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Abstract 

We develop a Tong-step surface-following version of the method of analytic centers for the 
fractional-linear problem min{to [ toB(x) - A ( x )  E H, B (x )  E K, x C G}, where H is a 
closed convex domain, K is a convex cone contained in the recessive cone of H, G is a convex 
domain and B (.), A (.) are affine mappings. Tracing a two-dimensional surface of analytic centers 
rather than the usual path of centers allows to skip the initial "centering" phase of the path- 
following scheme. The proposed long-step policy of tracing the surface fits the best known overall 
polynomial-time complexity bounds for the method and, at the same time, seems to be more 
attractive computationally than the short-step policy, which was previously the only one giving 
good complexity bounds. © 1997 The Mathematical Programming Society, Inc. Published by 
Elsevier Science B.V. 
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1. Introduct ion 

In this paper we develop a long-step path-following method for the l inear-fractional 

optimization problem 

(P) min{ to  l t o B ( x )  - A ( x )  C H, B ( x )  C K, x c G} ,  (1) 

where 

• B ( x )  = f i x  + b and A ( x )  = o~x + a are affine mappings from R n to Rm; 
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• H C ~ "  is a closed convex domain which does not contain lines and K is a closed 

convex cone with a nonempty interior in R"  which is contained in the recessive 

cone Of H:  

H + K = H ;  

• G is a closed convex domain in R n. 

Problem (1) covers a lot of  applications, e.g., as follows: 

Example  1 (Convex problems). Let m = 1, K = H = R+, B(x )  -- 1, A(x )  = aXx; 

under these assumptions ( I ) becomes a problem of  minimizing a linear objective over 

a closed convex domain G, which is a universal, in the natural sense, form of  a convex 

program. 

Example  2 (Simple linear-fractional problem). Let, as above, m = 1, K = H = ~+  

and let B ( x )  be a linear form which is positive on G; now (1) becomes the problem 

of  minimizing the linear-fractional objective A ( x ) / B ( x )  over G. This is the simplest 

problem of  quasiconvex programming. 

Example  3 (von Neumann problem of  economic growth). Let B and A be m × n ma- 

trices with nonnegative entries, let K = H = R~ and let G be the standard simplex 
{x >1 0 I ~--~ixi = 1} in R "+j (G is regarded as a subset of  its affine hull). Then 
(1) with B ( x )  = Bx, A ( x )  = Ax is the well-known von Neumann problem of  finding 

the largest rate of  economic growth: find the largest a such that for  some nonzero 

nonnegative x one has Bx  >>. otAx. 

Examples 2 and 3 are related to the case when K = H is the nonnegative orthant in 

R"~; a general problem (1) associated with this cone is as follows: 

Example  4 (Minimize the maximum of  m linear-fractional functions over a given closed 
convex domain where all denominators are nonnegative). This is a universal form of  

the generalized concave fractional problem 

max min gj (x )  
xcS .i<<. ,n h i (x)  

(S C R" is convex, & ( . )  are concave and nonnegative on S, and hi( . )  are convex 
and positive on S). For applications of  the latter problem in economics, see [3,7, 19, 

20, 22] and the references therein. The standard methods for solving the problem are 

Dinkelbach's algorithm [6] and its variants, see [20].  

Now, nonpolyhedral cones K also lead to interesting problems, especially the cone of  
positive semidefinite matrices. If  K = H is the cone of  positive semidefinite symmetric 

matrices o f  a given order, then ( 1 ) becomes: 
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Example 5 (Generalized eigenvalue problem). Given two symmetric matrices B ( x )  

and A ( x )  of the same size with entries affinely depending on a vector x of design 
variables, minimize over x E G, under additional restriction that B ( x )  is positive 
semidefinite, the largest generalized eigenvalue of the pencil (B, A), i.e., the smallest 
A = A(x) such that A ( x )  <~ AB(x)  (the inequalities between symmetric matrices 
are always understood in the operator sense, i.e., as positive semidefiniteness of the 
corresponding difference). The problem of minimizing the largest generalized eigenvalue 
of a matrix pencil possesses a lot of applications in modern Control Theory (see [5] ). 

The development of polynomial-time interior-point methods for Linear and Convex 
Programming, started by the landmark paper of Karmarkar [ 12], initiated activity in 
Fractional Programming as well. To the best of our knowledge, the very first paper 
on an interior-point polynomial-time algorithm for fractional problems was the one of 
Anstreicher [ 1 ] (Example 2, G is a polytope). A Karmarkar-like algorithm for general 
fractional problems (including those in Examples 4 and 5) was recently developed 
by Nesterov and Nemirovski [ 17]. In what follows we deal with another interior-point 
method for ( 1 ) - the method of analytic centers. The method is as follows: we associate 
with G, H and K appropriate barriers - interior penalty functions gtc(x) ,  ~FH(y) and 
qSx(y), respectively - and trace the path 

x * ( to ) = argmin Fro(x), 

Ft, (x) = ~ c ( x )  + ~H( toB(x )  -- a ( x ) )  + ~ g x ( B ( x ) ) ,  

as to approaches from above the optimal value of the problem. This is a quite traditional 
scheme; its potential in the context of interior-point methods for convex problems (of. 
Example 1) was discussed by Sonnevend [21], although without any polynomial-time 
results. The results for this latter type of scheme were first established in the seminal 
paper of Renegar [ 18] for the case of Linear Programming (Example 1, G is a poly- 
tope) ; the polynomial-time results for the method were then extended by several authors 
to more general classes of convex problems. As far as quasiconvex problems (i.e., with 
nonconstant B(.)  ) are concerned, this case seems to have been studied significantly less. 
Boyd and El Ghaoui [4] were the first to suggest using the method of analytic centers 
for the generalized eigenvalue problem; in their important paper, however, they do not 
establish an overall polynomial-time efficiency estimate. Polynomial-time complexity of 
the method was proved by Ye [23] (for the von Neumann economic growth problem), 
Freund and Jarre [8,9] (K = H = R"~, cf. Example 4) and Nemirovski [13]; the 
complexity bound of the latter paper extends to the general case the bound established 
in [23] and seems to be the best known so far. 

Locally quadratically convergent methods for the generalized eigenvalue problem were 
developed in [ 10, 11 ], although without any global convergence analysis. 

From the practical viewpoint, the main disadvantage of the known polynomial-time 
results on the method of analytic centers for fractional problems is that they relate to a 
short-step version of the method, where the steps in the parameter to are subject to certain 
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a priori restrictions based on theoretical worst-case analysis. In practical computations, 
it is highly desirable to use "long-step" tactics, but the current theoretical understanding 
of the method, as far as we know, does not provide a practitioner with theoretically 
justified (i.e., consistent with known complexity bounds) tools for long steps. 

In what follows we develop a long-step version of the method of analytic centers for 

fractional problems; our approach is mainly based on the recent long-step path-following 
schemes for convex optimization problems [ 14, 15]. In fact, we are developing a method 

which traces a two-parameter surface of analytic centers rather than a single-parameter 
path; this approach has its origin in [ 15] and avoids the need to come close to the usual 
path of  analytic centers, which, in the traditional schemes, is the goal of a special initial 

phase of the method. 
The paper is organized as follows. Section 2 contains prerequisites on self-concordant 

functions and barriers, the basic tools we use in our construction. In Section 3 we 
introduce the notion of the surface of analytic centers associated with problem (1),  
present the generic scheme of tracing the surface and motivate the advantages of tracing 
a surface rather than the usual path of analytic centers. In Section 4 we develop duality- 
based techniques which underlie the "long-step" tracing of the surface of analytic centers, 

and Section 5 contains the main results underlying the complexity analysis of the 
proposed method. These sections deal with "'tactics" of tracing the surface of analytic 
centers: we explain how one can move around the surface, not where to move. The 
latter issue is discussed in the concluding Section 6, which contains also the overall 

polynomial time complexity results. 

2. Self-concordant functions and barriers 

In this section we present the basic facts from [ 16] which underlie all our further 
constructions. Let Q be a nonempty open convex domain in ~ .  A function F : Q ---, 
is called strongly self-concordant (s.s.-c.) on Q, if it is convex, C3-smooth, Q is the 
natural domain of F (i.e., F(xi) ~ ~ along any sequence of points xi E Q converging 
to a boundary point of Q) and F satisfies the following differential inequality: 

ID3F(x)[h,h,h]] <,2(D2F(x)[h,h]) 3/2, x E Q ,  hE]l;~ k 

(DIF(x)  [hi . . . . .  ht] is lth differential of F taken at x along the directions ht . . . . .  ht). 
Let P be a closed convex subset in •k with a nonempty interior Q, and let O 1> 1. A 

function F is called a O-self-concordant barrier (O-s.-c.b.) for P, if it is s.s.-c, on Q, 
and 

[DF(x)[h]l<~'Ol/2(D2F(x)[h,h])l/2, x E Q ,  h E ~  k. 

For explicit self-concordant barriers for a wide variety of convex domains arising in 
convex optimization, see [16]; several important examples of these barriers will be 
given in Section 4. In what follows we heavily exploit the following results on self- 
concordant functions/barriers: 
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P.0 (see [ 16, Propositions 2.1.1 and 2.3.1] ). / f  ai >1 1, Fi are s.s.-c, on convex domains 
Qi c ]~k ,  i = 1 . . . . .  q, and the intersection Q of these domain is nonempty, then the 

function F = ~ i  otiFt, is s.s.-c, on Q; if, in addition, F,. are Oi-s.-c.b.'s for cl Qi, then F 
is a ( ~ i  °liO'i)-s'-c'b" for cl Q. 

If  F is s.s.-c, on a convex domain Q c R k and ~4 is an affine mapping from lRq to 
R k with the image intersecting Q, then F+(.) = F( .A( . ) )  is s.s.-c, on the inverse image 

Q+ of Q under the mapping ~4; if, in addition, F is O-s.-c.b. for cl Q, then F + is a 
O-s.-c.b. for  cl Q+. 

E1 (see [16, Theorem 2.1.1 and Proposition 2.3.2] ). Let Q be a convex domain in R k 

which does not contain lines and F be s.s.-c, on Q. Then the Hessian F ' (  x ) of F at 
any point x E Q is non-singular, the Dikin ellipsoid of F centered at x E Q 

WF(X) = (y E ~,~k I ly - x lx  - [ ( y  - x)TFt t (x ) (Y  - x)] 1/2 ~ 1} 

belongs to el Q, and in the interior of this ellipsoid F" is "almost proportional" to 
F" ( x ) , namely, 

r = - ] y - x ] x <  1 =~ ( l - r ) 2 F " ( x )  < . F ' ( y )  < ~ ( l - r ) - 2 F " ( x ) ;  

it follows, in particular, that 

[ y -  Xlx < 1 ~ F ( y )  <~ F (x )  + ( y - - x ) T F ' ( x )  + p ( l y - x l x ) ,  

p(s)  = - In (1  - s) - s. 

If, in addition, F is O-s.-c.b. for cl Q, then F attains its minimum on Q if and only if  
Q is bounded, and the minimizer of F is unique. 

P.2 (see [ 16, Section 2.2.3] ). Let Q be a bounded convex domain in •k and let F be 
s.s.-c, on Q. Given yO E Q, consider the damped Newton minimization of F starting at 
yO, i.e., the process 

yi+l = yi _ 1 [ F , ( y i ) ] _ l F , ( y i )  ' (2) 
1 + a (F ,y  i) 

where the Newton decrement A(F,x) is given by 

2t(F,x) = [ ( F ' (x )  ) T ( F " ( x )  ) - l  F ' (x )  ] 1/2 

The process (2) is well-defined (i.e., keeps the iterates in Q) and, for any K c (0,0.2],  
generates a point yi with ,~( F, y i) ~ K in no more than 

N = O ( l ) ( [ F ( y  O) - m i n F ]  + l n l n ( 1 / K ) )  
Q 

steps, O( 1 ) being an absolute constant. 

P.3 (see [ 16, Corollary 2.3.1] ). Let P be a closed convex domain in ~n, F be a s.-c.b. 
for P, let y E intP and h be a recessive direction for P: P + ~ + h  = P. Then 

- h T F t ( y )  >! ( h T F ' ( y )  h) 1/2. 
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P.4 (see [16, Section 2.4.2]) .  Let Q c Nn be an open convex domain, and let F be 

a s.s.-c, function on Q with nondegenerate Hessian. Then the domain Dom F* of  the 

Legendre transformation 

F*(u)  = sup{uTx -- F ( x ) }  
xEQ 

of  F (by definition, the domain is comprised of  those u for  which the right-hand side 

in the latter expression is finite) is an open convex set and F* is s.s.-c, on DomF* .  

P.5 (see [ 16, Proposition 2.3.2] ). Let F be a O-s.-c.b. for  a bounded convex domain 

P, and let x* be the minimizer of  F on P. Then 

P c { y l l y -  x*l.,. ] + 30}.  

(It was proved by E Jarre that 1 + 30  in the latter inclusion can be replaced with 

O + 2x/-O.) 

3. Surface of analytic centers and basic updating scheme 

3.1. Assumptions and notation 

Given problem (1),  we set 

GK = c l { x  E N" I B ( x )  E intK}; 

from now on we assume that 

A. The intersection D of  GK and G is a solid (closed and bounded convex set with a 

nonempty interior), and we are given in advance a starting point x # E int D. 

B. We are given self-concordant barriers aSH for H, Fx for GK and Fc for G, parameters 

of  the barriers being O~, Ox, O, respectively. It is assumed that 

0 ) max{OH,Ox,  10}. 

(This latter assumption does not restrict generality, since a O-s.-c.b. is also O~-s.-c.b. for 

any O' >~ O. Note also that the only goal of  the restriction O ~> 10 is to reduce absolute 

constants coming from terms with O - l  in the forthcoming estimates.) 

From now on we set 

nn = O/v~., OK = O/Ox. 

3.2. Surface of  analytic centers 

Let c be a nonzero vector from IR", and let t = (to, tl )7" be a 2-dimensional "param- 

eter" vector. We denote by T the set of  all values of  t for which the domain 
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D, = c l { x  E in tD ] toB(x) - A(x)  E intH, cXx < tl} 

is nonempty. If  x E intD,  then, by construction of  D, B(x)  E intK, so that B(x)  is 

a recessive direction of  H; it follows that T is a monotone (t  E T, t ~ >t t =~ t ~ E T) 

subset of  R 2, and Dt C Dr, whenever t E T and t ~ >/t ;  T is clearly open and nonempty. 
We denote by T + the set o f  all primal feasible pairs ( t , x ) ,  i.e., those with t E T and 

x E int Dr. Now, for t E T let 

Ft(x) = - O l n ( t l  - CTX) + Ot4~r4(toB(x) - A(x)  ) 

+J'2KFK(X) + Fa(x) : intD,  ~ R. (3) 

In view of  E0 Ft is a O*-s.-c.b. for the domain Dr, with 

O* = 4 0 ;  

since D (and, consequently, Dr) is bounded, this barrier attains its minimum at a unique 

point x* (t) of  the domain Dr (see P. 1 ). Thus, we come to the surface of analytic centers 

k xEDf ) 

Let 

t~ = inf{t0 I t E T}; 

this quantity is the greatest lower bound of those to for which the system of  strict 
inclusions 

x E intG,  B(x)  E intK, toB(x) - A ( x )  E i n tH  

is solvable. We call t~ the regularized optimal value in ( I ), and we shall see that under 

reasonable regularity assumptions this regularized optimal value is the same as the actual 

optimal value in ( 1 ). 

By origin of  t~, one can travel along the surface S(c)  in a way which enforces 

the coordinate to to tend to t], thus obtaining feasible solutions with the value of  the 
objective converging to the regularized optimal value of the problem. This is exactly 

what we are going to do in order to solve the problem, except the fact that we shall 

generate strictly feasible pairs which are close, in a sense, to the surface rather than on 

the surface exactly. Note that the traditional method of  analytic centers acts in the same 

way, but it traces a single-parameter path So given by 

x( to) = argmin{12H~r(toB(x) -- A(x)  ) + ar2KFK(x) q- Fa (x )} ,  

not a two-parameter surface. Before coming to detailed description of  the method, let us 

explain what are the advantages of  tracing a surface instead of  a single-parameter path. 

In order to approximate t~, it is, of  course, sufficient to trace the path ,So, but to trace 

the path, one should first come close to it. The standard way to do this is as follows. 

# t~B(x #) - A(x  #) E intH, and then Given a starting point x # E intD,  one chooses t 0, 
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# # 
traces, as t~ --, c~, the auxiliary path to = t o at the surface S(c ) ,  starting with t~ = tt; 

# 
here c, t 1 are readily given by the requirement ((t~, o # t~ ) , x  ) 6 S ( c ) ,  e.g., as 

c = - 0  -I (~2H~TO~H(t#oB(X #) -- a (x#) )  + S'2KVFx(x #) + V F 6 ( x  #) ), (4) 

t # = (t#o , CTX # + 1 ) (5) 

(from now on V acts with respect to x).  It is clearly seen that with this choice of  c, t # 

the starting pair (t #, x #) belongs to S(c ) .  
# # 

As t~ ~ oo, the auxiliary path to = t o on S(c )  converges to the point to = t o on the 

"target" path So; thus, tracing the auxiliary path, we eventually come close to the target 

one and can switch to tracing this latter path. Note that in this traditional two-phase 

path-following scheme we in fact all the time are traveling along the surface S(c )  (the 

target path clearly belongs to the closure o f  the surface). After this is realized, we ask: 

why should we restrict ourselves to this particular route, where, in the first phase, we 

disregard the objective? We see that it is reasonable to investigate our abilities to trace 

surfaces of  analytic centers; this is the issue we now exanfine. 

3.3. Basic updating scheme 

Let K ~< 0.2 be a fixed positive tolerance. We say that a pair ( t , x )  is close to S, if 

the pair satisfies the following predicate 

P ~ ( t , x ) :  ( t , x )  E T  + & A(F, ,x)  ~<K; 

recall that the Newton decrement A(F, x) of  a function F twice continuously differen- 
tiable at a point x and possessing a nonsingular Hessian at x is the quantity 

A( F,x) = ( ( V F ( x )  )T[V2F(x )  ] - t V F ( x )  ) 1/2 

It is assumed that we are given a surface S =- $ (c )  of  analytic centers and a starting 
pair ( t#,x #) which is close to S, and our goal is to trace the surface, staying close to 

it, in order to approach a certain "target" point belonging to the closure of  the surface. 

To this end we consider 

Basic updating scheme. Given a pair ( t ,x )  close to S, replace it by a new pair 

(t +, x+) ,  also close to S, according to the following rules: 
( 1 ) Choose a direction 6t in the plane of  parameters, and form the associated primal 

search ray 

X =  ( X ( r )  - ( t ( r ) , x ( r )  ) = ( t , x  + dx ( t , x ) )  + r(6t, Sx) I r >1 0}, (6) 

where 

dx(t,  x) = - [ V 2 F  t (X) ] -1XTF, ( x) (7) 

and ~x is given by the relation 

(St, t~x) E I I ( t , x )  = { (dt, dx) [ ~ T F , ( x ) ] d t  + X72Ft(x) dx =O}. (8) 
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Note that 

t~X = - -  [ • 2 F t (  x ) ] -1 {--'O(tl - c T x )  -28tl  C + f~ltStoflTrI)ttt(  t o B (  x )  - -  A( x) ) 

+ g2r48to(tofl - o~)Tq~(toB(X) -- A ( x ) ) B ( x ) } .  (9) 

(2) (predictor step) Choose a stepsize f > 0 along the primal search ray and form 

the forecast 

( t+ ,~)  = X(~); 

the forecast should belong to T + (this is a restriction on the stepsize). 
(3) (corrector step) Apply the damped Newton minimization 

yi+l = yi _ 1 [V2Ft~ (yi) ] - IVFt+(yi) ,  yO = 2, (10) 
1 + A(Ft+,y i) 

until the pair (t+,y i) satisfies 5oK; then, set x + = yi, thus forming the updated pair 

(t +, x ÷) which satisfies 7:',,. 

This is the natural two-parameter analogy to the usual predictor-corrector scheme. 
The origin of relations from item (1) is clear: the surface {(r,x*(7"))} of analytic 
centers is given by the equation VFr( . )  = 0; linearizing the equation at ( t , x ) ,  we get 

x* ( t+rr t )  .,~ x + d x ( t , x )  +rrx ,  with dx(t, x) and Sx given by (7), (9) (these relations 
make sense, since V2Ft is nonsingular, see P.I and (A)) .  

Note that from P.2 it follows that process (10) is well-defined, keeps the iterates yi 
in the interior of Dr÷ and terminates in no more than O ( 1 ) ( V ( t + , x  +) + ln ln(1/K))  
Newton iterations yi  H yi+l; from now on O( 1 ) are positive absolute constants and 

V ( r , y )  = Fr(y) - min Fr(u) =- Fr(y) - i f ( r ) .  
uEint Dr 

In order to bound from above the Newton complexity (number of Newton iterations) 
of a corrector step, we fix certain constant k ~> 7 and impose on rule (2))  the following 
restriction 

7?.: the stepsize ? is such that V(t+,~)  ~< k. 

In order to choose the largest possible ? satisfying R, one could use a line search. 
The difficulty is, however, that the left-hand side in the latter inequality involves the 
implicitly defined quantity f* ( t+) ,  so that we need certain "computationally cheap" 
technique for bounding V(-,-)  from above. To this end we intend to use dual bounds, 
which we now discuss. 

4. Dual bounds 

To get an upper bound on the quantity V(r , y )  is the same as to get a lower bound 

on the quantity f*  (7-) = min:. F~(y). This latter problem would be absolutely trivial if 
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we knew the Legendre transformation of  F,-(.) - the value of  this transformation at 0 is 

exactly - m i n y  F~(y) .  Of course, we have no hope of  knowing explicitly the Legendre 

transformation of  F, (since otherwise we would immediately know not only the optimal 
value, but also the minimizer of  F7 - it is the gradient of  the Legendre transformation 

at 0). Nevertheless, in many cases we have certain partial information on the Legendre 

transformation of  F~ - namely, we can represent F~(y) as a superposition of  an affine 

mapping y ~ u = ~r~y + p~ and a function .U(u) with known Legendre transformation 
~-.: 

(*)  Fr (y )  = U(7rry  + p~). 

It is possible "to see" miny F~(y) in 5r.: if s E Dom.T', is such that 7r~s = 0, then 

- r a i n  F~(y) = sup[sTTr~y -- 5r(~,-y + p~)] 
Y y 

= sup[s'r[Trry + p ~ ]  - U(¢r~y + Pr) - sTpr] 
3' 

<~ sup[sVu -- ~ ' (U)  -- s r m ]  
// 

= ~'.  ( s )  - sTp~, 

so that every s E Dora St-. such that 7r~s = 0 generates a lower bound on miny F~-(y); it 

is easily seen that for properly chosen s this bound is exact. This is the way we intend 
to use in order to generate lower bounds on f * ( - ) ,  and we start with the assumptions 

on the barriers O, FK, F~ which ensure the possibility o f  representing F,- in the form 

of  (* ) .  

4.1. Structural assumptions on the barriers 

From now on we make the following assumptions on the barriers OH, F r  and /76 

under consideration: 

C.1. There exist closed convex domains G~ C lt~ "'x and G + C R"~ that do not contain 
lines, self-concordant barriers ,zt, x and Ou for these domains, parameters o f  the barriers 

being "Or and "O, respectively, and affine mappings 

x F-~ 77-KX q- PK : ]t~n --* ]I~mx, X ~ 7rGX q- PG : ~n ~ ~mc. 

such that 

G = cl{x E R n [ 7"rcx + P6 E int G+}, GK = cl{x E ~n l Trrx + Px E intG~} 

and 

FK(X) =OK(~'KX + pK) ,  F ~ ( x )  = O ~ ( ~ c x  + p c ) .  

C.2. We know the Legendre transformations O~( . ) ,  Ok( . ) ,  Oh( . )  of  the functions On, 

OK, OG. 
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"We know" means that, given a vector s of  the corresponding dimension, we may 

check whether the vector belongs to the domain of  the Legendre transformation in 
question, and if it is the case, we can compute the value of  the transformation at s. 

Let us demonstrate that the aforementioned assumptions on the barriers are satisfied 
in a number of  interesting and important particular cases. 

First of  all, our assumptions are "stable with respect to intersections": if, say, we can 

represent the domain G as an intersection N~=l Gi of finitely many domains in such a 
way that every G i admits a s.-c.b, of  the type ~ i ( T r i x + p i ) ,  where ~/'i is a "Oi-s.-c.b. with 
known Legendre transformation, we may take as ~ c  the function 

c/'C(Ul . . . . .  u~ ) = ~l  ( un ) + . . .  + ~k ( Uk ) 

(which results in # = Y'~i #i; note that the Legendre transformation of  q~c is the "direct 
sum" of  those of  q~i) and set 

F c ( x )  = ~ G ( q r c x + p c ) ,  ¢ r c x + p c  = (¢Qx+p~  . . . . .  ~kx + p k ) ;  

of  course, we can similarly handle FK. 
Further, our assumptions are "stable with respect to affine substitutions of  variables": 

if, say, we can represent G (similarly for G r )  as an inverse image of  a domain G: 

G = c l { x  I .A(x) E intG} 

under affine mapping .,4 and (~ admits a barrier Fc(u)  = ~c(~rcu  + t i c ) ,  q~c being a 
#-s.-c.b. with known Legendre transformation, then G itself admits a desired barrier 

F c ( x )  = qsc(~ 'cx  + P c ) ,  

the affine mapping x ~ I rcx  + Pc being the superposition of  the mappings x ~ .A(x) 

and u H # c  u +/~c .  
Thus, the family of  "good" domains - those possessing barriers of  the required type 

- is closed with respect to the basic operations such us taking intersections and inverse 
images under affine mappings (and, as it is immediately seen, taking direct products).  

Now let us indicate several "building blocks" which can be used, as G + and q~, in 
the aforementioned combination rules (for justifications, see [ 16, Chapter 5] ): 

( 1 ) The nonnegative half-axis G + = ~+:  

q~(u) = - l n u ,  ~ * ( s ) = - l n ( - s ) - I  ( 0 = 1 ) ;  

due to the combination rules, this example in fact covers all our needs in the case when 
K = H = ~ and G is a polytope; 

(2) The second-order cone G + = {u E ~q l uq >~ (~-]q~l u2i )1/2}: 

q--1 
Zu, ) 
i=1 

q - I  
• 

i=1 
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due to the combination rules, this observation covers convex quadratic quadratically 

constrained problems (since the Lebesgue set {x I f ( x )  <~ O} of a convex quadratic 
form f can be represented as an inverse image of a second-order cone under affine 
mapping) and even more general family of convex programs (e.g., we may handle the 

v",-~ x~, > 0 )  hyperbolic domain of the type z_.,i=j x/2 + 1 ~< x,  

(3) The epigraph of  the exponent G + = {( t ,x )  E •2 I t ~> exp{x}}: 

cb(t ,x) = - ln(Int  - x) - lnt,  

q~*(s,~) = (so + 1)ln(~_~+sl ) -  s o - I n ~ : -  2 ( ' 0 = 2 ) ;  

due to the combination rules, this observation covers Geometrical Programming in the 

exponential form. 
(4) The cone of  positive semidefinite matrices G + in the space of m × m symmetric 

matrices: 

~ ( u )  = - I n D e t u ,  q S * ( s ) = - l n D e t ( - s ) - m  ( O = m ) ;  

due to the combination rules, this example allows to handle Linear Matrix Inequality 

constraints given by the requirement that a symmetric matrix .A(x) affinely depending 
on the design vector is positive semidefinite (cf. Example 5). 

Thus, our assumption on the structure of barriers ~t4, FK and F~ is compatible with 

a wide spectrum of important fractional problems. 

4.2. Dual bounds 

From now on we set 

~ ( u )  --= 5r(ul; uH; ux; u6) = - O l n ( u l  ) + ~OH~n(ut4) + ~ K ~ x ( u x )  + ~bG(UG), 

SO that 

Ft(x)  = .T ' (U( t , x ) ) ,  U ( t , x )  =o-q + t o [ ( x + p ]  + T r x + q ,  (11) 

where 

o-& = ( t j ; 0 ; 0 ; 0 ) ;  

(x  + p  = (0;/3x + b ;0 ;0) ;  

7rx + q= ( --cTx; --otx -- a; 7rxx + PX; ¢rGx + Pc).  

Let 5 r* be the Legendre transformation of ~': 

~ . (  s) -- ~ * (  Sl ; SH; SK; SO) 

= --0  l n ( - s l  ) + ~H~*H(SH/~'~H) ÷ J'~K~*K(SK/J"~K) 

+ ~ b ( s z )  + O(lnO - 1). 

Note that, in view of E4, 5r, is s.s.-c, on its domain. 

(12) 

(13) 

(14) 
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Let us make the following simple observation: 

Lemma  6. Let s belong to Dom ~',  and satisfy, f o r  some ro, the linear homogeneous 

equation 

C~0[s] --- I t 0 ( +  rr]Vs = 0. 

Then, f o r  all rl  such that r = ( ro, rl ) E T, one has 

f * ( r )  >>. f.,.(1") -- ST[O'rl + t o p  + q ]  -- .T',(S). 

Proof. Let y be such that ( r , y )  E T +. Since .T" is convex and closed, it is the Legendre 

transformation of .T',, so that from ( 11 ) it follows that 

Fr(y )  >~ s T U ( r , y )  - - Y , ( s )  = sT[o'rj + r0[sCy + p ]  + t r y  + q] -- .T', (s)  

= f s ( r )  + sT[7"0~:+ ~r]y = fs(~')- [] 

Thus, any vector s satisfying, with respect to a given 7"0, the premise of the above 

lemma (let us call such s dual feasible w.r.t, to) induces lower bounds on the quantities 
f * ( ro ,  .) = minx F, o..(x),  and these are the bounds we intend to use at the predictor 
step in order to ensure ~ .  Let us present a systematic way to form these dual feasible 

vectors. 

4.3. Dual search parabola 

Let ( t , x )  E T + be close to the surface $, 8t be a direction in the parameter space 

and 

X = { X ( r )  ~ ( t ( r )  = t + r S t ,  x ( r )  = x  + Ax(r) ) ,  

&.,.(r) = d x ( t , x )  + r S x l r  >/0} 

be the corresponding primal search ray (see ( 6 ) - ( 8 ) ) .  The mapping ( r , y )  ~-* U(r ,  y)  

(see (11))  transforms this ray into the parabola 

U ( X ( r )  ) = U ( t , x )  + A , ( r )  + 8,,(r), 

where 

Au( r) =ro 'Sh + rSto[~x + p] + [ to~ + cr]Ax(r ) ,  (15) 

8,, (r)  = r&o~2Xx(r). (16) 

Our goal is to associate with these "primal" entities a dual one - the dual search 

parabola 

S = { ( t ( r )  = t + rSt, s ( r ) )  I r >f 0} 
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which will provide us with dual feasible vectors. To define S, we first define the matrix 

T // T // Q( x)  = 12KCrxq~x( ¢rxx + px  )Trr + 7r~q)G( qrGx + pG )¢rG 

and then set 

s = . F ' ( U ( t , x ) ) ,  (17) 

As( r )  = .T"' ( U(t ,  x)  ) A , ( r ) ,  (18) 

Y(r) = s + A.,.(r), (19) 

e(r )  = -rcStoQ - I  ( x ) ( T A s ( r ) ,  (20) 

8s( r) = (0; 0; OKq)~crxe( r); cI)~( ¢rcx + p~)TrG~( r) ), (21) 

s (r )  = ~'(r) + ~s( r )  = s + As( r )  + 6s ( r ) .  (22) 

Note that the construction is well defined, since the matrix Q(x) is positive definite 

(indeed, it is the Hessian at x of  the s.-c.b. OxF,r ( . )  + F 6 ( ' )  for bounded domain D ) .  
In what follows, given a positive semidefinite symmetric matrix Q and a vector u of  

the corresponding dimension, we denote by IHIQ the Euclidean seminorm 

lU[Q = (uTQu)1/2. 

Our local goal is to demonstrate that s(r)  is, for small r, dual feasible w.r.t, to -4- rSto. 

L e m m a  7. Let ( t , x )  E T + be close to S.  Then 

Eto+rSto[s(r) ] =-- O. (23) 

Furthermore, 

I&,(r)  [~:'c.,~ = IA,,(r) I~"w(,,.,)); (24) 

in particular, 

IAs(0) [~-:'(s) = IA,(0)[~"(u(t ,x)) = Idx( t, x)[v2F,(x) = A(F,, x) ~< K, (25) 

and s(O) is dual feasible w.r.t, to. 

Proof.  To simplify notation, let us omit explicit arguments in )v, f- ,  and Ft; in what 
follows, these arguments are, respectively, U ( t , x ) ,  s = U ' ( U ( t , x ) )  and x. 

Let us first verify that 

e( r ) =-- gro+rSto [~'(r) ] = r~tosCT As( r).  (26) 

To this end, note that (8) can be rewritten as 

[ to~ -4- "IT] TffTt/[ Ov6tt Jr 6to [ (X "4- p ] -4- [ to( + or] 8x ] = - 6t0~:T,)  E t  , ( 2 7 )  
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while (7) means that 

205 

[ t 0 ( +  ~ ] T ~ " [ t 0 ( + ~ ] d x ( t , x )  = - [ t0~  + ~]T~-t. (28) 

Multiplying (27) by r and adding (28), we have 

[ t0~+ ~]T~s( r )  ~ [ t 0 ( +  ~]Tf ' t t~u(r )  = --[(tO + r 6 t o ) ( +  ~]T.~t 
= [ ( t 0 + r 6 t 0 ) ( + ~ l T s ,  (29) 

whence Eto+r~to [ s + As(r) ] = rSto(TAs(r) ,  as required in (26). 
Now let us prove (23): 

£to+rSto[ s ( r )  ] =£to+rsto['g'(r) ] + £to+rSto[ 6s(r)  ] (by (22)) 

= e ( r )  +£to+r~to[8,,(r)] (origin o f e ( r ) )  

= e ( r ) + [ ( t 0 + r S t 0 ) ( + ~ r ] T 6 s ( r )  (origin of £) 
T It T ~ l l  = e(r )  + g'2K'n'X~x(TrKx + px)'rrKe(r) + q r c ~ t c r o x  + po) 'rrce(r)  

(by (13), (14) and (21)) 

= e ( r )  -4- Q ( x ) e ( r )  (origin of Q ( x ) )  

=0 (by (20) and (26)) .  

Further, ~". -- [.T"] - l ,  since the argument in the left-hand side is the gradient of Y at 
the point involved into the right-hand one; this observation, in view of a.~(r) = 5r 'A,  ( r ) ,  
immediately results in (24). 

Last, we have A,(0)  = [ t o ( +  ~-]da(t,x),  and from (11) it follows that X72Ft = 
[ t0~:+~r]TSr'[t0sC+Tr] ; therefore IAu(0)I~,, = Idx(t,x)I~72F, 17 2 = IV ,l[V2F, j-, =/~2(Ft,x) 
(the second equality is given by (7) ) ,  as required in (25). It remains to note that since 
( t , x )  is close to S, we have ,~(Ft, x)  ~< x < 1, and (25) implies that s(0) belongs to 
the open Dikin ellipsoid of the (as we know, s.s.-c.) function 5r., the ellipsoid being 
centered at s = 7 E Dom.T'.; therefore s(0) C Dome' . ,  and since Et0[s(0)] = 0 by 
(23), s(0) is dual feasible w.r.t, to. [] 

4.3.1. Acceptability test 
Lemma 7 states that, for small r, the point s ( r )  is close to the point s(0) from 

the domain of .T'. and, consequently, itself belongs to this domain; besides this, s ( r )  
satisfies the equation Eto+rSt0['] = 0. Thus, at least for small r the point s ( r )  is dual 
feasible w.r.t, to(r)  = to + rSto. This observation underlies the sufficient condition for 

that we are about to present. 

Acceptability test. Given a primal search ray {X(r) = (t, x + dx (t, x )  ) + r(St ,  8x) I 
r >~ 0} ( ( t , x )  satisfies 79,~, (St, Sx)  E I I ( t , x ) ) ,  and a candidate stepsize r, act as 
follows: 
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(a) Check whether X ( r )  E T+; if not, reject r. 

(b) Compute s ( r )  according to (17)-(22),  and check whether s ( r )  E DomSr'.; if 
not, reject r. 

(c) Compute the quantity (see Lemma 6) 

V ( r )  = Ft+rat(x + dx(t, x) + r~x) - fs<r) ( t  + r6t) 

= Ft+r,~,(x + dx(t ,x)  + rSx) + f . ( s ( r ) )  

- I s ( r )  ]T[o'(t  I + rStl ) + (to + r6to)p + q]. 

If V ( r )  > k, reject r. 
If r was not rejected, claim that r satisfies ~ .  

An immediate consequence of Lemmas 6 and 7 is the following proposition: 

Proposition 8. The Acceptability test is valid: i f  a stepsize r passes' the test, then 

( t + r S t ,  x + d x ( t , x )  + r S x )  E T + and 

Ft+r,~t(x + d x ( t , x )  + r ~ x )  - min Ft+r6t(u) <~ k. 
uEint Dt ~ r~, 

5. Main propositions 

In this section we formulate the main results underlying our policy of tracing the 
surface of analytic centers and the complexity analysis of the resulting method. The 
corresponding proofs are given in the Appendix. 

Acceptable steps. The above constructions give a possibility of implementing the basic 
scheme for tracing the surface S in a way which ensures a fixed Newton complexity of 
the corrector step; in view of P.3 and Proposition 8, to this end it suffices to choose as the 
stepsize f a quantity passing the Acceptability test. To derive polynomial time complexity 
bounds, we should, of course, know that the test is "reasonable", i.e., that it for sure 
accepts stepsizes of certain "not too small" length. The corresponding statement is: 

Theorem 9. Let ( t ,x )  E T + satisfy 7~,~, and let oJ <~ 0.05 be a positive real. Assume 

that a direction 8t satisfies the assumptions 

196t 2 ~ ( t l  -- cTx)20) 2, (30) 

~z(t,x)l~to I <~ a, O~ + g2HOx' I z ( t , x )  = - B T ( x ) C ~ ( t o B ( x )  - A ( / ) ) ,  (31) 

and let 8x be defined by 8t in such a way that (St, Sx) E H ( t , x ) .  Then any stepsize 

r E [0, 1] passes the Acceptabili~ test. 
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Growth of  the potential; The next statement is the key to complexity analysis of the 
method: 

Theorem 10. The function 

i f ( r )  = min Fr(y)  : T ~  
yEint Dr 

is nonincreasing in r0, and i f  ( t, x) satisfies 79~ and 

~/ + gtng& 1 ~x  /~ - I ( t , x ) ,  0 < co ~ ~-~, (32) Ato = - w  J2~ 

(see (31)) ,  then t + = (to + Ato, tl) E T and 

f * ( t  +) >1 f ( t )  + -~ V ~ + Fix" (33) 

6. Tracing the surface 

We have developed a technique which allows, given a pair (t, x) close to the surface 
and a direction & in the plane of parameters, to perform something like the largest 
predictor step compatible with the predicate ~ (and thus ensuring an a priori bound on 
the Newton complexity of the subsequent corrector step). Thus, we know how to travel 
along the surface, but we did not discuss where to travel. In the usual path-following 
scheme the latter question does not arise at all - the only reasonable strategy is to 
decrease to, the only parameter of interest. This is not the case with a two-parameter 
surface, since here there are many candidate strategies for traveling from the starting 
point to the desired optimal solution. 

Recall that we have associated with problem (P)  equipped with a starting point 
x # E intD (O = GK N G, Gr = cl{x I B(x)  E intK}) and with a starting value to ~ 
of the parameter to, t~oB(x #) - A(x  #) E intH, two-parameter surface ,9 = S(c)  (see 
(4)) .  This surface which passes through the point x #, the corresponding value of the 
parameter vector t = (to, tl ) being t#= (tg, t~), see (5). In order to solve the problem, 
it suffices to travel along S, starting from (t#,x#), in a way which ensures that the 
"parameter of interest" to approaches the regularized optimal value t~ of (P) .  As for 
the "centering" parameter t~, we should make it large enough, since with too small 
values of the parameter the artificial constraint cTx <<. tj may change the optimal value 
of to we actually are interested in. In fact all we need is to make the artificial constraint 
redundant, i.e., to ensure that 

tl > max{cTx l x E D,}; 

then, of course, the quantity 

t~(tj ) = inf{t0 I (to, tz) E T} 
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coincides with the regularized optimal value 

t~ = inf{to I ( to , r )  E T} 

of (P).  Consequently, after redundancy is detected, we may fix the value of the centering 

parameter and completely focus on decreasing the parameter of  interest. Thus, at the 
initial phase, before the redundancy is detected, we decrease to and increase tl, and at 
the main phase, after the redundancy is detected, we decrease to and keep ti constant. 

To implement this idea, we need, first, a test for detecting redundancy, and, second, a 
"safe" strategy for the initial phase, to ensure a reasonable duration of the phase. These 
are the issues we now discuss. 

6.1. Detecting redundancy 

To detect redundancy, one can use the following 

Redtmdaney test. Given an iterate ( t ,x )  satisfying T'~, compute the quantity 

~t = (cT[V2Ft(x)  I - l c )  1/2 

and check whether 

7 ~ 9  <<. tl - c T x ;  (34) 

if it is the case, claim that redundancy is achieved. 

Lemma  11. Let K <~ 0.2. Then the aforementioned test is correct: if  ( t ,x)  satisfies 79~, 
then (34) implies that 

D(r.t,) = {x  E D [ r B ( x )  - A ( x )  C H} Vr E (t~,t0], (35) 

t~ being the regularized optimal value in (P). 

Proof. For the sake of brevity, let us write F instead of F ,  Let x* be the minimizer of 
F; we have 

1 
a(F ,x )  <~ I( <~ 5 

This relation, in view of [ 16, Theorem 2.2.2(iii)], implies that 

X/(x  - - x * ) T F " ( x ) ( x  - x*) ~< 1 -- (! -- 3K) 1/3 ~< 0.27. (36) 

In view of this latter fact and P.I we have 

F"(x* )  >>. (0 .73 )2F ' (x ) .  (37) 

Furthermore, since F is a (40)-s.-c.b. for Dt, ~ >/ 10 and x* is the minimizer of the 
barrier, P.5 implies that 

V / ( y - -  x * ) T F " ( x * ) ( y - -  x *) ~< 4.90, y E Dt. 
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Thus, ( 3 6 ) - ( 3 7 )  imply that 

V/(y  - x ) T F " ( x )  (y -- x) <<. 0.27 + ( 4 . 9 / 0 . 7 3 ) 0  < 70 ,  y E Dr, (38) 

which combined with the definition of  tp and (34) results in 

max cTy < cTx + 7~0 <<. t l .  
yEDt 

Thus, (34)  does imply the equality in (35) for r = to and, consequently, for all 

r C (t~, t0], as claimed. [] 

6.2. The method 

Now we are able to summarize the description of  the method for solving ( P ) .  Our 
strategy will be as follows: given a starting point x # E intD,  we first define a surface 

of  analytic centers S ( c )  which passes through x # for some explicitly defined value 
t # of  the parameter vector. Then we use the basic updating scheme equipped with 
the Acceptability test in order to generate a sequence of (close to S )  pairs ( t i ,  x i) 

( (  t t , x j ) = ( t  #, x #) ) with t~ converging to the regularized optimal value of the problem. 
In this process, we all the t ime decrease the "parameter of interest" to and never decrease 
the "centering parameter" tl. The centering parameter is increased at the initial phase, 
until the constraint cTx <~ t] becomes redundant in the description of the domain Dr,, 
and is kept constant at the subsequent main phase. At the main phase, the parameter 
of  interest is decreased as fast as it is allowed by the Acceptability test; this is not 
the case at the initial phase, where our policy is aimed to ensure reasonable duration 

of the phase; to this end we choose the directions 8t i in a way which guarantees "fast 
decrease" of  the quantities f * ( t  i) = minx F,i (x)  with i, which is a convenient implicit 
way to make tt redundant. 

The implementation of  the outlined strategy is as follows. 

Ini t ial izat ion.  Given x # C int D, choose t~ such that 

t#oB(x #) - A (x  #) E i n t H  (39) 

and 

OHV2~b~(t~oB(x #) - A(x#) )  <~ ~72(f2x~x(~rxx + P x )  + q56(Trcx + P c ) )  (40) 

# 
and define c and t 1 according to ( 4 ) - ( 5 ) ,  thus defining the 2-parameter surface S 
S ( c )  of  analytic centers and a pair ( t  #, x#), t # # # = (t  0, tj ), belonging to the surface. 

R e m a r k  12. We shall demonstrate that (39) is satisfied for all large enough values 
of  tg and that ~Teq~n(toB(x #) - A(x#))  --, O, to --~ oo, so that it is easy to ensure 

# 
(39 ) - (40 ) ;  it suffices to start with an arbitrary trial value 7- of  t o and to test the values, 
say, 7- + 2 ~, k = 0, 1 . . . .  until the required relations are satisfied. 
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ith iteration, i ~> 1. Given a pair ( t i ,  x i)  satisfying 79,¢ ( ( t l , x  1) = ( t # , x # ) ) ,  act as 

follows: 
(0) Compute the quantities/z(f ' ,  x i ) ,  ~*  ( t i, x i ) ,  where 

~ (  t , x )  = - B T ( x ) q ~ ( t o B ( x )  - A(x) ) ;  

¢ ~ ' ( t , x )  =max(z  I ( t 0 -  z ) B ( x )  - A ( x )  C H}; 

( 1 ) Choose a direction t~t i = (Stio , t~t~ ) in the plane of parameters as 

( . t i _ c T x  i . . I • i i 
. 0 5  e, 

l initial phase, 
8t i = 0.05 (41) 

0 - - I  ti x i _ _  _ _ _  
' ' n ~  + n n ~ K  ] 

[ main phase. 

(2) Apply to the pair (t i ,  x i) and the direction 8t  i the basic updating scheme from 

Section 3.3 equipped with the Acceptability test in order to ensure ~ ,  the corresponding 
stepsize r,- being subject to the restrictions 

1 <~ r i <~ Ri ,  

where 

' ~  initial phase, 

Ri = 1.-t-oo main phase. 

The new iterate ( t  i+1 , X i+I  ) is the result given by the basic updating scheme. 

Remark  13. From (41) and Theorem 9 it follows that the stepsize ri = 1 passes the 
Acceptability test, so that (2) is consistent; moreover, the " short-step" version of the 
method ( r  i ~ 1) does not require any line search and dual bounding. 

To get a "practical" algorithm, it is, of course, reasonable to use a line search to get 

the largest possible stepsize ri E [ 1, Ri] accepted by the Acceptability test; note that this 
line search is computationally inexpensive compared to our natural "complexity unit" - 
the arithmetic cost of a Newton step. 

(3) At the initial phase, subject (t '+1 , x i+l ) to the Redundancy test; if the pair passes 
the test, switch to the main phase. Loop. 

6.3. C o m p l e x i t y  ana lys i s  

To present complexity analysis of the method, we need an additional regularity as- 
sumption as follows: 
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D. (P) is solvable and there exists an optimal solution (to = r*,x  = x*) to the problem 

such that 

B(x*) E intK. 

Assumption (D) can be interpreted as "well-posedness" of (P); when it is violated, 
it seems to be impossible to bound the complexity of solving (P). Indeed, consider the 
following example: G is a solid in ~", H = K = R2+, B(x)  = (bTx, 1), A(x)  = (bTx,0),  
where the vector b is such that min{bTx ] x E G) = 0. In this example, the optimal 
value in (P )  is 0 and is achieved at the set of minimizers of bTx on G; outside this 
set the inclusion toB(x) - A(x )  E H implies that to ~> I. Thus, to solve the indicated 
fractional program within accuracy, say, 1/2, i.e., to find a feasible pair ( t0,x) with 
to ~< 1/2, is the same as to solve the program exactly; this can be done with finite 
computational effort only for a very restricted family of solids G. 

Theorem 14. Let problem (P) satisfying assumptions (A), (B), (C) be solved by the 
method presented in Section 6.2. Then 

( i ) The duration of the initial phase does not exceed 

A/~ini = O( 1 ) v/-Oln(O[D : x #] ) (42) 

iterations; here and in what follows all 0 (  1 )s are absolute constants, and 

[ D : x  #] = m a x { a l 3 h : x # - h f ~ D ,  x# + a h E D }  

is the asymmetry coefficient of D with respect to x #. 
(ii) Let (t m, x m ) be the pair which starts the main phase of the method, and let 

e E (0, 1 ). The number of iterations of the main phase which results in a pair ( t  i, X i) 
such that 

t i ~<7"*q-~(t rn-7"*) 

does not exceed the quantity 

= O ( l )  V/O('OH + Ox)In(1 + O ) ,  (43) X(s) 

where 

O =  min{s >~ 0 I sB(x*) - B(x*(tm) ) E K} 

and x* (t)  = argminx~i, t D, Ft (x) .  
(iii) The Newton complexity (number of Newton iterations) of any corrector step of 

the method does not exceed 

O(1) ( k +  ln ln (1 /x ) ) .  

Proof. Let us start with proving correctness of the initialization rule for to; as it was 
explained in Remark 12, to this end it suffices to verify that toB(x #) - A(x  #) E intH 
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for all large enough to (this is evident, since B ( x  #) E in tK and K is contained in the 

recessive cone of  H )  and that 

R(to)  =- V2q~t4(toB(x # - A ( x  #)) ~ 0, to --~ oo. (44) 

To prove the latter relation, let us choose t~ in such a way that y = t~B(x  #) - A ( x  #) C 
int H, and let U be a convex symmetric neighbourhood of the origin in II~ m such that 
B ( x  #) + U c K. Since K is contained in the recessive cone of H, for z > /0  we have 

y ( z ) + z U C H ,  y ( z )  = ( t ~ + z ) B ( x # ) - A ( x # ) .  

It remains to note that (44) is an immediate consequence of the latter relation due to 

the following general fact: 

(*) Let P be a closed convex domain, F be a y-self-concordant barrier f o r  P, y be 

an interior point o f  P and V be a convex symmetric neighbourhood o f  the origin such 

that y + V C P. Then 

zTXg2F(y)z  <~ (1 + 5 y )  2 Vz E V 

The proof  is immediate: to simplify notation, let y = 0. The function gr(x)  = F ( x )  + 
F ( - x )  is 2y-s.-c.b. for the convex domain P '  = P N ( - P ) ,  and 0 is the minimizer of  

the gt on P ' .  From R5 it follows that 

z T ( 2 V 2 F ( O ) ) z  <~ (1 + 6 7 )  2 VZ E P '  D V, 

and (*)  follows. 

Let us prove ( i ) .  
( i . l )  Let us first verify that the quantities f i  = Fr, (x ' )  "quickly decrease" during the 

initial phase: if  step i belongs to the phase, then 

f i  - fi+l > 1 0 ( 1 ) v ~ .  (45) 

Indeed, we have 

f i  -- fi+l = {Fti(x i) - Ft,+, (xi) }I 

+ {F, , ,  (x  i) - rain F,i~, (x)  }n 
x 

+ {min Ft,+, ( x )  - f i+l}m.  (46) 
x 

The quantity { '}n is nonnegative. Further, since 3. -- 3.(F,,, , x  i+l ) ~< K ~< 0.2, we have 

{ '}m ~> - p ( 3 . )  >~ - 0 . 0 2 4  (47) 

(see [ 16, Theorem 2.1.1 ] ). It remains to evaluate {'}I. Taking into account the structure 
of  Fr, dropping index i ( r  = ri, at = 6t i, and so on) ,  setting y = t oB(x )  - A ( x ) ,  dy = 

& o B ( x ) ,  we have 
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rStl ) { {-}, O l n ~ l  + + a n [ O n ( y )  - O n ( y  + r d y ) ]  
tl - cTx ] 

= Oln(  1 + O.05rO -1/2) + O n [ O n ( y )  -- OH(y + rdy ) ] .  (48) 

Now, since 0 > 8to >/ -O.0250-1/2~b*(t,x) by (41) ,  we have y +4001/Zdy  C H 
(definition of  O*). Now let us use the following fact [ 16, Proposition 2.3.2]: 

(**) Let F be a O-s.c.b. for a domain P, let y E intP, and let y + Rdy  E P Then 

F ( y + t d y )  < ~ F ( y ) - O l n ( 1 - r / R ) ,  O < ~ r < R .  

Applying (**) to the barrier .OuOn for P = H and our y and dy (R = 4001/2),  we 

get 

[2H[O,q(y) - OH(y  + r d y ) ]  ~> OIn(1  - 0.0250-1/2r),  

so that (48)  results in 

{ ' } l ~ > O l n ( l + g - 2 g 2 ) ,  g=O.O25rO -'/2. 

Since at the initial phase 1 ~< r ~< 0.5t91/2, we have 2g 2 ~< 0.025g, so that {'}I ~> 

O In( 1 + 0.975g).  Summarizing our observations, we conclude from (46) that 

f i  - fi+t >>- Oln(1  + 0.0240-1/2r) - 0.024 ~> 0.5Oln(  1 + 0.0240- ' /2r)  

(we have taken into account that O ~> 10 and r >t 1), and (45) follows. 
(i.2) Now we are able to bound from above the duration of  the initial phase. To 

simplify notation, in the below reasoning we assume that x # = 0 (which, of  course, does 
not restrict generality).  Assume that step i belongs to the phase and is not the final step 

of it. Setting 

qrr (x)  = g2t~Ot~(rB(x) - A ( x )  ) + F ( x ) ,  

F (x)  = l'2rOx (Trrx + pK) + O~ (~rox + Pc) ,  

we conclude from (45) that 

"O ln( t i+1 - cT x i+l ) >1 O( 1)Ox/2i + ~?o+~ (x i+~ ) -- qPt~(O) 

(we have taken into account that t~ - c T x  # = 1 by (5 ) ) .  Since t~ +1 ~< tg and q-'~(x) 
clearly is nonincreasing in r whenever x E in tD is such that 7"B(x) - A ( x )  E i n t H  
(see E3 and take into account that B ( x )  is a recessive direction for H when x E in tD) ,  

we have ~eo~L (x  i+l ) >~ ~?o(xi+l), and we come to 

Oln( t  TM - cTx i+l ) /> 0(1)01/2 i  + 1 /" (x i+ l )  - ~ f f (0 ) ,  I/t ( .)  ~ ~'t~(.). (49) 

Now let 

W = {y I YTV2F(O)Y <~ 1}, W' = {y I Y T v 2 ~ ( 0 ) Y  ~< 1} 



214 A. Nemirovski/Mathematical Programming 77 (I 997) 191-224 

be the Dikin ellipsoids, centered at x # = 0, of  the barriers F and 'P', respectively, and let 
D t = D A ( - D )  be the symmetrization of  D. By definition of  the asymmetry coefficient 
o~ ~ [D : x#], we have D C a D  ~, while by (*) we have D t C (1 + 150)W; thus, 

D C 1 6 a O W  C 32ce~W r (50) 

(the concluding inclusion follows from W C v'~W ~, see (40) ) .  Now, the function ~ ( x )  
is 30-s.-c.b for the domain 

P = { x  e D [ t o B ( x )  - A ( x )  E H } ,  

and both x i+x and W t are contained in this domain; setting y = x i+1, dy  = x # - x i+1 = 

- x  i+I, we get y C in tP ,  y +  [ 1 + ( 3 2 a O ) - '  ] dy E P (the latter inclusion follows from 
(50) and W t C P) .  Applying (**) ,  we get 

aP'(0) ~ ~(X i+l ) + 3 0 1 n ( l  + 3 2 a 0 ) ,  

so that (49)  implies that 

ln( t  i+l - cTx i+~ ) ~> O( 1 ) 0 - 1 / 2 i  -- 3 ln( 1 + 32aO) .  (51) 

On the other hand, we know that redundancy was not detected at the step i, i.e., that 

70(cT[ V2F,,,, (xi+l) ] - l  c)I/2 ~> ti+~ _ c T x i + I  (52) 

The quantity 2 ( c T [ VZ Fti~ ~ ( x i+ l ) ] - I  c ) I/2 is the variation (i.e., maximum minus mini- 

mum) of  the linear tbrm cTx on the Dikin ellipsoid, centered at x i+l , of  the barrier Ft,,, ; 

this ellipsoid, say V, is contained in Dt,,t and, consequently, in D. Taking into account 
(50) ,  we conclude that the variation of  cTx on V is at most 3 2 a 0  times the variation 
2(cY[ '~ZF?  (0)  ] - l c )  1/2, the latter quantity clearly being ~< 2(cT[•2gt(0) ]-lc)  1/2 
From (4) and from the fact that ~ is 30-s.-c.b. it follows that (cT[~72g~(0)]- lc)1/2 
2 0  - t /2.  Combining our observations, we come to 

( c T [ ~ 2 F t i , ,  (xi+l) ] -Ic)1/2 ~ 64o~v~,  

so that (52) results in 

O( 1)a'O 3/2 >/ t~ +l - cTx  i+l . 

This inequality, combined with (51) ,  immediately implies upper bound on i required 

in (i) .  
Now let us prove (ii) .  From Theorem 10 it follows that if N ( i )  is the number of  

iterations of  the main phase preceding an iteration i of  the phase, then 

)'i------ ,ei.tmino,i F, , ( x )  >- Yi* + O ( 1 ) N ( i ) @ ~  tt12x~-~K. (53) 

On the other hand, let .~ = x*(t m) be the analytic center of  the domain Dtr.. Given 

e E (0, 1), set 
e 

q - e + O '  Xq=(! - q ) x * + q 2 .  
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Then xq E intDt m. For r = r *  + e ( t ~  - r * )  we have 

Uq =- TB( Xq) -- A ( Xq) = yq -}- rlq, 

yq = (1 -- q ) ( r * B ( x * )  - A ( x * )  ) + q(t~B(Yc) - A(Yc) ), (54) 

r/q = (1 - q ) ( r -  r * ) B ( x * )  - q(t~ ~ - r)B(Yc). 

The vector yq clearly belongs to H. By definition of  O one has 6 = OB(x* )  -B(Yc)  E K, 

whence 

r/q = (1 - q ) ( r  - r * ) B ( x * )  - q(t8 ~ - r)B(Yc) 

= [(1 - q) ( r -  r*) - q ( t~  - r ) O ] B ( x * )  + q( t~  - r ) 6  

= p B ( x * )  + p t &  p > O ,  pt >~0. 

Thus, 

r/q E intK, (55) 

and since we already know that yq E H,  (54) implies that r B ( x q )  - A(xq)  E intH, so 

that xq E D(r.tT). 

Now let 

F ( x ,  y) = - O l n ( t ~  1 - -  cT x) --~ f~Hrl~H(y) --~ f~X~x( TrKX "~ pt¢) + cI)a( TrGx + PO); 

then F is a 40-s.-c.b. for the domain D = { ( x , y )  ] x 6 D , y  E H, t~  >~ crx}.  We have 

f = ( 2 ,  P o n B ( Y c ) - a ( Y c ) ) c i n t f ) ,  z * = _ ( x * , r * B ( x * ) - - A ( x * ) ) E D .  

Let 

Zq= (1 - - q ) z *  + q £ =  (xo,yq) .  

From (55) it follows that U q - y q  E K, whence, in view of  P.3, ~n(uq)  ~< ~ n ( y q )  and, 

consequently, 

F(Xq, Uq) ~ F(xq ,  yq) = F(zq) .  

One clearly has F(r,,,D ( Xq) = F(  xq, Uq), whence 

, f * ( r , t~ )  <<. F(zq); 

on the other hand, zq is a convex combination o f  a pair o f  points from /)  with the 
coefficients q and 1 - q, and from [ 16. Proposition 2.3.2(ii) ], it follows that 

F(zq)  <~ F ( $ )  + 4 O l n ( 1 / q )  = Ftm(Yc) + 4 O l n ( l / q )  = f * ( t  m) + 4 O l n ( 1 / q ) .  

Thus, we come to 

f * ( z , t ~  1) - f * ( t  m) ~< 4 ~ l n ( l / q ) .  

Now, if i is such that at the iteration i belonging to the main phase one has t~ /> r = r* + 

e(t8 ~ - 7"*), then, in view of  the monotonicity of  f* ( - ,  t I ) (see Theorem 10) and (53) 
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the left-hand side of the latter inequality is ~> O(1)N(i)VQ2HI2K(12H + 12K) -1, and 
we come to the inequality 

~2H + ~2K 
N(i)  <~ O(1)O ~ - - ~ -  I n ( l / q )  =O(1)X/O(On+zgx) ln (1 /q ) ;  

since 1/q = 1 + O/e, we come to (43). 
(iii) is an immediate consequence of R,  which, as we know, is ensured by our 

construction, and P.2. [2] 

Appendix 

Proof  of  Theorem 9. To simplify notation, in what follows we omit explicit arguments 
to the functions involved in the calculation; all quantities related to .7, ~H, q~K, 4~6 are 

taken at the points U (t, x) ,  toB (x) - A (x) ,  ¢rrX + PK, ~cX + PC, respectively; we also 
write B instead of B(x)  and tt instead of U(t ,x) .  Similarly, all quantities related to .7, 

are taken at the point s = .7~. 
( 1 ) Let us start with the following observation: 

Lemma A.1. 
all z E N", v E ][~m one has 

B[~t,g <~ Iz( t ,x ) ,  

t B z l . ; ;  <~ 3 t z ( t , x ) l z l v ' - r ~ o ,  

. ~ z (  t , x )  , . .. 
I/~Tvlo-,c,~ ~< J~lv l1~. , ,1  

T , I~(t,x) 

If ( t , x )  satisfies the premise of Theorem 9, then tz( t ,x)  > O, and for 

FK(X) = q~K(lrKx + PK), (A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

Proof. Let us start with (A.1) and (A.2). Let z be such that [zlv2e~(x) ~< 1; then, due 
to the origin of Fx and RI,  B(x  + z) E K, so that the direction B +/3z is a recessive 

direction for the domain H; in view of P.3 it follows that 

- ( B  + flZ)T@'H ~ [B + flZl,t,~. (A.6) 

Thus, the affine form - ( B  + flz)Tq)'H is nonnegative at the (centered at the origin) 
ellipsoid given by [zlv-'F~(x) ~< 1, and the value of the form at the origin is nothing but 
tz = t~(t ,x) ,  which immediately implies (A. i ) .  From (A.6) it follows that IBI,~ ~</z, 
as required in (A.2). 

Since x C intD C intGK, we have B E intK, and, consequently, B 4= 0; since H 
does not contain lines, q~t is positive definite (see P.1 ), and we conclude that/x > 0. 
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Now, under assumption Iz[v2rr(x) ~< l, the left-hand side of (A.6), in view of (A.l) ,  
does not exceed 2/~, and from (A.6), (A.2) and the triangle inequality it follows that, 
for the indicated z, one has [flzl¢,~; ~< 3/~, which immediately results in (A.3). 

It remains to prove (A.4) and (A.5). We have 

I j ~ T u I Q - I ( x )  = max{wTfl Tv I wTQ(x) w <~ 1}; (A.7) 

since one clearly has Q(x)  >~ S2K~72FK(X), from wTQ(x)w ~< 1 it follows that 
]WJv2FxCx) ~< O~¢ 1/2, and consequently, in view of (A.3), [flwl~7~ <~ 3/x/2KI/2; thus, 

and (A.4) follows. To prove (A.5), let us set in (A.7) v = ¢'~; according to (A.1), 
IwT~T~'~I ~< ~Iwlv2F~/> ~< ~aTCl/21wlo~x~, and (A.5) follows from (A.7). Lemma A.I 
is proved. [] 

(2) Now let us formulate the main estimates we need. In what follows 8t is fixed 
and satisfies (30)- (31) ,  and 8x is such that (&,6x)  E I I ( t ,x ) .  

Lemma A.2. For ( t ,x)  satisfying the premise of Theorem 9 one has 

l[ tos c + or] dx(t, x)12-" = [dx(t. x)[v~r,(.O ~< K; (A.9) 

18tofl8xla,~,t <~ 9a:tl/2(.(2H + OK)-I/2to2, (A.10) 

[&oflda(t, x ) J ~  ~< 9Y2HI/2(y2H + OK) -~/20jK, (A.11 ) 

Ia . , ( r ) l~  " = IA,,(r)l~,, ~< 2a, + 3(,~ + o~), 0 ~< r ~< I; (A.12) 

lS,,(r)l::,,<~9(12H+12K)-~/2co(o~+x). O<~ r<<. 1; (A.13) 

[Ss(r)l::,,<<.3(g2te+OK)-t/2to(4O~+K), 0~<r~<l .  (A.14) 

Proof. To simplify notation, in what follows we write F instead of Ft and d instead of 
( t l  - -  c T x ) - - I  

(a) The equality in (A.8) is evident (see (11)) .  We have 

3x = - [ V 2 F ] -  1 [_vad2Stl c + Onf lT~Sto  + Or4 (toil -- ct) Tq~t~BSto], 

whence 

I~1~,-,~ = It V~F~ ~ ' x l ~ , _ ,  
<. 3 {z92d4~t~c T [ V2F] -tc}~ 

+ 3 (.O~&o2 ( ~ ) T f l [  V2F]--l/~T{o~/}i I 

T It +3{6t202~BTq~[tof l -a][X72F]- l[ to f l -cr]  qOt4B}m. (A.15) 
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We clearly have V2F >~ Od2cc T, which immediately implies that 

{'}1 ~< Od28t~ <~ w 2. (A.16) 

(the concluding inequality is nothing but (30)) .  
We also evidently have VZF >>. Q(x) ,  so that from (A.5) it follows that 

('}u <~ 6t~O~tz2(t,X)Or, ' <~ 03~ (A.17) 

(the concluding inequality is an immediate consequence of (31)) .  
Finally, V2F >/ON[toil - a]'f4'~[t0fl - a, so that 

{'},t ~< &t2j2HIB[~,,; <~ 8t~Ottlz2(t,x) <~ 032 (A.18) 

(the second inequality follows from (A.2), the third from (31)).  
Combining (A.15)-(A.18),  we come to the inequality required in (A.8). 
(b) The equality in (A.9) is evident (see ( 1 1 )), and the inequality is given by (25). 
(c) In view of (A.3) and V2F/> OKV2FI¢ we have 

1fl6x[,t,;~ <~ 3tz(t,x)l~xlvzr~ <~ 31~(t,x)S2rz/2l&Xlv'-F <~ 91z(t,x)J2K I/2to 

(the concluding inequality follows from (A.8)), which combined with (31) implies 
(A.10). (A.I I )  is given by similar reasoning, with (A.9) playing the role of (A.8). 

(d) Equality in (A.12) is given by (24). To prove the inequality, note that in view 
of (15) one has 

lA,,(r) 1~:,, ~< Iro-&t'l~,, + [r6to [sex + p] [y,, + ][/0s ¢: + cr]Ax(r)I.r"' 

= v~dlr&t~l + Irl latoln~n/21nl,¢,;; + I [t0~: + ~-] (dx(t, x) + rSx)I~=" 

(structure of Or) 

~< [rl03 + lrll6tolY2Jn/2tz(t,x) + 3(K + Ida,) 

(by (30), (A.2), (A.8) and (A.9)) 

- .<2w+3(K+03) ,  0~<r~< 1, (by (31)) 

as claimed in (A.12). 
(e) To prove (A.13). note that in view of (16) and (13) one has 

I&u(r) I.~" = O~/2lr6toflAx(r) ]~;; 

= ~l/2[rStofl[dx(t,x) + rSx] [,t,;; 

~<9(On+.(2X)-J/203((o+K), 0~<r~< 1, (by (A.10) and (A.11)) 

as required in (A.13). 
(f) It remains to prove (A.14). From (17)- (22)  it follows that 

6s(r) =J~"(, ( =  (O;O;'trxe(r);~rGe(r)), 

and since 5 r"=  [b r ' ' ] - l ,  we come to 
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12x[Trxe(r)]Tq~Trxe(r) + [TrGe(r) T , ] ~o~'c~(r) 
sT(r) T tt T tt [ Ox~rKC'x~rx + ~c¢~c*rc ] , ( r )  

C ( r ) Q ( x ) , ( r )  (origin of Q(x))  

[Q(x)s ( r )  ]TQ-I (x) [Q(x)~(r)  ] 

IrStol21~rA,,(r)l~_,(~) (by (20)) 

[r6tol2]flT[ J'2ucI)~ ] [ r6toB + [toil - a[ (dx(t, x) + r6x) ] ]~-'(x) 

(by (17)-(22) and (13)) 

~< 9J'2K 1/.t,2 (t, X) I r6 to[  2 

2 × IS2 .~[ rS toB  + ]toil - a] (dx(t,x) + r6x)] [1¢,;;1-' 

(by (A.4) 

= 9S22HO~I/z2(t, x)]r6tol2lr6to B + ]toil - a] (dx(t, x) + rSx)]~"A' 

IBm(r) 1-~." ~< 3s2-~2x 1/21z(t, x)[rStol[lrStoBl@,; + ][t0il - a[ (dx(t, x) + r6x)1~;;] 

<<. 312nO~l/21z( to x)[r6tol[lr6tollz(t, x) + s2~ 1/21dx(t, x) + r&XIV2F, ] 

(by (A.2) and the evident relation 

S'2ff2[[toil- (r] hi@;; ~< Ih[v2V,(x)) 

~< 3 (/2H q- OK)--1/2Og(4OJ + K), 

219 

(by (31), (A.8) and (A.9); note that 0 ~< r ~< 1) 

as required in (A.14). Lemma A.2 is proved. [] 

(3) Let us f i x r ~  [0,1] and set 

u = U ( t , x ) ,  u + = U ( X ( r ) )  = U ( t + r B t ,  x + d x ( t , x ) + r & x ) ,  

s + = s(r ) ,  t + = t + r S t ,  x + = x + d x ( t , x )  +r6x .  

From (A.12), (A.13) and (A.14) it follows that 

[u + - ul•,,, Is + - s[~-, ~< ( = 2w + 3 max{( l + 3~o) (K + ~0), 

X + W+W(4~O+ K)} <0.9  (A.19) 

(the concluding relation follows from ~ ~< 0.05, K ~< 0.2). In view of R1 as applied 
to s.s.-c, functions ~" and .~., we conclude that u + 6 Dom9 r,  and, consequently, 
(t + r6t, x + dx(t ,x)  + rSx) 6 T +, s + E Dom.T',, and, besides this, 

.~(u +) <<. ~ ( u )  + sX[u + - u[ + p ( ( ) ,  

.Y'.(s +) ~<.Y' . (s )+[s  + - s ] T u + p ( ( ) ,  p ( ( ) = - l n ( l - s  r ) - s  r 
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(we have taken into account that s = 5 r ' ( u ) ,  whence 'also u = ~',t ( s ) ) .  

Since s = 5 r ' ( u ) ,  we have 

~-(u  +)  + 5r. ( s  +)  ~ 9r (u)  + 5r. ( s )  + sT[u + --U] + IS + -  slTu + 2 p ( ( )  

= STU + sT[u + -- U] + [S + -- s]Tu + 2 p ( ( )  

= [s+]Tu + + 2 p ( ( )  -- [S + -- s ]T[u  + -- U]. (A.20)  

Now, u + = o't + + t o [g:x + + p ]  + ~'x + + q and, as we know, [t~-s e + ¢r]Vs + = 0, whence 

[s+]Tu + = [ s+ ]T[o ' t  + + t~p + q], 

and in view of  (A.20)  we come to 

V(r)  -- Fp (x +) + ~ .  (s +) - [ s + ] T [ t r ( t + )  ' + t~p + q] 

= ~ ' (u  +) + ~r. (s+)  - [s+JTu + 

~ 2 p ( ( )  - [s  + - s]Y[u + - u]. 

Thus, to prove that r passes the Acceptabil i ty test it suffices to demonstrate that the 

right-hand side of  the latter inequality is ~< k. This is immediate: 

2 p ( ( )  - [s  + - s ]T[u  + -- u] ~< 2 p ( ( )  + IS + -- Sly;,lu + -- ul~',, 

(since .U." = [ S r " ] - l ) ,  and the concluding quantity, in view of  (A.19) ,  is ~< 2 p ( ( )  + 
(2 ~ 6.02 ~< k. []  

P roo f  of  T h e o r e m  10. I f  ( r , y )  C T +, and r + ) r differs from r only in the zero 

coordinate, then, as we know, Dr  C Dr , ,  and B(y )  is a recessive direction for H; in 

view of  R3 we have B(y)T#tm(roB(y)  - A(y)  ) ~ O, whence (O/Oro)Fr(y) ~ 0 and 

Fr, (y) <~ Fr(y). Since the latter inequality holds for all y C Dr C Dry, we conclude 

that f * ( r  +) <~ f ( r ) ,  so that f * ( r )  is nonincreasing in r0. 

Now let ( t , x )  satisfy "PK, let x* = x*(t)  = argmin Fr(-)  and let dt be the direction 

defined by dtl  = 0  and dt0 given by (32) as appliedto thepair ( t , x * ) :  

X?x _K(t,x.). dt0 = - w  D~ + aQHJ'~K ~ 

Let 

s + ( l ) = ( s l ( l ) ; s t l ( l ) ; s K ( l ) ; s a ( 1 ) ) ,  0<.l<~ 1, 

be the vectors associated with the pair ( t ,  x*) ,  the direction dt and stepsize 1 by our 

Acceptabi l i ty  test. From Theorem 9 it follows that t + ldt  C T and that s+(l) is dual 

feasible with respect to to + ldto. In view of  Lemma 6 we have (note that dh  = 0) 

f * ( t  + ldt)  ) [ s + ( / )  ]T [o t l  + (to + ldto)p + q] - YZ.(s + (l) ). (A.21)  

As in the proof  of  Theorem 9 we have (we use the same short notation as in the 

indicated proof, but x, K are now replaced by x*, 0; below s = Yz ' (U( t , x*) ) )  
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St-, ( s+( / ) )  ~ St'. (s) -4- [s+(/)  -- s]Tu( t ,X *) +p(ls+(1) -- sl~.,,) 

= - F t ( x * )  + sTu( t ,X  *) + [S+(/) -- s ]Tu( t , x  *) + p(ls+(l)  - s]~:,,) 

<~ -F t ( x* )  + [s+(l) ]T[crtl + to((x* + p) + Trx* + q] 

+ p(5lto + 1212w 2) 

(by (A.12) and (A.14) as applied with x = 0 ,  r=  1, 8t =ldt ,  

which allows replacing to by lto) 

= - F t ( x * )  + [S+(I)]T[o'q + (to +Idto)(~x* + p )  +Trx* + q ]  

--tdto[s+ (l) ]T(s~x * + p)  + p(6 lw)  

(since 5lw + 1212w 2 <~ 61w due to 0 ~ l ~< 1 and 0 < to ~< 0.05) 

= -F t ( x* )  + [s+(l)]T[trtt + (to + ld to )p  +q]  

- l dto[s+(l) ]T(s~X* + p) + p(6 lw) .  

(since s+(l) is dual feasible w.r.t, to + ldt0). 

Combining this inequality, (A.21) and taking into account that Ft(x*) = i f ( t ) ,  we 
come to 

f * ( t  + ldt)  >~ f * ( t )  - p(6/to) + Idto[s+(1) IT(sO:x* + p) 

= f * ( t )  -- p(6loJ) + IdtosT(1)B(x*).  (A.22) 

Furthermore, from relations defining s+(l) (see (15), (17) - (22) )  it follows that 

sH(l) = {2ttq~ + (As( l )  )H (A.23) 

and, as we know from (A.12) (applied to r = 1, x = 0, 8t = Idt, which allows to 
replace w by ho), 

I(A,(Z)).ltn,m;~-, ~< IA.(/)I~:, ~< 51to, (A.24) 

Combining (A.22) and (A.23), we come to 

i f ( t +  l dt) - i f ( t )  >. - p (  6Iw) + I dto12uBT ( x* )q~  

- l l d t o l l ( m , , ( l ) ) H I I  a,,~0;;]-, [n(x*)[o,,~;; 

>~ -p (6 / to )  + lldto[ [ OHtx( t, x* ) -- 5ltog2~/21x( t,x* ) ] 

(origin o f /x ( t , x* ) ,  (A.24) and (A.2)) 

= -p (6 l to )  -4- l[dto]tx(t,x*)Ott(1 - 5/to) 

>~ -p (6 l to )  + 4lldtollz(t,x*)~2n 

= -p (6 l to )  + ho /~H +/~K (by (32)) .  
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Thus, we have 

31~o, / ~2HJ2K f * ( t + l d t ) - f * ( t ) )  ~ V ~ - H ~ x  p(6/ to) ,  0 ~ l ~ <  1. (A.25) 

Since p(u) = - l n ( 1  - u) - u and oJ ~< 1/20, for 0 <~ l ~< 1 we have 

p(6ho) ~ 2(6 /w)2  = 24/2w 2, 

and (A.25) implies that 

1 howl 12HI2x 1 f * ( t + I d t ) - f * ( t )  >/-~ V~-~--+-~K' O<~l<~ .  (A.26) 

Since ( t , x )  satisfies 7~,,, we have (see (36) )  

IX* -- X[V2F,(x ) ~ 0 .27;  (A.27) 

consequently, 

IX* -- XIv2Fx(x ) ~-~ ..QKI/20, Fx(y) = qbx(~xy +Px) ,  (A.28) 

whence, in view of  the origin of  FK and E l ,  

B(x  + J2~/20 -I [x* -- x] ) E K, 

and, consequently, 

B(x*) v ~  - OB(x) _ B(x*) - vB(x)  E K. (A.29) 

Since [ -¢/'~t (t0B (x*) - A (x* ) )  ] TU is nonnegative for all recessive directions u of  H 
(see R3) and, in particular, for all directions from the cone K, we conclude from (A.29) 
that 

Iz( t ,x*) = -BT  (x*)qb~( toB(x *) - a(x*)  ) 

) - v B T ( x ) ~ ( t o B ( x  *) - A(x*) ). (A.30) 

Now let u = roB(x) - A(x) ,  u* = toB(x*) - A(x*) and d = u* - u; from (A.27) it 
immediately follows that 

Idl~,;;(.~ ~< n/~/20 ~< 0.27S2H n/z, 

whence, in view of  P.1, 

c/,~(u + r d )  ~< ( 0 . 7 3 ) - z ~ ( u ) ,  0 ~< 7- ~< 1, 

so that 

<. 2ldl,~;i(.) <~ 2J'2H '/20- 

Con seq uently, 
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<. 2tz(t,x)OHI/2O 

(we have used (A.2)),  so that 

--BT (x)~'H(U *) >>. / * ( t , x ) ( l -  2,O~/20) >/0.46/~(t,x). 

From the latter inequality and (A.30) we conclude that 

tz(t,x*) >~ 0.46v/x(t,x) >7 0.3/z(t,x).  

It follows that [dt0[ ~ 14kt0I, so that t + l d t  >~ t + whenever 0 ~< l ~< 1//4; thus, (A.26), 
in view of already proved monotonicity of f*, implies the desired relation 

f* ( t  + ) -  f ( t )  >. f * ( t +  d t ) - f * ( t )  >I-i-6V/~H+ j,/K. 
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