
GEORGIA INSTITUTE OF TECHNOLOGY

H. MILTON STEWART SCHOOL

OF

INDUSTRIAL AND SYSTEMS ENGINEERING

INTRODUCTION TO LINEAR OPTIMIZATION

ISYE 6661

Arkadi Nemirovski

Fall 2012

Preface

To make decisions optimally is one of the basic desires of a human being. In (relatively rare!)
situations where one can quantify both candidate decisions (i.e., to represent them as points x
varying in certain well-defined set X) and the criteria we are interested in (that is, to represent
these criteria as real-valued function of x ∈ X), the problem of optimal decision making falls in
the scope of Mathematics, specifically, the area called Optimization. A part of Optimization is
Mathematical Programming interested in the optimization problems of the form

max
x
{f0(x) : x ∈ X} (∗)

where the feasible set X is a subset of the space Rn of real n-dimensional vectors x, and the
objective f is a real-valued function. A typical description of the feasible set X of a Mathematical
Programming (MP) problem is by a finite system of constraints fi(x) ≤ gi:

X = {x ∈ Rn : fi(x) ≤ bi, 1 ≤ i ≤ m},

where fi(x) are given real-valued functions of n variables x, and bi are given reals. Thus, a
generic MP problem (or MP program) is of the form

max
x
{f(x) : fi(x) ≤ bi, i = 1, ...,m} (!)

In other words, Mathematical Programming deals with the case when our candidate decisions
can be encoded by vectors x of certain dimension n and we are interested in finitely many criteria
represented by real-valued functions f(x), f1(x), ..., fm(x). Since in general it is impossible to
optimize simultaneously more then one criteria (usually, you cannot simultaneously be as wealthy
as possible and as healthy as possible), (!) treats the criteria “asymmetrically:” we impose
bounds on all but one of the criteria and optimize the remaining criterion (optimize health, not
allowing wealth to become too low, so to speak).

Linear Optimization (called also Linear Programming) is part of Optimization Theory han-
dling Linear Optimization problems, those where the objective f(x) and the constraints fi(x)
are linear functions of x:

f(x) = cTx =
n∑
j=1

cjxj , fi(x) = aTi x =
n∑
j=1

aijxj .

LO is the simplest and the most frequently used in applications part of Mathematical Program-
ming. Some of the reasons are:

• reasonable “expressive power” of LO — while the world we live in is mainly nonlinear,
linear dependencies in many situations can be considered as quite satisfactory approxima-
tions of actual nonlinear dependencies. At the same time, a linear dependence is easy to
specify, which makes it realistic to specify data of Linear Optimization models with many
variables and constraints;

• existence of extremely elegant, rich and essentially complete mathematical theory of LO;

• last, but by far not least, existence of extremely powerful solution algorithms capable to
solve to optimality in reasonable time LO problems with tens and hundreds of thousands
of variables and constraints.

iii

In our course, we will focus primarily on “LO machinery” (LO Theory and Algorithms), leaving
beyond our scope practical applications of LO which are by far too numerous and diverse to be
even outlined in a single course. The brief outline of the contents is as follows:

1. LO Modeling, including instructive examples of LO models and “calculus” of LO models
– collection of tools allowing to recognize the possibility to pose an optimization problem
as an LO program;

2. LO Theory – geometry of LO programs, existence and characterization of optimal solu-
tions, theory of systems of linear inequalities and duality;

3. LO Algorithms, including Simplex-type and Interior Point ones, and the associated com-
plexity issues.

I apologize in advance for possible typos and will be extremely grateful to those bringing the
typos, or whatever other shortcomings of the Notes, to my attention.

Arkadi Nemirovski,
December 1, 2011.

iv

Contents

Main Notational Conventions 1

1 Introduction to LO: Examples of LO Models 3

1.1 LO Program: Definition and Examples . 3

1.1.1 Definitions and Terminology . 3

1.1.2 LO Terminology . 5

1.1.3 Instructive Examples . 6

1.2 What Can Be Reduced to LO . 23

1.2.1 Preliminaries . 23

1.2.2 Polyhedral Representations of Sets and Functions: Definitions 24

1.2.3 Polyhedral Representations of Sets and Functions: Calculus 30

1.3 ∗Fast Polyhedral Approximation of the Second Order Cone 34

Part I. Geometry of Linear Optimization 45

2 Polyhedral Sets and their Geometry 47

2.1 Preliminaries: Linear and Affine Subspaces, Convexity 47

2.1.1 Linear Subspaces . 47

2.1.2 Affine Subspaces . 53

2.1.3 Convexity . 59

2.1.4 Cones . 64

2.2 Preparing Tools . 64

2.2.1 Caratheodory Theorem . 65

2.2.2 Radon Theorem . 67

2.2.3 Helley Theorem . 68

2.2.4 Homogeneous Farkas Lemma . 70

2.3 Faces, Vertices, Recessive Directions, Extreme Rays 73

2.3.1 Faces . 73

2.3.2 Vertices . 74

2.3.3 Recessive Directions . 79

2.3.4 Bases and Extreme Rays of a Polyhedral Cone 81

2.4 Structure of Polyhedral Sets . 85

2.4.1 First Step . 85

2.4.2 Second Step . 92

2.4.3 Immediate Corollaries . 98

v

vi CONTENTS

3 Theory of Systems of Linear Inequalities and Duality 101

3.1 General Theorem on Alternative . 102

3.1.1 GTA: Formulation, Proof, Different Versions 102

3.1.2 Answering Questions . 109

3.1.3 Certificates in Linear Optimization . 112

3.2 LO Duality . 115

3.2.1 The Dual of an LO Program . 115

3.2.2 Linear Programming Duality Theorem . 116

3.3 Immediate Applications of Duality . 118

3.3.1 Optimality Conditions in LO . 118

3.3.2 Geometry of a Primal-Dual Pair of LO programs 119

3.3.3 Extending Calculus of Polyhedral Representability and Robust LO 123

3.3.4 Extending Calculus of Polyhedral Representability: Majorization 139

Part II. Classical LO Algorithms: the Simplex Method 144

4 Simplex Method 145

4.1 Simplex Method: Preliminaries . 146

4.2 Geometry of an LO Program in the Standard Form 147

4.2.1 The Dual of an LO Program in the Standard Form 147

4.2.2 Basic and Basic Feasible Solutions . 148

4.3 Simplex Method . 151

4.3.1 Primal Simplex Method . 151

4.3.2 Tableau Implementation and Example . 154

4.3.3 Preventing Cycling . 158

4.3.4 How to Start the PSM . 160

4.3.5 Dual Simplex Method . 162

4.3.6 “Warm Start” . 165

4.4 Simplex Method and Large-Scale LO Programs 167

4.4.1 Revised Simplex Method . 167

4.4.2 Dantzig-Wolfe Decomposition . 169

5 The Network Simplex Algorithm 173

5.1 Preliminaries on Graphs . 173

5.1.1 Undirected graphs . 173

5.1.2 Directed graphs . 176

5.2 The Network Flow Problem . 177

5.3 The Network Simplex Algorithm . 178

5.3.1 Preliminaries . 178

5.3.2 Bases and Basic Feasible Solutions . 178

5.3.3 Reduced costs . 182

5.3.4 Updating basic feasible solution . 183

5.3.5 Network Simplex Algorithm: Summary and Remarks 187

5.4 Capacitated Network Flow Problem . 189

5.4.1 Preliminaries: Primal Simplex Method with Bounds on Variables 190

5.4.2 Network PSM for Capacitated Network Flow Problem 193

CONTENTS vii

Part III. Complexity of Linear Optimization and the Ellipsoid Method 195

6 Polynomial Time Solvability of Linear Optimization 197

6.1 Complexity of LO: Posing the Question . 197

6.1.1 Models of Computations . 200

6.1.2 Complexity Status of the Simplex Method 203

6.1.3 *Classes P and NP . 204

6.2 The Ellipsoid Algorithm . 207

6.2.1 Problem and Assumptions . 207

6.2.2 The Ellipsoid Algorithm . 209

6.3 Polynomial Solvability of LO with Rational Data 214

Part IV. From Linear to Semidefinite Optimization: Interior Point Meth-
ods 221

7 Conic Programming and Interior Point Methods in LO and Semidefinite Op-
timization 223

7.1 Conic Programming . 224

7.1.1 Cones in Euclidean Spaces . 224

7.1.2 Conic Problems . 228

7.1.3 Conic Duality . 229

7.1.4 Consequences of Conic Duality Theorem 236

7.1.5 Sensitivity Analysis . 245

7.1.6 Geometry of Primal-Dual Pair of Conic Problems 247

7.1.7 Conic Representations of Sets and Functions 249

7.2 Interior Point Methods for LO and SDO . 256

7.2.1 SDO Program and its Dual . 256

7.2.2 Path-Following Interior Point methods for (P), (D): preliminaries 258

7.2.3 Central Path: Existence and Characterization 260

7.2.4 Duality Gap along the Primal-Dual Central Path and around it 264

7.2.5 Primal-Dual Path-Following methods . 269

7.2.6 How to Start Path-Tracing . 283

Appendix 294

A Prerequisites from Linear Algebra 295

A.1 Space Rn: algebraic structure . 295

A.1.1 A point in Rn . 295

A.1.2 Linear operations . 295

A.1.3 Linear subspaces . 296

A.1.4 Linear independence, bases, dimensions 297

A.1.5 Linear mappings and matrices . 299

A.2 Space Rn: Euclidean structure . 300

A.2.1 Euclidean structure . 300

A.2.2 Inner product representation of linear forms on Rn 301

A.2.3 Orthogonal complement . 302

A.2.4 Orthonormal bases . 302

viii CONTENTS

A.3 Affine subspaces in Rn . 305
A.3.1 Affine subspaces and affine hulls . 305
A.3.2 Intersections of affine subspaces, affine combinations and affine hulls . . . 306
A.3.3 Affinely spanning sets, affinely independent sets, affine dimension 307
A.3.4 Dual description of linear subspaces and affine subspaces 310
A.3.5 Structure of the simplest affine subspaces 312

B Prerequisites from Real Analysis 315
B.1 Space Rn: Metric Structure and Topology . 315

B.1.1 Euclidean norm and distances . 315
B.1.2 Convergence . 317
B.1.3 Closed and open sets . 317
B.1.4 Local compactness of Rn . 318

B.2 Continuous functions on Rn . 319
B.2.1 Continuity of a function . 319
B.2.2 Elementary continuity-preserving operations 320
B.2.3 Basic properties of continuous functions on Rn 320

B.3 Differentiable functions on Rn . 321
B.3.1 The derivative . 321
B.3.2 Derivative and directional derivatives . 323
B.3.3 Representations of the derivative . 324
B.3.4 Existence of the derivative . 326
B.3.5 Calculus of derivatives . 326
B.3.6 Computing the derivative . 327
B.3.7 Higher order derivatives . 329
B.3.8 Calculus of Ck mappings . 332
B.3.9 Examples of higher-order derivatives . 333
B.3.10 Taylor expansion . 334

C Symmetric matrices 337
C.1 Spaces of Matrices . 337
C.2 Eigenvalue Decomposition . 337
C.3 Variational Characterization of Eigenvalues . 339
C.4 Positive Semidefinite Matrices and the Semidefinite Cone 342

References 346

CONTENTS 1

Main Notational Conventions

Vectors and matrices. By default, all vectors in this course are column vectors. Usually,
we utilize “MATLAB notation:” a vector with coordinates x1, ..., xn is written down as x =
[x1; ...;xn]. More generally, if A1, ..., Am are matrices with the same number of columns, we
write [A1; ...;Am] to denote the matrix which is obtained when writing A2 below A1, A3 below
A2, and so on. If A1, ..., Am are matrices with the same number of rows, then [A1, ..., Am] stands
for the matrix which is obtained when writing A2 to the right of A1, A3 to the right of A2, and
so on. For example,

[1, 2, 3, 4] = [1; 2; 3; 4]T , [[1, 2; 3, 4], [5, 6; 7, 8]] = [1, 2, 5, 6; 3, 4, 7, 8] =

[
1 2 5 6
3 4 7 8

]
.

Diag{A1, A2, ..., Am} denotes the block-diagonal matrix with the diagonal blocks A1, ..., Am. For
example,

Diag{[1, 2], 3, [4, 5; 6, 7]} =

1 2

3

4 5
6 7

where blank spaces are filled with zeros.

For a square nonsingular matrix A, A−T means [A−1]T .
The zero vectors and matrices are, as always, denoted by 0; if we have reasons to point

out the sizes of a zero vector/matrix, we write something like 03×4. The unit m×m matrix is
denoted by I or Im.

We write A � B (or, which is the same, B � A) to express the fact that A,B are symmetric
matrices of the same size such that A−B is positive semidefinite; A � B (or, which is the same,
B ≺ A) means that A,B are symmetric matrices of the same size such that A − B is positive
definite.

2 CONTENTS

Lecture 1

Introduction to LO: Examples of LO
Models

In this lecture, we define the main entity we are interested in our course – a Linear Optimiza-
tion problem, provide a number of instructive examples and address the question of when an
optimization problem can be posed as an LO one.

1.1 LO Program: Definition and Examples

1.1.1 Definitions and Terminology

An LO program

A Linear Optimization problem, or program (called also Linear Programming problem/program,
abbreviations LO and LP) is the problem of optimizing a linear function cTx of an n-dimensional
vector x under finitely many linear equality and nonstrict inequality constraints. For example,
the following Mathematical Programming problems

min
x

x1 :

x1 + x2 ≤ 20
x1 − x2 = 5
x1, x2 ≥ 0

 (1.1.1)

and

max
x

x1 + x2 :

2x1 ≥ 20− x2

x1 − x2 = 5
x1 ≥ 0
x2 ≤ 0

 (1.1.2)

are LO programs. In contrast to this, the optimization problems

min
x

exp{x1} :

x1 + x2 ≤ 20
x1 − x2 = 5
x1, x2 ≥ 0

 (1.1.3)

and

max
x

x1 + x2 :

ix1 ≥ 20− x2, i = 2, 3, ...

x1 − x2 = 5
x1 ≥ 0
x2 ≤ 0

 (1.1.4)

3

4 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

are not LO programs: (1.1.3) has a nonlinear objective, and (1.1.4) has infinitely many con-
straints.

A careful reader could say that (1.1.2) is “the same” as (1.1.1) (since the exponent
is monotone, it is the same what to minimize, x1 or exp{x1}). Similarly, (1.1.4) is
“the same” as (1.1.2), since for x1 ≥ 0, the infinitely many constraints ix1 +x2 ≥ 20,
i = 2, 3, ... are equivalent to the single constraint 2x1 + x2 ≥ 20. Note, however,
that we classify optimization problems according to how they are presented, and not
according to what they can be equivalent/reduced to.

Now, we can somehow “standardize” the format in which an LO program is presented. Specifi-
cally,

• every linear equality/inequality can be equivalently rewritten in the form where the left
hand side is a weighted sum

∑n
j=1 ajxj of variables xj with coefficients, and the right hand

side is a real constant; e.g., 2x1 ≥ 20− x2 is equivalent to 2x1 + x2 ≥ 20;

• the sign of a nonstrict linear inequality always can be made ”≤”, since the inequality∑
j ajxj ≥ b is equivalent to

∑
j [−aj]xj ≤ [−b];

• a linear equality constraint
∑

j ajxj = b can be represented equivalently by the pair of
opposite inequalities

∑
j ajxj ≤ b,

∑
j [−aj]xj ≤ [−b];

• to minimize a linear function
∑

j cjxj is exactly the same to maximize the linear function∑
j [−cj]xj .

Canonical form of an LO program. In view of the above observations, every LO program
can be equivalently written down as a problem of maximizing a linear objective under finitely
many nonstrict linear inequality constraints of the ” ≤ ”-type, i.e., in the canonical form

Opt = max
x

{∑n
j=1 cjxj :

∑n
j=1 aijxj ≤ bi, 1 ≤ i ≤ m

}
[“term-wise” notation]

⇔ Opt = max
x

{
cTx : aTi x ≤ bi, 1 ≤ i ≤ m

}
[“constraint-wise” notation]

⇔ Opt = max
x

{
cTx : Ax ≤ b

}
[“matrix-vector” notation]

(1.1.5)
where c = [c1; ...; cn], ai = [ai1; ...; ain], A = [aT1 ; aT2 ; ...; aTm], b = [b1; ...; bm].

Standard form of an LO program. An LO program in the standard form reads

Opt = max
x

{∑n
j=1 cjxj :

∑n
j=1 aijxj = bi, 1 ≤ i ≤ m

xj ≥ 0, j = 1, ..., n

}
[“term-wise” notation]

⇔ Opt = max
x

{
cTx :

aTi x = bi, 1 ≤ i ≤ m
xj ≥ 0, 1 ≤ j ≤ n

}
[“constraint-wise” notation]

⇔ Opt = max
x

{
cTx : Ax = b, x ≥ 0

}
[“matrix-vector” notation]

(1.1.6)
where c = [c1; ...; cn], ai = [ai1; ...; ain], A = [aT1 ; aT2 ; ...; aTm], b = [b1; ...; bm]. As compared with
(1.1.5), in the standard form of an LO all “general” linear constraints are equalities, and the
inequality constraints are sign constraints, specifically, the restrictions of nonnegativity, imposed
on all variables. The standard form is as “universal” as the canonical one:

1.1. LO PROGRAM: DEFINITION AND EXAMPLES 5

Observation 1.1.1 Every LO program can be straightforwardly converted into an equivalent
program in the standard form.

Proof. We lose nothing by assuming that the original form of the program is the canonical one,
specifically,

max
y

{
eT y : Py ≤ p

}
(!)

(note change in the notation). Now, to say that Py ≤ p is exactly the same as to say that
Py+ u = p for certain nonnegative vector u; in addition, every real vector y can be represented
as the difference of two nonnegative vectors: y = v − w. It follows that (!) is equivalent to the
problem

max
x=[u;v;w]

{
cTx := dT [v − w] : Ax := B(v − w) + u = b := p, x ≥ 0

}
which is an LO in the standard form. 2

In the sequel, when investigating the “geometry” of LO, it will be more convenient to use
the canonical form of an LO program; the standard form is preferable when presenting LO
algorithms.

1.1.2 LO Terminology

We are about to present the most basic “vocabulary” of LO. For the sake of definiteness, in our
presentation we refer to the canonical format of an LO program (1.1.5), leaving the “translation”
to the case of a program in the standard form to the reader. The vocabulary is as follows:

• The variable vector x in (1.1.5) is called the decision vector of the program; its entries xj
are called decision variables. The linear function cTx is called the objective function (or
just objective) of the problem, and the inequalities aTi x ≤ bi are called the constraints.
Sometimes, with slight abuse of wording, we refer to the vector c itself as to the objective;

• The structure of (1.1.5), given the way we are writing the problem down, reduces to the
sizes m (number of constraints) and n (number of variables). The data of an LO program is
the collection of numerical values of the coefficients in the cost vector (or simply objective)
c, in the right hand side vector b and in the constraint matrix A;

• A solution to (1.1.5) is an arbitrary value of the decision vector. A solution x is called
feasible if it satisfies the constraints: Ax ≤ b. The set of all feasible solutions is called the
feasible set of the program; the program is called feasible, if the feasible set is nonempty,
and is called infeasible otherwise;

• Given a program (1.1.5), there are three possibilities:

– the program is infeasible. In this case, its optimal value Opt, by definition, is −∞
(this convention is logical, since in the case in question one cannot point out a feasible
solution with the value of the objective > −∞);

– the program is feasible, and the objective is not bounded from above on the feasible
set, meaning that for every real a one can point out a feasible solution x such that
cTx > a. In this case, the program is called unbounded, and its optimal value Opt
is, by definition, +∞.

6 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

The program which is not unbounded is called bounded; a program is bounded iff
its objective is bounded from above on the feasible set (e.g., due to the fact that the
latter is empty);

– the program is feasible, and the objective is bounded from above on the feasible set:
there exists a real a such that cTx ≤ a for all feasible solutions x. In this case, the
optimal value Opt is the supremum, over the feasible solutions, of the values of the
objective at a solution.

– a solution to the program is called optimal, if it is feasible, and the value of the
objective at the solution equals to Opt. A program is called solvable, if it admits an
optimal solution.

Remarks. A. The above terminology is aimed at the maximization LO in the canonical form.
The terminology in the case of a minimization problem “mirrors” the one we have described,
specifically,
• the optimal value of an infeasible program is +∞,
• the optimal value of a feasible and unbounded program (unboundedness now means that the
objective to be minimized is not bounded from below on the feasible set) is −∞, while the
optimal value of a bounded and feasible LO is the infinum of values of the objective at feasible
solutions to the program.

B. The notions of feasibility, boundedness, solvability and optimality can be straightfor-
wardly extended from LO programs to arbitrary MP ones. With this extension, a solvable
problem definitely is feasible and bounded (why?), while the inverse not necessarily is true, as
is illustrated by the program

Opt = max
x
{− exp{−x} : x ≥ 0} ,

where the optimal value – the supremum of the values taken by the objective at the points of
the feasible set – clearly is 0; this value, however, is not achieved – there is no feasible solution
where the objective is equal to 0 = Opt, and, as a result, the program is unsolvable. Thus, in
general, the facts that an optimization program has a “legitimate” – real, and not ±∞ – optimal
value, is strictly weaker that the fact that the program is solvable (i.e., has an optimal solution).
In LO the situation is much better; eventually we shall prove that an LO program is solvable iff
it is feasible and bounded.

1.1.3 Instructive Examples

Here we present a short series of standard examples of LO problems. In every one of them, we
start with certain semi-verbal story and then “translate” this story into an LO program; this is
called modeling – building a mathematical model, in our case, of the LO type, of a “practical”
situation. It should be stressed that in applications of Optimization modeling plays the crucial
role: on one hand, we need to end up with a model which is not “oversimplified,” that is,
captures all important for the application in question relations and dependencies between the
entities involved, and, on the other hand, is not too complicated, so that we can specify all the
relevant data and process the resulting problem numerically at a reasonable computational cost.
A proper balance between these two conflicting goals requires both deep understanding of the
subject area to which the application belongs and good knowledge of optimization theory and
algorithms. This being said, note that modeling per se, being a “go-between for reality and
Mathematics,” is beyond the scope of our course.

1.1. LO PROGRAM: DEFINITION AND EXAMPLES 7

Examples of LO models in OR

Diet problem. There are n types of products and m types of nutrition elements. A unit of
product # j contains pij grams of nutrition element # i and costs cj . The daily consumption
of a nutrition element # i should be at least a given quantity bi and at most a given quantity
bi. Find the cheapest possible “diet” – mixture of products – which provides appropriate daily
amounts of every one of the nutrition elements.”

Denoting xj the amount of j-th product in a diet, the LO model of the problem reads1

min
x

∑n
j=1 cjxj [Diet’s cost to be minimized]

subject to ∑n
j=1 pijxj ≥ bi∑n
j=1 pijxj ≤ bi

}
, 1 ≤ i ≤ m

[
upper and lower bounds on the contents
of nutrition elements in a diet

]
xj ≥ 0, 1 ≤ j ≤ n

[
you cannot put into a diet a
negative amount of a product

]
(1.1.7)

The Diet problem is one of the first LO models, and today it is routinely used in many areas,
e.g., in mass-production of poultry. As about nourishment of human beings, the model is of no
much use, since it completely ignores factors like food’s taste, food diversity requirements, etc.

Here is the optimal daily human diet as computed by the software at
http://www-neos.mcs.anl.gov/CaseStudies/dietpy/WebForms/index.html
(when solving the problem, I allowed to use all 64 kinds of food offered by the code):

Food Serving Cost

Raw Carrots 0.12 cups shredded 0.02
Peanut Butter 7.20 Tbsp 0.25
Popcorn, Air-Popped 4.82 Oz 0.19
Potatoes, Baked 1.77 cups 0.21
Skim Milk 2.17 C 0.28

Daily cost $ 0.96

Production planning. A factory consumes R types of resources (electricity, raw materials
of various kinds, various sorts of manpower, processing times at different devices, etc.) and
produces P types of products. There are n possible production processes, j-th of them can
be used with “intensity” xj (you may think of these intensities as of fractions of the planning
period (say, 1 month) during which a particular production process is used). Used at unit
intensity, production process # j consumes Arj units of resource r, 1 ≤ r ≤ R, and yields Cpj
units of product p, 1 ≤ p ≤ P . The profit of selling a unit of product p is cp. Given upper
bounds b1, ..., bR on the amounts of various recourses available during the planning period, and
lower bounds d1, ..., dP on the amount of products to be produced, find a production plan which
maximizes the profit under the resource and the demand restrictions.

1Here and in the subsequent examples, we do not bother to convert the model into a specific form, e.g.,
the canonical one, since this (completely straightforward and “mechanical”) process would only obscure the
construction of a model. Note that existing LO solvers also do not require from a user to input the problem in
certain particular form and use preprocessors to convert an LO program into the format directly accessible for the
solver. A “standard” format is convenient when investigating LO’s as “mathematical beasts,” not when building
LO models!

8 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

Denoting by xj the intensity at which production process j is used, the LO model reads:

max
x

n∑
j=1

(∑P
p=1 cpCpj

)
xj [profit to be maximized]

subject to
n∑
j=1

Arjxj ≤ br, 1 ≤ r ≤ R [upper bounds on consumed resources should be met]

n∑
j=1

Cpjxj ≥ dp, 1 ≤ p ≤ P [lower bounds on products’ yield should be met]

n∑
j=1

xj ≤ 1

xj ≥ 0, 1 ≤ j ≤ n

[

total intensity should be ≤ 1 and
intensities must be nonnegative

]
(1.1.8)

Note that the simple model we have presented tacitly assumes that all what is produced can be
sold, that there are no setup costs when switching from one production process to another one,
that products are infinitely divisible (we produce needles rather than Boeings, so to speak), and
makes a lot of other implicit assumptions.

Inventory. An inventory operates over the time horizon 1, ..., T (say, T days) and handles K
types of products.
• Products share common warehouse with storage space C. The space required to store a unit
of product k in the warehouse is ck ≥ 0, and the holding cost (the per-day cost of storing a unit
of product k in the warehouse) is hk.
• The inventory is replenished via ordering from a supplier; a replenishment order sent in the
beginning of day t is executed immediately, and ordering a unit of product k costs ok.
• The inventory is affected by external demand which amounts to dtk units of product k in day
t. While backlogged demand is allowed, a day-long delay in supplying a customer by unit of
product k costs pk.

Given the initial amounts s0k, k = 1, ...,K, of products in warehouse, all the cost coefficients
(which are nonnegative) and the demands dtk,

2 We want to specify the replenishment orders vtk
(vtk is the amount of product k which is ordered from the supplier at the beginning of period t)
in such a way that at the end of period T there is no backlogged demand, and we want to meet
this requirement at as small total inventory management costs as possible.

In order to convert this story into an LO model, we first introduce the state variables stk
representing the amount of product k in the warehouse at the end of period t (or, which is the
same, at the beginning of period t+ 1); we allow these state variables to be negative as well as
positive, with a negative value of stk interpreted as “at the end of period t, the inventory owes
the customers |stk| units of product k”. With this convention, our problem can be modeled as

2The latter assumption — that the demands are known in advance — more often than not is unrealistic. This
issue will be addressed in the mean time, when speaking about LO problems with uncertain data.

1.1. LO PROGRAM: DEFINITION AND EXAMPLES 9

the optimization program

min
U,v,s

U

subject to

U =
K∑
k=1

T∑
t=1

[okvtk + hk max[stk, 0] + pk max[−stk, 0]] (a)

stk = st−1,k + vtk − dtk, 1 ≤ t ≤ T, 1 ≤ k ≤ K (b)∑K
k=1 ck max[stk, 0] ≤ C, 1 ≤ t ≤ T (c)

sTk ≥ 0, 1 ≤ k ≤ K (d)
vtk ≥ 0, 1 ≤ k ≤ K, 1 ≤ t ≤ T (e)

(1.1.9)

(the s-variables stk have t ≥ 1, s0k being part of problem’s data). In this model,

• the variable U is the overall inventory management cost which we want to minimize;

• constraint (a) expresses the fact that U indeed is the overall inventory management cost
– the total, over the K products and the T days, ordering cost (okvtk), holding cost
(hk max[stk, 0]), and penalty for backlogged demand (pk max[−stk, 0]) associated with
product k and period t. Further, constraints (b) express the evolution of states, and
constraints (c) express the restrictions on the space available for storing the products.

The implicit assumptions underlying the latter claims are as follows: the re-
plenishment orders vtk are issued in the beginning of day t and are executed
immediately. As a result, the amount of product k in the inventory in the be-
ginning of day t jumps from st−1,k to st−1,k + vtk. Immediately after this, the
demands dtk of day t become known and the products are shipped to the cus-
tomers, which reduces – again immediately! – the inventory level by dtk, so that
the resulting level st−1,k + vtk − dtk, if nonnegative, is the amount of product k
stored in the inventory during day t, otherwise the modulus of this level is the
backlogged demand on product k during day t.

From the story we have just told we see, first, that the states stk of the inventory,
as defined above, evolve according to (b). Second, our expenses, associated with
product k, in day t include the ordering cost okvtk, and on the top of it, either
the holding cost hkstk (this is so if stk is nonnegative), or the penalty pk[−stk] for
backlogged demand (when stk is negative). We see that (a) correctly represents
the expenses. Further, we see that the “physical” amount of product k stored
in the warehouse during day t is max[stk, 0], so that (c) correctly represents the
restriction on the space available for storage of products.

• constraint (d) expresses equivalently the requirement that at the end of the planning period
(i.e., at the end of day T) there is no backlogged demand.

• finally, constraints (c) express the implicit assumption that we can only order from the
supplier, while return of products to the supplier is forbidden.

Note that we lose nothing when replacing the equality constraint (1.1.9.a) with the inequality
constraint

U ≥
K∑
k=1

T∑
t=1

[okvtk + hk max[stk, 0] + pk max[−stk, 0]] (a′)

10 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

which corresponds to minimizing an upper bound U on the actual inventory management cost;
since nothing prevents us from setting this bound to be equal to the right hand side in (1.1.9.a)
(which in any case will be enforced by minimization), the modified in this way problem is
equivalent to the original one. In the remaining discussion, we assume that (1.1.9.a) is replaced
with (a′).

We have modeled our verbal problem by (a slightly modified version of) (1.1.9); note, how-
ever, that the resulting model is not an LO program, due to the presence of nonlinear in our
design variables terms max[±stk, 0]. We are about to demonstrate (pay maximal attention to
this construction!) that we can handle this type of nonlinearities via LO. Specifically, assume
that we have a constraint of the form

α1Term1(y) + ...+ αMTermM (y) ≤ b, (!)

where α` are nonnegative constant coefficients, b is a constant, and every term Term`(y) is either
a linear function of our design variables y (let it be so for L < ` ≤ M), or is a piecewise linear
function of the form

Term`(y) = max[aT1`y + b1`, a
T
2`y + b2`, ..., a

T
p`y + bp] (∗)

(the latter is the case for 1 ≤ ` ≤ L).

Note that converted equivalently to the form of (!), all constraints (a′), (1.1.9.b-e)
are of this form, which is an immediate corollary of the nonnegativity of the cost
coefficients hk, pk and the space coefficients ck.

Now, let us replace every piecewise linear term Term` in (!) with a new decision variable w`
(“slack variable” in the slang of LO) and augment this action by imposing the constraints

w` ≥ aTν`y + bν`, 1 ≤ ν ≤ p

on the original and the slack variables. As a result, the constraint (!) will be replaced by the
system ∑L

`=1 α`w` +
∑M

`=L+1 α`Term`(y)+ ≤ b
w` ≥ aTν`y + bν`, 1 ≤ ν ≤ p, 1 ≤ ` ≤ L

of linear in the variables y, w1, ..., wL. Taking into account that α1, ..., αL are nonnegative, it is
clear that this system says about our original variables y exactly the same as the constraint (!),
meaning that y can be extended, by properly chosen values of slack variables w`, 1 ≤ ` ≤ L, to a
feasible solution of the system iff y satisfies (!). If now (!) is a constraint in certain optimization
problem, then, augmenting the variables of the problem by slack variables w` and replacing the
constraint in question with the above system, we arrive at an equivalent problem where the
nonlinear constraint in question is replaced with a system of linear constraints. If all constraints
with nonlinearities in an optimization problem admit the outlined treatment, we can apply the
outlined procedure “constraint by constraint” and end up with an LO which is equivalent to the
original problem.

Let us apply this recipe to problem (1.1.9) (with constraint (a) replaced with (a′), which, as
we remember, keeps the problem intact up to equivalence). Specifically, we introduce the slack
variables (upper bounds) ytk for the quantities max[stk, 0] and ztk for the quantities max[−stk, 0]
and replace the nonlinearities with these upper bounds, augmenting the resulting system of
constraints with linear constraints (constraints (f), (g) below) expressing equivalently the fact

1.1. LO PROGRAM: DEFINITION AND EXAMPLES 11

that ytk, ztk indeed are upper bounds on the corresponding nonlinearities. The resulting program
reads

min
U,v,s,y,z

U

subject to

U ≥
K∑
k=1

T∑
t=1

[okvtk + hkytk + pkztk] (a)

stk = st−1,k + vtk − dtk, 1 ≤ t ≤ T, 1 ≤ k ≤ K (b)∑K
k=1 ckytk ≤ C, 1 ≤ t ≤ T (c)

sTk ≥ 0, 1 ≤ k ≤ K (d)
vtk ≥ 0, 1 ≤ k ≤ K, 1 ≤ t ≤ T (e)
ytk ≥ stk, ytk ≥ 0, 1 ≤ k ≤ K, 1 ≤ t ≤ T (f)
ztk ≥ −stk, ztk ≥ 0, 1 ≤ k ≤ K, 1 ≤ t ≤ T (g)

(1.1.10)

and is an LO program which is equivalent to (1.1.9) and thus models our inventory problem.
Warning: The outlined “eliminating nonlinearities” heavily exploits the facts that

(1) (!) is a constraint with piecewise linear nonlinearities which are maxima of linear forms,
(2) all the nonlinearities are to the left of ” ≤ ”-sign, and
(3) the coefficients at these nonlinearities are nonnegative.

Indeed, assume that we are given a constraint with the terms which are either linear functions
of the variables, or piecewise linear functions “maximum of linear terms” multiplied by constant
coefficients. We always can rewrite this constraint in the form of (!), but the coefficients at
nonlinearities in this constraint not necessarily should be nonnegative. Of course, we can “move
the coefficients into the nonlinearities”, noting that

cmax[aT1 y + b1, ..., a
T
p y + bp]

is either max[caT1 y + cb1, ..., ca
T
p y + bp] when c ≥ 0, or min[caT1 y + cb1, ..., ca

T
p y + bp] when

c < 0. Now all nonlinearities have coefficients 1 and are to the left of ” ≤ ”, but there, in
general, are two types of them: maxima of linear forms and minima of linear forms. The
above construction shows that if all the nonlinearities are maxima of linear forms, we can
eliminate them at the cost of introducing slack variables and converting (!) into a system of linear
inequalities. The number of slack variables we need is equal to the number of nonlinearities we are
eliminating, and the number of linear inequalities we end up with is by one greater than the total
number of linear forms participating in the nonlinearities.” The situation changes dramatically
when among the nonlinearities are minima of linear forms. Given such a nonlinearity, say,
min[aT1 y + b1, ..., a

T
p y + bp], we can, of course, replace it with a slack variable w at the cost of

augmenting the list of constraints by the constraint w ≥ min[aT1 x+ b1, ..., a
T
p x+ bp] (“isolating”

the nonlinearity, so to speak). The difficulty is that now this additional constraint cannot be
immediately reduced to a system of linear inequalities: instead of expressing the fact that w is
≥ the maximum of aTi x+ bi over i, that is, that w ≥ aT1 x+ b1 AND w ≥ aT2 x+ b2 AND ... AND
w ≥ aTp x+ bp (which is just a system of p linear inequalities on w and y), we need to express the

fact that w is ≥ the minimum of aTi x+bi over i, that is, that w ≥ aT1 x+b1 OR w ≥ aT2 x+b2 OR
... OR w ≥ aTp x+bp, which is not a system of linear inequalities on w, y. Of course, it is possible
to eliminate nonlinearities of the min-type by “branching” on them: to eliminate nonlinearity
w ≥ min[aT1 x + b1, ..., a

T
p x + bp], we build p uncoupled problems where this nonlinearity is

substituted subsequently by every one of the linear inequalities w ≥ aTi x + bi, i = 1, ..., p.
However, if we have several “bad” — requiring branching — nonlinearities in an optimization
problem, when eliminating all of them, we need to consider separately all combinations of the

12 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

above substitutions across the bad nonlinearities. As a result, if in the original problem we
have K “bad” piecewise linear nonlinearities and k-th of them involves pk linear functions, their
elimination results in the necessity to consider separately N = p1p2...pK “LO variants” of the
original problem. Since the number of variants grows exponentially fast with the number of
bad nonlinearities, this approach, at least in its outlined straightforward form, can be used only
when K and pi, 1 ≤ i ≤ K, are small.

Transportation and Network Flows. Let us start with the story as follows.

There are I warehouses, i-th of them storing si units of product, and J customers,
j-th of them demanding dj units of product. Shipping a unit of product from ware-
house i to customer j costs cij . Given the supplies si, the demands dj and the costs
Cij , we want to decide on the amounts of product to be shipped from every ware-
house to every customer. Our restrictions are that we cannot take from a warehouse
more product than it has, and that all the demands should be satisfied; under these
restrictions, we want to minimize the total transportation cost.

Introducing decision variables xij , with xij being the amount of product to be shipped from
warehouse i to customer j, the story can be modeled by the LO program

minx
∑

i,j cijxij [transportation cost to be minimized]

subject to ∑J
j=1 xij ≤ si, 1 ≤ i ≤ I [we should respect the capacities of the warehouses]∑I
i=1 xij = dj , j = 1, ..., J [we should satisfy the demands]

xij ≥ 0, 1 ≤ i ≤ I, 1 ≤ j ≤ J [you cannot ship a negative amount of product]
(1.1.11)

We end up with what is called a transportation problem. Note that when building the model
we have assumed implicitly that the product is infinitely divisible.

A far-reaching generalization of the transportation problem is the multicommodity network
flow problem as follows. We are given a network (an oriented graph) — a finite set of nodes
1, ..., n along with a finite set Γ of arcs – ordered pairs γ = (i, j) of distinct (i 6= j) nodes. We say
that an arc γ = (i, j) starts at node i, ends at node j and links node i to node j. As an example,
you may think of a road network, where the nodes are road junctions, and the arcs are the
one-way segments of roads “from a junction to a neighboring one;” a 2-way road segment can be
modeled by two opposite arcs. (Of course, many other interpretations of a network are possible).
Now imagine that there are N types of “commodities” moving along the network, and let ski
be the “external supply” of k-th commodity at node i. This supply can be positive (meaning
that the node “pumps” into the network ski units of commodity k), negative (the node “drains”
from the network |ski| units of commodity k) and zero. You may think of k-th commodity as
about the stream of cars originating within a time unit (say, one hour) at a particular node
(say, at GaTech campus) and moving to a particular destination (say, Northside Hospital); the
corresponding ski are zeros for all nodes i except for the origin and the destination ones. For
the origin node i, ski is the per hour amount c of cars leaving the node for the destination in
question, while for the destination node i, ski = −c, so that |ski| is the per hour amount of cars
of given origin arriving at the destination.3 Now, the propagation of commodity k through the
network can be represented by a vector fk with entries fkγ indexed by the arcs of the network;

3In our static “traffic illustration” we assume implicitly that the traffic is in steady state.

1.1. LO PROGRAM: DEFINITION AND EXAMPLES 13

fkγ is the amount of the commodity moving through the arc γ. Such a vector is called a feasible
flow, if it is nonnegative and meets the conservation law as follows: for every node i in the
network, the total amount of the commodity k arriving at the node plus the supply ski of the
commodity k at the node equals to the total amount of the commodity k leaving the node:∑

p∈P (i)

fkpi + ski =
∑
q∈Q(i)

fkiq,

where P (i) is the set of all nodes p such that (p, i) is an arc in the network, and Q(i) is the set
of all nodes q such that (i, q) is an arc in the network.

The multicommodity flow problem reads: Given
• a network with n nodes 1, ..., n and a set Γ of arcs,
• a number K of commodities along with supplies ski of nodes i = 1, ..., n to the flow of
commodity k, k = 1, ...,K,
• the per unit cost ckγ of transporting commodity k through arc γ,
• the capacities hγ of the arcs,
find the flows f1, ..., fK of the commodities which are nonnegative, respect the conservation law
and the capacity restrictions (that is, the total, over the commodities, flow through an arc does
not exceed the capacity of the arc) and minimize, under these restrictions, the total, over the
arcs and the commodities, transportation cost.

In our “traffic illustration,” you may think about a shipping cost ckγ as about the time
required for a car to travel through arc γ (with this interpretation, ckγ should be independent of
k), in which case the optimization problems becomes the problem of finding social optimum —
the routing of cars in which the total, over all cars, traveling time of a car is as small as possible.

To write down an LO model of the problem, let us define the incidence matrix P = [Piγ]
of a network as the matrix with rows indexed by the nodes i = 1, ..., n of the network and the
columns are indexed by the arcs γ ∈ Γ of the network, with the entry Piγ
— equal to 1 when the arc γ starts at node i,
— equal to −1 when the arc γ ends at node i,
— equal to 0 in all remaining cases.

With this notation, the conservation law for a flow f , the supplies being s1, ..., sn, reads
(check it!) ∑

γ

Piγfγ = s := [s1; ...; sn].

Now we can write down an LO program modeling the multicommodity flow problem:

minf1,...,fK
∑K

k=1

∑
γ∈Γ ciγf

k
γ [total transportation cost]

subject to

Pfk = sk := [sk1; ...; skn], k = 1, ...,K

[
flow conservation law for the
flow of every commodity

]
fkγ ≥ 0, 1 ≤ k ≤ K, γ ∈ Γ [flows must be nonnegative]∑K

k=1 f
k
γ ≤ hγ , γ ∈ Γ [we should respect bounds on capacities of the arcs]

(1.1.12)
Note that the transportation problem is a very specific case of the multicommodity flow problem.
Indeed, in the situation of the transportation problem, let us start with I + J-nodal graph with
I red nodes representing warehouses and J green nodes representing the customers, and IJ arcs
leading from every warehouse to every customer; the arc from i-th warehouse to j-th customer

14 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

has infinite capacity and transportation cost cij . Further, let us add to this graph one extra node,
called source, and I arcs linking the source and the warehouses. The arc “source-warehouse #i”
is assigned with zero transportation cost and capacity si (the amount of product in warehouse
i). Finally, let there be a single commodity, with external supply equal to D =

∑J
j=1 dj at the

source node and equal to −dj at the green node # j (the node representing j-th customer).
Clearly, the resulting single-commodity version of the multicommodity flow problem (1.1.12) is
nothing but the transportation problem (1.1.11).

LO programs on networks form a special, extremely nice part of LO. Here is one of the most
beautiful problems of this type — the Maximal Flow problem as follows: We are given a network
with arcs γ assigned with nonnegative capacities hγ . One of the nodes is designated as source,
another one – as sink. We are looking at the maximal flow from source to sink, that is, for the
largest s such that the external supply “s at the source, −s at the sink, zero at all other nodes”
corresponds to certain feasible flow respecting the arc capacity bounds.

The LO model of this problem reads:

maxf,s s [total flow from source to sink to be maximized]
subject to ∑

γ Piγfγ =

s, i is the source node
−s, i is the sink node
0, for all other nodes

[flow conservation law]

fγ ≥ 0, γ ∈ Γ [flows in the arcs should be nonnegative]
fγ ≤ hγ , γ ∈ Γ [we should respect arc capacities]

(1.1.13)

The beauty of Network Flow problems stems from the fact that one can utilize additional and
very specific structure coming from the associated network; as a result, numerous Network
Flow LO’s admit specialized highly efficient solution algorithms which within their scope by far
outperform “general purpose” LO methods.

Engineering examples

Traditionally, LO models and algorithms were considered as part of Operations Research and as
such were primarily associated with decision-making applications. Power of LO in engineering
applications was realized essentially later, and “penetrating” of LO in these areas seems to be
still in progress. Applications of this type include synthesis of linear controllers for discrete time
linear dynamical systems, and various applications in Data Mining and Signal Processing. We
present just two illustrations, one of them teaching us important “modeling tricks”, and the
other one selected due to its crucial role in sparsity-oriented Signal Processing.

Fitting parameters in linear regression models. Imagine that we have observed m pairs
“input xi ∈ Rn to a “black box” — output yi ∈ R of the black box.” Sometimes we have
reasons to believe that this output is a corrupted by noise version of the “existing in the nature,
but unobservable, ideal output” yi∗ = [θ∗]Txi which is just linear function of the inputs (this is
called “linear regression model”). Our goal is to convert actual observations xi, yi, 1 ≤ i ≤ m,
into estimates of the unknown vector of parameters θ∗. This problem would be easy, if there
were no observation errors (yi were exactly equal to [θ∗]Txi) and we were possessing a reach
enough set of observations, so that among the vectors x1, ..., xm (“regressors” in the terminology
of linear regression) there were n = dim θ∗ linearly independent. In this case the “true” vector of
unknown parameters would be a solution to the system of linear equations yi = θTxi, 1 ≤ i ≤ m,

1.1. LO PROGRAM: DEFINITION AND EXAMPLES 15

in variables θ, the solution to this system being unique (since among the vectors x1, ..., xm there
are n linearly independent); it remains to note that to find the unique solution to a solvable
system of linear equations is a simple Linear Algebra problem.

The situation changes dramatically when there are observation noises and/or the number n
of “degrees of freedom” of the regression model – the dimension of the vector of parameters, or,
which is the same, of the regressor vectors xi – is larger than the number m of observations.
Because of observation noises, the system

θTxi = yi, i = 1, ...,m (∗)

in variables θ can become infeasible (this will be typically the case when m > n) and even when
feasible, it is unclear what is the relation of its solution(s) to the true value of the parameter
vector (which now is not a solution to the system). Likewise, with a non-unique solution (this
will be typically the case when m < n), it is unclear which one of the solutions to the system to
take — and this is so even if there are no observation errors, that is, when we know in advance
that the true vector of parameters is among the solutions to the system.

There exists a wide (and constantly extending) spectrum of various techniques for parameter
estimation in a linear regression, differing from each other primarily in what is our a priori in-
formation on the nature of the observation errors, the structure of the true vector of parameters,
etc.; some of these techniques heavily utilize LO. For example, we can choose a simple “discrep-
ancy measure” – a kind of distance between the vector of outputs Xθ = [[x1]T θ; ...; [xm]T θ] of
our hypothetical model (here X is the m×n matrix with the rows [x1]T , ..., [xm]T) and the vector
of observed outputs y = [y1; ...; ym], and look for the vector of parameters which minimizes this
discrepancy. This amounts to the necessity to solve the optimization problem

min
θ
φ(Xθ, y), (∗)

where φ(u, v) is the discrepancy between vectors u and v. Note that this approach does not
make much sense when the number of observations m is less than the number n of unknown
parameters (think why); it is used, if at all, when m� n.

There are two simple cases when the outlined problem reduces to LO. The first is the case
when we are interested in the uniform fit:

φ(u, v) = ‖u− v‖∞ := max
1≤i≤dim u

|ui − vi|.

The second case corresponds to the `1 fit

φ(u, v) = ‖u− v‖1 :=
dim u∑
i=1

|ui − vi|.

• With the uniform fit, (∗) reads

min
θ

max
1≤i≤m

|[xi]T θ − yi|;

while literally this is not an LO program, we can easily convert it to the LO form by introducing
slack variable τ which should be an upper bound on all the quantities |[xi]T θ−yi| and minimizing
this bound. The resulting problem reads

min
τ,θ

{
τ : [xi]T θ − yi ≤ τ, yi − [xi]T θ ≤ τ, 1 ≤ i ≤ m

}
,

16 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

which is an LO program.

• with the `1-fit, (∗) reads

min
θ

m∑
i=1

|[xi]T − yi|, (1.1.14)

which again is not an LO program. There are two ways to convert it into LO – a good and a
bad one. The good way is to note that |a| = max[a,−a], that is, |[xi]T θ− yi| is the maximum of
two linear forms of θ, and to use the trick we remember from processing the inventory problem;
the resulting LO equivalent to the problem of interest reads

min
θ,w

{
m∑
i=1

wi : [xi]T θ − yi ≤ wi, yi − [xi]T θ ≤ wi, 1 ≤ i ≤ m

}
.

A bad way is to note that
m∑
i=1
|ai| = max

ε1=±1,ε2=±1,...,εm=±1

∑m
i=1 εiai, which allows to write the

problem of interest down as an LO solely in the original variables θ, augmented by a single slack
variable τ , specifically, as

min
τ,θ

{
τ : τ ≥

m∑
i=1

εi[[x
i]T θ − yi] ∀ε1 = ±1, ε2 = ±1, ..., εm = ±1

}
. (1.1.15)

While being legitimate, this conversion indeed is bad, since we end up with an LO with 2m

linear constraints; handling the resulting LO program will be completely impractical already for
m = 10, and will be impossible for m = 30.

Sparsity-oriented Signal Processing and `1 minimization, I: Compressed Sensing.
Let us start with Compressed Sensing which addresses, essentially, the same linear regression
problem as above, but in the case opposite to the one we have just considered, specifically, when
the number of observations m is much less than the number n of unknown parameters. Thus, we
are in the situation when the m-dimensional vector of observations is obtained from an unknown
n-dimensional vector of parameters θ∗ according to

y = Xθ∗, (!)

(for the time being, there is no observation error), and X is a given m× n sensing matrix. Our
goal is to recover θ∗ given y, and the Compressed Sensing situation is the one where m� n. At
a first glance, our goal is unreachable: when m� n, (!), treated as a system of linear equations
in variables θ, is heavily underdetermined: if solvable, it has infinitely many solutions, including
those which are very far from each other, since the solution set of (!), if nonempty, is unbounded
(why?). It follows that we have no chances to recover the true solution, unless we augment
the observations with certain additional information. In Compressed Sensing, this additional
information is the one of sparsity of θ∗, specifically, the a priory knowledge of an upper bound
s� m on the number of nonzero entries in θ∗.

Note that in many applications we indeed can be sure that the true vector of param-
eters θ∗ is sparse. Consider, e.g., the following story about signal detection (from the
applied viewpoint, this story is not of “linear regression” flavor, but the mathemat-
ical model looks exactly the same). There are n locations where signal transmitters

1.1. LO PROGRAM: DEFINITION AND EXAMPLES 17

could be placed, and m locations with the receivers. The contribution of a signal
of unit magnitude originating in location j to the signal measured by receiver i is a
known quantity Xij , and signals originating in different locations merely sum up in
the receivers; thus, if θ∗ is the n-dimensional vector with entries θ∗j representing the
magnitudes of signals transmitted in locations j = 1, 2, ..., n, then the m-dimensional
vector y of measurements of the m receivers is y = Xθ∗. Given this vector, we intend
to recover θ∗.

Now, if the receivers are hydrophones registering noises emitted by submarines in
certain part of Atlantic, tentative positions of submarines being discretized with
resolution 500 m, the dimension of the vector θ∗ (the number of points in the dis-
cretization grid) will be in the range of tens of thousands, if not tens of millions. At
the same time, the total number of submarines (i.e., nonzero entries in θ∗) can be
safely upper-bounded by 50, if not by 20.

In view of the just outlined interpretation of the situation we are in, in the sequel
we use the words “true signal” as an equivalent to the words “the true vector of
parameters.”

Given in advance that θ∗ has at most s � m nonzero entries, the possibility of exact recovery
of θ∗ from observations y becomes quite natural. Indeed, let us try to recover θ by the following
“brute force” search: we inspect, one by one, all subsets I of the index set {1, ..., n} — first the

empty set, then n singletons {1},...,{n}, then n(n−1)
2 2-element subsets, etc., and each time try

to solve the system of linear equations

y = Xθ, θj = 0 when j 6∈ I;

when arriving for the first time at a solvable system, we terminate and claim that its solution
is the true vector θ∗. It is clear that we will terminate before all sets I of cardinality ≤ s are
inspected. It is also easy to show (do it!) that if every 2s distinct columns in X are linearly
independent (when m ≥ 2s, this indeed is the case for a matrix X in a “general position”4),
then the procedure is correct — it indeed recovers the true vector θ∗.

A bad news is that the outlined procedure becomes completely impractical already for
“small” values of s and n because of the astronomically large number of linear systems we need
to process5. A partial remedy is as follows. The outlined approach is, essentially, a particular
way to solve the optimization problem

min{nnz(θ) : Aθ = y}, (∗)
4Here and in the sequel, the words “in general position” mean the following. We consider a family of objects,

with a particular object — an instance of the family – identified by a vector of real parameters (you may think
about the family of n × n square matrices; the vector of parameters in this case is the matrix itself). We say
that an instance of the family possesses certain property in general position, if the set of values of the parameter
vector for which the associated instance does not possess the property is of measure 0. Equivalently: randomly
perturbing the parameter vector of an instance, the perturbation being uniformly distributed in a (whatever
small) box, we with probability 1 get an instance possessing the property in question. E.g., a square matrix “in
general position” is nonsingular.

5When s = 5 and n = 100, this number is ≈ 7.53e7 — much, but perhaps doable. When n = 200 and s = 20,
the number of systems to be processed jumps to ≈ 1.61e27, which is by many orders of magnitude beyond our
“computational grasp”; we would be unable to carry out that many computations even if the fate of the mankind
were dependent on them. And from the perspective of Compressed Sensing, n = 200 still is a completely toy size,
by 3-4 orders of magnitude less than we would like to handle.

18 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

where nnz(θ) is the number of nonzero entries of a vector θ. At the present level of our knowl-
edge, this problem looks completely intractable (in fact, we do not know algorithms solving
the problem essentially faster than the brute force search), and there are strong reasons, to be
addressed later in our course, to believe that it indeed is intractable. Well, if we do not know
how to minimize under linear constraints the “bad” objective nnz(θ), let us “approximate”
this objective with one which we do know how to minimize. The true objective is separable:
nnz(x) =

∑n
i=1 ξ(xj), where ξ(s) is the function on the axis equal to 0 at the origin and equal

to 1 otherwise. As a matter of fact, the separable functions which we do know how to minimize
under linear constraints are sums of convex functions of x1, ..., xn

6. The most natural candidate
to the role of convex approximation of ξ(s) is |s|; with this approximation, (∗) converts into the
`1-minimization problem

min
θ

{
‖θ‖1 :=

n∑
i=1

|θj | : Xθ = y

}
, (1.1.16)

which, as we know, is equivalent to the LO program

min
θ,w

{
n∑
i=1

wj : Xθ = y, θj ≤ wj ,−θj ≤ wj , 1 ≤ j ≤ n

}
.

For the time being, we were focusing on the (unrealistic!) case of noiseless observations. A
realistic model is that the observation contains noise ξ:

y = Xθ + ξ

and we know an upper bound ε on the “magnitude” ‖ξ‖ of the noise. In this case, `1 minimization
becomes

min
θ
{‖θ‖1 : ‖Xθ − y‖ ≤ ε} .

When ‖ · ‖ is either ‖ · ‖∞, or ‖ · ‖1, the latter problem again reduces to LO, specifically, to the
LO program

min
θ,w

n∑
j=1

wj :

{
−ε ≤ [Xθ − y]i ≤ ε, 1 ≤ i ≤ m
−wj ≤ xj ≤ wj , 1 ≤ j ≤ n

when ‖ · ‖ = ‖ · ‖∞, and to the LO program

min
θ,w,z

n∑
j=1

wj :

−zi ≤ [Xθ − y]i ≤ zi, 1 ≤ i ≤ m∑m

i=1 zi ≤ ε
−wj ≤ xj ≤ wj , 1 ≤ j ≤ n

when ‖ · ‖ = ‖ · ‖1.

∗How good is `1 minimization in the Compressed Sensing context? Let us say that a
sensing matrix X is s-good, if in the noiseless case `1 minimization recovers correctly all s-sparse
“signals” θ. The Compressed Sensing theory demonstrates that

6A real-valued function f(s) on the real axis is called convex, if its graph, between every pair of its points, is
below the chord linking these points, or, equivalently, if f(x+λ(y−x)) ≤ f(x)+λ(f(y)−f(x)) for every x, y ∈ R
and every λ ∈ [0, 1]. For example, maxima of (finitely many) affine functions ais+ bi on the axis are convex. For
more detailed treatment of convexity, see pp 29, 59.

1.1. LO PROGRAM: DEFINITION AND EXAMPLES 19

1. For given m,n with m � n (say, m/n ≤ 1/2), there exist m × n sensing matrices which
are s-good for the values of s “nearly as large as m”, specifically, for s ≤ O(1) m

ln(n/m)
7

Moreover, there are natural families of matrices where this level of goodness “is a rule.”
E.g., when drawing an m×n matrix at random from the Gaussian or the ±1 distributions
(i.e., filling the matrix with independent realizations of a random variable which is either
a standard (zero mean, unit variance) Gaussian one, or takes values ±1 with probabilities
0.5), the result will be s-good, for the outlined value of s, with probability approaching 1
as m and n grow.

2. If a sensing matrix X is s-good and we are applying `1 minimization to noisy observations,
the recovering error is bounded by C(X)ε, provided that the true signal θ∗ is s-sparse.
Thus, small noise results in small recovering error.

3. The above results can be considered as a good news. A bad news is, that we do not
know how to check efficiently, given an s and a sensing matrix X, that the matrix is s-
good. Moreover, we do not know an efficient recipe to build, given m, an m× 2m matrix
Xm which is provably s-good for s larger than O(1)

√
m, which is a much smaller “level

of goodness” then the one promised by theory for randomly generated matrices.8 The
“common life” analogy of this pitiful situation would be as follows: you know that with
probability at least 0.9, a brick in your wall is made of gold, and at the same time, you do
not know how to tell a golden brick from a usual one.9

4. There are necessary and sufficient (but, unfortunately, difficult to verify!) conditions for
a sensing matrix to be s-good, sane as efficiently verifiable sufficient conditions for s-
goodness; all these conditions are closely related to LO. Specifically,

(a) A necessary and sufficient condition for X to be s-good is the existence of γ < 1/2
such that,

‖θ‖s,1 ≤ γ‖θ‖1 ∀θ ∈ KerX := {θ : Xθ = 0} (!)

7From now on, O(1)’s denote positive absolute constants – appropriately chosen numbers like 0.5, or 1, or
perhaps 100,000. We could, in principle, replace all O(1)’s by specific numbers; following the standard mathe-
matical practice, we do not do it, partly from laziness, partly because the particular values of these numbers in
our context are irrelevant.

8Note that the naive algorithm “generate m× 2m matrices at random until an s-good, with s promised by the
theory, matrix is generated” is not an efficient recipe, since we do not know how to check s-goodness efficiently.

9This phenomenon is met in many other situations. E.g., in 1938 Claude Shannon (1916-2001), “the father
of Information Theory,” made (in his M.Sc. Thesis!) a fundamental discovery as follows. Consider a Boolean
function of n Boolean variables (i.e., both the function and the variables take values 0 and 1 only); as it is easily
seen there are 22n

function of this type, and every one of them can be computed by a dedicated circuit comprised of
“switches” implementing just 3 basic operations AND, OR and NOT (like computing a polynomial can be carried
out on a circuit with nodes implementing just two basic operation: addition of reals and their multiplication). The
discovery of Shannon was that every Boolean function of n variables can be computed on a circuit with no more
than Cn−12n switches, where C is an appropriate absolute constant. Moreover, Shannon proved that “nearly all”
Boolean functions of n variables require circuits with at least cn−12n switches, c being another absolute constant;
“nearly all” in this context means that the fraction of “easy to compute” functions (i.e., those computable by
circuits with less than cn−12n switches) among all Boolean functions of n variables goes to 0 as n goes to∞. Now,
computing Boolean functions by circuits comprised of switches was an important technical task already in 1938;
its role in our today life can hardly be overestimated — the outlined computation is nothing but what is going
on in a computer. Given this observation, it is not surprising that the Shannon discovery of 1938 was the subject
of countless refinements, extensions, modifications, etc., etc. What is still missing, is a single individual example
of a “difficult to compute” Boolean function: as a matter of fact, all multivariate Boolean functions f(x1, ..., xn)
people managed to describe explicitly are computable by circuits with just linear in n number of switches!

20 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

where ‖θ‖s,1 is the sum of the s largest magnitudes of the entries in θ (this is called the
“nullspace property”). The relation to LO stems from the derivation of the condition;
this derivation follows more or less straightforwardly from the “first principles” of LO,
specifically, from the standard necessary and sufficient conditions (to be studied later
in our course) for a solution to an LO program to be optimal. The difficulty with this
condition is that we do not know how to verify efficiently, unless s is really small, like
1 or 2. To see where the difficulty originates from, you can rewrite (!) equivalently
(check equivalence!) in the form∑

i∈I
|θi| ≤ γ‖θ‖1 ∀θ ∈ KerX∀(I ⊂ {1, ..., n} : Card(I) ≤ s) (1.1.17)

which makes transparent the combinatorial nature of the condition.

(b) A verifiable sufficient condition for X to be s-good reads: The relation (1.1.17) for
sure is satisfied with

γ = αs(X) := inf
Y ∈Rm×n

max
1≤j≤n

‖Colj [I − Y TX]‖s,1,

where I is the unit matrix and Colj [A] stands for j-th column of a matrix A. In
particular, the condition

αs(X) < 1/2

is sufficient for X to be s-good.

Here the relation to LO stems from the fact that, as we shall see in the next section,
computing αs(X) reduces to solving an explicit LO program.

Note that αs(X) ≤ sα1(X) (why?), meaning that the outlined verifiable sufficient
condition can be weakened to the condition

α1(X) := inf
Y ∈Rm×n

‖I − Y TX‖∞ <
1

2s
,

where ‖A‖∞ stands for the maximum of magnitudes of the entries in a matrix A.
With the experience we have at this point, we immediately see that computing α1(X)
reduces to solving an LO program.

∗Sparsity-oriented Signal Processing and `1 minimization, II: Supervised Binary
Machine Learning via LP Support Vector Machines. Imagine that we have a source of
feature vectors — collections x of n measurements representing, e.g., the results of n medical
tests taken from patients, and a patient can be affected, or not affected, by a particular illness.
“In reality,” these feature vectors x go along with labels y taking values ±1; in our example, the
label −1 says that the patient whose test results are recorded in the feature vector x does not
have the illness in question, while the label +1 means that the patient is ill.

We assume that there is certain dependence between the feature vectors and the labels, and
our goal is to predict, given a feature vector alone, the value of the label. What we have in our
disposal is a training sample (xi, yi), 1 ≤ i ≤ N of examples (xi, yi) where we know both the
feature vector and the label; given this sample, we want to build a classifier – a function f(x)
on the space of feature vectors x taking values ±1 – which we intend to use to predict, given
the value of a new feature vector, the value of the corresponding label. In our example this
setup reads: we are given medical records containing both the results of medical tests and the

1.1. LO PROGRAM: DEFINITION AND EXAMPLES 21

diagnoses of N patients; given this data, we want to learn how to predict the diagnosis given
the results of the tests taken from a new patient.

The simplest predictors we can think about are just the “linear” ones looking as follows. We
fix an affine form zTx + b of a feature vector, choose a positive threshold γ and say that if the
value of the form at a feature vector x is “well positive” – is ≥ γ – then the proposed label for x
is +1; similarly, if the value of the form at x is “well negative” – is ≤ −γ –, then the proposed
label will be −1. In the “gray area” γ < zTx + b < γ we decline to classify. Noting that the
actual value of the threshold is of no importance (to compensate a change in the threshold by
certain factor, it suffices to multiply by this factor both z and b, without affecting the resulting
classification), we from now on normalize the situation by setting the threshold to the value 1.

Now, we have explained how a linear classifier works, but where from to take it? An intu-
itively appealing idea is to use the training sample in order to “train” our potential classifier –
to choose z and b in a way which ensures correct classification of the examples in the sample.
This amounts to solving the system of linear inequalities

zTxi + b ≥ 1∀(i ≤ N : yi = +1) & zTxi + b ≤ −1∀(i : yi = −1),

which can be written equivalently as

yi(zTi x
i + b) ≥ 1 ∀i = 1, ..., N.

Geometrically speaking, we want to find a “stripe”

−1 < zTx+ b < 1 (∗)

between two parallel hyperplanes {x : zTx + b = −1} and {x : zTx + b = 1} such that all
“positive examples” (those with the label +1) from the training sample are on one side of this
stripe, while all negative (the label −1) examples from the sample are on the other side of the
stripe. With this approach, it is natural to look for the “thickest” stripe separating the positive
and the negative examples. Since the geometric width of the stripe is 2√

zT z
(why?), this amounts

to solving the optimization program

min
z,b

{
‖z‖2 :=

√
zT z : yi(zTxi + b) ≥ 1, 1 ≤ i ≤ N

}
; (1.1.18)

The latter problem, of course, not necessarily is feasible: it well can happen that it is impossible
to separate the positive and the negative examples in the training sample by a stripe between
two parallel hyperplanes. To handle this possibility, we can allow for classification errors and
to minimize a weighted sum of ‖w‖2 and total penalty for these errors. Since the absence of
classification penalty at an example (xi, yi) in outer context is equivalent to the validity of the
inequality yi(wTxi + b) ≥ 1, the most natural penalty for misclassification of the example is
max[1 − yi(zTxi + b), 0]. With this in mind, the problem of building “the best on the training
sample” classifier becomes the optimization problem

min
z,b

{
‖z‖2 + λ

N∑
i=1

max[1− yi(zTxi + b), 0]

}
, (1.1.19)

where λ > 0 is responsible for the “compromise” between the width of the stripe (∗) and the
“separation quality” of this stripe; how to choose the value of this parameter, this is an additional

22 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

story we do not touch here. Note that the outlined approach to building classifiers is the most
basic and the most simplistic version of what in Machine Learning is called “Support Vector
Machines.”

Now, (1.1.19) is not an LO program: we know how to get rid of nonlinearities max[1 −
yi(wTxi + b), 0] by adding slack variables and linear constraints, but we cannot get rid from the
nonlinearity brought by the term ‖z‖2. Well, there are situations in Machine Learning where
it makes sense to get rid of this term by “brute force,” specifically, by replacing the ‖ · ‖2 with
‖ · ‖1. The rationale behind this “brute force” action is as follows. The dimension n of the
feature vectors can be large, In our medical example, it could be in the range of tens, which
perhaps is “not large;” but think about digitalized images of handwritten letters, where we want
to distinguish between handwritten letters ”A” and ”B;” here the dimension of x can well be
in the range of thousands, if not millions. Now, it would be highly desirable to design a good
classifier with sparse vector of weights z, and there are several reasons for this desire. First,
intuition says that a good on the training sample classifier which takes into account just 3 of the
features should be more “robust” than a classifier which ensures equally good classification of
the training examples, but uses for this purpose 10,000 features; we have all reasons to believe
that the first classifier indeed “goes to the point,” while the second one adjusts itself to random,
irrelevant for the “true classification,” properties of the training sample. Second, to have a
good classifier which uses small number of features is definitely better than to have an equally
good classifier which uses a large number of them (in our medical example: the “predictive
power” being equal, we definitely would prefer predicting diagnosis via the results of 3 tests to
predicting via the results of 20 tests). Finally, if it is possible to classify well via a small number
of features, we hopefully have good chances to understand the mechanism of the dependencies
between these measured features and the feature which presence/absence we intend to predict
— it usually is much easier to understand interaction between 2-3 features than between 2,000-
3,000 of them. Now, the SVMs (1.1.18), (1.1.19) are not well suited for carrying out the outlined
feature selection task, since minimizing ‖z‖2 norm under constraints on z (this is what explicitly
goes on in (1.1.18) and implicitly goes on in (1.1.19)10) typically results in “spread” optimal
solution, with many small nonzero components. In view of our “Compressed Sensing” discussion,
we could expect that minimizing the `1-norm of z will result in “better concentrated” optimal
solution, which leads us to what is called “LO Support Vector Machine.” Here the classifier is
given by the solution of the ‖ · ‖1-analogy of (1.1.19), specifically, the optimization problem

min
z,b

{
‖z‖1 + λ

N∑
i=1

max[1− yi(zTxi + b), 0]

}
. (1.1.20)

This problem clearly reduces to the LO program

min
z,b,w,ξ

n∑
j=1

wj + λ
N∑
i=1

ξi : −wj ≤ zj ≤ wj , 1 ≤ j ≤ n, ξi ≥ 0, ξi ≥ 1− yi(zTxi + b), 1 ≤ i ≤ N

 .

(1.1.21)

10To understand the latter claim, take an optimal solution (z∗, b∗) to (1.1.19), set Λ =
∑N
i=1 max[1− yi(zT∗ xi +

b∗), 0] and note that (z∗, b∗) solves the optimization problem

min
z,b

{
‖z‖2 :

N∑
i=1

max[1− yi(zTxi + b), 0] ≤ Λ

}
(why?).

1.2. WHAT CAN BE REDUCED TO LO 23

Concluding remarks. A reader could ask, what is the purpose of training the classifier on the
training set of examples, where we from the very beginning know the labels of all the examples?
why a classifier which classifies well on the training set should be good at new examples? Well,
intuition says that if a simple rule with a relatively small number of “tuning parameters” (as it is
the case with a sparse linear classifier) recovers well the labels in examples from a large enough
sample, this classifier should have learned something essential about the dependency between
feature vectors and labels, and thus should be able to classify well new examples. Machine
Learning theory offers a solid probabilistic framework in which “our intuition is right”, so that
under assumptions (not too restrictive) imposed by this framework it is possible to establish
quantitative links between the size of the training sample, the behavior of the classifier on this
sample (quantified by the ‖ · ‖2 or ‖ · ‖1 norm of the resulting z and the value of the penalty
for misclassification), and the predictive power of the classifier, quantified by the probability of
misclassification of a new example; roughly speaking, good behavior of a linear classifier achieved
at a large training sample ensures low probability of misclassifying a new example.

1.2 What Can Be Reduced to LO

Looking at the collection of LO models we have presented, we see that mathematical models
which finally can be formulated as LO programs not always “are born” in this form; we became
acquainted with several tricks which, with luck, allow to convert an non-LO optimization problem
into an equivalent LO program. This section is devoted to “in-depth” investigating of these
tricks.

1.2.1 Preliminaries

We start with several useful, although “philosophical,” remarks. What we are interested in our
course is mathematics of Linear Optimization, so that the main entities to be considered are
specific functions and sets. Say, an LO program is the program of maximizing a linear function
cTx over a polyhedral subset X of Rn, that is, over the solution set {x ∈ Rn : Ax ≤ b} of a finite
system of nonstrict linear inequalities in n variables x. Now, sets and functions are abstract
“mathematical beasts;” the concept of a set is the basic mathematical concept which we do not
define in terms of simpler concepts11; the concept of a function is a derivative of the concept
of a set12, and both these concepts have nothing to do with particular representations of these
entities; representations are by far not the same as the entities being described. For example,
the segment [−1, 1] of the real line is a set, and this set admits various representations, e.g.,
• the representation as a solution set of the system of two linear inequalities x ≥ −1, x ≤ 1

in real variable x,
• the representation as the set of all values taken by the function sin(x) on the real axis,

and countless variety of other representations. Similarly, a linear function f(x) = x on the real

11Whether one believes that the concept of a set is an abstract “derivative” of our experience in thinking
of/handling various collections of “physical” entities, or, following Plato, thinks that this concept is a shadow of
certain “idea” existing in some ideal sense, no one offers a formal definition of this fundamental concept, just
illustrates it. Perhaps the best illustration is the famous citation from George Cantor, the founder of Set Theory:
“By a ”set” we mean any collection M into a whole of definite, distinct objects m (which are called the ”elements”
of M) of our perception [Anschauung] or of our thought.”

12a function f defined on a set X and taking values in a set Y can be identified with its graph, which is the
subset of X × Y comprised by pairs (x, f(x)); a subset F of X × Y indeed represents a function, is every x ∈ X
is the first component of exactly one pair from F .

24 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

axis can be represented as f(x) = x, or f(x) = x + sin2(x) + cos2(x) − 1, and in countless
variety of other forms. Thus, we should distinguish between sets/functions as abstract “objects
of our perceptions and our thoughts” and their concrete representations, keeping in mind that a
particular “object of our thoughts” admits many different representations. We should distinguish
well between properties of an object and properties of its particular representation. For example,
the nonemptiness is a property of the set [−1, 1], while the number of linear inequalities (namely,
2) in its representation as the solution set of the system x ≥ −1, x ≤ 1 in real variable x
clearly is a property of the representation in question, not of the set, since the same set can be
represented as the solution set of a system of, say, 10 linear inequalities (add to the previous
system inequalities x ≤ 3, x ≤ 4,...,x ≤ 10). In a sense, nearly all we intend to do in our course
(or, wider, what a significant part of Mathematics is about), is to understand how to derive
conclusions on properties of the “abstract beasts” — sets and functions — from representations
of these beasts in certain concrete format. This is a highly challenging and highly nontrivial
task, even when speaking about such a simple, at a first glance, property as emptiness.13

Now, the abstract form of an optimization problem with n real decision variables is mini-
mizing a given real-valued function f(x) over a given feasible set X ⊂ Rn; LO deals with this
abstract problem in the particular case when f is linear, and X is polyhedral, and even in this
particular case deals not with this problem per se, but with particular representations of the
entities involved: f as cTx, X as {x : Ax ≤ b}, with explicitly - just by listing the values of the
coefficients – given data c, A, b. As it was already mentioned, the “maiden” representation of a
problem, the one in which the problem “is born”, not always is the one required by LO; most
typically, the initial representation is in the Mathematical Programming form

max
x
{f0(x) : x ∈ X = {x : fi(x) ≤ 0, i = 1, ...,m}} (MP)

with explicitly given (analytically or algorithmically) functions f0, f1, ..., fm. Thus, we need
tools allowing (a) to recognize the possibility of translating a representation of the form (MP) in
an LO representation, and (b) to implement the translation when its possibility is recognized.
Or goal in the rest of this section is to develop a toolbox of this type.

A reader might ask what for all this “scholastics” about the difference between
optimization problems and their representations, and why we intend to operate with
representations of mathematical entities rather than to work directly with these
entities. The answer is very simple: an algorithm (and at the end of the day we
want the problem to be processed and thus need algorithms) by its nature cannot
work with abstract mathematical entities, only with their representations; to some
extent, the same is true for human beings, as can be witnessed by everybody with
even a minimal experience in solving mathematical problems, no matter which ones,
building proofs or crunching numbers.

1.2.2 Polyhedral Representations of Sets and Functions: Definitions

When converting an optimization problem (MP) with explicitly given objective and the con-
straints into an equivalent LO program, our goal is twofold: (a) to end up with a linear objective
represented as cT y, and (b) to end up with a feasible set represented as {y : Ay ≤ b} (we write

13To illustrate the point: the Great Fermat Theorem merely states that the set with extremely simple repre-
sentation (quadruples of positive integers x, y, z, p with p > 2 satisfying the equation xp + yp = zp) possesses an
extremely simple property of being empty.

1.2. WHAT CAN BE REDUCED TO LO 25

y instead of x, keeping in mind the possibility to augment the original decision variables with
slack ones). It is easy to achieve the first goal: to this end it suffices to add a slack variable t
and to rewrite (MP) equivalently as

max
x,t
{t : t− f0(x) ≤ 0, f1(x) ≤ 0, ..., fm(x) ≤ 0} ;

the objective in the resulting problem is linear in the new design vector [x; t], and the constraints
are “as explicitly given” as those in the original problem. To save notation, assume that this
transformation is done in advance, so that the problem we intend to convert into an LO program
from the very beginning is of the form

min
x∈X

cTx,X = {x ∈ Rn : fi(x) ≤ 0, 1 ≤ i ≤ m}. (1.2.1)

Thus assumption “costs nothing” and allows us to focus solely on the constraints and on the
feasible set X they define.

Now, our experience with slack variables suggests a good formalization of the informal task
“to end up with a feasible set represented as {y : Ay ≤ b},” specifically, as follows.

Definition 1.2.1 [Polyhedral representation of a set] A polyhedral representation (p.r.) of a
set X ∈ Rn is a representation of the form

X = {x ∈ Rn : ∃w ∈ Rs : Px+Qw ≤ r}, (1.2.2)

i.e., it is a finite system of nonstrict linear inequalities in variables x,w such that x ∈ X iff x
can be extended, by properly chosen w, to a feasible solution of the system.

Geometrically, polyhedral representation of X means the following: we take a set, given by
an explicit system Px+Qw ≤ r of linear inequalities, in the space of x,w-variables and project
this set onto the subspace of x-variables; the system Px+Qw ≤ r polyhedrally represents X iff
the projection is exactly X.

The role of polyhedral representability in our contexts stems from the following evident fact:

Observation 1.2.1 Given a polyhedral representation (1.2.2) of a set X ∈ Rn, we can imme-
diately and straightforwardly convert problem (1.2.1) into an LO program, specifically, into the
program

max
x,w

{
cTx : Px+Qw ≤ r

}
.

Example: Let us look at the linear regression problem with `1-fit (problem (1.1.14)) which
we now rewrite as a problem with linear objective

min
τ,θ

{
τ :

N∑
i=1

|[xi]T θ − yi| ≤ τ

}
.

The feasible set of this problem admits an immediate polyhedral representation:{
[θ; τ] :

N∑
i=1

|θTxi − yi| ≤ τ

}
= {[θ; τ] : ∃w : −wi ≤ [xi]T θ − yi ≤ wi i = 1, ..., N,

N∑
i=1

wi ≤ τ}

(1.2.3)
which allows to rewrite the problem equivalently as the LO program

min
θ,τ,w

{
τ : −wi ≤ [xi]T θ − yi ≤ wi i = 1, ..., N,

N∑
i=1

wi ≤ τ

}
. (1.2.4)

This is exactly what we did with the problem of interest in the previous section.

26 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

Remark. We see that all we need in order to convert an optimization program with linear
objective into an LO program is a polyhedral representation of the feasible set X of the problem.
This need is easy to satisfy if X is a polyhedral set represented as {x : Ax ≤ b}. A polyhedral
representation of a set is something more flexible — now we do not want to represent X as the
solution set of a system of linear inequalities, only as a projection of such a solution set onto
the space where X lives. At this point, it is unclear whether the second type of representation
indeed is more flexible than the first one, that is, we do not know whether the projection of
a polyhedral set in certain Rn onto a linear subspace is or is not polyhedral. The answer is
positive:

Theorem 1.2.1 Every polyhedrally representable set is polyhedral.

This important theorem can be obtained as a byproduct of the conceptually simple Fourier-
Motzkin elimination scheme.

Fourier-Motzkin elimination scheme. Let X = {x : ∃w : Px + Qw ≤ r},
that is, X is the projection on the space of x-variables of the polyhedral set Q =
{[x;w] : Px + Qw ≤ r} in the space of x,w-variables. We want to prove that X
can be represented as the solution set of a finite system of linear inequalities solely
in variables x. Let w = [w1; ...;wk]. We start with eliminating from the polyhedral
description of X the variable wk. To this end, let us set z = [x;w1; ...;wk−1], so that
the system of linear inequalities Px+Qw ≤ r can be rewritten in the form

aTi z + biwk ≤ ci, 1 ≤ i ≤ m. (S)

Let us “color” an inequality of the system in red, if bi > 0, in green if bi < 0, and
in white, if bi = 0, and let Ir, Ig and Iw be the sets of indices of red, green and
white inequalities, respectively. Every red inequality can be rewritten equivalently
as wk ≤ ci/bi − aTi z/bi =: eTi z + fi, and every green inequality can be rewritten
equivalently as wk ≥ ci/bi − aTi z/bi =: eTi z + fi. It is clear that z can be extended,
by a properly chosen wk, to a feasible solution of (S) iff, first, z satisfies every white
inequality and, second, every “red” quantity eTi z + fi (which should be an upper
bound on wk) is ≥ every “green” quantity (which should be a lower bound on wk).
In other words, z can be extended to a feasible solution of (S) if and only if z satisfies
the system of linear inequalities

aTi z ≤ bi ∀i ∈ Iw; eTi z + fi ≥ eTj z + fj ∀(i ∈ Ir, j ∈ Ig). (S′)

that is, the projection of Q on the space of the variables x,w1, ..., wk−1 is the solution
set Q′ of a finite system of linear inequalities in these variables; note that X is the
projection of Q′ on the space of x-variables, that is, we have built a polyhedral
representation of X using k− 1 slack variables w1, ..., wk−1. Proceeding in the same
fashion, we can eliminate one by one all slack variables, thus ending up with a desired
“free of slack variables” polyhedral representation of X.

Note that the Fourier-Motzkin elimination is an algorithm, and we can easily convert
this algorithm into a finite algorithm for solving LO programs. Indeed, given a LO
program maxx{cTx : Ax ≤ b} with n variables x1, ..., xn and augmenting these
variables by a new variable τ , we can rewrite the program equivalently as

max
y=[τ ;x]

{τ : Ax ≤ b, τ − cTx ≤ 0}. (P)

1.2. WHAT CAN BE REDUCED TO LO 27

The set of feasible values of τ — those which can be extended by properly chosen
x to feasible solutions of (P) — is the projection of the feasible set of (P) on the
τ -axis; applying the above elimination scheme, we can represent this set as the set
of solutions of a finite system S of nonstrict linear inequalities in variable τ alone.
It is immediately seen that the solution set of such a system
(a) either is empty,
(b) or is a ray of the form τ ≤ β,
(c) or is a nonempty segment α ≤ τ ≤ β,
(d) or is a ray of the form τ ≥ α,
(e) or is the entire τ -axis.
Given S, it is easy to recognize which one of these cases actually takes place, and what
are the corresponding α and β. In the case of (a), (P) is infeasible, in the cases (d,e)
(P) is feasible and unbounded, in the cases (b,c) it is feasible and bounded, β is the
optimal value in (P), and τ = β is a feasible solution to S. Starting with this solution
and using the elimination scheme in a backward fashion, we can augment τ = β by
values of the variables x1, ..., xn, one at a time, in such a way that [τ = β;x1; ...;xn]
will be feasible (and then optimal) for (P). Thus, we can identify in finite time the
“feasibility status” (infeasible/feasible and unbounded/feasible and bounded) of (P)
and point out, also in finite time, an optimal solution, provided that the problem is
feasible and bounded.

Note that as a byproduct of our reasoning, we see that our former claim a feasible
and bounded LO program admits an optimal solution indeed is true.

A bad news is that the outlined finite algorithm for solving LO programs is of purely
academic value; as a practical tool, it can handle extremely small problems only,
with few (like 2-3) variables and perhaps few tens of constraints. The reason is that
every step of the elimination scheme can increase dramatically the number of linear
constraints we should handle. Indeed, if the original system (S) has m inequalities,
half of them red and half of them green, after eliminating the first slack variable we
will get a system of m1 = m2/4 inequalities, at the second step we can get as many
as m2

1/4 = m4/64 inequalities, and so on; now take m = 16 and look what happens
after 5 steps of the recurrence m := m2/4.

The fact that a polyhedrally representable set is polyhedral and thus can be represented by a
system of linear inequalities not involving slack variables in no sense diminishes the importance of
slack variables and polyhedral representations involving these variables. Indeed, the possibility
to represent the set of interest as the solution set of a finite system of linear inequalities is not all
we are looking for when building LO models; we definitely do not want to handle astronomically
many inequalities. In this latter respect, adding slack variables (i.e., passing to general-type
polyhedral representations) can result in dramatic reduction in the number of linear inequalities
we need to handle as compared to the case when no slack variables are used. E.g., when speaking
about linear regression with `1 fit, we have seen that the problem indeed can be rewritten
equivalently as an LO in the original variables θ, τ of (1.2.3), specifically, as the LO (1.1.15).
Note, however, that the latter LO has n+ 1 variables and as many as 2N constraints, which is
astronomically large already for moderate N . In contrast to this, the LO program (1.2.4), while
involving “slightly more” variables (n+N + 1), has just 2N + 1 constraints.

28 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

What is ahead. Observation 1.2.1 suggests that a good way to understand what can be
reduced to LO is to understand how to recognize that a given set is polyhedral and if it is the
case, how to point out a polyhedral representation of the set. It does not make sense to pose
this question as a formal mathematical problem — we could recognize polyhedrality only by
working with certain initial description of the set; we have assumed that this is a description
by m “explicitly given” constraints fi(x) ≤ 0, but the words “explicitly given” are too vague
to allow for well-defined constructions and provable results. Instead, we are about to develop a
kind of “calculus” of polyhedral representations, specifically, to indicate basic examples of p.r.’s,
augmented by calculus rules which say that such and such operations with polyhedral sets result
in a polyhedral set, and a p.r. of this set can be build in such and such fashion from the p.r.’s
of the operands. As a result of these developments, we will be able to conclude that a set which
is obtained by such and such sequence of operations from such and such “raw materials” is
polyhedral, with such and such p.r.14

One last remark before passing to calculus of polyhedral representability. In optimization,
feasible sets usually are given by finite systems of constraints fi(x) ≤ 0, that is, as the intersection
of level sets of several functions15. In order to catch this phenomenon, it makes sense to introduce
the notion of a polyhedrally representable function (p.r.f. for short). This notion is a kind of
“derivative” of the notion of a polyhedral set, and the corresponding definitions are as follows.

Definition 1.2.2 Let f(x) be a function on Rn taking real values and the value +∞.

(i) The domain Dom f of f is the set of all x where x is finite;

(ii) The epigraph of f is the set Epi(f) = {[x; τ] ∈ Rn ×R : x ∈ domf, τ ≥ f(x)};
(iii) f is called polyhedrally representable, if its epigraph Epi(f) is a polyhedral set, so that

for appropriate matrices P,Q and vectors p, r it holds

{[x; τ] : x ∈ Dom f, τ ≥ f(x)} = {[x; τ] : ∃w : Px+ τp+Qw ≤ r}. (1.2.5)

We refer to a polyhedral representation of the epigraph of f as a polyhedral representation (p.r.)
of f itself.

Observation 1.2.2 A level set {x : f(x) ≤ a} of a p.r.f. (polyhedrally representable function)
f is a polyhedral set, and a p.r. of this set is readily given by a p.r. of the function, specifically,
(1.2.5) implies that

{x : f(x) ≤ a} = {x : [x; a] ∈ Epi(f)} = {x : ∃w : Px+Qw ≤ r − ap} .

14The outlined course of actions is very typical for Mathematics. We know what a differentiable function is –
there is a formal definition of differentiability expressed in terms of a function as a “mathematical beast”, without
reference to any particular representation of this beast. This definition, however, does not allow to recognize
differentiability even when function is given by an analytic formula of a simple structure (since the formula can
contain nonsmooth components which in fact cancel each other, but this cancellation is very difficult to discover),
not speaking about the case when the function is given in a more complicated fashion. What we routinely use to
establish differentiability and to compute derivatives is the usual calculus, where we start with “raw materials” —
elementary functions like ln, sin, exp, etc., where we check differentiability and compute the derivatives “by bare
hands,” by checking the definition of this property. We then augment the “raw materials” by calculus rules which
explain us when an operation with functions, like multiplication, addition, taking superposition, etc., preserves
differentiability and how to express the derivatives of the result via derivatives of the operands, thus getting a
key to differentiating a huge spectrum of functions, including quite complicated ones.

15A level, or a Lebesque, set of a function f is, by definition, a set of the form {x : f(x) ≤ a}, where a is a real.

1.2. WHAT CAN BE REDUCED TO LO 29

Example: Consider the function f(x) = ‖x‖1 :=
∑n

i=1 |xi| : Rn → R. This function is
polyhedrally representable, e.g., by the p.r.

Epi(f) := {[x; τ] : τ ≥
n∑
i=1

|xi|} = {[x; τ] : ∃w : −wi ≤ xi ≤ wi, 1 ≤ i ≤ n,
n∑
i=1

wi ≤ t}.

Remarks. Two remarks are in order.
A. Partially defined functions. Normally, a scalar function f of n variables is specified by

indicating its domain – the set where the function is well defined, and by the description of f as a
real-valued function in the domain. It is highly convenient to combine both components of such a
description in a single description by allowing the function to take “a fictional” value +∞ outside
of the actual domain. A reader should not look for something “mystical” in this approach: this
is just a convention allowing to save a lot of words. In order to allow for basic operations with
partially defined functions, like their addition or comparison, we augment our convention with
the following agreements on the arithmetics of the “extended real axis” R ∪ {+∞}.

• Addition: for a real a, a+ (+∞) = (+∞) + (+∞) = +∞.

• Multiplication by a nonnegative real λ: λ · (+∞) = +∞ when λ > 0, and 0 · (+∞) = 0.

• Comparison: for a real a, a < +∞ (and thus a ≤ +∞ as well), and of course +∞ ≤ +∞.

As far as operations with +∞ are concerned, our arithmetic is severely incomplete — operations
like (+∞)− (+∞) and (−1) · (+∞) remain undefined. Well, we can live with it.

B. Convexity of polyhedral sets and polyhedrally representable functions. A
set X ∈ Rn is called convex, if whenever two points x, y belong to X, the entire segment
{x+ λ(y − x) = (1− λ)x+ λy : 0 ≤ λ ≤ 1} belongs to X.

To understand the link between the informal – verbal – and the formal – algebraic
– parts of this definition, note that when x, y are two distinct points, then all points
(1− λ)x+ λy form, geometrically, the line passing through x and y, and the part of
this line corresponding to the range 0 ≤ λ ≤ 1 of λ “starts” at x (λ = 0) and “ends”
at y (λ = 1) and thus is exactly what is natural to call “the segment linking x, y.”
When x = y, the above line, same as its part corresponding to the range 0 ≤ λ ≤ 1 of
values of λ, collapses to the singleton {x} which again is the only natural candidate
to the role of “segment linking x and x.”

A function f : Rn → R∪{+∞} is called convex iff its epigraph is convex, or, which is the same
(*check why),

∀(x, y ∈ Rn, λ ∈ [0, 1]) : f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

To complete the terminology, a function f taking values in R ∪ {−∞} is called concave, if −f
is convex (in this description, and everywhere else, −(−∞) = ∞). In view of this definition,
handling concave functions reduces to handling convex ones, and we prefer to stick to this
possibility in the sequel. Note that there is no notion “concave set.”

One can immediately verify (do it!) that a polyhedral set is convex, whence a polyhedrally
representable function also is convex. It follows that

• lack of convexity makes impossible polyhedral representation of a set/function,

30 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

• consequently, operations with functions/sets allowed by “calculus of polyhedral repre-
sentability” we intend to develop should be convexity-preserving operations.

To illustrate the latter point: taking intersection of two sets and taking maximum or sum of two
functions are convexity-preserving operations, and indeed we shall see them in our calculus. In
contrast to this, taking union of two sets and taking minima or difference of two functions not
necessarily preserve convexity, and we shall not see these operations in our calculus.

1.2.3 Polyhedral Representations of Sets and Functions: Calculus

The “raw materials” in our calculus are really simple:

• “elementary” polyhedral sets are those represented as X = {x ∈ Rn : aTx ≤ b} (when
a 6= 0, or, which is the same, the set is nonempty and differs from the entire space, such a
set is called half-space);

• “elementary” polyhedrally representable functions are just affine functions represented in
the standard form

f(x) = aTx+ b

An affine function indeed is a p.r.f., since its epigraph

{[x; τ] : τ ≥ f(x)}

is a solution set of a linear inequality in variables x, τ and thus is polyhedral.

Calculus of polyhedral representability: sets. The basic rules here are as follows:

S.1. Taking finite intersections: If the sets Xi ⊂ Rn, 1 ≤ i ≤ k, are polyhedral, so is their
intersection, and a p.r. of the intersection is readily given by p.r.’s of the operands.
Indeed, if

Xi = {x ∈ Rn : ∃wi : Pix+Qiw
i ≤ ri}, i = 1, ..., k,

then
k⋂
i=1

Xi = {x : ∃w = [w1; ...;wk] : Pix+Qiw
i ≤ ri, 1 ≤ i ≤ k},

which is a polyhedral representation of
⋂
i
Xi.

S.2. Taking direct products. Given k sets Xi ⊂ Rni , their direct product X1 × ... ×Xk is
the set in Rn1+...+nk comprised of all block-vectors x = [x1; ...;xk] with blocks xi belonging
to Xi, i = 1, ..., k. E.g., the direct product of k segments [−1, 1] on the axis is the unit
k-dimensional box {x ∈ Rk : −1 ≤ xi ≤ 1, i = 1, ..., k}. The corresponding calculus rule
is as follows:
If the sets Xi ⊂ Rni , 1 ≤ i ≤ k, are polyhedral, so is their direct product, and a p.r. of
the product is readily given by p.r.’s of the operands.
Indeed, if

Xi = {xi ∈ Rni : ∃wi : Pix
i +Qiw

i ≤ ri}, i = 1, ..., k,

then

X1 × ...×Xk = {x = [x1; ...;xk] : ∃w = [w1; ...;wk] : Pix
i +Qiw

i ≤ ri, 1 ≤ i ≤ k}.

1.2. WHAT CAN BE REDUCED TO LO 31

S.3. Taking affine image. If X ⊂ Rn is a polyhedral set and y = Ax + b : Rn → Rm is an
affine mapping, then the set Y = AX + b := {y = Ax+ b : x ∈ X} ⊂ Rm is a polyhedral,
with p.r. readily given by the mapping and a p.r. of X.
Indeed, if X = {x : ∃w : Px+Qw ≤ r}, then

Y = {y : ∃[x;w] : Px+Qw ≤ r, y = Ax+ b}
= {y : ∃[x;w] : Px+Qw ≤ r, y −Ax ≤ b, Ax− y ≤ −b}.

Since Y admits a p.r., Y is polyhedral (Theorem 1.2.1).

Note: This is the point where we see the importance of slack variables (i.e., the advantage
of general-type polyhedral representations X = {x : ∃w : Px + Qw ≤ r} as compared to
straightforward ones X = {x : Ax ≤ b}). When taking intersections and direct products of
“straightforwardly represented” polyhedral sets, building a straightforward representation
of the result is easy; when taking affine image of the set as simple as the k-dimensional unit
box, a straightforward representation of the result exists, but is, in general, intractable,
since it can require an exponential in k number of linear inequalities.

S.4. Taking inverse affine image. If X ⊂ Rn is polyhedral, and x = Ay + b : Rm → Rn is
an affine mapping, then the set Y = {y ∈ Rm : Ay + b ∈ X} ⊂ Rm is polyhedral, with
p.r. readily given by the mapping and a p.r. of X.
Indeed, if X = {x : ∃w : Px+Qw ≤ r}, then

Y = {y : ∃w : P [Ay + b] +Qw ≤ r} = {y : ∃w : [PA]y +Qw ≤ r − Pb}.

S.5. Taking arithmetic sum: If the sets Xi ⊂ Rn, 1 ≤ i ≤ k, are polyhedral, so is their
arithmetic sum X1 + ...+Xk := {x = x1 + ...+ xk : xi ∈ Xi, 1 ≤ i ≤ k}, and a p.r. of the
sum is readily given by p.r.’s of the operands.
Indeed, the arithmetic sum of the sets X1, ..., Xk is the image of their direct product under
linear mapping [x1; ...;xk] 7→ x1 + ... + xk, and both operations preserve polyhedrality.
Here is an explicit p.r. for the sum: if Xi = {x : ∃wi : Pix+Qiw

i ≤ ri}, 1 ≤ i ≤ k, then

X1 + ...+Xk = {x : ∃x1, ..., xk, w1, ..., wk : Pix
i +Qiw

i ≤ ri, 1 ≤ i ≤ k, x =
k∑
i=1

xi},

and it remains to replace the vector equality in the right hand side by a system of two
opposite vector inequalities.

Calculus of p.r. functions. Here the basic calculus rules read:

F.1. Taking linear combinations with positive coefficients. If fi : Rn → R ∪ {+∞} are
p.r.f.’s and λi > 0, 1 ≤ i ≤ k, then f(x) =

∑k
i=1 λifi(x) is a p.r.f., with a p.r. readily

given by those of the operands.
Indeed, if {[x; τ] : τ ≥ fi(x)} = {[x; τ] : ∃wi : Pix+ τpi +Qiw

i ≤ ri}, 1 ≤ i ≤ k, are p.r.’s
of f1, ..., fk, then

{[x; τ] : τ ≥
∑k

i=1 λifi(x)} = {[x; τ] : ∃t1, ..., tk : ti ≥ fi(x), 1 ≤ i ≤ k,
∑

i λiti ≤ τ}
= {[x; τ] : ∃t1, ..., tk, w1, ..., wk : Pix+ tipi +Qiw

i ≤ ri, 1 ≤ i ≤ k,
∑

i λiti ≤ τ}.

32 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

F.2. Direct summation. If fi : Rni → R ∪ {+∞}, 1 ≤ i ≤ k, are p.r.f.’s, then so is their
direct sum

f([x1; ...;xk]) =
k∑
i=1

fi(x
i) : Rn1+...+nk → R ∪ {+∞}

and a p.r. for this function is readily given by p.r.’s of the operands.
Indeed, if {[xi; τ] : τ ≥ fi(x

i)} = {[xi; τ] : ∃wi : Pix
i + τpi + Qiw

i ≤ ri}, 1 ≤ i ≤ k, are
p.r.’s of fi, then

{[x1; ...;xk; τ] : τ ≥
∑k

i=1 fi(x
i)}

= {[x1; ...;xk; τ] : ∃t1, ..., tk : ti ≥ fi(xk), 1 ≤ i ≤ k,
∑

i ti ≤ τ}
= {[x1; ...;xk; τ] : ∃t1, ..., tk, w1, ..., wk : Pix

i + tipi +Qiw
i ≤ ri, 1 ≤ i ≤ k,

∑
i λiti ≤ τ}.

F.3. Taking maximum. If fi : Rn → R ∪ {+∞} are p.r.f.’s, so is their maximum f(x) =
max[f1(x), ..., fk(x)], with a p.r. readily given by those of the operands. In particular, a
piecewise linear function max[aT1 x+ b1, ..., a

T
mx+ bm] is a p.r.f.

Indeed, if {[x; τ] : τ ≥ fi(x)} = {[x; τ] : ∃wi : Pix+ τpi +Qiw
i ≤ ri}, 1 ≤ i ≤ k, then

{[x; τ] : τ ≥ max
i
fi(x)} = {[x; τ] : ∃w1, ..., wk : Pix+ τpi +Qiw

i ≤ ri, 1 ≤ i ≤ k}.

Note that this rule mirrors the rule on p.r. of the intersection of polyhedral sets, due to
Epi(maxi fi) =

⋂
i Epi(fi).

Note that when we reduce a piecewise linear function f(x) = max
1≤i≤m

[aTi x + bi]

onto a polyhedral set X, that is, form a function

fX(x) =

{
f(x), x ∈ X
+∞, x 6∈ X (!)

we get a polyhedrally representable function. Indeed, if

X = {x : ∃w : Px+Qw ≤ r},

then

Epi(fX) = {[x; τ] : ∃w : Px+Qw ≤ r, aTi x+ bi ≤ τ, 1 ≤ i ≤ m}.

In fact, the opposite is true as well: a polyhedrally representable function always
is in the form of (!) with a piecewise linear f . To see this, observe that the
epigraph Epi(g) of a polyhedrally representable function g(x) : Rn → R∪{+∞}
is a polyhedrally representable, and thus polyhedral, set in Rn×R. The system
of linear inequalities defining this epigraph cannot be empty, since then Epi(g)
would be the entire Rn ×R, meaning that g ≡ −∞, which is not the case. We
can assume also that the epigraph is nonempty, since otherwise g ≡ +∞, which is
nothing but fX with an empty domain X. Now, the inequalities aTi x+αiτ ≤ bi,
1 ≤ i ≤ I, defining Epi(G) can be split into two groups: those with αi = 0, let
it be so for 1 ≤ i ≤ p, and those with αi 6= 0, let it be so for p + 1 ≤ i ≤ q.
We claim that the second group is nonempty, and in all inequalities of this
group we have αi < 0. Indeed, if the second group were empty, then, setting

1.2. WHAT CAN BE REDUCED TO LO 33

X = {x : aTi x ≤ bi, 1 ≤ i ≤ p}, we would get a nonempty (along with Epi(g))
polyhedral set in Rn such that every pair [x; τ] with x ∈ X belongs to Epi(g),
meaning that g = −∞ on X 6= ∅, which is impossible. Now, since Epi(g)
is nonempty, there exists a pair [x̄; τ̄] ∈ Epi(g), meaning that all pairs [x̄; τ]
with τ ≥ τ̄ also belong to Epi(g) and thus aTi x̄ + αiτ ≤ bi for all τ ≥ τ̄ and
i > p, which would be impossible were αi > 0. The bottom line is that with
X = {x : aTi x ≤ bi, 1 ≤ i ≤ p} it holds

Epi(g) = {[x, τ] : x ∈ X, τ ≥ max
p+1≤i≤q

[−αi]−1[aTi x− bi]},

meaning that g = fX with f(x) = max
p+1≤i≤q

[−αi]−1[aTi x− bi], as claimed.

The fact that a polyhedrally representable function is just a piecewise linear
function restricted onto a polyhedral domain does not nullify the usefulness of
the notion of a p.r.f. Indeed, similarly to the case of polyhedral sets, a p.r.
function f(x) admitting a “compact” p.r. can require astronomically many
“pieces” aTi x + bi in a piecewise linear representation f(x) = max

i
[aTi x + bi]

(think of f(x) =
∑

i |xi|).

F.4. Affine substitution of argument. If a function f(x) : Rn → R ∪ {+∞} is a p.r.f. and
x = Ay + b : Rm → Rn is an affine mapping, then the function g(y) = f(Ay + b) : Rm →
R ∪ {+∞} is a p.r.f., with a p.r. readily given by the mapping and a p.r. of f .
Indeed, if {[x; τ] : τ ≥ f(x)} = {[x; τ] : ∃w : Px+ τp+Qw ≤ r} is a p.r. of f , then

{[y; τ] : τ ≥ f(Ay + b) = {[y; τ] : ∃w : P [Ay + b] + τp+Qw ≤ r}
= {[y; τ] : ∃w : [PA]y + τp+Qw ≤ r − Pb}.

Note that this rule mirrors the rule on p.r. of the inverse affine image of a polyhedral
set, since Epi(f(Ay + b)) is the inverse image of Epi(f) under the affine mapping [y; τ] 7→
[Ay + b; τ].

F.5. Theorem on superposition. Let fi(x) : Rn → R ∪ {+∞} be p.r.f.’s, and let F (y) :
Rm → R ∪ {+∞} be a p.r.f. which is nondecreasing w.r.t. every one of the variables
y1, ..., ym. Then the superposition

g(x) =

{
F (f1(x), ..., fm(x)), fi(x) < +∞, 1 ≤ i ≤ m
+∞, otherwise

of F and f1, ..., fm is a p.r.f., with a p.r. readily given by those of fi and F .
Indeed, let

{[x; τ] : τ ≥ fi(x)} = {[x; τ] : ∃wi : Pix+ τp+Qiw
i ≤ ri},

{[y; τ] : τ ≥ F (y)} = {[y; τ] : ∃w : Py + τp+Qw ≤ r}

be p.r.’s of fi and F . Then

{[x; τ] : τ ≥ g(x)} =︸︷︷︸
(∗)

{[x; τ] : ∃y1, ..., ym : yi ≥ fi(x), 1 ≤ i ≤ m,F (y1, ..., ym) ≤ τ}

= {[x; τ] : ∃y, w1, ..., wm, w : Pix+ yipi +Qiw
i ≤ ri, 1 ≤ i ≤ m,Py + τp+Qw ≤ r},

where (∗) is due to the monotonicity of F .

34 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

Note that if some of fi, say, f1, ..., fk, are affine, then the superposition theorem remains
valid when we require the monotonicity of F w.r.t. the variables yk+1, ..., ym only; a p.r.
of the superposition in this case reads

{[x; τ] : τ ≥ g(x)}
= {[x; τ] : ∃yk+1..., ym : yi ≥ fi(x), k + 1 ≤ i ≤ m,F (f1(x), ..., fk(x), yk+1, ..., ym) ≤ τ}
= {[x; τ] : ∃y1, ..., ym, w

k+1, ..., wm, w : yi = fi(x), 1 ≤ i ≤ k,
Pix+ yipi +Qiw

i ≤ ri, k + 1 ≤ i ≤ m,Py + τp+Qw ≤ r},

and the linear equalities yi = fi(x), 1 ≤ i ≤ k, can be replaced by pairs of opposite linear
inequalities.

Note that when taking superposition, some monotonicity requirements on the outer func-
tion are natural, since otherwise this operation does not preserve convexity (think of
superposition of f(x) = max[x1, x2] and F (y) = −y).

1.3 ∗Fast Polyhedral Approximation of the Second Order Cone

We have seen that taking projection onto a subspace can convert a polyhedral set X = {x ∈
Rn : Ax ≤ b} which is “simple” — is defined by a moderate number of linear inequalities — into
a polyhedral set Y which is “complex” — its representation in the form {y : By ≤ b} requires a
much larger number of linear inequalities. An example, already known to us, is

Y := {y ∈ Rk :
k∑
i=1

|yi| ≤ 1} = {y ∈ Rk : ∃w : −wi ≤ yi ≤ wi 1 ≤ i ≤ k,
k∑
i=1

wi ≤ 1}.

Here the left hand side set Y ⊂ Rk is represented as the projection onto the y-plane of the set

X = {[y;w] : −wi ≤ yi ≤ wi 1 ≤ i ≤ k,
k∑
i=1

wi ≤ 1}

which “lives” in R2k and is given by 2k + 1 linear inequalities; it can be proved that every
representation of Y in the form {y : Cy ≤ c} requires at least 2k linear inequalities.

Given this observation, a natural question is whether it is possible to approximate well a non-
polyhedral set Y by the projection X̂ of a “simple” polyhedral set X in higher dimension. The
motivation here might be (and, as far as the construction we intend to present, actually was) the
desire to approximate well the problems of optimizing a linear objective over Y (which is not an
LO program, since Y is non-polyhedral) by the problem of minimizing the same objective over
the close to Y set X̂; the latter problem reduces to an LO program with the simple polyhedral
feasible set X and thus is within the grasp of LO algorithms.

The answer to our question depends, of course, on what is the set Y we want to approximate.
We intend to demonstrate that when Y is a n-dimensional ball, the answer to the above answer
is affirmative. Specifically, we intend to prove the following

Theorem 1.3.1 [Fast polyhedral approximation of the Second Order cone] Let

Ln+1 = {[x; τ] ∈ Rn ×R : τ ≥ ‖x‖2 :=
√
xTx ≤ τ}

1.3. ∗FAST POLYHEDRAL APPROXIMATION OF THE SECOND ORDER CONE 35

(this set is called the (n+ 1)-dimensional Second Order (aka Lorentz, or Ice-Cream) cone). For
every n and every ε ∈ (0, 1/2) one can explicitly point out a system

Px+ τp+Qw ≤ 0 (1.3.1)

of homogeneous linear inequalities in the original variables x, τ and slack variables w such that
— the number I(n, ε) of inequalities in the system is ≤ O(1)n ln(1/ε),
— the number V (n, ε) = dim w of slack variables in the system is ≤ O(1)n ln(1/ε),
and the projection

L̂n+1 = {[x; τ] : ∃w : Px+ τp+Qw ≤ 0} (1.3.2)

of the solution set of this system on the space of (x, τ)-variables is in-between the second-order
cone and its “(1 + ε)-extension:”

Ln+1 := {[x; τ] ∈ Rn ×R : τ ≥ ‖x‖2} ⊂ L̂n+1 ⊂ Ln+1
ε = {[x; τ] ∈ Rn ×R : (1 + ε)τ ≥ ‖x‖2}.

(1.3.3)

To get an impression of the constant factors in the Theorem, look at a sample of
values of I(n, ε), V (n, ε):

n ε = 10−1 ε = 10−6 ε = 10−14

I(n, ε) V (N, ε) I(n, ε) V (n, ε) I(n, ε) V (n, ε)

4 6 17 31 69 70 148
16 30 83 159 345 361 745
64 133 363 677 1458 1520 3153
256 543 1486 2711 5916 6169 12710
1024 2203 6006 10899 23758 24773 51050

You can see that I(n, ε) ≈ 0.7n ln 1
ε , V (n, ε) ≈ 2n ln 1

ε .

Several comments are in order.
A. When ε = 1.e-17 or something like, a usual computer cannot distinguish between 1 and 1+ε,
so that with such an ε, L̂n+1 “for all practical purposes” is the same as the Second Order cone
Ln+1. On the other hand, with ε = 1.e-17 the polyhedral representation of L̂ the numbers of
inequality constraints and slack variables in the polyhedral representation of L̂ by the system
(1.3.1) are moderate multiples of n (indeed, while 10−17 is “really small,” ln(1017) ≈ 39.1439 is
a quite moderate number).
B. After we know how to build a fast polyhedral approximation of the Second Order cone, we
know how to build such an approximation for a Euclidean ball BR

n = {x ∈ Rn : ‖x‖2 ≤ R}.
Indeed, from (1.3.3) it follows that the projection B̂R

n onto the x-plane of the polyhedral set

{[x;w] : Px+Qw ≤ −Rp}

in the space of (x,w)-variables is in-between BR
n and B

(1+ε)R
n :

BR
τ ⊂ B̂R

n ⊂ B(1+ε)R
n . (1.3.4)

C. In principle, there is nothing strange in the fact that a “good” non-polyhedral set Y in
Rn can be approximated, within a whatever accuracy, by a polyhedral set. Such a possibility
definitely exists when Y is a closed and bounded convex set, as it is the case with the ball BR

n .

36 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

Let us focus on this case; to simplify notation, w.l.o.g. let us set R = 1 and set Bn = B1
n. It is

intuitively clear (and indeed is true) that given an ε > 0 and taking a dense enough finite “grid”
x1, ..., xN on the boundary of Bn, that is, on the unit sphere Sn−1 = {x ∈ Rn : ‖x‖2 = 1}, the
polytope bounded by the tangent to Sn−1 at xi hyperplanes {x : xTi (x − xi) = 0}, 1 ≤ i ≤ N ,
will contain Bn and be contained in B1+ε

n . The problem, however, is how many hyperplanes
should we take for this purpose, and the answer is as follows: For every polyhedral set B̂ ⊂ Rn

such that Bn ⊂ B̂ ⊂ B1+ε
n , the number N of linear inequalities in a “straightforward” polyhedral

representation B̂ = {x ∈ Rn : Cx ≤ c} is at least exp{O(1)n ln(1/ε)}, provided ε ≤ 0.1. We see
that a “straightforward” approximation of Bn within a fixed accuracy ε, say ε = 0.1, by a solution
set of a system of linear inequalities requires an exponential in n, and thus astronomically large
already for moderate n, number of inequalities. In contrast to this, to approximate Bn within
the same accuracy by the projection onto the space where Bn lives of a solution set of a system
of linear inequalities requires just linear in n numbers of inequalities and slack variables.

It is highly instructive (and not difficult) to understand where the exponential in n
lower bound on a number N of linear inequalities in a system in variables x ∈ Rn

with the solution set well approximating Bn comes from. Assume that a polyhedral
set B̂ = {x ∈ Rn : aTi x ≤ bi, 1 ≤ i ≤ N}, is in-between Bn and (1 + ε)Bn = B1+ε

n ,
where ε is not too large, say, ε ≤ 0.1. W.l.o.g. we can assume that ai 6= 0 and then
normalize them to ensure that ‖ai‖2 = 1 for all i, which we assume from now on.
Now, bi should be ≥ 1, since otherwise the constraint aTi x ≤ bi would cut off Bn a

nonempty set (due to maxx∈Bn a
T
i x = ‖ai‖2 = 1) and thus the inclusion Bn ⊂ B̂n

would be impossible. By the same token, if bi > 1, then, replacing it with 1, we do
not affect the validity of the inclusion Bn ⊂ B̂ and only decrease B̂, thus preserving
the validity of the inclusion B̂ ⊂ B1+ε

n . The bottom line is that we lose nothing by
assuming that B̂ = {x ∈ Rn : aTi x ≤ 1, 1 ≤ i ≤ N}, with all ai being unit vectors.

Now, to say that B̂ := {x : aTi x ≤ 1, i ≤ N} ⊂ B1+ε
n is exactly the same as to say

that B̃ := {x : aTi x ≤ (1− ε), i ≤ N} ⊂ Bn. Thus, we are in the situation when

B̃ ⊂ Bn ⊂ B̂,

so that the boundary Sn−1 of Bn should be contained in the set B̂\(int B̃). The
latter set is contained in the union, over i ≤ N , of the “stripes” Pi = {x ∈ Rn :
(1− ε) ≤ aTi x ≤ 1}, whence also

Sn−1 ⊂
N⋃
i=1

Hi︷ ︸︸ ︷
[Pi ∩ Sn−1] (∗)

Geometrically, Hi is a “spherical hat,” and all these hats are congruent to the set

Hε = {x ∈ Rn : xTx = 1, xn ≥ 1− ε}.

Denoting αε the (n− 1)-dimensional “spherical area” of Hε and by α the area of the
entire Sn−1 and taking into account that H1, ...,HN cover Sn−1, we get

Nαε ≥ α⇒ N ≥ α

αε
(!)

1.3. ∗FAST POLYHEDRAL APPROXIMATION OF THE SECOND ORDER CONE 37

It remains to bound from below the ratio α/αε. Let us start with bounding αε from
above. The projection of the spherical hat Hε onto the plane xn = 0 is (n − 1)-
dimensional ball of radius r =

√
1− (1− ε)2 =

√
2ε− ε2 ≤

√
2ε. When ε is ≤ 0.1,

this projection, up to a factor O(1), preserves the (n−1)-dimensional volume, so that
αε ≥ O(1)rn−1βn−1, where βn−1 is the (n − 1)-dimensional volume of B1

n−1. Now,
the projection of the “northern part” {x : xTx = 1, xn ≥ 0} of Sn−1 is B1

n−1, and
this projection clearly reduces the (n− 1)-dimensional volume; thus, α ≥ 2βn−1. We
end up with N ≥ O(1)r−n−1 ≤ O(1)(2ε)−(n−1)/2 ≤ exp{O(1)n ln(1/ε)}, as claimed.

A rigorous reasoning goes as follows. Assume that n ≥ 3. Let π/2 − φ be the “altitude angle”
of a point e on Sn−1, that is, φ is the angle between e and the direction of n-th coordinate axis.
Then Hε is the set of all points on the unit sphere Sn−1 for which φ ≥ φ0 = asin(r). Denoting

by γn−1 the (n − 2)-dimensional volume of Sn−2, we clearly have αε = γn−1

∫ φ0

0
sinn−2(φ)dφ and

α = 2γn−1

∫ π/2
0

sinn−2(φ)dφ. It follows that

αε ≤ γn−1

∫ φ0

0
sinn−2(φ) cos(φ)

cos(φ0)
dφ = γn−1(n− 1)−1 cos−1(φ(0)) sinn−1(φ0)

= γn−1(n− 1)−1 cos−1(φ0)rn−1 = γn−1(n− 1)−1(1− ε)−1rn−1

At the same time, it can be easily checked numerically that cos(x) ≥ 0.99 exp{−x2/2} when 0 ≤
x ≤ 0.5, whence

α = 2γn−1

∫ π/2
0

sinn−2(φ)dφ = 2γn−1

∫ π/2
0

cosn−2(φ)dφ ≥ 1.98γn−1

1/2∫
0

exp{−φ2(n− 2)/2}dφ

= 1.98γn−1(n− 2)−1/2

1
2

√
n−2∫

0

exp{−s2/2}ds = 1.98γn−1(n− 2)−1/2(1 + εn)
∫∞

0
exp{−s2/2}ds

= 0.99
√

2πγn−1(n− 2)−1/2(1 + εn),

where εn → 0 as n→∞. Thus,

N ≥ α/αε ≥ 0.99(1 + εn)
√

2π(n− 2)−1/2(n− 1)(1− ε)r−(n−1) ≥ 0.99
√

2π(1 + δn)
√
n(2ε)−(n−1)/2

with δn → 0 as n→∞. We see that for large n (on a closest inspection, “large” here means n ≥ 10)

it definitely holds N ≥ 2n1/2(2ε)−(n−1)/2, provided ε ≤ 0.1. When n = 100 and ε = 0.1, this lower

bound on N is as large as 7.9e35.

D. In fact, it is well known that the Euclidean ball Bn can be easily approximated by the
projection of a very simple polyhedral set — just a box — “living” in higher-dimensional space.
Specifically, it is not difficult to prove that if DN = {x ∈ RN : ‖x‖∞ ≤ 1} is the unit box in
RN , N > n, then a “random projection” of DN on Rn is, typically, close to a Euclidean ball in
Rn, with the discrepancy going to 0 as N/n grows. The precise statement is as follows: if An,N
is a random matrix with independent standard (zero mean, unit variance) Gaussian entries and

n,N, ε are linked by the relation ε ≥ O(1)
√

n
N ln

(
N
n

)
, then, with probability approaching 1 as

n grows, the set An,NDN ⊂ Rn is in-between two concentric Euclidean balls with the ratio of
radii ≤ 1 + ε.
The advantages of the result stated in Theorem 1.3.1 as compared to this well-known fact are
twofold: first, the numbers N−n of “slack variables” and 2N of inequality constraints in the “ε-
accurate” polyhedral approximation of Bn are “nearly” of order of nε−2 (in fact, by a logarithmic
in 1/ε factor worse), while Theorem 1.3.1 speaks about “much more compact” ε-approximate
representation of an n-dimensional ball, with the numbers of slack variables and inequality
constraints of order of n ln(1/ε). Second, the construction underlying Theorem 1.3.1 is explicit
and thus possesses not only academic, but also a practical value (see below). In contrast to this,
in spite of the provable fact that a random projection of a box, under the assumptions of the
“random projection” statement, with high probability is close to a ball, no individual examples

38 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

of projections with this property are known (cf. the story about sensing matrices with high
level of goodness). This being said, it should be mentioned that in the “random projection”
approximation of a ball, the polyhedral set we are projecting is centrally symmetric, which is
important in certain academic applications. In contrast to this, the construction underlying
Theorem 1.3.1 approximates a ball by the projection of a highly asymmetric polyhedral set;
whether results similar to those stated in Theorem 1.3.1 can be obtain when projecting a centrally
symmetric polyhedral set, this is an interesting open academic problem.
E. Theorem 1.3.1, essentially, says that “for all practical purposes,” a conic quadratic optimiza-
tion problem, that is, an optimization problem P with linear objective and (finitely many) conic
quadratic constraints, that is, constraints of the generic form

‖Ax+ b‖2 ≤ cTx+ d (∗)

is an LO program (a rigorous statement reads “problem P can be approximated in a polyno-
mial time fashion by an LO program;” eventually, we shall understand what “polynomial time
fashion” means). Indeed, Theorem says that “for all practical purposes” the set ‖u‖2 ≤ τ is
polyhedrally representable with an explicit (and “short”) polyhedral representation. But then,
by calculus of polyhedral representability, the same is true for the feasible set of (∗) (rule on
inverse affine image) and thus for the feasible set of P (rule on taking finite intersections), so
that P reduces to an LO program.

Now, “expressive abilities” of conic quadratic problems are surprisingly rich. E.g., a quadratic
constraint of the form

xTATAx ≤ bTx+ c

is equivalent (check it!) to the conic quadratic constraint

‖[2Ax; 1− bTx− c]‖2 ≤ 1 + bTxc;

some constraints which do not look quadratic at all, e.g., the constraints in variables x, t

n∏
i=1

x−πii ≤ τ, x > 0

where πi > 0 are rational numbers, or

n∏
i=1

xπii ≥ τ, x ≥ 0

where πi > 0 are rational numbers and
∑

i πi ≤ 1 can be reduced, in a systematic way, to a
system of conic quadratic constraints in the original variables x, τ and additional slack variables.
Theorem 1.3.1 states that “for all practical purposes” (or, scientifically, up to a polynomial time
approximation) the rich expressive abilities of conic quadratic programs are shared by the usual
LO’s.

As a more striking example, consider the exponential function exp{x}. The exponent which
“lives” in a computer is somehow different from the exponent which lives in our mind: the
latter is well-defined and nonzero on the entire real axis. The former makes sense in a moderate
segment of values of x: if you ask MATLAB what is exp(−800), the answer will be 0, and if you
ask what is exp(800), the answer will be +∞. Thus, “for all practical purposes,” the “real life”
exponent exp{x} can be considered as the restriction of the “ideal” exponent which lives in our

1.3. ∗FAST POLYHEDRAL APPROXIMATION OF THE SECOND ORDER CONE 39

mind on a finite, and even not very large, segment −T ≤ x ≤ T . Now, for the “ideal” exponent
we have

exp{x} = (exp{2−kx})2k ,

and when |x| ≤ T and 2k � T , exp{2−kx} is pretty close to 1 + 2−kx. It follows that

|x| ≤ T ⇒ exp{x} ≈ (1 + 2−kx)2k .

Note that the right hand side function, restricted onto the segment [−T, T] with T ≤ 2k, can be
expressed via a “short series” of linear and quadratic inequalities and a single linear equation:

{[x; τ] ∈ R2 : −T ≤ x ≤ T, τ ≥ (1 + 2−kx)2k}

=

{
[x; τ] ∈ R2 : ∃u0, u1, ..., uk :

−T ≤ x ≤ T, u0 = 1 + 2−kx,
u2

0 ≤ u1, u
2
1 ≤ u2, ..., u

2
k−1 ≤ uk, uk ≤ τ

}
.

Now, the quadratic inequality u2 ≤ v in variables u, v, as we already know, can be represented
by a conic quadratic constraint and thus, “for all practical purposes,” can be represented by
a short system of linear constraints in u, v and additional variables. As a result, the exponent
which “lives in a computer” is, for all practical purposes, a polyhedrally representable function.
The precise statement is as follows:

Given T > 0 and ε ∈ (0, 1), one can point out an explicit system of linear inequalities
in scalar variables x, τ and additional variables w such that

• the number of inequalities in the system, same as the dimension of the vector w,
are bounded by polynomials in T and ln(1/ε);
• the projection of the solution set of the system on the 2D plane of x, τ -variables
is the epigraph Epi(f) of a function f(x) (which thus is polyhedrally representable)
such that Dom f = [−T, T] and

|x| ≤ T ⇒ exp{x} ≤ f(x) ≤ (1 + ε) exp{x}.

It follows that when solving a Geometric Programming problem — an optimization problem
with linear objective and finitely many constraints of the form

k∑
i=1

exp{aTi x+ bi} ≤ 1 (!)

(perhaps augmented by linear constraints), we can “regularize” the problem by replacing every
constraint (!) with the system of constraints

0 ≥ wi ≥ aTi x+ bi, wi ≥ −T, exp{wi} ≤ ui, 1 ≤ i ≤ k,
k∑
i=1

ui ≤ 1 (!!)

where wi are slack variables and T is a once for ever fixed moderate constant (say, T = 60).
As far as actual computations are concerned, this regularization does not alter the constraint:
whenever x can be extended, for a properly chosen w, to a feasible solution of (!!), x is clearly
is feasible for (!), and “nearly vice versa.” Specifically, assume that x is feasible for (!). Then
clearly aTi x + bi ≤ 0 for all i, so that setting wi = max[−T, aTi x + bi], ui = exp{wi}, we satisfy

all constraints in (!!) except for the last of them,
∑k

i=1 ui ≤ 1. The latter can happen only when

40 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

for some i we have aTi x+ bi < −T , whence wi = −T and ui = exp{−T}; in other words, we are
enforced to make ui greater than exp{aTi x+ bi}, which results in

∑
i ui >

∑
i exp{aTi x+ bi} and

thus can lead to the former sum being > 1 in spite of the fact that the latter sum is ≤ 1 (since
x is feasible for (!)). But the resulting violation of the last constraint in (!!) cannot be larger
than k exp{−T}; with T = 60, this violation is ≤ 10−26k. It follows that even with k as large
as 109, a computer cannot tell the difference between the target inequality

∑
i ui ≤ 1 and the

actually ensured inequality
∑

i ui ≤ 1 + k exp{−T}.
We have seen that “numerically speaking,” the regularized problem is the same as the original

Geometric Programming program. On the other hand, the only nonlinear constraints in the
regularized problem are exp{wi} ≤ ui, and wi is restricted to sit in [−T, 0]. It follows that we
can approximate every one of nonlinear constraints, in a polynomial time fashion, by a “short”
system of linear inequalities and thus reduce the original Geometric Programming problem to
an LO one.

We do not claim that the best way to solve real-world conic quadratic and Geometric Pro-
gramming problems is to approximate them by LO’s; both these classes of problems admit
dedicated theoretically (and to some extent, also practically) efficient solution algorithms which
can solve practical problems faster than LO algorithms as applied to the LO approximations of
these problems. What is good and what is bad in practice, it depends on the available software.
A decade ago, there were no efficient and reliable software for medium-size (few thousands of
variables) conic quadratic problems, and Theorem 1.3.1 was a byproduct of attempts to handle
these problems with the existing software. Today there exists efficient and reliable software for
solving conic quadratic problems, and there is basically no necessity to reduce these problems
to LO. As about Geometric Programming, situation is different; say, in the cvx16 package prob-
lems of this type are handled via “fast conic quadratic approximation,” which is nothing but
the outlined and somehow refined approximate representation of the epigraph of the exponent,
restricted onto a segment, by a system of quadratic inequalities. This being said, note that the
outlined “fast polyhedral approximation” results are of definite theoretical interest.

Proof of Theorem 1.3.1. Let ε > 0 and a positive integer n be given. We intend to build
a polyhedral ε-approximation of the Second Order cone Ln+1. W.l.o.g. (think why) we may
assume that n is an integer power of 2: n = 2κ, κ ∈ N.
10 The key: fast polyhedral approximation of L3. Consider the system of linear inequal-
ities in variables y1, y2, y3 and additional variables ξj , ηj , 0 ≤ j ≤ ν (ν is a parameter of the
construction) as follows:

(a)

{
ξ0 ≥ |y1|
η0 ≥ |y2|

(b)

{
ξj = cos

(
π

2j+1

)
ξj−1 + sin

(
π

2j+1

)
ηj−1

ηj ≥
∣∣− sin

(
π

2j+1

)
ξj−1 + cos

(
π

2j+1

)
ηj−1

∣∣ , j = 1, ..., ν

(c)

{
ξν ≤ y3

ην ≤ tan
(

π
2ν+1

)
ξν

(1.3.5)

Note that (1.3.5) can be straightforwardly rewritten equivalently as a system of linear homoge-
neous inequalities

Π(ν)[y;w] ≤ 0 (Sν)

16http://stanford.edu/∼boyd/cvx/

1.3. ∗FAST POLYHEDRAL APPROXIMATION OF THE SECOND ORDER CONE 41

x
1

x
2

P

Q

Q’

P
+

Figure 1.1: From P = [ξj ; ηj] to P+ = [ξj+1; ηj+1]: 1) Q is obtained from P by rotation by the
angle π/2j+2; 2) Q′ is the reflection of Q w.r.t. the abscissa axis; 3) P+ is a point on the line
QQ′ above both Q and Q′.

in variables y ∈ R3 and additional variables w, specifically, as follows. First, we add slack
variables and associated linear constraints to eliminate the nonlinearities | · | which are present
in (a) and in (b); second, we use the equality constraints in (b) to eliminate the variables ξj ,
1 ≤ j ≤ ν. The numbers of variables and linear inequalities in the resulting system (Sν) clearly
are ≤ O(1)ν. (Sν) is a p.r. of the polyhedral set

Y ν = {y ∈ R3 : ∃w : Π(ν)[y;w] ≤ 0}.

Lemma 1.3.1 Y ν is a polyhedral χ(ν)-approximation of L3 = {y ∈ R3 : y3 ≥
√
y2

1 + y2
2}:

L3 ⊂ Y ν ⊂ L3
δ(ν) := {y ∈ R3 : (1 + χ(ν))y3 ≥

√
y2

1 + y2
2} (1.3.6)

with

χ(ν) =
1

cos
(

π
2ν+1

) − 1. (1.3.7)

Proof. We should prove that

(i) If y ∈ L3, then y can be extended to a solution to (1.3.5);

(ii) If y ∈ R3 can be extended to a solution to (1.3.5), then ‖[y1; y2]‖2 ≤ (1 + χ(ν))y3.

Let Pj = [ξj ; ηj], 0 ≤ j ≤ ν. System (1.3.5) can be considered as a set of geometric
constraints on the points [y1; y2], P0, ..., Pν on the 2D plane, namely, as follows (in the story
below, we treat x1 as the abscissa, and x2 as the ordinate on the 2D plane where the points
live):

• (a) says that P0 should belong to the first quadrant, and its coordinates should be ≥ the
magnitudes of the respective coordinates in [y1; y2].

42 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

• (b) says that the link between Pj and Pj+1 should be as follows (see figure 1.1):

– given P = Pj , we rotate the vector Pj clockwise by the angle π/2j+2 and then reflect
the resulting point w.r.t. the x1-axis, thus getting a pair of symmetric w.r.t. this axis
pair of points Q = Qj , Q

′ = Q′j ;

– P+ = Pj+1 is a point on the vertical line passing through Q,Q′ which is above both
these points (i.e., the ordinate of P+ is ≥ the ordinates of Q and of Q′).

• (c) says that the point Pν should belong to the triangle ∆ = {0 ≤ xi ≤ y3, x2 ≤
tan(π/2ν+1)x1}.

Now observe that from this description it follows that points associated with feasible solution
to (1.3.5) satisfy

‖[y1; y2]‖2 ≤ ‖P0‖2 ≤ ‖P1‖2 ≤ ... ≤ ‖Pν‖2 ≤
1

cos(π/2ν+1)
y3,

which proves (ii). On the other hand, if y3 ≥ ‖[y1, y2]‖2, then, setting P0 = [|y1|; |y2|] and
specifying for all j Pj+1 as either Qj , or Q′j , depending on which one of these points has a larger
ordinate, we get

y3 ≥ ‖[y1; y2]‖2 = ‖P0‖2 = ... = ‖Pν‖2. (!)

We claim that what we get in this way is a feasible solution to (1.3.5). This is clearly true
when y1 = y2 = 0; assuming that the latter is not the case, observe that by construction we
have satisfied the constraints (1.3.5.a-b). To prove that (1.3.5.c) is satisfied as well, let us look
at the arguments φj of the points Pj (the angles between the direction of the x1-axis and the
directions of vectors Pj). P0 lives in the first quadrant, and thus φ0 ≤ π/2. Since Q0 is obtained
by rotating P0 clockwise by the angle π/4, Q′0 is symmetric to Q0 w.r.t. the x1-axis and P1

is the member of the pair Q0, Q
′
0 living in the first quadrant, the argument φ1 of P1 satisfies

0 ≤ φ1 ≤ π/4. Similar reasoning, applied to P1 in the role of P0, results in 0 ≤ φ2 ≤ π/8, and
so on, resulting in 0 ≤ φν ≤ π/2ν+1. Since Pν lives in the first quadrant, ‖Pν‖≤y3 by (!) and
the argument of Pν is ≤ π/2ν+1, which combines with the facts that ‖Pν‖2 ≤ y3 (by (!)) and
that Pν lives in the first quadrant to imply that Pν belongs to the triangle ∆, that is, (1.3.5.c)
does take place. (i) is proved. 2

20. From n = 2 to n = 2κ. Now we are ready to approximate the Second Order cone

Ln+1 = {[x; τ] ∈ Rn ×R : τ ≥
√
x2

1 + ...+ x2
n}

where n = 2κ. To this end, let us first add to the 2κ variables xi ≡ x0
i (“variables of generation

0”) 2κ−1 variables x1
i (“variables of generation 1”), treating x1

i as the “child” of variables x0
2i−1,

x0
2i of generation 0, add in the same fashion 2κ−2 variables of generation 2, children of variables

of generation 1, and so on, until arriving at two variables of generation κ− 1. By definition, the
child of these two variables is τ ≡ xκ1 . Now let us impose on the resulting 2n− 1 variables x`i of
all generations the constraints

‖[x`−1
2i−1;x`−1

2i]‖2 ≤ x`i , 1 ≤ ` ≤ κ, 1 ≤ i ≤ 2κ−`. (1.3.8)

1.3. ∗FAST POLYHEDRAL APPROXIMATION OF THE SECOND ORDER CONE 43

It is clear (look at the case of n = 4) that the projection of the solution set of this system on
the plane of the original variables xi = x0

i , τ is nothing but Ln+1. Now let us choose positive
integers ν1, ν2,...,νκ and approximate the 3-dimensional Second Order cones given by

‖[x`2i−1;x`2i]‖2 ≤ x`+1
i

as explained in Lemma 1.3.1, that is, let us replace every one of the constraints in (1.3.8) by the
system of linear inequalities

Π(ν`)[x`−1
2i−1;x`−1

2i ;x`i ;w
`
i] ≤ 0.

As a result, (1.3.8) will be replaced by a system S of linear inequalities in 2n − 1 variables x`i
and additional variables w`i . Denoting by I(ν) and by V (ν)+3 the number of rows, respectively,
columns in the matrix P (ν) (so that I(ν) ≤ O(1)ν and V (ν) ≤ O(1)ν), the numbers of variables
and constraints in S are, respectively,

V = 2n+ 2κ−1V (ν1) + 2κ−2V (ν2) + ...+ V (νκ) ≤ O(1)
∑κ

`=1 2κ−`ν`,
I = 2κ−1I(ν1) + 2κ−2V (ν2) + ...+ V (νκ) ≤ O(1)

∑κ
`=1 2κ−`ν`.

(1.3.9)

Invoking Lemma, it is clear that the projection L̂ of the feasible set of S onto the space of
x, τ -variables satisfies the inclusions in Theorem 1.3.1 with the factor

γ = (1 + χ(ν1))(1 + χ(ν2))...(1 + χ(νκ))

in the role of the desired factor (1 + ε). It remains to choose ν1, ..., ν` in way which ensures
that γ ≤ 1 + ε, minimizing under this condition the sum J :=

∑κ
`=1 2κ−`ν` which, according to

(1.3.9), is responsible for the sizes (number of variables and number of constraints) of S. Setting
ν` = O(1) ln(κ/ε) with appropriately chosen O(1), we get χ(ν`) ≤ ε/(2κ), whence γ ≤ 1 + ε
provided ε ≤ 0.1. With this choice of ν`, we get J ≤ O(1)n ln(κ/ε) ≤ O(1)n ln(ln(n)/ε) (recall
that κ = log2 n), which, up to replacing ln(1/ε) with ln(ln(n)/ε), is what is stated in Theorem
1.3.1. To get what is announced in the Theorem exactly, one needs to carry out the optimization
in ν` more carefully17; we leave this task to the reader. 2

How it works. Setting y3 = 1 in (Sν), we get a system (Tν) of nν ≤ O(1)ν linear in-
equalities in variables y ∈ R2 and in mν ≤ O(1)ν additional variables in such a way that the
projection of the solution set P ν of this system onto the 2D plane of y-variables “approximates
the unit circle B2 within accuracy χ(ν),” meaning that the projection is in-between the unit

circle B2 and its (1+χ(ν))-enlargement B
1+χ(ν)
2 . Here we illustrate the related numbers. To get

a reference point, note that the perfect n-vertex polygon circumscribed around B2 approximates
B2 within accuracy

ε(n) =
1

cos(π/n)
− 1 ≈ π2

2n2
.

• P 3 lives in R9 and is given by 12 linear inequalities. Its projection onto 2D plane approx-
imates B2 within accuracy 5.e-3 (as 16-side perfect polygon).

17Our current choice of ν` distributes the overall “budget of inaccuracy” ε among all cascades ` = 1, ..., κ of our
approximation scheme equally, and this is clearly nonoptimal. Indeed, the number 2κ−` of 3-dimensional Second
Order cones we should approximate in cascade ` rapidly decreases as ` grows, so that in terms of the total number
of linear inequalities in the approximation, it is better to use relatively rough approximations of the 3D cones in
cascades with small ` and gradually improve the quality of approximation as ` grows.

44 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

• P 6 lives in R12 and is given by 18 linear inequalities. Its projection onto 2D plane approx-
imates B2 within accuracy 3.e-4 (as 127-side perfect polygon).

• P 12 lives in R18 and is given by 30 linear inequalities. Its projection onto 2D plane
approximates B2 within accuracy 7.e-8 (as 8,192-side perfect polygon).

• P 24 lives in R30 and is given by 54 linear inequalities. Its projection onto 2D plane
approximates B2 within accuracy 4.e-15 (as 34,209,933-side perfect polygon).

Part I

Geometry of Linear Optimization

46 LECTURE 1. INTRODUCTION TO LO: EXAMPLES OF LO MODELS

Lecture 2

Polyhedral Sets and their Geometry

An LO program
Opt = max

x

{
cTx : Ax ≤ b

}
(2.0.1)

is the problem of maximizing a linear objective over the set

X = {x ∈ Rn : Ax ≤ b}

given by finitely many non-strict linear inequalities. As we remember, sets of this form are called
polyhedral, and their geometry plays crucial role in the theory and algorithms of LO. In this
lecture, we make the first major step towards understanding the geometry of a polyhedral set;
our ultimate goal is to establish the following fundamental result:

Theorem [Structure of a polyhedral set] A nonempty subset X in Rn is polyhedral if and only
if it can be represented via finitely many “generators” v1, ..., vI ∈ Rn, r1, ..., rj ∈ Rn according
to

X =

x =

I∑
i=1

λivi +

J∑
j=1

µjrj : λi ≥ 0,
∑
i

λi = 1;µj ≥ 0

 .

The statement of Theorem is illustrated on figure 2.1. Eventually it will become clear why this
result indeed is crucial, and “on the way” to it we will learn numerous notions and techniques
which form the major bulk of the theoretical core of LO.

2.1 Preliminaries: Linear and Affine Subspaces, Convexity

2.1.1 Linear Subspaces

Here we recall some basic facts of Linear Algebra; the reader is supposed to be well acquainted
with these facts, so that we just list them.

Linear subspace: definition, examples, “calculus”

Recall that a linear subspace of Rn is a nonempty subset L of Rn which is closed w.r.t. taking
linear operations: addition and multiplication by reals. Thus, L ⊂ Rn is a linear subspace iff it
possesses the following three properties:

• L 6= ∅

47

48 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

a)

b)

c)

d)

Figure 2.1: From a polyhedral set to its generators and back.
a) a polyhedral set X (area bounded by red border) in R2

b) the extreme points v1, v2, v3 of X (vertices of the triangle) and their convex hull {
3∑
i=1

λivi : λi ≥ 0,
∑
i λi = 1}

(triangle)

c) the two extreme rays {tr1 : t ≥ 0} and {tr2 : t ≥ 0} of X

d) to get X back, one sums up the triangle and the conic span {µ1r1 + µ2r2 : µ1, µ2 ≥ 0} of r1, r2 (the angle

bounded by rays in c)) which is the recessive cone of X.

• [closedness with respect to additions] Whenever x, y ∈ L, we have x+ y ∈ L

• [closedness w.r.t. multiplications by reals] Whenever x ∈ L and λ ∈ R, we have λx ∈ L.

From closedness w.r.t. additions and multiplications by reals it clearly follows that a linear
subspace is closed w.r.t. taking linear combinations of its elements: whenever x1, ..., xk ∈ L
and λ1, ..., λk ∈ R, the vector

∑k
i=1 λixi, called the linear combination of the vectors xi with

coefficients λi, also belongs to L. Linear subspaces of Rn are exactly the nonempty subsets of
Rn closed w.r.t. taking linear combinations, with whatever coefficients, of their elements (why?)

Examples of linear subspaces in Rn:

• the entire Rn clearly is a linear subspace. This is the largest linear subspace in Rn:
whenever L is a linear subspace, we clearly have L ⊂ Rn

• the origin {0} clearly is a linear subspace. This is the smallest linear subspace in Rn:
whenever L is a linear subspace, we have {0} ⊂ L. Indeed, since L is nonempty, there
exists x ∈ L, whence 0 = 0 · x ∈ L as well.

• The solution set

{x : Ax = 0} (2.1.1)

2.1. PRELIMINARIES: LINEAR AND AFFINE SUBSPACES, CONVEXITY 49

of a homogeneous system of linear equations with an m× n matrix A. This set clearly is
a linear subspace (check it!). We shall see in a while that every linear subspace in Rn can
be represented in the form of (2.1.1), and, in particular, is a polyhedral set.

“Calculus” of linear subspaces

There are several important operations with linear subspaces:

1. Taking intersection: if L1, L2 are linear subspaces of Rn, so is their intersection L1∩L2. In
fact, the intersection

⋂
α∈A

Lα of a whatever family {Lα}α∈A of linear subspaces is a linear

subspace (check it!)

Note: the union of two linear subspaces L1, L2 is not a linear subspace, unless one of the
subspaces contains the other one (why?)

2. Taking arithmetic sum: if L1, L2 are linear subspaces in Rn, so is the set L1 + L2 = {x =
x1 + x2 : x1 ∈ L1, x2 ∈ L2} (check it!)

3. Taking orthogonal complement: if L is a linear subspace in Rn, so is its orthogonal com-
plement — the set L⊥ = {y : yTx = 0 ∀x ∈ L} of vectors orthogonal to all vectors from
L.

4. Taking linear image: if L is a linear subspace in Rn and A is an m×n matrix, then the set
AL := {Ax : x ∈ L} ⊂ Rm – the image of L under the linear mapping x 7→ Ax : Rn → Rm

– is a linear subspace in Rm (check it!)

5. Taking inverse linear image: if L is a linear subspace in Rn and A is an n×k matrix, then
the set A−1L = {y ∈ Rk : Ay ∈ L} – the inverse image of L under the linear mapping
y 7→ Ay : Rk → Rn – is a linear subspace in Rk (check it!)

6. Taking direct product: Recall that the direct product X1 × ... × Xk of sets Xi ⊂ Rni ,
1 ≤ i ≤ k is the set in Rn1+...+nk comprised of all block vectors x = [x1; ...;xk] with blocks
xi ∈ Xi, 1 ≤ i ≤ k. When all Xi are linear subspaces, so is their direct product (check it!)

The most important “calculus rules” are the relations

(a) (L⊥)⊥ = L
(b) L ∩ L⊥ = {0}, L+ L⊥ = Rn

(c) (L1 + L2)⊥ = L⊥1 ∩ L⊥2
(d) (AL)⊥ = (AT)−1L⊥, that is {y : yTAx = 0 ∀x ∈ L} = {y : AT y ∈ L⊥}
(e) (L1 × ...× Lk)⊥ = L⊥1 × ...× L⊥k

(2.1.2)

where L,L1, L2 ⊂ Rn (in (a-d)) and Li ⊂ Rni (in (e)) are linear subspaces, and A is an arbitrary
m× n matrix.

Comment on (2.1.2.b). Let L be a linear subspace in Rn. The fact that L + L⊥ = Rn

means that every x ∈ Rn can be decomposed as x = xL + xL⊥ with xL ∈ L and xL⊥ ∈ L⊥; in
particular, xL is orthogonal to xL⊥ . Since L ∩ L⊥ = {0}, the decomposition of x into a sum of
two vectors, one from L and one from L⊥, is unique (check it!), and both xL and xL⊥ linearly
depend on x. The components xL and xL⊥ of x are called orthogonal projections of x onto L

50 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

and L⊥, respectively, and the mapping x 7→ xL is called the orthogonal projector onto L. Since
xL and xL⊥ are orthogonal, we have the identity

‖x‖22 := xTx = ‖xL‖22 + ‖xL⊥‖22.

Linear subspace: linear span, dimension, linear independence, bases

Linear span. For every nonempty set X ⊂ Rn, the set of all linear combinations, with finitely
many terms, of vectors from X is a linear subspace (why?), and this linear subspace (called the
linear span Lin(X) of X) is the smallest, w.r.t. inclusion, of the linear subspaces containing X:
Lin(X) is a linear subspace, and

X ⊂ Lin(X) ⊂ L

whenever L is a linear subspace containing X.
Linear span of an empty set. In the above definition of Lin(X), X ⊂ Rn was assumed to be
nonempty. It is convenient to assign with the linear span the empty set as well; by definition,
Lin(∅) = {0}. This definition is in full accordance with the standard convention that a sum
with empty set of terms is well-defined and is equal to 0, same as it is consistent with the above
claim that Lin(X) is the smallest linear subspace containing X.

When L = Lin(X), we say that L is spanned (ore, more rigorously, linearly spanned) by the
set X ⊂ Rn; thus, a linear subspace L is spanned by a set iff L is exactly the set of all linear
combinations of vectors from X (with the convention that a linear combination with empty set
of terms is equal to 0).

Linear independence. Recall that a collection x1, ..., xk of vectors from Rn is called linearly
independent, if the only linear combination of these vectors equal to 0 is the trivial one – all
coefficients are equal to 0:

k∑
i=1

λixi = 0⇒ λi = 0, i = 1, ..., k.

An equivalent definition (check equivalency!) is that x1, ..., xk are linearly independent if and
only if the coefficients in a linear combination of x1, ..., xk are uniquely defined by the value of
this combination:

k∑
i=1

λixi =

k∑
i=1

µixi ⇔ λi = µi, i = 1, ..., k.

Clearly, an empty (i.e., with k = 0) collection of k vectors is linearly independent, and a
nonempty linearly independent collection is comprised of distinct and nonzero vectors.

Dimension and bases. A given linear subspace L can be represented as a span of many
sets (e.g., L = Lin(L)). The fundamental fact of Linear Algebra is that L always is spanned
by a finite set of vectors. Given this fact, we immediately conclude that there exist “minimal
w.r.t. inclusion finite representations of L as a linear span”, that is, finite collections {x1, ..., xk}
comprised of k points which linearly span L (i.e., every vector from L is a linear combination of
vectors x1, ..., xk), and such that when eliminating from the collection an element, the remaining
vectors do not span the entire L. The following fundamental fact of Linear Algebra provides us
with more details on this subject:

2.1. PRELIMINARIES: LINEAR AND AFFINE SUBSPACES, CONVEXITY 51

Theorem 2.1.1 Let L be a linear subspace of Rn. Then
(i) There exist finite collections x1, ..., xk which span L and are “minimal” in this respect

(i.e., such that eliminating from the collection one or more elements, the remaining vectors do
not span L). All minimal finite collections of vectors spanning L are comprised of distinct from
each other nonzero vectors and have the same cardinality, called the dimension of L (notation:
dim L), and are called linear bases of L. (ii) A collection x1, ..., xk of k vectors from L is a
linear basis in L if and only if this collection possesses one of the following equivalent to each
other properties:

(i.1) The collection spans L, and the vectors of the collection are linearly independent;
(i.2) The vectors x1, ..., xk form a maximal w.r.t. inclusion linearly independent collection of

vectors from L, that is, x1, ..., xk are linearly independent, but adding to the collection one more
vector xk+1 from L yields a linearly dependent collection of vectors;

(i.3) Every vector x from L admits exactly one representation as a linear combination of
vectors x1, ..., xk, that is, for every x there exists exactly one collection of coefficients λ1, ..., λk
(called the coordinates of x in the basis x1, ..., xk) such that x =

∑k
i=1 λixi.

(iii) One has L = Lin(X) for certain X iff L admits a linear basis comprised of vectors from
X.

(iv) For every n × n nonsingular matrix A, vectors Ax1, ..., Axk form a basis in the image
AL = {Ax : x ∈ L} of L under the linear mapping x 7→ Ax iff x1, ..., xk form a basis in L.

The dimension of a linear subspace satisfies several basic relations:

(a) 0 ≤ dim L ≤ n
(b) L1 ⊂ L2 ⇒ dim L1 ≤ dim L2, the inequality being strict unless L1 = L2

(c) dim (L1 + L2) + dim (L1 ∩ L2) = dim L1 + dim L2

(d) dim L+ dim L⊥ = n
(e) dim (AL) ≤ dim L, with equality when A is square and nonsingular
(f) dim (L1 × ...× Lk) = dim L1 + ...+ dim Lk

(2.1.3)

where L,L1, L2 ⊂ Rn (in (a-e)) and Li ⊂ Rni (in (f)) are linear subspaces.

Examples: • dim Rn = n, and Rn is the only subspace of Rn of dimension n. Bases in Rn are
exactly the collections of n linearly independent vectors (or, if your prefer, collections of columns
of n×n nonsingular matrices), e.g., the standard basis comprised of basic orths e1, ..., en, where
ei has a single nonzero entry, equal to 1, namely, in the position i. The coordinates of x ∈ Rn

in this standard basis are just the entries of x.
• dim {0} = 0, and {0} is the only subspace of Rn of dimension 0. The only basis of {0} is the
empty set.
• The dimensions of all proper (distinct from {0} and Rn) linear subspaces of Rn are integers
≥ 1 and ≤ n− 1.
• The dimension of the solution set L = {x : Ax = 0} of a system of m linear equations with n
variables x is n−RankA. One way to see it is to note that this solution set is nothing but the
orthogonal complement to the linear span of the (transposes of the) rows of A; the dimension
of this span is Rank(A) (definition of rank), and it remains to use the rule (2.1.3.d).

“Inner” and “outer” description of a linear subspace

We have seen that a linear subspace L ⊂ Rn of dimension k can be specified (in fact, in many
ways, unless L = {0}) by a finite set which spans L. This is a kind of an “inner” description of

52 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

L: in order to get L, one starts with a finite number of vectors from L and then augments them
by all their linear combinations.

There is another, equally universal way to specify a linear subspace: to point our a system
of homogeneous linear equations Ax = 0 such that the solution set of this system is exactly L:

Proposition 2.1.1 (i) L ⊂ Rn is a linear subspace if and only if L is a solution set of a (finite)
system of homogeneous linear equations Ax = 0; in particular, a linear subspace is a polyhedral
set.

(ii) When L is a linear subspace of RN , the relation L = {x : Ax = 0} holds true if and only
if the (transposes of the) rows of A span L⊥.

Proof. We have already seen that the solution set of a system of homogeneous linear equations
in variables x ∈ Rn is a linear subspace of Rn. Now let L be a linear subspace of Rn. It is
immediately seen (check it!) that

(!) If a1, ..., am span a linear subspace M , then the solution set of the system

aTi x = 0, i = 1, ...,m (∗)

is exactly M⊥.

It follows that choosing a1, ..., am to span L⊥, we get, as a solution set of (∗), the linear subspace
(L⊥)⊥ = L, where the concluding equality is nothing but (2.1.2.a). Thus, every linear subspace
L indeed can be represented as a solution set of (∗), provided that m and a1, ..., am are chosen
properly, namely, a1, ..., am span L⊥. To see that the latter condition is not only sufficient, but
also necessary for the solution set of (∗) to be L, note that when L = {x : aTi x = 0, i = 1, ...,m},
we definitely have ai ∈ L⊥, and all which remains to verify is that a1, ..., am not only belong
to L⊥, but also span this linear subspace. Indeed, let M := Lin{a1, ..., am}. By (!), we have
M⊥ = {x : aTi x = 0, i = 1, ...,m} = L, whence M = (M⊥)⊥ = L⊥, as claimed. 2

A representation L = {x : Ax = 0} of a linear subspace L is a kind of “outer” description of
L – one says that in order to get L we should delete from the entire space all points violating
one or more constraints in the system Ax = 0.

Comments. The fact that a linear subspace admits transparent “inner” and “outer” represen-
tations, whatever simple it looks, is crucial: in some situations, these are inner representations
which help to understand what is going on, while in other situations “outer” representations do
the work. For example, when passing from two linear subspaces L1, L2 to their sum L1 + L2,
an inner representation of the result is readily given by inner representations of the operands
(since the union of two finite sets, the first spanning L1 and the second spanning L2, clearly
spans L1 +L2); at the same time, there is no equally simple way to get an outer representation
of L1 + L2 from outer representations of the operands L1, L2. When passing from the sum of
two subspaces to their intersection L1 ∩ L2, the situation is reversed: the outer representation
of L1 ∩ L2 is readily given by those of L1 and L2 (put the systems of homogeneous equations
specifying L1 and L2 into a single system of equations), while there is no equally simple way
to build a spanning set for L1 ∩ L2, given spanning sets for L1 and L2. In the sequel, speaking
about entities more complicated than linear subspaces (affine spaces and polyhedral sets), we
will systematically look for both their “‘inner” and “outer” descriptions.

2.1. PRELIMINARIES: LINEAR AND AFFINE SUBSPACES, CONVEXITY 53

2.1.2 Affine Subspaces

Affine subspace: Definition, examples, “calculus”

Definition 2.1.1 [Affine subspace] A set M ⊂ Rm is called affine subspace, if it can be rep-
resented as a shift of a linear subspace: for properly chosen linear subspace L ⊂ Rn and point
a ∈ Rn we have

M = a+ L := {x = a+ y, y ∈ L} = {x : x− a ∈ L}. (2.1.4)

It is immediately seen (check it!) that the linear subspace L participating in (2.1.4) is uniquely
defined by M , specifically, L = {z = x − y : x, y ∈ M}; L is called the linear subspace parallel
to the affine subspace M . In contrast to L, the shift vector a in (2.1.4) is not uniquely defined
by M , and one can use in the role of a an arbitrary point from M (and only from M).

A linear subspace of Rn is a nonempty subset of Rn which is closed w.r.t. taking lin-
ear combinations of its elements. An affine subspace admits a similar description, with affine
combinations in the role of just linear ones.

Definition 2.1.2 [Affine combination] An affine combination of vectors x1, ..., xk is their linear
combination

∑k
i=1 λixi with unit sum of coefficients:

∑k
i=1 λi = 1.

The characteristic property of affine combinations as compared to plain linear ones is that when
all vectors participating in the combination are shifted by the same vector a, the combination
itself is shifted by the same vector:

k∑
i=1

λixi is affine combination of x1, ..., xk ⇔
k∑
i=1

λi(xi + a) =

(
k∑
i=1

λixi

)
+ a∀a.

Proposition 2.1.2 A subset M of Rn is an affine subspace iff it is nonempty and is closed
w.r.t. taking affine combinations of its elements.

Proof. Assume M is an affine subspace. Then it is nonempty and is representable as M = a+L
with L being a subspace. If now xi = a + ui, i = 1, ..., k, are points from M (so that ui ∈ L)
and λ1, ..., λk sum up to 1, then

∑k
i=1 λixi =

∑k
i=1 λiui + a, and

∑
i λiui ∈ L since L is a

linear subspace and ui ∈ L for all i. Thus, M is nonempty and is closed w.r.t. taking affine
combinations of its elements.

Vice versa, let M be nonempty and closed w.r.t. taking affine combinations of its elements,
and let us prove that thenM is an affine subspace. Let us fix a point a inM (this is possible, since
M is nonempty), and let L = M−a = {y−a : y ∈M}. All we need to prove is that L is a linear
subspace, that is, that L is nonempty (which is evident, since 0 = a− a ∈ L due to a ∈M) and
is closed w.r.t. taking linear combinations. Indeed, when x1, ..., xk ∈ L (that is, yi = xi+a ∈M
for all i) and µi are reals, we have x =

∑
i
µixi =

∑
i
µi(yi − a) = (1 −

∑
i µi)a +

∑
i µiyi − a.

Since a ∈ M and all yi ∈ M , the combination y = (1 −
∑

i µi)a +
∑

i µiyi (which clearly has
coefficients summing up to 1) is an affine combination of vectors from M and as such belongs
to M . We see that x = y− a with certain y ∈M , that is, x ∈ L. Thus, L indeed is a nonempty
subset of Rn closed w.r.t. taking linear combinations of its elements. 2

Exercise 2.1 Proposition 2.1.2 states that a nonempty subset M of Rn closed w.r.t. taking
affine combinations of its elements is an affine subspace. Prove that the conclusion remains

54 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

true when closedness w.r.t. taking all affine combinations of the elements of M is weakened
to closedness with taking only two-term affine combinations λx + (1 − λ)y of elements of M .
Geometrically: a nonempty subset M of Rn is an affine subspace if and only if along with every
two distinct point x, y ∈M , M contains the entire line passing through these points.

Examples of affine subspaces in Rn:

• The entire Rn is an affine subspace; its parallel linear subspace also is Rn, and the shift
point a can be chosen as any vector;

• A singleton {a}, with a ∈ Rn, is an affine subspace; the shift vector is a, the parallel linear
subspace is {0};

• The solution set of a solvable system of linear equations in variable x ∈ Rn is an affine
subspace in Rn:

M := {x : Ax = b} 6= ∅ ⇒ M is an affine subspace

Indeed, as Linear Algebra teaches us, “the general solution to a system of linear equa-
tions is the sum of its particular solution and the general solution to the corresponding
homogeneous system:” is a solves Ax = b and L = {x : Ax = 0} is the solution set of the
corresponding homogeneous system, then

M := {x : Ax = b} = a+ L,

and L is a linear subspace by its origin. Thus, a (nonempty) solution set of a system of
linear equations indeed is an affine subspace, with the parallel linear subspace being the
solution of set of the corresponding homogeneous system.

Note that the reasoning in the latter example can be inverted: if L = {x : Ax = 0} and a ∈ Rn,
then a + L = {x : Ax = b := Aa}, that is, every shift of the solution set of a homogeneous
system of linear equations is the set of solutions to the corresponding inhomogeneous system
with properly chosen right hand side. Recalling that linear subspaces in Rn are exactly the same
as solution sets of homogeneous systems of linear equations, we conclude that affine subspaces of
Rn are nothing but the solution sets of solvable systems of linear equations in variable x ∈ Rn,
and in particular every affine subspace is a polyhedral set.

“Calculus” of affine subspaces

Some of basic operations with linear subspaces can be extended to affine subspaces, specifically

1. Taking intersection: if M1,M2 are affine subspaces in Rn and their intersection is
nonempty, this intersection is an affine subspace. Moreover, if {Mα}α∈A is a whatever
family of affine subspaces and the set M =

⋂
α∈A

Mα is nonempty, it is an affine subspace.

Indeed, given a family of sets closed w.r.t. certain operation with elements of the set (e.g., taking

affine combination of the elements), their intersection clearly is closed w.r.t. the same operation;

thus, intersection of an arbitrary family of affine subspaces is closed w.r.t. taking affine combina-

tions of its elements. If, in addition, this intersection is nonempty, then it is an affine subspace

(Proposition 2.1.2).

2.1. PRELIMINARIES: LINEAR AND AFFINE SUBSPACES, CONVEXITY 55

2. Taking arithmetic sum: if M1,M2 are affine subspaces in Rn, so is the set M1 + M2 =
{x = x1 + x2 : x1 ∈M1, x2 ∈M2} (check it!)

3. Taking affine image: if M is a linear subspace in Rn, A is an m× n matrix and b ∈ Rm,
then the set AM + b := {Ax + b : x ∈ M} ⊂ Rm – the image of M under the affine
mapping x 7→ Ax+ b : Rn → Rm – is an affine subspace in Rm (check it!).
In particular, a shift M + b = {y = x+ b : x ∈M} (b ∈ Rn) of an affine subspace M ⊂ Rn

is an affine subspace.

4. Taking inverse affine image: if M is a linear subspace in Rn, A is an n × k matrix, and
b ∈ Rn and the set {y ∈ Rk : Ay + b ∈ M} – the inverse image of L under the affine
mapping y 7→ Ay + b : Rk → Rn – is nonempty, then this inverse image is an affine
subspace in Rk (check it!)

5. Taking direct product: if Mi ⊂ Rni are affine subspaces, i = 1, ..., k, then their direct
product M1 × ...×Mk is an affine subspace in Rn1+...+nk (check it!)

Affine subspace: affine span, affine dimension, affine independence, affine bases

Affine span. Recall that the linear span of a set X ⊂ Rn is the set comprised of all linear
combinations of elements from X, and this is the smallest w.r.t. inclusion linear subspace
containing X. Similarly, given a nonempty set X ⊂ Rn, we can form the set Aff(X) of all affine
combinations of elements of X. Since affine combination of affine combinations of elements of
X is again an affine combination of elements of X (check it!), Aff(X) is closed w.r.t. taking
affine combinations of its elements. Besides this, Aff(X) ⊃ X, since every x ∈ X is an affine
combination of elements from X: x = 1 ·x. Thus, Aff(X) is a nonempty set closed w.r.t. taking
affine combinations of its elements and thus is an affine subspace (Proposition 2.1.2). As we
have seen, this affine subspace contains X; it is clear (check it!) that Aff(X) is the smallest
w.r.t. inclusion affine subspace containing X:

∅ 6= X ⊂M, M is affine subspace⇒ X ⊂ Aff(X) ⊂M.

The set Aff(X) is called the affine span (or affine hull) of X; we say also that X affinely spans
an affine subspace M if M = Aff(X).

As it should be clear in advance, there is a tight relation between linear and affine spans:

Proposition 2.1.3 Let ∅ 6= X ⊂ Rn, and let a ∈ X. Then Aff(X) = a + Lin(X − a). In
particular, X affinely spans an affine subspace M if and only if X ∈ M and the set X − a, for
some (and then — for every) a ∈ X, linearly spans the linear subspace L to which M is parallel.

Proof. Let a ∈ X. By definition, Aff(X) is comprised of all vectors representable as x =∑k
i=1 λixi with some k, some xi ∈ X and some λi with

∑
i λi = 1; for x of the outlined form, we

have x−a =
k∑
i=1

λi(xi−a). In other words, the linear subspace L to which Aff(X) is parallel (this

linear subspace is exactly the set of all differences x − a with x ∈ Aff(X)) is exactly the set of
affine combinations of vectors from X−a. Since the latter set contains the origin (due to a ∈ X),
the set of all affine combinations of vectors from X−a is exactly the same as the set Lin(X−a)
of all linear combinations of the points from X − a (take a linear combination

∑
i µi(xi − a) of

vectors from X−a and rewrite it as the affine combination
∑

i µi(xi−a) + (1−
∑

i µi)(a−a) of

56 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

vectors from the same set X−a). Thus, L = Lin(X−a) and therefore Aff(X) = a+ Lin(X−a)
for whatever a ∈ X. 2

Affine independence. Recall that a collection of k ≥ 0 vectors x1, ..., xk is called linearly
independent iff the coefficients of a linear combination of x1, ..., xk are uniquely defined by the
value of this combination. The notion of affine independence mimics this approach: specifically,
a collection of k + 1 vectors x0, ..., xk is called affine independent, if the coefficients of every
affine combination of x0, ..., xk are uniquely defined by the value of this combination:

k∑
i=0

λixi =

k∑
i=0

µixi,
∑
i

λi =
∑
i

µi = 1⇒ λi = µi, 0 ≤ i ≤ k.

Equivalent definition of affine independence (check equivalency!) is: x0, ..., xk are affinely in-
dependent, if the only linear combination of x0, ...xk which is equal to 0 and has zero sum of
coefficients is the trivial combination:

k∑
i=0

λixi = 0,
k∑
i=0

λi = 0⇒ λi = 0, 0 ≤ i ≤ k.

As it could be easily guessed, affine independence “reduces” to linear one:

Lemma 2.1.1 Let k ≥ 0, and let x0, ..., xk be a collection of k+1 vectors from Rn. This collec-
tion is affinely independent iff the collection x1− x0, x2− x0, ..., xk − x0 is linearly independent.

Proof of Lemma: There is nothing to prove when k = 0, since in this case the system of
vectors x1 − x0, ..., xk − x0 is empty and thus is linearly independent, and at the same time the
only solution of the system

∑0
i=0 λixi = 0,

∑0
i=0 λi = 0 is λ0 = 0. Now let k ≥ 1. Assuming

the vectors x1 − x0, ..., xk − x0 are linearly dependent, there exists nonzero µ = [µ1; ...;µk] with∑k
i=1 µi(xi − x0) = 0, we get a nontrivial solution λ0 = −

∑k
i=1 µi, λ1 = µ1, ..., λk = µk to the

system
k∑
i=0

λixi = 0,
k∑
i=0

λi = 0 (∗)

that is, x0, ..., xk are not affinely independent. Vice versa, assuming that x0, ..., xk are not affinely
independent, (∗) has a nontrivial solution λ0, ..., λk. Setting µi = λi, 1 ≤ i ≤ k, and taking into
account that λ0 = −

∑k
i=1 λi by the last – the scalar – equality in (∗), the first equality in (∗)

reads
∑k

i=1 µi(xi − x0) = 0. Note that not all µi = λi, i = 1, ..., k, are zeros (since otherwise we

would have also λ0 = −
∑k

i=1 λi = 0, that is, λ0, ..., λk are zeros, which is not the case). Thus, if
x0, ..., xk are not affinely independent, x1 − x0, ..., xk − x0 are not linearly independent. Lemma
is proved. 2

Affine dimension and affine bases. By definition, the affine dimension of an affine subspace
M = a + L is the linear dimension of the parallel linear subspace L. It is also convenient to
define affine dimension of an arbitrary nonempty set X ⊂ Rn as the affine dimension of the affine
subspace Aff(X). In our course, we will not use any other notion of dimension, and therefore
from now on, speaking about affine dimension of a set, we shall skip the adjective and call it
simply “dimension”.

2.1. PRELIMINARIES: LINEAR AND AFFINE SUBSPACES, CONVEXITY 57

Remark: The above definitions and convention should be checked for consistency,
since with them, some sets (namely, affine subspaces M) are within the scope of two
definitions of affine dimension: the first definition, applicable to affine subspaces, says
that the affine dimension of an affine subspace M is the dimension of the parallel
linear subspace, and the second definition, applicable to all nonempty sets, says that
the affine dimension of M is the affine dimension of Aff(M), i.e., is the dimension
of the linear subspace parallel to Aff(M). Fortunately, these two definitions are
consistent in the intersection of their scopes: sinceM = Aff(M) for an affine subspace
M , both definitions of the affine dimension for such an M say the same.

The convention to skip “affine” when speaking about affine dimension could have
its own potential dangers, since some sets – specifically, linear subspaces – again are
in the scope of two definitions of dimension: the first is the dimension of a linear
subspace L (the minimal cardinality of a spanning set of L) and the second is the
affine dimension of a nonempty set. Fortunately, here again the definitions coincide
in their common scope: affine dimension of a linear subspace L is, by definition,
the dimension of the linear subspace parallel to Aff(L); but for a linear subspace L,
Aff(L) = L and L is the linear subspace parallel to Aff(L), so that both definitions
again say the same.

The bottom line is that we have associated with every nonempty subset X of Rn its dimension
dim X, which is an integer between 0 and n. For a linear subspace X, the dimension is the
cardinality of a minimal finite subset of X which (linearly) spans X or, equivalently, the maximal
cardinality of linearly independent subsets of X; for an affine subspace X, the dimension is the
just defined dimension of the linear subspace parallel to X, and for an arbitrary nonempty subset
X of Rn the dimension is the just defined dimension of the affine span Aff(X) of X. When
X is in the scope of more than one definition, all applicable definitions of the dimension are
consistent with each other.

Affine bases. Let M = a + L be an affine subspace. We definitely can represent M as
Aff(X) for a nonempty set X (which usually can be chosen in many different ways), e.g., as
M = Aff(M). An immediate corollary of Theorem 2.1.1 and Proposition 2.1.3 is that M
can be represented as Aff(X) for a finite collection X = {x0, ..., xk} where k ≥ 0. Indeed,
by Proposition 2.1.3, a necessary and sufficient condition to have M = Aff({x0, x1, ..., xk}) is
x0 ∈M and Lin(X − x0) = L (check it!). In order to meet this condition, we can take as x0 an
arbitrary point of M and to select k and a finite set of vectors d1, ..., dk in such a way that this
set linearly spans L; setting xi = x0 + di, 1 ≤ i ≤ k, we get a finite set X = {x0, ..., xk} which
meets the above necessary and sufficient condition and thus affinely spans M . This reasoning
clearly can be inverted, leading to the following result:

Proposition 2.1.4 An affine subspace M = a + L is affinely spanned by a finite set X =
{x0, ..., xk} if and only if x0 ∈M and the k vectors x1 − x0, x2 − x0,...,xk − x0 linearly span L.
In particular, the minimal in cardinality subsets X = {x0, ..., xk} which affinely span M are of
cardinality k + 1 = dim M + 1 and are characterized by the inclusion x0 ∈M and the fact that
x1 − x0, ..., xk − x0 is a linear basis in L.

Note that “in particular” part of the latter statement is readily given by Theorem 2.1.1.
The minimal w.r.t. inclusion collections x0, x1, ..., xk of vectors from an affine subspace M

which affinely span M have a name – they are called affine bases of the affine subspace M . It is

58 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

a good and easy exercise to combine Proposition 2.1.4, Lemma 2.1.1 and Theorem 2.1.1 to get
the following “affine” version of the latter Theorem:

Theorem 2.1.2 Let M be an affine subspace of Rn. Then
(i) There exist finite collections x0, ..., xk which affinely span M and are “minimal” in this respect
(i.e., such that eliminating from the collection one or more elements, the remaining vectors do
not affinely span M). All minimal finite collections of vectors affinely spanning M are comprised
of distinct vectors from M and have the same cardinality, namely, dim M + 1; these collections
are called affine bases of M .
(ii) A collection x0, ..., xk of k + 1 vectors from M is an affine basis in M if and only if this
collection possesses one of the following equivalent to each other properties:

(ii.1) The collection affinely spans L, and the vectors of the collection are affinely independent;
(ii.2) The vectors x0, ..., xk form a maximal w.r.t. inclusion affinely independent collection

of vectors from M , that is, x0, ..., xk are affinely independent, but adding to the collection one
more vector xk+1 from M yields an affinely dependent collection of vectors;

(ii.3) Every vector x from M admits exactly one representation as an affine combination of
vectors x0, ..., xk, that is, for every x there exists exactly one collection of coefficients λ0, ..., λk
(called the affine coordinates of x in the affine basis x0, ..., xk) such that

∑k
i=0 λi = 1 and

x =
∑k

i=1 λixi.
(ii.4) The vectors x1 − x0, ..., xk − x0 form a linear basis in the linear subspace L to which

M is parallel.
(iii) One has M = Aff(X) for certain X iff M admits an affine basis comprised of vectors from
X.
(iv) Let A be an n× n nonsingular matrix. Vectors Ax0 + b, ..., Axk + b form an affine basis of
the image AM + b = {y = Ax+ b : x ∈ M} of M under the affine mapping x 7→ Ax+ b iff the
vectors x0, ..., xm form an affine basis in M .

The dimension, restricted onto affine subspaces, satisfies basic relations as follows (cf. (2.1.3)):

(a) 0 ≤ dim M ≤ n
(b) M1 ⊂M2 ⇒ dim M1 ≤ dim M2, the inequality being strict unless M1 = M2

(c) if M1 ∩M2 6= ∅, then dim (M1 +M2) + dim (M1 ∩M2) = dim M1 + dim M2

(d) dim (AM + b) ≤ dim M, with equality in the case when A is square and nonsingular,

(e) dim (M1 × ...×Mk) =
∑k

i=1 dim (Mi),
(2.1.5)

where M,M1,M2,Mi are affine subspaces. Pay attention to the premise M1 ∩M2 6= ∅ in (c).1

As about the dimension of arbitrary (nonempty) subsets X ⊂ Rn, seemingly the only “uni-
versal” facts here are as follows (check them!):

(a) ∅ 6= X ⊂ RN ⇒ dim X ∈ {0, 1, ..., n},
(b) ∅ 6= X ⊂ Y ⊂ Rn ⇒ dim X ≤ dim Y

(2.1.6)

1When M1 ∩ M2 = ∅, the conclusion in (c) does not make sense, since the dimension of an empty set is
undefined. There are good reasons for it; indeed, when trying to assign an empty set the dimension, we would
like to maintain its basic properties, e.g., to ensure the validity of (c) when M1 ∩M2 = ∅, and this clearly is
impossible: take two `-dimensional distinct from each other affine subspaces parallel to the same proper linear
subspace L of Rn: M1 = L + a, M2 = L + b, b 6∈ M1. Then M1 ∩ M2 = ∅, dim M1 = dim M2 = dim L,
dim (M1 +M2) = dim ([a+ b] + L) = dim L. We see that in order to meet the conclusion in (c), we should have
dim (∅) + dim L = 2 dim L, i.e., dim (∅) should be dim L. But the latter quantity depends on what is L, and thus
there is no meaningful way to assign ∅ a dimension.

2.1. PRELIMINARIES: LINEAR AND AFFINE SUBSPACES, CONVEXITY 59

Examples: • There exists exactly one affine subspace in Rn of the maximal possible dimension
n – this is the entire Rn. Affine bases in Rn are of the form a, a+ f1, ..., a+ fn, where a ∈ Rn

and f1, ..., fn are linearly independent.
• Unless n = 0, there exist many affine subspaces of the minimal possible dimension 0; these are
singletons M = {a}, a ∈ Rn. An affine basis in a singleton {a} is comprised of the only vector,
namely, a.
• Two types of affine subspaces have special names – lines and hyperplanes.
— A line ` ⊂ Rn is the affine span of two distinct points a, b: ` = {x = (1 − λ)a + λb, λ ∈
R} = {x = a+ λ(b− a), λ ∈ R}. The parallel linear subspace is one-dimensional and is linearly
spanned by b − a (same as by the difference of any other pair of two distinct points from the
line). Affine bases of ` are exactly pairs of distinct points from `.
— A hyperplane Π ⊂ Rn is an affine subspace of dimension n− 1, or, equivalently (why?), the
solution set of a single nontrivial (not all coefficients at the variables are zeros) linear equation
aTx = b.

“Inner” and “outer” description of an affine subspace

We have seen that an affine subspace M can be represented (usually, in many ways) as the
affine span of a finite collection of vectors x0, ..., xk, that is, represented as the set of all affine
combinations of vectors x0, ..., xk. This is an “inner” representation of an affine set M , and the
minimal k in such a representation is dim M .

An outer representation of an affine subspace M is its representation as the solution set of
a solvable system of linear equations:

M = {x : Ax = b}. (2.1.7)

As we have already seen, such a representation always is possible, and the rows of A in such
a representation always linearly span the orthogonal complement L⊥ of the linear subspace L
to which M is parallel. The minimal number of equations in a representation (2.1.7) of M is
dim L⊥ = n− dim L = n− dim M .

2.1.3 Convexity

Linear and affine subspaces of Rn we have studied so far are polyhedral sets, so that the family
of polyhedral sets in Rn is wider than the family of affine subspaces (which in turn is wider that
the family of linear subspaces). The family of convex sets in Rn is, in turn, wider than the family
of polyhedral sets, and convexity is, perhaps, the most important property of a polyhedral set.
In this section we intend to investigate convexity in more details, the rationale being twofold.
First, simple facts we are about to establish play important role in understanding the geometry
of polyhedral sets. Second, while polyhedral sets form only a tiny part of the family of convex
sets, this “tiny part” is representable: a significant part of the results on polyhedral sets can be
extended, sometimes with small modifications, on convex sets. In the sequel, we shall indicate
(without proofs) most important of these extensions, thus putting our results on polyhedral sets
in a proper perspective.

We have already defined the notion of a convex set and a convex function, and have claimed
that all polyhedral sets are convex, leaving the verification of this claim to the reader (see p.
29). For reader’s convenience, we start with reiterating the definitions and proving the above
claim.

60 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Definition 2.1.3 (i) Let X be a subset of Rn. We say that X is convex, if along with every
pair x, y of its points, X contains the segment linking these points:

∀(x, y ∈ X,λ ∈ [0, 1]) : (1− λ)x+ λy ∈ X.

(ii) Let f : Rn → R ∪ {∞} be a function. f is called convex if its epigraph – the set

Epi(f) = {[x; τ] ∈ Rn ×R : τ ≥ f(x)}

– is convex, or, equivalently (check equivalence!), for all x, y ∈ Rn and all λ ∈ [0, 1] it holds

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) 2

Examples. The most important for our purposes example of a convex set is a polyhedral one:

Proposition 2.1.5 [Convexity of a polyhedral set] Let X = {x : Ax ≤ b} be a polyhedral set in
Rn. Then X is convex.

Proof. Indeed, let x, y ∈ X and λ ∈ [0, 1]. Then Ax ≤ b, whence, A(1 − λ)x = (1 − λ)Ax ≤
(1 − λ)b due to λ ≤ 1, and Ay ≤ b, whence A(λy) ≤ λb due to λ ≥ 0. Summing up the
vector inequalities A(1 − λ)x ≤ (1 − λ)b and Aλy ≤ λb, we get A[(1 − λ)x + λy] ≤ b. Thus,
(1− λ)x+ λy ∈ X, and this is so whenever x, y ∈ X and λ ∈ [0, 1], meaning that X is convex.
2

Corollary 2.1.1 A polyhedrally representable function (see section 1.2.2) is convex.

Indeed, the epigraph of a polyhedrally representable function, by definition of polyhedral repre-
sentability and by Theorem 1.2.1, is a polyhedral set. 2

Recall that both Proposition 2.1.5 and Corollary 2.1.1 were announced already in Lecture 1.

Of course, there exist non-polyhedral convex sets, e.g., the Euclidean ball {x : ‖x‖22 ≤ 1},
same as there exist convex functions which are not polyhedrally representable, e.g., the Euclidean
norm f(x) = ‖x‖2. 3

“Calculus” of convex sets and functions

There are several important convexity-preserving operations with convex sets and convex func-
tions, quite similar to the calculus of polyhedral representability and, as far as sets are concerned,
to the calculus of linear/affine subspaces.

2To interpret the value of the right hand side when f(x), or f(y), or both is/are +∞, see the conventions on
the arithmetics of the extended real axis on p. 29

3Of course, both the convexity of Euclidean ball in Rn and the fact that this set is non-polyhedral unless n = 1,
need to be proved. We, however, can ignore this task – in our course, we are interested in what is polyhedral,
and not in what is not polyhedral.

2.1. PRELIMINARIES: LINEAR AND AFFINE SUBSPACES, CONVEXITY 61

Calculus of convex sets. The basic calculus rules are as follows (check their validity!):

1. Taking intersection: if X1, X2 are convex sets in Rn, so is their intersection X1 ∩X2. In
fact, the intersection

⋂
α∈A

Xα of a whatever family {Xα}α∈A of convex sets in Rn is a

convex set.

Note: the union of two convex sets most often than not is non-convex.

2. Taking arithmetic sum: if X1, X2 are convex sets Rn, so is the set X1+X2 = {x = x1+x2 :
x1 ∈ X1, x2 ∈ X2}.

3. Taking affine image: if X is a convex set in Rn, A is an m× n matrix, and b ∈ Rm, then
the set AX + b := {Ax + b : x ∈ X} ⊂ Rm – the image of X under the affine mapping
x 7→ Ax+ b : Rn → Rm – is a convex set in Rm.

4. Taking inverse affine image: if X is a convex set in Rn, A is an n× k matrix, and b ∈ Rm,
then the set {y ∈ Rk : Ay + b ∈ X} – the inverse image of X under the affine mapping
y 7→ Ay + b : Rk → Rn – is a convex set in Rk.

5. Taking direct product: if the sets Xi ⊂ Rni , 1 ≤ i ≤ k, are convex, so is their direct
product X1 × ...×Xk ⊂ Rn1+...+nk .

Calculus of convex functions. The basic rules (check their validity!) are:

1. Taking linear combinations with positive coefficients: if functions fi : Rn → R ∪ {+∞}
are convex and λi > 0, 1 ≤ i ≤ k, then the function f(x) =

∑k
i=1 λifi(x) is convex.

2. Direct summation: if functions fi : Rni → R ∪ {+∞}, 1 ≤ i ≤ k, are convex, so is their
direct sum

f([x1; ...;xk]) =

k∑
i=1

fi(x
i) : Rn1+...+nk → R ∪ {+∞}

3. Taking supremum: the supremum f(x) = sup
α∈A

fα(x) of a whatever (nonempty) family

{fα}α∈A of convex functions is convex.

4. Affine substitution of argument: if a function f(x) : Rn → R ∪ {+∞} is convex and
x = Ay + b : Rm → Rn is an affine mapping, then the function g(y) = f(Ay + b) : Rm →
R ∪ {+∞} is convex.

5. Theorem on superposition: Let fi(x) : Rn → R ∪ {+∞} be convex functions, and let
F (y) : Rm → R ∪ {+∞} be a convex function which is nondecreasing w.r.t. every one of
the variables y1, ..., ym. Then the superposition

g(x) =

{
F (f1(x), ..., fm(x)), fi(x) < +∞, 1 ≤ i ≤ m
+∞, otherwise

of F and f1, ..., fm is convex.

Note that if some of fi, say, f1, ..., fk, are affine, then the superposition theorem remains
valid when we require the monotonicity of F w.r.t. the variables yk+1, ..., ym only.

62 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Convex combinations and convex hull, dimension

A linear subspace is a nonempty set closed w.r.t. taking linear combinations of its elements; an
affine subspace is a nonempty set closed with respect to taking affine combinations of its elements.
Convex sets in Rn admit a similar characterization: these are subsets of Rn (not necessarily
nonempty) closed w.r.t. taking convex combinations of its elements, where a convex combination
of vectors x1, ..., xk is defined as their linear combination with nonnegative coefficients summing
up to one:

k∑
i=1

λixi is a convex combination of xi ⇔ λi ≥ 0, 1 ≤ i ≤ k, and

k∑
i=1

λi = 1.

Note that convexity of X, by definition, means closedness of x with respect to taking 2-term
convex combinations of its elements. It is an easy and simple exercises to check (do it!) that
the following two statements hold true:

Proposition 2.1.6 A set X ⊂ Rn is convex iff this set is closed w.r.t. taking all convex
combinations of its elements.

Corollary 2.1.2 [Jensen’s inequality] If f : Rn → R∪{∞} is a convex function, then the value
of f at a convex combination of points is ≤ the corresponding convex combination of the values
of f at the points: whenever x1, ..., xk ∈ Rn and λi ≥ 0, 1 ≤ i ≤ k, are such that

∑k
i=1 λi ≤ 1,

one has

f(
k∑
i=1

λixi) ≤
k∑
i=1

λif(xi).

Jensen’s inequality is one of the most useful tools in Mathematics.4

Given a set X ⊂ Rn, we can form a set comprised of all (finite) convex combinations of
vectors form X; this set is called the convex hull of X (notation: Conv(X)). Since a convex
combination of convex combinations of certain vectors is again a convex combination of these
vectors (why?), Conv(X) is a convex set; invoking Proposition 2.1.6, this is the smallest, w.r.t.
inclusion, convex set containing X:

X ⊂ Y, Y is convex ⇒ X ⊂ Conv(X) ⊂ Y.

Dimension. We have already assigned every nonempty subset X of Rn with dimension, de-
fined as affine dimension of Aff(X), or, equivalently, as linear dimension of the linear subspace
parallel to Aff(X); in particular, all nonempty convex sets in Rn are assigned with their dimen-
sions, which are integers from the range 0, 1, ..., n. Now, a set X of a large dimension can be
very “tiny”; e.g., taking the union of n+ 1 points affinely spanning Rn, we get a finite set X of
dimension n; clearly, in this case the dimension does not say much about how “massive” is our
set (and in fact has nothing in common with topological properties of the set). The situation
changes dramatically when the set X is convex; here the dimension, as defined above, quantifies
properly the “massiveness” of the set, due to the following result which we shall use on different
occasions in the sequel:

4A reader could ask how such an easy to prove fact as Jensen’s inequality could be that important. Well, it is
indeed easy to apply this tool; a nontrivial part of the job, if any, is to prove that the function the inequality is
applied to is convex.

2.1. PRELIMINARIES: LINEAR AND AFFINE SUBSPACES, CONVEXITY 63

Theorem 2.1.3 Let X be a nonempty convex set in Rn. Then X has a nonempty interior in
its affine span: there exists x̄ ∈ X and r > 0 such that

y ∈ Aff(X), ‖y − x̄‖2 ≤ r ⇒ y ∈ X.

In particular, if X is full-dimensional (i.e., dim X = n, or, which is the same, Aff(X) = Rn),
then X contains a Euclidean ball of positive radius.

Proof. Let M = Aff(X). When k := dim M = 0, we have X = M = {a}, and we can take x̄ = a
and, say, r = 1. Now let k > 0. By Theorem 2.1.2.(iii), we can find a collection x0, x1, ..., xk of
points from X which is an affine basis of M , meaning, by item (ii) of the same Theorem, that
every vector from M can be represented, in a unique way, as an affine combination of vectors
x0, ..., xk. In other words, the system of linear equations in variables λ0, ..., λk:∑k

i=0 λixi = x∑k
i=0 λi = 1

(2.1.8)

has a solution if and only if x ∈ M , and this solution is unique. Now, Linear Algebra says
that in such a situation the solution λ = λ(x) is a continuous function of x ∈ M . Setting
x̄ = 1

k+1

∑k
i=0 xi, the solution is λ(x̄) = [1/(k + 1); ...1/(k + 1)], that is, it is strictly positive;

by continuity, there is a neighborhood of positive radius r of x̄ in M where the solution is
nonnegative:

x ∈M, ‖x− x̄‖2 ≤ r ⇒ λ(x) ≥ 0.

Looking at our system, we see that all vectors x ∈M for which it has a nonnegative solution are
convex combinations of x0, ..., xk and thus belong to X (since X is convex and x0, ..., xk ∈ X).
Thus, X indeed contains a neighborhood of x̄ in M .

For those who do not remember why “Linear Algebra says...”, here is the reminder. System (2.1.8)
is solvable for x ∈ M 6= ∅ and the solution is unique, meaning that the matrix A = [[x0; 1], ..., [xk; 1]]
of the system has rank k + 1, and thus we can extract from A k + 1 rows which form a nonsingular
(k + 1) × (k + 1) submatrix Â. In other words, the solution, when it exists, is Â−1P (x), where P (x) is
the part of the right hand side vector [x; 1] in (2.1.8). Thus, the solution λ(x) is merely an affine function
of x ∈M , and thus is continuous in x ∈M . 2

“Inner” and “outer” representations of convex sets

An “inner” representation of a convex set X is its representation as a convex hull: to get X,
you should choose appropriately a set Y ⊂ Rn (e.g., Y = X) and augment it by all convex
combinations of elements of Y . While you indeed can get in this fashion a whatever convex set
in Rn, this result is incomparably less useful than its linear/affine subspace counterparts known
to us: in the latter case, the set of “generators” Y could be chosen to be finite and even not
too large (at most n elements in the case of a linear subspace and at most n+ 1 element in the
case of an affine subspace in Rn). In the convex case, a finite set of “generators” not always is
enough.

“Good” – closed – convex sets in Rn admit also “outer” description, specifically, a closed
convex set in Rn always is a solution set of a system aTi x ≤ bi, i = 1, 2, ... of countably many
nonstrict linear inequalities. Here again, the result is instructive, but incomparably less useful
than its linear/affine subspace counterparts, since our abilities to handle infinite (even countable)
systems of linear inequalities are severely restricted.

64 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

2.1.4 Cones

Cones: definition. An important for us particular type of convex sets is formed by cones.
By definition, a cone is a nonempty convex set X comprised of rays emanating from the origin,
that is, such that tx ∈ X whenever x ∈ X and t ≥ 0. An immediate observation (check it!) is
that X is a cone if and only if X is nonempty and is closed w.r.t. taking conic combinations
(linear combinations with nonnegative coefficients) of its elements.

Examples. Important for us will be polyhedral cones which, by definition, are the solution
sets of finite systems of homogeneous linear inequalities:

X is a polyhedral cone ⇔ ∃A : X = {x ∈ Rn : Ax ≤ 0}.

In particular, the nonnegative orthant Rn
+ = {x ∈ Rn : x ≥ 0} is a polyhedral cone.

“Calculus” of cones in its most important (and most elementary) part is as follows (check
the validity of the claims!):

1. Taking intersection: if X1, X2 are cones in Rn, so is their intersection X1 ∩ X2. In fact,
the intersection

⋂
α∈A

Xα of a whatever family {Xα}α∈A of cones in Rn is a cone;

2. Taking arithmetic sum: if X1, X2 are cones in Rn, so is the set X1 +X2 = {x = x1 + x2 :
x1 ∈ X1, x2 ∈ X2};

3. Taking linear image: if X is a cone in Rn and A is an m× n matrix, then the set AX :=
{Ax : x ∈ X} ⊂ Rm – the image of X under the linear mapping x 7→ Ax : Rn → Rm – is
a cone in Rm;

4. Taking inverse linear image: if X is a cone in Rn and A is an n× k matrix, then the set
{y ∈ Rk : Ay ∈ X} – the inverse image of X under the linear mapping y 7→ AyRk → Rn

– is a cone in Rk;

5. Taking direct products: if Xi ⊂ Rni are cones, 1 ≤ i ≤ k, so is the direct product
X1 × ...×Xk ⊂ Rn1+...+nk ;

6. Passing to the dual cone: if X is a cone in Rn, so is its dual cone defined as

X∗ = {y ∈ Rn : yTx ≥ 0 ∀x ∈ X}.

Conic hulls. Similarly to what we observed above, given a nonempty set X ⊂ Rn and taking
all conic combinations of vectors from X, we get a cone (called the conic hull of X, notation:
Cone (X)) which is the smallest, w.r.t. inclusion, among the cones containing X. For example,
the nonnegative orthant Rn

+ is the conic hull of the set comprised of all n basic orths in Rn.

2.2 Preparing Tools

In this section, we develop technical tools to be used later. Our ultimate goal is to prove the
following

2.2. PREPARING TOOLS 65

Theorem [Homogeneous Farkas Lemma] A vector a ∈ Rn is a conic combination of vectors
a1, ..., am ∈ Rn iff the linear inequality

aTx ≥ 0 (2.2.1)

is a consequence of the homogeneous system of linear inequalities

aTi x ≥ 0, i = 1, ...,m. (2.2.2)

in variables x, that is, iff every feasible solution x to the system satisfies (2.2.1).
This statement is the key which will unlock basically all the locks to be opened in the sequel.

2.2.1 Caratheodory Theorem

We start with the following statement, highly important by its own right:

Theorem 2.2.1 [Caratheodory Theorem] Let x, x1, ..., xk be vectors from Rn. If x is a convex
combination of vectors x1, ..., xk, then x is a convex combination of at most n+1 properly chosen
vectors from the collection x1, ..., xk.

Moreover, if the dimension of the set X = {x1, ..., xk} is m, then n+1 in the above conclusion
can be replaced with m+ 1.

Proof. Let us look at all possible representations x =
∑k

i=1 λixi of x as a convex combination
of vectors x1, ..., xk. We are given that the corresponding family is nonempty; then it definitely
contains a minimal in the number of actual terms (i.e., those with λi 6= 0) representation. All
we should prove is that the number of actual terms in this minimal representation is ≤ n + 1.
We can assume w.l.o.g. that the minimal representation in question is x =

∑s
i=1 λixi; from

minimality, of course, λi > 0, 1 ≤ i ≤ s. Assume, on the contrary to what should be proved,
that s > n+ 1, and let us lead this assumption to a contradiction. Indeed, when s > n+ 1, the
homogeneous system of linear equations∑s

i=1 δixi = 0 [n scalar equations]∑n
i=1 δi = 0 [1 scalar equation]

in s > n + 1 variables δ has more variables than equations and thus has a nontrivial (with not
all entries equal to zero) solution δ̄. Observe that we have

s∑
i=1

[λi + tδ̄i]︸ ︷︷ ︸
λi(t)

xi = x,
s∑
i=1

λi(t) = 1 (!)

for all t ≥ 0. Now, since
∑

i δ̄i = 0 and not all δ̄i are zeros, among the reals δ̄i are strictly negative,
meaning that for large enough values of t, not all of the coefficients λi(t) are nonnegative. At
the same time, when t = 0, these coefficients are positive. It follows that there exists the largest
t = t̄ ≥ 0 such that all λi(t) are still positive; and since for a larger value of t not all λi(t) are
positive, the nonnegative reals λi(t̄), i = 1, ..., s, include one or more zeros.5 When t = t̄, (!)
says that x is a convex combination of x1, ..., xs, the coefficients being λi(t̄); but some of these
coefficients are zeros, thus, we managed to represent x as a convex combination of less than
s of the vectors x1, ..., xk, which contradicts the origin of s. We have arrived at the required
contradiction.

5In fact we could, of course, skip this explanation and point out t̄ explicitly: t̄ = min
i:δ̄i<0

[−λi/δ̄i].

66 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

The second part of the statement is in fact nothing but the first part in a slight disguise.
Indeed, let M = a + L be the affine span of x1, ..., xk; then clearly x ∈ M . Shifting all vectors
x1, ..., xk, x by −a (which affects neither the premise, nor the conclusion of the statement we want
to prove), we can assume that the affine span of x1, ..., xk is the linear subspace L of dimension
m = dim {x1, ..., xk} to which M is parallel. Note that x ∈ L along with x1, ..., xk, and we lose
nothing when thinking about all vectors x, x1, ..., xk as of vectors in Rm (since as far as linear
operations are concerned – and these are the only operations underlying our assumptions and
targets) L is nothing but Rm. Invoking the already proved part of the statement, we arrive at
its remaining part.6 2

Remark 2.2.1 Note that the result stated in Caratheodory Theorem is sharp: without addi-
tional assumptions on x1, ..., xk, you cannot replace n+1 and m+1 with smaller numbers. E.g.,
given m ≤ n, consider collection of m+ 1 vectors in Rn as follows: x0 = 0, x1 = e1,...,xm = em,
where e1, ..., en are the basic orths (see p. 51). These vectors clearly are affine independent
(why?), so that dim {x0, x1, ..., xm} = m, and the vector x = 1

m+1 [x0 + ... + xm] – which is a
convex combination of x0, ..., xm – admits exactly one representation as an affine (and thus –
as a convex) combination of x0, ..., xm (Theorem 2.1.2). Thus, in any representation of x as
a convex combination of x0, x1, ..., xm all these m + 1 vectors should be present with positive
coefficients.

Illustration. Let us look at the following story:

In the nature, there are 26 “pure” types of tea, denoted A, B,..., Z; all other types
are mixtures of these “pure” types. What they sell in the market, are certain blends
of tea, not the pure types; there are totally 111 blends which are sold.

John prefers a specific blend of tea which is not sold in the market; from long
experience, he found that in order to get the blend he prefers, he can buy 93 of the
111 market blends and mix them in certain proportion.

An OR student (known to be good in this subject) pointed out that in fact John could
produce his favorite blend of tea by appropriate mixing of just 27 of the properly
selected market blends. Another OR student pointed out that only 26 of market
blends are enough, and the third student said that 24 also is enough. John did not
believe in neither of these recommendations, since no one of the students asked him
what his favorite blend is. Is John right?

The answer is that the first two students definitely are right, while the third cam be wrong. In-
deed, we can identify a unit (in weight) amount of a blend of tea with n = 26-dimensional vector
x = [xA;xB; ...;xZ], where entries in x are the weights of the corresponding pure component of
the blend; the resulting vector is nonnegative, and the sum of its entries equals to 1 (which is
the total weight of our unit of blend). With this identification, let x̄ be the blend preferred by
John, and let x1, ..., xN be the market blends (N = 111). What we know is that John can get a
unit amount of his favorite blend by buying marking blends in certain amounts λi, i = 1, ..., N ,

6We believe the concluding reasoning should be carried out exactly once; in the sequel in similar situations we
will just write “We can assume w.l.o.g. that the affine span of x1, ..., xk is the entire Rn.”

2.2. PREPARING TOOLS 67

and putting them together, that is, we know that

x̄ =

N∑
i=1

λix
i. (∗)

Of course, λi are nonnegative due to their origin; comparing “weights” (sums of entries) of the
right- and the left hand side in the vector equality (∗), we see that

∑
i λi = 1. Thus, the story

tells us that the 26-dimensional vector x̄ is a convex combination of N vectors x1, ..., xN . By
the first part of the Caratheodory Theorem, x can be represented as a convex combination of
26+1 = 27 properly chosen vectors xi, which justifies the conclusion of the first student. Noting
that in fact x1, ..., xN , x̄ belong to the hyperplane {x : xA + xB + ... + xZ = 1} in R26, we
conclude that the dimension of {x1, ..., xN} is at most the dimension of this hyperplane, which
is m = 25. Thus, the second part of Caratheodory Theorem says that just m+ 1 = 26 properly
chosen market blends will do, so that the second student is right as well. As about the third
student, whether he is right or not, it depends on what are the vectors x̄, x1, ..., xN . E.g., it
may happen than x̄ = x1 and John merely missed this fact – then the third student is right.
On the other hand, it may happen that x1, ..., xN are just the 26 “pure” teas (basic orths),
some of them repeated (who told us that the same blend cannot be sold under several different
names?). If every basic orth is present in the collection x1, ..., xN and the favorite blend of John
is x̄ = [1/26; ...; 1/26], it indeed can be obtained as mixture of market blends, but such a mixture
should contain at least 26 of these blends. Note that the third student would definitely be right
if the dimension of {x1, ..., xN} were < 24 (why?).

2.2.2 Radon Theorem

Theorem 2.2.2 [Radon Theorem] Let x1, ..., xk be a collection of k > n + 1 vectors from Rn.
Then one can split the index set I = {1, ..., k} into two nonempty and non-overlapping subsets
I1 and I2 such that the convex hulls of the sets {xi : i ∈ I1} and {xi : i ∈ I2} intersect.

Proof follows the same idea as for Caratheodory Theorem. Specifically, consider the homoge-
neous system of linear equations in variables δ1, ..., δk:∑k

i=1 δixi = 0 [n scalar equations]∑k
i=1 δi = 0 [1 scalar equation]

Since k ≥ n+2, the number of equations in this system is less than the number of variables; and
since the system is homogeneous, it therefore has a nontrivial solution δ̄. Now let I1 = {i : δi > 0}
and I2 = {i : δi ≤ 0}. The sets I1 and I2 clearly form a partition of I, and both of them are
nonempty; indeed, since

∑
i δ̄i = 0 and not all δ̄i are zeros, there definitely are strictly positive

and strictly negative among δ̄i.
Now let us set S =

∑
i∈I1 δ̄i. The equations from our system read∑

i∈I1 δ̄ixi =
∑

i∈I2 [−δ̄i]xi∑
i∈I1 δ̄i = S =

∑
i∈I2 [−δ̄i]

Setting λi = δ̄i/S, i ∈ I1, µi = −δ̄i/S, i ∈ I2, we get λi ≥ 0, µi ≥ 0, and the above reads∑
i∈I1 λixi =

∑
i∈I2 µixi∑

i∈I1 λi = 1 =
∑

i∈I2 µi

meaning that Conv{xi : i ∈ I1} ∩ Conv{xi : i ∈ I2} 6= ∅. 2

68 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

2.2.3 Helley Theorem

Theorem 2.2.3 [Helley Theorem] Let A1, ..., AN be nonempty convex sets in Rn.
(i) If every n+ 1 of the sets Ai have a point in common, then all N sets Ai have a point in

common.
(ii) If the dimension of A1 ∪ ... ∪ AN is m and every m + 1 of the sets Ai have a point in

common, then all N sets Ai have a point in common.

Proof. By exactly the same reasons as in the proof of Caratheodory Theorem, (ii) is a straight-
forward consequence of (i) (replace the “universe” Rn with Aff{

⋃
i
Ai}), so that all we need is

to prove (i). This will be done by induction in the number N of the sets. There is nothing to
prove when N ≤ n + 1; thus, all we need is to verify that the statement is true for a family of
N > n+ 1 convex sets Ai, given that the statement is true for every family of < N convex sets
(this is our inductive hypothesis). This is easy: let us form the N sets

B1 = A2 ∩A3 ∩ ... ∩AN , B2 = A1 ∩A3 ∩ ... ∩AN , ..., BN = A1 ∩A2 ∩ ... ∩AN−1

That is, Bi is the intersection of N − 1 sets A1, ..., Ai−1, Ai+1, ..., AN . By inductive hypothesis,
these sets are nonempty (and are convex along with A1, ..., AN). Let us choose in the (nonempty!)
set Bi a point xi, i = 1, ..., N , thus ending up with a collection x1, ..., xN of N > n + 1 points
from Rn. Applying Radon Theorem, we can split this collection into two parts with intersecting
convex hulls; to save notation – and of course w.l.o.g. – we can assume that this partition is
I1 = {1, ...,m}, I2 = {m+ 1, ..., N}, so that

∃b ∈ Conv{x1, ..., xm} ∩ Conv{xm+1, ..., xN}.

We claim that b ∈ Ai for all i, so that the intersection of all Ai is nonempty; this would complete
the inductive step and thus the proof of Helley Theorem. To justify our claim, note that when
i ≤ m, the point xi belongs to Bi and thus to every one of the sets Am+1, ..., AN (by construction
of Bi). Thus, every one of the points x1, ..., xm belongs to every set Ai with i > m; but then the
latter set, being convex, contains b ∈ Conv{x1, ..., xm}. The bottom line is that b ∈ Ai whenever
i > m. By “symmetric” reasoning, b ∈ Ai whenever i ≤ m. Indeed, whenever i > m, the point
xi belongs Bi and thus to every one of the sets A1, ..., Am (by construction of Bi). Thus, every
one of the points xm+1, ..., xN belongs to every set Ai with i ≤ m; being convex, the latter set
contains also the point b ∈ Conv{xm+1, ..., xN}, as claimed. 2

Remark 2.2.2 Note that the Helley Theorem is “as sharp as it could be:” we can easily
point out n + 1 nonempty convex sets A1, ..., An+1 in Rn such that every n of them have a
point in common, while the intersection of all n + 1 sets is empty. An example is given by
Ai = {x ∈ Rn : xi ≤ 0}, i = 1, ..., n, An+1 = {x ∈ Rn :

∑
i xi ≥ 1}.

Illustration 1: Let S be a set comprised of 1,000,000 distinct points on the axis and f(s) be
a real-valued function on this set. Assume that for every 7-point subset S′ of s there exists an
algebraic polynomial p(s) of degree ≤ 5 such that |p(s)− f(s)| ≤ 0.01 whenever s ∈ S′. We now
want to find a spline of degree ≤ 5 (a piecewise polynomial function on the axis with pieces –
algebraic polynomials of degree ≤ 5) which approximates f at every point of S within accuracy
0.01. How many pieces should we take?

2.2. PREPARING TOOLS 69

The answer is: just one. Indeed, we can identify a polynomial p(s) = p1 + p1s + ... + p5s
5

of degree ≤ 5 with its vector of coefficients [p0; ...; p5] ∈ R6. For a fixed s ∈ S, the set of
(vectors of coefficients) of polynomials which approximate f(s) within accuracy 0.01 is Ps =
{[p0; ...; p5] : |f(s)− p0 − p1s− ...− p5s

5| ≤ 0.01}; we see that the set is polyhedral and thus is
convex. What is given to us is that every 7 sets from the 1,000,000-set family {Ps : s ∈ S} have
a point in common. By Helley Theorem, all 1,000,000 sets have a point p∗ in common, and the
corresponding polynomial of degree ≤ 5 approximates f at every point from S within accuracy
0.01.

Illustration 2: The daily functioning of a plant is described by the system of linear constraints

(a) Ax ≤ f ∈ R10

(b) Bx ≥ d ∈ R2009

(c) Cx ≤ c ∈ R2000
(!)

Here

• x is the decision vector – production plan for the day;

• f is nonnegative vector of resources (money, manpower, electric power, etc.) available for
the day;

• d is the vector of daily demands on different kinds on plant’s production.

The plant works as follows. In the evening of day t− 1, the manager should order the resources
f for the next day; when doing so, he does not know exactly what will be the vector of demands
for the next day, but has a collection D = {d1, ..., d1,000,000} of 1,000,000 demand scenarios and
knows that the actual demand of day t will be a point from this set. The goal of the manager is
to order the resources f in the evening of day t−1 in such a way that when in the next morning
the actual vector of demands of day t will become known, it will be possible to find a production
plan x which satisfies the constraints (!).

Finally, the manager knows that every scenario demand di ∈ D can be “served,” in the
aforementioned sense, by properly chosen vector f i = [f i1; ...; f i10] ≥ 0 of resources at the cost∑10

j=1 cjf
i
j not exceeding $1 (cj ≥ 0 are given prices of the resources). How much money should

a smart manager spend on the next-day resources in order to guarantee that the tomorrow
demand will be satisfied?

The answer is: $ 11 is enough. Indeed, let Fi be the set of all resource vectors f ≥ 0
which allow to satisfy demand di ∈ D. This set is convex (check it!), and we know that
it contains a vector f i which costs at most $ 1. Now let Ai be the set of all nonnegative
resource vectors f which cost at most $ 11 and allow to satisfy the demand di. This set
also is convex (as the intersection of the convex set Fi and the polyhedral - and thus convex
– set {f : f ≥ 0, cT f ≤ 11}). We claim that every 11 of the convex sets Ai ⊂ R10 have
a point in common. Indeed, given these 11 sets Ai1 , ...Ai11 , consider the vector of resources
f = f i1 + ... + f i11 . Since f ip allows to satisfy the demand dip and f ≥ f ip , f allows to satisfy
the same demand as well (look at (!)); since every f ip costs at most $1, f costs at most $
11. Thus, f ≥ 0 allows to satisfy demand dip and costs at most $ 11 and this belongs to Aip ,
1 ≤ p ≤ 11. By Helley Theorem, all Ai have a point in common, let it be denoted f∗. By its
origin, this is a nonnegative vector with cost ≤ 11, and since it belongs to every Ai, it allows to
satisfy every demands di ∈ D.

70 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

2.2.4 Homogeneous Farkas Lemma

Consider the situation as follows: we are given a finite system of homogeneous linear inequalities

aTi x ≥ 0 i = 1, ...,m (2.2.3)

in variables x ∈ Rn, along with another homogeneous linear inequality

aTx ≥ 0 (2.2.4)

which we will call the target one. The question we are interested is: when (2.2.4) is a conse-
quence of the system (2.2.3), meaning that whenever x satisfies the system, it satisfies the target
inequality as well?

There is a trivial sufficient condition for the target inequality to be a consequence of the
system, specifically, the representability of the target inequality as a weighted sum, with non-
negative coefficients, of the inequalities form the system. Specifically, we have the following
observation:

Observation 2.2.1 If a is a conic combination of a1, ..., am:

∃λi ≥ 0 : a =
m∑
i=1

λiai, (2.2.5)

then the target inequality (2.2.4) is a consequence of the system (2.2.3).

Indeed, let λi be as in (2.2.5), and let x be a solution of (2.2.3). Multiplying the inequali-
ties aTi x ≥ 0 by the nonnegative weights λi and summing up, we get aTx ≡ [

∑
i λiai]

Tx =∑
i λia

T
i x ≥ 0. 2

The Homogeneous Farkas Lemma is an incomparably deeper result with states that the above
trivial sufficient condition is in fact necessary for the target inequality to be a consequence of
the system.

Theorem 2.2.4 [Homogeneous Farkas Lemma] The target inequality (2.2.4) is a consequence
of the system (2.2.3) iff a is a conic combination of a1, ..., am.

Equivalent, and sometimes more instructive, form of this statement reads:

It is easy to certify both that a is a conic combination of a1, ..., am, and that a is not
a conic combination of a1, ..., am:

— to certify the first fact, it suffices to point out nonnegative λi such that a =∑
i λiai;

— to certify the second fact, it suffices to point out x such that aTi x ≥ 0, i = 1, ...,m,
and aTx < 0.

a is a conic combination of a1, ..., am iff the certificate of the first kind exists, and a
is not a conic combination of a1, ..., am iff the certificate of the second kind exists.

Proof of HFL. We have already seen that if a is a conic combination of a1, ..., am, then the
target inequality is a consequence of the system. All we need is to prove the inverse statement:

(#) if the target inequality is a consequence of the system, then a is a conic combi-
nation of a1, ..., am.

2.2. PREPARING TOOLS 71

Intelligent proof of (#). Observe that the set X = {x =
∑m

i=1 λiai : λi ≥ 0} is polyhedrally
representable: K = {x : ∃λ : x =

∑
i λiai, λ ≥ 0} and as such is polyhedral (Fourier-Motzkin

elmination, Theorem 1.2.1):

X = {x ∈ Rn : dT` x ≥ δ`, ` = 1, ..., L} (∗)

for some d`, δ`; observe that δ` ≤ 0 due to the evident inclusion 0 ∈ X. Now let the target
inequality aTx ≥ 0 be a consequence of the system aTi x ≥ 0, 1 ≤ i ≤ m, and let us lead to
contradiction the assumption that a is not a conic combination of ai, or, which is the same, the
assumption that a 6∈ X. Assuming a 6∈ X and looking at (∗), there exists `∗ such that dT`∗a < δ`∗ ,

and thus dT`∗a < 0 due to δ`∗ ≤ 0. On the other hand, we have λai ∈ X for all λ ≥ 0 and all i,

meaning that λdT`∗ai ≥ δ`∗ for all λ ≥ 0 and all i, whence dT`∗ai ≥ 0 for all i (look what happens

when λ → +∞). Thus, d`∗ satisfies the system aTi x ≥ 0, 1 ≤ i ≤ m, and violates the target
inequality aTx ≥ 0, which under the premise of (#) is impossible; we have arrived at a desired
contradiction. 2

Alternative proof of (#) based on Helley Theorem. There is nothing to prove when
a = 0, since then a indeed is a conic combination of a1, ..., am. Thus, from now on we assume that
a 6= 0 and that (2.2.4) is a consequence of (2.2.3); our goal is to derive from these assumptions
that a is a conic combination of a1, ..., am.

10. Let us set Ai = {x ∈ Rn : aTi x ≥ 0, aTx = −1}. Note that every Ai is a polyhedral
set and as such is convex (perhaps, empty) and that the intersection of all m sets A1, ..., Am
definitely is empty (indeed, a vector x from this intersection, if exists, solves the system and
does not solve the target inequality, which is impossible). Let us extract from the family of
sets A1, ..., Am with empty intersection a minimal, w.r.t. inclusion, subfamily with the same
property. W.l.o.g. we can assume that this subfamily is A1, ..., Ak. Thus, k ≥ 1, the intersection
of A1, ..., Ak is empty, and either k = 1 (meaning that A1 is empty), or the intersection of every
k − 1 sets from A1, ..., Ak is nonempty.

20 We claim that a ∈ L := Lin{a1, ..., ak}. Indeed, otherwise a has a nonzero projection
h onto L⊥, so that hTai = 0, i = 1, ..., k, and hTa = hTh > 0. Setting x = − 1

hT h
h, we get

aTi x = 0, 1 ≤ i ≤ k, and aTx = −1; thus, h belongs to A1,..., Ak, and these sets have a point in
common, which in fact is not the case.

30. We claim – and this is the central component of the proof – that a1, ..., ak are linearly
independent, or, which is the same, that dim L = k. Since L is linearly spanned by a1,...,ak,
the only alternative to dim L = k is dim L < k; we assume that the latter is the case, and let
us lead this assumption to a contradiction. Observe, first, that k > 1, since otherwise L = {0}
due to dim L < k, implying that a = 0 (we already know that a ∈ L), which is not the case.
Further, consider the hyperplane Π = {x ∈ L : aTx = −1} in L. Since 0 6= a ∈ L, Π indeed
is a hyperplane, and thus dim P = dim L − 1 < k − 1. Now, the orthogonal projections Bi of
the sets Ai = {x : aTi x ≥ 0, aTx = −1} onto L, 1 ≤ i ≤ k, clearly belong to Π and to Ai (since
when projecting orthogonally x ∈ Ai onto L the inner products with a and ai remain intact
due to a ∈ L, ai ∈ L). Bi, i = 1, ..., k ≥ 1, are convex subsets of Π, and the intersection of
every k − 1 > 0 of the sets Bi is nonempty (indeed, it contains the projection onto L of every
point from the intersection of the corresponding Ai, and this intersection is nonempty). Since
dim P + 1 < k, we conclude that the intersection of every dim P + 1 of the sets B1, ..., Bk is
nonempty, whence the intersection of all k of the sets b1, ..., bk is nonempty (Helley Theorem).

72 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Recalling that Bi ⊂ Ai, we conclude that the intersection of A1, ..., Ak is nonempty, which is a
desired contradiction (recall how k and A1, ..., Ak were chosen).

40. Now it is easy to complete the proof. By 20, a ∈ L = Lin{a1, ..., ak}, that is, a =∑k
i=1 λiai with certain λi; we are about to prove that all λi here are nonnegative, which will

bring us to our goal – to prove that a is a conic combination of a1, ..., am. In order to verify that
λi ≥ 0, 1 ≤ i ≤ k, assume, on the contrary, that not all λi are nonnegative, say, that λ1 < 0.
Since a1, ..., ak are linearly independent by 30, by Linear Algebra there exists a vector x̄ ∈ Rn

such that aT1 x̄ = 1/|λ1|, aT2 x̄ = 0,...,aTk x̄ = 0. We have aT x̄ =
∑
i
λia

T
i x̄ = λ1/|λ1| = −1, while,

by construction, aTi x̄ ≥ 0, i = 1, ..., k. We see that x̄ ∈ A1∩...∩Ak, which is impossible, since the
right hand side intersection is empty. Thus, assuming that not all of λ1, ..., λk are nonnegative,
we arrive at a contradiction. 2

The HFL is the key instrument in our further developments. As for now, here is one of
fundamental results readily given by HFL (in fact, this result is an equivalent reformulation of
HFL):

Theorem 2.2.5 Let K = {x ∈ Rn : Ax ≤ 0} be a polyhedral cone, and K∗ be its dual cone:

K∗ = {y ∈ Rn : yTx ≥ 0 ∀x ∈ K}.

Then K∗ is the conic hull of the (transposes of the) rows of −A:

K∗ = {y = ATλ : λ ≤ 0}. (2.2.6)

In particular, K is the cone dual to K∗:

K = {x ∈ Rn : xT y ≥ 0 ∀y ∈ K∗}.

Proof. Let the rows of A be aT1 , ..., a
T
m. By definition, vectors a ∈ K∗ are vectors which

have nonnegative inner products with all vectors from K, that is, with all vectors which have
nonnegative inner products with the vectors −a1, ...,−am. Equivalently: a ∈ K∗ is and only if
the linear inequality aTx ≥ 0 is a consequence of the system of linear inequalities −aTi x ≥ 0,
i = 1, ...,m. By HFL, this is the case if and only if a is a conic combination of −a1, ...,−ak,
and we arrive at (2.2.6). To get the “in particular” part of the statement, note that in view of
(2.2.6) we have

(K∗)∗ = {x : xTATλ ≥ 0 ∀λ ≤ 0} = {x : λT [Ax] ≥ 0 ∀λ ≤ 0} =︸︷︷︸
(∗)

{x : Ax ≤ 0} = K,

where (∗) is given by the following evident observation: a vector has nonnegative inner products
with all vectors which are ≤ 0 if and only if this vector itself is ≤ 0. 2

Note that the relation (K∗)∗ = K is in fact true for all closed cones, not necessarily polyhedral
ones; this is a far-reaching extension of the rule (L⊥)⊥ = L for linear subspaces L (note that a
linear subspace is a very special case of a cone, and the cone dual to a linear subspace L is L⊥

(why?)).

2.3. FACES, VERTICES, RECESSIVE DIRECTIONS, EXTREME RAYS 73

2.3 Faces, Vertices, Recessive Directions, Extreme Rays

In this section, we prepare tools which will allow us to prove Theorem on the Structure of a
Polyhedral Set announced at the beginning of lecture. We focus on a polyhedral set

X = {x ∈ Rn : Ax ≤ b} , A =

 aT1
· · ·
aTm

 ∈ Rm×n. (2.3.1)

Unless otherwise is explicitly stated, we assume in the sequel that X is nonempty, denote by M
the affine span of X:

M = Aff(X),

and denote by I the set of indices of the constraints: I = {1, 2, ...,m}.

2.3.1 Faces

A face of the nonempty polyhedral set X given by (2.3.1), by definition, is a nonempty subset
of X comprised of all points where the inequalities aTi x ≤ bi with indices from certain subset I
of I are satisfied as equalities (“are active” in the optimization slang). Thus, a face of X is a
nonempty subset of X which can be represented as

XI =

{
x :

aTi x = bi, i ∈ I
aTi x ≤ bi, i ∈ I

}
, (2.3.2)

where I is a subset of the set I = {1, ...,m} of indices of the linear inequalities defining X, and
I is the complement of I in I. Note that by (2.3.2),
• a face XI of a nonempty polyhedral set is itself a nonempty polyhedral set, and
• the intersection of two faces XI1 , XI2 of X is the set XI1∪I2 , and thus is a face of X,

provided that it is nonempty.
Besides this, we have the following:
• A face of a face XI of a polyhedral set X can be represented as a face of X itself.
Indeed, XI can be represented as the polyhedral set

XI =

x ∈ Rn :

aTi x ≤ bi, i ∈ I
−aTi x ≤ −bi, i ∈ I
aTi x ≤ bi, i ∈ I

By definition, a face of the latter polyhedral set is obtained from the above description by
replacing some of the inequalities with their equality versions in such a way that the resulting
system of inequalities and equalities is feasible. When turning one of the inequalities aTi x ≤ bi,
i ∈ I, or −aTi xi ≤ −bi, i ∈ I, into an equality, we do not change XI , so that we lose nothing
by assuming that the inequalities we are turning into equalities to get a face of XI are from the
group aTi x ≤ bi, i ∈ I; in the latter case, the result is as if we were replacing with equalities
some of the inequalities defining X, so that the result, being nonempty, indeed is a face of X.
Warning: For the time being, our definition of a face of a polyhedral set is not geometric: a
face is defined in terms of a particular description of X by a system of linear inequalities rather
than in terms of X itself. This is where “can be represented as a face” instead of “is a face” in
the latter statement. In the mean time we shall see that faces can be defined solely in terms of
X.

74 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Example. Consider the standard simplex

∆n = {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n,
∑

i xi ≤ 1}[
in the format of (2.3.1): m = n+ 1, ai = −ei,

bi = 0 for i = 1, ..., n , am+1 = [1; ...; 1], bm+1 = 1

]
(2.3.3)

In this case, every subset I of I = {1, ..., n+ 1}, except for I itself, defines a face of
∆n; such a face is comprised of all points from ∆n which have prescribed coordinates
equal to zero (indices of these coordinates form the intersection of I with {1, ..., n}),
and perhaps the unit sum of entries (the latter is the case when n+ 1 ∈ I).

According to our definition, the entire X is a face of itself (this face corresponds to I = ∅).
All faces which are distinct from X (and thus form proper — distinct from the entire X and
from ∅ – subsets of X) are called proper. E.g., all faces of the standard simplex ∆n (n > 0)
corresponding to proper (I 6= ∅, I 6= I) subset I of I are proper.

Proposition 2.3.1 Let X be a nonempty polyhedral set given by (2.3.1. Then every proper face
XI of X has dimension strictly less than the one of X.

Proof. Let XI be a proper face of X; then definitely I 6= ∅. Let us look at the linear equations
aTi x = bi, i ∈ I. If every one of these equations is satisfied by all points from M = Aff(X),
then it is satisfied everywhere on X, whence, comparing (2.3.2) and (2.3.1), XI = X, which
is impossible, since XI is a proper face of X. Thus, there exists i = i∗ such that the linear
equation aTi∗x = bi, which is satisfied everywhere on XI , is violated somewhere on M . Setting
M+ = {x ∈ M : aTi∗x = bi}, we get a nonempty set (it contains XI which is nonempty) and as
such is an affine subspace (since it is a nonempty intersection of two affine subspaces M and
{x : aTi∗x = bi∗}). Since M+ ⊂ M by construction and M+ 6= M , we have dim M+ < dim M
(see (2.1.5.b)). It remains to note that XI ⊂ M+ due to XI ⊂ X ⊂ M and aTi∗x = bi∗ for all
x ∈ XI , whence dim XI ≤ dim M+ < dim M . 2

2.3.2 Vertices

Definition and characterization

The definition of a vertex is as follows:

Definition 2.3.1 A vertex (another name – an extreme point) of a nonempty polyhedral set X
given by (2.3.1) is a point v ∈ Rn such that the singleton {v} is a face of X.

This definition refers to the particular representation of the set X (since for the time being, the
notion of a face of X is defined in terms of the representation (2.3.1) of X rather than in terms
of X itself). It is easy, however, to express the notion of a vertex in terms of X. The next
proposition presents both algebraic and geometric characterizations of vertices.

Proposition 2.3.2 Let X ⊂ Rn be a nonempty polyhedral set given by (2.3.1).
(i) [algebraic characterization of vertices] A singleton {v} is a face of X if and only if v

satisfies all inequalities aTi x ≤ bi defining X and among those inequalities which are active (i.e.,
satisfied as equalities) at v there are n with linearly independent ai.

(ii) [geometric characterization of vertices] A point v is a vertex of X iff v ∈ X and from
v ± h ∈ X it follows that h = 0 (geometrically: v belongs to X and is not the midpoint of a
nontrivial – not reducing to a point – segment belonging to X).

2.3. FACES, VERTICES, RECESSIVE DIRECTIONS, EXTREME RAYS 75

Proof. (i): Let v be a vertex of X. By definition, this means that for a properly chosen I ⊂ I,
a is the unique solution of the system of equality and inequality constraints in variables x:

aTi x = bi, i ∈ I, aTi x ≤ bi, i ∈ I (∗)

W.l.o.g. we may assume that all inequalities aTi x ≤ bi, i ∈ I, are satisfied at v strictly (indeed,
otherwise we could move all indices i ∈ I with aTi v = bi into I; this transformation of the
partition I = I ∪ I keeps v a solution of the transformed system (∗) and can only decrease the
number of solutions to the system; thus, v is the unique solution to the transformed system).
Given that all the inequality constraints in (∗) are satisfied at v strictly, all we should verify
is that among the vectors ai, i ∈ I, there are n linearly independent. Assuming that it is not
the case, there exists a nonzero vector f which is orthogonal to all vectors ai, i ∈ I. Setting
vt = v + th, observe that for all small enough in modulus values of t vt solves (∗). Indeed,
the constraints in (∗) are satisfied when t = 0, whence the equality constraints aTi vt = bi,
i ∈ I, are satisfied for all t due to aTi h = 0, i ∈ I. The inequality constraints aTi vt ≤ bi,
i ∈ I, are satisfied strictly when t = 0, and therefore every one of them remains valid in an
appropriate neighborhood of t = 0; since the number of constraints is finite, there exists a single
neighborhood which “serves” in this sense all the constraints with i ∈ I. The bottom line is
that indeed vt solves (∗) for all t’s close enough to 0; since h 6= 0, we see that the solution to (∗)
is not unique, this arriving at the desired contradiction.

We have proved that if v is a vertex of X, then the characterization from (i) holds true.
To prove the inverse, assume that v ∈ X and that among the inequalities aTi x ≤ bi active at
v there are n with linearly independent ai. Denoting by I the set of indices of the active at v
inequalities, we have v ∈ XI and therefore XI is nonempty and thus is a face of X. It remains
to note that v is the only point in XI , since every point x in this set must satisfy the system of
equations

aTi x = bi, i ∈ I,

and the matrix of this system with n variables is of rank n, so that its solution (which does
exists – the system is solved by v!) is unique. (i) is proved.

(ii): Proof of (ii) more or less repeats the above reasoning. In one direction: let v be a vertex
of X. By (i), among the inequalities aTi v ≤ bi, i ∈ I, n inequalities with linearly independent
ai’s are equalities, let their indices form a set I. If now h is such that v ± h ∈ X, then one has
aTi [v ± h] ≤ bi, i ∈ I, which combines with aTi v = bi, i ∈ I, to imply that aTi h = 0 for all i ∈ I.
Since among the vectors ai, i ∈ I, there are n linearly independent (and thus spanning the entire
Rn), the only vectors h orthogonal to all ai, i ∈ I, is h = 0. Thus, if v is a vertex, then v ∈ X
and v ± h ∈ X implies that h = 0. To prove the inverse, let v ∈ X be such that v ± h ∈ X
implies that h = 0, and let us prove that v is a vertex. Indeed, let I be the set of indices of all
inequalities aTi x ≤ bi which are active at v. Assuming that there are no n linearly independent
among the vectors ai, i ∈ I, we can find a nonzero f which is orthogonal to all ai, i ∈ I, so
that all points vt = v + tf satisfy the inequalities aTi vt ≤ bi, i ∈ I. And since the inequalities
aTi x ≤ bi, i 6∈ I, are satisfied at v strictly (due to how we defined I), the points vt, same as in
the proof of (i), satisfy these inequalities for all t small enough in absolute value. The bottom
line is that under our assumption that the set of ai’s with i ∈ I does not contain n linearly
independent vectors, there exists small positive t and nonzero vector f such that v± tf satisfies
all inequalities in (2.3.1) and thus belongs to X; thus, with h = tf 6= 0 we have v ± h ∈ X,
which is impossible. We conclude that among ai’s with i ∈ I there are n linearly independent;
invoking (i), v is a vertex. 2

76 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Exercise 2.2 What are the vertices of the polyhedral set shown on figure 2.1.a)?
Answer: the vertices of the triangle shown on figure 2.1.b).

Corollary 2.3.1 The set of extreme points of a nonempty polyhedral set is finite.

Indeed, by Proposition 2.3.2, an extreme point should solve a subsystem of the m × n system
of linear equations Ax = b comprised of n linearly independent equations; the solution to such
a subsystem is unique, and the number of subsystems is finite. 2

Exercise 2.3 Prove the following claim:

Let v be a vertex of a polyhedral set X, and v =
∑k

i=1 λixi be a representation of v as
a convex combination of points xi ∈ X where all the coefficients are strictly positive.
Then xi = v for all i. As a corollary, whenever Conv(Y) ⊂ X and v ∈ Conv(Y), we
have v ∈ Y .

Exercise 2.4 Prove that whenever X1 ⊂ X2 are polyhedral sets, every extreme point of X2

which belongs to X1 is an extreme point of X1.

We add to the above results the following simple and important

Proposition 2.3.3 A vertex of a face of a nonempty polyhedral set X is a vertex of X itself.

Proof. We have seen that a face of a face XI of a polyhedral set X can be represented as a face
of X itself. It follows that a vertex of a face XI of X (which, by definition, is a singleton face
of XI) can be represented as a singleton face of X and thus is a vertex of X.

Discussion. The crucial role played by vertices of polyhedral sets stems from the facts (which
we shall prove in the mean time) that

A. Every bounded nonempty polyhedral set X is the convex full of the (finite, by Corollary
2.3.1) set of its extreme points; moreover, whenever X is represented as X = Conv(Y), Y
contains the set of extreme points of X.
We shall see also that extreme points form a basic “building block” in the description of an
arbitrary nonempty polyhedral set not containing lines, not necessarily a bounded one.

Note that the notion of an extreme point can be extended to the case of convex sets: an
extreme point of a convex set Q is a point v of Q which cannot be represented as a midpoint
of a nontrivial segment belonging to Q: v ∈ Q and v ± h ∈ Q implies that h = 0. The “convex
analogy” of A is the Krein-Milman Theorem: Every nonempty, bounded and closed convex set
Q in Rn is the convex hull of the set of its extreme points (which now can be infinite); moreover,
whenever Q = Conv(Y), Y contains all extreme points of Q.

B. If the feasible set of a solvable LO program (which always is a polyhedral set) does not
contain lines, than among the optimal solutions there are those which are vertices of the feasible
set;

C. Vertices of polyhedral set, their algebraic characterization as given by Proposition 2.3.2,
and Corollary 2.3.1 are instrumental for simplex-type algorithms of LO.

From the outlined (and many other similar) facts it should be clear that understanding the
structure of extreme points of a polyhedral set contributes a lot to understanding of this set and
to our abilities to work with it. As an instructive exercise, let us describe the extreme points of
two important families of polyhedral sets.

2.3. FACES, VERTICES, RECESSIVE DIRECTIONS, EXTREME RAYS 77

Example: Extreme points of the intersection of ‖ · ‖∞- and ‖ · ‖1 balls

Consider the polyhedral set

X =

{
x ∈ Rn : −1 ≤ xi ≤ 1, 1 ≤ i ≤ n,

∑
i

|xi| ≤ k

}
, (2.3.4)

where k is a nonnegative integer ≤ n.
Note: (2.3.4) is not a representation of X by a finite set of linear inequalities, since the

inequality
∑

i |xi| ≤ k is not linear. To get a polyhedral description of X, we should replace
this nonlinear inequality with the system of 2n linear inequalities

∑
i εixi ≤ k corresponding to

all collections of ±1 coefficients εi. We, however, have seen that a vertex of a polyhedral set
is a geometric notion – a notion which can be expressed solely in terms of the set X, without
referring to its polyhedral description.

Note also that geometrically, X is the intersection of the unit box B∞(1) = {x ∈ Rn : −1 ≤
xi ≤ 1∀i} and the `1-ball of radius k B1(k) = {x ∈ Rn :

∑k
i=1 |xi| ≤ k}.

We claim that the extreme points of X are nothing but the vectors from Rn with exactly k
nonzero coordinates, equal each either to 1, or to −1. Indeed,

(a) let v be a vector of the outlined type, and let us prove that it is an extreme point of X.
By Proposition 2.3.2.(ii) we should prove that if h is such that v ± h ∈ X, then h = 0. Indeed,
let v±h ∈ X and let I be the set of indices of the k nonzero coordinates of v. When i ∈ I, then
either vi = 1 – and then v± h ∈ X implies that 1 ≥ vi± hi = 1± hi, that is, hi = 0, or vi = −1,
and then v ± h ∈ X implies that −1 ≤ vi ± hi = −1± hi, and we again arrive at hi = 0. With
this in mind, v + h ∈ X implies that k +

∑
i 6∈I |hi| =

∑
i∈I |vi| +

∑
i 6∈I |hi| ≤ k, whence hi = 0

when i 6∈ I, meaning that h = 0, as required.
(b) let v be an extreme point of X, and let us prove that v has exactly k nonzero coordinates,

equal to ±1. Indeed, let J be the set of indices i for which vi is neither 1, nor −1. Observe that
J cannot have less than n−k indices, since otherwise v has > k coordinates of magnitude 1 and
thus does not belong to X (due to the constraint

∑
i |xi| ≤ k participating in the definition of

X). When J contains exactly n−k indices, the same constraint says that vi = 0 when i ∈ j, and
then v has exactly k nonzero entries, equal to ±1, which is what we claimed. It remains to verify
that J cannot contain more than n− k indices. Assuming that this is the case: CardJ > n− k,
note that then v has at least one entry which is neither −1, nor 1 (since n− k ≥ 0); w.l.o.g. we
can assume that this entry is v1. Since v ∈ X, this entry should belong to (−1, 1). Now, it may
happen that

∑
i |vi| < k. In this case the vectors [v1−δ; v2; ...; vn] and [v1+δ; v2; ...; vn] with small

enough positive delta belong to X, and thus v is the midpoint of a nontrivial segment belonging
to X, which is impossible. Thus,

∑
i |vi| = k. Since the number of entries of magnitude 1 in v

is ` = n − Card(J) < k, we have
∑

i∈J |vi| = k −
∑

i 6∈J |vi| = k − ` ≥ 1, and since |vi| < 1 for
i ∈ I, the relation

∑
i∈J |vi| ≥ 1 implies that at least two of the entries vi, i ∈ J , are nonzero

(and are of magnitude < 1, as all entries vi of v with indices from J). W.l.o.g. we can assume
that the two entries in question are v1 and v2: v1 6= 0, v2 6= 0, |v1| < 1, |v2| < 1. Then the
vectors [v1 − sign(v1)δ; v2 + sign(v2)δ; v3; ...; vn] and [v1 + sign(v1)δ; v2 − sign(v2)δ; v3; ...; vn] for
all small positive δ belong to X, and v again is a midpoint of a nontrivial segment belonging to
X, which is impossible. 2

Particular cases. When k = n, X is nothing but the unit box {x ∈ Rn : −1 ≤ xi ≤ 1, 1 ≤ i ≤
n}, and the above result reads: the vertices of the unit box are exactly the ±1 vectors. Similar

78 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

statement for an arbitrary box {x ∈ Rn : pi ≤ xi ≤ qi∀i ≤ n} which is nonempty (p ≤ q) reads:
the vertices of the box are all vectors v with “extreme” coordinates (i.e., vi = pi or vi = qi for
every i) (check it!)

When k = 1, X becomes the unit `1-ball {x ∈ Rn :
∑

i |xi| ≤ 1}, and our result reads: the
vertices of the unit `1-ball in Rn are exactly the 2n vectors ±ei, i = 1, ..., n (as always ei are
the basic orths).

Modifications. Slightly modifying the above reasoning, one arrives at the useful facts stated
in the following

Exercise 2.5 Verify that whenever k is an integer such that 1 ≤ k ≤ n, then
(i) The extreme points of the polyhedral set {x ∈ Rn : 0 ≤ xi ≤ 1, 1 ≤ i ≤ n,

∑
i xi ≤ k} are

exactly the Boolean vectors (i.e., vectors with coordinates 0 and 1) with at most k coordinates
equal to 1;

(ii) The extreme points of the polyhedral set {x ∈ Rn : 0 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑

i xi = k} are
exactly the Boolean vectors (i.e., vectors with coordinates 0 and 1) with exactly k coordinates
equal to 1.
Note that the second set is a face of the first one.

Example: Extreme points of the set of double stochastic matrices

An n× n matrix is called double stochastic, if its has nonnegative entries which sum up to 1 in
every row and every column. The set of these matrices is the subset

Πn = {x = [xij] ∈ Rn×n = Rn2
: xij ≥ 0∀i, j,

∑
i

xij = 1,
∑
j

xij = 1, ∀i, j};

we see that this is a polyhedral set in Rn2
= Rn×n given by n2 inequality constraints and 2n

equality constraints. In fact, we can reduce the number of equality constraints by 1 by dropping
one of them, say,

∑
i xi1 = 1; indeed, if the sum of xij in every row is 1, then the total sum of

entries is n; and if, in addition, the column sums in all columns except for the first one are equal
to 1, then the sum of entries in the first column automatically equals to n− (n− 1) = 1.

The following fact has an extremely wide variety of applications:

Theorem 2.3.1 [Birkhoff] The extreme points of the set of double stochastic n×n matrices are
exactly the n×n permutation matrices (exactly one nonzero entry, equal to 1, in every row and
every column).

Proof. The fact that permutation matrices are extreme points of the set Πn of double stochastic
matrices is easy: by the above result, these matrices are extreme points of the box {[xij] ∈ Rn×n :
0 ≤ xij ≤ 1 ∀i, j} which contains Πn, and it remains to use the statement of Exercise 2.4.

To prove that every vertex v of Πn is a permutation matrix, let us use induction in n. The
base n = 1 is evident: Π1 is a singleton {1}, and clearly 1 is the only extreme point of this set (see
geometric characterization of extreme points, Proposition 2.3.2.(ii)), and this indeed is an 1× 1
permutation matrix. Inductive step n−1⇒ n is as follows. Let v be an extreme point of Πn; as
it was already explained, we can think that the latter set is given by n2 inequalities xij ≥ 0 and

2n− 1 linear equality constraints. Since Π2 “lives” in Rn2
, algebraic characterization of vertices

(Proposition 2.3.2.(i)) says that n2 linearly independent constraints from the description of Πn

should become active at v. 2n − 1 linear equality constraints participating in the description

2.3. FACES, VERTICES, RECESSIVE DIRECTIONS, EXTREME RAYS 79

of Πn contribute 2n− 1 linearly independent active constraints, and the remaining n2 − 2n+ 1
active at v constraints should come from the n2 constraints xij ≥ 0. In other words, at least
n2− 2n+ 1 = (n− 1)2 entries in v are zeros. It follows that there is a column in v with at most
one nonzero entry, since otherwise the number of zero entries in every column were ≤ n − 2,
and the total number of zero entries would be n(n− 2) < (n− 1)2. Now let j1 be the index of
the column where v has at most one nonzero entry. Since the corresponding column sum is 1,
this “at most one nonzero entry” means “exactly one nonzero entry, equal to 1.” Since the row
sums in v are equal to 1 and the entries are nonnegative, this nonzero entry, equal to 1, is the
only nonzero entry in its row, let this row be i1. Eliminating from the double stochastic n× n
matrix v the column j1 and the row i1, we get a (n − 1) × (n − 1) matrix v̂ which clearly is
double stochastic; since v is a vertex in Πn, it is completely straightforward to verify (do it!)
that v̂ is a vertex in Πn−1. By the inductive hypothesis, v̂ is an (n− 1)× (n− 1) permutation
matrix; recalling the relation between v and v̂, v is a permutation matrix itself. 2

2.3.3 Recessive Directions

Definition and characterization

Definition 2.3.2 Let X be a nonempty polyhedral set. A vector e ∈ Rn is called a recessive
direction of X, if there exists x̄ ∈ X such that the entire ray {x̄ + te : t ≥ 0} emanating from
x̄ and directed by e belongs to X. The set of all recessive directions of X is called the recessive
cone of X, denoted Rec(X).7

Note that this definition is geometric: it does not refer to a representation of X in the form of
(2.3.1).

Examples: • e = 0 is a recessive direction of every nonempty polyhedral set.
• Recessive directions of an affine subspace M are exactly the vectors from the parallel linear
subspace.

Algebraic characterization of recessive directions. Given a polyhedral description (2.3.1)
of a nonempty polyhedral set X, it is easy to characterize its recessive directions:

Proposition 2.3.4 [algebraic characterization of recessive directions] Let X be a nonempty
polyhedral set given by X = {x : Ax ≤ b}, see (2.3.1). Then

(i) The recessive directions of X are exactly the vectors from the polyhedral cone

Rec(X) := {e : Ae ≤ 0}. (2.3.5)

(ii) One has X = X + Rec(X), that is, whenever x ∈ X and e ∈ Rec(X), the ray {x + te :
t ≥ 0} is contained in X. 8

7We shall see in a while that the terminology is consistent – the set of all recessive directions of a polyhedral
set X indeed is a cone.

8Note the difference between the information provided in (ii) and the definition of a recessive direction e: by
the latter, e is a recessive direction if some ray directed by e belongs to X; (ii) says that whenever e possesses
this property, every ray directed by e and emanating from a point of X is contained in X.

80 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Proof. If e is a recessive direction, then there exists x̄ ∈ X such that aTi x̄+taTi e = aTi [x̄+te] ≤ bi
for all t > 0 and all i ∈ I, which clearly implies that aTi e ≤ 0 for all i, that is, Ae ≤ 0. Vice
versa, if e is such that Ae ≤ 0, then for every x ∈ X and every t ≥ 0 we have A(x + te) =
Ax+ tAe ≤ Ax ≤ b, that is, the ray {x+ te : t ≥ 0} belongs to X. 2

Remark: The definition of an recessive direction can be straightforwardly extended from poly-
hedral to convex sets. The “convex analogy” of Proposition 2.3.4 states that the set of recessive
directions of a nonempty closed convex set Q is a closed cone, and a ray, starting at a point of
Q and directed by a recessive direction, belongs to Q.

Exercise 2.6 What is the recessive cone of the polyhedral set X shown on figure 2.1.a)? What
is the recessive cone of the triangle shown on figure 2.1.b)?
The recessive cone of X is the angle between the two rays shown on fig. 2.1.c). The recessive
cone of the triangle is trivial – it is the origin.

Recessive subspace and decomposition

Recall that a line ` in Rn is an affine subspace of Rn of dimension 1; this is exactly the same as
to say that ` = {x + te : t ∈ R} with some x and a nonzero vector e. It is easy to understand
when a polyhedral set X contains lines and what are these lines:

Proposition 2.3.5 Let X be a nonempty polyhedral set given by X = {x : Ax ≤ b}, see (2.3.1).
Then X contains a set of the form {x + te : t ∈ R} if and only if x ∈ X and Ae = 0. In
particular,
• X contains a line, directed by vector e 6= 0, iff e belongs to the kernel KerA := {e : Ae = 0}
of A, and in this case every line directed by e and passing through a point of X belongs to X.
• X contains lines iff KerA 6= {0}, or, equivalently, iff Rec(A) ∩ [−Rec(A)] 6= {0}.

Proof. The set {x+te : t ∈ R} belongs to X iff both the rays {x+te : t ≥ 0} and {x−te : t ≥ 0}
emanating from x and directed by e and −e belong to X; by Proposition 2.3.4, this is the case
iff x ∈ X and both e and −e belong to Rec(X), that is, Ae ≤ 0 and −Ae ≤ 0, or, which is the
same, Ae = 0. 2

In many aspects, polyhedral sets containing lines are less suited for analysis than those not
containing lines. E.g., a polyhedral set containing lines definitely does not have extreme points
(why?), while, as we shall see in a while, a polyhedral set not containing lines does have extreme
points. Fortunately, it is easy to “get rid” of the lines.

Proposition 2.3.6 [Decomposition] A nonempty polyhedral set X = {x : Ax ≤ b}, see (2.3.1),
can be represented as the arithmetic sum of a linear subspace L = KerA and a nonempty
polyhedral set X̄ which does not contain lines:

X = X̄ + KerA. (2.3.6)

One can take as X̄ the intersection X ∩ L⊥.

Proof. Let us set X̄ = X∩L⊥; we claim that this is a nonempty polyhedral set satisfying (2.3.6).
Indeed, X is nonempty by assumption; with x ∈ X and every e ∈ KerA, the vector x−e belongs
toX (Proposition 2.3.5). Specifying e as the orthogonal projection of x onto L (so that x−e is the

2.3. FACES, VERTICES, RECESSIVE DIRECTIONS, EXTREME RAYS 81

orthogonal projection x̄ of x onto L⊥), we conclude that this projection belongs to X, and thus X̄
is nonempty and, moreover, is such that x = x̄+e ∈ X̄+KerA, whence X̄+KerA ⊃ X. Since X̄
is nonempty, it is a polyhedral set; indeed, to get a polyhedral description of X̄, one should add
to the inequalities Ax ≤ b specifying X a system of homogeneous linear inequalities specifying
L⊥, say, the system aTm+ix = 0, 1 ≤ i ≤ dim KerA, where vectors am+i, 1 ≤ i ≤ dim KerA,
span the linear subspace KerA. By construction, X̄ is a part of X, whence X̄ + KerA ⊂ X by
Proposition 2.3.5. We have already seen that X̄ + KerA ⊃ X as well, whence X̄ + KerA = X.
Finally, X̄ does not contain lines, since the direction e of a line in X, by Proposition 2.3.5, should
be a nonzero vector satisfying the equations aTi e = 0, i ∈ I, and aTm+ie = 0, 1 ≤ i ≤ dim KerA;
the first group of these equations says that e ∈ KerA, and the second — that e ∈ (KerA)⊥,
meaning that e ∈ KerA ∩ (KerA)⊥ = {0}, which is impossible. 2

Proposition 2.3.6 is the first step towards our goal – describing the structure of a polyhedral
set; it says that investigating this structure can be reduced to the case when the set does not
contain lines. Before passing to the remaining steps, we need one more element of “equipment”
– the notions of a base and extreme ray of a polyhedral cone.

2.3.4 Bases and Extreme Rays of a Polyhedral Cone

Consider a polyhedral cone

R = {x ∈ Rn : Bx ≤ 0} B =

 bT1
· · ·
bTk

 ∈ Rk×n. (2.3.7)

Pointed cones. Cone (2.3.7) is called pointed if and only if it does not contain lines; invoking
Proposition 2.3.5, this is the case if and only if KerB = {0}, or, which is the same, there is no
nonzero vector e such that Be ≤ 0 and B[−e] ≤ 0. Geometrically, the latter means that the
only vector e such that e ∈ K and −e ∈ K is the zero vector. E.g., the nonnegative orthant
Rn

+ := {x ∈ Rn : x ≥ 0} = {x : [−I]x ≤ 0} is pointed.

Base of a cone. Assume that the cone K given by (2.3.7) is nontrivial – does not reduce to
the singleton {0}.

Consider a hyperplane Π in Rn which does not pass through the origin. W.l.o.g. we can
represent such a hyperplane by linear equation with unit right hand side:

Π = {x ∈ Rn : fTx = 1} [f 6= 0] (2.3.8)

It may happen that this hyperplane intersects all nontrivial rays comprising K, that is,

x ∈ K,x 6= 0⇒ ∃s ≥ 0 : sx ∈ Π.

This is exactly the same as to say that f has positive inner products with all nonzero vectors
from K (why?). When f possesses this property, the polyhedral set Y = K ∩ Π = {x : Bx ≤
0, fTx = 1} is nonempty and “remembers” K:

K = {x = ty : t ≥ 0, y ∈ Y }

82 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

In this situation, we shall call Y a base of K; thus, a base of K = {x : Bx ≤ 0} is a nonempty
set of the form

Y = {x : Bx ≤ 0, fTx = 1}

where f has positive inner products with all nonzero vectors from K. For example, the bases
of nonnegative orthant are “produced” by strictly positive vectors f , and only by those vectors
(why?)

Now, not every polyhedral cone admits a base; say, the trivial cone {0} does not admit it.
Another “bad” in this respect cone is a cone which is not pointed. Indeed, if K is not pointed,
then, as we have already seen, there is a nonzero e such that both e and −e belong to K;
but then there cannot exist a vector f forming positive inner products with all nonzero vectors
from K. A useful (and even crucial, as we shall see in the sequel) fact is that the outlined two
obstacles – triviality and non-pointedness – are the only obstacles to existing a base:

Proposition 2.3.7 Let a polyhedral cone K = {x : Bx ≤ 0} in Rn be nontrivial (K 6= {0})
and pointed. Then there exists f ∈ Rn such that fTx > 0 for all x ∈ K\{0}, that is, K admits
a base.

Proof. Let K∗ = {y ∈ Rn : yTx ≥ 0 ∀x ∈ K} be the cone dual to K. We claim that K∗

has a nonempty interior: there exists a vector f such that an Euclidean ball of certain positive
radius r, centered at f , is contained in K∗. Note that this claim implies the result we seek to
prove: indeed, if f is as above and x ∈ K\{0}, then (f − h)Tx ≥ 0 whenever ‖h‖2 ≤ r, whence
fTx ≥ sup

h:‖h‖2≤r
hTx > 0.

It remains to support our claim. Assume, on the contrary to what should be proved, that
the interior of K∗ is empty. Since K∗ is a convex set, we conclude that Aff(K∗) is less than
the entire Rn (Theorem 2.1.3). Since 0 ∈ K∗, Aff(K∗) 3 0 and thus L = Aff(K∗) is a linear
subspace in Rn of the dimension < n. Thus, there exists e 6= 0 such that e ∈ L⊥, whence
eT y = 0 for all y ∈ K∗. But then both e and −e belong to (K∗)∗, and the latter cone is nothing
but K (Theorem 2.2.5). Thus, K is not pointed, which is the desired contradiction. 2

The importance of the notion of a base of a cone K is that on one hand, it “remembers”
K and thus bears full information on the cone, and on the other hand it is in certain respects
simpler than K and thus is easier to investigate. E.g., we shall see in the mean time that a
base of a cone is a bounded nonempty polyhedral set, and those sets admit simple description
— they are convex hulls of the (nonempty and finite) sets of their vertices. For the time being,
we shall prove a simpler statement:

Proposition 2.3.8 The recessive cone of a base Y of a polyhedral cone K is trivial: Rec(Y) =
{0}.

Proof. Let Y = {x : Bx ≤ 0, fTx = 1} be a base of a polyhedral cone K = {x : Bx ≤ 0}, so
that K 6= {0} and f has positive inner products with all nonzero vectors from K. By Proposition
2.3.4, Rec(Y) = {e : BT e = 0, fT e = 0}; assuming that the latter set contains a nonzero vector
e, we see that e is a nonzero vector from K, and this vector has zero inner product with f , which
is impossible. 2

Remark: the notion of a base makes sense, and the results stated in Propositions 2.3.7 and
2.3.8 hold true for arbitrary closed cones, not only polyhedral ones.

2.3. FACES, VERTICES, RECESSIVE DIRECTIONS, EXTREME RAYS 83

Extreme rays of a polyhedral cone. Extreme rays of polyhedral cones are “cone analogies”
of extreme points of polyhedral sets.

Definition 2.3.3 Let K be a cone. A ray in K is the set of all vectors {tx : t ≥ 0}, where
x ∈ K; x is called a generator, or direction, of the ray. A ray is called nontrivial, if it contains
nonzero vectors.

From the definition it follows that generators of a nontrivial R are all nonzero points on this
ray, so that all generators of a nontrivial ray R are positive multiples of each other.

Definition 2.3.4 [extreme ray] An extreme ray of a cone K is a nontrivial ray R = {tx : t ≥ 0}
in K with the following property: whenever a generator x of the ray is represented as x = u+ v
with u, v ∈ K, both vectors u and v belong to R.

Exercise 2.7 Let K be a pointed cone and v1, ...vk be points of K. Prove that

1) If v1 + ...+ vk = 0, then v1 = ... = vk = 0

2) If v1 + ... + vk = e is a generator of an extreme ray of K, then vi, 1 ≤ i ≤ k, are
nonnegative multiples of e.

Note that the notion of extreme ray is geometric — it does not refer to a particular description of
the cone in question. Note also that if the property characteristic for a generator of an extreme
ray holds true for one of generators of a given nontrivial ray, it automatically holds true for all
other generators of the ray.
Example: A ray in the nonnegative orthant Rn

+ is the set comprised of all nonnegative multiples
of a nonnegative vector. Nontrivial rays are comprised of all nonnegative multiples of nonzero
nonnegative vectors. E.g., the set {t[1; 1; 0] : t ≥ 0} is a nontrivial ray in R3 (draw it!). On a
closest inspection, the extreme rays of Rn

+ are the nonnegative parts of the n coordinate axes,
that is, the rays generated by basic orths e1, ..., en. To see that, say, the ray R1 = {te1 : t ≥ 0}
is extreme, we should take a whatever generator of the ray, e.g., e1, and to check that when
e1 = u + v with nonnegative vectors u, v, then both u and v are nonnegative multiples of
e1, which is evident (since from ui + vi = (e1)i and ui, vi ≥ 0 it follows that ui = vi = 0
when i = 2, ..., n). To see that the nonnegative parts of the coordinate axes are the only
extreme rays of Rn

+, assume that x is a generator of an extreme ray R. Then x is a nonzero
nonnegative vector. If x has at least two positive entries, say, x1 > 0 and x2 > 0, then we
can set x = [x1; 0....; 0] + [0;x2;x3; ...;xn], thus getting a decomposition of x into the sum of
two nonnegative vectors which clearly are not nonnegative multiples of x. Thus, x has exactly
one positive entry, and thus is a positive multiple of certain basic orth, meaning that R is the
nonnegative part of the corresponding coordinate axis.

The role of extreme rays in the geometry of polyhedral cones is similar to the role of vertices
in the geometry of polyhedral sets. E.g., we have already mentioned the fact we intend to
prove in the sequel: a nonempty and bounded polyhedral set is the convex hull of the (finite)
set of its vertices. The “cone analogy” of this statement reads: A pointed and nontrivial
(K 6= {0}) polyhedral cone K possesses extreme rays, their number is finite, and K is the
conic hull of the (generators of the) extreme rays. Here we present an important result on
algebraic characterization of extreme rays and their relation to extreme points.

Proposition 2.3.9 Let K ⊂ Rn be a pointed nontrivial (K 6= {0}) polyhedral cone given by
(2.3.7). Then

84 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

(ii) A nonzero vector e ∈ K generates an extreme ray of K if and only if among the inequal-
ities bTi x ≤ 0, i = 1, ..., k, defining K there are at least n − 1 linearly independent inequalities
which are active (i.e., are equalities) at e.

(ii) Let Y = {x : Bx ≤ 0, fTx = 1} be a base of K (note that K admits a base by Proposition
2.3.7) so that every nontrivial ray in K intersects Y . A nontrivial ray R in K is extreme if and
only if its intersection with Y is an extreme point of Y .

Proof. (i): Let e generate a nontrivial ray R in K, and let I be the set of indices of vectors bi
which are orthogonal to e. We should prove that R is extreme iff among the vectors bi, i ∈ I,
there are n− 1 linearly independent.

In one direction: assume that the set {bi : i ∈ I} contains n−1 linearly independent vectors,
say, b1, ..., bn−1, and let us prove that R is an extreme ray. Indeed, let e = u+ v with u, v ∈ K;
we should prove that then u, v ∈ R. Since e = u+v, we have bTi (u+v) = bTi e = 0, 1 ≤ i ≤ n−1,
on one hand, and bTi u ≤ 0, bTi v ≤ 0 due to u, v ∈ K. We conclude that bTi u = bTi v = 0,
1 ≤ i ≤ n− 1, so that every one of the vectors u, v, e is a solution to the system of homogeneous
linear equations

bTi x = 0, 1 ≤ i ≤ n− 1

in variables x. Since b1, ..., bn−1 are linearly independent, the solution set L of this system is a
one-dimensional linear subspace, and since e is a nonzero vector from this linear subspace, all
other vectors from L are multiples of e. In particular, u = λe and v = λe with some real λ, µ.
Now recall that K is pointed and u, v, e ∈ K, meaning that λ ≥ 0, µ ≥ 0 (e.g., assuming λ < 0,
we get 0 6= u ∈ K and −u = |λ|e ∈ K, which is impossible). Thus, u and v are nonnegative
multiples of e and thus belong to R, as claimed.

In the other direction: assume that R is an extreme ray, and let us prove that the set
{bi : i ∈ I} contains n− 1 linearly independent vectors. Assume that the latter is not the case.
Then the dimension of the linear span of the set is ≤ n− 2, meaning that the dimension of the
orthogonal complement to this linear span is ≥ 2. Thus, the set of all vectors orthogonal to all
bi, i ∈ I, is ≥ 2. Therefore this set (which contains e due to the origin of I) contains also a vector
h which is not proportional to e. Now note that bTi (e+ th) = 0 for all i ∈ I and bTi (e+ th) < 0
when i 6∈ I and t is small enough in absolute value (since for i in question, bTi e < 0). It follows
that there exists a small positive t such that bTi (e ± th) ≤ 0 for all i = 1, ..., k, meaning that
the vectors u = 1

2 [e + th] and v = 1
2 [e − th] belong to K. We clearly have u + v = e; since

R is an extreme ray, both u and v should be nonnegative multiples of e, which, due to t > 0,
would imply that h is proportional to e, which is not the case. We have arrived at a desired
contradiction. (i) is proved.

(ii): Let R = {te : t ≥ 0} be a nontrivial ray in K; then e is a nonzero vector from K, and
from the definition of a base it follows that the ray R intersects Y at certain nonzero point eR,
which also is a generator of R. We should prove that R is an extreme ray iff eR is an extreme
point of Y .

In one direction: Let R be an extreme ray. Let us lead to contradiction the assumption that
eR is not an extreme point of Y . Indeed, under this assumption there exists a nonzero vector h
such that both eR + h and eR − h belong to Y and thus belong to K. Setting u = 1

2 [eR + h],
v = 1

2 [eR − h], we get u, v ∈ K (K is a cone!) and u + v = eR. Since R is an extreme ray, it
follows that u and v are proportional to eR, whence also h is proportional to eR. The latter is
impossible: since eR and eR +h belong to Y , we have fT eR = 1 = fT (eR +h), whence fTh = 0;
since h is nonzero and is proportional to eR, we conclude that fT eR = 0, while in fact fT eR = 1
due to eR ∈ Y . We have arrived at a desired contradiction.

2.4. STRUCTURE OF POLYHEDRAL SETS 85

In the other direction: Let eR be an extreme point of Y , and let us prove that then R is
an extreme ray of K. Indeed, let eR = u + v with u, v ∈ K. We should prove that in this case
both v and u belong to R. Assume that this is not the case, say, u does not belong to R. Then
u 6= 0, and thus u 6∈ −R (since K is pointed and u ∈ K). Thus, u is not a real multiple of eR,
which combines with eR = u+ v to imply that v also is not a real multiple of eR. In particular,
both u and v are nonzero, and since u, v ∈ K, we have ū = λu ∈ Y and v̄ = µv ∈ Y for
properly chosen λ, µ > 0. From equations fT eR = fT ū = fT v̄ = 1 (given by eR, ū, v̄ ∈ Y) and
fT eR = fTu+ fT v (due to eR = u+ v) it follows that λfTu = 1, µfT v = 1 and fTu+ fT v = 1,
whence 1

λ+ 1
µ = 1. Since λ and µ are positive, we conclude that eR = u+v = 1

λ ū+ 1
µ v̄ is a convex

combination of the vectors ū, v̄ from Y , the coefficients in the combination being positive. Since
eR is an extreme point of Y , we should have eR = ū = v̄ (Proposition 2.3), whence u and v are
proportional to eR, which is not the case. We have arrived at a desired contradiction. 2

Corollary 2.3.2 Let K be a nontrivial (K 6= {0}) and pointed polyhedral cone. Then the
number of extreme rays in K is finite.

Proof. Indeed, by Proposition 2.3.7, K admits a base Y ; by Proposition 2.3.9.(ii), the number
of extreme rays in K is equal to the number of vertices in Y , and the latter number, by Corollary
2.3.1, is finite. 2

In fact, in the context of Corollary 2.3.2 the assumptions that K is nontrivial and pointed
are redundant, by a very simple reason: neither trivial, nor non-pointed cones have extreme
rays. Indeed, the trivial cone cannot have extreme rays since the latter, by definition, are
nontrivial. The fact that a non-pointed cone K has no extreme rays can be verified as follows.
Let R = {te : t ≥ 0} be a nontrivial ray in K, and let f be a nonzero vector such that ±f ∈ K.
If f is not proportional to e, then the vectors u = e + f and v = e − f belong to K due to
±f ∈ K and e ∈ K, and do not belong to R (since they are not proportional to e). If f is
proportional to e, say, f = τe, then τ 6= 0 (since f 6= 0). Setting u = 1

2 [e+ 2
τ f], v = 1

2 [e− 2
τ f],

we, as above, get u, v ∈ K and u + v = e; at the same time, v = 1
2 [e − 2

τ τe] = −1
2e, that is,

v 6∈ R. In both cases, the ray R is not extreme.
The next proposition establishes a property of extreme rays similar to the one of extreme

points (cf. Proposition 2.3.3):

Proposition 2.3.10 Let K be a polyhedral cone given by (2.3.7), and let KI = {x : Bx ≤
0, bTi x = 0, i ∈ I} be a face of K, which clearly is a polyhedral cone along with K. Every extreme
ray of KI is an extreme ray of K.

Proof is left to the reader.

2.4 Structure of Polyhedral Sets

Now we are well-prepared to attack directly our goal – to prove the Theorem On Structure of
Polyhedral Sets stated in the preface to this lecture.

2.4.1 First Step

We start with the following fundamental statement:

86 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Theorem 2.4.1 Let X be a nonempty polyhedral set, given by (2.3.1) which does not contain
lines. Then

(i) The set Ext(X) of extreme points of X is nonempty and finite, and X is the arithmetic
sum of the convex hull of this set and the recessive cone of X:

X = Conv(Ext(X)) + Rec(X). (2.4.1)

(ii) If the recessive cone of X is nontrivial (Rec(X) 6= {0}), then this cone possess extreme
rays, the number of these rays is finite, and the cone is a conic hull of its extreme rays: if
Rj = {tej : t ≥ 0}, 1 ≤ j ≤ J , are the extreme rays of Rec(X), then

Rec(X) = Cone {e1, ..., eJ} := {x =

J∑
j=1

µjej : µj ≥ 0 ∀j}. (2.4.2)

(iii) As a straightforward corollary of (i) and (ii), we get that

X = {x =
I∑
i=1

λivi +
J∑
j=1

µjej : λi ≥ 0,
∑
i

λi = 1, µj ≥ 0}. (2.4.3)

Proof. (i): The proof is by induction in the dimension k of X (that is, the affine dimension
of M = Aff(X), or, which is the same, linear dimension of the linear space L to which M is
parallel).
Base k = 0 is trivial, since in this case X is a singleton: X = {v}, and we clearly have
Ext{X} = {v}, Rec(X) = {0}, so that Ext{X} indeed is nonempty and finite, and (2.4.1)
indeed holds true.
Inductive step k ⇒ k + 1. Assume that (i) holds true for all nonempty polyhedral sets, not
containing lines, of dimension ≤ k, and let X be a nonempty polyhedral set, not containing
lines, of dimension k + 1. Let us prove that (i) holds true for X.

The linear subspace L parallel to Aff(X) is of dimension k + 1 ≥ 1 and thus contains a
nonzero vector e. Since X does not contain lines, its recessive cone is pointed (Proposition
2.3.5); thus, either e, or −e is not a recessive direction of X. Swapping, if necessary, e and −e,
we can assume w.l.o.g. that e 6∈ Rec(X).

Now two options are possible:
A: −e is a recessive direction of X;
B: −e is not a recessive direction of X.
Let x̄ ∈ X. In order to prove that Ext(X) 6= ∅ and that x̄ ∈ Conv(Ext(X)) + Rec(X), we

act as follows:
In the case of A, consider the ray R = {xt = x̄ + te : t ≥ 0}. Since e is not a recessive
direction, this ray is not contained in X, meaning that some of inequalities aTi x ≤ bi, i ∈ I, are
not satisfied somewhere on R. Now let us move along the ray R, starting at x̄. At the beginning,
we are at x̄, i.e., are in X; eventually we shall leave X, meaning that there is t̄ ≥ 0 such that “at
time t̄ the point xt is about to leave X”, meaning that t̄ is the largest t ≥ 0 such that xt ∈ X
for 0 ≤ t ≤ t̄. It is clear that xt̄ belongs to a proper face of X.

Here is “algebraic translation” of the above reasoning (which by itself appeals to
geometric intuition). Since x0 = x̄ ∈ X, all the inequalities aTi xt ≤ bi, i ∈ I, are
satisfied at t = 0, and since aTi xt is an affine function of t, an inequality aTi xt ≤ bi
which is violated at some t > 0 (and we know that such an inequality exists) is

2.4. STRUCTURE OF POLYHEDRAL SETS 87

such that the affine function of t aTi xt = aTi x + taTi e is increasing with t, that is,
aTi e > 0. The bottom line is that there exists i such that aTi e > 0, so that the set
I = {i : aTi e > 0} is nonempty. Let us set

t̄ = min
i∈I

bi − aTi x̄
aTi e

, (∗)

and let i∗ ∈ I be the value of i corresponding to the above minimum. Taking into
account that aTi x̄ ≤ bi for all i and that aTi xt ≤ bi for all t ≥ 0 whenever i 6∈ I (why?),
we conclude that t̄ ≥ 0 and that aTi xt̄ ≤ bi for all i, and on the top of it, aTi∗xt̄ = bi∗ .
Now consider the set X̄ = X{i∗} = {x : aTi∗x = bi, a

T
i x ≤ bi ∀i 6= i∗}. This set is

nonempty (it contains xt̄) and thus is a face of X. This face is proper, since otherwise
aTi∗x would be equal to bi∗ on the entire X, meaning that X is contained in the affine
subspace N = {x : aTi∗x = bi}. But then Aff(X) ⊂ N , meaning that aTi∗x ≡ bi for
all x ∈M = Aff(X); since e belongs to the parallel to M linear subspace, the latter
implies that aTi∗e = 0, while by construction aTi∗e > 0. Thus, xt̄ belongs to a proper
face X̄ of X, as claimed.

Now, by Proposition 2.3.1, the dimension of X̄ is < dim X, that is, it is at most k. Besides this,
X̄ is a nonempty polyhedral set, and this set does not contain lines (since X̄ is a part of X, and
X does not contain lines). Applying inductive hypothesis, we conclude that Ext(X̄) is a finite
nonempty set such that xt̄ ∈ Conv(Ext(X̄)) + r with r ∈ Rec(X̄). Now, by Proposition 2.3.3,
Ext(X̄) ⊂ Ext(X), and by the definition of a recessive direction, r, being recessive direction of
a part of X, is a recessive direction of X. We have arrived at the following conclusion:

(!) Ext(X) is nonempty (and is finite by Corollary 2.3.1) and xt̄ ∈ Conv(Ext(X))+r
for some r ∈ Rec(X).

Note that our reasoning did not use yet the assumption that we are in the case A, that is, that
−e is a recessive direction of X; all we use till now is that e ∈ L is not a recessive direction of
X.

Now recall that we are in the case of A, so that −e is a recessive direction of X, whence

x̄ = xt̄ − t̄e ∈ Conv{Ext(X)}+ r′, r′ = r + t̄(−e).

Since r and −e are recessive directions of X and Rec(X) is a cone, we have r′ ∈ Rec(X) and
thus x̄ ∈ Conv(Ext(X)) + Rec(X).

In the case of B, the intermediate conclusion (!) still holds true — as we have mentioned,
its validity stems from the fact that e ∈ L is not a recessive direction of X. But now similar
conclusion can be extracted from considering the ray R− = {x̄ + t[−e] : t ≥ 0}, which, by the
exactly the same reasoning as above, “hits” certain proper face of X. Thus, now, in addition to
(!), there exists t̃ ≥ 0 such that x̃t̃ = x̄− t̃e satisfies

x̃t̃ ∈ Conv(Ext(X)) + Rec(X),

or, equivalently, there exist nonnegative weights λ̃v, v ∈ Ext(X), summing up to 1, and a vector
r̃ ∈ Rec(X) such that

x̄− t̃e =
∑

v∈Ext(X)

λ̃vv + r̃.

88 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Moreover, by (!) there exist nonnegative weights λ̄v, v ∈ Ext(X), summing up to 1, and a vector
r̄ ∈ Rec(X) such that

x̄+ t̄e =
∑

v∈Ext(X)

λ̄vv + r̄.

Since t̄ and t̃ are nonnegative, we have

x̄ = µ[x̄+ t̄e] + (1− µ)[x̄− t̃e]

with properly chosen µ ∈ [0, 1], so that

x̄ =
∑

v∈Ext(X)

[µλ̄v + (1− µ)λ̃v]v︸ ︷︷ ︸
∈Conv(Ext(X))

+ [µr̄ + (1− µ)r̃]︸ ︷︷ ︸
∈Rec(X)

.

The bottom line is that in both cases A, B Ext(X) is finite and nonempty and X ⊂
Conv(Ext(X))+Rec(X). The inverse inclusion is trivial: the polyhedral set X is convex and con-
tains Ext(X), and therefore contains Conv(Ext(X)), and X+Rec(X) = X by Proposition 2.3.4,
whence Conv(Ext(X))+Rec(X) ⊂ X. Thus, we have proved that X = Conv(Ext(X))+Rec(X)
and that Ext(X) is nonempty and finite. Inductive step, and thus, the verification of Theorem
2.4.1.(i), are complete.

(ii): Assume that Rec(X) = {x : Ax ≤ 0} is a nontrivial cone. Since X does not contain
lines, Rec(X) is also pointed (Proposition 2.3.5). Invoking Propositions 2.3.7, Rec(X) admits
a base Y , which clearly is a nonempty polyhedral set. By Proposition 2.3.8, the recessive cone
of Y is trivial, whence, in particular, Y does not contain lines. Applying (I) to Y , we conclude
that Ext(Y) is nonempty and finite, and Y = Conv(Ext(Y)) + Rec(Y) = Conv(Ext(Y)) +
{0} = Conv(Ext(Y)). Further, by Proposition 2.3.9.(ii), the extreme points v1, ..., vp of Y are
generators of extreme rays of Rec(X), and every extreme ray of Rec(X) is generated by one of
these extreme points; thus, Rec(X) has extreme rays, and their number is finite. It remains to
prove that Rec(X) is the conic hull of the set of generators of its extreme rays. The validity
of this statement clearly is independent of how we choose the generators; choosing them as
v1, ..., vp, we arrive at the necessity to prove that Rec(X) = Cone ({v1, ..., vp}), that is, that
every x ∈ Rec(X) can be represented as a linear combination, with nonnegative coefficients, of
v1, ..., vp. There is nothing to prove when x = 0; if x 6= 0, then, by the construction of a base,
x = λx̄ with λ ≥ 0 and x̄ ∈ Y . As we have already seen, Y = Conv({v1, ..., vp}), meaning that
x̄ is a convex combination of v1, ..., vp; but then x = λx̄ is a linear combination of v1, ..., vp with
nonnegative coefficients (recall that λ > 0), as claimed. (ii) is proved.

(iii) is readily given by (i) and (ii). 2

Remark: For an arbitrary nonempty closed convex X, the following analogy of Theorem 2.4.1
holds true: if X does not contain lines, then the set of extreme points of X is nonempty (but
not necessary finite), and X is the arithmetic sum of Conv(Ext(X)) and the recessive cone of
X.

Immediate corollaries

Theorem 2.4.1 readily implies a lot of important information on polyhedral sets.

2.4. STRUCTURE OF POLYHEDRAL SETS 89

Corollary 2.4.1 The set Ext(X) of vertices of a bounded nonempty polyhedral set X is
nonempty and finite, and X = Conv(Ext(X)).

Indeed, the recessive cone of a bounded nonempty polyhedral set clearly is trivial and, in par-
ticular, the set does not contain lines. It remains to apply Theorem 2.4.1.(i). 2

Corollary 2.4.2 A pointed nontrivial polyhedral cone K = {x : Bx ≤ 0} has extreme rays,
their number is finite, and the cone is the conic hull of (generators of) the extreme rays.

Indeed, for a cone K we clearly have K = Rec(K); when K is pointed, K is a nonempty
polyhedral set not containing lines. It remains to apply Theorem 2.4.1.(ii), with K in the role
of X. 2

Corollary 2.4.3 Every nonempty polyhedral set X ⊂ Rn admits a description as follows: it
is possible to point out a finite and nonempty set V = {v1, ..., vI} ∈ Rn and a finite (possibly,
empty) set R = {r1, ..., rJ} ⊂ Rn in such a way that

X = Conv(V) + Cone (R) = {x =

p∑
i=1

λivi +
J∑
j=1

µjrj : λi ≥ 0,
∑
i

λi = 1, µj ≥ 0}. (2.4.4)

For every representation of X of this type, it holds

Rec(X) = Cone (R) := {
∑
j

µjrj : µj ≥ 0}. (2.4.5)

In connection with possible emptiness of R, recall that according ro our convention “a sum of
vectors with empty set of terms equals to 0,” Cone {∅} = {0} is the trivial cone, so that (2.4.4)
makes sense when R = ∅ and reads in this case as X = Conv(V).

Proof. By Proposition 2.3.6, a nonempty polyhedral set X can be represented as the sum of a
nonempty polyhedral set X̄ not containing lines an a linear subspace L. We can find a finite set
f1, ..., fp which linearly spans L, so that L = Cone ({g1, ..., g2p}), where g1, ..., gp are the same
as f1, ..., fp, and gp+1, ..., g2p are the same as −f1, ...,−fp. By Theorem 2.4.1.(iii), we can find a
nonempty finite set V and a finite set M such that X̄ = Conv(V) + Cone (M), so that

X = X̄ + L = [Conv(V) + Cone (M)] + Cone ({g1, ..., g2p})
= Conv(V) + [Cone (M) + Cone ({g1, ..., g2p})] = Conv(V) + Cone (M∪ {g1, ..., g2p})

.

It remains to prove that in every representation

X = Conv(V) + Cone (R) (∗)

with finite nonempty V = {v1, ..., vI} and finite R = {r1, ..., rJ}, it holds Cone (R) = Rec(X).
The inclusion Cone (R) ⊂ Rec(X) is evident (since every rj clearly is a recessive direction of
X). To prove the inverse inclusion, assume that it does not take place, that is, that there exists
r ∈ Rec(X)\Cone (R), and let us lead this assumption to a contradiction. Since r is not a conic
combination of r1, ..., rJ , the HFL says that there exists f such that fT rj ≥ 0 for all j and
fT r < 0. The first of these two facts implies that the linear form fTx of x is below bounded on

90 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

X; indeed, by (∗), every point x ∈ X is of the form
∑

i λivi +
∑

j µjrj with nonnegative λi, µj
such that

∑
i λi = 1, whence

fTx =
∑
i

λif
T vi +

∑
j

µjf
T rj︸ ︷︷ ︸

≥0

≥
∑
i

λi[min
`
fT v`] = min

`
fT v` > −∞.

The second fact implies that same form fTx is not below bounded on X. Indeed, since r ∈
Rec(X), taking x̄ ∈ X, the ray R = {x̄+ tr : t ≥ 0} is contained in X, and since fT r < 0, fTx
is not bounded below on R and thus on X. We got a desired contradiction. 2

Corollary 2.4.4 A nonempty polyhedral set X possesses extreme point iff X does not contain
lines. In addition, the set of extreme points of X is finite.

Indeed, if X does not contain lines, X has extreme points and their number is finite by Theorem
2.4.1. Now assume that X contains lines, and let e 6= 0 be a direction of such a line, then for
every x ∈ X the vectors x ± e belong to X (Proposition 2.3.4; note that both e and −e are
recessive directions of X) and thus x is not an extreme point of X. Thus, Ext(X) = ∅. 2

Remark: The first claim in Corollary is valid for every nonempty closed convex set.

Corollary 2.4.5 Let X be a nonempty polyhedral set. Then X is bounded iff the recessive cone
of X is trivial: Rec(X) = {0}, and in this case X is the convex hull of a nonempty finite set
(e.g., the set Ext(X)).

Indeed, if Rec(X) 6= {0}, then X contains a ray {x̄ + te : t ≥ 0} with e 6= 0; this ray, and
therefore X is an unbounded set. Vice versa, if Rec(X) = {0}, then X clearly does not contain
lines, and by Theorem 2.4.1.(i) X = Conv(Ext(X)) and Ext(X) is finite and thus is bounded;
the convex hull of a bounded set clearly is bounded as well, so that Rec(X) = {0} implies that
X is bounded. 2

Remark: The statement in Corollary is valid for every nonempty closed convex set.

Corollary 2.4.6 A nonempty polyhedral set is bounded iff its can be represented as the convex
full of a finite nonempty set {v1, ..., vp}. When this is the case, every vertex of X is among the
points v1, ..., vp.

Indeed, if X is bounded, then Ext(X) is nonempty, finite and X = Conv(Ext(X)) by Corollary
2.4.5. Vice versa, if a nonempty polyhedral set X is represented as Conv(V), V = {v1, ..., vN},
then V is nonempty, and X is bounded (since the convex hull of a bounded set clearly is bounded
(why?)). Finally, if X = Conv({v1, ..., vN}) and v is a vertex of X, then v ∈ {v1, ..., vN} by the
result of Exercise 2.3. 2

The next immediate corollary of Theorem 2.4.1 is the first major fact of the LO theory:

2.4. STRUCTURE OF POLYHEDRAL SETS 91

Corollary 2.4.7 Consider a LO program max
x

{
cTx : Ax ≤ b

}
, and let the feasible set X = {x :

Ax ≤ b} of the problem be nonempty. Then
(i) The program is bounded from above iff c has nonpositive inner products with all recessive

directions of X (or, which is the same, −e belongs to the cone dual to the recessive cone Rec(X) =
{x : Ax ≤ 0} of X). Whenever this is the case, the program is solvable (i.e., admits an optimal
solution).

(ii) If X does not contain lines (or, which is the same due to the nonemptiness of X, if
KerA = {0}, see Proposition 2.3.5) and the program is bounded from above, then among its
optimal solutions there are extreme points of X.

Indeed, if c has a positive inner product with some r ∈ Rec(X), then, taking x̄ ∈ X and
observing that the ray R = {x̄+ tr : t ≥ 0} is contained in X and that cTx is not bounded above
on R (why?), the objective is not bounded above on the feasible set. Now let c have nonpositive
inner products with all vectors from Rec(X); let us prove that the problem is solvable. Indeed,
by Corollary 2.4.3, there is a representation

X = Conv({v1, ..., vI}) + Rec({R1, ..., r)J}) (∗)

with certain nonempty V = {v1, ..., vI} and finite R = {r1, ..., rj}. Then, of course, vi ∈ X and
rj ∈ Rec(X) for all i, j. Since every x ∈ X can be represented as

x =
∑
i

λivi +
∑
j

µjrj [λi ≥ 0, µj ≥ 0,
∑

i λi = 1]

we have

cTx =
∑
i

λic
T vi +

∑
j

µjc
T rj︸ ︷︷ ︸

≤0

≤
∑
i

λic
T vi ≤

∑
i

λi[max[cT v1, ..., c
T vI]] = max[cT v1, ..., c

T vI].

We see that the objective is bounded everywhere on x by the maximum of its values at the points
v1, ..., vI . It follows that the best (with theS largest value of the objective) of the (belonging
to X!) points v1, ..., vI is an optimal solution to the program. (i) is proved. To prove (ii), it
remains to note that when X does not contain lines, one can take, as the above V, the set of
extreme points of X. 2

Remark: The fact that a feasible and bounded LO program admits an optimal solution, stated
in Corollary 2.4.7.(i), is already known to us; we obtained it (via a quite different tool, the
Fourier-Motzkin elimination scheme) already in Lecture 1.

Minimality of the representation stated in Theorem 2.4.1

Corollary 2.4.3 states that every nonempty polyhedral set X can be represented in the form of
(2.4.4):

X = Conv(V) + Cone (R)

with certain nonempty finite V and finite, possibly, empty, set R. When X does not contain
lines, Theorem 2.4.1 states that in such a representation, one can take as V the set of extreme
points of X, and as R — the set of generators of the extreme rays of Rec(X). There are, of

92 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

course, other options: we can add to the just defined V any extra point of X, and add to R any
vector from Rec(X). It turns out, however, that the representation stated by Theorem 2.4.1 is
the only “minimal” one:

Proposition 2.4.1 Let X be a nonempty polyhedral set not containing lines, let V∗ = Ext(X) =
{v1, ..., vp}, and let R∗ = {r1, ..., rq} be the set of generators of the extreme rays of Rec(X). Then
for every representation

X = Conv(V) + Cone (R), (∗)

where V = {u1, ..., uP } is a nonempty finite set, and R = {e1, ..., eQ} is a finite set, the following
is true:

(i) every point vi ∈ V∗ of X is one of the points u1, ..., uP , and
(ii) Cone (R) = Rec(X), and every vector ri ∈ R∗ is positive multiple of one of the vectors

e1, ..., eQ (that is, every extreme ray of Rec(X), if any exists, is among the rays generated by
e1, ..., eQ).

Proof. (i): let v be a vertex of X, and let us prove that v ∈ V. Indeed, by (∗) we have

v =
P∑
i=1

λiui︸ ︷︷ ︸
u

+

Q∑
j=1

µjej︸ ︷︷ ︸
e

[λj ≥ 0, µj ≥ 0,
∑

i λi = 1]

We clearly have ui ∈ X and ej ∈ Rec(X) for all i, j, whence v ∈ X and e ∈ Rec(X). We claim
that e = 0; indeed, otherwise we would have v−e = u ∈ X, and v+e ∈ X due to x ∈ X and e ∈
Rec(X). Thus, v± e ∈ X and e 6= 0, which is impossible for the extreme point v (see geometric
characterization of extreme points, Proposition 2.3.2). Thus, v ∈ Conv({u1, ..., uP }) ⊂ X,
whence v, being a vertex of X, is one of the points u1, ..., uP by the result of Exercise 2.3. (i) is
proved.

(ii): The fact that Cone (R) = Rec(X) was established in Corollary 2.4.3. It follows that

if e is a generator of an extreme ray R in Rec(X), then e =
Q∑
j=1

λjej with some λj ≥ 0. Since

ej ∈ Rec(X), applying the result of Exercise 2.7.2), those of the vectors λjej which are nonzero
(and there are such vectors, since

∑
j λjej = e 6= 0) are positive multiples of e. Thus, R admits

a generator which one of the vectors e1, ..., eQ. 2

Note that the “minimality” result stated by Proposition 2.4.1 heavily exploits the fact that
X does not contain lines. While a nonempty polyhedral set containing lines still is the sum of the
convex hull of a nonempty finite set V and the conic hull of a finite set R, there definitely exist
pairs V,R and V ′, R′ which “produce” the same set X and at the same time, say, V ′∩V = ∅ (and
even Conv(V) ∩ Conv(V ′) = ∅). What is uniquely defined by a whatever nonempty polyhedral
set X, is the conic hull of R: this is nothing but the recessive cone of X. To arrive at this
conclusion, you should repeat word by word the reasoning which we used to demonstrate that
Conv(R) = Rec(X) when proving Proposition 2.4.1.(ii).

2.4.2 Second Step

We have proved that every nonempty polyhedral set X, along with its “outer” description
X = {x : Ax ≤ b}, admits a simple “inner” representation: it is generated by two properly

2.4. STRUCTURE OF POLYHEDRAL SETS 93

chosen finite sets V (this set is nonempty) and R (this set can be empty) according to (2.4.4).
What is missing yet, is the inverse statement – that every set representable in the just outlined
form is polyhedral. Or local goal is to establish this missing element, thus ending up with a
nice outer (solution set of a solvable system of linear inequalities) and inner (given by (2.4.4))
representation of nonempty polyhedral sets. Here is this missing element.

Theorem 2.4.2 Let V = {v1, ..., vI} be a finite nonempty subset of Rn, and R = {r1, ..., rJ} be
a finite subset of Rn, and let

X = Conv(V) + Cone (R). (2.4.6)

Then X is a nonempty polyhedral set.

Proof. We are about to present two alternative proofs: one immediate, and another one more
involving and more instructive.

Immediate proof: X clearly is nonempty and polyhedrally representable (as the image of a
clearly polyhedral set {[λ;µ] ∈ RI ×RJ : λ ≥ 0,

∑
i λi = 1, µ ≥ 0} under the linear mapping

[λ;µ] 7→
∑

i λivi+
∑

j µjrj). By Fourier-Motzkin elimination (Theorem 1.2.1), X is a polyhedral
set. 2

Alternative proof: The fact that X is nonempty is evident: V ⊂ X. We can assume w.l.o.g.
that 0 ∈ X. Indeed, shifting all vectors from V by −v1, we shift by the same vector the set X
given by (2.4.6), thus ensuring that the shifted X contains the origin. At the same time, a shift
of a set clearly is polyhedral iff the set is so.

Now, the polar Polar (Y) of a set Y ⊂ Rn which contains the origin is, by definition, the set
of all vectors f ∈ Rn such that fT y ≤ 1 for all y ∈ Y .

For example (check what follows!),

• The polar of {0} is Rn, and the polar of Rn is {0}
• The polar of a linear subspace L is its orthogonal complement L⊥

• The polar of a cone is minus its dual cone.

The polar clearly is nonempty — it contains the origin.

Our plan of attack is as follows:
A. Assuming that the set X given by (2.4.6) contains the origin, we shall prove that its polar
X∗ = Polar (X) is a nonempty polyhedral set. As such, it admits representation of the form
similar to (2.4.6):

X∗ = Conv(V∗) + Cone (R∗) (!)

(V∗ is finite and nonempty, and R∗ is finite).
B. X∗ clearly contains the origin and by A is admits a representation (!), whence, by the same
A, the set (X∗)∗ is polyhedral. On the other hand, we shall prove that (X∗)∗ = X, thus arriving
at the desired conclusion that X is polyhedral.

Let us execute our plan.
A is immediate. Observe that f satisfies fTx ≤ 1 for all x ∈ X iff fT rj ≤ 0 for all j ≤ J and
fT vi ≤ 1 for all i ≤ I.

94 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Indeed, if fT rj > 0 for some j, then fT [v1 + trj] → +∞ as t → ∞, and since
v1 + trj ∈ X for every t ≥ 0 due to (∗), f 6∈ X∗; and of course f 6∈ X∗ when fT vi > 1
for some i, since all vi ∈ X. Thus, if f ∈ X∗, then fT rj ≤ 0 for all j and fT vi ≤ i
for all i. Vice versa, assume that fT rj ≤ 0 and fT vi ≤ 1 for all i; then fTx ≤ 1 for
all x ∈ X by exactly the same argument as used in the proof of item (i) in Corollary
2.4.7.

Now, the above observation proves that X∗ is the solution set of the system {rTj f ≤ 0, 1 ≤ j ≤
J, vTi f ≤ 1, 1 ≤ i ≤ I} of linear inequalities in variables f , and since the system is solvable (e.g.,
0 is its feasible solution), X∗ is a nonempty polyhedral set, as stated in A.
B: all we need is to prove that the set X given by (2.4.6) is the polar of its polar: X = (X∗)∗.
By definition of the polar, we every set is part of the polar of its polar, so that X ⊂ (X∗)∗. To
prove equality, let us prove that (X∗)∗ ⊂ X. To this end we need the following fact:

Lemma 2.4.1 Let X be given by (2.4.6) and y ∈ Rn be such that y 6∈ X. Then there exists
f ∈ Rn and ε > 0 such that

fT y > fTx+ ε ∀x ∈ X.

Lemma ⇒ the required conclusion: Taking Lemma for granted, assume, on the contrary
to what we want to prove, that there exists x̄ ∈ (X∗)∗\X, and let us lead thus assumption to a
contradiction. Indeed, applying Lemma to a vector x̄ ∈ (X∗)∗\X, we conclude that there exists
f such that fT x̄ > fTx + ε ∀x ∈ X. Since 0 ∈ X, it follows that 0 ≤ supx∈X f

Tx < fT x̄ − ε.
Since ε > 0, multiplying f by an appropriate positive real we can ensure that 0 ≤ supx∈X f

Tx ≤
1 < fT x̄, meaning that f ∈ X∗ and x̄T f > 1; the latter is the desired contradiction, since
x̄ ∈ (X∗)∗ and thus we should have x̄T g ≤ 1 for all g ∈ X∗, in particular, for g = f .
Proof of Lemma. Consider vectors

v+
i = [vi; 1], 1 ≤ i ≤ I, v+

i+j = [rj ; 0], 1 ≤ j ≤ J, y+ = [y; 1]

in Rn+1. We claim that y+ is not a conic combination of v+
i , 1 ≤ i ≤ I + J .

Indeed, assuming that

y+ =

I+J∑
`=1

λ`v
+
` with λ` ≥ 0,

and looking at the last coordinates of all vectors involved, we get 1 =
∑I

i=1 λi; looking

at the first n−1 coordinates, we conclude that y =
∑I

i=1 λ`v`+
∑J

j=1 λI+jλjrj . The
bottom line is that y is a convex combination of v1, ..., vI plus a conic combination
of r1, ..., rJ , that is, y ∈ X by (2.4.6), which is not the case.

Now, since y+ is not a conic combination of v+
1 , ..., v

+
I+J , the HFL says to us that there exists

f+ = [f ;α] such that fT y + α = [f+]T y+ =: ε > 0, while [f+]T v+
` ≤ 0, 1 ≤ ` ≤ I + J . In other

words, fT vi ≤ −α and fT rj ≤ 0 for all i, j. Now, if x ∈ X, then by (2.4.6) we have

x =
∑
i

λivi +
∑
j

µjrj

for certain λj ≥ 0 summing up to 1 and µj ≥ 0. It follows that

fTx =
∑
i

λif
T vi +

∑
j

µjf
T rj ≤

∑
i

λi[−α] +
∑
j

µj · 0 = −α.

2.4. STRUCTURE OF POLYHEDRAL SETS 95

The bottom line is that fTx ≤ −α everywhere on x, while fT y = −α + ε with ε > 0, that is,
fTx+ ε ≤ fT y for all x ∈ X, as claimed in Lemma. 2

Note that in the case of a polyhedral set X = {x : ATx ≤ b} the result stated by Lemma
2.4.1 is evident: if y 6∈ X, then there exists a row aTi of A such that aTi y > bi, while aTi x ≤
bi everywhere on X. In contrast to this, Lemma 2.4.1 is a by far non-evident and powerful
statement (which, on a closest inspection, inherited its power from the HFL) – it provides us
with a separation-type result at time when we do not know whether the set X in question is or
is not polyhedral.

Separation Theorem for Convex Sets

The new for us “driving force” in the previous proof – Lemma 2.4.1 – admits a far-reaching
extension onto general convex sets, which is the “in particular” part in Theorem 2.4.3 we are
about to present. We start with the following

Definition 2.4.1 Let X,Y be two nonempty sets in Rn. We say that a linear function eTx
separates these sets, if the function is non-constant on X ∪ Y and everywhere on X is ≥ than
every everywhere on Y , that is, eTx ≥ eT y whenever x ∈ X and y ∈ Y .

Equivalent definition of separation if (check equivalency!):

e separates X and y iff

inf
x∈X

eTx ≥ sup
yzY

eT y & sup
x∈X

eTx > inf
y∈Y

eT y. (2.4.7)

We need also the notion of the relative interior of a nonempty set X ⊂ Rn. The definition is as
follows: a point x ∈ X is called a relative interior point of X, if there exists r > 0 such that the
intersection of the ball of radius r centered at x with the affine span of X is contained in X:

∃r > 0 : y ∈ Aff(X), ‖y − x‖2 ≤ r ⇒ y ∈ X.

The set of all relative interior points of X is called the relative interior of X (notation: rintX).
We already know that the relative interior of a nonempty convex set X is nonempty (Proposition
2.1.3); it is easily seen (check it!) that in this case rintX is convex and is dense in X, meaning
that every point x ∈ X is the limit of an appropriately chosen sequence of points from int X.

The Separation Theorem for Convex Sets, which is an extremely powerful (if not the most
powerful) tool of Convex Analysis, reads:

Theorem 2.4.3 Let X,Y be nonempty convex sets in Rn. These sets can be separated iff their
relative interiors do not intersect.

In particular, if Y is a nonempty closed convex set in Rn and x ∈ Rn does not belong to X,
then there exists a linear form which strictly separates x and Y :

eTx > sup
y∈Y

eT y.

96 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Proof. While we usually do not prove “convex extensions” of our polyhedral results, we cannot
skip the proof of the Separation Theorem, since we will use this result when speaking about
Conic Duality. The proof is easy — the major part of the task “sits” already in Lemma 2.4.1.

10. Separating a point and a convex set not containing this point. Let us prove that if x is a
singleton and Y is a nonempty convex set which does not contain x, then X = {x} and Y can
be separated. By shifting x and Y by the same vector, which of course does not affect neither
the premise (x 6∈ Y), nor the conclusion (“x and Y can be separated”) of the statement we
are proving, we can assume w.l.o.g. that 0 ∈ Y . The claim is easy to verify when x 6∈ Aff(Y).
Indeed, since 0 ∈ Y , Aff(Y) is a linear subspace; when x 6∈ Y , taking, as e, the orthogonal
projection of x onto the orthogonal complement to this linear space, we get eTx = eT e > 0
and eT y = 0 for all y ∈ Aff(Y) ⊃ Y , as required in (2.4.7). Now let x ∈ Aff(Y). Replacing, if
necessary, Rn with Lin(Y) = Aff(Y), we can assume w.l.o.g. that Aff(Y) = Lin(Y) = Rn. Now
let y1, y2, ... be a sequence of vectors from Y which is dense in Y , meaning that every point in Y
is the limit of certain converging subsequence of {yi}∞i=1; the existence of such a dense sequence
{yi ∈ Y } for a nonempty set Y ∈ Rn is the standard and simple fact of Real Analysis (it is
called separability of Rn). Now, let Yk = Conv{y1, ..., yk}, k = 1, 2, Since Y is convex and
x 6∈ Y , x 6∈ Yk, whence, by Lemma 2.4.1, for every k there exists a linear form ek which strictly
separates x and Yk:

eTk x > sup
y∈Y

eTk y. (!)

we clearly have ek 6= 0, and since (!) remains intact when ek is multiplied by a positive real, we
can assume w.l.o.g. that ‖ek‖2 = 1. Now, a sequence of unit vectors in Rn always contains a
converging subsequence, and the limit of this subsequence is a unit vector; thus, we can extract
from {ek} a subsequence {eki}∞i=1 converging to certain unit vector e. For every i, the vector yi
belongs to all but finitely many sets Yk, whence the inequality

eTkjx ≥ e
T
kj
yi

holds true for all but finitely many values of j. Passing to limit as j →∞, we get

eTx ≥ eT yi

for all i, and since {yi}∞i=1 is dense in Y , we conclude that eTx ≥ eT y for all y ∈ Y . All what
remains to check in order to conclude that the linear form given by e separates {x} and Y , is
that eT z is not constant on {x}∪Y , which is immediate: e by construction is a unit vector, and
Y is full-dimensional, so that eT z is non-constant already on Y .

20. Separating two non-intersecting nonempty convex sets. Let now X and Y be non-
intersecting convex sets. In order to separate them, we note that the set Y −X = {y − x : y ∈
Y, x ∈ X} is nonempty and convex and does not contain the origin (the latter – since X and Y
do not intersect). By the previous item, we can separate 0 and Y − X, that is, there exists e
such that

0 = eT 0 ≥ eT (y − x) ∀(x ∈ X, y ∈ Y) & 0 > inf{eT (y − x) : y ∈ Y, x ∈ X}

which is nothing but (2.4.7).

30. Separating two nonempty convex sets with non-intersecting relative interiors. Let X and
Y be nonempty convex sets with non-intersecting relative interiors. As it was mentioned, rintX

2.4. STRUCTURE OF POLYHEDRAL SETS 97

and rintY are convex nonempty sets, so that they can be separated by previous item: there
exists e such that

inf
x∈int X

eTx ≥ sup
y∈int Y

eT y & sup
x∈int X

eTx > inf
y∈int Y

eT y

Since the relative interior of a convex set is dense in this set, the sup and inf in the above relation
remain intact when the relative interiors of X and Y are replaced with A, Y themselves, so that
separating the relative interiors of X, Y , we automatically separate X and Y .

40 We have proved that if the relative interiors of nonempty convex sets do not intersect,
then the sets can be separated. The inverse statement is nearly evident. Indeed, assume that
rintX ∩ rintY 6= ∅, and let us lead to a contradiction the assumption that X and Y can be
separated. Let e separate X and Y , and let a ∈ rintX∩rintY . By the first inequality in (2.4.7),
the linear function eTx everywhere on X should be ≥ eTa (since a ∈ Y), and since a ∈ X, a
should be a minimizer of eTx on X. But a linear function fTw can attain its minimum on a set
Z at a point z of the relative interior of this set only when the function is constant on the set.

Indeed, by definition of a relative interior point, Z contains the intersection D of
Aff(Z) with a ball of positive radius, so that restricted on D, the linear function in
question should attain its minimum on D at the center z of D. The latter is possible
only when the function is constant on D, since D is symmetric w.r.t. z. When fTw
is constant on D, then fTh is constant on D − z, and the latter set is a centered at
the origin ball of positive radius in the linear space L to which Aff(Z) is parallel.
Thus, f should be orthogonal to all small enough vectors from L, and thus should
be orthogonal to the entire L, whence fTw is constant on Aff(Z).

We see that the function eT y is constant, and equal to eTa, on the entire Aff(X) and thus on the
entire X. By “symmetric” reasoning, eT y attains its maximum on Y and the point a ∈ rintY ,
whence eT y is identically equal to eTa on Y . We see that eTw is constant on X ∪ Y , which
contradicts the origin of e. Thus, the convex sets with intersecting relative interiors cannot be
separated.

50. It remains to prove the “in particular” part of the Separation Theorem. When x 6∈ Y
and Y is nonempty, closed and convex, then there exists r > 0 such that the ball B of radius
r centered at x does not intersect Y (why?). Applying the already proved part of Separation
Theorem to X = B and Y , we get a nonzero (why?) vector e such that

inf
x′∈B

eTx′ ≥ max
y∈Y

eT y.

Taking into account that the left hand side inf is eTx − r‖e‖2 (why?), we see that e strongly
separates {x} and Y . 2

Remark: A mathematically oriented reader could notice that when proving Separation Theo-
rem for Convex Sets, we entered a completely new world. Indeed, aside of this proof and the
last section in lecture 1 all our constructions were purely rationally algebraic – we never used
square roots, exponents, convergence, facts like “every bounded sequence of reals/vectors admits
extracting a subsequence which has a limit,” etc. More specifically, all our constructions, proofs
and results would remain intact if we were

98 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

• replacing our “universes” R and Rn with the field of rational numbers Q and the vector
space Qn of n-dimensional vectors with rational coordinates, the linear operations being
vector addition and multiplication of vectors by rational scalars,

• replacing polyhedral sets in Rn – sets of real vectors solving finite systems of nonstrict lin-
ear inequalities with real coefficients – with their “rational” counterparts – sets of rational
vectors solving finite systems of linear inequalities with rational coefficients;

• allowing for rational rather than real scalars when speaking about linear/convex/conic
combinations and in all other places where we use operations involving scalars.

In fact, aside of the last section in lecture 1 and the story about Separation Theorem for Convex
Sets, we could use in the role of our basic field of scalars R not only the field of rational numbers
Q, but every sub-field of R – a nonempty subset of R which does not reduce to {0} and is closed
w.r.t. the four arithmetic operations. Different from Q and R examples of sub-fields are, say,
real numbers which can be represented as p + r

√
2 with rational p, q, or algebraic numbers –

reals which are roots of algebraic polynomials with rational coefficients.

Note that we will follow the “fully rationally algebraic” approach till the concluding lectures
on Ellipsoid Method and Conic Programming/Interior Point algorithms, where working with
reals becomes a must. In particular, till then we will not use neither Theorem 2.4.3, nor the
approximation results from section 1.3.

2.4.3 Immediate Corollaries

Theorem 2.4.2 allows us to “complete” some of the results we already know. For example,

1. Corollary 2.4.1 tells us that a nonempty bounded polyhedral set X is the convex hull of
a nonempty finite set (e.g., the set Ext(X)). Theorem 2.4.2 adds to this that the inverse
also is true: the convex hull of a finite nonempty set is a nonempty (and clearly bounded)
polyhedral set.

2. Corollary 2.4.2 tells us that every pointed and nontrivial polyhedral cone is the conic hull
of a nonempty finite set. Clearly, the trivial cone also is the conic hull of a nonempty finite
set (specifically, the singleton {0}), same as it is the conic hull of the empty set. Taking
into account that every polyhedral cone is the sum of a linear subspace and a pointed
polyhedral cone (this is an immediate corollary of Proposition 2.3.6), we conclude that
every polyhedral cone is the conic hull of a finite, perhaps empty, set. Theorem 2.4.2 adds
to this that the inverse also is true: The conic hull of a finite set {r1, ..., rj} is a polyhedral
cone (look what is given by (2.4.6) when V = {0}).

3. Corollary 2.4.3 says that every nonempty polyhedral set admits representation (2.4.6).
Theorem 2.4.2 says that the inverse also is true.

In addition, Theorems 2.4.1 and 2.4.2 allow us to make the following important conclusion
(which we will enrich in section 3.3.3):

If X is a polyhedral set containing the origin, so is its polar {y : yTx ≤ 1 ∀x ∈ X},
and X is the polar of its polar.
We have proved this statement when proving Theorem 2.4.2 (check it!)

2.4. STRUCTURE OF POLYHEDRAL SETS 99

It is very instructive to look how the inner and the outer representations of a polyhedral
set, or, if you prefer, Theorems 2.4.1 and 2.4.2 complement each other when justifying different
facts about polyhedral sets. E.g., using inner representations of the operand(s), it is immediate
to justify the claims that the arithmetic sum of polyhedral sets or an affine image of such a set
are polyhedral; this task looks completely intractable when using the outer descriptions of the
operands (recall that when carrying out the latter task in section 1.2.2, we “used a cannon” —
the Fourier-Motzkin elimination scheme). Similarly, with the outer descriptions, it is absolutely
clear that the intersection of two polyhedral sets, or the inverse affine image of such a set,
are polyhedral, while inner descriptions give absolutely no hint why these operations preserve
polyhedrality.

100 LECTURE 2. POLYHEDRAL SETS AND THEIR GEOMETRY

Lecture 3

Theory of Systems of Linear
Inequalities and Duality

With all due respect to the results on polyhedral sets we became acquainted with, there still are
pretty simple questions about these sets (or, which is basically the same, about finite systems
of linear inequalities) which we do not know how to answer. Examples of these questions are:
• How to recognize whether or not a polyhedral set X = {x : Ax ≤ b} is empty?
• How to recognize that a polyhedral set is bounded/unbounded?
• How to recognize whether or not two polyhedral setsX = {x : Ax ≤ b} andX ′ = {x : A′x ≤ b′}
coincide with each other? More generally, With X, X ′ as above, how to recognize that X ⊂ X ′?
• How to recognize whether or not a given LO program is feasible/bounded/solvable?
This list can be easily extended...

Now, there are two ways to pose and to answer questions like those above:

A. [Descriptive approach] One way is to ask what are “easy to certify” necessary and sufficient
conditions for a candidate answer to be valid. E.g., it is easy to certify that the solution set
X = {x ∈ Rn : Ax ≤ b} of a system of linear inequalities Ax ≤ b is nonempty – a certificate
is given by any feasible solution to the system. Given a candidate certificate of this type — a
vector x ∈ Rn – it is easy to check whether it is a valid certificate (plug x into the system and
look whether it becomes satisfied); if it is so, the system definitely is solvable. And of course
vice versa – if the system is solvable, this property can be certified by a just outlined certificate.
In contrast to this, it is unclear how to certify that the solution set of a system Ax ≤ b is empty,
which makes the question “whether X = {x : Ax ≤ b} is or is not empty” difficult.

B. [Operational approach] After we know what are “simple” certificates for candidate answers
to the question under consideration, it is natural to ask how to generate appropriate certificates.
For example, we know what is a simple certificate for nonemptiness of the solution set of a
system Ax ≤ b — this is (any) feasible solution to this system. This being said, it is unclear
how to build such a certificate given the system, even when it is known in advance that such a
certificate exists.

In this lecture, we focus on A; specifically, we will find out what are simple certificates for
various properties of polyhedral sets. The questions of how to build the certificates (which,
essentially, is an algorithmic question) will be answered in the part of the course devoted to LO
algorithms.

101

102 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

3.1 General Theorem on Alternative

3.1.1 GTA: Formulation, Proof, Different Versions

Consider a general finite system of m linear inequalities, strict and non-strict, in variables
x ∈ Rn. Such a system always can be written down in the form

aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

where ai ∈ Rn, bi ∈ R, 1 ≤ i ≤ m, I is certain subset of {1, ...,m}, and I is the complement of
I in {1, ...,m}.

The fact that (S) is a “universal” form of a finite system of strict and nonstrict
linear inequalities and linear equations is evident: a linear inequality aTx = b can
be equivalently represented by the system of two opposite inequalities aTx ≤ b and
aTx ≥ b, thus we can think that our system is comprised of inequalities only; every
one of these inequalities can be written in the form aTxΩb, where Ω is a relation
from the list <,≤,≥, >. Finally, we can make the signs Ω of all inequalities either
≤, or <, by replacing an inequality of the form aTx > b (aTx ≥ b) by its equivalent
[−a]Tx < [−b] ([−a]Tx ≤ [−b]).

In what follows we assume that the system is nonempty, otherwise all kinds of questions about
the system become trivial: an empty system of equations is solvable, and its solution set is the
entire Rn.

The most basic descriptive question about (S) is whether or not the system is solvable. It
is easy to certify that (S) is solvable: as we have already explained, any feasible solution is
a certificate. A much more difficult question is how to certify that the system is unsolvable1.
In Mathematics, the typical way to prove impossibility of something is to assume that this
something does take place and then to lead this assumption to a contradiction. It turns out that
finite systems of linear inequalities are simple enough to allow for unified — and extremely simple
— scheme for leading the assumption of solvability of the system in question to a contradiction.
Specifically, assume that (S) has a solution x̄, and let us try to lead this assumption to a
contradiction by “linear aggregation of the inequalities of the system,” namely, as follows. Let
λi, 1 ≤ i ≤ m, be nonnegative “aggregation weights.” Let us multiply the inequalities of the
system by scalars λi and sum up the results. We shall arrive at the “aggregated inequality”

[
∑
i

λiai]
Tx Ω

∑
i

λibi, (3.1.1)

where the sign Ω of the inequality is either < (this is the case when at least one strict inequality
in (S) gets a positive weight, i.e., λi > 0 for some i ∈ I), or ≤ (this is the case when λi = 0 for
all i ∈ I). Due to its origin and due to the elementary properties of the relations ” ≤ ” and ” < ”

1In real life, it was realized long ago that certifying a negative statement is, in general, impossible. Say, a
French-speaking man can easily certify his knowledge of language: he can start speaking French, thus proving his
knowledge to everybody who speaks French. But how could a man certify that he does not know French? The
consequences of understanding that it is difficult or impossible to certify negative statements are reflected in rules
like “a person is not guilty until proved otherwise,” and this is why in the court of law the accused is not required
to certify the negative statement “I did not commit this crime;” somebody else is required to prove the positive
statement “the accused did commit the crime.”

3.1. GENERAL THEOREM ON ALTERNATIVE 103

between reals, the aggregated inequality (3.1.1) is a consequence of the system – it is satisfied at
every solution to the system. It follows that if the aggregated inequality has no solutions at all,
then so is the system (S). Thus, every collection λ of aggregation weights λi ≥ 0 which results
in unsolvable aggregated inequality (3.1.1), can be considered as a certificate of insolvability of
(S).

Now, it is easy to say when the aggregated inequality (3.1.1) has no solutions at all. First,
the vector of coefficients

∑
i λiai of the variables should be zero, since otherwise the left hand

side with properly chosen x can be made as negative as you want, meaning that the inequality
is solvable. Now, whether the inequality 0TxΩa is or is not solvable, it depends on what is Ω
and what is a. When Ω = ” < ”, this inequality is unsolvable iff a ≤ 0, and when Ω = ” ≤ ”, it
is unsolvable iff a < 0. We have arrived at the following simple

Proposition 3.1.1 Assume that one of the systems of linear inequalities

(I):

λi ≥ 0, 1 ≤ i ≤ m∑

i∈I λi > 0∑m
i=1 λiai = 0∑i
i=1 λibi ≤ 0

, (II):

λi ≥ 0, 1 ≤ i ≤ m∑

i∈I λi = 0∑m
i=1 λiai = 0∑i
i=1 λibi < 0

(3.1.2)

in variables λ is solvable. Then system (S) is insolvable.

Indeed, if λ solves (I), then, aggregating the inequalities in (S) with the weights λi, one gets a
contradictory inequality of the form 0Tx < ”something nonpositive”. When λ solves (II), the
same aggregation results in a contradictory inequality of the form 0Tx ≤ ”somehting negative”.
In both cases, (S) admits a consequence which is a contradictory inequality (i.e., inequality with
no solutions), whence (S) itself has no solutions. 2

Remark 3.1.1 Both systems in (3.1.2) are homogeneous, and therefore their solvability/insol-
vability is equivalent to solvability/insolvability of their “normalized” versions

(I′)

λi ≥ 0, 1 ≤ i ≤ m∑

i∈I λi ≥ 1∑m
i=1 λiai = 0∑i
i=1 λibi ≤ 0

, (II′) :

λi ≥ 0, 1 ≤ i ≤ m∑

i∈I λi = 0∑m
i=1 λiai = 0∑i
i=1 λibi ≤ −1

which contain only equalities and nonstrict inequalities. Thus, Proposition 3.1.1 says that if
either (I′), or (II′) is solvable, then (S) is unsolvable.

One of the major results of the LO theory is that the simple sufficient condition for insolv-
ability of (S) stated by Proposition 3.1.1 is in fact necessary and sufficient:

Theorem 3.1.1 [General Theorem on Alternative] A finite system (S) of linear inequalities
is insolvable if and only if it can be led to a contradiction by admissible (λ ≥ 0) aggregation.
In other words, system (S) of linear inequalities in variables x has no solutions iff one of the
systems (I), (II) of linear inequalities in variables λ has a solution.

Postponing the proof of GTA, we see that both solvability and insolvability of (S) admit simple
certificates: to certificate solvability, it suffices to point out a feasible solution x to the system;
to certify insolvability, it suffices to point out a feasible solution λ to either (I) or (II). In both

104 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

cases, (S) possesses the certified property iff an indicated certificate exists, and in both cases it
is easy to check whether a candidate certificate is indeed a certificate.
Proof of GTA. Proposition 3.1.1 justifies the GTA in one direction – it states that if either (I),
or (II), or both the systems, are solvable, then (S) is insolvable. It remains to verify that the
inverse also is true. Thus, assume that (S) has no solutions, and let us prove that then at least
one of the systems (I), (II) has a solution. Observe that we already know that this result takes
place in the special case when all inequalities of the system are homogeneous (i.e., b = 0) and
the system contains exactly one strict inequality, let it be the first one. Indeed, if the system of
the form

pT1 x < 0, pT2 x ≤ 0, ..., pTk x ≤ 0 (S)

with k ≥ 1 inequalities has no solutions, then the homogeneous linear inequality pT1 x ≥ 0 is a
consequence of the system of homogeneous linear inequalities −pT2 x ≥ 0, −pT3 x ≥ 0,...,−pTk x ≥ 0.

By HFL, in this case there exist nonnegative λ2, ..., λk such that p1 =
∑k

i=2 λi[−pi], or, setting
λ1 = 1,

λi ≥ 0, 1 ≤ i ≤ k,
k∑
i=1

λipi = 0.

We see that λ solves system (I) associated with (S).
Now let us derive GTA from the above particular case of it. To this end, given system (S),

consider the following system of homogeneous linear inequalities in variables x, y, z (y, z are
scalar variables):

(a) −z < 0
(b) aTi x− biy + z ≤ 0, i ∈ I
(c) aTi x− biy ≤ 0, i ∈ I
(d) z − y ≤ 0

(3.1.3)

We claim that this system is insolvable. Indeed, assuming that this system has a solution [x; y; z],
we have z > 0 by (a), whence y > 0 by (d). Setting x′ = y−1x and dividing (b) and (c) by y, we
get

aTi x
′ − bi ≤ −(z/y) < 0, i ∈ I, aTi x− bi ≤ 0, i ∈ I,

that is, x′ solves (S), which is impossible, since we are under the assumption that (S) is insolv-
able.

Now, system (3.1.3) is in the form of (S), whence, as we have seen, it follows that there exist
nonnegative λ0, ..., λm+1 with λ0 = 1 such the combination of the right hand sides in (3.1.3)
with coefficients λ0, ..., λm+1 is identically zero. This amounts to

(a)
∑m

i=1 λiai = 0 [look at the coefficients at x]
(b)

∑m
i=1 λibi = −λm+1 [look at the coefficients at y]

(c)
∑

i∈I λi + λm+1 = 1 [look at the coefficients at z]
(3.1.4)

Recalling that λ1, ..., λm+1 are nonnegative, we see that
— in the case of λm+1 > 0, (3.1.4.a,b) say that λ1, ..., λm solve (II);
— in the case of λm+1 = 0, (3.1.4.a,b,c) say that λ1, ..., λm solve (I).
Thus, in all cases either (I), or (II) is solvable. 2

Several remarks are in order.
A. There is no necessity to memorize the specific forms of systems (I), (II); what you should
memorize, is the principle underlying GTA, and this principle is pretty simple:

3.1. GENERAL THEOREM ON ALTERNATIVE 105

A finite system of linear equations and (strict and nonstrict) inequalities has no
solutions if and only if one can lead it to contradiction by admissible feasible aggre-
gation of the inequalities of the system that is, by assigning the inequalities weights
which make it legitimate to take the weighted sum of the inequalities and make this
weighted sum a contradictory inequality.

In this form, this principle is applicable to every system, not necessary to one in the standard
form (S). What does it actually mean that the aggregated inequality is contradictory, it depends
on the structure of the original system, but in all cases it is straightforward to understand what
“contradictory” means and thus it is straightforward to understand how to certify insolvability.

For example, the recipe to realize that the system

x1 + x2 > 0
x1 − x2 = 3
2x1 ≤ 2

is insolvable is as follows: let us multiply the first inequality by a nonnegative weight λ1, the
second equality — by a whatever weight λ2, and the third inequality - by a nonpositive weight
λ3; then it is legitimate to sum the resulting relations up, arriving at

λ1[x1 + x2] + λ2[x1 − x2] + λ3[2x1] Ω λ1 · 0 + λ2 · 3 + λ3 · 2 (∗)

where Ω is ” > ” when λ1 > 0 and Ω is ” ≥ ” when λ1 = 0. Now let us impose on λ’s
the requirement that the left hand side in the aggregated inequality as a function x1, x2 is
identically zero. Adding to this the above restrictions on the signs of λi’s, we arrive at the
system of restrictions on λ, specifically,

λ1 + λ2 + 2λ3 = 0
λ1 − λ2 = 0
λ1 ≥ 0, λ3 ≤ 0

(!)

which expresses equivalently the fact that the aggregation is “legitimate” and results in identi-
cally zero left hand side in the aggregated inequality (∗). The next step is to consider separately
the cases where Ω = ” > ” and Ω = ” ≥ ”. The first case takes place when λ1 > 0, and here,
under assumption (!), (∗) reads 0 > 3λ2 +2λ3; thus, here the fact that the aggregated inequality
is contradictory boils to

λ1 > 0, 3λ2 + 2λ3 ≥ 0. (a)

we get a system of constraints on λ such that its feasibility implies insolvability of the original
system in x-variables. The second case to be considered is that Ω = ” ≥ ”, which corresponds
to λ1 = 0; here the aggregated inequality, under assumption (!), reads 0 ≥ 3λ2 + 2λ3, thus, in
the case in question the fact that the aggregated inequality is contradictory boils up to

λ1 = 0, 3λ2 + 2λ3 > 0 (b)

Now, GTA says the original system in x-variables is insolvable iff augmenting (!) by either
(a), or (b), we get a solvable system of constraints on λ. Since the system (!) implies that
λ1 = λ2 = −λ3, and thus 3λ2 + 2λ3 = −λ3, these augmentations are equivalent to

λ3 < 0

106 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

and
λ3 = 0, −λ3 > 0.

The first system clearly is solvable, meaning that the original system in variables x is insolvable;
as an insolvability certificate, one can use λ3 = −1,λ1 = λ2 = −λ3 = 1.
B. It would be easier to use the GTA if we knew in advance that one of the systems (I), (II),
e.g., (II), is insolvable, thus implying that (S) is insolvable iff (I) is solvable. Generic cases of
this type are as follows:
•. There are no strict inequalities in (S). In this case (I) definitely is insolvable (since the strict
inequality in (I) clearly is impossible), and thus (S) is insolvable iff (II) is solvable;
• The subsystem of S comprised of all nonstrict inequalities in (S) is solvable. In this case, (II)
definitely is insolvable2; thus, (S) is insolvable iff (I) is solvable.

The reasoning in the footnote can be extended as follow: if we know in advance
that certain subsystem (S) of (S) is solvable, we can be sure that the admissible
aggregation weights λi which lead (S) to a contradiction definitely associate positive
weights with some of the inequalities outside of (S). Indeed, otherwise the contradic-
tory aggregation, given by λ, of the inequalities from (S) would be a contradictory
aggregation of the inequalities from (S), which is impossible, since (S) is solvable.

Corollaries of GTA

Specifying somehow the structure of (S) and applying GTA, we get instructive “special cases”
of GTA. Here are several most renown special cases (on a closest inspection, every one of them
is equivalent to GTA)

Homogeneous Farkas Lemma is obtained from GTA when restricting (S) to be a system
of homogeneous inequalities (bi = 0 for all i) and allowing for exactly one strict inequality in
the system (check it!). Of course, with our way to derive GTA, this observation adds nothing
to our body of knowledge — we used HFL to obtain GTA.

Inhomogeneous Farkas Lemma. The next statement does add much to our body of knowl-
edge:

Theorem 3.1.2 [Inhomogeneous Farkas Lemma] A nonstrict linear inequality

aT0 x ≤ b0 (3.1.5)

is a consequence of a solvable system of nonstrict inequalities

aTi x ≤ bi, 1 ≤ i ≤ m (3.1.6)

iff the target inequality (3.1.5) is a weighted sum, with nonnegative coefficients, of the inequalities
from the system and the identically true inequality 0Tx ≤ 1, that is, iff there exist nonnegative
coefficients λ1, ..., λm such that

m∑
i=1

λiai = a0,
m∑
i=1

λibi ≤ b0. (3.1.7)

2look at (II): this system in fact is not affected by the presence of strict inequalities in (S) and would remain
intact if we were dropping from (S) all strict inequalities. Thus, if (II) were solvable, already the subsystem of
nonstrict inequalities from (S) would be insolvable, which is not the case.

3.1. GENERAL THEOREM ON ALTERNATIVE 107

To see the role of the identically true inequality, note that to say that there exist nonnegative
λ1, ..., λm satisfying (3.1.7) is exactly the same as to say that there exist nonnegative λ1, ..., λm+1

such that

[a0; b0] =

m∑
i=1

[λi[ai; bi] + λm+1[0; ...; 0; 1].

Proof. The fact that the existence of λi ≥ 0 satisfying (3.1.7) implies that the target inequality
(3.1.5) is a consequence of the system (3.1.6) is evident — look at the weighted sum

∑
i
λia

T
i x ≤∑

i λibi of the inequalities of the system and compare it with the target inequality; note that here
the solvability of the system is irrelevant. To prove the inverse, assume that the target inequality
is a consequence of the system and the system is solvable, and let us prove the existence of λi ≥ 0
satisfying (3.1.7). Indeed, since the target inequality is a consequence of the system (3.1.6), the
system of linear inequalities

−aTx < −b, aT1 x ≤ b1, ..., aTmx ≤ bm (∗)

is insolvable. The GTA says that then an appropriate weighted sum, with nonnegative weights
µ0, ..., µm, of the inequalities from the latter system is a contradictory inequality. It follows that
µ0 is nonzero (since otherwise the weights µ1, ..., µm were certifying that the system (3.1.6) is
insolvable, which is not the case). When µ0 > 0, the fact that the weighted sum[

µ0[−a0] +
m∑
i=1

µiai

]T
x < µ0[−b0] +

m∑
i=1

µibi

of the inequalities from (∗) is contradictory reads

µ0a0 =
m∑
i=1

µiai, µ0b0 ≥
m∑
i=1

µibi,

meaning that λi = µi/µ0 are nonnegative and satisfy (3.1.7). 2

We are about to present two other renown equivalent reformulations of the GTA.

Exercise 3.1 1) Prove Gordan Theorem on Alternative:

A system of strict homogeneous linear inequalities Ax < 0 in variables x has a
solution iff the system ATλ = 0, λ ≥ 0 in variables λ has only trivial solution λ = 0.

2) Prove Motzkin Theorem on Alternative:

A system Ax < 0, Bx ≤ 0 of strict and nonstrict homogeneous linear inequalities
has a solution iff the system ATλ + BTµ = 0, λ ≥ 0, µ ≥ 0 in variables λ, µ has no
solution with λ 6= 0.

Discussion. It is time now to explain why GTA is indeed a deep fact. Consider the following
solvable system of linear inequalities:

−1 ≤ u ≤ 1, −1 ≤ v ≤ 1. (!)

108 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

From this system it clearly follows that u2 ≤ 1, v2 ≤ 1, whence u2 + v2 ≤ 2. Applying the
Cauchy inequality, we have

u1 + u2 = 1 · u+ 1 · v ≤
√

12 + 12
√
u2 + v2 =

√
2
√
u2 + v2

which combines with the already proved u2 +v2 ≤ 2 to imply that u+v ≤
√

2
√

2 = 2. Thus, the
linear inequality u+v ≤ 2 is a consequence of the solvable system of linear inequalities (!). GTA
says that we could get the same target inequality by a very simple process, free of taking squares
and Cauchy inequality — merely by taking an admissible weighted sum of the inequalities from
the original system. In our toy example, this is evident: we should just sum up the inequalities
u ≤ 1 and v ≤ 1 from the system. However, a derivation of the outlined type could take 1,000
highly nontrivial (and “highly nonlinear”) steps; a statement, like GTA, capable to predict in
advance that a chain, whatever sophisticated, of derivations of this type which starts with a
solvable system of linear inequalities and ends with a linear inequality, can be replaced with just
taking weighted sum, with nonnegative coefficients, of the inequalities from the original system,
should indeed be deep...

It should be added that in both Homogeneous and Inhomogeneous Farkas Lemma, it is
crucial that we speak about linear inequalities. Consider, for example, a target homogeneous
quadratic inequality

xTA0x ≤ 0 (∗)

along with a system
xTAix ≤ 0, 1 ≤ i ≤ m, (!)

of similar inequalities, and let us ask ourselves when the target inequality is a consequence of the
system. A straightforward attempt to extend HFL to quadratic case would imply the conjecture
“(∗) is a consequence of (!) is and only if the symmetric matrix A0 is a conic combination of the
matrices Ai, i = 1, ...,m.” On a closest inspection, we realize that to expect the validity of this
conjecture would be too much, since there exist nontrivial (i.e., with nonzero symmetric matrix
A0) identically true homogeneous quadratic inequalities xTA0x ≤ 0, e.g., −xTx ≤ 0; these are
inequalities produced by the so called negative semidefinite symmetric matrices. Clearly, such
an inequality is a consequence of an empty system (!) (or a system where all the matrices
A1, ..., Ak are zero), while the matrix A0 in question definitely is not a conic combination of
an empty collection of matrices, or a collection comprised of zero matrices. Well, if there exist
identically true homogeneous quadratic inequalities, why not to think about them as about
additional inequalities participating in (!)? Such a viewpoint leads us to an improved conjecture
“a homogeneous quadratic inequality (∗) is a consequence of a finite system (!) of similar
inequalities if and only if A0 can be represented as a conic combination of A1, ..., Am plus a
negative semidefinite matrix?” (Note that in the case of homogeneous linear inequalities similar
correction of HFL “is empty”, since the only homogeneous identically true linear inequality is
trivial – all the coefficients are zero). Unfortunately, the corrected conjecture fails to be true
in general; its“if” part “if A0 is a conic combination of matrices A1, ..., Am plus a negative
semidefinite matrix” is trivially true, but the “only if” part fails to be true. Were it not so,
there would be no difficult optimization problems at all (e.g., P would be equal to NP), but we
are not that lucky... This being said, it should be noted that
• already the trivially true “if” part of the (improved) conjecture is extremely useful – it

underlies what is called semidefinite relaxations of difficult combinatorial problems;
• there is a special case when the improved conjecture indeed is true – this is the case when

m = 1 and the “system” (in fact, just a single inequality) (!) is strictly feasible – there exists x̄

3.1. GENERAL THEOREM ON ALTERNATIVE 109

such that x̄TA1x̄ < 0. The fact that in the special case in question the improved conjecture is
true is called S-Lemma which reads

Let A,B be symmetric matrices of the same size. A homogeneous quadratic inequal-
ity xTA0x ≤ 0 is a consequence of strictly feasible homogeneous quadratic inequality
xTA1x ≤ 0 iff there exists λ ≥ 0 such that the matrix A0 − λA1 is negative semidef-
inite.

Whatever poor looks this fact as compared to its “linear analogy” HFL, S-lemma is one of the
most useful facts of Optimization.

3.1.2 Answering Questions

Now we are in a good position to answer question we posed in the preface of the lecture. All
these questions were on how to certify such and such property; to save words when presenting
answers, let us start with setting up some terminology. Imagine that we are interested in certain
property of an object and know how to certify this property, that is, we have in our disposal a
family of candidate certificates and an easy-to-verify condition C on a pair (“object,” “candidate
certificate”) such that whenever a candidate certificate and the object under consideration fit
the condition C, the object does possess the property of interest. In this situation we shall say
that we have in our disposal a certification scheme for the property.

E.g., let the objects to be considered be polyhedral sets in Rn, given by their de-
scriptions of the form {Ax ≤ b}, the property of interest be the nonemptiness of a
set, candidate certificates be vectors from Rn, and the condition C be “a candidate
certificate x̄ satisfies the system of constrains Ax ≤ b specifying the object under
consideration.” What we have described clearly is a certification scheme.

By definition of a certification scheme, whenever it allows to certify that a given object X
possesses the property of interest (that is, whenever there exists a candidate certificate S which
makes C(X,S) valid), X indeed possesses the property. We say that a certification scheme is
complete, if the inverse also is true: whenever an object possesses the property of interest, this
fact can be certified by the certification scheme. For example, the outlined certification scheme
for nonemptiness of a polyhedral set clearly is complete. When strengthening the condition
C underlying this scheme to “a candidate certificate x̄ has zero first coordinate and satisfies
the system of constrains Ax ≤ b specifying the object under consideration,” we still have a
certification scheme, but this scheme clearly is incomplete.

Finally, we note that certifying the presence of a property and certifying the absence of this
property are, in general, two completely different tasks, this is why in the sequel we should (and
will) consider both how to certify a property and how to certify its absence.3

When a polyhedral set is empty/nonempty? Here are the answers:

Corollary 3.1.1 A polyhedral set X = {x ∈ Rn : Ax ≤ b} is nonempty iff there exists x such
that Ax ≤ b. The set is empty iff there exists λ ≥ 0 such that ATλ = 0 and bTλ < 0.

3Of course, if certain property admits a complete certification scheme S, the absence of this property in an
object X is fully characterized by saying that X does not admit a certificate required by S; this, however, is a
negative statement, and not a certification scheme!

110 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

Indeed, the first part is a plain tautology. The second part is verified as follows: by GTA, X
is empty iff there exists a weighted sum λTAx ≤ λT b of the inequalities, the weights being
nonnegative, which is a contradictory inequality; the latter clearly is the case iff ATλ = 0 and
bTλ < 0. 2

When a polyhedral set contains another polyhedral set? The answer is given by

Corollary 3.1.2 A polyhedral set Y = {x : pTi x ≤ qi, 1 ≤ i ≤ k} contains a nonempty polyhedral

set X = {x : ATx ≤ b} iff for every i ≤ k there exist λi ≥ 0 such that pi = ATλi and qi ≥ bTλi.

Indeed, Y contains X iff every inequality pTi x ≤ qi defining Y is satisfied everywhere on X, that
is, this inequality is a consequence of the system of inequalities Ax ≤ b; it remains to use the
Inhomogeneous Farkas Lemma. 2

Now, Y = {x : pTi x ≤ qi, 1 ≤ i ≤ k} contains X = {x : Ax ≤ b} iff either X = ∅, or
X 6= ∅ and X ⊂ Y . It follows that in order to certify the inclusion X ⊂ Y , it suffices to
point out either a vector λ satisfying λ ≥ 0, ATλ = 0, bTλ < 0, thus certifying that X = ∅
(Corollary 3.1.1), or to certify that X 6= ∅ and point out a collection of vectors λi, satisfying
λi ≥ 0, pi = ATλi, qi ≥ bTλi, 1 ≤ i ≤ k, thus certifying that every one of the inequalities defining
Y is valid everywhere on X. In fact, in the second case one should not bother to certify that
X 6= ∅, since the existence of λi as in Corollary 3.1.2 is sufficient for the validity of the inclusion
X ⊂ Y independently of whether X is or is not empty (why?). It should be added that
• the outlined certification scheme for the inclusion X ⊂ Y is complete;
• it is trivial to certify that X is not contained in Y ; to this end it suffices to point out an

x ∈ X which violates one or more of the linear inequalities defining Y ; this certification scheme
also is complete.

As a direct consequence of our results, we get a complete certification scheme for checking
whether two polyhedral sets X = {x ∈ Rn : Ax ≤ b} and Y = {x ∈ Rn : Cx ≤ d} are/are not
identical. Indeed, X = Y iff either both sets are empty, or both are nonempty and both the
inclusionsX ⊂ Y and Y ⊂ X hold true, and we already know how to certify the presence/absence
of all properties we have just mentioned.4

When a polyhedral set is bounded/unbounded? Certifying boundedness. A polyhedral
set X = {x ∈ Rn : Ax ≤ b} is bounded iff there exists R such that X is contained in the box
BR = {x ∈ Rn : eTi x ≤ R,−eTi x ≤ R, 1 ≤ i ≤ n}, where e1, ..., en are the standard basic orths.
Thus, certificate of boundedness is given by a real R augmented by a certificate that X ⊂ BR.
Invoking the previous item, we arrive at the following “branching” scheme: we either certify
that X is empty, a certificate being a vector λ satisfying λ ≥ 0, ATλ = 0, bTλ < 0, or point

4At a first glance, the very question to which we have answered seems to be fully scholastic; in comparison,
even the question “how many angels can sit at the tip of a needle” discussed intensively by the Medieval scholars
seems to be practical. In fact the question is very deep, and the possibility to answer it affirmatively (that is, by
indicating a complete certification scheme where the validity of candidate certificates can be efficiently verified) is
“an extremely rare commodity.” Indeed, recall that we wand to certify that two sets are/are not identical looking
at the descriptions of these sets, and not at these sets as abstract mathematical beasts in the spirit of Plato.
To illustrate the point, the Fermat Theorem just asks whether the set of positive integer quadruples x, y, z, p
satisfying xp + yp − zp = 0 and p ≥ 3 is or is not equal to the set of positive integer quadruples (x, y, z, p)
satisfying x = 0; this form of the theorem does not make it neither a trivial, nor a scholastic statement.

3.1. GENERAL THEOREM ON ALTERNATIVE 111

out a collection (R, λ1, µ1, ..., λn, µn) satisfying λi ≥ 0, ATλi = ei, b
Tλi ≤ R, µi ≥ 0, ATµi =

−ei, bTµi ≤ R, 1 ≤ i ≤ m, thus certifying that X ⊂ BR. The resulting certification scheme is
complete (why?).

Certifying unboundedness. An unbounded set clearly should be nonempty. By Corollary
2.4.5, a polyhedral set is unbounded iff its recessive cone is nontrivial. Applying Proposition
2.3.4, we conclude that in order to certify unboundedness of a polyhedral set X = {x ∈ Rn :
Ax ≤ b}, it suffices to point out a vector x̄ such that Ax̄ ≤ b and a nonzero vector y such that
Ay ≤ 0, and this certification scheme is complete.

A useful corollary of the results in this item is that the properties of a nonempty polyhedral
set X = {x : Ax ≤ b} to be bounded/unbounded are independent of a particular value of b,
provided that with this value of b, the set X is nonempty.

How to certify that the dimension of a polyhedral set X = {x ∈ Rn : Ax ≤ b} is
≥ / ≤ a given d? First of all, only nonempty sets possess well defined dimension, so that the
“zero step” is to certify that the set in question is nonempty. We know how to certify both this
property and its absence; thus, we can work under the assumption that the nonemptiness of X
is already certified.

Let us start with certifying the fact that dim X ≥ d, where d is a given integer. By Theorem
2.1.2.(iii) and Lemma 2.1.1, dim X = dim Aff(X) ≥ d iff one can point out d + 1 vectors
x0, ..., xd ∈ X such that the d vectors x1−x0, x2−x0, ..., xd−x0 are linearly independent. Both
the inclusions xi ∈ X, i = 0, 1, ..., d, and the linear independence of x1 − x0, ..., xd − x0 is easy
to verify (how?), so that we can think of a collection x0, ..., xd with the outlined properties as a
certificate for the relation dim X ≥ d. The resulting certification scheme clearly is complete.

Now let us think how to certify the relation dim X ≤ d, d being a given integer. There
is nothing to certify if d ≥ n, so that we can assume that d < n. For a nonempty X ⊂ Rn,
the relation dim X ≤ d holds iff there exists an affine subspace M in Rn such that X ⊂ M
and dim M ≤ d; the latter means exactly that there exists a system of n − d linear equations
aTi x = bi with linearly independent a1, ..., an−d such that M is contained in the solution set of
the system (see section 2.1.2). The intermediate summary is that dim X ≤ d iff there exist n−d
pairs (ai, bi) with linearly independent a1, ..., an−d such that for every i aTi x ≡ bi on X, or, which
is the same, both aTi x ≤ bi and −aTi x ≤ −bi everywhere on X. Recalling how to certify that a
linear inequality αTx ≤ β is a consequence of the solvable system Ax ≤ b of linear inequalities
defining X, we arrive at the following conclusion: In order to certify that dim X ≤ d, where
X = {x ∈ Rn : ATx ≤ b}, A being an m×n matrix, and X is nonempty, it suffices to point out
n− d vectors ai ∈ Rn, n− d reals bi and 2(n− d) vectors λi, µi ∈ Rm such that

• a1, ..., an−d are linearly independent,

• for every i ≤ n− d, one has λi ≥ 0, ATλi = ai and bTλi ≤ bi,

• for every i ≤ n− d, one has µi ≥ 0, ATµi = −ai, bTµi ≤ −bi.

Every one of the above conditions is easy to verify, so that we have defined a certification scheme
for the relation dim X ≤ m, and this scheme clearly is complete.

112 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

3.1.3 Certificates in Linear Optimization

Consider an LO program in the form

Opt = max
x

cTx :

Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (3.1.8)

(”`” from ”less or equal”, ”g” from ”greater or equal”, ”e” from ”equal”).
Of course, we could stick to a “uniform” format where all the constraints are, say, the ”≤”-
inequalities; we prefer, however, to work with a more flexible format, reflecting how the LO’s
look “in reality.” Our goal is to show how to certify the basic properties of an LO program.

Certifying feasibility/infeasibility

Certificate for feasibility of (3.1.8) is, of course, a feasible solution to the problem. Certificate
for infeasibility is, according to our theory, a collection of aggregation weights λ = [λ`;λg;λe]
associated with the constraints of the program (so that dim λ` = dim p, dim λg = dim q,
dim λe = dim r such that first, it is legitimate to take the weighted sum of the constraints, and,
second, the result of aggregation is a contradictory inequality. The restriction to be legitimate
amounts to

λ` ≥ 0, λg ≤ 0, no restrictions on λe;

when aggregation weights λ satisfy these restrictions, the weighted by λ sum of the constraints
is the inequality

[P Tλ` +QTλg +RTλr]
Tx ≤ pTλ` + qTλg + rTλe,

and this inequality is contradictory if and only if the vector of coefficients of x in the left hand
side vanishes, and the right hand side is negative. Thus, λ certifies infeasibility iff

λ` ≥ 0, λg ≤ 0, P Tλ` +QTλg +RTλr = 0, pTλ` + qTλg + rTλe < 0. (3.1.9)

According to our theory, the outlined certification schemes for feasibility and for infeasibility are
complete.

Certifying boundedness/unboundness

Certifying boundedness of (3.1.8). An LO program (3.1.8) is bounded iff it is either in-
feasible, or it is feasible and the objective is bounded below on the feasible set, that is, there
exists a real µ such that the inequality cTx ≤ µ is a consequence of the constraints. We al-
ready know how to certify infeasibility; to certify boundedness for a feasible problem, we should
certify feasibility (which we again know how to do) and to certify that the inequality cTx ≤ µ
is a consequence of a feasible system of constraints, which, by the principle expressed by the
Inhomogeneous Farkas Lemma, amounts to pointing out a collection of weights λ = [λ`;λg;λe]
which makes it legitimate to take the weighted sum of the constraints and is such that this
weighted sum is of the form cTx ≤ constant. Thus, λ in question should satisfy

λ` ≥ 0, λg ≤ 0, P Tλ` +QTλg +RTλr = c. (3.1.10)

The resulting certification scheme for boundedness — “either certify infeasibility according to
(3.1.9), or point out a certificate for feasibility and a λ satisfying (3.1.10)” — is complete. On a

3.1. GENERAL THEOREM ON ALTERNATIVE 113

closest inspection, there is no need to bother about certifying feasibility in the second “branch”
of the scheme, since pointing out a λ satisfying (3.1.10) certifies boundedness of the program
independently of whether the program is or is not feasible (why?)

As an important consequence, we get the following

Corollary 3.1.3 For an LO program max
x
{cTx : P Tx ≤ p,QTx ≥ q,RTx = r} the property to

be or not to be bounded is independent of the value of the right hand side vector b = [p; q; r],
provided than with this b the problem is feasible.

Indeed, by completeness of our certification scheme for boundedness, a feasible LO program is
bounded iff and only if there exists λ satisfying (3.1.10), and the latter fact is or is not valid
independently of what is the value of b. 2

Note that Corollary 3.1.3 “mirrors” the evident fact that the property of an LO program to
be or not to be feasible is independent of what is the objective.

Certifying unboundedness of (3.1.8). Program (3.1.8) is unbounded iff it is feasible and
the objective is not bounded above on the feasible set. By Corollary 2.4.4, the objective of a
feasible LO is unbounded from above on the feasible set iff this set has a recessive direction y
along which the objective grows: cT y > 0. It follows that a certificate for unboundedness can
be specified as a pair x, y such that

(a) Px ≤ p,Qx ≥ 0, Rx = r
(b) Py ≤ 0, Qy ≥ 0, Ry = 0
(c) cT y > 0

(3.1.11)

Here (a) certifies the fact that the program is feasible, and (b) expresses equivalently the fact that
y is a recessive direction of the feasible set (cf. Proposition 2.3.4). The resulting certification
scheme is complete (why?).

Certifying solvability/insolvability

An LO program (3.1.8) is solvable iff it is feasible and above bounded (Corollary 2.4.7), and we
already have in our disposal complete certification schemes for both these properties.

Similarly, (3.1.8) is insolvable iff it is either infeasible, or is feasible and is (above) unbounded,
and we already have in our disposal complete certification schemes for both these properties.

Certifying optimality/nonoptimality

A candidate solution x̄ to (3.1.8) is optimal if and only if it is feasible and the linear inequality
cTx ≤ cT x̄ is a consequence of the (feasible!) system of constraints in (3.1.8). Invoking Inho-
mogeneous Farkas Lemma, we conclude that a certificate for optimality of x̄ can be obtained by
augmenting x̄ by a λ = [λ`;λg;λe] satisfying the relations

(a) λ` ≥ 0, λg ≤ 0,
(b) P Tλ` +QTλg +RTλr = c
(c) pTλ` + qTλg + rTλr ≤ cT x̄.

(3.1.12)

and that the resulting certification scheme for optimality of x̄ is complete provided that x̄ is
feasible.

114 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

Observe that for whatever λ satisfying (3.1.12.a) we have

λT` Px̄ ≤ pTλ`, λTgQx̄ ≤ qTλg, λTe Rx̄ = rTλe, (∗)

and the first two inequalities can be equalities iff the entries in λ` and λg corresponding to the
nonactive at x̄ inequality constraints – those which are satisfied at x̄ as strict inequalities –
should be zeros. Summing up the inequalities in (∗), we end up with

λT` Px̄+ λTgQx̄ ≤ qTλg + λTe Rx̄ ≤ pTλ` + qTλg + rTλr. (!)

On the other hand, if λ satisfies (3.1.12.c), then the inequality opposite to (!) takes place,
which is possible iff the inequalities in (∗) are equalities, which, as we have seen, is equivalent
to the fact that the entries in λ associated with nonactive at x̄ inequality constraints are zero.
Vice versa, when the entries in λ satisfying the nonactive at x̄ inequality constraints are zero,
then (3.1.12.c) is satisfied as an equality as well. The bottom line is that λ satisfies (3.1.12) iff
λ satisfies the first two relations in (3.1.12) and, in addition, the entries in λ associated with
non-active at x̄ inequality constraints of (3.1.8) are zeros. We have arrived at the following

Proposition 3.1.2 [Karush-Kuhn-Tucker Optimality Conditions in LO] A feasible solution x̄ to
an LO program (3.1.8) is optimal for the program iff x̄ can be augmented by Lagrange multipliers
λ = [λ`;λg;λe] in such a way that the following two facts take place:
• multipliers corresponding to the ” ≤ ”-inequality constraints (3.1.8.`) are nonnegative,

multipliers corresponding to the ” ≥ ”-inequality constraints (3.1.8.g) are nonpositive, and, in
addition, multipliers corresponding to the nonactive at x inequality constraints are zero (all this
is called “complementary slackness”);
• one has

c = P Tλ` +QTλg +RTλr.

We have seen how to certify that a feasible candidate solution to (3.1.8) is optimal for the
program. As about certifying nonoptimality, this is immediate: x̄ is not optimal iff it either
is not feasible for the program, or there exists a feasible solution y with cT y > cTx, and such
an y certifies the nonoptimality of x̄. The resulting “two-branch” certification scheme clearly is
complete.

A corollary: faces of a polyhedral set revisited

Recall that a face of a polyhedral set X = {x ∈ Rn : aTi x ≤ b, 1 ≤ i ≤ m} is a nonempty
subset of X which is cut off X by converting some of the inequalities aTi x ≤ bi into equalities
aTi x = bi. Thus, every face of X is of the form XI = {x : aTi x ≤ bi, i 6∈ I, aTi x = b,i ∈ I}, where
I is certain subset of the index set {1, ...,m} (which should be such that XI 6= ∅). As we have
already mentioned, a shortcoming of this definition is that it is not geometric — it is expressed
in terms of a particular representation of X rather than in terms of X as a set. Now we are in
a position to eliminate this drawback.

Proposition 3.1.3 Let X = {x ∈ Rn : aTi x ≤ bi, 1 ≤ i ≤ m}, be a nonempty polyhedral set.
(i) If cTx is a linear form which is bounded from above on X (and thus attains its maximum

on X), then the set Argmax
X

cTx of maximizers of the form is a face of X.

(ii) Vice versa, every face XI of X can be represented in the form XI = Argmax
X

cTx for

appropriately chosen linear form cTx.

3.2. LO DUALITY 115

In particular, every vertex of X is the unique maximizer, taken over x ∈ X, of an appropri-
ately chosen linear form.

Since the sets of the form Argmaxx∈X c
Tx are defined in terms of X as a set, with no reference

to a particular representation of X, Proposition indeed provides us with a purely geometric
characterization of the faces.
Proof of Proposition 3.1.3 is easy. To verify (i), let x̄ be a maximizer of cTx over X, and
let J be the set of indices of all constraints aTi x ≤ bi which are active at x̄: J = {i : aTi x̄ = bi}.
Invoking the “only if” part of Proposition 3.1.2 and noting that we are in the situation of
P T = [a1; ...; am] with Q and R being empty, we conclude that there exist nonnegative λi, i ∈ J ,
such that c =

∑
i∈J λiai. Let us set I = {i ∈ J : λi > 0}, so that in fact c =

∑
i∈I λiai, and let

us verify that Argmax
X

cTx = XI (so that Argmax
X

cTx is a face in X, as claimed). If I is empty,

then c =
∑

i∈I λiai = 0, so that Argmax
X

cTx = X∅ = XI , as required. Now let I 6= ∅. We have

∀x ∈ X : cTx = [
∑

i∈I λiai]
Tx =

∑
i∈I

λi[a
T
i x] ≤︸︷︷︸

(∗)

∑
i∈I λibi

max
x∈X

cTx = cT x̄ =
∑
i∈I

[λia
T
i x̄] =

∑
i∈I λibi.

(we have taken into account that λi > 0). From these relations it is clear that x ∈ X is a
maximizer of the linear form given by c iff the inequality (∗) is an equality; the latter, for x ∈ X,
takes place iff aTi x = bi for all i ∈ I (since for such an x, aTi x ≤ bi and λi are strictly positive,
i ∈ I), that is, iff x ∈ XI , as required. (i) is proved.

To prove (ii), consider a face XI , and let us prove that it is nothing but ArgmaxX c
Tx for a

properly chosen c. There is nothing to prove when I = ∅, so that XI = X; in this case we can
take c = 0. Now let I be nonempty, let us choose whatever strictly positive λi, i ∈ I, and set
c =

∑
i∈I λiai. By the “if” part of Proposition 3.1.2, every point of the (nonempty!) face XI of

X is a maximizer of cTx over x ∈ X, and since all λi, i ∈ I, are strictly positive, the reasoning
used to prove (i) shows that vice versa, every maximizer of cTx over X belongs to XI . Thus,
XI = Argmax

X
cTx for the c we have built. 2

3.2 LO Duality

We are about to develop the crucial concept of the dual to an LO program. The related
constructions and results mostly are already known to us, so that this section is a kind of
“intermediate summary.”

3.2.1 The Dual of an LO Program

Consider an LO program in the form of (3.1.8) (we reproduce the formulation for reader’s
convenience):

Opt(P) = max
x

cTx :

Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 ; (P)

From now on we refer to this problem as the primal one. The origin of the problem dual to
(P) stems from the desire to find a systematic way to bound from above the optimal value of

116 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

(P). The approach we intend to use is already well known to us — this is aggregation of the
constraints. Specifically, let us associate with the constraints of (P) the vector of dual variables
(called also Lagrange multipliers) λ = [λ`;λg;λe] restricted to satisfy sign constraints

λ` ≥ 0;λg ≤ 0. (3.2.1)

Using such a λ as the vector of aggregation weights for the constraints of (P), we get the scalar
inequality

[P Tλ` +QTλg +RTλr]
Tx ≤ pTλ` + qTλg + rTλe (∗)

which, by its origin, is a consequence of the system of constraints of (P). Now, if we are lucky
to get in the left hand side our objective, that is, if

P Tλ` +QTλg +RTλr = c,

then (∗) says to us that pTλ` + qTλg + rTλe is an upper bound on Opt(P). The dual problem
asks us to build the best possible — the smallest — bound of this type. Thus, the dual problem
reads

Opt(D) = min
λ=[λ`;λg ;λe]

dTλ := pTλ` + qTλg + rTλe :

λ` ≥ 0
λg ≤ 0

P Tλ` +QTλg +RTλr = c

 . (D)

This is again an LO program.

3.2.2 Linear Programming Duality Theorem

The most important relations between the primal and the dual LO problems are presented in
the following

Theorem 3.2.1 [Linear Programming Duality Theorem] Consider primal LO program (P)
along with its dual (D). Then

(i) [Symmetry] Duality is symmetric: (D) is an LO program, and its dual is (equivalent to)
(P).

(ii) [Weak duality] Opt(D) ≥ Opt(P), or, equivalently, for every pair (x, λ) of feasible
solutions to (P) and (D) one has

DualityGap(x, λ) := dTλ− cTx = [pTλ` + qTλg + rTλe]− cTx ≥ 0.

(iii) [Strong duality] The following properties are equivalent to each other:

(iii.1) (P) is feasible and bounded from above

(iii.2) (P) is solvable

(iii.3) (D) is feasible and bounded from below

(iii.4) (D) is solvable

(iii.5) Both (P) and (D) are feasible

and whenever one of these equivalent to each other properties takes place, we have Opt(P) =
Opt(D).

3.2. LO DUALITY 117

Proof. (i): In order to apply the recipe for building the dual to (D), we should first write it
down as a maximization problem in the format of (P), that is, as

−Opt(D) = max
λ=[λ`;λg ;λe]

−[pTλ` + qTλg + rTλe] :

λg ≤ 0 (`)
λ` ≥ 0 (g)

P Tλ` +QTλg +RTλr = c (e)

 .

This is the problem in the form of (P), with the matrices [0, I, 0], [I, 0, 0], [P T , QT , RT] in the
role of P , Q, R, respectively; here I and 0 stand for the unit and the zero matrices of appropriate
sizes (not necessary the same in different places). Applying to the latter problem the recipe for
building the dual, we arrive at the LO program

min
y=[y`;yg ;yr]

0T y` + 0T yg + cT yr :

y` ≥ 0
yg ≤ 0

[yg + Pyr; y` +Qyr;Ryr] = [−p;−q;−r]

 .

We can immediately eliminate the variables y` and yg. Indeed, y` does not affect the objective,
and what the constraints want of y` is y` ≥ 0, y` + Qyr = −q, which amounts to −Qyr ≥ q.
The situation with yg is similar. Eliminating y` and yg, we arrive at the following equivalent
reformulation of the problem dual to (D):

min
yr

cT yr :

Pyr ≥ −p
Qyr ≤ −q
Ryr = −r

 ,

which is nothing but (P) (set x = −yr). (i) is proved.
(ii): Weak duality is readily given by the construction of (D).
(iii): Let us first verify that all five properties (iii.1) – (iii.5) are equivalent to each other.
(iii.1)⇔(iii.2): a solvable LO program clearly is feasible and bounded, the inverse is true due

to Corollary 2.4.7.(i).
(iii.3)⇔(iii.4): follows from the already proved equivalence (iii.1)⇔(iii.2) due to the fact that

the duality is symmetric.
(iii.2)⇒(iii.5): If (P) is solvable, (P) is feasible. In order to verify that (D) is feasible as

well, note that the inequality cTx ≤ Opt(P) is a consequence of the system of the constraints
in (P), and this system is feasible; applying the Inhomogeneous Farkas Lemma, the inequality
cTx ≤ Opt(P) can be obtained by taking admissible weighted sum of the constraints of (P) and
the identically true inequality 0Tx ≤ 1, that is, there exists λ0 ≥ 0 and λ = [λ`;λg;λe] satisfying
the sign constraints (3.2.1) such that the aggregated inequality

λ0[0Tx] + λT` Px+ λTgQx+ λTe Rx ≤ λ0 · 1 + λT` p+ λTg q + λTe r

is exactly the inequality cTx ≤ Opt(P), meaning that

P Tλ` + qTλg +RTλe = c

and
λT` p+ λTg q + λTe r = Opt(P)− λ0. (∗)

Since λ satisfies the sign constraints from (D), we conclude that λ is feasible for (D), so that D)
is feasible, as claimed. As a byproduct, we see from (∗) that the dual objective at λ is ≤ Opt(P)

118 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

(since λ0 ≥ 0), so that Opt(D) ≤ Opt(P). The strict inequality is impossible by Weak duality,
and thus Opt(P) = Opt(D).

(iii.4)⇒(iii.5): this is the same as the previous implication due to the fact that the duality
is symmetric.

(iii.5)⇒(iii.1): in the case of (iii.5), (P) is feasible; since (D) is feasible as well, (P) is bounded
by Weak duality, and thus (iii.1) takes place.

(iii.5)⇒(iii.3): this is the same as the previous implication due to the fact that the duality
is symmetric.

We have proved that (iii.1)⇔(iii.2)⇒(iii.5)⇒(iii.1), and that (iii.3)⇔(iii.4)⇒(iii.5)⇒(iii.3).
Thus, all 5 properties are equivalent to each other. We have also seen that (iii.2) implies that
Opt(P) = Opt(D). 2

3.3 Immediate Applications of Duality

In this section, we outline several important applications of the LO Duality Theorem.

3.3.1 Optimality Conditions in LO

The following statement (which is just a reformulation of Proposition 3.1.2) is the standard
formulation of optimality conditions in LO:

Proposition 3.3.1 [Optimality conditions in LO] Consider the primal-dual pair of problems
(P), (D) and assume that both of them are feasible. A pair (x, λ) of feasible solutions to (P)
and to (D) is comprised of optimal solutions to the respective problems

— [Zero Duality Gap] iff the duality gap, as evaluated at this pair, is 0:

DualityGap(x, λ) := [pTλ` + qTλg + rTλe]− cTx = 0

as well as

— [Complementary Slackness] iff all the products of Lagrange multipliers λi associated with
the inequality constraints of (P) and the residuals in these constraints, as evaluated at x, are
zeros:

[λ`]i[Px− p]i = 0∀i, [λg]j [Qx− q]j = 0 ∀j.

Proof. (i): Under the premise of Proposition we have Opt(P) = Opt(D) by the LP Duality
Theorem, meaning that

DualityGap(x, λ) =
[
[pTλ` + qTλg + rTλr]−Opt(D)

]
+
[
Opt(P)− cTx

]
.

Since x, λ are feasible for the respective problems, the quantities in brackets are nonnegative,
so that the duality gap can be zero iff both these quantities are zeros; the latter is the same as
to say that x is primal-, and λ is dual optimal.

(ii): This is the same as (i) due to the following useful observation:

Whenever x is primal-, and λ is dual feasible, we have

DualityGap(x, λ) = λT` (p− Px) + λTg (q −Qx). (3.3.1)

3.3. IMMEDIATE APPLICATIONS OF DUALITY 119

Indeed,

DualityGap(x, λ) = λT` p+ λTg q + λTr r − cTx
= λT` p+ λTg q + λTr r − [P Tλ` +QTλg +RTλr]

Tx [since λ is dual feasible]

= λT` (p− Px) + λTg (q −Qx) + λTr [r −Rx]

= λT` (p− Px) + λTg (q −Qx) [since x is primal feasible]

It remains to note that the right hand side in (3.3.1) is∑
i

[λ`]i[P − Px]i +
∑
j

[λg]
T [q −Qx]j , (!)

and all terms in these two sums are nonnegative due to sign restrictions on λ coming from (D)
and the fact that x is primal feasible. Thus, DualityGap(x, λ) is zero iff all terms in (!) are
zeros, as claimed. 2

3.3.2 Geometry of a Primal-Dual Pair of LO programs

Consider an LO program

Opt(P) = max
x

{
cTx : Px ≤ p,Rx = r

}
(P)

along with its dual program

Opt(D) = min
λ=[λ`;λe]

{
pTλ` + rTλe : λ` ≥ 0, P Tλ` +RTλe = c

}
(D)

Note that to save notation (and of course w.l.o.g.) we have assumed that all the inequalities in
the primal problem are ” ≤ ”.

Our goal here is to rewrite both the problems in a “purely geometric” form, which, as we
shall see, reveals a beautiful, simple and instructive geometry of the pair.

First, assume that the systems of linear equations participating in (P) and in (D) are solvable,
and let x̄, −λ̄ = −[λ̄`; λ̄e] be solutions to the respective systems:

(a) Rx̄ = r;
(b) P T λ̄` +RT λ̄e = −c. (3.3.2)

Note that the assumption of solvability we have made is much weaker then feasibility of (P) and
(D), since at this point we do not bother about inequality constraints.

Observe that for every x such that Rx = r we have

cTx = −[P T λ̄` +RT λ̄e]
Tx = −λ̄T` [Px]− λ̄Te [Rx]

= λ̄T` [p− Px] +
[
−λ̄T` p− λ̄Te r

]︸ ︷︷ ︸
constP

so that (P) is nothing but the problem

Opt(P) = max
x

{
λ̄T` [p− Px] + constP : p− Px ≥ 0, Rx = r

}
.

120 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

Let us pass in this problem from the variable x to the variable

ξ = p− Px

(“primal slack” — vector of residuals in the primal inequality constraints). Observe that the
dimension m of this vector, same as the dimension of λ`, is equal to the number of inequality
constraints in (P). We have already expressed the primal objective in terms of this new variable,
and it remains to understand what are the restrictions on this vector imposed by the constraints
of (P). The inequality constraints in (P) want of ξ to be nonnegative; the equality constraints
along with the definition of ξ read equivalently that ξ should belong to the image MP of the
affine subspace MP = {x : Rx = r} ⊂ Rdim x under the affine mapping x 7→ p − Px. Let
us compute MP . The linear subspace LP to which MP is parallel is the image of the linear
subspace L = {x : Rx = 0} (this is the subspace MP is parallel to) under the linear mapping
x 7→ −Px, or, which is the same, under the mapping x 7→ Px. As a shift vector for MP , we
can take the image p−Px̄ of the vector x̄ ∈MP under the affine mapping which maps MP onto
MP . We have arrived at the following intermediate result:

(!) Problem (P) can be reduced to the problem

Opt(P) = max
ξ∈Rm

{
λ̄T` ξ : ξ ≥ 0, ξ ∈ LP + ξ̄

}
LP = {Py : Ry = 0}, ξ̄ = p− Px̄

(P)

The optimal values of (P) and (P) are linked by the relation

Opt(P) = Opt(P) + constP = Opt(P)− λ̄T` p− λ̄Te r.

Now let us look at the dual problem (D), and, similarly to what we did with (P), let us represent
it solely in terms of the “dual slack” λ`. To this end, observe that if λ = [λ`;λe] satisfies the
equality constraints in (D), then

pTλ` + rTλe = pTλ` + [Rx̄]Tλe = pTλ` + x̄T [RTλe]

= pTλ` + x̄T [c− P Tλ`] = [p− Px̄]Tλ` + x̄T c︸︷︷︸
constD

= ξ̄Tλ` + constD;

we managed to express the dual objective on the dual feasible set solely in terms of λ`. Now,
the restrictions imposed by the constraints of (D) on λ` are the nonnegativity: λ` ≥ 0 and the
possibility to be extended, by properly chosen λe, to a solution to the system of linear equations
P Tλ` +RTλe = c. Geometrically, the latter restriction says that λ` should belong to the affine
subspace MD which is the image of the affine subspace MD = {[λ`;λe] : P Tλ` + RTλe = c}
under the projection [λ`;λe] 7→ λ`. Let us computeMD. The linear subspace LD to whichMD

is parallel clearly is given as

LD = {λ` : ∃λe : P Tλ` +RTλe = 0};

as a shift vector forMD, we can take an arbitrary point in this affine space, e.g., the point −λ̄`.
We have arrived at the following result:

3.3. IMMEDIATE APPLICATIONS OF DUALITY 121

(!!) Problem (D) can be reduced to the problem

Opt(D̄) = min
λ`∈Rm

{
ξ̄Tλ` : λ` ≥ 0, λ` ∈ LD − λ̄`

}
LD = {λ` : ∃λe : P Tλ` +QTλe = c}

(D)

The optimal values of (D) and (D) are linked by the relation

Opt(D) = Opt(D) + constD = Opt(D) + x̄T c.

Now note that the linear subspaces LP = {Py : Ry = 0} and LD = {λ` : ∃λe : P Tλ`+R
Tλe = 0}

of Rn are closely related – they are orthogonal complements of each other. Indeed,

(LP)⊥ = {λ` : λT` Py = 0 ∀y : Ry = 0},

that is, λ` ∈ L⊥P if and only if the homogeneous linear equation (P Tλ`)
T y in variable y is a

consequence of the system of homogeneous linear equations Ry = 0; by Linear Algebra, this is
the case iff P Tλ` = RTµ for certain µ, or, setting λe = −µ, iff P Tλ` + RTλe = 0 for properly
chosen λe; but the latter is nothing but the description of LD.

We arrive at a wonderful geometric picture:

Problems (P) and (D) are reducible, respectively, to

Opt(P) = max
ξ∈Rm

{
λ̄T` ξ : ξ ≥ 0, ξ ∈MP = LP + ξ̄

}
(P)

and
Opt(D) = min

λ`∈Rm

{
ξ̄Tλ` : λ` ≥ 0, λ` ∈MD = L⊥P − λ̄`

}
.

Both (P) and (D) are the problems of optimizing a linear objective over the inter-
section of an affine subspace (called primal, resp., dual feasible plane) in Rm and
the nonnegative orthant Rm

+ , and the “geometric data” (the objective and the affine
subspace) of the problems are closely related to each other: they are given by a pair
of vectors ξ̄, λ̄e in Rm and a pair of linear subspaces LP , LD which are orthogonal
complements to each other. Specifically,

• the feasible planes of (P) and (D) are shifts of the linear subspaces LP = L⊥D and
LD = L⊥P , respectively;

• the objective (to be maximized) in (P) is λ̄T` ξ, and minus the vector λ̄` is also a shift
vector for the dual feasible planeMD. Similarly, the objective (to be minimized) in
(D) is ξ̄Tλ`, and the vector ξ̄ is also a shift vector for the primal feasible plane MP

The picture is quite symmetric: geometrically, the dual problem is of the same structure as the
primal one, and we see that the problem dual to dual is the primal. Slight asymmetry (the
vector λ̄` responsible for the primal objective is minus the shift vector for the dual problem,
while the vector ξ̄ responsible for the dual objective is the shift for the primal) matches the fact
that the primal problem is a maximization, and the dual problem is a minimization one; if we
were writing the primal and the dual problem both as maximization or both as minimization
programs, the symmetry would be “ideal.”

Now let us look what are, geometrically, the optimal solutions we are looking for. To this
end, let us express the duality gap via our slack variables ξ and λ`. Given feasible for (P) and
(D) values of ξ and λ`, we can associate with them x and λe according to

ξ = p− Px, Rx = r, P Tλ` +RTλe = c;

122 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

clearly, x will be a feasible solution to (P), and λ = [λ`;λe] will be a feasible solution to (D).
Let us compute the corresponding duality gap:

DualityGap(x, λ) = [pTλ` + rTλe]− cTx = pTλ` + rTλe − [P Tλ` +RTλe]x
= (p− Px)Tλ` + [r −Rx]Tλe
= ξTλ`.

Thus, the duality gap is just the inner product of the primal and the dual slacks. Optimality
conditions say that feasible solutions to (P) and (D) are optimal for the respective problems iff
the duality gap, as evaluated at these solutions, is zero; in terms of (P) and (Q), this means that
a pair of feasible solutions to (P) and (D) is comprised of optimal solutions to the respective
problems iff these solutions are orthogonal to each other. Thus,

To solve (P) and (D) means to find a pair of orthogonal to each other and nonnegative
vectors with the first member of the pair belonging to the affine subspace MP , and
the second member belonging to the affine subspace MD. Here MP and MD are
given affine subspaces in Rm parallel to the linear subspaces LP , LD which are
orthogonal complements of each other.

Duality Theorem says that this task is feasible iff both MP and MD do contain
nonnegative vectors.

It is a kind of miracle that the purely geometric problem at which we have arrived, with for-
mulation free of any numbers, problem which, modulo its multi-dimensional nature, looks as an
ordinary exercise from a high-school textbook on Geometry, is in the focus of research of at least
three generations of first-rate scholars, is the subject of dedicated university courses worldwide
and, last but not least, possesses huge spectrum of applications ranging from poultry production
to signal processing.

A careful reader at this point should ring an alarm: We indeed have shown that a
primal-dual pair of LO programs with m inequality constraints in the primal problem
and feasible systems of equality constraints can be reduced to the above geometric
problem; but how do we now that every instance of the latter problem can indeed be
obtained from a primal-dual pair of LO’s of the outlined type? This is a legitimate
question, and it is easy to answer it affirmatively. Indeed, assume we are given
two affine subspaces MP and MD in Rm such that the linear subspaces, LP and
LD, to which MP and MD are parallel, are orthogonal complements of each other:
LD = L⊥P . Then

MP = LP + ξ̄ & MD = L⊥P − λ̄` (∗)

for properly chosen ξ̄ and λ̄`. We can represent LP as the kernel of an appropriately
chosen matrix R. Consider the LO in the standard form:

max
ξ

{
λ̄T` ξ : −ξ ≤ 0, Rξ = Rξ̄

}
,

and let us take it as our primal problem (P). The dual problem (D) then will be

min
λ=[λ`;λe]

{
[Rξ̄]Tλe : −λ` +RTλe = λ̄`

}
.

Clearly, the systems of linear equality constraints in these problems are solvable, one
of solutions to the system of linear constraints in (P) being ξ̄ (which allows to take

3.3. IMMEDIATE APPLICATIONS OF DUALITY 123

x̄ = ξ̄), and one of the solutions to the system of linear constraints in (D) being
[−λ̄`; 0; ...; 0]. It allows to apply to (P) and (D) our machinery to reduce them to
problems (P), (D), respectively. From observations on what can be chosen as feasible
solutions to the systems of equality constraints in (P) and in (D) it is immediate to
derive (do it!) that the problem (P) associated with (P) is nothing but (P) itself,
so that the its primal feasible affine plane is {ξ : Rξ = Rξ̄}, which is nothing but
LP + ξ̄ =MP . Thus, (P) ≡ (P) is nothing but the problem

max
ξ
{λ̄T` ξ : ξ ≥ 0, ξ ∈MP = LP + ξ̄}.

According to the links between (P) and (D) we have established, (D) is nothing but
the problem

min
λ`

{
ξ̄Tλ` : λ` ≥ 0, λ` ∈ L⊥P − λ̄`

}
.

The affine feasible plane in (D) is thereforeMD (see (∗)), and our previous analysis
shows that the geometric problem associated with (P), (D) is exactly the problem
“pick in the nonnegative parts ofMP andMD vectors which are orthogonal to each
other.”

The last question to be addressed is: the pair of problems (P), (D) is specified by a pair
MP , MD of affine subspaces in Rm (this pair cannot be arbitrary: the parallel to MP , MD

linear subspaces should be orthogonal complements to each other) and a pair of vectors ξ̄ ∈MP

and λ̄` ∈ [−MD]. What happens when we shift these vectors along the corresponding affine
subspaces? The answer is: essentially, nothing happens. When λ̄` is shifted along −MD, that
is, is replaced with λ̄`+∆ with ∆ ∈ LD, the dual problem (D) remains intact, and the objective
of the primal problem (P) restricted on the feasible plane MP of this problem is shifted by a
constant depending on ∆ (check both these claims!); this affects the optimal value of (P), but
does not affect the optimal set of (P). Similarly, when shifting ξ̄ alongMP , the primal problem
(P) remains intact, and the objective of the dual problem (D) on the feasible plane of this
problem is shifted by a constant depending on the shift in ξ̄. We could predict this “irrelevance
of particular choices of ξ̄ ∈ MP and λ̄` ∈ −MD” in advance, since the geometric form of the
primal-dual pair (P), D) of problems: ”find a pair of orthogonal to each other nonnegative
vectors, one from MP and one from MD” is posed solely in terms of MP and MD.

Our geometric findings are illustrated on figure 3.1.

3.3.3 Extending Calculus of Polyhedral Representability and Robust LO

Polyhedral representability of the cost function of an LO and the support function
of a polyhedral set

Consider a LO program in the form

Opt(c, b) = max
x

{
cTx : Ax ≤ b

}
[A : m× n] (3.3.3)

which we will denote also as (P [c, b]). There are situations when either b, or c, instead of being
fixed components of the data, are themselves decision variables in certain “master program”
which involves, as a “variable,” the optimal value Opt(c, b) of (3.3.3) as well.

124 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

x

z

O

y

Figure 3.1: Geometry of primal-dual pair of LO programs. Blue area: feasible set of (P) —
intersection of the 2D primal feasible planeMP with the nonnegative orthant R3

+. Red segment:
feasible set of (D) — intersection of the 1D dual feasible planeMD with the nonnegative orthant
R3

+. Blue dot: primal optimal solution ξ∗. Red dot: dual optimal solution λ∗` . Pay attention to
orthogonality of the primal solution (which is on the z-axis) and the dual solution (which is in
the xy-plane).

To give an example, let (3.3.3) be a production planning problem, where b as a vector
of resources “consumed” by a factory, x as a production plan, and Opt(c, b) is the
maximum, given the resources, volume of sales. Now imagine that we can buy the
resources at certain prices, perhaps under additional restrictions on what can and
what cannot be bought (like upper bound on the total cost of ordering the resources,
lower and upper bounds on the amounts of every one of resources we can buy, etc.).
In this situation the master problem might be to maximize our net profit (volume of
sales minus the cost of resources) by choosing both the resources to be used (b) and
how to produce (x).

A highly instructive example of a situation where c is varying will be given later
(”Robust Optimization”).

In such a situation, in order to handle the master program, we need a polyhedral representation
of Opt(c, b) as a function of the “varying parameter” (b or c) in question.

Opt(c, b) as a function of b. Let us fix c and write (Pc[b]) instead of (P [c, b]) and Optc(b)
instead of Opt(c, b) to stress the fact that c is fixed and we treat the optimal value of (3.3.3) as
a function of the right hand side vector b. Let us make the following assumption:

(!) For some value b̄ of b, program (Pc[b]) is feasible and bounded.

Then the problem dual to (P [b]), that is,

min
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(Dc[b])

is feasible when b = b̄. But the feasible set of the latter problem does not depend on b, so that,
by Weak Duality, (Pc[b]) is bounded for all b, and thus Optc(b) is a function taking real values

3.3. IMMEDIATE APPLICATIONS OF DUALITY 125

and, perhaps, the value −∞ (the latter happens at those b for which (Pc[b]) is infeasible). Taking
into account that a feasible and bounded LO program is solvable, we have the equivalence

Optc(b) ≥ t⇔ ∃x : Ax ≤ b & cTx ≥ t (3.3.4)

which is a polyhedral representation of the hypograph {[b; t] : t ≤ Optc(b)} of Optc(·). As a
byproduct, we see that Optc(·) is a concave function.

Now, the domain D of Optc(·) – the set of values of b where Optc(b) is a real – clearly is the
set of those b’s for which (Pc[b]) is feasible (again: under our assumption that program (Pc[b])
is feasible and bounded for some b = b̄, it follows that the program is solvable whenever it is
feasible). Let b̄ ∈ D, and let λ̄ be the optimal solution to the program (Dc[b̄]). Then λ̄ is dual
feasible for every program (Pc[b]), whence by Weak duality

Optc(b) ≤ λ̄T b = λ̄T b̄+ λ̄T (b− b̄) = Optc(b̄) + λ̄T (b− b̄).

The resulting inequality

∀b : Optc(b) ≤ Φb̄(b) := Optc(b̄) + λ̄T (b− b̄) (3.3.5)

resembles the Gradient inequality f(y) ≤ f(x) + (y − x)T∇f(x) for smooth concave functions
f ; geometrically, it says that the graph of Optc(b) never goes above the graph of the affine
function Φb̄(b) and touches the latter graph at the point [b̄; Optc(b̄)]. Now recall that Optc(b) is
polyhedrally representable concave function and thus is the restriction on D of the minimum of
finitely many affine functions of b:

b ∈ D ⇒ Optc(b) = min
1≤i≤I

φi(x), φi(x) = αTi b+ βi.

Assuming w.l.o.g. that all these functions are distinct from each other and taking into account
that D clearly is full-dimensional (since whenever b′ ≥ b ∈ D, we have b′ ∈ D as well), we
see that Optc(b) is differentiable almost everywhere on D (specifically, everywhere in int D,
except for the union of finitely many hyperplanes given by the solvable equations of the form
φi(x) = φj(x) with i 6= j). At every point b̄ ∈ int D where Optc(b) is differentiable, (3.3.5) is
possible only when λ̄ = ∇Optc(b̄), and we arrive at the following conclusion:

Let (Pc(b)) be feasible and bounded for some b. Then the set D = Dom Optc(·) is
a polyhedral cone with a nonempty interior, and at every point b̄ ∈ int D where
the function Optc(·) is differentiable (and this is so everywhere on int D except for
the union of finitely many hyperplanes), the problem (Dc[b̄]) has a unique optimal
solution which is the gradient of Optc(·) at b̄.

Of course, we can immediately recognize where the domain D of Optc(·) and the “pieces” φi(·)
come from. By Linear Programming Duality Theorem, we have

Optc(b) = min
λ

{
bTλ : λ ≥ 0, ATλ = c

}
.

We are in the situation where the feasible domain Λ of the latter problem is nonempty; besides
this, it clearly does not contain lines. By Theorem 2.4.1, this feasible domain is

Conv{λ1, ..., λS}+ Cone {ρ1, ..., ρT },

126 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

where λi are the vertices of Λ, and ρj are the (directions of the) extreme rays of Rec(Λ). We
clearly have

D = {b : ρTj b ≥ 0, 1 ≤ j ≤ T}, b ∈ D ⇒ Optc(b) = min
1≤i≤S

λTi b,

so that D is exactly the cone dual to Rec(Λ), and we can take I = S and φi(b) = λTi b, 1 ≤ i ≤ S.
Here again we see how powerful are polyhedral representations of functions as compared to their
straightforward representations as maxima of affine pieces: the number S of pieces in OptC(·)
and the number of linear inequalities specifying the domain of this function can be — and
typically are — astronomical, while the polyhedral representation (3.3.4) of the function is fully
tractable.

Law of diminishing marginal returns. The concavity of Optc(b) as a function of b,
whatever simple this fact be, has important “real life” consequences. Assume, as in the motivat-
ing example above, that b is the vector of resources “consumed” by a production process, and we
should buy these resources at a market at certain prices pi forming price vector p. Interpreting
the objective in (3.3.3) as our income (the total dollar value of our sales), and denoting by M our
investments in the resources, the problem of optimizing the income becomes the LO program

Opt(M) = max
x,b

{
cTx : Ax ≤ b,Qb ≤ q, pT b ≤M

}
,

where Qb ≤ q are “side constraints” on b (like nonnegativity, upper bounds on the maximal
available amounts of various recourses, etc.) In this problem, the right hand side vector is
[q;M]; we fix once for ever q and treat M as a varying parameter, as expressed by the notation
Opt(M). Note that the feasible set of the problem extends with M ; thus, assuming that the
problem is feasible and bounded for certain M = M0, it remains feasible and bounded for
M ≥M0. We conclude that Opt(M) is a finite, nondecreasing and, as we have shown, concave
function of M ≥ M0. Concavity implies that Opt(M + δ) − Opt(M), where δ > 0 is fixed,
decreases (perhaps, nonstrictly) as M grows. In other words, the reward for an extra $1 in the
investment can only decrease as the investment grows. In Economics, this is called the law of
diminishing marginal returns.

Opt(c, b) as a function of c. Now let us treat b as once for ever fixed, and c – as a varying
parameter in (3.3.3), and write (P b[c]) instead of (3.3.3) and Optb(c) instead of Opt(c, b). Assume
that (P b[c]) is feasible (this fact is independent of a particular value of c). Then the relation

Optb(c) ≤ τ (∗)

is equivalent to the fact that the problem (Dc[b]) is solvable with optimal value ≤ τ . Applying
the Linear Programming Duality Theorem, we arrive at the equivalence

Optb(c) ≤ τ ⇔ ∃λ : ATλ = c, λ ≥ 0, bTλ ≥ τ ; (3.3.6)

this equivalence is a polyhedral representation of Optb(c) as a convex function. As a byproduct,
we see that Optb(c) is convex. The latter could be easily seen from the very beginning: Optb(c)
is the supremum of the family cTx of linear (and thus convex) functions of c over the set
{x : Ax ≤ b} of values of the “parameter” x and thus is convex (see calculus of convex functions).

The above construction works when (3.3.3) is feasible. When it is not the case, the situation
is trivial: Optb(c) is −∞ identically, and we do not treat such a function as convex (convex

3.3. IMMEDIATE APPLICATIONS OF DUALITY 127

function must take finite values and the value +∞ only); thus, we cannot say that Optb(c) is a
“polyhedrally representable convex function,”, in spite of the fact that the set of all pairs (c, τ)
satisfying (∗) – the entire (c, τ)-space! – clearly is polyhedral.

Now let c̄ ∈ Dom Optb(·). Then the problem (P b[c̄]) is feasible and bounded, and thus is
solvable. Denoting by x̄ an optimal solution to (P b[c̄]) and observing that x̄ is feasible for every
program (P b[c]), we have

Optb(c) ≥ cT x̄ = c̄T x̄+ (c− c̄)T x̄ = Optb(c̄) + x̄T (c− c̄),

that is,
∀c : Optb(c) ≥ Optb(c̄) + x̄T (c− c̄), (3.3.7)

which looks as the Gradient inequality for a smooth convex function. To simplify our analysis,
note that if A has a nontrivial kernel, then Optb(c) clearly is +∞ when c is not orthogonal to
KerA; if c is orthogonal to KerA, then Optb(c) remains intact when we augment the constraints
of (P b[c]) with the linear equality constraints x ∈ L = (KerA)⊥. Replacing, if necessary, Rn

with L, let us assume that KerA = 0, so that the feasible set Π of (P b[·]) does not contain lines.
Since it is nonempty, we have

Π = Conv{x1, ..., xS}+ Cone {r1, ..., rT },

where xi are the vertices of Π, and rj are the (directions of the) extreme rays of Rec(Π). We
now clearly have

Dom Optb(·) = −(Rec(Π))∗, c ∈ Dom Optb(·)⇒ Optb(c) = max
i
xTi c.

Since the cone Rec(Π) is pointed due to KerA = {0}, the domain of Optb(·) possesses a nonempty
interior (see the proof of Proposition 2.3.7), and Optb(c) is differentiable everywhere in this
interior except for the union of finitely many hyperplanes. This combines with (3.3.7) to imply
the following result, completely symmetric to the one we got for Optc(·):

Let KerA = {0} and (P b[·]) be feasible. Then P = Dom Optc(·) is a polyhedral cone
with a nonempty interior, and at every point c̄ ∈ int D where the function OptB(·)
Optc(·) is differentiable (and this is so everywhere on int P except for the union of
finitely many hyperplanes), the problem (P b[c̄]) has a unique optimal solution which
is the gradient of Optb(·) at c̄.

Support function of a polyhedral set. Given a nonempty set X ⊂ Rn, we always can form
the function SuppX(c) = sup

x∈X
cTx : Rn → R ∪ {+∞} called the support function of X. E.g.,

the above function Optb(c) is the support function of the polyhedral set X = {x : Ax ≤ b}
(which we assume to be nonempty). The support function always is convex (as the supremum
of a family of convex functions cTx of c taken over x ∈ X). In the polyhedral case, the support
function “remembers” the set it comes from due to the formula

X = {x ∈ Rn : cTx ≤ SuppX(c) ∀c}

To see its validity, note that the right hand side set, let us call it X ′, clearly contains X (indeed,
SuppX(c) = supx∈X c

Tx, that is, for every c the linear form cTx is ≤ SuppX(c) everywhere on
X). To see that the inverse inclusion also is true, we should prove that if x̄ 6∈ X, then x̄ 6∈ X ′

128 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

as well, that is, there exists a c such that cT x̄ > SuppX(c). But this fact is immediately given
by the “separation theorem for polyhedral sets:” representing X as {x : aTi x ≤ bi, 1 ≤ i ≤ m},
the fact that x̄ 6∈ X means that aTi∗ x̄ > bi∗ for some i∗. Setting c = ai∗ , we therefore have
cT x̄ > bi ≥ SuppX(c), where ≥ is evident.

Similar reasoning, with Separation Theorem for convex sets (Theorem 2.4.3) in the role of
the (evident!) separation theorem for polyhedral sets, demonstrates that the support function
of a nonempty set X remembers this set, provided that the set is convex and closed. We com-
plete this section with the following useful modification of the equivalence (3.3.6) which should
be considered as a new rule in the calculus of polyhedral sets and polyhedrally representable
functions which we started in section 1.2.3. The numeration of calculus rules below continues
the one in section 1.2.3.

F.6. Taking the support function of a polyhedrally representable set: a polyhedral representa-
tion

X = {x ∈ Rn : ∃w : Px+Qw ≤ r}

of a nonempty polyhedral set can be easily converted to a polyhedral representation of its
support function:{

[c; τ] : τ ≥ SuppX(c) := sup
x∈X

cTx

}
=
{

[c; τ] : ∃λ : λ ≥ 0, P Tλ = c,QTλ = 0, rTλ ≤ τ
}
.

To prove the latter relation, note that from the definition of SuppX(c) and from the
polyhedral representation of X in question it follows immediately that SuppX(c) is the
optimal value in the (feasible, since X is nonempty) LO program

max
[x;w]

{
cTx : Px+Qw ≤ r

}
,

and it remains to apply (3.3.6). Note that progress as compared with (3.3.6) is in possibility
to build a p.r. of SuppX(·) given a whatever p.r. of X, while in (3.3.6) X is given by a
straightforward p.r. not involving slack variables.

The following two calculus rules are immediate corollaries of F.6:

S.6. A polyhedral representation

X = {x ∈ Rn : ∃w : Px+Qw ≤ r}

of a polyhedral set containing the origin can be straightforwardly converted into a p.r. of
its polar:

Polar (X) := {ξ : ξTx ≤ 1 ∀x ∈ X}
= {ξ : SuppX(ξ) ≤ 1} =

{
ξ : ∃λ : λ ≥ 0, P Tλ = ξ,QTλ = 0, rTλ ≤ 1

}
.

S.7. Let X be a polyhedral cone given by a p.r.

X = {x : ∃w : Px+Qw ≤ r}.

Then the cone X∗ dual to X admits the p.r.

X∗ := {ξ : ξTx ≥ 0 ∀x ∈ X} = {ξ : Supp(−ξ) ≤ 0}
=
{
ξ : ∃λ : λ ≥ 0, P Tλ+ ξ = 0, QTλ = 0, rTλ ≤ 0

}
.

3.3. IMMEDIATE APPLICATIONS OF DUALITY 129

Applications in Robust LO

Polyhedral representability of Optb(c) plays crucial role in Robust Linear Optimization – a
(reasonably novel) methodology for handling LO problems with uncertain data. Here is the
story.

Data uncertainty in LO: sources. Typically, the data of real world LOs

max
x

{
cTx : Ax ≤ b

}
[A = [aij] : m× n] (LO)

is not known exactly when the problem is being solved. The most common reasons for data
uncertainty are as follows:

• Some of data entries (future demands, returns, etc.) do not exist when the problem is
solved and hence are replaced with their forecasts. These data entries are thus subject to
prediction errors;

• Some of the data (parameters of technological devices/processes, contents associated with
raw materials, etc.) cannot be measured exactly, and their true values drift around the
measured “nominal” values; these data are subject to measurement errors;

• Some of the decision variables (intensities with which we intend to use various technological
processes, parameters of physical devices we are designing, etc.) cannot be implemented
exactly as computed. The resulting implementation errors are equivalent to appropriate
artificial data uncertainties.

Indeed, the contribution of a particular decision variable xj to the left hand side of constraint i

is the product aijxj . A typical implementation error can be modeled as xj 7→ (1 + ξj)xj + ηj ,

where ξj is the multiplicative, and ηj is the additive component of the error. The effect of this

error is as if there were no implementation error at all, but the coefficient aij got the multiplicative

perturbation: aij 7→ aij(1 + ξj), and the right hand side bi of the constraint got the additive

perturbation bi 7→ bi − ηjaij .

Data uncertainty: dangers. In the traditional LO methodology, a small data uncertainty
(say, 0.1% or less) is just ignored; the problem is solved as if the given (“nominal”) data were
exact, and the resulting nominal optimal solution is what is recommended for use, in hope that
small data uncertainties will not affect significantly the feasibility and optimality properties
of this solution, or that small adjustments of the nominal solution will be sufficient to make
it feasible. In fact these hopes are not necessarily justified, and sometimes even small data
uncertainty deserves significant attention. We are about to present two instructive examples of
this type.

Motivating example I: Synthesis of Antenna Arrays. Consider a monochromatic
transmitting antenna placed at the origin. Physics says that

1. The directional distribution of energy sent by the antenna can be described in terms of
antenna’s diagram which is a complex-valued function D(δ) of a 3D direction δ. The
directional distribution of energy sent by the antenna is proportional to |D(δ)|2.

2. When the antenna is comprised of several antenna elements with diagrams D1(δ),..., Dk(δ),
the diagram of the antenna is just the sum of the diagrams of the elements.

130 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

In a typical Antenna Design problem, we are given several antenna elements with diagrams
D1(δ),...,Dn(δ) and are allowed to multiply these diagrams by complex weights xi (which in
reality corresponds to modifying the output powers and shifting the phases of the elements). As
a result, we can obtain, as a diagram of the array, any function of the form

D(δ) =

n∑
j=1

xjDj(δ),

and our goal is to find the weights xj which result in a diagram as close as possible, in a
prescribed sense, to a given “target diagram” D∗(δ).
Example: Antenna Design. Consider a planar antenna comprised of a central circle and 9
concentric rings of the same area as the circle (figure 3.2.a) in the XY -plane (“Earth’s surface”).
Let the wavelength be λ = 50cm, and the outer radius of the outer ring be 1 m (twice the
wavelength).

One can easily see that the diagram of a ring {a ≤ r ≤ b} in the plane XY (r is the distance
from a point to the origin) as a function of a 3-dimensional direction δ depends on the altitude
(the angle θ between the direction and the plane) only. The resulting function of θ turns out to
be real-valued, and its analytic expression is

Da,b(θ) =
1

2

b∫
a

 2π∫
0

r cos
(
2πrλ−1 cos(θ) cos(φ)

)
dφ

 dr.
Fig. 3.2.b represents the diagrams of our 10 rings for λ = 50cm.

Assume that our goal is to design an array with a real-valued diagram which should be axial
symmetric with respect to the Z-axis and should be “concentrated” in the cone π/2 ≥ θ ≥
π/2 − π/12. In other words, our target diagram is a real-valued function D∗(θ) of the altitude
θ with D∗(θ) = 0 for 0 ≤ θ ≤ π/2 − π/12 and D∗(θ) somehow approaching 1 as θ approaches
π/2. The target diagram D∗(θ) used in this example is given in figure 3.2.c (blue).

Let us measure the discrepancy between a synthesized diagram and the target one by the
Tschebyshev distance, taken along the equidistant 240-point grid of altitudes, i.e., by the quan-
tity

τ = max
i=1,...,240

∣∣D∗(θi)− 10∑
j=1

xj Drj−1,rj (θi)︸ ︷︷ ︸
Dj(θi)

∣∣, θi =
iπ

480
.

Our design problem is simplified considerably by the fact that the diagrams of our “building
blocks” and the target diagram are real-valued; thus, we need no complex numbers, and the
problem we should finally solve is

min
τ∈R,x∈R10

τ : −τ ≤ D∗(θi)−
10∑
j=1

xjDj(θi) ≤ τ, i = 1, ..., 240

 . (3.3.8)

This is a simple LP program; its optimal solution x∗ results in the diagram depicted at figure
3.2.c (magenta). The uniform distance between the actual and the target diagrams is ≈ 0.0589
(recall that the target diagram varies from 0 to 1).

Now recall that our design variables are characteristics of certain physical devices. In reality,
of course, we cannot tune the devices to have precisely the optimal characteristics x∗j ; the best

3.3. IMMEDIATE APPLICATIONS OF DUALITY 131

0 10 20 30 40 50 60 70 80 90
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) (b) (c)

Figure 3.2: Synthesis of antennae array.
(a): 10 array elements of equal areas in the XY -plane; the outer radius of the largest ring is
1m, the wavelength is 50cm.
(b): “building blocks” — the diagrams of the rings as functions of the altitude angle θ.
(c): the target diagram (blue) and the synthesized diagram (magenta).

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90
−20

−15

−10

−5

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90
−200

−150

−100

−50

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90
−2000

−1500

−1000

−500

0

500

1000

1500

ρ = 0 ρ = 0.0001 ρ = 0.001 ρ = 0.01

Figure 3.3: “Dream and reality,” nominal optimal design: samples of 100 actual diagrams (red)
for different uncertainty levels. Blue: the target diagram

132 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

Dream Reality
ρ = 0 ρ = 0.0001 ρ = 0.001 ρ = 0.01
value min mean max min mean max min mean max

‖ · ‖∞-distance
to target

0.059 1.280 5.671 14.04 11.42 56.84 176.6 39.25 506.5 1484

energy
concentration

85.1% 0.5% 16.4% 51.0% 0.1% 16.5% 48.3% 0.5% 14.9% 47.1%

Table 3.1: Quality of nominal antenna design: dream and reality. Data over 100 samples of
actuation errors per each uncertainty level ρ.

we may hope for is that the actual characteristics xfct
j will coincide with the desired values x∗j

within a small margin ρ, say, ρ = 0.1% (this is a fairly high accuracy for a physical device):

xfct
j = (1 + ξj)x

∗
j , |ξj | ≤ ρ = 0.001.

It is natural to assume that the actuation errors ξj are random with the mean value equal to 0;
it is perhaps not a great sin to assume that these errors are independent of each other. Note
that as it was already explained, the consequences of our actuation errors are as if there were
no actuation errors at all, but the coefficients Dj(θi) of variables xj in (3.3.8) were subject to
perturbations Dj(θi) 7→ (1 + ξj)Dj(θi).

Since the actual weights differ from their desired values x∗j , the actual (random) diagram
of our array of antennae will differ from the “nominal” one we see on figure 3.2.c. How large
could be the difference? Looking at figure 3.3, we see that the difference can be dramatic. The
diagrams corresponding to ρ > 0 are not even the worst case: given ρ, we just have taken as
{ξj}10

j=1 100 samples of 10 independent numbers distributed uniformly in [−ρ, ρ] and have plotted
the diagrams corresponding to xj = (1 + ξj)x

∗
j . Pay attention not only to the shape, but also

to the scale (table 3.1): the target diagram varies from 0 to 1, and the nominal diagram (the
one corresponding to the exact optimal xj) differs from the target by no more than by 0.0589
(this is the optimal value in the “nominal” problem (3.3.8)). The data in table 3.1 show that
when ρ = 0.001, the typical ‖ · ‖∞ distance between the actual diagram and the target one is
by 3 (!) orders of magnitude larger. Another meaningful way, also presented in table 3.1, to
understand what is the quality of our design is via energy concentration – the fraction of the total
emitted energy which “goes up,” that is, is emitted along the spatial angle of directions forming
angle at most π/12 with the Z-axis. For the nominal design, the dream (i.e., with no actuation
errors) energy concentration is as high as 85% – quite respectable, given that the spatial angle
in question forms just 3.41% of the entire hemisphere. This high concentration, however, exists
only in our imagination, since actuation errors of magnitude ρ as low as 0.01% reduce the average
energy concentration (which, same as the diagram itself, now becomes random) to just 16%; the
lower 10% quantile of this random quantity is as small as 2.2% – 1.5 times less than the fraction
(3.4%) which the “going up” directions form among all directions. The bottom line is that “in
reality” our nominal optimal design is completely meaningless.

Motivating example II: NETLIB Case Study NETLIB includes about 100 not very large
LOs, mostly of real-world origin, used as the standard benchmark for LO solvers. In the study
to be described, we used this collection in order to understand how “stable” are the feasibility
properties of the standard – “nominal” – optimal solutions with respect to small uncertainty in
the data. To motivate the methodology of this “case study”, here is the constraint # 372 of the

3.3. IMMEDIATE APPLICATIONS OF DUALITY 133

problem PILOT4 from NETLIB:

aTx ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829 − 1.526049x830

−0.031883x849 − 28.725555x850 − 10.792065x851 − 0.19004x852 − 2.757176x853

−12.290832x854 + 717.562256x855 − 0.057865x856 − 3.785417x857 − 78.30661x858

−122.163055x859 − 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863

−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870 − 0.401597x871

+x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

(C)

The related nonzero coordinates in the optimal solution x∗ of the problem, as reported by CPLEX
(one of the best commercial LP solvers), are as follows:

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100 x∗828 = 3624.613324098961
x∗829 = 18.20205065283259 x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

The indicated optimal solution makes (C) an equality within machine precision.
Observe that most of the coefficients in (C) are “ugly reals” like -15.79081 or -84.644257.

We have all reasons to believe that coefficients of this type characterize certain technological
devices/processes, and as such they could hardly be known to high accuracy. It is quite natural
to assume that the “ugly coefficients” are in fact uncertain – they coincide with the “true” values
of the corresponding data within accuracy of 3-4 digits, not more. The only exception is the
coefficient 1 of x880 – it perhaps reflects the structure of the underlying model and is therefore
exact – “certain”.

Assuming that the uncertain entries of a are, say, 0.1%-accurate approximations of unknown
entries of the “true” vector of coefficients ã, we looked what would be the effect of this uncertainty
on the validity of the “true” constraint ãTx ≥ b at x∗. Here is what we have found:
• The minimum (over all vectors of coefficients ã compatible with our “0.1%-uncertainty

hypothesis”) value of ãTx∗ − b, is < −104.9; in other words, the violation of the constraint can
be as large as 450% of the right hand side!
• Treating the above worst-case violation as “too pessimistic” (why should the true values of

all uncertain coefficients differ from the values indicated in (C) in the “most dangerous” way?),
consider a more realistic measure of violation. Specifically, assume that the true values of the
uncertain coefficients in (C) are obtained from the “nominal values” (those shown in (C)) by
random perturbations aj 7→ ãj = (1 + ξj)aj with independent and, say, uniformly distributed
on [−0.001, 0.001] “relative perturbations” ξj . What will be a “typical” relative violation

V =
max[b− ãTx∗, 0]

b
× 100%

of the “true” (now random) constraint ãTx ≥ b at x∗? The answer is nearly as bad as for the
worst scenario:

Prob{V > 0} Prob{V > 150%} Mean(V)

0.50 0.18 125%

Relative violation of constraint # 372 in PILOT4

(1,000-element sample of 0.1% perturbations of the uncertain data)

We see that quite small (just 0.1%) perturbations of “clearly uncertain” data coefficients can
make the “nominal” optimal solution x∗ heavily infeasible and thus – practically meaningless.

134 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

A “case study” reported in [2] shows that the phenomenon we have just described is not an
exception – in 13 of 90 NETLIB Linear Programming problems considered in this study, already
0.01%-perturbations of “ugly” coefficients result in violations of some constraints as evaluated
at the nominal optimal solutions by more than 50%. In 6 of these 13 problems the magnitude
of constraint violations was over 100%, and in PILOT4 — “the champion” — it was as large as
210,000%, that is, 7 orders of magnitude larger than the relative perturbations in the data.

The conclusion is as follows:

In applications of LO, there exists a real need of a technique capable of detecting
cases when data uncertainty can heavily affect the quality of the nominal solution,
and in these cases to generate a “reliable” solution, one that is immunized against
uncertainty.

Uncertain Linear Problems and their Robust Counterparts. We are about to intro-
duce the Robust Counterpart approach to uncertain LO problems aimed at coping with data
uncertainty.

Uncertain LO problem. We start with

Definition 3.3.1 An uncertain Linear Optimization problem is a collection{
max
x

{
cTx+ d : Ax ≤ b

}}
(c,d,A,b)∈U

(LOU)

of LO problems (instances) min
x

{
cTx+ d : Ax ≤ b

}
of common structure (i.e., with common

numbers m of constraints and n of variables) with the data varying in a given uncertainty set

U ⊂ R(m+1)×(n+1).

We always assume that the uncertainty set is parameterized, in an affine fashion, by perturbation
vector ζ varying in a given perturbation set Z:

U =

{[
cT d
A b

]
=

[
cT0 d0

A0 b0

]
︸ ︷︷ ︸

nominal
data D0

+
L∑̀
=1

ζ`

[
cT` d`
A` b`

]
︸ ︷︷ ︸

basic
shifts D`

: ζ ∈ Z ⊂ RL

}
. (3.3.9)

For example, when speaking about PILOT4, we, for the sake of simplicity, tacitly
assumed uncertainty only in the constraint matrix, specifically, as follows: every
coefficient aij is allowed to vary, independently of all other coefficients, in the interval
[an
ij−ρij |an

ij |, an
ij+ρij |an

ij |], where an
ij is the nominal value of the coefficient — the one

in the data file of the problem as presented in NETLIB, and ρij is the perturbation
level, which in our experiment was set to 0.001 for all “ugly” coefficients an

ij and
was set to 0 for “nice” coefficients, like the coefficient 1 at x880. Geometrically, the
corresponding perturbation set is just a box

ζ ∈ Z = {ζ = {ζij ∈ [−1, 1]}i,j:an
ij is ugly},

and the parameterization of the aij-data by the perturbation vector is

aij =

{
an
ij(1 + ζij), an

ij is ugly

an
ij , otherwise

3.3. IMMEDIATE APPLICATIONS OF DUALITY 135

Robust Counterpart of Uncertain LO. Note that a family of optimization problems like
(LOU), in contrast to a single optimization problem, is not associated by itself with the con-
cepts of feasible/optimal solution and optimal value. How to define these concepts depends on
the underlying “decision environment.” Here we focus on an environment with the following
characteristics:

A.1. All decision variables in (LOU) represent “here and now” decisions; they should
be assigned specific numerical values as a result of solving the problem before
the actual data “reveals itself.”

A.2. The decision maker is fully responsible for consequences of the decisions to be
made when, and only when, the actual data is within the prespecified uncer-
tainty set U given by (3.3.9).

A.3. The constraints in (LOU) are “hard” — we cannot tolerate violations of con-
straints, even small ones, when the data is in U .

Note that A.1 – A.3 are assumptions on our decision environment (in fact, the strongest ones
within the methodology we are presenting); while being meaningful, these assumptions in no
sense are automatically valid; In the mean time, we shall consider relaxed versions of these
assumptions and consequences of these relaxations.

Assumptions A.1 — A.3 determine, essentially in a unique fashion, what are the meaningful,
“immunized against uncertainty,” feasible solutions to the uncertain problem (LOU). By A.1,
these should be fixed vectors; by A.2 and A.3, they should be robust feasible, that is, they
should satisfy all the constraints, whatever the realization of the data from the uncertainty set.
We have arrived at the following definition.

Definition 3.3.2 A vector x ∈ Rn is a robust feasible solution to (LOU), if it satisfies all
realizations of the constraints from the uncertainty set, that is,

Ax ≤ b ∀(c, d,A, b) ∈ U . (3.3.10)

As for the objective value to be associated with a robust feasible) solution, assumptions A.1 —
A.3 do not prescribe it in a unique fashion. However, “the spirit” of these worst-case-oriented
assumptions leads naturally to the following definition:

Definition 3.3.3 Given a candidate solution x, the robust value ĉ(x) of the objective in (LOU)
at x is the smallest value of the “true” objective cTx + d over all realizations of the data from
the uncertainty set:

ĉ(x) = inf
(c,d,A,b)∈U

[cTx+ d]. (3.3.11)

After we agree what are meaningful candidate solutions to the uncertain problem (LOU) and
how to quantify their quality, we can seek the best robust value of the objective among all robust
feasible solutions to the problem. This brings us to the central concept of the RO methodology,
Robust Counterpart of an uncertain optimization problem, which is defined as follows:

Definition 3.3.4 The Robust Counterpart of the uncertain LO problem (LOU) is the optimiza-
tion problem

max
x

{
ĉ(x) = inf

(c,d,A,b)∈U
[cTx+ d] : Ax ≤ b ∀(c, d,A, b) ∈ U

}
(3.3.12)

136 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

of maximizing the robust value of the objective over all robust feasible solutions to the uncertain
problem.

An optimal solution to the Robust Counterpart is called a robust optimal solution to (LOU),
and the optimal value of the Robust Counterpart is called the robust optimal value of (LOU).

In a nutshell, the robust optimal solution is simply “the best uncertainty-immunized” solution
we can associate with our uncertain problem.

Tractability of the RC. In order for the outlined methodology to be a practical tool rather
than a wishful thinking, the RO of an uncertain LO problem should be efficiently solvable. We
believe (and this belief will be justified in the “algorithmic” part of our course) that LO programs
are efficiently solvable; but the RO of uncertain LO problem, as it appears in (3.3.12), is not an
LO program — when the uncertainty set U is infinite (which typically is the case), (3.3.12) is an
optimization program with infinitely many linear inequality constraints, parameterized by the
uncertain data! And programs of this type (the so called semi-infinite LO’s – not necessarily
are tractable...

The situation, however, is not that bad. We are about to demonstrate — and this is where
the equivalence (3.3.6) is instrumental – that the Robust Counterpart of an uncertain LO prob-
lem with a nonempty polyhedral uncertainty set U (given by its polyhedral representation) is
equivalent to an explicit LO program (and thus is computationally tractable).

The reasoning goes as follows. Introducing slack variable t, we can rewrite (3.3.12) as the
problem with “certain” linear objective and semi-infinite constraints:

max
y=[x;t]

{
t :

t− cTx− d ≤ 0∑
j aijxj − bj ≤ 0, 1 ≤ j ≤ m

}
∀(c, d,A, b) ∈ U

}
. (!)

To save notation, let η stand for the data (c, d,A, b) which we can treat as a vector of certain
dimension N (in this vector, the first n entries are those of c, the next entry is d, the next mn
entries are the coefficients of the constraint matrix, written, say, column by column, and the
last m entries are those of b). Note that (!) is of the generic form

max
y

{
hT y : ∀η ∈ U : pT` [y]η ≤ q`[y], 1 ≤ ` ≤ L

}
(!!)

where L = m+ 1, and p`[y], q`[y] are known affine vector- and real-valued functions of y. All we
need in order to convert (!!) into an ordinary LO, is to represent every one of the semi-infinite
constraints

pT` [y]η ≤ q`[y] ∀η ∈ U (∗`)

with a finite system of linear inequalities on y and on appropriate slack variables. Now, for every
` and y fixed, (∗`) says that

sup
η∈U

pT` [y]η ≤ q`[y]; (∗∗)

Recalling that U is polyhedral and we are given a polyhedral representation of this set, let it be

U = {η : ∃u : Pη +Qu+ r ≤ 0},

the supremum in η in the left hand side of (∗∗) can be represented as the optimal value in an
LO program in variables η, u, specifically, the program

Opt(y) = max
η,u

{
pT` [y]η : Pη +Qu ≤ r

}
.

3.3. IMMEDIATE APPLICATIONS OF DUALITY 137

This program is feasible (since U is nonempty), and we can invoke the equivalence (3.3.6) to
conclude that

Opt(y) ≤ q`(y)⇔ ∃w : w ≥ 0, [P ;Q]Tw = [p`[y]; 0; ...; 0︸ ︷︷ ︸
dim u

], rTw ≤ q`[y].

The bottom line is that y satisfies (∗`) if and only if it can be extended, by a properly chosen
w = w`, to a feasible solution to the system of linear inequalities

w` ≥ 0, P Tw` = p`[y], QTw` = 0, rTw` ≤ q`[y] (S`)

in variables y, w` (to see that the inequalities indeed are linear, note that p`[y] and q`[y] are
affine in y).

We are done: replacing every one of the L semi-infinite constraints in (!!) with the corre-
sponding systems (S`), ` = 1, ..., L, we end up with an equivalent reformulation of (!!) as an LO
program in variables y, w1, ..., wL. Note that given a polyhedral representation of U , building
the resulting LO is a purely algorithmic and efficient process, and that the sizes of this LO are
polynomial in the sizes of the instances of the original uncertain LO problem and the sizes of
the polyhedral description of the uncertainty set.

How it works: Robust Antenna Design. In the situation of the Antenna Design
problem (3.3.8), the “physical” uncertainty comes from the actuation errors xj 7→ (1 + ξj)xj ;
as we have already explained, these errors can be modeled equivalently by the perturbations
Dj(θi) 7→ Dij = (1+ξj)Dj(θi) in the coefficients of xj . Assuming that the errors ξj are bounded
by a given uncertainty level ρ, and that this is the only a priori information on the actuation
errors, we end up with the uncertain LO problemmin

x,τ

τ : −τ ≤
J=10∑
j=1

Dijxj −D∗(θi) ≤ τ, 1 ≤ i ≤ I = 240

 : |Dij −Dj(θi)| ≤ ρ|Dj(θi)|

 .

The Robust Counterpart of the problem is the semi-infinite LO program

min
x,τ

τ : −τ ≤
∑
j

Dijxj ≤ τ, 1 ≤ i ≤ I ∀Dij ∈ [Gij , Gij]

 (3.3.13)

with Gij = Gj(θi) − ρ|Gj(θi)|, Gij = Gj(θi) + ρ|Gj(θi)|. The generic form of this semi-infinite
LO is

min
y

{
cT y : Ay ≤ b∀[A, b] : [A, b] ≤ [A, b] ≤ [A, b]

}
(3.3.14)

where ≤ for matrices is understood entrywise and [A, b] ≤ [A, b] are two given matrices. This
is a very special case of a polyhedral uncertainty set, so that our theory says that the RC is
equivalent to an explicit LO program. In fact we can point out (one of) LO reformulation of the
Robust Counterpart without reference to any theory: it is easy to see (check it!) that (3.3.14)
is equivalent to the LO program

min
y,z

{
cT y : Az +A(y + z) ≤ b, z ≥ 0, y + z ≥ 0

}
. (3.3.15)

138 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ρ = 0.01 ρ = 0.05 ρ = 0.1

Figure 3.4: “Dream and reality,” robust optimal design: samples of 100 actual diagrams (red)
for different uncertainty levels. Blue: the target diagram.

Reality
ρ = 0.01 ρ = 0.05 ρ = 0.1

min mean max min mean max min mean max
‖ · ‖∞-distance

to target
0.075 0.078 0.081 0.077 0.088 0.114 0.082 0.113 0.216

energy
concentration

70.3% 72.3% 73.8% 63.6% 71.6%6 79.3% 52.2% 70.8% 87.5%

Table 3.2: Quality of robust antenna design. Data over 100 samples of actuation errors per each
uncertainty level ρ.
For comparison: for nominal design, with the uncertainty level as small as ρ = 0.001, the
average ‖ · ‖∞-distance of the actual diagram to target is as large as 56.8, and the expected
energy concentration is as low as 16.5%.

Solving (3.3.13) for the uncertainty level ρ = 0.01, we end up with the robust optimal value
0.0815, which, while being by 39% worse than the nominal optimal value 0.0589 (the latter, as
we have seen, exists only in our imagination and says nothing about the actual performance of
the nominal optimal design), still is reasonably small. Note that the robust optimal value, in
sharp contrast with the nominally optimal one, does say something meaningful about the actual
performance of the underlying robust design. In our experiments, we have tested the robust
optimal design associated with the uncertainty level ρ = 0.01 versus actuation errors of this
and larger magnitudes. The results are presented on figure 3.4 and in table 3.2. Comparing
these figure and table with their “nominal design” counterparts, we see that the robust design
is incomparably better than the nominal one.

NETLIB Case Study The corresponding uncertainty model (“ugly coefficients aij in the
constraint matrix independently of each other run through the segments [an

ij−ρ|an
ij |, an

ij+ρ|an
ij |],

ρ > 0 being the uncertainty level) clearly yields the RCs of the generic form (3.3.14). As
explained above, these RCs can be straightforwardly converted to explicit LO programs which
are of nearly the same sizes and sparsity as the instances of the uncertain LOs in question. It

3.3. IMMEDIATE APPLICATIONS OF DUALITY 139

turns out that at the uncertainty level 0.1% (ρ = 0.001), all these RCs are feasible, that is, we
can immunize the solutions against this uncertainty. Surprisingly, this immunization is “nearly
costless” – the robust optimal values of all 90 NETLIB LOs considered in [2] remain within 1%
margin of the nominal optimal values. For further details, including what happens at larger
uncertainty levels, see [2].

3.3.4 Extending Calculus of Polyhedral Representability: Majorization

Preliminaries

We start with introducing two useful functions on Rn. Given an integer k, 1 ≤ k ≤ n, let us set

sk(x) = sum of the k largest entries in x

and

‖x‖k,1 = sum of the k largest magnitudes of entries in x

(we already met with the latter function, see p. 19). For example,

s2([3; 1; 2]) = 3 + 2 = 5, s2([3, 3, 1]) = 3 + 3 = 6, ‖[5,−1,−7]‖2,1 = 7 + 5 = 12.

We intend to demonstrate that these functions are polyhedrally representable, and to build their
p.r.’s.

Function sk(·). Let Sk be the set of all Boolean vectors (i.e., those with coordinates 0 and 1)
in Rn which have exactly k coordinates equal to 1. We clearly have

sk(x) = max
y∈Sk

yTx. (∗)

Now, by the result stated in Exercise 2.5, Sk is exactly the set of vertices of the polyhedral set

Y = {y ∈ Rn : 0 ≤ yi ≤ 1, 1 ≤ i ≤ n,
∑
i

yi = k};

since X is bounded and thus is the convex hull of its vertices, (∗) says that sk(x) is the support
function of Y :

sk(x) = max
y

{
xT y : 0 ≤ yi ≤ 1, 1 ≤ i ≤ n,

∑
i

yi = k

}
,

so that a polyhedral representation of sk(·) is readily given by the results of section 3.3.3.
Applying (3.3.6) and denoting λ−, λ+, µ the (vectors of) Lagrange multipliers associated with
the constraints y ≥ 0, y ≤ [1; ...; 1] and

∑
i yi = k, respectively, we get

{[x; τ] : τ ≥ sk(x)} = {[x; τ] : ∃(λ− ≤ 0, λ+ ≥ 0, µ) : λ− + λ+ + µ[1; ...; 1] = x,
∑
i

λ+
i + kµ ≥ τ},

which clearly simplifies to

{[x; τ] : τ ≥ sk(x)} = {[x; τ] : ∃λ, µ : xi ≤ λi+µ, 1 ≤ i ≤ n, τ ≥
n∑
i=1

λi+kµ, λi ≥ 0∀i}. (3.3.16)

140 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

We have built a p.r. for sk(·).
Remark: since the functions sk(x) are p.r.f., so are the functions sn−k(x)−

∑n
i=1 xi, meaning

that the sum sk(x) of k smallest entries of x ∈ Rn is a concave polyhedrally representable func-
tion of x (indeed, sk(x) =

∑n
i=1 xi− sn−k(x)). What is important in these convexisty/concavity

results, is that we speak about sums of k largest/smallest entries in x, not about the k-th largest
(or k-th smallest) entry in x. One can demonstrate by examples that the k-th largest entry xk(x)
of a vector x ∈ Rn is neither concave, nor convex function of x, unless k = 1 (x1(x) = s1(x) is
convex) or k = n (xn(x) = s1(x) is concave).

Function ‖x‖k,1. Denoting |x| = [|x1|; ...; |xn|], we clearly have ‖x‖k,1 = sk(|x|), which com-
bines with (3.3.16) to imply that

{[x; τ] : τ ≥ ‖x‖k,1} = {[x; τ] : ∃λ, µ : ±xi ≤ λi + µ, 1 ≤ i ≤ n, τ ≥
n∑
i=1

λi + kµ, λi ≥ 0∀i}.

(3.3.17)
which is a p.r. for ‖x‖k,1.

Majorization

Postponing for a moment functions sk(·), let us look at something seemingly completely different
— at the set Πn of double stochastic n×n matrices (see p. 78). Recall that this is the polyhedral
set in the space Rn×n = Rn2

of n× n matrices P given by the constraints

Πn = {P ∈ Rn×n : Pij ≥ 0 ∀i, j,
∑
i

Pij = 1∀j,
∑
j

Pij = 1∀i}.

Birkhoff’s Theorem (Theorem 2.3.1) states that the vertices of Πn are exactly the permutation
n× n matrices. Since Πn clearly is bounded, it is the convex hull of the set of its vertices, and
we arrive at the following useful result:

An n×n matrix is double stochastic iff it is a convex combination of n×n permutation
matrices.

We now make the following

Observation 3.3.1 Let f be a convex and symmetric function on Rn, the symmetry meaning
that whenever x′ is obtained from x by permuting the entries, one has f(x′) = f(x). Then for
every x and every double stochastic matrix P one has

f(Px) ≤ f(x). (3.3.18)

Verification is immediate: if P is double stochastic, then P =
∑

i λiP
i, where P i are permutation

matrices and λi are nonnegative weights summing up to 1. It follows that

f(Px) = f(
∑
i

λiP
ix) ≤︸︷︷︸

(a)

∑
i

λif(P ix) =︸︷︷︸
(b)

∑
i

λif(x) = f(x),

where (a) is given by Jensen’s inequality and (b) is due to the symmetry of f . 2

Observation 3.3.1 is the source of numerous useful inequalities. For starters, here is the
derivation of the famous inequality between the arithmetic and the geometric means:

3.3. IMMEDIATE APPLICATIONS OF DUALITY 141

For nonnegative reals x1, ..., xn it always holds

x1 + ...+ xn
n

≥ (x1x2...xn)1/n.

Indeed, it is not difficult to prove that the function g(x) = (x1...xn)1/n is concave in the nonneg-
ative orthant, and of course it is symmetric. Given an x ≥ 0, specifying P as the n× n matrix
with all entries equal to 1/n (this clearly is a double stochastic matrix) and applying (3.3.18)
to x, P and the convex symmetric function f = −g, we get

g(Px) ≥ g(x);

but g(Px) clearly is the arithmetic mean of x1, ..., xn, and we are done.
We can get in the same fashion the inequality between the arithmetic and the harmonic

means:

For positive reals x1, ..., xn it always holds

n
1
x1

+ 1
x2

+ ...+ 1
xn

≤ x1 + ...+ xn
n

Indeed, it is easy to see that the function f(x) = 1
x1

+ ... + 1
xn

, regarded as a function of a
positive vector x (i.e., extended by the value +∞ outside the set of positive vectors), is convex
(and of course symmetric). Given x > 0 and using the same P as above, we get from (3.3.18)
as applied to x, P, f that

n2

x1 + ...+ xn
≤ 1

x1
+ ...+

1

xn
,

which is nothing but (∗).
In fact both these inequalities can be easily obtained directly from the Jensen inequality and

do not need “a cannon” like Birkhoff’s Theorem5 This is not so in our next example:

(!) Let Sn be the space of symmetric n × n matrices; for a matrix X ∈ Sn, let
λ(X) ∈ Rn be the vector of eigenvalues λi(X) of X (taken with their multiplicities
in the non-ascending order). For every convex and symmetric function f on Rn, the
function F (X) = f(λ(X)) on Sn is convex.
To justify this claim it suffices to verify the following, important by its own right, relation:

F (X) = sup
U∈On

f(diag(UXUT)), (!!)

where On is the set of all orthogonal n × n matrices, and diag(Y) is the vector comprised
of the diagonal entries of a matrix Y . Indeed, taking (!!) for granted, we observe that
f(diag(UXUT)) is convex along with f (calculus of convex functions, rule on affine substi-
tution of argument). It remains to recall that the supremum of a whatever family of convex
functions is convex as well.

To prove (!!), note that by the eigenvalue decomposition, a symmetric matrix X can be
represented as X = V ΛV T , where V is orthogonal and Λ is the diagonal matrix with the
eigenvalues of X on the diagonal. Denoting temporary the right hand side in (!!) by G(X),

5Indeed, when proving the arithmetic-geometric means inequality, we lose nothing by assuming that x > 0
and

∑
i xi = n. Applying Jensen’s inequality to the (clearly convex) function − ln(s) on the positive ray, we get

0 = − ln(x1+...+xn
n

) ≤ 1
n

[− ln(x1)− ...− ln(xn)] = − ln([x1...xn]1/n), which is the same as the inequality we need.

142 LECTURE 3. THEORY OF SYSTEMS OF LINEAR INEQUALITIES AND DUALITY

we clearly have G(X) ≥ F (X) ≡ f(λ(X)) (take U = V T). To prove the opposite inequality,
note that when U is orthogonal, we have UXUT = U(V ΛV T)UT = WΛWT , where W = UV
is orthogonal along with U, V . It follows that

(UXUT)ii =
∑
j,`

WijΛj`[W
T]`i =

n∑
j=1

W 2
ijλj(X).

Since W is orthogonal, the matrix P = [W 2
ij]1≤i,j≤n is double stochastic. We see that

the diagonal of UXUT is the product of a double stochastic matrix and the vector of
eigenvalues of X, whence, by (3.3.18), f(diag(UXUT)) ≤ f(λ(X)) (recall that f is sym-
metric and convex). The latter inequality holds true for every orthogonal U , whence
G(X) = supU∈On

f(diag(UXUT)) ≤ f(λ(X)) = F (x). 2

The results above imply numerous useful and by far non-evident at the first glance facts, like

• The sum of k ≤ n largest eigenvalues of a symmetric n× n matrix X is a convex function
of X, and its value at X is ≥ the sum of the k largest diagonal entries in X (use (!) – (!!)
with f = sk). Similar result holds for the sums of k largest magnitudes of eigenvalues and
k largest magnitudes of the diagonal entries of X;

• The functions Det 1/n(X) and ln(Det (X)), regarded as functions of positive semidefinite
(all eigenvalues are nonnegative, or, equivalently, ξTXξ ≥ 0 for all ξ) symmetric n × n
matrix X are concave, and Det (X) is ≤ the product of the diagonal entries of X (use (!)
– (!!) with the functions f(s) = (s1...sn)1/n and f(s) =

∑
i ln si, s ≥ 0);

• The function Det−1(X), regarded as a function of positive definite (all eigenvalues positive)
symmetric matrix X is convex,

to name just a few.

Majorization Principle

Observation 3.3.1 attracts our attention to the following question:

Given x, y ∈ Rn, when y can be represented as Px with a double stochastic matrix
P?

The answer is given by

Theorem 3.3.1 [Majorization Principle] A vector y ∈ Rn is the image of a vector x ∈ Rn

under multiplication by a double stochastic matrix iff

sk(y) ≤ sk(x), 1 ≤ k < n & sn(y) = sn(x). (3.3.19)

Proof. Necessity: let y = Px for a double stochastic P . Then sk(y) ≤ sk(x), 1 ≤ k ≤ n, by
Observation 3.3.1, since sk(·) is convex (we have seen it) and clearly is symmetric. And of course
multiplication by a double stochastic matrix preserves the sum of entries in a vector:∑

i

(Px)i = [1; ...; 1]TPx = (P T [1; ...; 1])Tx = [1; ...; 1]Tx; 6

6to understand the equalities, note that if P is double stochastic, then so is PT , and the product of a double
stochastic matrix by the all-1 vector is this very vector.

3.3. IMMEDIATE APPLICATIONS OF DUALITY 143

so that sn(Px) = sn(x).
Sufficiency: Assume that (3.3.19) holds true, and let us prove that y = Px for some double
stochastic matrix P . Both the existence of the representation in question and the validity of
(3.3.19) are preserved when we permute entries in x and permute, perhaps differently, entries in
y. Thus, in addition to (3.3.19), we can assume w.l.o.g. that

x1 ≥ x2 ≥ ... ≥ xn, y1 ≥ y2 ≥ ... ≥ yn.

Now suppose that the representation we are looking for does not exist: y 6∈ X = {Px : P ∈ Πn},
and let us lead this assumption to a contradiction. Since Πn is polyhedral, so is X (as the image
of Πn under the linear mapping P 7→ Px). Since y 6∈ X and X is polyhedral, there exists a
nonstrict linear inequality which is valid on X and is violated at y, or, equivalently, there exists
ξ ∈ Rn such that

ξT y > max
x′∈X

ξTx′. (!)

Now, if ξi < ξj for i, j such that i < j, then, permuting i-th and j-th entry in ξ, the right hand
side in (!) remains intact (since X clearly is closed w.r.t. permutations of entries in a vector),
and the left hand side does not decrease (check it, keeping in mind that ξi < ξj and yi ≥ yj due
to i < j). It follows that arranging the entries in ξ in the non-ascending order, we keep intact
the right hand side in (!) and can only increase the left hand side, that is, (!) remains valid.
The bottom line is that we can assume that ξ1 ≥ ξ2 ≥ ... ≥ ξn. Now comes the punch line: since
yi are in the non-ascending order, we have sk(y) = y1 + ...+ yk, whence

yk = sk(y)− sk−1(y), 2 ≤ k ≤ n,

so that

ξT y = ξ1s1(y) + ξ2[s2(y)− s1(y)] + ξ3[s3(y)− s2(y)] + ...+ ξn[sn(y)− sn−1(y)]
= [ξ1 − ξ2]s1(y) + [ξ2 − ξ3]s2(y) + ...+ [ξn−1 − ξn]sn−1(y) + ξnsn(y)

(What we have used is the identity
∑n

i=1 aibi =
∑n−1

i=1 [ai − ai+1]
∑i

j=1 bj + an
∑n

j=1 bj ; this
discrete analogy of integration by parts is called Abel transformation). Similarly, sk(x) =
x1 + ...+ xk, whence

ξTx = [ξ1 − ξ2]s1(x) + [ξ2 − ξ3]s2(x) + ...+ [ξn−1 − ξn]sn−1(x) + ξnsn(x).

Comparing the resulting expressions for ξT y and ξTx and taking into account that ξk−ξk+1 ≥ 0,
sk(y) ≤ sk(x) and sn(y) = sn(x), we conclude that ξT y ≤ ξTx. Since x ∈ X, the latter inequality
contradicts (!). We have arrived at a desired contradiction. 2

Part II

Classical Algorithms of Linear
Optimization:

the Simplex Method

Lecture 4

Simplex Method

In this lecture, we focus of historically the first algorithm for solving LO programs — the famous
Simplex method invented by George Dantzig in late 1940’s. The importance of this invention
can hardly be overestimated: the algorithm turned out to be extremely successful in actual
computations and for over than 4 decades was the working horse of LO. Today we have in our
disposal also other, theoretically more advantageous (as well as better suited for many practical
applications) LO algorithms; nevertheless, the Simplex method still remains indispensable in
numerous applications.

As nearly all computational methods, the Simplex method is not a single well-defined al-
gorithm; it is rather a common name for a family of algorithms of common structure. In our
course, we will focus on the most basic members of this family — the Primal and the Dual
Simplex methods. These methods heavily exploit the specific geometry of LO. The informal
“high level” description of the Simplex method is quite transparent and natural. Assume that
the feasible set of an LO program is nonempty and does not contain lines. From the theory
developed in lecture 2 it then follows that if the program is feasible, its optimal solution, if any,
can be found among the finitely many candidates – the vertices of the feasible set. The Simplex
method moves along the vertices according to the following scheme (see figure 4.1):
• staying at a current vertex v, the method checks whether there is an edge — a one-dimensional
face of the feasible set — which contains v and is an improving one, that is, moving from v along
this edge, the objective improves (increases when speaking of a maximization problem and de-
creases when the problem is a minimization one). There are three possibilities:

• an improving edge does not exist. It can be proved that in this case the vertex is the
optimal solution;

• there exists an improving edge, which, geometrically, is a ray, that is, moving from v along
this edge, we never leave the feasible set. In this case the problem clearly is unbounded;

• there exists an improving edge which is a nontrivial segment and thus has two vertices
which, being vertices of a face of the feasible set, are vertices of this set itself (Proposition
2.3.3). One of these vertices is v; denoting the other vertex by v+ and taking into account
that the edge is an improving one, the value of the objective at v+ is better than its value
at v. The Simplex method moves from v to v+, and proceeds from this point as from v.

Since there are only finitely many vertices and the method before termination strictly improves
the objective and thus cannot visit the same vertex twice, it in finitely many steps either finds

145

146 LECTURE 4. SIMPLEX METHOD

S

F

S

F

Figure 4.1: Geometry of Simplex Method. The objective to be maximized is the ordinate
(“height”). Left: method starts from vertex S and ascends to vertex F where an improving ray
is discovered, meaning that the problem is unbounded. Right: method starts from vertex S and
ascends to the optimal vertex F.

an improving ray and terminates with the (correct) claim that the program is unbounded, or
arrives at a vertex which does not admit an improving edge and thus is optimal. The essence of
the matter is in the fact that there are relatively simple, quite transparent and fully algorithmic
algebraic tools which, modulo “degenerate cases” (which need a special treatment and never
occur when the problem is “in general position”), make it easy to implement the above strategy,
that is, to find, given a vertex, an improving edge, or to detect correctly that no one exists.

Note that the outlined “finiteness” of the Simplex method by itself does not promise much
— if finiteness were the only goal, why not to use the Fourier-Motzkin elimination scheme (see
p. 26)? The only upper bound on the number of steps of the Simplex method (i.e., the number
of vertices visited before termination) given by the proof of method’s finiteness is that the total
number of steps is bounded by the total number of vertices, and the latter can be astronomically
large: the polytope as simple as the n-dimensional box has 2n vertices! It is a kind of miracle
(which, in our opinion, still does not have a good explanation) that “in reality” the method visits
a negligible part of all vertices (empirically speaking, just a moderate multiple of the number
of equality constraints in the standard form of the program) and is a surprisingly successful
algorithm capable to solve routinely in reasonable time “real world” LO programs with tens and
hundreds of thousands of variables and constraints.

4.1 Simplex Method: Preliminaries

Primal and Dual Simplex methods (PSM and DSM for short) are directly applicable to an LO
program in the standard form

Opt(P) = max
x∈Rn

{
cTx : x ∈ X = {x : Ax = b, x ≥ 0}

}
, A = [aT1 ; ...; aTm]; (4.1.1)

4.2. GEOMETRY OF AN LO PROGRAM IN THE STANDARD FORM 147

as we remember from lecture 1, every LO program can be straightforwardly converted to this
form.

Assumption. From now on, we make the following

Assumption: The system of linear constraints Ax = b in (4.1.1) is feasible, and the
equations in this system are linearly independent, so that the rank of A is equal to
the number m of rows in A.

Note that to check the solvability of a system of linear equations Ax = b is a simple Linear
Algebra task; if the system is not feasible, so is the LO program (4.1.1), and its processing is
therefore complete. If the system Ax = b is solvable, then the solution set remains intact when
we eliminate from the system, one at a time, equations which are linear combinations of the
remaining equations until a system with linearly independent equations is built; this reduction of
redundant linear equations again is a simple Linear Algebra task. We see that our Assumption
(which by default acts everywhere in the sequel) in fact does not restrict generality.

4.2 Geometry of an LO Program in the Standard Form

Our next step is to understand how our results on the geometry of a general type LO program
should be specialized when the program is in the standard form. We start with building up the
problem dual to (4.1.1).

4.2.1 The Dual of an LO Program in the Standard Form

The dual to (4.1.1) reads

Opt(D) = min
λ

{
bTλ : c−ATλ ≤ 0

}
. (4.2.1)

The optimality conditions read (see Proposition 3.3.1):

Proposition 4.2.1 A feasible solutions x to (4.1.1) is optimal iff there exists vector of Lagrange
multipliers λ ∈ Rm such that c−ATλ ≤ 0 and

xj(c−ATλ)j = 0, 1 ≤ j ≤ n [complementary slackness]

If λ satisfies these requirements w.r.t. some feasible solution x to (4.1.1), then λ is an optimal
solution to the dual problem (4.2.1).

Note that when replacing the original objective cTx in (4.1.1) with [c−ATλ]Tx, on the feasible
set of the program the objective is changed by a constant (specifically, by −λT b), and the primal
problem remains intact. In LO terminology, such an equivalent modification c 7→ c−ATλ of the
primal objective is called passing to reduced costs.1 Proposition 4.2.1 says that a primal feasible
solution x is optimal iff there exist reduced costs c−ATλ which “make optimality evident” – all
the reduced costs are nonpositive and complementary slackness w.r.t. x takes place, so that the
new objective is nonpositive everywhere on the nonnegative orthant, while being zero at x due
to the complementary slackness; thus, x maximizes the new objective on the entire nonnegative
orthant, not speaking about maximizing the new (and thus the old) objective on the primal
feasible set.

1This terminology fits a minimization LO in the standard form, where ci can be interpreted as costs. In our
maximization setting of the primal problem, the name “reduced profits” would be more to the point, but we
prefer to stick to the standard terminology.

148 LECTURE 4. SIMPLEX METHOD

4.2.2 Basic and Basic Feasible Solutions

Now it is time to investigate the vertices of the primal feasible set X = {∈ Rn : x ≥ 0 : Ax = b}
and the dual feasible set Λ = {λ ∈ Rm : c−ATλ ≤ 0}. Note X does not contain lines (as a part
of the nonnegative orthant Rn

+ which does not contain lines), and Λ does not contain lines due
to the fact that A is of rank m, that is, AT has trivial kernel.

We call a collection I = {i1, ..., im} of m distinct indices from the index set {1, ..., n} a basis
of (4.1.1), if the corresponding columns Ai1 , ..., Aim of A are linearly independent (and thus form
a linear basis in the space Rm to which they belong). Since A is of rank m, bases do exist. If I is
a basis, we can partition every vector x ∈ Rn into its m-dimensional basic part xI comprised of
entries with indices from I and its non-basic part xI comprised of all remaining entries; we shall
denote this partition as x = (xI , xI). We can similarly partition the matrix A: A = (AI , AI),
where AI is the m ×m matrix comprised of the columns of A with indices from I, and AI is
comprised of all remaining columns of A. With these partitions, AI is an m × n nonsingular
matrix, and the system of linear constraints in (4.1.1) can be written down as

AIxI +AIxI = b
⇔ xI + [AI]

−1AIxI = [AI]
−1b.

(4.2.2)

We can now satisfy the primal equality constraints by setting xI = 0 and xI = [AI]
−1b, thus

arriving at a basic primal solution

xI = (xI = [AI]
−1b, xI = 0)

associated with basis I; this solution satisfies the primal equality constraints, but not necessarily
is feasible for the primal problem; it is primal feasible iff xI ≥ 0.

Similarly, given a basis I, we can try to find a dual solution λ which makes the dual inequality
constraints with indices from I active, that is, is such that

(ATλ− c)i = 0, i ∈ I.

The matrix of coefficients in this system of m linear equations in m variables λ is ATI , so that
the system has a unique solution

λI = [AI]
−T cI ; [B−T = [B−1]T]

λI is called the basic dual solution associated with the basis I. This solution is not necessarily
feasible for the dual problem; it is feasible iff the corresponding vector of reduced costs is
nonpositive:

c−AT [AI]
−T cI ≤ 0.

Note that by construction all basic components in this vector are zeros.

The role of bases in our context stems from the following simple

Proposition 4.2.2 (i) Let v be a feasible solution to the primal program (4.1.1). v is a vertex
of the primal feasible set X iff v = xI for some basis I.

Equivalently: vertices of X are exactly the feasible primal basic solutions.

(ii) Let λ be a feasible solution to the dual program (4.2.1). λ is a vertex of the dual feasible
set Λ iff λ = λI for some basis I.

Equivalently: vertices of Λ are exactly the feasible dual basic solutions.

4.2. GEOMETRY OF AN LO PROGRAM IN THE STANDARD FORM 149

Proof is immediate. (i): By algebraic characterization of vertices (Proposition 2.3.2), a point v
from a polyhedral set X ⊂ Rn is a vertex iff among the equality/inequality constraints defining
the set and active at v (i.e., satisfied at v as equalities) there are n linearly independent (i.e.,
with linearly independent vectors of coefficients). In our case this reads as follows: a primal
feasible solution v is a vertex of X iff adding to the constraints Ax = b all inequality constraints
xj ≥ 0 which are active at v (i.e., vj = 0), we get a system of linear equations which contains
n linearly independent equations. Now let v be a vertex, let J = {j : vj = 0}, and let n− k be
the cardinality of J . Augmenting A by n− k rows eTj , j ∈ J , we should get a matrix of rank n
which looks as follows (w.l.o.g, we have assumed that J = {k + 1, k + 2, ..., n}):[

A1, A2, ..., Ak Ak+1, ..., An
In−k

]
(∗)

(blank spaces are filled with zeros, In−k is the unit (n− k)× (n− k) matrix). Since the matrix
has n columns and is of rank n, the columns should be linearly independent, which is possible
iff the columns of A with indices not in J (the columns A1, ..., Ak in our illustration) are linearly
independent. In other words, the k columns of A with indices corresponding to the nonzero
entries of v are linearly independent. Since the columns of A are of the dimension m, we
conclude that k ≤ m; and since Rank(A) = m, we can augment the k columns we have found
with m− k other columns of A to get a collection of m linearly independent columns. Denoting
by I the set of indices of these m columns, we get a basis of our program, and by construction
vI = 0. Since Av = b, we conclude that vI = [AI]

−1b, that is, v = xI . We have proved part (i)
of Proposition in the “only if” direction. The proof in the “if” direction is even easier: if v is
primal feasible and v = xI for certain basis I, then the system of primal constraints Ax = b,
xj = 0, j ∈ I which are active at v is comprised of n linearly independent equations (check it
by assuming that I = {1, ...,m} and by looking at the analogy of (∗)), and thus v is a vertex of
the primal feasible set X by the algebraic characterization of vertices.

(ii): The proof is completely similar to the one of part (i). Assume that λ̄ is a vertex of
Λ. By algebraic characterization of vertices, among the inequalities [ATλ − c]i ≤ 0, 1 ≤ i ≤ n,
which are satisfied at λ̄ as equalities, there are m = dim λ with linearly independent vectors of
coefficients, let their indices be i1, ..., im. In other words, the columns Ai1 , ..., Aim of A (which
are nothing but the vectors of coefficients in question) are linearly independent and ATi` λ̄ = ci` ,

` = 1, ...,m. We see that I = {i1, ..., im} is a basis and λ̄ = λI . Vice versa, if I is a basis and λI

is dual feasible, then λI is a feasible dual solution which makes equalities m linearly independent
constraints defining Λ, specifically, the constraints cj − ATj λ ≤ 0 with indices j ∈ I. Applying

algebraic characterization of vertices, we see that λI is a vertex of Λ. 2

Some remarks are in order.

A. Proposition 4.2.2 suggests the following conceptual scheme for enumerating the vertices
of the feasible set X of the program (4.1.1): we look one by one at all m-element subsets I of the
index set {1, ..., N} and skip those which are not bases. When I is a basis, we find the (unique)
solution to the system Ax = b with the zero non-basic part (“primal basic solution” in the LO
terminology), that is, the solution xI = (xI = [AI]

−1b, xI = 0). If xI is nonnegative, we get
a vertex of the primal feasible set (“primal basic feasible solution” in the LO terminology). In
this fashion, we get all the vertices of X, if any. Similar process can be used to enumerate the
vertices of the dual feasible set; now these are exactly the dual basic solutions λI which happen
to be dual feasible.

150 LECTURE 4. SIMPLEX METHOD

B. Pay attention to the fact that while every vertex v of X is a primal basic feasible solution,
the corresponding basis not always is uniquely defined by the vertex. This basis definitely is
unique, if the vertex is nondegenerate, that is, possesses exactly m nonzero (and thus positive)
entries. In this case the basis which makes the vertex a primal basic feasible solution is comprised
of indices of the m nonzero entries in the vertex. A degenerate – with less than m positive entries
– vertex v can be defined by many different bases. To give an extreme example, consider the
case of b = 0. In this case, X is a pointed cone and as such has exactly one vertex – the origin;
but when b = 0, the origin is the primal basic feasible solution for every basis of the program,
and there could be astronomically many of them.

Similarly, every vertex of the dual feasible set is a dual basic feasible solution, but a particular
vertex λ of Λ can be associated with more than one basis. It may happen only when the vertex
λ is degenerate, meaning that the number of zero entries in the corresponding vector of reduced
costs c−ATλ is > m. If the vertex is nondegenerate — there are exactly m zero entries in the
associated with λ vector of reduced costs – there exists exactly one basis I such that λ = λI ,
namely, the basis comprised of indices of the m zero entries in c−ATλ.

Potential degeneracy (presence of degenerate vertices) of a LO program needs a special (as
we shall see, not too difficult) treatment. Speaking about “general” LO programs of given sizes
m,n, degeneracy (presence of at least one degenerate primal and/or dual basic feasible solution)
is a “rare phenomenon” – the data of degenerate programs form a set of Lebesque measure zero
in the space Rm+n+mn of data of all programs of these sizes. In “general position,” an LO
program is nondegenerate, and every subset I of the index set {1, ..., n} is a basis. Nevertheless,
there are important special classes of LOs where a significant part of the data are “hard zeros”
(coming from problem’s structure), and in these cases degeneracy can be typical.

C. An important point is that given a primal basic feasible solution xI , we can try to certify
its optimality by building dual basic solution λI associated with the same basis. Observing that
by construction xI and λI satisfy the complementary slackness condition xIj [c−ATλI]j = 0 for
all i (indeed, by construction the first factor can be nonzero only for j ∈ I, and the second –
only for j 6∈ I), we see that if λI happens to be dual feasible, xI and λI are optimal solutions
to the respective problems. By exactly the same token, given a dual basic feasible solution λI ,
we can try to certify its dual optimality by building the primal basic solution xI ; if it happens
to be primal feasible, xI and λI again are optimal solutions to the respective problems.

D. The strategy implemented in Simplex method follows the recommendations of the previ-
ous item. Specifically,

• the Primal Simplex method generates subsequent primal basic feasible solutions, improv-
ing at every step (strictly, if the current solution is nondegenerate) the primal objective, and
augments this process by building associated dual basic solutions until either unboundedness of
the primal problem is detected, or a feasible dual basic solution is met, thus certifying optimality
of the current primal and dual basic feasible solutions;

• the Dual Simplex method generates subsequent dual basic feasible solutions, improving at
every step (strictly, if the current solution is nondegenerate) the dual objective, and augments
this process by building associated primal basic solutions until either unboundedness of the dual
problem is detected, or a feasible primal basic solution is met, thus certifying optimality of the
current primal and dual basic feasible solutions.

In both cases, the finiteness of the method in the nondegenerate case follows from the fact
that the corresponding objective strictly improves from step to step, which makes it impossible
to visit twice the same primal (in the Primal Simplex Method) or dual (in the Dual Simplex
Method) vertex; since the number of vertices is finite, the method must terminate after finitely

4.3. SIMPLEX METHOD 151

many steps.
E. Finally, we make the following observation closely related to detecting unboundedness:

Observation 4.2.1 Let I be a basis.
(i) Assume that 6∈ I and w ∈ Rn is a nonzero vector such that w ≥ 0, wj = 0 when

j 6∈ I ∪ {} and Aw = 0. Then w is the direction of an extreme ray of the recessive cone of the
primal feasible domain X = {x ∈ Rn :≥ 0, Ax = b} of (4.1.1).

(ii) Assume that µ ∈ Rm is a nonzero vector such that ATµ ≥ 0 and (ATµ)j = 0 for all but
one indices j ∈ I. Then µ is the direction of an extreme ray of the recessive cone of the dual
feasible domain Λ = {λ ∈ Rm : c−ATλ ≤ 0} of (4.1.1).

Indeed, the recessive cone of X is Rec(X) = {x ∈ Rn : x ≥ 0, Ax = 0}. w clearly belongs to this
cone and makes equalities n−1 of the homogeneous constraints defining Rec(X), specifically, m
constraints aTi x = 0, i = 1, ...,m and n−m− 1 constraints eTj x = 0, j 6∈ I ∪ {}. Since the rows
of AI are linearly independent, the n− 1 vectors a1, ..., am, {ej}j 6∈I∪{} are linearly independent,
and (i) follows from Proposition 2.3.9.(i).

Similarly, the recessive cone of Λ is Rec(λ) = {λ ∈ Rm : ATλ ≥ 0}; µ clearly belongs to
this cone and makes equalities m − 1 among the m homogeneous linear equations ATj λ ≥ 0,
j ∈ I, participating in the description of the cone. Since the vectors Aj , j ∈ I, are linearly
independent, (ii) follows from Proposition 2.3.9.(i). 2

4.3 Simplex Method

4.3.1 Primal Simplex Method

We are ready to present the PSM. In what follows, italized paragraphs constitute the description
of the method, while the usual text between these paragraphs contains explanations.

In the description to follow, we assume that the program (4.1.1) is feasible and, moreover,
we have in our disposal a starting point which is a basis associated with a primal basic feasible
solution to the program.

At step t, the current basic feasible solution xI associated with the current basis I and this
basis are updated according to the following rules.

A. We compute the vector cI = c−ATλI , λI = [AI]
−T cI , of the reduced costs associated with

the basis I. If cI is nonpositive, we terminate with the claim that xI is an optimal solution
to the primal program, and λI is the optimal solution to the dual program, otherwise we
pass to item B.

B. We pick an index j – a pivot – such that the reduced cost cIj is positive (such an index
does exist, otherwise we were not invoking B; the index does not belong to I, since by
construction the basic reduced costs cIi (those with i ∈ I) are zeros). We then try to
increase the variable xj (which was zero in the solution xI), allowing for updating the
basic entries xi, i ∈ I, in a feasible solution, and keeping the entries with indices outside
of I ∪ {j} zeros. Specifically, let x(t), t ≥ 0, be given by

xi(t) =

0, i 6∈ I ∪ {j}
t, i = j
xIi − t([AI]−1Aj)i, i ∈ I

(4.3.1)

152 LECTURE 4. SIMPLEX METHOD

Comment: the origin of (4.3.1) is as follows. x(t) is the feasible solution of the system
Ax = b such that xj(t) = t and xi(t) = 0 when i 6∈ I ∪ {j}. As is seen from the second
relation in (4.2.2), the basic entries xi(t), i ∈ I, in x(t) should be exactly as stated in
(4.3.1). Note that while x(t) satisfies the constraints Ax = b for all t ≥ 0, the feasibility
of x(t) for the program (which amounts to nonnegativity of all entries in x(t)) depends on
what happens with the basic entries xi(t). For every i ∈ I, there are just two possibilities:

– (A): the associated quantity ([AI]
−1Aj)i is nonpositive. In this case, the variable

xi(t) is nonnegative for every t ≥ 0.

– (B): the associated quantity ([AI]
−1Aj)i is positive, in which case xi(t) is nonnegative

iff t ≤ ti := [xIi]
[
([AI]

−1Aj)i
]−1

and becomes negative when t > ti. Note that ti is
nonnegative since xIi is so.

We check whether (A) takes place for all basic indices i (i.e., indices from the current basis
I). If it is the case, we terminate and claim that the program is unbounded. If there
are basic indices for which (B) takes place, we define t∗ as the minimum, over these basic
indices, of the corresponding ti’s, and set i∗ equal to the basic index corresponding to this
minimum:

t∗ = min
i

{
ti := [xIi]

[
([AI]

−1Aj)i
]−1

: ([AI]
−1Aj)i > 0

}
, i∗ : ([AI]

−1Aj)i > 0 & t∗ = ti.

We specify our new basis as I+ = [I\{i∗}] ∪ {j} (in the LO terminology: the variable xj
enters the basis, the variable xi∗ leaves it), our new basic feasible solution as xI

+
= x(t∗)

and pass to the next step of the method.

Several justifications and comments are in order.

I. According to the above description, a step of the PSM can lead to three outcomes as
follows:

1. termination with the claim that the current primal basic feasible solution xI is optimal;
this happens when all the reduced costs cIi are nonpositive.
In this situation, the claim is correct due to the discussion in item C of section 4.2.2, see
p. 150.

2. termination with the claim that the problem is unbounded; this happens when for all basic
indices, (A) is the case.
In the situation in question, the claim is correct. Indeed, in this situation x(t) is feasible
for the primal program for all t ≥ 0. As we remember, replacing the original objective cTx
with the objective [cI]Tx reduces to adding a constant to the restriction of the objective
on the primal feasible plane. Since cIi = 0 for i ∈ I, cIj > 0 (due to the origin of j) and all
entries in x(t) with indices not in I ∪ {j} are zeros, we have

[cI]Tx(t) =
∑
i∈I

cIi xi(t) + cIjxj(t) = cIjxj(t) = cIj t→ +∞, t→∞,

whence also cTx(t) → +∞ as t → ∞, thus certifying that the problem is unbounded.
Note that in the case in question the improving direction d

dtx(t) is the direction of an
extreme ray of Rec(X), X = {x : x ≥ 0, Ax = b} being the feasible domain of (4.1.1), see
Observation 4.2.1.

4.3. SIMPLEX METHOD 153

3. passing to a new step with the claims that I+ is a basis, and x(t∗) is the corresponding
primal basic feasible solution.
In this situation, the claims also are correct, which can be seen as follows. From the origin
of t∗ and i∗ it is clear, first, that x(t∗) satisfies the equality constraints of the problem
and is nonnegative (i.e., is a feasible solution), and, second, that (x(t∗))i = 0 when i = i∗
and when i 6∈ I ∪ {j}, that is, (x(t∗))i can be positive only when i ∈ I+. Further, I+ by
construction is and m-element subset of {1, ..., n}. Thus, all which remains to verify in
order to support the claims in question is that I+ is a basis, that is, that the m columns
Ai, i ∈ I+, of A are linearly independent. This is immediate: assuming the opposite and
taking into account that the columns Ai, i ∈ I\{i∗} of A “inherited” from I are linearly
independent, the only possibility for Ai, i ∈ I+, to be linearly dependent is that Aj is
the linear combination of these inherited columns, which amounts to the existence of a
representation

Aj =

n∑
i=1

µiAi

with µi = 0 whenever i 6∈ I or i = i∗. But then the vector

y(t) = x− tµ+ tej

satisfies exactly the same requirements as the vector x(t): Ay(t) = Ax = b, all coordinates
in y(t), except for those with indices from I ∪{j}, are zero, and the j-th coordinate equals
to t. From the explanation where x(t) comes from it follows that x(t) = y(t), which, in
particular, implies that (x(t))i∗ is independent of t (recall that µi∗ = 0). But the latter is
impossible due to

xi∗(t) = xIi∗ − t([AI]
−1Aj)i∗

and the fact that ([AI]
−1Aj)i∗ > 0.

The bottom line is that PSM is a well-defined procedure – when running it, at every step we
either terminate with correct claims “the current basic feasible solution is optimal” or “the
problem is unbounded”, or have a possibility to make the next step, since the updated I and
xI are what they should be (a basis and the associated primal basic feasible solution) in order
make the next step well defined.

II. The correctness of PSM is a good news, but by itself this news is not sufficient: we
want to get an optimal solution, and not just “to run.” What is crucial in this respect, is the
following

Observation 4.3.1 SMP is a monotone process: if xI and xI
+

are two consecutive primal basic
feasible solutions generated by the method, then cTxI ≤ cTxI

+
, with the inequality being strict

unless xI = xI
+

. The latter never happens when the basic feasible solution xI is nondegenerate.

The verification is immediate. In the notation from the description of PSM and due to the
explanations above, we have cTxI

+ − cTxI = [cI]TxI
+ − [cI]TxI = cIj t

∗ ≥ 0, the equality being

possible iff t∗ = 0. The latter can happen only when xI is degenerate, since otherwise xIi > 0
for all i ∈ I and thus ti > 0 for all i ∈ I for which ti are well defined. 2

We arrive at the following

154 LECTURE 4. SIMPLEX METHOD

Corollary 4.3.1 The Primal Simplex method, initiated at a primal basic feasible solution of
(4.1.1), possess the following property: if the method terminates at all, the result upon termina-
tion either is a primal basic feasible solution which is an optimal solution to the program, or is
a correct claim that the problem is unbounded. In the first case, the method produces not only
the primal optimal solution, but also the corresponding optimality certificate — an optimal basic
solution to the dual problem. In the second case, the method produces a ray which is contained
in the feasible set of the problem and is a ray along which the objective increases, so that this
ray is a certificate of unboundedness. In fact, this ray is an extreme ray of the recessive cone of
the primal feasible set.

The method definitely terminates in finitely many steps, provided that the program is primal
nondegenerate (i.e., all primal basic feasible solutions are so).

This result is an immediate corollary of our preceding observations. The only claim that indeed
needs a comment is the one of finite termination on a nondegenerate problem. On a closest
inspection, this property is immediate as well: when the problem is nondegenerate, every step
before termination increases the value of the objective, implying that the method cannot visit
the same vertex more than once. Since the number of vertices is finite, and method before
termination moves from vertex to vertex, the number of steps before termination is finite as
well. 2

4.3.2 Tableau Implementation and Example

To illustrate the Primal Simplex Method let us work out an example. In this example, we will use
the so called full tableau form of the algorithm well suited for both thinking about the method
and solving LO programs by hand (while now the latter process takes place in classrooms only,
once upon a time this was how the LO programs, of course, toy ones in our today scale, were
actually solved). The idea is that if I is a basis of the program of interest, then the original
program is equivalent to the program

max
x

{
[cI]Tx : [AI]

−1Ax = [AI]
−1b
}
, cI = c−AT [AI]

−T cI (∗)

and we can keep the data of this equivalent problem, along with the current basic feasible
solution xI , in a tableau of the form

−cTI xII [cI]T

[AI]
−1b [AI]

−1A

or, in more detailed form,
−cTI xII cI1...c

I
n

xIi1 [[AI]
−1A]1

... · · ·
xIim [[AI]

−1A]m

where I = {i1, ..., im} and [B]s stands for s-th row of a matrix B. It should be stressed that
what we keep in the tableau, are the values of the corresponding expressions, not the expressions
themselves. It is convenient to count the rows and the columns of a tableau starting from 0; thus,
the zeroth row contains the minus value of the objective at the current basic feasible solution

4.3. SIMPLEX METHOD 155

augmented by the reduced costs; rows 1,2,... are labelled by the current basic variables and
contain the entries of the vector [AI]

−1b augmented by the entries of the corresponding rows
in [AI]

−1A. Since (∗) is equivalent to the original problem, we can think about every iteration
as about the very first iteration of the method as applied to (∗), and our goal is to update the
tableau representing the current equivalent reformulation (∗) of the problem of interest into the
tableau representing the next equivalent reformulation of the problem of interest.

Now let us work out a numerical example ([3, Example 3.5]). The initial program is

max 10x1 + 12x2 + 12x3

subject to
x1 + 2x2 + 2x3 ≤ 20

2x1 + x2 + 2x3 ≤ 20
2x1 + 2x2 + x3 ≤ 20

x1, x2, x3 ≥ 0

We introduce slack variables to convert the problem to the standard form, thus arriving at the
program

max 10x1 + 12x2 + 12x3

subject to
x1 + 2x2 + 2x3 + x4 = 20

2x1 + x2 + 2x3 + x5 = 20
2x1 + 2x2 + x3 + x6 = 20

x1, ..., x6 ≥ 0

which allows us to point out a starting basis I = {4, 5, 6} and the starting basic feasible solution
xI with nonzero entries x4 = x5 = x6 = 20. The first tableau is

x1 x2 x3 x4 x5 x6

0 10 12 12 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = 20 2 1 2 0 1 0
x6 = 20 2 2 1 0 0 1

The reduced cost of x1 is positive; let this be the variable entering the basis. When trying to
replace x1 = 0 with x1 = t ≥ 0, keeping x2 and x3 zeros, the basic variables x4, x5, x6 start to
change: x4(t) = 20− 1 · t, x5(t) = 20− 2 · t, x6(t) = 20− 2 · t. The largest t which keeps all there
variables nonnegative, is t∗ = 20/2 = 10, and it is clear where this value comes from: this is just
the minimum, over all rows in the tableau corresponding to A and containing positive entries
in the pivoting column (in our case, the column of x1), of the ratios “value of the basic variable
labelling the row” (shown in the zeroth column of the tableau) to the entry in the intersection
of the row and the pivoting column:

t∗ = min

[
20

1
,
20

2
,
20

2

]
In fact, the minimum of this ratio is achieved simultaneously in two rows, and this is in our will
to decide which one of the current basic variables, x5 or x6, is leaving the basis. Let us say this
is x5; thus, at the first iteration x1 enters the basis, and x5 leaves it. It remains to update the
tableau, that is, to replace the rows in the tableau representing the equality constraints by their

156 LECTURE 4. SIMPLEX METHOD

linear combinations in order to get the unit matrix (which in the initial tableau is in the columns
4,5,6) in the rows 1, 4, 6 corresponding to our new basis, and augment this transformation by
updating the column of basic variables and the “zeroth row” containing the optimal value and
the reduced costs. The rules for this updating are as follows (check their validity!):

• we mark somehow the pivoting element – the element in the pivoting column and the row
of the basic variable which leaves the basis (in our tableau, it is underlined)

• we divide the entire pivoting row (i.e., the row of the pivoting element) by the pivoting
element, thus making the pivoting element equal to 1; note that in the “basic variables”
part of the pivoting row we get exactly t∗, that is, the would-be value of the variable (x1)
which enters the basis; we update accordingly the “basic variable label” of this row, thus
arriving at the intermediate tableau

x1 x2 x3 x4 x5 x6

0 10 12 12 0 0 0

x4 = 20 1 2 2 1 0 0
x1 = 10 1 0.5 1 0 0.5 0
x6 = 20 2 2 1 0 0 1

• finally, we subtract from every non-pivoting row of the intermediate tableau a multiple of
the updated pivoting row, the coefficient of the multiple being the entry in the pivoting
column of the non-pivoting row we are processing; as a result, all entries in the pivoting
column, aside of the one of the pivoting row, become zeros. What we get is nothing but
our new tableau:

x1 x2 x3 x4 x5 x6

−100 0 7 2 0 −5 0

x4 = 10 0 1.5 1 1 −0.5 0
x1 = 10 1 0.5 1 0 0.5 0
x6 = 10 0 1 −1 0 −1 1

Now we process the new tableau exactly in the same fashion as the initial one:
— there are two variables with positive reduced cost — x2 and x3; we choose one of them, say,
x3, as the variable entering the basis, so that the pivoting column is the column of x3;
— we divide the values of basic variables shown in the tableau by the corresponding values in the
pivoting column, skipping the divisions by nonpositive entries of the latter column; the results
are 10

1 = 10 in the first row and 10
1 = 10 in the second row. We then choose the element in the

pivoting row corresponding to the smallest ratio as the pivoting element, and its row — as the
pivoting row. In our example, we can choose both the first and the second row as the pivoting
one; let our choice be the first row.
— we now mark the pivoting element, divide by it the pivoting row (with our numbers, this
does not change the pivoting row) and replace the basic variable label x5 in this row (x5 is the
variable which leaves the basis) with the label x3 (this is the variable which enters the basis, so
that the new basis is 3, 1, 6)
— finally, we subtract from all non-pivoting rows of the tableau the multiples of the (already

4.3. SIMPLEX METHOD 157

updated) pivoting row to zero entries in the pivoting column, thus arriving at the new tableau

x1 x2 x3 x4 x5 x6

−120 0 4 −2 0 −4 0

x3 = 10 0 1.5 1 1 −0.5 0
x1 = 10 1 −1 0 −1 1 0
x6 = 10 0 2.5 0 1 −1.5 1

In the zeroth row of the new tableau, there is only one positive reduced cost, the one of x2,
meaning that x2 should enter the basis. The pivoting row corresponds now to the minimum of
the ratios 10

1.5 (row of x3) and 10
2.5 (row of x6), that is, the pivoting row is the one of x6, the

pivoting element is 2.5, and the variable leaving the basis is x6 (so that the new basis is 1,2,3).
We proceed by
— dividing the pivoting row by the pivoting element and updating the basic variable mark in
the row from x6 (this variable leaves the basis) to x2 (this is the variable which enters the basis).
The updated pivoting row is

x2 = 4 0 1 0 0.4 −0.6 0.4

We then subtract from all non-pivoting rows of the tableau multiples of the just transformed
pivoting row to zero the corresponding entries in the pivoting column. The result is the new
tableau

x1 x2 x3 x4 x5 x6

−136 0 0 0 −3.6 −1.6 −1.6

x3 = 4 0 0 1 0.4 0.4 −0.6
x1 = 4 1 0 0 −0.6 0.4 0.4
x2 = 4 0 1 0 0.4 −0.6 0.4

In this tableau, all reduced costs are nonpositive, meaning that we have built the optimal solution
to the problem, This optimal solution is

x1 = x2 = x3 = 4, x5 = x6 = x7 = 0

(this is said by the column of the values of basic variables), the optimal value is 136 (minus the
number in very first cell of the zeroth row of the tableau) and the minus optimal dual slack –
the vector of the reduced costs c − ATλ∗ corresponding to the dual optimal solution λ∗ is the
vector [0; 0; 0;−3.6;−1; 6;−1; 6] the transpose of which we see in the “reduced costs” part of the
zeroth row of the final tableau.

Remark. A careful reader should have noticed at this point a slight discrepancy between what
was promised in the beginning of the “tableau story” and what we actually see in the above
tableaus, starting from the second of them. Specifically, the matrices we see in the rows 1,2,...,m
of the tableaus are not exactly the matrices [[AI]

−1b, [AI]
−1A] (were it so, we would see in the

basic columns of the tableaus the unit n × n matrix, while what we actually see is obtained
from the unit matrix by permuting rows). This is due to the fact (absolutely irrelevant in our
context) that what we actually keep in the tableaus is obtained from matrices [[AI]

−1b, [AI]
−1A]

by permuting rows. This is also seen from the fact that the basic variables labelling the rows are
not ordered. Permuting the rows 1, ...,m to make the labels ordered would result in the tableau
matrices being exactly of the form [[AI]

−1b, [AI]
−1A], but there is absolutely no necessity in this

reordering.

158 LECTURE 4. SIMPLEX METHOD

4.3.3 Preventing Cycling

We have seen that the Primal Simplex Method, if it terminates, solves the problem it is applied
to, and that the method definitely terminates when the program is primal nondegenerate (i.e.,
all primal basic feasible solutions have exactly m nonzero entries). The degenerate case needs
a special treatment, since here, without additional precautions, the method indeed can “loop
forever”, staying at the same degenerate and nonoptimal basic feasible solution; all that changes
from step to step, are only the bases specifying this solution, but not the solution itself. Fortu-
nately it is easy to prevent cycling by applying lexicographic pivoting rule which we are about
to explain.

Lexicographic order. We start with the notion of the lexicographic order on Rn. Specifically,
we say that vector u ∈ Rn lexicographically dominates vector v ∈ Rn (notation: u ≥L v) if
either u = v, or the first nonzero entry in the difference u − v is positive. We write u >L v,
when u ≥L v and u 6= v, same as write v ≤L u and v <L u as equivalents of u ≥L v, u >L v,
respectively. For example, here is a sample of valid lexicographic inequalities:

[1; 2; 3] ≤L [1; 2; 4]; [1; 2; 3] <L [2;−1; 100]; [2;−1; 10] >L [2;−1; 9].

Note that the lexicographic inequalities follow the same arithmetic as the usual arithmetic
inequalities ≤, < between reals and the coordinate-wise inequalities u ≤ v, u < v for vectors,
e.g.,

u ≤L u [reflexivity]
(u ≥L v) & (v ≤L u)⇒ u = v [anti-symmetry]
(u ≤L v) & (v ≤L w)⇒ u ≤L w [transitivity]
u <L v, R 3 λ > 0⇒ λu <L λv;
u ≤L v, u′ <L v′ ⇒ u+ u′ <L v + v′

}
[compatibility with linear operations]

Exactly as in the case of arithmetic inequalities with reals, and in contrast to what happens to
the coordinate-wise vector inequality ≤ between vectors, the lexicographic order is complete –
for every pair u, v of vectors of the same dimension, we have either u <L v, or u = v, or u >L v,
and these three possibilities are mutually exclusive.

Lexicographic pivoting rule. This is a specific rule for choosing a pivoting element in the
Primal Simplex Method in the case when such a choice is necessary (that is, the current tableau
contains positive reduced costs). The rule is as follows:

(L) Given the current tableau which contains positive reduced costs cIj , choose as

the index of the pivoting column a j such that cIj > 0.

Denote by ui the entry of the pivoting column in row i, i = 1, ...,m, and let some
of ui be positive (recall that otherwise the PSM terminates with the (correct) claim
that the problem is unbounded). Normalize every row i with ui > 0 by dividing
all its entries, including those in the zeroth column, by ui, and choose among the
resulting (n+ 1)-dimensional row vectors the smallest w.r.t the lexicographic order,
let its index be i∗. The pivoting row is the one with index i∗, so that the basic
variable (the one which labels the row) leaves the basis, while the variable xj enters
the basis.

4.3. SIMPLEX METHOD 159

Observe that at a non-terminal iteration, the outlined rule defines i∗ in a unique fashion, and
that it is compatible with the construction of the Simplex method, that is, i∗ corresponds to the
minimal, over the rows with ui > 0, ratio of the zeroth entry in the row to the element of the
row in the pivoting column (in the description of an iteration of PSM, these ratios were called
ti, and their minimum was called t∗).

Indeed, taking into account that the lexicographic order is complete, in order to prove that i∗
is uniquely defined it suffices to verify that the normalizations of the rows 1, ...,m in the tableau
are distinct from each other, or, which is the same, that before normalization, these rows were
not proportional to each other. The latter is evident (look what happens in the columns indexed
by basic variables). Now, the zeroth entries of the normalized rows i with ui > 0 are exactly the
quantities ti from the description of a simplex iteration, and by definition of the lexicographic
order, the lexicographically minimal among these normalized rows corresponds to the smallest
value t∗ of ti’s, as claimed.

Thus, in the context of PSM, the lexicographic pivoting rule is completely legitimate. Its
role stems from the following

Theorem 4.3.1 Let the Primal Simplex Method with pivoting rule (L) be initialized by a primal
basic feasible solution, and, in addition, let all rows in the initial tableau, except for the zeroth
row, be lexicographically positive. Then

(i) Every row in the tableau, except for the zeroth one, remains lexicographically positive at
all non-terminal iterations of the algorithm;

(ii) When passing from the current tableau to the next one, if any, the vector of reduced costs
strictly lexicographically decreases;

(iii) The method terminates in finitely many iterations.

Proof. (i): It suffices to prove that if all rows with indices i = 1, 2, ...m in the current tableau are
lexicographically positive and the next tableau does exist (i.e.,the method does not terminate
at the iteration in question), then every row i, i = 1, ...,m, in the next tableau also will be
lexicographically positive. Let the index of the pivoting row be `, and the index of the pivoting
column be j. Denoting u1, ..., um the entries in the pivoting column and i-th row, and invoking
the lexicographic pivoting rule, we have

u` > 0 &
`th row

u`
<L

ith row

ui
∀(i : i 6= `&ui > 0).

let ri be ith row in the current tableau, and r+
i be the ith row in the next tableau, 1 ≤ i ≤ m.

Then by description of the method:

• when i = `, r+
i = u−1

` r`, so that r+
` >L 0 due to r` >L 0 (recall that we are under the

assumption that ri >L 0 for all 1 ≤ i ≤ m);

• when i 6= ` and ui ≤ 0, we have r+
i = ri − ui

u`
r` >L 0 due to ri >L 0, r` >L 0 and

−ui/u` ≥ 0;

• when i 6= ` and ui > 0, we have r+
i = ri − ui

u`
r+
` , or

1

ui
r+
i =

1

ui
ri −

1

u`
r`.

By the lexicographic pivoting rule, the `th normalized row 1
u`
r` is strictly less lexicograph-

ically than the ith normalized row 1
ui
ri (due to ui > 0 and i 6= `), whence 1

ui
r+
i >L 0,

whence r+
i >L 0 as well.

160 LECTURE 4. SIMPLEX METHOD

(i) is proved.

(ii): By the description of the method, the reduced costs cI and cI
+

in the current and the
next tableaus are linked by the relation

cI
+

= cI −
cIj
u`

[r`]
T .

since cIj > 0 and r` >L 0, we have cI
+
<L c

I . (ii) is proved.

(iii) The iterations of the Simplex Method prior to termination, if the latter indeed happens,
can be split into consecutive phases in such a way that the primal basic feasible solutions
associated with the iterations from a particular phase are equal to each other and are distinct
from the primal basic feasible solutions associated with the iterations of the next phase, if any.
When passing from a phase to the next one, the primal basic feasible solution changes, and
thus the primal objective strictly increases; it follows that distinct phases are associated with
distinct primal basic feasible solutions, and since there are finitely many of these solutions, the
number of phases is finite. It follows that in order to prove that the method is finite, it suffices
to verify that a particular phase cannot last forever. But this is evident: since there are finitely
many bases, in an infinite phase certain basis would be visited more than once. The latter is
impossible, since the reduced costs, by construction, are uniquely defined by the corresponding
basis, on one hand, and, by (ii) strongly lexicographically decrease along the iterations, on the
other hand, so that the same vector of reduced costs cannot be generated twice. 2

In view of Theorem 4.3.1, all we need in order to guarantee finiteness of the Primal Simplex
Method, is to ensure lexicographic positivity of rows 1, 2, ...,m in the initial tableau. This can
be achieved as follows. Recall that for the time being, we have designed the PSM only for the
case when we from the very beginning have in our disposal an initial basic feasible solution.
Renaming the variables, we can assume w.l.o.g. that the initial basis is I = {1, ...,m}, so that
the initial contents of the A-part of the tableau is [AI]

−1A = [Im, [AI]
−1AI]. Thus, i-th row

in the initial tableau, 1 ≤ i ≤ m, is of the form [a, 0, ..., 0, 1, ...], where a ≥ 0 is the value of
certain basic variable in the initial primal basic feasible solution; a row if this type clearly is
lexicographically positive.

A simpler pivoting rule, due to Bland, which provably prevents cycling is as follows:

Smallest subscript pivoting rule: Given a current tableau containing positive
reduced costs, find the smallest index j such that j-th reduced cost is positive; take xj
as the variable to enter the basis. Assuming that this choice of the pivoting column
does not lead to immediate termination due to problem’s unboundedness, choose
among all legitimate (i.e., compatible with the description of the PSM) candidates
to the role of the pivoting row the one with the smallest index and use it as the
pivoting row.

4.3.4 How to Start the PSM

Our description of the PSM still is incomplete; we have assumed that we know in advance a
primal basic feasible solution to the problem, and to find this solution is a nontrivial (and not
always achievable — what if the problem is infeasible?) task. Luckily enough, this problem can
be resolved by the same PSM as applied to a properly defined auxiliary problem. We are about

4.3. SIMPLEX METHOD 161

to describe one of implementations of this type — the two-phase PSM. As applied to the LO
program in the standard form

max
x

{
cTx : Ax = b, x ≥ 0

}
(4.3.2)

with m× n matrix A of rank m, the method works as follows.

First phase. Multiplying, if necessary, some of the equality constraints by −1, we can enforce
b to be ≥ 0. After this, we introduce m additional variables y1, ..., ym and build the auxiliary
LO program

Opt = max
x,y

{
−

m∑
i=1

yi : Ax+ y = b, x ≥ 0, y ≥ 0

}
. (4.3.3)

Note that

(i) the original problem is feasible iff the optimal value in the auxiliary problem is 0, and

(ii) the auxiliary problem is feasible and bounded, and we can point out its primal basic feasible
solution, specifically, x = 0, y = b, along with the associated basis I = {n+ 1, ..., n+m}.

Using [0; ...; 0; b] as the starting point, we solve the (solvable!) auxiliary problem by the PSM,
eventually arriving at its optimal solution [x∗; y∗]. If y∗ 6= 0, the optimal value in the auxiliary
problem is negative, meaning, by (i), that the original problem is infeasible.

In the case in question, the optimal solution λ∗ to the dual to (4.3.3), which we get
as a byproduct of solving (4.3.3) by the PSM, satisfies

d− [A, Im]Tλ∗ ≤ 0, λT∗ b = Opt < 0.

where d = [0; ...; 0;−1; ...;−1] is the objective of the auxiliary problem. The vector
inequality here implies that µ := ATλ∗ ≥ 0. Now, taking weighted sum of the
equality constraints in the original problem, the weights being −(λ∗)i, and adding
weighted sum of the inequalities xj ≥ 0, the weights being µj , we get the inequality

0Tx ≡ [µ−ATλ∗]Tx ≥ (−λ∗)T b;

since λT∗ b = Opt < 0, this inequality is contradictory, that is, not only know that the
original problem is infeasible, but have in our disposal a certificate for infeasibility.

Second phase. It remains to consider the case when y∗ = 0. In this case, x∗ is a feasible
solution to the original problem, and, moreover, a vertex of the feasible set X of this problem
(this immediately follows from the fact that [x∗; y∗] is a vertex of the feasible set X+ of the phase
I problem.). Applying the (easy-to-implement) construction we used when proving Proposition
4.2.2, we can extend the set of columns of A corresponding to the nonzero entries in x∗ to a basis
of the problem of interest. Now we have in our disposal both a primal basic feasible solution x∗
and an associated basis for (4.3.2), and we solve this problem by the PSM.

162 LECTURE 4. SIMPLEX METHOD

4.3.5 Dual Simplex Method

Recall the geometric interpretation of the primal-dual pair of LO programs: we have two affine
planes – the primal feasible plane MP and the dual feasible plane MD such that the corre-
sponding linear subspaces are orthogonal complements to each other; our goal is to find in the
intersections of the planes with the nonnegative orthant two orthogonal to each other vectors.
When the primal problem is in the standard form (4.1.1), MP is given as {x : Ax = b}, while
MD is the plane of dual slacks – vectors which can be represented as ATλ − c. The geometry
of the Primal Simplex method is as follows: at every step, we have at our disposal basis I. This
basis specifies two orthogonal to each other vectors from MP and MD:
• the primal solution xI = (xI = [AI]

−1b, xI = 0). This solution satisfies the necessary con-
dition for being a vertex of the primal feasible set: among the constraints Ax = b, x ≥ 0 which
cut this set off Rn, n constraints with linearly independent vectors of coefficients, specifically,
the constraints Ax = b and xj ≥ 0, j 6∈ I, are satisfied as equalities;
• the dual solution λI = [AI]

−T cI . This solution satisfies the necessary condition for being
a vertex of the dual feasible set: among the constraints ATλ − c ≥ 0 which cut this set off
Rm, m constraints with linearly independent vectors of coefficients, specifically, the constraints
[ATλ− c]j ≥ 0 with j ∈ I, are satisfied as equalities.
By construction, the primal solution xI belongs to MP , the dual slack sI = ATλI − c = −cI
belongs to MD, and xI , sI satisfy the complementary slackness condition – xIjs

I
j = 0 for all j.

Now, in the Primal Simplex method xI is maintained to be primal feasible, while λI not
necessarily is dual feasible. When λI happens to be dual feasible (that is, sI ≥ 0, or, equivalently,
cI ≤ 0), we are done – we have built a pair of orthogonal to each other nonnegative vectors
xI ∈ MP and sI ∈ MD. Until it happens, we update the basis in such a way that the primal
objective either remains the same (which is possible only when the current primal basic feasible
solution xI is degenerate), or is improved.

An alternative, “symmetric” course of actions would be to maintain feasibility of the dual
solution λI , sacrificing the primal feasibility of xI . When xI happens to be feasible, we are
done, and while it does not happen, we update the basis in such a way that the dual objective
improves. This is exactly what is going on in the Dual Simplex method. One could think that
this method does not deserve a separate presentation, since geometrically this is nothing as
the Primal Simplex method as applied to the swapped pair of the problems – what used to be
primal, now is called dual, and vice versa. This conclusion is not completely correct, since an
algorithm cannot directly access geometric entities; what it needs, are algebraic descriptions of
these entities, and in this respect primal-dual symmetry is not ideal – the algebraic representation
of the primal feasible plane (for programs in the standard form we stick to, this is representation
by system of linear equations) is not identical to the one of the dual feasible plane (which is
represented in the “parametric” form {s = ATλ − c, λ ∈ Rm}). By the outlined reasons, it
makes sense to present an explicit algorithmic description of the Dual Simplex method. This is
what we do next.

A step of the Dual Simplex Method

At a step of the Dual Simplex Method (DSM) as applied to (4.1.1), we have in our disposal
current basis I (i.e., an m-element subset {i1, ..., im} of {1, ..., n} such that the columns Aj
of A with indices from I are linearly independent) along with the corresponding basic primal
solution xI = (xI = [AI]

−1b, xI = 0) which is not necessary nonnegative and the basic dual
solution λI = [AI]

−T cI which is dual feasible: cI = c− ATλI ≤ 0. We associate with the basis

4.3. SIMPLEX METHOD 163

I a tableau, exactly as in the PSM:

−cTI xII cI1...c
I
n

xIi1 [[AI]
−1A]1

... · · ·
xIim [[AI]

−1A]m

the difference with the PSM is that now all entries cI1, ..., c
I
n in the zeroth row (except for the

entry in the zeroth column) are nonpositive, while some of the entries xIi1 , ..., x
I
im

in the zeroth
column can be negative.

A. It may happen that all xIi` , 1 ≤ ` ≤ m, are nonnegative. In this case we are done: λI is

a feasible solution to the dual problem, xI is a feasible solution to the primal problem, and xI

and the dual slack −cI satisfy the complementary slackness condition (since by construction of
λI , cIi` = 0 for all ` ≤ m), i.e., xI and λI are optimal solutions to the respective problems.

B. Now assume that some of xIi` are negative. Let us pick ` with this property and call `-th
row of the tableau the pivoting row. We intend to eliminate i` from the basis. To this end let us
look what happens when we update λI in such a way that i`-th reduced cost (which currently
is zero) becomes −t, t ≥ 0, and the reduced costs in the basis columns distinct from the i`-th
column are kept zeros. In other words, we update λI according to λI 7→ λ(t) := λI + t[AI]

−T e`.
Observe that as a result of this shift, the dual objective reduces (i.e., improves); indeed,

bTλ(t) = bTλI + tbT [AI]
−T e` = bTλI + teT` [[AI]

−1b] = bTλI + txIi` ,

and xIi` < 0. Now let us look how passing from λI to λ(t) affects the vector of reduced costs.

These costs cj(t) = [c−ATλ(t)]j vary as follows:

• the reduced cost in the basic column i` becomes −t;

• the reduced costs in all other basic columns stay zero;

• the reduced cost in a non-basic column j varies according to cj(t) = cIj − tATj [AI]
−T e` =

cIj − tpj , where pj is the entry in the pivoting row of the tableau.

There are two possibilities:
B.1. All entries pj , j ≥ 1, in the pivoting row, except for those in the basic columns, are

nonnegative. In this case, all reduced costs cj(t), in basic and nonbasic columns alike, are
nonpositive for all t ≥ 0, in other words, we have found an improving ray {λ(t) : t ≥ 0} in the
dual problem; this ray certifies that the dual problem is unbounded, whence the primal problem
is infeasible.

B.2. Among the entries pj , j ≥ 1, in the pivoting row, aside of those in the basic columns,
there are negative ones. Then there exists the largest nonnegative value t̄ of t for which cj(t)
still are nonpositive for all j, specifically, the value

t̄ = min
j≥1:pj<0

cj
pj

=
cj∗
pj∗

[1 ≤ j∗ 6∈ I, pj∗ < 0]

(note that we safely can write min
j:pj<0

cj
pj

instead of min
j 6∈I:pj<0

cj
pj

, since the entries of the pivoting

row in the basic columns are nonnegative, specifically, m − 1 of them are zero, and remaining
one is equal to 1). Observe that when we exclude from the basis I the basic column Ai` and
add to the basis the index j∗ 6∈ I, we get a basis, and this is the new basis I+ we deal with, with
λI

+
= λ(t̄) being a new dual basic feasible solution.

164 LECTURE 4. SIMPLEX METHOD

Indeed, assuming that I+ is not a basis, the column Aj∗ is a linear combination of
the m− 1 columns Aiν , 1 ≤ ν ≤ m, ν 6= `: Aj∗ =

∑
ν:1≤ν≤m
ν 6=`

yνAiν . But then

pj∗ = ATj∗ [AI]
−T e` =

∑
ν:1≤ν≤m
ν 6=`

yν [[AI]
−1Aiν]T e` =

∑
ν:1≤ν≤m
ν 6=`

yνe
T
ν e` = 0,

which is impossible, since pj∗ is negative.

We then update the information in the tableau, exactly as in the PSM, specifically,

• call the column j∗ the pivoting column, and the entry pj∗ in the intersection of the pivoting
row and the pivoting column – the pivoting entry;

• replace the pivoting row with its normalization obtained by dividing all entries in the row,
including the one in the zero column, by the pivoting entry, and replacing the label xi` of
this row with xj∗ ;

• update all other rows of the tableau, including the zeroth, by subtracting from them
multiples of the normalized pivoting row, where the multiples are chosen in such a way
that the entry of the updated row in the pivoting column j∗ becomes zero, and proceed to
the next iteration of the DSP.

Dual Simplex Method: convergence

Observe that as a result of the iteration, we either

(a) conclude correctly that the current dual basic feasible solution is optimal and augment
it by an optimal primal basic solution, or

(b) conclude correctly that the dual problem is unbounded (and therefore the primal problem
is unsolvable), or

(c) pass from the current dual basic feasible solution to another solution of the same type,
but with strictly smaller value of the dual objective, or keep the dual solution intact and update
the basis only. The second option is possible only when λI is a degenerate solution, meaning
that not all nonbasic reduced costs corresponding to λI are strictly negative.

In view of these observations, exactly the same argument as in the PSM case leads to the
following conclusion:

Corollary 4.3.2 The Dual Simplex method, initiated at a dual basic feasible solution of (4.2.1),
possesses the following property: if the method terminates at all, the result upon termination
either is a pair of primal and dual basic feasible solutions which are optimal for the primal
program (4.1.1), (4.2.1), or is a correct claim that the primal problem is infeasible. In the second
case, the method produces a ray which is contained in the feasible set of the dual problem and is a
ray along which the dual objective decreases, so that this ray is a certificate of primal infeasibility.
In fact, this ray is an extreme ray of the recessive cone of the dual feasible set.

The method definitely terminates in finitely many steps, provided that the program is dual
nondegenerate (i.e., all dual basic feasible solutions are so).

Similarly to the PSM, the Dual Simplex Methods admits pivoting rules which prevent cycling,
various techniques for building the initial basic dual feasible solution, etc., see [3].

4.3. SIMPLEX METHOD 165

4.3.6 “Warm Start”

Assume we have solved LO program (4.1.1) to optimality by either Primal, or Dual Simplex
method, and thus have in our disposal a basis I which gives rise to feasible primal and dual
solutions satisfying the complementary slackness condition and thus optimal for the respective
programs. We are about to understand how this basis helps to solve a “close” LO program. This
necessity arises when we intend to solve series of relatively close to each other LO programs, as
it is the case, e.g., in branch and bound type methods of Integer Programming.

Recall that the optimal basis is characterized by two requirements:

[AI]
−1b ≥ 0 [feasiblity]

c−AT [AI]
−T cI ≤ 0 [optimality]

When these requirements are satisfied, xI = (xI = [AI]
−1b, xI = 0) is an optimal primal basic

solution, and λI = [AI]
−T cI is an optimal dual basic solution.

We now consider several typical updatings of the problem.

New variable is added

Assume we extend x with a new decision variable xn+1, A – with a new column An+1, and c
– with a new entry cn+1, keeping the rest of the data and the standard form of the problem
intact. I still is a basis for the new problem, and we do not affect the feasibility condition. As
far as optimality condition is concerned, it remains satisfied when

cn+1 −ATn+1[AI]
−T cI ≤ 0. (!)

If this easy to verify condition holds true, xI is an optimal solution to the new primal problem,
and λI is an optimal solution to the new dual problem. If (!) is not satisfied, we can think of I
as of the current basis for the PSM as applied to the new problem, and of xn+1 as of the variable
entering this basis, and run PSM until the new problem is solved. This is called “warm start,”
and usually with such a warm start the solution of the new problem takes significantly less time
than if we were solving it from scratch.

Changes in the cost vector c

When we replace the cost vector c with c̄ = c+ tδc, where δc is the “direction of change,” and
t ∈ R is the “step along this direction,” the feasibility conditions remain intact; in order for
optimality conditions to be satisfied, the perturbation should satisfy the requirement

c̄I = c̄−AT [AI]
−T c̄I = cI + t

[
δc−AT [AI]

−T δcI
]
≤ 0.

Note that given δc and t, this fact is easy to verify; moreover, we can easily find the largest range
T of values of t such that c̄I has nonpositive nonbasic components. If the actual perturbation
is “too large” to satisfy this requirement and some entries in the new vector of reduced costs
are positive, we can run the PSM on the new problem starting with the basis I until the new
problem is solved. This warm start usually saves a lot of computational effort as compared to
solving the new problem from scratch.

Note that even when the shift c 7→ c+ tδc keeps xI primal optimal, the optimal dual solution
can change — it becomes [AI]

−T [cI + tδcI], and thus changes, unless t = 0 of δcI = 0.

166 LECTURE 4. SIMPLEX METHOD

Changes in the right hand side vector b

Now assume that we perturb the right hand side vector b according to b 7→ b + tδb. I still is
a basis, and the optimality condition remains intact. In order for the feasibility condition to
remain valid, we need

[AI]
−1[b+ tδb] ≥ 0,

and here again we can easily find the largest range of values of t where the latter condition holds
true. When t is in this range, we easily get a new primal optimal solution, while the optimal
dual solution remains intact. If t is outside of the indicated range, we still have in our disposal
a dual basic feasible solution for the new problem, and we can start at this solution the DSM
to solve the new problem to optimality.

Change in a nonbasic column of A

When j 6∈ I, and we perturb j-th column of A according to Aj 7→ Aj + tδa, xI remains a basic
feasible solution to the new problem, AI remains intact, and the only important for us entity
which can change is the j-th entry n the vector of reduced costs which changes according to

(cI)j 7→ (cI)j − t(δa)T [AI]
−T cI .

As above, we can easily find the largest range of values of t in which the perturbed reduced cost
remains nonpositive, meaning that in this range both primal and dual optimal solutions remain
intact. If perturbation in Aj runs out of this range, we can solve the new problem with the PSM
started at the basis I, with the variable xj entering the basis.

New equality constraint is added to the primal problem

Assume that A is augmented by a new row, aTm+1, and b – by the corresponding new entry
bm+1, so that the constraint matrix in the new problem is A+ = [A; aTm+1], and the right hand
side vector in the new problem is b+ = [b; bm+1]. In order to process the new problem, we
check whether the rows in A+ are linearly independent; if this is not the case, the new system
of equality constraints is either infeasible, or the added equality constraint is redundant and
does not affect the problem. When the rows of A+ are linearly independent, we proceed as
follows. We can easily find δλi, 1 ≤ i ≤ m, such that am+1,j =

∑m
i=1 δλiaij for all j ∈ I; indeed,

δλ = [AI]
−T [am+1]I . Now let λ̄ be the optimal dual basic solution we end up with when solving

the old problem, and let λ(t) = [λ̄ + tδλ;−t]. Then [A+]Tλ(t) = AT λ̄ + tp, p = AT δλ − am+1.
Observe that the entries of p with indices from I are zero, while p itself is nonzero, since the
rows of A+ are linearly independent. It follows that the reduced costs cj(t) = [c − AT+λ(t)]j
corresponding to the solution λ(t) of the new dual problem remain zero when j ∈ I, while some
of the cj(t) with j 6∈ I are nonconstant linear functions of t. Let J be the set of those j for
which cj(t) are nonconstant functions of t. When t = 0, all cj(t) are nonpositive; it follows that
we can easily find a value t̄ ∈ R of t such that all cj(t̄) are nonpositive, and at least one of cj(t̄)
with j ∈ J is zero, let this value of j be denoted by j∗. Setting I+ = I ∪ {j∗}, it is immediately
seen that the columns [A+]j , j ∈ I+, of A+ are linearly independent, so that I+ is a basis of the
new problem.

Indeed, since the columns aj , j ∈ I, of A are linearly independent, so are the
columns [A+]j , j ∈ I. It follows that the only possibility for the columns [A+]j ,
j ∈ I+, to be linearly dependent is that [A+]j∗ =

∑
j∈I yj [A+]j for some yi. But

4.4. SIMPLEX METHOD AND LARGE-SCALE LO PROGRAMS 167

then λT (t)[A+]j∗ =
∑

j∈I yjλ
T (t)[A+]j =

∑
j∈I yj [A

T
j λ̄+ tpj] =

∑
j∈I yj [A

T
j λ̄], since

pj = 0 for j ∈ I. We see that λT (t)[A+]j∗ , and thus cj∗(t), is independent of t, which
is not the case.

By construction, setting λ̃ = λ(t̄), we have that c−AT+λ̃ ≤ 0 and (c−AT+λ̃)I+ = 0, i.e., we have
in our disposal a dual basic feasible solution associated with the basis I+ of the new problem.
We now can use I+ and λ̃ to run the DSM on the new problem.

4.4 Simplex Method and Large-Scale LO Programs

When the LO program to be solved becomes large-scale, a straightforward application of the
Simplex method can become prohibitively time- and memory-consuming. These cases need
special care, and we are about to overview some of the techniques which are used in this case.

4.4.1 Revised Simplex Method

For the time being, our description of the PSM was primarily geometric; the only “algebraic”
representation was the tableau scheme. In this scheme, when solving a standard form LP with
n variables and m equality constraints

max
x

{
cTx : Ax = b

}
,

we keep in the memory and update from step to step to step the matrix [b̄, Ā] = [AI]
−1[b, A],

I being the current basis. This is done without computing [AI]
−1 explicitly; given the current

matrix [Ā, b̄] with basic columns forming the unit matrix (or, more exactly, a matrix obtained
from the unit m×m matrix by permutation of rows), we decide which variable should enter the
basis and which should leave it, and then replace the rows of [b̄, Ā] with their linear combinations
to make the columns indexed by the new basis to form the (permuted) unit m×m matrix. To
this end, we normalize the pivoting row to make the pivoting element equal to 1 and then
subtract its multiples from all rows different from the pivoting one to zero the entries of these
rows in the pivoting column. The overall computational effort of this transformation is O(mn)
a.o. (arithmetic operations). An alternative is not to compute the matrix [b̄, Ā] explicitly and
to compute explicitly only the matrix [AI]

−1. Given I and [AI]
−1, all we need on a step of the

PSM is

1. to compute the part xI = [AI]
−1b of the current basic feasible solution xI (O(m2) a.o.).

2. to compute the vector λ = [AI]
−T cI ((O(m2) a.o.),

3. to compute, given λ, the reduced costs cj − λTAj , j 6∈ I (O(m) a.o. per cost) until a
positive reduced cost, if any, is met,

4. given the index j of the variable to enter the basis and the already computed column
[AI]

−1Aj , to decide whether the problem is unbounded, and if it is not the case, to identify
the basic variable which leaves the basis (O(m) a.o.), thus identifying the new basis I+,
and, finally,

5. to compute the matrix A−1
I+ .

168 LECTURE 4. SIMPLEX METHOD

We intend to demonstrate that the latter problem can be solved at the cost of O(m2) a.o.
Taking this fact for granted, note that then the total computational effort per step is O(m2)
plus the cost of finding a variable with positive reduced cost, if such a variable exists. This
latter effort, let it be called N , in the worst case seems to be O(mn), and since n ≥ m, even
the worst-case complexity of s step in the new implementation is of the same order O(mn) as in
the tableau scheme. There are, however, serious reasons to assert that typically N � O(mn).
Indeed, first, only in the worst case we need to look through all the columns to find one with
positive reduced cost, and we can hope that the worst case is not that typical. Second, and
much more importantly, the matrices A arising in large-scale LO programs, at least those of the
decision-making origin, are extremely sparse, that is, the numbers of nonzero entries in most of
the columns Aj are by orders of magnitude less than m, and if A is stored in compact form2,
then even the effort of computing all n reduced costs will be a tiny fraction of mn.3 Finally,
there are situations when problem’s structure allows to find a variable with positive reduced
cost or to conclude correctly that no such variable exists at a much lower computational effort
that the one required by brute force computation of all n reduced costs. By these reasons it is
computationally much better to have AI and generate columns [AI]

−1Aj of Ā when necessary
than to have in an explicit form the matrix Ā.

It remains to explain how to convert [AI]
−1 into A−1

I+ at the cost of O(m2) a.o. We
lose nothing when assuming that I = {1, 2, ...,m}. Let k be the index of the matrix
which leaves the basis. Then AI = [A1, ..., Am] and AI+ is, up to permutation of
two columns, the matrix B = [A1, ..., Ak−1, Aj , Ak+1, ..., Am], where j is the index of
variable entering the basis. We have [AI]

−1Ai = ei, 1 ≤ i ≤ m, ei being the standard
basic orths, whence [AI]

−1B = [e1, ..., ek−1, u, ek+1, ..., em], with u = [AI]
−1Aj . In

other words, [AI]
−1B = Im + veTk , where vi = ui for i 6= k and vk = uk − 1. Observe

that uk 6= 0, since otherwise the matrix [AI]
−1B were singular (why?), which is not

the case, since B corresponds to a basis. We now use the following nice Sherman-
Morrison formula: if P,Q and m×µ-matrices such that Iµ +QTP is invertible, then
Im+PQ also is invertible, and (Im+PQT)−1 = I−P (Iµ+QTP)−1QT 4. Applying this
formula to Im−veTk and taking to into account that eTk v = vk = uk−1 6= −1, we get
(Im + veTk)−1 = Im − [1 + vk]

−1vvT . Thus, B−1AI = ([AI]
−1B)−1 = [Im + veTk]−1 =

Im − (1 + vk)
−1vvT , whence B−1 =

[
Im − (1 + vk)

−1vvT
]

[AI]
−1 = [AI]

−1 − (1 +
vk)
−1v[A−1

i]T v]T , and computing B−1 according to this formula costs O(m2) a.o., as
claimed.

2That is, we store only nonzero entries augmented by pairs of their indices.
3A reader might argue than if A is sparse, then the cost of updating the tableau also is by orders of magnitude

less than O(mn). This argument by far is not universal, since sparsity of A does not automatically imply similar
sparsity of [AI]

−1A.
4Here is the way to memorize this formula: formally, (Im + PQT)−1 = Im − PQT + PQTPQT −

PQTPQTPQT ... = Im − P (Iµ − QTP + QTPQTP + QTPQTPQTP + ...)QT = I − P (Iµ + QTP)−1QT . Ver-
ification of the formula is given by the direct multiplication: (Im + PQT)[Im − P (Iµ + QTP)−1QT] = (Im +
PQT)−P [Iµ+QTP]−1QT −PQTP (Iµ+QTP)−1QT = Im+P

[
Iµ − [Iµ +QTP]−1]−QTP [Iµ +QTP]−1

]
QT =

Im + P
[
Iµ − [Iµ +QTP]−1[Iµ +QTP]

]
QT = Im.

4.4. SIMPLEX METHOD AND LARGE-SCALE LO PROGRAMS 169

4.4.2 Dantzig-Wolfe Decomposition

We now illustrate how the performance of the Revised Simplex Method can be further improved
by using problem’s structure. To this end consider a “structured” LO program, specifically,

max
x

{
t∑

`=1

cT` x
T
` :

t∑
`=1

D`x` = b0, F`x` = b`, 1 ≤ ` ≤ t, x = [x1; ...;xt] ≥ 0

}
, (4.4.1)

where x1, ..., xt are blocks of dimensions n1, ..., nt of the decision vector x. Problems of this
structure often arise in decision-making; imagine t branches of certain firm, every branch with
its own decision vectors x1, ..., xt. The constraints F`x` = b`, ` = 1, ..., t, represent “local”
restrictions of the branches, while the ‘linking” constraints

∑
`D`x` = b0 represent restrictions

coming from their interconnections (e.g., they consume common resources, or outputs of certain
branches are inputs to other branches, etc.). Usually, the number m0 of linking constraints is
essentially smaller than the total number m1 + ... + mt of “local” constraints. Dantzig-Wolfe
decomposition is aimed at exploiting this structure.

The first step of the construction is as follows. Assume that the polyhedral sets

P` = {x` ∈ Rn` : x` ≥ 0, F`x` = b`}

do not contain lines and are nonempty, and thus can be represented as

P` = Conv{xj` : j ∈ J`}+ Cone {wk` : k ∈ K`}

where all wk` are normalized to have the unit length. It follows that (4.4.1) is equivalent to the
master program

max
λj` ,µ

k
`

{∑t
`=1

[∑
j∈J` λ

j
`c
T
` x

j
` +

∑
k∈K` µ

k
`w

k
`

]
:∑t

`=1D`

[∑
j∈J` λ

j
`x
j
` +

∑
k∈K` µ

k
`w

k
`

]
= b0,∑

j∈J` λ
j
` = 1∀`, λj` , µ

k
` ≥ 0 ∀`, j, k

} (4.4.2)

This action seems to be strange, to put it mildly: we have reduced the number of equality
constraints to ν = m0 + t at the cost of introducing possibly astronomic number of variables
λj` , µ

k
` . Nevertheless, let us look what happens when we have in our disposal a basis I of the

problem along with the corresponding basic feasible solution and want to perform a step of the
revised PSM. Let us denote the ν ×N matrix of the standard from LO program (4.4.2) by H,
and its cost vector by d. Given the ν × ν matrices HI and H−1

I , it takes O(ν2) operations
to compute λ = [H−1

I]dI . Now we want to choose among the (perhaps astronomically many)
columns of H a column with positive reduced cost, or to become sure that no such column
exists. Note that every column of H is either of the form [D`x

j
` ; f`] (“x-column”), or of the form

[D`w
k
` ; 0t×1] (“w-column”), where f` is the t-dimensional vector with exactly one nonzero entry,

equal to 1, in the position `. In particular, the columns can be split into t groups, according
to the value of ` = 1, 2, ..., t. Partitioning λ as λ = [η, ρ] with dim η = m0 and dim ρ = t, the
reduced cost of an x-column [D`x

j
` ; f`] is

cT` x
j
` − η

TD`x
j
` − ρ

T f` = [c` −DT
` η]Txj` − ρ`,

while the reduced cost of a w-column [D`w
k
` ; 0t×1] is

c`Twk` − ηTD`w
k
` = [c` −DT

` η]Twk` .

170 LECTURE 4. SIMPLEX METHOD

Now consider the auxiliary problems

max
x`∈P`

[
c` −DT

` η
]T
x` (A`)

For a given `, there are two possibilities:
(a): [c` − DT

` η]Twk` ≤ 0 for all k ∈ K` – in this case, problem (A`) is solvable, and its basic

optimal solution is one of the extreme points xj` of P1;
(b): there exists k ∈ K` such that [c` − DT

` η]Twk` > 0, in which case (A`) is feasible and
unbounded.

Now let us solve the “quite tractable” and relatively small, as compared to the problem of
interest (4.4.1), LO program (A`) by the PSM. In the case (a), the method will end up with a

basic optimal solution to (A`), i.e., with a point of the form xj̄` such that

[c` −DT
` η]Txj̄` − ρ` ≥ [c` −DT

` η]Txj` − ρ` ∀j ∈ J`;

if the left hand side quantity is > 0, we have found an x-column of type ` of H with positive
reduced cost; this column is not in our current basis I for the master program, since all columns
from this basis have reduced costs equal to 0. We now can perform a simplex step for the master
program – we have found a column in H with positive reduced cost.

In the case of (b), the PSM will end up with a direction e of an extreme ray of Rec(P1) such
that [c`−DT

` η]T e > 0. W.l.o.g we can assume that e is of the unit length, that is, this vector is

wk̄` with certain k̄ ∈ K`, and

[c` −DT
` η]Twk` > 0;

we again have found a non-basic column of H with positive reduced cost, now – a w-column, and
can proceed with a simplex step for the master program. The bottom line is that solving (A`)
with the PSM, we either find a non-basic column in H with positive reduced cost, or conclude
that all columns of type ` in the master program have nonpositive reduced costs. It follows that
solving one by one all t auxiliary problems (A`), ` = 1, 2, ..., t, we either perform a simplex step
for the master program, or conclude that all columns in the matrix of the latter program have
nonpositive reduced costs, so that the current basic feasible solution of the master program –
the one associated with the current basis I – is optimal.

As indicated in [3], the available experience shows that the Dantzig-Wolfe decomposition in
terms of operation count does not save much as compared to the revised simplex method as
applied to the original problem, The main advantage of the decomposition is in reduced storage
requirements. Indeed, imagine all m1, ...,mt are the same. The revised simplex method as
applied to the original problem should work with basic matrices of size (m0 + tm1)×(m0 + tm1),
which needs the storage of O((m0 + tm1)2) the decomposition needs to work with basic matrices
of the size (m0 + t) × (m0 + t) for the master problem and with matrices of size m1 × m1,
one at a time, for the auxiliary problems, that is, the storage is O((m0 + t)2 + m2

1). When
m0 = m1 is much larger than t and t is like 10, the storage in the decomposition algorithm is
by two orders of magnitude less than the storage in the straightforwardly implemented revised
simplex algorithm, which essentially increases the scope of large-scale applications which can be
processed in a reasonable time.

Starting the solution process. This can be dome similarly to the Phase q in the PSM —
multiply the first m0 equality constraints in (4.4.1) by ±1 to make b ≥ 0, augment (4.4.1) with

4.4. SIMPLEX METHOD AND LARGE-SCALE LO PROGRAMS 171

artificial variables y1, ..., ym0 and solve the Phase 1 problem

max
x1,...,x`,y

−
m0∑
i=1

yi :

∑
`D`x` + y = b

F`x` = b`, 1 ≤ ` ≤ t
x` ≥ 0, ` = 1,, t, y` ≥ 0

by the Dantzig-Wolfe decomposition algorithm, starting with the basic variables λ1

1, λ1
2,...,λ1

` , y;
with this initialization for the master problem, we clearly have a basic feasible solution. When
the optimal value in the Phase 1 problem is negative, we know that the problem of interest is
infeasible, otherwise the optimal solution to the master problem associated with Phase 1 is a
basic feasible solution to the master problem associated with (4.4.1).

Remark. A careful reader could notice a “gap” in the above presentation, specifically, as
follows. In order for the PSM to work well, the rows in the matrix of the standard form problem
should be linearly independent. We can assume that this is the case for the original problem;
but why it then will be the case for the master problem (4.4.2)? Fortunately, the latter indeed is
true under the (not too restrictive) additional assumption that every polyhedral set P` ⊂ Rn` ,
1 ≤ ` ≤ t, is not merely nonempty, but contains a strictly positive vector.

Indeed, let the latter be the case and let, as always, the vectors of coefficient of the
equality constraints in (4.4.1) be linearly independent. Let the constraint matrix H
of the master problem be partitioned as H = [P ;Q] with m0 × N matrix P and
t×N matrix Q; we want to lead to a contradiction the assumption that the rows of
H are linearly dependent. Assume that they are dependent, so that [p; q]TH = 0 for
certain nonzero vector [p; q] with dim p = m0 and dim q = t. Observe that p 6= 0,
since the rows in Q clearly are linearly independent. Now let x`, y` ∈ P`, 1 ≤ ` ≤ t.
We claim that

pT
T∑
`=1

D`[x` − y`] = 0. (!)

Indeed, since x`, y` ∈ P`, we have x` =
∑

j∈J` λ
j
`x
j
` +

∑
k∈K` µ

k
`w

k
` and y` =∑

j∈J` ν
j
`x

j
` +

∑
k∈K` η

k
`w

k
` with

∑
j λ

j
` =

∑
j ν

j
` = 1. We now have

0 = [p; q]TH
[
{λj` − ν

j
`}j,`, {µ

k
` − ηk` }k,`

]
= pT

∑
`D`[x` − y`] + qT

[∑
j λ

j
1 −

∑
j ν

j
1;
∑

j λ
j
2 −

∑
j ν

j
2; ...;

∑
j λ

j
t −

∑
j ν

j
t

]
= pT

∑
`D`[x` − y`],

as claimed in (!). Now, since P` contains a strictly positive vector, every small
enough in norm vector z` satisfying F`z` = 0 can be represented as the difference of
two vectors x`, y` from P`, which combines with (!) to imply that when z`, ` = 1, ..., t,
are small enough vectors such that F`z` = 0 for all `, then pT

∑
`D`z` = 0. But if the

latter implication holds true for all small enough in norm vectors z` with F`z` = 0, it
holds true for all vectors z` with F`z` = 0, that is, whenever z` are such that F`z` = 0,
1 ≤ ` ≤ t, we have pT

∑
`D`z` = 0. The latter clearly contradicts the assumption

that the constraint matrix, let it be called G, of the original problem (4.4.1) has
linearly independent rows. Indeed, under this assumption the system Gz = g is
solvable for all vectors g, e.g., for the vector [p; 0; ...; 0]; the corresponding solution

172 LECTURE 4. SIMPLEX METHOD

should satisfy
∑

`D`z` = p and F`z` = 0, 1 ≤ ` ≤ t, whence pT
∑

`D`z` = pT p > 0,
which contradicts the implication we have established. We have arrived at a desired
contradiction.

Lecture 5

The Network Simplex Algorithm

In this lecture, we present a version of the Simplex method for solving the Network Flow problem
– the single-commodity version of the multicommodity network flow problem (p. 12 in section
1.1.3). The presence of additional structure – the graph underlying the problem – allows for sig-
nificant modifications and simplifications in the prototype Simplex algorithm and thus deserves
a dedicated description.

Our presentation follows [3, Chapter 7], where an interested reader can find a much broader
picture of network flow algorithms.

5.1 Preliminaries on Graphs

5.1.1 Undirected graphs

An undirected graph G = (N , E) is a pair of two finite sets. The first, N , is called the set of
nodes and can be an arbitrary nonempty finite set; without loss of generality, we can identify
the nodes with the integers 1, ...,m, where m = CardN is the number of elements in N . The
elements of the second set E , called arcs, are distinct from each other two-element subsets of the
set of nodes; thus, an arc is an unordered pair {i, j} of two distinct nodes i, j. Note that E , in
contrast to N , is allowed to be empty. We say that the nodes i, j are incident to the arc {i, j},
and the arc links the nodes i, j.

Walks, paths, cycles. A walk in an undirected graph G is an ordered collection i1, ..., ik of
nodes such that every two consecutive nodes in this collection are linked by an arc in G, that

Figure 5.1: Graphs: left – undirected graph; right – directed graph

173

174 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

is, {is, is+1} ∈ E , 1 ≤ s ≤ k − 1. A walk i1, ..., it is called a path, if all the nodes i1, ..., it are
distinct from each other. A walk i1, ..., tt is called a cycle, if the nodes i1, ..., it−1 are distinct
from each other, it = i1 and, in addition, t ≥ 3. For example, in the undirected graph depicted
on figure 5.1 (left):

• N = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {1, 3}, {3, 4}};

• 1, 3, 2, 3, 4 is a walk, but not a path;

• 1, 2, 3, 4 is a path;

• 1, 2, 3, 1 is a cycle, while 1, 2, 3 and 1, 2, 1 are not cycles.

Connectedness. An undirected graph is called connected, if there exists a walk passing
through all nodes. For example, the graph on figure 5.1 (left) is connected.

Leaves. A node in an undirected graph is called isolated, if it is not incident to any arc (for a
connected graph, such a node exists only in the trivial case of a single-node graph). A node is
called a leaf, if it is incident to exactly one arc. For example, node 4 of the graph on figure 5.1
(left) is a leaf, and all other nodes are not leaves.

Trees. An undirected graph G = (N , E) is called a tree, if it is connected and does not have
cycles. The graph on figure 5.1 (left) is not a tree; we can make it a tree by removing any one
of the arcs {1, 2}, {1, 3}, {2, 3}. Trees play important role in the simplex-type network flow
algorithms, and we are about to summarize here the properties of trees needed in the sequel.

Theorem 5.1.1 (i) Every tree with more than one node has a leaf.
(ii) An undirected graph (N , E) is a tree with m nodes if and only if it is connected and has
exactly m− 1 arcs;
(iii) For every two distinct nodes i, j in a tree, there exists exactly one path which starts at i and
ends at j;
(iv) When extending the set of arcs of a tree by adding a new arc, the resulting graph gets exactly
one cycle1

Proof. (i): Assume that we are given a tree with more than one node and without leaves, and
let us lead this assumption to a contradiction. Since our tree is connected and does not have
leaves, every node is incident to at least two arcs. Now let us walk along the tree as follows:
we start from an arbitrary node; after arriving at a node along certain arc, we leave it along
another arc incident to this node (since every node is incident to at least two arcs, an “exiting
arc” always can be found). Since the number of nodes is finite, eventually we will visit for the
second time a node i which we have already visited; when it happens for the first time, the
segment of our walk from leaving i on the first visit to the node to entering i on the second visit
to it is a cycle (recall that we exit a node by an arc distinct from the one used to enter the node,
so that the above segment cannot be of the form i, j, i and thus indeed is a cycle). Since a tree
does not have cycles, we get a desired contradiction.
(ii): Let us prove by induction in m that every tree with m nodes has m−1 arcs. When m = 1,

1It is assumed here that when counting cycles, we do not distinguish between the cycles like a, b, c, d, a and
b, c, d, a, b (the same “loop” along which we move starting from different nodes), same as do not distinguish between
the cycles like a, b, c, d, a and a, d, c, b, a (the same “loop” along which we move in two opposite directions).

5.1. PRELIMINARIES ON GRAPHS 175

the statement clearly is true. Assuming that the statement is true for m-node trees, let us prove
that it is true for every tree with m+ 1 nodes. Thus, let G = (N , E) be a tree with m+ 1 nodes;
we should prove that G has exactly m arcs. By (i), G has a leaf i; removing from the nodal set
this node, and from the set of arcs – the (unique) arc incident to the leaf i, we get an m-nodal
graph G′ which clearly is connected along with G; since every cycle in G′ clearly is a cycle in G,
G′, along with G, has no cycles. Thus, G′ is a tree, and by inductive hypothesis, G′ has m− 1
arcs, whence G has m arcs, as claimed. The induction is complete.

It remains to prove that every connected m-nodal graph G = (N , E) with m−1 arcs is a tree.
If G has a cycle and we eliminate from E an arc from this cycle, we clearly keep the resulting
graph connected; if it still has cycles, we can remove in a similar fashion another arc, keeping
the graph connected, and so on. As a result, we will end up with a connected m-node graph
which has no cycles and thus is a tree; by the statement we have already proved, the resulting
graph has m − 1 arcs – as much as G itself. This is possible only when no arcs were actually
removed, that is, G itself does not have cycles and thus is a tree.
(iii): Let G be a tree, and i, j be two distinct nodes of G. Since G is connected, there exists
a walk which starts at i and ends at j. The smallest, in the number of nodes incident to it,
walk of this type clearly is a path. Now, if there are two distinct from each other paths of this
type, then we can build a walk from i to i which first goes from i to j along the first path and
then goes back from j to i along the “inverted” second path. Unless the paths are identical, the
resulting “loop” clearly contains one or more cycles, which is impossible, since G is a tree.
(iv): Let G be a tree with m nodes (and thus, by (ii), m− 1 arcs). When extending the set E of
arcs of G with an arc {i, j} which is not in the set, we get a connected graph G′ which is not a
tree (indeed, this graph has m nodes and m arcs, which is forbidden for a tree by (ii)). Since G′

is connected and is not a tree, it has a cycle; this cycle clearly contains the arc {i, j} (otherwise
it would be a cycle in G, and G does not have cycles). Since all arcs {is, is+1}, in a cycle
i1, ..., it−1, it = i1 are distinct from each other, the part of the cycle obtained when eliminating
the arc {i, j} is a path in G which links j and i. By (iii), such a path is unique, whence the cycle
in question also is unique, since, by our analysis, it must be obtained by “closing” the added arc
{i, j} by the unique path from j to i in G. 2

Subgraphs of a graph. Let G = (N , E) be an undirected graph. An undirected graph
G′ = (N ′, E ′) is called a subgraph of G, if N ′ ⊂ N and E ′ ⊂ E ′. In other words, a subgraph is
what we can get from G by eliminating from N part of the nodes to get N ′ and eliminating from
E part of the arcs, including all arcs which do not link pairs of nodes from N ′, to get E ′. For
example, the graph with the nodes 1,3,4 and the arcs {1, 3}, {1, 4} is a subgraph of the graph
presented on figure 5.1 (left).

Spanning trees. A subgraph of an undirected graph G = (N , E) is called a spanning tree, if
it is a tree with the same set of nodes as G; in other words, a spanning tree is a tree of the form
T = (N , E ′), where E ′ ⊂ E .

Theorem 5.1.2 Let G = (N , E) be a connected undirected graph and E0 be a subset of arcs of
G such that there is no cycle in G with all arcs belonging to E0. Then there exists a spanning
tree T = (N , E1) of G such that E0 ⊂ E1.

Proof. Let G = (N , E) and E0 be as in the premise of the theorem. If G is a tree, we can set
E1 = E , and we are done. Otherwise G contains a cycle. The arcs in this cycle cannot all belong

176 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

to E0, and thus the cycle contains an arc which does not belong to E0. Let us remove this arc
from E . The resulting graph G′ can be a tree, and we can take as E1 the set of its arcs; otherwise
we can repeat the above transformation with G′ in the role of G. This process clearly cannot
last forever, and when it stops, we have in our disposal a spanning tree (N , E1) with E0 ⊂ E1, as
claimed. 2

Corollary 5.1.1 Let G = (N , E) be an undirected graph with m nodes, m − 1 arcs and no
cycles. Then G is a tree.

Proof. All we should prove is that G is connected. Assume that this is not the case. Then G
can be split into k ≥ 2 connected components – connected subgraphs G1, ..., Gk – in such a way
that

• the nodal sets N1, ...Nk of the subgraphs form a partition of the nodal set N of G into
non-overlapping components,

• the set E` of arcs of G` is comprised of all arcs of G linking the nodes from N`, 1 ≤ ` ≤ k;

• we have E = E1 ∪ ... ∪ Ek, that is, there are no arcs in G which start in one of the sets N`
and end in another of these sets.

To get this partition, let us take a node and define N1 as the set of all nodes which
can be reached from this node by a walk. Defining E1 as the set of all arcs of G which
link the nodes from N1, note than by construction of N1, no other arc is incident to
a node from N1. If the resulting graph (N1, E1) differs from G, the remaining nodes
and arcs of G form a graph, and we can repeat the same construction for this graph,
and so on.

Let the cardinalities of N` be m`. Since G does not have cycles, so are the components of G,
and since they are connected, they are trees. By Theorem 5.1.1, `-th component has m` − 1
arcs, and thus the total number of arcs in G is

∑k
`=1m` − k = m − k. Since k > 1 and G has

m− 1 arcs, we get a contradiction. 2

5.1.2 Directed graphs

A directed graph is a pair of two finite sets, the (nonempty) set of nodes N and (possibly
empty) set of arcs E , where an arc is an ordered pair (i, j) of two distinct from each other
nodes i, j ∈ N . We say that an arc (i, j) ∈ E starts at node i, ends at node j and links
nodes i and j. For example, the oriented graph depicted on figure 5.1 (right) has the nodal set
N = {1, 2, 3, 4}, and the set of arcs E = {(1, 2); (1, 3), (2, 3), (3, 4)}. For a oriented graph, it is
legitimate to include “inverse to each other” pairs of arcs (i, j) and (j, i) – an option impossible
for an undirected graph. However, in both directed and indirected cases we forbid arcs with
identical to each other endpoints.

A walk in an oriented graph is a sequence i1, ..., it of nodes augmented with a sequence
γ1, ..., γt−1 of arcs such that for every s < t either γs = (is, is+1), or γs = (is+1, is). Informally
speaking, when walking along a directed graph, we are allowed to move through arcs, but not
necessary in the directions of these arcs. The arcs γs along which we move in their direction (that

5.2. THE NETWORK FLOW PROBLEM 177

is, γs = (is, is+1) ∈ E) are called forward arcs of the walk, and the arcs γs along which we move
in the direction opposite to the one of the arc, (i.e., γs = (is+1, is) ∈ E) are called backward arcs.
A walk i1, γ1, i2, γ2, ..., it−1, γt−1, it is called a path, if the nodes i1, ..., it are distinct from each
other. For example, the sequence i1 = 1, γ1 = (1, 2), i2 = 2, γ2 = (2, 3), i3 = 3, γ3 = (1, 3), i4 = 1
is a walk in the oriented graph depicted on figure 5.1 (right), the forward arcs being γ1, γ2 and
the backward arc being γ3. This walk is not a path; to get a path, we could, e.g., eliminate from
the walk the arc γ3 and the last node i4 = 1.

Given an directed graph, we can convert it into an indirected one, keeping the set of nodes
intact and passing from oriented arcs (i.e., ordered pairs of nodes) to their unordered counter-
parts; needless to say, opposite to each other arcs (i, j), (j, i) in the oriented graph, if any are
present, lead to the same arc {i, j} = {j, i} in the undirected graph. Note that the indirected
graph on figure 5.1 (left) is obtained in the outlined way from the directed graph depicted on
the right half of the same figure.

A directed graph is called connected, if there is a walk passing through all the nodes, or,
which is the same, if the indirected counterpart of the graph is connected.

5.2 The Network Flow Problem

Recall the single-commodity version of the Multicommodity Network Flow problem (p. 12 in
section 1.1.3):

Given

• a directed graph G = (N = {1, ...,m}, E),

• a vector s of external supplies at the nodes of G,

• a vector u of arc capacities, and

• a vector c of transportation costs of the arcs,

find a feasible flow f with the smallest possible transportation cost.

Recall that

• a supply s is a vector with entries indexed by the nodes of G;

• a flow f is any vector fij with entries indexed by the arcs (i, j) of G;

• a flow is feasible if it

– is nonnegative and respects the capacities of the arcs:

0 ≤ fij ≤ uij ∀(i, j) ∈ E

– respects the flow conservation law

∀i ≤ n : si +
∑

j:(j,i)∈E

fji =
∑

j:(i,j)∈E

fij

or, in words, for every node, the sum of the external supply at the node plus the total
incoming flow of the node is equal to the total outgoing flow of the node.

178 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

Recall that the incidence matrix of a directed graph G = (N , E) with n = CardE arcs and
m = CardN nodes is the m×n matrix P = [Piγ] with the rows indexed by the nodes i = 1, ...,m
of the graph, and the columns indexed by the arcs γ ∈ E , defined by the relation

Pij =

1, node i starts arc γ
−1, node i ends arc γ

0, in all other cases
,

and in terms of this matrix, the flow conservation law reads

Pf = s.

Thus, the Network Flow problem reads

min
f

cT f :=
∑
γ∈E

cγfγ :
Pf = s
0 ≤ f ≤ u

 (5.2.1)

5.3 The Network Simplex Algorithm

Here we present a variant of the Primal Simplex method aimed at solving the uncapacitated
version of the network flow problem (5.3.1), that is, the problem

min
f

cT f :=
∑
γ∈E

cγfγ : Pf = s, f ≥ 0

 (5.3.1)

obtained from (5.3.1) by letting all arc capacities to be +∞.

5.3.1 Preliminaries

From now on, we make the following

Assumption A: The graph G is connected, and
∑

i∈N si = 0.

Note that when G is not connected, it can be split into connected components. It is clear that
the network flow problems (5.3.1), (5.2.1) reduce to series of uncoupled similar problems for
every one of the components, so that the assumption that G is connected in fact does not reduce
generality. Further, the sum of rows of an incidence matrix clearly is 0, meaning that Pf is a
vector with zero sum of entries for every flow f . In other words, the assumption

∑
i∈N si = 0

is necessary for a network flow problem, capacitated or uncapacitated alike, to be feasible. The
bottom line is that Assumption A in fact does not restrict generality.

5.3.2 Bases and Basic Feasible Solutions

We intend to solve problem (5.2.1) by the Primal Simplex Method somehow adjusted to the
specific structure of the problem. Note that this problem is in the standard form, as is needed
by the method. It remains to take care of the rank of the constraint matrix (the method “wants”
it to be equal to the number of rows in the matrix) and to understand what are its bases. Our
immediate observation is that the constraint matrix P arising in (5.2.1) has linearly dependent
rows – their sum is the zero vector, in contrast to what we need to run the Simplex method.

5.3. THE NETWORK SIMPLEX ALGORITHM 179

The remedy is simple: linear dependence of the vectors of coefficients in equality constraints of
an LO problem, depending on the right hand side, either makes the problem infeasible, or allows
to eliminate the equality constraints which are linear combinations of the remaining equality
constraints. Under Assumption A, every one of equality constraints in (5.2.1) is just the minus
sum of the remaining equality constraints (recall that

∑
i si = 0), and therefore when eliminating

it, we get an equivalent problem. For the sake of definiteness, let us eliminate the last, m-th
equality constraint, thus passing to the equivalent problem

min
f

{
cT f : Af = b, f ≥ 0

}
, (5.3.2)

where A is the (m− 1)×n matrix comprised of the first m− 1 rows of P , and b = [s1; ...; sm−1].
We shall see in a while that the resulting constraint matrix A has linearly independent rows, as
required by the Simplex method. This result will be obtained from a very instructive description
of basic feasible solutions we are about to derive.

Basic solutions are tree solutions

Recall that the Primal Simplex method works with bases – sets I of (indexes of) the columns
of A such that the corresponding submatrix of A is square and nonsingular – and with the
corresponding basic solutions f I uniquely defined by the requirements that Af I = b and the
entries of f I with indexes outside of I are zeros. In the case of problem (5.3.2), the bases should
be sets of m − 1 arcs of G (since these are the arcs which index the columns in A) such that
the corresponding m− 1 columns of A are linearly independent. We are about to describe these
bases and to present a simple specialized algorithm for finding the associated basic solutions.

Let I ∈ E be a set of m − 1 arcs of G such that the undirected counterpart GI associated
with the subgraph GI = ({1, ...,m}, I) is a tree; in the sequel, we shall express this fact by the
words “the arcs from I form a tree when their directions are ignored.” Note that by Theorem
5.1.1, this tree has m− 1 arcs, meaning that the set I (which contains m− 1 oriented arcs) does
not contain pairs of inverse to each other arcs (i, j), (j, i), and thus different arcs in I induce
different non-oriented arcs in GI .

Lemma 5.3.1 Let I be the set of m− 1 arcs in G which form a tree when their directions are
ignored. Whenever a vector of external supplies s satisfies

∑
i si = 0, there exists an associated

flow f (that is, a flow satisfying Pf = s) such that fγ = 0 when γ 6∈ I, and such a flow is
unique.

Proof. Let B be the (m−1)× (m−1) submatrix of A comprised of columns which are indexed
by arcs from T . We should prove that whenever b ∈ Rm−1, the system of equations Bx = b has
exactly one solution, or, equivalently, that B is nonsingular. Let us call the last node of G the
root node; this is the only node which does not correspond to a row in A. By Theorem 5.1.1,
for every other node there exists a unique path in GI which links the node with the root node.
We clearly can renumber the nodes of G in such a way that the new indexes i′ of the nodes
i would increase along every such path2. We then associate with every arc γ = (i, j) ∈ I the
serial number min[i′, j′]. Clearly, different arcs in I get different numbers (otherwise GI would

2this is how it can be done: let d(i) be the “distance” from a node i to the root node in GI , that is, the number
of arcs in the unique path of GI which links i and the root node. We give to the root node index m (as it used
to be). We then order all the nodes according to their distances to the root, ensuring that these distances form a
non-ascending sequence. The new index i′ of a node i its the serial number of this node in the above sequence.

180 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

have cycles). The incidence matrix P ′ of the graph with renumbered nodes is obtained from
P by permuting rows, and this permutation does not move the last row (since by construction
m′ = m), so that the matrix A′ which we get when eliminating from P ′ the last row is obtained
from A by permuting rows. Consequently, the submatrix of A′ comprised of columns indexed
by γ ∈ I is obtained from B by permuting rows. Numbering the columns in this submatrix
of A′ according to the serial numbers we gave to the arcs from I, we get a (m − 1) × (m − 1)
matrix B′ which is obtained from B by permuting rows and then permuting columns; clearly, B
is nonsingular if and only if B′ is so. Now, `-th column of B′ corresponds to an arc (i, j) from I
such that min(i′, j′) = `; the nonzero entries in the corresponding column of P have row indexes
i and j, and in P ′ – row indexes i′ and j′; since ` = min[i′, j′], one of these row indexes is `, and
the other one is > `, meaning that B′ is low-triangular with nonzero diagonal entries. Thus, B′,
and then B, is nonsingular. 2

Corollary 5.3.1 The rank of the matrix A in (5.3.2) is m−1, that is, the rows of A are linearly
independent.

Proof. Since G is connected, there is a set I of m − 1 arcs of G which from a tree after their
directions are ignored (apply Theorem 5.1.2 to an empty set E0 of arcs). By Lemma 5.3.1, the
columns of A indexed by the m − 1 arcs of I are linearly independent. Thus, the (m − 1) × n
matrix A has a (m− 1)× (m− 1) nonsingular submatrix. 2

Now we are ready to describe the bases of A. Observe that by definition of a base, this is an
(m − 1)-element subset of indices of the columns in A (i.e., and (m − 1)-element set of arcs in
G) such that the corresponding columns of A are linearly independent.

Theorem 5.3.1 An (m − 1)-element set I of arcs in G is a base of A if and only if the arcs
from I form a tree when their directions are ignored.

Proof. In one direction – if m− 1 arcs of G form a tree after their directions are ignored, then
the set I of these arcs is a base of A – the fact was already proved. To prove it in opposite
direction, let I be a set of m− 1 arcs which is a basis; we should prove that after the directions
of these arcs are ignored, they form a tree. First, we claim that I does not contain any pair of
“inverse to each other” arcs (i, j), (j, i). Indeed, for such a pair, the sum of the corresponding
columns of P (and thus of A) is zero, while the columns of A indexed by arcs from I are linearly
independent. Since I does not contain pairs of inverse to each other arcs, different arcs from I
induce different arcs in GI , meaning that the undirected m-node graph GI has m− 1 arcs. We
want to prove that the latter graph is a tree; invoking Corollary 5.1.1, all we need to prove is that
GI has no cycles. Assuming that this is not the case, let i1, i2, ..., it−1, it = i1, t ≥ 4, be a cycle
in GI , meaning that I contains arcs γ1,...,γt−1 where γ` is either (i`, i`+1), or (i`+1, i`). Observe
that all t− 1 arcs γ` are distinct from each other. Now let ε` be equal to 1 when γ` = (i`, i`+1)
and ε` = −1 otherwise. It is immediately seen that the flow f with fγ = ε` for γ = γ` and fγ = 0
when γ is distinct from γ1, ..., γt−1 satisfies Pf = 0, meaning that the columns of P indexed by
γ1, ..., γt−1 are linearly dependent. Since γ` ∈ I, the columns of P indexed by γ ∈ I also are
linearly independent, which is a desired contradiction. 2

5.3. THE NETWORK SIMPLEX ALGORITHM 181

Integrality of basic feasible solutions. As a byproduct of the above considerations, we get
the following important result:

Proposition 5.3.1 Let the right hand side vector b in (5.3.2) be integral. Then every basic
solution to the problem, feasible of not, is an integral vector.

Proof. By Theorem 5.3.1, the bases of A are exactly the (m−1)-element sets of arcs in Γ which
form trees when the directions of the arcs are ignored. From the proof of Lemma 5.3.1 it follows
that the associated (m− 1)× (m− 1) submatrices B of A after reordering of rows and columns
become lower triangular with nonzero diagonal entries. Since every entry in A is either 1, or −1,
or 0, every lower triangular matrix B′ in question has integral entries and diagonal entries ±1,
whence the entries in the inverse of B′ are integral as well. Therefore, if B is a basic submatrix
of A and b is an integral vector, the vector B−1b is integral, meaning that the nonzero entries
in every basic solution to Ax = b are integral. 2

Algorithm for building basic solutions. Theorem 5.3.1 says what are the basic solutions
to the uncapacitated network flow problem (5.3.2) – these are exactly the tree solutions, those
which can be obtained as follows:

• we choose in the set E of arcs of G a subset I of m− 1 arcs which form a tree when their
directions are ignored;

• the tree solution associated with I is a flow f such that fγ = 0 for γ 6∈ I and Af = b :=
[s1; ...; sn−1]. These conditions uniquely define f (Lemma 5.3.1), and in fact f is given by
the following simple algorithm. Let GI be the m-node tree associated with I. To get f ,
we process this tree in m− 1 steps as follows:

– At the beginning of step t = 1, 2, ...,m− 1 we have in our disposal a m− t+ 1-node
subgraph Gt = (N t, E t) of GI which is a tree, and a vector st of external demands at
the nodes of Gt satisfying the relation

∑
i∈N t s

t
i = 0. At the first step, G1 is GI , and

s1 = s.

– At step t, we act as follows:

1. We identify a leaf of Gt, let it be denoted by ī; such a leaf exists by Theorem
5.1.1. By the definition of a leaf, in Gt there exists a unique arc {j, ī} incident to
the leaf. Since Gt is a subgraph of GI , this arc corresponds to an arc γ ∈ I, and
this arc is either (j, ī), or (̄i, j). In the first case, we set fγ = −st

ī
, in the second

we set fγ = st
ī
.

2. We eliminate from Gt the node ī and the incident arc {j, ī}, thus getting a graph
Gt+1 (which clearly is a tree).

3. We further convert st into st+1 as follows: for every node k of Gt+1 which is
distinct from j, we set st+1

k = stk, and for the node j we set st+1
j = stj + st

ī
; note

that the sum of entries in the resulting vector st+1 is the same as the similar sum
for st, that is, is 0.

4. Step t is completed; when t < m−1, we pass to step t+1, otherwise we terminate.

Note that upon termination, we have at our disposal the entries fγ for all γ ∈ I. Setting
fγ = 0 for γ 6∈ I, we get a flow f ; it is immediately seen that this flow satisfies Af = b,
that is, f is the tree solution we are looking for.

182 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

Illustration: Let us illustrate the above algorithm for finding a tree solution. Our data are
as follows:

• G is the 4-node oriented graph shown on figure 5.1 (right);

• I = {(1, 3), (2, 3), (3, 4)} (these arcs clearly form a tree when their directions are ig-
nored);

• s = [1; 2; 3;−6].

The algorithm works as follows:

• G1 = GI is the undirected graph with the nodes 1,2,3,4 and the arcs {1, 3}, {2, 3}, {3, 4},
and s1 = [1; 2; 3;−6];

• At the first step, we choose a leaf in G1, let it be the node 2, and the unique arc {2, 3} inci-

dent in G1 to this node. The corresponding arc in G is γ = (2, 3). We set f2,3 = s1
2 = 2, elim-

inate from G1 the node 2 and the arc {2, 3}, thus obtaining G2 = ({1, 3, 4}, {{1, 3}, {3, 4}}),
and set s2

1 = 1, s2
3 = 2 + 3 = 5, s2

4 = −6. The first step is completed.

• At the second step, we choose in G2 a leaf, let it be the node 4, and the unique arc {3, 4}
incident to this node; the corresponding arc in G is (3, 4). We set f3,4 = −s2

4 = 6, elimi-

nate from G2 the node 4 and the arc {3, 4}, thus obtaining G3 = ({1, 3}, {{1, 3}}), and set

s3
1 = s2

1 = 1, s3
3 = s2

3 + s2
4 = −1. The second step is completed.

• At the third step, we take a leaf in G3, let it be the node 3, and the arc {1, 3} incident to

this node. The associated arc in G is (1, 3) and we set f1,3 = −s3
3 = 1.

Finally, we augment the entries f2,3 = 2, f3,4 = 6, f1,3 = 1 we have built with f1,2 = 0, thus

getting a flow satisfying the conservation law, the vector of external supplies being s, and

vanishing outside of the arcs from I.

5.3.3 Reduced costs

As we remember, at every step of the Primal Simplex method we have in our disposal a base I
of A along with the associated basic solution f I , and the vector cI of reduced costs of the form
c−ATλI , where λI is uniquely defined by the requirement that the reduced costs with indexes
from I are equal to 0. In the case of problem (5.3.2), it is convenient to write the reduced
costs in the equivalent form c− P Tλ, where λ ∈ Rm is normalized by the requirement λm = 0.
Recalling the structure of P , the requirements specifying the reduced cost cI become

(cI)ij := cij + λi − λj , (i, j) ∈ E (a)
cij = λj − λi, (i, j) ∈ I (b)

(5.3.3)

We are about to point out a simple algorithm for building the required vector λ. Recall that the
bases I we are exactly the collections of m− 1 arcs of G which form a tree after their directions
are ignored. Given such a collection, a byproduct of the algorithm for building the associated
feasible solution is the collection of subgraphs Gt = (N t, E t), t = 1, ...,m − 1, of GI , every one
of the subgraphs being a tree, such G1 = GI and for every t < m− 1 Gt+1 is obtained from Gt

by eliminating a leaf node īt of Gt along with the unique arc {j̄t, īt} of Gt which is incident to
this node. It is immediately seen that every arc in GI is of the form {j̄t, īt} for certain t. Given
Gt, t = 1, ...,m− 1, we can build the vector λI of Lagrange multipliers as follows:

• [first step] Gm−1 is a 2-node tree, let these nodes be α and β. Without loss of generality
we can assume that (α, β) is an arc in I. Let us set λ̄α = 0, λ̄β = cαβ, thus ensuring
cαβ = λ̄β − λ̄α.

5.3. THE NETWORK SIMPLEX ALGORITHM 183

• [`-th step, m− 1 ≥ ` ≥ 2] At the beginning of step ` we already have in our disposal the
Lagrange multipliers λ̄i associated with the nodes i of Gm−`+1, and these multipliers satisfy
the relations cij = λ̄j − λ̄i for all arcs γ ∈ I which link the nodes of Gm−`+1. At the step,
we take the only node, ī = īm−`, of the graph Gm−` which is not a node of Gm−`+1, and
identify the (unique!) incident to this node arc {j̄, ī} in Gm−`; note that by construction
of the graphs Gt, j̄ is a node of Gm−`+1, so that the Lagrange multiplier λ̄j̄ is already

defined. Now, the arc γ in I associated with the arc {j̄, ī} of Gm−`, is either (j̄, ī), or (̄i, j̄).
In the first case, we set λ̄ī = λ̄j̄ + cī,j̄ , and in the second case, we set λ̄ī = λ̄j̄ − cī,j̄ , thus
ensuring in both cases that cγ is the difference of the Lagrange multipliers associated with
the end- and the start-nodes of γ. As a result of step `, we have defined the multipliers λ̄i
for all nodes of Gm−`, and have ensured, for every arc γ ∈ I linking the nodes from Gm−`,
that the transportation cost cγ of this arc is the difference of the multipliers associated
with the end- and the start-node of the arc. When ` < m − 1, we pass to the next step,
otherwise we terminate.

As a result of the outlined algorithm, we get a vector λ̄ of multipliers associated with the nodes
of G and satisfying the requirements (5.3.3.b). Subtracting from all entries of λ̄ the quantity
λ̄n, we keep (5.3.3.b) intact and meet the normalization requirement λn = 0 on the multipliers,
thus obtaining λI .

3

Illustration: Let us equip the graph G depicted on figure 5.1 (right) with transportation
costs c1,2 = 1, c2,3 = 4, c1,3 = 6, c3,4 = 8 and compute the vector of reduced costs, the
base I being the same set of arcs {(1, 3), (2, 3), (3, 4)} we used when illustrating the algo-
rithm for building basic solutions, see p. 181. The corresponding subgraphs of GI are G1 =
({1, 2, 3, 4}, {{1, 3}, {2, 3}, {3, 4}}), G2 = ({1, 3, 4}, {{1, 3}, {3, 4}}), G3 = ({1, 3}, {{1, 3}}).
We start with looking at G3 and setting λ̄1 = 0, λ̄3 = c1,3 = 6. At the next step we look at
G2; the node of G2 which is not in G3 is 2, and we set λ̄2 = λ̄3 − c2,3 = 6 − 4 = 2. At the last
step, we look at the graph G1 = GI ; the node of this graph which is not in G2 is 4, and we set
λ̄4 = λ̄3 + c3,4 = 6 + 8 = 14. The Lagrange multipliers (before normalization) form the vector
λ̄ = [0; 2; 6; 14], and after normalization – λ = λI = [−14;−12;−8; 0]. The reduced costs are

(cI)1,2 = c1,2 + λ1 − λ2 = 1 + (−14 + 12) = −1, (cI)1,3 = c1,3 + λ1 − λ3 = 6 + (−14 + 8) = 0,
(cI)2,3 = c2,3 + λ2 − λ3 = 4 + (−12 + 8) = 0, (cI)3,4 = c3,4 + λ3 − λ4 = 8 + (−8− 0) = 0.

Note that we could skip computation of the reduced costs associated with the arcs from I – we
know in advance that they are zeros.

5.3.4 Updating basic feasible solution

We now are ready to describe a step of the Network Simplex algorithm. As we remember from
the general description of the Primal Simplex algorithm, this step is as follows (in the description
below, the general-case rules (in Italics) is accompanied by its “network flow translation” (in
Roman)):

1. At the beginning of the step, we have at our disposal the current basis I along with the
associated basic feasible solution.
At the beginning of the step, we have at our disposal a set I of m−1 arcs of G which form

3in actual computations, there is no reason to care on normalization λn = 0 of a vector of Lagrange multipliers,
since all which matters – the associated reduced costs (5.3.3.b) – depend only on the differences of the entries in
λ.

184 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

a tree after their directions are ignored, along with the flow f I which vanishes outside of
the arcs from I, satisfies Af I = b and is nonnegative.

2. At the step, we start with computing the vector of reduced costs.
At the step, we apply algorithm presented on p. 182 to get the vector of Lagrange multi-
pliers λ ∈ Rn such that

cij = λj − λi ∀(i, j) ∈ I

and form the reduced costs

(cI)ij = cij + λi − λj , ∀(i, j) ∈ E . (5.3.4)

If all the reduced costs are nonnegative, we terminate – f I is an optimal solution to
(5.3.2), and λ is the corresponding “optimality certificate” – an optimal solution to the
dual problem. (Note that we are solving a minimization problem, so that optimality
corresponds to non-negativity of all reduced costs). Otherwise we identify a variable with
negative reduced cost; this is the non-basic variable to enter the basis.
We terminate when cI ≥ 0, otherwise find an arc γ̄ = (̄i, j̄) such that (cI)̄ij̄ < 0.

3. We start to increase the value of the nonbasic variable entering the basis, updating the
values of the basic variables in order to maintain the equality constraints, until
— either one of the basic variables is about to become negative; this variable leaves the
basis. In this case, we update the basis by including the variable which enters the basis and
eliminating the variable which leaves it, updating accordingly the basic feasible solution,
and pass to the next step of the method;
— or it turns out that when the variable entering the basis increases, no basic variables are
about to become negative. In this case, we have found a recessive direction of the feasible
domain X along which the objective decreases; this direction certifies that the problem is
unbounded, and we terminate. Recall that according to the general theory of the Primal
Simplex method, the recessive direction in question generates an extreme ray in Rec(X).
The “network translation” of the latter rules is as follows. There are two possibilities:
A. The “index” – the arc γ̄ = (̄i, j̄) – of the variable fγ̄ which enters the basis is not the
arc inverse to one of the arcs in I;
B. The arc γ̄ is inverse to one of the arcs from I.

Case A: In this case, the arc γ̄ induces a new arc, {̄i, j̄}, in the undirected graph GI , this
converting this tree into a new graph G+

I which is not a tree anymore. By Theorem 5.1.1,
G+
I has exactly one cycle, which includes this new arc {̄i, j̄}. “Lifting” this cycle to G, we

get a cycle C in G – a sequence i1, ..., it = i1 of nodes of G such that

• the nodes i1, ..., it−1 are distinct from each other,

• i1 = ī, i2 = j̄, so that i1 and i2 are linked by the arc γ̄, and

• every other pair of consecutive nodes i2, i3, i3, i4,...,it−1, it in our sequence i1, ..., it = i1
is linked by an arc from I. For a pair of consecutive nodes is, is+1, 2 ≤ s < t, the
corresponding arc is either (is, is+1) (“forward arc”), or (is+1, is) (“backward arc”).

Let Γ be the collection of arcs forming the above cycle C; one of them is γ̄, and it is a
forward arc of the cycle, and the remaining arcs belong to I, some of them being forward,

5.3. THE NETWORK SIMPLEX ALGORITHM 185

and some of them being backward. Consider the flow h given by

hγ =

+1, γ ∈ Γ is a forward arc of C
−1, γ ∈ Γ is a backward arc of C

0, all other cases

It is immediately seen that Ph = 0, whence Ah = 0 as well, whence, in turn, A(f I + th) =
b := [s1; ...; sn−1] for all t, that is, f I(t) := f I + th is a flow which satisfies the equality
constraints in (5.3.2). When t = 0, this flow is feasible, and when t grows, starting with
0, the cost of this flow decreases. Indeed, the change in the cost cT f I(t) − cT f I is the
same as when the original costs c are replaced with the reduced costs cI 4 Since the re-
duced costs corresponding to all arcs in C except for the arc γ̄ are zero, we conclude that
cT f I(t) − cT f I = [cI]T f I(t) − [cI]T f I = [cI]T [th] = t[cI]Th = tcIγ̄hγ̄ = tcIγ̄ (since hγ̄ = 1

by construction of h; note that γ̄ is a forward arc in C. Since CIγ̄ < 0, we see that the di-

rection h is a direction of improvement of the objective: when t is positive, cT f I(t) < cT f I .

Now, tho cases are possible:

A.1. h ≥ 0 (this is so if and only if all arcs of G comprising the cycle C are forward). In
this case, f I(t) is a feasible solution of (5.3.2) for all t > 0, and as t→∞, the cost of this
feasible solution goes to −∞, meaning that the problem is below unbounded. In this case
we terminate with a certificate h of unboundedness in our hands.

A.2. Some entries in h are negative (this happens when C includes backward arcs). In this
case, when increasing t starting from t = 0, the flow f I(t) eventually looses nonnegativity.
Since the γ̄-component of the flow f I(t) is equal to t, the entries in the flow which can
eventually become negative are among those with indexes in I. We can easily compute
the largest t = t̄ for which f I(t) still is nonnegative:

t̄ = min{f Iγ : γ ∈ I is a backward arc of C}.

In the flow f I(t̄), one (or more) of components of f Iγ (t̄) with indexes γ ∈ I become zero.
We take one of the corresponding arcs, let it be denoted γ̃, and claim that is leaves the
basis, while γ̄ enters it, so that the updated basis is I+ = (I\{γ̃})∪{γ̄}, and the new basic
feasible solution is f I(t̄). Observe that I+ indeed is a basis.

This observation (which is readily given by the general theory of the Primal
Simplex method; recall that we are just “translating” this method to the par-
ticular case of network problem (5.3.2)) can be justified “from scratch,” namely,
as follows: the undirected counterpart GI+ of the graph obtained from G when
eliminating all arcs except for those from I+ is obtained from the tree GI as
follows:
— we first add to GI a new arc {̄i, j̄} (it is induced by γ̄); the resulting graph
G+
I has m arcs and a unique cycle induced by the cycle C in G;

4This fact is given by the theory of the Primal Simplex method: on the set of solutions to the system of
equality constraints of a problem in the standard form, the objective given by the original cost vector differs by
a constant from the objective given by the vectors of reduced costs, so that the changes in both objectives when
passing from one solution satisfying the equality constraints to another solution with the same property are equal
to each other.

186 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

— to get GI+ , we eliminate from the graph G+
I an arc which belongs to the

unique cycle of G+
I , thus getting a graph with m − 1 nodes. The arc we elimi-

nate from G+
I is induced by the arc γ̃ in C and is different from the arc {̄i, j̄}.

Since G+
I clearly is connected along with GI , and eliminating form a connected

graph an arc belonging to a cycle, we preserve connectivity, GI+ is a connected
graph with m nodes and m − 1 arcs and thus is a tree (Theorem 5.1.1), as
claimed.

Thus, in the case of A.2 we convert the current basis I and the associated basic feasible
solution f I into a new basis I+ and the corresponding new basic feasible solution f I

+
= f It̄ ,

and can pass to the next step of the algorithm.

Remark. Note that in the case of t̄ > 0, the cost of the new basic feasible solution is
strictly smaller than the cost of the old solution, in full accordance with the general theory
of the Primal Simplex method. It may happen, however, that t̄ = 0, in which case the basic
feasible solution remains intact, and only the basis changes; this, in full accordance with
the general theory, can happen only when the basic feasible solution f I we are updating
is degenerate – has less than m− 1 positive entries.

Case B: Recall that this is the case when the arc γ̄ = (̄i, j̄) with negative reduced cost cIγ̄
– the index of the variable which enters the basis, in the general Simplex terminology – is
inverse to one of the arcs from I. In this case we act in the same fashion as in the case A,
although our life becomes simpler. The analogy of the cycle C is now the loop γ̄ = (̄i, j̄),
γ̂ = (j̄, ī) (recall that we are in the situation when the second arc in this loop belongs to
I). The flow h satisfying Ph = 0 is now the flow with exactly two nonzero components,
hγ̄ and hγ̂ , both equal to 1; and since cIγ̄ < 0, cIγ̂ = 0, adding to f I a positive multiple th
of the “circulation” h, we, same as in the case of A, reduce the cost of the flow, keeping it
feasible; thus, we have discovered a recessive direction of the feasible set of the problem.
Along this direction, the objective decreases, that is, we can terminate with a certificate
of unboundedness in out hands.

The description of a step in the Network Simplex algorithm as applied to the uncapacitated
network flow problem is completed.

Illustration: Let us carry out a step of the Network Simplex algorithm as applied to the
directed graph depicted on figure 5.1 (right), the external supplies and the transportation
costs being as in the illustrations on pp. 182 and 183, that is:

s = [1; 2; 3;−6]; c1,2 = 1, c2,3 = 4, c1,3 = 6, c3,4 = 8.

Let the current basis be I = {(1, 3), (2, 3), (3, 4)}; the associated graph GI is the undirected
graph with nodes 1, 2, 3, 4 and arcs {1, 3}, {2, 3}, {3, 4}. The corresponding basic solution
was computed in illustration on p. 182, it is

f I1,2 = 0, f I1,3 = 1, f I2,3 = 2, f I3,4 = 6;

as we see, this solution is feasible. The reduced costs associated with the basis I were
computed in illustration on p. 183; they are

(cI)1,2 = −1, (cI)1,3 = 0, (cI)2,3 = 0, (cI)3,4 = 0.

The reduced cost associated with the arc (1, 2) is negative, meaning that the solution f I

is nonoptimal. We enter the arc γ̄ = (1, 2) into the basis (that is, the variable f1,2 should

5.3. THE NETWORK SIMPLEX ALGORITHM 187

become a basic variable). When adding to GI the non-oriented arc {1, 2} associated with
the oriented arc γ̄ in G, we get a graph G+

I which is non-oriented counterpart of G; in full
accordance with our theory, it has a single cycle 1, 2, 3, 1. The corresponding cycle C in
G is 1, (1, 2), 2, (2, 3), 3, (1, 3), 1; the arcs (1, 2) and (2, 3) are forward, and the arc (1, 3) is
backward. We are in Case A; the improving direction h is h1,2 = 1, h1,3 = −1, h2,3 = 1,
h3,4 = 0; as it should be, this direction satisfies Ph = 0 (that is, it is a flow meeting the
conservation law, the external supplies being zero). We now add a nonnegative multiple th
of the flow h to our “old” basic feasible flow f I , choosing the largest possible t for which the
updated flow is nonnegative. Looking at f I and h, we get t = 1; the variable which leaves
the basis is f1,3, the variable which enters the basis is f1,2 (in terms of the indexes: the arc
which should be added to I is γ̄ = (1, 2), the arc which leaves I is γ̃ = (1, 3)). The new basis
and basic feasible solution are

I+ = {(1, 2), (2, 3), (3, 4)}, f I
+

1,2 = 1, f I
+

1,3 = 0, f I
+

2,3 = 2, f I
+

3,4 = 6.

The step is completed.

Let us carry out the next step of the algorithm. To this end let us compute the reduced
costs associated with our new basis I+. Applying algorithm presented on p. 183, we get

λ1 = −13, λ2 = −12, λ3 = −8, λ4 = 0,

(cI
+

)1,2 = (cI
+

)2,3 = (cI
+

)3,4 = 0, (cI
+

)1,3 = c1,3 + λ1 − λ3 = 6 + (−13 + 8) = 1.

The reduced costs are nonnegative, meaning that the flow f I
+

is optimal.

5.3.5 Network Simplex Algorithm: Summary and Remarks

Summary of the algorithm. We have described in details the “building blocks” of the
network-oriented implementation of the Primal simplex method. When put together, we get an
algorithm which can be summarized as follows:

1. At the beginning of a step, we have at our disposal current basis I, which is the set of m−1
arcs in G which form a tree after their directions are ignored, along with the corresponding
basic feasible solution f I ; this is a feasible flow such that f Iγ = 0 for all arcs γ 6∈ I.

2. At the step, we

(a) use the algorithm presented on p. 183 to compute the Lagrange multipliers λ1, ..., λm
such that

cij = λi − λj ∀(i, j) ∈ I

and then compute the reduced costs

(cI)ij = cij + λi − λj , (i, j) ∈ E .

The reduced costs associated with the arcs γ ∈ I are zero. If all remaining reduced
costs are nonnegative, we terminate – f I is an optimal solution to (5.3.2), and the
vector λI = [λ1 − λn; ...;λm−1 − λm] is the optimal solution to the dual problem.

(b) If there are negative reduced costs, we pick one of them, let it be cI
īj̄

, and add to I the

arc γ̄ = (̄i, j̄) (“variable fγ̄ enters the basis”). We extend (it is always possible) the
arc γ̄ by arcs from I to get a loop i1 := ī, γ1 := γ̄, i2 := j̄, γ2, i3, γ3, ..., γt−1, it = ī; here
γ2, ..., γt−1 are distinct arcs from I, the nodes i1 = ī, i2 = j̄, i3, ..., it−1 are distinct
from each other, and for every s < t γs is either the arc (is, is+1) (“forward arc”), or

188 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

the arc (is+1, is) (”backward arc”). This loop gives rise to a flow h which is equal
to 1 at every forward arc and equal to −1 in every backward arc of the loop, and
vanishes in all arcs not belonging to the loop; this flow satisfies the relation Ph = 0
and [cI]Th = cIγ̄ < 0. It follows that a flow of the form f I(t) := f I + th with t ≥ 0

satisfies the flow conservation law: Pf I(t) = s, and its cost strictly decreases as t
grows.

(c) It may happen that the flow f I(t) remains nonnegative for all t ≥ 0. In this case
we have found a ray in the feasible set along which the objective tends to −∞,
meaning that the problem is unbounded; if it happens, we terminate, h being the
unboundedness certificate.

An alternative is that some of the entries in f I(t) decrease as t increases; this clearly
can happen only for the entries corresponding to arcs from I (since the only other
entry in f I(t) which is not identically zero is the entry indexed by γ̄, and this entry is
equal to t (recall that γ̄, by construction, is a forward arc in the above loop, and thus
hγ̄ = 1) and thus increases with t). We find the largest value t̄ of t such that the flow
f I(t̄) is nonnegative, and eliminate from I an arc γ̂ where the flow f I(t) is “about to
become negative” at t = t̄ (i.e., γ̂ is such that the corresponding component of f I(t)
decreases with t and becomes 0 when t = t̄). We set I+ = [I ∪ {γ̄}]\{γ̂}; this is our
new basis (and it indeed is a basis), the corresponding basic feasible solution being
the flow f I

+
= f I(t̄), and loop to the next step of the algorithm.

Remarks. A. Correctness and finite termination. The Network PSM is just an adaptation
of the general-purpose PSM to the special case of uncapacitated Network Flow problem (5.3.2);
as such, it inherits the fundamental properties of the PSM:
• the only possibilities to terminate are
— either to produce an optimal basic feasible solution to the problem along with the optimality
certificate — a feasible solution to the dual problem which, taken along with the primal solution,
satisfies the complementary slackness condition and thus is an optimal solution to the dual
problem,
— or to detect that the problem is unbounded and to produce the corresponding certificate.
• the method is monotone — as a result of a step, the value of the objective either decreases, or
remains the same. The latter option takes place only if the basic feasible solution the step starts
with is degenerate – has less than m − 1 positive entries. If there are no degenerate feasible
solutions at all, the method terminates in finite time. There are also examples which show
that, same as in the case of a general-purpose PSM, in the presence of degenerate solutions the
Network PSM can loop forever, unless an appropriate care of the “‘ties” in the pivoting rules is
taken.

B. Oriented cycles of negative cost. The unboundedness certificate, if any, is an oriented
cycle in G with negative cost, that is, a collection of t arcs (i1, i2), (i2, i3),...,(it, i1) such that
the sum of the associated reduced costs is negative. Now observe that from (5.3.4) it follows
that for every oriented cycle and for every basis I of (5.3.2), the sum of reduced costs of all arcs
of the cycle is equal to the sum of the original costs of the arcs. It follows that the certificate
of unboundedness produced by the Network PSM is a oriented cycle of negative total cost. It
is also clear that whenever a feasible problem (5.3.2) admits an oriented cycle of negative total
cost, the problem is unbounded.

C. Integrality. From the description of the Network PSM it follows that all arithmetic
operations used in the computations are additions, subtractions and multiplications; no divisions

5.4. CAPACITATED NETWORK FLOW PROBLEM 189

are involved. Therefore when the vector of external supplies is integral, so is the optimal solution
(if any) reported by the Network PSM – the fact already known to us from Proposition 5.3.1. We
can augment this statement by noting that when all costs cij are integral, so are all reduced costs
and the associated λi’s (see (5.3.4)) and, in particular, the optimal dual solution (if any) returned
by the algorithm is integral – this observation is readily given by algorithm for computing reduced
costs presented in section 5.3.3, see p. 182.

Needless to say, absence of divisions implies that in the case of integral data all computations
in the Network PSM are computations with integral operands and results, which eliminates a
lot of numerical issues related to rounding errors5.

D. Getting started. We did not explain yet how to initialize the Network PSM – where
from to take the initial basic feasible solution. The simplest way to do it is as follows. Let us
augment the m-vertex graph G by an additional node, let its index be m+ 1, and m additional
artificial arcs, namely, as follows. For every original node i with nonnegative external supply, we
add to the graph the arc (i,m+ 1), and for every original node i with negative external supply
– the arc (m + 1, i). Finally, we assign the new node m + 1 with zero external supply. For the
extended graph, finding initial basic feasible solution is trivial: the corresponding basis I is just
the basis comprised of the m artificial arcs6, and the solution is to send si units of flow from
node i to node m+ 1 along the arc (i,m+ 1), when si is ≥ 0, and −si units of flow through the
arc (m+ 1, i), when si is negative. Now, it is easily seen that if the original problem is feasible
and the transportation costs for the added m arcs are large enough, every optimal solution to
the augmented problem will induce zero flows in the artificial — “expensive” — arcs and thus
will be an optimal solution to the problem of actual interest.

5.4 Capacitated Network Flow Problem

In this section we present a modification of the Network PSM aimed at solving the capacitated
Network Flow problem which is obtained from (5.3.2) by assuming that some of the arcs have
finite capacities, that is, the flows in these arcs are subject to upper bounds. In fact, it makes
sense to consider a slightly more general situation where the flows in the arcs are subject to
both lower and upper bounds, so that the problem reads

min
f

{
cT f : Af = b, uγ ≥ fγ ≥ `γ , γ ∈ E

}
, (5.4.1)

where, same as in (5.3.2), A is the (m − 1) × n matrix obtained by eliminating the last row in
the incidence matrix P of a m-node graph G with the set of arcs E , and b is the “truncation”
[s1; ...sm−1] of the vector of external supplies s,

∑m
i=1 si = 0. As about the bounds uγ , `γ , we

assume that

B.1: some of `γ are reals, and some can be equal to −∞, similarly, some of uγ are reals, and
some are +∞;

B.2: `γ < uγ for all γ (“no arc flows are fixed in advance”), and

B.3: for every γ, either `γ , or uγ , or both these quantities are reals (“no free arc flows”).

5It should be mentioned, however, that without additional precautions the method may suffer from “integral
overflows” – some intermediate results can become too large to be stored in a computer as integers.

6Note that our new graph has m + 1 nodes, so that the basis should contain m arcs which form a tree after
their directions are ignored; this is exactly the case with the proposed set of arcs.

190 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

We also keep our initial assumption that G is connected; this assumption, as we remember,
implies that the rows of A are linearly independent.

5.4.1 Preliminaries: Primal Simplex Method with Bounds on Variables

When presenting the Network PSM for the capacitated Network Flow problem, it makes sense
to start with the version of the general-purpose PSM aimed at handling bounds on the variables.
Thus, consider a LO program

Opt = min
x

{
cTx : Ax = b, `j ≤ x ≤ uj , 1 ≤ j ≤ n

}
, (5.4.2)

where for every j either `j , or uj , or both these quantities are finite, and `j < uj for all j. As
about A, we assume that this is an m× n matrix with linearly independent rows.

Problem (5.4.2) is not in the standard form. One option to handle the problem via the
PSM is to convert it into the standard form and to apply the method to the resulting problem.
However, as far as the efficiency of the computational process is concerned, this option is not
the best one; it is better to adjust the PSM to (5.4.2), which, as we shall see, requires just minor
and mostly terminological modifications of the method.

Bases and basic solutions to (5.4.2)

The feasible set of (5.4.2) clearly does not contain lines; thus, if the problem is solvable, it
admits a solution which is a vertex of the feasible set X = {x : Ax = b, ` ≤ x ≤ u}. As in the
basic version of the method, the PSM as applied to (5.4.2) travels along the vertices, and our
first step is to describe these vertices. By algebraic characterization of extreme points, a point
v ∈ X is a vertex of X iff among the constraints defining X and active at v (i.e., satisfied at v
as equalities) there are n = dim x constraints with linearly independent vectors of coefficients.
Part of these m active constraints with independent vectors of coefficients, say, m′ ≤ m of them,
are the equality constraints aTp x = bp, p ∈ P , and n −m′ remaining constraints in this group
come from the bounds. Since `j < uj , the lower and the upper bounds on the same variable
cannot become active simultaneously; thus, n−m′ entries in v should be on their upper or lower
bounds, let the indexes of these constraints form a set J . Since the n×n matrix which we get by
augmenting the rows aTp , p ∈ P , with the rows of the unit matrix corresponding to the entries
of v which are at their bounds should be nonsingular, we conclude, same as in the case of the
basic PSM, that the columns of A with indexes from I ′ := {1, ..., n}\J are linearly independent.
Since A is of rank m, we conclude that cardinality of I ′ is at most m, and I ′ can be extended
to a basis I of A. Thus,

every vertex v of the feasible set X of (5.4.2) can be associated with a basis I of A
(a set of m distinct indexes from {1, ..., n} such that the columns of A with these
indexes are linearly independent) in such a way that every entry vi in v with index
outside of I is either `i, or ui.

Note that given a basis I and setting every entry in x with non-basic index to `i or to ui, there
is exactly one option to define the “basic” entries in x – those with indexes from I — which
results in a vector satisfying the equality constraints in (5.4.2); specifically, the basic part of x
should be

xI = A−1
I [b−

∑
i 6∈I

xiAi].

5.4. CAPACITATED NETWORK FLOW PROBLEM 191

The resulting solution xI is called the basic solution associated with basis I and the way in
which we set the non-basic entries in xI – those with indexes outside of I – to the values `i and
ui. Note that feasibility of a basic solution xI depends solely on what are the basic (those with
indexes from I) entries in this solution: the solution is feasible iff these entries are between the
corresponding bounds `i, ui.

The bottom line of our discussion is as follows:

(!) Extreme points of the feasible set of (5.4.2) are exactly the basic feasible solutions,
that is, the just defined basic solutions which happen to be feasible.

This conclusion resembles pretty much the similar conclusion for the standard form LO’s. The
only difference is that in the standard case a basic solution is uniquely defined by the basis,
while now it is uniquely defined by the basis and the way in which we set the non-basic entries
to their upper and lower bounds.

Reduced costs

Given a basis I, we define the associated vector cI of reduced costs exactly as in the case of a
standard form problem, that is, as

cI = c−ATA−TI cI , (5.4.3)

where cI is the m-dimensional vector comprised of the entries in c with indexes from I. In other
words, cI is obtained from c by adding a linear combination of rows of A, and this combination
is chosen in such a way that the basic entries in cI are zeros. We clearly have cTx = [cI]Tx for
all x with Ax = b, or, equivalently,

Ax′ = Ax′′ = b⇒ cT [x′ − x′′] = [cI]T [x′ − x′′]. (5.4.4)

Let us make the following observation:

Lemma 5.4.1 Let I be a basis, xI be an associated basic feasible solution (that is, xI is feasible
and non-basic entries in xI sit on the bounds), and cI be the vectors of reduced costs associated
with I. Then the condition

∀i 6∈ I : either (xIi = `i and cIi ≥ 0), or (xIi = ui and cIi ≤ 0) (5.4.5)

is sufficient for xI to be optimal.

Proof. The fact can be easily derived from considering the dual problem, but we prefer a self-
contained reasoning as follows: since xI is feasible, all we need is to verify that if y is a feasible
solution, then cTxI ≤ cT y. By (5.4.4) we have cT [y − xI] = [cI]T [y − xI] =

∑
i 6∈I c

I
i [yi − xIi] (we

have taken into account that cIi = 0 when i ∈ I). For i 6∈ I we have
— either xIi = `i, yi ≥ `i and cIi ≥ 0,
— or xIi = ui, yi ≤ ui and cIi ≤ 0,
and in both cases cIi [yi − xIi] ≥ 0, whence

∑
i 6∈I c

I
i [yi − xIi] ≥ 0. 2

192 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

A step of the algorithm

We are ready to describe a step of the PSM as applied to (5.4.2). At the beginning of the step,
we have at our disposal a basis I along with an associated feasible basic solution xI and the
vector of reduced costs cI . At the step, we act as follows:

1. We check whether xI , cI satisfy the sufficient condition for optimality (5.4.5). If it is the
case, we terminate, xI being the resulting optimal solution and cI being the optimality
certificate.

2. If (5.4.5) is not satisfied, we identify a non-basic index j such that either
— Case A: xIj = `j and cIj < 0, or

— Case B: xIj = uj and cIj > 0.

In the case of A, we proceed as follows: we define a parametric family xI(t) of solutions by
the requirements that xIj (t) = `j + t, AxI(t) = b and xIk(t) = xIk(t) for all non-basic entries

with indexes k different from j. We clearly have xI(0) = xI ; as t ≥ 0 grows, the entries
xIk(t) with indexes k ∈ I ∪ {j} somehow vary, while the remaining entries stay intact,
and we have AxI(t) = b for all t. Note that these requirements specify xI(t) in a unique
fashion, completely similar to what we have in the case of a standard form problem:

xI(t) = xI − tA−1
I Aj .

Observe that the objective, as evaluated at xI(t), strictly improves as t grows:

cT [xI(t)− xI] = [cI]T [xI(t)− xI] =
∑
i∈I

cIi︸︷︷︸
=0

[xIi (t)− xIi] + cIj︸︷︷︸
<0

t+
∑

i 6∈I∪{j}

cIi [xIi (t)−XI
i]︸ ︷︷ ︸

=0

.

Now, when t = 0, xI(t) = xI is feasible. It may happen that xI(t) remains feasible for
all t > 0; in this case, we terminate with the claim that the problem is unbounded. An
alternative is that eventually some entries xIi (t) leave the feasible ranges [`i, ui]; this, of
course, can happen only with the entries which do depend on t (those are the entry with
index j and those of the basic entries for which the corresponding coordinates in A−1

I Aj
is nonzero). We can easily find the largest t = t̄ for which xI(t) still is feasible, but one or
more of the coordinates in xI(t̄) is about to become infeasible. Denoting by i the index of
such a coordinate, we set I+ = [I ∩ {j}]\{i}, xI+

= xI(t̄). It is immediately seen that I+

is a basis, and xI
+

is an associated basic feasible solution, and we pass to the next step.
In the case of B, our actions are completely similar, with the only difference that now,
instead of requiring xIj (t) = `i + t, we require xIj (t) = uj − t.

Note that the construction we have presented is completely similar to the one in the case of a
standard form program. The only new possibility we meet is that as a result of a step, the basic
solution is changed, but the basis remains the same. This possibility occurs when the entry
xIi (t) which is about to become infeasible when t = t̄ is nothing but the j-th entry (which indeed
is possible when both `j and uj are finite). In this case, as a result of a step, the basis remains
intact, but one of the non-basic variables jumps from one of its bounds to another bound, and
the objective is strictly improved.

Finally, observe that the presented method is monotone. Moreover, the objective strictly
improves at every step which indeed changes the current basic feasible solution, which definitely
is the case when this solution is nondegenerate, i.e., not all basic entries in the solution are

5.4. CAPACITATED NETWORK FLOW PROBLEM 193

strictly within their bounds. What does change at a step which does not update the basic
feasible solution, is the basis. These remarks clearly imply our standard conclusions on the
correctness of the results reported by the method upon termination (if any) and on finiteness of
the method in the nondegenerate case.

5.4.2 Network PSM for Capacitated Network Flow Problem

The network PSM for the capacitated Network Flow problem is nothing but the specialization
of the just outlined PSM for solving (5.4.2) to the case of problem (5.4.1). We already have in
our disposal all “network-specific” building blocks (they are inherited from the uncapacitated
case), same as the blueprint of how these blocks should be assembled (see the previous section),
so that all we need is just a brief summary of the algorithm. This summary is as follows.

1. At the beginning of an iteration, we have at our disposal a basis I — a collection of
m − 1 arcs in G which form a tree when their directions are ignored — along with the
corresponding basic feasible flow f I – a feasible solution f I to (5.4.1) such that the flows
f Iγ in the arcs distinct from those from I are at their upper or lower bounds.

2. At a step we act as follows.

(a) We compute the vector of reduced costs cIij = cIij +λi−λj according to the algorithm

presented in section 5.3.3, so that cIγ = 0 when γ ∈ I.

(b) If for every arc γ 6∈ I we have either cIγ ≥ 0 and f Iγ = `γ , or cIγ ≤ 0 and f Iγ = uγ , we

terminate — f I is an optimal solution, and cI is the associated optimality certificate.

(c) If we do not terminate according to the previous rule, we specify an arc γ̄ := (̄i, j̄) 6∈ I
such that either
— Case A: cIγ̄ < 0 and f Iγ̄ = `γ̄ , or

— Case B: cIγ̄ > 0 and f Iγ̄ = uγ .
Below we assume that we are in the case of A (our actions in the case of B are
completely “symmetric”).

(d) Same as in the uncapacitated case, we find a loop i1 := ī, γ1 := γ̄, i2 :=
j̄, γ2, i3, ..., it−1, γt−1, it = i1, where i1, ..., it−1 are distinct nodes of G and γ2, ..., γt−1

are distinct from each other arcs from I such that either γs = (is, is+1) (forward arc),
or γs = (is+1, is) (backward arc) for every s, 1 ≤ s ≤ t − 1. We define flow h which
vanishes outside of the arcs from the loop, and in the arc γ from the loop is equal
to 1 or -1 depending on whether the arc is or is not a forward one. We further set
f I(t) = f I + th, thus getting a flow such that

f I(0) = f I and Af I(τ) = b∀t, cT [f I(τ)− f I] = cγ̄︸︷︷︸
<0

t.

(e) It may happen that the flow f I(t) remains feasible for all t ≥ 0. In this case, we have
found a feasible ray of solutions to (5.4.1) along which the objective goes to −∞, and
we terminate with the conclusion that the problem is unbounded. An alternative is
that as t ≥ 0 grows, some of the entries f Iγ (t) eventually become infeasible. In this

case it is easy to identify the smallest t = t̄ ≥ 0 for which f I(t̄) still is feasible, same
as it is easy to identify an arc γ̂ from the above loop such that the flow f Iγ̂ (t) at t = t̄

194 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

is about to become infeasible. We add to I the arc γ̄ and delete from the resulting set
the arc γ̂, thus getting a new basis, the corresponding basic feasible solution being
f I

+
= f I(t̄), and pass to the next step.

The resulting algorithm shares with its uncapacitated predecessor all the properties mentioned
on p. 188, in particular, produces upon termination (if any) an integral optimal flow, provided
that all entries in b and all finite bounds `i, ui are integral. To initialize the algorithm, one
can use the same construction as in the uncapacitated case, with zero lower and infinite upper
bounds on the flows in the artificial arcs.

Part III

Complexity of Linear Optimization

and The Ellipsoid Method

196 LECTURE 5. THE NETWORK SIMPLEX ALGORITHM

Lecture 6

Polynomial Time Solvability of
Linear Optimization

6.1 Complexity of LO: Posing the Question

We know that the Simplex Method equipped with an anti-cycling strategy is a finite algorithm
assuming precise arithmetics, it solves exactly every LO program in finitely many arithmetic
operations. Once upon a time this property was considered the most desirable property a compu-
tational routine can possess. However, actual computations require from a good computational
routine not only to be able to solve problems, but also to do it “in reasonable time.” From
practical perspective, the promise that a particular algorithm, as applied to a particular prob-
lem, will eventually solve it, but the computation will take 1010 years, does not worth much. At
the theoretical level, the purely practical by its origin question of “how long a computation will
take” is posed as investigating complexity of problem classes and solution algorithms. Speaking
informally, the complexity is defined as follows:

1. We are interested in solving problems from certain family P (e.g., the family of all LO
programs in the standard form); let us call this family a generic problem, and particular
member p ∈ P of this family (in our example, a particular LO program in the standard
form) – an instance of P. We assume that within the family, and instance is identified
by its data, which form an array of numbers. E.g., the data of an LO in the standard
form are comprised of two integers m,n – the sizes of the constraint matrix A, two linear
arrays storing the entries of the objective c and the right hand side vector b, and one two-
dimensional array storing the constraint matrix A. In fact, we lose nothing by assuming
that the data data(p) of an instance is a single one-dimensional array, i.e., a vector. E.g.,
in the LO case, we could start this vector with m and n, then write one by one the entries
of c, then – the entries of b, and then – the entries of A, say, column by column. With
this convention, given the resulting data vector, one can easily convert it into the usual
representation of an LO program by two vectors and a matrix.

Similarly, we can assume that candidate solutions to instances are linear arrays – vectors
(as it indeed is the case with LO).

2. Now, a solution method B for P can be thought of as a program for a computer. Given
on input the data vector data(p) of an instance p ∈ P and executing this program on this
input, the computer should eventually terminate and output the vector representing the

197

198 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

solution of p we are looking for, or, perhaps, a valid claim “no solution exists.” E.g., in
the LO situation the result should be either the optimal solution to the LO instance the
algorithm is processing, if any, or the correct claim “the instance is unsolvable,” perhaps,
with explanation why (infeasibility of unboundedness).

3. We now can measure the complexity C(B, p) of B as applied to an instance p ∈ P as
the running time of B as applied to the instance, that is, as the total time taken by
elementary operations performed by the computer when processing the instance. Given B,
this complexity depends on the instance p in question, and it makes sense to “aggregate”
it into something which depends only on the pair (B,P). A natural way to do it is to
associate with an instance p its “size” Size(p) which is a positive integer which somehow
quantifies the “volume of the data” in p. For example, we can use, as the size, the number
of data entries specifying the instance within P, that is, the dimension of the data vector
data(p). Another, more realistic, as far as digital computations are concerned, way to
define the size is to assume that the data entries admit finite binary representation, e.g.,
are integers or rationals (i.e., pairs of integers), and to define the size of an instance p as
the total number of bits in the vector data(p); this is called the bit size of p.

After the instances of P are equipped with sizes, we can define the complexity of a solution
algorithm B as the function

CB(L) = sup
p
{C(B, p) : p ∈ P,Size(p) ≤ L}

which shows how the worst-case, over instances of sizes not exceeding a given bound L,
running time of B as applied to an instance, depends on L.

We then can decide which types of complexity functions are, and which are not appropriate
for us, thus splitting all potential solution algorithms for P into efficient and inefficient,
and investigate questions like

•Whether such and such solution algorithm B, as applied to such and such generic problem
P, is efficient? What is the corresponding complexity?
or • Whether such and such generic problem P is efficiently solvable, that is, admits an
efficient solution algorithm?

A reader could argue why should we quantify complexity in the worst-case fashion,
and not by the “average” or “with high probability” behavior of the algorithm.
Practically speaking, a claim like “such and such algorithm solves instances of size
L in time which, with probability 99.9%, does not exceed 0.1L2” looks much more
attractively than the claim “the algorithm solves every instance of size L in time not
exceeding 100L3.” the difficulty with probabilistic approach is that most often we
cannot assign the data of instances with a meaningful probability distribution. think
of LO: LO programs arise in an extremely wise spectrum of applications, and what
is “typical” for the Diet problem modeling nutrition of chickens can be quite atypical
for “the same” problem as applied to nutrition of cows, not speaking about problems
coming from production planning. As a result, meaningful probabilistic approach can
make sense (and indeed makes sense) only when speaking about relatively narrow
problems coming from a “isolated” and well understood source. A typical alternative
– to choose a data distribution on the basis of mathematical convenience – usually
leads to “efficient” algorithms poorly performing in actual applications.

6.1. COMPLEXITY OF LO: POSING THE QUESTION 199

Polynomial time algorithms and polynomially solvable generic problems. As a mat-
ter of fact, there exists a complete consensus on what should be treated as an “appropriate
complexity” — this is polynomiality of the complexity in L, that is, the existence of a polyno-
mial in L upper bound on this function. Thus, a solution algorithm B for a generic problem P
is called polynomial, or polynomial time, if

CB(L) ≤ cLd

for fixed constants c, d and all L = 1, 2, A generic problem P is called polynomially solvable,
or computationally tractable, if it admits a polynomial time solution algorithm.

Informally, the advantage of polynomial time algorithms as compared to their most typical
(and usually easy to build) alternatives, the exponential time algorithms with the complexity
exp{O(1)L}, can be illustrated as follows. Imagine that you are solving instances of certain
generic problem on a computer, and then get a 10 times faster computer. If you use a polynomial
time algorithm, this constant factor improvement in the hardware will result in constant factor
increase in the size of an instance you can process in a given time, say, in one hour. In contrast
to this, with an exponential algorithm, 10-fold improvement in the performance of the hardware
increase the size L of an instance you can solve in one hour only additively: L 7→ L+ const.

There are deep reasons for why the theoretical translation of the informal notion “computa-
tionally tractable generic problem” is polynomial time solvability. The most important argument
in favor of formalizing tractability as polynomial solvability is that with this formalization the
property to be tractable becomes independent of how exactly we encode candidate solutions and
data of instances by linear arrays; as a matter of fact, all natural encodings of this type can be
converted one into another by polynomial time algorithms, so that the property of a problem
to be tractable turns out to be independent of how exactly the data/candidate solutions are
organized. Similarly, the property of an algorithm to be polynomial time is insensitive to minor
details on what are the elementary operations of the computer we use. As a result, theoretical
investigation of complexity can ignore “minor technical details” on how exactly we encode the
data and what exactly our computer can do, thus making the investigation humanly possible.

E.g., a natural way to store the data of a multicommodity flow problem is essentially
different from a natural way to store the data of the standard form representation
of the same problem. Indeed, to specify a problem with N commodities on a graph
with n nodes and m arcs, we need to point out the incidence matrix of the graph (mn
data entries when we store the matrix as a full one), the supply of each commodity
at each node (totally Nn data entries) and Nm cost coefficients; all this amounts
to N(m + n) + mn data entries. In the standard form representation of the same
problem there are more than Nm variables and more than n equality constraints, so
that the number of data entries in the constraint matrix is more than Nmn; when N ,
m, n are large, the number of data entries in the standard form representation is by
orders of magnitude larger than in the former, natural and compact, representation
of problem’s data. Nevertheless, the standard form data clearly can be produced
in a polynomial time fashion from the data of the compact representation of the
problem. As a result, if we know a polynomial time algorithm B for solving multi-
commodity flow problems represented in the standard form, we automatically know
similar algorithm for these problems represented in the compact form; to build such
an algorithm, we first convert in polynomial time the “compact form data” into the
standard form one, and then apply to the resulting standard from problem the algo-
rithm B. The overall computation clearly is polynomial time. Note that conclusions

200 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

of this type are “automatically true” due to our somehow “loose” definition of effi-
ciency. Were we defining an efficient algorithm as one with the complexity bounded
by linear function of L, similar conclusions would be impossible; say, it would be
unclear why efficient solvability of the problem in the standard form implies efficient
solvability in the standard form, since the conversion of the data from the latter form
to the former one takes non-linear, although polynomial, time.

From the viewpoint of actual computations, the simple dichotomy “polynomial – non-
polynomial” is indeed loose: we would not be happy when running an algorithm with complexity
of order of L100. However, the loose definition of efficiency as polynomiality captures perhaps
not all, but at least the most crucial components of the diffuse real-life notion of efficiency.
While a polynomial complexity bound may happen to be too big from practical viewpoint, a
typical non-polynomial bound – the exponential bound exp{O(1)L} – definitely is too big from
this viewpoint. It should be added that, as a matter of fact, the complexity bounds for the vast
majority of known polynomial time algorithms are polynomials of quite moderate order, like
2 and 3, so that discussions on what is better in applications – an polynomial time algorithm
with complexity L100 or a non-polynomial time algorithm with complexity exp{0.1n} – have
more or less empty scope. What indeed is true, is that after we know that a generic problem
is polynomially solvable, we can start to bother about the degrees of the related polynomials,
about what is the best, from the practical viewpoint, way to organize the data, etc.

6.1.1 Models of Computations

The informal “definition” of complexity we have presented is incomplete, and the crucial yet
missing element is what is our model of computations, what is the “computer” and its “elemen-
tary operations” we were speaking about. In our context, one could choose between two major
models of computation1, which we will refer to call the Rational Arithmetic and Real Arithmetic
ones.

Real Arithmetic model of computations. You can think about this model of
a computation on idealized Real Arithmetic computer capable to store indefinitely
many real numbers and to carry out precisely elementary operations with these
numbers – the four arithmetic operations, comparisons, and computing the values
of elementary functions, like

√
, exp, sin, etc. Execution of such an operation takes

unit time.

Rational Arithmetic model of computations. Here we are computing on a
Rational Arithmetic computer capable to store indefinitely many finite binary words.
We interpret these words as encoding pairs of binary-represented integers (say, “00”
encodes bit 0, “11” encodes bit 1, “10” encodes sign −, and “01” separates bits and
signs of the first member of the pair from those of the second member. For example,
the pair of integers (3,−2) will be encoded as

a︷︸︸︷
1111

b︷︸︸︷
01

c︷︸︸︷
10

d︷︸︸︷
1100

where a encodes the binary representation ‘11’ of 3, b plays the role of comma, c
encodes the sign −, and d encodes the binary representation ‘10’ of 2. We shall

1In the presentation to follow, we intend to explain the essence of the matter and skip some of the technicalities.

6.1. COMPLEXITY OF LO: POSING THE QUESTION 201

interpret the integers encoded by a binary word as the numerator and denominator
of a rational number. The operations of the Rational Arithmetic computer are
the four arithmetic operations with rational numbers encoded by the operands and
comparison (>, =, <) of the rational number encoded by the operand with 0. The
time taken by an elementary operation is now not a constant, but depends on the
total binary size ` of the operands; all what matters in the sequel is that this time
is bounded from above by a fixed polynomial of `.

note that our assumption on how long an operation takes corresponds to the situa-
tion when the true elementary operations, those taking unit time, are “bit-wise” –
operate with operands of once for ever fixed binary length, say, with bytes. With rich
enough family of these bit-wise operations, it still is possible to carry our arithmetic
operations with rational numbers, but such an operation, rather than to be “built
into the hardware,” is implemented as execution of a micro-program which uses the
bit-wise operations only. As a result, time taken by, say, addition of two rational
numbers is not a constant, it grows with the total binary size of the operands, as it
is the case with computations by hand.

Needless to say, the Rational Arithmetic computer is much closer to a real-life computer than
the Real Arithmetic computer is. Nevertheless, both models are meaningful idealizations of the
process of actual computations; which one of the models to use, it depends on the subject area
we intend to analyze. For example, the Rational Arithmetic model is the model used in Com-
binatorial Optimization which operates with fully finite entities and hardly needs even rational
fractions, not speaking of reals. In contrast to this, in Continuous Optimization, especially,
beyond LO, would be a complete disaster – in this area, to bother all the time on keeping the
results of all computations in the field of rational numbers would be a severe obstacle to in-
venting and analyzing algorithms, and here a Real Arithmetic model of computations is really
indispensable.

Existence of several models of computation makes the question “Whether a given generic
problem P is or is not polynomially solvable” somehow ill-posed. Assume that we use the
Rational Arithmetic model of computations and want to know what is the solvability status
of a generic problem like “Solving square nonsingular systems of linear equations,” or “Solving
LO programs.” First of all, we should restrict ourselves with instances where the data vector
is rational, since otherwise we cannot even load the data in our computer. Second, we should
measure the size of an instance, taking into account the total binary lengths of the entries in
the data vector, not only their number. Otherwise solving the linear equation as simple as
ax = b, a and b being positive rationals, would be an intractable computational task: to solve
the equation, we should compute the numerator and the denominator of the rational number
b/a, and the running time of such a division on a Rational Arithmetic computer is the larger
the larger is the total bit size of the four integers hidden in a, b. Thus, our equation cannot
be solved in time polynomial in the number of data entries. To overcome this difficulty, the
standard definition of the size of an instance p is the bit length of the corresponding data , that
is, the total number of bits in the binary representation of the (rational!) entries of the data
vector data(p). We will refer to the resulting complexity model as to the Combinatorial one.
Thus,

In the Combinatorial Complexity Model:

• all instances of a generic problem have rational data vectors,

202 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

• the size of an instance is the total bit length of its data vector, and

• computations are carried out on a Rational Arithmetic computer, so that the
running time is quantified by the total number of bit-wise operations performed
in course of the solution process. In particular, the running time of an arithmetic
operation with rational operands is a fixed polynomial of the total binary length
of the operands.

Now assume that we use the Rational Arithmetic model of computations and address “the
same” generic problems “Solving square nonsingular system of linear equations” and “Solving
LO programs.” Now there is no necessity to require from the data of the instances to be rational.
Likewise, it is natural to define the size of an instance the number of entries (i.e., the dimension)
of the corresponding data vector. We will refer to this complexity model as the Real Arithmetic
one. Thus,

In the Real Arithmetic Complexity Model:

• instances of a generic problem may have real data vectors,

• the size of an instance is the dimension of its data vector, and

• computations are carried out on a Real Arithmetic computer, so that the run-
ning time is quantified by the total number of real arithmetic operation per-
formed in course of the solution process. In particular, it takes unit time to
perform an arithmetic operation with real operands.

For more details on Real Arithmetic Complexity Model (including, in particular, the
case where we seek for approximate solution of a prescribed accuracy rather than for
a precise solution – the situation typical for nonlinear optimization programs which
cannot be solved exactly in finite number of arithmetic operations), see [1].

Note that when passing from investigating tractability of a generic problem, say, “Solving square
nonsingular systems of linear equations” in the framework of CCM (Combinatorial Complex-
ity Model) to investigating “the same” problem in the framework of RACM (Real Arithmetic
Complexity Model), the task – to build a polynomial time solution algorithm – simplifies in
some aspects and becomes more complicated in other aspects. Simplification comes from the
fact that now we have in our disposal much more powerful computer. Complication comes from
two sources. First, we extend the family of instances by allowing for real data (this is why he
quotation marks in the above “the same” come from); usually, this is a minor complication.
Second, and much more important, complication comes from the fact that even for instances
with rational data we now want much more than before: we want the running time of our new
powerful computer to be bounded by a much smaller quantity than before — by polynomial in
the dimension of the data vector instead of polynomial in the bit size of this vector. As a result,
polynomial solvability of the problem in one of the models does not say much about polynomial
solvability of “the same” problem in the second model. For example, the problem of solving a
square nonsingular system of linear equations is tractable — polynomially solvable — in both
CCM and RACM, and the efficient solution algorithm can be chosen to be “the same,” say,
Gaussian elimination. However, the meaning of the claim “Gaussian elimination allows to solve
square nonsingular systems of linear equations in polynomial time” heavily depend on what is
the complexity model in question. In CCM, it means that the “bit-wise” effort of solving a
system is bounded by a polynomial in the total bit size of the data; from this fact we cannot

6.1. COMPLEXITY OF LO: POSING THE QUESTION 203

make any conclusion on how long it takes to solve a single linear equation with one variable —
the answer depends on how large is the binary length of the data. The same claim in RACM
means that a n × n system of linear equations can be solved in a polynomial in n time of op-
erations of the precise Real Arithmetics (just one division in the case of 1 × 1 system). At the
same time, the claim does not say how long it will take the system with rational data on a
“real life” computer which in fact is a Rational Arithmetics one. That the latter shortcoming
of the “RACM tractability” indeed is an important “real life” phenomenon, can be witnessed
by everybody with even a minor experience in applications of Numerical Linear Algebra — just
ask him/her about rounding errors, condition numbers, ill-posed systems and the like.

Now, what about tractability status of the main hero of our course – LO? The situation is
as follows.

• The question whether LO admits a polynomial time solution algorithm in the Real Arith-
metic Complexity model remains open for over 5 decades; in somehow refined form, it
is included in the “short list,” compiled by the famous mathematician, Fields Laureate
Stephen Smale, of the major open problems with which Mathematics enters the XXI Cen-
tury. The strongest result in this direction known so far is that when restricting the entries
of the constraint matrix in a standard form LO to be integers varying in a once for ever
fixed finite range, say, 0/1 or 0,1,...,10 and allowing the right hand side and the objec-
tive vectors to be real, we get a polynomially solvable in the RACM generic problem (E.
Tardos, ’85 [15]).

• The question whether LO admits a polynomial time solution algorithm in the Combi-
natorial Complexity model of computations remained open for about three decades; it
was answered positively by L.G. Khachiyan (’79, [7]); his construction, to be reproduced
later in this lecture, heavily exploits the Real Arithmetic Ellipsoid Algorithm for convex
optimization proposed in [8] and independently, slightly later, in [14].

6.1.2 Complexity Status of the Simplex Method

In spite of the exemplary performance exhibited by the Simplex Method in practical computa-
tions, this method is not polynomial neither in RACM, nor in CCM. Specifically, as early as in
mid-1960’s, Klee and Minty presented examples of simply-looking LO programs (“Klee-Minty
cubes,” see [3, Section 3.7]) where the method exhibits exponential time behavior. More pre-
cisely, Klee and Minty discovered a series of concrete LO instances p1, p2,..., n being the design
dimension of Pn, with the properties as follows:
• both the bit length and the dimension of the data vector of pn are polynomial (just quadratic)
in n;
• the feasible set of pn is a polytope given by 2n linear inequality constraints and possessing 2n

vertices, all of then nondegenerate;
• as applied to pn, the Simplex method, started at an appropriately chosen vertex and equipped
with appropriate pivoting rules compatible with method’s description, arrives at the optimal
vertex after 2n iterations, that is, visiting one by one all 2n vertices.

Since Klee and Minty presented their examples, similar “bad examples” were built for all
standard pivoting rules. Strictly speaking, these examples do not prove that the Simplex Method
cannot be “cured” to become polynomial. Recall that the method is not a single fully determined
algorithm; it is a family of algorithms, a particular member of this family being specified by the
pivoting rules in use. These rules should be compatible with certain “conceptual scheme” we

204 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

have presented when describing the method, but they are not uniquely defined by this scheme.
And nobody proved yet that this scheme does not allow for implementation which does lead
to a polynomial time algorithm. What could be fatal in this respect, at least in the RACM
framework, is the “heavy failure to be true” of the famous Hirsch Conjecture as follows:

Let X be a polyhedral set given by m linear inequality constraints on n variables
and not containing lines. Every two vertices of X can be linked to each other by a
path of at most m − n consecutive edges (one-dimensional faces such that the end
vertex of an edge from the path is the start vertex in the next edge from it).

If this long-standing conjecture is in fact “severely wrong,” and the maximin number

N(m,n) = max
X,v,v′

min
paths
{# of path edges}

of edges in an edge path (the maximum is taken over all “line-free” polyhedra X given by m
linear inequalities on n variables and over all pairs of vertices v, v′ of X, the minimum is taken
over all edge paths on X linking v and v′) grows with m,n faster than every polynomial of
m + n, then the Simplex method cannot be cured to become a polynomial time one. Indeed,
given the polyhedral set X long with its vertices v, v′ corresponding to the above maximin, we
can make v′ the unique optimal solution to minX c

Tx (Proposition 3.1.3), and v – the vertex
the Simplex method starts with when solving this program. Whatever be the pivoting rules,
the number of vertices visited by the Simplex method when solving the program clearly will be
bounded from below by N(m,n), and the latter quantity, if Hirsch was severely mistaken in his
conjecture, grown with m,n in a super-polynomial fashion.

The current status of the Hirsch Conjecture is as follows. For polytopes (i.e., nonempty and
bounded polyhedral sets) its validity remains open. For unbounded polytopes, it is disproved
by Klee and Walkup ’67 who demonstrated that

H(m,n) ≥ m− n+ floor(n/5);

this lower bound on H(m,n), however, does not lead to any fatal consequences regarding poten-
tial polynomiality of the Simplex method. As far as an upper bound on H(m,n) is concerned,
the best known bound, due to Kalai and Kleitman ’93, is

N(m,n) ≤ nlog2m;

while being sub-exponential, it is not polynomial. The bottom line is that to make the Simplex
method polynomial is not easier than to prove a somehow relaxed (a polynomial in m,n instead
of m− n) version of the long standing Hirsch Conjecture.

6.1.3 *Classes P and NP

Here we briefly explain the notions of complexity classes P and NP are of paramount importance
in CCM; while we do not directly use them in what follows, it would be unwise to omit this
topic. In what follows, we deal with the Combinatorial Complexity model only.

Consider a generic problem P with rational data, and let it be a decision problem, meaning
that a candidate solution to an instance is just the answer “yes, the instance possesses certain
property P ,” or “no, the instance does not possess the property P ;” the property in question is
part of the description of the generic problem P. Examples are:
• [Shortest path] “Given a graph with arcs assigned nonnegative integral weights, two nodes in
the graph, and an integer M , check whether there exists a path of length2 ≤ M linking these

2defined as the sum of lengths of edges constituting the path

6.1. COMPLEXITY OF LO: POSING THE QUESTION 205

two nodes”

• [Traveling salesman] “Given a graph with arcs assigned nonnegative integral weights and an
integer M , check whether there exists a tour (cyclic path which visits every node exactly once)
of length ≤M”

• [Stones] “Given positive integral weights a1, ..., an of n stones, check whether the stones can
be split into two groups of equal total weights”

• [Decision version of LO] “Given LO program with rational data, check its feasibility”

A decision problem is in class NP , if the positive answer is “easy to certify.” Specifically,
there exists a predicate A(x, y) (a function of two finite binary words x, y taking values 0 and
1) and a polynomial π(`) such that

1. The predicate is polynomially computable — there exists a code for the Rational Arith-
metic computer which, given on input a pair of binary words x, y, computes A(x, y) in the
a polynomial in `(x) + `(y) number of bit-wise operations; here and in what follows `(·) is
the bit length of a binary word;

2. For every x, if there exists y such that A(x, y) = 1, then there exists a “not too long” y′

with the same property A(x, y′) = 1, specifically, such that `(y) ≤ π(`(x));

3. An instance p of P possesses property P iff the data data(p) of the instance can be aug-
mented by certain y in such a way that A(data(p), y) = 1.

We assume that the predicate A, the polynomial time algorithm computing this predicate, and
polynomial π are part of the description of the generic problem P.

Comments: A. P is a generic program with rational data, so that data(p) is a finite sequence of
integers; we always can encode such a sequence by a finite binary word (cf. encoding of (3,−2)
above). After the encoding scheme is fixed, we can think of data(p) as of a binary word, and 3)
above makes sense.
B. The structure of the above definitions is well known to us. They say that presence of the
property P in an instance p is easy to certify: a certificate is a binary word y which, taken
along with the data of p, satisfies the condition A(data(p), y) = 1, and this certification scheme
is complete. Moreover, given data(p) and candidate certificate y, it is easy to verify whether
y is a valid certificate, since A(·, ·) is polynomially computable. Finally, given p, we can point
out a finite set C(p) of candidate certificates such that if p possesses property P , then the
corresponding certificate can be found already in C(p). Indeed, it suffices to take, as C(p), the
set of all binary words y with `(y) ≤ π(`(x)), see 2).

It is easily seen that all decision problems we have listed above as examples (except, perhaps,
the decision version of LO) are in the class NP . E.g., in the Shortest path problem, a candidate
certificate y encodes a loop-free path in a graph3 In order to compute A(data(p), y), we first
check that whether y is a loop-free path in the graph represented by p, and then compute the
length of this path and compare it with the threshold M (which is part of the data of p); you
can easily verify that this construction meets all the requirements in 1) – 3).

The only example in our list for which its membership in NP is not completely evident
is the decision version of LO with rational data. Of course, we understand how to certify the
feasibility of an LO program — just by pointing out its feasible solution. The question, however,

3that is, a finite sequence of distinct from each other positive integers, like (1,17,2), meaning that the con-
secutive arcs in the path are (1,17) and (17,2); we assume that the nodes in a graph are identify by their serial
numbers.

206 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

is why such a certificate, if it exists, can be chosen to be rational with “not too long” binary
representation. What we need here is the following statement:

(!) If a system of linear inequalities with rational data of total bit length L is feasible,
then it admits a rational solution with total bit length of the entries bounded by a
fixed polynomial of L.

The validity of this statement can be easily derived from what we already know, specifically,
from algebraic characterization of extreme points of polyhedral sets, see Step 1 in the proof of
Theorem 6.3.1 below. With (!) in our disposal, the fact that the decision version of LO with
rational data is in NP .

The class P is, by definition, a subclass of NP comprised of all polynomially solvable prob-
lems in NP .

A decision problem P ∈ P clearly admits a finite solution algorithm. Indeed, given an
instance p of P, we can look, one by one, at all candidate certificates y with `(y) ≤ π(L),
where L = `(data(p)) is the bit size of p. Each time we check whether y is a valid certificate
(this reduces to computing A(data(p), y), which is easy). When a valid certificate is found,
we terminate and claim that p possesses property P , and if no valid certificate is found when
scanning all 2π(L) of our candidates, we can safely claim that p does not possess the property.
While being finite, this algorithm is not polynomial, since the number 2π(L) of candidates we
should scan is not bounded by a polynomial of the bit size L of p. Thus, while every problem
belonging to NP admits a finite solution algorithm, it is unclear whether it is tractable —
belongs to P .

The question whether P = NP is the major open question in Complexity Theory and in
Theoretical Computer Science; it also belongs to Smale’s list of major mathematical challenges.
The extreme importance of this question stems from the fact that essentially every problem
in Combinatorics, Boolean and Integer Programming, etc., can be reduced to solving a “small
series” of instances of an appropriate decision problem from NP , specifically, in such a way
that a polynomial time solution algorithm for the decision problem can be straightforwardly
converted into a polynomial time solution algorithm for the original problem.

E.g., the optimization version of the Travelling salesman problem “given a graph with
arcs assigned nonnegative integral lengths, find the shortest tour” can be reduced to
small series of instances of the decision version of the same problem, where instead of
minimizing the length of a tour one should check whether there exists a tour of the
length not exceeding a given bound (think what this reduction is). Similarly, solving
LO programs with rational data reduces to a small series of decision problems “check
whether a given system of linear inequalities with rational data is feasible,” see Step
2 and Step 3 in the proof of Theorem 6.3.1 below.

Thus, if NP were equal to P , our life would become a paradise — there would be no difficult,
at lest from the theoretical viewpoint, computational problems at all! Unfortunately, even after
over 4 decades of intensive studies, we do not know whether P =NP . The common belief is
that this is not the case, and the reason stems from the fundamental discovery of NP -complete
problems.

Polynomial reducibility and NP -completeness. Consider two generic decision problems
with rational data, P and P ′. We say that P ′ can be polynomially reduced to P, if the data
data(p′) of every instance p′ ∈ P ′ can be converted in polynomial time into the data of an

6.2. THE ELLIPSOID ALGORITHM 207

instance p[p′] of P such that the answers in p′ and in p[p′] are the same – or both are “yes”,
or both are “no.” In this situation, tractability of P automatically implies tractability of P ′;
indeed, to solve an instance p′ of P ′, we first convert its data in polynomial time in the data
of p[p′] and then solve p[p′] by a polynomial time solution algorithm for P (P is tractable!);
the answer we get is the desired answer for p′, and the overall computation is polynomial4. In
particular, if P and P ′ are polynomially reducible to each other, their tractability status is the
same.

Now, a problem P from the class NP is called NP -complete, if every problem from NP is
polynomially reducible to P. Thus, all NP -complete problems have the same tractability status;
moreover, if one of them is polynomially solvable, then so are all problems from NP , and thus
P =NP .

The major discovery in Complexity Theory we have mentioned is that NP -complete problems
do exist. Moreover, it turned out that nearly all difficult problems in Combinatorics — those
for which no polynomial time algorithms were known — are NP -complete — “as difficult as a
problem from NP can be.” For example, in our list of examples, the Shortest path problem is
polynomially solvable, while the Travelling salesman and the Stones problems, are NP -complete.
Eventually, nearly all interesting problems from NP fell in one of just two groups: NP -complete
and polynomially solvable. There is just a handful of exceptions – problems from NP which still
are not know neither to be NP -complete, nor to be polynomially solvable.

Now we can explain why the common expectation is that NP 6=P (or, which is the same, that
NP -complete problems are intractable), so that in our current practice, the verdict “problem
P is NP -complete” is interpreted as luck of hope to solve the problem efficiently. As we have
already mentioned, the vast majority of NP -problems are known to be NP -complete and thus,
in a sense, form a single problem. This “single problem” in various forms arises in, and often
is vitally important for, a huge spectrum of applications. Due to their vital importance, these
problems over decades were subject of intensive research of many thousands of excellent scholars.
Since all these scholars were in fact solving the same problem, it is highly unlikely that all of
them overlooked the possibility to solve this problem efficiently.

6.2 The Ellipsoid Algorithm

In this section, important by its own right, we make a crucial step towards demonstrating that
LO polynomial solvable in the Combinatorial Complexity model. Surprisingly, this step seems
to have nothing to do with LO; the story to be told is about a particular algorithm for solving
black-box-oriented convex problems.

6.2.1 Problem and Assumptions

The Ellipsoid Algorithm (EA) is a “universal” method for solving convex optimization problems
in the form

Opt = min
x∈X

f(x) (6.2.1)

where X ⊂ Rn is a solid – a closed convex set with a nonempty interior, and f : Rn → R is
a convex function. To stick to the policy “minimum of Calculus” we follow in our course, we

4To see this, note that the bit size of p[p′] is bounded by a polynomial of the bit size of p′; indeed, in the
CCM, the bit size of the output of a polynomial time computation is bounded by a polynomial of the bit size of
the input (it takes unit time just to write down a single bit in the output).

208 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

assume from now on that f(x) is the maximum of finitely many differentiable convex functions
f1, ..., fM :

f(x) = max
1≤i≤M

fi(x), (6.2.2)

while X is cut off Rn by finitely many constraints gi(x) ≤ 0, where gi are differentiable convex
functions:

X = {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ N}. (6.2.3)

Black box representation of (6.2.1). In what follows, we assume that the descriptions of
f as the maximum of finitely many differentiable convex functions and of X as the set given
by finitely many convex inequality constraints with differentiable right hand sides “exist in the
nature,” but not necessarily are accessible for a solution algorithm. For the latter, the problem
is given by two oracles, or black boxes – routines the algorithm can call to get their outputs.
The oracles are as follows:
• Separation Oracle which, given on input a query point x ∈ Rn, “says” on the output whether
or not x ∈ X, and if it is not the case, returns a separator — a nonzero vector e ∈ Rn such that

eT (x− x′) > 0 ∀x′ ∈ X; (6.2.4)

Note that e 6= 0, since X is nonempty.
• First Order Oracle which, given on input a query point x ∈ R6n, returns the value f(x) and
a subgradient f ′(x) of f at x.

A subgradient of a convex function h : Rn → R ∪ {+∞} at a point x ∈ Domh is,
by definition, a vector e ∈ Rn such that h(y) ≥ h(x) + eT (y − x) for all x. If a
convex function h is differentiable at a point x from its domain, one can take, as a
subgradient of h at x, the gradient ∇h(x) of h at x; the easy to prove fact is that
∇h(x) indeed is a subgradient:

h(y) ≥ h(x) + [∇h(x)]T (y − x)∀y

is called gradient inequality for convex functions; it expresses the quite intuitive
fact that the graph of a convex function is above its tangent hyperplane. In fact,
subgradients do exist at every interior point of the domain of a convex function. A
subgradient of a given function at a given point not necessary is unique (think what
are the subgradients of the function h(x) = |x| at x = 0).

One of the ways to build a Separation and a First Order oracles is as follows:

• Separation oracle: given on input a point x, we compute one by one the quantities gi(x)
and check whether they are nonnegative. If it is the case for all i, then xi ∈ X, and
we report this outcome to the algorithm. If gi∗(x) > 0 for certain i∗, we report to the
algorithm that x 6∈ X and return, as a separator, the vector e = ∇gi∗(x). This indeed is
a separator, since by gradient inequality

gi∗(y) ≥ gi∗(x) + eT (y − x),

meaning that if y ∈ X, so that gi∗)y) < 0, we have eT (x−y) ≥ gi∗(x)−gi∗(y) ≥ gi∗(x) > 0.

6.2. THE ELLIPSOID ALGORITHM 209

• First Order Oracle: given on input a point x, we compute one by one all the quantities fi(x)
and pick the largest of them, let it be fi∗(x); thus, f(x) = maxi fi(x) = fi∗(x). We return to
the algorithm the real fi∗(x) as the value, and the vector ∇fi∗(x) – as a subgradient of f at
x. To justify correctness of this procedure, note that by the gradient inequality as applied
to the convex and differentiable function fi∗(·), we have fi∗(y) ≥ fi∗(x)+[∇fi∗(x)]T (y−x)
for all y; the left hand side in this inequality is ≤ f(y), and the right hand side is equal to
f(x) + [∇fi∗(x)]T (y − x), so that f(y) ≥ f(x) + [∇fi∗(x)]T (y − x) for all y, as claimed.

A priori information on (6.2.1) is comprised of two positive reals R ≥ r such that X is
contained in the Euclidean ball BR = {x ∈ Rn : ‖x‖2 ≤ R}, and there exists x̄ such that the
Euclidean ball {x : ‖x− x̄‖2 ≤ r} is contained in X. Recall that X was assumed to be bounded
and with a nonempty interior, so that the required R and r “exist in the nature.” We assume
that these “existing in the nature” quantities are known to the solution algorithm (note: we
do not assume that the center x̄ of the second ball is known to the algorithm). It should be
mentioned that the a priori knowledge of R is crucial, while the knowledge of r does not affect
the iterations and is used in the termination criterion only. In fact with appropriate modification
of the method (see [9]), we can get rid of the necessity to know r.

In addition, we assume that we are given an a priori bound V <∞ on the variation X(f) :=
maxx f −minX f of the objective on the feasible set.

Here is a simple way to build V . Calling the First Order Oracle at x = 0, we get
f(0 and f ′(0), thus getting an affine lower bound `(x) = f(0) + [f ′(0)]Tx on `(x).
Minimizing this bound over the ball BR which contains X, we get a lower bound
Opt = f(0) − R‖f ′(0)‖2 on Opt. Further, we build n + 1 points x0, ..., xn in such

a way that their convex hull ∆ contains the ball BR and thus contains X. Calling
the First Order Oracle at these n+ 1 points, we build the quantity F = max

0≤i≤n
f(xi).

By Jensen’s inequality, f(x) ≤ F for all x ∈ ∆ and thus for all x ∈ X (since
X ⊂ BR ⊂ ∆). It follows that the quantity F −Opt ≥ max

x∈X
f(x)−Opt can be taken

as V .

The goal. Our goal is, given access to the oracles, the outlined a priori information and an
ε > 0, to find an ε-solution to (6.2.1), that is, a feasible solution xε such that f(xε) ≤ Opt + ε.

6.2.2 The Ellipsoid Algorithm

After we have specified our goal – solving (6.2.1) within a given accuracy ε > 0, our oracle-
based “computational environment, and our a priori information, we are ready to represent the
Ellipsoid Algorithm. We start with recalling what an ellipsoid is.

Ellipsoids in Rn. An ellipsoid E in Rn is, by definition, a set representable as the image of
the unit Euclidean ball under an invertible affine transformation x 7→ Bx+ c:

E = {x = Bu+ c : uTu ≤ 1} [B : n× n nonsingular]

Recall that under an invertible affine transformation x 7→ Bx + c the n-dimensional volumes
of bodies in Rn are multiplied by |Det (B)|. Taking, as the unit of n-dimensional volume, the
volume of the unit n-dimensional ball, we therefore have

Vol(E) = |Det (B)|.

210 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

e

⇔
x=Bu+c

p

E, Ê and E+ U , Û and U+

Figure 6.1: Building a “small” ellipsoid containing a half-ellipsoid.

We need the following

Lemma 6.2.1 Given an ellipsoid E = {Bu+ c : uTu ≤ 1} in Rn, n > 1, and a nonzero e, let
Ê = {x ∈ E : eTx ≤ eT c} be the half-ellipsoid cut off E by the linear inequality eTx ≤ eT c in
variable x (geometrically: we take the hyperplane {x : eTx = eT c} passing through the center
c of the ellipsoid E. This hyperplane splits E in two parts, and Ê is one of these parts) Then
Ê is contained in an explicitly given ellipsoid E+ with the volume strictly less of the one of E,
specifically, in the ellipsoid

E+ = {x = B+u+ c+ : uTu ≤ 1}, where
c+ = c− 1

n+1Bp,

B+ = B
(

n√
n2−1

(In − ppT) + n
n+1pp

T
)

= n√
n2−1

B +
(

n
n+1 −

n√
n2−1

)
(Bp)pT ,

p = BT e√
eTBBT e

(6.2.5)

The volume of the ellipsoid E+ satisfies

Vol(E+) =

(
n√

n2 − 1

)n−1 n

n+ 1
Vol(E) ≤ exp{−1/(2(n+ 1))}Vol(E). (6.2.6)

Proof. We only sketch the proof, leaving completely straightforward, although somehow tedious,
computations to a reader. The key observation is that we can reduce our statement to the one
where E is the unit Euclidean ball. Indeed, E is the image of the unit ball U = {u : ‖u‖2 ≤ 1}
under the mapping u 7→ Bu + c; Ê is the image, under the same mapping, of the half-ball
Û = {u ∈ W : fTu ≤ 0}, where f = BT e. Choosing appropriately the coordinates in the
u-space, we can assume that Û = {u ∈ U : un ≤ 0}. Now, invertible affine mappings preserve
ratio of volumes and map ellipsoids onto ellipsoids. It follows that in order to cover Ê by a
“small” ellipsoid E+, it suffices to cover the half-ball Û by a “small” ellipsoid U+ and to take,
as E+, the image of U+ under the mapping u 7→ Bu+ c (see figure 6.1). Let us take, as U+, the
smallest volume ellipsoid containing Û . The latter is easy to specify: by symmetry, its center
should belong to the nth coordinate axis in the u-space, and U+ should be the result of rotating
a 2D ellipsis shown on figure 6.1 around this axis. “By minimality,” this ellipsis should look as
shown on the picture: its boundary should pass through the 0;−1] and the “equatorial points”
[±1; 0] of the unit circle; which specifies the ellipsis up to the “height” h of its center. The
half-axis of the ellipsis are easy-to-compute functions p(h) and q(h) of h; the ellipsoid U+ has

6.2. THE ELLIPSOID ALGORITHM 211

n − 1 of its half-axes equal to the largest of the half-axes of the ellipsis, let i be P (h), and one
half-axis equal to the smaller half-axis q(h) of the ellipsis. Since the volume of an ellipsoid is
proportional to the product of its half-axes, and we want to minimize the volume, we need to
minimize the univariate function pn−1(h)q(h). This problem has a closed form solution, and this
solution underlies the formulas in (6.2.5). 2

The Ellipsoid Algorithm. Now we are ready to present the EM. The idea of the method is
very simple and looks as a natural multidimensional extension of the usual Bisection. Specifically,
we build a sequence of ellipsoids of decreasing volume which “localize” the optimal set of the
problem; it turns out that when the latter is localized is an ellipsoid of a small enough volume,
we automatically have in our disposal a good approximate solution. In what follows, the italized
text constitutes the description of the algorithm; the paragraph printed in Roman contain
explanations, comments, etc. We describe the method in geometric terms; their algebraic (and
thus algorithmic) “translation” is readily given by formulas in (6.2.5).

• Initialization: We specify E0 as the ball BR = {x ∈ Rn : ‖x‖2 ≤ R}.
Note that this ball contains X and thus contains the optimal set of (6.2.1).

• Step t = 1, 2, ...: At the beginning of step t, we have in our disposal the current localizer –
an ellipsoid Et−1; let xt be the center of this ellipsoid. At step t we act as follows.

1. We call the Separation Oracle, xt being the input. If the oracle reports that xt ∈ X,
we call step t productive and go to rule 2, otherwise we call step t non-productive,
denote by et the separator reported by the oracle and go to rule 3.

2. We call the First Order Oracle, xt being the input, and set et = f ′(xt). If et = 0, we
terminate and claim that xt is an optimal solution to (6.2.1), otherwise we go to rule
3.
Note that we arrive at rule 2 only when xt ∈ int X. If et := f ′(xt) = 0, then by the
definition of a subgradient, f(y) ≥ f(xt) + [f ′(xt)]

T (y−x) = f(xt) for all y, meaning
that xt is a global minimizer of f ; since we are in the situation when xt is feasible for
(6.2.1), the claim we make upon termination according to rule 3 is correct.

3. We set Êt = {x ∈ Et−1 : eTt x ≤ eTt xt}, build the ellipsoid Et which covers Êt
according to the recipe from Lemma 6.2.1 and go to rule 5.
Since a separator always is nonzero and in view of the termination rule in 2, we arrive
at rule 3 with et 6= 0, which makes Ê a half-ellipsoid and thus makes Lemma 6.2.1
applicable. Besides this, we note – and this explains the idea of the construction –
that Êt (and thus Et ⊃ Êt) inherits the property of Et−1 to localize the optimal set
of (6.2.1). Indeed, if step t is non-productive, then et separates xt and X, whence
eTt (xt − x) > 0 for all x ∈ X. Looking at the formula defining Êt, we see that
what we cut off Et−1 when passing from the ellipsoid Et−1 to its half Êt is outside
of X, i.e., not only optimal, but even feasible solutions to the problem which “sit”
in Et−1 sit also in Ê. Now let t be a productive step. In this case xt is a feasible
solution to the problem, and et = f ′(xt). by the definition of a subgradient, we have
f(x) ≥ f(xt) + [f ′(xt]

T (x − xt), meaning that for all points x ∈ Et−1\Êt it holds
f(x) > f(xt). Since xt is feasible, it follows that when passing from Et−1 to Êt, no
optimal solutions are thrown away.

212 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

4. We check whether the volume of the ellipsoid Et satisfies the inequality

Vol1/n(Et) <
rε

V
. (6.2.7)

If it is the case, we terminate and output, as the approximate solution x̂ generated by
the method, the best – with the smallest value of f – of the points xτ corresponding
to productive steps τ ≤ t. Otherwise, we pass to step t+ 1.
We shall check is a short while that the termination rule 4 is well defined, meaning
that upon termination according to this rule, the set of productive steps performed
so far is nonempty, so that the approximate solution is well defined.

Correctness and performance guarantees. We are about to prove the following

Theorem 6.2.1 Under the assumptions from section 6.2.1, given a required accuracy ε, 0 < ε <
V , the Ellipsoid method terminates after finitely many steps and returns a feasible approximate
solution to xε to (6.2.1) such that f(xε) ≤ Opt+ε. The number N(ε) of steps before termination
can be upper bounded as

N(ε) ≤ O(1)n2 ln

(
2 +

V

ε
· R
r

)
, (6.2.8)

where O(1) is an absolute constant, and V is an a priori upper bound on max
x∈X

f(x)−Opt, R is

an a priori upper bound on the size of X (specifically, such that X is contained in E0 = {x :
‖x‖2 ≤ R}), and r > 0 is an a priori lower bound on the largest of radii of Euclidean balls
contained in X.

A step of the method requires at most two calls to the Separation and the First Order oracles,
augmented by O(1)n2 arithmetic operations to process the answers of the oracles.

Proof. The last statement, describing the effort per step, is readily given by the description
of the method and formulas (6.2.5) explaining how to convert the description of Et−1 into the
description of Et.

To prove the upper bound on the number of steps, note that in view of (6.2.6) we have
Vol(Et) ≤ Vol(E0) exp{− t

2(n+1)} = Rn exp{− t
2(n+1)}; since at every step except for the last one,

the inequality opposite to (6.2.7) holds true, (6.2.8) follows.
It remains to verify that the algorithm does produce a result, and this result is a feasible

ε-solution to the problem. There is nothing to prove if algorithm terminates according to rule 2
(indeed, it was explained in the comment to this proof that in this case the algorithm returns an
optimal solution to the problem). Thus, assume that the algorithm does not terminate according
to rule 2. Let x∗ be an optimal solution to (6.2.1) and let θ = ε/V , so that 0 < θ < 1. Let us
set

X∗ = (1− θ)x∗ + θX,

so that Vol(X∗) = θn Vol(X) ≥ θnrn. Let T be the termination step. We claim that ET cannot
contain X∗. Indeed, otherwise we would have Vol(X∗) ≤ vol(ET), whence Vol(ET) ≥ θnrn =
(ε/V)nrn. But this contradicts the termination criterion (6.2.7) in rule 4, and this criterion
should be satisfied at step T , since this is the termination step.

We have proved that X∗\ET 6= ∅, so that there exists y ∈ X∗ such that y 6∈ ET . By
construction of X∗ we have y = (1 − θ)x∗ + θz for some z ∈ X, whence, in particular, y ∈ X
(since X is convex). Thus, y ∈ X ⊂ E0 and y 6∈ ET ; thus, there is a step τ ≤ t such that
y ∈ Eτ−1 and y 6∈ Eτ . since Eτ ⊃ Êτ , we conclude that y 6∈ Êτ . The bottom line is that at

POLYNOMIAL SOLVABILITY OF LO WITH RATIONAL DATA 213

certain step τ ≤ T the point y satisfies the inequality eTτ y > eTτ xτ (see the relation between Eτ−1

and Êt). Now, τ is a productive step, since otherwise eτ would separate xτ and X, meaning
that eTτ x

′ < eTτ xτ for all x′ ∈ X, and in particular for x′ = y (we have seen that y ∈ X). Since
τ is a productive step, the result x̂ of the algorithm is well defined, is feasible and satisfies the
relation f(x̂) ≤ f(xτ), see rule 4. It follows that

f(x̂) ≤ f(xτ) = f((1− θ)x∗ + θz) =≤ (1− θ)f(x∗) + θf(z) = f(x∗) + θ(f(z)− f(x∗)),

where the second inequality is due to the fact that f is convex. It remains to note that the last
quantity in the chain, due to the origin of V , is ≤ f(x∗)+θV = f(x∗)+ε. Thus, f(x̂) ≤ Opt+ε.
2

Discussion. Let us explain why the statement of Theorem 6.2.1 is truly remarkable. The
point is that in the complexity bound (6.2.8) the desired accuracy ε and the “data-dependent”
parameters V,R, r are under the logarithm; the only parameter which is not under the logarithm
is the structural parameter n. As a result, the iteration count N(ε) is “nearly independent” of
ε, V,R, r and is polynomial – just quadratic — in n. Another good news is that while we cannot
say exactly how large is the computational effort per step — it depends on “what goes on inside
the Separation and First Order oracles,” we do know that modulo the computations carried
out by the oracles, the Real Arithmetic complexity of a step is quite moderate — just O(1)n2.
Now assume that we use the Real Arithmetic Complexity model and want to solve a generic
problem P with instances of the form (6.2.1) — (6.2.3). If the functions fi and gi associated
with an instance p ∈ P of the problem are efficiently computable (that is, given x and the data
of an instance p ∈ P, we can compute the taken at x values and the gradients of all fi and
gi in polynomial in Size(p) = dim data(p) time), then the RACM-complexity of an iteration
becomes polynomial in the size of the instance. Under mild additional assumptions on P (see
[1, Chapter 5]), polynomiality of the per-iteration effort combines with low – just logarithmic
– dependence of the iteration count N(ε) on ε to yield an algorithm which, given on input the
data of an instance p ∈ P and a desired accuracy ε > 0, finds an ε-solution to p in a number of
Real Arithmetic operations which is polynomial in the size of the instance and in the number
ln(1/ε) of accuracy digits we want to get.5

Historically, the Ellipsoid Algorithm was the first universal method for solving black-box-
represented convex problems with iteration count polynomial in problem’s dimension n and in
the number ln(1/ε) of accuracy digits we want to get, and with polynomial in n “computational
overhead” (computational effort modulo the one of the oracles) per iteration6. As we shall see
in a while, these properties of the EA are instrumental when demonstrating CCM-tractability
of LO with rational data.

5In the RACM framework, algorithms of this type usually are called polynomial time ones. The reason is
that aside of a handful of special cases, generic computational problems with real data do not admit finite (i.e.,
with a finite on every instance running time) algorithms capable to solve the instances exactly. By this reason, it
makes sense to relax the notion of efficient — polynomial time – algorithm, replacing the ability to solve instances
exactly in RACM-time polynomial in their sizes, with the ability to solve instances within a prescribed accuracy
ε > 0 in RACM-time polynomial in the size of an instance and ln(1/ε). Of course, such a relaxation requires to
decide in advance how we quantify the accuracy of candidate solutions, see [1, Chapter 5] for details.

6Now we know a handful of other methods with similar properties

214 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

6.3 Polynomial Solvability of LO with Rational Data

Our goal here is to prove the following fundamental fact:

Theorem 6.3.1 L.G. Khachiyan] In Combinatorial Complexity model, Linear Optimization
with rational data is polynomially solvable.

Proof. In what follows, “polynomial time” always means “polynomial time in the Combinatorial
Complexity model of computations.”

Step I: Checking feasibility of a system of linear inequalities. We start — and this is
the essence of the proof — with demonstrating polynomial solvability of the following feasibility
problem:

Given a system of linear inequalities Ax ≤ b with rational data, check whether the
system is or is not feasible.

Note that we do not want to certify the answer: all we want is the answer itself.
Multiplying the constraints by appropriate positive integers, we can make all the entries in

A and in b integral; it is easy to verify that this transformation can be carried out in polynomial
time. Further, we can get rid of the kernel of A by eliminating, one by one, columns of A which
are linear combinations of the remaining columns. This is a simple Linear Algebra routine
which takes polynomial time. Thus, we lose nothing by assuming that the original system of
constraints is with integer data, and A has trivial kernel. In the sequel, we denote by m and n
the sizes (numbers of rows and columns) of A, and by L – the bit size of [A, b].

Our plan of attack is as follows: We observe that feasibility of the system Ax−b is equivalent
to the fact that the simple piecewise linear function

f(x) = max
1≤i≤m

[aTi x− bi].

Note that the system Ax ≤ b is feasible iff f is not everywhere positive. We intend to prove two
facts:

A. If f is not everywhere positive, that is, attains nonpositive values, it attains nonpositive
values already in the box X = {x : ‖x‖∞ := maxi |xi| ≤M = 2O(1)L.
An immediate consequence is that the system Ax ≤ b is feasible iff the optimal value in
the convex optimization problem

Opt = min
x

{
f(x) = max

1≤i≤m
[aTi x− bi] : ‖x‖∞ ≤M = 2O(1)L

}
(6.3.1)

is ≤ 0.

B. If the optimal value in (6.3.1), it is not too close to 0:

Opt > 0⇒ Opt ≥ α := 2−O(1)L. (6.3.2)

Taking A and B for granted, a polynomial time algorithm for solving the Feasibility problem
can be built as follows: we apply to (6.3.1) the Ellipsoid method, the target accuracy being
ε = α/3. As a result, we will get an approximate solution xε to the problem such that Opt ≤

6.3. POLYNOMIAL SOLVABILITY OF LO WITH RATIONAL DATA 215

f(xε) ≤ Opt + ε = Opt + α/3. Therefore, computing f(xε), we get an get an approximation of
Opt accurate within the error α/3. Since, by B, either Opt ≤ 0, or Opt ≥ α, this approximation
allows us to say exactly which one of the options takes place: if f(xε) ≤ α/2, then Opt ≤ 0, and
thus, by A, the answer in the Feasibility problem is “yes”, otherwise Opt ≥ α, and the answer
in the problem, by the same A, is “no”.

It remains to understand how to apply the Ellipsoid Algorithm to (6.3.1). First what we
need are a Separation oracle for the box {x : ‖x‖∞ ≤ M} and a First Order oracle for f ;
these oracles can be built according to the recipe described in section 6.2.1. Note that a single
call to an oracle requires no more than mn operations. Next what we need is the a priori
information R, r, V . This information is immediate: we can take R = M

√
n =
√
n2O(1)L, r=M

and V = 2M(n + 1)2L, where the latter bound comes from the evident observation that the
magnitudes of all entries in A and b do not exceed 2L, so that |aTi x− bi| is bounded from above
by 2L(n+ 1) provided ‖x‖∞ ≤ L.

Invoking the complexity bound for the Ellipsoid method and taking into account that M =
2O(1)L the total number of iterations before termination is polynomial in n and L (since all
exponents 2O(1)L will appear under the logarithm), and thus is polynomial in L due to mn ≤ L
(indeed, we have more than m(n + 1) entries in the data [A, b], and it takes at least one bit
to represent a single entry. Since the number of arithmetic operations at a step of the method
(including those spent by the oracles) is O(1)(mn + n2), we conclude that the total number of
arithmetic operations when solving the Feasibility problem is polynomial in L.

The last difficulty we need to handle is that the Ellipsoid Algorithm is a Real Arithmetic
algorithm – it operates with real numbers, and not with rational ones, and assumes precise real
arithmetics (exact arithmetic operations with reals, precise comparisons of reals and even precise
taking of square root, since this operation appears in (6.2.5)), and thus polynomial in L total
number of arithmetic operations we spoke about is the number of operations of real arithmetics.
And what we want to get is an algorithm operating with rational operands and the cost of an
arithmetic operation taking into account the bit sizes of the operands. Well, a straightforward,
although tedious, analysis shows that we can achieve our goal – to approximate the optimal value
of (6.3.1) within accuracy ε = α/3 in polynomial in L number of operations – when replacing
precise real arithmetic operations with “actual” reals with approximate operations with rounded
reals; specifically, it turns out that it suffices to operate with rationals with at most O(1)nL
binary digits before and after the dot, and to carry out the arithmetic operations and taking the
square root approximately, within accuracy O(1)2−nL. We can implement all these approximate
arithmetic operations, and thus the entire computation, on a digital computer, with the “bitwise
cost” of every approximate operation polynomial in nL (and thus in L), so that the total number
of bitwise operations in course of the computation will be polynomial in L, as required.

All what remains is to justify A and B. Let us start with A. Since A is with trivial kernel,
the polyhedral set X = {x : Ax ≤ b} does not contain lines (Proposition 2.3.5). Therefore if X
is nonempty, X contains an extreme point v (Theorem 2.4.1). By algebraic characterization of
extreme points (Proposition 2.3.2), we can choose form a1, ..., am n linearly independent vectors
{ai : i ∈ I} such that aTi v = bi for i ∈ I. In other words, v is the unique solution of the linear
system AIx = bI of n linear equations with n variables and nonsingular matrix AI such that
[AI , bI] is a submatrix in [A, b]. Applying Cramer rules, we conclude that

vi =
∆i

∆
,

216 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

where ∆ = Det AI 6= 0 and ∆i is the determinant of the matrix AIi obtained from AI by
replacing the i-th column with bI . Now, ∆ as the determinant of a matrix with integer entries,
is an integer; being nonzero (AI is nondegenerate!), its magnitude is at least 1. It follows that

|vi| ≤ |∆i|.

Now, the determinant of an n × n matrix Pij does not exceed the product of the ‖ · ‖1-lenghts
of its rows 7. If now P is integral (as it is the case with AIi) and `ij is the bit length of Pij , then

|Pij | ≤ 2`ij−1 8, and we see that |Det P | ≤ 2
∑
i,j `ij . When P = AIi ,

∑
i,j `ij ≤ L, since AIj is

a submatrix of [A, b], end we end up with |∆i| ≤ 2L. The bottom line is that ‖v‖∞ ≤ 2L, and
since f(v) ≤ 0, A holds true with O(1) = 1.

Now let us prove B. Thus, assume that Opt > 0, and let us prove that Opt is not “too
small.” Clearly,

Opt ≥ Opt+ = inf
x
f(x) = inf

[x;t]

{
t : A+[x; t] := Ax− t1 ≤ b

}
[1 = [1; ...; 1]]

The LO program
Opt+ = min

[x;t]

{
t : A+[x; t] := Ax− t1 ≤ b

}
(!)

clearly is feasible; we are in the situation when it is below bounded (indeed, its objective at
every feasible solution is nonnegative, since otherwise Opt+ would be negative, meaning that f
attains somewhere negative values; but then, by already proved A, Opt ≤ 0, which is not the
case. Being feasible and bounded, (!) is solvable, meaning that f attains its minimum on Rn

9 This minimum cannot be ≤ 0, since then, by A, Opt would be nonpositive, which is not the
case. The bottom line is that LO program (!) has strictly positive optimal value Opt+.

Now, we claim that the A+ = [A,−1] has trivial kernel along with A. Indeed, otherwise
there exists [x̄; t̄] 6= 0 such that A+[x̄; t̄] = 0, we have t̄ 6= 0, since otherwise x̄ 6= 0 and x̄ is in the
kernel of A, and this kernel is trivial. We see that both [x̄; t̄] and minus this vector are recessive
directions of the nonempty feasible set X+ of (!); along one of these directions, the objective
strictly decreases (since t̄ 6= 0), meaning that (!) is below unbounded, which is not the case.

Since (!) is solvable with positive optimal value and the feasible set of this program does not
contain lines, among the optimal solutions there exists one, let it be denoted z = [x∗; t∗], which
is a vertex of the feasible set of (!). Since Opt+ > 0, we see that t∗ > 0. Now we can act exactly
as in the proof of A: since z is a vertex of the feasible set of (!), there exists an (n+ 1)× (n+ 2)
submatrix [Ā, b] of the integral m × (n + 2) matrix [A+, b] such that Ā is an (n + 1) × (n + 1)
nonsingular submatrix A+ such that Ā[x∗; t∗] = b̄, whence, by Cramer rule and due to t∗ > 0,

t∗ =
∆∗
∆

=
|∆∗|
|∆|

,

where ∆∗ is the determinant of certain submatrix in [Ā, b], and ∆ is Det Ā. Since t∗ > 0,
|∆∗| > 0; being integral (A+ is integral along with A, b), we therefore have |∆∗| ≥ 1. Further, the

7Indeed, opening parentheses in the product
∏n
i=1(

∑
j |Pij |), we get the sum of moduli of all “diagonal prod-

ucts” forming the determinant of P , and a lot of other nonnegative products. In fact, |Det P | admits a better

upper bound
n∏
i=1

√
P 2
i1 + ...+ P 2

in (Hadamard inequality; think how to prove it), but for our purposes, the previous,

mush worse, bound also is enough.
8Indeed, the number of bits in a representation of pj is at least log2(|Pij | + 1) bits to store the binary digits

of |Pij plus one bit to store the sign of Pij .
9In fact, our reasoning shows that every below bounded piecewise linear function attains its minimum on Rn.

6.3. POLYNOMIAL SOLVABILITY OF LO WITH RATIONAL DATA 217

bit size of [A+, b] clearly is O(1)L, whence, by the same reasons as in the proof of A, |∆| ≤ 2O(1)L,
in view of these observations, t∗ = Opt+ ≥ 2−O(1)L, whence, invoking (*), Opt ≥ 2−O(1)L, as
claimed in B. 2

Step II: From checking feasibility to building a solution. The remaining steps are much
simpler than the previous one. After we know how to check in polynomial time feasibility of a
system S of m linear inequalities and equations, let us understand how to find its solution in
the case when the system is feasible. It makes sense to denote the initial system by S0; w.l.o.g.,
we can assume that the vectors ai of coefficients in all constraints aTi x

=
≤bi constituting S0 are

nonzero. We start with checking feasibility of the system. If S0 is infeasible, we terminate; if
it is feasible, we take the first inequality aTx ≤ b in the system, if any exists, convert it into
the equality aTx = b and check feasibility of the resulting system. If it is feasible, it will be our
new system S1, otherwise the hyperplane aTx = b does not intersect the feasible set of S0, and
since this set is nonempty and is contained in the half-space aTx ≤ b, the inequality aTx ≤ b in
S0 is in fact redundant: when we remove it from the system, the solution set does not change
(why?). In the case in question we eliminate from S0 the redundant inequality aTx ≤ b and call
the resulting system of inequalities and equalities S1. Note that in all cases S1 is solvable, every
solution to S1 is a solution to S0. Besides this, the number of inequalities in S1 is by 1 less than
in S0.

We now repeat the outlined procedure with S1 in the role of S0, thus obtaining a feasible
system S2; its solution set is contained in the one of the system S1, and thus — in the solution set
of S0, and the number of inequalities in s2 is by 2 less than in S0. Iteration this construction, we
in at most m steps end up with a system S` which is feasible, contains only equality constraints,
and every solution to this system solves S0 as well. It remains to note that to solve a feasible
system of linear equality constraints with integer or rational data is a simple Linear Algebra
problem which is polynomially solvable. solving S`, we get a solution to the original system S0.

Now note that the bit sizes of all systems we deal with in the above process are of the same
or even smaller bit size as the original system. Since feasibility checks take time polynomial in
L, m ≤ L, and the last system is polynomially solvable, the complexity of the entire process is
polynomial in L.

Step III: Solving an LO program. Now we can solve in polynomial time an LO program

max
x
{cTx : Ax ≤ b} (P)

with rational data. Let L be the bit size of the program. We start in checking in polynomial
time whether the program is feasible; if it is not the case, we terminate with the correct claim
“(P) is infeasible,” otherwise check in polynomial time the feasibility of the dual problem

min
λ
{bTλ : λ ≥ 0, ATλ = c} (D)

which clearly has bit size O(1)L. If the dual problem is infeasible, we terminate with a correct
claim “(P) is unbounded.”

It remains to consider the case when both (P) and (D) are feasible and thus both are
solvable (LO Duality Theorem). In this case, we put together the constraints of both programs

218 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

and augment them with the “zero duality gap” equation, thus arriving at the system of linear
constraints

Ax ≤ b;λ ≥ 0;ATλ = c; bTλ = cTx (S)

in variables x, λ. By LO Optimality conditions, every feasible solution [x;λ] to this system is
comprised of optimal solutions to (P) and to (D)), so that (S) is feasible; the bit size of (S)
clearly is O(1)L. Applying the construction from Step II, we can find a feasible solution to
(S), and thus optimal solutions to (P) and to (D), in time polynomial in L. From the above
description it is clear that overall computational effort of solving (P) also is polynomial in L.
Khachiyan’s Theorem is proved. 2

Certifying insolvability in polynomial time. The proof of Khachiyan’s Theorem presents
a CCM-polynomial time algorithm which, as applied to and LO program (P) with rational data,
detects correctly whether the problem is infeasible, feasible and unbounded, or solvable; in the
latter case, the algorithm produces an optimal solution to (P) and to the dual problem, thus
certifying optimality of both the solutions. A natural question is, whether it is possible to get
in polynomial time certificates for infeasibility/unboundedness of (P), when the problem indeed
is infeasible or unbounded. The answer is “yes.” Indeed, as in was explained in section 3.1.3
(see p. 112), in order to certify that (P) is infeasible, it suffices to point out a vector λ ≥ 0 such
that ATλ = 0 and bTλ < 0 (cf. (3.1.9)), or, which is the same (why?), a λ such that

λ ≥ 0, ATλ = 0, bTλ ≤ −1. (S)

After infeasibility of (P) is detected, we can solve the latter system of linear inequalities and
equations as explained in Step 2 above; note that we are in the situation when this system is
solvable (since the certification scheme we are utilizing is complete). The data of (S) is rational,
and its bit size is O(1)L, where L is the bit size of (P). Applying construction form Step 2 to
(S), we get in polynomial time a solution to this system, thus certifying that (P) is infeasible.

After feasibility of (P) is detected and certified by presenting a feasible solution (which can
be done by algorithm from Step 2) and the problem is found unbounded, in order to certify the
latter conclusion it suffices to point out a recessive direction of (P) along which the objective of
(P) increases (under circumstances, this is the same as to certify that (D) is infeasible). Thus,
we need to find a solution y to the system

Ay ≤ 0, cT y > 0

(cf. (3.1.11)), or, which is the same, a solution to the system

Ay ≤ 0, cT y ≥ 1 (S′)

which we already know to be solvable. By the same reasons as in the case of (S), system (S′)
can be solved in a polynomial in L time.

The Ellipsoid Algorithm and computations

As we have seen, the Ellipsoid Algorithm, which by itself is a “universal” algorithm for solving
convex optimization problems, implies a CCM-polynomial time solution algorithm for LO with

6.3. POLYNOMIAL SOLVABILITY OF LO WITH RATIONAL DATA 219

rational data; from the academic viewpoint, this algorithm outperforms dramatically the Sim-
plex Method which has exponential worst-case complexity. In actual computations the situation
is completely opposite: when solving real-life LO programs, Simplex Method dramatically out-
performs the Ellipsoid one. The reason is simple: as a matter of fact, the Simplex Method never
works according to its exponential complexity bound; the empirically observed upper bound on
the number of pivoting steps is something like 3m, where m is the number of equality constraints
in a standard form LO program. In contrast to this, the EA works more or less according to its
theoretical complexity bound (6.2.8) which says that in order to solve within an accuracy ε� 1
a convex program with n variables, one should run O(1)n2 ln(1/ε) iterations of the method, with
at least O(n2) arithmetic operations (a.o.) per iteration, which amounts to the total of at least
O(1)n4 ln(1/ε) a.o. While being nearly independent of ε, this bound grows rapidly with n and
becomes impractically large when n = 1000, meaning that problems with “just” 1000 variables
(which is a small size in the LO scale) are beyond the “practical grasp” of the algorithm.

The fact that the EA “fails” when solving medium- and large-scale LO is quite natural —
this algorithm is black-box-oriented and thus “does not know” how to utilize rich and specific
structure of an LO program. Essentially, all what matters for the EA as applied to an LO
program min

x
{cTx : aTi x − bi ≤ 0, 1 ≤ i ≤ M}, is that the program has convex objective and

constraints, and that the data of the problem allows to compute the values and the gradients
of the objective and the constraints at a given point. Note that the Simplex Method is of
completely different nature: it is not black-box-oriented, it works directly on program’s data,
and it is “tailored” to LO: you just cannot apply this method to a problem with, say, convex
quadratic objective and constraints.

The importance of the EA is primarily of academic nature – this is the algorithm which
underlies the strongest known theoretical tractability results in Linear and Convex Optimization.
Citing L. Lovasz, as far as efficient solvability of generic convex problems is concerned, the EA
plays the role of an “existence theorem” rather than a tool of choice for practical computations.

In this respect, we should mention an additional important feature which did not
attract our attention yet. Assume we are solving problem (6.2.1) – (6.2.3) with a
simple – just linear – objective f (which, as we remember from lecture 1, is not an
actual restriction) and a “complicated” feasible set X given by a finite, but perhaps
very large, number M of linear inequality constraints gi(x) ≤ 0. Note that M does
not directly affect the complexity characteristics of the algorithm; the constraints are
“inside the Separation oracle,” and the EM simply does not “see” them. It follows
that if the constraints depending X are “well organized,” so that given x, there is a
way to identify in polynomial time a constraint, if any, which is violated at x, or to
detect correctly that all the constraints are satisfied at x, the arithmetic complexity
of a step of the EA will be polynomial. There are important optimization problems,
some of them of combinatorial origin, which fit this framework; the EA, same as in
the LO case, allows to demonstrate tractability of these problems (for examples, see
[6]).

In should be added that while low-dimensional convex problems are of rather restricted applied
interest, “restricted interest” is not the same as “no interest at all.” Low-dimensional (few tens of
variables) convex problems do arise in may applications; whenever it happens, the EA becomes
a “method of choice” allowing to get a high-accuracy solution in a quite reasonable time. The
EA is especially well suited for solving low-dimensional convex problems with large number N
of constraints in (6.2.3), since the complexity of the algorithm, even with a straightforward

220 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

implementation of the Separation oracle (“given a query point, look through all the constraints
to find a violated one or to conclude that all of them are satisfied”), is just linear in N .

Part IV

From Linear to Semidefinite

Optimization: Interior Point

Methods

222 LECTURE 6. POLYNOMIAL TIME SOLVABILITY OF LINEAR OPTIMIZATION

Lecture 7

Conic Programming and Interior
Point Methods in LO and
Semidefinite Optimization

The EA-based Khachiyan’s polynomial time algorithm for solving LO program with rational
data is of academic interest only; in the real life LO, it is by far outperformed by “theoretically
bad” pivoting time algorithms. Nevertheless, the discovery of polynomial time algorithm for
LO triggered an intensive search for LO techniques which are both theoretically and practically
efficient. The breakthroughs in this direction due to N. Karmarkar (’84), J. Renegar (’86) and
C. Gonzaga (’86) led to development of novel Interior Point polynomial time algorithms for LO
which were further extended onto nonlinear “well-structured” convex problems. The common
name for the resulting Convex Programming techniques is Interior Point Methods (IPMs); this
name is aimed at stressing the fact that even in the LO case, the methods, in contrast to
the simplex-type ones, move along the interior of the feasible polyhedron rather than along its
vertices.

As far as LO is concerned, the state-of-the-art IPM’s are quite competitive with the simplex-
type algorithms. It suffices to say that they are the default options in modern commercial LO
solvers.

While the very first IPMs were designed for LO, it turned out that their intrinsic nature has
nothing to do with Linear Optimization, and the IPM approach can be extended, essentially, onto
all convex programs; the corresponding theory was proposed in [10] and is now the standard way
to treat IPM’s. In [10] and in the subsequent IPM particular, it was discovered, in particular,
that

• the most powerful IPM’s are associated with representation of convex problems in a specific
conic form, pretty similar to the form of a usual LO program. Aside of algorithmic issues,
conic representation of convex programs allows for very instructive reformulation of convex
programming theory, most notably, of its duality-related part;

• there exist three intrinsically very close to each other generic conic problems – Linear,
Conic Quadratic and Semidefinite Optimization; taken together, these three problems
allow to handle nearly all convex optimization models arising in applications. The specific
intrinsic nature of these three problems, along with other important consequences, allows
for a significant enrichment (primarily, due to Nesterov and Todd, [11, 12]) of the general

223

224 CONIC PROGRAMMING AND IPMs

IPM theory, on one hand, and for unified and relatively non-technical presentation of the
basic part of this theory, on the other hand.

While our course is devoted to LO, it would be a pity to restrict ourselves with LO also when
speaking about Interior Point Methods. Indeed, at a low “setup cost” of learning Conic Pro-
gramming (a knowledge which is highly valuable by its own right) we can “kill two birds with
one stone” – to become acquainted with the basic IPM methods for Linear and Semidefinite
Optimization1. To the best of our understanding, the only shortcoming of this course of actions
is that while we will be able to understand what is going on, we will be unable to explain why
we act as we are acting and where some “miracles” to be met come from. Answering these “why
and where” questions would require long excursions to the general theory of IPM methods as
presented in [10, 13], which would be too much for an introductory course on LO.

The course of our actions is as follows: we start with acquaintance with Conic Programming,
with emphasis on Conic Programming Duality Theorem and investigating “expressive abilities”
of the three most important generic conic problems, those of Linear, Conic Quadratic and
Semidefinite Optimization2 We will then become acquainted with the basic theory of IPM’s for
SDO (and thus for LO, which, as we shall see in the mean time, is a simple particular case of
SDO).

7.1 Conic Programming

7.1.1 Cones in Euclidean Spaces

Euclidean spaces

A Euclidean space is a finite dimensional linear space over reals equipped with an inner product
〈x, y〉E real-valued function of x, y ∈ E which is

• symmetric (〈x, y〉E ≡ 〈y, x〉E),

• bilinear (〈λu + µv, y〉E = λ〈u, y〉E + µ〈v, y〉E , and similarly w.r.t. the second argument)
and

• positive definite (〈x, x〉E > 0 whenever x 6= 0).

In the sequel, we usually shorten 〈x, y〉E to 〈x, y〉, provided that E is fixed by the context.

Example: The standard Euclidean space Rn. This space is comprised of n-dimensional
real column vectors with the standard coordinate-wise linear operations and the inner product
〈x, y〉Rn = xT y. Rn is a universal example of an Euclidean space: for every Euclidean n-
dimensional space (E, 〈·, ·〉E) there exists a one-to-one linear mapping x 7→ Ax : Rn → E such
that xT y ≡ 〈Ax,Ay〉E . All we need in order to build such a mapping, is to find an orthonormal

basis e1, ..., en, n = dim E, in E, that is, a basis such that 〈ei, ej〉E = δij ≡
{

1, i = j
0, i 6= j

; such

a basis always exists. Given an orthonormal basis {ei}ni=1, a one-to-one mapping A : Rn → E
preserving the inner product is given by Ax =

∑n
i=1 xiei.

1In our unified treatment, we are enforced to omit Conic Quadratic Optimization, where the IPM constructions,
intrinsically the same as in LO and SDO, would require different notation.

2Since we already know what are expressive abilities of LO, our focus here will be on how these abilities extend
when passing from LO to CQO and SDO.

7.1. CONIC PROGRAMMING 225

Example: The space Rm×n of m×n real matrices with the Frobenius inner prod-
uct. The elements of this space are m×n real matrices with the standard linear operations and
the inner product 〈A,B〉F = Tr(ABT) =

∑
i,j AijBij .

Example: The space Sn of n × n real symmetric matrices with the Frobenius
inner product. This is the subspace of Rn×n comprised of all symmetric n× n matrices; the
inner product is inherited from the embedding space. Of course, for symmetric matrices, this
product can be written down without transposition:

A,B ∈ Sn ⇒ 〈A,B〉F = Tr(AB) =
∑
i,j

AijBij .

The last example explains why we need Euclidean spaces instead of sticking to Rn with the stan-
dard inner product: we intend in the future to works also with the Euclidean space Sn, 〈·, ·〉F);

while it is possible to identify it with RN , N = n(n+1)
2 , equipped with the standard inner prod-

uct, it would be complete disaster to work with “vector representations” of matrices from Sn

instead of working with these matrices directly.

Linear forms on Euclidean spaces

Every homogeneous linear form f(x) on a Euclidean space (E, 〈·, ·〉E) can be represented in the
form f(x) = 〈ef , x〉E for certain vector ef ∈ E uniquely defined by f(·). The mapping f 7→ ef
is a one-to-one linear mapping of the space of linear forms on E onto E.

Conjugate mapping

Let (E, 〈·, ·〉E) and (F, 〈··〉F) be Euclidean spaces. For a linear mapping A : E → F and every
f ∈ F , the function 〈Ae, f〉F is a linear function of e ∈ E and as such it is representable as
〈e,A∗f〉E for certain uniquely defined vector A∗f ∈ E. It is immediately seen that the mapping
f 7→ A∗f is a linear mapping of F into E; the characteristic identity specifying this mapping is

〈Ae, f〉F = 〈e,A∗f〉 ∀(e ∈ E, f ∈ F).

The mapping A∗ is called conjugate to A. It is immediately seen that the conjugation is a
linear operation with the properties (A∗)∗ = A, (AB)∗ = B∗A∗. If {ej}mj=1 and {fi}ni=1 are
orthonormal bases in E,F , then every linear mapping A : E → F can be associated with the
matrix [aij] (“matrix of the mapping in the pair of bases in question”) according to the identity

A

m∑
j=1

xjej =
∑
i

∑
j

aijxj

 fi
(in other words, aij is the i-th coordinate of the vector Aej in the basis f1, ..., fn). With
this representation of linear mappings by matrices, the matrix representing A∗ in the pair of
bases {fi} in the argument and {ej} in the image spaces of A∗ is the transpose of the matrix
representing A in the pair of bases {ej}, {fi}.

Cones in Euclidean spaces

A nonempty subset K of a Euclidean space (E, 〈·, ·〉E) is called a cone, if it is a convex set
comprised of rays emanating from the origin, or, equivalently, whenever t1, t2 ≥ 0 and x1, x2 ∈ K,
we have t1x1 + t2x2 ∈ K.

226 CONIC PROGRAMMING AND IPMs

A cone K is called regular, if it is closed, possesses a nonempty interior and is pointed —
does not contain lines, or, which is the same, is such that a ∈ K, −a ∈ K implies that a = 0.

Dual cone. If K is a cone in a Euclidean space (E, 〈·, ·〉E), then the set

K∗ = {e ∈ E : 〈e, h〉E ≥ 0 ∀h ∈ K}

also is a cone called the cone dual to K. The dual cone always is closed. The cone dual to dual
is the closure of the original cone: (K∗)∗ = cl K; in particular, (K∗)∗ = K for every closed cone
K. For a closed cone K, the cone K∗ possesses a nonempty interior iff K is pointed, and K∗ is
pointed iff K possesses a nonempty interior; in particular, K is regular iff K∗ is so.

Example: Nonnegative ray and nonnegative orthants. The simplest one-dimensional
cone is the nonnegative ray R+ = {t ≥ 0} on the real line R1. The simplest cone in Rn is the
nonnegative orthant Rn

+ = {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n}. This cone is regular and self-dual:
(Rn

+)∗ = Rn
+.

Example: Lorentz cone Ln. The cone Ln “lives” in Rn and is comprised of all vectors

x = [x1; ...;xn] ∈ Rn such that xn ≥
√∑n−1

j=1 x
2
j ; same as Rn

+, the Lorentz cone is regular and

self-dual.
By definition, L1 = R+ is the nonnegative orthant; this is in full accordance with the

“general” definition of a Lorentz cone combined with the standard convention “a sum over an
empty set of indices is 0.”

Example: Semidefinite cone Sn+. The cone Sn+ “lives” in the Euclidean space Sn of n×n
symmetric matrices equipped with the Frobenius inner product. The cone is comprised of all
n× n symmetric positive semidefinite matrices A, i.e., matrices A ∈ Sn such that xTAx ≥ 0 for
all x ∈ Rn, or, equivalently, such that all eigenvalues of A are nonnegative. Same as Rn

+ and
Ln, the cone Sn+ is regular and self-dual.

Finally, we remark that the direct product of regular cones is regular, and the dual of this
product is the direct product of the duals of the original cones.

When checking this absolutely evident statement, you should take into account how
we take the direct product of Euclidean spaces, since without a Euclidean structure
on the product of the Euclidean spaces embedding the cones we are multiplying, the
claim about the dual of a direct product of cones becomes senseless. The Euclidean
structure on the direct product E = E1 × ... × Em of Euclidean spaces is defined
as follows: vectors from E, by the definition of direct product, are ordered tuples
(x1, ..., xm) with xi ∈ Ei, and we set

〈(x1, ..., xm), (y1, ..., ym)〉E =
m∑
i=1

〈xi, yi〉Ei .

with this definition, a direct product of the spaces Rn1 ,...,Rnm equipped with the
standard inner products is Rn1+...+nm , also equipped with the standard inner prod-
uct, and the direct product of the spaces Sn1 ,...,Snm equipped with the Frobenius
inner products can be viewed as the space Sn1,...,nm of block-diagonal symmetric ma-
trices with m diagonal blocks of sizes n1, ..., nm, equipped with the Frobenius inner
product.

We have made several not self-evident claims, and here are their proofs (we slightly
alter the order of claims and, aside of the latter item, assume w.l.o.g. that the
Euclidean space in question is Rn with the standard inner product).

7.1. CONIC PROGRAMMING 227

• For every coneK, one hasK∗ is a closed cone, and (K∗)∗ = clK. The closedness
of a dual cone is evident, same as the facts that clK is a closed cone such that
(clK)∗ = K∗. Besides this, we clearly have (K∗)∗ ⊃ clK. To prove that the
latter ⊃ is in fact =, assume that this is not the case, so that (K∗)∗ contains
a vector x 6∈ LK. By Separation Theorem for Convex Sets (Theorem 2.4.3),
there exists a linear form eTw such that eTx < inf

y∈clK
eT y = infyzK e

T y. But the

infinum of a linear form eT y on a cone K is either −∞ (this is the case when
e has negative inner product with certain vector from K, i.e., when e ∈ K∗),
or is 0 (this is the case when e ∈ K∗). We are in the case when the infinum
infy∈K e

T y is > eTx and thus is finite, whence e ∈ K∗, the infinum is 0 and
thus and eTx < 0, which impossible due to x ∈ (K∗)∗. 2

• For every cone K, K∗ is pointed iff int K 6= ∅. Indeed, if int K is nonempty
and thus contains a ball B of radius r > 0, and h,−h ∈ K∗, then the linear
form hTx should be both nonnegative and nonpositive on B; but a vector h can
be orthogonal to all vectors from a ball of positive radius iff h = 0. Thus, K∗ is
pointed. On the other hand, if int K = ∅, then Aff(K) 6= Rn due to Theorem
2.1.3. Since 0 ∈ K, Aff(K) is a linear subspace in Rn, and since it differs from
Rn, its orthogonal complement does not reduce to {0}. In other words, there
exists h 6= 0 which is orthogonal to Aff(K), whence ±h ∈ K∗, and the latter
cone is not pointed. 2

• For a closed cone K, K∗ has a nonempty interior iff K is pointed. This is readily
given by the previous item due to K = (K∗)∗.

• The nonnegative orthant Rn
+ is regular and self-dual. This is evident.

• The Lorentz cone Ln is regular and self-dual. Regularity is evident. To prove
self-duality, we should verify that given [u; t] with u ∈ Rn−1, the relation
[u; t]T [v; τ] ≥ 0 holds true for all [v; τ] with τ ≥ ‖v‖2 iff t ≥ ‖u‖2, or, which is
the same, to verify that for every vector [u; t] one has inf

[v;τ]:‖v‖2≤τ
[u; t]T [v; τ] ≥ 0

iff t ≥ ‖u‖2. This is immediate, since

inf
[v;τ]:‖v‖2≤τ

[u; t]T [v; τ] = inf
τ≥0

[
tτ + inf

v:‖v‖2≤τ
uT v

]
= inf

τ≥0
τ [t− ‖u‖2]. 2

• The cone Sn+ of positive semidefinite matrices in the space of Sn of symmet-
ric n × n matrices equipped with the Frobenius inner product is regular and
self-dual. Regularity if evident. To prove self-duality we should verify that if
B ∈ Sn, then Tr(BX) ≡ 〈B,X〈Sn≥ 0 for all X ∈ Sn+ iff B ∈ Sn+. In one
direction: setting X = xxT with x ∈ Rn, we get X � 0. Thus, if B ∈ (Sn+)∗,
then Tr(xxTB) = Tr(xTBx) = xTBX ≥ 0 for all x, and thus B ∈ Sn+

3. In
the opposite direction: When B ∈ Sn+, then, by the Eigenvalue Decomposi-
tion Theorem, B =

∑n
i=1 λieie

T
i with orthonormal e1, ..., en and nonnegative λi

3We have used a simple and useful identity: when P and Q are matrices such that PQ makes sense and is a
square matrix, so that Tr(PQ) makes sense, then Tr(PQ) = Tr(QP) (why?).

228 CONIC PROGRAMMING AND IPMs

(the latter in fact are eigenvalues of B). It follows that when X ∈ Sn+, then
Tr(BX) =

∑
i λi Tr(eie

T
i X) =

∑
i λie

T
i Xei; when X ∈ Sn+, and all terms in the

resulting sum are nonnegative, and thus Tr(BX) ≥ 0 whenever X ∈ Sn+, that
is, B ∈ (Sn+)∗.

7.1.2 Conic Problems

A conic program is an optimization program of the form

Opt(P) = min
x

{
〈c, x〉E :

Aix− bi ∈ Ki, i = 1, ...,m,
Rx = r

}
(P)

where

• (E, 〈·, ·〉E) is a Euclidean space of decision vectors x and c ∈ E is the objective;

• Ai, 1 ≤ i ≤ m, are linear maps from E into Euclidean spaces (Fi, 〈·, ·〉Fi), bi ∈ Fi and
Ki ⊂ Fi are regular cones;

• R is a linear mapping from E into a Euclidean space (F, 〈·, ·〉F) and r ∈ F .

A relation a− b ∈ K, where K is a regular cone, is often called conic inequality between a and
b and is denoted a ≥K b; such a relation indeed preserves the major properties of the usual
coordinate-wise vector inequality ≥. While in the sequel we do not use the notation A ≥K b,
we do call a constraint of the form Ax − b ∈ K a conic inequality constraint or simply conic
constraint.

Note that we can rewrite (P) equivalently as a conic program involving a single cone K =
K1 × ...×Km, specifically, as

min
x

{
〈c, x〉E :

Ax− b ∈ K = K1 × ...×Km,
Rx = r

}
, Ax− b =

 A1x− b1
...

Amx− bm

 ; (P ′)

Since the direct product of several regular cones clearly is regular as well, (P ′) indeed is a
legitimate “single cone” conic program.

Examples: Linear, Conic Quadratic and Semidefinite Optimization. We will be
especially interested in the three generic conic problems as follows:

• Linear Optimization, or Linear Programming: this is the family of all conic programs
associated with nonnegative orthants Rm

+ , that is, the family of all usual LPs minx{cTx :
Ax− b ≥ 0};

• Conic Quadratic Optimization, or Conic Quadratic Programming, or Second Order Cone
Programming: this is the family of all conic programs associated with the cones that are
finite direct products of Lorentz cones, that is, the conic programs of the form

min
x

{
cTx : [A1; ...;Am]x− [b1; ...; bm] ∈ Lk1 × ...× Lkm

}
where Ai are ki × dim x matrices and bi ∈ Rki . The “Mathematical Programming” form
of such a program is

min
x

{
cTx : ‖Āix− b̄i‖2 ≤ αTi x− βi, 1 ≤ i ≤ m

}
,

7.1. CONIC PROGRAMMING 229

where Ai = [Āi;α
T
i] and bi = [b̄i;βi], so that αi is the last row of Ai, and βi is the last

entry of bi;

• Semidefinite Optimization, or Semidefinite Programming: this is the family of all conic
programs associated with the cones that are finite direct products of Semidefinite cones,
that is, the conic programs of the form

min
x

cTx : A0
i +

dim x∑
j=1

xjA
j
i � 0, 1 ≤ i ≤ m

 , (∗)

where Aji are symmetric matrices of appropriate sizes.

7.1.3 Conic Duality

Conic duality — derivation

The origin of conic duality is the desire to find a systematic way to bound from below the
optimal value in a conic program (P). This way is based on linear aggregation of the constraints
of (P), namely, as follows. Let yi ∈ K∗i and z ∈ F . By the definition of the dual cone, for every
x feasible for (P) we have

〈A∗i yi, x〉E − 〈yi, bi〉Fi ≡ 〈yi, Axi − bi〉Fi ≥ 0, 1 ≤ i ≤ m,

and of course
〈R∗z, x〉E − 〈z, r〉F = 〈z,Rx− r〉F = 0.

Summing up the resulting inequalities, we get

〈R∗z +
∑
i

A∗i yi, x〉E ≥ 〈z, r〉F +
∑
i

〈yi, bi〉Fi . (C)

By its origin, this scalar linear inequality on x is a consequence of the constraints of (P), that
is, it is valid for all feasible solutions x to (P). It may happen that the left hand side in this
inequality is, identically in x ∈ E, equal to the objective 〈c, x〉E ; this happens iff

R∗z +
∑
i

A∗i yi = c.

Whenever it is the case, the right hand side of (C) is a valid lower bound on the optimal value
of (P). The dual program is nothing but the program

Opt(D) = max
z,{yi}

{
〈z, r〉F +

∑
i

〈yi, bi〉Fi :
yi ∈ K∗i , 1 ≤ i ≤ m,
R∗z +

∑
iA
∗
i yi = c

}
(D)

of maximizing this lower bound.
Remark: Note that the construction we have presented is completely similar to the one we
used in section 3.2.1 to derive the LO dual of a given LO program. The latter is the particular
case of (P) where all Ki are nonnegative orthants of various dimensions, or, which is the same
the cone K in (P ′) is a nonnegative orthant. The only minor differences stem from the facts
that now it is slightly more convenient to write the primal program as a minimization one, while

230 CONIC PROGRAMMING AND IPMs

in the LO we preferred to write down the primal program as a maximization one. Modulo this
absolutely unessential difference, our derivation of the dual of an LO program is nothing but our
present construction as applied to the case when all Ki are nonnegative rays. In fact, a reader
will see that all Conic Duality constructions and results we are about to present mirror already
known to us constructions and results of LO Duality.

Coming back to conic dual of a conic program, observe that by the origin of the dual we
have

Weak Duality: One has Opt(D) ≤ Opt(P).

Besides this, we see that (D) is a conic program. A nice and important fact is that conic duality
is symmetric.

Symmetry of Duality: The conic dual to (D) is (equivalent to) (P).

Proof:
In order to apply to (D) the outlined recipe for building the conic dual, we should rewrite (D)
as a minimization program

−Opt(D) = min
z,{yi}

{
〈z,−r〉F +

∑
i

〈yi,−bi〉Fi :
yi ∈ K∗i , 1 ≤ i ≤ m
R∗z +

∑
iA
∗
i yi = c

}
; (D′)

the corresponding space of decision vectors is the direct product F ×F1 × ...×Fm of Euclidean
spaces equipped with the inner product

〈[z; y1, ..., ym], [z′; y′1, ..., y
′
m]〉 = 〈z, z′〉F +

∑
i

〈yi, y′i〉Fi .

The above “duality recipe” as applied to (D′) reads as follows: pick weights ηi ∈ (K∗i)
∗ = Ki

and ζ ∈ E, so that the scalar inequality

〈ζ,R∗z +
∑
i

A∗i yi〉E +
∑
i

〈ηi, yi〉Fi︸ ︷︷ ︸
=〈Rζ,z〉F+

∑
i〈Aiζ+ηi,yi〉Fi

≥ 〈ζ, c〉E (C ′)

in variables z, {yi} is a consequence of the constraints of (D′), and impose on the “aggregation
weights” ζ, {ηi ∈ Ki} an additional restriction that the left hand side in this inequality is,
identically in z, {yi}, equal to the objective of (D′), that is, the restriction that

Rζ = −r, Aiζ + ηi = −bi, 1 ≤ i ≤ m,

and maximize under this restriction the right hand side in (C ′), thus arriving at the program

max
ζ,{ηi}

{
〈c, ζ〉E :

Ki 3 ηi = Ai[−ζ]− bi, 1 ≤ i ≤ m
R[−ζ] = r

}
.

Substituting x = −ζ, the resulting program, after eliminating ηi variables, is nothing but

max
x

{
−〈c, x〉E :

Aix− bi ∈ Ki, 1 ≤ i ≤ m
Rx = r

}
,

which is equivalent to (P). 2

7.1. CONIC PROGRAMMING 231

Conic Duality Theorem

A conic program (P) is called strictly feasible, if it admits a strictly feasible solution, that is, a
feasible solution x̄ such that Aix̄− bi ∈ int Ki, i = 1, ...,m.

Conic Duality Theorem is the following statement resembling very much the Linear Pro-
gramming Duality Theorem:

Theorem 7.1.1 [Conic Duality Theorem] Consider a primal-dual pair of conic programs (P),
(D). Then

(i) [Weak Duality] One has Opt(D) ≤ Opt(P).
(ii) [Symmetry] The duality is symmetric: (D) is a conic program, and the program dual to

(D) is (equivalent to) (P).
(iii) [Strong Duality] If one of the programs (P), (D) is strictly feasible and bounded, then

the other program is solvable, and Opt(P) = Opt(D).
If both the programs are strictly feasible, then both are solvable with equal optimal values.

Proof:
We have already verified Weak Duality and Symmetry. Let us prove the first claim in Strong
Duality. By Symmetry, we can restrict ourselves to the case when the strictly feasible and
bounded program is (P).

Consider the following two sets in the Euclidean space G = R× F × F1 × ...× Fm:

T = {[t; z; y1; ...; ym] : ∃x : t = 〈c, x〉E ; yi = Aix− bi, 1 ≤ i ≤ m;
z = Rx− r},

S = {[t; z; y1; ...; ym] : t < Opt(P), y1 ∈ K1, ..., ym ∈ Km, z = 0}.

The sets T and S clearly are convex and nonempty; observe that they do not intersect. Indeed,
assuming that [t; z; y1; ...; ym] ∈ S ∩ T , we should have t < Opt(P), and yi ∈ Ki, z = 0 (since
the point is in S), and at the same time for certain x ∈ E we should have t = 〈c, x〉E and
Aix − bi = yi ∈ Ki, Rx − r = z = 0, meaning that there exists a feasible solution to (P) with
the value of the objective < Opt(P), which is impossible. Since the convex and nonempty sets
S and T do not intersect, they can be separated by a linear form (Theorem 2.4.3): there exists
[τ ; ζ; η1; ...; ηm] ∈ G = R× F × F1 × ...× Fm such that

(a) sup
[t;z;y1;...;ym]∈S

〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G

≤ inf
[t;z;y1;...;ym]∈T

〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G,

(b) inf
[t;z;y1;...;ym]∈S

〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G

< sup
[t;z;y1;...;ym]∈T

〈[τ ; ζ; η1; ...; ηm], [t; z; y1; ...; ym]〉G,

or, which is the same,

(a) sup
t<Opt(P),yi∈Ki

[τt+
∑

i〈ηi, yi〉Fi]

≤ inf
x∈E

[τ〈c, x〉E + 〈ζ,Rx− r〉F +
∑

i〈ηi, Aix− bi〉Fi] ,
(b) inf

t<Opt(P),yi∈Ki

[τt+
∑

i〈ηi, yi〉Fi]

< sup
x∈E

[τ〈c, x〉+ 〈ζ,Rx− r〉F +
∑

i〈ηi, Aix− bi〉Fi] .

(7.1.1)

232 CONIC PROGRAMMING AND IPMs

Since the left hand side in (7.1.1.a) is finite, we have

τ ≥ 0, −ηi ∈ K∗i , 1 ≤ i ≤ m, (7.1.2)

whence the left hand side in (7.1.1.a) is equal to τOpt(P). Since the right hand side in (7.1.1.a)
is finite, we have

R∗ζ +
∑
i

A∗i ηi + τc = 0 (7.1.3)

and the right hand side in (a) is 〈−ζ, r〉F −
∑

i〈ηi, bi〉Fi , so that (7.1.1.a) reads

τOpt(P) ≤ 〈−ζ, r〉F −
∑
i

〈ηi, bi〉Fi . (7.1.4)

We claim that τ > 0. Believing in our claim, let us extract from it Strong Duality. Indeed,
setting yi = −ηi/τ , z = −ζ/τ , (7.1.2), (7.1.3) say that z, {yi} is a feasible solution for (D), and
by (7.1.4) the value of the dual objective at this dual feasible solution is ≥ Opt(P). By Weak
Duality, this value cannot be larger than Opt(P), and we conclude that our solution to the dual
is in fact an optimal one, and that Opt(P) = Opt(D), as claimed.

It remains to prove that τ > 0. Assume this is not the case; then τ = 0 by (7.1.2). Now let
x̄ be a strictly feasible solution to (P). Taking inner product of both sides in (7.1.3) with x̄, we
have

〈ζ,Rx̄〉F +
∑
i

〈ηi, Aix̄〉Fi = 0,

while (7.1.4) reads

−〈ζ, r〉F −
∑
i

〈ηi, bi〉Fi ≥ 0.

Summing up the resulting inequalities and taking into account that x̄ is feasible for (P), we get∑
i

〈ηi, Aix̄− bi〉 ≥ 0.

Since Aix̄ − bi ∈ int Ki and ηi ∈ −K∗i , the inner products in the left hand side of the latter
inequality are nonpositive, and i-th of them is zero iff ηi = 0; thus, the inequality says that
ηi = 0 for all i. Adding this observation to τ = 0 and looking at (7.1.3), we see that R∗ζ = 0,
whence 〈ζ,Rx〉F = 0 for all x and, in particular, 〈ζ, r〉F = 0 due to r = Rx̄. The bottom line is
that 〈ζ,Rx − r〉F = 0 for all x. Now let us look at (7.1.1.b). Since τ = 0, ηi = 0 for all i and
〈ζ,Rx− r〉F = 0 for all x, both sides in this inequality are equal to 0, which is impossible. We
arrive at a desired contradiction.

We have proved the first claim in Strong Duality. The second claim there is immediate: if
both (P), (D) are strictly feasible, then both programs are bounded as well by Weak Duality,
and thus are solvable with equal optimal values by the already proved part of Strong Duality.
2

Remark: The Conic Duality Theorem is a bit weaker than its LO counterpart: where in
the LO case plain feasibility was enough, now strong feasibility is required. It can be easily
demonstrated by examples that this difference stems from the essence of the matter rather than
being a shortcoming of our proofs. Indeed, it can be easily demonstrated by examples that in
the case of non-polyhedral cones various “pathologies” can take place, e.g.

7.1. CONIC PROGRAMMING 233

• (P) can be strictly feasible and below bounded while being unsolvable;
• both (P) and (D) can be solvable, but with different optimal values, etc.

Importance of strong feasibility is the main reason for our chosen way to represent constraints
of a conic program as conic inequality/inequalities augmented by a system of linear equality
constraints. In principle, we could write a conic problem (P) without equality constrains,
namely, as

min
x

{
cTx : Aix− bi ∈ Ki, 1 ≤ i ≤ m,Rx− r ∈ Rk

+, r −Rx ∈ Rk
+

}
[k = dim r]

— the possibility we used, to save notation, in LO. Now it would be unwise to treat equality
constraints via pairs of opposite inequalities – the resulting problem would definitely be not
strictly feasible4.

Refinement

We can slightly refine the Conic Duality Theorem, extending the “special treatment” from linear equality
constraints to scalar linear inequalities. Specifically, consider problem (P) and assume that one of the
conic constraints in the problem, say, the first one, is just A1x − b1 ≥ 0, that is, F1 = Rµ with the
standard inner product, and K1 is the corresponding nonnegative orthant. Thus, our primal problem is

Opt(P) = min
x

〈c, x〉E :
A1x− b1 ≥ 0 (a)
Aix− bi ∈ Ki, 2 ≤ i ≤ m, (b)
Rx = r (c)

 (P)

so that the dual (D) is

Opt(D) = max
z,{yi}mi=1

〈r, z〉F + bT1 y1 +

m∑
i=2

〈bi, yi〉Fi
:
y1 ≥ 0,
yi ∈ K∗i , 2 ≤ i ≤ m,
R∗z +

∑m
i=1A

∗
i yi = c

 (D)

Essentially strict feasibility. Note that the structure of problem (D) is completely similar to the
one of (P) – the variables, let them be called ξ, are subject to finitely many scalar linear equalities
and inequalities and, on the top of it, finitely many conic inequalities Piξ − pi ∈ Li, i ∈ I, where Li
are regular cones in Euclidean spaces. Let us call such a conic problem essentially strictly feasible, if
it admits a feasible solution ξ̄ at which the conic inequalities are satisfied strictly: Piξ̄ − pi ∈ int Li,
i ∈ I. It turns out that the Conic Duality Theorem 7.1.1 remains valid when one replaces in it “strict
feasibility” with “essentially strict feasibility,” which is some progress: a strictly feasible conic problem
clearly is essentially strictly feasible, but not necessarily vice versa. Thus, we intend to prove

Theorem 7.1.2 [Refined Conic Duality Theorem] Consider a primal-dual pair of conic programs (P),
(D). Then

(i) [Weak Duality] One has Opt(D) ≤ Opt(P).
(ii) [Symmetry] The duality is symmetric: (D) is a conic program, and the program dual to (D) is

(equivalent to) (P).
(iii) [Refined Strong Duality] If one of the programs (P), (D) is essentially strictly feasible and

bounded, then the other program is solvable, and Opt(P) = Opt(D).
If both the programs are essentially strictly feasible, then both are solvable with equal optimal values.

Note that the Refined Conic Duality Theorem covers the usual Linear Programming Duality Theorem:
the latter is the particular case m = 1 of the former.

4Another way to eliminate equality constraints, which is free of the outlined shortcoming, could be to use the
equality constraints to express part of the variables as linear functions of the remaining variables, thus reducing
the design dimension of the problem and getting rid of equality constraints.

234 CONIC PROGRAMMING AND IPMs

Proof of Theorem 7.1.2. With the Conic Duality Theorem at our disposal, all we should take care
of now is the refined strong duality. In other words, invoking primal-dual symmetry, all we need is to
prove that

(!) If (P) is essentially strictly feasible and bounded, then (D) is solvable, and Opt(P) =
Opt(D).

Thus, assume that (P) is essentially strictly feasible and bounded.

10. Let

X = {x : A1x ≥ b1, Rx = r}.

This set is nonempty. Let Π = {x : Rx = r, Sx = s} be the affine span of X. We claim that Either

(A) X = Π = {x : Rx = r, Sx = s}, or

(B) X = {x : Rx = r, Sx = s, C1x ≥ d1} with properly selected C1, d1 such that there exists x′ ∈ X
satisfying C1x

′ > d1.

Indeed, assume that (A) is not the case, and let L = {x : Rx = 0, Sx = 0} be the linear subspace
to which Π is parallel. Let αTi , 1 ≤ i ≤ µ, be the rows of A1, βi be the entries in b1, and σi be the
orthogonal projections of αi onto L, so that

L 3 σi = αi −RTui − ST vi

for properly selected vectors ui, vi. We clearly have

X = {x : Rx = r, Sx = s, σTi x ≥ δi := βi − rTui − sT vi, 1 ≤ i ≤ µ}

Let I = {i : σi 6= 0}. For every i 6∈ I, the inequality [0Tx =]σTi x ≥ δi holds true for some x (namely, for
every x ∈ X) and thus is identically true. It follows that

X = {x : Rx = r, Sx = s, C1x ≥ d1}, (7.1.5)

where the rows of C1 are the vectors σTi , i ∈ I, and the entries in d1 are the respective quantities δi.
Note that I 6= ∅ since X 6= Π. To complete the justification of our claim, it remains to note that every
point x′ from the relative interior of X (this set is nonempty!) satisfies x′ ∈ Π, C1x

′ > d1. Indeed, X
contains a set of the form U(x′) = x′ + {h ∈ L : ‖h‖2 ≤ δ(x′)} with some δ(x′) > 0; since the relation
C1x ≥ d1 should be valid on U(x′) and the rows of C1 are (transposes of) nonzero vectors from L, this
implies C1x

′ > d1.

20. Consider the case of (B), and let us pass from the original problem (P) to the equivalent problem

Opt(P) = min
x

〈c, x〉E :

C1x− d1 ≥ 0 (a)
Aix− bi ∈ Ki, i = 2, 3, ...,m, (b){
Rx = r
Sx = s

(c)

 (P̄)

The equivalence of (P) and (P̄) is an immediate corollary of the fact that the set X of x’s satisfying
(P.a) and (P.c) is, by construction, exactly the same as the set of x’s satisfying (P̄ .a) and (P̄ .c). Our
next observation is that (P̄) is strictly feasible. Indeed, let x̄ be a feasible solution to (P) such that
Aix̄ − bi ∈ int Ki, i = 2, ...,m; existence of such a solution is given by essentially strict feasibility of
(P). Now let x′ ∈ X be such that C1x

′ > d1 (we have seen in the previous item that such x′ exists).
Then for every λ ∈ (0, 1), the point xλ = (1 − λ)x̄ + λx′ belongs to X and thus satisfies (P.c), same as
satisfies the strict version C1xλ > d1 of (P̄ .a). For small positive λ xλ clearly satisfies also the inclusions
Aixλ − bi ∈ int Ki, i = 2, 3, ...,m and therefore is a strictly feasible solution to (P̄). Thus, (P̄) is strictly

7.1. CONIC PROGRAMMING 235

feasible (and bounded along with (P)), so that by the Conic Duality Theorem the dual to (P̄) – the
problem

Opt(D̄) = max
z,w,η,{yi}mi=2

〈r, z〉F + sTw + dT1 η +
∑m

i=2
〈yi, bi〉Fi

:
η ≥ 0
yi ∈ K∗i , 2 ≤ i ≤ m
R∗z + STw + C∗1η +

∑m
i=2A

∗
i yi = c

(D̄)

is solvable with the optimal value Opt(P). Let z∗, w∗, η∗, y∗2 , ..., y
∗
m be an optimal solution to (D̄). All

we need to prove is that this solution can be converted to a feasible solution to (D) with the value of
the objective of (D) at this feasible solution at least Opt(D̄) (since we have seen that Opt(D̄) = Opt(P),
by Weak duality the resulting solution will be optimal for (D) with the value of the objective equal to
Opt(P), which is all we need).

To convert (z∗, w∗, η∗, y∗2 , ..., y
∗
m) into a feasible solution to (D), let us act as follows. To simplify

notation, we may assume w.l.o.g. that w∗ ≥ 0. Indeed, we can multiply by (−1) the equations in the
system Sx = s which correspond to negative entries in w∗, replacing simultaneously these entries with
their magnitudes; in our context, this clearly changes nothing.

Now, the system of linear inequalities and equations

C1x ≥ d1 & Rx = r & Sx ≥ s

is satisfied everywhere on the nonempty solution set X of the system

A1x ≥ b1 & Rx = r.

Consequently, by Inhomogeneous Farkash Lemma, there exist entrywise nonnegative matrices G,H and
matrices U, V of appropriate sizes such that

(a1) C1 = GA1 + UR,
(a.2) Gb1 + Ur ≥ d1;
(b.1) S = HA1 + V R,
(b.2) Hb1 + V r ≥ s.

(7.1.6)

Now consider the candidate solution z̄, ȳ1, ..., ȳm to (D) as follows:

z̄ = z∗ + U∗η∗ + V ∗w∗

ȳ1 = G∗η∗ +H∗w∗

ȳi = y∗i , i = 2, ...,m.

This indeed is a feasible solution to (D); all we need to verify is that ȳ1 ≥ 0 (this is true due to η∗ ≥ 0,
w∗ ≥ 0 and to entrywise nonnegativity of G,H) and that R∗z̄+

∑m
i=1A

∗
i ȳi = c. The latter is immediate:

c = R∗z∗ + S∗w∗ + C∗1η
∗ +

∑m
i=2A

∗
i y
∗
i = R∗[z∗ + U∗η∗ + V ∗w∗] +A∗1[G∗η∗ +H∗w∗] +

∑m
i=2A

∗
i y
∗
i

= R∗z̄ +A∗1ȳ1 +
∑m
i=2A

∗
i ȳ
∗
i ,

where the equalities follow from (a) the fact that (z∗, w∗, η∗, y∗2 , ..., y
∗
m) is feasible for (D̄), (b)

(7.1.6.a.1,b.1), and (c) the definition of z̄, ȳi.
Further, we have

[Opt(P) =] Opt(D̄) = 〈r, z∗〉F + sTw∗ + dT1 η
∗ +

∑m
i=2〈y∗i , bi〉Fi

≤ 〈r, z∗〉F + [Hb1 + V r]Tw∗ + [Gb1 + Ur]T η∗ +
∑m
i=2〈y∗i , bi〉Fi

= 〈r, z∗ + U∗η∗ + V ∗w∗〉F + bT1 [H∗w∗ +G∗η∗] +
∑m
i=2〈y∗i , bi〉Fi

= 〈r, z̄〉F +
∑m
i=1〈ȳi, bi〉Fi

,

where the first inequality is due to w∗ ≥ 0, η∗ ≥ 0 and (7.1.6.a.2,b.2), and the last equality is due to the
definition of z̄, ȳ1, ..., ȳm. The resulting inequality, as it was already explained, implies that z̄, ȳ1, ..., ȳm
form an optimal solution to (D) and that Opt(P) = Opt(D), which is all we need.

236 CONIC PROGRAMMING AND IPMs

30. We have verified (!) in the case of (B). In the case of (A) the verification is completely similar, up
to straightforward simplifications, with the equivalent reformulation

Opt(P) = min
x

〈c, x〉E :
Aix− bi ∈ Ki, i = 2, 3, ...,m, (b){
Rx = r
Sx = s

(c)

 (P̃)

of (P) in the role of (P̄) and the relations (7.1.6.b) in the role of (7.1.6.a,b). The detailed proof is left to
the reader.
Another option is to note that in the case of (A) we still have

X = {x : Rx = R,Sx = s, C1x ≥ d1}

with essentially strictly feasible system of constraints (i.e., C1x > d1 for some x ∈ X); indeed, it suffices
to set C1 = [0, ..., 0], d1 = −1. This allows to reduce the case of (A) to the case of (B).5 2

7.1.4 Consequences of Conic Duality Theorem

Optimality Conditions in Conic Programming

Optimality conditions in Conic Programming are given by the following statement:

Theorem 7.1.3 Consider a primal-dual pair (P), (D) of conic programs, and let both programs
be essentially strictly feasible. A pair (x, ξ ≡ [z; y1; ...; ym]) of feasible solutions to (P) and (D)
is comprised of optimal solutions to the respective programs iff

(i) [Zero duality gap] One has

DualityGap(x; ξ) := 〈c, x〉E − [〈z, r〉F +
∑

i〈bi, yi〉Fi]
= 0,

same as iff

(ii) [Complementary slackness]

∀i : 〈yi, Aixi − bi〉Fi = 0.

Proof:

By Refined Conic Duality Theorem, we are in the situation when Opt(P) = Opt(D). Therefore

DualityGap(x; ξ) = [〈c, x〉E −Opt(P)]︸ ︷︷ ︸
a

+

[
Opt(D)−

[
〈z, b〉F +

∑
i

〈bi, yi〉Fi

]]
︸ ︷︷ ︸

b

5The second option follows the old joke: Given an egg, an empty pan, a stove and a source of water, you need
to boil the egg. How should you act? – Well, you pour water into the pan, put the egg there and place the pan
on the stove to boil the water. Now you need to solve a close problem: all as before, except that now the pan
contains the water from the very beginning. How should you act? – You pour the water out of the pan and reduce
the problem to the previous one...

7.1. CONIC PROGRAMMING 237

Since x and ξ are feasible for the respective programs, the duality gap is nonnegative and it can
vanish iff a = b = 0, that is, iff x and ξ are optimal solutions to the respective programs, as
claimed in (i). To prove (ii), note that since x is feasible, we have

Rx = r, Aix− bi ∈ Ki, c = A∗z +
∑
i

A∗i yi, yi ∈ K∗i ,

whence
DualityGap(x; ξ) = 〈c, x〉E − [〈z, r〉F +

∑
i〈bi, yi〉Fi]

= 〈R∗z +
∑

iA
∗
i yi, x〉E − [〈z, r〉F +

∑
i〈bi, yi〉Fi]

= 〈z,Rx− r〉F︸ ︷︷ ︸
=0

+
∑

i 〈yi, Aix− bi〉Fi︸ ︷︷ ︸
≥0

,

where the nonnegativity of the terms in the last
∑

i follows from yi ∈ K∗i , Aixi − bi ∈ Ki. We
see that the duality gap, as evaluated at a pair of primal-dual feasible solutions, vanishes iff the
complementary slackness holds true, and thus (ii) is readily given by (i). 2

A Surrogate of GTA

The following statement is a slightly weakened forms of the Inhomogeneous Farkas Lemma
(which is equivalent to GTA):

Proposition 7.1.1 [Conic Inhomogeneous Farkas Lemma] Let K be a regular cone. A scalar
linear inequality

pTx ≥ q (∗)
is a consequence of essentially strictly feasible system

Ax− b ∈ K, Rx = r (!)

comprised of a conic inequality and a system of linear equations6 iff (∗) is “linear consequence”
of (!), i.e., iff there exists λ, µ such that

λ ∈ K∗, A∗λ+R∗µ = p, 〈b, λ〉+ 〈r, µ〉 ≥ q. (7.1.7)

Proof. Let (*) be a consequence of (!). Then the (essentially strictly feasible!) conic program

min
x
{pTx : Ax− b ∈ K, Rx = r}

is below bounded with optimal value ≥ q. Applying the Refined Conic Duality Theorem, the
dual program has a feasible solution with the value of the dual objective ≥ q, which is nothing
but the solvability of (7.1.7) (look at the dual!). Vice versa, if λ, µ solve (7.1.7) and x solves (!),
then

0 ≤ 〈λ,Ax− b〉+ 〈µ,Rx− r〉 = [A∗λ+R∗µ]Tx−〈b, λ〉− 〈r, µ〉 = pTx−〈b, λ〉− 〈r, µ〉 ≤ pTx− q,

so that (∗) indeed is a consequence of (!); note that to get the latter conclusion, no assumption
of essentially strict feasibility (and even feasibility) of (!) is needed. 2

6Essentially strict feasibility of (!) is defined completely similarly to essentially strict feasibility of a conic
problem; it means that K is the direct product of a nonnegative orthant (perhaps of dimension 0) and a regular
cone K′, and (!) has a feasible solution x̄ with the K′-component belonging to the interior of K′.

238 CONIC PROGRAMMING AND IPMs

∗Certificates of robust solvability status

In LO, we know complete certification schemes for the basic components of the “solvability sta-
tus” of and LO program, that is, we know how to certify that the program is feasible/infeasible,
feasible and bounded or feasible and unbounded, same as we know that a program is solvable iff
it is feasible and bounded; all these certification schemes stem from LO Duality Theorem, see
section 3.1.3. In the conic case, we have a slightly weaker version of the Duality Theorem, and
a result, the question of what are the complete certification schemes for feasibility, boundedness
and solvability becomes much more difficult. It, however, admits simple answers when we ask
about robust presence of a particular property rather than of its “plain” presence. Specifically,
consider a conic problem in the single-cone form:

min
x

{
cTx : Ax− b ∈ K, Rx = r

}
(P)

along with its dual problem

max
y,z
{〈b, y〉+ 〈r, z〉 : y ∈ K∗, A∗y +R∗z = c} (D)

and assume that the systems of linear equality constraints in (P) and in (D) are feasible7. Now
imagine that we fix once for ever part of the data, namely, R, r, A,K, but allow to perturb slightly
the objective c, keeping it all the time in the image C of the linear map (y, z) 7→ A∗y+R∗z, same
as allow to perturb slightly the primal right hand side vector b. It may happen that arbitrarily
small perturbations allow to change a particular component of the solvability status of (P), say,
convert a feasible program (P) into an infeasible one; in this case, we say that (P) possesses the
property in a non-robust fashion. It may happen also that there exist δ > 0 such that whenever
b is replaced with b′ such that ‖b− b′‖ ≤ ε, and c is replaced with c′ ∈ C such that ‖c− c′‖ ≤ ε,
the property in question remains intact. In this case, we say that (P) possess the property in a
robust fashion. Specifically, we say that program (P) is

• robustly feasible, if it is feasible and remains to be so when we replace b with a b′ which is
close enough to b (specifically, “if there exists ε > 0 such that whenever ‖b′ − b‖ ≤ ε...”);

• robustly infeasible, if it is infeasible and remains to be so when we replace b with a b′ close
enough to b;

• robustly bounded, if it is robustly feasible and bounded, and remains bounded when we
replace c with c′ ∈ C close enough to c;

• robustly unbounded, if it is robustly feasible and unbounded, and remains unbounded
when we replace c with c′ ∈ C close enough to c;

• robustly solvable, if it is solvable and remains so when we replace b and c with b′, c′ ∈ C
close enough to b, c, respectively;

• robustly unsolvable, if it is unsolvable and remains so when we replace b and c with b′,
c′ ∈ C close enough to b, c, respectively.

7This assumption, which can be easily checked by elementary Linear Algebra tools, is quite natural: when the
system of linear inequalities RX = r in (P) is infeasible, (P) is infeasible. When the system of linear inequalities
A∗y + R∗z = c in (D) is unsolvable, c has a negative inner product with certain vector h such that Ah = 0 and
Rh = 0 (“kernel of a linear mapping is the orthogonal complement to the image space of the conjugate mapping”),
meaning that (P) is either infeasible, or unbounded (why?). In all these cases (P) is “bad.”

7.1. CONIC PROGRAMMING 239

In the sequel, we refer to the problem (P) with vectors b, c replaced with b′, c′ as to (P[b′, c′]),
so that (P) is the same as (P[b, c]).

Warning! In the above pairs of properties, one member is not the negation of the other
member. E.g., a program which is not robustly feasible, not necessary is robustly infeasible! In
fact, it can be even feasible, but “at the border of feasibility:” – by appropriate arbitrarily small
perturbation in b we can make it infeasible. This is like colors in gray scale: an object can be
black, it can be white, and it can be gray – neither black nor white.

Why should we bother on robustness? The point is that if a conic program (P) possesses
certain solvability-related feature – say, feasibility – in a non-robust fashion, then, by definition,
we can change change this feature by appropriate arbitrary small perturbation of the part of the
data, namely, b and c. In contrast to this, the property to possess robustly certain feature “is
itself robust” – it is preserved by small enough perturbations in b and c. Theoretically speaking,
in LO with rational data we can use, e.g., Khachiyan’s algorithm to recover in CCT-polynomial
time the “true” solvability status of an LO instance, along with building the corresponding
certificates. Similar possibility exists in LO with real data in the Real Arithmetic model of
computations — it suffices to solve the LO program in question by the Simplex method. Note,
however, that the resulting procedure is not ReACM-polynomial. In “non-polyhedral” conic
optimization, even in the Real Arithmetics model of computations, there is no theoretical pos-
sibility to recover in finite time the true solvability status of an instance (or at least we do not
know how to do it). As about real life finite precision computations, the situation is even worse.
When solving a problem with non-robust (or even “robust, but poorly so”) solvability status,
rounding errors can lead to completely wrong conclusions on this status, and this happens in
the LO case as well8.

Motivated by the above discussion, we are about to understand what robustness amounts to
and how to it can be certified.

A. Robust feasibility. We claim that (P) is robust feasible iff (P) is strictly feasible. As a
result, to certify robust feasibility, it suffices to point out a vector x such that Ax− b ∈ int K,
and this certification scheme is complete.

The second claim is an immediate corollary of the first one, and the latter can be certified
as follows. If (P) is strictly feasible, this program clearly is robust feasible (why?). Now assume
that the program is not strictly feasible, and let us prove that then it is not robust feasible as
well. To this end, let ∆ ∈ int K; given t > 0, consider the program (P[b′, c]) with b′ = b−t∆. We
claim that this problem is infeasible. Indeed, assuming that x̄ is a feasible solution to (P[b′, c]),
we would get Rx̄ = r and Ax̄ − b = Ax̄ − b′ + t∆; the latter vector clearly belongs to int K
(since as the sum of the vector Ax̄ − b′ from K and the vector t∆ ∈ int K), meaning that (P)
is strictly feasible, which was assumed not to be the case. When t is close to 0, t∆ is small,
and we see that by arbitrarily small perturbations of (P) we can make the problem infeasible,
so that (P) is not robustly feasible, as claimed. 2

8Everybody with even small experience of solving LO’s with commercial software knows a lot of examples
when definitely solvable problems were claimed infeasible or unbounded; I remember my shock when a quite
respectable code managed to solve my problem to optimality before I removed one of the constraints and claimed
it infeasible after the constraint was removed. Good LO solvers at least report that in course of computations,
some numerical difficulties were met, so that the results should be accepted “with a grain of salt;” not so good
solvers do not care to report on difficulties...

240 CONIC PROGRAMMING AND IPMs

B. Robust infeasibility. We claim that (P) is robustly infeasible iff the constraints of the
problem can be led to a contradiction by linear aggregation, that is, iff there exists [y; z] such
that

y ∈ K∗, A∗y +R∗z = 0, 〈b, y〉+ 〈r, z〉 > 0. (7.1.8)

As a result, to certify robust infeasibility of (P), it suffices to point out a solution [y; z] to (7.1.8),
and this certification scheme is complete.

Here again it suffices to prove the first claim only. Assume, first, that (7.1.8) has a solution
[y; z], and let us prove than (P) is robustly infeasible. Indeed, since 〈b, y〉 + 〈z, r〉, there exists
a small enough centered at b ball B of positive radius such that 〈b′, y〉 + 〈z, t〉 > 0 whenever
b′ ∈ B. Let us prove that every problem (P[b′, c]) b′ ∈ B is infeasible (this would mean that (P)
is robustly infeasible, as desired). Indeed, assuming that x is feasible for (P[b′, c]) and b′ ∈ B,
we would get 〈y,Ax − b′〉 ≥ 0 (since y ∈ K∗ and Ax − b′ ∈ K) and 〈z,Rx − r〉 = 0; summing
up these inequalities, we get 〈A∗y + R∗z, x〉 − 〈y, b′〉 − 〈z, r〉 ≥ 0, that is, −〈y, b′〉 − 〈z, r〉 ≥ 0,
which is impossible due to b′ ∈ B. Thus, (P[b′, c]) is infeasible when b′ ∈ B, as claimed.

Now let us verify that if (P) is robust infeasible, then (7.1.8) is solvable. To this end, let us
choose ∆ ∈ int K, and consider the conic program

min
t,x
{t : Ax+ t∆− b ∈ K, Rx = r} . (!)

We claim that this problem is feasible with strictly positive optimal value. Strict feasibility is
evident: take a whatever x satisfying Rx = r; then for all large enough values of t we have
t−1[Ax− b] + ∆ ∈ int K due to ∆ ∈ int K, whence Ax− b+ t∆ ∈ int K as well. The fact that
the optimal value is positive stems from the fact that otherwise (!) would have feasible solutions
with t arbitrarily close to 0, that is, program (P[b′, c]) with b′ = b − t∆, would be feasible for
all close to 0 values of t, which contradicts the robust infeasibility of (P). Since (!) is strictly
feasible with positive value of the objective, by Conic Duality Theorem the program dual to (!),
that is, the program

max
y,z
{〈b, y〉+ 〈r, z〉 : y ∈ K∗, A∗y +R∗z = 0, 〈y,∆〉 = 1}

has a feasible solution with positive values of the objective, meaning that (7.1.8) is solvable. 2

C. Robust boundedness. We claim that (P) is robustly bounded iff either (P) is robustly
infeasible, or (D) is strictly feasible. As a result, in order to certify robust boundedness of (P),
it suffices either to certify robust infeasibility of (P) (which we already know how to do), or to
point out a strictly feasible solution to (D), and this certification scheme is complete.

We need to prove the first claim only. In one direction: Assume that (P) is robustly bounded.
We should prove that if, in addition, (P) is not robustly infeasible, then (D) is strictly feasible.
We should, therefore, lead to a contradiction the assumption that (P) is robustly bounded, (P)
is not robustly infeasible, and (D) is not strictly feasible. Assume that all these properties take
place. Since (P) is robustly bounded, there exists ε > 0 such that whenever ‖b′ − b‖ ≤ ε and
c′ ∈ C, ‖c′ − c‖ ≤ ε, the problem (P[b′, c′]) is bounded. Since (P) is not robustly infeasible,
we can find b′′, ‖b′′ − b‖ ≤ ε/2, such that (P[b′′, c]) is feasible; therefore, setting b′ = b′′ − ∆
with small in norm ∆ ∈ int K, we get a strictly feasible problem (P[b′, c]) and ensure that
‖b−b′‖ ≤ ε. Now, the dual to (P[b′, c′]) is the problem (D[b′, p′]) obtained from (D) by replacing

7.1. CONIC PROGRAMMING 241

b with b′ and c with c′. Since (P[b′, c]) is strictly feasible and bounded, its dual (D[b′, c]) is
solvable and thus feasible. But the feasible set of (D[b′, c]) is the same as the feasible set of (D),
so that the latter is nonempty. Now let [y; z] be a feasible solution to (D), and let ∆ ∈ int K∗.
Setting c(t) = A∗[y − t∆] + R∗z, we see that c(t) ∈ C, c(0) = c and the program (D[b, c(t)]) is
infeasible for every t > 0 (since if [ỹ; z̃] were a feasible solution to the latter program, [ỹ+ t∆; z̃]
would be a strictly feasible solution to (D), and we are in the case when (D) is not strictly
feasible). Choosing small enough t > 0 and setting c′ = c(t), we ensure that ‖c′ − c‖ ≤ ε and
the problem (D[b, c′]) is infeasible, meaning that the problem (D[b′, c′]) also is infeasible. We
arrive at a contradiction: since ‖b′ − b‖ ≤ ε, ‖c′ − c‖ ≤ ε and c′ ∈ C, program (P[b′, c′]) should
be either infeasible, or feasible and bounded. The former option is impossible, since the feasible
set of the program is the same as for (P[b′, c]), that is, the program is even strictly feasible. We
conclude that (P[b′, c′]) is strictly feasible and bounded, whence, by Conic Duality Theorem,
(D[b′, c′]) is feasible, which by construction of c′ is not the case. We have arrived at the desired
contradiction, thus proving that if (P) is robustly bounded, then the program either is robustly
infeasible, or (D) is strictly feasible.

In the opposite direction: We should prove that if (P) is either robustly infeasible, or (D) is
strictly feasible, then (P) is robustly bounded. If (P) is robustly infeasible, then of course it is
robustly bounded. Now let (D) be strictly feasible, and let [ȳ; z̄] be a strictly feasible solution
to the problem, so that a ball Y of a positive radius r centered at ȳ is contained in K∗. By
elementary linear algebra, we can find continuous in c′ ∈ C functions y(c′) and z(c′) such that
y(c) = ȳ and A∗y(c′) + R∗z(c′) = c′ for all c′ ∈ C. In particular, we can find ε > 0 such that
whenever c′ ∈ C and ‖c′ − c‖ ≤ ε, we have ‖y(c′) − ȳ‖ ≤ r, meaning that y(c′) ∈ K∗ and
thus [y(c′); z′(c′)] is a feasible solution to (D[b′, c′]) for all b′. By Weak Duality it follows that
(P[b′, c′]) is either infeasible, or bounded for every b′ and every c′ ∈ C such that ‖c′ − c‖ ≤ ε,
meaning that (P) is robustly bounded. 2

B. Robust unboundedness. We claim that (P) is robustly unbounded iff (P) is robustly
feasible and there exists h such that

Ah ∈ K, Rh = 0, cTh < 0. (7.1.9)

Consequently, to certify robust unboundedness of (P), it suffices to point out a certificate of
robust feasibility (that is, a strictly feasible solution to (P), see above) and a vector h satisfying
(7.1.9), and this certification scheme is complete.
As always, it suffices to prove the first claim. In one direction: assume that (P ′) is robustly
feasible and a direction h satisfying (7.1.9) does exist. Then there exists a ball B of positive
radius centered at c such that [c′]Th < 0 for all c′ ∈ B. It follows that there exists ε > 0 such
that whenever ‖b′ − b‖ ≤ ε and ‖c′ − c‖ ≤ ε, the problem (P[b′, c′]) is feasible and [c′]Th < 0.
With b′, c′ as above, h clearly is a recessive direction of the feasible set of (P[b′, c′]), and along
this direction the objective of (P[b′, c′]) strictly decreases, meaning that (P[b′, c′]) is unbounded.

Now assume that (P) is robustly unbounded, and let us verify that then (P) is robustly
feasible (this is evident is evident) and (7.1.9) has a solution. It may happen that the linear

mapping x 7→ Ax =

[
Ax
Rx

]
has a nontrivial kernel L. Note that in this case the image C of the

mapping [y; z] 7→ A∗y+R∗x is exactly L⊥, so that restricting x and h to reside in C = L⊥ does
not affect neither the robust unboundedness of (P), nor the solvability status of (7.1.9). Thus,

242 CONIC PROGRAMMING AND IPMs

we can assume w.l.o.g. that C = Rn is the entire space of x’s, and the linear mapping A has a
trivial kernel. Now let us prove the existence of h satisfying (7.1.9).

Let H = {h ∈ Rn : Ah ∈ K, Rh = 0}. H clearly is a closed convex cone in Rn. We claim
that this cone is pointed. Indeed, if h is such that ±h ∈ H, then Rh = 0 and ±Ah ∈ K; since
K is pointed, it follows that Ah = 0. Thus, Ah = 0 and Rh = 0, whence h = 0 (recall that we
are in the situation when the mapping x 7→ (Ax,Rx) has the trivial kernel). Now let us use the
following simple and important

Lemma 7.1.1 If M is a closed pointed cone in Rn, then there exists f ∈ H∗ and a constant
θ > 0 such ‖h‖2 ≤ θfTh for all h ∈ M . Specifically, one can take as f any vector from the
nonempty set int H∗.

Proof of Lemma. Since M is a closed pointed cone, its dual cone M∗ has a nonempty interior.
Let f ∈ int M∗, so that there exists r such that f + e ∈M∗ whenever ‖e‖2 ≤ r. It follows that
when h ∈M , we have 0 ≤ min

e:‖e‖2≤r
[f + e]Th = fTh− r‖h‖2, so that r‖h‖2 ≤ fTh for all h ∈M ;

it remains to take θ = r−1. 2

Now we are ready to prove that (7.1.9) has a solution. Applying Lemma to the closed pointed
cone H, we see that there exists a vector f ∈ Rn and θ > 0 satisfying θfTh‖h‖2 for all h ∈ H.
Since (P) is robustly unbounded and we are in the situation C = Rn, there exists ε > 0 such
that with c′ = c+εf , the program (P[b, c′]) is unbounded, that is, there exists a sequence {ht}∞t=1

of feasible solutions to this problem such that [c′]Tht → −∞ as t→∞. This relation is possible
only if ρt = ‖ht‖ → ∞ as t→∞. Now let et = ρ−1

t ht. Passing to a subsequence ti →∞, i→∞
we can assume that the unit vectors eti converge, as i→∞, to a unit vector e. We have

Ret = ρ−1
t Rht = ρ−1r → 0, t→∞⇒ Re = 0

and

Aet − ρt−1b = ρ−1
t [Aht − b] ∈ K,

and since K is closed and ρ−1
t b → 0, t → ∞, we see that Ae ∈ K. The bottom line is

that the unit vector e belongs to H. Finally, we have [c′]Tht → −∞ as t → ∞, whence
[c′]T e = limi→∞ ρ

−1
ti

[c′]Thti ≤ 0. Recalling what c′ is, we see that cT e + εfT e ≤ 0, and since
e ∈ H, we have θfT e ≥ ‖e‖2 = 1, that is, εfT e ≥ εθ−1. The bottom line is that cT e+ εθ−1 ≤ 0,
whence cT e < 0. Since e ∈ H, (7.1.9) holds true with e = h. 2

E. Robust solvability. We claim that (P) is robustly solvable iff both (P) and (D) are strictly
feasible. As a result to certify robust solvability of (P), it suffices to point out strictly feasible
solutions to (P) and to (D), and this certification scheme is complete.

Indeed, assume that (P) is robustly solvable. Then (P) clearly is robustly feasible and
robustly bounded. The latter fact, in view of item C, implies that (D) is strictly feasible, while
strict feasibility of P ′), bu item A, implies that (P) is strictly feasible. Thus, if (P) is robustly
solvable, both (P) and (D) are strictly feasible.

To prove the inverse statement, assume that (P) and (D) are strictly feasible, and let ȳ, z̄
be a strictly feasible solution to (D). By the argument from item C, we can find continuous
functions y(c′), z(c′) of c′ ∈ Cand a neighborhood U of c in C such that for all c′ ∈ U the pair

7.1. CONIC PROGRAMMING 243

y(c′), z(c′) is a strictly feasible solution to (D([b, c′]), and thus for (D[b′, c′]) for all b′. Besides
this, by item A (P[b′, c]) is feasible for all b′ close enough to b, meaning that for these b′ the
program (P[b′, c′]) is feasible for all c′. The bottom line is that for all b′ close enough to b and all
c′ ∈ C close enough to c problem (P[b′, c′]) is feasible (and thus (D[b′, c′]) is bounded by Weak
duality), and (D[b′, c′]) is strictly feasible. Since (d′[b′, c′]) is strictly feasible and bounded for
indicated b′, c′, (P[b′, c′]) is solvable (Conic Duality Theorem). Thus, (P[b′, c′]) is solvable for all
b′ and c′ ∈ C close enough to b, c, that is, (P) is robustly solvable. 2

Remark: It should be added that (P) is robustly solvable iff (P) is robustly feasible and
robustly bounded. Indeed, robustly solvable program clearly is robustly feasible and robustly
bounded. To see that inverse also is true, note that if (P) is robustly feasible, then (P) is strictly
feasible by A and (D) is strictly feasible by C, whence (P) is robustly solvable by F.

Remark: From the definitions of robustness it follows that, say, the property to be, say, robust
feasible itself is “robust:” if (P) possesses this property, so are all problems obtained from
(P) by small enough perturbations of b and c, and similarly for all other properties we have
considered. Sometimes we can say more. For example, assume that that C is the entire x-space
(that is, that the mapping (y, z) 7→ A∗y+R∗z is an onto mapping, or, equivalently, the mapping
x 7→ (Ax,Rx) is with trivial kernel. Then robust solvability of (P) is preserved by small enough
perturbations of all the data, including A and R (why?).

F. Robust insolvability. We claim that (P) is robustly unsolvable iff the program is either
robustly infeasible, or there exists h satisfying (7.1.9), or both. Since we know how to certify
robust infeasibility, this claim yields a complete certification scheme for robust insolvability.

Let us prove our claim. In one direction this is easy: when (P) is robustly infeasible, then
of course (P) is robustly unsolvable. If there exists h satisfying (7.1.9), then (P) is robustly
unsolvable as well. Indeed, looking at (7.1.9), we see that h satisfying (7.1.9) satisfies also

Ah ∈ K, Rh = 0, [c′]Th < 0 (∗)

for all c′ ∈ V , where V is a small enough neighborhood of c in C. Now let us prove that (P[b′, c′])
is unsolvable, specifically, is either infeasible, or unbounded, for all b′ and all c′ ∈ V (and thus
(P) is robustly unsolvable). Indeed, when (P[b′, c′]), c′ ∈ V , is feasible, h from (∗) clearly is
a recessive direction of the feasible set of the program such that the objective of the program
strictly decreases along this ray, meaning that the program is unbounded.

Now assume that (P) is robustly unsolvable, and let us prove that the program is either robust
infeasible, or (7.1.9) takes place. It suffices to verify that if (P) is robustly unsolvable and is
not robustly feasible, then (P) is robustly unbounded. Thus, let (P) be robustly unsolvable and
not robustly infeasible. Since (P) is robustly unsolvable, there exists ε > 0 such that whenever
b′ ∈ U = {b′ : ‖b − b′‖ < ε} and c′ ∈ V = {c′ ∈ C : ‖c′ − c‖ < ε}, the program (P[b′, c′]) is
unsolvable. Since (P) is not robustly infeasible, there exists b̄, ‖b̄− b‖ ≤ ε/2, such that (P[b̄, c′])
is feasible for all c′. Setting b̃ = b̄ − ∆, where ∆ ∈ int K is of norm ≤ ε/3, we ensure that
b̃ ∈ U and (P[b̃, c′]) is strictly feasible. We claim that the program (P ′) = (P[b̃, c]) is robustly
unbounded. Indeed, since (P[b̃, c]) is strictly feasible, there exists a neighborhood W ⊂ U of
b̃ such that all programs (P[b′, c′]) with b′ ∈ U are strictly feasible. Assuming that (P[b̃, c]
is not robustly unbounded, we can find b′ ∈ W and c′ ∈ V such that (P[b′, c′]) is bounded;
since the latter program is strictly feasible due to b′ ∈ W , the problem (D[b′, c′]) is solvable
and thus feasible. If y, z is a feasible solution to (D[b′, c′]), then, for every ∆ ∈ int K∗, the

244 CONIC PROGRAMMING AND IPMs

pair y∆ = y + ∆, z is a strictly feasible solution to (D[b′, c∆]) with c∆ = c′ + A∗∆. Choosing
∆ ∈ K∗ to have a small enough norm, we can ensure that x′′ = x∆ ∈ V . Thus, b′ ∈ U , c′′ ∈ V ,
problem (P[b′, c′′]) is feasible, and problem (D[b′, c′′]) is strictly feasible. By Weak duality, the
latter program is not only strictly feasible, but also bounded, which, by Conic Duality Theorem,
implies that (P[b′, c′′]) is solvable, which contradicts the origin of U 3 b′ and V 3 c′′. This
contradiction proves that program (P[b̃, c]) is robustly unbounded. Invoking item D, it follows
that either (P[b̃, c]) is robust infeasible, or there exists an h satisfying (7.1.9). By choice of b̃,
the first option is impossible – problem (P[b̃, c]) is feasible by construction. We conclude that
(7.1.9) has a solution . 2

How “rare” are primal-dual strictly feasible programs? Here we intend to demonstrate
that strict primal-dual feasibility (or, which is the same by E, robust solvability) is not too rare
commodity: whenever problem (P) is feasible and bounded, properly chosen arbitrarily small
perturbations of b and c make it strictly primal-dual feasible. Specifically,

Proposition 7.1.2 Let (P) be feasible and bounded. Whenever ∆b ∈ int K and ∆y ∈ int K∗,
the problem (P[b−∆b, c+A∗∆y]) is strictly primal-dual feasible.

Proof. Let b̄ = b −∆b and x̄ = x + A∗∆y. Every feasible solution to (P) clearly is a strictly
feasible solution to (P[b̄, c′]) for all c′, so that (P [b̄, c′]) is strictly feasible for all c′ (recall that
(P) is feasible). We claim that the problem (P[b̄, c] cannot be robustly unbounded. Indeed,
assume that (P [b̄, c′]) is robustly unbounded. Then, by item D, (7.1.9) has a solution h. But
such an h is a recessive direction of the (nonempty!) feasible domain of (P), and along this
direction the objective of (P) strictly decreases, meaning that (P) is unbounded, which in fact
is not the case. Thus, (P[b̄, c]) is not robustly unbounded. Further, c ∈ C. indeed, otherwise,
by Linear Algebra, there would exist h such that Ah = 0, Rh = 0 and cTh < 0, which, as we
just have seen, is impossible. The system of linear equations A∗y + B∗r = d is solvable for all
d ∈ C; by Linear Algebra, it admits a linear in d ∈ C solution (Y (d), R(d)). Now let r > 0 be
such that ∆y − e ∈ int K∗ whenever ‖e‖ ≤ r. Recalling that (P [b̄, c]) is strictly feasible and
y(d) is linear, there exists ε > 0 such that (P [b′, c]) is strictly feasible whenever ‖b′ − b̄‖ ≤ ε
and ‖Y (d)‖ ≤ r whenever d ∈ C and ‖d‖2 ≤ ε. Let us prove that Since (P[b̄, c] is not robustly
unbounded, there exist b′, ‖b′ − b̄‖ ≤ ε, and c′ ∈ C with ‖c′ − c‖2 ≤ ε such that the program
(P[b′, c′]) is not unbounded; since this program is strictly feasible, it should be bounded which,
by Conic Duality Theorem, implies that that (D[b′, c′]) is feasible. Thus, there exist ȳ and r̄
satisfying

ȳ ∈ K∗, A∗ȳ +R∗z̄ = c′.

Now let us set
y+ = ȳ + ∆y + Y (c− c′), z+ = z̄ + Z(c− c′).

Observe that ‖Y (c− c′)‖ ≤ r due to ‖c− c′‖ ≤ ε, whence ∆y+Y (c− c′) ∈ int K∗. Since ȳ ∈ K∗,
we conclude that y+ ∈ int K∗. At the same time

A∗y+ +R∗z+ = [A∗ȳ +R∗z̄] +A∆y + [A∗Y (c− c′) +R∗Z(c− c′)]
= c′ + (c− c′) +A∆y = c′ + [c− c′] +A∗∆y = c+A∗∆y = c̄.

We see that (y+, z+) is a strictly feasible solution to (D[b̄, c̄]). Since by construction (P[b̄, c̄])
also is strictly feasible, (P[b̄, c̄]) is strictly primal-dual feasible. 2

7.1. CONIC PROGRAMMING 245

7.1.5 Sensitivity Analysis

The results we are about to present resemble those of Sensitivity Analysis for LO. Consider a
primal-dual pair of cone program in the single-cone form:

min
x

{
cTx : Ax− b ∈ K, Rx = r

}
(P)

along with its dual problem

max
y,z
{〈b, y〉+ 〈r, z〉 : y ∈ K∗, A∗y +R∗z = c} (D)

In what follows, we treat the part of the data A, b,K, R as fixed, and b, r, c – as varying, so that
it makes sense to refer to (P) as (P[b, r; c]), and to its dual (D) as to (D[b, r; c]), and to denote
the optimal value of (P[b, r; c]) as Opt(b, r; c). Our goal is to explore the structure of the cost
function Opt(b, r; c) as a function of (b, r), c being fixed, and of c, b, r being fixed.

The cost function as a function of c

Let [b; r] be fixed at certain value (b̄, r̄) such that (P[b̄, r̄; c]) is feasible (this fact is independent
of the value of c). An immediate observation is that in this case, the function Optb,r(c) =
Opt(b, r; c) is a concave function of c. Indeed, this is the infinum of the nonempty family
{fx(c) = cTx : Ax − b ∈ K, Rx = r} of linear (and thus concave) functions of c. A less trivial
observation is as follows:

Proposition 7.1.3 Let c̄ be such that (P[b̄, r̄, c̄) is solvable, and x̄ be the corresponding optimal
solution. Then x̄ is a supergradient of Optb̄,r̄(·) at c̄, meaning that

∀c : Optb̄,r̄(c) ≤ Optb̄,r̄(c̄) + x̄T (c− c̄).

Geometrically: the graph of Optb̄,r̄(c) never goes above the graph of the affine function `(c) =

Optb̄,r̄(c̄) + x̄T (c − c̄) and touches this graph at the point [c̄; Optb̄,r̄(c̄)] (and perhaps at other
points as well).

Proof is immediate: since x̄ is a feasible solution of (P[b̄, r̄; c]) for every c, we have

Optb̄,r̄(c) ≤ cT x̄ = (c− c̄)T x̄+ c̄T x̄ = Optb̄,r̄(c̄) + x̄T (c− c̄). 2

Remark: The fact that a function is convex (or concave) implies, in particular, that the function
possesses certain “regularity.” e.g., the following is true:

Let f be a convex (or concave) function and X be a closed and bounded set belonging
to the relative interior of function’s domain. Then f is Lipschitz continuous on X:
there exists L <∞ such that

∀(x, y ∈ X) : |f(x)− f(y)| ≤ L‖x− y‖.

246 CONIC PROGRAMMING AND IPMs

The cost function as a function of (b, r)

Let now c be fixed at certain value c̄, and assume that there exists [b′; r′] such that the problem
(P[b′, r′; c̄]) is strictly feasible and bounded. Then the dual problem (D[b′, r′; c̄) is feasible (and
even solvable) by Conic Duality Theorem, meaning that the duals to all problems (D[b, r; c̄) are
feasible (since the feasible set of the dual is independent of b, r). By Weak duality, it follows
that problems (P [b, r; c̄]) are bounded, and thus the cost function Optc̄(b, r) = Opt(b, r; c̄) takes
only real values and the value +∞. It is easily seen that this function is convex.

Indeed, denoting for short q = (b, r) and suppressing temporarily the subscript c̄, we
should prove that Opt((1 − λ)q + λq′) ≤ (1 − λ)Opt(q) + λOpt(q′) for all q, q′ and
all λ ∈ [0, 1]. There is nothing to prove when λ = 0 or λ = 1; when 0 < λ < 1,
there is nothing to prove when Opt(q) or Opt(q′) are infinite. Thus, we can restrict
ourselves with the case q = (b, r) ∈ domOpt, q′ = (b′, r′) ∈ domOpt and 0 < λ < 1.
Given ε > 0, we can find x and x′ such that

Ax− b ∈ K, Rx = r, c̄Tx ≤ Opt(q) + ε,
Ax′ − b;∈ K, Rx′ = r, c̄Tx′ ≤ Opt(q′) + ε.

Setting x̃ = (1− λ)x+ λx′, q̃ = (1− λ)q + λq′, we have Ax̃− q̃ = (1− λ)[Ax− b] +
λ[Ax′− b′] ∈ K, where the inclusion follows from the fact that K is a cone; this, q̃ is
a feasible solution for (P[q̃, c̄]). We also have

c̄T q̃ = (1− λ)c̄Tx+ λc̄T y ≤ (1− λ)[Opt(q) + ε] + λ[Opt(q′) + ε]
= (1− λ)Opt(q) + λOpt(q′) + ε].

Since q̃ is feasible for (P[q̃, c̄]), we have

Opt(q̃) ≤ c̄T q̃ ≤ (1− λ)Opt(q) + λOpt(q′) + ε

The resulting inequality holds true got every ε > 0, whence

Opt(q̃) ≤ (1− λ)Opt(q) + λOpt(q′),

which completes the proof of convexity of Opt(·).

We have the following analogy of Proposition 7.1.3:

Proposition 7.1.4 Let b̄, r̄ be such that (P[b̄, r̄, c̄]) is strictly feasible. Then the dual problem
(D[b̄, r̄; c̄]) is solvable, and every optimal solution (ȳ, r̄) to the latter program is a subgradient of
the convex function Optc̄(·) at the point (b̄, r̄), meaning that

∀(b, r) : Optc̄(b, r) ≥ Optc̄(b̄, r̄) + 〈ȳ, b− b̄〉+ 〈z̄, r − r̄〉.

Geometrically: the graph of Optc̄(b, r) never goes below the graph of the affine function `(b, r) =
Optc̄(b̄, r̄)+〈ȳ, b− b̄〉+〈z̄, r− r̄〉 and touches this graph at the point (b̄, r̄; Optc̄(b̄, r̄)) (and perhaps
at other points as well).

Proof is immediate. As we have already mentioned, our choice of c̄ ensures that (D[b̄, r̄; c̄]) is
feasible, and thus the program (P[b̄, r̄, c̄) is bounded; since by assumption the latter program is
strictly feasible, the Conic Duality Theorem says that (D[b̄, r̄; c̄]) is solvable, which is the first

7.1. CONIC PROGRAMMING 247

claim in the Proposition. Now let (ȳ, r̄) be an optimal solution to (D[b̄, r̄; c̄]). Then for every
feasible solution x to (P[b, r; c̄]) we have

c̄Tx = [A∗ȳ +R∗z̄]Tx = 〈ȳ, Ax− b〉+ 〈z̄, Rx〉+ 〈ȳ, b〉 ≥ 〈ȳ, b〉+ 〈z̄, r〉
= 〈ȳ, b− b̄〉+ 〈z̄, r − r̄〉+ 〈ȳ, b̄〉+ 〈z̄, r̄〉︸ ︷︷ ︸

=Optc̄(b̄,r̄)

;

Since the resulting inequality is valid for all feasible solutions x to (P[b, r; c̄]), we conclude that

Optc̄(b, r) ≥ Optc̄(b̄, r̄) + 〈ȳ, b− b̄〉+ 〈z̄, r − r̄〉. 2

7.1.6 Geometry of Primal-Dual Pair of Conic Problems

We are about to derive geometric interpretation of a primal-dual pair (P), (D) of conic programs
completely similar to the interpretation of a primal-dual pair of LO programs (section 3.3.2). As
was explained in the beginning of section 7.1.2, we lose nothing when assuming that the primal
program is a single-cone one and that the space E of the primal decision vectors is Rn, so that
the primal program reads:

Opt(P) = min
x

{
cTx : Ax− b ∈ K, Rx = r

}
(P)

where x 7→ Rx is a linear mapping from Rn to Euclidean space F , and K is a regular cone in
a Euclidean space F1 which, for aesthetical reasons (we do not need index anymore!), we now
denote H. The dual program now reads

Opt(D) = max
z,y
{〈r, z〉+ 〈b, y〉 : y ∈ K∗, A∗y +R∗z = c} (D)

(to save notation, we skip the indices in 〈·, ·〉). Assume that the systems of linear equality
constraints in (P) and in (D) are solvable, and let x̄ and [ȳ; z̄] be solutions to these systems:

(a) Rx̄ = r
(b) A∗ȳ +R∗z̄ = c.

(7.1.10)

Let us express (P) in terms of the primal slack ξ = Ax− b ∈ H. The constraints of (P) say that
this vector should belong to the intersection of K and the primal feasible plane MP which is
the image of the affine plane {x : Rx = r} in the x-space under the affine mapping x 7→ Ax− b.
The linear subspace LP in E which is parallel to MP is LP = {ξ = Ax : Rx = 0}, and we can
take the point Ax̄− b := −ξ̄ as the shift vector for MP . Thus,

MP = LP − ξ̄, ξ̄ = b−Ax̄, LP = {ξ = Ax : Rx = 0}. (7.1.11)

Now let us express the primal objective in terms of the primal slack. Given x satisfying the
equality constraints in (P), we have (F is the destination space of the mapping x 7→ Rx):

cTx = [A∗ȳ +R∗z̄]Tx = [A∗ȳ]Tx+ [R∗z̄]Tx = 〈ȳ, Ax〉+ 〈Rx, z̄〈
= 〈ȳ, Ax− b︸ ︷︷ ︸

ξ

〉+ constP , constP = 〈ȳ, b〉+ 〈r, z̄〉.

We have arrived at the following intermediate conclusion:

248 CONIC PROGRAMMING AND IPMs

Program (P) can be reduced to the program

Opt(P) = min
ξ∈H
{〈ȳ, ξ〉 : ξ ∈ K ∩MP } MP = LP − ξ̄ := b−Ax̄

LP = {ξ = Ax : Rx = 0}
Opt(P) = Opt(P) + 〈ȳ, b〉+ 〈r, z̄〉.

 (P)

Now let us process in a similar fashion the dual program (D), specifically, express it in terms
of the vector y. The constraints of (D) say that this vector should belong to the intersection
of K∗ and the dual feasible plane MD = {y : ∃z : A∗y + R∗z = c}. This plane is parallel to
the linear subspace LD = {y : ∃z : A∗y + R∗z = 0}, and as a shift vector for MD we can take
ȳ ∈ MD. It remains to express the dual objective in terms of y. To this end note that if [y; z]
satisfies the linear equality constraints of (D), then

〈r, z〉+ 〈b, y〉 = 〈Rx̄, z〈+〈b, y〉 = x̄T [R∗z] + 〈b, y〉
= x̄T [c−A∗y] + 〈b, y〉 = x̄T c+ 〈b−Ax̄, y〉 = 〈ξ̄, y〉+ constD, constD = cT x̄.

We have arrived at the following conclusion:

Program (D) can be reduced to the program

Opt(D) = max
y∈H
{〈x̄i, y〉 : y ∈ K∗ ∩MD} MD = LD + ȳ := b−Ax̄

LD = {y : ∃z : A∗y +R∗z = 0}
Opt(D) = Opt(D) + cT x̄.

 (D)

Now, same as in the LO case, LD is just the orthogonal complement of LP . Indeed, h ∈ (LP)⊥

iff 〈h,Ax〉 = 0 whenever Rx = 0, that is, iff the linear equation xT [A∗h] = 0 in variables x is a
consequence of the linear system Rx = 0, which is the case iff A∗h = R∗w for some w, which,
after substitution w = −z, is nothing but the characterization of LD.

Finally, let us compute the duality gap at a pair (x, [y, z]) of candidate solutions satisfying
the equality constraints in (P) and (D):

cTx− 〈b, y〉 − 〈r, z〉 = [A∗y +R∗z]Tx− 〈b, y〉 − 〈r, z〉
= 〈Ax− b, y〉+ 〈Rx− r, z〉 = 〈Ax− b, y〉.

Putting things together, we arrive at a perfectly symmetric purely geometric description of (P),
(D):

Assume that the systems of linear constraints in (P) and (D) are solvable. Then
the primal-dual pair (P), (D) of conic problems reduces to the following geometric
problem. We are given
• two dual to each other cones K, K∗ in a Euclidean space H,
• a pair of linear subspaces LP , cLD in H which are orthogonal complements to each
other, and
• a pair of shift vectors ξ̄, ȳ in H.
These geometric data define affine subspaces MP = LP − ξ̄, MD = LD + ȳ.

The primal problem (P) reduces to minimizing the linear form 〈ȳ, ·〉 over the inter-
section of the primal feasible planeMP and the cone K, which is the primal feasible

7.1. CONIC PROGRAMMING 249

set; the dual problem (D) reduces to maximizing the linear form 〈ξ̄, ·〉 over the inter-
section of the dual feasible planeMD and the cone K∗, which is the dual feasible set.
Given feasible solutions ξ, y to these geometric problems, the corresponding duality
gap is the inner product of the solutions.

Strict feasibility of a problem from our primal-dual pair means that the correspond-
ing feasible plane intersects the interior of the corresponding cone. Whenever both
problems are strictly feasible, the minimal value of the duality gap is zero, and the
duality gap, as evaluated at a pair of primal and dual feasible solutions, is the sum of
their non-optimalities, in terms of the objectives of the respective problems. Under
the same assumption of primal-dual strict feasibility, pairs of optimal solutions to
the respective problems are exactly the pairs of orthogonal to each other primal and
dual feasible solutions, and these pairs do exist.

We see that geometrically, a primal-dual pair of conic problems looks completely similar to a pair
of primal-dual LO programs: in both situations (in the second — under additional assumption
that both problems are strictly feasible) we are looking for pairs of orthogonal to each other
vectors with one member of the pair belonging to the intersection of “primal” affine plane and
“primal” cone, and the other member belonging to the intersection of the “dual” affine plane
and the “dual” cone.

The pair of primal and dual affine planes cannot be arbitrary: they should be shifts of
linear subspaces which are orthogonal complements to each other. Similarly, the pair of cones
in question are “rigidly connected” to each other — they are duals of each other. In LO,
the underlying cone is the nonnegative orthant and thus is self-dual, this is why in our LO
investigations (section 3.3.2) we did not see two cones, just one of them.

We complete this section by mentioning that, same as in the LO case, the choice of the shift
vectors forMP ,MD (or, which is the same, the objectives in (P) and (D)) is immaterial: when
replacing the above ξ̄ with any other vector from the minus primal feasible plane [−MP], the
primal problem (P) clearly remains intact, and the dual objective 〈ξ̄T , ·〉, restricted on the dual
feasible plane, changes by an additive constant, which affects nothing but the optimal value
Opt(D). By similar reasons, replacing ȳ with any other vector from MD keeps (D) intact and
changes by additive constant the restriction of the primal objective 〈ȳ, ·〉 on the primal feasible
plane.

7.1.7 Conic Representations of Sets and Functions

It is easily seen that every convex program min
x∈X

f(x) (f : Rn → R is convex, X ⊂ Rn is convex

and closed) can be equivalently reformulated as a conic program. This fact is of no actual use,
since a general-type cone is not simpler than a general-type closed convex set. What indeed is
important, is to recognize when a given convex program can be posed as a conic program from
a given family, primarily — when it can be posed as an LO/CQO/SDO program. To this end
we can develop an approach completely similar to the one we used in section 1.2.2. Specifically,
assume we are given a family K of regular cones, every one of them “living” in its own Euclidean
space. It makes sense to assume also that the family contains the nonnegative ray and is closed
w.r.t. taking finite direct products and to passing from a cone to its dual cone. The most
important for us examples are:

• the family LO of nonnegative orthants; this family underlies LO.

250 CONIC PROGRAMMING AND IPMs

• the family CQO of finite direct products of Lorentz cones; this family underlies CQO
(Conic Quadratic Optimization).
Note that CQO contains R+ = L1; the fact that all other requirements are satisfied is
evident (recall that the Lorentz cones are self-dual).

• the family SDO of finite direct products of semidefinite cones; this family underlies SDO
(Semidefinite Optimization).
Note that SDO contains R+ = S1

+, and satisfies all other requirements by exactly the
same reasons as CQO.

Now, given a family K, we call a set X ⊂ Rn K-representable, if it can be represented in the
form

X = {x ∈ Rn : ∃w : Px+Qw + r ∈ K} (!)

where K is a cone from K; corresponding data (P,Q, r,K), same as the representation itself,
are called K-representation of X (K-r. of X for short). note that this definition mirrors the
definition of a polyhedral representation of a set (which in our now language becomes LO-
representation). Completely similar to the polyhedral case, given a K-representation (!) of X,
we can immediately rewrite the problem of minimizing a linear objective cTx over X as a conic
program on the cone from the family K, specifically, the program

min
x,w

{
cTx : Px+Qw + r ∈ K

}
.

Bearing in mind this observation, we understand why it is important to build a calculus of K-
representable sets and functions. A K-r. of a function f is, by definition, the same as K-r. of its
epigraph, and a function is called K-representable, if it admits a K-r. Same as in the polyhedral
case, a K-r.

{[x; τ] : τ ≥ f(x)} = {[x; τ] : ∃w : Px+ τp+Qw + r ∈ K}

of a function f implies K-r.’s of the level sets of the function:

{x : a ≥ f(x)} = {x : ∃w : Px+ ap+Qw + r ∈ K}.

The basic calculus rules from section 1.2.3 extend word by word from the polyhedral rep-
resentability to K-representability; there are just two facts which, on a close inspection, are
responsible for the validity of the calculus rules:
• the fact that, given two systems of linear inequalities (that is, two component-wise vector
inequalities Ax ≤ b and Cx ≤ d), we can put them together, thus getting a single vector in-
equality [A;B]x ≤ [c; d]. What underlies this fact, is the closedness of the associated family
of cones (in the case of polyhedral representability, the family of nonnegative orthants) w.r.t.
taking direct products. Since we have required from K to possess the latter property, putting
together two conic inequalities Ax− b ∈ K and A′x− b′ ∈ K′ with K,K′ ∈ K results in a single
conic inequality [Ax;A′x]− [b; b′] ∈ K×K′ involving a cone from K.
• the fact that the feasible sets of finite systems of linear inequalities/equations are polyhedrally
representable. Since we require from K to contain rays and to be closed w.r.t. taking direct
products, these sets and K-representable as well.

7.1. CONIC PROGRAMMING 251

Extending more advanced rules of calculus of polyhedral representability to the case of
K-representability requires certain care. For example,

1. Assume that an LO program min
x
{cTx : Ax ≥ b, Rx = r} is feasible and bounded for some

value of [b; r]; as we remember from section 3.3.39, under this assumption the function
Opt([b; r]) = min

x
{cTx : Ax ≥ b, Rx = r} is convex and polyhedrally representable:

{[b; r; τ] : τ ≥ Opt([b; r])} =
{

[b; r; τ] : ∃x : Ax− b ≥ 0, Bx = r, cTx ≤ τ
}
. (!)

Now let us pass from the optimal value in a LO program to the one in a conic program:
Passing to the optimal value of a K-conic problem

Opt([b; r]) = inf
{
cTx : Ax− b ∈ K, Bx = r

}
. (7.1.12)

Assume that the program is strictly feasible and bounded for some value of [b; r]. Then
the dual program is feasible, and since the latter fact is independent of [b; r], we conclude
from Weak duality that (7.1.12) is bounded for all values of [b; r], so that the cost function
Opt([b; r]) takes only real values and perhaps the value +∞. You can easily verify that
the cost function is convex. Now, the “literal analogy” of (!) would be

{[b; r; τ] : τ ≥ Opt([b; r])} =
{

[b; r; τ] : ∃x : Ax− b ∈ K, Bx = r, cTx ≤ τ
}
,

but this relation is not necessarily true: Opt([b; r]) can be finite and non-achievable, mean-
ing that the fact that the point [b; r; τ] with τ = Opt([b; r]) is in the epigraph of Opt cannot
be “certified” by any x.

The correct version of (!) is as follows:

Let (7.1.12) be bounded and strictly feasible for some value of [b; r]. Then the
cost function Opt([b; r]) is a convex function, and the K-r. set

G =
{

[b; r; τ] : ∃x : Ax− b ∈ K, Rx = r, cTx ≤ τ
}
.

is in-between the epigraph

Epi(Opt(·)) = {[b; r; τ] : τ ≥ Opt([b; r])}

of the cost function and the “strictly upper part”

Epi+(Opt(·)) = {[b; r; τ] : τ > Opt([b; r])}

of this epigraph:
Epi+(Opt(·)) ⊂ G ⊂ Epi(Opt(·)).

2. The support function of a nonempty polyhedral set is polyhedrally representable, with a
p.r. readily given by a p.r. of the set (section 3.3.3). To get similar result in the general
conic case, we need strict feasibility of the representation of the set. The precise statement
reads:

9take into account that in section 3.3.3 we were speaking about the optimal value of a maximization problem,
while now we are speaking about optimal value of a minimization one; as a result, what used to be concave, now
becomes convex.

252 CONIC PROGRAMMING AND IPMs

Let X be a nonempty K-representable set given by a K-representation

X = {x : ∃w : Px+Qw − b ∈ K, Rx+ Sw = r} [K ∈ K]

which is strictly feasible, meaning that there exists x̄, w̄ such that

Px̄+Qw̄ − b ∈ int K, Rx̄+ Sw̄ = r.

Then the support function

Supp(ξ) = sup
x∈X

ξTx

of the set X admits the explicit K-representation

{[ξ; τ] : τ ≥ Supp(ξ)}

=

{
[ξ; τ] : ∃λ, µ :

λ ∈ K∗, P ∗λ+R∗µ+ ξ = 0, Q∗λ+ S∗µ = 0,
〈b, λ〉+ 〈r, µ〉+ τ ≥ 0

}
.

(7.1.13)

Note that (7.1.13) indeed is a K-representation of the support function, since K
is closed w.r.t. passing from a cone to its dual.

Indeed, −Supp(ξ) is the optimal value in the K-conic program

min
x,w

{
−ξTx : Px+Qw − b ∈ K, Rx+ Sw = r

}
. (∗)

The latter problem is strictly feasible; thus, for a real τ , we have τ ≥ Supp(ξ) iff the latter
problem is bounded with the optimal value ≥ −τ , which, by Conic Duality Theorem, is
the case iff the conic dual of (∗) admits a feasible solution with the optimal value ≥ −τ ,
that is, iff

∃λ, µ : λ ∈ K∗, P ∗λ+R∗µ = −ξ,Q∗λ+ S∗µ = 0, 〈b, λ〉+ 〈r, µ〉 ≥ −τ,

and (7.1.13) follows.

Remark: Similar to what was done in section 3.3.3, the possibility to point out a K-
representation of the support function of a (nonempty) K-r. set implies, along with other
consequences, the following result:

Let the (nonempty) uncertainty set of an uncertain LO problem be given by a
strictly feasible K-representation. Then the Robust Counterpart of the problem
can be straightforwardly converted into an explicit K-conic program.

Expressive abilities of CQO and SDO

We have seen that the “rule” part of the calculus of K-representable sets and functions remains
intact (and in its “advanced” parts is even slightly weaker) than the calculus of polyhedral
representability. What extends dramatically when passing from LO to CQO and especially
SDO, is the spectrum of “raw materials” of the calculus, that is, “elementary” CQO- and SDO-
representable functions and sets. With slight exaggeration, one can say that “for all practical
purposes,” all computationally tractable convex sets and functions arising in applications are

7.1. CONIC PROGRAMMING 253

SDO-representable, so that all “real life” convex problems are within the grasp of SDO10 In
our LO-oriented course, we omit the list of “raw materials” for the calculus of CQO- and SDO-
representable functions/sets; such a list can be found in [1]. Here we restrict ourselves with a
single “advertising example:” the messy and highly nonlinear optimization program

minimize
n∑̀
=1

x2
`

(a) x ≥ 0;

(b) aT` x ≤ b`, ` = 1, ..., n;

(c) ‖Px− p‖2 ≤ cTx+ d;

(d) x
`+1
`

` ≤ eT` x+ f`, ` = 1, ..., n;

(e) x
`
`+3

` x
1
`+3

`+1 ≥ g
T
` x+ h`, ` = 1, ..., n− 1;

(f) Det

x1 x2 x3 · · · xn
x2 x1 x2 · · · xn−1

x3 x2 x1 · · · xn−2
...

...
...

. . .
...

xn xn−1 xn−2 · · · x1

 ≥ 1;

(g) 1 ≤
n∑̀
=1

x` cos(`ω) ≤ 1 + sin2(5ω)∀ω ∈
[
−π

7 , 1.3
]

can be converted in a systematic way into a semidefinite program; omitting the constraints (f)
and (g), the problem can be systematically converted into a CQO-program (and thus solving it
within accuracy ε can be reduced in polynomial time to a similar problem for an LO program,
see section 1.3.

Remark: In the case of polyhedral representability, ignoring the “compactness” of a represen-
tation, we always can avoid slack variables: if a set in Rn admits a polyhedral representation,
it always is polyhedral, i.e., can be represented as the solution set of a system of linear in-
equalities in the “original” variables – the coordinates of a vector sunning through Rn. In the
non-polyhedral case, using slack variables in representations of sets and functions is a must. For
example, take the epigraph of the univariate function x4; this set is conic quadratic representable:

G := {[x, τ] ∈ R2 : τ ≥ x4} = {[x; τ] : ∃w ∈ R : ‖[2x;w − 1]‖2 ≤ w + 1︸ ︷︷ ︸
(a)

, ‖[2w; τ − 1]‖2 ≤ τ + 1︸ ︷︷ ︸
(b)

}.

Indeed, (a) says that w ≥ x2, and (b) says that τ ≥ w2; what these inequalities say about
τ, x is exactly τ ≥ x4. On the other hand, assume that we managed to find a conic quadratic
representation of the same set without slack variables:

G = {[x; τ] : ‖xai + τbi + ci‖2 ≤ αix+ βiτ + γi, 1 ≤ i ≤ m,xp+ τq = r}. (!)

Observe, first, that the system of linear equations should be trivial: p = q = r = 0. Indeed,
otherwise these equations would cut off the 2D plane of x and τ a line or a point containing G,

10Of course, whatever be a family K of cones, the K-representable sets and functions are convex (why?), so that
Conic Programming stays within the boundaries of Convex Optimization.

254 CONIC PROGRAMMING AND IPMs

which clearly is impossible. Now, the sets of the form {[x; τ] : ‖xai+ τbi+ ci‖2 ≤ αix+βiτ +γi}
are convex sets representable as intersections of solutions sets of quadratic inequalities

‖xai + τbi + γi‖22 ≤ [αix+ βiτ + γi]
2

with half-planes (or the entire 2D planes) {[x; τ] : αix + βiτ + γi ≥ 0}. A set of this type is
bounded by finitely many “arcs,” every one of them being either a line segment (including rays
and entire lines), or parts of ellipses/parabolas/hyperbolas, and thus the right hand side set in
(!) is bounded by finitely many arcs of the same type. But such an arc, as it is easily seen, can
intersect the true boundary of G – the curve given by t = x4 – only in finitely many points,
so that a finite number of the arcs cannot cover the curve. The conclusion is that G cannot
represent by conic quadratic inequalities in variables x, τ only.

Relations between LO, CQO and SDO. Clearly, polyhedral representations of sets and
functions are their CQO-m and SDO-representations as well — recall that the nonnegative ray
is the same as the one-dimensional Lorentz and one-dimensional semidefinite cones, so that non-
negative orthants “sit” in CQO and SDO, as a result, an LO program can be straightforwardly
converted into a conic quadratic and into a semidefinite program. For example, the “single-cone”
semidefinite reformulation of LO program

min
x

{
cTx : Ax ≥ b, Rx = r

}
(∗)

is as follows: keep the objective and the linear equality constraints as they are, and put the
entries of the m-dimensional vector Ax − b on the diagonal of a diagonal m ×m matrix A(x)
which, of course, will depend affinely on x. Since a diagonal matrix is symmetric and is positive
semidefinite iff its diagonal entries are nonnegative, (∗) is equivalent to the SDO program

min
x

{
cTx : A(x) � 0, Rx = r

}
.

A less trivial, but still simple, observation is that conic quadratic representable sets/functions
are semidefinite representable as well, with semidefinite representations readily given by conic
quadratic ones. The reason is that a Lorentz cone Ln is SDO-representable – it is just the inter-
section of the semidefinite cone Sn+ and an appropriate linear subspace of Sn (this is completely
similar to the fact that the nonnegative orthant Rn

+ is the intersection of Sn+ and the subspace
of n×n diagonal matrices). Specifically, given a vector x ∈ Rn, let us build the n×n symmetric
matrix

Arrow(x) =

xn x1 x2 ... xn
x2 x1

x3 x1
...

. . .

xn x1

(blanks are filled with zeros).

Lemma 7.1.2 Let x ∈ Rn. The matrix Arrow(x) is positive semidefinite iff x ∈ Ln. As a
result, a conic quadratic representation of a set

X = {x : ∃w : Aix+Biw + bi ∈ Lni , 1 ≤ i ≤ m}

can be converted into a semidefinite representation of the same set, specifically, the representation

X = {x : ∃w : Arrow(Aix+Biw + bi) � 0, 1 ≤ i ≤ m}.

7.1. CONIC PROGRAMMING 255

Proof. All we need is to prove the equivalence x ∈ Ln ⇔ Arrow(x) � 0. In one direction:
assume that x ∈ Ln, and let us prove that Arrow(x) � 0. The symmetry of Arrow(x) is evident.
To verify positive semidefiniteness, we should prove that hTArrow(x)h ≥ 0 for all h ∈ Rn.
Partitioning h = [g; t] with scalar t, and denoting y = [x1; ...;xn−1], we have xn ≥ ‖y‖2 due to
x ∈ Ln, whence

hTArrow(x)h = xn(t2 + gT g) + 2tyT g ≥ xn(t2 + gT g)− 2|t|‖y‖2‖g‖2 ≥ xn[t2 + gT g − 2|t|‖g‖2]
= xn(|t| − ‖g‖2)2 ≥ 0.

In the opposite direction: let x ∈ Rn and Arrow(x) � 0, and let us prove that x ∈ Ln. The
statement is evident when n = 1, so let n > 1. Setting x = [y;xn], let h = [g; 1], where g is the
unit vector such that gT y = −‖y‖2. Then

0 ≤ hTArrow(x)h = xn‖h‖22 + 2 · 1 · gT y = 2xn − 2‖y‖2 = 2[xn − ‖y‖2].

We see that xn ≥ ‖y‖2, meaning that x ∈ Ln. 2

Remark. The possibility to convert straightforwardly LO and CQO to Semidefinite Optimiza-
tion does not mean that this is the best way to solve LOs and CQO’s in actual computations.
Two former problems are somehow simpler than the latter one, and dedicated LO and CQO
solvers available today in commercial packages can solve linear and conic quadratic programs
much faster, and in a much wider range of sizes, than “universal” SDO solvers. This being said,
when solving “moderate size” LOs and CQOs (what is “moderate,” it depends on “fine struc-
ture” of a program being solved and may vary from few hundreds to few thousands of variables),
it is very attractive to reduce everything to SDO and thus to use a single solver. This idea is
implemented in the cvx package11 which uses the calculus of the semidefinite representable sets
and functions to convert the input “high level” description of a problem into its “inner” SDO-
reformulation which then is forwarded to an SDO solver. The input description of a problem
utilizes full capabilities of MATLAB and thus is incredibly transparent and easy to use, making
cvx an ideal tool for a classroom (and not only for it).

11”CVX: Matlab Software for Disciplined Convex Programming,” Michael Grant and Stephen Boyd,
http://www.stanford.edu/∼boyd/cvx/

256 CONIC PROGRAMMING AND IPMs

7.2 Interior Point Methods for LO and SDO

In this section we present basic theory of IPM’s for LO and SDO. In this presentation, same
as everywhere else in this course, we intend to stick to the “grand scheme of things,” without
going into algorithmic and implementation details. This allows for unified treatment of IPM’s
for LO and SDO.

7.2.1 SDO Program and its Dual

In what follows, the problem to be solved is a semidefinite program

min
x∈Rn

cTx :
n∑
j=1

xjA
j
i −Bi � 0, i = 1, ...,m

 , (∗)

where Bi and Aji are symmetric νi × νi matrices.

Note that for notational convenience, we have omitted linear equality constraints
which used to be a component of the standard form of a conic program. This can be
done without loss of generality. Indeed, we can use the linear equality constraints, if
any, to express part of the decision variables as affine functions of the remaining “in-
dependent” variables. Substituting these representations in the conic constraints and
discarding the linear equality constraints, we end up with an equivalent “equalities-
free” reformulation of the original problem.

It is convenient to think about the data matrices Bi, 1 ≤ i ≤ m, as about diagonal blocks in
a block-diagonal matrix B, and about matrices Aji , 1 ≤ i ≤ m, as about diagonal blocks in
block-diagonal matrices Aj . Since a block-diagonal symmetric matrix is positive semidefinite iff
its diagonal blocks are symmetric and positive semidefinite, we can rewrite (∗) equivalently as

Opt(P) = min
x

{
cTx : Ax−B ∈ Sν+

}
(P)

where

• A denotes the linear mapping

x 7→ Ax =
N∑
j=1

xjA
j (A)

from the space RN of the design variables x to the space Sν of block-diagonal symmetric
matrices of the block-diagonal structure ν = [ν1; ...; νm], that is, symmetric block-diagonal
matrices with m diagonal blocks of sizes ν1, ..., νm.

• Sν+ is the cone of positive semidefinite matrices from Sν .

Note that Sν clearly is a linear subspace in the space Sn of n× n symmetric matrices, where

n = |ν| :=
m∑
i=1

νi. (7.2.1)

Sν is equipped with the Frobenius inner product

〈X,S〉 = Tr(XS) =

n∑
i,j=1

XijSij [X,S ∈ Sν]

inherited from Sn. Note that the cone Sν+ is regular and self-dual (why?).

7.2. INTERIOR POINT METHODS FOR LO AND SDO 257

Notational conventions. I. We are in the situation when the cone associated with the conic
problem we want to solve “lives” in the space Sν of matrices. As a result, we need a special
notation for linear mappings with Sν as the argument or the image space, to distinguish these
mappings from matrices “living” in Sν . To this end we will use script letters A,B,... as in (A);
matrices from Sν , as usual will be denoted by capital Roman letters.

II. As always, we write A � B (⇔ B � A) to express that A,B are symmetric matrices
of the same size such that A − B is positive semidefinite; in particular, A � 0 means that A
is symmetric positive semidefinite. We write A � B (⇔ B ≺ A) to express that A,B are
symmetric matrices of the same size such that A − B is positive definite; in particular, A � 0
means that A is symmetric positive definite. The set of all positive definite matrices from Sν is
exactly the interior int Sν+ of the cone Sν+.

III. We shall denote the Euclidean norm associated with the Frobenius inner product by
‖ · ‖Fr:

‖A‖Fr =
√
〈A,A〉 =

√
Tr(A2) =

√∑
i,j

A2
ij [A ∈ Sν]

Assumption A. From now on we assume that

A. The linear mapping A has the trivial kernel, or, which is the same, the matrices
A1, ..., AN are linearly independent.

To justify this assumption, note that when A has a nontrivial kernel and c is not orthogonal
to this kernel, problem (P) definitely is bad — either infeasible, or unbounded. And if c is
orthogonal to KerA, we lose nothing by restricting x to reside in the orthogonal complement L
to KerA, which amounts to passing from (P) to an equivalent program of the same structure
and with linear mapping possessing trivial kernel.

The problem dual to (P)

The problem dual to the conic problem (P), according to our general theory, is

Opt(D) = max
S∈Sν

{
〈B,S〉 : A∗S = c, S ∈ (Sν+)∗ = Sν+

}
(D)

where A∗ : Sν → RN is the linear mapping conjugate to the mapping A : RN → Sν . Let us
compute A∗. By definition, A∗S is characterized by the identity

∀x ∈ RN : 〈S,Ax〉 = xT [A∗S].

Invoking (A), this reads

∀x = [x1; ...;xN] :
N∑
j=1

xj〈S,Aj〉 =

N∑
j=1

xj [A∗S]j ,

whence, recalling what 〈·, ·〉 is,

A∗S = [Tr(A1S); ...; Tr(ANS)] (A∗)

In other words, the equality constraints in (D) read Tr(AjS) = cj , 1 ≤ j ≤ N .

258 CONIC PROGRAMMING AND IPMs

Assumption B. In what follows we, in addition to A, make the following crucial assumption:

B. The primal-dual pair (P), (D) is primal-dual strictly feasible: there exist x̄ and
S̄ such that

Ax̄ � 0
S̄ � 0 & A∗S̄ = c.

(7.2.2)

By Conic Duality Theorem, B implies that both (P) and (D) are solvable with equal optimal
values.

Geometric form of the primal-dual pair (P), (D)

By elementary Linear Algebra, assumption A ensures solvability of the system of linear con-
straints in (D). Denoting by C ∈ Sν a solution to this system and recalling the construction from
section 7.1.6, we can pass from (P), (D) to geometric reformulations these problems, specifically,
to the pair

min
X

{
〈C,X〉 : XMP∩ ∈ Sν+

}[
C : A∗C = c,MP = LP −B, LP = =A := {Ax : x ∈ RN}

] (P)

max
S

{
〈B,S〉 : SMD∩ ∈ Sν+

}[
MD = LD + C, LD = KerA∗ := {S ∈ Sν : A∗S = 0} = L⊥P

] (D)

Recall that

• x is feasible for (P) iff the corresponding primal slack X(x) = Ax−B is feasible for (P),
and cTx = 〈C,X(x)〉+ 〈C,B〉;

• (D) is nothing but (D) written in the geometric form;

• When x is feasible for (P) and S is feasible for (D), the corresponding duality gap satisfies

DualityGap(x, S) := cTx− 〈B,S〉 = 〈X(x), S〉; (7.2.3)

• A pair of optimal solutions to (P), (D) is exactly a pair of orthogonal to each other feasible
solutions to the respective problems. A pair x, S of optimal solutions to (P), (D) is exactly
a pair of feasible solutions to the respective problems such that X(x) is orthogonal to S.

7.2.2 Path-Following Interior Point methods for (P), (D): preliminaries

Log-Det Barrier

In what follows, the central role is played by the log-det barrier for the cone Sν+ — the function

Φ(X) = − ln Det X : int Sν+ → R. (7.2.4)

This function is clearly well defined and smooth (has derivatives of all orders) on the interior
int Sν+ of the positive semidefinite cone; we extend Φ from this interior to the entire Sν by
setting Φ(X) = +∞ when X 6∈ Dom Φ := int Sν+, obtaining, on the closest inspection, a convex
function (it was shown in section 3.3.4, see p. 141). We are about to list the most important in
our context properties of this barrier. It will be very instructive for a reader to “translate” these
properties to the case of LO, which is nothing but the case of simple block-diagonal structure

7.2. INTERIOR POINT METHODS FOR LO AND SDO 259

ν = [1; ...; 1], where Sν is just the space of n×n diagonal matrices, or, identifying such a matrix
with the vector of its diagonal entries, just Rn. With this identification, Sν+ is nothing but the
nonnegative orthant Rn

+, and the log-det barrier becomes the log-barrier

F (x) = −
n∑
i=1

ln(xi) : int Rn
+ → R.

I. Barrier property: Whenever {Xi} is a sequence of points from Dom Φ = int Sn+
(i.e., a sequence of positive definite matrices) converging to a matrix X ∈ ∂Dom Φ
(i.e., converging to a positive semidefinite and singular matrix), we have Φ(Xi) →
+∞ as i→∞.
This property is evident: the vector of eigenvalues λ(X) of X (see p. 141) is the
limit of the vectors λ(Xi), and since X is positive semidefinite, but not positive
definite matrix, some of λj(X) are zeros. Thus, some of the n sequences {λj(Xi)}∞i=1,
1 ≤ j ≤ n, have zero limits, while the remaining have positive limits, whence

Φ(Xi) = − log Det (Xi) = −
n∑
j=1

ln(λj(Xi))→ +∞, i→∞. 2

II. Derivatives of Φ: Let X � 0. Then the gradient ∇Φ(X) of Φ at X is

∇Φ(X) = −X−1 (7.2.5)

and the Hessian H(X) = ∇Φ′(X) (which is a self-conjugate linear mapping acting
from Sν to Sν , see p. 332 in Appendix) is given by

H(X)H = X−1HX, H ∈ Sν . (7.2.6)

For derivation of these formulas, see Appendix, p. 328 and p. 333.

III. Strong convexity of Φ on its domain: For every X ∈ Dom Φ, we have

∀H ∈ Sν : 〈H,H(X)H〉 = ‖X−1/2HX−1/2‖2Fr ≥ 0, (7.2.7)

with the concluding inequality being strict unless H = 0.
Indeed, we have

〈H,H(X)H〉 = Tr(HX−1HX−1) =︸︷︷︸
(a)

Tr([HX−1HX−1/2]X−1/2)

= Tr(X−1/2[HX−1HX−1/2]) = Tr([X−1/2HX−1/2]2),

where (a) is given by the simple and important fact we have already mentioned:
whenever A and B are such that AB is well defined and is square, we have Tr(AB) =
Tr(BA).

IV. “Self-Duality” of Φ and basic identities: We have

• [“Self-duality”] The mapping X 7→ −∇Φ(X) = X−1 is a one-to-one mapping
of int Sν+ onto itself which is self-inverse: −∇Φ(−∇Φ(X)) = (X−1)−1 = X for
all X � 0.

260 CONIC PROGRAMMING AND IPMs

• [“Basic identities”] For X ∈ Dom Φ we have

(a) 〈X,∇Φ(X)〉 = −n :=
∑m

i=1 νi;
(b) ∇Φ(X) = −H(X)X;
(c) ∇Φ(tX) = t−1∇Φ(X).

(7.2.8)

Indeed, by (7.2.5) 〈X,∇Φ(X)〉 = Tr(X[−X−1]) = Tr(−In) = −n, while by
(7.2.6) and (7.2.5) ∇Φ(X) = −X−1 = −X−1XX−1 = −H(X)X. We have
proved (a) and (b); (c) is evident due to ∇Φ(X) = −X−1.

Path-Following Scheme: the Idea

The idea underlying the IPMs we are about to consider is as follows. Let µ > 0. Consider the
penalized primal objective, the penalty parameter being µ — the function

Pµ(X) := 〈C,X〉+ µΦ(X) :M+
P :=MP ∩ int Sν+ → R.

Thus is a smooth convex function on the strictly feasible part M+ of the feasible set of (P)
which has the barrier property — it blows up to +∞ along every sequence of strictly feasible
solutions to (P) converging to a boundary point of M+

P (i.e., to a feasible solution which is a
degenerate matrix; in the LO case, this is a feasible solution with not all the coordinates strictly
positive). Assume that this function attains its minimum overM+

P at a unique point X = X∗(µ)
(as we shall see in a while, this indeed is the case). We arrive at a curve X∗(µ), µ > 0, in the
space of strictly feasible solutions to (P). called the primal central path. Now, what happens
when µ→ +0? When µ is small, the function Pµ(X) is close to the primal objective 〈C,X〉 in
“almost entire” set M+

P of strictly feasible solutions to (P), that is, everywhere in the set M+
P

except for a narrow “strip” along the relative boundary ∂M+
P = {X ∈MP ∩Sν+ : Det (X) = 0}

of the set where Φ(X) is so large that the penalty term µΦ(X) is “non-negligible.” As µ→ +0,
this stripe becomes more and more thin, so that ‘Pµ(X) becomes more and more close to the
primal objective in a larger and larger part of the set M+

P of strictly feasible primal solutions.
As a result, it is natural to expect (and indeed is true) that the primal central path approaches
the primal optimal set as µ→ 0 — it is a kind of Ariadne’s thread leading to the primal optimal
set, see figure 7.1. In the path-following IPM, we move along this path, staying “close” to it –
exactly as Theseus used Ariadne’s thread – and thus approach the optimal set. How we “move
along the path staying close to it,” this will be explained later. What is worthy of noting tight
now, is that the dual problem (D), which is in no sense inferior to (P), also defines a path,
called the dual central path, which leads to the dual optimal set. It turns out that it makes
full sense to follow both the paths simultaneously (these two processes “help each other”), thus
approaching both primal and dual optimal solutions.

7.2.3 Central Path: Existence and Characterization

Proposition 7.2.1 Under Assumption B of strict primal-dual feasibility, for every µ > 0 the
functions

Pµ(X) = 〈C,X〉+ µΦ(X) :M+
P :=MP ∩ int Sν+ → R

Dµ(X) = −〈B,S〉+ µΦ(S) :M+
D :=MD ∩ int Sν+ → R

the respective minimizers X∗(µ) and S∗(µ) being unique. These minimizers X∗ = X∗(µ) and
S∗ = S∗(µ) are fully characterized by the following property: X∗ is a strictly feasible solution

7.2. INTERIOR POINT METHODS FOR LO AND SDO 261

µ = 0.1 µ = 0.01 µ = 0.001

Part of M+
P where |µΦ(X)| > µ3/4

Central path (magenta) and optimal solution
(the lowest point of the feasible domain)

Figure 7.1: 2D primal feasible set MP ∩ S4
+ and the primal central path

262 CONIC PROGRAMMING AND IPMs

to (P), S∗ as a strictly feasible solution to (D), and the following four equivalent to each other
relations take place:

S∗ = µX−1
∗ [⇔ S∗ = −µ∇Φ(X∗)] (a)

⇔ X∗ = µS−1
∗ [⇔ X∗ = −µ∇Φ(S∗)] (b)

⇔ X∗S∗ = µI (c)
⇔ S∗X∗ = µI (d)
⇔ X∗S∗ + S∗X∗ = 2µI (e)

(7.2.9)

Proof. 10. Let us prove first that Pµ(·) achieves its minimum at M+
P . Indeed, let Xi be a

minimizing sequence for Pµ, that is, Xi ∈M+
P and

Pµ(Xi)→ inf
X∈M+

P

Pµ(X), i→∞.

All we need is to prove that the sequence {Xi} is bounded. Indeed, taking this fact for granted,
we could extract from the sequence a converging subsequence; w.l.o.g., let it be the sequence
itself: ∃X̄ = limi→∞Xi. We claim that X̄ ∈ M+

P , which would imply that X̄ is a desired
minimizer of Φµ(·) on M+

P . Indeed the only alternative to X̄ ∈ M+
P is that X̄ is a boundary

point of Sν+; but in this case Φ(Xi)→∞ as i→∞ due to the barrier property of Φ, while the
sequence 〈B,Xi〉 is bounded since the sequence {Xi} is so. It would follow that Pµ(Xi)→ +∞
as i→∞, which contradicts the origin of the sequence {Xi}.

It remains to verify our claim that the sequence {Xi} is bounded. To this end note that,
as we remember from section 7.1.6, when we replace C (which by its origin belongs to the dual
feasible plane MD = {S : A∗S = c}, see (P), (D)) with any other point C ′ ∈ MD, the primal
objective, restricted to the primal feasible plane MP , is shifted by a constant, meaning that
{Xi} is a minimizing sequence for the function P ′µ(X) = 〈C ′, X〉 + µΦ(X) on M+

P . Since (D)
is strictly feasible, we can choose C ′ to be � 0, which, by Lemma 7.1.1 and due to the fact
that Sν+ is self-dual, implies that ‖X‖Fr ≤ θ〈C ′, X〉 for some θ and all X ∈ Sν+. Assuming
that ‖Xi‖Fr → ∞ as i → ∞ and taking into account that Φ(X) ≥ − ln(m‖X‖Fr) when int Sν+
(why?), we would conclude that

P ′µ(Xi) = 〈C ′, Xi〉+ µΦ(Xi) ≥ θ−1‖Xi‖Fr − µ ln(m‖Xi‖Fr)→∞, i→∞,

which contradicts to the fact that {Xi} is a minimizing sequence for P ′µ(·) on M+
P . This con-

tradiction shows that the sequence {Xi} bounded, as claimed.
20 Now let us prove that the minimizer of Pµ(·) onM+

P is unique. This is immediately given
by the fact that M+

P is convex and Pµ(·) is strongly convex along with Φ.

Since we do not assume previous knowledge of continuous optimization, here is the
verification. Assume that X ′, X ′′ are two distinct minimizers of Pµ(·) onM+

P , and let
us lead this assumption to a contradiction. To this end letH = X ′′−X ′, Xt = X ′+tH
and φ(t) = Pµ(Xt), 0 ≤ t ≤ 1. Computing φ′′(t), we get φ′′(t) = 〈H,H(Xt)H〉 > 0,
see item III in section 7.2.2. At the same time, φ attains its minimum on [0, 1]
at 0 and at 1 due to the origin of X ′ and X ′′. Since φ(0) ≤ φ(t) for t ∈ [0, 1],
φ′(0) ≥ 0, and since φ(t) ≥ φ(1) for t ∈ [0, 1], φ′(1) ≤ 0. But this is impossible, since
φ′(1) = φ′(0) +

∫ 1
0 φ
′′(t)dt > φ′(0).

30 We have proved that the minimizer X∗ of Pµ(·) on M+
P exists and is unique. By exactly

the same argument but applied to (D) instead of (P), the minimizer S∗ = S∗(µ) of Dµ(·) onM+
D

7.2. INTERIOR POINT METHODS FOR LO AND SDO 263

exists and is unique. Now, for every H ∈ LP a segment {X∗ + tH,−δ ≤ t ≤ ∆} is contained in
M+

P provided δ > 0 is small enough; indeed, this segment clearly is contained in MP for all δ
and is comprised of positive definite matrices for small enough δ > 0 due to X∗ � 0. Applying
the Fermat rule, we see that the directional derivative DPµ(X∗)[H] = d

dt

∣∣
t=0

Pµ(X∗ + tH) =
〈C−µ∇Φ(X∗), H〉 of Pµ(X∗) taken at X∗ along the direction H should be 0, and this should be
so for every H ∈ LP , meaning that the gradient ∇Pµ(X∗) should be orthogonal to LP and thus
should belong to LD = L⊥P . Vice versa, if X̄ ∈ M+

P is such that ∇Pµ(X̄) ∈ L⊥P , then, taking
into account that Pµ(·) is convex onM+

P along with Φ(·) (see the beginning of section 7.2.2) and
applying Gradient inequality, we conclude that X̄ is a minimizer of Pµ(·) overM+

P . The bottom
line is as follows: X∗ is fully characterized by the fact that it is a strictly feasible solution to
(P) such that C + µ∇Φ(X∗) = C − µX−1

∗ ∈ L⊥P = LD. Since X−1
∗ � 0 due to X∗ � 0, recalling

the definition of the dual feasible plane, this conclusion can be reformulated as follows:

(!) X∗ = X∗(µ) is fully characterized by the fact that it is a strictly feasible solution
to (P) such that µX−1

∗ ≡ −µ∇Φ(X∗) is a strictly feasible solution to (D).

By similar argument,

(!!)S∗ = S∗(µ) is fully characterized by the fact that it is a strictly feasible solution
to (P) such that µS−1

∗ ≡ −µ∇Φ(S∗) is a strictly feasible solution to (P).

Now note that the “strictly feasible solution to (D)” mentioned in (!) is nothing but S∗. Indeed,
setting temporary Ŝ = µX−1

∗ , we get a strictly feasible solution to (D) such that µŜ−1 = X∗
is a strictly feasible solution to (P); but by (!!), these two facts fully characterize S∗, and we
conclude that S∗ = µX−1

∗ .

40 We have proved that X∗ = X∗(µ), S∗ = S∗(µ) are fully characterized by the facts that
they are strictly feasible solutions to the respective problems (P), (D) and are linked to each
other by any one of the first four (clearly equivalent to each other) relations in (7.2.9). It remains
to verify that these four relations, taken along with the fact that X∗ and S∗ are positive definite,
are equivalent to the fifth relation in (7.2.9). To this end it clearly suffices to verify that if X,S
are positive semidefinite symmetric matrices such that SX +XS = 2tI with certain real t, then
the matrices commute: SX = SX, so that SX = XS = tI. Indeed, from SX + XS = 2tI
it follows that X2S = 2tX − XSX is a symmetric matrix, that is, X2S = (X2S)T = SX2,
i.e., the symmetric matrices X2 and S commute. By Theorem on simultaneous diagonalization
of commuting symmetric matrices (Appendix, p. 337), there exist orthogonal matrix U such
that both the matrices USUT = P and UX2UT = Q are diagonal (and positive semidefinite
along with S,X). Setting R = Q1/2, consider the matrices S = UTPU and X̄ = UTRU . These
matrices clearly commute, so that all which we need to prove is that in fact X̄ = X. But this
is evident: by construction, X̄ � 0 and X̄2 = UT [Q1/2]2U = X2, that is, X̄ = (X2)1/2; but the
latter matrix is nothing but X due to X � 0. 2

Primal-dual central path. We have proved that the primal and the dual central paths
X∗(µ), S∗(µ) are well defined. In the sequel, we refer to (X∗(·), S∗(·)) as to primal-dual central
path of the strictly primal-dual feasible primal-dual pair (P), (D) of semidefinite programs. By
the origin of (P), X∗(µ) = Ax∗(µ) for uniquely defined (by assumption A) path x∗(µ) of feasible
solutions to (P).

264 CONIC PROGRAMMING AND IPMs

Augmented Complementary Slackness. The equivalent to each other relations (7.2.9.c-e)
are called augmented complementary slackness conditions The reason is clear: the necessary
and sufficient condition for a pair of primal-dual; feasible solutions (X,S) to (P), (D) be be
comprised of optimal solutions is Tr(XS) = 0, or, which is the same for symmetric positive
semidefinite matrices, XS = SX = 0 12 Relations (7.2.9.c-e) replace XS = 0 with a close, for
small µ > 0, relation XS = µI, which allow X and S to be positive definite.

7.2.4 Duality Gap along the Primal-Dual Central Path and around it

We start with the following immediate

Observation 7.2.1 The duality gap along the primal-dual central path is equal to µn, n =∑
i νi:

∀µ > 0 : DualityGap(X∗(µ), S∗(µ)) := cTx∗(µ)− 〈B,S∗(µ) = 〈X∗(µ), S∗(µ)〉 = µn. (7.2.10)

Indeed, the first equality in (7.2.10) is explained in section 7.1.6, and the second equality is due
to the definition of the Frobenius inner product and (7.2.9).

Observation 7.2.1 shows that if we were able to move along the primal-dual central path
pushing µ to +0, we were approaching primal-dual optimality at the rate depending solely on
the rate at which µ approaches 0. unfortunately, the primal-dual central path is a curve, and
there is no possibility to stay at it all the time. What we intend to do, is to trace this path,
staying close to it. Immediate related questions are

A. What kind of closeness is appropriate for us?

B. How to trace the path staying “appropriately close” to it?

Here we answer question A; question B, which is the essence of the matter, will be answered in
the next section.

Proximity measure. A good, by far not evident in advance, is offered by the proximity
measure as follows:

Given a target value µ > 0 of the path parameter and a pair Z = (X,S)
of strictly feasible solutions to (P), (D), we quantify the closeness of (X,S) to
Z∗(µ) = (X∗(µ), S∗(µ)) by the quantity

dist(Z,Z∗(µ)) =
√
〈[µ−1S −X], [H(X)]−1[µ−1S −X−1]〉

=
√

Tr(X[µ−1S −X−1]X[µ−1S −X−1]).
(7.2.11)

Observe that this “strange” proximity measure is well defined: H(X), due to its origin, is a
symmetric positive definite mapping of Sν onto itself, so that the quantity under the square
root always is nonnegative and is 0 iff S = µX−1 – the equality which, for strongly feasible

12The equivalence is shown as follows: Let X � 0, S � 0; we should prove that Tr(XS) = 0 iff XS and
iff SX = 0. In one direction this is evident: if XS = 0, then also SX = (XS)T = 0, and vice versa, and of
course in this case Tr(XS) = 0. In the opposite direction: assume that Tr(XS) = 0. Then 0 = Tr(XS) =
Tr(X1/2SX1/2) = Tr((X1/2S1/2)(X1/2S1/2)T) = ‖X1/2S1/2‖2Fr, whence X1/2S1/2 = 0, so that S1/2X1/2 =

(X1/2S1/2)T = 0 as well. We see that the matrices X1/2 and S1/2 commute and their product is 0, whence also
XS = (X1/2)2(S1/2)2 = X1/2S1/2S1/2X1/2 = 0.

7.2. INTERIOR POINT METHODS FOR LO AND SDO 265

solutions to (P), (D), characterizes the pair X∗(µ), S∗(µ). Note also that the above “distance,”
which looks asymmetric w.r.t. X and S. is in fact perfectly symmetric:

Tr(X[µ−1S −X−1]X[µ−1S −X−1]) = Tr([µ−1XS − I][µ−1XS − I])
= Tr(µ−2XSXS − 2µ−1XS + I) = Tr(µ−2SXSX − 2µ−1SX + I)
= Tr([µ−1SX − I][µ−1SX − I]) = Tr(S[µ−1X − S−1]S[µ−1X − S−1]).

Besides recovering the symmetry w.r.t. X,S, this computation shows also that

dist2((X, s), Z∗(µ)) = Tr(µ−2XSXS − 2µ−1XS + I)

= Tr(µ−2X1/2SXSX1/2 − 2µX1/2SX1/2 + I)

= Tr([µ−1X1/2SX1/2 − I]2) = ‖µ−1X1/2SX1/2 − I‖2Fr;

taking into account the symmetry, we arrive at

dist2((X,S), Z∗(t)) = ‖µ−1X1/2SX1/2 − I‖2Fr = ‖µ−1S1/2XS1/2 − I‖2Fr. (7.2.12)

We extract from these relations an important

Corollary 7.2.1 Let Z = (X,S) be a pair of strictly feasible solutions to (P), (D). Then

DualityGap(X,S) ≤ µn(1 + ρ/
√
n), ρ = dist((X,S), (X∗(µ), S∗(µ))). (7.2.13)

Indeed, the matrix R = µ−1X1/2SX1/2 − I is symmetric, and ρ2 =
∑

i,j R
2
ij ≥

∑
iR

2
ii, whence∑

iRii ≤ ρ
√
n. In other words,

DualityGap(X,S) = Tr(XS) = Tr(X1/2SX1/2) = µ

n∑
i=1

(1 +Rii) ≤ µn+ µρ
√
n. 2

In the sequel, we shall say that a pair (X,S) close to Z∗(µ) = (X∗(µ), S∗(µ)), if X is strictly
feasible solution to P), S is strictly feasible solution to (D), and

dist((X,S), Z∗(µ) ≤ 0.1.

Corollary 7.2.1 says that as far as the duality gap is concerned, a pair of primal-dual strictly
feasible solutions (X,S) which is close to (X∗(µ), S∗(µ)) is essentially as good as the latter pair
itself:

DualityGap(X,S) ≤ 1.1µn.

Thus, it is wise to trace the path as µ → +0 – to build a sequence of triples (Xi, Si, µi) with
(Xi, Si) close to Z∗(µi) and µi → 0 as i→∞. The rate of convergence of such a scheme depends
solely on the rate at which we can push µi to 0.

Conceptual Path-Following Scheme

Assume we are given a current value µ̄ > 0 of the path parameter and a current iterate (X̄, S̄)
close to Z∗(µ̄). How could we decrease the value of µ to a smaller value µ+ > 0 and to update
(X̄, S̄) into a new iterate (X+, S+) close to Z∗(µ+)? If we knew an answer to this question,
we could iterate the updating (X̄, S̄, µ̄) 7→ (X+, S+, µ+), thus hopefully obtaining a converging
algorithm.

266 CONIC PROGRAMMING AND IPMs

Assume that we have somehow chosen µ+ > 0. Denoting ∆X̄ = X+ − X̄, ∆S = S+ − S̄,
these two matrices should satisfy the following restrictions:

(a) ∆X ∈ LP
(a′) X̄ + ∆X � 0
(b) ∆S ∈ LD = L⊥P
(b′) S̄ + ∆S � 0
(c) Gµ+(X̄ + ∆X, S̄ + ∆S) ≈ 0.

(7.2.14)

Here (a), (a′) ensure that X+ = X̄+∆X is strictly primal feasible, (b), (b′) ensure that S+ = S̄+
∆S strictly dual feasible, and Gµ+(X,S) represents equivalently the augmented complementary
slackness condition µ−1

+ S − X−1 = 0, so that (c) is responsible for closeness of (X+, S+) to
Z∗(µ+).

Now, (a) and (b) are just linear equality constraints, and we know from Linear Algebra how
to handle them. Since (s′) and (b′) are strict conic inequalities which are satisfied when ∆X = 0,
∆S = 0, they will be automatically satisfied when ∆X and ∆S are small enough, which we can
hope to ensure by decreasing µ “not too aggressively” – by choosing µ+ < µ̄ close enough to
µ̄. What is an actual troublemaker, is (c) — this is a system of nonlinear inequalities. Well,
in Computational Mathematics there is a standard way to cope with nonlinearity of systems of
equations we want to solve — linearization. Given current iterate, we linearize the equations
of the system at this iterate and solve the resulting system of linear equations, treating the
resulting solution as our new iterate. The rationale behind this approach, called the Newton
method (it indeed goes back to Newton) is that if we already are close to a solution to the true
system, then the linearized system will be “very close” to the true one, so that the new iterate
will be “much closer” to the actual solution than the previous one. When replacing (7.2.15)
with the linearization of the augmented complementary slackness condition taken at “previous
iterate” ∆X = 0, ∆S = 0, we end up with the system of linear equations in variables ∆X, ∆S

(a) ∆X ∈ LP
(b) ∆S ∈ LD = L⊥P
(c) Gµ+(X̄, S̄) +

∂Gµ+ (X̄,S̄)

∂X ∆X +
∂Gµ+ (X̄,S̄)

∂S ∆S = 0.

(7.2.15)

augmented by �-inequalities
x̄+ ∆X � 0, S̄ + ∆S � 0 (7.2.16)

At a step of a “simple” path-following method, given current value µ̄ > 0 of the path parameter
along with current strictly primal-dual feasible iterate (X̄, S̄), we

• choose a new value µ+ > 0 of the path parameter,

• form and solve the system (7.2.15) of linear equations in matrix variables ∆X, ∆S, and

• update the iterate according to (X̄, S̄) 7→ (X+ = X̄ + ∆X,S+ = S̄ + ∆S)

and go to the next step (i,.e., replace X̄, S̄, µ̄ with X+, S+, µ+ and repeat the above actions. In
such a method, the care on �-inequalities (7.2.16) comes from the construction of the method –
it should be such that these inequalities are automatically satisfied. In more advanced methods,
the solution ∆X, ∆S to (7.2.15) plays the role of search direction rather than the actual shift
in the iterates; the new iterates are given by

X+ = X̄ + α∆X, S+ = S̄ + α∆S, (!)

7.2. INTERIOR POINT METHODS FOR LO AND SDO 267

where α > 0 is a stepsize chosen according to rules (different in different methods) which include,
in particular, the requirement that (!) preserves positive definiteness. With this modification,
the restrictions (7.2.16) become redundant and are eliminated.

Primal path-following method

Let us look what happens when we use in (7.2.15) the augmented complementary slackness
condition in its initial form

Gµ+(X̄ + ∆X, S̄ + ∆S) := µ−1
+ [S̄ + ∆S]− [X̄ + ∆X]−1 = 0. (∗)

In this case, recalling that −(X̄ + ∆X)−1 = ∇Φ(X̄ + ∆X) ≈ ∇Φ(X̄) + H(X̄)∆X and taking
into account item II in section 7.2.2, relation (7.2.15.c) reads

µ−1
+ (S̄ + ∆S)− X̄−1 + X̄−1∆XX̄−1 = 0,

so that (7.2.15) becomes the system

(a) ∆X ∈ LP ⇔ ∆X = Aδx [∆x ∈ RN]
(b) ∆S ∈ LD ⇔ A∗∆L = 0

(c) µ−1
+ [S̄ + ∆S]− X̄−1 + X̄−1∆XX̄−1 = 0

(Nwt)

(we have used the description of LP and LD as given in (P), (D)). To process the system, we
act as follows. We set

K(x) = Φ(X(x)) ≡ Φ(Ax−B),

thus getting a barrier for the feasible domain of (P); note that for a strictly feasible solution x
to (P) we have

∇K(x) = A∗∇Φ(X(x)),∇2K(x)h = A∗H(X(x))Ah [X(x) = Ax−B]

Let also x̄ be the strictly feasible solution to (P) corresponding to the strictly feasible solution
X̄ to (P):

X̄ = X(x̄) = Ax̄−B.

Multiplying both sides in (Nwt.c) by A∗ and taking into account that A∗(S̄ + ∆S) = c (since S̄
is dual feasible and ∆S should satisfy A∗∆S = 0), we get the equation

∇2K(x̄)δx+∇K(x̄) + µ−1
+ c = 0 (∗)

in variable ∆x ∈ Rn. It is immediately seen that assumption A and strong convexity of Φ (item
III in section 7.2.2) ensure that ∇2K(x̄) is positive definite and thus nonsingular, and we can
solve (∗) thus getting

δx = −
[
∇2K(x̄)

]−1
[∇K(x̄) + µ−1

+ c]

⇒ X+ = X(x̄+ ∆x) = A[x̄+ ∆x]−B
S+ = S + ∆S = µ+

[
X̄−1 +H(X̄)A∆x

]
.

We see that this process can be expressed in terms of the original decision variables x ∈ RN and
the barrier K(x) for the feasible domain of (P). Iterating this process, we arrive at the primal

268 CONIC PROGRAMMING AND IPMs

path-following method where the iterates xi in the space of original decision variables and the
values µi of the path parameter are updated according to

(a) µi 7→ µi+1 > 0

(b) xi 7→ xi+1 = xi −
[
∇2K(xi)

]−1
[∇K(xi) + µ−1

i+1c]
(7.2.17)

and this process is accompanied by generating primal slacks Xi+1 and dual solutions Si+1 ac-
cording to

Xi+1 = X(xi+1) = Axi+1 −B
Si+1 = µi+1

[
X−1
i +X−1

i [A[xi+1 − xi]X−1
i

] (7.2.18)

Note that the relation (7.2.17.b) is quite transparent. Indeed, the original design
variables x ∈ RN affinely parameterize the primal feasible planeMP in (P) accord-
ing to X = X(x) = Ax−B, and the objective 〈C,X〉 of (P) in this parameterization,
up to an irrelevant additive constant, is the original objective cTx. With this pa-
rameterization, the set M+

P of strictly feasible solutions to (P) is parameterized by
the interior int X of the feasible domain X = {X : Ax− B ∈ M+

P } of (P), and the
primal central path X∗(µ) is parameterized by the primal central path x∗(µ) ∈ int X
in the space of x-variables. Now, X∗(µ) minimizes 〈C,X〉 + µΦ(X) over X ∈ M+

P ,
meaning that x∗(µ) minimizes cTx + µΦ(Ax − B) = cTx + µK(x) over x ∈ int X .
In other words, x∗(µ) is given by the Fermat equation

∇K(x) + µc = 0;

Linearizing this equation (where µ is set to µi+1) at i-th iterate xi ∈ int X , we get
the Newton equation for xi+1:

∇K(xi) +∇2K(xi+1)(xi+1 − xi) + µi+1c = 0.

Solving this equation with respect to xi+1, we arrive at the recurrence (7.2.17.b).

Note: With the augmented complementary slackness relation Gµ+(X,S) = 0 rewritten in the
form µ−1

+ X − S−1 = 0, the construction completely similar to one we have just presented leads
to the dual path-following method which, essentially is the primal path-following algorithms as
applied to the “swapped” pair (D), (P) of problems.

The complexity analysis of the primal path-following method can be summarized in the
following statement (we omit its proof):

Theorem 7.2.1 Assume that we are given a starting point (x0, S0, µ0) such that x0 is a strictly
feasible solution to (P), S0 is a strictly feasible solution to (D), µ0 > 0 and the pair

(X0 = Ax0 −B,S0)

is close to Z∗(µ0):
dist((X0, S0), Z∗(µ0)) ≤ 0.1.

Starting with (µ0, x0, X0, S0), let us iterate process (7.2.17) – (7.2.18) equipped with the updating
policy for µi given by

µi+1 =

(
1 +

0.1√
n

)−1

µi [n =

m∑
i=1

νi] (7.2.19)

The resulting process is well-defined and generates strictly primal-dual feasible pairs (Xi, Si) such
that (Xi, Si) stay close to the points Z∗(µi) on the primal-dual central path:

dist((Xi, Si), Z∗(µi)) ≤ 0.1, i = 1, 2, ... (7.2.20)

7.2. INTERIOR POINT METHODS FOR LO AND SDO 269

The theorem says that getting once close to the primal-dual central path, we can trace it by the
primal path-following method, keeping the iterates close to the path (see (7.2.20) and decreasing
the penalty parameter by an absolute constant factor every O(1)

√
n steps. Taking into account

Corollary 7.2.1 we conclude that

DualityGap(Xi, Si) ≤ 1.1nµ0 exp{−O(1)i/
√
n}, (7.2.21)

that is,

(!) Every O(1)
√
n iterations of the method reduce the (upper bound on the) duality

gap by an absolute constant factor, say, by factor 10.

This fact is extremely important theoretically; in particular, it underlies the best known so
far RACM-polynomial time complexity bounds for LO, CQO and SDO. As a practical tool,
the primal at least in their short-step form presented above, are not that attractive. The
computational power of the methods can be improved by passing to appropriate large-step
versions of the algorithms, but even these versions are thought of to be inferior as compared
to “true” primal-dual path-following methods (those which “indeed work with both (P) and
(D)”, see below). There are, however, cases when the primal or the dual path-following scheme
seems to be unavoidable; these are, essentially, the situations where the pair (P), (D) is “highly
asymmetric”, e.g., (P) and (D) have different by orders of magnitude design dimensions dim LP ,
dim LD. Here it becomes too expensive computationally to treat (P), (D) in a “nearly symmetric
way”, and it is better to focus solely on the problem with smaller design dimension.

7.2.5 Primal-Dual Path-Following methods

Zhang’s family of path-following IPMs

The augmented complementary slackness condition can be written in several equivalent forms,
e.g., µ−1S −X−1 = 0, µ−1X − S−1 = 0, or XS + SX = 2µ−1I. What the word “equivalence”
means here is that the “positive definite parts” (those where X � 0, S � 0) of the solution sets
of the above matrix equations coincide with each other. Note, however, that we are interested
in approximate solutions to these equations and in linearizations of the equations taken at these
approximate solutions, and from this viewpoint different “equivalent” forms of the augmented
complementary slackness condition are not equivalent at all and lead to different path-following
algorithms.

Let us focus on the Zhang’s family of representations of the augmented complementary
slackness condition. Specifically, given µ > 0 and a positive definite matrix Q ∈ Sν , let us look
at the equation

QXSQ−1 +Q−1SXQ = 2µI. (7.2.22)

in symmetric matrix variables X,S ∈ Sν . We claim that positive definite solutions X,S to this
equation are exactly positive definite X,S satisfying the augmented complementary slackness
condition XS = µI.

In one direction our claim is evident: if X � 0, S � 0 satisfy XS = µI, then,
of course, X,S are positive definite solutions to (7.2.22). Vice versa, let X,S be
positive definite solutions to (7.2.22), and let us prove that XS = µI. to this end
let X̂ = QXQ and S̃ = Q−1SQ−1; since Q,S,X are symmetric positive definite, so
are X̂ and S̃. We have

X̂S̃+ S̃X̂ = [QXQ][Q−1SQ−1] + [Q−1SQ−1][QXQ] = QXSQ−1 +Q−1SXQ = 2µI,

270 CONIC PROGRAMMING AND IPMs

where the last equality is due to (7.2.22). But when proving Proposition 7.2.1, we
have seen that if a pair of positive definite symmetric matrices X̂, S̃ satisfies the
relation X̂S̃+ S̃X̂ = 2µI, then X̂S̃ = µI, that is, QXSQ−1 = µI, which is the same
as XS = µI.

We can use the representation (7.2.22) of the augmented complementary slackness condition in
a path-following method, even varying the scaling matrix Q from step to step. Analysis of such
a method simplifies dramatically when the matrix Q � 0 we choose at an iteration ensures that
the matrices

S̃ = Q−1S̄Q−1, X̂ = QX̄Q

commute (X̄, S̄ are the iterates to be updated); such a policy is called a “commutative scaling.”
Popular commutative scalings are:

1. Q = S̄1/2 (S̃ = I, X̂ = S̄1/2X̄S̄1/2) (the “XS” method);

2. Q = X̄−1/2 (S̃ = X̄1/2S̄X̄1/2, X̂ = I) (the “SX” method);

3. Q is such that S̃ = X̂ (the NT (Nesterov-Todd) method, extremely attractive and deep)

If X̄ and S̄ were just positive reals, the formula for Q would be simple: Q =
(
S̄
X̄

)1/4

.

In the matrix case this simple formula becomes a bit more complicated (to make our
life easier, below we write X instead of X̄ and S instead of S̄):

Q = P 1/2, P = X−1/2(X1/2SX1/2)−1/2X1/2S.

We should verify that (a) P is symmetric positive definite, so that Q is well-defined,
and that (b) Q−1SQ−1 = QXQ.

(a): Let us first verify that P is symmetric:

P ? =? PT

m
X−1/2(X1/2SX1/2)−1/2X1/2S ? =? SX1/2(X1/2SX1/2)−1/2X−1/2

m(
X−1/2(X1/2SX1/2)−1/2X1/2S

) (
X1/2(X1/2SX1/2)1/2X−1/2S−1

)
? =? I

m
X−1/2(X1/2SX1/2)−1/2(X1/2SX1/2)(X1/2SX1/2)1/2X−1/2S−1 ? =? I

m
X−1/2(X1/2SX1/2)X−1/2S−1 ? =? I

and the concluding ? =? indeed is =.

Now let us verify that P is positive definite. It is known from Linear Algebra that
the spectrum (the set of distinct eigenvalues) of the product AB of two square matrices
remains unchanged when we swap the factors13. Therefore, denoting σ(A) the spectrum

13Here is the verification: If λ = 0 is an eigenvalue of AB, then the matrix AB is singular, that is, Det (AB) = 0,
whence Det (BA) = 0 and thus BA is singular, meaning that λ = 0 is an eigenvalue of BA as well. Now let
λ 6= 0 be an eigenvalue of AB. Assume that λ is not an eigenvalue of BA, and let us lead this assumption to
a contradiction. Setting R = I + λ−1A[I − λ−1BA]−1B, we have R[I − λ−1AB] = [I − λ−1AB] + λ−1A[I −
λ−1BA]−1(B[I − λ−1AB]) = [I − λ−1AB] + λ−1A[I − λ−1BA]−1[I − λ−1BA]B = [I − λ−1AB] + λ−1AB = I,
that is, [I − λ−1AB] is invertible, which is impossible since λ is an eigenvalue of AB.

7.2. INTERIOR POINT METHODS FOR LO AND SDO 271

of A, we have

σ(P) = σ
(
X−1/2(X1/2SX1/2)−1/2X1/2S

)
= σ

(
(X1/2SX1/2)−1/2X1/2SX−1/2

)
= σ

(
(X1/2SX1/2)−1/2(X1/2SX1/2)X−1

)
= σ

(
(X1/2SX1/2)1/2X−1

)
= σ

(
X−1/2(X1/2SX1/2)1/2X−1/2

)
,

and the argument of the concluding σ(·) clearly is a positive definite symmetric matrix.
Thus, the spectrum of symmetric matrix P is positive, i.e., P is positive definite.

(b): To verify that QXQ = Q−1SQ−1, i.e., that P 1/2XP 1/2 = P−1/2SP−1/2, is the
same as to verify that PXP = S. The latter equality is given by the following compu-
tation:

PXP =
(
X−1/2(X1/2SX1/2)−1/2X1/2S

)
X
(
X−1/2(X1/2SX1/2)−1/2X1/2S

)
= X−1/2(X1/2SX1/2)−1/2(X1/2SX1/2)(X1/2SX1/2)−1/2X1/2S
= X−1/2X1/2S
= S.

You should not think that Nesterov and Todd guessed the formula for this scaling ma-

trix. They did much more: they have developed an extremely deep theory (covering the

general LO-CQO-SDO case, not just the SDP one!) which, among other things, guar-

antees that the desired scaling matrix exists (and even is unique). After the existence

is established, it becomes much easier (although still not that easy) to find an explicit

formula for Q.

Primal-dual short-step path-following methods based on commutative scalings

Path-following methods we are about to consider trace the primal-dual central path of (P), (D),
staying close to it. The path is traced by iterating the following updating:

(U): Given a current pair of strictly feasible primal and dual solutions (X̄, S̄) such
that the triple (

µ̄ = n−1 Tr(X̄S̄), X̄, S̄
)

(7.2.23)

satisfies dist((X̄, S̄), Z∗(t̄)) ≤ κ ≤ 0.1, or, equivalently, (see (7.2.12))

‖t̄X̄1/2S̄X̄1/2 − I‖Fr ≤ κ, (7.2.24)

we

1. Choose the new value µ+ of the path parameter according to

µ+ =

(
1− χ√

n

)
t̄, n =

m∑
i=1

νi; (7.2.25)

2. Choose somehow the scaling matrix Q � 0 such that the matrices X̂ = QX̄Q
and S̃ = Q−1S̄Q−1 commute with each other;

3. Linearize the equation

QXSQ−1 +Q−1SXQ = 2µ+I

at the point (X̄, S̄), thus coming to the equation

Q[∆XS+X∆S]Q−1 +Q−1[∆SX +S∆X]Q = 2µ+I − [QX̄S̄Q−1 +Q−1S̄X̄Q];
(7.2.26)

272 CONIC PROGRAMMING AND IPMs

4. Add to (7.2.26) the linear equations

∆X ∈ LP ,
∆S ∈ LD = L⊥P ;

(7.2.27)

5. Solve system (7.2.26), (7.2.27), thus getting “primal-dual search direction”
(∆X,∆S);

6. Update current primal-dual solutions (X̄, S̄) into a new pair (X+, S+) according
to

X+ = X̄ + ∆X, S+ = S̄ + ∆S.

We already have explained the ideas underlying (U), up to the fact that in our previous expla-
nations we dealt with three “independent” entities µ̄ (current value of the path parameter), X̄,
S̄ (current strictly feasible primal and dual solutions), while in (U) µ̄ is a function of X̄, S̄:

µ̄ = n−1 Tr(X̄S̄). (7.2.28)

The reason for establishing this dependence is very simple: if (µ,X, S) were on the primal-dual
central path: XS = µI, then, taking traces, we indeed would get µ = n−1 Tr(XS). Thus,
(7.2.28) is a reasonable way to reduce the number of “independent entities” we deal with.

Note also that (U) is a “pure Newton scheme” ∆X and ∆S are used as shifts X+ − X̄,
S+ − S̄ rather than as search directions.-

The major element of the complexity analysis of path-following polynomial time methods
for LO and SDO is as follows:

Theorem 7.2.2 Let 0 < χ ≤ κ ≤ 0.1. Let, further, (X̄, S̄) be a pair of strictly feasible primal
and dual solutions to (P), (D) such that the triple (7.2.23) satisfies (7.2.24). Then the updated
pair (X+, S+) is well-defined (i.e., system (7.2.26), (7.2.27) is solvable with a unique solution),
X+, S+ are strictly feasible solutions to (P), (D), respectively,

µ+ = n−1 Tr(X+S+)

and the triple (µ+, X+, S+) is close to the path:

dist((X+, S+), Z∗(µ+)) ≤ κ.

Discussion. The theorem says that updating (U) converts a close to the primal-dual central
path, in the sense of (7.2.24), strictly primal-dual feasible iterate (X̄, S̄) into a new strictly
primal-dual feasible iterate with the same closeness-to-the-path property and smaller, by factor
(1−χn−1/2), value of the path parameter. Thus, after we once get close to the path, we are able
to trace this path, staying close to it and decreasing the path parameter by absolute constant
factor in O(1)

√
n steps. According to Corollary 7.2.1, this means that every O(1)

√
n steps

decrease the (upper bound on the) duality gap by absolute constant factor.
Note that path-following methods implemented in software work more or less according to the
outlined scheme, up to the fact that they decrease the path parameter more aggressively and
move in an essentially larger neighbourhood of the central path than the short-step methods we
have described. From the theoretical worst-case-oriented viewpoint, this “aggressive behavior”
is dangerous and can result in decreasing the duality gap by an absolute constant factor at the
cost of O(n) iterations, rather than of O(

√
n) of them. In actual computations, however, this

aggressive policy outperforms significantly the worst-case-oriented “safe short-step policy.”

7.2. INTERIOR POINT METHODS FOR LO AND SDO 273

∗Proof of Theorem 7.2.2

We are about to carry out the complexity analysis of the primal-dual path-following methods
based on “commutative” Zhang’s scalings. This analysis, although not that difficult, is more
technical than whatever else in our course, and a non-interested reader may skip it without any
harm.

Scalings. Let Q be a nonsingular matrix of the same size and block-diagonal structure as
those of the matrices from Sν . We can associate with Q a one-to-one linear transformation on
Sν (“scaling by Q”) given by the formula

H 7→ Q[H] = QHQT . (Scl)

It is immediately seen that (Scl) is a symmetry of the semidefinite cone Sν+, meaning that it
maps the cone onto itself, same as it maps onto itself the interior of the cone. This family of
symmetries is quite rich: for every pair of points A,B from the interior of the semidefinite cone,
there exists a scaling which maps A onto B, e.g., the scaling

H 7→ (B1/2A−1/2︸ ︷︷ ︸
Q

)H(A−1/2B1/2︸ ︷︷ ︸
QT

).

Essentially, this is exactly the existence of that rich family of symmetries of the underlying cones
which makes SDO (same as LO and CQO, where the cones also are “perfectly symmetric”)
especially well suited for IP methods.

In what follows we will be interested in scalings associated with positive definite scaling
matrices from Sν . The scaling given by such a matrix Q (X,S,...) will be denoted by Q (resp.,
X ,S,...):

Q[H] = QHQ.

Given a problem of interest (P) and a scaling matrix Q � 0, we can scale the problem, i.e., pass
from it to the problem

min
x

{
cTx : Q [Ax−B] � 0

}
(Q(P))

which, of course, is equivalent to (P) (since Q[H] is positive semidefinite iff H is so). In terms
of “geometric reformulation” (P) of (P), this transformation is nothing but the substitution of
variables

QXQ = Y ⇔ X = Q−1Y Q−1;

with respect to Y -variables, (P) is the problem

min
Y

{
Tr(C[Q−1Y Q−1]) : Y ∈ M̂P := Q[LP]−Q[B], Y ∈ Sν+

}
,

i.e., the problem

min
Y

{
Tr(C̃Y) : Y ∈ M̂P := L̂P − B̂, Y ∈ Sν

}
[
C̃ = Q−1CQ−1, B̂ = QBQ, L̂P = Im(Q · A) = Q[LP] := {Q[H] : H ∈ LP }

] (P̂)

The problem dual to (P̂) is

max
Z

{
Tr(B̂Z) : Z ∈ L̂⊥P + Ĉ, Z ∈ Sν+

}
. (D̃)

274 CONIC PROGRAMMING AND IPMs

It is immediate to realize what is L̂⊥P :

〈Z,QXQ〉 = Tr(ZQXQ) = Tr(QZQX) = 〈QZQ,X〉;

thus, Z is orthogonal to every matrix from L̂P , i.e., to every matrix of the form QXQ with
X ∈ LP iff the matrix QZQ is orthogonal to every matrix from LP , i.e., iff QZQ ∈ L⊥P . It
follows that

L̂⊥P = Q−1[L⊥P].

Thus, when acting on the primal-dual pair (P), (D) of SDO programs, a scaling, given by a
matrix Q � 0, converts it into another primal-dual pair of problems, and this new pair is as
follows:

• The “primal” geometric data – the subspace LP and the primal shift B (which has a part-
time job to be the dual objective as well) – are replaced with their images under the mapping
Q;

• The “dual” geometric data – the subspace LD = L⊥P and the dual shift C (it is the primal
objective as well) – are replaced with their images under the mapping Q−1 inverse to Q; this
inverse mapping again is a scaling, the scaling matrix being Q−1.

We see that it makes sense to speak about primal-dual scaling which acts on both the primal
and the dual variables and maps a primal variable X onto QXQ, and a dual variable S onto
Q−1SQ−1. Formally speaking, the primal-dual scaling associated with a matrix Q � 0 is the
linear transformation (X,S) 7→ (QXQ,Q−1SQ−1) of the direct product of two copies of Sν

(the “primal” and the “dual” ones). A primal-dual scaling acts naturally on different entities
associated with a primal-dual pair (P), (D), in particular, at:

• the pair (P), (D) itself – it is converted into another primal-dual pair of problems (P̂),
(D̃);

• a primal-dual feasible pair (X,S) of solutions to (P), (D) – it is converted to the pair
(X̂ = QXQ, S̃ = Q−1SQ−1), which, as it is immediately seen, is a pair of feasible solutions
to (P̂), (D̃). Note that the primal-dual scaling preserves strict feasibility and the duality
gap:

DualityGapP,D(X,S) = Tr(XS) = Tr(QXSQ−1) = Tr(X̂S̃) = DualityGapP̂,D̃(X̂, S̃);

• the primal-dual central path (X∗(·), S∗(·)) of (P), (D); it is converted into the curve
(X̂∗(µ) = QX∗(µ)Q, S̃∗(µ) = Q−1S∗(µ)Q−1), which is nothing but the primal-dual central
path Z(µ) of the primal-dual pair (P̂), (D̃).

The latter fact can be easily derived from the characterization of the primal-dual central
path; a more instructive derivation is based on the fact that our “hero” – the barrier Φ(·)
– is “semi-invariant” w.r.t. scaling:

Φ(Q[X]) = − ln Det (QXQ) = − ln Det (X)− 2 ln Det (Q) = Φ(X) + const(Q).

Now, a point on the primal central path of the problem (P̂) associated with path parameter
µ, let this point be temporarily denoted by Y (µ), is the unique minimizer of the aggregate

Pµ(Y) = 〈Q−1CQ−1, Y 〉+ µΦ(Y) ≡ Tr(Q−1CQ−1Y) + µΦ(Y)

7.2. INTERIOR POINT METHODS FOR LO AND SDO 275

over the set M̂+
P of strictly feasible solutions of (P̂). The latter set is exactly the image of

the set M+
P of strictly feasible solutions to (P) under the transformation Q, so that Y (µ)

is the image, under the same transformation, of the point, let it be called X(µ), which
minimizes the aggregate

Tr((Q−1CQ−1)(QXQ)) + µΦ(QXQ) = Tr(CX) + µΦ(X) + const(Q)

over the setM+
P of strictly feasible solutions to (P). We see that X(µ) is exactly the point

X∗(µ) on the primal central path associated with problem (P). Thus, the point Y (µ) of the
primal central path associated with (P̂) is nothing but X̂∗(t) = QX∗(t)Q. Similarly, the
point of the central path associated with the problem (D̃) is exactly S̃∗(t) = Q−1S∗(t)Q

−1.

• the neighbourhood of the primal-dual central path

Nκ = {(X ∈M+
P , s ∈M

+
D) : dist((X,S), Z∗(Tr(XS)))

associated with the pair of problems (P), (D). As you can guess, the image of Nκ is
exactly the neighbourhood N κ of the primal-dual central path Z(·) of (P̂), (D̃).

The latter fact is immediate: for a pair (X,S) of strictly feasible primal and dual solutions
to (P), (D), and a µ > 0 we have (see (7.2.11)):

dist2((X̂, S̃), Z∗(µ))
= Tr

(
[QXQ](µ−1Q−1SQ−1 − [QXQ]−1)[QXQ](µ−1Q−1SQ−1 − [QXQ]−1)

)
= Tr

(
QX(µ−1S −X−1)X(µ−1S −X−1)Q−1

)
= Tr

(
X(µ−1S −X−1)X(µ−1S −X−1)

)
= {dist}2((X,S), Z∗(µ))

and

Tr(X̂S̃) = Tr([QXQ][Q−1SQ−1]) = Tr(QXSQ−1) = Tr(XS).

Proof of Theorem 7.2.2. 10. Observe, first (this observation is crucial!) that it suffices
to prove our Theorem in the particular case when X̄, S̄ commute with each other and Q = I.
Indeed, it is immediately seen that the updating (U) can be represented as follows:

1. We first scale by Q the “input data” of (U) – the primal-dual pair of problems (P), (D) and
the strictly feasible pair X̄, S̄ of primal and dual solutions to these problems, as explained
in section “Scaling”. Note that the resulting entities – a pair of primal-dual problems and
a strictly feasible pair of primal-dual solutions to these problems – are linked with each
other exactly in the same fashion as the original entities, due to scaling invariance of the
duality gap and the neighbourhood Nκ. In addition, the scaled primal and dual solutions
commute;

2. We apply to the “scaled input data” yielded by the previous step the updating (Û) com-
pletely similar to (U), but using the unit matrix in the role of Q;

3. We “scale back” the result of the previous step, i.e., subject this result to the scaling
associated with Q−1, thus obtaining the updated iterate (X+, S+).

276 CONIC PROGRAMMING AND IPMs

Given that the second step of this procedure preserves primal-dual strict feasibility, w.r.t. the
scaled primal-dual pair of problems, of the iterate and keeps the iterate in the neighbourhood Nκ
of the corresponding central path, we could use once again the “scaling invariance” reasoning to
assert that the result (X+, S+) of (U) is well-defined, is strictly feasible for (P), (D) and is close
to the original central path, as claimed in the Theorem. Thus, all we need is to justify the above
“Given”, and this is exactly the same as to prove the theorem in the particular case of Q = I
and commuting X̄, S̄. In the rest of the proof we assume that Q = I and that the matrices X̄, S̄
commute with each other. Due to the latter property, X̄, S̄ are diagonal in a properly chosen
orthonormal basis, meaning hat there exists a block-diagonal, with block-diagonal structure ν,
orthogonal matrix U such that UX̄UT and US̄UT are diagonal. Representing all matrices from
Sν in this basis (i.e., pasing from a matrix A to the matrix UAUT), we can reduce the situation
to the case when X̄ and S̄ are diagonal. Thus, we may (and do) assume in the sequel that X̄ and
S̄ are diagonal, with diagonal entries xi,si, i = 1, ..., k, respectively, and that Q = I. Finally, to
simplify notation, we write µ, X, S instead of µ̄, X̄, S̄, respectively.

20. Our situation and goals now are as follows. We are given affine planes LP −B, LD = L⊥P
in Sν and two positive definite diagonal matrices X = Diag({xi}) ∈ LP −B, S = Diag({si}) ∈
L⊥D + C. We set

µ = n−1 Tr(XS)

and know that
‖µ−1X1/2SX1/2 − I‖Fr ≤ κ.

We further set
µ+ = (1− χn−1/2)µ (7.2.29)

and consider the system of equations w.r.t. unknown symmetric matrices ∆X,∆S:

(a) ∆X ∈ LP
(b) ∆S ∈ LD = L⊥P
(c) ∆XS +X∆S + ∆SX + S∆X = 2µ+I − 2XS

(7.2.30)

We should prove that the system has a unique solution, and for this solution the matrices

X+ = X + ∆X, S+ = S + ∆S

are
(i) positive definite,
(ii) belong, respectively, to LP −B, L⊥P + C and satisfy the relation

Tr(X+S+) = µ+n; (7.2.31)

(iii) satisfy the relation

Ω ≡ ‖µ−1
+ X

1/2
+ S+X

1/2
+ − I‖Fr ≤ κ. (7.2.32)

Observe that the situation can be reduced to the one with µ = 1. Indeed, let us pass from the
matrices X,S,∆X,∆S,X+, S+ to X,S′ = µ−1S,∆X,∆S′ = µ−1∆S,X+, S

′
+ = µ−1S+. Now

the “we are given” part of our situation becomes as follows: we are given two diagonal positive
definite matrices X,S′ such that X ∈ LP −B, S′ ∈ L⊥P + C ′, C ′ = µ−1C,

Tr(XS′) = n× 1

7.2. INTERIOR POINT METHODS FOR LO AND SDO 277

and
‖X1/2S′X1/2 − I‖Fr = ‖µ−1X1/2SX1/2 − I‖Fr ≤ κ.

The “we should prove” part becomes: to verify that the system of equations

(a) ∆X ∈ LP
(b) ∆S′ ∈ L⊥P
(c) ∆XS′ +X∆S′ + ∆S′X + S′∆X = 2(1− χn−1/2)I − 2XS′

has a unique solution and that the matrices X+ = X+∆X, S′+ = S′+∆S′+ are positive definite,
are contained in LP −B, respectively, L⊥P + C ′ and satisfy the relations

Tr(X+S
′
+) =

µ+

µ
= 1− χn−1/2

and
‖(1− χn−1/2)−1X

1/2
+ S′+X

1/2
+ − I‖Fr ≤ κ.

Thus, the general situation indeed can be reduced to the one with µ = 1, µ+ = 1−χn−1/2, and
we loose nothing assuming, in addition to what was already postulated, that

µ ≡ n−1 Tr(XS) = 1, µ+ = 1− χn−1/2,

whence

[Tr(XS) =]

k∑
i=1

xisi = k (7.2.33)

and

[‖µ−1X1/2SX1/2 − I‖2Fr ≡]
n∑
i=1

(xisi − 1)2 ≤ κ2. (7.2.34)

30. We start with proving that (7.2.30) indeed has a unique solution. It is convenient to
pass in (7.2.30) from the unknowns ∆X, ∆S to the unknowns

δX = X−1/2∆XX−1/2 ⇔ ∆X = X1/2δXX1/2,

δS = X1/2∆SX1/2 ⇔ ∆S = X−1/2δSX−1/2.
(7.2.35)

With respect to the new unknowns, (7.2.30) becomes

(a) X1/2δXX1/2 ∈ LP ,
(b) X−1/2δSX−1/2 ∈ L⊥P ,
(c) X1/2δXX1/2S +X1/2δSX−1/2 +X−1/2δSX1/2 + SX1/2δXX1/2 = 2µ+I − 2XS

m

(d) L(δX, δS) ≡

√xixj(si + sj)︸ ︷︷ ︸
φij

(δX)ij +

(√
xi
xj

+

√
xj
xi︸ ︷︷ ︸

ψij

)
(δS)ij

n

i,j=1

= 2 [(µ+ − xisi)δij]ni,j=1 ,

(7.2.36)

where δij =

{
0, i 6= j
1, i = j

are the Kronecker symbols.

278 CONIC PROGRAMMING AND IPMs

We first claim that (7.2.36), regarded as a system with unknown symmetric matrices δX, δS
has a unique solution. Observe that (7.2.36) is a system with 2 dim Sν ≡ 2K scalar unknowns
and 2K scalar linear equations. Indeed, (7.2.36.a) is a system of K ′ ≡ K − dim LP linear
equations, (7.2.36.b) is a system of K ′′ = K−dim L⊥P = dim LP linear equations, and (7.2.36.c)
has K equations, so that the total # of linear equations in our system is K ′ + K ′′ + K =
(K − dim LP) + dim LP +K = 2K. Now, to verify that the square system of linear equations
(7.2.36) has exactly one solution, it suffices to prove that the homogeneous system

X1/2δXX1/2 ∈ L, X−1/2δSX−1/2 ∈ L⊥, L(δX, δS) = 0

has only trivial solution. Let (δX, δS) be a solution to the homogeneous system. Relation
L(δX,∆S) = 0 means that

(δX)ij = −ψij
φij

(δS)ij , (7.2.37)

whence

Tr(δXδS) = −
∑
i,j

ψij
φij

(∆S)2
ij . (7.2.38)

Representing δX, δS via ∆X,∆S according to (7.2.35), we get

Tr(δXδS) = Tr(X−1/2∆XX−1/2X1/2∆SX1/2) = Tr(X−1/2∆X∆SX1/2) = Tr(∆X∆S),

and the latter quantity is 0 due to ∆X = X1/2δXX1/2 ∈ LP and ∆S = X−1/2δSX−1/2 ∈ L⊥P .
Thus, the left hand side in (7.2.38) is 0; since φij > 0, ψij > 0, (7.2.38) implies that δS = 0.
But then δX = 0 in view of (7.2.37). Thus, the homogeneous version of (7.2.36) has the trivial
solution only, so that (7.2.36) is solvable with a unique solution.

40. Let δX, δS be the unique solution to (7.2.36), and let ∆X, ∆S be linked to δX, δS
according to (7.2.35). Our local goal is to bound from above the Frobenius norms of δX and
δS.

From (7.2.36.c) it follows (cf. derivation of (7.2.38)) that

(a) (δX)ij = −ψij
φij

(δS)ij + 2µ+−xisi
φii

δij , i, j = 1, ..., n;

(b) (δS)ij = −φij
ψij

(δX)ij + 2µ+−xisi
ψii

δij , i, j = 1, ..., n.
(7.2.39)

Same as in the concluding part of 30, relations (7.2.36.a− b) imply that

Tr(∆X∆S) = Tr(δXδS) =
∑
i,j

(δX)ij(δS)ij = 0. (7.2.40)

Multiplying (7.2.39.a) by (δS)ij and taking sum over i, j, we get, in view of (7.2.40), the relation

∑
i,j

ψij
φij

(δS)2
ij = 2

∑
i

µ+ − xisi
φii

(δS)ii; (7.2.41)

by “symmetric” reasoning, we get∑
i,j

φij
ψij

(δX)2
ij = 2

∑
i

µ+ − xisi
ψii

(δX)ii. (7.2.42)

7.2. INTERIOR POINT METHODS FOR LO AND SDO 279

Now let
θi = xisi, (7.2.43)

so that in view of (7.2.33) and (7.2.34) one has

(a)
∑
i
θi = n,

(b)
∑
i

(θi − 1)2 ≤ κ2.
(7.2.44)

Observe that

φij =
√
xixj(si + sj) =

√
xixj

(
θi
xi

+
θj
xj

)
= θj

√
xi
xj

+ θi

√
xj
xi
.

Thus,

φij = θj
√

xi
xj

+ θi
√

xj
xi
,

ψij =
√

xi
xj

+
√

xj
xi

;
(7.2.45)

since 1− κ ≤ θi ≤ 1 + κ by (7.2.44.b), we get

1− κ ≤ φij
ψij
≤ 1 + κ. (7.2.46)

By the geometric-arithmetic mean inequality we have ψij ≥ 2, whence in view of (7.2.46)

φij ≥ (1− κ)ψij ≥ 2(1− κ) ∀i, j. (7.2.47)

We now have

(1− κ)
∑
i,j

(δX)2
ij ≤

∑
i,j

φij
ψij

(δX)2
ij

[see (7.2.46)]

≤ 2
∑
i

µ+−xisi
ψii

(δX)ii

[see (7.2.42)]

≤ 2
√∑

i
(µ+ − xisi)2

√∑
i
ψ−2
ij (δX)2

ii

≤
√∑

i
((1− θi)2 − 2χn−1/2(1− θi) + χ2n−1)

√∑
i,j

(δX)2
ij

[see (7.2.47)]

≤
√
χ2 +

∑
i

(1− θi)2
√∑

i,j
(δX)2

ij

[since
∑
i

(1− θi) = 0 by (7.2.44.a)]

≤
√
χ2 + κ2

√∑
i,j

(δX)2
ij

[see (7.2.44.b)]

and from the resulting inequality it follows that

‖δX‖Fr ≤ ρ ≡
√
χ2 + κ2

1− κ
. (7.2.48)

280 CONIC PROGRAMMING AND IPMs

Similarly,

(1 + κ)−1
∑
i,j

(δS)2
ij ≤

∑
i,j

ψij
φij

(δS)2
ij

[see (7.2.46)]

≤ 2
∑
i

µ+−xisi
φii

(δS)ii

[see (7.2.41)]

≤ 2
√∑

i
(µ+ − xisi)2

√∑
i
φ−2
ij (δS)2

ii

≤ (1− κ)−1
√∑

i
(µ+ − θi)2

√∑
i,j

(δS)2
ij

[see (7.2.47)]

≤ (1− κ)−1
√
χ2 + κ2

√∑
i,j

(δS)2
ij

[same as above]

and from the resulting inequality it follows that

‖δS‖Fr ≤
(1 + κ)

√
χ2 + κ2

1− κ
= (1 + κ)ρ. (7.2.49)

50. We are ready to prove 20.(i-ii). We have

X+ = X + ∆X = X1/2(I + δX)X1/2,

and the matrix I+ δX is positive definite due to (7.2.48) (indeed, the right hand side in (7.2.48)
is ρ ≤ 1, whence the Frobenius norm (and therefore - the maximum of modulae of eigenvalues)
of δX is less than 1). Note that by the just indicated reasons I + δX � (1 + ρ)I, whence

X+ � (1 + ρ)X. (7.2.50)

Similarly, the matrix

S+ = S + ∆S = X−1/2(X1/2SX1/2 + δS)X−1/2

is positive definite. Indeed, the eigenvalues of the matrix X1/2SX1/2 are ≥ min
i
θi ≥ 1−κ, while

the modulae of eigenvalues of δS, by (7.2.49), do not exceed
(1+κ)

√
χ2+κ2

1−κ < 1 − κ. Thus, the

matrix X1/2SX1/2 + δS is positive definite, whence S+ also is so. We have proved 20.(i).
20.(ii) is easy to verify. First, by (7.2.36), we have ∆X ∈ L, ∆S ∈ L⊥, and since X ∈ L−B,

S ∈ L⊥ + C, we have X+ ∈ L −B, S+ ∈ L⊥ + C. Second, we have

Tr(X+S+) = Tr(XS +X∆S + ∆XS + ∆X∆S)
= Tr(XS +X∆S + ∆XS)

[since Tr(∆X∆S) = 0 due to ∆X ∈ L, ∆S ∈ L⊥]
= µ+n

[take the trace of both sides in (7.2.30.c)]

20.(ii) is proved.
60. It remains to verify 20.(iii). We should bound from above the quantity

Ω = ‖µ−1
+ X

1/2
+ S+X

1/2
+ − I‖Fr = ‖X1/2

+ (µ−1
+ S+ −X−1

+)X
1/2
+ ‖Fr,

7.2. INTERIOR POINT METHODS FOR LO AND SDO 281

and our plan is first to bound from above the “close” quantity

Ω̂ = ‖X1/2(µ−1
+ S+ −X−1

+)X1/2‖Fr = µ−1
+ ‖Z‖Fr,

Z = X1/2(S+ − µ+X
−1
+)X1/2,

(7.2.51)

and then to bound Ω in terms of Ω̂.
60.1. Bounding Ω̂. We have

Z = X1/2(S+ − µ+X
−1
+)X1/2

= X1/2(S + ∆S)X1/2 − µ+X
1/2[X + ∆X]−1X1/2

= XS + δS − µ+X
1/2[X1/2(I + δX)X1/2]−1X1/2

[see (7.2.35)]
= XS + δS − µ+(I + δX)−1

= XS + δS − µ+(I − δX)− µ+[(I + δX)−1 − I + δX]

= XS + δS + δX − µ+I︸ ︷︷ ︸
Z1

+ (µ+ − 1)δX︸ ︷︷ ︸
Z2

+µ+[I − δX − (I + δX)−1]︸ ︷︷ ︸
Z3

,

so that
‖Z‖Fr ≤ ‖Z1‖Fr + ‖Z2‖Fr + ‖Z3‖Fr. (7.2.52)

We are about to bound separately all 3 terms in the right hand side of the latter inequality.
Bounding ‖Z2‖Fr: We have

‖Z2‖Fr = |µ+ − 1|‖δX‖Fr ≤ χn−1/2ρ (7.2.53)

(see (7.2.48) and take into account that µ+ − 1 = −χn−1/2).
Bounding ‖Z3‖Fr: Let λi be the eigenvalues of δX. We have

‖Z3‖Fr = ‖µ+[(I + δX)−1 − I + δX]‖Fr

≤ ‖(I + δX)−1 − I + δX‖Fr

[since |µ+| ≤ 1]

=

√∑
i

(
1

1+λi
− 1 + λi

)2

[pass to the orthonormal eigenbasis of δX]

=

√∑
i

λ4
i

(1+λi)2

≤
√∑

i

ρ2λ2
i

(1−ρ)2

[see (7.2.48) and note that
∑
i
λ2
i = ‖δX‖2Fr ≤ ρ2]

≤ ρ2

1−ρ

(7.2.54)

Bounding ‖Z1‖Fr: This is a bit more involving. We have

Z1
ij = (XS)ij + (δS)ij + (δX)ij − µ+δij

= (δX)ij + (δS)ij + (xisi − µ+)δij

= (δX)ij

[
1− φij

ψij

]
+
[
2µ+−xisi

ψii
+ xisi − µ+

]
δij

[we have used (7.2.39.b)]

= (δX)ij

[
1− φij

ψij

]
[since ψii = 2, see (7.2.45)]

282 CONIC PROGRAMMING AND IPMs

whence, in view of (7.2.46),

|Z1
ij | ≤

∣∣∣∣1− 1

1− κ

∣∣∣∣ |(δX)ij | =
κ

1− κ
|(δX)ij |,

so that

‖Z1‖Fr ≤
κ

1− κ
‖δX‖Fr ≤

κ

1− κ
ρ (7.2.55)

(the concluding inequality is given by (7.2.48)).

Assembling (7.2.53), (7.2.54), (7.2.55) and (7.2.52), we come to

‖Z‖Fr ≤ ρ
[
χ√
n

+
ρ

1− ρ
+

κ

1− κ

]
,

whence, by (7.2.51),

Ω̂ ≤ ρ

1− χn−1/2

[
χ√
n

+
ρ

1− ρ
+

κ

1− κ

]
. (7.2.56)

60.2. Bounding Ω. We have

Ω2 = ‖µ−1
+ X

1/2
+ S+X

1/2
+ − I‖2Fr

= ‖X1/2
+ [µ−1

+ S+ −X−1
+]︸ ︷︷ ︸

Θ=ΘT

X
1/2
+ ‖2Fr

= Tr
(
X

1/2
+ ΘX+ΘX

1/2
+

)
≤ (1 + ρ) Tr

(
X

1/2
+ ΘXΘX

1/2
+

)
[see (7.2.50)]

= (1 + ρ) Tr
(
X

1/2
+ ΘX1/2X1/2ΘX

1/2
+

)
= (1 + ρ) Tr

(
X1/2ΘX

1/2
+ X

1/2
+ ΘX1/2

)
= (1 + ρ) Tr

(
X1/2ΘX+ΘX1/2

)
≤ (1 + ρ)2 Tr

(
X1/2ΘXΘX1/2

)
[the same (7.2.50)]

= (1 + ρ)2‖X1/2ΘX1/2‖2Fr

= (1 + ρ)2‖X1/2[µ−1
+ S+ −X−1

+]X1/2‖2Fr

= (1 + ρ)2Ω̂2

[see (7.2.51)]

so that

Ω ≤ (1 + ρ)Ω̂ = ρ(1+ρ)

1−χn−1/2

[
χ√
n

+ ρ
1−ρ + κ

1−κ

]
,

ρ =

√
χ2+κ2

1−κ .
(7.2.57)

(see (7.2.56) and (7.2.48)).

It is immediately seen that if 0 < χ ≤ κ ≤ 0.1, the right hand side in the resulting bound
for Ω is ≤ κ, as required in 20.(iii). 2

7.2. INTERIOR POINT METHODS FOR LO AND SDO 283

7.2.6 How to Start Path-Tracing

So far, we have explained “how to travel along a the highway” – how to trace the primal-dual
central path after we get close to it. The question which still remains open is “how to reach the
highway” – how to come close to the primal-dual central path. It turns out that this can be
achieved with the same path-following technique as applied to an appropriate auxiliary problem.
We consider two schemes of the latter type – the first which requires a priori knowledge of a
strictly feasible primal solutions, and the second which does not require such knowledge.

Tracing auxiliary path

Assume that the feasible set of (P) is bounded, and that we have in our disposal a strictly
feasible solution x̄ to (P). In this case we can act as follows. Let us look at the primal central
path x∗(µ) in the space of original design variables:

x∗(µ) = argmin
x

{
cTx+ µΦ(Ax−B)

}
.

We know that as µ→ +0, this path approaches the optimal set of (P). But what happens when
µ→∞? Rewriting the relation defining the path equivalently as

x∗(µ) = argmin
x

{
µ−1cTx+ Φ(Ax−B)

}
,

the answer becomes clear: as µ → +∞, x∗(µ) converges to the unique minimizer xK of the
function K(x) = Φ(Ax−B) on int X , where X is the feasible domain of (P); this minimizer is
called the analytic center of X .

The fact that xK is well defined and unique follows immediately from the fact that
K(x) is a strongly convex function on the bounded domain int X and that this
function possesses the barrier property: K(xi)→ +∞ along every sequence of points
xi ∈ X converging to a boundary point of X , where strong convexity of K follows
from item III, section 7.2.2, and the fact that A has trivial kernel).

We see that the “starting point” of x∗(·) – limit of the path x∗(µ) as µ → ∞ – is independent
of c. On the other hand, let us look at the central path x̃(µ) associated with the objective dTx,
where d = −∇K(x̄) = A∗(−∇Φ(Ax̄−B)). Now let (P ′) be the problem obtained from (P) by
replacing the objective with dTx. Setting D = −∇Φ(Ax̄−D, we see that D ∈ int Sν+, meaning
that the objective 〈D,X〉 in the “primal slack” reformulation (P ′) of (P ′) is � 0 and thus is a
strictly feasible solution to the geometric dual (D′) of (P ′). Since (P ′) is strictly feasible along
with (P), the primal-dual pair (P ′), (D′) generates a primal-dual cental path, so that x̃(·) is
well defined. Now observe that by construction, ∇[dTx+ Φ(Ax−B)] vanishes when x = x̄, that
is, we know that x̃(1) = x̄. As a result, we can trace the primal-dual central path
widetildeZ(·) of (P ′), (D′), since we know that the pair (Ax̄ − B,D) is exactly on this path,
the value of the path parameter being 1. Let us trace this path “backward in time”, that
is, increasing the path parameter instead of decreasing it. It is immediately seen that the
result of Theorem 7.2.2 remains intact when the updating rule (7.2.25) in (U) is replaced with
µ+ = (1 + χn−1/2)µ, that is, we can trace Z̃(µ), increasing the value of µ by absolute constant
factor every O(1)

√
n steps and staying all the time in the neighbourhood N0.09 of this path. It

is not difficult to see that checking in this “back tracing” the auxiliary path the proximity to

284 CONIC PROGRAMMING AND IPMs

the path of interest, we eventually will discover that this proximity is ≤ 0.1. At this moment
we already “are on the highway” and can switch to tracing the path of interest.

A shortcoming of the construction we have just presented is in the necessity to know an
initial strictly feasible solution to (P) and to have the feasible domain of the problem bounded
(otherwise the analytic center does not exist). We are about to present another scheme, where
we trace infeasible path and approach optimality and feasibility simultaneously.

Infeasible start path-following method

Situation and goals. For the sake of a reader, we start with reiterating our assumptions and
goals. We are interested to solve a SDO program

min
x

{
cTx : X ≡ Ax−B ∈ Sν+

}
. (P)

The corresponding primal-dual pair, in its geometric form, is

min
X

{
〈C,X〉 : X ∈ (MP := LP −B) ∩ Sν+

}
(P)

max
S

{
〈B,S〉 : S ∈ (MD := L⊥P + C) ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P = KerA∗,A∗C = c
]

where A has trivial kernel and (P), (D) are strictly feasible.

To proceed, it is convenient to “normalize” the data as follows: when we shift Bm, the
shift belonging to LP , (P) remains intact, remains unchanged, while (D) is replaced with an
equivalent problem (since when shifting B by a shift from along LP , the dual objective, restricted
to the dual feasible plane, gets a constant additive term). Similarly, when we shift C, the shift
belonging to LD, the dual problem (D) remains intact, and the primal (P) is replaced with an
equivalent problem. Thus, we can shift B by a shift from LP and C by a shift from LD = L⊥P ,
while not varying the primal-dual pair (P), (D) (or, better to say, converting it to an equivalent
primal-dual pair). With appropriate shifts of this type we can ensure that B ∈ L⊥P and C ∈ LP .
We lose nothing when assuming that the data from the very beginning is normalized by the
requirements

B ∈ LD = L⊥P , C ∈ LP , (Nrm)

which, in particular, implies that 〈C,B〉 = 0, so that the duality gap at a pair (X,S) of primal-
dual feasible solutions becomes

DualityGap(X,S) = 〈X,S〉 = 〈C,X〉 − 〈B,S〉; (7.2.58)

to see it, it suffices to open parentheses in the equality

0 = 〈X +B︸ ︷︷ ︸
∈LP

, S − C︸ ︷︷ ︸
∈L⊥P

〉

Our goal is rather ambitious:

to develop an interior point method for solving (P), (D) which requires neither a
priori knowledge of a primal-dual strictly feasible pair of solutions, nor a specific
initialization phase.

7.2. INTERIOR POINT METHODS FOR LO AND SDO 285

The scheme. The construction we are about to present achieves the announced goal as follows.

1. We write down the following system of conic constraints in variables X,S ∈ Sν and
additional scalar variables τ , σ:

(a) X + τB − P ∈ LP ;
(b) S − τC −D ∈ L⊥;
(c) 〈C,X〉 − 〈B,S〉+ σ − d = 0;
(e) Diag{X,S, σ, τ} ∈ Sν × Sν ×R+ ×R+.

(C)

Here P,D ∈ Sν , d ∈ R are certain fixed entities which we choose in such a way that

(i) We can easily point out a strictly feasible solution Ŷ = Diag{X̂, Ŝ, σ̂, τ̂ = 1} to the
system;

(ii) The solution set Y of (C) is unbounded; moreover, whenever Yi = (Xi, Si, σi, τi) ∈ Y
is an unbounded sequence, we have τi →∞.

2. Imagine that we have a mechanism which allows us to “run away to ∞ along Y”,
i.e., to generate a sequence of points Yi = (Xi, Si, σi, τi) ∈ Y such that ‖Yi‖ ≡√
‖Xi‖2Fr + ‖Si‖2Fr + σ2

i + τ2
i → ∞. In this case, by (ii) τi → ∞, i → ∞. Let us de-

fine the normalizations

X̃i = τ−1
i Xi, S̃i = τ−1

i Si.

of Xi, Si. Since (Xi, Si, σi, τi) is a solution to (C), these normalizations satisfy the relations

(a) X̃i ∈ (LP −B + τ−1
i P) ∩ Sν+;

(b) S̃i ∈ (L⊥P + C + τ−1
i D) ∩K;

(c) 〈C, X̃i〉 − 〈B, S̃i〉 ≤ τ−1
i d.

(C′)

Since τi →∞, relations (C′) say that as i→∞, the normalizations X̃i, S̃i simultaneously
approach primal-dual feasibility for (P), (D) (see (C′.a-b)) and primal-dual optimality (see
(C′.c) and recall that the duality gap, with our normalization 〈C,B〉 = 0, is 〈C,X〉 −
〈B,S〉).

3. The issue, of course, is how to build a mechanism which allows to run away to∞ along Y.
The mechanism we intend to use is as follows. (C) can be rewritten in the generic form

Y ≡ Diag{X,S, σ, τ} ∈ (E +R) ∩ Sν̃+ (G)

where

• ν̃ = [ν; ν; 1; 1], that is, Sν̃ = Sν × Sν ×R+ ×R+;

• E is the linear subspace in Sν̃ given by

E =
{

Diag{U, V, s, r} : U + rB ∈ LP , V − rC ∈ L⊥P , 〈C,U〉 − 〈B, V 〉+ s = 0
}

• • The point R ∈ Sν̃ is given by

R = Diag{P,D, d− 〈C,P 〉+ 〈B,D〉, 0}.

286 CONIC PROGRAMMING AND IPMs

Let

Ŷ = Diag{X̂, Ŝ, σ̂, τ̂ = 1}

be the strictly feasible solution to (G) given by 1.(i), and let

C̃ = −∇Φ(Ŷ).

Consider the auxiliary problem

min
Y

{
〈C̃, Y 〉 : Y ∈ (E +R) ∩ Sν̃+

}
. (Aux)

By the origin of C̃, the point Ŷ belongs to the primal central path Ỹ∗(µ) of this auxiliary
problem:

Ŷ = Ỹ∗(1).

Let us trace the primal central path Ỹ∗(·), but increasing the value µ of the path parameter
instead of decreasing it, thus enforcing µ to go to +∞. What will happen in this process?
Recall that the point Ỹ∗(µ) of the primal central path of (Aux) minimizes the aggregate

〈C̃, Y 〉+ µΦ(Y)

over Y ∈ Y+ = {Y ∈ (E + R) ∩ int Sν̃+}. When µ is large, we, essentially, are trying
to minimize over Y+ just Φ(Y). But the log-det barrier restricted to an unbounded
intersection of an affine plane and the interior of the associated semidefinite cone is not
bounded below on this intersection. Taking for the moment this fact as granted, let us
look at the consequences. If we were minimizing the barrier Φ over Y+, the minimum
“would be achieved at infinity”; it is natural to guess (and this is indeed true) that when
minimizing a slightly perturbed barrier, the minimum will run away to infinity as the
level of perturbations goes to 0. Thus, we may expect (and again it is indeed true) that
‖Ỹ∗(µ)‖Fr → ∞ as µ → +∞, so that when tracing the path Ỹ (µ) as µ → 0, we are
achieving our goal of running away to infinity along Y.

Here is the justification of the claim we took for granted. By 1.(i), Y intersects
int Sν̃+ and is unbounded; since Y is a closed and unbounded convex set, it has a
nonzero recessive direction H:14 Y + tH ∈ Y whenever Y ∈ Y and t ≥ 0. Since
Y ∈ Sν̃+, H is a positive semidefinite matrix. Now let us look what happens to

Φ on the ray {Ŷ + tH : t ≥ 0} ⊂ Y. The matrix Ŷ by assumption is positive
definite, while H is positive semidfeinite and nonzero. It follows that as t→∞,
the eigenvalues of Ŷ +tH are positive, remain bounded away from zero, and some

of then tend to +∞, meaning that Φ(Ŷ + tH) =
2n+2∑
i=1

ln(λi(X̂ + tH))→ −∞ as

t→∞, so that Φ is not below bounded on Y+.

Now let us implement the outlined approach.

14While we know this fact only for polyhedral sets, it is true for all closed convex sets.

7.2. INTERIOR POINT METHODS FOR LO AND SDO 287

Specifying P ,D,d. Given the data of (P), let us choose somehow P,D ∈ Sν in such a way
that P � B, D � −C, σ̂ > 0 and set

d = 〈C,P −B〉 − 〈B,D + C〉+ σ̂.

It is immediately seen that with this setup, the point

Ŷ = Diag{X̂ = P −B, Ŝ = C +D, σ̂, τ̂ = 1} (7.2.59)

is a strictly feasible solution to (Aux). Thus, our setup ensures 1.(i).

Verifying 1.(ii). This step is crucial:

Lemma 7.2.1 Let (Aux′) be the problem dual to (Aux). Then (Aux), (Aux′) is a strictly
primal-dual feasible pair of problems, and, in addition, the feasible set Y of (Aux) is unbounded.

Proof. By construction, Ŷ is a strictly feasible solution to (Aux), whence (Aux) is strictly
feasible. Also by construction, C̃ = −∇Φ(Ŷ) � 0, and since (Aux) is in the form of (P), C̃
belongs to the feasible plane of (Aux′), meaning that C̃ is a strictly feasible solution to (Aux′).

Now, (P), (D) are strictly feasible, which by Conic Duality Theorem implies that both
problems are solvable with equal optimal values. Let X∗ be an optimal solution to (P), S∗
be an optimal solution to (D), meaning that X∗ + B ∈ LP and S∗ − C ∈ L⊥P . Besides this,
0 = DualityGap(X∗, S∗) = 〈C,X∗〉 − 〈B,S∗〉 (see (7.2.58). Now consider the direction ∆ =
Diag{X∗, S∗, 0, 1}. Looking at the definition of E , we see that ∆ ∈ E , and since X∗ � 0, S∗ � 0,
∆ ∈ Sν̃+ as well. It follows that ∆ is a recessive direction of Y, and since ∆ is nonzero, Y is
unbounded. 2

To complete the verification of 1.(ii), we need the following simple fact:

Lemma 7.2.2 Let X̄, S̄ be a strictly feasible pair of primal-dual solutions to (P), (D), so that
by Lemma 7.1.1 there exists γ ∈ (0, 1) such that

γ‖X‖Fr ≤ 〈S̄,X〉 ∀X ∈ Sν+,
γ‖S‖Fr ≤ 〈X̄, S〉 ∀S ∈ Sν+.

(!)

Then for every feasible solution Y = Diag{X,S, σ, τ} to (Aux) one has

‖Y ‖Fr ≤ ατ + β,
α = γ−1

[
〈X̄, C〉 − 〈S̄, B〉

]
+ 1,

β = γ−1
[
〈X̄ +B,D〉+ 〈S̄ − C,P 〉+ d

]
.

(7.2.60)

Note that (7.2.60) clearly implies that whenever Yi = Diag{..., τi} ∈ Y are such that ‖Yi‖Fr →∞
as i→∞, then τi →∞ as i→∞ as well.
Proof of Lemma 7.2.2: Feasible solution Y to (Aux), by construction, is a feasible solution
to (C). By (C.a) we have X + τB − P ∈ LP , whence, since S̄ − C ∈ L⊥P ,

0 = 〈X + τB − P, S̄ − C〉 ⇒ 〈X, S̄〉 ≤ τ〈B,C − S̄〉+ 〈P, S̄ − C〉+ 〈C,X〉;

similarly, by (C.b) and due to X̄ +B ∈ LP , we have

0 = 〈S − τC −D, X̄ +B〉 ⇒ 〈S, X̄〉 ≤ τ〈C, X̄ +B〉+ +〈D, X̄ +B〉 − 〈B,S〉.

288 CONIC PROGRAMMING AND IPMs

Summing up the resulting inequalities, we get

〈X, S̄〉+ 〈S, X̄〉 ≤ τ
[
〈B,C − S̄〉+ 〈C, X̄ +B〉

]
+ [〈C,X〉 − 〈B,S〉]︸ ︷︷ ︸

≤d−σ by (C.c)

+
[
〈P, S̄ − C〉+ 〈D, X̄ +B〉

]
,

whence, taking into account that X � 0, S � 0 by (C.d) and invoking (!),

γ[‖X‖Fr + ‖S‖Fr] + σ ≤ τ
[
〈B,C − S̄〉+ 〈C, X̄ +B〉

]
+ d+

[
〈P, S̄ − C〉+ 〈D, X̄ +B〉

]
;

since σ ≥ 0 by (C.d), (7.2.60) follows. 2

Tracing the path Ỹ∗(µ) as µ → +∞. The path Ỹ∗(µ) is the primal central path of the
strictly primal-dual feasible primal-dual pair of problems (Aux), (Aux′) which are in the form
of (P), (P ′). The only difference with the situation discussed in previous sections is that now
we are interested to trace the path as µ→ +∞, starting the process from the point Ŷ = Ỹ∗(1)
given by 1.(i), rather than to trace the path as µ → +0. It turns out that we have exactly the
same possibilities to trace the path Ỹ∗(µ) as the path parameter goes to +∞ as when tracing
the path as µ→ +0; in particular, we can use short-step primal and primal-dual path-following
methods with stepsize policies “opposite” to those mentioned, respectively, in Theorem 7.2.1
and Theorem 7.2.2 (“opposite” means that instead of increasing µ at each iteration in certain
ratio, we increase it in exactly the same ratio). It can be straightforwardly verified that the
results of Theorems 7.2.1, 7.2.2 remain valid in this new situation as well. Thus, in order to
generate a triple (µ, Y, U) such that µ ∈ (1,∞), Y is strictly feasible for (Aux), U is strictly
feasible for the problem (Aux′) dual to (Aux), and dist((Y,U), Z̃∗(µ)) ≤ κ ≤ 0.1, it suffices to
carry out

N (µ) = O(1)
√

2n+ 2 ln(2µ)

steps of the path-following method; here Z̃∗(·) is the primal-dual central path of the primal-dual
pair (Aux), (Aux′), and dist from now on is the distance to this path, as defined in (7.2.11) (the
latter definition should, of course, be applied to (Aux), (Aux′)). Thus, we understand what is
the cost of arriving at a close-to-the-path triple (µ, Y, U) with a desired value µ ∈ (1,∞) of the
path parameter. Further, our original scheme explains how to convert the Y -component of such
a triple into a pair Xt, St of approximate solutions to (P), (D):

Xµ =
1

τ [Y]
X[Y]; Sµ =

1

τ [Y]
S[Y],

where
Y = Diag{X[Y], S[Y], σ[Y], τ [Y]}

What we do not know for the moment is

(?) What is the quality of the resulting pair (Xµ, Sµ) of approximate solutions to
(P), (D) as a function of µ?

Looking at (C′), we see that (?) is, essentially, the question of how rapidly the component
τ [Y] of our “close-to-the-path triple (µ, Y, U)” blows up when µ goes to∞. In view of the bound
(7.2.60), the latter question, in turn, becomes “how large is ‖Y ‖Fr when µ is large.” The answers
to all these questions will be obtained in the three steps to follows.

7.2. INTERIOR POINT METHODS FOR LO AND SDO 289

Step 1. We start with associating with V ∈ int Sν̃+ a norm on the space Sν̃ , specifically,
the Euclidean norm

‖H‖V = ‖V −1/2HV −1/2‖Fr =
√

Tr([V −1/2HV −1/2]2) =
√

Tr(V −1HV −1H) =
√
〈H,H(V)H〉.

Lemma 7.2.3 Let V ∈ int Sν̃+. Then the Dikin ellipsoid of V – the set

E(V) = {W ∈ Sν̃ : ‖W − V ‖V ≤ 1}

is contained in Sν̃+.

Besides this, if H ∈ Sν̃+, then

〈∇Φ(V),−H〉 ≥ ‖H‖V . (7.2.61)

Proof. For W ∈ Sν̃ we have

‖W − V ‖V = ‖V −1/2[W − V]V −1/2‖Fr = ‖[V −1/2WV −1/2 − I‖Fr

=
√∑

i[λi(V
−1/2WV −1/2)− 1]2 15

If now ‖W − V ‖V ≤ 1, then from the latter equality it follows that λi(V
−1/2WV −1/2) ≥ 0, that

is, the matrix V −1/2WV −1/2 is positive semidefinite, whence W is so as well. We have proved
the first statement of the lemma.

The verification of the second statement is immediate:

〈∇Φ(V),−H〉 = 〈V −1, H〉 = Tr(V −1H) = Tr(V −1/2HV −1/2) =
∑

i λi(V
−1/2HV −1/2)

= ‖λ(V −1/2HV −1/2)‖1,

where the last equality is given by the fact that λ(V −1/2HV −1/2) ≥ 0 due to H � 0. On the
other hand, ‖H‖V =

√
Tr([V −1/2HV −1/2]2) = ‖λ(V −1/2HV −1/2)‖2. Since ‖h‖2 ≤ ‖h‖1 for all

h, we conclude that ‖H‖V ≤ 〈∇Φ(H),−H〉. 2

Step 2. We have the following

Lemma 7.2.4 Let (µ, Y, U) be a “close-to-the-path” triple, so that µ > 0, Y is strictly feasible
for (Aux), U is strictly feasible for the dual to (Aux) problem (Aux′) and

dist((Y,U), Z̃∗(µ)) ≤ κ ≤ 0.1.

Then

(a) max{〈−∇Φ(Y), H〉 : H ∈ E , ‖H‖Y ≤ 1} ≥ 1.

(b) max{
∣∣∣〈µ−1C̃ +∇Φ(Y), H〉

∣∣∣ : H ∈ E , ‖H‖Y ≤ 1} ≤ κ ≤ 0.1.
(7.2.62)

whence also

max{〈−µ−1C̃,H〉 : H ∈ E , ‖H‖Y ≤ 1} ≥ 0.9. (7.2.63)

290 CONIC PROGRAMMING AND IPMs

Proof. Since the feasible set Y of (Aux) is unbounded, this set admits a nonzero recessive
direction H; clearly, H ∈ E and H � 0. Multiplying H by appropriate positive real, we
can ensure also that ‖H‖Y = 1. By Lemma 7.2.3 applied with Y in the role of V , we have
〈−∇Φ(Y), H〉 ≥ ‖H‖Y = 1, and (7.2.62.a) follows.

To prove (7.2.62.b), note that (Aux) is in the form of (P), and the primal feasible plane in
(Aux) is parallel to E , whence the feasible plane in (Aux′) is E⊥ + C̃. Recalling what U is, we
conclude that U − C̃ ∈ E⊥, that is, whenever H ∈ E , we have

〈µ−1C̃ +∇Φ(Y), H〉 = 〈µ−1U = ∇Φ(Y), H〉 = 〈µ−1U − Y −1, H〉
= Tr([µ−1U − Y −1]H) = Tr(Y 1/2[µ−1U − Y −1]HY −1/2)

= Tr(
[
Y 1/2[µ−1U − Y −1]Y 1/2

] [
Y −1/2HY −1/2

]
),

whence by the Cauchy inequality

|〈µ−1C̃ +∇Φ(Y), H〉| ≤
√

Tr(
[
Y 1/2[µ−1U − Y −1]Y 1/2

]2
)
√

Tr([Y −1/2HY −1/2]2)

=
√

Tr(Y 1/2[µ−1U − Y −1]Y [µ−1U − Y −1]Y 1/2‖H‖Y
=
√

Tr(Y [µ−1U − Y −1]Y [µ−1U − Y −1])‖H‖Y
= dist((Y, U); Z̃∗(µ))‖H‖y ≤ κ‖H‖y ≤ 0.1‖H‖Y .

The resulting inequality holds true for all H ∈ E , and (7.2.62.b) follows.
Relation (7.2.63) is an immediate consequence of (7.2.62). 2

Step 3. Now consider the following geometric construction. Given a triple (µ, Y, U) satis-
fying the premise of Lemma 7.2.4), let us denote by W 1 the intersection of the Dikin ellipsoid of
Ŷ with the feasible plane of (Aux), and by Wµ the intersection of the Dikin ellipsoid of Y with
the same feasible plane. Let us also extend the line segment [Ŷ , Y] to the left of Ŷ until it crosses
the boundary of W 1 at certain point P . Further, let us choose H ∈ E such that ‖H‖Y = 1 and

〈−µ−1C̃,H〉 ≥ 0.9

(such an H exists in view of (7.2.63)) and set

M = Y +H; N = Ŷ + ωH, ω =
‖Ŷ − P‖Fr

‖Y − P‖Fr
.

The cross-section of the entities involved by the 2D plane passing through P, Y,M looks as
shown on figure 7.2.
A. We claim, first, that the points P,M,N belong to the feasible set Y of (Aux).

Indeed, since the direction Ŷ − Y belongs to E , P belongs to the feasible plane of
(Aux), and since by construction P belongs to the Dikin ellipsoid of Ŷ , P belongs to
Sν̃+ by Lemma 7.2.3. Thus, P belongs to Y. By similar reasons, with Y in the role

of Ŷ , we have M ∈ Y. Since N is a convex combination of P and M , N ∈ Y as well.

B. We further claim that

〈∇Φ(Ŷ), N − Ŷ 〉 = µω〈−µ−1C̃,H〉 ≥ 0.9ωµ (7.2.64)

7.2. INTERIOR POINT METHODS FOR LO AND SDO 291

P

M

N

Ŷ Y

Figure 7.2: The entities related to Step 3.

Indeed, the equality in (7.2.64) is evident, since by construction C̃ = ∇Φ(Ŷ); the
inequality is given by the choice of H.

C. We make the following simple and extremely important

Observation 7.2.2 Let X ∈ int Sk+ and W ∈ Sk+. Then

〈Φ(X),W −X〉 ≤ k.

Verification is immediate:

〈∇Φ(X),W −X〉 = 〈X−1, X −W 〉 = Tr(X−1[X −W]) = Tr(IK −X−1W)− k−〈X−1,W 〉 ≤ k,

where the concluding ≤ is due to X−1,W ∈ Sk+ and the fact that the latter cone is self-dual. 2

From A, B, C it follows that

ω ≤ 2n+ 2

0.9µ
. (!)

Now let

Ω =
0.9 min

D
[‖D‖Fr : ‖D‖

Ŷ
= 1]

2n+ 2
, Ω′ = max

D
[‖D‖Fr : ‖D − Ŷ ‖

Ŷ
= 1].

Observe that Ω and Ω′ are positive quantities depending on our “starting point” Ŷ and com-
pletely independent of µ. The role of these quantities in our context is clear from the following

292 CONIC PROGRAMMING AND IPMs

Observation 7.2.3 Under the premise of Lemma 7.2.4, one has

‖Y ‖Fr ≥ Ωµ− Ω′. (7.2.65)

Indeed, by definition of ω we have ‖Y − P‖Fr = ‖Ŷ − P‖Frω
−1, whence, by (!), ‖Y − P‖Fr ≥

0.9µ
‖Ŷ−P‖Fr

2n+2 , and by the Triangle inequality,

‖Y ‖Fr ≥ 0.9µ
‖Ŷ − P‖Fr

2n+ 2
− ‖P‖Fr.

It remains to note that by construction ‖Ŷ −P‖
Ŷ

= 1, whence 0.9
‖Ŷ−P‖Fr

2n+2 ≥ Ω and ‖P‖Fr ≤ Ω′.
2

The result. Combining Observation 7.2.3 and (7.2.60), we arrive at the following

Theorem 7.2.3 Whenever a triple (µ, Y, U) is “close-to-the-path” (i.e., satisfies the premise of
Lemma 7.2.4) and Y = Diag{X,S, σ, τ}, one has

τ ≥ Θµ−Θ−1 (7.2.66)

with Θ > 0 depending solely on the data of (P). Consequently, when µ ≤ 2Θ−2, the pair
(Xτ = τ−1X,Sτ = τ−1S) satisfies the relations (cf. (C′))

Xτ ∈ Sν+ ∩ (LP −B + 2µ−1ΘP) [“primal O(1/µ)-feasibility”]
Sτ ∈ Sν+ ∩ (L⊥P + C + 2µ−1ΘD) [“dual O(1/µ)-feasibility”]
〈C,Xτ 〉 − 〈B,Sτ 〉 ≤ 2µ−1Θd [“O(1/µ)-duality gap”]

(7.2.67)

Discussion. Theorem 7.2.3 says that in order to get an “ε-primal-dual feasible ε-optimal”
solution to (P), (D), it suffices to trace the primal central path of (Aux), starting at the point Ŷ
(path parameter equals 1) until a close-to-the-path point with path parameter O(1/ε) is reached,

which requires O(1)
√

2n+ 2 ln
(

1
O(ε)

)
iterations. Thus, we arrive at a process with the same

complexity characteristics as for the path-following methods described by Theorems 7.2.1 and
7.2.2; note, however, that now we have absolutely no troubles with how to start tracing the
path.

At this point, a careful reader should protest: relations (7.2.67) do say that when µ is large,
Xτ is nearly feasible for (P) and Sτ is nearly feasible for (D); but why do we know that Xτ , Sτ
are nearly optimal for the respective problems? What pretends to ensure the latter property, is
the “O(µ−1)-duality gap” relation in (7.2.67), and indeed, the left hand side of this inequality
looks as the duality gap, while the right hand side is O(µ−1). But in fact the relation

DualityGap(X,S) ≡ [〈C,X〉 −Opt(P)] + [Opt(D)− 〈B,S〉] = 〈C,X〉 − 〈B,S〉16)

is valid only for primal-dual feasible pairs (X,S), while our Xτ , Sτ are only O(µ−1)-feasible.

Here is the missing element:

16) In fact, in the right hand side there should also be the term 〈C,B〉; recall, however, that with our setup this
term is zero.

7.2. INTERIOR POINT METHODS FOR LO AND SDO 293

Proposition 7.2.2 Let the primal-dual pair of problems (P), (D) be strictly primal-dual feasible
and be normalized by 〈C,B〉 = 0, let (X∗, S∗) be a primal-dual optimal solution to the pair, and
let X,S “ε-satisfy” the feasibility and optimality conditions for (P), (D), i.e.,

(a) X ∈ Sν+ ∩ (LP −B + ∆X), ‖∆X‖Fr ≤ ε,
(b) S ∈ Sν+ ∩ (L⊥P + C + ∆S), ‖∆S‖Fr ≤ ε,
(c) 〈C,X〉 − 〈B,S〉 ≤ ε.

Then
〈C,X〉 −Opt(P) ≤ ε(1 + ‖X∗ +B‖Fr),
Opt(D)− 〈B,S〉 ≤ ε(1 + ‖S∗ − C‖Fr).

Proof. We have S − C −∆S ∈ L⊥P , X∗ +B ∈ LP , whence

0 = 〈S − C −∆S,X∗ +B〉
= 〈S,X∗〉︸ ︷︷ ︸

≥0:X∗,S∈Sν̃+=(Sν̃+)∗

−Opt(P) + 〈S,B〉+ 〈−∆S,X∗ +B〉

⇒ −Opt(P) ≤ −〈S,B〉+ 〈∆S,X∗ +B〉 ≤ −〈S,B〉+ ε‖X∗ +B‖Fr.

Combining the resulting inequality and (c), we get the first of the inequalities to be proved; the
second of them is given by “symmetric” reasoning. 2

294 CONIC PROGRAMMING AND IPMs

Appendix A

Prerequisites from Linear Algebra

Regarded as mathematical entities, the objective and the constraints in a Mathematical Pro-
gramming problem are functions of several real variables; therefore before entering the Optimiza-
tion Theory and Methods, we need to recall several basic notions and facts about the spaces Rn

where these functions live, same as about the functions themselves. The reader is supposed to
know most of the facts to follow, so he/she should not be surprised by a “cooking book” style
which we intend to use below.

A.1 Space Rn: algebraic structure

Basically all events and constructions to be considered will take place in the space Rn of n-
dimensional real vectors. This space can be described as follows.

A.1.1 A point in Rn

A point in Rn (called also an n-dimensional vector) is an ordered collection x = (x1, ..., xn) of
n reals, called the coordinates, or components, or entries of vector x; the space Rn itself is the
set of all collections of this type.

A.1.2 Linear operations

Rn is equipped with two basic operations:

• Addition of vectors. This operation takes on input two vectors x = (x1, ..., xn) and y =
(y1, ..., yn) and produces from them a new vector

x+ y = (x1 + y1, ..., xn + yn)

with entries which are sums of the corresponding entries in x and in y.

• Multiplication of vectors by reals. This operation takes on input a real λ and an n-
dimensional vector x = (x1, ..., xn) and produces from them a new vector

λx = (λx1, ..., λxn)

with entries which are λ times the entries of x.

The as far as addition and multiplication by reals are concerned, the arithmetic of Rn inherits
most of the common rules of Real Arithmetic, like x + y = y + x, (x + y) + z = x + (y + z),
(λ+ µ)(x+ y) = λx+ µx+ λy + µy, λ(µx) = (λµ)x, etc.

295

296 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA

A.1.3 Linear subspaces

Linear subspaces in Rn are, by definition, nonempty subsets of Rn which are closed with respect
to addition of vectors and multiplication of vectors by reals:

L ⊂ Rn is a linear subspace ⇔

L 6= ∅;

x, y ∈ L⇒ x+ y ∈ L;
x ∈ L, λ ∈ R⇒ λx ∈ L.

A.1.3.A. Examples of linear subspaces:

1. The entire Rn;

2. The trivial subspace containing the single zero vector 0 = (0, ..., 0) 1); (this vector/point
is called also the origin)

3. The set {x ∈ Rn : x1 = 0} of all vectors x with the first coordinate equal to zero.

The latter example admits a natural extension:

4. The set of all solutions to a homogeneous (i.e., with zero right hand side) system of linear
equations x ∈ Rn :

a11x1 + ...+ a1nxn = 0
a21x1 + ...+ a2nxn = 0

...
am1x1 + ...+ amnxn = 0

 (A.1.1)

always is a linear subspace in Rn. This example is “generic”, that is, every linear sub-
space in Rn is the solution set of a (finite) system of homogeneous linear equations, see
Proposition A.3.6 below.

5. Linear span of a set of vectors. Given a nonempty set X of vectors, one can form a linear
subspace Lin(X), called the linear span of X; this subspace consists of all vectors x which

can be represented as linear combinations
N∑
i=1

λixi of vectors from X (in
N∑
i=1

λixi, N is an

arbitrary positive integer, λi are reals and xi belong to X). Note that

Lin(X) is the smallest linear subspace which contains X: if L is a linear subspace
such that L ⊃ X, then L ⊃ L(X) (why?).

The “linear span” example also is generic:

Every linear subspace in Rn is the linear span of an appropriately chosen finite
set of vectors from Rn.

(see Theorem A.1.2.(i) below).

1)Pay attention to the notation: we use the same symbol 0 to denote the real zero and the n-dimensional
vector with all coordinates equal to zero; these two zeros are not the same, and one should understand from the
context (it always is very easy) which zero is meant.

A.1. SPACE RN : ALGEBRAIC STRUCTURE 297

A.1.3.B. Sums and intersections of linear subspaces. Let {Lα}α∈I be a family (finite or
infinite) of linear subspaces of Rn. From this family, one can build two sets:

1. The sum
∑
α
Lα of the subspaces Lα which consists of all vectors which can be represented

as finite sums of vectors taken each from its own subspace of the family;

2. The intersection
⋂
α
Lα of the subspaces from the family.

Theorem A.1.1 Let {Lα}α∈I be a family of linear subspaces of Rn. Then
(i) The sum

∑
α
Lα of the subspaces from the family is itself a linear subspace of Rn; it is the

smallest of those subspaces of Rn which contain every subspace from the family;
(ii) The intersection

⋂
α
Lα of the subspaces from the family is itself a linear subspace of Rn;

it is the largest of those subspaces of Rn which are contained in every subspace from the family.

A.1.4 Linear independence, bases, dimensions

A collection X = {x1, ..., xN} of vectors from Rn is called linearly independent, if no nontrivial
(i.e., with at least one nonzero coefficient) linear combination of vectors from X is zero.

Example of linearly independent set: the collection of n standard basic orths e1 =
(1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., en = (0, ..., 0, 1).

Examples of linearly dependent sets: (1) X = {0}; (2) X = {e1, e1}; (3) X =
{e1, e2, e1 + e2}.

A collection of vectors f1, ..., fm is called a basis in Rn, if

1. The collection is linearly independent;

2. Every vector from Rn is a linear combination of vectors from the collection (i.e.,
Lin{f1, ..., fm} = Rn).

Example of a basis: The collection of standard basic orths e1, ..., en is a basis in Rn.

Examples of non-bases: (1) The collection {e2, ..., en}. This collection is linearly
independent, but not every vector is a linear combination of the vectors from the
collection; (2) The collection {e1, e1, e2, ..., en}. Every vector is a linear combination
of vectors form the collection, but the collection is not linearly independent.

Besides the bases of the entire Rn, one can speak about the bases of linear subspaces:
A collection {f1, ..., fm} of vectors is called a basis of a linear subspace L, if

1. The collection is linearly independent,

2. L = Lin{f1, ..., fm}, i.e., all vectors f i belong to L, and every vector from L is a linear
combination of the vectors f1, ..., fm.

In order to avoid trivial remarks, it makes sense to agree once for ever that

An empty set of vectors is linearly independent, and an empty linear combination of
vectors

∑
i∈∅

λixi equals to zero.

298 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA

With this convention, the trivial linear subspace L = {0} also has a basis, specifically, an empty
set of vectors.

Theorem A.1.2 (i) Let L be a linear subspace of Rn. Then L admits a (finite) basis, and all
bases of L are comprised of the same number of vectors; this number is called the dimension of
L and is denoted by dim (L).

We have seen that Rn admits a basis comprised of n elements (the standard basic
orths). From (i) it follows that every basis of Rn contains exactly n vectors, and the
dimension of Rn is n.

(ii) The larger is a linear subspace of Rn, the larger is its dimension: if L ⊂ L′ are linear
subspaces of Rn, then dim (L) ≤ dim (L′), and the equality takes place if and only if L = L′.

We have seen that the dimension of Rn is n; according to the above convention, the
trivial linear subspace {0} of Rn admits an empty basis, so that its dimension is 0.
Since {0} ⊂ L ⊂ Rn for every linear subspace L of Rn, it follows from (ii) that the
dimension of a linear subspace in Rn is an integer between 0 and n.

(iii) Let L be a linear subspace in Rn. Then
(iii.1) Every linearly independent subset of vectors from L can be extended to a basis of L;
(iii.2) From every spanning subset X for L – i.e., a set X such that Lin(X) = L – one

can extract a basis of L.

It follows from (iii) that

– every linearly independent subset of L contains at most dim (L) vectors, and if it
contains exactly dim (L) vectors, it is a basis of L;

– every spanning set for L contains at least dim (L) vectors, and if it contains exactly
dim (L) vectors, it is a basis of L.

(iv) Let L be a linear subspace in Rn, and f1, ..., fm be a basis in L. Then every vector
x ∈ L admits exactly one representation

x =

m∑
i=1

λi(x)f i

as a linear combination of vectors from the basis, and the mapping

x 7→ (λ1(x), ..., λm(x)) : L→ Rm

is a one-to-one mapping of L onto Rm which is linear, i.e. for every i = 1, ...,m one has

λi(x+ y) = λi(x) + λi(y) ∀(x, y ∈ L);
λi(νx) = νλi(x) ∀(x ∈ L, ν ∈ R).

(A.1.2)

The reals λi(x), i = 1, ...,m, are called the coordinates of x ∈ L in the basis f1, ..., fm.

E.g., the coordinates of a vector x ∈ Rn in the standard basis e1, ..., en of Rn – the
one comprised of the standard basic orths – are exactly the entries of x.

(v) [Dimension formula] Let L1, L2 be linear subspaces of Rn. Then

dim (L1 ∩ L2) + dim (L1 + L2) = dim (L1) + dim (L2).

A.1. SPACE RN : ALGEBRAIC STRUCTURE 299

A.1.5 Linear mappings and matrices

A function A(x) (another name – mapping) defined on Rn and taking values in Rm is called
linear, if it preserves linear operations:

A(x+ y) = A(x) +A(y) ∀(x, y ∈ Rn); A(λx) = λA(x) ∀(x ∈ Rn, λ ∈ R).

It is immediately seen that a linear mapping from Rn to Rm can be represented as multiplication
by an m× n matrix:

A(x) = Ax,

and this matrix is uniquely defined by the mapping: the columns Aj of A are just the images of
the standard basic orths ej under the mapping A:

Aj = A(ej).

Linear mappings from Rn into Rm can be added to each other:

(A+ B)(x) = A(x) + B(x)

and multiplied by reals:
(λA)(x) = λA(x),

and the results of these operations again are linear mappings from Rn to Rm. The addition of
linear mappings and multiplication of these mappings by reals correspond to the same operations
with the matrices representing the mappings: adding/multiplying by reals mappings, we add,
respectively, multiply by reals the corresponding matrices.

Given two linear mappings A(x) : Rn → Rm and B(y) : Rm → Rk, we can build their
superposition

C(x) ≡ B(A(x)) : Rn → Rk,

which is again a linear mapping, now from Rn to Rk. In the language of matrices representing
the mappings, the superposition corresponds to matrix multiplication: the k × n matrix C
representing the mapping C is the product of the matrices representing A and B:

A(x) = Ax, B(y) = By ⇒ C(x) ≡ B(A(x)) = B · (Ax) = (BA)x.

Important convention. When speaking about adding n-dimensional vectors and multiplying
them by reals, it is absolutely unimportant whether we treat the vectors as the column ones,
or the row ones, or write down the entries in rectangular tables, or something else. However,
when matrix operations (matrix-vector multiplication, transposition, etc.) become involved, it
is important whether we treat our vectors as columns, as rows, or as something else. For the
sake of definiteness, from now on we treat all vectors as column ones, independently of how
we refer to them in the text. For example, when saying for the first time what a vector is, we
wrote x = (x1, ..., xn), which might suggest that we were speaking about row vectors. We stress
that it is not the case, and the only reason for using the notation x = (x1, ..., xn) instead of

the “correct” one x =

 x1
...
xn

 is to save space and to avoid ugly formulas like f(

 x1
...
xn

) when

speaking about functions with vector arguments. After we have agreed that there is no such
thing as a row vector in this Lecture course, we can use (and do use) without any harm whatever
notation we want.

300 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA

Exercise A.1 1. Mark in the list below those subsets of Rn which are linear subspaces, find
out their dimensions and point out their bases:

(a) Rn

(b) {0}
(c) ∅

(d) {x ∈ Rn :
n∑
i=1

ixi = 0}

(e) {x ∈ Rn :
n∑
i=1

ix2
i = 0}

(f) {x ∈ Rn :
n∑
i=1

ixi = 1}

(g) {x ∈ Rn :
n∑
i=1

ix2
i = 1}

2. It is known that L is a subspace of Rn with exactly one basis. What is L?

3. Consider the space Rm×n of m× n matrices with real entries. As far as linear operations
– addition of matrices and multiplication of matrices by reals – are concerned, this space
can be treated as certain RN .

(a) Find the dimension of Rm×n and point out a basis in this space

(b) In the space Rn×n of square n×n matrices, there are two interesting subsets: the set
Sn of symmetric matrices {A = [Aij] : Aij = Aij} and the set Jn of skew-symmetric
matrices {A = [Aij] : Aij = −Aji}.

i. Verify that both Sn and Jn are linear subspaces of Rn×n

ii. Find the dimension and point out a basis in Sn

iii. Find the dimension and point out a basis in Jn

iv. What is the sum of Sn and Jn? What is the intersection of Sn and Jn?

A.2 Space Rn: Euclidean structure

So far, we were interested solely in the algebraic structure of Rn, or, which is the same, in
the properties of the linear operations (addition of vectors and multiplication of vectors by
scalars) the space is endowed with. Now let us consider another structure on Rn – the standard
Euclidean structure – which allows to speak about distances, angles, convergence, etc., and thus
makes the space Rn a much richer mathematical entity.

A.2.1 Euclidean structure

The standard Euclidean structure on Rn is given by the standard inner product – an operation
which takes on input two vectors x, y and produces from them a real, specifically, the real

〈x, y〉 ≡ xT y =
n∑
i=1

xiyi

The basic properties of the inner product are as follows:

A.2. SPACE RN : EUCLIDEAN STRUCTURE 301

1. [bi-linearity]: The real-valued function 〈x, y〉 of two vector arguments x, y ∈ Rn is linear
with respect to every one of the arguments, the other argument being fixed:

〈λu+ µv, y〉 = λ〈u, y〉+ µ〈v, y〉 ∀(u, v, y ∈ Rn, λ, µ ∈ R)
〈x, λu+ µv〉 = λ〈x, u〉+ µ〈x, v〉 ∀(x, u, v ∈ Rn, λ, µ ∈ R)

2. [symmetry]: The function 〈x, y〉 is symmetric:

〈x, y〉 = 〈y, x〉 ∀(x, y ∈ Rn).

3. [positive definiteness]: The quantity 〈x, x〉 always is nonnegative, and it is zero if and only
if x is zero.

Remark A.2.1 The outlined 3 properties – bi-linearity, symmetry and positive definiteness –
form a definition of an Euclidean inner product, and there are infinitely many different from
each other ways to satisfy these properties; in other words, there are infinitely many different
Euclidean inner products on Rn. The standard inner product 〈x, y〉 = xT y is just a particular
case of this general notion. Although in the sequel we normally work with the standard inner
product, the reader should remember that the facts we are about to recall are valid for all
Euclidean inner products, and not only for the standard one.

The notion of an inner product underlies a number of purely algebraic constructions, in partic-
ular, those of inner product representation of linear forms and of orthogonal complement.

A.2.2 Inner product representation of linear forms on Rn

A linear form on Rn is a real-valued function f(x) on Rn which is additive (f(x+y) = f(x)+f(y))
and homogeneous (f(λx) = λf(x))

Example of linear form: f(x) =
n∑
i=1

ixi

Examples of non-linear functions: (1) f(x) = x1 + 1; (2) f(x) = x2
1 − x2

2; (3) f(x) =
sin(x1).

When adding/multiplying by reals linear forms, we again get linear forms (scientifically speaking:
“linear forms on Rn form a linear space”). Euclidean structure allows to identify linear forms
on Rn with vectors from Rn:

Theorem A.2.1 Let 〈·, ·〉 be a Euclidean inner product on Rn.
(i) Let f(x) be a linear form on Rn. Then there exists a uniquely defined vector f ∈ Rn

such that the form is just the inner product with f :

f(x) = 〈f, x〉 ∀x

(ii) Vice versa, every vector f ∈ Rn defines, via the formula

f(x) ≡ 〈f, x〉,

a linear form on Rn;
(iii) The above one-to-one correspondence between the linear forms and vectors on Rn is

linear: adding linear forms (or multiplying a linear form by a real), we add (respectively, multiply
by the real) the vector(s) representing the form(s).

302 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA

A.2.3 Orthogonal complement

An Euclidean structure allows to associate with a linear subspace L ⊂ Rn another linear sub-
space L⊥ – the orthogonal complement (or the annulator) of L; by definition, L⊥ consists of all
vectors which are orthogonal to every vector from L:

L⊥ = {f : 〈f, x〉 = 0 ∀x ∈ L}.

Theorem A.2.2 (i) Twice taken, orthogonal complement recovers the original subspace: when-
ever L is a linear subspace of Rn, one has

(L⊥)⊥ = L;

(ii) The larger is a linear subspace L, the smaller is its orthogonal complement: if L1 ⊂ L2

are linear subspaces of Rn, then L⊥1 ⊃ L⊥2
(iii) The intersection of a subspace and its orthogonal complement is trivial, and the sum of

these subspaces is the entire Rn:

L ∩ L⊥ = {0}, L+ L⊥ = Rn.

Remark A.2.2 From Theorem A.2.2.(iii) and the Dimension formula (Theorem A.1.2.(v)) it
follows, first, that for every subspace L in Rn one has

dim (L) + dim (L⊥) = n.

Second, every vector x ∈ Rn admits a unique decomposition

x = xL + xL⊥

into a sum of two vectors: the first of them, xL, belongs to L, and the second, xL⊥ , belongs
to L⊥. This decomposition is called the orthogonal decomposition of x taken with respect to
L,L⊥; xL is called the orthogonal projection of x onto L, and xL⊥ – the orthogonal projection
of x onto the orthogonal complement of L. Both projections depend on x linearly, for example,

(x+ y)L = xL + yL, (λx)L = λxL.

The mapping x 7→ xL is called the orthogonal projector onto L.

A.2.4 Orthonormal bases

A collection of vectors f1, ..., fm is called orthonormal w.r.t. Euclidean inner product 〈·, ·〉, if
distinct vector from the collection are orthogonal to each other:

i 6= j ⇒ 〈f i, f j〉 = 0

and inner product of every vector f i with itself is unit:

〈f i, f i〉 = 1, i = 1, ...,m.

A.2. SPACE RN : EUCLIDEAN STRUCTURE 303

Theorem A.2.3 (i) An orthonormal collection f1, ..., fm always is linearly independent and is
therefore a basis of its linear span L = Lin(f1, ..., fm) (such a basis in a linear subspace is called
orthonormal). The coordinates of a vector x ∈ L w.r.t. an orthonormal basis f1, ..., fm of L are
given by explicit formulas:

x =
m∑
i=1

λi(x)f i ⇔ λi(x) = 〈x, f i〉.

Example of an orthonormal basis in Rn: The standard basis {e1, ..., en} is orthonormal with

respect to the standard inner product 〈x, y〉 = xT y on Rn (but is not orthonormal w.r.t.
other Euclidean inner products on Rn).

Proof of (i): Taking inner product of both sides in the equality

x =
∑
j

λj(x)f j

with f i, we get

〈x, fi〉 = 〈
∑
j

λj(x)f j , f i〉

=
∑
j

λj(x)〈f j , f i〉 [bilinearity of inner product]

= λi(x) [orthonormality of {f i}]

Similar computation demonstrates that if 0 is represented as a linear combination of f i with

certain coefficients λi, then λi = 〈0, f i〉 = 0, i.e., all the coefficients are zero; this means that

an orthonormal system is linearly independent.

(ii) If f1, ..., fm is an orthonormal basis in a linear subspace L, then the inner product of
two vectors x, y ∈ L in the coordinates λi(·) w.r.t. this basis is given by the standard formula

〈x, y〉 =

m∑
i=1

λi(x)λi(y).

Proof:

x =
∑
i

λi(x)f i, y =
∑
i

λi(y)f i

⇒ 〈x, y〉 = 〈
∑
i

λi(x)f i,
∑
i

λi(y)f i〉

=
∑
i,j

λi(x)λj(y)〈f i, f j〉 [bilinearity of inner product]

=
∑
i

λi(x)λi(y) [orthonormality of {f i}]

(iii) Every linear subspace L of Rn admits an orthonormal basis; moreover, every orthonor-
mal system f1, ..., fm of vectors from L can be extended to an orthonormal basis in L.

Important corollary: All Euclidean spaces of the same dimension are “the same”. Specifi-
cally, if L is an m-dimensional space in a space Rn equipped with an Euclidean inner product
〈·, ·〉, then there exists a one-to-one mapping x 7→ A(x) of L onto Rm such that

• The mapping preserves linear operations:

A(x+ y) = A(x) +A(y) ∀(x, y ∈ L);A(λx) = λA(x) ∀(x ∈ L, λ ∈ R);

304 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA

• The mapping converts the 〈·, ·〉 inner product on L into the standard inner product on
Rm:

〈x, y〉 = (A(x))TA(y) ∀x, y ∈ L.

Indeed, by (iii) L admits an orthonormal basis f1, ..., fm; using (ii), one can immediately
check that the mapping

x 7→ A(x) = (λ1(x), ..., λm(x))

which maps x ∈ L into the m-dimensional vector comprised of the coordinates of x in the
basis f1, ..., fm, meets all the requirements.

Proof of (iii) is given by important by its own right Gram-Schmidt orthogonalization process

as follows. We start with an arbitrary basis h1, ..., hm in L and step by step convert it into
an orthonormal basis f1, ..., fm. At the beginning of a step t of the construction, we already
have an orthonormal collection f1, ..., f t−1 such that Lin{f1, ..., f t−1} = Lin{h1, ..., ht−1}.
At a step t we

1. Build the vector

gt = ht −
t−1∑
j=1

〈ht, f j〉f j .

It is easily seen (check it!) that

(a) One has
Lin{f1, ..., f t−1, gt} = Lin{h1, ..., ht}; (A.2.1)

(b) gt 6= 0 (derive this fact from (A.2.1) and the linear independence of the collection
h1, ..., hm);

(c) gt is orthogonal to f1, ..., f t−1

2. Since gt 6= 0, the quantity 〈gt, gt〉 is positive (positive definiteness of the inner product),
so that the vector

f t =
1√
〈gt, gt〉

gt

is well defined. It is immediately seen (check it!) that the collection f1, ..., f t is or-
thonormal and

Lin{f1, ..., f t} = Lin{f1, ..., f t−1, gt} = Lin{h1, ..., ht}.

Step t of the orthogonalization process is completed.

After m steps of the optimization process, we end up with an orthonormal system f1, ..., fm

of vectors from L such that

Lin{f1, ..., fm} = Lin{h1, ..., hm} = L,

so that f1, ..., fm is an orthonormal basis in L.

The construction can be easily modified (do it!) to extend a given orthonormal system of

vectors from L to an orthonormal basis of L.

Exercise A.2 1. What is the orthogonal complement (w.r.t. the standard inner product) of

the subspace {x ∈ Rn :
n∑
i=1

xi = 0} in Rn?

2. Find an orthonormal basis (w.r.t. the standard inner product) in the linear subspace {x ∈
Rn : x1 = 0} of Rn

A.3. AFFINE SUBSPACES IN RN 305

3. Let L be a linear subspace of Rn, and f1, ..., fm be an orthonormal basis in L. Prove that
for every x ∈ Rn, the orthogonal projection xL of x onto L is given by the formula

xL =

m∑
i=1

(xT f i)f i.

4. Let L1, L2 be linear subspaces in Rn. Verify the formulas

(L1 + L2)⊥ = L⊥1 ∩ L⊥2 ; (L1 ∩ L2)⊥ = L⊥1 + L⊥2 .

5. Consider the space of m× n matrices Rm×n, and let us equip it with the “standard inner
product” (called the Frobenius inner product)

〈A,B〉 =
∑
i,j

AijBij

(as if we were treating m × n matrices as mn-dimensional vectors, writing the entries of
the matrices column by column, and then taking the standard inner product of the resulting
long vectors).

(a) Verify that in terms of matrix multiplication the Frobenius inner product can be writ-
ten as

〈A,B〉 = Tr(ABT),

where Tr(C) is the trace (the sum of diagonal elements) of a square matrix C.

(b) Build an orthonormal basis in the linear subspace Sn of symmetric n× n matrices

(c) What is the orthogonal complement of the subspace Sn of symmetric n× n matrices
in the space Rn×n of square n× n matrices?

(d) Find the orthogonal decomposition, w.r.t. S2, of the matrix

[
1 2
3 4

]

A.3 Affine subspaces in Rn

Many of events to come will take place not in the entire Rn, but in its affine subspaces which,
geometrically, are planes of different dimensions in Rn. Let us become acquainted with these
subspaces.

A.3.1 Affine subspaces and affine hulls

Definition of an affine subspace. Geometrically, a linear subspace L of Rn is a special
plane – the one passing through the origin of the space (i.e., containing the zero vector). To get
an arbitrary plane M , it suffices to subject an appropriate special plane L to a translation – to
add to all points from L a fixed shifting vector a. This geometric intuition leads to the following

Definition A.3.1 [Affine subspace] An affine subspace (a plane) in Rn is a set of the form

M = a+ L = {y = a+ x | x ∈ L}, (A.3.1)

306 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA

where L is a linear subspace in Rn and a is a vector from Rn 2).

E.g., shifting the linear subspace L comprised of vectors with zero first entry by a vector a =
(a1, ..., an), we get the set M = a+L of all vectors x with x1 = a1; according to our terminology,
this is an affine subspace.

Immediate question about the notion of an affine subspace is: what are the “degrees of
freedom” in decomposition (A.3.1) – how “strict” M determines a and L? The answer is as
follows:

Proposition A.3.1 The linear subspace L in decomposition (A.3.1) is uniquely defined by M
and is the set of all differences of the vectors from M :

L = M −M = {x− y | x, y ∈M}. (A.3.2)

The shifting vector a is not uniquely defined by M and can be chosen as an arbitrary vector from
M .

A.3.2 Intersections of affine subspaces, affine combinations and affine hulls

An immediate conclusion of Proposition A.3.1 is as follows:

Corollary A.3.1 Let {Mα} be an arbitrary family of affine subspaces in Rn, and assume that
the set M = ∩αMα is nonempty. Then Mα is an affine subspace.

From Corollary A.3.1 it immediately follows that for every nonempty subset Y of Rn there exists
the smallest affine subspace containing Y – the intersection of all affine subspaces containing Y .
This smallest affine subspace containing Y is called the affine hull of Y (notation: Aff(Y)).

All this resembles a lot the story about linear spans. Can we further extend this analogy
and to get a description of the affine hull Aff(Y) in terms of elements of Y similar to the one
of the linear span (“linear span of X is the set of all linear combinations of vectors from X”)?
Sure we can!

Let us choose somehow a point y0 ∈ Y , and consider the set

X = Y − y0.

All affine subspaces containing Y should contain also y0 and therefore, by Proposition A.3.1,
can be represented as M = y0 + L, L being a linear subspace. It is absolutely evident that an
affine subspace M = y0 + L contains Y if and only if the subspace L contains X, and that the
larger is L, the larger is M :

L ⊂ L′ ⇒M = y0 + L ⊂M ′ = y0 + L′.

Thus, to find the smallest among affine subspaces containing Y , it suffices to find the smallest
among the linear subspaces containing X and to translate the latter space by y0:

Aff(Y) = y0 + Lin(X) = y0 + Lin(Y − y0). (A.3.3)

2)according to our convention on arithmetic of sets, I was supposed to write in (A.3.1) {a} + L instead of
a + L – we did not define arithmetic sum of a vector and a set. Usually people ignore this difference and omit
the brackets when writing down singleton sets in similar expressions: we shall write a+L instead of {a}+L, Rd
instead of R{d}, etc.

A.3. AFFINE SUBSPACES IN RN 307

Now, we know what is Lin(Y − y0) – this is a set of all linear combinations of vectors from
Y − y0, so that a generic element of Lin(Y − y0) is

x =

k∑
i=1

µi(yi − y0) [k may depend of x]

with yi ∈ Y and real coefficients µi. It follows that the generic element of Aff(Y) is

y = y0 +
k∑
i=1

µi(yi − y0) =
k∑
i=0

λiyi,

where

λ0 = 1−
∑
i

µi, λi = µi, i ≥ 1.

We see that a generic element of Aff(Y) is a linear combination of vectors from Y . Note, however,
that the coefficients λi in this combination are not completely arbitrary: their sum is equal to
1. Linear combinations of this type – with the unit sum of coefficients – have a special name –
they are called affine combinations.

We have seen that every vector from Aff(Y) is an affine combination of vectors of Y . Whether
the inverse is true, i.e., whether Aff(Y) contains all affine combinations of vectors from Y ? The
answer is positive. Indeed, if

y =
k∑
i=1

λiyi

is an affine combination of vectors from Y , then, using the equality
∑
i
λi = 1, we can write it

also as

y = y0 +
k∑
i=1

λi(yi − y0),

y0 being the “marked” vector we used in our previous reasoning, and the vector of this form, as
we already know, belongs to Aff(Y). Thus, we come to the following

Proposition A.3.2 [Structure of affine hull]

Aff(Y) = {the set of all affine combinations of vectors from Y }.

When Y itself is an affine subspace, it, of course, coincides with its affine hull, and the above
Proposition leads to the following

Corollary A.3.2 An affine subspace M is closed with respect to taking affine combinations of
its members – every combination of this type is a vector from M . Vice versa, a nonempty set
which is closed with respect to taking affine combinations of its members is an affine subspace.

A.3.3 Affinely spanning sets, affinely independent sets, affine dimension

Affine subspaces are closely related to linear subspaces, and the basic notions associated with
linear subspaces have natural and useful affine analogies. Here we introduce these notions and
discuss their basic properties.

308 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA

Affinely spanning sets. Let M = a+L be an affine subspace. We say that a subset Y of M
is affinely spanning for M (we say also that Y spans M affinely, or that M is affinely spanned
by Y), if M = Aff(Y), or, which is the same due to Proposition A.3.2, if every point of M is an
affine combination of points from Y . An immediate consequence of the reasoning of the previous
Section is as follows:

Proposition A.3.3 Let M = a + L be an affine subspace and Y be a subset of M , and let
y0 ∈ Y . The set Y affinely spans M – M = Aff(Y) – if and only if the set

X = Y − y0

spans the linear subspace L: L = Lin(X).

Affinely independent sets. A linearly independent set x1, ..., xk is a set such that no nontriv-
ial linear combination of x1, ..., xk equals to zero. An equivalent definition is given by Theorem
A.1.2.(iv): x1, ..., xk are linearly independent, if the coefficients in a linear combination

x =

k∑
i=1

λixi

are uniquely defined by the value x of the combination. This equivalent form reflects the essence
of the matter – what we indeed need, is the uniqueness of the coefficients in expansions. Ac-
cordingly, this equivalent form is the prototype for the notion of an affinely independent set: we
want to introduce this notion in such a way that the coefficients λi in an affine combination

y =

k∑
i=0

λiyi

of “affinely independent” set of vectors y0, ..., yk would be uniquely defined by y. Non-uniqueness
would mean that

k∑
i=0

λiyi =

k∑
i=0

λ′iyi

for two different collections of coefficients λi and λ′i with unit sums of coefficients; if it is the
case, then

m∑
i=0

(λi − λ′i)yi = 0,

so that yi’s are linearly dependent and, moreover, there exists a nontrivial zero combination
of then with zero sum of coefficients (since

∑
i

(λi − λ′i) =
∑
i
λi −

∑
i
λ′i = 1 − 1 = 0). Our

reasoning can be inverted – if there exists a nontrivial linear combination of yi’s with zero sum
of coefficients which is zero, then the coefficients in the representation of a vector as an affine
combination of yi’s are not uniquely defined. Thus, in order to get uniqueness we should for
sure forbid relations

k∑
i=0

µiyi = 0

with nontrivial zero sum coefficients µi. Thus, we have motivated the following

A.3. AFFINE SUBSPACES IN RN 309

Definition A.3.2 [Affinely independent set] A collection y0, ..., yk of n-dimensional vectors is
called affinely independent, if no nontrivial linear combination of the vectors with zero sum of
coefficients is zero:

k∑
i=1

λiyi = 0,

k∑
i=0

λi = 0⇒ λ0 = λ1 = ... = λk = 0.

With this definition, we get the result completely similar to the one of Theorem A.1.2.(iv):

Corollary A.3.3 Let y0, ..., yk be affinely independent. Then the coefficients λi in an affine
combination

y =

k∑
i=0

λiyi [
∑
i

λi = 1]

of the vectors y0, ..., yk are uniquely defined by the value y of the combination.

Verification of affine independence of a collection can be immediately reduced to verification of
linear independence of closely related collection:

Proposition A.3.4 k + 1 vectors y0, ..., yk are affinely independent if and only if the k vectors
(y1 − y0), (y2 − y0), ..., (yk − y0) are linearly independent.

From the latter Proposition it follows, e.g., that the collection 0, e1, ..., en comprised of the origin
and the standard basic orths is affinely independent. Note that this collection is linearly depen-
dent (as every collection containing zero). You should definitely know the difference between
the two notions of independence we deal with: linear independence means that no nontrivial
linear combination of the vectors can be zero, while affine independence means that no nontrivial
linear combination from certain restricted class of them (with zero sum of coefficients) can be
zero. Therefore, there are more affinely independent sets than the linearly independent ones: a
linearly independent set is for sure affinely independent, but not vice versa.

Affine bases and affine dimension. Propositions A.3.2 and A.3.3 reduce the notions of
affine spanning/affine independent sets to the notions of spanning/linearly independent ones.
Combined with Theorem A.1.2, they result in the following analogies of the latter two statements:

Proposition A.3.5 [Affine dimension] Let M = a + L be an affine subspace in Rn. Then the
following two quantities are finite integers which are equal to each other:

(i) minimal # of elements in the subsets of M which affinely span M ;
(ii) maximal # of elements in affine independent subsets of M .

The common value of these two integers is by 1 more than the dimension dim L of L.

By definition, the affine dimension of an affine subspace M = a + L is the dimension dim L of
L. Thus, if M is of affine dimension k, then the minimal cardinality of sets affinely spanning
M , same as the maximal cardinality of affine independent subsets of M , is k + 1.

Theorem A.3.1 [Affine bases] Let M = a+ L be an affine subspace in Rn.

A. Let Y ⊂M . The following three properties of X are equivalent:
(i) Y is an affine independent set which affinely spans M ;
(ii) Y is affine independent and contains 1 + dim L elements;
(iii) Y affinely spans M and contains 1 + dim L elements.

310 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA

A subset Y of M possessing the indicated equivalent to each other properties is called an
affine basis of M . Affine bases in M are exactly the collections y0, ..., ydim L such that y0 ∈ M
and (y1 − y0), ..., (ydim L − y0) is a basis in L.

B. Every affinely independent collection of vectors of M either itself is an affine basis of M ,
or can be extended to such a basis by adding new vectors. In particular, there exists affine basis
of M .

C. Given a set Y which affinely spans M , you can always extract from this set an affine
basis of M .

We already know that the standard basic orths e1, ..., en form a basis of the entire space Rn.
And what about affine bases in Rn? According to Theorem A.3.1.A, you can choose as such a
basis a collection e0, e0 + e1, ..., e0 + en, e0 being an arbitrary vector.

Barycentric coordinates. Let M be an affine subspace, and let y0, ..., yk be an affine basis
of M . Since the basis, by definition, affinely spans M , every vector y from M is an affine
combination of the vectors of the basis:

y =

k∑
i=0

λiyi [

k∑
i=0

λi = 1],

and since the vectors of the affine basis are affinely independent, the coefficients of this com-
bination are uniquely defined by y (Corollary A.3.3). These coefficients are called barycentric
coordinates of y with respect to the affine basis in question. In contrast to the usual coordinates
with respect to a (linear) basis, the barycentric coordinates could not be quite arbitrary: their
sum should be equal to 1.

A.3.4 Dual description of linear subspaces and affine subspaces

To the moment we have introduced the notions of linear subspace and affine subspace and have
presented a scheme of generating these entities: to get, e.g., a linear subspace, you start from
an arbitrary nonempty set X ⊂ Rn and add to it all linear combinations of the vectors from
X. When replacing linear combinations with the affine ones, you get a way to generate affine
subspaces.

The just indicated way of generating linear subspaces/affine subspaces resembles the ap-
proach of a worker building a house: he starts with the base and then adds to it new elements
until the house is ready. There exists, anyhow, an approach of an artist creating a sculpture: he
takes something large and then deletes extra parts of it. Is there something like “artist’s way”
to represent linear subspaces and affine subspaces? The answer is positive and very instructive.

Affine subspaces and systems of linear equations

Let L be a linear subspace. According to Theorem A.2.2.(i), it is an orthogonal complement
– namely, the orthogonal complement to the linear subspace L⊥. Now let a1, ..., am be a finite
spanning set in L⊥. A vector x which is orthogonal to a1, ..., am is orthogonal to the entire
L⊥ (since every vector from L⊥ is a linear combination of a1, ..., am and the inner product is
bilinear); and of course vice versa, a vector orthogonal to the entire L⊥ is orthogonal to a1, ..., am.
We see that

L = (L⊥)⊥ = {x | aTi x = 0, i = 1, ..., k}. (A.3.4)

A.3. AFFINE SUBSPACES IN RN 311

Thus, we get a very important, although simple,

Proposition A.3.6 [“Outer” description of a linear subspace] Every linear subspace L in Rn

is a set of solutions to a homogeneous linear system of equations

aTi x = 0, i = 1, ...,m, (A.3.5)

given by properly chosen m and vectors a1, ..., am.

Proposition A.3.6 is an “if and only if” statement: as we remember from Example A.1.3.A.4,
solution set to a homogeneous system of linear equations with n variables always is a linear
subspace in Rn.

From Proposition A.3.6 and the facts we know about the dimension we can easily derive
several important consequences:

• Systems (A.3.5) which define a given linear subspace L are exactly the systems given by
the vectors a1, ..., am which span L⊥ 3)

• The smallest possible number m of equations in (A.3.5) is the dimension of L⊥, i.e., by
Remark A.2.2, is codim L ≡ n− dim L 4)

Now, an affine subspace M is, by definition, a translation of a linear subspace: M = a+ L. As
we know, vectors x from L are exactly the solutions of certain homogeneous system of linear
equations

aTi x = 0, i = 1, ...,m.

It is absolutely clear that adding to these vectors a fixed vector a, we get exactly the set of
solutions to the inhomogeneous solvable linear system

aTi x = bi ≡ aTi a, i = 1, ...,m.

Vice versa, the set of solutions to a solvable system of linear equations

aTi x = bi, i = 1, ...,m,

with n variables is the sum of a particular solution to the system and the solution set to the
corresponding homogeneous system (the latter set, as we already know, is a linear subspace in
Rn), i.e., is an affine subspace. Thus, we get the following

Proposition A.3.7 [“Outer” description of an affine subspace]
Every affine subspace M = a + L in Rn is a set of solutions to a solvable linear system of
equations

aTi x = bi, i = 1, ...,m, (A.3.6)

given by properly chosen m and vectors a1, ..., am.
Vice versa, the set of all solutions to a solvable system of linear equations with n variables

is an affine subspace in Rn.
The linear subspace L associated with M is exactly the set of solutions of the homogeneous

(with the right hand side set to 0) version of system (A.3.6).

We see, in particular, that an affine subspace always is closed.

3)the reasoning which led us to Proposition A.3.6 says that [a1, ..., am span L⊥] ⇒ [(A.3.5) defines L]; now we
claim that the inverse also is true

4to make this statement true also in the extreme case when L = Rn (i.e., when codim L = 0), we from now
on make a convention that an empty set of equations or inequalities defines, as the solution set, the entire space

312 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA

Comment. The “outer” description of a linear subspace/affine subspace – the “artist’s” one
– is in many cases much more useful than the “inner” description via linear/affine combinations
(the “worker’s” one). E.g., with the outer description it is very easy to check whether a given
vector belongs or does not belong to a given linear subspace/affine subspace, which is not that
easy with the inner one5). In fact both descriptions are “complementary” to each other and
perfectly well work in parallel: what is difficult to see with one of them, is clear with another.
The idea of using “inner” and “outer” descriptions of the entities we meet with – linear subspaces,
affine subspaces, convex sets, optimization problems – the general idea of duality – is, I would
say, the main driving force of Convex Analysis and Optimization, and in the sequel we would
all the time meet with different implementations of this fundamental idea.

A.3.5 Structure of the simplest affine subspaces

This small subsection deals mainly with terminology. According to their dimension, affine
subspaces in Rn are named as follows:

• Subspaces of dimension 0 are translations of the only 0-dimensional linear subspace {0},
i.e., are singleton sets – vectors from Rn. These subspaces are called points; a point is a
solution to a square system of linear equations with nonsingular matrix.

• Subspaces of dimension 1 (lines). These subspaces are translations of one-dimensional
linear subspaces of Rn. A one-dimensional linear subspace has a single-element basis
given by a nonzero vector d and is comprised of all multiples of this vector. Consequently,
line is a set of the form

{y = a+ td | t ∈ R}

given by a pair of vectors a (the origin of the line) and d (the direction of the line), d 6= 0.
The origin of the line and its direction are not uniquely defined by the line; you can choose
as origin any point on the line and multiply a particular direction by nonzero reals.

In the barycentric coordinates a line is described as follows:

l = {λ0y0 + λ1y1 | λ0 + λ1 = 1} = {λy0 + (1− λ)y1 | λ ∈ R},

where y0, y1 is an affine basis of l; you can choose as such a basis any pair of distinct points
on the line.

The “outer” description a line is as follows: it is the set of solutions to a linear system
with n variables and n− 1 linearly independent equations.

• Subspaces of dimension > 2 and < n−1 have no special names; sometimes they are called
affine planes of such and such dimension.

• Affine subspaces of dimension n− 1, due to important role they play in Convex Analysis,
have a special name – they are called hyperplanes. The outer description of a hyperplane
is that a hyperplane is the solution set of a single linear equation

aTx = b

5)in principle it is not difficult to certify that a given point belongs to, say, a linear subspace given as the linear
span of some set – it suffices to point out a representation of the point as a linear combination of vectors from
the set. But how could you certify that the point does not belong to the subspace?

A.3. AFFINE SUBSPACES IN RN 313

with nontrivial left hand side (a 6= 0). In other words, a hyperplane is the level set
a(x) = const of a nonconstant linear form a(x) = aTx.

• The “largest possible” affine subspace – the one of dimension n – is unique and is the
entire Rn. This subspace is given by an empty system of linear equations.

314 APPENDIX A. PREREQUISITES FROM LINEAR ALGEBRA

Appendix B

Prerequisites from Real Analysis

B.1 Space Rn: Metric Structure and Topology

Euclidean structure on the space Rn gives rise to a number of extremely important metric
notions – distances, convergence, etc. For the sake of definiteness, we associate these notions
with the standard inner product xT y.

B.1.1 Euclidean norm and distances

By positive definiteness, the quantity xTx always is nonnegative, so that the quantity

|x| ≡ ‖x‖2 =
√
xTx =

√
x2

1 + x2
2 + ...+ x2

n

is well-defined; this quantity is called the (standard) Euclidean norm of vector x (or simply
the norm of x) and is treated as the distance from the origin to x. The distance between two
arbitrary points x, y ∈ Rn is, by definition, the norm |x− y| of the difference x− y. The notions
we have defined satisfy all basic requirements on the general notions of a norm and distance,
specifically:

1. Positivity of norm: The norm of a vector always is nonnegative; it is zero if and only is
the vector is zero:

|x| ≥ 0 ∀x; |x| = 0⇔ x = 0.

2. Homogeneity of norm: When a vector is multiplied by a real, its norm is multiplied by the
absolute value of the real:

|λx| = |λ| · |x| ∀(x ∈ Rn, λ ∈ R).

3. Triangle inequality: Norm of the sum of two vectors is ≤ the sum of their norms:

|x+ y| ≤ |x|+ |y| ∀(x, y ∈ Rn).

In contrast to the properties of positivity and homogeneity, which are absolutely evident,
the Triangle inequality is not trivial and definitely requires a proof. The proof goes
through a fact which is extremely important by its own right – the Cauchy Inequality,
which perhaps is the most frequently used inequality in Mathematics:

315

316 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

Theorem B.1.1 [Cauchy’s Inequality] The absolute value of the inner product of two
vectors does not exceed the product of their norms:

|xT y| ≤ |x||y| ∀(x, y ∈ Rn)

and is equal to the product of the norms if and only if one of the vectors is proportional
to the other one:

|xT y| = |x||y| ⇔ {∃α : x = αy or ∃β : y = βx}

Proof is immediate: we may assume that both x and y are nonzero (otherwise the
Cauchy inequality clearly is equality, and one of the vectors is constant times (specifi-
cally, zero times) the other one, as announced in Theorem). Assuming x, y 6= 0, consider
the function

f(λ) = (x− λy)T (x− λy) = xTx− 2λxT y + λ2yT y.

By positive definiteness of the inner product, this function – which is a second order
polynomial – is nonnegative on the entire axis, whence the discriminant of the polyno-
mial

(xT y)2 − (xTx)(yT y)

is nonpositive:

(xT y)2 ≤ (xTx)(yT y).

Taking square roots of both sides, we arrive at the Cauchy Inequality. We also see that
the inequality is equality if and only if the discriminant of the second order polynomial
f(λ) is zero, i.e., if and only if the polynomial has a (multiple) real root; but due to
positive definiteness of inner product, f(·) has a root λ if and only if x = λy, which
proves the second part of Theorem.

From Cauchy’s Inequality to the Triangle Inequality: Let x, y ∈ Rn. Then

|x+ y|2 = (x+ y)T (x+ y) [definition of norm]
= xTx+ yT y + 2xT y [opening parentheses]

≤ xTx︸︷︷︸
|x|2

+ yT y︸︷︷︸
|y|2

+2|x||y| [Cauchy’s Inequality]

= (|x|+ |y|)2

⇒ |x+ y| ≤ |x|+ |y|

The properties of norm (i.e., of the distance to the origin) we have established induce properties
of the distances between pairs of arbitrary points in Rn, specifically:

1. Positivity of distances: The distance |x− y| between two points is positive, except for the
case when the points coincide (x = y), when the distance between x and y is zero;

2. Symmetry of distances: The distance from x to y is the same as the distance from y to x:

|x− y| = |y − x|;

3. Triangle inequality for distances: For every three points x, y, z, the distance from x to z
does not exceed the sum of distances between x and y and between y and z:

|z − x| ≤ |y − x|+ |z − y| ∀(x, y, z ∈ Rn)

B.1. SPACE RN : METRIC STRUCTURE AND TOPOLOGY 317

B.1.2 Convergence

Equipped with distances, we can define the fundamental notion of convergence of a sequence of
vectors. Specifically, we say that a sequence x1, x2, ... of vectors from Rn converges to a vector x̄,
or, equivalently, that x̄ is the limit of the sequence {xi} (notation: x̄ = lim

i→∞
xi), if the distances

from x̄ to xi go to 0 as i→∞:

x̄ = lim
i→∞

xi ⇔ |x̄− xi| → 0, i→∞,

or, which is the same, for every ε > 0 there exists i = i(ε) such that the distance between every
point xi, i ≥ i(ε), and x̄ does not exceed ε:{

|x̄− xi| → 0, i→∞
}
⇔
{
∀ε > 0∃i(ε) : i ≥ i(ε)⇒ |x̄− xi| ≤ ε

}
.

Exercise B.1 Verify the following facts:

1. x̄ = lim
i→∞

xi if and only if for every j = 1, ..., n the coordinates # j of the vectors xi

converge, as i→∞, to the coordinate # j of the vector x̄;

2. If a sequence converges, its limit is uniquely defined;

3. Convergence is compatible with linear operations:

— if xi → x and yi → y as i→∞, then xi + yi → x+ y as i→∞;

— if xi → x and λi → λ as i→∞, then λix
i → λx as i→∞.

B.1.3 Closed and open sets

After we have in our disposal distance and convergence, we can speak about closed and open
sets:

• A set X ⊂ Rn is called closed, if it contains limits of all converging sequences of elements
of X: {

xi ∈ X,x = lim
i→∞

xi
}
⇒ x ∈ X

• A set X ⊂ Rn is called open, if whenever x belongs to X, all points close enough to x also
belong to X:

∀(x ∈ X)∃(δ > 0) : |x′ − x| < δ ⇒ x′ ∈ X.

An open set containing a point x is called a neighbourhood of x.

Examples of closed sets: (1) Rn; (2) ∅; (3) the sequence xi = (i, 0, ..., 0), i = 1, 2, 3, ...;

(4) {x ∈ Rn :
n∑
i=1

aijxj = 0, i = 1, ...,m} (in other words: a linear subspace in Rn

always is closed, see Proposition A.3.6);(5) {x ∈ Rn :
n∑
i=1

aijxj = bi, i = 1, ...,m}

(in other words: an affine subset of Rn always is closed, see Proposition A.3.7);; (6)
Any finite subset of Rn

Examples of non-closed sets: (1) Rn\{0}; (2) the sequence xi = (1/i, 0, ..., 0), i =

1, 2, 3, ...; (3) {x ∈ Rn : xj > 0, j = 1, ..., n}; (4) {x ∈ Rn :
n∑
i=1

xj > 5}.

318 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

Examples of open sets: (1) Rn; (2) ∅; (3) {x ∈ Rn :
n∑
j=1

aijxj > bj , i = 1, ...,m}; (4)

complement of a finite set.

Examples of non-open sets: (1) A nonempty finite set; (2) the sequence xi =
(1/i, 0, ..., 0), i = 1, 2, 3, ..., and the sequence xi = (i, 0, 0, ..., 0), i = 1, 2, 3, ...; (3)

{x ∈ Rn : xj ≥ 0, j = 1, ..., n}; (4) {x ∈ Rn :
n∑
i=1

xj ≥ 5}.

Exercise B.2 Mark in the list to follows those sets which are closed and those which are open:

1. All vectors with integer coordinates

2. All vectors with rational coordinates

3. All vectors with positive coordinates

4. All vectors with nonnegative coordinates

5. {x : |x| < 1};

6. {x : |x| = 1};

7. {x : |x| ≤ 1};

8. {x : |x| ≥ 1}:

9. {x : |x| > 1};

10. {x : 1 < |x| ≤ 2}.

Verify the following facts

1. A set X ⊂ Rn is closed if and only if its complement X̄ = Rn\X is open;

2. Intersection of every family (finite or infinite) of closed sets is closed. Union of every
family (finite of infinite) of open sets is open.

3. Union of finitely many closed sets is closed. Intersection of finitely many open sets is open.

B.1.4 Local compactness of Rn

A fundamental fact about convergence in Rn, which in certain sense is characteristic for this
series of spaces, is the following

Theorem B.1.2 From every bounded sequence {xi}∞i=1 of points from Rn one can extract a
converging subsequence {xij}∞j=1. Equivalently: A closed and bounded subset X of Rn is compact,
i.e., a set possessing the following two equivalent to each other properties:

(i) From every sequence of elements of X one can extract a subsequence which converges to
certain point of X;

(ii) From every open covering of X (i.e., a family {Uα}α∈A of open sets such that X ⊂⋃
α∈A

Uα) one can extract a finite sub-covering, i.e., a finite subset of indices α1, ..., αN such that

X ⊂
N⋃
i=1

Uαi.

B.2. CONTINUOUS FUNCTIONS ON RN 319

B.2 Continuous functions on Rn

B.2.1 Continuity of a function

Let X ⊂ Rn and f(x) : X → Rm be a function (another name – mapping) defined on X and
taking values in Rm.

1. f is called continuous at a point x̄ ∈ X, if for every sequence xi of points of X converging
to x̄ the sequence f(xi) converges to f(x̄). Equivalent definition:

f : X → Rm is continuous at x̄ ∈ X, if for every ε > 0 there exists δ > 0 such
that

x ∈ X, |x− x̄| < δ ⇒ |f(x)− f(x̄)| < ε.

2. f is called continuous on X, if f is continuous at every point from X. Equivalent definition:
f preserves convergence: whenever a sequence of points xi ∈ X converges to a point x ∈ X,
the sequence f(xi) converges to f(x).

Examples of continuous mappings:

1. An affine mapping

f(x) =

m∑
j=1

A1jxj + b1

...
m∑
j=1

Amjxj + bm

 ≡ Ax+ b : Rn → Rm

is continuous on the entire Rn (and thus – on every subset of Rn) (check it!).

2. The norm |x| is a continuous on Rn (and thus – on every subset of Rn) real-
valued function (check it!).

Exercise B.3 • Consider the function

f(x1, x2) =

x2

1−x2
2

x2
1+x2

2
, (x1, x2) 6= 0

0, x1 = x2 = 0 : R2 → R.

Check whether this function is continuous on the following sets:

1. R2;

2. R2\{0};
3. {x ∈ R2 : x1 = 0};
4. {x ∈ R2 : x2 = 0};
5. {x ∈ R2 : x1 + x2 = 0};
6. {x ∈ R2 : x1 − x2 = 0};
7. {x ∈ R2 : |x1 − x2| ≤ x4

1 + x4
2};

320 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

• Let f : Rn → Rm be a continuous mapping. Mark those of the following statements which
always are true:

1. If U is an open set in Rm, then so is the set f−1(U) = {x : f(x) ∈ U};
2. If U is an open set in Rn, then so is the set f(U) = {f(x) : x ∈ U};
3. If F is a closed set in Rm, then so is the set f−1(F) = {x : f(x) ∈ F};
4. If F is an closed set in Rn, then so is the set f(F) = {f(x) : x ∈ F}.

B.2.2 Elementary continuity-preserving operations

All “elementary” operations with mappings preserve continuity. Specifically,

Theorem B.2.1 Let X be a subset in Rn.
(i) [stability of continuity w.r.t. linear operations] If f1(x), f2(x) are continuous functions

on X taking values in Rm and λ1(x), λ2(x) are continuous real-valued functions on X, then the
function

f(x) = λ1(x)f1(x) + λ2(x)f2(x) : X → Rm

is continuous on X;
(ii) [stability of continuity w.r.t. superposition] Let

• X ⊂ Rn, Y ⊂ Rm;

• f : X → Rm be a continuous mapping such that f(x) ∈ Y for every x ∈ X;

• g : Y → Rk be a continuous mapping.

Then the composite mapping
h(x) = g(f(x)) : X → Rk

is continuous on X.

B.2.3 Basic properties of continuous functions on Rn

The basic properties of continuous functions on Rn can be summarized as follows:

Theorem B.2.2 Let X be a nonempty closed and bounded subset of Rn.
(i) If a mapping f : X → Rm is continuous on X, it is bounded on X: there exists C < ∞

such that |f(x)| ≤ C for all x ∈ X.

Proof. Assume, on the contrary to what should be proved, that f is unbounded, so that

for every i there exists a point xi ∈ X such that |f(xi)| > i. By Theorem B.1.2, we can

extract from the sequence {xi} a subsequence {xij}∞j=1 which converges to a point x̄ ∈ X.

The real-valued function g(x) = |f(x)| is continuous (as the superposition of two continuous

mappings, see Theorem B.2.1.(ii)) and therefore its values at the points xij should converge,

as j →∞, to its value at x̄; on the other hand, g(xij) ≥ ij →∞ as j →∞, and we get the

desired contradiction.

(ii) If a mapping f : X → Rm is continuous on X, it is uniformly continuous: for every ε > 0
there exists δ > 0 such that

x, y ∈ X, |x− y| < δ ⇒ |f(x)− f(y)| < ε.

B.3. DIFFERENTIABLE FUNCTIONS ON RN 321

Proof. Assume, on the contrary to what should be proved, that there exists ε > 0 such
that for every δ > 0 one can find a pair of points x, y in X such that |x − y| < δ and
|f(x) − f(y)| ≥ ε. In particular, for every i = 1, 2, ... we can find two points xi, yi in X
such that |xi − yi| ≤ 1/i and |f(xi) − f(yi)| ≥ ε. By Theorem B.1.2, we can extract from
the sequence {xi} a subsequence {xij}∞j=1 which converges to certain point x̄ ∈ X. Since

|yij −xij | ≤ 1/ij → 0 as j →∞, the sequence {yij}∞j=1 converges to the same point x̄ as the

sequence {xij}∞j=1 (why?) Since f is continuous, we have

lim
j→∞

f(yij) = f(x̄) = lim
j→∞

f(xij),

whence lim
j→∞

(f(xij) − f(yij)) = 0, which contradicts the fact that |f(xij) − f(yij)| ≥ ε > 0

for all j.

(iii) Let f be a real-valued continuous function on X. The f attains its minimum on X:

Argmin
X

f ≡ {x ∈ X : f(x) = inf
y∈X

f(y)} 6= ∅,

same as f attains its maximum at certain points of X:

Argmax
X

f ≡ {x ∈ X : f(x) = sup
y∈X

f(y)} 6= ∅.

Proof: Let us prove that f attains its maximum on X (the proof for minimum is completely
similar). Since f is bounded on X by (i), the quantity

f∗ = sup
x∈X

f(x)

is finite; of course, we can find a sequence {xi} of points from X such that f∗ = lim
i→∞

f(xi).

By Theorem B.1.2, we can extract from the sequence {xi} a subsequence {xij}∞j=1 which
converges to certain point x̄ ∈ X. Since f is continuous on X, we have

f(x̄) = lim
j→∞

f(xij) = lim
i→∞

f(xi) = f∗,

so that the maximum of f on X indeed is achieved (e.g., at the point x̄).

Exercise B.4 Prove that in general no one of the three statements in Theorem B.2.2 remains
valid when X is closed, but not bounded, same as when X is bounded, but not closed.

B.3 Differentiable functions on Rn

B.3.1 The derivative

The reader definitely is familiar with the notion of derivative of a real-valued function f(x) of
real variable x:

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x

This definition does not work when we pass from functions of single real variable to functions of
several real variables, or, which is the same, to functions with vector arguments. Indeed, in this
case the shift in the argument ∆x should be a vector, and we do not know what does it mean
to divide by a vector...

322 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

A proper way to extend the notion of the derivative to real- and vector-valued functions of
vector argument is to realize what in fact is the meaning of the derivative in the univariate case.
What f ′(x) says to us is how to approximate f in a neighbourhood of x by a linear function.
Specifically, if f ′(x) exists, then the linear function f ′(x)∆x of ∆x approximates the change
f(x + ∆x) − f(x) in f up to a remainder which is of highest order as compared with ∆x as
∆x→ 0:

|f(x+ ∆x)− f(x)− f ′(x)∆x| ≤ ō(|∆x|) as ∆x→ 0.

In the above formula, we meet with the notation ō(|∆x|), and here is the explanation of this
notation:

ō(|∆x|) is a common name of all functions φ(∆x) of ∆x which are well-defined in a
neighbourhood of the point ∆x = 0 on the axis, vanish at the point ∆x = 0 and are
such that

φ(∆x)

|∆x|
→ 0 as ∆x→ 0.

For example,

1. (∆x)2 = ō(|∆x|), ∆x→ 0,

2. |∆x|1.01 = ō(|∆x|), ∆x→ 0,

3. sin2(∆x) = ō(|∆x|), ∆x→ 0,

4. ∆x 6= ō(|∆x|), ∆x→ 0.

Later on we shall meet with the notation “ō(|∆x|k) as ∆x→ 0”, where k is a positive
integer. The definition is completely similar to the one for the case of k = 1:

ō(|∆x|k) is a common name of all functions φ(∆x) of ∆x which are well-defined in
a neighbourhood of the point ∆x = 0 on the axis, vanish at the point ∆x = 0 and
are such that

φ(∆x)

|∆x|k
→ 0 as ∆x→ 0.

Note that if f(·) is a function defined in a neighbourhood of a point x on the axis, then there
perhaps are many linear functions a∆x of ∆x which well approximate f(x+ ∆x)− f(x), in the
sense that the remainder in the approximation

f(x+ ∆x)− f(x)− a∆x

tends to 0 as ∆x → 0; among these approximations, however, there exists at most one which
approximates f(x+ ∆x)− f(x) “very well” – so that the remainder is ō(|∆x|), and not merely
tends to 0 as ∆x→ 0. Indeed, if

f(x+ ∆x)− f(x)− a∆x = ō(|∆x|),

then, dividing both sides by ∆x, we get

f(x+ ∆x)− f(x)

∆x
− a =

ō(|∆x|)
∆x

;

by definition of ō(·), the right hand side in this equality tends to 0 as ∆x→ 0, whence

a = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
= f ′(x).

B.3. DIFFERENTIABLE FUNCTIONS ON RN 323

Thus, if a linear function a∆x of ∆x approximates the change f(x+ ∆x)− f(x) in f up to the
remainder which is ō(|∆x|) as ∆x→ 0, then a is the derivative of f at x. You can easily verify
that the inverse statement also is true: if the derivative of f at x exists, then the linear function
f ′(x)∆x of ∆x approximates the change f(x + ∆x) − f(x) in f up to the remainder which is
ō(|∆x|) as ∆x→ 0.

The advantage of the “ō(|∆x|)”-definition of derivative is that it can be naturally extended
onto vector-valued functions of vector arguments (you should just replace “axis” with Rn in
the definition of ō) and enlightens the essence of the notion of derivative: when it exists, this is
exactly the linear function of ∆x which approximates the change f(x + ∆x)− f(x) in f up to
a remainder which is ō(|∆x|). The precise definition is as follows:

Definition B.3.1 [Frechet differentiability] Let f be a function which is well-defined in a neigh-
bourhood of a point x ∈ Rn and takes values in Rm. We say that f is differentiable at x, if
there exists a linear function Df(x)[∆x] of ∆x ∈ Rn taking values in Rm which approximates
the change f(x+ ∆x)− f(x) in f up to a remainder which is ō(|∆x|):

|f(x+ ∆x)− f(x)−Df(x)[∆x]| ≤ ō(|∆x|). (B.3.1)

Equivalently: a function f which is well-defined in a neighbourhood of a point x ∈ Rn and takes
values in Rm is called differentiable at x, if there exists a linear function Df(x)[∆x] of ∆x ∈ Rn

taking values in Rm such that for every ε > 0 there exists δ > 0 satisfying the relation

|∆x| ≤ δ ⇒ |f(x+ ∆x)− f(x)−Df(x)[∆x]| ≤ ε|∆x|.

B.3.2 Derivative and directional derivatives

We have defined what does it mean that a function f : Rn → Rm is differentiable at a point x,
but did not say yet what is the derivative. The reader could guess that the derivative is exactly
the “linear function Df(x)[∆x] of ∆x ∈ Rn taking values in Rm which approximates the change
f(x + ∆x) − f(x) in f up to a remainder which is ≤ ō(|∆x|)” participating in the definition
of differentiability. The guess is correct, but we cannot merely call the entity participating in
the definition the derivative – why do we know that this entity is unique? Perhaps there are
many different linear functions of ∆x approximating the change in f up to a remainder which
is ō(|∆x|). In fact there is no more than a single linear function with this property due to the
following observation:

Let f be differentiable at x, and Df(x)[∆x] be a linear function participating in the
definition of differentiability. Then

∀∆x ∈ Rn : Df(x)[∆x] = lim
t→+0

f(x+ t∆x)− f(x)

t
. (B.3.2)

In particular, the derivative Df(x)[·] is uniquely defined by f and x.

Proof. We have

|f(x+ t∆x)− f(x)−Df(x)[t∆x]| ≤ ō(|t∆x|)
⇓

| f(x+t∆x)−f(x)
t − Df(x)[t∆x]

t | ≤ ō(|t∆x|)
t

m [since Df(x)[·] is linear]

| f(x+t∆x)−f(x)
t −Df(x)[∆x]| ≤ ō(|t∆x|)

t
⇓

Df(x)[∆x] = lim
t→+0

f(x+t∆x)−f(x)
t

[
passing to limit as t→ +0;

note that ō(|t∆x|)
t → 0, t→ +0

]

324 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

Pay attention to important remarks as follows:

1. The right hand side limit in (B.3.2) is an important entity called the directional derivative
of f taken at x along (a direction) ∆x; note that this quantity is defined in the “purely
univariate” fashion – by dividing the change in f by the magnitude of a shift in a direction
∆x and passing to limit as the magnitude of the shift approaches 0. Relation (B.3.2)
says that the derivative, if exists, is, at every ∆x, nothing that the directional derivative
of f taken at x along ∆x. Note, however, that differentiability is much more than the
existence of directional derivatives along all directions ∆x; differentiability requires also
the directional derivatives to be “well-organized” – to depend linearly on the direction ∆x.
It is easily seen that just existence of directional derivatives does not imply their “good
organization”: for example, the Euclidean norm

f(x) = |x|

at x = 0 possesses directional derivatives along all directions:

lim
t→+0

f(0 + t∆x)− f(0)

t
= |∆x|;

these derivatives, however, depend non-linearly on ∆x, so that the Euclidean norm is not
differentiable at the origin (although is differentiable everywhere outside the origin, but
this is another story).

2. It should be stressed that the derivative, if exists, is what it is: a linear function of ∆x ∈ Rn

taking values in Rm. As we shall see in a while, we can represent this function by some-
thing “tractable”, like a vector or a matrix, and can understand how to compute such a
representation; however, an intelligent reader should bear in mind that a representation is
not exactly the same as the represented entity. Sometimes the difference between deriva-
tives and the entities which represent them is reflected in the terminology: what we call
the derivative, is also called the differential, while the word “derivative” is reserved for the
vector/matrix representing the differential.

B.3.3 Representations of the derivative

indexderivatives!representation ofBy definition, the derivative of a mapping f : Rn → Rm at
a point x is a linear function Df(x)[∆x] taking values in Rm. How could we represent such a
function?

Case of m = 1 – the gradient. Let us start with real-valued functions (i.e., with the case
of m = 1); in this case the derivative is a linear real-valued function on Rn. As we remember,
the standard Euclidean structure on Rn allows to represent every linear function on Rn as the
inner product of the argument with certain fixed vector. In particular, the derivative Df(x)[∆x]
of a scalar function can be represented as

Df(x)[∆x] = [vector]T∆x;

what is denoted ”vector” in this relation, is called the gradient of f at x and is denoted by
∇f(x):

Df(x)[∆x] = (∇f(x))T∆x. (B.3.3)

B.3. DIFFERENTIABLE FUNCTIONS ON RN 325

How to compute the gradient? The answer is given by (B.3.2). Indeed, let us look what (B.3.3)
and (B.3.2) say when ∆x is the i-th standard basic orth. According to (B.3.3), Df(x)[ei] is the
i-th coordinate of the vector ∇f(x); according to (B.3.2),

Df(x)[ei] = lim
t→+0

f(x+tei)−f(x)
t ,

Df(x)[ei] = −Df(x)[−ei] = − lim
t→+0

f(x−tei)−f(x)
t = lim

t→−0

f(x+tei)−f(x)
t

⇒ Df(x)[ei] =
∂f(x)

∂xi
.

Thus,

If a real-valued function f is differentiable at x, then the first order partial derivatives
of f at x exist, and the gradient of f at x is just the vector with the coordinates
which are the first order partial derivatives of f taken at x:

∇f(x) =

∂f(x)
∂x1
...

∂f(x)
∂xn

 .
The derivative of f , taken at x, is the linear function of ∆x given by

Df(x)[∆x] = (∇f(x))T∆x =

n∑
i=1

∂f(x)

∂xi
(∆x)i.

General case – the Jacobian. Now let f : Rn → Rm with m ≥ 1. In this case,
Df(x)[∆x], regarded as a function of ∆x, is a linear mapping from Rn to Rm; as we remem-
ber, the standard way to represent a linear mapping from Rn to Rm is to represent it as the
multiplication by m× n matrix:

Df(x)[∆x] = [m× n matrix] ·∆x. (B.3.4)

What is denoted by “matrix” in (B.3.4), is called the Jacobian of f at x and is denoted by f ′(x).
How to compute the entries of the Jacobian? Here again the answer is readily given by (B.3.2).
Indeed, on one hand, we have

Df(x)[∆x] = f ′(x)∆x, (B.3.5)

whence

[Df(x)[ej]]i = (f ′(x))ij , i = 1, ...,m, j = 1, ..., n.

On the other hand, denoting

f(x) =

 f1(x)
...

fm(x)

 ,
the same computation as in the case of gradient demonstrates that

[Df(x)[ej]]i =
∂fi(x)

∂xj

and we arrive at the following conclusion:

326 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

If a vector-valued function f(x) = (f1(x), ..., fm(x)) is differentiable at x, then the
first order partial derivatives of all fi at x exist, and the Jacobian of f at x is just
the m × n matrix with the entries [∂fi(x)

∂xj
]i,j (so that the rows in the Jacobian are

[∇f1(x)]T ,..., [∇fm(x)]T . The derivative of f , taken at x, is the linear vector-valued
function of ∆x given by

Df(x)[∆x] = f ′(x)∆x =

 [∇f1(x)]T∆x
...

[∇fm(x)]T∆x

 .
Remark B.3.1 Note that for a real-valued function f we have defined both the gradient ∇f(x)
and the Jacobian f ′(x). These two entities are “nearly the same”, but not exactly the same:
the Jacobian is a vector-row, and the gradient is a vector-column linked by the relation

f ′(x) = (∇f(x))T .

Of course, both these representations of the derivative of f yield the same linear approximation
of the change in f :

Df(x)[∆x] = (∇f(x))T∆x = f ′(x)∆x.

B.3.4 Existence of the derivative

We have seen that the existence of the derivative of f at a point implies the existence of the
first order partial derivatives of the (components f1, ..., fm of) f . The inverse statement is not

exactly true – the existence of all first order partial derivatives ∂fi(x)
∂xj

not necessarily implies the

existence of the derivative; we need a bit more:

Theorem B.3.1 [Sufficient condition for differentiability] Assume that

1. The mapping f = (f1, ..., fm) : Rn → Rm is well-defined in a neighbourhood U of a point
x0 ∈ Rn,

2. The first order partial derivatives of the components fi of f exist everywhere in U ,

and

3. The first order partial derivatives of the components fi of f are continuous at the point
x0.

Then f is differentiable at the point x0.

B.3.5 Calculus of derivatives

The calculus of derivatives is given by the following result:

Theorem B.3.2 (i) [Differentiability and linear operations] Let f1(x), f2(x) be mappings de-
fined in a neighbourhood of x0 ∈ Rn and taking values in Rm, and λ1(x), λ2(x) be real-valued

B.3. DIFFERENTIABLE FUNCTIONS ON RN 327

functions defined in a neighbourhood of x0. Assume that f1, f2, λ1, λ2 are differentiable at x0.
Then so is the function f(x) = λ1(x)f1(x) + λ2(x)f2(x), with the derivative at x0 given by

Df(x0)[∆x] = [Dλ1(x0)[∆x]]f1(x0) + λ1(x0)Df1(x0)[∆x]
+[Dλ2(x0)[∆x]]f2(x0) + λ2(x0)Df2(x0)[∆x]
⇓

f ′(x0) = f1(x0)[∇λ1(x0)]T + λ1(x0)f ′1(x0)
+f2(x0)[∇λ2(x0)]T + λ2(x0)f ′2(x0).

(ii) [chain rule] Let a mapping f : Rn → Rm be differentiable at x0, and a mapping g : Rm →
Rn be differentiable at y0 = f(x0). Then the superposition h(x) = g(f(x)) is differentiable at
x0, with the derivative at x0 given by

Dh(x0)[∆x] = Dg(y0)[Df(x0)[∆x]]
⇓

h′(x0) = g′(y0)f ′(x0)

If the outer function g is real-valued, then the latter formula implies that

∇h(x0) = [f ′(x0)]T∇g(y0)

(recall that for a real-valued function φ, φ′ = (∇φ)T).

B.3.6 Computing the derivative

Representations of the derivative via first order partial derivatives normally allow to compute it
by the standard Calculus rules, in a completely mechanical fashion, not thinking at all of what
we are computing. The examples to follow (especially the third of them) demonstrate that it
often makes sense to bear in mind what is the derivative; this sometimes yield the result much
faster than blind implementing Calculus rules.

Example 1: The gradient of an affine function. An affine function

f(x) = a+
n∑
i=1

gixi ≡ a+ gTx : Rn → R

is differentiable at every point (Theorem B.3.1) and its gradient, of course, equals g:

(∇f(x))T∆x = lim
t→+0

t−1 [f(x+ t∆x)− f(x)] [(B.3.2)]

= lim
t→+0

t−1[tgT∆x] [arithmetics]

and we arrive at
∇(a+ gTx) = g

Example 2: The gradient of a quadratic form. For the time being, let us define a
homogeneous quadratic form on Rn as a function

f(x) =
∑
i,j

Aijxixj = xTAx,

328 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

where A is an n× n matrix. Note that the matrices A and AT define the same quadratic form,
and therefore the symmetric matrix B = 1

2(A+ AT) also produces the same quadratic form as
A and AT . It follows that we always may assume (and do assume from now on) that the matrix
A producing the quadratic form in question is symmetric.

A quadratic form is a simple polynomial and as such is differentiable at every point (Theorem
B.3.1). What is the gradient of f at a point x? Here is the computation:

(∇f(x))T∆x = Df(x)[∆x]
= lim

t→+0

[
(x+ t∆x)TA(x+ t∆x)− xTAx

]
[(B.3.2)]

= lim
t→+0

[
xTAx+ t(∆x)TAx+ txTA∆x+ t2(∆x)TA∆x− xTAx

]
[opening parentheses]

= lim
t→+0

t−1
[
2t(Ax)T∆x+ t2(∆x)TA∆x

]
[arithmetics + symmetry of A]

= 2(Ax)T∆x

We conclude that
∇(xTAx) = 2Ax

(recall that A = AT).

Example 3: The derivative of the log-det barrier. Let us compute the derivative of
the log-det barrier (playing an extremely important role in modern optimization)

F (X) = ln Det (X);

here X is an n × n matrix (or, if you prefer, n2-dimensional vector). Note that F (X) is well-
defined and differentiable in a neighbourhood of every point X̄ with positive determinant (indeed,
Det (X) is a polynomial of the entries of X and thus – is everywhere continuous and differentiable
with continuous partial derivatives, while the function ln(t) is continuous and differentiable on
the positive ray; by Theorems B.2.1.(ii), B.3.2.(ii), F is differentiable at every X such that
Det (X) > 0). The reader is kindly asked to try to find the derivative of F by the standard
techniques; if the result will not be obtained in, say, 30 minutes, please look at the 8-line
computation to follow (in this computation, Det (X̄) > 0, and G(X) = Det (X)):

DF (X̄)[∆X]
= D ln(G(X̄))[DG(X̄)[∆X]] [chain rule]
= G−1(X̄)DG(X̄)[∆X] [ln′(t) = t−1]
= Det−1(X̄) lim

t→+0
t−1
[
Det (X̄ + t∆X)−Det (X̄)

]
[definition of G and (B.3.2)]

= Det−1(X̄) lim
t→+0

t−1
[
Det (X̄(I + tX̄−1∆X))−Det (X̄)

]
= Det−1(X̄) lim

t→+0
t−1
[
Det (X̄)(Det (I + tX̄−1∆X)− 1)

]
[Det (AB) = Det (A) Det (B)]

= lim
t→+0

t−1
[
Det (I + tX̄−1∆X)− 1

]
= Tr(X̄−1∆X) =

∑
i,j

[X̄−1]ji(∆X)ij

where the concluding equality

lim
t→+0

t−1[Det (I + tA)− 1] = Tr(A) ≡
∑
i

Aii (B.3.6)

B.3. DIFFERENTIABLE FUNCTIONS ON RN 329

is immediately given by recalling what is the determinant of I + tA: this is a polynomial of t
which is the sum of products, taken along all diagonals of a n× n matrix and assigned certain
signs, of the entries of I+ tA. At every one of these diagonals, except for the main one, there are
at least two cells with the entries proportional to t, so that the corresponding products do not
contribute to the constant and the linear in t terms in Det (I + tA) and thus do not affect the
limit in (B.3.6). The only product which does contribute to the linear and the constant terms in
Det (I + tA) is the product (1 + tA11)(1 + tA22)...(1 + tAnn) coming from the main diagonal; it
is clear that in this product the constant term is 1, and the linear in t term is t(A11 + ...+Ann),
and (B.3.6) follows.

B.3.7 Higher order derivatives

Let f : Rn → Rm be a mapping which is well-defined and differentiable at every point x from
an open set U . The Jacobian of this mapping J(x) is a mapping from Rn to the space Rm×n

matrices, i.e., is a mapping taking values in certain RM (M = mn). The derivative of this
mapping, if it exists, is called the second derivative of f ; it again is a mapping from Rn to
certain RM and as such can be differentiable, and so on, so that we can speak about the second,
the third, ... derivatives of a vector-valued function of vector argument. A sufficient condition
for the existence of k derivatives of f in U is that f is Ck in U , i.e., that all partial derivatives
of f of orders ≤ k exist and are continuous everywhere in U (cf. Theorem B.3.1).

We have explained what does it mean that f has k derivatives in U ; note, however, that
according to the definition, highest order derivatives at a point x are just long vectors; say,
the second order derivative of a scalar function f of 2 variables is the Jacobian of the mapping
x 7→ f ′(x) : R2 → R2, i.e., a mapping from R2 to R2×2 = R4; the third order derivative of f
is therefore the Jacobian of a mapping from R2 to R4, i.e., a mapping from R2 to R4×2 = R8,
and so on. The question which should be addressed now is: What is a natural and transparent
way to represent the highest order derivatives?

The answer is as follows:

(∗) Let f : Rn → Rm be Ck on an open set U ⊂ Rn. The derivative of order ` ≤ k
of f , taken at a point x ∈ U , can be naturally identified with a function

D`f(x)[∆x1,∆x2, ...,∆x`]

of ` vector arguments ∆xi ∈ Rn, i = 1, ..., `, and taking values in Rm. This function
is linear in every one of the arguments ∆xi, the other arguments being fixed, and is
symmetric with respect to permutation of arguments ∆x1, ...,∆x`.

In terms of f , the quantity D`f(x)[∆x1,∆x2, ...,∆x`] (full name: “the `-th derivative
(or differential) of f taken at a point x along the directions ∆x1, ...,∆x`”) is given
by

D`f(x)[∆x1,∆x2, ...,∆x`] =
∂`

∂t`∂t`−1...∂t1

∣∣
t1=...=t`=0

f(x+t1∆x1+t2∆x2+...+t`∆x
`).

(B.3.7)

The explanation to our claims is as follows. Let f : R.→ Rm be Ck on an open set U ⊂ Rn.

1. When ` = 1, (∗) says to us that the first order derivative of f , taken at x, is a linear function
Df(x)[∆x1] of ∆x1 ∈ Rn, taking values in Rm, and that the value of this function at every

330 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

∆x1 is given by the relation

Df(x)[∆x1] =
∂

∂t1

∣∣
t1=0

f(x+ t1∆x1) (B.3.8)

(cf. (B.3.2)), which is in complete accordance with what we already know about the
derivative.

2. To understand what is the second derivative, let us take the first derivative Df(x)[∆x1],
let us temporarily fix somehow the argument ∆x1 and treat the derivative as a function of
x. As a function of x, ∆x1 being fixed, the quantity Df(x)[∆x1] is again a mapping which
maps U into Rm and is differentiable by Theorem B.3.1 (provided, of course, that k ≥ 2).
The derivative of this mapping is certain linear function of ∆x ≡ ∆x2 ∈ Rn, depending
on x as on a parameter; and of course it depends on ∆x1 as on a parameter as well. Thus,
the derivative of Df(x)[∆x1] in x is certain function

D2f(x)[∆x1,∆x2]

of x ∈ U and ∆x1,∆x2 ∈ Rn and taking values in Rm. What we know about this function
is that it is linear in ∆x2. In fact, it is also linear in ∆x1, since it is the derivative in x of
certain function (namely, of Df(x)[∆x1]) linearly depending on the parameter ∆x1, so that
the derivative of the function in x is linear in the parameter ∆x1 as well (differentiation is
a linear operation with respect to a function we are differentiating: summing up functions
and multiplying them by real constants, we sum up, respectively, multiply by the same
constants, the derivatives). Thus, D2f(x)[∆x1,∆x2] is linear in ∆x1 when x and ∆x2 are
fixed, and is linear in ∆x2 when x and ∆x1 are fixed. Moreover, we have

D2f(x)[∆x1,∆x2] = ∂
∂t2

∣∣
t2=0

Df(x+ t2∆x2)[∆x1] [cf. (B.3.8)]

= ∂
∂t2

∣∣
t2=0

∂
∂t1

∣∣
t1=0

f(x+ t2∆x2 + t1∆x1) [by (B.3.8)]

= ∂2

∂t2∂t1

∣∣∣∣
t1=t2=0

f(x+ t1∆x1 + t2∆x2)

(B.3.9)

as claimed in (B.3.7) for ` = 2. The only piece of information about the second derivative
which is contained in (∗) and is not justified yet is that D2f(x)[∆x1,∆x2] is symmetric
in ∆x1,∆x2; but this fact is readily given by the representation (B.3.7), since, as they
prove in Calculus, if a function φ possesses continuous partial derivatives of orders ≤ ` in
a neighbourhood of a point, then these derivatives in this neighbourhood are independent
of the order in which they are taken; it follows that

D2f(x)[∆x1,∆x2] = ∂2

∂t2∂t1

∣∣∣∣
t1=t2=0

f(x+ t1∆x1 + t2∆x2)︸ ︷︷ ︸
φ(t1,t2)

[(B.3.9)]

= ∂2

∂t1∂t2

∣∣∣∣
t1=t2=0

φ(t1, t2)

= ∂2

∂t1∂t2

∣∣∣∣
t1=t2=0

f(x+ t2∆x2 + t1∆x1)

= D2f(x)[∆x2,∆x1] [the same (B.3.9)]

3. Now it is clear how to proceed: to define D3f(x)[∆x1,∆x2,∆x3], we fix in the second
order derivative D2f(x)[∆x1,∆x2] the arguments ∆x1,∆x2 and treat it as a function of

B.3. DIFFERENTIABLE FUNCTIONS ON RN 331

x only, thus arriving at a mapping which maps U into Rm and depends on ∆x1,∆x2 as
on parameters (linearly in every one of them). Differentiating the resulting mapping in
x, we arrive at a function D3f(x)[∆x1,∆x2,∆x3] which by construction is linear in every
one of the arguments ∆x1, ∆x2, ∆x3 and satisfies (B.3.7); the latter relation, due to the
Calculus result on the symmetry of partial derivatives, implies that D3f(x)[∆x1,∆x2,∆x3]
is symmetric in ∆x1,∆x2,∆x3. After we have in our disposal the third derivative D3f , we
can build from it in the already explained fashion the fourth derivative, and so on, until
k-th derivative is defined.

Remark B.3.2 Since D`f(x)[∆x1, ...,∆x`] is linear in every one of ∆xi, we can expand the
derivative in a multiple sum:

∆xi =
n∑
j=1

∆xijej

⇓

D`f(x)[∆x1, ...,∆x`] = D`f(x)[
n∑

j1=1
∆x1

j1
ej1 , ...,

n∑
j`=1

∆x`j`ej`]

=
∑

1≤j1,...,j`≤n
D`f(x)[ej1 , ..., ej`]∆x

1
j1
...∆x`j`

(B.3.10)

What is the origin of the coefficients D`f(x)[ej1 , ..., ej`]? According to (B.3.7), one has

D`f(x)[ej1 , ..., ej`] = ∂`

∂t`∂t`−1...∂t1

∣∣∣∣
t1=...=t`=0

f(x+ t1ej1 + t2ej2 + ...+ t`ej`)

= ∂`

∂xj`∂xj`−1
...∂xj1

f(x).

so that the coefficients in (B.3.10) are nothing but the partial derivatives, of order `, of f .

Remark B.3.3 An important particular case of relation (B.3.7) is the one when ∆x1 = ∆x2 =
... = ∆x`; let us call the common value of these ` vectors d. According to (B.3.7), we have

D`f(x)[d, d, ..., d] =
∂`

∂t`∂t`−1...∂t1

∣∣∣∣
t1=...=t`=0

f(x+ t1d+ t2d+ ...+ t`d).

This relation can be interpreted as follows: consider the function

φ(t) = f(x+ td)

of a real variable t. Then (check it!)

φ(`)(0) =
∂`

∂t`∂t`−1...∂t1

∣∣∣∣
t1=...=t`=0

f(x+ t1d+ t2d+ ...+ t`d) = D`f(x)[d, ..., d].

In other words, D`f(x)[d, ..., d] is what is called `-th directional derivative of f taken at x along
the direction d; to define this quantity, we pass from function f of several variables to the
univariate function φ(t) = f(x + td) – restrict f onto the line passing through x and directed
by d – and then take the “usual” derivative of order ` of the resulting function of single real
variable t at the point t = 0 (which corresponds to the point x of our line).

332 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

Representation of higher order derivatives. k-th order derivative Dkf(x)[·, ..., ·] of a Ck

function f : Rn → Rm is what it is – it is a symmetric k-linear mapping on Rn taking values
in Rm and depending on x as on a parameter. Choosing somehow coordinates in Rn, we can
represent such a mapping in the form

Dkf(x)[∆x1, ...,∆xk] =
∑

1≤i1,...,ik≤n

∂kf(x)

∂xik∂xik−1
...∂xi1

(∆x1)i1 ...(∆xk)ik .

We may say that the derivative can be represented by k-index collection of m-dimensional

vectors ∂kf(x)
∂xik∂xik−1

...∂xi1
. This collection, however, is a difficult-to-handle entity, so that such a

representation does not help. There is, however, a case when the collection becomes an entity we
know to handle; this is the case of the second-order derivative of a scalar function (k = 2,m = 1).

In this case, the collection in question is just a symmetric matrix H(x) =
[
∂2f(x)
∂xi∂xj

]
1≤i,j≤n

. This

matrix (same as the linear map h 7→ H(x)h) is called the Hessian of f at x. Note that

D2f(x)[∆x1,∆x2] = ∆xT1 H(x)∆x2.

B.3.8 Calculus of Ck mappings

The calculus of Ck mappings can be summarized as follows:

Theorem B.3.3 (i) Let U be an open set in Rn, f1(·), f2(·) : Rn → Rm be Ck in U , and let
real-valued functions λ1(·), λ2(·) be Ck in U . Then the function

f(x) = λ1(x)f1(x) + λ2(x)f2(x)

is Ck in U .
(ii) Let U be an open set in Rn, V be an open set in Rm, let a mapping f : Rn → Rm be

Ck in U and such that f(x) ∈ V for x ∈ U , and, finally, let a mapping g : Rm → Rp be Ck in
V . Then the superposition

h(x) = g(f(x))

is Ck in U .

Remark B.3.4 For higher order derivatives, in contrast to the first order ones, there is no
simple “chain rule” for computing the derivative of superposition. For example, the second-
order derivative of the superposition h(x) = g(f(x)) of two C2-mappings is given by the formula

Dh(x)[∆x1,∆x2] = Dg(f(x))[D2f(x)[∆x1,∆x2]] +D2g(x)[Df(x)[∆x1], Df(x)[∆x2]]

(check it!). We see that both the first- and the second-order derivatives of f and g contribute
to the second-order derivative of the superposition h.

The only case when there does exist a simple formula for high order derivatives of a superposi-
tion is the case when the inner function is affine: if f(x) = Ax+b and h(x) = g(f(x)) = g(Ax+b)
with a C` mapping g, then

D`h(x)[∆x1, ...,∆x`] = D`g(Ax+ b)[A∆x1, ..., A∆x`]. (B.3.11)

B.3. DIFFERENTIABLE FUNCTIONS ON RN 333

B.3.9 Examples of higher-order derivatives

Example 1: Second-order derivative of an affine function f(x) = a+ bTx is, of course,
identically zero. Indeed, as we have seen,

Df(x)[∆x1] = bT∆x1

is independent of x, and therefore the derivative of Df(x)[∆x1] in x, which should give us the
second derivative D2f(x)[∆x1,∆x2], is zero. Clearly, the third, the fourth, etc., derivatives of
an affine function are zero as well.

Example 2: Second-order derivative of a homogeneous quadratic form f(x) = xTAx
(A is a symmetric n× n matrix). As we have seen,

Df(x)[∆x1] = 2xTA∆x1.

Differentiating in x, we get

D2f(x)[∆x1,∆x2] = lim
t→+0

t−1
[
2(x+ t∆x2)TA∆x1 − 2xTA∆x1

]
= 2(∆x2)TA∆x1,

so that

D2f(x)[∆x1,∆x2] = 2(∆x2)TA∆x1

Note that the second derivative of a quadratic form is independent of x; consequently, the third,
the fourth, etc., derivatives of a quadratic form are identically zero.

Example 3: Second-order derivative of the log-det barrier F (X) = ln Det (X). As we
have seen, this function of an n × n matrix is well-defined and differentiable on the set U of
matrices with positive determinant (which is an open set in the space Rn×n of n× n matrices).
In fact, this function is C∞ in U . Let us compute its second-order derivative. As we remember,

DF (X)[∆X1] = Tr(X−1∆X1). (B.3.12)

To differentiate the right hand side in X, let us first find the derivative of the mapping G(X) =
X−1 which is defined on the open set of non-degenerate n× n matrices. We have

DG(X)[∆X] = lim
t→+0

t−1
[
(X + t∆X)−1 −X−1

]
= lim

t→+0
t−1
[
(X(I + tX−1∆X))−1 −X−1

]
= lim

t→+0
t−1
[
(I + tX−1∆X︸ ︷︷ ︸

Y

)−1X−1 −X−1
]

=

[
lim
t→+0

t−1
[
(I + tY)−1 − I

]]
X−1

=

[
lim
t→+0

t−1 [I − (I + tY)] (I + tY)−1

]
X−1

=

[
lim
t→+0

[−Y (I + tY)−1]

]
X−1

= −Y X−1

= −X−1∆XX−1

334 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

and we arrive at the important by its own right relation

D(X−1)[∆X] = −X−1∆XX−1, [X ∈ Rn×n,Det (X) 6= 0]

which is the “matrix extension” of the standard relation (x−1)′ = −x−2, x ∈ R.

Now we are ready to compute the second derivative of the log-det barrier:

F (X) = ln Det (X)
⇓

DF (X)[∆X1] = Tr(X−1∆X1)
⇓

D2F (X)[∆X1,∆X2] = lim
t→+0

t−1
[
Tr((X + t∆X2)−1∆X1)− Tr(X−1∆X1)

]
= lim

t→+0
Tr
(
t−1(X + t∆X2)−1∆X1 −X−1∆X1

)
= lim

t→+0
Tr
([
t−1(X + t∆X2)−1 −X−1

]
∆X1

)
= Tr

(
[−X−1∆X2X−1]∆X1

)
,

and we arrive at the formula

D2F (X)[∆X1,∆X2] = −Tr(X−1∆X2X−1∆X1) [X ∈ Rn×n,Det (X) > 0]

Since Tr(AB) = Tr(BA) (check it!) for all matrices A,B such that the product AB makes sense
and is square, the right hand side in the above formula is symmetric in ∆X1, ∆X2, as it should
be for the second derivative of a C2 function.

B.3.10 Taylor expansion

Assume that f : Rn → Rm is Ck in a neighbourhood U of a point x̄. The Taylor expansion of
order k of f , built at the point x̄, is the function

Fk(x) = f(x̄) + 1
1!Df(x̄)[x− x̄] + 1

2!D
2f(x̄)[x− x̄, x− x̄]

+ 1
3!D

2f(x̄)[x− x̄, x− x̄, x− x̄] + ...+ 1
k!D

kf(x̄)[x− x̄, ..., x− x̄︸ ︷︷ ︸
k times

] (B.3.13)

We are already acquainted with the Taylor expansion of order 1

F1(x) = f(x̄) +Df(x̄)[x− x̄]

– this is the affine function of x which approximates “very well” f(x) in a neighbourhood of
x̄, namely, within approximation error ō(|x − x̄|). Similar fact is true for Taylor expansions of
higher order:

Theorem B.3.4 Let f : Rn → Rm be Ck in a neighbourhood of x̄, and let Fk(x) be the Taylor
expansion of f at x̄ of degree k. Then

(i) Fk(x) is a vector-valued polynomial of full degree ≤ k (i.e., every one of the coordinates
of the vector Fk(x) is a polynomial of x1, ..., xn, and the sum of powers of xi’s in every term of
this polynomial does not exceed k);

(ii) Fk(x) approximates f(x) in a neighbourhood of x̄ up to a remainder which is ō(|x− x̄|k)
as x→ x̄:

B.3. DIFFERENTIABLE FUNCTIONS ON RN 335

For every ε > 0, there exists δ > 0 such that

|x− x̄| ≤ δ ⇒ |Fk(x)− f(x)| ≤ ε|x− x̄|k.

Fk(·) is the unique polynomial with components of full degree ≤ k which approximates f up to a
remainder which is ō(|x− x̄|k).

(iii) The value and the derivatives of Fk of orders 1, 2, ..., k, taken at x̄, are the same as the
value and the corresponding derivatives of f taken at the same point.

As stated in Theorem, Fk(x) approximates f(x) for x close to x̄ up to a remainder which is
ō(|x − x̄|k). In many cases, it is not enough to know that the reminder is “ō(|x − x̄|k)” — we
need an explicit bound on this remainder. The standard bound of this type is as follows:

Theorem B.3.5 Let k be a positive integer, and let f : Rn → Rm be Ck+1 in a ball Br =
Br(x̄) = {x ∈ Rn : |x − x̄| < r} of a radius r > 0 centered at a point x̄. Assume that the
directional derivatives of order k + 1, taken at every point of Br along every unit direction, do
not exceed certain L <∞:

|Dk+1f(x)[d, ..., d]| ≤ L ∀(x ∈ Br)∀(d, |d| = 1).

Then for the Taylor expansion Fk of order k of f taken at x̄ one has

|f(x)− Fk(x)| ≤ L|x− x̄|k+1

(k + 1)!
∀(x ∈ Br).

Thus, in a neighbourhood of x̄ the remainder of the k-th order Taylor expansion, taken at x̄, is
of order of L|x− x̄|k+1, where L is the maximal (over all unit directions and all points from the
neighbourhood) magnitude of the directional derivatives of order k + 1 of f .

336 APPENDIX B. PREREQUISITES FROM REAL ANALYSIS

Appendix C

Symmetric matrices

C.1 Spaces of Matrices

Let Sm be the space of symmetric m×m matrices, and Mm,n be the space of rectangular m×n
matrices with real entries. From the viewpoint of their linear structure (i.e., the operations of
addition and multiplication by reals) Sm is just the arithmetic linear space Rm(m+1)/2 of dimen-

sion m(m+1)
2 : by arranging the elements of a symmetric m×m matrix X in a single column, say,

in the row-by-row order, you get a usual m2-dimensional column vector; multiplication of a ma-
trix by a real and addition of matrices correspond to the same operations with the “representing
vector(s)”. When X runs through Sm, the vector representing X runs through m(m + 1)/2-
dimensional subspace of Rm2

consisting of vectors satisfying the “symmetry condition” – the
coordinates coming from symmetric to each other pairs of entries in X are equal to each other.
Similarly, Mm,n as a linear space is just Rmn, and it is natural to equip Mm,n with the inner
product defined as the usual inner product of the vectors representing the matrices:

〈X,Y 〉 =

m∑
i=1

n∑
j=1

XijYij = Tr(XTY).

Here Tr stands for the trace – the sum of diagonal elements of a (square) matrix. With this inner
product (called the Frobenius inner product), Mm,n becomes a legitimate Euclidean space, and
we may use in connection with this space all notions based upon the Euclidean structure, e.g.,
the (Frobenius) norm of a matrix

‖X‖2 =
√
〈X,X〉 =

√√√√ m∑
i=1

n∑
j=1

X2
ij =

√
Tr(XTX)

and likewise the notions of orthogonality, orthogonal complement of a linear subspace, etc.
The same applies to the space Sm equipped with the Frobenius inner product; of course, the
Frobenius inner product of symmetric matrices can be written without the transposition sign:

〈X,Y 〉 = Tr(XY), X, Y ∈ Sm.

C.2 Eigenvalue Decomposition

Let us focus on the space Sm of symmetric matrices. The most important property of these
matrices is as follows:

337

338 APPENDIX C. SYMMETRIC MATRICES

Theorem C.2.1 [Eigenvalue decomposition] n × n matrix A is symmetric if and only if it
admits an orthonormal system of eigenvectors: there exist orthonormal basis {e1, ..., en} such
that

Aei = λiei, i = 1, ..., n, (C.2.1)

for reals λi.

In connection with Theorem C.2.1, it is worthy to recall the following notions and facts:

C.2.A. Eigenvectors and eigenvalues. An eigenvector of an n × n matrix A is a nonzero
vector e (real or complex) such that Ae = λe for (real or complex) scalar λ; this scalar is called
the eigenvalue of A corresponding to the eigenvector e.

Eigenvalues of A are exactly the roots of the characteristic polynomial

π(z) = det(zI −A) = zn + b1z
n−1 + b2z

n−2 + ...+ bn

of A.

Theorem C.2.1 states, in particular, that for a symmetric matrix A, all eigenvalues are real,
and the corresponding eigenvectors can be chosen to be real and to form an orthonormal basis
in Rn.

C.2.B. Eigenvalue decomposition of a symmetric matrix. Theorem C.2.1 admits equiv-
alent reformulation as follows (check the equivalence!):

Theorem C.2.2 An n × n matrix A is symmetric if and only if it can be represented in the
form

A = UΛUT , (C.2.2)

where

• U is an orthogonal matrix: U−1 = UT (or, which is the same, UTU = I, or, which is the
same, UUT = I, or, which is the same, the columns of U form an orthonormal basis in
Rn, or, which is the same, the columns of U form an orthonormal basis in Rn).

• Λ is the diagonal matrix with the diagonal entries λ1, ..., λn.

Representation (C.2.2) with orthogonal U and diagonal Λ is called the eigenvalue decomposition
of A. In such a representation,

• The columns of U form an orthonormal system of eigenvectors of A;

• The diagonal entries in Λ are the eigenvalues of A corresponding to these eigenvectors.

C.2.C. Vector of eigenvalues. When speaking about eigenvalues λi(A) of a symmetric n×n
matrix A, we always arrange them in the non-ascending order:

λ1(A) ≥ λ2(A) ≥ ... ≥ λn(A);

λ(A) ∈ Rn denotes the vector of eigenvalues of A taken in the above order.

C.3. VARIATIONAL CHARACTERIZATION OF EIGENVALUES 339

C.2.D. Freedom in eigenvalue decomposition. Part of the data Λ, U in the eigenvalue
decomposition (C.2.2) is uniquely defined by A, while the other data admit certain “freedom”.
Specifically, the sequence λ1, ..., λn of eigenvalues of A (i.e., diagonal entries of Λ) is exactly
the sequence of roots of the characteristic polynomial of A (every root is repeated according to
its multiplicity) and thus is uniquely defined by A (provided that we arrange the entries of the
sequence in the non-ascending order). The columns of U are not uniquely defined by A. What is
uniquely defined, are the linear spans E(λ) of the columns of U corresponding to all eigenvalues
equal to certain λ; such a linear span is nothing but the spectral subspace {x : Ax = λx} of
A corresponding to the eigenvalue λ. There are as many spectral subspaces as many different
eigenvalues; spectral subspaces corresponding to different eigenvalues of symmetric matrix are
orthogonal to each other, and their sum is the entire space. When building an orthogonal matrix
U in the spectral decomposition, one chooses an orthonormal eigenbasis in the spectral subspace
corresponding to the largest eigenvalue and makes the vectors of this basis the first columns in U ,
then chooses an orthonormal basis in the spectral subspace corresponding to the second largest
eigenvalue and makes the vector from this basis the next columns of U , and so on.

C.2.E. “Simultaneous” decomposition of commuting symmetric matrices. Let
A1, ..., Ak be n × n symmetric matrices. It turns out that the matrices commute with each
other (AiAj = AjAi for all i, j) if and only if they can be “simultaneously diagonalized”, i.e.,
there exist a single orthogonal matrix U and diagonal matrices Λ1,...,Λk such that

Ai = UΛiU
T , i = 1, ..., k.

You are welcome to prove this statement by yourself; to simplify your task, here are two simple
and important by their own right statements which help to reach your target:

C.2.E.1: Let λ be a real and A,B be two commuting n × n matrices. Then the
spectral subspace E = {x : Ax = λx} of A corresponding to λ is invariant for B
(i.e., Be ∈ E for every e ∈ E).

C.2.E.2: If A is an n × n matrix and L is an invariant subspace of A (i.e., L is a
linear subspace such that Ae ∈ L whenever e ∈ L), then the orthogonal complement
L⊥ of L is invariant for the matrix AT . In particular, if A is symmetric and L is
invariant subspace of A, then L⊥ is invariant subspace of A as well.

C.3 Variational Characterization of Eigenvalues

Theorem C.3.1 [VCE – Variational Characterization of Eigenvalues] Let A be a symmetric
matrix. Then

λ`(A) = min
E∈E`

max
x∈E,xT x=1

xTAx, ` = 1, ..., n, (C.3.1)

where E` is the family of all linear subspaces in Rn of the dimension n− `+ 1.

VCE says that to get the largest eigenvalue λ1(A), you should maximize the quadratic form
xTAx over the unit sphere S = {x ∈ Rn : xTx = 1}; the maximum is exactly λ1(A). To get
the second largest eigenvalue λ2(A), you should act as follows: you choose a linear subspace E
of dimension n − 1 and maximize the quadratic form xTAx over the cross-section of S by this

340 APPENDIX C. SYMMETRIC MATRICES

subspace; the maximum value of the form depends on E, and you minimize this maximum over
linear subspaces E of the dimension n−1; the result is exactly λ2(A). To get λ3(A), you replace
in the latter construction subspaces of the dimension n − 1 by those of the dimension n − 2,
and so on. In particular, the smallest eigenvalue λn(A) is just the minimum, over all linear
subspaces E of the dimension n−n+ 1 = 1, i.e., over all lines passing through the origin, of the
quantities xTAx, where x ∈ E is unit (xTx = 1); in other words, λn(A) is just the minimum of
the quadratic form xTAx over the unit sphere S.

Proof of the VCE is pretty easy. Let e1, ..., en be an orthonormal eigenbasis of A: Ae` =
λ`(A)e`. For 1 ≤ ` ≤ n, let F` = Lin{e1, ..., e`}, G` = Lin{e`, e`+1, ..., en}. Finally, for
x ∈ Rn let ξ(x) be the vector of coordinates of x in the orthonormal basis e1, ..., en. Note
that

xTx = ξT (x)ξ(x),

since {e1, ..., en} is an orthonormal basis, and that

xTAx = xTA
∑
i

ξi(x)ei) = xT
∑
i

λi(A)ξi(x)ei =∑
i

λi(A)ξi(x) (xT ei)︸ ︷︷ ︸
ξi(x)

=
∑
i

λi(A)ξ2
i (x).

(C.3.2)

Now, given `, 1 ≤ ` ≤ n, let us set E = G`; note that E is a linear subspace of the dimension
n− `+ 1. In view of (C.3.2), the maximum of the quadratic form xTAx over the intersection
of our E with the unit sphere is

max

{
n∑
i=`

λi(A)ξ2
i :

n∑
i=`

ξ2
i = 1

}
,

and the latter quantity clearly equals to max
`≤i≤n

λi(A) = λ`(A). Thus, for appropriately chosen

E ∈ E`, the inner maximum in the right hand side of (C.3.1) equals to λ`(A), whence the
right hand side of (C.3.1) is ≤ λ`(A). It remains to prove the opposite inequality. To this end,
consider a linear subspace E of the dimension n − ` + 1 and observe that it has nontrivial
intersection with the linear subspace F` of the dimension ` (indeed, dim E + dim F` =
(n− `+ 1) + ` > n, so that dim (E ∩F) > 0 by the Dimension formula). It follows that there
exists a unit vector y belonging to both E and F`. Since y is a unit vector from F`, we have

y =
∑̀
i=1

ηiei with
∑̀
i=1

η2
i = 1, whence, by (C.3.2),

yTAy =
∑̀
i=1

λi(A)η2
i ≥ min

1≤i≤`
λi(A) = λ`(A).

Since y is in E, we conclude that

max
x∈E:xT x=1

xTAx ≥ yTAy ≥ λ`(A).

Since E is an arbitrary subspace form E`, we conclude that the right hand side in (C.3.1) is

≥ λ`(A).

A simple and useful byproduct of our reasoning is the relation (C.3.2):

Corollary C.3.1 For a symmetric matrix A, the quadratic form xTAx is weighted sum of
squares of the coordinates ξi(x) of x taken with respect to an orthonormal eigenbasis of A; the
weights in this sum are exactly the eigenvalues of A:

xTAx =
∑
i

λi(A)ξ2
i (x).

C.3. VARIATIONAL CHARACTERIZATION OF EIGENVALUES 341

Corollaries of the VCE

VCE admits a number of extremely important corollaries as follows:

C.3.A. Eigenvalue characterization of positive (semi)definite matrices. Recall that a
matrix A is called positive definite (notation: A � 0), if it is symmetric and the quadratic form
xTAx is positive outside the origin; A is called positive semidefinite (notation: A � 0), if A is
symmetric and the quadratic form xTAx is nonnegative everywhere. VCE provides us with the
following eigenvalue characterization of positive (semi)definite matrices:

Proposition C.3.1 : A symmetric matrix A is positive semidefinite if and only if its eigenval-
ues are nonnegative; A is positive definite if and only if all eigenvalues of A are positive

Indeed, A is positive definite, if and only if the minimum value of xTAx over the unit sphere
is positive, and is positive semidefinite, if and only if this minimum value is nonnegative; it
remains to note that by VCE, the minimum value of xTAx over the unit sphere is exactly the
minimum eigenvalue of A.

C.3.B. �-Monotonicity of the vector of eigenvalues. Let us write A � B (A � B) to
express that A,B are symmetric matrices of the same size such that A−B is positive semidefinite
(respectively, positive definite).

Proposition C.3.2 If A � B, then λ(A) ≥ λ(B), and if A � B, then λ(A) > λ(B).

Indeed, when A � B, then, of course,

max
x∈E:xT x=1

xTAx ≥ max
x∈E:xT x=1

xTBx

for every linear subspace E, whence

λ`(A) = min
E∈E`

max
x∈E:xT x=1

xTAx ≥ min
E∈E`

max
x∈E:xT x=1

xTBx = λ`(B), ` = 1, ..., n,

i.e., λ(A) ≥ λ(B). The case of A � B can be considered similarly.

C.3.C. Eigenvalue Interlacement Theorem. We shall formulate this extremely important
theorem as follows:

Theorem C.3.2 [Eigenvalue Interlacement Theorem] Let A be a symmetric n× n matrix and
Ā be the angular (n−k)× (n−k) submatrix of A. Then, for every ` ≤ n−k, the `-th eigenvalue
of Ā separates the `-th and the (`+ k)-th eigenvalues of A:

λ`(A) � λ`(Ā) � λ`+k(A). (C.3.3)

Indeed, by VCE, λ`(Ā) = min
E∈Ē`

max
x∈E:xT x=1

xTAx, where Ē` is the family of all linear subspaces of

the dimension n− k− `+ 1 contained in the linear subspace {x ∈ Rn : xn−k+1 = xn−k+2 = ... =
xn = 0}. Since Ē` ⊂ E`+k, we have

λ`(Ā) = min
E∈Ē`

max
x∈E:xT x=1

xTAx ≥ min
E∈E`+k

max
x∈E:xT x=1

xTAx = λ`+k(A).

We have proved the left inequality in (C.3.3). Applying this inequality to the matrix −A, we
get

−λ`(Ā) = λn−k−`(−Ā) ≥ λn−`(−A) = −λ`(A),

or, which is the same, λ`(Ā) ≤ λ`(A), which is the first inequality in (C.3.3).

342 APPENDIX C. SYMMETRIC MATRICES

C.4 Positive Semidefinite Matrices and the Semidefinite Cone

C.4.A. Positive semidefinite matrices. Recall that an n × n matrix A is called positive
semidefinite (notation: A � 0), if A is symmetric and produces nonnegative quadratic form:

A � 0⇔ {A = AT and xTAx ≥ 0 ∀x}.

A is called positive definite (notation: A � 0), if it is positive semidefinite and the corresponding
quadratic form is positive outside the origin:

A � 0⇔ {A = AT and xTAx > 00 ∀x 6= 0}.

It makes sense to list a number of equivalent definitions of a positive semidefinite matrix:

Theorem C.4.1 Let A be a symmetric n × n matrix. Then the following properties of A are
equivalent to each other:

(i) A � 0
(ii) λ(A) ≥ 0
(iii) A = DTD for certain rectangular matrix D
(iv) A = ∆T∆ for certain upper triangular n× n matrix ∆
(v) A = B2 for certain symmetric matrix B;
(vi) A = B2 for certain B � 0.
The following properties of a symmetric matrix A also are equivalent to each other:
(i′) A � 0
(ii′) λ(A) > 0
(iii′) A = DTD for certain rectangular matrix D of rank n
(iv′) A = ∆T∆ for certain nondegenerate upper triangular n× n matrix ∆
(v′) A = B2 for certain nondegenerate symmetric matrix B;
(vi′) A = B2 for certain B � 0.

Proof. (i)⇔(ii): this equivalence is stated by Proposition C.3.1.
(ii)⇔(vi): Let A = UΛUT be the eigenvalue decomposition of A, so that U is orthogonal and

Λ is diagonal with nonnegative diagonal entries λi(A) (we are in the situation of (ii) !). Let Λ1/2

be the diagonal matrix with the diagonal entries λ
1/2
i (A); note that (Λ1/2)2 = Λ. The matrix

B = UΛ1/2UT is symmetric with nonnegative eigenvalues λ
1/2
i (A), so that B � 0 by Proposition

C.3.1, and

B2 = UΛ1/2 UTU︸ ︷︷ ︸
I

Λ1/2UT = U(Λ1/2)2UT = UΛUT = A,

as required in (vi).
(vi)⇒(v): evident.
(v)⇒(iv): Let A = B2 with certain symmetric B, and let bi be i-th column of B. Applying

the Gram-Schmidt orthogonalization process (see proof of Theorem A.2.3.(iii)), we can find an

orthonormal system of vectors u1, ..., un and lower triangular matrix L such that bi =
i∑

j=1
Lijuj ,

or, which is the same, BT = LU , where U is the orthogonal matrix with the rows uT1 , ..., u
T
n . We

now have A = B2 = BT (BT)T = LUUTLT = LLT . We see that A = ∆T∆, where the matrix
∆ = LT is upper triangular.

(iv)⇒(iii): evident.

C.4. POSITIVE SEMIDEFINITE MATRICES AND THE SEMIDEFINITE CONE 343

(iii)⇒(i): If A = DTD, then xTAx = (Dx)T (Dx) ≥ 0 for all x.

We have proved the equivalence of the properties (i) – (vi). Slightly modifying the reasoning
(do it yourself!), one can prove the equivalence of the properties (i′) – (vi′).

Remark C.4.1 (i) [Checking positive semidefiniteness] Given an n × n symmetric matrix A,
one can check whether it is positive semidefinite by a purely algebraic finite algorithm (the so
called Lagrange diagonalization of a quadratic form) which requires at most O(n3) arithmetic
operations. Positive definiteness of a matrix can be checked also by the Choleski factorization
algorithm which finds the decomposition in (iv′), if it exists, in approximately 1

6n
3 arithmetic

operations.

There exists another useful algebraic criterion (Sylvester’s criterion) for positive semidefi-
niteness of a matrix; according to this criterion, a symmetric matrix A is positive definite if
and only if its angular minors are positive, and A is positive semidefinite if and only if all its

principal minors are nonnegative. For example, a symmetric 2 × 2 matrix A =

[
a b
b c

]
is

positive semidefinite if and only if a ≥ 0, c ≥ 0 and det(A) ≡ ac− b2 ≥ 0.

(ii) [Square root of a positive semidefinite matrix] By the first chain of equivalences in
Theorem C.4.1, a symmetric matrix A is � 0 if and only if A is the square of a positive
semidefinite matrix B. The latter matrix is uniquely defined by A � 0 and is called the square
root of A (notation: A1/2).

C.4.B. The semidefinite cone. When adding symmetric matrices and multiplying them by
reals, we add, respectively multiply by reals, the corresponding quadratic forms. It follows that

C.4.B.1: The sum of positive semidefinite matrices and a product of a positive
semidefinite matrix and a nonnegative real is positive semidefinite,

or, which is the same (see Section 2.1.4),

C.4.B.2: n×n positive semidefinite matrices form a cone Sn+ in the Euclidean space
Sn of symmetric n×n matrices, the Euclidean structure being given by the Frobenius
inner product 〈A,B〉 = Tr(AB) =

∑
i,j
AijBij .

The cone Sn+ is called the semidefinite cone of size n. It is immediately seen that the semidefinite
cone Sn+ is “good,” specifically,

• Sn+ is closed: the limit of a converging sequence of positive semidefinite matrices is positive
semidefinite;

• Sn+ is pointed: the only n×n matrix A such that both A and −A are positive semidefinite
is the zero n× n matrix;

• Sn+ possesses a nonempty interior which is comprised of positive definite matrices.

Note that the relation A � B means exactly that A − B ∈ Sn+, while A � B is equivalent to
A − B ∈ int Sn+. The “matrix inequalities” A � B (A � B) match the standard properties of

344 APPENDIX C. SYMMETRIC MATRICES

the usual scalar inequalities, e.g.:

A � A [reflexivity]
A � B, B � A⇒ A = B [antisymmetry]
A � B, B � C ⇒ A � C [transitivity]
A � B, C � D ⇒ A+ C � B +D [compatibility with linear operations, I]
A � B, λ ≥ 0⇒ λA � λB [compatibility with linear operations, II]
Ai � Bi, Ai → A,Bi → B as i→∞⇒ A � B [closedness]

with evident modifications when � is replaced with �, or

A � B,C � D ⇒ A+ C � B +D,

etc. Along with these standard properties of inequalities, the inequality � possesses a nice
additional property:

C.4.B.3: In a valid �-inequality
A � B

one can multiply both sides from the left and by the right by a (rectangular) matrix
and its transpose:

A,B ∈ Sn, A � B, V ∈Mn,m

⇓
V TAV � V TBV

Indeed, we should prove that if A − B � 0, then also V T (A − B)V � 0, which is
immediate – the quadratic form yT [V T (A − B)V]y = (V y)T (A − B)(V y) of y is
nonnegative along with the quadratic form xT (A−B)x of x.

An important additional property of the semidefinite cone is its self-duality:

Theorem C.4.2 A symmetric matrix Y has nonnegative Frobenius inner products with all pos-
itive semidefinite matrices if and only if Y itself is positive semidefinite.

Proof. “if” part: Assume that Y � 0, and let us prove that then Tr(Y X) ≥ 0 for every X � 0.
Indeed, the eigenvalue decomposition of Y can be written as

Y =

n∑
i=1

λi(Y)eie
T
i ,

where ei are the orthonormal eigenvectors of Y . We now have

Tr(Y X) = Tr((
n∑
i=1

λi(Y)eie
T
i)X) =

n∑
i=1

λi(Y) Tr(eie
T
i X)

=
n∑
i=1

λi(Y) Tr(eTi Xei),
(C.4.1)

where the concluding equality is given by the following well-known property of the trace:

C.4.B.4: Whenever matrices A,B are such that the product AB makes sense and
is a square matrix, one has

Tr(AB) = Tr(BA).

C.4. POSITIVE SEMIDEFINITE MATRICES AND THE SEMIDEFINITE CONE 345

Indeed, we should verify that if A ∈ Mp,q and B ∈ Mq,p, then Tr(AB) = Tr(BA). The

left hand side quantity in our hypothetic equality is
p∑
i=1

q∑
j=1

AijBji, and the right hand side

quantity is
q∑
j=1

p∑
i=1

BjiAij ; they indeed are equal.

Looking at the concluding quantity in (C.4.1), we see that it indeed is nonnegative whenever
X � 0 (since Y � 0 and thus λi(Y) ≥ 0 by P.7.5).

”only if” part: We are given Y such that Tr(Y X) ≥ 0 for all matrices X � 0, and we should

prove that Y � 0. This is immediate: for every vector x, the matrix X = xxT is positive
semidefinite (Theorem C.4.1.(iii)), so that 0 ≤ Tr(Y xxT) = Tr(xTY x) = xTY x. Since the
resulting inequality xTY x ≥ 0 is valid for every x, we have Y � 0.

346 APPENDIX C. SYMMETRIC MATRICES

Bibliography

[1] Ben-Tal, A., Nemirovski, A. Lectures on Modern Convex Optimization: Analysis, Algorithms
and Engineering Applications. SIAM, Philadelphia, 2001.

[2] Ben-Tal, A., Nemirovski, A. Robust solutions of Linear Programming problems contaminated
with uncertain data. Mathematical Progrramming 88 (2000), 411–424.

[3] Bertsimas, D., Tsitsiklis. J.N., Introduction to Linear Optimization. Athena Scientific, 1997.

[4] Boyd, S., Vandenberghe, L. Convex Optimization. Cambridge University Press, 2004.

[5] Dantzig, G.B. Linear Programming. In: J.K. Lenstra, A.H.G. Ronnooy Kan, A. Schrijver,
eds. History of Mathematical Programming. A Collection of Personal Reminiscences. CWI,
Amsterdam and North-Holland, New York 1991.

[6] Grotschel, M., Lovasz, L., Schrijver, A. Geometric Algorithms and Combinatorial Optimiza-
tion. Springer-Verlag, Berlin, 1987.

[7] Khachiyan, L.G., A Polynomial Algorithm in Linear Programming (in Russian), Doklady
Akademii Nauk SSSR 244 (1979), 1093–1097 [English traslation: Soviet Mathematics Dok-
lady 20, 191–194].

[8] Nemirovski, A., Yudin, D., Information-based complexity and efficient methods of con-
vex optimization (in Russian), Ekonomika i Matematicheskie Metody [English translation:
Matekon] 12 (1976), 357–379.

[9] Nemirovski, A., Onn, S., Rothblum, U., Accuracy certificates for computational problems
with convex structure, to appear in Mathematics of Operations Research
E-print: http://www.optimization-online.org/DB HTML/2007/04/1634.html

[10] Nesterov, Yu., Nemirovski, A., Interior Point Polynomial Time Methods in Convex Pro-
gramming. SIAM, Philadelphia, 1994.

[11] Nesterov, Yu., Todd, M. J., Self-scaled barriers and interior-point methods for Convex
Programming, Mathematics of Operations Research 22 (1997), 1–42.

[12] Nesterov, Yu., Todd, M. J., Primal-dual interior-point methods for self-scaled cones, SIAM
Journal of Optimization 8 (1998), 324–364.

[13] Renegar, J. A Mathematical View of Interior-Point Methods in Convex Optimization.
SIAM, Philadelphia, 2001.

347

348 BIBLIOGRAPHY

[14] Shor, N.Z., Cut-off method with space extension in convex programming problems, Cyber-
netics 12 (1977), 94–96.

[15] Tardos, E., A strongly polynomial minimum cost circulation algorithm, Combinatorica 5
(1985), 247–256.

