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Preface

There is an extensive literature devoted to numerical methods of selving
extremal problems. The central position in it is occupied by studies relating to
actual algorithms for optimization-—their description, range of applicability,
rate of convergence. There are also a number of papers on empirical
comparison (based on examples) of the effectiveness of algorithms, with a view
to selecting the ‘best’ method from the existing arsenal of such tmethods.

Far less attention has been paid to questions such as the following. What, in
general, can be expected from numerical methods of solving problems of a
given type? What are the potentially attainable limits of these methods? How
complicated are problems of one sort or another, not with respect to a given
concrete method, but in relation to ‘all (in general)’ methods of solution? It is
this natural question of the *potentially attainable effectiveness of numerical
methods applied to problems of a given type’ which forms the subject of
investigation in this monograph.

A typical question which we shail consider is of this form. Given a family of
optimization problems together with a source of information, accessible to the
methods, about each solvabie problem of this family, what are the potential
lower bounds of laboriousness of ail possible methods which solve all
problems of the family with a given accuracy? Which method realizes this
potential lower limit and is therefore the best one? Clearly, a precise
formulation of such a question requires a formalization of the concepts of
‘method’, ‘laboriousness of a method’, etc. We fix a definite formalization of
this kind (in cur opinion, the most convenient formalization for studying the
‘continuous’ mathematical programming problems with which we shall be
concerned), and we then investigate the question posed above as applied to a
number of the standard non-linear programming problems: smooth multi-
extremal problems, ‘all convex’ problems, strongly convex problems, and so
on, In most cases a sufficiently conclusive answer is successfully obtained to
the question in which we are interested.

We do not claim that the formalization we have adopted of the problem of
selecting the best possible numerical method of optimization is entirely
adequate to represent the full content of the original formulation. There is no

ix
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need to dwell now on this aspect of the matter, since a full motivation of the
approach we have adopted and a discussion of its merits and limitations are
given in Section 1.1, We remark only that, in our opinion, the formalization
we have adopted enables rather useful, if rough, information (orders of
magnitude only) to be obtained about the potential possibilities of numerical
methods of solving extremal problems of the standard types. It is up to the
reader to share or repudiate this opinion.

Another question closely related to that of finding potential lower bounds
for the laboriousness of methods which solve problems of a given class with a
given error, 1.€. with the problem (as we have defined it) of computing the
‘complexity’ of a class, is the question of estimating the effectiveness of one or
other method of solving problems of this class. It is natural to define this
effectiveness as the inverse of the ratio of the laboriousness of the method in
question to a ‘standard laboriousness’, 1.¢. to the complexity of the class. The
effectiveness of a method shows to what extent it can be improved as regards
labortousness, i.e. to what extent it is non-optimal.

We touch on only a small part of the problem of estimating the effectiveness
of traditionral numerical methods of optimization. This is understandable; to
solve this problem it is not sufficient merely to have available a standard of
effectiveness (basically our efforts are concentrated precisely on obtaining
such a standard); it is further necessary to have estimates of the laboriousness
and error of the method in which we are interested on the class of problems
under consideration. The profusion of standard numerical methods obviously
preciudes the possibility of the authors’ being able to estimate these
characteristics for some arbitrary representative of the group of methods.

In this book the effectiveness of some of the most natural and simple
methods is evaluated. For reasons which will become clear later, all these
methods are the methods of convex programming, Of the methods of non-
smooth convex programming, we evaluate the gradient method and the Kelly
method (these might be said to exhaust the list of traditional algorithms for
non-smooth convex optimization). The extensive field of algorithms for the
minimization of smooth and (strongly) convex problems is examined to a far
less extent; here we restrict our attention to the gradient method with
minimization in the anti-gradient direction and to some simple versions of the
method of conjugate directions. The methods considered for strongly convex
programming preblems turn out to be inefficient; they are unnecessarily
sensitive to the degree of conditionality of the problem under consideration,
and their effectiveness tends to zero as the conditionality deteriorates. We
remark that negative results of this kind also enable certain conclusions to be
drawn regarding the effectiveness of a number of traditional methods which
are not explicitly considered in this book.

Let us give an example. An extensive family of methods of feasible
directions for solving constrained convex problems is known. The rate of
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convergence of these methods is generally estimated under the hypothesis of
strong convexity of the problem under solution. Thus it is natural to study
these methods on the class of strongly convex problems. In Chapter 7 it is
shown that the complexity of this class is determined essentialiy only by the
required accuracy, the conditionality of the problem, and its dimension, but
not by the number of constraints. On the other hand, if there are no
constraints, then most versions of the method of feasible directions turn into
the method of gradient descent with minimization in the direction of descent.
So the effectiveness of the methods of feasible directions cannot be essentially
greater than that of the gradient method, and therefore it too tends to zero as
the conditionality of the problem deteriorates.

The limited size of the book does not allow us to dwell on consequences of
this sort; they will certainly be self-evident to the reader. We remark further
that the judgement expressed previously about the method of feasible
directions being ineffective (like similar statements in the main text) is a
judgement made on the basis of the definition of laboriousness which has been
adopted and which turned out to be not quite adequate for the intuitively
understood computational complexity of a method. It should not therefore be
interpreted as a call for unconditional discrimination against the correspond-
ing methods; categorical verdicts of this kind are scarcely admissible
generally,

We mention some differences of the approaches adopted in this mono-
graph, and of the results obtained, from the traditional treatments in
optimization theory.

The traditional approach to estimates of the rate of convergence of
numerical methods of optimization is usually of an asymptotic character; the
type of asymptotic behaviour of the laboriousness of a method for a required
accuracy is elucidated. The question of when the ‘exit’ on to this asymptotic
behaviour takes place is investigated comparatively rarely, as is, incidentally,
the important question of the effect of other parameters, apart from accuracy,
of the class of probiems {parameters such as, for example, the dimension of the
problems under solution).

In this monograph, on the other hand, all the estimates given for the
laboriousness of numerical methods of optimization (as also, incidentally, for
most of the estimates of complexity) are of a non-asymptotic character. We
write down in explicit form the upper bounds for the methods under
examination, as a function of the required accuracy (measured in a sensible
way) and of the parameters which distingnish the class of problems to
be solved (such as the dimensionality of the problem, the number of con-
straints, the characteristics of the geometry of the domain of the problem,
etc.).

131 the literature on methods of optimization the rate of convergence {the
rate, not the fact of convergence itself) is established generally only as applied
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to classes of sufficiently ‘good’ problems. In the present monograph optimiz-
ation methods are studied as a rule on wider classes of problems. In most parts
of the book nothing more is required of the problems to be solved other than
their convexity, unless perhaps the boundedness of the domain of the problem
and the continuity of the functionals appearing in it (sometimes these
functionals have 1o satisfy a Lipschitz condition). Even the classes of strongly
convex problems considered in Chapter 7 are still somewhat wider than classes
of ‘good’ functions on which it is traditionally accepted that optimization
methods should be evaluated. Of course, evaluating methods on wider
families of problems than usual leads to a worsening of the potentially
attainable guarantees of their work. It turns out, however, that in many cases
this worsening is not too considerable, and it represents an acceptable
payment for the extension of the store of problems over which the new
guarantees are extended.

Having sketched in general terms the purpose of the monograph, we shall
briefly characterize the contents of the work by sections (a more detailed
survey of the results is given in Section 1.1). The first chapter is of an
introductory character: here we form the language in which later we formulate
and solve the problems concerning the potential effectiveness of numerical
methods. The separation of the later material into chapters is dictated by the
necessity to examine separately the various classes of extremal problems. In
the last section of Chapter 1, smooth (but not necessarily convex) problems
are examined. The resuits in this section, some well-known, some new, are of a
negative character (it turns out that this class of problem is, in the general case,
hopelessly too complicated for sotution). Convex programming, to which the
main attention is paid in the book, presents a much more optimistic picture. In
Chapters 2, 3, and 4 we examine classes of ‘all (in general)’ convex problems
(including non-smooth ones) which can be solved by first-order methods when
there is exact calculation of the values and derivatives of the components in
the problem. In Chapters 5 and 6 we study convex problems in which the
values and derivatives of the components are observed mixed with noise, i.e.
problems of convex stochastic programming. In Chapter 7 the classes of
smooth convex problems and strongly convex problems are considered, and
in Chapter 9 we deal with probiems solvable by zeroth-order methods, i.e.
methods working with the values but not with the derivatives of the
components in the problem. Chapter 8 stands somewhat by 1tself; it deals with
the estimation of the laboriousness of some popular methods of solving
strongly convex problems. The appendix contains a résumé of a number of
classical mathematical concepts and theorems which are used in the book and
which are not always familiar to applied mathematicians. In general it should
be mentioned that the treatment in this book is such that it should be
accessible to a reader having the normal training of a numerical analyst
interested in optimization theory. More complicated mathematical apparatus
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is brought in only in the ‘formal niceties’ (of secondary importance) in some of
the proofs.

The exposition of material relating to concrete classes of extremal problems
usually comprises the following main steps:

(1) a description of the class of problems in question;

(2) a description of some methods of solving problems of the given
class;

(3) alower bound (over all conceivable methods of solving the problems of a
given class) for the potentially attainable laboriousness of these methods
for a given error.

As a rule the choice of actual methods in (2) leads to estimates for the
laboriousness which essentially are the same as the potential lower bounds in
(3). As a result we obtain, on the one hand, a sufficiently complete idea of the
‘objective complexity’ of the given class of problems, and on the other hand, a
basis for the theoretical recommendations on the use of the methods in (2)
which cannot essentially be improved as regards laboricusness. We mention
that the ‘sub-optimal’ methods which we adduce are, in a number of cases, in
substantial measure new,

We point out that a reader can, if he wishes, restrict his attention to the
sections which deal with some particular class of problems.

As regards the nature of the exposition it is worth mentioning the following.
We have tried to distinguish as clearly as possible the ideas which form the
basis of the constructions here presented, and to describe the numerical
methods precisely. The formal proofs are kept separate; some of them are
given in separate sections. In a first reading these proofs could, if so desired, be
omitted, and this would not hinder the reader from using the methods
described, although it would make detailed understanding of their mechanism
more difficult.

Many of the results are formulated as exercises, inviting the reader to prove
some proposition which has onty been formulated. If some not entirely trivial
fact is concerned, then often a proof is given (enclosed in angular brackets
¢ ...> ) We stress that the reader should acquaint himself with the
propositions enunciated in the exercises, whether or not he actually carries out
the exercises themselves.

Regarding terminology: apart from the standard terminology, which we use
without special explanation, we have to use extensively a number of specific
concepts and special notation. On first encountering non-standard notation
and terms appearing without commentary, the reader should consult the list
of notation at the end of the book, or the subject index, where he will find a
reference to the section in which the corresponding object is first defined. An
exception occurs with certain secondary concepts and notation used only in
some one chapter. Accordingly, to understand a particular section of a



xiv Preface

chapter, the reader will generally need to be acquainted with all the preceding
sections of that chapter.

A few words about the bibliography and references. The list includes only
those works which are directly referred to in the main text; the list is short and
makes no claim to cite all the works which deal with the theme of the
monograph. When using the results of others, the authors have tried to
mention the fact by pointing out the source of their information (without
setting themselves the task of identifying the original source without fail). In
speaking of results which have become part of the chrestomathy, so to say, we
have replaced direct citation by phrases such as ‘it is weil knownthat . . .. Itis
quite possible that some of the results regarded by the authors as original may
in actual fact be re-discoveries of already known facts (that is why we used the
word ‘tried’ in a previous sentence); in that case we beg in advance the pardon
of the first discoverers.

In conclusion we regard it as our pleasant duty to thank E. G. Goldshtein
and B. T. Polyak for stimulating discussions of the results of the work.

A. 8. Nemirovsky, D. B. YUDIN
June 1978

Preface to the English Edition

This book is one of the series ‘Theory and methods of systems analysis’
published under the guidance of an editorial board of economists and
cyberneticists headed by D. M. Gvishiani, a Soviet philosopher and son-in-
law of the former Soviet prime minister, Alexei N. Kosygin. Of the authors of
the present work, Professor D. B. Yudin holds the chair of mathematical
methods in the faculty of econmomics in Moscow university, and
Dr. A. 8. Nemurovsky, a senior scientific fellow at the same university, is a
disciple of the late distinguished mathematician G. E. Shilov. The book is
based on, and is an extension of, a series of papers by these authors published
mainly in the journal Economics and Mathemarical Methods.

The authors set up their own mathematical model in order to investigate
questions concerning the complexity of optimization problems and efficiency
of methods of solving them. They obtain bounds for the potential efficiency of
methods of selving standard classes of optimization problems, and propose
new methods which largely realize these potential bounds. They apply their
apparatus to draw perhaps surprising conclusions about a number of popular
methods of optimization. But, as with all mathematics, the reader must
remember that the technical terms have precisely the meaning assigned to
them in the definition of the concepts; this is particularly necessary when
every-day words such as ‘method’ and ‘complexity’ are being used as technical
terms. In particuiar, as the authors themselves point out, their analysis does
not ceal at all with such practically important aspects of methods as the
simplicity of their computational organization and computational stability.

When not being strictly formal, as in the definitions and statements and
proofs of theorems, the authors write in a lively and informal style, which may
at times even be humorous. They have a habit of frequently putting words into
quotation marks, presumably to point up and lend immediacy to their
exposition; this practice has been followed in the translation.

F. R. Dawson
Department of Mathematical Sciences, University of Dundee
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1

Introduction

1.1 FORMULATION OF THE PROBLEM OF ESTIMATING THE
COMPLEXITY OF OPTIMIZATION PROBLEMS, AND

THE MAIN RESULTS OF THE WORK. AN INFORMAL
DESCRIPTION

In this section we describe informally the set of problems we shall be concerned
with and the direction of our investigations. Qur aim is fo show that the
approach adopted in this work for evaluating the complexity of problems and
the effectiveness of methods is a natural one.

1.1.1

We shall study the potentialities of numerical methods in solving mathema-
tical programming problems. We need hardly mention how important such
methods are in the application of mathematics to practical problems. The
widening field of applications and the power of computers is leading firstly to a
sharp growth in the complexity of the optimization problems which have to be
‘worked out to the answer’, and secondly to a continuous reinforcement of
the arsenal of methods used for this purpose. In this situation there is natu-
rally a growing tendency to take a hard look at the theory of these
methods themselves. By contemporary standards, its mere convergence gives
no method the right to exist; ‘decency’ requires us also to estimate its
laboriousness.

The next stage is that one wants to find the potentially attainable lower
limits for the amount of labour needed to solve a given type of problem, and to
construct methods which attain these limits, ie. methods—in some sense
optimal—which ensure sclutions of the required quality for all the problems in
question, with the least possible amount of labour. These are precisely the
problems to which the present work is devoted. Qur target is a theoretical
analysis of the potentialities of numerical methods.

A strict formulation of the problems arising in this connection requires a
formalization of ideas such as ‘a class of problems of a given type’, ‘the

1
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laboriousness of a method’, etc. There are many formalizations of this kind,
which seem patural in one way or another.

1.1.2

The most general approach to the analysis of co_mputation_s is developed
within the framework of the general theory of algonth_ms and is related to the
articles [35, 15]. A reading of the short but ex‘ce;_monally Qe_ep_ paper by
Levin [19] may be recommended to the reader wishing to familiarize himself
with the spirit of this approach. Its essence, state_d inan 1nforrr_1al and ger_leral
form, is as follows. It is assumed thata computational method is an algopthm
(according to any of the formal definitions adopted in mathematical logic, for
example, a Turing machine). Any such algorithm, as we know, processes words
in some alphabet (e.g. binary) into certain other_ words. In orde_r to apply an
algorithm to some problem f ormulated perhaps ina non-formalized langu_age
(in the mathematico-logical sense), let us say, In thg lang_uage of classical
mathematics, it is necessary to associate it with 2 word in the input alphabet of
the algorithm——the code of the problem. The algorithm processes the code of
the problem into the output word, which can then be 1r_1tcrpret¢_:d as the cc_)d_e of
the solution. This code is translated according to deﬁmte rules into the c_mgmal
language in which the problem was stated. The labonou_snmss of the solution of a
problem is measured by the number of times the algorithm works on the code.
Other measures of laboriousness which are related to the amount of
memory storage used, etc., can also be considered. A _nurnber of general and
extremely deep results have been obtained on these lmes: Ther; is no doubt
that the apparatus developed in the general theory of glgonthms is the one t?e§t
fitted for studying the general problems of computation. At the same time 1t 15
clear that, with this approach, the problem of translat_m g a problem .fro_m the
language (or jargon’, as logicians would say) of classical mathemz_ttlcs into a
formalized language—the problem of coding the probler_n!—remalns outside
the theory. For problems with a clear, precise a_lgebralc structure _(e.g. for
integer programming problems, to which, in particular, combinatorial prob-
lems reduce) the coding problem is easily resolved: the methods for a natural
coding are in this case obvious. Although there are many na}tural rnethc_’.)ds of
coding, they can all be transformed one into the other by simple algorlthms,
and so essentially the results do not depend on the method of coding.

1.1.3

The situation changes when we pass from discrete problems_ {or problerr_ls with
a simple algebraic structure) to continuous problen'_ls like mtegratmgfor
minimizing an ‘arbitrary’ function (a smooth fl_mcuon, say} deﬁr_ied, or
example, on an interval of the real line. The coding problem here is by no
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means so simple. Of course, for its practical solution, any problem necessarily
is coded (in our examples, by an algorithm which computes the values of the
function at an ‘arbitrary’ point) and it is discretized, so that formally one is
always talking about solving discrete problems, and a method of selutionis a
certain algorithm for processing words. However, with such a formalized (in
the mathematico-logical sense) approach, it is difficult to discuss ‘continuous’,
‘classical’ properties of the problem (in our examples, the propertics of
smoothness, convexity, etc.}, and the description and, a fortiori, the optimiz-
ation of the methods become exceptionally difficult (not to say hopelessly
complicated} matters.

It is natural to describe methods of solving ‘continuous’ problems in the
usual classical language, without realizing that, strictly speaking, it is
impossible to multiply real numbers or calculate a sine by means of an
algorithm. But even the description itself of the methods of solving non-
algebraic problems, in terms of an idealized computer which carries cut purely
arithmetical operations, comparisons, computations of standard functions,
and so on, is still ‘too detailed’. It seems that a study in these terms of, let us say,
the Newton—Raphson method of minimizing a function of several variables
will ‘founder’ in trying to elucidate the question of the minimal number of
operations needed for the inversion of a matrix (this question, incidentally, is
up to now unresolved). A construction in this manner of a theory of numerical
methods of solving problems of some definite (but arbitrarily wide) class {let us
say, extremal problems) would necessarily have to include within itself,
roughly speaking, a theory of "all numerical methods in general’. But then it
would not be adapted to the precise specific charactor of a given class of
problems.

Thus, as well as the most general, universal theory of computations, there
must also exist special investigations relating to special classes of compu-
tational problems. The language of these investigations {i.e. primarily the-
formalization of the concepts ‘problem’ and ‘method’) must, without pretend-
ing to be universal, be adapted to the specific character of the class under
consideration. Investigations of this type would enable essential (although
special) information to be obtained, which could hardly be derived by a
universal theory.

There is nothing surprising in the variety of approaches; it would scarcely be
possible to rely on one unique formalization of the concepts relating to the
analysis of numerical methods which would be satisfactory in all respects
without exception.

1.1.4

The approach adopted in this book (in our opinion the most convenient one
for studying methods of ‘continuous optimization’) dates back to a paper by
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N. S. Bakhvalov [3]. According to this approach, a numerical method is a set
of rules for accumulating information about the problem to be solved, to
enable its solution subsequently to be formed. The source of this information
is fixed in advance. The process of obtaining information is governed by the
method in the following sense: in advance there is fixed a set of ‘questions’ X
which can be put to the source of information, the ‘oracle’. The work of the
method proceeds in steps. At the ith step one question x; € X can be put to the
oracle and an answer obtained to it; this answer is a point of a certain set I (the
information space, which is the set of possible answers of the oracle).
Successive questions may be freely chosen within the limits of X. After a
certain number of such questions, on the basis of the accumulated information
(the collection of answers from the oracle) the result of applying the method to
the problem is formed. The method of solution thus consists inaset of rules for
forming successive questions, moments of pause, and results which depend on
the information accumulated up to the given moment. No restrictions as
regards computability are imposed on these rules. They can be arbitrary
functions of the corresponding arguments (‘arbitrary’, that 18, up to formal
reservations which are entirely non-restrictive in practice).

The laboriousness of solvinga given problem by a given method is defined as
the number of steps in the work of the method on that problem. Apart fromits
laboriousness, a method applied to a given problem is characterized by its
error (the measure of the inexactness of the result of its application to the
problem, regarded as the approximate solution of the latter).

We remark that, in the approach just described, the restrictions on the
possibilities of methods are of a purely informational nature; a method ‘does
not know’ in advance exactly what problem it has to solve. Essentially its
objective consists precisely in ‘identifying’ the problem to such a degree that it
is then possible to form the solution with the required accuracy.

We point out a contrast. In the general theory of computations, complete
information about the problem (its code) proves to be the entrance for the
method, and the possibilities for the method are limited only by the means
which it is decided to apply to process the code of the problem into the code of
the answer (the method must be an algorithm in the mathematico-logical
sense). But in the approach just described, the picture is the reverse: the means
which can be applied are in no way limited, but on the other hand the initial
information about the problem is incomplete, and its acquisition has to be paid
for.

itis now clear that it is meaningless to pose the question of choosing the best
method of solving a given completly concrete problem. The method would
consist simply in a description of the problem’s solution, and it has zero
laboriousness. It should not be thought that this remark demonstrates that the
approach outlined is void of meaning. The phenomenon just metioned is not
pathological. If it is necessary 1o solve just one problem, then the question of
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method does not arise. By the very meaning of the word, the concept ‘method’
relates not to an individual problem but to a mass problem, ie. to a class of
problems of a given type. Thus the discussion must be not about ‘a method of
solving an actual problem’” but about ‘a method of solving problems of a given
class’ (Le. problems from some previously fixed set).

We remark, incidentally, that it is scarcely possible sensibly to pose the
guestion of ‘the best method, as regards minimal laboriousness, for solving an
individual problem’ no matter how the concept of ‘method’ is defined. Thus, in
terms of the general theory of algorithms, such a ‘minimal’ laboriousness is
essentially the length of the word which codes the solution. There is not much
more meaning in such a result than there is in the assertion that this
laboricusness is zero.

1.1.5

The study of numerical methods on the basis of the approach just described
thus presupposes the fixation of the following objects:

(i) classes of problems which are to be solved by the methods under
examination (in our case these will always be classes of extremal
problems),

(ii) sources of information about the problems to be solved, i.e. the oracles;

(iii) methods of defining the error of the results regarded as approximate
solutions of the problems under consideration.

Having fixed these objects, we distinguish clearly the class of methods
corresponding to them, and for each method we determine the characteristics,
i.e. the laboricusness and error, when it is applied to each problem of the class.
This is still not enough to state the problem of optimizing the methods. For,
generally speaking, of two methods one will be better on some problems, and
worse on other problems, than the other; and so it is still necessary to specify
the way in which methods are to be compared on the whole class of problems
and not just on particular members of that class. For this purpose we
define the characteristics of a method on a class of problems—by minimax
considerations.

The discussion of the legitimacy of this minimax approach is postponed to
Section 1.4.5.

Making precise the concept of ‘the characteristics of a method on a class of
problems’ also enables us to state precisely the problem of studying the
potentialities of methods of solving problems of a given class.

1.1.6

Lc_t us considgr the approach we have adopted. It is universal in the sense that a
suitable fixation of the concepts ‘class’, ‘oracle’, etc., enables us to apply it to
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any class of problems. However, this universality is only apparent. The fact is
that the definition of laboriousness which corresponds to it is in no way
adequate for the intuitively grasped concept of ‘complexity of solution’, Our
definition concerns information only, and it does not take into account in any
way the expenditure in computational means for processing the information
obtained.

If it is possible after a small number of questions, k say, to distinguish the
problem from its class (this is typical for ‘algebraic’ problems), then the optimal
laboriousness of solving problems of this class is small—it is not greater than k.
In such a situation our approach may give empty results. It is nevertheless clear
that the laboriousness of a method according 1o the definition adopted already
gives automatically a lower bound for the ‘real’ laboriousness. In a number of
cases these estimates are useful, What is more, ‘optimal’ methods (in our sense)
turn out often enough to be, apparently, completely acceptable from the
practical point of view as well. In short, the approach adopted is inno waya
panacea for all difficuities and it does not give an exhaustive analysis of all the
sets of characteristics of computational methods (for example, the important
questions of computational stability lie, in general, beyond its compass), but
we consider (and hope that the substance of this book will bring others to this
opinion) that the results given by this approach provide a rather large amount
of useful information about numerical methods of optimization. Like any
other means, this approach is effective provided, of course, that it is used
sensibly without demanding too much from it.

Another ‘limiting factor’ is that proceeding in the way mentioned requires a
new entity to be brought in, namely, an oracle (in the geperal theory of
computations this problem arises only in special cases). The corresponding
limitation is not very important from the standpoint of possible applications.
An oracle for solving ‘continuous’ optimization problems—mathematical
programming problems—is fortunately traditional (it calculates the values—
or the values and derivatives—of the functionals of the problem at a point
indicated to it). Nevertheless the authors do not understand why there should
be a restriction to just this oracle. We can motivate the use of this oracle in alk
the concrete results of this book only by citing the tradition mentioned.
However, the wide prevalence of a blemish cannot justify it.

1.1.7

We now give a short résumé of our results. As already mentioned, we consider
concrete classes of problems (together with a fixed oracle and a fixed method of
measuring the error of approximate solutions) and the class of methods
corresponding to these objects. Each of these methods applied to the class of
problems considered is characterized by its laboriousness and error, Le. by
upper bounds (over the problems of the class) for the number of steps in its
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work on the problem and by the error of the result. We further define the
complexity N (v) of a given class of problems as a function of the error v; N (v) is
equal to the least possible laboriousness of a method which solves every
preblem of the class with an error not exceeding v. Our object is, firstly, to
estimate the ‘potential’ lower bound of laboriousness for N (v), and, secondly,
to construct methods which ‘really do’ realize this lower bound. Before stating
the results achieved in this direction, we remark that from now on the error
involved is necessarily defined to be the ‘relative’ error. The only non-trivial
case is when v < 1, and it is this case which is discussed from now on.

The first (pessimustic) results relate to classes of smooth (multi-extremal)
problems. It turns out {section 1.6} that for the complexity N (v) of the class of
all extremal problems with k-times continuously differentiable functionals on
a compact field G in E” the lower bound

N() 2 clk, G){1 /vy

holds both for the ordinary (deterministic) methods of solution and for
random-search methods. The catastrophic growth of N{v) as v -0 and
especially as n — oo shows that it is meaningless to pose the question of
constructing universal methods of solving smooth problems of any ap-
preciable dimensionality ‘generally’. It is interesting to notice that the same
estimates hold even for unconditional problems generated by uni-extremal
(but not convex) functions,

The irregular behaviour of the complexity of classes of non-convex
preblems compels us to focus our attention m future on the far more
rewarding object of convex programming.

We begin with classes of “all (in general) convex extremal problems on a
convex compact set & of dimension n; the oracle supplies the values and sub-
gradients of the compenents in the problem. It turns out that the complexity of
this class admits the estimate

NO)
'S lenlmlpy T

(here and always the ¢; are positive absclute constants). The right-hand
inequality holds for all v < 1, and the left-hand one holds asymptotically when
v—0 (Chapters 2,4). The ‘moment when the asymptotic behaviour is
establised’ depends on the affine properties of G; this dependence is the subject
of a special investigation, the results of which are stated in the next paragraph.
A method of error v and laberiousness O(r In (1/v)) which ‘essentially realizes’
the complexity of the class when v — 0 {the idea of such a method was
suggested by A. Yu. Levin in [18]) unfortunately cannot be utilized in practice
when n > 3 because of the extreme complexity of the step. We describe another
method, which can be realized in practice, of laboriousness Q(n? In (n/v)) with
a number O(n* In (n/v)) of elementary operations on the organization and with
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a memory store O(n?) (see Section 2.5). We emphasize that the applicability
and guarantee of accuracy and laboriousness of the methods mentioned are
not associated with the presence {or number) of constraints of the problem,
nor with its smoothness and degree of conditionality, but assume only that the
problem is convex.

Thus, the asymptotic formula for the complexity of the class considered is
O(n in(1/v)) as v — 0. The time has now come to explain how the complexity
behaves as the dimension n of the problem increases. It turns out that
everything depends on the affine properties of G. If G is a parallelepiped, then

N@W~nln(l/v) forall v<% andforalln

so the complexity increases linearly with n. But if G is an elhpsoid, then, as n
increases, N (v) is stabilized at a level ~ 1/¥%, i.e. the complexity of ‘general
convex problems on ellipsoids is bounded above by a quantity which is 0 (1/v?)
independent of the dimension, and which, for a given v, is O(1/v?) for all
sufficiently large n. An upper bound O(1/»*) for the complexity can be
obtained by a standard gradient method, and thus it cannot be ‘essentially
improved’ for problems of high dimension. What then determines the
principal differences, so far as we are now concerned, betweena parallelepiped
and an ellipsoid? It turns out (Chapter 3} thatan ellipsoid is ‘uniformly convex’
and a parallelepiped is not.

The study of the question in Chapter 3 leads to a new view of the nature of
the gradient method. It is well known that, applied to non-smooth, convex
problems, the efficiency of the gradient method is connected, not with the fact
that it works with a local linear approximation {a point of view inherited from
the case of smooth problems), but with the fact that, for a displacement along
the anti-gradient, we approach the minimum point (with an accuracy up to the
square of the magnitude of the displacement). This fact has not appeared (10
the authors, at least) to be a miracle specially performed by the Almighty for
the benefit of convex programming. It turns out that there 1s no miracle; there
is a simple and natural construction which associates methods of solving non-
smooth convex problems with a wide class of functions (we have called these
‘methods of mirror descent’, MD-methods). This construction enables us to
‘mass-produce the miracies”. The standard gradient method is the simplest case
where this construction is used.

We construct MD-methods for solving convex problems on convex fields G
of the type of balls in L (1 € p < ) If Gissucha ball, then an estimate for
the laboriousness of the corresponding method is e(p)(1/v)™**?# when p > 1
(when p = 1 we have c(1)(1»)* Inn; this case p = 1 is evidently not without
interest for applications). It turns out that in their asymptotic behaviour with
respect to dimension the methods constructed cannot be ‘essentially’
improved.
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Having examined the question of the class of ‘all (in general)’ convex
problems with an explict oracle of the first order, we then consider the case
where the oracle is stochastic, i.e. the observations of component values in the
problem and of their support functionals are distorted by stochastic noise
(Chapters 5, 6). In this situation, too, we have been able to apply MD-methods
successfully. It turns out that their laboriousness, when the error v (averaged
over the noise) is guaranteed to be < 1, and for the case where G is a convex
field like an L -ball, is

(PP In2(1/w)in(m+2), 1<p < oo,

(where m is the number of constraints in the problem; the hypotheses
regarding the noise are the standard ones for problems of stochastic
approximation; when m = 0, the factor O (In? 1/v)can be omitted). It turns out
that this estimate is, under broad hypotheses, essentially the same as the
cor_nplexity of the corresponding class, and therefore in principle it is ‘almost’
unimprovable (i.e. with accuracy up to the logarithmic factor O(In” (1/v)). En
route to these results we shall construct MD-methods (not without their own
independent interest) of solving problens in game-theory. It should be pointed
out that, even in the simplest situation (p = 2, m = 0), the proposed method
does not fully coincide with the traditional methods of stochastic
approximation.

Ha_ving examined in the first approximation the complexity of the class of
‘.all {(in general) convex problems, we then study in Chapter 7 its most
important subclass, viz, problems with smeoth, strongly convex components;
the minimal eigenvalues of the matrices of second derivatives are distinct from
0 and the maximum are bounded above; the ratio @ of the corresponding upper
and lower bounds for the eigenvalues—the modulus of strong convexity of the
problem—characterizes its degree of conditionality. The simplest gradient
method of solving problems of this class has a laboriousness O(Q In {1/v}). It
turns out that it is ‘too sensitive’ to the degree of conditionality. We construct
another, less sensitive, method with an estimate O(\/ﬁ in? @ In (1/¥)) for the
laboriousness (independent of the number of constraints in the problem). This
last estimate cannot be improved essentially, since 1t 1s possible to show that
the complexity of the class in question (at least asymptotically with respect to
the dimension) admits the lower bound

N() 2 e54/0 In(17v).

In Chapter 8 an attempt is made to establish which of the standard methods
of solving strongly convex problems, which are regarded as the most effective
(the methods of conjugate gradients), realize this potential limit. The gradient
method, the Polak-Ribiére methed, the Fletcher-Reeves method, and the
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Zoutendijk method are considered. For these methods negative results are
obtained; within the criteria adopted for the estimate none is better than the
gradient method.

In Chapter 2 we examine zeroth-order metheds of solving convex problems
(that is, only the values-—exact or with stochastic noise—are observed,
pot the derivatives of the functionals of the problem). No conclusive
results are obtained here; methods with the estimates for the laboriousness
O(P(n)In (n/v)), where P(n) is a polynomial, and the information is
deterministic, and O(P(n) In?(1/v)ln (m+2).1/¥*) when the information is
distorted by stochastic noise, are obtained. The character of the dependence of
these estimates on vcannot, in view of what has been said earlier, be improved
even in the class of first-order methods.

1.2 FAMILIES OF MATHEMATICAL PROGRAMMING
PROBLEMS. APPROXIMATE SOLUTIONS AND THEIR ERROR

In this section and the next we describe the basic concepts with which we shali
operate; for example, ‘a mathematical programming problem’, ‘a class of such
problems’, ‘a method of solving problems of a given class’, and so on. Qur
purpose is to give formal definitions by means of these concepts. Without a
formalization of this kind we cannot formulate precisely the problem of
estimating the potentialities of numerical methods of optimization,

1.2.1

We shall be concerned fundamentally with numerical methods of solving
mathematical programming problems. Such a problem is written in the form

Lx)-min|xeG,fi(x) €0, 1 £j < m, (2.1)

where G is a subset (always closed) of some real Banach space E, and the f;(x),
0 < j € m, are real (always continuous) functions defined on G at least. For
technical reasons it is convenient to take the space £ to be separable (from the
practical point of view this is scarcely a serious restriction). From now on,
unless the contrary is stated, E will be regarded as separable. The function f; is
called the objective functional of the problem, and the functions f;, 1 <j < m,
the functional constraints (or, simply, the constraints), G is the domain of the
problem.

A point xeE is called a feasible point of the problem (2.1} if xeG and
£(x) £0,1<j< m(ie x lies in the domain and satisfies the constraints). The
problem itself consists in finding a feasible point which gives the least possible
value of the objective functional f;. Accordingly, any feasible point X such that,
if x’ is any other feasible point, then f; (%) < f; (x'), is called a solution of the
problem.
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A problem which has feasible points is said 10 be compatible (otherwise it is
incompatible). A problem which has a solution is said to be solvable. A solvable
problem is necessarily compatible.

From what has been said, it is clear that a mathematical programming
problem with m constraints is, from the formal standpoint, a set of objects

(f= (.fi:}s e !f;n); G: E)!

where G is the domain of the problem, E the correspending Banach space, and
f= (fo,---,f)is a continuous, (m+ 1}dimensional vector-function,

Remark. Generally speaking, in formalizing the concept of a mathematical
programming problem there is no need to provide G with a topology, and still
less to fix the ‘Banach embedding’ G = E. However, ‘continuous’ problems
(and we shall study only these) are conveniently defined precisely in this way.

As a rule we shall be dealing with families of problems having m, G, and Ein
common. In such a situation it is convenient to identify the problems
themselves with the corresponding functions f; this we shall always do in
future. Thus instead of the phrase ‘the problem (2.1) defined by the function
we shall write ‘the problem f, it will always be clear from the context what G
and E are being considered.

The optimal vatue of the objective functional of the problem fis denoted

by fo:

f = + o, fincompatible,
*  linf { f{x)|x is a feasible point of f}, fcompatible.

1.2.2

Any family of mathematical programming problems (2.1) having m, G, E in
common is called a field of problems. Every such family can be identified witha
certain set # of (m+ 1)dimensiona! vector-functions on G. The field of
problems generated by the objects G, E, m,and & is denoted by U (#, G, m, E).

Suppose, for example, G is a convex, closed, bounded setin R* = E,and & is
formed by all component-wise continuous, convex functions fon G. Then the
corresponding field is the set of all convex problems with m constraints and
domain G =« R™.

1.2.3 Approximate solutions and their error

1.2.3.1

Numerical methods, as a rule, cannot ensure an exact solution of an arbitrary
problem from some wide field. The results of applying these methods to
problems are approximate solutions of the latter. In order to determine the
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characteristics of methods we have to learn how to measure the error of the
result of the work of a methoed, this result being regarded as an approximate
solution of the problem in question. This result may be a point of theset Gor a
statement that the problem is incompatible (we shall denote the latter result by
the symbol «). Thus the set of possible results of applying a method to a
problem fe(#F, G, m, E)is G, = G v {+}. With each point x € G and each
point feY we must associate a number—the error of the point x regarded as
an approximate solution of f.

1.2.3.2

There are two main ways of defining the error, The first way is to measure, in
the metric of G, the closeness of the candidate solution x to the true selution X.
The second way is to examine the deviations of the values of f;(x) from the
nominal values, i.e. those demanded from x. In this book we shall use only the
second of these two ways.

Let us say briefly why we have made this choice. First of all, if a problem
really is an extremal problem, then approximation of the solution ‘by
functional corresponds to the heart of the matter, and one cannot talk about
approximation ‘by solution’. But this does not quite settle the question.
Problems which are non-extremal in content are often put into extremal form
(for example, a system of linear equations is reduced to a quadratic
optimization problem). In such cases, a good approximation to the solution ‘by
functional does not in itself necessarily guarantee a satisfactory solution to the
original formulation of the problem. But there is another, the main, reason for
our choice. The peint is that in all the standard situations (at least, so far as this
book is concerned), the problem of approximating the solution ‘by functional’
is well-posed (with a proper formulation), whereas in a number of important
cases the problem of approximating ‘by solution’ is not well-posed and cannot
be solved ‘with a guarantee of accuracy’ after any finite time (cf. Section 4.3,
Exercise 5). Thus if an approximation ‘by solution’ is required, then special
assumptions about the problem must be made in order to make this objective
attainable. But the standard assumptions of this kind (e.g. strong convexity)
are such that approximation ‘by functional’ implies the approximation ‘by
solution’, and the corresponding errors can be effectively expressed one in
terms of the other. So in this case too we can restrict ourselves to
approximation of the solution ‘by functional’,

1233

Correspondingly to what has been said, we introduce two measures of the
error of a point x € G, regarded as an approximate solution of a problem > a
vector measure £(x, f) and a scalar measure ¢, (x, ).
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The vector measure of the error is defined as

e(x.f)={eolx.f), ..., enlxf))

(+90,..., +) if x =xand [is compatible,
m+ 1 times
0...,0 if x = » and fis incompatible, (2.2)
m+ 1 limes

e —Ae, [T . [L0)]. } in the remaining

cases, i.e. for xeG.

Here and elsewhere, (t], (where t is a scalar) denotes max {0, t}. The content
of the definition (2.2) is clear: £{x, /) shows by how much the values of the
functionals of the problem f'at the point x exceed their nominal values, i.e. the
values required for an exact solution. The nominal value of the objective
function is f,,and the nominal values of the functional constraints are equal te
0. Further, the announcement that a compatible problem is incompatible is
punished by a penalty of + c0. We point out that smallness of & (x, /) still does
not imply that x is a feasible point of the problem: in estimating the error of the
solution by means of the vector ¢ (x, /) we do not insist that the constraints be
satisfied exactly, but we fix the corresponding residuals. Smallness of &(x, /)
implies, in particular, that these residuals are small: x is an ‘almost optimal
almost feasible point’,
The scalar measure of the error is defined as

8* (X, f)

+ oo, x = # and f compatible,
| Feo, x€G but is not a feasible point of /, (2.3)
- )]0, x = = and f is incompatible,

Jo(x)—f,, inthe remaining cases (i.e. when x & G and is a feasible point

of ).

The error e, (x, f) in fact eliminates from consideration any approximate
solution x € G which is not a feasible point of f (because the error of such a
solution is equal to + c0). It is worth using this measure in cases where, from
intrinsic considerations, only those approximate solutions which satisfy the
constraints exactly are admissible.

We shall have to do mainly with the vector measure of error {the reason
again is that the problem of finding feasible points is not well-posed unless
additional assumptions are made about the problem itself (see Section 4.1,
equation }.17).

We shall call the measure € {x, f) the absolute error of the point x regarded as
an approximate solution of the problem f, and the measure &, (x, f) the
*-ghsolute error.
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1234

It is not always convenient to use absolute errors, particularly in cases where
one is speaking about potential bounds for the laboriousness of methods
which guarantee a given error in solving ali problems of a given field, For
example, it is meaningless to pose the question of the laboriousness of a
method which solves all, let us say convex, problems

fix)—min|xeR, |x| 1 24)

with an absolute error of 1. For, a method of this sort would, in fact, necessarily
allow us to solve all the problems indicated with an arbitrary error however
small; because, if we want to solve a problem fwith an'accuracy ¢, we need only
apply the method under investigation to the problem f(x)} = (1/8)f(x). It is
clear that a solution of f with absolute error 1 will be a solution of f with
absolute error ¢ Similarly it is meaningless to ask a question about the
laboriousness of such a method on the whole field of problems under
consideration; it will, of course, be infinite.

The way out of this situation is to change over from measuring the residuals
in ‘absolute’ units to measuring them in a suitable relative scale. In other
words, instead of the absolute error vector £ (x, f) we shall consider the relative
error vector

Vi) = olx, ), .. vmlx, f)) = (

Bo(x,f) E,,,(x,f))
ro(f) 77 ra(f) )

where the r,(f) are the units in which the error in the jth functional is
measured. The choice of these units is dictated by considerations of
mathematical convenience and the striving for the clearest results. It is clear,
incidentally, that this choice does not play any essential part. Consider, for
example, the problem (2.4). Here the most natural choice for r(f) is the
variation of f on the interval A = {|x] < 1}, i.e. the number

sup f(x)— inf f(x).

Jx) &1 Jx) €1
With this choice r(f) represents essentially the maximal possible absolute
error of a point x € A regarded as an approximate golution of the problem f,
and so the clause ‘x € A is an approximate solution of the problem f with the
relative error v’ now has a clear, precise meaning. [t asserts that xisa 1/v times
better approximate solution of f than the worst possible solution which could
be obtained by a “trivial search’ (see page 52).

The choice of the numbers r,(f)—we shall call them the normalizing
Jactors—will be described explicitly later for each of the classes of problems
subsequently considered. We shall always choose them to be non-negative. As
a rule the normalizing factors will be chosen so that the relative error of an
arbitrary point (or of some point known a priori) x € G regarded as a solution
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of any problem fe U will not exceed 1. A field of problems U together with a
rule for forming the normalizing factors, i.e. the normalizing map

f_’ l"(f) = (rD(f)! L srm(fJ)s fEQ'I;
will be called a weighted field of problems.

1.2.35

The vector of relative errors introduced above is stiil not a very convenient
measure of error for the analysis of methods. It would be desirable to measure
error by a scalar, not a vector quantity (otherwise it is difficult to compare
methods precisely). There are various ‘natural’ ways in which a scalar measure
of error could be derived from the vector measure. The simplest is to take the
maximum component of the relative-error vector, and that is how we shall
actually proceed. At a first glance, in such a definition all the components of a
problem seem to be equivalent as regards the influence of their ‘residuals’ on
the error of x as a solution of a problem f, but in fact this is not always true.
However, this is only an apparent drawback: any a priori ‘non-equivalence’ of
the residuals among the various components of the problem can always be
taken care of by a suitable choice of the normalizing factors.

Finally we adopt two definitions of the relative error of a point xeG,,
regarded as an approximate solution of a problem feU:

1, S compatible, X =+,
vix,f)=| 0, [ incompatible, X =%,
e {IB(xJ—f. A } de

rolf} Trilf)’T ()

1, (f compatible, x =+) or (xeG is not a feasible
point of f),
valx, f1=10, f incompatible, x = »,
R -f .
——— otherwise. 2.5
rolf) ‘ _ e

Here the r;(f) 20, 0 £ j € m, are the normalizing factors; it will be shown
how to choose them in each of the cases later considered.

The possibility that some denominators in (2.5) may be zero has to be
admitted, in order 1o avoid making trivial reservations, and in this connection
let us agree once and for all on the convention that

a +c0, a>0,
6=0, a=0,
—mw, a<0

1 Thesymbol _| before the nurnber of a formula indieates that that number refers to the group of
formulae which is preceded by the symbol [~ and followed by the_|.
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We note that the penalty + oo in (2.2), (2.3) has been replaced in (2.5) by the
penalty 1. The reasons for this change will be given in Section 1.4.1.

We hope that the motivation for the introduction of the measures of error
given in (2.2), (2.3), {2.5) is sufficiently convincing. So far as the formal side of
the matter is concerned, the definitions adopted satisfy the natural require-
ments for error measures: the quantities €(x, f), £,(x, /), v{x, /) vy {x, f) are
non-negative numbers (vectors) and are equal to zero if and only if x is either
an exact solution of f or is the correct answer as regards the incompatibility

of f.

1.3 NUMERICAL METHODS OF SOLVING MATHEMATICAL
PROGRAMMING PROBLEMS

In this section we introduce a formal definition of the fundamental object of
our investigations, a numerical method of optinuzation. We begin by
describing the information basis of the methods, i.e. oracles.

1.3.1 Oracles

As already mentioned, a method of solving problems of a certain family does
not, at the start of its work, ‘know precisely what problem it has to solve”. All its
a priori knowledge is the fact that the problem presented belongs to some
earlier known field of problems 21 The method stores the further information
about the problem needed for its solution by turning to the source of
information, by asking questions of the oracle. The oracle’s answers, in
general, are distorted by noise.

We formalize the concept of an oracle in the following sufficiently general
form. The oracle @ for a field of problems U(F, G, m, E) is a set of several
objects, viz.,

i. aspace§) of ‘oracle noises’ with a probability distribution F, defined on Q
(Q is assumed to be a Polish space, and F, a regular Borel measure,
complete with respect to Lebesgue measure) (see Section A.1);

ii. an observation function ¥ (x, f, w): G x F x £ — I taking values in some
set I (the information space).

The definition includes the requirement that i be Borel with respect to @, x;
I is assumed to be a Polish space.

If the observation function does not depend on  (i.e. if the oracle’s answer
is uniquely determined by the ordered pair (x, f), then the oracle is said to
be deterministic. In this case, of course, Q) can be regarded as a 1-point
set. An oracle which is not deterministic is called a stochastic oracle.
The oracle determined by the objects @, F,,, I, ¢ (x, f, ) will be denoted by

QR 1L ¥ix,f, )
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Let w; be independent random variables with values in £ and with a
distribution function F,,. We shall suppose that at the ith step the method can
put a question about the problem f under solution at any point x;€G. The
oraple‘s answer is a point Y (x;, f, w;)€l. The random variable w, is the oracle
noise occurring at the ith cycle. All the information accumulated by the
method in the first i steps of its work on the problem f is a sequence
(X, W(x, w0 x5, (xg, fim) - o X, (%, £ )} of the questions posed
and the answers to them.

1.3.1.1

We give a simple example. Let Q2 be a 1-point set (so that the oracle is in fact free
from noise), let 7 = R™*, and let ¥(x, )} =f(x). The oracle so defined is
capable of giving at each point of G the values of all the functionals of the
problem.

More ‘informative’ oracles can provide not only the values of the functionals
of the problem but also the values of their derivatives up to some order.
Oracles of this type have a certain property of being localized, which in the
general case can be defined as follows. An oracle @ = @((, F,), I, ¥(x, f, o))
for a field of problems U(F, G, m, E) is said to be local if for every
x, £, (xeG, f,f € ) such that /= f' in some neighbourhood of x in G, we
have ¥(x, f, w) = ¥(x, f’, @) for all weQ.

We emphasize that the neighbourhood which appears in this definition may
depend on x, f, /. A local oracle ‘feels’ only the local structure of the
functionals of the problem at the ‘interrogated” point. All the ‘usual’ oracles in
mathematical programming are local, and it is precisely with such oracles that
we shall be working later.

1.3.2

We are pow in a position to define the basic object of our studies—a methed of
solving problems of a given class. Let (%, G, m, E) be a weighted field of
problems and let &((X, F,), I, ¥(x, f; w)) be the corresponding oracle. What is
meant by ‘a method of solving problems in W using the oracle & is clear. In fact,
the process of solution consists in putting a series of questions to the oracle and
forming, on the basis of the answers received to the successive questions, the
result at a given moment of time. The method itself then must be a set of rules
governing the process of solution. Thus, a method of solving problems in ¥,
using the oracle @ (for brevity, an (U, @)-method), is a set of rules for forming the
successive questions, moments of pause, and presentation of the result, and also of
this result itself as a function of the information accumulated up to the given
moment about the problem being solved. These rules may be either deterministic
or randomized, leading respectively to deterministic or stochastic methods of
mathematical programming.
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Thus the work of a method on a problem [ consists in formingt;l.1 oertalln
uence X, . . ., Xy, of points of G (a sequence of questions put to the oracle
fzclsolving tlhis problém) ;a)ﬁd of an additional point £€G v {s}—the result of
applying the method to f. The number N, of steps of the methpd on the
problem f may, in the general case, be formed by the method~1tsclf (and
therefore it depends on the problem). The sequence X,, . . ., Xy X (the lower
subscript f will often be omitted) could be called the trajectory of zh_e rnethod
on the given problem. Formally, however, it is more convemient to_adj‘om to G,
as well as the element &, another element & (a symbol of ‘inaction’), and t?
regard the trajectory of the method on fas the infinite sequence X;, . . -, Xn, %

Q!Q?""Q""'

It is reasonable to start the formal definition of the concept ‘method’ with a
formal definition of a trajectory.

1.3.2.1

Derinion.  Let Y(F, G, m, E) be a weighted ﬁeldqof problems and let
0 = 0((Q, F,), I, ¥) be the corresponding oracle: let G = Gu el u{g]}

1. A G-trajectory is any sequence x® = (X1, X3, . - -} x,€G.

2. The laboriousness of a trajectory x* is the number {x%) of_' members
distinct from @ of the sequence x®. (The laboriousness of a trajectory can
take non-negative integer values and the value + 00.) ‘ _

3. A trajectory x® is said to be resultative if the set {i|x; # &} is not vqld and
is finite (ie. if 0 < 1{x®) < + 00). The result ¥(x*) of a resultative trajectory
is the last element distinct from & of the sequence x®.

4. The error of a trajectory x® on a problem fe is the number

+ if x* is not resultative,

v(x®, f) = {v(f(xw),f) otherwise.

Thus theetror of a resultative trajectory is the error of its result regarded
as an approximate solution of the problem f. The error of a ‘non-
resultative’ trajectory is + oo by definition.

Similarly the *-error of a trajectory on a problem f is defined to be

w + o0 if x* is not resultative,
WS =15, =(x®).f)  otherwise.
133

1t is now clear what an ‘(% @)-method’ is. Every such methoq is a set of
recurrence rules for forming a trajectory as a function of the information
available at a given moment.
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We give a precise definition. Let
J=GxI, J=Jx..,.xJ (J%isa l-point set).
—
i times
‘We shall denote points of J as n = (x, &), xe G, ¢el, and points of J' as

n= (1, .. ) et

1.3.3.1
We define first a deterministic @I, @}method.

DerINTION. A deterministic (U, ©)-method is a set @ = {X,(n' ")} of
Borel functions %;(-y J'~!' = G.

(Note: The topology on G coincides on G with the original topology of G;
* and (7 are isolated elements.)
Let
W= (wg, ... .0,...)eQx0x ... xQx ...=0Q%,

A trajectory of a deterministic method # = {X,(n'" ")} on a problem f e
with noise w™ is a sequence x®(w®, f, #) defined by the recurrence rules

X=X (x, g0 o) XL Y-y, f wis )

(Note: The function r(x, f, w) was not defined for x = = or for x = &f; we
shall take ¥ (», f, w) = ¢ (&, J, w) = a, where a is a fixed point of 1.)

It can be shown (see Section A.1.2) that x®(w®, f, #)is, as a function of @®,
a Borel mapping of Q® into G®*=Gx ... xGx ... (the topology of
direct products is always the Tikhonov topology). Therefore one can speak
of the distribution of values of x*{w®,f, #), induced by the measure
For=F, x ... xF, x ... on Q% This distribution, which we denote
by @.=(f, ®), is called the distribution of trajectories of the method & on the
problem f. One can also consider the joint distribution of (x®, »*®), which we
denote by ®.« = (f. #),and callit the joint distribution of the trajectories and
noise of the method # on the problem f.

Remark. The requirement that the search rules #,('~ ') and the observation
functions be Borel functions, and also the requirements that E be separable
and that [ be a Polish space, are essential only when stochastic oracles are being
considered. These hypotheses ensure that the methods’ trajectories are
measurable, and are required only so that the language of probability theory
<an be applied to the analysis of methods. But if the oracle is deterministic and
if we are studying deterministic methods, then the trajectories of the method
on a problem, the result of the work of the method, and also the characteristics
(defined later) of the method on a problem or on a class of problems, can be
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given a natural definition without assumptions of the type that the functions of
observation of the oracle be Borel, that the search rules be Borel, that E and J
be separable, etc. Accordingly, in future, when describing deterministic
methods, of one sort or another, of solving optimization problems when the
oracle is deterministic, we shall not bother about the separability of E or the
‘Borelness’ of the search rules of the methods deseribed. Of course, only spaces
E which are separable are, in fact, of any interest, and in this case the methods
described later will automatically have Borel search rules, but we shall not
specially watch over this.

1.3.3.2

We shall now define a stochastic (2, @)-method. We begin with the most
natural definition, which is, however, not the most convenient one,

Dermnition. A stochastic (U, Oymethod is a set {®, -1 )72 = & of
probability distributions on G which depend in a Borel manner on a
parameter '~ 'eJ' 7"

{(Note: In connection with Borel families of measures and operations on
measures which we utilize, see Section A.1)

This means that @, -+ is the distribution according to which the ith
successive element of the trajectory of the method @ is selected, it being
understood that the information available at this step is n'~".

We now define the distribution of trajectories of a method & on a problem
J in the following natural way. First we define recurrently the distributions
O, i, (B, 1) of fragments x' = (x,, . . ., x;) of trajectories with a fixed noise
w® = (wy, v, .. .) in the oracle:

‘Dxi‘mw(@,f) = q)x.-lw"llx'-l.f. @'l ® ®x'-llw“°(f; Q)

Here

YL S o) = (xdlx, Lo xs WX S, @)

It is clear that the family of measures {®,i,=(f, #)}2, is concordant,
and therefore it defines a measure @, «(f, #) on G* which, together
with all the measures @« (f, &), is Borel with respect to ™. The measure
O o (f, B)=F,» @ Qoo (f, ¥} is called the joint distribution
with noise of the trajectories of @ on the problem f, and its projection
®_=(f, @) on G™ is called the distribution of the trajectories of # on f.

1.3.4 Mixtures, and the structure of stochastic methods

In the previous section the definition of a stochastic (U, @-method is presented
in an entirely natural way, a way which seems to be the ‘most general’ one for
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including the possibility of a randomization of search. But there is another
method of randomization, which, at first sight, seems much more trivial; that is,
formation of a mixture of deterministic methods. Let 7 be a space with a
measure F,, and let B ={B = {F(n" ", 1)}2 }er be a family of de-
terministic (2, @)-methods, indexed by the elements ¢ of the set 7. We suppose
that this family is Borel with respect 1o ¢ (i.e. all the %,(7°~*, t) are Borel with
respect to the set »' =1, 1),

W§ now imagine the following process of solving problems in 2L Before the
solutton begins, an index teT is selected at random (according to the
probability distribution F,), and then throughout the course of solution the
method &#° is always used. This last sentence defines (informally) a certain
randomized method of solving solutions of the class 9; we shall call it a
mixture of methods #* and denote it by &:

§=J B'dF,.
T

Ina sense, a mixture is a mixed strategy of solution (the pure strategies are, of
course, identified with deterministic methods of solution).

It is easy to give a formal definition of a mixture. An (N, O)-mixture is an
ordered pair consisting of a measure space (7, F,) and families { %'}, Borel with
respect to ¢, of deterministic (%, @)-methods, It is also easy to define the basic
characteristic of a mixture & = [, #'dF, on a problem f ¢ %; this is the joint
distribution with noise, @, = (1, &), of its trajectories on the problem S Tobe
precise, let x®(w™, t, f) be a trajectory of #* on the problem f with oracle
nllloise w®. Since the family %' is Borel with respect to ¢, it is easily deduced that
the map

(@%, x®(@%, 1, f)):Q2° xT > Q® xG* (f is a parameter)

18 Bore! with respect to (w®, £). The distribution of values of this mapping
induced by the measure F « x F, on O x T is, by definition, ®,» «(f, 8).
_This definition corresponds exactly to the original informal descripiion of the
idea of a ‘mixture’. In terms of @« ,=(f, #) we define the distribution
O (f, &) of the trajectories of & on the problem f in the same way as in
Section 1.3.3.2.

Tt turns out that, in a certain precise sense, the possibilities of mixtures are in
no way more restricted than those of stochastic methods as defined earlier.

Theorem. For every stochastic (2L, @)-method @ there is a mixture
- 1
%= J. #'dr
Q

of deterministic (U, @}methods which is equivalent to & in the following
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precise sense: the joint distributions with noise of the trajectories of & orof &
are the same on every problem in U,

The proof of this theorem is postponed to Section 1.7. Let us discuss the
result itself. At first sight it may seem surprising, since the definition of 2
mixture is more trivial than the original definition of a stochastic method. We
see that to realize any such method it is sufficient to turn to a random-number
generator, of the normal sort, and to do this once only. It is, by the way, easy to
give an intuitively convincing justification of this assertion. For how can a
stochastic method be realized on an electronic computer, say? Clearly, by
means of a program in which, at each cycle of its operation, recourse is had toa
randem-number generator working quite independently. But then it would be
possible, in advance of running the program, to use the random-number
generator the requisite number of times and to write into the memory store the
whole set of random numbers. During the work the memory store can be
consulted, not the random-number generator, The resulting program of work
is the program of a deterministic method. A mixture of such methods is indeed
the original stochastic method.

Of course, the assertion just formulated does pot imply that, in practice, all
methods of random search should be organized just as a mixture. The
equivalence established by the theorem is an equivalence of behaviour on
problems and certainly not an equivalence of internal organization.

However, within the framework of our approach, which ignores the internal
structure of methods, methods which are equivalent according to the theorem
are indistinguishable.

The significance of the theorem is not a practical, but a formal, one. The
theorem allows us to interpret stochastic methods as certain simple congloe-
merates of deterministic methods. As a technical tool, this result is the basis of
the whole analysis of randomized methods.

We remark that so far we have still not asserted that every mixture is
equivalent to some stochastic method. This is, of course, indeed true (under
extremely general hypotheses about the properties of the objects which appear
in the definition), but we shall not specify these properties nor prove the
relevant theorem. Instead of that, we shall adopt the definition of a mixture as
the only definition operative in this book of a stochastic (%, #)}-method, and
cancel the definition given in Section 1.3.3.2, which has now served its purpose,
We shall denote the set of all stochastic {2, @)-methods by (U, @). It is clear
that deterministic (3, #}-methods are particular cases of mixtures; or speaking
rather more strictly, deterministic methods are equivalent to suitable mixtures
in the sense of Theorem 1.3.4; and so the set of these methods is identified with
acertain subset & (A, @)in # (2, @). In view of this inclusion, it is sufficient to
give subsequent definitions only for stochastic methods.
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1.4 CHARACTERISTICS OF METHODS ON A PROBLEM AND ON
A CLASS. COMPLEXITY

We continue the formation of the language in which we shall describe the
properties of mathematical programming methods. Let U(#F, G, m, E) be a
fixed weighted field of problems and let @((Q, F), I, ) be the correésponding
oracle. Qur ultimate purpose is to examine the best {2, ®}methods. In order to
progress in this direction, we must first study how to compare methods one
with another, first on each problem in U, and then on U as a whole. We start
with the characteristics of methods on a problem.

1.4.1

As already mentioned, the approach we have adopted ignores propertics of
methods which relate to their internal organization, and it is limited to a
description of methods in terms of ‘quality (error) of the solution versus
laboriousness’.

From this point of view the behaviour of a method & on a problem is
exhaustively described by the distribution of its trajectories @, (f, &) and
even by the distributions ‘laboriousness versus error’ derived therefrom,
ie. by the joint distribution ®, ,(f, %), induced by ®., of the quantities
((x=, ) 1(x=))

In some cases we shall also examine the distribution ‘laboriousness persus
*error’ @F,(f, #), ie. the joint distribution of the ordered pairs
(v&(x*,f}, 1(x™)). Both these distributions are measures on [0, o] x [0, co].

Description of methods in terms of their ‘laboriousness versus error’
distributions on problems does not make direct comparison of methods
possible. To make such a comparison possible, one has to ‘coarsen’ the
description by changing over to characterization of methods on problems by
numbers instead of by distributions. There are many ‘natural’ ways of
associating a number with 2 distribution; the simplest is averaging, and this is
the one we adopt as basis. That is, we define the {mean) laboripusness, error, and
*-error of a method % on a problem f€ A by the relations

[(R.f)=[ld®,(f, B), ¥(B.f)=[v0,(f D),
v (#.1) = [vd0? (£ B),
where @, ®@,, ®f are the projections of the measures ®F,, ¥, on the
corresponding lines of the components of [0, 0] x [0, ©].

More ‘stringent’ characteristics are the strong laboriousness, the strong error,

and the strong *-error:
I(®B,f)=ess supl, #( &, f) = ess sup v,
o s, @) o, (f. @)
Vo (B,[) = ess sup v,;
T3S, @)

with these a method is characterized by the properties of its trajectories.
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We remark further that in the important cases where the oracle is free from
noise and the methods are deterministic, all the ways mentioned of characteriz-
ing methods coincide.

Remark. We can now give the motivation for changing the penalty in (2.5) to
1linstead of + oo asit wasin (2.2)and {2.3). The point is that when there is noise
present it is impossible to count on a reliable solution of the question whether
the problem is compatible (and to guarantee that the problem’s constraints are
exactly satisfied as a result of the work of the method). Under such
circumstances infinite penalties for non-fulfiiment of the requirements
indicated would lead to infinite mean (and strong) errors of the methods on
problems.

1.4.2

It is now opportune to interrupt the stream of definitions and to analyse the
interrelations of the concepts introduced. Qur object was to formalize the
concepts of ‘numerical methods of solving optimization problems of a given
type' and “characteristics of a given method’. Let us look at the way in which we
have reached this objective.

The starting point was the normal concept of a

(1) mathematical programming problem

(and the directly related concept of a field of such problems, meaning the set of
all problems of a given type).

To formalize the concept of ‘a method of solving problems of a given type’
we had to introduce a further concept

(2) an oracle for a given field of problems.

By fixing the objects ‘a field of problems’ and ‘an oracle’ we were able to define
the concept of a

(3) method,

which formalizes the meaning of the concept of ‘a method of solving
problems of a given type using a given source of information about the
problem’.

We emphasize that, according to the definition given, the store of
(2, ¢)}methods does not in fact depend on the objects W and @ themselves, but
on their components, viz,, the domain G of problems of the field U and the
information space I of the oracle ¢. The ordered pair (G, f) uniquely
determines the set of (2, @)-methods. But the operation of a given method &
ona given problem fe U (i.e. the joint distribution with noise of the trajectories
of & on f) is determined not only by the objects £, G, and I, but also by the
oracle system ¢. However, this distribution stili does not depend on the
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definition of the measures of the errors of points of G, regarded as
approximate solutions of £, i.e. on

(4) the normalizing map

provided for the field 2. We have to fix this mapping in order to define the
characteristics (laboriousness and error) of a method on a problem. When we
have available not only the concept of a method but also a way of
characterizing it on problems in U, we are then in a position to pose the
question of how to select the best method of solving problems in .

Thus the starting-point for the approach under discussion to the analysis of
the possibilities of numerical methods of optimization is the fixation of a set of
the following three objects:

(I) a field of problems 2;
(I1) a normalizing mapping f— r(f) (fe¥); and
(IIT) an oracle @ for the field of problems U.

The objects (I) and (I1I) define the store of methods under examination, and
(LI} enables their work on problems in U to be characterized.

We shall call the objects (I)~(III) the class of mathematical programming
problems (it will be denoted by U). As already stated, this concept serves as the
starting-point for the analysis of methods, the purpose of which is to estimate
the potential possibilities of methods of solving problems of a given class and
to find the best (in a certain sense) of these methods.

1.4.3

Thus we have characterized 2 method & on each problem fe ¥ by a pair of
numbers, the laboriousness and the error. But again this is insufficient for a
comparison of one method with another. Of two methods one will be better on
some problems in U and worse on others. We are again compelled to coarsen
the characterizations of methods, to change over from characteristic functions
of problems of a class to characteristic numbers. For this purpose we define the
laboriousness, the error, and the *-error of an (U, @)y-method & on the classW as

%% = fiugf(ﬁ‘,f), v(#,U) = supv(B.[),
£ Sed
vo(3,U) = supv, (&, 1).
Jeu

Similarly, by taking the upper bounds [(®,f), #(&.f), and ¥,(%.f)
over the problems of the class, we define the strong characteristics
1(%,°), 5(2,N),5,(#,9) of a method on the class.

If the ordinary error, strong error, resp. *-error of a method @ on the class 2
does not exceed v, then we shall also say that the method & has on 9 an
ordinary accuracy v, strong accuracy v, resp. *-accuracy v.
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Exercise 1. Let 9 be no more than countable, and let & be an
(%, @)-method. Show that there is a deterministic (2, @)-method 4 such that
18, %) <&, (4, 9q) < (&, 0),and 7, (4, W) < 7,(#, ). Thus under
‘strong’ characterization of methods, randomization of search becomes
superfluous,

Hint. See Theorem 1.3.4.

144

We are now in a position to define the potential bound for the laboriousness of
solving problems of a given class, that is, the complexity of the clgss of
problems 9. Roughly speaking, the complexity is defined as a function c_)f
accuracy, equal to the minimal possible laboriousness of a method which still
ensures solution, with the necessary accuracy, of all the problems of the class.
Depending on how the accuracy and laboriousness are defined (apd we have
given several definitions of these concepts) and on what restrictions are
imposed on the methods used, we obtain not one definition of complexity, but
several. We restrict ourselves to two—the ‘weakest’ and the ‘strongest’.
Namely, let

N =inf{{|3Fe B, 0 1(FU) <, w(BUA) <},
N =inf{}| I BB, o). [(3,%) <L, v(#W < v},

(Note: we always take inf {t|t€ &} = + c0.) The function N (¥) is called the
stochastic complexity,and N (v) the strong deterministic complexity, of the class
A= 6 r()

Clearly, N (v) € N(v). If in the definitions of the complexity functions the
error is replaced by the *-error, then the definition of the *-complexities N,
and N (v) is obtained.

The main content of this book consists in the calculation of estimates of the
complexity of the standard classes of mathematical programming problems
and in constructing methods of solving the problems of these classes which
realize these estimates.

145

The motivation for our choice of the minimax method for characterizing
methods on classes ‘according to the worst case’ undoubtedly requires some
explanation. There is a widespread belief that the ‘minimax approat;h‘ is too
pessimistic; it is considered more sensible to average the characteristics of the
methods on individual problems of the class according to some a priori
distribution. Such a ‘Bayesian’ approach postulates that, ‘in life’, problems of a
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given type are distributed in a definite way. We point out, however, that for
arbitrary, broad classes of problems (for example, for all the problems
considered below), there is no way, justified in any degrec, of giving such an a
priori distribution over the class of problems. Hopes of an ‘experimental
determination’ of such a distribution are unfounded; if the class of problems is
parametric, with 50 parameters say, then any reliable ‘direct’ construction of
their joint distribution would require a selection of a fantastic size, which is
certainly unrealizabie. So, even in the simplest linear problems, an empirical
approach to the construction of the a priori distribution is hopeless.

Thus the ‘Bayesian’ approach to the study of methods of solving arbitrarily
wide classes of problems has no future in practice: the recommended methods
would have to work well with an arbitrary a priori distribution; but then they
would also be good in the minimax sense.

1.4.6

Let us go further into a difference between the definition given above of the
concept of ‘method’ and the traditional idea of numerical methods. From the
point of view adopted here, a method is a process with a finite number of steps
which, after a finite time, forms a result of the required accuracy, and then
stops. The traditional idea is that a method works for an endless time (there are
no ‘finite’ methods, of the linear programming type, for general classes of
problems) and forms a sequence of approximations which converges in some
sense or other to the exact solution. The higher the rate of convergence, the
better an ‘infinite’ method is. The scheme we have adopted for applying a
method is like this: a required accuracy of solution v is given, and from thisva
method of solution @, is chosen. The laboricusness of the best of such
methods is taken to be precisely the complexity of the class.

To all appearances, this scheme has no defects on the theoretical plane.
However, in practice people often proceed differently: they ‘allow’ in principle
a method with an infinite number of steps, and set it to work for so much time
as the available computational resources allow. Whatever accuracy turns up,
that is what turns up, No explicit guarantees in this respect are given as a rule.
Notwithstanding that such an approach is unsatisfactory theoretically, in
practice it is simpler.

Speaking more formally, let #% be an infinite-step method of solving
problems of the class % using an oracle @, and let v(N) be the maximal (over the
class of problems) error given by it at the N th step of approximation. (For the
sake of definiteness, let the error of this approximation on a problem f be
v(@BY, f), where #* is the obvious N-step ‘truncation’ of #%. It would be
possible also in a similar way to consider other methods of measuring the
error.) Let

Ngo(¥) =min{N|v(M)svM 2N}
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The maximal guarantees relating to the use of % consist in the assertion that
for every v the method #* will, after working for a time Ng= (v), attain the
accuracy v, whichever the problem fe2l may be. (As already mentioned,
traditionally methods are compared by their ‘rate of convergence’, the latter
being estimated, as a rule, rather coarsely—by the order of the dependence on
N of the accuracy attained on a given problem after N steps. Itis clear that such
estimates provide no special guarantees.)

Now let %' (1) be a class of finite-step 9-methods ‘stopping at the step !’ (the
solution is independent of whatever may be assumed at the /th step; we shall
call such methods I-step methods), and let Ny (v) be the complexity of

9 in relation to the family of classes of methods { &'} ;:

Np() = min {{] 3 e B Q) v(H,0) < v).
For each v specified in advance it is possible to pick out from the class
Bn= u, B'amethod which ensures this accuracy more rapidly than #~. It is
clear from the definition that N (v) — 1 £ Ng= (v) (recall that a method in &
forms the result based on [ — I steps). However, a ‘good’ method of this sort is
special for each particular v, and it is not clear whether one can ‘construct’ from
them an equally good infinite-step method for all v. A priori it is possible,
therefore, that the function Ny, (v} (which is what we shall actually study) is
‘essentially less (let us say, asymptotically as v — 0) than any of the functions
N 4= (v)and hence it is not an effective lower bound for the laboriousness of the
traditional infinite-step methods.

It might therefore be supposed that the approach adopted here does not
permit the estimation of the potential effectiveness of such methods, and
therefore does not take in the scheme, widely adopted in practice, of applying
numerical methods.

Fortunately, everything turns out happily: Ny (¥) is an effective bound for
the laboriousness of ‘convergent’ methods. In order to prove this, we shall
indicate a way of obtaining a ‘good’ methed of this kind from ‘good’ finite-step
methods. Let N, (v), 0 € v £ %, be the function defined above of the complex-
ity of the class 9 (equipped with an oracle @), and let ¢(v} =1 be any
continuous non-increasing function with values in [0, co] which majorizes
N (v} — 1 {such a function can be chosen to coincide with Ny (v) — 1 outside an
arbitrarily small neighbourhood of the countable set of points of discontinuity
of Ni(v) and of the set on which Np(v} = 1).

Theorem. Under the above hypotheses there is an infinite-step (2, &)-
method #% such that Ny={v) £ 6p(»), 0 <v £ ¥

(Note: the reader is invited to define the concept of an infinite-step
(U, @)-method for himself)
Proof The case ¢=4co is tnvial, so let p# +co and let

v = inf{v|@(¥) < co}. Weput ¥ = v,,and suppose that v, . . ., v, have already
been defined; then v, , is defined to be max{v|@(v) = 2¢(v,)}.
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We shall break off the proces at the first step for which @(v} < 2¢(v,)
for all v < v, {this can happen only if (0} < + o0). As a result, for some
5% + o0 and for all natural numbers i < 5, §> 1, there will be defined
numbers v;e[v,v] such that v, >v,> ... >v,>...,j<§-1, and
+ 00 > @(v;) =20(v,_,). If §< o0, then ¢(0) < 2¢{v;_,). Since ¢(-) is a
majorant of Ngp(-)—1, we can, for each i<§—1, find an N-step
(A, @)}-method #' with N, =Np(v) < @(v)+1 (%' is an element of
2", ¢)) which has error v, on the class 9 If § < co, then let %% be an
Nz-step (U, #)-method with error 0 on U, Ny = N, (0).

We construct a methoa #* in the following way. The method is made up of
stages, of which the ith stage (i € §) contains N, — 1 steps and reduces to
applying the method @' to solve the problem under solution. The successive
appreximations, determined by & on the ith stage, coincide with the result of
applying the method £~ to the problem under solution (when i = 1 this
approximation is an arbitrary point of G). If § < oo, then at the final stage (i.e.
the {(f+ 1)-th stage) no optimization takes place, and the successive approxim-
ations are the result of applying the method 7.

Let us verify that # is the desired method. Let v&[0, ¥]. It may be
that ¢(v) = +oo0; in that case the assertion is trivial. Now suppose that
@(v) < +00, and 50 v 2 y. Then, for some iy < §, we have v, = v 2 v, 4,
(for < oo we take v;=0) Hence ¢(v,)< @) <o(v,,,) Since
Vios1 S v, it is clear from the construction that, beginning with the
{ip +2)-th step, the error of #* on any problem is not greater than v. Hence

Ngo(ME N+ ... +N o~ ) €elv)+ .. +ovy.)
< 3p(vigey)

(we have taken into account that @(v,.,)= 2e(v) when i+ 1 < § and
that abways @(v,,,;) = @(v)). But at the same time @(viy+1) € 2¢(v;h
ie. Ng={v) € 6p(v,) € 6¢(v). The theorem has been proved.

Remark. Theassertion of the theorem is clearly also true in the case where we
restrict our attention to deterministic finite-step and infinite-step methods. In
such cases, of course, the definition of the convexity function N {v) has to be
altered in an obvious way.

1.5 SOME PROPOSITIONS ABOUT MATHEMATICAL
PROGRAMMING METHODS

In this section certain general propositions, extensively used later, about
methods of solving extremal problems and about complexity functions are
brought together. Let ¥ = (U(F, G, m, E), O((Q, F,), I, ), r(-)) be the class
of problems.
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1.5.1 Canonical forms of methods

According to the definition, an ¥-method can form as the trajectories any
sequences of elements of G, including even those in which the *symbol of
inaction’ is encountered right up to the result. Trajectories of this sort have
little natural meaning, and some discussions of methods are carried out more
conveniently if it is supposed that a method does not form such trajectories.
On the other hand, in proving general theorems about methods (theorems
about the structure of a random search, for instance), the definition given
earlier is convenient (and that is exactly why we choose it}. It turns out—and
this is intuitively obvious—that every method can be ‘reduced to a canonical
form’, ie. can be changed immaterially to ensure that it forms only ‘natural’
trajectories.

DermNiTION. A deterministic ¥-method £ is said to be regular if
# = {%;(£'"1)} (i.e. the arguments in the rules are just the set of answers of the
oracle and do not include the set of questions given at the preceding steps), and
if

(1) %{&" )= implies %, (&', &)= forali{el;

(2) 5"y =x implies %, (&L )= foralléel

It is clear from the definition that a regular method forms trajectories of one
of the three types:

1 15 74 5 7 PR
XiyooaXy G ox, . L %01€6, x,€G,;
X1y o aXps. ., 5 EG.

A regular W-mixture is 2 mixture of regular A-methods. It turns out that the
study of ‘all’ methods can be reduced to the study of regular methods.

Dermirion.  Two U-methods & and @' are said to be strongly equivalent
(resp. equivalent) if the joint distributions with noise of their trajectories (resp.
their ‘laboriousness—error” distributions) coincide with one another on every
problem of the class.

We are interested only in those properties of methods which are uniguely
determined by their ‘laboriousness—error’ distribution. Therefore equivalent,
and a fortiori strongly equivalent, methods are indistinguishable within the
framework of the approach adopted.

Theorem. Every deterministic 9-method # is equivalent to a regular
deterministic ¥-method. Every @-mixture is equivalent to a regular M-mixture,
We omit the proof of this intuitively obvious theorem.

Example of the use of the theorem. In Section 1.4 we introduced the function
Nn(v), a certain characteristic of the complexity of the class 9, and we
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demonstrated the rdle of this characteristic as a lower bound of the
effectiveness of ‘infinite-step” methods. Let us prove that N (v) satisfies the
inequatities
N(v) = Nq(v) 2 N
These inequalitics show that information about the basic objects N (v) and
N (v) studied here is also information about N (v).
The first inequality is obvious. To prove the second, we observe that

N =inf{ll13ReBE): 1(2,9) <1, v(B, A}

By Theorem 1.5.1 the methods 4 appearing in the definition of N (-) can be
regarded as regular. But every deterministic reqular method # with a strong
laboriousness ! on the class A produces a result on any problem not later than
the [{]-th step with probability 1 (and then this can be regarded as ‘certainly’).
{Note: [ -] means, as usual, the integer part of a number.) Therefore any such
method is a deterministic method from B () (see Section 1.4.6). But then
the inequality N (v) 2 N{v) follows from the definition of Ny (¥).

The above theorem enables us in future to work only with regular
deterministic methods and mixtures of them (and from this point onwards we
shall avail ourselves of this possibility, regarding all the methods under
consideration, once and for all, as regular methods, without any further special
mention of the fact). We further point out that if a deterministic fi-method &
is capable of forming the trajectory &, @&, &, . . ., then it will form this
trajectory on any problem and with any noise (why?). Therefore the error of
such a method is identically equal to + oo and there is no point in considering
it. Accordingly, in future ‘methods’ will always be considered to be either
deterministic methods which do not form trajectories &, &5, &, .. ., or
mixtures of such deterministic methods.

1.5.2 Mixtures of problems

Let Uy, be a not more than countable subset of A, and let P, be a probability
distribution on A,. We shall call the ordered pair 9.{0=(‘110,Pf) an
U-mixture of problems. The F-methods & on the mixture N, will be
characterized by the means (over the distribution P,) of the laboriousness and
error (resp. *-error), i.e. by the quantities

1#,4,) = L 1. f1aP,,
W3,%U,) = L v( B, )dP,,

b, (%8, = L v, (B, 1)dP,.
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it turns out that with such a ‘Bayesian’ characterization, the possibilities of
randomized methods are approximately the same as those of deterministic
methods.

Theorem. Let & be any%-method, and let &, be an U-mixture of problems.
There is a deterministic W-method 4 such that

T(B,U,) <21 B, 9Uy) and ¥{(B,Up) < 29(F,Uy)
(and there is also a deterministic method 4 such that
T(#, ) < 2% U,y and ¥,(B,Ug) < 25, (8, Uy).

Exercise 1. Prove this theorem.
(It suffices to prove the first assertion; the sccc;nd is proved in exactly the same
way. We can suppose that & is a mixture [, #'dz. Then, clearly

né’e,ﬂo){

1
(&', ))dPds =J T Uy)dt
U %[0, 13 o

and simularly
1
(B, 9,) = j (8, To)d.
4]

Since [{-) is non-negative, there is a Borel set 7 c A=[0,1] with
mes7 =1 such that [(#', %) < 21(#,q,) for tel. Further, we have
|, (B, Wt < §(B, Uy), and, since mes T 2 4, this inequality implies that,
for some 1, €T, we have #(8%,U,) < 2¥(%, ). Clearly, #" is the desired
method. )

This simple theorem generalizes, to the case of ‘vector’ characterization of
the resolvent rules, the well-known proposition in the theory of estimates: ina
Bayesian approach, randomization of the rules is not necessary. This fact will
be extremely useful in obtaining lower bounds for the ‘stochastic complexity’
N (v); for, if we define in the natural way the ‘mean’ complexity Ng, (v) of an %-
mixture H, (starting from the means over Uy of the characteristics of the
methods), then the obvious inequality Ng (v} = Ng, (v) will hold. This result
shows that to estimate Ng,(v) it is in fact sufficient to restrict attention to
deterministic methods, and this, as a rule, can be carried out more simply than
examining all stochastic methods.

1.5.3 Complexities related to local oracles

The lower bounds for the complexity which are calculated in subsequent
chapters will, as a rule, be invariant in relation to the choice of the oracle with
which the class of problems under examination is provided. It is important
only that this oracle should be local {see Section 1.3.1.1). Let us outline the
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method of obtaining these estimates. As a rule, in obtaining lower bounds for
the complexity we shall reduce matters to the study of the behaviour of
deterministic methods using deterministic oracles. The basis for this procedure
is the following obvious, but extremely useful, fact.

Lemma on indistinguishability. Let U = (U(F, G, m E)y; O, F,, I, ¥);
r(-)) be a class of problems equipped with a deterministic oracle @, and let %
be a deterministic (3, &}method. Then the following assertions are true:

@ iff,feWandifx® = (x,, ..., X, ...)eG® issuch that x* is a trajectory
aof @ on f,and if ¥ (x,, ) = ¢(x;, f') for all i such that x; e G, then x® isa
trajectory of #on f';

(ii) let N be a natural number or + co, and let fe, 0 £ i < N. Further,
suppose, for 0 € { < N, that x,,, is the (i + 1)-th point of the trajectory
of # on f. Suppose that, for all i < N such that x;,, €G, we have
Wixie, fi) =W(x:y1, fivy) for all j such that N > j =i+ 1. Then, for
all i < N, the points {x,,...,X;,,) are the first i+ 1 points of the
trajectory of @on f.

Suppose, in particular, that the oracle @ is local as well as deterministic.
Then for (i) to hold it suffices that f = f' in a neighbourhood of each of the
points lying within G of the trajectory of & on f. For (ii) to hold it suffices that
fi+1 =f; in a neighbourhood of x;,, for all i, j such that x;,, €G and that
N>i+12z1,jzi+1 (In the last two statements the neighbourhoods are
supposed to be within G.)

The lemma on indistinguishability, for all its obviousness, is extremely
useful in obtaining lower bounds for the complexity, and this is easy to
understand: the assertions of the lemma reflect the unique restriction imposed
on the possibilities of methods, the restriction of ‘informational realizability’,
consisting in the fact that the trajectory of a method is recursively determined
by the information accumulated during the running of the method.

Exercise 1. Prove the lemma.

{ We restrict curselves to the proof of assertion (ii); it is by induction over i.

The case i = 0 is trivial, because the initial point of the trajectory of the
method 4 is formed by it in the absence of all information about the problem
to be solved, and so this is one and the same point for all problems. For i =1
assertion (ii) is also trivial: by definition x, is the second point of the trajec-
tory of @ on f, (and we have already seen that x, is the first point of this
trajectory.

The inductive step. Suppose we already know that for all 5, 1 £ 5 €k, the
assertion

I{s): Xy, - . -, X, 15 the trajectory of & on f_,
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is true. We shall deduce from this that I{k + 1) is also true, provided that
k+1 £ N. This will complete the proof. We already know that /(2)is true, and
so we shall suppose that k+1 > 2.

Since & is a regular method and x;, . . ., x; are the first k points of the
trajectory of & on f,_(,s0 for some k withk < k we have x, € G,/ < k, whereas
x;e{,*} when k < I < k. Suppose it is already known that

Y ho) =000 L) 1Sisk-],

In view of the facts that the method 4 is deterministic and that the rules for
forming trajectories are of a recursive kind, it obviously follows from this that
Xy, . .., X, are the first k points of the trajectory of & on £. By definition x, ,
is the {(k + 1)-th point of this trajectory, and so I (k + 1) is true. So it remains to
verify that

Ylxp, fom1) = ¥{x, )

is indeed true. When x;  {{J, *1, the function y(x,, f) does not depend on f,
and so it suffices to verify the formulated assertion for ! € min{k, k — 1}. Let
1<k—1 be such that 1 £! <k Then by hypothesis Yrixy, ;) = Wix, £)
when j 2 |, i.e. in particular, y(x,, - ,) = ¥{x;, )} = ¥ix,, £), as required. The
lemma is proved. >

Exercise 2. Using the lemma, prove the following (intuitively obvious)
result. Let G consist of N points, and let the class of problems be formed by all
problems of the form Jfj (x) — min|x € G, let the oracle provide the value of f; at
the point x ‘consulted’, and let rg(f) = L. Prove that, for all v < 1, the strong
deterministic complexity of the class U is equal to N.

1.54

In conclusion we make the following remark. Up to now we have supposed
that the vector-function f generating the problem (2.1) 1s defined only on G.
Similarly the oracle, too, was supposed to give information only at pointsin G.
But sometimes it is known a priori that the function f is defined in a domain G,
larger than G (e.g. on the whole of E), and that the oracle is capable of giving
information about f over the whole of this larger domain. It is clear that from
the informational point of view, such an ‘exit beyond the limits of G’ may prove
useful, and so, in such a situation, it is expedient to allow the methods to put
questions about the problem under salution even outside G (within the limits
of G,). The scheme already given for describing classes of problems, methods of
solving them, and characteristics of methods, extends in an obvious way to this
more general case, and the propositions above (suitably reformulated) all still
remain valid.

We shall not, of course, rehearse the new versions of the previous definitions
and propositions. We point out only that, in the situation now being
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considered, G;, like G previously, must come into the list of objects which
specify the class of problems. Moreover, we must now be able to define the
error of a point x regarded as an approximate solution for points x e G,\ G as
well; we shall take it to be equal to + oo (or to a vector with co-ordinates + co,
if we are dealing with vector measures of error). After this remark the reader
himself will be able without difficulty to extend the scheme described above to
the case where G, > G (and for this reason we refrained from burdening the
exposition with yet another object, G,),

1.6 ONTHE COMPLEXITY OF CLASSES OF MULTI-EXTREMAL
PROBLEMS

The most easily verified and the most often encountered property of
mathematical programming problems is that of smoothness, which consists in
the continuous differentiability for a certain number of times of the
functionals in the problem. Correspondingly, methods of solving classes of
smooth problems could be considered over the widest applications.
Unfortunately, ‘universal’ methods of this type cannot fail to have catastro-
phically large and entirely unacceptable laboriousness. To convince ourselves
of this, we adduce the corresponding lower bounds for the complexity. First we
describe the classes of problems under consideration.

1.6.1

Let G = E" be a bounded closed set, and let k be a natural number. We shall
consider problems of the form

HX)-min|f(x) €0, 1£j<m xeG, 6.1)

generated by k-smooth functions /= (£, . . ., £,), i.e. functions f defined over
the whole of E" and continuously differentiable k times. A degree of
smoothness contributes little, obvicusly, to the obtaining of constructive
results. It is further necessary to limit the rate of variation of the functions f]
and their derivatives. The most convenient way of doing this is as follows, Let
Ly, ..., L, be given positive numbers. Let $*(L,, . . ., L,,) denote the set of
all k-times continuously differentiable vector-functions f = (f, . . ., £.) such
that the kth derivative of f; in any direction does not exceed L

dk
aﬁﬂ(xﬂh) S LY, xeE"heE", 0<j<m (6.2)

Further, let @ be an arbitrary local deterministic oracle for the
set §*(Lo,...,L,) (questions can be put over the whole of E"). Let
85(G; Ly, . . ., L) denote the class of all problems of the form (6.1) generated
by the functions f e S*(L,, . . ., L,). It is convenient to take the normalizing
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factors for the class to be
p*(G)L

where p(G) is the radius of G. The significance of r; is that it is the natural
estimate of the maximal (in G) difference between the function f; and its Taylor
polynomial of order (k — 1) constructed at the “centre’ of the set G.

1.6.2

The following theorem determines the lower bound of the complexity of the
class SY(G: Ly, ..., L)

Theorem. Let the interior of G be non-empty, so that the asphericity &, ,(G)
of the body G is finite. Then the stochastic complexity of the class of
problems $%(G: Ly, . . -, L,,) admits the lower bound

- 1\
N(v) = d"(k)e, [ (G) (;j = g, (v). (6.3)

Here d(k) > 0.
(For the proof see the authors’ paper [34].)

Let us discuss the estimate {6.3). First of all we point out that a similar
estimate for the deterministic complexity of the class S5(G; Lo, ..., L,) is
well-known; according to the authors’ information it was first obtained in
[13]. Let us consider some consequences of (6.3). It is clear that, from the
practical point of view, the nature of the dependence of @, , (v) on vand nt leads
to a catastrophic growth of the complexity of the class when v — 0 and when
n— oo, provided that k is fixed and e,.,(G) remains constant (ie. unless
problems of high dimension are considered on ‘strongly condensed’ bodies).
By increasing the smoothness, @ ,(v) can be somewhat reduced; but in
practice k is usually not very big (k = 1 or 2). Of course, the point here is not
that the actual problems are not sufficiently smooth; it is simply that we are not
in a position to estimate the highest derivatives of the components in the
problem and to know into precisely which class St(G;-, ..., they fall
Moreover, the derivatives ‘usually’ increase rapidly with growth of their order
k, and the effect of increasing the smoothness is ‘eaten up’ by the fact that, to
ensure the requisite absclute accuracy, one has to employ methods which,
although orientated towards greater smoothness, are, on the other hand,
constructed on an ever higher relative accuracy.

Of course, from the practical point of view, matters might turn out not too
badly, if the quantity d{k) were sufficiently small, But this is not so. Even the
extremely rough {lowered) lower bounds N (v) determined by the proof of
Theorem 1.6.2 (see [33])show that whene, (G) = 1 (Gisaball)andk = lor2,
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a guaranteed solution of all multi-extremal problems with a relative error of
1073, say, is an absolutely hopeless matter when the dimension n ~ 20.

We remark further that the lower bound for complexity (6.3) is exact
(asymptotically as v — Q) in the following precise sense: with a suitable @ there
are methods of solving problems of the class $%(G; L, . . ., L,,) with an error
£ vand with an upper bound for the laboriousness of the form c(G, k)(1/v}**
(see [13]).

We emphasize that the estimate (6.3) was obtained for the stochastic
complexity of the class. Thus the use of methods of random search for solving
multi-extremal problems of high dimensionality is just as hopeless as the use of
deterministic methods (we are speaking, of course, of methods which give
certain guarantees: on individual problems any method ‘may be lucky"). This
being so, we cannot see the sources of the optimism displayed by devotees of
random search as regards its applicability to multi-extremal problems.

Roughly speaking, not only multi-extremal smooth problems, but even
3-extremal smooth problems are not accessible to solution by methods with
guaranteed (and applicable in appreciable dimensionalities) estimates of
laboriousness: in fact, it can be shown that the estimate (6.3) obtains on
problems with m = 0 and a not very large number (3 altogether) of critical
points throughout the whole of E” (i.e. points x at which f3(x) = 0).

Even more can be asserted. Consider the subclass $%(G, 1) of the class
8%(G, 1) (corresponding to the unit ball G of the space E™), consisting of all
possible 1-extremal problems fyeS8*(1) such that f(x)=p,x* when
Ix = 1, py > 0, infs fy = infer f,. We emphasize that, when fe.S{,(G, 1}, the
equation Vf(x) = 0 has, by definition of the class §%(G, 1), just one solution in
the whole of E". Tt can be shown that the deterministic complexity N (v) of this

class satisfies an estimate of the form

N =cin, k)(1/jy)n 0k 6.4)

The estimate (6.4) is not much better than (6.3). Thus even 1-extremal (non-
convex) problems do not admit a guaranteed method of solution with an
acceptable bound for the laboriousness,

1.63

Let us discuss some deductions from the results obtained. We have seen that
not only all smooth problems, but even l-extremal smooth problems,
constitute a class which is too complex to admit methods, acceptable as regards
laboriousness, of solving all problems of the class. This deduction is based on
the low (informational) estimates of the actual computational complexity of
the methods, and so, from the latter point of view, matters are still worse. On
the other hand, from the point of view of applications, it is precisely such sorts
of classes of problems which appear most natural. Of course, in practice,
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methods are usually applied without thinking too much about what guaran-
tees they can provide, and people are satisfied with the results so obtained,
which are at least no worse (and sometimes they may be considerably better)
than the original (zercth) approximations to the solution. Whatever success
may be credited to this purely empirical approach to a problem, it cannot be
regarded as capable of replacing a theoretical basis for recommendations
about the use of this or that method. We see that a sufficiently general positive
theory of this kind cannot relate to the class of all optimization problems {(or
even the class of smooth problems). A way out from this situation would be to
single out those classes of optimization problems which are, on the one hand,
sufficiently general and natural (that is, in the final analysis, those which
embrace sufficiently many practical problems) and which, on the other hand,
have a complexity (albeit an informational complexity) of acceptable magni-
tude. So far as the authors know, only one class of non-linear problems which
satisfies these requirements has been singled out, namely, the class of convex
programming problems. Convex programming, it would seem, has a suf-
ficiently wide field of applications, and at the same time this class is also
acceptable as regards complexity. For this reason we shall go over to the study
of classes of convex extremal problems.

1.7 PROOF OF THEOREM 1.34

See Section A.1 for the concepts used in this proof. The result was obtained in
the authers’ paper [33].

Lemma. Let®,|, beafamily of probability distributions (regular, Borel, and
Lebesgue-complete) on the Polish space X, which depends in a Borel manner
ona parameter y e ¥, where ¥ is again a Polish space. There is a function, Borel
with respect to s and y,

oy [0,1IxY- X

such that the distribution of values of ¢ as a function of se A=1[0,1] (A is
equipped with Lebesgue measure) is, for each ye¥, @,,.

Derivation of theorem 1.3.4 from this lemma.

Let {®, -1}, be a set of distributions corresponding to the stochastic
method % under consideration Let

H& =1y -y liy. o ) LEA]

(the product is given the T1khonov topology and a measure F,», which is the
product of the Lebesgue measures on the factors). By the lemma, there is a
Borel function %;(n'"',t): A®xJ'"! - & such that, for each 7"}, the
distribution of its values as functions of t® on A® (the distribution being

induced by the measure F,<) is @, -1
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We consider the mixture of methods @& = {x(n""", 1)} , and the method
# = [~ @ dF,. From the definition of the distributions ®@,,=(#,1)
and the definition of X;(#’~*, t,) it can immediately be deduced (we shall not
do this here) by induction over i that, for every fe¥ and every «w®, i, the
distribution of the initial fragment of length i of the trajectory of & on f with
oracle noise w™ is precisely (D,im»(.@ ). Therefore the distribution of the
trajectories of & on f with oracle noise ™ is .0~ (#,f), and so & is
equivalent to & in the sense required by Theorem 3.4.

Now let ¢°(t) be a Borel function on A with values in A®, the distribution
of values of which (i.e. the distribution induced by the Lebesgue measure
on A) is F=(such a function exists by virtue of the lemma) It is clear that
the mixture # is equivalent to the mixture &= _[ @#'dt of methods
B = (X011, (2 ()} 1, and so & is also equivalent to &. This proves
Theorem 1.3.4.

Proof of the lemma.
Let X = Ul X{ bea partition of X into disjoint Borel sets of diameter £ 3,

and let X¥ = uvi, Xt i bea pamtlon of Xf . ., into disjoint

Borel sets of diameter <l‘“i’ k=1,2,. .When X}, isnotempty, let
¥ .. .4 beanarbitrary point of X For an empty X%, i the point
',‘1__. ., = & where 513 a fixed pomt of X. We write

..ik(.v)= xly{Xfl ..... a‘;}‘

Then ¢} ,(y)is a non-negative Borel function of y.
We define the function

.,I.(y)’ ij 2 1’ J‘{kalk ;0!

in the following way. When k = |
T =0, Th) = jz e
suppose, further, that T}‘ ,....1, (¥) has already been defined. Then
ii:.l..,t, o(¥) = :1 ..... l,_l(}’)-
T )= Z B L HTE Ll )

It is clear that 7¥ _, (y) is a Borel function of y, and that 7% ., ..
increases as i increases, and that

lim T}k,_,,,,i._l,:(}’) =

i~

T O) Em TR = 1
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All these relations follow from the obvious equality

=0 v i)

k 1
U( v th'___'!k_l'j)u... U( U XJ)}'
1gigi- Lgigh-1

We define the functions

g if s=0s=lors=7 _ .({»
o, y) = for some i, ..., 0;
' f?l,....i,‘s if T?l.....ik—l()’){5‘:?}"[.,.5‘[)’)
for some i, ..., 0"

[* Note that if such a set exists for a given s, then it is unique.]
Let us verify that @* (s, ¥) are Borel with respect to s, y. To do this, let s, , s, be
rea] variables, and let

GI(SI!SZ!y) "__{

0! sl 4529
1, 5 252.

0, 5 =lé 524

and  B;(sy, 55, 9) = {
1, 51 =52|

It is clear that 8, and 8, are Borel with respect to s, y. But then for a scalar
Borel function 7°(y), its graph, ie. the set {{s, y)ls = T(3)} and its epigraph, ie.
the set { (s, y)|s = T(y)},are both Borel, because the characteristic functions of
these sets are 8, (F(y), s, y) and 8,{7{y), s, ), and these functions are Borel
with respect to s, y by virtue of the model argument in Section A.1.2.2. Ttis now
clear that @*(s, y) is a Borel function.

We next verify that, for each fixed y = j, when k — co the function @*(s, y)
converges (indeed, uniformly outside a certain countable setf) to a function
@(s, y). For, let L(7) be a countable set consisting of the ends of the interval A
and the values of all the functions 7 ., at the point j and let

b B g 2 L, be the set {5|T}‘l_m_;*_ll,k_l(ﬁ) <s<Tf )}
Clearly,
B a)2 U MO

and

Q’k[A’ft, ik(f]w}-’) = th‘l...,s,‘-

Therefore .on
AL e v AL L)
[T -3}
(for every k = 1) ¢*(s, y) converges uniformly on s, and

k+1

Pl (s, Pho(s, 7)) €27
(because the diameter of X}, ., does notexceed 27*). On L(y) the sequence
{@*(s, )} is stabilised at every point, and so g*(s, y) certainly converges as
indicated.
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The function @(s, y) is Borel (being the Limit of Borel functions). We show
that the distribution &, ,, of its values as a function of se A is ., In view of
the regularity of the measures ‘T’xu- @,j,,, it suffices to prove thatif K = X isa
compact set and if U, containing K, is an open set, then

a=0,,K) < ai'xu{U)

(since both measures are probability measures, it follows from this that ® and
& coincide). We fix the K, U, and 7eY, and let § > 0 be such that the closed
3d-neighbourhood of K lies in U. We choose m so that 27™ « 4§, and we
consider all the sets X7?  , which intersect K {and which therefore lie in a
d-neighbourhood of K). The sum of the measures @5 of these sets is not less
than o, But each of these, let us say X7, r, which has a non-zero measure,
corresponds to a non-empty interval A7, 1 (7). On A7 r, (¥) the function
@™ (s, p) takes valves in X7 and

mesAT 7 (P) = 05X 1)
Outside the countable set of points AT ...z (¥) we have

Prlpls, 7)™ P €271 < 24,

Thus, almost everywhere on A?I_mlvm(f} we have ¢(s, J)elU. Therefore,
putting

IT= {il" . '!iMIX?:...‘,iM nK _-’ég},
we obtain

‘ﬁx';(u) Z Z meSA?:,A,,,:m(}’)

(SR N T~ §

= Z ‘Dxf?(X"".‘...i,,) ?(DxJ;(K),

i
[{F I S Y- §

as required, and the lemma is proved.
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Convex programming.
linearly convergent methods
for classes of general
convex problems

In this chapter we describe the main subject of our investigation-—convex
programming problems. A classification of such problems is indicated.
Methods are constructed for solving genera! (the widest possible) classes of
problems of this kind; methods which bave linear convergence (ic. which
converge at the rate of a geometrical progression). The rate of convergence of
these methods is determined by the dimension of the space. The complexity of
solving the corresponding classes of problems is realized by these methods
asymptotically with respect to the accuracy (this is proved in Chapter 4). Inthe
following chapter another family of methods will be constructed whose rate of
convergence, although indeed no longer linear, does not depend explicitly on
the dimension of the problem. Roughly speaking, methods of the second kind
realize the complexity of solution of general classes of convex problems
asymptotically with respect to the dimension. Combining these two groups of
methods, in Chapter 4 we learn how to realize (more precisely, to ‘realize
approximately’) the complexity of solution of peneral convex problems over a
wide spectrum of the standard convex bodies G of arbitrary dimension and
with arbitrary accuracy.

2.1 CONVEX SETS AND CONVYEX PROBLEMS

We introduce the main classes, studied in this chapter, of convex problems and
their corresponding informational mappings.

We start with some elementary facts about convex analysis, which we shall
need. We shall try not only to introduce the material for reference purposes,
but also to form a geometrical view of the objects in question which will be
useful subsequently. Throughout, E will denote a real Banach space.

42
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2.11

Dermvition. Let G < E. The set G is said to be convex if it follows from
x,yeGand te[0, 1] that ix+ (1 —¢)yeG.

Geometrical interpretation: a set is convex if, whenever two points lie in it,
the segment between them lies in it.

Exercise 1 (onthedefinition). IfGisconvexandifx,, ..., x,eG,thenevery
convex combination x = ZL y @i X, a4 2 0, 2‘:= , 8; = 1 of the points x; lies in
G.

[t isclear that the intersection of any family of convex setsin E is convex. The
simplest example of a convex set is a subspace {x e E[{e|x — x, } < 0}, where
ecE* e £ (,isa fixed element of E*, and x is any point of E. This set is closed,
as well as convex. By taking the intersection of a half-space with any family of
sets, we again obtain a convex closed set. This construction enables us to obtain
an arbitrary (distinet from E), convex, closed subset of E.

2.1.2

Theorem. Let G = E be a convex closed set, and let x € E\G. Then thereisa
half-space which contains G but not x. In particular, if G # E, then G is the
intersection of all the half-spaces which contain G.

The boundary of the half-space mentioned in the theorem is called the
hyperplane separating x and G.

The proof of this theorem (for the case where E is a Hilbert space) is given by
the following useful exercises for the reader.

Exercise 2. Let Ebea Hilbert space and ¢ € E bea non-void, convex, closed
set, and let e E\G. Let {x;}, x,€G, be a sequence minimizing [|X— x|
over xe @,

% - x.-ll—aw"ing Ix—xl = pix, G).

Prove that the sequence {x,} converges to a point x*€G: |X—x*[| = p(X, G)
and that the point x* which satisfies the last relation (i.e. the point of G which is
closest to x) is unigue.

Exercise 3. With the conditions of Exercise 2, consider the half-space
{xeE|{x—x*|%—x*) < 0}. Prove that this half-space contains G but does
not contain x. Geometrically, G and X lie on oppaosite sides of the hyperplane
going through x* and perpendicular to x — x*.

Remark. In the general case of a Banach space E, the Euclidean scheme of
Exercises 2 and 3 does not suffice to prove Theorem 2.1.2. This theorem is
equivalent to the fundamental Hahn-Banach theorem.
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2.1.3
We now define the concept of a convex function.

DesiviTion.  Let G < E be a non-void convex set, and let f:G — R be a real
function on G. The function is said to be convex on G if, for all x, ye G, and
te[0, 1] the inequality

fex+(1 -9y <)+ -0 (1.1}

holds. An equivalent definition: fis convex on G if the restriction of f to any
segment in G is a convex function on this segment.

Exercise 4 {on the definition). Jensen’s inequality. Let G be convex, let f be
convex on G, and let x=)7_ ax, o 20, $i_ o,=1 be a convex
combination of points x; € G. Show that then

SR € Y wfx).
i=1

By using the convexity of the function (—Int), +> 0, and Jensen’s

inequality, prove Cauchy’s inequality
tF ...+t
([1...t")1“h-<.,,—1:+—n'~+i, f‘-)‘O.

Exercise 5. Estimate of the modulus of continuity of a convex function by means
of its oscillation. Let fbe defined and convex on a convex set G, let x,zeG,
and let y be a point on the segment [x, z]. Prove that then

b=yl Ix =yl
D =] V@) < =y Ve
Ve(f) =supg f—infg f

is the variation of f on G. In particular, prove that if f is convex in a
p-neighbourhood G, of the set G and if V; (f) < oo, then fis a Lipschitz
function on G with the Lipschitz constant ({/p)V, (f).

f-rxr<

where

It i$ convenient to interpret the property of convexity of a function f in
terms of its epigraph. We define the space E, as E x R'. The epigraph of a
functionf: G — Risasubsetin E, definedas {(x, {)]x€G,t = f(x)}. A function
fis convex if and only if its epigraph is a convex set in B, (it is useful to think of
the situation when E = R! or E = R?).

A very simple example of a convex function on the whole of E is an affine
functional f(x) = {x|e ) +c, ec E*. For such a functional the inequality (1.1)
becomes an equality. Affine functionals are the only possible continuous
functions f such that both fand —f are convex on E.

Just as all convex, closed sets can be constructed from the simplest such sets
(from half-spaces) by the operation of taking intersections, so all continuous
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convex functions can be constructed from affine functions by the operation of
taking the upper bound.

Theorem. Let f, w e be convex functions on a convex set G < E. Then the
function sup,, f,,(x) (provided that it is defined on G} is also a convex function,
and, if «, 20, so is the function Y ,.n, f, (in this formula only a finite
number of the &, are non-zero).

The proof is left to the reader,
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Theorem. Let G < E be a non-void, convex, closed set,and let f:G - Rbea
continuous, convex function on G. Further, let int G # & (or let E be finite-
dimensional). Let A denote the set of all continuous, affine functions g such
that g < fon G. Then

J(x)=sup{g(x)|ge A} for xeG. (1.2)

This theorem is closely connected with Theorem 2.1.2. It is proved in the
following series of exercises,

Exercise 6. (Reduction to the case int G # &J.) Under the conditions of the
theorem, let E be finite-dimensional, and let E® be the minimal, affine sub-
space of E which contains G. Prove that the interior, int, G, relative to ES,is not
void. Would this still be true if E were not finite-dimensional?

Exercise 7. Under the conditions of the theorem, let xeintG, and let
x, =(x,)e E,, t < f(x). Prove that the epigraph of f is a convex and closed
set, and that the hyperplane separating it and x, is the graph of a certain affine
function in A. Hence deduce that (1.2} holds on int G.

Exercise 8. Prove that, under the conditions of the theorem, whenint G # 0
the set int G is dense in G. Hence, and from the result of Exercise 7, deduce that
the assertion of the theorem is true. (Hint. It is useful to remember that a
convex function on an interval is semi-continuous above.)

.15

‘We now define the fundamental concept of a support functional to a convex
function.

DeriNiTioN.  Let G < E be convex, and let f:G — R be a function. Any
functional g € E* such that

f(x)=f(x0) 2 {glx—xp > for xeG (13)
is called a support functional to f on G at the point x,.
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Geometrical interpretation: for xeG the graph of the affine function
¥y =f(xg)+ {glx —xq > lies under the graph of the function f and touches the
graph of fabove the point x,.

Exercise 9 (on the definition). Let x, €int G and let f be differentiable at x;.
Prove that the support functional to fon G at x, (if it exists) is then unique and
coincides with the derivative of [ at x,.

Exercise 10 (on the definition). Let f be convex on a convex set G and let
Xo €G. Let g be a support functional to fat x,, on some neighbourhood of x, in
G. Prove that ¢ is also a support functional to fat x, on the whole of G.

The set of support functionals to fon G at a point x is denoted by d; f (x). In
the case of a Hilbert space E the elements of E* are canonically identified with
the elements of E, and so the support functionals can be regarded as vectors in
E. In this situation they are called sub-gradients.

By (1.3)a support functional carries global information about the behaviour
of fon G, information which, as we shall see, is extremely valuable for solving
extremal problems. It should be emphasized that when f and G are convex, a
support functional to f on G at the point x is determined by the behaviour of f
in an arbitrarily small neighbourhood of x in G, or, as it is said, by the germ
of f on G at the point x (the assertion of Exercise 10). So, in the convex case,
knowledge of the local structure of f gives extremely valuable information
about the global properties of f. This, it would seem, is what determines the
objective ‘easiness’ of solving convex extremal problems as compared with
multi-extremal problems.

Let us clarify whether there are sufficiently many support functionals to a
convex function. This question is settled by the following theorem.

Theorem. Let G be convex, and let /-G - R be continuous at a point
Xp€int G and be convex on G. Then the set dg f (x) is non-void.

Proof. By the assertion of Exercise 10 and the hypothesis that x, eint G, we
can replace G in the assertion by a ball ¥ of sufficiently small radius with its
centre at x,. Since f is continuous at x,, we can take f to be bounded in a
p-neighbourhood of ¥ (where p > 01is sufficiently small, just as the radius of V
is). By the assertion of Exercise 5, is continuous on V. Using Theorem 2.1.4,
we can find a sequence of affine functionals g;{x) = ¢;+ {(gi|x—x, >, g: € E*,
such that f(x) = g,(x)on ¥and g;(x,) = ¢;—==/(xp). The linear functionals
{g,|x > are bounded above in the ball V—x, with centre at { by the same
constani supg f— min; ¢,. Therefore their norms are uniformly bounded. If Eis
finite-dimensional, then {g, } has a limit point g {(in the general case one has to
speak of the limit point in the sense of the weak topology in the dual space). It is
clear that g is indeed a support functional to f on G at the point x,.
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Exercise 11 (onthe theorem). Ts the theorem still true if the hypothesis that f
1s convex is dropped? Or if the inclusion x, €int G is dropped?

Exercise 12_ (on the theorem). A converse of the theorem. Let G c E be
convex, let intG # ¥ and let f:G — R be a continuous function such that
8: f(x) # & for all xeintG. Prove that f is convex on G.

Exercise 13 (onthe theorem). Let G beconvex, x, €int G,and let f be convex
on G and continuous at x,. We define a function f*(x,, h) of he E by the
relation

£ e ) = tim Lo =/ (ko).

= +Q t

Prove that f'(x,, h)is well defined, continuous, and convex, relative to k, and
that f"(x, + 2k) = Af' (x,, B), £ 2 0.

Prove that the set of support functionals to f'(x,, k) as a function of k at the
point A = O coincides with & f(x,). Prove also that if g(k) = a+ {g[h > isan
affine function such that ge E* and f'(x,, h) = g(h), heE, then ¢ 1s a support
functional to f'(x,, h} at the point & = 0. Hence and from Theorem 2.1.4
deduce that &;f(x,) is not empty (thus obtaining a new proof of
Theorem 2.1.5),

Remark. A stronger result than the assertion of Theorem 2.1.5 can be
deduced from the Hahn—-Banach theorem; viz.,, under the conditions of
Exercise 13, for every ke E there is a g €3¢ f(x) such that {g|h > = f*(x,, h).
Thus dg f(x) is adequately abundant: for every direction k there is a support
functional to fat x, with the same derivative as f in the direction h.

Exercise 14 (on the theorem). Let G be convex, let f be continuous and
convex on G,and let int G # . Prove that f satisfies a Lipschitz condition on
G with a constant L if and only if, for every x, €int G and g €dg f(x), we have
lglly < L.

Exercise 15 (on the theorem). Let G be comvex, let f be a convex
function satisfying a Lipschitz condition with constant L on G. Prove that
96 f(x) # & for all xeG. Further, for every xe G, a ged; f(x,) can be found
such that |lgll, < L. (A reader who is unacquainted with such results in
functional analysis as the Hahn-Banach theorem and the compactness of a
ball in E* with a suitable topology may restrict himself to the case of a
Euclidean finite-dimensional space E.)

2.1.6

We now dgﬁne the concept of strict convexity. For our purposes, the strongest
definition is sufficient, and we need only consider the case of a Hilbert space.
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DerniTion.  Let E be a Hilbert space, G = E a non-void, convex, closed
set, and « = 0. A function f: G — R is said to be a-strictly convex on G if,

for x, yeG,

2f(¥) < —ZIx =¥+ /()

and f is continuous on G.

Remark. O-strictly convex functions on G are precisely continuous convex
functions on G.

In Exercises 16-21, E is a Hilbert space, and G < E is convex, closed, and
non-void,
Exercise 16. Let f,, we(, be a-strictly convex functions on G, and let
f(x) = sup, f,(x) be defined and continuous on G. Prove that fis a-strictly
convex on G.

Exercise 17. Let f, g be respectively a-strictly and S-strictly convex on G.
Prove that f+ g is (a + B)-strictly convex on G.

Exercise i8. Let fbea-strictlyconvexon Gandlet( £ § < a. Prove that the
function fx?/2 is B-strictly convex on E, and f is (x?*/2)convex on G.

Exercise 19. Let f be a-strictly convex on G, let x4 €G, and let g e d; fix,),
Prove that

F(9) 2 (0)+ <gly =0 ) +5 (9 = xo)?

when yeG.

Exercise 20. Let fbe a-strictly convex on G, o > 0. Prove that f(x) - + co
when [|x|| - o0, x €G. Prove that there is a point x* giving the minimum of
Jon G and that it is unique, and that the inequality

4
flx —x*)? < . ) —f(x*)
holds.

Exercise 21. Let f: G — R be continuous, and let intG # (#. Let f have a
second derivative {f“(x)k|h> on intG. Prove that the following three
statements are equivalent:

1. fis e-strictly convex on G;

2 Vx, yeintG: ') Wx-y) zalx—y7 _

3. the quadratic form in A {f”(x)h|h > —a {h|h ) is non-negative definite for
xeint G,
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‘The assertion of Exercise 20 shows the important réle which the assumption
of strict convexity plays in extremal problems: every sequence { x;} minimizing
S on G converges to the point x* of the minimum of f, and |x,—x* || is
effectively bounded by f(x;) —f(x*).

2179

Convex sets can be specified by means of convex functions. Let f be a
continuous, convex function on E. Then, for any real a, the set {xeE|f(x)
< a} is convex and closed (check!). Conversely, if G = E is non-void, convex,
and closed, then it can be expressed in the way mentioned, namely, as
{x€Elp(x G) <0}, where p, (x,G) =inf{|x—p||y€G} is the distance
from x to G.

Exercise 22.  Verify that, in the situation described above, g(x) = g, (x,G)is
a continuous, convex function with Lipschitz constant 1.

Exercise 23. Show (at least in the case of a finite-dimensional E, although
the assertion is always true) that 8; g(x) when x ¢ G consists of functionals with
norm 1. Ifint G # ¢, then also, when x € G\int G, 8; g(x) contains functionals
with norm 1.

Another way of specifying convex sets is to use the Minkowski function p(x).
Let G be convex and closed, and let x, eint G. We define the function px) as
inf {2]xg + 27" (x — x) € G}. Geometrically, p(x) is the ratio of the segment
from the point x to the point x, to the segment from x, to the intersection of
the ray in the direction x — x, with the boundary of G.

Exercise 24. Prove that, in the situation described above, p(x)is a continu-
ous, convex function which is homogeneous to the first degree relative to the
point x (i.e. p(A{x — xg) + xo) = 4p(x), 4 = 0). Prove that G can be described as
the set {x|p(x) < 1}.
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We are now in a position to describe the main object of our investigation—a
convex extremal problem.

DEeFNITION, A problem
JoxX)omin|xeG < E, fi(x)£0,i=1,...,m, (t4)
is said to be convex if G is a convex, closed, non-void subset of E and if the

J.i=0,1,..., m,arecontinuous, convex functions on G. Compatible convex
problems are, as a rule, soluble.
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Theorem. Let (1.4) be a convex problem, and compatible, let E be refiexive,

and let the set .
G, = (xeGlfx) < afilx) €0, 1 Sism

be non-void and bounded for some a = a,. Then the problem (1.4) is soluble.

Proof. Let
Jou =Inf {fo(0)IxeG, filx) £0,i=1,.. ., m} c Ru{—w}

be the optimal value of the objective functiopal in (1.4). We consider the sets
Ga # @ foe < a € ap. Itis clear that they are convex and closed,_and_G, c G‘,,-
when a < ¢. In addition the set G, is bounded, by hypothesis. Since E is
reflexive, G, is compact in the weak topology of £, and G,, fo, <@ € ap
is a centred family of its closed (in the weak topology) subsets._’[hercfore
Pes 10.Cr =0, + O Obviously, G, is precisely the set of solutions of the
problem (1.4).

Exercise 25 (on the theorem). s the assertion still true if the ?oundedness
conditionon G, is removed? Is it true if this condition is repl?'.loed‘ inthe case of
a Hilbert space E, by the requirement that the function ,Z'= Jibe a-s_tnctly
convex (@ >0) on G? {In the latter case, the assertion of Exercise 19,
Section 2.1.6, has to be used.) _ _ _

In most applications E is reflexive (or even 2 Hilbert space) and elthe_r G is
bounded or ', f; is a-strictly convex on G with & > 0, gnd s0 chpatlbﬂ1ty
of a problem under consideration immediately implies its solubility.

2.2 CLASSES OF CONVEX EXTREMAL PROBLEMS

221

In accordance with the ideas described in Chapter I, a class of extremal
problems is specified by fixing three obijects: a field of problems, an oracle, and
a normalizing mapping. Actually, of these three objects only the first two are
essential. The normalizing mapping is chosen relative to these two frqm
considerations of mathematical naturalness and convenience. Thus, a classifi-
cation of the fundamental objects of our investigation, i.e. of classes ofconve_x
problems, presupposes a classification both of sets of such problems (or, if
preferred, of the problems themselves) and of the oracles u§ed. ‘

As regards the oracles, here we follow the customary clasmﬁcat';on of _thcm
into oracles of zeroth order (providing only the values of the functionals in the
problem), oracles of first order (providing both the values of the functionals
and the values of their first derivatives), and oracles of higher order.
Additionally, we distinguish oracles of any of these types as being either
deterministic or stochastic.

Classes of convex extremal problems 51

The customary view is that methods using oracles of order higher than the
first cannot be widely used (at any rate, in solving problems of appreciable
dimension), mainly because of difficulties associated with the construction of
such oracies. On the theoretical side, study of methods of this kind is not
particularly interesting, either. For these reasons we shall not investigate these
methods at all thoroughly, a few remarks about them can be found in
Section 8.1.1. Methods of zeroth order (using oracles of zeroth order) are
undoubtedly of interest, because it is just these oracles which can be most easily
constructed in practice. Some resuits about such methods are contained in
Chapter 9; from them it follows that the possibilities of such methods are
unfortunately rather limited.

From what we have said, the most interesting methods are those of the first
order, and jtis mainly with these that we shall be concerned. We point out that
it is precisely these methods which occupy a central place in works on
numerical optimization
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We now outline the classification of convex extremal problems which we shall
adhere to. Any classification is based on the picking out and subsequent fixing
of certain characteristics (the parameters) of a problem. Such characteristics
are, in particular,

(i) the dimension of the problem, n, ie. the linear dimension of the space
E, n=12..., 00
(ii) the nature of the constraints of the problem, according to which problems
are classified into:
unconditional problems im =0, G = E)
unconstrained problems (m = 0, G arbitrary)
constrained problems (m arbitrary, G arbitrary);
(iii) the smoothness properties of the problem (i.e. the smoothness properties
of the functions f}).

In most cases (and everywhere in this chapter) the basis of the classification
will be smoothness properties of the problem. The other characteristics will
determine the more precise classification of problems.

2,23

Let us carry out the classification of convex problems of the type (1.4)
according to the degree of smoothness of the functions appearing in them. Let
E,G c E,and m 2z 0 be fixed, & being convex and closed. Then a problem (1.4)
can be identified with a continuous (m+ 1}dimensional vector-function
f=Uo - .-, m) 0n G, whose components are each convex.
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The minimal natural restriction (at least, for bounded G) regarding the
smoothness of fis the requirement of continuity (and this we now demand
once and for ail for all the problems considered}and the boundedness of fon G.
The latter is equivalent to requiring that all the quantities

Vol f)=Vilf) = Sliléf.- - igi;fs

shall be finite.
Accordingly we denote by C(G, E, m) the field of all convex problems fof the

form {1.4) with given G, E, mand finite V,(/),0 < i < m. We equip this set with
the normalizing mapping

)= {vo{f}. i=0,
max {0,sup f;}, i>0.
G
The class of problems obtained by providing the field C(G, E, m) withan oracle
@ will be denoted by C%G, E, m) and called the class of general convex
problems. .
The norming which we have chosen for the error has a simple meaning.
Suppose f& C*(G, E, m)is a compatible problem and we hand out a solution of
it a priori—without looking. Then the maximal possible absolute error of
such a trivial method (laboriousness = 1) on f for the ith component is ri( f).
Therefore the clause ‘a C9(G, E, m}method has accuracy v on f* means that
this method is 1/v times more accurate than the trivial method of search
referred to (¢f. the discussion in Section 1.2.3.4).
Additional restrictions on the moduli of continuity of the components f; of a
problem f can also be imposed. The most natural restriction is to require that
the f; be Lipschitz on G; in other words, we demand that the quantities

L..(f)= sup )=l

XFy. LVEG HX‘—}’”

be finite, where | - is the chosen norm in E. Correspondingly, we denote by
CLp = Cup(G, E, |- Il, m) the field of all convex problems f of the fon_n (}.4)
with the given G, E, mand finite L, (1), 0 < i < m. (Note: When considering
Lipschitz-convex preblems we shall always suppose G to be bounded.) We
provide this set of problems with the normalizing mapping

r,(f) = 2p4(G)L y {fo)s ji=0,
P90 I max {0, minfi(x)} + 2p  (GIL, (S, J>0,

where p, (G) is the ||- J-radius of G (for compatible problems it is clear that
rif)=2p,,GL, (f) for all j). The field of problems CL.,,(G‘, E | -‘||, m)
provided with the oracle @ and the indicated normalizing mapping will be
denoted by C{,(G, E, ||- ||, m)and called the class of Lipschitz-convex problems.
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Clearly, r;(f) are natural upper bounds for the quantities sup¢ fo —infg fy
(for f=0) and [max, f;(x)],, j > 0, ie. of the normalizing factors of the
problem f, regarded as an element of C(G, E, m). So the interpretation of the
meaning of the normalization is the same as before.

2.24

The restrictions on continuity mentioned relate only to the moduli of
continuity of the f,. It is possible to impose requirements such as continuous
differentiability a specified number of times with restrictions on the modulus
of continuity of the highest derivatives, and also combinations of these
conditions with others such as strict convexity. The classes of smooth convex
problems which thus arise are studied in Chapter 7. But in the next three
chapters we focus our attention on classes of general (and Lipschitz) convex
problems solved by means of an exact oracle.

We make a remark which is important for the whole of the sequel. The
classification mentioned of problems according to their ‘smoothness’ is
justified not by the fact that in practice we often encounter convex problems
which are not Lipschitz, or Lipschitz-convex problems which are differentiable
only a few times. Such a justification would be, so to say, the ‘pure water of
demagogy'—rank deception by deliberate distortion of the facts. For the mere
fact of a high degree of smoothness in a practical problem does not, as a rule,
arouse any doubts. What must be borne in mind, however, is that smoothness
does not, in itself, count for much; what is important is the values of the
numerical parameters which characterize this smoothness (the values of the
corresponding derivatives, and so on).

With the normalization of errors which is ‘natural’ for the given class of
problems these parameters are taken into account explicitly (¢f. the description
given above of the normalizing factors for the classes of general and Lipschitz-
convex problems). Moreover, sometimes these parameters directly affect the
complexity or the class, or they may even have to be estimated a priori—
without this it may be difficult, or even quite impossible, to solve the
correspending problems (see, for example, the situation in Chapter 7). Thus
the numerical values of the parameters characterizing the smoothness of a
problem do, in one way or another, affect the complexity of solving it. In this
connection it is useful to have at our disposition methods which are sensitive
only to the coarsest and most easily estimated parameters of the smoothness of
a problem. Qur classification of problems is aimed precisely at singling out the
most natural and ‘not too delicate’ properties of the situation, and at
consiructing metheds which are not too sensitive to the numerical charac-
teristics of the other properties of the problem. Of course, the choice of what
aspects of a situation are ‘vital’ is by no means unique, and so our subsequent
considerations by no means exhaust the whole group of questions arising here.
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We hope, however, that what follows will convince the reader of the
reasonableness (though not, we repeat, of the completeness) of the chosen
approach to the classification of convex extremal problems.

225

We now describe the oracles which we shall consider in studying general {or
Lipschitz) convex problems. They will be deterministic oracies of the first
order, providing the values and the support functionals to the components of
the problem at the point under consideration. We shall not demand absolutely
exact answers, but allow the oracle to make mistakes (but we shall demand that
these mistakes shall not exceed the specified accuracy of the solution).

In order to demonsirate the naturalness of the formal definitions given
below we start from the case of an exact oracle of the first order. Inanswer to a
question about a problem fe C(G, E, m) at a point x it must provide the values
of £, at the point x and also the support functionals ¢, , € d¢f;(x) to them at x
(on G). If x is not an interior point of G, then 8¢ fi(x) may be empty. Therefore,
in considering classes of general complex problems, it is natural to restrict our
attention 1o the case int G # ¢ (in the finite-dimensional case this restriction is
unimportant, because E can be replaced by the least affine subspace of E which
contains G), and we can suppose that the domain of questions of the oracle @is
intG and not the whole of G.

Let us make an aside. It is clear that the convention just made does not
prevent us from using the whole set of definitions in Chapter 1, where the
domain of questions to the oracle was always the whole domain G. For we may
suppose that questions can be given on the boundary of G as well, but that the
answer to such a question is a point fixed once and for all in the information
space, this angwer containing, in fact, no information whatsoever. We now
return to the main stream of discourse.

Further, the oracle’s answer about f; at a point x can be regarded as an affine
functional

G.x(0) =fiX) + @iy =X ), 01,5 € 8cfi(x) @1

Here g, .(x) = fi{x)and g, ,(») < fi(y)forall ye G. It is now clear what is meant
by ‘the oracle makes a mistake by an amount £ v,'; this means that the oracle
gives, not §; . (x) but an affine functional g, .(x) vo-close to g, ,(x). It turns out
that it is sensible to measure ‘closeness’ by the maximal divergence of §; ,(¥)
and g, .(y) over yeG (the closeness must, of course, be normalized by
division by r,{ f)). If the calculated divergence of g, , and g, . obtained in this
way is not greater than v,, then changing from g, . to the functional
Gr<(¥) = g1 (¥) — vori( /) will ensure that the inequality

L) 26« 2.2)
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holds if g, .(x) is close, as before, to f;(x). For technical reasons it is convenient
to suppose from the start that the oracle’s answers satisfy (2.2).

We pass on to the following definition, in which v, = 0 is a parameter {the
accuracy of the oracle).

DerFmTION. By an oracle of type (int G, vo) for a field of problems C(G, E, m)
we mean any deterministic oracle with int & as its domain of questions, and
whose answers about a problem f at points xeint G are sets of m + 1 affine
functionals g/ (), 0 € j < m, which, for all fe C(G, E, m)and for all xegint G,
have the following properties:

) {Q{x(.’!’] < Sy, 0<i
gn{x(x) zfilx)—vori{f), 0 <

Similar considerations lead to the definition of an oracle for a field of problems
CL‘D(Gs E! " . “) m)

Dervmion. By an oracle of type (G,vo) for a field of problems
CrLip= CLip{G, E, )J-|l, m) we mean any deterministic oracle with G as its
domain of questions, and whose answers about a problem fat points x e G are
sets of affine functionals g, (y) which, for all fe Cr, = C1ip(G, E, || - |}, m) and
for all xe G, have the following properties:

&

gl (%) 2 /()= 2vop 1 (C)Lyy{ ), O<igm
(2) g{ .(y} is Lipschitz with respect to y with the constant L .4(f)

The second definition differs from the first in that, firstly, it is possible to ask
questions over the whole of G and not just on int G. Further, we require that
the norm of the support functional to f given by the oracle shall not exceed
L;.:(f) (such a functional exists at each point of G, see Exercise 15 in
Section 2.1).

The classes C°G, E,m) obtained by providing C(G, E,m) with an
(int G, vo)-oracle will be called classes of type C*°(G, E, m), Similarly we define
classes of type C1%(G, E, |- ||, m).

In this chapter and the next we shall study deterministic methods of solving
problems of these classes. It is important to notice that the methods proposed
will not require a priori knowledge of the oracle @, It is sufficient for them to
know the type of the class in question (i.e. the list of the objects vq, G, E, m for
the first type,and vq, G, E, || - ||, m for the second. The clause ‘the class Cis of the
type C™(G, E,m) resp. C}{G,E | |J,my will be written briefly as

Lip!

CeC™(G, E, m) resp. CeC (G, E, |- ||, m).

Exercise I. Let G be a bounded, convex, closed set in E. Prove that every
method of solving problems of a class of type C°(G, E, m) naturally induces a
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method of solving problems of the class of type CUp(G, E, |-, m) with the
same {or better) characteristics of laboriousness and error on the class.

2.2.6

In conclusion we discuss the question of the appropriateness of referring a
given extremal problem to one class or another of such problems. We point out
that one and the same problem can be written in the form (1.4} by many
equivalent methods. Suppose, for example, we have a problem written in the
form (1.4) with the £ continuous and convex on the whole of E. By introducing
fins1(X) = py4{x, G) we can write down an equivalent problem but now
without strict constraints:

Hlx)>min |f(x) €0, 1<igm+l. (14.1)

In the new formulation G = E.
Other examples of equivalent formulations:

folx) = min|xeG, f1() €0, (/1 (0 = max f(x), (142)
lgjism
Job9) > min| f() 0, () = - max  f(x)), (1.4.3)

u-min|fx)—u <0, jx) 0,1 <j<m (x,Wek,, xeC. (1.4.4)

We point out that these ways of writing the problem are equivalent only in the
sense that the problems obtained have a common solution (more precisely,
their solutions can be converted one into another). However, in relation to the
classification mentioned, and indeed even as regards the possibilities of their
numerical solution, these problems are by no means equivalent. Suppose, for
mstance, that the original problem was in the class of type C%(G, E, m)witha
bounded G, then the problems (1.4.2), (1.4.3), and (1.4.4) in general do not
belong to a class of this type. Moreover, if the original problem were smooth
and we had a method of solving it using this property, then the problems (1.4.2)
and (1.4.3), say, might lose smoothness, and in such formulations the available
method might not be applicable.

The circumstance we have just mentioned is neither a defect of the
classification, nor a defect of numerical methods. The latter operate not with
the original problems nor with classes of mutually equivalent formulations of
them, but with completely definite formulations (statements) of these prob-
lems. The choice of such a formulation is the business of the mathematician.
Similarly, the classification introduced for convex problems, which is intended
for the analysis of numerical methods of solving them, classifies not the
‘content of the problems’ but the formal way in which they are written.
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We stress that the most important stage in solving any problem of substance
by exact methods is the stage of formalization, of theoretical study of the
formal problem and its reduction to a problem which is solvable by numerical
methods; this is a stage of essentially human, creative activity, and it does not
yield (and seemingly will not yield for a long time to come) to mere formal
study and automation. At this stage the specialist operates, studying to the full
measure of his capabilities the specific nature of the actual problem, and
pushing forward as far as possible along the road towards its analytical
solution. But numerical methods, by the very meaning of their name, must be
universal, adapted not to solving concrete problems, but to solving all
problems of sufficiently wide classes. The purpose of the following study of the
complexity of the traditional classes of extremal problems is, if you like, to
work out an objective ‘scale of values’ of these classes. Guided by this scale of
values, we shall be able to realize what we should strive for in the first, the
‘human’, stage of solving problems of substance.

Let us give an example. In a large number of problems of substance of the
type (1.4), the strict constraints x € G are either entirely absent (G = E), or they
are only ‘weak’—the set G is unbounded. We saw earlier that, under weak
hypotheses regarding f, it is always possible to remove strict constraints ((1.4.1)
instead of (1.4)). It turns out, however, that the complexity of the class
C({t 2 0}, R, 0}, say, is infinite, and so problems of thisclass cannot be ‘solved
effectively’. Therefore, if we are speaking of general convex problems, not only
should the strict constraints not be removed, but, on the contrary, if they are
not there originally, we should impose them, by adding boundedness of G. To
do this, one must have an a priori estimate of the norm of the solution (i.e. one
must increase, by means of some preliminary investigation, the store of
information). We shali see later that not only the boundedness properties, but
even the geometry of G as well, affect essentially the complexity of the
corresponding class of convex problems.

2.3 THE CENTRES-OF-GRAVITY METHOD FOR SOLVING
GENERAL CONVEX PROBLEMS

231

In this and the next section we describe a group of methods of solving general
convex problems, and we estimate their laboriousness. All of them are methods
of the first order. The idea of these methods is very simple. Suppose there is a
convex problem f of the form (1.4), and a question is asked about it at a point
x £ G. Suppose also that the answer to the question contains information about
the values of the components of the vector f(x,} and about a set of support
functionals ¢;,i =0,1, ..., m, to the functions f at the point x,. Thus we
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bave obtained the affine functions
i xo =fi(x0) + @il X — %0 >

such that g{ . (x) € f(x)on G, and g{ . (xo) = fi(xo)- Let v denote the required
relative accuracy of the solution of the problem f (which belongs to one of the
classes of convex problems described in the previous section), and let r,(f)
denote the normalizing factors of this class. It is possible that g{o.xo(xo)
< vr;, (f) for some iy > i. We draw through the point x, the level hyperplane
of the function g, . (), and denote it by IT;,. The hyperplane II,, divides G
into two parts G, and G_, on one of which, let us say &, we have

g{o.xo(x) = gf;’ Xg (XO}'

Therefore G, automatically contains no points x capable of being approxi-
mate solutions of f with an error v(x, f) € v. For, when xeG, we have

fio®) 2 gl ox) 2 ¢f .« (x0) > vy ().

Thus, in the case considered, the answer to the question enables the part G, of
the domain G to be excluded from further consideration: points of G, are
automatically not solutions of f with the required accuracy.
Now let
fixoy€wvr(f), i=1,...,m

Then the point x, itself satisfies (with the required accuracy) the constraints of
the problem. We consider the level hyperplane IT, passing through x, of the
affine function g, (x). As before we denote by G, and G_ the parts into
which TI, divides G, and suppose

8,2, 2 g6 <, (x0) in G,

For the same reasons as before, the inequality fp(x) = f;(x,) holds on G..
Therefore if there is contained in G, an approximate solution x' of the
problem f with accuracy v(x, f) < v, then

Jolxg) S f(x) € fu +vro(f)

(as always, f, is the optimal value of the objective functional of the problem f).
We recall that the conditions

fix)gw(f) lsism

are satisfied, by hypothesis. Thus, if G, does contain approximate solutions of
S with the required accuracy, then x, is already one such solution. But if G,
contains no such solutions, then a fortiori all of them lie in G_. In all cases the
domain G, can be excluded from further consideration.

This argument shows that, having put the question about fat a point x, it is
‘always possible’ to pick out a part G_ of the domain G such that, if f has an
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approximate solution with accuracy € v in G, then f also has such a solution in
G_. (We said ‘always passible’, but it would be more accurate to say ‘always
possible if the r,{ f}are known’. Later we shall have to adopt special measures
to avoid the need for this information.) Here G _ is the part of G cut out by
a certain hyperplane = passing through x,. This hyperplane {and therefore
the domain G_ as well} is determined by the local information about f at
the point x,.

Thus the answer to the question enables the solution to be localized to the
domain G_, part of the domain G. It is now possible to take G_ as the new
domain of the functions appearing in the problem, to replace x4 by a suitable
point of G_, and to repeat the procedure already described, and so on. In
passing from iteration to iteration, the localization of the solution becomes
smaller and smaller. Intuitively it is clear that the localization of the solution in
a ‘sufficiently small’ domain enables the result to be obtained with the required
accuracy.

This simple geometrical idea just described forms the basis of the methods
proposed below for solving general convex problems.

2.3.2 The method of centres of gravity (MCG)

We describe a method of solving problems of a class of the C*¢(G, E, m) type.
The idea of the method goes back to [18]. The following exposition is based on
the authors’ paper [30]. The method is applicable in the case where E is finite-
dimensional, and G is bounded, convex, and closed. These conditions are now
assumed to be satisfied. Instead of E we shall write R". It is further assumed
that int G # . This latter, under the hypotheses adopted, causes 1o loss of
generality, since it is always possible to replace E by the least affine subspace of
E which contains G {¢f. Exercise 6 in Section 2.1).

Methods based on the geometnical idea described above really differ only in
the rule for choosing the next point (at which a question about the problem
will be posed) in the domain of localization of the solution, which is known at
the present moment. In choosing this rule it must be ensured that the domain
of localization will decrease from step to step “as rapidly as possible’. A suitable
measure of the ‘size’ of the domain has, of course, to be chosen. A useful
measure, for the group of questions in which we are interested, turns out to be
the Lebesgue volume of a domain.

Suppose we have G as the current domain of localization of the solution and
have chosen a point x e G as the point to be ‘interrogated” at the current step.
We do not know in advance precisely which of the hyperplanes passing
through x will cut out the new domain of localization of the solution. With a
badly chosen x (let us say, xedG) and a ‘bad’ plane of intersection (for
example, a plane touching 3G when x € 83), the new domain of localization
may be only a little smaller than the existing one (in the extreme case
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mentioned, the new domain would be the same as the old one). Intustively it is
clear that the closer x resembles the ‘centre’ of G, the greater will be the
decrease in the domain of localization at this step even taking the ‘most
unfavourable’ of the hyperplanes passing through x as the intersecting
hyperplane.

A natural candidate for the rdle of ‘centre’ of a convex domain G is its centre
of gravity (i.e. the centre of gravity of a mass uniformly distributed over the
volume of &), in other words, the point

x = [ydy/{dy.
G [

A convex-programming method which realizes the geometrical idea intro-
duced above and which uses as the next interrogated point the centre of gravity
of the domain of localization of the solution obtained up to this time will be
called the method of centres of gravity (MCG).

Exercise. Let G be a convex bounded body (the term ‘body’ means that int

G # %) in R®, and let x be the centre of gravity of G. Prove that:

(i) The definition of x does not depend on the choice of the Euclidean
structure of R* (in other words, the centre of gravity is an affine invariant
of G: if A:R"— R" is the inverse affine transformation, and if £ is the
centre of gravity of AG, then X = Ax). Hence deduce that if A is a simplex
in R" with vertices x,, . . ., x,, then the centre of gravity of A is

X =(xg+ ... +x,)/(n+ 1)

(i) If fis an affine functional on R", then

f(9= [£0)dy / [0
G

(iii) x is an interior point of G (use (ii) and the assertion of Exercise 23 in
Section 2.1).
The usefulness of the centre of gravity in the question interesting us is based

on the following geometrical lemma (here and later ||, denotes a Lebesgue
n-dimensional volume).

2.3.2.1

Lemma [21]. Let G bea convex, closed, bounded body in R” with centre of
gravity x, and let G,, G_ be the parts into which a hyperplane IT passing
through x divides G. Then

n o\ e—1
|G+|n1|G—|u‘€~(l_(n+1)lenl‘s e fGln'
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Geometrical commentary: It is impossible 10 cut off by a plane passing
through the centre of gravity of a convex body of volume 1 a part greater than
that cut off from a simpiex of equal volume by a plane passing through the
centre of gravity parallel to one of the faces (in the latter case the part attached
to the face is intended).

The lemma shows that the choice, as the interrogated point, of the
centre of gravity of the constructed domain of localization of the solution
really does guarantee a significant decrease of this domain—not less than
(e — l)/e = a(o0) times the volume, where

n H
a[n):l—(n+1).

These considerations suffice for constructing the MCG. We consider a
bounded, convex, closed body G = R™and a class C of the C*°(G, R”, m) type.
Let v > v, be the required accuracy of solution of problems of class €. We
describe the MCG constructed to this accuracy. We shall take v < 1: every
point of G is a solution of any problem fe G with accuracy equal to 1, so that
this assumption produces no loss of generality.

2.3.2.2

The work of the MCG constructed to accuracy v ona problem fe C consists in
the construction of sequences {x;eintG}]'and {G, < G}, Here
M, + 1 is the number of steps of the method on the problem f (the number is
formed by the method itself), and G, is a convex, ¢losed, bounded body lying in
G for all i < M. The set GM; is convex and closed and lies in G, but is not
necessarily a body. For every i € M, the point x; is the centre of gravity of
Gi_1,and G, =G,

As well as the above sequences the MCG constructs an auxiliary numerical
sequence {a,} . The number g, is, roughly speaking, the recorded value of
the objective functional of the problem being solved which is obtained after i
steps, and ap = + 0.

It will be proved below that the number M, + 1 of steps of the MCG on any
problem fe C does not exceed the number @, (v — vo}, where

| nlnipy n
‘b".w(‘l’)=i|m|i+2£j|mln1/v[+2. 3.1

Here and elsewhere Jef is the least integer 2 t.
The work of the MCG constructed to accuracy v, 1 > v > v,, on a problem
feC is described by the following rules.

MCG 0. [Initial setting
Put Gy = G, a5 = + . Go to MCG 1.
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MCG . i-th step

At the ith step (1 £ i € M/) there is a known convex, closed, bounded body
G,_, = G. On the ith step the following operations are carried out in
SUCCEsSIon:

MCG 1.1, The centre of gravity x; of the domain G,_, is constructed,

MCG 1.2. A question about the problem being solved is put to the oracle at
the point x;. (This is possible, because x;eint G;_, < int G)

Let g/(y) be the affine functionals imparted by the oracle. Put
rl = max{0, max, .cg{(»)}. If, for all jzi the inequality
(max, ¢,r!) (v —v) 2 g/ (x;) holds, put j(i) = 0; otherwise put j(i) equal to
some j = 1 for which this inequality does not hold.

MCG 13, Put
o= {af—l, i +#0,
min {9?("1): a;_l}, j® =0,
so that
a; = min {g%(x,)|1 €s<1i,j(s) =0}
MCG 1. 4. Let
G = {xeG,_197(x) < a, gl(x) € (v—vy){maxr), i <jsm}

1!
Take G, to be the closure of the set G,. If
|Gl < (v — o) |Gl (3.2)

go to MCG 2. Otherwise, complete the step (i.e. increase i by 1 and go to
MCG 1).

MCG 2. Rule for END and output of the result

Suppose the switch to MCG 2 took place when i = M,. The work of the
method then stops, with output of the result

*ifay =co (e if j(s) >0 for all s < M),

x;if am, < 00, i(lp)=0and g3 (x,) = au,.
Commentary. What is given out as the result is the best (according to the
estimates g? (x;) of the numbers f, (x;)) for all the points x; considered which

satisfy the constraints of the problem with the necessary accuracy (again
according to the estimates g{(x;))-
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2.3.23

Theorem. When 1> v > v, the method just described, constructed with
accuracy v, ensures this accuracy on the class € with a laboriousness not
exceeding @, ., (v — vo}, where @, , (v} is the function in (3.1).

Proof. (Thereader is recommended to look into this well, since it is the first of
a series of arguments of the same type.)

1°. We start with an estimate of the laboriousness of the method. From the
rule for forming j (i) and g it follows that, for all i M/,

; a;, J(f) = 0!
> (v—v)maxri®, j(i) >0,
i

i.e. G, is a subset of part of G,_, cut off from G,_, by a hyperplane passing
through the centre of gravity of G;_,;. By the lemma previously stated

1G:ly € @) |G-y |y L& |Gyl < &) |G
Therefore (2.2} is satisfied not later than when

.| Inl/(v=wy)
"]” inl/a() [H’

and this provides the required estimate of the laboriousness

g1 (x;)

Me+1 5@, o (v—vp)

2°. We now estimate the error of the method. We fix fe C. Suppose first that f
is incompatible. By the rule MCG 2 the result X of applying the method to f is
either the (correct) answer of incompatibility of the conditions of the problem
or a point x;, such that, for all j 2 1

g1 (xi,) € {(v—vo)max r! € (v— vo) max {0, max f (x) } (3.3)
5 gy X3

{we have taken into account that, by virtue of the properties of the oracle,

r{ = max {0, max g{(x}} < max {0, max f;(x)}).
XEG xel

From (3.3) and the properties of the oracle
L@ =L)< v—volrd N +vor(ISwm(f)h1<i<sm (34
Thus, for incompatible f we have v(x, ) < v, as required.

3°. Now let f be compatible, and let x* be its solution. It is possible that the
inequality
@, < Jolx*)+ (v —vo)ro (f) (3.5)
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holds. In that case the method ensures the required accuracy. For, it follows
from (3.5)that ax, < c0,and then it follows from MCG 2 that X # . But then
X=x, wherej(io) =0and ay, = g5 (x;,). As we have seen, j(ip) = 0 implies
(3.4). It remains to check that £ (x;o) £ fo{x®) + vro (f). But this follows at once
from the following inequalities, which come from (2.5) and the definition of i,:

Jo(xi,) S g0 (xi,) +voro (f) S (x*)+yro (f)

4°. We now prove that (3.5) does in fact hold. We assume the contrary and
derive a contradiction. Let

am, > fo(x*)+ (v —vo)ro(f)- (3.6)
It is possible that x*¢Gy, . This would mean that, for some iy and
Jo€0, .. .,m, we have
. . 2 a[o! jD = 0,
Sox®) 2 gl2(x*) (v —vg)max riv, jo > 0. 3.7

1 gly
(3.7) implies that j, = 0. For, when j, > 0, we have

gle(x*)>0
by (3.7), and this is impossible, because f; (x*) < 0. Thus, in (3.7) j, = 0. But
then (3.7) gives

f‘ Z g?o(X*) 2 aio!

and this is impossible, because of (3.6). This means that x* eG4, and hence
Gu, #+ 2.

We consider the body G obtained by a homothetic compression in the ratio
1/(v — vp) at the point x*:

= (v—vo) (G —x*)+x"
Since
G lu < (v—vo)" |Gl

and G has the volume (v — vo)"| G |,,, the inclusion G u, = int G is impossible. So
int G ¢ Ga,. This implies that there are v, vo < v' < v, and a segment
starting at x* with its end ze G such that the point y = (v' —v)(z — ‘) +x*
does not lie in G‘“I By definition of G u, this implies that, for some i < M,
and j,e0,.

; a{ L] jﬁ = 0
ORI (vo— vo)maxrie, j, >0 (3.8)

L4

At the same time

gle () = (1= = o)) gle (x*) + (v — o) g3 (2) (3.9)
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When j, > 0 the right-hand side of (3.9) does not exceed
(V’ - Ve)r{g = (V' - Vo) max ri".
55l
Thus (3.8) and the assumption adopted that j, > 0 would give
(v — vo)max rio > (v —vo) maxris
£ sio 5 gio

and this is impossible, because v' < v.

This means that j, = 0. But then (3.8) gives gl (y) a;,, and, by (3.9)

gio(¥) € (1= (v —v5)) fo (x*) + (¢ — vo) max fo(x)

xel
LRGN+ —vo)ro(f) SHx*)+ (v—vo)ro(f),

and since gf, (y) > a,,, we have

am, € 8, € Jo(x®)+ (v —vo) ro (),
which contradicts (3.6). The contradiction establishes the theorem.

2.4 SPECIAL VERSIONS OF THE MCG

This section is devoted to the exposition of versions of the MCG for special
situations: for the case where the absolute error, not the relative error, is
specified in advance, and for the case where the approximate solution must
satisfy the constraints exactly (i.e. the error is measured in the scale v, (x, f}and
not in v (x, /).

2.4.1

We begin with the first of these two cases.

The MCG has been described on the hypothesis that the method must solve
problems of some class € of the type C*°(G, R", m} and with the required
relative error v specified a priori. In other words, the application to f of the
MCG constructed on a relative accuracy v > vy ensures our obtaining a result
with an absolute error £ vr;(f). If it is not the relative error required of the
solution, but the absolute error g, which is specified in advance, then, since the
quantities r; ( /) are not known a prieri, we cannot indicate that relative error,
namely

v(fe) = min sjfrj{f}},
Dgigm

with which it is required to construct a method that will ensure the specified
absoilute error.

Thus the variant already described of the MCG is not suitable for ensuring
specified absolute errors. It can, however, be modified se as to avoid this
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difficulty. We shall describe the appropriate medification. It is obtamned from
the original version by making the following changes (¢; > 0 denotes the
absolute error specified in advance).

1°, The rule for determining j (i) in MCG 1.2 is replaced by

j= 0, ifg{(x) e, 1<jsm,
any j» 1 suchthat g{{(x;))> ¢ if there is sucha .

2°. The rule MCG 1.4 is replaced by the rule

MCG 1. 4. Put
ri®, jH >0,

1= max g () —g?(x), j) =0
yel

siﬂ, it () £0,
v, = !
Eq . .
, if =0

We write
_ | 266 190 S i) for j6) >0,
l {xeG- gl (x) < g? (x))}, i@ =0

Further, let L
vi= min v, G, = (G)).
0 €x i
[(-) denotes closure.) Here we have taken vy = 1.
If |G, < (+)"|Golas g0 to MCG 2; otherwise, increase i by 1 and go to
MCG 1.

It will be proved that the method constructed in this way ensures the
required absolute errors ¢, in the solution of problems f e C ‘with accuracy up
to the irremovable error of the oracle’. That is, for the result X of applying the
method to f e C the inequality

e(x, f) € £+vor(f) {4.1)
holds, where €= (g, ..., &), and r(f) = (ro(f), .. .,7n(f)) Thus, the
errors of the solution with accuracy up to the ‘irremovable errors of the oracle’

Vorj(f) arg 8}-
Suppose, let us say, it is known a priori that the required errors exceed the

‘irremovable noise of the oracle’; for definiteness, let g, 2 2vor;( £) In this case
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we can puarantee that the given constraints will be satisfied exactly to within
the errors (it is sufficient to apply the method described, constructed with an
error g;/2). We lose this sort of possibility if the error of the oracle is
comparable with the given specified accuracy of the solution, and even more so
if it exceeds the latter. This effect does not discredit the method: such an oracle,
for obvious objective reasons, is ill-adapted to (or is quite incapable of ) solving
problems to such high accuracy.

The laboriousness of the method described, as will be proved, admits the
following estimate. Let v{ f, £) = min, ¢;/r; ( f) be the maxirmnal relative error of
the solution of the problem f that ensures the required relative errors, and let

v(f€)
1+v(fie)+vy

Then the bound for the laboriousnessis @, , (¥ ( f £)). Wesee that ensuring the
specified absolute errors when the r;( f) are not known a priori ‘costs’ only a
little more than when the r;(f) are known (the ‘cost’ in the first case is
@, . (¥(£ £)), and in the second case @, , (v(f &)). Although 3(f £) < v(f &),
the ratio of these quantities is close to t + v4 for small v( f, £); similarly the ratio
of the values of the laboriousness which correspond to these hypotheses
regarding the a priori information about the problem is close to 1 for small

v(£9)

t'(f,-l:] =

2.4.1.1

We now prove that the method described does indeed satisfy the above
assertions about the error and laboriousness. The proof, in the main, repeats
the one already given. Let fe C be the problem to be solved. We start with an
estimate of the laboriousness. It is clear from the definition that, for all those
i such that j{i} > 0, we have

£; £
v="40 > L0 2 (f0) 27 (o)

£ /”Jm(fJ
But if j (i) = 0, then
£o &p -
v, = = zV(Le
S T maxg? () g7 (%)~ et e (Nt o )

yEG
(we have used the fact that
magg?(y)—g?(x() € mﬂ;‘ﬂ:(}’) —fo(x) +voro(f) € (Y +vo)ro{f))
yE ye

Thus, v; 2 ¥(f €), and hence, as in Section 2.3.2.3, it follows that the
laboriousness of the method does indeed not exceed @, ,(V(f€)).
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We now estimate the accuracy of the method. As before, the result < of
applying the method to f is either =, or it is a point of G such that the
inequalities

L@ <g+vor(f) 1sj€m (4.2)
hold. Hence it follows that, for an incompatible f the assertion about the
accuracy of the method does indeed hold. Moreover, X = = if and only if
au, = + 0. If au, < oo, then X = x,, for some iy, and

gl (x) < am,. 4.3)
Hence it is clear that to prove (4.1) it suffices to prove the relation
am, < fy+eo- (4.4)

Let us prove (4.4). For incompatible f it is obviously true. Let f be
compatible, and let x* be its solution. By the definition of G4, for every

xeG\G u, there is an i = i{x) < M, such that
; 2 g{®x), j@O=0,
® 4.5

If x*¢ GMJ,, then from (4.5) applied with x = x* it follows that (i) = Oand a4,
< f,,as required. Now let xe G o . Then, asabove, there are v’ < v MrandzeG
such that the point

y=x*+v(z—x*)
is not in G u,. Then, by (4.5), for some i

gfim (xl')s J(f) = 0;

53]
9{ s €50 j(f)?':O,
> J(xp) j@=0
TR (g i®(z) — gi®(x*) = gi Xk JU =1 4.6
g0 () +v @) —a{O(x )J>[% e 49

When j (i) > 0, (4.6) gives
8}“) -ﬂ ‘ll"l"; < v = 3}(“,
which is impossible. Thus j (i) = 0 in (4.6), and (4.6) gives

(1=¥)gP )+ v (g? @ = g7 (x)) > (1 = V) x),
or ,
9P(e) < Syt T @47

(we have used the fact that v, £ 1 when j(i)) =0, and so v' < v; < 1). Since
v < v £ 1, we have v'/{1 —v") € go/r;. Thus

9P (x;) € fo + 20,
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and au, € f, + & This completes the proof of (4.1), and, with it, validates the
properties of the methed under exarmination.

24.1.2

Remark. We have described a version of the MCG suitable for solving
general convex problems—problems of the £°(G, R”, m)-type classes, with a
specified relative error in Section 2.3, and with a specified absolute error in
Section 2.4. From the validation of the methods it is easily deduced that these
versions are also suitable for solving Lipschitz-convex problems (classes of the
C‘;jp(G, R", |- I, m) type) with the same errors (in the situation of this section
the absolute errors in all cases, of course, are guaranteed with accuracy up to
the irremovable errors of the oracle).

The assertion that methods which solve problems of the wider class (general
convex problems) do not lose their characteristics on the narrower class of
Lipschitz-convex problems might appear to be a tautology. But there is a
rather nice point here. A class € of type C15(G, E, ||-{|, m) is not, generally
speaking, a subclass of the class of type C**(G, E, m) if v, > 0. Because, the
error of an oracle for the ‘Lipschitz’ classes is measured on a coarser scale than
for general convex problems, and so (G, vo)—an oracle for the field of
problems Ci,{G, E, |- |, m) regarded as a subset of the field of problems
C (G, E, ml—cannot always be extended into an (int G, v)-oracle on the whole
of C(G, E, m).

2.4.2 Strictly compatible problems

The method of centres of gravity does not, generally speaking, ensure that the
constraints of the problem are satisfied exactly at the point found. This
circumstance is not a defect of the method. As we shall see in due course
(in (1.17) of Chapter 4), the *complexity of a class C of type C°(G, E, m)
corresponding to any deterministic local oracle is infinite when m > 1 and
v < 1 (Le. no finite-step method can guarantee finding an admissible feasible
point for every compatible problem fe C). If it is known in advance that a
problem f is not only compatible but also that it has a ‘sufficiently massive’ set
of admissible feasible points, then a suitable modification of the MCG will
guarantee that the required *-error can be secured. As the ‘measure of the
massiveness’ of the set of admissible feasible points of f it is natural to take the
Lebesgue n-dimensional measure of this set (E = R"). In this connection we
define the concept of a strictly compatible problem.

DeFINtTION.  fe C(G, R”, m) is said to be a-strictly compatible if the set G, of
its feasible points has the bound

|Gf|n ; aanlﬂ'
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Exercise I (on the definition). Let feC(G, R*, m) be a convex problem
satisfying the Slater condition with a parameter ¢ > 0, ie. for some xeG we
have fi(x)< —er,(f), 1 £j<m Prove thatfis «-strictly compatible,
with & = ¢/(1 +¢).

We describe a version MCG,, of MCG which is suitable for solving strictly
compatible problems with a specified *-error. Let € be a class of problems of
type C° (G, R*, m), and let C, be a subclass of C which contains precisely the
a-strictly compatible problems. This MCG  itself determines when to stop
work and put out the result. It is applicable to any problem from €(G, R", m).
If the problem is in C, for some « > 0, then the method puts out the result for
the problem not later than after

M@ v) = ©, (@) (48)

steps (it is assumed that the required accuracy v, 1 > v > 0, has been specified
in advance), and the problem will have been solved with a *-error not greater
than v. We stress that if is not required to be known in which of the C, classes
the problem under solution lies. Further it is assumed that m 2 1.

MCG, is in steps. At the ith step domains G, and H;, H; > G;, and also a
number g, are constructed. Initially Gy = H; =G, and a, = + . The
following operations take place in the ith step.

MCG, 1.

The centre of gravity x; of the domain G, _ , is constructed. A question about
the problem is put to the oracle at the point x,. Let gf(x) be the affine
functionals communicated by the oracle. We put

)= STHEISO T<j<m,
7 otherwise
Suppose, further, that

a. = a"—l’ j(l)=ll

i = . .
min {ahg?(xi}}: J(l) =0,

H = {xeH_,lgl(x) <0, 1<j<m}

Gi={xEGi—1l9{(x)$0, 1<jsm, g?(x)-:ai},

G =(G)

MCG, 2.

The ratio |G|, /| Hii, is calculated. If |G,|, = v"|H,|,, then we go to the next
step; otherwise the work of the method stops, and the result x; is put out,
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where iy is such that j(ip) = 0 and

(here M, is the number of the step at which the method stops).

It is clear that MCG,, differs from the original MCG, apart from the rule for
stopping work, only in that the rule for reducing the domain G, _, (the rule for
constructing G;) ‘cuts off” from G; all points at which g{(x) > 0 for some
Jj (i € < m),ie pointsat which the constraints are automatically not satisfied,
while MCG ‘cuts oftf* (when vy = Q) only those points at which ‘the constraints
are not satisfied with the specified accuracy’.

2.4.2.1

Theorem. Let v < 1 and feC,. Then MCG, constructed for a specified
accuracy puts out the result X not later than after M (e, v) steps (¢f. (4.8)), and

v (xf) v

Proof. 1°.  Let f besuch that the method stopsits work on fand gives out the
result X. We verify that then v, (%,f) € v. Let x* be the solution of the problem
f- We remark first that x* € H,,, where My +1 is the laboriousness of the
method onf. For, H, = Gand in H\H;_, we have max, ¢, ¢, f;(x) > Obythe
definition of H;, Therefore H  contains the set of admissible feasible points of
f.and so also x*.

Further, if the method stops on the step M, then |Gu, |, < [Hu |, The
latter is impossible f ay = + 00, and so ap, < 00, and therefore
am,=min { fo{x)|x,€G,} (by the rule for constructing 4 from a4,
and the rule for choosing j (i)). It is also clear that outside G; in H; either
max, ¢; <mJj(x) >0, or f, (x) = a;. Hence it follows that ouiside Gy in G
either x ¢ G, or fy(x} 2 am, = o(X). By construction f;(x) £ 0,for1 £7<m,
and it remains only to prove that f; (x*) > am,+vrg (f). Suppose, on the
contrary, that f, (x*) > am .+ vro(f). We observe that then x* e G, for, as we
have seen, we have fy (x) 2 au, everywhere on G\ Gu,. Moreover, it is clear
that GM), can be described in the form

Gu, 2 {xeHu |gl(x) <a, s < M}

Since |Gu,l, < v'[Hu,l,, there are zeHy, and y =vz+ (1 —vix*:y¢Gu,.
Therefore, for some s, we have ¢ (¥) = a, and a fortiori f;(y) = a,. But

W= x*) s v(f@—fx*) v (f),
le.
am, S, o) Syro(f)+H(x%)

This contradicts our assumption. Therefore v, (X,f) < v.
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2°. We now estimate M,, assuming that fe C,. It was observed earlier that
H, o G/foralli,and so | H;|, > «”|G|, for all i. Atthe same time, as in the proof
of Theorem 2.3.2.3, |G|, < a'(n)|G|,. Therefore

tcilrxllﬂiln £ a‘(n)/a",

and this ratio becomes less than v" as soon asi = M (&, v)— 1. This implies that
the method does come to an end on f, and not later than after M (z, v) steps.
The theorem has been proved.

MCG,, like MCG, can be adapted to finding an approximate selution of
JfeC with a specified absolute s-error &, (and not, as above, for a specified
relative *-error). To do this it is necessary, in addition to all the operations
described above, to calculate in MCG,, 1, at each step i with j(i} =0, the

number
€y

v, =
g0+ supg? (v) —gf (x))
yelr

and also v = min {v,}j(s) =0, s < i} (if j(s) were > 0 for all s £ {, then we
would take v! = 1).
Further, the rule for constructing G; in MCG, 1 is replaced by

|G-, in=1,
C {xeGioy A Hilgl(x) < gf (x)}, () =0.
Moreover, in MCG, 2 in the inequality |G|, = v'|H(, determining the
condition for continuing the process, v must be replaced by v'.
The method modified in this way solves every strictly compatible problem in

C with a =-error < ¢, and its laboriousness on an a-strictly compatible
problem is bounded above by the number M (a, #{f, &9)), where

o _ vife
got+ro(f)  1+v(fe)

(here v(f,£) = go/ro(f) is the relative error which ensures the specified
absolute error).

The proof that the modified MCG has the properties stated is left to the
reader.

V(fie) =

2,5 A REALIZABLE VERSION OF THE MCG

251

The method of centres of gravity, as a method of solving problems of the
classes of type C°(G,R",m), cannot be essentially improved as regards
laboriousness {in a certain precise sense, see Chapter 4). However, the
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‘computational cost’ of every step of the method is extremely high: finding the
centre of gravity, generally speaking, of an arbitrary convex body of some
appreciable dimensionality is a more than complicated problem even with the
most perfected computational aids. So, although the MCG can be used, it
would be used only when the complication of obtaining information about the
problem is extremely great (for example, if this information can be obtained
only by high-costing ‘live’ experiments) so that economy in the number of the
questions will compensate for the enormous computational complexity of a
step. In the remaining cases (and today it is only with these that computational
mathematics concerns itself) the extreme complexity of a step presents an
insuperable obstacle to the use of MCG.

One would like to modify the methed in such a way as to simplify a steptoa
reasonable level without inordinately increasing the laboriousness bound.
Such a simplification is achieved below. We shall call the corresponding
method, which was proposed in the authors’ paper [31] the modified method of
centres of gravity (MMCG).

The idea of the MMCG is easily arrived at by analysing the source of the
computational difficultics in MCG—it is the ‘arbitrariness of shape’ of the
successive domains G, of localization of the solution. Let us assume that G itself
is of the simplest form from the point of view of finding the centre of gravity of
the body, say an ellipsoid (i.e. a ball in suitable co-ordinates). Then the first step
of the MCG is easily effected, and G, is a hemisphere (in the co-ordinates
chosen). Finding the centre of gravity of a hemisphere is still quite simple.
However, G, can already have quite a complicated form, and so on; the
computational difficulties rapidly grow as the iteration number of the step
increases.

It is possible, however, to increase deliberately the size of the domain of
localization which is being constructed, so as to ensure that it has a shape
convenient for the computation. The simplest way of all is to deal only with
ellipsoids. To achieve this, at the first step, after constructing G,, we enclose
this hemisphere in an ellipsoid G, of the least possible volume, and regard G, as
the new domain of localization of the solution. Geometrically, the sitnation
arising at the start of the second step is exactly the same as originally. Thus, by
deliberately ignoring part of the information obtained at the step (increasing
G, to G, ), we ensure the geometrical stability of the situation at all the steps and
so make it possible to construct a simple recursive scheme of computation.

252
We preface the description of the MMCG by a simple geometrical lemma.

Lemma. LetV = {xeE"([|x|| € R} beaball of radius R in E”, and let e E”
be a unit vector. The hemisphere V, = {xe V| {x|e} < Ocanbeenclosed inan
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ellipsoid W of volume " (n)| V|,, where

n n— 1312
_2_'_ (?) ¥ n > 1,
= ——— n
B Jnt -1 5.1)
%, n=1.
We point out that
B(n) =1—c,/n? where ¢, > 0and ¢, >4 as n — co.

Let O, denote the co-ordinate system (with the same volume element as the
original Cartesian co-ordinate system O in R")in which W is a ball with centre
at 0. The radius of this ball will be f(n)R. The transformation of co-ordinates
from O, into Oy is given by the formula

x=A4,,x — e. (5.2)

n+1
Here

_ i t
A= (xﬂ 1 _;)P¢+;I,

where P, is the matrix of the ortho-projector on to the axis of the vectore,and
is the unit n X n matrix, and

x=(n+l)_ﬁ' (53)

n—1

Geometrically: co-ordinates in O, are obtained from the co-ordinates in 0,
by shifting the origin to the point ( — Re/{n + 1)), changing the scale along the
e-axis by the factor " !, and changing the scale in the orthogonal hyperplane
by the factor 1/x.

Exercise 1. Prove the lemma. Show that the ellipsoid constructed in the
lemma is the ellipsoid of least volume which contains V.

253

The modified method of centres of gravity (MMCG) is applicable to problems
of classes of the C**(G, E, m) type in the case where E is finite-dimensional, and
G is a bounded, convex, closed body in E = R". These conditions are now
assumed to hold. Suppose also that we know a certain ellipsoid W, containing
G, and a number # such that

|Woln < 871Gl (5.4)

We let f ., {x) denote the function p ., (X,G). Here ||- || is any norm on E.
MMCG, like MCG, is applicable to any class C of the C*°(G, R", m}-type. If
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the required accuracy v of solution of problems of the class C satisfies the
condition 1 > v > vg, then the method is capable of ensuring this accuracy.

The method, constructed for an accuracy v > v, (We suppose v < 1) consists
of not more than

‘T’",m(v—vo)=]w[+2st,,nzln k [+2 (5.5

In (1/(8(n))

steps. Here d,, — 2 as # —+ 0o, The number of steps M, + | of the¢ method on a
problem fe € depends on fand on the required accuracy v.

We give an analytical description of MMCG accompanied by a geometrical
commentary,. MMCG consists in steps, at the ith one of which {1 <1< M,)
we have a co-ordinate system ;- , in R” with origin at the point x,,a ball W, _,
(in co-ordinates relative to O;_,) of radius r,_,; with centre at x,_;, and a
number a;_ ;. Oy is the original co-ordinate system in which the ellipsoid W,
described in (5.4) is a ball with centre at (: and the volume elements in all the
co-ordinate systems O, ., are the same.

From the analytical point of view, at the ith step we have a matrix B,_, with
determinant 1 (the matrix of the transformation from the co-ordinate system
0; - into the system Og), and s0 By is the unit matrix I. We have also the point
x; (the origin of the co-ordinate system ;_), and the number r;_, > 0 {the
radius of #,_, in the co-ordinate system O, _, ). Points of R" will be identified
with the column-vectors of their co-ordinates in the system Q.

Let v, with | > v > v;, be the required accuracy. The work of MMCG
constructed to the accuracy v on problems of the class C is described by the
following rules.

MMCG 0. Initial setting. Put ay = 0, By = I; choose Op, x,, ry as
described above. Go to MMCG L.

MMCG 1. The i-th step.

At the ith step there are available; a matrix B;_, with det B;_, = 1, numbers
a;. 1 € + o0, 1., 20,and a co-ordinate system O; ., with origin at the point
x;. 8, 1s the matrix of the transformation from the co-ordinate system O,
into the system 0. At the ith step the following actions are taken in succession.

MMCG 11, Ifx,¢int G, then a support functional #7* ! # 0 to the function
014 (x,G) at the point x; is constructed (there is such a functional, because
int G # . Cf. Exercise 23, Section 2.1). We put

JO=m+1, g7 (y)=p (%, GY+ Ty —x0,

and go to MMCG 1.3. But if x;eint G, then go to MMCG 1.2.
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MMCG 1.2. A question about the problem f being solved is put to the
oracle at the point x,. Let g{(») be the affine functionals and n{ be their
derivatives, communicated by the oracle, Put

r{ = max {0, maxg{(y)}, 1<j<m,
yeG

rP = max g7 () — g7 (x)
zEG
If gf(x;) € (v—vo)r{ for all j = 1, put j(i) = 0; otherwise, let j(i) be a j = 1
such that g{ (x,) > (v—vo)7i.

MMCG i3. Put n,=n/" {(n, is regarded as the column-vector of its
co-ordinates relative to the basis in (R") corresponding to the Op-systemin R”,
ie. to a Buclidean structure in which the co-ordinates O;_, are Cartesian).
Compute the column-vector 5, = B{_,n, (T indicates the transpose).
If 5, = 0, go to MMCG 14. If 5;# 0, put
p=n/ \/;’ﬁ

Commentary. x, is the ‘centre’ of the next domain of localization of the
solution; more precisely, the centre of the ellipsoid W,_, embracing this
domain (W, is a ball with its centre at 0 in the co-ordinates O;_,); p; is the
unit vector (in the O, _, co-ordinate system) which is orthogonal (in the 0, _,
Euclidean structure, i.e. the Euclidean structure in which the 0;_ , co-ordinates
are Cartesian) to the hyperplane which cuts off from W,_, the next domain of
localization.

MMCG 14. Put
a;_,, j0 >0,

min{ai‘l’ 9?(3‘()}- i) =0.
If 5, = 0, go to MMCG 2. Otherwise put

a!‘=

g? (x) —ay, =0,
d =1 gl®(x)—(v—vo)r{®, 1<jl)<m
gret(x), jy=m+1.
Let
?
= B i - G

(If d2/(plp,) = ri- ., go to MMCG 2) Put

( d, + r )B »

Xjeq = X;— —1P:s

i+1 i \/arp_i) B(n)(n+ 1) [—1#i
B: = Bi-1Ap,.m

where A4, , is the matrix defined in Lemma 2.5.2.
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Ifr; < ({v —vo)/B)ro, go to MMCG 2. Otherwise, finish the step (i.e. increase
i by |l and go to MMCG 1).

Commentary. As the next domain of localization the domain defined, in the
0,_, co-ordinales, as
U= {xeW,_,1plx; < —d;}

can be taken (this follows at once from the definition of 4,). U; is contained in
the 0, ,-ball W, of radius 7, = \/(r?_ \ —d?#/(pI8;)) with its centre at the point
—d,-pij\/(ﬁf;‘:,-) {everything relative to the @;_, co-ordinates). In fact, U; is
contained in the hemisphere U, of this ball, which is cut off by the hyperplane
passing through the centre and @, ;-orthogonal to p;.

By the lemma, the co-ordinates O;, for which A4, , is the matrix of the
transformation from them into the system O, -, and whose origin {in the O, _,
system) is the point

4;p, _ Fipy
NOTER RS
has the property that the O;-ball W, of radius r; and with centre at v; contains
g

V= -

The objects G, r;, W, are the objects which are constructed at the ith step.
B, =B;_, A, . is the matrix for the transformation from the co-ordinates
O, into the O, system, and x; is the column of Oy-co-ordinates of the centre
of W,

MMCG 2.

Suppose the reversion to MMCG took place when i = M,. The work of the
method then ceases with the output of the result:

“ifjis)>0 forallsg M,
X;4> where i is such that j(io) = 0 and g§, (x;)) = ay,.

2.54

Theorem. Let CeC**{G,R",m)and | > v > v,. Then the method MMCG
constructed for the relative accuracy v solves with this accuracy all problems in
C with a laboricusness not exceeding

% _ | In(B/v—ve))
D, (v —vg) = :| W['I‘Z. (5.5)

Remark. Thus, as regards laboriousness, MMCG loses to MCG by a factor
O (n) (asymptotically as v — 0). This is the cost of the ‘conservatism’ of the
MMCG, of ensuring the stability of shape of the domain, constructed by the
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method, of localization of the sclution. We point out also that the bound for
the laboriousness of the MMCG depends on § (which, clearly, may be
supposed to be not greater than a, ,(G), the minimal asphericity of G relative
to all possible Euclidean normalizations of R®). It is known that &, ,{G) £ n,
and so, with a suitable choice of Og, W, we can take f = n.Itis true thatsucha
choice may be difficult to achieve. Incidentally, the effect of S on the
laboriousness is, after all, only logarithmic. Best of all would be to apply the
MMUCG when G is an ellipsoid (i.e. when it is possible to take W, = G and
=1

We further remark that, a posteriori, the MMCG turned out to be a concrete
variant of the general method of N.Z. Shor [28] of gradient descent with
dilatation of the space. The geometrical ideas on which the MMCG is based
lead to a completely determinate choice of the dilatation parameter and for
regulation of the step. They enable convergence to be proved without any of
the essential, additional hypotheses of the type found in [28] (this, it is true, is
because MMCG is a concrete variant of N.Z. Shor’s more general method).

Proof of Theorem 2.54. This is, in the main, a repetition of the proof of
Theorem 2.3.2.3. We prove first a bound for the laboriousness. From the rule
for forming r; it follows that r; < 8(n)r,_, for i = 1. Hence r; < ' (n)r,. But
when i < M, we have r, 2 ((v — v)/B)r, in accordance with MMCG 1.4, and
O

I (B/(v = vo))
g Ty a4 e . l‘
M; C] I (1/8 () [J’

as required.

We now prove the assertion about the accuracy of the method. As aiways,
the result x of applying the MMCG to f'e C is either « (which happens if and
only if Gy, = + o), or a point x;,€G such that

J:'(xi.,)*-“:‘(V_"o)"{g'l“f'urj(f)g-"'"j(f]» lsjsm, (5.6)

and
Jolx,) € au,+ ¥l (f) (3.7

Hence it is clear that, if f is incompatible, then v(X, f} < v. Now let f be
compatible, and let x* be its solution. To prove the inequality v(%,f) < v, we
have to show that

aw, S (v—volro () +/,. (5.8)
Suppose, on the contrary, that (5.8) does not hold:
ay, > (v=vo)¥o (/) +f, (5.9)

It is possible that g{* might be constant for some i £ M. By definition of j (i),
this 1s impossible when j(i) = m + 1. If 1 € j(i) € m, then, by definition of j (i),
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we have g{" (x,) > Oand},,, (x) > 0 when x e G; but this s impossible, because
f1s compatible, by hypothesis. Thus j (i) = 0, and if g? (y) were constant, then
we would have f, 2 gP(x)) 2 a; au,, which contradicts (5.9).

Thus, for all i, 1 < i € My, we may suppose that g? () is not constant. Let
Gy, = G, and

_ [ {xeGii gt () < gi®(x)~d,}, jG)<m,
{xeG11g{" () < gl (x)~d}, j)=m+ L
From the rules MMCG 1.3-1.4 and the commentary on them it is clear that

O; = W, From these same rules it is obvious that, if the reversion to MMCG 2
took place because

i

d?y

rd

2
= 2 -1,
P M Du,

then int GMJr is empty. If this did not take place, then

Fat, \"
(Gt ln < | W ) = (70‘) |Wol. < (v—vo)"IG),

(we have used the fact that
Tu, ¥V
o i

that the volume element in O; is the same as that in 0,, and that
| Wol. € (8)")G),). Thus, in all cases,

|GM,|H < (v = vg)' |G, (5.10)

_ Let |G,-,,r|,1 & (v =), v £ v < v. It is possible that x* ¢ Gy, This would
imply that, for some i,

g Ox*) > g{V (x)—d;, jli)=m+1,
gf (x*) 2 ¢{¥ (x) - d,, iiysm

This relation is impossible when j(i) = m + 1, because x* € G (cf. the definition
of g7'* 1 (). S0 j(i} < m, and

(5.11)

Sin(x*) 2 ¢19 (x*) 2 gi9 (x) — ;. (5.12)

If sj(i_) «m, then the right-hand side of (5.12) is not less than
(v —va)r{" > 0 (this comes from the definition of J(i)), and so (5.12) is
impossible. Therefore j(i) =0, but then (5.11) gives fo =8, 2 am, which
contradicts (5.9), !

Thus x* Gy . Since Gu,1s open in G and [Gatla < (v —voP|Gly, thereis a
zeGanday = (v —vp)z+ (1 — (V' ~vy) )x* such that y ¢ G, . Then, for some i,
(5.12) holds with x* replaced by y (as before, j(i)# m+ 1). If | £ j{i) € m,then
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(5.12) gives
gi® (3) = (v—vg)ri® > 0. (5.13)
At the same time
9{P (1) = (v —vo) gl (2) + (1 — (v = v0)) " (x*} € (¥ —vo)r{®,

which contradicts (5.13). Thus j{i) = 0. But then g7 (y) 2 a;from (5.12). At the
same time

g2 (1) =V —vo)g? @)+ (1 =¥ =vo))gf (x*)
(v —vo) gl @)+ (L — (v = vo) ) fo (x*)

<
£ (V = vp) (Max, e gf () —fo(x*)) 4+ <V —vo)ro (/) +fe-

Therefore ay, € a; < (v — ¥o)7o(f) +f,, which contradicts (5.9). The con-
tradiction proves the theorem.

255

Like MCG, the MMCG can be adapted to solve problems fe Ce C** (G, R", m)
with the absolute errors ¢; > 0,0 < j < m, specified in advance. To do this, the
method is modified as follows.

The rule for forming j(i) in MMCG 1.2 is replaced by

o if glic) <&, 1jsm
1y = jel, ..., m such that g{(x,) > ¢, if there is such a j.

The rule MMCG 14 is replaced by

MMCG | 4. Put

i1y >0,
“‘=’min {a-1, 92 ()}, ) =0,
0, jiy=0,
d, =1 gi" (x)—¢&in, 0<jl)sm,
AR EAY ji)=m+1

If p, = 0, go to MMCG2, Otherwise let

el )

r1=ﬂ(n) r;'z—l _(‘ﬁr-i)l

Bi_1p..

— d Ty
Xiv1 = X ( '_‘pf'§'+ﬁ{n)(n+l])
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Define

r? = max g?(z)— g (x),
z el
Lo i =me,
By .

N I gjli)€m

En L.

—_— ., i)=0.
P i)

Let v/ = ming ¢, < ¥vs (Vo = 1) If 1, < (virp)/B8, go to MMCG 2; otherwise
increase i by 1 and go to MMCG 1.

We leave the reader to prove that the MMCG modified in this way has the
following properties:

() The result of applyingit to any problem fe CeC**(G, R", m}, regarded asa
solution to f, has absolute errors which, up to the accuracy of the
irremovable errors of the oracle, do not exceed the specified values ¢;(i.e.
the condition (4.1) holds for the result X of applying the method to f).

(i) In addition, the laboriousness of the method described does not exceed
B, o (7 (£, ©)), where

v(fe)

e = l+v0+v(m'

and v (f, €) = min; ¢;/r;{f)}is the maximal relative error which ensures the
specified absolute errors.

Both of the presented versions of the MMCG can, of course, be applied to
problems in classes of the C}2,(G, R", || - |, m) type, just as they can to problems
in classes of the C*°(G, R", m) type.

2.5.6

Let us say a few words about the practical realization of the methed described.
It requires the ability to calculate the values and derivatives of the functions
S+ 1 )= py.(x, G). Inconnection with the questions arising here the reader s
referred to Section 3.3.3.4. In addition, the method requires the storing in
memory, and the recurrent re-calculation of the n x n matrix B;. In accordance
with Lemma 2.5.2 this re-calculation is carried out by means of the formula

By = A B+, B P,

a0
where 4, and g, depend only on n quantities, expressions for which are given in

{5.2)-(5.3), and P, is the matrix of the ortho-projector on to the unit
column-vector ¢; = (e}, . . .,ef). The elements of this matrix are p; = e¥el.
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We point out that the product B,F,, can be computed, not after O (n’)
arithmetical operations as is usually the case, but after only O (n?) operations.
For, it can be found in this way: compute the vector €, = B;e; and construct the
matrix whose jth column is {&;. This will be B, P,,. It is clear that, in addition,
O (n?) arithmetical operations will be needed to obtain B, . ;. The expenditure
in operations for organizing one step of the method (without counting the
expenditure in operations of the oracle and in the comparisons needed to
compute j(i)) will also be of the order O (n?), and so the number of elementary
operations for the organization of a method for an accuracy v will be

O (n*]11n (BV)0)-

257

We have seen that the methods with linear convergence which have been
described in this chapter have, for a given accuracy, a laboriousness which is
the greater, the greater the dimensionality of the problem under solution,
Sometimes, however, there are grounds for hoping that the functionals of the
problem, which, @ priori, depend on a large number of variables, will actually
be independent (or almost independent) of the pgreat majority of these
variables. More precisely, by a suitable (but not known in advance) transform-
ation of the co-ordinate system it is possible to arrange things so that the
components of the problem will depend only on a small proportion of all the
variables. If we knew these co-ordinates in advance, then it would be possible
from the very start to reduce the problem to one of smalier dimension and, in
the case of the methods described in this chapter, to gain as regards
laboriousness.

It turns out that, in practice, it is possible to obtain this effect without
knowing in advance the ‘essential’ variables. That is, the methods MCG and
MMCG can be given ‘a form adaptive to the true dimensionality of the
problem’. The corresponding construction is described in the authors’ paper
[22], and we refer the interested reader to this. Here it suffices to mention that
the adaptive versions of these methods can be applied to any (Lipschitz-convex
finite-dimensional) problem. The bound for the laboriousness of 'these
versions on the classes C;, (G,E", |-|,m), where |-| is the Euclidean norm, is
almost the same as for the non-adaptive methods. But then in solving problems
with a small number of ‘essential’ variables the laboriousness of the adaptive
versions tarns out to be approximately the same as when the non-adaptive
methods are used in the ‘true’ dimensionality of the given problem.

Losing nothing to the methods described in this chapter on the class of all
convex problems of a given dimension, the adaptive versions thus gain
markedly as regards laboriousness on the subclasses of problems of small
‘essential’ dimension, and it is this which accounts for their attractiveness.

3
Methods of mirror descent

In this chapter a general construction is described which enables us to
consiruct an extensive family of methods of convex optimization. A special
feature of these methods is that their laboriousness does not depend explicitly
on the dimension of the problem. Accordingly, it is sensible to use them for
solving convex problems of high dimension. The idea of the construction is
described in Section 3.1; Section 3.2 contains certain preliminary results.
Methods of solving Lipschitz-convex problems are given in Section 3.3, and
those for general convex problems are given in Section 3.4. The results of this
chapter are based mainly on the authors’ paper [23].

3.1 THE IDEA OF THE METHQDS

3.1.1

The methods of solution of general convex problems in the previous chapter
cannot satisfy us completely in either the practical or the theoretical aspect.
The practical drawbacks basically inherent in the MCG are obvious. As
regards the theoretical aspect, we may point out the following. The MCG, as
we shall see, cannot be improved essentially as regards laboriousness if we are
considering the solution of general convex problems on paralielopipeds G. For
arbitrary convex bodies G, essentially the method is incapable of improvement
only in the asymptotics relative to the accuracy. Moreover, the ‘accuracy
starting at which the asymptotic behaviour is established’ depends on the
affine properties of G.

Suppose, for example, G is an n-dimensional ellipsoid. Then, as will be
proved in Section 4.1, the complexity of the class of convex problems on G is of
the form O(1/v?), with v = l,r’\/ﬁ, while the bound for the laboriousness of the
MCG s O (n In (1/v)). Therefore, if it is required to solve convex problems on
ellipsoids with a fixed accuracy v, and the dimension of the ellipsoid is
sufficiently high (n $ 1/v?), then there are no theoretical reasons for using the
MCG. Thus, general convex problems on ellipsoids can be solved with a

83
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laboriousness which does not depend at all on the dimension of the problem,
whereas the laboriousness (and therefore the ‘degree of non-optimality’) of the
MCG increases linearly withe the dimension.

From the practical point of view the effect of a “uniform (relative to the
dimension) boundedness of the complexity’ is very attractive, at any rate, as
applied to economics problems, For, the requirements regarding the accuracy
of solution of these problems are usually not too great, whereas their
dimensionality may be very considerable. Therefore the construction of
convex-programming methods which are ‘not sensitive to the dimensionality’
is quite a pressing question. It is precisely in this direction that the following
analysis is carried out.

3.1.2

Clearly, it is impossible to put forward a method of solving general convex
problems with a bound for the laboriousness independent of the dimension,
unless definite hypotheses are made about the affine properties of the
corresponding body G. For, we have already seen that the complexity of a class
of general convex problems on a parallelepiped increases linearly with increase
in the dimensionality of the latter. Thus, in constructing a method of convex
optimization ‘insensitive to dimensionality’, we have somehow or other to
distinguish the necessary affine properties of the domain G considered, and to
understand which properties of ellipsoids ensure the uniform (relative to
dimensionality) boundedness of the complexity of solutions of convex
problems on ellipsoids. Anticipating a little, we shall give an answer to this
question, which may possibly seem rather strange at first; but after the
discussion given below, it will appear perfectly natural.

An ellipsoid can be regarded as a unit ball in a Euclidean space E with the
Euclidean norm |- [|,. We consider the space E*, |- |f, dual to E (it is, of course,
canonically identified with E, ||- ||,, but we shall see that, from the point of view
of generalizations, it is important to go over to the dual space). On E* thereisa
function V(¢), namely 4(£2) which has the following property. V(&) is
uniformly differentiable (i.e. the function V7(£) is uniformly continuous on
bounded subsets of E*) and it increases at infinity faster than any linear
function. In addition, its rate of growth and the modulus of continuity of the
derivative do not depend on the dimension of E. There it is: everything is
bound up with the existence of a function with these properties on E*.,

Let us make this assertion precise. Suppose there is a reflexive space £witha
norm |-{, whose dual admits the existence of a function V having the
properties mentioned. We shall be able to associate with ¥ a method of solving
general convex problems on balls in E, a method with a bound for its
laboriousness which depends (apart from on the accuracy) only on the
modulus of continuity of ¥” and on the rate of growth of ¥ atinfinity. We point
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out that dimensionality does not appear explicitly in our assumptions. In fact,
we impose restrictions only on the affine type of G (namely, in so far as this type
determines the possibility of realizing G as a unit ball in some suitable norm).
The last remark is extremely important for understanding the idea
underlying all that follows. For, we start with general convex problems—of a
class determined in purely affine terms, irrespective of any norms, whereas all
the subsequent exposition will be carried cut in the language of norms. The
methods proposed below will also be described in these terms. The reader
should not be surprised by this lack of co-ordination. Normalization will, in a
certain sense, be only an instrument. In its proper place it will be made clear
that the possibility of using this instrument for solving general convex
problems on a body G = R” is connected with the affine properties of G.

31.3

Let us outline our plan of action, We start by considering classes of Lipschitz-
convex problems on bounded, convex G in normed spaces E, ||-|. Under
definite hypotheses regarding E, |-| {they have, in fact, been formulated
abowe) we learn how to solve the problems mentioned with an arbitrary
accuracy, for a laboriousness which depends only on this accuracy, the
Lipschitz constant of the problems being solved, the diameter of G in the norm
considered, and certain characteristics of (E, |- ||) which do not include the
dimension of E explicitly {the latter could even be infinite, for example). After
this we learn how to solve general convex problems on bodies G. Further, in the
bound for the laboriousness, the asphericity of G relative to the norm adopted
in E will also appear. We remark that in this chapter the space E is not
invariably assumed to be separable.

It would be possible to make the following objection to the programme we
have just sketched out. Infinite-dimensional problems, from the compu-
tational point of view, are mere fictions. Numerical methods work actually
only with finite-dimensional problems. But in the finite-dimensional case all
norms are equivalent to one another and therefore to the Euclidean norm. It
would appear to be sufficient to consider the Euclidean case, and that more
general (and  therefore more cumbersome and less transparent)
considerations—these are all the works of the Devil!

However, this line of reasoning is deceptive. To explain this, let us consider
first the case of Lipschitz problems. The fact itself that a convex function fis
Lipschitz on a bounded, convex, closed body G = R" does not depend on the
choice of the norm in R” which gives the metric; but p,.;(G), the radius of G, i.e.
the radius of the minimal ball containing G and with its centre in G, and the
Lipschitz constant L . (/) of the function f depend essentially on the choice of
the norm. The laboriousness of a method which is associated with a given
norm and which is provided by the suggested approach and which ensures an
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absolute error e is of the form @ (|| ||; L;.«(f) py.i(G)/€)- When the norm |- ||
changes, both arguments of ® change, and it is by no means necessary that the
‘best” norm should be the Euclidean one (although for a fixed 1, the function
O (]|, ¢) attains a minimum relative to |- || actually for the Euclidean norm).

Let us give a rather effective example. Suppose we have to solve the problem

f(x) = if,(xl)—»miu-|x,>0, En: x; =1,
i=1 =1

where the f;(x) are Lipschitz-convex functions (with Lipschitz constant 1) on
the axis. A problem of this kind is, in a certain sense, very typical. To solve
the problem we could apply a method associated with the Euclidean norm

[ x], = /Ex? (the method would then be the usnal gradient method). The
Lipschitz constant of fin this norm will be \/; (and, in general, it could not be

less), and the diameter of the domain is equal to ﬁ In addition, ®(||-|, 1)
= 0(1/t?),and so the ‘Euclidean’ method with absolute accuracy & will have a
bound O(n/e?) for the laboriousness. A method of the same accuracy,
associated with the norm (x| =X7_ |x‘|, will have, under the same
bypotheses, a bound O (In n/e?) for the laboriousness, winning appreciably, as
we see. We shall meet a sitnation of this sort in Chapter 6, where it will become
especially clear that we do not go beyond the Euclidean situation just for
nothing.

In the case of general convex problems the situation is roughly the same. A
method, associated with a norm | - | of solving general convex problems on a
body G has a bound for the laboriousness of the form ® (|- ||, &;-,(G)/v), where
vis the required relative accuracy, and oy, (G) is the asphericity of G in the norm
I|-{I- The effect of the quantity a,.;(G) on the laboriousness may lead to the
result that the best bound will correspond to a norm different from the
Euclidean one. For example, if G is a ‘hyper-octahedron’ {xeR"| X} _  |x'|
< 1}, then the best ‘Euclidean’ method of solving general convex problems on
G with accuracy v will have a laboriousness of order O (n/v?), while a method
corresponding to the norm ||, will have a laboriousness only of order
O(In n/v?). We believe that these arguments should convince the reader that
the generality of the following considerations is not introduced merely for the
sake of generality,

314

We now describe the idea of the proposed construction of methods. The
simplest way to understanding the essence of the matter is to consider the
problem of minimizing a convex Lipschitz function f on a Banach space
(E, |- . We suppose that on the space E*, | - ||, dual to E there is defined a
function V(&) which is uniformly differentiable and which increases at infinity
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faster than any linear function. We further assume that f has a minimum at x*
and that E is reflexive. We intend to associate with ¥ a method of
minimizing f. To simplify the exposition of the idea of the construction, we
describe a ‘continuous analogue’ of the method (the method itself is then
obtained by a natural discretization).

Let ¢ € E*. Then V' (¢)isa linear functional on E*,i.e. it is an element of E
(because E is reflexive). Therefore we can consider a trajectory ¢(?) of the
differential equation

d
=SV eW).e®= 9o (L.1)
The mapping V” carries E* into E, and f* carries E into E*, and so the right-
hand side is an element of £*
As well as the trajectory ¢(t) we consider its ‘shadow’ or ‘image'
x (1) = V' (¢)(1)). We introduce the function V, (¢) = V(p) — (¢|x* ), and we
verify that it decreases along the trajectory ¢(¢). For, we have

d
—“““V'f;f(t)) =GOV (M) —x*> = = T (V@O V(@0)—x*>

=S EO)x* x> <f(x*) - f(x(1) <O.

Further, we see that if lim, - ., f (x(£)) = f(x*), (i.e. if the trajectory x (t) badly
approximates to x* all the time along the functional), then
de®) Lo
dr

and so V, (@ (t)) decreases without bound. But this is impossible, because V (p)
increases at infinity faster than any linear function, and so ¥, (¢) is bounded
below on E*. Thus lim, f(x(t)) = f(x*), and the method, with a suitable
rule for forming the result at the time ¢, converges along the functional.

Itis now easy to ‘discretize’ this argument and to make it ‘constructive’, i.e. to
indicate explicitly after what number of steps of the discretized method the
accuracy v will be attained. It can be seen that this number of steps depends on
the Lipschitz constant of f, the modulus of continuity of ¥ in a suitable ball,
and v (these constants together determine the step of the discretization, a step
which does not lead to a divergence, ‘dangerous' for our purposes, of the
trajectories of the ‘discretized’ and ‘continuous’ methods), and also on || x®|
and the rate of growth of ¥ at infinity. (These quantities determine the possible
minimum value V,, i.e. the time after which ¥, (¢ (t)) would be able to decrease
rapidly.)

We shall not carry out the corresponding analysis immediately; it will be
expounded in a more general form later, and we shall also take the presence of
constraints into account. In the construction of methods the simple ideas
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which we have set out will, of course, be masked by a number of secondary
details, and so the full descriptions might appear to be cumbersome. However,
the authors do not have space to explain the nature of this or that detail. The
reader will be able, if he wishes, to follow along the track from the elementary
original premises to the resulting schemes.

Returning to the jdea of the construction, we point out that the main motion
actually takes place in the dual space. The motion in E is only a ‘shadow’ or
‘image’ of the main motion; it is this fact which has led us to choose the name,
the method of mirror descent. The well-versed reader will at once notice that
V(@) (more precisely, V, (¢) is simply the Lyapunov function of the method
associated with ¥. The use of Lyapunov functions is the traditional method of
proving convergence of iterative procedures. However, usually the procedure
is already known, and for it a Lyapunov function is sought. We are working in
the reverse order: we choose a Lyapunov function (it turns out that this can be
almost any function on E*), and it is from this that we construct the method.

Let us now Jook at what happens to the proposed construction when E, |- ||,
is a Hilbert space. In this case, E*, |- (|, is canonically identified with E, and we
can take V(p) = 3¢, ie. V' (¢) = ¢. The process (1.1) becomes the process

dx (1)
dt

= =/ (x({®)) x(0) = x,,

ie. the usual gradient descent. The function V, which decreases along the
trajectory of descent is, up to a constant, 4 (x — x*)*. The convergence of the
usual gradient method is proved precisely by following the behaviour of this
function (i.e. the distance from x¥) along the trajectories (we are thinking of the
minimization of convex, but not necessarily smooth, functions).

If we try to extend directly this sort of scheme to prove the gradient method
onaspace E, ||- ||, which is different from a Euclidean space, we get nowhere; on
E there will be nothing like a decrease of the distance from x*. Thus, from the
general standpoint, it is a fortuitous circumstance that, in the case of a Hilbert
space, the standard Lyapunov function of the gradient method is defined on E
and not on E* (because E is identified with E*) and that it has a simple
geometrical meaning; this circumstance only obscures the true nature of the
gradient method.

In conclusion we point out the following. The scheme outlined seems, at a
first glance, to have a colossal freedom, namely, the choice of the function V.
For example, in the Euclidean situation it would be possible, along with the
usual gradient method, to consider also a method associated with, say, the
function 4x? +cos?|x|. The situation is thus fraught with a sort of chaos.
However, nothing terrible happens. In those cases where we develop the
general scheme into concrete methods, their right to exist will be based on their
theoretical sub-optimality (which is proved by comparing the laboriousness of
the methods with the lower bounds of the complexity of the corresponding
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classes). It is true that the method associated, up to a constant, with the
function 3x2+cos?|x| is just as effective as the usual gradient method
corresponding to 3x2. In situations of this kind it is sensible to prefer the more
‘natural’ methods, and this is just what we do.

We now end this rather extended ‘introduction of the idea’ and get down to
business. We begin with a special study of the pair E, ||-||, which we are
constructing.

3.2 REGULAR SPACES

In this section we shall make a particular study of a class of normed spaces that
suit our purposes. '

K |

Let E be a real Banach space with a norm |||, and let E*, ||- ]| , be the dual
space.

DEerFINITION. A space E, |||, is said to be regular if

(1) E is reflexive;
(2) there is a uniformly differentiable function V: E* — R such that

V(&) =6 (I&ll,) 9(1)‘—‘ .
0

Caution. It should not be thought that the requirement (2) is always satisfied
automatically. This is so, of course, in the finite-dimensional case (moreover,
every finite-dimensional space satisfies (1), and so it is regular). In the infinite-
dimensional case, (2) may not be satisfied even though (1) is satisfied.

For the following exposition it is convenient to normalize the functions V
(which feature in the definition of regular spaces) in a particular way.

DermimioN.  Let E, ||+ ||, be a regular space. A function V: E* — Rissatd to be
a regular function corresponding to E, |- ||, (or an (E, || -|)-regular function) if

) V@) >0 V() =0

@) lloll, <t+V(p)

(i) V (p) has a derivative V'’ (p) which is uniformly continuous and bounded
over the whole of E*.

Itcan be proved that if E, || - ||, is a regular space, then there are always regular
functions corresponding to E, ||

We give a method of constructing regular functions, a method which, as we
shall soon see, is a universal one. Let || - || be a norm on E such that the function
|l 18 uniformly differentiable in a neighbourhood of the unit sphere in E*
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(i.e. there is a function p(£): E* — E such that

{
;N¢+wL—M¢L—t<QNw>k30

upiformly with respect to @ and £ with [le{, = §£]|, = 1). In this case we may
take as an (E, ||- [|)-regular function

Hlels,  lel, <1,
lel, =% Hel, =1

Exercise /. Prove that, under the above hypotheses, (2.1) does indeed define
an (E, |- |)-regular function.

VEiu(®) ={ (2.1)

We point out that the property that E, || - ||, is a regular space is, obviously, a
property of the topology of E and not of the norm (i.e. it is preserved if {f- || is
replaced by an equivalent norm |} ||'). On the other hand, the property that V' is
an (E, || - [)-regular function depends on the actual norm on E and not on the
topology of E.

3.2.2

The purpose of this chapter is to describe the constructions which associate
with (E, (|- ||)}-regular functions ¥ methods of complex optimization (we shall
call them MD-methods, from the name ‘methods of mirror descent”). The
characteristics of the MD-methods associated with V' depend on certain
properties of V. These properties we are about to describe.

Let (E, ||-I)) be a regular space, and let V (p) be a corresponding regular
function. We consider the mapping ¢ — V'(¢), defined on E*. V'(p) is a
continuous linear functional on E*, ie. an element of (E®)* Since E is
reflexive, (E*)* is canonically identified with E, and so we shall always suppose
that V' (¢) takes values in E. By hypothesis, the function V' (p):E®* —+ E is
uniformly continuous, and so we can speak of its modulus of continuity

wy(t) =sup{[|V' (@)~ V' W)l | o, ¥ €E¥, o —Yll, <t}.

We shall call the function w ,(t) the modulus of smoothness of V. It will play a
fundamental rdle in estimating the laboriousness of the MD-method as-
sociated with V. It is clear from the definition that w ,(¢) is a non-decreasing,
non-negative function which is bounded on the half-line ¢ > 0, is continuous,
and tends to 0 as t - +0.

The function inverse to ® y(t)

yv(s) = sup {t(wur) < s}

will play an essential part in what follows. It is clear that y ,(s) > O when s > 0,
that y,(s) does not decrease as s increases, and that wy(y»(s)) < s.
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The laboriousness of the method associated with V' is of order O (1/(vy (2))),
Le. it is the smaller, the greater y ,(t) is, and therefore the smalier, the smaller
wy(t) is (the ‘smoother’ V is). Accordingly we shall focus our attention on
bounding ww(t) below.

3.2.3

We now investigate the question of the stock of regular functions. It turns out
that they can all be described in the standard terms of functional analysis.
Namely, a Banach space E is regular if and only if the topology on E can be
defined by means of a uniformly-convex norm |[-|. A norm (- || is said to be
uniformly convex if the sagitta of a not too small chord of the unit ball is itself
not too small. (In the 2-dimensional case the sagitta 1s the versed sine. Trans.).
More precisely, for a certain function x(s) which 1s non-decreasing and positive
when s > 0, the relation

x+y

— | s tmxix =yl

must hold for all x,y with [|x)| = |y = 1. The usual Hilbert norm is an
example of a norm of this kind.

It is known (Shmulyan’s theorem, [6], Chapter 5) that a norm ||-|| on a
reflexive space E is uniformly convex if and only if the dual norm |- |, on
E*is uniformly differentiable in a neighbourhood of the unit sphere in
E* (¢f. Section 3.2.1). Thus, as a regular function corresponding to a uniformly
convex normed space E with a uniformly convex norm |-|| we can take
Veya(+). Conversely, it can be proved that, if E is regular, then E admits the
introduction of a uniformly convex norm.

We now give some examples of regular spaces, First of all, a Hilbert space is
regular (as already mentioned, its natural norm is uniformly convex; however,
a regnlar function for a Hilbert space can easily be indicated directly).
Consequently all finite-dimensional spaces are regular (they can be given the
topology by means of the Euclidean norm). Another whole family of examples
consists of the standard L, (7, u) spaces.

The definition of these spaces is given in Section A.2.8. It is explained there
that, when | < p < oo the spaces L, (7, u) are reflexive. Also, the usual norm
Ii-Il, onan L,(T, p) space is uniformly convex, and so the space is regular, for
1 < p < 0. As the corresponding regular functions we may take

: {%llcolf.?, lol, <1,

Vi), = =p/(p—1 22
L)~ ol — 4. H¢L?1~(q p/(p—1)) (2.2)

We shall denote these functions simply as ¥,(-).
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The modulus of smoothness wy,(t) = w,(t) and the inverse function
p(t) = yy (¢) are calculated in Section 3.5. Tt is shown there that the function
v, () admits the following lower bound:

c(p)t, 1<p<2,

ye() 2 (e p> 2 2.3)

Here ¢(p) > 0 depends only on p. The form of this function will be indicated in
Section 3.5.

When p = 1 (and also when p = co) the space L, (7, u)is not reflexive (and so
it is not regular) if its linear dimension is infinite. But if its dimension is finite
and equalton, 1 < n < co, then these spaces are, of course, regular. We shall
be particularly concerned with the space L,, ie. IV, [<n< oo (see
Section A.2.8).

The space dual to I{? is [%. As an [{’-regular function we can take any one of
the functions

1 2
. el ol
V(o) = N

<
l<t<o 2.4)
lel.—13, lol. =

It is sensible to choose 7 so as to maximize the smoothness of V*. The
appropriate analysis is carried out in Section 3.5. It leads to choosing 7 in the
form ¢ In n (we assume n > ], and ¢ is an absolute constant). For the
corresponding function V = V, ,(-) the following estimate holds:

P9 > e @.5)

with an absolute constant c(1) > 0. Thus the smoothness characteristics of
V, ., as would be expected, are spoiled as » increases, but only quite slowly.

1,0

3.24

In conclusion we formulate an elementary bound for the increment of the
function V, a result which will be very useful later.

Proposition. Let E, [|-||, be a regular space, and let V' be a regular function
corresponding to E, || |. We introduce the function

Valp) = V(p)— (olx ), xeE.
Further let ¢,ée E*. Then
Vel +8) < V(@) + CE1Va () > + ISl 0 (NE]L)- (2.6)
Exercise 2. Prove (2.6)
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33 MD-METHODS ON CLASSES OF LIPSCHITZ-CONVEX
PROBLEMS

In this section methods of mirror descent for solving Lipschitz-convex
problems on regular spaces are constructed.

Let E, | -], be a regular space, let G be a bounded, convex, closed set in E of
radius p.,(G), and let m be a non-negative number. We shall study methods
of solving classes of Lipschitz<onvex problems, ie. classes of the type
C'%(G, E, ||-|,m) (see Section 2.2).

3.3.1

We denote an (E, ||- |}-regular function by ¥ (). We shall describe the method
of circular descent (denoted by MD ) associated with V of solving problems of
a class C e C1%(G, E, || - [, m). We shall describe the method on the assump-
tion that py(G) = 1 and that the ‘centre’ of G is 0. This is obviously always
achievable by a change of variables, by a dilatation of, and shift in, G.

The laboriousness of MD, with an accuracy of solution v > v, is
M (v —v,), where

2

We introduce the following notation. Let ng(x}: E — G be a function which
carries a point x € E into the point of G whichis closest (in the metric defined by
the norm in E) to the point x. Further let z5(x): E — E * associate with a point
x€E the support functional at x to the function py.(-,G)

We pass on to the description of MD , constructed for an error v > v,. The
case v > 1 s trivial. With such a low demand on the accuracy of the solution,
the problem can be solved in one step. Any point of G is & solution of any
problem fe C;, with error equal to 1.

So we can now suppose that the specified accuracy v satisfies 1 > v > v,. The
work of a MD, method constructed for an accuracy v with 1 > v >v,0ona
problem fe Cy;, consists in constructing a sequence of points ¢;eE*,
0 <i< M, (where M, is the number of questions about fasked in the
method), and the ‘image’ x,e E, %,€G, of this sequence. Auxiliary numerical
sequences {a,}, {b,}, witha, < oo, b, > 0, are also constructed. After M, steps
of the process (M, is formed automatically) the result X of the work of the
method on fis constructed from the sequence {%,}.

332
The rules defining MD y are as follows.
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MD 0. Initial setting,
Put s =0,i=1,a, = + 0, by =0, and go to MD 1.

MD 1. i-th step.
At the ith step a point ¢, €E*, numbers a;-, < co and b,__l =0 are
available. In the ith step the following operations are carried out in turn.

MD 1.1. A point x,= V'(p,—,) is constructed, and also X; = ne(x,)- A
question is put to the oracle at the point X, about the problem under solution.
Let g{(y) be the affine functionals, and #{ their derivatives with respect to y,
communicated by the oracle.

MD 1.2. The numbers L,(i) = (n{l, are calculated. The number j(i) is
defined by:
0,if g{(R) S20v—vo)L;(h L <j<m,
j() =Jany j > [ such that gf(x) > 2(v—vo)L,(),
if there is such a j.

MD [.3. The numbers ¢; are defined:
a;- ¢, jH>0,
o { min{a,_,, 92 (%)}, j()=0.
MD 14 1f n{® = 0 go to MD 2. Otherwise put & = n{®/|ni?(, and
1 g° (X)) —a;+2(v—vo)Lo(), j()=0,
. m{g{"” (%) i®>0.

MD 15. Put [,=¢+pugx). If =0, go to MD 2. Otherwise put
L= LT, 8= 8/1T .

MD 16. Define p; = y(3,/2) and put y; = 5:p,/2.

MD 1.7. Putg;=o,-y—pili, by =bi-y + .- If V(e)—lloille > — by, then
go to MD 2. Otherwise, finish the step, i.e. increase i by 1 and go to MD 1.

MD 2. Rules for output of the result.

We recall that reversion to MD 2 takes place when i = M. Strictly speaking,
M,, ie. the number of questions posed by the method about the problem
f, is defined precisely as the iteration number of the step at which reversion to
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MD 2 takes place. The work of the method stops at this point. The result is
formulated as

* if j(i) >0, forall i < M/,

X, i j(io) =0 and gf (x;,) = ay, otherwise.

ta

By definition of a,, such an i exists if j(i) = O for at least one i < M.

Remark. Therule MD 1.2 does not, in general, determine j (i) uniquely. If, for
a given i, there is a freedom of choice for j (i), then it will be sensible to use it to
ensure the maximum possible value of 9. In principle, such action will
accelerate the descent.

Indue course it will be shown that the method described, and the versions of
it given below, guarantee the solution of every problem of the class Cy, witha
relative error < v. It will also be proved that its laboriousness does not exceed
M ,(v— vp). Similar bounds for the laboriousness of other versions of MD
methods will be formulated below in the descriptions of these versions, and
these also will be proved in Section 3.3.5.
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We now describe certain modifications of the method already constructed.

3.3.3.1 A version with optimal choice of the shift p;
The rule MD 1.6 can be replaced by the following rule:

MD 16, Put ri(t)= 0,— {x{iuD)t+V(g-1)—Vipi-,— ), and let ¢
be the maximizing point of r, (¢) over all ¢ > 0 (if this maximum is not attained,
then put, say, as in MD 1.6, ¢; = y4(5,/2)).

Put p; =t; and ¥y = r;(t).

This modification, generally speaking, accelerates the process of finding the
solution, but complicates the step. The laboriousness of this modified version
does not exceed M (v — vy).

3.3.3.2 The Hilbert-space version of the method

Now let E, |||, be a Hilbert space. In this case certain simplifications are
possible, and these reduce MD yto a certain version of the standard gradient
method. In the preceding description the following changes can be made:

(i) put ¥V(p)=4¢? (in the Hilbert-space case E and E* are canonically
identified, and we do not distinguish between them),
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(i) in MD 1.7 replace the rule for forming ¢; by ¢; = ndwi- — p.{i) (then
automatically we shall have ¢,., = x, = X;,and we can take us(x;) = 0}
(iii) in MD 1.6 replace the rule for choosing p,, v; by p; = 81, 7: = 67/2.

In this situation MD 1.6’ is identical with MD 1.6, and so in the Hilbert-
space case we restrict consideration to a single version of the method, which we
shall denote by I'. The laboriousness of the method I' constructed for an
accuracy v, 1 > v > v,, does not exceed M (v —v,), where

M(v)=]417|:+2. (3.2)

3.3.3.3 Adjustment for specified absolute errors

Up to now we have assumed that the relative ercor with which it was required
to solve a problem in C;, was specified. Now suppose that it is not the relative
error which is specified in advance, but the absolute errors g, > 0,
j=0,..., m admissible for the approximate solution. It turns out that, with
this formulation of the problem, the MD-methods are again capable of
ensuring a solutjon with the requisite accuracy. More precisely, the versions of
the MD-methods described above do require a certain modification for this
purpose. First of all it is necessary to ‘do a zeroth step’—to put a question
about the problem under solution at the point 0. If it is found that

9f0(0) < e 1 <j<m and min 96.0(¥) 2 g8.0(0)—to,
y
then we put out 0 as the approximate solution of the problem. But if this is not
50, but it turns out that for some j > | we have mincg{_o (y) > 0O, then we put
out » as the approximate solution. If neither of these possibilities occurs, then
we apply, for solving f, any admissible (for the given E, ||} one of the three
versions of MD-methods of solving problems in C,< C$%: (G, E, ||, m),
modified in the following way.
Rule MD 1.2 should be replaced by MD 1.2

. 0 ifg/(x)<elsjsm,
j6)= ‘any j = 1 such that g/(x;) > g, if there is such a j.
Also, in MD 1.4 the formula for §; should be replaced by
1 97 (X)) —ai+ep, j(i)=0,
T ‘ 9" (%), jiy>0,
The methods obtained in this way have the following property: their

application to a problem feCy, provides a result X which satisfies the
conditions (4.1) of Chapter 2. Moreover, the laboriousness of the use of these

L
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methods does not exceed respectively M ,(v(f, €)), M (v(/, £)), where
. Bj

v(f, €)= min
(5) ogsem (S

is the maximum possible relative error which gnarantees the required absolute
error. Attention is drawn to the fact that, in the case where the ‘zeroth step’ is
unsuccessful, ie. when it does not lead to a result, then v(f, ¢} < 1. Thus
MD-methods are capable of ensuring the required absolute error with no less
success than the methods described in the previous chapter.

3.3.34

Let us say a few words about the practical realization of the methods
described. Of course, we can talk only of solving finite-dimensional problems.
We restrict ourselves to the case when the spaces E, |-, are [ with the norm
NI, I sn< o0 Algorithmic realization of MD-methods in this situation
require the ability to solve three problems:

() to find the derivative V' (yp) of a (I, ||- [, )-regular function V;

(I1) to construct the projection n¢(x) of a point x el on to a convex, closed,
bounded set G = [[7;

(ILT) to construct the support functional ug(x) to the function p;.,(-,G).

We emphasize that we are speaking only of problems connected with the
organization of the methods themselves. We do not deal with questions of the
algorithmic realization of the oracle, which have no direct connection,
properly speaking, to the theory of optimization methods.

Let us analyse the problems (I)-(111). The first of them is very simple, at least
in the case where the method in question is associated with a standard

ﬁ,"’, |- l,)}-regular function from Section 3.2.3. For, such functions admit
explicit representation, from which it is ¢asy to obtain analytic expressions for
the co-ordinates of V’ (¢). The computations for these expressions require O(n)
elementary operations (we include also in this number the computation of the
standard functions—powers, exponentials, etc.).

Problem (II), generally speaking, can be far from simple. For, finding the
point of G closest to x, in the metric of [-|,, is all the same as solving a
particular problem of convex optimization which, generally speaking, is no less
complicated than the original one. However, a special consideration comes to
our aid here. If the domain G has a simple shape, then finding n¢(x) may be
quite easy (examples will be given later), and to a large extent we are free to
choose this domain.

Indeed, a domain of ‘complicated shape’ is generally defined by a certain
number of inequalities; for convex problems they are convex. The term
‘defined” here is to be understood not in the sense that there are such
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inequalities (they always exist), but in the sense that the method of defining G is
an algorithm which makes clear, for all x, whether the point x lies in G or not;
an algorithm which is based on the explicit indication of a list of inequalities
which points of G must satisfy. But in such a case there is nothing to prevent us
from transferring the inequalities defining G to the set of constraints on
the problem under solution. The problem can thereafter be regarded as
being defined in a suitable domain G, which contains G and which has
a simple shape—simple, that is, from the point of view of calculating the
projection ng (X).

Of course, with such an extension of G we increase the radius of the domain
of definition of the problem, and this also increases the laboriousness of
solving the problem with a given absolute accuracy. This is the price which has
to be paid for wishing to deal with simple domains Generally speaking, it is
difficult to say whether, in the general case, this price is acceptable. The
question of making a rational choice of G, must be examined specially in each
actual case. For MD-methods it is quite important, because their laborious-
ness depends on some power of the stipulated relative accuracy, and so
increasing the size of G by k times leads to an increase in the laboriousness by k°
times, where s depends on p, and s > 2. On the other hand, as applied to
methods having linear convergence (of the MMCG type, in which it is required
to solve the projection problem for the Euclidean case), even a considerable
‘inflation’ of G does not lead to a substantia] increase of the laboriousness.

As regards problem (III), it is closely connected with problem (II). For,
it is clear that, if x¢G, then ug(x) is a support functional to the vector
x—no(x) = Ag(x) ie. a functional @¢eE® such that |¢|,=1 and
(@|As(x)> = | As(x)}}). If we know how to solve problem (II), ie. in
particular, how to find the vector Ag(x) for a given x, then, as a rule, us(x) can
also be easily constructed.

Suppose, for example, 1 < p < 0. Then [[uf|, is a differentiable function
when u+ 0, and so the support functional to a non-zero vector Ag(x) (when
x ¢ G, Ag(x) # 0) is simply the derivative with respect to u of the function ||u]|,
at the point u = Ag(x). This derivative can be calculated explicitly; its
calculation from a given u requires O (n) elementary operations.

When p = | matters are ratber more complicated because the support
functional to Ag(x) may not be unique (at the same time, not every such
functional is 2 support functional to py-, (-,G) at x), but in the examples given
below this difficulty is overcome.

We now point ovt some very simple forms of the domains G for which the
problems (II) and (11I) can be solved explicitly. We suppose that E, || ||, can be
made to coincide with [, 1 < p < oo.

1°. Gis the I¥-ball {|Ix —x, ), < r}. We can suppose thar r = 1, x = 0. In
this case, when x ¢ G we have ng(x) = x/{x{, (for x€G, of course, we have
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n6(x) = x). Further, for xe G we can take ug(x) = 0. But if x¢G, then

#o(x) = {(uo(x))i} =1,

where

(e(X)) = %17 'sgn (%), X =

X
Nxl,
(Here we have taken 0° = 0.)
2°. G is a ‘segment’ of an 1%-ball; G = {||x —x,ll, <7, x = x}. We can
suppose that x; =0, r=1 For xel® we put x, = (max(0,x,),...,
max (0, x,)) then

X4

1!5(!) = lx+ ||p

for x|, > 1,

x,  forfx,(, <!
and
X%
(o0 = |27 tsgn%, & = ————,
||X'—X||p
where
+ .
— if x > 1,
iy el
Xy i‘fﬁx+|[p<l'

It can be seen that in the gituations 1° and 2° the calculation of n4(x) and
pe(x) requires O(n) elementary calculations. It is clear that in this case the
realization of an MD-method requires O(n) elementary operations per step
(here the operations carried out by the oracle and the operations of
comparison needed for calculating j (i) have not been included. The number of
the latter depends on the number of constraints in the problem being solved).

The list of ‘simple bodies’ G could be extended, but we imagine that in the
light of all that has been said, the examples already given will suffice.

Of course, the remarks of this section apply to all versions of the
MD-methods considered in this book (Chapters 3, 5, 6), and also to other
methods which use the operation of projection.

3.34

Before proving the methods described, we consider the characteristics of their
concrete versions corresponding to the case where E = L,, | < p < o, and
- on E is {-fl.. We have already looked at the Hilbert-space case
(i.e. p = 2)in Section 3.3.3.2. The corresponding bound for the laboriousness is

M(V—V°)=:|4(v_+o)z[+2.
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In the general case, in accordance with (3.1), (2.3), (2.5), we obtain the
following upper bounds for the laboriousness of MD-methods of solving
Lipschitz-convex problems on the L -spaces with an accuracy v > vq.

When | < p < oo (the method associated with »,(+), see Section 3.2.3) the
laboriousness of the method does not exceed

:I 4() I:+2, 1 <pg

ERY
M, (v —vo) = N 4 (;)") (3.3)
:|(v—v0)"|:+2’ p>2

Here d(p) depends only on p. Moreover, for | < p <2, the estimate
d(p) < d/(p—1) holds, where d is an absolute constant (see (2.3) and the
estimate for c(p) is given in Section 3.5).

When p=1and dim L, =n with 1 < n < o (ie. when E = [{"), for the
method associated with V| _(-) (see Section 3.2.3), the laboriousness does not

exceed
M, (v —vo) < }d——mlnz [+2. (3.4)
v—vo)

MD-methods of solving Lipschitz-convex problems on L,, 1 <p < co,
associated with V()= ¥,(-), will be denoted by MD,. Similarly,
MD-methods of solving problems on [{”, associated with V' (-) = V, ,(-) will
be denoted by MD, , (this is the method MD, ,-method promised in
Section 3.1.3).

In Section 4.3 1t will be proved that, if E = L,and if n = dim E is sufficiently
large, and if G is a ball in E, then the laboriousness of MD, (i.e. MD, , for
p = 1) cannot, in principle, be reduced more than a constant number of times
(this constant depending only on p). Thus, the MD-methods on classes of
Lipschitz-convex problems are, in theory, sub-optimal, if the domain of the
problems of the class is a body of large dimensionality in L,. Precise
formulations of this result are given in Sections 4.2 and 4.3.

Exercise 1. Let E, |-),be L, |-}, with 1 £ p €2 and let dim E = » with
1 <n < co. Prove that problems in the class C,eC3(G, E, ||-[, m) can
be solved with a2 bound for the laboriousness ¢ Inn/(v —v,)?, where ¢ is
an absolute constant. {(For solving problems of the given class apply the
MD ,-method associated with a function of the form ¥~ in (2.4). Choose the
requisite t using the explicit form of the number ¢(p) from (2.3).)
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We now pass on to the proof of the methods described.

Theorem. The following assertions hold.
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(i) Let E, ||| be a regular space, and let V' be a corresponding regular
function. Both versions of the MD ,-methods constructed for an accuracy
v with 1 > v > v, solve every problem in the class Cy;,e C1%,(G, E, |- [, m)
with a relative error < v in a number of steps < M (v —vg). A similar
assertion (with M ,(-) replaced by M(-)) is also true for the gradient
method T in the case where E, |- ||, is a Hilbert space.

(i) In the case of the methods described in Section 3.3.3.3 and constructed for
errors £; >0 (0 <j < m), they solve every problem f in the class
CyeCH(G,E, ||-I,m) with absolute errors <¢;+2L, (f)p,,(G)v,
and with laboriousness not exceeding M {(v(/, £)) resp. M (v(/, £)), where

/. &) min £

vUee o <jsm 2L ())p14(G)
Proof. All these assertions are proved simultaneously. We outline the
plan of the proof and at the same time explain the mechamism of the
MD-methods. Suppose a compatible problem feC,e C\%(G, E, - |, m) is
being solved and that x* is its solution. First we make it clear that the
process of solution does indeed break off at a certain moment M, which has
the requisite upper bound. This follows from the fact that, as can be proved,
all the numbers y; are greater than a certain positive number 4 independent of i.
Meanwhile the rule MD 1.7 breaks off the work of the method at a step i such
that V(¢) —ll¢ll, > —b; < —ia. The lower bound of the left hand side of this
inequality over all the ¢, is finite and equal, let us say, to —7. Therefore the
method automatically stops work before the moment ]7/a[. The explicit
calculation of 7 and a for the methods in question does indeed lead to the
bounds stated above for the laboriousness.

We next explain how the assertion about the accuracy is justified. Let V, (@)
= V(p)— (@|x*). It is made clear that, if the method does not ensure the
requisite accuracy, then, for all i < M/, the inequalities {({;|x;—x*) 2§,
hold, ie. { ¥, (¢,~ )] —{;> € —6;. Thus, (—{;) is the best direction of descent
for V, . The point ¢; is obtained from ¢, _, by a displacement in this direction.
The rules for choosing the magnitude of the displacement and v, are such that
the decrease in ¥, in going from ¢, -, to ¢, is not less than y; (thus the meaning
of y; is that it is an a priori estimate of the decrease in V, after one step).
Therefore ¥, (¢;) < — b, and since ¥, (¢) = V() — |, (because [ x*| < 1),
so a fortiori V(@) — ) @ill, < — b;. But we know that for i = M, this is not so
(the rule for stopping). Thus the assumption that the method does not esnure
the requisite accuracy leads to a contradiction.

We now carry out a strict argumentation for the assertions of the theorem.

(3.5)

1°.  We prove that the laboriousness of the methods admits the required
bounds. To do this, we satisfy ourselves that for all the methods considered the
inequality 8, > a > 0, < M/, holds. This is indeed true for i = M, provided
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that n{® # 0 and {; # 0. Here a is a parameter depending on the situation (i.e.
on which of the assertions (i)-(ii) is being proved and for precisely which
version). In fact, for both versions of the MD,~-method we can take

a=v—yvg. (3.6)

{For, from the rule for choosing j(i) and the rules for determining &, it follows
that &, > 2(v — vo). Moreover ||{;|, <2and 30 &; > 8;/2 > v—v,.)
For the gradient method I we can take

a=2(v—yvy) 3.7

{for the same reasons as above. It has only to be taken into account that in this
case &, = 6, because pg(x;) = 0.
In the situation of assertion (ii) we can take a = v(f, g) if the modification of
MD, is being applied {for in this case
s _&Bo 2¢)0 S 2ey0
Tl 200y p1:1(G) T 2Ly (f)£14(G)

and §, > 8,/2; here and later L;(f)= L 4(f) >-If the method I is being used,
then a = 2v(f, 8) {for the same reasons as above ).

> 2v(/ &),

2°.  Weshall now assume that the work of the method under examination has
not stopped after the (N + 1)th step, N > 1. This means that all the time in the
first N steps

Vied—loille < —b,, I<N. (3-8)

We shall deduce from this that N cannot be too large.
(1) For the versions of the MD,methods which correspond to the
situations (i) and (ii) we have, using the rule MD1.6,

_pdi _ avva/)

4] 2 >

because of the rule for choosing p,; (g, = y{9,/2)) and from the inequality
6, > a,i < M/, proved above. Therefore

V(ew—lenl, < —iNayv(g).

But the left-hand side of this inequality is not less than —4 (because of
Section 3.2.1(ii)). Therefore

1
NS oy
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ie. .
M, £ ———+1
"= ayua/)
and the laboriousness of the methods being investigated does not exceed
1
My +1 € ——+12,
T aylar2)

which, by virtue of the definition of a, gives the required bound for the
laboriousness.
(2) For the MD ;,~-methods, in the situation (i) or (ii), which use the rule
MD 1.6 we have, in view of the assumption in 2.4, for i < N,
ri(t) = (6= {al D)+ Vigi—y) — Ve —tl)
2 (6 — (XD + V(@i 18) Dt —ou(1)t 2 5t — w (i)t

Hence it is clear that
2o (2) (2
(>0 ' 2/)7 2 27
1.e. that in this case too
¥ 2 S Y V(g))
2 2

and this leads to the required bound for M,.
(3) Finally, for the gradient method the required bound is obtained in
exactly the same way as 1n (2) above.

3¢, Thus the bounds for the laboriousness have been proved. We pass on to
the proof of the assertions about the error. We consider first the situation (ii)
and suppose that the result was obtained on the ‘zeroth step’ (see
Section 3.3,3.3). This result is 0 if

g)f,o(o) <g,l<jsm, and 1:'1;1; gl 0(¥) = 94,000)—eo;
in this case
9] ,0) <L <j<m, and mGinﬁ,(y)zgé,o(O)—ao.
Therefore in this case
$0) € futeg+ro(Nve, £[0) <e+r(f)ves

as promised. Moreover, this result ig = if

3j > 1: min g/ (%) >0,
yEGC
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and in this case f is incompatible. Thus if the result is obtained at the zeroth
step, then it satisfies the requisite demand regarding the accuracy.

We now assume that this is not the case, and that in the situations (i) and (ii}
the methods being considered operate ‘non-trivially’, according to the rules
MD 0-MD 2.

4°. Suppose the problem f which is being solved is incompatible. By the rule
MD 2 the output result % is either the (correct) answer that f is incomnpatible or
it is a point of the form %; such that, for | £ j < m,

. 2(v—vy)L,(i) in the situation (i),

1
9io (%10 < [ 8 in the situation (ii).
Since L;()) € L,;(f) = 4r;(f) (we recall that p,.((G) = 1), it follows from this
and from the properties of the oracle that, when £ + = and forallj > 1,

vry(f) in the situation (i), (39)
&+ vor;(f) in the situation (ii). ’

S(®) <

For an incompatible problem f these inequalities mean that the demands
concerning the accuracy of the result are indeed satisfied.

5°.  Now suppose that f is compatible, and let x* be its solution. We shall
prove that if, for some i < M,, we had

7!® =0 (this is possible only when i = M,) (3.10)
or
(i1 —x*> <&lnl®a, knl®l #0, 311

then the method will have the required accuracy.
For, in the second case we have, from the definition of 4§,

01" () = g{"(x*) = 01z —x* >
g2(%)—a;+2(v—vo)Lo(), j(i) = 0, situation (i),
< 1 g2(%)—a;+ s, Jj(i) = 0, situation (i),
91" (%)), j@®>0.
Suppose that j(i) # 0. Then
gi®(x)— ijw(x‘) 2 gljm(il)
and the last inequality gives
g1° (%) < g{® (%)),
which is impossible. Thus j(i) = 0. In that case,
gP(X)—a,+2(v—vo)Lo(i), situation (i),

0/vy__ .
gi (X)) —fo(x*) < 4% (%) — & + 8o, situation (if).
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Thus in the case (3.11) we have, for the given i,
Jo(x*)+ (v =vo)ro(f), situation (i),
T A + e, situation (ii).

It is easy to see that these same assertions are also true when n/® = 0, i.c. in
the case (3.10). We deduce from them the required bound for the error of the
result. Under the conditions (3.12) the result X is a point X, where i, < M/,
such that j(ip) = 0and g,(%,°) = au, < 4;. From the relation j(ip) = 0 we have
already derived in 4° the relation (3.9). Moreover,

Jo(Zip) Sg0(Fi)) +ro(fIvo < am, +1o(Sf)vo,

which, in view of (3.12), gives

S +vro(f),
Jo+Eo+voro(f), situation (ii).

(3.12)

situation (i),

So(%i) < (3.13)

The relations (3.9) and (3.13) prove the required assertions about the accuracy
of the result.

6°. To complete the proof it suffices to convince ourselves that for a certain
i < M, either (3.10) or (3.11) is indeed satisfied. Suppose, on the contrary, that,
for all i < M,,

nf®#0 and (9%, —x*) = 5,|ni®,; (3.14)
we shall lead (3.14) to a contradiction. Indeed, it follows from (3.14) that
xR —x*) =5,
We shall prove that then
E+puc(x)=8#0 and ({|x,—x*) =4, (3.15)

In the Hilbert-space case this is obvious because, in such a space, x; = X, and
pelx) =0,ie. & =1{.
In the general case we have

ilxi~x*) = C&ix—x* >+ (palx)x —x* D
= (Elxi—x* >+ (Gl — %) + (palx) [ x — x* )
2 (GIx%—x% ) = Ix — Xl + py(xi, G) = (&l Xi—x*) > 6
(we have used the fact that, by definition of ug, we have
Cualx)x—u> = pry(x, G) for all ueG).

Thus (3.15) holds. We saw in 1° that §, # 0 if it is generally well-defined (Le. if
n!® £ 0). So {; # 0and {{;|x,—x*) > §,, or, what comes to the same thing,

Volo-)IG> 26, (3.16)
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From (3.16) we shall deduce that for all i < M,
_V¢(¢l)+V.(‘Pl-l) 27 (317)

i.e. since V,(0) =0,
Valp) € —bi, i < M. (3.18)

Since Vo (@) = V(@) — l@ills, s0 (3.18) implies that
Vied—lloille < — by (3.19)

The last inequality is impossible when i = M, (we already know that the
work of the method cannot stop because 79" = 0 or {yy, = 0 and so at the
instant M; an inequality contradicting (3.195 must hold).

Thus, to obtain the required contradiction, it suffices to derive (3.17) from

(3.16). This is done as follows. _ .
(1) Suppose we are deating with MD ;-methods in the situation (i) or (i) and

the ruie MD 1.6 is used. The function

Fit) = = Vy(@i-y —tL) + Vy(9i-1)
is equal to 0 when t =0 and it has a derivative with respect to t which
is equal to ({;|x;—x*>, ie is >4, It differs by a linear addend from
V(@i-1) — V(@1-1 — ) = F(1). Therefore, by definition of wy(t), we have,
when 0 < t,

d
a":(t) 26— wu(t).
from the definition of p, we obtain that, when 0 <t < p;,
d .
ar((t) = 6(/2

From this (3.17) follows immediately, as required.

(2) The analysis of the situation with MD;-methods in the cases (1), (i)
when the rule MD 1.6’ is used differs in no way from the preceding. For, the
function 7,(t), by its definition, differs from 7;(t) by a linear addend, and F()
> r;{t) when t > 0. So, in this case,

Vo @i-1) — Volod) = Filp) = 1i(p) = 11y
a§ required.

(3) The Euclidean case (i.e. the gradient method) is analysed in exactly the
same way as in (2)).

Thus we have derived (3.17) from (3.16) for all the situations in which we are
interested. The proof of the theorem is completed.
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3.4 MD-METHODS ON CLASSES OF GENERAL CONVEX
PROBLEMS

We shall show that MD-methods can also be applied to general convex
problems provided only that G is assumed to be convex, closed, bounded, and
to have an interior (i.e. G is to be a body).

Let E, |- ]|, be a regular space, and let G — E be a non-void, convex, bounded
body in E with asphericity «, (G) = a. We shall describe methods of solving
problems of classes of the C*° (G, E, m) type. We shall give several versions of
the methods, as we did in the previous section. We shall assume that G is
contained in a ball of radius 1 with its centre at 0 and that it contains a ball of
radius 1/(2¢) with the same centre. This can obviously be achieved by a
similarity transformation of G, and so these presuppositions in no way limit
the generality of the constructions.

KR

Let v > v, be the required relative accuracy of solution of problems in
Ce C*° (G, E, m); we shall consider later the case when the absolute errors of
the solution are specified instead of the relative error. We shall see that to solve
problems of the class C with an accuracy v > v, is the same, as regards
laboriousness, as to solve Lipschitz-convex problems (problems of a class
€ C%(G, E, -l m)) with an accuracy v(v) = vy + (v — vg)/(4a).

As always, every point x € G is a solution of any problem f e C with an error
< 1. Nevertheless, for reasons which will become clear later, it will be
convenient in Section 3.4.2.3 to consider the range of variation of v to be from
vg to 2a, and to give a description of a method for all values of v in this range.

34.2

We are about to describe MD-methods of solving general convex problems.
We start with the most general case, where all we assume as regards E, || - ), is
regularity.

Let ng(x): E = G and ug(x): E — E* be defined as mappings which respect-
jvely associate with a point xe E the point x € G closest to x (‘closest’ in the
norm of E), and the support functional to p| (-, G) at the point x. Let ¥ (¢) be
an (E, |- [|}-regular function corresponding to E, || - [|. We shall describe an MD-
method of solving problems in C associated with I/ (we shall denote the
method by MD ).

The work of MDy constructed for an accuracy v with 2a > v > v, on a
problem f e C consists in the construction of a sequence ¢, € E* (0 < i < M,)
(M, is the number of questions of the method on f) and its ‘image’ x, € E,
X, eint G. In the course of the work two auxiliary numerical sequences {;} and
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{b;}, with a; < + o0 and b, > 0, are also constructed. After M, steps (M, is
formed by the method itself), the result X is formed from the sequence {%;}.
The laboriousness of the method on f is thus M, + 1.1t will be proved that this
quantity does not exceed M, (v —v,), where

v 8a
M V,G(V) =M V(E) = ]W[ +2 (41)

The work of the method MD, of a problem f is defined by the following
rules.

MD 0. Initial setting.

Put ¢ =0,i=1, ag =+ 0, b, =0, and let 6 be defined by the relation
1/6—1=v—v,. Then 0 < 6 < 1. Go to MD 1.

MD 1. i-th step.

At the ith step there are available: a point ¢;_,,and numbersa,_;, < + o0 and
b;_, = 0.In the ith step the following operations are carried out in succession.

MD 1.1. Points x, = V'(¢;_,) and %, = 8 mg(x,) are constructed. At the
point X, a question is put to the oracle about the problem being solved (this is
possible because 8 < 1 and B (x)eint G). Let g{(y) be the affine functionals
communicated by the oracle, and let n{ be their derivatives with respect to y.

MD 1.2. The numbers

supgP () — g7 (%) j=0,
R 1 YT I () PO

are calculated. A number j(i) is defined by

o= HHEI<O—wre 1<i<m
10 = j =1 such that g{(%;) > (v—vo)r;(), if there is such a j.

MD 13. g, is defined by

2 a;_y, Jj{) >0,
" | min{a_,.g2(%)}, i) =0.
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MD 1.4. 1f n{" =0, go to MD 2. Otherwise put
)
b= "f-') ’
{1,
d=— (v—vo) &% >+,

1 {9?(21)—514‘("—"0)"0(0, i@ =0,

ITISIN FIRICH) i >o.
MD 15 Put{ = &+ ps(x). If {, = 0, then go to MD 2. Otherwise, put
Cl = Z‘ 3 (si = 8‘ -
(14 080,
MD 16, Put

_ 5; _ 0Py
P = YV(7>, Yi= >

(Instead of the rule MD 1.6 the following rule MD (.6’ can be used:

MD 1.6". Putr(8) = (6;— <{x;[{; D) t+ V(9i=1) — V(¢-, — tL,;). Maximize
r;() overall t > 0. If this maximum is attained, then put it equal to y,, and the.
optimal value of ¢ is p;. But if the maximum is not attained, then put

d; d.p;
pi= '}'V(E>) P =(Tp>

MD 1.7. Put g, =@, —p/l and b;=b,_y+y.If V(e)—le:ll, > —b,
then go to MD 2. Otherwise, finish the step (i.e. increase i by 1 and go to
MD 1).

MD 2. Rule for output of the resuit.

Suppose that reversion to MD 2 took place when i = M,. The work of the
method then stops. The result is formed as

» ifj()>0,1<i<M,,

%, if jc)=0 and gf,(x¢)= a,otherwise.
{ By the definition of a4, (see MD 1.3) there is such an i, if j (i) = O for at least
onei< M, )

In the last case, also put

Fo(f) = sup ro(i)
=0
and in the first case put 7,(f) = 0. Put
)= max ri) j=1
1gig M/
(The quantities r;(f) are required later in Section 3.4.3.2)
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Remark. In the choice of j(i) according to rule MD 1.2 there is, g‘en.erally
speaking, a certain freedom. It is expedient to use this so as to maximize y;.

Exercise. Compare the descriptions of MD vand MD ». In what way do they
differ?

343

As in the previous section, we postpone for a time the proof of the metho_d in
order to give a number of versions of the method which correspond to various
assumptions about the situation. The properties of these versions which are
stated below will be proved in Section 3.4.6.

3.4.3.1

In the Hilbert-space case (where we do not distinguish between E arl1d E*)
some simplifications can be made. These simplifications consist in the
following:

() as V(g) we take 9%

{b) in MD 1.7 the rule for forming @, is replaced by ¢, = (@, - — pil1) (here
we shall have automatically x, = ¢, ; and we can suppose that ue(x;) = 0).
In MD 16 the rules for choosing p, and y; are replaced by p, =4,
y,=52/2 (MD 1.6' then becomes equivalent to MD 1.6). The method
so obtained is a version of the ordinary gradient method, and we shall
denote this version by T'. The method T constructed for an accuracy v,
with 2x > v > v, solves all problems in Ce C*° (G, E, m) with an accuracy
v and with a laboriousness not exceeding M (v —v,), where

v2

MOy) = ]‘ﬁ[ +2. (4.2)

3.4.3.2

Up to now we have been concerned with ensuring a specified relative error. We
now consider the case where it is not the relative, but the absolute, error which
is specified in advance, i.e. the vector g of the absolute errors ¢; > 0 admissible
for the result of the work of the method is specified. As in the case of Lipschitz-
convex problems, each of the three methods described above (the two MD
versions and the methodT") can, after suitable modification, be applied to solve
problems of the class Ce C**(G, E,m) with Specified abosolute errors (_thc
phrase ‘each of the three methods’ presnpposes, of course, that E, |- ||, satisfy
the conditions for applicability of the method considered).
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We shall show how this is done for the given method—1let us call it 8. We fix
on some continuous function N(v) which gives an upper bound for the
laboriousness of the method 4, on the class C, constructed for an accuracy
vo+v. We put v® =2z and let i; be the first natural number i such
that 2 > N(v°). We let v/, i=1,2,..., denote the least v such that
Nw)y=2"*" Thep v® > vl > 42> ...

Let % (v°) be a 2-step method of solving problems in € which is defined in
the following way. A question about the problem funder solution is put to the
oracle at the point 0. If, for somej > | we then obtain g,{o(y) > Qforall yeG,
then the problem is declared to be incompatible. In the opposite case the point
0 is given out as its approximate solution. Let

[suopg£0(y)]+> .’; I)
PP =4 0
! supgh,o(y) —94.0(0), =0
YEG J=\u
Also let @(v') denote the method @& constructed for an accuracy v/, 1 < i.
We now consider a method & defined as follows. Let e = (gq, - - -, &) be the
admissible absolute errors of solutions of problems in Ce C*°(G, E, m). The
work of the method @ consists in the successive application to the problem

Je Cunder solution of procedures & (v°), Z(v'), . . .. In the application of the
sth procedure the numbers

65, )=VvriP(f), 0<j<M (4.3)

are fixed. (The numbers 7% (f), s > 0, are obtained as a result of applying
2 (v*)tofin accordance with the rule MD 2). The work of the method & on the
problem fends with the application of the first procedure 4 (v*) for which the
result 6;(s, f) < ¢;,0 < j < m, is obtained (there is such a j because, from the
properties of the oracle and the definition of Fi (f), it is clear that

RN <K izl PR < L +v)re ()

and v* -, ., 0). It turns out that the method just described ensures a solution
of any problem fe C with absolute errors < §; = ¢;+ r; (f)vo- In other words,
the absolute error of the method, as always in similar situations, coincides with
the required absolute error up to ‘the irremovable error of the oracle’ (¢f.
Sections 3.3.3.3 and 2.4.1). The laboriousness of the method described does not
exceed 8N (v, (f £}/ (1 + vg)), where

vife)= min &;/r;(f)
0<jgm

is the maximum possible relative error which ensures the specified absolute
errors (notice that it js quite possible for v(f ) to be > 1),
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We are now in a position to explain why it was required to def.me
MD-methods even for accuracies v > 1. The point is that methods of this k.md
enter into the method @ (for some finite value of the index i it is quite possible
for v 1o be = 1). If v (f, €) 2 1 too, then the work of @ may, perhaps, stop on
one of the procedures with v/ > 1. In that case we would be able to put out at
once as the solution any point of G, but we are not actually able to do this
because we do not know how to find v(f €) from the known . Therefore we
are obliged to take certain actions in all cases.

Of course, we could start the method & with a procedure of the type #(v)
with v < 1, but then we would waste a large number of steps, possibly, in
comstructing the required solution. Such an effect, of course, could take place
only when v( f£) > L.

344

We write down upper bounds for the laboriousness of MD-methods of solying
general convex problems on the standard L,-spaces. These bounds are derived
directly from (4.1) and (3.3}-(3.4).

1 <p< . Method associated with V()= V,() (we shall cgll it MD_P);
the laboriousness of solving problems in CeC"*(G, E,m)on G witha relative
error v > v, does not exceed

]J(p)aﬁ (G)

(”‘Vo)z

LI

(v=vo)’

(in the case p = 2 when applying the method T the bound is given in (4.2)).

|:+2, 1<p<g2,

Mp. G(V - Vo) < (44)

p=1 and dim E=n, 1 <n < 0. Method associated with }/1'"(-). (we
shall call it MD, ). A bound for the laboriousness is determined by the

inequality
M,,,.G(v—vo)s]%(c)—sz[u. .5)
. (v—vo)

In (4.4) and (4.5) the quantity d(p) < depends only on p. We point out that
MD, , is the method promised in Section 3.1.3.

345

Let us discuss the scheme of application of the MD-methods. We have
presented above a construction which associates with a certain norm on E
(more accurately, with a certain function corresponding to this norm) a
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method of solving general convex problems in the classes C°(G, E,m) on
convex bodies G = E. We now rernark that this 1s not a very natural situation:
classes of the C*°(G, E, m) type are defined only in terms of the topology of E,
irrespective of the choice of the actual norm which gives this topology. In
other words, the class Ce C°(G, E, m) is connected not with the actual norm
JI- |l on the given linear space E, but with a whole class of mutually equivalent
norms. Therefore, the possibilities of methods of solving problems in the class
C do not have to depend on the (in general, arbitrary) choice of a norm in the
given equivalence class of norms. They must be determined by the linear-
topological properties of G (in the finite-dimensional case, by the affine
properties of G), and not by the metrical properties of this body. But at the
same time MD-methods are connected with completely concrete metrics.
There is thus a certain disparity of ideas between the methods we are
recommending and the ‘spirit' of the problems we are considering.

In actual fact there is no real disparity here at all: in a proper application of
MD-methods to the solution of general convex problems the possibilities of
the methods are determined by the linear-topological properties of G. To
explain what we mean by a ‘proper’ application of MD-methods, let us
consider the only practically important (and formally very simple) case where
E is finite-dimensional, i.e. E is the space R", 1 < n < 0. In this case all norms
on E are equivalent, and so any MD-method associated with any norm on E
can be used for solving problems in C. We fix on any norm || on R" and a
regular function, corresponding to it, say V¥, on the dual space (which is
identified as a linear space with R"). There is, of course, more than one choice
for V. But we know that, to reduce the laboriousness of the method, we should
choose a regular function V which is as smooth as possible (i.e. which has as
large a y(-) as possible).

Together with the particular norm [|- || we can consider all possible norms
Ix|*=||Ax|l, where A is an invertible n x n matrix. To each of them
there corresponds a regular function ¥ *(@) = V((4%) '¢). Any of the
MD, ~methods can be used to solve problems in C; their bounds for the

laboriousness will be
V- VO
N 1. I
y(4dl_!A(G))

where N y(v) depends only on ¥ and v, and a.,.(G) is the asphericity of G
relative to || - || *(or, what comes to the same thing, the asphericity of AG relative
to || ). A “‘proper’ application of MD , »methods consists in applying that one
of the MD , ~methods for which the bound for the laboriousness is minimal,
i.e. corresponding to that 4 for which the asphericity «,. (4G) i1s minimal (in
other words, AG is ‘minimally aspheric’ refative to ||- [|). The corresponding
optimal value of o ,(4G) is a purely affine characteristic of G. We can thus say
that the possibilities of the method of mirror descent associated with V in
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actual fact are determined by the affine properties of G. Similar considerations
other versions of the MD-methods.
apﬂayt tzs consider, for example, what we are actually given by the ™MD,
methods—the methods of mirror descent associated with -], on R"
(corresponding to the identification of R” with 1$°). We define for all p,
1 € p < o0, the affine characteristic «,(G) of a convex, bounded, closed
body G = R" as
inf {a;  (AG)| 4 is an invertible n x n matrix}.

Let A2 be the corresponding optimal value of 4 (itis easy to see’that it exists)_, A
‘proper’ application of MD,, to a class Ce C*° (G, R", m) requires our ﬁndm»g
A% and applying the method associated with tl-ﬂg-norm || A%x ||,. With this
approach the bounds for the laboriousness of MD,-methods on the class C
will be

2
J———(l()vli'i,:)'z(c), it p=1,
J(?jj’(—g), ifl<p<?2
]
__—‘7((")“5()6), if2<p< oo
) B ) P

These bounds, as assumed, depend on the affine properties of G.

The next step in the optimization of the method must consist in choosing the
optimal p (minimizing the bound). Strictly speaking, we have no ne_cd to
restrict ourselves to the scale of I,-norms and the methods corresponding to
them; other norms on R" could be brought in. Of course, the solution o_f the
problem stated of making a ‘proper’ choice of an MD-method of solvm_g zt
given class of general convex problem is, in the general cage, an ‘expensive
procedure, even if we consider only the gamut of { -methods. How to calculate
%,(G) and find A% is completely obscure. However, for the frcqt.lently
encountered bodies of ‘simple form’ these problems may turn out to be 51mpl¢.:,
and what is more, no one is compelling us to solve them exactly. However, it
must be remembered that to neglect such an ‘optimization of the norm with
which the method is connected’ will lead to a loss as regards the laboriousness
of the method compared with an ‘optimal’ MD-method. A

Similar remarks may be made in connection with MD-methods of solvu?g
classes of Lipschitz-convex problems. These classes are, of course, defined in
terms of a concrete norm || - [ on E. But the store of problems in a class of type
C’%(G, E, | -, m) depends by definition only on G and the topology of E. Thus,
if J|-))* is equivalent to |-, ie. if

X -
O<a= inf—"x" <sup——“ I =4a < 0,

ezollx]) "~ xsolxl’
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then the store of problems is the same in any two classes of the type
C%(G.E|-m) and C? (GE|-I',m)

Lip

The classes can differ only in the values of v, (i.e. in the accuracy of the oracle)
and in the definition of the normalizing factors. Thanks to this, methods of
solving problems of one of these classes can be applied (observing the
necessary precautions) to problems of the other class as well. We shall show
how this is done, supposing for simplicity that it is required to solve problems
of a class of type C?_;p(G, E, |l [l,m) (i.e. that we have an exact oracle available),
and assuming that G is a body.

We consider a concrete class C of the type C%,(G, E, |- |, m), and let the
oracle @ correspond to it. The class C regarded as a set of problems equipped
with the oracle is at the same time a certain class C’ of the type C° (G, E, |- [, m)
(also regarded as a set of problems equipped with an oracle. The classes C and
C' differ from one another only in the normalizing mapping. [Strictly
speaking, for this it would be necessary to require of the oracle @ that the set
{¥(x,f)|xeG} be contained in the closure of the set {y(x,f)[xeint G}
(otherwise ¥ might not satisfy condition (2) in the definition of a (G, O)-oracle
relative to |- ||'; see Section 2.2.5. However, this restriction on @ 1s of a purely
academic nature, and of course, it is satisfied in all reasonable situations.]

Let L, ;(f;) L, r(f;) be the Lipschitz constants of f relative to || - | and | - |
resp. It is clear that

L ||-||=(f}) < ‘“-"q(f) and PH(G) < ﬂ_lpl-u(G)-

Let
_ Pinl9)
K=——.
apyy(G)
Then, for all £
L y.1(/3)p.4(G) a
s — d /: = i AN E ) !
< Ly ()P (G) and k >Z=a” (b 11

It is clear that an approximate solution of the problem fe C, regarded as
a problem in C’ with a relative error (in the sense of the second class) ¥ = kv,
y > 0, Is, at the same time, a solution of f with a relative error v in the sense of
the first class. Thus, a method of solving problems of the clags C’ with a relative
error kv induces a method for problems of C with the same laboriousness
and with the relative error v. In particular, if the method mentioned is
an MD-method associated with |-’ and having a bound M, (?) for the
laboriousness, where ¥ is the accuracy of solution of problems in C’, then it
induces a method of solving problems in C with the bound for laboriousness

Mn.r(’cv) < 1"4||~||‘(a-1 (" : ”s “ : "')V)
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Applied to MD-methods, a construction of this kind is possible for all v,,
and not just for v,=0. The bound for the laboriousness of a
CUE(GE (-] m)-method induced by an MD-method of the class
Ch? (G,E, |- I, m) with laboriousness M .(v —xvo) will be M (x (v = vo))-

Summarizing, we can say that, although classes of Lipschitz-convex
problems of the type C'(%,(G, E, (- ||, m), in contrast to classes of general convex
problems, are defined in terms of a concrete norm on E, nevertheless there is
freedom in the choice of an MD-method for solving them. This freedom comes
from the possibility of applying MD-methods associated with any norms
which are equivalent to the original norm. In part, this freedom will be obvious
from the very start (a regular function ¥’ associated with | - | can be changed
by obvious similarity transformations into a regular function ¥ corresponding
t0 |- [: and the bound for the laboriousness of MD ,is approximately equal to
M ((v=vo)/a(ll-], |- 1I))). However, the freedom presented by the approach
mentioned above is rather wider; the method there described changes the
bound M, (v—v,) for the laboriousness into M, (k(v—vo)), and x is
> 1/(a()- I, [-)I")) (itcan also happen that p, ,(G)/p,.,(G)is > a). However, if
Gisa |- |-ball, then both approaches coincide, for then p, ,(G)/p, y(G) = aand

x=1/@(l-), 1-1M).

3.4.6

We now turn to the proof of the results already announced for the methods
described.

Theorem. The following assertions are true.

(i) LetE, ||| bearegular space,and let ¥ be a corresponding regular function.
Both versions of the method MD, constructed for a relative accuracy v,
where 2a > v > vg, ensure this accuracy in the solution of any problem in
the class Ce C*°(G, E, m) with a laboriousness £ M 5(v—vg).

If E, (-] is a Hilbert space, then similar results hold for T (with M, ;
replaced by M ©).

(i) Each of the methods in Section 3.4,3.2 (which are admissible for the given
space E, ||+ 1), constructed for an absolute error vector & = (&0, £y, . - -, €m)
> 0, solves every problem fe CeC" (G, E, m) with an absolute error
< E =gj+ver,(f) and with laboriousness < 8N (v(/f £)/(1 +vg))
Here v(f, £) = ming ¢; ¢ £;/r;(f), and N (v) is the bound for laborious-
ness corresponding to a method (from Section 3.4.3.2) constructed for a
rejative error v.

Proof. 1. Westart by proving (i). The proof is on the same lines as for the case
of Lipschitz convex problems (cf. proof of Theorem 3.3.5).
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1°.  The bounds for the laboriousness of the methods are derived from the
inequalities, ‘obvious’ in view of MD 1.4,

S;za if pi®£0, (4.6)

where a = (v —vy)/4a for the MD ,-method,
and a = (v —v,)/(22) for the method T.

[The authors kindly explain ‘obvious’ by the following note—Trans.:
For, by MD 1.4, when j(i) = O we have, from the definition of r, (i), that

b:=g0 % —a) ()" + (v —vg) {su% CElx—% )+ <&l% D}
= (Vv—vg) 5“% &,

But if j(i) > 0, then we have, from the definition of j(i) and r (i),

Ty () = sup i) x —x,),
Xé€

and so, by MD 1.4, we obtain
8= (v=vo) &% + (M)~ 9i (%)
> (v—vo) C&I%:D + (i) igg<n{“’|x—ii>
= (v—vo)sup{<&|x>|xeG}.
Thus we always have
85 2 (v—vo) i“e%“"”'

Hence §; = (v — vo)/(2a), because (&), =1 and G contains a ball of radius
1/(2«) with its centre at 0.]

We recall that the laboriousness bounds for the methods MD yand I" were
derived from inequalities just like (4.6); the difference from the Lipschitz case is
that a is now 4a times smaller than before. The derivation of the bounds from
(4.6) repeats the corresponding argument in Section 3.3 word for word.

2°.  As regards the error bounds, in Section 3.3 they were all derived from a
single conditional assertion

(A). if on a given compatible problem S the error of the method considered
exceeds the value v, then, for all i < M,

7 40 and (&% —x*> 28, % = na(x), CY)
where x* is the solution of /.

The relation (4.7) was later shown to lead to a contradiction, thus proving
that the premise (A) cannot hold. In the case now being considered, the
conditional assertion in (A) is again true. This is what we are about to prove.
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But we shall not show that (4.7) leads to a contradiction, because the argument
is word for word the same as in Section 3.3.
So we shall prove (A), or, rather, we shall in fact prove the assertion

(A): Let fe Ce C°(G, E, m) be a compatible problem which does not satisfy
the following condition (B):

(B): the result X of applying the method considered to the problem f is
different from &, and for it

9,{; () < (v=v)F,(f) e

where
= 0, ifj=l,
S, ifj=0.

Then for zall trajectories of the method on f the relations (4.7) hold.

The assertion (A’) proves the bounds formulated in (i) for the relative error
of the methods. For, it has already been pointed out that the relations (4.7)
cannot hold for all i < M. Suppose f is compatible. In view of (A’), f cannot
fail to satisfy condition (B), i.e. for all j with 0 <j < m,

gjj,i (X) < (v=v)T5(f) + s

As pointed out in Section 3.4.3.2, when j > 1 we have 7;(f)} < r;(f), ie
J(%) S vi f) for j 2 1. Further, recalling the definition of 7y(f), we obtain
from (B) when j = O that, for a certain i, with j(i;) =0,

gb,2(®) < (v=vo) (sugaé.i,l(y)—gé.h, (%)) +fo
YE
< (=v0) (SUP fo(Y) 9.5 () + /o,
ye

(here we have used the fact that, by MD 2, g§ 5(%) < g 5, (Xu1))-
Hence

(14+(v=ve)) @5 (R —1,) S (v — o) (Sl;pfo —f&) S (v=ve)ro ()
Thus

9t :(X) S+ (v—vo)ra(f) and fo(%) < f, +vro(Sf).

Summing the bounds obtained for fj(X), j 2 1, and f,(x), we find that
v(X, f) < v, as required.

But if f is incompatible, then, from MD 2 and the relations r,(i) < r;( /) for
J = 1, it follows at once that v(%, /) < v.

So (i) has been proved.

3°. So now we shall prove (A"). Let f be an object satisfying the premise (A’),
and let x* be the solution of /. We shall satisfy ourselves that, foralli < M, we
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have
% —x* Y2 kg, 4.8)
where
= gOE)—ai+(v— vo)ro(i), for j(i) =0,
T e, for j(i) # 0.
For, if we had
947 (1) < gi® (x*) + k71, (4.9)

then would j (i) = 0. Because, when j(i) > 0, the second term on the right-hand
side of (4.9) would be equal to g{®(x7), and the first term would be non-
positive; but then (4.9) would be impossible.

Thus j(I) = 0. In that case (4.9) gives

_ g3(%7) <Sfo(x*) +g9(%7) — ar+ (v = vo)ro (D),
ie.

am, <[+ (v —vo)is (f).
Hence and from MD 2 it immediately follows that f satisfies (B), contrary to
the definition of /. It is easy to see that the hypothesis n® = 0 for some 7
< M, leads to a similar contradiction. Thus we may suppose that (4.8) is
satisfied and that

n®£0 for i< M,. (4.10)

4°. From (4.8) and (4.10) we deduce the required assertion (4.7). In these
circumstances we have, for every i < M,

CGl%=x*)> =k (Ini®h,) " = 6.
Hence

CGIx=x*> = (&Gl —x* )+ (67— 1) (&lx:)
28+ (v —vo) C&I% > =3,

as required (we have used the fact that 67! — 1 = v — v, by the definition of §).
Thus, we have proved (A'), and with it, the part (i) of the theorem.

. Itremains to prove (i1). With the notation of Section 3.4.3.2 we have for the
result %; of a procedure % (v*') applied to a problem f € C e €*°(G, E, m) that:if
is compatible, then X; # *, and when X; # * we have

g6, (%) <o V7S, g (%) SVFP(S), J =1

(when i> 0, this follows from (i) for compatible f, and from MD 2 for
incompatible f; we leave the proof for the case i = 0 to the reader).

From the rule in Section 3.4.3.2 for stopping, the work of the method ends
at the moment (let its index be i) of the end of the first procedure for which
VFP(f) <&, (0 <j < m). Therefore the result of applying 4 to f satisfies the



120 Methods of mirror descent

requirements to the necessary accuracy. We estimate the laboriousness of 4 on
/. Itis possible that i, = 0. Then the laboriousness of & on fisequal to 2,1.e. it
is automatically less than 8N (v(f] £)/(1 + vy)). Now let i, > 0. Then

lrtie—1 o N(vll—l) < N(V(ﬂ E))
1+vg /)’

since v/~ > v(, €)/(1 + vo). At the same time, the laboriousness of & on fis
equal to

i igts s 2io+l/+2 = 8 ;1_14.‘0 s V(_f) l:)
2+ i 2 2 8N(1+v0 ,

s=1

as required. The theorem has now been proved.

3.5 SOME ADDITIONAL PROOFS

In the following proofs we use without special citation the ideas and notation
of the relevant sections of the main text.

We prove the estimates (2.6) of Section 3.2 and calculate the corresponding
constants c(p).

1°. Let E=L,(T,p) and let 1 <p<oo. Then E* =L (T,u) with
q=p/(p—1). Let r(¢p) denote the function [|¢|, on E*. Then r(p)
is a convex, homogeneous (of degree 1) function on E*. It 1s easily seen
that the support functional r'(¢)e E to r(¢p) is uniquely determined (when
@ # 0) and that r'(1¢p) = ¥ (¢) when 1 > 0. If r(¢) = 1, however, then

[r' (@)1 () = le(®)*~ " sgn o(2). (5.1)

We shall prove the following relation: if @, Yy e L and if lof, = (¢, = 1,
then

22— p)p _
IF @) -, <] p=1 10T ¥ a2
-l *™ ", if g<2
For, let (@), = [¥]l, = 1. We define
T, ={t|sgnp()=sgny ()}, 7. =T\T,.

(5.2)

Writing

A =|["(@)] (=[] )
we obtain from (5.1) that when te7,

AW =N @OP ™ =y @11

Suppose first that ¢ < 2. Then the function s~ ! is concave for s > 0, and so,

Some additional proofs

when g < 2,

sy (371 — 182171 < )8y —s,197 0

Thus, when g < 2, we have, forre7,,

A(t) < le() =y (I

1

Further, it is clear that when te7_ the inequality
A1) < 2|o() Y ()" .

holds. Thus, always when g < 2,

A(t) < 2l — (D1~

Hence

§AP(D)Au(t) < 2° [lo(t) —Y(0)]@™ VP du(t) = 2@ ~ Y1}

Therefore

lA@I, < 2@ —yIIg™,

as required in (5.2) when g < 2.
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Now let ¢ > 2. The function s~ ! is then convex for 5 > 0, and so, when

$; 285,20
1T -5 < |:cl_s
.l=.l'l

Therefore, when te7, we have, putting A(t) = max {|e()|, ¢ ()|},

(S""):| (51— $2) = (@~ D)si (s, —52).

ORI CE A U R TG

It is clear that (5.3) 1s also true for te7_. Therefore

[A?(1)du(t) = (@ — D" [H™ D2 (1) [ p(1) — ¢ (1) [P dp(®).

Putting
>]| and 1= ¢

g =

o R

and applying Holder’s inequality, we obtain
[AP(®)dp(r)

g

c—1 (q—2)p

< (g—DPLfha= D7 () du()T7 [ [ o(t) — ()P du ()]

= (g—1P[ [h)uT* [ [lo(t)— ¥ du()]*

L 4
<S(@-1°2%lp—ylz = (g—1)*-2
1.e.
-

A, <(g—1)-277

2
le—vl, =

which completes the proof of (5.2).

@-2)p

q

2-p

2
p

f 4

-1

lo—wli2,

o =¥,

(5.3)
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2°.  We now estimate the modulus of smoothness w, of the function ¥,(¢).
Let o, ye L, and let | ¢ —y ||, = t. We estimate [| V,(9) — V' (¥)|l,. We may
suppose that |y |, > o[, Let

o=o/lolle ¥ =¥/l

(with = 0 when @ = 0, § = 0 when yy = 0). Further suppose that ||}, > 0.
Then

o le—lely
1o =91, = ﬂ tel vl |
= el vl vl
This inequality is clearly also true for ¢ = 0 (here we take 0/0 = 0). So
2 _
19—, <22l (54)

¥l
Suppose first that |||, > L. Then, from (5.4),

@&l <2le—vl,.

At the same time, V', (¢) = r'(§), V', (¥) = ¥'({¥), and a fortiori, in view of (5.2),
the inequality

) 2(2-3)

. P
) —T"(P—\MI,, l<p<g2,
17 (@)— V), <29 P (5.5)
1

2-2F£T||<o—nll||g‘l , p>2

holds.
Now let |||, > 1, [oll, < 1. Then, as before,

lo—vl, <2lle—¥l,
At the same time,

Vi)=r@), V,(o)=Ilelr (@)
and

IV, ()= V(@M< (1= llol) + 17 (@) =7 @),
<le=yl,+ 17 (@) - @l

Moreover, it is clear that |V, (¢)— V,(¥)ll, < 2 for all ¢ and . Hence and
from (5.2) the inequality (5.5) immediately follows.
The case ||, < 1 remains to be examined. In this case

V()= Vo) = (ol — W17 (@) + ¥l (" () —r ()
(here 7 (0) = 0). Thus, by (5.2) and (5.4)
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1Va(0) =V, (),

» 2(2-9)
' s “(P—'l’”q’ psz,
p—1 ¥,
<lo—¥lig+1¥l, | YT
¢ ¢ 2.2,—1T"‘p_¢“'q’_1_ p>2,
_ WiFT
and hence, as above (5.5) follows. Thus
2y
N
L 1<p<g2,
ROER Rk (5.6)

2p-1 4
277 -1, p>2.

Hence it follows that
(p—1)2'2;43, 1<pg2,
Yo() 2 - o2
and (2.6) is proved. Moreover, we can take
(-2 >4(p-1, 1<p<2,
c(p)= NIERTEH 546D ps2 (5.7

3°, We now consider thecase p = 1. Let E=1" with 1 <n < oo, let 1 > 2,
and p = 1/(1—1). For ¢, ¢ €1, we have, by (5.6),

VY (8)= (VY ()l < 5= 1o = V.
Further, it is clear that
o=yl <n' ¢—¥lw

1V (@)= (VY () < n*1VY (0) = (VY ()5

and

Thus g
WV (@) (VY (W, < "2"ﬁjll¢—\llllw- (3.8)

We now choose 1 50 as to minimize n*/*/(§ — 1) under the condition t > 2.
Unconditiopal minimization (without considering the condition t > 2) gives

t=Inn+/In’n—21nn (5.9)

To simplify the choice of 7, we take an approximate value of the root,
t = 2 Inn. With this choice of 7, the quantity n2/*8/(p — 1) will be equal to

8e(t—1)=8e(2lnn—1) < 16eInn.
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Thus, for the choice 7 =2Inn (we suppose n > 2) we obtain, in (2.11),
c(1) = 1/(16e). When n = 2 we can take 7 = 2, and then (2.11) will hold with
c(1) as indicated. Thus, for the space [ the regular function should be chosen
from the condition

7 =max {2.2Inn}; and then c(1) = 1/(16¢). (5.10)

4

Complexity of classes of
general convex problems
(exact first-order oracle)

In this chapter lower bounds are constructed for the complexity of classes of
general convex problems in Section 4.1 and of classes of Lipschitz-convex
problems in Section 4.2. These bounds are compared with the upper bounds of
the complexity which are provided by the results of the two previous chapters
about the laboriousness of the methods of optimization described therein.
Such comparisons enable us to characterize the behaviour of the complexity
functions of the classes considered, and to trace out the domains of theoretical
optimality (more precisely, of sub-optimality) of methods of solving the
general convex and Lipschitz-convex problems in Chapters2 and 3
(Section 3.3). In Sections 4.4-4.6 we give the proofs of the bounds formulated
in Sections 4.1 and 4.2. The results in this chapter are based mainly on the
authors’ paper [30].

4.1 COMPLEXITY OF CLASSES OF GENERAL CONVEX
PROBLEMS

In this section we formulate and prove two-sided estimates for the stochastic
and deterministic complexities of classes of general convex problems.

4.1.1

First we introduce certain geometrical characteristics of convex bodies in
Banach spaces. These characteristics enable these bodies to be compared with
L,-balls, and in the final count make it possible to formulate the required
bounds for the complexity of classes of convex problems. Let E be a real
Banach space, and let n, | < n < oo, be its dimension; let G be a bounded,
convex, closed body in E, and let (||| be a norm on E.

We start by defining the k-dimensional p-asphericity a, (|- ) of @ norm ||-|)

125
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on E. Here k is a natural number not exceeding dim E, and p is a parameter,
1 < p < co. The quantity a, ,(([-([) is defined as follows. We consider a
k-dimensional subspace E’ of E. On E’ we can specify a ||-|[,-norm in many
different ways (each of these ways corresponds to fixing a basis in E'). Suppose
such a norm has been fixed on. In relation to that norm the unit ball (relative to
the norm (- ||) of the space E’ has a certain asphericity & The lower bound of
these asphericities over all possible choice of the [{”-norm on E’ will be called
the p-asphericity of E' and will be denoted by a,(E’). The Jower bounad of the
quantities a,(E’) over all the k-dimensional subspaces of E is called the
k-dimensional p-asphericity a, ,([-]) of E.

The quantity «, ,(||-{)) is a characteristic of the space E, ||-|. We now
introduce an analogous characteristic of the convex subsets of E. We put
2y 1,1(G) = @, (II- ey, (G, (1.1)
@, 4(G) = inf {«, ;.1 x(G)] | | is an admissible norm on E}.  (1.2)
We also put
a(G) = inf{a, ;(G)| |- I’ is an admissible norm on E}.

We point out that a,, |, ,(G) is a metric characteristic of G (moreover, it does
not change under homothetic transformations of G), whereas «, ,(G) is an
‘affine’ characteristic of G (it does not change under continuous, affine
transformations of G). Some useful properties of these characteristics are
formulated in the following exercises.

Exercises. Let E, ||-(, G be as above, and let p, p'[1, ].
1. Prove that

%y, 4(G) skl'%_%"lap.'"_"'k((;)‘ 03

A.-_l,_|
ap‘k(G) s k L ap'.k(G)'

2. Letdim £ = n < . Prove that among the simplexes contained in G there
15 one of maximum volume. The vertices of this simplex lie on dG.
Moreover, the hyperplanes passing through a vertex of the simplex parallel
to the side opposite the vertex are support hyperplanes of G.

3. Deduce from Exercise 2 that, when dim E = n < 0,

a,, .(G) € 2n, (1.4)
4. Deduce from Exercises 1-3 that always
(N Uy, (C) € 2ka","l(G), (1.5)
(2) 2,.14.x(G) < 2! *¥ay (G), 1 <p< oo;

if dimE = n < o, then
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E) %, (G) <1 *3,1 < p < oo,
In fact, when p = 2, more precise bounds exist [14]: for all k < dim E,
ts,4.(G) < Sk, (G); (1.6)
if dim E = n < o0, then
o, n(G) <n (17)

Moreover, Dvoretsky [8] has proved that, for every integer k and number
6 > 0, there is an n = n (k, 4) such that, if dim E > n(k, §), then

23 ..x(0) < (1 +5)‘1|-||(G)- (1.8)
In particular, if dim E = oo, then
a3,5.4.x(G) = ap,; (G). (1.9)

4.1.2

We formulate the first of the main results about the complexity of classes of
convex problems, but first we introduce some notation.

Let®, ,(v),1 < p < o0, denote the upper bound for the laboriousness of the
MD,-method, constructed for an accuracy v, of solving Lipschitz<onvex
problems of a class of the type

C&p(G| Lp(T; M)l " ) ”p! m),

corresponding to the case dim L,(7,u)=n, n=1,2,..., . Actually, if
P # 1, the bound ®, ,(v) does not depend on n.

Further, let ®, ., (v) be the upper bound for the laboriousness of the MCG
method, constructed for an accuracy v < 1, of solving problems of a class of
the type C°(-,R*,m), n=1,2,..., . For n = o0, the bound ®, ,(v) is
defined to be co.

Corresponding to the results of Sections 2.3 and 3.3, we have:

[p=1,

D()n(n+1)
—_— <
o, .=l w = lsni<®
+ o, n= oo;
1 <p<g£2,
D
mn‘p(v) = (1p);
v
2<p< o,
D(p
@, 00 =2,
p= o, v 5
o =D - .
n, o (V) (oo)nlnv ] (110)

Here the number D(p) < ¢ depends only on p, 1 < p € .
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We also introduce a set of functions ¢, ,(v) defined for 1 > v > 0, for all
n=12...,0andforall p,1 <p < c0:

[P=11<n< o,

@ v>i,

>

a Y s s

V2

V) =
@, 1 (V) d(1) min{d,n= 8} > v = n" 12,

i
Ld(l)n, v < min{n~"2, }};
p=1,n= o0,
1L v 21,
(pn‘l(v)_ +w, V(%,
[ <p<oo,
@, p(v) = d(c0) min (n, @,(V)),
where

L,
‘PP(V) = |d(p)v—mu(2.p), y < .};

p=o®, 1 <n< o,

v 24,
(Dn.ao(v)= l
d(oo)n ln(;), V<
p=®,n=0x0, .
l, v2i
=1 [.11
Pr. o) loo, oL ) w

In (1.11) the numbers d(p) are positive and depend only on p, 1 £ p < ¢0.
The set of these numbers for all p determines completely the family of
functions @, ,(v). For 2 <p < o0, d(p) 247°.

Let C be any class of problems of the type C°(G, E, m). Let N (v), resp. N, (v),
denote the deterministic complexity function resp. s~complexity function (see
Section 1.4.4) of this class. Further, let @ be any local, deterministic oracle for
the field of problems C(G, E, m), and let N®(v) resp. N°(v) be the deterministic
complexity resp. stochastic complexity of the class of problems C* obtained
from C by replacing the original oracle by the oracle 0.

The following theorem holds.

Theorem on the bound for the complexity of classes of general convex
problems. There is a function d(p) >0, [ <p < o, such that for the
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functions ¢, ,(v)corresponding to it (asin (1.11) the following assertions hold:
the functions N (v), N, (v), N°(v), N°(v) have the following bounds.

(Note: if 0is local but not necessarily deterministic, then the lower bounds
for N°(+)in part A of the theorem are still valid, but we shall not prove this.)

A. Lower bounds.
Al. For every natural number k < n and for every p, 1 € p < o0, we have

NO) 2 @4, (@, ((G)Y) (1.12)
and
Ps, p(gap. IL(G)V)
1+ [Inlgy, ,(8a, GV ],

A2 LetE = L,(T,p)and [ <p < co. Thereisa k,(r) < oo for ¢ > 0 such that,
when n > k,(«;., (G)v), we have

No(v) =

(1.13)

Reo) = g, , (28a;,, (G)v). (1.14)

A3. Thereisak,(t) < oo for t > Osuch that, when n > ;z(an_,(G)v), we have

RoW) 2 ¢q. 20y, (G)V). (1.15)
Ad. If E is not reflexive, then
Nfv) = + oo for v £ v(G), where v(G) > 0. (1.16)
AS5. If m > 0, then
N.(V)=+oforv<l (1.17)
B. Upper bounds.
Bl. When n < o0
. . v
NV €£min{®, (v inf &, [-—|;. 1.18
) { (v cof "’(4%,,,(6))} (1.18)
B2 fE=L,T,u),1<p<occ:
v
NWLD, ,| ——— |- 1.19
® "(411,.,(@) (19)

The proofs of the group of assertions A of the theorem are proved in
Sections 4.4—4.6. The assertions B we already know. For, the bound (1.18) is
connected with the possibility of applying to problems in € the MCG method
from Section 2.3 (this leads to the inequality N(v) < ®, . (v)) and methods
from the family of MD,-methods, 1< p< o (see Section3.4.5) in
that section the number «, ,(G) in (1.18) was denoted simply by a,(G).
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Asymptotic behaviour of N(v)

Table 1
G NW < N =
1)
— @ (v) zcmn:I In (— |[ Ao®o (W forvsn™?
v)
O () =cun]ln(t/n)[ A @y (v)
a,,.(0) S 2 forgv <itand vga ?
1<p<wm,
s = max (2, p)

@ = min {2n, an'/?}

a-'
P (av) =, =

A, @, (av)

forav > n~ 14

&, (V) =con]In(i/v([

Ag®(v) for v n™?

2,00 (av)
fori>av2n1®

a; (G)<a
o?
a* O (av)=c, In g
A
(av)?
forn™'® > gy > n~ 12
am;n(G) <a de)m(v) \

S, (V=c n]Iin(1/w[

forav <iandv<u”

Now) =
asv-0 asn— oo
nlin(1/v) <NW)
O( Ho
). = = -2
“1In Oy (v) orvsnm < pnin(1/v) —
forvg n?
).m ¢m (V)
in®_ (v)
forav < dyand vy < @2 Ms)\l(v)
Heo 2,0,(av) < N(v)
Sugnlin(l/y) < @, (av)a*
O
pﬁ forav <4 forav 2 n-1#
P +
forav zn~'# and v < &2
Ay ®,(av) for n 2 ky(av)
Q. (V)
2 = forvgn~?
*ho,m o S"
O (av)
"1+ [l @0 (av)] .
In(l AL O (av) € N (v)
for & >av>n"18 - I;( A < N(v) ' < a* o (av)
®
< pnlin(l/y) for oy 2 n~ 118
forvgn? and } > av
AI
(av)? In (1/av)
for n™ 18 > gy > = Us
A -
(avl)z for n > k, (av)
D, (v) nln(1/v) nlo(l/y
1m1n® ( —<NW #sN(v)
(V) » Heo

forav <dyand v a2

S pgnin(l/y)
forav<tand v o~

2

S pgnin(1)y)
forav>3and v < a”

2
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The assertions about the laboriousness of MD,methods lead to the
bounds

Vv
<o — ), 1< .
NW) < ""’(4%."(6)) p< o

Finally, (1.19) follows from the possibility of applying WDP, see Section
344,

4.13

Theorem 4.1.2 contains quite a lot of information about the complexity of
classes of convex problems, but the information is, of necessity, given in an
inconvenient and highly condensed fcrm. We have given the bounds
(1.12}-(1.19)in a more convenient tabular form. Table 1 for the bounds applies
to the only important case from the practical point of view, where
E = R" is finite-dimensional. The infinite-dimensional consideratjions, which
are of a rather academic character, are given in Section 4.1.5.

In Table 1 the first column gives the geometrical characteristics of G, and the
other columns give the bounds for the deterministic complexity N (v) and the
stochastic complexity N (v) of a class C of the type C° (G, R", m). Only a lower
bound is given for N (v). The upper bounds for N(v) are the same as for N (v),
because, clearly, N (v) < N(v). The lower bounds for n(v) and N(v) are also
valid for all the complexities N°(v), N°(v). In the table c(p), 2(p) and p(p)
denote certain functions of p which are positive and finite for all p. The table
itself needs no special justification; it is an immediate consequence of the
bounds (1.12)-(1.19). Finally, it is assumed that 0 < v < { everywhere in the
table.

4.14

We comment on the results given, by drawing some obvious consequences
from the data in Tabie 1.

The complexity functions of a class C of the type C°(G, R", m) depend on
the accuracy v and on the parameters, i.e. on the list of objects which
charactenze the class C, i.e. primarily on G, but also on the oracle @
corresponding to the class C, and on m.

We do not know how to calculate the complexity exactly (this obviouslyisa
hopeless problem for arbitrary general situations); we can only estimate it. Our
estimates coincide with the complexity in the best case with an accuracy up to
an absolute multiplicative constant. [t should be remarked that to strive for
more here is not worthwhile; it must be remembered that the informational
complexity itself is a rather rough characteristic of the intuitively understood
complexity of a computational method.
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Corresponding to what has been said, the natural questions about the
complexity which we should answer (and which we can answer in a wide range
of situations) are questions about the nature of the dependence of the
complexity on the parameters which define it, i.e. about the asymptotic
behaviour of the complexity with respect to these parameters. Let us see what
can be said in this connection,

4.1.4.1

We consider first the question of the asymptotic behaviour of the complexity
as v — O (it is precisely to this sort of analysis that study of the effectiveness of
numerical methods is traditionally restricted). It is well-known that, for small
v, N(v) 2 O(In (1/v)) (this estimate can be obtained even from an analysis of
the one-dimensional case). The results of Theorem 4.1.2 make this fact more
precise and give exhaustive information about the asymptotic behaviour with
respect to v of the complexity: namely, for all sufficiently small v (viz. for
v < v(G) > 0) we have that N (v) ~ nIn (1/v}) up to an absolute multiplicative
constant. (The notation a ~ b means that for certain absolute positive
constants ¢ and d we haved < b/a < ¢)

The moment when the asymptotic behaviour is established (i.e. the value of
v(G)) depends on the affine properties of the body G. For parallelepipeds G, the
asymptotic behaviour is established ‘immediately’: v(G) = §. In the general
case, v(G) depends on the ‘acubicity’ of G—on the value of ¢, , (G) = &
Namely, v(G) = min {1/(4a), {/a*}. Moreover, for all bodies G of a given
dimension, there is a common moment of establishment of the asymptotic
behaviour ¥(n) = n~? (this happens because of the inequality a, , (G) < 2n,
see (1.4)),

The results regarding the stochastic complexity N (v) are not so precise. The
asymptotic behaviour as v — + 0 of the upper bound differs but little from that
of the lower bound, it is true; when v — 40, the estimates

nln (1/v)

1
mSN(v)Snln;

hold. (Here a S b means that b/a is not less than an absolute positive constant.)
In particular, asymptotically as v - +0,

> N
Np) = InN(v)’
i.e. a randomization of search at high accuracies, if it enables the eflectiveness of
methods to be increased at all, does so only ‘logarithmically’. We remark further
that, independently of the shape of the convex body G = R”, the moments of
establishment of all the asymptotic formulae mentioned are automatically
bounded below by a quantity of the order n~2,
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4.14.2

We now consider how the complexity depends on the other parameters. As
regards the actual choice of the (int G, 0)-oracle and the number of constraints
m, the bounds in the theorem do not react to these at all (this is quite natural, if
one thinks about it). So we just have to explain the rdle of G. Strictly speaking,
G is an extremely inconvenient parameter (because non-numerical), and so it is
very difficult to trace out the part it plays from its general aspect. The sensible
thing to do is to pick out certain numerical characteristics of G (they must be
affinely invariant because of the affine nature of the classes considered), and to
see how the complexity depends on these characteristics.

The most important (and the simplest) of such characteristics is the
dimension n of the body G. Both theoretically and practically it is very usefut to
know how the complexity behaves asymptotically as n » oo0. Unfortunately, it
turns out that a simple answer cannot be given to this question (because the
complexity depends on G as a ‘whole’, and not just on its dimension).

For, if G is a parallelepiped of dimension n (ie. ¢, ,(G) = 1),and if v < 1,
then, as n — oo,

1 > n 1
N(V)’vnlﬂ;, N(V)'vmln;,
ie. the complexity increases with increase in dimension linearly, or
almost linearly. On the other hand, if G is an [¥-ball, ie. &, ,(G) = 1, and if
1 <p< oo, and v < 1/4, then, as n - oo,

N(V) 5 N(V) ~ y — max{Z,p)

{here a ~ .b means that b/a is bounded above and below by a quantity which

depends only on x; < , is to be understood similarly.) Thus in the second case

the complexity is bounded uniformly with respect to n (by a quantity which

depends only on v and p). But if G is an [{”-ball and if v < 4, then, as n — o0,
Inn

NG~ N~

here we observe a growth in complexity with growth of r which is not linear
but logarithmic. We point out that, in the last two cases, the value of n from
which the indicated asymptotic behaviour of the complexity operates depends
on v {and p). Moreover, for the stochastic complexity the asymptotic behaviour
is established, generally speaking, later than for the deterministic complexity.

In view of what has been said, it is impossible without additional hypotheses
about G to answer the question of how the complexity changes with increase of
the dimension. It is still necessary to fix in the requisite way the ‘affine type' of
G. Let us consider this problem, supposing that G is of the type of an [{-ball
(more precisely, we suppose that &, ,(G) < xand we examine the behaviour of
the complexity as G changes, taking a as a parameter). The lower and upper
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bounds which are obtained in this case for the complexity depend on G only
through the dimension of G. When av < 1/32 and n - o0 we have

aln(1p) o
mz—ﬂ(")SN(V)’;"IH;» p = co,
1/vmu(2.p). 1<p< oo,

N(v);;]v(v)ﬂ; Inn/v?, =1,

(1.20)
i.e. the asymptotic behaviour of the complexities as n — co is the same as for
1-balls (of course, the divergence between the upper and lower bounds of the
complexity now also depends on o it is the greater, the greater « is).

4.143

It is clear from the above considerations that the complexity depends rather
strongly on a factor which is so ill-suited for examination, i.e. on the ‘affine type
of G’,and therefore in the general case it is difficult to rely on the possibility of
obtaining constructive and exhaustive results. However, for a certain rather
wide spectrum of concrete bodies G, namely, for [%-balls, it is possible, using
the bounds in the table, to obtain an ‘almost complete’ idea of the complexity.
We pive the corresponding results.

Thecasep = co. Here the picture is the most complete: forall v (v < 1/32) the
relations

N(v)
In N (v)

N®v) ~ nlnl and N2
vy
hold.

The case ] < p < 0. Here (as in the case p = 1) the results are rather less
precise. They consist of the following (we suppose v < 1)

(i) For high accuracies, viz. when v < n~?/? the following relation holds:
1
N@®) ~nln-,
P v

(ii) For low accuracies, viz. when v > n~ 1/m2x(®.2) the relation

1
N(v) 5

prmax 2.p)

holds.

iii) For intermediate accuracies, viz. when n~1/max(2.0 -, y 5 p~2/P the two-
'y
sided estimates
1
n$ N Snln~
v
holds.
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Thus, with increase of the accuracy, the complexity at first increases like
1/y™ax(2:9 and it ‘does not feel’ the value of n. This growth continues until the
complexity reaches the level of n. Here the dimension first begins ‘to be felt’.
After a certain band of indeterminacy of values of v (an indeterminacy in our
knowledge, of course) in which the complexity is included between the levels
~,nand ~,nlnn, the complexity begins to vary like nln 1/v and it ‘forgets’
about the geometry of G (ie., strictly, it forgets about p).

We remark that, as regards the stochastic complexity, for alt v <1 the

timat
estimate NO)

InN(v)+1
holds, Le. all that we have said about N (v) is true, with certain correct.ion_s, fo_r
R (v) also. We further notice that we have an estimate for N(v) which is
accurate up to a factor ~, InN(v).

$ N0 <N

The case p= 1. Here the situation is qualitatively the same as for p > 1.
Namely (v < 1/32):.

(i) for high accuracies (v < n~2) we have
1
N()~nln-;
v

(i) for very low accuracies (v > n™'/?)

\ 1
Ny~ 2D,

(iii) for intermediate accuracies (n~'/® > v > n~?) matters stand thus: at first
(when v > n~!12) the estimates

1 In(n+1)
= SN ST

hold, and then (when n~2 < v < n~1/?) the following estimates hold:

nSN() Snlon

Thus, the difference from the case 1 < p < oo is that the dimension 'is felt’
from the very start, at low accuracies, but only weakly. “The band of
indeterminacy’ is relatively wider than for p > 1, but in it (and then also
everywhere) we know N (v) with accuracy up to a factor ~ In N (v). Finally, for
all v < 1/32, the estimate (1.21) holds.

4.1.5

Let us examine the infinite-dimensional situation. Here the complexity of
classes of general convex problems can be either finite for all v > O, or infinite
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for all sufficiently small v > 0. In every case, if G is a convex, bounded, closed
body in E and if dim E = oo, then by A3 of Theorem 4.1.2:

{ 2
Vo802 (7 )

Le. the complexity on any infinite-dimensional space admits the same lower
bournd as in the Hilbert-space case. This lower bound a fortiori points to a
regular—regular, that is, with regard to the nature of the dependence on yv—
asymptotic behaviour of the complexity as v — +0, if E is regularand if Visa
regular function corresponding to E such that w, (t) < O(r), 28 occurs in the
Hilbert-space case.

Further, if E is regular, then N (v) is finite for all v > 0. Finally, in the case
where E= L, (T,p), 1 <p< o, and dimE = co, we can obtain more
complete results. Namely, by (1.12), (1.14), and (1.19), we have

1

ymax @.p

NG ~ Ny ~
ﬂ|.|'(G')’P "‘l.l'(mup

4.2 COMPLEXITY OF CLASSES OF LIPSCHITZ-CONVEX
PROBLEMS

In this section we carry out the same examination regarding classes of
Lipschitz.convex problems as we did in the previous section for classes of
general convex problems. The results in the main are close to those of
Section 4.1. As before, E is a real Banach space, G is a bounded, convex, closed
body in E, and || || is a norm on E. Further, let 0 <v < 1.

421

We begin by formulating the main results about the complexity of the classes
of problems in question.

Let C.;, be anyclass of problems of the type CT,, (G, E, || - ||, m). Let N (v) resp.
N,(v) denote the deterministic complexity function resp. s-complexity
function (see Section 1.4.4) of this class. Further, let @ be an arbitrary, local,
deterministic oracle for the field of problems C, (G, E, {|- ||, m), and let N°(v),
N'®(v) be the deterministic resp. stochastic complexity of the class of problems
C? obtained from C;, by replacing the original oracle by the oracle @.

Theorem on a bound for the complexity of classes of Lipschitz-convex
problems. There is a function d(p) > 0, 1 < p < o, such that the following
assertions hold for the functions ¢, ,(v) associated by (1.11) with d(p). The
functions N(v), N, (v), N°(v), N®(v) have the following bounds.
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A. Lower bounds. _
A.l. For every natural number k < n and every p with 1 < p < ¢o, we have

N°(v) = (Pk,p(apklAI‘l(G)v) 2.1)
and :
o q)k;p(’sdp.lAl,l(G)v) 22
M0 2 e, 8, 0 G, 22)
A2 LetE=L,(T,wl-[ =11, 1<p<co. Thereisak,(t) < co,t > 0, such
that, when n > k,(a).; (G)v), we have
New) > <p,.,,,(28au_,'(G)v). (2.3)

A3. Thereis a k,(f) < oo for ¢ > 0 such that, for n > k;(«,.;,(G)v), we have
NO() = 9, 2(ay | (G)Y). (2.4)

A4. If E is not reflexive, then

N?(¥) = + oo when v < v(G), where v(G) > 0. (2.9)
AS. If m > 0, then
N,(vy= +oo whenv <l (2.6)
B. Upper bounds.
Bl. Whenn < o
v
Nw <o, . inf ®,,(——— |- @7
A R ’(a,."(u-u))}

B2. WhenE=L,(T,u) 1 <p< w,
N(Y) € O ,(¥) (28)
The upper bounds are valid whether or not G is a body.

(Note: If @islocal but not necessarily deterministic, then the lower bounds
for N°(-)in part A of the theorem are still valid, but we shall not prove this.)

We point out the differences between the results of this theorem and those in
Theorem 4.1.2. In the lower bounds the only difference is that all the affine
invariants of G—the numbers a, ,(G) in Section 4.1.2—are replaced in
Section 4.2.1 by the metric invariants a,,, ,(G). In the upper bounds, the
characteristics which depend on G, 44, ,(G) and 4%, (G), are replaced
respectively by the characteristic of the norm |- |, i.e. «, ,(||- }), and by 1. Both
the lower and the upper bounds have now become less. Of course, this is as it
should be, because the class of problems Cy;, is narrower than C. The proof of
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the upper bounds B is carried out in the same way as in Section 4.1.2 except
that the results about the laboriousness of the MCG and MD, methods must
be quoted not for the class of general convex problems, but for the class of
Lipschitz convex problems, viz. those in Sections 2.4.1.2. and 3.3. The lower
bounds A are proved in Sections 4.4-4.6.

4.2.2

As in Section 4.1, we present an explicit summary in tabular form of the error
bounds given in the theorem. In Table 2 1t is assumed that n < «. Compared
with Table 1, the new table has an extra column showing the hypothesis
regarding the structure of the norm |-|| on E which is considered, that is,
the norm in terms of which the class in which we are interested is defined.
The rest of the table and the method of justifying it are the same as in
Section 4.1.

423

The commentary on Table 2 is, in the main, the same as that given in
Section 4.1. We shal! run through these comments briefly, dwelling mainly on
the special features for the Lipschitz case as compared with the general case.

4231 Asymptotic behaviowr as v — + 0.

As in Section4.l, when v <v ,(G)>0 we have N(v~NInl/v and
N (v) 2 N(v)/In N (v). The special feature of the Lipschitz case is that v, ., (G)
depends on both the affine properties of G and on the metncal properties of G
relative to the norm ||- ). In particular, v,., (G) admits no positive minorant
depending only on n, as the quantity v(G) did in Section 4.1.4.1. In fact, vy (G)

is the less, generally speaking, the bigger o, ;(G) 1s (we can take v, (G)
= min {1/32; (¢, (G)n)~?}). This, too, is natural. Suppose, for example, that G
is a 8-neighbourhood (in the metric defined by | - ) of 2 segment of unit length.
For small 5 a solution of problems of a class of the type C&p (G, E, || - |, m) with
an error v » & can be reduced to solving one-dimensional problems. Moreover,
the compiexity will behave, for such v, like In 1/v. The smaller § is, the wider
will be the range of values of v in which this ‘pathological’ bound for the
complexity of problems of high dimension will operate.

It is clear why such an effect does not arise when general convex problems
are considered. The functionals of such problems can vary arbitrarily rapidly
(the only restriction is their varation on G). For this reason there are no
grounds in the previous example for reducing the problems to one-
dimensional problems, however small 4 might be. The same thing can be said
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Table 2

I G N < N@) 2

O (W=con]in(l/v[ -

| O, (M) =con]In(I/W | 4p®.(v) for fav <%

a L) €
s ([ ] e

[ <p < oo, i
s = max{2, p),

E=mm{2n,an1/p} an](G) <ﬂ

; w0, (v) = o/ 2,0, (V) (fa)*

for afy 2 n~ !5

Ol =con)in(/i)] | 240)

2 W) <= N
for v < (nf)™?

a?®P(v) = ¢, Inna?/v?
dl I (G) < ﬁ A.ld)(;‘)(dﬂ\‘)
for afly <4
and afy = n= /8

2, /(@fv)? for afv < §
and afiv 2n" !

2 {(G) S B| ®a(M=con]In(I/W)[ | Ao @ (V)
for afv < §
and v < (fa)”?

2o D<Sa

|

in another way: the class of general convex problems is defined in affine terms,
and therefore it is meaningless to study how its complexity is affected by the
‘narrowness’ of G in some directions—this ‘narrowness’ is not an affine
invariant of G. In the affine sense, a body G cannot be ‘too narrow’ (say,
24 .(G) < 2n), which is what determines the existence of ‘absolutely high
accuracies’ for classes of general problems in a given dimension—accuracies,
that is, starting from which the complexity of these classes behave like nln 1/v.
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Asymptotic behaviour of N (v}
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4.2.3.2

As regards the dependence of the complexity on the dimension of G, the
difference from the results in Section 4.1.4.21s that now it is necessary to fix not
a, .(G) but a, , ,(G), ie. to examine the behaviour of N(v) and N (v) as
functions of n under the condition @, |.;, » (G) < a. Under such a condition the
relation (1.20) is preserved in the Lipschitz case as well.
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4.2.3.3

As regards the bounds for the complexity on 1¢-balls, if we assume that G is an
[%-ball and that |- | is precisely ||-(|,, then everything that was said in
Section 4.1.4.3 can be repeated word for word.

4.24

Regarding the infinite-dimensional situation, everything that was said in
Section 4.1.5 remains true for theLipschitz case, provided that, instead of a(G)
which featured there we must put «;.,(G).

43 RECOMMENDATIONS ABOUT THE USE OF METHODS OF
SOLVING GENERAL CONVEX OR LIPSCHITZ-CONVEX
PROBLEMS

43.1

In this section the facts about complexity, contained in the two previous
sections, are transformed into recommendations about the use of MCG and
MD,. The basis for these recommendations is the coincidence (with an
accuracy up to details of little theoretical importance) of the bounds for the
laborousness of these methods with the bounds for the complexity of the
classes of problems under consideration.

The facts about the use of MD, are given unddr the supposition that
the norm {-[[, with which the method is associated is optimal for the G
under consideration in the sense of Section 3.4.5, i.e. that for this norm
oy, (G) = a,_,(G). The recommendations about the use of the methods are
given in tabular form. The first column fixes the. hypotheses about the
properties of G. The second column indicates the recommended method, and
the third the conditions under which it is recommended. The fourth column
gives the upper bound M (v) for the laboriousness of the recommended
method, and the fifth the potential boundaries for reducing the laboriousness
in the class of deterministic and stochastic methods (i.e. the upper bounds of
the ratios M (v)/N (v) and M (v)/N (v), where N (v) and N (v) are the respective
complexity functions of the class considered). We point out that the
recommendation for the use of MCG has a purely theoretical character, since
it is not clear how to realize this method for cases of arbitrary and considerable
dimensionality. However, use of MMCG instead of MCG leads to obvious
changes in the table.

43.2

We start with the class of general convex problems. We consider a class of
problems C of the type C°(G, R, m). Of course, theoretically we should also
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consider the infinite-dimensional case, but here it is sufficient to refer the
reader to Section 4.1.5, where essentially we have already formulated recom-
mendations about the use of MD-methods and assertions (for E = L (T 1)
about their sub-optimality.

The recommendations about the use of the methods of solving general
convex problems are set out in Table 3.

4.3.3

We make some comments about the data in Table 3. First of all, if the speciﬁéd
accuracy is sufficiently high, (v < v(G), v(G) > n~?), then theoretically MCG is
sub-optimal. Its laboriousness (~ nin(1/v)) in the class of deterministic
methods cannot, in principle, be reduced more than ~ 1 times, and in the class
of stochastic methods by not more than ~In (nIn (1/v)) times.

But if the specified accuracy v is not too high, then we are unable 1o give a
simple answer to the question of a theoretically sub-optimal method of solving
generzal convex problems. We know only that, if G is of the type of an 1(-ball
(a, »(G) = anot too great), then, in a known range of variation of v (thls this range
isav >n"" s =max (2 p),if 1 <p < o), it is reasonable to use MD,.

[Note: In this discussion we are restricting our attention to the case
l <p < co. The case p= oo is simple; here all the accuracies are high:
v(G) = min (1/32, @~ 2). The case p = | is constructed qualitatively the same
as the case 1 < p < ¢0.]

Moreover, the laboriousness of this method (~pa’/v) cannot be
reduced more than by ~,a? times in the class of determm:stnc methods,
and by ~,a*Ina*/v* times in the class of stochastic methods. In
the range of intermediate accuracies (for | < p < oo this range is
{vlav <»7' v > v(G)}) we have recommended use of MCG, although the
theoretical Jusuﬁcation for this is weaker than for high accuracies; the
laboriousness of MCG here is not reduced more than by ~_ In(nln(1/v))
times in the class of deterministic methods and by ~ pIn?(nln (1 /v)) times in
the class of stochastic methods.

We remark that, with large a, ,(G) the grounds for what has been said in
favour of MD are not very trustworthy, because the boundaries for the
potentially p0551ble improvement of the method depend in this case on the
value of «, ,(G). This is quite natural—domains G which are badly ap-
proximated by [{’-balls for all p are ‘not picked up' by the scale of
L,-methods and bounds But in our own justification we observe that it is
clmr,.from the results given, how strongly the complexity of the class
considered depends on the affine properties of G. Moreover, it is difficult to
take into account both constructively and sufficiently completely such a
nebulous concept as the ‘affine properties of G'.

We further remark that the recommendations given regarding the use of
MD,, even on [{"-balls, are ‘proven with accuracy up to a factor 2(p)’ which,
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generally speaking, can be large. For theoretical analysis this is possibly
sufficient, but in practice a more detailed analysis is required (this remark also
applies to the following discussions). Let us give an example. Suppose it is
required to solve genera) convex problems on [{P-balls, Tt is assumed that the
accuracy of solution v is not too high, that nis quite large, and that p is close to
1. In this case the bound for the laboriousness of MD, ~ 1/((p —1)v?). But in
fact, by the results of Section 3.3.1, when 1 < p < 2 these problems can be
solved with a Jaboriousness ~ Inn/v2. Clearly, if 1/(p—1) » Inn, then the
second method is indeed preferable to the first.

434

We make one more remark about MD,-methods, 1 < p < co. Their sub-
optimality on bodies G = 1% of asphericity « was established (for large n) with
accuracy up to a factor of the form f(p,). In other words, they are
unimprovable only as regards the order of dependence on v, if n is sufficiently
large. But in fact the laboriousness of MD,, strongly depends on a. It is natural
to ask whether the ‘sensitiveness of the method to «’ can be reduced. It turns
out, generally speaking, that it is impossible to do this. For, suppose G is a
convex, closed, bounded body in R" with an asphericity < «, and that Cis a
class of the type C° (G, R", m) corresponding to a local, deterministic oracle. Let
N (v)denote the deterministic complexity function of this class, and let N, (v, &)
be the upper bound of the functions N (v) over all possible classes C of the type
described (ie. classes € corresponding to all possible n, with G = R”, and
a,.,(G) < a. From the propertics of MD, it follows that

o\ 2R (2. p)
N (va) S| - )
P a) 3 ”

It turns out that a lower bound for N,(v.«) of the type

o\ max (2, p)
1
N,(v,a)% N , v<i.

(3.1)

is also valid.
Thus a reduction in the laboriousness of MD,, immediately on all bodies with
a p-asphericity < ais possibie by not more than ~ , | times. Of course, on some
bodies of this kind a greater reduction in the laboriousness of MD,, is possible.
So, in a certain sense, MD ,-methods achieve the maximum possible in the
L _-scale of characterization of convex bodies.

Exercise 1. Prove (3.1).

{Suppose first that p = 2. For « = 1 (3.1) follows drrectly from (1.12), and so
we can restrict our attention to the case « > 8. Let @ = a/8. We find p’' from the
equation (1/4v)? = (&/v)*. It is clear that this equation has a root p’ > p. Let
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n = ](&/v)°[, and let G be an 1%-ball. We verify that ¢, ,(G) < « For, by (1.3),
we have

1\ N G
%, ,(G) S W7 < 2Hf<a—v) =247 a7y 4755

—2.4.4 5 45a=8a=qa

On the other hand, in view of A1 in Theorem 4.1.2and (1.11), the complexity of
solution of problems of a class C of type C°(G, R", m) is not less than

d(co) min (n, 4—v—j - d(w) mi.nﬂ (j—vj [ (%j } - ()2,

which is what is required in (3.1).

Now let 1 < p < 2. Again it suffices to examine the case a > 16. Let G§’ be
the unit ball in the space [. As was shown in (1.8), for a given k there is 2
natural number n(k) such that G§* admits a k-dimensional section G3* (by 2
plane E™* going through the centre of G{§”) the asphericity of which relative to
a sujtable Euclidean norm |-| on E™* is not greater than 2. We can suppose
that the inequality 2|x| > || x|, > |x| holds on E*X, , _

Now let @ = 2/16 and let p’ be chosen so that (1/(4v)y = (@/v)". Then
p' > 2. We put k = ](a/v)*[ and introduce a norm ||-||,: on E™* (n > n(k))
such that the unit ball in E™* relative to this norm—let us call this unit ball
G”%—contains the |- |-ball of radius | and with centre at 0, and is contained in
the |- |-ball of radius k'/2~!/*" with the same centre, Clearly, G"* > GY* Let
G™ denote the convex null of G§ and G7*. Clearly, G* is a centrally
symmetric, convex body with a |- || -asphericity less than or equal to

a2\ 1\ (=3 , ,
2k*—%'<2(2‘\’:—2) <4(H> Y 44554 M = 62 =a

So e, (GM) <

On the other hand, G is the unit ball in R” relative to the norm |- || for
which a,,. , (|- |) = 1 (because the section of G™ by the plane E™* is precisely
G"*). Therefore a, ,(G™) =1 and, in view of Al in Theorem 4.1.2, the
complexity N (v) of a class of type C°(G'™, R", m) admits the estimate

N,(a, 8) = N(v) , ‘ .
;d(oo)rm.n{k,w = d(co) min 5 ' \% > 5]

which is what is required in (3.1). >

Exercise 2. Let G be an 1{-ball, 1 < p < co. Is there a function ¢(n),
with @(n)/n =0 as n — co, such that the complexity N(v) of classes of the
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type C°(G, R", m) satisfies the estimate N(v) <f(v)¢(n) (uniformly with
respect to p)?
The same question for the range | < p < 2

4.35

We now bring in Table 4 of recommendations about the use of methods for
solving Lipschitz-convex problems (of classes of the type C?_‘, (G, R" |- I, m). As
regards the infinite-dimensional situation, see Section 4.2.5. In the table it is
assumed that the application of MD,-methods to solving problems of the
classes considered is carried out as indicated in Section 3.4.5.

Any comments on this table would be, from the qualitative point of view,
close to those made earlier for classes of general convex problems. We leave it
to the reader to discover and explain the differences in the results arising from
the restriction of the class of problems compared with classes of general convex
problems.

43.6

Having acquainted himself with our recommendations regarding the use of
methods for solving general complex and Lipschitz-convex problems, the
reader will have a right to be curious why we say nothing about the conditions
for using the well-known traditional methods of convex programming, except
for the gradient method. The point here is that there are by no means many of
the standard methods which are suitable for solving aribtrary non-smooth
convex problems; as a rule, convergence of the traditional methods—at any
rate, the ‘constructive’ convergence, with estimates of the rate—is established
on the assumption that the components in the problem are smooth. So far as
we know, apart from the gradient method studied in detail earlier, there is only
one other method which can be regarded as ‘standard’, and that is Kelly’s
method. As we shall soon satisfy ourselves, this method is badly inadmissible
from the point of view of its ‘laboriousness-error’ characterization.

We describe the simplest variant of this method which can be applied to
solving problems without constraints—Ilet us say, to problems of the class
CY, (G, R, 0). The method works as follows. Suppose a problem is being
solved of minimizing a convex Lipschitz function f in a convex domain
G < R", and suppose we have already put questions about f at the points
Xy, - - -» X; and have obtained the values of f(x;)and of the support functionals
S(x) i=1,2,..., k, to the function f at these points. We consider the
function

)= maxk {f(x)+ S (x)lx— x> }J

1gig
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Table 4

o clearly, it satisfies the condition f*(x) < f(x) and it coincides with f at the
2 T ‘interrogated’ points. In the Kelly method the point where f* is minimum on G
8 v | = A ~ is chosen as the next point x, , ,. Strictly speaking, this description does not et
> o E § A = % a = DR define the method; we have to indicate how X, , ; is to be chosen when there is
35 go2 |V | S v s 2 = = more than one point at which f* has a minimum.
253 de2ls | 2| S € D N v It is convenient in what follows to suppose that if the set of minima of f
2.8 g Seo| = Q §T\ 5 % =A S- &la - intersects the boundary of G, then x, , | is chosen on the boundary. It turns out
g 82% 8| = s les oy A E S5 == g | that cthen the Kelly method has a laboriousness which increases exponentjally
stE glEl 2V s | & |SAlEil5 s 1 with the dimension.
& R 2Se| & & 2B |ES =]V
N " — —‘ 13 -3 _'_ [ T —9 - .
B B8] FY R - S - I < Exercise 3. Let n > 3 and let C be the class of problems of the form
J(x) > min |xeV,
— \ @
& 4 - - o on the unit ball ¥, of the space E”, the problems being generated by convex
E‘ 2 5 2 2 T /‘\ 7,: D Lipschitz functions with Lipschitz constant | on V,. Prove that, if M () is the
E R ; Té ' v 2 v N K3 number of steps in the ‘truncated’ Kelly method which solves all problems in C
26 é ki A & | T olo |9 I;i v with an absolute error e < 102, then
R E @ + T ~ ~
22388 | O 5 | ¥ w oz |8 |y| B M (&) = c(n)(1/e)"~ /2, where c(n) > 0,
585 E| & Solen g |enlz || 3 , T ,
S g & | 5 5 N :n,% s 5|8V {Let x’, ..., x" be Cartesian co-ordinates in E". Consider the problem
A = » s o | 2
:= B A \f ~ ~&e | < L S% S;(x) = max{|x'], 9 (0},
v 3% _ N L, - where
225% B 7 T | = g.(x) = [—1+2e+ /(P + ... + (x5
£ 3es = -~ - =
55 -g EE = 1 = & Let ey, ..., e, be the basic unit vectors corresponding to the chosen co-
§.‘“ 8= - “ ':‘8 s ordinates, and let the method begin its work at the point e,. Let $ denote
< 0 J S o © the set
géég " S 8 {ernlx‘=0,Z (x =17,
=352 i ' 's i=2
Q- ¥
é ié E g Q\L Q’i L It is easy to see that the work of the Kelly method on f takes place in the
a5 g 8 g 8 following way. The first point interrogated is e,, the second is (—e,); the
] method then starts to ‘sound’ the points of S. ‘Knowing’ the value of f, ata
% 39 point x €S, the method excludes from further consideration the part of S
E £ . i defined by the relation {yeS|{y|x > > 1 —2¢}; the next point at which the
S & 3 o) 3 3 method ‘interrogates’ f, is some one of the points of S not yet excluded. This
= = = = = processes continues, at least while there are still points of S not yet excluded.
— During this ‘sounding’ process, the error of the successive approximations
< regarded as solutions of the problem f, will clearly not be less than 2e.
= J € )
5 A : \'/’; - Ve Thus the Kelly method ‘truncated with accuracy £ is obliged to carry out the
g 8 S = v =v whole 'sounding’ stage. On the other hand, elementary considerations relating
26 ‘é 2E = 3 =C to anestimate of the total area of the excluded parts of S show that the number
S== Vo = = of questions in the ‘sounding’ stage admits the required lower bound.)
O= —_ s ] L
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It is interesting to notice that the method of centres of gravity is constructed
“a]lmost’ in the same way as the Kelly method; the only difference is that, as the
next point, it is not the point where f* has a minimum which is chosen, but the
centre of gravity of the region {x € G|f*(x) < a,}, where g, is the ‘record’ value
of f (i.e. the lowest value of those found up to the present step). The choice of
X, +1 in the Kelly method would seem to be more natural than that in MCG. It
i8 surprising that this more natural rule should lead to an incomparably worse
result.

43.7

In conclusion we present a number of exercises which contain the answers to
certain natural questions about the complexity of classes of general convex and
Lipschitz convex problems.

Exercise 4. Complexity of aclass of strictly compatible convex problems. Let
G be a convey, closed, bounded body in R". Prove that the «~complexity N (v)
of a class C4(G, R",m) relative to any local deterministic oracle satisfies the
estimate

D, o(6v) = N3 () > max{@,, o (o, 5 (G)V): @, (e, (G)E)}-

Hence deduce that MCG, is a sub-optimal method of solving problems in all
classes C, in the range 6 < ag2 (G), v < az%(G)

Exercise 5. The complexity of solution of convex problems ‘with respect to an
argument’ is infinite when n > 1. Consider a class 4 of functions of two
variables on the square

K* = {x})x'[< 1, |x}] €1},

formed by functions of the form

£,(xt, x?) = max{p(x'), ax® + b},

where |al, |b| < 1, and ¢ is a Lipschitz function on the axis with Lipschitz
constant [. Prove that, for any local deterministic oracle @ for the class 4 and
any M-step method #“ of minimizing functions in A using 0, with any
natural number M, there is a function f'e A which has the following property: f
attains its minimum on K? at a unique point x,, and if x* is the result of
applying #* to f, then |x* —x,| > 1. Prove a similar result for all bodies G of
dimension not less than 2.

¢ Consider a subclass 4 = A formed by functions which are independent of x2.
There is (see Section 4.5.1 below) a @€ A such that all the trajectories of
@™ lie in the set @ > 0, whereas min, ¢ @(x") is attained at a unique
point x' = ¢, and is negative, say = —¢, where & > 0. Let x* be the result of
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applying @™ to ¢ and let (x*)* be > 0 (the case (x*)? < 0is treated similarly).
We put a = ¢/2, b= —¢/2, and consider the function

(', x?) = max (g (x"), ax? + b}.

It is clear that f attaing its minimum om K? at a unique point
(¢,»—1) = x,, and f coincides with ¢ in the domain ¢ > 0. Hence x* is the
result of applying @¥ to f, and so [x,—x*| > 1.)

Exercise 6. The complexity of solving Lipschitz problems in unbounded domains
is infinite. Let A be the class of functions f on the half-line t > O which are
Lipschitz with Lipschitz constant 1, are convex, and such that f(0) = 0 and
lim, ., ,, f(t) = — 1. Prove that, for any local, deterministic oracle @ for the class
A and for any deterministic method @* using the oracle @ for minimizing
functions in A4, thereisan fe€ A such that f(x*) > —4, where x* is the result of
applying @™ to f Extend the result to the case of arbitrary unbounded,
convex bodies G (distinct from the whole space).

{ We prove by induction over p that for every &7 there is a function f, in 4 such
that, on all trajectories {x,} of the work of #° on f,

S(x) > —4+1/(10p)
(the result of applying @7 to f, is regarded as the pth point of the trajectory).
The case p =1 is obvious. The inductive step p — p+1: let the method

#°*! be given, and let £, be that function in A for which the trajectory of the
first p points x, of the work of &” lies in the set

{£(x)> —1+1/(10p)}.

Let x, .y be the (p+ 1)th point of the work of #°*" on f,. It is possible that
Xp4y SMAX; o ¢, X Inthatcase, put f, ., = f- Butif xp,, > max, ¢,¢, x;,
then there is a Lipschitz function ¢ with Lipschitz constant 1 which decreases
with increasing x and is such that

P(x,41) > —5+1/(10(p+ 1)),
whereas
o)< —4+1/(10p), 1<i<p.

Put f,,, = max{f,, ¢}. Then f,,, will be the required function. )
4.4. PROOF OF LOWER BOUNDS FOR THE COMPLEXITY. I

dA.l

In this section we begin the proof of the lower bounds for the complexity of
classes of general convex or Lipschitz-convex problems, which were for-
mulated in Theorems 4.1.2 and 4.2.1 Let us make a few general remarks in this
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connection. First of all, there 15 a certain connection between the bounds
Al-AS for the Lipschitz case (Theorem 4.2.1) and the corresponding results of
Theorem 4.1.2. For, let @be an arbitrary deterministic local oracle for the field
of problems C(G, E, m). Whichever the norm |- {| on E may be (of those which
can specify the topology of E), the class of problems which is obtained by
providing C (G, E, m) with the standard normalizing factors and the oracle @
contains the class of problems which is obtained by the similar operation on
the field of problems Ci;, (G, E, || - [, m). Moreover, the normalizing factors of
the second class on problems of that class majorize the normalizing factors for
the first class. It is therefore clear that a lower bound, which is valid for all the
oracles mentioned, of the complexity of the second class is also valid for the
first class. Therefore, however the norm || - | on E compatible with the topology
of E may be chosen, the estimates A1-AS in Theorem 4.2.1 corresponding to
that norm are also true for the functions N(+), N?(-), N (- )of Theorem 4.1.2.
On the other hand, the upper bounds of these estimates over all possible norms
{i- Il on E coincide exactly with the right-hand sides of the estimates AI-AS5 in
Theorem 4.1.2 (it should be remembered that ¢, ,(¢) is right-continuous for
t > 0). Thus, it is sufficient to consider the Lipschitz case. Further, it is clear that
to solve a problem with constraints (m > 0)is in no way simpler than to solve a
probiem without constraints (m = 0),1.e. for the proof of A1-A4 (starting from
this point, we shall always have in view the estimates of Theorem 4.2.1) we can
suppose that m = 0 and this is what we shall now do.

And one last remark. The proof of the estimates obtained is somewhat
tedious. In order not to encumber the exposition with secondary details, we
shall set out the purely technical stages rather summarily, but at the same time
we shall explain the ideas of the construction fully.

44.2

We now pass on from general remarks to the proof of the lower bounds for the
complexity. We introduce a characteristic k.., (¢} of a Banach space E with a
norm || - ||, which will be useful in the following exposition. We fix E and |- ||.
Let k be a natural number. We consider aset & = (&, . . ., &) of k functionals
belonging 10 E* with norms < 1, and form 2* functions on E of the form

foz(x)= max {w;{&ixd}, o=t o= (0;,...,0) @)
Let shem
g w)y= inf [, z(x) 4.2)
EES
§(&) = sup g (& w), (4.3)
hz.[_l-"(k) = - inf 5(5)

SE(Er. .- &) [ Elwst
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We note further that, by virtue of von Neumann’s lemma (see Section 6.1.1.),

g€ = inf max {{w&|xd}= inf sup  {(Zhwl)x )}
L)

ixyg1 1gigk Ix|=1 A=(4q,...,
A20,24=1
= sk inf YA w; = -
isorB oy dnf {(hodixd) = sup (= [Edodl)
and so
g-(5)= - lﬂf le i .
o Iz, (4.4)

The f Exnction_g(é') thgs has a simple geometrical interpretation: its value on the
set £ is the distance in E* from 0 to the boundary of the ‘hyper-octahedron’
with vertices at + &;.

It is clear from what has been said that he (. (k) is a non-increasing function
of k. Moreover, hg ., (k) =0if k > dim E (why?), whereas h (1) = 1. From
the last fact, for every ¢ < $ there is a k such that he .y (k) > 4de.

We put A

kg'l.| (B) = Sup{k’harl (k) > 45}. (4.5)
But if £ > §, then we put kg, (s) = L.

1_'he function k,_;,., _(e) is a non-increasing function of ¢, defined for ¢ > 0, and
tak_mg non-negative integer values and possibly the value + co. Its rdle in the
estimation of the complexity of convex programing relates to the main
proposition of this section, which we deal with next.

44.3

Let W denote the unit ball in the space E, |||, and let A(E) be the set of
functions expressible in the form

fx)= max 8,({&]x)) (4.6)
1gLgN

where §; e E*, || & |, < 1,and 6,(t)is a convex Lipschitz function with Lipschitz
constant 1 on the axis. The following propositions hold.

Proposition 1. Let O be an arbitrary deterministic, local oracle for the field
of problems A(E), let ¢ > 0, and M be a natural number, and let 4™ be an

M-step deterministic method, using the oracle @, of minimizing functions in
A(E). Then, if

M <k, (), 4.7
then there is in the class A(E) a function f such that
inf, f(x) < ~4¢ and f(%)> 0, (4.8)

where X is the result of applying 4" to f.
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Proposition 2. Under the same hypotheses, let @™ be any stochastic
method of minimizing functions in A(E), using the oracle @, and such that
I(@", ) < M for all fe A(E). Then, if

kg (8e)
[ +logy kg .y (8e)

there is a function f in the class A(E) such that

64M < = k(g), (49

inf f(x) <0 and Mumax(f(%,),0)=E(A, f)>4s  (4.10)
xeW
where X, is the (random) result of applying #* to f, and Mis the mean over
the distribution of this result induced by the distribution of trajectories of &
on f When X = » or &, take f(X,) = 1.

Proof. 1. Wecan suppose ¢ < %, for otherwise (4.7) would be impossible. Let
k be a natural oumber such that k < kg, (¢). This implies that kg (k) > 4e
Choose 6 > 0 such that h,(k) > 4¢+ 4. By the definition of h; the last
inequality implies thereisa set £,, . . ., £, € £ with ||}, < 1 such that, for all
= (@, ..., a) o= 11, we have
min  max {{o;&lx)} < —4e—4. 4.11)
Ixf<1 1<k

We choose k numbers é,, . .., 5, suchthatd > 6, > ... > 8, > 0. Let #¥
be a deterministic method, using the oracle @ of minimizing functions in 4(E),
with M < k. It suffices to prove that there is in the class A(E)a function which
has the property (4.8) in relation to #™.

We construct this function by means of a k-step construction. Clearly, #M
can be regarded as a k-step method, the result of applying which to any
function in A(E) is the last (kth) point at which the method puts a question
about the problem to the oracle. Accordingly we shall now denote the method
by @*. Let I, ={1,...,k}.

First step. Let x, be the first point at which the method puts a question.
Choose the number greatest in absolute value among the set of numbers
(&%), i€1y; let the corresponding i be i(1). We put

_ +1, yylx > 20,
-1, {&mylx ) <0,

Iy = 1,\{i(1)}, and let fi(x) = o, {&,y,|x )+ ;. The first step is finished.

(s + 1)-th step. Notation: after s steps of the construction let the items known
be:

(a) the mutually distinct numbers i(j), 1 <j < s, from the set I, and the set ,
= I\{i(1), .. .,i(s)};

W,
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(b) the numbers w, = +1,1 <j < s;
(c) the functions fj(x) = max {0 &inix> +8,};
115}

(d) the points x,, x,, ..., x,,,, where X;,, is the (j + D)th point of the work
of #* on f.

Inthe (s + I)th step we find the number greatest in absolute value among the
numbers (j[x, ), iel,; let the corresponding index be i(s+1). We put

— +1, <f + 1 ?O, .
w.+1_{—1, <¢:::+i:l,::”_l;<0) I;+1=I,\{l(s+1)},
and
fi+1(X)= max {w‘<€l’(t)|x>+5,}A
1 g1rga+1

Let x, , ; be the (s + 2)th step of the work of #* on £, (x, , , is defined only
for s+1 < k). The (s + I)th step of the construction is finished.

After k steps of this construction the functions f;, . . ., Ji» and the numbers
@, =t 1,1 <5 <k will have been obtained. Moreover, fi€e A(E), and

) filx) = max {0yl D+68,), i<hi<... <f

(2) x,+ 1 18 the (s + 1)th step of the wotk of #* on f,, 1 < s < k— 1; x, is the
first point of the work of #%;

() <adiglx> ?lg’a:k oy 8yylx ), 1 <1<k, and {yiplx;> 20 (this
comes from the rules for forming i(l) and w,.

Let us;atisfy ourselves that x, is the result of applying #* to f, and that f; is
the funcnon' required by the proposition. We check the first statement. By the
_lemma.Scctmn 1.5.3) on indistinguishability it suffices to show that Li=h
ina nelghbourhoqd of x,, | >s. We prove that f, =/, in a neighbourhood
of x,, | <s <k Sinee f,<f,., < ... < f.» it will follow from this that, for

8,5 >1t, we shall have f, =f, in a neighbourhood of X,, 85 We require.
We have

_/;(X) 2 <w16111)lx> +5.n
Ji(x) = max{f(x) 'glfl:t((wfémﬂﬂ +0,)} = max {£,(x), S*(x)}.

The first relation implies that

.L(x-l) ; | <§i(:) le > I + 5’)
while for all 1 > s

@, { &y 1X > < [ {&yaylx, Dl
byl (3). Since 8, < 4, still holds for s < ¢, we have fi(x,) > f*(x,). Therefore, in a
neighbourhood of x,, f, = max{f*, £,} coincides with J;» as required.
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We next verify that f, is the required function. It is clear that f, € A(E).
Further, x, is the result of applying %* to f;, and

S () = o iy X > +9,> 0.
On the other hand,

inf fi(x)= inf max {<{@ylx>+5}
Ixl€t ix|<1 L <rgk

< inf max {{anylxD}+d< —4e—5+6=—4¢
s €1 1€k

(we have used the fact that i(1),...,i(k)1s a permutation of the integers
1,..., k, and the relation (4.11)). The proposition has been proved.

2. We now prove proposition 2.

1°. Let @ ¢ be the objects in the formulation of this part. (4.9) cannot hold
for & > 1/32, and so we shall suppose that & < 1/32. Let an integer k> 0and
functionals &,, . . ., &, € E* with ||, < 1, and also 2 number 5>0,all be

chosen so that
k

—>M
64 log, (2k) >

and
min max {@§[x> < —32¢—4.
XEW 1l gigk

It follows from the last relation that, when
A={5|3=(51,..., 5*), 0<5|<6}

and
Q= {‘D = (@, .. W), = +1}
we have
min {5 3(x) = min { max (w,{&1x>+32e+3)} <0. 4.12)
XeEW xeWw 1g£igk

Let p(c) denote the equi-probable distribution on Q
2°, Let X®be an arbitrary set of R distinct points of the interval (0, §), and let
A= {FeAlbe XR 1 <i<k}.

Consider the set of problems AX = {f5z|@ €, §€Az}; we provide this set
with an equi-probable distribution a(®, §) = p(®)g.(6)- Let O be the oracle in
the formulation of the proposition, and let @ be an oracle whose answer about
the function f5 y at a point x consists in indicating the numbers fa.3 (x) and the
support functional f; 3(x), of the form + &, . .., &, to the function fz 3(x)
at the point x (there always is such a support functional).

Let
E = max{E(@M, f33)|@eQ, SeA).
@, 4
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Then
k

L. (M, f3,35)dp (&) dge(8) < 64 log; (2k)"

(4.13)
j E(RY, fo3)dp(@)dge(8) < &

As in the proposition of Section 1.5.2, there is a deterministic, regular method
2% such that

g 0 :
LJ(Q .f2,3)dp(@)dg (9) sm‘

(4.14)
J E(B™, fz3)dp (D)dgq(d) < 2E.
AR
3%, We construct from the method %#*® working with the oracle O a

deterministic method %, using the oracle @, in the following way. The first
point looked for with &, is the same as for #'=. We describe the construction

for the (s+ 1)th point sought. Let x, ..., x, be the initial fragment of the
trajectory of #; on fe AR, and let h (y), . . ., h(p) be the affine functionals
communicated by the oracle @ at the points x,, . . ., x, respectively, i.e. the

functionals f(x;}+ {f'(x))ly—x;), where f'(x) is the support functional
communicated by the oracle & We form the function f*(y) = max, ¢, . h(¥),
and we introduce as the (s + 1)th point of the trajectory of £, onfthe (s + 1)th
point of the trajectory of %"= onJ* (this latter point is determined uniquely by

S 1e. by the information obtained by %, from @in the first s steps of the work
of Bg. If here x,,, = » or (¥ is obtained, then, starting from the index j = s
+2, we put x; = .

4°,  Weshall prove that, if R is sufficiently large, then the initial fragments of
the trajectories of &, and %'+ (of length k) coincide with each other on the
‘majority’ of the problems in A% That is, if a(R) is the probability, calculated
from the distribution ¢(-), of the event

Q{R) = {f5.3(the initial fragments of length k of the trajectories of &, and
%' on f5 3 are distinct from each other},

then a(R)—> 0 as R - .
Postponing for a time the proof of this fact, we deduce from it the required
assertion. For, let

- r u
A = {(w‘;)EQ X AR]l(g ;fE.Z) < m}

By (4.14) we then have a(A4 ) >7/8. Now let A;(R)= A\Q(R). Since
o(Q(R)) = a(R) - 0 as R - oo, there is an R such that a(4,(R)) > 6/7. It is
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clear from the construction that the result of applying #4 to f3.3€ A1(R)
is obtained mnot later than at the step with iteration number
5= [(K/4) log,(2k)], and that

j E(Bg. fz.3)do (D, 8) = J E(R'%, f5,3)do(®, 8) < 2¢.

Az(D A42(R)

By the last inequality and the relation o(4;(R)) > 6/7 we have, for some
50 € Ag, on putting Qp = {@|f3,5,€ A2 (R)}, that

j §( B f.5,)dP (@) < 3.
8 (4.15)

J‘ dp () = 1-

a5

5°. We now consider the work of 44 on the set of problems
Ag, = {fz.5|®€Q}. On this set it is clear that

Sz,5,(x) = <fa',,33(x}|x >+ bruf,fa,;o(x)).o +32¢,

where i(fz.5 (X)) =jif f5.5, (x) = £&; Thuson Ag the whole answer of t_he
oracle @ to a guestion at the point x can be recovered from omne of its
components—from the support functional f*(x) and, of course, from the point
x). Thus in examining the work of 84 on A, we can suppose that this method
uses an oracle @ which communicates, not the pair f(x), f'(x), but just f(x)
Correspondingly, the answer of & to any question is a point of a fixed set of 2k
elements. Hence it follows, since 4, is deterministic, that there are not more
than (2k)* different initial fragments of length s of the trajectories of %, on
problems f€ Ay, . Recalling the definition of €5, we hence deduce that there

cannot be more than
(2k /4 1o, 21)) — Jkia

different results which can be given by @4 on all possible problems f, g,
WE Q[ .

On the other hand, it is clear that the sets {xe W\ fax(x) <32} for
different @ are disjoint, i.e. for not more than 2*¢ problems fin fly; can the
inequality £(x ,, ) < 32ehold, where X, is the result of applying ¥ to f. Hence
and from the second relation in (4.15) it follows that

1 s
J. E(Bg, f5.5,)dp (D) > 32¢ (5-__2"_)’
A5

i.e. by the first relation in (4.15),
£ > 10e(3—2734)

Hence it immediately follows that, when k>S5, ~we have
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£ > 4¢. This, by virtue of (4.12) and the definition of &, proves (4.10). But if
k < 5, (4.9) is obviously impossible, and so (4.10) has been proved.

6°. To complete the proof we have still to prove that a(R) » 0 as R - 0. To
do this, we introduce the concept of a t-regular fe AR (t=0,1,...). By
definition, every fis O-regular, and fis (¢t + 1)-regular if and only if it is ¢-
regular and f**?) = fin a neighbourhood of x, ., where x, ., is the (¢ + 1)th
point of the work of 2, onf (by definition, all fe 4% coincide with one another
in neighbourhoods of « and ). In other words, f'is t-regular if, for all s with
1<s<t we have f=f* in a neighbourhood of x,. By the lemma on
indistinguishability (Section 1.5.3), and the definition of @,, it follows at once
that, if f is t-regular, then the initial fragments of length t+1 of the
trajectories of 8% and %, on f coincide with one another.

Every answer of the oracle @ to a question put by %, is an affine functional
of the form

q(y)=w<€j|})>+51 = i_l|j61) ey k) 5ER¢

We identify n with the triple (w, j, 8).

Let ° = (ny, ..., %,) denote the set of answers of the oracle @ to the
questions put by %, in the first s steps of the work of 2, let H” be the set of all
such sets, and let

Fo(7') = {fe A®| the information about f in the first s steps of the work of &,
on fis n'}.

Also, for the answer n = (w, j, ) of the oracle @to a question about fe A% let
i(n) = j, and let (") be the subset
{(je(,2,...,k)|j=i(n) for some I < s}.

We ghall calculate the number L, (t) of functions fe A® which are not
t-regular. We recall that we have to prove that
a(R) = Ly (k)/2*R*— 0.
R~m
Let N4 (t) be the number of (t — 1)-regular functions which are not t-regular,

and let N ('~ !, t) be the number of such functions in & ('~ '). Then, clearly,
L(0)=0, and

La(t+1) = L&)+ ¥ N(f,t+1). (4.16)

el

Further, if fis a (t + 1)-regular function in £, ('), then this means that, for
certain values i, # i, we have

W;, <§il[xm-1>‘|‘51l =, <€(,|x1+1>+5l,: (4.17)

and moreover, at least one of the numbers i,, i, does not lie in i(n’). Fixing #'
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uniquely determines 8, w,, j €i(#'). Therefore it is easy to figure ont that, for a
fixed n", (4.17) can hold for not more than @(k)R* 1M1~ functions fe &, (n').
Here |i(n')| is the number of elements in i(n'), and ¢ (k) < co does not depend
on R. Noting that the number of distinct #' with a given i(y') and a non-void
F . (n") does not exceed @(k)R!™)( we obtain that
Lp(t+1) € La(t) + @*(k)R* N (k),

where N (k) is the number of distinct subsets of the set 1,2,. .., k. Thus

Le(r) < t@? (k)N (k)R*™,

and this gives the required relation a(R) — 0 as R — oo. The proposition is
proved.

444

As a corollary we obtain bounds for N°(v) and N°(v)—the deterministic and
stochastic complexities of the class of problems of problems which is obtained
from a class C,,, of the type C{,) (G, E, | - Il. m) by replacing the oracle of the
class by an arbitrary deterministic local oracle ¢@.

Corollary. With the notation of Section 4.4.2 the bounds

NOW) 3 ke p.y (@ 1 (G)) (4.18)
and
1 ke (Ba,  (G)v)
N(‘V = 1 EE1 Lt 419
0> 64 log, (2k¢, | | (82, ,(G)v)) (4.19)
hold.

Proof. Without loss of generality we can suppose that G contains the unit ball
W in the space E, |- |, and is contained in a ball of radius «, ,(G); strictly
speaking, we should say, of radius ¢ with @ > «, | (G). But since a can be chosen
arbitrarily close to a,,,(G), and since the right-hand sides of (4.18)-(4.19) are
right-continuous in v, the result of the following argument will not be affected.
As mentioned in Section 4.4.1, we can suppose that m = Q.

We now congider problems from the field A(E). Let v> 0 and let
& = u;.,(G)v. Write N°(v) = N. Suppose that (4.18) is false. This means that
there is a deterministic method #*, with a laboriousness on a class C, less
than kg (), which solves all problems in C;;, with an error < v.

We now apply Proposition 1 of Section 4.4.3 to the objects 6, #*, and e. By
this proposition, for a certain f' e A(E),

inff(x) <O and f(%)> 4s = 4a,,(G)v,
w

where X is the result of the work of #* on f. Since W < G by hypothesis, we
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have

v(BY, f) > 4¢e/2L, ,(f)py,(G).
But p, (G) < 2¢,(G) and L | ,(f) < 1 (the latter because of the properties of
A(E)), 1.e. v( @™, f) > v, contrary to the definition of £*. This contradiction
proves (4.18); (4.19) is proved similarly (in its proof Proposition2 of

Section 4.4.3 is used instead of Proposition 1 on which (4.18) is based). The
corollary is proved.

445

We are now in a position to prove the estimate Al (for 1 € p < ). To do this
it suffices to establish the following fact.

4.4.5.1

The characteristic k, | , (¢) has the following property.
Let E’ be a subspace of E, let ||- || be a norm on E’ corresponding to which
the ||:|-norm on E’ has asphericity 8. Then

ke, (0) 2 ke .y (BY). (4.20)

4.4.5.2

If 1 € p < oo, then, for a suitable choice of the value of d(p) > 0, the following
estimates hold for the corresponding functions ¢, , (defined from (1.11)):

kigr g, (1) Z @, (1) (1 <1 < 0). 4.21)

Let us explain how, for | £ p < oo, the validity of the bounds {2.1)and (2.2)
follows from Sections 4.4.5.1 and 4.4.5.2 and (4.18)—(4.19). Firstly, from the
definition of @, ., » (G) and the right-continuity with respect to v of the right-
hand sides of (4.18)-(4.19), we obtain from Section 4.4.5 and (4.18)-(4.19) that

NEW) 2 ke 1y, (@440 (G)Y)
and
kg (SaP-I-J_. (G)v)
64 1082 (Zklf),u..,(gup,u.n,k (G)s V))

for all natural numbers k < dim E. Secondly, substitution in the last estimates
of the estimates of Section 4.4.5.2 leads to (2.1) and (2.2). So it remains to prove
Sections 4.4.5.1 and 4.4.5.2.

Proof of Section 4.4.5.1. 1t is clear that the unit ball V7, in the space (E’)*
relative to the norm |- (|, has asphericity § relative to the || ||,-unit ball V, in
the same space. Without loss of generality we can assume that ¥V, < V, = V.

N"(v)?
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Now let kg, p(Bg)=m. If m=1, then (4.20) holds; but if m> 1, ie. if
Be < 4, then from the definition of kp | it follows that there are m functionals
Z,,..., &€V, such that, for all 1 with £F |4 = 1, we have 1Z4E1, > 4Be
Since V', < BV,, we have |, < B. Put & = Z/B. Then ¢ is a functional
whose norm is < 1 on (E', ||+ |). Therefore &, can be extended from E' into a
functional & on (E, |- ) baving a norm < 1. Clearly, since V, < V', we have

., ABe
||El(&"a. 2 "Z/{(él“; > T =4
if T}A4| = |, and this gives kg () > m. The assertion (4.20) is proved.

Proof of Section 4.4.5.2.

1° Let p=co. Then kyw (2) = n for ¢ < 4; this follows immediately from a
consideration of the functionals ¢(&(x) =x/,1 <i<n.

2° Let 2 < p < . Then
1, 4°F
klg')(t) 2 5 min { n, t_’ .

To see this, it suffices to verify that

=P
kg;;(t) = t_"% when 2 <t P47 Kn.

So let | be the greatest integer less than t #7472, Then { > 4177-477 and

I < n. Consider the I co-ordinate functionals (& |x) = x, 1 <i<lonl{. Let
14| = 1. Put & = ¥} 4,&. Then, for ¢ = p/(p—1) < 2, we have

1 1/9 1\4 1/q
||¢u,=(z|1,|~) 2(1(7)) b s 4y,
1

1 .-
klgl)'ll,(t)zl>'2—(t p4 ,),

ie.

as we wished to verify.
3° Let1<p<2Then

1 1
k[(’-l(l) sz {n,w}.

To see this, it suffices to verify that

4t
Let s be the greatest power of 2 such that 2° < (1/4r)*. Then 2* > 1(1/40)%.

2
kg (1) 2 % (i) when 4 < (1/4t)? < n.
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Consider the subspace R = [, where g = p/(p — 1), consisting of vectors, all
of whose co-ordinates, except on the first 2%, are equal to 0. We observe that in
this space there is an orthogonal basis consisting of vectors whose first 2* co-
ordinates are equal to + 1. For, we can take n = 2*. For s = 0, there is such
a basis. Then, if &,,...,&;» is such a basis for a given s, {&, ¢},
(€1, =&} ooy {Eam Ear), {Exn,— €} is the necessary basis for s+ 1, and
so the assertion is true, by induction.

Let ¢&,,..., ¢, m=2, be the corresponding basis for R“, and
let &=m"'¢, 1 <i<m so that J&, =1 Also let }T|4|=1 and
= ZTl{fx Then

m m
I =2 A7 IE1F =m' "2 AT > m™2h,
1 1

" Writing 6, for the moduli of the co-ordinates of £, we obtain
2

m m ZB g/2
I L e
1 1 m
(we have used the fact that ¢ > 2). Hence
10, 2m™2 =272 > 4y,
1/1YV?
klgl)(l) 2m Zz(rt) .

4° Itremains to consider the case p = 1. By the results in 3° it suffices to verify
that

and so

In(n+1)

Ky (¢) 2aT when $>1>2n"'/8

where a is an absolute constant. We put m, = Jalnn/t*[, and consider m,
vectors £y, ..., &, from 1% whose co-ordinates are chozen randomly and
independently of one another from the numbers + 1 with probability 4. Simple
probability estimates (which we omit) show that there is a small number g > 0,
a small ¢, > 0, and a large n, < oo such that, for all n > ny and £ < ¢,
t > n~ '/ the probability that a randomly chosen set &y, . . ., &, should satisfy
the condition

Py g
{||Z,1,C,ﬂ > 41 when Y |2, = l}
1 1
18 positive. This gives the estimate
k() > alnn/r> when n > ng, and n™ '8 <t <1,

Further, fort > toandalln > 2, we have ko (t) > [In n]. To see this, consider a
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set of [In n] vectors of [ the first 2[!"") co-ordinates of which are equal to + 1;
the sets of co-ordinates with different subscripts, when the subscripts change
from 1 to 202", run through all possible 207" sets of the [In ] numbers + 1.
Moreover, for n < ny and ¢ < 4, we have

1 1
kltln)(t) = Z min 1 n, (Tt)T}

by the results of 3°. Taken together, these facts show that

In(n+1)
—

kiw(t) 2 @ when $>t>n"'8 4>0.

The assertion in Section 4.4.5.2 has now been proved.

4.5 PROOF OF LOWER BOUNDS FOR THE COMPLEXITY. II

Our efforts so far have led to the proof of the bounds (2.1)-(2.2) for all values of
p satisfying the inequality 1 € p < 0. Our objective in this section is to prove
(2.1) and (2.2) for p = w. On the way A5 will also be proved.

4.5.1

Let E, ||-|| be a Banach space, let n be a natural number < dim E, and let
&= (¢,,..., &)eE* be n linearly independent functionals from E*. Let
K (&) denote the set {xe E| | (&|x )1 < 1,1 i < n},and let A(E")denote a
family of functions of the form f(x) = max; ¢; (.60 ({:|x)), where the 6,(¢)
are Lipschitz functions (with Lipschitz constants = 1) on the axis. We
formulate a proposition whose rdle will be similar to that of those in
Section 4.4.3.

Proposition. There is an absolute constant d(co) > 0 such that the following

assertion holds. Let
1, 124,

n.o(t) = d(oo)nln%, 1 <1,

Further, let @ be an arbitrary deterministic local oracle for the field of
problems A4(&"). Also let @ and @™ be the corresponding deterministic and
stochastic methods of minimizing functions from 4(&") using the oracle @, and

1
. 1(BM, )< M and (@™, ) < M for all fe A(F").

Let £ > 0. Then:

I. for the method #M: if
[M] <@, a()e>0, (5.1)
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then, for some fe A (£"), we have.

inir f(x) < —4¢ and f(%)> 0, (5.2)
xeX(&"

where x 15 the result of applying 8™ to f.
IL. For the method &™: if

Pn, (82)
M < T, BT 6

then, for some fe 4 ("), we have

inf f(x) <0 and Mmax {f(X,),0} =&(%,f)>4s (54)
xeK(E"
where X is the (random) result of applying ¥ to f,and Mis the mean over
its distribution induced by the distribution of the trajectories of #* on f.
For X, = 4 or &, we take f(%,) = L.

4,5.2

Postponing for a time the proof of this proposition, we derive from it the
bounds (2.1)-(2.2) and the result AS.

Let G < E and let k be a natural number, and let &, ,(G)=a and
ol I) = B. As in Section 4.4.4, we can suppose that G is contained in a
ball of radius « and contains the unit ball with centre at 0. We can further
suppose that on a certain subspace E’' = E an I_-norm |- |, is introduced
such that (1/8))x), < [Ix}} € | x ). We consider k functiopals &,, ..., &
from (E’Y* which are co-ordinate functionals in the [ ©-structure introduced on
E'. Then |[¢ i, = 1, and so the &, regarded as functionals on E, | - |, have 2
norm < f. Therefore the &; can be extended from E’ on to E as functionals ¢
with norms < f. Since the restrictions of the ¢, to E are linearly independent,
so the ¢, themselves,i = [, . . ., k, are linearly independent. Now let N (v)and
N€(v) be the deterministic and stochastic complexities of the class of problems
which is obtained by re-equipping a class C,,of the Cﬁip (G, E, |- ]|, m) type with
a deterministic local oracle @. We shall prove that

NYG) > ¢y o (@BY) (5.5)

Pi,  (8aBV)
1+)n] @y o (BaBv)[

We can, of course, suppose that m = 0. Let #* be a deterministic method of
solving problems of the class considered, with accuracy vand laboriousness M.
We assume that [M] < ¢, . (2fv) and derive a contradiction; this will then
establish (5.5). Suppose, then, that [M] < ¢, , (xBv). We apply to 6,

and
NEw) >

(5.6)
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&= (¢, ..., &) and @M the first proposition in Section 4.5.1. According to
the latter, there is an fe A(€,) c Cix (G, E, |-l M) for which (5.2) holds. We
observe that, for fe A(£"), we have

if f(x)= inf f(x)= inf f(x)> inf f(x)>inff(x),
[

K(&" K& AE X€E, Xl € 1 xe£ |xi g1

i.e. inf; f(x) is also < 0. But then it follows from (5.2) that e( &, f) > 4afv.
On the other hand, it follows from the definition of A (") that fis Lipschitz
with a constant < max, &l < B. Since Gliesina || - |-ball of radius «, we have
P11 (G) € 29, ie. M F
v o E(BM )
v(BY, f) 2 320 f >,

which contradicts the definition of #*. This contradiction proves (5.5).

The relation (5.6) is proved in exactly the same way, except that the second
proposition in Section 4.5.1 is used instead of the first. We see, incidentally,
that whatever the deterministic method #* with finite laboriousness on the
class considered may be, it is not able to obtain, for every f from a class C;;,
with inf,, f < 0, a result % such thatf(x) < 0. Hence it is clear that, when m > 0,
no deterministic method of finite laboriousness will be able to find an
admissible feasible point for every compatible problem of the class. This
proves AS.

We have thus completed the programme mentioned for this section, except
that we have not yet proved the proposition in Section 4.5.1. To this proof we
now turn.

453

We start with the proof of assertion I of the proposition. It suffices to prove it
under the hypothesis that M ts a natural number, and then it suffices to prove
that the asgsertion I is true for

1, e =4,

(pn.m(e)= E _1__ 1 (57)
max{n’SIDSOeJ’ e <g.

1°.  Assertion I is trivially true if ¢ > §. Suppose, then, that ¢ < §. We verify
that (5.2) is valid when M < n, Indeed, for all w; = t 1, we have

inf max {{w|x)}=—1

K 1gign
because of the linear independence of the & and by the definition of K (™). By
means of the construction in the proof of Proposition 4.4.3.1 applied to the set
&, ..., &, we satisfy ourselves that, when M < n, the required function can
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already be found among the functions of the form

max {{w&lx>+6), w=+1

1gig
2°. Tt is now sufficient to prove that (5.2) is true when
n 1
M<zln—,
3 80e

if the right-hand side of this last inequality is greater than n. We shall prove
that it is even true when

n 1
In— (5.8)

M <32 M50e

3°.  We consider a certain family of functions on the axis. Let 0 < § < 10~%.
We put

y=7)=%-3,
3 3
c= C((S) = 5—6—25, (59)

g = q(d) = (3 —78)/(1 —4).
Suppose, further, that 7 is such that 0 < 7 < 8. We put

—c+qlt+3], —o<I g -4,

0.(t) =
® —c+g)t+i)+t[t+ 6], = -8

Here [t], = max {0, t}. The graph of 8,(t) is sketched in Figure 4.1, It can be
immediately verified that:

(1) 0.(t)is a Lipschitz-convex function with Lipschitz constant | and having
corners at the points —%, — §;

6

Figure 4.1
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(i) the following inequalities hold:
6.(0) <lt[-3 [tI>1,
B.(t) = t| =3, [t+zl<n
(il) min, 8,(t) = 0,(—1%) = —c(6). At the points (—%+ ) and — & we have
0.(8) = $c(9);
(iv) if 0 <t, ¥ < 1, then 6.(¢) < 0,(t) and 6.(t) > 0, (—t). Moreover, 4.(t)
increases when ¢ > 0.

(5.10)

4°, We now formulate and prove a lemma, from which the proposition
formulated easily follows.

Lemma. Let Obeanarbitrary deterministic local oracle for the class 4 (™), let
0 <6 <1074 and let g, y, ¢ be defined by (5.9). Let M be a natural number,
and let #* be a deterministic method, using the oracle 0, for minimizing
functions from A(£"). Then, for every integer p such that 0 < pn < M, a set of
objects can be found, consisting of’

(i) aset K, of the form {x||{&Ix ) —c,l <y}
(i) functions f,e A(£") such that

.3 P
9o max 1<aux>=ci1—3 (%)

1£1ign

=0 onK,; 7»)

1 >0 outside K,

(il) pointsx, . . ., x,, which are the first pn points of the realization of 2 on
f, and which do not lie in K.

Proof. This is by induction over p. For p = 0 the assertions of the lemma are
trivially true: we can take K, = K (&) (i.e. ¢f) = 0) and

fo(x) = max |<él|xi>|_‘%-
lgign

Now let the assertion of the lemma be true for p = I with (! + 1)n < M, and
let K;; fuuxy, . . ., X, be the corresponding set of objects. We shall construct the
set corresponding to p = [+ 1. To abbreviate the notation we associate with a
point xeE n of its ‘co-ordinates’ x' = {&]|x ) —c}, (these are not real co-
ordinates; the correspondence x — (x!,..., x") is not one-to-one). The
required set of objects will be constructed as the result of n steps, in the jth of
which there will be available certain functions f!, . .., f/, pairwise distinct
numbers i(1), ..., i(j)ely = {1,..., n}, a set I, =I\{i(1),...,i(j)}, and
also the numbers w; = + 1 and points y,, .. ., y,€ E.

We put f° = £, and let 7, be chosen so that 6 > 7, > ... > 7, > 0. Suppose
that s steps of the construction have already been done, and that we have the
objects f*, I.. At the (s+ 1)th step the following operations are carried out.

(1) a point y,., is determined as the (n! + s+ 1)th point of the work of &
onf*
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(2) From the co-ordinates yi, of the point y,, , which have indices icl, the
co-ordinate greatest in absolute value is chosen; let its index be i (s+1),and

let
@ I 1, yl.?:l“ < 0»
2+1 = + 1, y:‘(:--ﬁl-l) > 0.

We put 1,,, = I\{i(s + 1)j.
(3) The function

S x) = max {f*(x), (yg)8,,,, (@, X D)} (5.11)
18 defined. The step is finished. We note that, by (5.11),

fi=fesfts. s (5.12)

After n steps the function /" =, ,, the points Yi»+ + «s Yy, the numbers

@y, .. ., w,, and the permutation i(1), . . ., i(n) will all have been obtained.
We put

K, = [x w,x“”—%% <y 1<j<n}, (5.13)

Le. ¢jey = — ;-1 (i)y'//4 + ¢}, where j~(i) is the permutation inverse to i(J),

al‘ld x!,|+[ = }’h 1 SiS n.
A direct verification, which we omit, will show that Koo fives
X1s -y Xg«1yn 2r€ the required objects. The lemma is proved.

It is now easy to prove assertion I in Proposition 5.5.1. For, let M be a
natural number, and let £* be a method of minimizing functions from A (&M
using the oracle 0. We find the least M’ > M whichisa maultiple of n. Without
loss of generality we can suppose that & is an M "-step method, the result of
applying which to any problem from A (&) is the last (the M'th) interrogated
point. Applying the lemma proved above to the method &M = &M with
p=M'/nand any d, we find a function f, € A (£") and a ‘cube’ K such that the
condition (J,) holds, and the whole trajectory of #* onf, lies outside X ,. By
(J,).f > 0 outside K, because on the boundary of this set i

_ 3T\ [T\ 3(7c\
/= (vqy 7(?) —<T> —7(?) >0

Mor.eover, at the ‘centre’ x of the set K,—at any point at which {(&;|x) = c{,,
 <i<n, we have, again by (J,), that f,(£) = —3 (7c/3). Since M’ < M +n,

3/ 7c\Mimt1
£,8 < “7(?) |

Now let ¢ > 0 and M be given so that

3 Mo
2_88>8" . (5.14)
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Then, and with a sufficiently small § > O, we shall have

Mo
L

For such a 8, the preceding argument proves that there is an fe A(£") such

that
3 5 ‘%’L*&l
inf f(x) € __(ﬂ_)) < —4¢
K& 7\ 3

and f > Oalong the trajectory of the work of #* on f(with the addition to the
trajectory of the result of this work). It remains to notice that (5.14) is
equivalent to the inequality

ﬂ < _.1_ In _3,

n 3Iln2 224¢’

which js automatically satisfied when
n {

M<—l In—
<37n2 "80s"

which is what we require. Assertion I of Proposition 4.5.1 1s now proved.
454

We shall now prove assertion II.

1°  We define a function 6(t) by the relation

/ 1 1
—_— > -
H 5 |t|,2,
| 1 1 1
—t——, —=- <t <5,
60) JB 16 8 2
) =
1t+l 11 3<t< 1
16| 4| 128° g g
5 H_1 1<t< 3
NI Y & 2T R

Then 6(t) is Lipschitz convex with constant 1 on the axis.

2° Given an interval A of the real line, let A*! and A~ be the intervals, of
length |A|/4, which have their midpoints at the midpoints of the right, resp. left

halves of A. Let N be a fixed natural number, and let
T={w=(@,...,0¢ 0;==x1}

By an embedding of w we shall mean a sequence of intervals A, (@), . . ., Ay(w)
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defined in the following recursive way:
Bo@)=[-2.3], Aei(@) = A1 (A ().

Further, let ¢;(w) be the midpoint of A,(w).

Let 7* denote the set {@ = (@', . .., w")|w'eT). Further, let 6 > 0 be a
fixed number, and R be a natural number. Let X dencte any R-element
spbsct of the set (—4,0), and let S, denote the set of n x (N + 1)-dimen-
sional vectors whose co-ordinates lie in X,. Vectors from Se will be
denoted by 7= {1}, 0 <j < N, [ <i<n}. Let x' be the function defined
as (§|x), 1gign.

With every ordered pair (@,1)e7" x S, we associate the functions i .,
0 <j < N, defined as '

f%,(x):lmax {IX|—3+7b} = max (8% (x)+7)) (5.15)

and gign 1gign
S = ll;nftz {Bﬁ,j(x"—tj_i(w"))+tj},j > 1 (5.16)

Here, forj > 1
& (e) = 6L, (~1)

_ ( PR LI 1
= 82(j-1)a0 T 0(—4"'n+ Z ——11:9(—§) (5.17)

s=olp . ..

In this expression @g =1 <a, < ... are fixed numbers, and ¥, 'a, =0
H? b,' = 1 ° ‘
3% Weestablish certain properties of the functions /4 ,. Let /% be defined by

the same formulae as for f4 ,, but with © = 0. Then the functions JZ are such
that, for 0 <j < N -1,

e >0 on K@)

) - 5.8
where <0 outside K;{@), (-18)
K@) = {xeE|x'e Aj(0), | <ig nj.

In (5.18) the inequality outside K (@) is strict when j > 0. Further, let
fa(x) = max fL(x),a= min fo(x)
0K <N xek (M
(it is easy to see that the right-hand side does not depend on @), and
Ja(0) = ()= 4a, 75 (x) = FL(x) — }a.
Then _
Ja(¥) =F4"" (0) in K;(@)\K;+ (@), 0 <j < N-—1 (5.19)

min f5(x) <0,
ek (F" (5.20)

1
]Z-u(x)>4_t,’4,4a0 —— for x¢ K, ().
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The inequalities (5.18)-(5.20) are proved by direct verification, starting from
the definition of @(t). We leave this work to the reader.

£ We write F, = {(@, 1)|@eT* 1€S,). We provide #, with an equi-
probability distribution p(&, t) = r(@)gg (t). For each (@, 7)€ 5, let

. a ;
) = X é(x__E max ]é((x)
f5.:(X) 02‘?st )—3 , X
It is easy to see that f5 (x)e A(E").
Now let

1
BY = (@'dt
0

be the method in the formulation of Proposition 4.5.1. Let & denote the
quantity
sup  £(2Y fz.o)
(@, t)e;gfﬁ

Then, for every R,
[ 1B, f3,.)dr (@)dge(tr) S M
#r

and
§ E(BY, fz..)dr (@)dge(r) S & (5.21)
;R
Proceeding as in the proof of Proposition 1.5.2 we deduce from (5.21) the
existence of a deterministic regular method 48‘® for which

§ (%, fp,)dr(@)dgs(z) < 2M
"’ﬂ
and
j E(B*, fz,)dr (@)dgy (1) < 2E (522)
‘;R
s° Now let & be an oracle for the field of problems { (@, 7)€ Uy F g} =W,
the oracle being organized in the following way. The answer of the oracle
@to a question about a problem f e at a point x € Ejs a set of four quantities

J=i1 %), = i@,%x), 7, o,
where [ = J(&, 1, x) is the least of the indices j for which f5 ,(x) = fL (x),and
(e, 7, x) is the least i for which

f%l'(x] = _%"'BZ’(T(X‘—t}_l(wi))-{-‘[;,_

Here we have taken wh = +1, t_ (&) = 0. N A _
Working on the same lines as in the proof of Proposition 2 in Section 4.4.3:
and using (5.18)~(5.19), we can prove that, for given M, 2™ N, and the &
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corresponding to these objects, we can find 6 > 0 arbitrarily small, and an R
arbitrarily large, such that, for a certain deterministic, regular method 2,
using the oracle &, the following assertion will hold. Let

AR) = {(®, 1) F 4|1 (Br, f5.)) S UB'™ f5,) <8M
and
E(B™® f5..) =E( Br, [5.,) < 4E}.
Then
P(A(R)) > 3. (5.23)

We shall now assume that § has been chosen sufficiently small, and R
sufficiently large, for the above assertion to be true.

6° It is clear from what has been said that a Te S, can be chosen so that,
putting
Ay = {B|( By, f5.) <8M and E(%,, fz..) <4t} for this T,

we obtain r(A=) > 4. (5.24)
It is clear from the definition of the oracle & that on problems from the field
F1={fz.0€T", 1 =1}, it provides exactly as much information as the
oracle &which, at a point x, gives the quantities f = j(a, T, x), I = (&, T, X), w.
Therefore in considering the work of %, on A; we can suppose that #; uses
the oracle &@. But the answers of 0o a question about any problem at any point
x are elements of a fixed set of not more than 2(N + 1)n elements. Hence it
follows that the number of different results provided by the method &, in
solving problems from A7 not later than the [8M Jth step is not more than
(2n(N + 1)}®™), On the other hand, it follows from (5.20) that, if é is
sufficiently small and if the result of applying %, to f5 , does not lie in K, (),
then

(B, fz.0) >

4'64”110 el By oy '
Moreover, the sets K, (@) corresponding to different @ are disjoint.
From what has been said it is clear that, if

1
4E < ]
¢ 4-64%ag .. . ay_,’ (5.25)

then the set A; cannot contain more than (2n(N + 1))®¥) elements.
Combining this fact with (5.24) we obtain that, under the condition (5.25), the
following inequality holds:

n(N + 1)EM) > LoanK (5.26)

M nN =3
8log; 2n(N + 1)

Le.

(5.27)
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7°  Inparticular, let ¢ > 0 be given and iet 2" be a method such as features in
the formulation of the assertion in Proposition 4.5.3 and for which, for all
fe A(E™), (5.4) does not hold. This implies that, for this method, & < 4¢, i.e. the
left-hand side of (5.25) is not greater than 16e.

Suppose first that ¢ < 1073, Then, choosing ay, . . .,
to 1, we see that (5.25) will be satisfied when

(v

which, because of (5.27), gives the bound

[M] > P, o (82)

1 + [ln (Pn.co (8’8)] ¥

when (d (o) is suitably chosen. Therefore, under the conditions (5.3) and with
this choice of d(e0), the relation (5.3) is necessarily satisfied for at least one

JeA(&).
8° To complete the proof of Proposition II, we have still to verify that it is
trye when & > 1072, It is clear that it is trivially true when 8¢ > %, i.e. when
£ > 1/32. We now have to show that, when 1/32 > & > 10™* and under the
condition

ay - sufficiently close

. n
In(n+1)°
where ¢ is some absolute constant, the relation (5.4) holds for some fe A (¢").

Thus is easily done by applying the construction in the proof of Proposition 2
in Section 4.4.3 to the set ,, . .., &. Proposition 4.5.3 has been proved.

4.6 PROOF OF LOWER BOUNDS FOR THE COMPLEXITY. III

We still have to prove the assertions A2, A3, A4 of Theorem 4.2.1. Adisonly of
academic interest, and we shall not present its proof. From the form of the
functions ¢, ,(-) it follows that the assertion A2 for values of p in the range
1 < p < 2 is a particular case of assertion A3. So it suffices to prove A2 for
p =2, and A3,

4.6.1

We begin with the proof of A2 for p = 2. What we really have to prove is this:
there is a right-continuous, non-decreasing function k() which takes positive
integer values and is such that, under the conditions of A2 and when
a > a,,(G) and n > k,(a'v), the inequality

Ro() > c(p) («'v) 7%, (6.1)
holds, where ¢(p) > 0 depends only on p, p > 2.
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For the proof we observe that, if k is a natural number and if dim E > k

(E, M) =L, |I-ll,), then there are k functionals &,,.... & eE* and a
k-dimensional subspace E* — E such that
<Ml <2, 1 <igk,
'}
{3 (K&Ix)IP} P < 2], xeE,
chl 1P} Ix1 62)

ZM NX)al=1} 2" 1<j<k

In connection with the proof, in Section 4.6.8, of A3 we remark here that we
shall obtain below the required bounds for complexity starting only from the
one fact that, for a suitable &, there exists a system of k functionals on E which
have the property (6.2). Moreover, the condition that E, {|-|| is L, |-}, is not
used explicitly below.

Now let £y, . . ., £, be a system of functionals having the properties (6.2),
and let p be a probability measure concentrated on the unit ball ¥ in the space
E. Then

k
2> T 1<allrdu)

Therefore, for every d, k > 0, the number of functionals & such that
pi{xeV||<&Ix>| =8} 2 x, (6.3)

N, (8, x)=228"Px~ 1. 6.4)

In particular, if k > N, (8, «), then not less than k—N ,(d,x) of the
functionals ¢, are such that for the set T1,(&) = {xe V| [(é (x> =26} we
have ;(I1,(£)) < x.

does not exceed

4.6.2

Now let rand N be natnral numbers with 2r < 2N < dim E. Then we can take
k = 2N in the argument of Section 4.6.1. We consider all possible permu-
tations o (f) of 2N elements, and we form the functions

F209= max {CEgle) —is, (6.5)
where y > 0 satisfies the condition ry < 1. Also let
97),() = max { £, (x), 3)x || —6}. (6.6)
It is easy to see from (6.2) that g¢), (x) has the following properties:

() g%, is a Lipschitz convex function with the Lipschitz constant 3 on E;
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(1) g, 0 =1, (x Ix) <1

(iii) g7, (x) = 3xl - 6 > g, 0) Ul > 6

(iv) min{g&, ()l Ix) € 1} < —r7'

4.6.3

Now let 2 be any method of minimizing convex functions on E using a local
deterministic oracle @ We shall examine the work of & on a family of
functions formed by all possible functions of the kind just described. We can
suppose that & = {, 4'dt is a mixture of regular deterministic methods. We

write
E(x, 9v)) = (99, () —inf {g&, (x)[ Ix]) < 1}]5,

and let £(, g'7,) be obtained by averaging £(%, g¥),) over the distribution of
the result X of applying % to g. Let

£ = sup {§(&, 99,19, e W)}
and
I'=sup {1(# 9%,)Igs,eW).

We shall prove that, if g 1s small, then ! cannot be small. Without worsening the
characteristics £ and ! of the method & on the set of problems A we can
suppose that none of the methods %' poses questions (or gives results) outside
the ball W= {xeE||x| < 6}. Indeed, by virtue of (iii) all functions in A
coincide with one another outside Wand are greater than their valuesat x = 0.
Further, it is convenient to suppose that the trajectories of all %' on
problems in 2 consist, after the moment of output of the result, in repetitions
of this resuit and not of the symbol ¢J. Moreover, it is, of course, always
possible to suppose that the result is a point of E and is not « Thus the
trajectories of &' on problems in U are sequences of points of W.

4.64

Now let > & > 0,and let r = r(£) be the biggest integer such that r~'/? > 8&.
We put y=y({& =£/(2r), 6 =0(E) = y(€)/12, and find a natural number
N N, (£) which is the least integer greater than or equal to r, and is such that

N (5(8), 1/(2r*)). We assume that dim E > 2N, and we consider the
followmg r-step construction relating to the method .@ of the previous section.
Let x = 1/(2r%), and let &,,..., &,y be the functionals in Section 4.6.]
corresponding to the choice k = 2N.

The first step in the construction is as follows. Let x, (t) be the first point of
the work of &', and u, = p' be its distribution (i.e. the distribution of the
values of x, (z) induced by the Lebesgue measure on [0, 1]). We find /; with
1 <), € 2N such that ' (Mg (&1,)) < x (this1s possible because of the choice
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of N). We define o' as the permutation for which ¢'(1) = I,, and we put
1 =gi¥,. The first step is ended.
Now suppose that i < r steps of the construction have already been done,

and, as a result, there have been constructed the functions x, (2), . . ., x;(¢) with
values in W, the functions f, . .., ;e 2 the permutations ¢!, . . ., a' of 2N
elements, and measures g, .. ., g; on W, such that

(a) x;(¢) is the jth point of the work of 2 on f;_;,2 <j <
(b) #; is the distribution of the values of x;(t), 1 <j <

(©) ' (f) = 6'(j) for all j, s, I such that j <s i<

(d) f] = g(?y).} < !)

(€) p;(Tgs) (&) < ri for all j and ! such that j <1<

In the (i4 1)th step the following operations are performed. x;,(f) is
determined in accordance with (a), and then g, ., in accordance with (b). The
measure

+

1 i+1

{+1

urt = j; Bj.
is constructed. Further, from among the indices s e {1,2,..., 2N} which are
different from the i indices ¢'(1), . . ., ¢'(i) an index I, , is found such that

u! (Hsa(él,,,)) K
(such an /., exists because of Fhe choice of N; see the concluding remark in
Section 4.6.1). We determine o'*' as an (arbitrary) permutation such that
d* ) =a'() 1<j<i, and o i+ ) =1

After this, f;, ( is found from (d). It is then also clear that (e) is satisfied for all
J<I<i+ L

4.6.5

Let the construction described have been carried out. Let 7, | < i < r,denote
the set {t|x(t)e U, 5 5 Mgs(&,y)}. We estimate the Lebesgue measure
measT, of the set T;. Clearly

measT; < }ZL meas {I|X1(t)5nﬁd(fwm)} = Z #i(TMgs(&ap)) <

(we have used (e)). Therefore, putting 7 = [0, l]\u, -, T;, we obtain
measT 2 1 —rik 2 4.

Next we satisfy ourselves that, when te7, the x, (t), . . ., x,(t) are the first r
points of the trajectory of #' on f = f,. By the lemma on indistinguishability
(Section 1.5), it suffices to verify that f; =f; in a neighbourhood of x; when
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r >s 2 j. Using (d) we see that to do this, it is mecessary only to satisfy
ourselves that A )
| X0 > =1, < Cagplxy(®)) —jy forj <I<s.
Since o*(1) = 6®({) when { < s, we can suppose that s = L Since ¢ ¢7},
CEaplx;()) <66 and ol () > —69.

Therefore the inequality to be proved certainly holds if y > 124, and this is
indeed so.

4.6.6

We are now in 2 position to complete the proof of (6.1). Using the notation of
Sections 4.6.3—4.6.5, let r > 41. Then x, (¢) is the result of applying @' to/, for all
teT except perhaps for a set T of values of t of measure < %, for, by the
definition of I,

}l(a',f,)dz <l
[d]

But Z(x,(t),f,y > 4£ when teT. For, by property (iv) in Section 4.6.2 and the

rule for choosing r, _ -
B inf f(x)< —r V7 < -8
fx§ <1

while, as we have already seen, for teT,

(éo'(r) lX,(t) > 2 - 65
and
i) X, (1)) =1y < L(x(1)-
Hence
f(x,@) = —65—ry > —4E,

and this gives the required bound for &(x,(t), f;). Thus
1
i = (&(4, f,)dt > meas (T\T)-48 > &
L]
We have obtained the following result. Let @ be the method in Section 4.6.3,

and let ¢, | be its characteristics. Suppose further that

r= [98;:]' e<$ N=N,(5() )

and

Then the following inequality holds:

> 1\:2-—’} 6.7)
4| P
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4.6.7

Now let G and o’ be objects as in Section 4.6.1, Without loss of generality we
can suppose that the class C,,, considered in A2 has m = 0,and that G contains
the unit ball in E and is contained in a ball of radius o’. Problems of minimizing
functions in U can be regarded as problems in C,,. If now v > Oand 12¢'v < 3,
and if N (v) < I, then for some method & of solving problems in C,,, we have:
v(#.f) <vand (B, f) < lforallf e But, whenfe L, (f) < 3, whereas
Py, (G) < 2. Further, {xllx|, €1} = G, and so

(B, f)=L,, (f)2p,; (G)v(®,f) < 12¢'v when fe2

Hence and from the proposition in Section 4.6.6 we obtain, because of (6.7),

that
S )]
41 \9-12a'v

o 1 (Y
w025 (55, |

Thus, (6.1) holds when a'v < 1/108. It is clear that (6.1) also holds when
a'v' = 1/108. The assertion A2 has now been proved for p > 1.

1.e. also

4.6.8

We now prove the assertion A3. It suffices to examine the case m = 0. Let
@' > ay,(G). We can suppose that G contains the ball of radius 2 with centre at
0in E, and that it is contained in the ball of radius 2¢’ with the same centre. We
put k(t) = k, (1), where k,(-)1s the function in A2. By Dvoretsky’s theorem (see
Exercise 4 in Section 4.1) there1s an n(k) < oo such that, if dim E = n(k), then
@, . ([l ) < 2 We put k(z) = n(k(2)). It will be sufficient for us to verify that, if
dim E = k(«'v), then
o C
New) = @) (6.8)

for some absolute constant c.

For, let dimE > k(a'v). Then we also have dimE* > k(«'v), and so
oy 4 () l,) € 2 when k = k(a'v). Therefore there is a k-dimensional subspace
L < E* and a Euclidean norm |- )|, on L such that, when e L,

€0 < 8€ha < 20412 (6.9)

Leté,, ..., & beelements of L which form an orthonormal system relative to
Il Il,. We consider the k-dimensional Euclidean space R*, ||, and the operator
T:E - R*defined by the formula 7x = { (&, |x ), ..., (& ]x>}. We observe
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that, when x € E,
| Tx| < 2[x]- (6.10)

This follows immediately from (6.9) and the relation

k k
Txl=sup{{ T @'&lx D1 Y (#) < 1).
i=1 i=1

It follows from (6.9) and (6.10) that the system of functionals &,, .. ., &,
satisfies (6.2) with p = 2. Moreover, k > k, («'v). The construction in Sections
4.6.3-4.6.7 applied to these functionals yields the required lower bound for
NY(v)immediately. (We remark that in this construction only the fact that such
a system of functionals exists for the ¥ mentioned is used; the condition that
‘E, [|- | coincides with L, |||, is not used.) The assertion A3, and, with it, all
the lower bounds for the complexity stated in the theorems in Sections 4.1 and
4.2 have now been proved.

5

Problems of convex
stochastic programming

In the preceding chapters we have described methods of the first order for
solving convex problems: methods which work with exact information about
the problems, or, at any rate, with information little distorted in comparison
with the accuracy of solution demanded.

Often more complicated situations are considered, in which exact informa-
tion about the problem being solved is inaccessible, and, instead, information
distorted by random noise has to be used. Such a situation can arise, for
example, when the functionals in the problems represent, in content, mean
values of random variables which depend on both the controls (with respect to
which the optimization is being carried out) and on random factors not subject
to control (with respect to which an averaging is carried out). If, here, the
information about the problem, which is needed for the optimization, is
obtained, during the course of the work, from a stochastic ymitation model of
the object, then it is clear that this information itself will have a stochastic
character. Situations can also be envisaged where there is no appreciable noise
physically present in the original problem, but there is noise connected with the
conditions under which the necessary information about the problem is
obtained. Be that as it may, the analysis of numerical methods of solving
problems of stochastic programming of the widely extended type of stochastic
approximation can be reduced to the study of methods of solving ordinary—
deterministic—extremal problems; it is sufficient to suppose that it is only the
source of information which is stochastic, i.e. the oracle which the methods can
consult. It is this approach to numerical methods of stochastic programming
which is adopted below.

Our purpose is to learn how to apply the methods of mirror descent to the
situation under consideration. It turns out that it is indeed possible to do this;
moreover, under extremely wide hypotheses, MD-methods prove to be sub-
optimal-—essentially not improvable as regards laboriousness.

In this chapter we introduce classes of stochastic programming problems
(Section 5.1) and MD-methods of solving unconstrained problems in
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these classes are constructed (Section 5.2). An extensive literature is devoted
to these questions. We mention in this connection the important work of
Yu. M. Ermolev [9]. In contrast to well-known works, we examine a more
general situation than in Hilbert space, namely, in regular spaces. The methods
described later bear the same relation to the traditional methods of stochastic
approximation as the MD-methods of Chapter 3 bear to the ordinary method
of gradient descent.

In the next chapter we shall consider problems with constraints, a case which
has been studied much less. Such problems will be reduced to games. The
development of MD-methods in connection with the problem of the
approximation of saddle-points of convex-concave games will enable us to
obtain practically complete results concerning (convex) conditional stochastic
problems. Both chapters (so far as the new results are concerned) are based on
the authors’ papers [23, 24].

5.1 CLASSES OF CONVEX STOCHASTIC PROGRAMMING
PROBLEMS

5.1.1

From now on, in this and the next chapter, we consider problems which are
defined on convex, closed, bounded subsets of real Banach spaces. All these
spaces E, ||-[|, are assumed to be regular and separable. It is further assumed
that the pairs, E, | - ||, considered have the following property: for any convex,
closed, bounded subset G < E, there are Borel mappings n;(x): E - G and
U (x): E -~ E* such that, for every x, m;(x) is the point in G closest to x, and
#g(x) is the support functional at the point x to the convex function p, ,(x, G).
1t will always be taken that y;(x) = 0 when xe€G.

The properties of E, || - ||, just mentioned ensure that the rules of search in the
methods to be constructed will have the Borel property; this is an essential
circumstance, for we must be able to make use of probabilistic characteriz-
ations of the methods. On the other hand, the properties of E, |- ||, formulated
above actually ensure the separability and reflexivity of £ (indeed, under these
conditions the necessary demands on E, | - ||, are satisfied automatically if || - | 1s
strictly convex and smooth, ie. the unit ||-(-spherical surface contains no
segments which do not reduce to a point, and the unit ball at each point of the
boundary admits a unique supporting hyperplane. At the same time the
indicated properties of the norm can ajways be secured by ‘adjusting’
in the necessary way (and to an arbitraily small extent) the onginal norm

on E).
Exercise 1. Prove the above assertion,
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5.1.2

Let E, || - ||, be a Banach space, and let G be a convex, bounded, closed subset of
E. We consider the field of problems C,;, = C,;, (G, E, || - |}, m) (see Section 2.2).
Our purpose is to equip C,,, with a ‘stochastic oracle of the first order’, and
then to define classes of convex stochastic programming problems. The
customary oracle for this circle of questions is a stochastic oracle
O = ((, F); I (x, f, ) (see Section 1.3), for which the information space 7
is the same as for a deterministic oracle of the first order, i.c.

I=(Rx...xR) X (E*x...xE¥
_\/—_’ \—\/—/.
m+1 m+1
In other words, the observation function i (x, f, ) has the following structure:

Yaf0) = (P(xf ), .. Yalafioy ds(xf o). .. ¥n(xf, o)}

where the ¢/9 (x, f, w) are scalar functions (interpreted as observations of the
values of f;(x) with oracle noise w), and the i/} (x, f, w) take values in E* (and are
interpreted as observations of the support functionals (on G) f)(x) to the
functions f; at the point x € G. An oracle of this kind will be called a ratural
oracle.

Clearly it is impossible to construct a meaningfut theory under such general
hypotheses about the oracle. The customary hypothesis about an oracle is that

it is unbiased, i.e.
M, U] (xS, @) = f;(x)
Me, ) (x, f, w) = f](x) € 35f;(x), (1.1)

for all xeG and feC,,,. Here, as always, M denotes the mean over the
corresponding distribution indicated by the subscript.

But it is not enough that there be no bias. The intensity of the noise must be
limited in the necessary way. There are many ways of making this limitation.
For example, upper limits could be imposed on the second central moments of
the random variables ¥/(x, f, -), 0 < j < m. But that is not too convenient: the
situation will be described by a large number of parameters, abount which the
absolute values of these moments will say nothing. For a sensible theory, the
dimensionless ratios of these moments to the quantities characteristic of the
problem must be essential.

We choose the following way—in our opinion, the simplest—of characteriz-
ing the noise. Let L > 0 be a certain number. We shall say that the ‘intensity of
the oracle’ on a problem f with m =0 does not exceed L if, for
all xeG,

and

2

L
v} (6 f OIE € 5=

M |¢9 (x, f, ) —f()]? < L2

and



184 Problems of convex stochastic programming

We see that (1.2) imposes in a definite way compatible constraints on the
moments of the observations of f(x) and f*(x). Constraints of this kind will
turn out to be the most natural ones.

For the general case with m > 0, the ‘intensity of the oracle’ could be limited
on each component of the problem (by a separate constant for each
component). It is convenient, however, to impose constraints which are not
completely ‘by components‘: ;

I

M. ( max {w’j (x,f, @) =/;(x)F }) £1

0<j<smxeq,
(1.3)

ogigm L;

For a given oracle @ and given L,, . .., L, > 0 the relations (1.1) and (1.3)
separate out from C, a certain field of problems. It is convenient to equip it
with the normalizing factors
ro(f) = Lo,r;(f) =max{0,mj:';1f](x)}+L,», 1<jsm
xe

We remark that, for compatible f, we have r;(f)= L, 1 <j<m. The
weighted field so obtained (Section 2.1) and equipped with the oracled
comnstitutes a certain class of problems. It is precisely classes of this sort which
we shall study. The parameters Lg, . . ., L,, which specify the class, will be
taken to be known a priori. We observe that, in such a case, instead of solving
problems = (fo, - - -, f), Wecan go over 10 solving the ‘normalized’ problems
f=(fo/Lo, - - -+ fu/Ly) and so, by this normalization, obtain the relations
Ly,=...=L,=1 Thus the relations (1.2) distinguish a class which
essentially is independent of the oracle noise.

It will be convenient later to consider classes with Ly =... = L,, = L. As
just remarked, with the approach we have adopted, the general case can be
reduced to this one (even with L = 1).

513

The heuristic considerations above enable us to pass on to the formal
definition of the classes under investigation. We shall specify them by
conditions like (1.1), (1.3), but we shall generalize the latter in two directions:
we shall pass from consideration of second moments to consideration of any
moments, and we shall drop the requirement for no bias in (1.1) and allow a
definite (small) systematic error.

Let G, E, (|, Cy, be the same objects as in Section 5.1.2, and let
O=((L F,), 1, y(-)) be a natural oracle for C;,. Further let v, >0, L >0,
and r > 1. We define the field of problems C3* = C2*(G, E, ||- |, m) as the set
of all problems fe C;, which satisfy the following requirements A-C.
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A. For all xeG and all j, 0 € j < m, the affine functionals
g;() = My} (x.f, @)+ (N ) (. f, @)y —xD

satisfy the conditions

J;i() = g;(»), y€G, and f;(x) < g;(x)+vo L.
B Forallj,0<j<mand xeG

1 " —L— ’
Mpulllpj (xvﬁ (D) ||t < (2[)' I (G)) ‘

C. Forall xeG
M, IW° (i f o) —f(x) Il S L.

Here

YOx, f, )= WS (x. £, o). ..., ¥a(x f w)
and f(x) = (Jo (x), . . ., fn(x})) are regardcd as mappings in [{7* Y- We choose

_)—0
r(f) = L+[mmf,]+, > 1.

as the normalizing factors for the field C" ", We equip the weighted field so
obtained with the oracle &, and so obtam a class of problems which we also
denote by C3*2(G, E, ||- |, m).

We point out that, in contrast to the situatjons in the previous chapters, the
problem fields of the classes now introduced depend explicitly on the oracle.
We may say that, previously, the field of problems was specified in advance and
the corresponding demands on the oracle were introduced when we described
the methods. Here, reversely, the oracle is specified in advance, and A—C are the
demands on the problem under which we undertake to solve it using the given
oracle.

Itisimportant to observe that one and the same method will be proposed for
solving problems of a whole family of classes C* (G, E, (|- |l, m) which are
obtained for all possible oracles @ for given G, m, L vo, 1, E, || |l Thus we do
not need to know anything a priori about @. We need only to be satisfied that
the problem to be solved lies in Ci, (G, E, |-|, m) and is related by the
conditions A—C to the oracle to be used (of course, G, E, || - ||, r, L, m, vo must be
known a priori).

5.14

Remark. In the important particular case where vo =0 and m =0 the
requirement C need not actually be imposed for the oracle. Moreover, if m = 0,
and v, = 0, and if there is a function f satisfying the conditions A, B relative to
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the oracle €, then it is easy to obtain from ¢ an oracle & which satisfies all three
conditions A, B, C applied to the function f(x) = f (x) —f {x,), where x, is the
centre of G. Clearly, it is all the same whether f(x) or f(x} is minimized.

The oracle @ is constructed in the following way. Suppose it is required to
observe the support functional and the value of f at a point x € G. To do this,
we consult the oracle ¢ twice—the first time at the point x, and the second time
at a point ¢ chosen at random (with respect to a uniform measure) in the
segment [x,, x]. Let w and ' be the noise of € at each of these consultations.
We take the quantity y 3 (x, f, w)as the observation of f'{x) provided by &, and
the quantity

<'1b(!| (‘Eaﬁ w’)lx—x0> = 'pg (x’f! @, wr, ‘};)

as the observation of f (x). One answer of the oracle ¢ thus costs two
consultations of (.

Exercise 2. Prove that
My (x, f;, w) € 8sf (x)

M3 (x, f/, o, @, &) = J(x).

MIE (x. f, o, @, ) —f ()| < L.
Thusfsatisﬁes all the conditions A, B, C relative to ¢.

and

Also that

5.1.5

Before passing on to the description of the methods, we introduce a quantity
which is useful in the group of questions with which we are concerned. Let }' be
an (E, |-|)-regular function, w, (t) be its modulus of smoothness (Section 3,2),
and let r > 1. We define A (r) as the family of all distributions F, but on the
half-line t > 0, such that

xX

J vdF, € 1.

0

X

wy, (1) = sup ery{tr)dFtlF,eA(r) .

0

We introduce the function

The function @, ,(f) has the same qualitative properties as w,(t): it is
continuous and bounded for t > 0, w,. (0) = 0, and w,., (¢) does not decrease.
We can define the function 7, ,(s) inverse to w, (1)

7i..48) = sup {t|o,, (1) < s}
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It is easy to see that y,,(s) is a non-decreasing function of s, is positive
when s5>0, takes the value4+ oo, and w,,(y,,(s)) <s for all s>0
(here , , (+ o) =lim, . , @, (1))

Exercise 3. Prove these assertions.

The rdle of the function w;,, (¢) in the following discussions is based on the
next two assertions.

Proposition. Let E, |-||, ¥, r, w, (¢) be the objects just described, and let
(2, F,,) be a Polish space with a regular, Borel, Lebesgue-complete, probability
measure F,,. Further, let w;, i = 1,2 .. ., s, be independent random variables
distributed over F,, let o' = (w,, ..., ®;), and let ;(w):2 - E* be Borel
functions such that

M 1€ (@)} < L L < 0,

where F is the joint distribution {wy, . . ., ®;} induced by F,. Then

{1) for all @ € E* and all x € E the following inequality holds for the function
Ve (§) = V(E)— (&fx

Velo+ &1 (1)) < V(@) + (& (w1) | V(@) > +r(w), (1.4)
where r(w,) > 0 is determined from ¢, and ¢, and Mg r(w,)
(2) if M &i(o)=0forall ™!, 1 <i<N,and p; >0,
then
N
<L) pw,,(Lp)+i. (1.5)

* i=1

M

N -
Z piéi (")
1

Exercise 4. Prove the proposition.

{(1). Bytheassertion of Proposition 3.2.4 the first inequality in (1.4}is true for
the choice r(w,) = [|€; (01) ||y @, ([ €1 (@))],). Putting &, (w,) = &, (0,)/L,and
letting F, denote the distribution of the quantity ||, (w,)],, we obtain that
F.€A(r} and that

{rw)dF, = [Lto,(L1)dF, < Lo, (L),
as required by the second inequality in (1). Assertion (1) has been proved.
(2) We estimate MF,i V' (s;(w')), where
si(ﬂ’i) = ijfj(wj)s So(wo) =0
1
By (1.4), when 0 < i < N,
Visie 1 (@ 1) < V(s@ N + piay (i @V (5:(0)) D + 1 (@),

Averaging both sides of this inequality first with respect to ;. ;,and then with
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respect to o', and using Mg .., &1 (@'**) = 0 and (1.4), we obtain

M V(i (@) < Mg Visd@) + prer Loy, (pis1 L).
Hence
N
MF",N Visy(o™) < z p; Loy, (p;L).
i=1
To obtain (1.5) from this inequality it suffices to note that, by the definition of

V, we have
lel, < V(p)+% forall pe E*.)

5.1.6

In conclusion we give lower bounds for the quantities v, , () for the standard
L -regular functions. In the following, c(p, r) > 0is a number depending only
onrandp and r> 1.

For 1 < p < o0, V =V, (see Section 3.2):

Vi, (8) =7, (s) Z c(p, r)sﬁ' where F = min {2, r, il } (1.6)
Forp=1, V=V, , (see Section 3.2):
1
c(l, s=1
‘PV 'r(S) =" n'r(s) ZW’
1,n+ iy 1
In(n+1) an

where 7 = min {2, r}. We note that, when r = 2, the bounds given for the
functions y, , and y, , , coincide, as regards order of dependence on v (resp. v
and n), with the similar estimates for y, and y, , in Section 3.2. For p > 2 this
circumstance also holds when r = p/(p —1}.

Exercise 5. Using the bounds for y,and y, , in Section 3.2, prove (1.6)-(1.7).
Hint. Inderiving (1.7) bear in mind that sup, , ¢, @, ,(f) < @ < o, and that
a does not depend on n. (see Section 3.5).

We are now prepared for constructing MD-methods of solving stochastic
programming problems,

5.2 UNCONSTRAINED OPTIMIZATION

In this section methods are described for solving problems in the classes
&4 (G, E, ||-1l, 0), i.e. problems of the form

f(x)—>min|xeG c E.
It turns out that for solving these problems we can adapt the method of mirror
descent; the modified method is basically similar to the MD-method of solving
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Lipschitz—convex problems with an exact, first-order oracle (Section 3.3). Let
V(-) be an (E,| - |}-regular function. We shall denote the method associated
with V of solving problems in the above class by MD,.. For brevity we write £
for the class C’f;’,o (G, E, |||}, 0). In describing the method we shall suppose, as
usual, that G is normalized by the condition: 0 is thecentre of Gand p, , (G) = 1.
It is clear that such a normalization can be achieved by simple homothetic
transformations.

5.21

‘We start by describing ‘convergent’, ‘infinite-step’ versions of the method. The
work of the method is determined by the choice of a sequence of displacements
{p:}iZ 0, pi > 0, and consists in the construction of sequences {@;e E*}2
and {x,€ E}{% o, {x;€G}{L . These sequences are constructed in accordance
with the following recursive rules, in which f € € is the problem being solved,
¥ (x, f; @) = (Y3(x, f, w), ¥ (x,f, @)) is the observation function of the oracle
@, and «); is the noise of the oracle at the ith step, and o' = (w,, . . ., @;):

9o =10, (2.1)
X = xi(wi_ l) =V(pio1 (@) %= % (0~ l) = mg(x;), (2.2)

¢ = ¢;(0) = 9,4 (@'~ 1) - Pt{'l’tla (Xsf, w) + M’tl) (% £, 0 ||y it (xi)}- (2.3)

If the oracle @ were an exact deterministic oracle of the first order, and if the
displacements p; satisfied the natural conditions p; =0 as { = oo, E: p=
+ o0, then the trajectory {x;} would converge to the point of a minimum of f
on G in the following sense, Let x* be the ‘best’ (as regards the value of f Jamong
the points x4, . . ., X Thenf(x‘) — inf,; fas i — oo (¢/. the results for output of
the results of the methods in chapters 2 and 3). In the stochastic case, as may
easily be seen, the same thing is also true (after averaging over the random
realizations of the methods, of course). Thus the rule for output of the result
after i steps of the type indicated above is capable of ensuring the convergence
of the method, whereas the trajectory {X;} itself may not indeed, without
additional hypotheses, converge (even in the mean over the functional).
However, we are not in a position to realize such a rule. For, the choice of the
‘best” among the points x,, ..., x; presupposes exact knowledge of the
numbers f(x,), . . ., f(x;), and we do not have this.

It turns out (and this consideration lies at the basis of the method) that the
difficulty mentioned can easily be overcome: the trajectory {x;}= , always
converges to the optimum of f (in the mean over the functional) in the Césaro
sense. Let us consider the trajectory of convex combinations {x'} of points %;,
of the form

i -1
x‘sx‘(w"‘l)=(; p,) le,-ij(cuf'l) (2.4)
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(on the right the o/~ ! are the initial fragments of e‘~1). It turns out that under
the requirements on p; formulated above, the trajectory {x'} converges to the
point of the optimum of / (in the mean over the functional), and, moreover, the
rate of convergence can be estimated explicitly.

Theorem, Let the displacements p; satisfy the conditions

i~ o

pi>0, 3 pi= oo, lim p, =0,

and let f € €. Then for the trajectory of the process (2.1)-(2.4) the following
relation holds:

pjwV,r(ij)
-1

;’i(f) = M’Fmi—l V(xi((ﬂi_l)sf) = Vot li +7 f
2L 2 Pj Z Pj

j:l j:l

. (2.5)

In particular,

lim v; < v,.
Proof. Itisclear that, when i — o, the right-hand side of (2.5} tends to v,, and
so the second assertion of the theorem follows immediately from the first, to
the proof of which we now turn, Let x* be the point of the minimum of f on G.
Weput V, (p) = V(p)— {p|x* >, and we investigate the variation of V', along
the trajectory {p;}. We put

A’ = 'J’tl)(fi(wiil)yﬁ ;) + ||lf’t11(fi(wi_l),fa @)y ﬂa(xi(mi_l))
and
810 71) = My, A(0') = U, (%0 ™)+ bul! el ™),
where

¥ (0 = Me Y (x, /5 ©)
biter' ™1y = My, WA (% (@), £, @)l
bu(@' ™) > [, Gl )l (2.6)
L

M A, € = — =L 2.7
F,, 1A (@) <[29u-u(G)T 2.7

(in the last estimate the property B of the oracle ¢ has to be used). Because of
{1.4) we have

Veloi(@)) € V, (@;- 1 (@™ 1)+ p; (A0 — Vi (@ (@7 1)) ) + 1),

or

and
It is clear that

and

Ve(@i(@)) € V(90— 1 (@71 + py (A | x* — x;(@? 1)) +75{w?),
(2.8)
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where, because of (2,7),
M, 75(@) < Lp;o,,,(Lp;) (29)
Averaging both sides of (2.8) over w;, we obtain
M, Vi@ < V(@1 (@™ )+ p; (Y (%50’ ™1)
+by(e ™ g (x| x* —x;(@' ) ) + Lpjo,, (Lpy).
Because of (2.6) the right-hand side of the last inequality is not greater than
Velgj— 1)+ 0, ¥ 55) |x* — X3 + Lo, (Lpj)
{cf. the corresponding stage in Section 3.3.5. Thus
M;, Va(0(0) < Vil 1 (@1)
+ 5 Y (K5 (@) x* = X077 ) + Loy, (Lo, (2.10)

By property A of the oracle @, the middle term of the sum on the right-hand
side of (2.10) does not exceed f(x*)—f(%;(w! ™))+ v L, ie. (2.10) gives

MF.,,,. Velo;(0h) € Velo;-  (0'™1)
+pvol +p,(f(x*)—fFe’ "W+ pLwy (p) L) (211)
Averaging both sides of (2.11) over w’/~ ', we obtain
Me Ve (95(@0) < Me i Vol9- 1 (07 )+ pyvo L
+p(f(x*)— Me_; S (Fl0 ™M)+ pLw,, (p;L).  (2.12)
Summing (2.12)overj = 1,2, .. ., i, and noting that ¥, (¢,(w°)) = 0, we find

i P Me s f (55(0’ 1))} —( Z P.-)f(x“}s ( Z pf) voL

ji=1 i=1 j=1
+ ;gl piLay,, (p;L)— Me V(@) (2.13)
Further, because f is convex, we have
T o) 2 (X o) el
and by the properties of V'
Velo).=V(p)— Cplx*) 2 V(o}-lol, = —%

(we have used the fact that | x* | < 1asa result of the normalization conditions
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on ). Using these inequalities in (2.13), we obtain

( Zl: pj) ( M - (f (' 1)) —f(x*))

i=1

i 1 i
-‘:’:( ) Pj)"oL‘FE‘*' Y pilo,,(p;, L), (2.14)

i=1 i=1

and this gives the required inequality (2.5). The theorem has been proved.

5.2.2

Let us discuss the result obtained.

5.2.2.1

First of all we remark that when E, || - | is a Hilbert space, for ¢ = 2, the method
described, corresponding to (-} = ¥,(-) (see Section 3.2.3), can be somewhat
simplified (similarly to what was done in Section 3.3). After this simplification,
the method assumes the following form (;_; = x; = X;):

X1 =0, x4y = 7605 — piro (xi, £, @), 2.15)
] -1 g
x! =( y pj) Y pix; (2.16)
i=1 i=1
The bound (2.5) can then be replaced by
) 2 L}
%< vt A (2.17)
2L Y p; B Y p
i=1 i=1

All these facts are proved in the same way as in the general case; in the proof the
variation of the function ¥, (x) = #(x — x*)* has to be considered.

Exercise 1. Prove (2.17).

We point out that the equations {2.15) describe the well-known process of
stochastic approximation due to Yu. M. Ermol’ev. Thus, in the case of a
Hilbert space, the proposed method differs from the customary method only in
the rule for forming the result (2.16). However, this difference is very
substantial from the point of view of the analysis of the method. For the
trajectory itself (2.16) convergence (in some probabilistic sense or other), and
estimates of the (2.17) type, have been proved only (so far as the authors are
aware) under additional assumptions about the displacements p; and the
functions f. We see that a small (and, from the practical point of view, costing
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nothing) change in the method leads to a substantial simplification of the
situation.

5.2.2.2

Let us discuss the question of a sensible choice of the displacements
pi. Suppose the function w, ,(f) admits a bound, w, .(¢) < et” with
g < 1. We shall be concerned with qualitative results, and so we take
L = 1. We restrict our attention to rules for choice of displacements of the
form p; ~ i7" 0 < x < 1. 1t is easy to deduce from (2.5) that we should
choose x = 1/(1 4+ ¢). The right-hand side of (2.5) will then decrease like
vo+i"7"*Ini as i increases. In the simplest case—a Hilbert space—
when r = 2, we obtain a rule for choice of the displacements which is
of the form p; ~ l/ﬁ. The right-hand side of (2.5) then behaves like
vo+ O (In i/\ﬁ ). We observe that the rule for choice of displacements can
be made more precise, if we relinquish choosing displacements of the form
O (i~); for example, if we take

pi~ T (Ini) "1,

then the bound for the right-hand side of (2.5} is of the form
vo+ O~ ™ (Ini)T InIni).

‘We shall not proceed further in this direction, in view of the fact that, a little
later, we shall be considering ‘constructive’, ie. finite-step, versions of the
method described, in which similar complications regarding the choice of step
do not arise.

5.223

We shall say a few more words about the recommended rule for choice of the
step. We restrict ourselves to the simplest case: E, || - || is a Hilbert space, r = 2,

vo = 0. In this case we recommend choosing steps p; = 0(1 /\ﬂ ), whereas the
‘traditional’ rules for choice of step indicate p; = O(1/i). From our point of
view the second choice is extremely bad; for it, the right-hand side of (2.5)
behaves like O(1/Ini), i.e. it converges extremely slowly to O when i — oo,
The origin of the rule p; = O(1/i} can be explained in the following way.
Roughly speaking, the greater the displacement p;, the quicker the method
would converge when there is exact information, at any rate, initially. On the
other hand, larger displacements lead to a strong influence of the noise on the
trajectory, and so it is desirable to make small displacements. Traditionally, a
compromise is effected between these two tendencies on the assumption that
the function fis ‘good’, 1.e. smooth and convex. From the point of view of the
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limiting behaviour of the trajectories (traditionally, of the random index of the
work of the method), such an assumption about f is justified to a sufficient
extent. Moreover, with such an approach to the matter the choice p; = G(1/i)is
indeed sensible, for here precisely the noise does determine the rate of
convergence. 4

Let us consider a model example: the minimization of a function on the axis,
fu(x) = $(x — @)% It is assumed that at the ith moment of time an observation
a; = a +w; of the quantity a is accessible, where the noises w; are scalars,
independent from one step to the next, and say, normal with the mean = 0and
the dispersion = 1. From the point of view under discussion the oracle
communicates realizations of the random (not biased) estimate

]fl’(ll(xvfmw) =X—dada—w,

where we R is distributed in the way indicated earlier. The process (2.15) (we
suppose, in the form of exclusion of G = R) has in this case the form

Xipy = X — p; (5 —a—wy),
or, putting Ai = x; —a,
Ay = A— oA+ pio; = (1 — p)A; + pioo;.

Hence, under the condition g, = 1 (which causes no loss of generality), it
follows that A;, i > 2, is a combination of the random variables w,, . .., o;
with the sum of the coefficients equal to 1, such that the minimal dispersion of
A; (i.e. the mean value of 2( f,{x;) — min_ f,(x))) corresponds to the case where
all the coefficients of this combination are equal to one another. The latter, in
turn, is equivalent to the condition p; = 1/i, i = 1.

Thus the choice p; = 1/i is indeed optimal for the example considered. This
same example can, with a well-known justification, be regarded as a suitable
model for the ‘remote-from-the-origin’ part of the trajectory of the method of
stochastic approximation in the general case too. At the same time this rule
proves to be unacceptably bad on the initial parts of the trajectory if the
function f is not assumed to be smooth and strictly convex.

For, let £, be a convex function on the axis, whose minimum is attained at x
= 0, and let f,(x) = 4ex when x > 0. We assume that there is no noise, and we
start the motion from the point x, = 1, and the displacements are of the form
p; = 1/i. After i steps we arrive at the point

i-1
x;=1—4¢ Y p; »1—4¢lni.
i=1
To ensure an (absolute) accuracy ¢ requires a hit on a point x with |x| < §, i.e.
the number of steps N, needed to do this satisfies the estimate

4gIn N, =%, ie. N, = exp (3/(16¢)).
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For small e the number of steps obtained is fantastically large. The point here is
that in the model example considered above, at the expense of the choice
P, = 1, we immediately obtain a point x with Mx, = a (in the case of exact
information, an immediate hit at the point of the minimum of f), and all the
subsequent behaviour of the trajectory represents the oscillations about this
point due to the noise. There is nothing similar in the general case to these
effects in the quadratic situation, as the second example shows.

The rule recommended here for choice of the displacements p; = 1 /\/1T
ensures an incomparably quicker (than the ‘classical’ one) emergence of the
trajectory x; at the optimum point (for the function f, described above we
achieve it after a time O(1/¢?) instead of exp (O (1/¢)). On the other hand, this
method is very ‘sensitive’ to the noise; because of it, the trajectory x, oscillates
strongly about the minimum. Here the second peculiarity of the proposed
method comes into action, a feature which we have not yet mentioned; this is
the fact that we average this oscillating trajectory (we go from x; to x! in
accordance with (2.16)), and we consider precisely this trajectory of the means
as the resulting trajectory. The averaging, which is carried out not during the
course of the search (roughly speaking, this is just what steps g, = 1/i do) but
independently of it, makes it possible, simultaneously and acceptably quickly,
to get into the neighbourhood of the optimum, independently of whether the
function being minimized is smooth or not, and to smooth out the fluctuations
of the trajectory arising from the presence of noise.

523

We now pass on to ‘constructive’, finite-step versions of the method, supposing
that the (relative) accuracy v, vy < v < 1, demanded of the solution is specified
in advance. —

In this situation we can consider the MD, (v}-method, which consists in
constructing the initial fragment of length N of the trajectory (2.1}-{2.3) and
putting out the Nth point of the trajectory (2.4) as the result. It is necessary
only to choose the displacements p;, 1 <i < N, and the number N itself in the
appropriate way. From the point of view of optimizing the laboriousness, all
the p; should be chosen equal to one another in accordance with the relation

1
= 2 g (v—vg),

where
v

Prp (V)= ?».r(i)- (2.18)

The number of steps should be chosen according to the formula

N =N, (v—v)
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where N ~ 1 219
o ) = ]w, © [ '

With such a choice of the parameters p and N, the right-hand side of (2.5) when
i = N does not exceed v. Thus the constructed method ensures an accuracy v in
the solution of problems of the class € with a laboriousness N, , (v — vo) (and
not N, , () + 1; the point being that the construction of x” requires not N but
N — I questions to = put concerning the problem under solution).

In the Hilbert-space case when r = 2 we can use (2.15)-(2.17) instead of
(2.1+-(2.4) with the choice of parameters

R [
PETO T T Ja |

5.2.4

Let us see what bounds for laboriousness the MD ,-(v)-method provides. Let
@, (t) < ct®, as in Section 5.2.2.2. Then

N;-,,(v)=0{ (1)_}
V

i.e. in setting up the method for an accuracy specified in advance, the latter can
be ensured rather more quickly (after

1 [ ia‘
)
v— g
steps instead of after

o(() = (20))

steps) than with the rational choice for g; in the ‘infinite-step’ version in Section
521, ~—

We enumerate the bounds corresponding to MD”"-methods associated
with functions ¥, (-}on the spaces (E, |- |} = (L, (@, p), |- ,,)- The bounds given
below for the laboriousness follow from (2.18)}-(2.19) and the bounds for
w,, () in (1L6-(1.7) —

First let 1 < p < =0. Then the laboriousness of MD®" (v} when vy < v < 1
does not exceed the value M, (v —v,), where

=1
My =060(1 )
(2.20)
r= min{ 2,r,L }
(>-1)
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Butif p = Landif (E, ||-]) = (If", -]l ), | <n < oo, then the laboriousness
of the MD ! associated with ¥ = ¥, , (-), when v, < v < | does not exceed
M, ,.(v—vo), where

Inn, F=min{2,r}. 221)

|\
v

Ml,n;r(v) = D(l! J’)(*

In (2.200-(2.21), D{(p, r) is a finite function of both arguments for all r > 1.
We point out that, when r > 2 (in fact, even when r > min {2,p/(p— 1)} ),
the bound (2.20) is the same as regards the character of its dependence on v
(and the bound (2.21) is the same as regards the character of its dependence on
v and n) as the corresponding bounds for laboriousness of MD-methods of
solving Lipschitz-convex problems with an exact oracle of the first order (see
Section 3.3.4). Thus, in the most typical case r = 2, the laboriousness of the
stochastic-programming methods presented is, roughly speaking, the same as
for MD-methods in ordinary convex programming. In other words, the
MD-methods scarcely react to noise in the presented information.

5.3 THE COMPLEXITY OF STOCHASTIC PROGRAMMING
PROBLEMS

In this section lower bounds for the complexity of the classes of stochastic
programming problems introduced in Section 5.1 are constructed. These
estimates, on the one hand, enable us to judge to what extent the methods
constructed are efficient, and, on the other hand, they indicate what should be
strived for in the general case when there are constraints and when values and
their derivatives are observed with noise present.

Turning to the construction of lower bounds for the complexity of the
classes with which we are concerned, we point out the following fact. In
chapter 4 bounds were constructed, effective for any (local deterministic or
even any local) oracles, In considering stochastic oracles, it is impossible to
obtain such universal results. For, the oracle considered may turn out by
chance to be an exact, deterministic oracle, and 50 a ‘universal’ lower bound for
the complexity would necessarily have to ignore the fact of the oracle’s being
stochastic. Accordingly, we shall, roughly speaking, concern ourselves with the
upper bound for the complexity functions of a given field of problems relative
to all possible ways of equipping this field with oracles of this type.

5.3.1

We start by considering problems without constraints. Here the following
simple result holds.

Theorem. Thereisafunctionc(r) > Ohaving the following property. For any
r > 1, any Banach space E, ||-|, and any bounded, convex, closed set G = E
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which does not reduce to a point, there is a natural (in the sense of Section 5.!)
oracle @ for the field of problems C;,, (G, E, ||-||, 0) such that the st'ochastlc
complexity N (v) of the class of problems € = C%f (G, E, ||, 0) satisfies the

estimate
N
N = c(r)(;)

F=min{2,r}. (3.1)

(Note: This bound already obtains on the sub-class of the simplest linear
problems.)

where

Proaf: Without loss of generality we can suppose that L = 1. We can
further suppose that p, ,(G) = 1, and that G contains a pair of points h, —h
with ||h| > 4. Then G contains 0, and is contained in a ball of radius 2 with
centre at 0. Let ¢ocE™ be such that {¢@|h> = |h| and ||<p||“I = 1. For
all ¢ with |t| < %, we take f, to be the problem generated by the function

L) =t<olx).

1°. First letr < 2. We define the oracle @as follows. On all problems distinct
from problems of the family {f;} <4, @ is an exact, first-order oracle. The
answer of @ to a question about the problem f at a point xe(G is a random
variable with values in R x E* which takes the value (0,0} with probability
1—p(r,t), and the value (p(r, 1))~ (f,(x), f; (x)} with probability p(r, r). Here

p(r,t) = @e]y°T. 3.2)

Direct calculation shows that, when |¢| < }, feC = €72 (G, E, |-|, 0). Now let
2 be any method of solving problems of the class € with (means) accuracy v
and laboriousness M on this class. We consider a subclass €, of the class C
formed by the pair of problems f;,, and f_, || < 1, and we equip C, with a
probability distribution. By Theorem 1.5.2 there is a deterministic method 3,
of solving problems of the class € which is such that

B fow) + 1B, ) S 4M
and (3.3)
V(£nf+|:|)+ V(Qr,f-m) < 4y,

Let us examine what the method 4, can do in the case where, in the first
J4M[ = M, steps of its work it always receives zero information. We observe
that, in solving each of the problems f,, and f_, this receipt of zero
information occurs with probability p,, = (1 —p(r, t})*.

It is possible that, with such information, %, puts out the result % not later
than the M, th step. It is clear that, either for f = f, , or for f=f_, we have
v(x,f) > |t}/4 (it is important to note that, by definition, ¥ does not depend on
which particular problem is being solved). By the second inequality in (3.3) we
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obtain |t| p,,/4 < 4v, ie.
Py < 16v/]e]. (3.4)

It is also possible that %, does not put out the result in the first M, steps of
the work of the method, when zero information is received all the time. Then
both {(#,, f,,) and (4, f. n) are greater than p, M,, ie. from the first
inequality in (3.3) we have p,,|[4M| < 2M, or p,, < . We now choose t = 32,
and we shall suppose that v < 1/256. Then it follows from the above argument
that

Py = (1—p(r,0)) "M < §,
which immediately gives

c
1BM[ > ——,
p(r,t)
where ¢ > Oisan absolute constant. Recalling the definition of p(r, t)and using
the fact that M is always = 1, we obtain the bound

r

1 v—1
M?c(r)(;) .

in which ¢ >0 depends only on r. Since & was an arbitrary method of solving
problems in € with accuracy v, we have
-1

1\ =1
Yot

as required,

2°. Now let r = 2. We change the oracle ¢ constructed above, on problems f
with |¢| < 1, in the following way. The answer of @ to a question about £ at a
point xeG is, with probability 4 + 2¢, the answer of the exact, first-order oracle
to a question about f) , at the point x, or, with complementary probability
4 — 21, it is the answer of the same oracle to a question about the problem
J~1/a at x. It is easily seen that, with this definition of @, for all t with HES
we have feC = C? (G, E, |||, 0).

Now let the objects &, v, M, C,, #, be definedasin 1°,let M, = J16M [, let )
be the space of oracle noises in the first M, steps of the work of the method ,,
and let Q=0 x C, = {(@,x), Be€l, k = +1}; Q is regarded as a product
of probability spaces. Here « = 41 corresponds to the function S
and « = —1 to the function f_,. We define an ordered pair of random
variables z and w—functions on the space §); namely, z(@,x) = +1 if the
method #, working on the problem x when oracle noise @ is present puts
out the result in the first M, steps of its work and if this result X is such that
{@|x> <0, or i the method #,, under the same conditions, does not put
outaresult in the first M, steps. In the remaining cases, z (@, k) = — 1. Further,
let w(d, k) = .
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We assume that

y < 1/256 and ¢ = 64v. (3.5)

We prove that z = w with a probability > 3. For, if z(&, k) # @, k), then
either the laboriousness of the corresponding @, k-realization of &, is greater
than 16 M, or the error of its result regarded as a solution of the corresponding
problem is greater than 16v (this follows immediately from the choice of ¢ and
the definition of z). By (3.3) the probabilities of each of the events mentioned
does not exceed §, as required.

Thus, Pr{z = w} > 3. Moreover, it is clear that

Priw=1}=Pr{w=—1}=1

(the probabilities are calculated from the distribution over {2). From these
considerations it is easy to deduce that the Shannon mutual information I(z, w)
of the random variables z and w is not too small:

I(z,w) 2 ¢y >0, (3.6)

where ¢, is an absolute constant.

On the other hand, it is clear that the answers of the oracle ¢ about the
problems f., and f_, at any point x are obtained by a univalent transform-
ation (depending on the parameter and on x, but not depending on which of
the problems (., or f_,)is concerned or on what noise is realized in the
oracle) from the oracle’s answers about the same problem at a point h, say.
Therefore the information supplied by the oracle @ to the method 4, is
obtained by a univalent transformation (independent of whichever problem
feC, is being solved) from the sequence of realizations of its answers
(corresponding to the given series of oracle noises) to a question about fat the
point . By the same token, the random variable z is also a univalent function of
the series { of answers of the oracle to a question at the point k about the
problem under solution. Since z is a univalent function of §, I(z,w) < I({, w).
The last quantity does not depend at all on 4,, but is completely determined by
the structure of the oracle ¢; I({,w) can be calculated explicitly. The
calculation, which we omit, leads, under the conditions (3.5), to the bound

(W < (L)) 1),

with ¢ > 0 an absolute constant. Comparing this estimate with the inequality
I(f,w) = 1(z,w), we obtain, because of (3.6) and the definition of M,, that,
when (3 5) holds,

M zc,/v?, (3.7

where ¢, > 0 is an absolute constant.
Hence, as in 1°, it follows that the bound to be proved, (3.1), is valid. The
theorem has been proved.
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5.3.2

The assertion of Theorem 5.3.1 enables us to delineate the domain of sub-
optimality of an MD-method of solving the unconstrained stochastic-
programming problems in Section 5.2. First of all we see that, if we are
speaking about solving problems of the class &' = €%, (G, E,||-],0) on a
regular space E, ||-[l, for which it is possible by a suitable choice of ¥(-) to
ensure that w, (t)is € c¢,t, then, in principle, the laboriousness of MD,—for
certain oracles ¢—cannot be reduced by more than d,,, times, where d,, isa
constant depending only on V and r. For, the laboriousness of the method
MD constructed for an accuracy v in this case does not, by (2.18)-(2.19),
exceed the value b, (1/vy"*~, where F = min {r, 2};and the lower bound (3.1)
has the same order of dependence on v. The situation just mentioned holds, in
particular, when (E, |||} = (L, ||- ||p) with 1 < p < 2. In fact, in the latter case,
because of (2.20), the laboriousness of MD?" is not reduced by more than
b{p,r) times also when p > 2 but p/(p—1 =r.

We continue the analysis of the question of optimality of MD P methods.
We are, of course, taking (E, |- | ) = (L, || -|l,). We still have to analyze the case
p/(p—1) <r,andalsothecase p = L.If p/(p— 1) < r, then, as noted in Section
5.24 (and as follows directly from (2.20)), the laboriousness of the MD?"
method—with accuracy up to a factor depending only on pand r —is the same
as for a method, using an exact, first-order oracle, of solving Lipschitz-convex
problems in Section 3.3, Therefore, with the p and r mentioned, the MDe-.
methods are automatically sub-optimal in those situations in which MD,-
methods (with an exact oracle) are sub-optimal, namely, for problems of high
dimension in domains G of the type of L -balls.

Finally,if p =l andif dim E = n < o0, then as follows from a comparison
of (2.21) and (3. 1), if an MD!"*"-method can be improved at all as regards
laboriousness, it is improvable only by b(r) In (n 4 1) times.

We emphasize that in these discussions the clauses like ‘the laboriousness of
this or that method of solving problems of the class C‘fi’f (G, E, |-[,0) is, in
principle, reducible by not more than so-and-so number of times’ has the
following precise meaning. For the given G, E, ||- ||, r, £ a natural oracle @can be
found such that the stated assertion is true for the class of problems
corresponding to C.

5.3.3

We shall now construct a lower bound for the complexity for classes of
stochastic programming problems with constraints.

Theorem. There is a function ¢(r) (r > 1) and a number ¥, > 0 such that the
following assertion holds. For any r > 1, any Banach space E, ||, and
any bounded, convex, closed set G = E, not reducing to a point, there is a
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natural (in the sense of Section 5.1) oracle ¢ for the field of problems
Cy, = Cui, (G, E, ||- ||, m) such that the stochastic complexity N (v}of the class of
problems €' = C" (G, E, |- |, m) satisfies, when v < v, the bound

N zc@In(m+2)(1/vyW/F~ F = min{r,2}. (3.8

When m > 0, the bound (3.8) holds for the subclass of problems ¢ formed by
all compatible problems f from € with f, = 0.

Proof. In view of Theorem 5.3.1 it suffices to prove the second assertion of
this theorem. When m =1 it is proved by a simple modification of the
construction used in proving Theorem 5.3.1. We shall not describe this
modification, but leave the reader to effect it. Now Iet m > 1. Without loss of
generality, we can suppose that m is even and equal to 2k. Suppose, as in
Section 5.3.1, that p ,(G) =1, that G contains the points h and —h with
|h|| > %, and that @eE* is such that |¢|, =1 and {¢@|h) = |h|. We
construct an oracle @ in the following way. For a given t with 0 < ¢ <4,
We consider m+ 1 problems /%, 0 € s < m, of the form

oo reap |~ Colx> #2650, 1<) <k,
0’ =0.J; (")‘{—c+<¢p|x>+za,.,:, k+l<j<m

where

5 = {0, j#s
s . l, j =35
is the Kronecker symbol. Let k = A/ ||h].

It is clear that f**eCy,(G,E|-|,m), and when s> 0 the problem
J** has admissible feasible points, namely, when s<k the points
{xeG|{¢@|x > =t} are admissible feasible points of f*%, and when s > k so
are the points {xeG|{¢|x > = —t}.

Now let the oracle ¢ on all problems except problems of the family
{“"}1 <5 <m0 <1 < 1,4 De an exact oracle of the first order, and let ("s answers to
questions about a problem f"° be constructed in the following way. O
communicates exactly the support functionals to the components f;(x) of the
problem at x, Moreover, (s answer about the value of the vector f**(x),
s = 1,is of the form f*° (x) + £, where the random vector &*7 is distributed in
the following way:

(i) with probability 1 —p(t,r), &' =0

(i) the conditional distribution of the vector £*' with the condition £** # O is
a distribution with independent co-ordinates; the zeroth component takes
the value 0, and the jth component, 1 < j < m, takes the value a(t, r) with
probability + d,A(t, r), and takes the value (—a(t, r)) with the
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probability 3 — &, A(t, 7). Here

(t (21‘)':-1, l<r<?2,
r ‘9r) - 1, r> 2;
1
(1/2ey-T, 1<r<2,

t,r)= 4 39
a(t,r) 1 F> 2 (39)
Al i, 1l<r<2,

= t, r=2

Direct verification shows that, with this definition of ¢, the problems f"*,
O<t<i, s=1,...,m, fall into the class & (G,E,|-|,m) with L =2.
Without loss of generality, we may suppose that it is precisely with this class
that the assertion of the theorem is concerned. Let €’ be the corresponding
subclass. Thenf™ el 0 <t <4, 1 <5< mNowletvy =10 %, v < v;,and
let 4 be a method of solving problems of the class " with accuracy v, and with
laboriousness M on this class. We consider the subclass €, of the class &
formed by the m problems /%, 1 <5 < m, and we equip it with an equi-
probable distribution of probabilities p(s) (a problem f"* e, is identified with
its ‘index” 5). As in the proof of Theorem 5.3.1, there is a deterministic method
2, for which

J‘I(Q,,f'-‘)dp(s] < 2M and jv(ﬁ&,,f'-’)dp(s) < 2v, (3.10)
Z &

Let @ = {@} be the space of sets of oracle noises on the first ]16M [ steps of
the method, and let = £ x €, (the right-hand side is a product of probability
spaces). We consider two random variables z, w—functions on } which are
defined in the following way. z (&,s) = +1 if the method #,, in solving a
problem f** with a set of oracle noises @ on the first 16 JM[ steps, does not
put out the result in the first 16 JM [ steps or if it puts out the result X with

{p|x > > 0, otherwise, z(w, s) = — 1. Further,
. +1, 1<s<

w(a, 5) =
~1, k+1<g

Let t = 32v. Then, as in part 2° of the proof of Theorem 5.3.1, it follows from
(3.10) that Pr {z = w} > 1, and consequently the mutual information I (z, w) of
the random variables satisfies the estimate

Iz,w)=zcy >0, (3.11)

where ¢ is an absolute constant. On the other hand, it is clear that z is a
univalent function of the 116 M [ realizations of the random variable &= (i.e.
for some function ¢, (- ) we have z(®, s) = ¢,(E'(®,s)), where &' (@, s} s a series
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of 16 JM [ successive realizations of the variable £** corresponding to the noise
®). Therefore I(',w) = I(z,w) = cy. But the quantity I(£',w) does not
depend on the method %, but is determined only by the structure of the oracle
. Its estimation, which we leave to the reader, gives

HE,w) < £ {(l +4A%(t,7) plt,r) 1ML — 1 },
2m

with ¢ an absolute constant. The inequality I (£',w) = ¢, together with this
estimate and the relations (3.9) immediately leads to (3.8). The theorem has
been proved.

534

We see that the complexity of classes of stochastic programming problems
cannot fail to depend on the number of constraints, although this dependence
is quite weak. We shall prove in the next chapter that, under quite general
hypotheses, the lower bound obtained for the complexity is actually exact. We
further observe that the lower bounds for the complexity provided by
Theorems 5,3.1 and 5.3.3 already obtain on the simplest (linear) problems,
and s0 no restriction of the classes considered, achieved at the cost of
increasing the demands regarding the smoothness of the problems constitut-
ing the classes, will lead, in the stochastic case, to a substantial reduction of the
laboriousness (in the case of a deterministic oracle, this is not true; see Chapter
7. But if we impose on the problems of the class, not only smoothness
restrictions, but restrictions of such a type as strong convexity (taking E, ||- || to
be a Hilbert space), then, for unconstrained problems, the laboriousness can
sometimes be reduced, but it is impossible to do so for problems with
constraints {m > 2). The second statement follows immediately from a slight
modification of the proof of Theorem 5.3.3(the addition of a quadratic term
x2/20 to the formulae for f;** changes nothing essential in the derivation of
(3.8)). The possibility of reducing the complexity of stochastic programming
without constraints at the expense of assumptions about the smoothness and
strong convexity of the function to be optimized is well-known {see, for
example, [9]). This is illustrated by the result formulated in the following
exercise.

Exercise. Let E, |-|| be a Hilbert space, let G = E be a convex, closed,
bounded body, let p,,(G) =1, and let C, ., be a subclass of the class
¢S (G, E, |- |, 0) formed by functions f such that, if x* is the point where f
has a minimum on G, then, for yeG,
SR+ lly—x*? 2 £(9) 2f(x*) +e |y —x*|%
Prove that the method (2.15)~(2.16), with a suitable choice of the number of
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steps and of the displacements p;, is capable of solving problems in Ccl,,z witha
(mean)accuracy v, and with a laboriousness < aic,, ¢, )/v (instead of G (1 /v?))
in the general case. Take the point x; after i steps to be the result of the method.
By considering the simplest quadratic problem, (x — a)* — min, verify that the
laboriousness O (1/v)is the best that can be expected in the situation described
(irrespective of which method is used for the solution),
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Solution of convex—concave
games and constrained
stochastic programming
problems

In this chapter the application of MD-methods to solving convex—concave
games, observed both exactly and with noise, is described. We show how
constrained stochastic-programming problems can be reduced to problems of
solving games. Methods of solving constrained stochastic problems are
constructed. The results of the previous chapter enable us to prove the sub-
optimality of the methods mentioned. The following treatment is based on the
authors’ papers [23], [24].

6.1 CLASSES OF CONVEX-CONCAVE GAME PROBLEMS

In this section we describe the classes of problems we shall be dealing with
throughout the chapter. We shall be concerned with problems of approximat-
ing the solutions of convex—concave pames, or what is the same thing, of
saddle-points of convex—concave functions.

6.1.1

LetE,||-||and E,, || - ||, be regular spaces satisfying the conditions formulated at
the beginning of Section 5.1, and let G — E and G, < E, be bounded, convex,
closed, non-void sets (more general situations will not arise in our discussions).
Let F(x, I): G x G, = R be a continuous function. The function F is said to be
convex-concave if, for each { € G, F regarded as a function of x € Gis convex on
G, and if, for each xeG, F regarded as a function of €&, is concave with
respect to 1€ G,. A point (x*, [*)e G x G, is called a saddle-point of F if at this
point F, as a function of x, attains a minimum, and as a function of /, it attains a
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maximuim:
F(x,I*) 2 F(x*,I*) 2 F(x*, 1) forall (x,{}eGxGaG,. (1.1)

It is convenient to interpret the idea of a saddle-point in terms of the theory
of games. We associate with the function F a 2-person, zero-sum game F, in
which the first player’s strategies are identified with points x G, and the
second player’s strategies with points /e G,, and the outcome of the play (x, ),
in which the first player chose the strategy x and the second the strategy |,
consists in the payment by the first player to the second player of the sum
F(x,1). In such an interpretation of a saddle-point the function F is called the
solution of the game F; this is precisely an ordered pair of players’ strategies
which has the property that departure of either player from the corresponding
strategy brings him no advantage if the other player continues to hold to his
strategy.

The same thing can be formulated as follows. Let F(x) = sup, ¢, F(x, I) be
the guaranteed pay-out by the first player, and F(/) = inf,_.; F(x,I) be the
guaranteed income of the second. If the function F has a saddle-point, then

inf F (x) = min F (x) = sup F (I) = max F({). (1.2)

XEG xeg e, leG,

The set of saddle-points of F is X*(F) x L*(F), where
X*(F)={xeG|F(x)=inf F(y)}

YEG
L*(F)y={leG,|F(l) =supF(s)}. (1.3)
sed;

Conversely, if (1.2) holds, then the function F has a saddle-point. The
question arises whether a convex—concave, continuous function F always hasa
saddle-point. In our situation (E, E, reflexive, G, G, convex, closed, and
bounded), this is always the case, by virtue of a fundamental theorem due to
von Neumann [29].

and

6.1.2

Our purpose 15 to construct first-order methods for finding approximate
solutions of convex—concave games. In order to talk about such methods, we
need to fix the following objects:

(i} the field of problems, ie. the set of games, to be solved;

(i) a measure of the error of a point (x,)eG x G, regarded as an
approximate solution of a game;

(iii} the source of information, accessible to the method, about the game being
solved, i.e. the oracle.

We shall describe these objects in the next sub-section.
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6.1.2.1

The field of problems which we shall consider is the set of all games with
convex—concave Lipschitz pay-off functions F: G x G; — R. (We shall later use
the concepts ‘game with pay-off function F’, ‘function F’, ‘problem of findinga
solution of a game with pay-off function F” as synonyms, and we simply speak
of ‘a problem F'.) We denote the set of such games with given G and G, by

D= D(G X Gr; E! EIs " : ": " ' "!)

6.1.2.2

The error of a point (x, )€ G x G, regarded as an approximate solution of a
game F € D is defined as follows. An exact solution of a game is an ordered pair
of solutions of the extremal problems

F(x)»min|xeG and F(l)-> max|leG,. (1.4

Tt is natural to measure the error of a point (x, )€ G x G, regarded as an
approximate solution of a game F by half the sum of the errors of its
components, each regarded as an approximate solution of its ‘own’ extremal
problem, i.e. by the number

e(x,; F) =4 {e(x, F)+&(, F)},
where _
e(x, F) = F(x)—inf F (x),
G

g (L, F)= —FE(l)+sup E().
G

As well as these absolute measures of errors it is useful also to consider the
relative errors

F LF
v(x,F)EE?(:’FT)—, v,(l,F)EEL((F)),
ek Py =S85 E) e Py (L F)L

r{(F)

In the case of a deterministic oracle (see below), it is convenient to take the
normalizing factor r(F) to be

r(F)= 2maX{L||.a(F)Pg.u(G)’ Ln.||,(F)P||.g,(GJ)},

where L, (F)is the upper bound (over l e G,) of the Lipschitz constants of thf:
functions F(-,[) obtained from F by fixing I, relative to |-, and L, (F)is
defined in the ‘symmetric’ way. It is clear that v(x,1; F) =20, and

v(x,l; F)=0 < {(x,!)is a solution of the game F}.
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With r(F)chosen as above, 2r(F) is the natural upper bound for the variation
of F on G x G,, and so in this case,

vix,; Fy<1 forall (x, })eGandall FeD
Thus v(x, I; F) has indeed the meaning of relative error.

6.1.2.3

We shall consider two types of oracle—deterministic and stochastic oracles of
the first order. As in mathematical programming, a deterministic oracle is a
particular case of a stochastic oracle. The latter, in the case of interest to us, isa

set € = ({9 F,); vl L F), yiix, ks F),

where (€}, F,) is a Polish space with a regular, Borel, Lebesgue-complete,
probability measure;

Vo (GXG)xD—-E* and ¥ (GxG)x D> E}

are the observation functions which associate to the ordered pair (x, e G x G,
and to the problem F € D the observations of the support functionals to Fasa
convex function of x and as a concave function of ! respectively. These
observations, for given x, /, F, are random variables—functions on the space of
elementary events €. The requirements that ., i, be Borel with respect to
x, I, w form part of the definition.

As in optimization methods, it is assumed that at the ith step the method
can put a question to the oracle at any point (chosen by the method)
(x;,1)e G x G,, and it obtains as the answers the values of the functions
Yo (x, 1, @) and ¥, (x, I, w;), where w; is the random noise occurring in the
oracle at the ith step. The noises of distinct steps are assumed to be
independent in the aggregate and to have the same distribution.

On the pattern of Sections 1.2-1.4 it is possible to define the concepts of:
‘a method of solving problems from the field D using the oracle @', ‘the
trajectory of a method’, ‘the results of the work of a method’, ‘the mean
laboriousness and error (relative and absolute). We shall not write out these
definitions, but leave this task to the reader.

Having indicated the way to define the concepts with which we shall be
operating, we return to the definition of the two types of oracle which we shall
consider in connection with games. The first 1s a deterministic oracle with a
specified (relative} accuracy v,. For such an oracle, Q is a 1-point set. Also, by
definition, the following conditions are satisfied

[ (x, LF)l, < LM(F), (6, 85 F )l < Lf‘,”!(F],
F(y.)=Fx, 1) 2 (Y 0x, LF)|y—x ) —vor(F), (L.5)
Fix,s)=Flx,) < (Y, LF)s =1 +vor(F}
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forall Fe D, x, yeG,s, e G,. We shall call the classes of problems obtained by
equipping D (regarded as a field of problems together with a fixed measure of
the error v(-, -} corresponding to the choice of 7(F) made earlier} with oracles
of this type classes of type D (G x G, E, || ||, E;, | [I,).

The second type of oracle is a stochastic oracle, unbiased, and of accuracy v,.
Its definition is similar to that of the stochastic, first-order oracle in Section 5.1.
Namely, let ¢((€}, F,); ¢.(-), t(-)) be of the type defined above. Further, let
L >0 and r > 1. We associate with the oracle @ the field of problems
DSl (GxGLE, ||, EL-|l;) formed by all problems FeD such that, for
all x, ye G and all I, s G, the following relations hold:

A F(.v! I)_F(x) l) P < MFW’)bx(xi I;F, w)iy_x>_v0L)
(A) Flx,s)—F(x,) < { M ¢(x, L F,0)|s—1)+vL,

L r
_MF x 7ty I: F; ; “S _“___> H
o™ 9 (5, 5 F, ) (2‘%I @

L r
. [l [m—
\MFm "'ll"l(x’ [! F, &J)"" == (2P||<||f (GI))
The field of problems D;’}¢ equipped with the normalizing factors r(F) = L
(i.e. with a measure of the relative error v(x, l; F) = (1/L)e(x, I; F)) and with
the oracle ¢, forms a class of problems denoted, like the original field, by
DG % GLE ||, Es |- I)

We remark that, if one of the sets G, G,, let us say G,, is a point, then the class
of problems of solving games of the form ﬁf;;_ﬂ(G G, E |-, Ex |- 1I7)
actually becomes the class €' 7(G, E, | - I} of problems of stochastic program-
ming without constraints,

6.2 MD-METHODS OF SOLVING GAMES: THE CASE OF A
DETERMINISTIC ORACLE

In this section we describe the application of MD-methods to solving games
with exact information (or, more correctly, information weakly distorted by
noise)—to solving problems of the classes D" (G x G, E, |- |, E,, |- ;-

6.2.1

We start by picking out the special features of the situation with games as
compared with the simpler problem of solving convex extremal problems
without constraints. We shall watch out for what sort of difficulties are lying in
wait for us in the simplest—the Hilbert—situation (E, | - | and E,, || - ||; Hilbert
spaces). In this case MD-methods must turn into some analogue of the
gradient method.
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Gradient methods of solving convex—concave games are well-known. The
simplest of them—the Arrow-Hurwicz method [2]---consists in constructing
successive approximations (x;, ;) to the required solution from the formulae

X1 = Mglx; — p; Vo F (x5, 1)),
vy = g, L+ o ViF (x, 1))

Here V., V, denote the sub-gradients with respect to x and ! respectively, and
the p; > 0 are suitably chosen displacements. Unfortunately, this version does
not, generally speaking, converge, however the displacements p; may be chosen
(a very simple example is: F(x,[)=xI, |x|<1, |{|<1). To ensure the
convergence of the method for suitable g;, additional constraints have to be
imposed on F such as strong convexity—concavity. There are many ways of
modifying the method so that it becomes applicable to any F € D (regulariz-
ation of F, choosing different displacements along the x- and I-components,
etc.). So far as the authors are aware, all such modifications lead to methods
whose laboriousness on D is of a higher order than for convex-optimization
methods of the gradient type.

It turns out that the difficulties mentioned can easily be overcome; under
extremely general hypotheses about the g; (5, = 0 as i — oo, ):i g = o), the
procedure (2.1) always converges to a saddle-point of F, although not in the
ordinary sense, but in the Césaro sense. Namely, the sequence

(2.1)

. 1 ¢
(x4 1) = — .;l pi(x5,15) (2.2)

converges to a saddle-point (¢f. with the situation in Section 5.2). The rate of
convergence of the trajectory (2.2) turns out to be the same as for gradient
methods of solving Lipschitz-convex extremal problems, if the displacements
¢; are chosen rationally.

We remark that an averaging of the (2.2) type in the Hilbert situation was
apparently first proposed by R. Bruck in [4] (applied to the problem of solving
variational inequalities with monotonic operators, which is close to the games
problem), and, a little later but independently, by the authors in [ 24, 23] (where
the general, regular situation is discussed).

The methods described below are obtained from the Arrow--Hurwicz
method by replacing gradient descent by mirror descent, and with the addition
of the averaging (2.2). We proceed to describe them.

6.2.2

We fix on an (E, || | }-regular function V() and an (E,, | -||;)-regular function
V;(A). We describe the ‘convergent’, infinite-step method, corresponding to V,
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¥}, of solving games of the class D' (G x Gr, E, |||, E,, |- ;). In describing the
method we shall take G and G, to be normalized by the conditions 0 G, 0 G,
(G =py,, (G;) =1 (these conditions on G and G, are assumed to hold
throughout this section).

The method (it will be denoted by MD, ;) consists in constructing
sequences {geE*}2,, {4, EF 2, and their ‘images’ {x,eE, x;eG}Z,,
{LeE, TeG,}= |, and also the sequence of results {(x\,I)eGx G,}%,
according to the following recursive formulae (in which p; > 0 are certain
displacements, ., and s are the observation functions, F € D' is the problem
being solved):

Po=0,4=0; x;=V'(p;-y), X = ﬂs(xi),’ 2.3)
L=Vidi-y), L= ng, (L),
@ = @1 — 2 W (R0, L F) 4 W (R T F) Ly a6 (%)), } 2.4)
A=Ay + oW (XI5 F) = N (R 1 F) i, () ) '
. 1 :
L =7— 3 pl) 25)
&7

Theorem. Let the displacements p; satisfy the conditions g, > 0, p; —» 0 as
i— o0, Y, p; = c0. Then the process (2.3}-(2.5) converges on any problem
Fe D> in the sense that lim;_, ., v(x',15;F) < v,.
Moreover, for all i, the bound
1+ ¥ o () (o (F))+ oy, (oyr (F)))
v(xL I F) < vy 4 —nd™t

. (2.6)
2(F) Y o

i=1
is satisfied.

Proof. The first assertion of the theorem follows, as may easily be seen, from
the second, and it is the latter which we shall now prove. Let xeG and e G,.
We form the functions

Velp) =V(p)— (x|} and V(1) = V,{A)— (4]1),

and we shall follow the variation of the function ¥, ;(9,4) = V(@) + Vu(A)
along the trajectory {(p,/)}. We note that because of the normalization
conditions on G and G, and the properties of the oracle (1.5), we have

I (x, L F) o < 37 (F)

e (x, 1; F} 1y < §7(F).

and

MD-methods of solving games: the case of a deterministic oracle 213

By the standard arguments for proving MD-methods (see Section 3.3) we
have

Velgir1) < Vilo) + pi (e (5,15 F)

F N (R 1 F) Nl i (30 1% — %, + pir (F) oy (pyr (F))

< Velod+ o e (5, s F) X = %0 + pyr (F ), (psr (F))

< Valed+ 0 F (5, 1) — piF (%, 1)+ vopir (F) + pir (Few, (p,r (F))
(we have used the relation (1.5)). Similarly,
VilAiv 1) € Ve (4) + piF (ih-[i)—PiF(ii-”+VO,P:"'(F)+Pir(F}wV,(Pi"(F))-
Hence
Vet (@41, 4500) € Vi (@05, 4)) + 0, F (x,1))

~0;F (%3, 0)+ pyr (F) (e (pyr (F)+ oy, (pyr (F )+ 2vor (Fpj.  (2.7)

Summing the relations (2.7) over j = 1,2, . . ., i, and using the fact that

Vx,f(qa’j') 2 - 1, Vx,!((p()s j'0) = 0’
we obtain

Y (Fx;,D—F(xT)p;

i=1
S+ 3 pir (F)(@y (o (FY)+ o (o (F) + 25 S oy (F). 28)
i= i=1

Since F is convex relative to x and concave relative to I, the left-hand side of
(2.8) is not less than

(): m) (F (1)~ F (),

and so (2.8) gives
F(x\1)=F(x,19

1+ -; pir(E)a, (p;r (F)) 4wy (p;r (F))

< ! .
i
> P

i=1

+ 2vyr (F). (29)

The maximum of the left-hand side of (2.9) over xeG, I €, is equal to
F(x)=F (@ =F(x')—infF +supF — F(I') = e(x', F)+ & (I', F),
G G,

and so (2.6) follows immediately from (2.9). The theorem has been proved.
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6.2.3

We discuss the result obtained.

6.2.3.1

We start with the case where E, ||-|| and E,, |-]; are Hilbert spaces. Here the
method can be simplified. The resulting method is defined by the relations

x =0 x;=m5(x;4 _pi—lwx(xi—lsli—l;F))sJ (2.10)
=0 L=agli 1 +p (i hi i F))
. 1 ¢
AR p— _Zl p; (x;n ). (2.11)
-21 o’
i=

This is precisely the Arrow—Hurwicz method supplemented by the averaging
(2.11). For it Theorem 6.2.2 is also true, and it gives the bound

+3r7(F) ) p}
VL) S v+ —TL (2.12)

which is better than the one given in this theorem.

6.2.3.2

The question of choosing the displacements p; rationally is solved in exactly
the same way as in Section 5.2.2.2. Namely, if @, () + oy, (¢} < ¢t”, ¢ < 1, then
in the class of families of the form p; = i~ *, the best choice is x = 1/(1 +g).
And, with that choice, the right-hand side of (2.6) behaves like

Yo+ 0 7+ In i

as i increases. In particular, in the Hilbert case, one should take g; = O (1/ \/1_ )
and then the right-hand side of (2.6) decreases like vy + O ((Ini)/ \/i_ )

624

We now describe a ‘constructive’ version MD,,y, (v) of the MD, , -method
capable of ensuring a specified accuracy v, vo <v < 1, in the solution of
problems in the D* class. This version is obtained from the ‘infinite-step’
method by adding rules for the ‘automatic’ choice of the displacements p; (like
the rule MD 1.6" in Section 3.3) and of the rule for stopping.
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In solving a problem FeD, the method MD,, (v) constructs finite
sequences

{peE* L,eEX M., (x,€E, X,€G, L,eE, LeG} M,

and the result (%, €). Here M, is the number (formed by the method) of
questions after putting which it solves the problem F.
The work of the method MD,,,, is described by the following rules.

MDL’!P', 01
Puti=1 ¢4 =0, 4 =0 Go to MD,,, L.

MDD, 1 ith step.
For the ith step ¢;_, € E*, A;_, € Ef are available. In the ith step the following
operations are carried out.
MDy, 11 Put

x;=V@ioy) %=rmg(x;), = Vi(dioq) I = g, (L)
MD,,, 1.2. Atthe point (x,T) put a question to the oracle about the problem
F under solution. Let n; = . (X,,1;; F) and n; = ¢ (%;, I; F) be the answers
communicated by the oracle. Put 7(i) = 2 max { [l .. [ 751« }- If7(5) = 0, go
to MD,;,, 2; otherwise go to MD,,,, 1.3.
MD,, 13. Put

i = i+ Imlle (el Ay, = ng,— UM s, (1),

MD,, 14. Let p; be the upper bound of those p such that

{ V{(Pi—l —pi) — Vipio)+ (ﬁi|xi>P}
+ { Vildior +005) = ViAo ) = <Al > P} S (v—vo) pri) (2.13)

If p; = o, go to MD;.;, 2; otherwise go to MD, ,, 1.5.

MD,,, 15 Put
@i = @i—1— Pilis, Ai = Ai_1 + pifly.

If 3 p;>0and

j=1

@il + 1Al = ¥ (@)= ¥y (4) < (max r () (v—vo) ¥ p;, (214)

1gj€i j=1
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go to MD,,, 2; otherwise, increase i by 1 and go to the next step, ie. to
MD,, L1

MD, . 2. Rule for output of the result.

Let M, be the moment of reversion to MD . v, 2. At this moment the work of
the method stops, with output of the result

(iMFa-IMF)s r(MF) = 0 or pMF = + OO,

1 ~ ..
&=y +— 'Z1 p;(%;,1;) in the remaining cases.
Y e’
j=1

Theorem. The method described solves every problem FeD* with a
relative error v, vy < v < 1, and with a laboriousness M+ 1 not exceeding
M, ,, (v—v,), where

' 1 1
MV,V,(V) = max ‘| ]—V}’V(V/Z}[-FZ, ]V'}’-V,(_\"/—Zj|:+2 }
= max { M, (2v), M;, (2v)}

{The functions M, (-) were introduced in Section 3.3 in connection with the
bounds for the laboriousness of MD-methods of solving Lipschitz-convex
problems.)

Proof.

1°.  Bound for the laboriousness. Suppose the method, when solving the
problem F, did not stop after N'th step. Then r(i) > 0, p, < oo in the first N
steps. In accordance with inequality (2.6) in Chapter 3, the left-hand side of
(2.13) does not exceed w, (r(i)p) + wy, (r(i)p). Therefore (2.13) holds when

I V— ¥, v—1p _ P
P—mmm{w(*z ), ?V,(hz )}_r(z’)'

Thus p; = p/r(i). But then the right-hand side of (2.14) when i = N is not less
than N
(maxr(j)) 3 p;(v—ve) = PN (v—1v).

jsN i=1
But the left-hand side of (2.14) does not exceed 1. When i = N the relation
{2.14) does not hold, by definition of N, and this leads to p N (v — vy} < 1. This
gives the required bound for N and hence for M.

2°. Theerror of the method. Firstletr (M) = 0. In this case, by the properties
of the oracle,

F(x,-IMF) Z F(iMFsTMF)_ vor (F) and F(iMFvI)_F(iMF,-IMF) < vor(F})
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for all (x, eG x Gy, ie.
E (TMF)_F (’_‘MFJMF) = —vor(F}
and
F (J_CMF) _F(J_‘MF,TMF) < vor (F).
Hence and as in the proof of Theorem 6.2.2, ¢ (J_CMF,TMF; F) < vyr(F), which
proves the inequality v(X,,, T ; F) < v <.
Now let r(M;)>0. Let xeG, V.(p)= V(p)— {@|x), and let [eG,
Fu(A) =¥V, {A)— {A|I>. When j < M, and for every p > 0 such that (2.13)
holds, we have

Vil@j-1 —pii;)
={V(@j—1—pA) = V(@;-1)+p i[x;0 }+ Valps- )+ p {Alx—x;)
and
Vi (Aj- o+ p15)
={Vdoa+omp) =V (Ao )= p gl LD} +Valdm ) +p =1,
Adding these inequalities and using the fact that p satisfies (2.13), and putting
Veil@, 4) = V(@) + Vi (4), we obtain
Verl@j—1—pip A+ i) < (v=volr (f)e+ Ve i@, 4-1)
+o{mlx—x;5+p (il — 1. (2.15)
As always, the right-hand side of (2.15) is not greater than
(v=vo)r()p+ Ve il@1,4; 1)+ p {F(x,1))—F (X;, 1)+ 2vor (F)},
i.e. (2.15) gives
V@1 —Pljdjm 1+ p05)
< =) ()P + Vet (@)= 1, 4y-1) +p {F (6 T) = F (£, + 2vor (F)}.  (2.16)

When j < M, therelation (2.16) holds for p = p;. Itisalso true when j = M,
if pp, < 0. Adding the inequalities (2.16) corresponding to the choice p = p;
over j=1,2,..., My—1, and adding (2.16) with j = M, with any p which
satisfies (2.13) for this j to the result, we obtain, as in the proof of Theorem
6.2.2 that

Mr—1
2 Pi(F(xu )= F TN+ p(F (R, 1) = F (7))
i=1
Mp—1
< (V—Vo)( .21 r(j)PJ+"(MF)P)— Vet (@©mp -1 — Pligys A1+ Plon,)
=

Mp—1
+2v0r(F)( p_,-+p). (2.17)
=1

J
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If pyy, = + 20, then {2.17) holds for a certain sequence of values of p tending
to infinity. Dividing both sides of (2.17) by p and passing to the limit through
this sequence of values of p, we obtain that

F (% 1)—F (x,1) < 2vor (F) + (v — vo) (M)

for all (x,{)eG x G,. From the properties of the oracle it is clear that
r(j) < r(F) for all j. Thus, in the case considered,

F(xD)—F(x,1) < Qvo+ (v—vg))r (F) < 2r (F),

and hence, as also when r (M) = 0, we have v (xLF)y< v

Now let py, # +co. Then we can take p = py, in (2.17). Also, as in
the proof of Theorem 6.2.2, the left-hand side of (2.17) is not less than
(XM p)(F(x,1)—F(x,T)), and the right-hand side, in view of (2.14), is not

j=1
gre;ner than
My My
(v=vo) 2 r ()P + 10w, s + 112 llra =V (@u,) = ViRag) + 2v0r (F) -21 P;
j=1 i=

My
< ((v—vo)+ (v —vo) +2v)r(F) _; P

Hence F (%,{)—F (x,]} < 2vr(F), (x,l)eG x G,, which, as above, gives
v(x,T; F) < v. The theorem has been proved.

6.2.5

Let us discuss the results obtained.

6.2.5.1

We start with the Hilbert situation. As always, in this case the method can.be
simplified. The resulting version is obtained from the original one by making
the following changes:

(i) the rule MD,,, 1.11is replaced by @;_y = x; = X, 4y = I; =1

(i) the rule MD,.,, 1.3 is replaced by 7; = n, fiy = 113

(iii) the rule MD, ,, 1.4 is replaced by

_2=v0)r), 218)
M T

(iv) the rule for constructing ¢;, 4; is replaced by

i

@ = Mgl@imy — Piflah A = R {di—1 + Pifins),
and inequality (2.14) by ;
Nl + 1Al = $ll@s > — 214 1% < ( max (r(/))(v—vo) -21 p;. (2.19)
j=

1gjsi
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The method obtained solves every problem feD* with an accuracy v,
v < v < 1, and with a laboriousness not exceeding

1 _
JWI}_Z = M{v—vg)

The proof of this assertion is carried out in the same way as in the proof of
Theorem 6.2.2, the part of V', , being played by

e —x +3(4-N
Thereader is recommended to work through all the necessary calculations. We

remark that the method just described is the same as the method (2,10(2.11)
with a special choice of the displacements and of the moment of stopping.

6.2.5.2

Up to now we have presented versions of the methods which are intended to
solve problems with a given relative error. It is possible to modify these
versions so as to achieve a specified absolute error & To do this it suffices to
replace the right-hand side of {2.13) by ¢p, and the right-hand side of (2.14) by
€Y ., p;. (For the Hilbert case, (2.18) has to be replaced by p; = 2&/(n? +n7,),
and the right-hand side of (2.19) by 52; -, #;.) The methods so obtained solve
problems F € D" with an absolute error &(x, ; F) < €+ vor(F) (i.e. one not
exceeding the specified error—with accuracy up to the non-removable error of
the oracle). Moreover, their laboriousness does not exceed M., (v(F, £)) and
M (v (F, €)) respectively, where v(F, £) = &/r(F)is the (maximum) relative error
which ensures the specified absolute error. The proof of these facts is similar to
the previous one, and we leave it to the reader.

6.2.5.3

We see that solving convex—concave games on E x E, is ‘no more complicated’
than solving, by MD-methods, convex extremal problems on ‘the worser’ of
the spaces E. E,.

6.3 MD-METHODS OF SOLVING GAMES: THE CASE OF A
STOCHASTIC ORACLE

6.3.1

In this section we prove that the methods in Section 6.2 are also suitable for
solving games when the oracle is stochastic, for solving, that is, problems in
the classes D"}°(Gx G, E, |||, E,, | -|I,). In describing the methods we shall
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assume G and G, to be normalized by the conditions stated at the beginning of
Section 6.2.2. Let V'(-}and ¥,(-) be the same as in Section 6.2.2, let w; be the
noise of the oracle

€= ((Q, Fo) ¢oAx, L F, ) Yy(x. |, F, 0))

in the ith step, and let o' = (v, . . ., ©;).

We start by describing the ‘infinite-step’ version of the method —we denote
it by MD,. ,,. The method, in solving a problem F e Do constructs the
random sequences

{9, = @il E*, }; = A(0)eEY],
{x; = x; (@ Y)eE, % =Xx{0w YeG,
xt = x(w' " YeG; I = L{w' Y)eE,
T =T« YeG, F =o' YeG,}
according to rules similar to (2.4)-(2.5):
,_GDO =0, 4, =0;
X = V@gio) %= mx b= Vilio s = 7, (),
@ = @1 — PilWa (X I F, 0) + 12 (%, T F, 0)laptg(x)},
A= Ao+ ouln(x, T Fo o) — (R, T Fy ) gt (6) _’ (3.1

W = % 0T 62)
Z Pj =
=1

In (3.I), (3.2), {p:} (p; > 0) is a sequence of (deterministic) displacements.

Theorem. Under the conditions p; > 0, lim;., p;=0, Y ¢, = o, the
process (3.1}(3.2) converges (in the mean) on any problem F e Df;™ in the
following sense:

im Mg, v(x', 5 F) < vg.

= a5

Moreover, the following bound is satisfied:

2+3L Z pilwy, 2Lp))+w,, (2Lp;))
Me..... V(xi, I Fy< v+ i=1

j .33

i=1

Progf. Let F be the problem being solved. As always, it suffices to prove (3.3).
We put
di(w') = o (X (@ ™), T 1) F, ) + 9. (%, T F, @)l (X
J;(wi_l) = MFn,idf(wi) = 'Fx(ih-[i; F) +a:’(mi—1)ﬂ0‘(xi)’
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where
Uil L F) = Mgy, (x, [ F, o).

Further let 4,(w') = di(w’) —di(w'~"). Then, because of property (B) of the
oracle € (see Section 6.1.2.3) and the definition of a;(w’' ™ 1), we have

M (@)1, < L7, Mg, [ 4o, < @LY,

. ) _ 34
MFmiJi(wl) =0, ai(ﬂ"_l) 2 (%, I F|,. GH
Similarly we define
ai(wi) = (%, I; F, @) — Y (x;, I; F, w.‘)”u#a, (L)
Si(0'™1) = Mg §i(), —8{0') = 8,(w')— 3, (@'~ 1).
Then
M, I8:() 70 < L7, M, |89, < LY,
M, 5 (') = 0. G
Now let

XEG, [EGD Vx(q)) = V(¢)— <(P|x >1
Va(d) = Vi(A) = (AL, Ve ilg, A} = Vil@)+ Vyuld).
Proceeding exactly as in the proof of Theorem 5.2.1, we obtain
Vel@i(@))) < Valgy— 1 (@ ™)+ p; < dj{@h)x —x; > + bj(f),  (3.6)
where, because of (3.4),
M, bi@) < piLay,,(p,L) 67
Moreover,
(@) x—x ) = (A ™ )|x— x> + (d(0h)|x > — (& (0?)x; >
< 5 T F)lx =% ) + < di(@h))x » — (3] x;).
Further,
Wl T F)lx — %, ) < woL +F(x, 1) — F(x,,T).
Using these inequalities in (3.6), we obtain
V:(Q’J’(wj)) “<- Vx(qoj‘l(wj_l)) +pj(v0L+F(xv7j)_F(ij,Tj)) (3 8)
+ 0, < (@h)x > +c; (), '

where we have put
¢jl@) = bilw!) - p; (&) x;(0771) )
and because of (3.4) and (3.7)
MijCj(wj) < ijwV,r(ij)’ (39)
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Similarly,
V;(AJ(C!JJ)) € V;(j'jfl(wjil)) +pj(v0L+F(-ij,Tj] _F(ija l)) (310)
+p; <Sj(wj)|[ > +c”-(w-"),
where '
Me, (@) < p; Loy, (p;L) (3.11)

Itis of essential importance that ¢; and ¢;; do not depend on the parameters x
and I, Adding (3.8) and (3.10) and summing the inequalities obtained over
i=12,...,1i, we obtain, as in the proof of Theorem 6.2.2,

( » p;){F(x"(m*-l), D~ Fx, o))}
1+2( Y p; )v0L+

+
i

M...

1 %

(cj(@} +cpy(w)) = A(@). (3.12)

-3

1

Here A(w') does not depend on x and . Taking the maximum of both sides of
(3.12) over (x, e G x G,, we obtain

( 2 Pj)ﬁ(xi(wi_l), o' ), F) < %+( ) P,i) vo L
i=1 i=t
+3
l‘
Averaging (3.13) over o and taking (3.9) and (3.11} into account, we obtain
L MFmtmlv(xis ’l; F)
};p, ;@)

d (@)

+%')_l: (cj{@) +ep(@9). (3.13)

L

1
- Lt—— Mg,

2)210; 2291

1

Ix

ji=1

E::P;Jj (@

+_

2 Y p

j=1
1

2291

In view of (3.4), for estimating F.ﬂ-"Z_, , P;d;(@))], we can apply
Proposition 5.1.5 and this gives the bound

Z:l pjgj(wj)

M Fat

-

+

( EI: p}L(wV r( jL)+wVI‘r(ij)))' (3'14)

M.

i
< Y 2Lpw, 2Lp))+1.
i=1

*
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M. | E;: | P;8;(w9|;, is estimated similarly. Substituting these estimates in
{3.14), we obtain the required bound (3.3). The theorem has been proved.

6.3.2 Let us discuss the results obtained.
6.3.2.1

In the Hilbert case when r > 2, simplifications are possible, as always. The
resulting method has the form

Xy = 0, ll = 0,
X141 = Tg{x;— pia(xi, 1 F, o)) (3.15)
i1 = g, (fi+ pon(x;, 1 F, o)),
o 1 i
(x', 1) = i(xy, 1), (3.16)

ZPJFI
i=1

A theorem like 6.3.1 holds for the method obtained; the bound (3.3) simplifies
and takes the form

1+412 3 p?

M . v(x, I F) S g+ ———4= . (3.17)

wi=

6.3.2.2

The question of a rational choice of the displacements p; is solved as in
Section 5.2.2.2.

633

We now describe a ‘constructive’ version MD1 v,(v) of the method MD, by
intended to solve problems from D?+° with a specified (averaged over
realizations of the method) relative error v, vy <v < 1. A method MD, v, (¥}
consists in the realization of N steps of the process (3.1)}-(3.2) in which all the
displacements are equal to some value p > 0. The parameters N and p have to
be chosen as functions of the required accuracy. The result of applying the
method is a point (x¥, I%). The laboriousness of such a method (which is equal
to the number of questions put to the oracle plus one for the output of the
result) is equal to N, since the construction of (x", I¥) requires N — 1 questions
to be put to the oracle.
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By virtue of the estimate (3 3).to ens
3), Ure an accuracy v > v, we can cho
and N to be of the form ’ ° oo

[ 1

p= Epy’ Vior (V_ vO),

where

Py, V,,,-(U) = min {}!V’r (g), }'V,,r(g)} .
and
where N = Ny, v eV —Vg),

4
Ny )= — |
v (V) ]vpy’ W(V}[ _1@3.18)
In the Hilbert case when r > 2. one should similarl
: =22, apply th
{3.15)-(3.16), taking p and N to be of the form Y 2Py fhe process

p=2v/Land N = JI\?[. (3.19)

6.3.4

Comparing (3.18)-(3.19) with the bound for the laboriousness of
MD-_methods of solving stochastic, convex, unconstrained extremal problems
(Scctu’?n 5.2), we see that solving games with a stochastic oracle is not more
::omphcaled, roughly speaking, than solving stochastic extremal problems on
the worser_’ of the spaces E and E;. On the other hand, problems of the latter
type are simple particular cases of solving games when either G or G
degenerates to a point, I
‘ We give for reference the bounds for the laboriousness of h?f); (v)
(ie. for the function Ny v, (v)) for the case where ENNy= (L, ignd
(Ep. 1) = (L,,.|I-1,,). These bounds are obtained by comparing (3.18) and
the FC]a[lOI:lS (L.6), (1.7)in Chapter 5. Let P > 1, p, > 1. Then with the standard
choiceof V¥ = V,(-), vV, = Vp,(') (see Section 3.2), we obtain {weassume v < 1)

Ni, 1y 3) < max { D(p, G)” D(p,,1) G)”} (320

where 7{q) = min {2,rg9/(q— )}, and D(gq, < depends only on
g>1 gnd r>1 If p=1 and dimE=n < (and similarly if p,=1
and dimE,=n, < «), then D(p,r) in (3.20) should be replaced by
D(l,r)]n(n+ 1) (_and similarly D(p,,r) should be replaced by D(1,r}In(n,, 1}).

It is worth noting that, if r > min {2,p/(p—1)} and r > min {2,p./p,— 1)}
then the laboriousness of the ‘stochastic’ version of the MD-methc;d :)f ;olving,
games on Lp_x L, is the same, as regards the order of its dependence on v and
dim E and dim E,, as for the version using an exact, first-order oracle.
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6.4 SOLUTION OF CONVEX OPERATOR INEQUALITIES

Starting with this section and to the end of the chapter we shall be dealing with
the application of MD-methods of solving games to the selution of various
kinds of convex stochastic problems. The questions studied below could also
be posed in the deterministic case, but there is no reason in the deterministic
situation to consider them specially and separately (some of the questions have
already been considered in Chapters 2 and 3, and the rest of them can be
reduced immediately to the formulations in those chapters).

In this section we consider problems of solving operator inequalities. These
problems are interesting in themselves, and because conditional problems of
convex stochastic programming will be reduced to them in Section 6.5,

6.4.1
We shall be discussing the approximate solution of problems of the form
(H) find x € G such that H(x) < 0. 4.1

Here G is a closed, convex, bounded subset of a Banach space E, |-|,
H:G — E’is a mapping of G into a Banach space E', |- ||', and E’ is equipped
with the structure of an ordered linear space, and so the property H(x) < 01is
meaningful.

The ordering of E' with which we shall be concerned is equivalent to
specifying a non-negative cone K — E’, ie. aclosed, non-void subset of E’ such

that
{(xeK,yeK) = x+yeK and AxeK forall 1 =0.

Such a set is necessarily convex and it contains 0. Fixing on a non-negative cone
K enables us to define an ordering relation in E' (more precisely, a pre-ordering
relation)> . Namely, we write x =, y if x— ye K. This relation has the

natural ordering properties:

x 2,x forall x;
(xZeny2y2) =X 2,42

X2gy = Ax 2,y forall120

(x 2y and z2,w) = x+z2,y+w

We shall also write x < , yif y 2 , x. Generally speaking, x > ;yand y < ,x
do not imply x = y. The latter is true only under the additional assumption that
Kn(-K)={0}.

We give a standard example of such an ordering. Let E' = R™ and let
K={x=(x'...,x™) e R™|x'> 0}. The ordering = . is the usual ordering
x 2y < (foralli <m, x' = y').If E' in (4.1) has this structure, then (4.1)is an
ordinary problem of solving a system of scalar inequalities.
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Another example is E' = L, (7, u) with K = {x = x(z)| x() = 0 is u-almost
certain}. Here the inequality x >, y is the usual (true y-almost everywhere)
inequality between the functions x(z) and y(¢).

We need to introduce some further concepts. Let K be a non-negative cone in
E, and let (E')* be the dual space to E. In (E')* there is a cone K* dual to
K:

K*={pe(EY|<{¢|x)> =0 forall xeK}.

Itis easy to see that K'* actually is a cone. It specifies an ordering > .. in (E")*.

Further,let §: E —+ E’ be a bounded linear operator. With it we can associate
a linear operator (likewise bounded) $*: (E’)* -+ E* operating on an element
@ e (E)* according to the rule: $*¢ is a functional on E whose value on
xeEis {¢|8x).

6.4.2

Having explained the formulation of the problem, we pass on to the description
of the classes of problem (4.1) which we shall be considering. These will be
Lipschitz-convex problems of the (4.1) type. We make these ideas precise.

6.4.2.1

A mapping H:G — E' is sad to be Lipschitz with constant L if, for some
L < oo, we have | H(x})— H(x)|' < L| x—y| forall x, y € G. Such a mapping
is said to be convex if

1
H("_;l) <3 (HM+H(y) for all x, yG.
K

For example, if E” is E™ with the standard ordering (indicated above), then a
convex Lipschitz mapping of G into E’ is simply an n-dimensional vector-
function on G, which is Lipschitz and convex in each of its co-ordinates.
We denote the set of Lipschitz-convex mappings of G into E’ by
U= U(GE|-I.E, |-, K). Each of the mappings H will be identified with
the problem (4.1) corresponding to it.

6.4.2.2

We now define a measure of the error of a point x € G regarded as a solution of
a problem H € U. The exact solution is a point x € G such that H(x)e — K. It is
now natural to measure the (absolute) error of a point x€G regarded as a
solution of the problem H by the distance from x to (— K), i.e. by the quantity

2(x, H) = py.p (H(x), —K). (42)
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For example, if E" is R™ with the standard ordering, and if |- ||’ is |- ||, (so
that E' is simply 1% with the standard ordering and norm), then for
H = (H'(x), ..., H®(x)), where H(x) is scalar, e(x, H) = max; H', (x), where
H', = max {0, H'}. Thus in this case the error is simply the maximal residual
over the inequalities of the system at the point considered. We shall write

y<ge+z yzeE, e20,if p (y—z, -K)<e

6.4.2.3

We now describe the informational basis of the process of solving problems.
Let ¢ = ((Q, F,) ¥ (H, x, @)) be the oracle with (£}, F_,) as the space of noises,
and with the observation functions W (H, x, ») = {y°(H, x, o} ¢} (H, x, w} }.
The first component y °(H, x, w) takes values in £’ and serves as an estimate of
the quantity H (x), this estimate depending on the realization w of the oracle
noise; and the second component y'{H, x, w) takes values in the space
L(E, E'} of bounded Lipschitz operators acting from E into E’, and serves,
roughly speaking, as an estimate of the differential of H at the point x. As in
Section 6.1, the methods under consideration are able, at each stage of their
work, to put a question to the oracle, about the problem H being solved, at a
point x;€ & and to obtain as answer the values of the estimate v (H, x;, ;)
distorted by the noise w, actually occurring at the ith step. The noises at
different steps are assumed to be independent in the aggregate, and to be
distributed according to the measure F,. Itis, of course, assumed that (<}, F,)
is a Polish space with a regular, Borel, Lebesgue-complete, probability
measure, that E and E’' are separable, and that the W'(H,x, w) are
Borel functions with respect to x and « for all He U. The Borel property
of ! is understood to mean that all functions of the form
{n| Y (H, x,w)e >, ec E,ne(E)* are Borel functions with respect
to x and w.

6.4.2.4

Let r > 1, L > 0, v, > 0. We associate with the parameters r, L, vo, and the
given oracle ¢ the class of problems U= Uf'" (G, E |-, E,|I-I, K)
described as follows.

The field of problems of the class Uf° consists of all problems H € U such
that the following two relations UA and UB hold:

I My ¥oH, % 0) - B | < Por
and UA
MF“,{'J’I(H, x! ﬂ))(y—x}} f H(y)—H(x)+voL,
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for all x, y e G. The meaning of the first of these relations UA is clear. The
second means, roughly speaking, that Mpmwl(H, x, w) (with accuracy v, L)
is a support linear mapping to the convex mapping H(x) (¢f with the
case E' = R);

L r
Me (¢ °(H, x, )|I') < (z) forall xe G

and UB

1 - r L ’
MF","['Ih (H,x,ﬂ))] ”lts(2p“(G))'

for all
x€G and le K such that |||, <1

The (relative) error of a point x € G regarded as an approximate solution of
the problem H is defined as v(x, H) = (I/L)s(x, H).

The oracle of the class is ¢.

We shali be concerned below with solving problems in the classes U o,

Exercise 1. Let E' =19 with the natural ordering, so that the operators
H € U are vector-functions H(x), . . ., H™(x). Prove that the ‘translation’ of
the definition of the class U0 (G, E, | - [, [** into ‘scalar’ language gives the
following definition:

() problems in the class U0 are problems of solving systems of convex
Lipschitz inequalities H'(x}<0,...,H™(x)<0, xeG, and the
observation functions of the oracle & have the form
(WiH, x o) ..., ¢, x 0 ¢i(Hxo),... ¥.(Hsxo) where
the { are scalar observations of HY(x), and the Y are observations
of the support functionals to H/ at the point x (i.e. are functions with
values in E*), which are Borel functions with respect to x and o, Here the
fact that \» ! are Borel functions means, by definition, that all the functions
{¥;j(H,x,w)|e), ecE are Borel functions with respect to x and

{ii) the class U o consists precisely of those functions of the type mentioned
for which the following four conditions hold:

| M,y (H, x,0)—H,(x)| <4voL, x€G, 1<j<m
Hi(p—Hix) 2 Mg { Y] (H,x,0)|y—x>—voL}, x,yeG, 1<j<m

L r
M. max { |y} (H, x,0)|}" < (Z) , XeG;
]

M. Iy} (H, x, o), ( ),xeG,léjém;

L
2p,,(G)

(ili) therelative error of a point x € G regarded as a solution of the problem H is
defined as (1/L)max {max, _; ., H’(x),0}.
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6.4.3

We now describe a way of solving operator inequalities in the class U"". Let
E, || and (E")*, |||, be regular spaces satisfying the conditions in Section
5.1.1. Under these conditions we reduce the problems being solved to games.

6.4.3.1

lLet ye E' and — y¢ K. By the Hahn—Banach theorem there is a functional
@ € (E)* with norm equal to 1 such that
{ely> 2z sup {elz)+py (1, —K)
z2e — K

In particular, sup,__,{@|z)> is finite, and so ¢ =,.0. But then
SUp, e {®@lz>)=0. Thus, for every y¢é¢—K there is a
0eG, = {pe(EN*:|pl, <1,¢ > .0} suchthat {¢|y> > p,.y(y, — K).On
the other hand, it is clear that {¢@|y)> < g, (¥, —K) when ¢ €G,. When
ye — K it is clear that sup {{@|y>|peG,} = 0. So

s(y)=sup{<{el|y>l9eG,)>=p, (¥, —K) forall y. (4.3)

6.4.3.2
Having fixed G,, we associate with the problem H the problem
(H) H(x) = s(H(x)) »min|xeG.

It is clear that the problem H is equivalent to the problem H in the following
precise sense: H is soluble if and only if H_ = inf,__; H (x) < 0.If this condition
holds, then every solution of the problem H is a solution of the problem H.
Moreover, if we put £(x, H) = H(x) —inf; H, then, for every H, we have

g(x, Hy<e(x, H}+H,. 4.4)

6.4.3.3

It remains to learn how to solve the problem H. To do this, we observe that, by
definition of s(y), we have

Hix) =sup {{|H(x) ). 4.5)

teg,

We consider the function Fj(x,{) = {{|H(x)>. It is easy to see that when
H e U, this function is Lipschitz with respect to x and { and convex with respect
to x (because H is convex, and ¢ > ,.0 when ¢ € G;) and linear (and also
concave) with respect to [ € G,. In view of the relation (4.5) the solutions of the
problem H are precisely the first components of the saddle-points of Fy; on
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G x G,, and
e(x, H) =¢(x, Fy). (4.6)

Let us satisfy ourselves that we can construct by means of the oracle ¢ an
oracle O of the type, described in Section 6.1.2.3, which is needed by the
methods of solving games in Section 6.3. We define @ as an oracle whose
answers are constructed in the following way from the answers of ¢

o (x b Fy o) = [ (H, x,0)]%,
'1[’1 (x5 l: FH! O.)) = W‘O(H! X, OJ)
In the second of the relations (4.7) y°(H, x, w)is interpreted as a mapping with
values in ((E’)*)* (the latter space is canonically identified with E’).

We prove that, with such a definition of the oracle €, the games F, generated
by problems H e Uf e (-) fall into the class

Dppo=DEN(GXGLE I, (BN, 1-II%)

@4.7)

By the same token, a solution of a problem H with (mean absolute) error
€ > 2vy L can be obtained in the following way. Imitating the answers of the
oracle #about the game F,, by means of the answers of the oracle ®about H, we
solve the problem F with the relative accuracy £/(2L) by the method in
Section 6.3. Then the first component of the approximation obtained to the
saddle-point of F, is regarded as an approximate solution of the problem H.
The method just described solves the problem H with (mean absolute) error ¢.

6.4.3.4

We now prove that the game F,, does indeed lie in D,&"0. We have to verify that
the conditions A and B in Section 6.1.2.3 hold.
Let x, ye G and !, 1€ G,. We have

Fuh ) =Fy(x, D)= (I|H(y)—H(x))
= UIMe, (¥ (H, x, 0)(y—x)} >
+ ({H()-H&)— Mg ¢ (H, x, 0)(y—x)} .

Because /e K* and || 1], < I and also in view of the second relation in UA,
the second term is not less than (— v, L). Thus

Fyn )= Fy(x, 1) 2 I Mg ¢ ' (H, x, 0) (y—x) > —vo L
= (M [V (H, x, 0)]*y—~x)>—v, L.
This is the first of the inequalities in A. Further,
Fu(x, )= Fy(x,) = ('~ 1 HE) ) < | =11, |H(x)— Mg §°(H, x,0)],
+ U= Me yO(H, x,0) ) S vo L+ V' —1| M ¥ (x, ; Fy, 0) )
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(we have used the fact that |I'—I[, < 2 because [, I’ € G,, and also the first
relation in UA). So A has now been proved.
Further,

L r
Me 1Y, (5 1 Py )y = Me 0¥ (H, x, @)1*17, < (m)

because of UB and the fact that [ e G,. Finally, in view of UB,

r ¢ nr L . L
Me_ ||, (x, LEy o), = MFm{"'l’ (H,x,0)|'}" < (2) < (25‘“-1'_(6:))

It remains to observe that a solution of the problem H with an absolute
accuracy ¢ > 2 Lv, can be reduced to the solution of the problem F, with the
relative accuracy &/ (2 L). On the other hand, if H is compatible, then a solution
of H withan absolute accuracy e is at the same time also a solution of H with the
relative accuracy &/L. Therefore we can solve compatible problems
He Uf with a relative accuracy v > 2v,, and solution of such problems
reduces to solving the game F,, with relative accuracy v/2.

Everywhere in the preceding we have, of course, been speaking of mean
values of the accuracies.

What is to be done if the problem being solved is incompatible? Roughly
speaking, the procedure described does the most that can be done in this case—
the result x of applying it is (in the mean with relative accuracy v) such that
H (x) realizes the minimum (over x € G) possible distance from H(x) to — K.
Thus we may say that the method described is also suitable for analyzing
insoluble problems.

For the purpose of our further exposition, an additional demand is imposed
on the construction described: namely, in solving a problem H, to keep track of
the quantity H . This demand can be satisfied in the following way. Let N be
the number of steps in the method which is being applied to F,, of solving
games as in Section 6.3.3;let v’ = (w,, . . ., w;) be the set of noises of the oracle
in the first i € N steps of the work of the method, let (x!, 1) be the points at
which the method puts questions to the oracle about the problem being solved,
and let (¥, (%;(0'""), (0" ™Y, F, ;) = H;(w") be the observations of
H(X; (0"~ ")) communicated by the oracle & We form the random variables

A () =% éil H,(0Y) and d(w®) = s(A (V).

We remark that, after a realization of the work of the method corresponding to
the oracle noise w?, the quantity @(w*) becomes known to us. It turns out that
a(w¥) is quite a good estimate of H_; if ¥ > v, is the accuracy to which the
method under examination of solving games is constructed, then

For{ld(w¥)~H,|>127L} < 4. (4.8)
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To verify this it suffices to follow out the proof of Theorem 6.3.1 applied to a
game Fy which is linear with respect to /. One has to operate in exactly the same
way with regard to the Hilbert version in Section 6.3.3.

Exercise 2. Prove (48),

{Adding inequalities (3.8) and (3.10)and then summing the resulting inequality
over j=1,2,..., N, we have, taking, p;=p. 1 €j< N, that

N
2, P(Fy(3;(07 "), D= Fu(x, T {0/ 7)) < A(w¥), (4.9)
ji=1
where A(w") does not depend on x and /, and
M . A(w¥) < 2VLNp. (4.10)

We can take the right-hand side of (3.13) as 4(w"), and then (4. 10) will follow
from the rules for the choice of p and N for the method under consideration.

Substituting for x in (4.9) any component x* of the saddle-point of F, and
using the fact that we then have, for all I' e G,,

Fy(x* ') < Fy(x*) = inf Fy(x})= H,,
XeQ
we obtain from (4.9)

N
X p(Fu(x@ "1, )= H,) < Aw")
Hence !

1 X - - _ 1
N L Falx@Y, 1)sH,+N—pA(w~). 4.11)

i=1

Recalling the definition of F «» We hence obtain that, for all 1e G,

or

1 X .
s(}v lzlH(Scj(wi“‘)))sﬁ,-i-NLpA(wN)-

i=

At the same time, because H (x) is convex, we have

S(L iH % (wi™h) ) = L § % @i z
N2 (X;(w ))),S(H(ﬁ Y x(w )))BH*.
Thus, for all w¥

_ Ly o
H,ss(ﬁ j;lH(xj(w’ )))sH,JrN—pA(wN). (4.12)

Further, by the properties of the oracle ¢ and by assertion (2) of the
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proposition in Section 5.1.5, we have

N o _ N LY 1
M) ¥ pHG 0 )~ A, @) <EvoLN +7pry,,.(”7)+5,
i=1
and hence, because s is Lipschitz with constant | relative to |- ||',
(1 y 1 1 i .
Mg . S| = H(x(w!” )))—s(— H-(m’))‘
FoN N jgl J N = 7
vol L pL 1 N
€24 = e —<
S22 *3 wy,,,( 2 )+2Np Sy

(we have taken into account the rule in Section 5.3.3 for choosing p and N).
Combining (4.12) with (4.13), and using (4.10), we obtain

M. {IH, —d(w")|} < 3L, (4.14)
It is clear that (4.8) is an immediate consequence of (4.14). )

Remark, The constant on the left-hand side of (4.8) is somewhat high. We
could reduce it by working more accurately, but we shall not do this in order
not to make the exposition lengthier. We shall operate in a similar way also in
the following. The point is that in this and the next sections we are concerned
primarily with the principles of the business and not with the immediate
construction of practical recommendations. If necessary, the reader himself
will be able to make the constant suitably more precise and at this cost reduce
the laboriousness of the methods described.

6.5 SOLUTION OF EXTREMAL PROBLEMS WITH OPERATOR
CONSTRAINTS

6.5.1

We shall consider problems which are more general than (4.1), namely, convex
extremal problems with operator constralnts of the form

S={fo.Hp) fo(x)»min|xeG, H,(x) < 0. (5.1)

Here H,:G—E' is assumed to be a mapping belonging to a set
U(G.E | I, E,II-I', K)= U, and J, is a convex, Lipschitz, real-valued func-
tion defined on G. Asregards E, || ||and E', ||- || we shall assume the conditions
stated at the beginning of Section 6.4.3 to be satisfied; as usual, & is assumed to
be a non-void, convex, closed, bounded subset of E. Convex conditionally
extremal problems constitute a particular case of the problems (5.1) obtained
when E' = 1™ with the natural ordering of this space. We shall denote the field
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of all problems of the type described, by
W=WI(GEI-IE,II, K).

6.5.2

Our purpose is to learn how to solve problems in W, using a stochastic,
first-order oracle. Roughly speaking, this oracle will communicate
observations {distorted by noise) of the values and differentials of the target
function f, and of the constraint H. We shall consider an oracle
0= {((F,) ¢°(x, f,0) " (x. L) ¥°(x, f o) ¥ (x, ), in  which
@° is scalar, ¢! takes values in E*, ° takes values in E', and ¢! in L(E, E').
Here ¢? is an estimate of f;,, ¢' is an estimate of the support functional to
Jo. ¥° is an estimate of H ., and ¥ ' an estimate of the differential of H . As
always, in the ith step of the work the method can put a question to the oracle ¢
about the problem being solved, at a point x; € G, and it obtains in answer the
values of
(Po(xisf; @), @10, fw,), WO x, L) ¥ (x, f ).

Here w; are the noises in the oracle; they are independent and distributed
according to the measure F,. Naturally, Q, F, is assumed to be a Polish space
with a regular, Borel, Lebesgue-complete, probability measure, and
%, @', ¥°, Y are Borel functions relative to x and w.

We now describe the classes of problems we shall study. We fix r > 1 and
L > 0, and also w, > 0, and we denote by

Welo= Woro(GE |-I.E' |-, K)

the class of problems of the form (5.1) described as follows.

The field of problems of the class #¢ o consists of all problems

f=(f,H)e W(GE ||, E, |-V, K)
for which
(1) the mapping H  falls into the class Ul }o(G, E, |- |, E', |- |I', K) (see Section
6.4.2.3 where € is the oracle induced by the oracle ¢ ({(Q. F,); ¥, ¥').

@

3

| My 0°(x, £, @) —fo 0] < "2
I (5.2)

M,_|6°(x, f o)l < ( )
Jo—fox) =2 (M @' (x, f @)ly—x)>—v L

L r
M llo'(x, £ o)} < (m)

Y

(5.3)

for all x, yeG.
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The conditions (1)-(2) are the conditions, of the standard type for our
considerations, on the possible bias and moments of the stochastic information
provided by the oracle.

The oracle of the class is @.

The measure of the absolute error of a point x € G regarded as a solution of a
problem f is defined as

E(X,f) = max {fo(x)—f.; S(Hf(x))}-

f- + oo for all xeG H(x)
* inf{ f(x)|xeG, H(x) < 0} otherwise,

is the optimal value of the objective functional of the problem £, and s(x) is the
function introduced in Secticn 6.4.3.

The measure of the relative error of a point xeG U { «} regarded as an
approximate solution of a problem f (as usual, 4 is interpreted as the answer
that f is incompatible) is defined by the formula

Here

0, x=.4, f is incompatible,
vix, f) = 1l X = x, [ 1s compatible,
za(x,f) in the case xeG.
6.5.3
We fix the class of problems
W= Win(G,E|-I, E, |-, K)

and we shall construct a method of solving problems in this class with a relative
accuracy v. We shall assume that the error v, of the oracle is quite small
compared with v, let us say

800v, < v, (5.4

The idea of the construction effected below is to reduce the optimization
problem (5.1) to the solution of a series of operator inequalities. We shall
explain how this is done. In the description it is convenient to assume that
£,.4{G) = 1. From now on we make this assumption.

6.5.3.1

We begin with a very simple case: it is required to solve a problem f € W and
it is known a priori that f, = 0. In this case, solving the problem f reduces
immediately to solving an operator inequality, namely,

fo() <0, H;(x) <0, xeG. (5.5)
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(5.5) can, in turn, be written as
Hf(x)< 0, xeG, (5.6)

where HY = (f,, H,)isamapping of G into E = R x E’, and the ordering in £
is specified by a cone K = {(t, y)|t 20, ye K}. Moreover, it is clear that

H'eUGE|-ILEN I, Ky=U;

let us agree to take ||z, y|~ = max {|¢, | ¥|I'}.

The problem H/ is equivalent to the problem f in the following sense: H ! is
compatible whenever f is, and, for every xe G, we have ¢(x, H/ )= &(x, f}.
Thus, to solve the problem f with a given mean (absolute) accuracy ¢ is just the
same as solving the problem H/ in the same sense.

We now examine whether we have at our disposition a source of information
about the problem H/ such as is required by the method in Section 6.4. The
answer to this question is, of course, affirmative, For, the components ¢°, y* of
the observation function of the oracle ¢ together form the necessary estimate of
HY(x), and the components ¢!, ' form the necessary estimate for the
differential of H/. Thus the oracle ¢ can be interpreted as the oracle for the field
of problems U in Section 6.4.2.3. Moreover, comparison of the definitions of
the class of problems J%}o and the class of problems ¢} leads to the
conclusion that HY e &0 . Moreover, Eis regular whenever (E')* is; and so
the method in Section 6.4 can be applied to H. By solving H/ by this method,
constructed for a mean relative accuracy v/2, we obtain a solution of the
problem f with a mean relative accuracy v.

It is clear that, if it is known a priori that f, is < co (but not necessarily
equal to 0), then we can proceed as in the case f, = 0 but with the problem
f={fs—1,. H;}. The only difference from the preceding case is that (under
the proviso v, < %, which is of no consequence for the sequel) the correspond-
ing operator inequality, as may easily be seen, falls into the class U7 ¢ and not
into U% 3 as before, and so solution of the problem f with relative accuracy v
requires the application to H” of a method constructed to give an accuracy v/4.

6.5.3.2

We now consider the general case when f, is not known a priori. One can first
try to find f,, and then proceed according to the recommendations in
Section 6.5.3.1. We describe a procedure for finding f,. Let fe W,‘,’;ZO, and, for
every te€ R, let ' be the problem (f, —t, H,). Clearly, f is compatible if and
only if, for some ¢, the problem H”' is compatible; and then

f, = max {t|H" is compatible}.

We observe that, when 2|z| < L, the problem H ' falls into the class Sy IF
we now apply to H/' the method described in Section 6.4 of solving problems

Solution of extremal problems with operator constraints 237

of this class, constructed for a mean relative accuracy ¥ > 2v, (we denote this
method by #;), then, in accordance with what was said in Section 6.4, we
obtain a (random) result X, € G such that

Me(%, H/') < 47 L+ H], (5.7)
and also a (random) estimate 4, of the number ?{' such that
Pr{la—H[|>48vL} <1 (5.8)
Here M denotes the mean, and Pr the probability _cg.lculated from the
distribution of the realizations of 4, on the method H” (see (4.4), (4.8)).
Further, let g(t) = H{'. From the definition of &(x, ) we have
E(xsf) = max {fO(x) _f*s S(Hf(x))}
< [ =£1s +max {fo(x) -, s(H (x))}
<[ —f1s +e(x HY).

Hence and from (5.7) we obtain

Me(%, /) < [t—f, 1, +g() +45L, (5.9)
or
Mv(%, f) < Qi%ﬂiﬂgwa. (5.10)

Hence it is clear that to solve the problem f with {mean relative) accuracy v it is
sufficient to seek an approximation t* of the quantity f, such that

1@ =£)=00) and 1 4(t) = O0)

after which we apply to H " a method 4, with v = O(v).
We have still to see how to find the required ¢*. We note that, by definition,
g(t)is a non-decreasing function which is Lipschitz with constant 1, Moreover,

(fis compatible)<> (the equation g(t) = C is solvable),

and in the latter case f* is the least root of g(f) = 0. From what has been said it
is clear that we may take as t* a sufficiently exact approximation to the least
root of the equation g(r} = 0. The latter can be obtained by the ‘repeated
bisection of the segment’ method, and to determine the values of g(r) we can
make use of the estimate &, provided by applying #; (with a suitable ¥) to H” "

6.5.3.3

We now implement the projected plan. We describe the procedure @& of
solving problems in W}.’; Jowith a specified (mean relative) accuracy v satisfying
(5.4). We note that, from the definition of the class, it follows that, for
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fe W,‘?;{D, the variation of the functions f, and the maximum of the function
$(H;) on G do not exceed (1 +2vy)L/2, and so the only case of interest
sv< 14y,

Thus, we assume that

BOOv, < v < 14 (5.11)

Under this assumption the procedure #° as applied to a problem
fe W&o consists of N, = N (v) search stages and one concluding stage (the
form of the function N, (v) will be shown later). At the ith stage of the search we
shall know the points t;_,,f,_,, the ends of the interval localizing t* at that
stage. Initially, t,= — L/2,t, = L/2.

In the ith search stage the point ¢, = (¢;_, +{;_,)/2 is constructed. The
procedure #; for solving the operator inequalities is applied N, = N,(v) times
to the problem H”" with a certain ¥ > v,. The form of the function N,(v) and
the value of ¥ will be shown later.

In the jth application of @, to H” " the observed realization aj of thebound d
for the quantity H{" = g(t;) is fixed. After the numbers &;, . . ., @2 have been
obtained, the number

|1 if the bigger half of & is greater than 50VL,
"= 10 otherwise,

is constructed. The numbers
7=

t = _tifls }'i=01 tis }'i=07
t': ?i= 15 l E

i i—1> 71‘ =1
" are then constructed. This ends the step.
When i < N, we go to the next search stage, and when i = N, to the
concluding stage. In the latter case we put ¥ = ¢,..
In the concluding stage it is tested whether y, = 1 all the time (i.e. for
1 € i< N,).If‘yes’, then the result of the work of #* on fis equal to . If ‘no’,
we apply 4, to H'", and we call the result obtained the result of applying #*
to f.

6.5.3.4

We now analyse the work of the method #*, and we prove that, with an
appropriate choice of N,(v) and N,(v), the specified mean accuracy in solving
any problem fe Wf;,‘_o will indeed be secured. We fix on an f.

1°.  We shall say that there was success in the ith search stage if neither of the
following events occurred:

(i) g(t) was < 2¥L and y, was = 1;
(i) g(t;) was > 100V L and y; was = 0.

Otherwise the ith stage will be said to be unsuccessful.
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2°. We fix arealization of the oracle noises on all N, search stages. Suppose it
is such that the following condition is satisfied:

(A) each of the N, search stages is successful.
We shall prove that, if N, and ¥ satisfy the relations

25—27%1 2 v, 1005 +2" M +47 < Ly, (5.12)

then, under the condition (A), the mean (over realizations of the oracle noise in
the concluding stage of the work of the method) error of the result does not
exceed v/2.

For, suppose the condition (A) holds. It is possible that we might then have
9 =1, 1 € i< N,. Under condition (A) this means that, for all i, we would
have g(¢t;) > 2vL, and then

0<iL—ty <L2M
Since g(¢) is Lipschitz with constant 1, we would then have
gLi2)>2WL—L.27N 2w, L.

(we have used the first relation in (5.12)). It is easy to see that the last relation is
impossible for compatible f (one has to use the fact that, by the definition of the
class, [ fo | < (1+2v,)L/4 on G). Thus, in the case considered where (A) holds
and y; = 1, the mean error of the result of the work of the method is equal to 0.

Now suppose (A) is satisfied, but not all the y; = 1. Then * is well-defined,
and from its definition and the satisfaction of (A) it follows that

(i) there is a certain i, such that¢; >¢*and y; =0.Thens, —t* < L.27%y
(ii) either there is an i, such that {; = t* and y;, =1 (case 1), or * = — L/2
{case 2).

By the first of these remarks and condition (A), we have g(t;)) < 100VL. But

then
gy < gl )+, —t* < 100VL + L.27M, {5.13)

Moreover, in case 1, g(t*) > 0,ie. t* < f,. In case 2, it is clear that ¢* < f_ (we
have used the fact that

fo = — LI+ 2vp)/4, vy < 3).

So, in all cases,
t*—f, <0 (5.14)

Combining (5.13), (5.14), and (5.10), we see that, under the conditions (5.12),
when (A) is satisfied the mean error of the result produced by the method does
indeed not exceed v/2.
We observe that the inequalities (5.12) are satisfied if we take
Vv=cov and N, (v)=c, In(2/¥) (5.15)

with suitable absolute constants ¢, and ¢, {(and here ¢, = 1/200, so that
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v > 4v,). We could write out these constants, but we shall not pause to do so,in
order not to encumber the exposition.

3°., Now let Pr(A) = p. Then the mean relative error v{ #*, f) of the method
#" on the problem [ under the conditions (5.15) does not exceed
v/2+ (1 + vy) (1 — p). For, in this case, the mean error of the method (for a fixed
noise in the search stages) does not exceed v/2 under the condition (A}, or (1
+ v,)in all other cases. In order to construct a method of the specified accuracy,
it suffices to supplement the conditions (5.15) with a rule for choosing N,(v)
such that, under it, the condition

1-p< >3) (5.16)

¥
2004+vy)\ ~ 4

is satisfied (we have used the fact that it follows from (5.4} and the condition
v < vy+ 1 that vy < 1),
We shall prove that (5.16) is ensured by the choice

Ny(v)=c¢; In(2/v) (5.17)

with a suitable absolute constant ¢,. Thus the choice of ¥, ¥, N, according to
(5.15)(5.17) enables us to obtain a method of solving problems in Wf;,‘iﬂ with
accuracy v. We estimate 1 — p in the following way. We look at the ith search
stage. We consider the conditional distribution of the series of estimates
{ai} ¥2 | obtained when the ‘previous history’ of the solution process up to the
ith stage is fixed. It is clear that under these conditions the &/ are independent
as an aggregate and that each of the events A; = {|4] —g(r})| > 48¥L} has a
probability < 4. Then the simultaneous occurrence of N,/2 or more of these
events is possible with a probability < exp (— kN;), wherex > Qs an absclute
constant. It is clear that if less than half of the events A; occur, then the ith stage
is successful. It follows from what has been said that the probability
of simultaneous success of all N, of the search stages (ie. the probability
of the event A) is 21— N, exp(—«N,), and this provides the estimate
1—p < N, exp(—xN,). Recalling the definition of N (v), we find that, with a
suitable choice of ¢, (5.17) implies (5.16).

6.54

Later, when speaking of a method of solving problems in #%?0 with accuracy
v, we shall have in mind the method #”, provided by the construction described
above, with the parameters (5.15(5.17). The laboriousness of this method,
under the conditions (5.11), is bounded above by the function

M, (v) = ¢ ]In® (1/%) [ M (v/d),

where c and d are absolute constants, and M (v} is the laboriousness of an
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MD-method, constructed _f"or accuracy v, of solving games in a class of the
DY (GG E|-ILE |17 type.

6.6 SOLUTION OF CONSTRAINED STOCHASTIC PROBLEMS

6.6.1

The results of the previous section are applicable almost immediately to
solving constrained extremal, convex, stochastic problems (problems in the
classes €¢}o (G, E, | - |, m)) introduced in Section 5.1. For, every such problem

Si{folx)»min|xeGcE, fi(x)<0,1<j<m)
can be regarded as a problem with operator constraints of the form
[ folx) > min|xeG, H (x) <0,

where H  (x) = (f,(x), ..., f,(x)) is a mapping of E into E' =1 (I'M is
provided with its natural ordering). The answers of the oracle ¢ about the
problem f can be interpreted as the answers of the oracle considered in
Section 6.5 about the problem {(f;, H;). In other words, the field of
problems Cup (G, E, |- |i, m) is identified directly with the field of problems
W=wWGE| LI, |, K.), where K is the standard cone in 1™,
and the oracle ¢ can be regarded as the oracle considered in Section 6.5.2 for
the field of problems W.

The absolute error of a point x € G regarded as a solution of the problem
fe€—the value of max{fo(x)—f,.fi(®),....fulx)} =c(x,f}—is at the
same time the absolute error of the point x as a solution of the same problem
f regarded as an element of W. Thus, for solving problems in the
classes C‘f;[ﬂ it would seem possible to apply methods of solving problems in
the classes (0.

However, without special additional transformations of the original prob-
lem it is impossible to effect this reduction. The point is that, in general, not
only does a problem feC 7o not fall into the class Wf;[ﬂ, it does not even fall
into a class A & where ¥, and Lare an absolute constant times greater than v,
and L respectively. In the definition of the class €%} the constraints on the
observations of the values of f;(x) concerned only the deviations of these
observations from the true values, whereas in the definition of the
classes # &0 the constraints on these same observations concerned not only
the deviations but the values of the observations themselves.

Exercise 1. Indicate where in Sections 6.4-6.5 the a priori limitations on the
magnitudes of the observations of values of the components in the problem
were used in the definitions of the corresponding classes.

{ Answer. It was necessary to have the possibility of reducing the business toa
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game in which the observations of the support functionals for both com-
ponents were effectively estimated. >

6.6.2

The difficulty mentioned above is easily overcome. To do this, we use the
preparatory procedure described later. As everywhere in this chapter, it is
assumed that G, E,|-| satisfy the conditions stated at the beginning of
Section 5.1.

Suppose it is required to solve a problem fe ¢ &% (G, E, ||+ I, m). Let X denote
the ‘centre’ of the set G. Suppose we have available a family of statistical
estimates a,, 6 > 0, of the vector f(x) such that

Prilla,—f(X)ll, > L} <9 (6.1)

It is assumed that the estimate a, is constructed from R(4) observations of the
vector f(X) provided by the oracle ¢ (to which it is necessary to address R(&
questions about the problem f at the point X). We fixa é > 0 and comnsider a
problem f which is constructed from the realized valuea = (@, ..., a"ofthe

estimate a
T=o s Jn)ifol =fol) — a®
and, for | €£j<m,
L, if af>3L
fi=10  if o <-3L,
fix), if —3Lsa <3L

We point out that the problem 7 is a random transform of the problem f,
determined by the realization a of the estimate a,, We shall call this the
preparatory transformation. We shall say that the preparation was successful if
the condition || a—f(¥)|, < L is satisfied.

Exercise 2. Suppose that the preparation of a problem fe Cik(G.E N, m
took place successfully. Prove that, when vo <1,

(i) if forsome;j = 1,a’ were > 3L, then f and f would both be incompatible;
and, independently of the value of the &/, compatibility of the one problem
implies compatibility of the other; -

(i) if, for all j > | we have @/ > 3L, then, for all x€G, &(x, f) < &(x, ). In
particular, a method which solves the problem f with a mean absolute
error < ¢ will at the same time also solve the problem f with the same
accuracy.

(ili} The information about f provided by the oracle ¢ is converted in an
obvious way into information about £, Prove that the oracle @ obtained in
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this way ensures the inclusion
FeWen, G EN- LI | . Ko ) = WeR

© r,40L"

{From the definition of the class C e it is clear that the variation of each of the
functions f; on G does not exceed (1 +vy) L < 2L. Hence follow immediately
properties (i) and (ii). Further, it is clear that if the preparation is successful,
then |fj(x]| < 5L when xeG. Hence and from the relations A-B in
Section 6.1.2.3 we have (iii} (see Exercise 1, Section 6.4.5). >

6.6.3

We now consider the following method of solving problems in the class
C&20(G, E, ||-ll. m) with a specified mean relative accuracy v such that

cvg < v < |, (6.2)

where ¢ > 12 is a sufficiently large absolute constant (chosen so that (5.11) shall
hold for ¥ = v/80. As regards the values of the absolute constants in these and
the following estimates, see the final remark in Section 6.4).

We take 4 = v/4 and apply to the problem f being solved the preparatory
procedure with the parameter 3. If we then obtain o/ > 3L for a certainj = |,
then we stop the solution, and put out the answer that f is incompatible.
Otherwise, we apply to the problem f (regarded as an element of the class
W) the method #*/%° from the previous section. The result % of its
application to f will be regarded as the result of the work of the method being
described on f. This method will solve f with a (mean relative) error
< v. Fr, by the properties of #"/®°, the mean, conditional (under the
condition of success of the preparation) error of X as a solution of the
problem f does not (by the assertions (i)—(iii) in Exercise 2) exceed v/2. The
relative error of any point of G U {«} as a soluton of f clearly does not
exceed 1+4v, < 2. Thus, the error of the method described of solving
problems in the class €%}, under the conditions (6.2), does not exceed
(v/2Y+ 28 < v. Its laboriousness does not exceed R{v/4)+ M, (v/80).

6.6.4

We have still to learn how to construct the estimates a; with R (5} as small as
possible. We point out a special characteristic of this problem. The accuracy
which is demanded for the estimates is low; it is of the order of the rth moment
of the noise (to the power 1/r). On the other hand, the reliability demanded of
the estimate may be very high (the estimate is permitted not to have the
required accuracy only with probability < v/4).

We now expound the general method of constructing such estimates; the
parts of the text enclosed in square brackets will give the particularization of
the general scheme to the needs of this section.
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Let (X, X) be a space with a s-algebra of subsets, let # = {F} be a certain
family of probability distributions on (X, T}, let Q be a metric space with the
metric p(-,-), and let ¢ (F): # — O be a mapping setting up a correspondence
between a distribution F and its parameter ¢ (F). [In the case with which we are
concerned, (X, T) is ["* 1) with a o-algebra of Borel subsets of ["* 1, # isa
family of distributions of the values of the random variables ¥ °(x, f, @)
induced by the measure F, on Q). Here ¢ = {(Q, F,); ¥®(x, f, @), ¥* (x, f, w)} is
the oracle considered, Q0 = 1+ 1) with the metric defined by the norm |-|j.,
and ¢(F} = L;,,.mde(y) ]

The function a(x,, . . ., x,) on the sample space of length n, i.c. on the space
X"=XxXx .. xX
n times

with values in @, the function being measurable in the sense that the pre-image
of any ball in Q lies in the least g-algebra of X" which contains all sets of the
form {x"|x,e A}, where A€ X, will be called an estimate with the observation
time n. We shall say that the estimate a has accuracy r and reliability o on a
distribution Fe # if the probability Pr.{p(a(x"),¢(F))> r} of the event
shown in the braces, calculated over the distribution on X" obtained as the nth
power F" of the distribution F (i.e. over the distribution on X" with the co-
ordinates x; independently distributed according to F) is not greater than «,
that is, Pr. {p(a(x"), ¢ (F)) > r} < a. We shall say that a has accuracy r and
reliability a on the class # if it has this property on every distribution F € .#. [In
our case the estimate with the observation time n is constructed from the n
answers of the oracle to a question about the value of f at the point X; and any
estimate of accuracy 1/2 and reliability & can be taken as the estimate a,.]

It turns out that by means of an estimate of accuracy of order r (namely, r/3)
and of a comparatively low reliability (any value less than 4) we can obtain an
estimate of accuracy r and of a reliability specified in advance.

Proposition. Let a(x") be an estimate with observation time n which hason #
an accuracy r/3 and a reliability p < 1. Then, for some integer ¢(p) depending
only on p (but not on .#, a(-), r, and n) and every a < p, an estimate ¢* can be
found of accuracy r and reliability « and with an observation time

711
= nc(p)J In [ (6.3)

o
The estimate &* is constructed in the following way. We divide the sample x"*
into n successive blocks x'*, . . ., x* each of length n; s = ¢(p)] In 1/2[. To

each of the blocks x! we apply the estimate a. We obtain s points y,, . . ., y, of
the space Q. It is possible that, for a certain i, the inequality p(y,, yJ) 2r/3
holds for more than s/2 of the indices j. In this case, let a* (x™) = a*(x"") be the
first among the y; which have the property mentioned. 1f there is no such i, we
put @(x"") = y,.
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Proof of the proposition. We fix F e #. We consider a natural number k and
the distribution induced by F on X Let x!V, . . .| x™ be successive blocks of
x™ each of length n, and let y, = a(x*). The quantities y, are independent in
aggregate, and the probability for each of them not to fall into the ball
Wo={yeQlp(a(F), ¥) <r/3} is not greater than p < % , by the definition
of a(-). Let A be the event consisting in the 51multaneous occurrence of more
than k/2 of the events {y,e W,}, i=1,..., k It is easy to see that the
probability of occurrence of A is not less than | —exp(—x(p)k), where
k(p) > 0 depends only on p. Suppose the event A took place. Then more
than k/2 of the points y, fell into W, In particular, they all fell into a ball of
radius 2r/3 with centre at one of the points y,,i = 1,2, . . ., k (we can take as
the centre of this ball any of the points y,e W,). We now construct a™® (x™) as
described in the proposition. The value of a™, by virtue of this description,
determines the centre y of a ball W, of radius 2r/3 which contains more than
half of the points y,, ..., y,. It is clear that W, n W, + &, and this gives

p(e(F), y) < r. Thus p(o(F), a*{(x"™)) < r when A occurs. Therefore, a* has a
reliability not worse than exp (— k(p)k) for an accuracy r. From this the
assertion of the proposition follows immediately.

Remark. When p =1 we can take
Jin la[.e(p) =12 In3/2a/In4/3[.

We apply the general result proved to our problem of a suitable estimate of
J(x). For this it suffices to learn how to construct an estimate a of the quantity
a F) = | ¥dF(y)of accuracy /6 and of reliability < 4, let us say of reliability
4. About the distribution F it is known from the properties of the oracle that

Melly —a (Pl < [L(1+vg)]1"

We construct the estimate @ in the form

a(y)é— Zy,

M=

and choose the necessary n. By virtue of the inequality (1.5) in Chapter 5
applied to the sum

1, .
;l i WIth 61’ = 36_V|/(L(1 +v0))s

H
20°
we have

) L1+vy) [ 1 36
Mg~ la(y") ~a(F)l. < T{§+ 3603&‘1,”1”(““) }

1 36
<Lt (7))

Itis clear that the estimate being used will have accuracy L/6 and reliability 1 if
the right-hand side of the last inequality is not greater than £/24. Thus n must
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be chosen from the condition

Lot %)<k o4
36 LT n 24
which, because of (1.7} in Chapter 5, gives
n=]ln(m+2)c(r)[. (6.5)

where ¢(r) depends only on r.
Thus, we known how to construct the estimate a; required in Section 6.6.2
with a function R(3) of the form

R(3) = d(r) In (m +2) In (2/6) (6.6)

where dir) depends only on r. Applying this estimate to the method in
Section 6.6.3, we obtain a method of solving problems in the class
C%10(G, E, | - |, m) with accuracy v.

6.6.5

Thus we have reduced conditionally extremal problems to extremal problems
with operator constraints (in doing this, we had to apply a preparatory
procedure, and also had to modify somewhat our use of words).

The solution of extremal problems with operator constraints was, in its turn,
reduced to solving a series of O(In? (1,v}) operator inequalities. Each inequality
of this kind was reduced to convex-concave games, and the latter were solved,
without further reductions, by the method described in Section 6.3.

In the final analysis, problems from €%} are reduced to games on
ExI'"*1 or, more correctly, on a product of bounded subsets of each of the
components. For the solution of these games we recommend the use of the
MD-methods in Section 6.3.3 associated with a pair of functions V, V,, where
V' is an (E, || - |))-regular function, and ¥ is an (I{"* '), || ||, )-regular function,
which it is sensible to take to be V', ., (see Section 3.2.5).

Exercise 3. It is well-known that, under very general hypotheses, solving
extremal convex problems fcan be reduced to solving games with a pay-off
function
m
F(x, 7) = folx)+ 3, A f{x)

i=1
on Gx{i|i; 20}, Would it be immediately possible to reduce the
problem f to such a game?
{No, at least not in the sense of the reduction described above. The point is
that a game F(aq, 4) is defined on an unbounded set, and this affords no
possibility of solving it ‘constructively’ by MD-methods. Cutting off the *very
large’ values of 4 would also not lead to success since the size of the ‘curtailed’
domain increases as the accuracy required for the solution increases. »
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6.6.6

We shall now discuss the question of the laboriousness of the method solving
problems in the class Cf‘;{o which implements the scheme set out in
Sections 6.4-6.6. The bound for the laboriousness M(v) under the conditions (6.2)
and with V; =V, is of the form

V'}’y" (V/C) ’ VF: 1

< D(r):|ln2 i—|:max { 1 Inm+2) } , 6.7)

i O1 fE

M) <c(r)In(m+2)In2/v +d(r):|1n2%|:max {

1 ln(m+2)}

Here ¥ = min (r, 2), ¢ is an absolute constant, and D(r) depends only on 7. In
particular, if (E, | -[) = (L, [I- ). 1 < p < w0, the laboriousness of the method
constructed admits the bound

¥ P
D(r, p]:| lnzllimax{(ly_l , In{m+2) (1)?—1 },
v v v

where 7 = min {7, p/(p—1)}.

We sce, in particular, that in the case 7 < p/(p—1) (which automatically
holds when 1 < p < 2)the laboriousness of the constructed method cannot, in
principle, be reduced by more than ~, ,In®1/v times provided that v < ¥,
where ¥ > 0 is an absolute constant (cf. the lower bound for the stochastic
complexity of classes € %70 in Section 5.3). But if 7 > p/(p— 1), then, for all
sufficiently small v (v < ¥(p, 7, m)), the laboriousness is the same, up to a factor
of order a(p, r) In? 1/, as for the MD-method of solving problems in the class
C,,, on L, with exact information (see Section 3.3). Therefore in this case the
recommended method cannot be substantially improved regarding laborious-
ness (by not more than, say, a,(p, r)]1n* 1/v[ times) where the MD-methods
using exact information about the method are sub-optimal (i.e. in the case
where G is a body like an [,-ball of high dimension, see Chapter 4).

When (E, <) = (, [-1l,), 1 < n < oo, the bound for the laboriousness of
the constructed method is

T

D(l,r) (%)?’1" max {lnn, In(m+2)},

and when v < ¥ its laboriousness cannot in principle be reduced by more than

a(l, r)i]lnzl[max{}fl_ﬂ., 1}
v Inm

times. We observe further that if it is a matter of solving problems fe € &Y with
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the optimal value of the objective functional f, known in advance, then such
problems can be reduced to the single solution of an operator inequality (see
Section 6.5.3.1), and so in this case the upper bound for the laboriousness of the
resulting method and the potential upper limits for reducing its laboriousness
are reduced by O (In? 1) times.

In conclusion we remark that if we are concerned only with problems in the
class C¢Jo, then the actual description given in the last two sections of the
method of solving them could be considerably simplified and made more
perspicuous (we emphasize that we are speaking now of the description, and
not of the actual structure of the method). We chose the more involved, but on
the other hand more general, way of explaining the business.

6.7 ‘COMPLEX’ STOCHASTIC PROGRAMMING PROBLEMS

6.7.1

In this section we consider stochastic problems of the form
O(x) =@, (D, (... (Dy(x))...)—min|xeG,, (7.1)

consisting in the minimization of a composition of m+1 functions
&y, ..., @, It will be supposed that here information about ® is not
immediately accessible, although all the ®, can be observed (by means of first-
order oracles). If the information about the &, is exact, then, under certain quite
general hypotheses about the ®;, it is possible to derive from the oracles’
answers the usual first-order information about & (the values and the support
functionals). Thus, when there is exact observation of all the @,, there is no
necessity at all to distinguish problems of the form (7.1) from the whole family
of extremal problems.

The situation changes when the ®; are observed by means of stochastic
oracles. In that case it is impossible to deduce (directly, at any rate) from the
information about the @; the information about & needed for solving this
problem by first-order methods of the sort described above. In this case
problems of the form (7.1) merit special examination. We shall prove that,
under certain hypotheses regarding the structure of the ®,, the problem @ can
be reduced to solving a convex—concave game.

6.7.2

We start by describing the situation. Suppose there are m+ 1 Banach spaces
(Eg: - llg)s - - -5 (Eps || |l,n)- Suppose further that G; are bounded, convex,
closed subsets with G, < E. For uniformity we let E, ., |- ||, +,, denote the
real line with the usual norm. We consider the mappings

& G,—~ G, ©,: G, -Gy, ...,V G, —~E . =R,
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and we define the composition ®(x) = @, (®,,_, (... (Dy(x)...): Gy — R,
The composition ®(x) defines the problem (7.1).

Naturally, we shall study only the convex case where all the mappings ®, and
their composition ® are convex. More precisely, we assume that each of the
spaces E;, i > 0, is equipped with a convex, closed cone K, which specifies an
ordering =, in E; (the orderingin E,, ,, = R is the usual one). We assume that
all the mappings ®;: G;—= E,,,,i=0,1,..., m, are Lipschitz and convex
(relative to the ordering ;. , in E; ), and also that they are all monotonic
(ie. x,yeG; and x <; y imply ®,(x) <, ®(y)). Under these hypotheses the
composition & turns out to be a Lipschitz-convex function on G, (verify this!).

We further assume that the spaces E,, || |;, 0 < i € m, are separable and
regular, and that so are the spaces E*, |- |¥, 1 < i < m, as well. We also assume
that each set G,, | < i< m, has a non-void interior.

6.7.3

We now formulate a hypothesis regarding the possibility of observing the
components ®; of the problem ®. Roughly speaking, we suppose that each of
the mappings @; can be observed by means of a stochastic oracle of the type
described in Section 6.4. For simplicity we shall suppose that this oracle is
unbiased and that the situation is normalized. That is, we assume that
£,,4(G;) = | and that the centre of G, is 0. Further, let x™ = (x,, ..., x,)bea
point of G™ = G, x... xG,. We assume that we have at our disposition
an oracle with a noise space (€}, F,) and an observation function having
2(m+ 1) components. The first m+ 1 components ¥} (x™, @) G"xQ—E,,,
(we omit the index ® from the notation for these) are observations, accessible to
the method, of the values of @;(x;), and the last m+ 1 components ¥ (x™, w});
G" xQ— L(E,, E;,,)are the observations of the differentials of the @,. Here
L(E;, E,, ) is the space of continuous linear operators from E; into E,, ,. As
always (£, F ) is assumed to be a Polish space with a regular, Borel measure,
and ¥}, ¥ are taken to be Borel functions with respect to x™ and @ (', in the
sense of Section 6.4.2.3), It is also assumed that, for all x"eG™ and for all i,
O0<igm,

Me_ y5 (7, @) = ®;(x;); M, (¥} (x", @) (y—x,)}
_f':l @, (y) - ®;(x), yeG;; MF,,, N (x™, @) fey € 15
MF,U{" [y} (x™, ) ]*l )" < Iforalll > O with Iie s, s 1.
Pl

Here 2,,, , denotes the ordering in E¥,, induced by the cone K, dual to
K; .1, [¥1]* is the operator dual to y* (see Section 6.4.1), and r > 1 is a
parameter.
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6.7.4

We shall prove @ can be reduced to a pame; and that the information needed for
solving this game can be obtained from the oracle €. To be exact, let

F/a\

Gt ={leE* |1 20, |{],, <1}, 1<i<m,
[

and
G*=GCGtx.. . xGt={I"F=(,..., 1), eGF}.

We consider the game Fjz defined on G™ x G*™ by

F@(xm, Im) = (Dm [xm)+ <lm|(bm—l(xm—1)—xm>
F ey [ Q2 (X ) =X 2+ - D (xg) — Xy ).

We shall show later that the game Fg is closely connected with the problem
®. Namely, let

Fa(x™)= sup Fg(x™ I")
[megum
be the payoff function of the first player. Then, for all x,e Gy,
D(x,) = inf Fa(xg, X1 - s Xmh (7.2)

X3EG), . XmEG,
i.e. @ (x,)is the pay-out made by the first player after the best of his moves with
first component x,. Hence it is clear that, having solved the game Fj with a
(mean) absolute error ¢/2, and having taken the zeroth component of x™ —the
compenents of the solution obtained for Fg-—as an approximate solution of
the problem of minimizing ®, we obtain a (random) point %, € G, for which

M®(%,) < min D (x,)+¢ (7.3)

Gy

(M denotes the mean over the distribution of X,).

6.7.5

We have still to learn how to solve the game Fj. To do this we use the
MD-method in Section 6.3.3, Its use is possible. For, in view of the conditions
imposed on E; and E¥ earlier, the spaces E = E; x... x E,, with the norm
[ x™) = max,||x;l;and E, = E} x... x E% with the norm ||"]|; = max, || L|; .
are regular and separable. Further, the oracle ¢ does indeed provide the
information necessary for this method. For, it is easy to see that Fy is a
Lipschitz convex—concave game. Moreover, the function

Yo x™ M 0) = {[¥T (™, ) 1* 1, YT ™, @)% Ly TYT 7, @)]* Ly}

with valuesin E§ x . . . x E* (1is the standard linear functional {1[t) = ton
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E,, ,, = R)has the property that M, _y, (x™, I, w) isa support functional to Fy
as a function of x™. Similarly, the function

¥y (™ I, @) = (@, (X, )= X, o Dolxg)—x, }

with values in E;x...xE_=[E¥x...xE*]* is such that
M, (x™, I", w) is a support functional to Fy as a function of I™.

Thus by means of the oracle ¢ unbiased estimates W, i, of the support
functionals to F 5 with respect to the x™ components and the /™ components can
be constructed. From the properties of the oracle @ it is easy to deduce that,
with the method described of observing Fy, this game falls into a class of the
form ﬁf}f(G”' x G*" E, |-, E;, |- l;) with L = 4{m+1). The parameter L is
thus written out explicitly, and the application to Fy of the method in Section
6.3.3 presents no difficulties in principle.

6.7.6
It remains to prove (7.2). For this we need a simple lemma.

Lemma. Let & G,— R be a monotone, convex mapping, Lipschitz with
constant 1, i = 1. Then, for all xeG;,

®,(x) = sup inf {&,(y)— Uly—x>}. (74)
1eG} yec;
Proof. By von Neumann’s lemma
sup inf {®;(y)— {ly—x>} = inf sup {D;(y)— U|y—x>}. (7.9
LeG? FEG, yeG leGt
It isclear that the right-hand side of (7.5), for a given x € G, is not greater than @,
{one can take y = x), Denoting the right-hand side of (7.4) by H(x), we obtain
H(x) < ®,(x), xeG. (7.6)

But, by hypothesis, int G; # . Let x €int G,. Then because the function ®, is
monotone and Lipschitz with constant 1, it follows that the support functional
I, toitat the point x liesin G* (why?). The function &, (y) — ¢/, |y —x > attainsa
minimum over y when y = x, and this minimum is @, (x). Therefore, when
x € int G, the left-hand side of (7.5} is not less than &, (x). Hence and from (7.6),
H (x) = &, (x) when x € int G. Both sides of this equality are continuous on G;
(why?), and this proves (7.4).

Exercise 1. s the condition that int G; # ¢J essential?
We are now in a position to prove (7.2). Indeed, from the definition of Fy,
F_rb(xo, MRS ] xm) = ’ma){ {(Dm{xm)+ <lm|(bm*l (xm—l)_xm >
e G*T

+oo D Do(x0) —x; 5. (7.7)
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Hence, in view of von Neumann’s lemma,

inf Fyixg,....x,)
Am G,

= max {max min {®,,(x,)— {l %, — D, (X, 1) >}
oo -1 €6 IneGh XmEG,

+ <Im*1|q)m*2(xm*2)_xm*1 >+‘ ot <11|(D0(X0)—x1 >}'

By the lemma, the expression mn the inner braces is @, (D, _, (x,-,)). (The
lemma is actually applicable to @ ; the only one of its hypotheses which needs
verifying is that @,, is Lipschitz with constant 1, and this follows at once from
the oracle’s properties, in view of which My ¢ (x™, w)is a support functional
to @, (x,) with norm < 1). Thus

min Fds(xo,. e X1 X

ImEG,

= maxl {(Dm(q)m*l(xm*l))-l-<Im*l|d)m*2(xm*2)_xm*l>
Il....,l,,.,l.jeﬁf

+.oo o+ D (xg)—x; ). ({7.8)

The expression (7.8} is constructed exactly like (7.7} except that m is replaced by
m—1, and the function ®,, is replaced by @_(®,__,(-)}. If we knew that
@ (P, _,(-}), like @, (-), was a convex, monotone mapping, Lipschitz with
constant 1, then it would be possible to pass from (7.8) to a similar relation
for min,,  gm xm-1eom-s FolXo, .. .. X,), and then, continuing in the same
way, to arrive at (7.2).

From what we have said, it is clear that, to prove (7.2), it suffices to
show that, if j>1 and H;: G;—» R is a monotone convex mapping,
Lipschitz with constant 1, then the same is also true of the mapping
Hi(®;_, (x;_,))= H;_, (x,_,) G,_, = R. The monotonicity and convexity
of H; , are obvious.

Further, int G; # 7, and at each point x;eint G, the function H; has a
support functional belonging to G¥. By a standard argument, compactness is
alsotrueforx;e G;. Nowletx,_,eG,._;,andletx; = ®,_, (X;_,). Let /e G} be
the support functional to H;at X ;. It is clear that T= Mg [[¥] " (Z" w)]* 1} is
a support functional to H;_ | at x;_, (here x™ is any point the (j—1)th
co-ordinate of which is equal to x;_,). From the properties of the oracle,
||T||j..1',, < 1. Thus, at each point of G;_, the function ﬁj,l has a support
functional with norm < 1. 8o H,_, is Lipschitz with constant 1 on G;_,, as
required. The relation (7.2) has been proved completely.

6.7.7

Remark, Actually, we have already used the construction described above,
namely in Section 6.4, Indeed, solution of the operator inequality H (x) < 0 was
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there reduced to solving a ‘complex” stochastic problem s (H (x)) - min [x€ G
(see Section 6.4.3.1), and the latter was solved by reduction to a game of the type
F . The specific feature of the situation in Section 6.4 is that the function s (y)is
known a priori and does not require observation; furthermore, it is homogen-
eous and can be expressed in the form max, 2 {!|y > (G here is the same as
G, in Section 6.4.3.1). This special representation of s(y) (which, of course, is
also obtainable from (7.4) by taking the lower bound over y) is used in Section
6.4 instead of the representation (7.4), on which the whole plan of the argument
in this section is based.



7

Strongly convex problems

Up to now we have been studying first-order methods of solving ‘arbitrary’
convex problems. Now we pass on to the consideration of special classes of
such problems, which are distinguished by certain conditions of smoothness
and strict convexity. It should be remarked that most of the standard numerical
methods of optimization are oriented precisely towards ‘good’ problems of this
sort.

We start in Section 7.1 with a description of the classes of problems to be
considered, and in Section 7.2 we obtain lower bounds for their complexity. In
Sections 7.3, 7.4, and 7.5 methods are constructed which ‘almost” implement
this lower bound for complexity. The results in this chapter are based mainly
on the authors’ paper[32].

7.1 CLASSES OF SMOOTH AND STRONGLY CONVEX
EXTREMAL PROBLEMS

7.1.1

Let E be a real, separable Hilbert space (this understanding holds throughout
the chapter). The norm in E will be denoted simply by |- |. A function f: E - R
is said to be L-smooth if

(1) f is continuously differentiable;
(2) for all x, ye E we have

I E=flx—yp>l < Lix—y?
The condition (2) is equivalent, in fact, to
) | f(x)=fF (M < L|x—y|forall x, yeE,

i.e. an L-smooth function is simply a differentiable function whose first
derivatives are Lipschitz, with Lipschitz constant L.
A function f:E — R is said to be (I, Q)-strongly convex, | >0, ¢ = 1, if
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(1) f is continuously differentiable
(2) for all x, yeE

Hx—yP < L)~ Mx—y)><Qllx—y

Let us explain this definition. Suppose f is twice differentiable. Its second
differential (its Hessian) is a quadratic form on E. The function f is
(1, @)-convex if and only if the least eigenvalue of the Hessian is everywhere not
less than [ and the greatest eigenvalue is everywhere not greater than Q1. (In the
infinite-dimensional case, the eigenvalues are to be replaced by the lower and
upper bounds of the spectrum.)

A function f which is L-smooth for arbitrary L < oo is said to be smooth. A
function which is (!, @)-strongly convex for arbitrary [ > O and @ > 1issaid to
be strongly convex.

Let f be smooth. Then there is a minimal L = L such that f is Z-smooth.
Similarly, if f is strongly convex, then there are [, > 0 and @, > 1 such that
(I, Q)convexity of f implies <!, and Q > Q,; moreover, @ = L,/l,.
Suppose f is (I, @)-strongly convex. Then the following inequalities hold:

SR 3+ SO >+,
%Q (L.1)
S4B < SO+ S @I+ b,

we shall be constantly using these later. Conversely, if f is continuously
differentiable and has the property (1.1), then f is (}, Q)-strongly convex.

Exercise 1. Prove the assertions just made.

7.1.2

Let G = E be a convex, closed, non-void (but not necessarily bounded) set, and
let x, € G. We shall consider classes of problems of the form

f(x)>o min|xeG, (x)<0,15ig<m, (1.2)

determined by strongly convex (and smooth) functions f;. More precisely, let
L>0,0, > L. Let H=H, (G ml,, ..., L, Q. ..., Q,) denote the follow-
ing class of problems (we shall call it the class of strongly convex problems).

(i) the set of problems in this class is precisely the set of all problems (1.2) (i.e.
of functions f(x) = fp(x), . . ., f,(x))) such that the f are (i, @;)-strongly
convex, i=0,1,...,m;

(ii) the oracle is an exact, first-order oracle with E as its domain of questions.
In other words, a question can be put to the oracle at any point of E, and
the values of fix)and f'(x) are obtained as the answer;
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(iil) the normalizing factors r{f'} are defined in the following way. For every
xeG let

V (x) = max{ fo(x) = fi. 1(x), . . ., fu(x)}

( f, is the optimal value of the objective functional of the problem f;if f is
incompatible, then f, = + o). Then

r{y=r(f) = Vf(xl)'

The meaning of the normalization is clear. V,(x) measures the residual of x
regarded as an approximate solution of f, ie. the maximum deviation of the
functionals in the problem f at the point x from their ‘nominal’ values (i.e. from
the values required for an exact solution). The residual at a fixed point x, G is
taken as r;(f). The clause, ‘the method has an accuracy v’, now means that ‘the
residual of the result of its work is at least 1/v times smaller than the residual at
x,". As we shall see later, the complexity of the class H is basically determined
by the quantity Q = max; Q,. Q is called the modulus of strong convexity of the
class H.

As well as the classes H, we shall consider the classes H} (G, m; l,, ...,
Q6.+ ..,0,) These classes consist of all the problems feH, (G, m;
los oo ool Qo - - ., Q) which are either incompatible or such that

Vf(xl) = max {|fo{x;} AL A - )} < W

The oracle for this class is the same as for the class H, , and the normalizing
factors for all problems in the class are equal to V.

Let us look at the differences between the definitions of the classes H, and
H, . Clearly, application of the H} -method to a given problem requires rather
more a priori information than the application of the H, -method toit. In both
cases we need to estimate the parameters of strong convexity of the functionals
in the problem J. But in the first case we also need to have a priori an upper
bound for ¥,(x,) in order to know in which of the classes H) f would fall.
Moreover, an H, -method with error v will solve f with an (absolute) error
< V,(x;)v,but the H} -method of the same accuracy will solve it with an error
< Fv.Since V 2 V,(x;) = V,(x,)for compatible f, the second bound is always
worse than the first. Thus, from the point of view of application, H| -methods
are less convenient than H, -methods.

However, the loss here is largely theoretical. The point is that it is not difficult
to find an upper bound for ¥,(x,): it suffices to know the answer to a question
about fat the point x, and then to use (1.1). There is still a defect relating to the
‘coarser’ measurement of the error by H}, -methods than by H_ -methods. But
the dependence of the laboriousness of H' -methods on the accuracy is, as we
shall prove, logarithmic. Therefore, in all ‘reasonable’ situations, this depen-
dence is little changed if we go over from the H, -scale for error to the HY -
scale.
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The reason for introducingthe H ! classes is that, in certain cases, we are
unable to construct for H, such effective methods (as regards the bounds) as

for H, .

7.1.3

Let G be, as before, a convex, closed, and non-void, but now a necessarily
bounded, subset of E, and let > 0and x, €G. Let CS}, (G, m)denote the class
of all problems of the form (1.2) in which the £ are convex and the L;(f)are
smooth functions on E such that

max (L /)06 x + Pox, Vil ID <V

here

Pg,x, = MaX|y—x,|
Yeo
(on the left we have written down the natural upper bounds for the quantities
sup,f; (x)—/fi(x;)). The oracle for €S, is the same as for H} , and the
normalizing factor is V. The classes CSY are called classes of smooth convex
problems.

We observe immediately that solving smooth convex problems can be
reduced to solving strongly convex problems. For, let v > 0 be the required
accuracy of solution of problems in the class CS', (G, m). With each problem
feCS) (G, m) we associate its regularization f.
vWix—x,)* vV

Jix)=filx)+—

202, 2
it is clear that
v Hu'ol]l G 44 vV .2+v 2+v)
e 2 .My [EEEEEEY s 9"'!—,w‘
j ! pé,xl pé‘xl ¥ v

Suppose now that thereisa deterministic method #, of solving prqblems of Fhe
last class with an accuracy v/3. We construct from %, a method #, of solving
problems in CS% by the following obvious device.: we applyl the method #, to
the problem f*, and we put out the result x . of this application as the result of
the work of 4, on [. ‘ .

Clearly, we have actually describeda C'S + -method (information about [ is
calculated in an obvious way from the information about /). We shall prove
that it has the required accuracy v, provided that v < 1 (this is the only case
which is not trivial).

1t is possible that x; # . Then

frixg) < (1 +;)‘§ vii<i<m,
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and

V
filxg) Sfi'(fo% gw,1<gi<m
Therefore if f is incompatible, we have v(x,, f) < v.
Now let f be compatible. The f* is also compatible, and so, from the
properties of %, we have x,+# .. Moreover, (f"), </f,, and, from the
properties of &,

Jolx )< (f"), +§V(1 +_—;) Sf_+g V(l +§),

V
Jolxs) sf;(xf)+"7s fo+vV.

This inequality together with the previous one shows that x , is a solution of the
problem f with an error < v. Thus &, solves problems in CS} (G, m) with
accuracy v; and its laboriousness is equal to that of 4,.

In view of what has been said, we shall pay main attention to classes of
strongly convex problems. The methods of solving them also induce methods
of ‘smooth convex’ optimization,

7.14

We begin with a simple—'simple’, at any rate, so for as the idea is concerned—
method of solving strongly convex problems, which is a natural generaliz-
ation of the classical pradient method. Suppose we have a class of
problems H = H, (G, m;l,, ..., 1 ;Q,, ..., Q,). Themethod being described
constructs ona problem fe Ha sequence of points x,, x,, . . .such that, forall i
for which x,e G, we have

V() < (1 —é)vf(xi_l) (13)

{Q is the modulus of strong convexity of the class H). But if x;¢ G, then
Xi+s = #, 5 2 1, and also v(x;, f) = 0 (i.e. f is incompatible). In particular, to
ensure an accuracy v it suffices to make

Inl/v 1
}W[ < :lQ ln;|i steps.

We describe the (i — 1)th step of the method. Suppose that at this step we
already have a point x; ,€G U {4«}. If x;,_, = 4, then we also put x; = «.
Otherwise let

S x(D = fil)+ S y—x>+3QL(y - x).
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We solve the problem

(P ) Jo,%_,(¥) > min|yeG,
Six )< (l —%)J},,.-l(x,--l), l<jsm

To form the problem P,_, it suffices to put to the oracle a question about f at
the point x;_ ;. We take the solution of P, as x; (if P,_, isincompatible, x; = «).

Let us satisfy ourselves that the method described really does have the
property formulated in (1.3) of reducing the residual after the step. Suppose
first that x; e G. In view of (1.1), when j 2 1 we have

) < fy e () < (1 —%)1:-, i) =fj(x,_1)(1 —é). (1.4

Hence it is clear that if f is incompatible, then
1 1
V,(x;) = max fi(x;) < (1 - ) max f;(x,_;) = (1 __)Vf(xl‘—l)»
izl Q/i< 4]

as is required in (1.3).
Now let f be compatible and let x* be its solution. Then, by (1.1), forallf > 0,

i
f}(x") ?fj(xi—l)+ <f;’ (e— ) x* —x; >+§J(x*_x.'—1)2- (1.5)
Putting 1
y=x_, +a (x* —x;_4),

we find that ye G and

Jix_, (Y =f;,xi,(xi_1)+é [<f,-’ (o) x*—x;_, >+%tj(x~_x“)2}
Sy, )+ ) 5)
(we have used (1.5)). Thus
Som )< éf,-(x“H(l —%)f,-,xfﬂ (hpm). (16)

Hence it is clear that P; | is compatible (y is a feasible point for it), and so,
when f is compatible, x,€ G. Moreover, putting j = 0 in (1.6), we find

%f; +(1 _é)fo(xi—l)s

fﬂ(xi—l)_fts (1_212') (fo(xi—1)_f,.)- (L.7)

Jolx;} ‘<‘~f0,x‘-_1 (x) S-fo,x,-_l(}’) =

iLe.
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We see that, when [ is compatible, (1.7) holds as well as (1.4, and hence
Vf(xl’) = max {fo (x;) _f.;,f1 (xS )

1
= (l ‘6) max{fo(xi—ﬂ—f*,ﬁ (xioy) oo Sux )}

1
= (1 —a)v,r(qu),

as required. The proof is completed.

Example . Let G = E, m = 0. The method becomes the classical method of
gradient descent with a constant step:

1
X=X _@fo(xi—ﬂo
Example 2. Letm = Oand G be arbitrary. The functionf, (y)attainsa global
minimum (i.e. over all y e E) at the point

1
Y= x_—f, (x)°
Qoly” *
As we move away from y_, the function increases proportionally to |y —y,|%.
Therefore its minimum on G is the point of G closest to y,, i.e. n;(y,). The
method thus is of the form

|
X = "c;(xiﬂ_Qjo’f;) (xi—l))-

We obtain the standard gradient projection method with a constant step.

Apart from these two cases, the method described is acceptable in practice, it
would appear, only when G = E and for small m. For, in this case, a step
consists in solving a conditional quadratic problem over the whole space.
Moreover, all the quadratic terms have the standard form Ax?. This problem
can be solved by going over to the dual problem, the objective function of
which can be written out explicitly. Thus, a step reduces to solving a convex
problem of small dimension (m is small, by hypothesis).

In other cases use of the method is limited because of the high computational
complexity of a step.

7.1.5

We see that the complexity of the class H, admits an estimate in terms of its

modulus of strong convexity (apart from its dependence on the other
parameters of the situation):

N(v)é:lanJ,%[. (1.8)
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It is not clear, however, to what extent this bound is accurate. Running ahead
slightly, we shall say that it is ‘correct as regards v’, but ‘too much dependent’ as
regards Q. The proper bound is O (\/Q In 1/v), provided the dimension of E is
sufficiently high. Obtaining lower and upper bounds of this sort and
constructing a method which realizes the upper bound are our objectives in the
next section.

7.2 QUADRATIC PROGRAMMING AND LOWER BOUNDS OF
THE COMPLEXITY OF STRONGLY CONVEX CLASSES

7.2.1

In this section we study the complexity of the simplest model object of strongly
convex programming, namely, the class of quadratic problems. We shall deal
with problems of the form

Sap,e0) =3 {Ax|x> = (blx>+c— min|x€eE, (2.1)

where A is a bounded, non-negative, Hermitian operator. (A reader who is not
familiar with these concepts may consider the finite-dimensional case; A is then
a non-negative definite, symmetric matrix) Also, be E in (2.1). The problem
Jab.c 18 (1, @,)-strongly convex, I, and 1,Q, being the minimum point and
maximum point in the spectrum of A (in the finite-dimensional case, the least
and greatest eigenvalues of A). Let H(E) denote the set of all such problems. If
{,=0,theny, , .is L -smooth, L, being the maximum point in the spectrum
of A

For solving problems of this kind there is the well-known conjugate-
gradients method (CGM). Its work, if one is not interested in the
algorithmic aspect, looks like this. Let E,={0} and, for i>1,
let E;(A,b)= L(b, Ab, ..., A'"'b). Here, and later, £ denotes the closed
linear hull of the vectors listed in the brackets. Then the ith point of the
trajectory of CGM on f, , . is the point where this function has a minimum on
E,_,(4,b)izl

It turns out that the CGM is, in a certain precise sense, the optimal method of
solving quadratic problems. We shall first prove this fact, and then estimate the
laboriousness of the CGM,

7.2.2

Let H'(E) be a certain subclass of problems of the form (2.1) such that
min, f, , .(x) = 0. We shall say that H'(E) withstands rotations if

Jav.c.€ H'(EY implies fi. 4 yop, . € H'(E),
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where U is any orthogonal operator. In other words, H'(E) necessarily contains
all ‘rotations’ of f whenever it contains f.

For fe H'(E) and x € E we define the error of x regarded as a solution of f
thus: the relative error is

S iC)]
=50

V(x,f) =f(x).

Suppose that a deterministic first-order method (i.e. the oracle gives only the
values of f(x) and f'(x)} is used for solving problems from H'(E). Let
I{v, H'(E))and J (v, H'(E)) denote the complexity functions of the class H'(E)
in relation to the arsenal of methods mentioned, corresponding respectively to
the definitions of relative error and absolute error. Also let I,(v, H'(E)) resp.
Jo(v, H'(E)) be theleast N for which a CGM with N steps still ensures a relative
error resp. absolute error < v in the solution of all problems from H'(E).

The sub-optimality mentioned earlier of the CGM consists in the following
result,

and the absolute error is

Theorem. Let H'(E) withstand rotations. Then
lo(v, H'(E)) < 21 (v, H'(E)); Jo (v, H'(E)) < 2J (v, H' (E))
(i.e. no method can be more than twice better than the CGM).

Proof. We shall prove the first inequality. Suppose it is false. This means that
for a certain v > O and a certain natural number M there is a regular method #
of solving problems from H'(E) with M steps which solves all the problems
with accuracy v, whereas the CGM with 2M steps does not have this capability.
In particular, dim E = 2M, because the CGM with dim E + 1 steps solves
exactly any convex quadratic problem, (Why?)

Let f, , . = [ be that problem from H'(E} which the CGM with 2M steps
does not solve with accuracy v. We consider the chain of subspaces
E; = E;(4,b).If,foragiveni, E; = E;,,,then E,, ; = E;forallj > i.Itiseasy to
see (and we shall not prove this fact in linear algebra} that the point x* of a
minimum of f, , . (i.e. A~ 'b)liesin L(b, Ab, A%b, . . . ). Therefore, for such an
i, x* € E,. Therefore i = 2 M, otherwise the CGM with 2M steps would solve
Ja b, exactly.

Thus E; # E; ., for0 £ i < 2M —1. Now let g, be a unit vector lying in E;_,
and orthogonal to E,,i =10, 1, ..., 2M — 1. We proceed in the following way.
Let & put its first question at the point x,, We find an e, with |¢,| = 1 and such
that x, € £(ey), and choose as ¢, any unit vector orthogonal to e,. Let U, be
any orthogonal operator such that U, e, =g, U,e, = ¢,.

Now let x, denote the second point at which the method 4 puts a question
about the problem fy,» .y, usy, .. We continue the construction in the same way.
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Suppose that, up to the nth step (1 < n< M), the orthonormal vectors
€5, €4» ... » €n_4» €243 and the orthogonal operator, U,_, have
already been constructed such that U,_, ¢;=g;, 0 < j<2n-3. Let x, be
the nth point at which & ‘puts a question’ about the problem
Jus_ av,_,,u*_ b (When n=M it puts out the result). We choose e;,_,,
;1 SO that x,e ¥(eg, ..., ;,-,) and so that e, ..., e;,, forms an
orthonormal system. Such a construction is possible if 2n < dim E, which is
automatically so when n < M (we have already proved this). We now also
define an orthogonal operator U, by the condition U,e; =¢;, 0<j<2n-1.
This completes the step.

After M steps of the procedure described, the vectors eg, ..., &5,
and an orthogonal operator U, will have been constructed such that
Uye; =g, 0€j<2M -1 We show that x,, ..., x,, is the trajectory of
4 on the problem fys (v, uts,- BY the lemma on indistinguishability (see
Section 1.5) it suffices to verify that the information supplied by the oracle
about the problems fy» (v, v, and J URU Ut coincide at each of the points
Xy, Xg, - - -, X; By comstruction, x,, ..., x;€ £(eq, . .., €3;_3). Therefore,
when j =1 and £ < j,

futav, opne () = CAU U x> = (blUpx > e
=4 (AU x| Uyx > — {blUx, > +¢,

because U, and U, coincide on (eg, . . ., e;,). Further,

f’u'},qu,.,u;b‘,(x,) = U}‘AUJ-xt— U}‘b
and
S g av,, vy b, 0) = U AU yx, — Uth,

U, coincides with U; on (e, ..., €;;-,)3x, and carries this subspace
into E;;_;. A carries E,;_, into E,;, and it remains to verify that U}, = U¥
on E,; Thisisso,since U¥ = U and U} = U, ' and U g, = ¢, = Uy' g,
when s < 2j—1.

Similarly, U; 'b = U,'b, because beE, = Eyjforall j 2 L.

Thus x,, is the result of applying & to fus ,u.,. v%s, - Since H'(E) withstands
rotation, from the definition of & we have

il'lf fA,b,c(x)

)fu;AuM,U:,b,c (x) _fA,b,c (Un*n) _ xesy,, -,

Y it ine®  Sane©® O JeselO)

(we have used the fact that Uyx, € £(gy, - - ., g2p—2) = Ezp—1)- But the last
ratio is > v (it is equal to the error of the CGM with 2M steps on the problem
S a5 The contradiction thus obtained proves the first inequality in the
theorem. The second is proved in exactly the same way. So the theorem has now
been proved.




264 Strongly convex problems
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We shall apply the result obtained to estimate the complexity of classes of
smooth convex and strongly convex problems. Let H(E, () denote the set of all
problems/, , .e H'(E)such that the spectrum of 4 lies in the interval [1/Q, 1]
and |b| = 1, and let H(E) denote the set of all problems f, , . H'(E) whose
solutions have a norm < 1, and such that |b| = 1, |A] < 1. The functions
Iy, Jy corresponding to these classes clearly depend only on the linear
dimension of E (on whether this dimension is + o0 or not-—and if not, on what
its value is). Accordingly, we let I,(v, n, Q) and J,(v, n) denote the functions
Io(v, H(E, Q)),dim E = n,and J, (v, H(E)),dimE = n. Heren= 1,2, . . ., .
Then the following theorem holds.

Theorem. The following assertions hold.
(1) IO(V!na Q):min{n"_lsIO(ve 30, Q)}!
Jo(v, )y =min{n+1,J, (v, )}l

(2) Let x, eint G and let p,(x;,éG) =r < o0. Then the complexity N (v) of
the class H, (G,m; Iy, ..., L Qo, . .., @,) with Q = max, @, admits the
lower bound

Nw) =i, (v,dimE, Q)—1.

(3) Letx, eint Gand letp (x,,8G) = r < 2. Then the complexity N (v)of the

class HY (G.m; lg, ..., 1 Q,, ..., Q,) admits the lower bound
N(v) 24 max Ik, dimE Q)—1,
0gigm
where
K axql vk
. = I —_— N
: x Lt

In particular, if for some i, with @, = Q we have ], <lyand ¥ <4 r?,
then )
N = iIl,(v,dimE Q)—1.

(4) Let G be a ball with centre at x,. Then the complexity N (v) of the class
CS;, (G, m) admits the bound
N(v) = 3J,Q2v,dimE)-1.
Exercise 1. Prove this theorem.
This theorem reduces the problem of finding a lower bound for the
complexity of the classes considered to the computation of 1y(v, o0, @) and

Jo (v, o), Le. to estimating the laboriousness of the CGM on a certain class of
infinite-dimensional quadratic problems. We now study this matter.
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1t is more convenient to estimate, not {,(v, H'(E)) for the corresponding
H’'(E), but the inverse function

v(n, H'(E)) = inf {v|the CGM with n steps solves all problems from H'(E) with
a relative error < v},

¥(n, H'(E)) is defined similarly, with the relative error replaced by the absolute
error. When dim E = ¢ we let

v(n, H'(E, Q)) = v(n, Q), V(n, H(E)} = ¥(n)

(this is a proper definition in the sense that the left-hand side does not depend
on the actual realization of E with dim E = o).

The investigation carried out in the next two sub-sections is close in
character to that carried out in [20]. The resulting lower bounds of the type
(2.7), (2.12) were first obtained, it would seem, in [25-26].

7.2.4

LetA=1[a,1],0 < a < 1,and let u be a non-negative Borel measure on A with
u{A) < 1. We put E = L, (A, p) and consider the quadratic problem

STx1 =4[ ex? (0 dp(©) — [ x(0)dp®)+ 3[4 du(r) » min|xeE
A A

(we suppose that u is such that

o)

We examine how the CGM works on /. By definition, the ith point of the work
of the CGM on [ is the point of a minimum of this function on the subspace
spanned by the functions 1,¢t%, ..., t”2 ie on the subspace %, , of
polynomials of degree < i—2. When l/te L, (A, u) we have

‘ 1 1\
JIx) =3 J t(x(t)—;) du(r) (2.2)

and inf, f[x] = 0. Let v(n, ), resp. ¥(n, f), denote the relative, resp. absolute,
error of the CGM with n steps on f. We find that

min [t (p(e}—1/6)* du(r)
y _ PEF, _1 A
vinm f) = [1/tdn() ,
a ,
o (2.3)
¥n,f)= min Jr(p(r)——) du(o).
FE P, t )

A
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Let a = 1/Q, and let u be any probability measure. We introduce the measure
R(1):
_ 1
dR(e) = Sdul)
We have
§ep(— 1) dir(2)

vin,f)= min a
i ai()

Further, fe H(E, () and so

§(tp() = 1y di(r)

M A = * 2 =
Q) > min min P diEQ),
A

whereI1,_, = {pe #,_,|p(0) =_1}, and fi is the probability normalization of
f. When u changes, the measure u traverses the set # , of all Borel probability
measures on A, Therefore

v(n, @) = max min [p*(1)dy(r)
reF,pell, . A

= min max [p?()dy(t)= min maxp?(t)
peF 1 vEF LA pell,_; teA

(ininterchanging the order of taking the maximum and minimum we have used
von Neumann’s lemma). Thus
v(n, Q) > min max p(i). 24
pell,_, teh

(2.4) is, in fact, an exact equality, but we shall not need to use this fact.
To estimate ¥(n) we proceed similarly. Let a = 0. We observe that, if

1
J‘F du( < 1,

then fe H(E). In other words, let du(z) = t2dy(t), where ¥ is a probability
measure on [0, 1] = A which is not concentrated at (. Then (A} < 1, and so
the function f from (2.2) lies in H(E). Therefore, in view of (2.3),

V(n,f)= min %ff(rp(t)—l)zd?(t),

pe ‘(?nfl
ie.

¥(n) > min %erz(r)d?(f)

pEHn—l
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for every probability measure y. Therefore, as above,

o b, o1 )
¥(n)> max min - ftp?()dy(r) = min 5 max p*(r).
vEF ey pell,_; #0<t€1

Thus

1
#(n) == min max p*(2). (2.5)
pell,_, 0<t=1
The relation (2.5) is, in fact, an exact equality, but we shall not need to use this
fact.

7.25

We are now in a position to estimate v{n, ¢} and ¥#(n). We begin with the first.
From the definition of IT,_; it is clear that
min max pi(f)={ max |pO)|}7?

pell,_ 1eA rpe?,_,
lp| < 1onA

S |
—‘\ pE.;ﬂ_l P Q-l

[p|<1on[-1,1]

(in the last transformation we have extended the interval Ainto [—1, 1]). Thus
the matter reduces to seeking a polynomial of degree n — 1 whose value at the
point t = 1 +2/(Q —1) is maximal, under the condition that on [ — 1, 1] this
polynomial does not deviate from 0 by more than 1.

The solution of this problem is given by Markov’s theorem [1]. The
appropriate polynomial is the Chebyshév polynomial T, _; (x) of degree n — 1,
independent of the choice t¢[—1,1]. Moreover, for t = 1, we have the
representation

T,_,(t) = cosh {(n—1) cosh ™" £} (2.6)
Thus
vin, Q) = [cosh { (n—1)cosh™* (1 +2/(@ - 1)}]7%,

which, after an elementary estimation, gives

0-1 1
2z [F—In-+1 2.7
Io(v,0,0) > [Fre—Ins+ @7
The calculations for ¥(n) are more complicated. Let
g(n) = min max |p(t)l. (2.8)
peEFy, 1€[0, 1]

pO) =0, PO} =1
1t then follows from (2.5) that
¥(n) = Lg(n). 29
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The function g() can easily be calculated. Namely, let Ty, 1(x) be the
Chebyshév polynomial of degree 2n— 1, and let x,, be its zero which is furthest
to the right on [ — 1, 1]. It turns out that

1

gn) = = . 2.10
) T, G+ x @10
Exercise 2. Prove (2.10).
Using the fact that T,(x) = cos(ncos ™! x), we obtain
sin {n
42n—1)
n—1
Thus
Sin -
} 4(2n—1) n/2
=
YW1 T6eno1p’ @11)
which gives
1
Jolv, ) = . 212

Exercise 3. The class H(E), whose complexity is, in fact, J4(v, dim E)
contains problems which are arbitrarily badly conditioned (i.e. problems
not lying in H(E, Q) with arbitrarily large ¢). Explain how to reconcile
the unbounded growth cf the right-hand side of (2.7) when Q — oc with the
bound (2.12).

(The point is that the normalizations of the error in the calculation of I, and
Jo were different: in the first case, we were studying the relative error, in the
second case, the absolute error. »

7.2.6

Taking into account the assertions of Theorem 7.2.3, the bounds (2.7) and
(2.12), we arrive at the following:

Theorem. For certain absolute constants c,, ¢, > 0, the following lower
bounds hold for the deterministic complexity N(v) of the classes of strong-
ly convex and smooth convex problems on an nr-dimensional Hilbert
space.

A. For the class H, (G,m; Iy, ..., 1; Qo ..., Q,) with max; @, = @, when
X, emtG

N{(v) 2 ¢, min {n, vO-1 lnl} when v < 1. {2.13)
¥
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B. For the class H} (G, m; 1y, .. ., b,; Qo. - . ., Q) with max; Q; = Q, when
x, eintG

l .
N zc min{n, VO-1 ln;) when v < v (H}). (2.14)
Here v, (H_ ) > 0. if, for some i,, we have
2V
Qiu =0, Ii(, <k,

T s_
liupH (x,,2G)
then we can take vo(HY ) = 1.
C. For the class C'S ] (G, m) in the case where G is a ball with centre at x,,

1

7

Ny =zc, min{n,:}—_}when v< L (2.15)
v

Remark. The bounds provided by Theorem 7.2.6 were established on the
assumption that the classes in question are equipped with an exact oracle of the
first order. It can be proved that the same bounds also hold for the
deterministic complexity of the classes obtained from those defined above by
replacing this oracle by any local deterministic oracle. We shall not give the
rather tedious proof of this assertion.

7.2.7

The estimates in Theorem 7.2.6 cannot describe correctly the behaviour of the
complexity when v — 0 for the case where n = dim E < oo, since their right-
hand sides are bounded by a quantity of the order O {n). This fact is connected
with a special feature of the model classes of quadratic problems, the
complexity of which is essentially the right-hand side of the estimates
(2.13}(2.15). In fact, any quadratic problem can be solved exactly in n steps. It
is clear that these bounds are automatically under-estimated for those
accuracies v for which the ‘dimensional effect’ comes into play (for {2.13}-(2.14)

these are those v for which ./Q—1 In 1/v  n, and for (2.15) those v for which
1//v » n).

A priori it might be found that (2.13)-(2.15) are essentially under-estimated
for all v. But in the following sections it will be proved that actually this is not
so, at least for the classes H, withm = 0, for the classes H 51 ,and for the classes
CS; . We shall learn how to solve problems from these classes with a
laboriousness respectively

1 1 1 1
~ » [In—f - |l ~ In*@} - [In-|, and ~— |In*-|.
Ve[ Joel . ~ v e[ jus] s ~ I o]
Comparison of these upper bounds of the complexity with the lower bounds
(2.13)-(2.15) shows that the latter describe ‘almost correctly’ (ie. up to a
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logarithmic factor) the behaviour of the complexity N (v) of the above classes in
the range of variation of v and Q in which the ‘dimensional effect’ does not
operate. It can be said that the estimates (2.13)}~2.15) isolate ‘in pure form’ the
effect of strong convexity on the complexity;, they show what happens
asymptotically as dim E — c0. When dim E is finite, various kinds of ‘side-
effects’ can arise for the classes considered. For example, for solving problems
feH, , feH!, feCS!, we can use the methods for solving general convex
problems, ignoring in practice the specific character of the classes under
consideration. Analysis of this possibility shows that, when dim E is finite, the
bounds (2.13}-(2.15) cannot be exact for all values of .

We now sharpen the lower bounds for the complexity of classes of strongly

convex and smooth convex problems which are effective over the whole range
of values of v > 0.

Theorem. There are absolute constants v, ¢,, ¢; > 0, @,, and functions

n(Q, v) < o, n(v) < 20, such that the deterministic and stochastic complexities
of the classes

H_xl (Gs m; [09 LR Y lm; Q07 sy Qm)s H:I(G,m, le LR ] lm; QOr s sy Qm)s
CSfl(G, m)
satisfy the following lower bounds; here n = dim E.

A. For the class H, (G, m; Ly, .. ., I,;; Qo, . . ., Q,,) with max; Q; = Q, when
x;€intG and Q = 2,

Nm>crﬂgﬁiﬁnglwmnv<L (2.16)
lnmin (n, \/Q) ¥
Under the conditions n = (Q, v), @ = @, and v < v, the bound
N) = q¢rM~ (2.17)

also holds.

B. For the class Hfl (Gom; Ly, ..o, 1s Qgs - - ., Q) with max; @, = Q when
x,eintGand Q =2

min ( \/_ 0)
N =
0} = e In min (n, \/é

Here vy (HY ) > 0. If, for some i;, we have

2V
0. =0l <y, — " g 1,
SO 1,0t (x,,06G)

then it is possible to take volH ¥y = 1. Under the conditions n > n(Q, v),
0 > Q. and v < min { vy, vo (H} )}, the following bound also holds:

OE erm_ (2.19)

ln for v < vo(H) ). (2.18)
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C. For the class CS),(G,m) in the case where G is a ball with centre
at x,,

Nw 2z mm{ v} for v < vg. (2.20)

\/- lnn

If also n > n(v), then

Ny =2 forv<l. 2.21)

Jo

We point out that the above bounds for N (v) and N (v) also hold for the
classes obtained from the classes above by replacing the exact first-order oracle
by any local deterministic oracle (for N (v}—by any local oracle).

The proof of Theorem 7.2.7 is very tedious, and we omit it.

7.2.8

The results obtained show what should be striven for. We see that it is
impossible to solve strongly convex problems by methods which converge
more rapidly than linearly (i.e. the asymptotic behaviour of the complexity as v
— +0 cannot be of a better order than Q(In 1/v). On the other hand, the
gradient method in Section 7.1.4 provides this asymptotic behaviour. However,
the complexity of classes of strongly convex programming problems is
determined not merely by the required accuracy, but also by the ‘conditionality’
of the classes considered—i.e. by their modulus of strong convexity Q.
The lower bound for the complexity here (in the case dimE = oo} is

O(\/Q In 1/v), and the bound for the laboriousness of the gradient method
is O(QInl/v).

The lower bound is, as already mentioned, exact, and so the gradient method
is ‘too sensitive’ to the conditionality parameter Q of the class. But, in fact,
badly conditioned problems (with large Q) are encountered rather often, and
therefore it is desirable to modify the gradient method so as to reduce its
sensitivity to Q down to the theoretically possible level. This problem is solved
practically in the next three sections.

We further remark that the results of Theorem 7.2.7 show that the stochastic
and deterministic complexities (or rather, their lower bounds) of the classes
in question behave in the same way asymptotically as dim E — oo, and so here
too, as in the case of general convex problems, deterministic methods
which ‘almost’ realize the lower bound of N (v) (and such methods will be
constructed) ‘almost’ realize the lower bound of N (v) as well; that is, their
randomization cannot produce a ‘radical’ effect, at any rate not for large
dim E.
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73 STRONGLY CONVEX PROGRAMMING; UNCONSTRAINED
PROBLEMS

7.31

In this section a method will be constructed for solving strongly convex
problems of the form f;, (x) — min | E, (i.e. in our notation, problems of the class
H_ (E,0; ly; Qp)) which have a lower bound for laboriousness of the order

\/_ In @ In 1/v), which, by Theorem 7.2.6, is the same (up to the logarithmic
factor O (In Q)) as the lower bound for the complexity of the classes (at least,
when dim E is large). We start by describing the idea of the method. To
construct a method with a laboriousness O( \/a In 1/v) is the same as learning
how to decrease the initial residual by a factor of 2 after O \/6 ) steps. The
CGM is able to do this on quadratic problems, It is natural to try to extend this
method to the general case, still preserving this property.

Let us establish the ‘true’ properties of the CGM—as far as possible, the
simplest ones—by virtue of which it is able to halve the residual so quickly.
After that we-can try to ‘stretch’ these properties to meet the requirements
dictated by the general case.

It turns out that the CGM halves the residual after O (\/a ) steps because of
some simple geometrical circumstances. Let x, =0, x,, . . ., x,, be the first M
points of the trajectory of the CGM on the quadratic problem
J=fis€H(E, Q) andlet p; = f'(x;). Then it is clear from the definition of the
CGM that

(1) f(xisr) < flx)—305

(2) p;is orthogonal to p; + ... +p;_y;

(3) p; is orthogonal to x; — x,;

4) {plx*—x;> < f(x*)—f(x;}, where x* is the minimizing point of f;
(5) if x* is the minimizing point of f, then

Vf(xl) =f(x1)_f¢ 2%{-"* —x,)%

For, x;, is the minimizing point of f on E,(A, b), which contains x; and p;.
Therefore

F) S f0g—p) < flx)— P;+2P| =f{x;)—

(we have used (1.1)). This proves (1). Assertion (2) is obvious, because
Dis .- - Dic1 € E;_ (A, b), whereas p,is orthogonal to E; | (A, b) (since x,is the
minimizing point of fon E; _, (4, b)). Finally, x; € E,_,, and so p, is orthogonal
to x;, which proves (3). The inequality (5) fol lows immediately from (1.1) when
x = x*, y = x,. The relation (4) is obvious because of the convexity of f.
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It turns out that it follows immediately from (1}-(5) that the CGM rapidly
halves the residual. For, let us suppose that

Vi (xy) > %Vf(xﬂ-
Then, by (1)

Z pi < V,(x)). 3.1

Moreover, by (4) o
JO*) 2 )+ (pilx*— x>,

i.e. using (3) we have

vf(xl).

(plx® =) € =)+ (%) = =V, () < =V, () < -~

Adding these inequalities over i = 1, .. ., M — 1, we obtain

M-l M-1
'Y pllxt—x, < (Y plxt—x )< _w
i=1 Pt

3

ie.

M=V, (x,)

_xl

Z P =

i=1
Because of (5) this inequality gives

V20V, () ‘"z"p,.[g ......... M=V, (x)

5 (3.2)

i=1

In view of (2)

Z P =

i=1

Z pl V xl

(the last because of (3.1)). Substituting the last estimate into (3.2), we obtain

V20V, (x) ;W, or M~1<2./20.

Thus, at the step with iteration number 2 \/ﬁ the CGM has certainly halved
the original residual.

In this argument only the facts (1}{5) have been used. Let us see whether
it is possible to ensure their validity in the general situation where fis any
[1/Q, Q]-strongly convex function and, as before, p, =f'(x,). Here the
relations (4} and (5) hold automatically: the fact that f was quadratic was not
needed in deriving them from (1.1). To prove (1) it suffices to shift from x, to the
point X; = x; —p; (in doing this, f decreases by not less than 4p?, because of
{1.1)), and then to take as x,., any point such that f(x;, ) < f(%,).
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We have only to think out how to ensure that (2) and (3} hold, i.c. to ensure
that p;, , is orthogonal to the pair of vectors x;,.; —x;and } | p ; = q;. For this
it is sufficient that x;, , be the minimizing point of f on some affine subspace
E' = E which contains the point x; and the point x, + g;. It is still necessary to
ensure that the inequality f(x; ;) < f(¥,) shall hold, and for this it suffices that
E' shall contain X,.

Thus E' must contain x,, x, +¢;, and X; so E' can be regarded as a
2-dimensional (affine) plane passing through these three points. The construc-
tion of x,,, thus reduces to the minimization of f on a 2-dimensional plane.
But we know how to solve 2-dimensional problems quickly (by the MCG or
MMCQG) irrespective of whether fis strictly convex or just convex. Of course,
we cannot solve the problem of minimizing f on E’ exactly, and so, in the
implementation of this approach, peoints (1}-(3) above will be satisfied
approximately.

It is not difficult, however, to estimate the accuracy with which the
2-dimensional problems must be solved, and it turns out that to solve them
with this accuracy requires a number of steps of the order O(ln Q). Thus the
construction of x; . , will ‘cost” O(In Q) questions about f—with accuracy up to
the cost of the 2-dimensional optimization of f It suffices to construct
altogether 0(\/6 ) points x,; if (1)}+5) hold with the necessary accuracy, then
the residual is halved after this time. Thus the residual can be halved after a time
0(\/6 In @), losing to the quadratic CGM by O (In Q) times altogether. Having
halved the residual, we take the last of the points constructed to be the new
value of x,, and then repeat the process, and so onwards. (In ‘analytical’
analogues of the CGM, this strategem is known as ‘re-initialization’ (a word
due to Polak; see Section 8.2.1, and [27], pp. 46, 55, 259).

7.3.2

We now give a precise description of the method. The method is applicable to
problems of theclass H, (E, 0; ly; Q) = H, .Itis made up of stages, a stage—of
periods, and a period—of steps.

1°. Let v <1 be the required accuracy. The method constructed to this
accuracy consists of
1
M = |logs—
o¥) :l B4 Vl:

stages; the structure of a stage does not depend on v. The ith stage
i=1,..., My(v))hasaninput x,,and an output %, ,, which (when i < M, (v))
is the input of the next stage. The output of the last stage, x,, (,+ (, is the result
of the application of the method to the problem under solution. The input of
the first stage is the point ¥, = x,.
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2°. All stages have identical construction {up to the value of the input). We
shall describe the stage which has an input %. Let f be the problem under
solution. Let @ = max {Q, 2}. The stage consists of M,(Q) = ]2 \/6 [ periods;
the ith period (1 < i < M, (Q)) has the input (x;, ), x;, g;€ E, and the output
(X;+15 4 +1)» which—when i < M, (Q)}—is the input of the (i+ 1)th period.
Here x, = X%, q, =0; Xmo +1 18 the output of the stage.

3°. The ith period is constructed as follows. Let (x;, ¢,) be its input. Let E
denote the affine subspace of E spanned by the points %, x;, X+ g;,and let V, be
the ball with radius r = (2//,)| f'(x)| with centre at % In the ith period the
following operations are carried out.

(1) By means of MCG or MMCG constructed for a relative accuracy of
& = (1/(96Q0))?, the problem of minimizing f on E' n V; is solved. Let
M (Q) be the number of steps in the corresponding method. Then, by the
results of Chapter 2, M,(Q) < c In @, where c is an absolute constant.

(2) Let X; be the result of the work of the ‘2-dimensional’ method. If
f(&) > f(x;), put %; = x;; otherwise put %, = X,.

At X; a question about the problem f is put (in fact, this has already been

done—because MCG and MMCG are so constructed). Let p; be the
projection of f'(X;) on to the orthogonal complement to E' —x. Put

Xpey =% =)/ 0, qivy = g+ ps
This ends the period.

7.33

Theorem. The method described, constructed for an accuracy v < 1, solves
all problems from H, (E, 0; l; Q,) with an error < v and with laboriousness

M0) = MM (@M, (@) < c,Tin [ /8D,

where ¢, > 0 is an absolute constant and @ = max (Q, 2).

Proof. The bound for the laboriousness is obvious from the description. We
prove that the method ensures the required accuracy. Let f be the problem
under solution. It suffices to prove that at the stage with input % and output y
we have

Vo(y) < 3V (%) (3.3)

Suppose the contrary. By construction
JE 2 x) 2 &) 2 () = ... 2f(y,) 2f(xy, ) =f(3). (34)
Here M, = M, (Q). Therefore V(¥) < V,(X), and therefore, since (3.3) is false,
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f'(x) # 0 and V,(x) # 0. Further, by (1.1),
S+ S+ SR> +3100%

whence » )
Sl )< Sx)— "2““1"'“@“ Sflx)— 21 Q
which, by (3.4) and the falsity of (3.3), leads to
2 p? < 2,0 (V%) — V(7)) < 3,0V, (%). (3.5)

i=1

Moreover, because of (1.1),
Sx+h) 2 @ =1 ® ki +3 kP,

and so, outside V, we have f(x) 2 f(X). Therefore min, ., g /= ming /- But the
variation of f on ¥, clearly does not exceed

2
2171+ 51601 = LG+ Q1S P
o 0

4420
-1

0

_ 49 ., _
FEF < 2 @P.
0
Therefore _
- : 4Q oy |2
Jix)—inff< 5T |/ (%)~ (3.6)
E 0
Now let ¢ E'— X be any unit vector. Then

fGtte) )+t (S (R)led+—5 °
whence, by (3.6),

Qe

SEe? _ 42
20,0 l

|Pf (%)) <3 /8011 (%), 3.7)

where P, is the orthoprojector on to E‘—X. Since f () < f(x;), we have
[x,—%| < r. Similarly, for the minimizing point x* of f on E, we have
[x*—X| < r. But

FACI]

ie.

SO 2 (%) + Sl x* = X ),
or

(pilx*—%) = (plx*—%,> < () —f(E)+1p— S ) x* = %
< =3V, (D+6./501 /(R
=~ @+ IS (38
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We further observe that V(%) = f(x) f( f'(;)) = |f'(%)|*/21,Q (we have
used (L.1)). Therefore o

2L A < 2400 /BV, (9 < 1V, 9
from the choice of 4. So we obtain from (3.8)
(pilx*—x ) < =V (x)/2
Summing over i = 1, 2, ..., M,, we obtain
(g +11X* — ) < = 1M V(). (3.9)

But p, is orthogonal to ¢, and so, in view of (3.5),

lawail < |3 P \\/ V, (%),

i=1

Moreover, it is clear from (1.1) that V,(x) = Tl Ix* - x|?,

2
Ix*— %< [ TVi(x)
o

Using these bounds and (3.9) we obtain

2
-1 QV, (%) /Evf(fc)< —IM,V, (%),

ie. M, <2./Q, contrary to the definition of M,. The theorem has been
proved.

Remark. It would be possible to adjust the stage to decrease the residual, not
by £ times, as we have just done, but to decrease it by some number of times 0
with @ > 1. By choosing & suitably it would be possible to optimize the absolute
constant ¢, in the bound for the laboriousness of the method, but we shall not
carry out this tedious analysis.

74 MINIMAX PROBLEMS

7.4.1

We now extend the method of the previous section to the case of constrained
problems, We shall do this in two stages. First we learn how to solve minimax
problems, i.e. problems of the form

fix)= max f,(x)—min|xeG, (4.1)

DLigsm
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where
F)=(folx), . SN EH, (Gom; g, 15 Qos oo oy Q).

Then later, in the next section, we shall reduce constrained problems to
minimax preblems,

We observe that it is useful in itself to know how to solve problems like {4.1)
well. For, firstly, the solution of systems of objective inequalities, i.c. finding
xeGsuch that f,(x} < aq, . . ., £,,(x} £ a,, where the g, are specified numbers,
can be reduced to minimax problems. For, finding such an x can be reduced to
the problem of minimizing the function max, _; ., (f;(x)—a;). Moreover,
solving a conditionally extremal problem with the optimal value of the
objective function known a priori reduces to solving a system of objective
inequalities, i.e. ultimately to a problem like (4.1). Finally, when m = 0, the
problem (4.1) is the problem of minimizing f in the domain G. When G #+ E we
do not as yet know how to solve this sort of problem well.

7.4.2

We define the error of a point x € G regarded as a solution of the problem (4.1)

by
v fy = o2
V,T'(xl)
where V7 (x) = f(x) —min f. B

It is required to construct a method of solving a minimax problem f
associated with functions fe H, (G, m: ly, .. ., I, @, - . ., @), using a first-
order oracle and solving all such problems with a specified accuracy v with the
least possible laboriousness——preferably of order O(\/a In (1/v)), where
Q = max, _; ¢ », @;1s the modulus of convexity of f (the results of Section 7.2
show that it is impossible to demand more, in the infinite-dimensional situation
at least). In fact this method will have the bound O(\/Q In* @ In1/v) for
laboriousness.

Let us sketch the idea of the method. In setting out the heuristic
considerations we shall refer to a certain number of facts needed in the proof of
the method. We suggest that the reader should verify these. A full proof will, of
course, be given when we justify the method.

As in the case of unconstrained problems, it is enough to know how to halve
the residual Vy(x) quickly. To do this, we shall start from the same
considerations as in Section 7.3, namely, we propose a method which generates
sequences {x;} and {p;} satisfying (1}(5) in Section 7.3.1. Suppose,
for simplicity, that [, = ... =1[ =1/Q and that @, =... =¢,=Q. In
Section 7.3 the vectors f'(x;) were chosen as the vectors p;, and the property (1)
was ensured by the fact that in a shift along the anti-gradient f, decreased in the
necessary manner. The conditions (2} and (3) were achieved owing to the fact

(4.2)
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that x; was the precise minimizing point of f; on the plane passing through x
which contained the direction }._ 1 p; The situation has now become more
complicated: the function f is in no way bound to decrease under a
displacement along its anti-pradient—because it is not smooth. Therefore the
choice p; = f'(x;) is not convenient to us,

In order to understand what is ‘natural’ from the point of view of the
demands presented by the definition of the ‘gradient’ of f, we observe the
following fact. Whem m = 0 the gradient f'(x) of a [1/Q, @ ]-strongly convex
function f can be defined thus: we consider a natural majorant of the
function f(y) and we find its minimizing point x. Then the gradient is x — %.
The natural generalization of this definition to the case of the function
fix)= max, . ; ¢ »fi(x) with the f; [1/Q, Q]-strictly convex is this: for a
given x, let

2
fuy) = max {f,-(xH ity —x>+ 220 }
0gLigm
be the natural majorant f(y), and let 7x be the minimizing point of f,(y). Then
we call the vector p(x) = x — Tx the ‘gradient’ of fat the point x, The vector p(x)
is not a support functional to fat the point x, However, it can be shown that it
has the following properties:

(1) f(Txy < J(x)—$p* (),
(2) (p)x*—x) < f(x*)—f(Tx),

where x* is the minimizing point of /. Hence it is clear that, with the choice
p; = p(x;)and with x, , , constructed so that fix,, ) < f(7x,), the relation (1)in
Section 7.3.1 will be satisfied. The relation (5) is automatically satisfied. It
remains to ensure that (2), (3), and (4) hold. It is just this which presents the
greatest difficulty.

In the situation of Section 7.3 (i.e. when m = 0 and p(x) = f;(x)) to ensure
that (2) and (3) hold, x; ., is chosen as a point in the plane E' passing through
x;,Tx;,and x; 4+ Y} p;such that p(x,. ,) would be orthogonal to E‘ — x,. With
such a choice we would have automatically f(x,, ) < f;(Tx;). On the other
hand, the cheice mentioned reduces to a simple problem of minimizing f, on E'.

In the general case with m > 0, choice of x;.; according to the rule
p(x;+ ) LE —x,,x;,, € E'would also satisfy us: for then we would automati-
cally have f(x;, ) < f(Tx,), and (1}-(5) would hold. Unfortunately, p(x) is not
the gradient field, and so it is not clear how to effect the choice of x;,; just
mentioned. We therefore have to proceed more cunningly.

Let us suppose that we know how to construct a family of points xje E',
j=1,..., M, such that

(@) f(Tx)—f(Tx}) = 3p* (x));
(b) {p(xI)Tx;—xi)>=0;
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(c) a certain convex combination of the vectors p(x{), namely, Z i H p(xf)is
orthogonal to Ef — x,.

We shall prove that it is possible to take p; . | = Z}. p;p(x{) and to choose as
X;+1 the best (as regards the value of f) among the points {Tx{}_,.

For, with such a choice of p,,, we shall have, because of (a),
1 . . .
i < 52p < Dl (Tx) =1 (Txi))
j i
< Z.uj(f(Txi) —f (%)) S F(x) =S (x40 1),
J

and so (1) is satisfied.

Further, p,. ; is orthogonal to E' — x, by hypothesis,and so (2)and (3) hold.
It remains to prove that (4) is satisfied, or rather, that version (4') below is
sufficient for the argument in Section 7.3.1. But by condition (2)

Cpix)|x*—xiy < Jx®) —F(Txd) < fx*) —flxip ).
Because of (b) the left-hand side is equal to {p(x{}|x* —Tx; >. Thus

<P(x§ij|x"l =Tx;> Sf_(X*) _f_(xi+1),
Hence ~ ~
Pier|x* =Txi > < f(x*) = f(x;i41),

or, since p; ,; L E'—x, aTx;—xy,
Pra|X* = x> ) —f(xi41)

This last is the version (4°). It is easy to see that (4') successfully replaces (4) in
the argument of Section 7.3.1.

We have still to learn how to construct the points x}. It may be noted that
(a} follows from (b), and so we need only bother about (b) and (c). For every
ee E*—Tx,, there is a point x{(e) on the line {Tx,+telte R} such that
¢ p(x(e))|e > = 0. This follows from the fact that { p{Tx,+ te|e > changes sign
as t goes from — 20 to + o0. It is easy to find the point x(e) with any required
degree of accuracy, since to do so reduces to finding the root of a function
which changes sign, and can be done by ‘repeated bisection’. Thus, for every
ec E' — x, wecan find x(e) such that (b) will be satisfied when x(e) is substituted
for xj in it. .

We still have to devise a sequential procedure for choosing that ;€ E —x,
so that, for some M, we can satisfy (¢) as well {not exactly, of course, but
sufficiently accurately). We want to ensure that

|ZPiZﬂjP(x(€j))| <&
J

with & sufficiently small. Here P; is the orthoprojector on to E'—x,, and
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Y =1, 4; = 0. We observe that, by von Neumann’s lemma,

inf P} pup(x(e))l = sup min Ce|p(xie))). (4.3)
ELON Y i ceE -z jsm

i jel< 1

Therefore it is sufficient to organize the choice of the e; so that the right-hand
side of (4.3) shall be less than ¢ for a suitable M, but an M which is as small as
possible. For a given s the set

K, = {eeEl;x1||e| = l,%g Celpix(e))) forj=1,2,.. ., s}

forms an arc. If we choose as e, ., a unit vector directed towards the mid-point
of this arc, then the arc K, will be at least twice shorter than K, {because
K,y =K, and K., , does not contain a neighbourhood of the mid-point
of K,, since {e,.|p(x(e¢1)}> =0). Thus, with this system of choosing
€. . the arcs K, will be decreased each time by more than twice. Hence it is
easily deduced that, after a time M roughly proportional to In(1/¢), K,, will
become void, i.e. for such an M the left-hand side of (4.3) will become less than
¢. Then property (c) will be satisfied ‘to accuracy ¢ for a suitable choice of g,

Thus, finding p;, ; and x; ., requires a certain process of a ‘double division
into halves’. The ‘cost’ (in number of questions about f) of this process turns
out to be of the order O (In? @), since O (In Q) is the ‘cost’ of finding x;. , with
suitable accuracy, and @ (In @) of such points have to be found.

Implementation of these ideas encounters well-known difficulties
which arise both from the presence of the domain G and from the fact that the
I;, 0 < i < m, are not all equal. At the cost of certain additional dodges, these
difficulties can be overcome.

7.4.3

We proceed to a precise description of the method. We fix the class
H =H (Gmly, ..., 0L;0Q...,0,), and put @ =maxg ; . » @ We
introduce the following notation.

1°. For fe H, and xeE, let
Jox (D) =fix)+ {Si0) |y — x> + 150 (v —x)

and
fo(y)= max f (v}
O0gigm
2°.  Let Tx be the point where f_(y) has its minimum on G. Since f.(v) is
strictly convex, Tx is uniquely determined. Put p(x) = x — Tx. We note that the
calculation of Tx and f.{Tx) requires one question about f to be put at the
point x.
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Description of the method

1°. The method constructed for an accuracy v < 1 consists of

M,yv) = :|1n%$|:

stages. A stage consists of M ,((Q) periods, a period consists of < M,(Q)
procedures, and a procedure consists of M,(Q) steps. Here

M (Q)=1/0L
M;(0) =4+ 1AM, Q)L (4.6)
M,(Q) = 18 log, (100Q)[, § = max(, 2).

2°. The ith stage has the input x; and output X, ., i =1,2, . . ., M,(v). Here
X, = x,,and X, € . The output of the ith stage is the input of the (i + 1)th stage
(ifi < M(v)}oristhe result of the work of the method (if i = M (v)). All stages
are constructed in the same way, with accuracy up to the value of the output.
We shall describe a stage with input XeG.

3°. A stage with input X consists of periods; the ith period (i =1, 2, . . .) has
the input (x,, ¢;), and output (x;,,, ¢;,,); the latter (when i < M,(Q)) is the
input of the next period. Here x;€G, g€ E, x;, = X,and q, = 0. The output of
the stage is a point Xy, @+1- In the ith period the following operations are
carried out.

A. A 2-dimensional affine subspace E’ of the space E containing the points %,
x;, and X+g; is constructed. Let E} denote the 2-dimensional linear
subspace E'— X.

B. At the point x; a question is put to the oracle about the problem f The
number L, = (\/§+ DQ|p(x;)|, @ = max {Q, 2} is constructed. If L, =0,
then the work of the method stops, with output of the result x,. Otherwise,
a number £ M, (Q) of procedures are executed in accordance with rule C.

C. C.I. Thejth procedure of the ith period has the input e/ "' € EL, |ei 1| = 1.
Here e is chosen as an arbitrary unit vector in Ef.
C.2. Let@(t) = {p(x;+tel™')|ef™* >. We note that the calculation of ¢;;
at a point ¢ specified in advance requires one question about f.
In the jth procedure the following operations are carried out,
C.2.1. ¢;(— L)g;;(L;}is caleulated. If @, ;(— L)), (L) > 0, then the stage
ends, with output of y = T'x;. Otherwise, go to C.2.2.
C.2.2. If @,;(— L)o;(L,) < 0, then make M;{Q)+ 1 iterations of solving
the equation
@, =0, |t] < L,

by the ‘bisection” method.
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C23 Let Al = [t;;, t;;] be the last interval of localization of the root
obtained after C.2.2. Put t;; = 0if A5 0. Otherwise, take ¢;; = t;; or f;; such
that ¢;;¢;;(¢;;) < O (this can be done, because ¢,;(¢; )¢, J(t: J) < 0). Then put

Py =Pl el x;=x41t, el 1,

iFei [ ¥ ]
The jth procedure is now completed.
C.3. After finishing the jth procedure, put

o 16L;]e|
Ky =leeBslelpid > srmpr

IfK, = {& } orj = M,(Q), then go to D. Otherwise K ;is an acute angle on
the plane E}. Let ¢f be the unit vector along its blsector Go to procedure
j+ 1

I <s<jh

D. Let M; == | be the number of vectors constructed according to the rules in
C. Let P, be the orthoprojector on to the plane Ei,. Solve the problem

M;
z 1Py
i=1

Let {u;} be its solution. Then proceed as follows.

D.1. If, for some j, p;; = 0, then stop the solution process and put out x;;as
the result. If this is not so, then go to D.2.

D.2. Put

—min|g; 20, ) u; = 1.
j

2{f(x;)
Yiy=T(Tx), s; = wa(p—f(J’g_)l
ij
and let x; ., be the best (according to the value of f(-)) of the points y,;,
T(Tx;). We note that the construction of y,, s;; requires 2(M,(Q) + 1)
questions about f.
D.3. Further, put

ZF‘J » 0>

j=1 S
(it will be proved that 5;; > 0, and so this definition makes sense). Put
z nu_,pt,n rf: = lr’l and é _%

Then put g, , =g, + éi. The period is completed.

Theorem. The method just described solves the minimax problem J as-
sociated with any problem f from H, with accuracy v and with laboriousness

My (v) = Mo(v)M,(Q) [M5(Q) (M;(Q)+ 3)+2(M,(Q) +1)]
< c\/a]nZQ:'lnl[.

Here ¢ is an absolute constant, v < 1,and Q0 = max{(Q,2}.
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Proof. The bound for laboriousness is clear from the description of
the method. The proof of the assertion about the accuracy is given in
Section 7.6.

744

We make a few remarks about the practical implementation of the pro-
posed method. Itis clear from its description that two of the operations are not
trivial:

(i) calculation for a given x of the point Tx, ie. solution of the minimax
problem generated by quadratic functions with the simplest quadratic part
(proportional to a scalar square);

(i) implementation of the rules D, 1.e. choice of a convex combination of given
vectors &, . . ., ¢s& R* which has minimal norm.

The first operation is essentially the same as a step in the gradient method of
Section 7.1, and the same remarks as in Section 7.1.4 can be made about its
implementation. The operation is comparatively uncomplicated only when
m =0, and also when G = E and m is small (of the order of a few units). The
second operation is very much simpler. It consists in solving a quadratic
optimization problem on a simplex. In actual fact, the situation is even simpler.
Analysis of the proof of the theorem about convergence shows that there is no
need to solve the corresponding problem exactly; it suffices to find a convex
combination of the vectors P;p;; = ¢, 1 <7< M, with a norm less than
16 L,/2M39/2 (we are talking about the period i of the stage with input X). If
there is no such combination, that fact is the signal that x,, , already satisfies
the condition V(x;,,} € 3 V(X)/4, and so the stage can in that case be broken
off, with x;, , printed out as the output.

On the other hand, it is also possible to find a convex combination of the
vectors ¢; which has a small norm in the following way. Let K be a square with
centre at 0 and with sides of length 32L1,/2:'@¥2  Finding a convex
combination of the vectors &; which lies in K is a linear-programming problem
with 4 constraints on an (M, — 1)-dimensional simplex, and so to solve it linear-
programming methods can be applied (the dual methods are best of all, because
the number of constraints is small, namely 5—4 inequalities and 1 equality. The
constraints of non-negativity are disregarded, of course). Clearly, the solution
of this problem is a convex combination of the vectors &, which has the
necessary bound for its norm. It is easy to see that such a modification of the
method will ensure that it has the required accuracy if the right-hand side of the
rule defining M4(Q) in (4.4) is increased by 1.

We further remark that in describing the method we were concerned only
with its ‘order of optimality’; we did not set ourselves the task of rationalizing
to the maximum extent the construction described. This would have led to a
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considerable complication which it would not have been too easy to set out. [f
desired, the reader will be able to think up more than one way of modifying the
described construction so as to increase its efficiency in practice.

7.5 SOLUTION OF CONSTRAINED STRONGLY CONVEX AND
SMOOTH PROBLEMS

7.5.1

Weshall agply the method in Section 7.4 for solving minimax problems to solve
problems in the classes H x,- We shall obtain a method with the bound

0(\/6 In? @ In 1/v) for the laboriousness, i.e. a method improved as regards
laboriousness (at least for large n and small v, see Theorem 7.2.6) only by
O(In? Q) times. Unfortunately, the reduction, proposed below, of problems in
the classes H to minimax problems does not go through for the classes H_ (it
was precisely this fact which caused us to introduce the classes H' ). The
authors know of no way of extending the results of this section to the classes
H_ when m > 0, although, in all probability, there is such a way.

7.5.2
We shall consider the class of problems
H, =H, (Gmly, ... 1;Qo....00

~ Let Q=maxy ., @ be its modulus of strong convexity, and let
Q'= max {(, 2}. We describe a method of solving problems of the class H,
with an accuracy v < 1. The method is constructed in the following way. l

1°. A question is put about the problem f at the point x,. Let
3 3.
g= gO!_f1a~"’ﬁfm »
Vv v

where g,(x) = f(x) —fo(x,) + V. Clearly,

3i 3
geHxl(G, m; g, Tl’ - w{;ﬂ; To. o oy Q,,,) =H,.

2%, To .the m‘in_imax problem g associated with the problem g e H, the method
of solving minimax problems given in Section 7.4, corresponding to the class
H and constructed for an accuracy v¥3, is applied. Let

M,(v) < clan\/a}ln%[

be the number of steps in this method (c is an absolute constant), and let X be
the result of its application to g. We remark that local information about gis
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found in an obvious way from local information about f; and so stage 2° is
‘informationally ensured’ by the possibility of putting questions about f.

3°. A question about f is put at the point x. If

max f;(x) € vV,
l<jsm

then the point % is put out as the solution of the problem. Otherwise, « is put
out as the result.

Proposition. The method described solves all problems in H{ with accuracy
v and with laboriousness

sc‘\/alnza}ln%[,

where ¢ is an absolute constant.

Proof. The bound for the laboriousness is obvious. We estimate the error of
the method on a problem fe H, . Let % be the result of applying the method to
J. The problem fmay be incompatible. In that case, rule 3° already guarantees
the inequality

vix, f) < (5.1)
Now let f be compatible, and let x* be its solution. Then

[fole)) ~fox® <V, xSV, 1<j<sm
Therefore

3
0< go(x*) <2V, gix ) <-V, 1<j<m,
Vv

whereas g,(x*) € 0, 1 <j € m. Therefore
gx*) < 2V and §g(x,) < 3¥/v.
By the properties of stage 2° we have
v v?
g(x) < (1 _§) miné()’)+§§(x1)

YEG
2 2

(1= g+ g < (1" Y4V 5.2
\(1—3)9@ )+?Q(x1)\( —g)go(x Y+l (5.2)

Hence

2 V2

g,(%) € (1—%)go(x*)+vV£2(1— 3) Va3V, 1<j<m,
ie.

f@<3 = 1<j<m
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Therefore x = x and
@<y, 1<jsm (5.3)
On the other hand, (5.2) with j = 0, and the fact that g,(x*) = 0, give
go() < §(X) < go(x*)+ vV,

ie. fo(X) < f, + vV, which, together with (5.3), proves (5.1). The proposition has
been proved.

7.5.3

The constructed method for solving problems of the classes HY, is immediately
applicable also for solving smooth convex problms, i.e. problems in the classes
CS ; (G, m).For, in Section 7.1.3 we learnt to associate with the method #, of
solving problems of the class

v v 24y 2+v)

LR Ty Ty
with accuracy v/3 and laboriousness M a method #,, of solving problems of the
class CS? (G, m) with accuracy v and laboriousness M. The class H\' **/2" has
the modulus of strong convexity (2 4 v)/v. Therefore by choosing the method of
the previous section as 4, we construct a method of solving problems
CS, (G, m) with accuracy v < 1 and laboriousness

¢ 1
M(v) €¥:|1n3—|:,
NI

Hi‘l*%“’(c, m;

where ¢ is an absolute constant.

754

Let us examine the possibilities of potential improvement of the methods in
Sections 7.3-7.5. We shall consider, as the ‘competitors’, any deterministic
methods of solving problems of the respective classes using deterministic local
oracles. We shall see that in most of the natural situations the methods are not
improvable. We shall take the accuracy v under consideration to be € 1/2; ¢;are
absolute constants, and n = dim E. We start with strictly convex classes.

1°. m=0, G=E; we are discussing solution of problems in the classes
H; (E,0; ly; Qo) and H, (H,0; l;; Qo). It is assumed that Q = Q, > 2. The
method in Section 7.3 can be used to solve problems from either of these
classes. The bound for the laboriousness will be

M, < cn/aanln%.
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By the results of Section 7.2 the laboriousness of the method when
nz \/é In 1/v can, in principle, be reduced by not more than ¢, In @ times, and
when n > ./Q, by not more than ¢, In?Q times.

2°. m =0, G is any set admissible by the conventions adopted. For solving
problems in the classes H, (G,0;1o; Qo)and H, (H,0; ly; Q) the method in
Section 7.4 for minimax problems can be used. The bound for its laboriousness
will be (when Q > 2, which is henceforth assumed)

M,(v) < ¢y /QIn?Q In%.

By the results of Section 7.2, under the conditions n > ./Q and x, eint G, its
laboriousness on the class H, can, in principle, be reduced by not more than
¢4 In? Q times. A similar assertion is also true asymptotically as v — 0 for the
class H; (and even for all v < L if

2V
= % 1.
1'09[-[(3‘1’ aG) )
3°. m> 0, Gis any set admissible by the conventions adopted. We know how
to ‘solve well’ only problems from H, (G,mly, ... 1;Q0 ..., 0,) The
appropriate method, described in Section 7.5.2, has the bound for laborious-

ness (when Q = max, ., .. Q; > 2, which is henceforth assumed)

M,(v) < cs\/élanln-i-.

By the results of Section 7.2 under the conditions n > \/é and x, eint G, the
proposed method can, in principle, be improved as regards laboriousness,
asymptotically as v — 0, by not more than ¢ In® Q times. When p.(x,, 8G}is
Sﬁmdm}uy large (for example, when G = E) and Q, = ©, the result holds for
all v < 3.

Remark. The strongly convex programming methods in Sections 7.3-7.5 are
efficient for classes with a modulus of strong convexity Q not too close to I (in
1°-3° we assumed that @ 3 2). This is the only case of interest, of course. A
purely formal remark is that, when Q is close to 1 and under the appropriate
hypotheses regarding dim E, ‘pride of place’ passes to the gradient method in
Section 7.1 (cf. the precise bounds for its laboriousness when Q is small with the
precise bounds for I, (v, 00, Q) and J(v, )). Generally, when Q < Q,, the
gradient method ‘loses’ to the methods of Sections 7.3-7.5 by not more than

¢ \/é times, and so its deficiencies express themselves only in the asymptotic
behaviour as @ — oo,

47 It rerpains to elucidate how efficient the proposed method for solving
problems in the classes CS’ (G, m) is. The bound for its laboriousness is

1
M,(v) < c-,—1n31.

\ﬂ v
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Comparing this bound with the bounds in Section 7.3, we see that under the
conditions where G is a ball with centre at x, and 1/n? < v < 4, the proposed
method cannot, in principle, be improved by more than cg In® (1/v) times.

Remark. In all the assertions about the sub-optimality of the methods in
Sections 7.3-7.5 the requirement that dim E be sufficiently large appeared. This
is understandable: for small values of dim E, methods like MCG for solving
general convex problems begin to compete with the methods now under
consideration; the bound for laboriousness of methods of the MCG type
depends only on the dimension, and not on the smoothness of the convex
problems being solved. Roughly speaking, the advantage of smoothness (or
of strong convexity) shows up only on problems of a sufficiently high
dimensionality.

7.5.5

In conclusion we consider the question of the possibility of reducing the
requirements concerning the a priori information necessary for putting into
operation the methods of strongly convex programming which we have
constructed. We restrict ourselves to the case m = 0. The methods described
can be applied if it is known a priori not only that the problem f under
consideration is strongly convex, but also what the values of its parameters of
strong convexity (., Q,) are. Of course, it is not necessary to know very
precisely the values of the parameters, namely, the quantities {,and Q, = L /I,.
It is sufficient to know estimates for them, { (< ;) and L (= L,}. It is these
which make up the a priori information for putting the method into operation
{of course, it must also be known what accuracy of solution » is required). It
must be borne in mind, however, that the estimation of the parameters /, and
L, is, in practice, an extremely complicated problem; in addition, it is desirable
that it be solved as accurately as possible. For, an ‘incorrect’ estimate (for some
I>1,or L <L;)is, in general, unacceptable: by starting from false a priori
information of this kind, we shall be applying a method which, generally
speaking, will not ensure the requisite accuracy. An estimate which
is qualitatively correct (with [/<{, and L >L,) but rough (with
Q=L/f» L/, = Q) although it will indeed ensure the requisite accuracy,
will lead to an uneconomical method (the laboriousness due to the roughness
of the a priori information is increased by O( \/(_2_/(2 +) times).

Thus, the proposed methods are actually efficient only when the a priori
estimates of the parameters of strong convexity of the function being
minimized are sufficiently close to the true values. But in fact even a rough (but
proper) estimation of these parameters is often very difficult in practice, and
this substantially restricts the domain of applicability of the methods. In
contrast to this, the standard methods of strongly convex programming (the
gradient method, the conjugate-gradients method, etc.) do not suffer from this
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drawback. No a prieri information about the parameters of strong convexity of
the function being minimized is needed before putting them into operation. In
addition, the accuracy achieved after a given time will automatically be the
greater, the smaller the modulus of strong convexity of the problem being
solved (this statement must not be taken too literally—on particular problems
one may ‘be lucky’, even though their moduli of strong convexity may be
large—but in the sense of the estimates of the laboriousness on the
corresponding classes).

Thus, no a priori information is needed in order to apply the standard
methods. Of course, if a problem in ensuring the specified accuracy does arise,
then there is no way of managing without an estimate of the parameters of
strong convexXity (or, at least, its modulus) since, as we know, the modulus of
strong convexity influences substantially the potentially attainable solution-
time. But the problem of ensuring the requisite accuracy is not generally posed
in practice, presumably because of the difficulty with the a priori information. It
is much more typical that ‘infinite-step’ methods are used; the solution of a
problem is carried out for a certain length of time chosen from ‘other-worldly’
considerations, and whatever is obtained in the way of accuracy—that is the
accuracy which is obtained. In practice this question is usually just not
examined.

At the same time, the standard methods do not by any means always ensure
(even as regards order of magnitude), for a problem with a given modulus of
strong convexity, the potentially possible rate of growth of accuracy as a
function of the solution-time (see the examples in Chapter 8). It becomes
desirable to modify the method described so that it ceases to need a priori
information, but basically preserves its efficiency. It turns out that this can
easily be done.

We associate with the proposed method an ‘infinite-step’ strongly convex-
programming method #; which has the following properties. The method is
applicable to problems of the form

f(x)—min|xeG < E, (5.4)

in which f is any strongly convex function on E. The method £, like the
original one, uses an exact, first-order oracle, and questions can be put about f
atany point of E. The method 4 requires no a priori information. In solving a
problem f with an arbitrary modulus of strong convexity Q, = L/l the
following relation holds for the result x,( f) of the work of the method at the
moment n;

X, (f)€G, vix, (fLS) <V (5.5)

for

e 1 — 1
nBc\/Qfln3Qfln;ln{\/Qflnan]n;},
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provided only that v< 3. Here c> 0 is an absolute constant, and
0 = max {Q,, 4}. As always,

f(x)—inf; f
YOI )it

where x, is a point fixed once and for always in G. We remark that, even if we
knew exactly (I;, L;) in advance, we would not be able to guarantee the

accuracy v in the solution of fafter a time less than ¢ \/a In (1/v), where cis an
absolute constant (at any rate, if @, > 2, x, €int G, and dim E were sufficiently
large). Thus, when dim E is sufficiently large and when x, €int G, the time,
starting from which #, ensures an accuracy v < 3 in the solution of any
strongly convex problem with a non-trivial ( = 2) modulus of strong convexity,
is not essentially greater (up to a logarithmic factor) than the potentially
attainable time of solving problems with a given modulus of strong convexity.
We further remark that, if G = E, then the whole of In® @, in (5.5) can be
replaced by In Q.

We pass on to the construction of 4. It recalls to mind the device of
‘patching together’ the finite-step methods which implement the complexity of
the class for a specified accuracy—the device used in the optimal ‘infinite-step’
method in Section 1.5; but the present construction does not reduce to that
device. For, here we are solving a more complicated problem: we shall effect a
‘patching together’ with regard to both the accuracy and the a priori
information.

We construct the method &, in two stages. First we rid ourselves of the need
to know both /,and L and v; it will suffice for us to know only Qand v. Later
we shall eliminate even this a priori information.

1°. Let #;(l, L,v) denote the method of solving (I, L/{)}-strongly convex
problems of the form (5.4) with accuracy v, which was given in Section 7.3 (for
E = G), or in Section 74 (for E + G); and let M (L/l, v) denote its laborious-
ness. We fix a pair of points x, vy G, x # y. Suppose it is given that 0 = 2 and
v < 4. We shall now construct a method % ,(Q, v} of solving all problems of the
form (5.4) and of modulus of strong convexity Q0 < Q/2, with accuracy v and
with the bound for laboriousness M, (Q, v) € ¢, InQ M(Q, v), where c, is an
absolute constant. When G = E, wecan take M, (Q,v) = ¢, M(Q, v).

When G # E the method #;(Q, v) is constructed as follows. A question is
put about the problem under solution at the points x and y, and the number

_ = Wx=y>
[x—yI

S

is formed. If p , < O1is obtained, then solution is discontinued, since in this case
fis automatically not strongly convex. If p ; > ( is obtained, we put!, = p,/Q,
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L, =p,Q, and apply to f in succession the methods
Lfg(—Ij! Q‘I * V)., jj&(?'jfa 2Q-[ * V), RN .%(qu, 2IQ-I ’ V), 0 = i = ]logl Q[

From the results of their work we choose the best as regards the value of f. This
will then be the result of applying &, (Q, v) to f. It is clear that the laboriousness
of the method described admits the necessary bound. We shall prove that this
method solves any problem f with @, < (/2 with accuracy v. For, from the
definition of I, and L, we have p, = [, = I,. Therefore, for some i < Jlog, Q[,
we shall have 2'/, < {; but 2°"'[, = I,. Hence

20, 24,0 21,0, =L,

and so f will be (2], Q)-strongly convex. Therefore the result of the ith of the
methods which make up £ (0, v) will have an error < v, and so the same is true
of the method #,(Q, v) itself.

In the case E =G the matter is quite simple. For, in the method of
Section 7.3, knowledge of the bounds for the parameters of strong convexity [,
and L, themselves for the function f being minimized, and not just a
knowledge of the upper bound  of their ratio  ;, is required in all at just two
places, namely, in the choice of the radius of the disc in which the
*2-dimensional’ minimization of f takes place, and in the choice of the step in
going from X, to x; along the anti-gradient of f at the point X, (see Section 7.3.2).
In the first case, it is actually sufficient to know p, and Q. The radius of the disc
can then be taken to be r = 2Qp, '| f'(X;)|. In the second case, it is possible to
replace a step in the direction of the anti-gradient by minimization of f on the
interval [X, £, —2Qp ' |f'(%,)|], drawn by bisection and adjusted for a relative
accuracy of order 1/0% 1t is left to the reader to give exact formulae for the
relative accuracies of the 1-dimensional and 2-dimensional minimization in
this method and to estimate the number of its steps. In doing so he will be able
to satisfy himself that, as regards the order of dependence on Q and v, they are
the same as for the original version of the method.

2°. We now ‘patch together’ the #.(Q,v) methods over Q and v,
and construct the method #,. The method %, consists of successive stages;
the nth stage (n=1,2,...) consists of n procedures. The kth procedure
[, 1 € k< n, of the nth stage consists in the application to the problem
being solved of the method #,(Q,, v,_,) with In (1/v,_,) = 2" "* and with @,
determined from the equation

VO, In*Q, =2*ifG+E or /O, InQ,=2ifG=E.

The result formed by the method 4 at time ¢ is the best (as regards the value
of /') of the results of all the procedures completed up to this time. On the initial
segment of the trajectory (until I'; | has been completed) the result is x,.
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Let us satisfy ourselves that the method described ensures any accuracy
v < 1, specified in advance, on any strongly convex function [ in the time
promised above. To do so, we choose the least integer k such that Q, >20Q,,
and the least integer m such that In 1/v < 2™ We put n = m+k, and observe
that the procedure T, , applied to f gives a resuit with error < v (the method
#.(Q, v) was so defined). Therefore after the instant of finishing the nth stage,
the error of 44 on f will not exceed v. 1t remains to calculate this time ¢,. For the
sake of definiteness we consider the case G = E (the argument for the general
case is exactly the same). From the estimates for the laboriousness of #,(0.v)
the procedure ", , takes a time

1
<3 /0, (m T”) InQ,,

a—r

where v, _, is the accuracy to which T’ , is adjusted, and ¢, is an absolute
constant. From the definitions of 0 ,and v,_ , this time is not greater than c, 2%
Thus the duration of the gth stage is not greater than c,q.2% and the time of
finishing the gth stage does not exceed ¢, ZL J- 25 < c39-29, where ¢y is an
absolute constant. Thus t, < c3n- 2" From the choice of n, we have n = m+ k.
Hence k is the least integer such that the root Q, of the equation \/é InQ =2
is not less than 2Q . It is easy to see that then

2 <y (VQ, Q) k< csnly Qs InQ,),

where c,, c; are absolute constants.
Similarly, from the definition of m,

1
2" g c(,lnl, me< cs ln(21nw).
v v
Therefore
| — - 1
[ c:z,c‘tcscﬁ(JQJr InQ, Inv)ln(,/Qf InQ, ln;),

as required.

In conclusion, we remark that we have been concerned only with ‘order-of-
magnitude’ effects, and so, in the interests of clarity, we have not complicated
matters by trying to rationalize the construction described. There are many
ways in which such a rationalization could be effected, for example by an
optimization of the ‘scales’ for measuring Q, and v,. It would be possible, let.us
say, to replace 2*and 2" ~*in the equations defining @, and v, _, by a*, a" * with
a > 1, and to choose a so as to improve the estimates. It would be possible to
choose the best of the preceding results as the initial point for the next
procedure, and to apply simple rules for testing whether the function under
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consideration was (I, @ }-strongly convex or not (this would allow the time of
‘superfluous’ procedures in #;(Q, v) to be cut out); and so on. A reader who
wishes to apply the described construction in practice will undoubtedly think
up a set of cunning strategems of this sort.

7.6 PROOF OF THEOREM 7.4.3

In the following proof assertions from the appropriate parts of Section 7.4 are
used without special explanaton.

7.6.1
Let A = {muo, AN 20, T A, = 1} and

S <) = ZA4 £ (¥

By von Neumann's lemma it is clear that

min f,(y) = min max f (y) = max min f; ().
YEG YEG A€A AeA ye6

Therefore, for every x € E, there is determined a non-void set A(x)€A such that,
when 1€ A(x), we have

f[x) = fo, «(Tx) = min f; .(y)

YEG

(we have used the fact that £, {y) < f.()) for all y). We put

s(x) = mi;l L),
and ’

Pra= 2 ALQ.
i=o
We fix feH, , and let x* be the point where f has minimum G, and let
fo =f(x*). Further, ¥5(-) is written simply as V' (-): ¥(x) = f{x)— f,-
7.62

Lemma. Let xeG, yeG. Then

(1) V(Ix) < V(X)— (£, (x) =1, :(Tx)) < V(x) for all Le A(x);
(2) if V(Tx = 1V(x), then for AeA(x)

Vix) < 200/, () = £, «(TX));
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(3) if V(Ix) 2 4V(x) and V(y) € 2V(x), then
Ix -yl € (/5+1D2lp()l.

Proof. The relation (1) is an obvious consequence of the chain of inequalities
Fx) = £x) 2 £, () 2, (T0) =£(Tx) 2 F(Tx).
(2) Let uc G and let h = Q" *(u—x)+x. By (1.1) we have

Jo0+ x>+ =2 < )

or
Q[(ﬂunh~x>+2Qw—xf]Sﬁhﬂ—ﬁ&)
Therefore | 1
< g (1= )0

Then, when A€ A(x),
Agmséﬂm+@—
We write z = h—Tx. Then
Sxlh) = £ (Ix+2) = fi (M) + @y, 212> +30:.537%

where g, ; = (fi, ) (7x) (the derivative of f, .(y) with respect to y when
y = Tx). In exactly the same way

ﬁ,x(x) =fi’x(TX)+ <Qx,1|x_Tx >+%px‘1(X—TX)2
= f (TX)+ (g, P(%) > +4p;, 20" (%)-

Substituting these relations in {6.1), we obtain

é)ﬁ' %) 6.1)

. 1
30,22 € éf(u) + (1 —ij;, «(T%)

if1-1 (2l x—Tx)>+3p pz(x)(l—l)
Q x, A i¥x, 2 Q
a2 —fo o) = %(f(u) —f;, (T)

1
+ <qx'1|x—Tx—h+Tx)—a(qx.1|x—Tx)

1 1
+3p..0° (x)(l ‘a) = ‘é(f(u) —fu, (X))
_é<qx,1|u_Tx>+%px,lp2(x)(1_é)‘ (6'2)
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Further, <{q, ;lu—7x ) > 0 when ueG, because Tx is the point where fi 0
has a minimum on G. Therefore

2
px, a% :'<-

1, 1 1
3 ) (S — £, (Tx)+ 3P, AP (%) (l - a) (6.3)
We put u = x* here. We then obtain from (6.3)

(o AT~ T(%) < 200, a(pz (x)(l —é)).

V) S V(Ix) < £T0) - F(x*) = £, ,(Tx) - F(x*)

1\ 1
<310Qp, ,p? (x)(l - Q) <3500, DXL (64)

Therefore

On the other hand, by (1) we have

V) 2 £,400 £, o10) = B2 520+ gl 0)) 222220,

and so {6.4) gives
V() < QS .x) = £, (T%)),

which is what is required in (2).
To prove (3) we consider (6.3) with u = y, ie,

- p(x)+%(y—x).

We obtain
1 ! . 1 ,
210.: Az 'é f(}’) .f;. x))+_px,1p (x)
1 1 2y 1
<afy) f+ p“p x) < <2 Vix)+3 7Px, P (x)
1
2p.r J.p (x]+2p.r )l.p ( )
(we have used (6.4)). Thus z2 < 5p*(x), or
1
Plx)+ 5y < /5p)l.
Hence
1
gV < (/5+1Dlp(d and [y —x| < Q(/5+ 1) p(x)],

as required. The lemma has been proved.
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7.6.3

Lemma. Let xeG and y€E be such that {p(y)Ix—y> = 0. Then, for all
AeAly), fI+1p,,.0°(y) < f(x).

Proof. Putting g, ; equal to the derivative of f; ,(z) with respect to z at the
point z = Ty, we have

(4, :lu~Ty) =20 for ueG

and
2= T4 5 (¥)—p, P03

Thus

Py aPY) = ZA [ (¥) =4y, .
and so

<E‘A~if:'(}’)_4y,x|x_}’> =0,
L.€.

CELL () —qy3lx =Ty >+ CE4,/i(¥) ~q,.Ty—y> =0.

But

4L ()4, 2= p, P
1€

CEAL (N —a,:lx=Ty> = p, ;0> (¥,

or

CZLEDMx=Ty) = CELE W —a,:x=Ty> = p, . P*(y).
Therefore
CEALDx—y >+ CZLLEWIP)D =2 p,, 02 (¥

Hence, and because f is convex,

Zifi) —Z4L LD+ AL WK > = p,.:0° ),
ar

YL@ Y ALW+ GALWITy—y>+ “(Ty W+

Le.

py;l,

(Ty—y’,

F zf, I +ip, (Ty—»* 27Ty +30, .0,

as required. The lemma has been proved.

7.6.4.
Lemma. For all x, yeE the following inequality holds:

P —p)] < Slx—y|+ /24| x—y|? +4|x = y| |p(x)l. (6.5)

In particular, p(y) is continuous with respect to y.




298 Strongly convex problems

Proof. First let s(y) < s(x). We have
I 22—, (@] < £y = S0 — LSffIx—y >l

L
xSz
I I
<"+ Byl 1z x4 1x -y

+hQIx—yllz—x| = L,@Ix -y +2L.Q|x - y||z - x].

Hence, when Ae A(x),
LAL D) — £ D+ EQIx —y P+ 20LQ]x —yl |z —x]|} 2 0.
We put z =Ty = Tx +r. Then, from (6.6),
s 2ZA LTy 2 E4,f (Tx+r)
—ZilO|x—y? —2ZA4LQ|x—y| |[Tx+r—x|.
But, when 7x+regG,
Yk Ix+r) = s(x)+ ZA,-li—z— r,

and so
. [LQ
Z’lijx:,y(Ty)zzA'i T" + s(x)
_liQ|x—}’|2_2[iQ|x_}’||Tx+r_x|}-

Hence it follows immediately that, for a certain i,

LQ

sy} = £,y 2 -rf +5(x) - L0 x — y? =280 |x ~ y| [Tx +r —x|.

2
Since, by hypothesis, s(y) < s(x), we have
2 =lx—yl?=2|x=yl(lp@)I+Ir) <0,
ie. for [r]| =1,

2 =2x—ylt=2|x—yl{lp(x)| +|x -y} <O,
and hence

t<2x—yl+/4x—yP+4lx—y P +4|x—y|[p(x)].

But

[p(M—px)| < |ri+]x—y],
and so

|P(Y) —P(x)] < 3|x — y|+ /8lx = yI* +4|x =yl [ p(x)l.

{6.6)
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Thus (6.7) is true when s(y) < s(x). Now let s(y) > s{x). Then (6.7) gives
1P(Y) —p ()] < 3lx =yl +/8lx—yI* +4]x—y| [p(»)].
It is possible that

lp(M)—p(x)=A<3|x-y|
and then (6.5) is true a fortiori. Suppose it is not s0. We put |x — y| = s. Then

0< A—3s < /85 +4s([p(x)| + A),

whence
A? — 65A +95* < 85% + 4s|p(x)| + A-4s
or
A? —10sA + 52 — 45| p(x)| < 0.
Therefore
_ A < 55+ /2557 — s + 4s[p(x))],
ie.

(M) —p(x)| < 51x —y|+/24]x— y 2+ 4|x — y[ [ p(x)],
as required.

7.6.5

We are now in a position to carry out the necessary analysis of the work of the
method, We shall prove (and this, of course, is sufficient} that in any stage the
residual is reduced by not less than 5. More precisely, let the result of applying
the stage with input x to the problem f be yeG. Then

V(p) <3 V(). (6.8)

To prove this, we shall assume the contrary, and obtain a contradiction. So
suppose in the following that

V(7 >3 V(). (6.9)
7.6.6
It is possible that the given stage was terminated according to the rule A (i.e. for
a certain i, L, was = 0, or [ p(x;)| was = 0). This means that y = x; (rule A). On
the other hand, p(x,) = 0 implies, by virtue of the lemma in Section 7.6.3, in
which we have to put y = x; and take an arbitrary point of G as x, that Tx; = x,

is the point where f has a minimum of G. But then (6.9) is false. Termination
according to the rule D.1 is analysed in the same way.

7.6.7

Thus, L, > Oforalli,and p;; # 0 for all i, j for which p;; is defined. It is possible
that the ith period was not terminated in accordance with the rule C.2.1. Then
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X;,, is the best (according to value of f(-}) of the points TTx, TTx;;,
l<j< M, and

{plxdlx;—x; > 20 (6.10)
For, (6.10) holds because of C.2.3 since
(P(xinxi =X = —t;e,(t)

But then, by the lemma in Section 7.6.3, we have

f(Txij) Sf(xi),
and by the lemma in Section 7.6.2,

JF(T(TXU)) £ f(xi)-

Therefore

f(xi+1] gf(ii)-
7.68

Now suppose that the stage was terminated in accordance with the rule
C21, and that this took place at the ith period. Then y=17%, and
J(x) < f(x,) = f(%) (the latter in view of Section 7.6.7). Under our hypoth-
eses, for a certain j we have ¢,;(— L), ;(L;) > 0, ie. for a suitable choice
oft=+1L,

(p(x;+tel el 1ty <.

We put y = x,+1te/”"; then (p(y)|x,—y> >0, and so by the lemma in
Section 7.6.3, f(Ty) < fix), ie. ¥(Ty) < V(x;}
On the other hand, y = Tx; and (6.9) implies that

VR < V(I =V(Tx) < Vi) < V),

V(Tx) > 1V (x,).
Motreover,
ViTy) <€ Vix).

By the assertion (3) in the lemma in Section 7.6.2 applied to the pair (x;, 7)) we
have

e, — Tyl < (/S+1Qlp(x)I < L
On the other hand,
Ix; =Tyl = |(x;— ) + pL0| > 1x;—y| =

(we have used the fact that (p(y)|x;—y > > 0). Thus, on the one hand,
|x;—Ty| < L,, and on the other hand, |x;—7y|> L, This contradiction
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shows that the stage cannot have terminated in accordance with the
rule C.2.1.

7.6.9

So, in all periods of the given stage, L; was > 0 and the rule C.2.1 was not
applied. Also, p;; # O for all i and . Let us analyse the ith period. We consider
its jth procedure: ¢, ;(t) changes sign on Al. Therefore, for a certain te A/, we
have ¢, ,(f) = 0. Let x;; = x,+te/ "' and pu—p( ;). Then

(plxi)lel 1r=0 (6.11)
On the other hand,

-1l < 5
By the lemma in Section 7.6.4,

Ip(x )| < 5|x~-—x'|+\/24|xs,-—xi|"'+4|xf,-—X.-| |p(x)| +1p(x)

\/_+

=L, £ 111, (6.12)

1
"S5+ 10

451, +\/24L§+4L

1e.
p(x;;)l < 1L,

Again applying the lemma in Section 7.6.4, we obtain
|p(xij)—p(xrij)| £ Slxij_x’ijl+\/24|xij_'x’ij|2+4|xij_xlijl |p(xij)|

L? 4412 8L,
oL, \/24 + — ;

= oM o 22M(@) T M0 T 2172MaQ)°

since 24:@ = 120, Thus,
8L,

|p(x;;)—plxi))| < m,
which, with (6.11), gives

8L,
|<p(x“)|e.} ! >| 21,’2M3(Q) (6.13)

Hence it is clear that e/ ! ¢ K. On the other hand, it is clear from the rule C.3
that K; = K;_ . Therefore the acute angle K is at least twice smaller than the
angle K _1,J = 2. Hence it follows that the ang]e K is not greater than 2x/2/,

We shal] show that Ky, is void. For, suppose thls is not so. In any case, the
angle K,, o), is not greater than 22/2%:@71. The vector e}+®~ ! = g, is the
unit vector along its bisector, and every other unit vector e in Ky -

therefore satisfies the condition 5
T

—a | ——_
le—& < M)
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But then from (6.13) with j = M, (Q) it follows that

82,  2n 8L, 2mL,  16L,
I<pCele X < St + 9w PO < s + 3me < SIZMD)

for every unmit vector e€ Ky, ,- But then Ky o, = &, contrary to
hypothesis.

Thus, on termination of the series of procedures of the ith period, we always
have K, = &I (M, is the number of these procedures). Since Ky =,

16L,

max min (QLupiler <
ecEl le|] <1 M; Z H 2”2‘“3(0}
w20 3 =1

i=1

By von Neumann'’s leinma, the left-hand half of this inequality is equal to
min |P.'Z#jPij|=|Pi'h|-

U 30,§p1=1
Thus
16L;
7.6.10
We shall prove that
1
B L N Y] (6.15)

132(/5+1)g  Ip(x)]

For, the right-hand inequality is (6.12). We prove the left-hand inequality. Let
y = Tx;;. By the lemma in Section 7.6.3 and by (6.10), f(y) < f(x,). But, by the
rule for choosing x;, ,, we have

VR < V() < VTY) € V() € V(x) € V(3),

and hence
V({Ty) > 1V(y) and 2V(y) > V(x,).

Now applying assertion (3) of the lemma in Section 7.6.2 to the pair (y, x;}, we
have

=yl  (/5+1)QIp(y). (6.16)
But by the lemma in Section 7.6.4
IP()’)'P(X;’J'N < Sly—xij' +\/24|y_'xij|2 +4|y—xij| |p(xij)|

= 5|p(x;)| +/24p%(x;;) + 4p* (x; ;) < 11| p(x;;)],
which gives |p(¥)| < 12|p(x;;}-
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Applying the lemma in Section 7.6.4 to the pair x,, y, and using (6.16), we
obtain

|p(x) — p(¥)] < 5(/5+ 1)QIp(y)]
+(/28(/S+12Q*p (» +4(/5+ 1) Qp*(¥)

Pl < 11(/5+ 1)Qlp(y).

< 10(/5+1¢lp(y;

hence

iLe.
Ip(x)] < 132(/5+ 1)Qlp(x;,)l,
which proves the left-hand inequality in {6.15).

7.6.11
We fix A¥eA(x;;), and let p;; = p,, , ;u. We shall prove that
Sij 2Py aii (6.17)
and
\"J
sy < L 1100(/3 + 14 G, ©18)

For, by the lemma in Section 7.6.3,
F(Tx;;) < f(x)—%oi,pd
2(—f(T(Tx; ) +f(x) 2( f( fx,,)+f(x
P.J Pu
A combination of the last two inequalities gives (6.17). Finally,
513 = $(T0x) = J(I (1)) < 3 0x) = fx04 1)) SEVR)
and (6.18) follows from (6.15).

whereas

5;=

7.6.12
We have
l
fq(xij) + <fq'(xij)|x-_ Xij >+ Eq(f—xu)z Sf,,(f),
{
Lxi )+ {0 ) x*—x; 0 + :.)_i(x* - xij)2 < fo{x*),
and so

2fq(xij) + <ﬁ(xij)|x* —Xxy+2 {f;(x;j)lf - X
{
+Z"(x"‘ — %) < fi(X) +f(x*).
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From these inequalities
Pii (s — 9 (LAt =50+ 2T A )=,

40
ﬁf(x)+f(x) 2£33, 5, (i) (6.19)

Let y;; be the derivative of fi;, x;(¥) with respect to y when y = Tx; ;. Then
{n|x—Tx,;; > >0 when xeG and

YAl = my=pi;pie
Moreover, !
Fais, xij(xij) =j:1”,x,~j(Txij)+%pijpi2j + {ny;lpij -
Hence and from (6.19})

pu(x*_x) + (pupu+n |x‘_i>+2<pijpij+nij|i_xi>

40
_ g:f(-’_c)"‘f(x*)_zf;t"',xi_,-(Txu)—P:jPizj_2<"ij|Pij>;
Le.

" __ 32
Pij(g"‘réi)_‘i‘ <Pij|x*—f>+2<Pijrf—xij>)

< _(Sc)+f(x*)—2j‘;ij(TxU)+ (nlX—x* +2x,;,— 2%+ 2Tx,; —2x,,)
’-{:f( )+f (x*)— zf(xi+1)_ <nij|i_Txij>_ <"ij|x*_Txij>
STE) ) = 2f (x001) S V(R) -2V (x;, ) < —3V()

{we have used the fact that

(nlX=Tx;;5 2 0, {n|x*=Tx;;> >0
and
V(xi+ 1) > %V(i))'
Thus
(x* — %) V(x) VX

GlXF—%>+24p % —x;, s -
CBisx" =%+ 2pyl% = x>+ g B

ij

(we have used (6.17)). Moreover, {p;;|x;—x;;> =0, and hence
(x*—x)? 1V(x)
40 S T2 S
We take the weighted mean of these inequalities over j with the weights 4 to
obtain

<pij|x’_x_>+2<pij|x__xi>+

(x* - %)?

lx*—x>+2{mlx—x; >+ )

1
€ — EV(;E)G?,
ie.
(x*—%)? _

(ilxt =%+

_EV( )0 + A 1x* —x|+2]A |[£—x,|, (6.20)
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where A; = P;n;. We observe that, by (6.9),
V(Tx,) > 1Vi(x;), V(x*) < V(x), and V(%) < 2V(x));
hence, by assertion (3) in the lemma in Section 7.6.2,
x* — x| < (/5 +DQlp(x) = L
and in exactly the same way, |X — x;| < L;. Therefore
|x*—x| < 2L, and |[¥—x;|< L

and so, because of (6.14), the right-hand side of (6,20) is not greater than
6412

1
—EV(x)Bf + S inG: (6.21)
We now observe that, by (6.18),
L L?
Sii . V(%) 1100(,/5 + 1)*0*’
and so,
%)0? > L (6.22)
V(x)0; = .
7 1100(./5+ 1)*0*

Hence it is clear that, with the choice made for M,(Q), the quantity {6.21)is not
greater than — 1V (X)62.
Thus, (6.20) may be rewritten as

* __ )2
ariber=5+ 2 < vz,
or
a2
el —xy+ X E Qx) < —4V RS, (6.23)
We now observe that
M)
S <V (624)
i=1

For, by the definition of s;;,

,u
i = (z ‘uipu = f\l HjS upu Z'U'J Py
J

‘Sl.r i

= 94‘2 z #j(f(xi) _f(xi+1)) = B;'z(f(xf)_ (X4 1))
J

ie. £2 < f(x,)—f(x,, ), which proves (6.24).
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By summing (6.23) and noting that ¢, J.Z;ll ¢, we find
1 |x* — %[> M@ | G
V@ X — | P LY 8.
1 V(x)|x*— x|+ iG i; 5, < —3V(®) i; "

and so the quadratic

1 /M@ ) 1V ~ 1V _ M.(Q)B
ol £ )= Jiverrive Lo

has distinct real roots. Hence

1., V(J_C] M@ M@
Y — a. — =
YOG 202

VERMIQ)
40 ’

because, for positive 8,,

M 1 M

Z " Z g,' 2 Mz.

1 Bi 1
Thus M{(Q} < Q, contrary to the definition of M, (Q). This contradiction
proves the assertion.

8

Efficiency of standard
methods of strongly
convex programming

In this chapter we analyze the laboriousness of several standard methods of
convex programming. The purpose of the analysis is to elucidate whether these
methods are in a position to realize the complexity of classes of strongly convex
problems. It will appear that the answer to this question is negative in all the
cases considered.

8.1 ON STANDARD METHODS OF STRONGLY CONVEX
PROGRAMMING

Traditional methods of convex optimization can be divided, to a first
approximation, into two classes, namely, methods for which pure ‘convegence
theorems’ are proved without any estimates of the rate of convergence, and
methods for which rates of convergence are establihed (as a rule, for their
asymptotic behaviour with respect to the accuracy). The great majority of the
methods in this second class are described as applied to strongly convex
problems of unconstrained optimization, i.e. problems of the form

J{(x)—» min|xeE (f strongly convex). (L.1)
The purpose of this chapter is to estimate the laboriousness of some of the

methods of this kind.

8.1.1

We shall consider only first-order methods of solving the problem (1.1) {ie.
methods which use information about the values and gradients of [ at the
points surveyed). The traditional classification of these methods as regards rate
of convergence is as follows:

307
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(i) a method converges linearly if the successive approximations x; con-
structed by the method converge to the minimizing point x* at the rate ofa
geometrical progression: |x, — x*| € A¢', g < |;

(iiy a method converges superlinearly if |x, — x*| decreases [aster than any
geometrical progression: |x; —x*| < A,4* for all ¢ < 1;

(iii} a method converges quadratically if |x,—x*|< 4¢®), 0<g< 1, b> 1.

In the first case the bound for the laboriousness of the method for an
accuracy v is of the form aIn (1/v), in the second case it is O (In (1/4)), and in the
third case it is @ In In(1/g). The factor which we have denoted by a does not
depend on the required accuracy, but does depend on other parameters of the
class (the modulus of strong convexity of the problem f being solved, its
dimension, the rate of variation f”, etc.).

It is customary to suppose that a difference in ‘rank’ between two methods
according to the classification just given enables one to decide automatically
which is the better method. Thus, a quadratically convergent method is
regarded as more efficient than one which converges linearly. It seems to us that
an evaluation of methods in this way—according to the nature of the
asymptotic dependence of their laboriousness on the accuracy——by no means
always corresponds to the truth of the matter. Apart from accuracy, the
situation is characterized by other, no less important, parameters such as the
modulus of strong convexity, the dimension of the problem under solution,
etc,, and it is no less important to examine their influence on the laboriousness
than it is to examine the influence of the accuracy. Moreover, superlinear
convergence, and a fortiori quadratic convergence, of first-order methods are
themselves to a certain extent pathological phenomena.

For, firstly, methods of strongly convex programming can converge
superlinearly only under certain additional requirements regarding the
smoothness of the problems under solution, additional, that is, as compared
with simple strong convexity. It is usual to demand a certain continuity (or even
Lipschitz-continuity} of the Hessian of the function being minimized, and this
is not a fortuitous circumstance. Indeed, as we saw in Section 7.2, the
complexity N (v) of the class of (I, Q)-strongly convex problems (with @ > 2)
with regard to an arbitrary, local, deterministic satisfies the estimate

N{v) zc(l, Q,dim E)In (1/v).

Therefore there can be no question of superlinear convergence of methods, not
merely of the first order but even of any order however high, on the class of all
(I, Q)-strongly convex problems; superlinear convergence can occur only if
additional requirements are imposed regarding the smoothess of the problem.
Moreover, the corresponding bounds for laboriousness will be very sensitive to
the parameters which define this additional smoothness. From the practical
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point of view this latter special feature of superlinear methods is not very
palatable. As a rule, the strictly convex problems encountered in practice are as
smooth as could be wished, but it is extremely laborious to estimate a priori the
‘smoothness parameters’, the Lipschitz constant for the second derivative, say.
(Of course, estimating the parameters of strong convexity is also from time to
time laborious, and so it may be worthwhile to apply methods of solving
general convex problems even to strongly convex problems, accepting a
reduction in speed, but, on the other hand, reducing the demand for a priori
information about the problem under solution.) Therefore, from the practical
point of view, it is not always convenient to use methods which are sensitive to
difficultly observable characteristics of a problem.

However, high smoothness of the problem under solution is not by itself
sufficient to give rise to superlinear methods of the first order. Superlinear
convergence is always sensitive to the dimension of the problem. Indeed, we
have seen that in solving the very smoothest convex problems, i.e. quadratic
(I, Q)-strongly convex problems on R", an accuracy v is not attainable for first-
order methods in a number of steps less than ¢ \/é In (1/v) (we are assuming
Q0 = 2), where ¢ is an absolute positive constant, if n > ¢ \/é In (1/v). Thus, a
bound (uniform with respect to dimension) for the laboriousness of first-order
methods even of quadratic programming cannot be better than the linear one
O (In (1/v)). But in fact the dependence of the laboriousness of a method on the
dimension is at least as important as its dependence on the accuracy. In this
sense a quadratic estimate of the rate of convergence may even ‘discredit a
method undeservedly’. Suppose, for example, there is a first-order method of
solving (1, 2)-strictly convex quadratic problems, about which it is known only
that the bound for its laboriousness is of the form a (dim E) In In (1/v). We have
seen that, when \/5_ In (1/v) £ 2dim E, the complexity of this class relative to a
first-order oracle is not less than ¢ In (1/v), where ¢ > 0 is an absolute constant.
Now let v be determined by the relation In(1/v) = n = dim E. Then we always
have a(n) In In (1/v) = cn, ie. a(n) = cn/ln n. Thus the bound for the
laboriousness of the method cannot be better than (cn/ln n) In In (1/v). This
bound increases rapidly as n increases, and so for large n = dim E the method
(insofar as it is characterized by the original bound for its laboriousness) is
worse, to an arbitrarily large extent, than the simplest gradient method
(the bound for the laboriousness of which on the class considered is
3In(1/¥).

Thus a ‘uniform {with respect to dimension) superlinear convergence’ can be
enjoyed only by methods which operate with oracles of order higher than the
first, and then only on classes of problems which are ‘smoother’ than strongly
convex problems. In natural situations of this kind superlinearly convergent
methods do actually exist; they are of the Newton-method type.

Exercise 1. Let G be a convex, closed body in a Hilbert space, let x, € G, and
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let F3! be the class of all problems of the form
fox) > minlx€G, f;() <0, L <j<m,

Such that the f;(x) are twice continuously differentiable, (I;, Q;)-strongly
convex functions with | f}(x,)| < b; and the /] satisfying Lipschitz conditions
with Lipschitz constants L;. Here the b;, @;, I;, L; are given numbers. Prove
that the complexity of solving problems in F}! with absolute error ¢ using a
second-order oracle {(which provides f(x), f' (x), f” (x)} admits the bound

NE<c(p, (G, 0,5 L)lnln (1/e), e <1074,
here (I, @, b, L) is the list of parameters specifying the class.
Exercise 2. Consider the class C, of problems of the form

f(x)> min|xeR

suchthat | (0] < L1 €17 (1)< 2,|f/9(t)| € 1,3 € 5 € k, and prove that the
complexity of solving problems in this class with absolute error ¢ using any
local, deterministic oracle admits the lower bound

Nig) =z c(k)Inln(1/g), c(k) > 0.

Thus the ‘quadratic complexity’ is better than might be expected in natural
situations from numerical methods.

8.1.2

In accordance with what we have said, we shall evaluate traditional methods of
strongly convex programming on classes of (I, @)-strongly convex problems of
the (1.1) type, and we shall be concerned with the nature of the dependence of
the laboriousness on the modulus of strong convexity ¢. We shall not study
particularly the effect of dimensionality on the laboriousness, restricting
ourselves, when this is important, to a case of sufficiently high dimension.
Under these conditions we shall be concerned with whether a given method
realizes the ‘optimal’ bound for the laboriousness O ( \/6 In (1/v)). We recall
that this bound is potentially unimprovable, and that it is “almost’ realized (up
to a factor In Q) by the method in Section 7.3. Running ahead, we shall prove
that, for all those traditional methods for which an answer to the above
question is known to us, that answer is negative.

8.1.3

The methods which we shall examine look like this. At the ith step a point x;_,
and the next direction of descent P, _,; have already been constructed. In the ith
step (i > 2), that point on the arc {x;_, + tp,_ |t = 0} at which the function
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Jto be minimized has its minimum, is chosen as x;; x, is some point specified in
advance.

The methods differ from one another in the rules for constructing P,_, asa
function of the accumulated information (i.e. as a function of x,, ..., x,_,,
F(x1), oo, f (%1 ); the values of the f(x;) are not generally made use of).
Properly speaking, the scheme indicated gives not a method, but an
idealization of a method: the 1-dimensional problem of minimizing f on a ray
cannot be solved exactly in a finite time. Such an idealization is based on the
fact that 1-dimensional problems can be solved quite quickly (even with quite
high accuracies). We shall assume, as is usually done, that the exact solution of a
1-dimensional problem ‘occupies’ one step.

The simplest method of this kind is the gradient method: p;_; = —f" (x,-1).
This method ‘has no memory at all'—the next successive point is sought on a
ray chosen by means of information about the problem at the single preceding
point. From the considerations in Section 7.1.5 it is easy to deduce that, on an
(!, Q)strongly convex problem f, the gradient method ensures an accuracy v
(i.e. the initial residual f(x;) —inf f(x) is reduced 1/v times) after a time

_ Inl/v
MO = Tnavie: 1))[‘

After any substantially less time the method does not ensure accuracy v on the
class H, (E,0,1,Q),0 > 1,ifdim E > 2. Thus the laboriousness of a gradient
method ensuring an accuracy v < 1ontheclass H, (E,0,{,Q)whenQ > 2and
dim E = 2isnot less than ¢Q In (1/v), where ¢ > 01s an absolute constant. The
gradient method ‘behaves badly as Q increases.” The last of its drawbacks—
excessive sensitivity to the degree of conditionality of the problem—is well-
known.

Exercise Obtaina lower bound for the laboriousness of the gradient method
by analysing its work on a 2-dimensjonal quadratic problem.

{Letf(x)=1%{Ax|x>— {b|x ), let x; = 0, and let x; be the ith point of the
work of the method onf. Then x; = x;_; — £; (Ax; -, — b), where t;is defined by

the relation
{(Ax;—y —by—t; A{Ax;_, —b)|Ax;_ —b ) =0,

re- (Ax;-y _b)l
= (A(Ax;_ —bY|Ax;_y —b )’
and
(Ax;_, —b)2 (Ax;-, — b}
X =Xi—1 —

(A(Ax; = b)|Ax; —b)’
we put y; = Ax; —b. Then
(Ax;~y —b)* A(Ax,_, — b) ¥

w=Ax;_,—b— =y ————A
¥ ! CA(Ax; -y =b)[Ax;_, —b> Yimt {Ayizalyica

Yi—1-
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e 0 1 |
A_(o 1)’b=(1)’q=ﬁ&"'

It is easy to see that the vectors

Let

satisfy the recursive relations given. Thus — Ax;,, +b = ¢ ( ( : 1)!.). But

f)~inf, f(y) =4 (A7 (Ax—b)|Ax b,
and so
Sfxeqy) —infg f(x) — 2
for)=infefG)
Thus the error of the gradient method with M steps on a (1/Q, Q)-strongly
convex problem (corresponding to a=1/Q) is ((Q—1)/(Q+1))*™ 2.

Therefore the number of steps which will ensure an accuracy v on
H_ (R?, 0; 1, Q) is not less than

Inljv o _
:]2111(1 +2/Q— 1))[, and this is the required lower bound.)

8.1.4 Conjugate-gradient methods

These are a large group of methods of strongly convex programming which are
obtained, so to say, by ‘analytic continuation’ of the CGM from quadratic
problems to general problems. The conjugate-gradient method for quadratic
minimization can be written in the form x,,, = x;+t;p;, where ¢, is the
minimizing point for f(x;+ tp;) for all teR, and p; is the next direction of
descent and is constructed, on the basis of the information accumulated, from
suitable formulae. We did not give those formulae when we studied the CGM;
only the geometry of the method, not its analytical form, were of importance to
us. It is important to notice that the formulae defining the CGM can be written
in many different ways which are equivalent (on quadratic problems). Each of
these formal schemes for the CGM can later be regarded as defining an
algorithm for general convex minimization.

It is clear that the various formal schemes will now generate, generally
speaking, different algorithms (we recall that these schemes were equivalent,
i.e. they formed the same sequence of directions of descent, only on quadratic
problems.) Such a method (which s, to a certain degree, formal in character) of
extending the CGM from quadratic problem to general problems is what we
meant in speaking of ‘analytic continuation’ of the CGM. The idea of
generalizations of this sort is easily understood. If the function to be
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minimized is sufficiently smooth, then, in a small neighbourhood of its
minimum, it will be ‘almost quadratic’. Therefore, if a method under
consideration of the family converges at all, after a certain number of steps
(when it begins to work close to the minimum), the work of the method will be
almost the same as that of the usual CGM on a quadratic problem. If dim E
= n, the CGM with #n steps solves any quadratic problem exactly; but the
‘analytic continuation’ of the method which we have been considering will not,
of course, guarantee an exact solution after » steps even close to the minimum.

However, we can expect that after these n steps it will have greatly reduced
the residual, and indeed, for most ‘analytic extensions’ of the CGM these
expectations can be realized, and these extensions do give superlinear or
quadratic estimates of the rate of convergence (it is assumed, of course, that the
problem under solution is sufficiently smooth). (The reader can acquaint
himself with the scheme of construction of many of the conjugate-gradient
methods and with estimates of their rate of convergence by consulting [5].)

As already stated, we are interested in the behaviour of the methods under
consideration on problems in the class H(E, 0; I, ) when dim E is quite large.
More precisely, we want to know whether any of these methods realizes the
‘optimal’ bound for laboriousness, O(\/a In(1/¥)). From this point of view the
results mentioned about convergence are of little help to us, since essentially
they relate only to the nature of the convergence in the neighbourhood of the
optimum, and do not touch on (at least, not explicitly) the connection between
the rate of convergence and the parameter 0. We shall therefore have to
consider each method separately and to construct for it an example of a ‘slowly
solvable’ problem. We shall carry out this awkward work for three conjugate-
gradient methods. The choice of methods considered is to a certain extent
arbitrary. In describing the methods we shall use the following notation: x; is
the ith point of the work of the method on the problem f considered (and we
find it convenient to number them starting from 0 and not from 1),
g; = —f'(x;); p; is the direction of descent in the ith step, i.e.

Xir1 =X+ 4P, ‘ (1.2)
where ¢, is chosen as the minimizing point of f (x; + tp;) with respect to t; and

Ax; =X —x; Adi=2giv1~9:

8.2. THE FLETCHER-REEYES METHOD
(See [27], Chapter I, for a description of this method.)
In this method p; is chosen according to the formula

4o g
Pi= (2.1)
g0 f? |9 |2
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‘We shall construct for every sufficiently large Q and for all / > O an (I, Q)-strictly
convex function on the plane R? such that the FR-method (Fletcher—Reeves
method) of minimizing it with an accuracy ¢/Q requires > dQ? steps (where
¢, d > 0 are absolute constants). Thus, if we adopt the criteria which we have
adopted for estimates, the FR-method is even worse than the gradient method.

8.2.1

We shall make one reservation straightaway. The FR-method, like some other
conjugate-gradient methods, is often described as a process ‘with re-
initialization’. The latter expression means that the process (1.2)-(2.1)is carried
out not for the wholetime, but for a certain number of steps N = kdim E
(where k is a natural number). After this the method starts afresh from the
point x,, as it did from x,, and continues for a further N steps. Thus after each
set of N steps (the ‘re-initialization period’) all the information accumulated is
‘forgotten’, and the solution is started from the ‘current point’ as it was from
the original point. The ‘re-initialization’ is used so as to remove the unbounded
consequences of effects arising from the fact that the problem being solved is
not quadratic. Sometimes it is only because of this re-initialization that
convergence of the method can be achieved with any initial approximation.

Incidentally, the method in Section 7.3 also contained re-initializations (its
work during a period between two re-initializations was there called a stage).
However, the re-initialization period of this method was not related to the
‘chance’ dimensionality of the problem, but to one of its intrinsic properties,
viz. the modulus of strong convexity.

We shall not carry out the analysis separately for versions of methods which
have re-initialization and for those which do not. The point is that we are only
interested in the work of the methods of sufficiently large dimensionality; the
latter can always be chosen so large that there are no re-initializations on the
section of the trajectory considered. So we shall always restrict our attention to
methods without re-initialization. Moreover, the examples themselves can
have small dimensionality (in the present case, dimension 2). The point here is
that an (I, @)-strongly convex function f(x,,...,x,) can be put into
correspondence with an (I, Q)-strongly convex function f(x,, . . ., x,) of any
number of variables n = k in the following way:

.o x) =f(xy, ..., x,‘)+% 3 xi.

Jj=k+1
If the initial approximation lies in the plane of the first k variables (i.e. its co-
ordinates, starting from the (k + 1)th are equal to 0), then the work of any
conjugate-gradient method on ftakes place all the time in the plane of the first
k variables and coincides with the work of the method on f (this property can
always be easily deduced from the description of the method). Thus the work
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of a method without re-initialization on any problem of dimension k can be
interpreted as the work of the same method, but now with re-initialization, on
any ‘equally’ strictly convex problem of higher dimensionality. Therefore it
suffices to study methods without re-initialization in any convenient number
of dimensions. This remark also applies to the examples in the following
sections.

8.2.2

We now return to the Fletcher—Reeves method. Suppose the work of the
method does not stop in a finite time. In order to construct the example, we
shall express all the parameters of the trajectory of the method by means of the
angle between adjacent displacements. More precisely, let ;. (0 < ;4 < )
be the angle between Ax; and Ax,.,. It is easily verified that the following
relations hold:

_ pCOS @y .. - COSQP;4g 2.2)
95411 |Axglsin ;4
to
g0l =7 (2.3)
° |Axo|
Let us suppose that a sequence of points Xg, Xy, . . ., X;, . . . and a sequence

of vectors g1, ga, - - . in the plane R? are given such that

(i) {Ax;|Ax;y > >0,
(i) <gilAx;> >0;

{iii) go = Axq, lgol = 1;
COS ¢y ...COSQ;
sin @,

V) <gilAx;- ;> =0i > 1.

Here g, is the angle between Ax; and Ax;_y, i > 1. We further assume that there
is a convex function f(x) such that f'(x;) = —g;, i = 0. We shall show that
Xy . - -s Xi, - . . i the trajectory of the FR-method on f. The proof is by
induction over i. Suppose it is already known that Xy, . . ., X; are the first i + 1
points of the trajectory of the FR-method on f. For i = 1 this s true because of
(iii)and (v). Now leti > 1. Let y;, , be the (i + 2)th point of the trajectory of the
FR-method on f. In order to prove that y;,, = X;4,, we note that ¥, —Xx;
must form an acute angle with Ax;_, and an acute angle with g,.

In view of (2.2) and the inductive hypothesis, this angle y is determined by
the relation

|g:|1Axo |
toCOS Py . .. COS iy

cotyr =
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By (iii) and the definition of t,, we have |Ax,| = t, = 1. Using (iv), we obtain
coty = cot ¢, and so y; .4 — x; is collinear with Ax;. But then y,,, = x;1,,
because, by the definition of the method, y;,, must be the point on the ray
{x; + tAx;} at which f'(y;+,) is orthogonal to Ax;. But by (v) this point is
indeed x;, ;.

We now consider the following rule for constructing x; (Figure 8.1 {x; } isa
polygonal ‘spiral’ winding round the point A4; ¢, is the angle between the
directions from A to x; and from 4 to x,,,, and Ax; is orthogonal to Ax; ..
The vectors g, are defined (for k = 1) as A, (4 — x;). Also, |x; —x5| = 1, and

do = X, — X4. Further, we take A =0, and g, = — A4x, 4, >0, k = 1. We
shall ghoose the ¢, so that |g;| = a + 2fx,| and so that (iv) shall hold. Let
|x;| = 4. It is required to choose the angles ¢, @4, . . . 50 that the equations

COS @y . . . COS @,
sin ¢
shall be satisfied, since |x;|=|x;|cos¢,...cos¢;_, (for k=1,

CoS¢p; . ..co8®,_; = 1). In other words, the angles ¢, are found from the
recursion relation

=a+fBcosqp, ... cosp_q, k =1,

a
cotgy, = + B, cotep, =a+p. 24
O COS @) . .. COS @) B #1 B (2.4)

Putting t; = cos ¢;, we obtain, for k = 1,

\p‘l_ti_ tl"'tk—l

tk _a+ﬂ[1-..tk_1

(when k = 1, the right-hand side is equal to 1/(«+ #)). Hence

1 A
I (a+Bt, ...t P
ie. 5
2 (x4 Bty ...t q)
= T3 R 2.5)
(d+ﬂ£1...fk_1) +t1""'£k-1
A

The Fletcher -Reeves method 17

In addition to the sequence satisfying (2.5), we also consider the sequence
o, = (t; ... t) ' Then

( o )“ (& + B/ax-1)’

or-) =(°‘+ﬁ/ﬁ7k1)z+l/03n1,

or ,
Ok—1

1 2
z = gf i | = O — e S G+
=ag_.| 14+ =01+ = Oyg-1 z
o . 1( (Offfk—1+ﬁ)2) ko (C‘O'k—l"'ﬁ)z «
Moreover,

1
ol=S=(+f>+1

ti
Therefore
o < ;21 +{a+pP+1
and
2’ k>1
2
('[l LR tk} 2k—1+f12(ﬁl+ﬁ)2+a2’

Thus the sequences {x;} and {g;} can be constructed so that

(1) <Axi|gl'+l> =01 i =0, 1; 21 B
(2) X414 = |x;lcos @i, i = 1

at 2Bk
Ng=——x, P21
(3) g |

COSQq ...CO8¢; .
(@) gi| = S50 SRy

sin ¢;
a2

(5) (cos @, . ..cos ;) 2(i—1)+a2(ot+,8]2+r12’ izl

(6) go = Axg, lgo| = 1.
Moreover, ¢; is the angle between Ax; and Ax;_,. It is clear that the function
folx) = alx| + Bx?issuchthatfy (x;) = —gui 2 1. We now choose a parameter
¢ with 0 < ¢ < %, and we consider the function

alx|+ px%, x| 26

x) = Xxty ., Bx*, |x] <
2e 2

'rr/2/

Figure 8.1

It is easy to see that f(x) is (8, da/ef + 2)-strongly convex. Moreover, f(x)
coincides with fy (x) when |x| > &. Therefore, wheni = 1issuchthat x;| = s, we
have

LFx)=flx)=—a. (2.6
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Since |x;] = |x;]cos ¢, . . .cos @;_, = 4cos @y ...cOo8¢;_,, we have
[x:| = L il i =2
TP+l pR . (T
and so (2.6) holds when
o?
i<i(e)= :|2 + (Z—E»f — a4+ ) — az)[ 2.7

In order to convert f; into the required ‘bad problem’ f] for the FR-method, we
have still to ensure that the condition f; (x,) = — g, is satisfied. We shall seek f.
in the form f,(x) = A(x) +f,(x), where A (x)is a convex function equal toQinthe
disc |x| < 4 and such that
] f (X0} = — 4o,
ie.

Ai(xo) = —go—filxo) = —go— el 26xy = p.

Now let |x| < 4. Then

(PIx—xo > < 3PI+ {xoldo > +alxol+ 28| X0 *slx0 > = 1 +4 = §;

(Xolgod = —1; |p|2=1+(a+2ﬁ|xon2+(;—,+2ﬁ)<xo|go>
Q
< 1+ (a+48)
Thus
%(1+(a+4ﬁ))+2c¢+4ﬁ—1

—34+32+6f.
We put o« = 1/24, # = 1/48. Then {p|x—x, > < —tand [p| < 2.

We consider a smooth function # on the real line which is equal to 0 for
t £ —%,and to £+ 1 inaneighbourhood of t = 0, and which is monotonic and
convex. We can then take A,(x) = #( {p|x — x¢ D). Itis clear that A, is c-smooth
(where ¢ is an absolute constant) and that A.(x,) = p. Thus for every & with 0
< ¢ <1, a function f,(x) = A, (x)+f.(x) is defined, which is (1/48, c/e)-strongly
convex and is such that fi(x)= —g, i=0,1,2,..., i(g}~1. Comparing
(1}-(6) with (i}{(v), we see that x,, ..., x,,,_, is the initial section of the
trajectory of the FR-method on f. Further, £ clearly has a modulus of strong
convexity Q(¢) < ¢/e. Moreover,

fl;(xO) - mlnf; s cl!
where ¢, does not depend on & whereas, for |x| = ¢, we have

L (x)—minf, = c,,

where ¢, > 0 does not depend on &.

Plx—xg> <
<
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Thus, the FR-method on the problem f{x), which has a modulus of strong
convexity Q(g) < ¢/, ensures an accuracy c;& {(where ¢3 > 0 is an absolute
constant) not eartier than after i() steps, where i(e) = Jc, /e[ and ¢, > 0 does
not depend on e. If it is now given that Q > 2¢, we can take ¢ = &/Q. With this g,
the function f, provides an example of a function of two variables, with a
modulus of strong convexity 0, on which the FR-method ensures an accuracy
¢/Q only after dQ? steps (where ¢, d > 0 are absolute constants).

It still remains to point out that the trajectory of the FR-method does not
change when the function is multiplied by a constant. The constructed
function can therefore be normalized so that it becomes (I, Q)-strongly convex,
where | > 0 is any given number. So the desired example has been con-
structed.

We see, incidentally, how perviciously ‘after-effects’ can tell on the
FR-method: for all i 2 1, f(x,) points exactly to the minimizing point of f,,
but, because of ‘memory’, the method constructs a trajectory which is all the
longer, the ‘more orthogonal’ it is to the direction to the minimum (this is, of
course, up to a certain moment, namely, up to the moment i/g)).

8.3 THE POLAK-RIBIERE METHOD

{The description of this method is taken from [27], Chapter IL.)In this method
Po = 80> Pivy = Gi+1 + ¥iv 1 Pi» Where
_ {Hiv1—GilGiv 1)

g? '

We shall show that, for any / > 0 and for all sufficiently large Q, there is an
(1, @)-strongly convex function of three variables, on which the Polak-Ribiére
(PR) method ensures an accuracy v, > 0 not earlier than after cQ steps
{vg, ¢ > O are absolute constants). Thus the PR-method does not realize
the ‘optimal’ bound for the laboriousness, and, on the basis of the criteria
adopted for estimates in this book, it is not better than the gradient

method.
We pass on to the construction of the example.

T

8.3.1

We shall prove that
{Pi+1lGiv1—g:0 =0, i 20 (3.1)

We observe that {p;|g;+,> =0, i 20, imply {pis1lgis1D> =951, i 20;
MOTEOVET, Py = go, and so {pyide > = g&. Thus, for all i = 0,

{pilgi> =gt (3.2)
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Therefore
PictlGivs =40 = {Gist + V41 PilGiv1 — D
=91 — {Gie 118D+ 741 <PGiv1 > —Vie 1 <PilG:D
2 $Giv1—GilGi+1 )
3

=9i2+1—<91+1|95>—9i =0,

which proves (3.1). This means that the work of the method can be described in
the following way. (It is assumed that the method does not stop after a finite
number of steps with output at the minimizing point of the problem being
solved.) The next—the (i + 1)th-—-direction of descent lies in the plane going
through Ax; and g;, ;. In this plane the (i + 1)th direction is picked out by the
two conditions

(1) it forms an acute angle with g, , and
(2) it is orthogonal to g;., —g;-

These two conditions do determine the direction of descent uniquely. For,
otherwise ¢, ( —g; would be orthogonal to 2(Ax,, g;, ), and, since Ax; is
orthogonal to g, ,, we would have {Ax;|g,> =0, ie. g; = 0 (because, when
g: # 0, Ax; = t;p; with t; > 0), and this is not so, by hypothesis.

8.3.2

We can now reverse the argument. Namely, suppose a sequence of points
Xg, X1, . . . and a sequence of vectors gy, g;, . . . are given, and that

(l) 5090 = Axl:h I‘0 > 03 do :,’l: 0!
() <{gi+1|Ax>=0,i20;
(lll) Axl""lE B(Axia gi+1)s <Ax:‘+1|gi+1 > > 0, and (Ax“_] |gi+1 —gi> =0.

Further suppose that there is a convex function f such that f'(x;) = —g;,
i 2 0. Then {x;} is the trajectory of the PR-methed on f.
This assertion is proved by simple induction.

8.3.3

We now consider the following construction, Let (e, e;, 3) be an ortho-
normal basis in the 3-dimensional space R*. We consider a cylindrical surface
generated by a regular pentagon in the plane ¥(e,, e,), with the generators
collinear with e;. We consider a ‘winding’ xx, X3 X3 X, X5 . . . round this prism,
which intersects the generators at a constant angle ¢ (Figure 8.2). We then
choose the vectors g; so that the sequences {x;} and {g;} satisfy all the
conditions (ii}-(iii). It turns out that ¥ can be chosen so that g, , = t|g;|, with
i =1, and ¢ < | sufficiently close to 1. We then learn how to construct a
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Figure 8.2

function which has g; as its anti-gradient at x;, and we correct it so that the
condition (i) holds. With a suitable ¢ this function gives the required example.

We pass on to the description of the construction. Let 6 = 2n/5 = 72°, and
let u, denote a rotation through the angle # in the plane %(u,,u,). Let
go€ ¥ler, ez), lgo|l = 1, and let g, = (ug¥gp. — 0 < i < 0. We introduce a
parameter § > 0, and put

Ax; = g; + Bea, — 0 <1< oo, (3.3)
ro=(gi—coseq;_ )+ p(l —cos@les, —2o <i< . .
Here ¢ is chosen so that
32
#
0<(p<~g» and coscp:%

We notice the following facts.
(A)yre ¥(Ax; ., Ax;) and Ax,e 8(Ax;,_,r;) {because r;=Ax; —cos@pAx;_ ).
(B) ¢ is the angle between Ax; , and Ax; {(because

_ cos § + 32
(1Ax; | |Ax; ) 1<Axi|Axi—1>=*m3&=cos¢>-

(C) {rilAx; | > =0< {rlAx;> (for,
CAx;_1|Ax;— Ax;_, cos @ ) = |Ax;|[Ax;_[cos ¢ — |Ax;_[*cos @ = 0,
since |Ax;| does not depend on i; further,

(Ax;|Ax,—Ax; ycosg ) = (Ax?) (1 —cos® @) = Ax] sin? @ ).
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We now prove that, with a suitable choice of t > 0 and with §; = t'r,, we
have {(Ax;,(|§;+1—4d;> = 0. Indeed, we must choose ¢ from the condition
that, for all i,

(ivy+Bes| '™ {{qir1 —c0s q;) + B (1 —cos p)es }
—t'{(g;—cos pqi- 1)+ f(l —cosp)es} > =0,
or
tgl 1 —1cos@ (Giv1lqi > = { Q119
+c0s@ (giv11qe >+t (1 —cos @)~ (1 —cos @) = 0,
le.
t—tcos @ cos ) —cosf +cos ¢ cos 20 + 2 (1 —cos @) — f*(1 —cos @) = 0,
or
_cos B —cos ¢ cos 20+ (1 —cos ) :
~ p*(1-cos@)+1—cospcosf

Noting that

20 = 4“— s = cose
cos =cos - =cos{m—¢ | = 5
we obtain

_ cosf+cosg costd + A2 (1 —cos )

34
B*{(1 —cosg)+ 1 —cos ¢ cosh (34

We shall prove that thereisa A’ > Osuch that, forall  with 1 — A < ¢ < 1, there
are fi, and ¢, such that -

B2 +cos8

pi+1
B cos 0 +cos 3 cos @, + fZ (1 —cos ¢,)
~ BE(1—cosg,)+1—cosqp,cosd

cos ¢, =
[ (3.5)

and f, > 0, 0 < ¢, < /2, and §,, ¢, depend continuously on t. ’
For, when ¢t = 1 the system (3.5) has a solution with the required properties.
It can be expressed in the form

1l —cos@
=— 3.5
o8P cos 4 costd’ (35
2 |
+cosf " i
coses = %“rr 359 |
1 H

and direct calculation of the right-hand side of (3.5") shows that it lies between
0.5 and 0.9. Hence it is clear that (3.5} has a solution ¢, in the interval (0, /2), |
and that cos¢, > cos f. Because of this last relation, (3.5”) has a solution
f1 > 0. It remains to note that for the original system (depending parametri-
cally on ¢), the conditions of the implicit-function theorem hold at the point
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@1, B1,and so that system hasa solution, which depends continuously on t, for
all ¢ sufficiently close to I.

Nowlet I-A<t< 1. Weputg = ¢, f = f, and let Ax,, r, be defined by
(3.3) with the chosen ¢ and §.

8.34

We consider a trajectory {x;}; , ¢ in which

i-1

xX; =Xg+ Z Ax;,

i=o
and x, is chosen in the plane £(e,, e,)so that the projections x; of the points x;
on to this plane are the vertices of a regular pentagon with centre at 0 and with
side equal to 1 (it is clear that this can be done; Figure 8.3 shows the projection
of the trajectory on to L(ey, e,)). We put v, = ¢, — q;_, cos ¢. (so that v, is the
projection of r; on to £(e,, e;)). We shall prove that {v|%;) <0.

For, having chosen an orthonormal basis (e, /) in the plane as shown in

Figure 8.3 (where i = 5k), we obtain

= —cCos m—0 e+ sin n—6 f= —si 0 b
q; = 3 5 = —sm58+cos§f,

i—1 = COS n—0 e+ sin =0 f=si g + g
gi—1 = 3 3 = mEe cosif

and 9
{vley = —sini(l +cosg) <0,

and so also {1;|X;)> <0.

We also prove that, for ¢ sufficiently close to 1, the line orthogonal to v;and
passing through Xx; is a support to the pentagon (i.e. if X is a point in the

Ysree g

5442
¥oa+3
q5k+ 3
Toh+a
Figure 8.3
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pentagon, then (x —X;|v;> = 0). It suffices to prove that

{vilgi> >0 and {y;|—¢i-,> > 0.
We have
{vilq;) = qf — {q|di-1 Ycos g, = L —cosfcos @, > 0

and

{v;|—qi- > = —cos@+cose,.
When ¢t = | we have

|l —cosf

cos @, = m > cos@?
{this can be verified by direct calculation). Therefore {v;|1 —¢;_, > > 0 when
£ = 1, and then this inequality is also true for all values of ¢ close encugh to 1.
Hence it follows that the function (%) = {&;] — x> on the plane (e, e,)
attains its maximum on the pentagon at the point x;.

We shall consider the convex function on (e, e,):

Y(E) = max y(%).

0gig4

It is equal to { —v;|x > in a neighbourhood of each point %,, and therefore its
anti-gradient at X, is equal to v;. It is clear that this function can be smoothed
and converted into an ([, 0)-strongly convex function y;(X), preserving the

relation V(%) = ¥ (%), Yi(x) = —u; (3.6)

and the condition ,(0) = 0, ¥,(Q) = 0. Moreover, the numbers [, § can be
supposed independent of t, provided that 1 2t > 1 —A, where A > 0 is an
absolute, sufficiently small, constant.

835
Now lett < 1andt > 1—A. We define x > 0 from the condition
exp(—«f,) = t(xk = k(1))

We form the function F(x} = F(x, y) on R?® (X is the projection of x on to
2(e;, €;), and y = {x]ey >) according to the formula

F(x) = W &R 4 & KO (5 — )

where i, = i, (X;); the quantity on the right-hand side does not depend on i,
We prove that F'(x;) = —g,, { = 0, Indeed, if x is such that i, (X) = ¥,, then

Fz(x)=e " y(x),
Fl(x) = —ae™™, where a, = §,(1 —cosp,).
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T fi i f
herefore Filx,) = e "j (3} = — t'g,,
—Fy(x) = e *Pa, = ' (1 —cos 0,)B,,

and so , .
—F'(x}=t'{v;+ (1l —cos @,)B,e3) = 'r; = g..

()(("“))
— Ky (X) i K+ Kz(l.bt(i) =)

It is easy to see that, for all r sufficiently close to 1 (more precisely, for
l-A <t <1, with A > 0), in the domain G, = {|y| < I/x(t) and |X| < 20}
the function F is (c,x(¢), c;/K (t))-strongly convex, where ¢, ¢, are absolute
constants. It is also easy to see that F can be extended from this domain into
a (¢, x(t), c2/x(t))-strongly convex function, F,(x), on the whole of R?, We note
that all the points of the trajectory considered, x. . . ., X. lie in the domain

G,; here | I
o= i | =Lt o0

The function F,(x) is ‘almost’ the required example. The only thing
remaining to be done is to correct F,(x)in the neighbourhood of x, so that for
the corrected function F,(x) we have
—F/{xy) = AAxg, A >0

and (3.8)
{g, — AAx lAx > =0

The second condition gives

l= = {G:1]|Ax; ) _ t(rllA_n)m
T {AxolAxy > (147 )cos g,

f
= ((:jg“@”(l—_;ﬁfﬁ (g1 —qo cos @, + B (1 —cos o ey |q; + fies)
3 f

(Coso (1 ¥ B {1 —cosg, cos+ B (L —cos@,)}.

We shall try to find F,(x)} in the form F,(x) + A(x), seeking a convex function
A(x) such that (3.8) holds and such that A(x) will be equal to 0 in a
neighbourhood of x, x,,.... If we succeed in doing this, then, by our
construction (see (A}(C)), we shall obtain that F,(x;) = —g;,, M{t) =i =0,
where §; = g,,i = 1,and g, = 4, Ax,, and g, and x; satisfy {i}-(iii) for i < M (r).
Thus xg, . . ., X, Will be the initial section of the trajectory of the PR-method
on F,. ’

In order to satisfy (3.8) we must have
— A(%o)+ o = 4 Axq,

Further
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ie.

A'(xo) = go— 4 Axy = p(1). (3.9)
In order to construct a convex function A(x) which satisfies (3.9) and the
condition A'(x;) = 0, A(x;) = 0, i = 1, it suffices to verify that, for some a > 0
(a does not depend on ¢, at least for values of ¢ sufficiently close to 1), we have
{pi)|x;— xo > € —a. It is suflicient to show that {p(t)|Ax; > < a, (the a; do
not depend on ¢), and

ay, <0, ay+a;, <0 ao+a+a, <0,
ao+al+az+a3<0, ao+a1+a2+a3+a4<0

(since the Ax; are periodic: Ax;, s = Ax;). If we succeed in doing this, then, for ¢
close to 1, we will be able to exhibit a ¢-smooth, convex function which satisfies
(3.9) and which is equal to 0 in a neighbourhood of x;, i = 1 (it would be
possible to take it in the form ¢{ { p(t){x — x, ) with a suitable choice of ¢, see
Section 8.2). Here ¢ is an absolute constant,

Direct calculation of {p{1)|Ax;> gives {p(1)|]Ax;> <0 and {p(1)|Axy>
< 0., Therefore, for values of ¢ sufficiently close to 1, the required a; can be
found,

8.3.6

We summarize the results obtained. We have found a A > 0 and absolute
constants c,, ¢; > 0 such that, for all ¢ with 1 >t>1—A, there is a
{cox(t), ¢, /x(t))-strongly convex function F, on R* which satisfies the follow-
ing condition: along the first | In (1/t)] = M (t) of the points x;, i = 1, of the
trajectory of the PR-method on F, the relation

T (x,) = _ .

F.(X.-)—K(t) exp (—x{t) {x:les )
holds. Here x(t) is as defined in Section 8.3.5, a, = §,(1 —cos ¢,),and §,, ¢, are
as defined in (3.5). We see that

F_: (x[M(:)fZ]) - F: (x[,w(:)])
Fe(xq)—F, (x[mt)])
and v, > 0 does not depend on ¢t. Moreover, it is clear that

k(@)
TR

"(x[.u(l)ﬂ]’ F)z

= ¥

c<

¢, ¢ > O being absolute constants. Therefore the modulus of strong convexity
of F, is of the order 1/(1 —t),as also is M (t}; and so, after a time which is of the
same order as the modulus of strong convexity of F,, the PR-method isnot ina
position to ensure the accuracy v, in the solution of F,.
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At the same time, the modulus of strong convexity indicated can be made
arbitrarily large by making 1 — ¢ small. Thus, for all sufficiently large 0, there is
an (l,, Q)-strongly convex function on which the PR-method with &Q steps
(€ > 0 is an absolute constant) does not yield the accuracy v, > 0, where v,
does not depend on Q.

It remains to observe that the PR-method works on the function
Af (A > 0)with the same accuracy as on the function f, and so the ‘bad’ function
indicated can be taken to be an (I, @ }-strongly convex function, whatever value
! > 0 may have. The construction has been completed.

8.4 THE ZOUTENDIJK PROJECTION METHOD

(The description of Zoutendijk’s method is taken from [12], Chapter 3.)

In this method py, = gy, and p; is the projection of g; on to the orthogonal
complement to £({Ag,)iZ}), and Ag; = g;.,—g: If we obtain p; =0 but
g; # 0, then a re-initialization takes place at the moment i. We shall show that
this method converges only owing to the re-initializations (ordinary re-
initializations—after every (dim F) steps—are meant). More precisely, we shall
construct a (J-strongly convex function f on the space [, on which the
Zoutendijk method (the Z-method) does not converge at all. From our point
of view, this means that the Z-method not only fails to realize the optimum
bound for the laboriousness of solution of strongly convex problems, but also
that it is in general of little use for solving problems of high dimensionality.

We pass on to the construction of an example. Let {¢;}%, be an
orthonormal basis in [¥), We put

oo [= 2}
x,= 3 274 (j-1e, q= g, = Y 27

j=r+1 j=r+1

8.4.1

We shall prove that there is a 3-strongly convex function fon 17 ((Jisa certain
constant) such that f’(x,) = —g,, 0 < r < . To do this, we shall try to find a
convex function £(x) with a Lipschitz derivative such that £'(x,) = tq, — x,,
with ¢ > 0. If we succeed in finding such a £ for any ¢ > 0, then we shall take

2

X
2t

1
Fe =g+
8.4.2
We pass on to the construction of £ We fix ¢ > 3 and put

[+ 4]
G =1tq;—x; = Z 2742 —j+ie;.

P=i+1
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We calculate the numbers t;; = {G;i— di+11%; >, 0§, j < 0.
(1) Let i+ 1 < j. We have
d—qgiv1 = 2702 i1 — E 2_”23;,

s=i+2
Gi~Givrlxj )= — Z 2755 —j)= =270t
s=j+1
So, when i+ 1 < §, we have
E,‘jz —2_j+l.
(2) Now let i+1 > j,ie i =} Then
Ci—Gaalx; ) = 0270 -+ 1) — E 275 (s—))

s=it2
=t{i—j+ 127D =@+ DG i3
=27 -1 (i —j)+¢—3).
Thus, when i = j,
i = (=1 G+ (=327 0,
Since t > 3, ¢;; decreases for a fixed i and j varying from 0 to i
= (=327 = min¢;.
i
We put
t,- = tii = (E ot 3)2_[‘-+1).

843

Now let ¢;(7) be a convex function, equal to 0 when t < 0, and coinciding with
T when 7> (t—3)2 %Y = ;. We can assume ¢;(r) to be infinitely dif-
ferentiable and such that

lpi(Dl < e, 0< @i (1) < Ly =c(1)2'

(indeed, we can take

We form the series

m

E P Gi—Giurlx D) = Z i (x

The function ¥; is convex and infinitely differentiable, and y;(0)= 0,
;1 (0) = 0, We have

Ui hIBY = 07 ({Gi— Giv1|X D) IZI (Fi—Fir1 (@i — @i+ 11 hy.
k=
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Hence

P (x)h|RY < LiE? Z -5 || Pl
kI=i+1
Therefore

N N a +
PARACTINETNCD Y Wi AT

i=0kl=i+1
o min e, ) K+t
< () Y |hk||hl|( > 2')2T
=1 i=0
o =1
<) Y Ihllh|-277T < ez
k,i=1

Thus the series of second derivatives of the functions ; converges
absolutely along any direction, and has a bounded sum throughout the space.
Hence and from the relations y,(0) = 0, ;(0) = 0, it follows that the series

“oWilx+thyand ¥ o (Wi(x + th)|h)> converge uniformly on any interval
of the form [t| € A. Therefore the function

= Z ¥;(x)
i=0
is well-defined, convex, and continuous, and, for all x, &

Wy = 3 Uilh,

and ¢'(x) is Lipschitz with a constant cs{¢).
At the same time,

aa

W |h>—2<w M= 3 01) G—din) = X GG =4y

Here we have used the fact that
0, [<j,

<0 fori<j
ij 1

and so @;(t;;) =
=t forizj @ilty) {

i 2]

]

Thus we may take ¢ = 4, and adopt the corresponding ¥ (x) as £(x}.

8.4.4

Thus, the function f(x) mentioned in Section8.4.1 does actually
exist. We put g; =27%% and h=3"_, ue; and consider the function
f(x) = — (h|x > +2f(x). We shall prove that {x,} is the trajectory of the Z-
method on f with the initial point x,.
What we have to prove is that x; —x, is collinear with f'(x,),
and that x,,, —x; is collinear with the projection of f"(x;) on to the
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orthogonal complement to L(f” (x,) —f"(xq), - . -, f(x) =S (x;— 1)}, whereas
S ) Xivr— x> =0

We have
a o i oG
)= =Y we+2 Y mey=— ) we+ Y e
i=1 j=i+l i=1 j=itl
Xipg — X = — Z Hje;— Uiy 1€41 = — Z Hje;

j=i+2 j=i+l
Putting i = 0, we find that f'(x;) is collinear with Ax,. Moreaver,

v )Xy — %)

={— 1841t Z e — Z Bi€i— Miv1€iv1 )

j=i+2 j=i+2
{ostar 3 owp={-rens §oaileo
j=i+2 j=i+2
Finally,
Af,-zf’(x,-ﬂ)—f’(xi)=2( 2 Heg— !‘jej)=_’2“f+1e-‘+l'
j=it2 j=it1

Therefore £(Af, ..., Afi_ )= ¥{e,, ..., &), and the projection of f'(x;) on
to the orthogonal complement to £(Afy, ..., Af;)is )7, i;e;, whichis
collinear with x;, ; — x;. Thus, {x;} is the trajectory of the Z-method on f. But

Sy = — 2 uje;+ Z ey — —h+0,
i=1 =i+t i+

and so the method does not converge, not even with respect to the functional.
The required example has been constructed.

8.5 REMARKS ON THE DAVIDON--FLETCHER-POWELL
METHOD

(The description of the method is taken from [27], Chapter 11.)

8.5.1

We make a few remarks about one more conjugate-gradient method—the
Davidon—F letcher—Powell method; it is also called the variable-metric method.
For brevity, we denote it by the abbreviation DFP. In this method the
recurrent directions of descent p; are constructed according to the formula
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p; = H.g;, where H, is the operator constructed from the recursive formulae

H, =1 (the identity operator},
H,Ag; HAyg; Ax;. Ax;
(HiAgilAg: >  <{Axi|Ag >

Here Ag; = g;., —g;, and, for any vectors u, v the symbol u.v denotes the
operator defined by (u.v)k = {v|hd>u

The DFP is regarded as the most efficient conjugate-gradient method. We
shall not be able to clear up completely the question whether it really does
realize the ‘optimal’ bound for the laboriousness on the class of strongly
convex problems.

The only thing that can be asserted here is that, if the DFP is indeed good,
then it is so only for particular normalizations of the problems to be solved.
More precisely, there is an absolute constant § such that there are strongly
convex problems which have the modulus of convexity @ and on which, if their
dimensionality is sufficiently high, the DFP works ‘arbitrarily badly’, i.e. it
does not attain a given accuracy v, > 0 after any previously specified number
of steps M. (v, > 0 and @ are arbitrary constants.)

The crux of the matter is this: in contrast to the methods previously
considered, the DFP is *sensitive’ to changes in scale. The DFP trajectories on a
problem fand on the problem Af are, in general, distinct even when they have
the same starting point. This circumstance is related to the presence of the third
term on the right-hand side in (5.1). Tt is clear that the DFP trajectory on Af
coincides with the trajectory on f of a DFP; which works according to the
rules

H:+1 = H;

(5.1)

pi=Hg, Hy=1,
Ag. . HAg | Ax.
Hi+1 =H‘-—Hl 4i |Ag[+—: Ax, Axl
(HiAgilAgi) " 7 {Ax|Ag:)

(the starting-point of all trajectories is a point fixed once and for all).

If we now fix f and consider the DFP trajectories on Af for large 4, then they
will be ‘almost the same’ as the trajectories on f of the method DFP_ working
according to the rules

pi=H;g, Ho=1,

HAg, HAg,
" (HiAgilAgy
{This pronouncement is not stated entirely correctly, but its meaning is clear.
The following conclusions could easily be made rigorous, but we shall not
bother to do this.) But it is easy to see that the ‘limiting case of DFP",i.e. DFP_,

is precisely Zoutendijk’s projection method (why?). For the latter we know
how to construct an example of a function fwith “arbitrarily bad’ convergence

Hy =
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and with a modulus of strong convexity {J. The function Af for a sufficiently
large 4 will be the required example for the DFP.

This remark should not, of course, be interpreted as a criticism of the DFP.
The only thing we have established is that efficient use of DFP requires a
preliminary normalization of the problem being soclved. The DFP ‘senses’ not
only the ratio Q = L/l of the parameters of strong convexity of the
(/. @)-strongly convex problem being solved, but also the absolute values of
these parameters.

It would be interesting to determine which normalization of the problem
being solved is “optimal’ for the DFP, and whether it is true that, with such a
normalization, the DFP implements the ‘optimal’ bound for the laboriousness
of solution of problems with a given modulus of strong convexity, It would
also be interesting to determine which of the standard methods of strongly
convex programming implement the bound mentioned {or whether such
methods exist at all). It is scarcely worth mentioning that the authors do not
know the answers to these questions.

8.5.2

In concluding our brief and incomplete analysis of standard methods of
strongly convex programming, we point out that the results obtained do not
characterize the methods in all regards, but only from the particular point of
view which we have chosen. 1t is true that this point of view seems to us to be
the most natural one, in mathematical respects at least. It should, however, be
borne in mind that we have not touched at all on such practically important
aspects of methods as the simplicity of their computational organization and
computational stability. Finally, the standard methods do not need, before
they are put into operation, any a priori knowledge at all of the modulus of
convexity of the function being minimized, at least, not explicitly {(actually,
certain estimates of this modulus are necessary all the same in accurate
application of the methods: for example, it is necessary to choose properly the
accuracy of solution of 1-dimensional problems, and so on). In this respect, of
course, the practical advantage of the standard methods over the method
described in Section 7.3 is quite appreciable (but it is to a certain extent
cancelled by the concluding remarks in Section 7.5).

9

Convex programming
methods of zeroth order

In the previous chapters we have studied convex programming methods of the
first order, i.e. methods using not only information about the values of the
functionals in the problem under solution, but also information about their
derivatives. In this chapter we shall be considering a situation where
information about the derivatives is not accessible. From the practical point of
view this situation would seem to be the more typical. At the same time it is
objectively more complicated and it has been studied to a far less extent than
the one considered earlier. For this reason our treatment will be more cursory,
and the results less complete.

The plan of the exposition is as follows. The first two sections deal with
methods using a deterministic oracle of zeroth order. In Section 9.1 the
possibility is considered of constructing from this oracle a first-order oracle,
with subsequent use of first-order methods. The main disadvantage of
methods obtained in this way is their low stability relative to mistakes of the
oracle. In Section 9.2 a theoretically more stable method of solving convex
problems with a zeroth-order oracle is presented; this is based on the idea of
the MMCG. In Sections 9.3-9.4 the case where a stochastic oracle of zeroth
order is used is considered. In Section 9.3 a first-order stochastic oracle is
constructed from the given zeroth-order stochastic oracle, and the possibility
is considered of reducing the problem to the stochastic programming
problems studied in Chapters 5-6. The methods obtained as a result have a
laboriousness which is acceptable as regards its dependence on the dimensio-
nality of the problem, but which increases too quickly with increasing
demands on the accuracy of the solution. In Section 9.4, roughly speaking, a
deterministic, zeroth-order oracle is constructed from the stochastic, zeroth-
order oracle, and it is then used in application to the method of Section 9.2.
The method so obtained has a laboriousness which is acceptable as regards its
dependence on the required accuracy of solution, but which rapidly increases
with increase in the dimensionality of the problem. The final part of Section 9.4
is devoted to a discussion of the results of the chapter.

333
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We also touch on the question of the effects of bias in the oracle on the
possibility of using the methods described.

9.1 METHODS OF ZEROTH ORDER:
DETERMINISTIC ORACLE. I

Let U be a field of problems /= (fs, . . ., f..) of any of the classes considered
previously of convex programming problems. We shall suppose that ¥ is
equipped with a suitable rule for varying the error of the approximate
solutions (i.e. with a normalizing mapping f — r{f)). We consider the class of
problems 2l obtained by providing (¥, r(:)) with an oracle ¢ with the
observation function ¥ (f, x) = f(x), xeG, where G = E is the domain of
definition of problems from 2L It is assumed that E is a finite-dimensional
space, and n = dim E. Qur purpose is to construct an efficient method of
solving problems of the class .

92.1.1

The first idea that comes into the head is to construct from the given zeroth-
order, exact oracle a first-order oracle (it will no longer be an exact, but an
approximate, one), The idea is simple: we already know how to solve efficiently
problems of the class 9l obtained from % by replacing the exact, zeroth-order
oracle with an exact, first-order oracle. In other words, if we knew how to
calculate not only the values, but also the derivatives, of the components fJ of
the problem f e being solved, then we would know how it should be solved. It
is natural to try to construct approximate estimates of the derivatives of f;from
their values. The simplest thing to do is to replace these derivatives by
difference quotients.

Thus, if it is required to construct an approximation f; (x) to the derivative f;
at a point x G, then we may take it in the form

=, = fifx 4+ tee)—fi(x
i=1 x
where ¢,, . . ., ¢, 1s any basis in E, and g, is a linear form on E such that
0, i+#j,
Cojle > = 1, i=j,

and ¢, # 0—the step of the difference quotient—is sufficiently small in
absolute value. Other forms of difference approximations to the derivatives
can, of course, be used.

When such approximations are used, the imitation of a single answer from a
first-order oracle ‘costs’ n+ 1 questions to the zeroth-order oracle. It is thus
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possible to hope that it will be feasible to use for solving problems in the class 91
the methods for solving problems in the class 9, i.e. first-order methods; in so
doing, their laboriousness will be increased by n+ 1 times.

9.1.2

An approach of this sort encounters three problems. The first two are
concerned with whether the approach itself is possible, and the third with its
efficiency. These problems consist in the following.

I. However small we may have chosen the step of the difference quotient to be,

fj’(x) will always be just an approximation, either better or worse, to the
derivative f; (x). Therefore, a first-order method can be applied effectively only
when it is stable in relation to errors in the information of the first order
supplied to it; when the errors in this information are sufficiently small, it will,
as before, solve the problem well.

I1. Let us suppose that it is desired to use a stable, first-order method (‘stable’
in the sense just described), and we want to ensure an accuracy v in the solution
of the problem. Suppose further that, by analysing the method, we are in a
position to know what size errors in the estimates of the derivatives will be
acceptable. Then it is required to choose the successive displacements ¢, in
such a way as to ensure that no errors greater than the acceptable ones occur in
the estimates of the derivatives. Moreover, we must know how to choose such
t,, ‘constructively’, i.e. on the basis of the information available at the given
step. If there is no such means of choosing the tx, then it is not clear how the
intended reduction of zeroth-order methods to first-order methods can be
effected.

III. Suppose we have coped with problems I and 11, and that the intended plan
has been realized. Let us suppose that the plan has been applied to an efficient
first-order method, i.e. a method which realizes the complexity of the class J{
Will the zeroth-order method so obtained realize (or almost realize) the
complexity of the class 31? Generally speaking, it is not clear why this should be
the case.

We shall consider in general terms each of these three problems, starting
with the first. Of course, generally speaking, a first-order method is not obliged
to be stable relative to errors in the information. Methods can be envisaged
which would work well only with exact information, However, with all the
concrete methods known to us, and in particular, with all the first-order
methods considered previously (exceptions are the classes H,, but not HY ),
matters turn out well in this respect, at least from the theoretical point of view.
Not one of them requires absolutely accurate information. Moreover, for each
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of them a simple analysis based on convergence enables us to indicate
constructively that accuracy in the incoming information under which the use
of the method employing the approximate information will lead to a result of
the required accuracy in the same (order of ) time as in the case of exact
information. This level (admissible for the method and not zero) of errors in
the information flow can be calculated explicitly as a function of the a priori
information (i.e. as a function of the class of problems being solved) and of the
required accuracy of solution.

Sometimes, it is true, a method has to be slightly modified to make it ‘noise-
stable’in the above sense. We shall not go into the questions of this stability for
the first-order methods which we have constructed. As already mentioned, it is
comparatively easy to do this—by analyzing the proofs of their convergence
theorems. We point out that this has actually already been done for classes of
general convex problems with either deterministic or stochastic oracles: from
the very start the corresponding classes were equipped with an approximate,
not an exact, oracle.

Thus, in the cases in which we are interested, the first of the problems
mentioned above is solved positively.

As regards the second problem, the situation here is more complicated. We
have to ascertain for what classes of problems it is possible to choose
constructively the step for the difference quotient so as to ensure a specified
accuracy of approximation in a support functional (as previously explained,
this accuracy is found from an analysis of the stability of the corresponding
first-order method).

Suppose that f is differentiable in a neighbourhood of a point x €int & in
which we are interested. Then the derivative f} (x) is

fim iﬂiﬁ?Lﬂﬁ%
t++0 =1

Suppose that the modulus of continuity of the derivative of f;is known a priori,

ie. a function w;(s) —= 0 such that
s= +0

If5 ) =1 W)ls < @llx =yl

for x, yeint & (here |- || denotes any norm in the corresponding space). It is
clear that

Eﬁiﬁtﬁﬂ_ﬂ‘ Si{x+te)
t=0

r i < ayitlel) el

and so it is possible to indicate explicitly a step-size ¢, for which the difference
quotient will approximate the derivative with the required accuracy. Such, in
particular, is the situation for classes of smooth convex (strongly convex)
problems. In these classes the f/ (x)are Lipschitz with constants known a priori
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(the constants appear in the definition of the classes). Thus, for these two
classes, the second of the problems mentioned above is also solved positively.

It is a different matter with classes of general convex problems. Here there is
no a priori information at all about the modulus of continuity of the
derivatives (and indeed there cannot be, since a class may contain problems
with a discontinuous derivative). In this situation no choice of the steps for the
difference quotients will ensure obtaining sufficiently exact estimates of the
derivative. This is easily seen by considering the following example. Let E be a
plane with an orthonormal basis (e, e,), and let f,(x) be a convex function
which has, as one of its level curves, the boundary of a square. In the
calculation of the derivative of f, at one of the corners of the square by means
of (1.1) the estimate of the derivative will be zero for all positive values of the
step ¢, although all the support functionals to f, at 0 may be different from 0.

Thus the immediate answer to the question in which we are interested for the
class of general convex problems is negative, and so it would seem at a first
glance to be impossible to reduce the solution of these problems with a zeroth-
order oracle to their solution by means of first-order methods, It turns out,
however, that theoretically this difficulty can easily be overcome; the
phenomena like those just described can occur only at certain ‘exceptional’
points x, and a simple randomization enables these points to be avoided
‘almost certainly’. A detailed examination of this question will be given below.

We shall now say a few words about the last of the problems formulated. For
a full investigation of the efficiency of the zeroth-order methods obtained in
the way described above it would be necessary to compare the estimates for the
laboriousness of these methods with the lower bounds (if possible exact) of the
complexity of the class of problems ¥l. However, certain qualitative results can
be obtained without a lengthy analysis of the complexity of 2,

We carry out the appropriate analysis for deterministic methods and the
deterministic complexity. Similar considerations could also be carried out for
stochastic methods and the stochastic complexity corresponding to them.
Suppose, as above, that 9 is the class of problems obtained from % by replacing
the exact zeroth-order oracle by an exact first-order oracle. Let Ng(v) and
Ni(v) denote the deterministic complexities of functions in these classes. Let
{#(v)},. o be a family of methods of solving problems of the class U, B(v)
solving these problems with accuracy v. Suppose that {(v) is the laboriousness
of #(v). We consider the efficiency function of the family in question, i.e. the
ratio 6{(v) = Ng(v)/(v); the closer & is to 1, the ‘better” the family { #(v}}. We
further assume that our scheme of imitating a first-order oracle by means ofa
zeroth-order oracle can be implemented and applied to the methods of the
family { #(v)}, and that it leads to a family { #(v)} of l-methods, Z(v) solving
problems in ¥ with accuracy v. Because of the construction used, the
laboricusness of #(v) is (n+ 1}{(v), and the complexity Ng(v) is clearly
2 N (v). Therefore the efficiency #(v) of the family of f-methods considered



338 Convex programming methods of zeroth order

satisfies the inequahty
0(v)

80) ;n+1'

Thus the proposed construction, provided it be applicable, reduces the
efficiency by only n+ 1 times. Thus, with accuracy up to a factor O(n), the
construction considered preserves the efficiency of the methods. In particular,
if the family of methods { #(v)} is asymptotically sub-optimal as v — 0 (i.e.
8(v) > 6, > 0 for all v > 0}, then the same is also true of the family { #(v)}. In
general, the ‘degree of non-optimality’ of #(v) can be only n+ 1 times greater
than that of @(v).

In the analysis of the behaviour of methods under conditions of large
dimensionality (let us say, in investigating their efficiency asymptotically with
respect to n), the factor O(n} is already substantial, especially in situations
where its occurrence leads to qualitative effects: the laboriousness of the
methods, which previously were independent of the dimension, now begins to
increase linearly with increase in the dimension (such situations arise when we
. consider classes of smooth convex (strongly convex) problems and general
convex problems on 1,-bodies of high dimension). It is possible, however, to
show that this phenomenon is unavoidable, since the complexity Ng(v) itself
increases in all natural situations with increase in dimensionality, this increase
being at least linear. This is in contrast to the complexity Ng(v), for which this
circumstance does not always occur,

Exercise 1. Consider the class of problems of the form
f(x)=<plx) omin|xe¥ < E", V= {x|lx]| < I},

generated by vectors ¢ with ||@| = 1. Prove that the deterministic (and
stochastic) complexities of solving problems of this class with an absolute error
£ is not less than cn if € < ¢, (here ¢, &, > 0 are absolute constants).

In view of the result formulated in Exercise |, a linear growth in the
complexity of convex programming as regards zeroth-order methods when the
dimension increases is an unavoidable phenomenon, and the construction
considered is not connected with specially unfavourable (from a roughly
qualitative point of view) losses in efficiency. In view of what has been said, we
shall not investigate specially the complexity of convex programming with
zeroth-order oracles, contenting ourselves with estimates of method efficiency
accurate up to a factor O(n),

9.1.3

We now pass on to a presentation of general considerations regarding the
implementation of the proposed plan as applied to classes of general (or
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Lipschitz) convex problems (we have already pointed out that for classes of
convex (or strongly convex) problems its implementation does not evoke
difficulties). Clearly, it suffices to know how to imitate a first-order oracle of
accuracy vo > 0 for classes of general (or Lipschitz} convex problems by means
of a zeroth-order oracle. It is sufficient to know how to do this in the case where
G = R"isaconvex body,and itis required to imitate the answer of the oracle at
interior points of G. Suppose that f(x) is a convex, continuous function on
G, vy > 0, xp €int G, and that ¥, = sup, f—inf, f. We consider the following
stochastic procedure for estimating the support functional to f at x, (a
procedure of this sort was first proposed by A. M. Gupal [10]).

1°. Let A be a simplex, with centre at 0, which lies entirely within G. We
calculate the values of f at the vertices yq, . . ., y, of this simplex and at the
point x,. We construct the number r = r, = max; f(y;} —f(x,). Clearly,r, 20
andr < ¥, Moreover, if r, = 0, then fis linear within the limits of A,and from
its values at the y; its support functional at x, can be calculated exactly (why?).
We shall now suppose that r > 0.

2°. Lete,,..., e, beafixed basis in R”, and let x, . . ., x" be the co-ordinates
of x in this basis. For simplicity we shall suppose that x) =0, 1 < i< n. Let
To > 0 be so small that the cube K, = {x||x'| < 37,} is contained in A. We
choose a 7 < Ty, and then  is chosen in thecube K = {x||x'| < 7,1 < i < n}
at random (according to the uniform distribution). We calculate the difference
approximation to the support functional to f at X in the form

i S(&+7e) —f (%)

1 T

where ¢, is a linear functional such that

0, i#]
<¢’i|ej> = [, i=j
We take ¢ as the estimate provided by the described procedure for estimating
the support functional to f at x,. More precisely, we shall suppose that the
answer of the imitated first-order oracle to a question about f at the point x, is
the affine function

gy =SX)+<@ly—x>—p

where p > 0 is the parameter of the procedure.

The procedure described has the parameters 7, 7, p > 0 and it requires
1+(n+1)+(n+1)=2n+3 calculations of values of the function f We
emphasize that the procedure has a randomized character, and so the function
g, the result of the procedure, is stochastic.

We shall prove that, with a suitable choice of the parameters 7, 7, p > 0, we
can achieve the result that g, with probability as close to | as we please, will
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satisfy the condition

A(vg): g < () glxg) 2 f(xe)—voVy,

i.e. the modelled first-order oracle ‘almost certinly’ provides an estimate of the
support functional with the required accuracy.

It is convenient to introduce a Euclidean structure into R, with ¢, . . ., ¢,
as an orthonormal basis. Let ||- || denote the corresponding Euclidean norm.
Let d; be the diameter of G in the Euclidean metric obtained.

Proposition. Let « > 0 and let the parameters of the described procedure
(considered under the condition » > Q) satisfy the relations

vor [2n%r 2np| !
r=20 L L
(1.2)

‘o ol Typo = Vor
3n? \/r_ldgr’ 2

Then the probability that the condition A(v,) is satisfied by the result of
applying this procedure to f does not exceed «.

Exercise 2. Prove the proposition.

We point out that a procedure of the type described can be applied
simultaneously to several convex functions f,...,f, to obtain ‘almost
certain’ estimates (to the required accuracy) of their support functionals.
Morevoer, the 2n + 3 points at which it is necessary to calculate the values of
these functions can be chosen to be the same for all m+ 1 of these functions,
and the parameters g, T, v can be chosen ‘reckoning on the worst case™—on the
least of the non-zero values of ry, . . ., r,_. Further, the probability that A(v,)
is not satisfied for at least one of the functions f (that is, the uncertainty of the
imitation) does not exceed {m + 1)a, where « is the parameter according to
which p, T, and © are chosen in (1.2). Thus, by a suitable choice of the
parameters of the procedure, we can make this probability arbitrarily small.

9.14

It is clear how to apply the above result to the construction of randomized
zeroth-order methods of solving general (or Lipschitz) convex problems on G.
Let v > O be the required (relative) accuracy of solution of, let us say, general
convex problems with m constraints on G. We put v, = v/4, and let &, denote
the method constructed for an accuracy v/2 in the solution of problems in
classes of the type C" (G, E, m) (see Section 2.2) (for simplicity, let us say a
deterministic method); let /(v) be the upper bound for its laboriousness on this
class, We choose an arbitrarily small « > 0, and we shall imitate a first-order

Methods of zeroth order: deterministic oracle. F 341

oracle of relative accuracy v, by means of a zeroth-order oracle, ensuring an
uncertainty of the imitation < o/I(v). We consider a method # obtained by
applying () in combination with the imitation of the oracle for #{»). The
laboriousness of & will be < (2n+3)!(v}. It is, moreover, clear that, with
probability = 1 — a, the result provided by & will be a solution of the problem
with a relative error < v/2. In particular, when « = v/4, the mean relative error
of £ on the class considered will not exceed v with laboriousness [(v) (2n + 3).
Thus a simple randomization of first-order methods enables them also to be
used in a case where only zeroth-order information is available. This
randomization enables complications connected with a possible non-
smoothness of the components in the problem to be avoided.

9.2 METHODS OF ZEROTH ORDER:
DETERMINISTIC ORACLE. II

The simple ideas used in the previous section are of little use from the practical
point of view. The point is that the zeroth-order oracle was there assumed to be
exact (as also were all the calculations made using the information provided by
it). Small errors in the calculations of values of the components in the problem
can lead to colossal errors in the resulting estimates of the derivatives because
of the smallness of the steps in the difference quotients. The latter have upper
bounds of the order O(vZa). For the construction to be successful we must have
vo € vand a < v,i.e. T < O(v*). Also, the admissible errors in the calculation of
the difference quotients is of the order v, i.e. the admissible error in the input
information is of order tv = Q(¥*). Thus the construction described ensures
successful solution only if the accuracy of the input information is of a
considerably higher order than the accuracy required in the solution.

9.2.1

We shall describe another deterministic, zeroth-order method of solving
general convex problems. The laboriousness of this method as regards the
nature of its dependence on the accuracy vis the same (asymptoticallyas v — 0)
as for the optimal MCG method. As regards the sensitivity of the laborious-
ness to dimensionality, it is considerably higher for the method about to be
described than for the MCG (or for the randomized zeroth-order method
obtained from the MCG by means of the construction described in the
previous section). Thus the new method certainly does not realize the
complexity asymptotically with regard to dimensionality. On the other hand, it
is considerably more ‘noise-stable’ than the method of the previous section, at
least in the formal sense of noise-stability: the errors, admissible for the
method, in the current information are of the same order as the required
accuracy of solution of the problem (a precise formulation will be given later).
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We start by describing the class of problems of concern to us. Let G be a
convex, closed, bounded body in R", and let C(G, R", m) be, as earlier in
Section 2.2, the set of convex, continuous problems f = (f;, . . ., f,,} on G with
the same normalizing factors as in Section 2.2. We equip this set with a zeroth-

order oracle
W(f, x)=f(x), xeG, feC(G, R", m),

and denote the resulting class by C(G, R", m). We shall present a method of
solving problems of this class. The rest of this exposition is based on the
authors’ paper [317.

9.22

The idea of the method is a development of that of MMCG (Section 2.5),and it
consists in the following. For greater clarity, let m = 0. The answer of a first-
order oracle to a question about f at a point x enables the solution of the
problem to be localized in one of the parts into which G is divided by a certain
hyperplane passing through x. In the other part f is not less than it is at x. By
excluding this part from G, we have decreased the domain in which the
solution lies. The answer of a zeroth-order oracle to a question about f at a
point x € G does not enable the domain of localization of the solution to be
reduced. However, if we ‘interrogate f” at the vertices x,, . . ., x, of a certain
simplex A, then we do secure for ourselves a certain reduction in the domain of
localization,

Let x; be that vertex of the simplex at which f is maximal. On the side Aq of
A opposite to x;, the value of f is not greater than at x; (because f is convex,
and so its maximum on A coincides with its maximum on the vertices of A).
Therefore f does not decrease in the passage from x € A, to x; ; but then it does
not decrease along the ray [x, x; ] going from x towards x; . Therefore in the
polyhedral cone K with vertex x;, obtained by reflecting in x;, the cone of
directions from x;, into A we have

Jx) 2 (xi,).

Therefore the cone K can be excluded from G, thus decreasing the domain of
localization of the solution.

Unfortunately, the new domain of localization is only ‘a little less’ than the
original one, and (what is worst of all) it is not convex; this creates substantial
difficulties in implementing the idea ‘in its pure form’,

Here, however, the basic idea of the MMCG comes to our aid. Suppose that
G is a ball (or ellipsoid), and that A is a simplex situated close to the centre of G
(so that the cone K can be regarded, roughly speaking, as having a vertex at the
centre of G). Then G\K is certainly contained in a convex body G, obtained by
cutting off from G a certain ‘cap’. G, could be taken as the new domain of
localization of the solution. But we cannot iterate the process—because the
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boundary of G, contains a plane part, and so the next ‘cone to be rejected’
might be supported exactly on this plane part, and it would not be possible to
cut off a new “cap’. It is therefore expedient to try to enclose G, in an ellipsoid
G, of minimal volume, and to regard this G, as the new domain of localization
of the solution. With such a course of action the geometrical situation at all
steps will be of the same type. However, the actions described will be successful
only if G, proves to be less (in volume) than G, i.e. when the volumes of the
successive domains of localization decrease in geometrical progression as the
number of steps increases. It is easy to work out what the aperture of the cone
K must be for the volume of G, to be less than that of G. Unfortunately, it turns
out that the polyhedral cone corresponding to a regular simplex is too small.

We are faced with a new problem. In order to implement the intended plan,
we have to be certain that the cone K excluded is sufficiently large. It is
impossible to choose the simplex A so that an arbitrary one of the n + 1 cones
corresponding to it would have the necessary size. Since we do not know in
advance {before consulting the oracle) which of these n+ 1 cones it will be
possible to remove, it can very likely happen that the cone to be removed
proves to be not bigenough, and we shall not be able to decrease the domain of
localization of the solution while preserving its form.

The simplest way out of this awkward situation is to calculate the values of f,
not at the vertices of a small simplex situated close to the centre of G, but at the
vertices of a polyhedron I' having a large number of points on the boundary.
As before, it will be possible to remove from G a cone obtained by reflecting in
that vertex of I which gives the maximal value of f the cone of directions from
that vertex into T. If we take this polyhedron to be one which ‘well
approximates a ball’, then the cone described will be sufficiently big whichever
of the vertices of I' turns out to be maximal.

A similar device (in a rather different context)is used in a known method due
to Kuzovkin and Tikhomirov [17] of solving convex extremal problems with a
zeroth-order oracle. Its disadvantage is that the number of vertices of I', and so
also the laboriousness of the method, has to increase exponentially with
growth of n. To avoid this, we shall use a different approach, less obvious but
more economical.

Let A be a regular simplex with its centre of gravity at the centre x; of the ball
G, and let y® be its maximal vertex. We consider a regular pyramid A, with
vertex y°, with the necessary aperture at the vertex, and with its altitude
collinear with y° —x,. Its base is chosen so that for the other vertices
Y1, . . .» ¥, the vectors y; — y® are orthogonal to y; — x, (i.€. y; is the projection
of x,—y® on to the corresponding side of A,). It is possible that y° is the
maximal vertex in the pyramid A,. We have then found a cone of the necessary
size for removal. If y° is not the maximal vertex, then we select the maximal
vertex in A, and call it y!, and construct a pyramid A, with vertex at y' in the
same way as the pyramid A, was constructed from y°. If y* is maximal in A,,
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everything is in order; if not, we select the maximal vertex in A, and construct
A,, and so on.
The central fact is that this process cannot continue long. For,

FOO) <SP <fF) < ..., but [y —xg| = (sin ) *1]y° — x|,

where i is the angle between y°®—x° and the lateral edge of A,. There-
fore, for some i which can be estimated explicitly, we shall have
Y —xo| € 1/n|y° —x,), ie. ¥t €A (provided the process has not ter-
minated earlier). But this is impossible, because by construction
S Y > f(y%),and y° was the maximal vertex of A. Thus, in the course of the
process described, not later than after a certain number (estimated in advance)
of steps, a cone, of the necessary size, for removal will have been constructed,

9.2.3

We now pass on to the description of the method. We shall consider the case
where it is required to ensure a given absolute error ¢ = (g, . . ., &,) > Ointhe
solutions of problems in the class C(G, R", m). We preface the exposition of the
method by a lemma which generalizes the lemma in Section 2.5.2,

Lemma. Let W, be the Euclidean ball with centre at 0 and radius r in the
n-dimensional Euclidean space R" with an orthonormal basis e,, ..., e,,
n > 1. Let @(¢) be a cone with aperture 2¢:

n

Qo) = {x|<{x|e,> 2cosp|x|}, 0< ¢ <3

If cosg < 1/n, then the set W \Q(p) can be enclosed in an ellipsoid of
volume f"(@)| W, |, having its centre at the point (—ry(@)e,}, where

l—ncosg

) = i

n—1

n+i
n n — ’1.5
sor-2(sn2) " (c0s?) ﬂ%i
n°—
We point out that the lernma in Section 2.5.2 is a particular case of this lemma,
which is obtained when ¢ = n/2.

Exercise iI. Prove the lemma.

We shall be concerned with the particular case of the lemma corresponding
to ¢ = @, =cos™ ' (1;(2n)).
It can be seen that d
ﬂ((pn) = l_n_;'l dn > 0;

. 1
llm dy =14, y(@,) = 2057)
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It is clear that there is a 8, = 8(n) > 0 such that the assertion of the lemma
for ¢ = @, remains true also when f§(¢,) in its formulation is replaced by
B(w.) = 3(1 + B(e,)), and the cone @(¢p,) is allowed to be displaced arbitrarily
subject to the condition that its vertex lies in a 8 (n)r-neighbourhood of the
centre of W,. When this is done, 8(n)is = ¢/n, where ¢ is an absolute constant.

Let ¢ > 0 be the specified absolute accuracy. We further assume that we
have two similar ellipsoids W, and W, such that W, = G = W, and let
|Wo| = B"| Wy ). We know (see Section 4.1.1) that W, and W, can be chosen so
that § < n. Let O, be a co-ordinate system relative to which W, is a ball of
radius r, with centre at 0. The method being described is made up of stages.
The zeroth stage is a preparatory one. In the ith stage (i > 1) the next domain
of localization of the solution W; n G is constructed; here W; is an ellipsoid
which, in the co-ordinate system O, is a ball of radius r; with centre at 0 and
which has the same volume element as in the original co-ordinates 0. The
oracle’s answers about the values of the components in the problem being
solved at points x will be denoted by y,(x), 0 < j < m (the reason for this
strange notation is that we want to have the possibility of applying the method
also in the case where we have only an approximate, and not an exact, oracle at
our disposition}).

The zeroth step. We consider a regular simplex A (regular, that is, in the O, co-
ordinates) inscribed in the ball W,. Let x° ..., x" be its vertices, At these
points questions about the problem being solved are put to the oracle, and the
numbers
F(f)=max {0, max ¥;(x")}, j=12...,m,
OLkgn
are formed. We put

Folf)= max i, (x*).

0Lk<gn

Stagei (1 <i< M/) (M, is the number, formed during the course of the
method’s work, of stages in the solution of the problem). At the ith stage O, _ |,
r;_1, W;_,,and also the centre x; of the ball W,_ are known. In the ith stage
the following operations are carried out in turn, (All the considerations are
carried out in the co-ordinates O;_,, which are assumed to be Cartesian in the
ith stage; thus the Euclidean structure of R" will be proper to the particular
stage.) We put 8, = 6(n).

1°. It is possible that the ball W;_, of radius 8,r;_, with centre at x; is not
contained in G. In that case we find a point u;e W; ,\G and consider the
support functional g, to the function p, (-, G) at the point u; (here | - | is any
norm, fixed once and for all, on R"). Then ¢; + 0 (because u; ¢ G). We consider
the cone K; = { {p;|x —u; > = 0} with vertex at u;. Clearly, K, n G = (5. We
choose as W, the ellipsoid of least volume which contains #;_ \K;, and as O,
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that co-ordinate system (with the same volume element asin O; ,)in which ¥,
is a ball. By Lemma 9.2.3 the radius r; of the ball W, in the O, co-ordinates does
not exceed J(n)r,_,. We take the centre of W, as x; ;. We putj(i) = m+ 1,and
go to 3° (in stage 2.2 of the procedure given below).

2°. Now suppose that W;_, — G. We inscribe in #,_, a regular simplex A;;
let Zy, . . ., Z, be its vertices. Questions about the problem f being solved are
put to the oracle at the points x;, Z,, . . ., Z,, and the numbers
ri= max y;(z), 0<j<m
Cgk<n

are formed (it is clear that r{ = max_ .z f;(x} for an exact oracle). We put

,(i)_{o,ifr{'ss,- 1<j<m,

j > 1 such that r{ > ¢; if there is such a je |, m.
Let A; = A, when j(i) > 0. Otherwise we inscribe in A, a ball #,;_, touching the
faces of A, and we consider a regular simplex A, inscribed in W,_,. Let ¥,
denote a ball described round A;, and let 7; be its radius. It is clear that
F: = (6,/m)r;_, and that ¥, c W,_,.
We now apply the following procedure.

2.1. For brevity we write g(y) = ;, (y). For any finite number of points of G
we define the maximal point as that point of the set at which g is maximal.
Further, in speaking of the choice of the maximal point among the points of a
given set, we shall bear in mind that the oracle has to be interrogated at each of
these points.

Let y° be the maximal of the vertices of A;. We construct a regular (n + 1)-
faced pyramid A® with vertex y°, with its altitude collinear with y* — x;, and
with the angle ¢, between the altitude and the lateral faces, and with the lateral
edges orthogonal to the radii-vectores of their ends lying on the base (we recall
that the exposition is being carried out in the Euclidean structure in R" of the
ith stage; the Cartesian co-ordinates in it are O, _,). We note that A® = ¥, If y°
is the maximal one of the vertices of A%, then we shall say that A® is normal, and
we shall put z; = y° and pass on to stage 2.2 of the procedure. Otherwise, we
shall find the maximal vertex y* of A%, and put §° = g(¥') — g{(»"). We construct
for y' a pyramid A! according to the same rules as in constructing A° for y°. If
A'isnormal (i.e. if y' is its maximal vertex), then we put y' = z; and pass on to
stage 2.2; otherwise we find the maximal vertex y* of the pyramid A', put
&' = g(¥*)—g(¥"), construct A%, and so on. We break off this process at the
moment when we first obtain y* € A, (this will necessarily occur unless, of
course, the process has been terminated earlier by a passage to stage 2.2). If in
the course of constructing the successive points a normal pyramid were not
obtained, then we would select from the constructed points y°, . . ., y*~ ! that
to which the least of the numbers 8%, . . ., 8* 7! corresponds. We then denote
this point by z; and pass on to stage 2.2,
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2.2. By construction, z; is a certain point y*, We consider the cone
K;={y|34> 0: 1(y*—y)+y°eA’}.

By the construction of A', the cone K| contains a circular cone with axis y* — x;,
with the angle 2¢, as its aperture, and with its vertex at y®, By construction,
yielV,c Wo_,.

By the lemma in Section 9.2.3, the domain W,_\K; is contained in an
ellipsoid W, of volume (f(¢,))"| W;_,|.- Let O, be that co-ordinate system in
which W,;is a ball with centre at 0. Also let the volume element in O, be the same
as that in O;_,. Then the radius r; of the ball W in the O, co-ordinates is

r,=Blori-.
3°. We put a; = min{y,(z,)|s <4, j(s) =0} (when j(5)>0, 1 <5<, we
put a; = + o). Let p; = max {0, fy(f)—a;}, and let

L, j)=m+l,
v, = i/ Fiay ) j(")EI,_m,
£o ce
=0.
el J

We further put v' = ming ¢ ; < ; Vs, Where vy = L If r, < (v'/(4np))r,, we pass
on to the concluding stage; otherwise, to the stage i+ 1.

Concluding stage. The work of the method stops with output of the result
* ifj{i) > 0 when i < M,

X =12z;, whereiyissuchthatj(ip) = 0and ¥, (z;)) = ayy, (ie. Yo (z,)) < Yol2,)
for all s with j(s) = 0) otherwise.

Here M, is the iteration number of the last of the working stages.

9224

Theorem. (i) The method described, constructed for an accuracy e > 0,
solves with this accuracy all problems in C(G, R", m) with a laboriousness not

exceeding e
o vifE
On. (l +v{/, c))

4
O, ()= ]cn"'lnnlni[,

{here

¥V

¢ is an absclute constant, and
. &;
v(f,e)= min 1
ocjemtilS

is the maximal relative error which ensures the given absolute error).
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(ii) Let§ < n(W,and W, such that thisinequality holds canalways be found),
There is a polynomial P(n) which has the following property. Let the method
described be applied to solving problems in the class C3¥(G, R", m) obtained
from C(G, R, m) by replacing the exact zeroth-order oracle by an approximate
oracle

(o (fix)s -« oy Y (£, X)) {f} x G- R™H!

with an absolute error & (the last phrase means
[;(f, x)—f;(x)| < ¢, for all fe C(G, R", m), xeG and fe{l, ..., m})

Suppose, further, that the required absolute error € of solutions of problems
from C? satisfies the condition &; > P(n)é;, 0 <j < m. Then the method
described, constructed for an accuracy ¢, solves all problems in €® with an
error < 2¢ and with laboriousness

0 v/ €}
<o)

Let us discuss the assertions of the theorem. We have constructed a
deterministic method of solving general convex problems using a zeroth-order
oracle and having the following property as regards efficiency: asymptotically
{as v(, £) = 0) its laboriousness coincides with the complexity of the class of
problems considered (up to a factor which is bounded above by a polynomial
in the dimension of the problem). The method is noise-stable in the following
sense: it is in a position to solve a problem with an absolute error € > 0if the
errors in the current information used by it do not exceed values proportional
to €. It is true that the coefficient of proportionality—which is the index of the
method’s noise-stability—tends to 0 as the dimensionality of the problem
increases. In Section 9.4 we shall see that, qualitatively, the latter effect is
unavoidable.

Of course, the laboriousness of the method described depends strongly on n,
and so, really, the method cannot be recommended for any apprectable values
of n.

Exercise 2. Prove the theorem.

Exercise 3. Construct an analogue of the method described (and prove for it
an appropriate version of the theorem) in the case where unconstrained
problems (m = 0) are to be solved with a specified relative error v > 0. Try to
extend this result to the case of constrained problems (in the case of an
approximate oracle, the authors did not succeed in obtaining the required
extension, at least, not in the time they were prepared to spend on this
question).
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9.3 METHODS OF ZEROTH ORDER: STOCHASTIC ORACLE. 1

In the preceding sections the case has been examined where exact information
{(or information distorted only by small errors) about the values of the
functionals in the problem being solved was available to the method. We now
consider a situation where this information is perturbed by random (and, in
general, not small) noise, although the mean noise is equal to 0, and the noises
in different cycles are independent.

931

We begin by describing the class of problems considered. Let G = R" be a
convex, bounded, closed body, let G, = G containing G be a body of the same
type, and let #,(G,) be the set of all (m+ I}-dimensional, component-
wise continuous, convex vector-functions on G,. With each function
= 1fs,...,[,) of this kind we associate the problem f:

Jo(x)—min|xeG, f;{x)<0, ] <j<m

We shall suppose that problems from .#_(G,) are observed by means of a
stochastic oracle ¢ = ((€, F,); Y (x, f, )} with an observation function
Yix, f, o) F,(G,)%xQxG,— R"", The components v, ..., {, of the
vector-function v are interpreted as observations of the values of the
corresponding components of f. As always, (Q, F,) is assumed to be a Polish
space with a regular, Borel, Lebesgue-complete, probability measure F_, and
W (x, f, w) is assumed to be a Borel function with respect to w and x.

In order to be able to work with the oracle £, we must, as in the case of a first-
order oracle, adopt definite hypotheses about the intensity of the noise and
possible limits to the bias of the oracle . We shall do this in the following way.
Let Lo, ..., L,>0and vy > 0;also let r > 1. Let C{, (G, Lo, ..., L, G;)
denote the set of all problems f from #,, ((,) for which, for all xeG,,

(1) M, max (“’J’("’f’ “’”)'s i;
“ogiem L;
2) max IMe v, (x, f, w) —f; (x)] <.
o<igm L

Roughly speaking, as regards meaning, the L’ are a priori estimates of the
(absolute) rth moments of the oracle’s answers about the values of f;, and v, is
an a priori estimate of the (relative) bias of the oracle (. As the normalizing
factors for the class introduced, we select the parameters L; themselves.

In examining methods of solving problems of this class, we shall
assume the parameters r, vy, L; to have been specified a priori. It is clear that,
by a simple normalization of the components in the problems being
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solved, 9ach class CY v (G Lo, = L., G;) can be reduced to a certain
cass C7, (G, 1,...,1,G)=C!, (G, G,). It is this normalized class of

problems that we shall consider below.

9.3.2

We shall describe somewhat cursorily two approaches for solving problems of
the class C? vo (0, G;). The first is based on the idea of imitating, for the
problems considered, a stochastic oracle of the first order by the available
stochastic oracle of the zeroth order, followed by use of methods of the
stochastic approximation type (Chapters 5-6). In the second approach (dis-
cussed in the next section), roughly speaking, from the zeroth-order stocha-
stic oracle a zeroth-order deterministic oracle is constructed, and then zeroth-
order methods designed for an (approximate) deterministic oracle are used.
We start with the first approach, in which, from a zeroth-order stochastic
oracle, a first-order oracle—still stochastic—is constructed. The idea of this
construction has been used more than once in different versions of random
descent methods. We shall present its general features without going into
particular details. We fix a Euclidean structure in R", and let d be the diameter,
and « the asphericity, of G in the corresponding metric. We shall assume that f
is a continuous, convex function on G,, and @ is an unbiased, zeroth-order
oracle. Let p > 0 be a parameter. We consider the function f* obtained from f
by averaging:

1
PR = j flx+8)dg, (3.1)
- Il e

where ¥V, = {&]|||€]| < p},,and |- |,is an n-dimensional Lebesgue volume, The
function f*(x) is defined, not over the whole domain G, of the function f, but
over a slightly smaller domain G, consisting of all points x € G, whose distance
up to the boundary of G is not less than p. In particular, if p/d is sufficiently
small, then f* is defined in ‘a large part’ of G; but if G; contains a
p-neighbourhood of G, then f* is defined on the whole of G.

Exercise I. Let G be contained in a ball of radius R with centre at 0 and let G
contain a concentric ball of radius R/(2x). Prove that f* is defined in the set # G,
where = 1 —2pa/R.

Since f is continuous, f* can be made uniformly (over the whole of G?),
arbitrarily close to f by choosing p > 0sufficiently small. Finally, G?is convex,
and f* is convex in G{. Moreover, it is easy to see that f* is continuously
differentiable in G4, and its gradient is found from the formula

1 £
Vif(x)= |—V;| .|. Jix+ f)mdsp(f) (3.2)
15l=p
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(hereds,(£}is anelement of a spherical surface of radius p in R"). Passing from
integration over the area of a sphere to integration with respect to the
normalized area (the area of the whole sphere is taken to be 1), i.e. integration
with respect to a uniformly distributed probability dg(£) on s,, we obtain

H

Vf”(x)=5 J‘ f(x+plda(s). (3.3)
sy =1
Exercise 2. Prove (3.2)}-(3.3).

Thus the gradient of f# in G can be expressed in the form of an integral of
values of f with a certain (vector) weight.

We are now in a position to describe the idea of the approach mentioned. It
consists in the following,

1°.  We choose, on the basis of the a prieri information, the parameter p so
small that the domain G¢ of the problem (ff,...,f) approximates G
sufficiently well and the functions f;# themselves approximate the f; sufficiently
well in this domain 4. More precisely, if v is the required accuracy of solution
of the problem, then we choose p > 0and the numbers «;, 1 < j < m,such that,

for any point x e G{ n G, the relation
-~ ¥V
V(5 f) < v(uS)+3

is satisfied, where

foff »min|xeGEnG, ff(x)<a, 1<j<m,

and v is the required accuracy of solution of the problem f (we suppose that the
normalizing factors for f*, as also for [, are unities).
We shall discuss later how to choose a suitable p.

2°. Having chosen p and « ; as indicated, we shall red~uce the problem of
solving f with a (mean) error v to the problem of solving f * with a mean error
v/2.

We shall indicate a way of solving the latter problem. We shall model a first-
order oracle for j* in the following way. We select at random (relative to a
uniform measure in V,) a point { €}/, and put to Fa question about fat the
point £ + x. The answer obtained is adopted as an observation of f7(x); we
denote it by a(&, ®) = (2,(&, @), . . ., a, (&, w)), where w is the oracle noise in
the corresponding cycle. Then we select at random (relative to the measure doa)
a point & on the spherical surface s; = {£]| ¢ = 1} and put a question to the
oracle & about f at the point x+ p& Let bgy,..., b, be the numbers
communicated by the oracle. We form the vectors {n/p)b,£ and regard them as
observations of the gradients of the f at the point x. We denote them by
b;(€, w'), where ' is the noise of the oracle € in the corresponding cycle. We
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shall prove that the oracle imitated in this way is indeed an unbiased, first-
order oracle for the problem f*. For,

1 1
Ma =WJM““(¢’ w)ydé = o J‘f(x+€}d€ =f*(x)
(here f* denotes the vector-function (f3, . . ., f2)). In the same way,
Mb; = %“ Nj (G OMe a;(p¢, =2 | do@fi(x+pE)E = VP (x)
HE €= 1

Let us estimate the noise intensity of the oracle obtained in this way. Because
of the properties of &, we have

1
Miall% =7 |Mg, lla(E, o)L df < 1 (3.4)
Vol

and

ny ny
Milb;|" = (5) J da(E)Me_la;(pE, o) < (E) . (3.5)
néi=1
Thus, for a given p, the noise level of the modelled first-order oracle can be
estimated ezplicitly {a consultation of this oracle *costs’ two consultations of
the oracle ).
We are now in a position to solve the problem f ?, using the constructed first-
order oracle, by first-order methods (designed for a stochastic oracle).

Remark. It is clear that the way just described of imitating a first-order
stochastic oracle by means of a zeroth-order oracle is applicable not only to the
ordinary problems of mathematical programming, but also to extremal
problems with operator constraints (see Section 5.5). We leave it to the reader
to formulate and prove the corresponding propositions,

9.33

We shall go into certain difficulties connected with the approach described. We
see that for its implementation we must know how to choose constructively
both p and the a; so that the problem f# will approximate the problem f with
the specified accuracy. Moreover, the smaller the p which we choose, the worse
(as regards noise-intensity) will the constructed first-order oracle be (see (3.5)),
and therefore the greater the laboriousness of a first-order method using this
oracle will be for specified requirements regarding the accuracy of solution of
the problem (the relative accuracy v of solution of the original problem is
converted, roughly speaking, into an absolute accuracy required of the first-
order method).

On the other hand, it is impossible for the parameter p to be other than
small. For, even if we divert our attention from the effects connected with the
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fact that G# must approximate well to G, it is necessary that f; shall well
approximate (uniformly)to f;in G, namely, with an accuracy of the order of v.
Suppose, let us say, that G, contains a sufficiently large neighbourhood of G so
that we may suppose Gf = G. Itisclear thatif p is chosen so that | f# —f;| < v/4
in G and if a; = v/4, then f* provides the required approximation to f.

Of course, the choice of p from these conditions is sufficient for our
purposes, but it is by no means necessary. For a given f, we might ‘by chance’
obtain an f# of interest to us even with much greater values of the parameters.
However, this really could happen only fortuitously. If it is required to choose
p so that for every problem undergoing solution we could guarantee an
acceptable approximation of f by means of £, then it is impossible, it would
seem, to operate better than by choosing p from the considerations that the f}*
are obliged to approximate the f; uniformly in Gf with an accuracy of the order
of v.

We now consider how p must be chosen so as to ensure the relations

Iff—f;l Savin GfLO<j<m. (3.6)

The corresponding choice of p depends on the a priori information about the
smoothness of the f;. Suppose it is known, let us say, that G, contains a
p-neighbourhood of G and that the f; are Lipschitz functions with constant L
In a pg-neighbourhood of G (we assume py < p). We have no other
information about the smoothness of the f;. Then {3.6) is ensured by choosing
p in the form
av

=7 (37
(we assume v to be small enough to have av/L < p,y). Generally speaking, a
choice of p greater than p, will no longer ensure (3.6).

Suppose, further, that r = 2 (we make this stipulation for the sake of greater
clarity in the following argument). Combining the bound for laberiousness of
the first-order method corresponding to this r (and in a Hilbert space E),
constructed for an absolute error of order v, with the estimate (3.4)-(3.5) of the
noise-intensity level in the first-order oracle constructed earlier, we obtain that
the laboriousness of the method will be

nd \? nLd\?
Py v

(here and later the d; depend on aand m, but not on n, L. d, v). Thus in this case
the asymptotic formula for the laboriousness as v — 0 is @(1/v*), and not
O(1/v?) as it was for first-order methods with a stochastic oracle. Apart from
this unwelcome phenomenon, we see that, for the approach to be successful,
we still need to know how to estimate L. If G, as above, contains a
p-neighbourhood of G, then, in a p/2-neighbourhood of G, the f; are Lipschitz
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with a constant < ¢/p (where ¢ is an absolute constant), because l f;| does not
exceed | in G, by virtue of the properties of the oracle ¢ Thus the
laboriousness of a method obtained as a result of the implementation of the
approach considered is not less than a quantity of the form d; (n?/v*) (d/)*. In
the most natural case, d/g = O(1) and the estimate takes the form d,n?/v*,

Of course, if something more is known about the smoothness of the f},
then the estimate can be improved. Suppose, let us say, G, contains an
O(d)-neighbourhood of G, and it is known that the f;' (x) exist and are Lipschitz
in G, with constants @(1). Then (3.6) is ensured by a choice of p of the form

O(\/; ), and the laboriousness of the resulting method will be bounded below
by a quantity of the form dsn?/v*. This last bound does not admit any further
qualitative improvement, at least, not without extremely severe and hardly
natural restrictions on the f.

In the cases considered, G, contained a neighbourhood of G. If this is not the
case (if, say, G, = G), then the situation deteriorates still further (boundary
effects begin to come into play). No problems in principle arise, but the
laboriousness of the method obtained increases appreciably. When G = G, for
the whole class C§ (G, G,) it is not possible in this way to make the
laboriousness less than dgn?/(véa?).

Thus even in the most favourable cases, the approach examined is not in a
position to ensure a laboriousness which, as regards the order of its
dependence on the accuracy, is better than O(1/v?). The dependence of the
laboriousness on the dimension turns out, it is true, to be comparatively
acceptable (with increase in # the laboricusness increases like (nlnn)?).

We have examined the case where the original class was equipped with an
unbiased oracle. Of course, in solving problems with accuracy v > 0, it would
be possible to allow a certain non-zero bias vy; however, a simple analysis
shows that the admissible v, must be of a lower order than v—in the most
favourable cases, v, must be < O(v*/?) as v — 0. Thus, the methods obtained
by the described approach are inordinately demanding on the biases in the
oracle (c¢f. this situation with the one analysed in the previous section when we
examined the method obtained by imitating a first-order oracle by means of a
zeroth-order oracle).

94 METHODS OF ZEROTH ORDER: STOCHASTIC ORACLE. II

9.4.1

The idea of reducing zeroth-order methods to first-order methods, on which
the approach described in Section 9.3 was based, is extremely natural and
popular. As we saw, it leads to methods whose laboriousness depends in an
acceptable way on the dimension of the problem but increases quickly as the
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required accuracy increases (the laboriousness increases substantially more
quickly than it does in first-order methods using a stochastic oracle). The
naturalness of the idea might suggest that this rapid growth of laboriousness
with increased accuracy is in the natural order of things, and that it 1s not a
defect of the approach. It turns out, however, that this supposition is incorrect:
another way can be offered for constructing zeroth-order methods working
with a stochastic oracle which ensure an accuracy v in the solution of problems
in the classes C (G, G,) with laboriousness not exceeding the quantities

r
-1

]ln2 %[ In (m+2)R,(n)/v7FT,

where 7 = min (2, ), and R, (n)is some polynomial in n. We emphasize that this
bound, for values of v less than a certain absolute constant v, > 0, coincides,
up to a factor of order O(] In? 1/v[ R,(n)), with the lower bound for‘ the
complexity of classes of problems of convex stochastic approximation with a
first-order oracle which were discussed in Section 5.3; and so, for a fixed n and
for all v < v, and for all m, the methods obtained cannot be substantially
improved as regards laboriousness (namely, by not more than O (In%21/v)
timnes.

Thus, methods of the type mentioned in Section 7.3 are indeed objectively
bad asymptotically as v — 0. The method which will be constructed below
substantially excels them in the character of its asymptotic behaviour
(moreover, the asymptotic behaviour of the laboriousness of this method as
v — + 0 cannot, in principle, be improved by more than a logarithmic factor).
On the other hand, the polynomial R,(n) is of quite a high degree (certainly
more than 2), and so the new method is much worse than the former one as
regards the nature of the dependence of the laboriousness on the dimen-
sionality of the problem.

9.4.2

The idea of the method which we are about to construct is extremely simple.
We have at our disposal a stochastic zeroth-order oracle (suppose, to begin
with, that it is exact: v, = 0). At the same time we know how to solve convex
problems with an approximate, zeroth-order oracle, provided that its (ab-
solute) error is sufficiently small compared with the required accuracy of
solution. Namety, in considering problems in the class C!0(G, G)and with vas
the required accuracy of solution of these problems it would be sufficient for us
to know how to calculate the values of the functionals in the problem with
absolute errors not exceeding v/(4P(n)), where P(n) is the polynomial in
Theorem 9.2.4. If we succeeded in doing this, we would be able to solve the
problem by the method in Section 9.2, constructed for the absolute errors
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(v/4, ..., v/4). The laboriousness of this method is
1
M(ns V) = S(n)] ]H* [’
v

where S(n)is a certain polynomial in n (we have used the fact that the variation
of the components f; of a problem fe C{ (G, G) on G does not exceed 2).

It remains to learn how to calculate the values of the functionals in the
problem with errors not exceeding v/(4 P (n}). To do this, we proceed as follows:
we observe the vector f(x) at the point xe€G in which we are interested a
sufficiently large number of times ), and we average in the proper way the
obtained (independent) observations of f(x). Of course, whatever number Q we
may choose, there will, in general, be a certain positive probability that the
results of the averaging will not give the required approximation for f (x). By
choosing Q sufficiently large, we shall be able to make this probability so small
that similar ‘nuisances’ will not exert an appreciable influence on the mean
error of the method.

More precisely, having at our disposition the oracle "enables us, by making,
Q observations of the values of the components f; of the problem = C?.(G, G)
being solved at an arbitrary point x € G, to obtain @ independent realizations
¢y ..y Egofarandom variable & such thatME = f(x)andM|| & —f(x) |7, < 2"
Using the method described in Section 6.6.4 for processing the observétions,
we shall be able to construct an estimate £9 for the vector f(x) such that

Pr{ 1~/ e, > 47:(,:)} <
if ‘

W
Qz0,(nva= :\,—t;ﬁ% lnwlv In (m+2)[,
¥y 24 ]

where W, (n) is a certain polynomial in n. We then choose

a=ua,=v/8M(n,v)and Q =Q(n, v, 2,),

and then proceed in the way described above (i.e. we apply, for solving the
problem f, the method # in Section 9.2, constructed for the absolute errors
(v/4,‘. .., v/4). We shall obtain the information needed for this method by
making Q observations of the vector f(x) at each of the ‘interrogated’ points
and by supplying to the method the vector £2 obtained as a result of the
processing just described of the observations obtained).

1t is clear that during the course of the work of the method, there will, with a
probability

> 1= Min vt =1,
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be obtained an approximate solution of the problem f with an error < 3v/2
(this will certainly occur if, in all the M (n, v) steps of the work of the method #,
the information supplied to the method does not differ component-wise from
the true values by more than v/(4P(n)). With additional probability the
absolute error of the result will certainly not exceed 2, because |f;| < 2on G.
The mean error of the method is thus not greater than

whereas its laboriousness does not exceed
1 £
Q,(n, v, )M (n, v) < R,(n)}lnl - [ / v,

where R, (n}is a polynomial in #. This is the result promised at the beginning of
the section. It is also clear from the argument that the requirement v, = 0 was
not too important. It would be sufficient if an inequality of the type
vo < P! (n)v were satisfied, P,(n) being a suitable polynomial in ».

Thus the method described is (from the theoretical point of view) less
sensitive to bias in the oracle (asymptotically as v —0) than the method in

Section 9.3.

943

Let us draw some conclusions. The results presented above raise far more
questions than they answer. Indeed, not one of the methods described earlier
can lay claim to practical applicability except in the simplest situations {very
rough accuracy or very small dimensionality). To be acceptable from a
practical point of view, a method must, firstly, have a bound for laboriousness
which does not increase too rapidly with growth in the dimensionality of the
problem and increase in the accuracy demanded of the solution and, secondly,
must not be too sensitive to errors in the information about the problem.

In speaking of errors in the information, we do not include under that
heading ‘regularly structured’ errors (i.e. random errors with zero mean, which
are independent from one step to the next; we know how to cope with errors of
that sort, our methods being specially orientated towards them). We are
speaking of errors regarding whose nature we cannot rightly make any a priori
supposition whatsoever, except the natural hypothesis that they are small
compared with the accuracy demanded of the solution. In Section 9.2 only
such errors were considered, and in Sections 9.3-9.4 the biases in the oracle
play the réle of such errors. Definite hypotheses about the smallness of errors
of this kind are obviously necessary: if the errors exceeded the required
accuracy of solution of the problem, then it is readily understood that it would,
in general, be impossible to solve the problem to that accuracy.
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It is natural to measure the noise stability of any method by the ratio of the
error-level, admissible in the limit for it, to the required accuracy of solution
(‘admissible’ here is to be understood in the sense that this error-level does not
lead to an essential loss of accuracy in the solution). This verbal definition of
noise-stability is rather vague, but we shall not encumber this exposition with
precise definitions. It is obvious that methods with low noise-stability cannot,
as a rule, be used in practice.

How do things stand with the laboriousness and noise-stability of the
zeroth-order methods described above? Unfortunately, rather badly. The
laboriousness of the methods in Sections 9.2 and 9.4 increases very rapidly
with increase in dimensionality of the problem, whereas the laboriousness of
the method in Section 9.3 increases too rapidly with increase in the required
accuracy. The methods constructed in accordance with the scheme of Section
9.1 do not, it would seem, have this drawback; but their noise-stability is
extremely low (the level of information errors for them must be of the order of
one-fourth power of the required accuracy). In general, the noise-stability of
the methods considered leaves much to be desired: even the theoretically stable
(asymptotically as v —» 0) methods in Sections 9.2 and 9.4 have a noise-stability
which falls rapidly with growth in the dimensionality of the problem.

It could be supposed that these difficulties were not defects in the methods
studied, but rather were objectively inherent in all zeroth-order methods.
However, we have no facts to support such an assertion; rather, there are
reasons for asserting the contrary. For, in the case of a deterministic oracle we
have the unstable methods of Section 9.1 with an acceptable (asymptotically as
n— o and as v— 0) laboriousness (in every case, rough estimates of the
complexity of the corresponding class of problems with a zeroth-order oracle
show that it is impossible in principle to reduce particularly strongly the
laboriousness of these methods). On the other hand, we have the qualitatively
more stable method of Section 9.2, the laboriousness of which increases
unacceptably quickly with growth of n, It is natural to suppose that there must
be methods which unite the laboriousness estimates of the methods in
Section 9.1 with stability properties at least of the same kind as those of the
method in Section 9.2. It would even be desirable to construct methods even
more noise-stable than the one in Section 9.2. The latter is stable on the
theoretical plane rather than on the practical plane; its noise-stability falls
rapidly with growth in dimensionality. In this respect the ideal situation occurs

with the first-order methods of solving general convex or Lipschitz convex
problems in Chapters 2, 3, and 6. The noise-stability of these methods does not
depend on the dimensionality or on any other of the parameters of the classes
of the type indicated.

Unfortunately, such an ideal situation is impossible for zeroth-order
methods: their noise-stability necessarily falls with increase in dimensionality
{for all sufficiently wide classes of problems), provided that the laboriousness
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of the methods remains within acceptable bounds. The proof of this last
assertion is contained in the exercise at the end of this section. We notice, it is
true, that the rate of decrease of the noise-stability with increase in
dimensionality given by it is much lower than that which the method in
Section 9.2 can realize.

In the stochastic situation of Sections 9.3-9.4 matters are roughly the same.
The methods in Section 9.3 have a laboriousness which is acceptable as regards
the nature of its dependence on n and not acceptable as regards the nature of its
dependence on v; and for the methods of Section 9.4 the opposite is true. It is
natural to suppose that there is a method whose laboriousness in the nature of
its dependence on nis at least the same as that of the method in Section 9.3,and
in the nature of its dependence on v is the same as that of the method in
Section 9.4.

Thus the results obtained do not so much solve the problem of the choice of
convex optimization methods with a zeroth-order oracle as show what should
be expected of a satisfactory solution of that problem; and this, properly
speaking, is their only significance. Each of the methods suggested is in some
respect unimprovable, but bad in other respects. We have not succeeded in
combining their good qualities and eliminating the bad. Whether it is possible
to do this, and—if so—how, we do not know. Thus, both in the theoretical, and
even more in the practical, aspect the situation with a zeroth-order oracle is far
from clear.

For comparison we point out that, in the case of a first-order oracle, matters
stand much better (at least from the theoretical point of view). In this case we
can, as a rule, point to methods having an upper bound for laboriousness
which is of the same order of magnitude as the lower bound for complexity of
the corresponding classes. The situation is also comparatively favourable as
regards the stability of these methods relative to errors in the information
about the problem. The classes of general convex and Lipschitz convex
problems in Chapters 2, 3, 5, and 6 were, from the very beginning, considered
for approximate deterministic (or biased stochastic) oracles. Moreover, a
relative level of errors (measured there by a quantity v,) proportional to the
required relative accuracy v (say, twicet smaller than the latter)did notlead toa
loss of stability: a method intended for an exact oracle and accuracy v/2 still
ensured an accuracy v with the approximate oracle mentioned. The noise-
stability (according to a natural definition of it) of these methods is therefore
an absolute constant.

In the discussion of classes of strictly convex problems (Chapter 7) the
situation regarding noise-stability was rather worse. We there assumed the
oracle to be exact: but analysis of the methods constructed shows that a certain

t+ In Chapter 6 things are rather different: ‘twice’ is no longer enough, the constant has to be
increased.
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non-zero level of errors in the information can be tolerated. For a method
(derived from those constructed in Chapter 7) for solving unconstrained
strongly convex problems in the whole space, this level (with a natural
normalization} turns out to be of the order v/D{Q), where v is the required
relative accuracy of solution, Q is the modulus of strong convexity of the
problem, and D (Q) is a suitable function of Q. The noise-stability proves to be
smaller, the worse the conditionality of the problem (i.e. the greater @ is). This
is quite natural: the entire specific character of the class considered is
connected with the regular behaviour of the derivative of the function being
minimized. It is clear that errors in the observations of the derivative must
be sufficiently small, if we want something of this regularity to remain. Thus
there is nothing strange in the dependence of the noise-stability on the
conditionality of the problem.

9.4.4
Exercise 1. Let A, be the set of 'linear’ problems
fx)=(eplx)—-min||x| <1, xeE"

generated by vectors ¢ with |l¢| < 1. We equip A4, with an oracle ¢, which
serves only the points ¥, = {x|||x|| < 1} and is such that

F&x) 1f (x>0,
0, |fx¥l=<o

Then @ is a zeroth-order oracle with the absolute error 4. Suppose it is
necessary to solve problems of the class 4¢ obtained by equipping 4, with the
oracle ¢; and that it is required to ensure an accuracy ¢ in the solution of these
problems. Prove that the laboriousness M of any (deterministic) method 2,
ensuring the accuracy ¢ in the solution of problems of the class 42, satisfies the

estimate
(5 2
M= cexp{ dn(g) ‘

where ¢, d > 0 are absolute constants. Hence deduce that for a power rate of
growth of the laboriousness with increase in n, the relation é < 0 (. /Inn/n)e
must hold. Thus the noise-stability of zeroth-order methods having a
laboriousness which does not increase too rapidly with increase in n must
necessarily decrease as n increases.

{Let x,, ..., X, be the trajectory of # on the problem f= 0. Consider a
measure it concentrated on the points x,, . . ., x,,. It is known that, for every
probability measure ¢ on the ball IV, and for every k > 0, there is a unit vector
@, . such that, when

L(e) = {xeV.l[{x]e > > x}

Cp(f, x} = {
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we have
#(IL (9, ) < ¢ exp (dnk?),

¢, d > 0 being absolute constants. We put x = /(2¢) and & = ¢;,,. Then
B(T,(p)) < cexp (—dnx?),

and when
cexp (—dnk?) < 1/M, 4.1

I1,(¢) does not contain the points xy, . .., x\. Suppose {4.1) holds. We
consider the pair of problems
fe(x)=2e{x|p)> and f_(x) = —2e{x|¢p > eA,

Along the trajectory of & on the problem f = 0 the information provided by
the oracle €; about f, and f_ is zero, for along this trajectory x;, . . ., X, we
have, by construction,

126 @ x; Y| < 2ex = 6.

Therefore x,, is the result of applying 4 both to f, and to f~ . But then, clearly,
for one of these problems x,, is not an approximate solution with error &, and
this contradicts the definition of #. Thus (4.1) is false, ie.

d 2
ool 5(2])

as required. )



Apppendix:
Mathematical supplement

1n this auxiliary section we give a résumé of definitions and properties of some
relatively special mathematical concepts which are used in the book, and we
also explain some of the frequently used notation.

A.1 POLISH SPACES, BOREL FUNCTIONS, MEASURES

A knowledge is assumed of the concepts of metric spaces (in particular, of
compacts), open and closed sets, convergence, etc., as given in, say, Chapters 1
and Il of [16].

A.1.0 Notation relating to a metric.

If X is a metric space, G a subset to X, then int G denotes the interior of G, i.e.
the set of points {x|3p > 0: {¥|p(x, y) < p} = G}. G denotes the closure of G,
0 G the boundary of G, i.e. the set G int G. p(x, G) denotes the distance from x
to G, i.e. the number

plx, G) =inf {p(x, y)|lyeG}.

p(G), the radius of G, is the lower bound of the radii of balls whose centres
are in & and which are contained in G:

p(G)=inf{r|IxeG: YyeG p(x, y) < r}.
The diameter of G is the number
d(G) = sup {p(x, y)|x, ye G}.

The asphericity of G is, roughly speaking, the ratio of the radii of the
minimum ball containing G and the maximum ball contained in G:

w(G) = inf{a|3x, y, r: {z|p(z, x} <1} = G = {z|p(z, y) < ar}}.
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A.1l.1 Polish spaces.

A metric space is called a Polish space if it is separable and complete. The class
of all Polish spaces is denoted by IT and the clause ‘X is a Polish space’ is
written as X e€II. The metric on X is written p,(-,-) (sometimes simply as
p(-,-)if it is clear from the context which space X is involved). Examples of
Polish spaces are: metric compacts, the spaces R” with the usual metric, and
separable Banach spaces (see Section A.2 below).

Other examples can be obtained by applying to a Polish space the operation
of taking a {closed) subspace (a closed subspace of a Polish space is itself a
Polish space) and the operation of direct multiplication. Let X ell,
i=1,2,....Consider the set-theoretic product X * = [1{% ; X, of the spaces
X;; a point of X is a sequence x* = (x;, X3, ...), X;€X;). We can define a
metric on X ™ by

ac
o .o i Px,(xi, ¥
Py (X7, p%) = 2270 ————r,
§ ; 1+ px, (%1, ¥)

Convergence in this metric is precisely ‘co-ordinate-wise’ convergence. When
speaking of direct products later, we shall always have in view the description
of a construction (of course, the idea is also applicable to a finite number of
factors).

A.1.2 Borel functions.

See [7, 11] in this connection.

Al21
Let X be a set, Z a family of its subsets. I is called a g-algebra if

(1) XeZx; ‘
(2) AeX implies X\ A eZ;
(3) 44, A5, .. €X implies W, 4;eX.

Let {Z,},.; be a family of g-algebras of subsets of X. We consider the
intersection of all the Z, over « €.J. This also is a certain family of subsects of X,
and it too is obviously a g-algebra. In particular, for any family T of subsets of
X there is a least g-algebra £ which contains I (namely, the intersection of all
the g-algebras which contain Z). £ is called the g-algebra spanned by Z.

Al22

Nowlet X eI1. A Borel g-algebra B(X } of subsets of X is the g-algebra spanned
by all the closed subsets (or, equally, all the open subsets) of X, The elements of
B(X) are called Borel subsets of X.
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Let X, YelIl and let f: X — Y be a mapping. The mapping f is a Borel
mapping if the total pre-image f ~!(¥) of every open subset of Y (and then, of
an arbitrary Borel subset of Y) is a Borel subset of X. In particular, a
continuous mapping of X into Yis a Borel mapping.

The following properties of Borel mapping easily follow from the definition.

Propositions. Let ¥, X,eIl,i=0,1,2,...

(1) If fo: Xo— X, and f;: X, - X, are Borel mappings, then so is the
composition f; e fo: Xo = X, (fiefo(x) = f1 (fo (X))

(2) I fir Xo— X, and if, for all x€ X, the limit lim, ., ., f;(x) = f(x) exists,
then f: X, - X, is a Borel mapping.

() Iff;: X; > ¥, 1 < i < ,are Borel mappings, thenf *: 112 | X, > 1%, Y,
defined as /' (x, x5, ...) = (fj (x1), f2 (x3), . . .), is a Borel mapping.

(4) /1 Xo—-TIL, X; is a Borel mapping if and only if all the mappings
nye St Xo = II}_ | X, where the =, (x™) = (x,, ..., x,) are the natural
projections of ITY¥ X; on to I{ X;, are Borel mappings.

(5) Let A;eB(Xy), A;inA; = fori+j,and u,_, A; = X,. Suppose also
that f;: X, — X, is Borel. Consider the mapping /> X, — X, defined thus:
the restriction of f'to A;coincides with the restriction offito 4;, 1 < i < co.
Then fis Borel.

The facts enumerated in these propositions show that the ‘natural’
operations on Borel functions do not take us out of the class of Borel
functions. By means of them it is easy to show that all the rules constructed in
the proofs of the theorems in Chapter 1 and the rules relating to the methods
of Chapters 5 and 6 are Borel. We give a model of such an argument, Let
X,Y,Zell and let f(x,y): X x Y— Z and g: X — Y be Borel mappings. We
want to show that the function f (x} = f(x, g(x)) is also Borel. So, consider the
sequence of mappings

@o: X = X x X (9g(x) = (x, x)),
P XXX > XxY(o,06xY=(x,g(x)), [: X xY>Z.

It isclear that they are all Borel (¢, is continuous, ¢, by Proposition (3), and
/by hypothesis). Therefore, by Proposition (1), f'o @1 o =fis also a Borel
function.

A.1.23

Let us consider, in particular, scalar Borel functions. Let X €I, and let
B(X, R) be the set of Borel functions on X with values on the real line. It is
sometimes useful to characterize B(X, R) as the minimal function space B
which contains all continuous bounded functions (we denote this space by
C;(X)) and which is closed relative to sequential pointwise convergence (i.e.
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B(X, R) is such that

fied,i=12 .., and vlimf,-(x) = f(x) for all x
together imply that f(x) € A. On the other hand, A = X is Borel if and only if
the characteristic function of the set 4

0, x¢A,

Xalx) = 1, xed,

lies in B(X, R). It is thus possible to give a new definition of Borel sets by
defining them by means of the concept of a scalar Borel function (the latter, as
we have just seen, can be defined independently of the concept of Borel sets).

Al24

We introduce another useful concept. Let 7(X) = B(X, R) be a family of
bounded Borel functions. Let 7(X) be the minimal set of functions which
contains 7(X) and is such that, if f;eT(X), if | f;| < ¢ for some ¢ < a0, and if
fi(x)=f{x) as i — oo for all xeX, then fe7(X). We shall say that 7(X)
generates Cy(X) if T(X) = C4(X). For example, C;(X) generates itself. It can
be proved that, if X;el1l,i= 1,2, .. ., then the set of functions on X = of the
form IT*_, fi(x;), where k is an arbitrary natural number, and f; eC,(X;),
generates Cy(X™), X* =117 X,

A.1.3 Measures.

A.1.3.1

Let X be a set, X a g-algebra of subsets of X. The pair (X, Z) is called a measure
space. A measure (more precisely, a ¢-additive measure) on (X, X} is a non-
negative function which is defined on subsets of X that belong to X, which
may take the value + oo, and which has the following property of additivity:
if A, i=12..., belong to £ and if A, nA;= for i+#j, then
(o A) =32, ul(Ay) (if the latter series diverges, then its sum is regarded
asequal to + o). A measure y is said to be o-finite if the whole space X is the
union of a finite number of sets of finite measure, A measure u is said to
be Lebesgue-complete if it follows from A€X, u(4)=0, and B = A that
B < X (then pu(B) = 0 automatically). A measure y is said to be a probability
measure if u{X) =1 (then for all A <X the inequality 0 < u(A4) < 1 holds).

Al132

Let R denote the extended real line, i.e. the set of real numbers supplemented
by + oo and — 0. Let (X, Z) be a measurable space and let f: X > R be
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a function, f is said to be o-measurable if the pre- image of any set of the
form {t > a} on R belongs to I (then the pre-image of any Borel set of R
belongs to Z). One can try to integrate any such function with respect to the
measure g in the following way. First let f > 0. A non-negative (X, X)-
measurable function ¢ which takes only a finite number of values is called a
simple function. Let these values be t;, ..., t, and let 4, = {xe X |p(x) =1, }-
We put

J (x)dp(x E t: 1 (A4;)
i=1

(here 0.(+ o) =0). An (X, X)measurable function f =0 is said to be
summable if it is the limit (for all points of X except possibly for the points of a
set of measure zero) of a non-decreasing sequence of simple functions ¢, which
has a finite limit

lim feoi(x)du(x).
This limit is called the integral of f with respect to the measure u and it is
denoted by [ Sf(x)dg(x) (this definition is well formulated: it can be shown that
the limit does not depend on the set {¢,} of functions which have the stated
properties). An (X, Z}-measurable function f: X — R is said to be summable if
each of the two functions f, = max {f, 0} andf_ = —min {/, 0} is summable.
In that case the integral [f(x)du(x) is defined as

§f+ ) du0) = ff (x)dp(x).

Let L(X, u) be the space of u-summable functions. This turns out to be a
linear space (relative to the natural pointwise operations), which, if it contains
/, also contains the modulus | f[; and

1(f) = [f(x)du(x)

1s a linear functional on this space. It is non-negative {(I(f) > 0 when fz0)
and it is continuous in the following sense: let fie L(X,u) and let
|fil £ fe L(X, p). Suppose, further, that f;(x) -, ., ., Sf(x) p-almost every-
where. (Note: a property which depends on a point of the space {X,Z)witha
measure y is said to hold y-almost everywhere if it holds for all x € X, 4, where
AeZand (A} = 0) Thenf(x}e L(X, w)and I (f) = lim,_, , I(f;) (Lebesgue’s
theorem). Moreover, if |f| < ge L(X, u) and if f is (X, £)-measurable, then
feL{X, ).

A.133 Measures on Polish spaces.

Let (X, I, ) be a measurable space with a g-additive probability measure g,
and let X eIT. The measure u (more precisely, the triple X, %, i) is said to be
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Borelif B(X) < Z (i.e. the measure is defined for all Borel sets). The measure p
is said to be regular if A € X implies that there are closed sets A; = A such that
p{A) = lim; ., . p(A4;) (there are then also compacts, i.e. compact sets A; which
have this property). It is known that every og-additive (probability) measure
on B{X), X €11, is regular. Moreover, the term ‘measure’ applied to a Polish
space X means a ‘Lebesgue-complete regular Borel probability measure
on X°.

Let X be a Polish space and let C,(X) denote, as before, the space of
continuous bounded functions on X with values in R. If 4 is a measure on X,
then the functional

= [f(x)dux)
5(X) has the following properties:

ncC
I{f) is linear;
I{f) >0whenf>0
I(1)=1 (here 1 on the left-hand side denotes the function which is
identically equal to 1);
) if feCph(X)and if f; 2/, = .. ., and if lim, ., , f;(x) = 0, then
klim I(f;y=0 ({(Lebesgue’s theorem).

The converse is also true: every functional on C,4(X) which satisfies the

conditions (1}+{4) generates a measure u according to the formula

)= [fx)dp(x).

Moreover, to different measures there correspond different functionals.

on
(1)
(2)
(3)

A.1.3.4 Compasitions of measures,

Let X and Y be Polish spaces, and let ®,,, be a family of measures on ¥
depending on a parameter x € X, This family is said to be a Borel family with
respect to x if, for every feC ,(Y), the function

T =10

is Borel with respect to x. If @, , is Borel with respect to x, and if f is a bounded
scalar Borel function on X x ¥, then

fo) = [fx, p)do,

is Borel with respect to x. Now let @, be a measure on X and let @, be a
family of measures, Borel with respect to x, on Y. Then for every function
JSeC X x Y) the functional

I{ If(x’ y)dd)_ﬂx} dd‘)x
makes sense,
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By using Lebesgue’s theorem it is easy to check that this functional has the
properties (1}-(4), and that it is therefore generated by some measure. This
measure is denoted by @, @®,,,. Suppose, in particular, that ®, = @, , does
not depend on x. Then @, @@, is a measure composed by the ordered pair of
measures ®, on X and @, on Y. Thus, from a pair of Polish spaces with
measures (X, @,) and (¥, @) we can construct a third Polish space (X x ¥,
©,®®,); it is called the product of the measure spaces (X, ®,) and (Y, @,).

Conversely, let @, , be a measure on X x Y. We construct from it a measure
on X by the formula ®,(4) = @, (A4 x Y) for all A such that the right-hand
side is defined. Itis easy to see that a measure on X has indeed been obtained. It
is called the measure on X induced by @, ,. It turns out that there is a family
of measures @, , on Y, which are Borel with respect to xe X, such that
¢, @0, =D, ,. ©, and @, are defined by @, , ‘almost uniquely™ if @,
®, ., and &, d,, are such that & ®0,, =D XD, ,, then &, =D, and
®,, =, , © -almost for all x. Now let X, =TI, let X*=T1j_,X;, and
let X*=T17,X;. We suppose that on the spaces X' we are given measures
which are compatible in the following sense: X' is a natural direct factor in
X/, j = i(X"is identified with the set of the first i factors among the } factors
whose product is X /), so that it is possible to consider measures @4 induced by
®.son X'. Consistency of the measures ® i means that ®<: = @ for all i and
J>1

As an example of such a family we can take the family of measures induced
on X' by a measure ®,« on X *. In fact, it turns out that there are no other
examples: by a classical theorem due to Kolmogorov, every consistent family
of measures (consistent in the above sense) is generaled, in the way described,
by a certain {(uniquely determined)} family of measures on X *. This fact was
used in Section 1,3.3.2.

A.1.3.5 On the coincidence of measures.

Sometimes it is useful to have convenient sufficient conditions for two
measures to be the same. Let X be a Polish spaceand let 7(X') be any family of
bounded Borel functions on X, generating C»(X), Let @, and &, be two
measures on X. In order to show that ®, = @_, it suffices to verify that

{f(x)d®@, = [f(x)dd,
for all feT(X) (for then the family of functions fe B(X, R) such that
[f(xdo, = § f(x)dd,

contains 7(X), i.e. C4(X), and so ®, = §,).

We give an example, Let X, Ye [Tand let @, ,; @,; @, . be measures (family
of measures) on the respective spaces. Suppose we want to prove that
0, , =0, @, ,. To do this, it suffices to check that, for any feCy(X)
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and geCy(Y),
[f(x)g(p)d®, , = [f(x){ [g(y)dD,,, }dO,

(for, it was pointed out in Section A.1.2.4 that the set of functions of the form
Tix)g(y), where feCy(X), geCy(Y), generates Cp{X x ¥}).

A.2 BANACH SPACES

The reader is assumed to be familiar with the basic ideas and facts of linear
algebra and the main definitions relating to Hilbert space, as given in, say, [16],
Chapters III and IV.

A2

Let E be a linear real space. A function x on E which takes real values is called a
norm if

(1) x| 20 and ||x||=0<x =0;
(2) ax) = 14[lx], AeR;
(3) Ix+yl =< Ixl+10yl

The space E with anorm || - || is called a normed space. The norm|| - || generates a
metric on E: p(x, y) = |[x — y{. With this metric, linear operations in E are
continuous.

Every norm | - || on E determines a certain set V = {x| || x(| < 1}, the unit ball
in E. The set V has the following properties:

(1) Vis convex, ie. x, ye ¥ and 8€[0, 1] imply that 8x+ (1 —0)y€E;
(2) Vis balanced (— V = {x = —ulueV]=V});
(3) Vis absorbent (i.e. YxeE 34> 0: Axe V),
(4) V is bounded along rays (ie. ¥x#0 34> 0: Ax¢ V),
(5) V is closed along rays {i.e. ¥xeE the set {A|ix eV} is closed along the
axl1s).
Conv)ersely, every set ¥ — E having the properties (1}-(5) is the unit ball
corresponding to some (uniquely determined) norm, namely, the norm

x| =inf{i>0[i 'xeV}

A22

A norm on E, as already stated, determines a metric (and therefore it
distinguishes a class of convergent sequences of elements of E). Two norms on
E are said to be equivalent if they generate the same topology on E (i.e. thestore
of convergent sequences in both norms is the same). It can be shown that two
norms || - | and || - | are equivalent if and only if the unit ball for either of them is
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a bounded set in the other, or what comes to the same thing, if for some ¢ > 0,

l
—|x|" = ||lx]| Zc|lx| for all xeE.
¢

A23

A space E with a norm ||- | is called a Banach space if E is complete as a metric
space with the metric | x —y|. The property of being a Banach space is a
topological property of a normed space and does not depend on the actual
method of norming (i.e. if E, || - || is a Banach space and if || - | is equivalent to
[, then E, ||-|" also is a Banach space.

A.2.4 The Hahn-Banach theorem.

Let E be a linear space, and let p(h} be a real-valued function on E. The
function p(h) is said to be a sub-linear function if

(1) p(Ah) = Ap(h), A = 0;
(2) plhy +h) < plhe) + p(hy),

in other words, p(h) is convex.
For linear (and convex) analysis the following theorem is of fundamental
importance.

The Hahn-Banach theorem. Let E be a linear space, £, be one of its
subspaces, and let p{h) be a sub-linear function on E. Suppose, further, that f is
a linear functional on E; such that

IRy < ph)forall he E,

(here and elsewhere ¢ f| x ) is the value of the linear functional f on the vector
x). Then there is a linear functional f on the whole of E which coincides
with f on E,; and is such that

(fih> < p(h) for all heE.

A.2.5 The dual space.

Let E, ||-|, be a normed space, and let f be a linear functional on E. The
functional fis said to be continuous if { f]x  is a continuous function of xe E
(it is sufficient that it be continuous at (). An equivalent definition is that the
function {f|x> is bounded on the unit ball in E. The set of all linear
continuous functionals on E with the natural linear operations itself forms a
linear space. It is called the space dual to E, || - |, and is denoted by E*. On E*

the norm
ISy =sup{{flx>|xeE, x| <1}
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is introduced. Relative to this norm E* turns out to be a Banach space. It is
important to notice that the store of elements (and the topology) of the space
E* isdetermined only by the store of elements and the topology of E {i.e. when

|-l is replaced by an equivalent norm |- ||’ the store of elements and the linear
structure of E* do not change, and the norm || ||, is replaced by an equivalent
norm (|l [, = II- )

We now consider the question of the store of elements in E*. It turns out that
there are adequately many of them: forevery xe E thereisagp e E*: ||, =1
and (plx) =[x,

{For, consider the l-dimensional linear subspace E, spanned by x (we
can suppose that x < 0). On E, there is determined a linear functional
@{ix) = A)|x||, A R. The norm of this functional (on E,) is equal to | and
@{x) = ||x||. It remains to notice that from the Hahn—Banach theorem follows
this

Corollary. IfE, < E, isasubspace, and if ¢ is a continuous linear functional
on E,, then ¢ can be extended, without increasing the norm, on to the whole
of E.

For, if a is the norm of ¢ on E,, then {¢|h> < a|h| when heE,. The
function a( k|| is sub-linear on E, and by the Hahn—Banach theorem ¢ extends
to a linear functional @ on the whole of E such that (@|h> < a|lh|,heE. In
view of this, | @ |, < a. and this shows that ¢ is the extension of ¢ required by
the corollary.

Thus the following ‘symmetric’ relations hold:

sup  {olx) =llol,
xefbix]=<1 (2.1)
sup  (olx) = x|l
peE* @], < 1
Moreover, from the definition of the linear operations in E* it is clear that the
form ¢ ¢@lx > :E* x E — Rforafixed xe Eisa linear functional on E* which s
continuous by virtue of {2.1) (similar to the fact that, for a fixed ¢, thisformisa
linear continuous functional on E).

Thus, a vector xeE generates a linear continuous functional on E*,
The norm of this functional is ||x|. In other words, we have constructed a
canonical isometric (norm-preserving) embedding of E in the second dual
space (E*)* = E** A space E is said to be reflexive if the image of E under this
embedding is the whole of E** (i.e. every linear continuous functional on E is
determined by a vector x€E according to the formula ¢ — {@lx ). [t is
known that, if E is reflexive, then so is E*, and conversely.

A.2.6 The weak topology.

As well as the ordinary topology (determined by the norm) of a Banach space E
we can also consider the weak topology -—which is the weakest topology in E in
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which all functions of the form x — (¢ |x >, @ € E* are continuous. If E* is
separable, then this topology on all bounded (with respect to the norm) subsets
of E can be specified by means of the metric

Py =327 plx~y)|

where { @, } is a countable, dense in the unit ball of E *, family of functionals.
The linear operations in E are continuous in the weak topology. Convex closed
{with respect to the norm) subsets of E are also closed in the weak topology.

On the space E* dual to E we can consider, as well as the ordinary and the
weak topology, the *-weak topology, the weakest of all topologies for which all
the functions ¢ — {¢|x ), x€ E, are continuous, If E is separable, the *-weak
topology on hounded subsets of E* can be specified by the metric

Plo, ) =327 p—y|x; D),

where {x;} is a countable set of vectors dense in the unit ball of E.

It is a very important fact that the unit ball in E* is always compact in the
*-weak topology. In particular, if E is reflexive, then the unit ball in E is
compact in the weak topology of E. ¢ For, it is clear that the weak topology in
E coincides with the *-weak topology in F** — E.> Combining this circum-
stance with the fact that convex subsets of E, which are closed relative to the
norm, are weakly closed, we obtain the following important result. A bounded,
convex, closed subset of a reflexive Banach space is compact in the weak
topology.

We remark further that in the finite-dimensional case all the topologies
mentioned coincide. Every finite-dimensional space is reflexive.

A.2.7T Direct products of Banach spaces.

Let E;, |-, 1 €i<k< o, be Banach spaces. Their set-theoretic direct
product E =1II%_ | E, is provided with a natural linear structure (linear
operations proceed co-ordinate-wise), and a natural topology for the direct
product is given by a norm, say ||x*| = max, || x, |, where x* = (X1, .. 003,
x, € E;. The space dual to E is

k

]_[ E¥ with the norm zﬂcp,»”*, ©=1(p,...., %) ¢;eEr.

i=1

If the E;, 1 < i<k, are reflexive, then so is IT*_ | E,

A.2.8  Examples,

We give some examples of actual Banach spaces used in the book. They all
belong to a scale of spaces L,. This scale is defined as follows. Let (X, X, u)bea
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measurable space with a o-finite, o-additive, Lebesgue-complete measure f.
We shall consider two scalar Z-measurable functions f, f, to be equivalent if
Ji =f; p-almost everywhere. Let M (X, u} be the space whos_e elements are
equivalence classes in X of Z-measurable scalar functions with the natural
(pointwise) linear operations. ‘

Suppose, further, that 1 <€ p < co. The space L,(X, u) consists of all the
elements of M (X, u) for which

171, = {§1/ )P dux)}e < wo

(on the left fdenotes an element of M (X, u); on the right f i.s any representgti\ic
of the class f; the right-hand side does not depend on which representative is
chosen). For p = oo the space L. (X, u) is defined as the set of elements of
M (X, i) for which the number

If1le = ess sup |f(x)] = inf sup |f(x)| is finite.

AL, p(A)=0 xeX A
The spaces L,(X, ), 1 < p < oo, turn out to be linear subspaces of M (X, u)

which are Banach spaces relative to the norm ||- || ,. When 1 < p < o0, the space
dual to L (X, u) is canonically identified with L (X, u), where g = p/(p —1),
Le.

11

-+-—=1

P g
In this identification an element fe L, acts, as a functional'on a vector e L,
according to the formula

S1g) = Jfix)g(x)du(x) (fef, geg.

The identification mentioned preserves the norm. In particular,

1 1
SIS () < 1S Dallg S+ = 1

{Hdlder’s inequality). Hence it follows that if p is a probability measure and if
l<p<p <o, then L,(X,u)> L, (X,uyand [, < S wh‘enfel_p:.

The case p = 21is special. When p = 2 the space L, (X, u}is a Hilbert space,
with the scalar product and norm

1719) = [f(x)g(x)du(x), fef. g€g)

I/ 2 = (712
Every Hilbert space H is canonically identified with its dual (a vector x € H acts
as a functional on a vector y € H according to the formula ¢ .x| ¥y =(x |_ ¥ ths
right-hand side is the scalar product in H). This identification qf H \.wth H
when H is taken to be the space L,(X, u) turns into the identification
mentioned above of (L (X, u))* with L,(X, u).
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Let us consider the case of finite-dimensional spaces L, (X, u) again. Every
such space of linear dimension n, 1 £ n < co,is isometrically isomorphic to the
co-ordinate space R” with the norm

Ixl, = (SIXPP2, x = (x, . .., x")eR"

When p = oo, (D_|x'{?}'/? is replaced by max, |x|. R" normed in this way is
denoted by [$”. The space dual to 1% is [¥%, 1/p = 1/g = 1. An element g e[
acts as a functional on an element x e[ according to the formula

(elx> =} ¢'x'
i=1
When1 < p < o0, the spaces L (X, u)are reflexive. This is not so whenp = 1
or p=co (in the finite-dimensional case).

A.2.9 Integration of fnnctions with values in a Banach space.

Let E, || - ||, be a separable Banach space, and let (X, u) be a Polish space with a
measure. (We recall that a measure on a Polish space means to us a Lebesgue-
complete, Borel, regular, probability measure, Vector functions can be
integrated in even more general situations, but we do not need to do this.)

Let M (X, E) denote the set of equivalence classes (relative to coincidence
p-almost everywhere) of Borel functions on X with valuesin E. Let L, (X, y, E)
be the set of all elements fe M (X, E} such that the number

170, = 1{1S G} s fEf

is finite. It can be shown that L (X, E} is a linear space (relative to the
natural linear operations) and, with the norm | - ||, it is a Banach space, and
L(X,,E)o L,(X,, E)for p’ = p. Also | f ||, > |fll, for p" = p, fe L,.

Functions fefe L,(X, i, E) can be integrated with respect to the measure u
in the following way. We shall call f a step-function if it is a Borel function
which takes a finite number of values ¢,, ..., t,, . ... For a step-function
fefe L (X, u, E) the integral [f(x)du(x) is defined as

w6 = b

(the series converges absolutely because f& L, ). Further, it can be proved that
every function fef€ L, can be expressed as the sum of a series Y ;. |, f; of step-
functions with a finite sum » 2 | ]| f|l;. It can be proved that the series
i~ | [filx)dp(x) converges absolutely in E, and that its sum does not depend
on the choice of the f; with the indicated properties, It is taken by definition to
be the integral [f(x)du(x). The integral does not depend on the choice of
fefeL,, and B B
I F) N < 170,

Banach spaces 375

Thus the mapping f— [f(x)du(x) is a continuous linear operator I from
L.l (Xa H E) into E) and " If " "<- "f"pv lffE Lp(X! H, E)

A2.10

In addition to the notation already given (which is standard throughout the
book), the following notation is extensively used. Let G < E,and let |- | be a
norm on E. Then p ,(x, G}, p,,(G), d; ,(G), %, (G} denote respectively the
distance from x to G, the radius of G, the diameter of G, and the asphericity of G
(see Section A.1.0) in the metric on E given by the norm |- |. Any point xe G
such that G is contained in a ball of radius p, ,(G) with centre at x is called a
centre of G. It can be shown that, if E is reflexive and if G is convex, closed,
bounded and not empty, then there is at least one centre of G.




Principal notation

Arabic numerals indicate (from left to right) chapters, sections, and sub-
sections: A indicates the appendix. Notation which is entirely standard, or
which is used within a single chapter only, is not listed.
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Al10
Al0
Al0
A2

1.4.3

1.4.3

the real line

n-dimensional, real, co-ordinate
space

n-dimensional, real, Euclidean
space

greatest lower bound, least upper
bound, of a numerical set. For the
empty set, they are equal to + o0
and — oo respectively

the function max {0, t}

the least integer k not less than ¢
the linear hull of the set of vectors
given in the brackets

the interior of a subset G

the boundary of a subset G

the closure of a subset G

a real Banach space with norm
ordinary (or strong) laboriousness,
resp. error of a method & on the
class A

deterministic, resp. stochastic
complexity functions of the class
of problems considered

‘is by definition’

Principal notation

MCG
MMCG

MQV! @p’ MDl.n
MD,, MD,, MD, ,
MD, . MD, (v), MD#"
MDF.L',.) MD;_:', (V)
MDI—‘,L,s MDL,I,(V)

w, {t), 7}.(5)
(U;!,(t). }’L‘r(s)
CLip (G, E, ” : "? m)
C(G, E, m)

E* 4
Colx

P“,H(G]

dy (G)
2, (G)
Py, (x,G)
i (11
%, 54k (CF)
Apx

a(G)

vf

daf (x)
V()
Ly (f)

LT p)

I+l

(n)
[p

A2
A2

377

the method of centres of gravity
the modified method of centres of
gravity

versions of different kinds of the
method of mirror descent for solv-
ing convex extremal problems

versions of the method of mirror
descent for solving convex—
concave games

smoothness characteristics of a
regular function V

weighted field of linear (general)
convex problems with m con-
straints ona set G ina space E, ||+ ||
normed space dual to E, |||
value of a linear functional peE*
on a vector xeE (in a Hilbert
space, the scalar product)

A.2.10 radius of a set G relative to the

norm |- ||

A.2.10 diameter of a set G
A.2.10 |- ||l-asphericity of a subset G
A.2.10 distance from x to &

4.1.1

21

213
222

A2

A2
A2

various kinds of characteristics of
asphericity

gradient of a scalar function on a
Hilbert space

set of support (on G) functionals
to a convex function [ at the
point x

variation of a function fon a set G
Lipschitz constant of f relative
to |-

Banach space of pth-power in-
tegrable functions on a space T
with a g-additive g-finite measure
h lspgw

the patural L, norm

the standard n-dimensional space
L

4




378 Principal notation Principal notation Ky}
X Al the product of a space X by itself i D{GxG,, E E,[-I.lI-1;) 6.1.2 field of Lipschitz convex—concave
times, 0<i< o games
Xt=(xg, .., %) — a point of the space X* Cin (G, E, |-Il, m) 513 class of stochastic convex
J=Uos - s fu) 121 a mathematical programming problems
problem, penerated by a vector- Do{GxG,E |l E, | classes of problems of solving
'fllﬂCtIDIl f (and also the function ﬁf"(’ (G x ’(’;I, El,l |‘|" I iE)} "“_’ |)|1)} 6.1.2 games
ftsell) . H. (G, m, s . s los @ove - r Q)
s 121 optm?al value of the objective H;’l (G, my gy oy b Qos - . oo Q) 7.1 classes of smooth (strongly)
fl.lIlCthﬂ.'fll of the problem f cst (G, m) convex extremal problems
O={(Q, F,), I ¥ix, f,w) 1.3.1 oracle with a noise space (€2, F,,), o
observation functions W (x,f, w), 5 S 414 —
and information space I I 225 —
=) . (D) 1.2.3 normalizing factors for a class of Gy 12.3 —
problems under consideration g (x) 331 —
U(F,G, m E) 1.22 a field of problems with m con- He(x) 33.1 —

straints on a set G < E, the prob-
lems being generated by (m+ 1)-
dimensional functions of a
family #

e, )=(e(x f)...,x(x,f)) 123 vector of the absolute errors of a
point x regarded as an approxi-
mate solution of a problem f

vix, ) 123 relative error of a point x regarded
as an approximate solution of a

_ problem f
BB 1.3.3 a deterministic (resp. stochastic)

method of solving problems of the
class in question

|#'dF, 1.34 a mixture of deterministic

T methods

14, ), [(®, f) 1.4.1 mean (resp. strong) laboriousness
of a method B on a problem f

vi@, D, v, [ 14.1 mean (resp. strong) error of a
method & on a problem f

,"fip(G, E |l, m 2.2 classes of problems obtained by
C%G, E, m) equipping the respective ficlds

with an oracle ¢

CeC2 (G, E, |, m)} 22 Abbreviated formulation of the

CeC» (G, E, m statement: ‘C is a class of problems
of the type Ci3, (G, E, ||. [l m) resp.
C»(G, E, m)}.
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Index

u-strictly convex function, 48

absolute error of a point as an
approximate solution of a problem
(e(x. /1), 13

*_absolute error (g«(x, /), 13

accuracy: ordinary, strong, 25

*_accuracy, 25

accuracy of a method @ on the class U,25

accuracy of an estimate, 244

afTine functional, 44

asphericity, 125, 362

Banach space, 370

Banach space, regular, 89

Banach spaces, direct product of, 372
Banach spaces, examples of, 372
body, 60

Borel family of measures, 367
Borel functions, 364

Borel mappings, 364

Borel measure, 367

Borel properties of a function, 364
Borcl properties of a measure, 367
Borel properties of subsets, 350
Borel o-algebra, 363

Borcl subsets, 363

canonical forms of methods, 30

Cauchy’s inequality, 44

centre of a set, 375

centres-of-gravity method for general
convex problcms, 57

Cesaro convergence, 211

characteristics of a given method, 23, 24

class of general convex mathematical
programming problems
C(G,E,m), 52

class of Lipschitz-convex mathematical
programming problems
C1(G, E, Il -1, m), 52,93

class of mathematical programming
problems, 25

class of mathematical programming
problems of solving games, 206 et
seq.

class of mathematical programming
problems of the type C*{(G, E, m),
55

class of mathematical programming
problems of the type

2(G, E, -1, m), 55

class of mathematical programming
problems, smooth
SR(G gy .- L) 35

class of smooth convex mathematical
programming problems
CS, (G, m), 257

class of smooth mathematical
programming problcms
SE(Gy g, .- L), 35

class of stochastic, convex mathematical
programming problems
C (G, E, Il - I, m), 18S

class of strongly convex mathematical
programming problems HI.(G, m;
Iyseov sty @ore e s @)y 255

class withstanding rotation, 261

classes of convex-concave games, 206 et
seq.

closed linear hull #, 261

closure of a set, 362

coincidence of measures, 368

compatible mathematical programming
problem, 11

383




384

complexity of a class of problems, 26

complexity of a class of problems, strong,
deterministic N(v), 26

complexity of a class of problems, strong,
stochastic A (v), 26

complexity of a class of strictly
compatible convex problems, 150

complexity of classes of general convex
problems (exact lst-order oracle),
125 et seq.

complexity of ¢lasses of Lipschitz-convex
problems, 137

complexity of classes of multi-extremal
problems, 35

complexity related to alocal oracle, 32

composition of measurcs, 367

cone, non-negative, 225

conjugate-gradients method CGM, 261,
312

constrained strongly convex and smooth
problems, 285

constrained mathematical programming
problem, 51

constraints, 10, 51

convex combination, 43

convex extremal problem, 51

convex function, 44

convex Lipschitz mapping, 226

convex mathematical programming,
problem, 49

convex operator inequalities, 225-233

convex programming, 42 et seg.

convex programming methods of zeroth
order, 333 et seq.

convex set, 43

convex—concave function, 206

convex—concave game, 206

convex—concave Lipschitz pay-off
function, 208

convexity of a function, 44

convexity of a set, 43

convexity, strict, of a function, 48

convexity, strong, of a function, 255

Davidon—Fletcher—Powell method, 330
deterministic method, 17, 19
detcrministic oracle, 50

Index

diameter of a set, 362

dimension of a problem, 51

direct multiplication of spaces, 363

direct product of Banach spaces, 372

distance to a set, 362

distribution, laboriousness-error, 23

distribution, noise, 16

distribution of trajectories, 19, 20

distribution of trajectories, with noise, 19,
20

domain of a problem, 10

dual cone, 226

dual space, 370

Dvoretsky’s theorem, 127, 179

efficicncy of standard methods, 307

embedding, 170

epigraph, 40, 44

equivalence classes, 373

equivalence of methods, 30

error, absolute, of a point as an
approximate solution of a problem
(e(x, /). 13

error, *-absolute (e«(x, 1)), 13

error, mean, of a method v(.#, ), va(#,
)23

error, mean, of a method on a class
v(H, ), valH, 7), 25

error, mean, on a mixture of classes, 31

error of a trajectory, 18

*-error of a trajectory, 18

error, relative, scalar v(x, /), 15

error, telative, vector v(x, /), 14

error, scalar measure of, 13

error, strong, ofa rgethod on a problem
\'-'(-'gsf)a ‘-"t(-?sf)’ 23

error, strong, on a class ¥(4, &),
Val(B, ), 25

error, vector measure of, 13

estimate at observation time s, 244

extremal problems with operator
constraints, 233-241

feasible point, 10
field of general convex problems
C(G, E,m), 52

Index

field of Lipschitz-convex problems
Crip(G E N1, m), 52

field of mathematical programming
problems, 11, 227

field, weighted, 15

finite-dimensional space, 372

first-order oracle, 50

Fletcher—Reeves method, 313

function, a-strictly convex, 48

function, Borel, 364

function, convex, 44

function, Lipschitz, 52

function, ({, @)-strongly convex, 254

function, L-smooth, convex, 254

function, observation, 16

function, regular, corresponding to
E l-,89

function, c-measurable, 366

function, simple, 366

function, sub-linear, 370

function, summable, 366

functional, affine, 44

functional, objective, 10

functional, support, 45

functional constraints, 10

(-trajectory, 18

game, convex—concave, 206

game, solution of, 207

general convex problem with linear
convergence, 42 et seq.

germ of a function, 46

gradient method, 95, 106, 258

graph, 40

Hahn—Banach theorem, 43, 370
higher-order oracle, 50

Hilbert space, 373

Hélder’s inequality, 373
hyperplane separating x and {7, 43

incompatible problem, 11

information space 1, 16

integral with respect to a measure, 366

integration of functions with values in a
Banach space, 374
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integration with respect to a measure,
366, 373-374

intensity of an oracle, 183

interior of a set, 362

Jensen’s inequality, 44
joint distribution of trajectories with
noise, 19, 20

k-dimensional p-asphericity of a norm,
125
Kelly’s method, x

L-smooth convex functions, 254

{-step method, 28

(!, O)-strongly convex functions, 254

laboriousness-error distribution, 23

laboriousness of a method on a class,
mean (&%, #), strong I(#, &), 25

laboriousness of a method on a mixture,
k1|

laboriousness of a method on a problem,
mean {(#, f), strong 1(:8, 1), 23

laboriousness of a trajectory, 18

Lebesgue-complete measure, 3635

Lebesgue theorems, 366367

lemma on indistinguishability, 33

Lipschitz constant L, { /), 44

Lipschitz function, 52

Lipschitz mapping, 226

local oracle, 17

mathematical programming problem, 10

mathematical programming problem,
compatible, 11

mathematical programming problem,
convex, 49

mathematical programming problem,
constrained, 51

mathematical programming problem
solution of games, 207

mathematical programming problem,
solvable, 11

mathematical programming problem,
unconstrained, 51

MD-methods, 83 ef seq.

MDD, -methods, 93
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MD,, -methods, 107

MD, ,-methods, 112

MD,-methods, 112

MD-methods, Hilbert-space version, 95

MD-methods for classes of general
convex problems, 107

MD-methods for solving games,
deterministic oracle, 210-219

MD-methods for solving games,
stochastic oracle, 219-224

mean error of a method on a class
v(B, 7}, val(®, ), 25

mean error on a mixture of classes, 31

mean error of 2 method on a problem
vi#,/)23

mean *-error of a method on a problem
va(@, f), 23

mean laboriousness of a method on a
problem /(&, ), 23

measure, 365

measure, Borel, 367

measure, regular, 367

measure on a Polish space, 366

measure space, 365

measure, coincidence of, 368

measures, composition of, 367

measures, consistency of, 368

method, conjugate-gradients, CGM, 261,
312

method, Davidon—Fletcher—Powell, 330

method, deterministic, 17

method, Fletcher—Reeves, 313

method, I-step, 28

method of a given order, 51

method of centres of gravity, MCG,
5962

method of centres of gravity, adaptive
form, 80

method of centres of gravity MCGa, 70

method of centres of gravity, modified,
MMCG, 73-82

method of centres of gravity, variants, 65

method of mirror descent, MD, 82 et seg.

method of mirror descent for solving
constrained stochastic problems,
219-224

Index

method of mirror descent for solving
games, 210-219

method of mirror descent for solving
general convex problems, 107-124

method of mirror descent for solving
Lipschitz-convex problems, 9398,
100, 105

method of mirror descent for solving
unconstrained stochastic problems,
188-197

method, Polak—Ribiére, 319

method, regular, deterministic, 30

method, stochastic, 17

method, zeroth order, 51

method, Zoutendijk, 327

methods, equivalence of, 30

minimax problems, 277

Minkowski function, 49

mixture of methods, 21

mixture of problems, 31

modified method of centres of gravity,
MMCG, 73-82

modulus of continuity of a convex
function, 44

modulus of smoothness of a regular
function, 90

modulus of strong convexity of the class
H, 256

natural oracle, 183

noise distribution, 16

noise space of an oracle, 16
non-negative cone, 225

norm in a linear space, 369
norm, uniformly convex, 91
normalizing factors r,(f), 14
normalizing mapping r( /), 15
normed space, 369

objective functional, 10

observation function, 16

optimal value of objective function fa, 11
oracle, 16

oracle, deterministic, 16, 50

oracle, first-order, 50

oracle, higher-order, 50

Index

oracle, intensity of, 183
oracle, local, 17

oracle, natural, 183

oracle of type (G, vy), 55
oracle of type (int G, v;), 55
oracle, stochastic, 16, 50
oracle, unbiased, 183
oracle, zeroth-order, 50
ordering, 225

p-asphericity, affine, of a body, a(G),
126, 362

p-asphericity of a body o, (G), 125

p-asphericity of a k-dimensional body
o, il G)s 126

p-asphericity of a norm, £-dimensional
a, {1l -11), 125126

p-asphericity of an affine £-dimensional
body o, ;. (G), 126

Polak—Ribiére method, 319

Polish space, 363

Polish space, measure on, 366

pre-ordering, 225

preparatory transformation, 242

probability measure, 363

problem, compatible, 11

problem, constrained, 51

problem, incompatible, 11

problem, smooth ¢onvex, 255

problem, solvable, 11

problem, unconditional, 51

problem, unconstrained, 51

product of measure spaces, 368

‘proper” application of MD-methods,
113-114

quadratic programming, 261

radius of a set, 362

reflexive space, 371

regular o -mixture, 30

regular deterministic method, 30

regular function corresponding to E, Il - I,

89
regular measure, 367
regular spaces, 89
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regularization of a problem, 257
‘re-initialization’, 314

relative error, 228

relative error, scalar v(x, /), va(x, /), 15
relative error, vector v(x, /), 14
reliability of an estimate, 244

result of a trajectory, 18

resultative trajectory, 18

o-additive measure, 365

g-algebra, 363

g-measurable function, 366

saddle-point, 200

sagitta, 91

set of approximate solutions of a problem
(Ga), 12

Shmulyan’s theorem, 91

simple function, 366

simplex, 60

Slater ¢ondition, 70

smooth convex problem, 255

smooth function, 255

smoothness properties, 51

solution of a game, 207

solution of a problem, 10

solvable problem, 11

space, Banach, 370

space Cp(X), 365

space, dual, 370

space, Hilbert, 373

space, information, 16

space, L(X, u), 366

space LP(X, u), 373

space, normed, 369

space Q of oracle noisc, 16

space, Polish, 363

space, reflexive, 371

spacc, regular, Banach, 89

step-function, 374

stochastic complexity of a class, 26

stochastic method, 20

stochastic oracle, 16, 50

strict convexity of a function, 48

strictly compatible problem, 69

strong characteristics of a method on a
class, 25
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strong characteristics of a method on a
problem, 23

strong convexity of a funetion, 255

strong deterministic complexity of a class
of problems N(v), 26

strong error of a method on a class
(B, o), Ve (B, ), 25

strong error of a method on a problem
V(& ), ve(B, 1), 23

strong laboriousness of a methodon a
problem I(#, [}, 23

strong stochastic complexity of a class of
problems N(v), 26

strongly convex function, 255

strongly convex problems, 255 et seq.

strongly convex programming;
unconstrained problems, 272

sub-gradient, 46

sub-linear function, 370

successful preparatory transformation,
242

summable function, 366

support functional, 45

symbol of inaction, ¢, 18

t-regular function, 159
Theorems:
Dwvoretsky, 127,179
Hahn-Banach, 370
Lebesgue, 366-367

Index

Shmulyan, 91

von Neumann, 207
topology, weak, 371
topology, *-weak, 372
trajectories, distribution of, 19, 20
trajectory, 18, 19
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