζ̂[ζ] as our new uncertain
data. With this, the decision rules that are quadratic in Pjζ become affine in P̂j ζ̂[ζ], where P̂j

is a matrix readily given by Pj . More generally, assume that we want to use decision rules of
the form

Xj(ζ) = pj + qTj P̂j ζ̂[ζ], (5.3.5)

where pj ∈ R, qj ∈ R
mj are “free parameters,” (which can be restricted to reside in a given

convex set), P̂j are given mj ×D matrices and

ζ 7→ ζ̂[ζ] : RL → R
D

is a given, possibly nonlinear, mapping. Here again we can pass from the original data vector
ζ to the data vector ζ̂[ζ], thus making the desired decision rules (5.3.5) merely affine in the
“portions” P̂j ζ̂ of the new data vector. We see that when allowing for a seemingly harmless
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redefinition of the data vector, affine decision rules become as powerful as arbitrary affinely
parameterized parametric families of decision rules. This latter class is really huge and, for all
practical purposes, is as rich as the class of all decision rules. Does it mean that the concept
of AARC is basically as flexible as the one of ARC? Unfortunately, the answer is negative,
and the reason for the negative answer comes not from potential difficulties with extremely
complicated nonlinear transformations ζ 7→ ζ̂[ζ] and/or “astronomically large” dimension D of
the transformed data vector. The difficulty arises already when the transformation is pretty
simple, as is the case, e.g., when the coordinates in ζ̂[ζ] are just the entries of ζ and the
pairwise products of these entries. Here is where the difficulty arises. Assume that we are
speaking about a single uncertain affinely perturbed scalar linear constraint, allow for quadratic
dependence of the original decision variables on the data and pass to the associated adjustable
robust counterpart of the constraint. As it was just explained, this counterpart is nothing but
a semi-infinite scalar inequality

∀(ζ̂ ∈ U) : a
0,ζ̂

+
J∑

j=1

a
j,ζ̂
yj ≤ 0

where a
j,ζ̂

are affine in ζ̂, the entries in ζ̂ = ζ̂[ζ] are the entries in ζ and their pairwise products,

U is the image of the “true” uncertainty set Z under the nonlinear mapping ζ → ζ̂[ζ], and yj
are our new decision variables (the coefficients of the quadratic decision rules). While the body
of the constraint in question is bi-affine in y and in ζ̂, this semi-infinite constraint can well be
intractable, since the uncertainty set U may happen to be intractable, even when Z is tractable.
Indeed, the tractability of a semi-infinite bi-affine scalar constraint

∀(u ∈ U) : f(y, u) ≤ 0

heavily depends on whether the underlying uncertainty set U is convex and computationally
tractable. When it is the case, we can, modulo minor technical assumptions, solve efficiently the
Analysis problem of checking whether a given candidate solution y is feasible for the constraint —
to this end, it suffices to maximize the affine function f(y, ·) over the computationally tractable
convex set U . This, under minor technical assumptions, can be done efficiently. The latter fact,
in turn, implies (again modulo minor technical assumptions) that we can optimize efficiently
linear/convex objectives under the constraints with the above features, and this is basically
all we need. The situation changes dramatically when the uncertainty set U is not a convex
computationally tractable set. By itself, the convexity of U costs nothing: since f is bi-affine, the
feasible set of the semi-infinite constraint in question remains intact when we replace U with its
convex hull Ẑ. The actual difficulty is that the convex hull Ẑ of the set U can be computationally
intractable. In the situation we are interested in — the one where Ẑ = ConvU and U is the image
of a computationally tractable convex set Z under a nonlinear transformation ζ 7→ ζ̂[ζ], Ẑ can
be computationally intractable already for pretty simple Z and nonlinear mappings ζ 7→ ζ̂[ζ]. It
happens, e.g., when Z is the unit box ‖ζ‖∞ ≤ 1 and ζ̂[ζ] is comprised of the entries in ζ and their
pairwise products. In other words, the “Quadratically Adjustable Robust Counterpart” of an
uncertain linear inequality with interval uncertainty is, in general, computationally intractable.

In spite of the just explained fact that “global linearization” of nonlinear decision rules via
nonlinear transformation of the data vector not necessarily leads to tractable adjustable RCs,



5.3. AFFINELY ADJUSTABLE ROBUST COUNTERPARTS 237

one should keep in mind this option, since it is important methodologically. Indeed, “global
linearization” allows one to “split” the problem of processing the ARC, restricted to decision
rules (5.3.5), into two subproblems:

(a) Building a tractable representation (or a tight tractable approximation) of the convex
hull Ẑ of the image U of the original uncertainty set Z under the nonlinear mapping ζ 7→ ζ̂[ζ]
associated with (5.3.5). Note that this problem by itself has nothing to do with adjustable
robust counterparts and the like;

(b) Developing a tractable reformulation (or a tight safe tractable approximation) of the
Affinely Adjustable Robust Counterpart of the uncertain problem in question, with ζ̂ in the role
of the data vector, the tractable convex set, yielded by (a), in the role of the uncertainty set,
and the information base given by the matrices P̂j .
Of course, the resulting two problems are not completely independent: the tractable convex set
Ẑ with which we, upon success, end up when solving (a) should be simple enough to allow for
successful processing of (b). Note, however, that this “coupling of problems (a) and (b)” is of
no importance when the uncertain problem in question is an LO problem with fixed recourse.
Indeed, in this case the AARC of the problem is computationally tractable whatever the un-
certainty set as long as it is tractable, therefore every tractable set Ẑ yielded by processing of
problem (a) will do.

Example 5.5 Assume that we want to process an uncertain LO problem

C =
{
minx

{
cTζ x+ dζ : Aζx ≥ bζ

}
: ζ ∈ Z

}

[cζ , dζ , Aζ , bζ : affine in ζ]
(5.3.6)

with fixed recourse and a tractable convex compact uncertainty set Z, and consider a number of affinely

parameterized families of decision rules.

A. “Genuine” affine decision rules: xj is affine in Pjζ. As we have already seen, the associated
ARC — the usual AARC of C — is computationally tractable.
B. Piece-wise linear decision rules with fixed breakpoints. Assume that the mapping ζ 7→ ζ̂[ζ]

augments the entries of ζ with finitely many entries of the form φi(ζ) = max
[
ri, s

T
i ζ
]
, and the

decision rules we intend to use should be affine in P̂j ζ̂, where P̂j are given matrices. In order
to process the associated ARC in a computationally efficient fashion, all we need is to build a
tractable representation of the set Ẑ = Conv{ζ̂[ζ] : ζ ∈ Z}. While this could be difficult in
general, there are useful cases when the problem is easy, e.g., the case where

Z = {ζ ∈ R
L : fk(ζ) ≤ 1, 1 ≤ k ≤ K},

ζ̂[ζ] = [ζ; (ζ)+; (ζ)−], with (ζ)− = max[ζ, 0L×1], (ζ)+ = max[−ζ, 0L×1].

Here, for vectors u, v, max[u, v] is taken coordinate-wise, and fk(·) are lower semicontinuous
and absolutely symmetric convex functions on R

L, absolute symmetry meaning that fk(ζ) ≡
fk(abs(ζ)) (abs acts coordinate-wise). (Think about the case when fk(ζ) = ‖[αk1ζ1; ...;αkLζL]‖pk
with pk ∈ [1,∞].) It is easily seen that if Z is bounded, then

Ẑ =



ζ̂ = [ζ; ζ+; ζ−] :

(a) fk(ζ
+ + ζ−) ≤ 1, 1 ≤ k ≤ K

(b) ζ = ζ+ − ζ−
(c) ζ± ≥ 0



 .
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Indeed, (a) through (c) is a system of convex constraints on vector ζ̂ = [ζ; ζ+; ζ−], and since fk are lower
semicontinuous, the feasible set C of this system is convex and closed; besides, for [ζ; ζ+; ζ−] ∈ C we have
ζ+ + ζ− ∈ Z; since the latter set is bounded by assumption, the sum ζ+ + ζ− is bounded uniformly in
ζ̂ ∈ C, whence, by (a) through (c), C is bounded. Thus, C is a closed and bounded convex set. The image

U of the set Z under the mapping ζ 7→ [ζ; (ζ)+; (ζ)−] clearly is contained in C, so that the convex hull Ẑ
of U is contained in C as well. To prove the inverse inclusion, note that since C is a (nonempty) convex
compact set, it is the convex hull of the set of its extreme points, and therefore in order to prove that
Ẑ ⊃ C it suffices to verify that every extreme point [ζ; ζ+, ζ−] of C belongs to U . But this is immediate:
in an extreme point of C we should have min[ζ+` , ζ

−
` ] = 0 for every `, since if the opposite were true for

some ` = ¯̀, then C would contain a nontrivial segment centered at the point, namely, points obtained
from the given one by the “3-entry perturbation” ζ+¯̀ 7→ ζ+¯̀ + δ, ζ−¯̀ 7→ ζ+¯̀ − δ, ζ¯̀ 7→ ζ¯̀+ 2δ with small
enough |δ|. Thus, every extreme point of C has min[ζ+, ζ−] = 0, ζ = ζ+ − ζ−, and a point of this type
satisfying (a) clearly belongs to U . �

C. Separable decision rules. Assume that Z is a box: Z = {ζ : a ≤ ζ ≤ a}, and we are seeking
for separable decision rules with a prescribed “information base,” that is, for the decision rules
of the form

xj = ξj +
∑

`∈Ij
f j` (ζ`), j = 1, ..., n, (5.3.7)

where the only restriction on functions f j` is to belong to given finite-dimensional linear spaces
F` of univariate functions. The sets Ij specify the information base of our decision rules. Some
of these sets may be empty, meaning that the associated xj are non-adjustable decision variables,
in full accordance with the standard convention that a sum over an empty set of indices is 0.
We consider two specific choices of the spaces F`:

C.1: F` is comprised of all piecewise linear functions on the real axis with fixed breakpoints
a`1 < ... < a`m (w.l.o.g., assume that a` < a`1, a`m < a`);

C.2: F` is comprised of all algebraic polynomials on the axis of degree ≤ κ.
Note that what follows works when m in C.1 and κ in C.2 depend on `; in order to simplify

notation, we do not consider this case explicitly.
C.1: Let us augment every entry ζ` of ζ with the reals ζ`i[ζ`] = max[ζ`, a`i], i = 1, ...,m, and

let us set ζ`0[ζ`] = ζ`. In the case of C.1, decision rules (5.3.7) are exactly the rules where xj
is affine in {ζ`i[ζ] : ` ∈ Ij}; thus, all we need in order to process efficiently the ARC of (5.3.6)
restricted to the decision rules in question is a tractable representation of the convex hull of the
image U of Z under the mapping ζ 7→ {ζ`i[ζ]}`,i. Due to the direct product structure of Z, the
set U is the direct product, over ` = 1, ..., d, of the sets

U` = {[ζ`0[ζ`]; ζ`1[ζ`]; ...; ζ`m[ζ`]] : a` ≤ ζ` ≤ a`},
so that all we need are tractable representations of the convex hulls of the sets U`. The bottom
line is, that all we need is a tractable description of a set C of the form

Cm = ConvSm, Sm = {[s0;max[s0, a1]; ...;max[s0, am]] : a0 ≤ s0 ≤ am+1},
where a0 < a1 < a2 < ... < am < am+1 are given. An explicit polyhedral description of the set
Cm is given by the following

Lemma 5.1 [3, Lemma 14.3.3] The convex hull Cm of the set Sm is

Cm =

{
[s0; s1; ...; sm] :

{
a0 ≤ s0 ≤ am+1

0 ≤ s1−s0
a1−a0

≤ s2−s1
a2−a1

≤ ... ≤ sm+1−sm
am+1−am

≤ 1

}
, (5.3.8)
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where sm+1 = am+1.

C.2: Similar to the case of C.1, in the case of C.2 all we need in order to process efficiently
the ARC of (5.3.6), restricted to decision rules (5.3.7), is a tractable representation of the set

C = ConvS, S = {ŝ = [s; s2; ...; sκ] : |s| ≤ 1}.

(We have assumed w.l.o.g. that a` = −1, a` = 1.) Here is the description (originating from
[75]):

Lemma 5.2 The set C = ConvS admits the explicit semidefinite representation

C =
{
ŝ ∈ R

κ : ∃λ = [λ0; ...;λ2κ] ∈ R
2κ+1 : [1; ŝ] = QTλ, [λi+j ]

κ
i,j=0 � 0

}
, (5.3.9)

where the (2κ + 1) × (κ + 1) matrix Q is defined as follows: take a polynomial p(t) = p0 +
p1t+ ... + pκt

κ and convert it into the polynomial p̂(t) = (1 + t2)κp(2t/(1 + t2)). The vector of
coefficients of p̂ clearly depends linearly on the vector of coefficients of p, and Q is exactly the
matrix of this linear transformation.

Proof. 10. Let P ⊂ Rκ+1 be the cone of vectors p of coefficients of polynomials p(t) = p0 + p1t+ p2t
2 +

...+ pκt
κ that are nonnegative on [−1, 1], and P∗ be the cone dual to P . We claim that

C = {ŝ ∈ R
κ : [1; ŝ] ∈ P∗}. (5.3.10)

Indeed, let C′ be the right hand side set in (5.3.10). If ŝ = [s; s2; ...; sκ] ∈ S, then |s| ≤ 1, so that for every
p ∈ P we have pT [1; ŝ] = p(s) ≥ 0. Thus, [1; ŝ] ∈ P∗ and therefore ŝ ∈ C′. Since C′ is convex, we arrive at
C ≡ ConvS ⊂ C′. To prove the inverse inclusion, assume that there exists ŝ 6∈ C such that z = [1; ŝ] ∈ P∗,
and let us lead this assumption to a contradiction. Since ŝ is not in C and C is a closed convex set and
clearly contains the origin, we can find a vector q ∈ Rκ such that qT ŝ = 1 and maxr∈C q

T r ≡ α < 1, or,
which is the same due to C = ConvS, qT [s; s2; ...; sκ] ≤ α < 1 whenever |s| ≤ 1. Setting p = [α;−q],
we see that p(s) ≥ 0 whenever |s| ≤ 1, so that p ∈ P and therefore α − qT ŝ = pT [1; ŝ] ≥ 0, whence
1 = qT ŝ ≤ α < 1, which is a desired contradiction.

20. It remains to verify that the right hand side in (5.3.10) indeed admits representation (5.3.9). We
start by deriving a semidefinite representation of the cone P+ of (vectors of coefficients of) all polynomials
p(s) of degree not exceeding 2κ that are nonnegative on the entire axis. The representation is as follows.
A (κ+ 1)× (κ+ 1) symmetric matrix W can be associated with the polynomial of degree ≤ 2κ given by
pW (t) = [1; t; t2; ...; tκ]TW [1; t; t2; ...; tκ], and the mapping A :W 7→ pW clearly is linear:

(
A[wij ]

κ
i,j=0

)
ν
=∑

0≤i≤ν wi,ν−i, 0 ≤ ν ≤ 2κ. A dyadic matrix W = eeT “produces” in this way a polynomial that is the

square of another polynomial: AeeT = e2(t) and as such is ≥ 0 on the entire axis. Since every matrix
W � 0 is a sum of dyadic matrices, we conclude that AW ∈ P+ whenever W � 0. Vice versa, it is well
known that every polynomial p ∈ P+ is the sum of squares of polynomials of degrees ≤ κ, meaning that
every p ∈ P+ is AW for certain W that is the sum of dyadic matrices and as such is � 0. Thus,

P+ = {p = AW :W ∈ Sκ+1
+ }.

Now, the mapping t 7→ 2t/(1+ t2) : R→ R maps R onto the segment [−1, 1]. It follows that a polynomial
p of degree ≤ κ is ≥ 0 on [−1, 1] if and only if the polynomial p̂(t) = (1 + t2)κp(2t/(1 + t2)) of degree
≤ 2κ is ≥ 0 on the entire axis, or, which is the same, p ∈ P if and only if Qp ∈ P+. Thus,

P = {p ∈ R
κ+1 : ∃W ∈ Sκ+1 :W � 0,AW = Qp}.
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Given this semidefinite representation of P , we can immediately obtain a semidefinite representation of
P∗. Indeed,

q ∈ P∗ ⇔ 0 ≤ minp∈P {qT p} ⇔ 0 ≤ minp∈Rκ{qT p : ∃W � 0 : Qp = AW}
⇔ 0 ≤ minp,W {qT p : Qp−AW = 0,W � 0}
⇔ {q = QTλ : λ ∈ R

2κ+1,A∗λ � 0},
where the concluding ⇔ is due to semidefinite duality. Computing A∗λ, we arrive at (5.3.9). �

Remark 5.1 Note that C.2 admits a straightforward modification where the spaces F` are com-

prised of trigonometric polynomials
κ∑

i=0
[pi cos(iω`s) + qi sin(iω`s)] rather than of algebraic poly-

nomials
∑κ

i=0 pis
i. Here all we need is a tractable description of the convex hull of the curve

{[s; cos(ω`s); sin(ω`s); ...; cos(κω`s); sin(κω`s)] : −1 ≤ s ≤ 1}
which can be easily extracted from the semidefinite representation of the cone P+.

Discussion. There are items to note on the results stated inC. The bad news is that understood
literally, these results have no direct consequences in our context — when Z is a box, decision
rules (5.3.7) never outperform “genuine” affine decision rules with the same information base
(that is, the decision rules (5.3.7) with the spaces of affine functions on the axis in the role of
F`).

The explanation is as follows. Consider, instead of (5.3.6), a more general problem, specifi-
cally, the uncertain problem

C =
{
minx

{
cTζ x+ dζ : Aζx− bζ ∈ K

}
: ζ ∈ Z

}

[cζ , dζ , Aζ , bζ : affine in ζ]
(5.3.11)

where K is a convex set. Assume that Z is a direct product of simplexes: Z = ∆1× ...×∆L,
where ∆` is a k`-dimensional simplex (the convex hull of k` + 1 affinely independent points
in Rk`). Assume we want to process the ARC of this problem restricted to the decision rules
of the form

xj = ξj +
∑

`∈Ij

f j
` (ζ`), (5.3.12)

where ζ` is the projection of ζ ∈ Z on ∆`, and the only restriction on the functions f j
` is

that they belong to given families F` of functions on Rk` . We still assume fixed recourse: the
columns of Aζ and the entries in cζ associated with adjustable, (i.e., with Ij 6= ∅) decision
variables xj are independent of ζ.

The above claim that “genuinely affine” decision rules are not inferior as compared to the
rules (5.3.7) is nothing but the following simple observation:

Lemma 5.3 Whenever certain t ∈ R is an achievable value of the objective in the ARC of
(5.3.11) restricted to the decision rules (5.3.12), that is, there exist decision rules of the latter
form such that

n∑
j=1

[
ξj +

∑
`∈Ij

f j
` (ζ`)

]
(cζ)j + dζ ≤ t

n∑
j=1

[
ξj +

∑
`∈Ij

f j
` (ζ`)

]
Aj

ζ − bζ ∈ K





∀ζ ∈ [ζ1; ...; ζL] ∈ Z
= ∆1 × ...×∆L,

(5.3.13)
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t is also an achievable value of the objective in the ARC of the uncertain problem restricted
to affine decision rules with the same information base: there exist affine in ζ` functions
φj`(ζ`) such that (5.3.13) remains valid with φj` in the role of f j

` .

Proof is immediate: since every collection of k` + 1 reals can be obtained as the collection
of values of an affine function at the vertices of k`-dimensional simplex, we can find affine
functions φj`(ζ`) such that φj`(ζ`) = f j

` (ζ`) whenever ζ` is a vertex of the simplex ∆`. When

plugging into the left hand sides of the constraints in (5.3.13) the functions φj`(ζ`) instead

of f j
` (ζ`), these left hand sides become affine functions of ζ (recall that we are in the case of

fixed recourse). Due to this affinity and to the fact that Z is a convex compact set, in order
for the resulting constraints to be valid for all ζ ∈ Z, it suffices for them to be valid at every
one of the extreme points of Z. The components ζ1, ..., ζL of such an extreme point ζ are
vertices of ∆1, ...,∆L, and therefore the validity of “φ constraints” at ζ is readily given by
the validity of the “f constraints” at this point — by construction, at such a point the left
hand sides of the “φ” and the “f” constraints coincide with each other. �

Does the bad news mean that our effort in C.1–2 was just wasted? The good news is that
this effort still can be utilized. Consider again the case where ζ` are scalars, assume that Z
is not a box, in which case Lemma 5.3 is not applicable. Thus, we have hope that the ARC
of (5.3.6) restricted to the decision rules (5.3.7) is indeed less conservative (has a strictly less
optimal value) than the ARC restricted to the affine decision rules. What we need in order to
process the former, “more promising,” ARC, is a tractable description of the convex hull Ẑ of
the image U of Z under the mapping

ζ 7→ ζ̂[ζ] = {ζ`i[ζ`]} 0≤i≤m,
1≤`≤L

where ζ`0 = ζ`, ζ`i[ζ`] = fi`(ζ`), 1 ≤ i ≤ m, and the functions fi` ∈ F`, i = 1, ...,m, span F`.
The difficulty is that with F` as those considered in C.1–2 (these families are “rich enough” for
most of applications), we, as a matter of fact, do not know how to get a tractable representation
of Ẑ, unless Z is a box. Thus, Z more complicated than a box seems to be too complex,
and when Z is a box, we gain nothing from allowing for “complex” F`. Nevertheless, we can
proceed as follows. Let us include Z, (which is not a box), into a box Z+, and let us apply
the outlined approach to Z+ in the role of Z, that is, let us try to build a tractable description
of the convex hull Ẑ+ of the image U+ of Z+ under the mapping ζ 7→ ζ̂[ζ]. With luck, (e.g.,
in situations C.1–2), we will succeed, thus getting a tractable representation of Ẑ+; the latter
set is, of course, larger than the “true” set Ẑ we want to describe. There is another “easy to
describe” set that contains Ẑ, namely, the inverse image Ẑ0 of Z under the natural projection
Π : {ζ`i} 0≤i≤m,

1≤`≤L
7→ {ζ`0}1≤`≤L that recovers ζ from ζ̂[ζ]. And perhaps we are smart enough to

find other easy to describe convex sets Ẑ1,...,Ẑk that contain Ẑ.
Assume, e.g., that Z is the Euclidean ball {‖ζ‖2 ≤ r}, and let us take as Z+ the embedding
box {‖ζ‖∞ ≤ r}.
In the case of C.1 we have for i ≥ 1: ζ`i[ζ`] = max[ζ`, a`i], whence |ζ`i[ζ`]| ≤ max[|ζ`|, |a`i|].
It follows that when ζ ∈ Z, we have

∑
` ζ

2
`i[ζ`] ≤

∑
` max[ζ2` , a

2
`i] ≤

∑
`[ζ

2
` + a2`i] ≤ r2 +∑

` a
2
`i, and we can take as Ẑp, p = 1, ...,m, the elliptic cylinders {{ζ`i}`,i :

∑
` ζ

2
`p ≤

r2 +
∑

` a
2
`p}. In the case of C.2, we have ζ`i[ζ`] = ζi+1

` , 1 ≤ i ≤ κ− 1, so that
∑

` |ζ`i[ζ`]| ≤
maxz∈RL{∑` |z`|i+1 : ‖z‖2 ≤ r} = ri+1. Thus, we can take Ẑp = {{ζ`i}`,i :

∑
` |ζ`p| ≤ rp+1},

1 ≤ p ≤ κ− 1.
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Since all the easy to describe convex sets Ẑ+, Ẑ0,...,Ẑk contain Ẑ, the same is true for the easy
to describe convex set

Z̃ = Ẑ+ ∩ Ẑ0 ∩ Ẑ1 ∩ ... ∩ Ẑk,

so that the (tractable along with Z̃) semi-infinite LO problem

min
t,

{Xj (·)∈Xj}
n
j=1




t :

d
Π(ζ̂)

+
n∑

j=1
Xj(ζ̂)(cΠ(ζ̂)

)j ≤ t
n∑

j=1
Xj(ζ̂)A

j

Π(ζ̂)
− b

Π(ζ̂)
≥ 0




∀ζ̂ = {ζ`i} ∈ Z̃





[
Π

(
{ζ`i} 0≤i≤m,

1≤`≤L

)
= {ζ`0}1≤`≤L, Xj = {Xj(ζ̂) = ξj +

∑
`∈Ij,

0≤i≤m

η`iζ`i}
]

(S)

is a safe tractable approximation of the ARC of (5.3.6) restricted to decision rules (5.3.7). Note
that this approximation is at least as flexible as the ARC of (5.3.6) restricted to genuine affine
decision rules. Indeed, a rule X(·) = {Xj(·)}nj=1 of the latter type is “cut off” the family of
all decision rules participating in (S) by the requirement “Xj depend solely on ζ`0, ` ∈ Ij ,”
or, which is the same, by the requirement η`i = 0 whenever i > 0. Since by construction the
projection of Z̃ on the space of variables ζ`0, 1 ≤ ` ≤ L, is exactly Z, a pair (t,X(·)) is feasible
for (S) if and only if it is feasible for the AARC of (5.3.6), the information base being given by
I1, ..., In. The bottom line is, that when Z is not a box, the tractable problem (S), while still
producing robust feasible decisions, is at least as flexible as the AARC. Whether this “at least
as flexible” is or is not “more flexible,” depends on the application in question, and since both
(S) and AARC are tractable, it is easy to figure out what the true answer is.

Here is a toy example. Let L = 2, n = 2, and let (5.3.6) be the uncertain problem




min
x




x2 :

x1 ≥ ζ1
x1 ≥ −ζ1
x2 ≥ x1 + 3ζ1/5 + 4ζ2/5
x2 ≥ x1 − 3ζ1/5− 4ζ2/5




, ‖ζ‖2 ≤ 1




,

with fully adjustable variable x1 and non-adjustable variable x2. Due to the extreme sim-
plicity of our problem, we can immediately point out an optimal solution to the unrestricted
ARC, namely,

X1(ζ) = |ζ1|, x2 ≡ Opt(ARC) = max
‖ζ‖2≤1

[|ζ1|+ |3ζ1 + 4ζ2|/5] =
4
√
5

5
≈ 1.7889.

Now let us compare Opt(ARC) with the optimal value Opt(AARC) of the AARC and with
the optimal value Opt(RARC) of the restricted ARC where the decision rules are allowed to
be affine in [ζ`]±, ` = 1, 2 (as always, [a]+ = max[a, 0] and [a]− = max[−a, 0]). The situation
fits B, so that we can process the RARC as it is. Noting that a = [a]+ − [a]−, the decision
rules that are affine in [ζ`]±, ` = 1, 2, are exactly the same as the decision rules (5.3.7), where
F`, ` = 1, 2, are the spaces of piecewise linear functions on the axis with the only breakpoint
0. We see that up to the fact that Z is a circle rather than a square, the situation fits C.1 as
well, and we can process RARC via its safe tractable approximation (S). Let us look what
are the optimal values yielded by these 3 schemes.
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• The AARC of our toy problem is

Opt(AARC) = min
x2,ξ,η

{
x2 :

X1(ζ)︷ ︸︸ ︷
ξ + ηT ζ ≥ |ζ1| (a)
x2 ≥ X1(ζ) + |3ζ1 + 4ζ2|/5 (b)

∀(ζ : ‖ζ‖2 ≤ 1)

}

This problem can be immediately solved. Indeed, (a) should be valid for ζ = ζ1 ≡ [1; 0]
and for ζ = ζ2 ≡ −ζ1, meaning that X1(±ζ1) ≥ 1, whence ξ ≥ 1. Further, (b) should be
valid for ζ = ζ3 ≡ [3; 4]/5 and for ζ = ζ4 ≡ −ζ3, meaning that x2 ≥ X1(±ζ3) + 1, whence
x2 ≥ ξ + 1 ≥ 2. We see that the optimal value is ≥ 2, and this bound is achievable (we can
take X1(·) ≡ 1 and x2 = 2). As a byproduct, in our toy problem the AARC is as conservative
as the RC.

• The RARC of our problem as given by B is

Opt(RARC) = min
x2,ξ,η,η±

{
x2 :

X1(ζ̂)︷ ︸︸ ︷
ξ + ηT ζ + ηT+ζ

+ + ηT−ζ
− ≥ |ζ1|

x2 ≥ X1(ζ̂) + |3ζ1 + 4ζ2|/5

∀(ζ̂ = [ζ1; ζ2︸ ︷︷ ︸
ζ

; ζ+1 ; ζ+2︸ ︷︷ ︸
ζ+

; ζ−1 ; ζ−2︸ ︷︷ ︸
ζ−

] ∈ Ẑ)
}
,

Ẑ =
{
ζ̂ : ζ = ζ+ − ζ−, ζ± ≥ 0, ‖ζ+ + ζ−‖2 ≤ 1

}
.

We can say in advance what are the optimal value and the optimal solution to the RARC
— they should be the same as those of the ARC, since the latter, as a matter of fact, admits
optimal decision rules that are affine in |ζ1|, and thus in [ζ`]±. Nevertheless, we have carried
out numerical optimization which yielded another optimal solution to the RARC (and thus
- to ARC):

Opt(RARC) = x2 = 1.7889,
ξ = 1.0625, η = [0; 0], η+ = η− = [0.0498;−0.4754],

which corresponds to X1(ζ) = 1.0625 + 0.0498|ζ1| − 0.4754|ζ2|.
• The safe tractable approximation of the RARC looks as follows. The mapping ζ 7→ ζ̂[ζ] in
our case is

[ζ1; ζ2] 7→ [ζ1,0 = ζ1; ζ1,1 = max[ζ1, 0]; ζ2,0 = ζ2; ζ2,1 = max[ζ2, 0]],

the tractable description of Ẑ+ as given by C.1 is

Ẑ+ =

{
{ζ`i} i=0,1

`=1,2
:
−1 ≤ ζ`0 ≤ 1

0 ≤ ζ`1−ζ`0
1 ≤ 1−ζ`1

1 ≤ 1

}
, ` = 1, 2

}

and the sets Ẑ0, Ẑ1 are given by

Ẑi =
{
{ζ`i} i=0,1

`=1,2
: ζ21i + ζ22i ≤ 1

}
, i = 0, 1.
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Consequently, (S) becomes the semi-infinite LO problem

Opt(S) = min
x2,ξ,{η`i}

{
x2 :

X1(ζ̂) ≡ ξ +
∑

`=1,2
i=0,1

η`iζ`i ≥ ζ1,0
X1(ζ̂) ≡ ξ +

∑
`=1,2
i=0,1

η`iζ`i ≥ −ζ1,0
x2 ≥ ξ +

∑
`=1,2
i=0,1

η`iζ`i + [3ζ1,0 + 4ζ2,0]/5

x2 ≥ ξ +
∑

`=1,2
i=0,1

η`iζ`i − [3ζ1,0 + 4ζ2,0]/5

∀ζ̂ = {ζ`i} :
−1 ≤ ζ`0 ≤ 1, ` = 1, 2
0 ≤ ζ`1 − ζ`0 ≤ 1− ζ`1 ≤ 1, ` = 1, 2
ζ21i + ζ22i ≤ 1, i = 0, 1

}
.

Computation results in

Opt(S) = x2 = 25+
√
8209

60 ≈ 1.9267,
X1(ζ) =

5
12 − 3

5ζ1.0[ζ1] +
6
5ζ1,1[ζ1]+

7
60ζ2,0[ζ2] =

5
12 + 3

5 |ζ1|+ 7
60ζ2.

As it could be expected, we get 2 = Opt(AARC) > 1.9267 = Opt(S) > 1.7889 =
Opt(RARC) = Opt(ARC). Note that in order to get Opt(S) < Opt(AARC), taking into ac-

count Ẑ1 is a must: in the case of C.1, whatever be Z and a box Z+ ⊃ Z, with Z̃ = Ẑ+∩Ẑ0

we gain nothing as compared to the genuine affine decision rules.

D. Quadratic decision rules, ellipsoidal uncertainty set. In this case,

ζ̂[ζ] =
[

ζT

ζ ζζT

]

is comprised of the entries of ζ and their pairwise products (so that the associated decision rules
(5.3.5) are quadratic in ζ), and Z is the ellipsoid {ζ ∈ R

L : ‖Qζ‖2 ≤ 1}, where Q has a trivial
kernel. The convex hull of the image of Z under the quadratic mapping ζ → ζ̂[ζ] is easy to
describe:

Lemma 5.4 In the above notation, the set Ẑ = Conv{ζ̂[ζ] : ‖Qζ‖2 ≤ 1} is a convex compact
set given by the semidefinite representation as follows:

Ẑ =

{
ζ̂ =

[
vT

v W

]
∈ SL+1 : ζ̂ +

[
1

]
� 0,Tr(QWQT ) ≤ 1

}
.

Proof. It is immediately seen that it suffices to prove the statement when Q = I, which we assume

from now on. Besides this, when we add to the mapping ζ̂[ζ] the constant matrix

[
1

]
, the convex

hull of the image of Z is translated by the same matrix. It follows that all we need is to prove that the

convex hull Q of the image of the unit Euclidean ball under the mapping ζ 7→ ζ̃[ζ] =

[
1 ζT

ζ ζζT

]
can be

represented as

Q =

{
ζ̂ =

[
1 vT

v W

]
∈ SL+1 : ζ̂ � 0,Tr(W ) ≤ 1

}
. (5.3.14)

Denoting the right hand side in (5.3.14) by Q̂, bothQ and Q̂ are nonempty convex compact sets. Therefore
they coincide if and only if their support functions are identical.1 We are in the situation where Q is the

1The support function of a nonempty convex set X ⊂ R
n is the function f(ξ) = supx∈X ξTx : Rn → R∪{+∞}.

The fact that two closed nonempty convex sets in R
n are identical, if and only if their support functions are so,

is readily given by the Separation Theorem.
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convex hull of the set

{[
1 ζT

ζ ζζT

]
: ζT ζ ≤ 1

}
, so that the support function of Q is

φ(P ) = max
Z

{
Tr(PZ) : Z =

[
1 ζT

ζ ζζT

]
: ζT ζ ≤ 1

} [
P =

[
p qT

q R

]
∈ SL+1

]
.

We have

φ(P ) = max
Z

{
Tr(PZ) : Z =

[
1 ζT

ζ ζζT

]
with ζT ζ ≤ 1

}

= max
ζ

{
ζTRζ + 2qT ζ + p : ζT ζ ≤ 1

}

= min
τ

{
τ : τ ≥ ζTRζ + 2qT ζ + p ∀(ζ : ζT ζ ≤ 1)

}

= min
τ

{
τ : (τ − p)t2 − ζTRζ − 2tqT ζ ≥ 0 ∀((ζ, t) : ζT ζ ≤ t2)

}

= min
τ

{
τ : ∃λ ≥ 0 : (τ − p)t2 − ζTRζ − 2tqT ζ − λ(t2 − ζT ζ) ≥ 0 ∀(ζ, t)

}
[S-Lemma]

= min
τ,λ

{
τ :

[
τ − p− λ −qT
−q λI −R

]
� 0, λ ≥ 0

}

= max
u,v,W,r

{
up+ 2vT q +Tr(RW ) : Tr

([
τ − λ

λI

] [
u vT

v W

])
+ rλ

≡ τ∀(τ, λ),
[
u vT

v W

]
� 0, r ≥ 0

}
[semidefinite duality]

= max
v,W

{
p+ 2vT q +Tr(RW ) :

[
1 vT

v W

]
� 0,Tr(W ) ≤ 1

}

= max
v,W

{
Tr

(
P

[
1 vT

v W

])
:

[
1 vT

v W

]
∈ Q̂

}
.

Thus, the support function of Q indeed is identical to the one of Q̂. �

Corollary 5.1 Consider a fixed recourse uncertain LO problem (5.3.6) with an ellipsoid as an
uncertainty set, where the adjustable decision variables are allowed to be quadratic functions
of prescribed portions Pjζ of the data. The associated ARC of the problem is computationally
tractable and is given by an explicit semidefinite program of the sizes polynomial in those of
instances and in the dimension L of the data vector.

E. Quadratic decision rules and the intersection of concentric ellipsoids as the uncertainty set.
Here the uncertainty set Z is ∩-ellipsoidal:

Z = Zρ ≡ {ζ ∈ R
L : ζTQjζ ≤ ρ2, 1 ≤ j ≤ J}[

Qj � 0,
∑

j Qj � 0
] (5.3.15)

(cf. section 3.3.2), where ρ > 0 is an uncertainty level, and, as above, ζ̂[ζ] =

[
ζT

ζ ζζT

]
, so

that our intention is to process the ARC of an uncertain problem corresponding to quadratic
decision rules. As above, all we need is to get a tractable representation of the convex hull of
the image of Zρ under the nonlinear mapping ζ 7→ ζ̂[ζ]. This is essentially the same as to find

a similar representation of the convex hull Ẑρ of the image of Zρ under the nonlinear mapping

ζ 7→ ζ̂ρ[ζ] =

[
ζT

ζ 1
ρζζ

T

]
;
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indeed, both convex hulls in question can be obtained from each other by simple linear transfor-
mations. The advantage of our normalization is that now Zρ = ρZ1 and Ẑρ = ρẐ1, as it should
be for respectable perturbation sets.

While the set Ẑρ is, in general, computationally intractable, we are about to demonstrate that
this set admits a tight tractable approximation, and that the latter induces a tight tractable
approximation of the “quadratically adjustable” RC of the Linear Optimization problem in
question. The main ingredient we need is as follows:

Lemma 5.5 Consider the semidefinite representable set

Wρ = ρW1, W1 =

{
ζ̂ =

[
vT

v W

]
:

[
1 vT

v W

]
� 0,Tr(WQj) ≤ 1, 1 ≤ j ≤ J

}
. (5.3.16)

Then
∀ρ > 0 : Ẑρ ⊂ Wρ ⊂ Ẑϑρ, (5.3.17)

where ϑ = O(1) ln(J + 1) and J is the number of ellipsoids in the description of Zρ.

Proof. Since both Ẑρ and Ŵρ are nonempty convex compact sets containing the origin and belonging
to the subspace SL+1

0 of SL+1 comprised of matrices with the first diagonal entry being zero, to prove
(5.3.17) is the same as to verify that the corresponding support functions

φWρ
(P ) = max

ζ̂∈Wρ

Tr(P ζ̂), φẐρ
(P ) = max

ζ̂∈Ẑρ

Tr(P ζ̂),

considered as functions of P ∈ SL+1
0 , satisfy the relation

φẐρ
(·) ≤ φWρ

(·) ≤ φẐθρ
(·).

Taking into account that Ẑs = sẐ1, s > 0, this task reduces to verifying that

φẐρ
(·) ≤ φWρ

(·) ≤ ϑφẐρ
(·).

Thus, all we should prove is that whenever P =

[
pT

p R

]
∈ SL+1

0 , one has

max
ζ̂∈Ẑρ

Tr(P ζ̂) ≤ max
ζ̂∈Wρ

Tr(P ζ̂) ≤ ϑmax
ζ̂∈Ẑρ

Tr(P ζ̂).

Recalling the origin of Ẑρ, the latter relation reads

∀P =

[
pT

p R

]
: OptP (ρ) ≡ max

ζ

{
2pT ζ + 1

ρζ
TRζ : ζTQjζ ≤ ρ2, 1 ≤ j ≤ J

}

≤ SDPP (ρ) ≡ max
ζ̂∈Wρ

Tr(P ζ̂) ≤ ϑOptP (ρ) ≡ OptP (ϑρ).
(5.3.18)

Observe that the three quantities in the latter relation are of the same homogeneity degree w.r.t. ρ > 0,
so that it suffices to verify this relation when ρ = 1, which we assume from now on.

We are about to derive (5.3.18) from the Approximate S-Lemma (Theorem A.8). To this end, let us
specify the entities participating in the latter statement as follows:

• x = [t; ζ] ∈ R1
t × RL

ζ ;
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• A = P , that is, xTAx = 2tpT ζ + ζTRζ;

• B =

[
1

]
, that is, xTBx = t2;

• Bj =

[

Qj

]
, 1 ≤ j ≤ J , that is, xTBjx = ζTQjζ;

• ρ = 1.

With this setup, the quantity Opt(ρ) from (A.4.12) becomes nothing but OptP (1), while the quantity
SDP(ρ) from (A.4.13) is

SDP(1) = max
X
{Tr(AX) : Tr(BX) ≤ 1,Tr(BjX) ≤ 1, 1 ≤ j ≤ J,X � 0}

= max
X




2pT v +Tr(RW ) :

u ≤ 1
Tr(WQj) ≤ 1, 1 ≤ j ≤ J
X =

[
u vT

v W

]
� 0





= max
v,W



2pT v +Tr(RW ) :

Tr(WQj) ≤ 1, 1 ≤ j ≤ J[
1 vT

v W

]
� 0





= max
ζ̂



Tr(P ζ̂) : ζ̂ =

[
vT

v W

]
:

[
1 vT

v W

]
� 0

Tr(WQj) ≤ 1, 1 ≤ j ≤ J





= SDPP (1).

With these observations, the conclusion (A.4.15) of the Approximate S-Lemma reads

OptP (1) ≤ SDPP (1) ≤ Opt(Ω(J)), Ω(J) = 9.19
√
ln(J + 1) (5.3.19)

where for Ω ≥ 1
Opt(Ω) = max

x

{
xTAx : xTBx ≤ 1, xTBjx ≤ Ω2

}

= max
t,ζ

{
2tpT ζ + ζTRζ : t2 ≤ 1, ζTQjζ ≤ Ω2, 1 ≤ j ≤ J

}

= max
ζ

{
2pT ζ + ζTRζ : ζTQjζ ≤ Ω2, 1 ≤ j ≤ J

}

= max
η=Ω−1ζ

{
Ω(2pT η) + Ω2ηTRη : ηTQjη ≤ 1, 1 ≤ j ≤ J

}

≤ Ω2 max
η

{
2pTη + ηTRη : ηTQjη ≤ 1, 1 ≤ j ≤ J

}

= Ω2OptP (1).

Setting ϑ = Ω2(J), we see that (5.3.19) implies (5.3.18). �

Corollary 5.2 Consider a fixed recourse uncertain LO problem (5.3.6) with ∩-ellipsoidal un-
certainty set Zρ (see (5.3.15)) where one seeks robust optimal quadratic decision rules:

xj = pj + qTj P̂j

(
ζ̂ρ[ζ]

)



• ζ̂ρ[ζ] =

[
ζT

ζ 1
ρζζ

T

]

• P̂j : linear mappings from SL+1 to R
mj

• pj ∈ R, qj ∈ R
mj : parameters to be specified


 .

(5.3.20)

The associated Adjustable Robust Counterpart of the problem admits a safe tractable approxi-
mation that is tight within the factor ϑ given by Lemma 5.5.
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Here is how the safe approximation of the Robust Counterpart mentioned in Corollary 5.2 can
be built:

1. We write down the optimization problem

min
t,x

{
t :

aT0ζ [t;x] + b0ζ ≡ t− cTζ x− dζ ≥ 0

aTiζ [t;x] + bi,ζ ≡ AT
iζx− biζ ≥ 0, i = 1, ...,m

}
(P )

where AT
iζ is i-th row in Aζ and biζ is i-th entry in bζ ;

2. We plug into the m + 1 constraints of (P ), instead of the original decision variables xj,

the expressions pj + qTj P̂j

(
ζ̂ρ[ζ]

)
, thus arriving at the optimization problem of the form

min
[t;y]

{
t : αT

iζ̂
[t; y] + β

iζ̂
≥ 0, 0 ≤ i ≤ m

}
, (P ′)

where y is the collection of coefficients pj, qj of the quadratic decision rules, ζ̂ is our new

uncertain data — a matrix from SL+1
0 (see p. 246), and α

iζ̂
, β

iζ̂
are affine in ζ̂, the affinity

being ensured by the assumption of fixed recourse. The “true” quadratically adjustable
RC of the problem of interest is the semi-infinite problem

min
[t;y]

{
t : ∀ζ̂ ∈ Ẑρ : α

T
iζ̂
[t; y] + β

iζ̂
≥ 0, 0 ≤ i ≤ m

}
(R)

obtained from (P ′) by requiring the constraints to remain valid for all ζ̂ ∈ Ẑρ, the latter

set being the convex hull of the image of Zρ under the mapping ζ 7→ ζ̂ρ[ζ]. The semi-
infinite problem (R) in general is intractable, and we replace it with its safe tractable
approximation

min
[t;y]

{
t : ∀ζ̂ ∈ Wρ : αT

iζ̂
[t; y] + β

iζ̂
≥ 0, 0 ≤ i ≤ m

}
, (R′)

where Wρ is the semidefinite representable convex compact set defined in Lemma 5.5. By
Theorem 1.1, (R′) is tractable and can be straightforwardly converted into a semidefinite
program of sizes polynomial in n = dimx, m and L = dim ζ. Here is the conversion:
recalling the structure of ζ̂ and setting z = [t;x], we can rewrite the body of i-th constraint
in (R′) as

αT
iζ̂
z + β

iζ̂
≡ ai[z] + Tr

( [ vT

v W

]

︸ ︷︷ ︸
ζ̂

[
pTi [z]

pi[z] Pi[z]

] )
,

where ai[z], pi[z] and Pi[z] = P T
i [z] are affine in z. Therefore, invoking the definition of

Wρ = ρW1 (see Lemma 5.5), the RC of the i-th semi-infinite constraint in (R′) is the first
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predicate in the following chain of equivalences:

min
v,W

{
ai[z] + 2ρvT pi[z] + ρTr(WPi[z]) :
[
1 vT

v W

]
� 0,Tr(WQj) ≤ 1, 1 ≤ j ≤ J

}
≥ 0 (ai)

m

∃λi = [λi1; ...;λ
i
J ] :





λi ≥ 0[
ai[z]−

∑
j λ

i
j ρpTi [z]

ρpi[z] ρPi[z] +
∑

j λ
i
jQj

]
� 0

(bi)

where m is given by Semidefinite Duality. Consequently, we can reformulate (R′) equiva-
lently as the semidefinite program

min
z=[t;y]

{λi
j
}



t :

[
ai[z]−

∑
j λ

i
j ρpTi [z]

ρpi[z] ρPi[z] +
∑

j λ
i
jQj

]
� 0

λij ≥ 0, 0 ≤ i ≤ m, 1 ≤ j ≤ J



 .

The latter SDP is a ϑ-tight safe tractable approximation of the quadratically adjustable
RC with ϑ given by Lemma 5.5.

5.3.3 The AARC of Uncertain Linear Optimization Problem Without Fixed
Recourse

We have seen that the AARC of an uncertain LO problem

C =
{
minx

{
cTζ x+ dζ : Aζx ≥ bζ

}
: ζ ∈ Z

}

[cζ , dζ , Aζ , bζ : affine in ζ]
(5.3.21)

with computationally tractable convex compact uncertainty set Z and with fixed recourse is
computationally tractable. What happens when the assumption of fixed recourse is removed?
The answer is that in general the AARC can become intractable (see [14]). However, we are
about to demonstrate that for an ellipsoidal uncertainty set Z = Zρ = {ζ : ‖Qζ‖2 ≤ ρ},
KerQ = {0}, the AARC is computationally tractable, and for the ∩-ellipsoidal uncertainty set
Z = Zρ given by (5.3.15), the AARC admits a tight safe tractable approximation. Indeed, for
affine decision rules

xj = Xj(Pjζ) ≡ pj + qTj Pjζ

the AARC of (5.3.21) is the semi-infinite problem of the form

min
z=[t;y]

{
t : ∀ζ ∈ Zρ : ai[z] + 2bTi [z]ζ + ζTCi[z]ζ ≤ 0, 0 ≤ i ≤ m

}
, (5.3.22)

where y = {pj , qj}nj=1 and ai[z], bi[z], Ci[z] are real/vector/symmetric matrix affinely depending
on z = [t; y]. Consider the case of ∩-ellipsoidal uncertainty:

Zρ = {ζ : ζTQjζ ≤ ρ2, 1 ≤ j ≤ J} [Qj � 0,
∑

j Qj � 0].
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For a fixed i, 0 ≤ i ≤ m, let us set Ai,z =

[
bTi [z]

bi[z] Ci[z]

]
, B =

[
1

]
, Bj =

[

Qj

]
,

1 ≤ j ≤ J , and observe that clearly

Opti,z(ρ) := max
η=[τ ;ζ]

{
ηTAi,zη ≡ 2τbTi [z]ζ : ηTBη ≡ τ2 ≤ 1, ηTBjη ≡ ζTQjζ ≤ ρ2, 1 ≤ j ≤ J

}

≤ SDPi,z := minλ≥0

{
λ0 + ρ2

∑J
j=1 λj : λ0B +

∑
j λjBj � Ai,z

}
,

so that the explicit system of LMIs

λ0B +

J∑

j=1

λjBj � Ai,z, λ0 + ρ2
∑

j

λj ≤ −ai[z], λ ≥ 0 (5.3.23)

in variables z, λ is a safe tractable approximation of the i-th semi-infinite constraint

ai[z] + 2bi[z]ζ + ζTC[z]ζ ≤ 0 ∀ζ ∈ Zρ (5.3.24)

appearing in (5.3.22). Let us prove that this approximation is tight within the factor ϑ which is
1 when J = 1 and is 9.19

√
ln(J) otherwise. All we need to prove is that if z cannot be extended

to a feasible solution of (5.3.23), z is infeasible for the semi-infinite constraint in question at the
uncertainty level ϑρ, or, which is clearly the same, that Opti,z(ϑρ) > −ai[z]. When z cannot
be extended to a feasible solution to (5.3.23), we have SDPi,z > −ai[z]. Invoking Approximate
S-Lemma (Theorem A.8) for the data A = Ai,z, B, {Bj}, there exists η̄ = [τ̄ ; ζ̄] such that
τ̄2 = η̄TBη̄ ≤ 1, ζ̄TQj ζ̄ = η̄TBj η̄ ≤ ϑ2ρ2, 1 ≤ j ≤ J , and η̄TAi,z η̄ ≥ SDPi,z. Since |τ̄ | ≤ 1 and
ζ̄TQj ζ̄ ≤ ϑ2ρ2, we have

Opti,z(ϑρ) ≥ η̄TAi,zη̄ ≥ SDPi,z > −ai[z],

as claimed.
We have arrived at the following result:

The AARC of an arbitrary uncertain LO problem, the uncertainty set being the inter-
section of J ellipsoids centered at the origin, is computationally tractable, provided
J = 1, and admits safe tractable approximation, tight within the factor 9.19

√
ln(J)

when J > 1.

In fact the above approach can be extended even slightly beyond just affine decision rules.
Specifically, in the case of an uncertain LO we could allow for the adjustable “fixed recourse”
variables xj — those for which all the coefficients in the objective and the constraints of instances
are certain — to be quadratic in Pjζ, and for the remaining “non-fixed recourse” adjustable
variables to be affine in Pjζ. Indeed, this modification does not alter the structure of (5.3.22).

5.3.4 Illustration: the AARC of Multi-Period Inventory Affected by Uncer-
tain Demand

We are about to illustrate the AARC methodology by its application to the simple multi-product
multi-period inventory model presented in Example 5.1 (see also p. 224).
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Building the AARC of (5.2.3). We first decide on the information base of the “actual
decisions” — vectors wt of replenishment orders of instants t = 1, ..., N . Assuming that the part
of the uncertain data, (i.e., of the demand trajectory ζ = ζN = [ζ1; ...; ζN ]) that becomes known
when the decision on wt should be made is the vector ζt−1 = [ζ1; ...; ζt−1] of the demands in
periods preceding time t, we introduce affine decision rules

wt = ωt +Ωtζ
t−1 (5.3.25)

for the orders; here ωt,Ωt form the coefficients of the decision rules we are seeking.
The remaining variables in (5.2.3), with a single exception, are analysis variables, and we

allow them to be arbitrary affine functions of the entire demand trajectory ζN :

xt = ξt + Ξtζ
N , t = 2, ..., N + 1 [states]

yt = ηt +Htζ
N , t = 1, ..., N [upper bounds on [xt]+]

zt = πt +Πtζ
N , t = 1, ..., N [upper bounds on [xt]−].

(5.3.26)

The only remaining variable C — the upper bound on the inventory management cost we intend
to minimize — is considered as non-adjustable.

We now plug the affine decision rules in the objective and the constraints of (5.2.3), and
require the resulting relations to be satisfied for all realizations of the uncertain data ζN from a
given uncertainty set Z, thus arriving at the AARC of our inventory model:

minimize C
s.t. ∀ζN ∈ Z :

C ≥∑N
t=1

[
cTh,t[ηt +Htζ

N ] + cTb,t[πt +Πtζ
N ] + cTo,t[ωt +Ωtζ

t−1
]

ξt + Ξtζ
N =

{
ξt−1 + Ξt−1ζ

N + [ωt +Ωtζ
t−1]− ζt, 2 ≤ t ≤ N

x0 + ω1 − ζ1, t = 1
ηt +Htζ

N ≥ 0, ηt +Htζ
N ≥ ξt +Ξtζ

N , 1 ≤ t ≤ N
πt +Πtζ

N ≥ 0, πt +Πtζ
N ≥ −ξt − Ξtζ

N , 1 ≤ t ≤ N
wt ≤ ωt +Ωtζ

t−1 ≤ wt, 1 ≤ t ≤ N
qT
[
ηt +Htζ

N
]
≤ r

(5.3.27)

the variables being C and the coefficients ωt,Ωt, ..., πt,Πt of the affine decision rules.
We see that the problem in question has fixed recourse (it always is so when the uncertainty

affects just the constant terms in conic constraints) and is nothing but an explicit semi-infinite
LO program. Assuming the uncertainty set Z to be computationally tractable, we can invoke
Theorem 1.1 and reformulate this semi-infinite problem as a computationally tractable one. For
example, with box uncertainty:

Z = {ζN ∈ R
N×d
+ : ζ

t
≤ ζt ≤ ζt, 1 ≤ t ≤ N},

the semi-infinite LO program (5.3.27) can be immediately rewritten as an explicit “certain” LO
program. Indeed, after replacing the semi-infinite coordinate-wise vector inequalities/equations
appearing in (5.3.27) by equivalent systems of scalar semi-infinite inequalities/equations and
representing the semi-infinite linear equations by pairs of opposite semi-infinite linear inequal-
ities, we end up with a semi-infinite optimization program with a certain linear objective and
finitely many constraints of the form

∀
(
ζ it ∈ [ζ i

t
, ζ

i
t], t ≤ N, i ≤ d

)
: p`[y] +

∑

i,t

ζ itp
`
ti[y] ≤ 0
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(` is the serial number of the constraint, y is the vector comprised of the decision variables in
(5.3.27), and p`[y], p`ti[y] are given affine functions of y). The above semi-infinite constraint can
be represented by a system of linear inequalities

ζi
t
p`ti[y] ≤ u`ti

ζ
i
tp

`
ti[y] ≤ u`ti

p`[y] +
∑

t,i u
`
ti ≤ 0,

in variables y and additional variables u`ti. Putting all these systems of inequalities together
and augmenting the resulting system of linear constraints with our original objective to be
minimized, we end up with an explicit LO program that is equivalent to (5.3.27).

Some remarks are in order:

1. We could act similarly when building the AARC of any uncertain LO problem with fixed re-
course and “well-structured” uncertainty set, e.g., one given by an explicit polyhedral/conic
quadratic/semidefinite representation. In the latter case, the resulting tractable reformu-
lation of the AARC would be an explicit linear/conic quadratic/semidefinite program of
sizes that are polynomial in the sizes of the instances and in the size of conic description
of the uncertainty set. Moreover, the “tractable reformulation” of the AARC can be built
automatically, by a kind of compilation.

2. Note how flexible the AARC approach is: we could easily incorporate additional con-
straints, (e.g., those forbidding backlogged demand, expressing lags in acquiring informa-
tion on past demands and/or lags in executing the replenishment orders, etc.). Essentially,
the only thing that matters is that we are dealing with an uncertain LO problem with fixed
recourse. This is in sharp contrast with the ARC. As we have already mentioned, there is,
essentially, only one optimization technique — Dynamic Programming — that with luck
can be used to process the (general-type) ARC numerically. To do so, one needs indeed
a lot of luck — to be “computationally tractable,” Dynamic Programming imposes many
highly “fragile” limitations on the structure and the sizes of instances. For example, the
effort to solve the “true” ARC of our toy Inventory problem by Dynamic Programming
blows up exponentially with the number of products d (we can say that d = 4 is already
“too big”); in contrast to this, the AARC does not suffer of “curse of dimensionality” and
scales reasonably well with problem’s sizes.

3. Note that we have no difficulties processing uncertainty-affected equality constraints (such
as state equations above) — this is something that we cannot afford with the usual —
non-adjustable — RC (how could an equation remain valid when the variables are kept
constant, and the coefficients are perturbed?).

4. Above, we “immunized” affine decision rules against uncertainty in the worst-case-oriented
fashion — by requiring the constraints to be satisfied for all realizations of uncertain data
from Z. Assuming ζ to be random, we could replace the worst-case interpretation of
the uncertain constraints with their chance constrained interpretation. To process the
“chance constrained” AARC, we could use all the “chance constraint machinery” we have
developed so far for the RC, exploiting the fact that for fixed recourse there is no essential
difference between the structure of the RC and that of the AARC.



5.3. AFFINELY ADJUSTABLE ROBUST COUNTERPARTS 253

Of course, all the nice properties of the AARC we have just mentioned have their price — in
general, as in our toy inventory example, we have no idea of how much we lose in terms of
optimality when passing from general decision rules to affine rules. At present, we are not aware
of any theoretical tools for evaluating such a loss. Moreover, it is easy to build examples showing
that sticking to affine decision rules can indeed be costly; it even may happen that the AARC
is infeasible, while the ARC is not. Much more surprising is the fact that there are meaningful
situations where the AARC is unexpectedly good. Here we present a single simple example.

Consider our inventory problem in the single-product case with added constraints that no
backlogged demand is allowed and that the amount of product in the inventory should remain
between two given positive bounds. Assuming box uncertainty in the demand, the “true” ARC
of the uncertain problem is well within the grasp of Dynamic Programming, and thus we can
measure the “non-optimality” of affine decision rules experimentally — by comparing the optimal
values of the true ARC with those of the AARC as well as of the non-adjustable RC. To this
end, we generated at random several hundreds of data sets for the problem with time horizon
N = 10 and filtered out all data sets that led to infeasible ARC (it indeed can be infeasible due
to the presence of upper and lower bounds on the inventory level and the fact that we forbid
backlogged demand). We did our best to get as rich a family of examples as possible — those
with time-independent and with time-dependent costs, various levels of demand uncertainty
(from 10% to 50%), etc. We then solved ARCs, AARCs and RCs of the remaining “well-posed”
problems — the ARCs by Dynamic Programming, the AARCs and RCs — by reduction to
explicit LO programs. The number of “well-posed” problems we processed was 768, and the
results were as follows:

1. To our great surprise, in every one of the 768 cases we have analyzed, the computed optimal
values of the “true” ARC and the AARC were identical. Thus, there is an “experimental
evidence” that in the case of our single-product inventory problem, the affine decision rules
allow one to reach “true optimality.”

Quite recently, D. Bertsimas, D. Iancu and P. Parrilo have demonstrated [30] that the above
“experimental evidence” has solid theoretical reasons, specifically, they have established
the following remarkable and unexpected result:

Consider the multi-stage uncertainty-affected decision making problem



min
C,x,w




C :
C ≥ ∑N

t=1[ctwt + ht(xt)]
xt = αtxt−1 + βtwt + γtζt, 1 ≤ t ≤ N
wt ≤ wt ≤ wt, 1 ≤ t ≤ N




 : ζN = [ζ1; ...; ζN ] ∈ Z ⊂ R
N






with uncertain data ζN = [ζ1; ...; ζN ], the variables in the problem being C (non-
adjustable), wt (allowed to depend on the “past demands” ζt−1), 1 ≤ t ≤ N ,
and xt (fully adjustable – allowed to depend on ζN ); here the functions ht(·) are
convex functions on the axis. Assume, further, that Z is a box, and consider the
ARC and the AARC of the problem, that is, the infinite-dimensional problems

min
C,x(·),w(·),z(·)





C :

C ≥ ∑
t=1 |N [ctwt(ζ

t−1) + zt(ζ
N )]

xt(ζ
N ) = αtxt−1(ζ

N ) + βtwt(ζ
t−1) + γtζt, 1 ≤ t ≤ N

zt(ζ
N) ≥ ht(xt(ζ

N)), 1 ≤ t ≤ N
wt ≤ wt(ζ

t−1) ≤ wt, 1 ≤ t ≤ N





∀ζN ∈ Z






where the optimization is taken over arbitrary functions xt(ζ
N ), wt(ζ

t−1), zt(ζ
N )

(ARC) and over affine functions xt(ζ
T , zt(ζ

t), wt(ζ
t−1) (AARC); here slacks zt(·)
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Range of
Opt(RC)

Opt(AARC)
1 (1, 2] (2, 10] (10, 1000] ∞

Frequency in the sample 38% 23% 14% 11% 15%

Table 5.1: Experiments with ARCs, AARCs and RCs of randomly generated single-product
inventory problems affected by uncertain demand.

are upper bounds on costs ht(xt(·)). The the optimal solution to the AARC is
an optimal solution to the ARC as well.

Note that the single product version of our Inventory Management problem satisfies the
premise of the latter result, provided that the uncertainty set is a box (as is the case in the
experiments we have reported), and the corresponding functions ht(·) are not only convex,
but also piecewise linear, the domain of ht being x ≤ r/q; in this case what was called
AARC of the problem, is nothing but our AARC (5.3.26) – (5.3.27) where we further
restrict zt(·) to be identical to yt(·). Thus, in the single product case the AARC of the
Inventory Management problem in question is equivalent to its ARC.

Toe the best of our knowledge, the outlined result of Bertsimas, Iancu and Parrilo yields
the only known for the time being generic example of a meaningful multi-stage uncertainty
affected decision making problem where the affine decision rules are provably optimal. This
remarkable result is very “fragile,” e.g., it cannot be extended on multi-product inventory,
or on the case when aside of bounds on replenishment orders in every period there are
bounds on cumulative replenishment orders, etc. It should be added that the phenomenon
in question seems to be closely related to our intention to optimize the guaranteed, (i.e., the
worst-case, w.r.t. demand trajectories from the uncertainty set), inventory management
cost. When optimizing the “average” cost, the ARC frequently becomes significantly less
expensive than the AARC.2

2. The (equal to each other) optimal values of the ARC and the AARC in many cases were
much better than the optimal value of the RC, as it is seen from table 5.1. In particular,
in 40% of the cases the RC was at least twice as bad in terms of the (worst-case) inventory
management cost as the ARC/AARC, and in 15% of the cases the RC was in fact infeasible.

The bottom line is twofold. First, we see that in multi-stage decision making there exist meaning-
ful situations where the AARC, while “not less computationally tractable” than the RC, is much
more flexible and much less conservative. Second, the AARC is not necessarily “significantly
inferior” as compared to the ARC.

2On this occasion, it is worthy of mention that affine decision rules were proposed many years ago, in the
context of Multi-Stage Stochastic Programming, by A. Charnes. In Stochastic Programming, people are indeed
interested in optimizing the expected value of the objective, and soon it became clear that in this respect, the
affine decision rules can be pretty far from being optimal. As a result, the simple — and extremely useful from
the computational perspective — concept of affine decision rules remained completely forgotten for many years.
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5.4 Adjustable Robust Optimization and Synthesis of Linear
Controllers

While the usefulness of affine decision rules seems to be heavily underestimated in the “OR-style
multi-stage decision making,” they play one of the central roles in Control. Our next goal is to
demonstrate that the use of AARC can render important Control implications.

5.4.1 Robust Affine Control over Finite Time Horizon

Consider a discrete time linear dynamical system

x0 = z
xt+1 = Atxt +Btut +Rtdt
yt = Ctxt +Dtdt

, t = 0, 1, ... (5.4.1)

where xt ∈ R
nx , ut ∈ R

nu, yt ∈ R
ny and dt ∈ R

nd are the state, the control, the output and the
exogenous input (disturbance) at time t, and At, Bt, Ct,Dt, Rt are known matrices of appropriate
dimension.
Notational convention. Below, given a sequence of vectors e0, e1, ... and an integer t ≥ 0, we
denote by et the initial fragment of the sequence: et = [e0; ...; et]. When t is negative, et, by
definition, is the zero vector.
Affine control laws. A typical problem of (finite-horizon) Linear Control associated with the
“open loop” system (5.4.1) is to “close” the system by a non-anticipative affine output-based
control law

ut = gt +
∑t

τ=0
Gtτyτ (5.4.2)

(here the vectors gt and matrices Gtτ are the parameters of the control law). The closed loop
system (5.4.1), (5.4.2) is required to meet prescribed design specifications. We assume that these
specifications are represented by a system of linear inequalities

AwN ≤ b (5.4.3)

on the state-control trajectory wN = [x0; ...;xN+1;u0; ...;uN ] over a given finite time horizon
t = 0, 1, ..., N .

An immediate observation is that for a given control law (5.4.2) the dynamics (5.4.1) specifies
the trajectory as an affine function of the initial state z and the sequence of disturbances dN =
(d0, ..., dN ):

wN = wN
0 [γ] +WN [γ]ζ, ζ = (z, dN ),

where γ = {gt, Gtτ , 0 ≤ τ ≤ t ≤ N}, is the “parameter” of the underlying control law (5.4.2).
Substituting this expression for wN into (5.4.3), we get the following system of constraints on
the decision vector γ:

A
[
wN
0 [γ] +WN [γ]ζ

]
≤ b. (5.4.4)

If the disturbances dN and the initial state z are certain, (5.4.4) is “easy” — it is a system
of constraints on γ with certain data. Moreover, in the case in question we lose nothing by
restricting ourselves with “off-line” control laws (5.4.2) — those with Gtτ ≡ 0; when restricted
onto this subspace, let it be called Γ, in the γ space, the function wN

0 [γ] +WN [γ]ζ turns out to
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be bi-affine in γ and in ζ, so that (5.4.4) reduces to a system of explicit linear inequalities on
γ ∈ Γ. Now, when the disturbances and/or the initial state are not known in advance, (which
is the only case of interest in Robust Control), (5.4.4) becomes an uncertainty-affected system
of constraints, and we could try to solve the system in a robust fashion, e.g., to seek a solution
γ that makes the constraints feasible for all realizations of ζ = (z, dN ) from a given uncertainty
set ZDN , thus arriving at the system of semi-infinite scalar constraints

A
[
wN
0 [γ] +WN [γ]ζ

]
≤ b ∀ζ ∈ ZDN . (5.4.5)

Unfortunately, the semi-infinite constraints in this system are not bi-affine, since the dependence
of wN

0 , WN on γ is highly nonlinear, unless γ is restricted to vary in Γ. Thus, when seeking
“on-line” control laws (those where Gtτ can be nonzero), (5.4.5) becomes a system of highly
nonlinear semi-infinite constraints and as such seems to be severely computationally intractable
(the feasible set corresponding to (5.4.4) can be in fact nonconvex). One possibility to circumvent
this difficulty would be to switch from control laws that are affine in the outputs yt to those affine
in disturbances and the initial state (cf. approach of [51]). This, however, could be problematic
in the situations when we do not observe z and dt directly. The good news is that we can
overcome this difficulty without requiring dt and z to be observable, the remedy being a suitable
re-parameterization of affine control laws.

5.4.2 Purified-Output-Based Representation of Affine Control Laws and Ef-
ficient Design of Finite-Horizon Linear Controllers

Imagine that in parallel with controlling (5.4.1) with the aid of a non-anticipating output-based
control law ut = Ut(y0, ..., yt), we run the model of (5.4.1) as follows:

x̂0 = 0
x̂t+1 = Atx̂t +Btut
ŷt = Ctx̂t
vt = yt − ŷt.

(5.4.6)

Since we know past controls, we can run this system in an “on-line” fashion, so that the purified
output vt becomes known when the decision on ut should be made. An immediate observation
is that the purified outputs are completely independent of the control law in question — they
are affine functions of the initial state and the disturbances d0, ..., dt, and these functions are
readily given by the dynamics of (5.4.1).

Indeed, from the descriptions of the open-loop system and the model, it follows that
the differences δt = xt − x̂t evolve with time according to the equations

δ0 = z
δt+1 = At +Rtdt, t = 0, 1, ...

while
vt = Ctδt +Dtdt.

From these relations it follows that

vt = Vdt dt + Vzt z (5.4.7)
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with matrices Vdt , Vzt depending solely on the matrices Aτ , Bτ , ..., 0 ≤ τ ≤ t, and
readily given by these matrices.

Now, it was mentioned that v0, ..., vt are known when the decision on ut should be made, so that
we can consider purified-output-based (POB) affine control laws

ut = ht +
∑t

τ=0
Htτvτ .

The complete description of the dynamical system “closed” by this control is

plant:

(a) :





x0 = z
xt+1 = Atxt +Btut +Rtdt
yt = Ctxt +Dtdt

model:

(b) :





x̂0 = 0
x̂t+1 = Atx̂t +Btut
ŷt = Ctx̂t

purified outputs:

(c) : vt = yt − ŷt
control law:

(d) : ut = ht +
t∑

τ=0
Htτvτ

(5.4.8)

The main result. We are about to prove the following simple and fundamental fact:

Theorem 5.3
(i) For every affine control law in the form of (5.4.2), there exists a control law in the form

of (5.4.8.d) that, whatever be the initial state and a sequence of inputs, results in exactly the
same state-control trajectories of the closed loop system;

(ii) Vice versa, for every affine control law in the form of (5.4.8.d), there exists a control
law in the form of (5.4.2) that, whatever be the initial state and a sequence of inputs, results in
exactly the same state-control trajectories of the closed loop system;

(iii) [bi-affinity] The state-control trajectory wN of closed loop system (5.4.8) is affine in z,
dN when the parameters η = {ht,Htτ}0≤τ≤t≤N of the underlying control law are fixed, and is
affine in η when z, dN are fixed:

wN = ω[η] + Ωz[η]z +Ωd[η]d
N (5.4.9)

for some vectors ω[η] and matrices Ωz[η], Ωd[η] depending affinely on η.

Proof. (i): Let us fix an affine control law in the form of (5.4.2), and let xt = Xt(z, d
t−1),

ut = Ut(z, d
t), yt = Yt(z, d

t), vt = Vt(z, d
t) be the corresponding states, controls, outputs, and

purified outputs. To prove (i) it suffices to show that for every t ≥ 0 with properly chosen
vectors qt and matrices Qtτ one has

∀(z, dt) : Yt(z, dt) = qt +

t∑

τ=0

QtτVτ (z, d
τ ). (It)
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Indeed, given the validity of these relations and taking into account (5.4.2), we would have

Ut(z, d
t) ≡ gt +

t∑

τ=0

GtτYτ (z, d
τ ) ≡ ht +

t∑

τ=0

HtτV (z, dτ ) (IIt)

with properly chosen ht, Htτ , so that the control law in question can indeed be represented as
a linear control law via purified outputs.

We shall prove (It) by induction in t. The base t = 0 is evident, since by (5.4.8.a–c) we merely
have Y0(z, d

0) ≡ V0(z, d
0). Now let s ≥ 1 and assume that relations (It) are valid for 0 ≤ t < s.

Let us prove the validity of (Is). From the validity of (It), t < s, it follows that the relations (IIt),
t < s, take place, whence, by the description of the model system, x̂s = X̂s(z, d

s−1) is affine in
the purified outputs, and consequently the same is true for the model outputs ŷs = Ŷs(z, d

s−1):

Ŷs(z, d
s−1) = ps +

s−1∑

τ=0

PsτVτ (z, d
τ ).

We conclude that with properly chosen ps, Psτ we have

Ys(z, d
s) ≡ Ŷs(z, ds−1) + Vs(z, d

s) = ps +
s−1∑

τ=0

PsτVτ (z, d
τ ) + Vs(z, d

s),

as required in (Is). Induction is completed, and (i) is proved.
(ii): Let us fix a linear control law in the form of (5.4.8.d), and let xt = Xt(z, d

t−1),
x̂t = X̂t(z, d

t−1), ut = Ut(z, d
t), yt = Yt(z, d

t), vt = Vt(z, d
t) be the corresponding actual

and model states, controls, and actual and purified outputs. We should verify that the state-
control dynamics in question can be obtained from an appropriate control law in the form of
(5.4.2). To this end, similarly to the proof of (i), it suffices to show that for every t ≥ 0 one has

Vt(z, d
t) ≡ qt +

t∑

τ=0

QtτYτ (z, d
τ ) (IIIt)

with properly chosen qt, Qtτ . We again apply induction in t. The base t = 0 is again trivially
true due to V0(z, d

0) ≡ Y0(z, d
0). Now let s ≥ 1, and assume that relations (IIIt) are valid for

0 ≤ t < s, and let us prove that (IIIs) is valid as well. From the validity of (IIIt), t < s, and
from (5.4.8.d) it follows that

t < s⇒ Ut(z, d
t) = ct +

t∑

τ=0

CtτYτ (z, d
τ )

with properly chosen ct and Ctτ . From these relations and the description of the model system
it follows that its state X̂s(z, d

s−1) at time s, and therefore the model output Ŷs(z, d
s−1), are

affine functions of Y0(z, d
0),..., Ys−1(z, d

s−1):

Ŷs(z, d
s−1) = ps +

s−1∑

τ=0

PsτYτ (z, d
τ )
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with properly chosen ps, Psτ . It follows that

Vs(z, d
s) ≡ Ys(z, ds)− Ŷs(z, ds−1) = Ys(z, d

s)− ps −
s−1∑

τ=0

PsτYτ (z, d
τ ),

as required in (IIIs). Induction is completed, and (ii) is proved.
(iii): For 0 ≤ s ≤ t let

At
s =





t−1∏
r=s

Ar, s < t

I, s = t

Setting δt = xt − x̂t, we have by (5.4.8.a–b)

δt+1 = Atδt +Rtdt, δ0 = z ⇒ δt = At
0z +

t−1∑

s=0

At
s+1Rsds

(from now on, sums over empty index sets are zero), whence

vτ = Cτδτ +Dτdτ = CτA
τ
0z +

τ−1∑

s=0

CτA
τ
s+1Rsds +Dτdτ . (5.4.10)

Therefore control law (5.4.8.d) implies that

ut = ht +
t∑

τ=0
Htτvτ = ht︸︷︷︸

νt[η]

+

[
t∑

τ=0

HtτCτA
τ
0

]

︸ ︷︷ ︸
Nt[η]

z

+
t−1∑
s=0

[
HtsDs +

t∑

τ=s+1

HtτCτA
τ
s+1Rs

]

︸ ︷︷ ︸
Nts[η]

ds +HttDt︸ ︷︷ ︸
Ntt[η]

dt

= νt[η] +Nt[η]z +
t∑

s=0
Nts[η]ds,

(5.4.11)

whence, invoking (5.4.8.a),

xt = At
0z +

t−1∑
τ=0

At
τ+1[Bτuτ +Rτdτ ] =

[
t−1∑

τ=0

At
τ+1Bτht

]

︸ ︷︷ ︸
µt[η]

+

[
At

0 +

t−1∑

τ=0

At
τ+1BτNτ [η]

]

︸ ︷︷ ︸
Mt[η]

z

+
t−1∑
s=0

[
t−1∑

τ=s

At
τ+1BτNτs[η] +At

s+1BsRs

]

︸ ︷︷ ︸
Mts[η]

ds

= µt[η] +Mt[η]z +
t−1∑
s=0

Mts[η]ds.

(5.4.12)
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We see that the states xt, 0 ≤ t ≤ N + 1, and the controls ut, 0 ≤ t ≤ N , of the closed loop
system (5.4.8) are affine functions of z, dN , and the corresponding “coefficients” µt[η],...,Nts[η]
are affine vector- and matrix-valued functions of the parameters η = {ht,Htτ}0≤τ≤t≤N of the
underlying control law (5.4.8.d). �

The consequences. The representation (5.4.8.d) of affine control laws is incomparably better
suited for design purposes than the representation (5.4.2), since, as we know from Theorem
5.3.(iii), with controller (5.4.8.d), the state-control trajectory wN becomes bi-affine in ζ =
(z, dN ) and in the parameters η = {ht,Htτ , 0 ≤ τ ≤ t ≤ N} of the controller:

wN = ωN [η] + ΩN [η]ζ (5.4.13)

with vector- and matrix-valued functions ωN [η], ΩN [η] affinely depending on η and readily
given by the dynamics (5.4.1). Substituting (5.4.13) into (5.4.3), we arrive at the system of
semi-infinite bi-affine scalar inequalities

A
[
ωN [η] + ΩN [η]ζ

]
≤ b (5.4.14)

in variables η, and can use the tractability results from lectures 1, 4 in order to solve efficiently
the RC/GRC of this uncertain system of scalar linear constraints. For example, we can process
efficiently the GRC setting of the semi-infinite constraints (5.4.13)

aTi
[
ωN [η] + ΩN [η][z; dN ]

]
− bi ≤ αz

i dist(z,Z) + αi
ddist(d

N ,DN )
∀[z; dN ] ∀i = 1, ..., I

(5.4.15)

where Z, DN are “good,” (e.g., given by strictly feasible semidefinite representations), closed
convex normal ranges of z, dN , respectively, and the distances are defined via the ‖ · ‖∞ norms
(this setting corresponds to the “structured” GRC, see Definition 4.3). By the results of section
4.3, system (5.4.15) is equivalent to the system of constraints

∀(i, 1 ≤ i ≤ I) :
(a) aTi

[
ωN [η] + ΩN [η][z; dN ]

]
− bi ≤ 0 ∀[z; dN ] ∈ Z ×DN

(b) ‖aTi ΩN
z [η]‖1 ≤ αi

z (c) ‖aTi ΩN
d [η]‖1 ≤ αi

d,

(5.4.16)

where ΩN [η] =
[
ΩN
z [η],ΩN

d [η]
]
is the partition of the matrix ΩN [η] corresponding to the partition

ζ = [z; dN ]. Note that in (5.4.16), the semi-infinite constraints (a) admit explicit semidefinite
representations (Theorem 1.1), while constraints (b−c) are, essentially, just linear constraints on
η and on αi

z, α
i
d. As a result, (5.4.16) can be thought of as a computationally tractable system

of convex constraints on η and on the sensitivities αi
z, α

i
d, and we can minimize under these

constraints a “nice,” (e.g., convex), function of η and the sensitivities. Thus, after passing to
the POB representation of affine control laws, we can process efficiently specifications expressed
by systems of linear inequalities, to be satisfied in a robust fashion, on the (finite-horizon)
state-control trajectory.

The just summarized nice consequences of passing to the POB control laws are closely
related to the tractability of AARCs of uncertain LO problems with fixed recourse,
specifically, as follows. Let us treat the state equations (5.4.1) coupled with the design
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specifications (5.4.3) as a system of uncertainty-affected linear constraints on the
state-control trajectory w, the uncertain data being ζ = [z; dN ]. Relations (5.4.10)
say that the purified outputs vt are known in advance, completely independent of
what the control law in use is, linear functions of ζ. With this interpretation, a POB
control law becomes a collection of affine decision rules that specify the decision
variables ut as affine functions of Ptζ ≡ [v0; v1; ...; vt] and simultaneously, via the
state equations, specify the states xt as affine functions of Pt−1ζ. Thus, when looking
for a POB control law that meets our design specifications in a robust fashion, we are
doing nothing but solving the RC (or the GRC) of an uncertain LO problem in affine
decision rules possessing a prescribed “information base.” On closest inspection, this
uncertain LO problem is with fixed recourse, and therefore its robust counterparts
are computationally tractable.

Remark 5.2 It should be stressed that the re-parameterization of affine control laws underlying
Theorem 5.3 (and via this Theorem — the nice tractability results we have just mentioned) is
nonlinear. As a result, it can be of not much use when we are optimizing over affine control
laws satisfying additional restrictions rather than over all affine control laws.

Assume, e.g., that we are seeking control in the form of a simple output-based linear feedback:

ut = Gtyt.

This requirement is just a system of simple linear constraints on the parameters of the control

law in the form of (5.4.2), which, however, does not help much, since, as we have already

explained, optimization over control laws in this form is by itself difficult. And when passing

to affine control laws in the form of (5.4.8.d), the requirement that our would-be control

should be a linear output-based feedback becomes a system of highly nonlinear constraints

on our new design parameters η, and the synthesis again turns out to be difficult.

Example: Controlling finite-horizon gains. Natural design specification pertaining to
finite-horizon Robust Linear Control are in the form of bounds on finite-horizon gains z2xN ,
z2uN , d2xN , d2uN defined as follows: with a linear, (i.e., with ht ≡ 0) control law (5.4.8.d), the
states xt and the controls ut are linear functions of z and dN :

xt = Xz
t [η]z +Xd

t [η]d
N , ut = U z

t [η]z + Ud
t [η]d

N

with matrices Xz
t [η],...,U

d
t [η] affinely depending on the parameters η of the control law. Given t,

we can define the z to xt gains and the finite-horizon z to x gain as z2xt(η) = max
z
{‖Xz

t [η]z‖∞ :

‖z‖∞ ≤ 1} and z2xN (η) = max
0≤t≤N

z2xt(η). The definitions of the z to u gains z2ut(η), z2u
N (η) and

the “disturbance to x/u” gains d2xt(η), d2x
N (η), d2ut(η), d2u

N (η) are completely similar, e.g.,
d2ut(η) = max

dN
{‖Ud

t [η]d
N‖∞ : ‖dN‖∞ ≤ 1} and d2uN (η) = max

0≤t≤N
d2ut(η). The finite-horizon

gains clearly are nonincreasing functions of the time horizon N and have a transparent Control
interpretation; e.g., d2xN (η) (“peak to peak d to x gain”) is the largest possible perturbation
in the states xt, t = 0, 1, ..., N caused by a unit perturbation of the sequence of disturbances
dN , both perturbations being measured in the ‖ · ‖∞ norms on the respective spaces. Upper
bounds on N -gains (and on global gains like d2x∞(η) = supN≥0 d2x

N (η)) are natural Control
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specifications. With our purified-output-based representation of linear control laws, the finite-
horizon specifications of this type result in explicit systems of linear constraints on η and thus
can be processed routinely via LO. For example, an upper bound d2xN (η) ≤ λ on d2xN gain
is equivalent to the requirement

∑
j|(Xd

t [η])ij | ≤ λ for all i and all t ≤ N ; since Xd
t is affine in

η, this is just a system of linear constraints on η and on appropriate slack variables. Note that
imposing bounds on the gains can be interpreted as passing to the GRC (5.4.15) in the case
where the “desired behavior” merely requires wN = 0, and the normal ranges of the initial state
and the disturbances are the origins in the corresponding spaces: Z = {0}, DN = {0}.

Non-affine control laws

So far, we focused on synthesis of finite-horizon affine POB controllers. Acting in the spirit of
section 5.3.2, we can handle also synthesis of quadratic POB control laws — those where every
entry of ut, instead of being affine in the purified outputs vt = [v0; ...; vt], is allowed to be a
quadratic function of vt. Specifically, assume that we want to “close” the open loop system
(5.4.1) by a non-anticipating control law in order to ensure that the state-control trajectory wN

of the closed loop system satisfies a given system S of linear constraints in a robust fashion, that
is, for all realizations of the “uncertain data” ζ = [z; dN ] from a given uncertainty set ZN

ρ = ρZN

(ρ > 0 is, as always, the uncertainty level, and Z 3 0 is a closed convex set of “uncertain data
of magnitude ≤ 1”). Let us use a quadratic POB control law in the form of

uit = h0it + hTi,tv
t +

1

ρ
[vt]THi,tv

t, (5.4.17)

where uit is i-th coordinate of the vector of controls at instant t, and h0it, hit and Hit are,
respectively, real, vector, and matrix parameters of the control law.3 On a finite time horizon
0 ≤ t ≤ N , such a quadratic control law is specified by ρ and the finite-dimensional vector
η = {h0it, hit,Hit} 1≤i≤dimu

0≤t≤N
. Now note that the purified outputs are well defined for any non-

anticipating control law, not necessary affine, and they are independent of the control law linear
functions of ζt ≡ [z; dt]. The coefficients of these linear functions are readily given by the data
Aτ , ...,Dτ , 0 ≤ τ ≤ t (see (5.4.7)). With this in mind, we see that the controls, as given by
(5.4.17), are quadratic functions of the initial state and the disturbances, the coefficients of these
quadratic functions being affine in the vector η of parameters of our quadratic control law:

uit = U
(0)
it [η] + [z; dt]TU (1)

it [η] +
1

ρ
[z; dt]TU (2)

it [η][z; dt] (5.4.18)

with affine in η reals/vectors/matrices U (κ)
it [η], κ = 0, 1, 2. Plugging these representations of the

controls into the state equations of the open loop system (5.4.1), we conclude that the states
xjt of the closed loop system obtained by “closing” (5.4.1) by the quadratic control law (5.4.17),
have the same “affine in η, quadratic in [z; dt]” structure as the controls:

xit = X (0)
jt [η] + [z; dt−1]TX (1)

jt [η] +
1

ρ
[z; dt−1]TX (2)

jt [η][z; dt−1] (5.4.19)

3The specific way in which the uncertainty level ρ affects the controls is convenient technically and is of no
practical importance, since “in reality” the uncertainty level is a known constant.
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with affine in η reals/vectors/matrices X (κ)
jt , κ = 0, 1, 2.

Plugging representations (5.4.18), (5.4.19) into the system S of our target constraints, we end
up with a system of semi-infinite constraints on the parameters η of the control law, specifically,
the system

ak[η] + 2ζT pk[η] +
1

ρ
ζTRk[η]ζ ≤ 0∀ζ = [z; dN ] ∈ ZN

ρ = ρZN , k = 1, ...,K, (5.4.20)

where ak[η], pk[η] and Rk[ζ] are affine in η. Setting Pk[η] =

[
pTk [η]

pk[η] Rk[η]

]
, ζ̂ρ[ζ] =

[
ζT

ζ ζζT

]

and denoting by ẐN
ρ the convex hull of the image of the set ZN

ρ under the mapping ζ 7→ ζ̂ρ[ζ],
system (5.4.20) can be rewritten equivalently as

ak[η] + Tr(Pk[η]ζ̂) ≤ 0 ∀(ζ̂ ∈ ẐN
ρ ≡ ρẐN

1 , k = 1, ...,K) (5.4.21)

and we end up with a system of semi-infinite bi-affine scalar inequalities. From the results of
section 5.3.2 it follows that this semi-infinite system:

• is computationally tractable, provided that ZN is an ellipsoid {ζ : ζTQζ ≤ 1}, Q � 0.
Indeed, here ẐN

1 is the semidefinite representable set

{
[

ωT

ω Ω

]
:

[
1 ωT

ω Ω

]
� 0,Tr(ΩQ) ≤ 1};

• admits a safe tractable approximation tight within the factor ϑ = O(1) ln(J +1), provided
that ZN is the ∩-ellipsoidal uncertainty set {ζ : ζTQjζ ≤ 1, 1 ≤ j ≤ J}, where Qj � 0
and

∑
j Qj � 0. This approximation is obtained when replacing the “true” uncertainty

set ẐN
ρ with the semidefinite representable set

Wρ = ρ{
[

ωT

ω Ω

]
:

[
1 ωT

ω Ω

]
� 0,Tr(ΩQj) ≤ 1, 1 ≤ j ≤ J}

(recall that ẐN
ρ ⊂ Wρ ⊂ ẐN

ϑρ).

5.4.3 Handling Infinite-Horizon Design Specifications

One might think that the outlined reduction of (discrete time) Robust Linear Control problems
to Convex Programming, based on passing to the POB representation of affine control laws
and deriving tractable reformulations of the resulting semi-infinite bi-affine scalar inequalities is
intrinsically restricted to the case of finite-horizon control specifications. In fact our approach
is well suited for handling infinite-horizon specifications — those imposing restrictions on the
asymptotic behavior of the closed loop system. Specifications of the latter type usually have to
do with the time-invariant open loop system (5.4.1):

x0 = z
xt+1 = Axt +But +Rdt
yt = Cxt +Ddt

, t = 0, 1, ... (5.4.22)
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From now on we assume that the open loop system (5.4.22) is stable, that is, the spectral radius
of A is < 1 (in fact this restriction can be somehow circumvented, see below). Imagine that we
“close” (5.4.22) by a nearly time-invariant POB control law of order k, that is, a law of the form

ut = ht +
∑k−1

s=0
Ht

svt−s, (5.4.23)

where ht = 0 for t ≥ N∗ and Ht
τ = Hτ for t ≥ N∗ for a certain stabilization time N∗. From now

on, all entities with negative indices are set to 0. While the “time-varying” part {ht,Ht
τ , 0 ≤

t < N∗} of the control law can be used to adjust the finite-horizon behavior of the closed loop
system, its asymptotic behavior is as if the law were time-invariant: ht ≡ 0 and Ht

τ ≡ Hτ for
all t ≥ 0. Setting δt = xt − x̂t, Ht = [Ht

0, ...,H
t
k−1], H = [H0, ...,Hk−1], the dynamics (5.4.22),

(5.4.6), (5.4.23) is given by

ωt+1︷ ︸︸ ︷



xt+1

δt+1

δt
...

δt−k+2




=

A+[Ht]
︷ ︸︸ ︷



A BHt
0C BHt

1C . . . BHt
k−1C

A
A

. . .

A




ωt

+

R+[Ht]
︷ ︸︸ ︷



R BHt
0D BHt

1D . . . BHt
k−1D

R
R

. . .

R









dt
dt
dt−1

...
dt−k+1





+





Bht

0
...
0




, t = 0, 1, 2, ...,

ut = ht +
∑k−1

ν=0H
t
ν [Cδt−ν +Ddt−ν ].

(5.4.24)

We see that starting with time N∗, dynamics (5.4.24) is exactly as if the underlying control law
were the time invariant POB law with the parameters ht ≡ 0, Ht ≡ H. Moreover, since A is
stable, we see that system (5.4.24) is stable independently of the parameter H of the control
law, and the resolvent RH(s) := (sI −A+[H])−1 of A+[H] is the affine in H matrix





RA(s) RA(s)BH0CRA(s) RA(s)BH1CRA(s) ... RA(s)BHk−1CRA(s)

RA(s)

RA(s)

. . .

RA(s)




, (5.4.25)

where RA(s) = (sI −A)−1 is the resolvent of A.
Now imagine that the sequence of disturbances dt is of the form dt = std, where s ∈ C differs

from 0 and from the eigenvalues of A. From the stability of (5.4.24) it follows that as t → ∞,
the solution ωt of the system, independently of the initial state, approaches the “steady-state”
solution ω̂t = stH(s)d, where H(s) is certain matrix. In particular, the state-control vector

wt =
[
xt

ut

]
approaches, as t → ∞, the trajectory ŵt = stHxu(s)d. The associated disturbance-
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to-state/control transfer matrix Hxu(s) is easily computable:

Hxu(s) =




Hx(s)︷ ︸︸ ︷
RA(s)

[
R+

∑k−1

ν=0
s−νBHν [D + CRA(s)R]

]

[∑k−1

ν=0
s−νHν

]
[D + CRA(s)R]

︸ ︷︷ ︸
Hu(s)



. (5.4.26)

The crucial fact is that the transfer matrix Hxu(s) is affine in the parameters H = [H0, ...,Hk−1]
of the nearly time invariant control law (5.4.23). As a result, design specifications representable
as explicit convex constraints on the transfer matrix Hxu(s) (these are typical specifications in
infinite-horizon design of linear controllers) are equivalent to explicit convex constraints on the
parameters H of the underlying POB control law and therefore can be processed efficiently via
Convex Optimization.

Example: Discrete time H∞ control. Discrete time H∞ design specifications impose
constraints on the behavior of the transfer matrix along the unit circumference s = exp{ıω},
0 ≤ ω ≤ 2π, that is, on the steady state response of the closed loop system to a disturbance in
the form of a harmonic oscillation.4 . A rather general form of these specifications is a system of
constraints

‖Qi(s)−Mi(s)Hxu(s)Ni(s)‖ ≤ τi ∀(s = exp{ıω} : ω ∈ ∆i), (5.4.27)

where Qi(s), Mi(s), Ni(s) are given rational matrix-valued functions with no singularities on
the unit circumference {s : |s| = 1}, ∆i ⊂ [0, 2π] are given segments, and ‖ · ‖ is the standard
matrix norm (the largest singular value).

We are about to demonstrate that constraints (5.4.27) can be represented by an explicit
finite system of LMIs; as a result, specifications (5.4.27) can be efficiently processed numerically.
Here is the derivation. Both “transfer functions” Hx(s), Hu(s) are of the form q−1(s)Q(s,H),
where q(s) is a scalar polynomial independent of H, and Q(s,H) is a matrix-valued polynomial
of s with coefficients affinely depending on H. With this in mind, we see that the constraints
are of the generic form

‖p−1(s)P (s,H)‖ ≤ τ ∀(s = exp{ıω} : ω ∈ ∆), (5.4.28)

where p(·) is a scalar polynomial independent of H and P (s,H) is a polynomial in s with m×n
matrix coefficients affinely depending on H. Constraint (5.4.28) can be expressed equivalently
by the semi-infinite matrix inequality

[
τIm P (z,H)/p(z)

(P (z,H))∗/(p(z))∗ τIn

]
� 0∀(z = exp{ıω} : ω ∈ ∆)

4The entries of Hx(s) and Hu(s), restricted onto the unit circumference s = exp{ıω}, have very transparent
interpretation. Assume that the only nonzero entry in the disturbances is the j-th one, and it varies in time
as a harmonic oscillation of unit amplitude and frequency ω. The steady-state behavior of i-th state then will
be a harmonic oscillation of the same frequency, but with another amplitude, namely, |(Hx(exp{ıω}))ij | and
phase shifted by arg(Hx(exp{ıω})ij). Thus, the state-to-input frequency responses (Hx(exp{ıω}))ij explain the
steady-state behavior of states when the input is comprised of harmonic oscillations. The interpretation of the
control-to-input frequency responses (Hu(exp{ıω}))ij is completely similar.
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u d

X ,X
1  2

Figure 5.2: Double pendulum: two masses linked by a spring sliding without friction along a
rod. Position and velocity of the first mass are observed.

(∗ stands for the Hermitian conjugate, ∆ ⊂ [0, 2π] is a segment) or, which is the same,

SH,τ (ω) ≡
[
τp(exp{ıω})(p(exp{ıω}))∗Im (p(exp{ıω}))∗P (exp{ıω},H)
p(exp{ıω})(P (exp{ıω},H))∗ τp(exp{ıω})(p(exp{ıω}))∗In

]

� 0∀ω ∈ ∆.

Observe that SH,τ (ω) is a trigonometric polynomial taking values in the space of Hermitian
matrices of appropriate size, the coefficients of the polynomial being affine in H, τ . It is known
[49] that the cone Pm of (coefficients of) all Hermitian matrix-valued trigonometric polynomials
S(ω) of degree ≤ m, which are � 0 for all ω ∈ ∆, is semidefinite representable, i.e., there exists
an explicit LMI

A(S, u) � 0

in variables S (the coefficients of a polynomial S(·)) and additional variables u such that S(·) ∈
Pm if and only if S can be extended by appropriate u to a solution of the LMI. Consequently,
the relation

A(SH,τ , u) � 0, (∗)
which is an LMI in H, τ, u, is a semidefinite representation of (5.4.28): H, τ solve (5.4.28) if and
only if there exists u such that H, τ, u solve (∗).

5.4.4 Putting Things Together: Infinite- and Finite-Horizon Design Specifi-
cations

For the time being, we have considered optimization over purified-output-based affine control
laws in two different settings, finite- and infinite-horizon design specifications. In fact we can to
some extent combine both settings, thus seeking affine purified-output-based controls ensuring
both a good steady-state behavior of the closed loop system and a “good transition” to this
steady-state behavior. The proposed methodology will become clear from the example that
follows.

Consider the open-loop time-invariant system representing the discretized double-pendulum
depicted on figure 5.2. The dynamics of the continuous time prototype plant is given by

ẋ = Acx+Bcu+Rcd
y = Cx,

where

Ac =




0 1 0 0
−1 0 1 0
0 0 0 1
1 0 −1 0


 , Bc =




0
1
0
0


 , Rc =




0
0
0
−1


 , C =

[
1 0 0 0
0 1 0 0

]
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(x1, x2 are the position and the velocity of the first mass, and x3, x4 those of the second mass).
The discrete time plant we will actually work with is

xt+1 = A0xt +But +Rdt
yt = Cxt

(5.4.29)

where A0 = exp{∆ · Ac}, B =
∆∫
0

exp{sAc}Bcds, R =
∆∫
0

exp{sAc}Rcds. System (5.4.29) is not

stable (absolute values of all eigenvalues of A0 are equal to 1), which seemingly prevents us from
addressing infinite-horizon design specifications via the techniques developed in section 5.4.3.
The simplest way to circumvent the difficulty is to augment the original plant by a stabilizing
time-invariant linear feedback; upon success, we then apply the purified-output-based synthesis
to the augmented, already stable, plant. Specifically, let us look for a controller of the form

ut = Kyt + wt. (5.4.30)

With such a controller, (5.4.29) becomes

xt+1 = Axt +Bwt +Rdt, A = A0 +BKC
yt = Cxt.

(5.4.31)

If K is chosen in such a way that the matrix A = A0 + BKC is stable, we can apply all our
purified-output-based machinery to the plant (5.4.31), with wt in the role of ut, however keeping
in mind that the “true” controls ut will be Kyt + wt.

For our toy plant, a stabilizing feedback K can be found by “brute force” — by generating a
random sample of matrices of the required size and selecting from this sample a matrix, if any,
which indeed makes (5.4.31) stable. Our search yielded feedback matrixK = [−0.6950,−1.7831],
with the spectral radius of the matrix A = A0 +BKC equal to 0.87. From now on, we focus on
the resulting plant (5.4.31), which we intend to “close” by a control law from C8,0, where Ck,0 is
the family of all time invariant control laws of the form

wt =

t∑

τ=0

Ht−τvτ

[
vt = yt − Cx̂t,

x̂t+1 = Ax̂t +Bwt, x̂0 = 0

]
(5.4.32)

where Hs = 0 when s ≥ k. Our goal is to pick in C8,0 a control law with desired properties (to
be precisely specified below) expressed in terms of the following 6 criteria:

• the four peak to peak gains z2x, z2u, d2x, d2u defined on p. 261;

• the two H∞ gains

H∞,x = max
|s|=1,i,j

|(Hx(s))|ij , H∞,u = max
|s|=1,i,j

|(Hu(s))|ij ,

where Hx and Hu are the transfer functions from the disturbances to the states and the
controls, respectively.
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Optimized Resulting values of the criteria

criterion z2x40 z2u40 d2x40 d2u40 H∞,x H∞,u

z2x40 25.8 205.8 1.90 3.75 10.52 5.87

z2u40 58.90 161.3 1.90 3.74 39.87 20.50

d2x40 5773.1 13718.2 1.77 6.83 1.72 4.60

d2u40 1211.1 4903.7 1.90 2.46 66.86 33.67

H∞,x 121.1 501.6 1.90 5.21 1.64 5.14

H∞,u 112.8 460.4 1.90 4.14 8.13 1.48

z2x z2u d2x d2u H∞,x H∞,u

(5.4.34) 31.59 197.75 1.91 4.09 1.82 2.04

(5.4.35) 2.58 0.90 1.91 4.17 1.77 1.63

Table 5.2: Gains for time invariant control laws of order 8 yielded by optimizing, one at a time,
the criteria z2x40,...,H∞,u over control laws from F = {η ∈ C8,0 : d2x40[η] ≤ 1.90} (first six
lines), and by solving programs (5.4.34), (5.4.35) (last two lines).

Note that while the purified-output-based control wt we are seeking is defined in terms of the
stabilized plant (5.4.31), the criteria z2u,d2u, H∞,u are defined in terms of the original controls
ut = Kyt + wt = KCxt + wt affecting the actual plant (5.4.29).

In the synthesis we are about to describe our primary goal is to minimize the global distur-
bance to state gain d2x, while the secondary goal is to avoid too large values of the remaining
criteria. We achieve this goal as follows.
Step 1: Optimizing d2x. As it was explained on p. 261, the optimization problem

Optd2x(k, 0;N+) = min
η∈Ck,0

max
0≤t≤N+

d2xt[η] (5.4.33)

is an explicit convex program (in fact, just an LO), and its optimal value is a lower bound on
the best possible global gain d2x achievable with control laws from Ck,0. In our experiment, we
solve (5.4.33) for k = 8 and N+ = 40, arriving at Optd2x(8, 0; 40) = 1.773. The global d2x gain
of the resulting time-invariant control law is 1.836 — just 3.5% larger than the outlined lower
bound. We conclude that the control yielded by the solution to (5.4.33) is nearly the best one,
in terms of the global d2x gain, among time-invariant controls of order 8. At the same time,
part of the other gains associated with this control are far from being good, see line “d2x40” in
table 5.2.
Step 2: Improving the remaining gains. To improve the “bad” gains yielded by the nearly
d2x-optimal control law we have built, we act as follows: we look at the family F of all time
invariant control laws of order 8 with the finite-horizon d2x gain d2x40[η] = max

0≤t≤40
d2xt[η] not

exceeding 1.90 (that is, look at the controls from C8,0 that are within 7.1% of the optimum in
terms of their d2x40 gain) and act as follows:

A. We optimize over F , one at a time, every one of the remaining criteria z2x40[η] =
max

0≤t≤40
z2xt[η], z2u

40[η] = max
0≤t≤40

z2ut[η], d2u
40[η] = max

0≤t≤40
d2ut[η], H∞,x[η], H∞,u[η], thus ob-

taining “reference values” of these criteria; these are lower bounds on the optimal values of the
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corresponding global gains, optimization being carried out over the set F . These lower bounds
are the underlined data in table 5.2.

B. We then minimize over F the “aggregated gain”

z2x40[η]

25.8
+

z2u40[η]

161.3
+

d2u40[η]

2.46
+
H∞,x[η]

1.64
+
H∞,u[η]

1.48
(5.4.34)

(the denominators are exactly the aforementioned reference values of the corresponding gains).
The global gains of the resulting time-invariant control law of order 8 are presented in the
“(5.4.34)” line of table 5.2.
Step 3: Finite-horizon adjustments. Our last step is to improve the z2x and z2u gains by
passing from a time invariant affine control law of order 8 to a nearly time invariant law of order
8 with stabilization time N∗ = 20. To this end, we solve the convex optimization problem

min
η∈C8,20




z2x50[η] + z2u50[η] :

d2x50[η] ≤ 1.90
d2u50[η] ≤ 4.20
H∞,x[η] ≤ 1.87
H∞,u[η] ≤ 2.09





(5.4.35)

(the right hand sides in the constraints for d2u50[·], H∞,x[·], H∞,u[·] are the slightly increased
(by 2.5%) gains of the time invariant control law obtained in Step 2). The global gains of the
resulting control law are presented in the last line of table 5.2, see also figure 5.3. We see that
finite-horizon adjustments allow us to reduce by orders of magnitude the global z2x and z2u
gains and, as an additional bonus, result in a substantial reduction of H∞-gains.

Simple as this control problem may be, it serves well to demonstrate the importance of
purified-output-based representation of affine control laws and the associated possibility to ex-
press various control specifications as explicit convex constraints on the parameters of such laws.

5.5 Exercises

Exercise 5.1 Consider a discrete time linear dynamical system

x0 = z
xt+1 = Atxt +Btut +Rtdt, t = 0, 1, ...

(5.5.1)

where xt ∈ R
n are the states, ut ∈ R

m are the controls, and dt ∈ R
k are the exogenous

disturbances. We are interested in the behavior of the system on the finite time horizon t =
0, 1, ..., N . A “desired behavior” is given by the requirement

‖PwN − q‖∞ ≤ R (5.5.2)

on the state-control trajectory wN = [x0; ...;xN+1;u0; ...;uN ].
Let us treat ζ = [z; d0; ...; dN ] as an uncertain perturbation with perturbation structure

(Z,L, ‖ · ‖r), where
Z = {ζ : ‖ζ − ζ̄‖s ≤ R}, L = R

L [L = dim ζ]
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Figure 5.3: Frequency responses and gains of control law given by solution to (5.4.35).
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and r, s ∈ [1,∞], so that (5.5.1), (5.5.2) become a system of uncertainty-affected linear con-
straints on wN . We want to process the Affinely Adjustable GRC of the system, where ut are
allowed to be affine functions of the initial state z and the vector of disturbances dt = [d0; ...; dt]
up to time t, and the states xt are allowed to be affine functions of z and dt−1. We wish to
minimize the corresponding global sensitivity.

In control terms: we want to “close” the open-loop system (5.5.1) with a non-anticipative
affine control law

ut = Uz
t z + Ud

t d
t + u0t (5.5.3)

based on observations of initial states and disturbances up to time t in such a way that

the “closed loop system” (5.5.1), (5.5.3) exhibits the desired behavior in a robust w.r.t. the

initial state and the disturbances fashion.

Write down the AAGRC of our uncertain problem as an explicit convex program with efficiently
computable constraints.

Exercise 5.2 Consider the modification of Exercise 5.1 where the cone L = R
L is replaced with

L = {[0; d0; ...; dN ] : dt ≥ 0, 0 ≤ t ≤ N},

and solve the corresponding version of the Exercise.

Exercise 5.3 Consider the simplest version of Exercise 5.1, where (5.5.1) reads

x0 = z ∈ R

xt+1 = xt + ut − dt, t = 0, 1, ..., 15,

(5.5.2) reads
|θxt| = 0, t = 1, 2, ..., 16, |ut| = 0, t = 0, 1, ..., 15

and the perturbation structure is

Z = {[z; d0; ...; d15] = 0} ⊂ R
17, L = {[0; d0; d1; ...; d15]}, ‖ζ‖ ≡ ‖ζ‖2.

Assuming the same “adjustability status” of ut and xt as in Exercise 5.1,

1. Represent the AAGRC of (the outlined specializations of) (5.5.1), (5.5.2), where the goal
is to minimize the global sensitivity, as an explicit convex program;

2. Interpret the AAGRC in Control terms;

3. Solve the AAGRC for the values of θ equal to 1.e6, 10, 2, 1.

Exercise 5.4 Consider a communication network — an oriented graph G with the set of nodes
V = {1, ..., n} and the set of arcs Γ. Several ordered pairs of nodes (i, j) are marked as “source-
sink” nodes and are assigned traffic dij — the amount of information to be transmitted from
node i to node j per unit time; the set of all source-sink pairs is denoted by J . Arcs γ ∈ Γ of
a communication network are assigned with capacities — upper bounds on the total amount of
information that can be sent through the arc per unit time. We assume that the arcs already
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possess certain capacities pγ , which can be further increased; the cost of a unit increase of the
capacity of arc γ is a given constant cγ .

1) Assuming the demands dij certain, formulate the problem of finding the cheapest extension
of the existing network capable to ensure the required source-sink traffic as an LO program.

2) Now assume that the vector of traffic d = {dij : (i, j) ∈ J } is uncertain and is known
to run through a given semidefinite representable compact uncertainty set Z. Allowing the
amounts xijγ of information with origin i and destination j traveling through the arc γ to depend
affinely on traffic, build the AARC of the (uncertain version of the) problem from 1). Consider
two cases: (a) for every (i, j) ∈ J , xijγ can depend affinely solely on dij , and (b) xijγ can depend
affinely on the entire vector d. Are the resulting problems computationally tractable?

3) Assume that the vector d is random, and its components are independent random variables
uniformly distributed in given segments ∆ij of positive lengths. Build the chance constrained
versions of the problems from 2).



Bibliography

[1] Barmish, B.R., Lagoa, C.M. The uniform distribution: a rigorous justification for the use in
robustness analysis, Math. Control, Signals, Systems 10 (1997), 203–222.

[2] Bendsøe, M. Optimization of Structural Topology, Shape and Material. Springer-Verlag, Hei-
delberg, 1995.

[3] Ben-Tal, A., El Ghaoui, L., Nemirovski, A. Robust Optimization. Princeton University Press,
2009. E-print: http://sites.google.com/site/robustoptimization

[4] Ben-Tal, A., Nemirovski, A., Stable Truss Topology Design via Semidefinite Programming.
SIAM J. on Optimization 7:4 (1997), 991–1016.

[5] Ben-Tal, A., Nemirovski, A. Robust Convex Optimization. Math. of Oper. Res. 23:4 (1998),
769–805.

[6] Ben-Tal, A., Nemirovski, A. Robust solutions of uncertain linear programs. OR Letters 25
(1999), 1–13.
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Appendix A

Notation and Prerequisites

A.1 Notation

• Z, R, C stand for the sets of all integers, reals, and complex numbers, respectively.
• Cm×n, Rm×n stand for the spaces of complex, respectively, real m× n matrices. We write C

n

and R
n as shorthands for Cn×1, Rn×1, respectively.

For A ∈ C
m×n, AT stands for the transpose, and AH for the conjugate transpose of A:

(AH)rs = Asr,

where z is the conjugate of z ∈ C.
• Both C

m×n, Rm×n are equipped with the inner product

〈A,B〉 = Tr(ABH) =
∑

r,s

ArsBrs.

The norm associated with this inner product is denoted by ‖ · ‖2.
• For p ∈ [1,∞], we define the p-norms ‖ · ‖p on C

n and R
n by the relation

‖x‖p =

{
(
∑

i |xi|p)1/p , 1 ≤ p <∞
limp→∞ ‖x‖p = maxi |xi|, p =∞ , 1 ≤ p ≤ ∞.

Note that when p, q ∈ [1,∞] and 1
p + 1

q = 1, then the norms ‖ · ‖p and ‖ · ‖q are conjugates of
each other:

‖x‖p = max
y:‖y‖q≤1

|〈x, y〉|.

In particular, |〈x, y〉| ≤ ‖x‖p‖y‖q (Hölder inequality).
• We use the notation Im, 0m×n for the unit m×m, respectively, the zero m× n matrices.
• Hm, Sm are real vector spaces of m × m Hermitian, respectively, real symmetric matrices.
Both are Euclidean spaces w.r.t. the inner product 〈·, ·〉.
• We use “MATLAB notation”: when A1, ..., Ak are matrices with the same number of rows,
[A1, ..., Ak] denotes the matrix with the same number of rows obtained by writing, from left to
right, first the columns of A1, then the columns of A2, and so on. When A1, ..., Ak are matrices
with the same number of columns, [A1;A2; ...;Ak ] stands for the matrix with the same number
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of columns obtained by writing, from top to bottom, first the rows of A1, then the rows of A2,
and so on.
• For a Hermitian/real symmetric m×m matrix A, λ(A) is the vector of eigenvalues λr(A) of
A taken with their multiplicities in the non-ascending order:

λ1(A) ≥ λ2(A) ≥ ... ≥ λm(A).

• For an m× n matrix A, σ(A) = (σ1(A), ..., σn(A))
T is the vector of singular values of A:

σr(A) = λ1/2r (AHA),

and
‖A‖2,2 = ‖A‖ = σ1(A) = max {‖Ax‖2 : x ∈ C

n, ‖x‖2 ≤ 1}
(by evident reasons, when A is real, one can replace C

n in the right hand side with R
n).

• For Hermitian/real symmetric matrices A, B, we write A � B (A � B) to express that A−B
is positive semidefinite (resp., positive definite).

A.2 Conic Programming

A.2.1 Euclidean Spaces, Cones, Duality

Euclidean spaces

A Euclidean space is a finite dimensional linear space over reals equipped with an inner product
〈x, y〉E — a bilinear and symmetric real-valued function of x, y ∈ E such that 〈x, x〉E > 0
whenever x 6= 0.

Example: The standard Euclidean space R
n. This space is comprised of n-dimensional

real column vectors with the standard coordinate-wise linear operations and the inner product
〈x, y〉Rn = xT y. R

n is a universal example of an Euclidean space: for every Euclidean n-
dimensional space (E, 〈·, ·〉E ) there exists a one-to-one linear mapping x 7→ Ax : Rn → E such
that xT y ≡ 〈Ax,Ay〉E . All we need in order to build such a mapping, is to find an orthonormal

basis e1, ..., en, n = dimE, in E, that is, a basis such that 〈ei, ej〉E = δij ≡
{

1, i = j
0, i 6= j

; such

a basis always exists. Given an orthonormal basis {ei}ni=1, a one-to-one mapping A : Rn → E
preserving the inner product is given by Ax =

∑n
i=1 xiei.

Example: The space R
m×n of m×n real matrices with the Frobenius inner prod-

uct. The elements of this space are m×n real matrices with the standard linear operations and
the inner product 〈A,B〉F = Tr(ABT ) =

∑
i,j AijBij .

Example: The space Sn of n × n real symmetric matrices with the Frobenius
inner product. This is the subspace of Rn×n comprised of all symmetric n × n matrices; the
inner product is inherited from the embedding space. Of course, for symmetric matrices, this
product can be written down without transposition:

A,B ∈ Sn ⇒ 〈A,B〉F = Tr(AB) =
∑

i,j

AijBij.
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Example: The space Hn of n × n Hermitian matrices with the Frobenius inner
product. This is the real linear space comprised of n×n Hermitian matrices; the inner product
is

〈A,B〉 = Tr(ABH) = Tr(AB) =

n∑

i,j=1

AijBij .

Linear forms on Euclidean spaces

Every homogeneous linear form f(x) on a Euclidean space (E, 〈·, ·〉E ) can be represented in the
form f(x) = 〈ef , x〉E for certain vector ef ∈ E uniquely defined by f(·). The mapping f 7→ ef
is a one-to-one linear mapping of the space of linear forms on E onto E.

Conjugate mapping

Let (E, 〈·, ·〉E ) and (F, 〈··〉F ) be Euclidean spaces. For a linear mapping A : E → F and every
f ∈ F , the function 〈Ae, f〉F is a linear function of e ∈ E and as such it is representable as
〈e,A∗f〉E for certain uniquely defined vector A∗f ∈ E. It is immediately seen that the mapping
f 7→ A∗f is a linear mapping of F into E; the characteristic identity specifying this mapping is

〈Ae, f〉F = 〈e,A∗f〉 ∀(e ∈ E, f ∈ F ).

The mapping A∗ is called conjugate to A. It is immediately seen that the conjugation is a
linear operation with the properties (A∗)∗ = A, (AB)∗ = B∗A∗. If {ej}mj=1 and {fi}ni=1 are
orthonormal bases in E,F , then every linear mapping A : E → F can be associated with the
matrix [aij ] (“matrix of the mapping in the pair of bases in question”) according to the identity

A
m∑

j=1

xjej =
∑

i


∑

j

aijxj


 fi

(in other words, aij is the i-th coordinate of the vector Aej in the basis f1, ..., fn). With
this representation of linear mappings by matrices, the matrix representing A∗ in the pair of
bases {fi} in the argument and {ej} in the image spaces of A∗ is the transpose of the matrix
representing A in the pair of bases {ej}, {fi}.

Cones in Euclidean space

A nonempty subset K of a Euclidean space (E, 〈·, ·〉E ) is called a cone, if it is a convex set
comprised of rays emanating from the origin, or, equivalently, whenever t1, t2 ≥ 0 and x1, x2 ∈ K,
we have t1x1 + t2x2 ∈ K.

A cone K is called regular, if it is closed, possesses a nonempty interior and is pointed —
does not contain lines, or, which is the same, is such that a ∈ K, −a ∈ K implies that a = 0.

Dual cone. If K is a cone in a Euclidean space (E, 〈·, ·〉E), then the set

K∗ = {e ∈ E : 〈e, h〉E ≥ 0∀h ∈K}

also is a cone called the cone dual to K. The dual cone always is closed. The cone dual to dual
is the closure of the original cone: (K∗)∗ = clK; in particular, (K∗)∗ = K for every closed cone
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K. The cone K∗ possesses a nonempty interior if and only if K is pointed, and K∗ is pointed if
and only if K possesses a nonempty interior; in particular, K is regular if and only if K∗ is so.

Example: Nonnegative ray and nonnegative orthants. The simplest one-dimensional
cone is the nonnegative ray R+ = {t ≥ 0} on the real line R

1. The simplest cone in R
n is the

nonnegative orthant R
n
+ = {x ∈ R

n : xi ≥ 0, 1 ≤ i ≤ n}. This cone is regular and self-dual:
(Rn

+)
∗ = R

n
+.

Example: Lorentz cone Ln. The cone Ln “lives” in R
n and is comprised of all vectors

x = [x1; ...;xn] ∈ R
n such that xn ≥

√∑n−1
j=1 x

2
j ; same as R

n
+, the Lorentz cone is regular and

self-dual.
By definition, L1 = R+ is the nonnegative orthant; this is in full accordance with the

“general” definition of a Lorentz cone combined with the standard convention “a sum over an
empty set of indices is 0.”

Example: Semidefinite cone Sn
+. The cone S

n
+ “lives” in the Euclidean space Sn of n×n

symmetric matrices equipped with the Frobenius inner product. The cone is comprised of all
n×n symmetric positive semidefinite matrices A, i.e., matrices A ∈ Sn such that xTAx ≥ 0 for
all x ∈ R

n, or, equivalently, such that all eigenvalues of A are nonnegative. Same as Rn
+ and Ln,

the cone Sn
+ is regular and self-dual.

Example: Hermitian semidefinite cone Hn
+. This cone “lives” in the space Hn of n×n

Hermitian matrices and is comprised of all positive semidefinite Hermitian n× n matrices; it is
regular and self-dual.

A.2.2 Conic Problems and Conic Duality

Conic problem

A conic problem is an optimization problem of the form

Opt(P ) = min
x

{
〈c, x〉E :

Aix− bi ∈ Ki, i = 1, ...,m,
Ax = b

}
(P )

where

• (E, 〈·, ·〉E ) is a Euclidean space of decision vectors x and c ∈ E is the objective;

• Ai, 1 ≤ i ≤ m, are linear maps from E into Euclidean spaces (Fi, 〈·, ·〉Fi), bi ∈ Fi and
Ki ⊂ Fi are regular cones;

• A is a linear mapping from E into a Euclidean space (F, 〈·, ·〉F ) and b ∈ F .

Examples: Linear, Conic Quadratic and Semidefinite Optimization. We will be
especially interested in the three generic conic problems as follows:

• Linear Optimization, or Linear Programming: this is the family of all conic problems
associated with nonnegative orthants Rm

+ , that is, the family of all usual LPs minx{cTx :
Ax− b ≥ 0};
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• Conic Quadratic Optimization, or Conic Quadratic Programming, or Second Order Cone
Programming: this is the family of all conic problems associated with the cones that are
finite direct products of Lorentz cones, that is, the conic programs of the form

min
x

{
cTx : [A1; ...;Am]x− [b1; ...; bm] ∈ Lk1 × ...× Lkm

}

where Ai are ki × dimx matrices and bi ∈ R
ki . The “Mathematical Programming” form

of such a program is

min
x

{
cTx : ‖Āix− b̄i‖2 ≤ αT

i x− βi, 1 ≤ i ≤ m
}
,

where Ai = [Āi;α
T
i ] and bi = [b̄i;βi], so that αi is the last row of Ai, and βi is the last

entry of bi;

• Semidefinite Optimization, or Semidefinite Programming: this is the family of all conic
problems associated with the cones that are finite direct products of Semidefinite cones,
that is, the conic programs of the form

min
x



c

Tx : A0
i +

dimx∑

j=1

xjA
j
i � 0, 1 ≤ i ≤ m



 ,

where Aj
i are symmetric matrices of appropriate sizes.

A.2.3 Conic Duality

Conic duality — derivation

The origin of conic duality is the desire to find a systematic way to bound from below the
optimal value in a conic problem (P ). This way is based on linear aggregation of the constraints
of (P ), namely, as follows. Let yi ∈ K∗

i and z ∈ F . By the definition of the dual cone, for every
x feasible for (P ) we have

〈A∗
i yi, x〉E − 〈yi, bi〉Fi ≡ 〈yi, Axi − bi〉Fi ≥ 0, 1 ≤ i ≤ m,

and of course
〈A∗z, x〉E − 〈z, b〉F = 〈z,Ax− b〉F = 0.

Summing up the resulting inequalities, we get

〈A∗z +
∑

i

A∗
i yi, x〉E ≥ 〈z, b〉F +

∑

i

〈yi, bi〉Fi . (C)

By its origin, this scalar linear inequality on x is a consequence of the constraints of (P ), that
is, it is valid for all feasible solutions x to (P ). It may happen that the left hand side in this
inequality is, identically in x ∈ E, equal to the objective 〈c, x〉E ; this happens if and only if

A∗z +
∑

i

A∗
i yi = c.



286 APPENDIX A. NOTATION AND PREREQUISITES

Whenever it is the case, the right hand side of (C) is a valid lower bound on the optimal value
in (P ). The dual problem is nothing but the problem

Opt(D) = max
z,{yi}

{
〈z, b〉F +

∑

i

〈yi, bi〉Fi :
yi ∈ K∗

i , 1 ≤ i ≤ m,
A∗z +

∑
iA

∗
i yi = c

}
(D)

of maximizing this lower bound.
By the origin of the dual problem, we have

Weak Duality: One has Opt(D) ≤ Opt(P ).

We see that (D) is a conic problem. A nice and important fact is that conic duality is symmetric.

Symmetry of Duality: The conic dual to (D) is (equivalent to) (P ).

Proof. In order to apply to (D) the outlined recipe for building the conic dual, we should rewrite
(D) as a minimization problem

−Opt(D) = min
z,{yi}

{
〈z,−b〉F +

∑

i

〈yi,−bi〉Fi :
yi ∈ K∗

i , 1 ≤ i ≤ m
A∗z +

∑
iA

∗
i yi = c

}
; (D′)

the corresponding space of decision vectors is the direct product F ×F1 × ...×Fm of Euclidean
spaces equipped with the inner product

〈[z; y1, ..., ym], [z′; y′1, ..., y
′
m]〉 = 〈z, z′〉F +

∑

i

〈yi, y′i〉Fi .

The above “duality recipe” as applied to (D′) reads as follows: pick weights ηi ∈ (K∗
i )

∗ = Ki

and ζ ∈ E, so that the scalar inequality

〈ζ,A∗z +
∑

i

A∗
i yi〉E +

∑

i

〈ηi, yi〉Fi

︸ ︷︷ ︸
=〈Aζ,z〉F+

∑
i〈Aiζ+ηi,yi〉Fi

≥ 〈ζ, c〉E (C ′)

in variables z, {yi} is a consequence of the constraints of (D′), and impose on the “aggregation
weights” ζ, {ηi ∈ Ki} an additional restriction that the left hand side in this inequality is,
identically in z, {yi}, equal to the objective of (D′), that is, the restriction that

Aζ = −b, Aiζ + ηi = −bi, 1 ≤ i ≤ m,

and maximize under this restriction the right hand side in (C ′), thus arriving at the problem

max
ζ,{ηi}

{
〈c, ζ〉E :

Ki 3 ηi = Ai[−ζ]− bi, 1 ≤ i ≤ m
A[−ζ] = b

}
.

Substituting x = −ζ, the resulting problem, after eliminating ηi variables, is nothing but

max
x

{
−〈c, x〉E :

Aix− bi ∈Ki, 1 ≤ i ≤ m
Ax = b

}
,

which is equivalent to (P ). �
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Conic Duality Theorem

A conic program (P ) is called strictly feasible, if it admits a feasible solution x̄ such that
Aix̄ = −bi ∈ intKi, i = 1, ...,m.

Conic Duality Theorem is the following statement resembling very much the standard Linear
Programming Duality Theorem:

Theorem A.1 [Conic Duality Theorem] Consider a primal-dual pair of conic problems (P ),
(D). Then

(i) [Weak Duality] One has Opt(D) ≤ Opt(P ).
(ii) [Symmetry] The duality is symmetric: (D) is a conic problem, and the problem dual to

(D) is (equivalent to) (P ).
(iii) [Strong Duality] If one of the problems (P ), (D) is strictly feasible and bounded, then

the other problem is solvable, and Opt(P ) = Opt(D).
If both the problems are strictly feasible, then both are solvable with equal optimal values.

Proof. We have already verified Weak Duality and Symmetry. Let us prove the first claim in
Strong Duality. By Symmetry, we can restrict ourselves to the case when the strictly feasible
and bounded problem is (P ).

Consider the following two sets in the Euclidean space G = R× F × F1 × ...× Fm:

T = {[t; z; y1; ...; ym] : ∃x : t = 〈c, x〉E ; yi = Aix− bi, 1 ≤ i ≤ m;
z = Ax− b},

S = {[t; z; y1; ...; ym] : t < Opt(P ), y1 ∈ K1, ..., ym ∈Km, z = 0}.

The sets T and S clearly are convex and nonempty; observe that they do not intersect. Indeed,
assuming that [t; z; y1; ...; ym] ∈ S ∩ T , we should have t < Opt(P ), and yi ∈ Ki, z = 0
(since the point is in S), and at the same time for certain x ∈ E we should have t = 〈c, x〉E
and Aix − bi = yi ∈ Ki, Ax − b = z = 0, meaning that there exists a feasible solution to
(P ) with the value of the objective < Opt(P ), which is impossible. Since the convex and
nonempty sets S and T do not intersect, they can be separated by a linear form: there exists
[τ ; ζ; η1; ...; ηm] ∈ G = R× F × F1 × ...× Fm such that

(a) sup
[t;z;y1;...;ym]∈S

〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G
≤ inf

[t;z;y1;...;ym]∈T
〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G,

(b) inf
[t;z;y1;...;ym]∈S

〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G
< sup

[t;z;y1;...;ym]∈T
〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G,

or, which is the same,

(a) sup
t<Opt(P ),yi∈Ki

[τt+
∑

i〈ηi, yi〉Fi ]

≤ inf
x∈E

[τ〈c, x〉E + 〈ζ,Ax− b〉F +
∑

i〈ηi, Aix− bi〉Fi ] ,

(b) inf
t<Opt(P ),yi∈Ki

[τt+
∑

i〈ηi, yi〉Fi ]

< sup
x∈E

[τ〈c, x〉+ 〈ζ,Ax− b〉F +
∑

i〈ηi, Ax− bi〉Fi ] .

(A.2.1)
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Since the left hand side in (A.2.1.a) is finite, we have

τ ≥ 0, −ηi ∈K∗
i , 1 ≤ i ≤ m, (A.2.2)

whence the left hand side in (A.2.1.a) is equal to τOpt(P ). Since the right hand side in (A.2.1.a)
is finite and τ ≥ 0, we have

A∗ζ +
∑

i

A∗
i ηi + τc = 0 (A.2.3)

and the right hand side in (a) is 〈−ζ, b〉F −
∑

i〈ηi, bi〉Fi , so that (A.2.1.a) reads

τOpt(P ) ≤ 〈−ζ, b〉F −
∑

i

〈ηi, bi〉Fi . (A.2.4)

We claim that τ > 0. Believing in our claim, let us extract from it Strong Duality. Indeed,
setting yi = −ηi/τ , z = −ζ/τ , (A.2.2), (A.2.3) say that z, {yi} is a feasible solution for (D), and
by (A.2.4) the value of the dual objective at this dual feasible solution is ≥ Opt(P ). By Weak
Duality, this value cannot be larger than Opt(P ), and we conclude that our solution to the dual
is in fact an optimal one, and that Opt(P ) = Opt(D), as claimed.

It remains to prove that τ > 0. Assume this is not the case; then τ = 0 by (A.2.2). Now let
x̄ be a strictly feasible solution to (P ). Taking inner product of both sides in (A.2.3) with x̄, we
have

〈ζ,Ax̄〉F +
∑

i

〈ηi, Aix̄〉Fi = 0,

while (A.2.4) reads

−〈ζ, b〉F −
∑

i

〈ηi, bi〉Fi ≥ 0.

Summing up the resulting inequalities and taking into account that x̄ is feasible for (P ), we get

∑

i

〈ηi, Aix̄− bi〉 ≥ 0.

Since Aix̄ − bi ∈ intKi and ηi ∈ −K∗
i , the inner products in the left hand side of the latter

inequality are nonpositive, and i-th of them is zero if and only if ηi = 0; thus, the inequality
says that ηi = 0 for all i. Adding this observation to τ = 0 and looking at (A.2.3), we see that
A∗ζ = 0, whence 〈ζ,Ax〉F = 0 for all x and, in particular, 〈ζ, b〉F = 0 due to b = Ax̄. The
bottom line is that 〈ζ,Ax− b〉F = 0 for all x. Now let us look at (A.2.1.b). Since τ = 0, ηi = 0
for all i and 〈ζ,Ax − b〉F = 0 for all x, both sides in this inequality are equal to 0, which is
impossible. We arrive at a desired contradiction.

We have proved the first claim in Strong Duality. The second claim there is immediate: if
both (P ), (D) are strictly feasible, then both problems are bounded as well by Weak Duality,
and thus are solvable with equal optimal values by the already proved part of Strong Duality.
�
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Optimality conditions in Conic Programming

Optimality conditions in Conic Programming are given by the following statement:

Theorem A.2 Consider a primal-dual pair (P ), (D) of conic problems, and let both problems
be strictly feasible. A pair (x, ξ ≡ [z; y1; ...; ym]) of feasible solutions to (P ) and (D) is comprised
of optimal solutions to the respective problems if and only if

(i) [Zero duality gap] One has

DualityGap(x; ξ) := 〈c, x〉E − [〈z, b〉F +
∑

i〈bi, yi〉Fi ]
= 0,

same as if and only if
(ii) [Complementary slackness]

∀i : 〈yi, Aixi − bi〉Fi = 0.

Proof. By Conic Duality Theorem, we are in the situation when Opt(P ) = Opt(D). Therefore

DualityGap(x; ξ) = [〈c, x〉E −Opt(P )]︸ ︷︷ ︸
a

+

[
Opt(D)−

[
〈z, b〉F +

∑

i

〈bi, yi〉Fi

]]

︸ ︷︷ ︸
b

Since x and ξ are feasible for the respective problems, the duality gap is nonnegative and it
can vanish if and only if a = b = 0, that is, if and only if x and ξ are optimal solutions to the
respective problems, as claimed in (i). To prove (ii), note that since x is feasible, we have

Ax = b, Aix− bi ∈ Ki, c = A∗z +
∑

i

A∗
i yi, yi ∈K∗

i ,

whence
DualityGap(x; ξ) = 〈c, x〉E − [〈z, b〉F +

∑
i〈bi, yi〉Fi ]

= 〈A∗z +
∑

iA
∗
i yi, x〉E − [〈z, b〉F +

∑
i〈bi, yi〉Fi ]

= 〈z,Ax− b〉F︸ ︷︷ ︸
=0

+
∑

i 〈yi, Aix− bi〉Fi︸ ︷︷ ︸
≥0

,

where the nonnegativity of the terms in the last
∑

i follows from yi ∈ K∗
i , Aixi − bi ∈ Ki. We

see that the duality gap, as evaluated at a pair of primal-dual feasible solutions, vanishes if and
only if the complementary slackness holds true, and thus (ii) is readily given by (i). �

A.2.4 Conic Representations of Sets and Functions

Conic representations of sets

When asked whether the optimization programs

min
y

m∑

i=1

|aTi y − bi| (A.2.5)
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and
min
y

max
1≤i≤m

|aTi y − bi| (A.2.6)

are Linear Optimization programs, the answer definitely will be ”yes”, in spite of the fact that
an LO program is defined as

min
x

{
cTx : Ax ≥ b, Px = p

}
(A.2.7)

and neither (A.2.5), nor (A.2.6) are in this form. What the “yes” answer actually means, is that
both (A.2.5) and (A.2.6) can be straightforwardly reduced to, or, which is the same, represented
by LO programs, e.g., the LO program

min
y,u

{
m∑

i=1

ui : −ui ≤ aTi y − bi ≤ ui, 1 ≤ i ≤ m
}

(A.2.8)

in the case of (A.2.5), and the LO program

min
y,t

{
t : −t ≤ aTi y − bi ≤ t, 1 ≤ i ≤ m

}
(A.2.9)

in the case of (A.2.6).
An “in-depth” explanation of what actually takes place in these and similar examples is as

follows.

1. The “initial form” of a typical Mathematical Programming problem is minv∈V f(v), where
f(v) : V → R is the objective, and V ⊂ R

n is the feasible set of the problem. It is
technically convenient to assume that the objective is “as simple as possible” — just
linear: f(v) = eT v; this assumption does not restrict generality, since we can always pass
from the original problem, given in the form minv∈V φ(v), to the equivalent problem

min
y=[v;s]

{
cT y ≡ s : y ∈ Y = {[v; s] : v ∈ V, s ≥ φ(v)}

}
.

Thus, from now on we assume w.l.o.g. that the original problem is

min
y

{
dT y : y ∈ Y

}
. (A.2.10)

2. All we need in order to reduce (A.2.10) to an LO program is what is called a polyhedral
representation of Y , that is, a representation of the form

U = {y ∈ R
n : ∃u : Ay +Bu− b ∈ R

N
+}.

Indeed, given such a representation, we can reformulate (A.2.10) as the LO program

min
x=[y;u]

{
cTx := dT y : A(x) := Ay +Bu− b ≥ 0

}
.

For example, passing from (A.2.5) to (A.2.8), we first rewrite the original problem as

min
t,y

{
t :
∑

i

|aTi y − bi| ≤ t
}
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and then point out a polyhedral representation

{[y; t] :∑i |aTi y − bi| ≤ t}

= {[y; t] : ∃u :





ui − aTi y + bi ≥ 0,
ui + aTi y − bi ≥ 0,
t−∑i ui ≥ 0

︸ ︷︷ ︸
A[y;t]+Bu−b≥0

}

of the feasible set of the latter problem, thus ending up with reformulating the problem of
interest as an LO program in variables y, t, u. The course of actions for (A.2.6) is completely
similar, up to the fact that after “linearizing the objective” we get the optimization problem

min
y,t

{
t : −t ≤ aTi y − bi ≤ t, 1 ≤ i ≤ m

}

where the feasible set is polyhedral “as it is” (i.e., with polyhedral representation not requir-

ing u-variables).

The notion of polyhedral representation naturally extends to conic problems, specifically, as
follows. Let K be a family of regular cones, every one “living” in its own Euclidean space. A
set Y ⊂ R

n is called K-representable, if it can be represented in the form

Y = {y ∈ R
n : ∃u ∈ R

m : Ay +Bu− b ∈ K}, (A.2.11)

whereK ∈ K and A,B, b are matrices and vectors of appropriate dimensions. A representation of
Y of the form (A.2.11), (i.e., the corresponding collection A,B, b,K), is called a K-representation
(K-r. for short) of Y .

Geometrically, a K-r. of Y is the representation of Y as the projection on the space
of y variables of the set Y+ = {[y;u] : Ax+Bu− b ∈ K}, which, in turn, is given as
the inverse image of a cone K ∈ K under the affine mapping [y;u] 7→ Ay +Bu− b.

The role of the notion of a conic representation stems from the fact that given a K-r. of the
feasible domain Y of (A.2.10), we can immediately rewrite this optimization program as a conic
program involving a cone from the family K, specifically, as the program

min
x=[y;u]

{
cTx := dT y : A(x) := Ay +Bu− b ∈ K

}
. (A.2.12)

In particular,

• When K = LO is the family of all nonnegative orthants (or, which is the same, the family
of all finite direct products of nonnegative rays), a K-representation of Y allows one to
rewrite (A.2.10) as a Linear program;

• When K = CQO is the family of all finite direct products of Lorentz cones, a K-
representation of Y allows one to rewrite (A.2.10) as a Conic Quadratic program;

• When K = SDO is the family of all finite direct products of positive semidefinite cones, a
K-representation of Y allows one to rewrite (A.2.10) as a Semidefinite program.

Note that a K-representable set is always convex.
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Elementary calculus of K-representations
It turns out that when the family of cones K is “rich enough,” K-representations admit a
kind of simple “calculus” that allows to convert K-r.’s of operands participating in a standard
convexity-preserving operation, like taking intersection, into aK-r. of the result of this operation.
“Richness” here means that K

• contains a nonnegative ray R+;

• is closed w.r.t. taking finite direct products: whenever Ki ∈ K, 1 ≤ i ≤ m < ∞, one has
K1 × ...×Km ∈ K;

• is closed w.r.t. passing from a cone to its dual: whenever K ∈ K, one has K∗ ∈ K.

In particular, every one of the three aforementioned families of cones LO, CQO, SDO is rich.
We present here the most basic and most frequently used “calculus rules” (for more rules

and for instructive examples of LO-, CQO-, and SDO-representable sets, see [9]). Let K be a
rich family of cones. Then

1. [taking finite intersections] If the sets Yi ⊂ R
n are K-representable, 1 ≤ i ≤ m, then so is

their intersection Y =
m⋂
i=1

Yi.

Indeed, if Yi = {y ∈ Rn : ∃ui : Aix+Biu− bi ∈ Ki with Ki ∈ K, then

Y = {y ∈ Rn : ∃u = [u1; ...;um] :
[A1; ...;Am]y +Diag{B1, ..., Bm}[u1; ...;um]− [b1; ...; bm]
∈ K := K1 × ...×Km},

and K ∈ K, since K is closed w.r.t. taking finite direct products.

2. [taking finite direct products] If the sets Yi ⊂ R
ni are K-representable, 1 ≤ i ≤ m, then so

is their direct product Y = Y1 × ...× Ym.
Indeed, if Yi = {y ∈ R

n : ∃ui : Aix+Biu− bi ∈ Ki with Ki ∈ K, then

Y = {y = [y1; ...; ym] ∈ Rn1+...+nm : ∃u = [u1; ...;um] :
Diag{A1, ..., Am]y +Diag{B1, ..., Bm}[u1; ...;um]− [b1; ...; bm]
∈ K := K1 × ...×Km},

and, as above, K ∈ K.

3. [taking inverse affine images] Let Y ⊂ R
n be K-representable, let z 7→ Pz + p : RN → R

n

be an affine mapping. Then the inverse affine image Z = {z : Pz+ p ∈ Y } of Y under this
mapping is K-representable.
Indeed, if Y = {y ∈ Rn : ∃u : Ay +Bu− b ∈ K} with K ∈ K, then

Z = {z ∈ R
N : ∃u : A[Pz + p] +Bu− b︸ ︷︷ ︸

≡Ãz+Bu−b̃

∈ K}.

4. [taking affine images] If a set Y ⊂ R
n is K-representable and y 7→ z = Py + p : Rn → R

m

is an affine mapping, then the image Z = {z = Py + p : y ∈ Y } of Y under the mapping
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is K-representable.
Indeed, if Y = {y ∈ Rn : ∃u : Au +Bu− b ∈ K}, then

Z = {z ∈ R
m : ∃[y;u] :




Py + p− z
−Py − p+ z
Ay +Bu− b




︸ ︷︷ ︸
≡Ãz+B̃[y;u]−b̃

∈ K+ := R
m
+ × R

m
+ ×K},

and the cone K+ belongs to K as the direct product of several nonnegative rays (every one of them

belongs to K) and the cone K ∈ K.
Note that the above “calculus rules” are “completely algorithmic” — a K-r. of the result of an
operation is readily given by K-r.’s of the operands.

Conic representation of functions

By definition, the epigraph of a function f(y) : Rn → R ∪ {+∞} is the set

Epi{f} = {[y; t] ∈ R
n × R : t ≥ f(y)} .

Note that a function is convex if and only if its epigraph is so.
Let K be a family of regular cones. A function f is called K-representable, if its epigraph is

so:
Epi{f} := {[y, t] : ∃u : Ay + ta+Bu− b ∈ K} (A.2.13)

with K ∈ K. A K-representation (K-r. for short) of a function is, by definition, a K-r. of its
epigraph. Since K-representable sets always are convex, so are K-representable functions.

Examples of K-r.’s of functions:
• the function f(y) = |y| : R→ R is LO-representable:

{[y; t] : t ≥ |y|} = {[y; t] : A[y; t] := [t− y; t+ y] ∈ R
2
+};

• the function f(y) = ‖y‖2 : Rn → R is CQO-representable:
{[y; t] ∈ R

n+1 : t ≥ ‖y‖2} = {[y; t] ∈ Ln+1};
• the function f(y) = λmax(y) : S

n → R (the maximal eigenvalue of a symmetric
matrix y) is SDO-representable:

{[y; t] ∈ Sn × R : t ≥ λmax(y)} = {[y; t] : A[y; t] := tIn − y ∈ Sn
+}.

Observe that a K-r. (A.2.13) of a function f induces K-r.’s of its level sets {y : f(y) ≤ c}:
{y : f(y) ≤ c} = {y : ∃u : Ay +Bu− [b− ca] ∈ K}.

This explains the importance of K-representations of functions: usually, the feasible set Y of a
convex problem (A.2.10) is given by a system of convex constraints:

Y = {y : fi(y) ≤ 0, 1 ≤ i ≤ m}.
If now all functions fi are K-representable, then, by the above observation and by the “calculus
rule” related to intersections, Y is K-representable as well, and a K-r. of Y is readily given by
K-r.’s of fi.
K-representable functions admit simple calculus, which is similar to the one of K-

representable sets, and is equally algorithmic; for details and instructive examples, see [9].
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A.3 Efficient Solvability of Convex Programming

The goal of this section is to explain the precise meaning of the informal (and in fact slightly
exaggerated) claim,

An optimization problem with convex efficiently computable objective and con-
straints is efficiently solvable.

that on many different occasions was reiterated in the main body of the book. Our exposition
follows the one from [9, chapter 5].

A.3.1 Generic Convex Programs and Efficient Solution Algorithms

In what follows, it is convenient to represent optimization programs as

(p) : Opt(p) = min
x

{
p0(x) : x ∈ X(p) ⊂ R

n(p)
}
,

where p0(·) and X(p) are the objective, which we assume to be a real-valued function on R
n(p),

and the feasible set of program (p), respectively, and n(p) is the dimension of the decision vector.

A generic optimization problem

A generic optimization program P is a collection of optimization programs (p) (“instances of
P”) such that every instance of P is identified by a finite-dimensional data vector data(p); the
dimension of this vector is called the size Size(p) of the instance:

Size(p) = dimdata(p).

For example, Linear Optimization is a generic optimization problem LO with in-
stances of the form

(p) : min
x

{
cTp x : x ∈ X(p) := {x : Apx− bp ≥ 0}

}
[Ap : m(p)× n(p)],

wherem(p), n(p), cp, Ap, bp can be arbitrary. The data of an instance can be identified
with the vector

data(p) = [m(p);n(p); cp; bp;A
1
p; ...;A

n(p)
p ],

where Ai
p is i-th column in Ap.

Similarly, Conic Quadratic Optimization is a generic optimization problem CQO
with instances

(p) : minx
{
cTp x : x ∈ X(p)

}
,

X(p) := {x : ‖Apix− bpi‖2 ≤ eTpix− dpi, 1 ≤ i ≤ m(p)} [Api : ki(p)× n(p)].

The data of an instance can be defined as the vector obtained by listing, in a fixed

order, the dimensions m(p), n(p), {ki(p)}m(p)
i=1 and the entries of the reals dpi, vectors

cp, bpi, epi and the matrices A`
pi.
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Finally, Semidefinite Optimization is a generic optimization problem SDO with in-
stances of the form

(p) : minx
{
cTp x : x ∈ X(p) := {x : Ai

p(x) � 0, 1 ≤ i ≤ m(p)}
}

Ai
p(x) = A0

pi + x1A
1
pi + ...+ xn(p)A

n(p)
pi ,

where A`
pi are symmetric matrices of size ki(p). The data of an instance can be

defined in the same fashion as in the case of CQO.

Approximate solutions

In order to quantify the quality of a candidate solution of an instance (p) of a generic problem
P, we assume that P is equipped with an infeasibility measure InfeasP(p, x) — a real-valued
nonnegative function of an instance (p) ∈ P and a candidate solution x ∈ R

n(p) to the instance
such that x ∈ X(p) if and only if InfeasP(p, x) = 0.

Given an infeasibility measure and a tolerance ε > 0, we define an ε solution to an instance
(p) ∈ P as a point xε ∈ R

n(p) such that

p0(xε)−Opt(p) ≤ ε & InfeasP(p, xε) ≤ ε.

For example, a natural infeasibility measure for a generic optimization problem P with instances
of the form

(p) : min
x
{p0(x) : x ∈ X(p) := {x : pi(x) ≤ 0, 1 ≤ i ≤ m(p)}} (A.3.1)

is
InfeasP(p, x) = max

[
0, p1(x), p2(x), ..., pm(p)(x)

]
; (A.3.2)

this recipe, in particular, can be applied to the generic problems LO and CQO. A natural
infeasibility measure for SDO is

InfeasSDO(p, x) = min
{
t ≥ 0 : Ai

p(x) + tIki(p) � 0, 1 ≤ i ≤ m(p)
}
.

Convex generic optimization problems

A generic problem P is called convex, if for every instance (p) of the problem, p0(x) and
InfeasP(p, x) are convex functions of x ∈ R

n(p). Note that then X(p) = {x ∈ R
n(p) :

InfeasP(p, x) ≤ 0} is a convex set for every (p) ∈ P.
For example, LO, CQO and SDO with the just defined infeasibility measures are generic

convex programs. The same is true for generic problems with instances (A.3.1) and infeasibility
measure (A.3.2), provided that all instances are convex programs, i.e., p0(x), p1(x), ..., pm(p)(x)

are restricted to be real-valued convex functions on R
n(p).

A solution algorithm

A solution algorithm B for a generic problem P is a code for the Real Arithmetic Computer —
an idealized computer capable to store real numbers and to carry out the operations of Real
Arithmetics (the four arithmetic operations, comparisons and computing elementary functions
like
√·, exp{·}, sin(·)) with real arguments. Given on input the data vectors data(p) of an
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instance (p) ∈ P and a tolerance ε > 0 and executing on this input the code B, the computer
should eventually stop and output

— either a vector xε ∈ R
n(p) that must be an ε solution to (p),

— or a correct statement “(p) is infeasible”/“(p) is not below bounded.”
The complexity of the generic problem P with respect to a solution algorithm B is quantified

by the function ComplP(p, ε); the value of this function at a pair (p) ∈ P, ε > 0 is exactly the
number of elementary operations of the Real Arithmetic Computer in the course of executing
the code B on the input (data(p), ε).

Polynomial time solution algorithms

A solution algorithm for a generic problem P is called polynomial time (“efficient”), if the
complexity of solving instances of P within (an arbitrary) accuracy ε > 0 is bounded by a
polynomial in the size of the instance and the number of accuracy digits Digits(p, ε) in an ε
solution:

ComplP(p, ε) ≤ χ (Size(p)Digits(p, ε))χ ,

Size(p) = dimdata(p), Digits(p, ε) = ln
(
Size(p)+‖data(p)‖1+ε2

ε

)
;

from now on, χ stands for various “characteristic constants” (not necessarily identical to each
other) of the generic problem in question, i.e., for positive quantities depending on P and
independent of (p) ∈ P and ε > 0. Note also that while the “strange” numerator in the fraction
participating in the definition of Digits arises by technical reasons, the number of accuracy digits
for small ε > 0 becomes independent of this numerator and close to ln(1/ε).

A generic problem P is called polynomially solvable (“computationally tractable”), if it
admits a polynomial time solution algorithm.

A.3.2 Polynomial Solvability of Generic Convex Programming Problems

The main fact about generic convex problems that underlies the remarkable role played by
these problems in Optimization is that under minor non-restrictive technical assumptions, a
generic convex problem, in contrast to typical generic non-convex problems, is computationally
tractable.

The just mentioned “minor non-restrictive technical assumptions” are those of polynomial
computability, polynomial growth, and polynomial boundedness of feasible sets.

Polynomial computability

A generic convex optimization problem P is called polynomially computable, if it can be
equipped with two codes, O and C, for the Real Arithmetic Computer, such that:
• for every instance (p) ∈ P and any candidate solution x ∈ R

n(p) to the instance, executing
O on the input (data(p), x) takes a polynomial in Size(p) number of elementary operations and
produces a value and a subgradient of the objective p0(·) at the point x;
• for every instance (p) ∈ P, any candidate solution x ∈ R

n(p) to the instance and any ε > 0,
executing C on the input (data(p), x, ε) takes a polynomial in Size(p) and Digits(p, ε) number of
elementary operations and results
— either in a correct claim that InfeasP(p, x) ≤ ε,
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— or in a correct claim that InfeasP(p, x) > ε and in computing a linear form e ∈ R
n(p) that

separates x and the set {y : InfeasP(p, y) ≤ ε}, so that

∀(y, InfeasP(p, y) ≤ ε) : eT y < eTx.

Consider, for example, a generic convex program P with instances of the form (A.3.1) and the infeasibility
measure (A.3.2) and assume that the functions p0(·), p1(·), ..., pm(p)(·) are real-valued and convex for all
instances of P . Assume, moreover, that the objective and the constraints of instances are efficiently
computable, meaning that there exists a code CO for the Real Arithmetic Computer, which being executed
on an input of the form (data(p), x ∈ R

n(p)) computes in a polynomial in Size(p) number of elementary
operations the values and subgradients of p0(·), p1(·),..., pm(p)(·) at x. In this case, P is polynomially
computable. Indeed, the code O allowing to compute in polynomial time the value and a subgradient of
the objective at a given candidate solution is readily given by CO. In order to build C, let us execute
CO on an input (data(p), x) and compare the quantities pi(x), 1 ≤ i ≤ m(p), with ε. If pi(x) ≤ ε,
1 ≤ i ≤ m(p), we output the correct claim that InfeasP(p, x) ≤ ε, otherwise we output a correct
claim that InfeasP(p, x) > ε and return, as e, a subgradient, taken at x, of a constraint pi(x)(·), where
i(x) ∈ {1, 2, ...,m(p)} is such that pi(x)(x) > ε.

By the reasons outlined above, the generic problems LO and CQO of Linear and Conic Quadratic

Optimization are polynomially computable. The same is true for Semidefinite Optimization, see [9,

chapter 5].

Polynomial growth

We say that P is of polynomial growth, if for properly chosen χ > 0 one has

∀((p) ∈ P, x ∈ R
n(p)) :

max [|p0(x)|, InfeasP(p, x)] ≤ χ (Size(p) + ‖data(p)‖1)χSize
χ
(p) .

For example, the generic problems of Linear, Conic Quadratic and Semidefinite Op-
timization clearly are with polynomial growth.

Polynomial boundedness of feasible sets

We say that P is with polynomially bounded feasible sets, if for properly chosen χ > 0 one has

∀((p) ∈ P) : x ∈ X(p)⇒ ‖x‖∞ ≤ χ (Size(p) + ‖data(p)‖1)χSize
χ
(p) .

While the generic convex problems LO, CQO, and SDO are polynomially computable and
with polynomial growth, neither one of these problems (same as neither one of other natural
generic convex problems) “as it is” possesses polynomially bounded feasible sets. We, however,
can enforce the latter property by passing from a generic problem P to its “bounded version” Pb
as follows: the instances of Pb are the instances (p) of P augmented by bounds on the variables;
thus, an instance (p+) = (p,R) of Pb is of the form

(p,R) : min
x

{
p0(x) : x ∈ X(p,R) = X(p) ∩ {x ∈ R

n(p) : ‖x‖∞ ≤ R}
}

where (p) is an instance of P and R > 0. The data of (p,R) is the data of (p) augmented by R,
and

InfeasPb
((p,R), x) = InfeasP(p, x) + max[‖x‖∞ −R, 0].
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Note that Pb inherits from P the properties of polynomial computability and/or polynomial
growth, if any, and always is with polynomially bounded feasible sets. Note also that R can
be really large, like R = 10100, which makes the “expressive abilities” of Pb, for all practical
purposes, as strong as those of P. Finally, we remark that the “bounded versions” of LO, CQO,
and SDO are sub-problems of the original generic problems.

Main result

The main result on computational tractability of Convex Programming is the following:

Theorem A.3 Let P be a polynomially computable generic convex program with a polynomial
growth that possesses polynomially bounded feasible sets. Then P is polynomially solvable.

As a matter of fact, “in real life” the only restrictive assumption in Theorem A.3 is the one of
polynomial computability. This is the assumption that is usually violated when speaking about
semi-infinite convex programs like the RCs of uncertain conic problems

min
x

{
cTp x : x ∈ X(p) = {x ∈ R

n(p) : Apζx+ apζ ∈K∀(ζ ∈ Z)}
}
.

associated with simple non-polyhedral cones K. Indeed, when K is, say, a Lorentz cone, so that

X(p) = {x : ‖Bpζx+ bpζ‖2 ≤ cTpζx+ dpζ ∀(ζ ∈ Z)},

to compute the natural infeasibility measure

min
{
t ≥ 0 : ‖Bpζx+ bpζ‖2 ≤ cTpζx+ dpζ + t ∀(ζ ∈ Z)

}

at a given candidate solution x means tomaximize the function fx(ζ) = ‖Bpζx+bpζ‖2−cTpζx−dpζ
over the uncertainty set Z. When the uncertain data are affinely parameterized by ζ, this
requires a maximization of a nonlinear convex function fx(ζ) over ζ ∈ Z, and this problem
can be (and generically is) computationally intractable, even when Z is a simple convex set.
It becomes also clear why the outlined difficulty does not occur in uncertain LO with the data
affinely parameterized by ζ: here fx(ζ) is an affine function of ζ, and as such can be efficiently
maximized over Z, provided the latter set is convex and “not too complicated.”

A.3.3 “What is Inside”: Efficient Black-Box-Oriented Algorithms in Convex
Optimization

Theorem A.3 is a direct consequence of a fact that is instructive in its own right and has to
do with “black-box-oriented” Convex Optimization, specifically, with solving an optimization
problem

min
x∈X

f(x), (A.3.3)

where

• X ⊂ R
n is a solid (a convex compact set with a nonempty interior) known to belong to

a given Euclidean ball E0 = {x : ‖x‖2 ≤ R} and represented by a Separation oracle — a
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routine that, given on input a point x ∈ R
n, reports whether x ∈ X, and if it is not the

case, returns a vector e 6= 0 such that

eTx ≥ max
y∈X

eT y;

• f is a convex real-valued function on R
n represented by a First Order oracle that, given

on input a point x ∈ R
n, returns the value and a subgradient of f at x.

In addition, we assume that we know in advance an r > 0 such that X contains a Euclidean
ball of the radius r (the center of this ball can be unknown).

Theorem A.3 is a straightforward consequence of the following important fact:

Theorem A.4 [9, Theorem 5.2.1] There exists a Real Arithmetic algorithm (the Ellipsoid
method) that, as applied to (A.3.3), the required accuracy being ε > 0, finds a feasible ε so-
lution xε to the problem (i.e., xε ∈ X and f(xε)−minX f ≤ ε) after at most

N(ε) = Ceil
(
2n2

[
ln
(
R
r

)
+ ln

(
ε+VarR(f)

ε

)])
+ 1

VarR(f) = max‖x‖2≤R f(x)−min‖x‖2≤R f(x)

steps, with a step reducing to a single call to the Separation and to the First Order oracles
accompanied by O(1)n2 additional arithmetic operations to process the answers of the oracles.
Here O(1) is an absolute constant.

Recently, the Ellipsoid method was equipped with “on line” accuracy certificates, which yield
a slightly strengthened version of the above theorem, namely, as follows:

Theorem A.5 [74] Consider problem (A.3.3) and assume that
• X ∈ R

n is a solid contained in the centered at the origin Euclidean ball E0 of a known in
advance radius R and given by a Separation oracle that, given on input a point x ∈ R

n, reports
whether x ∈ intX, and if it is not the case, returns a nonzero e such that eTx ≥ maxy∈X eT y;
• f : intX → R is a convex function represented by a First Order oracle that, given on input

a point x ∈ intX, reports the value f(x) and a subgradient f ′(x) of f at x. In addition, assume
that f is semibounded on X, meaning that VX(f) ≡ supx,y∈intX(y − x)T f ′(x) <∞.

There exists an explicit Real Arithmetic algorithm that, given on input a desired accuracy
ε > 0, terminates with a strictly feasible ε-solution xε to the problem (xε ∈ intX, f(xε) −
infx∈intX f(x) ≤ ε) after at most

N(ε) = O(1)

(
n2
[
ln

(
nR

r

)
+ ln

(
ε+ VX(f)

ε

)])

steps, with a step reducing to a single call to the Separation and to the First Order oracles
accompanied by O(1)n2 additional arithmetic operations to process the answers of the oracles.
Here r is the supremum of the radii of Euclidean balls contained in X, and O(1)’s are absolute
constants.

The progress, as compared to Theorem A.3, is that now we do not need a priori knowledge
of r > 0 such that X contains a Euclidean ball of radius r, f is allowed to be undefined
outside of intX and the role of VarR(f) (the quantity that now can be +∞) is played by
VX(f) ≤ supintX f − infintX f .
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A.4 Miscellaneous

A.4.1 Matrix Cube Theorems

Matrix Cube Theorem, Complex Case

The “Complex Matrix Cube” problem is as follows:

CMC: Let m, p1, q1,...,pL, qL be positive integers, and A ∈ Hm
+ , Lj ∈ Cpj×m, Rj ∈

C
qj×m be given matrices, Lj 6= 0. Let also a partition {1, 2, ..., L} = Irs ∪ Ics ∪ Icf of

the index set {1, ..., L} into three non-overlapping sets be given, and let pj = qj for
j ∈ Irs ∪ Ics . With these data, we associate a parametric family of “matrix boxes”

U [ρ] =

{
A+ ρ

L∑
j=1

[LH
j ΘjRj +RH

j [Θj]HLj] :
Θj ∈ Zj ,
1 ≤ j ≤ L

}
⊂ Hm,

(A.4.1)

where ρ ≥ 0 is the parameter and

Zj =





{Θj = θIpj : θ ∈ R, |θ| ≤ 1}, j ∈ Irs
[“real scalar perturbation blocks”]

{Θj = θIpj : θ ∈ C, |θ| ≤ 1}, j ∈ Ics
[“complex scalar perturbation blocks”]

{Θj ∈ C
pj×qj : ‖Θj‖2,2 ≤ 1}, j ∈ Icf

[“full complex perturbation blocks”] .

(A.4.2)

Given ρ ≥ 0, check whether
U [ρ] ⊂ Hm

+ . A(ρ)

Remark A.1 We always assume that pj = qj > 1 for j ∈ Ics . Indeed, one-dimensional complex
scalar perturbations can always be regarded as full complex perturbations.

Our main result is as follows:

Theorem A.6 [The Complex Matrix Cube Theorem [3, section B.4]] Consider, along with
predicate A(ρ), the predicate

∃Yj ∈Hm, j = 1, ..., L such that :
(a) Yj � LH

j ΘjRj +RH
j [Θj]HLj ∀(Θj ∈ Zj , 1 ≤ j ≤ L)

(b) A− ρ
L∑

j=1
Yj � 0.

B(ρ)

Then:
(i) Predicate B(ρ) is stronger than A(ρ) — the validity of the former predicate implies the

validity of the latter one.
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(ii) B(ρ) is computationally tractable — the validity of the predicate is equivalent to the
solvability of the system of LMIs

(s.R) Yj ±
[
LH
j Rj +RH

j Lj

]
� 0, j ∈ Irs ,

(s.C)

[
Yj − Vj LH

j Rj

RH
j Lj Vj

]
� 0, j ∈ Ics ,

(f.C)

[
Yj − λjLH

j Lj RH
j

Rj λjIpj

]
� 0, j ∈ Icf

(∗) A− ρ
L∑

j=1
Yj � 0.

(A.4.3)

in the matrix variables Yj ∈ Hm, j = 1, ..., k, Vj ∈ Hm, j ∈ Ics , and the real variables λj, j ∈ Icf .
(iii) “The gap” between A(ρ) and B(ρ) can be bounded solely in terms of the maximal size

ps = max
{
pj : j ∈ Irs ∪ Ics

}
(A.4.4)

of the scalar perturbations (here the maximum over an empty set by definition is 0). Specifically,
there exists a universal function ϑC(·) such that

ϑC(ν) ≤ 4π
√
ν, ν ≥ 1, (A.4.5)

and
if B(ρ) is not valid, then A(ϑC(ps)ρ) is not valid. (A.4.6)

(iv) Finally, in the case L = 1 of single perturbation block A(ρ) is equivalent to B(ρ).

Remark A.2 From the proof of Theorem A.6 it follows that ϑC(0) =
4
π , ϑC(1) = 2. Thus,

• when there are no scalar perturbations: Irs = Ics = ∅, the factor ϑ in the implication

¬B(ρ)⇒ ¬A(ϑρ) (A.4.7)

can be set to 4
π = 1.27...

• when there are no complex scalar perturbations (cf. Remark A.1) and all real scalar per-
turbations are non-repeated (Ics = ∅, pj = 1 for all j ∈ Irs ), the factor ϑ in (A.4.7) can be
set to 2.

The following simple observation is crucial when applying Theorem A.6.

Remark A.3 Assume that the data A, R1, ..., RL of the Matrix Cube problem are affine in a
vector of parameters y, while the data L1, ..., LL are independent of y. Then (A.4.3) is a system
of LMIs in the variables Yj, Vj, λj and y.
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Matrix Cube Theorem, Real Case

The Real Matrix Cube problem is as follows:

RMC: Let m, p1, q1,...,pL, qL be positive integers, and A ∈ Sm, Lj ∈ R
pj×m, Rj ∈

R
qj×m be given matrices, Lj 6= 0. Let also a partition {1, 2, ..., L} = Irs ∪ Irf of the

index set {1, ..., L} into two non-overlapping sets be given. With these data, we
associate a parametric family of “matrix boxes”

U [ρ] =
{
A+ ρ

L∑
j=1

[LT
j Θ

jRj +RT
j [Θ

j ]TLj] : Θ
j ∈ Zj , 1 ≤ j ≤ L

}

⊂ Sm,

(A.4.8)

where ρ ≥ 0 is the parameter and

Zj =





{θIpj : θ ∈ R, |θ| ≤ 1}, j ∈ Irs
[“scalar perturbation blocks”]

{Θj ∈ R
pj×qj : ‖Θj‖2,2 ≤ 1}, j ∈ Irf
[“full perturbation blocks”]

. (A.4.9)

Given ρ ≥ 0, check whether
U [ρ] ⊂ Sm

+ A(ρ)

Remark A.4 We always assume that pj > 1 for j ∈ Irs . Indeed, non-repeated (pj = 1) scalar
perturbations always can be regarded as full perturbations.

Consider, along with predicate A(ρ), the predicate

∃Yj ∈ Sm, j = 1, ..., L :
(a) Yj � LT

j Θ
jRj +RT

j [Θ
j ]TLj ∀

(
Θj ∈ Zj , 1 ≤ j ≤ L

)

(b) A− ρ
L∑

j=1
Yj � 0.

B(ρ)

The Real case version of Theorem A.6 is as follows:

Theorem A.7 [The Real Matrix Cube Theorem [3, section B.4]] One has:
(i) Predicate B(ρ) is stronger than A(ρ) — the validity of the former predicate implies the

validity of the latter one.
(ii) B(ρ) is computationally tractable — the validity of the predicate is equivalent to the

solvability of the system of LMIs

(s) Yj ±
[
LT
j Rj +RT

j Lj

]
� 0, j ∈ Irs ,

(f)

[
Yj − λjLT

j Lj RT
j

Rj λjIpj

]
� 0, j ∈ Irf

(∗) A− ρ
L∑

j=1
Yj � 0.

(A.4.10)

in matrix variables Yj ∈ Sm, j = 1, ..., L, and real variables λj, j ∈ Irf .
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(iii) “The gap” between A(ρ) and B(ρ) can be bounded solely in terms of the maximal rank

ps = max
j∈Irs

Rank(LT
j Rj +RT

j Lj)

of the scalar perturbations. Specifically, there exists a universal function ϑR(·) satisfying the
relations

ϑR(2) =
π

2
;ϑR(4) = 2; ϑR(µ) ≤ π

√
µ/2∀µ ≥ 1

such that with µ = max[2, ps] one has

if B(ρ) is not valid, then A(ϑR(µ)ρ) is not valid. (A.4.11)

(iv) Finally, in the case L = 1 of single perturbation block A(ρ) is equivalent to B(ρ).

A.4.2 Approximate S-Lemma

Theorem A.8 [Approximate S-Lemma [3, section B.3]] Let ρ > 0, A,B,B1, ..., BJ be symmet-

ric m×m matrices such that B = bbT , Bj � 0, j = 1, ..., J ≥ 1, and B +
J∑

j=1
Bj � 0.

Consider the optimization problem

Opt(ρ) = max
x

{
xTAx : xTBx ≤ 1, xTBjx ≤ ρ2, j = 1, ..., J

}
(A.4.12)

along with its semidefinite relaxation

SDP(ρ) = max
X

{
Tr(AX) : Tr(BX) ≤ 1,Tr(BjX) ≤ ρ2,

j = 1, ..., J,X � 0
}

= min
λ,{λj}

{
λ+ ρ2

J∑
j=1

λj : λ ≥ 0, λj ≥ 0, j = 1, ..., J,

λB +
J∑

j=1
λjBj � A

}
.

(A.4.13)

Then there exists x̄ such that

(a) x̄TBx̄ ≤ 1
(b) x̄TBjx̄ ≤ Ω2(J)ρ2, j = 1, ..., J
(c) x̄TAx̄ = SDP(ρ),

(A.4.14)

where Ω(J) is a universal function of J such that Ω(1) = 1 and

Ω(J) ≤ 9.19
√

ln(J), J ≥ 2. (A.4.15)

In particular,
Opt(ρ) ≤ SDP(ρ) ≤ Opt(Ω(J)ρ). (A.4.16)
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A.4.3 Talagrand Inequality

Theorem A.9 [Talagrand Inequality] Let η1, ..., ηm be independent random vectors taking val-
ues in unit balls of the respective finite-dimensional vector spaces (E1, ‖ · ‖(1)),...,(Em, ‖ · ‖(m)),
and let η = (η1, ..., ηm) ∈ E = E1 × ... × Em. Let us equip E with the norm ‖(z1, ..., zm)‖ =√

m∑
i=1
‖zi‖2(i), and let Q be a closed convex subset of E. Then

E

{
exp{

dist2‖·‖(η,Q)

16
}
}
≤ 1

Prob{η ∈ Q} .

For proof, see, e.g., [60].

A.4.4 A Concentration Result for Gaussian Random Vector

Theorem A.10 [3, Theorem B.5.1] Let ζ ∼ N (0, Im), and let Q be a closed convex set in R
m

such that

Prob{ζ ∈ Q} ≥ χ > 1

2
. (A.4.17)

Then
(i) Q contains the centered at the origin ‖ · ‖2-ball of the radius

r(χ) = ErfInv(1− χ) > 0. (A.4.18)

(ii) If Q contains the centered at the origin ‖ · ‖2-ball of a radius r ≥ r(χ), then

∀α ∈ [1,∞) : Prob{ζ 6∈ αQ} ≤ Erf (ErfInv(1− χ) + (α − 1)r)

≤ Erf (αErfInv(1− χ)) ≤ 1
2 exp

{
−α2ErfInv2(1−χ)

2

}
.

(A.4.19)

In particular, for a closed and convex set Q, ζ ∼ N (0,Σ) and α ≥ 1 one has

Prob {ζ 6∈ Q} ≤ δ < 1
2 ⇒

Prob {ζ 6∈ αQ} ≤ Erf(αErfInv(δ)) ≤ 1
2 exp{−

α2ErfInv2(δ)
2 }. (A.4.20)



Appendix B

Solutions to Exercises

B.1 Exercises from Lecture 1

Exercise 1.1. We should prove that x is robust feasible if and only if it can be extended, by
properly chosen u, v ≥ 0 such that u − v = x, to a feasible solution to (1.6.1). First, let x be
robust feasible, and let ui = max[xi, 0], vi = max[−xi, 0]. Then u, v ≥ 0 and u− v = x. Besides
this, since x is robust feasible and uncertainty is element-wise, we have for every i

∑

j

max
Aij≤aij≤Aij

aijxj ≤ bi. (∗)

With our u, v we clearly have maxAij≤aij≤Aij
aijxj = [Aijuj − Aijvj], so that by (∗) we have

Au−Av ≤ b, so that (x, u, v) is a feasible solution of (1.6.1).
Vice versa, let (x, u, v) be feasible for (1.6.1), and let us prove that x is robust feasible for the

original uncertain problem, that is, that the relations (∗) take place. This is immediate, since
from u, v ≥ 0 and x = u− v it clearly follows that maxAij≤aij≤Aij

aijxj ≤ Aijuj −Aijvj, so that

the validity of (∗) is ensured by the constraints of (1.6.1). The respective RCs are (equivalent
to)

[an; bn]T [x;−1] + ρ‖P T [x;−1]‖q ≤ 0, q = p
p−1 (a)

[an; bn]T [x;−1] + ρ‖(P T [x;−1])+‖q ≤ 0, q = p
p−1 (b)

[an; bn]T [x;−1] + ρ‖P T [x;−1]‖∞ ≤ 0 (c)

where for a vector u = [u1; ...;uk] the vector (u)+ has the coordinates max[ui, 0], i = 1, ..., k.
Comment to (c): The uncertainty set in question is nonconvex; since the RC remains intact when
a given uncertainty set is replaced with its convex hull, we can replace the restriction ‖ζ‖p ≤ ρ
in (c) with the restriction ζ ∈ Conv{ζ : ‖ζ‖p ≤ ρ} = {‖ζ‖1 ≤ ρ}, where the concluding equality
is due to the following reasons: on one hand, with p ∈ (0, 1) we have

‖ζ‖p ≤ ρ⇔
∑

i(|ζi|/ρ)p ≤ 1⇒ |ζi|/ρ ≤ 1∀i⇒ |ζi|/ρ ≤ (|ζi|/ρ)p
⇒∑

i |ζi|/ρ ≤
∑

i(|ζi|/ρ)p ≤ 1,

whence Conv{‖ζ‖p ≤ ρ} ⊂ {‖ζ‖1 ≤ ρ}. To prove the inverse inclusion, note that all extreme
points of the latter set (that is, vectors with all but one coordinates equal to 0 and the remaining
coordinate equal ±ρ) satisfy ‖ζ‖p ≤ 1.

305
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Exercise 1.3: The RC can be represented by the system of conic quadratic constraints

[an; bn]T [x;−1] + ρ
∑

j ‖uj‖2 ≤ 0∑
j Q

1/2
j uj = P T [x;−1]

in variables x, {uj}Jj=1.

Exercise 1.4: • The RC of i-th problem is

min
x

{
−x1 − x2 : 0 ≤ x1 ≤ min

b∈Ui

b1, 0 ≤ x2 ≤ min
b∈Ui

b2, x1 + x2 ≥ p
}

We see that both RC’s are identical to each other and form the program

min
x
{−x1 − x2 : 0 ≤ x1, x2 ≤ 1/3, x1 + x2 ≥ p}

• When p = 3/4, all instances of P1 are feasible (one can set x1 = b1, x2 = b2), while the RC of
P2 is not so, so that there is a gap. In contrast to this, P2 has infeasible instances, and its RC
is infeasible; in this case, there is no gap.
• When p = 2/3, the (common) RC of the two problems P1, P2 is feasible with the unique
feasible solution x1 = x2 = 1/3 and the optimal value −2/3. Since every instance of P1 has a
feasible solution x1 = b1, x2 = b2, the optimal value of the instance is ≤ −b1 − b2 ≤ −1, so that
there is a gap. In contrast to this, the RC is an instance of P2, so that in this case there is no
gap.

Exercise 1.5: • Problem P2 has a constraint-wise uncertainty and is the constraint-wise en-
velope of P1.
• Proof for item 2: Let us prove first that if all the instances are feasible, then so is the RC.
Assume that the RC is infeasible. Then for every x ∈ X there exists i = ix and a realization
[aTix,x, bix,x] ∈ Uix of the uncertain data of i-th constraint such that

aTix,xx
′ − bix,x > 0

when x′ = x and consequently when x′ belongs to a small enough neighborhood Ux of x. Since
X is a convex compact set, we can find a finite collection of xj ∈ X such that the corresponding
neighborhoods Uxj cover the entire X. In other words, we can points out finitely many linear
forms

f`(x) = aTi`x− bi` , ` = 1, ..., L,

such that [aTi` , bi` ] ∈ Ui` and the maximum of the forms over ` = 1, ..., L is positive at every point
x ∈ X. By standard facts on convexity it follows that there exists a convex combination of our
forms

f(x) =
L∑

`=1

λ`[a
T
i`
x− bi` ]

which is positive everywhere on X. Now let Ii = {` : i` = i} and µi =
∑

`∈Ii λ`. For i with
µi > 0, let us set

[aTi , bi] =
∑

`∈Ii

λ`
µi

[ai` , bi` ],
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so that [aTi , bi] ∈ Ui (since the latter set is convex). For i with µi = 0, let [aTi , bi] be a whatever
point of Ui. Observe that by construction

f(x) ≡
m∑

i=1

µi[a
T
i x− bi].

Now, since the uncertainty is constraint-wise, the matrix [A, b] with the rows [aTi , bi] belongs to
U and thus corresponds to an instance of P. For this instance, we have

µT [Ax− b] = f(x) > 0 ∀x ∈ X,

so that no x ∈ X can be feasible for the instance; due to the origin of X, this means that the
instance we have built is infeasible, same as the RC.

Now let us prove that if all instances are feasible, then the optimal value of the RC is the
supremum, let it be called τ , of the optimal values of instances (this supremum clearly is achieved
and thus is the maximum of optimal values of instances). Consider the uncertain problem P ′

which is obtained from P by adding to every instance the (certain!) constraint cTx ≤ τ . The
resulting problem still is with constraint-wise uncertainty, has feasible instances, and feasible
solutions of an instance belong to X. By what we have already proved, the RC of P ′ is feasible;
but a feasible solution to the latter RC is a robust feasible solution of P with the value of the
objective ≤ τ , meaning that the optimal value in the RC of P is ≤ τ . Since the strict inequality
here is impossible due to the origin of τ , we conclude that the optimal value of the RC of P is
equal to the maximum of optimal values of instances of P, as claimed.

B.2 Exercises from Lecture 2

Exercise 2.1: W.l.o.g., we may assume t > 0. Setting φ(s) = cosh(ts)− [cosh(t)−1]s2, we get
an even function such that φ(−1) = φ(0) = φ(1) = 1. We claim that φ(s) ≤ 1 when −1 ≤ s ≤ 1.

Indeed, otherwise φ attains its maximum on [−1, 1] at a point s̄ ∈ (0, 1), and φ′′(s̄) ≤ 0. The

function g(s) = φ′(s) is convex on [0, 1] and g(0) = g(s̄) = 0. The latter, due to g′(s̄) ≤ 0, implies

that g(s) = 0, 0 ≤ s ≤ s̄. Thus, φ is constant on a nontrivial segment, which is not the case.

For a symmetric P supported on [−1, 1] with
∫
s2dP (s) ≡ ν̄2 ≤ ν2 we have, due to φ(s) ≤ 1,

−1 ≤ s ≤ 1:

∫
exp{ts}dP (s) =

∫ 1
−1 cosh(ts)dP (s)

=
∫ 1
−1[cosh(ts)− (cosh(t)− 1)s2]dP (s) + (cosh(t)− 1)

∫ 1
−1 s

2dP (s)

≤
∫ 1
−1 dP (s) + (cosh(t)− 1)ν̄2 ≤ 1 + (cosh(t)− 1)ν2,

as claimed in example 8. Setting h(t) = ln(ν2 cosh(t) + 1 − ν2), we have h(0) = h′(0) = 0,

h′′(t) = ν2(ν2+(1−ν2) cosh(t))
(ν2 cosh(t)+1−ν2)2

, maxt h
′′(t) =

{
ν2, ν2 ≥ 1

3
1
4

[
1 + ν4

1−2ν2

]
≤ 1

3 , ν2 ≤ 1
3

, whence Σ(3)(ν) ≤ 1.
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Exercise 2.2: Here are the results:

n ε ttru tNrm tBll tBllBx tBdg

16 5.e-2 3.802 3.799 9.791 9.791 9.791

16 5.e-4 7.406 7.599 15.596 15.596 15.596

16 5.e-6 9.642 10.201 19.764 16.000 16.000

256 5.e-2 15.195 15.195 39.164 39.164 39.164

256 5.e-4 30.350 30.396 62.383 62.383 62.383

256 5.e-6 40.672 40.804 79.054 79.054 79.054

n ε ttru tE.7 tE.8 tE.9 tUnim

16 5.e-2 3.802 6.228 5.653 5.653 10.826

16 5.e-4 7.406 9.920 9.004 9.004 12.502

16 5.e-6 9.642 12.570 11.410 11.410 13.705

256 5.e-2 15.195 24.910 22.611 22.611 139.306

256 5.e-4 30.350 39.678 36.017 36.017 146.009

256 5.e-6 40.672 50.282 45.682 45.682 150.821

Exercise 2.3: Here are the results:

n ε ttru tNrm tBll tBllBx tBdg tE.7 tE.8

16 5.e-2 4.000 6.579 9.791 9.791 9.791 9.791 9.791
16 5.e-4 10.000 13.162 15.596 15.596 15.596 15.596 15.596
16 5.e-6 14.000 17.669 19.764 16.000 16.000 19.764 19.764

256 5.e-2 24.000 26.318 39.164 39.164 39.164 39.164 39.164
256 5.e-4 50.000 52.649 63.383 62.383 62.383 62.383 62.383
256 5.e-6 68.000 70.674 79.054 79.054 79.054 79.053 79.053

Exercise 2.4: In the case of (a), the optimal value is ta =
√
nErfInv(ε), since for a feasible

x we have ξn[x] ∼ N (0, n). In the case of (b), the optimal value is tb = nErfInv(nε). Indeed,
the rows in Bn are of the same Euclidean length and are orthogonal to each other, whence the
columns are orthogonal to each other as well. Since the first column of Bn is the all-one vector,
the conditional on η distribution of ξ =

∑
j ζ̂j has the mass 1/n at the point nη and the mass

(n − 1)/n at the origin. It follows that the distribution of ξ is the convex combination of the
Gaussian distribution N (0, n2) and the unit mass, sitting at the origin, with the weights 1/n
and (n− 1)/n, respectively, and the claim follows.

The numerical results are as follows:

n ε ta tb tb/ta

10 1.e-2 7.357 12.816 1.74

100 1.e-3 30.902 128.155 4.15

1000 1.e-4 117.606 1281.548 10.90

Exercise 2.5: In the notation of section 2.4.2, we have

Φ(w) ≡ ln (E{exp{∑`w`ζ`}}) =
∑

` λ`(exp{w`} − 1)
= maxu[w

Tu− φ(u)],
φ(u) = maxw[u

Tw − Φ(w)] =

{ ∑
`[u` ln(u`/λ`)− u` + λ`], u ≥ 0

+∞, otherwise.
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Consequently, the Bernstein approximation is

inf
β>0

[
z0 + β

∑

`

λ`(exp{w`/β} − 1) + β ln(1/ε)

]
≤ 0,

or, in the RC form,

z0 +max
u

{
wTu : u ∈ Zε = {u ≥ 0,

∑

`

[u` ln(u`/λ`)− u` + λ`] ≤ ln(1/ε)}
}
≤ 0.

Exercise 2.6: w(ε) is the optimal value in the chance constrained optimization problem

min
w0

{
w0 : Prob{−w0 +

L∑

`=1

c`ζ` ≤ 0} ≥ 1− ε
}
,

where ζ` are independent Poisson random variables with parameters λ`.
When all c` are integral in certain scale, the random variable ζL =

∑L
`=1 c`ζ` is also integral

in the same scale, and we can compute its distribution recursively in L:

p0(i) =

{
1, i = 0
0, i 6= 0

, pk(i) =
∞∑

j=0

pk−1(i− c`j)
λjk
j!

exp{−λk};

(in computations,
∑∞

j=0 should be replaced with
∑N

j=0 with appropriately large N).

With the numerical data in question, the expected value of per day requested cash is cTλ =
7, 000, and the remaining requested quantities are listed below:

ε
1.e-1 1.e-2 1.e-3 1.e-4 1.e-5 1.e-6

w(ε) 8,900 10,800 12,320 13,680 14,900 16,060

CVaR
9,732
+9.3%

11,451
+6.0%

12,897
+4.7%

14,193
+3.7%

15,390
+3.3%

16,516
+2.8%

BCV
9,836

+10.5%
11,578
+7.2%

13,047
+5.9%

14,361
+5.0%

15,572
+4.5%

16,709
+4.0%

B
10,555
+18.6%

12,313
+14.0%

13,770
+11.8%

15,071
+10.2%

16,270
+9.2%

17,397
+8.3%

E
8,900
+0.0%

10,800
+0.0%

12,520
+1.6%

17,100
+25.0%

— —

“BCV” stands for the bridged Bernstein-CVaR, “B” — for the Bernstein,
and “E” — for the (1− ε)-reliable empirical bound on w(ε). The BCV
bound corresponds to the generating function γ16,10(·), see p. 67. The
percents represent the relative differences between the bounds and w(ε).
All bounds are right-rounded to the closest integers.

Exercise 2.7: The results of computations are as follows (as a benchmark, we display also the
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results of Exercise 2.6 related to the case of independent ζ1, ..., ζL):

ε
1.e-1 1.e-2 1.e-3 1.e-4 1.e-5 1.e-6

Exer. 2.6 8,900 10,800 12,320 13,680 14,900 16,060

Exer. 2.7,
lower bound

11,000
+23.6%

15,680
+45.2%

19,120
+55.2%

21,960
+60.5%

26,140
+75.4%

28,520
+77.6%

Exer. 2.7,
upper bound

13,124
+47.5%

17,063
+58.8%

20,507
+66.5%

23,582
+72.4%

26,588
+78.5%

29,173
+81.7%

Percents display relative differences between the bounds and w(ε)

Exercise 2.8. Part 1: By Exercise 2.5, the Bernstein upper bound on w(ε) is

Bλ(ε) = inf {w0 : infβ>0 [−w0 + β
∑

` λ`(exp{c`/β} − 1) + β ln(1/ε)] ≤ 0}
= infβ>0 [β

∑
` λ`(exp{c`/β} − 1) + β ln(1/ε)]

The “ambiguous” Bernstein upper bound on w(ε) is therefore

BΛ(ε) = maxλ∈Λ infβ>0 [β
∑

` λ`(exp{c`/β} − 1) + β ln(1/ε)]
= infβ>0 β [maxλ∈Λ

∑
` λ`(exp{c`/β} − 1) + ln(1/ε)]

(∗)

where the swap of infβ>0 and maxλ∈Λ is justified by the fact that the function β
∑

` λ`(exp{c`/β}−
1) + β ln(1/ε) is concave in λ, convex in β and by the compactness and convexity of Λ.

Part 2: We should prove that if Λ is a convex compact set in the domain λ ≥ 0 such that
for every affine form f(λ) = f0 + eTλ one has

max
λ∈Λ

f(λ) ≤ 0⇒ Probλ∼P {f(λ) ≤ 0} ≥ 1− δ, (!)

then, setting w0 = BΛ(ε), one has

Probλ∼P

{
λ : Probζ∼Pλ1

×...×PλL

{∑

`

ζ`c` > w0

}
> ε

}
≤ δ. (?)

It suffices to prove that under our assumptions on Λ inequality (?) is valid for all w0 > BΛ(ε).
Given w0 > BΛ(ε) and invoking the second relation in (∗), we can find β̄ > 0 such that

β̄

[
max
λ∈Λ

∑

`

λ`(exp{c`/β̄} − 1) + ln(1/ε)

]
≤ w0,

or, which is the same,

[−w0 + β̄ ln(1/ε)] + max
λ∈Λ

∑

`

λ`[β̄(exp{c`/β̄} − 1)] ≤ 0,

which, by (!) as applied to the affine form

f(λ) = [−w0 + β̄ ln(1/ε)] +
∑

`

λ`[β̄(exp{c`/β̄} − 1)],
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implies that
Probλ∼P {f(λ) > 0} ≤ δ. (∗∗)

It remains to note that when λ ≥ 0 is such that f(λ) ≤ 0, the result of Exercise 2.5 states that

Probζ∼Pλ1
×...×Pλm

{
−w0 +

∑

`

ζ`c` > 0

}
≤ ε.

Thus, when ω0 > BΛ(ε), the set of λ’s in the left hand side of (?) is contained in the set
{λ ≥ 0 : f(λ) > 0}, and therefore (?) is readily given by (∗∗).

B.3 Exercises from Lecture 3

Exercise 3.1: Let S[·] be a safe tractable approximation of (CZ∗ [·]) tight within the factor
ϑ. Let us verify that S[λγρ] is a safe tractable approximation of (CZ [ρ]) tight within the factor
λϑ. All we should prove is that (a) if x can be extended to a feasible solution to S[λγρ], then
x is feasible for (CZ [ρ]), and that (b) if x cannot be extended to a feasible solution to S[λγρ],
then x is not feasible for (CZ [λϑρ]). When x can be extended to a feasible solution of S[λγρ],
x is feasible for (CZ∗ [λγρ]), and since ρZ ⊂ λγρZ∗, x is feasible for (CZ [ρ]) as well, as required
in (a). Now assume that x cannot be extended to a feasible solution of S[λγρ]. Then x is not
feasible for (CZ∗ [ϑλγρ]), and since the set ϑλγρZ∗ is contained in ϑλρZ, x is not feasible for
(CZ [(ϑλ)ρ]), as required in (b). �

Exercise 3.2: 1) Consider the ellipsoid

Z∗ = {ζ : ζT [
∑

i

Qi]ζ ≤M}.

We clearly have M−1/2Z∗ ⊂ Z ⊂ Z∗; by assumption, (CZ∗ [·]) admits a safe tractable approxi-
mation tight within the factor ϑ, and it remains to apply the result of Exercise 3.1.

2) This is a particular case of 1) corresponding to ζTQiζ = ζ2i , 1 ≤ i ≤M = dim ζ.

3) Let Z =
M⋂
i=1

Ei, where Ei are ellipsoids. Since Z is symmetric w.r.t. the origin, we also

have Z =
M⋂
i=1

[Ei ∩ (−Ei)]. We claim that for every i, the set Ei ∩ (−Ei) contains an ellipsoid Fi

centered at the origin and such that Ei ∩ (−Ei) ⊂
√
2Fi, and that this ellipsoid Fi can be easily

found. Believing in the claim, we have

Z∗ ≡
M⋂

i=1

Fi ⊂ Z ⊂
√
2

M⋂

i=1

Fi.

By 1), (CZ∗ [·]) admits a safe tractable approximation with the tightness factor ϑ
√
M ; by Exercise

3.1, (CZ [·]) admits a safe tractable approximation with the tightness factor ϑ
√
2M .

It remains to support our claim. For a given i, applying nonsingular linear transformation
of variables, we can reduce the situation to the one where Ei = B + e, where B is the unit
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Euclidean ball, centered at the origin, and ‖e‖2 < 1 (the latter inequality follows from 0 ∈
intZ ⊂ int(Ei ∩ (−Ei))). The intersection G = Ei ∩ (−Ei) is a set that is invariant w.r.t.
rotations around the axis Re; a 2-D cross-section H of G by a 2D plane Π containing the axis is
a 2-D solid symmetric w.r.t. the origin. It is well known that for every symmetric w.r.t. 0 solid
Q in R

d there exists a centered at 0 ellipsoid E such that E ⊂ Q ⊂
√
dE. Therefore there exists

(and in fact can easily be found) an ellipsis I, centered at the origin, that is contained in H and
is such that

√
2I contains H. Now, the ellipsis I is the intersection of Π and an ellipsoid Fi that

is invariant w.r.t. rotations around the axis Re, and Fi clearly satisfies the required relations
Fi ⊂ Ei ∩ (−Ei) ⊂

√
2Fi.

1

Exercise 3.3: With y given, all we know about x is that there exists ∆ ∈ R
p×q with ‖∆‖2,2 ≤ ρ

such that y = Bn[x; 1] + LT∆R[x; 1], or, denoting w = ∆R[x; 1], that there exists w ∈ R
p with

wTw ≤ ρ2[x; 1]TRTR[x; 1] such that y = Bn[x; 1] + LTw. Denoting z = [x;w], all we know
about the vector z is that it belongs to a given affine plane Az = a and satisfies the quadratic
inequality zTCz + 2cT z + d ≤ 0, where A = [An, L

T ], a = y − bn, and

[ξ;ω]T C[ξ;ω] + 2cT [ξ;ω] + d ≡ ωTω − ρ2[ξ; 1]TRTR[ξ; 1], [ξ;ω] ∈ R
n+p.

Using the equations Az = a, we can express the n+ p z-variables via k ≤ n+ p u-variables:

Az = a⇔ ∃u ∈ R
k : z = Eu+ e.

Plugging z = Eu + e into the quadratic constraint zT Cz + 2cT z + d ≤ 0, we get a quadratic
constraint uTFu + 2fTu + g ≤ 0 on u. Finally, the vector Qx we want to estimate can be
represented as Pu with easily computable matrix P . The summary of our developments is as
follows:

(!) Given y and the data describing B, we can build k, a matrix P and a quadratic
form uTFu + 2fTu + g ≤ 0 on R

k such that the problem of interest becomes the
problem of the best, in the worst case, ‖ · ‖2-approximation of Pu, where unknown
vector u ∈ R

k is known to satisfy the inequality uTFu+ 2fTu+ g ≤ 0.

By (!), our goal is to solve the semi-infinite optimization program

min
t,v

{
t : ‖Pu− v‖2 ≤ t ∀(u : uTFu+ 2fTu+ g ≤ 0)

}
. (∗)

Assuming that infu
[
uTFu+ 2fTu+ g

]
< 0 and applying the inhomogeneous version of S-

Lemma, the problem becomes

min
t,v,λ

{
t ≥ 0 :

[
λF − P TP λf − P T v

λfT − vTP λg + t2 − vT v

]
� 0, λ ≥ 0

}
.

Passing from minimization of t to minimization of τ = t2, the latter problem becomes the
semidefinite program

min
τ,v,λ,s



τ :

vT v ≤ s, λ ≥ 0[
λF − P TP λf − P T v

λfT − vTP λg + τ − s

]
� 0



 .

1In fact, the factor
√
2 in the latter relation can be reduced to 2/

√
3 <

√
2, see Solution to Exercise 3.4.
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In fact, the problem of interest can be solved by pure Linear Algebra tools, without Semidefinite
optimization. Indeed, assume for a moment that P has trivial kernel. Then (∗) is feasible if
and only if the solution set S of the quadratic inequality φ(u) ≡ uTFu + 2fTu + g ≤ 0 in
variables u is nonempty and bounded, which is the case if and only if this set is an ellipsoid
(u − c)TQ(u − c) ≤ r2 with Q � 0 and r ≥ 0; whether this indeed is the case and what are c,
Q, r, if any, can be easily found out by Linear Algebra tools. The image PS of S under the
mapping P also is an ellipsoid (perhaps “flat”) centered at v∗ = Pc, and the optimal solution
to (∗) is (t∗, v∗), where t∗ is the largest half-axis of the ellipsoid PS. In the case when P has
a kernel, let E be the orthogonal complement to KerP , and P̂ be the restriction of P onto E;
this mapping has a trivial kernel. Problem (∗) clearly is equivalent to

min
t,v

{
t : ‖P̂ û− v‖2 ≤ t ∀(û ∈ E : ∃w ∈ KerP : φ(û+ w) ≤ 0

}
.

The set
Û = {û ∈ E : ∃w ∈ KerP : φ(û+ w) ≤ 0}

clearly is given by a single quadratic inequality in variables û ∈ E, and (∗) reduces to a similar
problem with E in the role of the space where u lives and P̂ in the role of P , and we already
know how to solve the resulting problem.

Exercise 3.4: In view of Theorem 3.9, all we need to verify is that Z can be “safely approx-
imated” within an O(1) factor by an intersection Ẑ of O(1)J ellipsoids centered at the origin:
there exists Ẑ = {η : ηT Q̂jη ≤ 1, 1 ≤ j ≤ Ĵ} with Q̂j � 0,

∑
j Q̂j � 0 such that

θ−1Ẑ ⊂ Z ⊂ Ẑ,

with an absolute constant θ and Ĵ ≤ O(1)J . Let us prove that the just formulated statement
holds true with Ĵ = J and θ =

√
3/2. Indeed, since Z is symmetric w.r.t. the origin, setting

Ej = {η : (η − aj)TQj(η − aj) ≤ 1}, we have

Z =
J⋂

j=1

Ej =
J⋂

j=1

(−Ej) =
J⋂

j=1

(Ej ∩ [−Ej ]);

all we need is to demonstrate that every one of the sets Ej∩ [−Ej] is in between two proportional
ellipsoids centered at the origin with the larger one being at most 2/

√
3 multiple of the smaller

one. After an appropriate linear one-to-one transformation of the space, all we need to prove is
that if E = {η ∈ R

d : (η1 − r)2 +
∑k

j=2 η
2
j ≤ 1} with 0 ≤ r < 1, then we can point out the set

F = {η : η21/a
2 +

∑k
j=2 η

2
j/b

2 ≤ 1} such that

√
3

2
F ⊂ E ∩ [−E] ⊂ F.

When proving the latter statement, we lose nothing when assuming k = 2. Renaming η1
as y, η2 as x and setting h = 1 − r ∈ (0, 1] we should prove that the “loop” L = {[x; y] :
[|y|+ (1− h)]2 + x2 ≤ 1} is in between two proportional ellipses centered at the origin with the
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ratio of linear sizes θ ≤ 2/
√
3. Let us verify that we can take as the smaller of these ellipses the

ellipsis

E = {[x; y] : y2/h2 + x2/(2h− h2) ≤ µ2}, µ =

√
3− h
4− 2h

,

and to choose θ = µ−1 (so that θ ≤ 2/
√
3 due to 0 < h ≤ 1). First, let us prove that E ⊂ L.

This inclusion is evident when h = 1, so that we can assume that 0 < h < 1. Let [x; y] ∈ E , and
let λ = 2(1−h)

h . We have

y2/h2 + x2/(2h − h2) ≤ µ2 ⇒
{
y2 ≤ h2[µ2 − x2/(2h− h2)] (a)
x2 ≤ µ2h(2 − h) (b)

;

(|y|+ (1− h))2 + x2 = y2 + 2|y|(1 − h) + (1− h)2 ≤ y2 +
[
λy2 + 1

λ(1− h)2
]

+(1− h)2 = y2 2−h
h + (2−h)(1−h)

2 + x2

≤
[
µ2 − x2

h(2−h)

]
(2h − h2) + (2−h)(1−h)

2 + x2 ≡ q(x2),

where the concluding ≤ is due to (a). Since 0 ≤ x2 ≤ µ2(2h− h2) by (b), q(x2) is in-between its
values for x2 = 0 and x2 = µ2(2h− h2), and both these values with our µ are equal to 1. Thus,
[x; y] ∈ L.

It remains to prove that µ−1E ⊃ L, or, which is the same, that when [x; y] ∈ L, we have
[µx;µy] ∈ E . Indeed, we have

[|y|+ (1− h)]2 + x2 ≤ 1⇒ |y| ≤ h & x2 ≤ 1− y2 − 2|y|(1 − h)− (1− h)2
⇒ x2 ≤ 2h− h2 − y2 − 2|y|(1 − h)

⇒ µ2
[
y2

h2 + x2

2h−h2

]
= µ2 y

2(2−h)+hx2

h2(2−h)
≤ µ2 h2(2−h)+2(1−h)[

≤0︷ ︸︸ ︷
y2 − |y|h]

h2(2−h)
≤ µ2

⇒ [x; y] ∈ E ,

as claimed.

Exercise 3.5: 1) We have

EstErr = sup
v∈V,A∈A

√
vT (GA− I)T (GA− I)v +Tr(GTΣG)

= sup
A∈A

sup
u:uTu≤1

√
uTQ−1/2(GA− I)T (GA − I)Q−1/2u+Tr(GTΣG)

[substitution v = Q−1/2u]

=
√

sup
A∈A
‖(GA − I)Q−1/2‖22,2 +Tr(GTΣG).

By the Schur Complement Lemma, the relation ‖(GA−I)Q−1/2‖2,2 ≤ τ is equivalent to the LMI[
τI [(GA− I)Q−1/2]T

(GA − I)Q−1/2 τI

]
, and therefore the problem of interest can be posed as

the semi-infinite semidefinite program

min
t,τ,δ,G



t :

√
τ2 + δ2 ≤ t,

√
Tr(GTΣG) ≤ δ[

τI [(GA − I)Q−1/2]T

(GA− I)Q−1/2 τI

]
� 0∀A ∈ A



 ,



B.3. EXERCISES FROM LECTURE 3 315

which is nothing but the RC of the uncertain semidefinite program



 min

t,τ,δ,G



t :

√
τ2 + δ2 ≤ t,

√
Tr(GTΣG) ≤ δ[

τI [(GA − I)Q−1/2]T

(GA− I)Q−1/2 τI

]
� 0



 : A ∈ A



 .

In order to reformulate the only semi-infinite constraint in the problem in a tractable form, note
that with A = An + LT∆R we have

N (A) :=

[
τI [(GA− I)Q−1/2]T

(GA − I)Q−1/2 τI

]

=

[
τI [(GAn − I)Q−1/2]T

(GAn − I)Q−1/2 τI

]

︸ ︷︷ ︸
Bn(G)

+LT (G)∆R +RT∆TL(G),

L(G) =
[
0p×n, LG

T
]
,R =

[
RQ−1/2, 0q×n

]
.

Invoking Theorem 3.12, the semi-infinite LMI N (A) � 0 ∀A ∈ A is equivalent to

∃λ :

[
λIp ρL(G)

ρLT (G) Bn(G) − λRTR

]
� 0,

and thus the RC is equivalent to the semidefinite program

min
t,τ,

δ,λ,G




t :

√
τ2 + δ2 ≤ t,

√
Tr(GTΣG) ≤ δ


λIp ρLGT

τIn − λQ−1/2RTRQ−1/2 Q−1/2(AT
nG

T − In)
ρGLT (GAn − In)Q−1/2 τIn


 � 0




.

2): Setting v = UT v̂, ŷ =W Ty, ξ̂ =W T ξ, our estimation problem reduces to the exactly the
same problem, but with Diag{a} in the role of An and the diagonal matrix Diag{q} in the role
of Q; a linear estimate Ĝŷ of v̂ in the new problem corresponds to the linear estimate UT ĜW Ty,
of exactly the same quality, in the original problem. In other words, the situation reduces to the
one where An and Q are diagonal positive semidefinite, respectively, positive definite matrices;
all we need is to prove that in this special case we lose nothing when restricting G to be diagonal.
Indeed, in the case in question the RC reads

min
t,τ,

δ,λ,G




t :

√
τ2 + δ2 ≤ t, σ

√
Tr(GTG) ≤ δ


λIn ρGT

τIn − λDiag{µ} Diag{ν}GT −Diag{η}
ρG GDiag{ν} −Diag{η} τIn


 � 0





(∗)

where µi = q−1
i , νi = ai/

√
qi and ηi = 1/

√
qi. Replacing the G-component in a feasible solution

with EGE, where E is a diagonal matrix with diagonal entries ±1, we preserve feasibility (look
what happens when you multiply the matrix in the LMI from the left and from the right by
Diag{I, I, E}). Since the problem is convex, it follows that whenever a collection (t, τ, δ, λ,G) is
feasible for the RC, so is the collection obtained by replacing the original G with the average of
the matrices ETGE taken over all 2n diagonal n×n matrices with diagonal entries ±1, and this
average is the diagonal matrix with the same diagonal as the one of G. Thus, when An and Q
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are diagonal and L = R = In (or, which is the same in our situation, L and R are orthogonal),
we lose nothing when restricting G to be diagonal.

Restricted to diagonal matrices G = Diag{g}, the LMI constraint in (∗) becomes a bunch of
3× 3 LMIs 


λ 0 ρgi
0 τ − λµi νigi − ηi
ρgi νigi − ηi τ


 � 0, i = 1, ..., n,

in variables λ, τ, gi. Assuming w.l.o.g. that λ > 0 and applying the Schur Complement Lemma,
these 3× 3 LMIs reduce to 2× 2 matrix inequalities

[
τ − λµi νigi − ηi
νigi − ηi τ − ρ2g2i /λ

]
� 0, i = 1, ..., n.

For given τ, λ, every one of these inequalities specifies a segment ∆i(τ, λ) of possible value of gi,
and the best choice of gi in this segment is the point gi(τ, λ) of the segment closest to 0 (when
the segment is empty, we set gi(τ, λ) = ∞). Note that gi(τ, λ) ≥ 0 (why?). It follows that (∗)
reduces to the convex (due to its origin) problem

min
τ,λ≥0





√
τ2 + σ2

∑

i

g2i (τ, λ)





with easily computable convex nonnegative functions gi(τ, λ).

Exercise 3.6: 1) Let λ > 0. For every ξ ∈ R
n we have ξT [pqT + qpT ]ξ = 2(ξT p)(ξT q) ≤

λ(ξT p)2+ 1
λ(ξ

T q)2 = ξT [λppT + 1
λqq

T ]ξ, whence pqT +qpT � λppT + 1
λqq

T . By similar argument,
−[pqT + qpT ] � λppT + 1

λqq
T . 1) is proved.

2) Observe, first, that if λ(A) is the vector of eigenvalues of a symmetric matrix A, then
‖λ(pqT + qpT )‖1 = 2‖p‖2‖q‖2. Indeed, there is nothing to verify when p = 0 or q = 0; when
p, q 6= 0, we can normalize the situation to make p a unit vector and then to choose the orthogonal
coordinates in R

n in such a way that p is the first basic orth, and q is in the linear span of the
first two basic orths. With this normalization, the nonzero eigenvalues of A are exactly the same

as the eigenvalues of the 2×2 matrix

[
2α β
β 0

]
, where α and β are the first two coordinates of q

in our new orthonormal basis. The eigenvalues of the 2×2 matrix in question are α±
√
α2 + β2,

and the sum of their absolute values is 2
√
α2 + β2 = 2‖q‖2 = 2‖p‖2‖q‖2, as claimed.

To prove 2), let us lead to a contradiction the assumption that Y, p, q 6= 0 are such that
Y � ±[pqT + qpT ] and there is no λ > 0 such that Y − λppT − 1

λqq
T � 0, or, which is the same

by the Schur Complement Lemma, the LMI
[
Y − λppT q

qT λ

]
� 0

in variable λ has no solution, or, equivalently, the optimal value in the (clearly strictly feasible)
SDO program

min
t,λ

{
t :

[
tI + Y − λppT q

qT λ

]
� 0

}
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is positive. By semidefinite duality, the latter is equivalent to the dual problem possessing a
feasible solution with a positive value of the dual objective. Looking at the dual, this is equivalent
to the existence of a matrix Z ∈ Sn and a vector z ∈ R

n such that
[
Z z
zT pTZp

]
� 0, Tr(ZY ) < 2qT z.

Adding, if necessary, to Z a small positive multiple of the unit matrix, we can assume w.l.o.g.
that Z � 0. Setting Ȳ = Z1/2Y Z1/2, p̄ = Z1/2p, q̄ = Z1/2q, z̄ = Z−1/2z, the above relations
become [

I z̄
z̄T p̄T p̄

]
� 0,Tr(Ȳ ) < 2q̄T z̄. (∗)

Observe that from Y � ±[pqT + qpT ] it follows that Ȳ � ±[p̄q̄T + q̄p̄T ]. Looking at what
happens in the eigenbasis of the matrix [p̄q̄T + q̄p̄T ], we conclude from this relation that Tr(Ȳ ) ≥
‖λ(p̄q̄T + q̄p̄T )‖1 = 2‖p̄‖2‖q̄‖2. On the other hand, the matrix inequality in (∗) implies that
‖z̄‖2 ≤ ‖p̄‖2, and thus Tr(Ȳ ) < 2‖p̄‖2‖q̄‖2 by the second inequality in (∗). We have arrived at
a desired contradiction.

3) Assume that x is such that all L`(x) are nonzero. Assume that x can be extended to a
feasible solution Y1, ..., YL, x of (3.7.2). Invoking 2), we can find λ` > 0 such that Y` � λ`RT

` R`+
1
λ`
LT
` (x)L`(x). Since An(x)−ρ

∑
` Y` � 0, we have [An(x)−ρ

∑
` λ`R

T
` R`]−

∑
`

ρ
λ`
LT
` (x)L`(x) �

0, whence, by the Schur Complement Lemma, λ1, ..., λL, x are feasible for (3.7.3). Vice versa,
if λ1, ..., λL, x are feasible for (3.7.3), then λ` > 0 for all ` due to L`(x) 6= 0, and, by the same
Schur Complement Lemma, setting Y` = λ`R

T
` R` +

1
λ`
LT
` (x)L`(x), we have

An(x)− ρ
∑

`

Y` � 0,

while Y` � ±
[
LT
` (x)R` +RT

` L`(x)
]
, that is, Y1, ..., YL, x are feasible for (3.7.2).

We have proved the equivalence of (3.7.2) and (3.7.3) in the case when L`(x) 6= 0 for all `.
The case when some of L`(x) vanish is left to the reader.

Exercise 3.7: A solution might be as follows. The problem of interest is

min
G,t
{t : t ≥ ‖(GA − I)v +Gξ‖2 ∀(v ∈ V, ξ ∈ Ξ, A ∈ A)}

m

min
G,t

{
t : uT (GA− I)v + uTGξ ≤ t∀



u, v, ξ :

uTu ≤ 1
vTPiv ≤ 1,

1 ≤ i ≤ I
ξTQjξ ≤ ρ2ξ ,

1 ≤ j ≤ J



∀A ∈ A

}
.

(∗)

Observing that

uT [GA− I]v + uTGξ = [u; v; ξ]T




1
2 [GA− I] 1

2G
1
2 [GA− I]T

1
2G

T


 [u; v; ξ],



318 APPENDIX B. SOLUTIONS TO EXERCISES

for A fixed, a sufficient condition for the validity of the semi-infinite constraint in (∗) is the
existence of nonnegative µ, νi, ωj such that



µI ∑

i νiPi ∑
j ωjQj


 �




1
2 [GA− I] 1

2G
1
2 [GA− I]T

1
2G

T




and µ+
∑

i νi+ρ
2
ξ

∑
j ωj ≤ t. It follows that the validity of the semi-infinite system of constraints

µ+
∑

i νi + ρ2ξ
∑

j ωj ≤ t, µ ≥ 0, νi ≥ 0, ωj ≥ 0

µI ∑

i νiPi ∑
j ωjQj


 �




1
2 [GA− I] 1

2G
1
2 [GA− I]T

1
2G

T




∀A ∈ A

(!)

in variables t,G, µ, νi, ωj is a sufficient condition for (G, t) to be feasible for (∗). The only
semi-infinite constraint in (!) is in fact an LMI with structured norm-bounded uncertainty:



µI ∑

i νiPi ∑
j ωjQj




−




1
2 [GA− I] 1

2G
1
2 [GA− I]T

1
2G

T


 � 0 ∀A ∈ A

m


µI − 1
2 [GAn − I] − 1

2G

− 1
2 [GAn − I]T

∑
i νiPi

− 1
2G

T
∑

j ωjQi




︸ ︷︷ ︸
B(µ,ν,ω,G)

+
∑L

`=1[L`(G)T∆`R` +RT
` ∆

T
` L`(G)] � 0

∀ (‖∆`‖2,2 ≤ ρA, 1 ≤ ` ≤ L) ,
L`(G) = 1

2

[
L`G

T , 0p`×n, 0p`×m

]
, R` = [0q`×n, R`, 0q`×m] .

Invoking Theorem 3.13, we end up with the following safe tractable approximation of (∗):

min
t,G,µ,νi,ωj ,λ`,Y`

t

s.t.
µ+

∑
i νi + ρ2ξ

∑
j ωj ≤ t, µ ≥ 0, νi ≥ 0, ωj ≥ 0[

λ`I L`(G)
LT` (G) Y` − λ`RT

` R`

]
� 0, 1 ≤ ` ≤ L

B(µ, ν, ω,G)− ρA
∑L

`=1 Y` � 0.

B.4 Exercises from Lecture 4

Exercise 4.1: A solution might be as follows. We define the normal range of the uncertain
cost vector as the box Z = {c′ : 0 ≤ c′ ≤ c}, where c is the current cost, the cone L as

L = {ζ ∈ R
n : ζ ≥ 0, ζj = 0 whenever vj = 0}
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Figure B.1: Results for Exercise 4.1.

and equip R
n with the norm

‖ζ‖v = max
j
|ζ|j/v̄j , v̄j =

{
vj , vj > 0
1, vj = 0

With this setup, the model becomes

Opt(α) = min
x

{
cTx : Px ≥ b, x ≥ 0, vT x ≤ α

}
.

With the data of the Exercise, computation says that the minimal value of α for which the
problem is feasible is α = 160 and that the bound on the sensitivity becomes redundant when
α ≥ α = 320. The tradeoff between α ∈ [α,α] is shown on the left plot in figure B.1; the right
plot depicts the solutions for α = α = 160 (magenta), α = α = 320 (blue) and α = 180 (green).

Exercise 4.2: 1) With φ(ρ) = tau+ αρ problem (!) does not make sense, meaning that it is
always infeasible, unless E = {0}. Indeed, otherwise g contains a nonzero vector g, and assuming
(!) feasible, we should have for certain τ and α

[
2(τ + αρ) fT + ρgT

f + ρg A(t)

]
� 0 ∀ρ > 0

or, which is the same,

[
2ρ−1τ + 2ρ−1α ρ−1fT + gT

ρ−1f + g A(t)

]
� 0 ∀ρ > 0.

passing to limit as ρ→ +∞, the matrix

[
0 gT

g A(t)

]
should be � 0, which is not the case when

g 6= 0.
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The reason why the GRC methodology does not work in our case is pretty simple: we are
not applying this methodology, we are doing something else. Indeed, with the GRC approach,
we would require the validity of the semidefinite constraints

[
τ fT + ρgT

f + ρg A(t)

]
≥ 0, f ∈ F , g ∈ E

for all f ∈ F in the case of ρ = 0 and were allowing “controlled deterioration” of these constraints
when ρ > 0:

dist

([
τ fT + ρgT

f + ρg A(t)

]
,Sm+1

+

)
≤ αρ ∀(f ∈ F , g ∈ E).

When τ and α are large enough, this goal clearly is feasible. In the situation described in item
1) of Exercise, our desire is completely different: we want to keep the semidefinite constraints
feasible, compensating for perturbations ρg by replacing the compliance τ with τ + αρ. As it is
shown by our analysis, this goal is infeasible – the “compensation in the value of compliance”
should be at least quadratic in ρ.

2) With φ(ρ) = (
√
τ +
√
αρ)2, problem (!) makes perfect sense; moreover, given τ ≥ 0,

α ≥ 0, t ∈ T is feasible for (!) if and only if the system of relations

(a)

[
2τ fT

f A(t)

]
� 0 ∀f ∈ F

(b)

[
2α gT

g A(t)

]
� 0 ∀g ∈ E

Since F is finite, (a) is just a finite collection of LMIs in t, τ ; and since E is a centered at the
origin ellipsoid, the results of section 3.4.2 allow to convert the semi-infinite LMI (b) into an
equivalent tractable system of LMIs, so that (a), (b) is computationally tractable.

The claim that t is feasible for the semi-infinite constraint
[
2(
√
τ +
√
αρ)2 fT + ρgT

f + ρg A(t)

]
≥ 0∀(f ∈ F , g ∈ E, ρ ≥ 0) (∗)

if and only if t satisfies (a) and (b) is evident. Indeed, if t is feasible for the latter semi-infinite
LMI, t indeed satisfies (a) and (b) – look what happens when ρ = 0 and when ρ → ∞. Vice
versa, assume that t satisfies (a) and ()b), and let us prove that t satisfies (∗) as well. Indeed,

given ρ > 0, let us set µ =
√
τ√

τ+ρ
√
α
, ν = 1 − µ = ρ

√
α√

τ+ρ
√
α
and s = µ

ν ρ. For f ∈ F and g ∈ E
from (a), (b) it follows that

[
2τ fT

f A(t)

]
� 0,

[
2s2α sgT

sg A(t)

]
� 0;

or, which is the same by the Schur Complement Lemma, for every ε > 0 one has

‖[A(t) + εI]−1/2f‖2 ≤
√
2τ , ‖[A(t) + εI]−1/2g‖2 ≤

√
2α,

whence, by the triangle inequality,

‖[A(t) + εI]−1/2[f + ρg]‖2 ≤
√
2τ +

√
2αρ,
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meaning that [
[
√
2τ +

√
2αρ]2 fT + ρgT

f + ρg A(t) + εI

]
� 0.

The latter relation holds true for all (ε > 0, f ∈ F , g ∈ E), and thus t is feasible for (∗).

Exercise 4.3: 1) The worst-case error of a candidate linear estimate gT y is

max
z,ξ:‖z‖2≤1,‖ξ2‖≤1

‖(Az + ξ)T g − fT z‖2,

so that the problem of building the best, in the minimax sense, estimate reads

min
τ,G

{
τ : |(Az + ξ)T g − fT z| ≤ τ ∀([z; ξ] : ‖z‖2 ≤ 1, ‖ξ‖2 ≤ 1)

}
,

which is nothing but the RC of the uncertain Least Squares problem

{
min
τ,g

{
τ : (Az + ξ)T g − fT z ≤ τ, fT z − (Az + ξ)T g ≤ τ

}
: ζ := [z; ξ] ∈ Z = B × Ξ

}
(∗)

in variables g, τ with certain objective and two constraints affinely perturbed by ζ = [z; ξ] ∈
B × Ξ. The equivalent tractable reformulation of this RC clearly is

min
τ,g

{
τ : ‖AT g − f‖2 + ‖g‖ ≤ τ

}
.

2) Now we want of our estimate to satisfy the relations

∀(ρz ≥ 0, ρξ ≥ 0) : |(Az + ξ)T g− fT z| ≤ τ +αzρz +αξρξ, ∀(z : ‖z‖2 ≤ 1+ ρz, ξ : ‖ξ‖2 ≤ 1+ ρξ),

or, which is the same,

∀[z; ξ] : |(Az + ξ)T g − fT z| ≤ τ + αzdist‖·‖2(z,B) + αξdist‖·|2(ξ,Ξ).

This is exactly the same as to say that g should be feasible for the GRC of the uncertainty-
affected inclusion

(Az + ξ)T g − fT z ∈ Q = [−τ, τ ].
in the case where the uncertain perturbations are [z; ξ], the perturbation structure for z is given
by Zz = B,Lz = R

n and the norm on R
n is ‖ · ‖2, and the perturbation structure for ξ is given

by Zξ = Ξ, Lξ = R
m and the norm on R

m is ‖ · ‖2. Invoking Proposition 4.2, g is feasible for
our GRC if and only if

(a) (Az + ξ)T g − fT z ∈ Q ∀(z ∈ B, ξ ∈ Ξ)
(b.1) |(AT g − f)T z| ≤ αz ∀(z : ‖z‖2 ≤ 1)
(b.2) |ξT g| ≤ αξ ∀(ξ : ‖ξ‖2 ≤ 1)

or, which is the same, g meets the requirements if and only if

‖AT g − f‖2 + ‖g‖2 ≤ τ, ‖AT g − f‖2 ≤ αz, ‖g‖2 ≤ αξ.
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Exercise 4.4: 1) The worst-case error of a candidate linear estimate Gy is

max
z,ξ:‖z‖2≤1,‖ξ2‖≤1

‖G(Az + ξ)− Cz‖2,

so that the problem of building the best, in the minimax sense, estimate reads

min
τ,G
{τ : ‖G(Az + ξ)−Cz‖2 ≤ τ ∀([z; ξ] : ‖z‖2 ≤ 1, ‖ξ‖2 ≤ 1)} ,

which is nothing but the RC of the uncertain Least Squares problem

{
min
τ,g
{τ : ‖G(Az + ξ)− Cz‖2 ≤ τ} : ζ := [z; ξ] ∈ Z = B × Ξ

}
(∗)

in variables G, τ . The body of the left hand side of the uncertain constraint is

G(Az + ξ)− Cz = LT
1 (G)zR1 + LT

2 (G)ξR2, L1(G) = ATGT −CT , R1 = 1, L2(G) = GT , R2 = 1

that is, we deal with structured norm-bounded uncertainty with two full uncertain blocks: n×1
block z and m× 1 block ξ, the uncertainty level ρ being 1 (see section 3.3.1). Invoking Theorem
3.4, the system of LMIs



u0 − λ uT

u U GA− C
[GA− C]T λI


 � 0,



v0 − µ vT

v V G

GT µI


 � 0

[
τ − u0 − v0 −uT − vT
−u− v τI − U − V

]
� 0

(S)

in variables G, τ, λ, µ, u0, u, U, v0, v, V is a tight within the factor π/2 safe tractable approxima-
tion of the RC.

2) Now we want of our estimate to satisfy the relations

∀(ρz ≥ 0, ρξ ≥ 0) : ‖G(Az + ξ)−Cz‖2 ≤ τ +αzρz +αξρξ, ∀(z : ‖z‖2 ≤ 1+ ρz, ξ : ‖ξ‖2 ≤ 1+ ρξ),

or, which is the same,

∀[z; ξ] : ‖G(Az + ξ)− Cz‖2 ≤ τ + αzdist‖·‖2(z,B) + αξdist‖·‖2(ξ,Ξ).

This is exactly the same as to say that G should be feasible for the GRC of the uncertainty-
affected inclusion

G(Az + ξ)− Cz ∈ Q = {w : ‖w‖2 ≤ τ}
in the case where the uncertain perturbations are [z; ξ], the perturbation structure for z is given
by Zz = B,Lz = R

n, the perturbation structure for ξ is given by Zξ = Ξ,Lξ = R
m, the global

sensitivities w.r.t. z, ξ are, respectively, αz, αξ, and all norms in the GRC setup are the standard



B.5. EXERCISES FROM LECTURE 5 323

Euclidean norms on the corresponding spaces. Invoking Proposition 4.2, G is feasible for our
GRC if and only if

(a) ‖G(Az + ξ)− Cz‖2 ∈ Q ∀(z ∈ B, ξ ∈ Ξ)
(b) ‖(GA − C)z‖2 ≤ αz ∀(z : ‖z‖2 ≤ 1)
(c) ‖Gξ‖2 ≤ αξ ∀(ξ : ‖ξ‖2 ≤ 1).

(b), (c) merely say that
‖GA− I‖2,2 ≤ αz, ‖G‖2,2 ≤ αξ,

while (a) admits the safe tractable approximation (S).

B.5 Exercises from Lecture 5

Exercise 5.1: From state equations (5.5.1) coupled with control law (5.5.3) it follows that

wN =WN [Ξ]ζ + wN [Ξ],

where Ξ = {U z
t , U

d
t , u

0
t }Nt=0 is the “parameter” of the control law (5.5.3), and WN [Ξ], wN [Ξ] are

matrix and vector affinely depending on Ξ. Rewriting (5.5.2) as the system of linear constraints

eTj w
N − fj ≤ 0, j = 1, ..., J,

and invoking Proposition 4.1, the GRC in question is the semi-infinite optimization problem

minΞ,α α
subject to

eTj [WN [Ξ]ζ + wN [Ξ]]− fj ≤ 0 ∀(ζ : ‖ζ − ζ̄‖s ≤ R) (aj)

eTj WN [Ξ]ζ ≤ α ∀(ζ : ‖ζ‖r ≤ 1) (bj)

1 ≤ j ≤ J.
This problem clearly can be rewritten as

minΞ,α α
subject to

R‖W T
N [Ξ]ej‖s∗ + eTj [WN [Ξ]ζ̄ + wN [Ξ]]− fj ≤ 0, 1 ≤ j ≤ J

‖W T
N [Ξ]ej‖r∗ ≤ α, 1 ≤ j ≤ J

where
s∗ =

s

s− 1
, r∗ =

r

r − 1
.

Exercise 5.2: The AAGRC is equivalent to the convex program

minΞ,α α
subject to

R‖W T
N [Ξ]ej‖s∗ + eTj [WN [Ξ]ζ̄ + wN [Ξ]]− fj ≤ 0, 1 ≤ j ≤ J

‖[W T
N [Ξ]ej ]d,+‖r∗ ≤ α, 1 ≤ j ≤ J

where
s∗ =

s

s− 1
, r∗ =

r

r − 1

and for a vector ζ = [z; d0; ...; dN ] ∈ R
K , [ζ]d,+ is the vector obtained from ζ by replacing the

z-component with 0, and replacing every one of the d-components with the vector of positive
parts of its coordinates, the positive part of a real a being defined as max[a, 0].
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Exercise 5.3: 1) For ζ = [z; d0; ...; d15] ∈ Z + L, a control law of the form (5.5.3) can be
written down as

ut = u0t +
t∑

τ=0

utτdτ ,

and we have

xt+1 =

t∑

τ=0

[
u0τ − dτ +

τ∑

s=0

uτsds

]
=

t∑

τ=0

u0τ +

t∑

s=0

[
t∑

τ=s

uτs − 1

]
ds.

Invoking Proposition 4.1, the AAGRC in question is the semi-infinite problem

min{u0
t ,utτ},α α

subject to

(ax) |θ
[∑t

τ=0 u
0
τ

]
| ≤ 0, 0 ≤ t ≤ 15

(au) |u0t | ≤ 0, 0 ≤ t ≤ 15

(bx) |θ∑t
s=0

[∑t
τ=s uτs − 1

]
ds| ≤ α

∀(0 ≤ t ≤ 15, [d0; ...; d15] : ‖[d0; ...; d15]‖2 ≤ 1)

(bu) |∑t
τ=0 utτdτ | ≤ α
∀(0 ≤ t ≤ 15, [d0; ...; d15] : ‖[d0; ...; d15]‖2 ≤ 1)

We see that the desired control law is linear (u0t = 0 for all t), and the AAGRC is equivalent to
the conic quadratic problem

min
{utτ},α



α :

√∑t
s=0

[∑t
τ=s uτs − 1

]2 ≤ θ−1α, 0 ≤ t ≤ 15√∑t
τ=0 u

2
τt ≤ α, 0 ≤ t ≤ 15



 .

2) In control terms, we want to “close” our toy linear dynamical system, where the initial state
is once and for ever set to 0, by a linear state-based non-anticipative control law in such a way
that the states x1, ..., x16 and the controls u1, ..., u15 in the closed loop system are “as insensitive
to the perturbations d0, ..., d15 as possible,” while measuring the changes in the state-control
trajectory

w15 = [0;x1; ...;x16;u1, ..., u15]

in the weighted uniform norm ‖w15‖∞,θ = max[θ‖x‖∞, ‖u‖∞], and measuring the changes in the
sequence of disturbances [d0; ...; d15] in the “energy” norm ‖[d0; ...; d15]‖2. Specifically, we are
interested to find a linear non-anticipating state-based control law that results in the smallest
possible constant α satisfying the relation

∀∆d15 : ‖∆w15‖∞,θ ≤ α‖∆d15‖2,
where ∆d15 is a shift of the sequence of disturbances, and ∆w15 is the induced shift in the
state-control trajectory.
3) The numerical results are as follows:

θ α

1.e6 4.0000

10 3.6515

2 2.8284

1 2.3094
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Exercise 5.4: 1) Denoting by xijγ the amount of information in the traffic from i to j travelling
through γ, by qγ the increase in the capacity of arc γ, and by O(k), I(k) — the sets of outgoing,
resp., incoming, arcs for node k, the problem in question becomes

min
{x

ij
γ },

{qγ}





∑

γ∈Γ
cγqγ :

∑
(i,j)∈J x

ij
γ ≤ pγ + qγ ∀γ

∑
γ∈O(k) x

ij
γ −

∑
γ∈I(k) x

ij
γ =





dij , k = i
−dij, k = j
0, k 6∈ {i, j}
∀((i, j) ∈ J , k ∈ V )

qγ ≥ 0, xijγ ≥ 0 ∀((i, j) ∈ J , k ∈ V )





. (∗)

2) To build the AARC of (∗) in the case of uncertain traffics dij , it suffices to plug into

(∗), instead of decision variables xijγ , affine functions Xij
γ (d) = ξij,0γ +

∑
(µ,ν)∈J ξ

ijµν
γ dµν of d =

{dij : (i, j) ∈ J } (in the case of (a), the functions should be restricted to be of the form

Xij
γ (d) = ξij,0γ + ξijγ dij) and to require the resulting constraints in variables qγ , ξ

ijµν
γ to be valid

for all realizations of d ∈ Z. The resulting semi-infinite LO program is computationally tractable
(as the AARC of an uncertain LO problem with fixed recourse, see section 5.3.1).

3) Plugging into (∗), instead of variables xijγ , affine decision rules Xij
γ (d) of the just indicated

type, the constraints of the resulting problem can be split into 3 groups:

(a)
∑

(i,j)∈J X
ij
γ (d) ≤ pγ + qγ ∀γ ∈ Γ

(b)
∑

(i,j)∈J
γ∈Γ

Rij
γ X

ij
γ (d) = r(d)

(c) qγ ≥ 0,Xij
γ (d) ≥ 0∀((i, j) ∈ J , γ ∈ Γ).

In order to ensure the feasibility of a given candidate solution for this system with probability
at least 1 − ε, ε < 1, when d is uniformly distributed in a box, the linear equalities (b) must
be satisfied for all d’s, that is, (b) induces a system Aξ = b of linear equality constraints on
the vector ξ of coefficients of the affine decision rules Xij

γ (·). We can use this system of linear
equations, if it is feasible, in order to express ξ as an affine function of a shorter vector η of “free”
decision variables, that is, we can easily find H and h in such a way that Aξ = b is equivalent to
the existence of η such that ξ = Hη + h. We can now plug ξ = Hη + h into (a), (c) and forget
about (b), thus ending up with a system of constraints of the form

(a′) a`(η, q) + αT
` (η, q)d ≤ 0, 1 ≤ ` ≤ L = Card(Γ)(Card(J ) + 1),

(b′) q ≥ 0

with a`, α` affine in [η; q] (the constraints in (a′) come from the Card(Γ) constraints in (a) and
the Card(Γ)Card(J ) constraints Xij

γ (d) ≥ 0 in (c)).
In order to ensure the validity of the uncertainty-affected constraints (a′), as evaluated at a

candidate solution [η; q], with probability at least 1 − ε, we can use either the techniques from
Lecture 2, or the techniques from section 3.6.4.
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robust counterpart, 211–220
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tractability issues, 216
tractable cases, 217, 218

affine control laws, 242
purified-output-based representation of,

243–248
affinely adjustable robust counterpart, 220–

241
of uncertain LO without fixed recourse,

236
tractability of, 221–223

antenna array
robust design of, 104

approximate robust counterpart
of chance constrained CQI/LMI, 144–

157

of uncertain convex quadratic constraint
with ∩-ellipsoidal uncertainty, 117–
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of uncertain convex quadratic constraint
with structured norm-bounded un-
certainty, 111–112

complex case, 112–114
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hand side uncertainty, 117
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bounded left hand side uncertainty,
109–111

of uncertain Least Squares inequality
with ∩-ellipsoidal uncertainty, 114–
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of uncertain Least Squares inequality
with structured norm-bounded un-
certainty, 102–104

complex case, 108–109
of uncertain LMI with structured norm-

bounded uncertainty, 136–137
ARC, see adjustable robust counterpart

chance constraint, 29
ambiguous, 32, 64
conic, 143
Conic Quadratic, see Conic Quadratic

Inequality, chance constrained
linear, see scalar
Linear Matrix, see Linear Matrix In-

equality, chance constrained
safe convex approximation of, 31
safe tractable approximation of, 31
scalar, 29
bridged Bernstein-CVaR approxima-
tion of, 63–66

safe tractable approximation of, 71
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safe tractable approximation of sys-
tems of, 160–163

CO, see Conic Optimization problem, see
Conic Quadratic Optimization

cone, 267
dual, 267
Hermitian semidefinite, 268
Lorentz, 77, 267
semidefinite representation of, 87

regular, 267
Second-order, see Lorentz cone
second-order, see Lorentz cone
semidefinite, 78, 268

conic
dual of a Conic Optimization problem,

269
duality, 269
representation
of a function, 276
of a set, 273

Conic Duality Theorem, 270
Conic Optimization, see Conic Optimization

problem
Conic Optimization problem, 77, 268

data of, 78
Quadratic, 77
structure of, 78
uncertain, 79

conic problem, see Conic Optimization prob-
lem

conic program, see Conic Optimization prob-
lem

Conic Quadratic Inequality, 77
chance constrained, 143
safe tractable approximation of, 163–
166

Conic Quadratic Optimization problem, 268
conic quadratic program, see Conic Quadratic

Optimization problem
conjugate mapping, 267
CQI, see Conic Quadratic Inequality

data
of CO problem, 78
uncertain, 1

data uncertainty, 1
“uncertain-but-bounded”, 27
probabilistic, 27
reasons for, 1

decision rules
affine, 221
non-affine, 223–236

dominance
convex, 158
monotone, 70

Euclidean space, 266

fixed recourse, 221
Frobenius inner product, 78, 266

Gaussian majorization, 157–159

iff
abbreviation for “if and only if”, 70

Linear Matrix Inequality, 78
chance constrained, 143
safe tractable approximation of, 144–
154

Linear Optimization, see Linear Optimiza-
tion problem

Linear Optimization problem, 268
data of, 1
uncertain, 7

LMI, see Linear Matrix Inequality
LO, see Linear Optimization
LSC, see Lyapunov stability certificate
Lyapunov stability analysis/synthesis, 131–

135, 137–142
Lyapunov stability certificate, 133, 139

Majorization Theorem, 71
Matrix Cube Theorem

real case, 285
multi-period inventory with uncertain de-

mand, 211
affinely adjustable RC of, 237

Nesterov’s π/2 Theorem, 174
nonnegative orthant, 267
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perturbation
set, 7
vector, 7

Randomized r-procedure, 153
RC, see robust counterpart
representation

of a set, 15
of a system of constraints, 15

robust
counterpart, see robust counterpart
linear estimation, 96–100
optimal value, 9
solution
of uncertain CO problem, 79

solution to uncertain LO problem, 8
value of the objective at a point, 9

robust counterpart
adjustable, see adjustable robust coun-

terpart
affinely adjustable
see affinely adjustable robust counter-
part, 220

globalized, 179–182
decomposition of, 188–189
safe tractable approximations of, 183
tractability of, 183–185, 197

of uncertain CO problem, 79
of uncertain convex quadratic inequality

with unstructured norm-bounded un-
certainty, 89–91

of uncertain CQI with simple ellipsoidal
uncertainty, 91–96

of uncertain CQI with simple interval
uncertainty, 84–85

of uncertain CQI with unstructured norm-
bounded uncertainty, 85–89

of uncertain LMI with unstructured norm-
bounded uncertainty, 121–122

of uncertain LO problem, 9–13
Robust Optimization

adjustable
motivation, 209–211

safe tractable approximation of robust coun-
terpart, 81

conservatism of, 82
tightness factor of, 82

scenario uncertainty, 83, 217
Schur Complement Lemma, 87
SDO, see Semidefinite Optimization
SDP, see Semidefinite Optimization problem
Semidefinite Optimization, see Semidefinite

Optimization problem
Semidefinite Optimization problem, 78

uncertain, 119
Second Order Conic Optimization, see Conic

Quadratic Optimization problem
Semidefinite Optimization problem, 269
Semidefinite problem, see Semidefinite Op-

timization problem
semidefinite program, see Semidefinite Op-

timization problem
structural design, 122

robust, 122–131, 154–157
synthesis of robust linear controllers

via Adjustable Robust Optimization, 241–
255

on finite time horizon, 243–249
under infinite-horizon design specifica-

tions, 249–252

tractability of Convex Programming, 277–
283

tractable representation of the RC of
an uncertain linear constraint, 16–21
uncertain conic constraint with scenario

uncertainty, 83–84
uncertain convex quadratic inequality

with unstructured norm-bounded un-
certainty, 89–91

uncertain CQI with simple ellipsoidal
uncertainty, 91–96

uncertain CQI with simple interval un-
certainty, 84–85

uncertain CQI with unstructured norm-
bounded uncertainty, 85–89

uncertain LMI with unstructured norm-
bounded uncertainty, 121–122

uncertainty, 1
∩-ellipsoidal, 114
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in data, see data uncertainty
set, 7
scenario-generated, 217

side-wise, 84
simple ellipsoidal, 86
structured norm-bounded, 100
unstructured norm-bounded, 85


