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♣ To make decisions optimally is one of the
most basic desires of a human being.
Whenever the candidate decisions, design re-
strictions and design goals can be properly
quantified, optimal decision-making yields
an optimization problem, most typically, a
Mathematical Programming one:

minimize
f(x) [ objective ]

subject to

hi(x) = 0, i = 1, ..., m

[
equality
constraints

]

gj(x) ≤ 0, j = 1, ..., k

[
inequality
constraints

]

x ∈ X [ domain ]
(MP)

♣ In (MP),
♦ a solution x ∈ Rn represents a candidate
decision,
♦ the constraints express restrictions on
the meaningful decisions (balance and state
equations, bounds on resources, etc.),
♦ the objective to be minimized represents
the losses (minus profit) associated with a
decision.



minimize
f(x) [ objective ]

subject to

hi(x) = 0, i = 1, ..., m

[
equality
constraints

]

gj(x) ≤ 0, j = 1, ..., k

[
inequality
constraints

]

x ∈ X [ domain ]
(MP)

♣ To solve problem (MP) means to find its

optimal solution x∗, that is, a feasible (i.e.,

satisfying the constraints) solution with the

value of the objective ≤ its value at any other

feasible solution:

x∗ :





hi(x∗) = 0∀i & gj(x∗) ≤ 0 ∀j & x∗ ∈ X

hi(x) = 0∀i & gj(x) ≤ 0∀j & x ∈ X

⇒ f(x∗) ≤ f(x)



min
x

f(x)

s.t.
hi(x) = 0, i = 1, ..., m
gj(x) ≤ 0, j = 1, ..., k

x ∈ X

(MP)

♣ In Combinatorial (or Discrete) Optimiza-

tion, the domain X is a discrete set, like the

set of all integral or 0/1 vectors.

In contrast to this, in Continuous Optimiza-

tion we will focus on, X is a “continuum”

set like the entire Rn,a box {x : a ≤ x ≤ b},
or simplex {x ≥ 0 :

∑
j

xj = 1}, etc., and the

objective and the constraints are (at least)

continuous on X.

♣ In Linear Programming, X = Rn and the

objective and the constraints are linear func-

tions of x.

In contrast to this, in Nonlinear Continuous

Optimization, the objective and/or some of

the constraints are nonlinear.



min
x

f(x)

s.t.
hi(x) = 0, i = 1, ..., m
gj(x) ≤ 0, j = 1, ..., k

x ∈ X

(MP)

♣ The goals of our course is to present

• basic theory of Continuous Optimization,
with emphasis on existence and unique-
ness of optimal solutions and their char-
acterization (i.e., necessary and/or suffi-
cient optimality conditions);

• traditional algorithms for building (ap-
proximate) optimal solutions to Contin-
uous Optimization problems.

♣ Mathematical foundation of Optimization
Theory is given by Convex Analysis – a spe-
cific combination of Real Analysis and Geom-
etry unified by and focusing on investigating
convexity-related notions.



Convex Sets

Definition. A set X ⊂ Rn is called convex,
if X contains, along with every pair x, y of
its points, the entire segment [x, y] with the
endpoints x, y:

x, y ∈ X ⇒ λx + (1− λ)y ∈ X ∀λ ∈ [0,1].

Note: when λ runs through [0,1], the point
x + λ(y − x) ≡ x + λ(y − x) runs through the
segment [x, y].

The set in R2

bounded by red
line is convex

The set in R2

bounded by red
line is not convex

♣ Immediate examples of convex sets in Rn:
• Rn

• ∅
• singleton {x}.



Examples of convex sets, I: Affine sets

Definition: Affine set M in Rn is a set which

can be obtained as a shift of a linear subspace

L ⊂ Rn by a vector a ∈ Rn:

M = a + L = {x = a + y : y ∈ L} (1)

Note: I. The linear subspace L is uniquely

defined by affine subspace M and is the set

of differences of vectors from M :

(1) ⇒ L = M −M = {y = x′− x′′ : x′, x′′ ∈ M}

II. The shift vector a is not uniquely defined

by affine subspace M ; in (1), one can take as

a every vector from M (and only vector from

M):

(1) ⇒ M = a′ + L ∀a′ ∈ M.



III. Generic example of affine subspace: the
set of solutions of a solvable system of linear
equations:

M is affine subspace in Rn

m
∅ 6= M ≡ {x ∈ Rn : Ax = b} ≡ a︸︷︷︸

Aa=b

+ {x : Ax = 0}︸ ︷︷ ︸
KerA

♣ By III, affine subspace is convex, due to
Proposition. The solution set of an arbitrary
(finite or infinite) system of linear inequalities
is convex:

X = {x ∈ Rn : aT
αx ≤ bα, α ∈ A} ⇒ X is convex

In particular, every polyhedral set {x : Ax ≤ b}
is convex.
Proof:

x, y ∈ X, λ ∈ [0,1]

⇔ aT
αx ≤ bα, aT

αy ≤ bα∀α ∈ A, λ ∈ [0,1]

⇒ λaT
αx + (1− λ)aT

αy︸ ︷︷ ︸
aT

α[λx+(1−λ)y]

≤ λbα + (1− λ)bα︸ ︷︷ ︸
bα

∀α ∈ A

⇒ [λx + (1− λ)y] ∈ X ∀λ ∈ [0,1].



Remark: Proposition remains valid when part

of the nonstrict inequalities aT
αx ≤ bα are re-

placed with their strict versions aT
αx < bα.

Remark: The solution set

X = {x : aT
αx ≤ bα, α ∈ A}

of a system of nonstrict inequalities is not

only convex, it is closed (i.e., contains limits

of all converging sequences {xi ∈ X}∞i=1 of

points from X).

We shall see in the mean time that

Vice versa, every closed and convex set

X ⊂ Rn is the solution set of an appropriate

countable system of nonstrict linear inequal-

ities:

X is closed and convex
⇓

X = {x : aT
i x ≤ bi, i = 1,2, ...}



Examples of convex sets, II: Unit balls of
norms

Definition: A real-valued function ‖x‖ on Rn

is called a norm, if it possesses the following
three properties:
♦ [positivity] ‖x‖ ≥ 0 for all x and ‖x‖ = 0 iff
x = 0;
♦ [homogeneity] ‖λx‖ = |λ|‖x‖ for all vectors
x and reals λ;
♦ [triangle inequality] ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for
all vectors x, y.
Proposition: Let ‖ · ‖ be a norm on Rn. The
unit ball of this norm – the set {x : ‖x‖ ≤ 1},
same as any other ‖ · ‖-ball {x : ‖x− a‖ ≤ r},
is convex.
Proof:

‖x− a‖ ≤ r, ‖y − a‖ ≤ r, λ ∈ [0,1]

⇒ λ‖x− a‖+ (1− λ)‖y − a‖︸ ︷︷ ︸
= ‖λ(x− a)‖+ ‖(1− λ)(y − a)‖
≥ ‖λ(x− a) + (1− λ)(y − a)‖
= ‖[λx + (1− λ)y]− a‖

≤ λr + (1− λ)r︸ ︷︷ ︸
r

⇒ ‖[λx + (1− λ)y]− a‖ ≤ r ∀λ ∈ [0,1].



Standard examples of norms on Rn: `p-norms

‖x‖p =





(
n∑

i=1
|xi|p

)1/p

, 1 ≤ p < ∞
max

i
|xi|, p = ∞

Note: • ‖x‖2 =
√∑

i
x2

i is the standard Eu-

clidean norm;

• ‖x‖1 =
∑
i
|xi|;

• ‖x‖∞ = max
i
|xi| (uniform norm).

Note: except for the cases p = 1 and p = ∞,

triangle inequality for ‖·‖p requires a nontriv-

ial proof!

Proposition [characterization of ‖ · ‖-balls] A

set U in Rn is the unit ball of a norm iff U is

(a) convex and symmetric w.r.t. 0: V = −V ,

(b) bounded and closed, and

(c) contains a neighbourhood of the origin.



Examples of convex sets, III: Ellipsoid

Definition: An ellipsoid in Rn is a set X given
by
♦ positive definite and symmetric n×n matrix
Q (that is, Q = QT and uTQu > 0 whenever
u 6= 0),
♦ center a ∈ Rn,
♦ radius r > 0
via the relation

X = {x : (x− a)TQ(x− a) ≤ r2}.

Proposition: An ellipsoid is convex.

Proof: Since Q is symmetric positive def-
inite, by Linear Algebra Q = (Q1/2)2 for
uniquely defined symmetric positive definite
matrix Q1/2. Setting ‖x‖Q = ‖Q1/2x‖2, we
clearly get a norm on Rn (since ‖ · ‖2 is a
norm and Q1/2 is nonsingular). We have

(x− a)TQ(x− a) = [(x− a)TQ1/2][Q1/2(x− a)]
= ‖Q1/2(x− a)‖22 = ‖x− a‖2Q,

so that X is a ‖ · ‖Q-ball and is therefore a
convex set.



Examples of convex sets, IV:
ε-neighbourhood of convex set

Proposition: Let M be a nonempty convex
set in Rn, ‖ · ‖ be a norm, and ε ≥ 0. Then
the set

X = {x : dist‖·‖(x, M) ≡ inf
y∈M

‖x− y‖ ≤ ε}

is convex.

Proof: x ∈ X if and only if for every ε′ > ε

there exists y ∈ M such that ‖x− y‖ ≤ ε′. We
now have

x, y ∈ X, λ ∈ [0,1]

⇒ ∀ε′ > ε∃u, v ∈ M : ‖x− u‖ ≤ ε′, ‖y − v‖ ≤ ε′

⇒ ∀ε′ > ε∃u, v ∈ M :
λ‖x− u‖+ (1− λ)‖y − v‖︸ ︷︷ ︸
≥‖[λx+(1−λ)y]−[λu+(1−λ)v]‖

≤ ε′ ∀λ ∈ [0,1]

⇒ ∀ε′ > ε ∀λ ∈ [0,1]∃w = λu + (1− λ)v ∈ M :
‖[λx + (1− λ)y]− w‖ ≤ ε′

⇒ λx + (1− λ)y ∈ X ∀λ ∈ [0,1]



Convex Combinations and Convex Hulls

Definition: A convex combination of m vec-

tors x1, ..., xm ∈ Rn is their linear combination
∑

i

λixi

with nonnegative coefficients and unit sum

of the coefficients:

λi ≥ 0 ∀i,
∑

i

λi = 1.



Proposition: A set X ⊂ Rn is convex iff it is

closed w.r.t. taking convex combinations of

its points:

X is convex
m

xi ∈ X, λi ≥ 0,
∑
i

λi = 1 ⇒ ∑
i

λixi ∈ X.

Proof, ⇒: Assume that X is convex, and

let us prove by induction in k that every k-

term convex combination of vectors from X

belongs to X. Base k = 1 is evident. Step

k ⇒ k + 1: let x1, ..., xk+1 ∈ X and λi ≥ 0,
k∑

i=1
λi = 1; we should prove that

k+1∑
i=1

λixi ∈ X.

Assume w.l.o.g. that 0 ≤ λk+1 < 1. Then

k+1∑
i=1

λixi = (1− λk+1)

( k∑

i=1

λi

1− λk+1
xi

︸ ︷︷ ︸
∈X

)

+λk+1xk+1 ∈ X.

Proof, ⇐: evident, since the definition of

convexity of X is nothing but the require-

ment for every 2-term convex combination

of points from X to belong to X.



Proposition: The intersection X =
⋂

α∈A
Xα of

an arbitrary family {Xα}α∈A of convex sub-

sets of Rn is convex.

Proof: evident.

Corollary: Let X ⊂ Rn be an arbitrary set.

Then among convex sets containing X (which

do exist, e.g. Rn) there exists the smallest

one, namely, the intersection of all convex

sets containing X.

Definition: The smallest convex set contain-

ing X is called the convex hull Conv(X) of X.



Proposition [convex hull via convex combina-

tions] For every subset X of Rn, its convex

hull Conv(X) is exactly the set X̂ of all con-

vex combinations of points from X.

Proof. 1) Every convex set which con-

tains X contains every convex combination of

points from X as well. Therefore Conv(X) ⊃
X̂.

2) It remains to prove that Conv(X) ⊂ X̂. To

this end, by definition of Conv(X), it suffices

to verify that the set X̂ contains X (evident)

and is convex. To see that X̂ is convex, let

x =
∑
i

νixi, y =
∑
i

µixi be two points from X̂

represented as convex combinations of points

from X, and let λ ∈ [0,1]. We have

λx + (1− λ)y =
∑

i

[λνi + (1− λ)µi]xi,

i.e., the left hand side vector is a convex com-

bination of vectors from X.



4-point set in R2 Convex hull of the set
(red triangle)



Examples of convex sets, V: simplex

Definition: A collection of m+1 points xi, i =

0, ..., m, in Rn is called affine independent, if

no nontrivial combination of the points with

zero sum of the coefficients is zero:

x0, ..., xm are affine independent
m

m∑
i=0

λixi = 0 &
∑
i

λi = 0 ⇒ λi = 0,0 ≤ i ≤ m

Motivation: Let X ⊂ Rn be nonempty.

I. For every nonempty set X ∈ Rn, the in-

tersection of all affine subspaces containing

X is an affine subspace. This clearly is the

smallest affine subspace containing X; it is

called the affine hull Aff(X) of X.

II. It is easily seen that Aff(X) is nothing but

the set of all affine combinations of points

from X, that is, linear combinations with unit

sum of coefficients:

Aff(X) = {x =
∑

i

λixi : xi ∈ X,
∑

i

λi = 1}.



III. m + 1 points x0, ..., xm are affinely inde-

pendent iff every point x ∈ Aff({x0, ..., xm}) of

their affine hull can be uniquely represented

as an affine combination of x0, ..., xm:
∑

i

λixi =
∑

i

µixi &
∑

i

λi =
∑

i

µi = 1 ⇒ λi ≡ µi

In this case, the coefficients λi in the repre-

sentation

x =
m∑

i=0

λixi [
∑
i

λi = 1]

of a point x ∈ M = Aff({x0, ..., xm}) as an

affine combination of x0, ..., xm are called the

barycentric coordinates of x ∈ M taken w.r.t.

affine basis x0, ..., xm of M .



Definition: m-dimensional simplex ∆ with

vertices x0, ..., xm is the convex hull of m + 1

affine independent points x0, ..., xm:

∆ = ∆(x0, ..., xm) = Conv({x0, ..., xm}).
Examples: A. 2-dimensional simplex is given

by 3 points not belonging to a line and is the

triangle with vertices at these points.

B. Let e1, ..., en be the standard basic or-

ths in Rn. These n points are affinely in-

dependent, and the corresponding (n − 1)-

dimensional simplex is the standard simplex

∆n = {x ∈ Rn : x ≥ 0,
∑
i

xi = 1}.
C. Adding to e1, ..., en the vector e0 = 0, we

get n+1 affine independent points. The cor-

responding n-dimensional simplex is

∆+
n = {x ∈ Rn : x ≥ 0,

∑
i

xi ≤ 1}.
Simplex with vertices x0, ..., xm is convex (as

a convex hull of a set), and every point from

the simplex is a convex combination of the

vertices with the coefficients uniquely defined

by the point.



Examples of convex sets, VI: cone

Definition: A nonempty subset K of Rn is

called conic, if it contains, along with every

point x, the entire ray emanating from the

origin and passing through x:

K is conic
m

K 6= ∅ & ∀(x ∈ K, t ≥ 0) : tx ∈ K.

A convex conic set is called a cone.

Examples: A. Nonnegative orthant

Rn
+ = {x ∈ Rn : x ≥ 0}

B. Lorentz cone

Ln = {x ∈ Rn : xn ≥
√

x2
1 + ... + x2

n−1}
C. Semidefinite cone Sn

+. This cone “lives”

in the space Sn of n× n symmetric matrices

and is comprised of all positive semidefinite

symmetric n× n matrices



D. The solution set {x : aT
αx ≤ 0∀α ∈ A}

of an arbitrary (finite or infinite) homoge-
neous system of nonstrict linear inequalities
is a closed cone. In particular, so is a poly-
hedral cone {x : Ax ≤ 0}.
Note: Every closed cone in Rn is the solution
set of a countable system of nonstrict linear
inequalities.

Proposition: A nonempty subset K of Rn is
a cone iff
♦ K is conic: x ∈ K, t ≥ 0 ⇒ tx ∈ K, and
♦ K is closed w.r.t. addition:

x, y ∈ K ⇒ x + y ∈ K.
Proof, ⇒: Let K be convex and x, y ∈ K,
Then 1

2(x + y) ∈ K by convexity, and since
K is conic, we also have x + y ∈ K. Thus, a
convex conic set is closed w.r.t. addition.
Proof, ⇐: Let K be conic and closed w.r.t.
addition. In this case, a convex combination
λx + (1 − λ)y of vectors x, y from K is the
sum of the vectors λx and (1− λ)y and thus
belongs to K, since K is closed w.r.t. addi-
tion. Thus, a conic set which is closed w.r.t.
addition is convex.



♣ Cones form an extremely important class

of convex sets with properties “parallel” to

those of general convex sets. For example,

♦ Intersection of an arbitrary family of cones

again is a cone. As a result, for every

nonempty set X, among the cones containing

X there exists the smallest cone Cone (X),

called the conic hull of X.

♦ A nonempty set is a cone iff it is closed

w.r.t. taking conic combinations of its ele-

ments (i.e., linear combinations with nonneg-

ative coefficients).

♦ The conic hull of a nonempty set X is

exactly the set of all conic combinations of

elements of X.



“Calculus” of Convex Sets

Proposition. The following operations pre-

serve convexity of sets:

1. Intersection: If Xα ⊂ Rn, α ∈ A, are

convex sets, so is
⋂

α∈A
Xα

2. Direct product: If X` ⊂ Rn` are convex

sets, ` = 1, ..., L, so is the set

X = X1 × ...×XL

≡ {x = (x1, ..., xL) : x` ∈ X`,1 ≤ ` ≤ L}
⊂ Rn1+...+nL

3. Taking weighted sums: Let X1, ..., XL

be nonempty convex subsets in Rn and

λ1, ..., λL be reals. Then the set

λ1X1 + ... + λLXL
≡ {x = λ1x1 + ... + λLx` : x` ∈ X`,1 ≤ ` ≤ L}
is convex.



4. Affine image: Let X ⊂ Rn be convex

and x 7→ A(x) = Ax+ b be an affine mapping

from Rn to Rk. Then the image of X under

the mapping – the set

A(X) = {y = Ax + b : x ∈ X}
is convex.

5. Inverse affine image: Let X ⊂ Rn be

convex and y 7→ A(y) = Ay + b be an affine

mapping from Rk to Rn. Then the inverse

image of X under the mapping – the set

A−1(X) = {y : Ay + b ∈ X}
is convex.



Application example: A point x ∈ Rn is

(a) “good”, if it satisfies a given system of

linear constraints Ax ≤ b,

(b) “excellent”, if it dominates a good point:

∃y: y is good and x ≥ y,

(c) “semi-excellent”, if it can be approxi-

mated, within accuracy 0.1 in the coordinate-

wise fashion, by excellent points:

∀(i, ε′ > 0.1)∃y : |yi − xi| ≤ ε′ & y is excellent

Question: Whether the set of semi-excellent

points is convex?

Answer: Yes. Indeed,

• The set Xg of good points is convex (as a

polyhedral set)

• ⇒ The set Xexc of excellent points is con-

vex (as the sum of convex set Xg and the

nonnegative orthant Rn
+, which is convex)

• ⇒ For every i, the set Xi
exc of i-th coor-

dinates of excellent points is convex (as the

projection of Xexc onto i-th axis; projection

is an affine mapping)



• ⇒ For every i, the set Y i on the axis which

is the 0.1-neighbourhood of Xi
exc, is convex

(as 0.1-neighbourhood of a convex set)

• ⇒ The set of semi-excellent points, which

is the direct product of the sets Y 1,..., Y n,

is convex (as direct product of convex sets).



Nice Topological Properties of Convex Sets

♣ Recall that the set X ⊂ Rn is called
♦ closed, if X contains limits of all converg-
ing sequences of its points:

xi ∈ X & xi → x, i →∞⇒ x ∈ X

♦ open, if it contains, along with every of its
points x, a ball of a positive radius centered
at x:

x ∈ X ⇒ ∃r > 0 : {y : ‖y − x‖2 ≤ r} ⊂ X.

E.g., the solution set of an arbitrary system
of nonstrict linear inequalities {x : aT

αx ≤ bα}
is closed; the solution set of finite system of
strict linear inequalities {x : Ax < b} is open.

Facts: A. X is closed iff Rn\X is open
B. The intersection of an arbitrary family of
closed sets and the union of a finite family of
closed sets are closed
B′. The union of an arbitrary family of open
sets and the intersection of a finite family of
open sets are open



♦ From B it follows that the intersection of

all closed sets containing a given set X is

closed; this intersection, called the closure

clX of X, is the smallest closed set contain-

ing X. clX is exactly the set of limits of all

converging sequences of points of X:

clX = {x : ∃xi ∈ X : x = lim
i→∞xi}.

♦ From B′ it follows that the union of all

open sets contained in a given set X is open;

this union, called the interior intX of X, is

the largest open set contained X. intX is

exactly the set of all interior points of X –

points x belonging to X along with balls of

positive radii centered at the points:

intX = {x : ∃r > 0 : {y : ‖y − x‖2 ≤ r} ⊂ X}.
♦ Let X ⊂ Rn. Then intX ⊂ X ⊂ clX.

The “difference” ∂X = clX\intX is called the

boundary of X; boundary always is closed (as

the intersection of the closed sets clX and

the complement of intX).



intX ⊂ X ⊂ clX (∗)
♣ In general, the discrepancy between intX

and clX can be pretty large.

E.g., let X ⊂ R1 be the set of irrational num-

bers in [0,1]. Then intX = ∅, clX = [0,1],

so that intX and clX differ dramatically.

♣ Fortunately, a convex set is perfectly well

approximated by its closure (and by interior,

if the latter is nonempty).

Proposition: Let X ⊂ Rn be a nonempty con-

vex set. Then

(i) Both intX and clX are convex

(ii) If intX is nonempty, then intX is dense

in clX. Moreover,

x ∈ intX, y ∈ clX ⇒
λx + (1− λ)y ∈ intX ∀λ ∈ (0,1]

(!)



• Claim (i): Let X be convex. Then both

intX and clX are convex

Proof. (i) is nearly evident. Indeed, to prove

that intX is convex, note that for every two

points x, y ∈ intX there exists a common

r > 0 such that the balls Bx, By of radius

r centered at x and y belong to X. Since X

is convex, for every λ ∈ [0,1] X contains the

set λBx + (1 − λ)By, which clearly is noth-

ing but the ball of the radius r centered at

λx+(1−λ)y. Thus, λx+(1−λ)y ∈ intX for

all λ ∈ [0,1].

Similarly, to prove that clX is convex, assume

that x, y ∈ clX, so that x = limi→∞ xi and

y = lim
i→∞ yi for appropriately chosen xi, yi ∈ X.

Then for λ ∈ [0,1] we have

λx + (1− λ)y = lim
i→∞ [λxi + (1− λ)yi]︸ ︷︷ ︸

∈X

,

so that λx + (1− λ)y ∈ clX for all λ ∈ [0,1].



• Claim (ii): Let X be convex and intX be

nonempty. Then intX is dense in clX; more-

over,

x ∈ intX, y ∈ clX ⇒
λx + (1− λ)y ∈ intX ∀λ ∈ (0,1]

(!)

Proof. It suffices to prove (!). Indeed, let

x̄ ∈ intX (the latter set is nonempty). Ev-

ery point x ∈ clX is the limit of the sequence

xi = 1
i x̄ +

(
1− 1

i

)
x. Given (!), all points xi

belong to intX, thus intX is dense in clX.



• Claim (ii): Let X be convex and intX be

nonempty. Then

x ∈ intX, y ∈ clX ⇒
λx + (1− λ)y ∈ intX ∀λ ∈ (0,1]

(!)

Proof of (!): Let x ∈ intX, y ∈ clX, λ ∈
(0,1]. Let us prove that λx+(1−λ)y ∈ intX.

Since x ∈ intX, there exists r > 0 such that

the ball B of radius r centered at x belongs

to X. Since y ∈ clX, there exists a sequence

yi ∈ X such that y = limi→∞ yi. Now let

Bi = λB + (1− λ)yi
= {z = [λx + (1− λ)yi]︸ ︷︷ ︸

zi

+λd : ‖d‖2 ≤ r}

≡ {z = zi + ∆ : ‖δ‖ ≤ r′ = λd}.
Since B ⊂ X, yi ∈ X and X is convex, the sets

Bi (which are balls of radius r′ > 0 centered

at zi) contain in X. Since zi → z = λx +

(1 − λ)y as i → ∞, all these balls, starting

with certain number, contain the ball B′ of

radius r′/2 centered at z. Thus, B′ ⊂ X, i.e.,

z ∈ intX.



♣ Let X be a convex set. It may happen that
intX = ∅ (e.g., X is a segment in 3D); in this
case, interior definitely does not approximate
X and clX. What to do?
The natural way to overcome this difficulty is
to pass to relative interior, which is nothing
but the interior of X taken w.r.t. the affine
hull Aff(X) of X rather than to Rn. This
affine hull, geometrically, is just certain Rm

with m ≤ n; replacing, if necessary, Rn with
this Rm, we arrive at the situation where intX
is nonempty.
Implementation of the outlined idea goes
through the following
Definition: [relative interior and relative bound-
ary] Let X be a nonempty convex set and M

be the affine hull of X. The relative interior
rint X is the set of all point x ∈ X such that
a ball in M of a positive radius, centered at
x, is contained in X:

rint X = {x : ∃r > 0 :
{y ∈ Aff(X), ‖y − x‖2 ≤ r} ⊂ X}.

The relative boundary of X is, by definition,
clX\rint X.



Note: An affine subspace M is given by a

list of linear equations and thus is closed; as

such, it contains the closure of every sub-

set Y ⊂ M ; this closure is nothing but the

closure of Y which we would get when re-

placing the original “universe” Rn with the

affine subspace M (which, geometrically, is

nothing but Rm with certain m ≤ n).

The essence of the matter is in the following

fact:

Proposition: Let X ⊂ Rn be a nonempty con-

vex set. Then rint X 6= ∅.



♣ Thus, replacing, if necessary, the original

“universe” Rn with a smaller geometrically

similar universe, we can reduce investigating

an arbitrary nonempty convex set X to the

case where this set has a nonempty interior

(which is nothing but the relative interior of

X). In particular, our results for the “full-

dimensional” case imply that

For a nonempty convex set X, both rint X

and clX are convex sets such that

∅ 6= rint X ⊂ X ⊂ clX ⊂ Aff(X)

and rint X is dense in clX. Moreover, when-

ever x ∈ rint X, y ∈ clX and λ ∈ (0,1], one

has

λx + (1− λ)y ∈ rint X.



∅ 6= X is convex ?? ⇒ ?? rint X 6= ∅

Proof. 10. Shifting X, we may assume

w.l.o.g. that 0 ∈ X, so that Aff(X) is merely

a linear subspace L in Rn.

20. It may happen that L = {0}. Here

X = {0} = L, whence the interior of X taken

w.r.t. L is X and thus is nonempty.



30. Now let L 6= {0}. Since 0 ∈ X, L =

Aff(X) (which always is the set of all affine

combinations of vectors from X) is the same

as the set of all linear combinations of vectors

from X, i.e., is the linear span of X. Since

dimL > 0, we can choose in L a linear basis

e1, ..., em with e1, ..., em ∈ X. Setting e0 = 0 ∈
X, we get m + 1 affine independent vectors

e0, ..., em in X. Since X is convex, the simplex

∆ with vertices e0 = 0, e1, ..., em is contained

in X. Thus,

X ⊃ ∆ = {x =
m∑

i=0
λiei : λ ≥ 0,

m∑
i=0

λi = 1}

⊃ {x =
m∑

i=1
λiei : λ1, ..., λm > 0,

m∑
i=1

λi < 1}.

We see that X contains all vectors from L

for which the coordinates w.r.t. the basis

{e1, ..., em} are positive and with sum < 1.

This set is open in L. Thus, the interior of

X w.r.t. L is nonempty.



♣ Let X be convex and x̄ ∈ rint X. As we

know,

λ ∈ [0,1], y ∈ clX ⇒ yλ = λx̄ + (1− λ)y ∈ X.

It follows that in order to pass from X to its

closure clX, it suffices to pass to “radial clo-

sure”:

For every direction 0 6= d ∈ Aff(X) − x̄, let

Td = {t ≥ 0 : x̄ + td ∈ X}.
Note: Td is a convex subset of R+ which con-

tains all small enough positive t’s.

♦ If Td is unbounded or is a bounded seg-

ment: Td = {t : 0 ≤ t ≤ t(d) < ∞}, the inter-

section of clX with the ray {x̄ + td : t ≥ 0}
is exactly the same as the intersection of X

with the same ray.

♦ If Td is a bounded half-segment: Td = {t :

0 ≤ t < t(d) < ∞}, the intersection of clX

with the ray {x̄+ td : t ≥ 0} is larger than the

intersection of X with the same ray by ex-

actly one point, namely, x̄+ t(d)d. Adding to

X these “missing points” for all d, we arrive

at clX.



Main Theorems on Convex Sets, I:

Caratheodory Theorem

Definition: Let M be affine subspace in Rn,

so that M = a + L for a linear subspace L.

The linear dimension of L is called the affine

dimension dimM of M .

Examples: The affine dimension of a single-

ton is 0. The affine dimension of Rn is n.

The affine dimension of an affine subspace

M = {x : Ax = b} is n−Rank(A).

For a nonempty set X ⊂ Rn, the affine di-

mension dimX of X is exactly the affine di-

mension of the affine hull Aff(X) of X.

Theorem [Caratheodory] Let ∅ 6= X ⊂ Rn.

Then every point x ∈ Conv(X) is a convex

combination of at most dim(X) + 1 points

of X.



Theorem [Caratheodory] Let ∅ 6= X ⊂ Rn.

Then every point x ∈ Conv(X) is a convex

combination of at most dim(X) + 1 points

of X.

Proof. 10. We should prove that if x is a

convex combination of finitely many points

x1, ..., xk of X, then x is a convex combina-

tion of at most m +1 of these points, where

m = dim(X). Replacing, if necessary, Rn

with Aff(X), it suffices to consider the case

of m = n.

20. Consider a representation of x as a con-

vex combination of x1, ..., xk with minimum

possible number of nonzero coefficients; it

suffices to prove that this number is ≤ n+1.

Let, on the contrary, the “minimum repre-

sentation” of x

x =
p∑

i=1

λixi [λi ≥ 0,
∑
i

λi = 1]

has p > nm + 1 terms.



30. Consider the homogeneous system of

linear equations in p variables δi




(a)
p∑

i=1
δixi = 0 [n linear equations]

(b)
∑
i

δi = 0 [single linear equation]

Since p > n + 1, this system has a nontrivial

solution δ. Observe that for every t ≥ 0 one

has

x =
p∑

i=1

[λi + tδi]︸ ︷︷ ︸
λi(t)

xi &
∑

i

λi(t) = 1.



δ : δ 6= 0 &
∑
i

δi = 0

∀t ≥ 0 : x =
p∑

i=1
[λi + tδi]︸ ︷︷ ︸

λi(t)

xi &
∑
i

λi(t) = 1.

♦ When t = 0, all coefficients λi(t) are non-
negative
♦ When t → ∞, some of the coefficients
λi(t) go to −∞ (indeed, otherwise we would
have δi ≥ 0 for all i, which is impossible since∑
i

δi = 0 and not all δi are zeros).

♦ It follows that the quantity

t∗ = max {t : t ≥ 0 & λi(t) ≥ 0∀i}
is well defined; when t = t∗, all coefficients
in the representation

x =
p∑

i=1

λi(t∗)xi

are nonnegative, sum of them equals to 1,
and at least one of the coefficients λi(t∗)
vanishes. This contradicts the assumption
of minimality of the original representation
of x as a convex combination of xi.



Theorem [Caratheodory, Conic Version.] Let

∅ 6= X ⊂ Rn. Then every vector x ∈ Cone (X)

is a conic combination of at most n vectors

from X.

Remark: The bounds given by Caratheodory

Theorems (usual and conic version) are sharp:

♦ for a simplex ∆ with m+1 vertices v0, ..., vm

one has dim∆ = m, and it takes all the ver-

tices to represent the barycenter 1
m+1

m∑
i=0

vi

as a convex combination of the vertices;

♦ The conic hull of n standard basic orths

in Rn is exactly the nonnegative orthant Rn
+,

and it takes all these vectors to get, as their

conic combination, the n-dimensional vector

of ones.



Problem: Supermarkets sell 99 different herbal

teas; every one of them is certain blend of

26 herbs A,...,Z. In spite of such a variety of

marketed blends, John is not satisfied with

any one of them; the only herbal tea he likes

is their mixture, in the proportion

1 : 2 : 3 : ... : 98 : 99

Once it occurred to John that in order to pre-

pare his favorite tea, there is no necessity to

buy all 99 marketed blends; a smaller number

of them will do. With some arithmetics, John

found a combination of 66 marketed blends

which still allows to prepare his tea. Do you

believe John’s result can be improved?



Theorem [Radon] Let x1, ..., xm be m ≥ n+2
vectors in Rn. One can split these vec-
tors into two nonempty and non-overlapping
groups A, B such that

Conv(A) ∩Conv(B) 6= ∅.
Proof. Consider the homogeneous system

of linear equations in m variables δi:



m∑
i=1

δixi = 0 [n linear equations]

m∑
i=1

δi = 0 [single linear equation]

Since m ≥ n + 2, the system has a nontrivial
solution δ. Setting I = {i : δi > 0}, J =
{i : δi ≤ 0}, we split the index set {1, ..., m}
into two nonempty (due to δ 6= 0,

∑
i

uδi = 0)

groups such that
∑
i∈I

δixi =
∑

j∈J
[−δj]xj

γ =
∑
i∈I

δi =
∑

j∈J
−δj > 0

whence
∑

i∈I

δi

γ
xi

︸ ︷︷ ︸
∈Conv({xi:i∈A})

=
∑

j∈J

−δj

γ
xj

︸ ︷︷ ︸
∈Conv({xj:j∈B})

.



Theorem [Helley] Let A1, ..., AM be convex

sets in Rn. Assume that every n+1 sets from

the family have a point in common. Then all

sets also have point in common.

Proof: induction in M . Base M ≤ n + 1 is

trivially true.

Step: Assume that for certain M ≥ n + 1

our statement hods true for every M-member

family of convex sets, and let us prove that it

holds true for M+1-member family of convex

sets A1, ..., AM+1.

♦ By inductive hypotheses, every one of the

M + 1 sets

B` = A1 ∩A2 ∩ ... ∩A`−1 ∩A`+1 ∩ ... ∩AM+1

is nonempty. Let us choose x` ∈ B`,

` = 1, ..., M + 1. ♦ By Radon’s Theorem,

the collection x1, ..., xM+1 can be split in

two sub-collections with intersecting convex

hulls. W.l.o.g., let the split be {x1, ..., xJ−1}∪
{xJ , ..., xM+1}, and let

z ∈ Conv({x1, ..., xJ−1})
⋂

Conv({xJ , ..., xM+1}).



Situation: xj belongs to all sets A` except,

perhaps, for Aj and

z ∈ Conv({x1, ..., xJ−1})
⋂

Conv({xJ , ..., xM+1}).

Claim: z ∈ A` for all ` ≤ M + 1 (Q.E.D.)

Indeed, for ` ≤ J−1, the points xJ , xJ+1, ..., xM+1

belong to the convex set A`, whence

z ∈ Conv({xJ , ..., xM+1}) ⊂ A`.

For ` ≥ J, the points x1, ..., xJ−1 belong to

the convex set A`, whence

z ∈ Conv({x1, ..., xJ−1}) ⊂ A`.



Refinement: Assume that A1, ..., AM are con-

vex sets in Rn and that

♦ the union A1 ∪ A2 ∪ ... ∪ AM of the sets

belongs to an affine subspace P of affine di-

mension m

♦ every m + 1 sets from the family have a

point in common

Then all the sets have a point in common.

Proof. We can think of Aj as of sets in P ,

or, which is the same, as sets in Rm and apply

the Helley Theorem!



Exercise: We are given a function f(x) on a
7,000,000-point set X ⊂ R. At every 7-point
subset of X, this function can be approxi-
mated, within accuracy 0.001 at every point,
by appropriate polynomial of degree 5. To
approximate the function on the entire X, we
want to use a spline of degree 5 (a piecewise
polynomial function with pieces of degree 5).
How many pieces do we need to get accuracy
0.001 at every point?
Answer: Just one. Indeed, let Ax, x ∈ X, be
the set of coefficients of all polynomials of
degree 5 which reproduce f(x) within accu-
racy 0.001:

Ax =
{
p = (p0, ..., p5) ∈ R6 :

|f(x)−
5∑

i=0
pix

i| ≤ 0.001
}
.

The set Ax is polyhedral and therefore con-
vex, and we know that every 6 + 1 = 7 sets
from the family {Ax}x∈X have a point in com-
mon. By Helley Theorem, all sets Ax, x ∈ X,
have a point in common, that is, there exists
a single polynomial of degree 5 which ap-
proximates f within accuracy 0.001 at every
point of X.



Exercise: We should design a factory which,

mathematically, is described by the following

Linear Programming model:

Ax ≥ d [d1, ..., d1000: demands]
Bx ≤ f [f1, ..., f10: facility capacities]
Cx ≤ c [other constraints]

(F )

The data A, B, C, c are given in advance. We

should create in advance facility capacities fi,

i = 1, ...,10, in such a way that the factory

will be capable to satisfy all demand scenar-

ios d from a given finite set D, that is, (F )

should be feasible for every d ∈ D. Creating

capacity fi of i-th facility costs us aifi.

It is known that in order to be able to sat-

isfy every single demand from D, it suffices

to invest $1 in creating the facilities.

How large should be investment in facilities

in the cases when D contains

♦ just one scenario?

♦ 3 scenarios?

♦ 10 scenarios?

♦ 2004 scenarios?



Answer: D = {d1} ⇒ $1 is enough

D = {d1, d2, d3} ⇒ $3 is enough

D = {d1, ..., d10} ⇒ $10 is enough

D = {d1, ..., d2004} ⇒ $11 is enough!

Indeed, for d ∈ D let Fd be the set of all

f ∈ R10, f ≥ 0 which cost at most $11 and

result in solvable system

Ax ≥ d
Bx ≤ f
Cx ≤ c

(F [d])

in variables x. The set Fd is convex (why?),

and every 11 sets of this type have a common

point. Indeed, given 11 scenarios d1, ..., d11

from D, we can “materialize” di with appro-

priate f i ≥ 0 at the cost of $1; therefore we

can “materialize” every one of the 11 scenar-

ios d1, ..., d11 by a single vector of capacities

f1+...+f11 at the cost of $11, and therefore

this vector belongs to Fd1, ..., Fd11.

Since every 11 of 2004 convex sets Fd ⊂ R10,

d ∈ D, have a point in common, all these sets

have a point f in common; for this f , every

one of the systems (F [d]), d ∈ D, is solvable.



Exercise: Consider an optimization program

c∗ =
{
cTx : gi(x) ≤ 0, i = 1, ...,2004

}

with 11 variables x1, ..., x11. Assume that the

constraints are convex, that is, every one of

the sets

Xi = {x : gi(x) ≤ 0}, i = 1, ...,2004

is convex. Assume also that the problem is

solvable with optimal value 0.

Clearly, when dropping one or more con-

straints, the optimal value can only decrease

or remain the same.

♦ Is it possible to find a constraint such that

dropping it, we preserve the optimal value?

Two constraints which can be dropped si-

multaneously with no effect on the optimal

value? Three of them?



Answer: You can drop as many as 2004 −
11 = 1993 appropriately chosen constraints

without varying the optimal value!

Assume, on the contrary, that every 11-

constraint relaxation of the original problem

has negative optimal value. Since there are

finitely many such relaxations, there exists

ε < 0 such that every problem of the form

min
x
{cTx : gi1(x) ≤ 0, ..., gi11

(x) ≤ 0}
has a feasible solution with the value of the

objective < −ε. Since this problem has a fea-

sible solution with the value of the objective

equal to 0 (namely, the optimal solution of

the original problem) and its feasible set is

convex, the problem has a feasible solution x

with cTx = −ε. In other words, every 11 of

the 2004 sets

Yi = {x : cTx = −ε, gi(x) ≤ 0}, i = 1, ...,2004

have a point in common.



Every 11 of the 2004 sets

Yi = {x : cTx = −ε, gi(x) ≤ 0}, i = 1, ...,2004

have a point in common!

The sets Yi are convex (as intersections of

convex sets Xi and an affine subspace). If

c 6= 0, then these sets belong to affine sub-

space of affine dimension 10, and since ev-

ery 11 of them intersect, all 2004 intersect;

a point x from their intersection is a feasible

solution of the original problem with cTx < 0,

which is impossible.

When c = 0, the claim is evident: we can

drop all 2004 constraints without varying the

optimal value!



Helley Theorem II: Let Aα, α ∈ A, be a fam-

ily of convex sets in Rn such that every n+1

sets from the family have a point in common.

Assume, in addition, that

♦ the sets Aα are closed

♦ one can find finitely many sets Aα1, ..., AαM

with a bounded intersection.

Then all sets Aα, α ∈ A, have a point in com-

mon.

Proof. By the Helley Theorem, every finite

collection of the sets Aα has a point in com-

mon, and it remains to apply the following

standard fact from Analysis:

Let Bα be a family of closed sets in Rn such

that

♦ every finite collection of the sets has a

nonempty intersection;

♦ in the family, there exists finite collection

with bounded intersection.

Then all sets from the family have a point in

common.



Proof of the Standard Fact is based upon

the following fundamental property of Rn:

Every closed and bounded subset of

Rn is a compact set.

Recall two equivalent definitions of a com-

pact set:

A subset X in a metric space M is called

compact, if from every sequence of points of

X one can extract a sub-sequence converg-

ing to a point from X

A subset X in a metric space M is called

compact, if from every open covering of X

(i.e., from every family of open sets such that

every point of X belongs to at least one of

them) one can extract a finite sub-covering.



Now let Bα be a family of closed sets in Rn

such that every finite sub-family of the sets
has a nonempty intersection and at least one
of these intersection, let it be B, is bounded.
Let us prove that all sets Bα have a point in
common.
• Assume that it is not the case. Then for
every point x ∈ B there exists a set Bα which
does not contain x. Since Bα is closed, it
does not intersect an appropriate open ball
Vx centered at x. Note that the system {Vx :
x ∈ B} forms an open covering of B.
• By its origin, B is closed (as intersection
of closed sets) and bounded and thus is a
compact set. Therefore one can find a finite
collection Vx1, ..., VxM which covers B. For
every i ≤ M , there exists a set Bαi in the
family which does not intersect Vxi; therefore
M⋂

i=1
Bαi does not intersect B. Since B itself is

the intersection of finitely many sets Bα, we
see that the intersection of finitely many sets
Bα (those participating in the description of
B and the sets Bα1,...,BαM) is empty, which
is a contradiction.



Theory of Systems of Linear Inequalities, I

Homogeneous Farkas Lemma

♣ Question: When a vector a ∈ Rn is a conic

combination of given vectors a1, ..., am ?

Answer: [Homogeneous Farkas Lemma] A

vector a ∈ Rn can be represented as a conic

combination
m∑

i=1
λiai, λi ≥ 0, of given vectors

a1, ..., am ∈ Rn iff the homogeneous linear in-

equality

aTx ≥ 0 (I)

is a consequence of the system of homoge-

neous linear inequalities

aT
i x ≥ 0, i = 1, ..., m (S)

i.e., iff the following implication is true:

aT
i x ≥ 0, i = 1, ..., m ⇒ aTx ≥ 0. (∗)

Proof, ⇒: If a =
m∑

i=1
λiai with λi ≥ 0, then,

of course, aTx =
∑
i

λia
T
i x for all x, and (∗)

clearly is true.



aT
i x ≥ 0, i = 1, ..., m ⇒ aTx ≥ 0. (∗)

Proof, ⇐: Assume that (∗) is true, and let

us prove that a is a conic combination of

a1, ..., am. The case of a = 0 is trivial, thus

assume that a 6= 0.

10. Let

Ai =
{
x : aTx = −1, aT

i x ≥ 0
}

, i = 1, ..., m.

Note that Ai are convex sets, and their

intersection is empty by (∗). Consider a

minimal, in number of sets, sub-family of

the family A1, ..., Am with empty intersection;

w.l.o.g. we may assume that this sub-family

is A1, ..., Ak. Thus, the k sets A1, ..., Ak do

not intersect, while every k−1 sets from this

family do intersect.

20. Claims: A: Vector a is a linear combina-

tion of vectors a1, ..., ak

B: Vectors a1, ..., ak are linearly independent



Situation: The sets Ai = {x : aTx = −1, aT
i x ≥

0}, i = 1, ..., k, are such that the k sets

A1, ..., Ak do not intersect, while every k − 1

sets from this family do intersect.

Claim A: Vector a is a linear combination of

vectors a1, ..., ak

Proof of A: Assuming that a 6∈ Lin({a1, ..., ak}),
there exists a vector h with aTh 6= 0 and

aT
i h = 0, i = 1, ..., k (you can take as h the

projection of a onto the orthogonal comple-

ment of a1, ..., ak). Setting x = −(aTh)−1h,

we get aTx = −1 and aT
i x = 0, i = 1, ..., k, so

that x ∈ Ai, i = 1, ..., k, which is a contradic-

tion.



Situation: The sets Ai = {x : aTx = −1, aT
i x ≥

0}, i = 1, ..., k, are such that the k sets

A1, ..., Ak do not intersect, while every k − 1

sets from this family do intersect.

Claim B: Vectors a1, ..., ak are linearly inde-

pendent



Proof of B: The case of k = 1 is evident.
Indeed, in this case we should prove that
a1 6= 0; if a1 = 0 and k = 1, then by Claim A
also a = 0, which is not the case. Thus, let
us prove Claim B in the case of k > 1.
Assume, on the contrary, that

E = Lin({a1, ..., ak})
is of dimension r < k, and let

Bi = {x ∈ E : aTx = −1, aT
i x ≥ 0}.

♦ By Claim A, 0 6= a ∈ E, so that Bi be-
long to (r − 1)-dimensional affine subspace
M = {x ∈ E : aTx = −1}. We claim that
every r of the sets B1, ..., Bk have a point
in common. Indeed, to prove, e.g., that
B1, ..., Br have a point in common, note that
r < k and therefore the sets A1, ..., Ar have a
point in common; projecting this point onto
E, we clearly get a point from B1 ∩ ... ∩Br.
♦ B1, ..., Bk are convex subsets in (m − 1)-
dimensional affine subspace, and every m

of them have a common point. By Helley
Theorem, all k sets B1, ..., Bk have a com-
mon point, whence A1, ..., Ak have a common
point, which is a contradiction.



30. By Claim A,

a =
k∑

i=1

λiai

with certain coefficients λi. All we need is to

prove that λi ≥ 0. To this end assume that

certain λi, say, λ1, is < 0. By claim B, the

vectors a1, ..., ak are linearly independent, and

therefore there exists a vector x such that

aT
1x = 1, aT

i x = 0, i = 2, ..., k.

Since λ1 < 0, it follows that

aTx = λ1aT
1x < 0,

and the vector

x̄ =
x

|aTx|
clearly satisfies

aT x̄ = −1, aT
1 x̄ > 0, aT

i x̄ = 0, i = 2, ..., k,

that is, x̄ ∈ A1∩ ...∩Ak, which is a contradic-

tion.



Theory of Systems of Linear Inequalities, II

Theorem on Alternative

♣ A general (finite!) system of linear inequal-

ities with unknowns x ∈ Rn can be written

down as

aT
i x > bi, i = 1, ..., ms

aT
i x ≥ bi, i = ms + 1, ..., m

(S)

Question: How to certify that (S) is solvable?

Answer: A solution is a certificate of solvabil-

ity!

Question: How to certify that S is not solv-

able?

Answer: ???



aT
i x > bi, i = 1, ..., ms

aT
i x ≥ bi, i = ms + 1, ..., m

(S)

Question: How to certify that S is not solv-

able?

Conceptual sufficient insolvability condition:

If we can lead the assumption that x solves

(S) to a contradiction, then (S) has no solu-

tions.

“Contradiction by linear aggregation”: Let us

associate with inequalities of (S) nonnegative

weights λi and sum up the inequalities with

these weights. The resulting inequality




m∑

i=1

λiai




T

x





>
∑
i

λibi,
ms∑
i=1

λs > 0

≥ ∑
i

λibi,
ms∑
i=1

λs = 0
(C)

by its origin is a consequence of (S), that is,

it is satisfied at every solution to (S).

Consequently, if there exist λ ≥ 0 such that

(C) has no solutions at all, then (S) has no

solutions!



Question: When a linear inequality

dTx

{
>
≥ e

has no solutions at all?

Answer: This is the case if and only if d = 0

and

— either the sign is ”>”, and e ≥ 0,

— or the sign is ”≥”, and e > 0.



Conclusion: Consider a system of linear in-

equalities

aT
i x > bi, i = 1, ..., ms

aT
i x ≥ bi, i = ms + 1, ..., m

(S)

in variables x, and let us associate with it two

systems of linear inequalities in variables λ:

TI :





λ ≥ 0
m∑

i=1
λiai = 0

ms∑
i=1

λi > 0

m∑
i=1

λibi ≥ 0

TII :





λ ≥ 0
m∑

i=1
λiai = 0

ms∑
i=1

λi = 0

m∑
i=1

λibi > 0

If one of the systems TI, TII is solvable, then

(S) is unsolvable.

Note: If TII is solvable, then already the sys-

tem

aT
i x ≥ bi, i = ms + 1, ..., m

is unsolvable!



General Theorem on Alternative: A system

of linear inequalities

aT
i x > bi, i = 1, ..., ms

aT
i x ≥ bi, i = ms + 1, ..., m

(S)

is unsolvable iff one of the systems

TI :





λ ≥ 0
m∑

i=1
λiai = 0

ms∑
i=1

λi > 0

m∑
i=1

λibi ≥ 0

TII :





λ ≥ 0
m∑

i=1
λiai = 0

ms∑
i=1

λi = 0

m∑
i=1

λibi > 0

is solvable.

Note: The subsystem

aT
i x ≥ bi, i = ms + 1, ..., m

of (S) is unsolvable iff TII is solvable!



Proof. We already know that solvability of

one of the systems TI, TII is a sufficient con-

dition for unsolvability of (S). All we need to

prove is that if (S) is unsolvable, then one of

the systems TI, TII is solvable.

Assume that the system

aT
i x > bi, i = 1, ..., ms

aT
i x ≥ bi, i = ms + 1, ..., m

(S)

in variables x has no solutions. Then every

solution x, τ, ε to the homogeneous system of

inequalities

τ −ε ≥ 0
aT

i x −biτ −ε ≥ 0, i = 1, ..., ms

aT
i x −biτ ≥ 0, i = ms + 1, ..., m

has ε ≤ 0.

Indeed, in a solution with ε > 0 one would

also have τ > 0, and the vector τ−1x would

solve (S).



Situation: Every solution to the system of
homogeneous inequalities

τ −ε ≥ 0
aT

i x −biτ −ε ≥ 0, i = 1, ..., ms

aT
i x −biτ ≥ 0, i = ms + 1, ..., m

(U)

has ε ≤ 0, i.e., the homogeneous inequality

−ε ≥ 0 (I)

is a consequence of system (U) of homoge-
neous inequalities. By Homogeneous Farkas
Lemma, the vector of coefficients in the left
hand side of (I) is a conic combination of the
vectors of coefficients in the left hand sides
of (U):

∃λ ≥ 0, ν ≥ 0 :
m∑

i=1
λiai = 0

−
m∑

i=1
λibi + ν = 0

−
ms∑
i=1

λi − ν = −1

Assuming that λ1 = ... = λms = 0, we get
ν = 1, and therefore λ solves TII. In the case

of
ms∑
i=1

λi > 0, λ clearly solves TI.



Corollaries of GTA

♣ Principle A: A finite system of linear in-

equalities has no solutions iff one can lead

it to a contradiction by linear aggregation,

i.e., an appropriate weighted sum of the in-

equalities with “legitimate” weights is either

a contradictory inequality

0Tx > a [a ≥ 0]

or a contradictory inequality

0Tx ≥ a [a > 0]



♣ Principle B: [Inhomogeneous Farkas Lemma]

A linear inequality

aTx ≤ b

is a consequence of solvable system of linear

inequalities

aT
i x ≤ bi, i = 1, ..., m

iff the target inequality can be obtained from

the inequalities of the system and the identi-

cally true inequality

0Tx ≤ 1

by linear aggregation, that is, iff there exist

nonnegative λ0, λ1, ..., λm such that

a =
m∑

i=1
λiai

b = λ0 +
m∑

i=1
λibi


⇔

a =
m∑

i=1
λiai

b ≥
m∑

i=1
λibi






Linear Programming Duality Theorem

♣ The origin of the LP dual of a Linear Pro-
gramming program

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

is the desire to get a systematic way to
bound from below the optimal value in (P ).
The conceptually simplest bounding scheme
is linear aggregation of the constraints:
Observation: For every vector λ of nonnega-
tive weights, the constraint

[ATλ]Tx ≡ λTAx ≥ λT b

is a consequence of the constraints of (P )
and as such is satisfied at every feasible so-
lution of (P ).
Corollary: For every vector λ ≥ 0 such that
ATλ = c, the quantity λT b is a lower bound
on Opt(P ).
♣ The problem dual to (P ) is nothing but
the problem

Opt(D) = max
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(D)

of maximizing the lower bound on Opt(P )
given by Corollary.



♣ The origin of (D) implies the following

Weak Duality Theorem: The value of the pri-

mal objective at every feasible solution of the

primal problem

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

is ≥ the value of the dual objective at every

feasible solution to the dual problem

Opt(D) = max
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(D)

that is,

x is feasible for (P )
λ is feasible for (D)

}
⇒ cTx ≥ bTλ

In particular,

Opt(P ) ≥ Opt(D).



♣ LP Duality Theorem: Consider an LP pro-

gram along with its dual:

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥ 0

}
(D)

Then

♦ Duality is symmetric: the problem dual to

dual is (equivalent to) the primal

♦ The value of the dual objective at every

dual feasible solution is ≤ the value of the

primal objective at every primal feasible so-

lution

♦ The following 5 properties are equivalent

to each other:
(i) (P ) is feasible and bounded (below)
(ii) (D) is feasible and bounded (above)
(iii) (P ) is solvable
(iv) (D) is solvable
(v) both (P ) and (D) are feasible

and whenever they take place, one has Opt(P ) =

Opt(D).



Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥ 0

}
(D)

♦ Duality is symmetric

Proof: Rewriting (D) in the form of (P ), we

arrive at the problem

min
λ




−bTλ :




AT

−AT

I


 λ ≥




c
−c
0








,

with the dual being

max
u,v,w

{
cTu− cTv + 0Tw :

u ≥ 0, v ≥ 0, w ≥ 0,
Au−Av + w = −b

}

m
max

x=v−u,w

{
−cTx : w ≥ 0, Ax = b + w

}

m
min

x

{
cTx : Ax ≥ b

}



♦ The value of the dual objective at every

dual feasible solution is ≤ the value of the

primal objective at every primal feasible so-

lution

This is Weak Duality



♦ The following 5 properties are equivalent

to each other:
(P ) is feasible and bounded below (i)

⇓
(D) is solvable (iv)

Indeed, by origin of Opt(P ), the inequality

cTx ≥ Opt(P )

is a consequence of the (solvable!) system

of inequalities

Ax ≥ b.

By Principle B, the inequality is a linear con-

sequence of the system:

∃λ ≥ 0 : ATλ = c & bTλ ≥ Opt(P ).

Thus, the dual problem has a feasible so-

lution with the value of the dual objective

≥ Opt(P ). By Weak Duality, this solution is

optimal, and Opt(D) = Opt(P ).



♦ The following 5 properties are equivalent

to each other:
(D) is solvable (iv)

⇓
(D) is feasible and bounded above (ii)

Evident



♦ The following 5 properties are equivalent

to each other:
(D) is feasible and bounded above (ii)

⇓
(P ) is solvable (iii)

Implied by already proved relation
(P ) is feasible and bounded below (i)

⇓
(D) is solvable (iv)

in view of primal-dual symmetry



♦ The following 5 properties are equivalent

to each other:
(P ) is solvable (iii)

⇓
(P ) is feasible and bounded below (i)

Evident



We proved that

(i) ⇔ (ii) ⇔ (iii) ⇔ (iv)

and that when these 4 equivalent properties

take place, one has

Opt(P ) = Opt(D)

It remains to prove that properties (i) – (iv)

are equivalent to

both (P ) and (D) are feasible (v)

♦ In the case of (v), (P ) is feasible and below

bounded (Weak Duality), so that (v)⇒(i)

♦ in the case of (i)≡(ii), both (P ) and (D)

are feasible, so that (i)⇒(v)



Optimality Conditions in LP

Theorem: Consider a primal-dual pair of fea-

sible LP programs

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥ 0

}
(D)

and let x, λ be feasible solutions to the re-

spective programs. These solutions are opti-

mal for the respective problems

♦ iff cTx− bTλ = 0 [“zero duality gap”]

as well as

♦ iff [Ax − b]i · λi = 0 for all i [“complemen-

tary slackness”]

Proof: Under Theorem’s premise, Opt(P ) =

Opt(D), so that

cTx− bTλ = cTx−Opt(P )︸ ︷︷ ︸
≥0

+Opt(D)− bTλ︸ ︷︷ ︸
≥0

Thus, duality gap cTx−bTλ is always nonneg-

ative and is zero iff x, λ are optimal for the

respective problems.



The complementary slackness condition is

given by the identity

cTx− bTλ = (ATλ)Tx− bTλ = [Ax− b]Tλ

Since both [Ax−b] and λ are nonnegative, du-

ality gap is zero iff the complementary slack-

ness holds true.



Separation Theorem

♣ Every linear form f(x) on Rn is repre-

sentable via inner product:

f(x) = fTx

for appropriate vector f ∈ Rn uniquely defined

by the form. Nontrivial (not identically zero)

forms correspond to nonzero vectors f .

♣ A level set

M =
{
x : fTx = a

}
(∗)

of a nontrivial linear form on Rn is affine sub-

space of affine dimension n − 1; vice versa,

every affine subspace M of affine dimension

n − 1 in Rn can be represented by (∗) with

appropriately chosen f 6= 0 and a; f and a

are defined by M up to multiplication by a

common nonzero factor.

(n−1)-dimensional affine subspaces in Rn are

called hyperplanes.



M =
{
x : fTx = a

}
(∗)

♣ Level set (∗) of nontrivial linear form splits

Rn into two parts:

M+ = {x : fTx ≥ a}
M− = {x : fTx ≤ a}

called closed half-spaces given by (f, a); the

hyperplane M is the common boundary of

these half-spaces. The interiors M++ of M+

and M−− of M− are given by

M++ = {x : fTx > a}
M−− = {x : fTx < a}

and are called open half-spaces given by

(f, a). We have

Rn = M−
⋃

M+ [M−
⋂

M+ = M ]

and

Rn = M−−
⋃

M
⋃

M++



♣ Definition. Let T, S be two nonempty sets

in Rn.

(i) We say that a hyperplane

M = {x : fTx = a} (∗)
separates S and T , if

♦ S ⊂ M−, T ⊂ M+ (“S does not go above

M , and T does not go below M”)

and

♦ S ∪ T 6⊂ M .

(ii) We say that a nontrivial linear form fTx

separates S and T if, for properly chosen a,

the hyperplane (∗) separates S and T .



Examples: The linear form x1 on R2

1) separates the sets

S = {x ∈ R2 : x1 ≤ 0, x2 ≤ 0},
T = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0} :

T

S

{x1 = 0}



2) separates the sets

S = {x ∈ R2 : x1 ≤ 0, x2 ≤ 0},
T = {x ∈ R2 : x1 + x2 ≥ 0, x2 ≤ 0} :

TS

{x1 = 0}



3) does not separate the sets

S = {x ∈ R2 : x1 = 0,1 ≤ x2 ≤ 2},
T = {x ∈ R2 : x1 = 0,−2 ≤ x2 ≤ −1} :

S

T

{x1 = 0}



Observation: A linear form fTx separates

nonempty sets S, T iff

sup
x∈S

fTx ≤ inf
y∈T

fTy

inf
x∈S

fTx < sup
y∈T

fTy
(∗)

In the case of (∗), the associated with f hy-

perplanes separating S and T are exactly the

hyperplanes

{x : fTx = a} with sup
x∈S

fTx ≤ a ≤ inf
y∈T

fTy.



♣ Separation Theorem: Two nonempty convex

sets S, T can be separated iff their relative

interiors do not intersect.

Note: In this statement, convexity of both S

and T is crucial!

S T



Proof, ⇒: (!) If nonempty convex sets S, T

can be separated, then rint S
⋂

rint T = ∅
Lemma. Let X be a convex set, f(x) = fTx

be a linear form and a ∈ rint X. Then

fTa = max
x∈X

fTx ⇔ f(·)
∣∣∣∣∣
X

= const.

♣ Lemma ⇒ (!): Let a ∈ rint S ∩ rint T . As-
sume, on contrary to what should be proved,
that fTx separates S, T , so that

sup
x∈S

fTx ≤ inf
y∈T

fTy.

♦ Since a ∈ T , we get fTa ≥ sup
x∈S

fTx, that is,

fTa = max
x∈S

fTx. By Lemma, fTx = fTa for

all x ∈ S.
♦ Since a ∈ S, we get fTa ≤ inf

y∈T
fTy, that is,

fTa = min
y∈T

fTy. By Lemma, fTy = fTa for

all y ∈ T .
Thus,

z ∈ S ∪ T ⇒ fT z ≡ fTa,

so that f does not separate S and T , which
is a contradiction.



Lemma. Let X be a convex set, f(x) = fTx

be a linear form and a ∈ rint X. Then

fTa = max
x∈X

fTx ⇔ f(·)
∣∣∣∣∣
X

= const.

Proof. Shifting X, we may assume a = 0.

Let, on the contrary to what should be

proved, fTx be non-constant on X, so that

there exists y ∈ X with fTy 6= fTa = 0. The

case of fTy > 0 is impossible, since fTa = 0

is the maximum of fTx on X. Thus, fTy < 0.

The line {ty : t ∈ R} passing through 0 and

through y belongs to Aff(X); since 0 ∈ rint X,

all points z = −εy on this line belong to X,

provided that ε > 0 is small enough. At every

point of this type, fT z > 0, which contradicts

the fact that max
x∈X

fTx = fTa = 0.



Proof, ⇐: Assume that S, T are nonempty

convex sets such that rint S ∩ rint T = ∅, and

let us prove that S, T can be separated.

Step 1: Separating a point and a convex

hull of a finite set. Let S = Conv({b1, ..., bm})
and T = {b} with b 6∈ S, and let us prove that

S and T can be separated.

10. Let

βi =

[
bi
1

]
, β =

[
b
1

]
.

Observe that β is not a conic combination of

β1, ..., βm:
[

b
1

]
=

m∑
i=1

λi

[
bi
1

]
, λi ≥ 0

⇓
b =

∑
i

λibi,
∑
i

λi = 1, λi ≥ 0

⇓
b ∈ S – contradiction!



βi =

[
bi
1

]
, β =

[
b
1

]
.

20. Since β is not conic combination of βi,

by Homogeneous Farkas Lemma there exists

h =

[
f
−a

]
such that

fT b−a ≡ hTβ > 0 ≥ hTβi ≡ fT bi−a, i = 1, ..., m

that is,

fT b > max
i=1,...,m

fT bi = max
x∈S=Conv({b1,...,bm})

fTx.

Note: We have used the evident fact that

max
x∈Conv({b1,...,bm})

fTx ≡ max
λ≥0,

∑
i

λi=1
fT [

∑
i

λibi]

= max
λ≥0,

∑
i

λi=1

∑
i

λi[f
T bi]

= max
i

fT bi.



Step 2: Separating a point and a convex

set which does not contain the point. Let

S be a nonempty convex set and T = {b} with

b 6∈ S, and let us prove that S and T can be

separated.

10. Shifting S and T by −b (which clearly

does not affect the possibility of separating

the sets), we can assume that T = {0} 6⊂ S.

20. Replacing, if necessary, Rn with Lin(S),

we may further assume that Rn = Lin(S).

Lemma: Every nonempty subset S in Rn is

separable: one can find a sequence {xi} of

points from S which is dense in S, i.e., is

such that every point x ∈ S is the limit of an

appropriate subsequence of the sequence.



Lemma ⇒ Separation: Let {xi ∈ S} be a

sequence which is dense in S. Since S is

convex and does not contain 0, we have

0 6∈ Conv({x1, ..., xi}) ∀i
whence

∃fi : 0 = fT
i 0 > max

1≤j≤i
fT
i xj. (∗)

By scaling, we may assume that ‖fi‖2 = 1.

The sequence {fi} of unit vectors possesses

a converging subsequence {fis}∞s=1; the limit

f of this subsequence is, of course, a unit

vector. By (∗), for every fixed j and all large

enough s we have fT
is

xj < 0, whence

fTxj ≤ 0 ∀j. (∗∗)
Since {xj} is dense in S, (∗∗) implies that

fTx ≤ 0 for all x ∈ S, whence

sup
x∈S

fTx ≤ 0 = fT0.



Situation: (a) Lin(S) = Rn

(b) T = {0}
(c) We have built a unit vector f such that

sup
x∈S

fTx ≤ 0 = fT0. (!)

By (!), all we need to prove that f separates

T = {0} and S is to verify that

inf
x∈S

fTx < fT0 = 0.

Assuming the opposite, (!) would say that

fTx = 0 for all x ∈ S, which is impossible,

since Lin(S) = Rn and f is nonzero.



Lemma: Every nonempty subset S in Rn is

separable: one can find a sequence {xi} of

points from S which is dense in S, i.e., is

such that every point x ∈ S is the limit of an

appropriate subsequence of the sequence.

Proof. Let r1, r2, ... be the countable set of

all rational vectors in Rn. For every positive

integer t, let Xt ⊂ S be the countable set

given by the following construction:

We look, one after another, at the

points r1, r2, ... and for every point rs

check whether there is a point z in S

which is at most at the distance 1/t

away from rs. If points z with this

property exist, we take one of them

and add it to Xt and then pass to

rs+1, otherwise directly pass to rs+1.



Is is clear that

(*) Every point x ∈ S is at the dis-

tance at most 2/t from certain point

of Xt.

Indeed, since the rational vectors are dense

in Rn, there exists s such that rs is at the

distance ≤ 1
t from x. Therefore, when pro-

cessing rs, we definitely add to Xt a point z

which is at the distance ≤ 1/t from rs and

thus is at the distance ≤ 2/t from x.

By construction, the countable union
∞⋃

t=1
Xt

of countable sets Xt ⊂ S is a countable set

in S, and by (*) this set is dense in S.



Step 3: Separating two non-intersecting

nonempty convex sets. Let S, T be

nonempty convex sets which do not inter-

sect; let us prove that S, T can be separated.

Let Ŝ = S − T and T̂ = {0}. The set

Ŝ clearly is convex and does not contain 0

(since S ∩ T = ∅). By Step 2, Ŝ and {0} = T̂

can be separated: there exists f such that




sup
x∈S

fT s− inf
y∈T

fT y

︷ ︸︸ ︷
sup

x∈S,y∈T
[fTx− fTy] ≤ 0 = inf

z∈{0}
fTz

inf
x∈S,y∈T

[fTx− fTy]
︸ ︷︷ ︸

inf
x∈S

fT x−sup
y∈T

fT y

< 0 = sup
z∈{0}

fTz

whence

sup
x∈S

fTx ≤ inf
y∈T

fTy

inf
x∈S

fTx < sup
y∈T

fTy



Step 4: Completing the proof of Sep-

aration Theorem. Finally, let S, T be

nonempty convex sets with non-intersecting

relative interiors, and let us prove that S, T

can be separated.

As we know, the sets S′ = rint S and T ′ =

rint T are convex and nonempty; we are in

the situation when these sets do not inter-

sect. By Step 3, S′ and T ′ can be separated:

for properly chosen f , one has

sup
x∈S′

fTx ≤ inf
y∈T ′

fTy

inf
x∈S′

fTx < sup
y∈T ′

fTy
(∗)

Since S′ is dense in S and T ′ is dense in T ,

inf’s and sup’s in (∗) remain the same when

replacing S′ with S and T ′ with T . Thus, f

separates S and T .



♣ Alternative proof of Separation Theorem

starts with separating a point T = {a} and a

closed convex set S, a 6∈ S, and is based on

the following fact:

Let S be a nonempty closed convex

set and let a 6∈ S. There exists a

unique closest to a point in S:

ProjS(a) = argmin
x∈S

‖a− x‖2

and the vector e = a−ProjS(a) sepa-

rates a and S:

max
x∈S

eTx = eTProjS(a) = eTa−‖e‖22 < eTa.





Proof: 10. The closest to a point in S does

exist. Indeed, let xi ∈ S be a sequence such

that

‖a− xi‖2 → inf
x∈S

‖a− x‖2, , i →∞

The sequence {xi} clearly is bounded; passing

to a subsequence, we may assume that xi →¯

as i → ∞. Since S is closed, we have x̄ ∈ S,

and

‖a− x̄‖2 = lim
i→∞ ‖a− xi‖2 = inf

x∈S
‖a− x‖2.

20. The closest to a point in S is unique.

Indeed, let x, y be two closest to a points in

S, so that ‖a − x‖2 = ‖a − y‖2 = d. Since S

is convex, the point z = 1
2(x + y) belongs to

S; therefore ‖a− z‖2 ≥ d. We now have

=‖2(a−z)‖22≥4d2

︷ ︸︸ ︷
‖[a− x] + [a− y]‖22 +

=‖x−y‖2︷ ︸︸ ︷
‖[a− x]− [a− y]‖22

= 2‖a− x‖22 + 2‖a− y‖22︸ ︷︷ ︸
4d2

whence ‖x− y‖2 = 0.



30. Thus, the closest to a point in S exists

and is unique. With e = a − ProjS(a), we

have

x ∈ S, f = x− ProjS(a)
⇓

φ(t) ≡ ‖e− tf‖22
= ‖a− [ProjS(a) + t(x− ProjS(a))]‖22
≥ ‖a− ProjS(a)‖22
= φ(0),0 ≤ t ≤ 1

⇓
0 ≤ φ′(0) = −2eT (x− ProjS(a))

⇓
∀x ∈ S : eTx ≤ eTProjS(a) = eTa− ‖e‖22.



♣ Separation of sets S, T by linear form fTx

is called strict, if

sup
x∈S

fTx < inf
y∈T

fTy

Theorem: Let S, T be nonempty convex sets.

These sets can be strictly separated iff they

are at positive distance:

dist(S, T ) = inf
x∈S,y∈T

‖x− y‖2 > 0.

Proof, ⇒: Let f strictly separate S, T ; let

us prove that S, T are at positive distance.

Otherwise we could find sequences xi ∈ S,

yi ∈ T with ‖xi − yi‖2 → 0 as i → ∞, whence

fT (yi − xi) → 0 as i →∞. It follows that the

sets on the axis

Ŝ = {a = fTx : x ∈ S}, T̂ = {b = fTy : y ∈ T}
are at zero distance, which is a contradiction

with

sup
a∈Ŝ

a < inf
b∈T̂

b.



Proof, ⇐: Let T , S be nonempty convex

sets which are at positive distance 2δ:

2δ = inf
x∈S,y∈T

‖x− y‖2 > 0.

Let

S+ = S + {z : ‖z‖2 ≤ δ}
The sets S+ and T are convex and do not

intersect, and thus can be separated:

sup
x+∈S+

fTx+ ≤ inf
y∈T

fTy [f 6= 0]

Since

sup
x+∈S+

fTx+ = sup
x∈S,‖z‖2≤δ

[fTx + fT z]

= [sup
x∈S

fTx] + δ‖f‖2,

we arrive at

sup
x∈S

fTx < inf
y∈T

fTy



Exercise Below S is a nonempty convex set

and T = {a}.

Statement True?

If T and S can be separated
then a 6∈ S
If a 6∈ S, then T and S can be
separated
If T and S can be strictly
separated, then a 6∈ S
If a 6∈ S, then T and S can be
strictly separated
If S is closed and a 6∈ S, then T
and S can be strictly separated



Supporting Planes and Extreme Points

♣ Definition. Let Q be a closed convex set in

Rn and x̄ be a point from the relative bound-

ary of Q. A hyperplane

Π = {x : fTx = a} [a 6= 0]

is called supporting to Q at the point x̄, if

the hyperplane separates Q and {x̄}:
sup
x∈Q

fTx ≤ fT x̄

inf
x∈Q

fTx < f tx̄

Equivalently: Hyperplane Π = {x : fTx = a}
supports Q at x̄ iff the linear form fTx attains

its maximum on Q, equal to a, at the point

x̄ and the form is non-constant on Q.



Proposition. Let Q be a convex closed set in

Rn and x̄ be a point from the relative bound-

ary of Q. Then

♦ There exist at least one hyperplane Π

which supports Q at x̄;

♦ For every such hyperplane Π, the set Q∩Π

has dimension less than the one of Q.

Proof: Existence of supporting plane is given

by Separation Theorem. This theorem is ap-

plicable since

x̄ 6∈ rint Q ⇒ {x̄} ≡ rint {x̄} ∩ rint Q = ∅.
Further,

Q * Π ⇒ Aff(Q) * Π ⇒ Aff(Π ∩Q) $ Aff(Q),

and if two distinct affine subspaces are em-

bedded one into another, then the dimension

of the embedded subspace is strictly less than

the dimension of the embedding one.



Extreme Points

♣ Definition. Let Q be a convex set in Rn and

x̄ be a point of X. The point is called ex-

treme, if it is not a convex combination, with

positive weights, of two points of X distinct

from x̄:

x̄ ∈ Ext(Q)
m

{x̄ ∈ Q} &

{
u, v ∈ Q, λ ∈ (0,1)
x̄ = λu + (1− λ)v

}
⇒ u = v = x̄

}

Equivalently: A point x̄ ∈ Q is extreme iff it

is not the midpoint of a nontrivial segment

in Q:

x± h ∈ Q ⇒ h = 0.

Equivalently: A point x̄ ∈ Q is extreme iff the

set Q\{x̄} is convex.



Examples:

1. Extreme points of [x, y] are ...

2. Extreme points of 4ABC are ...

3. Extreme points of the ball {x : ‖x‖2 ≤ 1}
are ...



Theorem [Krein-Milman] Let Q be a closed

convex and nonempty set in Rn. Then

♦ Q possess extreme points iff Q does not

contain lines;

♦ If Q is bounded, then Q is the convex hull

of its extreme points:

Q = Conv(Ext(Q))

so that every point of Q is convex combina-

tion of extreme points of Q.

Note: If Q = Conv(A), then Ext(Q) ⊂ A.

Thus, extreme points of a closed convex

bounded set Q give the minimal representa-

tion of Q as Conv(...).



Proof. 10: If closed convex set Q does not

contain lines, then Ext(Q) 6= ∅
Important lemma: Let S be a closed convex

set and Π = {x : fTx = a} be a hyperplane

which supports S at certain point. Then

Ext(Π ∩ S) ⊂ Ext(S).

Proof of Lemma. Let x̄ ∈ Ext(Π ∩ S);

we should prove that x̄ ∈ Ext(S). Assume,

on the contrary, that x̄ is a midpoint of a

nontrivial segment [u, v] ⊂ S. Then fT x̄ =

a = max
x∈S

fTx, whence fT x̄ = max
x∈[u,v]

fTx. A

linear form can attain its maximum on a

segment at the midpoint of the segment iff

the form is constant on the segment; thus,

a = fT x̄ = fTu = fTv, that is, [u, v] ⊂ Π ∩ S.

But x̄ is an extreme point of Π∩ S – contra-

diction!



Let Q be a nonempty closed convex set which
does not contain lines. In order to build an
extreme point of Q, apply the Purification al-
gorithm:
Initialization: Set S0 = Q and choose x0 ∈ Q.
Step t: Given a nonempty closed convex set
St which does not contain lines and is such
that Ext(St) ⊂ Ext(Q) and xt ∈ St,
1) check whether St is a singleton {xt}. If it is
the case, terminate: xt ∈ Ext{St} ⊂ Ext(Q).
2) if St is not a singleton, find a point xt+1
on the relative boundary of St and build a
hyperplane Πt which supports St at xt+1.
To find xt+1, take a direction h 6= 0 parallel to Aff(St).

Since St does not contain lines, when moving from xt

either in the direction h, or in the direction −h, we

eventually leave St, and thus cross the relative bound-

ary of St. The intersection point is the desired xt+1.

3) Set St+1 = St ∩ Πt, replace t with t + 1
and loop to 1).



Justification: By Important Lemma,

Ext(St+1) ⊂ Ext(St),

so that

Ext(St) ⊂ Ext(Q) ∀t.
Besides this, dim (St+1 < dim(St), so that

Purification algorithm does terminate. the

algorithm

Note: Assume you are given a linear form gTx

which is bounded from above on Q. Then

in the Purification algorithm one can easily

ensure that gTxt+1 ≥ gTxt. Thus,

If Q is a nonempty closed set in Rn which

does not contain lines and fTx is a linear form

which is bounded above on Q, then for every

point x0 ∈ Q there exists (and can be found

by Purification) a point x̄ ∈ Ext(Q) such that

gT x̄ ≥ gTx0. In particular, if gTx attains its

maximum on Q, then the maximizer can be

found among extreme points of Q.



Proof, 20 If a closed convex set Q contains

lines, it has no extreme points.

Another Important Lemma: Let S be a closed

convex set such that {x̄ + th : t ≥ 0} ⊂ S for

certain x̄. Then

{x + th : t ≥ 0} ⊂ S ∀x ∈ S.

Proof: For every s ≥ 0 and x ∈ S we have

x + sh = lim
i→∞ [(1− s/i)x + (s/i)[x̄ + th]]︸ ︷︷ ︸

∈S

.

Note: The set of all directions h ∈ Rn such

that {x + th : t ≥ 0} ⊂ S for some (and then,

for all) x ∈ S, is called the recessive cone

Rec(S) of closed convex set S. Rec(S) in-

deed is a cone, and

S + Rec(S) = S.

Corollary: If a closed convex set Q contains a

line `, then the parallel lines, passing through

points of Q, also belong to Q. In particular,

Q possesses no extreme points.



Proof, 30: If a nonempty closed convex set

Q is bounded, then Q = Conv(Ext(Q)).

The inclusion Conv(Ext(Q)) ⊂ Q is evident.

Let us prove the opposite inclusion, i.e.,

prove that every point of Q is a convex com-

bination of extreme points of Q.

Induction in k = dimQ. Base k = 0 (Q is a

singleton) is evident.

Step k 7→ k + 1: Given (k + 1)-dimensional

closed and bounded convex set Q and a

point x ∈ Q, we, as in the Purification al-

gorithm, can represent x as a convex com-

bination of two points x+ and x− from the

relative boundary of Q. Let Π+ be a hy-

perplane which supports Q at x+, and let

Q+ = Π+ ∩ Q. As we know, Q+ is a closed

convex set such that

dimQ+ < dimQ, Ext(Q+) ⊂ Ext(Q), x+ ∈ Q+.

Invoking inductive hypothesis,

x+ ∈ Conv(Ext(Q+)) ⊂ Conv(Ext(Q)).

Similarly, x− ∈ Conv(Ext(Q)). Since x ∈
[x−, x+], we get x ∈ Conv(Ext(Q)).



Structure of Polyhedral Sets

♣ Definition: A polyhedral set Q in Rn is a

nonempty subset in Rn which is a solution set

of a finite system of nonstrict inequalities:

Q is polyhedral ⇔ Q = {x : Ax ≥ b} 6= ∅.

♠ Every polyhedral set is convex and closed.



Question: When a polyhedral set Q = {x :
Ax ≥ b} contains lines? What are these lines,
if any?
Answer: Q contains lines iff A has a nontrivial
nullspace:

Null(A) ≡ {h : Ah = 0} 6= {0}.

Indeed, a line ` = {x = x̄ + th : t ∈ R}, h 6= 0,
belongs to Q iff

∀t : A(x̄ + th) ≥ b
⇔ ∀t : tAh ≥ b−Ax̄
⇔ Ah = 0 & x̄ ∈ Q.

Fact: A polyhedral set Q = {x : Ax ≥ b} al-
ways can be represented as

Q = Q∗ + L,

where Q∗ is a polyhedral set which does not
contain lines and L is a linear subspace. In
this representation,
♦ L is uniquely defined by Q and coincides
with Null(A),
♦ Q∗ can be chosen, e.g., as

Q∗ = Q ∩ L⊥



Structure of polyhedral set which does not

contain lines

♣ Theorem. Let

Q = {x : Ax ≥ b} 6= ∅
be a polyhedral set which does not contain

lines (or, which is the same, Null(A) = {0}).
Then the set Ext(Q) of extreme points of Q

is nonempty and finite, and

Q = Conv(Ext(Q)) + Cone {r1, ..., rS} (∗)
for properly chosen vectors r1, ..., rS.

Note: Cone {r1, ..., rs} is exactly the recessive

cone of Q:

Cone {r1, ..., rS}
= {r : x + tr ∈ Q ∀(x ∈ Q, t ≥ 0)}
= {r : Ar ≥ 0}.

This cone is the trivial cone {0} iff Q is a

bounded polyhedral set (called polytope).



♣ Combining the above theorems, we come

to the following results:

A polyhedral set Q always can be represented

in the form

Q =



x =

I∑

i=1

λivi +
J∑

j=1

µjwj :
λ ≥ 0, µ ≥ 0∑
i

λi = 1





(!)

where I, J are positive integers and v1, ..., vI,

w1, ..., wJ are appropriately chosen points and

directions.

Vice versa, every set Q of the form (!) is a

polyhedral set.

Note: Polytopes (bounded polyhedral sets)

are exactly the sets of form (!) with “trivial

w-part”: w1 = ... = wJ = 0.



Q 6= ∅, & ∃A, b : Q = {x : Ax ≥ b}
m

∃(I, J, v1, ..., vI , w1, ..., wJ) :

Q =



x =

I∑
i=1

λivi +
J∑

j=1
µjwj :

λ ≥ 0, µ ≥ 0∑
i

λi = 1





Exercise 1: Is it true that the intersection of

two polyhedral sets, if nonempty, is a poly-

hedral set?

Exercise 2: Is it true that the affine image

{y = Px + p : x ∈ Q} of a polyhedral set Q is

a polyhedral set?



Applications to Linear Programming

♣ Consider a feasible Linear Programming

program

min
x

cTx s.t. x ∈ Q = {x : Ax ≥ b} (LP)

Observation: We lose nothing when assuming
that Null(A) = {0}.
Indeed, we have

Q = Q∗ + Null(A),

where Q∗ is a polyhedral set not containing lines. If
c is not orthogonal to Null(A), then (LP) clearly is
unbounded. If c is orthogonal to Null(A), then (LP)
is equivalent to the LP program

min
x

cTx s.t. x ∈ Q∗,

and now the matrix in a representation Q∗ = {x : Ãx ≥
b̃} has trivial nullspace.

Assuming Null(A) = {0}, let (LP) be bounded

(and thus solvable). Since Q is convex,

closed and does not contain lines, among the

(nonempty!) set of minimizers the objective

on Q there is an extreme point of Q.



min
x

cTx s.t. x ∈ Q = {x : Ax ≥ b} (LP)

We have proved

Proposition. Assume that (LP) is feasible

and bounded (and thus is solvable) and that

Null(A) = {0}. Then among optimal solu-

tions to (LP) there exists at least one which

is an extreme point of Q.

Question: How to characterize extreme points

of the set

Q = {x : Ax ≥ b} 6= ∅
provided that A is m×n matrix with Null(A) =

{0}?
Answer: Extreme points x̄ of Q are fully char-

acterized by the following two properties:

♦ Ax̄ ≥ b

♦ Among constraints Ax ≥ b which are active

at x̄ (i.e., are satisfied as equalities), there are

n linearly independent.



Justification of the answer, ⇒: If x̄ is an
extreme point of Q, then among the con-
straints Ax ≥ b active at x̄ there are n linearly
independent.
W.l.o.g., assume that the constraints active
at x̄ are the first k constraints

aT
i x ≥ bi, i = 1, ..., k.

We should prove that among n-dimensional
vectors a1, ..., ak, there are n linearly inde-
pendent. Assuming otherwise, there exists
a nonzero vector h such that aT

i h = 0,
i = 1, ..., k, that is,

aT
i [x̄± εh] = aT

i x̄ = bi, i = 1, ..., k

for all ε > 0. Since the remaining constraints
aT

i x ≥ bi, i > k, are strictly satisfied at x̄, we
conclude that

aT
i [x̄± εh] ≥ bi, i = k + 1, ..., m

for all small enough values of ε > 0.
We conclude that x̄ ± εh ∈ Q = {x : Ax ≥ b}
for all small enough ε > 0. Since h 6= 0 and
x̄ is an extreme point of Q, we get a contra-
diction.



Justification of the answer, ⇐: If x̄ ∈ Q

makes equalities n of the constraints aT
i x ≥ bi

with linearly independent vectors of coeffi-

cients, then x̄ ∈ Ext(Q).

W.l.o.g., assume that n active at x̄ con-

straints with linearly independent vectors of

coefficients are the first n constraints

aT
i x ≥ bi, i = 1, ..., n.

We should prove that if h is such that x̄±h ∈
Q, then h = 0. Indeed, we have

x̄± h ∈ Q ⇒ aT
i [x̄± h] ≥ bi, i = 1, ..., n;

since aT
i x̄ = bi for i ≤ n, we get

aT
i x̄± aT

i h = aT
i [x̄± h] ≥ aT

i x̄, i = 1, ..., n,

whence

aT
i h = 0, i = 1, ..., n. (∗)

Since n-dimensional vectors a1, ..., an are lin-

early independent, (∗) implies that h = 0,

Q.E.D.



Convex Functions

Definition: Let f be a real-valued function

defined on a nonempty subset Domf in Rn.

f is called convex, if

♦Domf is a convex set

♦for all x, y ∈ Domf and λ ∈ [0,1] one has

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Equivalent definition: Let f be a real-valued

function defined on a nonempty subset Domf

in Rn. The function is called convex, if its

epigraph – the set

Epi{f} = {(x, t) ∈ Rn+1 : f(x) ≤ t}
is a convex set in Rn+1.



What does the definition of convexity
actually mean?

The inequality

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) (∗)
where x, y ∈ Domf and λ ∈ [0,1] is automat-
ically satisfied when x = y or when λ = 0/1.
Thus, it says something only when the points
x, y are distinct from each other and the point
z = λx+(1−λ)y is a (relative) interior point
of the segment [x, y]. What does (∗) say in
this case?
♦Observe that z = λx + (1− λ)y = x + (1−
λ)(y − x), whence

‖y − x‖ : ‖y − z‖ : ‖z − x‖ = 1 : λ : (1− λ)

Therefore

f(z) ≤ λf(x) + (1− λ)f(y) (∗)
m

f(z)− f(x) ≤ (1− λ)︸ ︷︷ ︸
‖z−x‖
‖y−x‖

(f(y)− f(x))

m
f(z)−f(x)
‖z−x‖ ≤ f(y)−f(x)

‖y−x‖



Similarly,

f(z) ≤ λf(x) + (1− λ)f(y) (∗)
m

λ︸︷︷︸
‖y−z‖
‖y−x‖

(f(y)− f(x)) ≤ f(y)− f(z)

m
f(y)−f(x)
‖y−x‖ ≤ f(y)−f(z)

‖y−z‖



Conclusion: f is convex iff for every three

distinct points x, y, z such that x, y ∈ Domf

and z ∈ [x, y], we have z ∈ Domf and

f(z)− f(x)

‖z − x‖ ≤ f(y)− f(x)

‖y − x‖ ≤ f(y)− f(z)

‖y − z‖ (∗)

Note: From 3 inequalities in (∗):
f(z)−f(x)
‖z−x‖ ≤ f(y)−f(x)

‖y−x‖
f(y)−f(x)
‖y−x‖ ≤ f(y)−f(z)

‖y−z‖
f(z)−f(x)
‖z−x‖ ≤ f(y)−f(z)

‖y−z‖
every single one implies the other two.

x yz



Jensen’s Inequality: Let f(x) be a convex

function. Then

xi ∈ Domf, λi ≥ 0,
∑
i

λi = 1 ⇒
f(

∑
i

λixi) ≤
∑
i

λif(xi)

Proof: The points (xi, f(xi)) belong to Epi{f}.
Since this set is convex, the point

(
∑

i

λixi,
∑

i

λif(xi)) ∈ Epi{f}.

By definition of the epigraph, it follows that

f(
∑

i

λixi) ≤
∑

i

λif(xi).

Extension: Let f be convex, Domf be closed

and f be continuous on Domf . Consider

a probability distribution π(dx) supported on

Domf . Then

f(Eπ{x}) ≤ Eπ{f(x)}.



Examples:

♦Functions convex on R: • x2, x4, x6,...

• exp{x}
Nonconvex functions on R: • x3 • sin(x)

♦Functions convex on R+: • xp, p ≥ 1

• −xp, 0 ≤ p ≤ 1 • x lnx

♦Functions convex on Rn: • affine function

f(x) = fT c

♦A norm ‖ · ‖ on Rn is a convex function:

‖λx + (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖
[Triangle inequality]

= λ‖x‖+ (1− λ)‖y‖
[homogeneity]



Application of Jensen’s Inequality: Let p =

{pi > 0}ni=1, q = {qi > 0}ni=1 be two discrete

probability distributions.

Claim: The Kullback-Liebler distance
∑

i

pi ln
pi

qi

between the distributions is ≥ 0.

Indeed, the function f(x) = − lnx, Domf =

{x > 0}, is convex. Setting xi = qi/pi, λi = pi

we have

0 = − ln

(
∑
i

qi

)
= f(

∑
i

pixi)

≤ ∑
i

pif(xi) =
∑
i

pi(− ln qi/pi)

=
∑
i

pi ln(pi/qi)



What is the value of a convex function

outside its domain?

Convention. To save words, it is convenient

to think that a convex function f is defined

everywhere on Rn and takes real values and

value +∞. With this interpretation, f “re-

members” its domain:

Domf = {x : f(x) ∈ R}
x 6∈ Domf ⇒ f(x) = +∞

and the definition of convexity becomes

f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) ∀ x, y ∈ Rn

λ ∈ [0,1]

where the arithmetics of +∞ and reals is

given by the rules

a ∈ R⇒ a + (+∞) = (+∞) + (+∞) = +∞
0 · (+∞) = +∞
λ > 0 ⇒ λ · (+∞) = +∞
Note: Operations like (+∞)−(+∞) or (−5) ·
(+∞) are undefined!



♣ Convexity-preserving operations:

♦Taking conic combinations: If fi(x) are

convex function on Rn and λi ≥ 0, then the

function
∑
i

λifi(x) is convex

♦Affine substitution of argument: If f(x) is

convex function on Rn and x = Ay + b is an

affine mapping from Rk to Rn, then the func-

tion g(y) = f(Ax + b) is convex on Rm

♦Taking supremum: If fα(x), α ∈ A, is a

family of convex function on Rn, then the

function sup
α∈A

fα(x) is convex.

Proof: Epi{sup
α

fα(·)} =
⋂
α
Epi{fα(·)}, and in-

tersections of convex sets are convex.

♦Superposition Theorem: Let fi(x) be con-

vex functions on Rn, i = 1, ..., m, and F (y1, ..., ym)

be a convex and monotone function on Rm.

Then the function

g(x) =

{
F (f1(x), ..., fm(x)) , x ∈ Domfi, ∀i
+∞ ,otherwise

is convex.



♦Partial minimization: Let f(x, y) be a con-
vex function of z = (x, y) ∈ Rn, and let

g(x) = inf
y

f(x, y)

be > −∞ for all x. Then the function g(x) is
convex.
Proof: g clearly takes real values and value
+∞. Let us check the Convexity Inequality

g(λx′ + (1− λ)x′′) ≤ λg(x′) + (1− λ)g(x′′)
[λ ∈ [0,1]]

There is nothing to check when λ = 0 or
λ = 1, so let 0 < λ < 1. In this case, there
is nothing to check when g(x′) or g(x′′) is
+∞, so let g(x′) < +∞, g(x′′) < +∞. Since
g(x′) < +∞, for every ε > 0 there exists y′
such that f(x′, y′) ≤ g(x′)+ε. Similarly, there
exists y′′ such that f(x′′, y′′) ≤ g(x′′)+ε. Now,

g(λx′ + (1− λ)x′′)
≤ f(λx′ + (1− λ)x′′, λy′ + (1− λ)y′′)
≤ λf(x′, y′) + (1− λ)f(x′′, y′′)
≤ λ(g(x′) + ε) + (1− λ)(g(x′′) + ε)
= λg(x′) + (1− λ)g(x′′) + ε

Since ε > 0 is arbitrary, we get

g(λx′ + (1− λ)x′′) ≤ λg(x′) + (1− λ)g(x′′).



How to detect convexity?

Convexity is one-dimensional property: A set

X ⊂ Rn is convex iff the set

{t : a + th ∈ X}
is, for every (a, h), a convex set on the axis

A function f on Rn is convex iff the function

φ(t) = f(a + th)

is, for every (a, h), a convex function on the

axis.



♣ When a function φ on the axis is convex?

Let φ be convex and finite on (a, b). This is

exactly the same as

φ(z)− φ(x)

z − x
≤ φ(y)− φ(x)

y − x
≤ φ(y)− φ(z)

y − z

when a < x < z < y < b. Assuming that

φ′(x) and φ′(y) exist and passing to limits as

z → x + 0 and z → y − 0, we get

φ′(x) ≤ φ(y)− φ(x)

y − x
≤ φ′(y)

that is, φ′(x) is nondecreasing on the set of

points from (a, b) where it exists.



The following conditions are necessary and

sufficient for convexity of a univariate func-

tion:

♦The domain of the function φ should be an

open interval ∆ = (a, b), possibly with added

endpoint(s) (provided that the corresponding

endpoint(s) is/are finite)

♦φ should be continuous on (a, b) and dif-

ferentiable everywhere, except, perhaps, a

countable set, and the derivative should be

monotonically non-decreasing

♦at endpoint of (a, b) which belongs to

Domφ, φ is allowed to “jump up”, but not

to jump down.



♣ Sufficient condition for convexity of a uni-

variate function φ: Domφ is convex, φ is con-

tinuous on Domφ and is twice differentiable,

with nonnegative φ′′, on intDomφ.

Indeed, we should prove that under the con-

dition, if x < z < y are in Domφ, then

φ(z)− φ(x)

z − x
≤ φ(y)− φ(z)

y − z

By Lagrange Theorem, the left ratio is φ′(ξ)
for certain ξ ∈ (x, z), and the right ratio is

φ′(η) for certain η ∈ (z, y). Since φ′′(·) ≥ 0

and η > ξ, we have φ′(η) ≥ φ′(ξ), Q.E.D.



♣ Sufficient condition for convexity of a mul-

tivariate function f : Domf is convex, f is

continuous on Domf and is twice differen-

tiable, with positive semidefinite Hessian ma-

trix f ′′, on intDomf .

Instructive example: The function f(x) =

ln(
n∑

i=1
exp{xi}) is convex on Rn.

Indeed,

hTf ′(x) =

∑
i

exp{xi}hi
∑
i

exp{xi}

hTf ′′(x)h = −

(∑
i

exp{xi}hi

)2

(∑
i

exp{xi}
)2 +

∑
i

exp{xi}h2
i∑

i
exp{xi}



hTf ′′(x)h = −




∑
i
exp{xi}hi

∑
i
exp{xi}




2

+

∑
i
exp{xi}h2

i

∑
i
exp{xi}

Setting pi = exp{xi}∑
j

exp{xj}, we have

hTf ′′(x)h =
∑
i

pih
2
i −

(
∑
i

pihi

)2

=
∑
i

pih
2
i −

(
∑
i

√
pi(
√

pihi)

)2

≥ ∑
i

pih
2
i −

(
∑
i
(
√

pi)
2

) (
∑
i
(
√

pihi)
2

)

=
∑
i

pih
2
i −

(
∑
i

pih
2
i

)
= 0

(note that
∑
i

pi = 1)



Corollary: When ci > 0, the function

g(y) = ln


∑

i

ci exp{aT
i y}




is convex.

Indeed,

g(y) = ln


∑

i

exp{ln ci + aT
i y}




is obtained from the convex function

ln


∑

i

exp{xi}



by affine substitution of argument.



Gradient Inequality

Proposition: Let f be a function, x be an

interior point of the domain of f and Q, x ∈
Q, be a convex set such that f is convex on

Q. Assume that f is differentiable at x. Then

∀y ∈ Q : f(y) ≥ f(x) + (y − x)Tf ′(x). (∗)
Proof. Let y ∈ Q. There is nothing to prove

when y = x or f(y) = +∞, thus, assume

that f(y) < ∞ and y 6= x. Let is set zε =

x + ε(y− x), 0 < ε < 1. Then zε is an interior

point of the segment [x, y]. Since f is convex,

we have

f(y)− f(x)

‖y − x‖ ≥ f(zε)− f(x)

‖zε − x‖ =
f(x + ε(y − x))− f(x)

ε‖y − x‖
Passing to limit as ε → +0, we arrive at

f(y)− f(x)

‖y − x‖ ≥ (y − x)Tf ′(x)
‖y − x‖ ,

as required by (∗).



Lipschitz continuity of a convex function

Proposition: Let f be a convex function, and
let K be a closed and bounded set belonging
to relative interior of the domain of f . Then
f is Lipschitz continuous on K, that is, there
exists a constant L < ∞ such that

|f(x)− f(y)| ≤ L‖x− y‖2 ∀x, y ∈ K.

Note: All three assumptions on K are essen-
tial, as is shown by the following examples:
♦f(x) = −√x, Domf = {x ≥ 0}, K = [0,1].
Here K ⊂ Domf is closed and bounded, but
is not contained in the relative interior of
Domf , and f is not Lipschitz continuous on
K

♦f(x) = x2, Domf = K = R. Here K is
closed and belongs to rint Domf , but is un-
bounded, and f is not Lipschitz continuous
on K

♦f(x) = 1
x, Domf = {x > 0}, K = (0,1].

Here K is bounded and belongs to rint Domf ,
but is not closed, and f is not Lipschitz con-
tinuous on K



Maxima and Minima of Convex Functions

(!) Proposition [“unimodality”] Let f be a

convex function and x∗ be a local minimizer

of f :

x∗ ∈ Domf
&

∃r > 0 : f(x) ≥ f(x∗) ∀(x : ‖x− x∗‖ ≤ r).

Then x∗ is a global minimizer of f :

f(x) ≥ f(x∗) ∀x.

Proof: All we need to prove is that if x 6= x∗
and x ∈ Domf , then f(x) ≥ f(x∗). To this

end let z ∈ (x∗, x). By convexity we have

f(z)− f(x∗)
‖z − x∗‖

≤ f(x)− f(x∗)
‖x− x∗‖

.

When z ∈ (x∗, x) is close enough to x∗, we

have f(z)−f(x∗)
‖z−x∗‖ ≥ 0, whence f(x)−f(x∗)

‖x−x∗‖ ≥ 0,

that is, f(x) ≥ f(x∗).



Proposition Let f be a convex function. The

set of X∗ of global minimizers is convex.

Proof: This is an immediate corollary of im-

portant

Lemma: Let f be a convex function. Then

the level sets of f , that is, the sets

Xa = {x : f(x) ≤ a}
where a is a real, are convex.

Proof of Lemma: If x, y ∈ Xa and λ ∈ [0,1],

then

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)
≤ λa + (1− λ)a = a.

Thus, [x, y] ⊂ Xa.



♣ When the minimizer of a convex function

is unique?

Definition: A convex function is called strictly

convex, if

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y)

whenever x 6= y and λ ∈ (0,1).

Note: If a convex function f has open do-

main and is twice continuously differentiable

on this domain with

hTf ′′(x)h > 0 ∀(x ∈ Domf, h 6= 0),

then f is strictly convex.

Proposition: For a strictly convex function f

a minimizer, if it exists, is unique.

Proof. Assume that X∗ = Argmin f contains

two distinct points x′, x′′. By strong convex-

ity,

f(
1

2
x′ + 1

2
x′′) <

1

2

[
f(x′) + f(x′′)

]
= inf

x
f,

which is impossible.



Theorem [Optimality conditions in convex

minimization] Let f be a function which is

differentiable at a point x∗ and is convex on

a convex set Q ⊂ Domf which contains x∗.
A necessary and sufficient condition for f to

attain its minimum on Q at x∗ is

(x− x∗)Tf ′(x∗) ≥ 0 ∀x ∈ Q. (∗)
Proof, ⇐: Assume that (∗) is valid, and let

us verify that f(x) ≥ f(x∗) for every x ∈ Q.

There is nothing to prove when x = x∗, thus,

let f(x) < ∞ and x 6= x∗. For zλ = x∗+λ(x−
x∗) we have

f(zλ)− f(x∗)
‖zλ − x∗‖

≤ f(x)− f(x∗)
‖x− x∗‖

∀λ ∈ (0,1)

or, which is the same,

f(x∗ + λ[x− x∗])− f(x∗)
λ‖x− x∗‖

≤ f(x)− f(x∗)
‖x− x∗‖

∀λ ∈ (0,1)

As λ → +0, the left ratio converges to

(x−x∗)Tf ′(x∗)/‖x−x∗‖ ≥ 0; thus, f(x)−f(x∗)
‖x−x∗‖ ≥

0, whence f(x) ≥ f(x∗).



“Let f be a function which is differen-

tiable at a point x∗ and is convex on

a convex set Q ⊂ Domf which con-

tains x∗. A necessary and sufficient

condition for f to attain its minimum

on Q at x∗ is

(x− x∗)Tf ′(x∗) ≥ 0 ∀x ∈ Q.′′

Proof, ⇒: Given that x∗ ∈ Argminy∈Q f(y),

let x ∈ Q. Then

0 ≤ f(x∗ + λ[x− x∗])− f(x∗)
λ

∀λ ∈ (0,1),

whence (x− x∗)Tf ′(x∗) ≥ 0.



♣ Equivalent reformulation: Let f be a func-

tion which is differentiable at a point x∗ and

is convex on a convex set Q ⊂ Domf , x∗ ∈ Q.

Consider the radial cone of Q at x∗:

TQ(x∗) = {h : ∃t > 0 : x∗ + th ∈ Q}
Note: TQ(x∗) is indeed a cone which is com-

prised of all vectors of the form s(x − x∗),
where x ∈ Q and s ≥ 0.

f attains its minimum on Q at x∗ iff

hTf ′(x∗) ≥ 0 ∀h ∈ TQ(x∗),

or, which is the same, iff

f ′(x∗) ∈ NQ(x∗) = {g : gTh ≥ 0∀h ∈ TQ(x∗)}︸ ︷︷ ︸
normal cone of Q at x∗

.

(∗)

Example I: x∗ ∈ intQ. Here TQ(x∗) = Rn,

whence NQ(x∗) = {0}, and (∗) becomes the

Fermat equation

f ′(x∗) = 0



Example II: x∗ ∈ rint Q. Let Aff(Q) = x∗+ L,

where L is a linear subspace in Rn. Here

TQ(x∗) = L, whence NQ(x∗) = L⊥. (∗) be-

comes the condition

f ′(x∗) is orthogonal to L.

Equivalently: Let Aff(Q) = {x : Ax = b}.
Then L = {x : Ax = 0}, L⊥ = {y = ATλ},
and the optimality condition becomes

∃λ∗ :

∇
∣∣∣
x=x∗

[f(x) + (λ∗)T (Ax− b)] = 0

m
f ′(x∗) +

∑
i

λ∗i∇(aT
i x− bi) = 0

[A =




aT
1...

aT
m


]



Example III: Q = {x : Ax− b ≤ 0} is polyhedral.

In this case,

TQ(x∗)
=

{
h : aT

i h ≤ 0 ∀i ∈ I(x∗) = {i : aT
i x∗ − bi = 0}

}
.

By Homogeneous Farkas Lemma,

NQ(x∗) ≡ {y : aT
i h ≤ 0, i ∈ I(x∗) ⇒ yTh ≥ 0}

= {y = − ∑
i∈I(x∗)

λiai : λi ≥ 0}

and the optimality condition becomes

∃(λ∗i ≥ 0, i ∈ I(x∗)) : f ′(x∗) +
∑

i∈I(x∗)
λ∗i ai = 0

or, which is the same:

∃λ∗ ≥ 0 :





f ′(x∗) +
m∑

i=1
λ∗i ai = 0

λ∗i (aT
i x∗ − bi) = 0, i = 1, ..., m

The point is that in the convex case these

conditions are necessary and sufficient for x∗
to be a minimizer of f on Q.



Example: Let us solve the problem

min
x



cTx +

m∑

i=1

xi lnxi : x ≥ 0,
∑

i

xi = 1



 .

The objective is convex, the domain Q =

{x ≥ 0,
∑
i

xi = 1} is convex (and even poly-

hedral). Assuming that the minimum is

achieved at a point x∗ ∈ rint Q, the optimality

condition becomes

∇
[
cTx +

∑
i

xi lnxi + λ[
∑
i

xi − 1]

]
= 0

m
lnxi = −ci − λ− 1 ∀i

m
xi = exp{1− λ} exp{−ci}

Since
∑
i

xi should be 1, we arrive at

xi =
exp{−ci}∑

j
exp{−cj}

.

At this point, the optimality condition is sat-

isfied, so that the point indeed is a minimizer.



Maxima of convex functions

Proposition. Let f be a convex function.

Then

♦If f attains its maximum over Domf at a

point x∗ ∈ rint Domf , then f is constant on

Domf

♦If Domf is closed and does not contain lines

and f attains its maximum on Domf , then

among the maximizers there is an extreme

point of Domf

♦If Domf is polyhedral and f is bounded

from above on Domf , then f attains its max-

imum on Domf .



Subgradients of convex functions

♣ Let f be a convex function and x̄ ∈
intDomf . If f differentiable at x̄, then, by

Gradient Inequality, there exists an affine

function, specifically,

h(x) = f(x̄) + (x− x̄)Tf ′(x̄),

such that

f(x) ≥ h(x)∀x & f(x̄) = h(x̄) (∗)
Affine function with property (∗) may exist

also in the case when f is not differentiable

at x̄ ∈ Domf . (∗) implies that

h(x) = f(x̄) + (x− x̄)Tg (∗∗)
for certain g. Function (∗∗) indeed satisfies

(∗) if and only if g is such that

f(x) ≥ f(x̄) + (x− x̄)Tg ∀x (!)



Definition. Let f be a convex function and

x̄ ∈ Domf . Every vector g satisfying

f(x) ≥ f(x̄) + (x− x̄)Tg ∀x (!)

is called a subgradient of f at x̄. The set

of all subgradients, if any, of f at x̄ is called

subdifferential ∂f(x̄) of f at x̄.

Example I: By Gradient Inequality, if con-

vex function f is differentiable at x̄, then

∇f(x̄) ∈ ∂f(x̄). If, in addition, x̄ ∈ intDomf ,

then ∇f(x̄) is the unique element of ∂f(x̄).



Example II: Let f(x) = |x| (x ∈ R). When

x̄ 6= 0, f is differentiable at x̄, whence

∂f(x̄) = f ′(x̄). When x̄ = 0, subgradients

g are given by

|x| ≥ 0 + gx = gx ∀x,

that is, ∂f(0) = [−1,1].

Note: In the case in question, f has direc-

tional derivative

Df(x)[h] = lim
t→+0

f(x + th)− f(x)

t

at every point x ∈ R along every direction

h ∈ R, and this derivative is nothing but

Df(x)[h] = max
g∈∂f(x)

gTh



Proposition: Let f be convex. Then

♦For every x ∈ Domf , the subdifferential

∂f(x) is closed convex set

♦If x ∈ rint Domf , then ∂f(x) is nonempty.

♦If x ∈ rint Domf , then, for every h ∈ Rn,

∃Df(x)[h] ≡ lim
t→+0

f(x + th)− f(x)

t
= max

g∈∂f(x)
gTh.

♦Assume that x̄ ∈ Domf is represented as

lim
i→∞xi with xi ∈ Domf and that

f(x̄) ≤ lim inf
i→∞ f(xi)

If a sequence gi ∈ ∂f(xi) converges to certain

vector g, then g ∈ ∂f(x̄).

♦The multi-valued mapping x 7→ ∂f(x) is lo-

cally bounded at every point x̄ ∈ intDomf ,

that is, whenever x̄ ∈ intDomf , there exist

r > 0 and R < ∞ such that

‖x− x̄‖2 ≤ r, g ∈ ∂f(x) ⇒ ‖g‖2 ≤ R.



Selected proof: “If x̄ ∈ rint Domf , then
∂f(x̄) is nonempty.”
W.l.o.g. let Domf be full-dimensional, so
that x̄ ∈ intDomf . Consider the convex set

T = Epi{f} = {(x, t) : t ≥ f(x)}.
Since f is convex, it is continuous on intDomf ,
whence T has a nonempty interior. The point
(x̄, f(x̄)) clearly does not belong to this inte-
rior, whence S = {(x̄, f(x̄))} can be separated
from T : there exists (α, β) 6= 0 such that

αT x̄ + βf(x̄) ≤ αTx + βt ∀(x, t ≥ f(x)) (∗)
Clearly β ≥ 0 (otherwise (∗) will be impossi-
ble when x = x̄ and t > f(x̄) is large).
Claim: β > 0. Indeed, with β = 0, (*) implies

αT x̄ ≤ αTx ∀x ∈ Domf (∗∗)
Since (α, β) 6= 0 and β = 0, we have α 6= 0;
but then (∗∗) contradicts x̄ ∈ intDomf .
♦Since β > 0, (∗) implies that if g = β−1α,
then

gT x̄ + f(x̄) ≤ gTx + f(x) ∀x ∈ Domf,

that is,

f(x) ≥ f(x̄) + (x− x̄)Tg ∀x.



Elementary Calculus of Subgradients

♦If gi ∈ ∂fi(x) and λi ≥ 0, then
∑

i

λigi ∈ ∂(
∑

i

λifi)(x)

♦If gα ∈ ∂fα(x), α ∈ A,

f(·) = sup
α∈A

fα(·)

and

f(x) = fα(x), α ∈ A∗(x) 6= ∅,
then every convex combination of vectors gα,

α ∈ A∗(x), is a subgradient of f at x

♦If gi ∈ domfi(x), i = 1, ..., m, and F (y1, ..., ym)

is convex and monotone and 0 ≤ d ∈
∂F (f1(x), ..., fm(x)), then the vector

∑

i

digi

is a subgradient of F (f1(·), ..., fm(·)) at x.



Convex Programming

Lagrange Duality

Saddle Points

♣ Mathematical Programming program is

f∗ = min
x





f(x) :
g(x) ≡ (g1(x), ..., gm(x))T ≤ 0
h(x) = (h1(x), ..., hk(x))

T = 0
x ∈ X





(P )

♦x is the design vector. Values of x are called

solutions to (P )

♦f(x) is the objective

♦g(x) ≡ (g1(x), ..., gm(x))T ≤ 0 – inequality con-

straints

♦h(x) = (h1(x), ..., hk(x))
T = 0 – equality con-

straints

♦X ⊂ Rn – domain. We always assume that

the objective and the constraints are well-

defined on X.



f∗ = min
x





f(x) :
g(x) ≡ (g1(x), ..., gm(x))T ≤ 0
h(x) = (h1(x), ..., hk(x))

T = 0
x ∈ X





(P )

♣ Solution x is called feasible, if it satisfies all

the constraints. Problem which has feasible

solutions is called feasible.

♣ If the objective is (below) bounded on

the set of feasible solutions, (P ) is called

bounded.

♣ The optimal value f∗ is

f∗ =

{
inf
x
{f(x) : x is feasible} , (P ) is feasible

+∞, otherwise

f∗ is a real for feasible and bounded problem,

is −∞ for feasible unbounded problem, and

is +∞ for infeasible problem.

♣ Optimal solution of (P ) is a feasible solu-

tion x∗ such that f(x∗) = f∗. Problem which

has optimal solutions is called solvable.



f∗ = min
x





f(x) :
g(x) ≡ (g1(x), ..., gm(x))T ≤ 0
h(x) = (h1(x), ..., hk(x))

T = 0
x ∈ X





(P )

♣ Problem (P ) is called convex, if

♦X is a convex subset of Rn

♦f(·), g1(·),...,gm(·) are convex real-valued

functions on X

♦There are no equality constraints

[we could allow linear equality constraints,

but this does not add generality]



Preparing tools for Lagrange Duality:

Convex Theorem on Alternative

♣ Question: How to certify insolvability of

the system

f(x) < c
gj(x) ≤ 0, j = 1, ..., m

x ∈ X
(I)

♣ Answer: Assume that there exist nonnegative

weights λj, j = 1, ..., m, such that the in-

equality

f(x) +
m∑

j=1

λjgj(x) < c

has no solutions in X:

∃λj ≥ 0 : inf
x∈X

[f(x) +
m∑

j=1

λjgj(x)] ≥ c.

Then (I) is insolvable.



♣ Convex Theorem on Alternative: Consider

a system of constraints on x

f(x) < c
gj(x) ≤ 0, j = 1, ..., m

x ∈ X
(I)

along with system of constraints on λ:

inf
x∈X

[f(x) +
m∑

j=1
λjgj(x)] ≥ c

λj ≥ 0, j = 1, ..., m
(II)

♦[Trivial part] If (II) is solvable, then (I) is

insolvable

♦[Nontrivial part] If (I) is insolvable and sys-

tem (I) is convex:

— X is convex set

— f , g1, ..., gm are real-valued convex func-

tions on X

and the subsystem

gj(x) < 0, j = 1, ..., m,
x ∈ X

is solvable [Slater condition], then (II) is

solvable.



f(x) < c
gj(x) ≤ 0, j = 1, ..., m

x ∈ X
(I)

Proof of Nontrivial part: Assume that (I)

has no solutions. Consider two sets in Rm+1:

T︷ ︸︸ ︷



u ∈ Rm+1 : ∃x ∈ X :

f(x) ≤ u0
g1(x) ≤ u1

..........
gm(x) ≤ um





{
u ∈ Rm+1 : u0 < c, u1 ≤ 0, ..., um ≤ 0

}
︸ ︷︷ ︸

S

Observations: ♦S, T are convex and nonempty

♦S, T do not intersect (otherwise (I) would

have a solution)

Conclusion: S and T can be separated:

∃(a0, ..., am) 6= 0 : inf
u∈T

aTu ≥ sup
u∈S

aTu



T︷ ︸︸ ︷



u ∈ Rm+1 : ∃x ∈ X :

f(x) ≤ u0
g1(x) ≤ u1

..........
gm(x) ≤ um





{
u ∈ Rm+1 : u0 < c, u1 ≤ 0, ..., um ≤ 0

}
︸ ︷︷ ︸

S

∃(a0, ..., am) 6= 0 :
inf
x∈X

inf
u0 ≥ f(x)
u1 ≥ g1(x)

...
um ≥ gm(x)

[a0u0 + a1u1 + ... + amum]

≥ sup
u0 < c
u1 ≤ 0

...
um ≤ 0

[a0u0 + a1u1 + ... + amum]

Conclusion: a ≥ 0, whence

inf
x∈X

[a0f(x) + a1g1(x) + ... + amgm(x)] ≥ a0c.



Summary:

∃a ≥ 0, a 6= 0 :
inf
x∈X

[a0f(x) + a1g1(x) + ... + amgm(x)] ≥ a0c

Observation: a0 > 0.

Indeed, otherwise 0 6= (a1, ..., am) ≥ 0 and

inf
x∈X

[a1g1(x) + ... + amgm(x)] ≥ 0,

while ∃x̄ ∈ X : gj(x̄) < 0 for all j.

Conclusion: a0 > 0, whence

inf
x∈X

[
f(x) +

m∑

j=1

[
aj

a0

]

︸ ︷︷ ︸
λj≥0

gj(x)
]
≥ c.



Lagrange Function

♣ Consider optimization program

Opt(P ) = min
{
f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X

}
.

(P )
and associate with it Lagrange function

L(x, λ) = f(x) +
m∑

j=1

λjgj(x)

along with the Lagrange Dual problem

Opt(D) = max
λ≥0

L(λ), L(λ) = inf
x∈X

L(x, λ)

(D)

♣ Convex Programming Duality Theorem:
♦[Weak Duality] For every λ ≥ 0, L(λ) ≤
Opt(P ). In particular,

Opt(D) ≤ Opt(P )

♦[Strong Duality] If (P ) is convex and below
bounded and satisfies Slater condition, then
(D) is solvable, and

Opt(D) = Opt(P ).



Opt(P ) = min {f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X} (P )
⇓

L(x, λ) = f(x) +
∑
j

λjgj(x)

⇓
Opt(D) = max

λ≥0

[
inf
x∈X

L(x, λ)

]

︸ ︷︷ ︸
L(λ)

(D)

Weak Duality: “Opt(D) ≤ Opt(P )”: There

is nothing to prove when (P ) is infeasible,

that is, when Opt(P ) = ∞. If x is feasible for

(P ) and λ ≥ 0, then L(x, λ) ≤ f(x), whence

λ ≥ 0 ⇒ L(λ) ≡ inf
x∈X

L(x, λ)

≤ inf
x∈X is feasible

L(x, λ)

≤ inf
x∈X is feasible

f(x)

= Opt(P )
⇒ Opt(D) = sup

λ≥0
L(λ) ≤ Opt(D).



Opt(P ) = min {f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X} (P )
⇓

L(x, λ) = f(x) +
∑
j

λjgj(x)

⇓
Opt(D) = max

λ≥0

[
inf
x∈X

L(x, λ)

]

︸ ︷︷ ︸
L(λ)

(D)

Strong Duality: “If (P ) is convex and below
bounded and satisfies Slater condition, then
(D) is solvable and Opt(D) = Opt(P )”:
The system

f(x) < Opt(P ), gj(x) ≤ 0, j = 1, ..., m, x ∈ X

has no solutions, while the system

gj(x) < 0, j = 1, ..., m, x ∈ X

has a solution. By CTA,

∃λ∗ ≥ 0 : f(x) +
∑

j

λ∗jgj(x) ≥ Opt(P ) ∀x ∈ X,

whence

L(λ∗) ≥ Opt(P ). (∗)
Combined with Weak Duality, (∗) says that

Opt(D) = L(λ∗) = Opt(P ).



Opt(P ) = min {f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X} (P )
⇓

L(x, λ) = f(x) +
∑
j

λjgj(x)

⇓
Opt(D) = max

λ≥0

[
inf
x∈X

L(x, λ)

]

︸ ︷︷ ︸
L(λ)

(D)

Note: The Lagrange function “remembers”,

up to equivalence, both (P ) and (D).

Indeed,

Opt(D) = sup
λ≥0

inf
x∈X

L(x, λ)

is given by the Lagrange function. Now con-

sider the function

L(x) = sup
λ≥0

L(x, λ) =

{
f(x), gj(x) ≤ 0, j ≤ m
+∞, otherwise

(P ) clearly is equivalent to the problem of

minimizing L(x) over x ∈ X:

Opt(P ) = inf
x∈X

sup
λ≥0

L(x, λ)



Saddle Points

♣ Let X ⊂ Rn, Λ ⊂ Rm be nonempty sets, and

let F (x, λ) be a real-valued function on X×Λ.

This function gives rise to two optimization

problems

Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)
︸ ︷︷ ︸

F (λ)

(D)



Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)
︸ ︷︷ ︸

F (λ)

(D)

Game interpretation: Player I chooses x ∈ X,
player II chooses λ ∈ Λ. With choices of the
players x, λ, player I pays to player II the sum
of F (x, λ). What should the players do to
optimize their wealth?
♦If Player I chooses x first, and Player II
knows this choice when choosing λ, II will
maximize his profit, and the loss of I will be
F (x). To minimize his loss, I should solve
(P ), thus ensuring himself loss Opt(P ) or
less.
♦If Player II chooses λ first, and Player I
knows this choice when choosing x, I will
minimize his loss, and the profit of II will be
F (λ). To maximize his profit, II should solve
(D), thus ensuring himself profit Opt(D) or
more.



Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)
︸ ︷︷ ︸

F (λ)

(D)

Observation: For Player I, second situation
seems better, so that it is natural to guess
that his anticipated loss in this situation is ≤
his anticipated loss in the first situation:

Opt(D) ≡ sup
λ∈Λ

inf
x∈X

F (x, λ) ≤ inf
x∈X

sup
λ∈Λ

F (x, λ) ≡ Opt(P ).

This indeed is true: assuming Opt(P ) < ∞
(otherwise the inequality is evident),

∀(ε > 0) : ∃xε ∈ X : sup
λ∈Λ

F (xε, λ) ≤ Opt(P ) + ε

⇒ ∀λ ∈ Λ : F (λ) = inf
x∈X

F (x, λ) ≤ F (xε, λ) ≤ Opt(P ) + ε

⇒ Opt(D) ≡ sup
λ∈Λ

F (λ) ≤ Opt(P ) + ε

⇒ Opt(D) ≤ Opt(P ).



Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)
︸ ︷︷ ︸

F (λ)

(D)

♣ What should the players do when making

their choices simultaneously?

A “good case” when we can answer this

question – F has a saddle point.

Definition: We call a point (x∗, λ∗) ∈ X ×Λ a

saddle point of F , if

F (x, λ∗) ≥ F (x∗, λ∗) ≥ F (x∗, λ) ∀(x ∈ X, λ ∈ Λ).

In game terms, a saddle point is an equi-

librium – no one of the players can improve

his wealth, provided the adversary keeps his

choice unchanged.

Proposition: F has a saddle point if and only

if both (P ) and (D) are solvable with equal

optimal values. In this case, the saddle points

of F are exactly the pairs (x∗, λ∗), where x∗
is an optimal solution to (P ), and λ∗ is an

optimal solution to (D).



Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)
︸ ︷︷ ︸

F (λ)

(D)

Proof, ⇒: Assume that (x∗, λ∗) is a saddle

point of F , and let us prove that x∗ solves

(P ), λ∗ solves (D), and Opt(P ) = Opt(D).

Indeed, we have

F (x, λ∗) ≥ F (x∗, λ∗) ≥ F (x∗, λ) ∀(x ∈ X, λ ∈ Λ)

whence

Opt(P ) ≤ F (x∗) = sup
λ∈Λ

F (x∗, λ) = F (x∗, λ∗)

Opt(D) ≥ F (λ∗) = inf
x∈X

F (x, λ∗) = F (x∗, λ∗)

Since Opt(P ) ≥ Opt(D), we see that all in-

equalities in the chain

Opt(P ) ≤ F (x∗) = F (x∗, λ∗) = F (λ∗) ≤ Opt(D)

are equalities. Thus, x∗ solves (P ), λ∗ solves

(D) and Opt(P ) = Opt(D).



Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)
︸ ︷︷ ︸

F (λ)

(D)

Proof, ⇐. Assume that (P ), (D) have op-

timal solutions x∗, λ∗ and Opt(P ) = Opt(D),

and let us prove that (x∗, λ∗) is a saddle point.

We have

Opt(P ) = F (x∗) = sup
λ∈Λ

F (x∗, λ) ≥ F (x∗, λ∗)

Opt(D) = F (λ∗) = inf
x∈X

F (x, λ∗) ≤ F (x∗, λ∗)
(∗)

Since Opt(P ) = Opt(D), all inequalities in

(∗) are equalities, so that

sup
λ∈Λ

F (x∗, λ) = F (x∗λ∗) = inf
x∈X

F (x, λ∗).



Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X

}
(P )

⇓
L(x, λ) = f(x) +

m∑
j=1

λjgj(x)

Theorem [Saddle Point form of Optimality

Conditions in Convex Programming]

Let x∗ ∈ X.

♦[Sufficient optimality condition] If x∗ can be

extended, by a λ∗ ≥ 0, to a saddle point of

the Lagrange function on X × {λ ≥ 0}:

L(x, λ∗) ≥ L(x∗, λ∗) ≥ L(x∗, λ) ∀(x ∈ X, λ ≥ 0),

then x∗ is optimal for (P ).

♦[Necessary optimality condition] If x∗ is op-

timal for (P ) and (P ) is convex and satis-

fies the Slater condition, then x∗ can be ex-

tended, by a λ∗ ≥ 0, to a saddle point of the

Lagrange function on X × {λ ≥ 0}.



Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X

}
(P )

⇓
L(x, λ) = f(x) +

m∑
j=1

λjgj(x)

Proof, ⇒: “Assume x∗ ∈ X and ∃λ∗ ≥ 0 :

L(x, λ∗) ≥ L(x∗, λ∗) ≥ L(x∗, λ) ∀(x ∈ X, λ ≥ 0).

Then x∗ is optimal for (P ).”

Clearly, sup
λ≥0

L(x∗, λ) =

{
+∞, x∗ is infeasible
f(x∗), otherwise

Thus, λ∗ ≥ 0 & L(x∗, λ∗) ≥ L(x∗, λ) ∀λ ≥ 0 is
equivalent to

gj(x∗) ≤ 0∀j & λ∗jgj(x∗) = 0∀j.
Consequently, L(x∗, λ∗) = f(x∗), whence

L(x, λ∗) ≥ L(x∗, λ∗) ∀x ∈ X

reads as

L(x, λ∗) ≥ f(x∗) ∀x. (∗)
Since for λ ≥ 0 one has f(x) ≥ L(x, λ) for all
feasible x, (∗) implies that

x is feasible ⇒ f(x) ≥ f(x∗).



Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X

}
(P )

⇓
L(x, λ) = f(x) +

m∑
j=1

λjgj(x)

Proof, ⇐: Assume x∗ is optimal for convex
problem (P ) satisfying the Slater condition.
Then ∃λ∗ ≥ 0 :

L(x, λ∗) ≥ L(x∗, λ∗) ≥ L(x∗, λ) ∀(x ∈ X, λ ≥ 0).

By Lagrange Duality Theorem, ∃λ∗ ≥ 0:

f(x∗) = L(λ∗) ≡ inf
x∈X


f(x) +

∑

j

λ∗jgj(x)


 . (∗)

Since x∗ is feasible, we have

inf
x∈X


f(x) +

∑

j

λ∗jgj(x)


 ≤ f(x∗)+

∑

j

λ∗jgj(x∗) ≤ f(x∗).

By (∗), the last ” ≥ ” here is ” = ”, which
with λ∗ ≥ 0 is possible iff λ∗jgj(x∗) = 0∀j

⇒ f(x∗) = L(x∗, λ∗) ≥ L(x∗, λ) ∀λ ≥ 0.

Now (∗) reads L(x, λ∗) ≥ f(x∗) = L(x∗, λ∗).



Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X

}
(P )

⇓
L(x, λ) = f(x) +

m∑
j=1

λjgj(x)

Theorem [Karush-Kuhn-Tucker Optimality Con-

ditions in Convex Programming] Let (P ) be

a convex program, let x∗ be its feasible so-

lution, and let the functions f , g1,...,gm be

differentiable at x∗. Then

♦The Karush-Kuhn-Tucker condition:

Exist Lagrange multipliers λ∗ ≥ 0 such that

∇f(x∗) +
m∑

j=1
λ∗j∇gj(x∗) ∈ N∗

X(x∗)

λ∗jgj(x∗) = 0, j ≤ m [complementary slackness]

is sufficient for x∗ to be optimal.

♦If (P ) satisfies restricted Slater condition:

∃x̄ ∈ rint X : gj(x̄) ≤ 0 for all constraints and

gj(x̄) < 0 for all nonlinear constraints,

then the KKT is necessary and sufficient for

x∗ to be optimal.



Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X

}
(P )

⇓
L(x, λ) = f(x) +

m∑
j=1

λjgj(x)

Proof, ⇒: Let (P ) be convex, x∗ be feasible,
and f , gj be differentiable at x∗. Assume also
that the KKT holds:
Exist Lagrange multipliers λ∗ ≥ 0 such that

(a) ∇f(x∗) +
m∑

j=1
λ∗j∇gj(x∗) ∈ N∗

X(x∗)

(b) λ∗jgj(x∗) = 0, j ≤ m [complementary slackness]

Then x∗ is optimal.
Indeed, complementary slackness plus λ∗ ≥ 0
ensure that

L(x∗, λ∗) ≥ L(x∗, λ) ∀λ ≥ 0.

Further, L(x, λ∗) is convex in x ∈ X and dif-
ferentiable at x∗ ∈ X, so that (a) implies that

L(x, λ∗) ≥ L(x∗, λ∗) ∀x ∈ X.

Thus, x∗ can be extended to a saddle point
of the Lagrange function and therefore is op-
timal for (P ).



Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X

}
(P )

⇓
L(x, λ) = f(x) +

m∑
j=1

λjgj(x)

Proof, ⇐ [under Slater condition] Let (P )
be convex and satisfy the Slater condition, let
x∗ be optimal and f , gj be differentiable at
x∗. Then
Exist Lagrange multipliers λ∗ ≥ 0 such that

(a) ∇f(x∗) +
m∑

j=1
λ∗j∇gj(x∗) ∈ N∗

X(x∗)

(b) λ∗jgj(x∗) = 0, j ≤ m [complementary slackness]

By Saddle Point Optimality condition, from
optimality of x∗ it follows that ∃λ∗ ≥ 0 such
that (x∗, λ∗) is a saddle point of L(x, λ) on
X × {λ ≥ 0}. This is equivalent to

λ∗jgj(x∗) = 0 ∀j & min
x∈X

L(x, λ∗) = L(x∗, λ∗)
︸ ︷︷ ︸

(∗)
Since the function L(x, λ∗) is convex in x ∈
X and differentiable at x∗ ∈ X, relation (∗)
implies (a).



♣ Application example: Assuming ai > 0, p ≥
1, let us solve the problem

min
x





∑

i

ai

xi
: x > 0,

∑

i

x
p
i ≤ 1





Assuming x∗ > 0 is a solution such that∑
i
(x∗i )p = 1, the KKT conditions read

∇x

{
∑
i

ai
xi

+ λ(
∑
i

x
p
i − 1)

}
= 0 ⇔ ai

x2
i
= pλx

p−1
i

∑
i

x
p
i = 1

whence xi = c(λ)a
1

p+1
i . Since

∑
i

x
p
i should be

1, we get

x∗i =
a

1
p+1
i

(
∑
j

a
p

p+1
j

)1
p

.

This point is feasible, problem is convex,

KKT at the point is satisfied

⇒ x∗ is optimal!



Existence of Saddle Points

♣ Theorem [Sion-Kakutani] Let X ⊂ Rn,
Λ ⊂ Rm be nonempty convex closed sets and
F (x, λ) : X × Λ → R be a continuous func-
tion which is convex in x ∈ X and concave in
λ ∈ Λ.
Assume that X is compact, and that there
exists x̄ ∈ X such that all the sets

Λa : {λ ∈ Λ : F (x̄, λ) ≥ a}
are bounded (e.g., Λ is bounded).
Then F possesses a saddle point on X → Λ.
Proof:
MiniMax Lemma: Let fi(x), i = 1, ..., m, be
convex continuous functions on a convex
compact set X ⊂ Rn. Then there exists
µ∗ ≥ 0 with

∑
i

µ∗i = 1 such that

min
x∈X

max
1≤i≤m

fi(x) = min
x∈X

∑

i

µ∗i fi(x)

Note: When µ ≥ 0,
∑
i

µi = 1, one has

max
1≤i≤m

fi(x) ≥
∑
i

µifi(x)

⇒ min
x∈X

max
i

fi(x) ≥ min
x∈X

∑
i

µifi(x)



Proof of MinMax Lemma: Consider the

optimization program

min
t,x

{
t : fi(x)− t ≤ 0, i ≤ m, (t, x) ∈ X+

}
,

X+ = {(t, x) : x ∈ X}
(P )

This program clearly is convex, solvable and

satisfies the Slater condition, whence there

exists λ∗ ≥ 0 and an optimal solution (x∗, t∗)
to (P ) such that (x∗, λ∗) is the saddle point

of the Lagrange function on X+ × {λ ≥ 0}:

min
x∈X,t

{
t +

∑
i

λ∗i (fi(x)− t)

}
= t∗ +

∑
i

λ∗i (fi(x∗)− t∗) (a)

max
λ≥0

{
t +

∑
i

λi(fi(x)− t)

}
= t∗ +

∑
i

λ∗i (fi(x∗)− t∗) (b)

(b) implies that t∗ +
∑
i

λ∗i (fi(x∗)− t∗) = t∗.

(a) implies that
∑
i

λ∗i = 1 and therefore im-

plies that

min
x∈X

∑

i

λ∗i fi(x) = t∗ = min
x∈X

max
i

fi(x).



Proof of Sion-Kakutani Theorem: We

should prove that problems

Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)
︸ ︷︷ ︸

F (λ)

(D)

are solvable with equal optimal values.

10. Since X is compact and F (x, λ) is con-

tinuous on X × λ, the function F (λ) is con-

tinuous on Λ. Besides this, the sets

Λa = {λ ∈ Λ : F (λ) ≥ a}
are contained in the sets

Λa = {λ ∈ Λ : F (x̄, λ) ≥ a}
and therefore are bounded. Finally, Λ is

closed, so that the continuous function F (·)
with bounded level sets Λa attains it maxi-

mum on a closed set Λ. Thus, (D) is solv-

able; let λ∗ be an optimal solution to (D).



20. Consider the sets

X(λ) = {x ∈ X : F (x, λ) ≤ Opt(D)}.
These are closed convex subsets of a com-

pact set X. Let us prove that every finite

collection of these sets has a nonempty in-

tersection. Indeed, assume that

X(λ1) ∩ ... ∩X(λN) = ∅.
so that

max
j=1,...,N

F (x, λj) > Opt(D).

By MinMax Lemma, there exist weights µj ≥
0,

∑
j

µj = 1, such that

min
x∈X

∑

j

µjF (x, λj)

︸ ︷︷ ︸
≥F (x,

∑

j

µjλ
j

︸ ︷︷ ︸
λ̄

)

> Opt(D)

which is impossible.



30. Since every finite collection of closed

convex subsets X(λ) of a compact set has a

nonempty intersection, all those sets have a

nonempty intersection:

∃x∗ ∈ X : F (x∗, λ) ≤ Opt(D) ∀λ.

Due to Opt(P ) ≥ Opt(D), this is possible iff

x∗ is optimal for (P ) and Opt(P ) = Opt(D).



Optimality Conditions in Mathematical
Programming

♣ Situation: We are given a Mathematical
Programming problem

min
x





f(x) :
(g1(x), g2(x), ..., gm(x)) ≤ 0

(h1(x), ..., hk(x)) = 0
x ∈ X





.

(P )

Question of interest: Assume that we are
given a feasible solution x∗ to (P ). What
are the conditions (necessary, sufficient, nec-
essary and sufficient) for x∗ to be optimal?
Fact: Except for convex programs, there are
no verifiable local sufficient conditions for
global optimality. There exist, however,
♦verifiable local necessary conditions for lo-
cal (and thus – for global) optimality
♦verifiable local sufficient conditions for lo-
cal optimality
Fact: Existing conditions for local optimality
assume that x∗ ∈ intX, which, from the view-
point of local optimality of x∗, is exactly the
same as to say that X = Rn.



♣ Situation: We are given a Mathematical

Programming problem

min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
.

(P )

and a feasible solution x∗ to the problem, and

are interested in necessary/sufficient condi-

tions for local optimality of x∗:
There exists r > 0 such that for every feasible

x with ‖x− x∗‖ ≤ r one has

f(x) ≥ f(x∗).

Default assumption: The objective and all

the constraints are continuously differen-

tiable in a neighbourhood of x∗.



min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
.

(P )

♣ First Order Optimality Conditions are ex-

pressed via values and gradients of the ob-

jective and the constraints at x∗. Except for

convex case, only necessary First Order con-

ditions are known.



min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
.

(P )

The idea:

♦Assume that x∗ is locally optimal for (P ).

Let us approximate (P ) around x∗ by a Linear

Programming program

min
x

f(x∗) + (x− x∗)Tf ′(x∗)
s.t.

0︷ ︸︸ ︷
gj(x∗)+(x− x∗)Tg′j(x∗) ≤ 0, j ∈ J(x∗)
hi(x∗)︸ ︷︷ ︸

0

+(x− x∗)Th′i(x∗) = 0, 1 ≤ i ≤ k

[
J(x∗) = {j : gj(x∗) = 0}

]

(LP )

Note: Since all gj(·) are continuous at x∗, the

non-active at x∗ inequality constraints (those

with gj(x∗) < 0) do not affect (LP ).



min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

⇒ min
x




(x− x∗)Tf ′(x∗) :

(x− x∗)Tg′j(x∗) ≤ 0,
j ∈ J(x∗)
(x− x∗)Th′i(x∗) = 0,
i = 1, ..., k





(LP )

J(x∗) = {j : gj(x∗) = 0}
♦It is natural to guess that if x∗ is locally
optimal for (P ), then x∗ is locally optimal for
(LP ) as well.
LP is a convex program with affine con-
straints, whence the KKT conditions are nec-
essary and sufficient for optimality:

x∗ is optimal for (LP )
m

∃(λ∗j ≥ 0, j ∈ J(x∗), µi) :

f ′(x∗) +
∑

j∈J(x∗)
λ∗jg′j(x∗) +

k∑
i=1

µih
′
i(x∗) = 0

m
∃(λ∗j ≥ 0, µ∗i ) :

f ′(x∗) +
∑
j

λ∗jg′j(x∗) +
∑
i

µ∗i h′i(x∗) = 0

λ∗jgj(x∗) = 0, j = 1, ..., m



min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}

(P )

Proposition. Let x∗ be a locally optimal so-

lution of (P ).

Assume that x∗ remains locally optimal when

passing from (P ) to the linearized problem

min
x




(x− x∗)Tf ′(x∗) :

(x− x∗)Tg′j(x∗) ≤ 0,
j ∈ J(x∗)
(x− x∗)Th′i(x∗) = 0,
i = 1, ..., k





(LP )

Then at x∗ the KKT condition holds:

∃(λ∗j ≥ 0, µ∗i ) :

f ′(x∗) +
∑
j

λ∗jg′j(x∗) +
∑
i

µ∗i h′i(x∗) = 0

λ∗jgj(x∗) = 0, j = 1, ..., m



min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

min
x





(x− x∗)Tf ′(x∗) :

(x− x∗)Tg′j(x∗) ≤ 0,
j ∈ J(x∗)
(x− x∗)Th′i(x∗) = 0,
i = 1, ..., k





(LP )

To make Proposition useful, we need a ver-

ifiable sufficient condition for “x∗ remains

locally optimal when passing from (P ) to

(LP )”.

The most natural form of such a condition is

regularity:

Gradients, taken at x∗, of all constraints ac-

tive at x∗ are linearly independent.

Of course, all equality constraints by defini-

tion are active at every feasible solution.



min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

min
x





(x− x∗)Tf ′(x∗) :

(x− x∗)Tg′j(x∗) ≤ 0,
j ∈ J(x∗)
(x− x∗)Th′i(x∗) = 0,
i = 1, ..., k





(LP )

Proposition: Let x∗ be a locally optimal reg-

ular solution of (P ). Then x∗ is optimal for

(LP ) and, consequently, the KKT conditions

take place at x∗.
Proof is based on an important fact of Anal-

ysis – a version of Implicit Function Theorem.



Theorem: Let x∗ ∈ Rn and let p`(x), ` =

1, ..., L, be real-valued functions such that

♦p` are κ ≥ 1 times continuously differen-

tiable in a neighbourhood of x∗
♦p`(x∗) = 0

♦vectors ∇p`(x∗), ` = 1, ..., L, are linearly in-

dependent.

Then there exists substitution of variables

y 7→ x = Φ(y)

defined in a neighbourhood V of the origin

and mapping V , in a one-to-one manner,

onto a neighbourhood B of x∗, such that

♦x∗ = Φ(0

♦both Φ : V → B and its inverse mapping

Φ−1 : B → V are κ times continuously differ-

entiable

♦in coordinates y, the functions p` become

just the coordinates:

y ∈ V ⇒ p`(Φ(y)) ≡ y`, ` = 1, ..., L.



min
x





(x− x∗)Tf ′(x∗) :

(x− x∗)Tg′j(x∗) ≤ 0,
j ∈ J(x∗)
(x− x∗)Th′i(x∗) = 0,
i = 1, ..., k





(LP )

Let x∗ be a regular locally optimal solution to

(P ); assume, on the contrary to what should

be proven, that x∗ is not an optimal solution

to (LP ), and let us lead this to contradiction.

10. Since x = x∗ is not an optimal solution

to (LP ), there exists a feasible solution x′ =
x∗+ d to the problem with (x′−x∗)Tf ′(x∗) =

dTf ′(x∗) < 0, so that

dTf ′(x∗) < 0, dTh′i(x∗) = 0︸ ︷︷ ︸
∀i

, dTg′j(x∗) ≤ 0︸ ︷︷ ︸
∀j∈J(x∗)



dTf ′(x∗) < 0, dTh′i(x∗) = 0︸ ︷︷ ︸
∀i

, dTg′j(x∗) < 0︸ ︷︷ ︸
∀j∈J(x∗)

20. W.l.o.g., assume that J(x∗) = {1, ..., `}.
By Theorem, there exist continuously differ-

entiable local substitution of argument

x = Φ(y) [Φ(0) = x∗]

with a continuously differentiable in a neigh-

bourhood of x∗ inverse y = Ψ(x) such that

in a neighbourhood of origin one has

hi(Φ(y)) ≡ yi, gj(Φ(y)) = yk+j, j = 1, ..., `.

Since Ψ(Φ(y)) ≡ y, we have Ψ′(x∗)Φ′(0) =

I, whence

∃e : Φ′(0)e = d.



Situation: We have found a smooth local sub-
stitution of argument x = Φ(y) (y = 0 cor-
responds to x = x∗) and a direction e such
that in a neighbourhood of y = 0 one has

(a) hi(Φ(y)) ≡ yi, i ≤ k
(b) gj(Φ(y)) ≡ yk+j, j ≤ `

[J(x∗) = {1, ..., `}]
(c) [Φ′(0)e]Th′i(x∗) = 0, i ≤ k

(d) [Φ′(0)e]Tg′j(x∗) < 0, j ≤ `

(e) [Φ′(0)e]Tf ′(x∗) < 0

Consider the differentiable curve

x(t) = Φ(te).

We have

tei ≡ hi(Φ(te)) ⇒ ei = [Φ′(0)e]Th′i(x∗) = 0
tek+j ≡ gj(Φ(te)) ⇒ ek+j = [Φ′(0)e]Tg′j(x∗) < 0

⇒ hi(x(t)) = tei = 0︸ ︷︷ ︸
∀i

, gj(x(t)) = tek+j ≤ 0︸ ︷︷ ︸
∀j∈J(x∗)

Thus, x(t) is feasible for all small t ≥ 0. But:

d

dt

∣∣∣
t=0

f(x(t)) = [Φ′(0)e]Tf ′(x∗) < 0,

whence f(x(t)) < f(x(0)) = f(x∗) for all
small enough t > 0, which is a contradiction
with local optimality of x∗.



Second Order Optimality Conditions

♣ In the case of unconstrained minimization
problem

min
x

f(x) (P )

with continuously differentiable objective, the
KKT conditions reduce to Fermat Rule: If x∗
is locally optimal for (P ), then ∇f(x∗) = 0.

Fermat Rule is the “first order” part of Sec-
ond Order Necessary Optimality Condition in
unconstrained minimization:
If x∗ is locally optimal for (P ) and f is twice
differentiable in a neighbourhood of x∗, then

∇f(x∗) = 0 & ∇2f(x∗) º 0 ⇔ dT∇2f(x∗)d ≥ 0∀d

Indeed, let x∗ be locally optimal for (P ); then
for appropriate rd > 0

0 ≤ t ≤ rd
⇒ 0 ≤ f(x∗ + td)− f(x∗)

= t dT∇f(x∗)︸ ︷︷ ︸
=0

+1
2t2dT∇2f(x∗)d + t2 Rd(t)︸ ︷︷ ︸

→0,
t→0

⇒ 1
2dT∇2f(x∗)d + Rd(t) ≥ 0 ⇒ dT∇2f(x∗)d ≥ 0



min
x

f(x) (P )

The necessary Second Order Optimality con-
dition in unconstrained minimization can be
strengthened to
Second Order Sufficient Optimality Condition
in unconstrained minimization: Let f be
twice differentiable in a neighbourhood of x∗.
If

∇f(x∗) = 0,∇2f(x∗) Â 0 ⇔ dT∇2f(x∗)d > 0∀d 6= 0

then x∗ is locally optimal for (P ).
Proof: Since dT∇2f(x∗)d > 0 for all d > 0,
then there exists α > 0 such that dT∇2f(x∗)d ≥
αdTd for all d.
By differentiability, for every ε > 0 there ex-
ists rε > 0 such that

‖d‖2 ≤ rε

⇒ f(x∗ + d)− f(x∗) ≥ dT∇f(x∗)︸ ︷︷ ︸
=0

+1
2 dT∇2f(x∗)d︸ ︷︷ ︸

≥αdT d

− ε
2dTd

⇒ f(x∗ + d)− f(x∗) ≥ 1
2(α− ε)dTd

Setting ε = α
2, we see that x∗ is a local mini-

mizer of f .



We are given a Mathematical Programming
problem

min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

⇓
L(x;λ, µ) = f(x) +

∑
j

λjgj(x) +
∑
i

µihi(x)

♣ In Optimality Conditions for a constrained
problem (P ), the role of ∇2f(x∗) is played by
the Hessian of the Lagrange function:
Second Order Necessary Optimality Condition:
Let x∗ be a regular feasible solution of (P )
such that the functions f, gj, hi are twice con-
tinuously differentiable in a neighbourhood of
x∗. If x∗ is locally optimal, then
♦There exist uniquely defined Lagrange mul-
tipliers λ∗j ≥ 0, µ∗i such that the KKT condi-
tions hold:

∇xL(x∗;λ∗, µ∗) = 0
λ∗jgj(x∗) = 0, j = 1, ..., m

♦For every d orthogonal to the gradients,
taken at x∗, of all active at x∗ equality and
inequality constraints, one has

dT∇2
xL(x∗;λ∗, µ∗)d ≥ 0.





Proof. 10. Constraints which are non-active

at x∗ clearly do not affect neither local opti-

mality of x∗, nor the conclusion to be proven.

Removing these constraints, we reduce the

situation to one where all constraints in the

problem

min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}

(P )

are active at x∗.
20. Applying Implicit Function Theorem, we

can find a local change of variables

x = Φ(y) ⇔ y = Ψ(x)

[Φ(0) = x∗,Ψ(x∗) = 0]

with locally twice continuously differentiable

Φ,Ψ such that

gj(Φ(y)) ≡ yj, j ≤ m, hi(Φ(y)) ≡ ym+i, i ≤ k.

In variables y, problem (P ) becomes

min
y

{
f(Φ(y))︸ ︷︷ ︸

φ(y)

: yj ≤ 0, j ≤ m, yk+i = 0, i ≤ k

}
.

(P ′)



min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

m [x = Φ(y)]

min
y

{
f(Φ(y))︸ ︷︷ ︸

φ(y)

: yj ≤ 0, j ≤ m, yk+i = 0, i ≤ k

}
(P ′)

⇓
M(y;λ, µ) = φ(y) +

∑
j

λjyj +
∑
i

µiym+i

Our plan is as follows:

♦Since Φ is a smooth one-to-one mapping

of a neighbourhood of x∗ onto a neighbour-

hood of y∗ = 0, x∗ is locally optimal for (P )

iff y∗ = 0 is locally optimal for (P ′).
♦We intend to build necessary/sufficient con-

ditions for y∗ = 0 to be locally optimal for

(P ′); “translated” to x-variables, these con-

ditions will imply necessary/sufficient condi-

tions for local optimality of x∗ for (P ).



min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

m [x = Φ(y)]

min
y

{
f(Φ(y))︸ ︷︷ ︸

φ(y)

: yj ≤ 0, j ≤ m, yk+i = 0, i ≤ k

}
(P ′)

⇓
M(y;λ, µ) = φ(y) +

∑
j

λjyj +
∑
i

µiym+i

30. Since x∗ = Φ(0) is locally optimal for
(P ), y∗ = 0 is locally optimal for (P ′). In
particular, if ei is i-th basic orth, then for
appropriate ε > 0:

j ≤ m ⇒ y(t) = −tej is feasible for (P ′) when

ε ≥ t ≥ 0 ⇒ −∂φ(0)
∂yt

= d
dt

∣∣∣
t=0

φ(y(t)) ≥ 0

⇒ λ∗j ≡ −∂φ(0)
∂yi

≥ 0

and

s > m + k ⇒ y(t) = tes is feasible for (P ′) when

ε ≥ t ≥ ε ⇒ ∂φ(0)
∂ys

= d
dt

∣∣∣
t=0

φ(y(t))= 0

Setting µ∗i = − ∂φ(0)
∂ym+i

, i = 1, ..., k, we get

λ∗ ≥ 0 & ∇yM(0;λ∗, µ∗) = 0. (KKT)



Situation: y∗ = 0 is locally optimal for

min
y

{
φ(y) ≡ f(Φ(y)) :

yj ≤ 0, j ≤ m
ym + i = 0, i ≤ k

}
(P ′)

⇓
M(y;λ, µ) = φ(y) +

m∑
j=1

λjyj +
k∑

i=1
µiym+i

and ∃λ∗ ≥ 0, µ∗:

0 =
∂M(0;λ∗, µ∗)

∂y`
≡





∂φ(0)
∂y`

+ λ∗j , ` ≤ m
∂φ(0)
∂y`

+ µ∗`−m, m < ` ≤ m + k
∂φ(0)
∂y`

, ` > m + k

(KKT)

Note that the condition ∇yM(0;λ∗, µ∗) = 0

defines λ∗, µ∗ are in a unique fashion.

40. We have seen that for (P ′), the first or-

der part of the Necessary Second Order Op-

timality condition holds true. Let us prove

the second order part of the condition, which

reads

∀(d : dT∇yy` = 0, ` ≤ m + k) :
dT∇2

yM(0;λ∗, µ∗)d ≥ 0.



Situation: y∗ = 0 is locally optimal solution
to the problem

min
y

{
φ(y) ≡ f(Φ(y)) :

yj ≤ 0, j ≤ m
ym + i = 0, i ≤ k

}

(P ′)
Claim:

∀(d : dT∇yy` = 0, ` ≤ m + k) :
dT∇2

yM(0;λ∗, µ∗)d ≥ 0.

This is evident: since M(y;λ∗, µ∗) = φ(y) +
m∑

j=1
λ∗jyj +

k∑
i=1

µ∗i ym+i, we have

∇2
yM(0;λ∗, µ∗) = ∇2φ(0).

Claim therefore states that dT∇2φ(0)d ≥ 0
for every vector d from the linear subspace
L = {d : d1 = ... = dm+k = 0}. But this
subspace is feasible for (P ′), so that φ, re-
stricted onto L, should attain unconstrained
local minimum at the origin. By Necessary
Second Order Optimality condition for un-
constrained minimization,

dT∇2φ(0)d ≥ 0 ∀d ∈ L.



min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

m [x = Φ(y)]

min
y

{
f(Φ(y))︸ ︷︷ ︸

φ(y)

: yj ≤ 0, j ≤ m, yk+i = 0, i ≤ k

}
(P ′)

⇓
M(y;λ, µ) = φ(y) +

∑
j

λjyj +
∑
i

µiym+i

50. We have seen that if x∗ is locally optimal
for (P ), then there exist uniquely defined λ∗ ≥
0, µ∗ such that

∇yM(0;λ∗, µ∗) = 0,

and one has

dT∇yy` = 0, ` ≤ m+k ⇒ dT∇2
yM(0;λ∗, µ∗)d ≥ 0.

Let us prove that then

∇xL(x∗;λ∗, µ∗) = 0 (∗)
and

eTg′j(x∗) = 0, j ≤ m

eTh′i(x∗) = 0, i ≤ k

}
⇒ eT∇2

xL(x∗);λ∗, µ∗)e ≥ 0.

(∗∗)



Given:

∇yM(0;λ∗, µ∗) = 0
dT∇yy` = 0, ` ≤ m + k ⇒ dT∇2

yM(0;λ∗, µ∗)d ≥ 0.

Should prove:

∇xL(x∗;λ∗, µ∗) = 0 (∗)
eTg′j(x∗) = 0, j ≤ m

eTh′i(x∗) = 0, i ≤ k

}
⇒ eT∇2

xL(x∗);λ∗, µ∗)e ≥ 0 (∗∗)

♦Setting L(x) = L(x;λ∗, µ∗), M(y) = M(y;λ∗, µ∗),
we have

L(x) = M(Ψ(x))
⇒ ∇xL(x∗) = [Ψ′(x∗)]T∇yM(y∗) = 0,

as required in (∗).
♦Let e satisfy the premise in (∗∗), and let
d = [Φ′(0)]−1e. Then

d
dt

∣∣∣
t=0

tdj
︷ ︸︸ ︷
d

dt

∣∣∣∣∣
t=0

gj(Φ(td)) = [g′j(x∗)]T
e︷ ︸︸ ︷

[Φ′(0)]d

⇒ dj = eTg′j(x∗) = 0, j ≤ m

d

dt

∣∣∣∣∣
t=0

hi(Φ(td))

︸ ︷︷ ︸
d
dt

∣∣∣
t=0

tdm+i

= [h′i(x∗)]T [Φ′(0)]d︸ ︷︷ ︸
e

⇒ dm+i = eTh′i(x∗) = 0, i ≤ k



We have

eT∇2L(x∗)e = d2

dt2

∣∣∣∣
t=0

L(x∗ + te) = d2

dt2

∣∣∣∣
t=0

M(Ψ(x∗ + te))

= d
dt

∣∣∣∣
t=0

[
eT [Ψ′(x∗ + te)]T∇M(Ψ(x∗ + te))

]

= eT [Ψ′(x∗)]T∇2M(0)[Ψ′(x∗)e]
+eT [ d

dtt=0
Ψ′(x∗ + te)]T ∇M(0)︸ ︷︷ ︸

=0
= dT∇2Md ≥ 0,

Thus, whenever e is orthogonal to the gra-

dients of all constraints active at x∗, we have

eT∇2Le ≥ 0.



Second Order Sufficient Condition for Local
Optimality

min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

⇓
L(x;λ, µ) = f(x) +

∑
j

λjgj(x) +
∑
i

µihi(x)

Second Order Sufficient Optimality Condition:
Let x∗ be a regular feasible solution of (P )
such that the functions f, gj, hi are twice con-
tinuously differentiable in a neighbourhood of
x∗. If there exist Lagrange multipliers λ∗j ≥ 0,
µ∗i such that
♦the KKT conditions hold:

∇xL(x∗;λ∗, µ∗) = 0
λ∗jgj(x∗) = 0, j = 1, ..., m

♦For every d 6= 0 orthogonal to the gradi-
ents, taken at x∗, of all active at x∗ equality
constraints and those active at x∗ inequality
constraints for which λ∗j > 0, one has

dT∇2
xL(x∗;λ∗, µ∗)d > 0

then x∗ is locally optimal for (P ).



Note: Difference between Sufficient and Nec-

essary optimality conditions is in their “sec-

ond order” parts and is twofold:

♦[minor difference] Necessary condition states

positive semidefiniteness of ∇2
xL(x∗;λ∗, µ∗)

along linear subspace:

∀d ∈ T = {d :

∀i≤k︷ ︸︸ ︷
dTh′i(x∗) = 0,

∀j∈J(x∗)︷ ︸︸ ︷
dTg′j(x∗) = 0} :

dT∇2
xL(x∗;λ∗, µ∗)d ≥ 0

while Sufficient condition requires positive

definiteness of ∇2
xL(x∗;λ∗, µ∗) along linear

subspace:

∀0 6= d ∈ T+ = {d :

∀i≤k︷ ︸︸ ︷
dTh′i(x∗) = 0,

∀j:λ∗j>0
︷ ︸︸ ︷
dTg′j(x∗) = 0} :

dT∇2
xL(x∗;λ∗, µ∗)d > 0

♦[major difference] The linear subspaces in

question are different, and T ⊂ T+; the sub-

spaces are equal to each other iff all active

at x∗ inequality constraints have positive La-

grange multipliers λ∗j .



Note: This “gap” is essential, as is shown by

example

min
x1,x2

{
f(x) = x2

2 − x2
1 : g1(x) = x1 ≤ 0

}

[x∗ = (0,0)T ]

Here the Necessary Second Order Optimal-

ity condition is satisfied “strictly”: L(x;λ) =

x2
2 − x2

1 + λx1, whence

λ∗ = 0 ⇒ ∇xL(x∗;λ∗) = 0,

T = {d : dTg′1(0) = 0} = {d : d1 = 0},
0 6= d ∈ T ⇒ dT∇2

xL(x∗;λ∗)d = d2
2 > 0}

while x∗ is not a local solution.



Proof of Sufficient Second Order Opti-

mality Condition. 10. As in the case of Sec-

ond Order Necessary Optimality Condition,

we can reduce the situation to one where

♦All inequality constraints are active at x∗
♦The problem is of the special form

min
y

{
φ(y) :

yj ≤ 0, j ≤ m
ym+i = 0, i ≤ k

}
(P ′)

20. In the case of (P ′), Sufficient condition
reads: ∃λ∗ ≥ 0, µ∗:

∇y

∣∣
y=0

{
φ(y) +

m∑
j=1

λ∗jyj +
k∑

i=1
µ∗i ym+i

}

dj = 0, j ∈ J, d 6= 0 ⇒ dT∇2φ(0)d > 0[
J = {j ≤ m : λ∗j > 0} ∪ {m + 1, ..., m + k}]

(∗)

Assuming w.l.o.g. {j : λ∗j > 0} = {1, ..., q}, (∗) reads:

∂φ(0)
∂y`

< 0, ` = 1, ..., q
∂φ(0)

∂y`
= 0, ` = q + 1, ..., m

∂φ(0)
∂y`

= 0, ` = m + k + 1, ..., n

0 6= d ∈ T+ = {d : d` = 0, ` ∈ {1, ..., q, m + 1, ..., m + k}} :
⇒ dT∇2φ(0)d > 0

Our goal is to derive from this assumption local opti-
mality of y∗ = 0 for (P ′).



20. The feasible set of (P ′) is the closed
cone

K = {d : d` ≤ 0, ` = 1, ..., m, d` = 0, ` = m+1, ..., m+k}

Lemma: For 0 6= d ∈ K one has dT∇φ(0) ≥ 0

and

dT∇φ(0) = 0 ⇒ dT∇2φ(0)d > 0.



Situation:

∂φ(0)
∂y`

< 0, ` = 1, ..., q
∂φ(0)

∂y`
= 0, ` = q + 1, ..., m

∂φ(0)
∂y`

= 0, ` = m + k + 1, ..., n

0 6= d ∈ T+ = {d : d` = 0, ` ∈ {1, ..., q, m + 1, ..., m + k}} :
⇒ dT∇2φ(0)d > 0

(∗)
K = {d : d` ≤ 0, ` = 1, ..., m, d` = 0, ` = m+1, ..., m+k}

(∗∗)

Claim: For 0 6= d ∈ K one has dT∇φ(0) ≥ 0

and

dT∇φ(0) = 0 ⇒ dT∇2φ(0)d > 0.

Proof: For d ∈ K, we have

dT∇φ(0) =
n∑

`=1

∂φ(0)

∂y`
d`

By (∗) – (∗∗), the first q terms in this sum are

nonnegative, and the remaining are 0. Thus,

the sum always is ≥ 0. For d 6= 0, the only

possibility for the sum to vanish is to have

d ∈ T+, and in this case dTφ′′(0)d > 0.



Situation: (P ′) is the problem

min
y∈K

φ(y), (!)

K is a closed cone, φ is twice continuously

differentiable in a neighbourhood of the ori-

gin and is such that

d ∈ K ⇒ dT∇φ(0) ≥ 0
d ∈ K\{0}, dT∇φ(0) = 0 ⇒ dT∇2φ(0)d > 0

Claim: In the situation in question, 0 is a

locally optimal solution to (!).

Proof: Let M = {d ∈ K : ‖d‖2 = 1}, and let

M0 = {d ∈ M : dT∇φ(0) = 0}. Since K is

closed, both M and M0 are compact sets.

We know that dT∇2φ(0)d > 0 for d ∈ M0.

Since M0 is a compact set, there exists a

neighbourhood V of M0 and α > 0 such that

d ∈ V ⇒ dT∇2φ(0)d ≥ α.

The set V1 = M\V is compact and dT∇φ(0) >

0 when d ∈ V1; thus, there exists β > 0 such

that

d ∈ V1 ⇒ dT∇φ(0) ≥ β.



Situation: K is a cone, and the set M = {d ∈
K : ‖d‖2 = 1} is partitioned into two subsets

V0 = V ∩M and V1 in such a way that

d ∈ V0 ⇒ dT∇φ(0) ≥ 0, dT∇2φ(0)d ≥ α > 0
d ∈ V1 → dT∇φ(0) ≥ β > 0

Goal: To prove that 0 is local minimizer of φ

on K, or, which is the same, that

∃r > 0 :
φ(0) ≤ φ(td) ∀(d ∈ M,0 ≤ t ≤ r).

Proof: Let d ∈ M , t ≥ 0. When d ∈ V0, we
have

φ(td)− φ(0) ≥ tdT∇φ(0) + 1
2
t2dT∇2φ(0)d− t2 R(t)︸ ︷︷ ︸

→0,

t→+0

≥ 1
2
t2(α− 2R(t))

⇒ ∃r0 > 0 : φ(td)− φ(0) ≥ 1
4
t2α ≥ 0 ∀t ≤ r0

When d ∈ V1, we have

φ(td)− φ(0) ≥ tdT∇φ(0) + 1
2
t2dT∇2φ(0)d− t2 R(t)︸ ︷︷ ︸

→0,

t→+0

≥ βt− Ct2 − t2R(t)
⇒ ∃r1 > 0 : φ(td)− φ(0) ≥ β

2
t ≥ 0∀t ≤ r1

Thus, φ(td)−φ(0) ≥ 0 for all t ≤ min[r0, r1],

d ∈ M .



Sensitivity Analysis

min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

⇓
L(x;λ, µ) = f(x) +

∑
j

λjgj(x) +
∑
i

µihi(x)

Definition: Let x∗ be a feasible solution to
(P ) such that the functions f, gj, hi are ` ≥ 2
times continuously differentiable in a neigh-
bourhood of x∗.
x∗ is called a nondegenerate locally optimal
solution to (P ), if
♦x∗ is a regular solution (i.e., gradients of
active at x∗ constraints are linearly indepen-
dent)
♦at x∗, Sufficient Second Order Optimality
condition holds ∃(λ∗ ≥ 0, µ∗):
∇xL(x∗;λ∗, µ∗) = 0
λ∗jgj(x∗) = 0, j = 1, ..., m

dT∇gj(x∗) = 0 ∀(j : λ∗j > 0)
dT∇hi(x∗) = 0 ∀i
d 6= 0



 ⇒ dT∇2

xL(x∗;λ∗, µ∗) > 0

♦for all active at x∗ inequality constraints,
Lagrange multipliers are positive:

gj(x∗) = 0 ⇒ λ∗j > 0.





min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

Theorem: Let x∗ be a nondegenerate locally
optimal solution to (P ). Let us embed (P )
into the parametric family of problems

min
x

{
f(x) :

g1(x) ≤ a1, ..., gm(x) ≤ am

h1(x) = b1, ..., hk(x) = bk

}
(P [a, b])

so that (P ) is (P [0,0]).
There exists a neighbourhood Vx of x∗ and a
neighbourhood Va,b of the point a = 0, b = 0
in the space of parameters a, b such that
♦∀(a, b) ∈ Va,b, in Vv there exists a unique
KKT point x∗(a, b) of (P [a, b]), and this point
is a nondegenerate locally optimal solution
to (P [a, b]); moreover, x∗(a, b) is optimal so-
lution for the optimization problem

Optloc(a, b) = min
x



f(x) :

g1(x) ≤ a1, ..., gm(x) ≤ am

h1(x) = b1, ..., hk(x) = bk

x ∈ Vx





(Ploc[a, b])



♦both x∗(a, b) and the corresponding La-

grange multipliers λ∗(a, b), µ∗(a, b) are ` − 1

times continuously differentiable functions of

(a, b) ∈ Va,b, and

∂Optloc(a,b)
∂aj

= ∂f(x∗(a,b))
∂aj

= −λ∗j(a, b)

∂Optloc(a,b)
∂bi

= ∂f(x∗(a,b))
∂bi

= −µ∗i (a, b)



Simple example: Existence of Eigenvalue

♣ Consider optimization problem

Opt = min
x∈Rn

{
f(x) = xTAx : h(x) = 1− xTx = 0

}

(P )

where A = AT is an n× n matrix. The prob-

lem clearly is solvable. Let x∗ be its optimal

solution. What can we say about x∗?
Claim: x∗ is a regular solution to (P ).

Indeed, we should prove that the gradients

of active at x∗ constraints are linearly inde-

pendent. There is only one constraint, and

its gradient at the feasible set is nonzero.

Since x∗ is a regular globally (and therefore

locally) optimal solution, at x∗ the Necessary

Second Order Optimality condition should

hold: ∃µ∗:

∇x

L(x;µ∗)︷ ︸︸ ︷[
xTAx + µ∗(1− xTx)

]
= 0 ⇔ 2(A− µ∗I)x∗ = 0

dT∇xh(x∗) = 0︸ ︷︷ ︸
⇔dT x∗=0

⇒ dT∇2
xL(x∗;µ∗)d ≥ 0︸ ︷︷ ︸

⇔dT (A−µ∗I)d≥0



Opt = min
x∈Rn

{
f(x) = xTAx : g(x) = 1− xTx = 0

}

(P )

Situation: If x∗ is optimal, then ∃µ∗:
Ax∗ = µ∗x∗ (A)

dTx∗ = 0 ⇒ dT (A− µ∗I)d ≥ 0 (B)

♣ (A) says that x∗ 6= 0 is an eigenvector of

A with eigenvalue µ∗; in particular, we see

that a symmetric matrix always has a real

eigenvector

♣ (B) along with (A) says that yT (A−µ∗I)y ≥
0 for all y. Indeed, every y ∈ Rn can be

represented as y = tx∗ + d with dTx∗ = 0.

We now have

yT [A− µ∗I]y = (tx∗ + d)T [A− µ∗I](tx∗ + d)

= t2xT∗ [A− µ∗I]x∗︸ ︷︷ ︸
=0

+2tdT dT [A− µ∗I]x∗︸ ︷︷ ︸
=0

+ dT [A− µ∗I]d︸ ︷︷ ︸
≥0

≥ 0



Opt = min
x∈Rn

{
f(x) = xTAx : g(x) = 1− xTx = 0

}

(P )

Note: In the case in question, Necessary

Second Order Optimality conditions can be

rewritten equivalently as ∃µ∗:
[A− µ∗I]x∗ = 0

yT [A− µ∗I]y ≥ 0 ∀y (∗)

and are not only necessary, but also sufficient

for feasible solution x∗ to be globally optimal.

To prove sufficiency, let x∗ be feasible, and

µ∗ be such that (∗) holds true. For every

feasible solution x, one has

0 ≤ xT [A−µ∗I]x = xTAx−µ∗xTx = xTAx−µ∗,

whence xTAx ≥ µ∗. For x = x∗, we have

0 = xT∗ [A−µ∗I]x∗ = xT∗Ax∗−µ∗xT∗ x∗ = xT∗Ax∗−µ∗,

whence xT∗Ax∗ = µ∗. Thus, x∗ is globally

optimal for (P ), and µ∗ is the optimal value

in (P ).



Extension: S-Lemma. Let A, B be symmetric

matrices, and let B be such that

∃x̄ : x̄TBx̄ > 0. (∗)
Then the inequality

xTAx ≥ 0 (A)

is a consequence of the inequality

xTBx ≥ 0 (B)

iff (A) is a “linear consequence” of (B): there

exists λ ≥ 0 such that

xT [A− λB]x ≥ 0∀x (C)

that is, (A) is a weighted sum of (B) (weight

λ ≥ 0) and identically true inequality (C).

Sketch of the proof: The only nontrivial state-

ment is that “If (A) is a consequence of (B),

then t e exists λ ≥ 0 such that ...”. To prove

this statement, assume that (A) is a conse-

quence of (B).



Situation:

∃x̄ : x̄TBx̄ > 0; xTBx ≥ 0︸ ︷︷ ︸
(B)

⇒ xTAx ≥ 0︸ ︷︷ ︸
(A)

Consider optimization problem

Opt = min
x

{
xTAx : h(x) ≡ 1− xTBx = 0

}
.

Problem is feasible by (∗), and Opt ≥ 0.
Assume that an optimal solution x∗ exists.
Then, same as above, x∗ is regular, and at x∗
the Second Order Necessary condition holds
true: ∃µ∗:
∇x

∣∣
x=x∗

[
xTAx + µ∗[1− xTBx]

]
= 0 ⇔ [A− µ∗B]x∗ = 0

dT∇x

∣∣
x=x∗

h(x) = 0︸ ︷︷ ︸
⇔dTBx∗=0

⇒ dT [A− µ∗B]d ≥ 0

We have 0 = xT∗ [A − µ∗B]x∗, that is, µ∗ =

Opt ≥ 0. Representing y ∈ Rn as tx∗+d with

dTBx∗ = 0 (that is, t = xT∗By), we get

yT [A− µ∗B]y = t2xT∗ [A− µ∗B]x∗︸ ︷︷ ︸
=0

+2tdT [A− µ∗B]x∗︸ ︷︷ ︸
=0

+ dT [A− µ∗B]d︸ ︷︷ ︸
≥0

≥ 0,

Thus, µ∗ ≥ 0 and yT [A− µ∗B]y ≥ 0 for all y,

Q.E.D.



Introduction to Optimization Algorithms

♣ Goal: Approximate numerically solutions to

Mathematical Programming problems

min
x

{
f(x) :

gj(x) ≤ 0, j = 1, ..., m
hi(x) = 0, i = 1, ..., k

}
(P )

♣ Traditional MP algorithms to be consid-

ered in the Course do not assume the analytic

structure of (P ) to be known in advance (and

do not know how to use the structure when it

is known). These algorithms are black-box-

oriented: when solving (P ), method gener-

ates a sequence of iterates x1, x2,... in such

a way that xt+1 depends solely on local infor-

mation of (P ) gathered along the preceding

iterates x1, ..., xt.

Information on (P ) obtained at xt usually is

comprised of the values and the first and the

second derivatives of the objective and the

constraints at xt.



♠ Note: In optimization, there exist algo-

rithms which do exploit problem’s structure.

Traditional methods of this type – Simplex

method and its variations – do not go be-

yond Linear Programming and Linearly Con-

strained Quadratic Programming.

Recently, new efficient ways to exploit prob-

lem’s structure were discovered (Interior Point

methods). The resulting algorithms, how-

ever, do not go beyond Convex Program-

ming.



♣ Except for very specific and relatively sim-

ple problem classes, like Linear Programming

or Linearly Constrained Quadratic Program-

ming, optimization algorithms cannot guar-

antee finding exact solution – local or global

– in finite time. The best we can expect

from these algorithms is convergence of ap-

proximate solutions generated by algorithms

to the exact solutions.

♠ Even in the case when “finite” solution

methods do exist (Simplex method in Lin-

ear Programming), no reasonable complexity

bounds for these methods are known, there-

fore in reality the ability of a method to gen-

erate the exact solution in finitely many steps

is neither necessary, nor sufficient to justify

the method.



♣ Aside of Convex Programming, traditional
optimization methods are unable to guaran-
tee convergence to a globally optimal solu-
tion. Indeed, in the non-convex case there
is no way to conclude from local information
whether a given point is/is not globally opti-
mal:

x’ x’’

“looking” at problem around x′, we get ab-
solutely no hint that the trues global optimal
solution is x′′.
♠ In order to guarantee approximating global
solution, it seems unavoidable to “scan” a
dense set of the values of x in order to be
sure that the globally optimal solution is not
missed. Theoretically, such a possibility ex-
ists; however, the complexity of “exhaustive
search” methods blows up exponentially with
the dimension of the decision vector, which
makes these methods completely impractical.



♣ Traditional optimization methods do not
incorporate exhaustive search and, as a re-
sult, cannot guarantee convergence to a
global solution.
♠ A typical theoretical result on a traditional
the optimization method as applied to a gen-
eral (not necessary convex) problem sounds
like:

Assume that problem (P ) possesses
the following properties:
...
...
Then the sequence of approximate
solutions generated by method X is
bounded, and all its limiting points
are KKT points of the problem.

or

Assume that x∗ is a nondegenerate lo-
cal solution to (P ). Then method X,
started close enough to x∗, converges
to x∗.



Classification of MP Algorithms

♣ There are two major traditional classifica-

tions of MP algorithms:

♦Classification by application fields, primar-

ily into

• algorithms for unconstrained optimization

• algorithms for constrained optimization

♦Classification by information used by the

algorithms, primarily into

• zero order methods which use only the val-

ues of the objective and the constraints

• first order methods (use both values and

first order derivatives)

• second order methods (use values, first-

and second order derivatives).



Rate of Convergence of MP Algorithms

♣ There is a necessity to quantify the con-
vergence properties of MP algorithms. Tra-
ditionally, this is done via asymptotical rate
of convergence defined as follows:
Step 1. We introduce an appropriate error
measure – a nonnegative function ErrorP (x)
of approximate solution and of the problem
we are solving which is zero exactly at the
set X∗ of solutions to (P ) we intend to ap-
proximate.
Examples: (i) Distance to the set X∗:

ErrorP (x) = inf
x∗∈X∗

‖x− x∗‖2

(ii) Residual in terms of the objective and the
constraints

ErrorP (x) = max

[
f(x)−Opt(P ),

[g1(x)]+, ..., [gm(x)]+,

|h1(x)|, ..., |hk(x)|
]



Step 2. Assume that we have established
convergence of our method, that is, we know
that if x∗t are approximate solutions gener-
ated by method as applied to a problem (P )
from a given family, then

ErrorP (t) ≡ ErrorP (x∗t ) → 0, t →∞
We then roughly quantify the rate at which
the sequence ErrorP (t) of nonnegative reals
converges to 0. Specifically, we say that
♦the method converges sublinearly, if the er-
ror goes to zero less rapidly than a geometric
progression, e.g., as 1/t or 1/t2;
♦the method converges linearly, if there exist
C < ∞ and q ∈ (0,1) such that

Error(P )(t) ≤ Cqt

q is called the convergence ratio. E.g.,

ErrorP (t) ³ e−at

exhibits linear convergence with ratio e−a.
Sufficient condition for linear convergence
with ratio q ∈ (0,1) is that

lim
t→∞

ErrorP (t + 1)

ErrorP (t)
< q



♦the method converges superlinearly, if the

sequence of errors converges to 0 faster than

every geometric progression:

∀q ∈ (0,1)∃C : ErrorP (t) ≤ Cqt

For example,

ErrorP (t) ³ e−at2

corresponds to superlinear convergence.

Sufficient condition for superlinear conver-

gence is

lim
t→∞

ErrorP (t + 1)

ErrorP (t)
= 0

♦the method exhibits convergence of order

p > 1, if

∃C : ErrorP (t + 1) ≤ C (ErrorP (t))p

Convergence of order 2 is called quadratic.

For example,

ErrorP (t) = e−apt

converges to 0 with order p.



Informal explanation: When the method con-

verges, ErrorP (t) goes to 0 as t → ∞, that

is, eventually the decimal representation of

ErrorP (t) has zero before the decimal dot

and more and more zeros after the dot; the

number of zeros following the decimal dot is

called the number of accuracy digits in the

corresponding approximate solution. Tradi-

tional classification of rates of convergence

is based on how many steps, asymptotically,

is required to add a new accuracy digit to the

existing ones.

♦With sublinear convergence, the “price” of

accuracy digit grows with the position of the

digit. For example, with rate of convergence

O(1/t) every new accuracy digit is 10 times

more expensive, in terms of # of steps, than

its predecessor.



♦With linear convergence, every accuracy

digit has the same price, proportional to
1

ln

(
1

convergence ratio

). Equivalently: every

step of the method adds a fixed number r

of accuracy digits (for q not too close to 0,

r ≈ 1− q);

♦With superlinear convergence, every sub-

sequent accuracy digit eventually becomes

cheaper than its predecessor – the price of

accuracy digit goes to 0 as the position of the

digit grows. Equivalently, every additional

step adds more and more accuracy digits.

♦With convergence of order p > 1, the price

of accuracy digit not only goes to 0 as the po-

sition k of the digit grows, but does it rapidly

enough – in a geometric progression. Equiva-

lently, eventually every additional step of the

method multiplies by p the number of accu-

racy digits.



♣ With the traditional approach, the conver-

gence properties of a method are the better

the higher is the “rank” of the method in the

above classification. Given a family of prob-

lems, traditionally it is thought that linearly

converging on every problem of the family

method is faster than a sublinearly converg-

ing, superlinearly converging method is faster

than a linearly converging one, etc.

♣ Note: Usually we are able to prove exis-

tence of parameters C and q quantifying lin-

ear convergence:

ErrorP (t) ≤ Cqt

or convergence of order p > 1:

ErrorP (t + 1) ≤ C(ErrorP (t))p,

but are unable to find numerical values of

these parameters – they may depend on

“unobservable” characteristics of a particular

problem we are solving. As a result, tradi-

tional “quantification” of convergence prop-

erties is qualitative and asymptotical.



Solvable Case of MP – Convex
Programming

♣ We have seen that as applied to general
MP programs, optimization methods have a
number of severe theoretical limitations, in-
cluding the following major ones:
♦Unless exhaustive search (completely un-
realistic in high-dimensional optimization) is
used, there are no guarantees of approaching
global solution
♦Quantification of convergence properties is
of asymptotical and qualitative character. As
a result, the most natural questions like:

We should solve problems of such and
such structure with such and such
sizes and the data varying in such
and such ranges. How many steps
of method X are sufficient to solve
problems within such and such accu-
racy?

usually do not admit theoretically valid an-
swers.



♣ In spite of their theoretical limitations,

in reality traditional MP algorithms allow to

solve many, if not all, MP problems of real-

world origin, including those with many thou-

sands variables and constraints.

♣ Moreover, there exists a “solvable case”

when practical efficiency admits solid theo-

retical guarantees – the case of Convex Pro-

gramming.



• Here is a typical “Convex Programming”

result:

Assume we are solving a Convex Program-

ming program

Opt = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m, |xi| ≤ 1, i ≤ n

}
.

where the objective and the constraints are

normalized by the requirement

|xi| ≤ 1, i ≤ n ⇒ |f(x)| ≤ 1, |gj(x)| ≤ 1, j ≤ m

Given ε ∈ (0,1), one can find an ε-solution xε

to the problem:

|xε
i| ≤ 1︸ ︷︷ ︸
∀i≤n

& gj(x
ε) ≤ ε︸ ︷︷ ︸

∀j≤m

& f(xε)−Opt < ε

in no more than

2n2 ln
(
2n

ε

)

steps, with a single computation of the values

and the first order derivatives of f, g1, ..., gm at

a point and 100(m+n)n additional arithmetic

operations per step.



Line Search

♣ Line Search is a common name for tech-

niques for one-dimensional “simply constrained”

optimization, specifically, for problems

min
x
{f(x) : a ≤ x ≤ b} ,

where [a, b] is a given segment on the axis

(sometimes, we shall allow for b = +∞), and

f is a function which is at least once contin-

uously differentiable on (a, b) and is continu-

ous at the segment [a, b] (on the ray [a,∞),

if b = ∞).

♣ Line search is used, as a subroutine, in

many algorithms for multi-dimensional opti-

mization.



min
a≤x≤b

f(x) (P )

♣ Zero-order line search. In zero-order line

search one uses the values of the objective

f in (P ) and does not use its derivatives.

♠ To ensure well-posedness of the problem,

assume that the objective is unimodal, that

is, possesses a unique local minimizer x∗ on

[a, b].

Equivalently: There exists a unique point

x∗ ∈ [a, b] such that f(x) strictly decreases

on [a, x∗] and strictly increases on [x∗, b]:
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Main observation: Let f be unimodal on

[a, b], and assume we know f(x′), f(x′′) for

certain x′, x′′ with

a < x′ < x′′ < b.

♦If f(x′′) ≥ f(x′), then f(x) > f(x′′) for x >

x′′, so that the minimizer belongs to [a, x′′]:
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♦Similarly, if f(x′′) < f(x′), then f(x > f(x′)
when x < x′, so that the minimizer belongs

to [x′, b].
♠ In both cases, two computations of f at x′,
x′′ allow to reduce the initial “search domain”

with a smaller one ([a, x′′] or [x′, b]).



♣ Choosing x′, x′′ so that they split [a0, b0] =

[a, b] into three equal segments, computing

f(x′), f(x′′) and comparing them to each

other, we can build a new segment [a1, b1] ⊂
[a0, b0] such that

♦the new segment is a localizer – it contains

the solution x∗
♦the length of the new localizer is 2/3 of the

length of the initial localizer [a0, b0] = [a, b].

♠ On the new localizer, same as on the orig-

inal one, the objective is unimodal, and we

can iterate our construction.

♠ In N ≥ 1 steps (2N computations of f),

we shall reduce the size of localizer by factor

(2/3)N , that is, we get linearly converging,

in terms of the argument, algorithm with the

convergence ratio

q =
√

2/3 = 0.8165...

Can we do better ? - YES!



[at−1, bt−1]
x′t < x′′t

}
⇒ f(x′t), f(x′′t ) ⇒

{
[at, bt] = [at−1, x′′t ]
[at, bt] = [x′t, bt−1]

♣ Observe that one of two points at which

we compute f at a step becomes the end-

point of the new localizer, while the other

one is an interior point of this localizer, and

therefore we can use it as the one of two

points where f should be computed at the

next step!

With this approach, only the very first step

costs 2 function evaluations, while the sub-

sequent steps cost just 1 evaluation each!

♠ Let us implement the idea in such a way

that all search points will divide respective

localizers in a fixed proportion:

x′ − a = b− x′′ = θ(b− a)

The proportion is given by the equation

θ ≡ x′ − a

b− a
=

x′′ − x′

b− x′
≡ 1− 2θ

1− θ
⇒ θ =

3−√5

2
.



♣ We have arrived at golden search, where

the search points xt−1, xt of step t are placed

in the current localizer [at−1, bt−1] according

to

x′ − a

b− a
=

b− x′′

b− a
=

3−√5

2

In this method, a step reduces the error (the

length of localizer) by factor 1 − 3−√5
2 =√

5−1
2 . The convergence ratio is about

√
5− 1

2
≈ 0.6180...



min
x
{f(x) : a ≤ x ≤ b} ,

♣ First order line search: Bisection. Assume

that f is differentiable on (a, b) and strictly

unimodal, that is, it is unimodal, x∗ ∈ (a, b)

and f ′(x) < 0 for a < x < x∗, f ′(x) > 0 for

x∗ < x < b.

Let both f and f ′ be available. In this case

the method of choice in Bisection.

♠ Main observation: Given x1 ∈ [a, b] ≡
[a0, b0], let us compute f ′(x1).

♦If f ′(x1) > 0, then, from strict unimodal-

ity, f(x) > f(x1) to the right of x1, thus, x∗
belongs to [a, x1]:
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♦Similarly, if f ′(x1) ≤ 0, then f(x) > f(x1)

for x < x1, and x∗ belongs to [a, x1].

♠ In both cases, we can replace the original

localizer [a, b] = [a0, b0] with a smaller local-

izer [a1, b1] and then iterate the process.

In Bisection, the point xt where at step

t f ′(xt) is computed, is the midpoint of

[at−1, bt−1], so that every step reduces local-

izer’s length by factor 2.

♣ Clearly, Bisection converges linearly in

terms of argument with convergence ratio

0.5:

at − x∗ ≤ 2−t(b0 − a0).



Inexact Line Search

♣ Many algorithms for multi-dimensional

minimization which use Line Search as a sub-

routine, in the following way:

♦given current iterate xt ∈ Rn, the algorithm

defines a search direction dt ∈ Rn which is a

direction of decrease of f :

dT
t ∇f(xt) < 0.

Then Line Search is invoked to minimize the

one-dimensional function

φ(s) = f(xt + γdt)

over γ ≥ 0; the resulting γ = γt defines the

stepsize along the direction dt, so that the

new iterate of the outer algorithm is

xt+1 = xt + γtdt.

♠ In many situations of this type, there is

no necessity in exact minimization in γ; an

“essential” reduction in φ is sufficient.



♣ Standard way to define (and to achieve)

“essential reduction” is given by Armijo’s

rule:

Let φ(γ) be continuously differentiable func-

tion of γ ≥ 0 such that φ′(0) > 0, and let

ε ∈ (0,1), η > 1 be parameters (popular

choice is ε = 0.2 and η = 2 or η = 10).

We say that a stepsize γ > 0 is appropriate,

if

φ(γ) ≤ φ(0) + εγφ′(0), (∗)
and is nearly maximal, if η times larger step

is not appropriate:

φ(ηγ) > φ(0) + εηγφ′(0). (∗∗)

A stepsize γ > 0 passes Armijo test (reduces

φ “essentially”), if its is both appropriate and

nearly maximal.

♠ Fact: Assume that φ is bounded below on

the ray γ > 0. Then a stepsize passing Armijo

rule does exist and can be found efficiently.



♣ Armijo-acceptable step γ > 0:

φ(γ) ≤ φ(0) + εγφ′(0) (∗)
φ(ηγ) > φ(0) + εηγφ′(0) (∗∗)

♣ Algorithm for finding Armijo-acceptable step:

Start: Choose γ0 > 0 and check whether it

passes (*). If YES, go to Branch A, other-

wise go to Branch B.

Branch A: γ0 satisfies (∗). Testing subse-

quently the values ηγ0, η2γ0, η3γ0,... of γ,

stop when the current value for the first time

violates (∗); the preceding value of γ passes

the Armijo test.

Branch B: γ0 does not satisfy (∗). Test-

ing subsequently the values η−1γ0, η−2γ0,

η−3γ0,... of γ, stop when the current value

for the first time satisfies (∗); this value of γ

passes the Armijo test.



♣ Validation of the algorithm: It is clear that
if the algorithm terminates, then the result
indeed passes the Armijo test. Thus, all we
need to verify is that the algorithm eventually
terminates.
♦Branch A clearly is finite: here we test the
inequality

φ(γ) > φ(0) + εγφ′(0)

along the sequence γi = ηiγ0 → ∞, and ter-
minate when this inequality is satisfied for
the first time. Since φ′(0) < 0 and φ is below
bounded, this indeed will eventually happen.
♦Branch B clearly is finite: here we test the
inequality

φ(γ) ≤ φ(0) + εγφ′(0) (∗)
along a sequence γi = η−iγ0 → +0 of values
of γ and terminate when this inequality is
satisfied for the first time. Since ε ∈ (0,1)
and φ′(0) < 0, this inequality is satisfied for
all small enough positive values of γ, since

φ(γ) = φ(0) + γ
[
φ′(0) + R(γ)︸ ︷︷ ︸

→0,γ→+0

]
.

For large i, γi definitely will be “small enough”,
thus, Branch B is finite.



Methods for Unconstrained Minimization

♣ Unconstrained minimization problem is

f∗ = min
x

f(x),

where f well-defined and continuously differ-

entiable on the entire Rn.

Note: Most of the constructions to be pre-

sented can be straightforwardly extended

onto “essentially unconstrained case” where

f is continuously differentiable on an open

domain D in Rn and is such that the level

sets {x ∈ U : f(x) ≤ a} are closed.



f∗ = min
x

f(x) (P )

Gradient Descent

♣ Gradient Descent is the simplest first order
method for unconstrained minimization.
The idea: Let x be a current iterate which is
not a critical point of f : f ′(x) 6= 0. We have

f(x + th) = f(x) + thTf ′(x) + t‖h‖2Rx(th)
[Rx(s) → 0 as s → 0]

Since f ′(x) 6= 0, the unit antigradient direc-
tion g = −f ′(x)/‖f ′(x)‖2 is a direction of de-
crease of f :

d

dt

∣∣∣
t=0

f(x + tg) = gTf ′(x) = −‖f ′(x)‖2

so that shift x 7→ x + tg along the direction g
locally decreases f “at the rate” ‖f ′(x)‖2.
♠ Note: As far as local rate of decrease is
concerned, g is the best possible direction of
decrease: for any other unit direction h, we
have

d

dt

∣∣∣
t=0

f(x + th) = hTf ′(x) > −‖f ′(x)‖2.



♣ In generic Gradient Descent, we update

the current iterate x by a step from x in the

antigradient direction which reduces the ob-

jective:

xt = xt−1 − γtf
′(xt−1),

where γt are positive stepsizes such that

f ′(xt−1) 6= 0 ⇒ f(xt) < f(xt−1).

♠ Standard implementations:

♦Steepest GD:

γt = argmin
γ≥0

f(xt−1 − γf ′(xt−1))

(slight idealization, except for the case of

quadratic f)

♦Armijo GD: γt > 0 is such that

f(xt−1 − γtf
′(xt−1) ≤ f(xt−1)− εγt‖f ′(xt−1)‖22

f(xt−1 − ηγtf
′(xt−1) > f(xt−1)− εηγt‖f ′(xt−1)‖22

(implementable, provided that f ′(xt−1) 6= 0

and f(xt−1 − γf ′(xt−1)) is below bounded

when γ ≥ 0)



Note: By construction, GD is unable to leave

a critical point:

f ′(xt−1) = 0 ⇒ xt = xt−1.

♣ Global Convergence Theorem: Assume that

the level set of f corresponding to the start-

ing point x0:

G = {x : f(x) ≤ f(x0)}
is compact, and f is continuously differen-

tiable in a neighbourhood of G. Then for

both SGD and AGD:

♦the trajectory x0, x1, ... of the method, started

at x0, is well-defined and never leaves G (and

thus is bounded);

♦the method is monotone:

f(x0) ≥ f(x1) ≥ ...

and inequalities are strict, unless method

reaches a critical point xt, so that xt =

xt+1 = xt+2 = ...

♦Every limiting point of the trajectory is a

critical point of f .



Sketch of the proof: 10. If f ′(x0) = 0, the

method never leaves x0, and the statements

are evident. Now assume that f ′(x0) 6= 0.

Then the function φ0(γ) = f(x0− γf ′(x0)) is

below bounded, and the set {γ ≥ 0 : φ0(γ) ≤
φ0(0)} is compact along with G, so that

φ0(γ) achieves its minimum on the ray γ ≥ 0,

and φ′0(0) < 0. It follows that the first step

of GD is well-defined and f(x1) < f(x0). The

set {x : f(x) ≤ f(x1)} is a closed subset of G

and thus is compact, and we can repeat our

reasoning with x1 in the role of x0, etc. We

conclude that the trajectory is well-defined,

never leaves G and the objective is strictly

decreased, unless a critical point is reached.



20. “all limiting points of the trajectory are

critical points of f”:

Fact: Let x ∈ G and f ′(x) 6= 0. Then there

exists ε > 0 and a neighbourhood U of x such

that for every x′ ∈ U the step x′ → x′+ of the

method from x′ reduces f by at least ε.

Given Fact, let x be a limiting point of {xi};
assume that f ′(x) 6= 0, and let us lead this

assumption to contradiction. By Fact, there

exists a neighbourhood U of x such that

xi ∈ U ⇒ f(xi+1) ≤ f(xi)− ε.

Since the trajectory visits U infinitely many

times and the method is monotone, we con-

clude that f(xi) → −∞, i → ∞, which is im-

possible, since G is compact, so that f is

below bounded on G.



Limiting points of Gradient Descent

♣ Under assumptions of Global Convergence

Theorem, limiting points of GD exist, and all

of them are critical points of f . What kind

of limiting points could they be?

♦A nondegenerate maximizer of f cannot be

a limiting point of GD, unless the method is

started at this maximizer.

♦A saddle point of f is “highly unlikely”

candidate to the role of a limiting point.

Practical experience says that limiting points

are local minimizers of f .

♦A nondegenerate global minimizer x∗ of f ,

if any, as an “attraction point” of GD: when

starting close enough to this minimizer, the

method converges to x∗.



Rates of convergence

♣ In general, we cannot guarantee more than
convergence to the set of critical points of f .
A natural error measure associated with this
set is

δ2(x) = ‖f ′(x)‖22.

♠ Definition: Let U be an open subset of Rn,
L ≥ 0 and f be a function defined on U . We
say that f is C1,1(L) on U , if f is continu-
ously differentiable in U with locally Lipschitz
continuous, with constant L, gradient:

[x, y] ∈ U ⇒ ‖f ′(x)− f ′(y)‖2 ≤ L‖x− y‖2.

We say that f is C1,1(L) on a set Q ⊂ Rn, if
there exists an open set U ⊃ Q such that f

is C1,1(L) on U .
Note: Assume that f is twice continuously
differentiable on U . Then f is C1,1(L) on
U iff the norm of the Hessian of f does not
exceed L:

∀(x ∈ U, d ∈ Rn) : |dTf ′′(x)d| ≤ L‖d‖22.



Theorem. In addition to assumptions of Global

Convergence Theorem, assume that f is

C1,1(L) on G = {x : f(x) ≤ f(x0)}. Then

♦For SGD, one has

min
0≤τ≤t

δ2(xτ) ≤ 2[f(x0)− f∗]L
t + 1

, t = 0,1,2, ...

♦For AGD, one has

min
0≤τ≤t

δ2(xτ) ≤ η

2ε(1− ε)
·[f(x0)− f∗]L

t + 1
, t = 0,1,2, ...



Lemma. For x ∈ G, 0 ≤ s ≤ 2/L one has

x− sf ′(x) ∈ G (1)

f(x− sf ′(x)) ≤ f(x)− δ2(x)s + Lδ2(x)
2 s2, (2)

There is nothing to prove when g ≡ −f ′(x) =
0. Let g 6= 0, s∗ = max{s ≥ 0 : x + sg ∈ G},
δ2 = δ2(x) = gTg. The function

φ(s) = f(x− sf ′(x)) : [0, s∗] → R
is continuously differentiable and satisfies

(a) φ′(0) = −gTg ≡ −δ2; (b) φ(s∗) = f(x0)
(c) |φ′(s)− φ′(0)| = |gT [f ′(x + sg)− f ′(x)]| ≤ Lsδ2

Therefore φ(s) ≤ φ(0)− δ2s + Lδ2

2 s2 (∗)
which is (2). Indeed, setting

θ(s) = φ(s)− [φ(0)− δ2s +
Lδ2

2
s2],

we have

θ(0) = 0, θ′(s) = φ′(s)− φ′(0)− Lsδ2 ≤︸︷︷︸
by (c)

0.

By (∗) and (b), we have

f(x0) ≤ φ(0)− δ2s∗ + Lδ2

2 s2∗ ≤ f(x0)− δ2s∗ + Lδ2

2 s2∗
⇒ s∗ ≥ 2/L





Lemma ⇒ Theorem: SGD: By Lemma, we

have

f(xt)− f(xt+1) = f(xt)−min
γ≥0

f(xt − γf ′(xt))

≥ f(xt)− min
0≤s≤2/L

[
f(xt)− δ2(xt)s + Lδ2(xt)

2 s2
]

= δ2(xt)
2L

⇒ f(x0)− f∗ ≥
t∑

τ=0
[f(xτ)− f(xτ+1)] ≥

t∑
τ=0

δ2(xτ)
2L

≥ (t + 1) min
0≤τ≤t

δ2(xτ)

⇒ min
0≤τ≤t

δ2(xτ) ≤ 2L(f(x0)−f∗)
t+1

AGD: Claim: γt+1 > 2(1−ε)
Lη . Indeed, other-

wise by Lemma

f(xt − γtηf ′(xt))

≤ f(xt)− γt+1ηδ2(xt) + Lδ2(xt)
2 η2γ2

t+1

= f(xt)−
[
1− L

2
ηγt+1

]

︸ ︷︷ ︸
≥ε

ηγt+1δ2(xt)

≤ f(xt)− εηγt+1δ2(xt)

which is impossible.



We have seen that γt+1 > 2(1−ε)
Lη . By Armijo

rule,

f(xt)−f(xt+1) ≥ εγt+1δ2(xt) ≥
2ε(1− ε)

Lη
δ2(xt);

the rest of the proof is as for SGD.



♣ Convex case. In addition to assumptions of

Global Convergence Theorem, assume that f

is convex.

♠ All critical points of a convex function are

its global minimizers

⇒ In Convex case, SGD and AGD converge

to the set of global minimizers of f : f(xt) →
f∗ as t → ∞, and all limiting points of the

trajectory are global minimizers of f .

♠ In Convex C1,1(L) case, one can quantify

the global rate of convergence in terms of

the residual f(xt)− f∗:
Theorem. Assume that the set G = {x :

f(x) ≤ f(x0)} is convex compact, f is convex

on G and C1,1(L) on this set. Consider AGD,

and let ε ≥ 0.5. Then the trajectory of the

method converges to a global minimizer x∗
of f , and

f(xt)− f∗ ≤ ηL‖x0 − x∗‖22
4(1− ε)t

, t = 1,2, ...



♣ Definition: Let M be a convex set in Rn

and 0 < ` ≤ L < ∞. A function f is called
strongly convex, with parameters `, L, on M ,
if
♦f is C1,1(L) on M
♦for x, y ∈ M , one has

[x− y]T [f ′(x)− f ′(y)] ≥ `‖x− y‖22. (∗)
The ratio Qf = L/` is called condition number
of f .
♠ Comment: If f is C1,1(L) on a convex set
M , then

x, y ∈ M ⇒ |f(y)−[f(x)+(y−x)Tf ′(x)]| ≤ L

2
‖x−y‖22.

If f satisfies (∗) on a convex set M , then

∀x, y ∈ M : f(y) ≥ f(x)+(y−x)Tf ′(x)+ `

2
‖y−x‖22.

In particular, f is convex on M .
⇒ A strongly convex, with parameters `, L,
function f on a convex set M satisfies the
relation

∀x, y ∈ M : f(x) + (y − x)Tf ′(x) + `
2‖y − x‖22

≤ f(y) ≤ f(x) + (y − x)Tf ′(x) + L
2‖y − x‖22



Note: Assume that f is twice continuously

differentiable in a neighbourhood of a convex

set M . Then f is (`, L)-strongly convex on

M iff for all x ∈ M and all d ∈ Rn one has

`‖d‖22 ≤ dTf ′′(x)d ≤ L‖d‖22
m

λmin(f
′′(x)) ≥ `, λmax(f ′′(x)) ≤ L.

In particular,

♠ A quadratic function

f(x) =
1

2
xTAx− bTx + c

with positive definite symmetric matrix A

is strongly convex with the parameters ` =

λmin(A), L = λmax(A) on the entire space.



♣ GD in strongly convex case.

Theorem. In the strongly convex case, AGD

exhibits linear global rate of convergence.

Specifically, let the set G = {x : f(x) ≤
f(x0)} be closed and convex and f be strongly

convex, with parameters `, L, on Q. Then

x ♦G is compact, and the global minimizer

x∗ of f exists and is unique;

♦AGD with ε ≥ 1/2 converges linearly to x∗:

‖xt − x∗‖2 ≤ θt‖x0 − x∗‖2

θ =

√
Qf−(2−ε−1)(1−ε)η−1

Qf+(ε−1−1)η−1 = 1−O(Q−1
f ).

Besides this,

f(xt)− f∗ ≤ θ2tQf [f(x0)− f∗].



♣ SGD in Strongly convex quadratic case.

Assume that f(x) = 1
2xTAx − bTx + c is a

strongly convex quadratic function: A =

AT Â 0. In this case, SGD becomes imple-

mentable and is given by the recurrence

gt = f ′(xt) = Axt − b

γt+1 =
gT
t gt

gT
t Agt

xt+1 = xt − γt+1gt

and guarantees that

f(xt+1)− f∗︸ ︷︷ ︸
Et+1

≤
[
1− (gT

t gt)2

[gT
t Agt][gT

t A−1gt]

]
Et ≤

(
Qf−1
Qf+1

)2
Et

whence

f(xt)−f∗ ≤
(

Qf − 1

Qf + 1

)2t

[f(x0)−f∗], t = 1,2, ...



Note: If we know that SGD converges to

a nondegenerate local minimizer x∗ of f ,

then, under mild regularity assumptions, the

asymptotical behaviour of the method will be

as if f were the strongly convex quadratic

form

f(x) = const +
1

2
(x− x∗)Tf ′′(x∗)(x− x∗).
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♣ Summary on Gradient Descent:

♦Under mild regularity and boundedness as-

sumptions, both SGD and AGD converge the

set of critical points of the objective.

In the case of C1,1(L)-smooth objective, the

methods exhibit non-asymptotical O(1/t)-

rate of convergence in terms of the error

measure δ2(x) = ‖f ′(x)‖22.
♦Under the same regularity assumptions, in

Convex case the methods converge to the set

of glomal minimizers of the objective.

In convex C1,1(L)-case, AGD exhibits non-

asymptotical O(1/t) rate of convergence in

terms of the residual in the objective f(x)−f∗
♦In Strongly convex case, AGD exhibits non-

asymptotical linear convergence in both the

residual in terms of the objective f(x) − f∗
and the distance in the argument ‖x− x∗‖2.
The convergence ratio is 1−O(1/Qf), where

Qf is the all condition number of the objec-

tive. In other words, to get extra accuracy

digit, it takes O(Qf) steps.



♣ Good news on GD:

♠ Simplicity

♠ Reasonable global convergence properties

under mild assumptions on the function to

be minimized.



♣ Drawbacks of GD:

♠ “Frame-dependence”: The method is not

affine invariant!

♦You are solving the problem min
x

f(x) by

GD, starting with x0 = 0, Your first search

point will be

x1 = −γ1f ′(0).

♦I solve the same problem, but in new vari-

ables y: x = Ay. My problem is min
y

g(y),

g(y) = f(Ax), and start with y0 = 0. My

first search point will be

y1 = −γ̂1g′(0) = −γ̂1ATf ′(0).

In x-variables, my search point will be

x̂1 = Ay1 = −γ̂1AATf ′(0)

If AAT is not proportional to the unit matrix,

my search point will, in general, be different

from yours!



♠ “Frame-dependence” is common draw-

back of nearly all first order optimization

methods, and this is what makes their rate of

convergence, even under the most favourable

case of strongly convex objective, sensitive

to the condition number of the problem. GD

is “hyper-sensitive” to the condition number:

When minimizing strongly convex function f ,

the convergence ratio of GD is 1−O(1/Qf),

while for better methods it is 1−O(1/Q
1/2
f ).



The Newton Method

♣ Consider unconstrained problem

min
x

f(x)

with twice continuously differentiable objec-
tive. Assuming second order information
available, we approximate f around a current
iterate x by the second order Taylor expan-
sion:

f(y) ≈ f(x)+(y−x)Tf ′(x)+(y − x)Tf ′′(x)(y − x)

2
In the Newton method, the new iterate is the
minimizer of this quadratic approximation. If
exists, the minimizer is given by

∇y[f(x) + (y − x)Tf ′(x) + (y−x)T f ′′(x)(y−x)
2 ] = 0

⇔ f ′′(x)(y − x) = −f ′(x)
⇔ y = x− [f ′′(x)]−1f ′(x)

We have arrived at the Basic Newton method

xt+1 = xt − [f ′′(xt)]
−1f ′(xt)

(step t is undefined when the matrix f ′′(xt)
is singular).



xt+1 = xt − [f ′′(xt)]
−1f ′(xt)

♠ Alternative motivation: We seek for a so-

lution to the Fermat equation

f ′(x) = 0;

given current approximate xt to the solution,

we linearize the left hand side around xt, thus

arriving at the linearized Fermat equation

f ′(xt) + f ′′(xt)[x− xt] = 0

and take the solution to this equation, that

is, xt − [f ′′(xt)]−1f ′(xt), as our new iterate.



xt+1 = xt − [f ′′(xt)]
−1f ′(xt) (Nwt)

Theorem on Local Quadratic Convergence: Let

x∗ be a nondegenerate local minimizer of

f , so that f ′′(x∗) Â 0, and let f be three

times continuously differentiable in a neigh-

bourhood of x∗. Then the recurrence (Nwt),

started close enough to x∗, is well-defined

and converges to x∗ quadratically.

Proof: 10. Let U be a ball centered at x∗
where the third derivatives of f are bounded.

For y ∈ U one has

‖∇f(y)−∇2f(y)(x∗ − y)‖2
≡ ‖∇f(x∗)−∇f(y)−∇2f(y)(x∗ − y)‖2
≤ β1‖y − x∗‖22

(1)

20. Since f ′′(x) is continuous at x = x∗ and

f ′′(x∗) is nonsingular, there exists a ball U ′ ⊂
U centered at x∗ such that

y ∈ U ′ ⇒ ‖[f ′′(y)]−1‖ ≤ β2. (2)



Situation: There exists a r > 0 and positive

constants β1, β2 such that

‖y − x∗‖ < r ⇒
(a) ‖∇f(y)−∇2f(y)(x∗ − y)‖2 ≤ β1‖y − x∗‖22
(b) ‖[f ′′(y)]−1‖ ≤ β2

30. Let an iterate xt of the method be close

to x∗:

xt ∈ V = {x : ‖x− x∗‖@ ≤ ρ ≡ min[
1

2β1β2
, r]}.

We have

‖xt+1 − x∗‖ = ‖xt − x∗ − [f ′′(xt)]−1f ′(xt)‖2
= ‖

[
[f ′′(xt)]−1[f ′′(xt)(xt − x∗)− f ′(xt)]

]
‖2

≤ β1β2‖xt − x∗‖22 ≤ 0.5‖xt − x∗‖2
We conclude that the method remains well-

defined after step t, and converges to x∗
quadratically.



♣ A remarkable property of Newton method

is affine invariance (”frame independence”):

Let x = Ay + b be invertible affine change of

variables. Then

f(x) ⇔ g(y) = f(Ay + b)
x̄ = Aȳ + b ⇔ ȳ

ȳ+ = ȳ − [g′′(ȳ)]−1g′(ȳ)
= ȳ − [ATf ′′(x̄)A]−1[ATf ′(x̄)]
= ȳ −A−1[f ′′(x̄)]−1f ′(x̄)
⇒ Aȳ+ + b = [Aȳ + b]−[f ′′(x̄)]−1f ′(x̄)
= x̄− [f ′′(x̄)]−1f ′(x̄)



♣ Difficulties with Basic Newton method.

The Basic Newton method

xt+1 = xt − [f ′′(xt)]
−1f ′(xt),

started close enough to nondegenerate local

minimizer x∗ of f , converges to x∗ quadrati-

cally. However,

♦Even for a nice strongly convex f , the

method, started not too close to the (unique)

local≡global minimizer of f , may diverge:

f(x) =
√

1 + x2 ⇒ xt+1 = −x3
t .

⇒ when |x0| < 1, the method converges

quadratically (even at order 3) to x∗ = 0;

when |x0| > 1, the method rapidly diverges...

♦When f is not strongly convex, the Newton

direction

−[f ′′(x)]−1f ′(x)

can be undefined or fail to be a direction of

decrease of f ...



♣ As a result of these drawbacks, one needs

to modify the Basic Newton method in order

to ensure global convergence. Modifications

include:

♦Incorporating line search

♦Correcting Newton direction when it is un-

defined or is not a direction of decrease of f .



♣ Incorporating linesearch: Assume that the

level set G = {x : f(x) ≤ f(x0)} is closed and

convex, and f is strongly convex on G. Then

for x ∈ G the Newton direction

e(x) = −[f ′′(x)]−1f ′(x)

is a direction of decrease of f , except for the

case when x is a critical point (or, which is

the same in the strongly convex case, global

minimizer) of f :

f ′(x) 6= 0 ⇒
eT (x)f ′(x) = −[f ′(x)]T [f ′′(x)]−1

︸ ︷︷ ︸
Â0

f ′(x) < 0.

In Line Search version of Newton method,

one uses e(x) as a search direction rather

than the displacement:

xt+1 = xt+γt+1e(xt) = xt−γt+1[f
′′(xt)]

−1f ′(xt),

where γt+1 > 0 is the stepsize given by exact

minimization of f in the Newton direction or

by Armijo linesearch.



Theorem: Let the Level set G = {x : f(x) ≤
f(x0)} be convex and compact, and f be

strongly convex on G. Then Newton method

with the Steepest Descent or with the Armijo

linesearch converges to the unique global

minimizer of f .

With proper implementation of the line-

search, convergence is quadratic.



♣ Newton method: Summary

♦Good news: Quadratic asymptotical con-

vergence, provided we manage to bring the

trajectory close to a nondegenerate local

minimizer

♦Bad news:

— relatively high computational cost, com-

ing from the necessity to compute and to

invert the Hessian matrix

— necessity to “cure” the method in the

non-strongly-convex case, where the Newton

direction can be undefined or fail to be a di-

rection of decrease...



Modifications of the Newton method

♣ Modifications of the Newton method are

aimed at overcoming its shortcomings (diffi-

culties with nonconvex objectives, relatively

high computational cost) while preserving its

major advantage – rapid asymptotical con-

vergence. There are three major groups of

modifications:

♦Modified Newton methods based on second-

order information

♦Modifications based on first order informa-

tion:

— conjugate gradient methods

— quasi-Newton methods

♠ All modifications of Newton method ex-

ploit a natural Variable Metric idea.



♣ When speaking about GD, it was men-

tioned that the method

xt+1 = xt − γt+1 BBT︸ ︷︷ ︸
A−1Â0

f ′(xt) (∗)

with nonsingular matrix B has the same

“right to exist” as the Gradient Descent

xt+1 = xt − γt+1f ′(xt);

the former method is nothing but the GD as

applied to

g(y) = f(By).



xt+1 = xt − γt+1A−1f ′(xt) (∗)
Equivalently: Let A be a positive definite

symmetric matrix. We have exactly the same

reason to measure the “local directional rate

of decrease” of f by the quantity

dTf ′(x)√
dTd

(a)

as by the quantity

dTf ′(x)√
dTAd

(b)

♦When choosing, as the current search di-

rection, the direction of steepest decrease in

terms of (a), we get the anti-gradient direc-

tion −f ′(x) and arrive at GD.

♦When choosing, as the current search di-

rection, the direction of steepest decrease in

terms of (b), we get the “scaled anti-gradient

direction” −A−1f ′(x) and arrive at “scaled”

GD (∗).



♣ We have motivated the scaled GD

xt+1 = xt − γt+1A−1f ′(xt) (∗)
Why not to take one step ahead by consider

a generic Variable Metric algorithm

xt+1 = xt − γt+1A−1
t+1f ′(xt) (VM)

with “scaling matrix” At+1 Â 0 varying from

step to step?

♠ Note: When At+1 ≡ I, (VM) becomes the

generic Gradient Descent;

When f is strongly convex and At+1 =

f ′′(xt), (VM) becomes the generic Newton

method...

♠ Note: When xt is not a critical point of f ,

the search direction dt+1 = −A−1
t+1f ′(xt) is a

direction of decrease of f :

dT
t+1f ′(xt) = −[f ′(xt)]

TA−1
t+1f ′(xt) < 0.

Thus, we have no conceptual difficulties with

monotone linesearch versions of (VM)...



xt+1 = xt − γt+1A−1
t+1f ′(xt) (VM)

♣ It turns out that Variable Metric methods

possess good global convergence properties:

Theorem: Let the level set G = {x : f(x) ≤
f(x0)} be closed and bounded, and let f be

twice continuously differentiable in a neigh-

bourhood of G.

Assume, further, that the policy of updating

the matrices At ensures their uniform positive

definiteness and boundedness:

∃0 < ` ≤ L < ∞ : `I ¹ At ¹ LI ∀t.
Then for both the Steepest Descent and the

Armijo versions of (VM) started at x0, the

trajectory is well-defined, belongs to G (and

thus is bounded), and f strictly decreases

along the trajectory unless a critical point of

f is reached. Moreover, all limiting points of

the trajectory are critical points of f .



♣ Implementation via Spectral Decomposition:

♦Given xt, compute Ht = f ′′(xt) and then

find spectral decomposition of Ht:

Ht = VtDiag{λ1, ..., λn}V T
t

♦Given once for ever chosen tolerance δ > 0,

set

λ̂i = max[λi, δ]

and

At+1 = VtDiag{λ̂1, ..., λ̂n}V T
t

Note: The construction ensures uniform pos-

itive definiteness and boundedness of {At}t,
provided the level set G = {x : f(x) ≤ f(x0)}
is compact and f is twice continuously dif-

ferentiable in a neighbourhood of G.



♣ Levenberg-Marquard implementation:

At+1 = εtI + Ht,

where εt ≥ 0 is chosen to ensure that At+1 º
δI with once for ever chosen δ > 0.

♦εt is found by Bisection as applied to the

problem

min {ε : ε ≥ 0, Ht + εI º δI}

♦Bisection requires to check whether the

condition

Ht + εI Â δI ⇔ Ht + (ε− δ)I Â 0

holds true for a given value of ε, and the

underlying test comes from Choleski decom-

position.



♣ Choleski Decomposition. By Linear Alge-
bra, a symmetric matrix P is Â 0 iff

P = DDT (∗)
with lower triangular nonsingular matrix D.
When Choleski Decomposition (∗) exists, it
can be found by a simple algorithm as fol-
lows:
♦Representation (∗) means that

pij = did
T
j ,

where

di = (di1, di2, ..., dii,0,0,0,0, ...,0)
dj = (dj1, dj2, ..., dji, ..., djj,0, ...,0)

are the rows of D.
♦In particular, pi1 = d11di1, and we can set
d11 =

√
p11, di1 = pi1/d11, thus specifying

the first column of D.
♦Further, p22 = d2

21 + d2
22, whence d22 =√

p22 − d2
21. After we know d22, we can find

all remaining entries in the second column of
D from the relations

pi2 = di1d21+di2d22 ⇒ di2 =
pi2 − di1d21

d22
, i > 2.



♦We proceed in this way: after the first (k−
1) columns in D are found, we fill the k-th

column according to

dkk =
√

pkk − d2
k1 − d2

k2 − ...− d2
k,k−1

dik =
pik−di1dk1−...−di,k−1dk,k−1

dkk
, i > k.

♠ The outlined process either results in the

required D, or terminates when you cannot

carry out current pivot, that is, when

pkk − d2
k1 − d2

k2 − ...− d2
k,k−1 ≤ 0

This “bad termination” indicates that P is

not positive definite.



The outlined Choleski Algorithm allows to

find the Choleski decomposition, if any, in

≈ n3

6 a.o. It is used routinely to solve linear

systems

Px = p (S)

with P Â 0. To solve the system, one first

computes the Choleski decomposition

P = DDT

and then solves (S) by two back-substitutions

b 7→ y : Dy = b, y 7→ x : DTx = y,

that is, by solving two triangular systems of

equations (which takes just O(n2) a.o.

Another application of the algorithm (e.g.,

in Levenberg-Marquardt method) is to check

positive definiteness of a symmetric matrix.

Note: The Levenberg-Marquardt method pro-

duces uniformly positive definite bounded se-

quence {At}, provided that the set G = {x :

f(x) ≤ f(x0)} is compact and f is twice con-

tinuously differentiable in a neighbourhood of

G.



♣ The “most practical” implementation of

Modified Newton Method is based on run-

ning the Choleski decomposition as applied

to Ht = f ′′(xt). When in course of this pro-

cess the current pivot (that is, specifying dkk)

becomes impossible or results in dkk < δ, one

increases the corresponding diagonal entry in

Ht until the condition dkk = δ is met.

With this approach, one finds a diagonal cor-

rection of Ht which makes the matrix “well

positive definite” and ensures uniform posi-

tive definiteness and boundedness of the re-

sulting sequence {At}, provided that the set

G = {x : f(x) ≤ f(x0)} is compact and f is

twice continuously differentiable in a neigh-

bourhood of G.



Conjugate Gradient methods

♣ Consider a problem of minimizing a posi-
tive definite quadratic form

f(x) =
1

2
xTHx− bTx + c

Here is a “conceptual algorithm” for mini-
mizing f , or, which is the same, for solving
the system

Hx = b :

Given starting point x0, let g0 = f ′(x0) =
Hx0 − b, and let

Ek = Lin{g0, Hg0, H2g0, ..., Hk−1g0},
and

xk = argmin
x∈x0+Ek

f(x).

Fact I: Let k∗ be the smallest integer k such
that Ek+1 = Ek. Then k∗ ≤ n, and xk∗ is the
unique minimizer of f on Rn

Fact II: One has

f(xk)−min
x

f(x) ≤ 4




√
Qf − 1

√
Qf + 1



2k

[f(x0)−min
x

f(x)]



Fact III: The trajectory {xk} is given by ex-
plicit recurrence:
♦Initialization: Set

d0 = −g0 ≡ −f ′(x0) = b−Hx0;

♦Step t: if gt−1 ≡ ∇f(xt−1) = 0, terminate,
xt−1 being the result. Otherwise set

γt = − gT
t−1dt−1

dT
t−1Hdt−1

xt = xt−1 + γtdt−1
gt = f ′(xt) ≡ Hxt − b

βt =
gT
t Hdt−1

dT
t−1Hdt−1

dt = −gt + βtdt−1

and loop to step t + 1.
Note: In the above process,
♦The gradients g0, ..., gk∗−1, gk∗ = 0 are mu-
tually orthogonal
♦The directions d0, d1, ..., dk∗−1 are H-orthogonal:

i 6= j ⇒ dT
i Hdj = 0

♦One has

γt = argmin
γ

f(xt−1 + γdt−1)

βt =
gT
t gt

gT
t−1gt−1



♣ Conjugate Gradient method as applied to

a strongly convex quadratic form f can be

viewed as an iterative algorithm for solving

the linear system

Hx = b.

As compared to “direct solvers”, like Choleski

Decomposition or Gauss elimination, the ad-

vantages of CG are:

♦Ability, in the case of exact arithmetic, to

find solution in at most n steps, with a single

matrix-vector multiplication and O(n) addi-

tional operations per step.

⇒ The cost of finding the solution is at most

O(n)L, where L is the arithmetic price of

matrix-vector multiplication.

Note: When H is sparse, L << n2, and the

price of the solution becomes much smaller

than the price O(n3) for the direct LA meth-

ods.

♦In principle, there is no necessity to assem-

ble H – all we need is the possibility to mul-

tiply by H



♦The non-asymptotic error bound

f(xk)−min
x

f(x) ≤ 4




√
Qf − 1

√
Qf + 1



2k

[f(x0)−min
x

f(x)]

indicates rate of convergence completely in-

dependent of the dimension and depending

only on the condition number of H.



♠ Illustrations:

♦System 1000× 1000, Qf = 1.e2:

Itr f − f∗ ‖x− x∗‖2
1 2.297e + 003 2.353e + 001
11 1.707e + 001 4.265e + 000
21 3.624e− 001 6.167e− 001
31 6.319e− 003 8.028e− 002
41 1.150e− 004 1.076e− 002
51 2.016e− 006 1.434e− 003
61 3.178e− 008 1.776e− 004
71 5.946e− 010 2.468e− 005
81 9.668e− 012 3.096e− 006
91 1.692e− 013 4.028e− 007
94 4.507e− 014 2.062e− 007



♦System 1000× 1000, Qf = 1.e4:

Itr f − f∗ ‖x− x∗‖2
1 1.471e + 005 2.850e + 001
51 1.542e + 002 1.048e + 001
101 1.924e + 001 4.344e + 000
151 2.267e + 000 1.477e + 000
201 2.248e− 001 4.658e− 001
251 2.874e− 002 1.779e− 001
301 3.480e− 003 6.103e− 002
351 4.154e− 004 2.054e− 002
401 4.785e− 005 6.846e− 003
451 4.863e− 006 2.136e− 003
501 4.537e− 007 6.413e− 004
551 4.776e− 008 2.109e− 004
601 4.954e− 009 7.105e− 005
651 5.666e− 010 2.420e− 005
701 6.208e− 011 8.144e− 006
751 7.162e− 012 2.707e− 006
801 7.850e− 013 8.901e− 007
851 8.076e− 014 2.745e− 007
901 7.436e− 015 8.559e− 008
902 7.152e− 015 8.412e− 008



♦System 1000× 1000, Qf = 1.e6:

Itr f − f∗ ‖x− x∗‖2
1 9.916e + 006 2.849e + 001

1000 7.190e + 000 2.683e + 000
2000 4.839e− 002 2.207e− 001
3000 4.091e− 004 1.999e− 002
4000 2.593e− 006 1.602e− 003
5000 1.526e− 008 1.160e− 004
6000 1.159e− 010 1.102e− 005
7000 6.022e− 013 7.883e− 007
8000 3.386e− 015 5.595e− 008
8103 1.923e− 015 4.236e− 008



♦System 1000× 1000, Qf = 1.e12:

Itr f − f∗ ‖x− x∗‖2
1 5.117e + 012 3.078e + 001

1000 1.114e + 007 2.223e + 001
2000 2.658e + 006 2.056e + 001
3000 1.043e + 006 1.964e + 001
4000 5.497e + 005 1.899e + 001
5000 3.444e + 005 1.851e + 001
6000 2.343e + 005 1.808e + 001
7000 1.760e + 005 1.775e + 001
8000 1.346e + 005 1.741e + 001
9000 1.045e + 005 1.709e + 001
10000 8.226e + 004 1.679e + 001



♣ Non-Quadratic Extensions: CG in the form

d0 = −g0 = −f ′(x0)
γt = argmin

γ
f(xt−1 + γdt−1)

xt = xt−1 + γtdt−1
gt = f ′(xt)

βt =
gT
t gt

gT
t−1gt−1

dt = −gt + βtdt−1

can be applied to whatever function f , not
necessarily quadratic one (Fletcher-Reevs CG),
and similarly for another equivalent in the
quadratic case form:

d0 = −g0 = −f ′(x0)
γt = argmin

γ
f(xt−1 + γdt−1)

xt = xt−1 + γtdt−1
gt = f ′(xt)

βt =
(gt−gt−1)

T gt

gT
t−1gt−1

dt = −gt + βtdt−1

(Polak-Ribiere CG).
♠ Being equivalent in the quadratic case,
these (and other) forms of CG become dif-
ferent in the non-quadratic case!



♠ Non-quadratic extensions of CG can be

used with and without restarts.

♦In quadratic case CG, modulo rounding er-

rors, terminate in at most n steps with exact

solutions. In non-quadratic case this is not

so.

♦In non-quadratic CG with restarts, execu-

tion is split in n-step cycles, and cycle t + 1

starts from the last iterate xt of the previous

cycle as from the starting point.

In contrast to this, with no restarts the re-

currence like

d0 = −g0 = −f ′(x0)
γt = argmin

γ
f(xt−1 + γdt−1)

xt = xt−1 + γtdt−1
gt = f ′(xt)

βt =
(gt−gt−1)

T gt

gT
t−1gt−1

dt = −gt + βtdt−1

is never “refreshed”.



Theorem: Let the level set {x : f(x) ≤ f(x0)}
of f be compact and f be twice contin-

uously differentiable in a neighbourhood of

G. When minimizing f by Fletcher-Reevs or

Polak-Ribiere Conjugate Gradients with ex-

act linesearch and restarts,

♦the trajectory is well-defined and bounded

♦f never increases

♦all limiting points of the sequence xt of con-

cluding iterates of the subsequent cycles are

critical points of f .

♦If, in addition, xt converge to a nondegen-

erate local minimizer x∗ of f and f is 3 times

continuously differentiable around x∗, then xt

converge to x∗ quadratically.



Quasi-Newton Methods

♣ Quasi-Newton methods are variable metric

methods of the generic form

xt+1 = xt − γt+1 St+1︸ ︷︷ ︸
=A−1

t+1

f ′(xt)

where St+1 Â 0 and γt+1 is given by line-

search.

♠ In contrast to Modified Newton methods,

in Quasi-Newton algorithms one operates di-

rectly on matrix St+1, with the ultimate goal

to ensure, under favourable circumstances,

that

St+1 − [f ′′(xt)]
−1 → 0, t →∞. (∗)

♠ In order to achieve (∗), in Quasi-Newton

methods one updates St into St+1 in a way

which ensures that

♦St+1 is Â 0

♦St+1(gt − gt−1) = xt − xt−1, where gτ =

f ′(xτ).



♣ Generic Quasi-Newton method:

Initialization: Choose somehow starting point

x0, matrix S1 Â 0, compute g0 = f ′(x0).

Step t: given xt−1, gt−1 = f ′(xt−1) and St Â
0, terminate when gt−1 = 0, otherwise

♦Set dt = −Stgt−1 and perform exact line

search from xt−1 in the direction dt, thus get-

ting new iterate

xt = xt−1 + γtdt;

♦compute gt = f ′(xt) and set

pt = xt − xt−1, qt = gt − gt−1;

♦update St into positive definite symmetric

matrix St+1 in such a way that

St+1qt = pt

and loop.



♠ Requirements on the updating rule St 7→
St+1:

♦In order for dt+1 to be direction of decrease

of f , the rule should ensure St+1 º 0

♦In the case of strongly convex quadratic f ,

the rule should ensure that St− [f ′′(·)]−1 → 0

as t →∞.



♠ Davidon-Fletcher-Powell method:

St+1 = St +
1

pT
t qt

ptp
T
t −

1

qT
t Stqt

Stqtq
T
t St.

♠ The Davidon-Fletcher-Powell method, as

applied to a strongly convex quadratic form,

finds exact solution in no more than n steps.

The trajectory generated by the method ini-

tialized with S1 = I is exactly the one of

the Conjugate Gradient method, so that

the DFP (Davidon-Fletcher-Powell) method

with the indicated initialization is a Conju-

gate Gradient method.



♣ The Broyden family.

Broyden-Fletcher-Goldfarb-Shanno updating

formula:

SBFGS
t+1 = St+

1 + qT
t Stqt

(pT
t qt)2

ptp
T
t −

1

pT
t qt

[
ptq

T
t St + Stqtp

T
t

]

can be combined with the Davidon-Fletcher-

Powell formula

SDFP
t+1 = St +

1

qT
t pt

ptp
T
t −

1

qT
t Stqt

Stqtq
T
t St.

to yield a single-parametric Broyden family

of updating formulas

S
φ
t+1 = (1− φ)SDFP

t+1 + φSBFGS
t+1

where φ ∈ [0,1] is parameter.



♣ Facts:

♦As applied to a strongly convex quadratic

form f , the Broyden method minimizes the

form exactly in no more than n steps, n be-

ing the dimension of the design vector. If S0

is proportional to the unit matrix, then the

trajectory of the method on f is exactly the

one of the Conjugate Gradient method.

♦all Broyden methods, independently of the

choice of the parameter φ, being started from

the same pair (x0, S1) and equipped with the

same exact line search and applied to the

same problem, generate the same sequence

of iterates (although not the same sequence

of matrices St!).

♣ Broyden methods are thought to be the

most efficient in practice versions of the Con-

jugate Gradient and quasi-Newton methods,

with the pure BFGS method (φ = 1) seem-

ingly being the best.



Convergence of Quasi-Newton methods

♣ Global convergence of Quasi-Newton meth-

ods without restarts is proved only for cer-

tain versions of the methods and only under

strong assumptions on f .

• For methods with restarts, where the

updating formulas are “refreshed” every m

steps by setting S = S0, one can easily prove

that under our standard assumption that the

level set G = {x : f(x) ≤ f(x0)} is com-

pact and f is continuously differentiable in a

neighbourhood of G, the trajectory of start-

ing points of the cycles is bounded, and all

its limiting points are critical points of f .



♣ Local convergence:

♦For scheme with restarts, one can prove

that if m = n and S0 = I, then the trajectory

of starting points xt of cycles, if it converges

to a nondegenerate local minimizer x∗ of f

such that f is 3 times continuously differen-

tiable around x∗, converges to x∗ quadrati-

cally.

♦Theorem [Powell, 1976]. Consider the

BFGS method without restarts and assume

that the method converges to a nondegener-

ate local minimizer x∗ of a three times con-

tinuously differentiable function f . Then the

method converges to x∗ superlinearly.



Convex Programming

♣ A Convex Programming program is an op-

timization program of the form

min
X

f(x) (P)

where

• X ⊂ Rn is a convex compact set, intX 6= ∅;
• f is a continuous convex function on Rn.



♠ Convexity of a set X ⊂ Rn means that

whenever X contains a pair of points x, y, it

contains the entire segment linking x and y:

x, y ∈ X ⇒ λx + (1− λ)y ∈ X ∀λ ∈ [0,1].

♠ Convexity of a function f : X → R de-

fined on a convex set X means that on every

segment in X, the function is below the cor-

responding secant:

x, y ∈ X, λ ∈ [0,1] ⇒
f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Equivalently: The epigraph of f – the set

Epi{f} = {(x, t) : x ∈ X, t ≥ f(x)} ⊂ Rn+1

– is convex.



min
X

f(x) (P)

♣ Assume that our “environment” when

solving convex program (P) is as follows:

1. We have access to a Separation Oracle

Sep(X) for X – a routine which, given on

input a point x ∈ Rn, reports whether x ∈ X,

and in the case of x 6∈ X, returns a separator

– a vector e 6= 0 such that

eTx ≥ sup
y∈X

eTy

• Note: When X is convex and x 6∈ intX, a

separator does exist.



min
X

f(x) (P)

2. We have access to a First Order oracle
which, given on input a point x ∈ X, returns
the value f(x) and a subgradient f ′(x) of f

at x.
• A subgradient of f at x ∈ X is a vector g

such that

f(y) ≥ f(x) + gT (y − x) ∀y ∈ X.

Assuming f : X → R convex,
• a subgradient exists at every point
x ∈ intX;
• if f is differentiable at x ∈ X, the
gradient ∇f(x) is a subgradient of f

at x (and this is the only subgradient
of f at x, provided x ∈ intX);
• if f is Lipschitz continuous on X,
subgradient of f exists at every point
x ∈ X.



min
X

f(x) (P)

3. We are given two positive reals R, r such

that for some (unknown) c one has

{x : ‖x− c‖ ≤ r} ⊂ X ⊂ {x : ‖x‖2 ≤ R}.



♠ Example: Consider an optimization pro-
gram

min
x∈X

f(x) ≡ max
1≤`≤L

f`(x)

X = {x ∈⊂ Rn : g(x) = max
`=1,...,L

g`(x) ≤ 0}
where all f`, g` are convex differentiable func-
tions on Rn.
In this case

To build Separation and First Order
oracles is the same as to build a rou-
tine which is capable to compute, at
a given x, all f`(x), ∇f`(x), g`(x),
∇g`(x).

Indeed, for a differentiable convex function
h, its gradient is a subgradient as well:

h(y) ≥ h(x) + (y − x)T∇h(x) ∀x, y,

and for the maximum h = max
`=1,...,L

of convex

differentiable functions a subgradient at x is
given by

∇h`(x)(x), `(x) : max
`=1,...,L

h`(x) = h`(x)(x).



Thus,

• If we know how to compute f`, ∇f`, we

have in our disposal the First Order oracle

for f : we can take, as a subgradient of f at

x, the gradient of (any) function f` which is

the largest at x.



• If we know how to compute g`, ∇g`, we au-

tomatically have in our disposal a Separation

oracle for X.

Indeed, x ∈ X iff g(x) = max
`=1,...,L

g`(x) ≤ 0.

Therefore

• In order to check whether x ∈ X, it

suffices to compute g(x) and to check

whether g(x) ≤ 0;

• In order to separate x from X when

x 6∈ X, it suffices

a) to find ` = `∗ such that g`(x) > 0

b) to set e = ∇g`∗(x).
Indeed, we have

y ∈ X ⇒ [g`∗(x) + (y − x)T e ≤] g`∗(y) ≤ 0

⇒ eTy ≤ eTx− g`∗(x)≤ eTx.



Theorem [“Polynomial solvability” of convex

programs] In the outlined “working environ-

ment”, for every given ε > 0 it is possible to

find an ε-solution to (P) – a point xε ∈ X

with

f(xε) ≤ min
x∈X

f(x) + ε

– in no more than N(ε) subsequent calls to

the Separation and the First Order oracles

plus no more than O(1)n2N(ε) arithmetic op-

erations to process the answers of the ora-

cles, with

N(ε) = O(1)n2 ln

(
2 +

VarR(f)R

ε · r

)
.

Here

VarR(f) = max
‖x‖2≤R

f(x)− min
‖x‖2≤R

f(x).



• We are about to build a “good” solution

method for a convex program

min
x∈X

f(x) (P)

• X ⊂ Rn is a closed and bounded convex set

with a nonempty interior equipped with Sep-

aration oracle,

• f : X → R is convex and continuous func-

tion represented by a First Order oracle,

• We are given R > r > 0:

{x : ‖x− x̄‖ ≤ r} ⊂ X ⊂ {x : ‖x‖ ≤ R}.



♣ To get an idea, consider the one-dimensional

case. Here a good solution method is

Bisection. When solving a problem

min
x
{f(x) : x ∈ X = [a, b] ⊂ [−R, R]} ,

by Bisection, we recursively update localizers

∆t = [at, bt] of the optimal set Xopt: Xopt ⊂
∆t.

• Initialization: Set ∆0 = [−R, R] [⊃ Xopt]

• Step t: Given ∆t−1 ⊃ Xopt let ct be the

midpoint of ∆t−1. Calling Separation

and First Order oracle at et, we always

can replace ∆t−1 by twice smaller local-

izer ∆t.



“Given ∆t−1 ⊃ Xopt let ct be the midpoint

of ∆t−1. Calling Separation and First Order

oracle at et, we always can replace ∆t−1 by

twice smaller localizer ∆t:”

a b c
t

1.a)

a
t−1

b
t−1

f

a bc
t

1.b)

a
t−1

b
t−1

f

c
t

2.a)

a
t−1

b
t−1

f

c
t

2.b)

a
t−1

b
t−1

f

c
t

2.c)

a
t−1

b
t−1

f

Bisection
1) Sep(X) says that ct 6∈ X and says, via

separator e, on which side of ct X is.
1.a): ∆t = [at−1, ct]; 1.b): ∆t = [ct, bt−1]

2) Sep(X) says that ct ∈ X, and O(f) says,
via signf ′(ct), on which side of ct Xopt is.
2.a): ∆t = [at−1, ct]; 2.b): ∆t = [ct, bt−1];
2.c): ct ∈ Xopt



min
x∈X

f(x) (P)

♣ In the multi-dimensional case, one can use

the Ellipsoid method – a simple generaliza-

tion of Bisection with ellipsoids playing the

role of segments.



Cutting Plane Scheme

min
x∈X

f(x)

⇓
Xopt = Argmin

X
f

♣ We build a sequence of localizers Gt such

that

• Gt ⊃ Xopt

• Gt decrease as t grows



Case 1: search point inside X
• blue: old localizer
• black: X

• red: cut {x : (y − x)Tf ′(x) = 0}

Case 2: search point outside X
• blue: old localizer
• black: X

• red: cut {x : (y − x)Te = 0}



Straightforward implementation: Centers of

Gravity Method

• G0 = X

• xt =
1

Vol(Gt−1)

∫

Gt−1

xdx

Theorem: For the Center of Gravity method,

one has

Vol(Gt) ≤
(
1−

(
n

n+1

)n)
Vol(Gt−1)

≤
(
1− 1

e

)
Vol(Gt−1)

< 0.6322Vol(Gt−1).

(∗)

As a result,

min
t≤T

f(xt)− f∗ ≤ (1− 1/e)T/nVarX(f)



Vol(Gt) ≤
(
1−

(
n

n+1

)n)
Vol(Gt−1)

≤
(
1− 1

e

)
Vol(Gt−1)

< 0.6322Vol(Gt−1).

(∗)

♣ Reason for (*): Brunn-Minkowski
Symmeterization Principle:

Let Y be a convex compact set in Rn, e
be a unit direction and Z be “equi-cross-
sectional” to X body symmetric w.r.t. e, so
that

• Z is symmetric w.r.t. the axis e

• for every hyperplane H = {x : eTx =
const}, one has

Voln−1(X ∩H) = Voln−1(Z ∩H)

Then Z is a convex compact set.
Equivalently: Let U, V be convex compact
nonempty sets in Rn. Then

Vol1/n(U + V ) ≥ Vol1/n(U) + Vol1/n(V ).

In fact, convexity of U , V is redundant!



Why progress in volumes ensures progress in

accuracy?

♣ Let Vol(Gt) ≤ κVol(Gt−1) with κ < 1. We

claim that

min
t≤T

f(xt)− f∗ ≤ κT/nVarX(f).

Indeed, let ν ∈ (κT/n,1), let x∗ = argmin
X

f

and let Xν = x∗ + ν(X − x∗).
Then Vol(Xν) = νnVol(X) > κTVol(X) >

Vol(GT ), whence

Xν\GT 6= ∅.

We see that there exists z ∈ X such that

y ≡ x∗ + ν(z − x∗) 6∈ GT .

Thus, y ∈ Gt∗−1\Gt∗ for certain t∗ ≤ T , that

is,

(y − xt∗)
Tf ′(xt∗) > 0 ⇒ f(xt∗) < f(y).



On the other hand,

f(y) = f(x∗ + ν(z − x∗))
≤ f(x∗) + ν(f(z)− f(x∗))
≤ f(x∗) + νVarX(f).

We see that

min
t≤T

f(xt) ≤ f(xt∗) < f(y) ≤ f(x∗)+νVarX(f).

Passing to limits as ν → κT/n + 0, we arrive

at

min
t≤T

f(xt) ≤ f(x∗) + κT/nVarX(f).



min
x∈X

f(x) (P)

♣ Ellipsoid method – the idea. Assume we

already have an n-dimensional ellipsoid

E = {x = c + Bu : uTu ≤ 1}
[B ∈ Rn×n,Det(B) 6= 0]

which covers the optimal set Xopt.

In order to replace E with a smaller ellipsoid

containing Xopt, we

1) Call Sep(X) to check whether c ∈ X

1.a) If Sep(X) says that c 6∈ X and returns a

separator e:

e 6= 0, eT c ≥ sup
y∈X

eTy.

we may be sure that

Xopt = Xopt
⋂

E ⊂ Ê = {x ∈ E : eT (x−c) ≤ 0}.



1.b) If Sep(X) says that c ∈ X, we call O(f)

to compute f(c) and f ′(c), so that

f(y) ≥ f(c) + (y − c)Tf ′(c) ∀y (∗)

If f ′(c) = 0, c is optimal for (P) by (*), oth-

erwise (*) says that

Xopt = Xopt
⋂

E ⊂ Ê = {x ∈ E : [f ′(c)]︸ ︷︷ ︸
e

T
(x−c) ≤ 0}

• Thus, we either terminate with optimal so-

lution, or get a “half-ellipsoid”

Ê = {x ∈ E : eTx ≤ eT c} [e 6= 0]

containing Xopt.



1) Given an ellipsoid

E = {x = c + Bu : uTu ≤ 1}
[B ∈ Rn×n,Det(B) 6= 0]

containing the optimal set of (P) and calling
the Separation and the First Order oracles at
the center c of the ellipsoid, we pass from E
to the half-ellipsoid

Ê = {x ∈ E : eTx ≤ eT c} [e 6= 0]

containing Xopt.

2) It turns out that the half-ellipsoid Ê can
be included into a new ellipsoid E+ of n-
dimensional volume less than the one of E:

E+ = {x = c+ + B+u : uTu ≤ 1},
c+ = c− 1

n+1Bp,

B+ = B

(
n√

n2−1
(In − ppT ) + n

n+1ppT
)

= n√
n2−1

B +
(

n
n+1 − n√

n2−1

)
(Bp)pT ,

p = BT e√
eT BBT e

Vol(E+) =
(

n√
n2−1

)n−1
n

n+1Vol(E)

≤ exp{−1/(2n)}Vol(E)



♠ In the Ellipsoid method, we iterate the

above construction, starting with E0 = {x :

‖x‖2 ≤ R} ⊃ X, thus getting a sequence of el-

lipsoids Et+1 = (Et)+ with volumes “rapidly”

converging to 0, all of them containing Xopt.



♣ Verification of the fact that



E = {x = c + Bu : uTu ≤ 1}
Ê = {x ∈ E : eTx ≤ eT c}

[e 6= 0]




⇓
Ê ⊂ E+ = {x = c+ + B+u : uTu ≤ 1}



c+ = c− 1
n+1Bp,

B+ = B

(
n√

n2−1
(In − ppT ) + n

n+1ppT
)

= n√
n2−1

B +
(

n
n+1 − n√

n2−1

)
(Bp)pT ,

p = BT e√
eT BBT e




is easy:

• E is the image of the unit ball under a one-

to-one affine mapping

• therefore Ê is the image of a half-ball Ŵ =

{u : uTu ≤ 1, pTu ≤ 0} – under the same

mapping

• Ratio of volumes remains invariant under

affine mappings, and therefore all we need is

to find a “small” ellipsoid containing half-ball

Ŵ .



e

⇔
x=c+Bu

p

E, Ê and E+ W , Ŵ and W+

Since Ŵ is “highly symmetric”, to find the

smallest possible ellipsoid containing Ŵ is a

simple exercise in elementary Calculus.



min
x∈X

f(x) (P)

♣ Ellipsoid Algorithm:

• Initialization: Set

c0 = 0, B0 = RI, E0 = {x = c0 + B0u : uTu ≤ 1}︸ ︷︷ ︸
contains X

and

ρ0 = R, L0 = 0[
ρt : Vol(Et) = Vol {{x : ‖x‖2 ≤ ρt}

Lt : Lt ≤ VarR(f) = maxE0
f −minE0

f

]



Step t, t = 1,2, .... At the beginning of step

t, we have the data ct−1, Bt−1 of the previous

ellipsoid

Et−1 = {x = ct−1 + Bt−1u : uTu ≤ 1}
[ct−1 ∈ Rn, Bt−1 ∈ Rn×n,DetBt−1 6= 0]

along with the quantities Lt−1 ≥ 0 and ρt−1.

• At step t,

1) We call Sep(X), ct−1 being the input. If

xt−1 6∈ X (“non-productive step”), Sep(X)

returns a separator

e 6= 0 : eT ct−1 ≥ sup
y∈X

eTy.

In this case, we set

et = e, Lt = Lt−1

and go to 3). If ct−1 ∈ X (“productive

step”), we go to 2).



2) We call O(f), ct−1 being the input, to get

f(ct−1), e = f ′(ct−1). If e = 0, we terminate

and claim that ct−1 is an optimal solution to

(P).

If e 6= 0, we set

et = e,

compute the quantity

`t = max
y∈E0

[eT
t y − eT

t ct−1] = R‖et‖2 − eT
t ct−1,

update L by setting

Lt = max{Lt−1, `t}
and go to 3).

Note: Since f(y)−f(ct−1) ≥ eT
t (y−ct−1), and

ct−1 ∈ X ⊂ E0, we have `t ≤ maxE0
f(y) −

f(ct−1) ≤ VarR(f), whence Lt ≤ VarR(f).



3) We set

Êt = {x ∈ Et−1 : eT
t x ≤ eT

t ct−1}
and define the new ellipsoid

Et = {x = ct + Btu : uTu ≤ 1}
by setting

pt =
BT

t−1et√
eT
t Bt−1BT

t−1et

ct = ct−1 − 1
n+1Bt−1pt,

Bt = n√
n2−1

Bt−1 +
(

n
n+1 − n√

n2−1

)
(Bt−1pt)pT

t .

We also set

ρt = |DetBt|1/n =




n√
n2 − 1




n−1
n (

n

n + 1

)1
n

ρt−1

and go to 4).



4) [Termination test]. We check whether the

inequality
ρt

r
<

ε

Lt + ε
(∗)

(r > 0 is a given in advance radius of Euclid-

ean ball contained in X).

• If (*) holds, we terminate and output the

best (with the smallest value of f) of the

“search points” cτ−1 associated with produc-

tive steps τ ≤ t.

• If (*) does not hold, we pass to step t +1.



Numerical example:

min f(x),
f(x) = 1

2(1.4435x1 + 0.6232x2 − 7.9574)2

+5(−0.3509x1 + 0.7990x2 + 2.8778)4

−1 ≤ x1, x2 ≤ 1,

• Xopt = {(1,−1)}, Opt = 70.030152768...

Here are the best objective values of feasible

solutions found in course of the first t steps,

t = 1, ...,256:

t best value t best value
1 374.61091739 16 76.838253451
2 216.53084103 ... ...
3 146.74723394 32 70.901344815
4 112.42945457 ... ...
5 93.84206347 64 70.031633483
6 82.90928589 ... ...
7 82.90928589 128 70.030154192
8 82.90928589 ... ...
... ... 256 70.030152768



• The initial phase of the process looks as

follows:

0

0

1

1

2

2

3

3

15
15

Ellipses Et−1 and search points ct−1, t = 1,2,3,4,16
Arrows: gradients of the objective f(x)
Unmarked segments: tangents to the level lines of f(x)



Theorem [Complexity of the Ellipsoid Algo-

rithm] Let the Ellipsoid Algorithm be applied

to convex program

min
x∈X

f(x) (P)

such that X contains a Euclidean ball of a

given radius r > 0 and is contained in the

ball E0 = {‖x‖2 ≤ R} of a given radius R.

For every input accuracy ε > 0, the Ellipsoid

method terminates after no more than

N(P)(ε)

= Ceil
(
2n2

[
ln

(
R
r

)
+ ln

(
ε+VarR(f)

ε

)])
+ 1

steps, where

VarR(f) = max
E0

f −min
E0

f,

Vol is the n-dimensional volume and Ceil(a)

is the smallest integer ≥ a.

Moreover, the result x̂ generated by the

method is a feasible ε-solution to (P):

x̂ ∈ X and f(x)−min
X

f ≤ ε.



Proof. Let t be such that the method does

not terminate before this step and does not

terminate at this step because of

ct−1 ∈ X, f ′(ct−1) = 0.

Then for 1 ≤ τ ≤ t one has

(a) E0 ⊃ X;

(b) Eτ ⊃ Êτ =
{
x ∈ Eτ−1 : eT

τ x ≤ eT
τ cτ−1

}
,

(c) Vol(Eτ) = ρn
τVol(E0)

=
(

n√
n2−1

)n−1
n

n+1Vol(Eτ−1)

≤ exp{−1/(2n)}Vol(Eτ−1).

By (c) we have

ρτ ≤ exp{−τ/(2n2)}R, τ = 1, ..., t.

10. We claim that

(!) If the Ellipsoid Algorithm termi-

nates at certain step t, then the re-

sult x̂ is well-defined and is a feasible

ε-solution to (P).



(!) “If the Ellipsoids method terminates at

certain step t, then the result x̂ is well-defined

and is a feasible ε-solution to (P).”

Indeed, there are two possible reasons for ter-

mination at step t:

• We arrive at the situation where

ct−1 ∈ X and f ′(ct−1) = 0. (A)

In this case

∀y : f(y) ≥ f(ct−1)+(y−ct−1)
Tf ′(ct−1) = f(ct−1),

and since ct−1 ∈ X, ct−1 is optimal solution

to min
X

f .

• We arrive at the situation where

ρt

r
<

ε

Lt + ε
(B)

Let us prove that (!) is valid in the case of

(B).



20. Let the method terminate at step t ac-

cording to

ρt

r
<

ε

Lt + ε
≡ ν (B)

There exists ν′: ρt
r < ν′ < ν [≤ 1].

(P) is solvable (f is continuous on X, X is

compact). Let x∗ ∈ Xopt, and let

X+ = x∗+ν′(X−x∗) = {x = (1−ν′)x∗+ν′z : z ∈ X}
Note that

Vol(X+) = (ν′)nVol(X)
≥ (ν′)nrnVol ({x : ‖x‖2 ≤ 1})
> ρn

t Vol ({x : ‖x‖2 ≤ 1})
= Vol(Et),

and consequently

X+\Et 6= ∅
⇓

∃y = (1− ν′)x∗ + ν′z 6∈ Et [z ∈ X]



ρt
r < ε

Lt+ε ≡ ν

⇒ ∃ν′ < ν :
X+ = (1− ν′)x∗ + ν′X satisfies

Vol(X+) > Vol(Et)
⇒ ∃y = (1− ν′)x∗ + ν′z 6∈ Et [z ∈ X]

x*
XX+

z

y

E t

Since y ∈ X ⊂ E0 and y 6∈ Et, y was “cut

off”:

eT
τ y > eT

τ cτ−1 (+)

at certain step τ ≤ t.



• Exists τ ≤ t:

eT
τ y > eT

τ cτ−1 (+)

Observe that the step τ is productive, since

otherwise eτ separates cτ−1 and X, while y ∈
X. Consequently, eτ = f ′(cτ−1).



• Situation: We are solving problem

min
x∈X

f(x) (P)

and the Ellipsoid Algorithm terminates at

step t.

• Target: To prove that the result is an ε-

solution to (P)

• Current state of the proof: We are explor-

ing the case

∃y = (1−ν′)x∗+ν′z
[
x∗ ∈ Xopt, z ∈ X, ν′ < ε

Lt + ε

]

and a productive step τ ≤ t such that

(y − cτ−1)
Tf ′(cτ−1) > 0 (+)



(y − cτ−1)
Tf ′(cτ−1) > 0 (+)

• We have

f(x∗) ≥ f(cτ−1) + (x∗ − cτ−1)Tf ′(cτ−1) × (1− ν ′)
+

Lτ ≥ (z − cτ−1)Tf ′(cτ−1) × ν ′

⇓
(1− ν ′)f(x∗) + ν ′Lτ ≥ (1− ν ′)f(cτ−1)

+([(1− ν ′)x∗ + ν ′z]− cτ−1)Tf ′(cτ−1)
= (1− ν ′)f(cτ−1) + (y − cτ−1)Tf ′(cτ−1)
≥ (1− ν ′)f(cτ−1) [by (+)]

⇓
f(cτ−1) ≤ f(x∗) + ν ′Lτ

1−ν ′

≤ f(x∗) + ν ′Lt

1−ν ′

[since Lτ ≤ Lt in view of τ ≤ t]
≤ f(x∗) + ε

[by definition of ν and since ν ′ < ν]
= Opt(C) + ε.

• Conclusion: In course of running the method,

a feasible solution cτ−1 with f(cτ−1) ≤ Opt(C)+

ε was found.



• Situation: We are solving problem

min
x∈X

f(x) (P)

and the Ellipsoid Algorithm terminates at

step t.

• Target: To prove that the result is an ε-

solution to (P)

• Current state of the proof: It was shown

that in course of running the method, a fea-

sible solution cτ−1 with f(cτ−1) ≤ Opt(C)+ ε

was found.

• By construction, the result of the Ellip-

soid Algorithm is the best – with the smallest

value of f – of feasible solutions cs−1 gen-

erated in course of t steps, so that if the

method terminates at a step t, then the re-

sult is an ε-solution to (P).



30. It remains to prove that the method does

terminate in course of the first

Ceil

(
2n2

[
ln

(
R

r

)
+ ln

(
ε + VarR(f)

ε

)])
+ 1

︸ ︷︷ ︸
N(P )(ε)

steps.

We have seen that Lτ ≤ VarR(f) for all τ and

that

ρτ ≤ exp{−τ/(2n2)}R
for all τ .

It follows that the premise in termination rule

ρt

r
<

ε

Lt + ε︸ ︷︷ ︸
≥ ε

VarR(f)+ε

⇒ Termination

indeed is satisfied in course of the first

N(P)(ε) steps.



♣ Traditional methods for general constrained

problems

min
x

{
f(x) :

gj(x) ≤ 0, j = 1, ..., m
hi(x) = 0, i = 1, ..., k

}
(P )

can be partitioned into

♦Primal methods, where one mimics uncon-

strained approach, travelling along the fea-

sible set in a way which ensures progress in

objective at every step

♦Penalty/Barrier methods, which reduce con-

strained minimization to solving a sequence

of essentially unconstrained problems

♦Lagrange Multiplier methods, where one

focuses on dual problem associated with (P ).

A posteriori the Lagrange multiplier meth-

ods, similarly to the penalty/barrier ones,

reduce (P ) to a sequence of unconstrained

problems, but in a “smart” manner different

from the penalty/barrier scheme

♦Sequential Quadratic Programming meth-

ods, where one directly solves the KKT sys-

tem associated with (P ) by a kind of Newton

method.



Penalty/Barrier Methods

♣ Penalty Scheme, Equality Constrainsts. Con-

sider equality constrained problem

min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

and let us “approximate” it by unconstrained

problem

min
x

fρ(x) = f(x) +
ρ

2

k∑

i=1

h2
i (x)

︸ ︷︷ ︸
penalty
term

(P [ρ])

ρ > 0 is penalty parameter.

Note: (A) On the feasible set, the penalty

term vanishes, thus fρ ≡ f ;

(B) When ρ is large and x is infeasible, fρ(x)

is large:

lim
ρ→∞ fρ(x) =

{
f(x), x is feasible
+∞, otherwise

⇒ It is natural to expect that solution of

(P [ρ]) approaches, as ρ → ∞, the optimal

set of (P ).



♣ Penalty Scheme, General Constraints. In

the case of general constrained problem

min
x

{
f(x) :

hi(x) = 0, i = 1, ..., k
gj ≤ 0, j = 1, ..., m

}
, (P )

the same idea of penalizing the constraint vi-

olations results in approximating (P ) by un-

constrained problem

min
x

fρ(x) = f(x)+
ρ

2




k∑

i=1

h2
i (x) +

m∑

j=1

[gj(x)
+]2




︸ ︷︷ ︸
penalty
term

(P [ρ])

where

g+
j (x) = max[gj(x),0]

and ρ > 0 is penalty parameter. Here again

lim
ρ→∞ fρ(x) =

{
f(x), x is feasible
+∞, otherwise

and we again may expect that the solutions

of (P [ρ]) approach, as ρ → ∞, the optimal

set of (P ).



♣ Barrier scheme normally is used for in-

equality constrained problems

min
x

{
f(x) : gj(x) ≤ 0, j = 1, ..., m

}
(P )

satisfying “Slater condition”: the feasible set

G =
{
x : gj(x) ≤ 0, j ≤ m

}

of (P ) possesses a nonempty interior intG

which is dense in G, and gj(x) < 0 for x ∈
intG.

♠ Given (P ), one builds a barrier (≡interior

penalty) for G – a function F which is well-

defined and smooth on intG and blows up to

+∞ along every sequence of points xi ∈ intG

converging to a boundary point of G:

xi ∈ intG, lim
i→∞xi = x 6∈ intG ⇒ F (xi) →∞, i →∞.

Examples:

♦Log-barrier F (x) = −∑
j

ln(−gj(x))

♦Carrol Barrier F (x) = −∑
j

1
gj(x)



min
x

{
f(x) : gj(x) ≤ 0, j = 1, ..., m

}
(P )

♠ After interior penalty F for the feasible do-

main of (P ) is chosen, the problem is approx-

imated by the “essentially unconstrained”

problem

min
x∈intG

Fρ(x) = f(x) +
1

ρ
F (x) (P [ρ])

When penalty parameter ρ is large, the func-

tion Fρ is close to f everywhere in G, except

for a thin stripe around the boundary.

⇒ It is natural to expect that solutions of

(P [ρ]) approach the optimal set of (P ) as

ρ →∞,



Investigating Penalty Scheme

♣ Let us focus on equality constrained prob-

lem

min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

and associated penalized problems

min
x

fρ(x) = f(x) +
ρ

2
‖h(x)‖22 (P [ρ])

(results for general case are similar).

♠ Questions of interest:

♦Whether indeed unconstrained minimizers

of the penalized objective fρ converge, as

ρ →∞, to the optimal set of (P )?

♦What are our possibilities to minimize the

penalized objective?



min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇓
min

x
fρ(x) = f(x) + ρ

2‖h(x)‖22 (P [ρ])

Simple fact: Let (P ) be feasible, the objec-

tive and the constraints in (P ) be contin-

uous and let f possess bounded level sets

{x : f(x) ≤ a}. Let, further X∗ be the

set of global solutions to (P ). Then X∗
is nonempty, approximations problems (P [ρ])

are solvable, and their global solutions ap-

proach X∗ as ρ →∞:

∀ε > 0∃ρ(ε) : ρ ≥ ρ(ε), x∗(ρ) solves (P [ρ])
⇒ dist(x∗(ρ), X∗) ≡ min

x∗∈X∗
‖x∗(ρ)− x∗‖2 ≤ ε

Proof. 10. By assumption, the feasible set

of (P ) is nonempty and closed, f is contin-

uous and f(x) → ∞ as ‖x‖2 → ∞. It follows

that f attains its minimum on the feasible

set, and the set X∗ of global minimizers of f

on the feasible set is bounded and closed.



min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇓
min

x
fρ(x) = f(x) + ρ

2‖h(x)‖22 (P [ρ])

20. The objective in (P [ρ]) is continuous

and goes to +∞ as ‖x‖2 →∞; consequently,

(P [ρ]) is solvable.



min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇓
min

x
fρ(x) = f(x) + ρ

2‖h(x)‖22 (P [ρ])

30. It remains to prove that, for every ε >

0, the solutions of (P [ρ]) with large enough

value of ρ belong to ε-neighbourhood of X∗.
Assume, on the contrary, that for certain ε >

0 there exists a sequence ρi → ∞ such that

an optimal solution xi to (P [ρi]) is at the

distance > ε from X∗, and let us lead this

assumption to contradiction.

♦Let f∗ be the optimal value of (P ). We

clearly have

f(xi) ≤ fρi(xi) ≤ f∗, (1)

whence {xi} is bounded. Passing to a sub-

sequence, we may assume that xi → x̄ as

i →∞.



min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇓
min

x
fρ(x) = f(x) + ρ

2‖h(x)‖22 (P [ρ])

xi ∈ Argmin
x

fρi(x), xi → x̄ 6∈ X∗
⇒ f(xi) ≤ fρi(xi) ≤ f∗ (1)

♦We claim that x̄ ∈ X∗, which gives the de-

sired contradiction. Indeed,

— x̄ is feasible, since otherwise

lim
i→∞ [f(xi) +

ρi

2
‖h(xi)‖22]︸ ︷︷ ︸

fρi(xi)

= f(x̄) + lim
i→∞

ρi
2 ‖h(xi)‖22︸ ︷︷ ︸
→‖h(x̄)‖22>0

= +∞,

in contradiction to (1);

— f(x̄) = lim
i→∞ f(xi) ≤ f∗ by (1); since x̄ is

feasible for (P ), we conclude that x̄ ∈ X∗.
♠ Shortcoming of Simple Fact: In non-convex

case, we cannot find/approximate global min-

imizers of the penalized objective, so that

Simple Fact is “unsubstantial”...



min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇓
min

x
fρ(x) = f(x) + ρ

2‖h(x)‖22 (P [ρ])

Theorem. Let x∗ be a nondegenerate locally

optimal solution to (P ), i.e., a feasible solu-

tion such that

♦f , hi are twice continuously differentiable in

a neighbourhood of x∗,
♦the gradients of the constraints taken at x∗
are linearly independent,

♦at x∗, the Second Order Sufficient Opti-

mality condition is satisfied.

There exists a neighbourhood V of x∗ and

ρ̄ > 0 such that

♦for every ρ ≥ ρ̄, fρ possesses in V exactly

one critical point x∗(ρ);
♦x∗(ρ) is a nondegenerate local minimizer of

fρ and a minimizer of fρ in V ;

♦x∗(ρ) → x∗ as ρ →∞.



In addition,
• The local “penalized optimal value”

fρ(x∗(ρ)) = min
x∈V

fρ(x)

is nondecreasing in ρ

Indeed, fρ(·) = f(·) + ρ
2‖h(·)‖22 grow with ρ

• The constraint violation ‖h(x∗(ρ))‖2 mono-
tonically goes to 0 as ρ →∞
Indeed, let ρ′′ > ρ′, and let x′ = x∗(ρ′),
x′′ = x∗(ρ′′). Then

f(x′) + ρ′′
2 ‖h(x′)‖22 ≥ f(x′′) + ρ′′

2 ‖h(x′′)‖22
f(x′′) + ρ′

2‖h(x′′)‖22 ≥ f(x′) + ρ′
2‖h(x′)‖22

⇒ f(x′) + f(x′′) + ρ′′
2 ‖h(x′)‖22 + ρ′

2‖h(x′′)‖22
≥ f(x′) + f(x′′) + ρ′′

2 ‖h(x′′)‖22 + ρ′
2‖h(x′)‖22

⇒ ρ′′−ρ′
2 ‖h(x′)‖22 ≥ ρ′′−ρ′

2 ‖h(x′′)‖22
• The true value of the objective f(x∗(ρ)) at
x∗(ρ) is nondecreasing in ρ

• The quantities ρhi(x∗(ρ)) converge to op-
timal Lagrange multipliers of (P ) at x∗
Indeed,

0 = f ′ρ(x∗(ρ)) = f ′(xρ)+
∑

i

(ρhi(x∗(ρ)))h′i(x∗(ρ)).



♣ Solving penalized problem

min
x

fρ(x) ≡ f(x) +
ρ

2
‖h(x)‖22 (P [ρ])

♦In principle, one can solve (P [ρ]) by what-

ever method for unconstrained minimization.

♦However: The conditioning of f deterio-

rates as ρ →∞.

Indeed, as ρ →∞, we have

dTf ′′ρ (x∗(ρ)︸ ︷︷ ︸
x

)d = dT


f ′′(x) +

∑

i

ρhi(x)h
′′
i (x)




︸ ︷︷ ︸
→∇2

xL(x∗,µ∗)

d

+ ρ
∑

i

(dTh′i(x))2

︸ ︷︷ ︸
→∞, ρ →∞

except for dTh′(x∗) = 0

⇒ slowing down the convergence and/or se-

vere numerical difficulties when working with

large penalties...



Barrier Methods

min
x
{f(x) : x ∈ G ≡ {x : gj(x) ≤ 0, j = 1, ..., m}} (P )

⇓
min

x
Fρ(x) ≡ f(x) + 1

ρ
F (x) (P [ρ])

F is interior penalty for G = cl(intG):

♦F is smooth on intG

♦F tends to ∞ along every sequence xi ∈
intG converging to a boundary point of G.

Theorem. Assume that G = cl(intG) is

bounded and f, gj are continuous on G. Then

the set X∗ of optimal solutions to (P ) and the

set X∗(ρ) of optimal solutions to (P [ρ]) are

nonempty, and the second set converges to

the first one as ρ →∞: for every ε > 0, there

exists ρ = ρ(ε) such that

ρ ≥ ρ(ε), x∗(ρ) ∈ X∗(ρ) ⇒ dist(x∗(ρ), X∗) ≤ ε.



♣ In the case of convex program

min
x∈G

f(x) (P )

with closed and bounded convex G and con-

vex objective f , the domain G can be in many

ways equipped with a twice continuously dif-

ferentiable strongly convex penalty F (x).

♠ Assuming f twice continuously differen-

tiable on intG, the aggregate

Fρ(x) = ρf(x) + F (x)

is strongly convex on intG and therefore at-

tains its minimum at a single point

x∗(ρ) = argmin
x∈intG

Fρ(x).

♠ It is easily seen that the path x∗(ρ) is

continuously differentiable and converges, as

ρ →∞, to the optimal set of (P ).



min
x∈G

f(x) (P )

⇓
min

x∈intG
Fρ(x) = ρf(x) + F (x) (P [ρ])

⇓
x∗(ρ) = argmin

x∈intG
Fρ(x) →

ρ→∞Argmin
G

f

♣ in classical path-following scheme (Fiacco

and McCormic, 1967), one traces the path

x∗(ρ) as ρ → ∞ according to the following

generic scheme:

♦Given (xi ∈ intG, ρi > 0) with xi close to

x∗(ρi),

— update ρi into a larger value ρi+1 of the

penalty

— minimize Fρi+1(·), xi being the starting

point, until a new iterate xi+1 close to

x∗(ρi+1) = argmin
x∈intG

Fρi+1(x)

is built, and loop.



♠ To update a tight approximation xi of

argminFρi(x) into a tight approximation xi+1

of argminFρi(x), one can apply to Fρi+1(·) a

method for “essentially unconstrained” min-

imization, preferably, the Newton method

♠ When Newton method is used, one can try

to increase penalty at a “safe” rate, keeping

xi in the domain of quadratic convergence

of the Newton method as applied to Fρi+1(·)
and thus making use of fast local conver-

gence of the method.

Questions: • How to choose F?

• How to measure closeness to the path?

• How to ensure “safe” penalty updating

without slowing the method down?

Note: As ρ → ∞, the condition number of

F ′′ρ (x∗(ρ)) may blow up to ∞, which, accord-

ing to the traditional theory of the Newton

method, makes the problems of updating xi

into xi+1 more and more difficult. Thus,

slowing down seems to be unavoidable...



♣ In late 80’s, it was discovered that the clas-

sical path-following scheme, associated with

properly chosen barriers, admits “safe” im-

plementation without slowing down. This

discovery led to invention of Polynomial

Time Interior Point methods for convex pro-

grams.

♣ Majority of Polynomial Time Interior Point

methods heavily exploit the classical path-

following scheme; the novelty is in what

are the underlying barriers – these are spe-

cific self-concordant functions especially well

suited for Newton minimization.



♣ Let G be a closed convex domain with

nonempty interior which does not contain

lines. A 3 times continuously differentiable

convex function

F (x) : intG → R

is called self-concordant, if

♦F is an interior penalty for G:

xi ∈ intG, xi → x ∈ ∂G ⇒ F (xi) →∞
♦F satisfies the relation
∣∣∣∣∣
d3

dt3

∣∣∣
t=0

F (x + th)

∣∣∣∣∣ ≤ 2

(
d2

dt2

∣∣∣
t=0

F (x + th)

)3/2

♠ Let ϑ ≥ 1. F is called ϑ-self-concordant

barrier for G, if, in addition to being self-

concordant on G, F satisfies the relation

∣∣∣∣
d

dt

∣∣∣
t=0

F (x + th)
∣∣∣∣ ≤

√
ϑ

(
d2

dt2

∣∣∣
t=0

F (x + th)

)1/2

ϑ is called the parameter of s.-c.b. F .



♣ Every convex program

min
x∈G

f(x)

can be converted into a convex program with

linear objective, namely,

min
t,x

{t : x ∈ G, f(x) ≤ t} .

Assuming that this transformation has been

done at the very beginning, we can w.l.o.g.

focus on convex program with linear objec-

tive

min
x∈G

cTx (P )



min
x∈G

cTx (P )

♣ Assume that G is a closed and bounded
convex set with a nonempty interior, and let
F be a ϑ-s.c.b. barrier for G.
♦Fact I: F is strongly convex on intG: F ′′(x) Â
0 for all x ∈ intG. Consequently,

Fρ(x) ≡ ρcTx + F (x)

also is strongly convex on intG. In particular,
the quantity

λ(x, Fρ) =
(
[F ′ρ(x)]T

[
[F ′′ρ (x)]︸ ︷︷ ︸
=F ′′(x)

]−1
F ′ρ(x)

)1/2

called the Newton decrement of Fρ at x is
well-defined for all x ∈ intG and all ρ > 0.
Note: • 1

2λ2(x, Fρ) = Fρ(x)−min
y

[
Fρ(x)+(y−

x)TF ′ρ(x) + 1
2(y − x)TF ′′ρ (x)(y − x)

]

• λ(x, Fρ) ≥ 0 and λ(x, Fρ) = 0 iff x = x∗(ρ),
so that the Newton decrement can be viewed
as a “proximity measure” – a kind of distance
from x to x∗(ρ).



c∗ = min
x∈G

cTx (P )

♣ Fact II: Let (P ) be solved via the classical
penalty scheme implemented as follows:
♦The barrier underlying the scheme is a ϑ-
s.-c.b. F for G;
♦“Closeness” of x and x∗(ρ) is specified by
the relation λ(x, Fρ) ≤ 0.1;

♦The penalty update is ρi+1 =
(
1 + γ√

ϑ

)
ρi,

where γ > 0 is a parameter;
♦To update xi into xi+1, we apply to Fρi+1

the Damped Newton method started as xi:

x 7→ x− 1

1 + λ(x, Fρi+1)
[F ′′ρi+1

(x)]−1F ′ρi+1
(x)

• The method is well-defined, and the num-
ber of damped Newton steps in updating
xi 7→ xi+1 depends solely on γ (and is as small
as 1 for γ = 0.1)
• One has cTxi − c∗ ≤ 2ϑ

ρi

⇒ With the outlined method, it takes O(
√

ϑ)
Newton steps to reduce inaccuracy cTx − c∗
by absolute constant factor!



♣ Fact III: • Every convex domain G ⊂ Rn

admits O(n)-s.-c.b.
• For typical feasible domains arising in Con-
vex Programming, one can point out explicit
“computable” s.-c.b.’s. For example,
♠ Let G be given by m convex quadratic con-
straints:

G = {x : xTAT
j Ajx + 2bT

j x + cj︸ ︷︷ ︸
gj(x)

≤ 0, 1 ≤ j ≤ m}

satisfying the Slater condition. Then the log-
arithmic barrier

F (x) = −
m∑

j=1

ln(−gj(x))

is m-s.-c.b. for G.
♠ Let G be given by Linear Matrix Inequality

G = {x : A0 + x1A1 + ... + xnAn︸ ︷︷ ︸
A(x):m×m

º 0}

satisfying the Slater condition: A(x̄) Â 0 for
some x̄. Then the log-det barrier

F (x) = − lnDet(A(x))

is m-s.-c.b. for G.



♣ Consider an LP

min
z

{
cT z : Az − b ≥ 0

}
(P )

with m × n matrix A, Null(A) = {0}, along

with the dual problem

max
y

{
bTy : ATy = c, y ≥ 0

}
(D)

and assume that both problems are strictly

feasible:

∃z̄ : Az̄ − b > 0 & ∃y > 0 : ATy = c

Note: Passing from z to “primal slack” x =

Az − b, we can rewrite (P ) as

min
x

{
eTx : x ≥ 0, x ∈ L = ImA− b

}
(P ′)

where e is a vector satisfying AT e = c, so

that

eTx = eT (Az−b) = (AT e)Tz−const = cT z−const



min
z

{
cTz : Az − b ≥ 0

}
(P )

⇔ min
x

{
eTx : x + b ∈ ImA, x ≥ 0

}
(P ′)

m
max

y

{
bTy : ATy = c ≡ AT e︸ ︷︷ ︸

⇔y−e∈(ImA)⊥

}
(D)

♠ Let Φ(x) = −
m∑

i=1
lnxi. Equipping the do-

main of (P ) with m-s.c.b. F (z) = Φ(Az− b),

consider

z∗(ρ) = argmin
z

[ρcT z + F (z)]

= argmin
z

[ρeT (Az − b) + Φ(Az − b)]

Observation: The point x∗(ρ) = Az∗(ρ) − b

minimizes ρeTx + Φ(x) over the feasible set

of (P ′):

x > 0, x + b ∈ ImA, ρe + Φ′(x) ∈ (ImA)⊥.

⇒ y = y∗(ρ) = −ρ−1Φ′(x∗(ρ)) satisfies

y > 0, y − e ∈ (ImA)⊥, −ρb + Φ′(y) ∈ ImA

i.e., the point y∗(ρ) minimizes −ρbTy + Φ(y)

over the feasible set of (D).



♣ We arrive at a nice symmetric picture:
♣ The primal central path x ≡ x∗(ρ) which
minimizes the primal aggregate

ρcTx + Φ(x) [Φ(x) = −∑
i
lnxi]

over the primal feasible set is given by

x > 0, x + b ∈ ImA, ρc + Φ′(x) ∈ (ImA)⊥

♣ The dual central path y ≡ y∗(ρ) which min-
imizes the dual aggregate

−ρbTy + Φ(y) [Φ(y) = −∑
i
ln yi]

over the dual feasible set is given by

y > 0, y − e ∈ (ImA)⊥,−ρb + Φ′(y) ∈ ImA

♣ The paths are linked by

y = −ρ−1Φ′(x) ⇔ x = −Φ′(y∗(ρ)) ⇔ xiyi =
1

ρ
∀i.

⇒ DualityGap(x, y) = xTy = [cTx−Opt(P )]
+[Opt(D)− bTy]

on the path is equal to mρ−1.



min
z

{
cTz : Az − b ≥ 0

}
(P )

⇔ min
x

{
eTx : x + b ∈ ImA, x ≥ 0

}
(P ′)

m
max

y

{
bTy : ATy = c ≡ AT e︸ ︷︷ ︸

≡y−e∈(ImA)⊥

}
(D)

♣ Generic Primal-Dual IPM for LP:

♦Given current iterate — primal-dual strictly

feasible pair xi, yi and value ρi of penalty, up-

date it into new iterate xi+1, yi+1, ρi+1 by

♦Updating ρi 7→ ρi+1 ≥ ρi

♦Applying a Newton step to the system

x > 0, x + b ∈ ImA; y > 0, y − e ∈ (ImA)⊥
Diag{x}y = 1

ρ+
(1, ...,1)T
︸ ︷︷ ︸

e

defining the primal-dual central path:

xi+1 = xi + ∆x, yi+1 = yi + ∆y
where ∆x,∆y solve the linear system

∆x ∈ ImA, ∆y ∈ (ImA)⊥,

Diag{xi}∆y + Diag{yi}∆x = e
ρi+1

−Diag{xi}yi



min
z

{
cTz : Az − b ≥ 0

}
(P )

⇔ min
x

{
eTx : x + b ∈ ImA, x ≥ 0

}
(P ′)

m
max

y

{
bTy : ATy = c ≡ AT e︸ ︷︷ ︸

≡y−e∈(ImA)⊥

}
(D)

♣ The classical path-following scheme as

applied to (P ) and the m-s.c.b. F (z) =

Φ(Az− b) allows to trace the path z∗(ρ) (and

thus x∗(ρ) = Az∗(ρ)− b).

More advanced primal-dual path-following

methods simultaneously trace the primal and

the dual central paths, which results in algo-

rithmic schemes with better practical perfor-

mance than the one of the “purely primal”

scheme.



♣ Both approaches, with proper implemen-

tation, result in the best known so far the-

oretical complexity bounds for LP. Accord-

ing to these bounds, the “arithmetic cost”

of generating ε-solution to a primal-dual pair

of strictly feasible LP’s with m× n matrix A

is

O(1)mn2 ln
(

mnΘ

ε

)

operations, where O(1) is an absolute con-

stant and Θ is a data-dependent constant.

♣ In practice, properly implemented primal-

dual methods by far outperform the purely

primal ones and solve in few tens of New-

ton iterations real-world LPs with tens and

hundreds of thousands of variables and con-

straints.



Augmented Lagrangian methods

min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

♣ Shortcoming of penalty scheme: in order

to solve (P ) to high accuracy, one should

work with large values of penalty, which

makes the penalized objective

fρ(x) = f(x) +
ρ

2
‖h(x)‖22

difficult to minimize.

♠ Augmented Lagrangian methods use the

penalty mechanism in a “smart way”, which

allows to avoid the necessity to work with

very large values of ρ.



Ingredient I: Local Lagrange Duality

min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

♣ Let x∗ be a nondegenerate local solution

to (P ), so that there exists λ such that

(a) ∇xL(x∗, λ∗) = 0
(b) dT∇2

xL(x∗, λ∗)d > 0 ∀0 6= d ∈ Tx∗
 L(x, λ) = f(x) +

∑
i

λihi(x)

Tx∗ = {d : dTh′i(x) = 0, i = 1, ..., k}




♠ Assume for the time being that instead of

(b), a stronger condition hods true:

(!) the matrix ∇2
xL(x∗, λ∗) is positive definite

on the entire space

♣ Under assumption (!), x∗ is a nondegen-

erate unconstrained local minimizer of the

smooth function

L(·, λ∗)
and as such can be found by methods for

unconstrained minimization.



min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

♠ Intermediate Summary: If

♦(a) we are clever enough to guess the vec-

tor λ∗ of Lagrange multipliers,

♦(b) we are lucky to have ∇2
xL(x∗, λ∗) Â 0,

then x∗ can be found by unconstrained opti-

mization technique.



♠ How to become smart when being lucky: Lo-
cal Lagrange Duality.
Situation: x∗ is a nondegenerate local solu-
tion to

min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

and we are lucky:

∃λ∗ : ∇xL(x∗, λ∗) = 0, ∇2
xL(x∗, λ∗) Â 0 (!)

Fact: Under assumption (!), there exist con-
vex neighbourhood V of x∗ and convex neigh-
bourhood Λ of λ∗ such that
(i) For every λ ∈ Λ, function L(x, λ) is
strongly convex in x ∈ V and possesses
uniquely defined critical point x∗(λ) in V

which is continuously differentiable in λ ∈ Λ.
x∗(λ) is a nondegenerate local minimizer of
L(·, λ);
(ii) The function

L(λ) = L(x∗(λ), λ) = min
x∈V

L(x, λ)

is C2-smooth and concave in Λ,

L′(λ) = h(x∗(λ)),

and λ∗ is a nondegenerate maximizer of L(λ)
on Λ.



min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇒ L(x, λ) = f(x) +
∑
i

λihi(x)

Situation: ∇xL(x∗, λ∗) = 0, ∇2
xL(x∗, λ∗) Â 0

λ∗ = argmaxL(λ) = min
x∈V

L(x, λ)

x∗ = argminx∈V L(x, λ)

⇒ We can solve (P ) by maximizing L(λ) over

λ ∈ Λ by a first order method for uncon-

strained minimization.

The first order information on L(λ) required

by the method can be obtained by solving

auxiliary unconstrained problems

x∗(λ) = argmin
x∈V

L(x, λ)

via

L(λ) = L(x∗(λ), λ)
L′(λ) = h(x∗(λ))

Note: In this scheme, there are no “large pa-

rameters”!

However: How to ensure luck?



♣ How to ensure luck: convexification by pe-
nalization
Observe that the problem of interest

min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

for every ρ ≥ 0 is exactly equivalent to

min
x

{
fρ(x) = f(x) +

ρ

2
‖h(x)‖22 :

hi(x) = 0,
i ≤ k

}

(Pρ)
It turns out that
(!) If x∗ is a nondegenerate locally optimal
solution of (P ) and ρ is large enough, then
x∗ is a locally optimal and “lucky” solution
to (Pρ).
⇒ We can solve (P ) by applying the outlined
“primal-dual” scheme to (Pρ), provided that
ρ is appropriately large!
Note: Although in our new scheme we do
have penalty parameter which should be
“large enough”, we still have an advantage
over the straightforward penalty scheme: in
the latter, ρ should go to ∞ as O(1/ε) as
required inaccuracy ε of solving (P ) goes to
0, while in our new scheme a single “large
enough” value of ρ will do!



min
x
{f(x) : hi(x) = 0, i = 1, ..., k} (P )

m
min

x

{
fρ(x) = f(x) + ρ

2‖h(x)‖22 :
hi(x) = 0,

i ≤ k

}
(Pρ)

Justifying the claim: Let

Lρ(x, λ) = f(x) +
ρ

2
‖h(x)‖22 +

∑

i

λihi(x)

be the Lagrange function of (Pρ); the La-

grange function of (P ) is then Lo(x, λ). Given

nondegenerate locally optimal solution x∗ to

(P ), let λ∗ be the corresponding Lagrange

multipliers. We have

∇xLρ(x∗, λ∗) = ∇xL0(x∗, λ∗) + ρ
∑
i

hi(x∗)h′i(x∗)

= ∇xL0(x∗, λ∗)= 0
∇2

xLρ(x∗λ∗) = ∇2
xL(x∗, λ∗) + ρ

∑
i

hi(x∗)h′′i (x∗)

+ρ
∑
i

h′i(x∗)[h′i(x∗)]T

= ∇2
xL0(x∗, ρ∗) + ρHTH,

H =




[h′1(x∗)]T
· · ·

[h′k(x∗)]
T






∇2
xLρ(x∗λ∗) = ∇2

xL0(x∗, ρ∗) + ρHTH

H =




[h′1(x∗)]T
· · ·

[h′k(x∗)]
T




Directions d orthogonal to h′i(x∗), i = 1, ..., k,

are exactly the directions d such that Hd = 0.

Thus,

♦For all ρ ≥ 0, at x∗ the Second Order suffi-

cient optimality condition for (Pρ) holds true:

Hd = 0, d 6= 0 ⇒ dT∇2
xLρ(x∗, λ∗)d > 0

♦All we need in order to prove that x∗ is a

“lucky” solution for large ρ, is the following

Linear Algebra fact:

Let Q be a symmetric n × n matrix, and H

be a k× n matrix. Assume that Q is positive

definite on the null space of H:

d 6= 0, Hd = 0 ⇒ dTQd > 0.

Then for all large enough values of ρ the ma-

trix Q + ρHTH is positive definite.



Let Q be a symmetric n × n matrix, and H
be a k× n matrix. Assume that Q is positive
definite on the null space of H:

d 6= 0, Hd = 0 ⇒ dTQd > 0.

Then for all large enough values of ρ the ma-
trix Q + ρHTH is positive definite.
Proof: Assume, on the contrary, that there
exists a sequence ρi →∞ and di, ‖di‖2 = 1:

dT
i [Q + ρiH

TH]di ≤ 0 ∀i.
Passing to a subsequence, we may assume
that di → d, i → ∞. Let di = hi + h⊥i be
the decomposition of di into the sum of its
projections onto Null(H) and [Null(H)]⊥, and
similarly d = h + h⊥. Then

dT
i HTHdi = ‖Hdi‖22 = ‖Hh⊥i ‖22 → ‖Hh⊥‖22 ⇒

0 ≥ dT
i [Q + ρiH

TH]di = dT
i Qdi︸ ︷︷ ︸
→dT Qd

+ρi ‖Hh⊥i ‖22︸ ︷︷ ︸
→‖Hh⊥‖22

(∗)

If h⊥ 6= 0, then ‖Hh⊥‖2 > 0, and the right
hand side in (∗) tends to +∞ as i → ∞,
which is impossible. Thus, h⊥ = 0. But then
0 6= d ∈ Null(H) and therefore dTQd > 0, so
that the right hand side in (∗) is positive for
large i, which again is impossible.



Putting things together:
Augmented Lagrangian Scheme

min
x

{
f(x) + ρ

2‖h(x)‖22 :
hi(x) = 0

i ≤ k

}
(Pρ)

⇓
Lρ(x, λ) = f(x) + ρ

2‖h(x)‖22 +
∑
i

λihi(x)

♣ Generic Augmented Lagrangian Scheme:
For a given value of ρ, solve the dual problem

max
λ

Lρ(λ)
[
Lρ(λ) = min

x
Lρ(x, λ)

] (D)

by a first order method for unconstrained
minimization, getting the first order informa-
tion for (D) from solving the auxiliary prob-
lems

xρ(λ) = argmin
x

Lρ(x, λ) (Pλ)

via the relations

Lρ(λ) = Lρ(xρ(λ), λ)
L′ρ(λ) = h(xρ(λ))



min
x

{
f(x) + ρ

2‖h(x)‖22 :
hi(x) = 0

i ≤ k

}
(Pρ)

⇓
Lρ(x, λ) = f(x) + ρ

2‖h(x)‖22 +
∑
i

λihi(x)

⇓
max

λ

{
Lρ(λ) ≡ min

x
Lρ(x, λ)

︸ ︷︷ ︸
problem (Pλ)

}
(D)

Note: If ρ is large enough and the optimiza-
tions in (Pλ) and in (D) and are restricted to
appropriate convex neighbourhoods of non-
degenerate local solution x∗ to (Pρ) and the
corresponding vector λ∗ of Lagrange multi-
pliers, respectively, then
— the objective in (D) is concave and C2,
and λ∗ is a nondegenerate solution to (D)
— the objectives in (Pλ) are convex and C2,
and x∗(λ) = argmin

x
Lρ(x, λ) are nondegener-

ate local solutions to (Pλ)
— as the “master method” working on (D)
converges to λ∗, the corresponding primal it-
erates x∗(λ) converge to x∗.



♣ Implementation issues:

♦Solving auxiliary problems

xρ(λ) = argmin
x

Lρ(x, λ) (Pλ)

— the best choices are Newton method

with linesearch or Modified Newton method,

provided that the second order information

is available; otherwise, one can use Quasi-

Newton methods, Conjugate Gradients, etc.



♦Solving the master problem

max
λ

{
Lρ(λ) ≡ min

x
Lρ(x, λ)

}
(D)

Surprisingly, the method of choice here is the

simplest gradient ascent method with con-

stant step:

λt = λt−1 + ρL′ρ(λt−1) = λt−1 + ρh(xt−1),

where xt−1 is (approximate) minimizer of

Lρ(x, λt−1) in x.

Motivation: We have

0 ≈ ∇xLρ(xt−1, λt−1)

= f ′(xt−1) +
∑
i
[λt−1

i + ρhi(x
t−1)]h′i(xt−1)

which resembles the KKT condition

0 = f ′(x∗) +
∑

i

λ∗i h′i(x∗).



max
λ

{
Lρ(λ) ≡ min

x
Lρ(x, λ)

}
(D)

⇒
{

λt = λt−1 + ρh(xt−1)
xt−1 = argminx Lρ(x, λt−1)

(∗)

Justification: Direct computation shows that

Ψρ ≡ ∇2
λLρ(λ∗) = −H[Q + ρHTH]−1HT ,

Q = ∇2
xL0(x∗, λ∗)

H =




[h′1(x∗)]T
· · ·

[H ′
k(x∗)]

T




whence −ρΨρ → I as ρ →∞.
Consequently, when ρ is large enough and
the starting point λ0 in (∗) is close enough
to λ∗, (∗) ensures linear convergence of λt to
λ∗ with the ratio tending to 0 as ρ → +∞.
Indeed, asymptotically the behaviour of (∗)
is as if Lρ(λ) were quadratic function

const− 1

2
(λ− λ∗)TΨρ(λ− λ∗),

and for this model recurrence (∗) becomes

λt − λ∗ = (I + ρΨρ)︸ ︷︷ ︸
→0,ρ→∞

(λt−1 − λ∗).



♣ Adjusting penalty parameter:

⇒
{

λt = λt−1 + ρh(xt−1)
xt−1 = argminx Lρ(x, λt−1)

(∗)

When ρ is “large enough”, so that (∗) con-

verges linearly with reasonable convergence

ratio, ‖L′ρ(λt)‖2 = ‖h(xt)‖2 should go to 0

linearly with essentially the same ratio.

⇒ We can use progress in ‖h(·)‖2 to con-

trol ρ, e.g., as follows: when ‖h(xt)‖2 ≤
0.25‖h(xt−1)‖2, we keep the current value

of ρ intact, otherwise we increase penalty

by factor 10 and recompute xt with the new

value of ρ.



Incorporating Inequality Constraints

♣ Given a general-type constrained problem

min
x

{
f(x) :

hi = 0, i ≤ m
gj(x) ≤ 0, j ≤ m

}

we can transform it equivalently into the

equality constrained problem

min
x,s

{
f(x) :

hi(x) = 0, i ≤ m

gj(x) + s2j = 0, j ≤ k

}

and apply the Augmented Lagrangian scheme

to the reformulated problem, thus arriving at

Augmented Lagrangian

Lρ(x, s;λ, µ) = f(x) +
∑
i

λihi(x)

+
∑
j

µj[gj(x) + s2j ]

+ρ
2

[
∑
i

h2
i (x) +

∑
j
[gj(x) + s2j ]

2

]

The corresponding dual problem is

max
λ,µ

{
Lρ(λ, µ) = min

x,s
Lρ(x, s;µ, λ)

}
(D)



Lρ(x, s;λ, µ) = f(x) +
∑
i

λihi(x)

+
∑
j

µj[gj(x) + s2j ]

+ρ
2

[
∑
i

h2
i (x) +

∑
j
[gj(x) + s2j ]

2

]

⇓
max
λ,µ

{
Lρ(λ, µ) ≡ min

x,s
Lρ(x, s;µ, λ)

}

We can carry out the minimization in s ana-

lytically, arriving at

Lρ(λ, µ) = min
x

{
f(x) + ρ

2

k∑
j=1

(
gj(x) +

µj
ρ

)2

+

+
m∑

i=1
λihi(x) + ρ

2

m∑
i=1

hi(x)
2

}

−
k∑

j=1

µ2
j

2ρ

where a+ = max[0, a].

⇒ The auxiliary problems arising in the Aug-

mented Lagrangian Scheme are problems in

the initial design variables!



min
x

{
f(x) :

hi(x) = 0, i ≤ k
gj(x) ≤ 0, j ≤ m

}
(P )

⇓
min
x,s

{
f(x) :

hi(x) = 0, i ≤ k

gj(x) + s2j = 0, j ≤ m

}
(P ′)

♣ Theoretical analysis of Augmented La-

grangian scheme for problems with equality

constraints was based on assumption that we

are trying to approximate nondegenerate lo-

cal solution. Is it true that when applying

reducing the inequality constrained problem

to an equality constrained one, we preserve

nondegeneracy of the local solution?

Yes!

Theorem. Let x∗ be a nondegenerate local

solution to (P ). Then the point

(x∗, s∗) : s∗j =
√
−gj(x∗), j = 1, ..., m

is a nondegenerate local solution to (P ′).



Convex case: Augmented Lagrangians

♣ Consider a convex optimization problem

min
x

{
f(x) : gj(x) ≤ 0, j = 1, ..., m

}
(P )

(f , gj are convex and C2 on Rn).

Assumption: (P ) is solvable and satisfies the

Slater condition:

∃x̄ : gj(x̄) < 0 j = 1, ..., m

♠ In the convex situation, the previous local

considerations can be globalized due to the

Lagrange Duality Theorem.



min
x

{
f(x) : gj(x) ≤ 0, j = 1, ..., m

}
(P )

Theorem: Let (P ) be convex, solvable and

satisfy the Slater condition. Then the dual

problem

max
λ≥0

L(λ) ≡ min
x


f(x) +

∑

j

λjgj(x)




︸ ︷︷ ︸
L(x,λ)

(D)

possess the following properties:

♦dual objective L is concave

♦(D) is solvable

♦for every optimal solution λ∗ of (D), all op-

timal solutions of (P ) are contained in the

set Argminx L(x, λ∗).
♣ Implications:

♦Sometimes we can build (D) explicitly (e.g.,

in Linear, Linearly Constrained Quadratic

and Geometric Programming). In these

cases, we may gain a lot by solving (D) and

then recovering solutions to (P ) from solu-

tion to (D).



min
x

{
f(x) : gj(x) ≤ 0, j = 1, ..., m

}
(P )

⇓

max
λ≥0

L(λ) ≡ min
x


f(x) +

∑

j

λjgj(x)




︸ ︷︷ ︸
L(x,λ)

(D)

♦In the general case one can solve (D) nu-
merically by a first order method, thus re-
ducing a problem with general convex con-
straints to one with simple linear constraints.
To solve (D) numerically, we should be able
to compute the first order information for L.
This can be done via solving the auxiliary
problems

x∗ = x∗(λ) = min
x

L(x, λ) (Pλ)

due to

L(λ) = L(x∗(λ), λ)
L′(λ) = g(x∗(λ))

Note: (Pλ) is a convex unconstrained pro-
gram with smooth objective!



min
x

{
f(x) : gj(x) ≤ 0, j = 1, ..., m

}
(P )

⇓

max
λ≥0

L(λ) ≡ min
x


f(x) +

∑

j

λjgj(x)




︸ ︷︷ ︸
L(x,λ)

(D)

♠ Potential difficulties:
♦L(·) can be −∞ at some points; how to
solve (D)?
♦after λ∗ is found, how to recover optimal
solution to (P )? In may happen that the set
Argminx L(x, λ∗) is much wider than the op-
timal set of (P )!
Example: LP. (P ) : min

x

{
cTx : Ax− b ≤ 0

}
.

Here

L(λ) = min
x

[
cTx + (ATλ)Tx− bTλ

]

=

{
−bTλ, ATλ + c = 0
−∞, otherwise

— how to solve (D) ???
At the same time, for every λ the function
L(x, λ) is linear in x; thus, Argmin

x
L(x, λ) is

either ∅, or Rn – how to recover x∗ ???



♠Observation: Both outlined difficulties come
from possible non-existence/non-uniqueness
of solutions to the auxiliary problems

min
x

L(x, λ) ≡ min
x

[f(x) +
∑

j

λjgj(x)] (Pλ)

Indeed, if solution x∗(λ) to (Pλ) exists and is
unique and continuous in λ on certain set Λ,
then L(λ) is finite and continuously differen-
tiable on Λ due to

L(λ) = L(x∗(λ), λ)
L′(λ) = g(x∗(λ))

Besides this, if λ∗ ∈ Λ, then there is no prob-
lem with recovering optimal solution to (P )
from λ∗.
Example: Assume that the function

r(x) = f(x) +
k∑

j=1

gj(x)

is locally strongly convex (r′′(x) Â 0 ∀x) and
is such that

r(x)/‖x‖2 →∞, ‖x‖2 →∞.

Then x∗(λ) exists, is unique and is continuous
in λ on the set Λ = {λ > 0}.



♣ In Augmented Lagrangian scheme, we en-

sure local strong convexity of

r(·) = f(x) + sum of constraints

by passing from the original problem

min
x

{
f(x) : gj(x) ≤ 0, j = 1, ..., m

}
(P )

to the equivalent problem

min
x

{
f(x) : θj(gj(x)) ≤ 0, j = 1, ..., m

}
(P ′)

where θj(·) are increasing strongly convex

smooth functions satisfying the normaliza-

tion

θj(0) = 0, θ′j(0) = 1.



min
x

{
f(x) : gj(x) ≤ 0, j = 1, ..., m

}
(P )

⇓
min

x

{
f(x) : θj(gj(x)) ≤ 0, j = 1, ..., m

}
(P ′)[

θj(0) = 0, θ′j(0) = 1
]

Facts:

♦(P ′) is convex and equivalent to (P )

♦optimal Lagrange multipliers for (P ) and

(P ′) are the same:

∇x[f(x) +
∑
j

λ∗jgj(x)] = 0 & λ∗jgj(x) = 0∀j
m

∇x[f(x) +
∑
j

λ∗jθj(gj(x))] = 0 & λ∗jgj(x) = 0∀j

♦under mild regularity assumptions,

r(x) = f(x) +
∑

j

θj(gj(x))

is locally strongly convex and r(x)/‖x‖2 →∞
as ‖x‖2 →∞.



min
x

{
f(x) : gj(x) ≤ 0, j = 1, ..., m

}
(P )

⇓
min

x

{
f(x) : θj(gj(x)) ≤ 0, j = 1, ..., m

}
(P ′)[

θj(0) = 0, θ′j(0) = 1
]

♣ With the outlined scheme, one passes from

the classical Lagrange function of (P )

L(x, λ) = f(x) +
∑

j

λjgj(x)

to the augmented Lagrange function

L̃(x, λ) = f(x) +
∑

j

λjθj(gj(x))

of the problem, which yields the dual problem

max
λ≥0

L̃(λ) ≡ max
λ≥0

min
x

L̃(x, λ)

better suited for numerical solution and re-

covering a solution to (P ) than the usual La-

grange dual of (P ).



L(x, λ) = f(x) +
∑
j

λjgj(x)

⇓
L̃(x, λ) = f(x) +

∑
j

λjθj(gj(x))

⇓
max
λ≥0

[
min

x
L̃(x, λ)

]
(D̃)

♠ Further flexibility is added by penalty

mechanism:

L̃(x, λ) ⇒ f(x) +
∑

j

λjρ
−1θj(ρgj(x))

equivalent to “rescaling”

θj(s) ⇒ θ
(ρ)
j (s) = ρ−1θj(ρs).

The larger is ρ, the faster is convergence of

the first order methods as applied to (D̃) and

the more difficult become the auxiliary prob-

lems

min
x


f(x) +

∑

j

λjρ
−1θj(ρgj(x))






Sequential Quadratic Programming

♣ SQP is thought of to be the most effi-

cient technique for solving general-type opti-

mization problems with smooth objective and

constraints.

♣ SQP methods directly solve the KKT sys-

tem of the problem by a Newton-type itera-

tive process.



♣ Consider an equality constrained problem

min
x

{
f(x) : h(x) = (h1(x), ..., hk(x))

T = 0
}

(P )

⇒ L(x, λ) = f(x) + hT (x)λ

The KKT system of the problem is

∇xL(x, λ) ≡ f ′(x) + [h′(x)]Tλ = 0
∇λL(x, λ) ≡ h(x) = 0

(KKT)

Every locally optimal solution x∗ of (P ) which

is regular (that is, the gradients {h′i(x∗)}ki=1
are linearly independent) can be extended

by properly chosen λ = λ∗ to a solution of

(KKT).

♠ (KKT) is a system of nonlinear equations

with n + k equations and n + k unknowns.

We can try to solve this system by Newton

method.



Newton method for solving nonlinear

systems of equations

♣ To solve a system of N nonlinear equations

with N unknowns

P (u) ≡ (p1(u), ..., pN(u))T = 0,

with C1 real-valued functions pi, we act as

follows:

Given current iterate ū, we linearize the sys-

tem at the iterate, thus arriving at the lin-

earized system

P (ū) + P ′(ū)(u− ū)

≡



p1(ū) + [p′1(ū)]T (u− ū)
...

pN(ū) + [p′N(ū)]T (u− ū)


 = 0.

Assuming the N×N matrix P ′(ū) nonsingular,

we solve the linearized system, thus getting

the new iterate

ū+ = ū−[P ′(ū)]−1P (ū)︸ ︷︷ ︸
Newton

displacement

;



ū 7→ ū+ = ū− [P ′(ū)]−1P (ū) (N)

Note: The Basic Newton method for uncon-

strained minimization is nothing but the out-

lined process as applied to the Fermat equa-

tion

P (x) ≡ ∇f(x) = 0.

♣ Same as in the optimization case, the New-

ton method possesses fast local convergence:

Theorem. Let u∗ ∈ RN be a solution to the

square system of nonlinear equations

P (u) = 0

with components of P being C1 in a neigh-

bourhood of u∗. Assuming that u∗ is nonde-

generate (i.e., Det(P ′(u∗)) 6= 0), the Newton

method (N), started close enough to u∗, con-

verges to u∗ superlinearly.

If, in addition, the components of P are C2

in a neighbourhood of u∗, then the above

convergence is quadratic.



♣ Applying the outlined scheme to the KKT

system

∇xL(x, λ) ≡ f ′(x) + [h′(x)]Tλ = 0
∇λL(x, λ) ≡ h(x) = 0

(KKT)

we should answer first of all the following

crucial question:

(?) When a KKT point (x∗, λ∗) is a nonde-

generate solution to (KKT)?

Let us set

P (x, λ) = ∇x,λL(x, λ)

=

[
∇xL(x, λ) ≡ f ′(x) + [h′(x)]Tλ

∇λL(x, λ) ≡ h(x)

]

Note that

P ′(x, λ) =

[
∇2

xL(x, λ) [h′(x)]T
h′(x) 0

]



min
x

{
f(x) : h(x) = (h1(x), ..., hk(x))

T = 0
}

(P )

⇒ L(x, λ) = f(x) + hT (x)λ
⇒ P (x, λ) = ∇x,λL(x, λ)

=

[
∇xL(x, λ) ≡ f ′(x) + [h′(x)]Tλ

∇λL(x, λ) ≡ h(x)

]

⇒ P ′(x, λ) =

[
∇2

xL(x, λ) [h′(x)]T
h′(x) 0

]

Theorem. Let x∗ be a nondegenerate local

solution to (P ) and λ∗ be the corresponding

vector of Lagrange multipliers. Then (x∗, λ∗)
is a nondegenerate solution to the KKT sys-

tem

P (x, λ) = 0,

that is, the matrix P ′ ≡ P ′(x∗, λ∗) is nonsin-

gular.

Proof. Setting Q = ∇2
xL(x∗, λ∗), H =

∇h(x∗), we have

P ′ =
[

Q HT

H 0

]



Q = ∇2
xL(x∗, λ∗), H = ∇h(x∗),

P ′ =
[

Q HT

H 0

]

We know that d 6= 0, Hd = 0 ⇒ dTQd > 0 and

that the rows of H are linearly independent.

We should prove that if

0 = P ′
[

d
g

]
≡

[
Qd + HTg

Hd

]
,

then d = 0, g = 0. We have Hd = 0 and

0 = Qd + HTg ⇒ dTQd + (Hd)Tg = dTQd,

which, as we know, is possible iff d = 0. We

now have HTg = Qd + HTg = 0; since the

rows of H are linearly independent, it follows

that g = 0.



Structure and interpretation of the Newton

displacement

♣ In our case the Newton system

P ′(u)∆ = −P (u) [∆ = u+ − u]

becomes

[∇2
xL(x̄, λ̄)]∆x + [∇h(x̄)]T∆λ = −f ′(x̄)

−[h′(x̄)]Tλ
[h′(x̄)]∆λ = −h(x̄)

,

where (x̄, λ̄) is the current iterate.

Passing to the variables ∆x, λ+ = λ̄ + ∆λ,

the system becomes

[∇2
xL(x̄, λ̄)]∆x + [h′(x̄)]Tλ+ = −f ′(x̄)

h′(x̄)∆x = −h(x̄)



[∇2
xL(x̄, λ̄)]∆x + [h′(x̄)]Tλ+ = −f ′(x̄)

h′(x̄)∆x = −h(x̄)

Interpretation.

♣ Assume for a moment that we know the

optimal Lagrange multipliers λ∗ and the tan-

gent plane T to the feasible surface at x∗.
Since ∇2

xL(x∗, λ∗) is positive definite on T ,

and ∇xL(x∗, λ∗) is orthogonal to T , x∗ is

a nondegenerate local minimizer of L(x, λ∗)
over x ∈ T , and we could find x∗ by apply-

ing the Newton minimization method to the

function L(x, λ∗) restricted onto T :

x̄ ∈ T 7→ x̄ + argmin
∆x:

x̄+∆x∈T

[
L(x̄, λ∗) + ∆xT∇xL(x̄, λ∗)

+1
2∆xT∇2

xL(x̄, λ∗)∆x

]



♣ In reality we do not know neither λ∗, nor

T , only current approximations x̄, λ̄ of x∗ and

λ∗. We can use these approximations to ap-

proximate the outlined scheme:

• Given x̄, we approximate T by the plane

T̄ = {y = x̄ + ∆x : [h′(x̄)]∆x + h(x̄) = 0}
• We apply the outlined step with λ∗ replaced

with λ̄ and T replaced with T̄ :

x̄ ∈ T 7→ x̄ + argmin
∆x:

x̄+∆x∈T̄

[
L(x̄, λ̄) + ∆xT∇xL(x̄, λ̄)

+1
2∆xT∇2

xL(x̄, λ̄)∆x

]

Note: Step can be simplified to

x̄ ∈ T 7→ x̄

+argmin
∆x:

x̄+∆x∈T̄

[
f(x̄) + ∆xTf ′(x̄) + 1

2∆xT∇2
xL(x̄, λ̄)∆x

]

due to the fact that for x̄ + ∆x ∈ T̄ one has

∆xT∇xL(x̄, λ̄) = ∆xTf ′(x̄) + λ̄T [h′(x̄)]∆x

= ∆xTf ′(x̄)− λ̄Th(x̄)



♣ We have arrived at the following scheme:

Given approximations (x̄, λ̄) to a nondegener-

ate KKT point x∗, λ∗ of equality constrained

problem

min
x

{
f(x) : h(x) ≡ (h1(x), ..., hk(x))

T = 0
}

(P )

solve the auxiliary quadratic program

min
∆x

{
f(x̄) + ∆xTf ′(x̄) + 1

2∆xT∇2
xL(x̄, λ̄)∆x :

h(x̄) + h′(x̄)∆x = 0

}

(QP)

and replace x̄ with x̄ + ∆x∗.
Note: (QP) is a nice Linear Algebra prob-

lem, provided that ∇2L(x̄, λ̄) is positive def-

inite on the feasible plane T̄ = {∆x : h(x̄) +

h′(x̄)∆x = 0} (which indeed is the case when

(x̄, λ̄) is close enough to (x∗λ∗)).



min
x

{
f(x) : h(x) ≡ (h1(x), ..., hk(x))

T = 0
}

(P )
♣ Step of the Newton method as applied to
the KKT system of (P ):

(x̄, λ̄) 7→ (x̄+ = x̄ + ∆x, λ+) :
[∇2

xL(x̄, λ̄)]∆x + [h′(x̄)]Tλ+ = −f ′(x̄)
h′(x̄)∆x = −h(x̄)

(N)

♣ Associated quadratic program:

min
∆x

{
f(x̄) + ∆xTf ′(x̄) + 1

2∆xT∇2
xL(x̄, λ̄)∆x :

h(x̄) + h′(x̄)∆x = 0

}

(QP)

Crucial observation: Let the Newton system
underlying (N) be a system with nonsingular
matrix. Then the Newton displacement ∆x

given by (N) is the unique KKT point of the
quadratic program (QP), and λ+ is the cor-
responding vector of Lagrange multipliers.



[∇2
xL(x̄, λ̄)]∆x + [h′(x̄)]Tλ+ = −f ′(x̄)

h′(x̄)∆x = −h(x̄)
(N)

min
∆x

{
f(x̄) + ∆xTf ′(x̄)

+1
2∆xT∇2

xL(x̄, λ̄)∆x : h′(x̄)∆x = −h(x̄)

} (QP)

Proof of Critical Observation: Let z be a

KKT points of (QP), and µ be the corre-

sponding vector of Lagrange multipliers. The

KKT system for (QP) reads

f ′(x̄) +∇2
xL(x̄, λ̄)z + [h′(x̄)]Tµ = 0

h′(x̄)z = −h(x̄)

which are exactly the equations in (N). Since

the matrix of system (N) is nonsingular, we

have z = ∆x and µ = λ+.



min
x

{
f(x) : h(x) ≡ (h1(x), ..., hk(x))

T = 0
}

(P )

♣ The Newton method as applied to the

KKT system of (P ) works as follows:

Given current iterate (x̄, λ̄), we linearize the

constraints, thus getting “approximate feasi-

ble set”

T̄ = {x̄ + ∆x : h′(x̄)∆x = −h(x̄)},
and minimize over this set the quadratic

function

f(x̄)+(x−x̄)Tf ′(x̄)+1

2
(x−x̄)T∇2

xL(x̄, λ̄)(x−x̄).

The solution of the resulting quadratic prob-

lem with linear equality constraints is the new

x-iterate, and the vector of Lagrange multi-

pliers associated with this solution is the new

λ-iterate.

Note: The quadratic part in the auxiliary

quadratic objective comes from the Lagrange

function of (P ), and not from the objective

of (P )!



General constrained case

♣ “Optimization-based” interpretation of the
Newton method as applied to the KKT sys-
tem of equality constrained problem can
be extended onto the case of general con-
strained problem

min
x

{
f(x) :

h(x) = (h1(x), ..., hk(x))
T = 0

g(x) = (g1(x), ..., gm(x))T ≤ 0

}

(P )
and results in the Basic SQP scheme:
Given current approximations xt, λt, µt ≥ 0 to
a nondegenerate local solution x∗ of (P ) and
corresponding optimal Lagrange multipliers
λ∗, µ∗, we solve auxiliary linearly constrained
quadratic problem

min
∆x

{
f(xt) + ∆xTf ′(xt)

+1
2∆xT∇2

xL(xt;λt, µt)∆x :
h′(xt)∆t = −h(xt)
g′(xt)∆x ≤ −g(xt)

}

L(x;λ, µ) = f(x) + hT (x)λ + gT (x)µ
(QPt)

set xt+1 = xt+∆x∗ and define λt+1, µt+1 as
the optimal Lagrange multipliers of (QPt).



min
x

{
f(x) :

h(x) = (h1(x), ..., hk(x))
T = 0

g(x) = (g1(x), ..., gm(x))T ≤ 0

}

(P )

Theorem. Let (x∗;λ∗, µ∗) be a nondegenerate

locally optimal solution to (P ) and the corre-

sponding optimal Lagrange multipliers. The

Basic SQP method, started close enough to

(x∗;λ∗, µ∗), and restricted to work with ap-

propriately small ∆x, is well defined and con-

verges to (x∗;λ∗, µ∗) quadratically.

♣ Difficulty: From the “global” viewpoint,

the auxiliary quadratic problem to be solved

may be bad (e.g., infeasible or below un-

bounded). In the equality constrained case,

this never happens when we are close to the

nondegenerate local solution; in the general

case, bad things may happen even close to a

nondegenerate local solution.



♣ Cure: replace the matrix ∇2
xL(xt;λt, µt)

when it is not positive definite on the entire

space by a positive definite matrix Bt, thus

arriving at the method where the auxiliary

quadratic problem is

min
∆x

{
f(xt) + ∆xTf ′(xt)

+1
2∆xTBt∆x :

h′(xt)∆t = −h(xt)
g′(xt)∆x ≤ −g(xt)

}

(QPt)

With this modification, the auxiliary prob-

lems are convex and solvable with unique op-

timal (provided that they are feasible, which

indeed is the case when xt is close to a non-

degenerate solution to (P )).



Ensuring global convergence

♣ “Cured” Basic SQP scheme possesses nice

local convergence properties; however, it in

general is not globally converging.

Indeed, in the simplest unconstrained case

SQP becomes the basic/modified Newton

method, which is not necessarily globally

converging, unless linesearch is incorporated.



♠ To ensure global convergence of SQP, we

incorporate linesearch. In the scheme with

linesearch, the solution (∆x, λ+, µ+) to the

auxiliary quadratic problem

min
∆x

{
f(xt) + ∆xTf ′(xt)

+1
2∆xTBt∆x :

h′(xt)∆t = −h(xt)
g′(xt)∆x ≤ −g(xt)

}

(QPt)

is used as search direction rather than as a

new iterate. The new iterate is

xt+1 = xt + γt+1∆x

λt+1 = λt + γt+1(λ
+ − λt)

µt+1 = µt + γt+1(µ
+ − µt)

where γt+1 > 0 is the stepsize given by line-

search.

Question: What should be minimized by the

linesearch?



♣ In the constrained case, the auxiliary objec-
tive to be minimized by the linesearch cannot
be chosen as the objective of the problem of
interest. In the case of SQP, a good auxiliary
objective (“merit function”) is

M(x) = f(x) + θ




m∑

i=1

|hi(x)|+
k∑

j=1

g+
j (x)




where θ > 0 is parameter.
Fact: Let xt be current iterate, Bt be a
positive definite matrix used in the auxiliary
quadratic problem, ∆x be a solution to this
problem and λ ≡ λt+1, µ ≡ µt+1 be the corre-
sponding Lagrange multipliers. Assume that
θ is large enough:

θ ≥ max{|λ1|, ..., |λk|, µ1, µ2, ..., µm}
Then either ∆x = 0, and then xt is a KKT
point of the original problem, or ∆x 6= 0, and
then ∆x is a direction of decrease of M(·),
that is,

M(x + γ∆x) < M(x)

for all small enough γ > 0.



SQP Algorithm with Merit Function

♣ Generic SQP algorithm with merit function

is as follows:

♦Initialization: Choose θ1 > 0 and starting

point x1

♦Step t: Given current iterate xt,

— choose a matrix Bt Â 0 and form and solve

auxiliary problem

min
∆x

{
f(xt) + ∆xTf ′(xt)

+1
2∆xTBt∆x :

h′(xt)∆t = −h(xt)
g′(xt)∆x ≤ −g(xt)

}

(QPt)

thus getting the optimal ∆x along with as-

sociated Lagrange multipliers λ, µ.



— if ∆x = 0, terminate: xt is a KKT point

of the original problem, otherwise proceed as

follows:

— check whether

θt ≥ θ̄t ≡ max{|λ1|, ..., |λk|, µ1, ..., µm}.
if it is the case, set θt+1 = θt, otherwise set

θt+1 = max[θ̄t,2θt];

— Find the new iterate

xt+1 = xt + γt+1∆x

by linesearch aimed to minimize the merit

function

Mt+1(x) = f(x)+θt+1




m∑

i=1

|hi(x)|+
k∑

j=1

g+
j (x)




on the search ray {xt+γ∆x | γ ≥ 0}. Replace

t with t + 1 and loop.



min
x

{
f(x) :

h(x) = (h1(x), ..., hk(x))
T = 0

g(x) = (g1(x), ..., gm(x))T ≤ 0

}

(P )

Theorem: Let general constrained problem

be solved by SQP algorithm with merit func-

tion. Assume that

• there exists a compact Ω ⊂ Rn such that

for x ∈ Ω the solution set D(x) of the system

of linear inequality constraints

S(x) : h′(x)∆x = −h(x), g′(x)∆x ≤ −g(x)

with unknowns ∆x is nonempty, and each

vector ∆x ∈ D(x) is a regular solution of sys-

tem S(x);

• the trajectory {xt} of the algorithm belongs

to Ω and is infinite (i.e., the method does not

terminate with exact KKT point);

• the matrices Bt used in the method are uni-

formly bounded and uniformly positive def-

inite: cI ¹ Bt ¹ CI for all t, with some

0 < c ≤ C < ∞.

Then all accumulation points of the trajec-

tory of the method are KKT points of (P ).



Separation Theorems and Statistical

Estimation

♣ Consider the Linear Regression problem as

follows:

Problem I. Given indirect noisy ob-

servations

y = Ax + σξ

of “signal” (vector of parameters) x

known to belong to a given set X ⊂
Rn, infer from the observations some

information on x.

• A: given m× n matrix

• ξ ∼ N (0, Im): standard Gaussian

noise

• σ > 0: known intensity of the noise

Basic assumption: X is a closed and bounded

convex set.



♠ Example: Imaging

• A (discretized) 1D/2D/3D image is a func-

tion on a n-element grid of “pixels” – small

1D/2D/3D boxes. The value of this func-

tion at a pixel j is the intensity (brightness,

“blackness”, etc.) of the image in the pixel.

⇒An image is a vector x ∈ Rn, where xj is

the intensity of the “physical image’ in j-th

pixel.

• With no noise, the output of a typical scan-

ner depends linearly on the input image x,

and in many cases the noise η enters the ob-

servations z additively: z = Bx + η.

• When, as it often is the case, the noise

is Gaussian, we can pass from the obser-

vations z = Bx + η to the observations

y ≡ Cz = CBx + Cη ≡ Ax + ξ in such a way

that the Gaussian noise ξ is white: ξ ∼
N (0, I).

• In many cases, a priori information, like

0 ≤ xj ≤ L, or 0 ≤ xj,
∑

j xj ≤ L, allows

to localize the image in a known in advance

convex compact set X.



y = Ax + σξ with x ∈ X
• X, A ∈ Rm×n, σ > 0: given • ξ ∼ N (0, Im)

♠ Case I: Hypotheses Testing

(HT): Given two closed convex subsets X1,

X2 of X, test the hypothesis P1 : x ∈ X1 vs.

the alternative P2 : x ∈ X2.

♠ A test for HT is a (measurable) function

ψ(y) of observations taking just 2 values 1

and 2. Given observation y, we accept i-th

hypothesis when ψ(y) = i, i = 1,2.

♠Quantifying risk of a test. The most nat-

ural ray to quantify the risk of a test ψ, is to

look at the error probabilities

ε1[ψ] = supx∈X1
Prob{ψ(Ax + σξ) 6= 1}

ε2[ψ] = supx∈X2
Prob{ψ(Ax + σξ) 6= 2}

– the worst-case probabilities to reject a hy-

pothesis when it is true, and at the the test

error

ε[φ] = max [ε1[φ], ε2[φ]]



y = Ax + σξ with x ∈ X
• X, A ∈ Rm×n, σ > 0: given • ξ ∼ N (0, Im)

♣ Solving HT. Let Yi = AXi, i = 1,2. Yi

are closed convex compact sets along with

X1 and X2. We can separate them by the

widest possible stripe by solving the opti-

mization problem

Opt = minu,v

{
1
2‖u− v‖2 : u ∈ Y1, v ∈ Y2

}

= 1
2‖u∗ − v∗‖2

[u∗ ∈ Y1, v∗ ∈ Y2]

• when Opt = 0 (⇔ u∗ = v∗), the sets Y1 and

Y2 cannot be strictly separated

• when Opt > 0, setting f = u∗−v∗
‖u−v‖2, e = u∗+v∗

2 ,

we have

fT [y − e]

{
≥ Opt, y ∈ Y1
≤ −Opt, y ∈ Y2



Theorem (i) [lower bounds] The test error

of every test satisfies the inequality

ε[φ] ≥ Erf(Opt/σ),

where Erf(s) =

∞∫

s

1√
2π

exp{−t2/2}dt is the er-

ror function.

(ii) [optimal test] Assuming Y1∩Y2 = ∅, con-

sider the test

ψ∗(y) =

{
1, fT (y − e) > 0
2, fT (y − e) < 0

Then

ε1[ψ∗] = ε2[ψ∗] = ε[ψ∗] = Erf(Opt/σ).

X1

X2

Y1

Y2

accept P1 accept P2



Proof of lower bound: We have Opt =
1
2‖u∗ − v∗‖2 = 1

2‖A[x1 − x2]‖2, where xi ∈ Xi,

i = 1,2. Let us replace the “complex” hy-

potheses Pi : x ∈ Xi, i = 1,2, with simple hy-

potheses Πi : x = xi, i = 1,2. Every test ca-

pable to distinguish between Π1 and Π2 with

certain test error and error probabilities, dis-

tinguishes between Π1 and Π2 with the same

or smaller test error and error probabilities.

Now let us use the following simple result:

Lemma Let ψ be a test for distinguishing be-

tween two simple hypotheses Π1, Π2 on the

distribution of observation y ∈ Rm, Πi stating

that the density of the distribution is pi(y),

i = 1,2. Then

2ε[φ] ≥
∫

min[p1(y), p2(y)]dy



Proof of Lemma. Consider a randomized
test ψ which, given an observation y, accepts
Π1 with probability p(y), and Π2 with proba-
bility q(y) = 1− p(y). Then

ε1[φ] =
∫

q(y)p1(y)dy

ε2[φ] =
∫

p(y)p2(y)dy

⇒ 2ε[φ] ≥ ε1[φ] + ε2[φ]

=
∫

[p(y)p2(y) + (1− p(y))p1(y)]dy

≥
∫

min[p1(y), p2(y)]dy.

Lemma ⇒ lower bound: We are in the sit-

uation of pi(y) =
[

1√
2πσ

]m
exp{−‖y−Axi‖22

2σ2 },
i = 1,2, whence

2ε[φ] ≥
∫ [

1√
2πσ

]m
exp{min

[
−‖y−u∗‖22

2σ2 ,−‖y−v∗‖22
2σ2

]
}dy

[setting y − u∗+v∗
2 = σz, h = u∗−v∗

2Opt , ρ = Opt/σ]

=
∫ [

1√
2π

]m
exp{−max[‖u−ρh‖22,‖u+ρh‖22]

2 }du

= 2
∫

uT h≥0

[
1√
2π

]m
exp{−‖u+ρh‖22

2 }du

= 2

∞∫

0

1√
2π

exp{−[s+ρ]2

2 }ds = 2Erf(ρ).



Upper bound: Let x ∈ X2. Then

Prob{ψ∗(Ax + σξ) = 1}
≤

∫

u:fT [u−e]≥0

[
1√
2πσ

]m
exp{−‖u−Ax‖22

2σ2 }du

[setting u−Ax = σz]∫

fT z≥1
σfT [e−Ax]

[
1√
2π

]m
exp{−‖z‖

2
2

2 }dz

≤
∫

fT z≥Opt
σ

[
1√
2π

]m
exp{−‖z‖

2
2

2 }dz

=
∫

s≥Opt/σ

1√
2π

exp{−s2/2} = Erf(Opt/σ)

and similarly for x ∈ X1 it holds

Prob{ψ∗(Ax + σξ) = 2}
≤

∫

u:fT [u−e]≤0

[
1√
2πσ

]m
exp{−‖u−Ax‖22

2σ2 }du

=
∫

fT z≤1
σfT [e−Ax]

[
1√
2π

]m
exp{−‖z‖

2
2

2 }dz

≤
∫

fT z≤−Opt
σ

[
1√
2π

]m
exp{−‖z‖

2
2

2 }dz = Erf(Opt/σ)



y = Ax + σξ with x ∈ X
• X, A ∈ Rm×n, σ > 0: given • ξ ∼ N (0, Im)

♠ Case II: Estimating Linear Form

(ELF): Given a linear form gT z of z ∈ Rn,

estimate gTx.

♠ An estimate for ELF is a (measurable)

function ĝ(y) of observations taking real val-

ues; ĝ(y) is the estimate of gTx associated

with observation y.

♠ Quantifying risk of an estimate. Most

natural ray to quantify the risk of an estimate

ĝ(·) at a given x ∈ X is via the mean squared

estimation error E{[ĝ(Ax + σξ)− gTx]2}.
• Estimate ĝ(·) on the entire X is quantified

by its worst-case, over x ∈ X, risk

Risk[ĝ] = sup
x∈X

E{[ĝ(Ax + σξ)− gTx]2}

• It makes sense to compare this risk with

the minimax optimal risk

Risk∗ = inf
ĝ(·)

Risk[ĝ].



♠ An estimate ĝ(·) is called affine, if it is an
affine function of observations:

ĝ(y) = hTy + c.

For an affine estimate, its risk at a point is

E{[hT (Ax + σξ) + c− gTx]2}
= E

{[
[hTAx + c− fTx]︸ ︷︷ ︸

bias

+ σhT ξ︸ ︷︷ ︸
stochastic

term

]2}

=
[
hTAx + c− fTx

]2
+ σ2‖h‖22

whence

Risk[ĝ] =
[
max
x∈X

|hTAx + c− fTx|
]2

+ σ2‖h‖22.

(∗)
Note: When X is “computationally tractable”
(e.g., is a polytope), the right hand side in
(∗) can be efficiently minimized in h, c. Thus,
we can “reach efficiently” the optimal esti-
mation risk RiskAff∗ achievable with affine
estimates.
In contrast, in general it is completely un-
clear how to reach the minimax optimal risk
Risk∗ – the underlying estimate “exists in the
nature”, but we have no idea what is it.



Theorem [D. Donoho, 1994] RiskAff∗ is

within absolute constant factor (in fact, 5/4)

of Risk∗.
Note: When estimating the signal itself rather

than an affine form of the signal, the risks of

affine estimates can be incomparably worse

than the risks of non-affine ones...

Proof of Donoho’s Theorem. 1. It is eas-

ily seen that we can normalize the situation

by assuming σ = 1 and that RiskAff∗ > 1;

all we need to prove that in this normalized

situation Risk∗ ≥ O(1).

2. Replacing Rn with Aff(X), we may as-

sume that intX 6= ∅. Let X∗ = X − X, so

that X∗ is a convex compact set symmetric

w.r.t. 0 ∈ intX. Thus, X∗ is the unit ball of

a norm p(·) on Rn. Let

p∗(u) = maxz

{
uT z : p(z) ≤ 1

}

≡ maxz

{
uTx : z ∈ X∗

}

≡ maxx,x′
{
uT [x− x′] : x, x′ ∈ X

}

be the conjugate norm.



General fact: For every norm p(·) on Rn, its
twice conjugate norm (p∗)∗(·) is p(·) itself.
Proof. From definition of the conjugate
norm it follows that

∀(u, v) : |uTv| ≤ p(u)p∗(v).
Therefore

(p∗)∗(u) = max
v:p∗(v)≤1

vTu ≤ max
v:p∗(v)≤1

p(u)p∗(v)

≤ p(u).

It remains to lead to a contradiction the as-
sumption that (p∗)∗(ū) < p(ū) for certain ū.
Indeed, assume that it is the case. By ho-
mogeneity, we may assume that p(ū) > 1,
while (p∗)∗(ū) < 1. Since p(ū) > 1, we can
strongly separate ū and the unit ball of p(·):
there exists v̄ such that

v̄T ū > max
u:p(u)≤1

v̄Tu = p∗(v̄).

But then

p∗(v̄) < v̄T ū ≤ p∗(v̄)(p∗)∗(ū),

whence

(p∗)∗(ū) ≥ 1,

which is a desired contradiction.



3. Let us verify that when α ≥ 0, β ≥ 0 are

such that α2 + β2 ≤ 1, no h ∈ Rm satisfies

p∗(ATh− g) ≤ 2α and ‖h‖2 ≤ β.

Indeed, assume such an h exists. Then

2α

≥ p∗(ATh− g) = max
x,x′∈X

[ATh− g]T [x− x′]

= max
x∈X

[ATh− g]Tx−min
x∈X

[ATh− g]Tx.

Setting

c = −1

2

[
max
x∈X

[ATh− g]Tx + min
x∈X

[ATh− g]Tx

]
,

we conclude that

max
x∈X

|[hTAx + c]− gTx| ≤ α,

whence for the affine estimate ĝ(y) = hTy+c

one has

Risk[ĝ] ≤ α2 + β2 = 1,

which is impossible, since RiskAff∗ > 1.



4. We have seen that when α2 + β2 = 1 and
α, β ≥ 0, no h satisfies the relations

p∗(ATh− g) ≤ 2α and ‖h‖2 ≤ β,

meaning that the compact convex sets

{u : p∗(u− g) ≤ 2α}, {ATh : ‖h‖2 ≤ β}
can be strongly separated:

∃z : min
u:p∗(u−g)≤2α

uT z > max
‖h‖2≤β

(ATh)T z

We have

max
‖h‖2≤β

(ATh)T z = max
‖h‖2≤β

hT (Az) = β‖Az‖2
and

min
u:p∗(u−g)≤2α

uTz = min
d:p∗(d)≤2α

[gT z + dT z]

= gT z − 2α(p∗)∗(z) = gT z − 2αp(z).

Thus, gT z − 2αp(z) > β‖Az‖2. This inequality
remains valid when z is replaced with θz, θ >

0; thus, we may assume that p(z) = 1, i.e.,
z = r − s with r, s ∈ X. The bottom line is:

∀(α ≥ 0, β ≥ 0, α2 + β2 = 1) :
∃r, s ∈ X : gT [r − s] ≥ 2α + β‖A[r − s]‖2.



5. Setting α = β =
√

1/2, we get

∃r, s ∈ X : gT [r − s] >
√

2 +
1√
2
‖A[r − s]‖2.

(!)

We claim that then

∃u, v ∈ X : gT [u− v] ≥
√

2 and ‖A[u− v]‖2 ≤ 2.

Indeed, when ‖A[r − s]‖2 ≤ 2, we can take

u = r, v = s. When ‖A[r − s]‖2 > 2, we can

set u = s + 2
‖A[r−s]‖2[r − s], v = s, so that

‖A[u− v]‖2 = 2
‖A[r−s]‖2‖A[r − s]‖2 = 2 and

gT [u− v] = 2
‖A[r−s]‖2gT [r − s]

≥ 2
‖A[r−s]‖2

1√
2
‖A[r − s]‖2 =

√
2.

6. Since ‖A[u− v]‖2 ≤ 2, for every test ψ for

distinguishing between the hypotheses P1 :

x = u and P2 : x = v we have ε[ψ] ≥ Erf(1).



Now let ĝ(·) be an estimate of gTx, and let

ψ(y) =

{
1, ĝ(y) ≥ gT e,

2, ĝ(y) < gT e
, e =

u + v

2
.

When x = u and the test accepts P2, we have

ĝ(y) ≤ gT e, while

gTx = gT r = gT e +
1

2
gT [u− v] ≥ gT e +

1√
2

,

that is, the squared estimation error is ≥ 1/2,

whence

ε1[ψ] ≤ Risk[ĝ]

1/2
= 2Risk[ĝ].

Similarly, when x = v and the test accepts

P1, we have ĝ(y) ≥ gT e and gTx = gTv =

gT e− 1
2gT [u− v] ≤ gT e− 1√

2
, whence

ε2[ψ] ≤ Risk[ĝ]

1/2
= 2Risk[ĝ].

Thus,

2Risk[ĝ] ≥ ε[ψ] ≥ Erf(1) ⇒ Risk[ĝ] ≥ Erf(1)/2.

Since ĝ is an arbitrary estimate, we get

Risk∗ ≥ O(1).



♣ Illustration: Participles detection

Situation: A stream of participles contami-
nated by “background signal” inputs a de-
tector. The output of the detector with no
output noise is

z(t) =
∫ ∆

0
D(t− s)


∑

j

µjδ(s− sj) + w(s)


 ds

where
• µj is the energy of j-th participle, sj is the
moment when it arrives and δ(·) is the Dirac
δ-function
• w(·) is the “background signal”
• D(·) is the “impulse response” of the de-
tector – its output when the input is δ(·). We
assume D(t) to be supported on [0,∆].
♠ After discretization in time with resolution
δt = ∆/N , the model becomes

yτ =
∑

` [µ` + w`δt]Dτ−` + σξτ


µ` : energy of participle arriving at time ` · δt

{ξτ ∼ N (0,1)}∞τ=−∞ : independent output noises

w` = w(` · δt), Dr = D(r · δt), σ > 0 : noise level




The goal: To infer from observations infor-
mation on {µτ}∞τ=−∞.



yτ =
∑

` [µ` + w`δt]Dτ−` + σξτ

♠ Strategy:

• We fix a number K of consecutive “kernel

widths” to be considered, thus focusing on

recovering µτ ’s for 0 ≤ τ ≤ KN − 1. Obser-

vations at these instants are defined, up to

observation noise, by two vectors

µ = [µ−N+1;µ−N+2; ...;µKN−1]
w = [w−N+1;w−N+2; ...;wKN−1]

according to

[y0; ...; yKN−1] ≡ y = A[µ;w] + σξ

[ξ ∼ N (0, IKN)]

• Assume we know an upper bound µ̂ on par-

ticiple’s energy and an upper bound n on the

number of participles which can arrive at in-

stants −N + 1,−N + 2, ..., KN − 1. Then µ

belongs to the convex compact set

M =

{
µ ∈ R(K+1)N−1 :

µ ≥ 0, µτ ≤ µ̂,∑
τ µτ ≤ nµ̂

}



• We model the background signal w(t) as

smooth with given parameters of smooth-

ness, say, twice differentiable with |w(·)| ≤ C0

and |w′′(·)| ≤ C2, which translates into the

restriction

w ∈ W =





w :
|wτ | ≤ C0, −N + 1 ≤ τ < KN

|wτ − 2wτ+1 + wτ+2| ≤ C2δt2,
−N + 1 ≤ τ < KN − 2





.

• Thus, we arrive at the situation where we

are given noisy indirect observations

y = Ax + σξ [x = [µ;w]]

of a signal x ∈ X = M×W and are interested

to recover linear forms

gT
τ [µ;w] = µτ

of the signal.

Note: In fact, it suffices to find a single

τ = τ∗ for which µτ can be well estimated via

our observations y−N+1, ..., yKN−1. Given the

corresponding estimate ĝ, we can estimate µτ

for every τ by the quantity

ĝ(yτ−τ∗−N+1, ..., yτ−τ∗+KN−1).



♠ Numerical illustration:

Setup:

• Impulse response D(s) = c [exp{as} − exp{bs}],
0 ≤ s ≤ 1.

• Discretization: N = 40 grid points per 1

sec (δt = 1/40)
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Impulse response

• K = 2, i.e., 80 observations and dimµ =

dimw = 119

• Participles: µτ ∈ [0, µ̂ = 0.2], with at most

n = 5 participles per 119 consecutive discrete

time instants

• Background signal: |w(·)| ≤ 1, |w′′(·)| ≤ 1

• Noise intensity: σ = 4.33e-4



Results:
• The best position for estimating µτ : τ =
41. The estimate of µτ :

µ̂τ = 0.0068 +
79∑

i=0
hiyτ−41−i
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Estimation weights hi

• Risk of the estimate:

0.01062 = 0.01042 + σ2 · 4.65752

• Sample recovery:
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• Recovering energy distribution of partici-
ples:
In our simulation, the energy distribution of
a participle was

Prob{µτ ≤ sµ̂
∣∣∣µτ 6= 0} =

√
s,0 ≤ s ≤ 1.

To recover this distribution from observa-
tions, we
• computed the 0.99-confidence level ` of our
estimate µ̂τ when µτ is 0:

` = bias + Erf(0.01) · σ · ‖h‖2 = 0.0156

• in a long simulation run, filtered out all
time instants τ with µ̂τ < ` and computed the
empirical distribution of the remaining µ̂τ .
The result:
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Magenta: true energy distribution
Blue: estimated energy distribution
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