
Mirror Prox Solver for min
x

{∥x∥1 : ∥Ax− b∥p ≤ δ}
User’s Guide

A. Juditsky, F. Kilinc-Karzan, A. Nemirovski
January 3, 2012

1 Purpose

The solver MirrorProx implements the (deterministic) Mirror Prox algorithm [1] as applied to
the problem

Opt = min
x

{∥x∥1 : ∥Ax− b∥p ≤ δ} , (1)

where A is an m× n matrix and p is either ∞ or 2.
On successful run, MirrorProx returns a vector x such that

(a) ∥x∥1 ≤ (1 + ω)Opt
(b) ∥Ax− b∥p ≤ δ + ϵ,

(2)

where ω ≥ 0, ϵ > 0 are desired tolerances.
There is also an option to solve the problem

Opt(ρ) = min
x

{∥Ax− b∥p : ∥x∥ ≤ 1/ρ} (3)

with ρ > 0 given; with this option (referred to as the rhofixed), on successful run the returned
solution x satisfies

(a) ∥x∥1 ≤ 1/ρ
(b) ∥Ax− b∥p ≤ ρ−1Opt(ρ) + ϵ,

(4)

where ϵ > 0 is a desired tolerance.

Absolute and Relative tolerances. The user has an option to specify the desired tolerance
ϵ either in the absolute, or in the relative scale. With the absolute scale, the numerical value of
ϵ is specified. With the relative scale, user specifies relative accuracy ν which is linked with ϵ
via the relation (cf. section 3.1)

ϵ = ν · [∥A∥1→pOpt],

where ∥A∥1→p is the maximum of ∥ · ∥p-norms of columns in A and Opt is given by (1).

2 Synopsis

The calling sequence is

sol=MirrorProx(data,control);

The first argument is obligatory, the second is optional.

1



Specifying the data. data is a user-provided MATLAB structure specifying A, b, p, with
obligatory fields as follows:

name type default value meaning

data.fit double 2 the value of p (that is, either 2, or inf)

data.ydim int – m (A is m× n)

data.xdim int – n (A is m× n)

data.L double – the quantity ∥A∥1→p := max
1≤j≤n

∥Columnj(A)∥p
data.b double(m,1) – array representing b

data.delta ≥ 0 0.0005 data.delta is δ in (1),
Note: data.delta is irrelevant
when control.rhofixed=’on’

(see below)

data.Mult function handle – handle to “multiplication oracle”
— a user-supplied function computing
matrix-vector products involving A and AT

(see below).

Defining Multiplication oracle routine: the calling sequence to the routine should be

res=<data.Mult>(x,Tflag,data);

• when Tflag=0, x should be double(n, 1) representing x ∈ Rn, and res should be double(m,1)

representing Ax
• when Tflag=1, x should be double(m, 1) representing x ∈ Rm, and res should be
double(n,1) representing ATx.

Note: the structure data may include additional user-specified fields, to be used by the mul-
tiplication oracle.

Example 1 Let A be a general-type dense m× n matrix. In this case one can specify data.A

as a double(m,n) array containing A; define

data.Mult=@PlainMult;

the corresponding multiplication oracle being

function res=PlainMult(x,Tflag,data);

if Tflag,

res=data.A’*x;

else

res=data.A*x;

end;

Example 2 Let 2k × n matrix A represent k × n submatrix F of the n × n DFT matrix Fn

(complex-valued rows r in F are represented in A by pairs of rows ℜ(r), ℑ(r)). This can be
captured by specifying k × 1 array data.freq of distinct positive integers ≤ n – the indexes of
the rows of F , and the corresponding multiplication oracle could be as follows:

2



function res=FFTMult(x,Tflag,data);

myi=sqrt(-1);

k=data.ydim/2;

n=data.xdim;

if Tflag,

tmp=zeros(n,1);

tmp(data.freq)=x(1:k)+myi*x(k+1:end);

res=real(n*ifft(tmp));

else

tmp=fft(x);

res=[real(tmp(data.freq));imag(tmp(data.freq))];

end;

The corresponding pointer may be defined as

data.Mult=@FFTMult;

Specifying the controls. control is a user-specified structure with control parameters (in-
tegers, doubles and characters) as follows:

name range default value meaning

control.rhofixed ’on’/’off’ ’off’ ’on’: solving problem (3)
’off’: solving problem (1)

control.rho > 0 1 rhofixed on: ρ in (3)
rhofixed off: control.rho is irrelevant

control.accuracy ’abs’/’rel’ ’rel’ control.accuracy=’abs’ means that a
solution of absolute accuracy control.eps

is sought;
control.accuracy=’rel’ means that a
solution of relative accuracy control.eps

is sought

control.eps > 0 0.0005 required absolute (when
control.accuracy=’abs’)
or relative (when
control.accuracy=’rel’) accuracy

control.omega ≥ 0 0 rhofixed off: control.omega is ω in (2),
rhofixed on: control.omega is irrelevant

control.ItrMax 1, 2, ... 50000 maximal # of steps

control.cpumax (0,∞) 1800 maximum running time, sec

control.kappa (0.01, 0.99) 0.75 see section 3

control.printlevel 0/1 0 printlevel (0 – no display output)

control.dgf ’e’/’p’ ’p’ switch from ’p’ to ’e’ is expected to increase
somehow the iteration count while reducing the
computational effort per iteration

Note: There is no necessity for a user to specify all control fields; the fields unspecified on a
call to MirrorProx will be assigned their default values.

3



Output. On successful run, solver returns structure sol with the fields as follows:

name semantics

sol.rhofixed ’on’ when rhofixed is on, and ’off’ otherwise

sol.p p in (1)

sol.ok 0 – successful run (termination when desired accuracy is reached),
1 – termination when maximum iteration count/running time is reached

sol.cpu running time, sec

sol.Steps total number of iterations

sol.Calls total number of Calls – computations of the form [x, y] 7→ [AT y;Ax]

sol.Stages total number of Stages, see section 3

sol.x array with resulting primal solution x

sol.Ax array Ax

sol.rho rhofixed off: the final value of ρ, see section 3
rhofixed on: control.rho

sol.ell1norm ∥x∥1
sol.err.R rhofixed off: upper bound on [∥x∥1 −Opt]

rhofixed on: 0

sol.err.abs upper bound on ∥Ax− b∥p − δ

sol.err.rel rhofixed off: upper bound on [∥Ax− b∥p − δ]/[∥A∥1→pOpt]
rhofixed on: ∞

sol.opt lwb rhofixed off: a lower bound on Opt, see (1)
rhofixed on: 0

sol.res ∥Ax− b∥p
sol.res rel ∥Ax− b∥p/∥b∥p
sol.res lwb a lower bound on Opt(ρ) for ρ = sol.rho, see (3)

sol.y array with the resulting dual approximate solution y, see section 3

sol.ATy array AT y

sol.control structure representing controls used in the solution process

3 What is inside

To use the software in an intelligent manner, a potential user should have an idea of the strategy
implemented in the solver. We are about to outline this strategy for the situation where the
problem of interest is (1) (i.e., rhofixed is off); the much simpler case of problem (3) will be
addressed later.

Observe that the problem of interest (1) can be rewritten equivalently as

Opt = min
ξ,R

{R ≥ 0 : ∥ARξ − b∥p ≤ δ, ∥ξ∥1 ≤ 1}

(substitution x = Rξ). In the only nontrivial case of Opt > 0 (or, which is the same, of ∥b∥p > δ),
passing from the variables R, ξ to the variables ρ = 1/R, ξ, we can rewrite the latter problem as

1

Opt
= max

ρ>0

{
ρ : Φ(ρ) := min

ξ:∥ξ∥1≤1
∥Aξ − ρb∥p − ρδ ≤ 0

}
. (5)

When (1) is feasible and nontrivial (i.e., 0 < Opt < ∞), the function Φ(ρ) looks as shown on
Figure 1 (magenta). It is a convex function of ρ ≥ 0 which vanishes at ρ = 0 and ρ∗ = 1

Opt,

4



An approximate solution x̂ satisfying (3) can be represented as ρ̂−1ξ̂, where ρ̂ ≥ ρ∗/(1 + ω) and
∥ξ̂∥1 ≤ 1, implying that ∥x̂∥1 ≤ 1/ρ ≤ (1 + ω)/ρ∗ = (1 + Ω)Opt, which is the first requirement
in (3). The second requirement in (3) amounts to ∥Aξ̂− ρ̂b∥p − ρ̂δ ≤ ρ̂ϵ. This relation definitely

will hold if ρ̂ is close enough to ρ∗, so that Φ(ρ̂) is small, and ξ̂ is a near-minimizer of ∥Aξ− ρ̂b∥p
over ∥ξ∥1 ≤ 1, so that ∥Aξ̂− ρ̂b∥p − ρ̂δ is close to Φ(ρ̂) = min

∥ξ∥1≤1
∥Aξ− ρ̂b∥p − ρ̂δ. To achieve the

outlined goals, we apply to Φ a Newton-type root-finding routine aimed at fast approximation
of ρ∗ (cf. [2]). Specifically,

1. The execution of the algorithm is split into stages s = 1, 2, ...; at stage s. we work with
some value ρs ≥ ρ∗

1+ω of ρ, and ρ1 is chosen to be > ρ∗.

2. At s-th stage, we apply the Saddle Point Mirror Prox algorithm [1] to build sequences
us1 ≥ us2 ≥ ..., ℓs1 ≤ ℓs2 ≤ ... of upper and lower bounds on the quantity Φ(ρs).

• Every upper bound ust is augmented with an approximate solution ξst satisfying ∥ξst ∥ ≤
1 and ∥Aξst − ρsb∥p − ρsδ = ust . It follows that the vector xst = ξst /ρs satisfies
∥xst∥1 ≤ 1/ρs ≤ (1 + ω)/ρ∗ = (1 + ω)Opt and ∥Axst − b∥p ≤ δ + ust/ρs. In particular,
in the case of ust ≤ ϵρs, the vector x

s
t satisfies our target relation (2), and we terminate.

• Every lower bound ℓst is augmented with dual solution yst – a vector satisfying
∥yst ∥ p

p−1
≤ 1 For a vector y satisfying the latter relation, we clearly have yT (Aξ−ρb) ≤

∥Aξ − ρb∥p, whence min∥ξ∥1≤1 y
TAξ − ρyT b− ρδ = −∥AT y∥∞ − ρ(bT y+ δ) is a lower

bound on Φ(ρ) for all ρ. In particular, ϕst (ρ) := −∥AT yst ∥∞ − ρ(bT yst + δ) is an affine
in ρ lower bound on Φ(ρ). The quantity ℓst is nothing but ϕst (ρs).

• The Saddle Point Mirror Prox algorithm ensures that ust − ℓst goes to 0 as t →
∞, meaning that eventually either ust will become ≤ ϵρs (this is our termination
condition), or ℓst will be positive, and the ratio ust/ℓ

s
t will be less than 1 + κ, where

κ ∈ (0, 1) is a parameter of the method. Whenever the latter happens, ϕst (ρs) has
unique root ρ̂s, and this root is a smaller than ρs upper bound on ρ∗ (since ϕst (ρ) is
a lower bound on Φ(ρ) and ψs

t (ρs) = ℓst > 0). In the situation in question, we pass to
phase s+ 1, setting ρs+1 = ρ̂s/(1 + ω) (and thus ensuring that ρs+1 ≥ ρ∗/(1 + ω).

The outlined mechanism is illustrated on Figure 1.

3.1 Complexity Bound

The number of stages in the above algorithm provably does not exceed

S = c(κ) ln

(∥A∥1→pOpt

ϵ

)
, ∥A∥1→p = max

j
∥Aj∥p,

where A1, ..., An are the columns of A, and the number of iterations at a stage does not exceed

c(κ)χp
∥A∥1→pOpt

ϵ
, χp =

{ √
ln(m+ 1) ln(n+ 1), p = ∞√
ln(n+ 1), p = 2

Here c(κ) depends solely on κ ∈ (0, 1).
Effort per iteration is dominated by the necessity to carry out a small number (3 at average)

of calls — matrix-vector multiplications of the form (x, y) 7→ (Ax,AT y).

5



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

lb

ub

rhorho+

Figure 1: Magenta: function Φ(·). ρ∗ is the positive root of Φ, ρ > ρ∗ is ρs. ub and lb are the
current upper and lower bounds ust , ℓ

s
t on Φ(ρs) satisfying ust/ℓ

s
t ≤ 1 + κ. Cyan: ρst (·), ρ+ is

ρs+1 (ω = 0).

p = 2 p = ∞
Sizes of A # of stages # of calls CPU, sec # of stages # of calls CPU, sec

256× 1024 8 666 5.5 (3.4) 7 6332 78.6 (3.6)

2048× 4096 7 390 23.0 (829.6) 7 9064 712.4 (1684.9)

Table 1: Sample numerical results for Mirror Prox. Red: cpu time of finding a solution of
required quality by a commercial interior point solver mosekopt.
Platform: Lenovo T410 laptop with Intel(R) Core(TM) i7 CPU 2.67 GHz, 8.00 GB RAM, 64
bit

Some impression on actual running times can be obtained from Table 1 below. In these
experiments, A is drawn at random from the Rademacher ensemble (random matrices with
independent entries taking values ±1 with probability 1/2) and in the case of p = 2 are further
divided by

√
m (to make the Euclidean lengths of the columns A to become equal to 1). For

the problems we were generating, Opt is close to 1, and ∥A∥1→p, meaning that the relative and
absolute accuracy scales nearly coincide. The absolute accuracy we sought for was ϵ = 5.e-4,
and up to this parameter, the controls were set to their default values.

Warning: As far as large-scale dense matrices A are concerned, the above complexity bounds
are the best known so far. This being said, note that the number of iterations is inverse propor-
tional to the relative accuracy, meaning that it is unreasonable to ask for really high (something
like 10−6 or less) relative accuracy.

6



References

[1] Nemirovski, A., “Prox-method with rate of convergence O(1/t) for variational inequalities
with Lipschitz continuous monotone operators and smooth convex-concave saddle point prob-
lems” – SIAM Journal on Optimization 15 (2004), 229–251.

[2] Juditsky, A., Kilinç Karzan, F., Nemirovski, A. (2011), “L1 Minimization via Randomized
First Order Algorithms” – submitted to Mathematical Programming
E-print: http://www.optimization-online.org/DB FILE/2010/05/2618.pdf

7


