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In this paper, we develop new methods for approximating dominant eigenvector of
column-stochastic matrices. We analyze the Google matrix, and present an averaging
scheme with linear rate of convergence in terms of 1-norm distance. For extending this
convergence result onto general case, we assume existence of a positive row in the matrix.
Our new numerical scheme, the Reduced Power Method (RPM), can be seen as a proper
averaging of the power iterates of a reduced stochastic matrix. We analyze also the usual
Power Method (PM) and obtain convenient conditions for its linear rate of convergence
with respect to 1-norm.
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1. Introduction

1.1. Motivation

Problem of finding stationary states in Markov chains arise in many application fields. Usually it is reduced to a problem
of finding a dominant eigenvector of a stochastic matrix. The later problem is traditionally solved by the Power Method (PM).
Recall that the convergence of the Power Method is related to ratio of modulus of the second and the first leading eigen-
values [5]. This ratio is not very visible from the initial data (coefficients of the matrix). Thus, for a particular matrix, an a
priory estimate of the possible rate of convergence of the Power Method remains a nontrivial question.

On the other hand, from the theory of Discrete Dynamical Systems, we know that the best possible rate of convergence
can be established only with respect to a proper Euclidean metric, defined by some Linear Matrix Inequality. Consequently,
the corresponding results on the convergence rate are usually written in an implicit form.

In this paper, we show that for (column-) stochastic matrices the situation is different. For this class, the uniqueness of a
dominant eigenvector can be guaranteed by some simple and verifiable conditions. One of them is the existence of a strictly
positive row (e.g., p. 51 in [1]). It appears that the sum of the minimal elements of all rows defines a linear rate of conver-
gence of a special version of the power-type method (we call it the Reduced Power Method (RPM)). For the standard Power
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Method (PM), we derive its linear rate of convergence from a simple expression for 1-norm of stochastic matrix acting on the
vectors with zero sum of coordinates.

Our results are motivated by the Page Rank problem (or Google problem [2,4]). In particular, we show that, for the sug-
gested in [2] value of the damping coefficient a ¼ 0:15, the corresponding problems can be solved very easily. For this par-
ticular application, the above mentioned uniqueness result can be formulated as follows. The existence of global authority in
the network ensures uniqueness of the stationary state in the corresponding Markov chain (SSMC). This state can be found by a
random walk with a positive service rate provided by global authorities. We show that SSMC problem is easy also for the
Power Method provided that for two agents located at any pair of states, the probability to come next step at the same state
is positive.

1.2. Contents

The paper is organized as follows. In Section 2 we introduce the Google problem and derive an explicit representation for
the dominant eigenvector of the damped stochastic matrix. This representation naturally leads to an approximation
procedure, based on a proper averaging of the power series for initial matrix. We prove a linear rate of convergence in terms
of 1-norm both for the residual of linear system and for the distance to exact solution. In Section 3, we extend the above
technique onto the general column-stochastic matrices. For its applicability, it is enough to assume existence of a positive
row in the matrix. Then the initial matrix can be represented as a convex combination of two stochastic matrices, such that
the second matrix is of rank one. This feature is essential for constructing an efficient approximation scheme (RPM) based on
the power series of a reduced stochastic matrix. The global rate of convergence of this process is again linear. In Section 4, we
study the Power Method. Despite to the negative expectations derived from the Jordan-form representation, we show that
this method converges linearly on SSMC problem. In Section 5, we present a better framework for its convergence analysis,
and discuss some interpretation of characteristics responsible for its convergence rate.

1.3. Notation

For two vectors x; y 2 Rn we denote by hx; yi their scalar product:
hx; yi ¼
Xn

i¼1

xðiÞyðiÞ:
Notation k � kp with p P 1, is used for p-norms:
kxkp ¼
Xn

i¼1

jxðiÞjp
" #1=p

; x 2 Rn:
The positive orthant in Rn is denoted by Rn
þ. Notation ej is used for the jth coordinate vector in Rn, and e 2 Rn denotes the

vector of all ones. By Rn�n, we denote the space of real n� n-matrices, and I denotes the unit matrix of an appropriate size.
We write A P 0 if matrix A has all entries nonnegative.

2. Solving Google problem by power sequences

The Google problem (or Page Rank problem) consists in approximating an eigenvector of a very big stochastic matrix. Let
E 2 Rn�n be an incidence matrix of a graph. Let us make it stochastic by an appropriate column scaling:
A ¼def ED�1ðET eÞ; e ¼ ð1; . . . ;1ÞT 2 Rn;
where DðxÞ 2 Rn�n is a diagonal matrix with vector x 2 Rn on its diagonal. Thus,
AT e ¼ e: ð2:1Þ
Now, each column Aej 2 Dn ¼deffx 2 Rn
þ : he; xi ¼ 1g; j ¼ 1; . . . ;n. It contains the transition probabilities of the corresponding

node.
We need to find a vector x� 2 Rn

þ satisfying the following system of linear equations:
Ax� ¼ x�; he; x�i ¼ 1: ð2:2Þ
From Perron–Frobenius theorem, we know that such a solution always exists.
Usually, system (2.2) is solved by different versions of the Power Method. Indeed, let us fix a starting vector x0 2 Dn (we

allow it to have some zero components). Define the sequence
xkþ1 ¼ Axk; k P 0: ð2:3Þ
Note that he; xkþ1i ¼ he;Axki ¼
ð2:1Þhe; xki. Thus, xk 2 Dn for all k P 0. The following result is well known.
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Lemma 1. Define �xN ¼ 1
Nþ1

PN
k¼0xk. Then �xN 2 Dn and
k�xN � A�xNk1 6
2

N þ 1
: ð2:4Þ
Proof. Indeed, �xN � A�xN ¼ 1
Nþ1

PN
i¼0Aix0 �

PNþ1
i¼1 Aix0

h i
¼ 1

Nþ1 x0 � ANþ1x0

h i
. Therefore,
k�xN � A�xNk1 6
1

N þ 1
kx0k1 þ kA

Nþ1x0k1

h i
¼ 1

N þ 1
he; x0i þ he;ANþ1x0i
h i

¼ð2:1Þ 2
N þ 1

: �
Remark 1. The estimate (2.4) looks quite pessimistic. However, it is attained on permutation matrices. Indeed, let

Aij ¼
1; i ¼ jþ 1ðmodnÞ
0; otherwise

�
. If we choose x0 ¼ e1, then k�xN � A�xNk1 ¼ 2

Nþ1 for all N < n� 1.

The rate of convergence (2.4) is quite slow. Therefore, in [2] it was suggested to modify the initial system. Let us interpret
x0 2 Dn as a vector of initial preferences for the starting websites. Let us fix a coefficient a 2 ð0;1Þ. Define
Aa ¼ ð1� aÞAþ ax0eT . Clearly, this matrix remains stochastic:
AT
ae ¼ e: ð2:5Þ
On the other hand, the problem of finding its leading eigenvector becomes much simpler. We justify this claim by presenting
an approximation scheme based on a power series of the initial matrix A.

Denote by x�a 2 Dn a solution of the equation Aax�a ¼ x�a. Note that
x�a ¼ ð1� aÞAþ ax0eT
� �

x�a ¼ ð1� aÞAx�a þ ax0:
Thus,
x�a ¼ a I � ð1� aÞA½ ��1x0 ¼ a
X1
k¼0

ð1� aÞkAkx0: ð2:6Þ
This representation of the solution suggests the following approximation strategy. Define
x̂N ¼
XN

k¼0

ð1� aÞkxk; ð2:7Þ
where the sequence fxkg1k¼0 is formed by (2.3). Then
he; x̂Ni ¼ e;
XN

k¼0

ð1� aÞkAkx0

* +
¼ð2:1Þ
XN

k¼0

ð1� aÞk ¼ 1
a
ð1� ð1� aÞNþ1Þ:
Thus, defining ~xN ¼ ax̂N=ð1� ð1� aÞNþ1Þ, we get ~xN 2 Dn. On the other hand,
x̂N � Aax̂N ¼
XN

k¼0

ð1� aÞkAkx0 �
XN

k¼0

ð1� aÞk½ð1� aÞAþ ax0eT �Akx0 ¼ x0 � ð1� aÞNþ1ANþ1x0 � a
XN

k¼0

ð1� aÞkx0

¼ ð1� aÞNþ1 x0 � ANþ1x0

h i
:

Thus, we come to the following result.

Lemma 2. For any N P 0 we have ~xN 2 Dn and
k~xN � Aa~xNk1 6
2að1� aÞNþ1

1� ð1� aÞNþ1 ; ð2:8Þ

k~xN � x�ak1 6 2ð1� aÞNþ1
: ð2:9Þ
Proof. As we have seen,
k~xN � Aa~xNk1 ¼
að1� aÞNþ1

1� ð1� aÞNþ1 kx0 � ANþ1x0k1 6
2að1� aÞNþ1

1� ð1� aÞNþ1 :
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Moreover, since x�a ¼ a
P1

k¼0ð1� aÞkxk, we have
k~xN � x�ak1 ¼ a
1

1� ð1� aNþ1Þ
XN

k¼0

ð1� aÞkxk �
X1
k¼0

ð1� aÞkxk

�����
�����

1

¼ a
ð1� aÞNþ1

1� ð1� aÞNþ1

XN

k¼0

ð1� aÞkxk �
X1

k¼Nþ1

ð1� aÞkxk

�����
�����

1

6
að1� aÞNþ1

1� ð1� aÞNþ1 �
1
a
ð1� ð1� aÞNþ1Þ þ a � 1

a
ð1� aÞNþ1 ¼ 2ð1� aÞNþ1

: �
Note that the rate of convergence (2.9) implicitly confirms that the absolute value of the second eigenvalue of matrix Aa

does not exceed 1� a.

In the original paper [2], it is suggested to take rather big value of the damping coefficient a, namely a ¼ 0:15. For this
choice, method (2.7) can ensure a very high accuracy in the residual after a small number of steps. Indeed, in view of
(2.9), in order to get l1-distance to the exact solution x�a smaller than �, we need only
1
a

ln
2
�

ð2:10Þ
iterations of the method (2.3) and (2.7). It is important that this estimate does not depend on the size of the network.

3. General stochastic matrices

The above technique can be used for approximating a leading eigenvector of an arbitrary stochastic matrix A satisfying
the following condition:
The set of positive rows of matrix A is nonempty: ð3:1Þ
Let us choose some nonnegative values
rðiÞ 6 �rðiÞ ¼def min
16j6n

Ai;j; i ¼ 1; . . . ;n; r ¼ ðrð1Þ; . . . ; rðnÞÞT : ð3:2Þ
In view of (3.1), we can ensure r – 0. Define x0 ¼ r=he; ri.
Let us try to represent A in the following form:
A ¼ ð1� aÞ�Aþ ax0eT ; ð3:3Þ
where a 2 ð0;1Þ and matrix �A is stochastic. In order to achieve this goal, we need to ensure that
�Ai;j ¼
1

1� a
Ai;j � a

rðiÞ

he; ri

� �
P 0; i; j ¼ 1; . . . ;n:
Thus, we can take
a ¼ he; ri 2 ð0;1Þ: ð3:4Þ
Consequently, the dominant eigenvector x� of matrix A admits the following representation:
x� ¼ a
X1
k¼0

ð1� aÞk �Akx0: ð3:5Þ
As a byproduct of our reasoning, we get the following result.

Lemma 3. Let stochastic matrix A satisfy condition (3.1). Then it has unique dominant eigenvector x� 2 Dn.
Recall that the standard sufficient condition for uniqueness of the dominant eigenvector of a stochastic matrix A consists

in positivity of all its elements. Note that this condition works for arbitrary positive matrices. It ensures a nonzero gap
between the largest eigenvalue and the absolute value of all other ones. Lemma 3 significantly improves this condition
for the class of stochastic matrices.

In accordance to (3.5), in order to approximate x�, we need to form the vectors �Akx0 and generate the averaging points
x̂N ¼
XN

k¼0

ð1� aÞk �Akx0 ¼
XN

k¼0

½A� reT �kx0: ð3:6Þ
Note that he; x̂Ni ¼
PN

k¼0ð1� aÞk ¼ 1
a ð1� ð1� aÞNþ1Þ. Thus, defining ~xN ¼ �xN=he; �xNi, and using Lemma 2, we get
k~xN � A~xNk1 6
ð2:8Þ 2að1� aÞNþ1

1� ð1� aÞNþ1 ;

k~xN � x�k1 6 2ð1� aÞNþ1
:

ð3:7Þ
The right-hand side of the first inequality in (3.7) tends to 2
Nþ1 as r ! 0 (compare with Lemma 1).
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It is interesting that in (3.6) we construct the main sequence by a power scheme with a modified (reduced) matrix. We call
this scheme the Reduced Power Method:
3 Thi
justifica
x0 ¼
r
he; ri ; xkþ1 ¼ ½A� reT �xk; k P 0; x̂N ¼

XN

k¼0

xk; ~xN ¼
x̂N

he; x̂Ni
: ð3:8Þ
In this method, we are not free in the choice of x0. The main condition for its applicability is the existence of a positive row of
matrix A. For Google problem, this means the existence of a webpage, which can be visited with nonzero probability from any
other page of the network. Clearly, this condition is not binding. It is satisfied, for example, by the page representing the search
engine of Google itself. The more pages of this type (global authorities) exist in the network, the higher is the value of a in (3.4),
and consequently, the faster is the convergence of process (3.8). The only possible trouble could be the absence of references
from these pages to themselves. However, this can be fixed by considering the matrix AðdÞ ¼ dI þ ð1� dÞA; d 2 ð0;1Þ. This
transformation clearly does not change the dominant eigenvector. At the same time, if we take d ¼ he;ri

1þhe;ri, then for any
i ¼ 1; . . . ;n we have
rðiÞðdÞ ¼def min
16j6n

Ai;jðdÞ P minfd; ð1� dÞrðiÞg P
rðiÞ

1þ he; ri :
Hence, aðdÞ ¼def he; rðdÞiP he;ri
1þhe;ri, and the convergence rate of method (3.8) as applied to matrix AðdÞ stays on the same level

(look at the change in the estimate (3.7)).
It would be interesting to find an interpretation of the above results in terms of random walks in a graph. For this frame-

work, the following statement looks quite intriguing.

Theorem 1.
1. Existence of a global authority implies uniqueness of stationary state in the corresponding Markov chain.
2. This state can be efficiently approximated by random walk (3.8) with a service rate offered by global authorities.
3. The converging approximations are proportional to the total historical occupancy of the nodes.

Theorem 1 delivers a natural sufficient conditions for uniqueness of the stationary state in the Markov chain. It can be
easily verified. Moreover, from this verification, we get some important information about the rate of convergence of the
process (3.8).

4. Comparison with Power Method

The good convergence results (3.7) certify that the problem of finding the leading eigenvector of a stochastic matrix A
satisfying condition (3.1) is easy. This easiness is traditionally explained by a good structure of the spectrum of matrix A. This
feature should be also profitable for the standard Power Method (2.3). Let us check how it works.

For that, we represent A in the Jordan form: A ¼ VJV�1, where J is a block-diagonal matrix, composed by Jordan blocks
Ji ¼ kiIi þ Zi; i ¼ 1; . . . ;m. In this representation,

� ki is an eigenvalue of matrix A,
� Ii is an identity matrix of dimension ki � ki,

Pm
i¼1ki ¼ n,

� Zi 2 Rki�ki is the upper shift matrix, which has zeros everywhere except the first upper diagonal, at which it has all ones.
Note that
Zki
i ¼ 0; i ¼ 1; . . . ;m: ð4:1Þ
If ki ¼ 1, then Ji reduces to a single value ki.

We need one auxiliary result.

Lemma 4. Let stochastic matrix A satisfy condition (3.1). Then:
1. The geometric multiplicity of its dominant eigenvalue is equal to one.
2. Any other eigenvalue k satisfies inequality3
jkj 6 1� �a; ð4:2Þ
where �a ¼ he;�ri.
s inequality was proved first in [1]. It can be also derived from Theorem 1 in [3]. However, for the reader convenience, we present here a simple direct
tion.
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Proof

1. Let x be any eigenvector of A, which corresponds to the unit eigenvalue. Then x ¼ð3:3ÞaðI � ð1� aÞ�AÞ�1
x0eT x. Hence, the

dimension of this eigenspace is equal to one.
2. Denote Â ¼ A� �reT . Let vk be an eigenvector of matrix A, which corresponds to a nonzero eigenvalue k. Note that
eTvk ¼
ð2:1Þ

eT Avk ¼ keTvk:
Thus, eTvk ¼ 0 and Âvk ¼ Avk ¼ kvk.

At the same time, matrix Â has nonnegative elements and ÂT e ¼ ð1� �aÞe. Therefore, the dominant eigenvalue of matrix Â
is 1� �a, and (4.2) follows from Perron-Frobenius theorem. h

Let us show that the bound (4.2) cannot be improved.

Example 1. Consider a stochastic ð2� 2Þ-matrix
A ¼
a 1� b

1� a b

� �
; a;b 2 ð0;1Þ:
Clearly, k1ðAÞ ¼ 1 and k2ðAÞ ¼ 1� a� b. On the other hand,
�a ¼minfa;1� bg þminf1� a;bg:
It is easy to check that jk2ðAÞj ¼ 1� �a for all a; b 2 ð0;1Þ. h

Since geometric multiplicity of dominant eigenvalue of matrix A is equal to one, in matrix J there exists only one corre-
sponding block. Without loss of generality, we can assume that this is the first Jordan block in J, namely, J1.

Lemma 5. Let the geometric multiplicity of eigenvalue 1 of stochastic matrix be equal to one. Then the algebraic multiplicity of this
eigenvalue is also one.
Proof. Note that VJV�1ðVe1Þ ¼ VJe1 ¼ Ve1. Therefore, the first column of matrix V is v1, the dominant eigenvector of matrix A.
We can use one available degree of freedom for scaling the first k1 columns of matrix V and ensure the normalizing condition
eTv1 ¼ 1.

On the other hand, eT ¼ð2:1Þ eT A ¼ eT VJV�1. Therefore eT V ¼ eT VJ. Since the left dominant eigenvector of matrix J is also
unique, we conclude that
eT V ¼ seT
k1
with some s – 0. Multiplying both sides of this equation from the right by e1, we come to the unique possible conclusion:
s ¼ 1 and k1 ¼ 1. h

Assuming, as before, that A 2 Pn satisfies (3.1) and taking into account Item 1 in Lemma 4, we conclude that J1 ¼ 1 and
eT V ¼ e1: ð4:3Þ
Let us look now at the result of k iterations of Power Method (2.3). Clearly,
xk ¼ VJkV�1x0:
Therefore,
xk � v1 ¼ ðVJkV�1 � v1eTÞx0 ¼
ð4:3Þ ðVJkV�1 � v1eT

1V�1Þx0 ¼ VðJk � e1eT
1ÞV

�1x0:
Thus, the rate of convergence of Power Method is defined by the rate of vanishing of diagonal blocks in the matrix Jk � e1eT
1.

The first 1� 1 diagonal block of this matrix is equal to zero. The other blocks are presented by matrices
Jk
i ¼

Xk

j¼0

kj
i

k
j

� �
Zk�j

i :
Note that the first term in this sum is Zk
i . If k < ki, then it has ki � k nonzero entries, all equal to one. Hence, matrix Jk

i cannot

be small if k < ki. In other words, the guaranteed convergence rate of Power Method should not be faster than O ð1� �aÞk�k̂
� 	

,

where k̂ ¼max16i6mki. However, for some blocks, the dimension ki can be in the order of n. Thus, it seems that we have an
evidence that the convergence rate of Power Method cannot be dimension-independent.

It is interesting that the above impression is absolutely wrong. Indeed, denote
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E0 ¼ fh 2 Rn : he;hi ¼ 0g:
Since A is stochastic, we have AE0 ¼ E0. On the other hand, for any h 2 E0 we have
kAhk1 ¼
ð3:3Þð1� aÞk�Ahk1 6 ð1� aÞh�Ajhj; ei ¼ð2:1Þ ð1� aÞkhk1;
where jhj denotes the vector with coordinates jhðiÞj; i ¼ 1; . . . ;n. Therefore, for any x 2 Dn we have
kAx� x�k1 ¼
ð2:2Þ kAðx� x�Þk1 6 ð1� aÞkx� x�k1:
Thus, each iteration of Power Method (2.3) reduces 1-distance to the solution by a factor of ð1� aÞ. Consequently, this
method has the same rate of convergence as (3.7). In the next section, we provide PM with better complexity analysis.

5. Convergence of Power Method

For matrix A 2 Rn�n, define the seminorm kAk01 as follows:
kAk01 ¼ max
h
fkAhk1 : h 2 E0; khk1 6 1g: ð5:1Þ
This seminorm has several important properties. In what follows, we denote by Pn the set of stochastic n� n-matrices.

1. For all h 2 E0 we have
kAhk1 6 kAk01khk1: ð5:2Þ
2. Since all vertices of the polytope fh 2 Rn : he;hi ¼ 0; khk1 6 1g have the form 1
2 ðei � ejÞ; i – j, we have
kAk01 ¼
1
2

max
16i;j6n

kAei � Aejk1: ð5:3Þ
3. kAk01 ¼ 0 if and only if A ¼ xeT for some x 2 Rn.

4. If A 2 Pn, then kAk01 6 1. If matrix B also belongs to Pn, then
kABk01 6 kAk01kBk01 6 min kAk01; kBk01


 �
: ð5:4Þ
One of the main advantages of the seminorm k � k01 is that it is easily computable by (5.3). On the other hand, it provides
us with a convenient bound for the magnitude of non-dominant eigenvalues (compare with Lemma 4).

Lemma 6. Let A 2 Pn and kAk01 < 1. Then the multiplicity of dominant eigenvalue of A is one, and all other eigenvalues k satisfy
jkj 6 kAk01: ð5:5Þ
Proof. Denote g ¼ kAk01. Since the subspace E0 is invariant for A, and the restriction B ¼def AjE0
is a g-contraction in 1-norm, the

spectral radius of B does not exceed g. Let x� 2 Dn be a dominant eigenvector of A;Ax� ¼ x�. Then the representation
Rn ¼ R � x� þ E0 is a decomposition of Rn into direct sum of two invariant for A subspaces. Hence, the spectrum of A is a union
of the singleton f1g and the spectrum of B. The latter is contained in the circle fk : jkj 6 gg. h

Let us derive a convenient representation of seminorm k � k01 for stochastic matrices. Recall the identity
minfs1; s2g ¼
1
2
ðs1 þ s2Þ �

1
2
js1 � s2j; s1; s2 2 R: ð5:6Þ
Then, for two vectors x; y 2 Dn, we have
1
2
kx� yk1 ¼

1
2

Xn

i¼1

jxðiÞ � yðiÞj ¼ð5:6Þ
Xn

i¼1

1
2
ðxðiÞ þ yðiÞÞ �minfxðiÞ; yðiÞg

� 

¼ 1� hx; yimin;
where hx; yimin ¼
Pn

i¼1 minfxðiÞ; yðiÞg. Thus, we have proved that
kAk01 ¼ 1� lðAÞ; lðAÞ¼def min
16i;j6n

hAei;Aejimin; A 2 Pn: ð5:7Þ
Let us mention several important properties of lðAÞ.

1. For any s P 0 we have lðsAÞ ¼ slðAÞ.
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2. Function lðAÞ is concave on Pn (since k � k01 is convex).

3. For A;B 2 Pn, we have lðABÞ P
ð5:4Þ

maxflðAÞ;lðBÞg.

In the remaining part of this section, we work only with square stochastic matrices.
Clearly, for stochastic matrices lðAÞ 6 1. This value plays a crucial role in convergence analysis of the Power Method (2.3)

with respect to 1-norm. Indeed,
4 Ind
kxkþ1 � x�k1 ¼ kAðxk � x�Þk1 6
ð5:7Þ
ð1� lðAÞÞkxk � x�k1:
Thus, we need to guarantee that lðAÞ > 0. Let us look at some examples.

� All elements of matrix AT A are positive if and only if lðAÞ > 0.4 The condition AT A > 0 has an interesting interpretation in
terms of Markov chains. Namely, it ensures that for two agents sitting at any pair of different nodes, there is a nonzero prob-
ability to meet after the next step.
� Clearly, lðAÞP �a ¼ he;�ri. Therefore, Assumption 3.1 implies lðAÞ > 0 (but not vise versa).

On the other hand, let pkðsÞ; s 2 R, be a polynomial of degree k with nonnegative coefficients. Since matrix A has the same
eigenvectors as pkðAÞ, the uniqueness of its dominant eigenvector has more chances to be detected by applying Lemma 6 to
matrix pkðAÞ=pkð1Þ. In order to show that this is always possible, we prove a stronger version of Lemma 3.

Theorem 2. For any matrix A 2 Pn, its dominant eigenvector is unique if and only if there exists a polynomial pkðsÞ; k 6 n� 1,
with nonnegative coefficients, such that the matrix pkðAÞ has a positive row.
Proof. In one direction, this statement follows from Lemma 3. Let us assume now that x� 2 Dn is the unique dominant eigen-
vector of matrix A.

Let us represent A in the Jordan form, A ¼ VJV�1 with J1 ¼ 1 (we use the notation of Section 4). Consider its characteristic
polynomial
pðsÞ ¼ detðsI � AÞ ¼
Ym
i¼1

ðs� kiÞki ;
where ki are the eigenvalues of matrix A. Note that k1 ¼ 1. Since the multiplicity of this eigenvalue is one, we have p0ð1Þ – 0.
Therefore, we can define the polynomial
p̂ðsÞ ¼def pðsÞ
p0ð1Þðt � 1Þ ¼

Ym
i¼2

ðs� kiÞki
Ym
i¼2

ð1� kiÞki

,
:

Note that p̂ð1Þ ¼ 1. Therefore, p̂ðJÞ ¼ 1
p0 ð1Þ

Qm
i¼2ðJ � kiIÞki ¼ð4:1Þ e1eT

1, and we conclude that
p̂ðAÞ ¼ V p̂ðJÞV�1 ¼ð4:3Þ x�eT :
Representing now p̂ as a difference of two polynomials p̂þ and p̂�, both with nonnegative coefficients, we obtain
p̂þðAÞ ¼ p̂�ðAÞ þ x�eT P x�eT :
Thus, polynomial p̂þ has at least one positive row. Its degree does not exceed n� 1. h

Note that Theorem 2 can be applied even to the matrices, which are not primitive (e.g., A ¼ xeT with x 2 Dn, permutation
matrices with full cycle, etc.).
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