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& To make decisions optimally is one of the
most basic desires of a human being.
Whenever the candidate decisions, design re-
strictions and design goals can be properly
quantified, optimal decision-making yields
an optimization problem, most typically, a
Mathematical Programming one:

minimize
f(x) [ objective ]
subject to )
| B . equality
hi(r) = 0,i=1,..,m constraints
_ inequality
. < = .
gj(z) < 0,j=1,..,k constraints
r € X [ domain ]

(MP)
& In (MP),
> a solution x € R™ represents a candidate
decision,
{> the constraints express restrictions on
the meaningful decisions (balance and state
equations, bounds on resources, etc.),
> the objective to be minimized represents
the losses (minus profit) associated with a
decision.



minimize

f(x) [ objective ]
subject to )

| B . equality

hi(z) = 0,i=1,...,m constraints
_ inequality

. < p— .
gj(z) < 0,j=1,..,k constraints

r € X [ domain ]

(MP)

& To solve problem (MP) means to find its
optimal solution xz«, that is, a feasible (i.e.,
satisfying the constraints) solution with the
value of the objective < its value at any other
feasible solution:

[ hij(z+) =0Vi & gj(z+) <0Vj & s € X
Tx © hi(x)ZOVi&gj(x)SOVj&ZBEX
\ = f(z+) < f(z)




mwin f(x)

S.t.
hi(z) = 0,i=1,...m (MP)
gj(a:) S O,j:].,...,k

r € X

& In Combinatorial (or Discrete) Optimiza-
tion, the domain X is a discrete set, like the
set of all integral or O/1 vectors.

In contrast to this, in Continuous Optimiza-

tion we will focus on, X is a “continuum”

set like the entire R™,a box {z : a < z < b},

or simplex {x > 0 : } x; = 1}, etc., and the
J

objective and the constraints are (at least)
continuous on X.

& In Linear Programming, X = R™ and the
objective and the constraints are linear func-
tions of zx.

In contrast to this, in Nonlinear Continuous
Optimization, the objective and/or some of
the constraints are nonlinear.



min /()

S.t.
hi(z) = 0,i=1,...m (MP)
gi(z) < 0,j=1,...,k

r € X

& T he goals of our course is to present

e basic theory of Continuous Optimization,
with emphasis on existence and unique-
ness of optimal solutions and their char-
acterization (i.e., necessary and/or suffi-
cient optimality conditions);

e traditional algorithms for building (ap-
proximate) optimal solutions to Contin-
uous Optimization problems.

& Mathematical foundation of Optimization
Theory is given by Convex Analysis — a spe-
cific combination of Real Analysis and Geom-
etry unified by and focusing on investigating
convexity-related notions.



Convex Sets

Definition. A set X C R" is called convex,
if X contains, along with every pair z,y of
its points, the entire segment [x,y] with the
endpoints z, y:

zyc X = r+ (1 —Ny € X Vel[o,1].

Note: when X runs through [0, 1], the point
x4+ ANy —x) =x+ Ay —x) runs through the
segment [z, y].

/
N
N
N
N

N

The set in R?
bounded by red
line is convex

The set in R?
bounded by red
line is not convex

& Immediate examples of convex sets in R™:

o R"
o (
e singleton {z}.



Examples of convex sets, I. Affine sets

Definition: Affine set M in R"™ is a set which
can be obtained as a shift of a linear subspace
L c R™ by a vector a € R":

M=a+L={z=a+y:ye L} (1)

Note: I. The linear subspace L is uniquely
defined by affine subspace M and is the set
of differences of vectors from M:

(DV=L=M-M={y=2"—2":2"2" e M}

II. The shift vector a is not uniquely defined
by affine subspace M; in (1), one can take as
a every vector from M (and only vector from
M):

()=M=d +LVd € M.



III. Generic example of affine subspace: the
set of solutions of a solvable system of linear
equations:

M is affine subspace in R"

(Z)#ME{CIJER”IA:IZZﬁb}E @ —I—:{az:A:czO}:
Aa=b Kera

& By III, affine subspace is convex, due to

Proposition. The solution set of an arbitrary

(finite or infinite) system of linear inequalities

IS convex:

X:{meR”:agxgba,aeA}iX IS convex

In particular, every polyhedral set {x : Az < b}
IS convex.
Proof:

x,y € X, € [0,1]
& alz <bgy, aly <baVa € A, X € [0,1]

= Xa x+(1—/\)£ + (1= Mbo Vo € A
oL a4 (1—\)y] ba

= M+ (1 -XNy] € X Ve [0,1].



Remark: Proposition remains valid when part
of the nonstrict inequalities alz < by are re-
placed with their strict versions alz < b,.

Remark: The solution set

X ={z:alz <bg,ac A}

of a system of nonstrict inequalities is not
only convex, it is closed (i.e., contains limits
of all converging sequences {z; € X}?2; of
points from X).
We shall see in the mean time that
Vice versa, every closed and convex set
X C R" is the solution set of an appropriate
countable system of nonstrict linear inequal-
ities:

X is closed and convex

Y
X={ar;:a;-rw§bi,i= 1,2,...}



Examples of convex sets, II: Unit balls of
norms

Definition: A real-valued function ||z|| on R"
is called a norm, if it possesses the following
three properties:

$ [positivity] ||z]| > O for all  and ||z|| = O iff
x = 0;

{ [homogeneity] ||Ax|| = |Al||x]|| for all vectors
x and reals A;

¢ [triangle inequality] ||z + y|| < [|=]| + [ly|| for
all vectors z,vy.

Proposition: Let || - || be a norm on R™. The
unit ball of this norm — the set {z : ||z|| < 1},
same as any other || - ||-ball {z : ||z — a| < 7},
IS convex.

Proof:

|z —al <rly —al <A e0,1]

= 2‘”33—a,||+(1—>\)”y—au S\)\T"‘(l—)\)’c

Az — )| + 11 = N (y — a)| r
Az —a) + (1 = Ny —a)]
1Az + (1 — Nyl —al

vl

= ||[Dx+ (1 = XNy] —al <7 VXe][O0,1].



Standard examples of norms on R": /,-norms

=1

max |x;|, p =00
. 1

> =[S a? is the standard Eu-
1

clidean norm;

o [[zll1 = Zlwil;
1
o |z]|cc = max|z;| (uniform norm).
2

o 1/p
> g |P , 1<p<oo
lzllp =49 \s

Note: e ||z

Note: except for the cases p =1 and p = o,
triangle inequality for ||-||p requires a nontriv-
ial proof!

Proposition [characterization of || - ||-balls] A
set U in R" is the unit ball of a norm iff U/ is
(a) convex and symmetric w.r.t. 0: V = -V,
(b) bounded and closed, and

(c) contains a neighbourhood of the origin.




Examples of convex sets, III: Ellipsoid

Definition: An ellipsoid in R™ is a set X given
by

{ positive definite and symmetric nxn matrix
Q (that is, Q = Q1 and v Qu > 0 whenever
u 7%= 0),

{ center a € R™,

> radius r > 0

via the relation

X ={z:(x— )'Q(x —a) < 7“2}.

Proposition: An ellipsoid is convex.

Proof:. Since () is symmetric positive def-
inite, by Linear Algebra Q = (Q1/2)2 for
uniquely defined symmetric positive definite
matrix Q1/2. Setting ||z|g = [|QY/?%x|2, we
Clearly get a norm on R™ (since || - |2 is a
norm and Q1/2 is nonsingular). We have

(@ - )TQ@—a) = [(z - a)TQY2[QY2(z — a)]
= |QY2(z — )[3 = |lz — a2,

so that X is a || - ||p-ball and is therefore a
convex set.




Examples of convex sets, IV:
e-neighbourhood of convex set

Proposition: Let M be a nonempty convex
set in R", || - || be a norm, and € > 0. Then
the set

X = {z : disty  (z, M) = inf ||z — y|| <
{a 1z, M) yeMHflj yl| < e}

IS convex.

Proof: z € X if and only if for every ¢ > ¢
there exists y € M such that ||z —y| < €. We
now have

z,y € X, €[0,1]
= Ve >edu,ve M|z —u|| <€ |ly—v|]| <€

= Ve > e3u,v e M :
Mz —ull + (1 =My —v|| <€ VAel0,1]

> || Az (1= A)y]— Dud-(1=A)o] |

= Ve >evVAe [0,1]3w = u+ (1 -XNvEM:
Az 4+ (1 =Nyl —w| <€

= A+ (1—Nye X Vxelo,1]



Convex Combinations and Convex Hulls

Definition: A convex combination of m vec-
tors x1,...,xm € R"™ is their linear combination

> i
i

with nonnegative coefficients and unit sum
of the coefficients:

A >0Vi, Y A\ =1.

1



Proposition: A set X C R"™ is convex iff it is
closed w.r.t. taking convex combinations of
its points:

X IS convex

0

miGX,)\Z'ZO,Z)\Z': 1:>Z)\Zw7;€X.
? ?

Proof, =: Assume that X is convex, and
let us prove by induction in k£ that every k-
term convex combination of vectors from X
belongs to X. Base £ = 1 is evident. Step

k:>k—|—l' let zq1,...,2p,41 € X and A; > 0O,

k+1
Z A; = 1; we should prove that > \xz; € X.
1=1 1=1
Assume w.l.o.g. that 0 < A4 1 < 1. Then

k41 k \;
2 A = (1= Agg1) Z ;
i=1 =11 = Apt1

\ 4

cX
+>‘k—|—1xk—|—1 e X.

Proof, «<: evident, since the definition of
convexity of X is nothing but the require-
ment for every 2-term convex combination
of points from X to belong to X.



Proposition: The intersection X = ) X of
acA
an arbitrary family {Xa}q,ea Of convex sub-

sets of R" is convex.
Proof:. evident.

Corollary: Let X C R™ be an arbitrary set.
Then among convex sets containing X (which
do exist, e.g. R"™) there exists the smallest
one, namely, the intersection of all convex
sets containing X.

Definition: The smallest convex set contain-
ing X is called the convex hull Conv(X) of X.




Proposition [convex hull via convex combina-
tions] For every subset X of R", its convex
hull Conv(X) is exactly the set X of all con-
vex combinations of points from X.

Proof. 1) Every convex set which con-
tains X contains every convex combination of
points from X as well. Therefore Conv(X) D
X.

2) It remains to prove that Conv(X) Cc X. To
this end, by definition of Conv(X), it suffices
to verify that the set X contains X (evident)
and is convex. To see that X is convex, let

—

r =) vx, y = X px; be two points from X

7 7
represented as convex combinations of points
from X, and let A € [0,1]. We have

A+ (1 -y = Z[Al/i + (1 — Ml

i.e., the left hand side vector is a convex com-
bination of vectors from X.



Convex hull of the set

- i [ 2
4-point set in R (red triangle)




Examples of convex sets, V: simplex

Definition: A collection of m—41 points z;, : =
0,....,m, in R" is called affine independent, if
no nontrivial combination of the points with
zero sum of the coefficients is zero:

xo, -.-, Tm are affine independent

0
m
Z Nixr; =0 & ZAiZO:>)\i:O,O§i§m
1

1=0

Motivation: Let X C R™ be nonempty.

I. For every nonempty set X € R", the in-
tersection of all affine subspaces containing
X is an affine subspace. This clearly is the
smallest affine subspace containing X; it is
called the affine hull Aff(X) of X.

II. It is easily seen that Aff(X) is nothing but
the set of all affine combinations of points
from X, that is, linear combinations with unit
sum of coefficients:

( (




III. m 4+ 1 points =z, ..., zm are affinely inde-
pendent iff every point z € Aff({zq, ..., zm}) Of
their affine hull can be uniquely represented
as an affine combination of xq, ..., xm:

DNz = i & Y M=) pi=1=XN=

In this case, the coefficients A; in the repre-
sentation

m
Ir — Z )‘ixi [Z)\Z: 1]
1=0

1

of a point ¢ € M = Aff({zqg,...,zm}) as an
affine combination of xq, ...,z are called the
barycentric coordinates of x € M taken w.r.t.
affine basis xqg, ..., xm Of M.



Definition: m-dimensional simplex A with
vertices xq, ..., zm IS the convex hull of m 41
affine independent points xq, ..., xm:

A = A(xg,...,xm) = Conv({zqg, ..., zm}).

Examples: A. 2-dimensional simplex is given
by 3 points not belonging to a line and is the
triangle with vertices at these points.

B. Let eq,...,en be the standard basic or-
ths in R"™. These n points are affinely in-
dependent, and the corresponding (n — 1)-
dimensional simplex is the standard simplex
Ap={zcR":22>0,> 7, =1}

C. Adding to eq,...,en Zthe vector eg = 0, we
get n+1 affine independent points. The cor-

responding n-dimensional simplex is
A ={zcR":z>0,Yx <1}.
1

Simplex with vertices xq, ..., zm iS convex (as
a convex hull of a set), and every point from
the simplex is a convex combination of the
vertices with the coefficients uniquely defined
by the point.



Examples of convex sets, VI: cone

Definition: A nonempty subset K of R" is
called conic, if it contains, along with every
point x, the entire ray emanating from the
origin and passing through «:

K is conic

T
K#*0)&V(re K,t >0):txr e K.

A convex conic set is called a cone.

Examples: A. Nonnegative orthant

Rl ={zrecR":z >0}

B. Lorentz cone

L"={zxzeR":z, > \/$%+...—|—CU%_1}

C. Semidefinite cone S7}|_. This cone “lives”
in the space S™ of n x n symmetric matrices
and is comprised of all positive semidefinite
symmetric n X n matrices



D. The solution set {z : alz < OVa € A}
of an arbitrary (finite or infinite) homoge-
neous system of nonstrict linear inequalities
IS a closed cone. In particular, so is a poly-
hedral cone {x : Az < 0}.

Note: Every closed cone in R"™ is the solution
set of a countable system of nonstrict linear
inequalities.

Proposition: A nonempty subset K of R" is
a cone iff
$ K is conic: z€ K,t > 0=txr € K, and
$ K is closed w.r.t. addition:

r,yce K=>x+yec K.
Proof, =: Let K be convex and z,y € K,
Then 3(z +y) € K by convexity, and since
K is conic, we also have x4+ vy € K. Thus, a
convex conic set is closed w.r.t. addition.
Proof, <: Let K be conic and closed w.r.t.
addition. In this case, a convex combination
Ax + (1 — M)y of vectors =,y from K is the
sum of the vectors Az and (1 — \)y and thus
belongs to K, since K is closed w.r.t. addi-
tion. Thus, a conic set which is closed w.r.t.
addition is convex.




& Cones form an extremely important class
of convex sets with properties “parallel” to
those of general convex sets. For example,
{ Intersection of an arbitrary family of cones
again is a cone. As a result, for every
nonempty set X, among the cones containing
X there exists the smallest cone Cone (X),
called the conic hull of X.

> A nonempty set is a cone iff it is closed
w.r.t. taking conic combinations of its ele-
ments (i.e., linear combinations with nonneg-
ative coefficients).

> The conic hull of a nonempty set X is
exactly the set of all conic combinations of
elements of X.



“Calculus” of Convex Sets

Proposition. The following operations pre-
serve convexity of sets:

1. Intersection: If X, ¢ R", o &€ A, are

convex sets, sois (| Xa
aceA

2. Direct product: If X, C R are convex
sets, /¥ =1,..., L, so is the set

X = X1 X..XxXXj
= {xZ(xl,...,xL):xEEXg,lgﬁgL}
C Rnl—l—...—l—nL

3. Taking weighted sums: Let Xq,..., X}
be nonempty convex subsets in R"™ and
A1, ...,Ar, be reals. Then the set

AMX1+ .+ ALX]
= {z=MNz1+ ..+ A\fzp x,€ X1 <0< L}

IS convex.



4. Affine image: Let X C R"™ be convex
and z — A(x) = Ax+ b be an affine mapping
from R™ to RF. Then the image of X under
the mapping — the set

AX)={y=Az+b:x € X}
IS convex.

5. Inverse affine image: Let X C R" be
convex and y — A(y) = Ay + b be an affine
mapping from R* to R™. Then the inverse
image of X under the mapping — the set

AN X)) ={y: Ay+be X}

IS convex.



Application example: A point x € R" is

(a) “good”, if it satisfies a given system of
linear constraints Ax < b,

(b) “excellent”, if it dominates a good point:
dy: y is good and = > y,

(c) “semi-excellent”, if it can be approxi-
mated, within accuracy 0.1 in the coordinate-
wise fashion, by excellent points:

V(i,e >0.1)3y : |y; —x;| <€ & y is excellent

Question: Whether the set of semi-excellent
points is convex?

Answer: Yes. Indeed,

e The set Xy of good points is convex (as a
polyhedral set)

e = [ he set Xexc Of excellent points is con-
vex (as the sum of convex set Xg and the
nonnegative orthant R, which is convex)

e = For every i, the set X} of i-th coor-
dinates of excellent points is convex (as the
projection of Xexc onto :-th axis; projection
is an affine mapping)



e = For every i, the set Y* on the axis which
is the 0.1-neighbourhood of X{.., is convex
(as 0.1-neighbourhood of a convex set)

e = [ he set of semi-excellent points, which
is the direct product of the sets Y1 ... v”»,
is convex (as direct product of convex sets).



Nice Topological Properties of Convex Sets

& Recall that the set X € R" is called
{ closed, if X contains limits of all converg-
ing sequences of its points:

xv, € X & x;—x,1—00=>x€X

{> open, if it contains, along with every of its
points x, a ball of a positive radius centered
at x:

reX=Ir>0:{y:|ly—=z|<r}CX.

E.g., the solution set of an arbitrary system
of nonstrict linear inequalities {z : alz < by}
iIs closed; the solution set of finite system of
strict linear inequalities {z : Ax < b} is open.

Facts: A. X is closed iff R"\ X is open

B. The intersection of an arbitrary family of
closed sets and the union of a finite family of
closed sets are closed

B’. The union of an arbitrary family of open
sets and the intersection of a finite family of
open sets are open



& From B it follows that the intersection of
all closed sets containing a given set X Is
closed: this intersection, called the closure
clX of X, is the smallest closed set contain-
ing X. clX is exactly the set of limits of all
converging sequences of points of X:

ClX ={z:3z; € X 1z = lim x;}.

1— 00

$ From B’ it follows that the union of all
open sets contained in a given set X is open,
this union, called the interior intX of X, is
the largest open set contained X. intX is
exactly the set of all interior points of X —
points = belonging to X along with balls of
positive radii centered at the points:

intX={z:3r>0:{y:|ly—z|o <r}C X}

S Let X ¢ R®. Then intX € X C clX.
The “difference” 90X = clX\intX is called the
boundary of X; boundary always is closed (as
the intersection of the closed sets clX and
the complement of intX).



ntX C X C clX (%)

& In general, the discrepancy between intX
and clX can be pretty large.

E.g., let X ¢ R! be the set of irrational num-
bers in [0,1]. Then intX = 0, clX = [0, 1],
so that intX and clX differ dramatically.

& Fortunately, a convex set is perfectly well
approximated by its closure (and by interior,
if the latter is nonempty).

Proposition: Let X C R"™ be a nonempty con-
vex set. Then

(i) Both intX and clX are convex

(ii) If intX is nonempty, then intX is dense
in clX. Moreover,

x e intX, yeclX = 0
Ar+ (1 — XNy €intX VA € (0, 1] '



e Claim (i): Let X be convex. Then both
intX and clX are convex

Proof. (i) is nearly evident. Indeed, to prove
that intX is convex, note that for every two
points z,y € intX there exists a common
r > 0 such that the balls Bz, By of radius
r centered at x and y belong to X. Since X
is convex, for every X € [0,1] X contains the
set ABz + (1 — A\)By, which clearly is noth-
ing but the ball of the radius r centered at
A+ (1 —XN)y. Thus, Ax+ (1 — Ny € intX for
all X € [0, 1].

Similarly, to prove that clX is convex, assume
that =,y € clX, so that x = lim;_, x; and

y = lim y,; for appropriately chosen x;,y; € X.
1— 00

Then for A € [0,1] we have

Az + (1 =Ny = lim Az; + (1 — Myil,
e exX
so that Az + (1 — M)y € clX for all XA € [0, 1].



e Claim (ii): Let X be convex and intX be
nonempty. Then intX is dense in clX; more-
oVer,

x e intX, yeclX = 0
A+ (1 — Ny €intX VA € (0, 1] '

Proof. It suffices to prove (!). Indeed, let
x € intX (the latter set is nonempty). Ev-
ery point x € clX is the limit of the sequence
v, = 1z + (1 —%)a:. Given (1), all points x;
belong to intX, thus intX is dense in clX.



e Claim (ii): Let X be convex and intX be
nonempty. T hen

zeintX,yeclX = 0
Ar+ (1 — Ny €intX VA € (0, 1] '

Proof of (!): Let x € intX, y € clX, X\ €
(0,1]. Let us prove that x4+ (1 —-XN)y € intX.
Since z € intX, there exists r > 0 such that
the ball B of radius r centered at x belongs
to X. Since y € clX, there exists a sequence
y; € X such that y =1lim; ., y;- Now let

AB 4+ (1 - Ny,
{e=De+ A - Nyl +Ad:ld]]2 <7}

2
= {z=2z+ 24| <= Ad}.

Since B C X, y; € X and X is convex, the sets
B* (which are balls of radius ' > 0 centered
at z;) contain in X. Since z; — 2z = Az +
(1 — XNy as ¢ — oo, all these balls, starting
with certain number, contain the ball B’ of
radius r’/2 centered at z. Thus, B’ C X, i.e.,
z €eintX.

Bi




& Let X be a convex set. It may happen that
intX =0 (e.g., X is a segment in 3D); in this
case, interior definitely does not approximate
X and clX. What to do?

The natural way to overcome this difficulty is
to pass to relative interior, which is nothing
but the interior of X taken w.r.t. the affine
hull Aff(X) of X rather than to R"™. This
affine hull, geometrically, is just certain R™
with m < n; replacing, if necessary, R"™ with
this R™, we arrive at the situation where intX
IS honempty.

Implementation of the outlined idea goes
through the following

Definition: [relative interior and relative bound-
ary] Let X be a nonempty convex set and M
be the affine hull of X. The relative interior
rint X is the set of all point x € X such that
a ball in M of a positive radius, centered at
x, 1S contained in X:

rintX = {z:3r >0:
{y € AfI(X), |ly — z[2 < r} C X}.

The relative boundary of X is, by definition,
clX\rint X.




Note: An affine subspace M is given by a
list of linear equations and thus is closed; as
such, it contains the closure of every sub-
set Y C M, this closure is nothing but the
closure of Y which we would get when re-
placing the original “universe” R"™ with the
affine subspace M (which, geometrically, is
nothing but R™ with certain m < n).

The essence of the matter is in the following
fact:

Proposition: Let X C R™ be a nonempty con-
vex set. Then rint X #£ 0.




& Thus, replacing, if necessary, the original
“universe” R™ with a smaller geometrically
similar universe, we can reduce investigating
an arbitrary nonempty convex set X to the
case where this set has a nonempty interior
(which is nothing but the relative interior of
X). In particular, our results for the “full-
dimensional” case imply that

For a nonempty convex set X, both rint X
and clX are convex sets such that

D #rint X C X CclX C Aff(X)

and rint X is dense in clX. Moreover, when-

ever x € rint X, y € clX and X € (0,1], one
has

A+ (1 — Ny €rint X.



D #= X is convex 7?7 = 7?7 rintX £ 0

Proof. 1Y. Shifting X, we may assume
w.l.0.g. that 0 € X, so that Aff(X) is merely
a linear subspace L in R".

20, It may happen that L = {0}. Here
X = {0} = L, whence the interior of X taken
w.r.t. L is X and thus is nonempty.



39, Now let L #= {0}. Since 0 € X, L =
AfF(X) (which always is the set of all affine
combinations of vectors from X) is the same
as the set of all linear combinations of vectors
from X, i.e., is the linear span of X. Since
dim L > 0, we can choose in L a linear basis
€1,.--,em With e1,....,em € X. Setting eg =0 &
X, we get m + 1 affine independent vectors
ep, ---,em iN X. Since X is convex, the simplex
A with vertices eg = 0,e1,...,em IS contained
in X. Thus,

m m
X:)A:{mz.Z)\ieii)\ZO,'Z)\izl}
. 1=0 =0
D) {:U = > A€ i A1,...,Am >0, > N\ < 1}.
1=1 1=1

We see that X contains all vectors from L
for which the coordinates w.r.t. the basis
{e1,...,em} are positive and with sum < 1.
This set is open in L. Thus, the interior of
X w.r.t. L is nonempty.



& Let X be convex and = € rint X. AsS we
know,

AeEO,1l,yecX=y,=Xz+ (1 — Ny € X.

It follows that in order to pass from X to its
closure clX, it suffices to pass to “radial clo-
sure’:

For every direction 0 = d € Aff(X) — z, let
Td:{tZOIf—I—thX}.

Note: T, is a convex subset of R which con-
tains all small enough positive t's.

& If Ty is unbounded or is a bounded seg-
ment: Ty, = {t: 0 <t <t(d) < <}, the inter-
section of clX with the ray {x +td : t > O}
is exactly the same as the intersection of X
with the same ray.

& If Ty is a bounded half-segment: T,; = {t:
0 <t < t(d) < o<}, the intersection of clX
with the ray {x +td : ¢t > 0} is larger than the
intersection of X with the same ray by ex-
actly one point, namely, x4+ t(d)d. Adding to
X these “missing points” for all d, we arrive
at clX.



Main Theorems on Convex Sets, I:
Caratheodory Theorem

Definition: Let M be affine subspace in R",
so that M = a + L for a linear subspace L.
The linear dimension of L is called the affine
dimension dim M of M.

Examples: The affine dimension of a single-
ton is 0. The affine dimension of R" is n.
The affine dimension of an affine subspace
M = {x : Az = b} is n — Rank(A).

For a nonempty set X C R", the affine di-
mension dim X of X is exactly the affine di-
mension of the affine hull Aff(X) of X.

Theorem [Caratheodory] Let 0 = X C R"™.
Then every point z € Conv(X) is a convex
combination of at most dim(X) + 1 points
of X.




Theorem [Caratheodory] Let ) = X C R".
Then every point z € Conv(X) is a convex
combination of at most dim(X) 4+ 1 points
of X.

Proof. 1. We should prove that if z is a
convex combination of finitely many points
x1,...,x Of X, then x is a convex combina-
tion of at most m + 1 of these points, where
m = dim(X). Replacing, if necessary, R"
with Aff(X), it suffices to consider the case

of m = n.

20, Consider a representation of z as a con-
vex combination of zq,...,z with minimum
possible number of nonzero coefficients, it
suffices to prove that this number is < n-+41.
Let, on the contrary, the “minimum repre-
sentation” of x

p
T= ) AN [A; > 0,2 A = 1]
i=1

has p > nm + 1 terms.



30, Consider the homogeneous system of
linear equations in p variables o;

( p
(a) > d;xz; = O [n linear equations]
i=1

(b) Bl >.96; = 0 [single linear equation]
1

\
Since p > n + 1, this system has a nontrivial
solution 0. Observe that for every t > 0 one
has

p
Tr = Sj \[Ai + tézlxz& Z)\Z‘(t) = 1.
1=1 )\;(rt) 1




5 5#0 & ¥6,=0
7

Vi >0: x= % IAZ +tdzlxz& Z)\Z(t) =1.

1=1 )\i‘(’ﬂ )

& When t = 0, all coefficients \;(t) are non-

negative

$ When t — oo, some of the coefficients

A;(t) go to —oco (indeed, otherwise we would

have §; > 0 for all z, which is impossible since

> §; = 0 and not all §; are zeros).

1
{ It follows that the quantity
* — max{t t>0 & )\Z(t) > O\V/’L}

is well defined;: when t = t4, all coefficients
in the representation

p
Tr = Z A (tx)x;
1=1

are nonnegative, sum of them equals to 1,
and at least one of the coefficients X\;(t«)
vanishes. This contradicts the assumption
of minimality of the original representation
of £ as a convex combination of x;.



Theorem [Caratheodory, Conic Version.] Let
0 = X C R™. Then every vector x € Cone (X)
IS @ conic combination of at most n vectors
from X.

Remark: The bounds given by Caratheodory
Theorems (usual and conic version) are sharp:
{ for a simplex A with m—+1 vertices vg, ..., vm
one has dimA = m, and it takes all the ver-

m
tices to represent the barycenter #H > v
i=0

as a convex combination of the vertices;

> The conic hull of n standard basic orths
in R™ is exactly the nonnegative orthant R",
and it takes all these vectors to get, as their
conic combination, the n-dimensional vector
of ones.



Problem: Supermarkets sell 99 different herbal
teas; every one of them is certain blend of
26 herbs A,...,Z. In spite of such a variety of
marketed blends, John is not satisfied with
any one of them:; the only herbal tea he likes
IS their mixture, in the proportion

1:2:3:...:98:99

Once it occurred to John that in order to pre-
pare his favorite tea, there is no necessity to
buy all 99 marketed blends; a smaller number
of them will do. With some arithmetics, John
found a combination of 66 marketed blends
which still allows to prepare his tea. Do you
believe John's result can be improved?



Theorem [Radon] Let zq,...,2y, bem > n+2
vectors in R"™. One can split these vec-
tors into two nonempty and non-overlapping
groups A, B such that

Conv(A) N Conv(B) # 0.

Proof. Consider the homogeneous system
of linear equations in m variables §;:

2

m
> d;,x; = 0O [n linear equations]
i=1

m

> 9; = 0 [single linear equation]
| =1

Since m > n + 2, the system has a nontrivial
solution §. Setting I = {i : §; > 0}, J =
{t : §; < 0}, we split the index set {1,...,m}
into two nonempty (due to § # 0,3 ud; = 0)

1

groups such that

> 6z = 3 [—dj]z;

el jeJ
Y= 0= > —0;>0
el jeJ
whence
d; —5j

D i >

icl Y jeg 7V
Rf_/ \ ~ 7/
eConv({z;:icA})  eConv({z;:j€B})




Theorem [Helley] Let Aq,...,Ap; be convex
sets in R™. Assume that every n+1 sets from
the family have a point in common. Then all
sets also have point in common.

Proof: induction in M. Base M <n+4+1 is
trivially true.

Step: Assume that for certain M > n+1
our statement hods true for every M-member
family of convex sets, and let us prove that it
holds true for M+ 1-member family of convex
sets Aq, ..., Apr41.

> BYy inductive hypotheses, every one of the
M + 1 sets

By=A1NA>N...NAp_1N Ag_|_1 M...MN AM—I—l

IS nonempty. Let us choose z, € By,
¢ =1,...M + 1. < By Radon’'s Theorem,
the collection zq,...,zp;41 Can be split in
two sub-collections with intersecting convex
hulls. W.l.0.9., let the split be {z1,...,x;_1}U

{zg,..,zpr41}, and let

z € COﬂV({wl, eey QZJ_l}> ﬂ COnV({QSJ, ey a:M_|_1})



Situation: z; belongs to all sets A, except,
perhaps, for Aj and

z € COﬂV({wl, ooy QZJ_l}) ﬂ Conv({a;J, ey $M+1})

Claim: ze Ay forall /< M+ 1 (Q.E.D.)
Indeed, for ¢ < J—1, thepointszj,z541,...,Tp41
belong to the convex set Ay, whence

z € Conv({x, °"7$M—|—1}) C Ay.
For ¢ > J, the points z,...,x5_1 belong to
the convex set A,, whence

z € Conv({xq,....,x5_1}) C Ay



Refinement: Assume that A4, ..., Ay, are con-
vex sets in R™ and that

{ the union A1 U A> U ...U Ays of the sets
belongs to an affine subspace P of affine di-
mension m

& every m + 1 sets from the family have a
point in common

Then all the sets have a point in common.
Proof. We can think of A; as of sets in P,
or, which is the same, as sets in R™ and apply
the Helley Theorem!




Exercise: We are given a function f(x) on a
7,000,000-point set X C R. At every 7-point
subset of X, this function can be approxi-
mated, within accuracy 0.001 at every point,
by appropriate polynomial of degree 5. To
approximate the function on the entire X, we
want to use a spline of degree 5 (a piecewise
polynomial function with pieces of degree 5).
How many pieces do we need to get accuracy
0.001 at every point?

Answer: Just one. Indeed, let A,, x € X, be
the set of coefficients of all polynomials of
degree 5 which reproduce f(x) within accu-
racy 0.001:

Az = {p — (p07 "°7p5) S R6 :
5 :
f(x) — _Zopiaﬂ < 0.001}.
1=

The set A, is polyhedral and therefore con-
vex, and we know that every 6 4+ 1 = 7 sets
from the family {Az},.cx have a point in com-
mon. By Helley Theorem, all sets A;, x € X,
have a point in common, that is, there exists
a single polynomial of degree 5 which ap-
proximates f within accuracy 0.001 at every
point of X.




Exercise: We should design a factory which,
mathematically, is described by the following
Linear Programming model:

Ax > d [dl,...,dloooi demands]
Bx < f [f1,...,f10: facility capacities]
Cx < ¢ [other constraints]

(F)
The data A, B,C,c are given in advance. We
should create in advance facility capacities f;,
= 1,...,10, in such a way that the factory
will be capable to satisfy all demand scenar-
ios d from a given finite set D, that is, (F)
should be feasible for every d € D. Creating
capacity f; of +-th facility costs us a;f;.
It is known that in order to be able to sat-
isfy every single demand from D, it suffices
to invest $1 in creating the facilities.
How large should be investment in facilities
in the cases when D contains
{> just one scenario?
{> 3 scenarios?
> 10 scenarios?
> 2004 scenarios?



Answer: D = {d1} = $1 is enough

D = {dq,ds,d3} = $3 is enough

D = {d,...,d10} = $10 is enough

D = {dl, ...,d2004} = $11 is enough!

Indeed, for d € D let F; be the set of all
f e RO £ >0 which cost at most $11 and
result in solvable system

Ax
Bx
Cx

in variables x. The set F,; is convex (why7),
and every 11 sets of this type have a common
point. Indeed, given 11 scenarios d?!, ..., d1
from D, we can “materialize” d* with appro-
priate f* > 0 at the cost of $1; therefore we
can “materialize” every one of the 11 scenar-
ios d1,...,d*! by a single vector of capacities
fl4 .. 411 at the cost of $11, and therefore
this vector belongs to F,..., F 1.

Since every 11 of 2004 convex sets F; ¢ R10,
d € D, have a point in common, all these sets
have a point f in common; for this f, every
one of the systems (F'[d]), d € D, is solvable.

d
f (Fld])

C

INIA TV



Exercise: Consider an optimization program

Cx = {CTCB cg;(x) <0,1=1, ...,2004}

with 11 variables zq1,...,x17. Assume that the
constraints are convex, that is, every one of
the sets

X; = {ZB : gz(ac) < O}, 1 =1,...,2004

IS convex. Assume also that the problem is
solvable with optimal value O.

Clearly, when dropping one or more con-
straints, the optimal value can only decrease
or remain the same.

{ Is it possible to find a constraint such that
dropping it, we preserve the optimal value?
Two constraints which can be dropped si-
multaneously with no effect on the optimal
value? Three of them?



Answer: You can drop as many as 2004 —
11 = 1993 appropriately chosen constraints
without varying the optimal value!

Assume, on the contrary, that every 11-
constraint relaxation of the original problem
has negative optimal value. Since there are
finitely many such relaxations, there exists
e < 0 such that every problem of the form

mxin{CTx : gzl(ﬂﬁ) S 07 "'7gi11(m) S O}

has a feasible solution with the value of the
objective < —e. Since this problem has a fea-
sible solution with the value of the objective
equal to 0 (namely, the optimal solution of
the original problem) and its feasible set is
convex, the problem has a feasible solution «x
with ¢z = —e. In other words, every 11 of
the 2004 sets

Y, ={z:c'z = —¢¢;(z) <0}, i=1,..,2004

have a point in common.



Every 11 of the 2004 sets
V; ={z:c'z = —¢¢;(z) <0}, i=1,..,2004

have a point in common!

The sets Y, are convex (as intersections of
convex sets X, and an affine subspace). If
c #= 0, then these sets belong to affine sub-
space of affine dimension 10, and since ev-
ery 11 of them intersect, all 2004 intersect;
a point x from their intersection is a feasible
solution of the original problem with ¢f'z < 0,
which is impossible.

When ¢ = 0, the claim is evident: we can
drop all 2004 constraints without varying the
optimal value!



Helley Theorem II: Let A,, o € A, be a fam-
ily of convex sets in R"™ such that every n+1
sets from the family have a point in common.
Assume, in addition, that

> the sets A, are closed

¢ one can find finitely many sets Aqq, ..., Aay,
with a bounded intersection.

Then all sets Aq, o € A, have a point in com-
mon.

Proof. By the Helley Theorem, every finite
collection of the sets A, has a point in com-
mon, and it remains to apply the following
standard fact from Analysis:

Let B, be a family of closed sets in R™ such
that

> every finite collection of the sets has a
nonempty intersection:;

& in the family, there exists finite collection
with bounded intersection.

Then all sets from the family have a point in
common.




Proof of the Standard Fact is based upon
the following fundamental property of R™:

Every closed and bounded subset of
R"™ is a compact set.

Recall two equivalent definitions of a com-
pact set:

A subset X in a metric space M is called
compact, if from every sequence of points of
X one can extract a sub-sequence converg-
ing to a point from X

A subset X in a metric space M is called
compact, if from every open covering of X
(i.e., from every family of open sets such that
every point of X belongs to at least one of
them) one can extract a finite sub-covering.



Now let B, be a family of closed sets in R"
such that every finite sub-family of the sets
has a nonempty intersection and at least one
of these intersection, let it be B, is bounded.
et us prove that all sets B, have a point in
common.

e Assume that it is not the case. Then for
every point x € B there exists a set B, which
does not contain . Since B, is closed, it
does not intersect an appropriate open ball
Vz centered at x. Note that the system {V; :
x € B} forms an open covering of B.

e By its origin, B is closed (as intersection
of closed sets) and bounded and thus is a
compact set. Therefore one can find a finite
collection Viq,...,Vz,, which covers B. For
every 1 < M, there exists a set By, in the

family which does not intersect V;,; therefore

M
(N Bqa; does not intersect B. Since B itself is
i=1
the intersection of finitely many sets B,, we

see that the intersection of finitely many sets
Ba (those participating in the description of
B and the sets Bgy,...,Ba,,) is empty, which
IS a contradiction.



Theory of Systems of Linear Inequalities, I
Homogeneous Farkas Lemma

& Question: When a vector a € R™ js a conic
combination of given vectors a1,...,am 7

Answer:. [Homogeneous Farkas Lemma] A
vector a € R™ can be represented as a conic

m

combination >, X\a;, \; > 0, of given vectors
i=1

ai,...,am € R"™ iff the homogeneous linear in-

equality
alz >0 (1)

IS a consequence of the system of homoge-
neous linear inequalities

a?wZO, i=1,....m (S)
i.e., iff the following implication is true:

a,LT:BZO, i=1,...,m=a'z>0. (%)

m

Proof, =: If a = >  \;a; with A\; > 0, then,
i=1

of course, alz = Y Njalz for all z, and (x)
1

clearly is true.



Te>0,i=1,...,m=a'z>0. (%)

Proof, <: Assume that (%) is true, and let
us prove that a is a conic combination of
ai,...,am. The case of a = 0 is trivial, thus
assume that a # 0.

19, Let

A; = {:13 caly = —1,azTas > O}, 1=1,...,m.
Note that A; are convex sets, and their
intersection is empty by (x). Consider a
minimal, in number of sets, sub-family of
the family A4, ..., Ay, with empty intersection;
w.l.0.g. we may assume that this sub-family
is Aq1,...,Ar. Thus, the k sets Aq,..., A, do
not intersect, while every k — 1 sets from this
family do intersect.

20, Claims: A: Vector a is a linear combina-
tion of vectors aq, ..., a

B: Vectors ay,...,a; are linearly independent




Situation: Thesets A; = {z : alz = —l,a;-rac >
O}, ¢ = 1,...,k, are such that the k sets
A1,...,Ap do not intersect, while every £ — 1
sets from this family do intersect.

Claim A: Vector a is a linear combination of
vectors aq, ..., ay

Proof of A: Assuming thata & Lin({aq,...,ar}),
there exists a vector h with alh #% 0 and
alh =0, i =1,..,k (you can take as h the
projection of a onto the orthogonal comple-
ment of ay,...,a;). Setting z = —(alh)1h,
we get alz=-1landal/z=0,i=1,..,k, so
that x € A;, : = 1,..., k, which is a contradic-
tion.




Situation: Thesets A; = {z:alz = —-1,al 2z >
0}, ¢ = 1,..,k, are such that the k sets
A1,...,A do not intersect, while every £ — 1
sets from this family do intersect.

Claim B: Vectors aq,...,a; are linearly inde-
pendent




Proof of B: The case of £k = 1 is evident.
Indeed, in this case we should prove that
a1 7= 0; ifag =0 and k=1, then by Claim A
also a = 0, which is not the case. Thus, let
us prove Claim B in the case of k£ > 1.
Assume, on the contrary, that
E = Liﬂ({al, ...,ak})

is of dimension r < k, and let

Bi={z € E:alz= —1,a?3320}.
$ By Claim A, O % a € E, so that B; be-
long to (r — 1)-dimensional affine subspace
M ={zx € E:alz = —1}. We claim that
every r of the sets Bj,...,B; have a point
in common. Indeed, to prove, e.g., that
B1,...,Br have a point in common, note that
r < k and therefore the sets Aq,..., Ar have a
point in common; projecting this point onto
E, we clearly get a point from By N...N By.
$ Bi,..., B are convex subsets in (m — 1)-
dimensional affine subspace, and every m
of them have a common point. By Helley
Theorem, all k sets Bq,..., B, have a com-
mon point, whence A4, ..., A, have a common
point, which is a contradiction.



30, By Claim A,

k
a — Z )\Z’CLZ'
1=1

with certain coefficients ;. All we need is to
prove that A\; > 0. To this end assume that
certain \;, say, A1, is < 0. By claim B, the
vectors aq, ...,a; are linearly independent, and
therefore there exists a vector x such that

a{x =1, a;-ra: =0,2=2,...,k.

Since A1 <0, it follows that

o'z = Ala{az < 0,

and the vector

_ Xr
T =
al'z|
clearly satisfies
alZ=-1,al2>0, al2=0,i=2,..,k,

that is, z € A1 N...N A, which is a contradic-
tion.



Theory of Systems of Linear Inequalities, II
Theorem on Alternative

& A general (finite!) system of linear inequal-
ities with unknowns = € R™ can be written
down as

T

a:x > b
az-Tx > b (5)
Question: How to certify that (S) is solvable?
Answer:. A solution is a certificate of solvabil-
ity!

Question: How to certify that S is not solv-
able?

Answer: 777




~

- xr > bz 1 =1, ... ms
Y Y Y S
a;x > b,i=ms—+1,....m (5)

N'ﬂ@

Question: How to certify that S is not solv-
able?

Conceptual sufficient insolvability condition:

If we can lead the assumption that x solves
(S) to a contradiction, then (S) has no solu-
tions.

“Contradiction by linear aggregation”: Let us
associate with inequalities of (S) nonnegative
weights A; and sum up the inequalities with
these weights. The resulting inequality

/

m
m T | > Ab;, > As>0
> Aiai| x4 ’ e (C)
=1 > Z)\sz, >, As =0
1 =1

\

by its origin is a consequence of (S), that is,
it is satisfied at every solution to (S).
Consequently, if there exist A > 0 such that
(C) has no solutions at all, then (S) has no
solutions!



Question: When a linear inequality

dTac{i e

has no solutions at all?
Answer: This is the case if and only if d =0

and

— either the sign is " >", and e > 0,

— or the sign is " >", and e > O.



Conclusion: Consider a system of linear in-
equalities

ale > b, i=1,.. ms (5)

a;x > b,i=ms+1,....m

ﬂ@

i
in variables x, and let us associate with it two
systems of linear inequalities in variables \:

( A >0 ( A >0
m m
‘Zl )‘iai = 0 .ZlAiai = 0
1— 1=
. Mg . ™Ms
iy Y >0 TmEy S =0
O O
. =1 \ =1

If one of the systems 11, 111 is solvable, then
(S) is unsolvable.

Note: If 771 is solvable, then already the sys-
tem

CL,LTSU > b, it=ms+1,....m

IS unsolvable!



General Theorem on Alternative: A system
of linear inequalities

T
)
T

1

Is unsolvable iff one of the systems

a;x > bj,1=1,...,ms (S)

a;x > bj,i=ms+1,....m

( A >0 ( A >0
m m
o hNa; = 0 2 ANa; = 0
1— 1=
Mg . Mg
Ty YA >0 iy YA o= o0
>. Nbp > 0 > A\b, > 0
\ 1=—=1 { 71=1
is solvable.

Note: The subsystem

a;-rx >b,t=ms+1,....m

of (S) is unsolvable iff Ty; is solvable!



Proof. We already know that solvability of
one of the systems 71, 7y is a sufficient con-
dition for unsolvability of (S). All we need to
prove is that if (S) is unsolvable, then one of
the systems 7y, 7y1 is solvable.

Assume that the system

T
7
T

1

a:x > bj,1=1,...,ms (S)

a;xr > b,it=ms+1,....m
in variables x has no solutions. Then every
solution x,T,e to the homogeneous system of

inequalities

T —e > 0
,L-Ta: —bt —e > 0,1=1,...,ms
CL;-FZC —b;T > 0,2=ms—+1,....m

has € < 0.
Indeed, in a solution with ¢ > 0 one would
also have 7 > 0, and the vector 7~z would
solve (S9).



Situation: Every solution to the system of
homogeneous inequalities

T —e > 0
?m —b;t —e > 0,1=1,...,ms (U)
a;-r:v —b;T > 0,2=ms+1,....m

has ¢ < 0, i.e., the homogeneous inequality
—e>0 (1)

is a consequence of system (U) of homoge-
neous inequalities. By Homogeneous Farkas
Lemma, the vector of coefficients in the left
hand side of (I) is a conic combination of the
vectors of coefficients in the left hand sides
of (U):

dA>0,v>0
m
z )\iaz = 0
i=1
m
— > Abi+v =0
=1
ms
— > N—v = —1
i=1
Assuming that A\ = ... = A\ = 0, we get

v = 1, and therefore A\ solves 771. In the case
m
of ZS A; > 0, A clearly solves 7.

=1



Corollaries of GTA

& Principle A: A finite system of linear in-
equalities has no solutions iff one can lead
it to a contradiction by linear aggregation,
i.e., an appropriate weighted sum of the in-
equalities with ‘“legitimate” weights is either
a contradictory inequality

ol'e >a l[a > 0]

or a contradictory inequality

ol'e >a [a > O]



& Principle B: [Inhomogeneous Farkas Lemma]
A linear inequality

aTxgb

Is a consequence of solvable system of linear
inequalities

T S
a; c<bj,1=1,...,m

iff the target inequality can be obtained from
the inequalities of the system and the identi-
cally true inequality

olz <1

by linear aggregation, that is, iff there exist
nonnegative \g, A1, ..., A\m Such that

m i m ]

a = > Na; a = >

1=1 . PN ZT:nl

b = >‘O+_Zl>\ibi b >
1=

AV,




Linear Programming Duality Theorem

& T he origin of the LP dual of a Linear Pro-
gramming program

Opt(P) = min {cTa? . Ax > b} (P)

IS the desire to get a systematic way to

bound from below the optimal value in (P).

The conceptually simplest bounding scheme
iIs linear aggregation of the constraints:

Observation: For every vector A\ of nhonnega-
tive weights, the constraint

[ATA Tz = 2T Az > ATh

is a consequence of the constraints of (P)
and as such is satisfied at every feasible so-
lution of (P).

Corollary: For every vector A > 0 such that
AL\ = ¢, the quantity \1b is a lower bound
on Opt(P).

& The problem dual to (P) is nothing but
the problem

Opt(D) = max {bTA A>0,ATN = c} (D)

of maximizing the lower bound on Opt(P)
given by Corollary.



& The origin of (D) implies the following
Weak Duality Theorem: The value of the pri-

mal objective at every feasible solution of the
primal problem

Opt(P) = min {CT:I; C Az > b} (P)

is > the value of the dual objective at every
feasible solution to the dual problem

Opt(D) = max {bTA A>0,AT) = c} (D)
that is,

x is feasible for (P)

T T
A is feasible for (D) } = ez b

In particular,

Opt(P) > Opt(D).



& LP Duality Theorem: Consider an LP pro-
gram along with its dual:

Opt(P) = min {CTZC Az > b} (P)
Opt(D) = max {bT)\ AT N = ¢, \ > o} (D)
Then

& Duality is symmetric: the problem dual to
dual is (equivalent to) the primal

{ The value of the dual objective at every
dual feasible solution is < the value of the
primal objective at every primal feasible so-
lution

> The following 5 properties are equivalent

to each other:
(i) (P) is feasible and bounded (below)

(ii) (D) is feasible and bounded (above)
(iii) (P) is solvable
(iv) (D) is solvable
(v) both (P) and (D) are feasible
and whenever they take place, one has Opt(P) =

Opt(D).



Opt(P) = min {ch C Ax > b} (P)

Opt(D) = max {bT)\ AT Y = ¢, \ > o} (D)

& Duality is symmetric
Proof: Rewriting (D) in the form of (P), we
arrive at the problem

AT -
min{ —b'Ax:| —AT | A>| —c | ¢,
A A 0

with the dual being

> > >
magé{cTu—ch—l—OTw: uz0,v20,w=20, }

U, v, Au — Av+ w = —b
T
max {—CTZC cw > 0, Ax = b—l—w}
T=v—u,w
T

min {cT:c Az > b}

T



& The value of the dual objective at every
dual feasible solution is < the value of the

primal objective at every primal feasible so-
lution

This is Weak Duality



& The following 5 properties are equivalent

to each other:
(P) is feasible and bounded below (i)

J
(D) is solvable (iv)

Indeed, by origin of Opt(P), the inequality

'z > Opt(P)

is a consequence of the (solvable!) system
of inequalities

Ax > b.

By Principle B, the inequality is a linear con-
sequence of the system:

IAN>0: AN =c & bI'A > Opt(P).

Thus, the dual problem has a feasible so-
lution with the value of the dual objective
> Opt(P). By Weak Duality, this solution is
optimal, and Opt(D) = Opt(P).



& The following 5 properties are equivalent

to each other:
(D) is solvable (iv)

2
(D) is feasible and bounded above (ii)

Evident



& The following 5 properties are equivalent

to each other:
(D) is feasible and bounded above (ii)

2
(P) is solvable (iii)
Implied by already proved relation
(P) is feasible and bounded below (i)

Y
(D) is solvable (iv)

in view of primal-dual symmetry



& The following 5 properties are equivalent
to each other:
(P) is solvable (iii)

2
(P) is feasible and bounded below (i)

Evident



We proved that

(i) < (ii) < (iii) < (iv)
and that when these 4 equivalent properties
take place, one has
Opt(P) = Opt(D)
It remains to prove that properties (i) — (iv)

are equivalent to

both (P) and (D) are feasible (V)

& In the case of (v), (P) is feasible and below
bounded (Weak Duality), so that (v)=-(i)

& in the case of (i)=(ii), both (P) and (D)
are feasible, so that (i)=(v)



Optimality Conditions in LP

Theorem: Consider a primal-dual pair of fea-
sible LP programs

Opt(P) = min {ch C Ax > b} (P)
Opt(D) = max {bT)\ AT N =¢, X > O} (D)

and let x,\ be feasible solutions to the re-
spective programs. These solutions are opti-
mal for the respective problems

& iff cd'e — bI'A = 0 [“zero duality gap”]

as well as

& IfF [Ax — bl; - A; = O for all ¢ [“complemen-
tary slackness’ |

Proof: Under Theorem’s premise, Opt(P) =
Opt(D), so that

e —b'A = 'z — Opt(P) + Opt(D) — b\
>0 >0

Thus, duality gap ¢!'z—bl'\ is always nonneg-
ative and is zero iff x, A\ are optimal for the
respective problems.



The complementary slackness condition is
given by the identity

e —vIx= ATz — b\ =[Az — b]' )

Since both [Az—b] and X are nonnegative, du-
ality gap is zero iff the complementary slack-
ness holds true.



Separation Theorem

& Every linear form f(x) on R"™ is repre-
sentable via inner product:

f(@)=f"=
for appropriate vector f € R™ uniquely defined
by the form. Nontrivial (not identically zero)

forms correspond to nonzero vectors f.
& A level set

M={a;':fTa:'=a} (*)
of a nontrivial linear form on R" is affine sub-
space of affine dimension n — 1; vice versa,
every affine subspace M of affine dimension
n — 1 in R™ can be represented by (x) with
appropriately chosen f #= 0 and a; f and a
are defined by M up to multiplication by a
common nonzero factor.

(n—1)-dimensional affine subspaces in R™ are
called hyperplanes.



M={x:fT:C=a} (%)
& Level set (x) of nontrivial linear form splits
R™ into two parts:

Moy
M-_

{z: flz>a)

{x : iy < a}

called closed half-spaces given by (f,a); the
hyperplane M is the common boundary of
these half-spaces. The interiors M 4 of M
and M__ of M_ are given by

M_|__|_ {33 ) fTCB > CL}

M_ _ {x: fT:U < a}
and are called open half-spaces given by
(f,a). We have

R"= M_| M, [M_(\My= M]

and

R"=M__| JM| M4



& Definition. Let 7, S be two nonempty sets
in R™.
(i) We say that a hyperplane

M={z:f'z=a) (%)

separates S and T, if

G SCM_, TC My (S does not go above
M, and T does not go below M")

and

S SUuT ¢ M.

(ii) We say that a nontrivial linear form f!z
separates S and T if, for properly chosen a,
the hyperplane (%) separates S and T.



Examples: The linear form z1 on R?

1) separates the sets

S
T

{r e R?: 21 < 0,25 <0},
{x € R?: 21 >0,25>0}:

Vv

{x1=0}




2) separates the sets

S = {zeR?:2; <0,25 <0},
T = {:EERQle—FZBQZO,xQSO}Z

{x1=0}




3) does not separate the sets

N
|

{zeR?:2y=0,1<mz <2}
{reR?:21=0,—-2<z5<—1}:

~
[

{x1=0}




Observation: A linear form 'z separates
nonempty sets S, T iff

sup ffz < inf fly

xeS yeT (*)
inf flz < supfly
xeS yeT

In the case of (x), the associated with f hy-

perplanes separating S and T' are exactly the
hyperplanes

{z: ffz =a} with sup flz <a< inf fly.
xeS yeT



& Separation Theorem: Two nonempty convex
sets S, 1" can be separated iff their relative
interiors do not intersect.

Note: In this statement, convexity of both S
and 1" is cruciall




Proof, =: (!) If nonempty convex sets S, T
can be separated, then rint SO\rintT =0
Lemma. Let X be a convex set, f(z) = fLx
be a linear form and a € rint X. Then

ffa=max ffz < f(-)| = const.
reX X
& Lemma = (!): LetaerintSNnrintT. As-

sume, on contrary to what should be proved,
that fLz separates S, T, so that

sup flz < inf fly.

TES yeT
& Since a € T, we get fLa > sup fLz, that is,
xeS
e = mag;fT:c. By Lemma, iz = ffa for
e
all x € S.

& Since a € S, we get flag < in;ny, that is,
ye

g = mi:p Ly, By Lemma, fly = fLa for
ye
all y e T.

Thus,
zESUT:>szEfTa,

so that f does not separate S and T', which
IS a contradiction.



Lemma. Let X be a convex set, f(z) = fLx

be a linear form and a € rint X. Then

ff'a=max f'z < f(-)| = const.
reX X

Proof. Shifting X, we may assume a = O.
Let, on the contrary to what should be
proved, fL'xz be non-constant on X, so that
there exists y € X with fly # ffa =0. The
case of fL'y > 0 is impossible, since ffa =0
is the maximum of fTz on X. Thus, fIy < 0.
The line {ty : t € R} passing through 0 and
through y belongs to Aff(X); since 0 € rint X,
all points z = —ey on this line belong to X,
provided that € > 0 is small enough. At every
point of this type, f1z > 0, which contradicts

the fact that max flz = ffa = 0.
reX



Proof, «<=: Assume that S, 7" are nonempty
convex sets such that rintSNrintT = 0, and
let us prove that S, 7' can be separated.
Step 1: Separating a point and a convex
hull of a finite set. Let S = Conv({bq,...,bm})
and T = {b} with b € S, and let us prove that
S and T can be separated.

b;

10, Let
62:[1 ,5=[’j

Observe that g is not a conic combination of

517 Teey /Bm:

b | _ Ry | b .
2-ga3] e
U
b=72 Aib;, 2 A =1, A =>0

1 7

Y

b &S — contradiction!




Bi =

b; | ®b
Hoe=1a)
20, Since 3 is not conic combination of 3;,

by Homogeneous Farkas Lemma there exists
h = ! / ] such that

—a

fo—a=hrT8>0>h1B8 = flbj—a,i=1,...m
that is,

ffo> max flo, = max .

i=1,...m reS=Conv({by,....bm})

Note: We have used the evident fact that

Ty = T

max r = max \:b.
wGCOﬂV({bl,...,bm}) f )\ZO’Z =1 f [§ ) z]
= max ATy,

1
max f1b;.
1



Step 2: Separating a point and a convex
set which does not contain the point. Let
S be a nonempty convex set and T' = {b} with
b<& S, and let us prove that S and T can be
separated.

19, Shifting S and T by —b (which clearly
does not affect the possibility of separating
the sets), we can assume that T'= {0} Z S.
20, Replacing, if necessary, R" with Lin(S),
we may further assume that R"™ = Lin(.S).
Lemma: Every nonempty subset S in R"™ s
separable: one can find a sequence {z;} of
points from S which is dense in S, i.e., Is
such that every point x € S is the limit of an
appropriate subsequence of the sequence.




Lemma = Separation: Let {z; € S} be a
sequence which is dense in S. Since S is
convex and does not contain 0, we have

0 Q COnV({:Bl, ,wz}) W4

whence

3fi: 0= f0> max flz;. (%)
By scaling, we may assume that ||f;|][o = 1.
The sequence {f;} of unit vectors possesses
a converging subsequence {fZ-S gozl; the limit
f of this subsequence is, of course, a unit
vector. By (x), for every fixed 5 and all large

enough s we have fg;a:j < 0, whence

fla; <0V (%%)

Since {z;} is dense in §, (x*) implies that
L'z <0 for all x € S, whence

sup flz<0= flo.
xesS



Situation: (a) Lin(S) = R"
(b) T'= {0}
(c) We have built a unit vector f such that

sup flz <0= rlo. 0
TrES

By (1), all we need to prove that f separates
T = {0} and S is to verify that

inf flz < ffo=0.

xeS

Assuming the opposite, (1) would say that
2z = 0 for all x € S, which is impossible,
since Lin(S) = R"™ and f is nonzero.



Lemma: Every nonempty subset S in R" is
separable: one can find a sequence {x;} of
points from S which is dense in S, i.e., iIs
such that every point x € S is the limit of an
appropriate subsequence of the sequence.
Proof. Let rq1,ro,... be the countable set of
all rational vectors in R™. For every positive
integer t, let Xy C S be the countable set
given by the following construction:

We |look, one after another, at the
points rq,ro,... and for every point rg
check whether there is a point z in S
which is at most at the distance 1/t
away from rs. If points z with this
property exist, we take one of them
and add it to X; and then pass to
rs4+1, Otherwise directly pass to rg4 .



Is is clear that

(*) Every point z € S is at the dis-
tance at most 2/t from certain point
of Xj.

Indeed, since the rational vectors are dense
in R™ there exists s such that rs is at the
distance < 1 from z. Therefore, when pro-
cessing rg, we definitely add to X; a point z
which is at the distance < 1/t from rs and
thus is at the distance < 2/t from «.

@)
By construction, the countable union |J X

t=1
of countable sets X; C S is a countable set

in S, and by (*) this set is dense in S.



Step 3: Separating two non-intersecting
nonempty convex sets. Let S, T be
nonempty convex sets which do not inter-
sect; let us prove that 5,7 can be separated.

AN

Let S = S—T and T = {0}. The set

S clearly is convex and does not contain O
(since SNT =0). By Step 2, S and {0} =T

can be separated: there exists f such that

[ sup fTs—inf [Ty
xeS yET
sup [ffz—fly] < 0= inf fT2
xcS,yeT z€{0}
{
inf [flz—f'y] < 0= sup fTz
zeS,yeT ) z€{0}
inf fla—sup fly
\ xeS yET
whence

sup flz < inf Ly

TrES ye

mf r < supr
xEeS yeT



Step 4: Completing the proof of Sep-
aration Theorem. Finally, let S, T Dbe
nonempty convex sets with non-intersecting
relative interiors, and let us prove that S, T
can be separated.

As we know, the sets S’ = rintS and T/ =
rint 7" are convex and nonempty; we are in
the situation when these sets do not inter-
sect. By Step 3, S’ and T’ can be separated:
for properly chosen f, one has

sup ff'z < inf fly

xeS! yeT’ (*)
inf flz < sup fly
xeS’ yeT’

Since S’ is dense in S and T’ is dense in T,
inf's and sup’s in (%) remain the same when
replacing S’ with S and T with T. Thus, f
separates S and T.



& Alternative proof of Separation Theorem
starts with separating a point T'= {a} and a
closed convex set S, a € S, and is based on
the following fact:

Let S be a nonempty closed convex
set and let a & S. There exists a
unique closest to a point in S:
Projg(a) = argmin ||la — z||
TrES
and the vector e = a — Projg(a) sepa-
rates a and S':

maxe! z = el Projg(a) = ela—|e|3 < e’ a.

xeS



\




Proof: 1. The closest to a point in S does
exist. Indeed, let x; € S be a sequence such
that
||CL - CC’LHQ — ;22 ||CL - xHQa , L — 00

The sequence {x;} clearly is bounded; passing
to a subsequence, we may assume that z; —~
as 1 — oo. Since S is closed, we have x € S,
and

— Zllo = Iim — x|l = Iinf — .
la —Zll2 = Jim [la— ;]2 = inf a - |2

20, The closest to a point in S is unique.
Indeed, let x,y be two closest to a points in
S, so that |la — z||o = ||la — y|]|lo = d. Since S
is convex, the point z = %(m + y) belongs to
S; therefore |la — z||» > d. We now have

=2(a—2)|3>4d? =|lz—y|?
la — z] + [g—y]||%+||[g—x] —[a—y]|I3
= 2la — z||5 + 2|jla — y||5
442
whence ||z — y||o = 0.




30, Thus, the closest to a point in S exists
and is unique. With e = a — Projg(a), we
have

x €S, f=xz—Projg(a)

[l
o) = |le—tfl3
= |la — [Projg(a) + t(z — Projgs(a))]||3
> |la — Projg(a)]3
= ¢(0),0<t<1
[l
0 < ¢'(0) = —2el'(z — Projg(a))
[l

Ve € S:elx <elProjg(a) =ela—|e|5.



& Separation of sets S,T by linear form flz
is called strict, if

sup flz < inf fly

reS yeT
Theorem: Let 5,7 be nonempty convex sets.
These sets can be strictly separated iff they
are at positive distance:

dist(S,T) = inf —yll> > 0.
(s.1)=_inf_ iz~ y]l2

Proof, =: Let f strictly separate 5,7 let
us prove that S,7 are at positive distance.
Otherwise we could find sequences x; € 5,
y; € T with ||z; — y;/|l2 — 0 as ¢ — oo, whence
Iy, — x;) — 0 as i — co. It follows that the
sets on the axis

§={a=fT:c:mES},fz{b=ny:y€T}

are at zero distance, which is a contradiction
with

supa < inf b.
a€§ bET



Proof, «: Let T, S be nonempty convex
sets which are at positive distance 29:

26 = inf T — > 0.
a:ES,yET” Y2

Let
ST =5+ {z:zl2 < 6}

The sets ST and T are convex and do not
intersect, and thus can be separated:

supfw+<lnffy Lf # O]
33_|_ES+ ye
Since
sup flzy = sup [flz+ f1%]
ryeST z€S,||z[l2<0

= [sup flz] + 6| fll2,
rES
we arrive at

supf T < mff Y
xeS ye



Exercise Below S is a nonempty convex set
and T = {a}.

Statement True?
If T" and S can be separated
then a & S
If a ¢S, then T and S can be
separated
If T"and S can be strictly
separated, then a € S
If a €S, then T and S can be
strictly separated
If S is closed and a € S, then T
and S can be strictly separated




Supporting Planes and Extreme Points

& Definition. Let (Q be a closed convex set in
R™ and x be a point from the relative bound-
ary of (. A hyperplane

N={z: flz=a) [a #= O]

is called supporting to () at the point x, if
the hyperplane separates @Q and {z}:

sup flz < Iz

reQ)

inf flx < flz

reQ)
Equivalently: Hyperplane M = {z : flz = a}
supports Q at 7 iff the linear form f1z attains
its maximum on @, equal to a, at the point

x and the form is non-constant on Q.




Proposition. Let () be a convex closed set in
R™ and z be a point from the relative bound-
ary of . Then

{ There exist at least one hyperplane Tl
which supports @ at z;

{> For every such hyperplane I'l, the set QN1
has dimension less than the one of @.
Proof: Existence of supporting plane is given
by Separation Theorem. This theorem is ap-
plicable since

T ZrintQ = {z} =rint{z} NrintQ = 0.
Further,

QI N=Aff(Q) L N=Aff(NNQ) ; AfF(Q),

and if two distinct affine subspaces are em-
bedded one into another, then the dimension
of the embedded subspace is strictly less than
the dimension of the embedding one.



Extreme Points

& Definition. Let Q be a convex set in R™ and
xr be a point of X. The point is called ex-
treme, if it is not a convex combination, with

positive weights, of two points of X distinct
from z:

r € Ext(Q)

)

(TeqQ} & { S <_O’A;)j };»u:vzsz}

Equivalently: A point x € @ is extreme Iiff it
IS not the midpoint of a nontrivial segment

in Q:

x+he@=h=0.

Equivalently: A point @ € () Is extreme Iff the
set Q\{x} is convex.




Examples:

1. Extreme points of [z,y] are ...

2. Extreme points of AABC are ...

3. Extreme points of the ball {x : ||z]lo < 1}
are ...



Theorem [Krein-Milman] Let @Q be a closed
convex and nonempty set in R"™. Then

{ () possess extreme points iff () does not
contain lines;

O If @ is bounded, then @ is the convex hull
of its extreme points:

Q = Conv(Ext(Q))

so that every point of Q is convex combina-
tion of extreme points of Q.

Note: If @ = Conv(A), then Ext(Q) C A.
Thus, extreme points of a closed convex
bounded set () give the minimal representa-
tion of Q as Conv(...).



Proof. 10: If closed convex set Q does not
contain lines, then Ext(Q) # 0

Important lemma: Let S be a closed convex
set and M = {z : fz = a} be a hyperplane
which supports S at certain point. Then

Ext(MnN.S) C Ext(S).

Proof of Lemmma. Let z € Ext(MN N S);
we should prove that x € Ext(S). Assume,
on the contrary, that x is a midpoint of a
nontrivial segment [u,v] € S. Then iz =

a = max fLz, whence f1z = max fLfz. A
xeS x€[u,v]

linear form can attain its maximum on a
segment at the midpoint of the segment iff
the form is constant on the segment; thus,
a=flz = flu= Ly, thatis, [u,v] CMNS.
But x is an extreme point of 1 NS — contra-
diction!



Let QQ be a nonempty closed convex set which
does not contain lines. In order to build an
extreme point of @, apply the Purification al-
gorithm:

Initialization: Set Sg = @ and choose zg € Q.
Step t: Given a nonempty closed convex set
St which does not contain lines and is such
that Ext(S;) C Ext(Q) and z; € Sy,

1) check whether S; is a singleton {z:}. Ifitis
the case, terminate: z; € Ext{S;} C Ext(Q).
2) if S; is not a singleton, find a point Tyy1
on the relative boundary of Sy and build a
hyperplane Iy which supports S; at z;41.

To find x;41, take a direction h # 0 parallel to Aff(S:).
Since S; does not contain lines, when moving from x;
either in the direction h, or in the direction —h, we
eventually leave S, and thus cross the relative bound-
ary of S;. The intersection point is the desired x:4;.
3) Set Si41 = Sp Ny, replace t with ¢t + 1
and loop to 1).




Justification: By Important Lemma,

EXt(St_|_1) C Ext(S:),
SO that
Ext(S;) C Ext(Q) Vt.

Besides this, dim (S;4; < dim(S;), so that
Purification algorithm does terminate. the
algorithm

Note: Assume you are given a linear form g«
which is bounded from above on ). Then
in the Purification algorithm one can easily
ensure that g'z;1 1 > g'z;. Thus,

If Q is a nonempty closed set in R"™ which
does not contain lines and f!'z is a linear form
which is bounded above on (), then for every
point xg € Q there exists (and can be found
by Purification) a point x € Ext(Q) such that
gtz > glag. In particular, if gl'z attains its
maximum on (@), then the maximizer can be
found among extreme points of Q.



Proof, 29 If a closed convex set @ contains
lines, it has no extreme points.

Another Important Lemma: Let S be a closed
convex set such that {x +th :t > 0} C S for
certain . Then

{x+th:t>0} C SVxes.

Proof. For every s > 0 and x € S we have

v+ sh = lim [(1—s/i)x + (s/i)[z + th]].
e €S
Note:. The set of all directions h € R™ such
that {z4+th:t >0} C S for some (and then,
for all) x € S, is called the recessive cone
Rec(S) of closed convex set S. Rec(S) in-
deed is a cone, and

S 4+ Rec(S) = S.

Corollary: If a closed convex set () contains a
line ¢, then the parallel lines, passing through
points of @, also belong to Q. In particular,
() possesses no extreme points.




Proof, 39: If a nonempty closed convex set
Q@ is bounded, then @ = Conv(Ext(Q)).

The inclusion Conv(Ext(Q)) C @ is evident.
Let us prove the opposite inclusion, i.e.,
prove that every point of () is a convex com-
bination of extreme points of Q.

Induction in k=dim@. Base k = 0 (Q is a
singleton) is evident.

Step k— k+ 1: Given (k + 1)-dimensional
closed and bounded convex set @ and a
point x € @, we, as in the Purification al-
gorithm, can represent x as a convex com-
bination of two points x4 and z_ from the
relative boundary of ). Let L be a hy-
perplane which supports @ at z, and let
Qy =N NQ. As we know, Q4 is a closed
convex set such that

dim Q_|_ < dim @, EXt(Q+) C Ext(Q), T4 € Q_|_.
Invoking inductive hypothesis,

T4 € COﬂV(EXt(Q_l_)) C Conv(Ext(Q)).

Similarly, z— € Conv(Ext(Q)). Since z €
[x_,z4], we get x € Conv(Ext(Q)).



Structure of Polyhedral Sets

& Definition: A polyhedral set Q in R™ is a
nonempty subset in R™ which is a solution set
of a finite system of nonstrict inequalities:

Q is polyhedral < ) = {x : Az > b} £ 0.

& Every polyhedral set is convex and closed.



Question: When a polyhedral set Q@ = {«x :
Ax > b} contains lines? What are these lines,
if any?

Answer: (Q contains lines iff A has a nontrivial
nullspace:

Null(A) = {h: Ah = 0} # {0}.

Indeed, alineld={x=zx+th:tec R}, h#0,
belongs to Q iff

Vi : A(x +th) > b
& VeitAh > b— Ax
& Ah=0& € Q.

Fact: A polyhedral set Q = {x : Ax > b} al-
ways can be represented as

Q — Q* _I_ L7
where Q« is a polyhedral set which does not
contain lines and L is a linear subspace. In
this representation,
& L is uniquely defined by () and coincides
with Null(A),
& @+« can be chosen, e.g., as

Qi=QnNL+



Structure of polyhedral set which does not
contain lines

& Theorem. Let

Q={x:Ax>b}#*0
be a polyhedral set which does not contain
lines (or, which is the same, Null(A) = {0}).
Then the set Ext(Q) of extreme points of @
IS nonempty and finite, and

Q = Conv(Ext(Q)) + Cone{rq,....,rg} (%)

for properly chosen vectors rq,...,rg.
Note: Cone{rq,...,rs} is exactly the recessive
cone of Q:

Cone {7“1, ceny 7“5}

{riz+tre@QV(xze@,t>0)}
{r : Ar > 0}.

This cone is the trivial cone {0} iff Q is a
bounded polyhedral set (called polytope).



& Combining the above theorems, we come
to the following results:

A polyhedral set (Q always can be represented
in the form

1

1 J A>0,u>0

Q={w= DAt D pwit s =1 }

i=1 j=1

)
where I, J are positive integers and vy, ...,vy,
wq, ..., wy are appropriately chosen points and
directions.
Vice versa, every set (Q of the form (1) is a
polyhedral set.
Note: Polytopes (bounded polyhedral sets)
are exactly the sets of form (1) with “trivial
w-part”’: w; =...=w;j;=0.




QFED & JAb: Q = {z: Az > b}
)

(1, J,v1, ., UV, W, ey W)

I J A>0,u>0
Q = aj:; )\ZUZ—I—; Hiw;j - S =1
=1 1=1 ;

Exercise 1: Is it true that the intersection of
two polyhedral sets, if nhonempty, is a poly-
hedral set?

Exercise 2: Is it true that the affine image
{y=Px+p:x € Q} of a polyhedral set Q is
a polyhedral set?




Applications to Linear Programming

& Consider a feasible Linear Programming
program

min st eeQ={z: Az > b} (LP)

Observation: We lose nothing when assuming
that Null(A) = {0}.
Indeed, we have

Q = Q« + Null(A),

where Q. is a polyhedral set not containing lines. If
c is not orthogonal to Null(A), then (LP) clearly is
unbounded. If ¢ is orthogonal to Null(A), then (LP)
IS equivalent to the LP program

minclz s.t. z € Q.,
X

and now the matrix in a representation Q. = {z : Az >
b} has trivial nullspace.

Assuming Null(A) = {0}, let (LP) be bounded
(and thus solvable). Since @ is convex,
closed and does not contain lines, among the
(nonempty!) set of minimizers the objective
on @ there is an extreme point of Q.




min drst. zeQ={z: Az > b} (LP)

We have proved

Proposition. Assume that (LP) is feasible
and bounded (and thus is solvable) and that
Null(A) = {0}. Then among optimal solu-
tions to (LP) there exists at least one which
iIs an extreme point of Q.

Question: How to characterize extreme points
of the set

Q={x:Azx>b}F#0
provided that A is mxn matrix with Null(A) =
{0}7
Answer:. Extreme points x of () are fully char-
acterized by the following two properties:
O Ax > b
> Among constraints Ax > b which are active
at z (i.e., are satisfied as equalities), there are
n linearly independent.




Justification of the answer, =: If x is an
extreme point of ), then among the con-
straints Ax > b active at x there are n linearly
independent.

W.l.0.g., assume that the constraints active
at x are the first £ constraints

alx>b,i=1,..k

We should prove that among n-dimensional
vectors aiq,...,ar, there are n linearly inde-
pendent. Assuming otherwise, there exists
a nonzero vector h such that a!h = 0,
1=1,...,k, that is,

a,LT[E + eh] = aZTE =b,1=1,..,k
for all e > 0. Since the remaining constraints

al'x > b;, i >k, are strictly satisfied at z, we
conclude that

allZ+eh] >b,i=k+1,...m

for all small enough values of ¢ > O.

We conclude that x+eh € Q = {z : Az > b}
for all small enough ¢ > 0. Since h # 0 and
x IS an extreme point of (), we get a contra-
diction.



Justification of the answer, <: If 2 € @
makes equalities n of the constraints a,ZTa: > b;
with linearly independent vectors of coeffi-
cients, then z € Ext(Q).

W.l.0.g., assume that n active at x con-
straints with linearly independent vectors of
coefficients are the first n constraints

alz>b,i=1,..n.

We should prove that if h is such that x+h €
@, then h = 0. Indeed, we have

T+theQ=al[Z+h]>b,i=1,..n;
since al'z = b; for i <n, we get
alZ+talh=0allz+h]>alz i=1,..n,
whence
alh=0,i=1,..,n. (%)

Since n-dimensional vectors a1, ...,an are lin-
early independent, (x) implies that h = O,
Q.E.D.



Convex Functions

Definition: Let f be a real-valued function
defined on a nonempty subset Domf in R",
f is called convex, if

SDomf is a convex set

Ofor all 2,y € Domf and M € [0, 1] one has

fOz+(1=MNy) <Af(z) + (1 =) f(y)

Equivalent definition: Let f be a real-valued
function defined on a nonempty subset Dom f
in R™. The function is called convex, if its
epigraph — the set

Epi{f} = {(z,t) e R" T : f(z) <t}

is a convex set in R*T1.




What does the definition of convexity
actually mean?

The inequality

FOz 4+ (1 =Ny) <Af(2) + (1 =) f(y) (%)

where z,y € Domf and X\ € [0, 1] is automat-
ically satisfied when x =y or when A\ = 0/1.
Thus, it says something only when the points
x,y are distinct from each other and the point
z=Xx+ (1 - XNy is a (relative) interior point
of the segment [z,y]. What does (x) say in
this case?

$Observe that z=X a4+ (1 — Ny =2+ (1 —
A)(y —x), whence

ly —z| fly—=z|[z—2z|| =1 :X:(1=A)
T herefore

f(z) < Af(x)l; (1-=Xrw) ()
f(z) = flx) <A =) ) — f@))

[z—x]]
ly—z||

0
HOBIOPFIOEIC)

lz==l = lly—=|




Similarly,

f(z) <Af(@)+ (@ -Nfy) (%)

0
A @) = f(@) < f@) — f(2)
ly—2z]]
|y —2]]

)
f)—f(x) ~ fW)—f(z)
ly—z|  — |ly—=|




Conclusion: f is convex iff for every three
distinct points z,y,z such that z,y € Domf
and z € [z,y], we have z € Domf and

f(z) = f(x) _ fQy) = f(@) _ fQy) = (=)
lz =zl =y -zl ly — 2|

()

Note: From 3 inequalities in (x):
f)=f(z) ~ fy)—f(z)

=il Sy
I-1n) < 1611
G i) [ ()

|z—z| [y—2]

every single one implies the other two.




Jensen’s Inequality: Let f(xz) be a convex
function. Then

x; € Domf, \; > O,Z)\i =1=
FCoNimi) < 2N f ()

Proof: The points (x;, f(x;)) belong to Epi{f}.
Since this set is convex, the point

O Nz, Y XNif(=z;)) € Epi{f}.
i i
By definition of the epigraph, it follows that
FO _ Nizy) <D NS (zy).
i i

Extension: Let f be convex, Domf be closed
and f be continuous on Domf. Consider
a probability distribution w(dx) supported on
Domf. Then




Examples:

OFunctions convex on R: e 22, 24, z°, ...

o exp{zr}

Nonconvex functions on R: e z3 e sin(z)
¢OFunctions convex on Ry e zP, p>'1

o 1P, 0<p<lexinx

S Functions convex on R™: e affine function
fz) = flec

GA norm || - || on R™ is a convex function:

Az 4+ (1 =Nyl < []Az][ +[[(1 = Ayl
[Triangle inequality]

= Azl + (1 =)yl
[homogeneity]




Application of Jensen’s Inequality: Let p =
{p; > 0}1, ¢ = {q; > O}, be two discrete
probability distributions.

Claim: The Kullback-Liebler distance

> p n 2

i q;
between the distributions is > 0.
Indeed, the function f(x) = —Inz, Domf =

{x > 0}, is convex. Setting x; = q;/p;, i = p;
we have

0

(Z %) — f(Z PiT;)
< sz flz;) = sz( In(]z/ﬂi)
sz ln(pz/%)



What is the value of a convex function
outside its domain?

Convention. To save words, it is convenient
to think that a convex function f is defined
everywhere on R"™ and takes real values and
value 4+o0o0. With this interpretation, f ‘re-
members’” its domain:

Domf = {z: f(z) € R}

x & Domf = f(zx) = 4+
and the definition of convexity becomes

FOz+(1=Ny) < Af@)+A-NFW) ¥ \'C 15 1)

where the arithmetics of +0co0 and reals is
given by the rules

acR=a+ (+0) =(+00) + (+00) = +00
O-(4o0) =4

A>0= X (400) =400

Note: Operations like (4oc0) —(400) or (—=5)-
(400) are undefined!



& Convexity-preserving operations:

$Taking conic combinations: If f;(x) are
convex function on R™ and \; > 0, then the
function > A;f;(x) is convex

SAffine sabstitution of argument: If f(x) is
convex function on R™ and z = Ay + b is an
affine mapping from R to R™, then the func-
tion g(y) = f(Axz + b) is convex on R™

HTaking supremum: If fo(xz), o € A, is a
family of convex function on R"™, then the

function sup fo(x) is convex.
acA

Proof: Epi{sup fa(:)} = NEpi{fa(:)}, and in-
tersections o% convex setas are convex.
HSuperposition Theorem: Let f;(x) be con-
vex functionson R"™, i =1, ...,m, and F(y1, ..., Yym)
be a convex and monotone function on R™,
Then the function

o(z) = { F(f1(2), .., fm(z)) ,a € Domf;, Vi

~+o0 , Ootherwise

IS convex.



$Partial minimization: Let f(x,y) be a con-
vex function of z = (x,y) € R", and let

g(x) = inf flx,y)

be > —oo for all x. Then the function g(x) is
convex.

Proof:. g clearly takes real values and value
+o00. Let us check the Convexity Inequality

gz’ + (1= X)) < Ag(@') + (1 — N)g(=")

[A € 10, 1]]
There is nothing to check when A = 0 or
A=1,solet 0O < A< 1. In this case, there
is nothing to check when g(z’) or g(2") is
+00, so let g(z') < +o0, g(z") < +00. Since
g(z') < 400, for every e > 0 there exists v’
such that f(2/,y") < g(a’) +€. Similarly, there
exists y” such that f(z”,y") < g(2’")+e€. Now,

gz’ 4+ (1 = A)z")

fO' 4+ (1= X)2", Ay’ + (1 = AN)y")
A y') + (1 =N fE",y")
A(g(z") +€) + (1 = N)(g(z") +¢)
Ag(z") + (1 = A)g(a") + e

Since € > 0 is arbitrary, we get

gz’ + (1 = N)z") < Ag(a’) + (1 = N)g(z").

Il IANIAIA



How to detect convexity?

Convexity is one-dimensional property: A set
X C R"™ is convex iff the set

{t:a+the X}

is, for every (a,h), a convex set on the axis
A function f on R" is convex iff the function

¢(t) = f(a+th)

is, for every (a,h), a convex function on the
axis.



& When a function ¢ on the axis is convex?
Let ¢ be convex and finite on (a,b). This is
exactly the same as

B(2) — 6(x) _ dy) — 6(x) _ dly) — 6(2)

z— Yy—x Yy —z

when a < z < z < y < b. Assuming that
¢'(x) and ¢'(y) exist and passing to limits as
z—x+0and z -y — 0, we get

¢(y) — ¢(x)

¢'(z) < < ¢'(y)

that is, ¢/(x) is nondecreasing on the set of
points from (a,b) where it exists.



The following conditions are necessary and
sufficient for convexity of a univariate func-
tion:

$The domain of the function ¢ should be an
open interval A = (a,b), possibly with added
endpoint(s) (provided that the corresponding
endpoint(s) is/are finite)

S should be continuous on (a,b) and dif-
ferentiable everywhere, except, perhaps, a
countable set, and the derivative should be
monotonically non-decreasing

Hat endpoint of (a,b) which belongs to
Domeo, ¢ is allowed to “jump up’”, but not
to jump down.




& Sufficient condition for convexity of a uni-
variate function ¢: Domg is convex, ¢ is con-
tinuous on Dom¢ and is twice differentiable,
with nonnegative ¢, on intDomé.

Indeed, we should prove that under the con-
dition, if x < z < y are in Domg, then

¢(z) — ¢(@) _ ¢(y) — o(2)

zZ—x Yy — 2

By Lagrange Theorem, the left ratio is ¢/(¢)
for certain € € (x,z), and the right ratio is
¢'(n) for certain n € (z,y). Since ¢"(:) > 0
and n > &, we have ¢'(n) > ¢/(¢), Q.E.D.



& Sufficient condition for convexity of a mul-
tivariate function f: Domyf is convex, f is
continuous on Domf and is twice differen-
tiable, with positive semidefinite Hessian ma-
trix f”, on intDomf.

Instructive example: The function f(x) =

n
In( > exp{wx;}) is convex on R".

Indeed,
Zexp{xi}hi
ML) = et
' 2
(Z exp{a:i}hré) > exp{z;}h?
hTf”(a:)h — N1 i

(ZL: exp{xi}) ‘ %: exp{z;}



. > exp{z;th; ’ > exp{xz;}h?

h h=—|- .

/@) > exp{w;} * > exp{w;}
expq{x;}

Setting p; = S exp{z]" we have
j

2
Wt f'(@)h = S pihi — (th)

2
S pihi — Z\/@(\/ﬁ:hi))
> pih? — Z(\/@)2> (Z(\/ﬁ;hi)Q)

= Tpihi - sz'hz-2> =0
1 1

'V

(note that 3 p; = 1)
1



Corollary: When ¢; > 0, the function

g(y) =In (Z C; eXD{a?y})

IS convex.
Indeed,

g(y) =In (Z exp{Inc; + a;fpy})

is obtained from the convex function

In (Z exp{azi}>

by affine substitution of argument.



Gradient Inequality

Proposition: Let f be a function, x be an
interior point of the domain of f and @, x= &€
(2, be a convex set such that f is convex on
(). Assume that f is differentiable at . Then

VyeQ: fy) > flx)+ w—a)Tf(x). (%)

Proof. Let y € Q. There is nothing to prove

when yv = x or f(y) = oo, thus, assume
that f(y) < oo and y #= x. Let is set 2z =
x+e(ly—x), 0<e< 1. Then z¢ is an interior
point of the segment [z,y]. Since f is convex,
we have

fly) = f(z) _ f(ze) = f(z) _ flz+e(y —2)) - f(z)

ly —z|| = llze — = elly — |
Passing to limit as ¢ — 40, we arrive at
fly) = fl@) _ (y— )1 f(z)
ly —=zl| = |ly—=|
as required by (x).

Y



Lipschitz continuity of a convex function

Proposition: Let f be a convex function, and
let K be a closed and bounded set belonging
to relative interior of the domain of f. Then
f is Lipschitz continuous on K, that is, there
exists a constant L < oo such that

f(z) — f(y)| < L|lz -yl Vz,ye K.

Note: All three assumptions on K are essen-
tial, as is shown by the following examples:
Of(z) = —y/z, Domf = {z > 0}, K = [0,1].
Here K C Domf is closed and bounded, but
IS not contained in the relative interior of
Domyf, and f is not Lipschitz continuous on
K

Of(x) = z2, Domf = K = R. Here K is
closed and belongs to rint Domf, but is un-
bounded, and f is not Lipschitz continuous
on K

Of(x) = 2, Domf = {z > 0}, K = (0,1].
Here K is bounded and belongs to rint Domf,
but is not closed, and f is not Lipschitz con-
tinuous on K




Maxima and Minima of Convex Functions

(1) Proposition [“unimodality”] Let f be a
convex function and x4« be a local minimizer
of f:

Tx € Domf
&
Ir >0 f(x) > f(as) V(o : ||z — x| < 7).

Then x4« is a global minimizer of f:

f(x) > f(xx) V.

Proof: All we need to prove is that if x = x«
and x € Domf, then f(x) > f(xzx). To this
end let z € (z«,z). By convexity we have

f(z) = f(ze) _ f(2) = f(24)

=

|2 — ||
When z € (x«,x) is close enough to zx«, we
have L2=fz:) > o whence L&)=f(z) > g
z=xx|  — 7 lz—zsl| = 77

that is, f(z) > f(zx).




Proposition Let f be a convex function. The
set of X, of global minimizers is convex.
Proof: This is an immediate corollary of im-
portant

Lemma: Let f be a convex function. Then
the level sets of f, that is, the sets

Xog={z: f(x) <a}

where a IS a real, are convex.
Proof of Lemma: If z,y € X, and X\ € [0, 1],
then

fOz+(1-Ny) < Af(z)+ (1 —=N)f(y)
< Xa+(1—-XNa=a.

Thus, [z,y] C Xq.



& When the minimizer of a convex function
Is unique?
Definition: A convex function is called strictly
convex, if

fQz+ (1 =Ny) <Af(z) + (1 -2 f(y)

whenever x = y and \ € (0,1).

Note: If a convex function f has open do-
main and is twice continuously differentiable
on this domain with

Rl f"(x)h >0 V(z € Domf, h # 0),

then f is strictly convex.

Proposition: For a strictly convex function f
a minimizer, if it exists, is unique.

Proof. Assume that Xx = Argmin f contains
two distinct points z/,z”. By strong convex-

ity,

FGa! + o) < 5 [£@ + £ = inf 1

which is impossible.



Theorem [Optimality conditions in convex
minimization] Let f be a function which is
differentiable at a point x« and is convex on
a convex set Q C Domf which contains xx.
A necessary and sufficient condition for f to
attain its minimum on @ at x« is

(x —z)T f(z) >0 Vzeq. (%)

Proof, «<: Assume that (%) is valid, and let
us verify that f(x) > f(xx) for every x € Q.
There is nothing to prove when x = x4, thus,
let f(z) < oo and x 7= x«. FOr zy = zx+ A(x —
xx) We have

flen) = flzx) _ f(@) = fz+)
2y —z«l| 7 lz — 2]
or, which is the same,

flzx + Az — 24]) — f(24) < f(x) — f(zx)

Al — || Tl — 2]

VA € (0,1)

VA e (0,1)

As N — 40, the left ratio converges to
(z—x:) L f/(z4)/||x—2x|| > O; thus, f(rlg:ﬂﬁ*) >
0, whence f(x) > f(xx).




“Let f be a function which is differen-
tiable at a point x« and is convex on
a convex set Q C Domf which con-
tains x«. A necessary and sufficient
condition for f to attain its minimum
on ) at x« Is

(z —2)! fl(z) >0 VzeQ”

Proof, =: Given that z, € Argmin,cq f(y),
let z € Q. Then

0< f(@x + Al —)\x*]) — f(@x)

whence (z — )L f/(x+) > 0.

VA e (0,1),




& Equivalent reformulation: Let f be a func-
tion which is differentiable at a point x« and
IS convex on a convex set (Q C Domf, z« € Q.
Consider the radial cone of () at x«:

Note: Tg(z«) is indeed a cone which is com-
prised of all vectors of the form s(x — xx),
where x € (Q and s > 0.

f attains its minimum on ) at xs iff

hY f'(z+) > 0 Vh € T (as),

or, which is the same, iff

'(z+) € Ng(zs) ={g: g"h > OVh € Ty(a:)}.

normal cone of () at x.

()

Example I z. € intQ. Here Tp(zx) = R”,
whence Ng(z«) = {0}, and (x) becomes the
Fermat equation

f'(z) =0



Example II: z. € rint Q. Let Aff(Q) = x« + L,
where L is a linear subspace in R"™. Here

To(z«) = L, whence Ng(zx) = L. (%) be-
comes the condition

f'(x%) is orthogonal to L.

Equivalently: Let Aff(Q) = {z : Ax = b}.

Then L = {z : Az = 0}, L+ = {y = AT)\},

and the optimality condition becomes
V],_, @+ 974z —b)] =0

=P i)
fl(z) + =XV (alz — b)) = 0

(A= & |




Example III: Q = {z : Ax — b < 0} is polyhedral.
In this case,

ng(w*)
— {h:aZThSOWEI(w*)z{iia?$*—bizo}}'

By Homogeneous Farkas Lemma,

No(z«) = {y:alh<0,i€I(zs) =yl h>0}
= {y=— > Na;: )\ >0}
iEI(w*)

and the optimality condition becomes

I >0, € I(zx)) : fl(me) + D Aa; =0
i€l (xx)

or, which is the same:
/ m

f(zs) + _Zlkj;ﬁai = 0
1=

A (azTCI?* — b;)

G\ >0

[
o
.
[
rA
3

The point is that in the convex case these
conditions are necessary and sufficient for xx
to be a minimizer of f on Q.



Example: Let us solve the problem

m
i T . - —
mxln{c :c—l—.z lenmz.xZO,sz—l}.

1=1 1
The objective is convex, the domain @ =
{x > 0,2 x; = 1} is convex (and even poly-
1

hedral). Assuming that the minimum s
achieved at a point xzx € rint (, the optimality
condition becomes

Vi e+ Yz Ing + X[z, —1]| =0
:[I 1

No; = —c;— A— 1 Vi

)

Xr; = exp{l — )\} eXD{—CZ'}

Since > x; should be 1, we arrive at
1

oo SXPi—ci}
" Y exp{—c;}
J

At this point, the optimality condition is sat-
isfied, so that the point indeed is a minimizer.



Maxima of convex functions

Proposition. Let f be a convex function.
Then

OIf f attains its maximum over Domf at a
point x* € rint Domf, then f is constant on
Domf

OIf Dom f is closed and does not contain lines
and f attains its maximum on Domf, then
among the maximizers there is an extreme
point of Domf

OIf Domf is polyhedral and f is bounded
from above on Domf, then f attains its max-
imum on Domf.




Subgradients of convex functions

& Let f be a convex function and z €
intDomf. If f differentiable at x, then, by
Gradient Inequality, there exists an affine
function, specifically,

h(z) = f(Z) + (z — )T f'(3),
such that

f(z) = h(z)Vz & f(z) = h(Z) (%)

Affine function with property (x) may exist

also in the case when f is not differentiable
at x € Domf. (%) implies that

h(z) = f(@) + (z—2)'yg (+)

for certain g. Function (xx) indeed satisfies
(x) if and only if g is such that

f@)> f@ + (@ -3)lg vz ("



Definition. Let f be a convex function and
x € bomf. Every vector g satisfying

fx) > f@) + (x—7)lg Va ("

is called a subgradient of f at x. The set
of all subgradients, if any, of f at z is called
subdifferential 0f(x) of f at =.

Example I: By Gradient Inequality, if con-
vex function f is differentiable at z, then
Vf(x) € 0f(x). If, in addition, z € intDom},
then Vf(x) is the unique element of 9f(x).




Example II: Let f(z) = |z| (z € R). When
x #= 0, f is differentiable at x, whence
of(z) = f(z). When z = 0, subgradients
g are given by

z| > 0 + gz = gz Vz,

that is, 9f(0) = [—1, 1].
Note: In the case in question, f has direc-
tional derivative

. flx+th) — f(x)
Df(x)[h] = tgmo ;

at every point x € R along every direction
h € R, and this derivative is nothing but

D hl = max glh
f@)h) = max g



Proposition: Let f be convex. Then

OFor every € Domf, the subdifferential
Of(x) is closed convex set

OIf x € rint Domf, then 0f(x) is nonempty.
OIf x € rint Domf, then, for every h € R",

D ()R] = lim TETI = F@) T

t—=40 t gedf(x)
OAssume that x € Domf is represented as

lim x; with z; € Domf and that

71— 00

f(z) <lim inf f(x;)

If a sequence g; € 0f(x;) converges to certain
vector g, then g € 0f(x).

$The multi-valued mapping x — 9f(x) is lo-
cally bounded at every point x € intbomf,
that is, whenever x € intbDomf, there exist
r >0 and R < oo such that

|z —z|2 <r,g€df(x) =gl <R



Selected proof: “If x € rint Dom/f, then
df(x) is nonempty.”

W.l.o.g. let Domf be full-dimensional, so
that z € intDom f. Consider the convex set

T = Epi{f} = {(z,t) : t > f()}.
Since f is convex, it is continuous on intbom¢f,
whence 7' has a nonempty interior. The point
(z, f(x)) clearly does not belong to this inte-
rior, whence S = {(z, f(x))} can be separated
from T: there exists (a,3) # 0 such that

o'Z+Bf(@) <alz4 Bt V(zt>f(@) (x)
Clearly 8 > 0 (otherwise (x) will be impossi-
ble when x = and t > f(Z) is large).
Claim: 8 > 0. Indeed, with 8 = 0, (*) implies
o'z < ol'z Vo € Domy (%)
Since (a,3) = 0 and 8 = 0, we have o #= O;
but then (xx) contradicts z € intDomf.
&HSince B8 > 0, (%) implies that if ¢ = 87 1q,
then
9"z + f(@) < g'z+ f(z) Vz € Domf,

that is,

F(@) > F@) + (z—7)Tg va.



Elementary Calculus of Subgradients

OIf g, € Of;(x) and X\; > 0, then
ZAz’gi € 3(2 Aifi)(x)
OIf go € Ofal(z), a € A,
f(:) = sup fal(-)
acA
and

(@) = fa(z), o € Ax(z) # 0,

then every convex combination of vectors ga,
a € Ax(x), is a subgradient of f at z

OIf g; e domf(x), 1= 1,...,m, and F(yq, ..., Ym)
is convex and monotone and 0 < d €
OF(f1(x),..., fm(x)), then the vector

> dig;
i

is a subgradient of F(f1(-), ..., fm(:)) at =.



Convex Programming
Lagrange Duality
Saddle Points

& Mathematical Programming program is

g(z) = (91(x), ..., gm(x))’ <0
Jx = mlin f(z) :

r € X
(P)
Hxis the design vector. VValues of x are called
solutions to (P)
O f(x) is the objective
Sg(z) = (g1(x), ..., gm(2))L < 0 — inequality con-
straints
$ — equality con-
straints
SX C R™ — domain. We always assume that
the objective and the constraints are well-
defined on X.



9(z) = (g1(2), ..., gm(z))L <0
fx = mmin f(x) :
r €X
(P)
& Solution x is called feasible, if it satisfies all
the constraints. Problem which has feasible
solutions is called feasible.
& If the objective is (below) bounded on
the set of feasible solutions, (P) is called
bounded.

& The optimal value fx is

/ _{ inf{f(z) : =z is feasible}, (P) is feasible
T 4oo, otherwise

f« is a real for feasible and bounded problem,

iIs —oo for feasible unbounded problem, and

IS 400 for infeasible problem.

& Optimal solution of (P) is a feasible solu-

tion zx such that f(x«) = f«. Problem which
has optimal solutions is called solvable.



9(x) = (g1(2), ..., gm(x))T <0
fx = mg[jn f(x) :
r € X
(P)
& Problem (P) is called convex, if
X is a convex subset of R™
), g1(4),....gm(-) are convex real-valued
functions on X
T here are no equality constraints
[we could allow linear equality constraints,
but this does not add generality]



Preparing tools for Lagrange Duality:
Convex Theorem on Alternative

& Question: How to certify insolvability of
the system

f(x) < ¢
r € X

& Answer: Assume that there exist nonnegative
weights Aj, 7 = 1,....m, such that the in-
equality

f@)+ > Agjz) <c

j=1
has no solutions in X:

d\; >0 xig([f(w) + > Ngi(@)] > e

j=1

Then (I) is insolvable.



& Convex Theorem on Alternative: Consider
a system of constraints on x

flx) < ¢
gi(z) < 0,j=1,...m (I)

r € X
along with system of constraints on A:

'V

C

qig}c([f(w) + jgl Ajgj(x)]

.

i = 0,5=1,...,m

(1)

O[Trivial part] If (II) is solvable, then (I) is
insolvable

$[Nontrivial part] If (I) is insolvable and sys-
tem (I) is convex:

— X iIs convex set

— f, 91,...,9m are real-valued convex func-
tions on X

and the subsystem

g]($) < 0,5=1,...,m,
r € X

is solvable [Slater condition], then (I7) is
solvable.



f(x)
gi(x)

j=1,....,m (1)

M IA A
=< O

Proof of Nontrivial part: Assume that (1)
has no solutions. Consider two sets in R™mt1:

I
I Flz) < wo )
<
JuermHl 3, e x . 1@ = w >
\ gm(CU) S Um y

{u c RMT1. ug < c,u1 <0,...,um < O}

R - ),
Observations: <\S, T are convex and nonempty
$S, T do not intersect (otherwise (1) would
have a solution)

Conclusion: S and T can be separated:

3(ag, ...,am) # 01 inf alu > supalu
ueT ueS



N

( flx) < wug )
<
luecR™Tl 32 X - g1(x) = w >
L gm(az) < Um |

{u c RMT1 . ug < c,ul <0, um < O}

aV

S

3(&0, ...,am) # O :

inf inf l[agug + a1u1 + ... + amum]
re€X wo > f(x)

ur > gi(x)

V

_. gm(x)

> sup [agug + ajui + ... + amum]
ug < ¢
uy < 0

Um

un < 0

Conclusion: a > 0, whence

inf a0/ (2) + a191(2) + - + amgm(2)] = age



Summary:

Jda > 0,a #0:
inf lao/ (@) + a191(2) + . + amgun ()] > aoe

Observation: ag > 0.
Indeed, otherwise 0 # (a1,...,am) > 0 and

inf [a191(z) 4+ ... + amgm(z)] > O,
reX

while 3z € X : g;(z) < 0 for all j.
Conclusion: ag > 0, whence

ot [+ 3 [—g] 6;(0)] > .
2,20



LLagrange Function

& Consider optimization program

Opt(P) = min {f(a:) 1 g;(z) 0,5 <m, z ¢ X}.
(P)

and associate with it Lagrange function

L(z,\) = f(z) 4+ > Xjgj(z)

J=1
along with the Lagrange Dual problem

Opt(D) = T§8<L</\)’ L(\) = wig( L(x, \)
(D)

& Convex Programming Duality Theorem:
$[Weak Duality] For every A > 0, L(A\) <
Opt(P). In particular,

Opt(D) < Opt(P)

H[Strong Duality] If (P) is convex and below
bounded and satisfies Slater condition, then
(D) is solvable, and

Opt(D) = Opt(P).



Opt(P) = min{f(z) : g;(z) <0, <m, z € X} (P)

J
Lz, A) = f(z) +>_ Ajgi(x)
J
Opt(D) = n;1>ag< [ig{L(x, A)] (D)

\ - 7

LV

Weak Duality: “Opt(D) < Opt(P)": There
is nothing to prove when (P) is infeasible,
that is, when Opt(P) = co. If z is feasible for
(P) and X\ > 0, then L(z,\) < f(xz), whence

A>0= L\ ig{ L(z,\)
XT

inf L(z, )
xc X is feasible

inf
xc X is feasible f(x>
Opt(P)

sup L(\) < Opt(D).
A>0

IA A

= Opt(D)



OpPt(P) = min{f(z) : g;(x) <0, <m, z € X} (P)

4
L(z,X) = f(z) + ¥ Ajg;(=)
U
Opt(D) = max [ig{L(x, )\)] (D)

\ 7

LV

Strong Duality: “If (P) is convex and below
bounded and satisfies Slater condition, then
(D) is solvable and Opt(D) = Opt(P)":
The system

f(z) < Opt(P), gj(x) <0,j=1,..,m, z € X
has no solutions, while the system
gi(z) <0,j=1,...m, x € X
has a solution. By CTA,
IN*>0: f(z) + Z)\;gj(:c) > Opt(P) Vx € X,
J

whence
L(\*) > Opt(P). ()
Combined with Weak Duality, () says that
Opt(D) = L(\*) = Opt(P).



Opt(P) = min{f(z) : gj(x) <0,j <m, z € X} (P)

4
Lz, A) = f(z) +2_ Ajgi(x)
U
Opt(D) = rp>ao>< [ig{L(w, A)] (D)
oy

Note: The Lagrange function “remembers”,
up to equivalence, both (P) and (D).
Indeed,

inf L A
Inf. (z,\)

IS given by the Lagrange function. Now con-
sider the function

L(z) = i‘gBL(‘“) B { 400, oOtherwise

(P) clearly is equivalent to the problem of
minimizing L(x) over z € X:

Opt(P) = ;2}2 L(x,\)



Saddle Points

& lLet X CR", A C R™ be nonempty sets, and
let F'(xz, \) be a real-valued function on X x A.

This function gives rise to two optimization
problems

Opt(P) = inf ¢ F(z,N) (P)
inf F(z,A) (D)
reX ,

v

O\




Opt(P) = inf ¢ F(z.N) (P)
inf F(z,\) (D)
TEX b

F(\)
Game interpretation: Player I chooses x € X,
player II chooses A € A. With choices of the
players x, A\, player I pays to player II the sum
of F'(x,)\). What should the players do to
optimize their wealth?
OIf Player 1T chooses x first, and Player II
knows this choice when choosing A, II will
maximize his profit, and the loss of I will be
F(x). To minimize his loss, I should solve
(P), thus ensuring himself loss Opt(P) or
less.
OIf Player II chooses M\ first, and Player 1
knows this choice when choosing x, I will
minimize his loss, and the profit of II will be
F()\). To maximize his profit, II should solve
(D), thus ensuring himself profit Opt(D) or
more.




Opt(P) = inf ¢ F(z,N) (P)
inf F(z,\) (D)

ch

Ve

F(X)

Observation: For Player I, second situation
seems better, so that it is natural to guess
that his anticipated loss in this situation is <
his anticipated loss in the first situation:

Opt(D) =sup inf F'(x,\) < inf sup F(z,\) = Opt(P).
AEN zEX reX \eA

This indeed is true: assuming Opt(P) < o
(otherwise the inequality is evident),
V(ie>0): dzce€ X :supF(xe, ) <Opt(P)+e¢

AEN
=VAeAN:F(\) = Ian(x A) < F(xze,\) <Opt(P) + ¢

= Opt(D) = sup F(A) < Opt(P) + ¢
AEA
= Opt(D) < Opt(P).




F(x)

Opt(P) = mf SupF(z,)\) (P)
X AeN
Opt(D) = sup mfF(a; >\) (D)
AEN ZE

26)

& What should the players do when making
their choices simultaneously?

A ‘'"good case’ when we can answer this
question — F' has a saddle point.

Definition: We call a point (xz«, x) € X x \ a
saddle point of F', if
F(z, ) > F(xs, \x) > F(zs,\) V(z € X, X € N).

In game terms, a saddle point is an equi-
librium — no one of the players can improve
his wealth, provided the adversary keeps his
choice unchanged.

Proposition: F' has a saddle point if and only
if both (P) and (D) are solvable with equal
optimal values. In this case, the saddle points
of F are exactly the pairs (x«, Ax), where zx
is an optimal solution to (P), and A\« is an
optimal solution to (D).




Opt(P) = inf ¢ Pz ) (P)
nfF(z,%) (D)

\

268

Proof, =: Assume that (z«, A«) is a saddle
point of F', and let us prove that xs« solves
(P), XA« solves (D), and Opt(P) = Opt(D).
Indeed, we have
whence

AEN

xre
Since Opt(P) > Opt(D), we see that all in-
equalities in the chain
Opt(P) < F(x+) = F(xx, Ax) = F(As) < Opt(D)

are equalities. Thus, zx solves (P), A« solves
(D) and Opt(P) = Opt(D).



Opt(P):ig)f(r FA(;U,A)‘ (P)
ig‘(F(a:,)\) (D)

F())

Proof, <. Assume that (P), (D) have op-
timal solutions x«, Ax and Opt(P) = Opt(D),
and let us prove that (x4, A\x) iS a saddle point.
We have

-
reX
(%)
Since Opt(P) = Opt(D), all inequalities in
(x) are equalities, so that

AEN reX



Opt(P) = min{f(z) : gj(x) <0,j <m,z € X} (P)
4
LGN = f@) + 3 j05(@)

Theorem [Saddle Point form of Optimality
Conditions in Convex Programming]

Let x4« € X.

S[Sufficient optimality condition] If z« can be
extended, by a \* > 0, to a saddle point of
the Lagrange function on X x {\A > 0}:

then z« is optimal for (P).

$[Necessary optimality condition] If z« is op-
timal for (P) and (P) is convex and satis-
fies the Slater condition, then x4« can be ex-
tended, by a A\* > 0, to a saddle point of the
Lagrange function on X x {A > 0}.



Opt(P) = min{f(2) : gj(2) < 0,j <m,z € X} (P)
J
LGN = f@) + 3 j05(@)

Proof, =: “Assume z, € X and d\* > 0 :

L(x,\*) > L(xzx,\*) > L(zx,\) V(z € X, X >0).
Then x4 is optimal for (P)."”

| 400, xx is infeasible
Clearly, i;lgL(w*a)‘) — { f(xx), otherwise

Thus, \* >0 & L(xx,\*) > L(xx,\) VA >0 is
equivalent to

gj(x*) < 0Vy & )\;gj(a:*) = OV.
Consequently, L(xzx, \*) = f(xx), whence
L(z,\*) > L(zx, \*) Vx € X

reads as

L(z,\") > f(z«) Vz. ()

Since for A > 0 one has f(x) > L(x,\) for all
feasible z, (x) implies that

x is feasible = f(x) > f(xx).



Opt(P) = min {f(x) : gj(z) <0,j <m,z € X} (P)
J
m
L(z,\) = f(z) + _El Aigi(x)
]:
Proof, <=: Assume x4 is optimal for convex

problem (P) satisfying the Slater condition.
Then IA* > 0:

By Lagrange Duality Theorem, 3A* > O:

f(@.) = L(A") = inf . ()

f(x) + Z Xigj(z)

Since x4 is feasible, we have

inf
zeX

f(z) + Z A}*gj(fv)] < fz) + Z A;9i (@) < f ().

By (%), the last " > " here is” =", which
with A\* > 0 is possible iff )\;fgj(:c*) =0V

Now () reads L(x, \*) > f(xx) = L(xx, \¥).



Opt(P) = min{f(z) : gj(#) <0,j <m,z € X} (P)
J
LX) = f@) + 3 j95(@)

Theorem [Karush-Kuhn-Tucker Optimality Con-
ditions in Convex Programming] Let (P) be

a convex program, let =z* be its feasible so-
lution, and let the functions f, g1,...,9m be
differentiable at =z*. Then

ST he Karush-Kuhn-Tucker condition:

Exist Lagrange multipliers A* > 0 such that

™m

Vi) + L NVgj(es) € Ny ()
j:

)\jgj(x*) = 0, j < m [complementary slackness]

iIs sufficient for x« to be optimal.

OQIf (P) satisfies restricted Slater condition:
dxz € rint X : g;(z) < 0 for all constraints and
g;j(z) < 0 for all nonlinear constraints,

then the KKT is necessary and sufficient for
T« TO be optimal.




Opt(P) = min{f(z) : gj(#) <0,j <m,z € X} (P)
Y
L(z,2) = f(@) + 3 Ajg;(a)
=

Proof, =: Let (P) be convex, x. be feasible,
and f, g; be differentiable at z«. Assume also
that the KK'T holds:

Then x4« is optimal.
Indeed, complementary slackness plus \* > 0
ensure that

L(zs, \*) > Lz, \) VA > 0.

Further, L(x,\*) is convex in x € X and dif-
ferentiable at x4« € X, so that (a) implies that

L(z,\*) > L(zx,\*) Vxe X.

Thus, £« can be extended to a saddle point
of the Lagrange function and therefore is op-
timal for (P).



Opt(P) = min{f(z) : gj(#) <0,j <m,z € X} (P)
Y
L(z,2) = f() + 3 Ajg;(a)
=

Proof, < [under Slater condition] Let (P)
be convex and satisfy the Slater condition, let
xx« be optimal and f, g; be differentiable at
Tx. 1 hen

By Saddle Point Optimality condition, from
optimality of z. it follows that I\* > 0 such
that (x«, \*) is a saddle point of L(xz,\) on
X x {A > 0}. This is equivalent to

Ajgj(z) =0 Vj & arcgl)rg L(z,\*) = L(x, \")

\ e

"~

(%)
Since the function L(x, \*) is convex in z €
X and differentiable at z« € X, relation (x)
implies (a).



& Application example: Assuming a; > 0, p >

1, let us solve the problem

min {Z

a;
i Li

::U>O,Z:cf§1}
)

Assuming x4+ > 0 is a solution such that
> (z7)P =1, the KKT conditions read
i

Vo {z;—;+A(fo— 1)}

O@%Zp)\x
1

1

p—1
7

Yy =
1
1
whence z; = c¢(\)a!"". Since Y2 should be
5
1, we get
1
p+1
* CLZ-
x,L- — ; 1
T\
(547)

This point is feasible, problem

KKT at the point is satisfied
= z* is optimall

IS convex,



Existence of Saddle Points

& Theorem [Sion-Kakutani] Let X C R",
A C R™ be nonempty convex closed sets and
F(x,\) : X x AN — R be a continuous func-
tion which is convex in x € X and concave in
A e N

Assume that X is compact, and that there
exists x € X such that all the sets

Ao {NEN:F(Z,A) > al

are bounded (e.g., A is bounded).
Then F possesses a saddle point on X — A.
Proof:
MiniMax Lemma: Let f;(x), ¢« = 1,...,m, be
convex continuous functions on a convex
compact set X C R"™. Then there exists
p* >0 with > pr =1 such that

7

min max f;(z) = min *f(x
xEXlSiSmfz{ ) zUGXZL.:'quZ( )

Note: When p > 0,> p; = 1, one has
1

max fi(z) > 3 pifi(z)

1<i<m i

= minmax f;(x) > min> pu; fi(x)
reX 1 reX j



Proof of MinMax Lemma: Consider the
optimization program

min {t fi(z) —t<0,i<m,(t2) EX_|_},

t,x
X4 = {(t,z) :x € X}

(P)
This program clearly is convex, solvable and
satisfies the Slater condition, whence there
exists A* > 0 and an optimal solution (x«,t«)
to (P) such that (x«, A*) is the saddle point
of the Lagrange function on Xt x {\ > 0}:

zeX,t

max {1+ SAG@ -0} = L+ TN ) ©)

A>0
1
(a) implies that 3> A7 = 1 and therefore im-
1

min {+ EXNG@ -0} = L+ ENGE) 1) @

plies that

miny M\ f:.(x) = t« = minmax f;(x).
ZBEX; zfz( ) * reX ; fz( )



Proof of Sion-Kakutani Theorem: We
should prove that problems

Opt(P) = inf supF(a; A (P)
zeX \eEN
Opt(D) = sup inf F(x, >\) (D)
AENZEX
FO\)

are solvable with equal optimal values.

19, Since X is compact and F(x,)\) is con-
tinuous on X x A, the function F()\) is con-
tinuous on A. Besides this, the sets

“={AeA:F\)>a)

are contained in the sets
No={NEN:F(x,\) > a}

and therefore are bounded. Finally, A is
closed, so that the continuous function F(-)
with bounded level sets A% attains it maxi-
mum on a closed set A. Thus, (D) is solv-
able; let \* be an optimal solution to (D).



20, Consider the sets

X(\) = {z € X: F(z,\) < Opt(D)}.

These are closed convex subsets of a com-
pact set X. Let us prove that every finite
collection of these sets has a nonempty in-
tersection. Indeed, assume that

XOOHn..nxOoM =0.
so that

max F(z,\) > Opt(D).
j=1,...,N

By MinMax Lemma, there exist weights p; >
0,> u; =1, such that
J

: ¥ J
gcnel)g;ug (z, M) > Opt(D)

\ .

>F(z,Y piN)

J
N——

A
which is impossible.




30, Since every finite collection of closed
convex subsets X (\) of a compact set has a
nonempty intersection, all those sets have a
nonempty intersection:

Jz4 € X : F(x4,\) < Opt(D) V.

Due to Opt(P) > Opt(D), this is possible iff
x+« 1S optimal for (P) and Opt(P) = Opt(D).



Optimality Conditions in Mathematical
Programming

& Situation: We are given a Mathematical
Programming problem

(91(x),92(x), ..., gm(x)) <0
min f@): (A1 (@), hg(@)) = O
x e X

(P)

Question of interest: Assume that we are
given a feasible solution xz« to (P). WHhat
are the conditions (necessary, sufficient, nec-
essary and sufficient) for x« to be optimal?
Fact: Except for convex programs, there are
no verifiable local sufficient conditions for
global optimality. There exist, however,
Hverifiable local necessary conditions for lo-
cal (and thus — for global) optimality
Hverifiable local sufficient conditions for lo-
cal optimality

Fact: Existing conditions for local optimality
assume that xx € intX, which, from the view-
point of local optimality of x4, is exactly the
same as to say that X = R".




& Situation: We are given a Mathematical
Programming problem

x (h1(x),...,hg(z)) =0
(P)

and a feasible solution z« to the problem, and
are interested in necessary/sufficient condi-
tions for local optimality of x«:

There exists r > 0 such that for every feasible
x With ||z — z«|| < r one has

f(z) > f(z+).

Default assumption: The objective and all
the constraints are continuously differen-
tiable in a neighbourhood of x.




wfrer OB )

(P)
& First Order Optimality Conditions are ex-

pressed via values and gradients of the ob-
jective and the constraints at xz«. EXxcept for

convex case, only necessary First Order con-
ditions are known.




wfrer ORI )
(P)

The idea:

HAssume that xx is locally optimal for (P).

Let us approximate (P) around zx by a Linear
Programming program

majn flas) + (@ — )t f/(2s)

S.t.
0

gj($*> +(z — x*)Tg;(af*) <0,j€ J(zx)
hi(zx) +(x — :c*)ThfL(az*) =0,1<i<k
0
J(z:) = {j : gj(ws) = 0}]
(LP)
Note: Since all g;(-) are continuous at z«, the
non-active at x4« inequality constraints (those
with g;(z«x) < 0) do not affect (LP).



min {f(:r:) : (glgii’(gf?,’ﬁ;’(iﬂf)(ai)oé 0 } (P)

\

(@~ 2.)"gj(z.) <O,
= min g @ —a) @) 0 7y o (D)
i=1,..k )

J(zx) = {j : gj(z«) = 0}
SIt is natural to guess that if x« is locally
optimal for (P), then x4 is locally optimal for
(LP) as well.
LP is a convex program with affine con-
straints, whence the KK'T conditions are nec-
essary and sufficient for optimality:

x« iS optimal for (LP)

(X

k
fllzs) + X Ngi(zs) + X pihi(z«) =0
JEJ () =1
T

(AT >0, 17)

f'(xs) + 2 Nig) () + X pihj(es) = 0

J )
)\jgj(fﬁ*) =0,75=1,....m



wfror Q25
(P)

Proposition. Let =+ be a locally optimal so-
lution of (P).

Assume that zx remains locally optimal when
passing from (P) to the linearized problem

( (z — x*)TQ;(x*) <0, \

min < (x —xs)" f(xs) : (o — o) ! (2.) = O, >

\ i=1,.. k )
(LP)

Then at z« the KKT condition holds:

(AT >0, 17)
f'(zs) + S Nig) () + X pihj(ee) = 0
J 1

)\;fgj(:v*) =0,7=1,...m



@ OGN @

( (z — CU*)TQ;(CU*) <0, \
: L T g1 . ] c J(:Ij*)
mmln § (@ —x:)" f(2) (x — ac*)Th;(x*) =0, > (LP)
\ i=1,..k /

To make Proposition useful, we need a ver-
ifiable sufficient condition for “z4« remains
locally optimal when passing from (P) to
(LP)".

The most natural form of such a condition is
regularity:

Gradients, taken at x«, of all constraints ac-
tive at x« are linearly independent.

Of course, all equality constraints by defini-
tion are active at every feasible solution.



S LU T NG el B

( (z — w*)Tg;(ﬂU*) <0, \
: T g1 . ] c J(CU*)
mmln § (@ —2:)" f(2) (x — ac*)Th;(x*) =0, > (LP)
\ i=1,..k }

Proposition: Let =z« be a locally optimal reg-
ular solution of (P). Then x4 is optimal for
(LP) and, consequently, the KKT conditions
take place at z«.

Proof is based on an important fact of Anal-
ysis — a version of Implicit Function Theorem.




Theorem: Let x4 € R™ and let py(x), £ =
1,...,L, be real-valued functions such that
Opp are kK > 1 times continuously differen-
tiable in a neighbourhood of xx

Ope(zx) =0

dvectors Vpy(xs), £ =1,..., L, are linearly in-
dependent.

Then there exists substitution of variables

y— = P(y)

defined in a neighbourhood V of the origin
and mapping V, in a one-to-one manner,
onto a neighbourhood B of x4, such that
Oxe = P(0

Sboth @ @V — B and its inverse mapping
®~1: B -V are k times continuously differ-
entiable

{$in coordinates y, the functions p, become
just the coordinates:

yeV =>p(Py) =y, £=1,.., L.



( (r — az*)Tg;(:c*) <0, )
; . T ¢t . ] c J(CU*)
mxln ¢ (x—x4)” fl(xe) (x — ZC*)Th;(CC*) =0, > (LP)
\ i=1,..k J

Let x4« be a regular locally optimal solution to
(P); assume, on the contrary to what should
be proven, that z. is not an optimal solution
to (LP), and let us lead this to contradiction.
19. Since z = zx is not an optimal solution
to (LP), there exists a feasible solution z/ =
z+« 4+ d to the problem with (' — z:)1 f/(z4) =
dl f'(z4) < 0, so that

d' f'(z+) < 0, d' hij(es) = 0, d' gj(x+) <O
Vi V]Ej(ai*)




d' f'(z+) < 0, d' hj(es) = 0, d' gj(+) <O
Vi V]Ej(ili*)

20, W.l.0.g., assume that J(zs) = {1,...,£}.
By Theorem, there exist continuously differ-
entiable local substitution of argument

z = d(y) [©(0) = ]

with a continuously differentiable in a neigh-
bourhood of x4 inverse y = W(x) such that
in a neighbourhood of origin one has

hi(®(y)) =i, 9;(PW)) =Ygy, 7 =1, L

Since W(®d(y)) = y, we have V/'(z,)P'(0) =
I, whence

Je : d'(0)e = d.



Situation: We have found a smooth local sub-
stitution of argument x = ®(y) (y = 0 cor-
responds to x = zx) and a direction e such
that in a neighbourhood of y = 0 one has

(a) hi(P(y)) = y;, 1<k
(b) 9;(®W)) = yp44, 5 <4
[J(z) = {1,...,¢}]
(c) [®'(0)e]'hi(zs) = 0,i<k
(d) [@'(0)e Tg}(ﬂ?*) < 0,5/
(e) [®'(0)e]ll f'(z«) < O

Consider the differentiable curve

x(t) = P(te).
We have
te; = h;(P(te)) = ¢, = [dD’(O)e]Th,’L-(a:'*) =0
tep4; = g;(P(te)) = epq; = [CD’(O)e]Tg;-(zC*) <0
= hi(x(t)) =te; = 0, g;(x(t)) = teg4; <0
Vi Vjej(x*)
Thus, x(t) is feasible for all small t > 0. But:

d — / T ¢l

p” ol @) = [®(0)e]” f(wx) <O,
whence f(x(t)) < f(xz(0)) = f(xx) for all
small enough ¢ > O, which is a contradiction
with local optimality of x«.




Second Order Optimality Conditions

& In the case of unconstrained minimization
problem

min f(z) (P)

with continuously differentiable objective, the
KKT conditions reduce to Fermat Rule: If xx
is locally optimal for (P), then V f(x«) = 0.
Fermat Rule is the “first order’ part of Sec-
ond Order Necessary Optimality Condition in
unconstrained minimization:

If x« is locally optimal for (P) and f is twice
differentiable in a neighbourhood of x«, then

& V2 f(zs) = 0 dI'V2f(ze)d > OVd

Indeed, let z« be locally optimal for (P); then
for appropriate r; > 0

0<t<ry

= 0 < f(@x +td) — f(4)
— T 1,2 /T2 2
—tg V‘j:($>|<)1‘|‘2t d V f($*)d+t Rd(t)

=0 —0,
t—0

= 2dTV?f(xx)d + Rg(t) > 0 = dTV2f(z4)d > 0




min f(z) (P)

The necessary Second Order Optimality con-
dition in unconstrained minimization can be
strengthened to

Second Order Sufficient Optimality Condition
in unconstrained minimization: Let f be
twice differentiable in a neighbourhood of xx.
If

V2 f(z4) = 0 < dI'V2f(zs)d > 0Vd # 0

then x4 is locally optimal for (P).

Proof: Since d!V2f(z+)d > 0 for all d > O,
then there exists a > 0 such that df V2f(xx)d >
ad®'d for all d.

By differentiability, for every ¢ > 0 there ex-
ists r¢ > 0 such that

ldll2 < e
= f(@x +d) — f(@x) > d V(@) +5d" V2 f(s)d
=0 Zo;c,de
—5dld

= f(z« + d) — f(2) > 3(a — €)dld

Setting e = % we see that z« is a local mini-
mizer of f.



We are given a Mathematical Programming
problem

in{ 1@z (YR SO L (p)
\(}
L(z, A\, p) = f(z) + %_:Ajgj(ﬂf) + > pihi(x)

& In Optimality Conditions for a constrained
problem (P), the role of V2f(z4) is played by
the Hessian of the Lagrange function:
Second Order Necessary Optimality Condition:
Let x« be a regular feasible solution of (P)
such that the functions f, g;, h; are twice con-
tinuously differentiable in a neighbourhood of
T«. If x4 1S lOcally optimal, then
O T here exist uniquely defined Lagrange mul-
tipliers A; > 0, p; such that the KKT condi-
tions hold:

VaL(xs; N, u*) =0

)\;fgj(a:*) =0,7=1,...m

OFor every d orthogonal to the gradients,
taken at x%, of all active at x« equality and
inequality constraints, one has

d'V2L(xs; N, p*)d > 0.






Proof. 1°. Constraints which are non-active
at x4« clearly do not affect neither local opti-
mality of x«, nor the conclusion to be proven.
Removing these constraints, we reduce the
situation to one where all constraints in the
problem

min { ) (HERBEN D0 )
(P)

are active at xx.
20, Applying Implicit Function Theorem, we
can find a local change of variables

r=>P(y) & y= V()
[P(0) = x4, W(zx) = O]
with locally twice continuously differentiable
d, W such that

9;i(®(W) =y;, § <m, hi(P(Y)) = Y+ © < k.
In variables y, problem (P) becomes

mm{f(d)(y)) Y; < 0,5 <m,yp4; =0, < k}

¢(y)
(P)



min {f(a:) (916 920, e gnl)) <0 (P)
7 v = ()]
myin{f(¢(y)) <0, Sm,ykﬂ:o,isz«} (P

#(y)
I

M(y; A, ) = &(y) + D°Njys + D Bilimti
J 7

Our plan is as follows:

HSince @ is a smooth one-to-one mapping
of a neighbourhood of zx onto a neighbour-
hood of y« = 0, x4« is locally optimal for (P)
iff y« = 0 is locally optimal for (P’).

HWe intend to build necessary /sufficient con-
ditions for y« = 0 to be locally optimal for
(P); “translated” to z-variables, these con-
ditions will imply necessary/sufficient condi-
tions for local optimality of x« for (P).



fio CRETELE @

7 v = ()]
myin{f(j((;q)) 4 <0, ] Sm,yk+¢=0,i§k} (P)
"

M(y; A ) = &(y) + 2- Njys + 2 Hitmtd
7 )

30, Since xx = ®(0) is locally optimal for
(P), y« = 0 is locally optimal for (P’). In
particular, if e; is -th basic orth, then for
appropriate € > O:

j<m = y(t) = —te; is feasible for (P') when
06(0) __ d
e>t>0 = %G a;(g;l_§|t=0¢(y(m >0
*
and

s>m-+k = y(t) = tes is feasible for (P’) when

ext>e = TGP =G| sy(1)=0

Setting u; = —%LCB, 1=1,...,k, we get

A* >0 & VyM(0; M, ") =0.  (KKT)



Situation: y« = 0 is locally optimal for

min {¢(y) = f(P(y)) : yf?7,+’i Z0.i<k } (P')
v k
My, A, p) = ¢(y) + -21 Ay + -21 WiYm+i
j= =
and I\* > 0, u*:

[ 09(0) | N+ <y
OM (0; X*, u*) aﬁi%& " }
0= o = a%g)ntug_m, m << m+k
8¢ (0
oy {C>m—+k
(KKT)

Note that the condition VM (0; \*,u*) = O
defines \*, u* are in a unique fashion.
49, We have seen that for (P'), the first or-
der part of the Necessary Second Order Op-
timality condition holds true. Let us prove
the second order part of the condition, which
reads

V(d:d'Vyyy=0,<m+k):

dI'VaM(0; A*, p*)d > 0.



Situation: y« = 0O is locally optimal solution
to the problem

min {qb(y) f(®y)) - zii_ogi%,ﬂzé k }
(P")
Claim:

V(d:d'Vyyy=0,0<m+k):
dI'VEM(0; X, p*)d > 0.

This is evident since M (y; \*, 1*) = o(y) +

]21 Ny + z i Ym+i, We have
VZM(0; X, 1*) = V2¢(0).

Claim therefore states that d{'V2¢(0)d > 0
for every vector d from the linear subspace
L = {d rdp = ... = dm—l—k = O} But this
subspace is feasible for (P’), so that ¢, re-
stricted onto L, should attain unconstrained
local minimum at the origin. By Necessary
Second Order Optimality condition for un-
constrained minimization,

d'V2?¢(0)d >0 Vd € L.



min {f(a:) - (916 930, e gnl)) <0 (P)

7 v = ()]
min { F(D)) 5 gy <0, 5 < myypss = 0, i < k} (P
o(y) '

M (y; A ) = () + 2 Njys + X 1ilYym+i
7 i

50. We have seen that if z4 is locally optimal
for (P), then there exist uniquely defined \* >
O, u* such that

and one has

d'Vyy, =0, £ < m+k = d'VIM(0; X*, p*)d > 0.

Let us prove that then
VaL(zs A5, ") =0 (%)
and
T 1 _ '
€9j(x*)—073§m T—?2 Nk %
= e VoL AT, > 0.

(k)



Given:

V,M(0; X, pi*) =0
dTV,yye =0, £ <m~+k = d"V2M(0; \*, u*)d > 0.

Should prove:

elg(x.) =0, <m
j * Y J— T 2 . . * * >
Thi(z) =0, i<k [ ¢ Vel@)iApe=0 ()

$Setting L(x) = L(x; A, 1*), M(y) = M(y, \*, 1u*),
we have
L(x) = M(WV(x))
= Vgl(zs) = [\U’(w*)]TVy./\/l(y*) = 0,
as required in ().
OLlet e satisfy the premise in (xx), and let
d = [®’(0)]le. Then

d

E‘tzotd.

~ ~ ~ <

2 9i(@(d) = [gj(x))" ['(0)]d
t=0

= dj = el gj(2:) =0, j <m

d

2| ha(@(td)) = [hi()]" [/(0)]d

dt|,_g ) 4
%|t=0tdm+i

= dpti = eThg(a:*) =0,:<k



We have
L(x. +te) = g—; MWV (s + te))

= 41 [eT[W/(z: + te)] VMW (2. + te))]

dt
- eTffuﬁch*>]Tv2M<o>[u;%x*)e]
—|—eT[%t:O\U’(x* + te)]* VM(0)

=0

e'V2L(z.)e = j—;

= d'V?Md > 0,

Thus, whenever e is orthogonal to the gra-
dients of all constraints active at x«, we have
el'Vere > 0.



Second Order Sufficient Condition for Local
Optimality

(h1(z),....;hp(z)) =0
U
Lz, M\ p) = f(x) + X Njgj(x) + 3 pih(x)
7 7

mir { fo): (91, 02(@), s gm(@)) <O } )

Second Order Sufficient Optimality Condition:
Let z« be a regular feasible solution of (P)
such that the functions f, g;, h; are twice con-
tinuously differentiable in a neighbourhood of
x«. If there exist Lagrange multipliers A}* > 0,
p; such that

Hthe KKT conditions hold:

VaeL(xs;, X, 0*) =0
)\;gj(a:*) =0,7=1,...m

OFor every d # 0 orthogonal to the gradi-
ents, taken at x4, of all active at xz« equality
constraints and those active at xz. inequality
constraints for which )\;? > 0, one has

d'V2L(@s; N, 1*)d > 0
then z« is locally optimal for (P).



Note: Difference between Sufficient and Nec-
essary optimality conditions is in their ‘sec-
ond order” parts and is twofold:
H[minor difference] Necessary condition states
positive semidefiniteness of V2L(zs; \*, u*)
along linear subspace:
Vi<k Vji€J (z+)
VdeT ={d: ZiThfL(m*) = d, Zing(x*) = d} :
AU 2L(xs; X, 1*)d > 0
while Sufficient condition requires positive

definiteness of V2L(z«; A%, u*) along linear
subspace:

VO#de Tt ={d:d hj(z«) =0,d" g)j(zx) = 0} :
AU 2L(zs; X, p*)d > 0

H[major difference] The linear subspaces in
question are different, and 1T C T+; the sub-
spaces are equal to each other iff all active
at x« inequality constraints have positive La-
grange multipliers A}'f.



Note: This “gap” is essential, as is shown by
example

min {f(x) =23 — % : g1(x) = 21 < O}
[z+ = (0,0)1]
Here the Necessary Second Order Optimal-
ity condition is satisfied “strictly”: L(xz;\) =
:c% — m% + A\x1, whence
AN =0 = ViL(xs; \*) = 0,

T ={d:d'g}(0) =0} ={d:dy =0},

0#deT= d'V2L(x«; \*)d = d3 > 0}
while x4« IS not a local solution.



Proof of Sufficient Second Order Opti-
mality Condition. 19. Asin the case of Sec-
ond Order Necessary Optimality Condition,
we can reduce the situation to one where
Al inequality constraints are active at xz«
T he problem is of the special form

min ) . P
in{o: BE05=m b )
20, In the case of (P’), Sufficient condition
reads: IX* > 0, u*:
m k
Vil ,—o {¢(y) + Zl Ajyj + Zl u;"ym+i}
J= =

di=0,j¢€ J,d# 0= d"'V?¢(0)d >0
J={j<m:X>0Uu{m+1,..,m+k}

()

Assuming w.l.o.g. {j : A} > 0} ={1,...,q}, (*) reads:

9(0) 0,4=1,...,q

8:1/@
82(5)) = 0,{=q+1,....m
&ggf) 0, f=m4+k+1,..n

= d'V2¢4(0)d > 0

Our goal is to derive from this assumption local opti-
mality of y, = 0 for (P’).

0#£d € Tt={d:dy=0,¢€{1,...qgm~+1,...m+k}}:



20, The feasible set of (P’) is the closed
cone

K={d:d<0,6=1,..,m,d =0, ¢ =m~+1,.. m+k}

Lemma: For 0 = d € K one has d{'V¢(0) > 0
and

d'Ve(0) =0 = d''V?¢(0)d > 0.



Situation:

96(0) 0,4=1,...,q

8%
260) = 0,4=qg+1,..,m
Yo
&g_g = 0,=m+k+1,..n
0O#xd € TT={d:d;=0,¢€c{1,....qm+1,...m+k}}:
= d'V?¢(0)d >0

(%)

K={d:d;<0,4=1,..,m,dg=0,¢=m++1,.., m+k}
()

Claim: For 0 = d € K one has df'V#(0) > 0
and

dI'Vp(0) =0 = d!'V24(0)d > 0.

Proof: For d € K, we have

2. 9¢(0)
dI'v#(0) =
$(0) e; o0,

By (x) — (xx), the first ¢ terms in this sum are
nonnegative, and the remaining are 0. Thus,
the sum always is > 0. For d # 0, the only
possibility for the sum to vanish is to have
d € TT, and in this case df¢”(0)d > 0.

dy



Situation: (P’) is the problem

min 6(y), 0

K is a closed cone, ¢ is twice continuously
differentiable in a neighbourhood of the ori-
gin and is such that

de K = d've¢(0) >0

d e K\{0},d'V4(0) =0 = d'V2¢(0)d > 0
Claim: In the situation in question, 0 is a
locally optimal solution to ().
Proof: Let M = {d € K : ||d||> = 1}, and let
Mg = {d € M : d'V¢(0) = 0}. Since K is
closed, both M and Mgy are compact sets.
We know that dfV2¢(0)d > 0 for d € M.
Since Mgy is a compact set, there exists a
neighbourhood V of Mg and a > 0 such that

deV =d'v?¢(0)d > a.

The set V; = M\V is compact and d!'V¢(0) >
O when d € V7, thus, there exists 3 > 0 such
that

de Vi = d've(0) > 3.



Situation: K is a cone, and the set M = {d €
K :||d||p = 1} is partitioned into two subsets
Vo=V NM and V7 in such a way that

deVy = dIve(0) > 0,dI'v24(0)d > a >0
deVy; — di'Vve(0)>5>0

Goal: To prove that O is local minimizer of ¢
on K, or, which is the same, that

dr > 0
¢(0) < o(td) V(de M,0 <t <r).

Proof: Letde M, t> 0. When d € Vp, we
have

#(td) - $(0) 2 td"V(0) + §2d"V2¢(0)d — ? R(t)

—0,

t——+0
> Zt?(a — 2R(t))
= Jrp > 0: ¢(td) — ¢(0) > Zt%a > 0Vt < 1o

When d € V7, we have
o(td) — ¢(0) > td'V¢(0) + 2t2dTV2¢(0)d — tzi@

—0,
t——+0

> Bt — Ct? — t°R(t)
= Jr1 >0 ¢(td) — ¢(0) > 5t > 0Vt < rg
Thus, ¢(td) — ¢(0) > 0 for all t < min[rg, r1],
de M.



Sensitivity Analysis

e CEEE 2 | @
¢
L(z, A\, p) = f(z) + ?Ajgj(ib‘) + EZ: pihi ()

Definition: Let xz« be a feasible solution to
(P) such that the functions f,g;,h; are £ > 2

times continuously differentiable in a neigh-
bourhood of .

T« IS called a nondegenerate locally optimal
solution to (P), if

Owxs is a regular solution (i.e., gradients of
activ)e at x4« constraints are linearly indepen-
dent

Hat xy, Sufficient Second Order Optimality
condition holds 3I(A\* > 0, u*):

VaoL(ze; N, 0*) =0
)\;fgj(a:*) =0,7=1,....m

d'Vg;(z.) =0V(j: AT >0)
ATV hi(z.) = OVi — dTV2L (0 N, pu*) > 0
d# 0

Hfor all active at z« inequality constraints,
LLagrange multipliers are positive:

gj(xx) = 0= )\;f > 0.






min {f(f’” (), - () = 0 } (P)
Theorem: Let =z, be a nondegenerate locally

optimal solution to (P). Let us embed (P)
into the parametric family of problems

: _ () <ai,...,gn(z) <an
mxln {f(m) . %11(37) — bll, ,ghk(ac) — by, } (P[aab])

so that (P) is (P[0,0]).

T here exists a neighbourhood V; of xx and a
neighbourhood V, ;, of the point a =0,0=20
in the space of parameters a,b such that
OV(a,b) € V,yp, in V, there exists a unique
KKT point z«(a,b) of (P[a,b]), and this point
IS @ nondegenerate locally optimal solution
to (PJa,b]); moreover, z«(a,b) is optimal so-
lution for the optimization problem

gl(x) S a’17 ,gm(CC) S am
Optioc(a,b) = min ¢ f(z) : hi(z) = b1, ..., hp(z) = by
’ x eV,

(Pocla, b])



Sboth zx(a,b) and the corresponding La-
grange multipliers A*(a,b), p*(a,b) are £ —1
times continuously differentiable functions of
(a,b) € Vg, and

9OPtigc(ab) af(agcg%b)) = —\(a,b)

da J
9OPtigc(ab) 8f(xglgzq,b)) = —u¥(a,b)

b




Simple example: Existence of Eigenvalue

& Consider optimization problem

Opt = min {f(m) =2lAz  h(z)=1-2lz= O}
rceR"

(P)
where A = AT is an n x n matrix. The prob-
lem clearly is solvable. Let x« be its optimal
solution. What can we say about z.7
Claim: =4 is a regular solution to (P).
Indeed, we should prove that the gradients
of active at xx constraints are linearly inde-
pendent. There is only one constraint, and
its gradient at the feasible set is nonzero.
Since x« is a regular globally (and therefore
locally) optimal solution, at z« the Necessary

Second Order Optimality condition should
hold: du*:
L(x;p*)
T * T N . _
Vi [m Ar 4+ p (1 — x m)} =0 2(A—pu*Ixx=0
d'Veh(zy) = 0= d' VZL(z4; p*)d > 0
edlz,=0 adT (A—p 1)d>0




Opt = min {f(a:) =zl Az g(z) =1—2lz = O}

xeR"
(P)
Situation: If x4 is optimal, then du*:

Axy = pu*xy (A)

dl'ey =0=d'(A—p*d>0 (B)
& (A) says that zx #= 0 is an eigenvector of
A with eigenvalue p*; in particular, we see
that a symmetric matrix always has a real
eigenvector
& (B) along with (A) says that v/ (A—p*1)y >
O for all y. Indeed, every y € R"™ can be
represented as y = tx« + d with dfz« = 0.
We now have

yT[A — p* Iy = (tzs + d)T[A — p*I](tzs + d)
= 2z [A— p T]as —I—2thgiT[A — T
-0 =0
+d'[A—p*1ld >0
>0




Opt = min {f(a:) =zl Az g(z) =1—2lz = O}

reR"
(P)
Note: In the case in question, Necessary
Second Order Optimality conditions can be
rewritten equivalently as Ju*:

[A — p*I]zx =0
yl'[A — p*Ily > 0Vy ()
and are not only necessary, but also sufficient
for feasible solution x4« to be globally optimal.
To prove sufficiency, let x+« be feasible, and
u* be such that (%) holds true. For every
feasible solution x, one has

0<al[A—p*Nz = 2! Az—p*s'z = 21 Az — ¥,
whence z1' Az > u*. For x = x4, we have

0=zl [A—p*as = 2L Ave—p* 2l oy = 2l Aze—p*,

whence zl' Az, = p*. Thus, zs« is globally
optimal for (P), and u* is the optimal value
in (P).



Extension: S-Lemma. Let A, B be symmetric
matrices, and let B be such that

3z : z! Bz > 0. (%)
Then the inequality
! Az >0 (A)
IS a consequence of the inequality
' Bx >0 (B)

iff (A) is a “linear consequence” of (B): there
exists A > 0 such that

w1 [A — AB]z > OVz ()

that is, (A) is a weighted sum of (B) (weight
A > 0) and identically true inequality (C).
Sketch of the proof: The only nontrivial state-
ment is that “If (A) is a consequence of (B),
then t e exists A > 0 such that ...". To prove
this statement, assume that (A) is a conse-
quence of (B).




Situation:

% : 7Bz >0; 2/ Bz >0=z' Az >0
(B) (A)
Consider optimization problem

Opt = min{z" Az : h(z) =1 - 2" Bz = 0}.

Problem is feasible by (%), and Opt > 0.

Assume that an optimal solution xs« exists.

Then, same as above, z« is regular, and at xx

the Second Order Necessary condition holds

true: du*:

V;,;|$:x* [xTAa: + p*[1 — a:TBa:H =0 [A—pu*Blz. =0
d'V|,_, Mz) =0=d"[A-pBld>0

ed” Bz, =0

We have 0 = zi[A — pu*Blzs, that is, ps =
Opt > 0. Representing y € R™ as tx« +d with
dI' Bz, = 0 (that is, t = 21 By), we get

y!l'[A — p*Bly = t%al [A — u* Bl

=0
+2td" [A — p*Blay +d"[A — " Bld > 0,
=0 >0

Thus, p* > 0 and yI[A — u*Bly > 0 for all y,
Q.E.D.



Introduction to Optimization Algorithms

& Goal: Approximate numerically solutions to
Mathematical Programming problems

(@ PRZGII TR @

& Traditional MP algorithms to be consid-
ered in the Course do not assume the analytic
structure of (P) to be known in advance (and
do not know how to use the structure when it
is known). These algorithms are black-box-
oriented: when solving (P), method gener-
ates a sequence of jterates x1, xo,... in such
a way that x;4 1 depends solely on local infor-
mation of (P) gathered along the preceding
iterates x1, ..., xt.

Information on (P) obtained at z; usually is
comprised of the values and the first and the
second derivatives of the objective and the
constraints at xy.




& Note: In optimization, there exist algo-
rithms which do exploit problem’s structure.
Traditional methods of this type — Simplex
method and its variations — do not go be-
yond Linear Programming and Linearly Con-
strained Quadratic Programming.

Recently, new efficient ways to exploit prob-
lem’s structure were discovered (Interior Point
methods). The resulting algorithms, how-
ever, do not go beyond Convex Program-
ming.



& Except for very specific and relatively sim-
ple problem classes, like Linear Programming
or Linearly Constrained Quadratic Program-
ming, optimization algorithms cannot guar-
antee finding exact solution — local or global
— in finite time. The best we can expect
from these algorithms is convergence of ap-
proximate solutions generated by algorithms
to the exact solutions.

& Even in the case when “finite” solution
methods do exist (Simplex method in Lin-
ear Programming), no reasonable complexity
bounds for these methods are known, there-
fore in reality the ability of a method to gen-
erate the exact solution in finitely many steps
IS neither necessary, nor sufficient to justify
the method.



& Aside of Convex Programming, traditional
optimization methods are unable to guaran-
tee convergence to a globally optimal solu-
tion. Indeed, in the non-convex case there
IS No way to conclude from /local information
whether a given point is/is not globally opti-
mal:

% N

“looking” at problem around z/, we get ab-
solutely no hint that the trues global optimal
solution is z”.

& In order to guarantee approximating global
solution, it seems unavoidable to ‘scan’” a
dense set of the values of x in order to be
sure that the globally optimal solution is not
missed. T heoretically, such a possibility ex-
ists; however, the complexity of “exhaustive
search” methods blows up exponentially with
the dimension of the decision vector, which
makes these methods completely impractical.



& Traditional optimization methods do not
incorporate exhaustive search and, as a re-
sult, cannot guarantee convergence to a
global solution.

& A typical theoretical result on a traditional
the optimization method as applied to a gen-
eral (not necessary convex) problem sounds
like:

Assume that problem (P) possesses
the following properties:

Then the sequence of approximate
solutions generated by method X is
bounded, and all its limiting points
are KK'T points of the problem.

or

Assume that x« is a nondegenerate lo-
cal solution to (P). Then method X,
started close enough to xx«, converges
to xx«.



Classification of MP Algorithms

& T here are two major traditional classifica-
tions of MP algorithms:

> Classification by application fields, primar-
ily into

e algorithms for unconstrained optimization
e algorithms for constrained optimization
{Classification by information used by the
algorithms, primarily into

e zero order methods which use only the val-
ues of the objective and the constraints

e first order methods (use both values and
first order derivatives)

e second order methods (use values, first-
and second order derivatives).




Rate of Convergence of MP Algorithms

& There is a necessity to quantify the con-
vergence properties of MP algorithms. Tra-
ditionally, this is done via asymptotical rate
of convergence defined as follows:

Step 1. We introduce an appropriate error
measure — a nonnegative function Errorp(x)
of approximate solution and of the problem
we are solving which is zero exactly at the
set X, of solutions to (P) we intend to ap-
proximate.

Examples: (i) Distance to the set Xi:

Errorp(z) = inf |z — z«|2
T EXx

(ii) Residual in terms of the objective and the
constraints

Errorp(z) = max [f(:c) — Opt(P),

[gl(m”—l—a XX [gm(x)]+7
[h1 ()], -, |hk(5’3)|]



Step 2. Assume that we have established
convergence of our method, that is, we know
that if zj are approximate solutions gener-
ated by method as applied to a problem (P)
from a given family, then

Errorp(t) = Errorp(xzf) — 0, t — oo

We then roughly quantify the rate at which
the sequence Errorp(t) of nonnegative reals
converges to 0. Specifically, we say that
Hthe method converges sublinearly, if the er-
ror goes to zero less rapidly than a geometric
progression, e.g., as 1/t or 1/t2;

Hthe method converges linearly, if there exist
C < oo and g € (0,1) such that

Error py(t) < Cqt
q is called the convergence ratio. E.g.,
Errorp(t) < e” %

exhibits linear convergence with ratio e™.

Sufficient condition for linear convergence

with ratio ¢ € (0,1) is that
—_Errorp(t+1)

lim <
t—oo Errorp(t) 4




Hthe method converges superlinearly, if the
sequence of errors converges to 0 faster than
every geometric progression:

Vg € (0,1)3C : Errorp(t) < Cq*
For example,

2
Errorp(t) < e~ %

corresponds to superlinear convergence.
Sufficient condition for superlinear conver-
gence is

im Errorp(t+ 1) _

t—oo  Errorp(t)
Hthe method exhibits convergence of order
p>1,if

0

AC : Errorp(t+ 1) < C (Errorp(t))?

Convergence of order 2 is called quadratic.
For example,

t
Errorp(t) =e

converges to 0 with order p.



Informal explanation: When the method con-
verges, Errorp(t) goes to 0 as t — oo, that
IS, eventually the decimal representation of
Errorp(t) has zero before the decimal dot
and more and more zeros after the dot; the
number of zeros following the decimal dot is
called the number of accuracy digits in the
corresponding approximate solution. Tradi-
tional classification of rates of convergence
is based on how many steps, asymptotically,
is required to add a new accuracy digit to the
existing ones.

SWith sublinear convergence, the “price’” of
accuracy digit grows with the position of the
digit. For example, with rate of convergence
O(1/t) every new accuracy digit is 10 times
more expensive, in terms of # of steps, than
its predecessor.




SWith linear convergence, every accuracy

digit has the same price, proportional to

1 . Equivalently: every
In( 1

convergence ratio
step of the method adds a fixed number r

of accuracy digits (for ¢ not too close to O,
r~1l-—gq);

SWith superlinear convergence, every sub-
sequent accuracy digit eventually becomes
cheaper than its predecessor — the price of
accuracy digit goes to O as the position of the
digit grows. Equivalently, every additional
step adds more and more accuracy digits.
OWith convergence of order p > 1, the price
of accuracy digit not only goes to O as the po-
sition k of the digit grows, but does it rapidly
enough — in a geometric progression. Equiva-
lently, eventually every additional step of the
method multiplies by p the number of accu-
racy digits.



& With the traditional approach, the conver-
gence properties of a method are the better
the higher is the “rank” of the method in the
above classification. Given a family of prob-
lems, traditionally it is thought that linearly
converging on every problem of the family
method is faster than a sublinearly converg-
ing, superlinearly converging method is faster
than a linearly converging one, etc.

& Note: Usually we are able to prove exis-
tence of parameters C' and g quantifying lin-
ear convergence:

Errorp(t) < Cqt

or convergence of order p > 1:

Errorp(t 4+ 1) < C(Errorp(t))?,

but are unable to find numerical values of
these parameters — they may depend on
“unobservable” characteristics of a particular
problem we are solving. As a result, tradi-
tional “quantification” of convergence prop-
erties is qualitative and asymptotical.



Solvable Case of MP — Convex
Programming

& VWe have seen that as applied to general
MP programs, optimization methods have a
number of severe theoretical limitations, in-
cluding the following major ones:

HUnless exhaustive search (completely un-
realistic in high-dimensional optimization) is
used, there are no guarantees of approaching
global solution

HQuantification of convergence properties is
of asymptotical and qualitative character. As
a result, the most natural questions like:

We should solve problems of such and
such structure with such and such
Ssizes and the data varying in such
and such ranges. How many steps
of method X are sufficient to solve
problems within such and such accu-
racy?

usually do not admit theoretically valid an-
swers.



& In spite of their theoretical limitations,
in reality traditional MP algorithms allow to
solve many, if not all, MP problems of real-
world origin, including those with many thou-
sands variables and constraints.

& Moreover, there exists a ‘solvable case”
when practical efficiency admits solid theo-
retical guarantees — the case of Convex Pro-
gramming.



e Here is a typical “Convex Programming”
result:

Assume we are solving a Convex Program-
ming program

Opt = min{f(z) : gj(x) <0, j < m, |zl <1,i <n}.
where the objective and the constraints are
normalized by the requirement

;| <1, i<n= [f(z)]<1,]gj(x)]<1,5<m
Given € € (0,1), one can find an e-solution ¢

to the problem:

z5] <1 & gj(aze) <e & f(zf) — Opt < e
Vi<n Vi<m

in NO more than

2
2n2n (_n)

€
steps, with a single computation of the values

and the first order derivatives of f, g1, ..., gm at
a point and 100(m-+n)n additional arithmetic
operations per step.



Line Search

& Line Search is a common name for tech-
niques for one-dimensional “simply constrained”
optimization, specifically, for problems

mwin{f(x):agxgb},

where [a,b] is a given segment on the axis
(sometimes, we shall allow for b = +c0), and
f is a function which is at least once contin-
uously differentiable on (a,b) and is continu-
ous at the segment [a,b] (on the ray [a, o),
if b= 00).

& Line search is used, as a subroutine, in
many algorithms for multi-dimensional opti-
mization.



min f(x) (P)

& Zero-order line search. In zero-order line
search one uses the values of the objective
f in (P) and does not use its derivatives.

& To ensure well-posedness of the problem,
assume that the objective is unimodal, that
IS, possesses a unique local minimizer x4« on
[a, b].

Equivalently: There exists a unique point
z+« € [a,b] such that f(x) strictly decreases
on [a,xx] and strictly increases on [zx,b]:

14
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Main observation: Let f be unimodal on
[a,b], and assume we know f(z'), f(z") for
certain «/, z” with

a <z <z’ <b.

OIf f(z') > f(2), then f(z) > f(2") for = >
z”, so that the minimizer belongs to [a, z"]:

OSimilarly, if f(2) < f(2'), then f(x > f(z))
when z < 2/, so that the minimizer belongs
to [z, b].

& In both cases, two computations of f at 2/,
z'" allow to reduce the initial “search domain”

with a smaller one ([a,z”] or [/, b]).



& Choosing z/, 2" so that they split [ag, bg] =
[a,b] into three equal segments, computing
f(z"), f(z2") and comparing them to each
other, we can build a new segment [a1,b1] C
[ag, bg] such that

Hthe new segment is a localizer — it contains
the solution x«

{the length of the new localizer is 2/3 of the
length of the initial localizer [ag, bg] = [a, b].
& On the new localizer, same as on the orig-
inal one, the objective is unimodal, and we
can iterate our construction.

& In N > 1 steps (2N computations of f),
we shall reduce the size of localizer by factor
(2/3)N, that is, we get linearly converging,
in terms of the argument, algorithm with the
convergence ratio

g =/2/3 = 0.8165...

Can we do better 7 - YES!




lat—1,b¢—1] }:> £z, £ :>{ lat, bf] = [as—1,2

lat, be] = [z}, by—1]

/ /N
Ty < Ty

& Observe that one of two points at which
we compute f at a step becomes the end-
point of the new localizer, while the other
one is an interior point of this localizer, and
therefore we can use it as the one of two
points where f should be computed at the
next step!

With this approach, only the very first step
costs 2 function evaluations, while the sub-
sequent steps cost just 1 evaluation each!

A Let us implement the idea in such a way
that all search points will divide respective
localizers in a fixed proportion:

' —a=b—2z"=0(b—a)
The proportion is given by the equation

' — a x! — &/ 1— 20 3—+/5
0 = — = = 0 = :
b—a b— x/ 1—6 2

1
t



& We have arrived at golden search, where
the search points x;_1, =y of step t are placed
in the current localizer [a;_1,b;_1] according
to

a:’—a_b—w”_?)—\/g
b—a b—a 2
In this method, a step reduces the error (the

length of localizer) by factor 1 — 3—2\/5 —

\/52_1. The convergence ratio is about

V5 —1
2

~ 0.6180...



majn{f(a:):agxgb},

& First order line search: Bisection. Assume
that f is differentiable on (a,b) and strictly
unimodal, that is, it is unimodal, z« € (a,b)
and f/(z) < 0 for a < z < z«, f'(x) > 0 for
Tx < x < b.

Let both f and f’ be available. In this case
the method of choice in Bisection.

& Main observation: Given z1 € [a,b] =
[ag, bo], let us compute f/(x1).

OIf f'(x1) > 0, then, from strict unimodal-
ity, f(x) > f(x1) to the right of z1, thus, z«
belongs to [a, z1]:




SHSimilarly, if f/(x1) < 0, then f(z) > f(xq)
for x < x1, and x4« belongs to [a,x1].

& In both cases, we can replace the original
localizer [a,b] = [ag, bg] with a smaller local-
izer [aq,b1] and then iterate the process.

In Bisection, the point x+ where at step
t f'(x;) is computed, is the midpoint of
[a;_1,b;_1], sO that every step reduces local-
izer's length by factor 2.

& Clearly, Bisection converges linearly in
terms of argument with convergence ratio
0.5:

ar — Tx < 2_t(b() — agp).



Inexact Line Search

& Many algorithms for multi-dimensional
minimization which use Line Search as a sub-
routine, in the following way:

{given current iterate x4 € R™, the algorithm
defines a search direction d; € R™ which is a
direction of decrease of f:

d} Vf(z) < 0.

Then Line Search is invoked to minimize the
one-dimensional function

¢(s) = f(xt + vds)

over v > 0; the resulting v = ~! defines the
stepsize along the direction di, so that the
new iterate of the outer algorithm is

Tit1 = o+ 'dy.

& In many situations of this type, there is
NO necessity in exact minimization in ~; an
“essential” reduction in ¢ is sufficient.



& Standard way to define (and to achieve)
“essential reduction” is given by Armijo’s
rule:

Let ¢(v) be continuously differentiable func-
tion of v > 0 such that ¢'(0) > 0, and let
e € (0,1), » > 1 be parameters (popular
choice is ¢ = 0.2 and n = 2 or n = 10).
We say that a stepsize v > 0 is appropriate,
it

¢(7) < ¢(0) + ev¢'(0), ()

and is nearly maximal, if n times larger step
IS not appropriate:

o(ny) > #(0) + env¢'(0). ()

A stepsize v > 0 passes Armijo test (reduces
¢ ‘“‘essentially’), if its is both appropriate and
nearly maximal.

& Fact:. Assume that ¢ is bounded below on
theray v > 0. Then a stepsize passing Armijo
rule does exist and can be found efficiently.



& Armijo-acceptable step v > O:

o(v) < #(0) + ey’ (0) (%)
o(ny) > ¢(0) + enye/(0)  (sex)

& Algorithm for finding Armijo-acceptable step:

Start: Choose g > 0 and check whether it
passes (*). If YES, go to Branch A, other-
wise go to Branch B.

Branch A: g satisfies (x). Testing subse-
quently the values nvo, 1%v0, 7°70,... Of 7,
stop when the current value for the first time
violates (x); the preceding value of v passes
the Armijo test.

Branch B: vy does not satisfy (x). Test-
ing subsequently the values n~1vg, 1290,
n~3~0,... of ~, stop when the current value
for the first time satisfies (x); this value of ~
passes the Armijo test.




& Validation of the algorithm: It is clear that
if the algorithm terminates, then the result
indeed passes the Armijo test. Thus, all we
need to verify is that the algorithm eventually
terminates.

{HBranch A clearly is finite: here we test the
inequality

d(v) > ¢(0) + ev¢'(0)
along the sequence v; = n'yg — oo, and ter-
minate when this inequality is satisfied for
the first time. Since ¢'(0) < 0 and ¢ is below
bounded, this indeed will eventually happen.
{HBranch B clearly is finite: here we test the
inequality

d(7) < ¢(0) + ey¢'(0) (%)
along a sequence ~; = n'yg — +0 of values
of v and terminate when this inequality is
satisfied for the first time. Since ¢ € (0,1)
and ¢'(0) < 0, this inequality is satisfied for
all small enough positive values of ~, since

6(v) = ¢(0) +7[¢'(D+ R(H) |
—0,y——+0

For large 7, ~; definitely will be “small enough’,
thus, Branch B is finite.



Methods for Unconstrained Minimization

& Unconstrained minimization problem is

f* — mxin f(x)a

where f well-defined and continuously differ-
entiable on the entire R".

Note:. Most of the constructions to be pre-
sented can be straightforwardly extended
onto “essentially unconstrained case” where
f is continuously differentiable on an open
domain D in R™ and is such that the level
sets {x € U : f(z) < a} are closed.




fe = min f(z) (P)
Gradient Descent

& Gradient Descent is the simplest first order
method for unconstrained minimization.

The idea: Let = be a current iterate which is
not a critical point of f: f/(x) %= 0. We have

f(z +th) = f(z) + th! f'(x) + t||h||2Re(th)
[Rz(s) — 0 as s — O]

Since f'(z) # 0, the unit antigradient direc-
tion g = —f'(x) /|| f'(x)]|2 is a direction of de-
crease of f:

d

dt1t=0

flx+tg) =g f'(x) = —||f'(2)]2

so that shift x — x 4 tg along the direction g
locally decreases f “at the rate” ||f'(z)]|>.

& Note: As far as local rate of decrease is
concerned, g is the best possible direction of
decrease: for any other unit direction h, we

have
d

o/ @ th) = K f'(@) > [ (2)][2-



& In generic Gradient Descent, we update
the current iterate x by a step from z in the
antigradient direction which reduces the ob-
jective:

xr = zp—1 — S (2-1),

where ~; are positive stepsizes such that

filx-1) #0 = f(x) < f(z4-1)-

& Standard implementations:
{H>Steepest GD:

v¢ = argmin f(zi_1 — vf (z¢-1))
v=>0
(slight idealization, except for the case of

quadratic f)
OArmijo GD: 4 > 0 is such that

floi1 —f'(xi-1) < flxp_1) — epll f'(ze—1)|3
Floe1 —muf (1) > f(xi—1) — enyell £/ (z—1) 1|3

(implementable, provided that f/(x;_1) % O
and f(xy—1 — vf'(x4_1)) is below bounded
when v > 0)



Note: By construction, GD is unable to leave
a critical point:

fllep1) =0= o = x4_1.

& Global Convergence Theorem: Assume that
the level set of f corresponding to the start-
ing point zq:

G ={z: f(z) < f(z0)}

iIs compact, and f is continuously differen-
tiable in a neighbourhood of G. Then for
both SGD and AGD:

Othe trajectory xg, z1, ... of the method, started
at xq, is well-defined and never leaves G (and
thus is bounded);

Hthe method is monotone:

f(zo) = flz1) = ...

and inequalities are strict, unless method
reaches a critical point z¢, so that x; =
xt_l_l — xt_l_z —— ...

SEvery limiting point of the trajectory is a
critical point of f.




Sketch of the proof: 19, If f/(zg) = 0, the
method never leaves zg, and the statements
are evident. Now assume that f/(xg) # O.
Then the function ¢g(v) = f(xg —vf'(zg)) is
below bounded, and the set {v > 0 : ¢pg(v) <
»o(0)} is compact along with G, so that
®o(7) achieves its minimum on the ray v > 0,
and ¢5(0) < 0. It follows that the first step
of GD is well-defined and f(z1) < f(zg). The
set {z: f(x) < f(x1)} is a closed subset of G
and thus is compact, and we can repeat our
reasoning with x71 in the role of xg, etc. We
conclude that the trajectory is well-defined,
never leaves G and the objective is strictly
decreased, unless a critical point is reached.



20 “3Il limiting points of the trajectory are
critical points of f":

Fact: Let x € G and f'(x) # 0. Then there
exists e > 0 and a neighbourhood U of x such
that for every ' € U the step x/ — :r;’+ of the
method from x' reduces f by at least e.
Given Fact, let = be a limiting point of {z;};
assume that f/(x) # 0, and let us lead this
assumption to contradiction. By Fact, there
exists a neighbourhood U of z such that

ri € U= f(z;41) < flz;) — e

Since the trajectory visits U infinitely many
times and the method is monotone, we con-
clude that f(x;) — —o0, i — oo, which is im-
possible, since G is compact, so that f is
below bounded on G.



Limiting points of Gradient Descent

& Under assumptions of Global Convergence
Theorem, limiting points of GD exist, and all
of them are critical points of f. What kind
of limiting points could they be?

{A nondegenerate maximizer of f cannot be
a limiting point of GD, unless the method is
started at this maximizer.

A saddle point of f is “highly unlikely”
candidate to the role of a limiting point.
Practical experience says that limiting points
are local minimizers of f.

A nondegenerate global minimizer x4 of f,
if any, as an “attraction point” of GD: when
starting close enough to this minimizer, the
method converges to xx.




Rates of convergence

& In general, we cannot guarantee more than
convergence to the set of critical points of f.
A natural error measure associated with this
set is

5%(z) = || (@)|3.

& Definition: Let U be an open subset of R",
L >0 and f be a function defined on U. We
say that f is CLI(L) on U, if f is continu-
ously differentiable in U with locally Lipschitz
continuous, with constant L, gradient:

[z,y] € U = [|f'(@) — f'(¥)ll2 < L||z — yll2.

We say that f is CLI(L) on a set Q C R”, if
there exists an open set U D @ such that f
is cL1(L) on U.
Note: Assume that f is twice continuously
differentiable on U. Then f is CLI(L) on
U iff the norm of the Hessian of f does not
exceed L:

V(z € U,d € R™) : |d" f"(z)d| < L||d|)5.



T heorem. In addition to assumptions of Global
Convergence Theorem, assume that f is
CLi(L) on G={z: f(z) < f(zo)}. Then
OFor SGD, one has

2 — £]L
min 62(x;) < [/ (z0) = /4] +=0,1,2,...
0<r<t t+ 1

SFor AGD, one has

7 (o) — £IL
1—¢) t+1

+=0,1,2,...

min §2 <
0<r<t (@r) < 2¢(



Lemma. For x € G, 0 < s <2/L one has

r—sfl(z) € G (1)
flo—sf'(2)) < fz) — 62(x)s + 522 (2)

There is nothing to prove when g = —f/(z) =
0. Let g # 0, ssx = max{s > 0: x4+ sg € G},
62 = 62(z) = g1 g. The function
¢(s) = f(z —sf'(x)) : [0,s¢] = R
is continuously differentiable and satisfies
(a) ¢'(0)=—glg=—-62% (b) ¢(sx) = f(x0)
(c) |¢/(s) —¢'(0)| =gl [f'(=+ 829) f(@)]| < Lsé?
Therefore ¢(s) < ¢(0) — §2s 4+ £ m (*)

which is (2). Indeed, setting

2
0(s) = 9(s) ~ [6(0) ~ 65 + 257,
we have

0(0) = 0,0'(s) = ¢'(s) — ¢/(0) — Lss? 0.

<
<~
(

by (c)
By (x) and (b), we have

f(x0) < $(0) — 625, + L3752 < f(xo) — 6250 + L2






Lemma = Theorem: SGD: By Lemma, we
have

f(zt) — flxeg1) = far) — mm Fxp — v f'(z0))
> f(zt) — min | f(z) — 52(5,; )s + L5 Lo™(w) 2

0<s<2/L
__ 62(=my)
2L
t 52(z7)
= f(xo) — fx > [f(wf) — f(zr41)] 2 O 5T
= =

> (t4+1) OrIth(S (a:T)

2L xo)— [x
N O@T,Qt(;z(x ) < (ft(+01) fx)

2(1 e Indeed, other-

AGD: Claim: Vi1 >
wise by Lemma

[zt —vnf'(x))

< f(ze) — vp1m62(ze) + L&® (xt)?72%2+1
L

= f(=x) — [1 — 577%4—1] MYe+162(xt)

>e
< f(mt) — envpp16°(at)
which is impossible.

\




2(1—¢)

We have seen that ;41 > T By Armijo
rule,

2 26(1 — 6) 2 )
flxe)—f(xi41) 2> eyp416° (1) > I 6<(xt);

the rest of the proof is as for SGD.



& Convex case. In addition to assumptions of
Global Convergence Theorem, assume that f
IS convex.

& All critical points of a convex function are
its global minimizers

= In Convex case, SGD and AGD converge
to the set of global minimizers of f: f(x:) —
fx as t — oo, and all limiting points of the
trajectory are global minimizers of f.

& In Convex CL1(L) case, one can quantify
the global rate of convergence in terms of
the residual f(x¢) — f«:

Theorem. Assume that the set G = {z :
f(x) < f(xp)} is convex compact, f is convex
on G and C1:1(L) on this set. Consider AGD,
and let ¢ > 0.5. Then the trajectory of the
method converges to a global minimizer xx
of f, and

nLlizo — a3, _

f(xt) — fx < a(1—ot 1,2,...



& Definition: Let M be a convex set in R"™
and 0 < £ < L < co. A function f is called
strongly convex, with parameters ¢, L, on M,
if

Ofis cHI(L) on M

Ofor x,y € M, one has

[z — 1" [f (@) = W] = flz —yl5. ()
Theratio Qf = L/¢is called condition number
of f.

& Comment: If f is CH1(L) on a convex set
M, then

v,y € M = @) -[f@)+G-2)" @] < 2zl

If f satisfies (x) on a convex set M, then
/
Va,y € M: f(y) 2 f(2)+(y—2)" f'(@)+ ly—=|3

In particular, f is convex on M.

= A strongly convex, with parameters /¢, L,
function f on a convex set M satisfies the
relation

Yo,y € M : f(z) + (y — )T f'(x) + L|ly — =3
< f) < f@)+ (—2)Tf'(z) + Sy — 2|3



Note: Assume that f is twice continuously
differentiable in a neighbourhood of a convex
set M. Then f is (¢, L)-strongly convex on
M iff for all x € M and all d € R™ one has

d|3 < dTf"(x)d < L||d||3

r
Amin(f”(w)) >/, Amax(f”(fv)) < L.

In particular,
& A quadratic function

f(x) = %wTAa: —blz+c

with positive definite symmetric matrix A
iIs strongly convex with the parameters ¢ =
Amin(A4), L = Amax(A) on the entire space.



& GD in strongly convex case.

Theorem. In the strongly convex case, AGD
exhibits linear global rate of convergence.
Specifically, let the set G = {x : f(z) <
f(zg)} be closed and convex and f be strongly
convex, with parameters ¢, L, on Q. Then

x G is compact, and the global minimizer
xx Of f exists and is unique;

GAGD with € > 1/2 converges linearly to xs:

|z¢ — 4|2 < 0|20 — 4|2

_ Qe H@—nt _ 1
9_\/ Qr+(e~1-1)p~1 =1-0@;7).

Besides this,

F(@e) — fx < 07°Q 41 (20) — fl.



& SGD in Strongly convex quadratic case.
Assume that f(z) = 3z7Az —bTz + ¢ is a
strongly convex quadratic function: A =
AT « 0. In this case, SGD becomes imple-
mentable and is given by the recurrence

gt —

Tt+1 —

Li4+1 —

f'(xt) = Axzy — b

and guarantees that

T 2 -1
fagn) = fo < 1= o9 B < (Gl

Eiqq

whence

D) —f < (

Qr—1
Qr+1

FAgilgf A= 1g4]

ot
) [f(zo)—f«], t=1,2,...



Note: If we know that SGD converges to
a nondegenerate local minimizer x4« of f,
then, under mild regularity assumptions, the
asymptotical behaviour of the method will be
as if f were the strongly convex quadratic
form

() = const + %(az )T ) (@ — ).
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& Summary on Gradient Descent:

HSUNnder mild regularity and boundedness as-
sumptions, both SGD and AGD converge the
set of critical points of the objective.

In the case of CL1(L)-smooth objective, the
methods exhibit non-asymptotical O(1/t)-
rate of convergence in terms of the error
measure §2(z) = || f'(z)||3.

HUnder the same regularity assumptions, in
Convex case the methods converge to the set
of glomal minimizers of the objective.

In convex CL1(L)-case, AGD exhibits non-
asymptotical O(1/t) rate of convergence in
terms of the residual in the objective f(z)— f«
SIn Strongly convex case, AGD exhibits non-
asymptotical linear convergence in both the
residual in terms of the objective f(x) — f«
and the distance in the argument ||z — x«||2.
The convergence ratio is 1 -0O(1/Qy), where
@ is the all condition number of the objec-
tive. In other words, to get extra accuracy
digit, it takes O(Qf) steps.




& Good news on GD:
& Simplicity
& Reasonable global convergence properties

under mild assumptions on the function to
be minimized.




& Drawbacks of GD:

& “‘Frame-dependence’: The method is not
affine invariant!

OYou are solving the problem mxin f(x) by
GD, starting with xg = 0, Your first search
point will be

1 = —1/(0).

I solve the same problem, but in new vari-
ables y: =z = Ay. My problem is myin g(y),

g(y) = f(Az), and start with yg = 0. My
first search point will be

y1 = —719'(0) = —31 AT #/(0).
In x-variables, my search point will be
71 = Ay; = —51AAT £(0)

If AAT is not proportional to the unit matrix,
my search point will, in general, be different
from yours!



& ‘Frame-dependence” is common draw-
back of nearly all first order optimization
methods, and this is what makes their rate of
convergence, even under the most favourable
case of strongly convex objective, sensitive
to the condition number of the problem. GD
iIs “hyper-sensitive” to the condition number:
When minimizing strongly convex function f,
the convergence ratio of GD is 1 — O(l/Qf),

while for better methods it is 1 —O(l/Q]l/Q).



The Newton Method

& Consider unconstrained problem

mmin f(x)
with twice continuously differentiable objec-
tive. Assuming second order information
available, we approximate f around a current
iterate x by the second order Taylor expan-
sion:
(y — )1 (@) (y — )
fy) = f@)+@y—z)' f(2)+ 5
In the Newton method, the new iterate is the

minimizer of this quadratic approximation. If
exists, the minimizer is given by

Vylf (@) + (y — )T (z) + @20 @=2)) — g
o @)y — ) = —f'(2)
sy=z— [ (@] L ()

We have arrived at the Basic Newton method

ziq1 =zt — ()] F ()

(step t is undefined when the matrix f”(z;)
is singular).



vir1 =z — [ ()] (20)

& Alternative motivation: We seek for a so-
lution to the Fermat equation

f'(z) = 0;
given current approximate x; to the solution,

we linearize the left hand side around z¢, thus
arriving at the linearized Fermat equation

f'@e) + f(x) [z — 2] =0

and take the solution to this equation, that
is, x¢ — [ (x)]~1f'(x4), as our new iterate.




pip1 = o — [ (@)] 7 (20) (Nwt)

Theorem on Local Quadratic Convergence: Let
T« be a nondegenerate local minimizer of
f, so that f’(x«) = 0, and let f be three
times continuously differentiable in a neigh-
bourhood of x«. Then the recurrence (Nwt),
started close enough to z%, is well-defined
and converges to xzx quadratically.

Proof: 19. Let U be a ball centered at z«
where the third derivatives of f are bounded.
For y € U one has

IVf(y) — V2f () (@« — y)]|2
= |Vf(zx) — VI(y) — V2f(y) (@« — v)||2
< Blly — z«l|3
(1)

20, Since f”(z) is continuous at z = z4 and
f""(x4) is nonsingular, there exists a ball U’ C
U centered at x4« such that

ye U = |l < Ba. (2)




Situation: There exists a r > 0 and positive
constants (31, 3> such that

ly =zl <7 =

(@) IVF(w) = V2f@) (@ — 2 < Billy — =3
(b) 1AW < B2

30, Let an iterate z; of the method be close
to Tx.

1
vt €V ={z ||z — z«|l@ < p = min] ,7]}.
" 23182
We have
|2ia1 — 2+l = ||t — 24 — [F"(@)] 71 (20)|2

= || [[F" @] " (@) (2 — 2) — £/ (@] 12
< B1B2|zt — «[5 < 0.5||zt — 2«2
We conclude that the method remains well-
defined after step t, and converges to xx«
quadratically.



& A remarkable property of Newton method
is affine invariance (" frame independence”):
Let x = Ay + b be invertible affine change of
variables. Then

f(x) & g(y) = f(Ay +b)
T=Aj+b o J

L =7- "] @)

— [AT f"(z) AL [AT f'(2)]

— ATH@) (@)

Jo +b=[Ay+b]-[f"@)] 1 f(Z)
— [f"(@)] 1 (Z)

N~d

4 1
S >@|@|



& Difficulties with Basic Newton method.
The Basic Newton method

ria1 =zt — [f"(x)] 1 F (),

started close enough to nondegenerate local
minimizer xsx of f, converges to x4« quadrati-
cally. However,

{OEven for a nice strongly convex f, the
method, started not too close to the (unique)
local=global minimizer of f, may diverge:

f(x) =/1 —|—a:2 = Ty = —af;?.

= when |zg| < 1, the method converges
quadratically (even at order 3) to zx = O;
when |zg| > 1, the method rapidly diverges...
OWhen f is not strongly convex, the Newton
direction

—[f"(@)] 7 f' (@)

can be undefined or fail to be a direction of
decrease of f...



& As a result of these drawbacks, one needs
to modify the Basic Newton method in order
to ensure global convergence. Modifications
include:

OIncorporating line search

{Correcting Newton direction when it is un-
defined or is not a direction of decrease of f.



& Incorporating linesearch: Assume that the
level set G = {x : f(x) < f(xg)} is closed and
convex, and f is strongly convex on G. Then
for x € G the Newton direction

e(z) = —[f"(@)] (=)

is a direction of decrease of f, except for the
case when x is a critical point (or, which is
the same in the strongly convex case, global
minimizer) of f:

f'(x) #0 =
el (z) f'(x) = —[f’(:v)]Tlf”(g)]_l,f’(w) < 0.
=0
In Line Search version of Newton method,
one uses e(x) as a search direction rather

than the displacement:

Tig1 = wptyepre(rr) = cr—yep1 [ ()] 71 (1),

where .41 > 0 is the stepsize given by exact
minimization of f in the Newton direction or
by Armijo linesearch.



Theorem: Let the Level set G = {z : f(x) <
f(xzg)} be convex and compact, and f be
strongly convex on G. Then Newton method
with the Steepest Descent or with the Armijo
linesearch converges to the unique global
minimizer of f.

With proper implementation of the line-
search, convergence is quadratic.




& Newton method: Summary

{H>Good news: Quadratic asymptotical con-
vergence, provided we manage to bring the
trajectory close to a nondegenerate local
minimizer

{>Bad news:

— relatively high computational cost, com-
ing from the necessity to compute and to
invert the Hessian matrix

— necessity to ‘“cure’ the method in the
non-strongly-convex case, where the Newton
direction can be undefined or fail to be a di-
rection of decrease...




Modifications of the Newton method

& Modifications of the Newton method are
aimed at overcoming its shortcomings (diffi-
culties with nonconvex objectives, relatively
high computational cost) while preserving its
major advantage — rapid asymptotical con-
vergence. There are three major groups of
modifications:

HModified Newton methods based on second-
order information

HModifications based on first order informa-
tion:

— conjugate gradient methods

— quasi-Newton methods

& All modifications of Newton method ex-
ploit a natural Variable Metric idea.



& When speaking about GD, it was men-
tioned that the method

Tip1 = ot — Y1 BBL fl(m) (%)
A-1s0
with nonsingular matrix B has the same
“right to exist” as the Gradient Descent

i1 = xt — Y1 f (@e);

the former method is nothing but the GD as
applied to

g(y) = f(By).



Tia1 = ot — Y1 AL () (*)
Equivalently: Let A be a positive definite
symmetric matrix. We have exactly the same

reason to measure the “local directional rate
of decrease” of f by the quantity

d' f'(x)
vdld

(a)

as by the quantity

d' f'(z) 5)
vVdl' Ad
HS>When choosing, as the current search di-
rection, the direction of steepest decrease in
terms of (a), we get the anti-gradient direc-
tion —f/(z) and arrive at GD.
HSWhen choosing, as the current search di-
rection, the direction of steepest decrease in
terms of (b), we get the “scaled anti-gradient
direction” —A~1f/(x) and arrive at “scaled”
GD ().




& We have motivated the scaled GD

ri41 = ot — Y1 A () (*)
Why not to take one step ahead by consider
a generic Variable Metric algorithm

i1 = ot — Y1 A1 f () (VM)

with “scaling matrix” A;4 1 > 0 varying from
step to step?

® Note: When A, 1 =1, (VM) becomes the
generic Gradient Descent;

When f is strongly convex and A;;; =
f"(z¢), (VM) becomes the generic Newton
method...

& Note: When x; is not a critical point of f,
the search direction d;11 = —A;}lf’(a;t) is a
direction of decrease of f:

diy 1 f' () = —[f' (@] Al f/(z) < 0.

Thus, we have no conceptual difficulties with
monotone linesearch versions of (VM)...



i1 = ot — Y1 App 1 F () (VM)

& It turns out that Variable Metric methods
possess good global convergence properties:
Theorem: Let the level set G = {x : f(z) <
f(zg)} be closed and bounded, and let f be
twice continuously differentiable in a neigh-
bourhood of G.

Assume, further, that the policy of updating
the matrices A; ensures their uniform positive
definiteness and boundedness.

0<l<L<oo:ll XA X LIVt

Then for both the Steepest Descent and the
Armijo versions of (VM) started at zg, the
trajectory is well-defined, belongs to G (and
thus is bounded), and f strictly decreases
along the trajectory unless a critical point of
f is reached. Moreover, all limiting points of
the trajectory are critical points of f.



& Implementation via Spectral Decomposition:

OGiven zp, compute Hy = f(z4) and then
find spectral decomposition of H;:

H; = V;Diag{\1, ..., \n} V1
{>@Given once for ever chosen tolerance 6 > 0,
set
/)\\Z' = max[)\i,é]

and

At—l-l — ‘/tDlag{/)\\l? AR /)\‘n}‘/;fT

Note: The construction ensures uniform pos-
itive definiteness and boundedness of {A:}+,
provided the level set G = {z : f(z) < f(zg)}
is compact and f is twice continuously dif-
ferentiable in a neighbourhood of G.



& Levenberg-Marquard implementation:

At—|—1 — Etl —I— Ht,

where ¢; > 0 is chosen to ensure that A, =
01 with once for ever chosen 6 > 0.

Her is found by Bisection as applied to the
problem

min{e:e>0,H+ el = 61}

{Bisection requires to check whether the
condition

Hi+el =6l < Hi+(e—906)I =0

holds true for a given value of ¢, and the
underlying test comes from Choleski decom-
position.



& Choleski Decomposition. By Linear Alge-
bra, a symmetric matrix P is = O iff

P =DD" (%)

with lower triangular nonsingular matrix D.
When Choleski Decomposition (x) exists, it
can be found by a simple algorithm as fol-
lows:

{Representation (x) means that

pij = dyd;]
where
d; (d;1,d;>, ...,d;;,0,0,0,0,...,0)
d; (d;1,dj2, ..., djj, ..., dj5,0, ..., 0)
are the rows of D.

&$In particular, p;1 = di1d;1, and we can set

di1 = /P11, di1 = p;1/d11, thus specifying
the first column of D.
OFurther, pos = d3; + d5,, whence doy =

\/pQQ — d%l. After we know dpp, we can find
all remaining entries in the second column of
D from the relations

P2 11 21, P>
doo

pi2 = d;1do1+diodoo = dio =



OWe proceed in this way: after the first (k —
1) columns in D are found, we fill the k-th
column according to

_ 2 2 2

dip, = \/Pkk —dip —dipp — - —dj
w—ditdgi— . —d; p_1dp g1 .

dik — Pik—a;10k1 o 1,k—1%k k 17 i> k.

& The outlined process either results in the
required D, or terminates when you cannot
carry out current pivot, that is, when

> > >
Pk — A1 —djgp — - —dj 1 <0

This “bad termination” indicates that P is
not positive definite.



The outlined Choleski Algorithm allows to
find3 the Choleski decomposition, if any, in
~ ’% a.0. It is used routinely to solve linear

systems
Pr =p (S)

with P = 0. To solve the system, one first
computes the Choleski decomposition

P =DD'
and then solves (S) by two back-substitutions
br— vy . Dy =0, y|—>:U:DTa?=y,

that is, by solving two triangular systems of
equations (which takes just O(n2) a.o.
Another application of the algorithm (e.qg.,
in Levenberg-Marquardt method) is to check
positive definiteness of a symmetric matrix.
Note: The Levenberg-Marquardt method pro-
duces uniformly positive definite bounded se-
quence {A;}, provided that the set G = {z :
f(x) < f(xg)} is compact and f is twice con-
tinuously differentiable in a neighbourhood of
G.



& The “most practical” implementation of
Modified Newton Method is based on run-
ning the Choleski decomposition as applied
to H;y = f""(x;). When in course of this pro-
cess the current pivot (that is, specifying di;.)
becomes impossible or results in di;. < d, one
increases the corresponding diagonal entry in
H; until the condition di;. = 0 is met.

With this approach, one finds a diagonal cor-
rection of H; which makes the matrix "well
positive definite” and ensures uniform posi-
tive definiteness and boundedness of the re-
sulting sequence {A;}, provided that the set
G ={x: f(x) < f(xg)} is compact and f is
twice continuously differentiable in a neigh-
bourhood of G.



Conjugate Gradient methods

& Consider a problem of minimizing a posi-
tive definite quadratic form

flx) = %xTH:c —blz+c

Here is a “conceptual algorithm” for mini-
mizing f, or, which is the same, for solving
the system

Hx =b:
Given starting point xzq, let go = f'(zg) =
Hxg — b, and let
Ej, = Lin{go, Hgo, H*go, -, H* " g0},
and

x = argmin f(x).
rxexg+ Ly

Fact I: Let k« be the smallest integer k£ such
that Ep41 = Ei. Then k« <n, and zy,_ is the
unique minimizer of f on R"

Fact II: One has

2k

Qr—1
Ver [f (wo)—min f ()]

Qs+

f(z)—min f(z) < 4




Fact ITII: The trajectory {x.} is given by ex-
plicit recurrence:
Slnitialization: Set

do = —go = — f'(z0) = b — Huyg;
HStep ¢ if gi_1 = Vf(xy—1) = 0, terminate,
xy+_1 being the result. Otherwise set

— gtT—ldt—l
T T Hdy
Ty = Tp_1 + ndi—1
gt = f/;(pmt) = Hx;— b
_ gy Hd;_4
br = dI [ Hd;_1
di = —g¢+ Bedi—1

and loop to step t+ 1.

Note: In the above process,

¢The gradients gg, ..., 9k, 1,95, — O are mu-
tually orthogonal

¢ Thedirections dg, dq, ...,dg, 1 are H-orthogonal:

i#j=di Hd; =0

H>One has
e = argyinf(wt_1+vdt_1)
Bt — gggt

9L 1911



& Conjugate Gradient method as applied to
a strongly convex quadratic form f can be
viewed as an iterative algorithm for solving
the linear system

Hx = b.

As compared to “direct solvers”, like Choleski
Decomposition or Gauss elimination, the ad-
vantages of CG are:

HADbility, in the case of exact arithmetic, to
find solution in at most n steps, with a single
matrix-vector multiplication and O(n) addi-
tional operations per step.

= T he cost of finding the solution is at most
O(n)L, where L is the arithmetic price of
matrix-vector multiplication.

Note: When H is sparse, L << n?, and the
price of the solution becomes much smaller
than the price O(n3) for the direct LA meth-
ods.

SIn principle, there is no necessity to assem-
ble H — all we need is the possibility to mul-
tiply by H



{>The non-asymptotic error bound

f(@p)—min f(z) < 4

\/7—1

Nea

2k

[f (@0)—min f ()]

indicates rate of convergence completely in-
dependent of the dimension and depending
only on the condition number of H.



é Illustrations:

HSystem 1000 x 1000, Qr = 1l.e2:

Itr

f =+

|z — z«||2

1
11
21
31
41
51
61
71
31
91
94

2.297e + 003
1.707e + 001
3.624e — 001
6.319e — 003
1.150e — 004
2.016e — 006
3.178e — 008
5.946e — 010
9.668e — 012
1.692e — 013
4.507e — 014

2.353e + 001
4.265e + 000
6.167e — 001
3.028e — 002
1.076e — 002
1.434e — 003
1.776e — 004
2.468e — 005
3.096e — 006
4.028e — 007
2.062e — 007




H>System 1000 x 1000, Qf = 1.e4:

Itr

f =1+

|z — z«||2

1
51
101
151
201
251
301
351
401
451
501
551
601
651
701
751
301
351
901
902

1.471e 4+ 005
1.542¢ 4+ 002
1.924¢ 4+ 001
2.267e + 000
2.248e — 001
2.874e¢ — 002
3.480e — 003
4.154e — 004
4.785e — 005
4.863e — 006
4.537e — 007
4.776e — 008
4.954¢ — 009
5.666e — 010
6.208e — 011
7.162e¢ — 012
7.850e — 013
8.076e — 014
7.436e — 015
7.152e — 015

2.850e 4+ 001
1.048e + 001
4.344¢ + 000
1.477e + 000
4.658e — 001
1.779e — 001
6.103e — 002
2.054e — 002
6.846e — 003
2.136e — 003
6.413e — 004
2.109e — 004
7.105e — 005
2.420e — 005
8.144¢ — 006
2.707e — 006
8.901e — 007
2.745e — 007
8.559e — 008
8.412e — 008




{System 1000 x 1000, Qr = 1.e6:

Itr

f =+

|z — x| 2

1
1000

9.916e + 006
7.190e + 000

2.849¢ + 001
2.683e + 000

2000

4.839¢ — 002

2.207e — 001

3000

4.091e — 004

1.999¢ — 002

4000

2.593e — 006

1.602e — 003

5000

1.526e — 008

1.160e — 004

6000

1.159e — 010

1.102e — 005

7000

6.022e — 013

7.883e — 007

3000

3.386e — 015

5.595e — 008

3103

1.923e — 015

4.236e — 008




{System 1000 x 1000, Qr = 1l.el2:

Itr

f =«

[ — 2+|2

1
1000

5.117¢ + 012
1.114e + 007

3.078e + 001
2.223e + 001

2000

2.658e + 006

2.056e + 001

3000

1.043e + 006

1.964e + 001

4000

5.497e¢ + 005

1.899¢ + 001

5000

3.444e + 005

1.851e + 001

6000

2.343e + 005

1.808e + 001

7000

1.760e + 005

1.775e + 001

3000

1.346e + 005

1.741e + 001

9000

1.045e 4+ 005

1.709e + 001

10000

8.226e + 004

1.679e + 001




& Non-Quadratic Extensions: CG in the form

do = —go= —f"(z0)
Ve = argylnf(wt_1+vdt_1)
Tt = Tp—1 T+ Vedi—1
gt = f’(%t)
— 9y 9t
& 9t 191-1
di = —gt+ Bedi_1

can be applied to whatever function f, not
necessarily quadratic one (Fletcher-Reevs CG),
and similarly for another equivalent in the
quadratic case form:

do = —go= —f"(x0)
v = argyinf(wt_1+vdt_1)
Ty = Tp_1 + ndi—1
g = f'(x)
8 = (gt—Tgt—l)Tgt
9i_19t—-1
di = —gt+ Bedi—1

(Polak-Ribiere CQG).

& Being equivalent in the quadratic case,
these (and other) forms of CG become dif-
ferent in the non-quadratic case!



& Non-quadratic extensions of CG can be
used with and without restarts.

HIn quadratic case CG, modulo rounding er-
rors, terminate in at most n steps with exact
solutions. In non-quadratic case this is not
SO.

HSIn non-quadratic CG with restarts, execu-
tion is split in n-step cycles, and cycle t + 1
starts from the last iterate z! of the previous
cycle as from the starting point.

In contrast to this, with no restarts the re-
currence like

dy = —go= —f"(z0)
v o= argglinf(wt_1+vdt_1)
Ty = Tp_1 + ndi—1
g = f'(x)
8, = (gt;gt_ﬂTgt
9y _19t—-1
dt = —gt+ Bedi_1

is never ‘refreshed’ .



Theorem: Let the level set {z: f(x) < f(zg)}
of f be compact and f be twice contin-
uously differentiable in a neighbourhood of
G. When minimizing f by Fletcher-Reevs or
Polak-Ribiere Conjugate Gradients with ex-
act linesearch and restarts,

Hthe trajectory is well-defined and bounded
O f never increases

Hall limiting points of the sequence zt of con-
cluding iterates of the subsequent cycles are
critical points of f.

OIf, in addition, zt converge to a nondegen-
erate local minimizer x« of f and f is 3 times
continuously differentiable around z«, then z?
converge to xx quadratically.




Quasi-Newton Methods

& Quasi-Newton methods are variable metric
methods of the generic form

Tir1 = ot — Y1 Set1 f(z)

—21—1
_At—l—l

where S;1 1 > 0 and ~4q is given by line-
search.

& In contrast to Modified Newton methods,
in Quasi-Newton algorithms one operates di-
rectly on matrix S;4 1, with the ultimate goal
to ensure, under favourable circumstances,
that

Siy1—[F"@)] ™t =0, t =00 (%)

& In order to achieve (x), in Quasi-Newton
methods one updates S; into S;4 1 in a way
which ensures that

<>St—|—1 is > 0

<>St—|—1(9t — gt—1) = Tt — Tp—1, Where gr =
f’("JUT)-



& Generic Quasi-Newton method:
Initialization: Choose somehow starting point
rg, matrix S; = 0, compute gg = f'(zg).
Step t: given =41, g4—1 = f'(x4—1) and S; >
O, terminate when g;_1 = 0, otherwise

OSet dy = —Sigi—1 and perform exact line
search from xz;_q in the direction d¢, thus get-
ting new iterate

Tt = Tp—1 + Yede;
Hecompute g = f/(xp) and set

Pt — Tt — T¢—1, 9t — gt — Gt—1,

Hupdate S; into positive definite symmetric
matrix S;4 1 in such a way that

St4+1qt = pt

and loop.



& Requirements on the updating rule S; —
St—l—l:

$In order for dyy 1 to be direction of decrease
of f, the rule should ensure 5,41 = 0O

OIn the case of strongly convex quadratic f,

the rule should ensure that S;—[f”()]"1 — 0
as t — oo.



& Davidon-Fletcher-Powell method:

1 T 1 T
Si41 = St + D0 — —Stqtq; St
+ plqt qf Stat

& The Davidon-Fletcher-Powell method, as
applied to a strongly convex quadratic form,
finds exact solution in no more than n steps.
The trajectory generated by the method ini-
tialized with Sq = [ is exactly the one of
the Conjugate Gradient method, so that
the DFP (Davidon-Fletcher-Powell) method
with the indicated initialization is a Conju-
gate Gradient method.



& The Broyden family.
Broyden-Fletcher-Goldfarb-Shanno updating
formula:

1+ gf Siqs 1

PPt ——— |Ptai St + Starpi
(p; qt) plaqt

can be combined with the Davidon-Fletcher-

Powell formula

SBFG’S S+

1 1
SPAY = Si + ——pw! — ———Siqal St.
i ai pt af St
to vield a single-parametric Broyden family

of updating formulas

DFP BFGS
Sfb+1 = (1 —¢)Six1 + ¢St

where ¢ € [0, 1] is parameter.



& Facts:

HASs applied to a strongly convex quadratic
form f, the Broyden method minimizes the
form exactly in no more than n steps, n be-
ing the dimension of the design vector. If Sg
iIs proportional to the unit matrix, then the
trajectory of the method on f is exactly the
one of the Conjugate Gradient method.

Hall Broyden methods, independently of the
choice of the parameter ¢, being started from
the same pair (xg,S1) and equipped with the
same exact line search and applied to the
same problem, generate the same sequence
of iterates (although not the same sequence
of matrices Si!).

& Broyden methods are thought to be the
most efficient in practice versions of the Con-
jugate Gradient and quasi-Newton methods,
with the pure BFGS method (¢ = 1) seem-
ingly being the best.



Convergence of Quasi-Newton methods

& Global convergence of Quasi-Newton meth-
ods without restarts is proved only for cer-
tain versions of the methods and only under
strong assumptions on f.

e For methods with restarts, where the
updating formulas are ‘refreshed” every m
steps by setting S = Sp, one can easily prove
that under our standard assumption that the
level set G = {z : f(x) < f(xg)} is com-
pact and f is continuously differentiable in a
neighbourhood of GG, the trajectory of start-
ing points of the cycles is bounded, and all
its limiting points are critical points of f.




& Local convergence:

{For scheme with restarts, one can prove
that if m = n and Sg = I, then the trajectory
of starting points x! of cycles, if it converges
to a nondegenerate local minimizer x4« of f
such that f is 3 times continuously differen-
tiable around z., converges to xs« quadrati-
cally.

$Theorem [Powell, 1976]. Consider the
BFGS method without restarts and assume
that the method converges to a nondegener-
ate local minimizer z* of a three times con-
tinuously differentiable function f. Then the
method converges to ™ superlinearly.




Convex Programming

& A Convex Programming program is an op-
timization program of the form

min £(x) (P)

where
e X C R"is a convex compact set, intX # 0;
e f is a continuous convex function on R™,



& Convexity of a set X C R"™ means that
whenever X contains a pair of points x, vy, it
contains the entire segment linking = and y:

z,yce X =X+ (1-XNyeXVxe][0,1].

& Convexity of a function f : X — R de-
fined on a convex set X means that on every
segment in X, the function is below the cor-
responding secant:

x,y € X, €[0,1] =
fOx+ (1 =Ny) <Af(z) + (1 =) f(y).

Equivalently: The epigraph of f — the set

Epi{f} = {(z,t) 1z € X,t > f(z)} C R

— iS convex.



min £(2) (P)

& Assume that our “environment” when
solving convex program (P) is as follows:

1. We have access to a Separation Oracle
Sep(X) for X — a routine which, given on
input a point x € R"™, reports whether z € X,
and in the case of = € X, returns a separator
— a vector e = 0 such that

elx > sup eTy
yeX

e Note: When X is convex and z € intX, a
separator does exist.



min f(2) (P)

2. We have access to a First Order oracle
which, given on input a point x € X, returns
the value f(x) and a subgradient f'(z) of f
at x.

e A subgradient of f at x € X is a vector g
such that

fly) > fx) + 9" (y —z) Yy € X.

Assuming f : X — R convex,

e a subgradient exists at every point
T € intX;

e if f is differentiable at x € X, the
gradient Vf(x) is a subgradient of f
at = (and this is the only subgradient
of f at x, provided x € intX);

e if f is Lipschitz continuous on X,
subgradient of f exists at every point
r e X.



min £(2) (P)

3. We are given two positive reals R,r such
that for some (unknown) ¢ one has

tzifle—c| <rpC X CHz:|zf2 < R}



d Example: Consider an optimization pro-
gram

min f(z) = max f(x)

X ={xeCR":g(x) = gzn’llangg(a:) < 0}

where all f,, gp are convex differentiable func-

tions on R".
In this case

geeey

To build Separation and First Order
oracles is the same as to build a rou-
tine which is capable to compute, at
a given z, all f/(x), Vf(x), ge(z),
Vgi(z).

Indeed, for a differentiable convex function
h, its gradient is a subgradient as well:

h(y) > h(z) + (y — ) Vh(z) Vaz,y,

and for the maximum h = , rT11axL of convex

differentiable functions a subgradient at x is
given by
th(x>(33), E(:IZ) : gzranth(aj) = hﬁ(a}) (m)

Y Y



T hus,

e If we know how to compute f,, Vf,, we
have in our disposal the First Order oracle
for f: we can take, as a subgradient of f at
x, the gradient of (any) function f, which is
the largest at x.



e If we know how to compute gy, Vg, we au-
tomatically have in our disposal a Separation
oracle for X.

Indeed, x € X iff g(x) = e_l’T]'l-aXng(fU) < 0.

T herefore

e In order to check whether x € X, it
suffices to compute g(x) and to check
whether g(x) < O;

e In order to separate x from X when
x & X, it suffices

a) to find £ = ¢, such that gy(x) >0

b) to set e = Vg (z).
Indeed, we have

yeX = [g(x)+ (y—2)e<] gy(y) <O
= ely<ely— gp, (z)< elz.



Theorem [“Polynomial solvability” of convex
programs] In the outlined “working environ-
ment’”’, for every given € > 0 it is possible to
find an e-solution to (P) — a point z. € X
with

flwe) < gr:gi)rgf(iv) T

— in no more than N(e) subsequent calls to
the Separation and the First Order oracles
plus no more than O(1)n2N(e) arithmetic op-
erations to process the answers of the ora-
cles, with

N(e) = O(1)n2In (2 + VarR(f)R) |

€T

Here

Varr(f) = | maxe (@) = in g /(@)



e We are about to build a “good” solution
method for a convex program

min /() (P)

e X C R"™is aclosed and bounded convex set
with a nonempty interior equipped with Sep-
aration oracle,

e f . X — R is convex and continuous func-
tion represented by a First Order oracle,

e We are given R >r > 0:

{z:|lz—z|| <r} C X CA{x: ||z|| < R}.



& To get an idea, consider the one-dimensional
case. Here a good solution method is
Bisection. When solving a problem

min{f(z) : € X = [a,b] C [-R, R]},

by Bisection, we recursively update localizers
At = [ag, b] of the optimal set Xopt: Xopt C
JAVS

e Initialization: Set Ag = [~R, R] [D Xopt]

e Step t: Given A;_1 D Xopt let ¢ be the
midpoint of A;_71. Calling Separation
and First Order oracle at e;, we always
can replace A;_1 by twice smaller local-
izer Ay.



“Given A;_1 D Xopt let ¢ be the midpoint
of A;_1. Calling Separation and First Order
oracle at e, we always can replace A;_1 by
twice smaller localizer Ay

7 N
\ \
! \ Pt
12 b G b 81 Coa b b
1a) 1b)
by tl by tl
2.) 2.b) 2.0)
Bisection

1) | Sep(X) says that ¢ € X and says, via
separator e, on which side of ¢ X is.
1.a): Ay =[ar_1,¢]; 1.b): Ay = [eg,be_1]

2) | Sep(X) says that ¢; € X, and O(f) says,
via signf’(c¢t), on which side of ¢; Xqpt is.
2.a): Ay =lag_1,¢]; 2.b): Ay = [e, be—1];




min f(z) (P)

& In the multi-dimensional case, one can use
the Ellipsoid method — a simple generaliza-
tion of Bisection with ellipsoids playing the
role of segments.



Cutting Plane Scheme

Qﬂei)rgf(:v)
J

Xopt = Ar%(min f

& We build a sequence of localizers GG¢ such
that

o Gt D Xopt
o (G; decrease as t grows



Case 1: search point inside X
e blue: old localizer
e black: X
o red: cut {z: (y —z)! f/(z) =0}

Case 2: search point outside X
e blue: old localizer

e black: X

o red: cut {z: (y—=x)'e=0}



Straightforward implementation: Centers of
Gravity Method

e Go=X

xdx

1
T =
Vol(Gy_ /
(Gy 1)Gt—1

Theorem: For the Center of Gravity method,
one has

Vol(Gy) < (1-— (nLH)”) Vol(Gy_1)
< (1-1)Vol(G_1) ()
< 0.6322Vol(Gi_1).
AS a result,

min f(e) — f < (1 1/e)/™MVvarx (f)



Vol(Gy) < (1—(32)") Vol(Gy—1)
< (1- %) Vol(Gy_1) (%)
< 0.6322Vol(Gs_1).

& Reason for (*): Brunn-Minkowski
Symmeterization Principle:

Let Y be a convex compact set in R", e
be a unit direction and Z be “equi-cross-

sectional” to X body symmetric w.r.t. e, SO
that

e / IS symmetric w.r.t. the axis e

o for every hyperplane H = {z : elz =
const}, one has

Vol,,_1(XNH)=Vol,_1(ZNH)

Then Z is a convex compact set.

Equivalently: Let U,V be convex compact
nonempty sets in R"™. Then

Vol (U + V) > VvolX/™(U) + Vvol/™(V).
In fact, convexity of U, V is redundant!




Why progress in volumes ensures progress in
accuracy?

& Let Vol(Gy) < kVol(Gy_1) with Kk < 1. We
claim that

min /() = fx < kT/™MVar x (f).

Indeed, let v € (H:T/”,l), let z« = argmin f
X

and let X, =z« + v (X — z4).
Then Vol(X,) = v™"Vol(X) > xlVol(X) >
Vol(GT), whence

X \GT # 0.

We see that there exists z € X such that

y=1xs+v(z—xx) € Gp.

Thus, y € Gy, _1\Gy, for certain t« < T, that
IS,

(y — ze,)! f'(2e) > 0 = f(ar,) < f(¥).



On the other hand,

fly) = flzs +v(z—x))
< flax) +v(f(z) — f(@x))
< f(=z+) +vVarx(f).

We see that

min f(z¢) < f(ze,) < f(y) < fla)FvVarx(f).

t<T
Passing to limits as v — &1/ 4+ 0, we arrive
at

min f(z¢) < f(z) + £7/Varx (f).

t<T



min f(x) (P)

& Ellipsoid method — the idea. Assume we
already have an n-dimensional ellipsoid

E={z=c+ Bu:u'u<1}
[B € R"*"™ Det(B) # 0]
which covers the optimal set Xgp¢.

In order to replace E with a smaller ellipsoid
containing Xgpt, We

1) Call Sep(X) to check whether c € X

1.a) If Sep(X) says that ¢ € X and returns a
separator e:

e = 0, el'c> sup eTy.
yeX

we may be sure that

Xopt = Xopt(JEC E={z € E: el (z—c) <0}.



1.b) If Sep(X) says that c € X, we call O(f)
to compute f(c¢) and f/(c¢), so that

FW =D+ w=-o)"fe) Yy (¥

If f/(c) =0, c is optimal for (P) by (*), oth-
erwise (*) says that

~ T
Xopt = XoptmE CE={zck: [F(e)] (z—c) < O}

e

e [ hus, we either terminate with optimal so-
lution, or get a “half-ellipsoid”

Ez{:cEE:eTajgeTc} [e #& O]

containing Xgpt.



1) Given an ellipsoid

E={z=c+ Bu:ulu<1}

[B € R*"*" Det(B) # 0]
containing the optimal set of (P) and calling
the Separation and the First Order oracles at
the center ¢ of the ellipsoid, we pass from E
to the half-ellipsoid

Ez{xEE:eTxgeTc} [e £ O]
containing Xgpt.

2) It turns out that the half-ellipsoid E can
be included into a new ellipsoid ET of n-
dimensional volume less than the one of E':

ct = ¢c— L Bp,

BT = B(\/ng—_l(ln—ppT)wL#ppT)
—_ n

n n T
JaB+ (ah ) e,
Ble

el BBTe 1
v .-
(=) avol®)

S
|

Vol(E™T) -
o

exp{—1/(2n)}Vol(FE)

IA



& In the Ellipsoid method, we iterate the
above construction, starting with Eg = {x :
|z||l> < R} D X, thus getting a sequence of el-
lipsoids Ey 41 = (Ey)T with volumes “rapidly”
converging to O, all of them containing Xgpt.



& Verification of the fact that

—{a:—c—I—Bu:u u<1}
E={zcE:elz<elc}
le # O]

U
ECEt={z=ct4+BTu:ulu<1}

T = c—ﬂ%'_pr,
Bt = B( ——(In ppT)-|-nL+1ppT)
= 4B+ (- ) B,
T
P V EB;T
IS easy:

e I/ is the image of the unit ball under a one-
to-one affine mapping

e therefore E is the image of a half-ball W =
{u : vl'u < 1,pl'uw < 0} — under the same
mapping

e Ratio of volumes remains invariant under
affine mappings, and therefore all we need is
to find a “small” ellipsoid containing half-ball

w.




<~
r=c+ Bu

E, E and Et W, W and Wt

Since W is “highly symmetric”, to find the
smallest possible ellipsoid containing W is a
simple exercise in elementary Calculus.



min f(2) (P)

& Ellipsoid Algorithm:
e Initialization: Set

co =0, Bg = RI, EOZ{wZCO+BOu:uTu§ 1}y
contains X

and
po=R, Log=0

pt : VoI(Ey) = Vol {{z : ||lz|l2 < pi}
Ly @ Ly < Varg(f) = maxg, f — ming, f



Stept, t=1,2,.... At the beginning of step
t, we have the data ¢;_1, B;_1 of the previous
ellipsoid

Ei 1 ={x=c¢_1+ Bi_1u: uwl'u < 1}

[c;_1 € R", B;_1 € R"*" DetB;_1 #= 0]
along with the quantities L;_1 > 0 and p;_1.
e At step ¢,
1) We call Sep(X), ¢;_1 being the input. If
xi—1 € X (“non-productive step”), Sep(X)
returns a separator

e#*=0: eTct_l > sup eTy.
yeX

In this case, we set

et = e, Ly = Lt—l

and go to 3). If ¢;_1 € X (“productive
step” ), we go to 2).



2) We call O(f), ¢;_1 being the input, to get
flci—1), e = f'(ci—1). If e =0, we terminate
and claim that ¢;_1 is an optimal solution to

(P).

If e # 0, we set
€t — €,
compute the quantity

by = max[etTy — etTCt—l] = R||et]|2 — etTCt—la
yekqg

update L by setting
Ly = maX{Lt—lagt}

and go to 3).

Note: Since f(y) — f(ci—1) > ef (y—c;—1), and
ct—1 € X C Eg, we have £ < maxpg, f(y) —
f(ei—1) < Varg(f), whence Ly < Varg(f).



3) We set
Ei={r€E_1:efx<efci_1}
and define the new ellipsoid

Et={x=ct—i—Btu:uTu§1}

by setting
BT _¢
pt = = L tT
\/et Bt_lBt_let
ct = ci1— 77 Bio1pt
_ n n n T
By = —5=Bi-1+ <n+1 - n2—1) (Bi—1pt)pi -
We also set
n—1
n " mn -
pr = |DetBy| /" = ( 1) Pt—1
n? —1 n+

and go to 4).



4) [Termination test]. We check whether the
inequality

Pt €

r < L+ € ()
(r > 0 is a given in advance radius of Euclid-
ean ball contained in X).
e If (*) holds, we terminate and output the
best (with the smallest value of f) of the
“search points” c,._71 associated with produc-
tive steps 7 < t.
e If (*) does not hold, we pass to step t+ 1.




Numerical example:

flx) =

Here are the best objective values of feasible
solutions found in course of the first ¢t steps,

min f(z),

—1 < 1,2 < 17
o Xopt = {(1,-1)}, Opt = 70.030152768...

£(1.443527 + 0.6232z5 — 7.9574)?
+5(—0.3509z1 + 0.7990x5 + 2.8778)%

t=1,...,256:

t best value t best value
1 | 374.61091739 | 16 | 76.838253451
2 1 216.53084103
3 ]1146.74723394 | 32 | 70.901344815
4 | 112.42945457
5 | 93.84206347 64 | 70.031633483
6 | 82.90928589
7 | 82.90928589 || 128 | 70.030154192
8 | 82.90928589

256 | 70.030152768




e [ he initial phase of the process looks as
follows:

je
N\

ol

5

Ellipses E;_1 and search points ¢;_1, t = 1,2, 3,«
Arrows: gradients of the objective f(x)
Unmarked segments: tangents to the level lines o



Theorem [Complexity of the Ellipsoid Algo-

rithm] Let the Ellipsoid Algorithm be applied
to convex program

min P
min f(x) (P)
such that X contains a Euclidean ball of a
given radius r > 0 and is contained in the

ball Eq = {||z||> < R} of a given radius R.
For every input accuracy € > 0, the Ellipsoid
method terminates after no more than

Npy(e)
= Caeil <2n2 [In (%) + In (€‘|‘Va€FR(f)>D +1

steps, where

Varg(f) = "YJE%Xf - r%ion f;

Vol is the n-dimensional volume and Ceil(a)
is the smallest integer > a.

Moreover, the result ¥ generated by the
method is a feasible e-solution to (P):

xe X andf(a;)—m)gnfge.



Proof. Let ¢t be such that the method does
not terminate before this step and does not
terminate at this step because of

¢t—1 € X, f'(¢i-1) = 0.
Then for 1 <7 <t one has

(a) Eg DO X,
(b) Er D ETz{acEET_l:ergeZcT_l},
() VoI(E;) = pVol(Eo)
n—1
_ ( ng_l) " \OI(E, 1)

< exp{—-1/(2n)}Vol(E _1).
By (¢) we have

or < eXD{—T/(QTLQ)}R, T=1,..,1t.

19, We claim that

(1) If the Ellipsoid Algorithm termi-
nates at certain step t, then the re-
sult x is well-defined and is a feasible
e-solution to (P).



(1) “If the Ellipsoids method terminates at
certain step t, then the result x is well-defined
and is a feasible e-solution to (P)."”

Indeed, there are two possible reasons for ter-
mination at step t¢:
e \We arrive at the situation where

;1€ X and f'(¢;_1) = 0. (A)
In this case

Yy 1 f(y) > fle_1)+@—ci_1)! f(eo1) = fle_1),

and since c;_1 € X, c;—1 is optimal solution

to mXi_nf.

e \We arrive at the situation where
Pt €
— < B
r Lt —|— € ( )

Let us prove that (!) is valid in the case of

(B).



20 Let the method terminate at step t ac-
cording to

€
Pt = (B)

There exists v/: 2t </ <v  [<1].
(P) is solvable (f is continuous on X, X is
compact). Let zx € Xppt, and let

XT =gt/ (X —z4) = {x = (1-)a+1V2:2€ X}
Note that

Vol(X ) (v)"Vol(X)

()rrvol ({z @ |lzfl2 < 1})
ppVol ({z  ||zf[2 < 1})
VOI(Et)7

and consequently

X_|_\Et#@
J
Jy=(1 -z + 12 ¢ Ey [z € X]

Il VIV |



= I <v:
Xy = (1 -1z + /X satisfies
Vol(Xy) > Vol(Ey)
= Jy=(1—-V)xs+1V2¢E; [z € X]

By

Since y € X C EFg and y € E¢, y was ‘cut
off" :

GZ?J > GZCT—I (+)

at certain step 7 < t.



e EXists 7 < t:

eZy > GZCT_l (+)

Observe that the step 7 is productive, since
otherwise e, separates c,_1 and X, while y €
X. Consequently, er = f'(cr_1).



e Situation: We are solving problem

min f(z) (P)

and the Ellipsoid Algorithm terminates at
step t.

e Target: To prove that the result is an e
solution to (P)

e Current state of the proof: We are explor-
ing the case

€

Lt—l—e

Jy = (1—)zsx+1'2 |24 € Xopt, 2 € X,V <
and a productive step 7 <t such that

(y—cr—1)" f'(er—1) > 0 (+)



(y — CT—l)Tf/(CT—l) >0 (+)
e We have
flx) > fler—1) + (2 — 1) f(er-1) _|>i (1-2)
LT Z (Z - CT—l)Tf,(CT—l) X 1

(1-v)f(z) +v'Lr >

>

Y
(1 =) f(cro1)
+([(1 = v)ze +v'2] — 7o) f'(er-1)
(1 =v)f(er-1) + (v — cr-1)" f'(er-1)
(1 —ﬁ’)f(cT—l) [y (+)]

fler-1)

IAIA

IA

f(aj*) + 1—1//
[since L, < L; in view of 7 < ]

flxs) + ¢

[by definition of v and since v/ < v]
Opt(C) + «.

V'L,

e Conclusion: In course of running the method,

a feasible solution ¢,_1 with f(c._1) < Opt(C)+

e was found.



e Situation: We are solving problem

min f(z) (P)

and the Ellipsoid Algorithm terminates at
step t.

e Target: To prove that the result is an e
solution to (P)

e Current state of the proof: It was shown
that in course of running the method, a fea-
sible solution c¢._1 with f(c,_1) < Opt(C) +¢
was found.

e By construction, the result of the Ellip-
soid Algorithm is the best — with the smallest
value of f — of feasible solutions c,_1 gen-
erated in course of t steps, so that if the
method terminates at a step ¢, then the re-
sult is an e-solution to (P).



30. It remains to prove that the method does
terminate in course of the first

Ceil <2n2 [m (g) +1n <€+VirR(f)>]> +1

A\ 4

N Pv)(e)

steps.

We have seen that L < Varg(f) for all = and
that

pr < exp{—7/(2n*)}R

for all T.

It follows that the premise in termination rule

Pt < = Termination
r Lt —|— €
€
ZNarp ()t

indeed is satisfied in course of the first
N(p)(e) steps.



& Traditional methods for general constrained
problems

min{ ) ) 2592

can be partitioned into

SPrimal methods, where one mimics uncon-
strained approach, travelling along the fea-
Ssible set in a way which ensures progress in
objective at every step

$Penalty/Barrier methods, which reduce con-
strained minimization to solving a sequence
of essentially unconstrained problems
SLlagrange Multiplier methods, where one
focuses on dual problem associated with (P).
A posteriori the Lagrange multiplier meth-
ods, similarly to the penalty/barrier ones,
reduce (P) to a sequence of unconstrained
problems, but in a “smart” manner different
from the penalty/barrier scheme
SSequential Quadratic Programming meth-
ods, where one directly solves the KK'T sys-
tem associated with (P) by a kind of Newton
method.

Il
\'I—‘ \’I—‘
\.w \.3
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Penalty/Barrier Methods

& Penalty Scheme, Equality Constrainsts. Con-
sider equality constrained problem

min {f(z) : hi(z) =0,i=1,...k}  (P)

and let us “approximate” it by unconstrained
problem

k
min fo(@) = f(@) + 2 3 i) (Pl])
Zi=1

7

per;galty

term
p > 0 is penalty parameter.
Note: (A) On the feasible set, the penalty
term vanishes, thus f, = f;
(B) When p is large and z is infeasible, f,(x)
IS large:

lim fo(z) =

p—00

f(x), =« is feasible
“+o00, otherwise

= It is natural to expect that solution of
(P[p]) approaches, as p — oo, the optimal
set of (P).



& Penalty Scheme, General Constraints. In
the case of general constrained problem

. i hi(aj)zo,izl,...,k
mzlrm{f(x)'gjg(),j=l,...,m } (P)

the same idea of penalizing the constraint vi-
olations results in approximating (P) by un-
constrained problem

min folx) = f(x)+= {Z hQ(m) -+ Z [g](:c)_l_]

] 1

\ g

penany
term

(Plp])

where

g (z) = max[g;(x), 0]

and p > 0 is penalty parameter. Here again

lim fo(x) =

p—00

f(x), x= is feasible
+o00, otherwise

and we again may expect that the solutions
of (P[p]) approach, as p — oo, the optimal
set of (P).



& Barrier scheme normally is used for in-
equality constrained problems

min {f(a:) - gi(z) <0,5=1, m} (P)

satisfying “Slater condition”: the feasible set

G={z:g;(z)<0,j<m|

of (P) possesses a nonempty interior intG
which is dense in G, and g;j(x) < O for z €
intG.

& Given (P), one builds a barrier (=interior
penalty) for G — a function F' which is well-
defined and smooth on intG and blows up to
+o0 along every sequence of points x; € intG
converging to a boundary point of G-

x; € intG,i[@Oazi =z & intG = F(x;) — oo, i — 0.

Examples:
{Log-barrier F(z) = — > In(—g,(x))
J

i — _y_1_
HCarrol Barrier F(x) = ?gj(x)




min {f(:c) - gi(x) <0,j =1, m} (P)

& After interior penalty F for the feasible do-
main of (P) is chosen, the problem is approx-
imated by the “essentially unconstrained”
problem

min Fo(z) = f@) + ~F(z)  (Plo])
zelntG P

When penalty parameter p is large, the func-
tion F, is close to f everywhere in GG, except
for a thin stripe around the boundary.

= It is natural to expect that solutions of
(P[p]) approach the optimal set of (P) as

p — 00,



Investigating Penalty Scheme

& Let us focus on equality constrained prob-
lem

min {f(x) :hi(x) =0,i=1,..,k} (P)

and associated penalized problems

min fo(e) = f(@) + SIR@)I3  (Ple)

(results for general case are similar).

& Questions of interest:

SWhether indeed unconstrained minimizers
of the penalized objective f, converge, as
p — 0o, to the optimal set of (P)~

HSWhat are our possibilities to minimize the
penalized objective?




min {f(x) :hij(x) =0,i=1,.. k} (P)

4
min fo(z) = f(z) + 5llh@)]lz  (Plp])

Simple fact: Let (P) be feasible, the objec-
tive and the constraints in (P) be contin-
uous and let f possess bounded level sets
{x : f(x) < a}. Let, further Xi be the
set of global solutions to (P). Then X
is nonempty, approximations problems (P[p])
are solvable, and their global solutions ap-
proach X4 as p — oo:

Ve > 03p(e) : p > p(e), x«(p) solves (P[p])

= dist(z«(p), Xx) = min [lzx(p) —z«[[2 <€
Tx € Xx

Proof. 1°. By assumption, the feasible set
of (P) is nonempty and closed, f is contin-
uous and f(x) — oo as ||z||p — oo. It follows
that f attains its minimum on the feasible
set, and the set X« of global minimizers of f
on the feasible set is bounded and closed.



mxin {f(x) :hij(x) =0,i=1,..,k} (P)

I
min fp(x) = f(z) + 5[0 (2)13  (Plo])

20, The objective in (P[p]) is continuous
and goes to 4-oc0 as ||z]|o — oo; consequently,
(P[p]) is solvable.



mxin {f(x) :hi(x) =0,i=1,..,k} (P)

4
min fo(z) = f(z) + 5llh@)]lz  (Plp])

30, It remains to prove that, for every e >
0, the solutions of (P[p]) with large enough
value of p belong to e-neighbourhood of Xi.
Assume, on the contrary, that for certain ¢ >
O there exists a sequence p; — oo such that
an optimal solution z; to (P[p;]) is at the
distance > ¢ from X4, and let us lead this
assumption to contradiction.

Slet fi be the optimal value of (P). We
clearly have

f(x;) < fpi(x5) < fx, (1)

whence {z;} is bounded. Passing to a sub-
segquence, we may assume that z; — x as

7 — OQ.



mmin {f(x) :hi(x) =0,i=1,.. k} (P)

I
min fp(x) = f(z) + 5[0 (2)13  (Plo])

z; € Argmin fp.(x),x; — * € X«
xr
= f(x;) < fpi(x;) < fs (1)
SWe claim that z € Xi«, which gives the de-

sired contradiction. Indeed,
— x is feasible, since otherwise

Jim [f () + ()| 3]

fp;(rxz)
= f@ 4+ lim & |[n(z)]5 = oo,
—|[h(2)[3>0

in contradiction to (1);

— f(z) = _im f(x;) < fx by (1); since T is

feasible forZ(Poi, we conclude that 7 € Xx.

& Shortcoming of Simple Fact: In non-convex
case, we cannot find/approximate global min-

imizers of the penalized objective, so that

Simple Fact is “unsubstantial”...




min {f(x) :hij(x) =0,i=1,.. k} (P)

U
min fo(z) = f(z) + 53 (Plo])

Theorem. Let =* be a nondegenerate locally
optimal solution to (P), i.e., a feasible solu-
tion such that

O f, h; are twice continuously differentiable in
a neighbourhood of x,

{the gradients of the constraints taken at xz«
are linearly independent,

Sat x«, the Second Order Sufficient Opti-
mality condition is satisfied.

There exists a neighbourhood V of z* and
p > 0 such that

¢for every p > p, fp possesses in V' exactly
one critical point xz«(p);

Oxx(p) is @a nondegenerate local minimizer of
fp and a minimizer of f, in V;

Sxx(p) — x4 AS p — 0.



In addition,
e [ he local “penalized optimal value”

Jo(z«(p)) = min fo(x)

IS nondecreasing in p

Indeed, fo(-) = f(-) + 5[h(-)[I3 grow with p
e The constraint violation ||h(z«(p))||2 mMono-
tonically goes to 0 as p —

Indeed, let p” > p/, and let 2/ = z«(p),
" = x«(p"). Then

£ + G ()3 = F@") + ”% In(=")13

(") + Z|n(")|3 > f(=') + 2||h<:c’>||2

= f(@) + f@") + 5% ||h<x’>||2 + 5 ||h<x”>||%
> f(2') + f(") + ||h(:c”>||2 + 213

= 22 n(a)||3 > £ 2’) 1R (z")]3

e The true value of the objective f(z«(p)) at
z+(p) is nondecreasing in p

e The quantities ph;(x«(p)) converge to op-
timal Lagrange multipliers of (P) at z«
Indeed,

0 = fy(z«(p)) = f’(:vp)-I-Z(phq;(:B*(p)))hé(aﬁ*(p))-



& Solving penalized problem

min fo(e) = f(2) + Zh@)I3 (Pl

$In principle, one can solve (P[p]) by what-
ever method for unconstrained minimization.
OHowever: The conditioning of f deterio-
rates as p — oo.

Indeed, as p — oo, we have

dTfy(@e(p))d = dT | f"(@) + Y phi(2)h](2) | d

+  pY (d'Rl(x))?

g

Ve

— 00, p — OO
except for d"h/(xzx) =0
= slowing down the convergence and/or se-
vere numerical difficulties when working with
large penalties...



Barrier Methods

mxln{f(:c) zreG={zr:9ij(x)<0,j=1,...,m}} (P)
min Fy(z) Elj{“(w) + %F(w) (Plp])
F' is interior penalty for G = cl(intG):
OF is smooth on intG
OF tends to oo along every sequence x; €
intGG converging to a boundary point of G.
Theorem. Assume that G = cl(intG) is
bounded and f, g; are continuous on G. Then
the set X, of optimal solutions to (P) and the
set X«(p) of optimal solutions to (P[p]) are
nonempty, and the second set converges to
the first one as p — oo: for every € > 0, there
exists p = p(e) such that

p 2> pe), z«(p) € Xi(p) = dist(z«(p), Xx) < €.



& In the case of convex program

gﬂeig f(x) (P)

with closed and bounded convex G and con-
vex objective f, the domain G can be in many
ways equipped with a twice continuously dif-
ferentiable strongly convex penalty F(x).

& Assuming f twice continuously differen-
tiable on int&, the aggregate

Fyp(z) = pf(x) + F(x)

IS strongly convex on intG and therefore at-
tains its minimum at a single point

zx(p) = argmin Fy(x).
zeint@

& It is easily seen that the path xz«(p) is
continuously differentiable and converges, as
p — 0o, to the optimal set of (P).



gﬁeig f(x) (P)

Y

min F,(z) = pf(z) + F(z)  (Plp])
zelntd .

zx(p) = argmin Fy(x) — Argmlnf
zeintG p—ee

& in classical path-following scheme (Fiacco
and McCormic, 1967), one traces the path
zx(p) as p — oo according to the following
generic scheme:

$Given (x; € intG, p; > 0) with x; close to
z+(pi),

— update p; into a larger value p; 1 of the
penalty

— minimize Fp, ,(-), z; being the starting
point, until @ new iterate z;4 1 close to

w*(pz—kl) = argmin Fp _|_1(33)
reintG

is built, and loop.



& To update a tight approximation z; of
argmin Fp,(x) into a tight approximation x;4 1
of argmin Fy,(z), one can apply to Fy, () a
method for “essentially unconstrained” min-
imization, preferably, the Newton method

& When Newton method is used, one can try
to increase penalty at a ‘“safe” rate, keeping
x; in the domain of quadratic convergence
of the Newton method as applied to FpiH(-)
and thus making use of fast local conver-
gence of the method.

Questions: e How to choose F'?

e How to measure closeness to the path?

e How to ensure “safe” penalty updating
without slowing the method down?

Note: As p — oo, the condition number of
F/l(z«(p)) may blow up to oo, which, accord-
ing to the traditional theory of the Newton
method, makes the problems of updating z;
into x;4 7 more and more difficult. Thus,
slowing down seems to be unavoidable...




& In late 80's, it was discovered that the clas-
sical path-following scheme, associated with
properly chosen barriers, admits “safe” im-
plementation without slowing down. This
discovery led to invention of Polynomial
Time Interior Point methods for convex pro-
grams.

& Majority of Polynomial Time Interior Point
methods heavily exploit the classical path-
following scheme; the novelty is in what
are the underlying barriers — these are spe-
cific self-concordant functions especially well
suited for Newton minimization.



& Let G be a closed convex domain with
nonempty interior which does not contain
lines. A 3 times continuously differentiable
convex function

F(x) :intG — R

iIs called self-concordant, if
SF is an interior penalty for G:

x; € intG,x; — x € 0G = F(x;) — oo

O F satisfies the relation

d3

q2 3/2
3l F e+ th)] <2 <dt—2|t:OF(a: + th)>

d Let 9 > 1. F is called J-self-concordant
barrier for G, if, in addition to being self-
concordant on G, F satisfies the relation

42 1/2
dt—z‘t:OF(az + th))

|%\t:OF(x + th)‘ < VY (

¥ is called the parameter of s.-c.b. F'.



& Every convex program
min f(x
xer( )

can be converted into a convex program with
linear objective, namely,

rrg!cn{t:xEG,f(x)St}.

Assuming that this transformation has been
done at the very beginning, we can w.l.0.g.
focus on convex program with linear objec-
tive

. T
min P
:UEGC * ( )



. T
min P
xEGC * ( )

& Assume that G is a closed and bounded

convex set with a nonempty interior, and let

F be a ¥-s.c.b. barrier for G.

OFact I: F is strongly convex on intG: F'(z) -
O for all x € intG. Consequently,

Fp(z) = pclz + F(z)

also is strongly convex on intG. In particular,
the quantity

~1 1/2
Nz, F,)) = ([Fi(x)]'] [F” F
(z, Fp) = ([Fp@)]" | [F)(@)] ]~ Fj@))
=F"(x)
called the Newton decrement of I, at z is
well-defined for all x € intG and all p > 0.

Note: o $X2(z, Fp) = Fy(2) —min [Fp(2) + (y -

)T F)(@) + 3y — ) TF}/(2) (y - )]

o \(x,Fp) >0 and A(x, Fp) = 0 iff z = z«(p),
so that the Newton decrement can be viewed
as a ‘‘proximity measure” — a Kind of distance
from x to xz«(p).



cx = minclz (P)
xed

& Fact II: Let (P) be solved via the classical
penalty scheme implemented as follows:

ST he barrier underlying the scheme is a -
s.-c.b. F for G;

& “Closeness” of x and z«(p) is specified by
the relation A(z, Fp) < 0.1;

¢The penalty update is p;41 = (1 -|-%) 04,
where v > 0 is a parameter;

¢To update z; into z;47, we apply to Fpiiq
the Damped Newton method started as z;:

1
1+ Az, Fp, 1)

Xr+— X

[ @) @)

e [ he method is well-defined, and the num-
ber of damped Newton steps in updating
r; — x;4.1 depends solely on ~ (and is as small
as 1 for y =10.1)

e One has clz; —cx < %

= With the outlined method, it takes O(v/¥)

Newton steps to reduce inaccuracy Lr — e,
by absolute constant factor!



& Fact III: e Every convex domain G C R"
admits O(n)-s.-c.b.

e For typical feasible domains arising in Con-
vex Programming, one can point out explicit
“‘computable” s.-c.b.'s. For example,

d Let G be given by m convex quadratic con-
straints:

G = {az:icTA?ij—l-Qb?az—I-cig 0,1 <j5<m}
gj‘(,flf)

satisfying the Slater condition. Then the log-

arithmic barrier

F(z) =— ) In(—g;j())

=1

IS m-S.-c.b. for G.
d Let G be given by Linear Matrix Inequality

G:{ZIJZCAO—I—QZlAl—F...—Fan@EO}

A(a:)?rme

satisfying the Slater condition: A(Z) = O for
some z. T hen the log-det barrier

F(z) = — In Det(A(z))

iIs m-s.-c.b. for G.



& Consider an LP
: T .
mzln{c z.Az—bZO} (P)

with m x n matrix A, Null(A) = {0}, along
with the dual problem

myax {bTy Ay =c, y> O} (D)

and assume that both problems are strictly
feasible:

32 Az —b>0& Jy>0: Aly=c

Note: Passing from z to “primal slack” x =
Az — b, we can rewrite (P) as

m:gn{eT:p:xZO,mEL:ImA—b} (P

where e is a vector satisfying Ale = c, SO
that

elr =el (Az—b) = (Ale)2—const = ¢! z—const



mzin {cTz Az —b> O} (P)
=3 ma:in {eTx cx+belImA,z > O} (P

)
myax {bTy ; ATy =c= AT@} (D)
<:>y—e€‘(rIrT'lA)L

m
® Let () = — > Inz;. Equipping the do-
i=1

main of (P) with m-s.c.b. F(z) = ®(Az —b),
consider
z+(p) = argminfpcl’z 4+ F(2)]
= argmin[pel (Az —b) + ®(Az —b)]

Observation: The point z«(p) = Az«(p) — b

minimizes pelz + ®(z) over the feasible set
of (P):

x>0, 2+ belmA, pe+ ®'(z) € ImA)~.
= y = ys(p) = —p 1/ (2+(p)) satisfies
y>0, y—ec (IMA)T, —pb+ d'(y) € ImA

i.e., the point y«(p) minimizes —pbly 4+ d(y)
over the feasible set of (D).



& VWe arrive at a nice symmetric picture:
& The primal central path x = x«(p) which
minimizes the primal aggregate

pclz + () [P(z) = — > Inzy]
1
over the primal feasible set is given by

z>0,2+beImA, pc+ d'(z) € ImA)+

& The dual central path y = y«(p) which min-
iImizes the dual aggregate

—pbly + ®(y) [P(y) = =2 Iny]
1
over the dual feasible set is given by

y>0,y—eec (ImA)", —pb+ ®'(y) € ImA
& T he paths are linked by
_ 1
y=—p 1d/(z) &z = - (y(p)) & zy; = S Vi

= DualityGap(z,y) = 2ly = [clz — Opt(P)]
+[Opt(D) — by

on the path is equal to mp~ 1.



mzin {cTz LAz —b > O} (P)

& min {eT:c cx+belmA, x> O} (P
i
myax {bTy : ATy =c= ATeJ} (D)
=y—ec(IMA)-L

& Generic Primal-Dual IPM for LP:
{@Given current iterate — primal-dual strictly
feasible pair «*, y* and value p; of penalty, up-
date it into new iterate z'T1 y't1 p.\ 1 by
dUpdating p; — pip1 2> p;
SApplying a Newton step to the system

>0, z4+beImA; y >0, y—eec (ImA)L

Diag{z}y = i\(l, . 1)TJ
e

defining the primal-dual central path:

wi—l—l — :I:i + Aw, yi—l—l — yz' + Ay
where Ax, Ay solve the linear system
Az € ImA, Ay € (ImA)L,

Diag{z'} Ay + Diag{y'} Az = ;¢ — Diag{z'}y’




min{clz: Az —b > 0} (P)

& mxin {eT:B x+beImA,z > O} (P
I
myax {bTy ; <4Ty =Cc= ATQ} (D)
=y—ec(IMA)-+

& The classical path-following scheme as
applied to (P) and the m-s.c.b. F(z) =
d(Az—b) allows to trace the path z«(p) (and
thus x«(p) = Az«(p) — b).
More advanced primal-dual path-following
methods simultaneously trace the primal and
the dual central paths, which results in algo-
rithmic schemes with better practical perfor-

mance than the one of the “purely primal”
scheme.




& Both approaches, with proper implemen-
tation, result in the best known so far the-
oretical complexity bounds for LP. Accord-
ing to these bounds, the *"arithmetic cost”
of generating e-solution to a primal-dual pair
of strictly feasible LP’'s with m x n matrix A
IS

O(1)mn? In (mn@)

€

operations, where O(1) is an absolute con-
stant and © is a data-dependent constant.
& In practice, properly implemented primal-
dual methods by far outperform the purely
primal ones and solve in few tens of New-
ton iterations real-world LPs with tens and
hundreds of thousands of variables and con-
straints.



Augmented Lagrangian methods

min {f(z) : hi(z) =0,i=1,..,k}  (P)

& Shortcoming of penalty scheme: in order
to solve (P) to high accuracy, one should
work with large values of penalty, which
makes the penalized objective

fo(@) = f(@) + ZlIh()]3

difficult to minimize.
d Augmented Lagrangian methods use the
penalty mechanism in a ‘“‘smart way"”, which
allows to avoid the necessity to work with
very large values of p.




Ingredient I. Local Lagrange Duality

min {f(z) : hi(z) =0,i=1,...k}  (P)

& Let z« be a nondegenerate local solution
to (P), so that there exists A such that

(a) VaeLl(xs,\*) =0
(b) AI'V2L (e, \*)d > 0 V0 £ d € T,
L(z,\) = f(z) + 2 A\ihi(=)
T = {d: d'hi(z) = oz, i=1,..,k}

& Assume for the time being that instead of
(b), a stronger condition hods true:
(1) the matrix V2L(x«, \*) is positive definite
on the entire space
& Under assumption (!), zx is a nondegen-

erate unconstrained local minimizer of the
smooth function

and as such can be found by methods for
unconstrained minimization.



mxin {f(x) :hi(x) =0,i=1,...,k} (P)

& Intermediate Summary: If

$(a) we are clever enough to guess the vec-
tor \* of Lagrange multipliers,

&(b) we are lucky to have V2L(x«, \*) > 0,
then =, can be found by unconstrained opti-
mization technique.




& How to become smart when being lucky: Lo-
cal Lagrange Duality.

Situation: xx iS a nondegenerate local solu-
tion to

min {f(x) :hi(x) =0,i=1,..,k} (P)
and we are lucky:

TN VeL(ze, \¥) =0, V2L(zx, \*) =0 (1)

Fact: Under assumption (!), there exist con-
vex neighbourhood V of x4« and convex neigh-
bourhood A of A* such that

(i) For every X € A, function L(xz,)\) is
strongly convex in x € V and possesses
uniquely defined critical point z«(\) in V
which is continuously differentiable in A € A.
x«(A\) is a nondegenerate local minimizer of
(ii) The function

L\ = L(z«(\), A) = min L(z, \)
xeV

is C2-smooth and concave in A,

L'(N) = h(z«(N)),

and M\« is a nondegenerate maximizer of L(\)
on A.



mljn {f(x) :hi(x) =0,i=1,...,k} (P)
= L(z,\) = f(z) + X Aihi(z)

Situation: ViL(z«,\*) =0, V2L(xx, \*) = 0

A* = argmax L(\) = min L(x, \)
xzeV

Tx = argmingcy L(xz, A)
= We can solve (P) by maximizing L()\) over
A € N by a first order method for uncon-
strained minimization.
The first order information on L()\) required
by the method can be obtained by solving
auxiliary unconstrained problems

x«(N) = argmin L(x, \)

xzeV
via
LX) = L(z«(A), )
L'(A) = h(xz«(N))

Note: In this scheme, there are no “large pa-
rameters’ |
However: How to ensure luck?




& How to ensure luck: convexification by pe-
nalization
Observe that the problem of interest

min {f(x) :hi(x) =0,i=1,...,k} (P)
for every p > 0 is exactly equivalent to

min {fp(a;) = f@) + LIh@)3: M0 }

(Pp)
It turns out that

(1) If x« is a nondegenerate locally optimal
solution of (P) and p is large enough, then
xx IS a locally optimal and “lucky” solution
to (Ppy).

= We can solve (P) by applying the outlined
“primal-dual” scheme to (P,), provided that
p IS appropriately large!

Note: Although in our new scheme we do
have penalty parameter which should be
“large enough™, we still have an advantage
over the straightforward penalty scheme: in
the latter, p should go to oo as O(1l/e) as
required inaccuracy e of solving (P) goes to
O, while in our new scheme a single ‘large
enough” value of p will do!




min {f(x) :hij(x) =0,i=1,..,k} (P)
1
mggn{fpw) = @)+ a3 MO } ()

Justifying the claim: Let

Lo(@. ) = f (@) + Sh(@)[3 + 3 Aihi(a)

be the Lagrange function of (FP,); the La-
grange function of (P) is then Ly(x, \). Given
nondegenerate locally optimal solution xx« to
(P), let \* be the corresponding Lagrange
multipliers. We have

VaLp(z, A*) = VaLo(zs, A*) + p 3 hi(z«)hi(z+)

VaL(@e, X)) + p 3 hi(z)h] (2+)

+p X h(wa) [ (2]
ViLo(ax, p*) + pH H,
[y (zl"

RACHIEN

H =




ViLp(weA*) = VELo(wx, p*) + pH'H
[py (2:)]"

RIACHINN

Directions d orthogonal to hl(z«), i = 1,...,k,
are exactly the directions d such that Hd = 0.
Thus,

OFor all p > 0, at x4« the Second Order suffi-
cient optimality condition for (FP,) holds true:

H =

Hd=0,d # 0= d'V2L,(2+, \*)d > 0

SAll we need in order to prove that z* is a
“lucky” solution for large p, is the following
Linear Algebra fact:

Let (Q be a symmetric n x n matrix, and H
be a k xn matrix. Assume that () is positive
definite on the null space of H:

d+0,Hd=0=d'Qd> 0.

T hen for all large enough values of p the ma-
trix Q 4+ pH' H is positive definite.



Let () be a symmetric n x n matrix, and H
be a k xn matrix. Assume that () is positive
definite on the null space of H:

d+0,Hd=0=d'Qd> 0.

Then for all large enough values of p the ma-
trix Q 4+ pH' H is positive definite.

Proof: Assume, on the contrary, that there
exists a sequence p; — oo and d;, ||d;||lo = 1:

d [Q+ p;H' H]d; < 0 Vi.
Passing to a subsequence, we may assume
that d; — d, i — co. Let d; = h; + h;- be
the decomposition of d; into the sum of its

projections onto Null(H) and [Null(H)]+, and
similarly d = h 4+ ht. Then

d'HTHd; = |Hd;|3 = |[Hhi-||3 — ||[HRY|3 =
0> dl'[Q + p;HTHYd; = d} Qd; +p; ||Hhi"||5 (%)
—dT'Qd —>||Hhi||§

If ht # 0, then ||Hh'|2 > 0, and the right
hand side in (%) tends to 4+oc0 as i — oo,
which is impossible. Thus, h+ = 0. But then
0 = d € Null(H) and therefore d1'Qd > 0, so
that the right hand side in (%) is positive for
large ¢, which again is impossible.




Putting things together:
Augmented Lagrangian Scheme

min @) +gIn@I3: "2TO L )

[l
Lp(z,A) = f(z) + 5||h(2)||5 + > Aihi(z)

& Generic Augmented Lagrangian Scheme:
For a given value of p, solve the dual problem

m/ngp(A)
[Lp(/\) = min Ly(z, /\)}

by a first order method for unconstrained
minimization, getting the first order informa-
tion for (D) from solving the auxiliary prob-
lems

(D)

xp(A\) = argmin Lp(x, M) (PM)

via the relations

Ly(N)
L,(\)

Lp(flfp()\)y A)
h(zp(A))



min {10+ 4In@I3: LT L
|
Lo(z,\) = f(z) + 5llh(@)[53 + ¥ Aihi(x)
|
m/\ax {Lp()\) = min Ly(x, A) } (D)

problem (P?)

Note: If p is large enough and the optimiza-
tions in (P*) and in (D) and are restricted to
appropriate convex neighbourhoods of non-
degenerate local solution zx« to (F,) and the
corresponding vector \* of Lagrange multi-
pliers, respectively, then

— the objective in (D) is concave and CZ2,
and \* is a nondegenerate solution to (D)
— the objectives in (P) are convex and C2,
and zx(\) = arg;;’nin L,(x,\) are nondegener-

ate local solutions to (P?)

— as the “master method” working on (D)
converges to \*, the corresponding primal it-
erates zx(\) converge to x..



& Implementation issues:
{Solving auxiliary problems

x,(N\) = argmin Ly(z, \) (PM)

— the Dbest choices are Newton method
with linesearch or Modified Newton method,
provided that the second order information
IS available; otherwise, one can use Quasi-
Newton methods, Conjugate Gradients, etc.



$Solving the master problem

max {Lp(A) = min L (z, A)} (D)

Surprisingly, the method of choice here is the
simplest gradient ascent method with con-
stant step:

)\t — )\t—l +/0L/p(>\t_1) — )\t—l +ph($t—1),

where z!~1 is (approximate) minimizer of
Lo(z, Xt=1) in 2.
Motivation: We have

0 =~ vpr(xt—lj)\t—l)
ft=1) + SN phi(a DR ()

which resembles the KKT condition

0= f'(z«) + Z,\;‘h;(m*).



max {Lp(A) = min L (, A)} (D)

t
= { ajt—Al (%)

Justification: Direct computation shows that

N4 ph(at—1)
argming, L,(z, \t—1)

W, = ViL,(\*) =-H[Q+pH"H] 'HT,
Q = ViLo(zs,\*)

[Py (@] ]
H =

RLEACHION

whence —pW, — I as p — oo.

Consequently, when p is large enough and
the starting point \g in (%) is close enough
to \*, (%) ensures linear convergence of \! to
A* with the ratio tending to O as p — —+oo.
Indeed, asymptotically the behaviour of (x)
is as if L,(\) were quadratic function

1
const — E(A — A*)T\IJP(A — Ax),
and for this model recurrence (x) becomes

A= X = (T4 pW,) (A= 2%).

—>O,\pr—>oo




& Adjusting penalty parameter:

t
= { xt—Al (%)

When p is “large enough’, so that (x) con-
verges linearly with reasonable convergence
ratio, ||L,(AD)[l> = [|h(z")|l2 should go to O
linearly with essentially the same ratio.

= We can use progress in ||h(:)]|> to con-
trol p, e.g., as follows: when |h(z!)]> <
0.25||h(z!~1)|lo, we keep the current value
of p intact, otherwise we increase penalty
by factor 10 and recompute z! with the new
value of p.

)\t—l + ph(act_l)
argming, L,(z, A= 1)



Incorporating Inequality Constraints

& Given a general-type constrained problem

. . hi:O,iSm
mé”{f(@' gj(z) <0.,j Sm}

we can transform it equivalently into the
equality constrained problem

| hi(a) =0i<m
min {f@) " gi(@) +s2=0,j <k }

and apply the Augmented Lagrangian scheme
to the reformulated problem, thus arriving at
Augmented Lagrangian

Lp(z,s; A, 1) = f(x)+ 2 A\hi(x)
+ > wilgi(z) + sz-]
J
+5 [z_ h?(z) + 2lg;(z) + s§]2]
U J
The corresponding dual problem is

max {Ly(\. 1) = min Ly(z, ;. 0} (D)



Lp(z,s; A, 1) = f(z) + X Ahi(z)

5 [g;(x) + 52
+5 [z_ hi(x) + lg;(2) + 3512]
i J
I
n;l\ix {Lp()\ ) = mln Ly(z,s; p, )\)}

We can carry out the minimization in s ana-
lytically, arriving at

3

Lo ) = mn {“l‘”%.; (9(2) + 1)
+ 3 Aihi(e) + 5 ; hi(x)z}
%

(]

J=1
where a4 = max|0,a].
= [ he auxiliary problems arising in the Aug-

mented Lagrangian Scheme are problems in
the initial design variables!



s UCI TR B
h ! 0,:<k
L) — U, 1 >~

min {f(a:) : g;E:I;% +52=0,j<m } (P
& Theoretical analysis of Augmented La-
grangian scheme for problems with equality
constraints was based on assumption that we
are trying to approximate nondegenerate |o-
cal solution. Is it true that when applying
reducing the inequality constrained problem
to an equality constrained one, we preserve
nondegeneracy of the local solution?
Yes!
Theorem. Let z« be a nondegenerate local
solution to (P). Then the point

(@s,87) 155 = \/—gj(:c*), j=1,...m

is a nondegenerate local solution to (P).




Convex case. Augmented Lagrangians

& Consider a convex optimization problem

min {f(:c) 1 gi(z) <0, =1, ...,m} (P)

(f, g; are convex and C2 on R™).
Assumption: (P) is solvable and satisfies the
Slater condition:

dz 1 g;(z) <0j=1,...,m

& In the convex situation, the previous local
considerations can be globalized due to the
LLagrange Duality Theorem.



min{f(z) : gj(x) <0,j=1,...m}  (P)
Theorem: Let (P) be convex, solvable and

satisfy the Slater condition. Then the dual
problem

T§8<L(>\) = min {f(-%’) + %:Ajgj(fl?)] (D)

\ 7

L(z,))
possess the following properties:
{dual objective L is concave
$(D) is solvable
{for every optimal solution A* of (D), all op-
timal solutions of (P) are contained in the
set Argming L(x, \*).
& Implications:
HSometimes we can build (D) explicitly (e.g.,
in Linear, Linearly Constrained Quadratic
and Geometric Programming). In these
cases, we may gain a lot by solving (D) and
then recovering solutions to (P) from solu-
tion to (D).




min {f(x) 1 gi(x) <0,j=1, m} (P)
J
max L(X) = min [f(fli) + Z)\jgj(x)] (D)
J

A>0

A\ 7

L(z,\)

$In the general case one can solve (D) nu-
merically by a first order method, thus re-
ducing a problem with general convex con-
straints to one with simple linear constraints.
To solve (D) numerically, we should be able
to compute the first order information for L.
This can be done via solving the auxiliary
problems

e = Tx(AN) = min L(x,\) (Py)
due to
LX) = L(z«(A), )
L'(N) = g(z«(N))

Note: (P)) is a convex unconstrained pro-
gram with smooth objective!



min {f(ac) 2 gi(z) <0,5=1, m} (P)
J
max L(A) = min [f(ﬂl?) + ZAjgj(m)] (D)
J

A>0

A\ 7

L(z,)\)

& Potential difficulties:

SL(-) can be —oo at some points; how to
solve (D)7

Hafter \* is found, how to recover optimal
solution to (P)? In may happen that the set
Argmin, L(xz, \*) is much wider than the op-
timal set of (P)!

Example: LP. (P) : min {ch Az —b < O}.
Here

L(A)

min 'z + (ATX) Tz — bT)]
| =btA, ATA+ce=0
B —oco, oOtherwise

— how to solve (D) 777

At the same time, for every A\ the function

L(xz,)\) is linear in x; thus, Argmin L(x, \) is
X

either (), or R™ — how to recover x4 777



& Observation: Both outlined difficulties come
from possible non-existence/non-uniqueness
of solutions to the auxiliary problems

min Lz, \) = minlf () + 3 Ag;(@)] ()
J

Indeed, if solution x«(\) to (P)) exists and is
unique and continuous in A on certain set A,
then L(\) is finite and continuously differen-
tiable on A due to

LX) L(zx(A),A)

L'(\) g(xx(N))
Besides this, if A* € A, then there is no prob-
lem with recovering optimal solution to (P)

from A\s«.
Example: Assume that the function

k
r(z) = f(z) + ) g;(2)

j=1
is locally strongly convex (r”(z) = 0 Vz) and
is such that

r(z)/[lz|l2 — oo, [[z]l2 — oco.

Then x4«()\) exists, is unique and is continuous
in A on the set A = {\ > 0}.



& In Augmented Lagrangian scheme, we en-
sure local strong convexity of

r(-) = f(x) 4+ sum of constraints
by passing from the original problem
min{f(2) 1 gj() <0, j=1,...m}  (P)
to the equivalent problem

min {f(:c) 1 0:(g;(2)) <0, j=1, m} (P

where 0,(-) are increasing strongly convex
smooth functions satisfying the normaliza-
tion

0;(0) =0, 65(0) = 1.



min {f(a:) 1 gi(x) <0, 5= 1,...,m} (P)
J
min{f(z) : 0;(g;(x)) <0, =1,...,m} (P
0;(0) =0, 0/(0) =1]

Facts:

S(PM) is convex and equivalent to (P)
Hoptimal Lagrange multipliers for (P) and
(P’) are the same:

Valf(2) + ¥ Nig;(@)] = 0 & Xigj(x) = 0Yj
J

0
Vol () + 2 X05(9;(2))) = 0 & Xjg(2) = 0V

Sunder mild regularity assumptions,

r() = £(2) + 3 0;(g5())
J

is locally strongly convex and r(x)/||z|[o — oo

as ||x||o — oo.



min {f(a:) 2 g;(z) 0,5 = 1,...,m} (P)
J
min{ f(z) : 0;(g;(x)) <0, =1,...,m} (P
0;(0) =0, 0/(0) =1]

& With the outlined scheme, one passes from
the classical Lagrange function of (P)

L(z,A) = f(z) + > _Ngj(z)
J
to the augmented Lagrange function

L(z,\) = f(z) + Z Aj0;(g;(x))
J

of the problem, which vields the dual problem
max L(\) = max min L(z, \)
A>0 A>0 T
better suited for numerical solution and re-
covering a solution to (P) than the usual La-
grange dual of (P).



L(xz,\) = f(z) + %ijgj(fﬂ)

[l
L(z,\) = f(z) + ;Ajej(gj(w»
[l

max [mwin L(z, A)} (D)

& Further flexibility is added by penalty
mechanism:

L(z,\) = f(z) + Z Xip~10;(pgi(x))
J

equivalent to “rescaling”

0,(s) = 65 (s) = p~10,(ps).

The larger is p, the faster is convergence of
the first order methods as applied to (D) and
the more difficult become the auxiliary prob-
lems

min | f(z) + ijp_l%(ng(w))
J



Sequential Quadratic Programming

& SQP is thought of to be the most effi-
cient technique for solving general-type opti-
mization problems with smooth objective and
constraints.

& SQP methods directly solve the KKT sys-
tem of the problem by a Newton-type itera-
tive process.



& Consider an equality constrained problem

min { /(@) : h(z) = (h1(2), .. by(2))T = 0} (P)
= L(z,\) = f(z) + h!(z)A

The KKT system of the problem is

VaeL(z, ) f'(@) 4+ [ (@) A =0
VL(x, \) h(x) =0

(KKT)

Every locally optimal solution z4x of (P) which
is regular (that is, the gradients {hfb-(ac*)}le
are linearly independent) can be extended
by properly chosen A = \* to a solution of
(KKT).

& (KKT) is a system of nonlinear equations
with n + k& equations and n + k£ unknowns.
We can try to solve this system by Newton
method.



Newton method for solving nonlinear
systems of equations

& To solve a system of N nonlinear equations
with N unknowns

P(u) = (p1(w), ....pn(w)" =0,

with C! real-valued functions p;, we act as
follows:

Given current iterate uw, we linearize the sys-
tem at the iterate, thus arriving at the lin-
earized system

P(@) + P'() (u — ) _
p1(@) + [Py (D] (u — @)

o (@) + Iy (@] (- 1) |

Assuming the N x N matrix P'(w) nonsingular,

we solve the linearized system, thus getting
the new iterate

= 0.

at =a—[P'(a)] tP(a);
Newton
displacement



i ut =u-—[P)] 1P®) (N)

Note: The Basic Newton method for uncon-
strained minimization is nothing but the out-
lined process as applied to the Fermat equa-
tion

P(x) =V f(x)=0.
& Same asin the optimization case, the New-
ton method possesses fast local convergence:

Theorem. Let ux € RY be a solution to the
square system of nonlinear equations

P(u) =0

with components of P being C! in a neigh-
bourhood of ux. Assuming that usx IS nonde-
generate (i.e., Det(P/(ux)) # 0), the Newton
method (IV), started close enough to us, con-
verges to ux superlinearly.

If, in addition, the components of P are C2
in a neighbourhood of wusx, then the above
convergence is quadratic.



& Applying the outlined scheme to the KKT
system

VaeL(x, )
V)\L(CB, )\)

f'(@) + [W(@)]"A =0
h(x) =0

(KKT)

we should answer first of all the following
crucial question:

(?) When a KKT point (x4, A*) is a nonde-
generate solution to (KKT)7?

et us set

P(z,\) = V, \L(z, )

_ [ Vael(z,\) = f(z) + [ (2)]TA
VL(x,\) = h(x)

Note that

2 /
P'(z,)\) = [ V:chL,((g/\) A ((:)c)]T




min {f(@) : h(z) = (h1(2), ... by(2))T = 0} (P)
— L(z,\) = f(z) + h (2)A
= P(xz,)) =V \L(z, )
_ [ VaeLl(z,\) = f(z) + [W(2)]TA
VL(x,\) = h(x)
VaL(z,\) [B(2)]T
h'(x) 0

= Pl(z,\) = [

Theorem. Let z« be a nondegenerate local
solution to (P) and \* be the corresponding
vector of Lagrange multipliers. Then (xzx, A*)
IS @ nondegenerate solution to the KK'T sys-
tem

P(x,\) =0,

that is, the matrix P’ = P/(x«, \*) is nonsin-
gular.

Proof. Setting Q = V2L(z«,\*), H =
Vh(xx), we have




Q = V2L(xz+, \*), H= Vh(zs),

, | Q@ HT
r= %

We know that d # 0, Hd = 0 = d{'Qd > 0 and
that the rows of H are linearly independent.
We should prove that if

o ld] _ | Qd+HTyg
o=r[3]=[*%

then d =0, g = 0. We have Hd = 0 and

?

0=Qd+ H g= d'Qd+ (Hd)'g = d' Qd,

which, as we know, is possible iff d = 0. We
now have HYg = Qd + HL g = 0; since the
rows of H are linearly independent, it follows
that g = 0.



Structure and interpretation of the Newton
displacement

& In our case the Newton system

P'(w)A = —P(u) (A =ut — 4]
becomes
[V2L(Z, M)Az + [VA@)]TAN = —f/(Z)
—[R' (@1,
[P (Z)]AXN = —h(Z)

where (z,)\) is the current iterate.
Passing to the variables Az, AT = X 4+ A,
the system becomes

[V2L(z, )] Az + [W(@)]TAT
h(Z)Ax

@)
_h(Z)



[V2L(Z, )] Az + [ (2)]TAT
h'(Z)Ax

—f'(@)
—h(z)

Interpretation.

& Assume for a moment that we know the
optimal Lagrange multipliers A* and the tan-
gent plane 17" to the feasible surface at x«.
Since V2L(xs, A*) is positive definite on T,
and ViL(x«, A\*) is orthogonal to T, =z« is
a nondegenerate local minimizer of L(x, \*)
over x € T', and we could find =« by apply-
ing the Newton minimization method to the
function L(x, \*) restricted onto T':

T eT— T+ argmin |L(Z,\*) + Azt Vi L(Z, \*)
Ax:
T+ AxeT

+2A82TV2L(Z, M) Az



& In reality we do not know neither \*, nor
T, only current approximations z, A of x4« and
A*. We can use these approximations to ap-
proximate the outlined scheme:

e Given x, we approximate 1T by the plane

T={y=z+ Ax: [ (z)]Ax+ h(Z) = 0}

e \We apply the outlined step with \* replaced
with X and T replaced with T:

T €T — T+ argmin [L(E, N) 4+ Azt VieL(Z,N)
i—l—AAa;eT

+:02TV2L(z, X)Ax]

Note: Step can be simplified to
rel —x
+ argmin [f(i) + AT (7)) + La2TV2L(7, Z\)Aa;]
Ax:
T+AzeT

due to the fact that for x + Az € T one has
Azt L(Z, ) Azt () + M0 (%) Ax
Azl f1(Z) = M ()



& We have arrived at the following scheme:
Given approximations (z,\) to a nondegener-
ate KKT point x4, A™ of equality constrained
problem

min {f(a:) h(z) = (hi(2),.... hp ()T = o}
(P)

solve the auxiliary quadratic program
min { f(@) + 22T f1(z) + 5082TV2L(Z,N) Az :
Xz

hz) 4+ W(Z) Az = o}
(QP)

and replace z with x + Ax.

Note: (QP) is a nice Linear Algebra prob-
lem, provided that V2L(Z,\) is positive def-
inite on the feasible plane T = {Ax : h(Z) +
h'(z)Axz = 0} (which indeed is the case when
(z,\) is close enough to (xs\*)).



min{f(z) : h(z) = (h1(2), .., ()" = 0}
(P)
& Step of the Newton method as applied to
the KKT system of (P):

(Z, N — (T =24+ Az, 2T :
[V2L(Z, M)Az + [M(@])TAT = —f(7)
W(Z)Ax = —h(7)
(N)

& Associated quadratic program:

rgin {f(:z) + 22T f1(Z) + 5282TV2L(Z,X) A :

hz) + K (T) Az = o}
(QP)

Crucial observation: Let the Newton system
underlying (NN) be a system with nonsingular
matrix. Then the Newton displacement Ax
given by (N) is the unique KKT point of the
quadratic program (QP), and AT is the cor-
responding vector of Lagrange multipliers.




(V2L(z,\)]Az + [W(@)]TAT = —f(z)
W(zZ)Az = —h(7)
min {f(f) + Azl f(z)

+LA2TV2L(Z, X) Ar 1 (F) Az = —h(;%)}

Proof of Critical Observation: Let z be a
KKT points of (QP), and p be the corre-
sponding vector of Lagrange multipliers. The
KKT system for (QP) reads
(@) + V2L(E Nz + [W(@]Tp = 0
h'(z)z —h(x)
which are exactly the equationsin (V). Since

the matrix of system (IN) is nonsingular, we
have z = Az and u = \T.

(N)

(QP)



min{f(z) : h(z) = (h1(2), ..., hy(x))" = 0}
(P)
& The Newton method as applied to the
KKT system of (P) works as follows:
Given current iterate (z,)\), we linearize the
constraints, thus getting “approximate feasi-
ble set”

T={z+ Az : K (Z)Az = —h(T)},

and minimize over this set the quadratic
function

F(B)+ (-] f’(:E)—I—%(a:—aE)T V2L(3 N) (2—7).

T he solution of the resulting quadratic prob-
lem with linear equality constraints is the new
x-iterate, and the vector of Lagrange multi-
pliers associated with this solution is the new
M-iterate.

Note: The quadratic part in the auxiliary
quadratic objective comes from the Lagrange
function of (P), and not from the objective
of (P)!



General constrained case

& ‘Optimization-based” interpretation of the
Newton method as applied to the KK'T sys-
tem of equality constrained problem can
be extended onto the case of general con-
strained problem

min {f(x) - (z) = (hl(:v),-.-,hk(w))i =0 }
T g(z) = (g1(z),...,gm(x))" <0
(P)
and results in the Basic SQP scheme:
Given current approximations x¢, A¢, ut > 0 to
a nondegenerate local solution x. of (P) and
corresponding optimal Lagrange multipliers
A, u*, we solve auxiliary linearly constrained
quadratic problem

min {f(wt) + Azt f(zy)

LATT27 (- - W (z) At = —h(zy)
—I—QAQZ VxL(CEb )\t,,LLt)Ax ’ g’(g}t)Aﬂf S _g(a:t)

L(z; A\, 1) = f(z) + hI ()X + gL (z)p

(QP:)
set x4y 1 = x¢+ Axx and define Ay 1, pyy1 as
the optimal Lagrange multipliers of (QP4:).



: . h(z) = (h1(2), ..., hg()) =0
mw'”{“"“")' 9(2) = (91(2), - gm(2))T < 0 }
(P)
Theorem. Let (z«; \*, u*) be a nondegenerate
locally optimal solution to (P) and the corre-
sponding optimal Lagrange multipliers. The
Basic SQP method, started close enough to
(zx; X*, u*), and restricted to work with ap-
propriately small Az, is well defined and con-
verges to (x«; A\*, u*) quadratically.
& Difficulty: From the “global” viewpoint,
the auxiliary quadratic problem to be solved
may be bad (e.g., infeasible or below un-
bounded). In the equality constrained case,
this never happens when we are close to the
nondegenerate local solution; in the general
case, bad things may happen even close to a
nondegenerate local solution.




& Cure: replace the matrix V2L(xzyg; N\, ptb)
when it is not positive definite on the entire
space by a positive definite matrix B¢, thus
arriving at the method where the auxiliary
quadratic problem is

min {f(ifft) + Azt f(xy)
Ax
h(x)) At = —h(x
Hiastmans LR T TG )
(QPy)

With this modification, the auxiliary prob-
lems are convex and solvable with unique op-
timal (provided that they are feasible, which

indeed is the case when z; is close to a non-
degenerate solution to (P)).



Ensuring global convergence

& ‘Cured” Basic SQP scheme possesses nice
local convergence properties; however, it in
general is not globally converging.

Indeed, in the simplest unconstrained case
SQP becomes the basic/modified Newton
method, which is not necessarily globally
converging, unless linesearch is incorporated.



& To ensure global convergence of SQP, we
incorporate linesearch. In the scheme with
linesearch, the solution (Az, A1, u1) to the
auxiliary quadratic problem

min {f@ct) + Azt f/ ()
W )ALt = —h(x
+3027BiAx g/((x:))A; < —g((a?:)) }
(QPy)

IS used as search direction rather than as a
new iterate. The new iterate is

T4l = Tt V41D
AMt1 = Nt ’Yt+1(>\+ — At)
w1 = e+ a1t — p)

where v;41 > 0 is the stepsize given by line-
search.

Question: What should be minimized by the
linesearch?




& In the constrained case, the auxiliary objec-
tive to be minimized by the linesearch cannot
be chosen as the objective of the problem of
interest. In the case of SQP, a good auxiliary
objective (“merit function”) is

m k
M(z)=f@)+0 | > k@) + Y g (@)

i=1 j=1

where 6 > 0 is parameter.

Fact: Let x; be current iterate, B; be a
positive definite matrix used in the auxiliary
quadratic problem, Axz be a solution to this
problem and A = Ayy 1, u = pyy1 be the corre-
sponding Lagrange multipliers. Assume that
0 is large enough:

0 Z max{\)\1|, "t |>\k‘7 1, L2,y -, Mm}

Then either Ax = 0, and then z; is a KK'T
point of the original problem, or Ax #= 0, and
then Ax is a direction of decrease of M (.),
that is,

M(x+~vAx) < M(x)

for all small enough ~ > 0.



SQP Algorithm with Merit Function

& Generic SQP algorithm with merit function
is as follows:

Olnitialization: Choose 67 > 0 and starting
point x1

OStep t: Given current iterate xy,

— choose a matrix B; > 0 and form and solve
auxiliary problem

min {f(ﬂﬁt) + Azt f(x)
Ax
1 . W () At = —h(xy)
FIATBAL L ) N < —g(er) }
(QPy)
thus getting the optimal Ax along with as-
sociated Lagrange multipliers A, u.



— if Ax = 0, terminate: z; is a KKT point
of the original problem, otherwise proceed as
follows:

— check whether

Or > 0p = max{| A1, .., [Akl, 1, s i}

if it is the case, set 6,41 = 60;, otherwise set

041 = Max[0y, 264];

— Find the new iterate

Ti41 = Tt + Y4100

by linesearch aimed to minimize the merit
function

Mit1(2) = f(2)+6141 Z @)+ 3 9 (@)

1=1
on the search ray {z:+~vAx | v > 0}. Replace
t with t 4+ 1 and loop.



. Ch(z) = (h(2),...,h ()T =0
mw'”{“"“")' 9(2) = (91(2), - gm(2))T < O }
(P)
Theorem: Let general constrained problem
be solved by SQP algorithm with merit func-
tion. Assume that
e there exists a compact €2 C R"™ such that
for x € Q2 the solution set D(x) of the system
of linear inequality constraints

S(z): h(z)Az=—h(z), ¢'(x)Az < —g(z)

with unknowns Azxz is nonempty, and each
vector Ax € D(x) is a regular solution of sys-
tem S(x);

e the trajectory {x;} of the algorithm belongs
to 2 and is infinite (i.e., the method does not
terminate with exact KKT point);

e the matrices B; used in the method are uni-
formly bounded and uniformly positive def-
inite: ¢l X By X CI for all t, with some
O<e<(C < .

Then all accumulation points of the trajec-
tory of the method are KKT points of (P).



Separation Theorems and Statistical
Estimation

& Consider the Linear Regression problem as
follows:

Problem I. Given indirect noisy ob-
servations

y = Az + 0§

of “signal” (vector of parameters) x
known to belong to a given set X C
R™, infer from the observations some
information on x.

e A: given m X n matrix

o £ ~ N(O0,I): standard Gaussian
noise

e o0 > 0: known intensity of the noise

Basic assumption: X is a closed and bounded
convex set.




& Example: Imaging

e A (discretized) 1D /2D /3D image is a func-
tion on a n-element grid of “pixels’ — small
1D/2D /3D boxes. The value of this func-
tion at a pixel j is the intensity (brightness,
“blackness’”, etc.) of the image in the pixel.
=An image is a vector x € R", where x; is
the intensity of the “physical image’ in j5-th
pixel.

e \With no noise, the output of a typical scan-
ner depends linearly on the input image «z,
and in many cases the noise n enters the ob-
servations z additively: z = Bx + 1.

e When, as it often is the case, the noise
is Gaussian, we can pass from the obser-
vations z = Bx + n to the observations
y=Cz=CBx+ Cn=Ax -+ £ in such a way
that the Gaussian noise £ is white: & ~
N(0,1).

e In many cases, a priori information, like
0 < X j < L, or O < Xji ZJZC] < L, allows
to localize the image in a known in advance
convex compact set X.




y= Ax + o€ with z € X
o X, AcR™*" o > 0: given e £ ~ N (0, In)

& Case I: Hypotheses Testing

(HT): Given two closed convex subsets X1,
Xo of X, test the hypothesis P; . x € X1 VS.
the alternative P> . x € X».

& A test for HT is a (measurable) function
w(y) of observations taking just 2 values 1
and 2. Given observation y, we accept :-th
hypothesis when ¢ (y) =14, i =1, 2.

& Quantifying risk of a test. The most nat-
ural ray to quantify the risk of a test ¢, is to
look at the error probabilities

e1[¢] = sup,ex, Prob{y(Az + o) # 1}
e2[y] = supgex, Prob{y(Az + o§) # 2}

— the worst-case probabilities to reject a hy-

pothesis when it is true, and at the the test

error

e[¢] = max[e1[9], e2[4]]



y= Ax+ o€ with z € X
e X, Ac R™*" o5 > 0: given e £ ~ N (0, Ir,)
& Solving HT. Let Y, = AX;, + = 1,2. Y]
are closed convex compact sets along with
X1 and X»>. We can separate them by the
widest possible stripe by solving the opti-
mization problem

Opt = minyu {5llu—vll2:u€Y1,ve Vo]

§||u* — Vx| 2

[usx € Y1,vx € Y?]
e when Opt = 0 (& ux = v4), the sets Y7 and
Y> cannot be strictly separated

Ux —Ux —_ U*"‘U*
e when Opt > 0O, setting f = Tu—uls' €= 2
we have

B > Opt, Yy E Yy
My e]{< —Opt, y € Y5




Theorem (i) [lower bounds] The test error
of every test satisfies the inequality

e[¢] > Erf(Opt/o),

©.@)
where Erf(s) = /\/LQ_Wexp{—tz/Q}dt is the er-
S

ror function.

(ii) [optimal test] Assuming Y1 NY> = 0, con-
sider the test

w={ 5 LE=3>0

27 fT(y o 6) <0
Then

€1[Y«] = ea[v«] = €[vps] = Erf(Opt/o).

accept P4l accept P



Proof of lower bound: We have Opt =
%Hu* — V|| = %HA[:vl — z?]||2, where z* € X,
1 = 1,2. Let us replace the ‘“‘complex’” hy-
potheses P, : x € X;, 1 = 1,2, with simple hy-
potheses M, : x = %, i = 1,2. Every test ca-
pable to distinguish between 17 and I, with
certain test error and error probabilities, dis-
tinguishes between 11 and N> with the same
or smaller test error and error probabilities.
Now let us use the following simple result:
Lemma Let ¢ be a test for distinguishing be-
tween two simple hypotheses 11, > on the
distribution of observation y € R™, I, stating
that the density of the distribution is p;(y),
1= 1,2. Then

2¢[¢) > [ minp1 (), p2()]dy



Proof of Lemma. Consider a randomized
test ¢ which, given an observation y, accepts
M1 with probability p(y), and N> with proba-

bility q(y) =1 — p(y). Then

aldl = [awri@)dy
ealsl = [ p(WIpay)dy
= 2¢[¢] > e1lg] + ea[d]
= [Wra() + (@ — p)p1()]dy
> [ minfp1(y), po(y)]dy.

Lemma = lower bound: We are in the sit-
- 1 ™ ly—Az?||3
uation of pi(y) = |5—| exp{——5 =}

1 = 1,2, whence

e[ >/[ lelmexp{mi” [_Ily;:*HQ, IIy v*llg Ly

[setting y — ﬂ — oz, h= %*OUJE" p = Opt/a]

_/[ QW]meXp{ max([|ju— ph||2>||u+ph|| ]}d

=3 / [ ] exp{—H +2ph||2}du

Th>0

2
— Q/ﬁexp{—@}ds — 2Erf(p).
0




Upper bound: Let x € Xo. Then

Prob{y«(Az + &) = 1}

m
< | ] et A2 g
u: fL [u—e]>0

[setting u — Ax = o2]

[ [ eet-15Re:
fT2>2 fTe— Aa]

< / A exp{ I3y 4.

flz>=== Opt
/ mexp{ s2/2} = Erf(Opt/o)
s>0Opt/o

and similarly for x € X7 it holds

Prob{ix( Az + of) = 2}
m u—Az||3
T et e
u: fL u—e]<0

— / [\/%_ﬁ]m exp{—%}dz




y= Ax 4+ & with x € X
e X, Ac RM™X" 45 > 0: given e £ ~ N(0, I;n)

& Case II: Estimating Linear Form

(ELF): Given a linear form gz of z € R",
estimate g' .

& An estimate for ELF is a (measurable)
function g(y) of observations taking real val-
ues; g(y) is the estimate of glx associated
with observation y.

& Quantifying risk of an estimate. Most
natural ray to quantify the risk of an estimate
g(-) at a given x € X is via the mean squared
estimation error E{[G( Az + &) — ¢! z]?}.

e Estimate g(-) on the entire X is quantified
by its worst-case, over x € X, risk

Risk[g] = sup E{[§(Az + o¢&) — g’ z]?}
reX

e It makes sense to compare this risk with
the minimax optimal risk

Risks = inf Risk[g].
q(-)



& An estimate g(.) is called affine, if it is an
affine function of observations:

g(y) =hly+ec
For an affine estimate, its risk at a point is
E{[hT(Az + 0&) + c — gTz]?}
_ T T T 2
=EB{|[W Az +c—fTa] + on'¢ |7}

bias stochastic
term
2
= [hTAz +c— fTa|” + o2||n|13

whence

Risk[g] = [max W Az 4 c— fTa;|]2 + o2 ||h|2.
reX

(+)
Note: When X is “computationally tractable”
(e.g., is a polytope), the right hand side in
(%) can be efficiently minimized in h,c. Thus,
we can ‘reach efficiently” the optimal esti-
mation risk RiskAff. achievable with affine
estimates.
In contrast, in general it is completely un-
clear how to reach the minimax optimal risk
Risks — the underlying estimate “exists in the
nature’”, but we have no idea what is it.



Theorem [D. Donoho, 1994] RiskAffx is
within absolute constant factor (in fact, 5/4)
of Riskx.

Note: When estimating the signal itself rather
than an affine form of the signal, the risks of
affine estimates can be incomparably worse
than the risks of non-affine ones...

Proof of Donoho’s Theorem. 1. It is eas-
ily seen that we can normalize the situation
by assuming ¢ = 1 and that RiskAff, > 1:
all we need to prove that in this normalized
situation Riskys > O(1).

2. Replacing R"™ with Aff(X), we may as-
sume that intX # 0. Let Xx = X — X, so
that X« is a convex compact set symmetric
w.r.t. 0 € intX. Thus, Xx is the unit ball of
a norm p(-) on R™. Let

ps(u) = max,{ulz:pz) < 1}
= maxX; ulzs:ze X*}
= maxy {uT[:c —2) iz, 2 € X}

be the conjugate norm.



General fact: For every norm p(-) on R", its
twice conjugate norm (p«)«(-) is p(-) itself.
Proof. From definition of the conjugate
norm it follows that

V(u,v) : Julv] < p(w)p«(v).

T herefore
T
uw) = max ov'u< maxX U v
() = max oTu< max p(u)pe(v)
< p(u).

It remains to lead to a contradiction the as-
sumption that (p«)«(@) < p(u) for certain u.
Indeed, assume that it is the case. By ho-
mogeneity, we may assume that p(u) > 1,
while (p«)«(u) < 1. Since p(u) > 1, we can
strongly separate w and the unit ball of p(-):
there exists v such that

ola > max vlu = p«(d).
uip(u)<1
But then
P« (D) < 011 < pu(@) (D)« (1),

whence

(px)s(u) > 1,
which is a desired contradiction.



3. Let us verify that when o« > 0,8 > 0 are
such that a? + 82 < 1, no h € R™ satisfies

p«(ATh — g) < 2a and ||h|l2 < B.

Indeed, assume such an h exists. Then

20
> px(ATh — g) = max [ATh — g]T [z — ']
x,x e
— max[ATh — qlT min[ATH — g]1 .
:UEX[ g] xGX[ g] g
Setting
1
c= —— max[ATh g]Ta:' + mlﬂ[ATh Q]T
2 lxzeX

we conclude that

max|[h! Az + ] — g’ z| < o,
xeX

whence for the affine estimate §(y) = hly+c
one has

Risk[g] < a® + 82 =1,

which is impossible, since RiskAff, > 1.



4. We have seen that when a2+ 82 = 1 and
a, 3 > 0, no h satisfies the relations

ps«(ATh — g) < 2a and ||k < 3,

meaning that the compact convex sets

{u:pe(u—g) <2a}, {ATh:|h|2 < B}

can be strongly separated:
3z:  min  ulz> max (ATh)!:
u:px(u—g)<2a [h][2<8
We have
max (ATh)'z = max h'(Az) = 8||Az]>
|h][2<B |h][2<8
and
min wlz= min [glz+4 dL2]
wpx(u—g)<2« d:p«(d) <2«
= glz — 2a(p«)+(2) = g1z — 2ap(2).

Thus, g’z — 2ap(z) > 3|/ Az[|». This inequality
remains valid when z is replaced with 6z, 6 >
0; thus, we may assume that p(z) = 1, i.e.,
z=1r—s with r,s € X. The bottom line is:

V(a>0,8>0,a°+p%2=1):
Ir,s € X 1 gl [r — s] > 204 BJ|Alr — s]||2.



5. Setting a=08=,/1/2, we get

Irse€ X i gllr—s] >V2+ |A[r — s]||2.

(M)

1|
V2
We claim that then

Ju,v € X 1 gl [u—v] >+2 and ||[Afu — v]||» < 2.

Indeed, when ||A[r — s]|lo < 2, we can take

u=rv=s. When ||A[r — s]||o > 2, we can
__ 2 . _

set u = s + A= S]HQ[T s], v s, SO that

[Alu —v]fl2 = TAlr— S]HQHA[T s]ll2 =2 and
9" [u QU]_'HAh?sHb 9 [r—s]
> [Alr— S]H2\/—”A[T slllo = V2.

6. Since ||AJu —v]||o < 2, for every test ¢ for
distinguishing between the hypotheses P;
x=wu and P> :x = v we have ¢[y] > Erf(1).



Now let G(-) be an estimate of ¢fz, and let

w(y) — { 1, §(y) > gTe’ e U+

2, gly) <gle ’ 2
When x = u and the test accepts P>, we have
§(y) < g'e, while

gdr=g'r=gle+ %gT[u —o] > gle+ \%
that is, the squared estimation error is > 1/2,
whence
alv] < o7
Similarly, when * = v and the test accepts
Pi, we have §(y) > gle and ¢glz = ¢glv =

— 2Risk[g].

gle — %gT[u —v] < gle— %, whence
Risk|[g] ,
< = 2Risk|g].
o] < S 4
T hus,

2Risk[g] > e[y] > Erf(1) = Risk[g] > Erf(1)/2.

Since g is an arbitrary estimate, we get



& Illustration: Participles detection

Situation: A stream of participles contami-
nated by “background signal” inputs a de-
tector. The output of the detector with no
output noise is

(1) =/OAD(t—s)

Z,ujcS(s —5;) +w(s)|ds
J

where

o [ is the energy of j-th participle, S IS the
moment when it arrives and 6(-) is the Dirac
o-function

e w(-) is the “background signal”

e D(-) is the “impulse response” of the de-
tector — its output when the input is 6(-). We
assume D(t) to be supported on [0, A].

& After discretization in time with resolution
ot = A/N, the model becomes

) yr = >0 e + wedt] D _p 4+ 0&
Ly . energy of participle arriving at time £- 6t
{& ~ N(O, 1)}?‘3:_OO . independent output noises

| wy = w(l-6t), Dr = D(r-dt),oc >0 : noise level |

The goal: To infer from observations infor-

mation on {ur}32_ .




yr = ¢ e + wedt] Dy + 0&r

& Strategy:

e We fix a number K of consecutive “kernel
widths” to be considered, thus focusing on
recovering urs's for 0 <7 < KN — 1. Obser-
vations at these instants are defined, up to
observation noise, by two vectors

po= [p_Ng1ip—Nt2 - BEN-1]
w [w_N_|_1;’w_N_|_2; s WEN—1]
according to

lvo; - yrN—1] =y = Alp; w] + o€
[ ~ N(0, IknN)]
e Assume we know an upper bound p on par-
ticiple's energy and an upper bound n on the
number of participles which can arrive at in-
stants - N+ 1, —-N+4+2,..,. KN —1. Then pu
belongs to the convex compact set

_ >0, ur < 1
M: ER(K+1)N 1: H =Y, TT\ )
{'u Dot br < np



e We model the background signal w(¢) as
smooth with given parameters of smooth-
ness, say, twice differentiable with |w(:)| < Cg
and |w”(-)| < C5, which translates into the
restriction
lwr| < Cop, - N+1<7<KN
weEeEW=<Kw: |w7- — 2w7+1 -+ ’UJT_'_2| < 025t2,
—N4+1<7t<KN-2
e [ hus, we arrive at the situation where we
are given noisy indirect observations

y = Az +o¢ [z = [p; w]]

of asignalx € X = M x YV and are interested
to recover linear forms

QI[M; w| = pr
of the signal.
Note: In fact, it suffices to find a single
T = 7% fOr which ur can be well estimated via
our observationsy_n41,..,ygn—1- Given the
corresponding estimate g, we can estimate ur
for every T by the quantity

G Yr—r - N4+11 - Yr—me b KN—1)-



& Numerical illustration:

Setup:

e Impulse response D(s) = c[exp{as} — exp{bs}],
0<s<1.

e Discretization: N = 40 grid points per 1
sec (6t = 1/40)

Impulse response

e K = 2, i.e., 80 observations and dimuy =
dimw =119

e Participles: ur € [0, = 0.2], with at most
n = 5 participles per 119 consecutive discrete
time instants

e Background signal: |w(:)| < 1,
e Noise intensity: o = 4.33e-4

w’(+)] <1




Results:
e T he best position for estimating ur: ™ =
41. The estimate of ur:

79
fir = 0.0068 + 3= hiyr_41-i

=0

Estimation weights h;
e Risk of the estimate:

0.0106%2 = 0.01042 + o2 -
e Sample recovery:

03

"‘\\ | // ‘\“\
025f / /I \
02f , , , I o
0.15f I

/6
0
011 #

0.05F
A\
0D
{
-0.05

-0.1p

-0.15F

-0.2 1 1 1 1 1 1 1 I
40 60 80 100 120 140 160 180 200 220

e *: input e ---: output e 0: recovery



e Recovering energy distribution of partici-
ples:

In our simulation, the energy distribution of
a participle was

Prob{ur < 3ﬁ|#7 #0} =+/50<s< 1
To recover this distribution from observa-
tions, we
e computed the 0.99-confidence level ¢ of our
estimate ur when pr is O:

¢ = bias + Erf(0.01) - o - ||| = 0.0156

e in a long simulation run, filtered out all
time instants 7 with ur < £ and computed the
empirical distribution of the remaining pr.
The result:

Magenta: true energy distribution
Blue: estimated energy distribution
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