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Abstract Robust Optimization is a rapidly developing methodology for han-
dling optimization problems affected by non-stochastic “uncertain-but-
bounded” data perturbations. In this paper, we overview several selected topics
in this popular area, specifically, (1) recent extensions of the basic concept of
robust counterpart of an optimization problem with uncertain data, (2) trac-
tability of robust counterparts, (3) links between RO and traditional chance
constrained settings of problems with stochastic data, and (4) a novel generic
application of the RO methodology in Robust Linear Control.

Keywords Optimization under uncertainty · Robust optimization · Convex
programming · Chance constraints · Robust linear control

Mathematics Subject Classification (2000) 90C34 · 90C05 · 90C20 · 90C22 ·
90C15

1 Introduction

The goal of this paper is to overview recent progress in Robust Optimization —
one of the methodologies aimed at optimization under uncertainty. The entity
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of interest is an uncertain optimization problem of the form

min
x,t

{t : f0(x, ζ ) − t ≤ 0, fi(x, ζ ) ∈ Ki, i = 1, . . . , m} , (1)

where x ∈ Rn is the vector of decision variables, ζ ∈ Rd is the vector of prob-
lem’s data, f0(x, ζ ) : Rn × Rd → R, fi(x, ζ ) : Rn × Rd → Rki , 1 ≤ i ≤ m, are
given functions, and Ki ⊂ Rki are given nonempty sets. Uncertainty means that
the data vector ζ is not known exactly at the time when the solution has to be
determined. As a result, it is unclear what does it mean “to solve” an uncertain
problem. In Stochastic Programming — historically, the first methodology for
handling data uncertainty in optimization — one assumes that the data are of
stochastic nature with known distribution and seeks for a solution which mini-
mizes the expected value of the objective over candidate solutions which satisfy
the constraints with a given (close to 1) probability. In Robust Optimization
(RO), the data is assumed to be “uncertain but bounded”, that is, varying in a
given uncertainty set Z , rather than to be stochastic, and the aim is to choose
the best solution among those “immunized” against data uncertainty. The most
frequently used interpretation of what “immunized” means is as follows: a can-
didate solution to (1) is “immunized” against uncertainty if it is robust feasible,
that is, remains feasible for all realizations of the data from the uncertainty set.
With this approach, one associates with the uncertain problem (1) its Robust
Counterpart (RC) — the semi-infinite problem

min
x,t

{t : f0(x, ζ ) ≤ t, fi(x, ζ ) ∈ Ki, i = 1, . . . , m, ∀ζ ∈ Z} (2)

of minimizing the guaranteed value supζ∈Z f0(x, ζ ) of the objective over robust
feasible solutions. The resulting optimal solutions, called robust optimal solu-
tions of (1), are interpreted as the recommended for use “best immunized
against uncertainty” solutions of an uncertain problem. Note that the uncer-
tainty set plays the role of “a parameter” of this construction. The outlined
approach originates from Soyster [62]. Associated in-depth developments
started in mid-1990s [5–7,9,34,35] and initially were mainly focused on moti-
vating the approach and on its theoretical development, with emphasis on the
crucial issue of computational tractability of the RC. An overview of these
developments was the subject of the semi-plenary lecture “Robust Optimiza-
tion — Methodology and Applications” delivered by A. Ben-Tal at XVII ISMP,
Atlanta, 2000, see [13]. Since then, the RO approach has been rapidly gaining
popularity. Extensive research on the subject in the recent years was aimed both
at developing the basic RO theory (see [10,14–17,19,23,24,26,40,44,32,61]
and references therein) and at applications of the RO methodology in vari-
ous areas, including, but not restricted to, Discrete optimization [2,3,21,22,48],
Numerical Linear Algebra [37], Dynamic Programming [43,54], Inventory
Management [1,18,25], Pricing [1,55], Portfolio selection [11,36,39], Routing
[53], Machine Learning [27,47], Structural design [5,45], Control [31,20,38,46],
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Signal processing and estimation [4,29,33].1 It would be impossible to outline,
even briefly, this broad research in a single paper; our intention here is to over-
view several selected RO-related topics, primarily, those related to (a) exten-
sions of the RO paradigm, (b) its links with Stochastic Optimization, and (c)
computational tractability of RO models. In the sequel we restrict our consid-
erations solely to the case of convex bi-affine uncertain optimization problems,
that is, problems (1) with closed convex Ki and fi(x, ζ ), i = 0, . . . , m, bi-affine in
x and in ζ :

fi(x, ζ ) = fi0(x) +
d∑

�=1

ζ�fi�(x) = φi0(ζ ) +
n∑

j=1

xjφij(ζ ), i = 0, . . . , m, (3)

where all fi�(x), φi�(ζ ) are affine scalar (i = 0) or vector-valued (i > 0) functions
of x, ζ , respectively. The reason for this restriction comes from the fact that at
the end of the day we should be able to process the RC numerically and thus
want it to be computationally tractable. At our present level of knowledge, this
sine qua non ultimate goal requires, generically, at least convexity and bi-affinity
of the problem.2 Note that the bi-affinity requirement is satisfied, in particular,
by conic problems minx

{
cTx : Ax − b ∈ K

}
, K being a closed convex cone, with

the “natural data” (c, A, b) affinely parameterized by ζ . Thus, our bi-affinity
restriction does not rule out the most interesting generic convex problems like
those of Linear, Conic Quadratic and Semidefinite Programming.

The rest of the paper is organized as follows. Section 2 is devoted to two
recent extensions of the RO paradigm, specifically, to the concepts of affinely
adjustable and globalized Robust Counterparts. Section 3 is devoted to results
on computational tractability of Robust Counterparts. Section 4 establishes
some instructive links with Chance Constrained Stochastic Optimization. Con-
cluding Sect. 5 is devoted to a novel application of the RO methodology in
Robust Linear Control.

2 Extending the scope of robust optimization: affinely adjustable
and globalized robust counterparts

2.1 Adding adjustability: motivation

On a closest inspection, the concept of Robust Counterpart of an uncertain
optimization problem is based on the following three tacitly accepted assump-
tions:

1 More information on RO-related publications can be found in the references in cited papers and
in the section “Robust optimization” at www.optimization-online.org.
2 In some of the situations to be encountered, bi-affinity can be weakened to affinity of fi, i =
1, . . . , m, in ζ and convexity (properly defined for i > 0) of these functions in x. However, in order
to streamline the presentation and taking into account that the extensions from affine to convex
case, when they are possible, are completely straightforward, we prefer to assume affinity in x.
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A.1. All decision variables in (1) represent “here and now” decisions which
should get specific numerical values as a result of solving the problem and before
the actual data “reveal itself”;

A.2. The constraints in (1) are “hard”, that is, we cannot tolerate violations
of constraints, even small ones;

A.3 The data are “uncertain but bounded” — we can specify an appropriate
uncertainty set Z ⊂ Rd of possible values of the data and are fully responsible
for consequences of our decisions when, and only when, the actual data is within
this set.

With all these assumptions in place, the only meaningful candidate solu-
tions of the uncertain problem (1) are the robust feasible ones, and the RC
(2) seems to be the only possible interpretation of “optimization over uncer-
tainty-immunized solutions”. However, in many cases assumption A.1 is not
satisfied, namely, only part of the decision variables represent “here and now”
decisions to be fully specified when the problem is being solved. Other variables
can represent “wait and see” decisions which should be made when the uncer-
tain data partially or completely “reveal itself”, and decisions in question can
“adjust” themselves to the corresponding portions of the data. This is what hap-
pens in dynamical decision-making under uncertainty, e.g., in multi-stage inven-
tory management under uncertain demand, where the replenishment orders of
period t can depend on actual demands at the preceding periods. Another
type of “adjustable” decision variables is given by analysis variables — those
which do not represent decisions at all and are introduced in order to convert
the problem into a desired form, e.g., the LP one. For example, consider the
constraint

I∑

i=1

|aT
i x − bi| ≤ t (4)

along with its LP representation

− yi ≤ aT
i x − bi ≤ yi, 1 ≤ i ≤ I,

∑

i

yi ≤ t. (5)

With uncertain data ζ = {ai, bi}I
i=1 varying in given set Z and x, t representing

“here and now” decisions, there is absolutely no reason to think of yi as of here
and now decisions as well: in fact, yi’s do not represent decisions at all and as
such can “adjust” themselves to the actual values of the data.

2.2 Adjustable and affinely adjustable RC

A natural way to capture the situations where part of the decision variables
can “adjust” themselves, to some extent, to actual values of the uncertain data,
is to assume that every decision variable xj in (1) is allowed to depend on a
prescribed portion Pjζ of the uncertain data, where Pj are given in advance
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matrices. With this assumption, a candidate solution to (1) becomes a collection
of decision rules xj = Xj(Pjζ ) rather than a collection of fixed reals, and the
natural candidate to the role of (2) becomes the adjustable robust counterpart
(ARC) of (1):

min
{Xj(·)}n

j=1,t

{
t :

f (X1(P1ζ ), . . . , Xn(Pnζ ), ζ ) − t ≤ 0
fi(X1(P1ζ ), . . . , Xn(Pnζ ), ζ ) ∈ Ki, 1 ≤ i ≤ m

}
∀ζ ∈ Z

}
. (6)

The nature of candidate solutions to the ARC (decision rules rather than fixed
vectors) and the constraints in this problem resembles those of a multi-stage
Stochastic Programming problem; essentially, the only difference is that in (6)
we intend to minimize the worst case value of the objective rather than its
expectation w.r.t. a given distribution of ζ . While in our current “decision envi-
ronment” the ARC seems to be a completely natural entity, there are pretty slim
chances to make this concept “workable”; the problem is that the ARC usually
is “severely computationally intractable”. Indeed, (6) is an infinite-dimensional
problem, and in general it is absolutely unclear even how to store candidate
solutions to this problem, not speaking of how to optimize over these solutions.
Seemingly the only optimization technique which under appropriate structural
assumptions could handle ARC’s is Dynamic Programming; this technique,
however, heavily suffers from “course of dimensionality”.

Note that the RC of (1) is a semi-infinite problem and as such may also be
computationally intractable; there are, however, important generic cases,
most notably, uncertain Linear Programming with computationally trac-
table uncertainty set (see below), where this difficulty does not occur.
In contrast to this, even in the simplest case of uncertain LP (that is, bi-
affine problem (1) with Ki = R−, i = 1, . . . , m), just two generic (both
not too interesting) cases where the ARC is tractable are known [42].
In both these cases, there are just two types of decision variables: “non-
adjustable” (those with Pj = 0) and “fully adjustable” (Pj = I), and the
problem has “fixed recourse”: for all j with Pj �= 0 all the functions φij(ζ )

in (3) are independent of ζ (“coefficients of all adjustable variables are
certain”). In the first case, the uncertainty set is the direct product of
uncertainty sets in the spaces of data of different constraints (“constraint-
wise uncertainty”); here, under mild regularity assumptions (e.g., when all
the variables are subject to finite upper and lower bounds), the ARC is
equivalent to the RC. The second case is the one of “scenario uncertainty”
Z = Conv{ζ 1, . . . , ζ S}. In this case, assuming w.l.o.g. that the non-adjust-
able variables are x1, . . . , xk and the adjustable ones are xk+1, . . . , xn, the
ARC of (1) is equivalent to the explicit convex problem

min
t,x1,...,xk ,

xs
k+1,...,xs

n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
t :

φ00(ζ
s) +

k∑
j=1

xjφ0j(ζ
s) +

n∑
j=k+1

φ0jxs
j − t ≤ 0

φi0(ζ
s) +

k∑
j=1

xjφij(ζ
s) +

n∑
j=k+1

φijxs
j ∈ Ki,

,
1 ≤ i ≤ I
1 ≤ s ≤ S

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
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(for notation, see (3)); this equivalence remains valid for the case of
general (convex!) sets Ki as well.
Finally, to give an instructive example to the dramatic increase in com-
plexity when passing from the RC to the ARC, consider the uncertain
�1-approximation problem where one is interested to minimize t in t, x
linked by the constraint (4) (both x and t are non-adjustable) and the data
ζ = {ai, bi}i=1 runs through a pretty simple uncertainty set Z , namely,
ai are fixed, and b = (b1, . . . , bI)

T runs through an ellipsoid. In other
words, we are speaking about the uncertain Linear Programming prob-
lem of minimizing t under the constraints (5) on variables x, t, y where x, t
are non-adjustable and yi are fully adjustable. The ARC of this uncertain
problem is clearly equivalent to the semi-infinite convex program

Opt = min
x,t

{
t :

I∑

i=1

|aT
i x − bi| ≤ t ∀(b = Qu : uT − u ≤ 1)

}
.

This simple-looking problem is NP-hard (one can reduce to it the well-
known MAXCUT problem); it is even NP-hard to approximate Opt within
a close enough to 1 absolute constant factor. In contrast to this, the RC of
our uncertain LP (5) with the outlined uncertainty set is clearly equivalent
to the explicit LP program

min
x,t,y

{
|aT

i x| ≤ yi,
∑

i

(yi + di) ≤ t

}
, di = max

u

{
(Qu)i : uTu ≤ 1

}

and is therefore easy.

The bottom line is as follows: when the decision variables in (1) can “adjust
themselves”, to some extent, to the actual values of the uncertain data, the
RC (2) of the uncertain problem cannot be justified by our “decision-making
environment” and can be too conservative. A natural remedy — passing to the
ARC (6) — typically requires solving a severely computationally intractable
problem and thus is not an actual remedy. The simplest way to resolve the aris-
ing difficulty is to restrict the type of decision rules we allow in the ARC, and
the “strongest” restriction here (aside of making the decision rules constant
and thus coming back to the RC) is to enforce these rules to be affine:

xj = η0
j + ηT

j Pjζ , j = 1, . . . , n. (7)

With this dramatic simplification of the decision rules, (6) becomes an optimiza-
tion problem in the variables η0

j , ηj — the coefficients of our decision rules. The
resulting problem, called the affinely adjustable robust counterpart (AARC) of
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(1), is the semi-infinite problem

min
{η0

j ,ηj},t

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t :

φ00(ζ ) +
n∑

j=1
φ0j(ζ )[η0

j + ηT
j Pjζ ] − t ≤ 0

φi0(ζ ) +
n∑

j=1
φij(ζ )[η0

j + ηT
j Pjζ ] ∈ Ki

1 ≤ i ≤ m

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∀ζ ∈ Z

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (8)

(cf. (3)). In terms of conservatism, the AARC clearly is “in-between” the RC
and the ARC, and few applications of the AARC reported so far (most nota-
bly, to Inventory Management under uncertainty [18]) demonstrate that passing
from the RC to the AARC can reduce dramatically the “built-in” conservatism
of the RO methodology. Note also that with Pj = 0 for all j, the AARC becomes
exactly the RC.

Note that the RC of (1) is the semi-infinite problem

min{xj},t

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t :

φ00(ζ ) +
n∑

j=1
φ0j(ζ )xj − t ≤ 0

φi0(ζ ) +
n∑

j=1
φij(ζ )xj ∈ Ki

1 ≤ i ≤ m

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∀ζ ∈ Z

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (9)

and its structure is not too different from the one of (8) — both problems are
semi-infinite convex programs with constraints which depend affinely on the
respective decision variables. The only — although essential — difference is
that the constraints of the RC are affine in the uncertain data ζ as well, while
the constraints in AARC are, in general, quadratic in ζ . There is, however, an
important particular case where this difference disappears; this is the previously
mentioned case of fixed recourse, that is, the case where the functions φij(ζ ),
i = 0, 1, . . . , m associated with adjustable variables xj — those with Pj �= 0 —
are in fact constants. In this case, both ARC and AARC are of exactly the same
structure — they are semi-infinite convex programs with bi-affine constraints.
We shall see in Sect. 3 that bi-affinity makes both RC and AARC computa-
tionally tractable, at least in the case where all Ki are polyhedral sets given by
explicit lists of linear inequalities (“uncertain Linear Programming”).

In principle, the AARC (8) always can be thought of as a semi-infinite
bi-affine convex problem; to this end, is suffices to “lift” quadratically the

data — to treat as the data the matrix Z(ζ ) =
[

1 ζT

ζ ζ ζT

]
rather than ζ itself.

Note that the left hand sides of the constraints of both RC and AARC
can be thought of as bi-affine functions of the corresponding decision vari-
ables and Z(ζ ), and this bi-affinity implies that the RC and the AARC
remain intact when we replace the original uncertainty set Z in the space
of “actual data” ζ with the uncertainty set Ẑ = Conv{Z(ζ ) : ζ ∈ Z}. Note,
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however, that in order for a semi-infinite convex problem of the form

min
y

{
cTy : F�(y, u) ∈ Q�, � = 1, . . . , L ∀u ∈ U

}

(the sets Q� are closed and convex, F�(·, ·) are bi-affine) to be computa-
tionally tractable, we need more than mere convexity; “tractability results”
here, like those presented in Sect. 3, require from the sets Conv(U) and Q�

to be computationally tractable, and, moreover, somehow “match” each
other. While the requirement of computational tractability of Q� and of
the convex hull Conv{Z} of the “true” uncertainty set Z are usually non-
restricting, the quadratic lifting Z �→ Ẑ generally destroys computational
tractability of the corresponding convex hull and the “matching” property.
There are, however, particular cases when this difficulty does not occur,
for example, the trivial case of finite Z (“pure scenario uncertainty”). A
less trivial case is the one where Z is an ellipsoid. This case immediately
reduces to the one where Z is the unit Euclidean ball {ζ : ζTζ ≤ 1}, and
here Conv{Ẑ} = Conv{Z(ζ ) : ζTζ ≤ 1} is the computationally tractable
set {Z ∈ Sd+1+ : Z11 = 1,

∑d+1
�=2 Z�� ≤ 1}. Whether this set “matches” Q� or

not, this depends on the geometry of the latter sets, and the answer, as we
shall see, is positive when Q� are polyhedral sets given by explicit lists of
linear inequalities.

Convention. From now on, unless it is explicitly stated otherwise, we restrict
attention to the case of fixed recourse, so that both the RC (9) and the AARC
(8) of the uncertain problem (1) (which always is assumed to be bi-affine with
convex Ki) are bi-affine semi-infinite problems. In this case, due to bi-affinity
of the left hand sides in the constraints of RC and AARC and to the convexity
of Ki, both the RC and the AARC remain intact when the uncertainty set Z
is extended to its closed convex hull. By this reason, from now on this set is
assumed to be closed and convex.

2.3 Controlling global sensitivities: globalized robust counterpart

The latest, for the time being, extension of the RO paradigm was proposed in
[19] and is motivated by the desire to relax, to some extent, assumptions A.2,
A.3. Specifically, it may happen that some of the constraints in the uncertain
problem are “soft” — their violation, while undesirable, can however be toler-
ated. With respect to such constraints, it does not make much sense to follow
the “black and white” policy postulated in assumption A.3; instead of taking
full care of feasibility when the data is in the uncertainty set and not bothering
at all what happens when the data is outside of this set, it is more natural to
ensure feasibility when the data is in their “normal range” and to allow for
controlled violation of the constraint when the data runs out of this normal
range. The simplest way to model these requirements is as follows. Consider a
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bi-affine “soft” semi-infinite constraint

f (y, ζ ) ≡ φ0(ζ ) +
N∑

j=1

φj(ζ )yj ∈ K
[
φj(ζ ) = φ0

j + Φjζ , 0 ≤ j ≤ N
]

, (10)

where y are the design variables, φj(ζ ), j = 0, . . . , N are affine in ζ ∈ Rd vector-
valued functions taking values in certain Rk, and K is a closed convex set in Rk.
In our context, this constraint may come from the RC (9) of the original uncer-
tain problem, or from its AARC (8), 3 this is why we choose “neutral” notation
for the design variables. Assume that the set of all “physically possible” values
of ζ is of the form

ZL = Z + L,

where Z ⊂ Rd is a closed and convex set representing the “normal range” of
the data, and L ⊂ Rd is a closed convex cone. Let us say that y is a robust
feasible solution to (10) with global sensitivity α ≥ 0, if, first, y remains feasible
for the constraint whenever ζ ∈ Z , and, second, the violation of the constraint
when ζ ∈ ZL\Z can be bounded in terms of the distance of ζ to its normal
range, specifically,

dist(f (y, ζ ), K) ≤ αdist(ζ , Z|L) ∀ζ ∈ ZL = Z + L; (11)

here

dist(u, K) = min
v∈K

‖u − v‖K, dist(ζ , Z|L) = min
z

{
‖ζ − z‖Z :

z ∈ Z
ζ − z ∈ L

}

and ‖·‖K, ‖·‖Z are given norms on the respective spaces. In the sequel, we refer
to the setup of this construction — the collection (Z , L, ‖ · ‖K, ‖ · ‖Z) — as to the
uncertainty structure associated with uncertain constraint (10). Note that since
K is closed, (11) automatically ensures that f (y, ζ ) ∈ K whenever ζ ∈ Z , so that
the outlined pair of requirements in fact reduces to the single requirement (11).

We refer to (11) as to Globalized RC (GRC) of uncertain constraint (10)
associated with the uncertainty structure in question. Note that with L = {0},
the GRC recovers the usual RC/AARC.

In order to build the Globalized RC (Globalized AARC) of uncertain prob-
lem (1), we replace the semi-infinite constraints of the RC (9), respectively,
those of the AARC (8), with their modifications (11). In general, both the
global sensitivity and the uncertainty structure can vary from constraint to
constraint.

3 Recall that we have once for ever postulated fixed recourse.
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The following simple statement is the key to successful processing of glob-
alized robust counterparts; the assumption on L to be a cone rather than an
arbitrary convex set is instrumental in achieving this goal.

Proposition 1 [19] The semi-infinite constraint (11) is equivalent to the pair of
semi-infinite constraints (see (10))

f (y, ζ ) := φ0(ζ ) +
N∑

j=1

φj(ζ )yj ∈ K ∀ζ ∈ Z , (12)

dist([Φ0 +
N∑

j=1

yjΦj]
︸ ︷︷ ︸

Φ[y]

ζ , Rec(K)) ≡ min
u∈Rec(K)

‖Φ[y]ζ − u‖K ≤ α

∀ζ ∈ L‖·‖Z ≡ {ζ ∈ L : ‖ζ‖Z ≤ 1}, (13)

where Rec(K) is the recessive cone of K.

Remark 1 Sometimes (e.g., in Control applications to be considered in Sect. 5)
it makes sense to add some structure to the construction of Globalized RC,
specifically, to assume that the space Rd where ζ lives is given as a direct
product: Rd = Rd1 × · · · × Rdν , and both Z , L are direct products as well:
Z = Z1 ×· · ·×Zν , L = L1 ×· · ·×Lν , where Z i, Li are closed convex sets/cones
in Rdi . Given norms ‖ · ‖Zi on Rdi , i = 1, . . . , ν, we can impose requirement (11)
in the structured form

dist(f (y, ζ ), K) ≤
ν∑

i=1

αidist(ζ i, Z i|Li) ∀ζ ∈ ZL = Z + L, (14)

where ζ i is the projection of ζ onto Rdi , dist(ζ i, Z i|Li) is defined in terms of
‖ · ‖Zi , and αi ≥ 0 are “partial global sensitivities”. The associated “structured”
version of Proposition 1, see [19], states that (14) is equivalent to the system of
semi-infinite constraints

f (y, ζ ) := φ0(ζ ) +∑N
j=1 φj(ζ )yj ∈ K ∀ζ ∈ Z ,

dist(Φ[y]Eiζ
i, Rec(K)) ≤ αi ∀i ∀ζ i ∈ Li‖·‖Zi ≡ {ζ i ∈ Li : ‖ζ i‖Zi ≤ 1},

where Ei is the natural embedding of Rdi into Rd = Rd1 × · · · × Rdν .

3 Tractability of robust counterparts

Here we address the crucial issue of computational tractability of robust coun-
terparts of an uncertain problem. The “tractability framework” we use here
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(what “computational tractability” actually means) is standard for continuous
optimization; its description can be found, e.g., in [12]. In our context, a reader
will lose nearly nothing when interpreting computational tractability of a con-
vex set X as the fact that X is given by semidefinite representation X = {x : ∃u :
A(x, u) � 0}, where A(x, u) is a symmetric matrix affinely depending on x, u.
“Computational tractability” of a system of convex constraints is then the fact
that we can point out a semidefinite representation of its solution set. “Effi-
cient solvability” of a convex optimization problem minx∈X cTx means that the
feasible set X is computationally tractable.

As we have seen in the previous section, under our basic restrictions (bi-affin-
ity and convexity of the uncertain problem plus fixed recourse when speaking
about affinely adjustable counterparts) the robust counterparts are semi-infinite
convex problems with linear objective and bi-affine semi-infinite constraints of
the form

f (y, ζ ) ≡ f (y) + F(y)ζ ∈ Q ∀ζ ∈ U , (15)

where f (y), F(y) are vector and matrix affinely depending on the decision vector
y and Q, U are closed convex sets. In order for such a problem to be compu-
tationally tractable, it suffices to build an explicit finite system Sf of efficiently
computable convex constraints, e.g., Linear Matrix Inequalities (LMI’s) in our
original design variables y and, perhaps, additional variables u which represents
the feasible set Y of (15) in the sense that

Y = {y : ∃u : (y, u) satisfies Sf}.

Building such a representation is a constraint-wise task, so that we can focus on
building computationally tractable representation of a single semi-infinite con-
straint (15). Whether this goal is achievable, it depends on the tradeoff between
the geometries of Q and U : the simpler is U , the more complicated Q can be.
We start with two “extreme” cases which are good in this respect. The first of
them is not too interesting; the second is really important.

3.1 “Scenario uncertainty”: Z = Conv{ζ 1, . . . , ζ S}

In the case of scenario uncertainty, (15) is computationally tractable, provided
that Q is so. Indeed, here (15) is equivalent to the finite system of tractable
constraints

f (y) + F(y)ζ s ∈ Q, s = 1, . . . , S.
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3.2 Uncertain linear programming: Q is a polyhedral set given by an explicit
finite list of linear inequalities

In the case described in the title of this section, semi-infinite constraint (15)
clearly reduces to a finite system of scalar bi-affine semi-infinite inequalities of
the form

f (y) + FT(y)ζ ≤ 0 ∀ζ ∈ U . (16)

with real-valued f and vector-valued F affinely depending on y, and all we need
is computational tractability of such a scalar inequality. This indeed is the case
when the set U is computationally tractable. We have, e.g., the following result.

Theorem 1 [7] Assume that the closed convex set U is given by conic represen-
tation

U = {ζ : ∃u : Pζ + Qu + p ∈ K}, (17)

where K is either (i) a nonnegative orthant Rk+, or (ii) a direct product of the

Lorentz cones L = {x ∈ Rk : xk ≥
√∑k−1

i=1 x2
i }, or (iii) a semidefinite cone Sk+

(the cone of positive semidefinite k × k matrices in the space Sk of symmetric
k × k matrices equipped with the Frobenius inner product 〈A, B〉 = Tr(AB)).
In the cases (ii–iii), assume that the representation in question is strictly feasible:
Pζ̄ + Qū + p ∈ intK for certain ζ̄ , ū. Then the semi-infinite scalar constraint
(16) can be represented by the following explicit and tractable system of convex
constraints

PTw + F(y) = 0, QTw = 0, pTw + f (y) ≤ 0, w ∈ K (18)

in variables y and additional variables w.

Proof We have

{
y satisfies (16)

} ⇔ {
maxζ ,u

{
FT(y)ζ : Pζ + Qu + p ∈ K

} ≤ −f (y)
}

⇔ {∃w ∈ K : PTw + F(y) = 0, QTw = 0, pTw + f (y) ≤ 0
}

where the concluding ⇔ is given by LP/Conic Duality. ��
Corollary 1 The RC (9) of an uncertain Linear Programming problem (1) (i.e.,
problem with bi-affine constraints and polyhedral sets Ki given by explicit finite
lists of linear inequalities) is computationally tractable, provided that the uncer-
tainty set Z is so. In particular, with Z given by representation (17), the RC is
equivalent to an explicit Linear Programming (case (i)) or Conic Quadratic (case
(ii)), or Semidefinite (case (iii)) problem.

In the case of fixed recourse, the same is true for the AARC (8) of the uncertain
problem.
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Now consider the Globalized RC/AARC of an uncertain LP with computation-
ally tractable perturbation structure, say, with the normal range Z of the data
and the set L‖·‖Z , see (13), satisfying the premise of Theorem 1. By Proposition
1, the Globalized RC is tractable when the semi-infinite inclusions (12), (13)
associated with the uncertain constraints of (1) are tractable. In the situation
in question, tractability of (12) is readily given by Theorem 1, so that we may
focus solely on the constraint (13). Tractability of the semi-infinite inclusion
(13) coming from i-th constraint of the uncertain problem depends primarily
on the structure of the recessive cone Rec(Ki) and the norm ‖ · ‖Ki used to
measure the distance in the left hand side of (11). For example,

• Invoking Theorem 1, the semi-infinite inclusion (13) is computationally trac-
table under the condition that the set {u : ∃v ∈ Rec(Ki) : ‖u − v‖Ki ≤ α} in
the right hand side of the inclusion can be described by an explicit finite list
of linear inequalities. This condition is satisfied, e.g., when ‖ · ‖Ki = ‖ · ‖∞
and the recessive cone Rec(Ki) ⊂ Rki of Ki is given by “sign restrictions”,
that is, is comprised of all vectors with given restrictions on the signs of every
one of the coordinates (“≥ 0”, “≤ 0”, “= 0”, or no restriction at all).

• Another “good case” is the one where Ki ⊂ Rki is bounded, the associated
cone L is the entire space Rd and the norms ‖ · ‖Z, ‖ · ‖Ki form a “good
pair” in the sense that one can compute efficiently the associated norm
‖A‖ZKi = max{‖Aζ‖Ki : ‖ζ‖Z ≤ 1} of a ki × d matrix. Indeed, in the case in
question (13) becomes the efficiently computable convex constraint

‖Φ0 +
∑

j

yjΦj‖ZKi ≤ α.

Examples of “good pairs” of norms include (a) ‖ · ‖Z = ‖ · ‖1, ‖ · ‖Ki efficiently
computable, (b) ‖ ·‖Z efficiently computable, ‖ ·‖Ki = ‖·‖∞, and (c) both ‖ ·‖Z,
‖ · ‖Ki are Euclidean norms on the respective spaces.

We have presented sufficient tractability conditions for the Globalized RC of
uncertain LP’s; note that the first of these conditions is automatically satisfied
in the case of “LP proper”, where all Ki are one-dimensional. Note also that in
the case of fixed recourse, exactly the same conditions ensure tractability of the
Globalized AARC.

3.3 Uncertain conic quadratic programming

Now let us pass to uncertain Conic Quadratic problems (also called Second
Order Conic problems). These are problems (1) with bi-affine objective and
left hand sides of the constraints, and with the right hand sides sets Ki in the
constraints given by finitely many conic quadratic inequalities:

Ki =
{

u ∈ Rki : ‖Aiνu + biν‖2 ≤ cT
iνu + diν , ν = 1, . . . , Ni

}
.
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Here the issue of computational tractability of the RC clearly reduces to trac-
tability of a single semi-infinite conic quadratic inequality

‖A[ζ ]y + b[ζ ]‖2 ≤ cT[ζ ]y + d[ζ ] ∀ζ ∈ Z , (19)

where A[ζ ],…,d[ζ ] are affine in ζ . Tractability of the constraint (19) depends on
the geometry of Z and is a “rare commodity”: already pretty simple uncertainty
sets (e.g., boxes) can lead to intractable constraints. Aside from the trivial case
of scenario uncertainty (Sect. 3.1), we know only two generic cases where (19)
is computationally tractable [34,6,15]:

• the case where Z is an ellipsoid. Here (19) is computationally tractable,
although we do not know a “well-structured”, e.g., semidefinite, represen-
tation of this constraint;

• the case of “side-wise” uncertainty with ellipsoidal uncertainty set for the
left hand side data. “Side-wise” uncertainty means that the uncertainty set
is given as Z = Z l × Zr, the left hand side data A[ζ ], b[ζ ] in (19) depend
solely on the Z l-component of ζ ∈ Z , while the right hand side data c[ζ ], d[ζ ]
depend solely on the Zr-component of ζ . If, in addition, Z l is an ellipsoid,
and Zr is a set satisfying the premise in Theorem 1, the semi-infinite con-
straint (19) can be represented by an explicit system of LMI’s [34,6]; this
system can be easily extracted from the system (22) below.

A natural course of actions in the case when a constraint in an optimization
problem is intractable is to replace this constraint with its safe tractable approx-
imation — a tractable (e.g., admitting an explicit semidefinite representation,
see the beginning of Sect. 3) constraint with the feasible set contained in the
one of the “true” constraint. When some of the constraints in the RC (9) are
intractable, we can replace them with their safe tractable approximations, thus
ending up with tractable problem which is “on the safe side” of the RC — all
feasible solutions of the problem are robust feasible solutions of the underly-
ing uncertain problem. Exactly the same approach can be used in the case of
affinely adjustable and globalized RC’s.

Now, there exist quite general ways to build safe approximations of semi-
infinite conic (in particular, conic quadratic) inequalities [26]. These general
techniques, however, do not specify how conservative are the resulting approx-
imations. Here and in the next section we focus on a more difficult case of
“tight” approximations — safe approximations with quantified level of conser-
vatism which is (nearly) independent of the size and the values of the data. We
start with quantifying the level of conservatism.

3.3.1 Level of conservatism

A simple way to quantify the level of conservatism of a safe approximation is as
follows. In applications the uncertainty set Z is usually given as Z = ζn + ∆Z ,
where ζn is the nominal data and ∆Z � 0 is the set of “data perturbations”.
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Such an uncertainty set can be included in the single-parametric family

Zρ = ζn + ρ∆Z , (20)

where ρ ≥ 0 is the level of perturbations. In this case, a semi-infinite bi-affine
constraint with uncertainty set Z

A[ζ ]y + b[ζ ] ∈ Q ∀ζ ∈ Z

(A[·], b[·] are affine in ζ , Q is convex) becomes a member of the parametric
family

A[ζ ]y + b[ζ ] ∈ Q ∀ζ ∈ Zρ = ζn + ρ∆Z , (Uρ)

both the original uncertainty set and the original constraint corresponding to
ρ = 1. Note that the feasible set Yρ of (Uρ) shrinks as ρ grows. Now assume
that the family of semi-infinite constraints (Uρ), ρ ≥ 0, is equipped with safe
approximation, say, a semidefinite one:

Aρ(y, u) � 0, (Aρ)

where Aρ(y, u) is a symmetric matrix affinely depending on y and additional
variables u. The fact that (Aρ) is a safe approximation of (Uρ) means that the
projection Ŷρ = {y : ∃u : Aρ(y, u) � 0} of the feasible set of (Aρ) onto the space
of y-variables is contained in Yρ . We now can measure the conservatism of the
approximation by its tightness factor defined as follows:

Definition 1 Consider a parametric family of semi-infinite constraints (Uρ),
and let (Aρ) be its safe approximation. We say that the approximation is tight
within factor ϑ ≥ 1, if, for every uncertainty level ρ, the feasible set Ŷρ of the
approximation is in-between the feasible set Yρ of the true constraint and the
feasible set Yϑρ of the true constraint with increased by factor ϑ uncertainty
level:

Yϑρ ⊂ Ŷρ ⊂ Yρ ∀ρ ≥ 0,

in which case we refer to ϑ as to level of conservatism (or tightness factor) of
the approximation.

3.3.2 Tight tractable approximations of semi-infinite conic quadratic constraints

To the best of our knowledge, the strongest known result on tight tractable
approximation of semi- infinite conic quadratic constraint (19) is as follows.
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Theorem 2 [15] Consider the semi-infinite conic quadratic constraint with side-
wise uncertainty

‖ A[ζ l]y + b[ζ l]︸ ︷︷ ︸
≡p(y)+P(y)∆ζ l

‖2 ≤ cT[ζ r]y + d[ζ r]︸ ︷︷ ︸
≡q(y)+rT (y)∆ζ r

∀
(

ζ l ≡ ζ l
n + ∆ζ l, ∆ζ l ∈ ρ∆Z l,

ζ r = ζ r
n + ∆ζ r, ∆ζ r ∈ ρ∆Zr

)
, (21)

where A[·], . . . , d[·] (and, consequently, p(·), . . . , r(·)) are affine in their argu-
ments. Assume that the left hand side perturbation set is the intersection of
ellipsoids centered at 0:

∆Z l =
{
ζ l : [ζ l]TQ�ζ

l ≤ 1, � = 1, . . . , L
} [

Q� � 0,
∑

�

Q� � 0

]

while the right hand side perturbation set is given by strictly feasible semidefinite
representation by an N × N LMI:

∆Zr = {
ζ r : ∃u : Cζ r + Du + E � 0

}
.

Consider the following system of semidefinite constraints in variables τ ∈ R, λ ∈
RL, V ∈ SN , y:

⎡

⎣
τ −∑

� λ� 0 pT(y)

0
∑

� λ�Q� ρPT(y)

p(y) ρP(y) τ I

⎤

⎦ � 0, λ ≥ 0,

C∗V = r(y), D∗V = 0, τ ≤ q(y) − Tr(VE), V � 0,

(22)

where V �→ C∗V, V �→ D∗V are the linear mappings adjoint to the mappings
ζ r �→ Cζ r, u �→ Du, respectively. Then (22) is a safe approximation of (21), and
the tightness factor ϑ of this approximation can be bounded as follows:

1. In the case L = 1 (simple ellipsoidal uncertainty) the approximation is exact:
ϑ = 1;

2. In the case of box uncertainty in the left hand side data (L = dimζ l and
[ζ l]TQ�ζ

l ≡ (ζ l)2
�, � = 1, . . . , L) one has ϑ = π

2 ;

3. In the general case, one has ϑ =
(

2 ln
(

6
∑L

�=1 Rank(Q�)
))1/2

. 4

Theorem 2 provides sufficient conditions, expressed in terms of the geometry
of the uncertainty set, for the RC of an uncertain conic quadratic problems to
be tractable or to admit tight tractable approximations. In the case of fixed
recourse, exactly the same results are applicable to the AARC’s of uncertain
conic quadratic problems. As about the Globalized RC/AARC, these results

4 With recent results on large deviations of vector-valued martingales from [50], this bound on ϑ

can be improved to ϑ = √
O(1) ln(L + 1).
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cover the issue of tractability/tight tractable approximations of the associated
semi-infinite constraints of the form (12). The remaining issue – the one of
tractability of the semi-infinite constraints (13) — has to do with the geometry
of the recessive cones of the sets Ki rather than these sets themselves (and,
of course, with the geometry of the uncertainty structure). The sufficient con-
ditions for tractability of the constraints (13) presented at the end of Sect. 3.2
work for uncertain conic quadratic problems (same as for uncertain semidefinite
problems to be considered in the Sect. 3.4).

Back to uncertain LP: tight approximations of the AARC in absence of fixed
recourse. When there is no fixed recourse, the only positive tractability result
on AARC is the one where the uncertainty set is an ellipsoid (see the discussion
on quadratic lifting in Sect. 2.2). What we intend to add here, is that the AARC
of uncertain LP without fixed recourse admits a tight tractable approximation,
provided that the perturbation set ∆Z is the intersection of L ellipsoids cen-
tered at 0 [17]. Specifically, the semi-infinite constraints comprising the AARC
of an uncertain LP with uncertainty set (20) are of the form

∆ζTΓ (y)∆ζ + 2γ T(y)∆ζ ≤ c(y) ∀ζ ∈ ρ∆Z (23)

with Γ (·), γ (·), c(·) affine in the decision vector y of the AARC. Assuming

∆Z = {∆ζ : ∆ζTQ�∆ζ ≤ 1, � = 1, . . . , L}
[

Q� � 0,
∑

�

Q� � 0

]
(24)

and applying the standard semidefinite relaxation, the system of LMI’s

[∑L
�=1 λ�Q� − Γ (y) −γ (y)

−γ T(y) λ0

]
� 0, λ0 + ρ2

L∑

�=1

λ� ≤ c(y), λ0, . . . , λL ≥ 0,

in variables λ0, . . . , λL, y, is a safe approximation of (23). By the S-Lemma,
this approximation is exact when L = 1, which recovers the “quadratic lifting”
result. In the case of L > 1, by “approximate S-Lemma” [15], the tightness
factor of the approximation is at most ϑ = 2 ln(6

∑
� Rank(Q�)); here again

[50] allows to improve the factor to ϑ = O(1) ln(L+1). Thus, with perturbation
set (24), the AARC of uncertain LP admits a safe approximation with “nearly
data-independent” level of conservatism O(ln(L + 1)).

3.4 Uncertain semidefinite problems

Finally, consider uncertain semidefinite problems — problems (1) with con-
straints having bi-affine left hand sides and the sets Ki given by explicit finite
lists of LMI’s:

Ki = {u ∈ Rki : Aiνu − Biν � 0, ν = 1, . . . , Ni}.
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Here the issue of tractability of the RC reduces to the same issue for an uncertain
LMI

A(y, ζ ) � 0 ∀ζ ∈ Zρ = ζn + ρ∆Z . (25)

Aside from the trivial case of scenario uncertainty (see Sect. 3.1), seem-
ingly the only generic case where (25) is tractable is the case of unstructured
norm-bounded perturbation, where

∆Z = {∆ζ ∈ Rpi×qi : ‖∆ζ‖ ≤ 1},
A(y, ζn + ∆ζ) = An(y) + [LT∆ζR(y) + RT(y)∆ζTL];

here ‖ · ‖ is the usual matrix norm (maximal singular value), and An(y), R(y)

are affine in y. This is a particular case of what in Control is called a structured
norm-bounded perturbation, where

∆Z = {
∆ζ = (∆ζ1, . . . , ∆ζP) ∈ Rd1×d1 × · · · × RdP×dP : ‖∆ζp‖ ≤ 1,

p = 1, . . . , P, ∆ζp = δpIdp , p ∈ Is
}
,

A(y, ζn + ∆ζ) = An(y) +∑P
p=1[LT

p ∆ζpRp(y) + RT
p (y)∆ζT

p Lp].
(26)

Note that uncertain semidefinite problems with norm-bounded and structured
norm-bounded perturbations are typical for Robust Control applications, e.g., in
Lyapunov Stability Analysis/Synthesis of linear dynamical systems with uncer-
tain dynamics (see, e.g., [28]). Another application comes from robust settings
of the obstacle-free Structural Design problem with uncertain external load [5,8].
The corresponding RC has a single uncertainty-affected constraint of the form

A(y) + [eζT + ζeT] � 0 ∀(ζ ∈ Z),

where ζ represents external load and Z = ∆Z is an ellipsoid.
To the best of our knowledge, the strongest result on tractability/tight tracta-

ble approximation of a semi-infinite LMI with norm-bounded structured per-
turbation is the following statement:

Theorem 3 ([16], see also [14]) Consider semi-infinite LMI with structured
norm-bounded perturbations (25), (26) along with the system of LMI’s

Yp ±
[
LT

p Rp(y) + RT
p (y)Lp

]
� 0, p ∈ Is,

[
Yp − λpLT

p Lp RT
p (y)

Rp(y) λpIdp

]
� 0, p �∈ Is

An(y) − ρ
∑P

p=1 Yp � 0 (27)

in variables Yp, λp, y. Then system (27) is a safe tractable approximation of (25),
(26), and the tightness factor ϑ of this approximation can be bounded as follows:
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1. in the case of P = 1 (unstructured norm-bounded perturbation), the approx-
imation is exact: ϑ = 1;5

2. In the case P > 1, let

µ =
{

0, Is is empty or dp = 1 for all p ∈ Is
max{dp : p ∈ Is}, otherwise

.

Then ϑ ≤ ϑ∗(µ), where ϑ∗(µ) is a certain universal function satisfying

ϑ∗(0) = π/2, ϑ∗(2) = 2, µ > 2 ⇒ ϑ∗(µ) ≤ π
√

µ/2.

In particular, if P > 1 and there are no scalar perturbation blocks (Is = ∅),
the tightness factor is ≤ π/2.

For extensions of Theorem 3 to the Hermitian case and its applications in
Control, see [14,16].

4 Robust optimization and chance constraints

4.1 Chance constrained uncertain LP

Robust Optimization does not assume the uncertain data to be of stochastic
nature; however, if this is the case, the corresponding information can be used
to define properly the uncertainty set for the RC and the AARC of the uncer-
tain problem, or the normal range of the data for the Globalized RC/AARC.
We intend to consider this issue in the simplest case of “uncertain LP proper”,
that is, the case of uncertain problem (1) with bi-affine left hand sides of the
constraints and with the nonpositive rays R− in the role of Ki. Assume that
we solve (1) in affine decision rules (7) (which includes as special case non-
adjustable xj as well). Assuming fixed recourse, the constraints of the resulting
uncertain problem are of the form

fi0(y) +
d∑

�=1

ζ�fi�(y) ≤ 0, i = 0, . . . , m, (28)

where the real-valued functions fi�(y) are affine in the decision vector y =
(t, {η0

j , ηj}n
j=1) (see (1), (7)). Assuming that the uncertain data ζ are random

with a partially known probability distribution P, a natural way to “immunize”
the constraints w.r.t. data uncertainty is to pass to the chance constrained ver-
sion of the uncertain problem, where the original objective t is minimized over

5 This fact was established already in [28].
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the feasible set of chance constraints

Probζ∼P

⎧
⎨

⎩fi0(y) +
d∑

�=1

ζ�fi�(y) ≤ 0

⎫
⎬

⎭ ≥ 1 − ε, i = 0, . . . , m ∀P ∈ P , (29)

where ε << 1 is a given tolerance and P is the family of all probability distribu-
tions compatible with our a priori information. This approach was proposed as
early as in 1958 by Charnes et al. [30] and was extended further by Miller and
Wagner [49] and Prékopa [57]. Since then it was discussed in numerous publica-
tions (see Prékopa [58–60] and references therein). While being quite natural,
this approach, unfortunately, has a too restricted field of applications, due to
severe computational difficulties. First, in general it is difficult already to check
the validity of a chance constraint at a given candidate solution, especially when
ε is small (like 1.e−4 or less). Second, the feasible domain of a chance constraint,
even as simple looking as (29), is usually nonconvex. While these difficulties can
sometimes be avoided (most notably, when P is a Gaussian distribution), in gen-
eral chance constraints (29), even those with independent ζ� and with exactly
known distributions, are severely computationally intractable. Whenever this
is the case, the natural course of actions is to replace the chance constraints
with their safe tractable approximations. We are about to consider a specific
Bernstein approximation originating from [56] and significantly improved in
[51].

4.1.1 Bernstein approximations of chance constraints

Consider a chance constraint of the form of (29):

Probζ∼P

⎧
⎨

⎩f0(y) +
d∑

�=1

ζ�f�(y) ≤ 0

⎫
⎬

⎭ ≥ 1 − ε, ∀P ∈ P (30)

and let us make the following assumption

B.1. P = {P = P1 × · · · × Pd : P� ∈ P�} (that is, the components ζ1, . . . , ζd
of ζ are known to be independent of each other with marginal distribu-
tions P� belonging to given families P� of probability distributions on the
axis), where every P� is a ∗-compact convex set, and all distributions from
P� have a common bounded support.

Replacing, if necessary, the functions f�(·) with their appropriate linear combi-
nations, we can w.l.o.g. normalize the situation by additional assumption

B.2. The distributions from P� are supported on [−1, 1], that is, ζ� are
known to vary in the range [−1, 1], 1 ≤ � ≤ d.

Let us set

Λ�(z) = max
P�∈P�

ln

(∫
exp{zs}dP�(s)

)
: R → R.
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It is shown in [51] that the function

Ψ (t, y) = f0(y) + t
d∑

�=1

Λ�(t−1f�(y)) + t ln(1/ε)

is convex in (t > 0, y), and the Bernstein approximation of (30) — the convex
inequality

inf
t>0

Ψ (t, y) ≤ 0 (31)

— is a safe approximation of the chance constraint: if y satisfies (31), then y sat-
isfies the chance constraint. Note that this approximation is tractable, provided
that Λ�(·) are efficiently computable.

Now consider the case when

Λ�(z) ≤ max[µ−
� z, µ+

� z] + σ 2
�

2
z2
� , � = 1, . . . , d (32)

with appropriately chosen parameters −1 ≤ µ−
� ≤ µ+

� ≤ 1, σ� ≥ 0. Then the
left hand side in (31) can be bounded from above by

inf t>0

[
f0(y) +∑d

�=1 max[µ−
� f�(y), µ+

� f�(y)] + t−1

2
∑d

�=1 σ 2
� f 2

� (y) + t ln(1/ε)
]

= f0(y) +∑d
�=1 max[µ−

� f�(y), µ+
� f�(y)] +√

2 ln(1/ε)
(∑d

�=1 σ 2
� f 2

� (y)
)1/2

so that the explicit convex constraint

f0(y) +
d∑

�=1

max[µ−
� f�(y), µ+

� f�(y)] +√
2 ln(1/ε)

⎛

⎝
d∑

�=1

σ 2
� f 2

� (y)

⎞

⎠
1/2

≤ 0 (33)

is a safe approximation of (30), somewhat more conservative than (31).
In fact we can reduce slightly the conservatism of (33):

Proposition 2 Let assumptions B.1-2 and relation (32) be satisfied. Then, for
every ε ∈ (0, 1), the system of constraints

f0(y) +
d∑

�=1

|z�| +
d∑

�=1

max[µ−
� w�, µ+

� w�] +√
2 ln(1/ε)

⎛

⎝
d∑

�=1

σ 2
� w2

�

⎞

⎠
1/2

≤ 0,

f�(y) = z� + w�, � = 1, . . . , d (34)

in variables y, z, w is a safe approximation of the chance constraint (30).
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Note that (34) is less conservative than (33); indeed, whenever y is feasible for
the latter constraint, the collection y, {z� = 0, w� = f�(y)}d

�=1 is feasible for the
former system of constraints.

Proof of Proposition 2 Let y, z, w be a solution to (34). For P = P1 ×· · ·×Pd ∈
P we have

Probζ∼P

{
f0(y) +

d∑
�=1

ζ�f�(y) > 0

}

= Probζ∼P

{
f0(y) +

d∑
�=1

ζ�z� +
d∑

�=1
ζ�w� > 0

}

≤ Probζ∼P
{ [f0(y) +

d∑

�=1

|z�|]
︸ ︷︷ ︸

w0

+
d∑

�=1
ζ�w� > 0

}
[by B.2].

On the other hand, from (34) it follows that

w0 +
d∑

�=1

max[µ−
� w�, µ+

� w�] +√
2 ln(1/ε)

⎛

⎝
d∑

�=1

σ 2
� w2

�

⎞

⎠
1/2

≤ 0

(cf. (33)), whence Probζ∼P

{
w0 +∑d

�=1 ζ�w� > 0
}

≤ ε by arguments preceding

the formulation of the proposition. ��

Corollary 2 Given ε ∈ (0, 1), consider the system of constraints

f0(y) +
d∑

�=1

|z�| +
d∑

�=1

max[µ−
� w�, µ+

� w�] +√
2d ln(1/ε) max

1≤�≤d
σ�|w�| ≤ 0,

f�(y) = z� + w�, � = 1, . . . , d (35)

in variables y, z, w. Under the premise of Proposition 2, this system is a safe
approximation of the chance constraint (30).

Indeed, for a d-dimensional vector e we clearly have ‖e‖2 ≤ √
d‖e‖∞, so that

the feasible set of (34) is contained in the one of (34).

4.2 Approximating chance constraints via robust optimization

An immediate follow-up to Proposition 2 is the following observation (we skip
its straightforward proof):
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Proposition 3 A given y can be extended to a solution (y, z, w) of (34) iff

max
ζ∈Z

⎡

⎣f0(y) +
d∑

�=1

ζ�f�(y)

⎤

⎦ ≤ 0, (36)

where

Z = B ∩ [M + E] (37)

and B is the unit box {ζ ∈ Rd : ‖ζ‖∞ ≤ 1}, M is the box {ζ : µ−
� ≤ ζ� ≤ µ+

� , 1 ≤
� ≤ d}, and E is the ellipsoid {ζ :

∑d
�=1 ζ 2

� /σ 2
� ≤ 2 ln(1/ε)}.

Similarly, y can be extended to a feasible solution of (35) iff y satisfies (36)
with

Z = B ∩ [M + D] , (38)

where B, M are as above and D is the scaled ‖ · ‖1–ball {ζ :
∑d

�=1 |ζl|/σ� ≤√
2d ln(1/ε)}.
In other words, (34) represents the RC of the uncertain constraint

f0(y) +
d∑

�=1

ζ�f�(y) ≤ 0 (39)

equipped with the uncertainty set (37), and (35) represents the RC of the same
uncertain constraint equipped with the uncertainty set (38).

4.2.1 Discussion

A. We see that in the case of uncertain LP with random data ζ satisfying B.1-
2 and (32), there exists a way to associate with the problem an “artificial”
uncertainty set Z (given either by (37), or by (38)) in such a way that the
resulting robust solutions — those which remain feasible for all realizations
ζ ∈ Z — remain feasible for “nearly all”, up to probability ε, realizations of
the random data of every one of the constraints. Note that this result holds
true both when solving our uncertain LP in non-adjustable decision variables
and when solving the problem in affine decision rules, provided fixed recourse
takes place. As a result, we get a possibility to build computationally tracta-
ble safe approximations of chance constrained LP problems in the forms of
RC’s/AARC’s taken with respect to a properly defined simple uncertainty sets
Z . By itself, this fact is not surprising — in order to “immunize” a constraint
(39) with random data ζ against “(1 − ε)–part” of realizations of the data, we
could take a convex set Z such that Prob{ζ ∈ Z} ≥ 1 − ε and then “immunize”
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the constraint against all data ζ ∈ Z by passing to the associated RC. What is
surprising, is that this naive approach has nothing in common with (37), (38)
— these relations can produce uncertainty sets which are incomparably smaller
than those given by the naive approach, and thus result in essentially less con-
servative approximations of chance constraints than those given by the naive
approach.

Here is an instructive example. Assume that all we know on the random
data ζ is that ζ1, . . . , ζd are mutually independent, take their values in
[−1, 1] and have zero means. It is easily seen that in this case one can
take in (32) µ±

� = 0, σ� = 1, � = 1, . . . , d. With these parameters, the
set ZI given by (37) is the intersection of the unit box with the (cen-
tered at the origin) Euclidean ball of radius Ω = √

2 ln(1/ε) (“ball-box”
uncertainty, cf. [7,9]), while the set ZII given by (38) is the intersection
of the same unit box and the ‖ · ‖1-ball of the radius Ω

√
d (“budgeted

uncertainty” of Bertsimas and Sim). Observe that when, say, ζ is uni-
formly distributed on the vertices of the unit box (i.e., ζ� take, inde-
pendently of each other, the values ±1 with probabilities 0.5) and the
dimension d of this box is large, the probability for ζ to take its value
in ZI or ZII is exactly zero, and both ZI and ZII become incomparably
smaller, w.r.t. all natural size measures, than the natural domain of ζ – the
unit box.

B. A natural question arising in connection with the safe tractable approxima-
tions (34), (35) of the chance constraint (30) is as follows: since the argument
used in justification of Corollary 2 shows that the second approximation is
more conservative than the first one, then why should we use (35) at all? The
answer is, that the second approximation can be represented by a short system
of linear inequalities, so that the associated safe approximation of the chance
constrained LP of interest is a usual LP problem. In contrast to this, the safe
approximation of the chance constrained problem given by (34) is a conic
quadratic program, which is more computationally demanding (although still
tractable) than an LP program of similar sizes. For this reason, “budgeted uncer-
tainty” may be more appealing for large scale applications than the “ball-box”
one.
C. A good news about the outlined safe approximations of chance constrained
LP’s is that under assumptions B.1-2, it is usually easy to point out explicitly the
parameters µ±

� , σ� required by (32). In Table 1, we present these parameters
for a spectrum of natural families P�.

5 An application of RO methodology in robust linear control

This section is devoted to a novel application of the RO methodology, recently
developed in [19,20], to Robust Linear Control.
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Table 1 Parameters µ±
�

, σ� for “typical” families P�

P� is given by µ−
�

µ+
�

σ�

supp(P) ⊂ [−1, 1] −1 1 0
supp(P) ⊂ [−1, 1]
P is uniomodal w.r.t. 0 −1/2 1/2

√
1/12

supp(P) ⊂ [−1, 1]
P is uniomodal w.r.t. 0
P is symmetric w.r.t. 0 0 0

√
1/3

supp(P) ⊂ [−1, 1]
[−1 <] µ− ≤ Mean[P] ≤ µ+ [< 1] µ− µ+ Σ1(µ−, µ+, 1), see (40a)
supp(P) ⊂ [−1, 1]
[−ν ≤] µ− ≤ Mean[P] ≤ µ+ [≤ ν]
Var[P] ≤ ν2 [≤ 1] µ− µ+ Σ1(µ−, µ+, ν), see (40a)
supp(P) ⊂ [−1, 1]
P is symmetric w.r.t. 0
Var[P] ≤ ν2 [≤ 1] 0 0 Σ2(ν), see (40b)
supp(P) ⊂ [−1, 1]
P is symmetric w.r.t. 0
P is unimodal w.r.t. 0
Var[P] ≤ ν2 [≤ 1/3] 0 0 Σ3(ν), see (40c)

For a probability distribution P on the axis, we set Mean[P] = ∫
sdP(s) and Var[P] = ∫

s2dP(s).
The functions Σ�(·) are as follows:

(a) Σ1(µ−, µ+, ν) = min
{

c ≥ 0 : hµ,ν(t) ≤ max[µ−t, µ+t] + c2

2 t2 ∀
(

µ∈[µ− ,µ+]
t

)}
,

hµ,ν(t) = ln

⎛

⎜⎜⎜⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1−µ)2 exp{t µ−ν2
1−µ

}+(ν2−µ2) exp{t}
1−2µ+ν2 , t ≥ 0

(1+µ)2 exp{t µ+ν2
1+µ

}+(ν2−µ2) exp{−t}
1+2µ+ν2 , t ≤ 0

⎞

⎟⎟⎟⎠

(b) Σ2(ν) = minc

{
c ≥ 0 : ln

(
ν2 cosh(t) + 1 − ν2

)
≤ c2

2 t2 ∀t
}

(c) Σ3(ν) = min
{

c ≥ 0 : ln
(

1 − 3ν2 + 3ν2 sinh(t)
t

)
≤ c2

2 t2 ∀t
}

(40)

5.1 Robust affine control over finite time horizon

Consider a discrete time linear dynamical system

x0 = z,
xt+1 = Atxt + Btut + Rtdt

yt = Ctxt + Dtdt,
, t = 0, 1, . . . , (41)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny and dt ∈ Rnd are the state, the control, the
output and the exogenous input (disturbance) at time t, and At, Bt, Ct, Dt, Rt
are known matrices of appropriate dimensions.

A typical problem of (finite-horizon) Linear Control associated with the
“open loop” system (41) is to “close” the system by a non-anticipative affine
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output-based control law

ut = gt +
t∑

τ=0

Gtτ yτ (42)

(where the vectors gt and matrices Gtτ are the parameters of the control law)
in order for the closed loop system (41), (42) to meet prescribed design spec-
ifications. We assume that these specifications are represented by a system of
linear inequalities

AwT ≤ bt (43)

on the state-control trajectory wT = (x0, . . . , xT +1, u0, . . . , uT ) over a given finite
time horizon t = 0, 1, . . . , T .

An immediate observation is that for a given control law (42), the dynamics
(41) specifies the trajectory as an affine function of the initial state z and the
sequence of disturbances dT = (d0, . . . , dT ):

wT = wT
0 [γ ] + WT [γ ]ζ , ζ = (z, dT ),

where γ = {gt, Gtτ , 0 ≤ τ ≤ t ≤ T }, is the “parameter” of the underlying con-
trol law (42). Substituting this expression for wT into (43), we get the following
system of constraints on the decision vector γ :

A
[
wT

0 [γ ] + WT [γ ]ζ
]

≤ b. (44)

If the disturbances dT and the initial state z are certain, (44) is “easy” — it is
a system of constraints on γ with certain data. Moreover, in the case in ques-
tion we lose nothing by restricting ourselves with “off-line” control laws (42) –
those with Gtτ ≡ 0; when restricted onto this subspace, let it be called Γ , in the
γ -space, the function wT

0 [γ ] + WT [γ ]ζ turns out to be bi-affine in γ and in ζ ,
so that (44) reduces to a system of explicit linear inequalities on γ ∈ Γ . Now,
when the disturbances and/or the initial state are not known in advance (which
is the only case of interest in Robust Control), (44) becomes an uncertainty-
affected system of constraints, and we could try to solve the system in a robust
fashion, e.g., to seek for a solution γ which makes the constraints feasible for
all realizations of ζ = (z, dT ) from a given uncertainty set ZDT , thus arriving
at the system of semi-infinite scalar constraints

A
[
wT

0 [γ ] + WT [γ ]ζ
]

≤ b ∀ζ ∈ ZDT . (45)

Unfortunately, the semi-infinite constraints in this system are not bi-affine, since
the dependence of wT

0 , WT on γ is highly nonlinear, unless γ is restricted to
vary in Γ . Thus, when seeking for “on-line” control laws (those where Gtτ can
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be nonzero) (45) becomes a system of highly nonlinear semi-infinite constraints
and as such seems to be severely computationally intractable. A good news is,
that we can overcome the resulting difficulty, the remedy being an appropriate
re-parameterization of affine control laws.

5.2 Purified-output-based representation of affine control laws and efficient
design of finite-horizon linear controllers

Imagine that in parallel with controlling (41) with the aid of a whatever non-
anticipating output-based control law ut = Ut(y0, . . . , yt), we run the model of
(41) as follows:

x̂0 = 0,
x̂t+1 = At̂xt + Btut,

ŷt = Ct̂xt,
vt = yt − ŷt, .

(46)

Since we know past controls, we can run this system in an “on-line” fashion,
so that the purified output vt becomes known when the decision on ut should
be made. An immediate observation is, that the purified outputs are completely
independent of the control law in question — they are affine functions of the ini-
tial state and the disturbances d0, . . . , dt, and these functions are readily given by
the dynamics of (41). Now, it was mentioned that v0, . . . , vt are known when the
decision on ut should be made, so that we can consider purified-output-based
(POB) affine control laws

ut = ht +
t∑

τ=0

Htτ vτ . (47)

A simple and fundamental fact proved in [19] (and independently, for the spe-
cial case when yt ≡ xt, in [41]) is that (47), (42) are equivalent representations of
non-anticipating affine control laws: for every controller of the form (41), there
exists controller (42) which results in exactly the same state-control behaviour of
the closed loop system (e.g., exactly the same dependence of wT on the initial
state and the disturbances), and vice versa. At the same time, the representation
(47) is incomparably better suited for design purposes than the representation
(42) — with controller (47), the state-control trajectory wT becomes bi-affine in
ζ = (z, dT ) and in the parameters η = {ht, Htτ , 0 ≤ τ ≤ t ≤ T } of the controller:

wT = ωT [η] + ΩT [η]ζ (48)

with vector- and matrix-valued functions ωT [η], ΩT [η] affinely depending on η

and readily given by the dynamics (41). Substituting (48) into (43), we arrive at
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the system of semi-infinite bi-affine scalar inequalities

A
[
ωT [η] + ΩT [η]ζ

]
≤ b (49)

in variables η, and can use the tractability results from Sect. 3.2 in order to solve
efficiently the robust counterpart of this uncertain system. For example, we can
process efficiently the GRC setting of the semi-infinite constraints (48)

aT
i
[
ωT [η] + ΩT [η](z, dT )

]− bi ≤ αi
zdist(z, Z) + αi

ddist(dT , DT )

∀(z, dT ) ∀i = 1, . . . , I
(50)

where Z , DT are “good” (e.g., given by strictly feasible semidefinite representa-
tions) closed convex normal ranges of z, dT , respectively, and the distances are
defined via the ‖ · ‖∞-norms (this setting corresponds to the structured GRC,
see Remark 1). By the results presented in Sect. 3.2, system (50) is equivalent
to the system of constraints

∀(i, 1 ≤ i ≤ I) :
(a) aT

i
[
ωT [η] + ΩT [η](z, dT )

]− bi ≤ 0 ∀(z, dT ) ∈ Z × DT

(b) ‖aT
i ΩT

z [η]‖1 ≤ αi
z (c) ‖aT

i ΩT
d [η]‖1 ≤ αi

d,
(51)

where ΩT [η] = [
ΩT

z [η], ΩT
d [η]] is the partition of the matrix ΩT [η] cor-

responding to the partition ζ = (z, dT ). Note that in (51), the semi-infinite
constraints (a) admit explicit semidefinite representations (Theorem 1), while
constraints (b–c) are, essentially, just linear constraints on η and on αi

z, αi
d. As a

result, (51) can be thought of as a computationally tractable system of convex
constraints on η and on the sensitivities αi

z, αi
d, and we can minimize under these

constraints a “nice” (e.g., convex) function of η and the sensitivities. Thus, after
passing to the POB representation of affine control laws, we can process effi-
ciently specifications expressed by systems of linear inequalities, to be satisfied
in a robust fashion, on the (finite-horizon) state-control trajectory.

5.2.1 Example: controlling finite-horizon gains

Natural design specification pertaining to finite-horizon Robust Linear Control
are bounds on finite-horizon gains z2xT , z2uT , d2xT , d2uT defined as follows:
with a linear (i.e., with ht ≡ 0) control law (47), the states xt and the controls ut
are linear functions of z and dT :

xt = Xz
t [η]z + Xd

t [η]dT , ut = Uz
t [η]z + Ud

t [η]dT

with matrices Xz
t [η],…,Ud

t [η] affinely depending on the parameters η of the
control law. Given t, we can define the z-to-xt gains and the finite-horizon z-to-x
gain as z2xt(η) = max

z
{‖Xz

t [η]z‖∞ : ‖z‖∞ ≤ 1} and z2xT (η) = max
0≤t≤T

z2xt(η).
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The definitions of the z-to-u gains z2ut(η), z2uT (η) and the “disturbance-to-x/u”
gains d2xt(η), d2xT (η), d2ut(η), d2uT (η) are completely similar, e.g., d2ut(η) =
max
dT

{‖Ud
t [η]dT ‖∞ : ‖dT ‖∞ ≤ 1} and d2uT (η) = max

0≤t≤T
d2ut(η). The finite-hori-

zon gains clearly are non-increasing functions of the time horizon T and have a
transparent Control interpretation; e.g., d2xT (η) (“peak-to-peak d-to-x gain”)
is the largest possible perturbation in the states xt, t = 0, 1, . . . , T , caused by a
unit perturbation of the sequence of disturbances dT , both perturbations being
measured in the ‖·‖∞ norms on the respective spaces. Upper bounds on T -gains
(and on global gains like d2x∞(η) = supT ≥0 d2xT (η)) are natural Control spec-
ifications. With our purified-output-based representation of linear control laws,
the finite-horizon specifications of this type result in explicit systems of linear
constraints on η and thus can be processed routinely via LP. Indeed, an upper
bound on, say, d2xT -gain d2xT (η) ≤ λ is exactly equivalent to the requirement∑

j |(Xd
t [η])ij| ≤ λ for all i and all t ≤ T ; since Xd

t is affine in η, this is just a
system of linear constraints on η and on appropriate slack variables. Note that
imposing bounds on the gains can be interpreted as passing to the GRC (50)
in the case where the “desired behaviour” merely requires wT = 0, and the
normal ranges of the initial state and the disturbances are the origins in the
corresponding spaces: Z = {0}, DT = {0}.

5.3 Handling infinite-horizon design specifications

One might think that the outlined reduction of (discrete time) Robust Linear
Control problems to Convex Programming, based on passing to the POB rep-
resentation of affine control laws and tractable reformulations of semi-infinite
bi-affine scalar inequalities is intrinsically restricted to the case of finite-horizon
control specifications. In fact our approach is well suited for handling infi-
nite-horizon specifications — those imposing restrictions on the asymptotical
behaviour of the closed loop system. Specifications of the latter type usually
have to do with time-invariant open loop system (41) — system of the form

x0 = z,
xt+1 = Axt + But + Rdt

yt = Cxt + Ddt.
, t = 0, 1, . . . , (52)

The presentation to follow is based on [20]. From now on we assume that the
open loop system (52) is stable, that is, the spectral radius of A is < 1 (in fact this
restriction can be somehow circumvented, see [20]). Imagine that we “close”
(52) by a nearly time-invariant POB control law of order k, that is, a law of the
form

ut = ht +
k−1∑

ν=0

Ht
νvt−ν , (53)
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where ht = 0 for t ≥ T∗ and Ht
τ = Hτ for t ≥ T∗ for certain stabilization time

T∗; from now on, all entities with negative indices are set to 0. While the “time-
varying” part {ht, Ht

τ , 0 ≤ t < T∗} of the control law can be used to adjust the
finite-horizon behaviour of the closed loop system, its asymptotical behaviour
is as if the law were time-invariant: ht ≡ 0 and Ht

τ ≡ Hτ for all t ≥ 0. Setting
δt = xt − x̂t, Ht = [Ht

0, . . . , Ht
k−1], H = [H0, . . . , Hk−1], the dynamics (52), (46),

(53) for t ≥ k − 1 is given by

ωt+1︷ ︸︸ ︷⎡

⎢⎢⎢⎢⎢⎣

xt+1
δt+1
δt
...

δt−k+2

⎤

⎥⎥⎥⎥⎥⎦
=

A+[Ht]︷ ︸︸ ︷⎡

⎢⎢⎢⎢⎢⎣

A BHt
0C BHt

1C . . . BHt
k−1C

A
A

. . .
A

⎤

⎥⎥⎥⎥⎥⎦
ωt

+

R+[Ht]︷ ︸︸ ︷⎡

⎢⎢⎢⎢⎢⎣

R BHt
0D BHt

1D . . . BHt
k−1D

R
R

. . .
R

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

dt
dt
dt−1
...
dt−k+1

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

Bht
0
0
...
0

⎤

⎥⎥⎥⎥⎥⎦
,

ut = ht +∑k−1
ν=0 Ht

ν[Cδt−ν + Ddt−ν].

(54)

We see, in particular, that starting with time T∗, dynamics (54) is exactly as if
the underlying control law were the time invariant POB law with the param-
eters ht ≡ 0, Ht ≡ H. Moreover, since A is stable, we see that system (54) is
stable independently of the parameter H of the control law, and the resolvent
RH(s) := (sI − A+[H])−1 of A+[H] is the affine in H matrix

⎡

⎢⎢⎢⎣

RA(s) RA(s)BH0CRA(s) RA(s)BH1CRA(s) ... RA(s)BHk−1CRA(s)
RA(s)

RA(s)
. . .

RA(s)

⎤

⎥⎥⎥⎦ , (55)

where RA(s) = (sI − A)−1 is the resolvent of A.
Now imagine that the sequence of disturbances dt is of the form dt = std,

where s ∈ C differs from 0 and from the eigenvalues of A. From the stabil-
ity of (54) it follows that as t → ∞, the solution ωt of the system, indepen-
dently of the initial state, approaches, as t → ∞, the “steady-state” solution
ω̂t = stH(s)d, where H(s) is certain matrix. In particular, the state-control

vector wt =
[

xt
ut

]
approaches, as t → ∞, the steady-state trajectory ŵt =

stHxu(s)d. The associated disturbance-to-state/control transfer matrix Hxu(s) is
easily computable:
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Hxu(s) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hx(s)︷ ︸︸ ︷

RA(s)

⎡

⎣R +
k−1∑

ν=0

s−νBHν [D + CRA(s)R]

⎤

⎦

⎡

⎣
k−1∑

ν=0

s−νHν

⎤

⎦ [D + CRA(s)R]

︸ ︷︷ ︸
Hu(s)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(56)

The crucial fact is that the transfer matrix Hxu(s) is affine in the parameters
H = [H0, . . . , Hk−1] of the nearly time invariant control law (53). As a result,
design specifications representable as explicit convex constraints on the transfer
matrix Hxu(s) (these are typical specifications in infinite-horizon design of linear
controllers) are equivalent to explicit convex constraints on the parameters H of
the underlying POB control law and therefore can be processed efficiently via
Convex Optimization.

5.3.1 Example: discrete time H∞ control

Discrete time H∞ design specifications impose constraints on the behaviour of
the transfer matrix along the unit circumference z = exp{ıφ}, 0 ≤ φ ≤ 2π , that
is, on the steady state response of the closed loop system to a disturbance in the
form of a harmonic oscillation. A rather general form of these specifications is
a system of constraints

‖Qi(s) − Mi(s)Hxu(s)Ni(s)‖ ≤ τi ∀(s = exp{ıω} : ω ∈ ∆i), (57)

where Qi(s), Mi(s), Ni(s) are given rational matrix-valued functions with no
singularities on the unit circumference {s : |s| = 1}, ∆i ⊂ [0, 2π ] are given seg-
ments, and ‖ · ‖ is the standard matrix norm (the largest singular value). From
the results of [52] on semidefinite representation of the cone of Hermitian-
matrix-valued trigonometric polynomials which are � 0 on a given segment it
follows that constraints (57) can be represented by an explicit finite system of
LMI’s (for details, see [20]); as a result, specifications (57) can be efficiently
processed numerically.

We see that the purified-output-based reformulation of affine control laws,
combined with the results of RO on tractable reformulations of semi-infinite
bi-affine convex constraints, allow to handle efficiently design of linear control-
lers for uncertainty-affected linear dynamical systems with known dynamics.
The corresponding design problems can include rather general specifications
on the finite-horizon state-control behaviour of the closed loop systems, and in
the case of time-invariant open loop system these constraints can be coupled
with restrictions on the asymptotical behaviour of the state-control trajectory,
provided that these restrictions can be expressed by convex constraints on the
transfer matrix of the closed loop system. The outlined approach seems to be
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a valuable complement to the existing Convex Optimization-based Control
techniques. For instructive illustrations and comparison with the usual time-
invariant linear feedback controllers, see [20].
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