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♣ To make decisions optimally is one of the most basic desires of a human

being.

Whenever the candidate decisions, design restrictions and design goals can

be properly quantified, optimal decision-making reduces to solving an opti-

mization problem, most typically, a Mathematical Programming one:

minimize
f(x) [ objective ]

subject to

hi(x) = 0, i = 1, ...,m

[
equality
constraints

]

gj(x) ≤ 0, j = 1, ..., k

[
inequality
constraints

]
x ∈ X [ domain ]

(MP)

♣ In (MP),

♦ a solution x ∈ Rn represents a candidate decision,

♦ the constraints express restrictions on the meaningful decisions (balance

and state equations, bounds on resources, etc.),

♦ the objective to be minimized represents the losses (minus profit) associ-

ated with a decision.



minimize
f(x) [ objective ]

subject to

hi(x) = 0, i = 1, ...,m

[
equality
constraints

]

gj(x) ≤ 0, j = 1, ..., k

[
inequality
constraints

]
x ∈ X [ domain ]

(MP)

♣ To solve problem (MP) means to find its optimal solution x∗, that is,

a feasible (i.e., satisfying the constraints) solution with the value of the

objective ≤ its value at any other feasible solution:

x∗ :


hi(x∗) = 0 ∀i & gj(x∗) ≤ 0 ∀j & x∗ ∈ X
hi(x) = 0 ∀i & gj(x) ≤ 0 ∀j & x ∈ X

⇒ f(x∗) ≤ f(x)



min
x
f(x)

s.t.
hi(x) = 0, i = 1, ...,m
gj(x) ≤ 0, j = 1, ..., k

x ∈ X

(MP)

♣ In Combinatorial (or Discrete) Optimization, the domain X is a discrete

set, like the set of all integral or 0/1 vectors.

In contrast to this, in Continuous Optimization we will focus on, X is a

“continuum” set like the entire Rn, a box {x : a ≤ x ≤ b}, or simplex

{x ≥ 0 :
∑
j
xj = 1}, etc., and the objective and the constraints are (at least)

continuous on X.

♣ In Linear Optimization, X = Rn and the objective and the constraints are

linear functions of x.

In contrast to this, in Nonlinear Continuous Optimization, the objective and

the constraints can be nonlinear functions.



♣ Our course is on Linear Optimization, the simplest and the most fre-

quently used in applications part of Mathematical Programming. Some of

the reasons for LO to be popular are:

• reasonable “expressive power” of LO — while the world we live in is mainly

nonlinear, linear dependencies in many situations can be considered as quite

satisfactory approximations of actual nonlinear dependencies. At the same

time, a linear dependence is easy to specify, which makes it realistic to specify

data of Linear Optimization models with many variables and constraints;

• existence of extremely elegant, rich and essentially complete mathematical

theory of LO;

• last, but by far not least, existence of extremely powerful solution algo-

rithms capable to solve to optimality in reasonable time LO problems with

tens and hundreds of thousands of variables and constraints.



♣ In our course, we will focus primarily on “LO machinery” (LO Theory and

Algorithms), leaving beyond our scope practical applications of LO which

are by far too numerous and diverse to be even outlined in a single course.

The brief outline of the contents is as follows:

• LO Modeling, including instructive examples of LO models and “calculus”

of LO models – collection of tools allowing to recognize the possibility to

pose an optimization problem as an LO program;

• LO Theory – geometry of LO programs, existence and characterization of

optimal solutions, theory of systems of linear inequalities and duality;

• LO Algorithms, including Simplex-type and Interior Point ones, and the

associated complexity issues.



PART I.

LO: Descriptive Theory



Lecture I.1

LO Models



Linear Optimization Models

♣ An LO program. A Linear Optimization problem, or program (LO),

called also Linear Programming problem/program, is the problem of opti-

mizing a linear function cTx of an n-dimensional vector x under finitely many

linear equality and nonstrict inequality constraints.

♣ The Mathematical Programming problem

min
x

x1 :


x1 + x2 ≤ 20
x1 − x2 = 5
x1, x2 ≥ 0

 (1)

is an LO program.

♣ The problem

min
x

exp{x1} :


x1 + x2 ≤ 20
x1 − x2 = 5
x1, x2 ≥ 0

 (1′)

is not an LO program, since the objective in (1′) is nonlinear.
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♣ The problem

max
x

x1 + x2 :


2x1 ≥ 20− x2

x1 − x2 = 5
x1 ≥ 0
x2 ≤ 0

 (2)

is an LO program.

♣ The problem

max
x


x1 + x2 :



∀i ≥ 2 :
ix1 ≥ 20− x2,

x1 − x2 = 5
x1 ≥ 0
x2 ≤ 0


(2′)

is not an LO program – it has infinitely many linear constraints.

♠ Note: Property of an MP problem to be or not to be an LO program is

the property of a representation of the problem. We classify optimization

problems according to how they are presented, and not according to what

they can be equivalent/reduced to.
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Canonical and Standard forms of LO programs

♣ Observe that we can somehow unify the forms in which LO programs are

written. Indeed

• every linear equality/inequality can be equivalently rewritten in the form

where the left hand side is a weighted sum
∑n
j=1 ajxj of variables xj with

coefficients, and the right hand side is a real constant:

2x1 ≥ 20− x2 ⇔ 2x1 + x2 ≥ 20

• the sign of a nonstrict linear inequality always can be made ”≤”, since the

inequality
∑
j ajxj ≥ b is equivalent to

∑
j[−aj]xj ≤ [−b]:

2x1 + x2 ≥ 20⇔ −2x1 − x2 ≤ −20

• a linear equality constraint
∑
j ajxj = b can be represented equivalently by

the pair of opposite inequalities
∑
j ajxj ≤ b,

∑
j[−aj]xj ≤ [−b]:

2x1 − x2 = 5⇔
{

2x1 − x2 ≤ 5
−2x1 + x2 ≤ −5

• to minimize a linear function
∑
j cjxj is exactly the same to maximize the

linear function
∑
j[−cj]xj.
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♣ Every LO program is equivalent to an LO program in the canonical form,

where the objective should be maximized, and all the constraints are ≤-

inequalities:

Opt = max
x

{∑n
j=1 cjxj :

∑n
j=1 aijxj ≤ bi,

1 ≤ i ≤ m
}

[“term-wise” notation]

⇔ Opt = max
x

{
cTx : aTi x ≤ bi, 1 ≤ i ≤ m

}
[“constraint-wise” notation]

⇔ Opt = max
x

{
cTx : Ax ≤ b

}
[“matrix-vector” notation]

c = [c1; ...; cn], b = [b1; ...; bm],
ai = [ai1; ...; ain], A = [aT1 ; aT2 ; ...; aTm]

♠ A set X ⊂ Rn given by X = {x : Ax ≤ b} – the solution set of a finite

system of nonstrict linear inequalities aTi x ≤ bi, 1 ≤ i ≤ m in variables x ∈ Rn

– is called polyhedral set, or polyhedron. An LO program in the canonical

form is to maximize a linear objective over a polyhedral set.

♠ Note: The solution set of an arbitrary finite system of linear equalities

and nonstrict inequalities in variables x ∈ Rn is a polyhedral set.
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max
x

x2 :


−x1 + x2 ≤ 6

3x1 + 2x2 ≤ 7
7x1 − 3x2 ≤ 1
−8x1 − 5x2 ≤ 100



[−10;−4]

[−1;5]

[1;2]

[−5;−12]

LO program and its feasible domain
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♣ Standard form of an LO program is to maximize a linear function over

the intersection of the nonnegative orthant Rn+ = {x ∈ Rn : x ≥ 0} and the

feasible plane {x : Ax = b}:

Opt = max
x

∑n
j=1 cjxj :

∑n
j=1 aijxj = bi,

1 ≤ i ≤ m
xj ≥ 0, j = 1, ..., n


[“term-wise” notation]

⇔ Opt = max
x

{
cTx :

aTi x = bi, 1 ≤ i ≤ m
xj ≥ 0, 1 ≤ j ≤ n

}
[“constraint-wise” notation]

⇔ Opt = max
x

{
cTx : Ax = b, x ≥ 0

}
[“matrix-vector” notation]

c = [c1; ...; cn], b = [b1; ...; bm],
ai = [ai1; ...; ain], A = [aT1 ; aT2 ; ...; aTm]

In the standard form LO program

• all variables are restricted to be nonnegative

• all “general-type” linear constraints are equalities.
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♣ Observation: The standard form of LO program is universal: every LO

program is equivalent to an LO program in the standard form.

Indeed, it suffices to convert to the standard form a canonical LO max
x
{cTx :

Ax ≤ b}. This can be done as follows:

• we introduce slack variables, one per inequality constraint, and rewrite the

problem equivalently as

max
x,s
{cTx : Ax+s = b, s ≥ 0}

• we further represent x as the difference of two new nonnegative vector

variables x = u− v, thus arriving at the program

max
u,v,s

{
cTu− cTv : Au−Av + s = b, [u; v; s] ≥ 0

}
.
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max
x
{−2x1 + x3 : −x1 + x2 + x3 = 1, x ≥ 0}

1
x

3
x

2
x

Standard form LO program
and its feasible domain
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LO Terminology

Opt = max
x
{cTx : Ax ≤ b}

[A : m× n]
(LO)

• The variable vector x in (LO) is called the decision vector of the program;

its entries xj are called decision variables.

• The linear function cTx is called the objective function (or objective) of

the program, and the inequalities aTi x ≤ bi are called the constraints.

• The structure of (LO) reduces to the sizes m (number of constraints) and

n (number of variables). The data of (LO) is the collection of numerical

values of the coefficients in the cost vector c, in the right hand side vector

b and in the constraint matrix A.
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Opt = max
x
{cTx : Ax ≤ b}

[A : m× n]
(LO)

• A solution to (LO) is an arbitrary value of the decision vector. A solution x

is called feasible if it satisfies the constraints: Ax ≤ b. The set of all feasible

solutions is called the feasible set of the program. The program is called

feasible, if the feasible set is nonempty, and is called infeasible otherwise.
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Opt = max
x
{cTx : Ax ≤ b}

[A : m× n]
(LO)

• Given a program (LO), there are three possibilities:

— the program is infeasible. In this case, Opt = −∞ by definition.

— the program is feasible, and the objective is not bounded from above on

the feasible set, i.e., for every a ∈ R there exists a feasible solution x such

that cTx > a. In this case, the program is called unbounded, and Opt = +∞
by definition.

The program which is not unbounded is called bounded; a program is

bounded iff its objective is bounded from above on the feasible set (e.g.,

due to the fact that the latter is empty).

— the program is feasible, and the objective is bounded from above on the

feasible set: there exists a real a such that cTx ≤ a for all feasible solutions

x. In this case, the optimal value Opt is the supremum, over the feasible

solutions, of the values of the objective at a solution.
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Opt = max
x
{cTx : Ax ≤ b}

[A : m× n]
(LO)

• a solution to the program is called optimal, if it is feasible, and the value

of the objective at the solution equals to Opt. A program is called solvable,

if it admits an optimal solution.

♠ In the case of a minimization problem

Opt = min
x
{cTx : Ax ≤ b}

[A : m× n]
(LO)

• the optimal value of an infeasible program is +∞,

• the optimal value of a feasible and unbounded program (unboundedness

now means that the objective to be minimized is not bounded from below

on the feasible set) is −∞
• the optimal value of a bounded and feasible program is the infimum of

values of the objective at feasible solutions to the program.
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♣ The notions of feasibility, boundedness, solvability and optimality can be

straightforwardly extended from LO programs to arbitrary MP ones. With

this extension, a solvable problem definitely is feasible and bounded, while

the inverse not necessarily is true, as is illustrated by the program

Opt = max
x
{− exp{−x} : x ≥ 0},

Opt = 0, but the optimal value is not achieved – there is no feasible solution

where the objective is equal to 0! As a result, the program is unsolvable.

⇒ In general, the fact that an optimization program with a “legitimate” –

real, and not ±∞ – optimal value, is strictly weaker that the fact that the

program is solvable (i.e., has an optimal solution).

♠ In LO the situation is much better: we shall prove that an LO program

is solvable iff it is feasible and bounded.
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Examples of LO Models

♣ Diet Problem: There are n types of products and m types of nutrition

elements. A unit of product # j contains pij grams of nutrition element #

i and costs cj. The daily consumption of a nutrition element # i should

be within given bounds [bi, bi]. Find the cheapest possible “diet” – mixture

of products – which provides appropriate daily amounts of every one of the

nutrition elements.

Denoting xj the amount of j-th product in a diet, the LO model reads

min
x

∑n
j=1 cjxj [cost to be minimized]

subject to∑n
j=1 pijxj ≥ bi∑n
j=1 pijxj ≤ bi

1 ≤ i ≤ m


 upper & lower bounds on

the contents of nutrition
elements in a diet


xj ≥ 0,1 ≤ j ≤ n

 you cannot put into a
diet a negative amount
of a product


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• Diet problem is routinely used in nourishment of poultry, livestock, etc. As

about nourishment of humans, the model is of no much use since it ignores

factors like food’s taste, food diversity requirements, etc.

• Here is the optimal daily human diet as computed by the software at

https://neos-guide.org/case-studies/om/the-diet-problem/

(when solving the problem, I allowed to use all 68 kinds of food offered by the code):

Food Serving Cost

Raw Carrots 0.12 cups shredded 0.02
Peanut Butter 7.20 Tbsp 0.25
Popcorn, Air-Popped 4.82 Oz 0.19
Potatoes, Baked 1.77 cups 0.21
Skim Milk 2.17 C 0.28

Daily cost $ 0.96
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♣ Production planning: A factory

• consumes R types of resources (electricity, raw materials of various kinds,

various sorts of manpower, processing times at different devices, etc.)

• produces P types of products.

• There are n possible production processes, j-th of them can be used with

“intensity” xj (intensities are fractions of the planning period during which

a particular production process is used).

• Used at unit intensity, production process # j consumes Arj units of

resource r, 1 ≤ r ≤ R, and yields Cpj units of product p, 1 ≤ p ≤ P .

• The profit of selling a unit of product p is cp.

♠ Given upper bounds b1, ..., bR on the amounts of various recourses available

during the planning period, and lower bounds d1, ..., dP on the amount of

products to be produced, find a production plan which maximizes the profit

under the resource and the demand restrictions.
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Denoting by xj the intensity of production process j, the LO model reads:

max
x

n∑
j=1

(∑P
p=1 cpCpj

)
xj [profit to be maximized]

subject to
n∑

j=1
Arjxj ≤ br, 1 ≤ r ≤ R

 upper bounds on
resources should
be met


n∑

j=1
Cpjxj ≥ dp, 1 ≤ p ≤ P

 lower bounds on
products should
be met


n∑

j=1
xj ≤ 1

xj ≥ 0, 1 ≤ j ≤ n


 total intensity should be ≤ 1

and intensities must be
nonnegative


Implicit assumptions:

• all production can be sold

• there are no setup costs when switching between production processes

• the products are infinitely divisible

1.17



♣ Inventory: An inventory operates over time horizon of T days 1, ..., T and

handles K types of products.

• Products share common warehouse with space C. Unit of product k takes

space ck ≥ 0 and its day-long storage costs hk.

• Inventory is replenished via ordering from a supplier; a replenishment order

sent in the beginning of day t is executed immediately, and ordering a unit

of product k costs ok ≥ 0.

• The inventory is affected by external demand of dtk units of product k in

day t. Backlog is allowed, and a day-long delay in supplying a unit of product

k costs pk ≥ 0.

♠ Given the initial amounts s0k, k = 1, ...,K, of products in warehouse, all

the (nonnegative) cost coefficients and the demands dtk, we want to specify

the replenishment orders vtk (vtk is the amount of product k which is ordered

from the supplier at the beginning of day t) in such a way that at the end of

day T there is no backlogged demand, and we want to meet this requirement

at as small total inventory management cost as possible.
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Building the model

1. Let state variable stk be the amount of product k stored at warehouse
at the end of day t. stk can be negative, meaning that at the end of day t

the inventory owes the customers |stk| units of product k.
Let also U be an upper bound on the total management cost. The problem
reads:

min
U,v,s

U

U ≥
∑

1≤k≤K,
1≤t≤T

[okvtk + max[hkstk,0] + max[−pkstk,0]]

[cost description]
stk = st−1,k + vtk − dtk,1 ≤ t ≤ T,1 ≤ k ≤ K

[state equations]∑K
k=1 max[ckstk,0] ≤ C, 1 ≤ t ≤ T

[space restriction should be met]
sTk ≥ 0,1 ≤ k ≤ K

[no backlogged demand at the end]
vtk ≥ 0,1 ≤ k ≤ K,1 ≤ t ≤ T

Implicit assumption: replenishment orders are executed, and the demands
are shipped to customers at the beginning of day t.
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♠ Our problem is not and LO program – it includes nonlinear constraints of

the form ∑
k,t

[okvtk + max[hkstk,0] + max[−pkstk,0]] ≤ U∑
k

max[ckstk,0] ≤ C, t = 1, ..., T

Let us show that these constraints can be represented equivalently by linear

constraints.

♣ Consider a MP problem in variables x with linear objective cTx and con-

straints of the form

aTi x+
ni∑
j=1

Termij(x) ≤ bi, 1 ≤ i ≤ m,

where Termij(x) are convex piecewise linear functions of x, that is, maxima

of affine functions of x:

Termij(x) = max
1≤`≤Lij

[αTij`x+ βij`]
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♣ Observation: MP problem

max
x

{
cTx : aTi x+

ni∑
j=1

Termij(x) ≤ bi, i ≤ m
}

Termij(x) = max
1≤`≤Lij

[αTij`x+ βij`]
(P )

is equivalent to the LO program

max
x,τij

cTx :

aTi x+
∑ni
j=1 τij ≤ bi

τij ≥ αTij`x+ βij`,

1 ≤ ` ≤ Lij

 , i ≤ m
 (P ′)

in the sense that both problems have the same objectives and x is feasible

for (P ) iff x can be extended, by properly chosen τij, to a feasible solution

to (P ′). As a result,

• every feasible solution (x, τ) to (P ′) induces a feasible solution x to (P ),

with the same value of the objective;

• vice versa, every feasible solution x to (P ) can be obtained in the above

fashion from a feasible solution to (P ′).
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♠ Applying the above construction to the Inventory problem, we end up with

the following LO model:

min
U,v,s,x,y,z

U

U ≥
∑
k,t

[okvtk + xtk + ytk]

stk = st−1,k + vtk − dtk,1 ≤ t ≤ T,1 ≤ k ≤ K∑K
k=1 ztk ≤ C, 1 ≤ t ≤ T

xtk ≥ hkstk, xtk ≥ 0, 1 ≤ k ≤ K,1 ≤ t ≤ T
ytk ≥ −pkstk, ytk ≥ 0, 1 ≤ k ≤ K,1 ≤ t ≤ T
ztk ≥ ckstk, ztk ≥ 0, 1 ≤ k ≤ K,1 ≤ t ≤ T
sTk ≥ 0,1 ≤ k ≤ K
vtk ≥ 0, 1 ≤ k ≤ K,1 ≤ t ≤ T
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♣ Warning: The outlined “eliminating piecewise linear nonlinearities” heav-

ily exploits the facts that after the nonlinearities are moved to the left hand

sides of ≤-constraints, they can be written down as the maxima of affine

functions.

Indeed, the attempt to eliminate nonlinearity

min
`

[αTij`x+ βij`]

in the constraint

...+ min
`

[αTij`x+ βij`]≤bi
by introducing upper bound τij on the nonlinearity and representing the

constraint by the pair of constraints

...+ τij ≤ bi
τij ≥ min

`
[αTij`x+ βij`]

fails, since the red constraint in the pair, in general, is not representable by

a system of linear inequalities.
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♣ Transportation problem: There are I warehouses, i-th of them storing

si units of product, and J customers, j-th of them demanding dj units of

product. Shipping a unit of product from warehouse i to customer j costs

cij. Given the supplies si, the demands dj and the costs Cij, we want to

decide on the amounts of product to be shipped from every warehouse to

every customer. Our restrictions are that we cannot take from a warehouse

more product than it has, and that all the demands should be satisfied;

under these restrictions, we want to minimize the total transportation cost.

Let xij be the amount of product shipped from warehouse i to customer j.

The problem reads

minx
∑
i,j cijxij

[
transportation cost
to be minimized

]
subject to∑J
j=1 xij ≤ si, 1 ≤ i ≤ I

[
bounds on supplies
of warehouses

]
∑I
i=1 xij = dj, j = 1, ..., J

[
demands should
be satisfied

]

xij ≥ 0,1 ≤ i ≤ I,1 ≤ j ≤ J
[

no negative
shipments

]
1.24



♣ Multicommodity Flow:
• We are given a network (an oriented graph), that is, a finite set of nodes
1,2, ..., n along with a finite set Γ of arcs — ordered pairs γ = (i, j) of distinct
nodes. We say that an arc γ = (i, j) ∈ Γ starts at node i, ends at node j
and links nodes i and j.
♠ Example: Road network with road junctions as nodes and one-way road
segments “from a junction to a neighbouring junction” as arcs.

• There are N types of “commodities” moving along the network, and we
are given the “external supply” ski of k-th commodity at node i. When
ski ≥ 0, the node i “pumps” into the network ski units of commodity k;
when ski ≤ 0, the node i “drains” from the network |ski| units of commodity
k.
♠ k-th commodity in a road network with steady-state traffic can be com-
prised of all cars leaving within an hour a particular origin (e.g., GaTech
campus) towards a particular destination (e.g., Northside Hospital).
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• Propagation of commodity k through the network is represented by a flow

vector fk. The entries in fk are indexed by arcs, and fkγ is the flow of

commodity k in an arc γ.

♠ In a road network with steady-state traffic, an entry fkγ of the flow vector

fk is the amount of cars from k-th origin-destination pair which move within

an hour through the road segment γ.
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• A flow vector fk is called a feasible flow, if it is nonnegative and satisfies

the

Conservation law: for every node i, the total amount of commodity k

entering the node plus the external supply ski of the commodity at the node

is equal to the total amount of the commodity leaving the node:∑
p∈P (i)

fkpi + ski =
∑

q∈Q(i)
fkiq

P (i) = {p : (p, i) ∈ Γ}; Q(i) = {q : (i, q) ∈ Γ}

3 0

−2−1

1

1/2

3/2 11/2

3 0

1

1

1
2

1
2

3
2

-1 -2
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♣ Multicommodity flow problem reads: Given

• a network with n nodes 1, ..., n and a set Γ of arcs,

• a number K of commodities along with supplies ski of nodes i = 1, ..., n

to the flow of commodity k, k = 1, ...,K,

• the per unit cost ckγ of transporting commodity k through arc γ,

• the capacities hγ of the arcs,

find the flows f1, ..., fK of the commodities which are nonnegative, respect

the Conservation law and the capacity restrictions (that is, the total, over

the commodities, flow through an arc does not exceed the capacity of the

arc) and minimize, under these restrictions, the total, over the arcs and the

commodities, transportation cost.

♠ In the Road Network illustration, interpreting ckγ as the travel time along

road segment γ, the Multicommodity flow problem becomes the one of

finding social optimum, where the total travelling time of all cars is as small

as possible.
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♣ We associate with a network with n nodes and m arcs an n×m incidence
matrix P defined as follows:
• the rows of P are indexed by the nodes 1, ..., n
• the columns of P are indexed by arcs γ

• Piγ =


1, γ starts at i
−1, γ ends at i

0, all other cases

#1 #2

#4 #3

1 2

34

(1,2) (1,3) (1,4) (2,3) (4,3)

P =


1 1 1
−1 1

−1 −1 −1
−1 1


1
2
3
4

♠ In terms of the incidence matrix, the Conservation Law linking flow f and
external supply s reads

Pf = s
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♠ Multicommodity flow problem reads

minf1,...,fK
∑K
k=1

∑
γ∈Γ ckγf

k
γ

[transportation cost to be minimized]

subject to
Pfk = sk := [sk1; ...; skn], k = 1, ...,K

[flow conservation laws]

fkγ ≥ 0, 1 ≤ k ≤ K, γ ∈ Γ
[flows must be nonnegative]∑K

k=1 f
k
γ ≤ hγ, γ ∈ Γ

[bounds on arc capacities]

1.30



d  +  d
1 2

−d
2

−d
1

red nodes: warehouses green nodes: customers

green arcs: transpostation costs cij, capacities +∞
red arcs: transporation costs 0, capacities si

Note: Transportation problem is a particular case of the Multicommodity

flow one. Here we

• start with I red nodes representing warehouses, J green nodes representing

customers and IJ arcs “warehouse i – customer j;” these arcs have infinite

capacities and transportation costs cij;

• augment the network with source node which is linked to every warehouse

node i by an arc with zero transportation cost and capacity si;

• consider the single-commodity case where the source node has external

supply
∑
j dj, the customer nodes have external supplies −dj, 1 ≤ j ≤ J, and

the warehouse nodes have zero external supplies.
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♣ Maximum Flow problem: Given a network with two selected nodes – a

source and a sink, find the maximal flow from the source to the sink, that is,

find the largest s such the external supply “s at the source node, −s at the

sink node, 0 at all other nodes” corresponds to a feasible flow respecting

arc capacities.

The problem reads

max
f,s

s

[
total flow from source to
sink to be maximized

]
subject to

∑
γ Piγfγ =


s, i is the source node

−s, i is the sink node

0, for all other nodes

[flow conservation law]

fγ ≥ 0, γ ∈ Γ [arc flows should be ≥ 0]

fγ ≤ hγ, γ ∈ Γ [we should respect arc capacities]
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LO Models in Signal Processing

♣ Fitting Parameters in Linear Regression: “In the nature” there exists

a linear dependence between a variable vector of factors (regressors) x ∈ Rn

and the “ideal output” y ∈ R:

y = θT∗ x

θ∗ ∈ Rn: vector of true parameters.

Given a collection {xi, yi}mi=1 of noisy observations of this dependence:

yi = θT∗ xi + ξi [ξi : observation noise]

we want to recover the parameter vector θ∗.
♠ When m� n, a typical way to solve the problem is to choose a “discrep-

ancy measure” φ(u, v) – a kind of distance between vectors u, v ∈ Rm – and

to choose an estimate θ̂ of θ∗ by minimizing in θ the discrepancy

φ
(
[y1; ...; ym], [θTx1; ...; θTxm]

)
between the observed outputs and the outputs of a hypothetic model y = θTx

as applied to the observed regressors x1, ..., xm.
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yi = θT∗ xi + ξi [ξi : observation noise]

♠ Setting X = [xT1 ;xT2 ; ...;xTm], the recovering routine becomes

θ̂ = argmin
θ

φ(y, Xθ) [y = [y1; ...; ym]]

♠ The choice of φ(·, ·) primarily depends on the type of observation noise.

• The most frequently used discrepancy measure is φ(u, v) = ‖u − v‖2, cor-

responding to the case of White Gaussian Noise (ξi ∼ N (0, σ2) are inde-

pendent) or, more generally, to the case when ξi are independent identically

distributed with zero mean and finite variance. The corresponding Least

Squares recovery

θ̂ = argmin
θ

m∑
i=1

[yi − xTi θ]2

reduces to solving a system of linear equations.
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θ̂ = argmin
θ

φ(y, Xθ) [y = [y1; ...; ym]]

♠ There are cases when the recovery reduces to LO:
1. `1-fit: φ(u, v) = ‖u − v‖1 :=

∑m
i=1 |ui − vi|. Here the recovery problem

reads

min
θ

∑m
i=1 |yi − x

T
i θ| ⇔ min

θ,τ

{
τ :

∑m
i=1 |yi − x

T
i θ| ≤ τ

}
(!)

There are two ways to reduce (!) to an LO program:
• Intelligent way: Noting that |yi− xTi θ| = max[yi− xTi θ, x

T
i θ− yi], we can

use the “eliminating piecewise linear nonlinearities” trick to convert (!) into
the LO program

min
θ,τ,τi

{
τ :

yi − xTi θ ≤ τi, x
T
i θ − yi ≤ τi ∀i∑m

i=1 τi ≤ τ

}
1 + n+m variables, 2m+ 1 constraints
• Stupid way: Noting that∑m

i=1 |ui| = max
ε1=±1,...,εm=±1

∑
i εiui,

we can convert (!) into the LO program
min
θ,τ

{
τ :

∑m
i=1 εi[yi − x

T
i θ] ≤ τ ∀ε1 = ±1, ..., εm = ±1

}
1 + n variables, 2m constraints
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θ̂ = argmin
θ

φ(y, Xθ) [y = [y1; ...; ym]]

2. Uniform fit φ(u, v) = ‖u− v‖∞ := max
i
|ui − vi|:

min
θ,τ

{
τ : yi − xTi θ ≤ τ, x

T
i θ − yi ≤ τ, 1 ≤ i ≤ m

}
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Sparsity-oriented Signal Processing

and `1 minimization

♣ Compressed Sensing: We have m-dimensional observation

y = [y1; ...; ym] = Xθ∗+ ξ
[X ∈ Rm×n : sensing matrix, ξ : observation noise]

of unknown “signal” θ∗ ∈ Rn with m� n and want to recover θ∗.
♠ Since m� n, the system Xθ = y−ξ in variables θ, if solvable, has infinitely

many solutions

⇒ Even in the noiseless case, θ∗ cannot be recovered well, unless additional

information on θ∗ is available.

♠ In Compressed Sensing, the additional information on θ∗ is that θ∗ is sparse

— has at most a given number s� m nonzero entries.
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♠ Fact: Many real-life signals x when presented by their coefficients in

properly selected basis (“dictionary”) B:
x = Bu

• columns of B: vectors of basis B
• u: coefficients of x in basis B

become sparse (or nearly so): u has just s� n nonzero entries (or can be

well approximated by vector with s� n nonzero entries). We do not assume

the location of “meaningful coefficients” known in advance.
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Example I: Typical audio signals become sparse (or nearly so) when repre-

senting them ”in frequency domain” – as sums of harmonic oscillations of

different frequencies:

0 50 100 150 200 250 300
-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250 300
-1.5

-1

-0.5

0

0.5

1

1.5

Top: singal in time domain
Bottom: decomposition of signal in harmonic oscillations
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Illustration: 25 sec fragment of audio signal “Mail must go through” (di-

mension 1,058,400) and its ”Fourier coefficients” – amplitudes of partici-

pating harmonic oscillations:

0 5 10 15 20 25
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-0.4

-0.2

0
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0.4

0.6

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

How mail goes through in time domain How mail goes through in frequency domain

% of leading Fourier coefficients kept energy
100% 100%
25% 99.8%
15% 99.6%
5% 98.2%
1% 79.0%
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Example II: The 256× 256 image

50 100 150 200 250

50

100

150

200

250

can be thought of as 2562 = 65536-dimensional vector (write down the

intensities of pixels column by column). This image (same as other “non-

pathological” images) is nearly sparse when represented in wavelet basis:
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1% of leading wavelet
coefficients kept (99.70% of energy)

5% of leading wavelet
coefficients kept (99.93% of energy)
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10% of leading wavelet
coefficients kept (99.96% of energy)

25% of leading wavelet
coefficients kept (99.99% of energy)
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♠ When recovering a signal x∗ admitting a sparse (or nearly so) representa-

tion Bu∗ in a known basis B from observations

y = Ax∗+ η,

the situation reduces to the one when the signal to be recovered is just

sparse.

Indeed, we can first recover sparse u∗ from observations

y = Ax∗+ η = [AB]u∗+ η.

After an estimate û of u∗ is built, we can estimate x∗ by Bû.

⇒ In fact, sparse recovery is about how to recover a sparse n-dimensional

signal x from m� n observations

y = Ax∗+ η.
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♣ Observation: Assume that ξ = 0, and let every m × 2s submatrix of X

be of rank 2s (which will be typically the case when m ≥ 2s).Then θ∗ is the

optimal solution to the optimization problem
min
θ
{nnz(θ) : Xθ = y}

[nnz(θ) = Card{j : θj 6= 0}]
♠ Bad news: Problem

min
θ
{nnz(θ) : Xθ = y}

is heavily computationally intractable in the large-scale case.

Indeed, essentially the only known algorithm for solving the problem is a

“brute force” one: Look one by one at all finite subsets I of {1, ..., n} of

cardinality 0,1,2, ..., n, trying each time to solve the linear system

Xθ = y, θi = 0, i 6∈ I
in variables θ. When the first solvable system is met, take its solution as θ̃.

• When s = 5, n = 100, the best known upper bound on the number of

steps in this algorithm is ≈ 7.53e7, which perhaps is doable.

• When s = 20, n = 200, the bound blows up to ≈ 1.61e27, which is by

many orders of magnitude beyond our “computational grasp.”
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♠ Partial remedy: Replace the difficult to minimize objective nnz(θ) with

an “easy-to-minimize” objective, specifically, ‖θ‖1 =
∑
i |θi|. As a result, we

arrive at `1-recovery

θ̂ = argminθ {‖θ‖1 : Xθ = y}
⇔ min

θ,z

{∑
j zj : Xθ = y,−zj ≤ θj ≤ zj ∀j ≤ n

}
.

♠ When the observation is noisy: y = Xθ∗+ ξ and we know an upper bound

δ on a norm ‖ξ‖ of the noise, the `1-recovery becomes

θ̂ = argminθ {‖θ‖1 : ‖Xθ − y‖ ≤ δ} .
When ‖ · ‖ is ‖ · ‖∞, the latter problem is an LO program:

min
θ,z

{∑
jzj :

−δ ≤ [Xθ − y]i ≤ δ ∀i ≤ m
−zj ≤ θj ≤ zj ∀j ≤ n

}
.
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♣ Compressed Sensing theory shows that under some difficult to verify as-

sumptions on X which are satisfied with overwhelming probability when X

is a large randomly selected matrix `1-minimization recovers

— exactly in the noiseless case, and

— with error ≤ C(X)δ in the noisy case

all s-sparse signals with s ≤ O(1)m/ ln(n/m).

♠ How it works:

• X: 620×2048 • θ∗: 10 nonzeros • δ = 0.005
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`1-recovery, ‖θ̂ − θ∗‖∞ ≤ 8.9e−4
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♣ Curious (and sad) fact: Theory of Compressed Sensing states that

“nearly all” large randomly generated m × n sensing matrices X are s-

good with s as large as O(1) m
ln(n/m), meaning that for these matrices, `1-

minimization in the noiseless case recovers exactly all s-sparse signals with

the indicated value of s.

However: No individual sensing matrices with the outlined property are

known. For all known m× n sensing matrices with 1� m� n, the provable

level of goodness does not exceed O(1)
√
m... For example, for the 620×2048

matrix X from the above numerical illustration we have m/ ln(n/m) ≈ 518

⇒ we could expect x to be s-good with s of order of hundreds. In fact we

can certify

s-goodness of X with s = 10, and can certify that x is not s-good with

s = 59.

Note: The best known verifiable sufficient condition for X to be s-good is
min
Y
‖Colj(In − Y TX)‖s,1 < 1

2s • Colj(A): j-th column of A
• ‖u‖s,1: the sum of s largest magnitudes

of entries in u


This condition reduces to LO.
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Lecture I.2

What can be reduced to LO?

Polyhedral Representations



What Can Be Reduced to LO?

♣ We have seen numerous examples of optimization programs which can be

reduced to LO, although in its original “maiden” form the program is not

an LO one. Typical “maiden form” of a MP problem is

(MP) :
max

x∈X⊂Rn
f(x)

X = {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ m}
In LO,

• The objective is linear

• The constraints are affine

♠ Observation: Every MP program is equivalent to a program with linear

objective.

Indeed, adding slack variable τ , we can rewrite (MP) equivalently as

max
y=[x;τ ]∈Y

cTy := τ,

Y = {[x; τ ] : gi(x) ≤ 0, τ − f(x) ≤ 0}
⇒ we lose nothing when assuming from the very beginning that the objective

in (MP) is linear: f(x) = cTx.
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(MP) :
max

x∈X⊂Rn
cTx

X = {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ m}
♣Definition: A polyhedral representation of a set X ⊂ Rn is a representation

of X of the form:

X = {x : ∃w : Px+Qw ≤ r},

that is, a representation of X as the a projection onto the space of x-variables

of a polyhedral set X+ = {[x;w] : Px+Qw ≤ r} in the space of x,w-variables.

♠ Observation: Given a polyhedral representation of the feasible set X of

(MP), we can pose (MP) as the LO program

max
[x;w]

{
cTx : Px+Qw ≤ r

}
.
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♠ Examples of polyhedral representations:

• The set X = {x ∈ Rn :
∑
i |xi| ≤ 1} admits the p.r.

X =

x ∈ Rn : ∃w ∈ Rn :
−wi ≤ xi ≤ wi,

1 ≤ i ≤ n,∑
iwi ≤ 1

 .
• The set

X =
{
x ∈ R6 : max[x1, x2, x3] + 2 max[x4, x5, x6]

≤ x1 − x6 + 5
}

admits the p.r.

X =

x ∈ R6 : ∃w ∈ R2 :
x1 ≤ w1, x2 ≤ w1, x3 ≤ w1

x4 ≤ w2, x5 ≤ w2, x6 ≤ w2

w1 + 2w2 ≤ x1 − x6 + 5

 .
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Whether a Polyhedrally Represented Set
is Polyhedral?

♣ Question: Let X be given by a polyhedral representation:

X = {x ∈ Rn : ∃w : Px+Qw ≤ r},

that is, as the projection of the solution set

Y = {[x;w] : Px+Qw ≤ r} (∗)

of a finite system of linear inequalities in variables x,w onto the space of

x-variables.

Is it true that X is polyhedral, i.e., X is a solution set of finite system of

linear inequalities in variables x only?

Theorem. Every polyhedrally representable set is polyhedral.

Proof is given by the Fourier — Motzkin elimination scheme which demon-

strates that the projection of the set (∗) onto the space of x-variables is a

polyhedral set.
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Y = {[x;w] : Px+Qw ≤ r}, (∗)
Elimination step: eliminating a single slack variable. Given set (∗), assume
that w = [w1; ...;wm] is nonempty, and let Y + be the projection of Y on the
space of variables x,w1, ..., wm−1:

Y + = {[x;w1; ...;wm−1] : ∃wm : Px+Qw ≤ r} (!)

Let us prove that Y + is polyhedral. Indeed, let us split the linear inequalities
pTi x+ qTi w ≤ ri, 1 ≤ i ≤ I, defining Y into three groups:
• black – the coefficient at wm is 0
• red – the coefficient at wm is > 0
• green – the coefficient at wm is < 0

Then
Y =

{
[x;w] :

aTi x+ bTi [w1; ...;wm−1] ≤ ci, i is black
wm ≤ aTi x+ bTi [w1; ...;wm−1] + ci, i is red

wm ≥ aTi x+ bTi [w1; ...;wm−1] + ci, i is green
}

⇒
Y + =

{
[x;w1; ...;wm−1] :

aTi x+ bTi [w1; ...;wm−1] ≤ ci, i is black
aTµx+ bTµ [w1; ...;wm−1] + cµ ≥ aTν x+ bTν [w1; ...;wm−1] + cν

whenever µ is red and ν is green
}

and thus Y + is polyhedral.
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We have seen that the projection

Y + = {[x;w1; ...;wm−1] : ∃wm : [x;w1; ...;wm] ∈ Y }

of the polyhedral set Y = {[x,w] : Px+Qw ≤ r} is polyhedral. Iterating the

process, we conclude that the set X = {x : ∃w : [x,w] ∈ Y } is polyhedral,

Q.E.D.

♣ Given an LO program

Opt = max
x

{
cTx : Ax ≤ b

}
, (!)

observe that the set of values of the objective at feasible solutions can be

represented as

T = {τ ∈ R : ∃x : Ax ≤ b, cTx− τ = 0}
= {τ ∈ R : ∃x : Ax ≤ b, cTx ≤ τ, cTx ≥ τ}

that is, T is polyhedrally representable. By Theorem, T is polyhedral, that

is, T can be represented by a finite system of nonstrict linear inequalities in

variable τ only. It immediately follows that if T is nonempty and is bounded

from above, T has the largest element. Thus, we have proved

Corollary. A feasible and bounded LO program admits an optimal solution

and thus is solvable.
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T = {τ ∈ R : ∃x : Ax ≤ b, cTx− τ = 0}
= {τ ∈ R : ∃x : Ax ≤ b, cTx ≤ τ, cTx ≥ τ}

♣ Fourier-Motzkin Elimination Scheme suggests a finite algorithm for solving

an LO program, where we

• first, apply the scheme to get a representation of T by a finite system S

of linear inequalities in variable τ ,

• second, analyze S to find out whether the solution set is nonempty and

bounded from above, and when it is the case, to find out the optimal value

Opt ∈ T of the program,

• third, use the Fourier-Motzkin elimination scheme in the backward fashion

to find x such that Ax ≤ b and cTx = Opt, thus recovering an optimal

solution to the problem of interest.

Bad news: The resulting algorithm is completely impractical, since the

number of inequalities we should handle at an elimination step usually rapidly

grows with the step number and can become astronomically large when

eliminating just tens of variables.
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Polyhedrally Representable Functions

♣ Definition: Let f be a real-valued function on a set Domf ⊂ Rn. The

epigraph of f is the set

Epi{f} = {[x; τ ] ∈ Rn × R : x ∈ Domf, τ ≥ f(x)}.

A polyhedral representation of Epi{f} is called a polyhedral representation of

f . Function f is called polyhedrally representable, if it admits a polyhedral

representation.

♠ Observation: A Lebesque set {x ∈ Domf : f(x) ≤ a} of a polyhedrally

representable function is polyhedral, with a p.r. readily given by a p.r. of

Epi{f}:
Epi{f} = {[x; τ ] : ∃w : Px+ τp+Qw ≤ r} ⇒{
x :

x ∈ Domf
f(x) ≤ a

}
= {x : ∃w : Px+ ap+Qw ≤ r}.
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Examples: • The function f(x) = max
1≤i≤I

[αTi x + βi] is polyhedrally repre-

sentable:

Epi{f} = {[x; τ ] : αTi x+ βi − τ ≤ 0, 1 ≤ i ≤ I}.

• Extension: Let D = {x : Ax ≤ b} be a polyhedral set in Rn. A function

f with the domain D given in D as f(x) = max
1≤i≤I

[αTi x + βi] is polyhedrally

representable:

Epi{f}= {[x; τ ] : x ∈ D, τ ≥ max
1≤i≤I

αTi x+ βi} =

{[x; τ ] : Ax ≤ b, αTi x− τ + βi ≤ 0, 1 ≤ i ≤ I}.
In fact, every polyhedrally representable function f is of the form stated in

Extension.
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Calculus of Polyhedral Representations

♣ In principle, speaking about polyhedral representations of sets and func-

tions, we could restrict ourselves with representations which do not exploit

slack variables, specifically,

• for sets — with representations of the form

X = {x ∈ Rn : Ax ≤ b};

• for functions — with representations of the form

Epi{f} = {[x; τ ] : Ax ≤ b, τ ≥ max
1≤i≤I

αTi x+ βi}

♠ However, “general” – involving slack variables – polyhedral representations

of sets and functions are much more flexible and can be much more “com-

pact” that the straightforward – without slack variables – representations.
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Examples:
• The function f(x) = ‖x‖1 : Rn → R admits the p.r.

Epi{f} =

[x; τ ] : ∃w ∈ Rn :
−wi ≤ xi ≤ wi,

1 ≤ i ≤ n∑
iwi ≤ τ


which requires n slack variables and 2n + 1 linear inequality constraints. In
contrast to this, the straightforward — without slack variables — represen-
tation of f

Epi{f} =

{
[x; τ ] :

∑n
i=1 εixi ≤ τ
∀(ε1 = ±1, ..., εn = ±1)

}
requires 2n inequality constraints.
• The set X = {x ∈ Rn :

∑n
i=1 max[xi,0] ≤ 1} admits the p.r.

X = {x ∈ Rn : ∃w : 0 ≤ w, xi ≤ wi ∀i,
∑
i

wi ≤ 1}

which requires n slack variables and 2n + 1 inequality constraints. Every
straightforward — without slack variables — p.r. of X requires at least
2n − 1 constraints ∑

i∈I
xi ≤ 1, ∅ 6= I ⊂ {1, ..., n}

1.57



♣ Polyhedral representations admit a kind of simple and “fully algorithmic”

calculus which, essentially, demonstrates that all convexity-preserving oper-

ations with polyhedral sets produce polyhedral results, and a p.r. of the

result is readily given by p.r.’s of the operands.

♠ Role of Convexity: A set X ⊂ Rn is called convex, if whenever two points

x, y belong to X, the entire segment [x, y] linking these points belongs to X:
∀(x, y ∈ x, λ ∈ [0,1]) :
x+ λ(y − x) = (1− λ)x+ λy∈ X .

A function f : Domf → R is called convex, if its epigraph Epi{f} is a convex

set, or, equivalently, if
x, y ∈ Domf, λ ∈ [0,1]
⇒f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).
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Fact: A polyhedral set X = {x : Ax ≤ b} is convex. In particular, a polyhe-

drally representable function is convex.

Indeed,
Ax ≤ b, Ay ≤ b, λ ≥ 0,1− λ ≥ 0

⇒ A(1− λ)x ≤ (1− λ)b
Aλy ≤ λb

⇒ A[(1− λ)x+ λy] ≤ b
Consequences:

• lack of convexity makes impossible polyhedral representation of a

set/function,

• consequently, operations with functions/sets allowed by “calculus

of polyhedral representability” we intend to develop should be convexity-

preserving operations.
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Calculus of Polyhedral Sets

♠ Raw materials: X = {x ∈ Rn : aTx ≤ b} (when a 6= 0, or, which is the

same, the set is nonempty and differs from the entire space, such a set is

called half-space)

♠ Calculus rules:

S.1. Taking finite intersections: If the sets Xi ⊂ Rn, 1 ≤ i ≤ k, are polyhe-

dral, so is their intersection, and a p.r. of the intersection is readily given

by p.r.’s of the operands.

Indeed, if

Xi = {x ∈ Rn : ∃wi : Pix+Qiw
i ≤ ri}, i = 1, ..., k,

then
k⋂
i=1

Xi =

{
x : ∃w = [w1; ...;wk] :

Pix+Qiw
i ≤ ri,

1 ≤ i ≤ k

}
,

which is a polyhedral representation of
⋂
i
Xi.
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S.2. Taking direct products. Given k sets Xi ⊂ Rni, their direct product

X1 × ... × Xk is the set in Rn1+...+nk comprised of all block-vectors x =

[x1; ...;xk] with blocks xi belonging to Xi, i = 1, ..., k. E.g., the direct product

of k segments [−1,1] on the axis is the unit k-dimensional box {x ∈ Rk : −1 ≤
xi ≤ 1, i = 1, ..., k}.
If the sets Xi ⊂ Rni, 1 ≤ i ≤ k, are polyhedral, so is their direct product, and

a p.r. of the product is readily given by p.r.’s of the operands.

Indeed, if

Xi = {xi ∈ Rni : ∃wi : Pix
i +Qiw

i ≤ ri}, i = 1, ..., k,

then

X1 × ...×Xk
=
{
x = [x1; ...;xk] : ∃w = [w1; ...;wk] :

Pix
i +Qiw

i ≤ ri,
1 ≤ i ≤ k

}
.
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S.3. Taking affine image. If X ⊂ Rn is a polyhedral set and y = Ax + b :

Rn → Rm is an affine mapping, then the set

Y = AX + b := {y = Ax+ b : x ∈ X} ⊂ Rm

is polyhedral, with p.r. readily given by the mapping and a p.r. of X.

Indeed, if X = {x : ∃w : Px+Qw ≤ r}, then

Y = {y : ∃[x;w] : Px+Qw ≤ r, y = Ax+ b}

=

{
y : ∃[x;w] :

Px+Qw ≤ r,
y −Ax ≤ b, Ax− y ≤ −b

}
Since Y admits a p.r., Y is polyhedral.
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S.4. Taking inverse affine image. If X ⊂ Rn is polyhedral, and x = Ay + b :

Rm → Rn is an affine mapping, then the set

Y = {y ∈ Rm : Ay + b ∈ X} ⊂ Rm

is polyhedral, with p.r. readily given by the mapping and a p.r. of X.

Indeed, if X = {x : ∃w : Px+Qw ≤ r}, then

Y = {y : ∃w : P [Ay + b] +Qw ≤ r}
= {y : ∃w : [PA]y +Qw ≤ r − Pb}.
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S.5. Taking arithmetic sum: If the sets Xi ⊂ Rn, 1 ≤ i ≤ k, are polyhedral, so

is their arithmetic sum X1 + ...+Xk := {x = x1 + ...+xk : xi ∈ Xi,1 ≤ i ≤ k},
and a p.r. of the sum is readily given by p.r.’s of the operands.

Indeed, the arithmetic sum of X1, ..., Xk is the image of X1 × ... ×Xk under

the linear mapping [x1; ...;xk] 7→ x1 + ... + xk, and both operations preserve

polyhedrality. Here is an explicit p.r. for the sum:

if Xi = {x : ∃wi : Pix+Qiw
i ≤ ri}, 1 ≤ i ≤ k, then

X1 + ...+Xk

=

x : ∃x1, ..., xk, w1, ..., wk :
Pix

i +Qiw
i ≤ ri,

1 ≤ i ≤ k,
x =

∑k
i=1 x

i

 ,
and it remains to replace the vector equality in the right hand side by a

system of two opposite vector inequalities.
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Calculus of Polyhedrally Representable
Functions

♣ Preliminaries: Arithmetics of partially defined functions.

• a scalar function f of n variables is specified by indicating its domain

Domf– the set where the function is well defined, and by the description of

f as a real-valued function in the domain.

When speaking about convex functions f , it is very convenient to think of

f as of a function defined everywhere on Rn and taking real values in Domf

and the value +∞ outside of Domf .

With this convention, f becomes an everywhere defined function on Rn

taking values in R ∪ {+∞}, and Domf becomes the set where f takes real

values.
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♠ In order to allow for basic operations with partially defined functions, like

their addition or comparison, we augment our convention with the following

agreements on the arithmetics of the “extended real axis” R ∪ {+∞}:
• Addition: for a real a, a+ (+∞) = (+∞) + (+∞) = +∞.

• Multiplication by a nonnegative real λ: λ · (+∞) = +∞ when λ > 0, and

0 · (+∞) = 0.

• Comparison: for a real a, a < +∞ (and thus a ≤ +∞ as well), and of

course +∞ ≤ +∞.

Note: Our arithmetic is incomplete — operations like (+∞) − (+∞) and

(−1) · (+∞) remain undefined.
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♠ Raw materials: f(x) = aTx+ b (affine functions)

Epi{aTx+ b} = {[x; τ ] : aTx+ b− τ ≤ 0}

♠ Calculus rules:
F.1. Taking linear combinations with positive coefficients. If fi : Rn →
R ∪ {+∞} are p.r.f.’s and λi > 0, 1 ≤ i ≤ k, then f(x) =

∑k
i=1 λifi(x) is a

p.r.f., with a p.r. readily given by those of the operands.
Indeed, if

{[x; τ ] : τ ≥ fi(x)}
= {[x; τ ] : ∃wi : Pix+ τpi +Qiw

i ≤ ri},1 ≤ i ≤ k,
then

{[x; τ ] : τ ≥
∑k
i=1 λifi(x)}

=

{
[x; τ ] : ∃t1, ..., tk :

ti ≥ fi(x),1 ≤ i ≤ k,∑
i λiti ≤ τ

}

=

{
[x; τ ] : ∃t1, ..., tk, w1, ..., wk :

Pix+ tipi +Qiw
i ≤ ri,

1 ≤ i ≤ k,∑
i λiti ≤ τ

}
.
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F.2. Direct summation. If fi : Rni → R ∪ {+∞}, 1 ≤ i ≤ k, are p.r.f.’s, then

so is their direct sum

f([x1; ...;xk]) =
k∑
i=1

fi(x
i) : Rn1+...+nk → R ∪ {+∞}

and a p.r. for this function is readily given by p.r.’s of the operands.

Indeed, if

{[xi; τ ] : τ ≥ fi(xi)}
= {[xi; τ ] : ∃wi : Pix

i + τpi +Qiw
i ≤ ri}, 1 ≤ i ≤ k,

then

{[x1; ...;xk; τ ] : τ ≥
∑k
i=1 fi(x

i)}

=

[x1; ...;xk; τ ] : ∃t1, ..., tk :
ti ≥ fi(xi),
1 ≤ i ≤ k,∑
i ti ≤ τ


=

{
[x1; ...;xk; τ ] : ∃t1, ..., tk, w1, ..., wk :

Pix
i + tipi +Qiw

i ≤ ri,
1 ≤ i ≤ k,∑

i ti ≤ τ

}
.
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F.3. Taking maximum. If fi : Rn → R ∪ {+∞} are p.r.f.’s, so is their

maximum f(x) = max[f1(x), ..., fk(x)], with a p.r. readily given by those of

the operands.

Indeed, if

{[x; τ ] : τ ≥ fi(x)}
= {[x; τ ] : ∃wi : Pix+ τpi +Qiw

i ≤ ri}, 1 ≤ i ≤ k,
then

{[x; τ ] : τ ≥ maxi fi(x)}

=

{
[x; τ ] : ∃w1, ..., wk :

Pix+ τpi +Qiw
i ≤ ri,

1 ≤ i ≤ k

}
.
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F.4. Affine substitution of argument. If a function f(x) : Rn → R ∪ {+∞} is

a p.r.f. and x = Ay + b : Rm → Rn is an affine mapping, then the function

g(y) = f(Ay + b) : Rm → R ∪ {+∞} is a p.r.f., with a p.r. readily given by

the mapping and a p.r. of f .

Indeed, if

{[x; τ ] : τ ≥ f(x)}
= {[x; τ ] : ∃w : Px+ τp+Qw ≤ r},

then

{[y; τ ] : τ ≥ f(Ay + b)}
= {[y; τ ] : ∃w : P [Ay + b] + τp+Qw ≤ r}
= {[y; τ ] : ∃w : [PA]y + τp+Qw ≤ r − Pb}.
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F.5. Theorem on superposition. Let

• fi(x) : Rn → R ∪ {+∞} be p.r.f.’s, and let

• F (y) : Rm → R∪ {+∞} be a p.r.f. which is nondecreasing w.r.t. every one

of the variables y1, ..., ym. Then the superposition

g(x) =

{
F (f1(x), ..., fm(x)), fi(x) < +∞∀i
+∞, otherwise

of F and f1, ..., fm is a p.r.f., with a p.r. readily given by those of fi and F .

Indeed, let

{[x; τ ] : τ ≥ fi(x)} = {[x; τ ] : ∃wi : Pix+ τp+Qiw
i ≤ ri},

{[y; τ ] : τ ≥ F (y)} = {[y; τ ] : ∃w : Py + τp+Qw ≤ r}.
Then

{[x; τ ] : τ ≥ g(x)} =︸︷︷︸
(∗)

{
[x; τ ] : ∃y1, ..., ym :

yi ≥ fi(x),1 ≤ i ≤ m,
F (y1, ..., ym) ≤ τ

}

=

{
[x; τ ] : ∃y, w1, ..., wm, w :

Pix+ yipi +Qiw
i ≤ ri,1 ≤ i ≤ m,

Py + τp+Qw ≤ r

}
,

where (∗) is due to the monotonicity of F .
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Note: if some of fi, say, f1, ..., fk, are affine, then the Superposition Theorem

remains valid when we require the monotonicity of F w.r.t. the variables

yk+1, ..., ym only; a p.r. of the superposition in this case reads

{[x; τ ] : τ ≥ g(x)}=
{

[x; τ ] : ∃yk+1..., ym :
yi ≥ fi(x), k + 1 ≤ i ≤ m,
F (f1(x), ..., fk(x), yk+1, ..., ym) ≤ τ

}

=

{
[x; τ ] : ∃y1, ..., ym, w

k+1, ..., wm, w :

yi = fi(x), 1 ≤ i ≤ k,
Pix+ yipi +Qiw

i ≤ ri,
k + 1 ≤ i ≤ m,

Py + τp+Qw ≤ r

}
,

and the linear equalities yi = fi(x), 1 ≤ i ≤ k, can be replaced by pairs of

opposite linear inequalities.
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Fast Polyhedral Approximation
of the Second Order Cone

♠ Fact:The canonical polyhedral representation X = {x ∈ Rn : Ax ≤ b} of

the projection

X = {x : ∃w : Px+Qw ≤ r}

of a polyhedral set X+ = {[x;w] : Px + Qw ≤ r} given by a moderate num-

ber of linear inequalities in variables x,w can require a huge number of linear

inequalities in variables x.

Question: Can we use this phenomenon in order to approximate to high

accuracy a non-polyhedral set X ⊂ Rn by projecting onto Rn a higher-

dimensional polyhedral and simple (given by a moderate number of linear

inequalities) set X+ ?
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Theorem: For every n and every ε, 0 < ε < 1/2, one can point out a poly-

hedral set L+ given by an explicit system of homogeneous linear inequalities

in variables x ∈ Rn, t ∈ R, w ∈ Rk:

X+ = {[x; t;w] : Px+ tp+Qw ≤ 0} (!)

such that

• the number of inequalities in the system (≈ 2n ln(1/ε)) and the dimen-

sion of the slack vector w (≈ 0.7n ln(1/ε)) do not exceed O(1)n ln(1/ε)

• the projection

L = {[x; t] : ∃w : Px+ tp+Qw ≤ 0}

of L+ on the space of x, t-variables is in-between the Second Order Cone

and (1 + ε)-extension of this cone:

Ln+1 := {[x; t] ∈ Rn+1 : ‖x‖2 ≤ t} ⊂ L
⊂ Ln+1

ε := {[x; t] ∈ Rn+1 : ‖x‖2 ≤ (1 + ε)t}.
In particular, we have

B1
n ⊂ {x : ∃w : Px+ p+Qw ≤ 0} ⊂ B1+ε

n

Brn = {x ∈ Rn : ‖x‖2 ≤ r}
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Note: When ε = 1.e-17, a usual computer does not distinguish between

r = 1 and r = 1 + ε. Thus, for all practical purposes, the n-dimensional

Euclidean ball admits polyhedral representation with ≈ 28n slack variables

and ≈ 79n linear inequality constraints.

Note: A straightforward representation X = {x : Ax ≤ b} of a polyhedral set

X satisfying

B1
n ⊂ X ⊂ B1+ε

n

requires at least N = O(1)ε−
n−1

2 linear inequalities. With n = 100, ε = 0.01,

we get

N ≥ 3.0e85 ≈ 300,000× [# of atoms in universe]

With “fast polyhedral approximation” of B1
n, a 0.01-approximation of B100

requires just 922 linear inequalities on 100 original and 325 slack variables.
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♣ With fast polyhedral approximation of the cone Ln+1 = {[x; t] ∈ Rn+1 :

‖x‖2 ≤ t}, Conic Quadratic Optimization programs

max
x

{
cTx : ‖Aix− bi‖2 ≤ cTi x+ di, 1 ≤ i ≤ m

}
(CQI)

“for all practical purposes” become LO programs. Note that numerous

highly nonlinear optimization problems, like

minimize cTx subject to
Ax = b
x ≥ 0(

8∑
i=1
|xi|3

)1/3

≤ x1/7
2 x

2/7
3 x

3/7
4 + 2x1/5

1 x
2/5
5 x

1/5
6

5x2 ≥ 1
x1/2

1 x2
2

+ 2
x1/3

2 x3
3x

5/8
4 x2 x1

x1 x4 x3

x3 x6 x3

x3 x8

 � 5I

exp{x1}+ 2 exp{2x2 − x3 + 4x4}
+3 exp{x5 + x6 + x7 + x8} ≤ 12

can be in a systematic fashion converted to/rapidly approximated by prob-

lems of the form (CQI) and thus “for all practical purposes” are just LO

programs.
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Lecture I.3

Geometry of Polyhedral Sets



Geometry of a Polyhedral Set

♣ An LO program max
x∈Rn

{
cTx : Ax ≤ b

}
is the problem of maximizing a linear

objective over a polyhedral set X = {x ∈ Rn : Ax ≤ b} – the solution set of a

finite system of nonstrict linear inequalities

⇒ Understanding geometry of polyhedral sets is the key to LO theory and

algorithms.

♣ Our ultimate goal is to establish the following fundamental

Theorem. A nonempty polyhedral set

X = {x ∈ Rn : Ax ≤ b}
admits a representation of the form

X =

x =
M∑
i=1

λivi +
N∑
j=1

µjrj :

λi ≥ 0∀i
M∑
i=1

λi = 1

µj ≥ 0∀j

 (!)

where vi ∈ Rn, 1 ≤ i ≤ M and rj ∈ Rn, 1 ≤ j ≤ N are properly chosen

“generators.”

Vice versa, every set X representable in the form of (!) is polyhedral.
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a)

b)

c)

d)

a): a polyhedral set
b): {

∑3
i=1 λivi : λi ≥ 0,

∑3
i=1 λi = 1}

c): {
∑2
j=1 µjrj : µj ≥ 0}

d): The set a) is the sum of sets b) and c)
Note: shown are the boundaries of the sets.

2.2



∅ 6= X = {x ∈ Rn : Ax ≤ b}
m

X =

x =
∑M

i=1 λivi +
∑N

j=1 µjrj :
λi ≥ 0 ∀i∑M

i=1 λi = 1
µj ≥ 0∀j

 (!)

♠ X = {x ∈ Rn : Ax ≤ b} is an “outer” description of a polyhedral set X: it

says what should be cut off Rn to get X.

♠ (!) is an “inner” description of a polyhedral set X: it explains how can we

get all points of X, starting with two finite sets of vectors in Rn.

♥ Taken together, these two descriptions offer a powerful “toolbox” for

investigating polyhedral sets. For example,

• To see that the intersection of two polyhedral subsets X, Y in Rn is

polyhedral, we can use their outer descriptions:

X = {x : Ax ≤ b}, Y = {x : Bx ≤ c}
⇒ X ∩ Y = {x : Ax ≤ b, Bx ≤ c} .
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∅ 6= X = {x ∈ Rn : Ax ≤ b}
m

X =


∑M

i=1 λivi +
∑N

j=1 µjrj :

λi ≥ 0 ∀i
M∑
i=1

λi = 1

µj ≥ 0 ∀j

 (!)

• To see that the image Y = {y = Px+p : x ∈ X} of a polyhedral set X ⊂ Rn

under an affine mapping x 7→ Px+ p : Rn → Rm is polyhedral, we can use the

inner descriptions:

X is given by (!)

⇒ Y =


M∑
i=1

λi(Pvi + p) +
N∑
j=1

µjPrj :

λi ≥ 0 ∀i
M∑
i=1

λi = 1

µj ≥ 0 ∀j


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Preliminaries: Linear Subspaces

♣ Definition: A linear subspace in Rn is a nonempty subset L of Rn which

is closed w.r.t. taking linear combinations of its elements:

xi ∈ L, λi ∈ R,1 ≤ i ≤ I ⇒
∑I
i=1 λixi ∈ L

♣ Examples:

• L = Rn

• L = {0}
• L = {x ∈ Rn : x1 = 0}
• L = {x ∈ Rn : Ax = 0}
• Given a set X ⊂ Rn, let Lin(X) be set of all finite linear combinations of

vectors from X. This set – the linear span of X – is a linear subspace which

contains X, and this is the intersection of all linear subspaces containing X.

Convention: A sum of vectors from Rn with empty set of terms is well

defined and is the zero vector. In particular, Lin(∅) = {0}.
♠ Note: The last two examples are “universal:” Every linear subspace L in

Rn can be represented as L = Lin(X) for a properly chosen finite set X ⊂ Rn,

same as can be represented as L = {x : Ax = 0} for a properly chosen matrix

A.
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♣ Dimension of a linear subspace. Let L be a linear subspace in Rn.

♠ For properly chosen x1, ..., xm, we have

L = Lin({x1, ..., xm}) =
{∑m

i=1 λixi
}

;

whenever this is the case, we say that x1, ..., xm linearly span L.

♠ Facts:

♥ All minimal w.r.t. inclusion collections x1, ..., xm linearly spanning L (they

are called bases of L) have the same cardinality m, called the dimension

dimL of L.

♥ Vectors x1, ..., xm forming a basis of L always are linearly independent,

that is, every nontrivial (not all coefficients are zero) linear combination of

the vectors is a nonzero vector.
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♠ Facts:

♥ All collections x1, ..., xm of linearly independent vectors from L which are

maximal w.r.t. inclusion (i.e., extending the collection by any vector from

L, we get a linearly dependent collection) have the same cardinality, namely,

dimL, and are bases of L.

♥ Let x1, ..., xm be vectors from L. Then the following four properties are

equivalent:

• x1, ..., xm is a basis of L

• m = dimL and x1, ..., xm linearly span L

• m = dimL and x1, ..., xm are linearly independent

• x1, ..., xm are linearly independent and linearly span L
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♠ Examples:

• dim {0} = 0, and the only basis of {0} is the empty collection.

• dimRn = n. When n > 0, there are infinitely many bases in Rn, e.g.,

one comprised of standard basic orths ei = [0; ...; 0; 1; 0; ...; 0] (”1” in i-th

position), 1 ≤ i ≤ n.

• L = {x ∈ Rn : x1 = 0} ⇒ dimL = n − 1}. An example of a basis in L is

e2, e3, ..., en.

Facts: ♥ if L⊂L′ are linear subspaces in Rn, then dimL≤dimL′, with equality

taking place is and only if L = L′.
⇒ Whenever L is a linear subspace in Rn, we have {0} ⊂ L ⊂ Rn, whence

0 ≤ dimL ≤ n
♥ In every representation of a linear subspace as L = {x ∈ Rn : Ax = 0}, the

number of rows in A is at least n−dimL. This number is equal to n− dimL

if and only if the rows of A are linearly independent.
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“Calculus” of linear subspaces

♥ [taking intersection] When L1, L2 are linear subspaces in Rn, so is the set

L1 ∩ L2.

Extension: The intersection
⋂
α∈A

Lα of an arbitrary family {Lα}α∈A of linear

subspaces of Rn is a linear subspace.

♥ [summation] When L1, L2 are linear subspaces in Rn, so is their arithmetic

sum

L1 + L2 = {x = u+ v : u ∈ L1, v ∈ L2}.
Note “dimension formula:”

dimL1 + dimL2 = dim (L1 + L2) + dim (L1 ∩ L2)

♥ [taking orthogonal complement] When L is a linear subspace in Rn, so is

its orthogonal complement L⊥ = {y ∈ Rn : yTx = 0 ∀x ∈ L}.
Note:

• (L⊥)⊥ = L

• L+ L⊥ = Rn, L ∩ L⊥ = {0}, whence dimL+ dimL⊥ = n

• L = {x : Ax = 0} if and only if the (transposes of) the rows in A linearly

span L⊥

• x ∈ Rn ⇒ ∃!(x1 ∈ L, x2 ∈ L⊥) : x = x1 + x2, and for these x1, x2 one has

xTx = xT1x1 + xT2x2.
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♥ [taking direct product] When L1 ⊂ Rn1 and L2 ⊂ Rn2 are linear subspaces,

the direct product (or direct sum) of L1 and L2 – the set

L1 × L2 := {[x1;x2] ∈ Rn1+n2 : x1 ∈ L1, x2 ∈ L2}
is a linear subspace in Rn1+n2, and

dim (L1 × L2) = dimL1 + dimL2 .

♥ [taking image under linear mapping] When L is a linear subspace in Rn

and x 7→ Px : Rn → Rm is a linear mapping, the image PL = {y = Px : x ∈ L}
of L under the mapping is a linear subspace in Rm.

♥ [taking inverse image under linear mapping] When L is a linear sub-

space in Rn and x 7→ Px : Rm → Rn is a linear mapping, the inverse image

P−1(L) = {y : Py ∈ L} of L under the mapping is a linear subspace in Rm.
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Preliminaries: Affine Subspaces

♣ Definition: An affine subspace (or affine plane, or simply plane) in Rn is

a nonempty subset M of Rn which can be obtained from a linear subspace

L ⊂ Rn by a shift:

M = a+ L = {x = a+ y : y ∈ L} (∗)

Note: In a representation (∗),

• L us uniquely defined by M : L = M −M = {x = u − v : u, v ∈ M}. L is

called the linear subspace which is parallel to M ;

• a can be chosen as an arbitrary element of M , and only as an element

from M .

♠ Equivalently: An affine subspace in Rn is a nonempty subset M of Rn

which is closed with respect to taking affine combinations (linear combina-

tions with coefficients summing up to 1) of its elements:xi ∈M,λi ∈ R,
I∑

i=1

λi = 1

⇒ I∑
i=1

λixi ∈M
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AB: affine plane (line) in R2

PQ: parallel linear subspace
a,b: possible shift vectors
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♣ Examples:

• M = Rn. The parallel linear subspace is Rn

• M = {a} (singleton). The parallel linear subspace is {0}
• M = {a+λ [b− a]︸ ︷︷ ︸

6=0

: λ ∈ R} = {(1−λ)a+λb : λ ∈ R} – (straight) line passing through

two distinct points a, b ∈ Rn. The parallel linear subspace is the linear span

R[b− a] of b− a.

Fact: A nonempty subset M ⊂ Rn is an affine subspace if and only if with any

pair of distinct points a, b from M M contains the entire line ` = {(1−λ)+λb :

λ ∈ R} spanned by a, b.

• ∅ 6=M = {x ∈ Rn : Ax = b}. The parallel linear subspace is {x : Ax = 0}.
• Given a nonempty set X ⊂ Rn, let Aff(X) be the set of all finite affine

combinations of vectors from X. This set – the affine span (or affine hull)

of X – is an affine subspace, contains X, and is the intersection of all affine

subspaces containing X. The parallel linear subspace is Lin(X − a), where a

is an arbitrary point from X.
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♠ Note: The last two examples are “universal:” Every affine subspace M

in Rn can be represented as M = Aff(X) for a properly chosen finite and

nonempty set X ⊂ Rn, same as can be represented as M = {x : Ax = b}
for a properly chosen matrix A and vector b such that the system Ax = b is

solvable.
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♣ Affine bases and dimension. Let M be an affine subspace in Rn, and L

be the parallel linear subspace.

♠ By definition, the affine dimension (or simply dimension) dimM of M is

the (linear) dimension dimL of the linear subspace L to which M is parallel.

♠ We say that vectors x0, x1..., xm, m ≥ 0,

• are affinely independent, if no nontrivial (not all coefficients are zeros)

linear combination of these vectors with zero sum of coefficients is the zero

vector

Equivalently: x0, ..., xm are affinely independent if and only if the coefficients

in an affine combination x =
m∑
i=0

λixi are uniquely defined by the value x of

this combination.

• affinely span M , if

M = Aff({x0, ..., xm}) =
{∑m

i=0 λixi :
∑m
i=0 λi = 1

}
• form an affine basis in M , if x0, ..., xm are affinely independent and affinely

span M .
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♠ Facts: Let M be an affine subspace in Rn, and L be the parallel linear

subspace. Then

♥ A collection x0, x1, ..., xm of vectors is an affine basis in M if and only if

x0 ∈M and the vectors x1− x0, x2− x0, ..., xm− x0 form a (linear) basis in L

♥ The following properties of a collection x0, ..., xm of vectors from M are

equivalent to each other:

• x0, ..., xm is an affine basis in M

• x0, ..., xm affinely span M and m = dimM

• x0, ..., xm are affinely independent and m = dimM

• x0, ..., xm affinely span M and is a minimal, w.r.t. inclusion, collection with

this property

• x0, ..., xm form a maximal, w.r.t. inclusion, affinely independent collection

of vectors from M (that is, the vectors x0, ..., xm are affinely independent, and

extending this collection by any vector from M yields an affinely dependent

collection of vectors).
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♠ Facts:

♥ Let L = Lin(X). Then L admits a linear basis comprised of vectors from

X.

♥ Let X 6= ∅ and M = Aff(X). Then M admits an affine basis comprised of

vectors from X.

♥ Let L be a linear subspace. Then every linearly independent collection of

vectors from L can be extended to a linear basis of L.

♥ Let M be an affine subspace. Then every affinely independent collection

of vectors from M can be extended to an affine basis of M .
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Examples:

• dim {a} = 0, and the only affine basis of {a} is x0 = a.

• dimRn = n. When n > 0, there are infinitely many affine bases in Rn, e.g.,

one comprised of the zero vector and the n standard basic orths.

• M = {x ∈ Rn : x1 = 1} ⇒ dimM = n− 1. An example of an affine basis in

M is e1, e1 + e2, e1 + e3, ..., e1 + en.

Extension: M is an affine subspace in Rn of the dimension n−1 if and only

if M can be represented as M = {x ∈ Rn : eTx = b} with e 6= 0. Such a set

is called hyperplane.

♠ Note: A hyperplane M = {x : eTx = b} (e 6= 0) splits Rn into two half-

spaces

Π+ = {x : eTx ≥ b}, Π− = {x : eTx ≤ b}

and is the common boundary of these half-spaces.

A polyhedral set is the intersection of a finite (perhaps empty) family of

half-spaces.
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♠ Facts:

♥ M⊂M ′ are affine subspaces in Rn ⇒ dimM≤dimM ′, with equality taking

place if and only if M = M ′.
⇒ Whenever M is an affine subspace in Rn, we have 0 ≤ dimM ≤ n
♥ In every representation of an affine subspace as M = {x ∈ Rn : Ax = b},
the number of rows in A is at least n − dimM . This number is equal to

n− dimM if and only if the rows of A are linearly independent.

2.19



“Calculus” of affine subspaces

♥ [taking intersection] When M1,M2 are affine subspaces in Rn and M1 ∩
M2 6= ∅, so is the set M1 ∩M2.

Extension: If nonempty, the intersection
⋂
α∈A

Mα of an arbitrary family

{Mα}α∈A of affine subspaces in Rn is an affine subspace. The parallel linear

subspace is
⋂
α∈ALα, where Lα are the linear subspaces parallel to Mα.

♥ [summation] When M1,M2 are affine subspaces in Rn, so is their arithmetic

sum

M1 +M2 = {x = u+ v : u ∈M1, v ∈M2}.
The linear subspace parallel to M1+M2 is L1+L2, where the linear subspaces

Li are parallel to Mi, i = 1,2

♥ [taking direct product] When M1 ⊂ Rn1 and M2 ⊂ Rn2, the direct product

(or direct sum) of M1 and M2 – the set

M1 ×M2 := {[x1;x2] ∈ Rn1+n2 : x1 ∈M1, x2 ∈M2}
is an affine subspace in Rn1+n2. The parallel linear subspace is L1 × L2,

where linear subspaces Li ⊂ Rni are parallel to Mi, i = 1,2.
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♥ [taking image under affine mapping] When M is an affine subspace in Rn

and x 7→ Px + p : Rn → Rm is an affine mapping, the image PM + p = {y =

Px + p : x ∈ M} of M under the mapping is an affine subspace in Rm. The

parallel subspace is PL = {y = Px : x ∈ L}, where L is the linear subspace

parallel to M

♥ [taking inverse image under affine mapping] When M is a linear subspace

in Rn, x 7→ Px + p : Rm → Rn is an affine mapping and the inverse image

Y = {y : Py + p ∈ M} of M under the mapping is nonempty, Y is an affine

subspace. The parallel linear subspace if P−1(L) = {y : Py ∈ L}, where L is

the linear subspace parallel to M .
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Convex Sets and Functions

♣ Definitions:

♠ A set X ⊂ Rn is called convex, if along with every two points x, y it contains

the entire segment linking the points:

x, y ∈ X,λ ∈ [0,1]⇒ (1− λ)x+ λy ∈ X.

♥ Equivalently: X ∈ Rn is convex, if X is closed w.r.t. taking all con-

vex combinations of its elements (i.e., linear combinations with nonnegative

coefficients summing up to 1):

∀k ≥ 1 : x1, ..., xk ∈ X,λ1 ≥ 0, ..., λk ≥ 0,
∑k

i=1 λi = 1

⇒
k∑
i=1

λixi ∈ X

Example: A polyhedral set X = {x ∈ Rn : Ax ≤ b} is convex. In particular,

linear and affine subspaces are convex sets.
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♠ A function f(x) : Rn → R ∪ {+∞} is called convex, if its epigraph

Epi{f} = {[x; τ ] : τ ≥ f(x)}

is convex.

♥ Equivalently: f is convex, if

x, y ∈ Rn, λ ∈ [0,1]
⇒ f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

♥ Equivalently: f is convex, if f satisfies the Jensen’s Inequality:

∀k ≥ 1 : x1, ..., xk ∈ Rn, λ1 ≥ 0, ..., λk ≥ 0,
∑k

i=1 λi = 1

⇒ f
(∑k

i=1 λixi
)
≤

k∑
i=1

λif(xi)

Example: A piecewise linear function

f(x) =

 max
i≤I

[aTi x+ bi], Px ≤ p

+∞, otherwise

is convex.
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♠ Convex hull: For a nonempty set X ⊂ Rn, its convex hull is the set

comprised of all convex combinations of elements of X:

Conv(X) =

{
x =

m∑
i=1

λixi :
xi ∈ X, 1 ≤ i ≤ m ∈ N
λi ≥ 0 ∀i,

∑
i λi = 1

}
By definition, Conv(∅) = ∅.
Fact: The convex hull of X is convex, contains X and is the intersection

of all convex sets containing X and thus is the smallest, w.r.t. inclusion,

convex set containing X.

Note: a convex combination is an affine one, and an affine combination is

a linear one, whence

X ⊂ Rn ⇒ Conv(X) ⊂ Lin(X)
∅ 6= X ⊂ Rn ⇒ Conv(X) ⊂ Aff(X) ⊂ Lin(X)
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Example: Convex hulls of a 3- and an 8-point sets (red dots) on the 2D

plane:
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♣ Dimension of a nonempty set X ∈ Rn:

♥ When X is a linear subspace, dimX is the linear dimension of X (the

cardinality of (any) linear basis in X)

♥ When X is an affine subspace, dimX is the linear dimension of the linear

subspace parallel to X (that is, the cardinality of (any) affine basis of X

minus 1)

♥ When X is an arbitrary nonempty subset of Rn, dimX is the dimension of

the affine hull Aff(X) of X.

Note: Some sets X are in the scope of more than one of these three

definitions. For these sets, all applicable definitions result in the same value

of dimX.
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Calculus of Convex Sets

♠ [taking intersection]: if X1, X2 are convex sets in Rn, so is their intersection

X1 ∩ X2. In fact, the intersection
⋂
α∈A

Xα of a whatever family of convex

subsets in Rn is convex.

♠ [taking arithmetic sum]: if X1, X2 are convex sets Rn, so is the set X1 +

X2 = {x = x1 + x2 : x1 ∈ X1, x2 ∈ X2}.
♠ [taking affine image]: if X is a convex set in Rn, A is an m × n matrix,

and b ∈ Rm, then the set AX + b := {Ax+ b : x ∈ X} ⊂ Rm – the image of X

under the affine mapping x 7→ Ax+ b : Rn → Rm – is a convex set in Rm.

♠ [taking inverse affine image]: if X is a convex set in Rn, A is an n × k
matrix, and b ∈ Rm, then the set {y ∈ Rk : Ay + b ∈ X} – the inverse image

of X under the affine mapping y 7→ Ay+ b : Rk → Rn – is a convex set in Rk.

♠ [taking direct product]: if the sets Xi ⊂ Rni, 1 ≤ i ≤ k, are convex, so is

their direct product X1 × ...×Xk ⊂ Rn1+...+nk.
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Calculus of Convex Functions

♠ [taking linear combinations with positive coefficients] if functions fi : Rn →
R ∪ {+∞} are convex and λi > 0, 1 ≤ i ≤ k, then the function

f(x) =
k∑
i=1

λifi(x)

is convex.

♠ [direct summation] if functions fi : Rni → R∪{+∞}, 1 ≤ i ≤ k, are convex,

so is their direct sum

f([x1; ...;xk]) =
∑k

i=1 fi(x
i) : Rn1+...+nk → R ∪ {+∞}

♠ [taking supremum] the supremum f(x) = sup
α∈A

fα(x) of a whatever

(nonempty) family {fα}α∈A of convex functions is convex.

♠ [affine substitution of argument] if a function f(x) : Rn → R ∪ {+∞} is

convex and x = Ay + b : Rm → Rn is an affine mapping, then the function

g(y) = f(Ay + b) : Rm → R ∪ {+∞} is convex.
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♠ Theorem on superposition: Let fi(x) : Rn → R ∪ {+∞} be convex

functions, and let F (y) : Rm → R ∪ {+∞} be a convex function which is

nondecreasing w.r.t. every one of the variables y1, ..., ym. Then the super-

position

g(x) =

{
F (f1(x), ..., fm(x)), fi(x) < +∞,1 ≤ i ≤ m
+∞, otherwise

of F and f1, ..., fm is convex.

Note: if some of fi, say, f1, ..., fk, are affine, then the Theorem on superpo-

sition theorem remains valid when we require the monotonicity of F w.r.t.

yk+1, ..., ym only.
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Cones

♣ Definition: A set X ⊂ Rn is called a cone, if X is nonempty, convex and

is homogeneous, that is,

x ∈ X,λ ≥ 0⇒ λx ∈ X

Equivalently: A set X ⊂ Rn is a cone, if X is nonempty and is closed w.r.t.

addition of its elements and multiplication of its elements by nonnegative

reals:

x, y ∈ X,λ, µ ≥ 0⇒ λx+ µy ∈ X

Equivalently: A set X ⊂ Rn is a cone, if X is nonempty and is closed w.r.t.

taking conic combinations of its elements (that is, linear combinations with

nonnegative coefficients):

∀m : xi ∈ X,λi ≥ 0,1 ≤ i ≤ m⇒
∑m

i=1
λixi ∈ X.

Examples: • Every linear subspace in Rn (i.e., every solution set of a ho-

mogeneous system of linear equations with n variables) is a cone

• The solution set X = {x ∈ Rn : Ax ≤ 0} of a homogeneous system of linear

inequalities is a cone. Such a cone is called polyhedral.
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♣ A cone X is called pointed, if it does not contain lines passing through

the origin, or, equivalently, if the only vector d such that d ∈ X and −d ∈ X
is the zero vector: d = 0.

♣ Conic hull: For a nonempty set X ⊂ Rn, its conic hull Cone (X) is defined

as the set of all conic combinations of elements of X:

X 6= ∅
⇒ Cone (X) =

{
x =

∑
i

λixi :
λi ≥ 0,1 ≤ i ≤ m ∈ N
xi ∈ X,1 ≤ i ≤ m

}
By definition, Cone (∅) = {0}.
Fact: Cone (X) is a cone, contains X and is the intersection of all cones

containing X, and thus is the smallest, w.r.t. inclusion, cone containing X.

Example: The conic hull of the set X = {e1, ..., en} of all basic orths in Rn

is the nonnegative orthant Rn+ = {x ∈ Rn : x ≥ 0}. This cone is pointed.
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Calculus of Cones

♠ [taking intersection] if X1, X2 are cones in Rn, so is their intersection

X1 ∩X2. In fact, the intersection
⋂
α∈A

Xα of a whatever family {Xα}α∈A of

cones in Rn is a cone.

♠ [taking arithmetic sum] if X1, X2 are cones in Rn, so is the set X1 +X2 =

{x = x1 + x2 : x1 ∈ X1, x2 ∈ X2};
♠ [taking linear image] if X is a cone in Rn and A is an m× n matrix, then

the set AX := {Ax : x ∈ X} ⊂ Rm – the image of X under the linear mapping

x 7→ Ax : Rn → Rm – is a cone in Rm.

♠ [taking inverse linear image] if X is a cone in Rn and A is an n× k matrix,

then the set {y ∈ Rk : Ay ∈ X} – the inverse image of X under the linear

mapping y 7→ AyRk → Rn – is a cone in Rk.

♠ [taking direct products] if Xi ⊂ Rni are cones, 1 ≤ i ≤ k, so is the direct

product X1 × ...×Xk ⊂ Rn1+...+nk.
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♠ [passing to the dual cone] if X is a cone in Rn, so is its dual cone defined

as

X∗ = {y ∈ Rn : yTx ≥ 0 ∀x ∈ X}.

Examples:

• The cone dual to a linear subspace L is the orthogonal complement L⊥ of

L

• The cone dual to the nonnegative orthant Rn+ is the nonnegative orthant

itself:

(Rn+)∗ := {y ∈ Rn : yTx ≥ 0∀x ≥ 0} = {y ∈ Rn : y ≥ 0}.

• 2D cones bounded by blue rays are dual to cones bounded by red rays:
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Preparing Tools: Caratheodory Theorem

Theorem. Let x1, ..., xN ∈ Rn and m = dim {x1, ..., xN}. Then every point x

which is a convex combination of x1, ..., xN can be represented as a convex

combination of at most m+ 1 of the points x1, ..., XN .

Proof.

• Let M = Aff{x1, ..., xN}, so that dimM = m. By shifting M (which does not

affect the statement we intend to prove) we can make M a m-dimensional

linear subspace in Rn. Representing points from the linear subspace M by

their m-dimensional vectors of coordinates in a basis of M , we can identify

M and Rm, and this identification does not affect the statement we intend

to prove. Thus, assume w.l.o.g. that m = n.
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• Let x =
∑N
i=1 µixi be a representation of x as a convex combination of

x1, ..., xN with as small number of nonzero coefficients as possible. Reorder-

ing x1, ..., xN and omitting terms with zero coefficients, assume w.l.o.g. that

x =
∑M
i=1 µixi, so that µi > 0, 1 ≤ i ≤ M , and

∑M
i=1 µi = 1. It suffices to

show that M ≤ n+ 1. Let, on the contrary, M > n+ 1.

• Consider the system of linear equations in variables δ1, ..., δM :∑M
i=1 δixi = 0;

∑M
i=1 δi = 0

This is a homogeneous system of n + 1 linear equations in M > n + 1 vari-

ables, and thus it has a nontrivial solution δ̄1, ..., δ̄M . Setting µi(t) = µi+ tδ̄i,

we have

∀t : x =
∑M
i=1 µi(t)xi,

∑M
i=1 µi(t) = 1.

• Since δ̄ is nontrivial and
∑
i δ̄i = 0, the set I = {i : δi < 0} is nonempty. Let

t̄ = min
i∈I

µi/|δ̄i|. Then all µi(t̄) are ≥ 0, at least one of µi(t̄) is zero, and

x =
∑M
i=1 µi(t̄)xi,

∑M
i=1 µi(t̄) = 1.

We get a representation of x as a convex combination of xi with less than

M nonzero coefficients, which is impossible. �
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Quiz:

• In the nature, there are 26 “pure” types of tea, denoted A, B,..., Z; all

other types are mixtures of these “pure” types. In the market, 111 blends

of pure types, rather than the pure types of tea themselves, are sold.

• John prefers a specific blend of tea which is not sold in the market; from

experience, he found that in order to get this blend, he can buy 93 of the

111 market blends and mix them in certain proportion.

• An OR student pointed out that to get his favorite blend, John could mix

appropriately just 27 properly selected market blends. Another OR student

found that just 26 of market blends are enough.

• John does not believe the students, since no one of them asked what

exactly is his favorite blend. Is John right?
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Quiz:

• In the nature, there are 26 “pure” types of tea, denoted A, B,..., Z. In the

market, 111 blends of these types are sold.

• John knows that his favorite blend can be obtained by mixing in appropriate

proportion 93 of the 111 market blends. Is it true that the same blend can

be obtained by mixing

• 27 market blends?

• 26 market blends?

Both answers are true. Let us speak about unit weight portions of tea

blends. Then

• a blend can be identified with 26-dimensional vector

x = [xA; ...;xZ]

where x? is the weight of pure tea ? in the unit weight portion of the blend.

The 26 entries in x are nonnegative and sum up to 1;

• denoting the marked blends by x1, ..., x111 and the favorite blend of John

by x̄, we know that

x̄ =
∑111
i=1 λix

i

with nonnegative coefficients λi. Comparing the weights of both sides, we

conclude that
∑111
i=1 λi = 1
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⇒ x̄ is a convex combination of x1, ..., x111

⇒ [by Caratheodory and due to dimxi = 26] x̄ is a convex combination of

just 26 + 1 = 27 of the market blends, thus the first student is right.

• The vectors x1, ..., x111 have unit sums of entries thus belong to the hy-

perplane

M = {[xA; ...;xZ] : xA + ...+ xZ = 1}
which has dimension 25

⇒ The dimension of the set {x1, x2, ..., x111} is at most m = 25

⇒ By Caratheodory, x̄ is a convex combination of just m+ 1 = 26 vectors

from {x1, ..., x111}, thus the second student also is right.
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Preparing Tools: Helley Theorem

Theorem. Let A1, ..., AN be convex sets in Rn which belong to an affine

subspace M of dimension m. Assume that every m+ 1 sets of the collection

have a point in common. then all N sets have a point in common.

Proof. • Same as in the proof of Caratheodory Theorem, we can assume

w.l.o.g. that m = n.

• We need the following fact:

Theorem [Radon] Let x1, ..., xN be points in Rn. If N ≥ n+ 2, we can split

the index set {1, ..., N} into two nonempty non-overlapping subsets I, J such

that

Conv{xi : i ∈ I} ∩Conv{xi : i ∈ J} 6= ∅.

From Radon to Helley: Let us prove Helley’s theorem by indiction in N .

There is nothing to prove when N ≤ n + 1. Thus, assume that N ≥ n + 2

and that the statement holds true for all collections of N − 1 sets, and let

us prove that the statement holds true for N-element collections of sets as

well.
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• Given A1, ..., AN , we define the N sets

Bi = A1 ∩A2 ∩ ... ∩Ai−1 ∩Ai+1 ∩ ... ∩AN .
By inductive hypothesis, all Bi are nonempty. Choosing a point xi ∈ Bi, we

get N≥ n+ 2 points xi, 1 ≤ i ≤ N .

• By Radon Theorem, after appropriate reordering of the sets A1, ..., AN , we

can assume that for certain k, Conv{x1, ..., xk} ∩Conv{xk+1, ..., xN} 6= ∅. We

claim that if b ∈ Conv{x1, ..., xk} ∩ Conv{xk+1, ..., xN}, then b belongs to all

Ai, which would complete the inductive step.

To support our claim, note that

— when i ≤ k, xi ∈ Bi ⊂ Aj for all j = k + 1, ..., N , that is,

i ≤ k ⇒ xi ∈ ∩Nj=k+1Aj.

Since the latter set is convex and b is a convex combination of x1, ..., xk, we

get b ∈ ∩Nj=k+1Aj.

— when i > k, xi ∈ Bi ⊂ Aj for all 1 ≤ j ≤ k, that is,

i ≥ k ⇒ xi ∈ ∩kj=1Aj.

Similarly to the above, it follows that b ∈ ∩kj=1Aj.

Thus, our claim is correct.
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Proof of Radon Theorem: Let x1, ..., xN ∈ Rn and N ≥ n + 2. We want

to prove that we can split the set of indexes {1, ..., N} into non-overlapping

nonempty sets I, J such that Conv{xi : i ∈ I} ∩Conv{xi : i ∈ J} 6= ∅.
Indeed, consider the system of n + 1 < N homogeneous linear equations in

N variables δ1, ..., δN :

N∑
i=1

δixi = 0,
N∑
i=1

δi = 0. (∗)

This system has a nontrivial solution δ̄. Let us set I = {i : δ̄i > 0}, J =

{i : δ̄i ≤ 0}. Since δ̄ 6= 0 and
∑N
i=1 δ̄i = 0, both I, J are nonempty, do not

intersect and µ :=
∑
i∈I δ̄i =

∑
i∈J[−δ̄i] > 0. (∗) implies that

∑
i∈I

δ̄i
µ
xi︸ ︷︷ ︸

∈Conv{xi:i∈I}

=
∑
i∈J

[−δ̄i]
µ

xi︸ ︷︷ ︸
∈Conv{xi:i∈J}

�
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Quiz: The daily functioning of a plant is described by the linear constraints

(a) Ax ≤ f ∈ R10
+

(b) Bx ≥ d ∈ R2013

(c) Cx ≤ c ∈ R2000
(!)

• x: decision vector

• f ∈ R10
+ : vector of resources

• d: vector of demands

• There are N demand scenarios di. In the evening of day t−1, the manager

knows that the demand of day t will be one of the N scenarios, but he does

not know which one. The manager should arrange a vector of resources f

for the next day, at a price c` ≥ 0 per unit of resource f`, in order to make

the next day production problem feasible.

• It is known that every one of the demand scenarios can be “served” by $1

purchase of resources.

(?) How much should the manager invest in resources to make the next

day problem feasible when

• N = 1 • N = 2 • N = 10 • N = 11

• N = 12 • N = 2013 ?
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(a) : Ax ≤ f ∈ R10
+ ; (b) : Bx ≥ d ∈ R2013; (c) : Cx ≤ c ∈ R2000

Quiz answer: With N scenarios, $ min[N,11] is enough!
Indeed, the vector of resources f ∈ R10

+ appears only in the constraints (a)
⇒ surplus of resources makes no harm
⇒ with N scenarios di, $ N in resources is enough: every di can be “served”
by $ 1 purchase of appropriate resource vector f i ≥ 0, thus it suffices to buy
the vector f1 + ...+ fN which costs $ N and is ≥ f i for every i = 1, ..., n.
To see than $ 11 is enough, let Fi be the set of all resource vectors f

which cost at most $11 and allow to “serve” demand di ∈ D.
A. Fi ∈ R10 is convex (and even polyhedral): it admits polyhedral represen-
tation

Fi = {f ∈ R10 : ∃x : Cx ≤ c, Bx ≥ di, Ax ≤ f, f ≥ 0,
∑10

`=1 c`f` ≤ 11}
B. Every 11 sets Fi1, ..., Fi11

of the family F1, ..., Fi have a point in common.
Indeed, scenario dis can be “served” by $ 1 vector fs ≥ 0
⇒ every one of the scenarios di1, ..., di11 can be served by the $ 11 vector of
resources f = f1 + ...+ f11

⇒ f belongs to every one of Fi1, ..., Fi11
• By Helley, A and B imply that all the sets F1, ..., FN have a point f in
common. f costs at most $ 11 (the description of Fi) and allows to “serve”
every one of the demands d1,...,dN .
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Preparing Tools: Homogeneous Farkas Lemma

♣ Question: When a homogeneous linear inequality

aTx ≥ 0 (∗)

is a consequence of a system of homogeneous linear inequalities

aTi x ≥ 0, i = 1, ...,m (!)

i.e., when (∗) is satisfied at every solution to (!)?

Observation: If a is a conic combination of a1, ..., am:

∃λi ≥ 0 : a =
∑
i

λiai, (+)

then (∗) is a consequence of (!).

Indeed, (+) implies that

aTx =
∑
i

λia
T
i x ∀x,

and thus for every x with aTi x ≥ 0∀i one has aTx ≥ 0.

♣ Homogeneous Farkas Lemma: (+) is a consequence of (!) if and only

if a is a conic combination of a1, ..., am.
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♣ Equivalently: Given vectors a1, ..., am ∈ Rn, let K = Cone {a1, ..., am} =

{
∑
i λiai : λ ≥ 0} be the conic hull of the vectors. Given a vector a,

• it is easy to certify that a ∈ Cone {a1, ..., am}: a certificate is a collection

of weights λi ≥ 0 such that
∑
i λiai = a;

• it is easy to certify that a6∈Cone {a1, ..., am}: a certificate is a vector d such

that aTi d ≥ 0∀i and aTd < 0.

2.45



Proof of HFL: All we need to prove is that If a is not a conic combination

of a1, ..., am, then there exists d such that aTd < 0 and aTi d ≥ 0, i = 1, ...,m.

Fact: The set K = Cone {a1, ..., am} is polyhedrally representable:

Cone {a1, ..., am} =

{
x : ∃λ ∈ Rm :

x =
∑
i λiai

λ ≥ 0

}
.

⇒ By Fourier-Motzkin, K is polyhedral:

K = {x : dT` x ≥ c`,1 ≤ ` ≤ L}.

Observation I: 0 ∈ K ⇒ c` ≤ 0 ∀`
Observation II: λai ∈ Cone {a1, ..., am} ∀λ > 0 ⇒ λdT` ai ≥ c` ∀λ ≥ 0 ⇒ dT` ai ≥
0 ∀i, `.
Now, a 6∈ Cone {a1, ..., am} ⇒ ∃` = `∗ : dT`∗a < c`∗ ≤ 0⇒ dT`∗a < 0.

⇒ d = d`∗ satisfies aTd < 0, aTi d ≥ 0, i = 1, ...,m, Q.E.D.
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Corollary: Let a1, ..., am ∈ Rn and K = Cone {a1, ..., am}, and let K∗ = {x ∈
Rn : xTu ≥ 0∀u ∈ K} be the dual cone. Then K itself is the cone dual to K∗:

(K∗)∗ := {u : uTx ≥ 0 ∀u ∈ K∗}
= K := {

∑
i λiai : λi ≥ 0}.

Proof. • We clearly have

K∗ = (Cone {a1, ..., am})∗ = {d : dTai ≥ 0∀i = 1, ...,m}

• If K is a cone, then, by definition of K∗, every vector from K has nonneg-

ative inner products with all vectors from K∗ and thus K ⊂ (K∗)∗ for every

cone K.

• To prove the opposite inclusion (K∗)∗ ⊂ K in the case of K =

Cone {a1, ..., am}, let a ∈ (K∗)∗, and let us verify that a ∈ K. Assuming

this is not the case, by HFL there exists d such that aTd < 0 and aTi d ≥ 0∀i
⇒ d ∈ K∗, that is, a 6∈ (K∗)∗, which is a contradiction.
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Understanding Structure of a Polyhedral Set

♣ Situation: We consider a polyhedral set

X = {x ∈ Rn : Ax ≤ b} , A =

 aT1
· · ·
aTm

 ∈ Rm×n

⇔ X =
{
x ∈ Rn : aTi x ≤ bi, i ∈ I = {1, ...,m}

}
.

(X)

Standing assumption: X 6= ∅.
♠ Faces of X. Let us pick a subset I ⊂ I and replace in (X) the inequality
constraints aTi x ≤ bi, i ∈ I with their equality versions aTi x = bi, i ∈ I. The
resulting set

XI = {x ∈ Rn : aTi x ≤ bi, i ∈ I\I, a
T
i x = bi, i ∈ I}

if nonempty, is called a face of X.
Examples: • X is a face of itself: X = X∅.
• Let ∆n = Conv{0, e1, ..., en} = {x ∈ Rn : x ≥ 0,

∑n
i=1 xi ≤ 1}

⇒ I = {1, ..., n + 1} with aTi x := −xi ≤ 0 =: bi, 1 ≤ i ≤ n, and aTn+1x :=∑
i xi ≤ 1 =: bn+1

Every subset I ⊂ I different from I defines a face. For example, I = {1, n+1}
defines the face {x ∈ Rn : x1 = 0, xi ≥ 0,

∑
i xi = 1}.
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X =
{
x ∈ Rn : aTi x ≤ bi, i ∈ I = {1, ...,m}

}
Facts:

• A face

∅ 6= XI = {x ∈ Rn : aTi x ≤ bi, i ∈ I, a
T
i x = bi, i ∈ I}

of X is a nonempty polyhedral set

• A face of a face of X can be represented as a face of X

• if XI and XI ′ are faces of X and their intersection is nonempty, this

intersection is a face of X:

∅ 6= XI ∩XI ′ ⇒ XI ∩XI ′ = XI∪I ′.

♣ A face XI is called proper, if XI 6= X.

Theorem: A face XI of X is proper if and only if dimXI < dimX.
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X =
{
x ∈ Rn : aTi x ≤ bi, i ∈ I = {1, ...,m}

}
XI = {x ∈ Rn : aTi x ≤ bi, i ∈ I\I, a

T
i x = bi, i ∈ I}

Proof. One direction is evident. Now assume that XI is a proper face, and

let us prove that dimXI < dimX.

• Since XI 6= X, there exists i∗ ∈ I such that aTi∗x 6≡ bi∗ on X and thus on

M = Aff(X).

⇒ The set M+ = {x ∈ M : aTi∗x = bi∗} contains XI (and thus is an affine

subspace containing Aff(XI)), and is $M .

⇒ Aff(XI)$M , whence

dimXI = dim Aff(XI)<dimM = dimX. �
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Extreme Points of a Polyhedral Set

X =
{
x ∈ Rn : aTi x ≤ bi, i ∈ I = {1, ...,m}

}
Definition. A point v ∈ X is called an extreme point, or a vertex of X, if it

can be represented as a face of X:

∃I ⊂ I :
XI := {x ∈ Rn : aTi x ≤ bi, i ∈ I, aTi x = bi, i ∈ I}= {v}.

(∗)

Geometric characterization: A point v ∈ X is a vertex of X iff v is not

the midpoint of a nontrivial segment contained in X:

v ± h ∈ X ⇒ h = 0. (!)

Proof. • Let v be a vertex, so that (∗) takes place for certain I, and let h

be such that v ± h ∈ X; we should prove that h = 0. We have ∀i ∈ I:{
bi ≥ aTi (v − h) = bi − aTi h & bi ≥ aTi (v + h) = bi + aTi h

}
⇒ aTi h = 0⇒ aTi [v ± h] = bi.

Thus, v± h ∈ XI = {v}, whence h = 0. We have proved that (∗) implies (!).
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v ± h ∈ X ⇒ h = 0. (!)

∃I ⊂ I :
XI := {x ∈ Rn : aTi x ≤ bi, i ∈ I, a

T
i x = bi, i ∈ I}= {v}.

(∗)

• Let us prove that (!) implies (∗). Indeed, let v ∈ X be such that (!) takes
place; we should prove that (∗) holds true for certain I. Let

I = {i ∈ I : aTi v = bi},

so that v ∈ XI. It suffices to prove that XI = {v}. Let, on the opposite,
∃e 6= 0 : v + e ∈ XI. Then aTi (v + e) = bi = aTi v for all i ∈ I, that is,
aTi e = 0 ∀i ∈ I, that is,

aTi (v ± te) = bi ∀(i ∈ I, t > 0).

When i ∈ I\I, we have aTi v < bi and thus aTi (v ± te) ≤ bi provided t > 0 is
small enough.
⇒ There exists t̄ > 0: aTi (v ± t̄e) ≤ bi ∀i ∈ I, that is v ± t̄e ∈ X, which is a
desired contradiction. �
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Algebraic characterization: A point

v ∈ X = {x ∈ Rn : aTi x ≤ bi, i ∈ I = {1, ...,m}}

is a vertex of X iff among the inequalities aTi x ≤ bi which are active at v

(i.e., aTi v=bi) there are n with linearly independent ai:

Rank {ai : i ∈ Iv} = n, Iv = {i ∈ I : aTi v = bi} (!)

Proof. • Let v be a vertex of X; we should prove that among the vectors

ai, i ∈ Iv there are n linearly independent. Assuming that this is not the

case, the linear system aTi e = 0, i ∈ Iv in variables e has a nonzero solution

e. We have

i ∈ Iv ⇒ aTi [v ± te] = bi ∀t,
i ∈ I\Iv ⇒ aTi v < bi
⇒ aTi [v ± te] ≤ bi for all small enough t > 0

whence ∃t̄ > 0 : aTi [v ± t̄e] ≤ bi ∀i ∈ I, that is v ± t̄e ∈ X, which is impossible

due to t̄e 6= 0. �
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v ∈ X = {x ∈ Rn : aTi x ≤ bi, i ∈ I}
Rank {ai : i ∈ Iv} = n, Iv = {i ∈ I : aTi v = bi} (!)

• Now let v ∈ X satisfy (!); we should prove that v is a vertex of X, that is,

that the relation v±h ∈ X implies h = 0. Indeed, when v±h ∈ X, we should

have

∀i ∈ Iv : bi ≥ aTi [vi ± h] = bi ± aTi h
⇒ aTi h = 0 ∀i ∈ Iv.

Thus, h ∈ Rn is orthogonal to n linearly independent vectors from Rn, whence

h = 0. �
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♠ Observation: The set Ext(X) of extreme points of a polyhedral set is

finite.

Indeed, there could be no more extreme points than faces.

♠ Observation: If X is a polyhedral set and XI is a face of X, then

Ext(XI) ⊂ Ext(X).

Indeed, extreme points are singleton faces, and a face of a face of X can be

represented as a face of X itself.
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♥ Note: Geometric characterization of extreme points allows to define

this notion for every convex set X: A point x ∈ X is called extreme, if

x± h ∈ X ⇒ h = 0

♥ Fact: Let X be convex and x ∈ X. Then x ∈ Ext(X) iff in every repre-

sentation

x =
m∑
i=1

λixi

of x as a convex combination of points xi ∈ X with positive coefficients one

has

x1 = x2 = ... = xm = x

♥ Fact: For a convex set X and x ∈ X, x ∈ Ext(X) iff the set X\{x} is

convex.

♥ Fact: For every X ⊂ Rn,

Ext(Conv(X)) ⊂ X
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Example: Let us describe extreme points of the set

∆n,k = {x ∈ Rn : 0 ≤ xi ≤ 1,
∑
i

xi ≤ k} [k ∈ N,0 ≤ k ≤ n]

Description: These are exactly 0/1-vectors from ∆n,k.

In particular, the vertices of the box ∆n,n = {x ∈ Rn : 0 ≤ xi ≤ 1 ∀i} are all

2n 0/1-vectors from Rn.

Proof. • If x is a 0/1 vector from ∆n,k, then the set of active at x bounds

0 ≤ xi ≤ 1 is of cardinality n, and the corresponding vectors of coefficients

are linearly independent

⇒ x ∈ Ext(∆n,k)

• If x ∈ Ext(∆n,k), then among the active at x constraints defining ∆n,k

should be n linearly independent. The only options are:

— all n active constraints are among the bounds 0 ≤ xi ≤ 1

⇒ x is a 0/1 vector

— n−1 of the active constraints are among the bounds, and the remaining

active constraint is
∑
i xi ≤ k:

∑
i xi = k.

⇒ x has (n−1) coordinates 0/1 & the sum of all n coordinates is integral

⇒ x is 0/1 vector.
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Example: An n × n matrix A is called double stochastic, if the entries are

nonnegative and all the row and the column sums are equal to 1. Thus, the

set of double-stochastic matrices is a polyhedral set in Rn×n:

Πn =

x = [xij]i,j ∈ Rn×n :
xij ≥ 0 ∀i, j∑n
i=1 xij = 1 ∀j∑n
j=1 xij = 1 ∀i


What are the extreme points of Πn ?

Birkhoff’s Theorem The vertices of Πn are exactly the n× n permutation

matrices (exactly one nonzero entry, equal to 1, in every row and every

column).

Proof • A permutation matrix P can be viewed as 0/1 vector of dimension

n2 and as such is an extreme point of the box

{[xij] : 0 ≤ xij ≤ 1}

which contains Πn. Therefore P is an extreme point of Πn since by geometric

characterization of extreme points, an extreme point x of a convex set is an

extreme point of every smaller convex set to which x belongs.
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• Let P be an extreme point of Πn. To prove that Πn is a permutation

matrix, note that Πn is cut off Rn2
by n2 inequalities xij ≥ 0 and 2n − 1

linearly independent linear equations (since if all but one row and column

sums are equal to 1, the remaining sum also is equal to 1). By algebraic

characterization of extreme points, at least n2−(2n−1) = (n−1)2 > (n−2)n

entries in P should be zeros.

⇒ there is a column in P with at least n− 1 zero entries

⇒ ∃i∗, j∗ : Pi∗j∗ = 1.

⇒ P belongs to the face {P ∈ Πn : Pi∗j∗ = 1} of Πn and thus is an extreme

point of the face. In other words, the matrix obtained from P by eliminating

i∗-th row and j∗-th column is an extreme point in the set Πn−1. Iterating

the reasoning, we conclude that P is a permutation matrix. �
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Recessive Directions and Recessive Cone

X = {x ∈ Rn : Ax ≤ b} is nonempty

♣ Definition. A vector d ∈ Rn is called a recessive direction of X, if X

contains a ray directed by d:

∃x̄ ∈ X : x̄+ td ∈ X ∀t ≥ 0.

♠ Observation: d is a recessive direction of X iff Ad ≤ 0.

♠ Corollary: Recessive directions of X form a polyhedral cone, namely, the

cone Rec(X) = {d : Ad ≤ 0}, called the recessive cone of X.

Whenever x ∈ X and d ∈ Rec(X), one has x + td ∈ X for all t ≥ 0. In

particular,

X + Rec(X) = X.

♠ Observation: The larger is a polyhedral set, the larger is its recessive

cone:

X ⊂ Y are polyhedral⇒ Rec(X) ⊂ Rec(Y ).
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Recessive Subspace of a Polyhedral Set

X = {x ∈ Rn : Ax ≤ b} is nonempty

♠ Observation: Directions d of lines contained in X are exactly the vectors

from the recessive subspace

L = KerA := {d : Ad = 0} = Rec(X) ∩ [−Rec(X)]

of X, and X = X + KerA. In particular,

X = X̄ + KerA,
X̄ = {x ∈ Rn : Ax ≤ b, x ∈ [KerA]⊥}

Note: X̄ is a polyhedral set which does not contain lines.
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Pointed Polyhedral Cones & Extreme Rays

K = {x : Ax ≤ 0}

♣ Definition. Polyhedral cone K is called pointed, if it does not contain

lines. Equivalently: K is pointed iff K ∩ {−K} = {0}.
Equivalently: K is pointed iff KerA = {0}..
♣ Definition An extreme ray of K is a face of K which is a nontrivial ray

(i.e., the set R+d = {td : t ≥ 0} associated with a nonzero vector, called a

generator of the ray).

♠ Geometric characterization: A vector d ∈ K is a generator of an extreme

ray of K (in short: d is an extreme direction of K) iff it is nonzero and

whenever d is a sum of two vectors from K, both vectors are nonnegative

multiples of d:
d = d1 + d2, d1, d2 ∈ K ⇒

∃t1 ≥ 0, t2 ≥ 0 : d1 = t1d, d2 = t2d.
Example: K = Rn+ This cone is pointed, and its extreme directions are

positive multiples of basic orths. There are n extreme rays Ri = {x ∈ Rn :

xi ≥ 0, xj = 0∀(j 6= i)}.
♠ Observation: d is an extreme direction of K iff some (and then – all)

positive multiples of d are extreme directions of K.
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K = {x ∈ Rn : Ax ≤ 0}
=

{
x ∈ Rn : aTi x ≤ 0, i ∈ I = {1, ...,m}

}
♠ Algebraic characterization of extreme directions: Let K be a pointed

cone. Direction d ∈ K\{0} is an extreme direction of K iff among the

homogeneous inequalities aTi x ≤ 0 which are active at d (i.e., are satisfied at

d as equations) there are n− 1 inequalities with linearly independent ai’s.

Proof. Let 0 6= d ∈ K, I = {i ∈ I : aTi d = 0}.
• Let the set {ai : i ∈ I} contain n − 1 linearly independent vectors, say,

a1, ..., an−1. Let us prove that then d is an extreme direction of K. Indeed,

the set

L = {x : aTi x = 0, 1 ≤ i ≤ n− 1} ⊃ KI
is a one-dimensional linear subspace in Rn. Since 0 6= d ∈ L, we have L = Rd.

Since d ∈ K, the ray R+d is contained in KI: R+d ⊂ KI. Since KI ⊂ L, all

vectors from KI are real multiples of d. Since K is pointed, no negative

multiples of d belong to KI.

⇒ KI = R+d and d 6= 0, i.e., KI is an extreme ray of K, and d is a

generator of this ray. �
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• Let d be an extreme direction of K, that is, R+d is a face of K, and let

us prove that the set {ai : i ∈ I} contains n− 1 linearly independent vectors.

Assuming the opposite, the solution set L of the homogeneous system of

linear equations

aTi x = 0, i ∈ I
is of dimension ≥ 2 and thus contains a vector h which is not proportional

to d. When i 6∈ I, we have aTi d < 0 and thus aTi (d+ th) ≤ 0 when |t| is small

enough.

⇒ ∃t̄ > 0 : |t| ≤ t̄⇒ aTi [d+ th] ≤ 0 ∀i ∈ I
⇒ the face KI of K (which is the smallest face of K containing d)contains

two non-proportional nonzero vectors d, d+ t̄h, and thus is strictly larger than

R+d.

⇒ R+d is not a face of K, which is a desired contradiction. �
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Base of a Cone

K = {x ∈ Rn : Ax ≤ 0}.

♣ Definition. A set B of the form

B = {x ∈ K : fTx = 1} (∗)

is called a base of K, if it is nonempty and intersects with every (nontrivial)

ray in K:

∀0 6= d ∈ K ∃!t ≥ 0 : td ∈ B.
Example: The set

∆n = {x ∈ Rn+ :
n∑
i=1

xi = 1}

is a base of Rn+.

♠ Observation: Set (∗) is a base of K iff K 6= {0} and f makes strictly

positive inner products with all nonzero vectors from K:

0 6= x ∈ K ⇒ fTx > 0.
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3D cone K and its base B (pentagon)

Note: extreme rays of K are generated by extreme points of B

♠ Facts:

• K possesses a base iff K 6= {0} and K is pointed.

• K possesses a base B iff K possesses extreme rays, and there is one-to-

one correspondence between extreme rays of K and extreme points of B:

extreme directions of K are exactly positive multiples of extreme points of

B.

• The recessive cone of a base B of K is trivial: Rec(B) = {0}.
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K = {x ∈ Rn : Ax ≤ 0}.

Observations:

• If K possesses extreme rays, then K is nontrivial (K 6= {0}) and pointed

(K ∩ [−K] = {0}).

In fact, the inverse is also true.

• The set of extreme rays of K is finite.

Indeed, there are no more extreme rays than faces.
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Towards the Main Theorem:
First Step

Theorem. Let

X = {x ∈ Rn : Ax ≤ b}

be a nonempty polyhedral set which does not contain lines. Then

(i) The set V = Ext{X} of extreme points of X is nonempty and finite:

V = {v1, ..., vN}

(ii) The set of extreme rays of the recessive cone Rec(X) of X is finite; let

R = {r1, ..., rM}

be a collection of generators of the extreme rays, one generator per ray.

(iii) One has

X = Conv(V ) + Cone (R)

=

x =
∑N
i=1 λivi +

∑M
j=1 µjrj :

λi ≥ 0∀i∑N
i=1 λi = 1

µj ≥ 0∀j


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Main Lemma: Let

X = {x ∈ Rn : aTi x ≤ bi, 1 ≤ i ≤ m}

be a nonempty polyhedral set which does not contain lines. Then the set

V = Ext{X} of extreme points of X is nonempty and finite, and

X = Conv(V ) + Rec(X).

Proof: Induction in m = dimX.

Base m = 0 is evident: here

X = {a}, V = {a}, Rec(X) = {0}.
Inductive step m ⇒ m + 1: Let the statement be true for polyhedral sets

of dimension ≤ m, and let dimX = m + 1, M = Aff(X), L be the linear

subspace parallel to M.

• Take a point x̄ ∈ X and a nonzero direction e ∈ L. Since X does not

contain lines, either e, or −e, or both are not recessive directions of X.

Swapping, if necessary, e and −e, assume that −e 6∈ Rec(X).
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X = {x ∈ Rn : aTi x ≤ bi, 1 ≤ i ≤ m}
nonempty and does not contain lines

• Let us look at the ray x̄−R+e = {x(t) = x̄−te : t ≥ 0}. Since −e 6∈ Rec(X),

this ray is not contained in X, that is, all linear inequalities 0 ≤ bi− aTi x(t) ≡
αi − βit are satisfied when t = 0, and some of them are violated at certain

values of t ≥ 0. In other words,

αi ≥ 0 ∀i & ∃i : βi > 0

Let t̄ = min
i:βi>0

αi
βi

, I = {i : αi − βTi t̄ = 0}.

Then by construction

x(t̄) = x̄− t̄e ∈ XI = {x ∈ X : aTi x = bi i ∈ I}

so that XI is a face of X. We claim that this face is proper. Indeed, every

constraint bi − aTi x with βi > 0 is nonconstant on M = Aff(X) and thus

is non-constant on X. (At least) one of these constraints bi∗ − aTi∗x ≥ 0

becomes active at x(t̄), that is, i∗ ∈ I. This constraint is active everywhere

on XI and is nonconstant on X, whence XI $ X.
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X = {x ∈ Rn : aTi x ≤ bi, 1 ≤ i ≤ m}
nonempty and does not contain lines

Situation: X 3 x̄ = x(t̄) + t̄e with t̄ ≥ 0 and x(t̄) belonging to a proper face

XI of X.

• Xi is a proper face of X ⇒ dimXI < dimX⇒ (by inductive hypothesis)

Ext(XI) 6= ∅ and
XI = Conv(Ext(XI)) + Rec(XI)

⊂ Conv(Ext(X)) + Rec(X).
In particular, Ext(X) 6= ∅; as we know, this set is finite.

• It is possible that e ∈ Rec(X). Then
x̄ = x(t̄) + t̄e ∈ [Conv(Ext(X)) + Rec(X)] + t̄e

⊂ Conv(Ext(X)) + Rec(X).
• It is possible that e 6∈ Rec(X). In this case, applying the same “moving

along the ray” construction to the ray x̄ + R+e, we get, along with x(t̄) :=

x̄ − t̄e ∈ XI, a point x(−t̂) := x + t̂e ∈ X
Î
, where t̂ ≥ 0 and X

Î
is a proper

face of X, whence, same as above,

x(−t̂) ∈ Conv(Ext(X)) + Rec(X).

By construction, x̄ ∈ Conv{x(t̄), x(−t̂)}, whence x̄ ∈ Ext(X) + Rec(X).
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♣ Reasoning in pictures:

♠ Case A: e is a recessive direction of X.

• Let us move from x̄ along the direction −e.
— since e ∈ L, we all the time will stay in Aff(X)

— since −e is not a recessive direction of X, eventually we will be about to leave X. When

it happens, our position x′ = x̄− λe, λ ≥ 0, will belong to a proper face X ′ of X

⇒ dim (X ′) < dim (X)

⇒ [Ind. Hype.] x′ = v + r with v ∈ Conv(Ext(X ′)) ⊂ Conv(Ext(X)), r ∈ Rec(X ′) ⊂ Rec(X)

⇒ x̄ = v︸︷︷︸
∈ Conv(Ext(X))

+ [r + λe]︸ ︷︷ ︸
∈ Rec(X)

⊂ Conv(Ext(X)) + Rec(X)

X

�
��*ex̄

x′

v

X ′↘ ∃ v ∈ Conv(Ext(X ′)) ⊂ Conv(Ext(X)),

r ∈ Rec(X ′) ⊂ Rec(X):
x′ = v + r

⇒ for some λ ≥ 0
x̄ = v︸︷︷︸

∈ Conv(Ext(X))

+ r + λe︸ ︷︷ ︸
∈ Rec(X)
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♣ Reasoning in pictures (continued):
♠ Case B: both e and −e are not recessive directions of X.
• As in Case A, we move from x̄ along the direction −e until hitting a proper face X ′ of X
at a point x′.
⇒ [Ind. Hype.] x′ = v + r with
v ∈ Conv(Ext(X ′)) ⊂ Conv(Ext(X)), r ∈ Rec(X ′) ⊂ Rec(X)
• Since e is not a recessive direction of X, when moving from x̄ along the direction e, we
eventually hit a proper face X ′′ of X at a point x′′

⇒ [Ind. Hyp.] x′′ = w + s with
w ∈ Conv(Ext(X ′′)) ⊂ Conv(Ext(X)), s ∈ Rec(X ′′) ⊂ Rec(X)
• x̄ is a convex combination of x′ and x′′: x̄ = λx′ + (1− λ)x′′

⇒ x̄ = λv + (1− λ)w︸ ︷︷ ︸
∈ Conv(Ext(X))

+λr + (1− λ)s︸ ︷︷ ︸
∈ Rec(X)

∈ Conv(Ext(X)) + Rec(X)

X

@R
e

x̄
x′

x′′
v

w

X ′↘

↖X ′′

∃ v ∈ Conv(Ext(X ′)) ⊂ Conv(Ext(X)):
x′ ∈ v + Rec(X ′) ⊂ v + Rec(X)

∃ w ∈ Conv(Ext(X ′′)) ⊂ Conv(Ext(X)):
x′′ ∈ w + Rec(X ′′) ⊂ w + Rec(X)

⇒ x̄ ∈ Conv{x′, x′′} ⊂ Conv{v, w}+ Rec(X)
⊂ Conv(Ext(X)) + Rec(X)
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♠ Summary: We have proved that Ext(X) is nonempty and finite, and

every point x̄ ∈ X belongs to

Conv(Ext(X)) + Rec(X),

that is, X ⊂ Conv(Ext(X)) + Rec(X). Since

Conv(Ext(X)) ⊂ X
and X + Rec(X) = X, we have also

X ⊃ Conv(Ext(X)) + Rec(X)

⇒ X = Conv(Ext(X)) + Rec(X). Induction is complete. �
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Corollaries of Main Lemma: Let X be a nonempty polyhedral set which

does not contain lines.

A. If X is has a trivial recessive cone, then

X = Conv(Ext(X)).

B. If K is a nontrivial pointed polyhedral cone, the set of extreme rays

of K is nonempty and finite, and if r1, ..., rM are generators of the extreme

rays of K, then

K = Cone {r1, ..., rM}.
Proof of B: Let B be a base of K, so that B is a nonempty poly-

hedral set with Rec(B) = {0}. By A, Ext(B) is nonempty, finite and

B = Conv(Ext(B)), whence K = Cone (Ext(B)). It remains to note ev-

ery nontrivial ray in K intersects B, and a ray is extreme iff this intersection

is an extreme point of B.

♠ Augmenting Main Lemma with Corollary B, we get the Theorem.
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♣ We have seen that if X is a nonempty polyhedral set not containing lines,

then X admits a representation

X = Conv(V ) + Cone {R} (∗)

where

• V = V∗ is the nonempty finite set of all extreme points of X;

• R = R∗ is a finite set comprised of generators of the extreme rays of

Rec(X) (this set can be empty).

♠ It is easily seen that this representation is “minimal:” Whenever X is

represented in the form of (∗) with finite sets V , R,

— V contains all vertices of X

— R contains generators of all extreme rays of Rec(X).
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Structure of a Polyhedral Set

Main Theorem (i) Every nonempty polyhedral set X ⊂ Rn can be repre-

sented as

X = Conv(V ) + Cone (R) (∗)

where V ⊂ Rn is a nonempty finite set, and R ⊂ Rn is a finite set.

(ii) Vice versa, if a set X given by representation (∗) with a nonempty finite

set V and finite set R, X is a nonempty polyhedral set.

Proof. (i): We know that (i) holds true when X does not contain lines.

Now, every nonempty polyhedral set X can be represented as

X = X̂ + L, L = Lin{f1, ..., fk},

where X̂ is a nonempty polyhedral set which does not contain lines. In

particular,

X̂ = Conv{v1, ..., vN}+ Cone {r1, ..., rM}

⇒ X = Conv{v1, ..., vN}
+Cone {r1, ..., rM , f1,−f1, ..., fK,−fK}

Note: In every representation (∗) of X, Cone (R) = Rec(X).
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(ii): Let

X = Conv{v1, ..., vN}+ Cone {r1, .., rM} ⊂ Rn [N ≥ 1,M ≥ 0]

We want to prove that X is a polyhedral set.

Indeed, X admits polyhedral representation:

X =

{
x : ∃λ, µ :

x =
∑N
i=1 λivi +

∑M
j=1 µjrj

λ ≥ 0, µ ≥ 0,
∑N
i=1 λi = 1

}
and as such is polyhedral.
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Immediate Corollaries

Corollary I. A nonempty polyhedral set X possesses extreme points iff X

does not contain lines. In addition, the set of extreme points of X is finite.

Indeed, if X does not contain lines, X has extreme points and their number

is finite by Main Lemma. When X contains lines, every point of X belongs

to a line contained in X, and thus X has no extreme points.
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Corollary II. (i) A nonempty polyhedral set X is bounded iff its recessive

cone is trivial: Rec(X) = {0}, and in this case X is the convex hull of the

(nonempty and finite) set of its extreme points:

∅ 6= Ext(X) is finite and X = Conv(Ext(X)).

(ii) The convex hull of a nonempty finite set V is a bounded polyhedral set,

and Ext(Conv(X)) ⊂ V .
Proof of (i): if Rec(X) = {0}, then X does not contain lines and therefore

∅ 6= Ext(X) is finite and

X = Conv(Ext(X)) + Rec(X)
= Conv(Ext(X)) + {0}
= Conv(Ext(X)),

(∗)

and thus X is bounded as the convex hull of a finite set.

Vice versa, if X is bounded, then X clearly does not contain nontrivial rays

and thus Rec(X) = {0}.
Proof of (ii): By Main Theorem (ii),

X := Conv({v1, ..., vm})
is a polyhedral set, and this set clearly is bounded. Besides this, X =

Conv(V ) always implies that Ext(X) ⊂ V .
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Application examples:

• Every vector x from the set

{x ∈ Rn : 0 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n

i=1
xi ≤ k}

(k is an integer) is a convex combination of Boolean vectors from this set.

• Every double-stochastic matrix is a convex combination of perturbation

matrices.
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Application example: Polar of a polyhedral set. Let X ⊂ Rn be a

polyhedral set containing the origin. The polar Polar (X) of X is given by

Polar (X) = {y : yTx ≤ 1∀x ∈ X}.

Examples: • Polar (Rn) = {0}
• Polar ({0}) = Rn

• If L is a linear subspace, then Polar (L) = L⊥

• If K ⊂ Rn is a cone, then Polar (K) = −K∗
• Polar ({x :

∑
i |xi| ≤ 1}) = {x : |xi| ≤ 1∀i}

• Polar ({x : |xi| ≤ 1 ∀i}) = {x :
∑
i |xi| ≤ 1}
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Theorem. When X is a polyhedral set containing the origin, so is Polar (X),
and Polar (Polar (X)) = X.
Proof. • Representing

X = {x =
∑
i

λivi +
∑
j

µjrj : λ ≥ 0,
∑
i

λi = 1, µ ≥ 0}

we clearly get
Polar (X) = {y : yTvi ≤ 1∀i, yT rj ≤ 0 ∀j}

⇒ Polar (X) is a polyhedral set. Inclusion 0 ∈ Polar (X) is evident.
• Let us prove that Polar (Polar (X)) = X. By definition of the polar,
we have X ⊂ Polar (Polar (X)). To prove the opposite inclusion, let x̄ ∈
Polar (Polar (X)), and let us prove that x̄ ∈ X. X is polyhedral:

X = {x : aTi x ≤ bi,1 ≤ i ≤ K}
and bi ≥ 0 due to 0 ∈ X. By scaling inequalities aTi x ≤ bi, we can assume
further that all nonzero bi’s are equal to 1. Setting I = {i : bi = 0}, we have

i ∈ I ⇒ aTi x ≤ 0∀x ∈ X ⇒ λai ∈ Polar (X) ∀λ ≥ 0
⇒ x̄T [λai] ≤ 1 ∀λ ≥ 0⇒ aTi x̄ ≤ 0
i 6∈ I ⇒ aTi x ≤ bi = 1 ∀x ∈ X ⇒ ai ∈ Polar (X)
⇒ x̄Tai ≤ 1,

whence x̄ ∈ X. �
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Corollary III. (i) A cone K is polyhedral iff it is the conic hull of a finite set:
K = {x ∈ Rn : Bx ≤ 0}

⇔ ∃R = {r1, ..., rM} ⊂ Rn : K = Cone (R)
(ii) When K is a nontrivial and pointed polyhedral cone, one can take as R

the set of generators of the extreme rays of K.

Proof of (i): If K is a polyhedral cone, then K = K̂ + L with a linear

subspace L and a pointed cone K̂. By Main Theorem (i), we have
K̂ = Conv(Ext(K̂)) + Cone ({r1, ..., rM})

= Cone ({r1, ..., rM})
since Ext(K̂) = {0}, whence

K = Cone ({r1, ..., rM , f1,−f1, ..., fs,−fs})
where {f1, ...fs} is a basis in L.

Vice versa, if K = Cone ({r1, ..., rM}), then K is a polyhedral set (Main

Theorem (ii)). that is, K = {x : Ax ≤ b} for certain A, b. Since K is a cone,

we have

K = Rec(K) = {x : Ax ≤ 0},
that is, K is a polyhedral cone. �

(ii) is Corollary B of Main Lemma.
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Applications in LO

♣ Theorem. Consider a LO program
Opt = max

x

{
cTx : Ax ≤ b

}
,

and let the feasible set X = {x : Ax ≤ b} be nonempty and thus representable
as

X = Conv({v1, ..., vN}) + Cone ({r1, ..., rM})
with properly selected v1, ..., vN , r1, ..., rM .
(i) The program is solvable iff c has nonpositive inner products with all rj.
(ii) If X does not contain lines and the program is bounded, then among its
optimal solutions, if any exist, there are vertices of X.
‘ Proof. • We have

Opt := sup
λ,µ

∑i λicTvi +
∑
j

µjcTrj :
λi ≥ 0∑

i λi = 1
µj ≥ 0

 < +∞

⇔ cTr ≤ 0 ∀r ∈ Cone ({r1, ..., rM}) = Rec(X)
⇒ Opt = maxi cTvi

Thus, Opt < +∞ implies that the best of the points v1, ..., vM is an optimal
solution.
• It remains to note that when X does not contain lines, we can set {vi}Ni=1 =
Ext(X). �
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Application to Knapsack problem. A knapsack can store k items. You

have n ≥ k items, j-th of value cj ≥ 0. How to select items to be placed into

the knapsack in order to get the most valuable selection?

Solution: Assuming for a moment that we can put to the knapsack fractions

of items, let xj be the fraction of item j we put to the knapsack. The most

valuable selection then is given by an optimal solution to the LO program

max
x

∑
j

cjxj : 0 ≤ xj ≤ 1,
∑
j

xj ≤ k


The feasible set is nonempty, polyhedral and bounded, and all extreme points

are Boolean vectors from this set

⇒ There is a Boolean optimal solution.

In fact, the optimal solution is evident: we should put to the knapsack k

most valuable of the items.
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Application to Assignment problem. There are n jobs and n workers.

Every job takes one man-hour. The profit of assigning worker i with job j

is cij. How to assign workers with jobs in such a way that every worker gets

exactly one job, every job is carried out by exactly one worker, and the total

profit of the assignment is as large as possible?

Solution: Assuming for a moment that a worker can distribute his time

between several jobs and denoting xij the fraction of activity of worker i

spent on job j, we get a relaxed problem

max
x

∑
i,j

cijxij : xij ≥ 0,
∑
i

xij = 1 ∀j,
∑
j

xij = 1 ∀i


The feasible set is polyhedral, nonempty and bounded

⇒ Program is solvable, and among the optimal solutions there are extreme

points of the set of double stochastic matrices, i.e., permutation matrices

⇒ Relaxation is exact!

2.87



Lecture I.4

Duality



Theory of Systems of Linear Inequalities
and

Duality

♣ We still do not know how to answer some most basic questions about

polyhedral sets, e.g.:

♠ How to recognize that a polyhedral set X = {x ∈ Rn : Ax ≤ b} is/is not

empty?

♠ How to recognize that a polyhedral set X = {x ∈ Rn : Ax ≤ b} is/is not

bounded?

♠ How to recognize that two polyhedral sets X = {x ∈ Rn : Ax ≤ b} and

X ′ = {x : A′x ≤ b′} are/are not distinct?

♠ How to recognize that a given LO program is feasible/bounded/solvale?

♠ .....

Our current goal is to find answers to these and similar questions, and

these answers come from Linear Programming Duality Theorem which is

the second main theoretical result in LO.
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Theorem on Alternative

♣ Consider a system of m strict and nonstrict linear inequalities in variables

x ∈ Rn:

aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

• ai ∈ Rn, bi ∈ R, 1 ≤ i ≤ m,

• I ⊂ {1, ...,m}, I = {1, ...,m}\I.

Note: (S) is a universal form of a finite system of linear inequalities in n

variables.

♣ Main questions on (S) [operational form]:

• How to find a solution to the system if one exists?

• How to find out that (S) is infeasible?

♠ Main questions on (S) [descriptive form]:

• How to certify that (S) is solvable?

• How to certify that (S) is infeasible?
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aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

♠ The simplest certificate for solvability of (S) is a solution: plug a candidate

certificate into the system and check that the inequalities are satisfied.

Example: The vector x̄ = [10; 10; 10] is a solvability certificate for the

system

−x1 −x2 −x3 < −29
x1 +x2 ≤ 20

x2 +x3 ≤ 20
x1 +x3 ≤ 20

– when plugging it into the system, we get valid numerical inequalities.

But: How to certify that (S) has no solution? E.g., how to certify that the

system

−x1 −x2 −x3 < −30
x1 +x2 ≤ 20

x2 +x3 ≤ 20
x1 +x3 ≤ 20

has no solutions?
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aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

♣ How to certify that (S) has no solutions?
♠ A recipe: Take a weighted sum, with nonnegative weights, of the inequal-
ities from the system, thus getting strict or nonstrict scalar linear inequality
which, due its origin, is a consequence of the system – it must be satisfied
at every solution to (S). If the resulting inequality has no solutions at all,
then (S) is unsolvable.
Example: To certify that the system

2× −x1 −x2 −x3 < −30
1× x1 +x2 ≤ 20
1× x2 +x3 ≤ 20
1× x1 +x3 ≤ 20

has no solutions, take the weighted sum of the inequalities with the weights
marked in red, thus arriving at the inequality

0 · x1 + 0 · x2 + 0 · x3 < 0.

This is a contradictory inequality which is a consequence of the system
⇒ weights λ = [2; 1; 1; 1] certify insolvability.
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aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

A recipe for certifying insolvability:
• assign inequalities of (S) with weights λi ≥ 0 and sum them up, thus
arriving at the inequality

[
∑m

i=1 λiai]
Tx Ω

∑m
i=1 λibi[

Ω = ” < ” when
∑

i∈I λi > 0
Ω = ” ≤ ” when

∑
i∈I λi = 0

]
(!)

• If (!) has no solutions, (S) is insolvable.
♠ Observation: Inequality (!) has no solution iff

∑m
i=1 λiai = 0 and, in

addition,
•
∑m
i=1 λibi≤0 when

∑
i∈I λi > 0

•
∑m
i=1 λibi<0 when

∑
i∈I λi = 0

♣ We have arrived at
Proposition: Given system (S), let us associate with it two systems of linear
inequalities in variables λ1, ..., λm:

(I) :


λi ≥ 0 ∀i∑m

i=1 λiai = 0∑m
i=1 λibi ≤ 0∑
i∈I λi > 0

, (II) :


λi ≥ 0 ∀i∑m

i=1 λiai = 0∑m
i=1 λibi < 0

λi = 0, i ∈ I
If at least one of the systems (I), (II) has a solution, then (S) has no
solutions.
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General Theorem on Alternative: Consider, along with system of linear

inequalities

aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

in variables x ∈ Rn, two systems of linear inequalities in variables λ ∈ Rm:

(I) :


λi ≥ 0 ∀i∑m
i=1 λiai = 0∑m
i=1 λibi ≤ 0∑
i∈I λi > 0

, (II) :


λi ≥ 0 ∀i∑m
i=1 λiai = 0∑m
i=1 λibi < 0

λi = 0, i ∈ I
System (S) has no solutions if and only if at least one of the systems (I),

(II) has a solution.

Remark: Strict inequalities in (S) in fact do not participate in (II). As a

result, (II) has a solution iff the “nonstrict” subsystem

aTi x ≤ bi, i ∈ I (S ′)
of (S) has no solutions.

Remark: GTA says that a finite system of linear inequalities has no solutions

if and only if (one of two) other systems of linear inequalities has a solution.

Such a solution can be considered as a certificate of insolvability of (S): (S)

is insolvable if and only if such an insolvability certificate exists.
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aTi x

{
< bi, i ∈ I
≤ bi, i ∈ I (S)

(I) :


λi ≥ 0 ∀i∑m
i=1 λiai = 0∑m
i=1 λibi ≤ 0∑
i∈I λi > 0

, (II) :


λi ≥ 0 ∀i∑m
i=1 λiai = 0∑m
i=1 λibi < 0

λi = 0, i ∈ I

Proof of GTA: In one direction: “If (I) or (II) has a solution, then (S) has

no solutions” the statement is already proved. Now assume that (S) has no

solutions, and let us prove that one of the systems (I), (II) has a solution.

Consider the system of homogeneous linear inequalities in variables x, t, ε:
aTi x −bit +ε ≤ 0, i ∈ I
aTi x −bit ≤ 0, i ∈ I

−t +ε ≤ 0
−ε < 0

We claim that this system has no solutions. Indeed, assuming that the

system has a solution x̄, t̄, ε̄, we have ε̄ > 0, whence

t̄ > 0 & aTi x̄ < bit̄, i ∈ I & aTi x̄ ≤ bit̄, i ∈ I,

⇒ x = x̄/t̄ is well defined and solves unsolvable system (S), which is impos-

sible.
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Situation: System
aTi x −bit +ε ≤ 0, i ∈ I
aTi x −bit ≤ 0, i ∈ I

−t +ε ≤ 0
−ε < 0

has no solutions, or, equivalently, the homogeneous linear inequality
−ε ≥ 0

is a consequence of the system of homogeneous linear inequalities
−aTi x +bit −ε ≥ 0, i ∈ I
−aTi x +bit ≥ 0, i ∈ I

t −ε ≥ 0
in variables x, t, ε. By Homogeneous Farkas Lemma, there exist µi ≥ 0,
1 ≤ i ≤ m, µ ≥ 0 such that

m∑
i=1

µiai = 0 &
m∑
i=1

µibi + µ = 0 &
∑
i∈I

µi + µ = 1

When µ > 0, setting λi = µi/µ, we get
λ ≥ 0,

∑m
i=1 λiai = 0,

∑m
i=1 λibi = −1,

⇒ when
∑
i∈I λi > 0, λ solves (I), otherwise λ solves (II).

When µ = 0, setting λi = µi, we get
λ ≥ 0,

∑
i λiai = 0,

∑
i λibi = 0,

∑
i∈I λi = 1,

and λ solves (I). �
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♣ GTA is equivalent to the following

Principle: A finite system of linear inequalities has no solution iff one can

get, as a legitimate (i.e., compatible with the common rules of operating with

inequalities) weighted sum of inequalities from the system, a contradictory

inequality, i.e., either inequality 0Tx ≤ −1, or the inequality 0Tx < 0.

The advantage of this Principle is that it does not require converting the

system into a standard form. For example, to see that the system of linear

constraints

x1 +2x2 < 5
2x1 +3x2 ≥ 3
3x1 +4x2 = 1

has no solutions, it suffices to take the weighted sum of these constraints

with the weights −1,2,−1, thus arriving at the contradictory inequality

0 · x1 + 0 · x2 > 0
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♣ Specifying the system in question and applying GTA, we can obtain various

particular cases of GTA, e.g., as follows:

Inhomogeneous Farkas Lemma: A nonstrict linear inequality

aTx ≤ α (!)

is a consequence of a solvable system of nonstrict linear inequalities

aTi x ≤ bi, 1 ≤ i ≤ m (S)

if and only if (!) can be obtained by taking weighted sum, with nonnegative

coefficients, of the inequalities from the system and the identically true

inequality 0Tx ≤ 1: (S) implies (!) is and only if there exist nonnegative

weights λ0, λ1, ..., λm such that

λ0 · [1− 0Tx] +
∑m
i=1 λi[bi − a

T
i x] ≡ α− aTx,

or, which is the same, iff there exist nonnegative λ0, λ1, ..., λm such that
m∑
i=1

λiai = a,
m∑
i=1

λibi + λ0 = α

or, which again is the same, iff there exist nonnegative λ1, ..., λm such that∑m
i=1 λiai = a,

∑m
i=1 λibi ≤ α.
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aTi x ≤ bi, 1 ≤ i ≤ m (S)

aTx ≤ α (!)

Proof. If (!) can be obtained as a weighted sum, with nonnegative

coefficients, of the inequalities from (S) and the inequality 0Tx ≤ 1, then (!)

clearly is a corollary of (S) independently of whether (S) is or is not solvable.

Now let (S) be solvable and (!) be a consequence of (S); we want to prove

that (!) is a combination, with nonnegative weights, of the constraints from

(S) and the constraint 0Tx ≤ 1. Since (!) is a consequence of (S), the

system

−aTx < −α, aTi x ≤ bi, 1 ≤ i ≤ m (M)

has no solutions, whence, by GTA, a legitimate weighted sum of the in-

equalities from the system is contradictory, that is, there exist µ ≥ 0, λi ≥ 0:

−µa+
∑m
i=1 λiai = 0,

0

{
≥ −µα+

∑m
i=1 λibi & µ > 0

> −µα+
∑m
i=1 λibi & µ = 0

(!!)
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Situation: the system

−aTx < −α, aTi x ≤ bi 1 ≤ i ≤ m (M)

has no solutions, whence there exist µ ≥ 0, λ ≥ 0 such that

−µa+
∑m
i=1 λiai = 0,

0

{
≥ −µα+

∑m
i=1 λibi & µ > 0

> −µα+
∑m
i=1 λibi & µ = 0

(!!)

Claim: µ > 0. Indeed, otherwise the inequality −aTx < −α does not partici-

pate in the weighted sum of the constraints from (M) which is a contradic-

tory inequality

⇒ (S) can be led to a contradiction by taking weighted sum of the con-

straints

⇒ (S) is infeasible, which is a contradiction.

• When µ > 0, setting λi = µi/µ, we get from (!!)

∑
i

λiai = a&
m∑
i=1

λibi ≤ α. �
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Why GTA is a deep fact?

♣ Consider the system of four linear inequalities in variables u, v:

−1 ≤ u ≤ 1, −1 ≤ v ≤ 1

and let us derive its consequence as follows:

−1 ≤ u ≤ 1, −1 ≤ v ≤ 1
⇒ u2 ≤ 1, v2 ≤ 1
⇒ u2 + v2 ≤ 2

⇒ u+ v = 1 · u+ 1 · v ≤
√

12 + 12
√
u2 + v2

⇒ u+ v ≤
√

2
√

2 = 2

We have derived from solvable system of nonstrict linear inequalities a con-

sequence which is a nonstrict linear inequality, and the derivation was “highly

nonlinear.”

A statement which says that every derivation of this type can be replaced by

just taking weighted sum of the original inequalities and the trivial inequality

0Tx ≤ 1 is a deep statement indeed!
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♣ For every system S of inequalities, linear or nonlinear alike, taking weighted

sums of inequalities of the system and trivial – identically true – inequalities

always results in a consequence of S. However, GTA heavily exploits the fact

that the inequalities of the original system and a consequence we are looking

for are linear. Already for quadratic inequalities, the statement similar to

GTA fails to be true. For example, the quadratic inequality

x2 ≤ 1 (!)

is a consequence of the system of linear (and thus quadratic) inequalities

−1 ≤ x ≤ 1 (∗)

Nevertheless, (!) cannot be represented as a weighted sum of the inequalities

from (∗) and identically true linear and quadratic inequalities, like

0 · x ≤ 1, x2 ≥ 0, x2 − 2x+ 1 ≥ 0, ...
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Answering Questions

♣ How to certify that a polyhedral set X = {x ∈ Rn : Ax ≤ b} is

empty/nonempty?

♠ A certificate for X to be nonempty is a solution x̄ to the system Ax ≤ b.
♠ A certificate for X to be empty is a solution λ̄ to the system

λ ≥ 0, ATλ = 0, bTλ < 0.

In both cases, X possesses the property in question iff it can be certified as

explained above (“the certification schemes are complete”).

Note: All certification schemes to follow are complete!
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Examples: • The vector x = [1; ...; 1] ∈ Rn certifies that the polyhedral set

X = {x ∈ Rn : x1 + x2 ≤ 2, x2 + x3 ≤ 2, ..., xn + x1 ≤ 2,
−x1 − ...− xn ≤ −n}

is nonempty.

• The vector λ = [1; 1; ...; 1; 2] ∈ Rn+1 ≥ 0 certifies that the polyhedral set

X = {x ∈ Rn : x1 + x2 ≤ 2, x2 + x3 ≤ 2, ..., xn + x1 ≤ 2,
−x1 − ...− xn ≤ −n− 0.01}

is empty. Indeed, summing up the n+1 constraints defining X = {x : Ax ≤ b}
with weights λi, we get the contradictory inequality

0 ≡ 2 (x1 + ...+ xn)− 2 [x1 + ...+ xn]︸ ︷︷ ︸
[ATλ]Tx≡0

≤ 2n− 2(n+ 0.01) = −0.02︸ ︷︷ ︸
bTλ=−0.02<0
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♣ How to certify that a linear inequality cTx ≤ d is violated somewhere on a

polyhedral set

X = {x ∈ Rn : Ax ≤ b},
that is, the inequality is not a consequence of the system Ax ≤ b?
A certificate is x̄ such that Ax̄ ≤ b and cT x̄ > d.
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♣ How to certify that a linear inequality cTx ≤ d is satisfied everywhere on a

polyhedral set

X = {x ∈ Rn : Ax ≤ b},
that is, the inequality is a consequence of the system Ax ≤ b?
♠ The situation in question arises in two cases:

A. X is empty, the target inequality is an arbitrary one

B. X is nonempty, the target inequality is a consequence of the system

Ax ≤ b
Consequently, to certify the fact in question means

— either to certify that X is empty, the certificate being λ such that λ ≥
0, ATλ = 0, bTλ < 0,

— or to certify that X is nonempty by pointing out a solution x̄ to the

system Ax ≤ b and to certify the fact that cTx ≤ d is a consequence of

the solvable system Ax ≤ b by pointing out a λ which satisfies the system

λ ≥ 0, ATλ = c, bTλ ≤ d (we have used Inhomogeneous Farkas Lemma).
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Note: In the second case, we can omit the necessity to certify that X 6= ∅,
since the existence of λ satisfying λ ≥ 0, ATλ = c, bTλ ≤ d always is sufficient

for cTx ≤ d to be a consequence of Ax ≤ b.
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Example:• To certify that the linear inequality

cTx := x1 + ...+ xn ≤ d := n− 0.01

is violated somewhere on the polyhedral set

X = {x ∈ Rn : x1 + x2 ≤ 2, x2 + x3 ≤ 2, ..., xn + x1 ≤ 2}
= {x : Ax ≤ b}

it suffices to note that x = [1; ...; 1] ∈ X and n = cTx > d = n− 0.01

• To certify that the linear inequality

cTx := x1 + ...+ xn ≤ d := n

is satisfied everywhere on the above X, it suffices to note that when taking

weighted sum of inequalities defining X, the weights being 1/2, we get the

target inequality.

Equivalently: for λ = [1/2; ...; 1/2] ∈ Rn it holds λ ≥ 0, ATλ = [1; ...; 1] =

c, bTλ = n ≤ d
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♣ How to certify that a polyhedral set X = {x ∈ Rn : Ax ≤ b} does not

contain a polyhedral set Y = {x ∈ Rn : Cx ≤ d}?
A certificate is a point x̄ such that Cx̄ ≤ d (i.e., x̄ ∈ Y ) and x̄ does not solve

the system Ax ≤ b (i.e., x̄ 6∈ X).

♣ How to certify that a polyhedral set

X = {x ∈ Rn : Ax ≤ b}
contains a polyhedral set

Y = {x ∈ Rn : Cx ≤ d}?
This situation arises in two cases:

— Y = ∅, X is arbitrary. To certify that this is the case, it suffices to point

out λ such that λ ≥ 0, CTλ = 0, dTλ < 0

— Y is nonempty and every one of the m linear inequalities aTi x ≤ bi defining

X is satisfied everywhere on Y . To certify that this is the case, it suffices

to point out x̄, λ1, ..., λm such that

CT x̄ ≤ d & λi ≥ 0, CTλi = ai, dTλi ≤ bi, 1 ≤ i ≤ m.

Note: Same as above, we can omit the necessity to point out x̄.
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Examples. • To certify that the set

Y = {x ∈ R3 : −2 ≤ x1 + x2 ≤ 2,−2 ≤ x2 + x3 ≤ 2,
−2 ≤ x3 + x1 ≤ 2}

is not contained in the box

X = {x ∈ R3 : |xi| ≤ 2,1 ≤ i ≤ 3},
it suffices to note that the vector x̄ = [3;−1;−1] belongs to Y and does not
belong to X.
• To certify that the above Y is contained in

X ′ = {x ∈ R3 : |xi| ≤ 3,1 ≤ i ≤ 3}
note that summing up the 6 inequalities

x1 + x2 ≤ 2, −x1 − x2 ≤ 2, x2 + x3 ≤ 2,−x2 − x3 ≤ 2,
x3 + x1 ≤ 2,−x3 − x1 ≤ 2

defining Y with the nonnegative weights
λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 1, λ5 = 1, λ6 = 0

we get
[x1 + x2] + [−x2 − x3] + [x3 + x1] ≤ 6⇒ x1 ≤ 3

— with the nonnegative weights
λ1 = 0, λ2 = 1, λ3 = 1, λ4 = 0, λ5 = 0, λ6 = 1

we get
[−x1 − x2] + [x2 + x3] + [−x3 − x1] ≤ 6⇒ −x1 ≤ 3

The inequalities −3 ≤ x2, x3 ≤ 3 can be obtained similarly ⇒ Y ⊂ X ′.
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♣ How to certify that a polyhedral set Y = {x ∈ Rn : Ax ≤ b} is

bounded/unbounded?

• Y is bounded iff for properly chosen R it holds

Y ⊂ XR = {x : |xi| ≤ R, 1 ≤ i ≤ n}

To certify this means

— either to certify that Y is empty, the certificate being λ: λ ≥ 0, ATλ =

0, bTλ < 0,

— or to point out vectors R and vectors λi± such that λi± ≥ 0, ATλi± =

±ei, bTλi± ≤ R for all i. Since R can be chosen arbitrary large, the lat-

ter amounts to pointing out vectors λi± such that λi± ≥ 0, ATλi± = ±ei,
i = 1, ..., n.

• Y is unbounded iff Y is nonempty and the recessive cone Rec(Y ) = {x :

Ax ≤ 0} is nontrivial. To certify that this is the case, it suffices to point out

x̄ satisfying Ax̄ ≤ b and d̄ satisfying d̄ 6= 0, Ad̄ ≤ 0.

Note: When Y = {x ∈ Rn : Ax ≤ b} is known to be nonempty, its

boundedness/unboundedness is independent of the particular value of b!
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Examples: • To certify that the set

X = {x ∈ R3 : −2 ≤ x1 + x2 ≤ 2,−2 ≤ x2 + x3 ≤ 2,
−2 ≤ x3 + x1 ≤ 2}

is bounded, it suffices to certify that it belongs to the box {x ∈ R3 : |xi| ≤
3,1 ≤ i ≤ 3}, which was already done.

• To certify that the set

X = {x ∈ R4 : −2 ≤ x1 + x2 ≤ 2,−2 ≤ x2 + x3 ≤ 2,
−2 ≤ x3 + x4 ≤ 2,−2 ≤ x4 + x1 ≤ 2}

is unbounded, it suffices to note that the vector x̄ = [0; 0; 0; 0] belongs to X,

and the vector d̄ = [1;−1; 1;−1] when plugged into the inequalities defining

X make the bodies of the inequalities zero and thus is a recessive direction

of X.
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Certificates in LO

♣ Consider LO program in the form

Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

♠ How to certify that (P ) is feasible/infeasible?

• To certify that (P ) is feasible, it suffices to point out a feasible solution x̄

to the program.

• To certify that (P ) is infeasible, it suffices to point out aggregation weights

λ`, λg, λe such that

λ` ≥ 0, λg ≤ 0
PTλ` +QTλg +RTλe = 0
pTλ` + qTλg + rTλe < 0
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Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

♠ How to certify that (P ) is bounded/unbounded?

• (P ) is bounded if either (P ) is infeasible, or (P ) is feasible and there exists a

such that the inequality cTx ≤ a is consequence of the system of constraints.

Consequently, to certify that (P ) is bounded, we should

— either point out an infeasibility certificate λ` ≥ 0, λg ≤ 0, λe : PTλ` +

QTλg +RTλe = 0, pTλ` + qTλg + rTλe < 0 for (P ),

— or point out a feasible solution x̄ and a, λ`, λg, λe such that

λ` ≥ 0, λg ≤ 0 & PTλ` +QTλg +RTλe = c

& pTλ` + qTλg + rTλe ≤ a
which, since a can be arbitrary, amounts to

λ` ≥ 0, λg ≤ 0, PTλ` +QTλg +RTλe = c

Note: We can skip the necessity to certify that (P ) is feasible.
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Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

• (P ) is unbounded iff (P ) is feasible and there is a recessive direction d such

that cTd > 0

⇒ to certify that (P ) is unbounded, we should point out a feasible solution

x̄ to (P ) and a vector d such that

Pd ≤ 0, Qd ≥ 0, Rd = 0, cTd > 0.

Note: If (P ) is known to be feasible, its boundedness/unboundedness is

independent of a particular value of [p; q; r].
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Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

♠ How to certify that Opt ≥ a for a given a ∈ R?
a certificate is a feasible solution x̄ with cTx ≥ a.
♠ How to certify that Opt ≤ a for a given a ∈ R?
Opt ≤ a iff the linear inequality cTx ≤ a is a consequence of the system of
constraints. To certify this, we should
— either point out an infeasibility certificate λ`, λg, λe:

λ` ≥ 0, λg ≤ 0,
P Tλ` +QTλg +RTλe = 0,
pTλe + qTλg + rTλe < 0

for (P ),
— or point out λ`, λg, λe such that

λ` ≥ 0, λg ≤ 0 (a)
P Tλ` +QTλg +RTλe = c (b)
pTλ` + qTλg + rTλe ≤ a (c)

Note: Whenever λ`, λg, λe satisfy (a) and (b), the left hand side in (c)
upper-bounds cTx for every x feasible for (P )
⇒ If cTx ≤ a for every feasible x and cT x̄ = a for some feasible x̄, then ”≤”
in (c) is in fact ”=”.
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Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

♣ How to certify that x̄ is an optimal solution to (P )?

• x̄ is optimal solution iff it is feasible and Opt ≤ cT x̄. The latter amounts

to existence of λ`, λg, λe such that

(a)︷ ︸︸ ︷
λ` ≥ 0, λg ≤ 0 &

(b)︷ ︸︸ ︷
PTλ` +QTλg +RTλe = c

& pTλ` + qTλg + rTλe = cT x̄︸ ︷︷ ︸
(c)

Multiplying both sides in (b) by x̄T and subtracting the resulting equality

from (c) results in

0 = λT`︸︷︷︸
≥0

≥0︷ ︸︸ ︷
[p− P x̄] + λTg︸︷︷︸

≤0

≤0︷ ︸︸ ︷
[q −Qx̄] +λTe

=0︷ ︸︸ ︷
[r −Rx̄]

which is possible iff (λ`)i[pi − (P x̄)i] = 0 for all i and (λg)j[qj − (Qx̄)j] = 0

for all j.
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Opt = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

♠ We have arrived at the Karush-Kuhn-Tucker Optimality Conditions in LO:

A feasible solution x̄ to (P ) is optimal iff the constraints of (P ) can

be assigned with vectors of Lagrange multipliers λ`, λg, λe in such a

way that

• [signs of multipliers] Lagrange multipliers associated with ≤-

constraints are nonnegative, and Lagrange multipliers associated

with ≥-constraints are nonpositive,

• [complementary slackness] Lagrange multipliers associated with

non-active at x̄ constraints are zero, and

• [KKT equation] One has

PTλ` +QTλg +RTλe = c .
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Example. To certify that the feasible solution x̄ = [1; ...; 1] ∈ Rn to the LO

program

max
x

{
x1 + ...+ xn :

x1 + x2 ≤ 2, x2 + x3 ≤ 2 , ..., xn + x1 ≤ 2

x1 + x2 ≥ −2, x2 + x3 ≥ −2 , ..., xn + x1 ≥ −2

}

is optimal, it suffices to assign the constraints with Lagrange multipliers

λ` = [1/2; 1/2; ...; 1/2], λg = [0; ...; 0] and to note that

λ` ≥ 0, λg ≤ 0

P Tλ` +QTλg =


1 1
1 1

1 1
1 .. .

. . . 1
1 1

λ` = c := [1; ...; 1]

and complementary slackness takes place.
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♣ Application: Faces of polyhedral set revisited. Recall that a face of a

nonempty polyhedral set

X = {x ∈ Rn : aTi x ≤ bi,1 ≤ i ≤ m}
is a nonempty set of the form

XI = {x ∈ Rn : aTi x = bi, i ∈ I, aTi x ≤ bi, i 6∈ I}
This definition is not geometric.

Geometric characterization of faces:

(i) Let cTx be a linear function bounded from above on X. Then the set

ArgmaxX c
Tx := {x ∈ X : cTx = max

x′∈X
cTx′}

is a face of X. In particular, if the maximizer of cTx over X exists and is

unique, it is an extreme point of X.

(ii) Vice versa, every face of X admits a representation as Argmaxx∈X c
Tx for

properly chosen c. In particular, every vertex of X is the unique maximizer,

over X, of some linear function.
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Proof, (i): Let cTx be bounded from above on X. Then the set X∗ = Argmaxx∈X c
Tx is

nonempty. Let x∗ ∈ X∗. By KKT Optimality conditions, there exist λ ≥ 0 such that∑
i λiai = c & λi > 0⇒ aTi x∗ = bi

Let I∗ = {i : λi > 0}, so that

(a):
∑

i∈I∗ λiai = c and (b): aTi x∗ = bi, i ∈ I∗.
We claim that

X∗ = XI∗ := {x ∈ X : aTi x = bi, i ∈ I∗}.
Indeed,

— x ∈ XI∗ ⇒ cTx = [
∑

i∈I∗ λiai]
Tx [by (a)]

=
∑

i∈I∗ λia
T
i x

=
∑

i∈I∗ bi [by (b)]

=
∑

i∈I∗ λia
T
i x∗ = cTx∗, [by (b) and (a)]

⇒ x ∈ X∗ := Argmax
y∈X

cTy, and

— x ∈ X∗ ⇒ cT(x∗ − x) = 0

⇒
∑

i∈I∗ λi(a
T
i x∗ − aTi x) = 0 [by (a)]

⇒
∑

i∈I∗ λi︸︷︷︸
>0

(bi − aTi x︸︷︷︸
≤bi

) = 0 [by (b) and due to x ∈ X]

⇒ aTi x = bi ∀i ∈ I∗ ⇒ x ∈ XI∗.

Proof, (ii): Let XI = {x ∈ X : aTi x = bi, i ∈ I} be a face of X, and let us set c =
∑

i∈I ai.

Same as above, it is immediately seen that XI = Argmaxx∈X c
Tx.
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LO Duality

♣ Consider an LO program

Opt(P ) = max
x

{
cTx : Ax ≤ b

}
(P )

The dual problem stems from the desire to bound from above the optimal

value of the primal problem (P ), To this end, we use our aggregation tech-

nique, specifically,

• assign the constraints aTi x ≤ bi with nonnegative aggregation weights λi
(“Lagrange multipliers”) and sum them up with these weights, thus getting

the inequality

[ATλ]Tx ≤ bTλ (!)

Note: by construction, this inequality is a consequence of the system of

constraints in (P ) and thus is satisfied at every feasible solution to (P ).

• We may be lucky to get in the left hand side of (!) exactly the objective

cTx:

ATλ = c.

In this case, (!) says that bTλ is an upper bound on cTx everywhere in the

feasible domain of (P ), and thus bTλ ≥ Opt(P ).
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Opt(P ) = max
x

{
cTx : Ax ≤ b

}
(P )

♠ We arrive at the problem of finding the best – the smallest – upper bound

on Opt(P ) achievable with our bounding scheme. This new problem is

Opt(D) = min
λ

{
bTλ : ATλ = c, λ ≥ 0

}
. (D)

It is called the problem dual to (P ).

♣ Note: Our “bounding principle” can be applied to every LO program,

independently of its format. For example, as applied to the primal LO

program in the form

Opt(P ) = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

it leads to the dual problem in the form of

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
PTλ` +QTλg +RTλe = c

} (D)
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Opt(P ) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

LO Duality Theorem:Consider a primal LO program (P ) along with its

dual program (D). Then

(i) [Primal-dual symmetry] The duality is symmetric: (D) is an LO pro-

gram, and the program dual to (D) is (equivalent to) the primal problem

(P ).

(ii) [Weak duality] We always have Opt(D) ≥ Opt(P ).

(iii) [Strong duality] The following 3 properties are equivalent to each

other:

• one of the problems is feasible and bounded

• both problems are solvable

• both problems are feasible

and whenever these equivalent to each other properties take place, we have

Opt(P ) = Opt(D).
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Opt(P ) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

Proof of Primal-Dual Symmetry: We rewrite (D) is exactly the same form as (P ), that
is, as

−Opt(D) = max
[λ`;λg,λe]

{
− pTλ` − qTλg − rTλe :{

λg ≤ 0, λ` ≥ 0
P Tλ` +QTλg +RTλe = c

}
and apply the recipe for building the dual, resulting in

min
[x`;xg;xe]

cTxe :


x` ≥ 0, xg ≤ 0
Pxe + xg = −p
Qxe + x` = −q
Rxe = −r


whence, setting xe = −x and eliminating xg and xe, the problem dual to dual becomes

min
x

{
−cTx : Px ≤ p,Qx ≥ q,Rx = r

}
which is equivalent to (P ). �
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Opt(P ) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

Proof of Weak Duality Opt(D) ≥ Opt(P ): by construction of the dual.
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Opt(P ) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

Proof of Strong Duality:
Main Lemma: Let one of the problems (P ), (D) be feasible and bounded.
Then both problems are solvable with equal optimal values.
Proof of Main Lemma: By Primal-Dual Symmetry, we can assume w.l.o.g. that the
feasible and bounded problem is (P ). By what we already know, (P ) is solvable. Let us
prove that (D) is solvable, and the optimal values are equal to each other.
• Observe that the linear inequality cTx ≤ Opt(P ) is a consequence of the (solvable!) system
of constraints of (P ). By Inhomogeneous Farkas Lemma

∃λ` ≥ 0, λg ≤ 0, λe :
P Tλ` +QTλg +RTλe = c & pTλ` + qTλg + rTλe ≤ Opt(P ).

⇒ λ is feasible for (D) with the value of dual objective ≤Opt(P ). By Weak Duality, this
value should be ≥Opt(P )
⇒ the dual objective at λ equals to Opt(P )
⇒ λ is dual optimal and Opt(D) = Opt(P ). �
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Main Lemma ⇒ Strong Duality:

• By Main Lemma, if one of the problems (P ), (D) is feasible and bounded,

then both problems are solvable with equal optimal values

• If both problems are solvable, then both are feasible

• If both problems are feasible, then both are bounded by Weak Duality, and

thus one of them (in fact, both of them) is feasible and bounded.
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Immediate Consequences

Opt(P ) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

Opt(D) = min
[λ`;λg,λe]

{
pTλ` + qTλg + rTλe :{

λ` ≥ 0, λg ≤ 0
P Tλ` +QTλg +RTλe = c

} (D)

♣ Optimality Conditions in LO: Let x and λ = [λ`;λg;λe] be a pair of
feasible solutions to (P ) and (D). This pair is comprised of optimal solutions
to the respective problems
• [zero duality gap] if and only if the duality gap, as evaluated at this pair,
vanishes:

DualityGap(x, λ) := [pTλ` + qTλg + rTλe]− cTx
= 0

• [complementary slackness] if and only if the products of all Lagrange
multipliers λi and the residuals in the corresponding primal constrains are
zero:

∀i : [λ`]i[p− Px]i = 0 & ∀j : [λg]j[q −Qx]j = 0.
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Proof: We are in the situation when both problems are feasible and thus
both are solvable with equal optimal values. Therefore

DualityGap(x, λ) :=
[
[pTλ` + qTλg + rTλe]−Opt(D)

]
+
[
Opt(P )− cTx

]
For a primal-dual pair of feasible solutions the expressions in the magenta

and the red brackets are nonnegative

⇒ Duality Gap, as evaluated at a primal-dual feasible pair, is nonnegative

and can vanish iff both the expressions in the magenta and the red brackets

vanish, that is, iff x is primal optimal and λ is dual optimal.

• Observe that

DualityGap(x, λ) = [pTλ` + qTλg + rTλe]− cTx
= [pTλ` + qTλg + rTλe]− [P Tλ` +QTλg +RTλe]Tx
= λT` [p− Px] + λTg [q −Qx] + λTe [r −Rx]
=
∑

i[λ`]i[p− Px]i +
∑

j[λg]j[q −Qx]j

Al terms in the resulting sums are nonnegative

⇒ Duality Gap vanishes iff the complementary slackness holds true.
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Geometry of a Primal-Dual Pair of LO Programs

Opt(P ) = max
x

{
cTx :

{
Px ≤ p (`)
Rx = r (e)

}
(P )

Opt(D) = min
[λ`;λe]

{
pTλ` + rTλe :

{
λ` ≥ 0
P Tλ` +RTλe = c

}
(D)

Standing Assumption: The systems of linear equations in (P ), (D) are solvable:

∃x̄, λ̄ = [λ̄`; λ̄e] : Rx̄ = r, P T λ̄` +RT λ̄e = −c

♣ Observation: Whenever Rx = r, we have

cTx = −[PT λ̄` +RT λ̄e]Tx = −λ̄T` [Px]− λ̄Te [Rx]

= λ̄T` [p− Px]+
[
−λ̄T` p− λ̄

T
e r
]

⇒ (P ) is equivalent to the problem

max
x

{
λ̄T` [p− Px] : p− Px ≥ 0, Rx = r

}
.

♠ Passing to the new variable (“primal slack”) ξ = p − Px, the problem
becomes

max
ξ

{
λ̄T` ξ : ξ ≥ 0, ξ ∈MP = ξ̄ + LP

}
[
LP = {ξ = Px : Rx = 0}
ξ̄ = p− P x̄

]
MP : primal feasible affine plane
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Opt(P ) = max
x

{
cTx :

{
Px ≤ p (`)
Rx = r (e)

}
(P )

Opt(D) = min
[λ`;λe]

{
pTλ` + rTλe :

{
λ` ≥ 0
P Tλ` +RTλe = c

}
(D)

♣ Let us express (D) in terms of the dual slack λ`. If [λ`;λe] satisfy the

equality constraints in (D), then

pTλ` + rTλe= pTλ` + [Rx̄]Tλe = pTλ` + x̄T [RTλe]
= pTλ` + x̄T [c− PTλ`] = [p− P x̄]Tλ` + x̄T c

= ξ̄Tλ`+x̄T c

Besides this,
P Tλ` +RTλe = c

⇔ P Tλ` +RTλe = −P T λ̄` −RT λ̄e
⇔ P T [λ` + λ̄`] +RT [λe + λ̄e] = 0
⇔ λ` ∈MD := LD − λ̄`,
LD = {µ` : ∃µe : P Tµ` +RTµe = 0}.

⇒ (D) is equivalent to the problem

min
λ`

{
ξ̄Tλ` : λ` ≥ 0, λ` ∈MD = LD − λ̄`

}
[
LD = {µ` : ∃µe : PTµ` +RTµe = 0}

]
MD : dual feasible affine plane
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Opt(P ) = max
x

{
cTx :

{
Px ≤ p (`)
Rx = r (e)

}
(P )

Opt(D) = min
[λ`;λe]

{
pTλ` + rTλe :

{
λ` ≥ 0
P Tλ` +RTλe = c

}
(D)

Bottom line: Problems (P ), (D) are equivalent to problems

max
ξ

{
λ̄T` ξ : ξ ≥ 0, ξ ∈MP = LP + ξ̄

}
(P)

min
λ`

{
ξ̄Tλ` : λ` ≥ 0, λ` ∈MD = LD − λ̄`

}
(D)

where

LP = {ξ : ∃x : ξ = Px,Rx = 0},
LD = {λ` : ∃λe : PTλ` +RTλe = 0}

Note: • Linear subspaces LP and LD are orthogonal complements of each

other

• The minus primal objective −λ̄` belongs to the dual feasible plane MD,

and the dual objective ξ̄ belongs to the primal feasible plane MP . Moreover,

replacing λ̄`, ξ̄ with any other pair of points from −MD and MP , problems

remain essentially intact – on the respective feasible sets, the objectives get

constant shifts
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Problems (P ), (D) are equivalent to problems

max
ξ

{
λ̄T` ξ : ξ ≥ 0, ξ ∈MP = LP + ξ̄

}
(P)

min
λ`

{
ξ̄Tλ` : λ` ≥ 0, λ` ∈MD = LD − λ̄`

}
(D)

where

LP = {ξ : ∃x : ξ = Px,Rx = 0},
LD = {λ` : ∃λe : PTλ` +RTλe = 0}

• A primal-dual feasible pair (x, [λ`;λe]) of solutions to (P ), (D) induces a

pair of feasible solutions (ξ = p− Px, λ`) to (P,D), and

DualityGap(x, [λ`, λe]) = λT` ξ.

Thus, to solve (P ), (D) to optimality is the same as to pick a pair of orthog-

onal to each other feasible solutions to (P), (D).
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♣ We arrive at a wonderful perfectly symmetric and transparent geometric

picture:

Geometrically, a primal-dual pair of LO programs is given by a pair of affine

planes MP and MD in certain RN ; these planes are shifts of linear subspaces

LP and LD which are orthogonal complements of each other.

We intersect MP and MD with the nonnegative orthant RN+, and our goal

is to find in these intersections two orthogonal to each other vectors.

♠ Duality Theorem says that this task is feasible if and only if both MP and

MD intersect the nonnegative orthant.
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x

z

O

y

Geometry of primal-dual pair of LO programs:

Blue area: feasible set of (P) — intersection of the 2D primal feasible plane MP with the

nonnegative orthant R3
+.

Red segment: feasible set of (D) — intersection of the 1D dual feasible plane MD with the

nonnegative orthant R3
+.

Blue dot: primal optimal solution ξ∗.

Red dot: dual optimal solution λ∗`.

Pay attention to orthogonality of the primal solution (which is on the z-axis) and the dual

solution (which is in the xy-plane).
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The Cost Function of an LO program, I

♣ Consider an LO program

Opt(b) = max
x

{
cTx : Ax ≤ b

}
. (P [b])

Note: we treat the data A, c as fixed, and b as varying, and are interested
in the properties of the optimal value Opt(b) as a function of b.
♠ Fact: When b is such that (P [b]) is feasible, the property of problem to
be/not to be bounded is independent of the value of b.
Indeed, a feasible problem (P [b]) is unbounded iff there exists d: Ad ≤
0, cTd > 0, and this fact is independent of the particular value of b.
Standing Assumption: There exists b such that P ([b]) is feasible and
bounded
⇒ P ([b]) is bounded whenever it is feasible.
Theorem Under Assumption, −Opt(b) is a polyhedrally representable func-
tion with the polyhedral representation

{[b; τ ] : −Opt(b) ≤ τ} = {[b; τ ] : τ + Opt(b) ≥ 0}
= {[b; τ ] : ∃x : Ax ≤ b, τ + cTx ≥ 0}.

The function Opt(b) is monotone in b:
b′ ≤ b′′ ⇒ Opt(b′) ≤ Opt(b′′).
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Opt(b) = max
x

{
cTx : Ax ≤ b

}
. (P [b])

♠ Additional information can be obtained from Duality. The problem dual
to (P [b]) is

min
λ

{
bTλ : λ ≥ 0, ATλ = c

}
. (D[b])

By LO Duality Theorem, under our Standing Assumption (D[b]) is feasible
for every b for which P ([b]) is feasible, and

Opt(b) = min
λ

{
bTλ : λ ≥ 0, ATλ = c

}
. (∗)

Observation: Let b̄ be such that Opt(̄b) > −∞, so that (D[̄b]) is solvable,
and let λ̄ be an optimal solution to (D[̄b]). Then λ̄ is a supergradient of
Opt(b) at b = b̄, meaning that

∀b : Opt(b) ≤ Opt(̄b) + λ̄T [b− b̄]. (!)

Indeed, by (∗) we have Opt(̄b) = λ̄T b̄ and Opt(b) ≤ λ̄T b, that is, Opt(b) ≤
λ̄T b̄+ λ̄T [b− b̄] = Opt(̄b) + λ̄T [b− b̄]. �
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Opt(b) = max
x

{
cTx : Ax ≤ b

}
(P [b])

= min
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(D[b])

Opt(̄b) > −∞, λ̄ ∈ Argmin
λ
{̄bTλ : λ ≥ 0, ATλ = c}

⇒ Opt(b) ≤ Opt(̄b) + λ̄[b− b̄] (!)

Opt(b) is a polyhedrally representable and thus piecewise-linear function with

the full-dimensional domain:

Dom Opt(·) = {b : ∃x : Ax ≤ b}.

Representing the feasible set Λ = {λ : λ ≥ 0, ATλ = c} of (D[b]) as

Λ = Conv({λ1, ..., λN}) + Cone ({r1, ..., rM})

we get

Dom Opt(b) = {b : bT rj ≥ 0, 1 ≥ j ≤M},
b ∈ Dom Opt(b)⇒ Opt(b) = min

1≤i≤N
λTi b
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Opt(b) = max
x

{
cTx : Ax ≤ b

}
(P [b])

= min
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(D[b])

Opt(̄b) > −∞, λ̄ ∈ Argmin
λ
{̄bTλ : λ ≥ 0, ATλ = c}

⇒ Opt(b) ≤ Opt(̄b) + λ̄[b− b̄] (!)

Dom Opt(b) = {b : bT rj ≥ 0, 1 ≤ j ≤M},
b ∈ Dom Opt(b)⇒ Opt(b) = min

1≤i≤N
λTi b

⇒ Under our Standing Assumption,

• Dom Opt(·) is a full-dimensional polyhedral cone,

• Assuming w.l.o.g. that λi 6= λj when i 6= j, the finitely many hyperplanes

{b : λTi b = λTj b}, 1 ≤ i < j ≤ N , split this cone into finitely many cells, and in

the interior of every cell Opt(b) is a linear function of b.

• By (!), when b is in the interior of a cell, the optimal solution λ(b) to (D[b])

is unique, and λ(b) = ∇Opt(b).
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Law of Diminishing Marginal Returns

♠ Consider a function of the form

Opt(β) = max
x

{
cTx : Px ≤ p, qTx ≤ β

}
(Pβ)

Interpretation: x is a production plan, qTx is the price of resources required
by x, β is our investment in the recourses, Opt(β) is the maximal return for
an investment β. Assume that (Pβ) is feasible for some β.
♠ As above, for β such that (Pβ) is feasible, the problem is either always
bounded, or is always unbounded. Assume that the first is the case. Then
• The domain Dom Opt(·) of Opt(·) is a nonempty ray β ≤ β < ∞ with
β ≥ −∞, and
• Opt(β) is nondecreasing and concave.
Monotonicity and concavity imply that if

β ≤ β1 < β2 < β3,
then

Opt(β2)−Opt(β1)

β2 − β1
≥

Opt(β3)−Opt(β2)

β3 − β2
,

that is, the reward for an extra $1 in the investment can only decrease (or
remain the same) as the investment grows.
In Economics, this is called the law of diminishing marginal returns.
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The Cost Function of an LO program, II

♣ Consider an LO program

Opt(c) = max
x

{
cTx : Ax ≤ b

}
. (P [c])

Note: we treat the data A, b as fixed, and c as varying, and are interested

in the properties of Opt(c) as a function of c.

Standing Assumption: (P [·]) is feasible (this fact is independent of the

value of c).

Theorem Under Assumption, Opt(c) is a polyhedrally representable function

with the polyhedral representation

{[c; τ ] : Opt(c) ≤ τ} = {[c; τ ] : ∃λ : λ ≥ 0, ATλ = c, bTλ ≤ τ}.
Proof. Since (P [c]) is feasible, by LO Duality Theorem the program is solvable if and only

if the dual program

min
λ
{bTλ : λ ≥ 0, ATλ = c} (D[c])

is feasible, and in this case the optimal values of the problems are equal
⇒ τ ≥ Opt(c) iff (D[c]) has a feasible solution with the value of the objective ≤ τ . �
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Opt(c) = max
x

{
cTx : Ax ≤ b

}
. (P [c])

Theorem Let c̄ be such that Opt(c̄) <∞, and x̄ be an optimal solution to

(P [c̄]). Then x̄ is a subgradient of Opt(·) at the point c̄:

∀c : Opt(c) ≥ Opt(c̄) + x̄T [c− c̄]. (!)

Proof: We have Opt(c) ≥ cT x̄ = c̄T x̄+ [c− c̄]T x̄ = Opt(c̄) + x̄T [c− c̄]. �

♠ Representing

{x : Ax ≤ b} = Conv({v1, ..., vN}) + Cone ({r1, ..., rM}),

we see that

• Dom Opt(·) = {c : rTj c ≤ 0, 1 ≤ j ≤M} is a polyhedral cone, and

• c ∈ Dom Opt(·)⇒ Opt(c) = max
1≤i≤N

vTi c.

In particular, if Dom Opt(·) is full-dimensional and vi are distinct from each

other, everywhere in Dom Opt(·) outside finitely many hyperplanes {c : vTi c =

vTj c}, 1 ≤ i < j ≤ N , the optimal solution x = x(c) to (P [c]) is unique and

x(c) = ∇Opt(c).
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♣ Let X = {x ∈ Rn : Ax ≤ b} be a nonempty polyhedral set. The function

Opt(c) = max
x∈X

cTx : Rn → R ∪ {+∞}

has a name - it is called the support function of X. Along with already in-

vestigated properties of the support function, an important one is as follows:

♠ The support function of a nonempty polyhedral set X “remembers” X: if

Opt(c) = max
x∈X

cTx,

then

X = {x ∈ Rn : cTx ≤ Opt(c) ∀c}.

Proof. Let X+ = {x ∈ Rn : cTx ≤ Opt(c) ∀c}. We clearly have X ⊂ X+. To

prove the inverse inclusion, let x̄ ∈ X+; we want to prove that x ∈ X. To

this end let us represent X = {x ∈ Rn : aTi x ≤ bi, 1 ≤ i ≤ m}. For every i, we

have

aTi x̄ ≤ Opt(ai) ≤ bi,

and thus x̄ ∈ X. �
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Applications of Duality in Robust LO

♣ Data uncertainty: Sources

Typically, the data of real world LOs

max
x

{
cTx : Ax ≤ b

}
[A = [aij] : m× n] (LO)

is not known exactly when the problem is being solved. The most common

reasons for data uncertainty are:

• Some of data entries (future demands, returns, etc.) do not exist when

the problem is solved and hence are replaced with their forecasts. These

data entries are subject to prediction errors

• Some of the data (parameters of technological devices/processes, contents

associated with raw materials, etc.) cannot be measured exactly, and their

true values drift around the measured “nominal” values. These data are

subject to measurement errors
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• Some of the decision variables (intensities with which we intend to use

various technological processes, parameters of physical devices we are de-

signing, etc.) cannot be implemented exactly as computed. The resulting

implementation errors are equivalent to appropriate artificial data uncertain-

ties.

A typical implementation error can be modeled as xj 7→ (1+ξj)xj+ηj,

and effect of these errors on a linear constraint
n∑

j=1

aijxj ≤ bj

is as if there were no implementation errors, but the data aij got the

multiplicative perturbations:

aij 7→ aij(1 + ξj) ,

and the data bi got the perturbation

bi 7→ bi −
∑
j ηjaij.
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Data uncertainty: Dangers.

In the traditional LO methodology, a small data uncertainty (say, 0.1% or

less) is just ignored: the problem is solved as if the given (“nominal”) data

were exact, and the resulting nominal optimal solution is what is recom-

mended for use.

Rationale: we hope that small data uncertainties will not affect too badly

the feasibility/optimality properties of the nominal solution when plugged

into the “true” problem.

Fact: The above hope can be by far too optimistic, and the nominal solution

can be practically meaningless.
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♣ Example: Antenna Design
♠ [Physics:] Directional density of energy transmitted by a monochromatic
antenna placed at the origin is proportional to |D(δ)|2, where the antenna’s
diagram D(δ) is a complex-valued function of 3-D direction (unit 3-D vector)
δ.
♠ [Physics:] For an antenna array — a complex antenna comprised of a
number of antenna elements, the diagram is

D(δ) =
∑

j
xjDj(δ) (∗)

• Dj(·): diagrams of elements
• xj: complex weights – design parameters responsible for how the elements
in the array are invoked.
♠ Antenna Design problem: Given diagrams

D1(·), ..., Dn(·)
and a target diagram D∗(·), find complex weights xi which make the syn-
thesized diagram (∗) as close as possible to the target diagram D∗(·).
♥ When Dj(·), D∗(·) and the weights are real and the “closeness’ is quan-
tified by the maximal deviation along a finite grid Γ of directions, Antenna
Design becomes the LO problem

min
x∈Rn,τ

{
τ : −τ ≤ D∗(δ)−

∑
j
xjDj(δ) ≤ τ ∀δ ∈ Γ

}
.
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♠ Example: Consider planar antenna array comprised of 10 elements (circle surrounded by
9 rings of equal areas) in the plane XY (Earth’s surface”), and our goal is to send most of
the energy “up,” along the 12o cone around the Z-axis.
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• Diagram of a ring {z = 0, a ≤
√
x2 + y2 ≤ b}:

Da,b(θ) = 1
2

b∫
a

[
2π∫
0

r cos
(
2πrλ−1 cos(θ) cos(φ)

)
dφ

]
dr,

• θ: altitude angle • λ: wavelength

0 10 20 30 40 50 60 70 80 90
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

10 elements,
equal areas,

outer radius 1 m

Diagrams of the
elements vs the
altitude angle θ,

λ =50 cm
• Nominal design problem:

τ∗ = min
x∈R10,τ

{
τ : −τ ≤ D∗(θi)−

10∑
j=1

xjDj(θi) ≤ τ,

1 ≤ i ≤ 240
}
, θi = iπ

480

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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1

1.2

Target (blue) and nominal
optimal (magenta) diagrams,

τ∗ = 0.0589
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But: The design variables are characteristics of physical devices and as such they cannot be
implemented exactly as computed. What happens when there are implementation errors:

xfact
j = (1 + εj)x

comp
j , εj ∼ Uniform[−ρ, ρ]

with small ρ?
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ρ = 0 ρ = 0.0001 ρ = 0.001 ρ = 0.01

“Dream and reality,” nominal optimal design: samples of 100 actual diagrams (red) for
different uncertainty levels. Blue: the target diagram

Dream Reality
ρ = 0 ρ = 0.0001 ρ = 0.001 ρ = 0.01
value mean mean mean

‖ · ‖∞-distance
to target 0.059 5.671 56.84 506.5

energy
concentration 85.1% 16.4% 16.5% 14.9%

Quality of nominal antenna design: dream and reality. Data over 100 samples of
actuation errors per each uncertainty level.

♠ Conclusion: Nominal optimal design is completely meaningless...
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NETLIB Case Study: Diagnosis

♣ NETLIB is a collection of about 100 not very large LPs, mostly of real-world
origin. To motivate the methodology of our “case study”, here is constraint
# 372 of the NETLIB problem PILOT4:

aTx ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829
−1.526049x830 − 0.031883x849 − 28.725555x850 − 10.792065x851
−0.19004x852 − 2.757176x853 − 12.290832x854 + 717.562256x855
−0.057865x856 − 3.785417x857 − 78.30661x858 − 122.163055x859
−6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863
−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870
−0.401597x871 + x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

The related nonzero coordinates in the optimal solution x∗ of the problem,
as reported by CPLEX, are:

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100
x∗828 = 3624.613324098961 x∗829 = 18.20205065283259
x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

This solution makes the constraint an equality within machine precision.
♣ Most of the coefficients in the constraint are “ugly reals” like -15.79081
or -84.644257. We can be sure that these coefficients characterize techno-
logical devices/processes, and as such hardly are known to high accuracy.
⇒ “ugly coefficients” can be assumed uncertain and coinciding with the
“true” data within accuracy of 3-4 digits.

The only exception is the coefficient 1 of x880, which perhaps reflects the
structure of the problem and is exact.
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aTx ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829
−1.526049x830 − 0.031883x849 − 28.725555x850 − 10.792065x851
−0.19004x852 − 2.757176x853 − 12.290832x854 + 717.562256x855
−0.057865x856 − 3.785417x857 − 78.30661x858 − 122.163055x859
−6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863
−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870
−0.401597x871 + x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

♣ Assume that the uncertain entries of a are 0.1%-accurate approximations
of unknown entries in the “true” data ã. How does data uncertainty affect
the validity of the constraint as evaluated at the nominal solution x∗?
• The worst case, over all 0.1%-perturbations of uncertain data, violation
of the constraint is as large as 450% of the right hand side!
• With random and independent of each other 0.1% perturbations of the
uncertain coefficients, the statistics of the “relative constraint violation”

V = max[b−ãTx∗,0]
b × 100%

also is disastrous:
Prob{V > 0} Prob{V > 150%} Mean(V )

0.50 0.18 125%
Relative violation of constraint # 372 in PILOT4
(1,000-element sample of 0.1% perturbations)

♣ We see that quite small (just 0.1%) perturbations of “obviously uncer-
tain” data coefficients can make the “nominal” optimal solution x∗ heavily
infeasible and thus – practically meaningless.
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♣ In Case Study, we choose a “perturbation level” ρ ∈ {1%,0.1%,0.01%},
and, for every one of the NETLIB problems, measure the “reliability index” of

the nominal solution at this perturbation level:

• We compute the optimal solution x∗ of the program

• For every one of the inequality constraints

aTx ≤ b
— we split the left hand side coefficients aj into “certain” (rational fractions

p/q with |q| ≤ 100) and “uncertain” (all the rest). Let J be the set of all

uncertain coefficients of the constraint.

— we compute the reliability index of the constraint
max[aTx∗+ρ

√∑
j∈J a

2
j (x∗j)

2−b,0]

max[1,|b|] × 100%

Note: the reliability index is of order of typical violation (measured in per-

cents of the right hand side) of the constraint, as evaluated at x∗, under

independent random perturbations, of relative magnitude ρ, of the uncertain

coefficients.

•We treat the nominal solution as unreliable, and the problem - as bad, the

level of perturbations being ρ, if the worst, over the inequality constraints,

reliability index is worse than 5%.
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♣ The results of the Diagnosis phase of Case Study are as follows. From the 90 NETLIB
problems,
— in 27 problems the nominal solution turned out to be unreliable when ρ = 1%;
— 19 of these 27 problems were already bad at the ρ = 0.01%-level of uncertainty
— in 13 problems, 0.01% perturbations of the uncertain data can make the nominal solution
more than 50%-infeasible for some of the constraints.

Problem Sizea) ρ = 0.01% ρ = 0.1%
#badb) Indexc) #bad Index

80BAU3B 2263× 9799 37 84 177 842
25FV47 822× 1571 14 16 28 162
ADLITTLE 57× 97 2 6
AFIRO 28× 32 1 5
CAPRI 272× 353 10 39
CYCLE 1904× 2857 2 110 5 1,100
D2Q06C 2172× 5167 107 1,150 134 11,500
FINNIS 498× 614 12 10 63 104
GREENBEA 2393× 5405 13 116 30 1,160
KB2 44× 41 5 27 6 268
MAROS 847× 1443 3 6 38 57
PEROLD 626× 1376 6 34 26 339
PILOT 1442× 3652 16 50 185 498
PILOT4 411× 1000 42 210,000 63 2,100,000
PILOT87 2031× 4883 86 130 433 1,300
PILOTJA 941× 1988 4 46 20 463
PILOTNOV 976× 2172 4 69 13 694
PILOTWE 723× 2789 61 12,200 69 122,000
SCFXM1 331× 457 1 95 3 946
SCFXM2 661× 914 2 95 6 946
SCFXM3 991× 1371 3 95 9 946
SHARE1B 118× 225 1 257 1 2,570

a) # of linear constraints (excluding the box ones) plus 1 and # of variables
b) # of constraints with index > 5%
c) The worst, over the constraints, reliability index, in %
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♣ Conclusions:

♦ In real-world applications of Linear Programming one cannot ignore the

possibility that a small uncertainty in the data (intrinsic for the majority of

real-world LP programs) can make the usual optimal solution of the problem

completely meaningless from practical viewpoint.

Consequently,

♦ In applications of LP, there exists a real need of a technique capable of

detecting cases when data uncertainty can heavily affect the quality of the

nominal solution, and in these cases to generate a “reliable” solution, one

which is immune against uncertainty.

Robust LO is aimed at meeting this need.
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Robust LO: Paradigm

♣ In Robust LO, one considers an uncertain LO problem

P =
{

max
x

{
cTx : Ax ≤ b

}
: (c, A, b) ∈ U

}
,

— a family of all usual LO instances of common sizes m (number of con-

straints) and n (number of variables) with the data (c, A, b) running through

a given uncertainty set U ⊂ Rnc × Rm×nA × Rmb .

♠ We consider the situation where

• The solution should be built before the “true” data reveals itself and thus

cannot depend on the true data. All we know when building the solution is

the uncertainty set U to which the true data belongs.

• The constraints are hard: we cannot tolerate their violation.
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♠ In the outlined “decision environment,” the only meaningful candidate so-

lutions x are the robust feasible ones – those which remain feasible whatever

be a realization of the data from the uncertainty set:

x ∈ Rn is robust feasible for P ⇔ Ax ≤ b∀(c, A, b) ∈ U

♥ We characterize the objective at a candidate solution x by the guaranteed

value

t(x) = min{cTx : (c, A, b) ∈ U}

of the objective.
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P =
{

max
x

{
cTx : Ax ≤ b

}
: (c, A, b) ∈ U

}
,

♥ Finally, we associate with the uncertain problem P its Robust Counterpart

ROpt(P)= max
t,x

{
t : t ≤ cTx, Ax ≤ b∀(c, A, b) ∈ U

}
(RC)

where one seeks for the best (with the largest guaranteed value of the

objective) robust feasible solution to P.

The optimal solution to the RC is treated as the best among “immunized

against uncertainty” solutions and is recommended for actual use.

Basic question: Unless the uncertainty set U is finite, the RC is not an

LO program, since it has infinitely many linear constraints. Can we convert

(RC) into an explicit LO program?
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P =
{

max
x

{
cTx : Ax ≤ b

}
: (c, A, b) ∈ U

}
⇒ max

t,x

{
t : t ≤ cTx, Ax ≤ b∀(c, A, b) ∈ U

}
(RC)

Observation: The RC remains intact when the uncertainty set U is replaced

with its convex hull.

Theorem: The RC of an uncertain LO program with nonempty polyhe-

drally representable uncertainty set is equivalent to an LO program. Given

a polyhedral representation of U, the LO reformulation of the RC is easy to

get.
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P =
{

max
x

{
cTx : Ax ≤ b

}
: (c, A, b) ∈ U

}
⇒ max

t,x

{
t : t ≤ cTx, Ax ≤ b ∀(c, A, b) ∈ U

}
(RC)

Proof of Theorem. Let
U = {ζ = (c, A, b) ∈ RN : ∃w : Pζ +Qw ≤ r}

be a polyhedral representation of the uncertainty set. Setting y = [x; t], the
constraints of (RC) become

qi(ζ)− pTi (ζ)y ≤ 0∀ζ ∈ U , 0 ≤ i ≤ m (Ci)
with pi(·), qi(·) affine in ζ. We have

qi(ζ)− pTi (ζ)y ≡ πTi (y)ζ − θi(y),
with θi(y), πi(y) affine in y. Thus, i-th constraint in (RC) reads

max
ζ,wi

{
πTi (y)ζ : Pζ +Qwi ≤ r

}
= max

ζ∈U
πTi (y)ζ ≤ θi(y).

Since U 6= ∅, by the LO Duality we have
max
ζ,wi

{
πTi (y)ζ : Pζ +Qwi ≤ r

}
= min

ηi

{
rTηi : ηi ≥ 0, P Tηi = πi(y), QTηi = 0

}
⇒ y satisfies (Ci) if and only if there exists ηi such that

ηi ≥ 0, P Tηi = πi(y), QTηi = 0, rTηi ≤ θi(y) (Ri)

⇒ (RC) is equivalent to the LO program of maximizing eTy ≡ t in variables
y, η0, η1, ..., ηm under the linear constraints (Ri), 0 ≤ i ≤ m.
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♠ Example: The Robust Counterpart of uncertain LO with interval uncer-
tainty:

Uobj = {c : |cj − c0
j | ≤ δcj, j = 1, ..., n}

Ui = {(ai1, , , .aim, bi) : |aij − a0
ij| ≤ δaij, |bi − b0

i | ≤ δbi}

is the program

max
x,t

t :

t ≤
∑
j
c0j xj −

∑
j
δcj|xj|∑

j
a0
ijxj +

∑
j
δaij|xj| ≤ bi − δb0i


which is equivalent to the LO program

max
x,y,t

t :

t ≤
∑
j
c0j xj −

∑
j
δcjyj∑

j
a0
ijxj +

∑
j
δaijyj ≤ bi − δb0i

−yj ≤ xj ≤ yj


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How it works? – Antenna Example
min
x,τ

{
τ : −τ ≤ D∗(θ`)−

∑10
j=1 xjDj(θ`) ≤ τ, ` = 1, ..., L

}
m

min
x,τ
{τ : Ax+ τa+ b ≥ 0} (LO)

• The influence of “implementation errors”

xj 7→ (1 + εj)xj
with |εj| ≤ ρ ∈ [0,1] is as if there were no implementation errors, but the part

A of the constraint matrix was uncertain and known “up to multiplication

by a diagonal matrix with diagonal entries from [1− ρ,1 + ρ]”:

U =
{
A = AnomDiag{1 + ε1, ...,1 + ε10} : |εj| ≤ ρ

}
(U)

Note that as far as a particular constraint is concerned, the uncertainty

is an interval one with δAij = ρ|Aij|. The remaining coefficients (and the

objective) are certain.

♣ To improve reliability of our design, we replace the uncertain LO program

(LO), (U) with its robust counterpart, which is nothing but an explicit LO

program.
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How it Works: Antenna Design (continued)

min
τ,x

{
τ : −τ ≤ D∗(θi)−

∑10
j=1 xjDj(θi) ≤ τ, 1 ≤ i ≤ I

}
, xj 7→ (1 + εj)xj, −ρ ≤ εj ≤ ρ

⇒ min
τ,x

{
τ :

D∗(θi)−
∑

j xjDj(θi)−ρ
∑
j

|xj||Dj(θi)| ≥ −τ

D∗(θi)−
∑

j xjDj(θi)+ρ
∑

j |xj||Dj(θi)| ≤ τ
, 1 ≤ i ≤ I

}

♠ Solving the Robust Counterpart at uncertainty level ρ = 0.01, we arrive at robust design.

The robust optimal value is 0.0815 (39% more than the nominal optimal value 0.0589).
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ρ = 0.01 ρ = 0.05 ρ = 0.1
Robust optimal design: samples of 100 actual diagrams (red).

Reality
ρ = 0.01 ρ = 0.1

‖ · ‖∞
distance
to target

max = 0.081
mean = 0.077

max = 0.216
mean = 0.113

energy
concentration

min = 70.3%
mean = 72.3%

min = 52.2%
mean = 70.8%

Robust optimal design, data over 100 samples of actuation errors.

• For nominal design with ρ = 0.001, the average ‖ · ‖∞-distance to target is 56.8, and average energy

concentration is 16.5%.
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♣ Why the “nominal design” is that unreliable?
• The basic diagrams Dj(·) are “nearly linearly dependent”. As a result,
the nominal problem is “ill-posed” – it possesses a huge domain comprised
of “nearly optimal” solutions. Indeed, look what are the optimal values in
the nominal Antenna Design LO with added box constraints |xj| ≤ L on the
variables:

L 1 10 102 103 104 105 106

Opt Val 0.0945 0.0800 0.0736 0.0696 0.0649 0.0607 0.0589

The “exactly optimal” solution to the nominal problem is very large, and

therefore even small relative implementation errors may completely destroy

the design.

• In the robust counterpart, magnitudes of candidate solutions are penal-

ized, and RC implements a smart trade-off between the optimality and the

magnitude (i.e., the stability) of the solution.
j 1 2 3 4 5 6 7 8 9 10

xnom
j 2e3 -1e4 6e4 -1e5 1e5 2e4 -1e5 1e6 -7e4 1e4
xrob
j -0.3 5.0 -3.4 -5.1 6.9 5.5 5.3 -7.5 -8.9 13
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How it works? NETLIB Case Study

♣ When applying the RO methodology to the bad NETLIB problems, assum-

ing interval uncertainty of (relative) magnitude ρ ∈ {1%,0.1%,0.01%} in

“ugly coefficients” of inequality constraints (no uncertainty in equations!),

it turns out that

• Reliable solutions do exist, except for 4 cases corresponding to the highest

(ρ = 1%) perturbation level.

• The “price of immunization” in terms of the objective value is surprisingly

low: when ρ ≤ 0.1%, it never exceeds 1% and it is less than 0.1% in 13 of

23 cases. Thus, passing to the robust solutions, we gain a lot in the ability

of the solution to withstand data uncertainty, while losing nearly nothing in

optimality.
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Objective at robust solution

Problem
Nominal
optimal

value
ρ = 0.1% ρ = 1%

80BAU3B 987224.2 1009229 (2.2%)
25FV47 5501.846 5502.191 (0.0%) 5505.653 (0.1%)
ADLITTLE 225495.0 228061.3 (1.1%)
AFIRO -464.7531 -464.7500 (0.0%) -464.2613 (0.1%)
BNL2 1811.237 1811.237 (0.0%) 1811.338 (0.0%)
BRANDY 1518.511 1518.581 (0.0%)
CAPRI 1912.621 1912.738 (0.0%) 1913.958 (0.1%)
CYCLE 1913.958 1913.958 (0.0%) 1913.958 (0.0%)
D2Q06C 122784.2 122893.8 (0.1%) Infeasible
E226 -18.75193 -18.75173 (0.0%)
FFFFF800 555679.6 555715.2 (0.0%)
FINNIS 172791.1 173269.4 (0.3%) 178448.7 (3.3%)
GREENBEA -72555250 -72192920 (0.5%) -68869430 (5.1%)
KB2 -1749.900 -1749.638 (0.0%) -1746.613 (0.2%)
MAROS -58063.74 -58011.14 (0.1%) -57312.23 (1.3%)
NESM 14076040 14172030 (0.7%)
PEROLD -9380.755 -9362.653 (0.2%) Infeasible
PILOT -557.4875 -555.3021 (0.4%) Infeasible
PILOT4 -64195.51 -63584.16 (1.0%) -58113.67 (9.5%)
PILOT87 301.7109 302.2191 (0.2%) Infeasible
PILOTJA -6113.136 -6104.153 (0.2%) -5943.937 (2.8%)
PILOTNOV -4497.276 -4488.072 (0.2%) -4405.665 (2.0%)
PILOTWE -2720108 -2713356 (0.3%) -2651786 (2.5%)
SCFXM1 18416.76 18420.66 (0.0%) 18470.51 (0.3%)
SCFXM2 36660.26 36666.86 (0.0%) 36764.43 (0.3%)
SCFXM3 54901.25 54910.49 (0.0%) 55055.51 (0.3%)
SHARE1B -76589.32 -76589.32 (0.0%) -76589.29 (0.0%)

Objective values at nominal and robust solutions to badNETLIB problems.
Percent in (·): Excess of robust optimal value over the nominal optimal value
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Affinely Adjustable Robust Counterpart

♣ The rationale behind the Robust Optimization paradigm as applied to LO
is based on two assumptions:
A. Constraints of an uncertain LO program are a “must”: a meaningful
solution should satisfy all realizations of the constraints allowed by the un-
certainty set.
B. All decision variables should be defined before the true data become
known and thus should be independent of the true data.
♣ In many cases, Assumption B is too conservative:
• In dynamical decision-making, only part of decision variables correspond
to “here and now” decisions, while the remaining variables represent “wait
and see” decisions to be made when part of the true data will be already
revealed.
(!) “Wait and see” decision variables may – and should! – depend on the
corresponding part of the true data.
• Some of decision variables do not represent actual decisions at all; they
are artificial “analysis variables” introduced to convert the problem into the
LO form.
(!) Analysis variables may – and should! – depend on the entire true data.
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Example: Consider the problem of the best ‖ · ‖1-approximation

min
x,t

t :
∑
i

|bi −
∑
j

aijxj| ≤ t

 . (P)

When the data are certain, this problem is equivalent to the LP program

min
x,y,t

t :
∑
i

yi ≤ t, −yi ≤ bi −
∑
j

aijxj ≤ yi ∀i

 . (LP)

With uncertain data, the Robust Counterpart of (P) becomes the semi-infinite problem

min
x,t

t :
∑
i

|bi −
∑
j

aijxj| ≤ t∀(bi, aij) ∈ U

,
or, which is the same, the problem

min
x,t

t : ∀(bi, aij) ∈ U : ∃y :
∑
i

yi ≤ t, −yi ≤ bi −
∑
j

aijxj ≤ yi

,
while the RC of (LP) is the much more conservative problem

min
x,t

t : ∃y : ∀(bi, aij) ∈ U :
∑
i

yi ≤ t, −yi ≤ bi −
∑
j

aijxj ≤ yi

.
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Adjustable Robust Counterpart of an Uncertain LO

♣ Consider an uncertain LO. Assume w.l.o.g. that the data of LO are

affinely parameterized by a “perturbation vector” ζ running through a given

perturbation set Z:

LP =
{

max
x

{
cT [ζ]x : A[ζ]x− b[ζ] ≤ 0

}
: ζ ∈ Z

}
[
cj[ζ], Aij[ζ], bi[ζ] : affine in ζ

]
♠ Assume that every decision variable may depend on a given “portion” of

the true data. Since the latter is affine in ζ, this assumption says that xj
may depend on Pjζ, where Pj are given matrices.

• Pj = 0 ⇒ xj is non-adjustable: xj represents an independent of the true

data “here and now” decision;

• Pj 6= 0 ⇒ xj is adjustable: xj represents a “wait and see’ decision or an

analysis variable which may adjust itself – fully or partially, depending on Pj
– to the true data.

3.82



LP =
{

max
x

{
cT [ζ]x : A[ζ]x− b[ζ] ≤ 0

}
: ζ ∈ Z

}
[
cj[ζ], Aij[ζ], bi[ζ] : affine in ζ

]
♣ Under the circumstances, a natural Robust Counterpart of LP is the

problem

Find t and functions φj(·) such that the decision rules xj = φj(Pjζ)

make all the constraints feasible for all perturbations ζ ∈ Z, while

minimizing the guaranteed value t of the objective:

max
t,{φj(·)}

t :

∑
j
cj[ζ]φj(Pjζ) ≥ t ∀ζ ∈ Z∑

j
φj(Pjζ)Aj[ζ]− b[ζ] ≤ 0 ∀ζ ∈ Z

 (ARC)
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♣ Bad news: The Adjustable Robust Counterpart

max
t,{φj(·)}

t :

∑
j
cj[ζ]φj(Pjζ) ≥ t∀ζ ∈ Z∑

j
φj(Pjζ)Aj[ζ]− b[ζ] ≤ 0∀ζ ∈ Z

 (ARC)

of uncertain LP is an infinite-dimensional optimization program and as such

typically is absolutely intractable: How could we represent efficiently general-

type functions of many variables, not speaking about how to optimize with

respect to these functions?

♠ Partial Remedy (???): Let us restrict the decision rules xj = φj(Pjζ) to

be easily representable – specifically, affine – functions:

φj(Pjζ) ≡ µj + νTj Pjζ.

With this dramatic simplification, (ARC) becomes a finite-dimensional (still

semi-infinite) optimization problem in new non-adjustable variables µj, νj

max
t,{µj,νj}

t :

∑
j
cj[ζ](µj + νTj Pjζ) ≥ t ∀ζ ∈ Z∑

j
(µj + νTj Pjζ)Aj[ζ]− b[ζ] ≤ 0 ∀ζ ∈ Z

 (AARC)
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♣ We have associated with uncertain LO

LP =
{

max
x

{
cT [ζ]x : A[ζ]x− b[ζ] ≤ 0

}
: ζ ∈ Z

}
[
cj[ζ], Aij[ζ], bi[ζ] : affine in ζ

]
and the “information matrices” P1, ..., Pn the Affinely Adjustable Robust
Counterpart

max
t,{µj,νj}

t :

∑
j

cj[ζ](µj + νTj Pjζ) ≥ t ∀ζ ∈ Z∑
j

(µj + νTj Pjζ)Aj[ζ]− b[ζ] ≤ 0 ∀ζ ∈ Z

 (AARC)

♠ Relatively good news:
• AARC is by far more flexible than the usual (non-adjustable) RC of LP.
• As compared to ARC, AARC has much more chances to be computation-
ally tractable:
— In the case of simple recourse, where the coefficients of adjustable vari-
ables are certain, AARC has the same tractability properties as RC:
If the perturbation set Z is given by polyhedral representation, (AARC) can
be straightforwardly converted into an explicit LO program.
— In the general case, (AARC) may be computationally intractable; how-
ever, under mild assumptions on the perturbation set, (AARC) admits
“tight” computationally tractable approximation.
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♣ Example: simple Inventory model. There is a single-product inventory

system with

• a single warehouse which should at any time store at least Vmin and at

most Vmax units of the product;

• uncertain demands dt of periods t = 1, ..., T known to vary within given

bounds:

dt ∈ [d∗t (1− θ), d∗t (1 + θ)], t = 1, ..., T
• θ ∈ [0,1]: uncertainty level

No backlogged demand is allowed!

• I factories from which the warehouse can be replenished:

— at the beginning of period t, you may order pt,i units of product from

factory i. Your orders should satisfy the constraints

0 ≤ pt,i ≤ Pi(t) [bounds on capacities per period]∑
t
pt,i ≤ Qi [bounds on cumulative capacities]

— an order is executed with no delay

— order pt,i costs you ci(t)pt,i.

• The goal: to minimize the total cost of the orders.
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♠ With certain demand, the problem can be modeled as the LO program

min
pt,i,i≤I,t≤T,
vt,2≤t≤T+1

∑
t,i
ci(t)pt,i [total cost]

s.t.

vt+1 = vt +
∑
i
pt,i − dt, t = 1, ..., T

[
state equations

(v1 is given)

]
Vmin ≤ vt ≤ Vmax,2 ≤ t ≤ T + 1 [bounds on states]

0 ≤ pt,i ≤ Pi(t), i ≤ I, t ≤ T [bounds on orders]∑
t
pt,i ≤ Qi, i ≤ I

[
cumulative bounds

on orders

]
♠ With uncertain demand, it is natural to assume that the orders pt,i may
depend on the demands of the preceding periods 1, ..., t − 1. The analysis
variables vt are allowed to depend on the entire actual data. In fact, it
suffices to allow for vt to depend on d1, ..., dt−1.
♠ Applying the AARC methodology, we make pt,i and vt affine functions of
past demands:

pt,i = φ0
t,i +

∑
1≤τ<t

φτt,idτ

vt = ψ0
t +

∑
1≤τ<t

ψτt dτ

• φ’s and ψ’s are our new decision variables...

3.87



min{pt,i,vt}
∑
t,i

ci(t)pt,i s.t.

vt+1 = vt +
∑
i

pt,i − dt, t = 1, ..., T

Vmin ≤ vt ≤ Vmax,2 ≤ t ≤ T + 1
0 ≤ pt,i ≤ Pi(t), i ≤ I, t ≤ T∑
t

pt,i ≤ Qi, i ≤ I

pt,i = φ0
t,i +

∑
1≤τ<t

φτt,idτ

vt = ψ0
t +

∑
1≤τ<t

ψτt dτ

♠ The AARC is the semi-infinite LO in non-adjustable variables φ’s and ψ’s:

minC,{φτ
t,i
,ψτ

t
}C s.t.



∑
t,i

ci(t)

[
φ0
t,i +

∑
1≤τ<t

φτt,idτ

]
≤ C[

ψ0
t+1 +

t∑
τ=1

ψτt+1dτ

]
=

[
ψ0
t +

t−1∑
τ=1

ψτt dτ

]
+
∑
i

[
φ0
t,i +

t−1∑
τ=1

φτt,idτ

]
− dt

Vmin ≤
[
ψ0
t +

t−1∑
τ=1

ψτt dτ

]
≤ Vmax

0 ≤
[
φ0
t,i +

t−1∑
τ=1

φτt,idτ

]
≤ Pi(t),

∑
t

[
φ0
t,i +

t−1∑
τ=1

φτt,idτ

]
≤ Qi

• The constraints should be valid for all values of “free” indexes and all
demand trajectories d = {dt}Tt=1 from the “demand uncertainty box”

D = {d : d∗t (1− θ) ≤ dt ≤ d∗t (1 + θ),1 ≤ t ≤ T}.
♠ The AARC can be straightforwardly converted to a usual LP and easily
solved.
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♣ In the numerical illustration to follow:
• the planning horizon is T = 24
• there are I = 3 factories with per period capacities Pi(t) = 567 and cumulative capacities
Qi = 13600
• the nominal demand d∗t is seasonal:

0 5 10 15 20 25 30 35 40 45 50
400

600

800

1000

1200

1400

1600

1800

d∗t = 1000
(

1 + 0.5 sin
(
π(t−1)

12

))
• the ordering costs also are seasonal:

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
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3.5

ci(t) = ci

(
1 + 0.5 sin

(
π(t−1)

12

))
, c1 = 1, c2 = 1.5, c3 = 2

• v1 = Vmin = 500, Vmax = 2000

• demand uncertainty θ = 20%
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♣ Results:

• Opt(AARC) = 35542.

Note: The non-adjustable RC is infeasible already at 5% uncertainty level!

• With uniformly distributed in the range ±20% demand perturbations, the

average, over 100 simulations, AARC management cost is 35121.

Note: Over the same 100 simulations, the average “utopian” management

cost (optimal for a priori known demand trajectories) is 33958, i.e., is by

just 3.5% (!) less than the average AARC management cost.
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♣ Comparison with Dynamic Programming. When applicable, DP is the

technique for dynamical decision-making under uncertainty – in (worst-case-

oriented) DP, one solves the Adjustable Robust Counterpart of uncertain

LO, with no ad hoc simplifications like “let us restrict ourselves with affine

decision rules.”

♠ Unfortunately, DP suffers from “curse of dimensionality” – with DP, the

computational effort blows up rapidly as the state dimension of the dynam-

ical process grows. Usually state dimension 4 is already “too big”.

Note: There is no “curse of dimensionality” in AARC!

However: Reducing the number of factories to 1, increasing the per period

capacity of the remaining factory to 1800 and making its cumulative capacity

+∞, we reduce the state dimension to 1 and make DP easily implementable.

With this setup,

• the DP (that is, the “absolutely best”) optimal value is 31270

• the AARC optimal value is 31514 – just by 0.8% worse!
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INTERMEDIATE SUMMARY

I. WHAT IS LO

♣ An LO program is an optimization problem of the form

Optimize a linear objective cTx over x ∈ Rn satisfying a system (S)

of finitely many linear equality and (nonstrict) inequality constraints.

♠ There are several “universal” forms of an LO program, universality mean-

ing that every LO program can be straightforwardly converted to an equiv-

alent problem in the desired form.

Examples of universal forms are:

• Canonical form:

Opt = max
x

{
cTx : Ax ≤ b

}
[A : m× n]

• Standard form:

Opt = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n]



II. WHAT CAN BE REDUCED TO LO

♣ Every optimization problem max
y∈Y

f(y) can be straightforwardly converted

to an equivalent problem with linear objective, specifically, to the problem

max
x∈X

cTx (P )[
X = {x = [y; t] : y ∈ Y, t ≤ f(y)}, cTx := t

]
♠ The possibility to convert (P ) into an LO program depends on the geom-

etry of the feasible set X. When X is polyhedrally representable:

X = {x ∈ Rn : ∃w ∈ Rk : Px+Qw ≤ r}

for properly chosen P,Q, r, (P ) reduces to the LO program

max
x,w

{
cTx : Px+Qw ≤ r

}
.



♣ By Fourier-Motzkin elimination scheme, every polyhedrally representable

set X is in fact polyhedral – it can be represented as the solution set of a

system of linear inequalities without slack variables w:

X = {x : ∃w : Px+Qw ≤ r}
⇔ ∃A, b : X = {x : Ax ≤ b}

This does not make the notion of a polyhedral representation “void” — a

polyhedral set with a “short” polyhedral representation involving slack vari-

ables can require astronomically many inequalities in a slack-variable-free

representation.

♠ Every polyhedral (≡ polyhedrally representable) set is convex (but not vice

versa), and all basic convexity-preserving operations with sets (taking finite

intersections, affine images, inverse affine images, arithmetic sums, direct

products) as applied to polyhedral operands yield polyhedral results.

• Moreover, for all basic convexity-preserving operations, a polyhedral rep-

resentation of the result is readily given by polyhedral representations of the

operands.



♣ A “counterpart” of the notion of polyhedral (≡ polyhedrally representable)

set is the notion of a polyhedrally representable function. A function f : Rn →
R∪{+∞} is called polyhedrally representable, if its epigraph is a polyhedrally

representable set:

Epi{f} := {[x; τ ] : τ ≥ f(x)]}
= {[x; τ ] : ∃w : Px+ τp+Qw ≤ r}

♠ A polyhedrally representable function always is convex (but not vice versa);

♠ A function f is polyhedrally representable if and only if its domain is a

polyhedral set, and in the domain f is the maximum of finitely many affine

functions:

f(x) =

 max
1≤`≤L

[aT` x+ b`], x ∈ Domf := {x : Cx ≤ d}

+∞, otherwise

♠ A level set {x : f(x) ≤ a} of a polyhedrally representable function is

polyhedral.



♠ All basic convexity-preserving operations with functions (taking finite max-

ima, linear combinations with nonnegative coefficients, affine substitution of

argument) as applied to polyhedrally representable operands yield polyhe-

drally representable results.

• For all basic convexity-preserving operations with functions, a polyhedral

representation of the result is readily given by polyhedral representations of

the operands.



III. STRUCTURE OF A POLYHEDRAL SET

III.A: Extreme Points

♣ Extreme points: A point v ∈ X = {x ∈ Rn : Ax ≤ b} is called an extreme

point of X, if v is not a midpoint of a nontrivial segment belonging to X:

v ∈ Ext(X)⇔ v ∈ X & v ± h ∈ X ⇒ h = 0.

♠ Facts: Let X = {x ∈ Rn : aTi x ≤ bi,1 ≤ i ≤ m} be a nonempty polyhedral

set.

• X has extreme points if and only if it does not contain lines;

• The set Ext(X) of the extreme points of X is finite;

• X is bounded iff X = Conv(Ext(X));

• A point v ∈ X is an extreme point of X if and only if among the inequalities

aTi x ≤ bi which are active at v: aTi v = bi, there are n = dimx inequalities with

linearly independent vectors of coefficients:

v ∈ Ext(X)
⇔ v ∈ X & Rank {ai : aTi v = bi} = n.



III.B. Recessive Directions

♣ Let X = {x ∈ Rn : Ax ≤ b} be a nonempty polyhedral set. A vector d ∈ Rn

is called a recessive direction of X, if there exists x̄ ∈ X such that the ray

R+ · d := {x̄+ td : t ≥ 0} is contained in X.

♠ Facts: • The set of all recessive directions of X form a cone, called the

recessive cone Rec(X) of X.

• The recessive cone of X is the polyhedral set given by Rec(X) = {d : Ad ≤
0}
• Adding to an x ∈ X a recessive direction, we get a point in X:

X + Rec(X) = X.

• The recessive cone of X is trivial (i.e., Rec(X) = {0}) if and only if X is

bounded.

• X contains a line if and only if Rec(X) is not pointed, that is, Rec(X)

contains a line, or, equivalently, there exists d 6= 0 such that ±d ∈ Rec(X),

or, equivalently, the null space of A is nontrivial: KerA = {d : Ad = 0} 6= {0}.



• A line directed by a vector d belongs to X if and only if it crosses X and

d ∈ KerA = Rec(X) ∩ [−Rec(X)].

• One has

X = X + KerA.

• X can be represented as

X = X̂ + KerA

where X̂ is a nonempty polyhedral set which does not contain lines. One

can take

X̂ = X ∩ [KerA]⊥.



III.C. Extreme Rays of a Cone

♣ Let K be a polyhedral cone, that is,

K = {x ∈ Rn : Ax ≤ 0}
= {x ∈ Rn : aTi x ≤ 0, 1 ≤ i ≤ m}

♠ A direction d ∈ K is called an extreme direction of K, if d 6= 0 and in any

representation d = d1 + d2 with d1, d2 ∈ K both d1 and d2 are nonnegative

multiples of d.

• Given d ∈ K, the ray R = R+ · d ⊂ K is called the ray generated by d, and

d is called a generator of the ray. When d 6= 0, all generators of the ray

R = R+ ·d are positive multiples of d, and vice versa – every positive multiple

of d is a generator of R.

• Rays generated by extreme directions of K are called extreme rays of K.



♠ Facts:

• A direction d 6= 0 is an extreme direction of a pointed polyhedral cone

K = {x ∈ Rn : aTi x ≤ 0,1 ≤ i ≤ m} if and only if d ∈ K and among the

inequalities aTi x ≤ 0 defining K there are n−1 which are active at d aTi d = 0

and have linearly independent vectors of coefficients:

d is an extreme direction of K
⇔ d ∈ K\{0} & Rank {ai : aTi d = 0} = n− 1

• K has extreme rays if and only if K is nontrivial (K 6= {0}) and pointed

(K ∩ [−K] = {0}), and in this case

• the number of extreme rays of K is finite, and

• if r1, ..., rM are generators of extreme rays of K, then

K = Cone ({r1, ..., rM}).



III.D. Structure of a Polyhedral Set

♣ Theorem: Every nonempty polyhedral set X can be represented in the

form

X = Conv({v1, ..., vN}) + Cone ({r1, ..., rM}) (!)

where {v1, ..., vN} is a nonempty finite set, and {r1, ..., rM} is a finite (possibly

empty) set.

Vice versa, every set of the form (!) is a nonempty polyhedral set. In

addition,

♠ In a representation (!), one always has

Cone ({r1, ..., rM}) = Rec(X)

♠ Let X do not contain lines. Then one can take in (!) {v1, ..., vN} = Ext(X)

and to choose, as r1, ..., rM , the generators of the extreme rays of Rec(X).

The resulting representation is “minimal”: for every representation of X

in the form of (!), it holds Ext(X) ⊂ {v1, ..., vN} and every extreme ray of

Rec(X), is any, has a generator from the set {r1, ..., rM}.



IV. FUNDAMENTAL PROPERTIES

OF LO PROGRAMS

♣ Consider a feasible LO program

Opt = max
x

{
cTx : Ax ≤ b

}
(P )

♠ Facts:

• (P ) is solvable (i.e., admits an optimal solution) if and only if (P ) is

bounded (i.e., the objective is bounded from above on the feasible set)

• (P ) is bounded if and only if cTd ≤ 0 for every d ∈ Rec(X)

• Let the feasible set of (P ) do not contain lines. Then (P ) is bounded if

and only if cTd ≤ 0 for generator of every extreme ray of Rec(X), and in

this case there exists an optimal solution which is an extreme point of the

feasible set.



V. GTA AND DUALITY

♣ GTA: Consider a finite system (S) of nonstrict and strict linear inequalities

and linear equations in variables x ∈ Rn:

aTi x Ωi bi, 1 ≤ i ≤ m
Ωi ∈ {” ≤ ”,” < ”,” ≥ ”,” > ”,” = ”} (S)

(S) has no solutions if and only if a legitimate weighted sum of the inequal-

ities of the system is a contradictory inequality, that is

One can assign the constraints of the system with weights λi so that

• the weights of the ”<” and ”≤” inequalities are nonnegative, while

the weights of the ”>” and ”≥” inequalities are nonpositive,

•
∑m
i=1 λiai = 0, and

• either
∑m
i=1 λibi < 0,

or
∑m
i=1 λibi = 0 and at least one of the strict inequalities gets a

nonzero weight.



♠ Particular case: Homogeneous Farkas Lemma. A homogeneous linear

inequality aTx ≤ 0 is a consequence of a system of homogeneous linear

inequalities aTi x ≤ 0, 1 ≤ i ≤ m, if and only if the inequality is a combination,

with nonnegative weights, of the inequalities from the system, or, which is

the same, if and only if a ∈ Cone ({a1, ..., am}).

♠ Particular case: Inhomogeneous Farkas Lemma. A linear inequality

aTx ≤ b is a consequence of a solvable system of inequalities aTi x ≤ bi, 1 ≤ i ≤
m, if and only if the inequality is a combination, with nonnegative weights,

of the inequalities from the system and the trivial identically true inequality

0Tx ≤ 1, or, which is the same, if and only if there exist nonnegative λi,

1 ≤ i ≤ m, such that
∑m
i=1 λiai = a and

∑m
i=1 λibi ≤ b.



LO DUALITY

♣ Given an LO program in the form

Opt(P ) = max
x

cTx :


Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

we associate with it the dual problem

Opt(D) = min
λ=[λ`;λg;λe]

{
pTλ` + qTλg + rTλe : λ` ≥ 0 (`)

λg ≤ 0 (g)
P Tλ` +QTλg +RTλe = c (e)

}
.

(D)

LO Duality Theorem:

(i) [symmetry] Duality is symmetric: the problem dual to (D) is (equivalent to) the primal

problem (P )

(ii) [weak duality] Opt(D) ≥ Opt(P )

(iii) [strong duality] The following 3 properties are equivalent to each other:

• one of the problems (P ), (D) is feasible and bounded

• both (P ) and (D) are solvable

• both (P ) and (D) are feasible

Whenever one of (and then – all) these properties takes place, we have

Opt(D) = Opt(P ).



Opt(P ) = max
x

cTx :

 Px ≤ p (`)
Qx ≥ q (g)
Rx = r (e)

 (P )

Opt(D) = min
λ=[λ`;λg;λe]

{
pTλ` + qTλg + rTλe : λ` ≥ 0 (`)

λg ≤ 0 (g)
P Tλ` +QTλg +RTλe = c (e)

}
.

(D)

♠ LO Optimality Conditions: Let

x, λ = [λ`;λg;λe]

be feasible solutions to the respective problems (P ), (D). Then x, λ are

optimal solutions to the respective problems

• if and only if the associated duality gap is zero:
DualityGap(x, λ) := [pTλ` + qTλg + rTλe]− cTx

= 0
• if and only if the complementary slackness condition holds: nonzero La-

grange multipliers are associated only with the primal constraints which are

active at x:

∀i : [λ`]i[pi − (Px)i] = 0,
∀j : [λg]j[qj − (Qx)j] = 0



PART II.

LO: Pivoting Algorithms



ALGORITHMS OF LINEAR OPTIMIZATION

♣ The existing algorithmic “working horses” of LO fall into two major cat-

egories:

♠ Pivoting methods, primarily the Simplex-type algorithms which heavily

exploit the polyhedral structure of LO programs, in particular, move along

the vertices of the feasible set.

♠ Interior Point algorithms, primarily the Primal-Dual Path-Following

Methods, much less “polyhedrally oriented” than the pivoting algorithms

and, in particular, traveling along interior points of the feasible set of LO

rather than along its vertices. In fact, IPM’s have a much wider scope of

applications than LO.
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♠ Theoretically speaking (and modulo rounding errors), pivoting algorithms

solve LO programs exactly in finitely many arithmetic operations. The op-

eration count, however, can be astronomically large already for small LO’s.

In contrast to the disastrously bad theoretical worst-case-oriented perfor-

mance estimates, Simplex-type algorithms seem to be extremely efficient in

practice. In 1940’s — early 1990’s these algorithms were, essentially, the

only LO solution techniques.

♠ Interior Point algorithms, discovered in 1980’s, entered LO practice in

1990’s. These methods combine high practical performance (quite compet-

itive with the one of pivoting algorithms) with nice theoretical worst-case-

oriented efficiency guarantees.
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Lecture II.1

Primal and Dual Simplex Methods



The Primal and the Dual Simplex Algorithms

♣ Recall that a primal-dual pair of LO problems geometrically is as follows:

Given are:

• A pair of linear subspaces LP , LD in Rn which are orthogonal complements

to each other: LP⊥ = LD
• Shifts of these linear subspaces – the primal feasible plane MP = LP − b
and the dual feasible plane MD = LD + c

The goal:

• We want to find a pair of orthogonal to each other vectors, one from the

primal feasible set MP ∩ Rn+, and another one from the dual feasible set

MD ∩ Rn+.

This goal is achievable iff the primal and the dual feasible sets are nonempty,

and in this case the members of the desired pair can be chosen among

extreme points of the respective feasible sets.
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♣ In the Primal Simplex method, the goal is achieved via generating a

sequence x1, x2, ... of vertices of the primal feasible set accompanied by a

sequence c1, c2, ... of solutions to the dual problem which belong to the dual

feasible plane, satisfy the orthogonality requirement [xt]T ct = 0, but do not

belong to Rn+ (and thus are not dual feasible).

The process lasts until

— either a feasible dual solution ct is generated, in which case we end up

with a pair of primal-dual optimal solutions (xt, ct),

— or a certificate of primal unboundedness (and thus - dual infeasibility) is

found.
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♣ In the Dual Simplex method, the goal is achieved via generating a se-

quence c1, c2, ... of vertices of the dual feasible set accompanied by a se-

quence x1, x2, ... of solutions to the primal problem which belong to the

primal feasible plane, satisfy the orthogonality requirement [xt]T ct = 0, but

do not belong to Rn+ (and thus are not primal feasible).

The process lasts until

— either a feasible primal solution xt is generated, in which case we end up

with a pair of primal-dual optimal solutions (xt, ct),

— or a certificate of dual unboundedness (and thus – primal infeasibility) is

found.

♣ Both methods work with the primal LO program in the standard form.

As a result, the dual problem is not in the standard form, which makes the

implementations of the algorithms different from each other, in spite of the

“geometrical symmetry” of the algorithms.
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Primal Simplex Method

♣ PSM works with an LO program in the standard form

Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

Geometrically, PSM moves from a vertex xt of the feasible set of (P ) to a

neighboring vertex xt+1, improving the value of the objective, until either an

optimal solution, or an unboundedness certificate are built. This process is

“guided” by the dual solutions ct.

S

F

S

F

Geometry of PSM. The objective is the ordinate (“height”). Left: method starts from

vertex S and ascends to vertex F where an improving ray is discovered, meaning that the

problem is unbounded.

Right: method starts from vertex S and ascends to the optimal vertex F.
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PSM: Preliminaries

Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

♣ Standing assumption: The m rows of A are linearly independent.

Note: When the rows of A are linearly dependent, the system of linear

equations in (P ) is either infeasible (this is so when RankA < Rank [A, b]),

or, eliminating “redundant” linear equations, the system Ax = b can be

reduced to an equivalent system A′x = b with linearly independent rows in

A′. When possible, this transformation is an easy Linear Algebra task

⇒ the assumption RankA = m is w.l.o.g.

♣ Bases and basic solutions. A set I of m distinct from each other indexes

from {1, ..., n} is called a base (or basis) of A, if the columns of A with indexes

from I are linearly independent, or, equivalently, when the m×m submatrix

AI of A comprised of columns with indexes from I is nonsingular.
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Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

Observation I: Let I be a basis. Then the system Ax = b, xi = 0, i 6∈ I has

a unique solution

xI = (A−1
I b,0n−m);

the m entries of xI with indexes from I form the vector A−1
I b, and the

remaining n −m entries are zero. xI is called the basic solution associated

with basis I.
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Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

Theorem: Extreme points of the feasible set X = {x : Ax = b, x ≥ 0} of (P )

are exactly the basic solutions which are feasible for (P ).

Proof. A. Let xI be a basic solution which is feasible. The following n

constraints specifying X are active at xI:

— m equality constraints Ax = b;

— n−m bounds xj = 0, j 6∈ I.

Let us prove that the vectors of coefficients of these n constraints are linearly

independent; by algebraic characterization of extreme points, this would im-

ply that xI is an extreme point of X.

Assuming the vectors of coefficients of the constraints to be linearly de-

pendent, there exists a nontrivial solution h to the homogeneous system of

linear equations

Ah = 0, hj = 0, j 6∈ I,

implying that the corresponding to I m×m basic submatrix of A is degen-

erate, which is impossible.
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B. Let x̄ be an extreme point of X, and let J be the set of indexes of positive

entries in x̄. We claim that the columns of A with indexes from J are linearly

independent.

Indeed, otherwise we could find a nonzero vector h with entries hj = 0 for

j 6∈ J such that Ah = 0. For small positive t, vectors x̄ + th and x̄ − th are

nonnegative, and we always have A[x̄ + th] = A[x̄ − th] = b, so that x̄ is a

midpoint of a nontrivial segment in X, which is impossible.

• Since the columns of A with indexes in J are linearly independent and the

linear span of the system of all columns of A is Rm (the m rows of A are

linearly independent!), we can extend J to an m-element set I of indexes

such that the columns of A with indexes from I are linearly independent.

Clearly, x̄ is the basic solution associated with the basis I, that is, every

extreme point of X is a basic feasible solution.
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Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

Note: Theorem says that extreme points of X = {x : Ax = b, x ≥ 0} can

be “parameterized” by bases I of (P ): every feasible basic solution xI is an

extreme point, and vice versa. Note that this parameterization in general is

not a one-to-one correspondence: while there exists at most one extreme

point with entries vanishing outside of a given basis, and every extreme point

can be obtained from appropriate basis, there could be several bases defining

the same extreme point. The latter takes place when the extreme point v in

question is degenerate – it has less than m positive entries. Whenever this

is the case, all bases containing all the indexes of the nonzero entries of v

specify the same vertex v.
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Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

♣ The problem dual to (P ) reads

Opt(D) = min
λ=[λe;λg]

{
bTλe : λg ≤ 0, λg = c−ATλe

}
(D)

Observation II: Given a basis I for (P ), we can uniquely define a solution

λI = [λIe; c
I] to (D) which satisfies the equality constraints in (D) and is

such that cI vanishes on I. Specifically, setting I = {i1 < i2 < ... < im} and

cI = [ci1; ci2; ...; cim], one has

λIe = A−TI cI , cI = c−ATA−TI cI.

Vector cI is called the vector of reduced costs associated with basis I.

Observation III: Let I be a basis of A. Then for every x satisfying the

equality constraints of (P ) one has

cTx = [cI]Tx+ const(I)

Indeed, [cI]Tx = [c−ATλIe]Tx = cTx− [λIe]
TAx = cTx− [λIe]

T b. �
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Observation IV: Let I be a basis of A which corresponds to a feasible basic

solution xI and nonpositive vector of reduced costs cI. Then xI is an optimal

solution to (P ), and λI is an optimal solution to (D).

Indeed, in the case in question xI and λI are feasible solutions to (P ) and

(D) satisfying the complementary slackness condition. �
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Step of the PSM

Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

At the beginning of a step of PSM we have at our disposal

• current basis I along with the corresponding feasible basic solution xI, and

• the vector cI of reduced costs associated with I.

We call variables xi basic, if i ∈ I, and non-basic otherwise. Note that all

non-basic variables in xI are zero, while basic ones are nonnegative.

At a step we act as follows:

♠ We check whether cI ≤ 0. If it is the case, we terminate with optimal

primal solution xI and “optimality certificate” – optimal dual solution [λIe; c
I]
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Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

When cI is not nonpositive, we proceed as follows:

♠We select an index j such that cIj > 0. Since cIi = 0 for i ∈ I, we have j 6∈ I;

our intention is to update the current basis I into a new basis I+ (which,

same as I is associated with a feasible basic solution), by adding to the basis

the index j (“non-basic variable xj enters the basis”) and discarding from

the basis an appropriately chosen index i∗ ∈ I (“basic variable xi∗ leaves the

basis”). Specifically,

• We look at the solutions x(t), t ≥ 0 is a parameter, defined by
Ax(t) = b & xj(t) = t & x`(t) = 0 ∀` 6∈ [I ∪ {j}]

⇔ xi(t) =


xIi − t[A

−1
I Aj]i, i ∈ I

t, i = j
0, all other cases

Observation VI: (a): x(0) = xI and (b): cTx(t)− cTxI = cIj t.

(a) is evident. By Observation IV

cT [x(t)− x(0)] = [cI]T [x(t)− x(0)] =
∑

i∈I

=0︷︸︸︷
cIi [xi(t)− xi(0)]

+cIj [xj(t)− xj(0)] = cIjt.
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Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

Situation:• I, xI, cI: a basis of A and the associated basic feasible solution
and reduced costs.
• j 6∈ I : cIj > 0
• Ax(t) = b & xj(t) = t & x`(t) = 0 ∀` 6∈ [I ∪ {j}]

⇔ xi(t) =


xIi − t[A

−1
I Aj]i, i ∈ I

t, i = j
0, all other cases

• cT [x(t)− xI] = cIj t
There are two options:
A. All quantities [A−1

I Aj]i, i ∈ I, are ≤ 0. Here x(t) is feasible for all t ≥ 0
and

cT [x(t)− x(0)] = cIj t→∞ as t→∞.

We claim (P ) unbounded and terminate.
B. I∗ := {i ∈ I : [A−1

I Aj]i > 0} 6= ∅. We set
t̄ = min

{
xIi

[A−1
I Aj]i

: i ∈ I∗
}

=
xIi∗

[A−1
I Aj]i∗

with i∗ ∈ I∗ .

Observe that x(t̄) ≥ 0 and xi∗(t̄) = 0. We set I+ = I ∪ {j}\{i∗}, xI
+

= x(t̄),

compute the vector of reduced costs cI
+

and pass to the next step of the
PSM, with I+, xI

+
, cI

+
in the roles of I, xI , cI.
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Summary

♠ The PSM works with a standard form LO

max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

♠ At the beginning of a step, we have

• current basis I - a set of m indexes such that the columns of A with these

indexes are linearly independent

• current basic feasible solution xI such that AxI = b, xI ≥ 0 and all nonbasic

– with indexes not in I – entries of xI are zeros
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♠ At a step, we

• A. Compute the vector of reduced costs cI = c−ATλIe such that the basic

entries in cI are zeros.

• If cI ≤ 0, we terminate — xI is an optimal solution.

• Otherwise we pick j with cIj > 0 and build a “ray of solutions” x(t) = xI+th

such that Ax(t) ≡ b, and xj(t) ≡ t is the only nonbasic entry in x(t) which

can be 6= 0.

• We have x(0) = xI, cTx(t)− cTxI = cIj t.

• If no basic entry in x(t) decreases as t grows, we terminate: (P ) is un-

bounded.

• If some basic entries in x(t) decrease as t grows, we choose the largest

t = t̄ such that x(t) ≥ 0. When t = t̄, at least one of the basic entries of x(t)

is about to become negative, and we eliminate its index i∗ from I, adding to

I the index j instead (“variable xj enters the basis, variable xi∗ leaves it”).

♠ I+ = [I ∪ {j}]\{i∗} is our new basis, xI
+

= x(t̄) is our new basic feasible

solution, and we pass to the next step.
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Remarks:

• I+, when defined, is a basis of A, and in this case x(t̄) is the corresponding

basic feasible solution. ⇒ The PSM is well defined

• Upon termination (if any), the PSM correctly solves the problem and,

moreover,

— either returns extreme point optimal solutions to the primal and the dual

problems,

— or returns a certificate of unboundedness - a (vertex) feasible solution

xI along with a direction d = d
dtx(t) ∈ Rec({x : Ax = b, x ≥ 0}) which is an

improving direction of the objective: cTd > 0. On a closest inspection, d is

an extreme direction of Rec({x : Ax = b, x ≥ 0}).

• The method is monotone: cTxI
+ ≥ cTxI. The latter inequality is strict,

unless xI
+

= xI, which may happen only when xI is a degenerate basic

feasible solution.

• If all basic feasible solutions to (P ) are nondegenerate, the PSM terminates

in finite time.

Indeed, in this case the objective strictly grows from step to step, meaning

that the same basis cannot be visited twice. Since there are finitely many

bases, the method must terminate in finite time.
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Tableau Implementation of the PSM

Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

♣ In computations by hand it is convenient to implement the PSM in the
tableau form. The tableau summarizes the information we have at the
beginning of the step, and is updated from step to step by easy to memorize
rules.
♠ The structure of a tableau is as follows:

x1 x2 · · · xn

−cTxI cI1 cI2 · · · cIn
xi1 =< ... > [A−1

I A]1,1 [A−1
I A]1,2 · · · [A−1

I A]1,n
... ... ... ... ...

xin =< ... > [A−1
I A]m,1 [A−1

I A]m,2 · · · [A−1
I A]m,n

• Zeroth row: minus the current value of the objective and the current

reduced costs

• Rest of Zeroth column: the names and the values of current basic variables

• Rest of the tableau: the m× n matrix A−1
I A

Note: In the Tableau, all columns but the Zeroth one are labeled by decision

variables, and all rows but the Zeroth one are labeled by the current basic

variables.
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♣ To illustrate the Tableau implementation, consider the LO problem

max 10x1 + 12x2 + 12x3

s.t.
x1 + 2x2 + 2x3 ≤ 20

2x1 + x2 + 2x3 ≤ 20
2x1 + 2x2 + x3 ≤ 20

x1, x2, x3 ≥ 0

♠ Adding slack variables, we convert the problem into the standard form

max 10x1 + 12x2 + 12x3

s.t.
x1 + 2x2 + 2x3 + x4 = 20

2x1 + x2 + 2x3 + x5 = 20
2x1 + 2x2 + x3 + x6 = 20

x1, ..., x6 ≥ 0

• We can take I = {4,5,6} as the initial basis, xI = [0; 0; 0; 20; 20; 20] as
the corresponding basic feasible solution, and c as cI. The first tableau is

x1 x2 x3 x4 x5 x6

0 10 12 12 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = 20 2 1 2 0 1 0
x6 = 20 2 2 1 0 0 1
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x1 x2 x3 x4 x5 x6

0 10 12 12 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = 20 2 1 2 0 1 0
x6 = 20 2 2 1 0 0 1

• Not all reduced costs (Zeroth row of the Tableau) are nonpositive.

A: Detecting variable to enter the basis:

We choose a variable with positive reduced cost, specifically, x1, which is

about to enter the basis, and call the corresponding column in the Tableau

the pivoting column.
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x1 x2 x3 x4 x5 x6

0 10 12 12 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = 20 2 1 2 0 1 0
x6 = 20 2 2 1 0 0 1

B: Detecting variable to leave the basis:

B.1. We select the positive entries in the pivoting column (not looking at

the Zeroth row). If there is nothing to select, (P ) is unbounded, and we

terminate.

B.2. We divide by the selected entries of the pivoting column the cor-

responding entries of the Zeroth column, thus getting ratios 20 = 20/1,

10 = 20/2, 10 = 20/2.

B.3. We select the smallest among the ratios in B.2 (this quantity is the

above t̄) and call the corresponding row the pivoting one. The basic variable

labeling this row leaves the basis. In our case, we choose as pivoting row

the one labeled by x5; this variable leaves the basis.
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x1 x2 x3 x4 x5 x6

0 10 12 12 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = 20 2 1 2 0 1 0
x6 = 20 2 2 1 0 0 1

C. Updating the tableau:
C.1. We divide all entries in the pivoting row by the pivoting element (the one which is
in the pivoting row and pivoting column) and change the label of the pivoting row to the
name of the variable entering the basis:

x1 x2 x3 x4 x5 x6

0 10 12 12 0 0 0

x4 = 20 1 2 2 1 0 0
x1 = 10 1 0.5 1 0 0.5 0
x6 = 20 2 2 1 0 0 1

C.2. We subtract from all non-pivoting rows (including the Zeroth one) multiples of the
(updated) pivoting row to zero out the entries in the pivoting column:

x1 x2 x3 x4 x5 x6

−100 0 7 2 0 −5 0

x4 = 10 0 1.5 1 1 −0.5 0
x1 = 10 1 0.5 1 0 0.5 0
x6 = 0 0 1 −1 0 −1 1

The step is over.
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x1 x2 x3 x4 x5 x6

−100 0 7 2 0 −5 0

x4 = 10 0 1.5 1 1 −0.5 0
x1 = 10 1 0.5 1 0 0.5 0
x6 = 0 0 1 −1 0 −1 1

A: There still are positive reduced costs in the Zeroth row. We choose x3
to enter the basis; the column of x3 is the pivoting column.
B: We select positive entries in the pivoting column (except for the Zeroth
row), divide by the selected entries the corresponding entries in the zeroth
column, the getting the ratios 10/1, 10/1, and select the minimal ratio,
breaking the ties arbitrarily. Let us select the first ratio as the minimal one.
The corresponding – the first – row becomes the pivoting one, and the vari-
able x4 labeling this row leaves the basis.

x1 x2 x3 x4 x5 x6

−100 0 7 2 0 −5 0

x4 = 10 0 1.5 1 1 −0.5 0
x1 = 10 1 0.5 1 0 0.5 0
x6 = 0 0 1 −1 0 −1 1
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x1 x2 x3 x4 x5 x6

−100 0 7 2 0 −5 0

x4 = 10 0 1.5 1 1 −0.5 0
x1 = 10 1 0.5 1 0 0.5 0
x6 = 0 0 1 −1 0 −1 1

C: We identify the pivoting element (underlined), divide by it the pivoting
row and update the label of this row:

x1 x2 x3 x4 x5 x6

−100 0 7 2 0 −5 0

x3 = 10 0 1.5 1 1 −0.5 0
x1 = 10 1 0.5 1 0 0.5 0
x6 = 0 0 1 −1 0 −1 1

We then subtract from non-pivoting rows the multiples of the pivoting row
to zero the entries in the pivoting column:

x1 x2 x3 x4 x5 x6

−120 0 4 0 −2 −4 0

x3 = 10 0 1.5 1 1 −0.5 0
x1 = 0 1 −1 0 −1 1 0
x6 = 10 0 2.5 0 1 −1.5 1

The step is over.
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x1 x2 x3 x4 x5 x6

−120 0 4 0 −2 −4 0

x3 = 10 0 1.5 1 1 −0.5 0
x1 = 0 1 −1 0 −1 1 0
x6 = 10 0 2.5 0 1 −1.5 1

A: There still is a positive reduced cost. Variable x2 enters the basis, the
corresponding column becomes the pivoting one:

x1 x2 x3 x4 x5 x6

−120 0 4 0 −2 −4 0

x3 = 10 0 1.5 1 1 −0.5 0
x1 = 0 1 −1 0 −1 1 0
x6 = 10 0 2.5 0 1 −1.5 1

B: We select the positive entries in the pivoting column (aside of the Zeroth
row) and divide by them the corresponding entries in the Zeroth column,
thus getting ratios 10/1.5, 10/2.5. The minimal ratio corresponds to the
row labeled by x6. This row becomes the pivoting one, and x6 leaves the
basis:

x1 x2 x3 x4 x5 x6

−120 0 4 0 −2 −4 0

x3 = 10 0 1.5 1 1 −0.5 0
x1 = 0 1 −1 0 −1 1 0
x6 = 10 0 2.5 0 1 −1.5 1
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x1 x2 x3 x4 x5 x6

−120 0 4 0 −2 −4 0

x3 = 10 0 1.5 1 1 −0.5 0
x1 = 0 1 −1 0 −1 1 0
x6 = 10 0 2.5 0 1 −1.5 1

C: We divide the pivoting row by the pivoting element (underlined), change
the label of this row:

x1 x2 x3 x4 x5 x6

−120 0 4 0 −2 −4 0

x3 = 10 0 1.5 1 1 −0.5 0
x1 = 0 1 −1 0 −1 1 0
x2 = 4 0 1 0 0.4 −0.6 0.4

and then subtract from all non-pivoting rows multiples of the pivoting row
to zero the entries in the pivoting column:

x1 x2 x3 x4 x5 x6

−136 0 0 0 −3.6 −1.6 −1.6

x3 = 4 0 0 1 0.4 0.4 −0.6
x1 = 4 1 0 0 −0.6 0.4 0.4
x2 = 4 0 1 0 0.4 −0.6 0.4

The step is over.
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x1 x2 x3 x4 x5 x6

−136 0 0 0 −3.6 −1.6 −1.6

x3 = 4 0 0 1 0.4 0.4 −0.6
x1 = 4 1 0 0 −0.6 0.4 0.4
x2 = 4 0 1 0 0.4 −0.6 0.4

• The new reduced costs are nonpositive⇒ the solution x∗ = [4; 4; 4; 0; 0; 0; 0]

is optimal. The dual optimal solution is

λe = [3.6; 1.6; 1.6], cI = [0; 0;−3.6;−1.6;−1.6],

the optimal value is 136.
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Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

♣ Getting started.

In order to run the PSM, we should initialize it with some feasible basic

solution. The standard way to do it is as follows:

♠ Multiplying appropriate equality constraints in (P ) by -1, we ensure that

b ≥ 0.

♠ We then build an auxiliary LO program

Opt(P 0) = min
x,s

{∑m
i=1 si : Ax+s = b, x ≥ 0, s ≥ 0

}
(P 0)

Observations:

• Opt(P0) ≥ 0, and Opt(P0) = 0 iff (P ) is feasible;

• (P0) admits an evident basic feasible solution x = 0, s = b, the basis being

I = {n+ 1, ..., n+m};
• When Opt(P0) = 0, the x-part x∗ of every vertex optimal solution

(x∗, s∗ = 0) of (P0) is a feasible basic solution to (P ).

Indeed, the columns Ai with indexes i such that x∗i > 0 are linearly indepen-

dent ⇒ the set I ′ = {i : x∗i > 0} can be extended to a basis I of A, x∗ being

the associated basic feasible solution xI.
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Opt(P ) = max
x

{
cTx : Ax = b≥ 0, x ≥ 0

}
(P )

Opt(P 0) = min
x,s

{∑m
i=1 si : Ax+s = b, x ≥ 0, s ≥ 0

}
(P 0)

♠ In order to initialize solving (P ) by the PSM, we start with phase I where we

solve (P0) by the PSM, the initial feasible basic solution being x = 0, s = b.

Upon termination of Phase I, we have at our disposal

— either an optimal solution x∗, s∗ 6= 0 to (P0); it happens when Opt(P0) >

0

⇒ (P ) is infeasible,

— or an optimal solution x∗, s∗ = 0; in this case x∗ is a feasible basic solution

to (P ), and we pass to Phase II, where we solve (P ) by the PSM initialized

by x∗ and the corresponding basis I.
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Opt(P ) = max
x

{
cTx : Ax = b≥ 0, x ≥ 0

}
(P )

Opt(P 0) = min
x,s

{∑m
i=1 si : Ax+s = b, x ≥ 0, s ≥ 0

}
(P 0)

Note: Phase I yields, along with x∗, s∗, an optimal solution [λ∗; c̃] to the

problem dual to (P0): 0 ≤ c̃ := [0n×1; 1; ...; 1]− [A, Im]Tλ∗

=
[
−ATλ∗; [1; ...; 1]− λ∗

]
0 = c̃T [x∗; s∗]

⇒ 0 = −[x∗]TATλ∗ + Opt(P 0)− [s∗]Tλ∗ & ATλ∗ ≤ 0
⇒ Opt(P 0) = bTλ∗ & ATλ∗ ≤ 0

Recall that the standard certificate of infeasibility for (P ) is a pair λg ≤ 0, λe
such that

λg ≤ 0 & ATλe + λg = 0 & bTλe < 0.

We see that when Opt(P0) > 0, the vectors λe = −λ∗, λg = ATλ∗ form an

infeasibility certificate for (P ).
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Preventing Cycling

Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

♣ Finite termination of the PSM is fully guaranteed only when (P ) is nonde-

generate, that is, every basic feasible solution has exactly m nonzero entries,

or, equivalently, in every representation of b as a conic combination of lin-

early independent columns of A, the number of columns which get positive

weights is m.

♠ When (P ) is degenerate, b belongs to the union of finitely many proper

linear subspaces EJ = Lin({Ai : i ∈ J}) ⊂ Rm, where J runs through the

family of all (m− 1)-element subsets of {1, ..., n}
⇒ Degeneracy is a rare phenomenon: given A, the set of right hand side

vectors b for which (P ) is degenerate is of measure 0.

However: There are specific problems with integer data where degeneracy

can be typical.
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♣ It turns out that cycling can be prevented by properly chosen pivoting

rules which “break ties” in the cases when there are several candidates to

entering the basis and/or several candidates to leave it.

Example 1: Bland’s “smallest subscript” pivoting rule.

• Given a current tableau containing positive reduced costs, find the smallest

index j such that j-th reduced cost is positive; take xj as the variable to

enter the basis.

• Assuming that the above choice of the pivoting column does not lead to

immediate termination due to problem’s unboundedness, choose among all

legitimate (i.e., compatible with the description of the PSM) candidates to

the role of the pivoting row the one with the smallest index and use it as

the pivoting row.
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Example 2: Lexicographic pivoting rules.

• RN can be equipped with lexicographic order: x >L y if and only if x 6= y

and the first nonzero entry in x−y is positive, and x ≥L y if and only if x = y

or x >L y.

Examples: [1;−1;−2] >L [0; 100,10], [1;−1;−2] >L [1;−2; 1000].

Note: ≥L and >L share the usual properties of the arithmetic ≥ and >, e.g.

• x ≥L x
• x ≥L y & y ≥L x⇒ y = x
• x ≥L y ≥L z ⇒ x ≥L z
• x ≥L y & u ≥L v ⇒ x+ u ≥L y + v
• x ≥L y, λ ≥ 0⇒ λx ≥L λy

In addition, the order ≥L is complete: every two vectors x, y from Rn are

lexicographically comparable, i.e., either x >L y, or x = y, or y >L x.
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Lexicographic pivoting rule (L)

• Given the current tableau which contains positive reduced costs cIj , choose

as the index of the pivoting column a j such that cIj > 0.

• Let ui be the entry of the pivoting column in row i = 1, ...,m, and let some

of ui be positive (that is, the PSM does not detect problem’s unboundedness

at the step in question). Normalize every row i with ui > 0 by dividing all its

entries, including those in the zeroth column, by ui, and choose among the

resulting (n+1)-dimensional row vectors the smallest w.r.t the lexicographic

order, let its index be i∗ (it is easily seen that all rows to be compared to

each other are distinct, so that the lexicographically smallest of them is

uniquely defined). Choose the row i∗ as the pivoting one (i.e., the basic

variable labeling the row i∗ leaves the basis).
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Theorem: Let the PSM be initialized by a basic feasible solution and use

pivoting rule (L). Assume also that all rows in the initial tableau, except for

the zeroth row, are lexicographically positive. Then

• the rows in the tableau, except for the zeroth one, remain lexicographically

positive at all non-terminal steps,

• the vector of reduced costs strictly lexicographically decreases when passing

from a tableau to the next one, whence no basis is visited twice,

• the PSM method terminates in finite time.

Note:Lexicographical positivity of the rows in the initial tableau is easy

to achieve: it suffices to reorder variables to make the initial basis to be

I = {1,2, ...,m}. In this case the non-zeroth rows in the initial tableau look

as follows:

[A−1
I b, A−1

I A] =


xI1 ≥ 0 1 0 0 · · · 0 ? ? · · ·
xI2 ≥ 0 0 1 0 · · · 0 ? ? · · ·
xI3 ≥ 0 0 0 1 · · · 0 ? ? · · ·

... ... ... ... . . . ... ... ... ...
xIm ≥ 0 0 0 0 · · · 1 ? ? · · ·


and we see that these rows are >L 0.
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Dual Simplex Method

♣ DSM is aimed at solving LO program in the standard form:

Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

under the same standing assumption that the rows of A are linearly inde-

pendent.

♠ The problem dual to (P ) reads

Opt(D) = min
[λe;λg]

{
bTλe : λg = c−ATλe, λg ≤ 0

}
(D)

♠ Complementarity slackness reads

[λg]ixi = 0 ∀i.
♣ The PSM generates a sequence of neighboring basic feasible solutions to

(P ) (aka vertices of the primal feasible set) x1, x2, ... augmented by comple-

mentary infeasible solutions [λ1
e ;λ1

g ], [λ2
e ;λ2

g ], ... to (D) (these dual solutions

satisfy, however, the equality constraints of (D)) until the infeasibility of the

dual problem is discovered or until a feasible dual solution is built. In the

latter case, we terminate with optimal solutions to both (P ) and (D).
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Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n,RankA = m]

(P )

♠ The problem dual to (P ) reads

Opt(D) = min
[λe;λg]

{
bTλe : λg = c−ATλe, λg ≤ 0

}
(D)

♠ Complementarity slackness reads

[λg]ixi = 0 ∀i.
♠ The DSM generates a sequence of neighboring basic feasible solutions to

(D) (aka vertices of the dual feasible set) [λ1
e ;λ1

g ], [λ2
e ;λ2

g ], ... augmented by

complementary infeasible solutions x1, x2, ... to (P ) (these primal solutions

satisfy, however, the equality constraints of (P )) until the infeasibility of (P )

is discovered or a feasible primal solution is built. In the latter case, we

terminate with optimal solutions to both (P ) and (D).
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DSM: Preliminaries
Opt(P ) = max

x

{
cTx : Ax = b, x ≥ 0

}
(P )

Opt(D) = min
[λe;λg]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

♠ Fact: Every basis I of matrix A induces

— a uniquely defined by the basis primal basic solution xI which solves primal

equations, and has all nonbasic entries in xI equal to zero;

— a uniquely defined by the basis dual basic solution [λIe, c
I] which solves

dual equations, and has all basic entries in cI equal to zero.

♠ Fact:

• Extreme points of the primal feasible set are primal basic solutions xI which

are primal feasible: xI ≥ 0.

• Extreme points of the dual feasible set are dual basic solutions [λIe, c
I]

which are dual feasible: cI ≤ 0.
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Opt(D) = min
[λe;λg]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

Observation: Let x satisfy Ax = b. Replacing the dual objective bTλe with

−xTλg, we shift the dual objective on the dual feasible plane by a constant.

Equivalently:

[λe;λg], [λ′e;λ
′
g] satisfy the equality constraints in (D)

⇔bT [λe − λ′e] = −xT [λg − λ′g]

Indeed,

λg +ATλe = c = λ′g +ATλ′e
⇒ λg − λ′g = AT [λ′e − λe]
⇒ −xT [λg − λ′g] = −xTAT [λ′e − λe] = bT [λe − λ′e].
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Opt(P ) = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n] (P )

Opt(D) = min
[λe;λg]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

♣ A step of the DSM:

♠ At the beginning of a step, we have at our disposal a basis I of A along

with corresponding nonpositive vector cI = c − AT
λIe︷ ︸︸ ︷

A−TI cI of reduced costs

and the (not necessary feasible) basic primal solution xI. At a step we act

as follows:

• We check whether xI ≥ 0. If it is the case, we terminate – xI is an

optimal primal solution, and [λIe = A−TI cI; c
I] is the complementary optimal

dual solution.

4.42



Opt(D) = min
[λe;λg]

{
bTλe : λg +ATλe = c, λg ≤ 0

}
(D)

• If xI has negative entries, we pick one of them, let it be xIi∗: x
I
i∗ < 0; note

that i∗ ∈ I. Variable xi∗ will leave the basis.
• We build a “ray of dual solutions”

[λIe(t); cI(t)] = [λIe; c
I]− t[de; dg], t ≥ 0

from the requirements
cI(t) +ATλIe(t) = c,

cIi∗(t) = −t,
cIi (t) = cIi = 0 for all basic indexes i 6= i∗.

This results in

cI(t) = c−AT
λIe(t)︷ ︸︸ ︷

A−TI [c+ tei∗]I = cI − tATA−TI [ei∗]I.

Observe that along the ray cI(t), the dual objective strictly improves:
bT [λIe(t)− λIe] = −[xI]T [cI(t)− cI] = −xIi∗[−t] = xIi∗︸︷︷︸

<0

·t.

♥ It may happen that cI(t) remains nonpositive for all t ≥ 0. Then we have
discovered a dual feasible ray along which the dual objective tends to −∞.
We terminate claiming that the dual problem is unbounded ⇒ the primal
problem is infeasible.
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cI(t) = c−AT
λIe(t)︷ ︸︸ ︷

A−TI [c+ tei∗]I = cI − tATA−TI [ei∗]I.

♥ Alternatively, as t grows, some of the reduced costs cIj(t) eventually be-

come positive. We identify the smallest t = t̄ such that cI(t̄) ≤ 0 and index

j such that cIj(t) is about to become positive when t = t̄; note that j 6∈ I.

Variable xj enters the basis. The new basis is I+ = [I ∪ {j}]\{i∗}, the new

vector of reduced costs is cI(t̄) = c − ATλIe(t̄). We compute the new basic

primal solution xI
+

and pass to the next step.
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Note: As a result of a step, we

— either terminate with optimal primal and dual solutions,

— or terminate with correct claim that (P ) is infeasible, (D) is unbounded,

— or pass to the new basis and new feasible basic dual solution and carry

out a new step.

Along the basic dual solutions generated by the method, the values of dual

objective never increase and strictly decrease at every step which does update

the current dual solution (i.e., results in t̄ > 0). The latter definitely is the

case when the current dual solution is nondegenerate, that is, all non-basic

reduced costs are strictly negative.

In particular, when all basic dual solutions are nondegenerate, the DSM

terminates in finite time.
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♣ Same as PSM, the DSM possesses Tableau implementation. The structure
of the tableau is exactly the same as in the case of PSM:

x1 x2 · · · xn

−cTxI cI1 cI2 · · · cIn
xi1 =< ... > [A−1

I A]1,1 [A−1
I A]1,2 · · · [A−1

I A]1,n
... ... ... ... ...

xin =< ... > [A−1
I A]m,1 [A−1

I A]m,2 · · · [A−1
I A]m,n

We illustrate the DSM rules by example. The current tableau is

x1 x2 x3 x4 x5 x6

8 −1 −1 −2 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = −20 −2 −1 2 0 1 0
x6 = −1 2 2 −1 0 0 1

which corresponds to I = {4,5,6}. The vector of reduced costs is nonpositive, and its basic
entries are zero (a must for DSM).
A. Some of the entries in the basic primal solution (zeroth column) are negative. We select
one of them, say, x5, and call the corresponding row the pivoting row:

x1 x2 x3 x4 x5 x6

8 −1 −1 −2 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = −20 −2 −1 2 0 1 0
x6 = −1 2 2 −1 0 0 1

Variable x5 will leave the basis.
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x1 x2 x3 x4 x5 x6

8 −1 −1 −2 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = −20 −2 −1 2 0 1 0
x6 = −1 2 2 −1 0 0 1

B.1. If all entries in the pivoting row, except for the one in zeroth column,
are nonnegative, we terminate – the dual problem is unbounded, the primal
is infeasible.
B.2. Alternatively, we
— select the negative entries in the pivoting row outside of the zeroth
column (all of them are nonbasic!) and divide by them the corresponding
entries in the zeroth row, thus getting nonnegative ratios, in our example
the ratios 1/2 = (−1)/(−2) and 1 = (−1)/(−1);
— pick the smallest of the computed ratios and call the corresponding
column the pivoting column. Variable which marks this column will enter
the basis.

x1 x2 x3 x4 x5 x6

8 −1 −1 −2 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = −20 −2 −1 2 0 1 0
x6 = −1 2 2 −1 0 0 1

The pivoting column is the column of x1. Variable x5 leaves the basis,

variable x1 enters the basis.
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x1 x2 x3 x4 x5 x6

8 −1 −1 −2 0 0 0

x4 = 20 1 2 2 1 0 0
x5 = −20 −2 −1 2 0 1 0
x6 = −1 2 2 −1 0 0 1

C. It remains to update the tableau, which is done exactly as in the PSM:
— we normalize the pivoting row by dividing its entries by the pivoting element (one in the
intersection of the pivoting row and pivoting column) and change the label of this row (the
new label is the variable which enters the basis):

x1 x2 x3 x4 x5 x6

8 −1 −1 −2 0 0 0

x4 = 20 1 2 2 1 0 0
x1 = 10 1 0.5 −1 0 −0.5 0
x6 = −1 2 2 −1 0 0 1

— we subtract from all non-pivoting rows multiples of the (normalized) pivoting row to
zero the non-pivoting entries in the pivoting column:

x1 x2 x3 x4 x5 x6

18 0 −0.5 −3 0 −0.5 0

x4 = 10 0 1.5 3 1 0.5 0
x1 = 10 1 0.5 −1 0 −0.5 0
x6 = −21 0 1 1 0 1 1

The step of DSM is over.
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x1 x2 x3 x4 x5 x6

18 0 −0.5 −3 0 −0.5 0

x4 = 10 0 1.5 3 1 0.5 0
x1 = 10 1 0.5 −1 0 −0.5 0
x6 = −21 0 1 1 0 1 1

The basis is I = {1,4,6}, and there still is a negative basic variable x6. Its
row is the pivoting one:

x1 x2 x3 x4 x5 x6

18 0 −0.5 −3 0 −0.5 0

x4 = 10 0 1.5 3 1 0.5 0
x1 = 10 1 0.5 −1 0 −0.5 0
x6 = −21 0 1 1 0 1 1

However: all entries in the pivoting row, except for the one in the zeroth

column, are nonnegative

⇒ Dual problem is unbounded, primal problem is infeasible.

4.49



x1 x2 x3 x4 x5 x6

18 0 −0.5 −3 0 −0.5 0

x4 = 10 0 1.5 3 1 0.5 0
x1 = 10 1 0.5 −1 0 −0.5 0
x6 = −21 0 1 1 0 1 1

Explanation. In terms of the tableau, the vector dg participating in the

description of the “ray of dual solutions”

[λIe(t); cI(t)] = [λIe; c
I]− t[de; dg]

is just the (transpose of) the pivoting row (with entry in the zeroth column

excluded). When this vector is nonnegative, we have cI(t) ≤ 0 for all t ≥ 0,

that is, the entire ray of dual solutions is feasible. It remains to recall that

along this ray the dual objective tends to −∞.
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Warm Start

♣ Fact: In many applications there is a necessity to solve a sequence of

“close” to each other LO programs.

Example: In branch-and-bound methods for solving Mixed Integer Linear

Optimization problems, one solves a sequence of LOs obtained from each

other by adding/deleting variable/constraint, one at a time.

♣ Question: Assume we have solved an LO

max
x

{
c̄Tx : Āx = b̄, x ≥ 0

}
(P̄ )

to optimality by PSM (or DSM) and have at our disposal the optimal basis

I giving rise to optimal primal solution x̄I and optimal dual solution [λ̄Ie; c̄
I]:

[x̄I]I = Ā−1
I b̄ ≥ 0 [feasibility]

c̄I = c̄− ĀT [ĀI]
−T c̄I︸ ︷︷ ︸
λ̄Ie

≤ 0 [optimality]

How could we utilize I when solving an LO problem (P ) “close” to (P̄ )?

4.51



max
x

{
c̄Tx : Āx = b̄, x ≥ 0

}
(P̄ )

Cost vector is updated: c̄ 7→ c

♠ For the new problem, I remains a basis, and x̄I remains a basic fea-

sible solution. We can easily compute the basic dual solution [λe; cI]:

cI = c− ĀT [ĀI]
−T cI︸ ︷︷ ︸
λe

• If nonbasic entries in cI are nonpositive, x̄I and [λe; cI] are optimal primal

and dual solutions to the new problem.

Note: This definitely is the case when nonbasic entries in c̄I are negative

(i.e., [λ̄e; c̄I] is nondegenerate dual basic solution to (P̄ )) and c is close

enough to c̄. In this case,

x̄I = ∇c
∣∣∣
c=c̄

Opt(c).

• If some of the nonbasic entries in cI are positive, I is non-optimal for (P ),

but I still is a basis producing a basic feasible primal solution for the new

problem. We can solve the new problem by PSM starting from this basis,

which usually allows to solve (P ) much faster than “from scratch.”
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max
x

{
c̄Tx : Āx = b̄, x ≥ 0

}
(P̄ )

Right hand side vector is updated: b̄ 7→ b

♠ For the new problem, I remains a basis, and [λ̄e; c̄I] remains a basic dual

feasible solution. We can easily compute the new primal basic solution:

[xI]I = [ĀI]
−1b, [xI]i = 0 when i 6∈ I

• If basic entries in xI are nonnegative, xI and [λ̄e; c̄I] are optimal primal and

dual solution to the new problem.

Note: This definitely is the case when basic entries in x̄I are positive (i.e.,

x̄I is nondegenerate primal basic solution to (P̄ )) and b is close enough to

b̄. In this case,

λ̄e = ∇b
∣∣∣
b=b̄

Opt(b).

• If some of the basic entries in xI are negative, I is non-optimal for (P ), but

I still is a basis producing a dual feasible solution to the new problem. We

can solve the new problem by DSM starting from this basis, which usually

allows to solve (P ) much faster than “from scratch.”
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max
x

{
c̄Tx : Āx = b̄, x ≥ 0

}
(P̄ )

Some nonbasic columns in Ā are updated

and/or

new variables are added

♣ Assume that we update some nonbasic columns in Ā and extend the list

of primal variables, adding to Ā several columns and extending c accordingly.

♠ For the new problem, I remains a basis, and x̄I, extended by appropriate

number of zero entries, remains a basic primal feasible solution. We can

solve the new problem by PSM, starting with these basis and basic feasible

solution.
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max
x

{
c̄Tx : Āx = b̄, x ≥ 0

}
(P̄ )

A new equality constraint is added to (P̄ )

♣ Assume that m×n matrix Ā with linearly independent rows is augmented

by a new row aT (linearly independent of the old ones), and b̄ is augmented

by a new entry.

♠ Augmenting λ̄e by zero entry, we get a feasible dual solution [λe; c̄I] to the

new problem. This solution, however, is not necessarily basic, since I is not

a basis for the constraint matrix A of the new problem.

♠ Fact: [λe; c̄I] can be easily converted into a basic dual feasible solution,

and we can use this solution in DSM.

♥ Let ∆ = a− ĀT [ĀI]
−TaI = AT δ.

Note: δ 6= 0 and entries ∆i, i ∈ I, are zero.

• Since the rows in A are independent and δ 6= 0, we have ∆ 6= 0; replac-

ing, if necessary, δ with −δ, we can assume that one of the entries in ∆ is

negative.

Thus, ∆ = AT δ 6= 0, ∆i = 0 for i ∈ I and ∆j < 0 for some j 6∈ I.
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Situation: ∆ = AT δ 6= 0, ∆i = 0 for i ∈ I and ∆j < 0 for some j 6∈ I.

Now let us look at the ray

{[λe(t) := λe − tδ, cI(t) := c−ATλe(t) = c̄I − t∆] : t ≥ 0}
so that

• ATλe(t) + cI(t) ≡ c
• all [cI(t)]i, i ∈ I, are identically zero

• cI(0) = c̄I ≤ 0

• entry [cI(t)]j is positive when t is large

Let t̄ be the largest t ≥ 0 such that cI(t) ≤ 0. When t = t̄, for some j̄ the

entry [cI(t̄)]̄j is about to become positive. Note that j̄ 6∈ I since [cI(t)]i ≡ 0

for i ∈ I. It is immediately seen that I+ = I ∪ {j̄} and [λe(t̄); cI(t̄)] are a basis

and the corresponding basic feasible dual solution for the new problem. We

can now solve the new problem by DSP starting with this solution.
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max
x

{
c̄Tx : Āx = b̄, x ≥ 0

}
(P̄ )

An inequality constraint aTx ≤ α is added to (P̄ )

♣ The new problem in the standard form reads

min
x,s

{
[c̄; 0]T [x; s] :

Āx = b̄

aTx +s = α
, x ≥ 0, s ≥ 0

}
(P )

♠ Transition from (P̄ ) to (P ) can be done in two steps:

♣ We augment x by new variable s, Ā by a zero column, and c̄ - by zero

entry, thus arriving at the problem

min
x,s

{
[c̄; 0]T [x̄; s] : Āx+ 0 · s = b̄, x ≥ 0, s ≥ 0

}
(P̃ )

For this problem, I is a basis, x̃I = [xI; 0] is the associated primal optimal

basic feasible solution, and [λ̄e; [c̄I; 0]] is the associated dual optimal basic

solution.

• (P ) is obtained from (P̃ ) by adding a new equality constraint. We already

know how to warm-start solving (P ) by DSM.
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Lecture II.2

Network Simplex Method



Network Simplex Method

♣ Recall the (single-product) Network Flow problem:

Given

• an oriented graph with arcs assigned transportation costs and ca-

pacities,

• a vector of external supplies at the nodes of the arc,

find the cheapest flow fitting the supply and respecting arc capacities.

♣ Network Flow problems form an important special case in LO.

♠ As applied to Network Flow problems, the Simplex Method admits a

dedicated implementation which has many advantages as compared to the

general-purpose algorithm.
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Preliminaries: Undirected Graphs

♣ Undirected graph is a pair G = (N , E) comprised of

• finite nonempty set of nodes N
• set E of arcs, an arc being a 2-element subset of N .

Standard notation: we identify N with the set {1,2, ...,m}, m being a

number of nodes in the graph in question. Then every arc γ becomes an

unordered pair {i, j} of two distinct from each other (i 6= j) nodes.

We say that nodes i, j are incident to arc γ = {i, j}, and this arc links nodes

i and j.
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Undirected graph.
Nodes: N = {1,2,3,4}.
Arcs: E = {{1,2}, {2,3}, {1,3}, {3,4}}

♣ Walk: an ordered sequence of nodes i1, ..., it with every two consecutive

nodes linked by an arc: {is, is+1} ∈ E, 1 ≤ s < t.

• 1,2,3,1,3,4,3 is a walk.

• 1,2,4,1 is not a walk.

♠ Connected graph: there exists a walk which passes through all nodes.

• Graph on the picture is connected.
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♣ Path: a walk with all nodes distinct from each other
• 1,2,3,4 is a path • 1,2,3,1 is not a path
♣ Cycle: a walk i1, i2, i3, ..., it = i1 with the same first and last nodes, all
nodes i1, ..., it−1 distinct from each other and t ≥ 4 (i.e., at least 3 distinct
nodes).
• 1,2,3,1 is a cycle • 1,2,1 is not a cycle
♣ Leaf: a node which is incident to exactly one arc
• Node 4 is a leaf, all other nodes are not leaves
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A: B:

C: D:

E:

♣ Tree: a connected graph without cycles

• A - non-tree (there is a cycle)

• B – non-tree (not connected)

• C, D, E: trees
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♣ Tree: a connected graph without cycles

♠ Observation I: Every nontrivial (with more than one node) tree has a leaf

• Let a graph with m > 1 nodes be connected and without leaves. Then

every node is incident to at least two arcs. Let us walk along the graph in

such a way that when leaving a node, we do not use an arc which was used

when entering the node (such a choice of the “exit” arc always is possible,

since every node is incident to at least two arcs). Eventually certain node

i will be visited for the second time. When this happens for the first time,

the segment of our walk “from the first visit to i till the second visit to i”

will be a cycle. Thus, every connected graph with ≥ 2 nodes and without

leaves has a cycle and thus cannot be a tree. �
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♠ Observation II: A connected m-node graph is a tree iff it has m−1 arcs.

Proof, I: Let G be an m-node tree, and let us prove that G has exactly
m− 1 arcs.

Verification is by induction in m. The case of m = 1 is trivial. Assume that every m-node

tree has exactly m − 1 arcs, and let G be a tree with m + 1 nodes. By Observation I, G

has a leaf node; eliminating from G this node along with the unique arc incident to this

node, we get an m-node graph G− which is connected and has no cycles (since G is so).

By Inductive Hypothesis, G− has m− 1 arcs, whence G has m = (m+ 1)− 1 arcs. �

Proof, II: Let G be a connected m-node graph with m− 1 arcs, and let us

prove that G is a tree, that is, that G does not have cycles.

Assume that it is not the case. Take a cycle in G and eliminate from G one of the arcs

on the cycle; note that the new graph G′ is connected along with G. If G′ still have a

cycle, eliminate from G′ an arc on a cycle, thus getting connected graph G′′, and so on.

Eventually a connected cycle-free m-node graph (and thus a tree) will be obtained; by part

I, this graph has m − 1 arcs, same as G. But our process reduces the number of arcs by

1 at every step, and we arrive at the conclusion that no steps of the process were in fact

carried out, that is, G has no cycles. �
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♠ Observation III: Let G be a graph with m nodes and m − 1 arcs and

without cycles. Then G is a tree.

Indeed, we should prove that G is connected. Assuming that this is not

the case, we can split G into k ≥ 2 connected components, that is, split the

set N of nodes into k nonempty and non-overlapping subsets N1, ...,Nk such

that no arc in G links two nodes belonging to different subsets. The graphs

Gi obtained from G by reducing the nodal set to Ni, and the set of arcs – to

the set of those of the original arcs which link nodes from Ni, are connected

graphs without cycles and thus are trees. It follows that Gi has Card(Ni)−1

arcs, and the total number of arcs in all Gi is m− k < m− 1. But this total

is exactly the number m− 1 of arcs in G, and we get a contradiction. �

♠ Bottom Line: Let G be a m-node graph. Consider the following proper-

ties of G

• G is connected

• G has no cycles

• G has exactly m− 1 arcs.

Every two of these properties imply the third one, and all these properties

together mean that G is a tree.
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♠ Observation IV: Let G be a tree, and i, j be two distinct nodes in G.

Then there exists exactly one path which starts at i and ends at j.

Indeed, since G is connected, there exists a walk which starts at i and ends

at j; the walk of this type with minimum possible number of arcs clearly is

a path.

Now let us prove that the path π which links i and j is unique. Indeed,

assuming that there exists another path π′ which starts at i and ends at

j, we get a ‘loop” – a walk which starts and ends at i and is obtained by

moving first from i to j along π and then moving backward along π′. If

π′ 6= π, this loop clearly contains a cycle. Thus, G has a cycle, which is

impossible since G is a tree. �
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♠ Observation V: Let G be a tree, and let we add to G a new arc γ∗ =

{i∗, j∗}. In the resulting graph, there will be exactly one cycle, and the added

arc will be on this cycle.

Note: When counting the number of different cycles in a graph, we do not

distinguish between cycles obtained from each other by shifting the starting

node along the cycle and/or reversing order of nodes. Thus, cycles a, b, c, d, a,

b, c, d, a, b and a, d, c, b, a are counted as a single cycle.

Proof: When adding a new arc to a tree with m nodes, we get a connected

graph with m nodes and m arcs. Such a graph cannot be a tree and therefore

it has a cycle C. One of the arcs in C should be γ∗ (otherwise C would be a

cycle in G itself, while G is a tree and does not have cycles). The “outer”

(aside of γ∗) part of C should be a path in G which links the nodes j∗ and

i∗, and by Observation IV such a path is unique. Thus, C is unique as well.

�
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Oriented Graphs

♣ Oriented graph G = (N , E) is a pair comprised of

• finite nonempty set of nodes N
• set E of arcs – ordered pairs of distinct nodes

Thus, an arc γ of G is an ordered pair (i, j) comprised of two distinct (i 6= j)

nodes. We say that arc γ = (i, j)

• starts at node i,

• ends at node j, and

• links nodes i and j.

Directed graph.
Nodes: N = {1,2,3,4}.
Arcs: E = {(1,2), (2,3), (1,3), (3,4)}
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♠ Given a directed graph G and ignoring the directions of arcs (i.e., con-

verting a directed arc (i, j) into undirected arc {i, j}), we get an undirected

graph Ĝ.

Note: If G contains “inverse to each other” directed arcs (i, j), (j, i), these

arcs yield a single arc {i, j} in Ĝ.

♠ A directed graph G is called connected, if its undirected counterpart is

connected.

Directed graph G Undirected counterpart Ĝ of G
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♠ Incidence matrix P of a directed graph G = (N , E):

• the rows are indexed by nodes 1, ...,m

• the columns are indexed by arcs γ

• Piγ =


1, γ starts at i

−1, γ ends at i

0, all other cases

P =


1 0 1 0
−1 1 0 0

0 −1 −1 1
0 0 0 −1


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Network Flow Problem

♣ Network Flow Problem: Given
• an oriented graph G = (N , E)
• costs cγ of transporting a unit flow along arcs γ ∈ E,
• capacities uγ > 0 of arcs γ ∈ E – upper bounds on flows in the arcs,
• a vector s of external supplies at the nodes of G,

find a flow f = {fγ}γ∈E with as small cost
∑
γ cγfγ as it is possible under the

restrictions that
• the flow f respects arc directions and capacities: 0 ≤ fγ ≤ uγ for all

γ ∈ E
• the flow f obeys the conservation law w.r.t. the vector of supplies s:

at every node i, the total incoming flow
∑
j:(j,i)∈E fji plus the external

supply si at the node is equal to the total outgoing flow
∑
j:(i,j)∈E fij.

♠ Observation: The flow conservation law can be written as
Pf = s

where P is the incidence matrix of G.
♠ Notation: From now on, m stands for the number of nodes, and n stands
for the number of arcs in G.
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♠ The Network Flow problem reads:

min
f

∑
γ∈E

cγfγ : Pf = s, 0 ≤ f ≤ u

. (NWIni)

The Network Simplex Method is a specialization of the Primal Simplex

Method aimed at solving the Network Flow Problem.

♣Observation: The column sums in P are equal to 0, that is, [1; 1; ...; 1]TP =

0, whence [1; ...; 1]TPf = 0 for every f

⇒ The rows in P are linearly dependent, and (NWIni) is infeasible unless∑m
i=1 si = 0.

♠ Observation: When
∑m
i=1 si = 0 (which is necessary for (NWIni) to be

solvable), the last equality constraint in (NWIni) is minus the sum of the

first m− 1 equality constraints

⇒ (NWIni) is equivalent to the LO program

min
f

∑
γ∈E

cγfγ : Af = b, 0 ≤ f ≤ u

, (NW)

where A is the (m − 1) × n matrix comprised of the first m − 1 rows of P ,

and b = [s1; s2; ...; sm−1].
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♣ Standing assumptions:

♥ The total external supply is 0:
∑m
i=1 si = 0

♥ The graph G is connected

Under these assumptions,

• The Network Flow problem reduces to

min
f

∑
γ∈E

cγfγ : Af = b, 0 ≤ f ≤ u

. (NW)

• The rows of A are linearly independent (to be shown later), which

makes (NW) well suited for Simplex-type algorithms.

♣ We start with the uncapacitated case where all capacities are +∞, that

is, the problem of interest is

min
f

∑
γ∈E

cγfγ : Af = b, f ≥ 0

. (NWU)
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min
f

{∑
γ∈E cγfγ : Af = b, f ≥ 0

}
. (NWU)

♣ Our first step is to understand what are bases of A.

♣ Spanning trees. Let I be a set of exactly m− 1 arcs of G. Consider the

undirected graph GI with the same m nodes as G, and with arcs obtained

from arcs γ ∈ I by ignoring their directions. Thus, every arc in GI is of the

form {i, j}, where (i, j) or (j, i) is an arc from I.

Note that the inverse to each other arcs (i, j), (j, i), if present in I, induce

a single arc {i, j} = {j, i} in GI.

♠ It may happen that GI is a tree. In this case I is called a spanning tree

of G; we shall express this situation by words the m− 1 arcs from I form a

tree when their directions are ignored.
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• I = {(1,2), (2,3), (3,4)} is a spanning tree

• I = {(2,3), (1,3), (3,4)} is a spanning tree

• I = {(1,2), (2,3), (1,3)} is not a spanning tree (GI has cycles and is not

connected)

• I = {(1,2), (2,3)} is not a tree (less than 4− 1 = 3 arcs)
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min
f

{∑
γ∈E cγfγ : Af = b, f ≥ 0

}
. (NWU)

♣ We are about to prove that the bases of A are exactly the spanning trees

of G.

Observation 0: If I is a spanning tree, then I does not include pairs of

opposite to each other arcs, and thus there is a one-to-one correspondence

between arcs in I and induced arcs in GI.

Indeed, I has m − 1 arcs, and GI is a tree and thus has m − 1 arcs as well;

the latter would be impossible if two arcs in I were opposite to each other

and thus would induce a single arc in GI. �
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Observation I: Every set I ′ of arcs of G which does not contain inverse to

each other arcs and is such that arcs of I ′ do not form cycles after their

directions are ignored can be extended to a spanning tree I. In particular,

spanning trees do exist.

Proof. It may happen (case A) that the set E of all arcs of G does not

contain inverse arcs and arcs from E do not form cycles when their direc-

tions are ignored. Since G is connected, the undirected counterpart of G is

a connected graph with no cycles, i.e., it has exactly m − 1 arcs. But then

E has m− 1 arcs and is a spanning tree, and we are done.
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”It may happen (case A) that the set E of all arcs of G does not contain inverse arcs and

arcs from E do not form cycles when their directions are ignored. Since G is connected, the

undirected counterpart of G is a connected graph with no cycles, i.e., it has exactly m− 1

arcs. But then E has m− 1 arcs and is a spanning tree, and we are done.”

♥ If A is not the case, then either E has a pair of inverse arcs (i, j), (j, i) (case B.1), or E
does not contain inverse arcs and has a cycle (case B.2).

• In the case of B.1 one of the arcs (i, j), (j, i) is not in I ′ (since I ′ does not contain inverse

arcs). Eliminating this arc from G, we get a connected graph G1, and arcs from I ′ are

among the arcs of G1.

• In the case of B.2 G has a cycle; this cycle includes an arc γ 6∈ I ′ (since arcs from I ′ make

no cycles). Eliminating this arc from G, we get a connected graph G1, and arcs from I ′ are

among the arcs of G1.

♥ Assuming that A is not the case, we build G1 and apply to this connected graph the

same construction as to G. As a result, we

— either conclude that G1 is the desired spanning tree,

— or eliminate from G1 an arc, thus getting connected graph G2 such that all arcs of I ′

are arcs of G2.

♥ Proceeding in this way, we must eventually terminate; upon termination, the set of arcs

of the current graph is the desired spanning tree containing I ′. �

5.21



Note: Columns of A are indexed by arcs

⇒ Bases of A are some collections I of m− 1 arcs of G.

♣ Facts:

A. Bases of A are exactly the collections I of m− 1 arcs from E which be-

come spanning trees after their directions are ignored.

B. If I is a base of A, then the (m − 1) × (m − 1) submatrix AI of A after

permuting rows and columns becomes lower-triangular with all diagonal en-

tries equal to ±1.

min
f

{∑
γ∈E cγfγ : Af = b, f ≥ 0

}
. (NWU)

♣ Corollary [Integrality of Network Flow Polytope]: Let b be integral.

Then all basic solutions to (NWU), feasible or not, are integral vectors.

Indeed, the basic entries in a basic solution solve the system Bu = b with

integral right hand side and lower triangular nonsingular matrix B with inte-

gral entries and diagonal entries ±1

⇒ all entries in u are integral. �
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Proof of Facts

Claim I: Let I be a spanning tree. Then the columns of A with indexes
from I are linearly independent, that is, I is a basis of A.
Proof. • Consider the graph GI. This is a tree; therefore, for every node i there is a
unique path in GI leading from i to the root node m. We can renumber the nodes j in such
a way that the new indexes j′ of nodes strictly increase along such a path. Note that the
new number of the root node still is m: m′ = m.
Indeed, we can associate with a node i its “distance” from the root node, defined as the
number of arcs in the unique path from i to m, and then reorder the nodes, making the
distances nonincreasing in the new serial numbers of the nodes.
♥ For example, with GI as shown:

we could set 2′ = 1,1′ = 2,3′ = 3,4′ = 4
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Proofs of Facts, continued
• Now let us associate with an arc γ = (i, j) ∈ I its serial number p(γ) = min[i′, j′]. Observe
that different arcs from I get different serial numbers. Indeed, assuming w.l.o.g. that i′ < j′,
the walk in GI

“from i to j along γ and then from j to the root node m
along the unique path π in GI leading from j to m”

is a path in GI, since ′-indexes of the nodes in π are ≥ j′ and thus differ from i′. If now two
distinct from each other arcs from I, γ = (i, j) γ̄ = (̄i, j̄) have equal serial numbers:

min[i′, j′] = min[̄i′, j̄′] = s′ ,
then there is a path in GI from s to the root node which starts with the arc γ, same as
there is a path in Gi from s to the root node which starts with γ̄ 6= γ, which is impossible,
since GI is a tree.

Since the serial numbers take values 1, ...,m − 1 and the serial numbers of different arcs

from I are different, serial numbers indeed form an ordering of the m− 1 arcs from I.

♥ In our example, where GI is the graph

and 2′ = 1,1′ = 2,3′ = 3,4′ = 4 we get
p(2,3) = min[2′; 3′] = 1,
p(1,3) = min[1′,3′] = 2,
p(3,4) = min[3′,4′] = 3
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Proofs of Facts, continued
• Now let AI be the (m − 1) × (m − 1) submatrix of A comprised of columns with indexes
from I. Let us reorder the columns according to the serial numbers of the arcs γ ∈ I, and
rows – according to the new indexes i′ of the nodes. The resulting matrix BI is or is not
singular simultaneously with AI.
Observe that in B, same as in AI, every column
— either has two nonzero entries (case A), one equal to 1 and one equal to -1 [this is the
case when the arc γ indexing the column is not incident to the root node m],
— or has exactly one nonzero entry (case B), equal to +1 or to -1 [this is the case when
the root node m is incident to the arc γ indexing the column]

• in case A, the index ν of column is the minimum of row indexes of the two nonzero entries
in the column.

• in case B, the index ν of the column is the row index of the only nonzero entry in the
column.

⇒ In both cases, ν is the minimum of row indexes of the nonzero entries in the column.

In other words, B is a lower triangular matrix with diagonal entries ±1 and therefore it is

nonsingular. �
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Proofs of Facts, continued

♥ In our example I = {(2,3), (1,3), (3,4)}, GI is the graph

we have 1′ = 2,2′ = 1,3′ = 3,4′ = 4, p(2,3) = 1, p(1,3) = 2, p(3,4) = 3

and

A =

 1 0 1 0
−1 1 0 0

0 −1 −1 1


arcs indexing columns, from left to right: (1,2),(2,3),(1,3),(3,4)

so that

AI =

 0 1 0
1 0 0
−1 −1 1

 , B =

 1 0 0
0 1 0
−1 −1 1


As it should be B is lower triangular with diagonal entries ±1.
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Proofs of Facts, continued

Corollary: The m− 1 rows of A are linearly independent.

Indeed, by Observation I, G has a spanning tree I, and by Claim I, the

corresponding (m− 1)× (m− 1) submatrix AI of A is nonsingular.

♣ We have seen that spanning trees are the bases of A. The inverse is also

true:

Claim II: Let I be a basis of A. Then I is a spanning tree.

Proof. A basis should be a set of m − 1 indexes of columns in A — i.e.,

a set I of m − 1 arcs — such that the columns Aγ, γ ∈ I, of A are linearly

independent.

• Observe that I cannot contain inverse arcs (i, j), (j, i), since the sum of

the corresponding columns in P (and thus in A) is zero.
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Proofs of Facts, continued

• Consequently GI has exactly m − 1 arcs. We want to prove that the m-

node graph GI is a tree, and to this end it suffices to prove that GI has no

cycles. Let, on the contrary, i1, i2, ..., it = i1 be a cycle in GI (t > 3, i1, ..., it−1

are distinct from each other). Consequently, I contains t − 1 distinct arcs

γ1, ..., γt−1 such that for every `

— either γ` = (i`, i`+1) (“forward arc”),

— or γ` = (i`+1, i`) (“backward arc”).

Setting εs = 1 or εs = −1 depending on whether γs is a forward or a backward

arc and denoting by Aγ the column of A indexed by γ, we get
∑t−1
s=1 εsAγs = 0,

which is impossible, since the columns Aγ, γ ∈ I, are linearly independent. �
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Network Simplex Algorithm

Building Block I: Computing Basic Solution

min
f

{∑
γ∈E cγfγ : Af = b, f ≥ 0

}
. (NWU)

♣ As a specialization of the Primal Simplex Method, the Network Simplex

Algorithm works with basic feasible solutions.

There is a simple algorithm allowing to specify the basic feasible solution fI

associated with a given basis (i.e., a given spanning tree) I.

Note: fI should be a flow (i.e., AfI = b) which vanishes outside of I (i.e.,

fIγ = 0 whenever γ 6∈ I).
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♠ The algorithm for specifying fI is as follows:

• GI is a tree and thus has a leaf i∗; let γ ∈ I be an arc which is incident to

node i∗. The flow conservation law specifies fIγ :

fIγ =

{
−si∗, γ = (j∗, i∗)
si∗, γ = (i∗, j∗)

We specify fIγ , eliminate from I node i∗ and arc γ and update sj∗ to account

for the flow in the arc γ:

s+
j∗ = sj∗ + si∗

We end up with m − 1-node graph G1
I equipped with the updated (m − 1)-

dimensional vector of external supplies s1 obtained from s by eliminating si∗
and replacing sj∗ with sj∗+ si∗. Note that the total of updated supplies is 0.

• We apply to G1
I the same procedure as to GI, thus getting one more entry

in fI, reducing the number of nodes by one and updating the vector of

external supplies, and proceed in this fashion until all entries fIγ , γ ∈ I, are

specified.
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s = [1; 2; 3;−6]

♠ Illustration: Let I = {(1,3), (2,3), (3,4)}. Graph GI is

• We choose a leaf in GI, specifically, node 1, and set f I1,3 = s1 = 1. We then eliminate

from GI the node 1 and the incident arc, thus getting the graph G1
I , and convert s into s1:

s1
2 = s2 = 2; s1

3 = s3 + s1 = 4; s1
4 = s4 = −6

5.31



s1
2 = s2 = 2; s1

3 = s3 + s1 = 4; s1
4 = s4 = −6

• We choose a leaf in the new graph, say, the node 4, and set f I3,4 = −s1
4 = 6. We then

eliminate from G1
I the node 4 and the incident arc, thus getting the graph G2

I , and convert

s1 into s2:

s2
2 = s1

2 = 2; s2
3 = s1

3 + s1
4 = −2

• We choose a leaf, say, node 3, in the new graph and set f I2,3 = −s2
3 = 2. The algorithm

is completed. The resulting basic flow is

f I1,2 = 0, f I2,3 = 2, f I1,3 = 1, f I3,4 = 6.
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Building Block II: Computing Reduced Costs

There is a simple algorithm allowing to specify the reduced costs associated

with a given basis (i.e., a given spanning tree) I.

Note: The reduced costs should form a vector cI = c − ATλI and should

satisfy cIγ = 0 whenever γ ∈ I. Observe that the span of the columns of AT

is the same as the span of the columns of PT , thus, we lose nothing when

setting cI = c− PTµI. The requirement cIγ = 0 for γ ∈ I reads

cij = µi − µj ∀γ = (i, j) ∈ I (∗),

while

cIij = cij − µi + µj ∀γ = (i, j) ∈ E (!)

♠ To achieve (∗), we act as follows. When building fI, we build a sequence

of trees G0
I := GI, G

1
I ,...,Gm−2

I in such a way that Gs+1
I is obtained from GsI

by eliminating a leaf and the arc incident to this leaf.

To build µ, we look through these graphs in the backward order.
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• Gm−2
I has two nodes, say, i∗ and j∗, and a single arc which corresponds to

an arc γ = (γs, γf) ∈ I, where either γs = j∗, γf = i∗, or γs = i∗, γf = j∗. We

choose µi∗, µj∗ such that

cγ = µγs − µγf

• Let we already have assigned all nodes i of GsI with the “potentials” µi in

such a way that for every arc γ ∈ I linking the nodes from GsI it holds

cγ = µγs − µγf (∗s)
The graph Gs−1

I has exactly one node, let it be i∗, which is not in GsI, and

exactly one arc {j∗, i∗}, obtained from an oriented arc γ̄ ∈ I, which is incident

to i∗. Note that µj∗ is already defined. We specify µi∗ from the requirement

cγ̄ = µγ̄s − µγ̄f ,

thus ensuring the validity of (∗s−1).

• After G0
I is processed, we get the potentials µ satisfying the target relation

cij = µi − µj ∀γ = (i, j) ∈ I (∗),

and then define the reduces costs according to

cIγ = cγ + µγf − µγs γ ∈ E.
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Illustration: Let G and I be as in the previous illustrations:

I = {(1,3), (2,3), (3,4)}
and let

c1,2 = 1, c2,3 = 4, c1,3 = 6, c3,4 = 8

We have already found the corresponding graphs GsI:

G0
I G1

I G2
I

• We look at graph G2
I and set µ2 = 0, µ3 = −4, thus ensuring c2,3 = µ2−µ3

• We look at graph G1
I and set µ4 = µ3 − c3,4 = −12, thus ensuring c3,4 =

µ3 − µ4

•We look at graph G0
I and set µ1 = µ3+c1,3 = 2, thus ensuring c1,3 = µ1−µ3

The reduced costs are

cI1,2 = c1,2 + µ2 − µ1 = −1, cI1,3 = cI2,3 = cI3,4 = 0.
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Iteration of the Network Simplex Algorithm

min
f

{∑
γ∈E cγfγ : Af = b, f ≥ 0

}
. (NWU)

♠ At the beginning of an iteration, we have at our disposal a basis – a

spanning tree – I along with the associated feasible basic solution fI and

the vector of reduced costs cI.

• It is possible that cI ≥ 0. In this case we terminate, fI being an optimal

solution.

Note: We are solving a minimization problem, so that sufficient condition

for optimality is that the reduced costs are nonnegative.

• If cI is not nonnegative, we identify an arc γ̂ in G such that cIγ̂ < 0. Note:

γ 6∈ I due to cIγ = 0 for γ ∈ I. fγ̂ enters the basis.

• It may happen that γ̂ = (i1, i2) is inverse to an arc γ̃ = (i2, i1) ∈ I. Setting

hγ̂ = hγ̃ = 1 and hγ = 0 when γ is different from γ̃ and γ̂, we have Ah = 0

and cTh = [cI]Th = cIγ̂ < 0

⇒ fI + th is feasible for all t > 0 and cT (fI + th)→ −∞ as t→∞
⇒ The problem is unbounded, and we terminate.
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• Alternatively, γ̂ = (i1, i2) is not inverse to an arc in I. In this case, adding

to GI the arc {i1; i2}, we get a graph with a single cycle C, that is, we can

point out a sequence of nodes i1, i2, ..., it = i1 such that t > 3, i1, ..., it−1 are

distinct, and for every s, 2 ≤ s ≤ t− 1,

— either the arc γs = (is, is+1) is in I (“forward arc γs”),

— or the arc γs = (is+1, is) is in I (“backward arc γs”).

We set γ1 = γ̂ = (i1, i2) and treat γ1 as a forward arc of C.

We define the flow h according to

hγ =


1, γ = γs is forward

−1, γ = γs is backward

0, γ is distinct from all γs
By construction, Ah = 0, hγ̂ = 1 and hγ = 0 whenever γ 6= γ̂ and γ 6∈ I.

Setting fI(t) = fI + th, we have AfI(t) ≡ b and cTfI(t) = cTfI + t[cI]Th =

cT [fI] + tcIγ̂ → −∞, t→∞.

• If h ≥ 0, fI(t) is feasible for all t ≥ 0 and cTfI(t)→ −∞, t→∞
⇒ the problem is unbounded, and we terminate
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• If hγ = −1 for some γ (all these γ are in I), we set
γ̃ = argmin

γ∈I
{fIγ : hγ = −1}[f

γ̃
leaves the basis]

t̄ = fIγ̃
I+ = (I ∪ γ̂)\{γ̃}
fI

+
= fI + t̄h

We have defined the new basis I+ along with the corresponding basic feasible

flow fI+ and pass to the next iteration.
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Illustration:

I = {(1,3), (2,3), (3,4)} f I1,2 = 0, f I2,3 = 2, f I1,3 = 1, f I3,4 = 6 cI1,2 = −1, cI1,3 = cI2,3 = cI3,4 = 0

• cI1,2 < 0 ⇒ f1,2 enters the basis
• Adding γ̂ = (1,2) to I, we get the cycle

i1 = 1(1,2)i2 = 2(2,3)i3 = 3(1,3)i4 = 1
(magenta: forward arcs, blue: backward arcs)

⇒ h1,2 = h2,3 = 1, h1,3 = −1, h1,4 = 0

⇒ f I1,2(t) = t, f I2,3(t) = 2 + t, f I1,3(t) = 1− t, f I3,4(t) = 6

⇒ the largest t for which fI(t) is feasible is t = 1, variable f1,3 leaves the
basis
⇒ I+ = {(1,2), (2,3), (3,4)}, f I+

1,2 = 1, f I
+

2,3 = 3, f I
+

3,4 = 6, f I
+

1,3 = 0, cost change is cI1,2f
I+

1,2 =

−1.

The iteration is over.
• New potentials are given by

1 = c1,2 = µ1 − µ2,4 = c2,3 = µ2 − µ3,8 = c3,4 = µ3 − µ4

⇒ µ1 = 1, µ2 = 0, µ3 = −4, µ4 = −12
cI

+

1,2 = cI
+

2,3 = cI
+

3,4 = 0, cI
+

1,3 = c1,3 − µ1 + µ3 = 6− 1− 4 = 1

⇒ New reduced costs are nonnegative
⇒ fI

+
is optimal.
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Capacitated Network Flow Problem

♣ Capacitated Network Flow problem on a graph G = (N , E) is to find a

minimum cost flow on G which fits given external supplies and obeys arc

capacity bounds:

min
f

{
cTf : Af = b, 0 ≤ f ≤ u

}
, (NW)

• A is the (m−1)×n matrix comprised of the first m−1 rows of the incidence

matrix P of G,

• b = [s1; s2; ...; sm−1] is the vector comprised of the first m−1 entries of the

vector s of external supplies,

• u is the vector of arc capacities.

♣ We are about to present a modification of the Network Simplex algorithm

for solving (NW).
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Primal Simplex Method

for

Problems with Bounds on Variables

♣ Consider an LO program

min
x

{
cTx : Ax = b, `j ≤ xj ≤ uj, 1 ≤ j ≤ n

}
(P )

Standing assumptions:

• for every j, `j < uj (“no fixed variables”)

• for every j, either `j > −∞, or uj < +∞, or both (“no free variables”);

• The rows in A are linearly independent.

Note: (P ) is not in the standard form unless `j = 0, uj =∞ for all j.

However: The PSM can be adjusted to handle problems (P ) in nearly the

same way as it handles the standard form problems.
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min
x

{
cTx : Ax = b, `j ≤ xj ≤ uj, 1 ≤ j ≤ n

}
(P )

♣ Observation I: if x is a vertex of the feasible set X of (P ), then there

exists a basis I of A such that all nonbasic entries in x are on the bounds:

∀j 6∈ I : xj = `j or xj = uj (∗)
Vice versa, every feasible solution x which, for some basis I, has all nonbasic

entries on the bounds, is a vertex of X.

Proof: identical to the one for the standard case.
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min
x

{
cTx : Ax = b, `j ≤ xj ≤ uj, 1 ≤ j ≤ n

}
(P )

Definition: Vector x is called basic solution associated with a basis I of A,

if Ax = b and all non-basic (with indexes not in I) entries in x are on their

bounds.

Observation I says that the vertices of the feasible set of (P ) are exactly the

basic solutions which are feasible.

Difference with the standard case: In the standard case, a basis uniquely

defines the associated basic solution. In the case of (P ), there can be as

many basic solutions associated with a given basis I as many ways there

are to set nonbasic variables to their bounds. After nonbasic variables are

somehow set to their bounds, the basic variables are uniquely defined:

xI = A−1
I [b−

∑
j 6∈I xjA

j]

where Aj are columns of A and AI is the submatrix of A comprised of

columns with indexes in I.
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min
x

{
cTx : Ax = b, `j ≤ xj ≤ uj, 1 ≤ j ≤ n

}
(P )

♣ Reduced costs. Given a basis I for A, the corresponding reduced costs

are defined exactly as in the standard case: as the vector cI uniquely defined

by the requirements that it is of the form c−ATλ and all basic entries in the

vector are zeros: cIj = 0, j ∈ I. The formula for cI is

cI = c−AT
λI︷ ︸︸ ︷

A−TI cI
where cI is the vector comprised of the basic entries in c.

Note: As in the standard case, reduced costs associated with a basis are

uniquely defined by this basis.

♣ Observation II: On the feasible affine plane M = {x : Ax = b} of (P ) one

has

cTx− [cI]Tx = const

In particular,

x′, x′′ ∈M⇒ cTx′ − cTx′′ = [cI]Tx′ − [cI]Tx′′

Proof. Indeed, if x ∈M, then

[cI]Tx− cTx = [c−ATλI]Tx− cTx = −[λI]TAx = −[λI]T b

and the result is independent of x ∈M.
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min
x

{
cTx : Ax = b, `j ≤ xj ≤ uj, 1 ≤ j ≤ n

}
(P )

♣ Corollary: Let I be a basis of A, x∗ be an associated feasible basic

solution, and cI be the associated with I vector of reduced costs. Assume

that nonbasic entries in cI and nonbasic entries in x satisfy the relation

∀j 6∈ I :

{
x∗j = `j ⇒ cIj ≥ 0

x∗j = uj ⇒ cIj ≤ 0

Then x∗ is an optimal solution to (P ).

Proof. By Observation II, problem

min
x

{
[cI]Tx : Ax = b, `j ≤ xj ≤ uj, 1 ≤ j ≤ n

}
(P ′)

is equivalent to (P ) ⇒ it suffices to prove that x∗ is optimal for (P ′). This

is evident:
x is feasible ⇒

[cI]
T

[x− x∗] =
∑

j∈I

=0︷︸︸︷
cIj [xj − x∗j]

+
∑

j 6∈I,
x∗
j

=`j

≥0︷︸︸︷
cIj [xj − `j]︸ ︷︷ ︸

≥0

+
∑

j 6∈I,
x∗
j

=uj

≤0︷︸︸︷
cIj [xj − uj]︸ ︷︷ ︸

≤0

≥ 0
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min
x

{
cTx : Ax = b, `j ≤ xj ≤ uj, 1 ≤ j ≤ n

}
(P )

♣ Iteration of the PSM as applied to (P ) is as follows:

♠ At the beginning of the iteration, we have at our disposal current basis I,

an associated feasible basic solution xI, and the associated reduced costs cI

and set

J` = {j 6∈ I : xIj = `j}, Ju = {j 6∈ I : xIj = uj}.
♠ At the iteration, we

A. Check whether cIj ≥ 0∀j ∈ J` and cIj ≤ 0 ∀j ∈ Ju. If it is the case, we

terminate – x is an optimal solution to (P ) (by Corollary).

B. If we do not terminate according to A, we pick j∗ such that j∗ ∈ J` & cIj∗ <

0 or j∗ ∈ Ju & cIj∗ > 0. Further, we build the ray x(t) of solutions such that

Ax(t) = b∀t ≥ 0
xj(t) = xIj ∀j 6∈ [I ∪ {j∗}]

xj∗(t) =

{
xj∗ + t = `j∗ + t, j∗ ∈ J`
xj∗ − t = uj∗ − t, j∗ ∈ Ju

Note that

x(t) = xI − εtA−1
I Aj∗, ε =

{
1, j∗ ∈ J`
−1, j∗ ∈ Ju
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min
x

{
cTx : Ax = b, `j ≤ xj ≤ uj, 1 ≤ j ≤ n

}
(P )

J` = {j 6∈ I : xIj = `j}, Ju = {j 6∈ I : xIj = uj}.

Situation: We have built a ray of solutions

x(t) = xI − εtA−1
I Aj∗, ε =

{
1, j∗ ∈ J`
−1, j∗ ∈ Ju

such that

• Ax(t) = b for all t ≥ 0

• the only nonzero entries in x(t) − xI are the basic entries and the j∗-th entry, the latter

being equal to εt.

Note: By construction, the objective improves along the ray x(t):

cT [x(t)− xI] = [cI]T [x(t)− xI] = cIj∗[xj∗(t)− x
I
j∗

] = cIj∗εt = −|cIj∗|t ♥
x(0) = xI is feasible. It may happen that as t ≥ 0 grows, all entries xj(t)
of x(t) stay all the time in their feasible ranges [`j, uj]. If it is the case, we
have discovered problem’s unboundedness and terminate.

♥ Alternatively, when t grows, some of the entries in x(t) eventually leave
their feasible ranges. In this case, we specify the largest t = t̄ ≥ 0 such
that x(t̄) still is feasible. As t = t̄, one of the depending on t entries xi∗(t)
is about to become infeasible — it is in the feasible range when t = t̄ and
leaves this range when t > t̄. We set I+ = I ∪ {j∗}\{i∗}, xI

+
= x(t̄), update

cI into cI
+

and pass to the next iteration.
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♠ As a result of an iteration, the following can occur:

♥ We terminate with optimal solution xI and “optimality certificate” cI

♥ We terminate with correct conclusion that the problem is unbounded

♥ We pass to the new basis I+ and the new feasible basic solution xI
+

. If

it happens,

• the objective either improves, or remains the same. The latter can

happen only when xI
+

= xI (i.e., the above t̄ = 0). Note that this option

is possible only when some of the basic entries in xI are on their bounds

(“degenerate basic feasible solution”), and in this case the basis definitely

changes;

• the basis can change and can remain the same (the latter happens if

i∗ = j∗. i.e., as a result of the iteration, certain non-basic variable jumps

from one endpoint of its feasible range to another endpoint of this range).

♠ In the nondegenerate case (i.e., there are no degenerate basic feasible

solutions), the PSM terminates in finite time.

♠ Same as the basic PSM, the method can be initialized by solving auxiliary

Phase I program with readily available basic feasible solution.
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♣ The Network Simplex Method for the capacitated Network Flow problem

min
f

{
cTf : Af = b, ` ≤ f ≤ u

}
, (NW)

associated with a graph G = (N = {1, ...,m}, E) is the network flow adapta-

tion of the above general construction. We assume that G is connected.

Then

♠ Bases of A are spanning trees of G – the collections of m− 1 arcs from E
which form a tree after their orientations are ignored;

♠ Basic solution fI associated with basis I is a (not necessarily feasible)

flow such that

AfI = b and ∀γ 6∈ I : fIγ is either `γ, or uγ.
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min
f

{
cTf : Af = b, ` ≤ f ≤ u

}
, (NW)

♠ At the beginning of an iteration, we have at our disposal a basis I along

with associated feasible basic solution fI.



♥ In course of an iteration,

• we build the reduced costs cIij = cij + µj − µi, (i, j) ∈ E, where the “potentials” µ1, ..., µm

are given by the requirement

cij = µi − µj ∀(i, j) ∈ I
The algorithm for building the potentials is exactly the same as in the uncapacitated case.

• we check the signs of the non-basic reduced costs to find a “promising” arc – an arc

γ∗ = (i∗, j∗) 6∈ I such that either f Iγ∗ = `γ∗ and cIγ∗ < 0, or f Iγ∗ = uγ∗ and cIγ∗ > 0.

♥ If no promising arc exists, we terminate — f I is an optimal solution to (NW).

Alternatively, we find a promising arc γ∗ = (i∗, j∗). Note that γ 6∈ I.

Case A: γ∗ is not inverse to an arc in I. We add arc γ∗ to I. Since I is a spanning tree,

there exists a cycle

C = i1 = i∗ (i∗, j∗)︸ ︷︷ ︸
≡γ1

i2 = j∗γ2i3γ3i4...γt−1it = i1

where

• i1, ..., it−1 are distinct from each other nodes,

• γ2, ..., γt−1 are distinct from each other arcs from I, and

• for every s, 1 ≤ s ≤ t− 1,

• either γs = (is−1, is) (“forward arc”),

• or γs = (is, is−1) (“backward arc”).

Note: γ1 = (i∗, j∗) is a forward arc.
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C = i1 = i∗ (i∗, j∗)︸ ︷︷ ︸
≡γ1

i2 = j∗γ2i3γ3i4...γt−1it = i1

γ2, ..., γt−1 ∈ I

♥ We identify the cycle C and define the flow h as follows:

hγ =


0, γ does not enter C

ε, γ is a forward arc in C

−ε, γ is a backward arc in C

ε =

{
1, fIγ∗ = `γ∗ & cIγ∗ < 0
−1, fIγ∗ = uγ∗ & cIγ∗ > 0

Setting f(t) = fI + th, we ensure that

• Af(t) ≡ b
• cTf(t) decreases as t grows,

• f(0) = fI is feasible,

• fγ∗(t) = fIγ∗ + εt is in the feasible range for all small enough t ≥ 0,

• fγ(t) are affine functions of t and are constant when γ is not in C.
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Setting f(t) = fI + th, we ensure that

• Af(t) ≡ b
• cTf(t) decreases as t grows,

• f(0) = fI is feasible,

• fγ∗(t) = fIγ∗ + εt is in the feasible range for all small enough t ≥ 0,

• fγ(t) are affine functions of t and are constant when γ is not in C.

♥ It is easy to check whether f(t) remains feasible for all t ≥ 0. If it is the

case, the problem is unbounded, and we terminate.

Alternatively, it is easy to find the largest t = t̄ ≥ 0 such that f(t̄) still is

feasible. When t = t̄, at least one of the flows fγ(t) which do depend on

t (⇒ γ belongs to C) is about to leave its feasible range. We specify the

corresponding arc γ̂ and define

• the new basis as I+ = I ∪ {γ∗}\{γ̂}
• the new basic feasible solution as fI

+
= f(t̄)

and proceed to the next iteration.
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Case B: γ∗ = (i∗, j∗) is inverse to an arc γ′∗ = (j∗, i∗) ∈ I. Here we act

exactly as in Case A, but with

f(t) =


fIγ , γ 6= γ∗, γ 6= γ′∗
fIγ + εt, γ = γ∗
fIγ − εt, γ = γ′∗

ε =

{
1, fIγ∗ = `γ∗ & cIγ∗ < 0
−1, fIγ∗ = uγ∗ & cIγ∗ > 0
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♣ Illustration:

c1,2 = 1, c2,3 = 4, c1,3 = 6, c3,4 = 8, s = [1; 2; 3;−6]
`ij = 0 ∀i, j;u1,2 =∞, u1,3 =∞, u2,3 = 2, u3,4 = 7

♥ Let I = {(1,3), (2,3), (3,4)}
⇒ f I1,2 = 0, f I2,3 = 2, f I1,3 = 1, f I3,4 = 6 — feasible!

⇒ cI1,2 = −1, cI1,3 = cI2,3 = cI3,4 = 0

♥ cI1,2 = −1 < 0 and f I1,2 = 0 = `1,2

⇒ γ∗ = (1,2) is a promising arc, and it is profitable to increase its flow (ε = 1)

♥ Adding (1,2) to I, we get the cycle

1(1,2)2(2,3)3(1,3)1

⇒ h1,2 = 1, h2,3 = 1, h1,3 = −1, h3,4 = 0

⇒ f1,2(t) = t, f2,3(t) = 2 + t, f1,3(t) = 1− t, f3,4(t) = 6

♥ The largest t̄ for which all fγ(t) are in their feasible ranges is t̄ = 0, the corresponding

arc being γ̂ = (2,3)

⇒ The new basis is I+ = {(1,2), (1,3), (3,4)}, the new basic feasible flow is the old one:

f I
+

1,2 = 0, f I
+

2,3 = 2, f I
+

1,3 = 1, f I
+

3,4 = 6
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♥ The new basis is I+ = {(1,2), (1,3), (3,4)}, the new basic feasible flow is

the old one:

fI
+

1,2 = 0, fI
+

2,3 = 2, fI
+

1,3 = 1, fI
+

3,4 = 6

♥ Computing the new reduced costs:
1 = c1,2 = µ1 − µ2,6 = c1,3 = µ1 − µ3,8 = c3,4 = µ3 − µ4

⇒ µ1 = 1, µ2 = 0, µ3 = −5, µ4 = −13
⇒ cI

+

1,2 = cI
+

1,3 = cI
+

3,4 = 0, cI
+

23 = c23 + µ3 − µ2 = 4− 5 + 0 = −1

All positive reduced costs (in fact, there are none) correspond to flows

on their lower bounds, and all negative reduced costs (namely, cI
+

2,3 = −1)

correspond to flows on their upper bounds

⇒ fI
+

is optimal!
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PART III.

LO and Beyond: Polynomial Time

Algorithms



Lecture III.1

Ellipsoid Algorithm

and

Efficient Solvability of LO



Complexity of LO

♣ A generic computational problem P is a family of instances — particular

problems of certain structure, identified within P by a (real or binary) data

vector. For example, LO is a generic problem LO with instances of the form

min
x

{
cTx : Ax ≤ b

}
[A = [A1; ...;An] : m× n]

An LO instance – a particular LO program – is specified within this family

by the data (c, A, b) which can be arranged in a single vector

[m;n; c;A1;A2; ...;An; b].

♣ Investigating complexity of a generic computational problem P is aimed

at answering the question

How the computational effort of solving an instance P of P depends

on the “size” Size(P ) of the instance?

♠ Precise meaning of the above question depends on how we measure the

computational effort and how we measure the sizes of instances.
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♣ Let the generic problem in question be LO – Linear Optimization. There

are two natural ways to treat the complexity of LO:

♠ Real Arithmetic Complexity Model:

• We allow the instances to have real data and measure the size of an

instance P by the sizes m(P ), n(P ) of the constraint matrix of the instance,

say, set Size(P ) = m(P )n(P )

• We take, as a model of computations, the Real Arithmetic computer –

an idealized computer capable to store reals and carry out operations of

precise Real Arithmetics (four arithmetic operations and comparison), each

operation taking unit time.

• The computational effort in a computation is defined as the running time

of the computation. Since all operations take unit time, this effort is just

the total number of arithmetic operations in the computation.
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min
x

{
cTx : Ax ≤ b

}
(P )

♠ Rational Arithmetic (“Fully finite”) Complexity Model:

• We allow the instances to have rational data and measure the size of an

instance P by its binary length L(P ) — the total number of binary digits in

the data c, A, b of the instance;

• We take, as a model of computations, the Rational Arithmetic computer –

a computer which is capable to store rational numbers (represented by pairs

of integers) and to carry out operations of precise Rational Arithmetics (four

arithmetic operations and comparison), the time taken by an operation be-

ing a polynomial π(`) in the total binary length ` of operands.

• The computational effort in a computation is again defined as the running

time of the computation. However, now this effort is not just the total num-

ber of operations in the computation, since the time taken by an operation

depends on the binary length of the operands.
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♠ In both Real and Rational Arithmetics complexity models, a solution al-

gorithm B for a generic problem P is a code for the respective computer

such that executing the code on the data of every instance P of P, the

running time of the resulting computation is finite, and upon termination

the computer outputs an exact solution to the instance P . In the LO case,

the latter means that upon termination, the computer outputs

• either an optimal solution to P ,

• or the correct claim “P is infeasible,”

• or the correct claim “P is unbounded.”

For example, the Primal Simplex Method with anti-cycling pivoting rules is

a solution algorithm for LO. Without these rules, the PSM is not a solution

algorithm for LO.

♠ A solution algorithm B for P is called polynomial time (“computationally

efficient”), if its running time on every instance P of P is bounded by a

polynomial in the size of the input:

∃a, b : ∀P ∈ P : 〈running time of B on P 〉 ≤ a · Sizeb(P ).

♠ We say that a generic problem P is polynomially solvable (“computation-

ally tractable”), if it admits a polynomial time solution algorithm.
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Comments:

♠ Polynomial solvability is a worst-case-oriented concept: we want the com-

putational effort to be bounded by a polynomial of Size(P ) for every P ∈ P.

In real life, we would be completely satisfied by a good bound on the effort

of solving most, but not necessary all, of the instances. Why not to pass

from the worst to the average running time?

Answer: For a generic problem P like LO, with instances coming from a

wide spectrum of applications, there is no hope to specify in a meaningful

way the distribution according to which instances arise, and thus there is no

meaningful way to say w.r.t. which distribution the probabilities and aver-

ages should be taken.

♠ Why computational tractability is interpreted as polynomial solvability? A

high degree polynomial bound on running time is, for all practical purposes,

not better than an exponential bound!
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”Why computational tractability is interpreted as polynomial solvability? A

high degree polynomial bound on running time is, for all practical purposes,

not better than an exponential bound!”

Answer:

• At the theoretical level, it is good to distinguish first of all between “defi-

nitely bad” and “possibly good.” Typical non-polynomial complexity bounds

are exponential, and these bounds definitely are bad from the worst-case

viewpoint. High degree polynomial bounds also are bad, but as a matter of

fact, they do not arise.

• The property of P to be/not to be polynomially solvable remains intact

when changing “small details” like how exactly we encode the data of an

instance to measure its size, what exactly is the polynomial dependence of

the time taken by an arithmetic operation on the bit length of the operands,

etc., etc. As a result, the notion of “computational tractability” becomes

independent of technical “second order” details.
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• After polynomial time solvability is established, we can investigate the

complexity in more details — what are the degrees of the corresponding

polynomials, what are the best under circumstances data structures and

polynomial time solution algorithms, etc., etc. But first thing first...

• Proof of a pudding is in eating: the notion works! As applied in the frame-

work of Rational Arithmetic Complexity Model, it results in fully compatible

with common sense classification of Discrete Optimization problems into

“difficult” and “easy” ones.
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Classes P and NP

♣ Consider a generic discrete problem P, that is, a generic problem with
rational data and instances of the form “given rational data d of an in-
stance, find a solution to the instance, that is, a rational vector x such that
A(d, x) = 1.” Here A is the associated with P predicate – function taking
values 1 (“true”) and 0 (“false”).
Examples:

A. Finding rational solution to a system of linear inequalities with rational
data.
Note: From our general theory, a solvable system of linear inequalities with
rational data always has a rational solution.
B. Finding optimal rational primal and dual solutions to an LO program
with rational data.
Note: Writing down the primal and the dual constraints and the constraint
“the duality gap is zero,” problem B reduces to problem A.
♣ Given a generic discrete problem P, one can associate with it its feasibility
version Pf “given rational data d of an instance, check whether the instance
has a solution.”

6.8



♣ Examples of generic feasibility problems:

• Checking feasibility in LO – generic problem with instances “given a finite

system Ax ≤ b with rational data, check whether the system is solvable”

• Existence of a Hamiltonian cycle in a graph – generic problem with in-

stances “given an undirected graph, check whether it admits a Hamiltonian

cycle – a cycle which visits all nodes of the graph”

• Stone problem – generic problem with instances “given finitely many stones

with integer weights a1, ..., an, check whether it is possible to split them into

two groups of equal weights,” or, equivalently, check whether the single ho-

mogeneous linear equation
n∑
i=1

aixi = 0 has a solution in variables xi = ±1.
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♣ A generic discrete problem P with instances “given rational vector of data

d, find a rational solution vector x such that A(d, x) = 1” is said to be in

class NP, if

• The predicate A is easy to compute: in the Rational Arithmetic Complexity

Model, it can be computed in time polynomial in the total bit length `(d) +

`(x) of d and x.

In other words, given the data d of an instance and a candidate solution x,

it is easy to check whether x indeed is a solution.

• If an instance with data d is solvable, then there exists a “short solution”

x to the instance – a solution with the binary length `(x) ≤ π(`(d)), where

π(·) is a polynomial which, same as the predicate A, is specific for P.
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♠ In our examples:

• Checking existence of a Hamiltonian cycle and the Stones problems clearly

are in NP – in both cases, the corresponding predicates are easy to compute,

and the binary length of a candidate solution is not larger than the binary

length of the data of an instance.

• Checking feasibility in LO also is in NP. Clearly, the associated predicate

is easy to compute — indeed, given the rational data of a system of linear

inequalities and a rational candidate solution, it takes polynomial in the total

bit length of the data and the solution time to verify on a Rational Arithmetic

computer whether the candidate solution is indeed a solution. What is

unclear in advance, is whether a feasible system of linear inequalities with

rational data admits a “short” rational solution – one of the binary length

polynomial in the total binary length of system’s data. As we shall see in

the mean time, this indeed is the case.

Note: Class NP is extremely wide and covers the vast majority of, if not all,

interesting discrete problems.
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♣ We say that a generic discrete problem P is in class P, if it is in NP

and its feasibility version is polynomially solvable in the Rational Arithmetic

complexity model.

♠ Note: By definition of P, P is contained in NP. If these classes were equal,

there, for all practical purposes, would be no difficult problems at all, since,

as a matter of fact, finding a solution to a solvable instance of P ∈ NP

reduces to solving a “short” series of related to P feasibility problems.

♣ While we do not know whether P=NP – and this is definitely the major

open problem in Computer Science and one of the major open problems in

Mathematics – we do know something extremely important – namely, that

there exist NP-complete problems.

6.12



♠ Let P, P+ be two generic problems from NP. We say that P is poly-

nomially reducible to P, if there exists a polynomial time, in the Rational

Arithmetic complexity model, algorithm which, given on input the data d of

an instance P ∈ P, converts d into the data d+ of an instance P+ ∈ P+ such

that P+ is solvable if and only if P is solvable.

Note: If P is polynomially reducible to P+ and the feasibility version P+
f of

P+ is polynomially solvable, so is the feasibility version Pf of P.

♠ A problem P ∈ NP is called NP-complete, if every problem from NP is

polynomially reducible to P. In particular:

• all NP-complete problems are polynomially reducible to each other;

• if the Feasibility version of one of NP-complete problems is polynomially

solvable, then the Feasibility versions of all problems from NP are polyno-

mially solvable.
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Facts:

♠ NP-complete problems do exist. For example, both checking the existence

of a Hamiltonian cycle and Stones are NP-complete.

Moreover, modulo a handful of exceptions, all generic problems from NP

for which no polynomial time solution algorithms are known turn out to be

NP-complete.

Practical aspects:

♥ Many discrete problems are of high practical interest, and basically all of

them are in NP; as a result, a huge total effort was invested over the years

in search of efficient algorithms for discrete problems. More often than not

this effort did not yield efficient algorithms, and the corresponding problems

finally turned out to be NP-complete and thus polynomially reducible to each

other. Thus, the huge total effort invested into various difficult combinatorial

problems was in fact invested into a single problem and did not yield a

polynomial time solution algorithm.

⇒ At the present level of our knowledge, it is highly unlikely that NP-

complete problems admit efficient solution algorithms, that is, we believe

that P 6=NP
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♥ Taking for granted that P6=NP, the interpretation of the real-life notion

of computational tractability as the formal notion of polynomial time solv-

ability works perfectly well at least in discrete optimization – as a matter

of fact, polynomial solvability/insolvability classifies the vast majority of dis-

crete problems into “difficult” and “easy” in exactly the same fashion as

computational practice.

♥ However: For a long time, there was an important exception from the

otherwise solid rule “tractability ≡ polynomial solvability” – Linear Program-

ming with rational data. On one hand, LO admits an extremely practically

efficient computational tool – the Simplex method – and thus, practically

speaking, is computationally tractable. On the other hand, it was unknown

for a long time (and partially remains unknown) whether LO is polynomially

solvable.
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Complexity Status of LO

♣ The complexity of LO can be studied both in the Real and the Rational

Arithmetic complexity models, and the related questions of polynomial solv-

ability are as follows:

Real Arithmetic complexity model: Whether there exists a Real Arith-

metics solution algorithm for LO which solves every LO program with real

data in a number of operations of Real Arithmetics polynomial in the sizes

m (number of constraints) and n (number of variables) of the program?

This is one of the major open questions in Optimization.

Rational Arithmetic complexity model: Whether there exists a Rational

Arithmetics solution algorithm for LO which solves every LO program with

rational data in a number of “bit-wise” operations polynomial in the total

binary length of the data of the program?

This question remained open for nearly two decades until it was answered

affirmatively by Leonid Khachiyan in 1978.
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Complexity Status of the Simplex Method

♣ Equipped with appropriate anti-cycling rules, the Simplex method be-

comes a legitimate solution algorithm in both Real and Rational Arithmetic

complexity models.

♠ However, the only known complexity bounds for the Simplex method

in both models are exponential. Moreover, starting with mid-1960’s, it is

known that these “bad bounds” are not an artifact coming from a poor

complexity analysis – they do reflect the bad worst-case properties of the

algorithm.
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♠ Specifically, Klee and Minty presented a series Pn, n = 1,2, ... of explicit

LO programs as follows:

• Pn has n variables and 2n inequality constraints with rational data of the

total bit length O(n2)

• the feasible set Xn of Pn is a polytope (bounded nonempty polyhedral set)

with 2n vertices

• the 2n vertices of Xn can be arranged into a sequence such that every

two neighboring vertices are linked by an edge (belong to the same one-

dimensional face of Xn), and the objective strictly increases when passing

from a vertex to the next one.

⇒ Unless a special care of the pivoting rules and the starting vertex is taken,

the Simplex method, as applied to Pn, can visit all 2n vertexes of Xn and

thus its running time on Pn in both complexity models will be exponential

in n, while the size of Pn in both models is merely polynomial in n.
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♠ Later, similar “exponential” examples were built for all standard pivoting

rules. However, the family of all possible pivoting rules is too diffuse for

analysis, and, strictly speaking, we do not know whether the Simplex method

can be “cured” – converted to a polynomial time algorithm – by properly

chosen pivoting rules.

♣ The question of “whether the Simplex method can be cured” is closely

related to the famous Hirsch Conjecture as follows. Let Xm,n be a polytope

in Rn given by m linear inequalities. An edge path on Xm,n is a sequence

of distinct from each other edges (one-dimensional faces of Xm,n) in which

every two subsequent edges have a point in common (this point is a vertex

of X).

Note: The trajectory of the PSM as applied to an LO with the feasible set

Xm,n is an edge path on Xm,n whatever be the pivoting rules.
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♠ The Hirsch Conjecture suggests that every two vertices in Xm,n can be

linked by an edge path with at most m− n edges, or, equivalently, that the

“edge diameter” of Xm,n:
d(Xm,n)
= max

u,v∈Ext(Xm,n)
min
path

〈# of edges in a path from u to v〉

is at most m− n.

After several decades of intensive research, this conjecture in its “literal”

form was disproved in 2010 by pointing out (F. Santos) a 43-dimensional

polytope given by 86 inequalities with edge diameter > 43.

Fact: No polynomial in m,n upper bounds on d(xm,n) are known. If Hirsch

Conjecture is “heavily wrong” and no polynomial in m,n upper bound on

edge diameter exists, this would be an “ultimate” demonstration of inability

to “cure” the Simplex method.

♣ Surprisingly, polynomial solvability of LO with rational data in Rational

Arithmetic complexity model turned out to be a byproduct of a completely

unrelated to LO Real Arithmetic algorithm for finding approximate solutions

to general-type convex optimization programs – the Ellipsoid algorithm.
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Solving Convex Problems: Ellipsoid Algorithm

♣ There is a wide spectrum of algorithms capable to approximate global

solutions of convex problems to high accuracy in “reasonable” time.

We will start with one of the “universal” algorithms of this type – the

Ellipsoid method imposing only minimal additional to convexity requirements

on the problem.
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♣ Consider an optimization program

f∗ = min
X

f(x) (P)

• X ⊂ Rn is a closed and bounded convex set with a nonempty interior;

• f is a continuous convex function on Rn.

♠ Assume that our “environment” when solving (P) is as follows:

A. We have access to a Separation Oracle Sep(X) for X – a routine which,

given on input a point x ∈ Rn, reports whether x ∈ X, and in the case of

x 6∈ X, returns a separator – a vector e 6= 0 such that

eTx ≥ maxy∈X e
Ty

B. We have access to a First Order Oracle which, given on input a point

x ∈ X, returns the value f(x) and a subgradient f ′(x) of f at x:

∀y : f(y) ≥ f(x) + (y − x)Tf ′(x).

Note: When f is differentiable, one can set f ′(x) = ∇f(x).

C. We are given positive reals R, r, V such that for some (unknown) c one

has

{x : ‖x− c‖ ≤ r} ⊂ X ⊂ {x : ‖x‖2 ≤ R}
and

max
x∈X

f(x)−min
x∈X

f(x) ≤ V.
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♠ Example: Consider an optimization program

min
x

{
f(x) ≡ max

1≤`≤L
[p` + qT` x] : x ∈ X = {x : aTi x ≤ bi, 1 ≤ i ≤ m

}
W.l.o.g. we assume that ai 6= 0 for all i.

♠ A Separation Oracle can be as follows: given x, the oracle checks whether

aTi x ≤ bi for all i. If it is the case, the oracle reports that x ∈ X, otherwise

it finds i = ix such that aTixx > bix, reports that x 6∈ X and returns aix as a

separator. This indeed is a separator:

y ∈ X ⇒ aTixy ≤ bix< aTixx

♠ A First Order Oracle can be as follows: given x, the oracle computes

the quantities p` + qT` x for ` = 1, ..., L and identifies the largest of these

quantities, which is exactly f(x), along with the corresponding index `, let

it be `x: f(x) = p`x + qT`xx. The oracle returns the computed f(x) and, as a

subgradient f ′(x), the vector q`x. This indeed is a subgradient:

f(y) ≥ p`x + qT`xy = [p`x + qT`xx] + (y − x)Tq`x = f(x) + (y − x)Tf ′(x).
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f∗ = min
X

f(x) (P)

• X ⊂ Rn is a closed and bounded convex set with a nonempty interior;

• f is a continuous convex function on Rn.

• We have access to a Separation Oracle which, given on input a point

x ∈ Rn, reports whether x ∈ X, and in the case of x 6∈ X, returns a separator

e 6= 0:

eTx ≥ maxy∈X e
Ty

• We have access to a First Order Oracle which, given on input a point

x ∈ X, returns the value f(x) and a subgradient f ′(x) of f :

∀y : f(y) ≥ f(x) + (y − x)Tf ′(x).

• We are given positive reals R, r, V such that for some (unknown) c one has

{x : ‖x− c‖ ≤ r} ⊂ X ⊂ {x : ‖x‖2 ≤ R}
and

max
x∈X

f(x)−min
x∈X

f(x) ≤ V.

♠ How to build a good solution method for (P)?

To get an idea, let us start with univariate case.
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Univariate Case: Bisection

♣ When solving a problem min
x
{f(x) : x ∈ X = [a, b] ⊂ [−R,R]} , by bisection,

we recursively update localizers – segments ∆t = [at, bt] containing the op-
timal set Xopt.
• Initialization: Set ∆1 = [−R,R] [⊃ Xopt]
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min
x
{f(x) : x ∈ X = [a, b] ⊂ [−R,R]} ,

• Step t: Given ∆t ⊃ Xopt let ct be the midpoint of ∆t. Calling Separation and First Order
oracles at et, we replace ∆t by twice smaller localizer ∆t+1.

a b c
t

1.a)

a
t−1

b
t−1

f

a bc
t

1.b)

a
t−1

b
t−1

f

c
t

2.a)

a
t−1

b
t−1

f

c
t

2.b)

a
t−1

b
t−1

f

c
t

2.c)

a
t−1

b
t−1

f

1) SepX says that ct 6∈ X and reports, via separator e,
on which side of ct X is.
1.a): ∆t+1 = [at, ct]; 1.b): ∆t+1 = [ct, bt]

2) SepX says that ct ∈ X, and Of reports, via signf ′(ct),
on which side of ct Xopt is.
2.a): ∆t+1 = [at, ct]; 2.b): ∆t+1 = [ct, bt]; 2.c): ct ∈ Xopt

♠ Since the localizers rapidly shrink and X is of positive length, eventually some of search

points will become feasible, and the nonoptimality of the best found so far feasible search

point will rapidly converge to 0 as process goes on.
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Opt(P ) = minx∈X⊂Rn f(x) (P )

♠ Bisection admits multidimensional extension, called Generic Cutting Plane

Algorithm, where one builds a sequence of “shrinking” localizers Gt – closed

and bounded convex domains containing the optimal set Xopt of (P ).

Generic Cutting Plane Algorithm is as follows:

♠ Initialization Select as G1 a closed and bounded convex set containing

X and thus being a localizer.
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Opt(P ) = minx∈X⊂Rn f(x) (P )

♠ Step t = 1,2, ...: Given current localizer Gt,
• Select current search point ct ∈ Gt and call Separation and First Order

oracles to form a cut – to find et 6= 0 s.t. Xopt ⊂ Ĝt := {x ∈ Gt : eTt x ≤ eTt ct}

A: ct 6∈ X B: ct ∈ X

Black: X; Blue: Gt; Magenta: Cutting hyperplane

To this end

— call SepX, ct being the input. If SepX says that ct 6∈ X and returns a separator, take it

as et (case A on the picture).

Note: ct 6∈ X ⇒ all points from Gt\Ĝt are infeasible

— if ct ∈ Xt, call Of to compute f(ct), f ′(ct). If f ′(ct) = 0, terminate, otherwise set

et = f ′(ct) (case B on the picture).

Note: When f ′(ct) = 0, ct is optimal for (P ), otherwise f(x) > f(ct) at all feasible x ∈ Gt\Ĝt

• By the two “Note” above, Ĝt is a localizer along with Gt. Select a
closed and bounded convex set Gt+1 ⊃ Ĝt (it also will be a localizer) and
pass to step t+ 1.
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Opt(P ) = minx∈X⊂Rn f(x) (P )

♣ Summary: Given current localizer Gt, selecting a point ct ∈ Gt and calling

the Separation and the First Order oracles, we can

♠ in the productive case ct ∈ X, find et such that

eTt (x− ct) > 0⇒ f(x) > f(ct)

♠ in the non-productive case ct 6∈ X, find et such that

eTt (x− ct) > 0⇒ x 6∈ X

⇒ the set Ĝt = {x ∈ Gt : eTt (x− ct) ≤ 0} is a localizer

♣ We can select as the next localizer Gt+1 any set containing Ĝt.

♠ We define approximate solution xt built in course of t = 1,2, ... steps as

the best – with the smallest value of f – of the feasible search points c1, ..., ct
built so far.

If in course of the first t steps no feasible search points were built, xt is

undefined.
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Opt(P ) = minx∈X⊂Rn f(x) (P )

♣ Analysing Cutting Plane algorithm

• Let Vol(G) be the n-dimensional volume of a closed and bounded convex

set G ⊂ Rn.

Note: For convenience, we use, as the unit of volume, the volume of

n-dimensional unit ball {x ∈ Rn : ‖x‖2 ≤ 1}, and not the volume of n-

dimensional unit box.

• Let us call the quantity ρ(G) = [Vol(G)]1/n the radius of G. ρ(G) is the

radius of n-dimensional ball with the same volume as G, and this quantity

can be thought of as the average linear size of G.

Theorem. Let convex problem (P ) satisfying our standing assumptions be

solved by Generic Cutting Plane Algorithm generating localizers G1, G2,...

and ensuring that ρ(Gt) → 0 as t → ∞. Let t̄ be the first step where

ρ(Gt+1) < ρ(X). Starting with this step, approximate solution xt is well

defined and obeys the “error bound”

f(xt)−Opt(P ) ≤ min
τ≤t

[
ρ(Gτ+1)
ρ(X)

] [
max
X

f −min
X

f

]
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Opt(P ) = minx∈X⊂Rn f(x) (P )

Explanation: Since intX 6= ∅, ρ(X) is positive, and since X is closed and bounded, (P ) is
solvable. Let x∗ be an optimal solution to (P ).
• Let us fix ε ∈ (0,1) and set Xε = x∗ + ε(X − x∗).
Xε is obtained X by similarity transformation which keeps x∗ intact and “shrinks” X towards
x∗ by factor ε. This transformation multiplies volumes by εn ⇒ ρ(Xε) = ερ(X).
• Let t be such that ρ(Gt+1) < ερ(X) = ρ(Xε). Then Vol(Gt+1) < Vol(Xε) ⇒ the set Xε\Gt+1

is nonempty ⇒ for some z ∈ X, the point
y = x∗ + ε(z − x∗) = (1− ε)x∗ + εz

does not belong to Gt+1.
• G1 contains X and thus y, and Gt+1 does not contain y, implying that for some τ ≤ t, it
holds

eTτ y > eTτ cτ (!)

• We definitely have cτ ∈ X – otherwise eτ separates cτ and X 3 y, and (!) witnesses

otherwise.

⇒ cτ ∈ X ⇒ eτ = f ′(cτ) ⇒ f(cτ) + eTτ (y − cτ) ≤ f(y)

⇒ [by (!)]

f(cτ) ≤ f(y) = f((1− ε)x∗ + εz) ≤ (1− ε)f(x∗) + εf(z)

⇒ f(cτ)− f(x∗) ≤ε[f(z)− f(x∗)] ≤ ε
[
max
X

f −min
X

f
]
.

Bottom line: If 0 < ε < 1 and ρ(Gt+1) < ερ(X), then xt is well defined (since τ ≤ t and cτ

is feasible) and f(xt)−Opt(P ) ≤ ε
[
max
X

f −min
X

f
]
.
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Opt(P ) = minx∈X⊂Rn f(x) (P )

“Starting with the first step t̄ where ρ(Gt+1) < ρ(X), xt is well defined, and

f(xt)−Opt ≤ min
τ≤t

[
ρ(Gτ+1)

ρ(X)

]
︸ ︷︷ ︸

εt

[
max
X

f −min
X

f

]
︸ ︷︷ ︸

V

”

♣ We are done. Let t ≥ t̄, so that εt < 1, and let ε ∈ (εt,1). Then for some

t′ ≤ t we have

ρ(Gt′+1) < ερ(X)

⇒ [by bottom line] xt
′

is well defined and

f(xt
′
)−Opt(P ) ≤ εV

⇒ [since f(xt) ≤ f(xt
′
) due to t ≥ t′] xt is well defined and f(xt)−Opt(P ) ≤ εV

⇒ [passing to limit as ε→ εt+ 0] xt is well defined and f(xt)−Opt(P ) ≤ εtV
�
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Opt(P ) = minx∈X⊂Rn f(x) (P )

♠ Corollary: Let (P ) be solved by cutting Plane Algorithm which ensures,
for some ϑ ∈ (0,1), that

ρ(Gt+1) ≤ ϑρ(Gt)
Then, for every desired accuracy ε > 0, finding feasible ε-optimal solution xε
to (P ) (i.e., a feasible solution xε satisfying f(xε)−Opt ≤ ε) takes at most

N =
1

ln(1/ϑ)
ln
(
R
[
1 +

V

ε

])
+ 1

steps of the algorithm. Here

R =
ρ(G1)

ρ(X)

says how well, in terms of volume, the initial localizer G1 approximates X,
and

V = max
X

f −min
X

f

is the variation of f on X.
Note: R and V/ε are under log, implying that high accuracy and poor
approximation of X by G1 cost “nearly nothing.”
What matters, is the factor at the log which is the larger the closer ϑ < 1 is
to 1.

6.33



“Academic” Implementation: Centers of Gravity

♠ In high dimensions, to ensure progress in volumes of subsequent localizers

in a Cutting Plane algorithm is not an easy task: we do not know how the

cut through ct will pass, and thus should select ct in Gt in such a way that

whatever be the cut, it cuts off the current localizer Gt a “meaningful” part

of its volume.

♠ The most natural choice of ct in Gt is the center of gravity:

ct =

[∫
Gt
xdx

]
/

[∫
Gt

1dx

]
,

the expectation of the random vector uniformly distributed on Gt.

Good news: The Center of Gravity policy with Gt+1 = Ĝt results in

ϑ =
(
1−

[
n

n+1

]n)1/n
≤ [0.632...]1/n (∗)

This results in the complexity bound (# of steps needed to build ε-solution)

N = 2.2n ln
(
R
[
1 + V

ε

])
+ 1

Note: It can be proved that within absolute constant factor, like 4, this

is the best complexity bound achievable by whatever algorithm for convex

minimization which can “learn” the objective via First Order oracle only.
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♣ Reason for (*): Brunn-Minkowski Symmeterization Principle:

Let Y be a convex compact set in Rn, e be a unit direction and Z be “equi-

cross-sectional” to X body symmetric w.r.t. e, so that

• Z is rotationally symmetric w.r.t. the axis e

• for every hyperplane H = {x : eTx = const}, one has

Voln−1(X ∩H) = Voln−1(Z ∩H)

Then Z is a convex compact set.

Equivalently: Let U, V be convex compact nonempty sets in Rn. Then

Vol1/n(U + V ) ≥ Vol1/n(U) + Vol1/n(V ).

In fact, convexity of U , V is redundant!
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Disastrously bad news: Centers of Gravity are not implementable, unless

the dimension n of the problem is like 2 or 3.

Reason: We have no control on the shape of localizers. When started with

a polytope G1 given by M linear inequalities (e.g., a box), Gt for t� n can

be a more or less arbitrary polytope given by M + t − 1 linear inequalities.

Computing center of gravity of a general-type high-dimensional polytope is

a computationally intractable task – it requires astronomically many com-

putations already in the dimensions like 5 – 10.

Remedy: Maintain the shape of Gt simple and convenient for computing

centers of gravity, sacrificing, if necessary, the value of ϑ.

The most natural implementation of this remedy is enforcing Gt to be ellip-

soids. As a result,

• ct becomes computable in O(n2) operations (nice!)

• ϑ = [0.632...]1/n ≈ exp{−0.367/n} increases to ϑ ≈ exp{−0.5/n2}, spoiling

the complexity bound

N = 2.2n ln
(
R
[
1 + V

ε

])
+ 1

to

N = 4n2 ln
(
R
[
1 + V

ε

])
+ 1

(unpleasant, but survivable...)
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Practical Implementation - Ellipsoid Method

♠ Ellipsoid in Rn is the image of the unit n-dimensional ball under one-to-one

affine mapping:

E = E(B, c) = {x = Bu+ c : uTu ≤ 1}
where B is n× n nonsingular matrix, and c ∈ Rn.

• c is the center of ellipsoid E = E(B, c): when c+ h ∈ E, c− h ∈ E as well

• When multiplying by n×n matrix B, n-dimensional volumes are multiplied

by |Det(B)|
⇒ Vol(E(B, c)) = |Det(B)|, ρ(E(B, c)) = |Det(B)|1/n.
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E = E(B, c) = {x = Bu+ c : uTu ≤ 1}

Simple fact: Let E(B, c) be ellipsoid in Rn and e ∈ Rn be a nonzero vector.

The “half-ellipsoid”

Ê = {x ∈ E(B, c) : eTx ≤ eT c}
is covered by the ellipsoid E+ = E(B+, c+) given by

c+ = c− 1
n+1Bp, p = BT e/

√
eTBBT e

B+ = n√
n2−1

B +
(

n
n+1 −

n√
n2−1

)
(Bp)pT ,

• E(B+, c+) is the ellipsoid of the smallest volume containing the half-

ellipsoid Ê, and the volume of E(B+, c+) is strictly smaller than the one of

E(B, c):

ϑ := ρ(E(B+,c+))
ρ(E(B,c)) ≤ exp{− 1

2n2}.
• Given B, c, e, computing B+, c+ costs O(n2) arithmetic operations.
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Opt(P ) = minx∈X⊂Rn f(x) (P )

♣ Ellipsoid method is the Cutting Plane Algorithm where
• all localizers Gt are ellipsoids:

Gt = E(Bt, ct),
• the search point at step t is ct, and
• Gt+1 is the smallest volume ellipsoid containing the half-ellipsoid

Ĝt = {x ∈ Gt : eTt x ≤ eTt ct}
Computationally, at every step of the algorithm we once call the Separa-
tion oracle SepX, (at most) once call the First Order oracle Of and spend
O(n2) operations to update (Bt, ct) into (Bt+1, ct+1) by explicit formulas.
♠ Complexity bound of the Ellipsoid algorithm is

N = 4n2 ln
(
R
[
1 + V

ε

])
+ 1

R = ρ(G1)
ρ(X) ≤

R
r , V = max

x∈X
f(x)−min

x∈X
f(x)

Pay attention:
• R, V, ε are under log ⇒ large magnitudes in data entries and high accuracy
are not issues
• the factor at the log depends only on the structural parameter of the
problem (its design dimension n) and is independent of the remaining data.
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What is Inside Simple Fact

♠ Messy formulas describing the updating

(Bt, ct)→ (Bt+1, ct+1)

in fact are easy to get.

• Ellipsoid E is the image of the unit ball B under affine transformation.

Affine transformation preserves ratio of volumes

⇒ Finding the smallest volume ellipsoid containing a given half-ellipsoid Ê

reduces to finding the smallest volume ellipsoid B+ containing half-ball B̂:

e

⇔
x=c+Bu

p

E, Ê and E+ B, B̂ and B+

• The “ball” problem is highly symmetric, and solving it reduces to a simple

exercise in elementary Calculus.
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Why Ellipsoids?

(?) When enforcing the localizers to be of “simple and stable” shape, why we make
them ellipsoids (i.e., affine images of the unit Euclidean ball), and not something else, say
parallelotopes (affine images of the unit box)?
Answer: In a “simple stable shape” version of Cutting Plane Scheme all localizers are affine
images of some fixed n-dimensional solid C (closed and bounded convex set in Rn with a
nonempty interior). To allow for reducing step by step volumes of localizers, C cannot be
arbitrary. What we need is the following property of C:
One can fix a point c in C in such a way that whatever be a cut

Ĉ = {x ∈ C : eTx ≤ eTc} [e 6= 0]
this cut can be covered by the affine image of C with the volume less than the one of C:

∃B, b : Ĉ ⊂ BC + b & |Det(B)| < 1 (!)
Note: The Ellipsoid method corresponds to unit Euclidean ball in the role of C and to
c = 0, which allows to satisfy (!) with |Det(B)| ≤ exp{− 1

2n
}, finally yielding ϑ ≤ exp{− 1

2n2}.
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• Solids C with the above property are “rare commodity.” For example, n-dimensional box

does not possess it.

• Another “good” solid is n-dimensional simplex (this is not that easy to see!). Here (!)

can be satisfied with |Det(B)| ≤ exp{−O(1/n2)}, finally yielding ϑ = (1−O(1/n3)).

⇒ From the complexity viewpoint, “simplex” Cutting Plane algorithm is worse than the

Ellipsoid method.

The same is true for handful of other known so far (and quite exotic) ”good solids.”
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Ellipsoid Method: pro’s & con’s

♣ Academically speaking, Ellipsoid method is an indispensable tool under-

lying basically all results on efficient solvability of generic convex problems,

most notably, the famous theorem of L. Khachiyan (1978) on polynomial

time solvability of Linear Programming with rational data in Rational Arith-

metic Complexity model.

♠ What matters from theoretical perspective, is “universality” of the al-

gorithm (nearly no assumptions on the problem except for convexity) and

complexity bound of the form “structural parameter outside of log, all else,

including required accuracy, under the log.”

♠ Another theoretical (and to some extent, also practical) advantage of the

Ellipsoid algorithm is that as far as the representation of the feasible set X is

concerned, all we need is a Separation oracle, and not the list of constraints

describing X. The number of these constraints can be astronomically large,

making impossible to check feasibility by looking at the constraints one by

one; however, in many important situations the constraints are “well orga-

nized,” allowing to implement Separation oracle efficiently.
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♠ Theoretically, the only (and minor!) drawbacks of the algorithm is the

necessity for the feasible set X to be bounded, with known “upper bound,”

and to possess nonempty interior.

As of now, there is not way to cure the first drawback without sacrificing

universality. The second “drawback” is artifact: given nonempty set

X = {x : gi(x) ≤ 0,1 ≤ i ≤ m},
we can extend it to

Xε = {x : gi(x) ≤ ε,1 ≤ i ≤ m},
thus making the interior nonempty, and minimize the objective within accu-

racy ε on this larger set, seeking for ε-optimal ε-feasible solution instead of

ε-optimal and exactly feasible one.

This is quite natural: to find a feasible solution is, in general, not eas-

ier than to find an optimal one. Thus, either ask for exactly feasible and

exactly optimal solution (which beyond LO is unrealistic), or allow for con-

trolled violation in both feasibility and optimality!
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♠ From practical perspective, theoretical drawbacks of the Ellipsoid

method become irrelevant: for all practical purposes, bounds on the magni-

tude of variables like 10100 are the same as no bounds at all, and infeasibility

like 10−10 is the same as feasibility. And since the bounds on the variables

and the infeasibility are under log in the complexity estimate, 10100 and

10−10 are not a disaster.

♠ Practical limitations (rather severe!) of Ellipsoid algorithm stem from

method’s sensitivity to problem’s design dimension n. Theoretically, with

ε, V,R fixed, the number of steps grows with n as n2, and the effort per step

is at least O(n2) a.o.

⇒ Theoretically, computational effort grows with n at least as O(n4),

⇒ n like 1000 and more is beyond the “practical grasp” of the algorithm.

Note: Nearly all modern applications of Convex Optimization deal with n

in the range of tens and hundreds of thousands!
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♠ By itself, growth of theoretical complexity with n as n4 is not a big deal:

for Simplex method, this growth is exponential rather than polynomial, and

nobody dies – in reality, Simplex does not work according to its disastrous

theoretical complexity bound.

Ellipsoid algorithm, unfortunately, works more or less according to its com-

plexity bound.

⇒ Practical scope of Ellipsoid algorithm is restricted to convex problems

with few tens of variables.

However: Low-dimensional convex problems from time to time do arise in

applications. More importantly, these problems arise “on a permanent ba-

sis” as auxiliary problems within some modern algorithms aimed at solving

extremely large-scale convex problems.

⇒ The scope of practical applications of Ellipsoid algorithm is nonempty, and

within this scope, the algorithm, due to its ability to produce high-accuracy

solutions (and surprising stability to rounding errors) can be considered as

the method of choice.
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How It Works

Opt = min
x
f(x), X = {x ∈ Rn : aTi x− bi ≤ 0, 1 ≤ i ≤ m}

♠ Real-life problem with n = 10 variables and m = 81,963,927 “well-

organized” linear constraints:
CPU, sec t f(xt) f(xt)−Opt≤ ρ(Gt)/ρ(G1)

0.01 1 0.000000 6.7e4 1.0e0
0.53 63 0.000000 6.7e3 4.2e-1
0.60 176 0.000000 6.7e2 8.9e-2
0.61 280 0.000000 6.6e1 1.5e-2
0.63 436 0.000000 6.6e0 2.5e-3
1.17 895 -1.615642 6.3e-1 4.2e-5
1.45 1250 -1.983631 6.1e-2 4.7e-6
1.68 1628 -2.020759 5.9e-3 4.5e-7
1.88 1992 -2.024579 5.9e-4 4.5e-8
2.08 2364 -2.024957 5.9e-5 4.5e-9
2.42 2755 -2.024996 5.7e-6 4.1e-10
2.66 3033 -2.024999 9.4e-7 7.6e-11
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♠ Similar problem with n = 30 variables and

m = 1,462,753,730 “well-organized” linear constraints:
CPU, sec t f(xt) f(xt)−Opt≤ ρ(Gt)/ρ(G1)

0.02 1 0.000000 5.9e5 1.0e0
1.56 649 0.000000 5.9e4 5.0e-1
1.95 2258 0.000000 5.9e3 8.1e-2
2.23 4130 0.000000 5.9e2 8.5e-3
5.28 7080 -19.044887 5.9e1 8.6e-4

10.13 10100 -46.339639 5.7e0 1.1e-4
15.42 13308 -49.683777 5.6e-1 1.1e-5
19.65 16627 -50.034527 5.5e-2 1.0e-6
25.12 19817 -50.071008 5.4e-3 1.1e-7
31.03 23040 -50.074601 5.4e-4 1.1e-8
37.84 26434 -50.074959 5.4e-5 1.0e-9
45.61 29447 -50.074996 5.3e-6 1.2e-10
52.35 31983 -50.074999 1.0e-6 2.0e-11
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From Ellipsoid Method to Polynomial Time Solvability of Linear

Programming

♣ Theorem [L. Khachiyan, 1978] A Linear Programming problem

min
{
cTx : Ax ≤ b

}
with rational data admits polynomial time solution algorithm: an optimal

solution to the problem (or a correct conclusion that no solution exists) can

be found in polynomial time, that is, in number of bitwise arithmetic oper-

ations polynomial in the bitlength L (total number of bits) in the data.
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♠ Main Lemma: Given a system Ax ≤ b of linear inequalities with rational

data, one can decide whether or not the system is solvable in polynomial

time.

♠ Proof of Main Lemma. Eliminating from A columns which are linear

combinations of the remaining columns does not affect solvability of the

system Ax ≤ b, and selecting the maximal linearly independent set of columns

in A is a simple Linear Algebra problem which can be solved in polynomial

time.

⇒ We may assume without loss of generality that the columns of A are

linearly independent, or, which is the same, that the solution set does not

contain lines. By similar argument, we may assume without loss of generality

that the data are integer.
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Step 1: Reformulating the problem. Assuming that A is m× n, observe

that system Ax ≤ b is feasible if and only if the optimal value Opt in the

optimization problem

Opt = minx∈Rn

{
f(x) = max

1≤i≤m
[Ax− b]i

}
(∗)

is nonpositive.

Strategy: (∗) is a convex minimization problem with easy to compute ob-

jective

⇒ We could try to check whether or not Opt ≤ 0 by solving the problem by

the Ellipsoid method.

Immediate obstacles:

• The domain of (∗) is the entire space, while the Ellipsoid method requires

the domain to be bounded.

• The Ellipsoid method allows to find high accuracy approximate solutions,

while we need to distinguish between the cases Opt ≤ 0 and Opt > 0, which

seems to require finding precise solution.
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Removing the obstacles, I
Ax ≤ b is feasible

⇔ Opt = inf
x∈Rn

{
f(x) = max

1≤i≤m
[Ax− b]i

}
≤ 0 (∗)

♠ Fact I: Opt ≤ 0 is and only if

Opt∗ = min
x

{
f(x) = max

1≤i≤m
[Ax− b]i : ‖x‖∞ ≤ 2L

}
≤ 0 (!)

Indeed, the polyhedral set {x : Ax ≤ b} does not contain lines and therefore is nonempty if

and only if the set possesses an extreme point x̄.

A. By characterization of extreme points of polyhedral sets, we should have Āx̄ = b̄ where

Ā is a nonsingular n× n submatrix of the m× n matrix A, and b̄ is the respective subvector

of b.

⇒ by Cramer’s rule, xj = ∆j

∆
, where ∆ 6= 0 is the determinant of Ā and ∆j is the determinant

of the matrix Āj obtained from Ā when replacing j-th column with b̄.

B. Since Ā is with integer entries, its determinant is integer; since it is nonzero, we have

|∆| ≥ 1.

Since Āj is with integer entries of total bit length ≤ L, the magnitude of its determinant

is at most 2L (an immediate corollary of the definition of the total bit length and the

Hadamard’s Inequality stating that the magnitude of a determinant does not exceed the

product of Euclidean lengths of its rows).

Combining A and B, we get |x̄j| ≤ 2L for all j. �
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Removing the obstacles, II
Ax ≤ b is feasible

⇔ Opt = inf
x∈Rn

{
max

1≤i≤m
[Ax− b]i

}
≤ 0 (∗)

⇔ Opt∗ := min
x

{
max

1≤i≤m
[Ax− b]i : ‖x‖∞ ≤ 2L

}
≤ 0 (!)

♠ Fact II: Let A, b be with integer entries of the total bit length L and the
columns of A be linearly independent. If Opt is positive, Opt∗ is not too
small, specifically, Opt∗ ≥ 2−2L.
Indeed, assume that Opt > 0. Note that Opt∗ ≥ Opt and that

Opt = mint,x {t : Ax− t1 ≤ b} > 0 [1 = [1; ...; 1]]
It is immediately seen that when Opt is positive, the feasible domain of this
(clearly feasible) LP does not contain lines, and thus the problem has an
extreme point solution. ⇒ Opt∗ is just a coordinate in an extreme point ȳ
of the polyhedral set {y = [x; t] : A+y ≤ b}, A+ = [A,−1]. Note that the bit
length of (A+, b) is at most 2L.

⇒ [the same argument as in Fact I] Opt = ∆′
∆′′ with integer ∆′′ 6= 0,∆′ of

magnitudes not exceeding 22L. Since in addition Opt > 0, we conclude that
Opt > 2−2L, as claimed.
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♠ Bottom line: When A, b are with integer data of total bit length L and the

columns in A are linearly independent, checking whether the system Ax ≤ b
is solvable reduces to deciding on two hypotheses about

Opt∗ := minx

{
max

1≤i≤m
[Ax− b]i : ‖x‖∞ ≤ 2L

}
(!)

the first stating that Opt∗ ≤ 0, and the second stating that Opt∗ ≥ 2−2L.

• To decide correctly on the hypotheses, it clearly suffices to approximate

Opt∗ within accuracy ε = 1
32−2L.

Invoking the efficiency estimate of the Ellipsoid method and taking into ac-

count that by evident reasons n ≤ L, it is immediately seen that resolving

the resulting task requires polynomial in L number of arithmetic operations,

including those to mimic Separation and First Order oracles.

However: The Ellipsoid algorithm uses precise real arithmetics, while we

want to check feasibility in polynomial in L number of bitwise operations.

What to do?

• Straightforward (albeit tedious) analysis shows that we lose nothing when

replacing the precise real arithmetic with imprecise one, where one keeps

O(nL) digits in the results before and after the dot. With this implemen-

tation, the procedure becomes “fully finite” and requires polynomial in L

number of bitwise operations. �
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From Checking Feasibility to Finding Solution

♠ Note: Solving LP with rational data of bitlength L reduces to solving sys-

tem of linear inequalities with rational data of bitlength O(L) (write down

the primal and the dual constraints and add the inequality “duality gap is

≤ 0”)

⇒ The only thing which is still missing is how to reduce, in a polynomial

time fashion, finding a solution, if any, to a system of linear inequalities with

rational data to checking feasibility of systems of linear inequalities with ra-

tional data.
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♣ How to reduce in a polynomial time fashion finding a solution to checking
feasibility?
♠ Reduction: To find a solution, if any, to a system S of m linear inequal-
ities and equalities with rational data, we
• Check in polynomial time whether S is solvable. If not, we are done, oth-
erwise we proceed as follows.
• We convert the first inequality in S, if any, into equality and check in poly-
nomial time whether the resulting system is solvable. If yes, this is our new
system S1, otherwise S1 is obtained from S by eliminating the first inequality.

Note: As it is immediately seen, S1 solvable, and every feasible solution to
S1 is feasible for S. Thus,
•Given a solvable system of m linear inequalities and equalities, we can in
polynomial time replace it with another solvable system of (at most) m lin-
ear inequalities and equalities, strictly reducing the number of inequalities,
provided it was positive, and ensuring that every feasible solution to S1 is
feasible for S. Besides this, the bitlength of the data of S1 is (at most) the
total bitlength L of the data of S.
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• Iterating the above construction, we in at most m steps end up with a

solvable system S∗ of linear equations such that every feasible solution to S∗

is feasible for the original system S.

⇒ Finding a solution to a system S of linear inequalities and equations with

rational data indeed reduces in a polynomial time fashion to polynomially

solvable, via elementary Linear Algebra, problem of solving a system of linear

equations with rational data.
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Lecture III.2

From Linear to Conic Programming



What is Ahead

♣ The theorem on polynomial time solvability of Linear Optimization is

“constructive” – we can explicitly point out the underlying polynomial time

solution algorithm (e.g., the Ellipsoid method). However, from the practical

viewpoint this is a kind of “existence theorem” – the resulting complexity

bounds, although polynomial, are “too large” for practical large-scale com-

putations.

The intrinsic drawback of the Ellipsoid method (and all other “universal”

polynomial time methods in Convex Programming) is that the method uti-

lizes just the convex structure of instances and is unable to facilitate our a

priori knowledge of the particular analytic structure of these instances.

• In late 80’s, a new family of polynomial time methods for “well-structured”

generic convex programs was found – the Interior Point methods which in-

deed are able to facilitate our knowledge of the analytical structure of in-

stances.
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• LO and its extensions – Conic Quadratic Optimization CQO and Semidef-

inite Optimization SDO – are especially well-suited for processing by the IP

methods, and these methods yield the best known so far theoretical com-

plexity bounds for the indicated generic problems.

♣ As far as practical computations are concerned, the IP methods

• in the case of Linear Optimization, are competitive with the Simplex

method

• in the case of Conic Quadratic and Semidefinite Optimization are the best

known so far numerical techniques.
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From Linear to Conic Optimization

Conic Optimization: Why?

♠ “Universal” Convex Optimization algorithm, like Ellipsoids method, are

blind (scientifically: “black box oriented”) – they do not utilize problem’s

structure, aside of convexity, and “learn” the problem via local information

(values and (sub)gradients of objective and constraints along search points).

At present level of our knowledge, this implies severe limitations on the sizes

of convex problems amenable to “universal” algorithms.

Note: A convex program always has a lot of structure – otherwise how could

we know that the problem is convex?

A good algorithm should utilize a priori knowledge of problem’s structure in

order to accelerate the solution process.
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A good algorithm should utilize a priori knowledge of problem’s structure in

order to accelerate the solution process.

Example: The LP Simplex Method is fully adjusted to the particular

structure of an LO problem. Although by far inferior to the Ellipsoid

method in the worst case, Simplex Method in reality is capable to

solve LO’s with tens and hundreds of thousands of variables and

constraints – a task which is by far out of reach of the theoretically

efficient “universal” black box oriented algorithms.
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♠ Before utilizing structure of a convex program, one should “reveal” it.

Revealing structure is a highly challenging task: it is unclear what we are

looking for until we find it!

♠ The most useful, as of now, “structure revealing” form of convex program – Conic

Optimization – was found in early 1990’s. The idea behind looks really striking (if not

crazy):

• Traditionally, when passing from a LO problem

min{cTx : Ax− b ≤ 0} (P )

to a convex one,

• linear objective cTx is replaced with convex objective, and

• affine in x left hand side Ax− b in the vector inequality constraint Ax− b ≤ 0 is replaced

with entrywise convex vector-valued function A(x), yielding the vector inequality constraint

A(x) ≤ 0. In Conic Optimization, we keep the objective and the left hand side in the vector

inequality Ax− b ≤ 0 linear/affine, and “introduce nonlinearity” in what “≤ 0” means!

Note: This is not as crazy as it looks. When comparing numbers, there is only one

meaningful notion of ≤. Inequality ≤ in (P ) is something different: it is specific “entrywise”

inequality between vectors, with “a ≤ 0” meaning “all entries in vector a are nonpositive.”

On a closed inspection, the entrywise vector inequality “≤” is neither the only possible, nor

the only useful way to compare vectors, so why to stick to the entrywise ≤ ?
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♣ A Conic Programming optimization program is

Opt = min
x

{
cTx : Ax− b ∈ K

}
, (C)

where K ⊂ Rm is a regular cone.

♠ Regularity of K means that

• K is convex cone:

(xi ∈ K, λi ≥ 0,1 ≤ i ≤ p)⇒
∑
i λixi ∈ K

• K is pointed: ±a ∈ K⇔ a = 0

• K is closed: xi ∈ K, limi→∞ xi = x⇒ x ∈ K

• K has a nonempty interior int K:

∃(x̄ ∈ K, r > 0) : {x : ‖x− x̄‖2 ≤ r} ⊂ K

Example: The nonnegative orthant

Rm+ = {x ∈ Rm : xi ≥ 0, 1 ≤ i ≤ m}
is a regular cone, and the associated conic problem (C) is just the usual LO

program.

Fact: When passing from LO programs (i.e., conic programs associated with

nonnegative orthants) to conic programs associated with properly chosen

wider families of cones, we extend dramatically the scope of applications we

can process, while preserving the major part of LO theory and preserving

our abilities to solve problems efficiently.
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• Let K ⊂ Rm be a regular cone. We can associate with K two relations

between vectors of Rm:

• “nonstrict K-inequality” ≥K:

a ≥K b⇔ a− b ∈ K

• “strict K-inequality” >K:

a >K b⇔ a− b ∈ intK

Example: when K = Rm+, ≥K is the usual “coordinate-wise” nonstrict in-

equality ”≥” between vectors a, b ∈ Rm:

a ≥ b⇔ ai ≥ bi, 1 ≤ i ≤ m
while >K is the usual “coordinate-wise” strict inequality ”>” between vec-

tors a, b ∈ Rm:

a > b⇔ ai > bi, 1 ≤ i ≤ m
♣ K-inequalities share the basic algebraic and topological properties of the

usual coordinate-wise ≥ and >, for example:

♠ ≥K is a partial order:

• a ≥K a (reflexivity),

• a ≥K b and b ≥K a ⇒ a = b (anti-symmetry)

• a ≥K b and b ≥K c ⇒ a ≥K c (transitivity)
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♠ ≥K is compatible with linear operations:

• a ≥K b and c ≥K d ⇒ a+ c ≥K b+ d,

• a ≥K b and λ ≥ 0 ⇒ λa ≥K λb

♠ ≥K is stable w.r.t. passing to limits:

ai ≥K bi, ai → a, bi → b as i→∞ ⇒ a ≥K b

♠ >K satisfies the usual arithmetic properties, like

• a >K b and c ≥K d ⇒ a+ c >K b+ d

• a >K b and λ > 0 ⇒ λa >K λb

and is stable w.r.t perturbations: if a >K b, then a′ >K b′ whenever a′ is close

enough to a and b′ is close enough to b.

♣ Note: Conic program associated with a regular cone K can be written

down as

min
x

{
cTx : Ax− b ≥K 0

}
Note: Every convex program can be equivalently reformulated as a conic

one.
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Basic Operations with Cones

♣ Given regular cones K` ⊂ Rm`, 1 ≤ ` ≤ L, we can form their direct product
K = K1 × ...×KL; = {x = [x1; ...;xL] : x` ∈ K` ∀`}
⊂ Rm1+...+mL = Rm1 × ...RmL

,

and this direct product is a regular cone.

Example: Rm+ is the direct product of m nonnegative rays R+ = R1
+.

♣ Given a regular cone K ∈ Rm, we can build its dual cone

K∗ = {x ∈ Rm : xTy ≥ 0∀y ∈ K}
The cone K∗ is regular, and (K∗)∗ = K.

Example: Rm+ is self-dual: (Rm+)∗ = Rm+.

♣ Fact: The cone dual to a direct product of regular cones is the direct

product of the dual cones of the factors:

(K1 × ...×KL)∗ = (K1)∗ × ...× (KL)∗
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Data and Structure of Conic Program
min
x∈Rn

{
cTx : Ax− b ≥K 0

}
(CP)

♠ When asked “what is the data, and what is the structure in (CP)”, ev-
erybody will give the same answer:
The structure “sits” in the cone K (and in n), and the data are the entries
in c, A, b.
But: General type convex cone is as “unstructured” as a general type con-
vex function. Why not to say that in a convex program of in the MP form

minx∈Rn {f(x) : gi(x) ≤ 0, 1 ≤ i ≤ m}
the structure “sits” in the convex functions f, g1, ..., gm (and m,n) — defi-
nitely true and absolutely useless!
♠ Fact: Conic problems associated with just three specific families of cones
cover nearly all (for all practical purposes – just all) applications of Convex
Optimization.
Cones from the three “magic” families possess transparent structure fully
utilized by theoretically (and practically!) efficient Interior Point methods
“tailored” to these cones.
⇒ Reformulating convex program as a conic program from a “magic family”
allows to process the problem by highly efficient dedicated algorithms.
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Linear/Conic Quadratic/Semidefinite Optimization

♣ The three magic families of cones are

• Direct products of nonnegative rays – nonnegative orthants giving rise to

Linear Optimization,

• Direct products of Lorentz cones giving rise to Conic Quadratic Optimiza-

tion, a.k.a. Second Order Cone Optimization,

• Direct products of Semidefinite cones giving rise to Semidefinite Optimiza-

tion.
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Linear Optimization

♣ Let K = LO be the family of all nonnegative orthants, i.e., all direct

products of nonnegative rays. Conic programs associated with cones from

K are exactly the LO programs

min
x

{
cTx : aTi x− bi ≥ 0,1 ≤ i ≤ m︸ ︷︷ ︸

⇔Ax−b≥Rm
+

0

}
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Conic Quadratic Optimization

♣ Lorentz cone Lm of dimension m is the regular cone in Rm given by

Lm = {x ∈ Rm : xm ≥
√
x2

1 + ...+ x2
m−1}

This cone is self-dual.

♠ Let K = CQP be the family of all direct products of Lorentz cones. Conic

programs associated with cones from K are called conic quadratic programs.

“Mathematical Programming” form of a conic quadratic program is

min
x

{
cTx : ‖Pix− pi‖2 ≤ qTi x+ ri︸ ︷︷ ︸

⇔[Pix−pi;qTi x−ri]∈L
mi

,1 ≤ i ≤ m
}

Note: According our convention “sum over empty set is 0”, L1 = R+ is the

nonnegative ray

⇒ All LO programs are Conic Quadratic ones.

7.11



Semidefinite Optimization

♣ Semidefinite cone Sm+ of order m “lives” in the space Sm of real symmetric

m × m matrices and is comprised of positive semidefinite m × m matrices,

i.e., symmetric m×m matrices A such that dTAd ≥ 0 for all d.

♥ Equivalent descriptions of positive semidefiniteness: A symmetric

m ×m matrix A is positive semidefinite (notation: A � 0) if and only if it

possesses any one of the following properties:

• All eigenvalues of A are nonnegative, that is,

A = UDiag{λ}UT

with orthogonal U and nonnegative λ.

Note: In the representation A = UDiag{λ}UT with orthogonal U , λ = λ(A)

is the vector of eigenvalues of A taken with their multiplicities

• A = DTD for a rectangular matrix D, or, equivalently, A is the sum of

dyadic matrices: A =
∑
` d`d

T
`

• All principal minors of A are nonnegative.

7.12



♥ The semidefinite cone Sm+ is regular and self-dual, provided that the inner

product on the space Sm where the cone lives is inherited from the natural

embedding Sm into Rm×m:

∀A,B ∈ Sm : 〈A,B〉 =
∑
i,j AijBij = Tr(AB)

♠ Let K = SDP be the family of all direct products of Semidefinite cones.

Conic programs associated with cones from K are called semidefinite pro-

grams. Thus, a semidefinite program is an optimization program of the form
min
x

{
cTx : Aix−Bi :=

∑n
j=1 xjA

ij −Bi � 0, 1 ≤ i ≤ m
}

Aij, Bi : symmetric ki × ki matrices
Note: A collection of symmetric matrices A1, ..., Am is comprised of positive

semidefinite matrices iff the block-diagonal matrix Diag{A1, ..., Am} is � 0

⇒ an SDO program can be written down as a problem with a single � con-

straint (called also a Linear Matrix Inequality (LMI)):

min
x

{
cTx : Ax−B := Diag{Aix−Bi,1 ≤ i ≤ m} � 0

}
.
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♣ Three generic conic problems – Linear, Conic Quadratic and Semidef-

inite Optimization — posses intrinsic mathematical similarity allowing for

deep unified theoretical and algorithmic developments, including design of

theoretically and practically efficient polynomial time solution algorithms —

Interior Point Methods.

♠ At the same time, “expressive abilities” of Conic Quadratic and especially

Semidefinite Optimization are incomparably stronger than those of Linear

Optimization. For all practical purposes, the entire Convex Programming is

within the grasp of Semidefinite Optimization.
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LO/CQO/SDO Hierarchy

♠ L1 = R+ ⇒ LO ⊂ CQO ⇒ Linear Optimization is a particular case of

Conic Quadratic Optimization.

♠ Fact: Conic Quadratic Optimization is a particular case of Semidefinite

Optimization.

♥ Explanation: The relation x ≥Lk 0 is equivalent to the relation

Arrow(x) =


xk x1 x2 · · · xk−1
x1 xk
x2 xk
... . . .

xk−1 xk

 � 0.

As a result, a system of conic quadratic constraints

Aix− bi ≥Lki
0, 1 ≤ i ≤ m

is equivalent to the system of LMIs

Arrow(Aix− bi) � 0, 1 ≤ i ≤ m.
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Why

x ≥Lk 0⇔ Arrow(x) � 0 (!)

Schur Complement Lemma: A symmetric block matrix

[
P Q

QT R

]
with

positive definite R is � 0 if and only if the matrix P −QR−1QT is � 0.

Proof. We have[
P Q
QT R

]
� 0⇔ [u; v]T

[
P Q
QT R

]
[u; v] ≥ 0 ∀[u; v]

⇔ uTPu+ 2uTQv + vTRv ≥ ∀[u; v]
⇔ ∀u : uTPu+ min

v

{
2uTQv + vTRv

}
≥ 0

⇔ ∀u : uTPu− uTQR−1QTu ≥ 0
⇔ P −QR−1QT � 0 �

♠ Schur Complement Lemma ⇒ (!):

• In one direction: Let x ∈ Lk. Then either xk = 0, whence x = 0

and Arrow(x) � 0, or xk > 0 and
∑k−1
i=1

x2
i
xk
≤ xk, meaning that the matrix

xk x1 · · · xk−1

x1 xk
... . . .

xk−1 xk

 satisfies the premise of the SCL and thus is � 0.
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• In another direction: let


xk x1 · · · xk−1

x1 xk
... . . .

xk−1 xk

 � 0. Then either xk = 0, and

then x = 0 ∈ Lk, or xk > 0 and
∑k−1
i=1

x2
i
xk
≤ xk by the SCL, whence x ∈ Lk. �
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♣ Example of CQO program: Control of Linear Dynamical system.

Consider a discrete time linear dynamical system given by
x(0) = 0;

x(t+ 1) = Ax(t) +Bu(t) + f(t),0 ≤ t ≤ T − 1
• x(t): state at time t

• u(t): control at time t

• f(t): given external input

Goal: Given time horizon T , bounds on control ‖u(t)‖2 ≤ 1 for all t and

desired destination x∗, find a control which makes x(T ) as close as possible

to x∗.
The model: From state equations,

x(T ) =
∑T−1
t=0 A

T−t−1[Bu(t) + f(t)],

so that the problem in question is

min
τ,u(0),...,u(T−1)

{
τ : ‖x∗ −

∑T−1
t=0 A

T−t−1[Bu(t) + f(t)]‖2 ≤ τ
‖u(t)‖2 ≤ 1, 0 ≤ t ≤ T − 1

}
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♣ Example of SDO program: Relaxation of a Combinatorial Problem.

♠ Numerous NP-hard combinatorial problems can be posed as problems of

quadratic minimization under quadratic constraints:
Opt(P ) = min

x
{f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m}

fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m
(P )

Example: One can model Boolean constraints xi ∈ {0; 1} as quadratic

equality constraints x2
i = xi and then represent them by pairs of quadratic

inequalities x2
i − xi ≤ 0 and −x2

i + xi ≤ 0

⇒ Boolean Programming problems reduce to (P ).
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Opt(P ) = min
x
{f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m}

fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m
(P )

♠ In branch-and-bound algorithms, an important role is played by efficient

bounding of Opt(P ) from below. To this end one can use Semidefinite

relaxation as follows:

• We set Fi =

[
Qi bi
bTi ci

]
, 0 ≤ i ≤ m, and X[x] =

[
xxT x

xT 1

]
, so that

fi(x) = Tr(FiX[x]).

⇒ (P ) is equivalent to the problem

min
x
{Tr(F0X[x]) : Tr(FiX[x]) ≤ 0, 1 ≤ i ≤ m} (P ′)
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Opt(P ) = min
x
{f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m}[

fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m
] (P )

⇔ min
x
{Tr(F0X[x]) : Tr(FiX[x]) ≤ 0, 1 ≤ i ≤ m}[

Fi =

[
Qi bi
bTi ci

]
, 0 ≤ i ≤ m

]
(P ′)

• The objective and the constraints in (P ′) are linear in X[x], and the only
difficulty is that as x runs through Rn, X[x] runs through a difficult for
minimization manifold X ⊂ Sn+1 given by the following restrictions:

A. X � 0
B. Xn+1,n+1 = 1
C. RankX = 1

• Restrictions A, B are simple constraints specifying a nice convex domain
• Restriction C is the “troublemaker” – it makes the feasible set of (P )
difficult
♠ In SDO relaxation, we just eliminate the rank constraint C, thus ending
up with the SDO program

Opt(SDO) = min
X∈Sn+1

{
Tr(F0X) :

Tr(FiX) ≤ 0, 1 ≤ i ≤ m,
X � 0, Xn+1,n+1 = 1

}
.

♠ When passing from (P ) ≡ (P ′) to the SDO relaxation, we extend the
domain over which we minimize
⇒ Opt(SDO) ≤ Opt(P ).
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What Can Be Expressed via LO/CQO/SDO ?

♣ Consider a family K of regular cones such that

• K is closed w.r.t. taking direct products of cones: K1, ...,Km ∈ K ⇒
K1 × ...×Km ∈ K
• K is closed w.r.t. passing from a cone to its dual: K ∈ K ⇒ K∗ ∈ K
Examples: LO, CQO, SDO.

Question: When an optimization program

min
x∈X

f(x) (P )

can be posed as a conic problem associated with a cone from K ?

Answer: This is the case when the set X and the function f are K-

representable, i.e., admit representations of the form
X = {x : ∃u : Ax+Bu+ c ∈ KX}

Epi{f} := {[x; τ ] : τ ≥ f(x)}
= {[x; τ ] : ∃w : Px+ τp+Qw + d ∈ Kf}

where KX ∈ K, Kf ∈ K.
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Indeed, if
X = {x : ∃u : Ax+Bu+ c ∈ KX}

Epi{f} := {[x; τ ] : τ ≥ f(x)}
= {[x; τ ] : ∃w : Px+ τp+Qw + d ∈ Kf}

then problem

min
x∈X

f(x) (P )

is equivalent to

min
x,τ,u,w

{
τ :

says that x ∈ X︷ ︸︸ ︷
Ax+Bu+ c ∈ KX
Px+ τp+Qw + d ∈ KF︸ ︷︷ ︸

says that τ ≥ f(x)

}

and the constraints read

[Ax+ bu+ c;Px+ τp+Qw + d] ∈ K := KX ×Kf ∈ K .

♣ K-representable sets/functions always are convex.

♣ K-representable sets/functions admit fully algorithmic calculus completely

similar to the one we have developed in the particular case K = LO.
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♠ Example of CQO-representable function: convex

quadratic form

f(x) = xTATAx+ 2bTx+ c

Indeed,
τ ≥ f(x)⇔ [τ − c− 2bTx] ≥ ‖Ax‖22
⇔
[

1+[τ−c−2bTx]
2

]2
−
[

1−[τ−c−2bTx]
2

]2
≥ ‖Ax‖22

⇔
[
Ax; 1−[τ−c−2bTx]

2 ; 1+[τ−c−2bTx]
2

]
∈ Ldim b+2

♠ Examples of SDO-representable functions/sets:

• the maximal eigenvalue λmax(X) of a symmetric m×m matrix X:

τ ≥ λmax(X)⇔ τIm −X � 0︸ ︷︷ ︸
LMI

• the sum of k largest eigenvalues of a symmetric m×m matrix X

• −Det1/m(X), X ∈ Sm+
• the set Pd of (vectors of coefficients of) nonnegative on a given segment

∆ algebraic polynomials p(x) = pdx
d + pd−1x

d−1 + ... + p1x + p0 of degree

≤ d.
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Conic Duality Theorem

♣ Consider a conic program

Opt(P ) = min
x

{
cTx : Ax ≥K b

}
(P )

As in the LO case, the concept of the dual problem stems from the desire

to find a systematic way to bound from below the optimal value Opt(P ).

♠ In the LO case K = Rm+ this mechanism was built as follows:

• We observe that for properly chosen vectors of “aggregation weights”

λ (specifically, for λ ∈ Rm+) the aggregated constraint λTAx ≥ λT b is the

consequence of the vector inequality Ax ≥K b and thus λTAx ≥ λT b for all

feasible solutions x to (P )

• In particular, when admissible vector of aggregation weights λ is such that

ATλ = c, then the aggregated constraint reads “cTx ≥ bTλ for all feasible x”

and thus bTλ is a lower bound on Opt(P ). The dual problem is the problem

of maximizing this bound:

Opt(D) = max
λ
{bTλ :

ATλ = c
λ is admissible for aggregation

}
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Opt(P ) = min
x

{
cTx : Ax ≥K b

}
(P )

♠ The same approach works in the case of a general cone K. The only issue

to be resolved is:

What are admissible weight vectors λ for (P )? When a valid vector inequality

a ≥K b always implies the inequality λTa ≥ λT b ?

Answer: is immediate: the required λ’s are exactly the vectors from the

cone K∗ dual to K.

Indeed,

• If λ ∈ K∗, then

a ≥K b⇒ a− b ∈ K⇒ λT (a− b) ≥ 0⇒ λTa ≥ λT b,
that is, λ is an admissible weight vector.

• If λ is admissible weight vector and a ∈ K, that is, a ≥K 0, we should

have λTa ≥ λT0 = 0, so that λTa ≥ 0 for all a ∈ K, i.e., λ ∈ K∗.
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Opt(P ) = min
x

{
cTx : Ax ≥K b

}
(P )

♠ We arrive at the following construction:

• Whenever λ ∈ K∗, the scalar inequality λTAx ≥ λT b is a consequence of

the constraint in (P ) and thus is valid everywhere on the feasible set of (P ).

• In particular, when λ ∈ K∗ is such that ATλ = c, the quantity bTλ is a lower

bound on Opt(P ), and the dual problem is to maximize this bound:

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥K∗ 0

}
(D)

As it should be, in the LO case, where K = Rm+ = (Rm+)∗ = K∗, (D) is

nothing but the LP dual of (P ).
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♣ Our “aggregation mechanism” can be applied to conic problems in a

slightly more general format:

Opt(P ) = min
x∈X

{
cTx :

A`x ≥K` b`, 1 ≤ ` ≤ L
Px = p

}
(P )

Here the dual problem is built as follows:

• We associate with every vector inequality constraint

A`x ≥K` b`
dual variable (“Lagrange multiplier”) λ` ≥K`∗

0, so that the scalar inequality

constraint λT` A`x ≥ λ
T
` b` is a consequence of A`x ≥K` b` and λ` ≥K∗`

0;

• We associate with the system Px = p a “free” vector µ of Lagrange

multipliers of the same dimension as p, so that the scalar inequality µTPx ≥
µTp is a consequence of the vector equation Px = p;

• We sum up all the scalar inequalities we got, thus arriving at the scalar

inequality [∑L
`=1A

T
` λ` + P Tµ

]T
x ≥

∑L
`=1 b

T
` λ` + pTµ (∗)
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Opt(P ) = min
x∈X

{
cTx :

A`x ≥K` b`, 1 ≤ ` ≤ L
Px = p

}
(P )

Whenever x is feasible for (P ) and λ` ≥K`∗
0, 1 ≤ ` ≤ L, we have[∑L

`=1A
T
` λ` + P Tµ

]T
x ≥

∑L
`=1 b

T
` λ` + pTµ (∗)

• If we are lucky to get in the left hand side of (∗) the expression cTx, that

is, if
∑L
`=1A

T
` λ` + PTµ = c, then the right hand side of (∗) is a lower bound

on the objective of (P ) everywhere in the feasible domain of (P ) and thus

is a lower bound on Opt(P ). The dual problem is to maximize this bound:
Opt(D)

= max
λ,µ

{∑L
`=1 b

T
` λ` + pTµ :

λ` ≥K`
∗

0, 1 ≤ ` ≤ L∑L
`=1A

T
` λ` + P Tµ = c

}
(D)

Note: When all cones K` are self-dual (as it is the case in Linear/Conic

Quadratic/Semidefinite Optimization), the dual problem (D) involves ex-

actly the same cones K` as the primal problem.
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Example: Dual of a Semidefinite program.

Consider a Semidefinite program

min
x

{
cTx :

∑n
i=1A

j
`xj � B

j
` ,1 ≤ ` ≤ L

Px = p

}

The cones Sk+ are self-dual, so that the Lagrange multipliers for the �-
constraints are matrices Λ` � 0 of the same size as the symmetric data

matrices A
j
`, B`. Aggregating the constraints of our SDO program and

recalling that the inner product 〈A,B〉 in Sk is Tr(AB), the aggregated linear
inequality reads

n∑
j=1

xj

 L∑
`=1

Tr(Aj`Λ`) +
n∑

j=1

(P Tµ)j

 ≥ L∑
`=1

Tr(B`Λ`) + pTµ

The equality constraints of the dual should say that the left hand side expression, identically
in x ∈ Rn, is cTx, that is, the dual problem reads

max
{Λ`},µ


L∑
`=1

Tr(B`Λ`) + pTµ :
Tr(Aj`Λ`) + (P Tµ)j = cj,

1 ≤ j ≤ n
Λ` � 0, 1 ≤ ` ≤ L


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Symmetry of Conic Duality

Opt(P ) = min
x∈X

{
cTx :

A`x ≥K` b`, 1 ≤ ` ≤ L
Px = p

}
(P )

Opt(D) = max
λ,µ

 L∑
`=1

bT` λ` + pTµ :
λ` ≥K`

∗
0, 1 ≤ ` ≤ L

L∑
`=1

AT` λ` + P Tµ = c

 (D)

♠ Observe that (D) is, essentially, in the same form as (P ), and thus we

can build the dual of (D). To this end, we rewrite (D) as

−Opt(D) = min
λ`,µ

− L∑
`=1

bT` λ` − pTµ :
λ` ≥K`

∗
0, 1 ≤ ` ≤ L

L∑
`=1

AT` λ` + P Tµ = c

 (D′)
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−Opt(D) = min
λ`,µ

− L∑
`=1

bT` λ` − pTµ :
λ` ≥K`

∗
0, 1 ≤ ` ≤ L

L∑
`=1

AT` λ` + P Tµ = c

 (D′)

Denoting by −x the vector of Lagrange multipliers for the equality con-

straints in (D′), and by ξ` ≥[K`∗]∗
0 (i.e., ξ` ≥K` 0) the vectors of Lagrange

multipliers for the ≥K`∗
-constraints in (D′) and aggregating the constraints

of (D′) with these weights, we see that everywhere on the feasible domain

of (D′) it holds: ∑
`[ξ` −A`x]Tλ` + [−Px]Tµ ≥ −cTx

• When the left hand side in this inequality as a function of {λ`}, µ is iden-

tically equal to the objective of (D′), i.e., when{
ξ` −A`x = −b` 1 ≤ ` ≤ L,
−Px = −p ,

the quantity −cTx is a lower bound on Opt(D′) = −Opt(D), and the problem

dual to (D) thus is

maxx,ξ`

−cTx :
A`x = b` + ξ`,1 ≤ ` ≤ L
Px = p
ξ` ≥K` 0, 1 ≤ ` ≤ L


which is equivalent to (P ).

⇒ Conic duality is symmetric!
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Conic Duality Theorem

♠ A conic program in the form

min
y

{
cTy : Ry = r, Py ≥K p, Sy ≥ s︸ ︷︷ ︸

Qy≥Mq

}

is called strictly feasible, if there exists a strictly feasible solution ȳ – a

feasible solution where the vector inequality constraint is satisfied as strict:

Qȳ >M q. The program is called essentially strictly feasible, if there exists a

feasible solution ŷ such that P ŷ >K p.
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Opt(P ) = min
x

{
cTx : Ax ≥K b, Px = p

}
(P )

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ PTµ = c

}
(D)

Conic Duality Theorem

♠ [Weak Duality] One has Opt(D) ≤ Opt(P ).

♠ [Symmetry] duality is symmetric: (D) is a conic program, and the program

dual to (D) is (equivalent to) (P ).

♠ [Strong Duality] Let one of the problems (P ),(D) be essentially strictly

feasible and bounded. Then the other problem is solvable, and Opt(D) =

Opt(P ).

In particular, if both (P ) and (D) are strictly feasible, then both the problems

are solvable with equal optimal values.
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Example: Dual of the SDO relaxation. Recall that given a (difficult to solve!) quadratic

quadratically constrained problem
Opt∗ = min

x
{f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m}

fi(x) = xTQix+ 2bTi x+ ci
we can bound its optimal value from below by passing to the semidefinite relaxation of the

problem:
Opt∗ ≥ Opt

:= min
X

{
Tr(F0X) :

Tr(FiX) ≥ 0,1 ≤ i ≤ m
X � 0, Xn+1,n+1 ≡ Tr(GX) = 1

}
(P )

G =

[
1

]
, Fi =

[
Qi bi
bTi ci

]
, 0 ≤ i ≤ m.

Let us build the dual to (P ). Denoting by λi ≥ 0 the Lagrange multipliers for the scalar

inequality constraints, by Λ � 0 the Lagrange multiplier for the LMI X � 0, and by µ

– the Lagrange multiplier for the equality constraint Xn+1,n+1 = 1, and aggregating the

constraints, we get the aggregated inequality

Tr([
∑m

i=1 λiFi]X) + Tr(ΛX) + µTr(GX) ≥ µ
Specializing the Lagrange multipliers to make the left hand side to be identically equal to

Tr(F0X), the dual problem reads

Opt(D) = max
Λ,{λi},µ

{
µ : F0 =

∑m
i=1 λiFi + µG+ Λ, λ ≥ 0,Λ � 0

}
We can easily eliminate Λ, thus arriving at

Opt(D) = max
{λi},µ

{
µ :
∑m

i=1 λiFi + µG � F0, λ ≥ 0
}

(D)
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Geometry of Primal-Dual Pair of Conic Problems

♣ Consider a primal-dual pair of conic problems in the form
Opt(P ) = min

x

{
cTx : Ax ≥K b, Px = p

}
(P )

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ P Tµ = c

}
(D)

♠ Assumption: Linear equality constraints in (P ) and (D) are feasible:
∃x̄, λ̄, µ̄ : P x̄ = p & AT λ̄+ PT µ̄ = c

♠ Let us pass in (P ) from variable x to the slack variable ξ = Ax− b. For x
satisfying the equality constraints Px = p of (P ) we have

cTx =[AT λ̄+ P T µ̄]Tx = λ̄TAx+ µ̄TPx = λ̄Tξ + µ̄Tp+ λ̄T b

⇒ (P ) is equivalent to
Opt(P) = min

ξ

{
λ̄Tξ : ξ ∈MP ∩K

}
(P)

= Opt(P )−
[
bT λ̄+ pT µ̄

]
MP = LP − ξ̄, ξ̄ = b−Ax̄,
LP = {ξ : ∃x : ξ = Ax, Px = 0}

♠ Let us eliminate from (D) the variable µ. For [λ;µ] satisfying the equality
constraint ATλ+ PTµ = c of (D) we have

bTλ+ pTµ = bTλ+ x̄TP Tµ = bTλ+ x̄T [c−ATλ] = [b−Ax̄]︸ ︷︷ ︸
ξ̄

Tλ+ cT x̄

⇒ (D) is equivalent to
Opt(D) = max

λ

{
ξ̄Tλ : λ ∈MD ∩K∗

}
= Opt(D)− cT x̄ (D)

MD = LD + λ̄, LD = {λ : ∃µ : ATλ+ P Tµ = 0}
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Opt(P ) = min
x

{
cTx : Ax ≥K b, Px = p

}
(P )

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ P Tµ = c

}
(D)

♣ Intermediate Conclusion: The primal-dual pair (C), (D) of conic prob-

lems with feasible equality constraints is equivalent to the pair
Opt(P) = min

ξ

{
λ̄Tξ : ξ ∈MP ∩K

}
= Opt(P )−

[
bT λ̄+ pT µ̄

]
(P)

MP = LP − ξ̄, LP = {ξ : ∃x : ξ = Ax, Px = 0}

Opt(D) = max
λ

{
ξ̄Tλ : λ ∈MD ∩K∗

}
= Opt(D)− cT ξ̄ (D)

MD = LD + λ̄, LD = {λ : ∃µ : ATλ+ P Tµ = 0}
Observation:The linear subspaces LP and LD are orthogonal complements

of each other.

Observation: Let x be feasible for (P ) and [λ, µ] be feasible for (D), and

let ξ = Ax− b be the primal slack associated with x. Then
DualityGap(x, λ, µ) = cTx− [bTλ+ pTµ]
= [ATλ+ P Tµ]Tx− [bTλ+ pTµ]
= λT [Ax− b] + µT [Px− p] = λT [Ax− b] = λTξ.

Note: To solve (P ), (D) ⇔ to minimize the duality gap over primal feasible

x and dual feasible λ, µ

⇔ to minimize the inner product of ξTλ over ξ feasible for (P) and λ feasible

for (D).
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♣ Conclusion: A primal-dual pair of conic problems
Opt(P ) = min

x

{
cTx : Ax ≥K b, Px = p

}
(P )

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ P Tµ = c

}
(D)

with feasible equality constraints is, geometrically, the problem as follows:

♠ We are given

• a regular cone K in certain RN along with its dual cone K∗
• a linear subspace LP ⊂ RN along with its orthogonal complement LD ⊂ RN

• a pair of vectors ξ̄, λ̄ ∈ RN .

These data define

• Primal feasible set Ξ = [LP − ξ̄] ∩K ⊂ RN

• Dual feasible set Λ = [LD + λ̄] ∩K∗ ⊂ RN

♠ We want to find a pair ξ ∈ Ξ and λ ∈ Λ with as small as possible inner

product. Whenever Ξ intersects intK and Λ intersects intK∗, this geometric

problem is solvable, and its optimal value is 0 (Conic Duality Theorem).
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Opt(P ) = min
x

{
cTx : Ax ≥K b, Px = p

}
(P )

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ P Tµ = c

}
(D)

♣ The data LP , ξ̄, LD, λ̄ of the geometric problem associated with (P ), (D)

is as follows:
LP = {ξ = Ax : Px = 0}
ξ̄ : any vector of the form Ax− b with Px = p

LD = L⊥P = {λ : ∃µ : ATλ+ PTµ = 0}
λ̄ : any vector λ such that ATλ+ P Tµ = c for some µ

• Vectors ξ ∈ Ξ are exactly vectors of the form Ax− b coming from feasible

solutions x to (P ), and vectors λ from Λ are exactly the λ-components of

the feasible solutions [λ;µ] to (D).

• ξ∗, λ∗ form an optimal solution to the geometric problem if and only if

ξ∗ = Ax∗ − b with Px∗ = p, λ∗ can be augmented by some µ∗ to satisfy

ATλ∗ + PTµ∗ = c and, in addition, x∗ is optimal for (P ), and [λ∗;µ∗] is

optimal for (D).
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Opt(P ) = min
x

{
cTx : Ax ≥K b, Px = p

}
(P )

Opt(D) = max
λ,µ

{
bTλ+ pTµ : λ ≥K∗ 0, ATλ+ P Tµ = c

}
(D)

♣ Conic Programming Optimality Conditions: Let both (P ) and (D) be

essentially strictly feasible. Then a pair (x, [λ;µ]) of primal and dual feasible

solutions is comprised of optimal solutions to the respective problems if and

only if

• [Zero Duality Gap]
DualityGap(x, [λ;µ]) := cTx− [bTλ+ pTµ] = 0 Indeed,

DualityGap(x, [λ;µ]) = [cTx−Opt(P )]︸ ︷︷ ︸
≥0

+ [Opt(D)− [bTλ+ pTµ]]︸ ︷︷ ︸
≥0


and if and only if

• [Complementary Slackness]
[Ax− b]Tλ = 0

Indeed,
[Ax− b]Tλ = (ATλ)Tx− bTλ = [c− PTµ]Tx− bTλ

= cTx− [bTλ+ µTPx]
= cTx− [bTλ+ pTµ]
= DualityGap(x, λ;µ])


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♣ Conic Duality, same as the LP one, is

• fully algorithmic: to write down the dual, given the primal, is a purely

mechanical process

• fully symmetric: the dual problem “remembers” the primal one

♥ Cf. Lagrange Duality:

min
x
{f(x) : gi(x) ≤ 0, i = 1, ...,m} (P )

⇓

max
y≥0

[
L(y):= minx

{
f(x) +

∑
i
yigi(x)

}]
(D)

• Dual “exists in the nature”, but is given implicitly; its objective, typically,

is not available in a closed form

• Duality is asymmetric: given L(·), we, typically, cannot recover f and

gi...
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♣ Conic Duality in the case of Magic cones:

• powerful tool to process problem, to some extent, “on paper”, which in

many cases provides extremely valuable insight and/or allows to end up

with a problem much better suited for numerical processing

• is heavily exploited by efficient polynomial time algorithms for Magic

conic problems
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Illustration: Semidefinite Relaxation

♣ Recall that a quadratically constrained quadratic program

Opt = minx∈Rn {f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m}[
fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m

] (QP )

admits semidefinite relaxation: We associate with x the symmetric matrix

X[x] = [x; 1][x; 1]T =

[
xxT x

xT 1

]
rewrite (QP ) equivalently as

Opt = min
X

Tr(F0X) :

Tr(FiX) ≤ 0,1 ≤ i ≤ m
X = X[x] for some x

m
X � 0, Xn+1,n+1 = 1,Rank (X) = 1

[
Fi =

[
Qi bi
bTi ci

]] (QP ′)

and remove the “troublemaking” rank restriction, arriving at the semidefinite

relaxation of (QP ) – the problem

Opt(SDO) = min
X

{
Tr(F0X) :

Tr(FiX) ≤ 0,1 ≤ i ≤M
X � 0, Xn+1,n+1 = 1

}
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Opt = min
x∈Rn
{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m}[

fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m
] (QP )

m

Opt = min
X

Tr(F0X) :
Tr(FiX) ≤ 0,1 ≤ i ≤ m

X =

[
xxT x
xT 1

]
for some x

[
Fi =

[
Qi bi
bTi ci

]] (QP ′)

⇓

Opt(SDO) = min
X

{
Tr(F0X) :

Tr(FiX) ≤ 0,1 ≤ i ≤M
X � 0, Xn+1,n+1 = 1

}
(SDO)

♠ Probabilistic Interpretation of (SDO):
Assume that instead of solving (QP ) in deterministic variables x, we are solving the problem
in random vectors ξ and want to minimize the expected value of the objective under the
restriction that the constraints are satisfied at average.
Since fi are quadratic, the expectations of the objective and the constraints are affine
functions of the moment matrix

X = E

{[
ξξT ξ
ξT 1

]}
which can be an arbitrary symmetric positive semidefinite matrix X with Xn+1,n+1 = 1. The
“randomized” version of (QP ) is exactly (SDO) (check it!)
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♣ With outlined interpretation, an optimal solution to (SDO) gives rise to (various) ran-

domized solutions to the problem of interest.

In good cases, we can extract from these randomized solutions feasible solutions to the

problem of interest with reasonable approximation guarantees in terms of optimality.

We can, e.g.,

— use X∗ to generate a sample ξ1, ..., ξN of, say, N = 100 random solutions to (QP ),

— “correct” ξt to get feasible solutions xt to (QP ).
The approach works when the correction is easy, e.g.,
when at some known point x̄ the constraints of (QP ) are
satisfied strictly. Here we can take as xt the closest to ξt

feasible solution from the segment [x̄, ξt].
— select from the resulting N feasible solutions xt to (QP ) the best in terms of the objec-

tive.

♥ When applicable, the outlined approach can be combined with local improvement – N

runs of any traditional algorithm for nonlinear optimization as applied to (QP ), x1, ..., xN

being the starting points of the runs.
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Lagrangian Relaxation

♣ Recall that for every MP problem

Opt(P ) = min
x∈X
{f(x) : gi(x) ≤ 0, 1 ≤ i ≤ m} (P )

its Lagrange function

L(x, λ) = f(x) +
∑
i

λigi(x)

underestimates f(x) on the feasible set of (P ), provided λ ≥ 0: λ ≥ 0 ⇒

Opt(D) = max
λ≥0

[
L(λ) := inf

x∈X
L(x, λ)

]
≤ Opt(P )

(“Weak Lagrange duality”).

♠ Whenever L is efficiently computable, Opt(D) is an efficiently computable

lower bound on Opt(P ).
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♣ Example:
Opt = min

x∈Rn
{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m} (QP )[

fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m
]

• Applying Lagrange Relaxation Scheme, we get

L(λ) = infx
{
f0(x) +

∑m
i=1 λifi(x)

}
= infx

{
xT
[
Q0 +

∑m
i=1 λiQi

]
x+ 2

[
b0 +

∑m
i=1 λibi

]T
x

+
[
c0 +

∑m
i=1 λici

]}
Simple Fact: xTPx+ 2qTx+ r ≥ τ for all x ∈ Rn iff[

P q
qT r − τ

]
� 0

• Using Simple Fact, the Lagrange dual of (QP ) becomes

Opt(D) = max
λ,τ

τ : λ ≥ 0,

 Q0 +
m∑
i=1

λiQi b0 +
m∑
i=1

λibi

bT0 +
m∑
i=1

λibTi c0 +
m∑
i=1

λici − τ

 � 0


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Opt = min
x∈Rn

{f0(x) : fi(x) ≤ 0,1 ≤ i ≤ m} (QP )[
fi(x) = xTQix+ 2bTi x+ ci, 0 ≤ i ≤ m

]
♠ Note: The SDO relaxations of (QP ) resulting from our two relaxation
schemes read

Opt(SDO) = min
X

{
Tr(F0X) :

Tr(QiX) ≤ 0,1 ≤ i ≤M
X � 0, Xn+1,n+1 = 1

}
(P )

SDO = max
λ,τ

τ :

 Q0 +
m∑
i=1

λiQi b0 +
m∑
i=1

λibi

bT0 +
m∑
i=1

λibTi c0 +
m∑
i=1

ciλi − τ

 � 0

λ ≥ 0

 (D)

On a closest inspection, they are just semidefinite duals of each other!
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♣ Example: Quadratic Maximization over the box
Opt = maxx{xTLx : x2

i ≤ 1, 1 ≤ i ≤ n} (QP )
⇒ Opt(SDO) = maxX{Tr(XL) : X � 0, Xii ≤ 1 ∀i} (SDO)

Note: When L � 0 or L has zero diagonal, Opt and Opt(SDO) remain

intact when the inequality constraints are replaced with their equality ver-

sions.

♠ MAXCUT: The combinatorial problem “given n-node graph with arcs

assigned nonnegative weights aij = aij, 1 ≤ i, j ≤ n, split the nodes into

two non-overlapping subsets to maximize the total weight of the arcs linking

nodes from different subsets” is equivalent to (QP ) with

Lij =

{ ∑
k aik , j = i
−aij , j 6= i

♠ Theorem of Goemans and Williamson ’94:

Opt ≤ Opt(SDO) ≤ 1.1383 ·Opt (!)

Note: To approximate Opt within 4% is NP-hard...
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Sketch of the proof of (!): treat an optimal solution X∗ of (SDO) as the

covariance matrix of zero mean Gaussian random vector ξ and look at

E{sign[ξ]TLsign[ξ]}.
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Illustration: MAXCUT, 1024 nodes, 2614 arcs.

Suboptimal cut, weight ≥ 0.9196 ·Opt(SDO) ≥ 0.9196 ·Opt[
Slightly better than Goemans-Williamson guarantee:

weight ≥ 0.8785 ·Opt(SDO) ≥ 0.8785 ·Opt

]
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Opt = max
x
{xTLx : x2

i ≤ 1, 1 ≤ i ≤ n} (QP )

⇒ Opt(SDO) = max
X
{Tr(XL) : X � 0, Xii ≤ 1∀i}(SDO)

♠ Nesterov’s π/2 Theorem. Matrix L arising in MAXCUT is � 0 (and

possesses additional properties). What can be said about (SDO) under the

only restriction L � 0?

Answer [Nesterov’98]: Opt ≤ Opt(SDO) ≤ π
2 ·Opt.

Illustration: L: randomly built positive semidefinite 1024 × 1024 matrix.

Relaxation combined with local improvement yields a feasible solution x̄

with

x̄TLx̄ ≥ 0.7867 ·Opt(SDO) ≥ 0.7867 ·Opt
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Opt = max
x
{xTLx : x2

i ≤ 1, 1 ≤ i ≤ n} (QP )

⇒ Opt(SDO) = max
X
{Tr(XL) : X � 0, Xii ≤ 1 ∀i} (SDO)

♠ The case of indefinite L: When L is an arbitrary symmetric matrix, one
has

Opt ≤ Opt(SDO) ≤ O(1) ln(n)Opt.
This is a particular case of the following result: The SDO relaxation

Opt(SDO) = max
X
{Tr(XL) : Tr(XQi) ≤ 1, i ≤ m}

of the problem

Opt = maxx
{
xTLx : xTQix ≤ 1, i ≤ m

}
[Qi � 0 ∀i,

∑
iQi � 0]

(P )

satisfies Opt ≤ Opt(SDO) ≤ O(1) ln(m)Opt.
Illustration, A: Problem (QP ) with randomly selected indefinite 1024 × 1024 matrix L.

Relaxation combined with local improvement yields a feasible solution x̄ with

x̄TLx̄ ≥ 0.7649 ·Opt(SDO) ≥ 0.7649 ·Opt

Illustration, B: Problem (P ) with randomly selected indefinite 1024×1024 matrix L and 64

randomly selected positive semidefinite matrices Qi of rank 64. Relaxation yields a feasible

solution x̄ with

x̄TLx̄ ≥ 0.9969 ·Opt(SDO) ≥ 0.9969 ·Opt
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Illustration: Lyapunov Stability Analysis

♣ Consider an uncertain time varying linear dynamical system

d

dt
x(t) = A(t)x(t) (ULS)

• x(t) ∈ Rn: state at time t,
• A(t) ∈ Rn×n: known to take all values in a given uncertainty set U ⊂ Rn×n.
♠ (ULS) is called stable, if all trajectories of the system go to 0 as t→∞:

A(t) ∈ U ∀t ≥ 0, d
dtx(t) = A(t)x(t)⇒ lim

t→∞
x(t) = 0.

♣ Question: How to certify stability?
♠ Standard sufficient stability condition is the existence of Lyapunov Stability
Certificate – a matrix X � 0 such that the function L(x) = xTXx for some
α > 0 satisfies d

dtL(x(t)) ≤ −αL(x(t)) for all trajectories and thus goes to 0
exponentially fast along the trajectories:

d
dtL(x(t)) ≤ −αL(x(t))⇒ d

dt [exp{αt}L(x(t))] ≤ 0
⇒ exp{αt}L(x(t)) ≤ L(x(0)), t ≥ 0
⇒ L(x(t)) ≤ exp{−αt}L(x(0))

⇒ ‖x(t)‖22 ≤
λmax(X)
λmin(X) exp{−αt}‖x(0)‖22

• For a time-invariant system, this condition is necessary and sufficient for
stability.
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♠ Question: When α > 0 is such that
d
dtL(x(t)) ≤ −αL(x(t)) for all trajectories x(t) satisfying
d
dtx(t) = A(t)x(t) with A(t) ∈ U for all t ?

♥ Answer: We should have
d
dt

(
xT (t)Xx(t)

)
= ( ddtx(t))TXx(t) + xT (t)X d

dtx(t)

= xT (t)AT (t)Xx(t) + xT (t)XAx(t)

= xT (t)
[
AT (t)X +XA(t)

]
x(t)

≤ −αxT (t)Xx(t)
Thus,

d
dt
L(x(t)) ≤ −αL(x(t)) for all trajectories

⇔ xT(t)
[
AT(t)X +XA(t)

]
x(t) ≤ −αxT(t)Xx(t) for all trajectories

⇔ xT(t)[AT(t)X +XA(t) + αX]x(t) ≤ 0 for all trajectories
⇔ ATX +XA � −αX ∀A ∈ U

⇒ X � 0 is LSC for a given α > 0 iff X solves semi-infinite LMI
ATX +XA � −αX ∀A ∈ U

⇒ Uncertain linear dynamical system
d
dtx(t) = A(t)x(t), A(t) ∈ U

admits an LSC iff the semi-infinite system of LMI’s
X � I, ATX +XA � −I ∀A ∈ U

in matrix variable X is solvable.
♠ But: SDP is about finite, and not semi-infinite, systems of LMI’s. Semi-
infinite systems of LMI’s typically are heavily computationally intractable...
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X � I, ATX +XA � −I ∀A ∈ U (!)

♠ Solvable case I: Scenario (a.k.a. polytopic) uncertainty U = Conv{A1, ..., AN}.
Here (!) is equivalent to the finite system of LMI’s

X � I, ATkX +XAk � −I, 1 ≤ k ≤ N
♠ Solvable case II: Unstructured Norm-Bounded uncertainty

U = {A = Ā+B∆C : ‖∆‖2,2 ≤ ρ},
• ‖ · ‖2,2: spectral norm of a matrix.

♥ Example: We close open loop time invariant system
d
dtx(t) = Px(t) +Bu(t) [state equations]

y(t) = Cx(t) [observed output]

with linear feedback
u(t) = Ky(t),

thus arriving at the closed loop system
d
dtx(t) = [P +BKC]x(t)

and want to certify stability of the closed loop system when the feedback
matrix K is subject to time-varying norm-bounded perturbations:

K = K(t) ∈ V = {K̄ + ∆ : ‖∆‖2,2 ≤ ρ}.
This is exactly the same as to certify stability of the system

d
dtx(t) = A(t)x(t), A(t) ∈ U = {P +BK̄C︸ ︷︷ ︸

Ā

+B∆C}

with unstructured norm-bounded uncertainty.
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• Observation: The semi-infinite system of LMI’s

X � I & ATX +XAT � −I ∀(A = Ā+B∆C : ‖∆‖2,2 ≤ ρ)

is of the generic form
(A) : finite system of LMI’s in variables x

semi-infinite LMI
(!) : A(x) + LT(x)∆R+RT∆TL(x) � 0 ∀(∆ : ‖∆‖2,2 ≤ ρ)

A(x), L(x): affine in x

♠ Fact: [S. Boyd et al, early 90’s] Assuming w.l.o.g. that R 6= 0, the semi-

infinite LMI (!) can be equivalently represented by the usual LMI[
A(x)− λRTR ρLT (x)

ρL(x) λI

]
� 0 (!!)

in variables x, λ, meaning that x satisfies (!) if and only x can be augmented

by properly selected λ to satisfy (!!).
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♣ Key argument when proving Fact:

S-Lemma: A homogeneous quadratic inequality
xTBx ≥ 0 (B)

is a consequence of strictly feasible homogeneous quadratic inequality
xTAx ≥ 0 (A)

if and only if (B) can be obtained by taking weighted sum, with nonnegative
weights, of (A) and identically true homogeneous quadratic inequality:

∃(λ ≥ 0 & C : xTCx ≥ 0∀x︸ ︷︷ ︸
⇔C�0

) : xTBx ≡ λxTAx+ xTCx

or, which is the same, if and only if
∃λ ≥ 0 : B � λA.

Immediate corollary: A quadratic inequality
xTBx+ 2bTx+ β ≥ 0

is a consequence of strictly feasible quadratic inequality
xTAx+ 2aTx+ α ≥ 0

iff

∃λ ≥ 0 :

[
B − λA bT − λaT
b− λa β − λα

]
� 0

⇒ We can efficiently optimize a quadratic function over the set given by a
single strictly feasible quadratic constraint.
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♣ S-Lemma: A homogeneous quadratic inequality
xTBx ≥ 0 (B)

is a consequence of strictly feasible homogeneous quadratic inequality
xTAx ≥ 0 (A)

if and only if (B) can be obtained by taking weighted sum, with nonnegative
weights, of (A) and identically true homogeneous quadratic inequality:

∃(λ ≥ 0 & C : xTCx ≥ 0∀x︸ ︷︷ ︸
⇔C�0

) : xTBx ≡ λxTAx+ xTCx

or, which is the same, if and only if
∃λ ≥ 0 : B � λA.

♠ Note: The “if” part of the claim is evident and remains true when we
replace (A) with a finite system of quadratic inequalities: Let a system of
homogeneous quadratic inequalities

xTAix ≥ 0, 1 ≤ i ≤ m,
and a “target” inequality xTBx ≥ 0 be given. If the target inequality can
be obtained by taking weighted sum, with nonnegative coefficients, of the
inequalities of the system and an identically true homogeneous quadratic
inequality, or, equivalently, If there exist λi ≥ 0 such that

B �
∑
i λiAi,

then the target inequality is a consequence of the system.
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∃λi ≥ 0 : B �
∑m
i=1 λiAi (!)

⇒ xTBx ≥ 0 is a consequence of xTAix ≥ 0,1 ≤ i ≤ m

• If instead of homogeneous quadratic inequalities we were speaking about

homogeneous linear ones, similar sufficient condition for the target inequality

to be a consequence of the system would be also necessary (Homogeneous

Farkas Lemma).

• The power of S-Lemma is in the claim that when m = 1, the sufficient

condition (!) for the target inequality xTBx ≥ 0 to be a consequence of

the system xTAix ≥ 0, 1 ≤ i ≤ m, is also necessary, provided the “system”

xTA1x ≥ 0 is strictly feasible.

The “necessity” part of S-Lemma fails to be true when m > 1.
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From S-Lemma to Fact

A+ LT∆R+RT∆TL � 0 ∀(∆ : ‖∆‖2,2 ≤ ρ)
m

A+ [ρL]T∆R+RT∆T [ρL] � 0 ∀(∆ : ‖∆‖2,2 ≤ 1)
m

ξTAξ + 2[∆Rξ︸ ︷︷ ︸
η

]T [ρLξ] ≥ 0 ∀(∆, ξ : ‖∆‖2,2 ≤ 1)

m
ξTAξ + 2ηT [ρLξ] ≥ 0 ∀(ξ, η : ‖η‖2 ≤ ‖Rξ‖2)

m
ξTRTRξ − ηTη ≥ 0 ⇒ ξTAξ + 2ηTρLξ) ≥ 0

m
∃λ ≥ 0 : ξTAξ + 2ηTρLξ − λ[ξTRTRξ − ηTη] ≥ 0 ∀(ξ, η)

m

∃λ ≥ 0 :

[
A− λRTR ρLT

ρL λI

]
� 0.
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Proof of the “only if” part of S-Lemma

• Situation: We are given two symmetric matrices A, B such that

(I): ∃x̄ : x̄TAx̄ > 0

and

(II): xTAx ≥ 0 implies xTBx ≥ 0

or, equivalently,

(I-II):
Opt := minx{xTBx : xTAx ≥ 0} ≥ 0
and the constraint xTAx ≥ 0 is strictly feasible

• Goal: To prove that

(III): ∃λ ≥ 0 : B � λA
or, equivalently, that

(III′): SDO := minX {Tr(BX) : Tr(AX) ≥ 0, X � 0} ≥ 0.

Equivalence of (III) and (III′): By (I), semidefinite program in (III′) is

strictly feasible. Since the program is homogeneous, its optimal value is

either 0, or −∞. By Conic Duality, the optimal value is finite (i.e., 0) if and

only if the dual problem

maxλ,Y {0 : B = λA+ Y, λ ≥ 0, Y � 0}
is solvable, which is exactly (III).
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• Given that xTAx ≥ 0 implies xTBx ≥ 0 we should prove that

Tr(BX) ≥ 0 whenever Tr(AX) ≥ 0 and X � 0

• Let X � 0 be such that Tr(AX) ≥ 0, and let us prove that Tr(BX) ≥ 0.

There exists orthogonal U such that UTX1/2AX1/2U is diagonal

⇒ For every vector ξ with ±1 entries:
[X1/2Uξ]TA[X1/2Uξ] = ξT [UTX1/2AX1/2U ]︸ ︷︷ ︸

diagonal

ξ

= Tr(UTX1/2AX1/2U)
= Tr(AX) ≥ 0

⇒ For every vector ξ with ±1 entries:

0 ≤ [X1/2Uξ]TB[X1/2Uξ] = ξT [UTX1/2BX1/2U ]ξ

⇒ [Taking average over ±1 vectors ξ]

0 ≤ Tr(UTX1/2BX1/2U) = Tr(BX)

Thus, Tr(BX) ≥ 0, as claimed.

7.63



Lecture III.3

Interior Point Algorithms

for

Linear and Semidefinite Optimization



Interior Point Methods for LO and SDO

♣ Interior Point Methods (IPM’s) are state-of-the-art theoretically and

practically efficient polynomial time algorithms for solving well-structured

convex optimization programs, primarily Linear, Conic Quadratic and

Semidefinite ones.

Modern IPMs were first developed for LO, and the words “Interior Point”

are aimed at stressing the fact that instead of traveling along the vertices

of the feasible set, as in the Simplex algorithm, the new methods work in

the interior of the feasible domain.

♠ Basic theory of IPMs remains the same when passing from LO to SDO

⇒ It makes sense to study this theory in the more general SDO case.
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Primal-Dual Pair of SDO Programs

♣ Consider an SDO program in the form

Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

where Aj, B are m×m block diagonal symmetric matrices of a given block-

diagonal structure ν (i.e., with a given number and given sizes of diagonal

blocks). (P ) can be thought of as a conic problem on the self-dual and

regular positive semidefinite cone Sν+ in the space Sν of symmetric block

diagonal m×m matrices with block-diagonal structure ν.

Note: In the diagonal case (with the block-diagonal structure in question,

all diagonal blocks are of size 1), (P ) becomes a LO program with m linear

inequality constraints and n variables.
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

♠ Standing Assumption A: The mapping x 7→ Ax has trivial kernel, or,

equivalently, the matrices A1, ..., An are linearly independent.

♠ The problem dual to (P ) is

Opt(D) = max
S∈Sν
{Tr(BS) : S � 0,Tr(AjS) = cj ∀j} (D)

♠ Standing Assumption B: Both (P ) and (D) are strictly feasible (⇒ both

problems are solvable with equal optimal values).

♠ Let C ∈ Sν satisfy the equality constraint in (D). Passing in (P ) from x

to the primal slack X = Ax−B, (P ) becomes the problem
Opt(P) = min

X∈Sν

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

LP = {X = Ax} = Lin{A1, ..., An}
while (D) is the problem

Opt(D) = max
S∈Sν

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

LD = L⊥P = {S : Tr(AjS) = 0, 1 ≤ j ≤ n}
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

⇐ Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Since (P ) and (D) are strictly feasible, both problems are solvable with equal

optimal values, and a pair of feasible solutions X to (P) and S to (D) is

comprised of optimal solutions to the respective problems iff Tr(XS) = 0.

Fact: For positive semidefinite X,S, Tr(XS) = 0 if and only if XS = SX =

0.
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Proof: • Standard Fact of Linear Algebra: For every matrix A � 0 there

exists exactly one matrix B � 0 such that A = B2; B is denoted A1/2.

• Standard Fact of Linear Algebra: Whenever A,B are matrices such that

the product AB makes sense and is a square matrix, Tr(AB) = Tr(BA).

• Standard Fact of Linear Algebra: Whenever A � 0 and QAQT makes

sense, we have QAQT � 0.

• Standard Facts of LA ⇒ Claim:

0 = Tr(XS) = Tr(X1/2X1/2S) = Tr(X1/2SX1/2) ⇒ All diagonal entries in the positive

semidefinite matrix X1/2SX1/2 are zeros ⇒ X1/2SX1/2 = 0

⇒ (S1/2X1/2)T(S1/2X1/2) = 0 ⇒ S1/2X1/2 = 0

⇒ SX = S1/2[S1/2X1/2]X1/2 = 0 ⇒ XS = (SX)T = 0. �
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Theorem: Assuming (P ), (D) strictly feasible, feasible solutions X for (P)

and S for (D) are optimal for the respective problems if and only if

XS = SX = 0

(“SDO Complementary Slackness”).
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Logarithmic Barrier for the Semidefinite Cone Sν+

Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

♣ A crucial role in building IPMs for (P ), (D) is played by the logarithmic

barrier for the positive semidefinite cone:

K(X) = − ln Det(X) : intSµ+ → R
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Back to Basic Analysis: Gradient and Hessian

♣ Consider a smooth (3 times continuously differentiable) function f(x) :

D → R defined on an open subset D of Euclidean space E.

♠ The first order directional derivative of f taken at a point x ∈ D along a

direction h ∈ E is the quantity

Df(x)[h] := d
dt

∣∣∣
t=0

f(x+ th)

Fact: For a smooth f , Df(x)[h] is linear in h and thus

Df(x)[h] = 〈∇f(x), h〉 ∀h
for a uniquely defined vector ∇f(x) called the gradient of f at x.

If E is Rn with the standard Euclidean structure, then

[∇f(x)]i = ∂
∂xi
f(x), 1 ≤ i ≤ n
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♠ The second order directional derivative of f taken at a point x ∈ D along

a pair of directions g, h is defined as

D2f(x)[g, h] = d
dt

∣∣∣
t=0

[Df(x+ tg)[h]]

Fact: For a smooth f , D2f(x)[g, h] is bilinear and symmetric in g, h, and

therefore

D2f(x)[g, h] = 〈g,∇2f(x)h〉 = 〈∇2f(x)g, h〉∀g, h ∈ E
for a uniquely defined linear mapping h 7→ ∇2f(x)h : E → E, called the Hes-

sian of f at x.

If E is Rn with the standard Euclidean structure, then

[∇2f(x)]ij = ∂2

∂xi∂xj
f(x)

Fact: Hessian is the derivative of the gradient:
∇f(x+ h) = ∇f(x) + [∇2f(x)]h+Rx(h),
‖Rx(h)‖ ≤ Cx‖h‖2 ∀(h : ‖h‖ ≤ ρx), ρx > 0

Fact: Gradient and Hessian define the second order Taylor expansion

f̂(y) = f(x) + 〈y − x,∇f(x)〉+ 1
2
〈y − x,∇2f(x)[y − x]〉

of f at x which is a quadratic function of y with the same gradient and Hes-

sian at x as those of f . This expansion approximates f around x, specifically,
|f(y)− f̂(y)| ≤ Cx‖y − x‖3
∀(y : ‖y − x‖ ≤ ρx), ρx > 0
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Back to SDO
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

K(X) = − ln DetX : Sν++ := {X ∈ Sν : X � 0} → R

Facts: K(X) is a smooth function on its domain Sν++ = {X ∈ Sν : X � 0}.
The first- and the second order directional derivatives of this function taken

at a point X ∈ domK along a direction H ∈ Sν are given by
d
dt

∣∣
t=0

K(X + tH) = −Tr(X−1H)
[
⇔ ∇K(X) = −X−1

]
d2

dt2

∣∣
t=0

K(X + tH) = Tr(H[X−1HX−1]) = Tr([X−1/2HX−1/2]2)

In particular, K is strongly convex:

X ∈ DomK,0 6= H ∈ Sν ⇒ d2

dt2

∣∣
t=0

K(X + tH) > 0
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Proof:

d
dt

∣∣
t=0

[− ln Det(X + tH)] = d
dt

∣∣
t=0

[− ln Det(X[I + tX−1H)]
= d

dt

∣∣
t=0

[− ln Det(X)− ln Det(I + tX−1H)]
= d

dt

∣∣
t=0

[− ln Det(I + tX−1H)]
= − d

dt

∣∣
t=0

[Det(I + tX−1H)] [chain rule]
= −Tr(X−1H)

d
dt

∣∣
t=0

[
−Tr([X + tG]−1H)

]
= d

dt

∣∣
t=0

[
−Tr([X[I + tX−1G]]−1H)

]
d
dt

∣∣
t=0

[
−Tr([I + tX−1G]−1X−1H)

]
= −Tr

([
d
dt

∣∣
t=0

[I + tX−1G]−1
]
X−1H

)
= Tr(X−1GX−1H)

In particular, when X � 0 and H ∈ Sν, H 6= 0, we have

d2

dt2

∣∣
t=0

K(X + tH) = Tr(X−1HX−1H)
= Tr(X−1/2[X−1/2HX−1/2]X−1/2H)
= Tr([X−1/2HX−1/2]X−1/2HX−1/2)
= 〈X−1/2HX−1/2, X−1/2HX−1/2〉 > 0.
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Additional properties of K(·):

• ∇K(tX) =−[tX]−1 = −t−1X−1 =t−1∇K(X)

• The mapping X 7→ −∇K(X) = X−1 maps the domain Sν++ of K onto

itself and is self-inverse:

S = −∇K(X)⇔ X = −∇K(S)⇔ XS = SX = I

• The function K(X) is an interior penalty for the positive semidefinite cone

Sν+: whenever points Xi ∈ DomK = Sν++ converge to a boundary point of

Sν+, one has K(Xi)→∞ as i→∞.
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Primal-Dual Central Path
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

K(X) = − ln Det(X)

Let
X = {X ∈ LP −B : X � 0}
S = {S ∈ LD + C : S � 0}.

be the (nonempty!) sets of strictly feasible solutions to (P) and (D), re-

spectively. Given path parameter µ > 0, consider the functions
Pµ(X) = Tr(CX) + µK(X) : X → R
Dµ(S) = −Tr(BS) + µK(S) : S → R .

Fact: For every µ > 0, the function Pµ(X) achieves its minimum at X at a

unique point X∗(µ), and the function Dµ(S) achieves its minimum on S at

a unique point S∗(µ). These points are related to each other:

X∗(µ) = µS−1
∗ (µ)⇔ S∗(µ) = µX−1

∗ (µ)
⇔ X∗(µ)S∗(µ) = S∗(µ)X∗(µ) = µI

We associate with (P), (D) the primal-dual central path – the curve

{X∗(µ), S∗(µ)}µ>0; for every µ > 0, X∗(µ) is a strictly feasible solution to

(P), and S∗(µ) is a strictly feasible solution to (D).

8.13



Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Proof of the fact: A. Let us prove that the primal-dual central path is

well defined. Let S̄ be a strictly feasible solution to (D). For every pair of

feasible solutions X,X ′ to (P) we have

〈X −X ′, S̄〉 = 〈X −X ′, C〉+ 〈X −X ′︸ ︷︷ ︸
∈LP

, S − C︸ ︷︷ ︸
∈LD=L⊥P

〉 = 〈X −X ′, C〉

⇒ On the feasible plane of (P), the linear functions Tr(CX) and Tr(S̄X) of

X differ by a constant

⇒ To prove the existence of X∗(µ) is the same as to prove that the feasible

problem

Opt = min
X∈X

[
Tr(S̄X) + µK(X)

]
(R)

is solvable.
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Opt = min
X∈X

[
Tr(S̄X) + µK(X)

]
(R)

Let Xi ∈ X be such that[
Tr(S̄Xi) + µK(Xi)

]
→ Opt as i→∞.

We claim that a properly selected subsequence {Xij}
∞
j=1 of the sequence

{Xi} has a limit X̄ � 0.

Claim ⇒ Solvability of (R): Since Xij → X̄ � 0 as j →∞, we have X̄ ∈ X
and

Opt = limj→∞
[
Tr(S̄Xij) + µK(Xij)

]
=
[
Tr(S̄X̄) + µK(X̄)

]
⇒ X̄ is an optimal solution to (R).

8.15



Proof of Claim “Let Xi � 0 be such that

limi→∞
[
Tr(S̄Xi) + µK(Xi)

]
< +∞.

Then a properly selected subsequence of {Xi}∞i=1 has a limit which is � 0”:

First step: Let us prove that Xi form a bounded sequence.

Lemma: Let S̄ � 0. Then there exists c = c(S̄) > 0 such that Tr(XS̄) ≥
c‖X‖ for all X � 0.

Indeed, there exists ρ > 0 such that S̄ − ρU � 0 for all U ∈ Sν, ‖U‖ ≤ 1.

Therefore for every X � 0 we have
∀(U, ‖U‖ ≤ 1) : Tr([S̄ − ρU ]X) ≥ 0
⇒ Tr(S̄X) ≥ ρ max

U :‖U‖≤1
Tr(UX) = ρ‖X‖.

Now let Xi satisfy the premise of our claim. Then

Tr(S̄Xi) + µK(Xi) ≥ c(S̄)‖Xi‖ − µ ln(‖Xi‖m).

Since the left hand side sequence is above bounded and cr − µ ln(rm) → ∞
as r → +∞, the sequence ‖Xi‖ indeed is bounded.
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“Let Xi � 0 be such that limi→∞
[
Tr(S̄Xi) + µK(Xi)

]
< +∞. Then a properly selected

subsequence of {Xi}∞i=1 has a limit which is � 0”

Second step: Let us complete the proof of the claim. We have seen that

the sequence {Xi}∞i=1 is bounded, and thus we can select from it a converging

subsequence Xij. Let X̄ = limj→∞Xij. If X̄ were a boundary point of Sν+, we

would have Tr(S̄Xij) + µK(Xij)→ +∞, j →∞
which is not the case. Thus, X̄ is an interior point of Sν+, that is, X̄ � 0.

The existence of S∗(µ) is proved similarly, with (D) in the role of (P).

The uniqueness of X∗(µ) and S∗(µ) follows from the fact that these points

are minimizers of strongly convex functions.
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B. Let us prove that S∗(µ) = µX−1
∗ (µ). Indeed, since X∗(µ) � 0 is the

minimizer of Pµ(X) = Tr(CX) + µK(X) on X = {X ∈ [LP − B] ∩ Sν++}, the

first order directional derivatives of Pµ(X) taken at X∗(µ) along directions

from LP should be zero, that is, ∇Pµ(X∗(µ)) should belong to LD = L⊥P .

Thus,

C − µX−1
∗ (µ) ∈ LD ⇒ S := µX−1

∗ (µ) ∈ C + LD & S � 0

⇒ S ∈ S. Besides this,
∇K(S) = −S−1 = −µ−1X∗(µ)⇒ µ∇K(S) = −X∗(µ)
⇒ µ∇K(S) ∈ −[LP −B]⇒ µ∇K(S)−B ∈ LP = L⊥D

⇒ ∇Dµ(S) is orthogonal to LD
⇒ S is the minimizer of Dµ(·) on S = [LD + C] ∩ Sν++.

⇒ µX−1
∗ (µ) =: S = S∗(µ). �
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Duality Gap on the Central Path
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

⇒
{
X∗(µ) ∈ [LP −B] ∩ Sν++
S∗(µ) ∈ [LD + C] ∩ Sν++

}
: X∗(µ)S∗(µ) = µI

Observation: On the primal-dual central path, the duality gap is

Tr(X∗(µ)S∗(µ)) = Tr(µI) = µm.

Therefore sum of non-optimalities of the strictly feasible solution X∗(µ) to

(P) and the strictly feasible solution S∗(µ) to (D) in terms of the respective

objectives is equal to µm and goes to 0 as µ→ +0.

⇒ Our ideal goal would be to move along the primal-dual central path, push-

ing the path parameter µ to 0 and thus approaching primal-dual optimality,

while maintaining primal-dual feasibility.
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♠ Our ideal goal is not achievable – how could we move along a curve? A
realistic goal could be to move in a neighborhood of the primal-dual central
path, staying close to it. A good notion of “closeness to the path” is
given by the proximity measure of a triple µ > 0, X ∈ X , S ∈ S to the point
(X∗(µ), S∗(µ)) on the path:

dist(X,S, µ) =
√

Tr(X[X−1 − µ−1S]X[X−1 − µ−1S])

=
√

Tr(X1/2[X1/2[X−1 − µ−1S]X1/2]
[
X1/2[X−1 − µ−1S]

]
)

=
√

Tr([X1/2[X−1 − µ−1S]X1/2]
[
X1/2[X−1 − µ−1S]X1/2

]
)

=
√

Tr([X1/2[X−1 − µ−1S]X1/2]2)

=
√

Tr([I − µ−1X1/2SX1/2]2).

Note: We see that dist(X,S, µ) is well defined and dist(X,S, µ) = 0 iff
X1/2SX1/2 = µI, or, which is the same,

SX = X−1/2[X1/2SX1/2]X1/2 = µX−1/2X1/2 = µI,

i.e., iff X = X∗(µ) and S = S∗(µ).
Note: We have

dist(X,S, µ) =
√

Tr(X[X−1 − µ−1S]X[X−1 − µ−1S])

=
√

Tr([I − µ−1XS][I − µ−1XS])

=
√

Tr(
[
[I − µ−1XS][I − µ−1XS]

]T
)

=
√

Tr([I − µ−1SX][I − µ−1SX])

=
√

Tr(S[S−1 − µ−1X]S[S−1 − µ−1X]),
⇒ The proximity is defined in a symmetric w.r.t. X, S fashion.
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Fact: Whenever X ∈ X , S ∈ S and µ > 0, one has

Tr(XS) ≤ µ[m+
√
mdist(X,S, µ)]

Indeed, we have seen that

d := dist(X,S, µ) =
√

Tr([I − µ−1X1/2SX1/2]2).

Denoting by λi the eigenvalues of X1/2SX1/2, we have
d2 = Tr([I − µ−1X1/2SX1/2]2) =

∑
i[1− µ−1λi]

2

⇒
∑
i |1− µ−1λi| ≤

√
m
√∑

i[1− µ−1λi]
2

=
√
md

⇒
∑
i λi ≤ µ[m+

√
md]

⇒ Tr(XS) = Tr(X1/2SX1/2) =
∑
i λi≤ µ[m+

√
md]

Corollary. Let us say that a triple (X,S, µ) is close to the path, if X ∈ X ,

S ∈ S, µ > 0 and dist(X,S, µ) ≤ 0.1. Whenever (X,S, µ) is close to the path,

one has

Tr(XS) ≤ 2µm,

that is, if (X,S, µ) is close to the path, then X is at most 2µm-nonoptimal

strictly feasible solution to (P), and S is at most 2µm-nonoptimal strictly

feasible solution to (D).
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How to Trace the Central Path?

♣ The goal: To follow the central path, staying close to it and pushing µ

to 0 as fast as possible.

♣ Question. Assume we are given a triple (X̄, S̄, µ̄) close to the path. How

to update it into a triple (X+, S+, µ+), also close to the path, with µ+ < µ?

♠ Conceptual answer: Let us choose µ+, 0 < µ+ < µ̄, and try to up-

date X̄, S̄ into X+ = X̄ + ∆X, S+ = S̄ + ∆S in order to make the triple

(X+, S+, µ+) close to the path. Our goal is to ensure that
X+ = X̄ + ∆X ∈ LP −B & X+ � 0 (a)
S+ = S̄ + ∆S ∈ LD + C & S+ � 0 (b)

Gµ+(X+, S+) ≈ 0 (c)
where Gµ(X,S) = 0 expresses equivalently the augmented slackness condi-

tion XS = µI. For example, we can take
Gµ(X,S) = S − µX−1, or

Gµ(X,S) = X − µS−1, or

Gµ(X,S) = XS + SX − 2µI, or...
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X+ = X̄ + ∆X ∈ LP −B & X+ � 0 (a)
S+ = S̄ + ∆S ∈ LD + C & S+ � 0 (b)

Gµ+(X+, S+) ≈ 0 (c)

♠ Since X̄ ∈ LP −B and X̄ � 0, (a) amounts to ∆X ∈ LP , which is a system

of linear equations on ∆X, and to X̄ + ∆X � 0. Similarly, (b) amounts to

the system ∆S ∈ LD of linear equations on ∆S, and to S̄ + ∆S � 0. To

handle the troublemaking nonlinear in ∆X,∆S condition (c), we linearize

Gµ+ in ∆X and ∆S:
Gµ+(X+, S+) ≈ Gµ+(X̄, S̄)

+
∂Gµ+

(X,S)

∂X

∣∣∣∣
(X,S)=(X̄,S̄)

∆X +
∂Gµ+

(X,S)

∂S

∣∣∣∣
(X,S)=(X̄,S̄)

∆S

and enforce the lumbarization, as evaluated at ∆X, ∆S, to be zero. We

arrive at the Newton system{
∆X ∈ LP , ∆S ∈ LD
∂Gµ+

∂X
∆X +

∂Gµ+

∂S
∆S = −Gµ+

(N)

(the value and the partial derivatives of Gµ+(X,S) are taken at the point

(X̄, S̄)).
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♠ We arrive at conceptual primal-dual path-following method where one it-

erates the updatings

(Xi, Si, µi) 7→ (Xi+1 = Xi + ∆Xi, Si+1 = Si + ∆Si, µi+1)

where µi+1 ∈ (0, µi) and ∆Xi,∆Si are the solution to the Newton system{
∆Xi ∈ LP , ∆Si ∈ LD
∂G(i)

µi+1

∂X
∆Xi +

∂G(i)
µi+1

∂S
∆Si = −G(i)

µi+1

(Ni)

and G
(i)
µ (X,S) = 0 represents equivalently the augmented complementary

slackness condition XS = µI and the value and the partial derivatives of

G
(i)
µi+1 are evaluated at (Xi, Si).

♠ Initialized by a close to the path triple (X0, S0, µ0), this conceptual algo-

rithm should

• be well-defined: (Ni) should remain solvable, Xi should remain strictly

feasible for (P), Si should remain strictly feasible for (D), and

• maintain closeness to the path: for every i, (Xi, Si, µi) should remain

close to the path.

Under these limitations, we want to push µi to 0 as fast as possible.
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Example: Primal Path-Following Method
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

♣ Let us choose

Gµ(X,S) = S + µ∇K(X) = S − µX−1

Then the Newton system becomes
∆Xi ∈ LP ⇔ ∆Xi = A∆xi
∆Si ∈ LD ⇔ A∗∆Si = 0

A∗U = [Tr(A1U); ...; Tr(AnU)]
(!) ∆Si + µi+1∇2K(Xi)∆Xi = −[Si + µi+1∇K(Xi)]

(Ni)

♠ Substituting ∆Xi = A∆xi and applying A∗ to both sides in (!), we get
(∗) µi+1 [A∗∇2K(Xi)A]︸ ︷︷ ︸

H

∆xi = −
[
A∗Si︸ ︷︷ ︸

=c

+A∗∇K(Xi)
]

∆Xi = A∆xi
Si+1 = µi+1

[
∇K(Xi)−∇2K(Xi)A∆xi

]
The mappings h 7→ Ah, H 7→ ∇2K(Xi)H have trivial kernels ⇒ H is nonsingular ⇒ (Ni) has

a unique solution given by
∆xi = −H−1

[
µ−1
i+1c+A∗∇K(Xi)

]
∆Xi = A∆xi
Si+1 = Si + ∆Si = µi+1

[
∇K(Xi)−∇2K(Xi)A∆xi

]
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

⇒

 ∆xi = −H−1
[
µ−1
i+1c+A∗∇K(Xi)

]
∆Xi = A∆xi
Si+1 = Si + ∆Si = µi+1

[
∇K(Xi)−∇2K(Xi)A∆xi

]
♠ Xi = Axi−B for a (uniquely defined by Xi) strictly feasible solution xi to

(P ). Setting

F (x) = K(Ax−B),

we have A∗∇K(Xi) = ∇F (xi), H = ∇2F (xi)

⇒ The above recurrence can be written solely in terms of xi and F :

(#)

{
µi 7→ µi+1 < µi
xi+1 = xi − [∇2F (xi)]−1

[
µ−1
i+1c+∇F (xi)

]
Xi+1 = Axi+1 −B
Si+1 = µi+1

[
∇K(Xi)−∇2K(Xi)A[xi+1 − xi]

]
Recurrence (#) is called the primal path-following method.
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

♠ The primal path-following method can be explained as follows:
• The barrier K(X) = − ln DetX induces the barrier F (x) = K(Ax − B) for
the interior P o of the feasible domain of (P ).
• The primal central path

X∗(µ) = argminX=Ax−B�0 [Tr(CX) + µK(X)]

induces the path
x∗(µ) ∈ P o: X∗(µ) = Ax∗(µ) + µF (x).

Observing that
Tr(C[Ax−B]) + µK(Ax−B) = cTx+ µF (x) + const,

we have
x∗(µ) = argminx∈P o Fµ(x), Fµ(x) = cTx+ µF (x).

• The method works as follows: given xi ∈ P o, µi > 0, we
— replace µi with µi+1 < µi
— convert xi into xi+1 by applying to the function Fµi+1(·) a single step of
the Newton minimization method

xi 7→ xi+1 − [∇2Fµi+1(xi)]−1∇Fµi+1(xi)
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Theorem. Let (X0 = Ax0 − B,S0, µ0) be close to the primal-dual central

path, and let (P ) be solved by the Primal path-following method where the

path parameter µ is updated according to

µi+1 =
(

1− 0.1√
m

)
µi. (∗)

Then the method is well defined and all triples (Xi = Axi−B,Si, µi) are close

to the path.

♠ With the rule (∗) it takes O(
√
m) steps to reduce the path parameter µ

by an absolute constant factor. Since the method stays close to the path,

the duality gap Tr(XiSi) of i-th iterate does not exceed 2mµi.

⇒ The number of steps to make the duality gap ≤ ε does not exceed

O(1)
√
m ln

(
1 + 2mµ0

ε

)
.
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2D feasible set of a toy SDO (K = S3
+).

“Continuous curve” is the primal central path
Dots are iterates xi of the Primal Path-Following method.

Itr# Objective Gap Itr# Objective Gap
1 -0.100000 2.96 7 -1.359870 8.4e-4
2 -0.906963 0.51 8 -1.360259 2.1e-4
3 -1.212689 0.19 9 -1.360374 5.3e-5
4 -1.301082 6.9e-2 10 -1.360397 1.4e-5
5 -1.349584 2.1e-2 11 -1.360404 3.8e-6
6 -1.356463 4.7e-3 12 -1.360406 9.5e-7

Duality gap along the iterations
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♣ The Primal path-following method is yielded by Conceptual Path-

Following Scheme when the Augmented Complementary Slackness condi-

tion is represented as

Gµ(X,S) := S + µ∇K(X) = 0.

Passing to the representation

Gµ(X,S) := X + µ∇K(S) = 0,

we arrive at the Dual path-following method with the same theoretical prop-

erties as those of the primal method. the Primal and the Dual path-following

methods imply the best known so far complexity bounds for LO and SDO.

♠ In spite of being “theoretically perfect”, Primal and Dual path-following

methods in practice are inferior as compared with the methods based on less

straightforward and more symmetric forms of the Augmented Complemen-

tary Slackness condition.
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♠ The Augmented Complementary Slackness condition is

XS = SX = µI (∗)
Fact: For X,S ∈ Sν++, (∗) is equivalent to

XS + SX = 2µI

Indeed, if XS = SX = µI, then clearly XS + SX = 2µI. On the other hand,
X,S � 0, XS + SX = 2µI
⇒ S +X−1SX = 2µX−1

⇒ X−1SX = 2µX−1 − S
⇒ X−1SX = [X−1SX]T = XSX−1

⇒ X2S = SX2

We see that X2S = SX2. Since X � 0, X is a polynomial of X2, whence X

and S commute, whence XS = SX = µI. �

Fact: Let Q ∈ Sν be nonsingular, and let X,S � 0. Then XS = µI if and

only if

QXSQ−1 +Q−1SXQ = 2µI

Indeed, it suffices to apply the previous fact to the matrices X̂ = QXQ � 0,

S̃ = Q−1SQ−1 � 0. �
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♠ In practical path-following methods, at step i the Augmented Comple-

mentary Slackness condition is written down as

Gµi+1(X,S) := QiXSQ
−1
i +Q−1

i SXQi − 2µi+1I = 0

with properly chosen varying from step to step nonsingular matrices Qi ∈ Sν.

Explanation: Let Q ∈ Sν be nonsingular. The Q-scaling X 7→ QXQ is a

one-to-one linear mapping of Sν onto itself, the inverse being the mapping

X 7→ Q−1XQ−1. Q-scaling is a symmetry of the positive semidefinite cone –

it maps the cone onto itself.

⇒ Given a primal-dual pair of semidefinite programs
Opt(P) = min

X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)

and a nonsingular matrix Q ∈ Sν, one can pass in (P) from variable X

to variables X̂ = QXQ, while passing in (D) from variable S to variable

S̃ = Q−1SQ−1. The resulting problems are
Opt(P) = min

X̂

{
Tr(C̃X̂) : X̂ ∈ [L̂P − B̂] ∩ Sν+

}
(P̂)

Opt(D) = max
S̃

{
Tr(B̂S̃) : S̃ ∈ [L̃D + C̃] ∩ Sν+

}
(D̃)[

B̂ = QBQ, L̂P = {QXQ : X ∈ LP},
C̃ = Q−1CQ−1, L̃D = {Q−1SQ−1 : S ∈ LD}

]
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Opt(P) = min
X̂

{
Tr(C̃X̂) : X̂ ∈ [L̂P − B̂] ∩ Sν+

}
(P̂)

Opt(D) = max
S̃

{
Tr(B̂S̃) : S̃ ∈ [L̃D + C̃] ∩ Sν+

}
(D̃)[

B̂ = QBQ, L̂P = {QXQ : X ∈ LP},
C̃ = Q−1CQ−1, L̃D = {Q−1SQ−1 : S ∈ LD}

]

P̂ and D̃ are dual to each other, the primal-dual central path of this pair
is the image of the primal-dual path of (P), (D) under the primal-dual Q-
scaling

(X,S) 7→ (X̂ = QXQ, S̃ = Q−1SQ−1)

Q preserves closeness to the path, etc.
Writing down the Augmented Complementary Slackness condition as

QXSQ−1 +Q−1SXQ = 2µI (!)
we in fact
• pass from (P), (D) to the equivalent primal-dual pair of problems (P̂), (D̃)
• write down the Augmented Complementary Slackness condition for the
latter pair in the simplest primal-dual symmetric form

X̂S̃ + S̃X̂ = 2µI,
• “scale back” to the original primal-dual variables X,S, thus arriving at (!).
Note: In the LO case Sν is comprised of diagonal matrices, so that (!) is
exactly the same as the “unscaled” condition XS = µI.
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Gµi+1(X,S) := QiXSQ
−1
i +Q−1

i SXQi − 2µi+1I = 0 (!)

With (!), the Newton system becomes
∆X ∈ LP , ∆S ∈ LD
Qi∆XSiQ

−1
i +Q−1

i Si∆XQi +QiXi∆SQ−1
i +Q−1

i ∆SXiQi

= 2µi+1I −QiXiSiQ
−1
i −Q

−1
i SiXiQi

♣ Theoretical analysis of path-following methods simplifies a lot when the

scaling (!) is commutative, meaning that the matrices X̂i = QiXiQi and

Ŝi = Q−1
i SiQ

−1
i commute.

Popular choices of commuting scalings are:

• Qi = S
1/2
i (“XS-method,” S̃ = I)

• Qi = X
−1/2
i (“SX-method, X̂ = I)

• Qi =
(
X−1/2(X1/2SX1/2)−1/2X1/2S

)1/2

(famous Nesterov-Todd method, X̂ = S̃).
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1 xjAj � B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν+

}
(D)[

LP = ImA, LD = L⊥P
]

Theorem: Let a strictly-feasible primal-dual pair (P ), (D) of semidefinite

programs be solved by a primal-dual path-following method based on com-

mutative scalings. Assume that the method is initialized by a close to the

path triple (X0, S0, µ0 = Tr(X0S0)/m) and let the policy for updating µ be

µi+1 =
(

1− 0.1√
m

)
µi.

The the trajectory is well defined and stays close to the path.

As a result, every O(
√
m) steps of the method reduce duality gap by an

absolute constant factor, and it takes O(1)
√
m ln

(
1 + mµ0

ε

)
steps to make

the duality gap ≤ ε.
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♠ To improve the practical performance of primal-dual path-following meth-

ods, in actual computations

• the path parameter is updated in a more aggressive fashion than µ 7→(
1− 0.1√

m

)
µ;

• the method is allowed to travel in a wider neighborhood of the primal-dual

central path than the neighborhood given by our “close to the path” restric-

tion dist(X,S, µ) ≤ 0.1;

• instead of updating Xi+1 = Xi+ ∆Xi, Si+1 = Si+ ∆Si, one uses the more

flexible updating

Xi+1 = Xi + αi∆Xi, Si+1 = Si + αi∆Si
with αi given by appropriate line search.

♣ The constructions and the complexity results we have presented are in-

complete — they do not take into account the necessity to come close to

the central path before starting path-tracing and do not take care of the

case when the pair (P), (D) is not strictly feasible. All these “gaps” can be

easily closed via the same path-following technique as applied to appropriate

augmented versions of the problem of interest.
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SUMMARY
I. WHAT IS LO

♣ An LO program is an optimization problem of the form

Optimize a linear objective cTx over x ∈ Rn satisfying a system (S) of finitely many
linear equality and (nonstrict) inequality constraints.

♠ There are several “universal” forms of an LO program, universality meaning that every
LO program can be straightforwardly converted to an equivalent problem in the desired
form.
Examples of universal forms are:
• Canonical form:

Opt = max
x

{
cTx : Ax− b ≥ 0

}
[A : m× n]

• Standard form:

Opt = max
x

{
cTx : Ax = b, x ≥ 0

}
[A : m× n]



EXTENSION: CONIC PROBLEMS

♣ An LO program is

Opt = max
x

{
cTx : Ax− b ∈ Rm+

}
Rm+ = {x ∈ Rm : xi ≥ 0, 1 ≤ i ≤ m}

Note: The nonnegative orthant Rm+ is a regular cone – closed convex pointed cone with a
nonempty interior.
♠ Replacing in the definition of an LO the nonnegative orthant with another regular cone
K, we arrive at a conic problem on a cone K:

Opt = max
x

{
cTx : Ax− b ∈ K

}
In this problem,
• c, A, b form problem’s data
• K “summarizes” problem’s structure.
♠ Essentially, the entire Convex Programming is covered by just 3 generic conic problems:
• LO – cones K are nonnegative orthants – direct products

of nonnegative rays,
• CQO – cones K are direct products of Lorentz cones,
• SDO – cones K are direct products of cones of symmetric

positive semidefinite matrices
• Note:

LO ⊂ CQO ⊂ SDO
and CQO can be approximated in a polynomial time fashion by LO.



II. WHAT CAN BE REDUCED TO LO

♣ Every optimization problem max
y∈Y

f(y) can be straightforwardly converted to an equivalent

problem with linear objective, specifically, to the problem

max
x∈X

cTx (P )[
X = {x = [y; t] : y ∈ Y, t ≤ f(y)}, cTx := t

]
♠ The possibility to convert (P ) into an LO program depends on the geometry of the
feasible set X. When X is polyhedrally representable:

X = {x ∈ Rn : ∃w ∈ Rk : Px+Qw − r ≥ 0}
for properly chosen P,Q, r, (P ) reduces to the LO program

max
x,w

{
cTx : Px+Qw − r ≥ 0

}
.

♣ Similarly, given a family K of regular cones closed w.r.t. taking direct products and
passing from a cone to its dual, we can define the notion of K-representation of a set X:

X = {x ∈ Rn : ∃w ∈ Rk : Px+Qw − r ∈ K}
with K ∈ K. Given such a representation, (P ) reduces to the conic problem

max
x,w

{
cTx : Px+Qw − r ∈ K

}
.

on a cone from family K.



♣ By Fourier-Motzkin elimination scheme, every polyhedrally representable set X is in fact
polyhedral – it can be represented as the solution set of a system of linear inequalities
without slack variables w:

X = {x : ∃w : Px+Qw − r ≥ 0}
⇔ ∃A, b : X = {x : Ax− b ≥ 0}

This does not make the notion of a polyhedral representation “void” — a polyhedral set
with a “short” polyhedral representation involving slack variables can require astronomically
many inequalities in a slack-variable-free representation.
♠ There is no “Fourier-Motzkin elimination” for general K-representability: it may happen
that a set which admits conic quadratic (or semidefinite) representation utilizing slack
variables does not admit such a representation without slack variables.



♠ Every polyhedral (≡ polyhedrally representable) set is convex (but not vice versa), and all
basic convexity-preserving operations with sets (taking finite intersections, affine images,
inverse affine images, arithmetic sums, direct products) as applied to polyhedral operands
yield polyhedral results.
• Moreover, for all basic convexity-preserving operations, a polyhedral representation of the
result is readily given by polyhedral representations of the operands.
♠ All this holds true for K-representations. “The calculus” of representations via a particular
family of regular cones K (closed w.r.t. taking direct products and duality) is completely
independent of K; what does depend on K, are the “raw materials.”



• Example: The problem

minimize
n∑
`=1

x`

(a) x ≥ 0;

(b) aT` x ≤ b`, ` = 1, ..., n;

(c) ‖Px− p‖2 ≤ cTx+ d;

(d) x
`+1

`

` ≤ eT` x+ f`, ` = 1, ..., n;

(e) x
l

l+3

` x
1

l+3

l+1 ≥ gT` x+ h`, ` = 1, ..., n− 1;

(f) Det


x1 x2 x3 · · · xn
x2 x1 x2 · · · xn−1

x3 x2 x1 · · · xn−2
... ... ... . . . ...
xn xn−1 xn−2 · · · x1

 ≥ 1;

(g) 1 ≤
n∑
`=1

x` cos(`ω) ≤ 1 + sin2(5ω)∀ω ∈
[
−π

7
,1.3

]
can be converted, in a systematic way, into an equivalent SDO problem

min
x

{
cTx : Ax− b � 0

}
.

Dropping red constraints (f), (g), the remaining problem can be converted into an equivalent
CQO. Further dropping magenta constraints (c), (d), (e), we arrive at LO problem.



♣ A “counterpart” of the notion of polyhedral (≡ polyhedrally representable) set is the
notion of a polyhedrally representable function. A function f : Rn → R ∪ {+∞} is called
polyhedrally representable, if its epigraph is a polyhedrally representable set:

Epi{f} := {[x; τ ] : τ ≥ f(x)]}
= {[x; τ ] : ∃w : Px+ τp+Qw − r ≥ 0}

♠ A polyhedrally representable function always is convex (but not vice versa);
♠ A function f is polyhedrally representable if and only if its domain is a polyhedral set,
and in the domain f is the maximum of finitely many affine functions:

f(x) =

{
max
1≤`≤L

[aT` x+ b`], x ∈ Domf := {x : Cx ≤ d}

+∞, otherwise

♠ A level set {x : f(x) ≤ a} of a polyhedrally representable function is polyhedral.



♠ All basic convexity-preserving operations with functions (taking finite maxima, linear
combinations with nonnegative coefficients, affine substitution of argument) as applied to
polyhedrally representable operands yield polyhedrally representable results.
• For all basic convexity-preserving operations with functions, a polyhedral representation
of the result is readily given by polyhedral representations of the operands.
♣ Given a family K of regular cones closed w.r.t. taking direct products and passing from a
cone to its dual, we can define the notion of K-representation of a function f : Rn → R∪{+∞}
as K-representation of its epigraph:

Epi{f} := {[x; τ ] : τ ≥ f(x)]}
= {[x; τ ] : ∃w : Px+ τp+Qw − r ∈ K}

with K ∈ K. All what was said on polyhedral representability of functions, except for
piecewise linearity, specific for polyhedral representability, holds true for K-representability.
• For “rich” K, like SDO, the family of K-representable sets/functions is incomparably wider
than the family of polyhedral sets/functions.



III. STRUCTURE OF A POLYHEDRAL SET
III.A: Extreme Points

♣ Extreme points: A point v ∈ X = {x ∈ Rn : Ax ≤ b} is called an extreme point of X, if v
is not a midpoint of a nontrivial segment belonging to X:

v ∈ Ext(X)⇔ v ∈ X & v ± h ∈ X ⇒ h = 0.

♠ Facts: Let X = {x ∈ Rn : aTi x ≤ bi,1 ≤ i ≤ m} be a nonempty polyhedral set.
• X has extreme points if and only if it does not contain lines;
• The set Ext(X) of the extreme points of X is finite;
• X is bounded iff X = Conv(Ext(X));
• A point v ∈ X is an extreme point of X if and only if among the inequalities aTi x ≤ bi
which are active at v: aTi v = bi, there are n = dimx inequalities with linearly independent
vectors of coefficients:

v ∈ Ext(X)
⇔ v ∈ X & Rank {ai : aTi v = bi} = n.



III.B. Recessive Directions

♣ Let X = {x ∈ Rn : Ax ≤ b} be a nonempty polyhedral set. A vector d ∈ Rn is called a
recessive direction of X, if there exists x̄ ∈ X such that the ray R+ · d := {x̄ + td : t ≥ 0} is
contained in X.
♠ Facts: • The set of all recessive directions of X form a cone, called the recessive cone
Rec(X) of X.
• The recessive cone of X is the polyhedral set given by Rec(X) = {d : Ad ≤ 0}
• Adding to an x ∈ X a recessive direction, we get a point in X:

X + Rec(X) = X.
• The recessive cone of X is trivial (i.e., Rec(X) = {0}) if and only if X is bounded.
• X contains a line if and only if Rec(X) is not pointed, that is, Rec(X) contains a line,
or, equivalently, there exists d 6= 0 such that ±d ∈ Rec(X), or, equivalently, the null space
of A is nontrivial: KerA = {d : Ad = 0} 6= {0}.
• A line directed by a vector d belongs to X if and only if it crosses X and d ∈ KerA =
Rec(X) ∩ [−Rec(X)].
• One has

X = X + KerA.

• X can be represented as

X = X̂ + KerA

where X̂ is a nonempty polyhedral set which does not contain lines. One can take
X̂ = X ∩ [KerA]⊥.



III.C. Extreme Rays of a Cone

♣ Let K be a polyhedral cone, that is,

K = {x ∈ Rn : Ax ≤ 0}
= {x ∈ Rn : aTi x ≤ 0, 1 ≤ i ≤ m}

♠ A direction d ∈ K is called an extreme direction of K, if d 6= 0 and in any representation
d = d1 + d2 with d1, d2 ∈ K both d1 and d2 are nonnegative multiples of d.
• Given d ∈ K, the ray R = R+ · d ⊂ K is called the ray generated by d, and d is called a
generator of the ray. When d 6= 0, all generators of the ray R = R+ · d are positive multiples
of d, and vice versa – every positive multiple of d is a generator of R.
• Rays generated by extreme directions of K are called extreme rays of K.



♠ Facts:
• A direction d 6= 0 is an extreme direction of a pointed polyhedral cone K = {x ∈ Rn :
aTi x ≤ 0,1 ≤ i ≤ m} if and only if d ∈ K and among the inequalities aTi x ≤ 0 defining K there
are n−1 which are active at d aTi d = 0 and have linearly independent vectors of coefficients:

d is an extreme direction of K
⇔ d ∈ K\{0} & Rank {ai : aTi d = 0} = n− 1

• K has extreme rays if and only if K is nontrivial (K 6= {0}) and pointed (K ∩ [−K] = {0}),
and in this case

• the number of extreme rays of K is finite, and
• if r1, ..., rM are generators of extreme rays of K, then

K = Cone ({r1, ..., rM}).



III.D. Structure of a Polyhedral Set

♣ Theorem: Every nonempty polyhedral set X can be represented in the form

X = Conv({v1, ..., vN}) + Cone ({r1, ..., rM}) (!)

where {v1, ..., vN} is a nonempty finite set, and {r1, ..., rM} is a finite (possibly empty) set.
Vice versa, every set of the form (!) is a nonempty polyhedral set. In addition,
♠ In a representation (!), one always has

Cone ({r1, ..., rM}) = Rec(X)
♠ Let X do not contain lines. Then one can take in (!) {v1, ..., vN} = Ext(X) and to choose,
as r1, ..., rM , the generators of the extreme rays of Rec(X). The resulting representation is
“minimal”: for every representation of X in the form of (!), it holds Ext(X) ⊂ {v1, ..., vN}
and every extreme ray of Rec(X), is any, has a generator from the set {r1, ..., rM}.



IV. FUNDAMENTAL PROPERTIES
OF LO PROGRAMS

♣ Consider a feasible LO program

Opt = max
x

{
cTx : Ax ≤ b

}
(P )

♠ Facts:
• (P ) is solvable (i.e., admits an optimal solution) if and only if (P ) is bounded (i.e., the
objective is bounded from above on the feasible set)
• (P ) is bounded if and only if cTd ≤ 0 for every d ∈ Rec(X)
• Let the feasible set of (P ) do not contain lines. Then (P ) is bounded if and only if
cTd ≤ 0 for generator of every extreme ray of Rec(X), and in this case there exists an
optimal solution which is an extreme point of the feasible set.



V. GTA AND DUALITY

♣ GTA: Consider a finite system (S) of nonstrict and strict linear inequalities and linear
equations in variables x ∈ Rn:

aTi x Ωi bi, 1 ≤ i ≤ m
Ωi ∈ {” ≤ ”,” < ”,” ≥ ”,” > ”,” = ”} (S)

(S) has no solutions if and only if a legitimate weighted sum of the inequalities of the
system is a contradictory inequality, that is

One can assign the constraints of the system with weights λi so that
• the weights of the ”<” and ”≤” inequalities are nonnegative, while the weights
of the ”>” and ”≥” inequalities are nonpositive,
•
∑m

i=1 λiai = 0, and
• either

∑m
i=1 λibi < 0,

or
∑m

i=1 λibi = 0 and at least one of the strict inequalities gets a nonzero weight.



♠ Particular case: Homogeneous Farkas Lemma. A homogeneous linear inequality
aTx ≤ 0 is a consequence of a system of homogeneous linear inequalities aTi x ≤ 0, 1 ≤ i ≤ m,
if and only if the inequality is a combination, with nonnegative weights, of the inequalities
from the system, or, which is the same, if and only if a ∈ Cone ({a1, ..., am}).
♠ Particular case: Inhomogeneous Farkas Lemma. A linear inequality aTx ≤ b is a
consequence of a solvable system of inequalities aTi x ≤ bi, 1 ≤ i ≤ m, if and only if the
inequality is a combination, with nonnegative weights, of the inequalities from the system
and the trivial identically true inequality 0Tx ≤ 1, or, which is the same, if and only if there
exist nonnegative λi, 1 ≤ i ≤ m, such that

∑m
i=1 λiai = a and

∑m
i=1 λibi ≤ b.



LO DUALITY

♣ Given an LO program in the form

Opt(P ) = min
x

{
cTx :

{
Px− p ≥ 0
Rx = r

}
(P )

we associate with it the dual problem

Opt(D) = max
λ,µ

{
pTλ+ rTµ :

{
λ ≥ 0
P Tλ+RTµ = c

}
. (D)

LO Duality Theorem:
(i) [symmetry] Duality is symmetric: the problem dual to (D) is (equivalent to) the primal
problem (P )
(ii) [weak duality] Opt(D) ≤ Opt(P )
(iii) [strong duality] The following 3 properties are equivalent to each other:
• one of the problems (P ), (D) is feasible and bounded
• both (P ) and (D) are solvable
• both (P ) and (D) are feasible
Whenever one of (and then – all) these properties takes place, we have

Opt(D) = Opt(P ).



Opt(P ) = min
x

{
cTx :

{
Px− p ≥ 0
Rx = r

}
(P )

Opt(D) = max
λ,µ

{
pTλ+ rTµ :

{
λ ≥ 0
P Tλ+RTµ = c

}
. (D)

♠ LO Optimality Conditions: Let

x, (λ, µ)

be feasible solutions to the respective problems (P ), (D). Then x, (λ, µ) are optimal solutions
to the respective problems
• if and only if the associated duality gap is zero:

DualityGap(x, (λ, µ)) := cTx− [pTλ+ rTµ]
= 0

• if and only if the complementary slackness condition holds:

λT [Px− p] = 0,

or, equivalently, nonzero Lagrange multipliers λi are associated only with the primal con-
straints which are active at x:

∀i : λi[Px− p]i = 0



♣ As a corollary of Duality Theorem, the optimal value in a feasible maximization LO
program is a polyhedral function of the objective admitting an explicit polyhedral represen-
tation:

Opt(x):= maxu
{
xTu : Pu− p ≥ 0, Ru = r

}
≤ τ

m
∃λ, µ : λ ≥ 0,−P Tλ+RTµ = x,−pTλ+ rTµ ≤ τ

♠ As a result, the solution set of a semi-infinite scalar linear inequality

aTx ≤ b ∀(a, b) ∈ U
with polyhedral uncertainty set U is polyhedrally representable, with polyhedral representa-
tion readily given by the one of U
⇒ The robust counterpart

min{cTx : aTi x ≤ bi ∀(ai, bi) ∈ Ui, 1 ≤ i ≤ m}
with polyhedral uncertainty sets Ui is equivalent to an LO problem readily given by polyhedral
representations of the uncertainty sets U1, ...,Um.



CONIC DUALITY

♣ Given conic program in the form

Opt(P ) = min
x

cTx :

 Px− p ≥ 0
Qx− q ∈ K
Rx = r

 (P )

we associate with it the dual problem

Opt(D) = max
λ,ω,µ

{
pTλ+ qTω + rTµ :

 λ ≥ 0
ω ∈ K∗
P Tλ+QTω +RTµ = c

}
. (D)

Conic Duality Theorem:
(i) [symmetry] Duality is symmetric: the problem dual to (D) is (equivalent to) the primal
problem (P )
(ii) [weak duality] Opt(D) ≤ Opt(P )
(iii) [strong duality] Let one of the problems (P ), (D) be nearly strictly feasible, meaning
that it has a feasible solution where the nonpolyhedral (“brown”) conic constraint is satisfied
strictly: ... ∈ int .... Then the other problem is solvable, and Opt(P ) = Opt(D). In particular,
if both problems are nearly strictly feasible, both are solvable with equal optimal values.



Opt(P ) = min
x

cTx :

 Px− p ≥ 0
Qx− q ∈ K
Rx = r

 (P )

Opt(D) = max
λ,ω,µ

{
pTλ+ qTω + rTµ :

 λ ≥ 0
ω ∈ K∗
P Tλ+QTω +RTµ = c

}
. (D)

♠ Conic Programming Optimality Conditions: Let

x, (λ, ω, µ)

be feasible solutions to the respective problems (P ), (D), and let one of the problems be
nearly strictly feasible. Then x, (λ, ω, µ) are optimal solutions to the respective problems
• if and only if the associated duality gap is zero:

DualityGap(x, (λ, ω, µ)) := cTx− [pTλ+ qTω + rTµ]
= 0

• if and only if the complementary slackness condition holds:

λT [Px− p] = 0︸ ︷︷ ︸
⇔λi[Px−p]i=0 ∀i

& ωT [Qx− q] = 0.



♣ Conic Duality Theorem underlies several important “nonlinear versions” of the basic
polyhedral results, like
“Conic” Farkas Lemma: A scalar linear inequality aTx ≥ b is a consequence of a strictly
feasible system

Aix− bi ∈ Ki, i = 1, ...,m, (S)

of conic inequalities if and only if it can be obtained by taking “legitimate weighted sum”
of inequalities from the system and the trivial identically true inequality 0 ≤ 1:

Scalar linear inequality aTx ≥ b is a consequence
of strictly feasible system (S) iff

∃λi ∈ K∗i :
∑

iA
T
i λi = a &

∑
i λ

T
i bi ≥ b



GEOMETRY OF PRIMAL-DUAL PAIR
OF CONIC PROBLEMS

♣ Geometrically, a primal-dual pair of conic problems is specified by
• a regular cone K in some E = RN and its dual cone K∗
• a pair of linear subspaces LP , LD in E which are orthogonal

complements to each other
• a pair of shift vectors b ∈ E, c ∈ E

and requires to find in the primal feasible set
[LP − b]

⋂
K

and the dual feasible set
[LD + c]

⋂
K∗

a pair of orthogonal to each other vectors x∗, λ∗; whenever this is possible, x∗, λ∗ are optimal
solutions to the problems

Opt(P ) = minx
{
cTx : x ∈ [LP − b]

⋂
K
}

(P )
Opt(D) = maxλ

{
bTλ : λ ∈ [LD + c]

⋂
K∗
}

(Q)

and Opt(P )−Opt(D) + bTc = 0 (strong duality). Besides this,
• one always has Opt(P )−Opt(D) + bTc ≥ 0 (weak duality);
• under strong duality, [cTx−Opt(P )] + [Opt(D)− bTλ] = λTx for all primal-dual feasible

(x, λ),
• under strong duality, a primal-dual feasible pair (x, λ) is comprised of optimal solutions

iff the solutions in the pair are orthogonal;
• if (P ), (D) are strictly feasible, both problems are solvable and strong duality takes

place. When K = RN+, the conclusion remains true when (P ), (D) are just feasible.



Tractability of LO, CQO, SDO

♠ Convex Programming in general, and the generic conic problems LO, CQO, SDO in

particular, form a “solvable case” in Optimization: in theory, and to some extent also in

practice, globally optimal solutions to these problems can be approximated within whatever

high accuracy in reasonable, polynomial in the sizes of the instances and in a desired number

of accuracy digits, time.


