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Abstract. We consider linear programs with uncertain parameters, lying in some prescribed uncertainty set,
where part of the variables must be determined before the realization of the uncertain parameters (“non-
adjustable variables”), while the other part are variables that can be chosen after the realization (“adjustable
variables”). We extend the Robust Optimization methodology ([1, 3–6, 9, 13, 14]) to this situation by intro-
ducing the Adjustable Robust Counterpart (ARC) associated with an LP of the above structure. Often the ARC
is significantly less conservative than the usual Robust Counterpart (RC), however, in most cases the ARC is
computationally intractable (NP-hard). This difficulty is addressed by restricting the adjustable variables to be
affine functions of the uncertain data. The ensuing Affinely Adjustable Robust Counterpart (AARC) problem
is then shown to be, in certain important cases, equivalent to a tractable optimization problem (typically an LP
or a Semidefinite problem), and in other cases, having a tight approximation which is tractable. The AARC
approach is illustrated by applying it to a multi-stage inventory management problem.

Key words. Uncertain linear programs – robust optimization – conic optimization – semidefinite program-
ming – NP-hard continuous optimization problems – adjustable robust counterpart – affinely-adjustable
robust counterpart

1. Introduction

Uncertain linear programming problems. Real-world optimization problems, and in
particular Linear Programming problems, often possess the following attributes:

• The data are not known exactly and can “drift” around their nominal values, varying
in some given uncertainty set.

• In many cases small data perturbations can heavily affect the feasibility/optimality
properties of the nominal optimal solution, yet the constraints must remain feasible
for all “reasonable” realizations (i.e., those in the uncertainty set) of the data.

• The dimensions of the data and the decision vectors are large, and therefore effi-
cient solution methods are required to solve the underlying large scale optimization
problems.

A methodology aimed at dealing with uncertain optimization problems under the
above “decision environment” was recently developed under the name Robust Optimi-
zation (RO), see [1, 3–6, 9, 13, 14] and references therein. In this paper we consider
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uncertain linear programs, and extend the scope of the RO in a significant way by
introducing the Adjustable RO methodology.

Robust optimization methodology. An uncertain Linear Programming problem is de-
fined as a family

{
min

x

{
cT x : Ax ≤ b

}}
ζ≡[A,b,c]∈Z

(1)

of usual Linear Programming problems (“instances”) with m×n matrices A and the data
ζ ≡ [A, b, c] varying in a given uncertainty set Z ⊂ Rn × Rm×n × Rm (a nonempty
compact convex set). The Robust Optimization methodology associates with such an
uncertain LP its Robust Counterpart (RC)

min
x

{
sup

ζ≡[A,b,c]∈Z
(cT x) : AT x − b ≤ 0 ∀ζ ≡ [A, b, c] ∈ Z

}
(2)

and treats feasible/optimal solutions of the latter problem as uncertainty-immunized fea-
sible/optimal solutions of the original uncertain LP. Indeed, an uncertainty-immunized
solution of (2) satisfies all realizations of the constraints associated with ζ ≡ [A, b, c] ∈
Z , while the optimal uncertainty-immunized solution optimizes, under this restriction,
the guaranteed value of the (uncertain) objective.

Adjustable and non-adjustable variables. The Robust Optimization approach corre-
sponds to the case when all the variables represent decisions that must be made before
the actual realization of the uncertain data becomes known. There are cases in reality
when this is indeed the case, so that the Robust Optimization approach seems to be an
adequate way to model the decision-making process. At the same time, in the majority
of optimization problems of real-world origin only part of the decision variables xi are
actual “here and now” decisions. Some variables are auxiliary, such as slack or surplus
variables, or variables introduced in order to convert a model into a Linear Programming
form by eliminating piecewise-linear functions like |xi | or max{xi, 0}. These variables
do not correspond to actual decisions and can tune themselves to varying data. Another
kind of variables represent “wait and see” decisions, those that can be made when part
of the uncertain data become known. Thus it is reasonable to assume that the “wait and
see” variables can adjust themselves to a corresponding part of the data.

Example 1.1. Consider a factory that produces p(t) units of product to satisfy demand
dt , on each one of the days t = 1, . . . , T . We know that

(∗)the data(d1, . . . , dT )takes values in a set Z,

and the actual value of dt becomes known only at the end of day t , while the decision
on how much to produce on day t must be made at the beginning of that day.

When choosing p(1), we indeed know nothing on the actual demand, except for the
fact that it obeys the model (∗), thus p(1) represents a “here and now” decision. In con-
trast to this, when implementing every one of the subsequent decisions p(t), t ≥ 2 we
already know the actual demands of the days It = {1, . . . , t − 1}. Thus, it is reasonable
to assume that p(t) is a function of dr : r ∈ It , i.e., to let the “wait and see” variables
depend on part of the uncertain data.
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We have just distinguished between variables that cannot be adjusted to the data
(“here and now” decisions) and the variables that can adjust themselves to all the data or
to a part of it (auxiliary variables and “wait and see” decisions). In general, every variable
xi may have its own information basis, i.e., can depend on a prescribed portion ζi of the
true data ζ , as it is the case in Example 1.1. Here, for simplicity of notation, we focus
only on the “black and white” case where part of the variables cannot tune themselves to
the true value of the data at all, while the remaining variables are allowed to depend on all
the data. It can easily be seen that the main results of this paper can be straightforwardly
extended from this “black and white” case to the general one where every variable has
its own information basis. In what follows, we call all the variables that may depend on
the realizations of the data adjustable, while other variables are called non-adjustable.
Consequently, the vector x of variables in (1) will be partitioned as x = (uT , vT )T ,
where the sub-vector u represents the non-adjustable and v the adjustable variables.

Adjustable robust counterpart. Distinguishing between the adjustable and the non-
adjustable variables we rewrite (1) equivalently as

min
(s,u),v

{
s : cT

(
u

v

)
≤ s, Uu + V v ≤ b

}

[U,V,b,c]∈Z

and treat (u, s) as the non-adjustable part of the solution. The above representation of
(1) is “normalized” in the sense that its objective is independent of both the uncertain
data and the adjustable part v of the variables. In the sequel we assume, w.l.o.g., that
the uncertain Linear Programming problem under consideration is normalized and thus
write this problem as

LPZ =
{

min
u,v

cT u : Uu + V v ≤ b

}

ζ=[U,V,b]∈Z
. (3)

Borrowing from the terminology of “Two-stage stochastic programming under uncer-
tainty” ([10],[17]), the matrix V is called recourse matrix. When V is not uncertain, we
call the corresponding uncertain LP

{
min
u,v

cT u : Uu + V v ≤ b

}

ζ=[U,b]∈Z
. (4)

a fixed recourse one.

Definition. We define the Adjustable Robust Counterpart (ARC) of the uncertain Linear
Programming problem LPZ as

(ARC) : min
u

{
cT u : ∀(ζ = [U, V, b] ∈ Z) ∃v : Uu + V v ≤ b

}
. (5)

In contrast, the usual Robust Counterpart of LPZ is:

(RC) : min
u

{
cT u : ∃v ∀(ζ = [U, V, b] ∈ Z) : Uu + V v ≤ b

}
, (6)
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It can easily be seen that the ARC is more flexible than the RC, i.e., it has a larger robust
feasible set, enabling a better optimal value while still satisfying all possible realizations
of the constraints. The difference between the ARC and the RC can be very significant,
as demonstrated in the following example.

Example 1.2. Consider an uncertain Adjustable Linear Programming problem with a
single equality constraint: αu + βv = 1, where the uncertain data (α, β) can take
values in the uncertainty set Z = {(α, β)| α ∈ [ 1

2 , 1], β ∈ [ 1
2 , 1]}. Then the feasible

set of the RC of this problem {u|∃v∀(α, β) ∈ Z : αu + βv = 1} = ∅. This happens
because in particular for α = 1 we get ∀β ∈ [ 1

2 , 1] : u + βv = 1 ⇒ u = 1, v = 0 is
the unique solution. And then ∀α ∈ [ 1

2 , 1] : α · 1 + β · 0 = 1 does not hold. At the same
time, the feasible set of the ARC {u| ∀(α, β) ∈ Z ∃v : αu + βv = 1} = R, since for
any fixed ū the constraint can be satisfied by taking v = 1−αū

β
.

The goal of this paper is to investigate the concept of the Adjustable Robust Counter-
part of an uncertain LP problem. The main body of the paper is organized as follows. We
start by identifying conditions under which the ARC of an uncertain LP is equivalent to
the RC of the problem (Section 2). The conditions turn out to be quite demanding, thus
the rest of the paper considers the much more general situations when these conditions
are not fulfilled, in which case ARC can be significantly less conservative than the RC.
The next issue to be addressed is the tractability of the ARC (Section 2). It turns out
that while the RC of an uncertain LP typically is a computationally tractable problem
(see [4]), this is not the case with ARC. This unfortunate fact motivates the notion of
Affinely Adjustable Robust Counterpart (AARC) of an uncertain LP, where we restrict
the adjustable variables to be affine functions of the corresponding data. This notion
is introduced and motivated in Section 3, where we demonstrate that the AARC of an
uncertain LP is efficiently (polynomially) solvable in the fixed recourse case. The case
of uncertain recourse matrix is considered in Section 4, where we demonstrate that the
AARC of an uncertain LP, although itself not necessarily tractable, always admits tight
tractable approximation by a Semidefinite program. In Section 5 we apply the AARC
methodology to a multi-stage uncertain inventory system.

2. Adjustable robust counterpart of an uncertain LP problem

The very reason for defining ARC is to enable more flexibility in cases when RC is
unjustifiably conservative. Nevertheless, there are some cases when the ARC and the
RC of uncertain Adjustable Linear Programming problem are equivalent. These include
the cases where the uncertainty affecting every one of the constraints is independent of
the uncertainty affecting all other constraints.

Theorem 2.1. Let LPZ (3) satisfy the following two assumptions:

1. The uncertainty is constraint-wise, i.e., there is a partition ζ = (ζ 1, . . . , ζm) of
vector ζ in non-overlapping sub-vectors such that
• For every i = 1, ..., m, and for all u, v the quantity (U(ζ )u + V (ζ )v − b(ζ ))i

depends on ζ i only:

(U(ζ )u + V (ζ )v − b(ζ ))i = (U(ζ i)u + V (ζ i)v − b(ζ i))i;
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• There exist nonempty convex compact sets Zi ⊂ Rdim ζ i
such that Z = Z1 ×

. . . × Zm = {ζ = (ζ 1, ..., ζm) : ζ i ∈ Zi , i = 1, . . . , m
}
.

2. Whenever u is feasible for (ARC), there exists a compact set Vu such that for every
ζ ≡ [U, V, b] ∈ Z the relation

U(ζ )u + V (ζ )v ≤ b(ζ )

implies that v ∈ Vu.

Then the RC of LPZ is equivalent to its ARC.

Proof. See Appendix.

The conditions under which ARC is equivalent to RC are quite stringent. Even in
simple situations when two or more constraints can depend on the same uncertain param-
eter, the ARC can significantly improve the solution obtained by the RC. As an example
consider the following uncertain LP:

min
u,v

{−u : (1 − 2ξ)u + v ≥ 0, ξu − v ≥ 0, u ≤ 1}0≤ξ≤1

Note that here the uncertainty ξ influences both the first and the second constraints. It
can easily be seen that the optimal value of the RC of this problem is

min
u

{−u | ∃ v ∀(ξ ∈ [0, 1]) : (1 − 2ξ)u + v ≥ 0, ξu − v ≥ 0, u ≤ 1 } = 0

achieved at the unique solution u = 0, v = 0. The optimal value of the ARC is

min
u

{−u |∀(ξ ∈ [0, 1]) ∃ v : (1 − 2ξ)u + v ≥ 0, ξu − v ≥ 0, u ≤ 1 } = −1,

where for any ū ≤ 1 we can take v = ξ ū to obtain feasibility.

Tractability of the ARC. Unfortunately, it turns out that there is a “price to pay” for
the flexibility of the ARC. Specifically, the usual RC of LPZ (6), with computationally
tractable uncertainty set Z , can be solved efficiently (see [4]). Usually this is not the
case with the Adjustable Robust Counterpart of LPZ (5). One simple case when ARC
is tractable (in fact is an LP) is the following:

Theorem 2.2 (see [12]). Assume that the uncertainty set Z is given as the convex hull
of a finite set :

Z = Conv {[U1, V1, b1], . . . , [UN, VN, bN ]} . (A)

Then in the case V1 = ... = VN of fixed recourse the ARC is given by the usual LP

min
u,v1,... ,vN

{
cT u : U�u + V v� ≤ b�, � = 1, . . . , N

}
,

and as such is computationally tractable.

Even in the fixed recourse case with a general-type polytope Z given by a list of
linear inequalities, the ARC can be NP-hard. The same is true when Z is given by (A),
but Vi do depend on i (for proofs of these claims, see [12])).

From the practical viewpoint, the Robust Optimization approach is useful only when
the resulting robust counterpart of the original uncertain problem is a computationally
tractable program, which is not the typical case for the Adjustable RC approach. A pos-
sible remedy is to find a computationally tractable approximation of the ARC. This is
the issue we address next.
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3. Affinely adjustable robust counterpart

When passing from general uncertain problem LPZ to its Adjustable Robust Counter-
part, we allow the adjustable variables v to tune themselves to the true data ζ . What we are
interested in are the non-adjustable variables u which can be extended, by appropriately
tuned adjustable variables, to a feasible solution of the instance of LPZ , whatever be the
instance. Now let us impose a restriction on how the adjustable variables can be tuned
to the data. The simplest restriction of this type is to require of the adjustable variables
to be affine functions of the data. The main motivation behind this restriction is that, as
we shall see in a while, it results in a computationally tractable robust counterpart. The
affine dependency restriction we have chosen here is very much in the spirit of using
linear feedbacks in controlled dynamical systems.

Example 2.1. Consider the controlled dynamical system:

st+1 = A(t)st + B(t)ut + D(t)dt

yt = C(t)st
, t = 0, 1, 2, ... (7)

where:

• st is the state of the plant,
• yt is the output,
• ut is the control,
• A(t), B(t), C(t), D(t) are the certain (time-varying) data of the system, and dt is

the uncertain exogenous input.

A typical control law for (7) is given by a linear feedback ut = K(t)yt . With such a
control, the dynamics of the system becomes st+1 = [A(t)+B(t)K(t)C(t)]st +D(t)dt .

Assuming that the only uncertainty affecting the system is represented by the exogenous
input dt , one can observe that (for a given feedback and initial state) the states st (and
thus – the controls ut ) become affine functions of dr , r < t . Consequently, treating
ut as the adjustable decision variables, we can say that control via a linear feedback,
in a linear dynamical system affected by uncertain exogenous input, is a particular
case of decision-making with adjustable variables specified as affine functions of the
uncertainty.

Coming back to the general problem LPZ , we assume that for u given, v is forced
to be an affine function of the data:

v = w + Wζ.

With this approach, the possibility to extend non-adjustable variables u to feasible solu-
tions of instances of LPZ is equivalent to the fact that u can be extended, by properly
chosen vector w and matrix W , to a solution of the infinite system of inequalities

Uu + V (w + Wζ) ≤ b ∀(ζ = [U, V, b] ∈ Z),

in variables u, w, W , and the Affinely Adjustable Robust Counterpart (AARC) of LPZ
(3) is defined as the optimization program

min
u,w,W

{
cT u : Uu + V (w + Wζ) ≤ b ∀(ζ = [U, V, b] ∈ Z)

}
. (8)
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Note that (8) is “in-between” the usual RC of LPZ and the Adjustable RC of the prob-
lem; to get the RC, one should set to zero the variable W in (8). Since (8) seems simpler
than the general ARC of LPZ , there is a hope that it is computationally tractable in
cases where the ARC is intractable. We are about to demonstrate that

1. In the case of fixed recourse, the AARC is computationally tractable, provided that
that the uncertainty set Z itself is computationally tractable (Theorem 3.1). The
latter concept means that for any vector z there is a tractable computational scheme
(so-called “separation oracle”) that either asserts correctly that z ∈ Z or, otherwise,
generates a separator – a nonzero vector s such that sT z ≥ maxy∈Z sT y (see [11]
for a comprehensive treatment of these notions). Moreover, if the uncertainty set
is given by system of linear/second-order cone/semidefinite constraints, the AARC
can be reformulated as an explicit Linear/Second-Order Cone/Semidefinite program,
respectively (Theorems 3.2, 3.3);

2. In the case of uncertainty-affected recourse and the uncertainty set being the inter-
section of concentric ellipsoids, the AARC admits tight computationally tractable
approximation which is an explicit Semidefinite program; this approximation is exact
when the uncertainty set is an ellipsoid (Theorem 4.1).

Theorem 3.1. Consider the fixed recourse LPZ (4). If Z is a computationally tractable
set, then the AARC (8) of this LPZ is computationally tractable as well.

Proof. It can easily be seen that since the recourse matrix V is fixed, the AARC (8) can
be rewritten as:

min
x=[u,w,W ]

{
cT u : A(ζ )x ≤ b(ζ ), ∀ζ ∈ Z

}
, (9)

with properly chosen A(ζ ), b(ζ ) affinely depending on ζ and with x = [u, w, W ]. An
equivalent representation of (9) is :

min
x

{
cT x : x ∈ G

}

G = {x | ∀ζ ∈ Z : −A(ζ )x + b(ζ ) ≥ 0} (10)

The latter problem is the usual Robust Counterpart of an uncertain Linear Program-
ming problem with the data affinely parameterized by ζ ∈ Z , so that the results on
computational tractability of (10) (and thus – of (8)) are readily given by [4]. ��

Theorem 3.1 claims that when the uncertainty set Z in a fixed recourse LPZ is com-
putationally tractable, then so is the AARC of the problem. We are about to demonstrate
that when Z is not only computationally tractable, but is also “well-structured” (specif-
ically, given by a list of linear inequalities or, much more generally, by a list of Linear
Matrix Inequalities), then the corresponding AARC is also “well structured” (and thus
can be solved, even in the large-scale case, by powerful optimization techniques known
for Linear and Semidefinite Programming). To derive these results it is more convenient
to pass to an equivalent form of AARC.
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Parameterized uncertainty and equivalent form of AARC. It is convenient to assume
the uncertainty set Z to be affinely parameterized by a “vector of perturbations” ξ varying
in a nonempty convex compact perturbation set X ⊂ RL, so that

Z = {[U, V, b] = [U0, V 0, b0] +
L∑

�=1

ξ�[U�, V �, b�] : ξ ∈ X }, (11)

Observe that this assumption does not restrict generality (since we always can setU0 = 0,
V 0 = 0, b0 = 0, X = Z and define ξ as the vector of coordinates of [U, V, b] with
respect to a certain basis {[U�, V �, b�]} in the space of triples [U, V, b]). Without loss
of generality we may assume that the parameterization mapping

ξ → [U0, V 0, b0] +
L∑

�=1

ξ�[U�, V �, b�] (12)

is an embedding; since Z is a nonempty convex compact set and the parameterization
is an embedding, the set X is indeed a nonempty convex compact.

Note that since the parameterization (11) of Z is an affine embedding, the restriction
on the adjustable variables to be affine functions of ζ is equivalent to the restriction
on these variables to be affine functions of ξ . Thus, when building the AARC, we lose
nothing by assuming that the adjustable variables are affine functions of ξ :

v = v(ξ) = v0 +
∑

�

ξ�v
�.

In terms of the original non-adjustable variables u and the just introduced non-adjustable
variables v0, v1, . . . , vL, the AARC of the uncertain LP (3) becomes

min
u,v0,v1,... ,vL

{
cT u :

[
U0 +∑ ξ�U

�
]
u+[V 0 +∑ ξ�V

�
][

v0 +∑ ξ�v
�
]

≤ [b0 +∑ ξ�b
�
]
, ∀ ξ ∈ X

}
. (13)

We are currently dealing with the case when the recourse matrix V is fixed. Thus, (13)
becomes:

min
u,v0,v1,... ,vL

{
cT u :

[
U0 +∑ ξ�U

�
]
u + V

[
v0 +∑ ξ�v

�
]

≤ [b0 +∑ ξ�b
�
]
, ∀ξ ∈ X

}
. (14)

The AARC of a fixed recourse LP with a cone-represented uncertainty set. Consider
the case of a perturbation set given by a “conic representation”

X = { ξ | ∃ω : Aξ + Bω ≥K d} ⊂ RL; (15)

here A, B, d are the data of the representation, K is a closed, pointed convex cone with
a nonempty interior and a ≥K b means that a − b ∈ K. Let us set

χ = (u, v0, v1, . . . , vL),

ai
� ≡ ai

�(χ) ≡ (−U�u − V v� + b�)i, � = 0, 1, . . . , L, i = 1, ..., m.
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Theorem 3.2. Assume that the perturbation set is represented by (15) and the represen-
tation is strictly feasible, i.e., there exist ξ̄ , ω̄ such that

Aξ̄ + Bω̄ − d ∈ intK.

Then the AARC of the fixed recourse LP (4) is equivalent to the optimization program

min
u,v0,v1,... ,vL,λ1,...,λm

cT u

s.t.

AT λi − ai(u, v0, v1, . . . , vL) = 0, i = 1, . . . , m;
BT λi = 0, i = 1, . . . , m;

dT λi + ai
0(u, v0, v1, . . . , vL) ≥ 0, i = 1, . . . , m;

λi ≥K∗ 0, i = 1, . . . , m, (16)

where K∗ is the cone dual to K.
In particular, in the case when K is a direct product of Lorentz cones or a semidefinite

cone, the AARC of the fixed recourse LP (4) is, respectively, an explicit Conic Quadratic
or Semidefinite Programming program. The sizes of the latter problems are polynomial
in those of the description of the perturbation set (15) and the parameterization mapping
(11).

Proof. The objective in (14) is the same as in (16). Thus, all we should verify is that a
collection χ = (u, v0, v1, . . . , vL) is feasible for (14) if and only if it can be extended
to a feasible solution of (16).

Observe that χ = (u, v0, v1, . . . , vL) is feasible for (14) if and only if for every
i = 1, . . . , m relation

ai
0(χ) +

L∑
�=1

ξ�a
i
�(χ) ≥ 0, ∀ξ ∈ X . (17)

holds, or, which is the same, if and only if for all i = 1, ..., m the optimal values in the
conic programming programs

Opti ≡ min
ξ,ω

ai
0(χ) +∑ ai

�(χ)ξ�

s.t. Aξ + Bω ≥K d; (CPi[χ ])

in variables ξ, ω are nonnegative.
Since (15) is strictly feasible, problem (CPi[χ ]) is strictly feasible. Therefore by the

Conic Duality Theorem, Opti ≥ 0 if and only if the corresponding conic dual problem,
which is

max
λ

{
ai

0(χ) + dT λ : AT λ = ai(χ) ≡ (ai
1(χ), ..., ai

L(χ))T , BT λ = 0, λ ∈ K∗
}

.

(Di[χ ])
has a nonnegative optimal value, i.e., if and only if

∃λ : AT λ = ai(χ) ≡ (ai
1(χ), . . . , ai

L(χ))T , BT λ = 0, λ ∈ K∗, ai
0(χ) + dT λ ≥ 0.
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Recalling that χ is feasible for (14) if and only if Opti ≥ 0, i = 1, . . . , m, we con-
clude that χ is feasible for (14) if and only if χ can be extended by properly chosen λi ,
i = 1, . . . , m, to a feasible solution to (16), as claimed. ��

In the case when K is a nonnegative orthant, i.e., Z is a polyhedral set given by

X = { ξ | ∃ω : Aξ + Bω ≥ d} ⊂ RL, (18)

the proof of Theorem 3.2 clearly remains valid without imposing the assumption of strict
feasibility of (18), and we arrive at the following result.

Theorem 3.3. In the case of polyhedral perturbation set (18), the AARC of the fixed
recourse LP (4) is equivalent to an explicit LP program. The sizes of this LP are poly-
nomial in the sizes of the description of the perturbation set and the parameterization
mapping (12).

4. Approximating the AARC in the case of uncertainty-affected recourse matrix

In the previous Section we have seen that the AARC of a fixed recourse uncertain LP
with tractable uncertainty is computationally tractable. Unfortunately, when the recourse
matrix V is affected by uncertainty, the AARC can become computationally intractable.
We demonstrate this by the following example.

Example 3.1. Consider the following uncertain LP:
{

min
u,v

{
u
∣∣u − ζ T v ≥ 0, v ≥ Qζ, −v ≥ −Qζ

}}

ζ∈�

where Q is an n × n matrix and � = {ξ ≥ 0 :
∑
i

ξi = 1} is the standard simplex. The

AARC of this uncertain problem is:

min
u,w,W


u

∣∣∣∣∣∣
u − ζ T (w + Wζ) ≥ 0
(w + Wζ) ≥ Qζ

−(w + Wζ) ≥ −Qζ

∀ζ ∈ �

 ,

or, which is the same:
min

u
{u|u ≥ ζ T Qζ ∀ζ ∈ �}.

The optimal value in the AARC is maxζ∈�{ζ T Qζ }. Thus, if the AARC in question
would be computationally tractable, so would be the problem of maximizing a quadratic
form over the standard simplex. But the latter problem is equivalent to the problem of
checking copositivity, a problem known to be NP-hard (see, e.g., [15, 16]).

We have just seen that when the recourse matrix V is not fixed, the AARC of LPZ
can become computationally intractable. The goal of this section is to utilize recent
results of [6] (obtained there for the robust counterparts of general-type uncertain conic
quadratic constraints affected by ellipsoidal uncertainty) in order to demonstrate that in
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many important cases this intractable AARC admits a tight computationally tractable
approximation.

It is more convenient to use the “perturbation-based” model (11) of the uncertainty
set and the description of the AARC as it appears in (13). Then the feasible set of the
AARC is given by a system of m scalar constraints:

∀ξ ∈ X :
[
U0

i +
∑

ξ�U
�
i

]
u +

[
V 0

i +
∑

ξ�V
�
i

] [
v0 +

∑
ξ�v

�
]

−
[
b0
i +

∑
ξ�b

�
i

]

=
[
U0

i u + V 0
i v0 − b0

i

]
+
∑

ξ�

[
U�

i u + V 0
i v� + V �

i v0 − b�
i

]

+
[∑

ξkξ�V
k
i v�
]

≤ 0. (19)

Setting x ≡ [u, v0, v1, . . . , vL], we define the functions

• αi(x) ≡ − [U0
i u + V 0

i v0 − b0
i

]

• β�
i (x) ≡ −

[
U�

i u+V 0
i v�+V �

i v0−b�
i

]
2 , � = 1, . . . , L

• 

(�,k)
i (x) ≡ −V k

i v�+V �
i vk

2 , �, k = 1, . . . , L,

i = 1, . . . , m, and observe that these are affine functions of x. We can now represent
(19) as:

∀ξ ∈ X : αi(x) + 2 ξT βi(x) + ξT 
i(x)ξ ≥ 0, (20)

where 
i(x), by construction, is a symmetric matrix. Assume that we deal with an ∩-
ellipsoidal uncertainty, specifically, that the perturbation vector ξ takes values in the
set

X = Xρ ≡
{
ξ

∣∣∣ ξT Sk ξ ≤ ρ2, k = 1, . . . , K
}

,

with ρ > 0, Sk � 0,
∑

Sk � 0, i.e., the perturbation set is explicitly given as an inter-
section of a finite number of concentric ellipsoids and elliptic cylinders. Note that the
∩-ellipsoidal uncertainty allows for a wide variety of convex perturbation sets symmetric
with respect to the origin. For example,

• if K = 1, we get a perturbation set which is an ellipsoid centered at the origin;
• if K = dim ξ and ξT Skξ = a−2

k ξ2
k , k = 1, . . . , K , we get a perturbation set which

is a box {|ξk| ≤ ρak, k = 1, . . . , K} centered at the origin;
• if Sk is a dyadic matrix gkg

T
k , we get a perturbation set which is a polytope symmetric

with respect to the origin: {ξ : |gT
k ξ | ≤ ρ, k = 1, . . . , K}.

An equivalent representation of X is:

X =
{
ξ

∣∣∣ ξT
(
ρ−2 Sk

)
ξ ≤ 1, k = 1, . . . , K

}
.1) (21)

1 For ρ > 0 still holds: (ρ−2Sk) � 0,
∑

(ρ−2Sk) � 0.
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Now let us make use of the following simple observation:

Lemma 4.1. For every x, the implication

∀ t, ξ : t2 ≤ 1, ξT (ρ−2Sk)ξ ≤ 1, k = 1, . . . , K

⇓
−2 ξT βi(x)t − ξT 
i(x)ξ ≤ αi(x).

A(i)

is valid if and only if x is feasible for i-th constraint (20) of the AARC:

∀ξ ∈ X : αi(x) + 2 ξT βi(x) + ξT 
i(x)ξ ≥ 0. B(i)

Proof. Suppose that x is such thatA(i) is true, and let ξ ∈ X . By (21) the latter means that
the pair (ξ, t = 1) satisfies the premise in A(i); thus, if A(i) holds true, then (ξ, t = 1)

satisfies the conclusion in A(i) as well, and this conclusion for t = 1 is exactly the
inequality in B(i). We see that if x is such that A(i) holds true, then B(i) holds true as
well. Vice versa, let x be such that B(i) holds true. Since the set X is given by (21) (and
thus is symmetric), it follows that

∀(ξ : ξT ρ−2Skξ ≤ 1, k = 1, . . . , K) : ±2 ξT βi(x) − ξT 
i(x)ξ ≤ αi(x),

so that the inequality in the conclusion ofA(i) is valid for all (ξ, t) such that ξT ρ−2Skξ ≤
1, k = 1, . . . , K , and t = ±1. Since the left hand side of this inequality is linear in
t , the inequality in fact is valid for all (ξ, t) satisfying the premise of A(i), so that A(i)
holds true. ��

Now let µ ≥ 0, λk ≥ 0, k = 1, . . . , K . For every pair (ξ, t) satisfying the premise
in A(i) we have t2 ≤ 1, ξT ρ−2Skξ ≤ 1, k = 1, . . . , K , therefore the relation

µt2 + ξT

(
K∑

k=1

ρ−2λkSk

)
ξ ≤ µ +

K∑
k=1

λk (∗)

is a consequence of the inequalities in the premise of A(i). It follows that if for a given

x there exist µ ≥ 0, λk ≥ 0, k = 1, . . . , K such that µ +
K∑

k=1
λk ≤ αi(x) and at the

same time for all t, ξ

−2 ξT βi(x)t − ξT 
i(x)ξ ≤ µt2 + ξT

(
K∑

k=1

ρ−2λkSk

)
ξ,

then, in particular, for t, ξ satisfying the premise of A(i) one has:

−2 ξT βi(x)t − ξT 
i(x)ξ ≤ µt2 + ξT

(
K∑

k=1
ρ−2λkSk

)
ξ≤µ +

K∑
k=1

λk ≤ αi(x),

i.e., the conclusion of A(i) is satisfied. Thus, in the case in question A(i) (and conse-
quently B(i)) holds true. In other words, the condition

∃µ, λ1, . . . , λK ≥ 0 :





i(x) + ρ−2∑K
k=1 λkSk βi(x)

βT
i (x) µ


 � 0,

µ +
K∑

k=1

λk ≤ αi(x)

(22)
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is a sufficient condition for the validity of B(i). Recalling that x is feasible for AARC if
and only if the corresponding relations B(i) hold true for i = 1, . . . , m, and eliminating
µ, we arrive at the following result:

Theorem 4.1. The explicit Semidefinite program

min
λ1,... ,λm, x=[u,v0,v1,... ,vK ]

cT u

s.t.





i(x) + ρ−2∑K
k=1 λi

kSk βi(x)

βT
i (x) αi(x) −∑K

k=1 λi
k


 � 0, i = 1, . . . m

λi ≥ 0, i = 1, . . . , m (23)

is a “conservative approximation” to the AARC (13), i.e., if x can be extended, by some
λ1, . . . , λm, to a feasible solution of (23), then x is feasible for (13).

We are about to prove that

• when K = 1, i.e., when the perturbation set X is an ellipsoid centered at the origin
(“simple ellipsoidal uncertainty”), problem (23) is exactly equivalent to the AARC,
and

• in the general case K > 1, problem (23) is a tight, in certain precise sense, approxi-
mation of the AARC.

The case of simple ellipsoidal uncertainty. We start with the following modification of
Lemma 4.1:

Lemma 4.2. Let K = 1. For every x, the implication

∀ ξ, t : ξT (ρ−2S1)ξ ≤ t2

⇓
αi(x)t2 + 2 ξT βi(x)t + ξT 
i(x)ξ ≥ 0

C(i)

holds true if and only if x is feasible for i’th constraint (20) of the AARC:

∀ξ ∈ X : αi(x) + 2 ξT βi(x) + ξT 
i(x)ξ ≥ 0. B(i)

Proof. Indeed, in view of Lemma 4.1, in order to prove Lemma 4.2 it suffices to verify
that for a given x, C(i) takes place if and only if A(i) takes place. Let A(i) be valid; then
if ξ and t �= 0 satisfy the premise of C(i), i.e., ξT (ρ−2S1)ξ ≤ t2, then ξ/|t |, t/|t | satisfy
the premise of A(i), and the conclusion of A(i)

− 2ξT βi(x)t

t2 − ξT 
i(x)ξ

t2 ≤ αi(x)

is exactly the desired conclusion of C(i). Since we are in the situation when S1 =
K∑

k=1
Sk � 0, the only pair (ξ, t) with t = 0 satisfying the premise in C(i) is the trivial

pair (ξ = 0, t = 0), and for this pair the conclusion in C(i) is evident. Thus, when A(i)
is valid, so is C(i).
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Now let us prove that the validity of C(i) implies the validity of A(i). Assume that
C(i) is valid, and let (ξ, t) satisfy the premise in A(i), i.e., ξT ρ−2S1ξ ≤ 1, t2 ≤ 1.
The pairs (ξ, 1) and (ξ, −1) satisfy the premise in C(i); since C(i) is valid, the conclu-
sion of C(i) is satisfied for both these pairs, i.e.,

αi(x) ± 2 ξT βi(x) + ξT 
i(x)ξ ≥ 0.

Since |t | ≤ 1, we conclude that

αi(x) + 2 ξT βi(x)t + ξT 
i(x)ξ ≥ 0

as well, i.e., (ξ, t) satisfy the conclusion in A(i), so that A(i) is valid. ��
Now let us recall the following fundamental fact (see, e.g., [2, 8]):

Lemma 4.3 (S - Lemma). Let A, B be symmetric matrices of the same size, and let the
homogeneous quadratic inequality

yT Ay ≥ 0 (24)

be strictly feasible (i.e., ȳT Aȳ > 0 for some ȳ). A homogeneous quadratic inequality

yT By ≥ 0

is a consequence of (24) if and only if there exists nonnegative λ such that

B � λA.

Let us apply the S-Lemma to the following pair of quadratic forms of y =
(

ξ

t

)
:

yT Ay = t2 − ξT ρ−2S1ξ where A =
(−ρ−2S1 0

0 1

)

yT By = αi(x)t2 + 2 ξT βi(x)t + ξT 
i(x)ξ where B =
(


i(x) βi(x)

βT
i (x) αi(x)

)
.

Clearly, the quadratic inequality yT Ay ≥ 0 is strictly feasible. Applying the S - Lemma
we conclude that the implication C(i) takes place if and only if

∃λ ≥ 0 : B − λA ≡
(


i(x) + λρ−2S1 βi(x)

βT
i (x) αi(x) − λ

)
� 0. (25)

Since C(i) is equivalent to B(i), and x is feasible for the AARC if and only if the predi-
cates B(i) holds for i = 1, . . . , m, we conclude that x is feasible for the AARC if and
only if (25) holds for every i = 1, . . . , m, or, which is the same, if and only if x can be
extended to a feasible solution of (23). We arrive at the following result:

Theorem 4.2. In the case of simple ellipsoidal uncertainty K = 1, the explicit semidef-
inite program (23) is equivalent to the AARC.
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The case of K > 1. In order to derive a result on the quality of the approximation of
(13), given by Theorem 4.1, we need the following “approximate” S-Lemma proved in
[6]:

Lemma 4.4 (ApproximateS-lemma). LetR, R0, R1, . . . , RK be symmetricn×nmatri-
ces such that R1, . . . , RK � 0, and assume that

∃ν0, ν1, . . . , νK ≥ 0 such that
K∑

k=0

νkRk � 0.

Consider the following quadratically constrained quadratic program:

QCQ = max
y∈Rn

{
yT Ry : yT R0y ≤ r0, y

T Rky ≤ 1, k = 1, . . . , K
}

(26)

and the semidefinite optimization problem:

SDP = min
µ0,µ1,... ,µK

{
r0µ0 +

K∑
k=1

µk :
K∑

k=0

µkRk � R, µ ≥ 0

}
. (27)

Then

(i) If problem (26) is feasible, then problem (27) is bounded below and SDP ≥ QCQ.

Moreover there exist y∗ ∈ Rn such that

(a) yT
∗ Ry∗ =SDP

(b) yT
∗ R0y∗≤r0

(c) yT
∗ Rky∗≤2, k = 1, . . . , K (28)

where

 =
√√√√2 ln

(
6

K∑
k=1

Rank(Rk)

)
,

if R0 is a dyadic matrix, and

 =
√√√√2 ln

(
16n2

K∑
k=1

Rank(Rk)

)
(29)

otherwise.
(ii) If r0 > 0, then (26) is feasible, problem (27) is solvable and

0 ≤ QCQ ≤ SDP ≤ 2QCQ. (30)

Now assume that certain x cannot be extended to a feasible solution of (23), so that for
certain i ≤ m the condition (22) is not valid. Given x and i, let us specify the entities
appearing in the Approximate S-Lemma as follows:

• y =
(

ξ

t

)
;

• yT Ry = −2ξT βi(x)t − ξT 
i(x)ξ ;
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• yT R0y = t2, r0 = 1;
• yT Rky = ξT ρ−2Skξ , k = 1, . . . , K .

It is immediately seen that with this setup

• all the conditions of the Approximate S-Lemma are satisfied (with r0 > 0 and R0
being dyadic);

• the validity of the condition (22) is equivalent to the validity of the inequality SDP ≤
αi(x). Since we are in the situation when the former condition is not valid, we con-
clude that SDP > αi(x).

By the conclusion of the Approximate S-Lemma, there exists y∗ =
(

ξ∗
t∗

)
such that (28)

holds true, i.e., such that

(a) αi(x) < SDP = yT∗ Ry∗ ≡ −2ξT∗ βi(x)t∗ − ξT∗ 
i(x)ξ∗;
(b) yT∗ R0y∗ ≡ t2∗ ≤ 1;
(c) 1 ≥ yT∗ −2Rky∗ ≡ ξ∗(ρ)−2Skξ∗, k = 1, . . . , K,

(31)

where

 =
√√√√2 ln

(
6

K∑
k=1

Rank(Sk)

)
. (32)

Relations (31) say that when the perturbation level ρ is replaced with ρ, the implica-
tion A(i) fails to be true, so that with this new perturbation level, B(i) does not hold,
and therefore x is not feasible for the AARC. We have arrived at the following statement
which quantifies the “tightness” of the approximation to AARC we have built:

Theorem 4.3. The projection on the x-space of the feasible set of the approximate
AARC (23) is contained in the feasible set of the true AARC, the perturbation level
being ρ, and contains the feasible set of the AARC, the perturbation level being ρ.
In particular, the optimal value in (23) is in-between the optimal values of the AARC’s
corresponding to the perturbation levels ρ and ρ.

Note that in reality the quantity  given by (32) is a moderate constant: it is ≤ 6, provided
that the total rank of the matrices Sk participating in the description of the perturbation
set is less than 65,000,000.

Remark 4.1. We have considered the case when the adjustable variables are restricted
to be affine functions of the entire perturbation vector ξ . It is immediately seen that all
constructions and results of Sections 3, 4 remain valid in the case when every one of the
adjustable variables vi is allowed to be an affine function of a “prescribed portion” Piξ

of the perturbation vector, where Pi are given matrices.

5. Example: an inventory model

In this section we illustrate the use of the AARC approach by considering an inventory
management problem.
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The model. Consider a single product inventory system, which is comprised of a ware-
house and I factories. The planning horizon is T periods. At a period t :

• dt is the demand for the product. All the demand must be satisfied;
• v(t) is the amount of the product in the warehouse at the beginning of the period

(v(1) is given);
• pi(t) is the i-th order of the period – the amount of the product to be produced during

the period by factory i and used to satisfy the demand of the period (and, perhaps,
to replenish the warehouse);

• Pi(t) is the maximal production capacity of factory i;
• ci(t) is the cost of producing a unit of the product at a factory i.

Other parameters of the problem are:

• Vmin – the minimal allowed level of inventory at the warehouse;
• Vmax – the maximal storage capacity of the warehouse;
• Qi – the maximal cumulative production capacity of i’th factory throughout the

planning horizon.

The goal is to minimize the total production cost over all factories and the entire plan-
ning period. When all the data are certain, the problem can be modelled by the following
linear program:

min
pi(t),v(t),F

F

s.t.
T∑

t=1

I∑
i=1

ci(t)pi(t) ≤ F

0 ≤ pi(t) ≤ Pi(t), i = 1, . . . , I, t = 1, . . . , T (33)
T∑

t=1

pi(t) ≤ Q(i), i = 1, . . . , I

v(t + 1) = v(t) +
I∑

i=1

pi(t) − dt , t = 1, . . . , T

Vmin ≤ v(t) ≤ Vmax, t = 2, . . . , T + 1.

Eliminating v-variables, we get an inequality constrained problem:

min
pi(t),F

F

s.t.
T∑

t=1

I∑
i=1

ci(t)pi(t) ≤ F

0 ≤ pi(t) ≤ Pi(t), i = 1, . . . , I, t = 1, . . . , T (34)
T∑

t=1

pi(t) ≤ Q(i), i = 1, . . . , I

Vmin ≤ v(1) +
t∑

s=1

I∑
i=1

pi(s) −
t∑

s=1

ds ≤ Vmax, t = 1, . . . , T .
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Assume that the decision on supplies pi(t) is made at the beginning of period t , and
that we are allowed to make these decisions on the basis of demands dr observed at
periods r ∈ It , where It is a given subset of {1, . . . , t}. Further, assume that we should
specify our supply policies before the planning period starts (“at period 0”), and that
when specifying these policies, we do not know exactly the future demands; all we know
is that

dt ∈ [d∗
t − θd∗

t , d∗
t + θd∗

t ], t = 1, . . . , T , (35)

with given positive θ and positive nominal demand d∗
t . We have now an uncertain LP,

where the uncertain data are the actual demands dt , the decision variables are the supplies
pi(t), and these decision variables are allowed to depend on the data {dτ : τ ∈ It } which
become known when pi(t) should be specified. Applying the AARC methodology, we
restrict our decision-making policy with affine decision rules

pi(t) = π0
i,t +

∑
r∈It

πr
i,t dr , (36)

where the coefficients πr
i,t are our new non-adjustable variables. With this approach,

(34) becomes the following uncertain Linear Programming problem in variables πs
i,t , F :

min
π,F

F

s.t.
T∑

t=1

I∑
i=1

ci(t)


π0

i,t +
∑
r∈It

πr
i,t dr


 ≤ F

0 ≤ π0
i,t +

∑
r∈It

πr
i,t dr ≤ Pi(t), i = 1, . . . , I, t = 1, . . . , T

T∑
t=1


π0

i,t +
∑
r∈It

πr
i,t dr


 ≤ Q(i), i = 1, . . . , I (37)

Vmin ≤ v(1) +
t∑

s=1




I∑
i=1

π0
i,s +

∑
r∈Is

πr
i,sdr


−

t∑
s=1

ds ≤ Vmax,

t = 1, . . . , T

∀{dt ∈ [d∗
t − θd∗

t , d∗
t + θd∗

t ], t = 1, . . . , T },
or, which is the same,

min
π,F

F

s.t.
T∑

t=1

I∑
i=1

ci(t)π
0
i,t +

T∑
r=1




I∑
i=1

∑
t :r∈It

ci(t)π
r
i,t


 dr − F ≤ 0

π0
i,t +

t∑
r∈It

πr
i,t dr ≤ Pi(t), i = 1, . . . , I, t = 1, . . . , T

π0
i,t +

∑
r∈It

πr
i,t dr ≥ 0, i = 1, . . . , I, t = 1, . . . , T
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T∑
t=1

π0
i,t +

T∑
r=1


∑

t :r∈It

πr
i,t


 dr ≤ Qi, i = 1, . . . , I

(38)
t∑

s=1

I∑
i=1

π0
i,s +

t∑
r=1




I∑
i=1

∑
s≤t,r∈Is

πr
i,s − 1


 dr ≤ Vmax − v(1)

t = 1, . . . , T

−
t∑

s=1

I∑
i=1

π0
i,s −

t∑
r=1




I∑
i=1

∑
s≤t,r∈Is

πz
i,s − 1


 dz ≤ v(1) − Vmin

t = 1, . . . , T

∀{dt ∈ [d∗
t − θd∗

t , d∗
t + θd∗

t ], t = 1, . . . , T }.
Now, using the following equivalences

T∑
t=1

dtxt ≤ y, ∀dt ∈ [d∗
t (1 − θ), d∗

t (1 + θ)]

�∑
t :xt<0

d∗
t (1 − θ)xt + ∑

t :xt>0
d∗
t (1 + θ)xt ≤ y

�
T∑

t=1
d∗
t xt + θ

T∑
t=1

d∗
t |xt | ≤ y,

and defining additional variables

αr ≡
∑
t :r∈It

ci(t)π
r
i,t ; δr

i ≡
∑
t :r∈It

πr
i,t ; ξ r

t ≡
I∑

i=1

∑
s≤t,r∈Is

πr
i,s − 1,

we can straightforwardly convert the AARC (38) into an equivalent LP (cf. Theorem
3.3):

min
π,F,α,β,γ,δ,ζ,ξ,η

F

I∑
i=1

∑
t :r∈It

ci(t)π
r
i,t = αr, −βr ≤ αr ≤ βr, 1 ≤ r ≤ T ,

T∑
t=1

I∑
i=1

ci(t)π
0
i,t +

T∑
r=1

αrd
∗
r + θ

T∑
r=1

βrd
∗
r ≤ F ;

−γ r
i,t ≤ πr

i,t ≤ γ r
i,t , r ∈ It , π0

i,t +
∑
r∈It

πr
i,t d

∗
r

+θ
∑
r∈It

γ r
i,t d

∗
r ≤ Pi(t), 1 ≤ i ≤ I, 1 ≤ t ≤ T ;

π0
i,t +

∑
r∈It

πr
i,t d

∗
r − θ

∑
r∈It

γ r
i,t d

∗
r ≥ 0, (39)

∑
t :r∈It

πr
i,t = δr

i , −ζ r
i ≤ δr

i ≤ ζ r
i , 1 ≤ i ≤ I, 1 ≤ r ≤ T ,
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T∑
t=1

π0
i,t +

T∑
r=1

δr
i d

∗
r + θ

T∑
r=1

ζ r
i d∗

r ≤ Qi, 1 ≤ i ≤ I ;
I∑

i=1

∑
s≤t,r∈Is

πr
i,s − ξ r

t = 1, −ηr
t ≤ ξ r

t ≤ ηr
t , 1 ≤ r ≤ t ≤ T ,

t∑
s=1

I∑
i=1

π0
i,s +

t∑
r=1

ξ r
t d∗

r + θ

t∑
r=1

ηr
t d

∗
r ≤ Vmax − v(1), 1 ≤ t ≤ T ,

t∑
s=1

I∑
i=1

π0
i,s +

t∑
r=1

ξ r
t d∗

r − θ

t∑
r=1

ηr
t d

∗
r ≥ v(1) − Vmin, 1 ≤ t ≤ T .

An illustrative example. There are I = 3 factories producing a seasonal product, and
one warehouse. The decisions concerning production are made every two weeks, and
we are planning production for 48 weeks, thus the time horizon is T = 24 periods. The
nominal demand d∗ is seasonal, reaching its maximum in winter, specifically,

d∗
t = 1000

(
1 + 1

2
sin

(
π (t − 1)

12

))
, t = 1, . . . , 24.

We assume that the uncertainty level θ is 20%, i.e., dt ∈ [0.8d∗
t , 1.2d∗

t ], as shown on
Fig. 1.

The production costs per unit of the product depend on the factory and on time and
follow the same seasonal pattern as the demand, i.e., rise in winter and fall in summer.

0 5 10 15 20 25 30 35 40 45 50
400
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• Nominal demand (solid)
• “demand tube” – nominal demand ±20% (dashed)
• a sample realization of actual demand (dotted)

Fig. 1. Demand.



Adjustable robust solutions of uncertain linear programs 371

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 2. Production costs for the 3 factories.

The production cost for a factory i at a period t is given by:

ci(t) = αi

(
1 − 1

2 sin
(

π (t−1)
12

))
, t = 1, . . . , 24.

α1 = 1
α2 = 1.5
α3 = 2

The maximal production capacity of each one of the factories at each two-weeks
period is Pi(t) = 567 units, and the integral production capacity of each one of the
factories for a year is Qi = 13600. The inventory at the warehouse should not be less
then 500 units, and cannot exceed 2000 units.

With this data, the AARC (39) of the uncertain inventory problem is an LP, the
dimensions of which vary, depending on the “information basis” (see below), from 919
variables and 1413 constraints (empty information basis) to 2719 variables and 3213
constraints (on-line information basis). In the experiments to be reported, these LP’s
were solved by the commercial code MOSEKOPT (see www.mosek.com).

The experiments. In every one of the experiments, the corresponding management
policy was tested against a given number (100) of simulations; in every one of the simu-
lations, the actual demand dt of period t was drawn at random, according to the uniform
distribution on the segment [(1 − θ)d∗

t , (1 + θ)d∗
t ] where θ was the “uncertainty level”

characteristic for the experiment. The demands of distinct periods were independent of
each other.

We have conducted two series of experiments:

1. The aim of the first series of experiments was to check the influence of the demand
uncertainty θ on the total production costs corresponding to the robustly adjustable
management policy – the policy (36) yielded by the optimal solution to the AARC
(39). We compared this cost to the “ideal” one, i.e., the cost we would have paid in
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the case when all the demands were known to us in advance and we were using the
corresponding optimal management policy as given by the optimal solution of (33).

2. The aim of the second series of experiments was to check the influence of the “infor-
mation basis” allowed for the management policy, on the resulting management cost.
Specifically, in our model as described in the previous section, when making deci-
sions pi(t) at time period t , we can make these decisions depending on the demands
of periods r ∈ It , where It is a given subset of the segment {1, 2, . . . , t}. The larger
are these subsets, the more flexible can be our decisions, and hopefully the less
are the corresponding management costs. In order to quantify this phenomenon, we
considered 4 “information bases” of the decisions:
(a) It = {1, . . . , t} (the richest “on-line” information basis);
(b) It = {1, . . . , t −1} (this standard information basis seems to be the most natural

“information basis”: past is known, present and future are unknown);
(c) It = {1, . . . , t−4} (the information about the demand is received with a four-day

delay);
(d) It = ∅ (i.e., no adjusting of future decisions to actual demands at all. This “infor-

mation basis” corresponds exactly to the management policy yielded by the usual
RC of our uncertain LP.).

The results of our experiments are as follows:

1. The influence of the uncertainty level on the management cost. Here we tested the
robustly adjustable management policy with the standard information basis against
different levels of uncertainty, specifically, the levels of 20%, 10%, 5% and 2.5%.
For every uncertainty level, we have computed the average (over 100 simulations)
management costs when using the corresponding robustly adaptive management
policy. We saved the simulated demand trajectories and then used these trajectories
to compute the ideal management costs. The results are summarized in Table 1. As
expected, the less is the uncertainty, the closer are our management costs to the
ideal ones. What is surprising, is the low “price of robustness”: even at the 20%
uncertainty level, the average management cost for the robustly adjustable policy
was just by 3.4% worse than the corresponding ideal cost; the similar quantity for
2.5%-uncertainty in the demand was just 0.3%.

2. The influence of the information basis. The influence of the information basis
on the performance of the robustly adjustable management policy is displayed in
Table 2. These experiments were carried out at the uncertainty level of 20%. We
see that the poorer is the information basis of our management policy, the worse

Table 1. Management costs vs. uncertainty level.

AARC Ideal case

Uncertainty Mean Std Mean Std
price of

robustness

2.5% 33974 190 33878 194 0.3%
5% 34063 432 33864 454 0.6%
10% 34471 595 34009 621 1.6%
20% 35121 1458 33958 1541 3.4%
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Table 2. The influence of the information basis on the management costs.

information basis Management cost
for decision pi(t) Mean Std

is demand in periods

1, . . . , t 34583 1475
1, . . . , t − 1 35121 1458
1, . . . , t − 4 Infeasible

∅ Infeasible

are the results yielded by this policy. In particular, with 20% level of uncertainty,
there does not exist a robust non-adjustable management policy: the usual RC of
our uncertain LP is infeasible. In other words, in our illustrating example, passing
from a priori decisions yielded by RC to “adjustable” decisions yielded by AARC
is indeed crucial.
An interesting question is what is the uncertainty level which still allows for a priori
decisions. It turns out that the RC is infeasible even at the 5% uncertainty level. Only
at the uncertainty level as small as 2.5% the RC becomes feasible and yields the
following management costs:

RC Ideal cost

Uncertainty Mean Std Mean Std
price of

robustness
2.5% 35287 0 33842 172 4.3%

Note that even at this unrealistically small uncertainty level the price of robustness
for the policy yielded by the RC is by 4.3% larger than the ideal cost (while for the
robustly adjustable management this difference is just 0.3%, see Table 1).
The preliminary numerical results we have presented are highly encouraging and
clearly demonstrate the advantage of the AARC-based approach to LP-based multi-
stage decision making under dynamical uncertainty.

Comparison with Dynamic Programming. An Inventory problem we have considered
is a typical example of sequential decision-making under dynamical uncertainty, where
the information basis for the decision xt made at time t is the part of the uncertainty
revealed at instant t . This example allows for an instructive comparison of the AARC-
based approach with Dynamic Programming, which is the traditional technique for
sequential decision-making under dynamical uncertainty. Restricting ourselves with the
case where the decision-making problem can be modelled as a Linear Programming
problem with the data affected by dynamical uncertainty, we could say that (minimax-
oriented) Dynamic Programming is a specific technique for solving the ARC of this uncer-
tain LP. Therefore when applicable, Dynamic Programming has a significant advantage
as compared to the above AARC-based approach, since it does not impose on the adjust-
able variables an “ad hoc” restriction (motivated solely by the desire to end up with
a tractable problem) to be affine functions of the uncertain data. At the same time,
the above “if applicable” is highly restrictive: the computational effort in Dynamical
Programming explodes exponentially with the dimension of the state space of the deci-
sion-making process in question. For example, the simple Inventory problem we have
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considered has 4-dimensional state space (the current amount of product in the warehouse
plus remaining total capacities of the three factories), which is already computationally
too demanding for accurate implementation of Dynamic Programming. In our opinion,
the main advantage of the AARC-based dynamical decision-making as compared with
Dynamic Programming (as well as with Multi-Stage Stochastic Programming) comes
from the “built-in” computational tractability of our approach, which prevents the “curse
of dimensionality” and allows to process routinely fairly complicated models with high-
dimensional state spaces and many stages.

Appendix

Proof of Theorem 2.1. It is clear that the set of the feasible solutions to the RC (6) is
contained in the feasible set of the ARC (5), so that all we need to show is that if a given
u is infeasible for the RC, then it is infeasible for the ARC as well.

Let u be infeasible for the RC and let Vu be the corresponding set from the premise
of the Theorem. Then

∀(v ∈ Vu)∃(ζv ∈ Z, iv ∈ {1, . . . , m}) : [U(ζv)u + V (ζv)v − b(ζv)]iv > 0. (40)

It follows that for every v ∈ Vu there exist ζv ∈ Z, iv ∈ {1, . . . , m} and εv > 0 such
that

[U(ζv)u + V (ζv)v − b(ζv)]iv > εv. (41)

The sets Bv ≡ {̃v ∈ Vu : [U(ζv)u + V (ζv)̃v − b(ζv)]iv > εv

}
constitute an open cover

of Vu; since Vu is compact, we can extract from this covering a finite sub-cover, i.e.,

∃(v1, . . . , vN ∈ Vu) :
N⋃

k=1

Bvk
= Vu. (42)

Therefore

∀(v ∈ Vu)∃(k ∈ {1, . . . , N}) :
(
v ∈ Bvk

⇔ [U(ζvk
)u + V (ζvk

)v − b(ζvk
)]ivk > εvk

)
.

(43)

Setting Bk = Bvk
, ik = ivk

, ζk = ζvk
, εk = εvk

, ε = min
k

εk , (43) implies that

∀(v ∈ Vu)∃(k ∈ {1, . . . , N}) : [U(ζk)u + V (ζk)v − b(ζk)]ik > ε. (44)

As a result of (44) the system of inequalities

[U(ζk)u + V (ζk)v − b(ζk)]i − ε < 0, i = 1, . . . , m, k = 1, . . . , N (45)

in variables v has no solution in Vu. By the Karlin-Bohnenblust Theorem [7] it fol-
lows that there exists collection of weights {λi,k ≥ 0}, ∑i,k λi,k = 1, such that the
corresponding combination of the left hand sides of the inequalities (45) is nonnegative
everywhere on Vu, so that



Adjustable robust solutions of uncertain linear programs 375

∀(v ∈ Vu) : ε

≤
∑
i,k

λi,k[U(ζk)u + V (ζk)v − b(ζk)]i

=
∑

i

(∑
k

λi,k [U(ζk)u + V (ζk)v − b(ζk)]i

)

=
∑

i:
∑

k λi,k>0

(∑
k

λi,k [U(ζk)u + V (ζk)v − b(ζk)]i

)

=
∑

i:
∑

k λi,k>0

((∑
k

λi,k

)

︸ ︷︷ ︸
µi

(∑
k

λi,k(∑
k λi,k

) [U(ζk)u + V (ζk)v − b(ζk)]i

))

=
∑

i:µi>0

(
µi

[
U

(∑
k

λi,k

µi

ζk

)
u + V

(∑
k

λi,k

µi

ζk

)
v − b

(∑
k

λi,k

µi

ζk

)]

i

)
.(46)

Due to the structure of Z as the product of convex sets Z1, . . . , Zm, the data ζ̃ =
(̃ζ 1, . . . , ζ̃ m) given by

ζ̃ i =




[∑
k

λi,k

µi

ζk

]
, µi > 0

an arbitrary point from Zi , µi = 0

is in Z (i’th block of ζ̃ is a convex combination of elements from Zi). Since the uncer-
tainty is constraint-wise, we have

[
U

(∑
k

λi,k

µi

ζk

)
u + V

(∑
k

λi,k

µi

ζk

)
v − b

(∑
k

λi,k

µi

ζk

)]

i

=
[
U(̃ζ i)u + V (̃ζ i)v − b(̃ζ i)

]
i
= [U(̃ζ )u + V (̃ζ )v − b(̃ζ )

]
i
. (47)

Combining (46) and (47), we get

∀(v ∈ Vu) : ε ≤
∑

i:
∑

k λi,k>0

(∑
k

λi,k

) [
U(̃ζ )u + V (̃ζ )v − b(̃ζ )

]
i
. (48)

Thus, the data ζ̃ ∈ Z we have built are such that for every v ∈ Vu at least one of the
quantities

[
U(̃ζ )u + V (̃ζ )v − b(̃ζ )

]
i
, i = 1, . . . , m, is positive, so that no v ∈ Vu can

complete u to a feasible solution to the instance of our uncertain LP given by the data ζ̃ .
Recalling the definition of Vu, we conclude that u is infeasible for the ARC, as required.

��
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