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Lecture 1

Introduction

1.1 Optimization methods: the purpose

Our course is devoted to numerical methods for nonlinear continuous optimization, i.e., for
solving problems of the type

minimize f(x) s.t. gi(x) ≤ 0, i = 1, ...,m; hj(x) = 0, j = 1, ..., k. (1.1.1)

Here x varies over Rn, and the objective f(x), same as the functions gi and hj , are smooth enough
(normally we assume them to be at least once continuous differentiable). The constraints

gi(x) ≤ 0, i = 1, ...,m; hj(x) = 0, j = 1, ..., k

are referred to as functional constraints, divided in the evident manner into inequality and
equality constraints.

We refer to (1.1.1) as to nonlinear optimization problems in order to distinguish between
these problems and Linear Programming programs; the latter correspond to the case when all
the functions f, gi, hj are linear. And we mention continuous optimization in the description of
our subject to distinguish between it and discrete optimization, where we look for a solution
from a discrete set, e.g., comprised of vectors with integer coordinates (Integer Programming),
vectors with 0-1 coordinates (Boolean Programming), etc.

Problems (1.1.1) arise in huge variety of applications, since whenever people make decisions,
they try to make them in an “optimal” manner. If the situation is simple enough, so that the
candidate decisions can be parameterized by finite-dimensional vectors, and the quality of these
desicions can be characterized by finite set of “computable” criteria, the concept of “optimal”
decision typically takes the form of problem (1.1.1). Note that in real-world applications this
preliminary phase – modelling the decision making as an optimization problem with computable
objective and constraints – is, normally, much more difficult and creative than the subsequent
phase when we solve the resulting problem. In our course, anyhow, we do not touch this
modelling phase, and focus on technique for solving optimization programs.

Recall that problems (1.1.1) were our main subject already in the course “Optimization I”,
where we have developed optimality conditions for these problems. We remember that one can
form a square system of nonlinear equations and a system of inequalities wich together define
certain set – the one of Karush-Kuhn-Tucker points of the problem – which, under mild regularity
conditions, contains all optimal solutions to the problem. The Karush-Kuhn-Tucker system of
equations and inequalities typically has finitely many solutions, and if we are clever enough to
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8 LECTURE 1. INTRODUCTION

find analytically all these solutions, then we could look through them and to choose the one with
the best value of the objective, thus getting the optimal solution in a closed analytical form. The
difficulty, anyhow, is that as a rule we are not so clever to solve analytically the Karush-Kuhn-
Tucker system, same as are unable to find the optimal solution analytically by other means.
In all these “difficult” cases – and basically all optimization problems coming from real-world
applications are difficult in this sense – all we may hope for is a numerical routine, an algorithm
which allows to approximate numerically the solutions we are interested in. Thus, numerical
optimization methods form the main tool for solving real-world optimization problems.

1.2 Preliminary Classification of Optimization Methods

It should be stressed that one hardly can hope to design a single optimization method capable
to solve efficiently all nonlinear optimization problems – these problems are too diverse. In
fact there are numerous methods, and each of them is oriented onto certain restricted family of
optimization problems.

1.2.1 Classification of Nonlinear Optimization Problems

Traditionally, the Nonlinear Optimization Problems (1.1.1) are divided into two large classes:

• Unconstrained problems – no inequality or equality constraints are present. The generic
form of an unconstrained problem, consequently, is

minimize f(x) s.t. x ∈ Rn, (1.2.1)

f being smooth (at least once continuously differentiable) function on Rn;

• Constrained problems, involving at least one inequality or equality constraint.

The constrained problems, in turn, are subdivided into several classes, according to whether
there are nonlinear constraints, inequality constraints, and so on; in the mean time we shall
speak about this in more details.

According to the outlined classification of optimization problems, the optimization methods
are primarily partitioned into those for unconstrained and constrained optimization. Although
the more simpler unconstrained problems are not that frequently met in applications, meth-
ods for unconstrained optimization play very important role: they are used directly to solve
unconstrained problems and indirectly, as building blocks, in many methods of constrained
minimization.

1.2.2 Iterative nature of optimization methods

Methods for numerical solving nonlinear optimization problems are, in their essence, iterative
routines: as applied to problem (1.1.1), a method typically is unable to find exact solution
in finite number of computations. What a method generates, is an infinite sequence {xt} of
approximate solutions. The next iterate xt+1 is formed, according to certain rules, on the
basis of local information of the problem collected along the previous iterates. The portion of
information It obtained at a current iterate xt is a vector comprised of the values of the objective
and the constraints at xt and, possibly, of the gradients or even higher-order derivatives of these
functions at xt. Thus, when forming xt+1, the method “knows” the values and the derivatives, up
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to certain fixed order, of the objective and the constraints at the previous iterates x1, ..., xt, and
this information is all information on the problem available to the method when it generates the
new iterate xt+1. This iterate, consequently, is certain function of the information accumulated
so far:

xt+1 = Xt+1(I1, I2, ..., It).
The collection of the search rules Xt(·) predetermines behaviour of the method as applied to an
arbitrary problem; consequently, the method itself can be identified with the collection {Xt}∞t=1.
Note that the list of arguments in Xt is comprised of (t − 1) portions of local information; in
particular, the list of arguments in the very first search rule X1 is empty, so that this “function”
is simply a fixed vector specified by the description of the method – the starting point.

From the outlined general scheme of an iterative routine it follows that optimization methods
are classified not only according to the types of problems the methods are solving, but also
according to the type of local information they use. From this “information” viewpoint, the
methods are divided into

• zero-order routines using only values of the objective and the constraints and not using
their derivatives;

• first-order routines using the values and the gradients of the objective and the constraints;

• second-order routines using the values, the gradients and the Hessians (i.e., matrices of
second-order derivatives) of the objective and the constraints.

In principle, of course, we could speak about methods of orders larger than 2; these latter
methods, anyhow, never are used in practice. Indeed, to use a method of an order k, you should
provide possibility to compute partial derivatives of the objective and the constraints up to
order k. In the multi-dimensional case it is not that easy even for k = 1 and even in the case
when your functions are given by explicit analytical expressions (which is not always the case).
And there is “explosure of difficulties” in computing higher order derivatives: for a function of
n variables, there are n first order derivatives to be computed, n(n+1)

2 second order derivatives,
n(n+1)(n+2)

2×3 third order derivatives, etc.; as a result, even in the medium-scale case with n being
several tens the difficulties with programming, computation time, memory required to deal with
higher-order derivatives make usage of these derivatives too expensive. On the other hand, there
are no serious theoretical advantages in exploiting derivatives of order higher than 2, so there is
nothing to compensate the cost of computing these derivatives.

1.3 Convergence of Optimization Methods

As a matter of fact, we cannot expect a nonlinear problem to be solved exactly in finite number of
steps; all we can hope for is that the sequence of iterates {xt} generated by the method in question
converges, as t→∞, to the solution set of the problem. In the theory of Numerical Optimization,
the convergence of an optimization method on certain family of problems is exactly what gives
the method right to be qualified as a tool for solving problems from the family. Convergence is
not the only characteristic of a method, but this is the property which makes it a theoretically
valid optimization routine. Our local goal is to present a kind of general framework (originating
from Zangwill ) which allows to prove convergence of optimization algorithms.
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1.3.1 Abstract Iterative Algorithms

We already know what is a general optimization method: this is a set of rules for generating
sequential iterates on the basis of information on the problem accumulated so far. In particlar,
the larger is the index of the rule, the larger is the list of arguments in it. In the majority of
actual methods, anyhow, the “prehistory” (I1, ..., It) of the process to the moment t + 1 is in
fact compressed to a vector µt of fixed dimension, and the next iterate is certain function of
the current iterate xt, of this “memory”, and, of course, of the problem, let it be called P , the
method is applied to:

xt+1 = XP (xt, µt). (1.3.1)

In simple methods, the entire “prehistory” of the process is compressed to the current iterate xt,
so that the memory vector simply is empty; the future behaviour of these memoryless methods
depends on the problem and the current iterate only, not on how the method came to this
iterate.

In the general case, when the memory vector is non-empty, it, in turn, is updated from step
to step according to the new portion of information on the problem:

µt+1 =MP (xt, µt); (1.3.2)

here XP (·), MP (·) are some vector-valued functions specific for the method in question.
Relations (1.3.1) - (1.3.2) specify the behaviour of the method, up to the starting values of

x0 and µ0; we may convert these relations into equivalent relation
(
xt+1

µt+1

)
≡ ξt+1 = ΞP (ξt) ≡

( XP (xt, µt)
MP (xt, µt)

)
(1.3.3)

Thus, for the majority of methods one can represent their behaviour on a problem P by simple
recurrency

ξt+1 = ΞP (ξt) (1.3.4)

at the cost of extending the current iterate xt to the “state vector” ξt belonging to a larger
than our initial Rn space RN . Of course, to specify completely the trajectory {ξt}, we should
indicate, along with Ξ, the initial point ξ0 of the trajectory.

Example 1.3.1 Consider an unconstrained minimization problem

f(x)→ min | x ∈ Rn

and the simplest gradient-type method given by the recurrency

xt+1 = xt − γ∇f(xt),

where the stepsize γ > 0 is fixed. To represent this method in the form (1.3.4), no memory
vector µ should be introduced: all “prehistiry” is accumulated in the last iterate xt, and the
method from the very beginning is in the form (1.3.4), with ξt = xt.

The recurrency (1.3.4) involves a point-to-point mapping ΞP (·), and the properties of this
mapping are responsible for all properties of the method in question, in particular, for its conver-
gence. To give convenient and general sufficient conditions of convergence in terms of Ξ, it turns
out to be reasonable to make one step of generalization more and to extend the point-to-point
mapping Ξ to a point-to-set mapping Θ. Namely, consider the following abstract situation.
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Definition 1.3.1 [Abstract iterative algorithm] We are given a set X ∈ RN and a mapping
Θ(·) which sets into correspondence to a point ξ ∈ X a nonempty subset Θ(ξ) in X; we shall
call the pair (X,Θ(·)) an abstract iterative algorithm A. Given a initial point ξ0 ∈ X, we define
a trajectory of A as any sequence {ξt}∞t=1 which satisfies the relations

ξt ∈ Θ(ξt−1), t = 1, 2, ... (1.3.5)

Let us stress that, since Θ(·) is a point-to-set mapping, the trajectory of A is not, generally
speaking, uniquely defined by the initial point ξ0.

Let us say that recurrency (1.3.4), started at certain initial point ξ0, is covered by an abstract
iterative algorithm A, if the trajectory of this recurrency is one of the trajectories (1.3.5) of the
latter algorithm.

What we are about to do is to indicate natural sufficient conditions for convergence of
abstract iterative algorithms; the goal is, of course, to use these conditions to prove convergence
of methods of the type (1.3.1) - (1.3.2) “covered” by these abstract algorithms. Before coming to
these conditions, it makes sense to explain why we have passed from the natural “point-to-point”
presentation (1.3.4) of an iterative routine to its “point-to-set” covering (1.3.5). The reason is
very simple: typically, as we shall see, the same basic scheme of an optimization process can
be implemented in many different ways and thus – in many different, although close to each
other, optimization routines. These different implementations of the same scheme usually can
be covered by a single abstract iterative algorithm. Proving once for ever convergence of this
abstract algorithm, we in one step prove conergence all implementations in question. Moreover,
analysing the abstract algorithm, we understand which elements of the corresponding scheme
indeed are essential for convergence and which elements can be varied without violating this
crucial property. The resulting “freedom in implementation” is extremely important from the
practical viewpoint: we get opportunity to adjust the “flexible elements” of the construction
to the specific properties of problems we are interested in. An adjustment of this type for sure
preserves convergence and may improve significantly practical performance of the method.

1.3.2 Convergence of an Abstract Iterative Algorithm

Let
A = (X ⊂ Rn,Θ(·))

be an abstract iterative algorithm. In order to analyze its convergence, we first of all should
specify towards what the algorithm should converge. In the general convergence analysis, it
is simply assumed that we are given a subset Γ ⊂ X which is the desired solution set; in
applications of this analysis to particular optimization methods we, of course, should properly
specify this set Γ to get meaningful results.

Two crucial for convergence properties of an abstract iterative algorithm are its descent
nature and closedness. These propertries are as follows.

Descent algorithms

Definition 1.3.2 [Descent function] We say that a continuous function Z(ξ) : X → R is a
descent function (or a Lyapunov function) for an abstract iterative algorithm A = (X,Θ(·))
with respect to a solution set Γ, if

• [ξ ∈ X\Γ, θ ∈ Θ(ξ)]⇒ Z(θ) < Z(ξ);
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• [ξ ∈ Γ, θ ∈ Θ(ξ)]⇒ Z(θ) ≤ Z(ξ).

We call an abstract iterative algorithm A = (X,Θ(·)) descent with respect to a solution set
Γ ⊂ X, if A admits a descent function with respect to Γ.

The definition is very clear – the mapping ξ 7→ Θ(ξ) should not increase the descent function
Z – the value of Z at any point from Θ(ξ) should be at most the value at ξ; and if ξ is not a
solution, then the values of Z at the points from Θ(ξ) should be strictly less than the one at ξ.

Example 1.3.2 When interested in solving unconstrained problem

f(x)→ min | x ∈ Rn

by a memoryless method (so that ξ is the same as the original design vector x), the following
three ways to specify Γ can be considered:

• A: Γ is the set of global minimizers of f

• B: Γ is the set of local minimizers of f

• C: Γ is the set of critical points of f , i.e., the points where ∇f = 0

The natural candidate to the role of Z(·) in all three cases is f itself, and in the case of C, in
addition, the function |∇f(x)|.

With these choices of the solution set and Z(·), the fact that Z(·) indeed is descent for an
abstract iterative algorithm A = (X,Θ(·)) means that any step of the type

x 7→ y ∈ Θ(x)

should

• in the case of A reduce the value of the objective f , provided that x is not a global minimizer
of f , and should not increase the objective, if x is a global minimizer of f ;

• in the case of B reduce the value of the objective, provided that x is not a local minimizer
of f , and should not increase the objective, if x is a local minimizer of f ;

• in the case of C with Z ≡ f reduce f , provided that x is not a critical point of f , and
should not increase f , if x is a critical point;

• in the case of C with Z ≡ |∇f | reduce |∇f |, provided that x is not a critical point of f ,
otherwise should map x onto itself or onto another critical point of f .

Closed point-to-set mappings

Definition 1.3.3 [Closed mapping] Let X ⊂ RN and Y ⊂ RM , and let Θ(·) be a point-to-set
mapping from X to Y , so that Θ(ξ), ξ ∈ X, is a nonempty subset in Y .

Let ξ ∈ X. We say that the point-to-set mapping Θ is closed at ξ, if for every two sequences
{ξt ∈ X} and {θt ∈ Θ(ξt)} relations

ξt → x, t→∞; θt → θ, t→∞
always imply that

θ ∈ Θ(ξ).

The mapping Θ is called closed on X, if it is closed at every point of X.
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Example 1.3.3 Let Θ(·) be a point-to-point mapping on X which is continuous at ξ ∈ X with
respect to X:

∀ (ξi ∈ X, ξi → ξ, i→∞) : Θ(ξi)→ Θ(ξ), i→∞.
Then Θ is closed at ξ.

A point-to-set mapping Θ is closed on a closed set X ∈ RN if and only if the graph of Θ –
the set

{(ξ, θ) ∈ RN ×RM | θ ∈ Θ(ξ)}
– is a closed set in RN+M .

As we shall see in a while, closedness of the mapping associated with an abstract iterative
algorithm is crucial for the convergence of the algorithm. This is why it is important to know
how to verify closedness. In many cases the mapping we are interested in is combined of simpler
mappings, and it would be fine to have a possibility to reduce the analisys of closedness for the
“combined” mapping to the one for its components. Let us formulate and prove the most useful
statement of this type related to composition of point-to-set mappings.

Definition 1.3.4 [Composition of mappings] Let A(·) be a point-to-set mapping from X to Y ,
and let B(·) be a point-to-set mapping from Y to Z. The composition C = BA of these mappings
is defined as the point-to-set mapping of X to Z given by

C(ξ) =
⋃

η∈A(ξ)

B(η), ξ ∈ X.

Proposition 1.3.1 [Closedness of composition] Let A be a point-to-set mapping from X to Y ,
B be a point-to-set mapping from Y to Z and C be the composition of A and B.

Let ξ ∈ X. Assume that

• (i) A is closed at ξ;

• (ii) A is locally bounded at ξ, i.e., whenever ξt → ξ as t→∞ (ξt ∈ X) and ηt ∈ A(ξt), the
sequence {ηt} is bounded;

• (iii) B is closed at every point of A(ξ).

Then C is closed at ξ.

Proof. Let ξt → ξ, t→∞, and let ζt ∈ C(ξt) are such that ζt → ζ as t→∞; we should prove
that ζ ∈ C(ξ).

Indeed, from the construction of the composition it follows that there exist ηt ∈ A(ξt) such
that ζt ∈ B(ηt), t = 1, 2, .... Since A is locally bounded at ξ (see (ii)), the sequence {ηt} is
bounded; consequently, there exists a converging subsequence {ηts}, t1 < t2 < ...:

lim
s→∞ ηts = η.

We have ξts → ξ, s → ∞, ηts ∈ A(ξts), ηts → η, s → ∞; since A is closed at ξ by (i), these
relations imply that

η ∈ A(ξ). (1.3.6)

Now we have ηts ∈ Y , ηts → η ∈ A(ξ) as s→∞, and ζts ∈ B(ηts), ζts → ζ as s→∞. Since the
mapping B is closed at the point η ∈ A(ξ) by (iii), we conclude that ζ ∈ B(η) ⊂ C(ξ) (the final
inclusion follows from the definition of composition due to (1.3.6)).
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Corollary 1.3.1 Let A : X → Y and B : Y → Z be point-to-set mappings, let A be closed at
ξ ∈ X, B be closed at every point of A(ξ), and let Y be bounded. Then the composition C = BA
is closed at ξ.

Indeed, if Y is bounded, then, of course, A is locally bounded at any point, and it suffices to
apply Proposition 1.3.1.

Corollary 1.3.2 Let A : X → Y be a point-to-point mapping and B : Y → Z be a point-to-set
mapping. Assume that A is continuous at ξ ∈ X with respect to X and B is closed at A(x).
Then the composition C = BA is closed at ξ.

Indeed, A is closed at ξ (Example 1.3.3) and clearly locally bounded at ξ; it remains to apply
Proposition 1.3.1.

Global Convergence Theorem

Now we are ready to establish

Theorem 1.3.1 [“Global Convergence Theorem”] Let A = (X,Θ(·)) be an abstract iterative
algorithm, Γ ⊂ X be a given solution set and ξ0 ∈ X be a given initial point. Consider a
sequence {ξt} satisfying the inclusions

ξt ∈ Θ(ξt−1), t = 1, 2, ...

and assume that

• (i) [descent property] there exists a function Z(·) which is descent for A with respect to
the solution set Γ;

• (ii) [closedness outside Γ] The mapping Θ(·) is closed at every point outside Γ;

• (iii) [compactness of the trajectory] There exists a compact set S ⊂ X which contains the
sequence {ξt}.

Then limiting points of the trajectory {ξt} exist, and every point of this type belongs to the
solution set Γ.

In particular, if, in addition to (i) - (iii), Γ = {ξ∗} is a singleton, then the sequence {ξt}
converges to x∗.

Proof. Since the sequence {ξt} is contained in a compact subset S of X (see (iii)), it possesses
limiting points. Let ξ be a limiting point of {ξt}, so that there is a convergent to ξ subsequence
of our sequence:

ξs ≡ ξts → ξ, s→∞ [t1 < t2 < ...]; (1.3.7)

by passing to a new subsequence, we may assume that

θs ≡ ξts+1 → θ, s→∞. (1.3.8)

We should prove that ξ ∈ Γ. Assume, on contrary, that ξ 6∈ Γ, and let us lead this assumption
to a contradiction.

By construction,
θs ≡ ξts+1 ∈ Θ(ξs); ξs → ξ, θs → θ, s→∞. (1.3.9)
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Besides this, we have assumed that ξ 6∈ Γ, so that Θ is closed at ξ by (ii); this fact combined
with (1.3.9) implies that

θ ∈ Θ(ξ).

The latter relation combined with the descent property (i) and the fact that ξ 6∈ Γ results in

Z(θ) < Z(ξ). (1.3.10)

The resulting relation can be immediately led to a contradiction. Indeed, from the descent
property (i) it follows that Z(ξt+1) ≤ Z(ξt), so that the sequence {Z(ξt)} is monotonically
nonincreasing. Along the subsequence t = ts, s = 1, 2, ..., the points ξt converge to ξ, and, since
Z(·) is continuous (the definition of a descent function), the monotone sequence {Z(ξt)} has a
converging subsequence and, consequently, converges itself. It follows that

Z(ξt)− Z(ξt+1)→ 0, t→∞. (1.3.11)

At the same time, along the sequence t = ts, s = 1, 2, ..., of values of t we have ξts = ξs → ξ,
ξts+1 = θs → θ, and since Z is continuous, Z(ξts) − Z(ξts+1) = Z(ξs) − Z(θs) → Z(ξ) − Z(θ).
The latter quantity is positive by (1.3.10), which contradicts (1.3.11).

1.3.3 Rates of convergence

The fact of convergence of an optimization (and any other) computational method is the “weak-
est” property which gives the method right to exist. In principle, there are as many methods
with this property as you wish, and the question is how to rank these mehods and which of them
to recommended for practical usage. In the traditional Nonlinear Optimization this problem is
resolved by looking at the asymptotic rate of convergence measured as follows.

Assume that the method as applied to problem P generates sequence of iterates
which converges to the solution set X∗P of the problem. To define the rate of conver-
gence, we first introduce an error function err(x) which measures the quality of an
approximate solution x; this function should be positive outside X∗P and should be
zero at the latter set.

There are several ways for reasonable choice of the error function. E.g., we always
can use as it the distance from the approximate solution to the solution set:

distP (x) = inf
x∗∈X∗P

|x− x∗|;

another choice of the error function could be the residual in terms of the objective
and constraints, like

resP (x) = inf
x∈X∗P

max{f(x)− f(x∗); [g1(x)]+; ...; [gm(x)]+; |h1(x)|; ...; |hk(x)|},

[a]+ = max(a, 0) being the positive part of a real a, etc.
For properly chosen error function (e.g., for distP ), convergence of the iterates to

the solution set implies that the scalar sequence

rt = err(xt)

converges to 0, and we measure the quality of convergence by the rate at which the
nonnegative reals rt tend to zero.
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The standard classification here is as follows:

• [linear convergence] a sequence {rt ≥ 0} such that for some q ∈ (0, 1), some C < ∞ and
all t one has

rt ≤ Cqt

are called linearly converging to 0 with convergence ratio q; the simplest example of such
a sequence is rt = Cqt. The lower bound of those q for which {rt} linearly converges to 0
with the convergence ratio q is called the convergence ratio of the sequence.

E.g., for the sequence rt = Cqt, same as for the sequence {rt = C(q + εt)t}, εt → 0, t →
∞, the convergence ratio is q, although the second sequence, generally speaking, does
not converge to 0 with the convergence ratio q (it, anyhow, converges to 0 linearly with
convergence ratio q′ for any q′ ∈ (q, 1)).

It is immediately seen that a sufficient condition for a sequence {rt > 0} to be linearly
converging with convergence ratio q ∈ (0, 1) is to satisfy the property

lim supt→∞
rt+1

rt
< q.

• [sub- and superlinear convergence] a sequence which converges to 0, but is not linearly
converging (e.g., the sequence rt = t−1), is called sublinearly converging. A sequence which
linearly converges to zero with any positive convergence ratio (so that the convergence ratio
of the sequence is 0) is called superlinearly converging (e.g., the sequence rt = t−t).

A sufficient condition for a sequence {rt > 0} to be superlinearly converging is

lim
t→∞

rt+1

rt
= 0.

• [convergence of order p > 1] a sequence {rt ≥ 0} converging to 0 is called to have conver-
gence order p > 1, if for some C and all large enough t one has

rt+1 ≤ Crpt .

The upper bound of those p for which the sequence converges to 0 with order p is called
the order of convergence of the sequence.

E.g., the sequence rt = a(pt) (a ∈ (0, 1), p > 1) converges to zero with order p, since
rt+1/r

p
t = 1. The sequences converging to 0 with order 2 have special name – they are

called quadratically convergent.

Of course, a sequence converging to 0 with order p > 1 is superlinearly converging to 0
(but, generally speaking, not vice versa).

Traditionally, the rate of convergence of iterative numerical routines is measured by the rank
of the corresponding sequence of errors {rt = err(xt)} in the above scale; in particular, we
may speak about sublinearly, linearly, superlinearly, quadratically converging methods, same as
about methods with order of convergence p > 1. It is common to think that the better is the rate
of convergence of a method, the more preferable is the method itself. Thus, a linearly converging
method is thought to be better than a sublinearly converging one; among two linearly converging
methods the more preferable is the one with the smaller convergence ratio; a superlinearly
converging method is prefered to a linearly converging one, etc. Of course, all these preferences
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are “conditional”, provided that there are no significant differences in computational complexity
of steps, etc.

We should stress that the rate of convergence, same as the very property of convergence, is
an asymptotic characteristic of the sequence of errors; it does not say when the announced rate
of convergence occurs, i.e., what are the values of C or/and “large enough” values of t mentioned
in the corresponding definitions. For concrete methods, the bounds on the indicated quantities
typically can be extracted from the convergence proofs, but it does not help a lot – the bounds
are usually very complicated, rough and depend on “invisible” quantitive characteristics of the
problem like the magnitides of the higher-order derivatives, condition numbers of Hessians, etc.
It follows that one should not overestimate the importance of the rate-of-convergence ranking of
the methods. This traditional approach gives a kind of orientation, nothing more; unfortunately,
there seems to be no purely theoretical way to get detailed ranking of numerical optimization
methods. As a result, practical recommendations on which method to use are based on different
theoretical and empirical considerations: theoretical rate of convergence, actual behaviour on
test problems, numerical stability, simplicity and robustness, etc.)

1.3.4 Global and Local solutions

The crucial intrinsic difficulty in Nonlinear Optimization is that we cannot expect a numerical
optimization method to approximate a globally optimal solution to the problem.

The difficulty has its roots in local nature of the information on the problem which is available
to the methods. Assume, e.g., that we are minimizing the function shown on the picture:

x′ x′′

The function has two local minimizers, x′ and x′′. Observing small enough neighbourhood of
every one of these minimzers, it is impossible to guess that in fact there exists another one. As
a result, any “normal” method of nonlinear optimization as applied to the objective in question
and being started from a small neighbourhood of the “wrong” (local, not global) minimizer x′,
will converge to x′ – the local information on f available for the method contains no hint to x′′!

It would be wrong to say that the difficulty is absolutely unavoidable. We could run the
method for different starting points, or even could look through the values of the objective along
a sequence which is dense in R and define xt as the best, in terms of the values of f , of the
first t point of the sequence. The latter “method” can be easily extended to general constrained
multidimensional problems; one can immediately prove its convergence to the global solution;
the method is simple in implementation, etc. There is only one small drawback in the method:
the tremendous number of function evaluations required to solve a problem within inaccuracy
ε.
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It can be easily seen that the outlined method, as applied to a problem

f(x)→ min | x ∈ Rn, g1(x) = |x|2 ≤ 1

with Lipschitz continuous, with constant 1, objective f , requires, in the worst case,
at least (3ε)−n steps to find a point xε with the residual f(xε)−min|x|≤1 f in terms
of the objective ≤ ε.

When ε = 0.03 and n = 20 (very modest accuracy and dimension requirements),
the number of steps becomes > 1020, and this is the lower complexity bound!

Moreover, for the family of problems in question the lower bound (3ε)−n on the
number of function evaluations required to guarantee residual ≤ ε is valid for an
arbitrary optimization method which uses only local information on the objective.

Thus, we can approximate, within any given error ε > 0, the global solution to any optimization
problem; but to say that the best we can promise is to do this, for ε = 0.03, n = 20, in 1020

steps – is worse than to say nothing.
As a consequence of the above considerations (same as of other, more advanced results of

Information-Based Complexity Theory of Optimization), we come to the following important,
although a desperating, conclusion:

It makes no sense to expect an optimization method to be able to approximate,
with a reasonable inaccuracy in a reasonable time, global solution to all optimization
problems of a given, even moderate, size.

In fact all we may hope to do in reasonable time is to find tight approximations to certain (not
necessarily corresponding to the optimal solution) Karush-Kuhn-Tucker point of an optimization
problem (in the unconstrained case – to a critical point of the objective). In simple cases we
may hope also to approximate a locally optimal solution, without any garanties of its global
optimality.

There is, anyhow, a “solvable case” when we do can approximate at reasonable complexity
globally optimal solution to an optimization problem. This is the case when the problem is con-
vex (i.e., the functions f and gi, i = 1, ...,m, are convex, while hj , if any, are linear). Properties of
convex optimization problems and the numerical methods for these problems form the subject of
Convex Programming. Convex Programming is, in its nature, simpler and, consequently, much
more advanced than the general Nonlinear Optimization. In particular, in Convex Program-
ming we are able to point out methods with quite reasonable global (not asymptotical!) rate of
convergence which are capable to guarantee, at a reasonable computational cost, high-accuracy
approximations of globally optimal solutions even in general-type convex programs.

I would be happy to restrict our course to the nice world of Convex Programming, but
we cannot afford it to ourselves: in actual applications we, unfortunately, too often meet with
nonconvex problems, and we have no choice but to solve them – even at the cost of weakening
the notion of ”optimal solution” from the global to a local one (or even to the one of a Karush-
Kuhn-Tucker point).
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Assignment # 1 (Lecture 1)

Exercise 1.3.1 Let point-to-set mapping Θ(·) from Rn into Rn be defined as

Θ(ξ) = {η ∈ Rn | ηT ξ ≤ 0}.

Is the mapping closed?

Exercise 1.3.2 Consider the abstract iterative algorithm A = (R,Θ(·)), where

Θ(ξ) = ξ + 1

is a point-to-point mapping. Set the solution set Γ to be empty, and define Z(ξ) as exp{−ξ}.
1) Prove that Z is a descent function for A with respect to Γ
2) Prove that Θ is closed at any point of X = R
3) Look at the (clearly diverging) trajectory ξt+1 = Θ(ξt), ξ0 = 0, of our abstract itrative

algorithm. What prevents to apply the Global Convergence Theorem?

Exercise 1.3.3 Consider the abstract iterative algorithm A = (X = [0, 1],Θ(·)), where

Θ(ξ) =
{

[0, ξ), 0 < ξ ≤ 1
{0}, ξ = 0

Define the solution set Γ to be {0} and set Z(ξ) = ξ.
1) Prove that Z is a descent function for A with respect to Γ
2) Consider the sequence {ξt} such that ξ0 = 1 and 1/2 < ξt+1 < ξt for all t (e.g., ξt+1 =

1
2 [1

2 + ξt]). Prove that the sequence is a trajectory of the abstract iterative algorithm in question,
although it does not converge to the solution set. What prevents to apply the Global Convergence
Theorem?

Exercise 1.3.4 Prove statements indicated in Example 1.3.3.
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Lecture 2

Line Search

This lecture is devoted to one-dimensional unconstrained optimization, i.e., to numerical meth-
ods for solving problems

f(x)→ min | x ∈ R, (2.0.1)

f being at least continuous function on the axis; these methods usually are called line search.
Our interest in line search comes, of course, not from the fact that there are many applied

one-dimensional problems, but rather from the fact that line search is a component of basically
all methods for multidimensional optimization. Typically, the scheme of a multidimensional
method for unconstrained minimization is as follows: looking at local behaviour of the objective
f at the current iterate xt, the method chooses current “direction of movement” dt (which,
normally, is a descent direction of the objective, i.e., dTt ∇f(xt) < 0) and then performs a step
in this direction:

xt 7→ xt+1 = xt + αtdt

in order to achieve certain progress in the objective value, i.e., to ensure that f(xt+1) < f(xt).
And in the majority of methods the step in the direction dt is chosen by one-dimensional mini-
mization of the function

φ(α) = f(xt + αdt).

Thus, line search technique is crucial for basically all multidimensional optimization methods.

2.1 Zero-Order Line Search

We start with the zero-order line search, i.e., with methods for solving (2.0.1) which use the
values of f only, not the derivatives.

The methods we are about to develop solve not the problem (2.0.1) as it is, but the problem

f(x)→ min | a ≤ x ≤ b (2.1.1)

of minimizing the objective over a given finite (−∞ < a < b <∞) segment [a, b] of the real axis.
To ensure well-posedness of the problem, we make the following assumption:

f is unimodal on [a, b], i.e., possesses a unique local minimum x∗ on the segment.

This assumption, as it is easily seen, implies that f is stirctly decreasing in [a, b] to the left of
x∗:

a ≤ x′ < x′′ ≤ x∗ ⇒ f(x′) > f(x′′) (2.1.2)

21
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and is strictly increasing in [a, b] to the right of x∗:

x∗ ≤ x′ < x′′ ≤ b⇒ f(x′) < f(x′′). (2.1.3)

Indeed, if (2.1.2) were false, there would exist x′ and x′′ such that

a ≤ x′ < x′′ ≤ x∗, f(x′) ≤ f(x′′).

It follows that the set of minimizers of f on [a, x′′] contains a minimizer, x∗, which
differs from x′′ 1). Since x∗ is a minimizer of f on [a, x′′] and x∗ differs from x′′, x∗ is
a local minimizer of f on [a, b], while it was assumed that the only local minimizer of
f on [a, b] is x∗; this gives the desired contradiction. Verification of (2.1.3) is similar.

Note that relations (2.1.2) - (2.1.3), in turn, imply that f is unimodal on [a, b] and even on every
smaller segment [a′, b′] ⊂ [a, b].

Given that f is unimodal on [a, b], we immediately can point out a strategy for approximating
x∗, namely, as follows. Let us choose somehow two points x− and x+ in (a, b),

a < x− < x+ < b,

and let us compute the values of f at these points. The basic observation is that

if [case A] f(x−) ≤ f(x+), then x∗ is to the left of x+ [indeed, if x∗ were to the right of x+,
then we would have f(x−) > f(x+) by (2.1.2)], and if [case B] f(x−) ≥ f(x+), then x∗ is to the
right of x− [“symmetric” reasoning].

Consequently, in the case of A we can replace the initial “uncertainty segment” ∆0 = [a, b] with
the new segment ∆1 = [a, x+], and in the case of B – with the segment ∆1 = [x−, b]; in both
cases the new “uncertainty segment” ∆1 covers x∗ and is strictly less than ∆0. Since, at is was
already mentioned, the objective, being unimodal on the initial segment ∆0 = [a, b], is unimodal
also on the smaller segment ∆1 ⊂ ∆0, we may iterate this procedure – choose two points in ∆1,
compute the values of the objective at these points, compare the results and replace ∆1 with
smaller uncertainty segment ∆2, still containing the desired solution x∗, and so on.

Thus, we come to the following

Algorithm 2.1.1 [Conceptual zero-order minimization of unimodal function on [a, b]]
Initialization: Set ∆0 = [a, b], t = 1
Step t: Given previous uncertainty segment ∆t−1 = [at−1, bt−1],

• choose search points x−t , x
+
t : at−1 < x−t < x+

t < bt−1;

• compute f(x−t ) and f(x+
t );

• define the new uncertainty segment as follows: in the case of f(x−t ) ≤ f(x+
t ) set ∆t =

[at−1, x
+
t ], otherwise set ∆t = [x−t , bt−1];

• replace t with t+ 1 and loop.

1look: if x′′ itself is not a minimizer of f on [a, x′′], then any minimizer of f on [a, x′′] can be chosen as x∗; if
x′′ is a minimizer of f on [a, x′′], then x′ also is a minimizer, since f(x′) ≤ f(x′′), and we can set x∗ = x′
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It is immediately seen that we may linear convergence of the lengths of subsequent uncer-
tainty segments to 0, thus coming to a linearly converging algorithm of approximating x∗. E.g.,
if x−t , x

+
t are chosen to split ∆t−1 it into three equal parts, we ensure |∆t+1| = 2

3 |∆t| (|∆| stands
for the length of a segment ∆), thus coming to the linearly converging, with the convergence
ratio

√
2/3, algorithm for approximating x∗:

|x∗ − xk| ≤
(

2
3

)bk/2c
|b− a|, (2.1.4)

k being the # of function evaluations performed so far and xk being an arbitrary point of the
uncertainty segment ∆bk/2c formed after k function evaluations.

Estimate (2.1.4) is fine – we have nonasymptotical linear convergence rate with problem-
independent convergence ratio. Could there be something better?

The answer is “yes”. The way to improve the rate of convergence is to note that one of
the two search points used to pass from ∆t to ∆t+1 will for sure be inside ∆t+1, and we could
try to make it the search point used to pass from ∆t+1 to ∆t+2; with this strategy, the cost
of updating ∆t into ∆t+1 will be one function evaluation, not two of them (except the very
first updating ∆0 → ∆1 which still will cost two function evaluations). There are two ways to
implement this new smart strategy – the optimal one (“Fibonacci search”) and the suboptimal
(“Golden search”).

2.1.1 Fibonacci search

The Fibonacci search can be used when we know in advance the number N > 2 of function
evaluations we are going to perform.

Given N , consider the sequence of the first N+1 Fibonacci integers F0, F1, F2, ..., FN defined
by the recurrency

F0 = F1 = 1;Fk = Fk−1 + Fk−2

(the first 10 integers in the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55). The method is as follows:
given ∆0 = [a, b], we set

d0 = |b− a|,
choose two first search points x−1 and x+

1 at the distance

d1 =
FN−1

FN
d0

from the right and from the left endpoints of ∆0, respectively (since FN/FN−1 = (FN−1 +
FN−2)/FN−1 = 1 + FN−2/FN−1 < 2, we have d1 > d0/2, so that x−1 < x+

1 ). The length of the
new uncertainty segment ∆1 clearly will be d1.

What we are about to do is to iterate the above step, with N replaced by N − 1. Thus, now
we should evaluate f at two points x−2 , x

+
2 of the segment ∆1 placed at the distance

d2 =
FN−2

FN−1
d1 [=

FN−2

FN−1

FN−1

FN
d0 =

FN−2

FN
d0] (2.1.5)

from the right and the left endpoint of ∆1. The crucial fact (which takes its origin in the
arithmetic properties of the Fibonacci numbers) is that
one of these two required points where f should be computed is already processed – this is the
one of the previous two points which belongs to ∆1.
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Indeed, assume, without loss of generality, that ∆1 = [a, x+
1 ] (the case ∆1 = [x−1 , b] is

completely similar), so that the one of the first two search point belonging to ∆1 is x−1 . We have

x−1 − a = (b− d1)− a = (b− a)− d1 = d0 − d1 = d0

(
1− FN−1

FN

)
=

[since FN = FN−1 + FN−2 and d2 = FN−2

FN
d0]

= d0
FN−2

FN
= d2.

Thus, only one of the two required points of ∆1 is new for us, and another comes from the
previous step; consequently, in order to update ∆1 into ∆2 we need one function evaluation, not
two of them. After this new function evaluation, we are able to replace ∆1 with ∆2. To process
∆2, we act exactly as above, but with N replaced by N − 2; here we need to evaluate f at the
two points of ∆2 placed at the distance

d3 =
FN−3

FN−2
d2 [=

FN−3

FN
d0, see (2.1.5)]

from the endpoints of the segment, and again one of these two points already is processed.
Iterating this procedure, we come to the segment ∆N−1 which covers x∗; the length of the

segment is

dN−1 =
F1

FN
d0 =

b− a
FN

,

and the total # of evaluations of f required to get this segment is N (we need 2 evaluations of f
to pass from ∆0 to ∆1 and one evaluation per every of N − 2 subsequent updatings ∆t 7→ ∆t+1,
1 ≤ t ≤ N − 2).

Taking, as approximation of x∗, any point xN of the segment ∆N−1, we have

|xN − x∗| ≤ |∆N | = b− a
FN

. (2.1.6)

To compare (2.1.6) with the accuracy estimate (2.1.4) of our initial – unsophisticated – method,
note that

Ft =
1

λ+ 2

[
(λ+ 1)λt + (−1)tλ−t

]
, λ =

1 +
√

5
2

> 1.2) (2.1.7)

2Here is the computation: the Fibonacci numbers satisfy the homogeneous finite-difference equation

xt − xt−1 − xt−2 = 0

and initial conditions x0 = x1 = 1. To solve a finite difference homogeneous equation, one should first look for
its fundamental solutions – those of the type xt = λt. Substituting xt = λt into the equation, we get a quadratic
equation for λ:

λ2 − λ− 1 = 0,

and we come to two fundamental solutions:

x
(i)
t = λti, i = 1, 2, with λ1 =

1 +
√

5

2
> 1, λ2 = −1/λ1.

Any linear combination of these fundamental solutions again is a solution to the equation, and to get {Ft}, it
remains to choose the coefficients of the combination to fit the initial conditions F0 = F1 = 1. As a result, we
come to (2.1.7). A surprise is that the expression for integer quantities Ft involves irrational number!
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Consequently, (2.1.6) results in

|xN − x∗| ≤ λ+ 2
λ+ 1

λ−N |b− a|(1 + o(1)), (2.1.8)

where o(1) denotes a function of N which converges to 0 as N →∞).
We see that the convergence ratio for the Fibonacci search is

λ−1 =
2

1 +
√

5
= 0.61803...

which is much better than the ratio
√

2/3 = 0.81649... given by (2.1.4).
It can be proved that the Fibonacci search is, in certain precise sense, the optimal, in terms

of the accuracy guaranteed after N function evaluations, zero-order method for minimizing an
unimodal function on a segment. In spite of this fine theoretical property, the method is not that
convenient from the practical viewpoint: we should choose in advance the number of function
evaluations to be performed (i.e., to tune the method to certain chosen in advance accuracy),
which is sometimes inconvenient. The Golden search method we are about to present is free
of this shortcoming and at the same time is, for not too small N , basically as efficient as the
original Fibonacci search.

2.1.2 Golden search

The idea of the method is very simple: at k-th step of the N -step Fibonacci search, we choose
two search points in the segment ∆k−1, and each of these points divides the segment (from the
closer endpoint to the more far one) in the ratio

[1− FN−k/FN−k+1] : [FN−k/FN−k+1] ,

i.e., in the ratio FN−k−1 : FN−k. According to (2.1.7), this ratio, for large N − k, is close
to 1 : λ, λ = (1 +

√
5)/2. And in the Golden search implementation of Algorithm 2.1.1 we

choose, at every step, the search points x−t and x+
t to divide the previous segment of uncertainty

∆t−1 = [at−1, bt−1] in the ratio 1 : λ:

x−t =
λ

1 + λ
at−1 +

1
1 + λ

bt−1; x+
t =

1
1 + λ

at−1 +
λ

1 + λ
bt−1. (2.1.9)

Here again, for t ≥ 2, one of the search points required to update ∆t−1 into ∆t is already
processed in course of updating ∆t−2 into ∆t−1. To see it, it suffices to consider the case when
∆t−2 = [α, β] and ∆t−1 = [α, x+

t−1] (the “symmetric” case ∆t−1 = [x−t−1, β] is completely similar).
Denoting d = β − α, we have

x−t−1 = α+
1

1 + λ
d, x+

t−1 = α+
λ

1 + λ
d; (2.1.10)

now, we are in situation ∆t−1 = [α, x+
t−1], so that the second of the two search points needed to

update ∆t−1 into ∆t is

x+
t = α+

λ

1 + λ
(x+
t−1 − α) = α+

λ2

(1 + λ)2
d
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(see the second equality in (2.1.10)). The latter quantity, due to the first equality in (2.1.10)
and the characteristic equation λ2 = 1 + λ giving λ, is nothing but x−t−1:

λ2 = 1 + λ⇔ 1
1 + λ

=
λ2

(1 + λ)2
.

Thus, in the Golden search, same as in the Fibonacci search, each updating ∆t−1 7→ ∆t, except
the very first one, requires a single function evaluation, not two of them. The length of the
uncertainty segment is reduced by every updating by factor

λ

1 + λ
=

1
λ
,

i.e.,
|∆t| = λ−t(b− a).

After N ≥ 2 function evaluations (i.e., after t = N − 1 steps of the Golden search) we can
approximate x∗ by (any) point xN of the resulting segment ∆N−1, and inaccuracy bound will
be

|xN − x∗| ≤ |∆N−1| ≤ λ1−N (b− a). (2.1.11)

Thus, we have the same linear rate of convergence (and with the same convergence ratio) as for
the Fibonacci search, but now the method is “stationary” – we can perform as many steps of it
as we wish.

2.2 Bisection

The theoretical advantage of the zero-order methods, like the Fibonacci search and the Golden
search, is that these methods use the minimal information on the objective – its values only.
Besides this, the methods have a very wide field of applications – the only requirement imposed
on the objective is to be unimodal on a given segment whch localizes the minimizer to be approx-
imated. And even under these extremely mild restrictions these methods are linearly converging
with objective-independent converging ratio; moreover, the corresponding efficiency estimates
(2.1.8) and (2.1.11) are non-asymptotical: they do not contain “uncertain” constant factors and
are valid for all values of N . At the same time, typically our objective is better behaved than a
general unimodal function, e.g., is smooth enough. Making use of these additional properties of
the objective, we may improve the behaviour of the line search methods.

Let us look what happens if we are solving problem (2.1.1) with smooth – continuously
differentiable – objective. Same as above, assume that the objective is unimodal on [a, b]. In
fact we make a little bit stronger assumption:

(A): the minimizer x∗ of f on [a, b] is an interior point of the segment, and f ′(x) changes its
sign at x∗:

f ′(x) < 0, x ∈ [a, x∗); f ′(x) > 0, x ∈ (x∗, b]

[unimodality + differentiability imply only that f ′(x) ≤ 0 on [a, x∗) and f ′(x) ≥ 0 on (x∗, b]].

Besides these restrictions on the problem, assume, as it is normally the case, that we are
able to compute not only the value, but also the derivative of the objective at a given point.

Under these assumptions we can solve (2.1.1) by definitely the simplest possible method –
the bisection. Namely, let us compute f ′ at the midpoint x1 of ∆0 = [a, b]. There are three
possible cases:
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• f ′(x1) > 0. This case, according to (A), is possible if and only if x∗ < x1, and we can
replace the initial segment of uncertainty with ∆1 = [a, x1], thus reducing the length of
the uncertainty segment by factor 2;

• f ′(x1) < 0. Similarly to the previous case, this inequality is possible if and only if x∗ > x1,
and we can replace the initial segment of uncertainty with [x1, b], again reducing the length
of the uncertainty segment by factor 2;

• f ′(x1) = 0. Accodring to (A), it is possible if and only if x1 = x∗, and we can terminate
with exact minimizer at hand.

In the first two cases our objective clearly possesses property (A) with respect to the new segment
of uncertainty, and we can iterate the construction. Thus, we come to

Algorithm 2.2.1 [Bisection]
Initialization: set ∆0 = [a, b], t = 1
Step t: Given previous uncertainty segment ∆t−1 = [at−1, bt−1],

• define current search point xt as the midpoint of ∆t−1:

xt =
at−1 + bt−1

2
;

• compute f ′(xt);

• in the case of f ′(xt) = 0 terminate and claim that xt is the exact solution to (2.1.1).
Otherwise set

∆t =
{

[at−1, xt], f ′(xt) > 0
[xt, bt−1], f ′(xt) < 0

replace t with t+ 1 and loop.

From the above considertaions we immediately conclude that

Proposition 2.2.1 [Linear convergence of Bisection]
Under assumption (A), for any t ≥ 1, either the Bisection search termninates in course of the
first t steps with exact solution x∗, or t-th uncertainty segment ∆t is well-defined, covers x∗ and
is of the length 2−t(b− a).

Thus, the Bisection method converges linearly with convergence ratio 0.5.

Remark 2.2.1 The convergence reatio of the Bisection algorithm is better than the one 0.61803...
for Fibonacci/Golden search. There is no contradiction with the announced optimality of the
Fibonacci search: the latter is optimal among the zero-order methods for minimizing unimodal
functions, while Bisection is a first-order method.

Remark 2.2.2 The Bisection method can be viewed as the “limiting case” of the conceptual
zero-order Algorithm 2.1.1: when, in the latter algorithm, we make both the search points x−t
and x+

t close to the midpoint of the uncertainty segment ∆t−1, the result of comparison between
f(x−t ) and f(x+

t ) which governs the choice of the new uncertainty segment in Algorithm 2.1.1
is given by the sign of f ′ at the midpoint of ∆t−1.
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Remark 2.2.3 Note that the assumption (A) can be weakened. Namely, let us assume that f ′

changes its sign at the segment [a, b]: f ′(a) < 0, f ′(b) > 0; and we assume nothing about the
derivative in (a, b), except its continuity. In this case we still can successfully use the Bisection
method to approximate a critical point of f in (a, b), i.e., a point where f ′(x) = 0. Indeed, from
the description of the method it is immediately seen that what we do is generating a sequence
of enclosed segments ∆0 ⊃ ∆1 ⊃ ∆2 ⊃ ..., with the next segment being twice smaller than the
previous one, with the property that f ′ changes it sign from − to + when passing from the
left endpoint of every segment ∆t to its right endpoint. This process can be terminated only
in the case when the current iterate xt is a critical point of f . If it does not happen, then the
enclosed segments ∆t have a unique common point x∗, and since in any neighbourhood of the
point there are points both with positive and negative values of f ′, we have f ′(x∗) = 0 (recall
that f ′ is continuous). This is the critical point of f to which the algorithm converges linearly
with convergence ratio 0.5.

The indicated remark explains the nature of the bisection algorithm. This is an algorithm
for finding zero of the function f ′ rather than for minimizing f itself (under assumption (A), of
course, this is the same - to minimize f on [a, b] or to find the zero of f ′ on (a, b)). And the
idea of the algorithm is absolutely trivial: given that the zero of f ′ is bracketed by the initial
uncertainty segment ∆0 = [a, b] (i.e., that f ′ at the endpoints of the segment is of different sign),
we generate the sequence of enclosed segments, also bracketing zero of f ′, as follows: we split
the previous segment ∆t = [at−1, bt−1] by its midpoint xt into two subsegments [at−1, xt] and
[xt, bt−1]. Since f ′ changes its sign when passing from at−1 to bt−1, it changes its sign either
when passing from at−1 to xt, or when passing from xt to bt−1 (provided that f ′(xt) 6= 0, so that
we can speak about the sign of f ′(xt); if f ′(xt) = 0, we are already done). We detect on which
of the two subsegments f ′ in fact changes sign and take it as the new uncertainty segment ∆t;
by construction, it also brackets a zero of f ′.

2.3 Curve fitting

The line search methods considered so far possess, under unimodality assumption, nice objective-
independent global linear convergence. May we hope for something better? Of course, yes: it
would be fine to get something superlinearly converging. If the objective is “well-behaved” –
smooth enough – we have good chances to accelerate convergence, at least at the final stage,
by curve fitting, i.e., by approximating the objective by a simple function with analytically
computable minimum. The natural way is to approximate f by a polynomial, choosing the
coefficients of the polynomial in order to fit it to the observed values (and derivatives, if we are
able to compute these derivatives) of f at several “most perspective” iterates. An iteration of a
pure curve fitting algorithm is as follows:

• at the beginning of the iteration, we have certain set of “working points” where we already
have computed the values and, possibly, certain derivatives of the objective. Given these
data, we compute the current approximating polynomial p which should have the same
values and derivatives at the working points as those of the objective

• after approximating polynomial p is computed, we find analytically its minimizer and take
it as the new search point

• we compute the value (and, possibly, the derivatives) of the objective at the new search
point and update the set of working points, adding to it the last search point (along with
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the information on the objective at this point) and excluding from this set the “worst” of
the previous working points, and then loop.

The idea underlying the outlined approach is very simple: if we somehow can enforce the pro-
cedure to converge, the working points will eventually be at certain small distance d from the
minimizer of f . If f is smooth enough, the error in approximating f by p in the d-neighbourhood
of working points will be of order of dq+1, q being the degree of p, and the error in approximating
f ′ by p′ will be of order of dq. Consequently, we may hope that the distance from the minimizer
of p (i.e., the zero of p′) to the minimizer of f (the zero of f ′) will be of order of dq, which gives
us good chances for superlinear convergence.

Of course, what is said is nothing but a very rough idea. Let uf look at several standard
implementations.

2.3.1 Newton’s method

Assume that we are solving problem (2.0.1) with twice continuously differentiable objective f ,
and that, given x, we can compute f(x), f ′(x), f ′′(x). Under these assumptions we can apply
to the problem the Newton method as follows:

Algorithm 2.3.1 [One-dimensional Newton method]
Initialization: choose somehow starting point x0

Step t: given the previous iterate xt−1,

• compute f(xt−1), f ′(xt−1), f ′′(xt−1) and approximate f around xt−1 by its second-order
Taylor expansion

p(x) = f(xt−1) + f ′(xt−1)(x− xt−1) +
1
2
f ′′(xt−1)(x− xt−1)2;

• choose as xt the minimizer of the quadratic function p(·):

xt = xt−1 − f ′(xt−1)
f ′′(xt−1)

,

replace t with t+ 1 and loop.

The Newton method, started close to a nondegenerate local minimizer x∗ of f (i.e., close to a
point x∗ satisfying the sufficient second order optimality condition: f ′(x∗) = 0, f ′′(x∗) > 0),
converges to x∗ quadratically:

Proposition 2.3.1 [Local quadratic convergence of the Newton method]
Let x∗ ∈ R be a nondegenerate local minimizer of smooth function f , i.e., a point such that f
is three times continuously differentiable in a neighbourhood of x∗ with f ′(x∗) = 0, f ′′(x∗) > 0.
Then the Newton iterates converge to x∗ quadratically, provided that the starting point x0 is
close enough to x∗.

Proof. Let g(x) = f ′(x), so that g(x∗) = 0, g′(x∗) > 0 and

xt = xt−1 − g(xt−1)
g′(xt−1)

.
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Since g = f ′ is twice continuously differentiable in a neighbourhood of x∗ and g′(x∗) > 0, there
exist positive constants k1, k2, r such that

|x′ − x∗|, |x′′ − x∗| ≤ r ⇒ |g′(x′)− g′(x′′)| ≤ k1|x′ − x′′|, g′(x′) ≥ k2. (2.3.1)

Now let
ρ = min{r; k2

k1
}. (2.3.2)

Assume that for certain t the iterate xt−1 belongs to the ρ-neighbourhood

Uρ = [x∗ − ρ, x∗ + ρ]

of the point x∗. Then g′(xt−1) ≥ k2 > 0 (due to (2.3.1); note that ρ ≤ r), so that the Newton
iterate xt of xt−1 is well-defined. We have

xt − x∗ = xt−1 − x∗ − g(xt−1)
g′(xt−1)

=

[since g(x∗) = 0]

xt−1 − x∗ − g(xt−1)− g(x∗)
g′(xt−1)

=
g(x∗)− g(xt−1)− g′(xt−1)(x∗ − xt−1)

g′(xt−1)
.

The numerator in the resulting fraction is the reminder in the first order Taylor expansion of g
at xt−1; due to (2.3.1) and since |xt−1 − x∗| ≤ ρ ≤ r, it does not exceed in absolute value the
quantity 1

2k1|x∗ − xt−1|2. The denominator, by the same (2.3.1), is at least k2. Thus,

xt−1 ∈ Uρ ⇒ |xt − x∗| ≤ k1

2k2
|xt−1 − x∗|2. (2.3.3)

Due to the origin of ρ, (2.3.3) implies that

|xt − x∗| ≤ |xt−1 − x∗|/2;

we see that the trajectory of the Newton method, once reaching Uρ, never leaves this neigh-
bourhood and converges to x∗ linearly with convergence ratio 0.5. It for sure is the case when
x0 ∈ Uρ, and let us specify the “close enough” in the statement of the proposition just as inclu-
sion x0 ∈ Uρ. With this specification, we get that the trajectory converges to x∗ linearly, and
from (2.3.3) it follows that in fact the order of convergence is (at least) 2.

Remark 2.3.1 Both the assumptions that f ′′(x∗) > 0 and that x0 is close enough are essential3).
E.g., as applied to the smooth convex function

f(x) = x4

(with degenerate minimizer x∗ = 0), the method becomes

xt = xt−1 − 1
3
xt−1 =

2
3
xt−1;

3in fact, the assumption f ′′(x∗) > 0 can be replaced with f ′′(x∗) < 0, since the trajectory of the method remains
unchanged when f is replaced with −f (in other words, the Newton method does not distinguish between the
local minima and local maxima of the objective). We are speaking about the case of f ′′(x∗) > 0, not the one of
f ′′(x∗) < 0, simply because the former case is the only important for minimization.
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in this example the method converges, but linearly rather than quadratically.
As applied to strictly convex smooth function

f(x) =
√

1 + x2

with unique (and nondegenerate) local (and global as well) minimizer x∗ = 0, the method
becomes, as it is immediately seen,

xt = −x3
t−1;

this procedure converges (very fast: with order 3) to 0 provided that the starting point is in
(−1, 1), and diverges to infinity – also very fast – if |x0| > 1.

In fact the Newton method is a linearization method for finding zero of f ′: given the previous
iterate xt−1, we linearize g = f ′ at this point and take as xt the solution to the linearization

g(xt−1) + g′(xt−1)(x− xt−1) = 0

of the actual equation g(x) = 0.

f’(x)

x
t

x
t-1

Newton method as zero-finding routine

2.3.2 Regula Falsi (False Position) method

This method, same as the Newton one, is based on approximating f by a quadratic polynomial,
but here this polynomial is constructed via two working points with first-order information
rather than via a single working point with second-order information. The method, in its most
straightforward form, is as follows. Given two latest iterates xt−1, xt−2, along with the values f
and f ′ at these iterates, we approximate f ′′(xt−1) by the finite difference

f ′(xt−1)− f ′(xt−2)
xt−1 − xt−2

and use this approximation to approximate f by a quadratic function

p(x) = f(xt−1) + f ′(xt−1)(x− xt−1) +
1
2
f ′(xt−1)− f ′(xt−2)

xt−1 − xt−2
(x− xt−1)2.
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The new iterate is the minimizer of this quadratic function:

xt = xt−1 − f ′(xt−1)
xt−1 − xt−2

f ′(xt−1)− f ′(xt−2)
. (2.3.4)

Note that although the polynomial p is chosen in asymmetric with respect to xt−1 and xt−2 way
(it is tangent to f at xt−1, but even not necessarily coincides with f at xt−2), the minimizer xt
of this polynomial is symmetric with respect to the pair of working points; as it is immediately
seen, the right hand side of (2.3.4) can be equivalently rewritten as

xt = xt−2 − f ′(xt−2)
xt−1 − xt−2

f ′(xt−1)− f ′(xt−2)
.

The geometry of the method is very simple: same as the Newton method, this is the method
which actually approximates the zero of g(x) = f ′(x) (look: the values of f are not involved
into the recurrency (2.3.4)). In the Newton method we, given the value and the derivative of g
at xt−1, approximate the graph of g by its tangent at xt−1 line g(xt−1) + g′(xt−1)(x− xt−1) and
choose xt as the point where this tangent line crosses the x-axis. In the Regula Falsi method
we, given the values of g at two points xt−1 and xt−2, approximate the graph of g by the secant
line passing through (xt−1, g(xt−1)) and (xt−2, g(xt−2)) and choose as xt the point where this
secant line crosses the x-axis.

xt-1

xt-2
xt

f’(x)
Regula Falsi method as zero-finding routine

The local rate of convergence of the method is given by the following

Proposition 2.3.2 [Local superlinear convergence of Regula Flasi method]
Let x∗ be a nondegenerate minimizer of a smooth function f , namely, a point such that f is
three times continuously differentiable in a neighbourhood of x∗ with f ′(x∗) = 0, f ′′(x∗) > 0.
Then, for starting pair x0, x1 of two distinct points close enough to x∗ the method converges to
x∗ superlinearly with order of convergence

λ =
1 +
√

5
2

.
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Note that, same as for the Newton method, the assumptions of the proposition, especially the one
of closeness of x0 and x1 to x∗, are essential: badly started, the method may be non-converging:

x xx2 1 0
f’(x)

x3

Cycle in Regula Falsi: the trajectory is x0, x1, x2, x3, x0, x1, ...

2.3.3 Cubic fit

Approximating polynomials used in curve fitting methods are of small order – not greater than 3,
which is clear: to run the method, we should be able to compute the minimizer of a polynomial
analytically. The Cubic fit is based on this “highest-order” approximation. At the step t of the
method, given the latest two iterates x′ = xt−1 and x′′ = xt−2 along with the values of f and f ′

at the points, one defines the cubic polynomial p(·) such that

p(x′) = f(x′), p′(x′) = f ′(x′), p(x′′) = f(x′′), p′(x′′) = f ′(x′′)

(these are four linear equations on four coefficients of the polynomial; if x′ 6= x′′, which, as we
shall see, always can be assumed, the equations uniquely define p). As the next iterate, one
chooses the local minimizer of p. If exists, the minimizer is given by the relations

xt = x′ − (x′ − x′′)
[

u1 + u2 − f ′(x′)
f ′(x′′)− f ′(x′) + 2u2

]
,

u1 = f ′(x′) + f ′(x′′)− 3
f(x′)− f(x′′)

x′ − x′′ , u2 =
√
u2

1 − f ′(x′)f ′(x′′). (2.3.5)

The step is for sure well-defined if f ′(x′) and f ′(x′′) are of opposite signs (“V -shape”; compare
with Bisection). One can prove that if x∗ is a nondegenerate local minimizer of a smooth enough
function f , then the method, started close enough to x∗, converges to x∗ quadratically.

2.3.4 Safeguarded curve fitting

There are many other curve fitting schemes: the one based on rational approximation of the
objective, the one where the objective is approximated by a quadratic polynomial according to
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its values at three-point working set, etc. All curve fitting methods have common advantage:
superlinear local convergence for well-behaved functions. And all these methods have common
disadvantage as well: if the method is started far from optimum, the method can diverge (see,
e.g., Remark 2.3.1). To overcome this severe shortcoming, it is recommended to combine reliable
linearly converging (in the case of unimodal objectives) methods like Golden search or Bisection
with curve fitting. The idea is as follows. At step t of the method we have previous uncertainty
segment ∆t−1 = [at−1, bt−1] (f ′(xt−1) < 0, f ′(bt−1) > 0), as well as certain working set Wt

comprised of several previous iterates where we know the values of f and, possibly, the derivatives
of f . Same as in the curve fitting methods, we use the working set to form polynomial (or
rational) approximation p to f and compute analytically the minimizer of p (or something close
to this minimizer). In the curve fitting methods the resulting point, let it be called u, is used
as the next iterate. In contrast to this, in the safeguarded curve fitting it is used as the next
iterate only if u is “reasonably placed” with respect to ∆t−1; if it is not the case, the next iterate
is chosen according to the Bisection/Golden search scheme, depending on whether we use the
derivatives of f .

The notion of a “reasonably placed” u contains several tests. First of all, u should be well-
defined and belong to ∆t−1, but this is not all. It is recommended, e.g., not to use u if it is too far
from the best (with the smallest value of f) point of the working set, say, is at the distance larger
than 1

2 |∆t−1| (since in this case the Bisection step is likely to reduce inaccuracy better than the
curve fitting one). After the step – the curve fitting or the “safeguarding” (Bisection/Golden
search) one – is performed, one updates the working set and the uncertainty segment.

Of course, what is said is not a description of a concrete method, but a very rough idea which
admits many implementations (detailed specification of which curve fitting method to use, what
is a “reasonably placed” u, rules for updating the working set, etc.) With good implementation,
the safeguarded curve fitting combines the advantages of the Bisection/Golden search (global
linear convergence with objective-independent rate in the unimodal case) and those of curve
fitting (superlinear local convergence for well-behaved objectives).

2.4 Unexact Line Search

As it was already mentioned, the main application of line search methods is inside algorithms
for multi-dimensional optimization. In these algorithms we always allow only small number
of steps of the line search subroutine at each iteration of the master algorithm, otherwise the
overall complexity of the master method will be too large. Moreover, in many multidimensional
algorithms we are not that interested in high-accuracy solutions of one-dimensional subproblems;
what is crucial for the master method, is reasonable progress in solving these subproblems.
Whenever it is the case, we can terminate line search relatively far from the actual solution of
the subproblem in question, using certain simple tests for “resonable progress”. Let us describe
two most popular tests of this type.

2.4.1 Armijo’s rule

Consider the situation which is typical for application of line search technique inside multi-
dimensional master method. At an iteration of the latter method we have current iterate x ∈
Rn and search direction d ∈ Rn which is a descent direction for our multivariate objective
f(·) : Rn → R:

dT∇f(x) < 0. (2.4.1)
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The goal is to reduce “essentially” the value of the objective by a step

x 7→ x+ γ∗d

from x in the direction d.
Assume that f is continuously differentiable. Then the function

φ(γ) = f(x+ γd)

of one variable also is once continuously differentiable; moreover, due to (2.4.1), we have

φ′(0) < 0,

so that for small positive γ one has

φ(γ)− φ(0) ≈ γφ′(0) < 0.

Our desire is to choose a “‘reasonably large” stepsize γ∗ > 0 which results in the progress
φ(γ∗) − φ(0) in the objective “of order of γ∗φ′(0)”. The Armijo test for this requirement is as
follows:

Armijo’s Test:
we fix once for ever constants ε ∈ (0, 1) (popular choice is ε = 0.2) and η > 1 (say, η = 2 or
η = 10) and say that candidate value γ > 0 is appropriate, if the following two relations are
satisfied:

φ(γ) ≤ φ(0) + εγφ′(0) (2.4.2)

[this part of the test says that the progress in the value of φ given by the stepsize γ is “of order
of γφ′(0)”]

φ(ηγ) ≥ φ(0) + εηγφ′(0) (2.4.3)

[this part of the test says that γ is “maximal in order” stepsize which satisfies (2.4.2) – if we
multiply γ by η, the increased value fails to satisfy (2.4.2), at least to satisfy it as a strict
inequality]

Under assumption (2.4.1) and the additional (very natural) assumption that f (and, conse-
quently, φ) is below bounded, the Armijo test is consistent: there do exist values of γ > 0 which
pass the test. To see it, it suffices to notice that

A. (2.4.2) is satisfied for all small enough positive γ.
Indeed, since φ is differentiable, we have

0 > φ′(0) = lim
γ→+0

φ(γ)− φ(0)
γ

,

whence
εφ′(0) ≥ φ(γ)− φ(0)

γ

for all small enough positive γ (since εφ′(0) > φ′(0) due to φ′(0) < 0, ε ∈ (0, 1)); the resulting
inequality is equivalent to (2.4.2);

B. (2.4.2) is not valid for all large enough values of γ.
Indeed, the right hand side of (2.4.2) tends to −∞ as γ → ∞, due to φ′(0) < 0, and the left
hand side is assumed to be below bounded.
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Now let us choose an arbitrary positive γ = γ0 and test whether it satisfies (2.4.2). If it is
the case, let us replace this value sequentially by γ1 = ηγ0, γ2 = ηγ1, etc., each time verifying
whether the new value of γ satisfies (2.4.2). According to B, this cannot last forever: for certain
s ≥ 1 γs for sure fails to satisfy (2.4.2). When it happens for the first time, the quantity γs−1

turns out to satisfy (2.4.2), while the quantity γs = ηγs−1 fails to satisfy (2.4.2), which means
that γ = γs−1 passes the Armijo test.

If the initial γ0 does not satisfy (2.4.2), we replace this value sequentially by γ1 = η−1γ0,
γ2 = η−1γ1, etc., each time verifying whether the new value of γ still does not satify (2.4.2).
According to A, this cannot last forever: for certain s ≥ 1, γs for sure satisfies (2.4.2). When
it happens for the first time, γs turns out to satisfy (2.4.2), while γs−1 = ηγs fails to satisfy
(2.4.2), and γ = γs passes the Armijo test.

Note that the presented proof in fact gives an explicit (and fast) algorithm for finding a
stepsize passing the Armijo test, and this algorithm can be used (and often is used) in Armijo-
aimed line search instead of more accurate (and normally more time-consuming) line search
methods from the previous sections.

2.4.2 Goldstein test

Another popular test for “sufficient progress” in line search is as follows:

Goldstein test:
we fix one for ever constant ε ∈ (0, 1/2) and say that candidate value γ > 0 is appropriate, if

φ(0) + (1− ε)γφ′(0) ≤ φ(γ) ≤ φ(0) + εγφ′(0). (2.4.4)

Here again relation (2.3.4) and below boundedness of f imply consistency of the test.

2.4.3 Closedness of the line search mappings

To be able to apply the general convergence analysis scheme to the algorithms which use line
search we need to know something about closedness of the mappings given by line search. To
this end the following three statements will be useful:

Proposition 2.4.1 [Closedness of the mapping given by exact line search]
Let f : Rn → R be a continuous function with compact level sets: f(x)→∞ as |x| → ∞. Then
the point-to-set mapping

S(x, d) : Rn ×Rn → Rn

given by
S(x, d) = Argmin{f(y) | y = x+ γd, γ ≥ 0}

(i.e., the image of a pair “point x ∈ Rn, direction d ∈ Rn” under the mapping which puts into
correspondence to (x, d) the set of minimizers of f on the ray {x+ γd | γ ≥ 0}) is closed at any
point (x, d) with d 6= 0.

Proposition 2.4.2 [Closedness of the mapping given by line search with Armijo termination]
Let f : Rn → R be a continuously differentiable function which is below bounded on Rn, let
ε ∈ (0, 1), and let η > 1. Then the point-to-set mapping

S(x, d) : Rn ×Rn → Rn
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given by

S(x, d) = {y = x+γd | γ > 0, f(x+γd) ≤ f(x)+εγdT∇f(x), f(x+ηγd) ≥ f(x)+εηγdT∇f(x)}

(i.e., the image of the pair “point x ∈ Rn, direction d ∈ Rn” under the mapping which puts into
correspondence to (x, d) the set of all points on the ray {x + γd | γ > 0} with γ satisfying the
Armijo test) is well-defined (i.e., S(x, d) 6= ∅) and is closed at any point (x, d) such that d is a
descent dirrection of f at x, i.e., dT∇f(x) < 0.

Proposition 2.4.3 [Closedness of the mapping given by line search with Goldstein termination]
Let f : Rn → R be a continuously differentiable function which is below bounded on Rn, and let
ε ∈ (0, 1/2). Then the mapping

S(x, d) : Rn ×Rn → Rn

given by

S(x, d) = {y = x+ γd | γ > 0, f(x) + (1− ε)γdT∇f(x) ≤ f(x+ γd) ≤ f(x) + εγdT∇f(x)}

(i.e., the image of the pair “point x ∈ Rn, direction d ∈ Rn” under the mapping which puts into
correspondence to (x, d) the set of all points on the ray {x + γd | γ > 0} with γ satisfying the
Goldstein test) is closed at any point (x, d) such that d is a descent dirrection of f at x, i.e.,
dT∇f(x) < 0.

Proof of Proposition 2.4.1. First of all, since f is continuous and tends to ∞ as |x| → ∞, f
attains its minimum on every closed nonempty subset of Rn (why?), so that S(x, d), for every
pair (x, d), is a nonempty subset of Rn, as is required by the definition of a point-to-set mapping.
It remains to prove that if (x, d) is such that d 6= 0, then S(·, ·) is closed at (x, d). In other words,
we should prove that if xt → x, dt → d and yt ∈ S(xt, dt), yt → y as t → ∞, then y ∈ S(x, d),
i.e., y is a minimizer of f on the ray R = {x+ γd | γ ≥ 0}.

Let Rt = {xt + γdt | γ ≥ 0}, so that yt is a minimizer of f on Rt, and let yt = xt + γtdt.
Since γtdt = yt − xt → y − x and dt → d 6= 0 as t → ∞, we see that the sequence {γt} has a
limit γ as t→∞ (look at the quantities |yt − xt| = γt|dt|). Consequently,

y = lim
t→∞[xt + γtdt] = x+ γd;

since γt ≥ 0, we have also γ ≥ 0, so that y ∈ R.
It remains to verify that y is a minimizer of f on R. Let y′ = x+ γ′d, γ′ ≥ 0, be a point of

R. Setting y′t = xt + γ′dt, we have
y′t → y′, t→∞,

whence, due to continuity of f ,
f(y′t)→ f(y′), t→∞.

Since y′t ∈ Rt and yt is a minimizer of f on Rt, we have

f(yt) ≤ f(y′t).

As t → ∞, the right hand side here, as we just have seen, converges to f(y′), while the left
hand one converges to f(y) (recall that yt converge to y and f is continuous). We conclude that
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f(y) ≤ f(y′), and this is true for an arbitrary point y′ ∈ R. Thus, y indeed is a minimizer of f
on R.
Proof of Proposition 2.4.2. Let (x, d) be such that dT∇f(x) < 0. As we know from the
discussion devoted to the Armijo rule, S(x, d) is nonempty, and all we need is to prove closedness
of the mapping. Thus, let

xt → x, dt → d, yt → y, t→∞ [yt ∈ S(xt, dt)], (2.4.5)

and let us prove that y ∈ S(x, d).
We have yt = xt + γtdt, with γt > 0 satisfying the corresponding Armijo test:

f(xt + γtdt) ≤ f(xt) + εγtd
T
t ∇f(xt); f(xt + ηγtdt) ≥ f(xt) + εηγtd

T
t ∇f(xt). (2.4.6)

Since dT∇f(x) < 0 by asumption, so that d 6= 0, we, as in the proof of Proposition 2.4.1, have
γt → γ; this observation combined with (2.4.5) and (2.4.6), in view of continuous differentiability
of f , implies that

f(x+ γd) ≤ f(x) + εγdT∇f(x); f(x+ ηγd) ≥ f(x) + εηγdT∇f(x). (2.4.7)

This is what we need, but not all we need: in the definition of Armijo-acceptable stepsize γ,
besides (2.4.7), it is required γ > 0 (zero stepsize trivially satisfies (2.4.2) - (2.4.3), but is of no
interest). By its origin, γ is the limit of a sequence of positive reals γt, so that it is nonnegative.
But why it is positive? This is the focus point of the proof.

To prove positivity of γ, it suffices to prove that γt are bounded away from zero (are ≥ δ for
properly chosen δ > 0). To this end let us set

α = −dT∇f(x) > 0

and let us note that the function hT∇f(z) is continuous in h, z (since f is continuously differ-
entiable); at the point h = d, z = x this function equals to −α < 0 and therefore there exists
positive ρ such that in the ρ-neighbourhood of d, x the function is ≥ −αζ and ≤ −αζ−1:

|z − x|+ |h− d| ≤ ρ⇒ −αζ ≤ hT∇f(z) ≤ −αζ−1, (2.4.8)

where ζ > 1 is chosen close enough to 1 to satisfy the inequality

εζ2 < 1. (2.4.9)

From (2.4.5) it follows that large enough T and all t ≥ T one has

|xt − x|+ |dt − d| ≤ ρ/2; |d|/2 ≤ |dt| ≤ 2|d|. (2.4.10)

I claim that if t ≥ T , then γt ≥ 0.25|d|−1η−1ρ (in particular, {γt} are bounded away from 0, as
required). Indeed, assume, on contrary, that for certain t ≥ T one has

0 ≤ γt ≤ 0.25|d|−1η−1ρ, (2.4.11)

and let us lead this assumption to a contradiction.
By the Lagrange Mean Value Theorem we have

f(xt + ηγtdt)− f(xt) = ηγtd
T
t ∇f(x′), x′ = xt + θηγtdt
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for certain θ ∈ (0, 1). In view of (2.4.10) and (2.4.11) the pair h = dt, z = x′ satisfies the premise
in (2.4.8), so that in view of (2.4.8) one has

f(xt + ηγtdt)− f(xt) ≤ −ηγtζ−1α.

By similar reasoning applied to h = dt, z = xt,

dTt ∇f(xt) ≥ −αζ.

Combining the resulting inequalities, we come to

f(xt + ηγtdt)− f(xt) ≤ ηγtζ−2dTt ∇f(xt) < εηγtd
T
t ∇f(xt)

(note that ε < ζ−2 by (2.4.9), while ηγt > 0 and dTt ∇f(xt) < 0). The resulting inequality
contradicts the fact that γt passes the Armijo test.
Proof of Proposition 2.4.3 is completely similar to the one of Proposition 2.4.2.
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Assignment # 2 (Lecture 2)

Exercise 2.4.1 [Golden search] Write a code implementing the Golden search and run it on
several unimodal test functions on your choice.

Exercise 2.4.2 [Bisection] Write a code implementing the Bisection and run it on several uni-
modal test functions on your choice.

Run 50 steps of the Bisection algorithm on the (non-unimodal) function

f(x) = − sin

(
2π

2
17 + x

)
[x ≥ 0]

with the initial uncertainty segments (a) [0, 1]; (b) [0, 4], taking as the result the midpoint of the
final uncertainty segment. Why the results are different?

Exercise 2.4.3 [Golden search vs Bisection] Assume that the problem (2.1.1) to be solved
satisfies assumption (A) (Section 2.2), and that the derivatives of the objective are available.
What should be prefered – the Golden search or the Bisection?

Of course, Bisection has better convergence (convergence ratio 0.5 versus 0.618... for the
Golden search), but this comparison is unfair: the Golden search does not use derivatives, and
switching off the part of the code which computes f ′, normally, save the overall computation
time, in spite of larger # of steps, to the same accuracy, in the Golden search.

The actual reason to prefer Bisection is that this method, normally, is more numerically
stable. Indeed, assume that we are solving (2.1.1) and everything – the values of f, f ′, f ′′ in
[a, b], same as a and b themselves, are “normal reals” – those of order of 1. And assume that we
are interested in reducing the initial uncertainty segment to the one of length ε. What are the
accuracies ε we can achieve in actual (unexact) computations?

The rough reasoning is as follows: to run the Golden search, we should compare values of
the objective, at the final steps – at points at the distance O(ε) from the minimizer. At these
points, the values of f differ from the optimal value (and, consequently, from each other) by
O(ε2). In order to ensure correct comparison of the values (and an incorrect one may make all
the subsequent computations senseless), the absolute inaccuracy ε∗ of machine representation of
a number of order of 1 (for double precision Fortran/C computations ε∗ is something like 10−16)
should be less than the above O(ε2). Thus, the values of ε we indeed can achieve in Golden
search should be of order of O(

√
ε∗).

In the Bisection method, we should compare the values of f ′ with 0; if all intermediate results
in the code computing the derivative are of order of 1, the derivative is computed with absolute
inaccuracy ≤ cε∗, with certain constant c. If f ′′(x∗), x∗ being the minimizer of f on [a, b], is
positive of order of 1 (“the minimizer is numerically well-conditioned”), then at the distance
≥ Cε away from x∗ the actual values of f ′ are, in absolute values, at least C ′ε, C ′ being certain
constant. We see that if x is at the distance ε away from x∗ and ε is such that C ′ε > cε∗ (i.e.,
the magnitude of f ′(x) is greater than the absolute error in computing f ′(x)), then the sign of
the actually computed f ′(x) will be the same as the exact sign of f ′(x), and the bisection step
will be correct. Thus, under the above assumptions we can expect that the Bisection will be
able to reach accuracy ε = c(C ′)−1ε∗ = O(ε∗) (compare with O(

√
ε∗) for the Golden search).

In order to test this reasoning, I run the Golden search and the Bisection on the problem

f(x) = (x+ 1)2 → min | −2 ≤ x ≤ 1.
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To my surprise (I am unexperienced in error analysis!), both the methods solved the problem
within accuracy of order of 10−16. After a short thought, I realized what was wrong and was
able to update the objective to observe the outlined phenomenon.

Could you
a) Guess what is wrong in the indicated example?
b) Correct the example and observe the phenomenon?

Exercise 2.4.4 [Newton’s method] Run the Newton minimization method at the functions
1) f(x) = 1

2x
2 − x− 1

2 exp{−2x} (starting point 0.5)
2) f(x) = x4 exp{−x/6} (starting point 1.0)

Exercise 2.4.5 [Safeguarded cubic fit] Try to implement the Safeguarded Polynomial Approxi-
mation approach (Section 2.3.4) in the following situation:

• the problem is
f(x)→ min | x ∈ [a, b],

with [a, b] being an uncertainty segment: f ′(a) < 0, f ′(b) > 0;

• the data available at a search point x are f(x), f ′(x);

• the curve to be fitted is cubic polynomial which coincides, along with the first-order deriva-
tive, with f on two-point working set.

The task is a little bit diffuse, and you are welcome to test your own ideas.
If I were you, I would start with testing the following simple scheme:
10. Given current uncertainty segment ∆t−1 = [at−1, bt−1], with f ′(at−1) < 0, f ′(bt−1) > 0,

and the working set at−1, bt−1 (so that we know the values of f and f ′ at at−1 and bt−1), we
compute the cubic polynomial p with the same as those of f values and first order derivatives
at the working set, and compute its (unique) local minimizer lying in ∆t−1, let this minimizer
be u (explicit formulae for p and u are given in Section 2.3.3).

20. Two cases are possible:
l) u is in the left half of the segment ∆t−1 [in this case let us say that at−1 is the “perspective”

endpoint of the segment ∆t−1]
r) u is in the right half of the segment ∆t−1 [in this case we say that bt−1 is the prespective

endpoint of ∆t−1]
In the case of l) let us choose, as the next search point,

x+ = u+ α(u− at−1),

and in the case of r) – the point

x+ = u− α(bt−1 − u),

α > 0 being small positive real (I would try α = 0.01 or smth. like).
30. After f(x+) and f ′(x+) are computed, we check whether the sign of f ′(x+) is opposite

to the sign of f ′ at the perspective endpoint, let it be denoted x−, of the segment ∆t−1. If it is
so (good case), we take, as ∆t, the segment with the endpoints x− and x+; note that f ′ changes
its sign from − to + when passing from the left endpoint of ∆t−1 to the right endpoint, as it is
required for an uncertainty segment, and that the length of ∆t is at most (0.5 + α) times the
length of the previous uncertainty segment ∆t−1.
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It is possible, of course, that the sign of f ′ at x+ is the same as at x− (bad case). In the
case of l) it means that f ′(x+) and f ′(bt−1) are of different signs (since f ′(at−1) ≡ f ′(x−) is of
the same sign as f ′(x+), and the signs of f ′ at at−1 and bt−1 are different), and we perform an
additional bisection step in the segment [x+, bt−1] to get a twice smaller uncertainty segment
∆t. In the case of r) we, similarly, perform an additional bisection step in the segment [at−1, x

+]
to get a new uncertainty segment ∆t.

We see that in one (in the good case) or two (in the bad one) function evaluations we come
from a given uncertainty segment to a new uncertainty segment with smaller, by factor at least
0.5 +α (in the good case) or 0.5 (in the bad one), length. Consequently, the scheme in question
is “safeguarded” – it converges linearly with objective-independent rate.

Now let me explain why this procedure seems to have high convergence rate at the final
stage. Consider step t and assume that f is “well-behaved” and that we are at the final stage of
the process, so that p is good enough approximation of f on ∆t−1. Let x∗ be the minimizer of f
on ∆t−1, and let, for the sake of definiteness, at−1 be the one of the endpoints of the uncertainty
segment which is closer to x∗. Under these assumptions we may expect that

a) u is much closer to x∗ than at−1, and since x∗ is in the left half of ∆t−1, u typically also
will be in this left half, so that the case l) will occur;

b) due to the “extra step” (x+ = u + α(u − at−1) instead of x+ = u), our next iterate will
be to the right of x∗, so that we will meet with the good case, and no additional bisection step
will be needed;

c) The new iterate x+ will be “almost” as close to x∗ as u (α is small!), so that the method
will behave itself “almost” as the pure curve fitting scheme, which, in good cases, possesses fast
local convergence.

Note that the “extra step” mentioned in b) is aimed exactly to have good chances to get,
without additional bisection step, new uncertainty segment “sufficiently smaller” than the previ-
ous one, so that the safeguarded policy in the above scheme is “distributed” between this extra
step and additional bisection steps.

I do not think that the indicated scheme is “the best one”; it is nothing but what came to
my mind. You are welcome to play with this scheme or to invent something better!



Lecture 3

Gradient Descent

Starting from this lecture, we shall speak about methods for solving unconstrained multidimen-
sional problems

f(x)→ min | x ∈ Rn. (3.0.1)

From now on, let us make the following assumptions:

• (A) the objective f in (3.0.1) is continuously differentiable;

• (B) the problem in question is solvable: the set

X∗ = Argmin
Rn

f

is nonempty.

Our today lecture is devoted to the oldest and most widely known method for (3.0.1) - the
Gradient Descent.

3.1 The method

3.1.1 The idea

The idea of the method is very simple. Assume that we are at certain point x, and that we have
computed f(x) and ∇f(x). Assume that x is not a critical point of f : ∇f(x) 6= 0 (this is the
same as to say that x is not a Karush-Kuhn-Tucker point of the problem). Then g = −∇f(x)
is a descent direction of f at x:

d

dγ
|γ=0f(x− γ∇f(x)) = −|∇f(x)|2 < 0;

moreover, this is the best among the descent directions h (normalized to have the same length
as that one of g) of f at x: for any h, |h| = |g|, one has

d

dγ
|γ=0f(x+ γh) = hT∇f(x) ≥ −|h||∇f(x)| = −|∇f(x)|2

(we have used tha Cauchy inequality), the inequality being equality if and only if h = g.

43
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The indicated observation demonstrates that in order to improve x – to form a new point
with smaller value of the objective – it makes sense to perform a step

x 7→ x+ γg ≡ x− γ∇f(x)

from x in the antigradient direction; with properly chosen stepsize γ > 0, such a step will for
sure decrease f . And in the Gradient Descent method, we simply iterate the above step. Thus,
the generic scheme of the method is as follows

Algorithm 3.1.1 [Generic Gradient Descent]
Initialization: choose somehow starting point x0 and set t = 1
Step t: at the beginning of step t we have previous iterate xt−1. At the step we

• compute f(xt−1) and ∇f(xt−1);

• choose somehow a positive stepsize γt, set

xt = xt−1 − γt∇f(xt−1), (3.1.1)

replace t with t+ 1 and loop.

Thus, the generic Gradient Descent method is simply the recurrency (3.1.1) with certain rule
for choosing stepsizes γt > 0; normally, the stepsizes are given by a kind of line search applied
to the univariate functions

φt(γ) = f(xt−1 − γ∇f(xt−1)).

3.1.2 Standard implementations

Different versions of line search result in different versions of the Gradient Descent method.
Among these versions, one should mention

• ArD [Gradient Descent with Armijo-terminated line search]: the stepsize γt > 0 at itera-
tion t where ∇f(xt−1) 6= 0 is chosen according to the Armijo test (Section 2.4.1):

f(xt−1 − γt∇f(xt−1)) ≤ f(xt−1)− εγt|∇f(xt−1)|2;

f(xt−1 − ηγt∇f(xt−1)) ≥ f(xt−1)− εηγt|∇f(xt−1)|2, (3.1.2)

ε ∈ (0, 1) and η > 1 being the parameters of the method. And if xt−1 is a critical point
of f , i.e., ∇f(xt−1) = 0, the choice of γt > 0 is absolutely unimportant: independently of
the value of γt, (3.1.1) will result in xt = xt−1.

• StD [Steepest Descent]: γt minimizes f along the ray {xt−1 − γ∇f(xt−1) | γ ≥ 0} :

γt ∈ Argmin
γ≥0

f(xt−1 − γ∇f(xt−1)). (3.1.3)

Of course, the Steepest Descent is a kind of idealization: in nontrivial cases we are unable to
minimize the objective along the search ray exactly. Moreover, to make this idealization valid,
we should assume that the corresponding steps are well-defined, i.e., that

Argmin
γ≥0

f(x− γ∇f(x)) 6= ∅

for every x; in what follows, this is assumed “by default” whenever we are speaking about the
Steepest Descent.

In contrast to the Steepest Descent, the Gradient Descent with Armijo-terminated line search
is quite “constructive” – we know from Section 2.4.1 how to find a stepsize passing the Armijo
test.
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3.2 Convergence of the Gradient Descent

3.2.1 General Convergence Theorem

We start with the following theorem which establishes, under very mild restrictions, global
convergence of the Gradient Descent to the set of critical points of f – to the set

X∗∗ = {x ∈ Rn | ∇f(x) = 0}.

Theorem 3.2.1 [Global convergence of Gradient Descent] For both StD and ArD , the fol-
lowing statements are true:

(i) If the trajectory {xt} of the method is bounded, then the trajectory possesses limiting
points, and all these limiting points are critical points of f ;

(ii) If the level set
S = {x ∈ Rn | f(x) ≤ f(x0)}

of the objective is bounded, then the trajectory of the method is bounded (and, consequently, all
its limiting points, by (i), belong to X∗∗).

Proof. (ii) is an immediate consequence of (i), since both ArD and StD clearly are descent
methods:

xt 6= xt−1 ⇒ f(xt) < f(xt−1). (3.2.1)

Therefore the trajectory, for each of the methods, is contained in the level set S; since under
assumption of (ii) this set is bounded, the trajectory also is bounded, as claimed in (ii).

It remains to prove (ii). Let us start with ArD . To prove its convergence to X∗∗, let us
apply the general scheme for convergence analysis from Lecture 1.

10. First of all, let us bring the method into the framework required by our general scheme.
The method is memoryless, so that we can cover it by the abstract iterative algorithm

A = (X = Rn; Θ(·)),

where the point-to-set mapping Θ is defined as follows:

Θ(x) =
{ {y | y = x− γ∇f(x) with γ satisfying the Armijo test} ,∇f(x) 6= 0
{x} ,∇f(x) = 0

Now, the algorithm A is descent with respect to the solution set Γ = X∗∗, the descent finction
being Z(x) = f(x), as is immediately seen from (3.1.2). Let us prove that the mapping Θ(·) is
closed at any point x 6∈ Γ. To this end let us note that Θ can be represented as composition of
two mappings:

Θ = SD,

where

• the inner mapping D is the point-to-point mapping from Rn to Rn ×Rn given by

D(x) = (x,−∇f(x));

• the outer mapping S is the point-to-set mapping from Rn ×Rn into Rn given by

S(x, d) =
{ {y = x+ γd with γ satisfying the Armijo test} ,dT∇f(x) < 0
{x} ,dT∇f(x) ≥ 0
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The inner mapping is a continuous point-to-point mapping (look at assumption (A) in the
beginning of the lecture). Now, if x 6∈ X∗∗, then D(x) = (x, d ≡ −∇(x)) is such that d is a
descent direction of f at x: dT∇f(x) < 0. By Proposition 2.4.2, the outer mapping S is closed
at the point D(x). Consequently, by Corollary 1.3.2, the composite mapping Θ is closed at x.

Now the desired convergence statement is readily given by the Global Convergence Theorem
1.3.1 (we just have seen that the assumptions (ii) and (iii) of Theorem 1.3.1 are satisfied, and
the remaining assumption (i) of the Theorem is nothing but the premise in the statement we
are proving).

The proof of (i) for the case of StD is completely similar; the only difference is that we
should refer to Proposition 2.4.1 instead of Proposition 2.4.2.

3.2.2 Limiting points of Gradient Descent

We have proved that the standard versions of the Gradient Descent, under the assumption that
the trajectory is bounded, converge to the set X∗∗ of critical points of the objective. This set
for sure contains the set X∗ of global minimizers of f , same as the set of local minimizers of the
objective, but this is not all: X∗∗ contains also all local maximizers of f and the saddle points of
the function, if any exists. An important question is whether a limiting point of the trajectory
of the Gradient Descent may be something we are not interested in – a a critical point which is
not a local minimizer of the objective.

To understand what is going on, let us consider the case of very smooth (say, infinitely many
times differentiable) f with bounded level set S = {x | f(x) ≤ f(x0)}. Since both the versions
under consideration – ArD and StD – are descent methods, the trajectory remains in S; thus,
all what is important for us is the the behaviour of f in S.

In the case of “general position”1) f possesses a finite set of critical points in S, and all these
points are nondegenerate, i.e., with a nondegenerate Hessian ∇2f . Let x∗ be a critical point of
f ; let us look whether it may happen that this point is a limiting point of the trajectory {xt}
of the Gradient Descent.

In fact it is better to speak about continuous time approximation of the method – the one
where the trajectory x(t) is function of continuous argument t given by the differential equation

d

dt
x(t) = −∇f(x(t)) (3.2.2)

The actual trajectory {xt} is a finite-difference approximation of the solution to this differential
equation; the behaviour of the actual trajectory is more or less close to the one of x(t). Of
course, “more or less” is not a rigorous notion, but now we do not pretend to get rigorous
results (although some of our conclusions can be proved rigorously).

Case A: ∇2f(x∗) is positive definite, so that x∗ is a local minimizer of f (as it is said by
the Sufficient condition for local optimality). It is easily seen that x∗ can be a limiting point of
the trajectory x(t); the trajectory even converges to x∗, provided that it once came close enough
to x∗. To verify this, it suffices to look at the behaviour of the function V (x) = |x− x∗|2 along
the trajectory: one has

d

dt
V (x(t)) = 2(x(t)− x∗)T d

dt
x(t) = −(x(t)− x∗)T∇f(x(t)).

1It means that the indicated properties can be ensured by properly chosen arbitrarily small perturbation of
the original f , e.g., by adding to it a small linear form
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When x(t) is close to x∗, we have

∇f(x(t)) = ∇f(x(t))−∇f(x∗) ≈ ∇2f(x∗)(x(t)− x∗);

it is a simple exercise in Calculus to verify that the above ≈ is sufficient to make correct
conclusion on the sign of (x(t) − x∗)T∇f(x(t)): it will be the same (provided, of course, that
x(t) is close enough to x∗) as the sign of the product (x(t)−x∗)T∇2f(x∗)(x(t)−x∗), i.e., will be
+ (recall that we are in the situation of positive definite ∇2f(x∗)). Consequently, if, for certain
t̄, V (x(t̄)) is small enough and nonzero (i.e., x(t̄) is close enough to x∗ and differs from x∗),
then, for the same t̄, we have d

dtV (x(t̄)) < 0; it immediately follows that, starting with t = t̄,
the function V (x(t)) will monotonically decrease and, moreover, will converge to 0. Thus, the
trajectory x(t), once coming close to x∗, will then approach x∗. In other words, a (strict2) local
minimizer of f is an attractor for the vector field given by the right hand side of (3.2.2).

Case B: ∇2f(x∗) is negative definite, so that x∗ is a (strict) local maximizer of f . Such
a point never will be a limiting point of the trajectory, provided that the trajectory does not
start at the point (since x∗ is a critical point, the trajectory, started at x∗, will never leave the
point). Indeed, in the case in question the vector field −∇f(x) in a small ball neighbourhood
U of x∗ looks “outwards” of x∗, i.e., in this neighbourhood, in contrast to what we had in the
case A,

x 6= x∗ ⇒ (x− x∗)T (−∇f(x)) > 0.

It follows that the trajectory never will enter U from outside of U , and if it starts somewhere in
U (not at x∗!), it goes away from x∗ until it leaves U .

Case C: ∇2f(x∗) is indefinite, so that x∗ is a saddle point of f . To simplify things, let us
assume that f is quadratic (so that (3.2.2) is linear differential equation, and we can write down
the solution analytically). The result here is as follows: there exists an affine set S of dimension
< n such that the trajectory, started at this set, converges to x∗; and started outside this set, it
never comes too close to x∗. Since it is “practically impossible” to start the trajectory exactly
at “thin” set S, we can conlcude that, at least in the case of a quadratic f , the trajectory never
will converge to a saddle point of f . Now, since in the non-quadratic case locally everything is
very similar to the quadratic one, we may say that it is “extremely unlikely” to get a saddle
point of f as a limiting point of the Gradient Descent trajectory.

The results of our unformal considertaions are as follows: we may be “practically sure” that
every limiting point of the Gradient Descent trajectory is a local minimizer of the objective,
not a local maximizer or a saddle point of f . At the same time, there are no guarantees that
the trajectory converges to a global minimizer of f , since every strict local minimizer of f is an
attractor of the anti-gradient vector field −∇f(x). Whether the trajectory converges to a local
minimizer or to a global one, depends on the choice of the starting point.

3.3 Rates of convergence

3.3.1 Rate of global convergence: general C1,1 case

As we already know, under the assumption of item (ii) of Theorem 3.2.1 (i.e., when the level
set S = {x | f(x) ≤ f(x0)} is bounded), the versions of the Gradien Descent mentioned in

2i.e., with positive definite ∇2f
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the Theorem converge to the set X∗∗ of critical points of f . What can be said about the non-
asymptotical rate of convergence? The answer depends on how we measure the inaccuracy. If
we use to this purpose something like the distance

dist(x,X∗∗) = min
y∈X∗∗

|y − x|

from an approximate solution x to X∗∗, no nontrivial efficiency estimates can be done: the
convergence of the quantities dist(xt, X∗∗) to 0 can be arbitrarily slow. There is, anyhow,
another accuracy measure,

εf (x) = |∇f(x)|2,
more suitable for our purposes. Note that the set X∗∗ towards which the trajectory converges is
exactly the set where εf (·) = 0, so that εf (x) indeed can be viewed as something which measures
the “residual in the inclusion x ∈ X∗∗”. And it turns out that we point out the rate at which
this residual converges to 0:

Proposition 3.3.1 [Non-asymptotical rate of convergence of Gradient Descent]
Assume that the objective f is a C1,1 function, i.e., it is continuously differentiable with Lipschitz
continuous gradient:

|∇f(x)−∇f(y)| ≤ Lf |x− y|, ∀x, y ∈ Rn. (3.3.1)

Then for any integer N > 0:
(i) For the started at x0 trajectory {xt} of StD one has

εf [t] ≡ min
0≤t<N

|∇f(xt)|2 ≤ 2Lf
N

[f(x0)−min f ]. (3.3.2)

(ii) For the started at x0 trajectory {xt} of ArD one has

εf [t] ≡ min
0≤t<N

|∇f(xt)|2 ≤ ηLf
2ε(1− ε)N [f(x0)−min f ], (3.3.3)

ε ∈ (0, 1), η > 1 being the parameters of the underlying Armijo test.

Proof [non-obligatory].
10. Let us start with the following simple

Lemma 3.3.1 Under assumption of the Theorem one has

f(y) ≤ f(x) + (y − x)T∇f(x) +
Lf
2
|y − x|2, ∀x, y ∈ Rn. (3.3.4)

Proof of Lemma. Let φ(γ) = f(x+γ(y−x)). Note that φ is continuously differentiable (since
f is) and

|φ′(α)− φ′(β)| = |(y − x)T (∇f(x+ α(y − x))−∇f(x+ β(y − x))| ≤

[Cauchy’s inequality]

≤ |y − x||∇f(x+ α(y − x))−∇f(x+ β(y − x))| ≤

[(3.3.1)]
≤ |y − x|2Lf |α− β|.
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Thus,
|φ′(α)− φ′(β)| ≤ Lf |y − x|2|α− β|, ∀α, β ∈ R. (3.3.5)

We have

f(y)− f(x)− (y − x)T∇f(x) = φ(1)− φ(0)− φ′(0) =
∫ 1

0
φ′(α)dα− φ′(0) =

=
∫ 1

0
[φ′(α)− φ′(0)]dα ≤

[see (3.3.5)]

≤
∫ 1

0
|y − x|2Lfαdα =

Lf
2
|y − x|2,

as required in (3.3.4).
20. Now we are ready to prove (i). By construction of the Steepest Descent,

f(xt) = min
γ≥0

f(xt−1 − γ∇f(xt−1)) ≤

[by Lemma 3.3.1]

≤ min
γ≥0

[
f(xt−1) + [−γ∇f(xt−1)]T∇f(xt−1) +

Lf
2
|γ∇f(xt−1)|2

]
=

= f(xt−1) + |∇f(xt−1)|2 min
γ≥0

[
−γ +

Lf
2
γ2
]

= f(xt−1)− 1
2Lf
|∇f(xt−1)|2.

Thus, we come to the following important inequality:

f(xt−1)− f(xt) ≥ 1
2Lf
|∇f(xt−1)|2 (3.3.6)

– the progress in the objective at a step of Steepest Descent is at least of order of the squared
norm of the gradient at the previous iterate.

To conclude the proof, it suffices to note that, due to the monotonicity of the method, the
total progress in the objective in course of certain segment of steps cannot be more than the
initial residual f(x0)−min f in the objective value; consequently, in a long segment, there must
be a step with small progress, i.e., with small norm of the gradient. To make this reasoning
quantitive, let us take sum of inequalities (3.3.6) over t = 1, ..., N , coming to

1
2Lf

N−1∑

t=0

|∇f(xt)|2 ≤ f(x0)− f(xN ) ≤ f(x0)−min f.

The left hand side here is ≥ N
2Lf

min0≤t<N |∇f(xt)|2, and (3.3.2) follows.
30. The proof of (ii) is a little bit more involved, but follows the same basic idea: the progress at
a step of ArD can be small only if the gradient at the previous iterate is small, and the progress
at certain step from a long segment of the steps must be small, since the total progress cannot
be larger than the initial residual. Thus, in a long segment of steps we must pass through a
point with small norm of the gradient.

The quantitive reasoning is as follows. First of all, progress in the objective at a step t of
ArD is not too small, provided that both γt and |∇f(xt−1)|2 are not too small:

f(xt−1)− f(xt) ≥ εγt|∇f(xt−1)|2; (3.3.7)
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this is immediate consequence of the first inequality in (3.1.2). Second, γt is not too small.
Indeed, by Lemma 3.3.1 applied with x = xt−1, y = xt−1 − ηγt∇f(xt−1) we have

f(xt−1 − ηγt∇f(xt−1)) ≤ f(xt−1)− ηγt|∇f(xt−1)|2 +
Lf
2
η2γ2

t |∇f(xt−1)|2,

while by the second inequality in (3.1.2)

f(xt−1 − ηγt∇f(xt−1)) ≥ f(xt−1)− εηγt|∇f(xt−1)|2.

Combining these inequalities, we get

(1− ε)ηγt|∇f(xt−1)|2 ≤ Lf
2
η2γ2

t |∇f(xt−1)|2.

Since γt > 0, in the case of ∇f(xt−1) 6= 0 we obtain

γt ≥ 2(1− ε)
ηLf

; (3.3.8)

in the case of ∇f(xt−1) = 0 γt, as we remember, can be chosen in arbitrary way without
influencing the trajectory (the latter in any case will satisfy xt−1 = xt = xt+1 = ...), and we
may assume that γt always satisfies (3.3.8).

Combining (3.3.7) and (3.3.8), we come to the following inequality (compare with (3.3.6):

f(xt−1)− f(xt) ≥ 2ε(1− ε)
ηLf

|∇f(xt−1)|2. (3.3.9)

Now the proof can be completed exactly as in the case of the Steepest Descent.

Remark 3.3.1 The efficiency estimate of Proposition 3.3.1 gives sublinearly converging to 0
non-asymptotical upper bound on the inaccuracies εf (·) of the iterates. Note, anyhow, that this
is a bound on the inaccuracy of the best (with the smallest norm of the gradient) of the iterates
generated in course of the first N steps of the method, not on the inaccuracy of the last iterate
xN (the quantities |∇f(xt)|2 may oscillate, in contrast to the values f(xt) of the objective).

3.3.2 Rate of global convergence: convex C1,1 case

Theorem 3.2.1 says that under mild assumptions the trajectories of ArD and StD converge to
the set X∗∗ of critical points of f . If we assume, in addition, that f is convex, so that the set
of critical points of f is the same as the set of global minimizers of the function, we may claim
that the trajectories converge to the optimal set of the problem. Moreover, in the case of convex
C1,1 objective (see Proposition 3.3.1) we can get non-asymptotical efficiency estimates in terms
of the residuals f(xt) − min f , and under additional nondegeneracy assumption (see below) –
also in terms of the distances |xt − x∗| from the iterates to the optimal solution.

To simplify our considerations and to make them more “practical”, in what follows we restrict
ourselves with the Armijo-based version ArD of the Gradient Descent.
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Convex C1,1 case

Proposition 3.3.2 [Rate of global convergence of ArD in convex C1,1 case]
Let the parameter ε in the ArD method be ≥ 0.5, and let f be a convex C1,1 function with a
nonempty set X∗ of global minimizers. Then

(i) The trajectory {xt} of ArD converges to certain point x∗ ∈ X∗;
(ii) For every N ≥ 1 one has

f(xN )−min f ≤ ηLf dist2(x0, x
∗)

4(1− ε)N , (3.3.10)

where Lf is the Lipschitz constant of ∇f(·) and

dist(x,X∗) = min
y∈X∗

|y − x|. (3.3.11)

Proof [non-obligatory].
10. Let x∗ be a point from X∗, and let us look how the squared distances

d2
t = |xt − x∗|2

vary with t. We have

d2
t = |xt − x∗|2 ≡ |[xt−1 − γt∇f(xt−1)]− x∗|2 = |[xt−1 − x∗]− γt∇f(xt−1)|2 =

= |xt−1 − x∗|2 − 2γt(xt−1 − x∗)T∇f(xt−1) + γ2
t |∇f(xt−1)|2. (3.3.12)

Since f is convex, from the Gradient Inequality

f(y) ≥ f(x) + (y − x)T∇f(x) ∀x, y ∈ Rn

it follows that

(xt−1 − x∗)T∇f(xt−1) ≥ f(xt−1)− f(x∗) = f(xt−1)−min f.

This inequality combined with (3.3.12) results in

d2
t ≤ d2

t−1 − γt
[
2εt−1 − γt|∇f(xt−1)|2

]
, εs ≡ f(xs)−min f ≥ 0. (3.3.13)

According to (3.3.7), we have

γt|∇f(xt−1)|2 ≤ 1
ε

[f(xt−1)− f(xt)] =
1
ε

[εt−1 − εt].

Combining this inequality with (3.3.13), we get

d2
t ≤ d2

t−1 − γt
[
(2− ε−1)εt−1 + ε−1εt

]
. (3.3.14)

Since, by assumption, 1/2 ≤ ε, and clearly εs ≥ 0, the quantity in the parentheses in the right
hand side is nonnegative. We know also from (3.3.8) that

γt ≥ γ̄ =
2(1− ε)
ηLf

,
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so that (3.3.14) results in

d2
t ≤ d2

t−1 − γ̄
[
(2− ε−1)εt−1 + ε−1εt

]
. (3.3.15)

We conclude, consequently, that
(*) The distances from the points xt to (any) point x∗ ∈ X∗ do not increase with t. In

particualr, the trajectory is bounded.

From (*) it immediately follows that {xt} converges to certain point x̄∗ ∈ X∗, as claimed in
(i). Indeed, by Theorem 3.2.1 the trajectory, being bounded, has all its limiting points in the set
X∗∗ of critical points of f , or, which is the same (f is convex!), in the set X∗ of global minimizers
of f . Let x̄∗ be one of these limiting points, and let us prove that in fact {xt} converges to x̄∗.
To this end note that the sequence |xt− x̄∗|, which, as we know from (*), is non-increasing, has
0 as its limiting point; consequently, the sequence converges to 0, so that xt → x̄∗ as t→∞, as
claimed.

It remains to prove (3.3.10). Taking sum of inequalities (3.3.15) over t = 1, ..., N , we get

Nγ̄
[
(2− ε−1)εt−1 + ε−1εt

]
≤ d2

0 − d2
N ≤ d2

0 ≡ |x0 − x∗|2.

Since ε0 ≥ ε1 ≥ ε2 ≥ ... (our method is descent – it never decreases the values of the objective!),
the left hand side in the resulting inequality can only become smaller if we replace all εt with
εN ; thus, we get

2Nγ̄εN ≤ |x0 − x∗|2, (3.3.16)

whence, substituting the expression for γ̄,

εN ≤ ηLf |x0 − x∗|2
4(1− ε)N ;

since the resulting inequality is valid for all x∗ ∈ X∗, (3.3.10) follows.

Strongly convex C1,1 case

Proposition 3.3.2 deals with the case of smooth convex f , but there were no assumptions on
the non-degeneracy of the minimizer – the minimizer might be non-unique, and the graph of f
could be very “flat” around X∗. Under additional assumption of strong convexity of f we may
get better convergence results.

The notion of strong convexity is given by the following

Definition 3.3.1 [Strongly convex function] A function f : Rn → R is called strongly con-
vex with the parameters of strong convexity (lf , Lf ), 0 < lf ≤ Lf ≤ ∞, if f is continuously
differentiable and satisfies the inequalities

f(x) + (y − x)T∇f(x) +
lf
2
|y − x|2 ≤ f(y) ≤ f(x) + (y − x)T∇f(x) +

Lf
2
|y − x|2, ∀x, y ∈ Rn.

(3.3.17)

Strongly convex functions traditionally play the role of “excellent” objectives, and this is the
family on which the theoretical convergence analysis of optimization methods is normally per-
formed. For our further purposes it is worthy to know how to detect strong convexity and what
are the basic properties of strongly convex functions; this is the issue we are coming to.

The most convenient sufficient condition for strong convexity is given by the following
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Proposition 3.3.3 [Criterion of strong convexity for twice continuously differentiable func-
tions]
Let f : Rn → R be twice continuously differentiable function, and let (lf , Lf ), 0 < lf ≤ Lf <∞,
be two given reals. f is strongly convex with parameters lf , Lf if and only if the spectrum of the
Hessian of f at every point x ∈ Rn belongs to the segment [lf , Lf ]:

lf ≤ λmin(∇2f(x)) ≤ λmax(∇2f(x)) ≤ Lf ∀x ∈ Rn, (3.3.18)

where λmin(A), λmax(A) denote the minimal, respectively, the maximal eigenvalue of a symmetric
matrix A and ∇2f(x) denotes the Hessian (the matrix of the second order derivatives) of f at
x.

Example 3.3.1 The convex quadratic form

f(x) =
1
2
xTAx− bTx+ c,

A being positive definite symmetric matrix, is strongly convex with the parameters lf = λmin(A),
Lf = λmax(A).

The most important for us properties of strongly convex functions are summarized in the fol-
lowing statement:

Proposition 3.3.4 Let f be strongly convex with parameters (lf , Lf ). Then
(i) The level sets {x | f(x) ≤ a} of f are compact for every real a;
(ii) f attains its global minimum on Rn, the minimizer being unique;
(iii) ∇f(x) is Lipschitz continuous with Lipschitz constant Lf .

Now we come back to Gradient Descent. The following important proposition says that ArD
, as applied to a strongly convex f , possesses global linear convergence:

Proposition 3.3.5 [Linear convergence of ArD as applied to strongly convex f ]
Let a strongly convex, with parameters (lf , Lf ), function f be minimized by ArD started at
certain point x0, and let the parameter ε of the Armijo test underlying the method be ≥ 1/2.
Then, for every integer N ≥ 1, one has

|xN − x∗| ≤ θN |x0 − x∗|, θ =

√
Qf − (2− ε−1)(1− ε)η−1

Qf + (ε−1 − 1)η−1
, (3.3.19)

where x∗ is the (unique, due to Proposition 3.3.4.(ii)) minimizer of f and

Qf =
Lf
lf

(3.3.20)

is the condition number of f .
Besides this,

f(xN )−min f ≤ θ2NQf [f(x0)−min f ]. (3.3.21)

Thus, the method globally linearly converges with convergence ratio θ (note that θ ∈ (0, 1) due
to ε ∈ [1/2, 1)).
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Proof [non-obligatory].
10. According to Proposition 3.3.4, f is C1,1 convex function which attains its minimum, and
the gradient of f is Lipschitz continuous with constant Lf . Consequently, all conclusions of the
proof of Proposition 3.3.2 are valid, in particular, relation (3.3.14):

d2
t ≡ |xt − x∗|2 ≤ d2

t−1 − γ̄
[
(2− ε−1)εt−1 + ε−1εt

]
, γ̄ =

2(1− ε)
ηLf

, εs = f(xs)−min f. (3.3.22)

Applying (3.3.17) to the pair (x = x∗, y = xs) and taking into account that ∇f(x∗) = 0, we get

εs ≥ lf
2
|xs − x∗|2 =

lf
2
d2
s;

therefore (3.3.22) implies

d2
t ≤ d2

t−1 −
γ̄lf
2

[
(2− ε−1)d2

t−1 + ε−1d2
t

]
,

or, substituting the expression for γ̄ and rearranging the expression,

d2
t ≤ θ2d2

t−1, (3.3.23)

with θ given by (3.3.19), and (3.3.19) follows.
It remains to prove (3.3.21). To this end it suffices to note that, due to the first inequality

in (3.3.17) applied with x = x∗, y = x0, one has

|x0 − x∗|2 ≤ 2
lf

[f(x0)− f(x∗)] =
2
lf

[f(x0)−min f ], (3.3.24)

while the second inequality in (3.3.17) applied with x = x∗, y = xN says that

f(xN )−min f ≡ f(xN )− f(x∗) ≤ Lf
2
|xN − x∗|2;

consequently,

f(xN )−min f ≤ Lf
2
|xN − x∗|2 ≤

[see (3.3.19)]

≤ Lf
2
θ2N |x0 − x∗|2 ≤

[see (3.3.24)]

≤ Lf
lf
θ2N [f(x0)−min f ],

as required in (3.3.21).

Global rate of convergence in convex C1,1 case: summary

The results given by Propositions 3.3.2 and 3.3.5 can be summarized as follows. Assume that
we are solving the problem

f(x)→ min

with convex C1,1 objective (i.e., ∇f(x) is a Lipschitz continuous vector field), and assume that
f possesses a nonempty set X∗ of global minimizers. And assume that we are minimizing f by
ArD with properly chosen parameter ε, namely, 1/2 ≤ ε < 1. Then
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• A. In the general case, where no strong convexity of f is imposed, the trajectory {xt} of
the method converges to certain point x̄∗ ∈ X∗, and the residuals in terms of the objective
– the quantities εN = f(xN )−min f – go to zero at least as O(1/N), namely, they satisfy
the estimate

εN ≤ ηLf dist2(x0, X
∗)

4(1− ε)
1
N
. (3.3.25)

Note that

– no quantitive assertions on the rate of convergence of the quantities |xN − x̄∗| can be
given; all we know is that these quantities converge to 0, but the convergence can be
as slow as you wish. Namely, given an arbitrary decreasing sequence {dt} converging
to 0, one can point out a C1,1 convex function f on 2D plane such that Lf = 1,
dist(x0, X

∗) = d0 and dist(xt, X∗) ≥ dt for every t;

– estimate (3.3.25) establishes correct order of convergence to 0 of the residuals in terms
of the objective: for properly chosen C1,1 convex function f on the 2D plane one has

εN ≥ α

N
, N = 1, 2, ...

with certain positive α.

• B. If f is strongly convex with parameters (lf , Lf ), then the method converges linearly:

|xN − x∗| ≤ θN |x0 − x∗|, f(xN )−min f ≤ Qfθ2N [f(x0)−min f ],

θ =

√
Qf − (2− ε−1)(1− ε)η−1

Qf + (ε−1 − 1)η−1
, (3.3.26)

Qf = Lf/lf being the condition number of f .

Note that the convergence ratio θ (or θ2, depending on which accuracy measure – the distance
from the iterate to the optimal set or the residual in terms of the objective – we use) tends to 1
as the condition number of the problem goes to infinity (as people say, as the problem becomes
ill-conditioned). When Qf is large, we have

θ ≈ 1− pQ−1
f , p = (1− ε)η−1, (3.3.27)

so that to decrease the upper bound (3.3.26) on |x· − x∗| by an absolute constant factor, say,
by factor 10, it requires O(Qf ) steps of the method. In other words, what we can extract from
(3.3.26) is that

(**) the number of steps of the method resulting in a given in advance progress in accuracy (the
one required to decrease the initial distance from the optimal set by a given factor, say, 106), is
proportional to the condition number Qf of the objective.

Of course, this conclusion is derived from an upper bound on inaccuracy; it might happen that
our upper bounds “underestimate” actual performance of the method. It turns out, anyhow,
that our bounds are tight, and the conclusion is valid:

in the case of strongly convex objective f (which is the best case in unconstrained optimiza-
tion)
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the number of steps of the Gradient Descent required to reduce initial inaccuracy
(measured either as the distance from the optimal set or as the residual in terms of
the objective) by a given factor is typically proportional to the condition number of
f .

To justify the claim, let us look what happens in the case of quadratic objective.

3.3.3 Rate of convergence in the quadratic case

Let us look what happens if Gradient Descent is applied to a strongly convex quadratic objective

f(x) =
1
2
xTAx− bTx+ c.

A being symmetric positive definite matrix. As we know from Example 3.3.1, f is strongly convex
with the parameters lf = λmin(A), Lf = λmax(A) (the minimal and the maximal eigenvalues of
A, respectively).

It is convenient to speak about the Steepest Descent rather than about the Armijo-based
Gradient Descent (in the latter case our considerations would suffer from uncertainty in the
choice of the stepsizes).

We have the following relations:

• The gradient of the function f is given by the relation

g(x) ≡ ∇f(x) = Ax− b; (3.3.28)

in particular, the unique minimizer of f is given by the equation (the Fermat rule)

Ax∗ = b. (3.3.29)

Note also that, as it is seen from one-line computation,

f(x) = E(x) + f(x∗), E(x) =
1
2

(x− x∗)TA(x− x∗); (3.3.30)

note that E(·) is nothing but inaccuracy in terms of the objective.

• The trajectory of the Steepest Descent is given by the recurrency

xt+1 = xt − γt+1gt, gt ≡ g(xt) ≡ ∇f(xt) = Axt − b = A(xt − x∗), (3.3.31)

where γt+1 is minimizer of the strongly convex quadratic function φ(γ) = f(xt − γgt) of
real variable γ. Solving equation φ′(γ) = 0 which identifies γt+1, we get

γt+1 =
gTt gt
gTt Agt

; (3.3.32)

thus, (3.3.31) becomes

xt+1 = xt − gTt gt
gTt Agt

gt. (3.3.33)
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• Explicit computation results in 3)

E(xt+1) =

{
1− (gTt gt)

2

[gTt Agt][gTt A−1gt]

}
E(xt). (3.3.34)

Now we can obtain the convergence rate of the method from the following

Lemma 3.3.2 [Kantorovich] Let A be a positive definite symmetric matrix with the condition
number (the ratio between the largest and the smallest eigenvalue) Q. Then for any nonzero
vector x one has

(xTx)2

[xTAx][xTA−1x]
≥ 4Q

(1 +Q)2
.

Proof. It is known from Linear Algebra that a symmetric n × n matrix A is orthogonally
equivalent to a diagonal matrix S (i.e., A = USUT with orthogonal U), the eigenvalues λ1 ≤
λ2 ≤ ... ≤ λn of A being the diagonal entries of S. Denoting y = UTx, we see that the left hand
side in the inequality in question is

(
∑
i y

2
i )

2

(
∑
i λiy

2
i )(
∑
i λ
−1
i y2

i )
. (3.3.35)

This quantity remains unchanged if all yi’s are multiplied by common nonzero factor; thus,
without loss of generality we may assume that

∑
i y

2
i = 1. Further, the quantity in question

remains unchanged if all λi’s are multiplied by common positive factor; thus, we may assume
that λ1 = 1, so that λn = Q is the condition number of the matrix A. Setting ai = y2

i , we come
to the necessity to prove that

if u =
∑
i aiλi, v =

∑
i aiλ

−1
i , where 0 ≤ ai,

∑
i ai = 1, and 1 ≤ λi ≤ Q, then uv ≤

(1 +Q)2/(4Q).
This is easy: due to its origin, the point (u, v) on the 2D plane is convex combination,

the coefficients being ai, of the points Pi = (λi, λ−1
i ) belonging to the arc Γ on the graph of

the function η = 1/ξ, the arc corresponding to the segment [1, Q] of values of ξ (ξ, η are the
3Here is the computation: since φ(γ) is a convex quadratic form and γt+1 is its minimizer, we have

φ(0) = φ(γt+1) +
1

2
γ2
t+1φ

′′;

due to the origin of φ, we have φ′′ = gTt Agt, so that

E(xt)− E(xt+1) ≡ f(xt)− f(xt+1) ≡ φ(0)− φ(γt+1) =
1

2
γ2
t+1[gTt Agt],

or, due to (3.3.32),

E(xt)− E(xt+1) =
(gTt gt)

2

2gTt Agt
.

At the same time by (3.3.30), (3.3.31) one has

E(xt) =
1

2
(xt − x∗)TA(xt − x∗) =

1

2
[A−1gt]

TA[A−1gt] =
1

2
gTt A

−1gt.

Combining the resulting relations, we come to

E(xt)− E(xt+1)

E(xt)
=

(gTt g)2

[gTt Agt][g
T
t A
−1gt]

,

as required in (3.3.34).
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coordinates on the plane). Consequently, (u, v) belongs to the convex hull C of Γ. This convex
hull is as you see on the picture:

C

1 Q

P1

Pn

Arc Γ and its convex hull

The largest, over (u, v) ∈ C, product uv corresponds to the case when (u, v) belongs to the line
segment [P1, Pn] bounding C from above, so that

uv ≤ max
0≤a≤1

[(a+ (1− a)Q)(a+
1− a
Q

)];

the right hand side maximum can be explicitly computed (it corresponds to a = 1/2), and the
resulting value is (Q+ 1)2/(4Q), as claimed.

Combining Lemma 3.3.2 and (3.3.34), we come to the following

Proposition 3.3.6 [Convergence ratio for the Steepest Descent as applied to strongly convex
quadratic form]
As applied to a strongly convex quadratic form f with condition number Q, the Steepest Descent
converges linearly with the convergence ratio not worse than

1− 4Q
(Q+ 1)2

=
(
Q− 1
Q+ 1

)2

, (3.3.36)

namely, for all N one has

f(xN )−min f ≤
(
Q− 1
Q+ 1

)2N

[f(x0)−min f ]. (3.3.37)

Note that the Proposition says that the convergence ratio is not worse than (Q− 1)2(Q+ 1)−2;
the actual convergence ratio depends on the starting point x0. It is known, anyhow, that (3.3.37)
gives correct description of the rate of convergence: for “almost all” starting points, the process
indeed converges at the rate close to the indicated upper bound. Since the convergence ratio
given by Proposition is 1−O(1/Q) (cf. (3.3.27)), quantitive conclusion (**) from the previous
subsection indeed is valid, even in the case of strongly convex quadratic f .



3.4. CONCLUSIONS 59

3.3.4 Local rate of convergence of Steepest Descent

Relation (3.3.37) is a non-asymptotical efficiency estimate of the Steepest Descent in the quadratic
case. In the non-quadratic nondegenerate case the method admits similar asymptotic efficiency
estimate. Namely, one can prove the following

Theorem 3.3.1 [Local rate of convergence of Steepest Descent]
Assume that the trajectory {xt} of the Steepest Descent as applied to f converges to a point
x∗ which is a nondegenerate local minimizer of f , namely, is such that f is twice continuously
differentiable in a neighbourhood of x∗ and the Hessian ∇2f(x∗) of the objective at x∗ is positive
definite.

Then the trajectory converges to x∗ linearly, and the convergence ratio of the sequence f(xt)−
f(x∗) of residuals in terms of the objective is at least

(
Q− 1
Q+ 1

)2

,

Q being the condition number of ∇2f(x∗):

(∀ε > 0 ∃Cε <∞) : f(xN )− f(x∗) ≤ Cε
(
Q− 1
Q+ 1

+ ε

)2N

, N = 1, 2, ... (3.3.38)

3.4 Conclusions

Let us summarize our knowledge of Gradient Descent. We know that

• In the most general case, under mild regularity assumptions, both StD and ArD converge
to the set of critical points of the objective (see Theorem 3.2.1), and there is certain
guaranteed sublinear rate of global convergence in terms of the quantities |∇f(xN )|2 (see
Proposition 3.3.1);

• In the convex C1,1 case ArD converges to a global minimizer of the objective (provided
that such a minimizer exists), and there is certain guaranteed (sublinear) rate of global
convergence in terms of the residuals in the objective f(xN )−min f (see Proposition 3.3.2);

• In the strongly convex case ArD converges to the unique minimizer of the objective, and
both distances to the minimizer and the residuals in terms of the objective admit global
linearly converging to zero upper bounds. The corresponding convergence ratio is given
by the condition number of the objective Q (see Proposition 3.3.5) and is of the type
1 − O(1/Q), so that the number of steps required to reduce the initial inaccuracy by a
given factor is proportional to Q (this is an upper bound, but typically it reflects the actual
behaviour of the method);

• It the quadratic case - globally, and in the nonquadratic one – asymptotically, StD con-
verges linearly with the convergence ratio 1 − O(1/Q), Q being the condition number of
the Hessian of the objective at the minimizer towards which the method converges (in the
quadratic case, of course, this Hessian simply is the matrix of our quadratic form).

This is what we know. What should be conclusions – is the method good, or bad, or what? As it
normally is the case in numerical optimization, we are unable to give a definite answer: there are
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too many different criteria to be taken into account. What we can do, is to list advantages and
disadvantages of the method. Such a knowledge provides us with a kind of orientation: when we
know what are the strong and the weak points of an optimization method and given a particular
application we are interested in, we can decide “how strong in the case in question are the strong
points and how weak are the weak ones”, thus getting possibility to choose the solution method
better fitting the situation. As about the Gradient Descent, the evident strong points of the
method are

• broad family of problems where we can guarantee global convergence to a critical point
(normally - to a local minimizer) of the objective;

• simplicity: at a step of the method, we need single evaluation of ∇f and a small number
of evaluations of f (the evaluations of f are required by the line search; if one uses ArD
with simplified line search mentioned in Section 2.4.1, this number indeed is small). Note
that each evaluation of f is accompanied by small (O(n), n being the dimension of the
design vector) number of arithmetic operations.

The most important weak point of the method is relatively low rate of convergence: even in the
strongly convex quadratic case, the method converges linearly. This itself is not that bad; what
indeed is bad, is that the convergence ratio is too sensitive to the condition number Q of the
objective. As we remember, the number of steps of the method, for a given progress in accuracy,
is proportional to Q. And this indeed is too bad, since in applications we typically meet with
ill-conditioned problems, with condition numbers of orders of thousands and millions; whenever
this is the case, we hardly can expect something good from Gradient Descent, at least when we
are interested in high-accuracy solutions.

It is worthy to understand what is the geometry underlying slowing down the Gradient
Descent in the case of ill-conditioned objective. Consider the case of strongly convex quadratic
f . The level surfaces

Sδ = {x | f(x) = min f + δ}
of f are homothetic ellipsoids centered at the minimizer x∗ of f ; the squared half-axes of these
ellipsoids are inverse proportional to the eigenvalues of A = ∇2f . Indeed, as we know from
(3.3.30),

f(x) =
1
2

(x− x∗)TA(x− x∗) + min f,

so that in the orthogonal coordinates xi associated with the orthonormal eigenbasis of A and
the origin placed at x∗ we have

f(x) =
1
2

∑

i

λix
2
i + min f,

λi being the eigenvalues of A. Consequently, the equation of Sδ in the indicated coordinates is
∑

i

λix
2
i = 2δ.

Now, if A is ill-conditioned, the ellipsoids Sδ become a kind of “valleys” – they are relatively
narrow in some directions (those associated with smallest half-axes of the ellipsoids) and rela-
tively long in other directions (associated with the largest half-axes). The gradient – which is
orthogonal to the level surface – on the dominating part of this surface looks “almost across the
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valley”, and since the valley is narrow, the steps turn out to be short. As a result, the trajectory
of the method is a kind of short-step zig-zag movement with slow overall trend towards the
minimizer.

What should be stressed is that in the case in question there is nothing intrinsically bad in the
problem itself; all difficulties come from the fact that we relate the objective to a “badly chosen”
initial coordinates. Under appropriate non-orthogonal linear transformation of coordinates (pass
from xi to yi =

√
λixi) the objective becomes perfectly conditioned – it becomes the sum of

suqares of the coordinates, so that condition number now equals 1, and the Gradient Descent,
being run in the new coordinates, will go directly towards the minimizer. The problem, of
course, is that the Gradient Descent is associated with a once for ever fixed initial Euclidean
coordinates (since the underlying notion of gradient is a Euclidean notion: different Euclidean
structures result in different gradient vectors of the same function at the same point). If these
initial coordinates are badly chosen for a given objective f (so that the condition number of f
with respect to these coordinates is large), the Gradient Descent will be slow, although if we
were clever enough to perform first appropriate scaling – linear non-orthogonal transformation
of the coordinates – and then run Gradient Descent in these new coordinates, we might obtain
fast convergence. In our next Lecture we will consider the famous Newton method which, in a
sense, is nothing but “locally optimally scaled” Gradient Descent, with the scaling varying from
step to step.
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Assignment # 3 (Lecture 3)

Obligatory problems

Exercise 3.4.1 Prove that in the Steepest Descent any two subsequent directions of movement
are mutually orthogonal. Derive from this that in the 2D case all directions of movement on
even steps are collinear to each other, and the directions of movement at the odd steps also are
collinear to each other.

Exercise 3.4.2 Write the code implementing the ArD (or StD , on your choice) and apply it
to the following problems:

• Rosenbrock problem

f(x) = 100(x2 − x2
1)2 + (1− x1)2 → min | x = (x1, x2) ∈ R2,

the starting point is x0 = (−1.2, 1).

The Rosenbrock problem is a well-known test example: it has a unique critical point
x∗ = (1, 1) (the global minimizer of f); the level lines of the function are banana-shaped
valleys, and the function is nonconvex and rather badly conditioned.

• Quadratic problem

fα(x) = x2
1 + αx2

2 → min | x = (x1, x2) ∈ R2.

Test the following values of α
10−1; 10−4; 10−6

and for each of these values test the starting points

(1, 1); (
√
α, 1); (α, 1).

How long it takes to reduce the initial inaccuracy, in terms of the objective, by factor 0.1?

• Quadratic problem

f(x) =
1
2
xTAx− bTx, x ∈ R4,

with

A =




0.78 −0.02 −0.12 −0.14
−0.02 0.86 −0.04 0.06
−0.12 −0.04 0.72 −0.08
−0.14 0.06 −0.08 0.74


 , b =




0.76
0.08
1.12
0.68


 , x0 = 0.

Run the method intil the norm of the gradient at the current iterate is becomes less than
10−6. Is the convergence fast or not?

Those using MatLab can compute the spectrum of A and to compare the theoretical upper
bound on convergence rate with the observed one.

• Experiments with Hilbert matrix. Let H(n) be the n× n Hilbert matrix:

(H(n))ij =
1

i+ j − 1
, i, j = 1, ..., n.

This is a symmetric positive definite matrix (since xTH(n)x =
∫ 1
0 (
∑n
i=1 xit

i−1)2dt ≥ 0, the
inequality being strict for x 6= 0).

For n = 4, 8, 16 perform the following experiments:
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– choose somehow n-dimensional nonzero vector x∗, e.g., x∗ = (1, ..., 1)T ;

– compute b = H(n)x∗;

– Apply your Gradient Descent code to the quadratic function

f(x) =
1
2
xTH(n)x− bTx,

the starting point being x0 = 0. Note that x∗ is the unique minimizer of f .

– Terminate the method when you will get |xN − x∗| ≤ 10−4, not allowing it, anyhow,
to run more than 10,000 steps.

What will be the results?

Those using MatLab can try to compute the condition number of the Hilbert matrices in
question.

If you choose to implement ArD , play with the parameters ε and η of the method to get the
best possible convergence.

Optional problems

Exercise 3.4.3 Prove that if x∗ is a strict local minimizer of a twice continuously differentiable
f , then ArD with the choice of the stepsize as the smallest one satisfying the Armijo test, being
started close enough to x∗, converges to x∗.

Exercise 3.4.4 Prove that if x∗ is a strict local maximizer of twice continuously differentiable
f (i.e., ∇f(x∗) = 0 and ∇2f(x∗) is negative definite), then the trajectories of ArD and StD
do not have x∗ as a limiting point, provided that x∗ does not belong to the trajectory (the latter
may happen in ArD because of “badly chosen” stepsize, and in both of the methods – when x∗

is the starting point).

Exercise 3.4.5 Prove that if x∗ is a strict local minimizer of a twice continuously differentiable
f , then ArD with the choice of the stepsize as the smallest one satisfying the Armijo test, being
started close enough to x∗, converges to x∗.

Exercise 3.4.6 Prove items (i) and (ii) of Proposition 3.3.4.

Exercise 3.4.7 Prove item (iii) of Proposition 3.3.4.
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Lecture 4

Newton’s Method

We continue investigating methods for unconstrained minimization problem

f(x)→ min | x ∈ Rn.

What is on our agenda is the famous Newton method based on local quadratic model of f . To
get possibility to speak about this model, we assume from now on that f is twice continuously
differentiable.

4.1 The Basic Newton Method

The idea of the method is very simple; we have already used this idea in the univariate case
(Lecture 2). Given current iterate x, the value f(x), the gradient ∇f(x) and the Hessian ∇2f(x)
of the objective at x, we approximate f around x by its second order Taylor expansion

f(y) ≈ f(x) + (y − x)T∇f(x) +
1
2

(y − x)T [∇2f(x)](y − x)

and take as the next iterate the minimizer of the right hand side quadratic form of y. To get
this minimizer, we differentiate the right hand side in y and set the gradient to 0, which results
in the equation with respect to y

[∇2f(x)](y − x) = −∇f(x).

This is a linear system with respect to y; assuming the matrix of the system (i.e., the Hessian
∇2f(x)) nonsingular, we can write down the solution as

y = x− [∇2f(x)]−1∇f(x).

In the Basic Newton method, we simply iterate the indicated updating:

Algorithm 4.1.1 [Basic Newton Method] Given starting point x0, run the recurrence

xt = xt−1 − [∇2f(xt−1)]−1∇f(xt−1). (4.1.1)

The indicated method is not necessarily well-defined (e.g., what to do when the Hessian at
the current iterate turns out to be singular?) We shall address this difficulty, same as several
other difficulties which may occur in the method, later. Our current goal is to establish the
fundamental result on the method – its local quadratic convergence in the non-degenerate case:

65
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Theorem 4.1.1 [Local Quadratic Convergence of the Newton method in the nondegenerate
case]
Assume that f is three times continuously differentiable in a neighbourhood of x∗ ∈ Rn, and that
x∗ is a nondegenerate local minimizer of f , i.e., ∇f(x∗) = 0 and ∇2f(x∗) is positive definite.
Then the Basic Newton method, starting close enough to x∗, converges to x∗ quadratically.

Proof. Let U be a convex neighbourhood of x∗ where the third order partial derivatives of
f (i.e., the second order partial derivatives of the components of ∇f) are bounded. In this
neighbourhood, consequently,

| − ∇f(y)−∇2f(y)(x∗ − y)| ≡ |∇f(x∗)−∇f(y)−∇2f(y)(x∗ − y)| ≤ β1|y − x∗|2 (4.1.2)

with some constant β1 (we have applied to the components of ∇f the standard upper bound
on the remainder in the first order Taylor expansion: if g(·) is a scalar function with bounded
second order derivatives in U , then

|g(x)− g(y)−∇g(y)(x− y)| ≤ β|y − x|2

for some β <∞ 1) and all x, y ∈ U , cf. Lemma 3.3.1).
Since ∇2f(x∗) is nonsingular and ∇2f(x) is continuous at x = x∗, there exists a smaller

neighbourhood U ′ ⊂ U of x∗, let it be the centered at x∗ ball of radius r > 0, such that

y ∈ U ′ ⇒ |[∇2f(y)]−1 ≤ β2 (4.1.3)

for some constant beta2; here and in what follows, for a matrix A |A| denotes the operator norm
of A, i.e.,

|A| = max
|h|≤1

|Ah|,

the right hand side norms being the standard Euclidean norms on the corresponding vector
spaces.

Now assume that certain point xt of the trajectory of the Basic Newton method on f is close
enough to x∗, namely, is such that

xt ∈ U ′′, U ′′ = {x | |x− x∗| ≤ ρ ≡ min[
1

2β1β2
, r]}. (4.1.4)

We have
|xt+1 − x∗| = |xt − x∗ − [∇2f(xt)]−1∇f(xt)| =

= |[∇2f(xt)]−1
[
∇2f(xt)(xt − x∗)−∇f(xt)

]
| ≤ |[∇2f(xt)]−1|| − ∇f(xt)−∇2f(xt)(x∗ − xt)| ≤

[by (4.1.3) and (4.1.2)]
≤ β1β2|xt − x∗|2.

Thus, we come to

xt ∈ U ′′ ⇒ |xt+1 − x∗| ≤ β1β2|xt − x∗|2 [≤ (β1β2|xt − x∗|)|xt − x∗| ≤ 0.5|xt − x∗|] . (4.1.5)

We see that the new iterate xt+1 is at least twice closer to x∗ than xt and, consequently,
xt+1 ∈ U ′′. Thus, reaching U ′′ at certain moment t̄ (this for sure happens when the trajectory
is started in U ′′), the trajectory never leaves this neighbourhood of x∗, and

|xt+1 − x∗| ≤ β1β2|xt − x∗|2 ≤ 0.5|xt − x∗|, t ≥ t̄,
1note that the magnitude of β is of order of the magnitude of second order derivatives of g in U
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so that the trajectory converges to x∗ quadratically.
The indicated theorem establishes fast – quadratic – local convergence of the Basic Newton

method to a nondegenerate local minimizer of f , which is fine. At the same time, we remember
from Lecture 2 that even in the univariate case and for smooth convex objective, the Newton
method not necessarily possesses global convergence: started not too close to minimizer, it may
diverge. It follows that we cannot rely on this method “as it is” – in actual computations,
how could we know that the starting point is “close enough” to the minimizer? Thus, some
modifications are needed in order to make the method globally converging. Let us look at the
standard modifications of this type.

4.2 Modifications of the Basic Newton Method

4.2.1 Incorporating line search

The Basic Newton method at each iteration performs a unit step:

xt+1 = xt = e(xt)

in the Newton direction

e(x) = −[∇2f(x)]−1∇f(x). (4.2.1)

It prescribes, consequently, both the search direction and the stepsize (just 1) in the direction.
The first idea how to “cure” the method to make it globally convergent is to use only the
direction given by the method, but not the stepsize; as about the stepsize, we could choose it
by a kind of line search aimed to achieve “significant progress” in the objective (compare with
the Gradient Descent). Thus, we come to the Newton method with line search given by the
recurrence

xt+1 = xt + γt+1e(xt), e(xt) = [∇2f(xt)]−1∇f(xt), (4.2.2)

where the stepsize γt+1 ≥ 0 is given by a line search. In particular, we could speak about

• “Steepest Newton method”:

γt+1 ∈ Argmin{f(xt + γe(xt)) | γ ≥ 0},

or

• the Armijo-based Newton method, where γt+1 is given by the Armijo-terminated line
search,

or

• the Goldstein-based Newton method, where γt+1 is given by the goldstein-terminated line
search.

We could expect the indicated modifications to make the method globally converging; at the
same time, we may hope that close enough to a nondegenerate local minimizer of f , the indicated
line search will result in stepsize close to 1, so that the asymptotical behaviour of the modified
method will be similar to the one of the basic method (provided, of course, that the modified
method indeed converges to a nondegenerate local minimizer of f). Whether these hopes indeed
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are valid or not, it depends on f , and at least one property of f seems to be necessary to make
our hopes valid: e(x) should be a descent direction of f at a non-critical x:

∇f(x) 6= 0⇒ eT (x)∇f(x) ≡ −(∇f(x))T [∇2f(x)]−1∇f(x) < 0. (4.2.3)

Indeed, if there exists x with nonzero ∇f(x) such that the Newton direction e(x) is not a descent
direction of f at x, it is unclear whether there exists a step in this direction which reduces f .
If, e.g., f(x + γe(x)) is a nondecreasing function of γ > 0, then the Steepest Newton method
started at x clearly will never leave the point, thus converging to (simply staying at) non-critical
point of f . Similar difficulties occur with the Armijo- and Goldstein-based Newton methods:
is e(x) is not a descent direction of f at x, then the Armijo/Goldstein-terminated line search
makes no sense at all.

We see that one may hope to prove convergence of the Newton method with line search only
if f satisfies the property

∇f(x) 6= 0⇒ (∇f(x))T [∇2f(x)]−1∇f(x) > 0.

The simplest way to impose this property is to assume that f is convex with nonsingular Hessian:

∇2f(x) > 0 ∀x
[
≡ hT [∇2f(x)]h > − ∀x∀h 6= 0

]
; (4.2.4)

indeed, if the matrix ∇f(x) is positive definite at every x, then, as it is known from Linear
Algebra (and can be proved immediately), the matrix [∇2f(x)]−1 also is positive definite at
every x, so that (4.2.3) takes place. It indeed turns out that under assumption (4.2.4) the line
search versions of the Newton method possess global convergence:

Proposition 4.2.1 Let f be a twice continuously differentiable convex function with the Hessian
∇2f(x) being positive definite at every point x, and let x0 be such that the level set

S = {x | f(x) ≤ f(x0)}

associated with x0 is bounded. Then the Steepest Newton method, same as the Armijo/Goldstein-
based Newton method started at x0 converges to the unique global minimizer of f .

We shall not prove this proposition here; it will be obtained as an immediate corollary of a
forthcoming more general statement.

The “line search” modification of the Basic Newton method is not quite appropriate: as we
just have seen, in this modification we meet with severe difficulties when the Newton direction
at certain point is not a descent direction of the objective. Another difficulty is that the Newton
direction, generally speaking, can simply be undefined – ∇2f(x) may be singular at a point
of the trajectory. what to do in this situation? We see that in order to make the Newton
method reliable, we need to modify not only the stepsize used in the method, but also the
search direction itself, at least in the cases when it is “bad” (is not a descent direction of f or
simply is undefined). What we are about to do is to present several general-purpose versions of
the method.

4.2.2 Variable Metric Methods

Let us start with developing certain general approach which covers both the Gradient and the
Newton methods and allows to understand how to “cure” the Newton method. To outline the
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idea, let us come back to the Gradient Descent. What in fact we did in this method? Given
previous iterate x, we used local linear approximation of the objective:

f(y) ≈ f(x) + (y − x)T∇f(x) (4.2.5)

and choose, as the next direction of movement, the “most perspective” of descent directions of the
right hand side. Now, how we were comparing the directions to choose the “most perspective”
one? We took the unit ball

W = {d | dTd ≤ 1}
of directions and choose in this ball the direction which minimizes the value

f̄(x+ d) ≡ f(x) + dT∇f(x)

of the approximate objective. This direction, as it is immediately seen, is simply the normalized
anti-gradient direction

−|∇f(x)|−1∇f(x),

and in the Gradient Descent we used it as the current direction of movement, choosing the
stepsize in order to achieve “significant” progress in the objective value. Note that instead of
minimizing f̄(x+ d) on the ball W , we could minimize the quadratic function

f̂(d) = dT∇f(x) +
1
2
dTd

over d ∈ Rn; the result will be simply the anti-gradient direction −∇f(x). This is not the same
as the above normalized anti-gradient direction, but the difference in normalization is absolutely
unimportant for us – in any case we indent to use line search in the generated direction, so that
what in fact we are interested in is the search ray {x + γd | γ ≥ 0}, and proportional, with
positive coefficient, directions result in the same ray.

With the outlined interpretation of the Gradient Descent as a method with line search and
the search direction given by minimization of the linearized objective f̄(x+ d) over d ∈ W , we
may ask ourselves: why we use in this scheme the unit ball W , not something else? E.g., why
not to use an ellipsoid

WA = {d | dTAd ≤ 1},
A being a positive definite symmetric matrix?
Recall that an ellipsoid in properly chosen coordinates of Rn becomes a ball (the coordinates
are obtained from the standard ones by linear nonsingular transformation). Consequently, a
method of the outlined type with W replaced by WA, i.e., the one where the search direction is
given by

d = argmin
d∈WA

f̄(x+ d) (4.2.6)

has the same “right to exist” as the Gradient Descent. This new “scaled by matrix A Gradient
Descent” is nothing but the usual Gradient Descent, but associated with the coordinates on Rn

where WA becomes the unit ball. Note that the usual Gradient Descent corresponds to the case
A = I, I being the unit matrix. Now, the initial coordinates are absolutely “occasional” – they
have nothing in common with the problem we are solving; consequently, we have no reason to
prefer these particular coordinates. Moreover, if we were lucky to adjust the coordinates we use
to the “geometry” of the objective (cf. concluding discussion in the previous Lecture), we could
get a method with better convergence than the one of the usual Gradient Descent.
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Same as above, the direction given by (4.2.6) is, up to renormalization (the latter, as it was
already explained, is unimportant – it is “suppressed” by line search), nothing but the direction
given by the minimization of the quadratic form

f̂A(d) = dT∇f(x) +
1
2
dTAd; (4.2.7)

minimizing the right hand side with respect to d (to this end it suffices to solve the Fermat
equation ∇df̂A(d) ≡ ∇f +Ad = 0), we come to the explicit form of the search direction:

d = −A−1∇f(x). (4.2.8)

Note that this direction for sure is a descent direction of f at x, provided that x is not a critical
point of f :

∇f(x) 6= 0⇒ dT∇f(x) = −(∇f(x))TA−1∇f(x) < 0

(recall that A is symmetric positive definite, whence A−1 also is symmetric positive definite).,
so that we are in a good position to apply to f line search in the direction d.

The summary of our considerations is as follows: choosing a positive definite symmetric
matrix A, we can associate with it “A-anti-gradient direction” −A−1∇f(x), which is a descent
direction of f at x (provided that ∇f(x) 6= 0). And we have the same reasons to use this
direction in order to improve f as those to use the standard anti-gradient direction (given by
the same construction with Q = I).

Now we can make one step of generalization more: why should we use at each step of the
method a once for ever fixed matrix A instead of varying this matrix from iteration to iteration?
The “geometry” of the objective varies along the trajectory, and it is natural to adjust the
matrix A to this varying geometry. Thus, we come to the following generic scheme of a Variable
Metric method:

Algorithm 4.2.1 [Generic Variable Metric method]
Initialization: choose somehow starting point x0 and set t = 0
Step t: given previous iterate xt−1,

• compute f(xt−1), ∇f(xt−1) and, possibly, ∇2f(xt−1);

• choose somehow positive definite symmetric matrix At and compute the At-anti-gradient
direction

dt = −A−1
t ∇f(xt−1)

of f at xt−1;

• perform line search from xt−1 in the direction dt, thus getting new iterate

xt = xt−1 + γtdt ≡ xt−1 − γtA−1
t ∇f(xt−1),

replace t with t+ 1 and loop.

The outlined scheme covers all methods we know so far: to get different versions of the Gradient
Descent, we should set At ≡ I and should specify the version of line search to be used. With
At = ∇2f(xt−1), we get, as dt, the Newton direction of f at xt−1, and we come to the Newton
method with line search; further specifying the line search by the “programmed” rule γt = 1,
we get the Basic Newton method. Thus, the Basic Newton method is nothing but the Gradient
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Descent scaled by the Hessian of the objective at the current point. Note, anyhow, that the
“Newton choice” At = ∇2f(xt−1) is compatible with the outlined scheme (where At should be
symmetric positive definite) only when ∇2f(xt−1) is positive definite2; from the above discussion
we know that if it is not the case, we indeed have no reasons to use the Newton direction and
should somehow modify it to make it descent. Thus, the generic Algorithm 4.2.1 covers all we
know to the moment and provides us with good idea how to “cure” the Newton method at
a “bad” iterate: at such an iterate, we should modify the actual Hessian to make the result
positive definite in order to get a descent direction of the objective. Thus, we come to the family
of Modified Newton methods – those given by the generic Algorithm 4.2.1 where we use as At,
whenever it is possible, the Hessian ∇2f(xt−1) of the objective. In what follows we shall specify
several popular modifications of this type; before this, anyhow, we should check whether our
new scheme indeed achieves our target – whether this scheme is globally convergent.

4.2.3 Global convergence of a Variable Metric method

We are about to prove that the generic Variable Metric method (Algorithm 4.2.1), under some
reasonable restrictions on the matrices At, globally converges to the set of critical points of
f . The restrictions are very simple: in the generic method, At should be symmetric positive
definite, and what we need is “uniform” positive definiteness.

Let us say that Algorithm 4.2.1 is unifromly descent with parameters p, P , 0 < p ≤ P <∞,
if the rules for choosing At in the algorithm ensure that

λmin(At) ≥ p, λmax(At) ≤ P, t = 1, 2, ... (4.2.9)

(as always, λmin(A)and λmax(A) denote the minimal and the maximal eigenvalues of a symmetric
matrix A). Thus, “uniform descentness” simply means that the matrices At never become “too
large” (their maximal eigenvalues are bounded away from infinity) and never become “almost
degenerate” (their minimal eigenvalues are bounded away from zero).

Theorem 4.2.1 [Global convergence of uniformly descent Variable Metric method]
Let f be twice continuously differentiable function, and let x0 be such that the level set

S = {x ∈ Rn | f(x) ≤ f(x0)}

is bounded. Assume that f is minimized by a uniformly descent Variable Metric method started
at x0, and assume that the line search used in the method is either the exact one-dimensional
line search, or the Armijo-terminated, or the Goldstein-terminated one. Then the trajectory
of the method is bounded, the objective is non-increasing along the trajectory, and all limiting
points of the trajectory (which for sure exist, since the trajectory is bounded) belong to the set

X∗∗ = {x | ∇f(x) = 0}

of critical points of f .

Proof. We are going to apply our general scheme for convergence analysis. To this end we
should cover the method in question by an abstract iterative algorithm and to check that this
algorithm satisfies the assumptions of the Global Convergence Theorem 1.3.1.

2the scheme requires also symmetry of At, but here we have no problems: since f is from the very beginning
assumed to be twice continuously differentiable, its Hessians for sure are symmetric
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10. Constructing the Abstract Iterative Algorithm. The abstract iterative algorithm A we are
about to construct is of the type

A = (X = Rn,Θ(·)),

so that all we need is to define the underlying point-to-set mapping Θ(·). We define this mapping
as the composition

Θ = SD,
where

• the inner point-to-set mapping D is the mapping from Rn into Rn × Rn; this mapping
puts into correspondence to a point x ∈ Rn the set D(x) of all search elements (x, d) (“the
point x and a search direction d ∈ Rn”) for which the following relations are satisfied:

dT∇f(x) ≤ −P−1|∇f(x)|2; |d| ≤ p−1|∇f(x)|, (4.2.10)

0 < p ≤ P <∞ being the parameters responsible for the uniform descent property of the
method in question;

• the outer point-to-set mapping S is the line search mapping

(point x ∈ Rn, direction d ∈ Rn) 7→

7→ “the result of line search applied to f at x in the direction d”

associated with the corresponding version of the line search (exact, Armijo- or Goldstein-
terminated, wee Section 2.4.3).

For the Armijo- and the Goldstein-terminated line search, which initially are defined only
at pairs (x, d) with d being a descent direction of f at x, we, same as in the previous
Lecture, extend the mapping onto all pairs (x, d) by setting S(x, d) = {x} in the case
when dT∇f(x) ≥ 0.

It is immediately seen that the resulting abstract iterative algorithm covers the method under
consideration. Indeed, all we should prove is that the directions dt generated in the algorithm
are such that the pairs (xt−1, dt) belong to the image of xt−1 under the point-to-set mapping D,
i.e., that

−(∇f(xt−1))TA−1
t ∇f(xt−1) ≤ −P−1|∇f(xt−1)|2, |A−1

t ∇f(xt−1)| ≤ p−1|∇f(xt−1)|.

This is evident: since the eigenvalues of At, by definition of the uniform descent property, are
between p and P , the eigenvalues of the matrix A−1

t are between P−1 and p−1; consequently,
for any vector h one has

hTA−1
t h ≥ P−1hTh, |A−1

t h| ≤ p−1|h|

(compute the indicated quantities in the orthonormal eigenbasis of At!).
Now we are basically done. First of all, the constructed abstract iterative algorithm A is

descent with respect to the solution set Γ = X∗∗, the descent function being Z ≡ f . Descentness
is an immediate consequence of the already mentioned fact that A−1

t ∇f(x) is a descent direction
of f at any point outside X∗∗ and is zero at any point of the latter set; recall that the method
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includes line search, so that it decreases the objective whenever the search direction is descent.
Thus, assumption (i) of Theorem 1.3.1 is satisfied. Since the method is descent, the trajectory
{xt} belongs to the level set S of the objective; this set is assumed to be bounded, and, con-
sequently, the trajectory is bounded, as required by assumption (iii) of Theorem 1.3.1. To get
convergence of the method as a consequence of Theorem 1.3.1, it remains to verify assumption
(ii) of the Theorem, i.e., closedness of the mapping Θ at any point x 6∈ X∗∗. To this end let us
note that the mapping D clearly is closed and locally bounded at any point x (closedness is an
immediate consequence of relations (4.2.10) and the continuity of ∇f , local boundedness follows
from the second inequality in (4.2.10)). Besides this, we already have mentioned that if x is not
a critical point of f , then the d-component of any pair (x, d) ∈ D(x) is a descent direction of f
at x, so that the outer mapping S is closed at any pair (x, d) of this type (Propositions 2.4.1 -
2.4.3). According to Corollary 1.3.1, the composite mapping Θ is closed at x, and we are done.

As a corollary of Theorem 4.2.1, we immediately get the result announced in Proposition
4.2.1. Indeed, in the situation addressed by the Proposition f is convex twice continuously
differentiable with positive definite Hessian, and the level set S of f associated with the starting
point x0 is bounded and therefore compact. The trajectory of the method the Proposition speaks
about is contained in S (since the method by construction is descent), so that the matrices At
used in this method are the Hessians of f at certain points from the compact set S. Since
∇2f(x) is continuous in x, is positive definite at any x and S is compact, the matrices ∇2f(x)
are uniformly in x ∈ S bounded:

P ≡ max
x∈S

λmax(∇2f(x)) <∞

and are “uniformly positive definite”:

p ≡ min
x∈S

λmin(∇2f(x)) > 0.

Thus, the method in question is uniformly descent, and all assumptions of Theorem 4.2.1 indeed
are satisfied.

4.2.4 Implementations of the Modified Newton method

Now let us come back to the Newton method. As we remember, our goal is to modify it in order
to assure global convergence (at least the same as the one for the Gradient Descent); and, of
course, we would not like to loose the fine local convergence properties of the method given by
Theorem 4.1.1. We already have an idea how to modify the method: we should use line search
in a descent direction given by the Variable Metric scheme, where we use, as At, the Hessian
∇2f(xt−1), if the latter matrix is positive definite; if it is not the case, we use as At certain
positive definite modification of the Hessian. Of course, from both theoretical and numerical
reasons, we should modify ∇2f(xt−1) not only when it fails to be positive definite, but also when
it is “close” to a non-positive-definite matrix. Indeed, if we do not modify ∇2f(xt−1) when it is
close to a non-positive-definite matrix, i.e., when the minimal eigenvalue of the Hessian, being
positive, is small, we are unable to ensure the uniform descent property of the method and,
consequently, are unable to ensure global convergence; this is a theoretical reason. The practical
one is that in the outlined case the condition number of the Hessian is large, so that when solving
numerically the Newton system

∇2f(xt−1)e = −∇f(xt−1)
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in order to find the Newton direction, we meet with severe numerical problems, and the actually
computed direction will be far from the exact one.

Thus, our general tactics in the Newton-based implementation of Algorithm 4.2.1 should be
as follows: given xt−1, we compute

Ht−1 ≡ ∇2f(xt−1)

and check whether this matrix is “well positive definite”; if it is the case, we use this matrix as
At, otherwise replace Ht−1 with certain “well positive definite” modification At of Ht−1. Let us
look at several implementations of the outlined scheme.

4.2.5 Modifications based on Spectral Decomposition

Recall that, as it is known from Linear Algebra, any symmetric n×n matrix A possesses spectral
decomposition

A = UDUT ,

U being an n× n orthogonal matrix:
UTU = I,

and D being a diagonal matrix. The diagonal entries of D are exactly the eigenvalues of A,
while the columns of U are the associated normalized eigenvectors. In particular, A is positive
definite if and only if the diagonal entries of D are positive.

In the Modified Newton methods based on spectral decomposition one finds the indicated
decomposition of the Hessian at every step:

Ht ≡ ∇2f(xt) = UtDtU
T
t , (4.2.11)

and compares the eignevlaues of Ht – i.e., the diagonal entries of Dt – with a once for ever
chosen “threshold” δ > 0. If all the eigenvalues are ≥ δ, we qualify Ht as “well positive definite”
and use it as At+1. If some of the eigenvalues of Ht are < δ (e.g., are negative), we set

At+1 = UtD̄tU
T
t ,

where D̄t is diagonal matrix obtained from D by replacing the diagonal entries which are smaller
than δ with δ. Another way to “correct” Ht is to replace the negative diagonal values in Dt by
their absolute values (and then to replace by δ those diagonal entries, if any, which are less than
δ).

Both indicated strategies result in

λmin(At) ≥ δ, t = 1, 2, ...,

and never increase “significantly” the norm of the Hessian:

λmax(At) ≤ max [|λmax(Ht)|, |λmin(Ht)|, δ] ;

as a result, the associated modified Newton method turns out to be uniformly descent (and
thus globally converging), provided that the level set of f associated with the starting point
is bounded (so that the Hessians along the trajectory are uniformly bounded). A drawback of
the approach is its relatively large arithmetic cost: to find spectral decomposition (4.2.11) to
machine precision, it normally requires between 2n3 and 4n3 arithmetic operations, n being the
row size of Ht (i.e., the design dimension of the optimization problem). As we shall see in a
while, this is, in a sense, too much.
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4.2.6 Levenberg-Marquardt Modification

In the Levenberg-Marquardt modification of the Newton method we choose At+1 as the “regu-
larization”

At+1 = εtI +Ht (4.2.12)

of the actual Hessian, where the “regularization parameter” εt ≥ 0 is chosen to make the right
hand side “well positive definite” – to have all its eigenvalues at least the chosen in advance
positive threshold δ. This is the same as to ensure that At+1 ≥ δI 3).

To find the desired εt, we first check whether the requirement

Ht > δI

is satisfied; if it is the case, we choose εt = 0 and At+1 = Ht, thus getting the pure Newton
direction. Now assume that the inequality Ht ≥ δI dose not take place. The matrix

A(ε) = εI +Ht − δI

for sure is positive definite when ε > 0 is large enough, and in the case in question it is not
positive definite for ε = 0. Thus, there exists the smallest ε = ε∗ ≥ 0 for which A(ε) is positive
semidefinite. And what we do in the Levenberg-Marquardt scheme are several steps of the
bisection routine to find a “tight” upper bound εt for ε∗. The resulting upper bound is used to
create At according to (4.2.12).

The essence of the matter is, of course, how we verify whether a given trial value of ε is
appropriate, i.e., whether it results in positive semidefinite A(ε). It would be absolutely senseless
to answer this question by computing spectral decomposition of A(ε) – this computation is
exactly what we are trying to avoid. Fortunately, there is a much more efficient way to check
whether a given symmetric matrix is positive definite – Cholesky factorization.

Cholesky Factorization

It is known from Linear Algebra, that a symmetric n × n matrix A is positive definite is and
only if it admits factorization

A = LDLT , (4.2.13)

where

• L is lower-triangular n× n matrix with unit diagonal entries;

• D is diagonal matrix with positive diagonal entries.

The Cholesky Factorization is an algorithm which computes the factors L and D in decomposi-
tion (4.2.13), if such a decomposition exists. The algorithm is given by the recurrence

dj = aii −
j−1∑

s=1

dsl
2
js, (4.2.14)

3from now on, for symmetric matrices A,B the inequality A ≥ B means that A − B is positive semidefinite,
and A > B means that A−B is positive definite. Note that, for a symmetric matrix A, the relation λmax(A) ≤ a
is equivalent to aI −A ≥ 0, while λmin(A) ≥ a is equivalent to A− aI ≥ 0
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lij =
1
dj


aij −

j−1∑

s=1

dsljslis


 , j ≤ i ≤ n, (4.2.15)

(dj is j-th diagonal entry of D, lij and aij are the entries of L and A, respectively). The indicated
recurrence allows to compute D and L, if they exist, in

Cn =
n3

6
(1 + o(1))

arithmetic operations (o(1) → 0, n → ∞), in numerically stable manner. Note that L is com-
puted in the “column by column” fashion: the order of computations is

d1 → l1,1, l2,1, ..., ln,1 → d2 → l2,2, l3,2, ..., ln,2 → d3 → l3,3, l4,3, ...ln,3 → ...→ dn → ln,n;

if the right hand side in (4.2.14) turns out to be nonpositive for some j, this indicates that A is
not positive definite.

The main advantage of Cholesky factorization is not only its ability to check in Cn compu-
tations whether A is positive definite, but also to get, as a byproduct, the factorization (4.2.13)
of a positive definite A. With this factorization, we can immediately solve the linear system

Ax = b;

the solution x to the system can be identified by backsubstitutions – sequential solving, for u, v
and x, two triangular and one diagonal systems

Lu = b; Dv = u; LTx = v,

and this computation requires only O(n2) arithmetic operations. The resulting method –
Cholesky decomposition with subsequent backsubstitutions (the square root method) – is thought
to be the most efficient in the operation count and most numerically stable Linear Algebra rou-
tine for solving linear systems with general-type symmetric positive definite matrices.

Coming back to the Levenberg-Marquardt scheme, we observe that one can check positive
definiteness of A(ε) for a given ε in about n3/6 arithmetic operations – something from 12 to 24
times cheaper than the cost of spectral decomposition. Thus, the Levenberg-Marquardt scheme
with 5-10 bisection steps in ε (this is sufficient for “smart” implementation of the scheme) is
numerically less expensive then the scheme based on spectral decomposition.

4.2.7 Modified Cholesky Factorization scheme

The next implementation of the outlined Modified Newton approach, and the most practical
one, is based on Modified Cholesky Decomposition. The idea is to apply to the actual Hessian
Ht the Cholesky Factorization algorithm until it is possible, i.e., until the computed values of
dj are at least prescribed threshold δ > 0. When we “meet with an obstacle” – the right hand
side of (4.2.14) becomes less than δ, – we increase the corresponding diagonal entry in Ht to
make the right hand side of (4.2.14) equal to δ and continue the computation. As a result, we
get Cholesky factorization of certain matrix

At+1 = Ht + ∆t

which differs from Ht by a diagonal matrix ∆t, and this is the modification we use in Algorithm
4.2.1. If Ht is “well positive definite”, the “regularizing component” ∆t automatically turns out
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to be zero, and we get the pure Newton direction, as it should be. The main advantage of the
indicated scheme as compared to the Levenberg-Marquardt one is that we need no bisection and
get the desired modification with, basically, the same effort as in a single Cholesky factorization
of a positive definite matrix. Moreover, we end up with decomposed At+1, so that we are ready
to find the desired direction dt+1 at a low – quadratic in n – arithmetic cost. Thus, in the
outlined scheme the arithmetic cost of a step (including the expenses for modification of the
Hessian when this modification is needed) is close to the arithmetic cost of solving the Newton
system for the case when no modification is needed.

An additional reasonable idea is to allow in course of the factorization interchanges in order
of columns/rows of the processed matrix, which allows to postpone, until it is possible, the
necessity in modifying diagonal entries. As a result of these interchanges, what will be in fact
decomposed according to (4.2.13) is not the matrix At+1 = Ht + ∆t itself, but the permuted
matrix ΠT

t At+1Πt. Here Πt is a permutation matrix, i.e., the one obtained from the unit matrix
by certain permutation of columns. For our purposes it is the same what to decompose – the
original matrix or a permuted one.

The algorithm for the outlined scheme of modifying the Hessian is as follows4

Algorithm 4.2.2 [Modified Cholesky Factorization]

Input: Hessian H to be modified and decomposed; “threshold” δ > 0; “machine zero” ε∗ > 0
Output: lower-triangular matrix L with unit diagonal entries; diagonal matrix D with positive
diagonal entries dj; permutation matrix Πn such that

LDLT = ΠT
nHΠn + ∆,

∆ being a diagonal matrix.
Preprocessing: set

β2 = max{γ, ξ/ν, ε∗},
where

• γ is the maximum of absolute values of the diagonal entries of H;

• ξ is the maximum of absolute values of the non-diagonal entries of H;

• ν =
√
n2 − 1, n > 1 being the row size of H.

Initialization: set the column index j to 1. Set cii = Hii, i = 1, ..., n. Set Π0 = I.
Step j: we already have

• first j − 1 diagonal entries ds, 1 ≤ s ≤ j − 1, of D,

• first j − 1 columns lis, 1 ≤ i ≤ n, 1 ≤ s ≤ min[j − 1, i], of L,

• auxiliary quantities cis, s = 1, ..., j − 1, i = j, ..., n, and cii, i = j, ..., n; these quantities
should be treated as filling the first j − 1 columns in last n− j + 1 rows in certain lower-
triangular matrix Cj−1 and last n− j + 1 diagonal entries in the matrix (draw picture for
j = 2)

• permutation matrix Πj−1.

4see Gill, Ah.E., Murray, W. and Wright, M.H., Practical Optimization, Academic Press, 1981
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At step j we perform the following actions:
1. Row and column interchanges: find the smallest index q such that |cqq| = maxj≤i≤n |cii|.

Interchange

• all information corresponding to rows and columns q and j in H;

• columns q and j in Πj−1, thus coming to the matrix Πj;

• rows q and j in the already computed part (i.e., in the first j − 1 columns) of L;

• rows q and j in the first j − 1 columns of matrix Cj−1;

• cjj and cqq.

2. Compute j-th row of L: set

ljs = cjs/ds, s = 1, ..., j − 1;

compute the quantities

cij = Hij −
j−1∑

s=1

ljscis, i = j + 1, ..., n,

thus computing part of the “new” (those absent in Cj−1) entries in Cj, and set

θj = max
j+1≤i≤n

|cij |

(θj = 0 for j = n).
3. Compute j-th diagonal element of D: define

dj = max{δ, |cjj |, θ2
j/β

2}
and the diagonal modification

∆jj = dj − cjj .
If j = n, terminate.

4. Update cii’s: replace cii by cii − c2
ii/dj, i = j + 1, ..., n, thus completing the computation

of Cj. Set j to j + 1 and go to the next step.

It can be proved that with the presented modification algorithm, the entries rij in the matrix
R = LD1/2 and the diagonal entries dj in D satisfy the inequalities

|rij | ≤ β; dj ≥ δ; (4.2.16)

it can derived from this relation that the “modified Hessian”

A ≡ H + Πn∆ΠT
n ≡ H +E

which actually is decomposed by the Algorithm 4.2.2, satisfies the bounds

pI ≤ A ≤ p′(|H|+ ε∗),

where p and p′ are positive constants depending on the row size n of the matrix and on δ only,
not on H. It is easily seen that the indicated property ensures uniform descentness of Algorithm
4.2.1, provided that the level set of f associated with the starting point is bounded.
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It can be proved also that if H itself is “well positive definite”, namely, it admits Cholesky
factorization

H = LDLT

with diagonal entries in D not less than δ, then the Algorithm results in zero correction matrix
E, as it should be for a reasonable modifying algorithm.

Last remark relates to the memory requirements. Normally, the Hessian matrix Ht in the
Modified Newton method is used only to compute the (modified) Newton direction. It follows
that when running Algorithm 4.2.2, we can overwrite the relevant parts of Ht by already formed
entries of L and Cj . Thus, with proper implementation no additional memory as compared to
the one to store Ht is needed.

4.2.8 The Newton Method: how good it is?

We have investigated the basic version of the Newton method, along with several modifications
aimed to make the method globally converging. Finally, what are the basic advantages and
disadvantages of the method?

The main advantage of the method is its fast (quadratic) local convergence to a nondegen-
erate local minimizer of the objective, provided that we were lucky to bring the trajectory close
enough to such a minimizer.

Rigorously speaking, the indicated attractive property is possessed only by the basic version
of the method. For a modified version, the indicated phenomenon takes place only when at
the final phase of the process the modified method becomes close to the basic Newton method,
i.e., it eventually uses nearly Newton search directions and nearly unit stepsizes. Whether this
indeed is a case, it depends, first of all, on whether the modification we use manages to drive
the trajectory to a small neighbourhood of a nondegenerate local minimizer of f ; if it is not so,
we have no reasons to expect fast convergence. Thus, let us assume that the trajectory of the
modified Newton method under consideration converges to a nondegenerate local minimizer x∗

of f5. Is then the convergence asymptotically quadratic?
The answer depends on the rules for modifying the Newton direction and for those of line

search. Namely, if the Hessian of the objective at x∗ is not only positive definite (this is a
qualitative property which means nothing), but is “well positive definite”, so that the technique
used for modifying the Hessian remains it unchanged in a neighbourhood of x∗, then the search
direction used in the method eventually becomes the exact Newton direction, as it should be
for fast local convergence. This is fine but insufficient: to get something asymptotically close to
the Basic Newton method, we need also nearly unit stepsizes at the final phase of the process;
whether it is so or not, it depends on line search we use. One can prove, e.g., that the required
property of “asymptotically unit stepsizes in the Newton direction” is ensured by the exact line
search. To get the same behaviour it in the Armijo-terminated line search, the parameters ε
and η of the underlying Armijo test should be chosen properly (e.g., ε = 0.2 and η = 10), and
we should always start line search with testing the unit stepsize.

In spite of all indicated remarks which say that the modifications of the Basic Newton method
aimed to ensure global convergence may spoil the theoretical quadratic convergence of the basic
method (either because of bad implementation, or due to nearly-degeneracy of the minimizer the
trajectory converges to), the Newton-based methods should be qualified as the most efficient tool

5this, e.g., for sure is the case when the modification is uniformly descent and f is strongly convex: here the
only critical point is a nondegenerate global minimizer, while convergence to the set of critical points is given by
Theorem 4.2.1
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for smooth unconstrained minimization. The actual reason of the efficiency of these methods
is their intrinsic ability (spoiled, to some extent, by the modifications aimed to ensure global
convergence) to adjust themselves to the “local geometry” of the objective.

The main shortcoming of the Newton-type methods is their relatively high computational
cost. To run such a method, we should be able to compute the Hessian of the objective and should
solve at each step an n×n system of linear equations. If the objective is too complicated and/or
the dimension n of the problem is large, these requirements may become “too costly” from the
viewpoint of programming, execution time and memory considerations. In order to overcome
these drawbacks, significant effort was invested into theoretical and computational development
of first-order routines (those not using second-order derivatives) capable to “imitate” the Newton
method. These are the methods we are about to consider in our nearest lectures.

4.3 Newton Method and Self-Concordant Functions

The traditional results on the Newton method establish no more than its fast asymptotical
convergence; global efficiency estimates can be proved only for modified versions of the method,
and these global estimates never are better than those for the Gradient Descent. In this section
we consider a family of objectives – the so called self-concordant ones – where the Newton
method admits excellent global efficiency estimates. This family underlies the most recent and
advanced Interior Point methods for large-scale Convex Optimization.

4.3.1 Preliminaries

The traditional “starting point” in the theory of the Newton method – Theorem 4.1.1 – pos-
sesses an evident drawback (which, anyhow, remained unnoticed by generations of researchers).
The Theorem establishes local quadratic convergence of the Basic Newton method as applied
to a function f with positive definite Hessian at the minimizer, this is fine; but what is the
“quantitive” information given by the Theorem? What indeed is the “region of quadratic con-
vergence” Q of the method – the set of those starting points from which the method converges
quickly to x∗? The proof provides us with certain “constructive” description of Q, but look –
this description involves differential characteristics of f like the magnitude of the third order
derivatives of f in a neighbourhood of x∗ (this quantity underlies the constant β1 from the
proof) and the bound on the norm of inverted Hessian in this neighbourhood (the constant β2;
in fact this constant depends on β1, the radius of the neighbourhood and the smallest eigenvalue
of ∇2f(x∗)). Besides this, the “fast convergence” of the method is described in terms of the the
behaviour of the standard Euclidean distances |xt − x∗|. All these quantities – magnitudes of
third-order derivatives of f , norms of the inverted Hessian, distances from the iterates to the
minimizer – are “frame-dependent”: they depend on the choice of Euclidean structure on the
space of variables, on what are the orthonormal coordinates used to compute partial derivatives,
Hessian matrices and their norms, etc. When we vary the Euclidean structure (pass from the
original coordinates to another coordinates via a non-orthogonal linear transformation), all these
quantities somehow vary, same as the description of Q given by Theorem 4.1.1. On the other
hand, when passing from one Euclidean structure on the space of variables to another, we do
not vary neither the problem, nor the Basic Newton method. Indeed, the latter method is inde-
pendent of any a priori coordinates, as it is seen from the following “coordinateless” description
of the method:
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To find the Newton iterate xt+1 of the previous iterate xt, take the second order Taylor expansion
of f at xt and choose, as xt+1, the minimizer of the resulting quadratic form.

Thus, the coordinates are responsible only for the point of view we use to investigate the process
and are absolutely irrelevant to the process itself. And the results of Theorem 4.1.1 in their
quantitive part (same as other traditional results on the Newton method) reflect this “point of
view”, not only the actual properties of the Newton process! This “dependence on viewpoint” is
a severe drawback: how can we get correct impression of actual abilities of the method looking
at the method from an “occasionally chosen” position? This is exactly the same as to try to get
a good picture of a landscape directing the camera in a random manner.

4.3.2 Self-concordance

After the drawback of the traditional results is realized, could we choose a proper point of view –
to orient our camera properly, at least for “good” objectives? Assume, e.g., that our objective f
is convex with nondegenerate Hessian. Then at every point x there is a natural, intrinsic for the
objective, Euclidean structure on the space of variables, namely, the one given by the Hessian
of the objective at x; the corresponding norm is

|h|f,x =
√
hT∇2f(x)h ≡

√
d2

dt2
|t=0f(x+ th). (4.3.1)

Note that the first expression for |h|f,x seems to be “frame-dependent” – it is given in terms
of coordinates used to compute inner product and the Hessian. But in fact the value of this
expression is “frame-independent”, as it is seen from the second representation of |h|f,x.

Now, from the standard results on the Newton method we know that the behaviour of the
method depends on the magnitudes of the third-order derivatives of f . Thus, these results are
expressed, among other, in terms of upper bounds

∣∣∣∣∣
d3

dt3
|t=0f(x+ th)

∣∣∣∣∣ ≤ α

on the third-order directional derivatives of the objective, the derivatives being taken along unit
in the standard Euclidean metric directions h. What happens if we impose similar upper bound
on the third-order directional derivatives along the directions of the unit | · |f,x length rather
than along the directions of the unit “usual” length? In other words, what happens if we assume
that

|h|f,x ≤ 1⇒
∣∣∣∣∣
d3

dt3
|t=0f(x+ th)

∣∣∣∣∣ ≤ α ?

Since the left hand side of the concluding inequality is of homogeneity degree 3 with respect to
h, the indicated assumption is equivalent to the one

∣∣∣∣∣
d3

dt3
|t=0f(x+ th)

∣∣∣∣∣ ≤ α|h|
3
f,x ∀x ∀h.

Now, the resulting inequality, qualitatively, remains true when we scale f – replace it by λf
with positive constant λ, but the value of α varies: α 7→ λ−1/2α. We can use this property to
normalize the constant factor α, e.g., to set it equal to 2 (this is the most technically convenient
normalization).
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Thus, we come to the main ingredient of the notion of a

self-concordant function: a three times continuously differentiable convex function f satisfy-
ing the inequality

∣∣∣∣∣
d3

dt3
|t=0f(x+ th)

∣∣∣∣∣ ≤ 2|h|3f,x ≡ 2

[
d2

dt2
|t=0f(x+ th)

]3/2

∀h ∈ Rn. (4.3.2)

We do not insist on f to be defined everywhere; it suffices to assume that the domain of f is an
open convex set Qf ⊂ Rn, and that (4.3.2) is satisfied at every point x ∈ Qf . The second part
of the definition of a self-concordant function is that

Qf is a “natural domain” of f , so that f possesses the barrier property with respect to Qf
– blows up to infinity when a sequence of interior points of Qf approaches a boundary point of
the domain:

∀{xi ∈ Qf} : xi → x ∈ ∂Qf , i→∞⇒ f(xi)→∞, i→∞. (4.3.3)

Of course, the second part of the definition imposes something on f only when the domain of f
is less than the entire Rn.

Note that the definition of a self-concordant function is “coordinateless” – it imposes certain
inequality between third- and second-order directional derivatives of the function and certain
behaviour of the function on the boundary of its domain; all notions involved are “frame-
independent”.

4.3.3 Self-concordant functions and the Newton method

It turns out that the Newton method as applied to a self-concordant function f possesses ex-
tremely nice global convergence properties. Namely, one can more or less straightforwardly
prove the following statements:

Proposition 4.3.1 [Self-concordant functions and the Newton method]
Let f be strongly self-concordant, and let ∇2f be nondegenerate at some point of Qf (this for
sure is the case when Qf does not contain lines, e.g., is bounded). Then

• (i) [Nondegeneracy] ∇f(x) is positive definite at every point x ∈ Qf ;

• (ii) [Existence of minimizer] If f is below bounded (which for sure is the case when Qf is
bounded), then f attains its minimum on Qf , the minimizer being unique;

• (iii) [Damped Newton method] The started at arbitrary point x0 ∈ Qf process

xt+1 = xt − 1
1 + λ(f, xt)

[∇2f(xt)]−1∇f(xt), λ(f, x) =
√

(∇f(x))T [∇2f(x)]−1∇f(x)

(4.3.4)
– the Newton method with particular stepsizes

γt+1 =
1

1 + λ(f, xt)

– possesses the following properties:

– (iii.1) The process keeps the iterates in Qf and is therefore well-defined;
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– (iii.2) If f is below bounded on Qf (which for sure is the case if λ(f, x) < 1 for some
x ∈ Qf ) then {xt} converges to the unique minimizer x∗f of f on Qf ;

– (iii.3) Each step of the process (4.3.4) decreases f “significantly”, provided that λ(f, xt)
is not too small:

f(xt)− f(xt+1) ≥ λ(f, xt)− ln (1 + λ(f, xt)) ; (4.3.5)

– (iii.4) For every t, one has

λ(f, xt) < 1⇒ f(xt)− f(x∗t ) ≤ − ln (1− λ(f, xt))− λ(f, xt) (4.3.6)

and

λ(f, xt+1) ≤ 2λ2(f, xt)
1− λ(f, xt)

. (4.3.7)

The indicated statements demonstrate extremely nice global convergence properties of the
Damped Newton method (4.3.4) as applied to a self-concordant function f . Namely, assume
that f is self-concordant with nondegenerate Hessian at certain (and then, as it was mentioned
in the above proposition, at any) point of Qf . Assume, besides this, that f is below bounded
on Qf (and, consequently, attains its minimum on Qf by (ii)). According to (iii), the Damped
Newton method is keeps the iterates in Af . Now, we may partition the trajectory into two parts:

• the initial phase: from the beginning to the first moment, let it be called t∗, when λ(f, xt) ≤
1/4;

• the final phase: starting from the moment t∗.

According to (iii.3), at every step of the initial phase the objective is decreased at least by
absolute constant

κ =
1
4
− ln

5
4
> 0;

consequently,

• the initial phase is finite and is comprised of no more than

Nini =
f(x0)−minQf f

κ

iterations.

Starting with t = t∗, we have in view of (4.3.6):

λ(f, xt+1) ≤ 2λ2(f, xt)
1− λ(f, xt)

≤ 1
2
λ(f,xt);

thus,

• starting with t = t∗, the quantities λ(f, xt) converge quadratically to 0 with objective-
independent rate.

According to (4.3.7),

• starting with t = t∗, the residuals in terms of the objective f(xt)−minQf f also converge
quadratically to zero with objective-independent rate.
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Combining the above observations, we observe that

• the number of steps of the Damped Newton method required to reduce the residual f(xt)−
min f in the value of a self-concordant below bounded objective to a prescribed value
ε < 0.1 is no more than

N(ε) ≤ O(1)
[
[f(x0)−min f ] + ln ln

1
ε

]
, (4.3.8)

O(1) being an absolute constant.

It is also worthy of note what happens when we apply the Damped Newton method to a
below unbounded self-concordant f . The answer is as follows:

• for a below unbounded f one has λ(f, x) ≥ 1 for every x (see (iii.2)), and, consequently,
every step of the method decreases f at least by the absolute constant 1− ln 2 (see (iii.3)).

The indicated picture gives a “frame-” and “objective-independent” description of the global
behaviour of the Damped Newton method as applied to a below bounded self-concordant func-
tion. Note that the quantity λ(f, x) used to describe the behaviour of the method at the first
glance is “coordinate dependent” (see (4.3.4)), but in fact this quantity is “coordinateless”.
Indeed, one can easily verify that

λ2(f, x)
2

= f̂(x)−min
y
f̂(y),

where
f̂(y) = f(x) + (y − x)T∇f(x) +

1
2

(y − x)T∇2f(x)(y − x)

is the second-order Taylor expansion of f at x. This is a coordinateless definition of λ(f, x).
Note that the region of quadratic convergence of the Damped Newton method as applied to

a below bounded self-concordant function f is, according to (iii.4), the set

Qf = {x ∈ Qf | λ(f, x) ≤ 1
4
}. (4.3.9)

4.3.4 Self-concordant functions: applications

At the first glance, the family of self-concordant functions is rather “thin” – the functions are
given by certain “strict” differential inequality, and “a general”, even convex and smooth, f
hardly may happen to be self-concordant. Thus, what for these elegant results on the behaviour
of the Newton method on self-concordant functions?

The answer is as follows: it turns out that (even constrained) Convex Programming problems
of reasonable (in principle – of arbitrary) analytic structure can be reduced to a “small series”
of problems of minimizing self-concordant functions. Applying to these auxiliary problems the
Damped Newton method, we come to the theoretically most efficient (and extremely efficient
in practice) Interior Point Polynomial Time methods for Convex Optimization. Appearance
of these methods (starting with the landmark paper of N. Karmarkar (1984), where the first
method of this type for Linear Programming was proposed) definitely was the main event in
Optimization during the last decade, it completely changed the entire area of large-scale Convex
Optimization, in particular, Linear Programming.
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Right now I am not going to speak about Interior Point methods in more details; we shall
come back to these methods at the end of our course. What should be stressed now is that the
crucial point in the design of the Interior Point methods is our ability to construct “good” self-
concordant functions with prescribed domains. To this end it is worthy to note how to construct
self-concordant functions. Here the following “raw materials” and “combination rules” are useful:

Raw materials: basic examples of self-concordant functions. For the time being, the
following examples are sufficient:

• [Convex quadratic (e.g., linear) form] The convex quadratic function

f(x) =
1
2
xTAx− bTx+ c

(A is symmetric positive semidefinite n× n matrix) is self-concordant on Rn;

• [Logarithm] The function
− ln(x)

is self-concordant with the domain R+ = {x ∈ R | x > 0};
• [Extension of the previous example: Logarithmic barrier, linear/quadratic case] Let

Q = {x ∈ Rn | φj(x) < 0, j = 1, ...,m}
be a nonempty set in Rn given by m strict convex quadratic (e.g., linear) inequalities.
Then the function

f(x) = −
m∑

i=1

ln(−φi(x))

is self-concordant with the domain equal to Q.

Combination rules: simple operations with functions preserving self-concordance

• [Linear combination with coefficients ≥ 1] Let fi, i = 1, ...m, be self-concordant functions
with the domains Qfi , let these domains possess a nonempty intersection Q, and let αi ≥ 1,
i = 1, ...,m, be given reals. Then the function

f(x) =
m∑

i=1

αifi(x)

is self-concordant with the domain equal to Q.

In particular, the sum of a self-concordant function and a convex quadratic function (e.g.,
a linear one) is self-concordant;

• [Affine substitution] Let f(x) be self-concordant with the domain Qf ⊂ Rn, and let x =
Aξ + b be an affine mapping from Rk into Rn with the image intersecting Qf . Then the
composite function

g(ξ) = f(Aξ + b)

is self-concordant with the domain

Qg = {ξ | Aξ + b ∈ Qf}
being the inverse image of Qf under the affine mapping in question.
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To justify self-concordance of the indicated functions, same as the validity of the combination
rules, only minimal effort is required; at the same time, these examples and rules give almost all
required to establish excellent global efficiency estimates for Interior Point methods as applied
to Linear Programming and Convex Quadratically Constrained Quadratic programming.

After we know examples of self-concordant functions, let us look how our now understanding
of the behaviour of the Newton method on such a function differs from the one given by Theorem
4.1.1. To this end consider a particular self-concordant function – the logarithmic barrier

f(x) = − ln(δ − x1)− ln(δ + x1)− ln(1− x2)− ln(1 + x2)

for the 2D rectangle
D = {x ∈ R2 | |x1| < δ, |x2| < 1};

in what follows we assume that the rectangle is “wide”, i.e., that

δ >> 1.

This function indeed is self-concordant (see the third of the above “raw material” examples).
The minimizer of the function clearly is the origin; the region of quadratic convergence of the
Damped Newton method is given by

Q = {x ∈ D | x2
1

δ2 + x2
1

+
x2

2

1 + x2
2

≤ 1
32
}

(see (4.3.9)). We see that the region of quadratic convergence of the Damped Newton method
is large enough – it contains, e.g., 8 times smaller than D concentric to D rectangle D′. Besides
this, (4.3.8) says that in order to minimize f to inaccuracy, in terms of the objective, ε, starting
with a point x0 ∈ D, it suffices to perform no more than

O(1)
[
ln

1
‖ x0 ‖ + ln ln

1
ε

]

steps, where O(1) is an absolute constant and

‖ x ‖= max{|x1|
δ
, |x2|}.

Now let us look what Theorem 4.1.1 says. The Hessian ∇2f(0) of the objective at the minimizer
is

H =
(

2δ−2 0
0 2

)
,

and |H−1| = O(δ2); in, say, 0.5-neighbourhood U of x∗ = 0 we also have |[∇2f(x)]−1| = O(δ2).
The third-order derivatives of f in U are of order of 1. Thus, in the notation from the proof
of Theorem 4.1.1 we have β1 = O(1) (this is the magnitude of the third order derivatives of f
in U), U ′ = U , r = 0.5 (the radius of the circle U ′ = U) and β2 = O(δ2) (this is the upper
bound on the norm of the inverted Hessian of f in U ′). According to the proof, the region U ′′

of quadratic convergence of the Newton method is ρ-neighbourhood of x∗ = 0 with

ρ = min[r, (2β1β2)−1] = O(δ−2).

Thus, according to Theorem 4.1.1, the region of quadratic convergence of the method becomes
the smaller the larger is δ, while the actual behaviour of this region is quite opposite.
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In this simple example, the aforementioned drawback of the traditional approach – its “frame-
dependence” – is clearly seen. Applying Theorem 4.1.1 to the situation in question, we used
extremely bad “frame” – Euclidean structure. If we were clever enough to scale the variable x1

before applying Theorem 4.1.1 – to divide it by δ – it would become absolutely clear that the
behaviour of the Newton method is absolutely independent of δ, and the region of quadratic
convergence of the method is a once for ever fixed “fraction” of the rectangle D.

To extract certain moral from this story about self-concordance, let me note that it is one
of the examples of what is Mathematics and progress in Mathematics: the known from XVII
Century very natural and simple (and seemingly perfectly well understood decades ago) op-
timization method gave rise to one of the most advanced and most recent breakthroughs in
Optimization.
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Assignment # 4 (Lecture 4)

Exercise 4.3.1 Assume that f is twice continuously differentiable with nondegenerate (not nec-
essarily positive definite) Hessian at x. As we know, the Newton direction

e(x) = −[∇2f(x)]−1∇f(x)

not necessarily is a descent direction for f at x. Prove that e(x) always is a descent direction of

g(·) = |∇f(·)|2,
i.e., that

g(x) > 0⇒ eT (x)∇g(x) < 0.

Could you use this observation to build (on the paper, not on a computer) a Newton-type algo-
rithm for approximating critical points of f ?

Exercise 4.3.2 Write a code implementing the Modified Newton method. Use the Levenberg-
Marquardt scheme and the line search subroutine which you were supposed to create when doing
Assignment 2.
Think about

• reasonable choice of the parameter δ and the bisection policy in the “modifying the Hessian”
part of the algorithm;

• implementation of line search aimed to use unit stepsizes whenever they pass the termina-
tion test you use in your line search

If you are working with MATLAB, you could use the MATLAB Cholesky factorization, otherwise
you are welcome to write your own Cholesky code.
Test your code on

• The Rosenbrock function

f(x) = 100(x2 − x2
1)2 + (1− x1)2,

the starting point being (−1.2, 1.0)T ;

• The logarithmic barrier

f(x) = −
10∑

i=1

ln(i2 − x2
i ) [x ∈ R10],

the starting point being (x0)i = i− εi, i = 1, ..., 10, for ε ∈ {0.001; 0.01; 0.1}.
Exercise 4.3.3 Write a code implementing the Damped Newton method (4.3.4) and run the
code on the function

f(x) =
1
ε

10∑

i=1

ixi −
10∑

i=1

ln(1− x2
i )

(by the way, is the function self-concordant?), the starting point being x0 = 0. Test the values
ε ∈ {1; 0.1; 0.01; 0.005}.
Run the method until the inequality λ(f, xt) ≤ 10−6 is satisfied and look at the pattern of values
of λ(f, ·) along the trajectory.
Could you explain why the number of steps of the method increases as ε decreases?



Lecture 5

The Conjugate Gradient Method

We come to a new family of methods for unconstrained minimization problem

f(x)→ min | x ∈ Rn (5.0.1)

– the conjugate direction methods. The idea is to accelerate the rate of convergence of the
Gradient Descent, avoiding at the same time explicit usage of second-order information which
makes the Newton-type methods computationally expensive.

The idea behind the conjugate direction methods comes from efficient iterative technique
for minimizing quadratic function (same as the idea of the Newton-type methods comes from
direct Linear Algebra technique for this latter problem), so that general conjugate direction
methods are natural extensions of those for quadratic minimization. And it is natural to start
with conjugate directions for quadratic minimization.

5.1 Quadratic forms, Linear systems and Conjugate directions

Let H be a n× n positive definite symmetric matrix, and let

f(x) =
1
2
xTAx− bTx

being the quadratic form for which H is the Hessian matrix. Since H is positive definite, f is
strongly convex (Lecture 3); the unique global minimizer x∗ of f is the solution to the Fermat
equation

∇f(x) ≡ Hx− b = 0; (5.1.1)

due to strong convexity, this is the only critical point of f . Thus, it is the same – to minimize
a strongly convex quadratic form f on Rn and to solve a linear n× n system of equations

Hx = b (5.1.2)

with symmetric positive definite matrix H = ∇2f .
In our previous lecture we spoke about direct Linear Algebra technique for solving (5.1.2) –

namely, about the one based on Cholesky decomposition of H. There are other direct Linear
Algebra methods to solve this problem – Gauss elimination, etc. When saying that these methods
are “direct”, I mean that they work with H “as a whole”, and until the matrix is processed,
no approximate minimizers of f (i.e., approximate solutions to (5.1.2)) are generated; and after

89
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H is processed, we get the exact minimizer (in actual computations – exact up to influence of
rounding errors). In contrast to this, the so called iterative methods for minimizing f (≡ for
solving (5.1.2)) generate a sequence of approximate minimizers converging to the exact one. We
already know a method of this type – the Steepest Descent; this method is aimed to minimize
nonquadratic functions, but one can apply it to a quadratic objective as well.

Today we shall study another family of iterative methods – those based on conjugate direc-
tions; in contrast to Steepest Descent, such a method minimizes quadratic form exactly in no
more than n steps, n being the dimension of the design vector (i.e., the size of linear system
(5.1.2)).

The methods in question are based on important notion of conjugate directions.

5.1.1 Conjugate directions

Definition 5.1.1 [Conjugate directions] Let H be a symmetric n × n positive definite matrix.
We say that two vectors d1, d2 ∈ Rn are conjugate with respect to H (synonyms: H-conjugate,
H-orthogonal), if

dT1 Hd2 = 0.

A set of vectors d1, ..., dk is called H-orthogonal if diHdj = 0 whenever i 6= j.

The meaning of the notion is clear: a symmetric positive definite matrix H defines a new inner
product

〈x, y〉 = xTHy

on Rn; symmetry and positive definiteness of H imply that this indeed is an inner product1.
In other words, H equips Rn with new Euclidean structure, and vectors are H-conjugate if and
only if they are orthogonal in this Euclidean structure.

Given a linear combination

d =
k∑

i=1

αidi

of orthogonal, in the usual sense, nonzero vectors di, one can easily restore the coefficients via
the value of the sum:

αi =
dTdi
dTi di

.

Similar fact takes place for linear combinations of H-orthogonal nonzero vectors:

Lemma 5.1.1 Let H be symmetric positive definite matrix, and d0, ..., dk be nonzero H-orthogonal
vectors. Then the coefficients αi in a linear combination

d =
k∑

i=0

αidi (5.1.3)

can be restored via d by the explicit formulae

αi =
dTHdi
dTi Hdi

, i = 0, ..., k (5.1.4)

(the denominators are nonzero due to positive definiteness of H; recall that di are nonzero by
assumption).

1i.e., function of pair of vectors from Rn which is linear with respect to each argument, is symmetric – remains
unchanged when the arguments are swapped, and is positive definite: 〈x, x〉 > 0 whenever x 6= 0
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Proof is immediate: taking the usual inner product of both sides on (5.1.3) with Hdj , we get

dTHdj = αjd
T
j Hdj

(due to H-orthogonality of di with i 6= j to dj , the right hand side terms associated with i 6= j
vanish), and we come to (5.1.4).

In fact relations (5.1.4) are nothing but the standard formulae for Fourier coefficients of a
vector in orthogonal (in the Euclidean structure 〈u, v〉 = uTHv) basis d0, ..., dn−1:

x =
n−1∑

i=0

〈x, di〉
〈di, di〉di

Corollary 5.1.1 If d0, ..., dk are H-orthogonal, H being a symmetric positive definite matrix,
then the set of vectors d0, ..., dk is linearly independent.

Indeed, assuming that certain linear combination
∑k
i=0 αidi of d0, ..., dk is zero, we conclude

from (5.1.4) that all the coefficients are zero. Thus, only trivial (with all coefficients being 0)
combination of di can be equal to 0, and this is exactly linear independence of the vectors.

Now comes the first critical point of the Lecture: explicit formulae for the solution to (5.1.2)
in terms of a complete (with n elements) system of H-orthogonal nonzero directions d0, ..., dn−1:

Proposition 5.1.1 [Solution to (5.1.2) via Conjugate Directions]
Let H be a positive definite symmetric n×n matrix, and let d0, ..., dn−1 be a system of n nonzero
H-orthogonal vectors. Then the solution x∗ to the system

Hx = b

is given by the formula

x∗ =
n−1∑

i=0

bTdi
dTi Hdi

di. (5.1.5)

Proof. Since d0, ..., dn−1 are nonzero and H-orthogonal, they are linearly independent (Corol-
lary 5.1.1); and since this is a system of n linearly independent vectors in Rn, this is a basis in
Rn, so that the solution x∗ to our system is a linear combination

x∗ =
n−1∑

i=1

αidi

of the vectors di. According to Lemma 5.1.1, the coefficients of the combination are

αi =
(x∗)THdi
dTi Hdi

=
(Hx∗)Tdi
dTi Hdi

=

[since Hx∗ = b]

=
bTdi
dTi Hdi

.
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Remark 5.1.1 An equivalent reformulation of Proposition is that

x∗ ≡ H−1b =
n−1∑

i=0

bTdi
dTi Hdi

di ≡
[
n−1∑

i=1

1
dTi Hdi

did
T
i

]
b;

since this equality is valid for every b, the matrix in the brackets is exactly H−1:

H−1 =
n−1∑

i=0

1
dTi Hdi

did
T
i , (5.1.6)

and we end up with a formula which represents the inverse to a positive definite symmetric
matrix H as a sum of rank 1 matrices coming from a complete (comprised of n nonzero vectors)
system of H-orthogonal vectors.

5.2 Method of Conjugate Directions: quadratic case

It is convenient for us to reformulate the statement of the Proposition as an assertion about
certain iterative algorithm:

Theorem 5.2.1 [Conjugate Direction Theorem] Let H be a positive definite symmetric n × n
matrix, b be a vector and

f(x) =
1
2
xTHx− bTx

be the quadratic form associated with H and b.
Let, further, d0, ..., dn−1 be a system of nonzero H-orthogonal vectors, and let x0 be an

arbitrary starting point. The iterative process

xt+1 = xt + γt+1dt, γt+1 = − dTt gt
dTt Hdt

, t = 0, ..., n− 1, (5.2.1)

where gt is the gradient of f at xt:

gt = ∇f(xt) = Hx− b, (5.2.2)

converges to the unique minimizer x∗ of f (≡ the unique solution to the linear system Hx = b)
in n steps: xn = x∗.

We see that, given a complete (with n elements) system d0, ..., dn−1 of nonzero H-orthogonal
vectors, we can associate with it recurrence (5.2.1) – the Conjugate Direction method – and find
the exact minimizer of f in n steps.

Proof of the Conjugate Direction Theorem. From (5.2.1) we have

xk − x0 =
k−1∑

t=0

γt+1dt,

whence

dTkH(xk − x0) =
k−1∑

t=0

γt+1d
T
kHdt = 0. (5.2.3)
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On the other hand, by (5.1.3)

x∗ − x0 =
n−1∑

t=0

dTt H(x∗ − x0)
dTt Hdt

dt =

[by (5.2.3)]

=
n−1∑

t=0

dTt H(x∗ − xt)
dTt Hdt

dt =

[since H(x∗ − xt) = b−Hxt = −∇f(xt) = −gt]

=
n−1∑

t=0

[
− dTt gt
dTt Hdt

]
dt =

[definition of γt+1, see (5.2.1)]

=
n−1∑

t=0

γt+1dt = xn − x0,

so that x∗ = xn.

5.3 Descent properties of Conjugate Direction method

Let, as above,

f(x) =
1
2
xTHx− bTx

be a strongly convex quadratic form on Rn (so that H is a positive definite symmetric n × n
matrix), and let d0, ..., dn−1 be a system of n nonzero H-orthogonal vectors. Our local goal is
to establish certain important (and in fact characteristic) property of the trajectory {x0, ..., xn}
of the Conjugate Direction method associated with d0, ..., dn−1. We already know that xn is the
minimizer of f on the entire space Rn; and the indicated property is that every xt, 0 ≤ t ≤ n,
is the minimizer of f on the affine subspace

Mt = x0 + Bt−1,

where
Bt−1 = Lin{d0, ..., dt−1}

is the linear span of the vectors d0, ..., dt−1 (here, for homogeneity, the linear span of an empty
set of vectors is {0}: B0 = {0}). The affine sets M0, ...,Mn form an increasing sequence:

{x0} = M0 ⊂M1 ⊂ ... ⊂Mn−1 ⊂Mn = Rn (5.3.1)

which “links” x0 and the entire space, and we come to a very nice picture: the Conjugate
Direction method generates subsequently the minimizers of f on the elements of this “chain”.
The announced property is given by the following

Proposition 5.3.1 For every t, 1 ≤ t ≤ n, the vector xt is the minimizer of f on the affine
plane

x0 + Bt−1,
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where
Bt−1 = Lin{d0, ..., dt−1}

is the linear span of d0, ..., dt−1. In particular, xt minimizes f on the line

lt = {xt−1 + γdt−1 | γ ∈ R}.

Proof. Of course, “in particular” part of the statement follows from its “general” part: by
construction, lt ⊂ x0 +Bt−1 and xt ∈ lt (see (5.2.1)); knowing that xt minimizes f on x0 +Bt−1,
we could immediately conclude that it minimizes f on lt ⊂ x0 + Bt−1 as well.

To prove that xt minimizes f on x0 + Bt−1, it suffices to prove that the gradient gt of f at
xt is orthogonal to Bt−1, i.e., is orthogonal to d0, ..., dt−1

2.
According to the Conjugate Direction Theorem, we have xn = x∗ ≡ H−1b, whence

xt − x∗ = xt − xn = −
n−1∑

i=t

γi+1di,

whence

gt = Hxt − b = Hxt −Hx∗ = H(xt − x∗) = −
n−1∑

i=t

γi+1[Hdi].

Since d0, ..., dn−1 are H-orthogonal, each vector Hdi, i ≥ t, is orthogonal to all vectors dj , 0 ≤
j < t, and, consequently, is orthogonal to Bt−1; as we just have seen, gt is a linear combination
of Hdi, i = t, ..., n− 1, so that gt also is orthogonal to Bt−1.

5.4 Conjugate Gradient method: quadratic case

To the moment, we have associated to a n-element system of nonzero H-orthogonal vectors
d0, ..., dn−1, H being a symmetric positive definite n×n matrix, the Conjugate Direction method
(5.2.1) for minimizing quadratic forms

f(x) =
1
2
xTHx− bTx; (5.4.1)

what we know is that the iterates xt of the method minimize f on the sequence of expanding
affine sets (5.3.1), and the n-th iterate is the global minimizer of f . All this is fine, but where
to get the underlying complete system of H-orthogonal vectors di?

As we remember, H-orthogonality is nothing but the standard orthogonality, but taken with
respect to the inner product 〈u, v〉 = uTHv instead of the standard inner product uT v; conse-
quently, we can get a complete system of H-orthogonal vectors from any sequence of n linearly
independent vectors by applying to the latter system the Gram-Schmidt orthogonalization pro-
cess (of course, in the inner product 〈u, v〉, not in the standard one!) [those who do not remember

2indeed, f is convex, so that a necessary and sufficient condition for f to attain its minimum over an affine set
M = x0 + L, L being a linear subspace in Rn, at certain point x̄ ∈ M , is the orthogonality of ∇f(x̄) to L. To
see it, represent M as an image of Rk, k = dim L, under affine mapping u 7→ x̄+Au and set φ(u) = f(x̄+Au);
φ is convex, since f is, and φ attains its minimum over Rk at u = 0 if and only if f attains its minimum on M
at x̄. Now, the necessary and sufficient condition for φ to attain its minimum at u = 0 is the Fermat condition
∇φ(0) = 0. Since ∇φ(0) = AT∇f(x̄), we come to the condition AT∇f(x̄) = 0; and since, by the standard Linear
Algebra facts, KerAT is the orthogonal complement to ImA and by construction ImA = L, relation AT∇f(x̄) = 0
is equivalent to the orthogonality of ∇f(x̄) and L.
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what does it mean Gram-Schmidt orthogonalization, may ignore the above sentence, same as
the next one, without any harm: we will not exploit this process in its general form]. It turns
out, anyhow, that there exists certain particular sequence extremely convenient for the process;
this is the Krylov sequence

g0 ≡ Hx0 − b,Hg0, H
2g0,H

3g0, ...

The Conjugate Direction method based on directions given by 〈·, ·〉-orthogonalization of the indi-
cated sequence has a special name – the Conjugate Gradient method – and possesses extremely
attractive optimality properties. This is the method we come to.

5.4.1 Description of the method

The Conjugate Gradient method (CG for short) for minimizing strongly convex quadratic form
(5.4.1) is as follows:

Algorithm 5.4.1 [Conjugate Gradient method]
Initialization: choose arbitrary starting point x0 and set

d0 = −g0 ≡ −∇f(x0) = b−Hx0;

set t = 1.
Step t: if gt−1 ≡ ∇f(xt−1) = 0, terminate, xt−1 being the result. Otherwise set

[new iterate]

xt = xt−1 + γtdt−1, γt = − gTt−1dt−1

dTt−1Hdt−1
, (5.4.2)

[new gradient]
gt = ∇f(xt) ≡ Hxt − b, (5.4.3)

[new direction]

dt = −gt + βtdt−1, βt =
gTt Hdt−1

dTt−1Hdt−1
, (5.4.4)

replace t with t+ 1 and loop.

We are about to prove that the presented algorithm is a Conjugate Direction method:

Theorem 5.4.1 [Conjugate Gradient Theorem]
The Conjugate Gradient method is a Conjugate Direction method: if the algorithm does not
terminate at step t, then

(it) The gradients g0, ..., gt−1 of f at the points x0, ..., xt−1 are nonzero and

Lin {g0, g1, ..., gt−1} = Lin
{
g0,Hg0, ..., H

t−1g0

}
; (5.4.5)

(iit) The directions d0, ..., dt−1 are nonzero and

Lin {d0, ..., dt−1} = Lin
{
g0,Hg0, ..., H

t−1g0

}
; (5.4.6)

(iiit) The directions d0, ..., dt−1 are H-orthogonal:

dTi Hdj = 0, 0 ≤ i < j ≤ t− 1; (5.4.7)
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(iv) One has

γt =
gTt−1gt−1

dTt−1Hdt−1
; (5.4.8)

(v) One has

βt =
gTt gt

gTt−1gt−1
. (5.4.9)

In particular, the algorithm terminates no later than after n steps with the result being the exact
minimizer of f .

Proof.
10. We first prove (i)-(iii) by induction on t.

Base t = 1. We should prove that if the algorithm does not terminate at the first step (i.e.,
if g0 6= 0), then (i1) - (iii1) are valid. This is evident, since, by the description of the method,
g0 = d0, and there is nothing to prove in (iii1).

Step t 7→ t + 1. Assume that (is) - (iiis) are valid for s ≤ t and that the algorithm does
not terminate at the step t+ 1, i.e., that gt 6= 0, and let us derive from this assumption (it+1) -
(iiit+1).

First of all, consider the directions d0, ..., dt−1. Since (iis) and (iiis) are valid for s ≤ t,
this is a sequence of nonzero H-orthogonal directions, and we clearly can extend it, by adding
appropriate directions d̄t, ..., d̄n−1, to a complete system of H-orthogonal directions3. Now let
us look at the Conjugate Direction method associated with this extended system of directions.
Comparing (5.4.2) and (5.2.1), we see that the first t + 1 points of the trajectory of this latter
method are the same as the first t + 1 points x0, ..., xt of the Conjugate Gradient algorithm in
question. In particular, by Proposition 5.3.1,

gTs dl = 0, 0 ≤ l < s ≤ t (5.4.10)

– the gradient of f at a point xs, s ≤ t, is orthogonal to the linear spans of the directions
d0, ..., ds−1. And since the linear span of d0, ..., ds−1 is, by (iis), the same as the linear span of
g0, ..., gs−1, we conclude that the gradients g0, ..., gt are mutually orthogonal:

gTs gl = 0, 0 ≤ l < s ≤ t. (5.4.11)

We have from (5.4.2)

gt = Hxt − b = H(xt−1 + γtdt−1)− b = [Hxt−1 − b] + γtHdt−1 = gt−1 + γtHdt−1.

By (it−1) and (iit−1), both gt−1 and dt−1 belong to Lin{g0,Hg0, ..., H
t−1g0}, so that the above

computation demonstrates that gt ∈ Lin{g0,Hg0, ..., H
tg0}, which combined with (it) means

that
Lin{g0, ..., gt} ⊂ Lin{g0,Hg0, ..., H

tg0}.
Since g0, ..., gt are nonzero and mutually orthogonal (see (5.4.11)), the left hand side subspace
in the latter inclusion is of dimension t+ 1, while the right hand side subspace is of dimension
at most t + 1; a t + 1-dimensional linear subspace can be enclosed into a linear subspace of
dimension ≤ t+ 1 only if the subspaces are equal, and we come to (it+1).

3same as any system of orthogonal nonzero vectors can be extended to an orthogonal basis; recall that H-
orthogonality is nothing but the orthogonality with respect to certain Euclidean structure!
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To prove (iit+1), note that by (5.4.4)

dt = −gt + βtdt−1;

both right hand side vectors are from Lin{g0,Hg0, ..., H
tg0} (by (iit) and already proved (it+1)),

so that dt ∈ Lin{g0,Hg0, ..., H
T g0}; combining this observation with (iit), we come to

Lin{d0, ..., dt} ⊂ Lin{g0,Hg0, ..., H
T g0}. (5.4.12)

Besides this, dt 6= 0 (indeed, gt is nonzero and is orthogonal to dt−1 by (5.4.10)). Now let us
prove that dt is H-orthogonal to d0, ..., dt−1. From formula for dt we have

dTt Hds = −gTt Hds + βtd
T
t−1Hds. (5.4.13)

When s = t− 1, the right hand side is 0 by definition of βt; and when s < t− 1, both terms in
the right hand side are zero. Indeed, the first term is zero due to (iit): this relation implies that

Hds ∈ Lin{Hg0,H
2g0, ...,H

sg0},
and the right hand side subspace is, due to (is+1) (s < t−1, so that we can use (is+1)!), contained
in the linear span of the gradients g0, ..., gs+1, and gt is orthogonal to all these gradients by virtue
of (5.4.12) (recall that s < t − 1). The second term in the right hand side of (5.4.13) vanishes
because of (iiit).

Thus, the right hand side in (5.4.13) is zero for all s < t; in other words, we have proved
(iiit+1) – the vectors d0, ..., dt indeed are H-orthogonal. We already know that dt 6= 0; con-
sequently, in view of (iit), all d0, ..., dt are nonzero. Since, as we already know, these vectors
are H-orthogonal, they are linearly independent (Corollary 5.1.1). Consequently, inclusion in
(5.4.12) is in fact equality, and we have proved (iit+1). The inductive step is completed.

20. To prove (iv), note that if t > 1 then, by (5.4.4),

−gTt−1dt−1 = gTt−1gt−1 − βt−1g
T
t−1dt−2,

and the second term in the right hand side is 0 due to (5.4.11); thus, −gTt−1dt−1 = gTt−1gt−1

for t > 1. For t = 1 this relation also is valid (since, by the initialization rule, d0 = −g0).
Substituting equality −gTt−1dt−1 = gTt−1gt−1 into formula for γt from (5.4.2), we get (5.4.8).

To prove (v), note that gTt gt−1 = 0 (see (5.4.12). Besides this, from (5.4.2) we have

Hdt−1 =
1
γt

[gt − gt−1]

(note that γt > 0 due to (iv) and (it), so that we indeed can rewrite (5.4.2) in the desired way);
taking inner product with gt, we get

gTt Hdt−1 =
1
γt
gTt gt =

dTt−1Hdt−1

gTt−1gt−1
gTt gt

(we have used (5.4.8)); substituting the result into (5.4.4), we come to (5.4.9).
30. It remains to prove the “in particular” part of the statement – i.e., that the method termi-
nates with exact minimizer of f in no more than n steps. This is immediate: as we know from
the proof of (i)-(iii), if the method does not terminate at step t, the points x0, ..., xt are the first
t+ 1 points of the trajectory of certain Conjugate Direction method as applied to f . It follows
that t ≤ n – since in n steps Conjugate Directions method for sure finds the exact solution and
comes therefore to gn = 0.
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CG and Three-Diagonal representation of a Symmetric matrix

This subsection is non-obligatory Assume that we are minimizing (5.4.1) by the Conjugate Gra-
dient algorithm; for the sake of simplicity, assume also that the method terminates in exactly
n steps, so that in course of its run we obtain n nonzero gradients g0, ..., gn−1. As we know
from the proof of the Conjugate Gradient Theorem (see (5.4.12)), these gradients are mutually
orthogonal, so that after normalization

fi = |gi|−1gi

of gi we get an orthonormal basis in Rn. How does the matrix H look in this basis? The answer
is very impressive:

the matrix in the basis {fi} is 3-diagonal: fTi Hfj = 0 whenever |i− j| > 1.

The proof is immediate: assume, e.g., that i > j + 1 and let us prove that fTi Hfj = 0. As we
know from Theorem 5.4.1.(i), fj ∈ Lin{g0,Hg0, ...,H

jg0}, whence Hfj ∈ Lin{Hg0, ..., H
j+1g0},

and the latter subspace is contained in Lin{g0, ..., gj+1} (the same Theorem 5.4.1.(i)). Since, as
it was already mentioned, gi is orthogonal to g0, ..., gi−1 and j + 1 < i, we have fTi Hfj = 0, as
claimed.

The necessity to find an orthonormal basis where a given symmetric matrix becomes 3-
diagonal occurs in many applications, e.g., when it is necessary to find the spectrum (all eigen-
values) of a large and sparse (with close to 0 percentage of nonzero entries) symmetric matrix.
The Conjugate Gradient algorithm is certain “starting point” in developing tools for finding
such a basis4.

5.4.2 Rate of convergence of the Conjugate Gradient method

According to Theorem 5.4.1 and Proposition 5.3.1, if CG as applied to (5.4.1) does not terminate
during first t steps, xt is the minimizer of f on the affine plane

Mt = x0 + Lin{d0, ..., dt−1} = x0 + Et,

where, according to (5.4.6),

Et = Lin{g0,Hg0, ..., H
t−1g0}, g0 = Hx0 − b. (5.4.14)

Equivalent description of Et is that this is the space comprised of all vectors of the form p(H)g0,
p being a polynomial of degree ≤ t− 1:

Et = {p(H)g0 | p(z) =
t−1∑

i=0

piz
i}. (5.4.15)

Given these observations, we immediately can establish the following

Proposition 5.4.1 Let
E(x) = f(x)−min f

4please do not think that the problem in question can be solved by straightforward application of the CG: the
influence of rounding errors makes the actually computed gradients very far from being mutually orthogonal!
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be the residual in terms of the objective associated with quadratic form (5.4.1), and let xt be t-th
iterate of the Conjugate Gradient method (if the method terminates in course of first t steps,
then, by definition, xt is the result of the method, i.e., the exact minimizer of f). Then

E(xt) = min
p∈Pt−1

1
2

(x0 − x∗)TH[I −Hp(H)]2(x0 − x∗), (5.4.16)

where x0 is the starting point, x∗ is the exact minimizer of f , I is the unit matrix, and Pk is
the family of all polynomials of degree ≤ k.

Proof is immediate: since f is a quadratic form, we have

f(x) = f(x∗) + (x− x∗)T∇f(x∗) +
1
2

(x− x∗)T [∇2f ](x− x∗) = f(x∗) +
1
2

(x− x∗)TH(x− x∗)

(we have taken into account that ∇f(x∗) = 0 and ∇2f = H), whence

E(x) =
1
2

(x− x∗)H(x− x∗). (5.4.17)

Substituting

x = x0 + p(H)g0 = x0 + p(H)(Hx0 − b) = x0 + p(H)H(x0 − x∗),

we get x− x∗ = −[I −Hp(H)](x0 − x∗), whence

E(x0 + p(H)g0) =
1
2

(x0 − x∗)TH[1−Hp(H)]2(x− x∗).

When p runs through the family Pt−1, the point x0 + p(H)g0, as it already was explained, runs
through the affine plane Mt = x0 + Et; xt, as we know, is the minimizer of f (and, consequently,
E) on this plane, and (5.4.16) follows.

What we are interested in, is the following corollary of Proposition 5.4.1:

Corollary 5.4.1 Let Σ be the spectrum (the set of distinct eigenvalues) of H, and let xt be t-th
point of the trajectory of CG as applied to f . Then

E(xt) ≤ E(x0) min
q∈P∗t

max
λ∈Σ

q2(λ), (5.4.18)

where P∗t is the set of all polynomials q(z) of degree ≤ t equal 1 at z = 0.
Besides this,

E(xt) ≤
[

1
2
|x0 − x∗|2

]
min
q∈P∗t

max
λ∈Σ

λq2(λ). (5.4.19)

Proof. Let e1, ..., en be an orthonormal basis comprised of eigenvectors of H, and let λ1, ..., λn
be the corresponding eigenvalues. Let

x0 − x∗ =
n∑

i=1

siei

be the expansion of x0 − x∗ in the indicated basis. Then, for any polynomial r,

r(H)(x0 − x∗) =
n∑

i=1

r(λi)siei;
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applying this identity to the polynomial r(z) = z(1− zp(z))2, p ∈ Pt−1, we get

(x0 − x∗)2H[1−Hp(H)]2(x0 − x∗) =

[
n∑

i=1

siei

]T [ n∑

i=1

λi(1− λip(λi))2siei

]
=

=
n∑

i=1

(1− λip(λi))2λis
2
i . (5.4.20)

The resulting quantity clearly can be bounded from above by

S ≡
[
max
λ∈Σ

(1− λp(λ))2
] n∑

i=1

λis
2
i =

[
max
λ∈Σ

(1− λp(λ))2
] [

(x0 − x∗)TH(x0 − x∗)
]

=

[see (5.4.17)].

= 2
[
max
λ∈Σ

(1− λp(λ))2
]
E(x0).

Combining the resulting inequality with (5.4.16), we come to

E(xt) ≤ E(x0) min
p∈Pt−1

max
λ∈Σ

(1− λp(λ)2.

When p runs through Pt−1, the polynomial q(z) = 1− zp(z) clearly runs through the entier P∗t ,
and (5.4.18) follows.

Relation (5.4.19) is proved similarly; the only difference is that instead of bounding from
above the right hand side of (5.4.20) by the quantity S, we bound the expression by

[
max
λ∈Σ

λ(1− λp(λ))2
] n∑

i=1

s2
i ,

the second factor in the bound being |x0 − x∗|2.

Corollary 5.4.1 provides us with a lot of information on the rate of convergence of the
Conjugate Gradient method:

• A. Rate of convergence in terms of Condition number It can be proved that for any seg-
ment ∆ = [l, L], 0 < l < L < ∞, and for any positive integer s there exists a polynomial
qs ∈ P∗s with

max
λ∈∆

q2
s(λ) ≤ 4

[√
Q− 1√
Q+ 1

]2s

, Q =
L

l
.

Combining (5.4.18) and the just indicated result where one should substitute

l = λmin(H), L = λmax(H),

we get the following non-asymptotical efficiency estimate for CG as applied to (5.4.1):

E(xN ) ≤ 4

[√
QH − 1√
QH + 1

]2N

E(x0), N = 1, 2, ... (5.4.21)

where
QH =

λmax(H)
λmin(H)
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is the condition number of the matrix H.

We came to a nonasymptotical linear rate of convergence with the convergence ratio

[√
QH − 1√
QH + 1

]2

;

for large Qh, this ratio is of the form 1−O(1)
√
QH , so that the number of steps required to

improve initial inaccuracy by a given factor ε is, independently of the value of n, bounded
from above by O(1)

√
QH ln(1/ε). The number of required steps is proportional to the

square root of the condition number of the Hessian, while for the Steepest Descent in the
quadratic case similar quantity is proportional to the condition number itself (see Lecture
3); this indeed is a great difference!

• B. Rate of convergence in terms of |x0 − x∗| It can be proved also that for any L > 0 and
any integer s > 0 there exists a polynomial rs ∈ P∗s such that

max
0≤λ≤L

λr2(λ) ≤ L

(2s+ 1)2
.

Since Σ for sure is contained in the segment [0, L = |H|], |H| being the norm of matrix H,
we can use just indicated result and (5.4.19) to get nonasymptotical (and independent on
the condition number of H) sublinear efficiency estimate

E(xN ) ≤ |H||x0 − x∗|2
2

1
(2N + 1)2

, N = 1, 2, ... (5.4.22)

This result resembles sublinear global efficiency estimate for Gradient Descent as applied
to a convex C1,1 function (Lecture 3, Proposition 3.3.2); note that a convex quadratic
form (5.4.1) indeed is a C1,1 function with Lipschitz constant of gradient equal to |H|. As
compared to the indicated result about Gradient Descent, where the convergence was with
the rate O(1/N), the convergence given by (5.4.22) is twice better in order – O(1/N2).

• C. Rate of convergence in terms of the spectrum of H The above results established rate
of convergence of CG in terms of bounds – both lower and upper or only the upper one – on
the eigenvalues of H. If we take into account details of the distribution of the eigenvalues,
more detailed information on convergence rate can be obtained. Let

λmax(H) ≡ λ1 > λ2 > ... > λm ≡ λmin(H)

be distinct eigenvalues of H written down in descent order. For every k ≤ s let

πk(z) =
k∏

i=1

(1− z/λi) ∈ P∗k ,

and let qs,k ∈ P∗s be the polynomial such that

max
λmin(H)≤λ≤λk+1

q2
s,k(λ) ≤ 4

[√
Qk,H − 1√
Qk,H + 1

]2s

, Qk,H =
λk+1

λmin(H)
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(existence of such a polynomial is mentioned in item A). It is clear that

max
λ∈Σ

[πk(λ)qs,k(λ)]2 ≤ 4

[√
Qk,H − 1√
Qk,H + 1

]2s

(indeed, πk vanishes on the spectrum of H to the right of λk+1 and is in absolute value
≤ 1 between zero and λk+1, while qs,k satisfies the required bound to the left of λk+1 in
Σ). Besides this, πkqs,k ∈ P∗k+s. Consequently, by (5.4.18)

E(xN ) ≤ 4 min
1≤s≤N





[√
QN−s,H − 1√
QN−s,H + 1

]2s


E(x0)

– this is an extension of the estimate (5.4.21) (this latter estimate corresponds to the case
when we eliminate the outer min and set s = N in the inner brackets, which results in
Q0,H = QH). We see also that if N ≥ m, m being the number of distinct eigenvalues in
H, then E(xN ) = 0 (set q = πm in (5.4.18)); thus, in fact

CG finds the exact minimizer of f in at most as many steps as many distinct eigenvalues
are there in matrix H.

Taking into account the detailes of the spectrum of H, one can strengthen the estimate of
item B as well.

5.4.3 Conjugate Gradient algorithm for quadratic minimization: advantages
and disadvantages

Let us summarize our knowledge on the CG algorithm for (strongly convex) quadratic mini-
mization, or, which is the same, for solving linear systems

Hx = b

with positive definite symmetric matrix H.
First of all, note that the method is simple in implementation – as simple as the Gradient

Descent: a step of the method requires not more than 2 multiplications of vectors by matrix A.
Indeed, literally reproducing formulae (5.4.2) - (5.4.4), you need 2 matrix-vector multiplications:

dt−1 → Hdt−1 to find γt,
and

xt → Hxt to find gt.
In fact only the first of these matrix-vector multiplication is necessary, since gt can be computed
recursively:

gt = gt−1 + γtHdt−1 [since gt − gt−1 = H(xt − xt−1) = γtHdt−1].

Note that all remaining actions at a step are simple – taking inner products and linear com-
binations of vectors, and all these actions together cost O(n) arithmetic operations. Thus, the
arithmetic cost of a step in CG (same as that one for Steepest Descent) is

O(n) + [cost of a single matrix-vector multiplication d→ Hd].

This is a very important fact. It demonstrates that sparsity of H – relatively small number N
(N << n2) of nonzero entries – can be immediately utilized by CG. Indeed, in the “dense” case
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matrix-vector multiplication costs 2n2 multiplications and additions, and this is the principal
term in the arithmetic cost of a step of the method; in the sparse case this principal term reduces
to 2N << 2n2.

Large-scale linear systems of equations typically have matrices H which either are extremely
sparse (something 0.01%−1% of nonzero entries), or are not sparse themselves, but are products
of two sparse matrices (“implicit spasity”, e.g., the least square matrices arising in Tomography);
in this latter case matrix-vector multiplications are as cheap as if H itself were sparse. If the
size of the matrix is large enough (tens of thousands; in Tomography people deal with sizes of
order of 105 - 106) and no sparsity – explicit or “implicit” – is present, then, typically, there are
no ways to solve the system. Now, if the matrix of the system is sparse and the pattern of the
nonzero entries is good enough, one can solve the system by a kind of Cholesky decomposition
or Gauss elimination, both the methods being modified in order to work with sparse data and
not to destroy sparsity in course of their work. If the matrix is large and sparsity is not “well-
structured” or is “implicit”, the direct methods of Linear Algebra are unable to solve the system,
and all we can do is to use an iterative method, like Steepest Descent or CG. Here we exploit
the main advantage of an iterative method based on matrix-vector multiplications – cheap step
and modest memory requirements.

The indicated advantages of iterative methods are shared by both Steepest Descent and
Conjugate Gradient. But there is an important argument in favour of CG – its better rate of
convergence. In fact, the Conjugate Gradient algorithm possesses the best, in certain exact sense,
rate of convergence an iterative method (i.e., the one based on matrix-vector multiplications)
may have.

These are the main advantages of the CG – simplicity and theoretical optimality among the
iterative methods for quadratic minimization. And the main disadvantage of the method is its
sensitivity to the condition number of the matrix of the system – although less than the one for
Steepest Descent (see item A in the discussion above), but still rather unpleasant. Theoretically,
all bad we could expect of an ill-conditioned H is that the convergence of CG will be slow, but
after n steps (as always, n is the size of H) the method should magically bring us the exact
solution. The influence of rounding errors makes this attractive picture absolutely unrealistic.
Even with moderate condition number of H, the method will not find exact solution in n steps,
but will come rather close to it; and with large condition number, the n-th approximate solution
can be even worse than the initial one. Therefore when people, by some reasons, are interested
to solve a moderate-size linear system by CG, they allow the method to run 2n, 4n or something
like steps (I am saying about “moderate size” systems, since for large-scale ones 2n or 4n steps
of CG simply cannot be carried out in reasonable time).

The conclusion here should be as follows: if you are solving a linear system with symmetric
positive definite matrix and the size of the system is such that direct Linear Algebra methods
– like Cholesky decomposition – can be run in reasonable time, it is better to use these direct
methods, since they are much more numerically stable and less sensitive to the conditioning of
the system than the iterative methods. It makes sense to solve the system by CG only when
the direct methods cannot be used, and in this case your chances to solve the problem heavily
depend on whether you can exploit explicit or implicit sparsity of the matrix in question and
especially on how well-conditioned is the matrix.
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5.5 Extensions to non-quadratic problems

To the moment we in fact dealt not with unconstrained minimization, but with the Linear
Algebra problem of solving a linear system with positive definite symmetric matrix. All this
work in fact was aimed to develop extensions of the Conjugate Gradient algorithm on the
nonquadratic case, and it is time now to come to these extensions.

The idea behind the extensions in question is as follows: the Conjugate Gradient Algorithm
in its basic version 5.4.1:

(A): g0 = ∇f(x0); d0 = −g0;

(B): xt = xt−1 + γtdt−1, γt = − gtt−1dt−1

dTt−1Hdt−1
;

(C): gt = ∇f(xt) :

(D): dt = −gt + βtdt−1, βt = gTt Hdt−1

dTt−1Hdt−1
;

“almost ignores” the quadratic nature of f : the matrix H is involved only in the formulae for
scalars γt (the stepsize) and βt (the coefficient in the updating formulae for the search directions).
If we were able to eliminate the presence of H completely and to describe the process in terms
of f and ∇f only, we would get a recurrence CG∗ which, formally, could be applied to an
arbitrary objective f , and in the case of strongly convex quadratic objective would become
our basic method CG. This latter method solves quadratic problem exactly in n steps; since
close to a nondegenerate local minimizer x∗ a general smooth objective f is very similar to a
strongly convex quadratic one fq, we could hope that CG∗ applied to f and started close to x∗

would “significantly” reduce inaccuracy in n steps. Now we could again apply to f n steps of
the same routine CG∗, but with the starting point given by the first n steps, again hopefully
significantly reducing inaccuracy, and so on. If, besides this, we were clever enough to ensure
global convergence of the indicated “cyclic” routine, we would get a globally converging method
with good asymptotical behaviour.

This is the idea, and now let us look how to implement it. First of all, we should eliminate
H in formulae for the method in the quadratic case. It is easy to do it with the formula for
the stepsize γt. Indeed, we know that CG is a Conjugate Direction method and therefore xt is
the minimizer of f along the line passing through xt−1 in the direction dt−1 (Proposition 5.3.1).
Thus, we may replace (B) by equivalent, in the case of strongly convex quadratic f , rule

(B∗): xt = xt−1 + γtdt−1, γt ∈ Argminγ∈R f(xt−1 + γdt−1);

this new rule makes sense for a non-quadratic f as well.
It remains to eliminate H in (D). This can be done, e.g., via the identity given by Theorem

5.4.1.(v):

βt =
gTt gt

gTt−1gt−1
.

With these substitutions, we come to the following
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Algorithm 5.5.1 [Fletcher-Reeves Conjugate Gradient method for minimization of a general-
type function f over Rn]
Initialization: choose arbitrary starting point x0. Set cycle counter k = 1.
Cycle k:

Initialization of the cycle: given x0, compute

g0 = ∇f(x0), d0 = −g0;

Inter-cycle loop: for t = 1, ..., n :
a) if gt−1 = 0, terminate, xt−1 being the result produced by the method, otherwise set xt =

xt−1 + γtdt−1, where γt minimizes f(xt−1 + γdt−1) over γ ∈ R;
b) compute gt = ∇f(xt);

c) set dt = −gt + βtdt−1, with βt = gTt gt
gTt−1gt−1

.

If t < n, replace t with t+ 1 and go to a)
Restart: replace x0 with xn, replace k with k + 1 and go to new cycle.

The Fletcher-Reeves algorithm is not the only extension of the quadratic Conjugate Gradient
algorithm onto non-quadratic case. There are many other ways to eliminate H from Algorithm
5.4.1, and each one gives rise to a non-quadratic version of CG. E.g., one can rewrite the relation

βt =
gTt gt

gTt−1gt−1
(5.5.1)

equivalently in quadratic case as

βt =
(gt − gt−1)T gt
gTt−1gt−1

(5.5.2)

(as we remember from the proof of Theorem 5.4.1, in the quadratic case gt is orthogonal to gt−1,
so that both equations for βt are in this case equivalent). When we replace the formula for βt
in the Fletcher-Reevs method by (5.5.2), we again obtain a method (the Polak-Ribiere one) for
unconstrained minimization of smooth general-type functions, and this method also becomes the
quadratic CG in the case of quadratic objective. It should be stressed that in the nonquadratic
case the Polak-Ribiere method differs from the Fletcher-Reeves one, since relations (5.5.1) and
(5.5.2) are equivalent only in the case of quadratic f .

5.5.1 Global and local convergence of Conjugate Gradient methods in non-
quadratic case

Proposition 5.5.1 [Global convergence of the Fletcher-Reeves and the Polak-Ribiere methods]

Let a continuously differentiable function f : Rn → R be minimized by the Fletcher-Reeves or
the Polak-Ribiere versions of the Conjugate Gradient method. Assume that the starting point x0

of the first cycle is such that the level set

S = {x | f(x) ≤ f(x0)}

is bounded, and let xk be the starting point of cycle k (i.e., the result of the previous cycle).
Then the sequence {xk} is bounded, and all limiting points of this sequence are critical points of
f .
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The proof, basically, repeats the one for the Steepest Descent, and I shall only sketch it. The
first observation is that the objective never increases along the trajectory, since all steps of the
method are based on precise line search. In particular, the trajectory never leaves the compact
set S.

Now, the crucial observation is that the first step of cycle k is the usual Steepest Descent step
from xk and therefore it “significantly” decreases f , provided that the gradient of f at xk is not
very small 5. Since the subsequent inter-cycle steps do not increase the objective, we conclude
that the the sum of progresses in the objective values at the Steepest Descent steps starting the
cycles is bounded from above (by the initial residual in terms of the objective). Consequently,
these progresses tend to zero as k →∞, and due to the aforementioned relation

small progress in the objective at a Steepest Descent step from xk−1 ⇒

⇒ small |∇f(xk−1)|
we conclude that ∇f(xk) → 0, k → ∞. Thus, any limiting point of the sequence {xk} is a
critical point of f .

The actual justification of non-quadratic extensions of the Conjugate Gradient method is the
following proposition which says that the property “finite n-step convergence” of the method
in the quadratic case transforms into the property of “n-step quadratic convergence” in the
nonquadratic one:

Proposition 5.5.2 [Asymptotical “n-step quadratic” convergence of the Fletcher-Reeves and
Polak-Ribiere methods in nonquadratic nondegenerate case]
Let f : Rn → R be three times continuously differentiable function, and let x∗ be a nondegenerate
local minimizer of f , so that ∇f(x∗) = 0 and ∇2f(x∗) is positive definite. Assume that f is
minimized by the Fletcher-Reeves or Polak-Ribiere versions of the Conjugate Gradient algorithm,
and assume that the sequence {xk} of points starting the cycles of the algorithm converges to x∗.
Then the sequence {xk} converges to x∗ quadratically:

|xk+1 − x∗| ≤ C|xk − x∗|2

for certain C <∞ and all k.

We should stress that the quadratic convergence indicated in the theorem is not the quadratic
convergence of the subsequent search points generated by the method: in the Proposition we
speak about “squaring the distance to x∗” in n steps of the method, not after each step, and for
large n this “n-step quadratic convergence” is not that attractive.

5all is going on within a compact set S where f is continuously differentiable; therefore for x ∈ S we have

f(x+ h) ≤ f(x) + hT∇f(x) + ε(|h|)|h|, ∀(h, |h| ≤ 1),

with independent of x ∈ S reminder ε(s)→ 0, s→ 0. Consequently, properly chosen step from a point x ∈ S in
the anti-gradient direction indeed decreases f at least by ψ(|∇f(x)|), with some positive on the ray s > 0 and
nondecreasing on the ray function ψ(s)
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Assignment # 5 (Lecture 5)

Exercise 5.5.1 Write a code implementing the Conjugate Gradient method for minimizing
strongly convex quadratic forms (i.e., for solving systems

Hx = b

with positive definite symmetric matrices H).
Run the experiment as follows:

• choose an integer n and generate randomly n× n matrix A;

• generate a n× n diagonal matrix D with positive diagonal entries di, i = 1, ..., n;

• compute H = ATDA, thus coming to a positive definite symmetric n× n matrix H;

• generate randomly n-dimensional vector x∗ and set b = Hx∗; now you have linear system

Hx = b

with known in advance exact solution x∗;

• apply to the system your CG code, starting the process at x0 = 0. Run the code until the
residual in the system |Hxk − b| becomes less than 10−6|b|, xk being the current iterate of
the method. If, due to influence of rounding errors, you will be unable to terminate after
n steps, run more steps of the method, and compare the following two policies:

– restart after every n steps, i.e., after the first n steps of the method run it again as
from the very beginning, but use, as x0, the result of the first n steps; after n steps
more, again restart the method, using, as x0, the result of the second n-step series of
iterations, etc.;

– no restarts at all: from the very beginning till the very end, use relations from Algo-
rithm 5.4.1, as if you were not expecting the method to get the exact solution in n
steps.

• during the run, display the errors |xk − x∗| and |Hxk − b|.

Choose n as you wish and test the diagonal matrices D with

di = δ
i−1
n−1 , i = 1, ..., n,

with δ taking values 1, 10, 100, 1000, 105.
What happens when δ increases? Why?

Exercise 5.5.2 Write codes implementing the Fletcher-Reeves and the Polak-Ribiere Conjugate
Gradient methods. Apply the codes to the Rosenbrock problem

f(x) = 100(x2 − x2
1)2 + (1− x1)2 → min,

the starting point being (−1.2, 1.0).
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Exercise 5.5.3 [Gram-Schnidt Orthogonalization]
Let H be a positive definite symmetric n × n matrix and p0, ..., pn−1 be a linearly independent
set of n vectors in Rn. Prove that the vectors di given by the Gram-Shcmidt orthogonalization
process, i.e., by the recurrence

d0 = p0; dt = pt −
t−1∑

i=0

pTt Hdi
dTi Hdi

di, 1 ≤ t < n,

form an H-orthogonal system of nonzero vectors.

Exercise 5.5.4 [Non-obligatory] Consider the Tschebyshev polynomial given on the segment
[−1, 1] by the formula

Tn(x) = cos(n arc cosx).

1) Prove that Tn indeed is a polynomial of the degree n, and that outside [−1, 1] this polyno-
mial is given by the formula

Tn(x) = ch (n arc chx)

(ch z = exp{z}+exp{−z}
2 , arc chx is the function inverse to ch (·): ch (arc chx) ≡ x).

2) Let 0 < l < L < ∞ be two positive reals, and let t be positive integer. Prove that the
polynomial

qt(z) =
Tt
(
L+l−2z
L−l

)

Tt
(
L+l
L−l

)

belongs to P∗t and that

max
l≤z≤L

|qt(z)| ≤ 2

[√
Q− 1√
Q+ 1

]t
, Q =

L

l
.

Derive from this observation the fact announced in the beginnning of item A, Section 5.4.2.



Lecture 6

Quasi-Newton Methods

We continue with methods for solving unconstrained minimization problem

f(x)→ min | x ∈ Rn (6.0.1)

with twice continuously differentiable f ; now we are interested in the so called quasi-Newton
methods. Same as the Conjugate Gradient, these methods try to imitate the behaviour of the
Newton recurrence avoiding at the same time explicit usage of the second-order information.

6.1 Motivation

The quasi-Newton methods belong to the generic family of variable metric routines (Lecture 4,
Section 4.2.2). Recall that the generic Variable Metric Algorithm 4.2.1 is the recurrence of the
type

xt+1 = xt − γt+1St+1∇f(xt), (6.1.1)

where St+1 are symmetric positive definite matrices (in the notation of Algorithm 4.2.1, St+1 =
A−1
t+1). As about stepsizes γt+1, they are given by a kind of line search in the direction

dt+1 = −St+1∇f(xt);

these directions are descent for f at non-critical points xt:

∇f(xt) 6= 0⇒ dTt+1∇f(xt) ≡ −(∇f(xt))TSt+1∇f(xt) < 0 (6.1.2)

(St is positive definite!).
As we remember from Lecture 4, a good choice of St should make the matrices At+1 =

S−1
t+1 “positive definite corrections” of the Hessians ∇2f(xt), and the Modified Newton methods

(Lecture 4) more or less straightforwardly implemented this idea: there we sequentially

• computed the Hessians ∇2f(xt),

• modified them, if necessary, to make the resulting matrices At+1 “well positive definite”,

and, finally,

• computed St+1 = A−1
t+1 to get the search directions dt+1.

109
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In the quasi-Newton methods we use another approach to implement the same idea: we compute
the matrices St+1 recursively without explicit usage of the Hessians of the objective and inverting
these Hessians. The recurrence defining St+1 is aimed to ensure, at least in good cases, that

St+1 − [∇2f(xt)]−1 → 0, t→∞, (6.1.3)

which, basically, means that the method asymptotically becomes close to the Newton one and
therefore quickly converges. To support the latter claim and to make it quantitive, let us look
what happens in the “best possible” case of strongly convex quadratic f .

Theorem 6.1.1 [Variable Metric Method with precise linesearch in the quadratic case]
Let

f(x) =
1
2
xTHx− bTx

be a strongly convex quadratic form on Rn (so that the matrix H is positive definite and sym-
metric), and let f be minimized by the Variable Metric method (6.1.3) with exact linesearch:

γt+1 = argmin
γ

f(xt + γdt+1).

Then the residuals in terms of the objective

E(xt) ≡ f(xt)−min
x
f(x)

satisfy the recurrence

E(xt+1) ≤ E(xt)
[
Qt+1 − 1
Qt+1 + 1

]2

, (6.1.4)

where Qt+1 is the condition number (ratio of the largest eigenvalue to the smallest one) of the
matrix

Ht+1 = S
1/2
t+1HS

1/2
t+1.

Proof. Let is fix t, and let us denote, for the sake brevity, St+1 simply by S. Let also

φ(ξ) = f(S1/2ξ); ξt = S−1/2xt; ξt+1 = S−1/2xt+1,

so that
φ(ξt) = f(xt), φ(ξt+1) = f(xt+1). (6.1.5)

By construction, xt+1 is the minimizer of f on the ray starting at xt and directed by dt+1;
consequently, ξt+1 is the minimizer of φ at the ray starting at ξt and directed by the vector

δt+1 = S−1/2dt+1.

Now,
δt+1 = S−1/2dt+1 =

[definition of dt+1]
= −S−1/2S∇f(xt) = −S1/2∇f(xt) =

[since φ(ξ) = f(S1/2ξ) and, consequently, ∇φ(ξ) = S1/2∇f(S1/2ξ)]

= −∇φ(ξt).
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Thus, ξt+1 is nothing but the Steepest Descent iterate of ξt.
Now,

φ(ξ) = f(S1/2ξ) =
1
2
ξTS1/2HS1/2ξ − bTS1/2ξ

is a strongly convex quadratic function with the Hessian matrix

H̄ = S1/2HS1/2;

from Proposition 3.3.6 on the convergence rate of Steepest Descent as applied to a quadratic
function we know that

φ(ξt+1)−minφ ≤ [φ(ξt)−minφ]
[
Q− 1
Q+ 1

]2

,

Q = Qt+1 being the condition number of the matrix S1/2HS1/2 ≡ ∇2φ. Due to (6.1.5) and
evident relation minφ = min f (φ is obtained from f by one-to-one substitution of argument),
the resulting inequality is nothing but (6.1.4).

We conclude from (6.1.4) that if f is strongly convex quadratic and the matrix S1/2
t+1∇2fS

1/2
t+1

is close to the unit matrix I, so that Qt+1 is close to 1, then step t of our Variable Matrix method
will multiply the residual E(·) by a factor close to 0. Since it is the same to say that the matrix
S1/2∇2fS1/2 is close to the unit matrix and to say that S is close to [∇2f ]−1 (multiply the
approximate equality S1/2∇2fS1/2 ≈ I from the left and from the right by S−1/2), we see that
in the case of strongly convex quadratic f relation (6.1.3) (accompanied by exact line search)
results in

E(xt+1)/E(xt)→ 0, t→∞,
i.e., in superlinear convergence. This is in the quadratic case; but as always, the asymptotic
properties of an optimization method in a non-quadratic case are similar to those in the strongly
convex quadratic one (provided, of course, that the trajectory converges to a nondegenerate
local minimizer of the objective), so that (6.1.3) indeed should result in good asymptotic rate
of convergence, at least for good objectives.

The problem is how to ensure (6.1.3) at a “cheap” computational cost. The simplest way is
to set

St ≡ [∇2f(x0)]−1,

assuming, of course, that ∇2f(x0) is positive definite (the “frozen” Newton method). Here we
do not get (6.1.3), so that we have no hope for superlinear convergence. At the same time, under
favourable circumstances – when the Hessians of f at different points are more or less “similar”
to each other – we may hope that such a “scaling” will significantly accelerate the convergence.
Indeed, we can observe from the proof of Theorem 6.1.1 that the indicated scaling makes the
process – viewed in the coordinates ξ = [∇2f(x0)]1/2x – the Steepest Descent as applied to the
updated objective φ(ξ) = f([∇2f(x0)]−1/2ξ). If the Hessians of f are “similar” to each other,
namely, we have (at least along the trajectory of the method)

l∇2f(x0) ≤ ∇2f(x) ≤ L∇2f(x0)

with moderate L and not too small l, then the function φ will be, as it is immediately seen,
strongly convex with parameters (l, L), so that the Steepest Descent as applied to φ (i.e., the
“frozen” Newton method as applied to f) will converge linearly with the ratio [(Q−1)/(Q+1)]2,
Q = L/l being the condition number of the transformed objective. This condition number
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may be much smaller than the one of the initial objective, and whenever this is the case, the
“frozen” Newton method will be much faster than the Steepest Descent as applied to the original
objective. Although there are many “if” and “may” in the above paragraph, it is worthy to
keep in mind the aforementioned possibility.

Now let us switch to more sophisticated policies of generating matrices St used in quasi-
Newton methods.

6.2 Approximating inverse Hessians via first order information

6.2.1 The idea

The idea behind the below policies for ensuring (6.1.3) is very simple. We intend to generate
St recursively. Namely, assume that at the step t (when updating xt−1 into xt) we used certain
approximation St of the matrix

[∇2f(xt−1)]−1,

so that xt was obtained from xt−1 by certain step in the direction

−Stgt−1, gs ≡ ∇f(xs).

Thus,
pt ≡ xt − xt−1 ≡ −γtStgt−1, (6.2.1)

γt being the stepsize given by linesearch. The first-order information on f at the points xt and
xt−1 allows us to define the vectors

qt ≡ gt − gt−1. (6.2.2)

If the step pt is small in norm (as it should be the case at the final stage) and f is twice
continuously differentiable (which we assume from now on), then

qt ≡ gt − gt−1 ≡ ∇f(xt)−∇f(xt−1) ≈ [∇2f(xt−1)](xt − xt−1) ≡ [∇2f(xt−1)]pt; (6.2.3)

of course, if f is quadratic, ≈ is simply an equality, independently of whether pt is small or not.
Thus, after the step t we have enriched our information on the Hessian: now we have not

only the previous approximation St to [∇2f(xt−1)]−1, but also some approximation (namely,
qt) to the vector [∇2f(xt−1)]pt. We can use this additional information to update the previous
approximation to the inverse Hessian. The simplest and the most natural idea is to impose on
St+1 the following condition (which is an equality version of the approximate equality (6.2.3)):

St+1qt = pt.

This relation, of course, can be satisfied by infinitely many updatings St 7→ St+1, and there
are different “natural” ways to specify this updating. When the policy of the updatings is
fixed, we get a particular version of the generic Variable Metric algorithm, up to the freedom
in the linesearch tactics. We shall always assume in what follows that this latter issue – which
linesearch to use – is resolved in favour of the exact linesearch. Thus, the generic algorithm we
are going to consider is as follows:

Algorithm 6.2.1 [Generic Quasi-Newton method]
Initialization: choose somehow starting point x0, the initial positive definite symmetric matrix
S1, compute g0 = ∇f(x0) and set t = 0.
Step t: given xt−1, gt−1 = ∇f(xt−1) 6= 0 and St, check whether gt−1 = 0. If it is the case,
terminate (xt−1 is a critical point of f), otherwise
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• set
dt = −Stgt−1;

• perform exact line search from xt−1 in the direction dt, thus getting new iterate

xt = xt−1 + γtdt;

• compute gt = ∇f(xt) and set

pt = xt − xt−1, qt = gt − gt−1;

• (U): update St into positive definite symmetric matrix St+1, maintaining the relation

St+1qt = pt, (6.2.4)

replace t with t+ 1 and loop.

When specifying the only “degree of freedom” in the presented generic algorithm, i.e., the rules
for (U), our targets are at least the following:

• (A) the matrices St should be symmetric positive definite;

• (B) in the case of strongly convex quadratic f the matrices St should converge (ideally –
in finite number of steps) to the inverse Hessian [∇2f ]−1.

The first requirement is the standard requirement for Variable Metric algorithms; it was moti-
vated in Lecture 4. The second requirement comes from our final goal – to ensure, at least in
good cases (when the trajectory converges to a nondegenerate local minimizer of f), that that
St+1 − [∇2f(xt)]−1 → 0, t → ∞; as we remember, this property underlies fast – superlinear –
asymptotical convergence of the algorithm.

Implementing (U) in a way which ensures the indicated properties and incorporating, in
addition, certain policies which make the algorithm globally converging (e.g., restarts, which we
already have used in non-quadratic extensions of the Conjugate Gradient method), we will come
to globally converging methods with nice, in good cases, asymptotical convergence properties.
In the rest of this lecture we carry this plan out, focusing on implementations of (U) compatible
with requirements (A) and (B). The updating formulae St 7→ St+1 we are about to design
involve only the first-order information on f and, of course, do not use the hypothesis that f
is quadratic – recall that we are interested in first-order algorithms which can be applied to
general objectives. The “necessary condition” for such a general formula to be of interest for us
is its ability to ensure (B); thus, in what follows we design “general” formulae and “test” them
in the strongly convex quadratic case.

After these preliminary remarks, let us come to concrete policies for (U).

6.3 Rank 1 corrections

With this policy, one tries to update St into St+1 in the simplest fashion – by adding to St a
rank 1 matrix αtztzTt :

St+1 = St + αtztz
T
t (6.3.1)
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with certain scalar αt and vector zt. These quantities are chosen to ensure (6.2.4):

pt = St+1qt = Stqt + αt[zTt qt]zt. (6.3.2)

From this relation,
zt = ωt[pt − Stqt];

substituting this expression into (6.3.2), we get

pt − Stqt = βt[(pt − Stqt)T qt][pt − Stqt] [βt = αtω
2
t ];

to get βt, let us take the inner product of both sides in the latter equality with qt, which results
in

βt =
1

(pt − Stqt)T qt .

Thus, we come to the following formula for Rank 1 version of (U):

St+1 = St +
1

(pt − Stqt)T qt [pt − Stqt][pt − Stqt]
T . (6.3.3)

Note that the right hand side in this formula not necessarily is well-defined: the denominator
there can vanish. In this situation we distinguish between two cases. First, when pt−Stqt = 0, so
that St+1 = St satisfies the required relation pt = St+1qt. In this “good” case we, by definition,
assign to the right hand side of (6.3.3) the value St 1). Second, when the vector pt − Stqt is
nonzero, but is orthogonal to qt. In this case let us agree that the right hand side is undefined,
so that the Rank 1 updating cannot be used at the step in question.

In fact in the case of quadratic f updating (6.3.3), under mild nondegeneracy assumptions,
results in Sn+1 = H−1. The underlying Linear Algebra statement is as follows:

Proposition 6.3.1 Let H and S1 be fixed symmetric matrices, let p1, ..., pk be arbitrary vectors,
and let St, t = 2, 3, ..., k + 1, be defined by the recurrence (6.3.3):

St+1 = St +
1

(pt − Stqt)T qt [pt − Stqt][pt − Stqt]
T ,

where
qt = Hpt.

Then

(*k) pi = Sk+1qi, i = 1, ..., k.

Proof is given by induction on k.
Base k = 1 is trivially valid: the updating rule (6.3.3) was derived exactly to satisfy the

requirement
St+1qt = pt, (6.3.4)

so that S2q1 = p1, as required in (6.3.2) for k = 1.
Step. Assume k > 1, and let we already know that (*k−1) is valid, i.e., that

Skqi = pi, i = 1, ..., k − 1. (6.3.5)
1in what follows I shall skip considerations related to this “favourable” case; it can be easily checked that

occurrence of this situation never violates our forthcoming conclusions
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To derive from this assumption (*k), we act as follows. First of all, (6.3.4) says that the equality
Sk+1qk = pk indeed is valid. Thus, all we should prove to verify (*k) is that the updating
Sk 7→ Sk+1 does not violate equalities (6.3.5). This is easy. We have from the updating formula
(6.3.3):

Sk+1qi = Skqi + [(pk − Skqk)T qi]yk, yk =
1

(pk − Skqk)T qk (pk − Skqk).

We have

(pk − Skqk)T qi = pTk qi − qTk (Skqi) =

[inductive hypothesis (6.3.5)]

= pTk qi − qTk pi =

[since, by assumption, ql = Hpl]

= pTkHpi − pTkHpi = 0;

thus,

Sk+1qi = Skqi = pi

(we again have used the inductive hypothesis).
When applying Algorithm 6.2.1 with the Rank 1 implementation (6.3.3) of (U) to a strongly

convex quadratic function

f(x) =
1
2
xTHx− bTx,

we are in situation qt = Hpt for all t, so that the above Proposition can be applied; we therefore
get for the case in question

pi = St+1qi [≡ St+1Hpi], i = 1, ..., t.

In particular, if p1, ..., pn (n is the dimension of the space) are linearly independent, we have
Sn+1Hpi = pi for vectors pi forming a basis in Rn, whence Sn+1H = I, or

Sn+1 = H−1.

Consequently (see Theorem 6.1.1),

xn+1 = x∗

is the exact minimizer of f . Thus, in the quadratic case the method in question results in Sn+1 =
H−1, provided that the first n sequential search directions are linearly independent. We could
expect, therefore, that in a non-quadratic case the scheme would result in St− [∇2f(xt−1)]−1 →
0, t → ∞, provided that the trajectory converges to a nondegenerate local minimizer of the
objective, and this is exactly what we wish. There is, anyhow, a serious drawback of our simple
scheme: generally speaking, it does not maintain positive definiteness of the matrices St (one
can verify that this is guaranteed under additional assumption that (pt − Stqt)T qt > 0, which is
not always the case). Thus, the Rank 1 scheme for (U) has certain limitations; this is why we
should look for more sophisticated policies.
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6.4 Davidon-Fletcher-Powell method

In this method, (U) is given by

St+1 = St +
1

pTt qt
ptp

T
t −

1
qTt Stqt

Stqtq
T
t St. (6.4.1)

We are about to demonstrate that (6.4.1) is well-defined, results in positive definite St+1 and
maintains (6.2.4).

Proposition 6.4.1 Let R be a positive definite symmetric matrix, and let p and q be two vectors
such that

pT q > 0. (6.4.2)

Then the matrix
R′ = R+

1
pT q

ppT − 1
qTRq

RqqTR (6.4.3)

is symmetric positive definite and satisfies the relation

R′q = p. (6.4.4)

Proof. 10. Let us prove that R′ satisfies (6.4.4). Indeed, we have

R′q = Rq +
1
pT q

(pT q)p− 1
qTRq

(qTRq)Rq = Rq + p−Rq = p.

20. It remains to verify that R′ is positive definite. Let x be an arbitrary nonzero vector; we
should prove that xTR′x > 0. Indeed,

xTR′x = xTRx+
(xT p)2

pT q
− (xTRq)2

qTRq
;

setting a = R1/2x, b = R1/2q, we can rewrite the relation as

xTR′x =
(aTa)(bT b)− (aT b)2

bT b
+

(xT p)2

pT q
.

Since, by assumption, pT q > 0, the second fraction is nonnegative. The first one also is non-
negative by Cauchy’s inequality. Thus, xTR′x ≥ 0, while we need to prove that this quantity
is positive. To this end it suffices to verify that both numerators in the right hand side of the
latter relation cannot vanish simultaneously. Indeed, the first numerator can vanish only if a is
proportional to b (this is said by Cauchy’s inequality: it becomes equality only when the vectors
in question are proportional). If a is proportional to b, then x is proportional to q (see the origin
of a and b). But if x = sq for some nonzero (x is nonzero!) s, then the second numerator is
s2(qT p)2, and we know that qT p is positive.

Now we can prove that (6.4.1) indeed can be used as (U):

Proposition 6.4.2 Let at a step t of Algorithm 6.2.1 with (U) given by (6.4.1) the matrix St
be positive definite and gt−1 = ∇f(xt−1) 6= 0 (so that xt−1 is not a critical point of f , and the
step t indeed should be performed). Then St+1 is well-defined, is positive definite and satisfies
(6.2.4).
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Proof. It suffices to verify that qTt pt > 0; then we would be able to get all we need from
Proposition 6.4.1 (applied with R = St, q = qt, p = pt).

Since gt−1 6= 0 and St is positive definite, the direction dt = −Stgt−1 is a descent direction
of f at xt−1 (see (6.1.2)). Consequently, the exact linesearch results in a nonzero stepsize, and
pt = xt − xt−1 = γtdt 6= 0. We have

qTt pt = γt(gt − gt−1)Tdt =

[since xt is a minimizer of f on the ray {xt−1 + γdt | γ > 0} and therefore gt is orthogonal to
the direction dt of the ray]

= −γtgTt−1dt = γtg
T
t−1Stgt−1 > 0

(St is positive definite).
Now we can establish the main property of the Davidon-Fletcher-Powell method – its finite

convergence in the quadratic case. Moreover, we shall prove that in this case the trajectory
generated by the method initialized with S1 = I is exactly the one of the Conjugate Gradient
method, so that the DFP (Davidon-Fletcher-Powell) method with the indicated initialization
is a Conjugate Gradient method – in the quadratic case it becomes the standard Conjugate
Gradient.

Theorem 6.4.1 [DFP as a Conjugate Gradient method]
Let the DFP method be applied to a strongly convex quadratic objective

f(x) =
1
2
xTHx− bTx.

Then
(i) For any t until the termination moment (i.e., for any t such that gt = ∇f(xt) 6= 0) one

has:
1) The directions p1, ..., pt are nonzero and H-orthogonal:

(1t) pTi Hpj = 0, 1 ≤ i < j ≤ t;
2) One has

(2t) St+1Hpi = pi, 1 ≤ i ≤ t.
(ii) The method is a Conjugate Directions one and, consequently, it terminates in at most n

steps with exact minimizer of f . If it terminates exactly in n steps, then

Sn+1 = H−1.

(iii) If S1 is proportional to the unit matrix, then the trajectory of the method coincides with
the one the Conjugate Gradient method started at x0.

Proof. Let T be the termination moment (i.e., the moment t where it turns out that gt = 0).
A priori we do not know whether such a moment exists, and if it is not the case (in fact it is),
we set T =∞.
10. First note that if t ≤ T , then

qt = ∇f(xt)−∇f(xt−1) = H(xt − xt−1) = Hpt; (6.4.5)

consequently, from Proposition 6.4.2 one has

St+1Hpt = St+1qt = pt. (6.4.6)
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Besides this, from the same Proposition pt 6= 0.
20. Let us prove (1t) and (2t) by induction on t ≤ T .
Base t = 1 is valid: (11) is true by trivial reasons, and (21) follows from (6.4.6) applied with
t = 1.
Step t− 1⇒ t. Let 1 < t ≤ T and let (1t−1) and (2t−1) be valid; we should prove that (1t) and
(2t) also are valid.

Since f is quadratic, we have for any s, 1 ≤ s < t:

gt−1 = gs +H(xt−1 − xs) = gs +H(ps+1 + ps+2 + ...+ pt−1),

whence
pTs gt−1 = pTs gs + pTsH(ps+1 + ...+ pt−1) =

[by (1t−1)]
= pTs gs =

[since xs is the minimizer of f on the open ray {xs−1+γps | γ > 0} and therefore gs is orthogonal
to the direction ps of the ray]

= 0.

Thus,
pTs gt−1 = 0, 1 ≤ s < t; (6.4.7)

applying (2t−1), we get

0 = pTs gt−1 = pTsHStgt−1 = 0, 1 ≤ s < t. (6.4.8)

Now,
pt = −γtStgt−1

with positive γt, whence Stgt−1 = −γ−1
t pt; substituting this expression into (6.4.8), we get

pTsHpt = 0, 1 ≤ s < t,

which combined with (1t−1) results in (1t).
We now have for 1 ≤ s < t:

qTt StHps =

[by (2t−1)]
= qTt ps =

[since qt = Hpt]
= pTt Hps =

[by already proved (1t) and since s < t]
= 0,

so that
qTt StHps = 0, 1 ≤ s < t. (6.4.9)

Consequently, from (6.4.1) for 1 ≤ s < t we have

St+1Hps = StHps +
pTt Hps
pTt qt

pt − qTt StHps
qTt Stqt

Stqt =
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[since StHps = ps by (2t−1), pTt Hps = 0 by (1t) and by (6.4.9)]

= ps.

Thus,
St+1Hps = ps

for 1 ≤ s < t; this relation is valid for s = t as well due to (6.4.6). Thus, we have proved (2t).
The induction is completed, and (i) is proved.
30. Relation (1t) along with the fact that xt is the minimizer of f on the open ray {xt−1 + γxt |
γ > 0} and consequently (f is convex!) on the line passing through xt−1 in the direction
pt demonstrates that the method indeed is the Conjugate Directions one associated with the
recursively generated system {pi} of H-orthogonal directions. Indeed, we know from (1t) that
the directions p1, ..., pT are nonzero H-orthogonal; by Proposition 5.3.1, a Conjugate Directions
method associated with certain system of H-orthogonal vectors is (clearly uniquely) defined
by the starting point and the requirement that the current iterate xt is obtained from the
previous one xt−1 by one-dimensional minimization of f along the line passing through xt−1 in
the direction pt

2), and this is exactly the case with the DFP method as applied to a strongly
convex quadratic objective.

Since in the quadratic case DFP becomes a Conjugate Directions method, it indeed termi-
nates in at most n steps (Theorem 5.2.1). If it terminates in exactly n steps, then from (2n+1) it
follows that Sn+1Hpi = pi for a complete system p1, ..., pn of nonzero H-orthogonal directions;
such a system is a basis in Rn (Corollary 5.1.1), so that Sn+1H = I, as claimed in (ii). Thus,
(ii) is proved.
40. It remains to verify that the DFP method started with S1 = λI (λ > 0) is the Conjugate
Gradient method. To see this, it suffices to prove that xt is the minimizer of f on the t-th Krylov
space

Kt = x0 + Lin{g0,Hg0, ...H
t−1g0}, g0 = ∇f(x0);

indeed, by Theorems 5.2.1 and 5.4.1, the trajectory of the Conjugate Gradient method is exactly
the sequence of minimizers of f on these spaces.

Now, since we already know that DFP is a Conjugate Directions method, to prove that xt
is the minimizer of f on Kt is the same as to prove that

Lin{g0,Hg0...,H
t−1g0} = Lin{p1, ..., pt} (6.4.10)

for every t ≤ T (see Theorem 5.2.1). In other words, we should prove that pt, t ≤ T, is a
linear combination of g0,Hg0, ..., H

t−1g0; it will demonstrate that the right hand side in (6.4.10)
is contained in the left hand one, and since the left hand side has dimension t – nonzero H-
orthogonal vectors p1, ..., pt are linearly independent! – and the right hand one – at most t, the
inclusion of the right hand side into the left hand one in fact means their coincidence.

To prove that pt is a linear combination of g0,Hg0, ..., H
t−1g0, let us use induction on t. The

statement is valid for t = 1: p1 = −γ1S1g0 = −γ1λg0, as required. Now assume that p1, ..., pt−1

are linear combinations of the vectors g0,Hg0, ...H
t−2g0. From recurrence (6.4.1) governing Si

it immediately follows that St differs from S1 = λI by a sum of 2(t− 1) rank 1 matrices αszszTs ,

2in Proposition 5.3.1 this direction was called dt−1, because there the directions were indiced starting with 0;
now the initial direction index is 1
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with reals αs and vectors zs of the form pi or Siqi = SiHpi, where i ≤ t − 1. By inductive
hypothesis, therefore, all zs are linear combinations of g0,Hg0, ..., H

t−1g0, so that

pt = −γtStgt−1 = −γtS1gt−1 − γt[St − S1]gt−1 = −γtλgt−1 +
t−1∑

i=0

βiH
ig0.

It remains to note that gt−1 = g0 +H(xt−1−x0), and by the inductive hypothesis H(xt−1−x0)
is a linear combination of Hg0, ..., H

t−1g0.

6.5 The Broyden family

The DFP version of (U) is certain rank 2 formula – the updated matrix St+1 differs from St by
a matrix of rank 2. The Broyden family of quasi-Newton methods is based on another rank 2
updating formula which we are about to introduce.

To get the starting point for our developments, note that relation (6.2.4), i.e.,

St+1qt = pt,

for the case of symmetric positive definite St+1, is equivalent to the relation

Ht+1pt = qt (6.5.1)

with symmetric positive definite Ht+1 ≡ S−1
t+1. Thus,

each policy P of generating positive definite symmetric matrices St maintaining (6.2.4) induces
certain policy P∗ of generating positive definite symmetric matrices Ht = S−1

t maintaining
(6.5.1),

and, of course, vice versa:

each policy P∗ of generating positive definite symmetric matrices Ht maintaining (6.5.1) induces
certain policy of generating positive definite symmetric matrices St = H−1

t maintaining (6.2.4).

Now, we know how to generate matrices Ht satisfying relation (6.5.1) – this is, basically, the
same problem as we already have studied, but with swapped qt and pt. Thus,

given any one of the above updating formulae for St, we can construct a “complementary”
updating formula for Ht by replacing, in the initial formula, all S’s by H’s and interchanging
q’s and p’s.

For example, the complementary formula for the Rank 1 scheme (6.3.3) is

Ht+1 = Ht +
1

pTt (qt −Htpt)
[qt −Htpt][qt −Htpt]T ; (6.5.2)

The complementary formula for the DFP updating scheme (6.4.1) is

Ht+1 = Ht +
1

qTt pt
qtq

T
t −

1
pTt Htpt

Htptp
T
t Ht, (6.5.3)

– it is called the Broyden-Fletcher-Goldfarb-Shanno updating of Ht.
We have the following analogy to Proposition 6.4.2:
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Proposition 6.5.1 Let Ht be positive definite symmetric matrix, let xt−1 be an arbitrary point
with gt−1 = ∇f(xt−1) 6= 0, and let dt be an arbitrary descent direction of f at xt−1 (i.e.,
dTt gt−1 < 0). Let, further, xt be the minimizer of f on the ray {xt−1 + γdt | γ ≥ 0}, and let

pt = xt − xt−1, qt = ∇f(xt)−∇f(xt−1) ≡ gt − gt−1.

Then the matrix Ht+1 given by (6.5.3) is symmetric positive definite and satisfies (6.5.1).

Proof. From the proof of Proposition 6.4.2 we know that pTt qt > 0, and it remains to apply
Proposition 6.4.1 to the data R = Ht, p = qt, q = pt.

According to Proposition 6.5.1, we can look at (6.5.3) as at certain maintaining (6.5.1) policy
P∗ of updating positive definite symmetric matrices Ht. As we know, every policy of this type
induces certain policy of updating positive definite matrices St = H−1

t which maintains (6.2.4).
In our case the induced policy is given by

St+1 =

[
S−1
t +

1
pTt qt

qtq
T
t −

1
pTt S

−1
t pt

S−1
t ptp

T
t S
−1
t

]−1

. (6.5.4)

It can be shown by a direct computation (which I skip), that the latter relation is nothing but

(I) SBFGSt+1 = St + 1+qTt Stqt
(pTt qt)

2 ptp
T
t − 1

pTt qt

[
ptq

T
t St + Stqtp

T
t

]

(we write BFGS to indicate that this is the Broyden-Fletcher-Goldfarb-Shanno updating). Due
to Proposition 6.5.1, (I) is a correct version of (U): independently of what is positive definite
symmetric St, it results in positive definite symmetric St+1 satisfying the relation

(*) St+1qt = pt,

exactly as the Davidon-Fletcher-Powell updating

(II) SDFPt+1 = St + 1
qTt pt

ptp
T
t − 1

qTt Stqt
Stqtq

T
t St.

Now we have two updating formulae – (I) and (II); they transform a positive definite matrix St
into positive definite matrices SBFGSt+1 and SDFPt+1 , respectively, satisfying (*). Since (*) is linear
in St+1, any convex combination of the resulting matrices also satisfies (*). Thus, we come to
the Broyden implementation of (U) given by

Sφt+1 = (1− φ)SDFPt+1 + φSBFGSt+1 ; (6.5.5)

here φ ∈ [0, 1] is the parameter specifying the updating. Note that the particular case of φ = 0
corresponds to the Davidon-Fletcher-Powell method.

One can verify by a direct computation that

Sφt+1 = SDFPt+1 + φvt+1v
T
t+1, vt+1 = (qTt Stqt)

1/2

[
1

pTt qt
pt − 1

qTt Stqt
Stqt

]
. (6.5.6)

From the considerations which led us to (6.5.5), we get the following

Corollary 6.5.1 A Broyden method, i.e., Algorithm 6.2.1 with (U) given by (6.5.5), φ ∈ [0, 1]
being the parameter of the method (which may vary from iteration to iteration), is a quasi-
Newton method: it maintains symmetry and positive definiteness of the matrices St and ensures
(6.2.4).
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In the quadratic case we have the following proposition (completely similar to Theorem 6.4.1):

Proposition 6.5.2 [Broyden method as a Conjugate Directions method]
Any Broyden method as applied to a strongly convex quadratic objective

f(x) =
1
2
xTHx− bTx

becomes a Conjugate Directions method: if it does not terminate in course of the first t steps,
then the directions p1, ..., pt are nonzero H-orthogonal and the trajectory is exactly the one of the
Conjugate Directions method associated with the directions p1, ..., pt. In particular, the method
terminates in at most n steps with exact solution.

If the method does not terminate in course of the first t steps, then

St+1Hpi = pi, 1 ≤ i ≤ t; (6.5.7)

in particular, if the method terminates exactly after n steps, one has

Sn+1 = H−1.

If S0 is proportional to the unit matrix, then the trajectory of the method on f is exactly the
one of the Conjugate Gradient method.

Proof is completely similar to the one of Theorem 6.4.1 and is skipped. In fact, there is no
necessity to prove anything, due to the following remarkable fact:

It can be verified that all Broyden methods, independently of the choice of the parameter φ,
being started from the same pair (x0, S1), equipped with the same exact line search and being
applied to the same problem, generate the same sequence of iterates (although not the same
sequence of matrices Ht!).

Thus, in the case of exact line search all methods from the Broyden family are the same. The
methods became different only when inexact line search is used; although inexact line search is
forbidden by our theoretical considerations, it is always the case in actual computations.

Broyden methods are thought to be the most efficient practically versions of the Conjugate
Gradient and quasi-Newton methods. After intensive numerical testing of different policies of
tuning the parameter φ, it was found that the best is the simplest policy φ ≡ 1, i.e., the pure
Broyden-Fletcher-Goldfarb-Shanno method.

Remark 6.5.1 Practical versions of the Broyden methods.
In practical versions of Broyden methods, exact line search is replaced with inexact one. Besides
the standard requirements of “significant decrease” of the objective in course of the line search
(like those given by the Armijo test), here we meet with specific additional requirement: the
line search should ensure the relation

pTt qt > 0. (6.5.8)

In view of Proposition 6.4.1 this relation ensures that the updating formulae (I) and (II) (and,
consequently, the final formula (6.5.5) with φ ∈ [0, 1]) maintain positive definiteness of St’s and
relation (6.2.4), i.e., the properties crucial for the quasi-Newton methods.

Relation (6.5.8) is ensured by the exact line search (we know this from the proof of Proposi-
tion 6.4.2), but of course not only by it: the property is given by a strict inequality and therefore,
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being valid for the stepsize given by the exact line search, is for sure valid if the stepsize is close
enough to the “exact” one.

Another important implementation issue is as follows. Under assumption (6.5.8), updating
(6.5.5) should maintain positive definiteness of the matrices St. In actual computations, anyhow,
rounding errors may eventually destroy this crucial property, and when it happens, the method
may become behave itself crazy. To overcome this difficlty, in good implementations people store
and update from step to step not the matrices St themselves, but their Cholesky factors: lower-
triangular matrices Ct such that St = CtC

T
t , or, more frequently, the Cholesky factors C ′t of the

inverse matrices S−1
t . Updating formula (6.5.5) implies certain routines for updatings Ct 7→ Ct+1

(respectively, C ′t 7→ C ′t+1), and these are the formulae in fact used in the algorithms. The
arithmetic cost of implementing such a routine is O(n2), i.e., is of the same order of complexity
as the original formula (6.5.5); on the other hand, it turns out that this scheme is much more
stable with respect to rounding errors, as far as the descent properties of the actually computed
search directions are concerned.

6.6 Convergence of Quasi-Newton methods

6.6.1 Global convergence

In practice, quasi-Newton methods are usually executed in continuous fashion: Algorithm 6.2.1
is started at certain x0 with certain positive definite S1 and is run “forever” with the chosen
version of (U). For such a scheme, global convergence is proved only for certain versions of the
method and only under strong assumptions on f .

Of course, there is no difficulty in proving global convergence for the scheme with restarts,
where one resets current St after every m steps to the initial (positive definite) value of the
matrix; here m is certain fixed “cycle duration” (compare with the non-quadratic Conjugate
Gradient methods from the previous lecture). For the latter scheme, it is easy to prove that if
the level set

L = {x | f(x) ≤ f(x0)}
associated with the initial point is bounded, then the trajectory is bounded and all limiting
points of the sequence {xmk}∞k=0 are critical points of f . The proof is quite similar to the one
of Proposition 5.5.1: the steps with indices 1 +mt are

xmk+1 ∈ Argmin{f(xmk − γS∇f(xmk)) | γ ≥ 0},

S being a once for ever fixed symmetric positive definite matrix (the one to which St is reset at
the restart steps). Such a step decreases the objective “significantly”, provided that ∇f(xmk) is
not small3); this property can be immediately derived (try to do it!) from positive definiteness
of S, continuous differentiability of the objective and boundedness of L. At the remaining steps
the objective never increases due to the linesearch, and we conclude that the sum over t of
progresses f(xt−1)− f(xt) in the objective value is bounded. Thus, the progress at step t tends
to 0 as t→∞, and, consequently, ∇f(xmk)→ 0 as k →∞ – otherwise, as it was indicated, the
progresses at the restart steps could not tend to 0 as k →∞. Thus, ∇f(xmk)→ 0, k →∞, so
that every limiting point of the sequence {xmk}k indeed is a critical point of f .

3here is the exact formulation: for every ε > 0 there exists δ > 0 such that if, for some k, |∇f(xmk)| ≥ ε, then
f(xmk+1) ≤ f(xmk)− δ
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6.6.2 Local convergence

As far as local convergence is concerned, we, as always, are interested in the following question:

let x∗ be a nondegenerate local minimizer of f (i.e., ∇f(x∗) = 0, ∇2f(x∗) is positive definite).
Assume that the trajectory of the method in question converges to x∗; what can be said about
the asymptotical rate of convergence?

We are about to answer this question for the most frequently used BFGS method (recall that it
is the Broyden method with φ ≡ 1).

First of all, consider the the scheme with restarts and assume, for the sake of simplicity, that
m = n and S = I, S being the matrix to which St is reset after every n steps. Besides this,
assume that the objective is smooth – three times continuously differentiable. In this case one
can expect that the convergence of the sequence {xmk}∞k=0 to x∗ will be quadratic. Indeed, in
the strongly convex quadratic case the BFGS method with the initialization in question, as we
remember from Proposition 6.5.2, becomes the Conjugate Gradient method, so that in fact we
are speaking about a nonquadratic extension of the CG and can use the reasoning from the
previous lecture. Our expectations indeed turn out to be valid.

Anyhow, the “squaring the distance to x∗ in every n steps” is not that attractive property,
especially when n is large. Moreover, the scheme with restarts is not too reasonable from the
asymptotical point of view: all our motivation of the quasi-Newton scheme came from the desire
to ensure in a good case (when the trajectory converges to a nondegenerate local minimizer of
f) the relation St −∇2f(xt) → 0, t → ∞, in order to make the method asymptotically similar
to the Newton one; and in the scheme with restarts we destroy this property when resetting St
to the unit matrix at the restarting steps. To utilize the actual potential of the quasi-Newton
scheme, we should avoid restarts, at least asymptotically (at the beginning they might become
necessary to ensure global convergence).

It is very difficult to prove something good about local convergence of a quasi-Newton method
executed in “continuous fashion” without restarts. There is, anyhow, the following remarkable
result of Powell (1976):

Theorem 6.6.1 Consider the Broyden-Fletcher-Goldfarb-Shanno method (i.e., the Broyden
method with φ ≡ 1) without restarts and assume that the method converges to a nondegenerate
local minimizer x∗ of a three times continuously differentiable function f . Then the method
converges to x∗ superlinearly.

This result has also extensions onto the “practical” – with properly specified inexact line search
– versions of the method.
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Assignment # 6 (Lecture 6)

Exercise 6.6.1 Write a code implementing the BFGS method and run the code on
1) the strongly convex quadratic functions described in Exercise 5.5.1 (use the scheme without

restarts with S1 set to the unit matrix)
Compare the results with those obtained for the Conjugate Gradient method when doing Exercise
5.5.1

2) the Rosenbrock problem

f(x) = 100(x2 − x2
1)2 + (1− x1)2 → min,

the starting point being (−1.2, 1.0) (test both the scheme with and without restarts; set S1 to the
unit matrix)
Compare the results with those obtained for the Fletcher-Reeves and Polak-Ribiere methods when
doing Exercise 5.5.2

3) the function described in Exercise 4.3.3
Compare the results with those obtained for the Damped Newton method when doing Exercise
4.3.3

Exercise 6.6.2 1) Prove the following important Sherman-Morrison formula:
if A is nonsingular n× n matrix and B, C are n× k matrices, then

(A+BCT )−1 = A−1 −A−1B(Ik + CTA−1B)−1CTA−1,

where Ik denotes the unit k × k matrix. The exact meaning of the equality is as follows: if the
expression in one of the sides of the equality makes sense, then both the expressions make sense
and are equal to each other.
Hint: reduce the general case to the one of A = In; in this latter case, check by direct computation
that the product of (In +BCT ) and the right hand side is the unit matrix.

The Sherman-Morrison formula is very useful in actual computations. Indeed, in many cases
the following situation occurs: you know the inverse to certain “basic” matrix A and should
compute the inverse to perturbed matrix Ā = A + BCT , where the perturbation BCT is of
relatively small rank (i.e., in the above notation k << n). The Sherman-Morrison formula
demonstrates that the computation of Ā−1 – inversion of “large” (of order n × n) perturbed
matrix – can be reduced to inversion of “small” (of order k × k) matrix Ik + CTA−1B.

In particular, in the case of “rank 1” correction (k = 1) computation of Ā−1, given A,B,C
and A−1, requires O(n2) arithmetic operations only; the particular version of the Sherman-
Morrison formula for the case of k = 1 is called the Rank 1 correction formula.

2) [non-obligatory part] Applying twice Rank 1 correction formula to (6.5.4), prove formula
(I).

How to remember the Sherman-Morrison formula. I personally always derive the formula
from its particular case corresponding to A = I, and use the following “formal series trick”
(which in fact explains the origin of the Sherman-Morrison identity): substituting formally into
the formal series

(I + x)−1 = I − x+ x2 − x3 − x4 + ...

x = BCT , we get

(I +BCT )−1 = I −BCT +BCTBCT −BCTBCTBCT + ... =
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= I −B[I − CTB + CTBCT + ...]CT = I −B(I + CTB)−1CT .

Of course, this is just to remember the formula, not to prove it!



Lecture 7

Convex Programming

Today we start the second part of the Course – methods for solving constrained optimization
problems. This lecture is in sense something special – we shall speak about Convex Programming
problems. A Convex Programming problem is the one of the form

f0(x)→ min | fi(x) ≤ 0, i = 1, ...,m, x ∈ G ⊂ Rn, (7.0.1)

where

• G – the domain of the problem – is a closed convex set in Rn;

• the objective f0 and the constraints fi, i = 1, ...,m, are convex functions on Rn.

Convex Programming is, in a sense, the “solvable case” in Nonlinear Optimization: as we shall
see in a while, convex programs, in contrast to the general ones, can be solved efficiently: one can
approximate their global solutions by globally linearly converging, with objective-independent
ratio, methods. This phenomenon – possibility to approximate efficiently global solutions – has
no analogy in the general nonconvex case1 and comes from nice geometry of convex programs.

Computational tools for Convex Programming is the most developed, both theoretically
and algorithmically, area in Continuous Optimization, and what follows is nothing but a brief
introduction to this rich area. In fact I shall speak about only one method – the Ellipsoid
algorithm, since it is the simplest way to achieve the main goal of the lecture – to demonstrate
that Convex Programming indeed is “solvable”. Practical conclusion of this theoretical in its
essence phenomenon is, in my opinion, very important, and I would formulate it as follows:
When modelling a real-world situation as an optimization program, do your best to make the
program convex; I strongly believe that it is more important than to minimize the number of
design variables or to ensure smoothness of the objective and the constraints. Whenever you
are able to cast the problem as a convex program, you get in your disposal wide spectrum of
efficient and reliable optimization tools.

7.1 Preliminaries

Let me start with recalling to you two important notions of Convex Analysis – those of a
subgradient of a convex function and a separating plane.

1Recall that in all our previous considerations the best we could hope for was the convergence to a local
minimizer of the objective, and we never could guarantee this local minimizer to be the global one. Besides this,
basically all our rate-of-convergence results were asymptotical and depended on local properties of the objective.

127



128 LECTURE 7. CONVEX PROGRAMMING

7.1.1 Subgradients of convex functions

In our previous considerations, we always required the objective to be smooth – at least once
continuously differentiable – and used the first order information (the gradients) or the second
order one (the gradients and the Hessians) of the objective. In Convex Programming, there is
no necessity to insist on differentiability of the objective and the constraints, and the role of
gradients is played by subgradients. Recall that if g is a convex function on Rn, then at each
point x ∈ Rn there exists at least one subgradient g′(x) of g – vector such that

g(y) ≥ g(x) + (y − x)T g′(x). (7.1.1)

Geometrically: the graph of the linear function

y 7→ g(x) + (y − x)T g′(x)

is everywhere below the graph of g itself, and at the point x both graphs touch each other.
Generally speaking, subgradient of g at a point x is not unique; it is unique if and only if g
is differentiable at x, and in this case the unique subgradient of g at x is exactly the gradient
∇g(x) of g at x.

When speaking about methods for solving (7.0.1), we always assume that we have in our
disposal a First order oracle, i.e., a routine which, given on input a point x ∈ Rn, returns on
output the values fi(x) and certain subgradients f ′i(x), i = 0, ...,m of the objective and the
constraints at x.

7.1.2 Separating planes

Given a closed convex set G ⊂ Rn and a point x outside G, one can always separate x from G
by a hyperplane, i.e., to point out a separator – vector e such that

eTx > sup
y∈G

eT y. (7.1.2)

Geometrically: whenever x 6∈ G (G is convex and closed), we can point out a hyperplane

Π = {y | eT y = a}

such that x and G belong to opposite open half-spaces into which Π splits Rn:

eTx > a & sup
y∈G

eT y < a.

When speaking about methods for solving (7.0.1), we always assume that we have in our disposal
a Separation oracle for G, i.e., a routine which, given on input a point x ∈ Rn, reports whether
x ∈ G, and if it is not the case, returns “the proof” of the relation x 6∈ G, i.e., a vector e
satisfying (7.1.2).

Remark 7.1.1 Implementation of the oracles. The assumption that when solving (7.0.1), we
have in our disposal a First order oracle for the objective and the constraints and a Separation
oracle for the domain G are crucial for our abilities to solve (7.0.1) efficiently. Fortunately, this
assumption indeed is valid in all “normal” cases. Indeed, typical convex functions f arising in
applications are either differentiable – and then, as in was already mentioned, subgradients are
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the same as gradients, so that they are available whenever we have an “explicit” representation
of the function – or are upper bounds of differentiable convex functions:

f(x) = sup
α∈A

fα(x).

In the latter case we have no problems with computing subgradients of f in the discrete case –
when the index set A is finite. Indeed, it is immediately seen from the definition of a subgradient
that if α(x) is the index of the largest at x (or a largest, if there are several of them) of the
functions fα, then the gradient of fα(x) at the point x is a subgradient of f as well. Thus, if
all fα are “explicitly given”, we can simply compute all of them at x and choose the/a one
largest at the point; its value will be the value of f at x, and its gradient at the point will be a
subgradient of f at x.

Now, the domain G of (7.0.1) typically is given by a set of convex inequalities:

G = {x ∈ Rn | gj(x) ≤ 0, j = 1, ..., k}
with explicitly given and simple – differentiable – convex functions gj , e.g.

G = {x | (x− a)T (x− a)−R2 ≤ 0}
(centered at a Euclidean ball of radius R) or

G = {x | ai ≤ x ≤ bi, i = 1, ..., n}
(a box). Whenever it is the case, we have no problems with Separation oracle for G: given x, it
suffices to check whether all the inequalities describing G are satisfied at x. If it is the case, then
x ∈ G, otherwise gi(x) > 0 for some i, and it is immediately seen that ∇gi(x) can be chosen as
separator.

It should be stressed, anyhow, that not all convex programs admit “efficient” oracles. E.g.,
we may meet with a problem where the objective (or a constraint) is given by “continuous”
maximization like

f(x) = max
α∈[0,1]

fα(x)

(“semiinfinite programs”); this situation occurs in the problems of best uniform approximation
of a given function φ(α), 0 ≤ α ≤ 1, by a linear combination

∑n
i=1 xiφi(α) of other given

functions; the problem can be written down as a “simple” convex program

f(x) ≡ max
α∈[0,1]

|φ(α)−
n∑

i=1

xiφi(α)| → min;

this is a convex program, but whether it can or cannot be solved efficiently, it heavily depends
on whether we know how to perform efficiently maximization in α required to compute the value
of f at a point.

7.2 The Ellipsoid Method

We are about to present one of the most general algorithms for convex optimization – the
Ellipsoid method. The idea of the method is more clear when we restrict ourselves with the
problem of the type

f(x)→ min | x ∈ G ⊂ Rn (7.2.1)
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of minimizing a convex function f on a solid G, i.e., a closed and bounded convex set with a
nonempty interior. In the mean time we shall see that general problem (7.0.1) can be easily
reduced to (7.2.1).

7.2.1 The idea

The method extends onto multi-dimensional case the scheme of the simplest method for univari-
ate minimization, namely, of the Bisection (Lecture 2). The idea is very simple: let us take an
arbitrary interior point x1 ∈ G and compute a subgradient f ′(x1) of the objective at the point,
so that

f(x)− f(x1) ≥ (x− x1)T f ′(x1). (7.2.2)

It is possible that f ′(x1) = 0; then (7.2.2) says that x1 is a global minimizer of f on Rn,
and since this global minimizer belongs to G, it is an optimal solution to the problem, and we
can terminate. Now assume that f ′(x1) 6= 0 and let us ask ourselves what can be said about
localization of the optimal set, let it be called X∗. The answer is immediate:

from (7.2.2) it follows that if x belongs to the open half-space

Π+
1 = {x | (x− x1)T f ′(x1) > 0},

so that the right hand side in (7.2.2) is positive at x, then x for sure is not optimal: (7.2.2) says
that f(x) > f(x1), so that x is worse than feasible solution x1. Consequently, the optimal set
(about which we initially knew only that X∗ ⊂ G) belongs to the new localizer

G1 = {x ∈ G | (x− x1)T f ′(x1) ≤ 0}.

This localizer again is a convex solid (as the intersection of G and a closed half-space with the
boundary passing through the interior point x1 of G) and is smaller than G (since an interior
point x1 of G is a boundary point of G1).

Thus, choosing somehow an interior point x1 in the “initial localizer of the optimal set” G ≡ G0

and looking at f ′(x1), we either terminate with exact solution, or can perform a cut – pass from
G0 to a smaller solid G1 which also contains the optimal set. In this latter case we can iterate
the construction – choose somehow an interior point x2 in G1, compute f ′(x2) and, in the case
of f ′(x2) 6= 0, perform a new cut – replace G1 with the new localizer

G2 = {x ∈ G1 | (x− x2)T f ′(x2) ≤ 0},

and so on. With the resulting recurrence, we either terminate at certain step with exact solution,
or generate a sequence of shrinking solids

G = G0 ⊃ G1 ⊃ G2 ⊃ ...,

every of the solids containing the optimal set.
It can be guessed that if xt are chosen properly, then the localizers Gt “shrink to X∗ at

certain reasonable rate”, and the method converges. This is, e.g., the case with Bisection: there
all Gt are segments (what else could be a solid on the axis?), and xt is chosen as the center of
Gt−1; as a result, the lengths of the segments Gt go to 0 linearly with the ratio 1

2 , and since all
the localizers contain X∗, the method converges at the same linear rate.

In multi-dimensional case the situation is much more difficult:
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• the sets Gt can be more or less arbitrary solids, and it is not clear what does it mean a
“center” of Gt, i.e., how to choose xt+1 ∈ Gt in order to achieve “significant shrinkage” of
the localizer at a step (by the way, how to measure this shrinkage?) On the other hand,
it is clear that if xt+1 is badly chosen (e.g., is close to the boundary of Gt) and the new
cut is “badly oriented”, the next localizer Gt+1 may be “almost as large as Gt”;

• in the one-dimensional case the linear sizes of the localizers tend to 0 linearly with ratio
1
2 , and this is the source of convergence of xt to the minimizer of f . It is absolutely clear
that in the multi-dimensional case we cannot enforce the linear sizes of Gt to go to 0 (look
what happens if G = G0 is the unit square on the plane and f does not depend on the first
coordinate; in this case all localizers will be rectangles of the same width, and consequently
we cannot enforce their linear sizes to go to 0). Thus, we should think carefully how to
measure sizes of the localizers – with bad choice of the notion of size, we are unable to
push it to 0.

The above remarks demonstrate that it is not that straightforward – to extend Bisection onto
the multi-dimensional case. Nevertheless, there are satisfactory ways to do it.

7.2.2 The Center-of-Gravity method

The first which comes to mind is to measure the sizes of the localizers as their n-dimensional
volumes Vol(Gt) and to use, as xt+1, the center of gravity of Gt:

xt+1 =
1

Vol(Gt)

∫

Gt
xdx.

A (very nontrivial) geometrical fact is that with this Center of Gravity policy we get linear
convergence of the volumes of Gt to 0:

Vol(Gt) ≤
[
1−

(
n

n+ 1

)n]t
Vol(G0),

which in turn implies linear convergence in terms of the residual in the objective value: if xt is
the best – with the smallest value of the objective – of the points x1, ..., xt, then

f(xt)−min
G
f ≤

[
1−

(
n

n+ 1

)n]t/n
[max
G

f −min
G
f ]. (7.2.3)

(7.2.3) demonstrates global linear convergence of the Center-of-Gravity method with objective-
independent convergence ratio

κ(n) =
[
1−

(
n

n+ 1

)n]1/n

≤ (1− exp{−1})1/n.

Consequently, to get an ε-solution to the problem – to find a point xt ∈ G with

f(xt)−min
G
f ≤ ε[max

G
f −min

G
f ]

– it requires to perform no more than

c ln 1
ε

ln 1
κ(n)

b≤ 2.13n ln
1
ε

+ 1 (7.2.4)
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steps of the method2).

Look how strong is the result: our global efficiency estimate is objective-independent: no con-
dition numbers (and even no smoothness assumptions at all) are involved! f may be nonsmooth,
may possess all kinds of degeneracy, etc., and all this does not influence the estimate!

Let me add that the Center-of-Gravity method is, in certain precise sense, an optimal method
for convex optimization.

A weak point of the method is the necessity to find, at every step, the center of gravity of
the previous localizer. To find the center of gravity of a general type multi-dimensional solid
(and even of a general type polytope) is, computationally, an extremely difficult problem. Of
course, if G (and then every Gt) is a polytope, this problem is “algorithmically solvable” – one
can easily point out a method which solves the problem in finitely many arithmetic operations.
Unfortunately, the number of arithmetic operations required by all known methods for finding
the center of gravity grows exponentially with n, so that are unable to to compute centers of
gravity in reasonable time already in the dimension 5-10. As a result, the Center-of-Gravity
method is of “academic interest” only – it cannot be used as a computational tool.

7.2.3 From Center-of-Gravity to the Ellipsoid method

The Ellipsoid method can be viewed as certain “computationally tractable” approximation to
the Center-of-Gravity method. The idea is to enforce all the localizers to have “nice geometry”
convenient for finding the centers of gravity, namely, to be ellipsoids. Assume, e.g., that G0 = G
is an ellipsoid. Then there is no difficulty to point out the center of G0, so that we have no
problems with the first step of the Center-of-Gravity method. Unfortunately, the resulting
localizer, let it be called G+

1 , will be not an ellipsoid, but a “half-ellipsoid” – the intersection of
ellipsoid G0 and a half-space with the boundary hyperplane passing through the center of G0;
this solid is not that convenient for finding the center of gravity. To restore the geometry of the
localizer, let us cover the half-ellipsoid G+

1 by the ellipsoid of the smallest volume G1 containing
G+

1 , and let us take this G1 as our new localizer. Note that G1 indeed is a localizer of the
optimal set X∗ (since the latter is contained already in G+

1 , and G1 covers G+
1 ). Now we are

in the same situation as at the very beginning, but with G0 replaced with G1, and can iterate
the construction – to take the center x2 of the ellipsoid G1, to perform a new cut, getting a new
half-ellipsoid G+

1 which covers the optimal set, to embed it into the ellipsoid G2 of the smallest
possible volume, etc. In this scheme, we actually make a kind of trade-off between efficiency of
the routine and computational complexity of a step: when extending the “actual localizers” –
half-ellipsoids – to ellipsoids, we add points which for sure could not be optimal solutions, and
thus slow the procedure down. At the cost of this slowing the process down we, anyhow, enable
ourselves to deal with “simple sets” – ellipsoids, and thus reduce dramatically the computational
complexity of a step.

There are two points which should be clarified.

• first, it is unclear in advance whether we indeed are able to decrease at linear rate the
volumes of sequential localizers and thus get a converging method – it could happen
that, when extending the half-ellipsoid G+

t+1 to the ellipsoid Gt+1 of the smallest volume
containing G+

t+1, we come back to the previous ellipsoid Gt, so that no progress in volume
is achieved. Fortunately, this is not the case: the procedure reduces the volumes of the
sequential ellipsoids Gt by factor κ∗(n) ≤ exp{− 1

2n}, thus enforcing the volumes of Gt

2here and in what follows we use the standard notation cab to denote the smallest integer ≥ a real a
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to go to 0 at linear rate with the ratio κ∗(n) 3). This ratio is worse than the one for the
Center-of-Gravity method (there the ratio was at most absolute constant 1−exp{−1}, now
it is dimension-dependent constant close to 1− 1

2n); but we still have linear convergence!

• second, it was assumed that G is an ellipsoid. What to do if it is not so? The answer
is easy: let us choose, as G0, an arbitrary ellipsoid which covers the domain G of the
problem; such a G0 for sure will be a localizer of the optimal set, and this is all we need.
This answer is good, but there is a weak point: it may happen that the center x1 of the
ellipsoid G0 is outside G; how should we perform the first cut in this case? Moreover,
this “bad” situation – when the center xt+1 of the current localizer Gt is outside G – may
eventually occur even when G0 = G is an ellipsoid: at each step of the method, we add
something to the “half” of the previous localizer, and this something could contain points
not belonging to G. As a result, Gt, generally speaking, is not contained in G, and it may
happen that the center of Gt is outside G. And to the moment we know how to perform
cuts only through points of G, not through arbitrary points of Rn.

We can immediately resolve the indicated difficulty. Given the previous ellipsoidal localizer
Gt and its center xt+1, let us ask the Separation oracle whether xt+1 ∈ G. If it is the case,
we have no problems with the cut – we call the First order oracle, get a subgradient of f
at xt+1 and use it as it was explained above to produce the cut. Now, if xt+1 is not in G,
the Separation oracle will return a separator e:

eTxt+1 > max
x∈G

eTx.

Consequently, all the points x ∈ G satisfy the inequality

(x− xt+1)T e < 0,

and we can use e for the cut, setting

G+
t+1 = {x ∈ Gt | (x− xt+1)T e ≤ 0}.

Since the inequality which “cuts G+
t+1 off Gt” is satisfied on the entire G and, consequently,

on X∗, and the latter set was assumed to belong to Gt (Gt is a localizer!), we conclude
that X∗ ⊂ G+

t+1, and this is all we need.

After all explanations and remarks, we can pass to formal description of the Ellipsoid method.

7.2.4 The Algorithm

How to represent an ellipsoid

An ellipsoid is a geometrical entity; to run an algorithm, we should deal with numerical repre-
sentations of these entities. The most convenient for our goals is to represent an ellipsoid as the
image of the unit Euclidean ball under nonsingular affine mapping:

E = E(c,B) = {x = c+Bu | uTu ≤ 1}. (7.2.5)
3The fact that even after extending G+

t+1 to Gt+1 we still have progress in volume heavily depends on the
specific geometrical properties of ellipsoids; if. e.g., we would try to replace the ellipsoids with boxes, we would
fail to ensure the desired progress. The ellipsoids, anyhow, are not the only solids appropriate for our goals; we
could use simplices as well, although with worse progress in volume per step
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Here c ∈ Rn is the center of the ellipsoid and B is an n×n nonsingular matrix. Thus, to say “an
ellipsoid” in what follows means exactly to say “the set (7.2.5) given by a pair (c,B) comprised
of vector c ∈ Rn and a nonsingular n× n matrix B”; you may think about this representation
as about the definition of an ellipsoid.

The volume the ellipsoid E(c, b) is

Vol(E(c,B)) = |Det B|v(n),

v(n) being the volume of the unit n-dimensional Euclidean ball Vn; indeed, E(c,B) is the image
of Vn under affine mapping, B being the matrix of the homogeneous part of the mapping, and
such a transformation multiplies the volumes by |Det B|.

We need the following simple

Lemma 7.2.1 Let n > 1, let

E = E(c,B) = {x = c+Bu | uTu ≤ 1}
be an ellipsoid in Rn, and let

E+ = {x ∈ E | (x− c)T e ≤ 0} [e 6= 0]

be a ”half-ellipsoid” – the intersection of E and a half-space with the boundary hyperplane passing
through the center of E. Then E+ can be covered by ellipsoid E′ = E(c′, B′) of the volume

Vol(E′) = κ∗(n) Vol(E),

κ∗(n) =
n2

n2 − 1

√
n− 1
n+ 1

≤ exp{− 1
2(n− 1)

}. (7.2.6)

The parameters c′ and B′ of the ellipsoid E′ are given by

B′ = α(n)B − γ(n)(Bp)pT , c′ = c− 1
n+ 1

Bp, (7.2.7)

where

α(n) =

{
n2

n2 − 1

}1/4

, γ(n) = α(n)

√
n− 1
n+ 1

, p =
BT e√
eTBBT e

.

To prove the lemma, it suffices to reduce the situation to the similar one with E being the
unit Euclidean ball V = Vn; indeed, since E is the image of V under the affine transformation
u 7→ Bu+ c, the half-ellipsoid E+ is the image, under this transformation, of the half-ball

V + = {u ∈ V | (BT e)Tu ≤ 0} = {u ∈ V | pTu ≤ 0}.
Now, it is quite straightforward to verify that a half-ball indeed can be covered by an ellipsoid
V ′ with the volume being the required fraction of the volume of V ; you may take

V ′ = {x | (x+
1

n+ 1
p)T [α(n)In − γ(n)ppT ]−2(x+

1
n+ 1

p) ≤ 1}.

It remains to note that the image of V ′ under the affine transformation which maps the unit ball
V onto the ellipsoid E is an ellipsoid which clearly contains the half-ellipsoid E+ and is in the
same ratio of volumes with respect to E as V ′ is with respect to the unit ball V (since the ratio of
volumes remains invariant under affine transformations). The ellipsoid E′ given in formulation
of the lemma is nothing but the image of the above V ′ under our affine transformation.
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The Ellipsoid algorithm

The algorithm is as follows

Algorithm 7.2.1 [The Ellipsoid algorithm for convex program f(x)→ min | x ∈ G ⊂ Rn]
Assumptions:

• G is a solid (bounded and closed convex set with a nonempty interior)

• we are given First order oracle for f and Separation oracle for G

• we are able to point out an ellipsoid G0 = E(c0, B0) which contains G.

Initialization: set t = 1
Step t: Given ellipsoid Gt−1 = E(ct−1, Bt−1), set xt = ct−1 and act as follows:

1) [Call the Separation Oracle] Call the Separation oracle, xt being the input. If the oracle
says that xt ∈ G, call the step t productive and go to 2), otherwise call the step t non-productive,
set et equal to the separator returned by the oracle:

x ∈ G⇒ (x− xt)T et < 0

and go to 3)
2) [Call the First order oracle] Call the First order oracle, xt being the input. If f ′(xt) = 0,

terminate – xt ∈ G is the minimizer of f on the entire Rn (see the definition (7.1.1) of a
subgradient) and is therefore an optimal solution to the problem. In the case of f ′(xt) 6= 0 set

et = f ′(xt)

and go to 3).
3) [Update the ellipsoid] Update the ellipsoid E(ct−1, Bt−1) into E(ct, Bt) according to for-

mula (7.2.7) with e = et, i.e., set

Bt = α(n)Bt−1 − γ(n)(Bt−1pt)pTt , ct = ct−1 − 1
n+ 1

Bt−1pt−1,

where

α(n) =

{
n2

n2 − 1

}1/4

, γ(n) = α(n)

√
n− 1
n+ 1

, pt =
BT
t−1et√

eTt Bt−1BT
t−1et

.

Replace t with t+ 1 and go to the next step.
Approximate solution xt generated by the method after t steps is, by definition, the best (with
the smallest value of f0) of the points xj generated at the productive steps j ≤ t [if the steps
1, ..., t are non-productive, xt is undefined].

7.2.5 The Ellipsoid algorithm: rate of convergence

We are about to prove the main result on the Ellipsoid method.

Theorem 7.2.1 [Rate of convergence of the Ellipsoid algorithm]
Let n > 1, and let convex program (7.2.1) satisfying the assumptions from the description of the
Ellipsoid algorithm 7.2.1 be solved by the algorithm. Let

N(ε) =c2n(n− 1) ln
(V
ε

)
b,
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where 0 < ε < 1 and

V =
[

Vol(E(c0, B0))
Vol(G)

]1/n

Then, for any ε ∈ (0, 1), the approximate solution xN(ε) found by the method in course of the first
N(ε) steps, is well-defined and is an ε-solution to the problem, i.e., belongs to G and satisfies
the inequality

f(xN(ε))−min
G
f ≤ ε[max

G
f −min

G
f ]. (7.2.8)

Proof. For the sake of brevity, let N = N(ε). We may assume that the method does not
terminate in course of the first N steps – otherwise there is nothing to prove: the only possibility
for the method to terminate is to find an exact optimal solution to the problem.

Let us fix ε′ ∈ (ε, 1), and let x∗ be an optimal solution to (7.2.1) (it exists, since the domain
of the problem is compact and the objective, being convex on Rn, is continuous (we had such a
theorem in the course Optimization I) and therefore attains its minimum on compact set G.
10. Set

G∗ = x∗ + ε′(G− x∗),
so that G∗ is the image of G under homothety transformation with the center at x∗ and the
coefficient ε′.

By construction, we have

Vol(G∗) = (ε′)n Vol(G) > εn Vol(G) (7.2.9)

(“homothety with coefficient α > 0 in Rn multiplies volumes by αn”). On the other hand, by
Lemma 7.2.1 we have Vol(E(ct, Bt)) ≤ exp{−1/(2(n− 1))}Vol(E(ct−1, Bt−1)), whence

Vol(E(cN , BN ) ≤ exp{− N

2(n− 1)
}Vol(E(c0, B0)) ≤

[definition of N = N(ε)]
≤ V−N εN Vol(E(c0, B0)) =

[definition of V]

=
Vol(G)

Vol(E(c0, B0))
εN Vol(E(c0, B0)) = εN Vol(G).

Comparing the resulting inequality with (7.2.9), we conclude that Vol(E(cN , BN )) < Vol(G∗),
so that

G∗\E(cN , BN ) 6= ∅. (7.2.10)

20. According to (7.2.10), there exists

y ∈ Vol(G∗)\E(cN , BN ).

I claim that

y = (1− ε′)x∗ + ε′z for some z ∈ G; (y − xt)T et > 0 for some t ≤ N (7.2.11)

The first relation in (7.2.11) comes from the inclusion y ∈ G∗: by definition,

G∗ = x∗ + ε′(G− x∗) = {x∗ + ε′(z − x∗) | z ∈ G}.
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To prove the second relation in (7.2.11), note that from the first one y ∈ G ⊂ E(c0, B0), while
by the origin of y we have y 6∈ E(cN , BN ). Consequently, there exists t ≤ N such that

y ∈ E(ct−1, Bt−1) & y 6∈ E(ct, Bt). (7.2.12)

According to our policy of updating the ellipsoids (see Lemma 7.2.1), E(ct, Bt) contains the
half-ellipsoid

E+(ct−1, Bt−1) = {x ∈ E(ct−1, Bt−1) | (x− xt)T et ≤ 0};
this inclusion and (7.2.12) demonstrate that (y − xt)T et > 0, as required in the second relation
in (7.2.11).
30. Now let us look what happens at the step t given by the second relation in (7.2.11). First
of all, I claim that the step t is productive: xt ∈ G. Indeed, otherwise, by construction of the
method, et would be a separator of xt and G:

(x− xt)T et < 0 ∀x ∈ G,

but this relation, as we know from (7.2.11), is violated at y ∈ G and therefore cannot take place.
Thus, t is productive, whence, by construction of the method, et = f ′(xt). Now the second

relation in (7.2.11) reads
(y − xt)T f ′(xt) > 0,

whence, by definition of subgradient, f(y) > f(xt). This inequality, along with productivity of
the step t and the definition of approximate solutions, says that xN is well-defined and

f(xN ) ≤ f(y). (7.2.13)

40. Now we are done. By the first relation in (7.2.11) and due to convexity of f we have

f(y) ≤ (1− ε′)f(x∗) + ε′f(z),

whence

f(y)−min
G
f ≡ f(y)− f(x∗) ≤ ε′(f(z)− f(x∗)) ≤ ε′[max

G
f −min

g
f ] [z ∈ G !];

combining the resulting inequality with (7.2.13), we get

f(xN )−min
G
f ≤ ε′[max

G
f −min

G
f ].

The latter inequality is valid for all ε′ ∈ (ε, 1), and (7.2.8) follows.

7.2.6 Ellipsoid method for problems with functional constraints

To the moment we spoke about the Ellipsoid method as applied to problem (7.2.1) without
functional constraints. There is no difficulty to extend the method onto general convex problems
(7.0.1). To this end it suffices to note that (7.0.1) can be immediately rewritten as problem of
the type (7.2.1), namely, as

f(x) ≡ f0(x)→ min | x ∈ Ĝ ≡ {x ∈ G | fi(x) ≤ 0, i = 1, ...,m}. (7.2.14)

All we need to solve this latter problem by the Ellipsoid algorithm is
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• to equip (7.2.14) by the Separation and the First order oracles

this is immediate: the First order oracle for (7.2.14) is readily given by the one for (7.0.1).
The Separation oracle for Ĝ can be immediately constructed from the Separation oracle
for G and the First order oracle for (7.0.1): given x ∈ Rn, we first check whether the point
belongs to G, If it is not the case, then it, of course, does not belong to Ĝ as well, and the
separator (given by the Separation oracle for G on the input x) separates x from Ĝ. Now,
if x ∈ G, we can ask the First order oracle about the values and subgradients of f1, ..., fm
at x. If all the values are nonpositive, then x ∈ Ĝ; if one of this values is positive, then
x 6∈ Ĝ and, moreover, the vector f ′i(x) (i ≥ 1 is such that fi(x) > 0) can be used as a
separator of x and Ĝ (Remark 7.1.1)

• to ensure that Ĝ is a solid

(we shall simply assume this).

The resulting algorithm is as follows

Algorithm 7.2.2 [The Ellipsoid algorithm for convex program (7.0.1)]
Assumptions:

• Ĝ = {x ∈ G | fi(x) ≤ 0, i = 1, ...,m} is a solid (bounded and closed convex set with a
nonempty interior)

• we are given First-order oracle for f0, ..., fm and Separation oracle for G

• we are able to point out an ellipsoid G0 = E(c0, B0) which contains Ĝ.

Initialization: set t = 1
Step t: Given ellipsoid Gt−1 = E(ct−1, Bt−1), set xt = ct−1 and act as follows:

1) [Call the Separation oracle] Call the Separation oracle for G, xt being the input. If the
oracle says that xt ∈ G, go to 2), otherwise call the step t non-productive, set et equal to the
separator returned by the oracle:

x ∈ G⇒ (x− xt)T et < 0

and go to 4)
2) [Call the First order oracle] Call the First order oracle, xt being the input, and check

whether fi(xt) ≤ 0, i = 1, ...,m. If fi(xt) ≤ 0 for all i ≥ 1, call the step t productive and look
at f ′0(xt). If f ′0(xt) = 0, terminate – xt is feasible for (7.0.1) and is the minimizer of f on the
entire Rn (see the definition (7.1.1) of a subgradient), whence it is an optimal solution to the
problem. In the case of f ′0(xt) 6= 0 set

et = f ′0(xt)

and go to 4).
3) [The case of xt ∈ G and fi(xt) > 0 for some i ≥ 1] Call step t non-productive and find

i ≥ 1 such that fi(xt) > 0 (when we arrive at 3), such an i exists), set

et = f ′i(xt)

and go to 4).
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4) [Updating the ellipsoid] Update the ellipsoid E(ct−1, Bt−1) into E(ct, Bt) according to
formula (7.2.7) with e = et, i.e., set

Bt = α(n)Bt−1 − γ(n)(Bt−1pt)pTt , ct = ct−1 − 1
n+ 1

Bt−1pt−1,

where

α(n) =

{
n2

n2 − 1

}1/4

, γ(n) = α(n)

√
n− 1
n+ 1

, pt =
BT
t−1et√

eTt Bt−1BT
t−1et

.

Replace t with t+ 1 and go to the next step.
Approximate solution xt generated by the method after t steps is, by definition, the best (with the
smallest value of f) of the points xj generated at the productive steps j ≤ t [if the steps 1, ..., t
are non-productive, xt is undefined].

The following result is an immediate corollary of Theorem 7.2.1.

Theorem 7.2.2 [Rate of convergence of the Ellipsoid algorithm on problems with functional
constraints]
Let n > 1, and let convex program (7.0.1) satisfying the assumptions from the description of the
Ellipsoid algorithm 7.2.2 be solved by the algorithm. Let

N(ε) =c2n(n− 1) ln
(V
ε

)
b,

where 0 < ε < 1 and

V =

[
Vol(E(c0, B0))

Vol(Ĝ)

]1/n

Then, for any ε ∈ (0, 1), the approximate solution xN(ε) found by the method in course of the first
N(ε) steps, is well-defined and is an ε-solution to the problem, i.e., belongs to Ĝ and satisfies
the inequality

f(xN(ε))−min
Ĝ
f ≤ ε[max

Ĝ
f −min

Ĝ
f ]. (7.2.15)

7.3 Ellipsoid method and Complexity of Convex Programming

The Ellipsoid method implies fundamental theoretical results on complexity of Convex Program-
ming; let us briefly discuss these theoretical issues.

7.3.1 Complexity: what is it?

When speaking about complexity of a class of computational problems, we are interested to
answer the following crucial question:

Given a family P of problem instances and required accuracy ε, what can be said about the
computational effort sufficient to solve each instance to the prescribed accuracy?

This is an informal question, of course, and to answer it, we should first formalize the question
itself, namely, to say

• What does it mean “a family of problems” and how we measure accuracy of approximate
solutions;
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• What does it mean “effort of computational process”? What is the model of the process
and how the effort is measured?

To realize that these indeed are points which should be clarified, consider the following “uni-
versal solution method” (which in fact is the main method to solve problems): think! Is it a
“computational method”? What is the “effort” for this method?

There are basically two approaches to formalize the complexity-related notions. The first,
which is more convenient for “continuous” computational problems, is as follows (according to
our goals, I shall speak only about optimization problems in the form (7.2.1)).

Real Arithmetic Complexity Model:

• A family of problems P is a set of problems (7.2.1) such that a particular member p =
(f,G) of the family is encoded by a finite-dimensional data vector d(p). The dimension of
the data vector is called the size of the instance.

Example 1. Linear Programming over Reals. Here the instances are of the form

f(x) = cTx→ min | x ∈ G = {x ∈ Rn | Ax ≤ b},

A being m × n matrix and b being m-dimensional vector. The data vector of a problem
instance is comprised of the pair n,m and of n+m+nm entries of c, b, A written down in
a once for ever fixed order (e.g., first the n entries of c, then the m entries of b and finally
the nm entries of A in the row-wise order).

Example 2. Quadratically Constrained Quadratic Programming. Here the in-
stances are of the form

f0(x) =
1
2
xTH0x− bT0 x→ min

subject to

x ∈ G = {x ∈ Rn | fi(x) =
1
2
xTHix− bTi x+ ci ≤ 0, i = 1, ...,m},

and the data vector is comprised of n, m and the entries of the matrices Hi, the vectors
bi and the reals ci written down in a once for ever fixed order.

The number of examples can be easily extended; basically, the typical families of problems
in question are comprised of problems of a “fixed generic analytical structure”, and the
data vector is the set of numerical coefficients of the (fixed by the description of the family)
analytical expressions corresponding to the particular instance in question.

In what follows we restrict ourselves with the families comprised of solvable problems with
bounded feasible sets.

• An ε-solution x to a problem instance p = (f,G) is a feasible (x ∈ G) solution such that

f(x)−min
G
f ≤ ε[max

G
f −min

G
f ];

there are other definitions of an ε-solution, but let us restrict ourselves with the indicated
one.
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• A computational algorithm for P is a program for an idealized computer capable to per-
form operations of exact real arithmetic (four arithmetic operations and computation of
elementary functions like

√·, sin(·), log(·), etc.). When solving a problem instance from
P, the algorithm gets on input the data vector of the instance and the required accuracy ε
and starts to process these data; after finitely many elementary steps the algorithm should
terminate and return the vector xout of the corresponding dimension, which should be an
ε-solution to the input instance. The computational effort of solving the instance is, by
definition, the total # of elementary steps (arithmetic operations) performed in course of
processing the instance.

The second way to formalize the complexity-related notions, the way which is the most
widely used in theoretical Computer Science and in Combinatorial Optimization, is given by

Algorithmic Complexity Model:

• A family of problems is a set of problems (7.2.1) such that a particular member p = (f,G)
of the family is encoded by an integer i(p); the # L of digits in this integer is the bit size
of the instance p.

Example 3. Integer programming. Here the problem instances are of the form

f(x) = cTx→ min | x ∈ G = {x ∈ Zn | Ax ≤ b},

where Zn is the space of n-dimensional vectors with integer entries, c and b are vectors of
dimensions n and m with integer entries, and A is an m× n matrix with integer entries.

To encode the data (which form a collection of integers) as a single integer, one can act as
follows:

first, write down the data as a finite sequence of binary integers (similarly to Example 1,
where the data were real);

second, encode the resulting sequence of binary integers as a single integer, e.g., by repre-
senting

- binary digit 0 as 00

- binary digit 1 as 11

- blank between integers as 01

- sign – at an integer as 10

Example 4. Linear Programming over Rationals. This is a subfamily of the Lin-
ear Programming family (Example 1), where we impose on all the entries of c, b, A the
requirement to be rational numbers. To encode a problem instance by a single binary
integer, it suffices to write the data as a sequence of binary integers, same as in Example
3 (with the only difference that now every rational element of the data is represented by
two sequential integers, its numerator and denominator), and then encode the sequence,
as it was explained above, by a single binary integer.

In what follows, speaking about Algorithmic Complexity model, we always assume that

- the families in question are comprised of solvable problems with bounded feasible sets
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- any problem instance from the family admits a solution which can be naturally encoded
by a binary integer

The second assumption is clearly valid for the Integer Programming (Example 3). It is also
valid for Linear Programming over Rationals (Example 4), since it can be easily proved
that a solvable LP program with integer data admits a solution with rational entries; and
we already know that any finite sequence of integers/rationals can be naturally encoded
by a single integer.

• Normally, in Algorithmic Complexity model people are not interested in approximate
solutions and speak only about exact ones; consequently, no problem with measuring
accuracy occurs.

• A computational algorithm is an algorithm in any of (the equivalent to each other) def-
initions given in Mathematical Logic; you loose nothing when thinking of a program for
an idealized computer which is capable to store in memory as many finite binary words as
you need and to perform bit-wise operations with these words. The algorithm as applied
to a problem instance p from P gets on input the code i(p) of the instance and starts to
process it; after finitely many elementary steps, the algorithm should terminate and return
the code of an exact solution to the instance. The computational effort is measured as the
total # of elementary bit-wise operations performed in course of the solution process.

Let me stress the difference between the notions of the size of an instance in the Real
Arithmetic and the Algorithmic Complexity models. In the first model, the size of an instance
is, basically, the # of real coefficients in the natural analytical representation of the instance,
and the size is independent of the numerical values of these coefficients – they may be arbitrary
reals. E.g. the Real Arithmetic size of any LP program over Reals (Example 1) with n = 2
variables and m = 3 inequality constraints is the dimension of the vector

(2, 3, c1, c2, b1, b2, b3, A11, A12, A21, A22, A31, A32),

i.e., 13. In contrast to this, the Algorithmic Complexity size of an LP program over Rationals
(Example 4) with n = 2 variables and m = 3 constraints can be arbitrarily large, if the rational
data are “long”.

We can observe similar difference between the measures of computational effort in the Real
Arithmetic and the Algorithmic Complexity models. In the first of them, the effort required,
say, to add two reals is one, independently of what the reals are. In the second model, we in
principle cannot deal with reals – only with integers; and the effort to add two N -digit integers
is not 1 – it is proportional to N .

7.3.2 Computational Tractability = Polynomial Solvability

After the main complexity-related notions – family of problems, ε-solution, solution algorithm
and its computational effort – are formalized, we may ask ourselves

What is the complexity of a given family of problems, i.e., the best possible, over all solution al-
gorithms, computational effort sufficient to solve all instances of a given size to a given accuracy?

Before trying to answer this question, we may ask ourselves a more rough (and, in a sense, more
important) question:
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Is the family in question computationally tractable, i.e. is its complexity a “reasonable” function
of the size of instances?

If the answer to this second question is negative, then we may forget about the first one: if we
know that to solve an instance of size l from a family P it may require at least 2l elementary
steps, then we may not bother much whether the actual complexity is 2l, 25l or 2(2l): in the first
case, the maximal size of instances we are able to solve for sure in reasonable time is something
like 30, in the second – 6, in the third – 5; this difference normally means nothing, since the
sizes of actually interesting problems usually are hundreds, thousands and tens of thousands.

Now, the notion of “computationally tractable” complexity in theoretical studies of the last
30 years is unanimously understood as the one of “polynomial time” solvability. This latter
notion first was introduced in the Algorithmic Complexity model and was defined as follows:

A solution algorithm A for a family P of problem instances is called polynomial, if the compu-
tational effort required by A to solve a problem instance of an arbitrary bit size L never exceeds
q(L), q being certain polynomial; here all complexity-related notions are understood according
to the Algorithmic Complexity model.

P is called polynomially solvable, if it admits polynomial solution algorithm.

The analogy of this definition for the Real Arithmetic Complexity model is as follows:

A solution algorithms A for a family P of problem instances is called R-polynomial, if the
computational effort required by A to solve a problem instance p of an arbitrary size l to an
arbitrary accuracy ε ∈ (0, 1) never exceeds

q(l) ln
(V(p)

ε

)
, (7.3.1)

where q is certain polynomial and V(p) is certain data-dependent quantity; here all complexity-
related notions are understood according to the Real Arithmetic Complexity model.

The definition of an R-polynomial algorithm admits a very natural interpretation. The quantity
ln(V(p)/ε) can be viewed as # of accuracy digits in an ε-solution; with this interpretation, (7.3.1)
means that the arithmetic cost per accuracy digit is bounded from above by a polynomial of the
dimension of the data vector.

7.3.3 R-Polynomial Solvability of Convex Programming

Invention of the Ellipsoid method (1976) allowed to establish the following important

Theorem 7.3.1 [R-polynomial solvability of Convex Programming]
Consider a family P of convex problems (7.2.1) and assume that

(i) all problem instances p = (f,G) from the family are bounded (i.e., their feasible domains
G are bounded) and strictly feasible (i.e., their feasible domains G possess nonempty interiors);
moreover, given the data vector d(p) of the instance, one can in polynomial in the size lp =
dim d(p) of the instance number of arithmetic operations compute an ellipsoid which covers G
along with a lower bound vp > 0 for the volume of G;

(ii) given an instance p = (f,G) ∈ P and a point x ∈ Rnp, np being the # of variables in p,
on can in polynomial in lp number of arithmetic operations
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• imitate the Separation oracle for G on the input x, i.e., check the inclusion x ∈ G and, if
it is not valid, compute a separator e:

sup
y∈G

eT y < eTx;

• imitate the First order oracle for f , i.e., compute f(x) and f ′(x).

Then there exists an R-polynomial algorithm for P.

Proof is immediate: it suffices to use the Ellipsoid algorithm. Indeed,

• (i) says that, given on input the data vector d(p) of a problem instance p ∈ P, we can
in polynomial in lp = dim d(p) number of arithmetic operations compute an ellipsoid
E(c0, B0) and thus start the Ellipsoid algorithm. As a byproduct, we observe that the
number of variables np in p is bounded from above by a polynomial of the size lp of the
instance (otherwise it would require too many operations simply to write down the center
of the ellipsoid).

• according to the description of the method, to perform a step of it, we should imitate the
Separation and, possibly, the First order oracle at current point xt (according to (iii), it
takes polynomial in lp number of arithmetic operations) and then should perform O(n2

p)
arithmetic operations to update the previous ellipsoid into the current one according to
Algorithm 7.2.1.3); by virtue of the previous remark, np is bounded from above by a
polynomial in lp, so that the overall arithmetic effort at a step is polynomial in lp;

• according to Theorem 7.2.1, the method will find an ε-solution to p in the number of steps
not exceeding

N(ε) =c2(np − 1)np ln
(V
ε

)
b, V =

[
Vol(E(c0, B0))

Vol(G)

]1/np

;

we have

N(ε) ≤ N ′(ε) =c2(np − 1)np ln

(
Vol1/np(E(c0, B0))

v
1/np
p ε

)
b

(see (i)); according to (i), we can compute N ′(ε) in polynomial in lp number of operations
and terminate the process after N ′(p) steps, thus getting an ε-solution to p.

The overall arithmetic effort to find an ε-solution to p, in view of the above remarks, is bounded
from above by

r(lp)N ′(ε) ≤ q(lp) ln
(V(p)

ε

)
, V(p) ≡

[
Vol(E(c0, B0))

vp

]1/np

,

both r(·) and q(·) being certain polynomials, so that the presented method indeed isR-polynomial.

When thinking of Theorem 7.3.1, you should take into account that the “unpleasant” as-
sumptions (i) are completely technical and normally can be ensured by slight regularization of
problem instances. Assumption (ii) is satisfied in all “non-pathological” applications, so that
in fact Theorem 7.3.1 can be qualified as a General Theorem on R-Polynomial Solvability of
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Convex Programming. I should add that this is, in a sense, an “existence theorem”: it claims
that in Convex Programming there exists a “universal” R-polynomial solution routine, but it
does not say that this is the best possible R-polynomial routine for all particular cases. The
main practical drawback of the Ellipsoid method is that it is “slow” – the # of iterations re-
quired to solve the problem within a once for ever fixed accuracy ε grows quadratically with
the dimension n of the problem. This quadratic in n growth of the effort makes it basically
impossible to use the method as a practical tool in dimensions like hundreds and thousands.
Recently, for many important families of Convex Programming problems (Linear, Quadratically
Constrained Quadratic, Geometric and some others) more specialized and more efficient inte-
rior point polynomial algorithms were developed; these methods are capable to struggle with
large-scale problems of real-world origin.

I would say that the Ellipsoid method, as a practical tool, is fine for not large – up to 20-30
variables – convex problems. The advantages of the method are:

• simplicity in implementation and good numerical stability

• universality

• low order of dependence of computational effort on m – the # of functional constraints

The latter remark relates to Algorithm 7.2.2): the number of steps required to achieve a
given accuracy is simply independent ofm, and the effort per step is at most proportional to
the m (the only place where the number of constraints influence the effort is the necessity to
check feasibility of the current iterate and to point out a violated constraint, if any exists).
As a result, for “high and narrow” convex programs (say, with up to 20-30 variables and
thousands of constraints as you wish) the Ellipsoid method seems to be one of the best
known Convex Programming routines.

7.4 Polynomial solvability of Linear Programming

Surprisingly, the most important “complexity consequences” of the Ellipsoid method – which
is a purely “continuous optimization” algorithm – relate to Algorithmic Complexity. The most
known of these consequences is

7.4.1 Polynomial Solvability of Linear Programming over Rationals

Some History

Everybody knows that Linear Programming programs – both with real and and rational data –
can be solved efficiently (and are solved almost for 50 years) by the Simplex Algorithm, which
is a finite Real Arithmetic routine for LP capable to solve huge practical linear programs. What
I am not sure is that everybody knows what does it mean “efficiently” in the above sentence.
This is practical efficiency – when solving an LP program

cTx→ min | Ax ≤ b (7.4.1)

with n variables and m > n inequality constraints, the Simplex normally performs 2m - 4m
iterations to find the solution. Anyhow, theoretically Simplex is not a polynomial algorithm:
since the beginning of sixties, it is known that there exist simple LP programs pn with n =
1, 2, 3, ... variables and integer data of the total bit size Ln = O(n) such that some versions
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of the Simplex method solve pn in no less than 2n steps. Consequently, the aforementioned
versions of the Simplex method are not polynomial – for a polynomial algorithm, the solution
time should be bounded by a polynomial of Ln = O(n), i.e., of n. Similar “bad examples” were
constructed for other versions of the Simplex method; and although nobody was able to prove
that no version of Simplex can be polynomial, nobody was also lucky to point out a polynomial
version of the Simplex method. Moreover, since mid-sixties, where the Algorithmic Complexity
approach became standard, and till 1979 nobody knew whether LP over Rationals (Example 4
above) is or is not polynomially solvable.

7.4.2 Khachiyan’s Theorem

The positive answer on the fundamental question whether LP over Rationals is polynomially
solvable was given only in 1979 by L. Khachiyan; the main tool used in the proof was the
Ellipsoid method invented 3 years earlier.

Below I sketch the reasoning of Khachiyan.

Step 1: from Optimization to Feasibility

The first step of the construction reduces the optimization LP program (7.4.1) to the Feasibility
program for a system of linear inequalities. To this end it suffices to write down both the
inequalities of (7.4.1) and of its LP dual and to replace minimization in the primal problem and
maximization in the dual one with the linear constraint that the duality gap should be zero.
This results in the following system of linear inequalities and equations:

Ax ≤ b; AT y = c; y ≤ 0; cTx = bT y (7.4.2)

with unknowns x ∈ Rn and y ∈ Rm. The Duality Theorem in Linear Programming says
that the original problem (7.4.1) is solvable if and only if (7.4.2) is, and if it is the case, then
x-components of the solutions to (7.4.2) are exactly the optimal solutions to (7.4.1).

Assembling x and y in a single vector of variables u, representing u as the difference of new
nonnegative variable vectors v and w and, finally, assembling v and w into single vector z (all
these manipulations are standard tricks in LP), we we can rewrite (7.4.2) equivalently as the
problem

find z ∈ RN : Qz ≤ q, z ≥ 0; (7.4.3)

here N = 2(n+m), and Q, q are certain matrix and vector with rational entries coming, in an
evident fashion, from the initial data c, b, A. Note that the bit size L1 of the data in (7.4.3) is
of order of the bit size L of the initial data in (7.4.1); in fact L1 ≤ 10L.

It is convenient to pass from problem (7.4.3) with rational data to an equivalent problem
with integer data; to this end it suffices to compute the common denominator of all the fractions
involved into (7.4.3) and to multiply all the data by this common denominator. As a result, we
come to the problem

find x ∈ RN : Rz ≤ r, z ≥ 0; (7.4.4)

the properties of this problem are as follows:

• (7.4.3) is equivalent to the LP program (7.4.1): both the problems are solvable/unsolvable
simultaneously; if they are solvable, then any solution to (7.4.4) can be converted in an
explicit and simple manner into optimal solution to (7.4.1);
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• the data in (7.4.4) are integer, and their bit size L2 is bounded by a polynomial (something
like 200L2) of the bit size L of the initial data 4).

It follows that if we were able to solve in polynomial time the Feasibility problem (7.4.4), we
would get, as a byproduct, a polynomial algorithm for the initial problem (7.4.1).

Step 2: from Feasibility to Solvability

Instead of attacking the Feasibility problem (7.4.4) (where we are asked to check whether (7.4.4)
is solvable and if it is the case – are asked to point out a solution), let us for the time being
restrict our goals with the following relaxed solvability version of (7.4.4):

(S) given the data of (7.4.4), detect whether the problem is solvable.

The simplification, as compared to (7.4.4), is that now we are not obliged to point out an explicit
solution to a solvable instance.

Problem (S) is the problem which is solved in polynomial time by the Ellipsoid method.
This is done as follows.

• From (S) to (S′). Problem (S) clearly is equivalent to the following optimization problem:
let

f(z) = max [(Rz)1 − r1|; (Rz)2 − r2; ...; (Rz)M − rM |]
(M is the number of rows in R) be the residual function of the system of inequalities
Rz ≤ r; this function clearly is nonnegative at a nonnegative z if and only if z is a feasible
solution to (7.4.4). Consequently, (S) is exactly the following problem:

(S′): detect whether minz∈RN ,z≥0 f(z) ≤ 0

((S) is solvable if and only if the answer in (S′) is “yes”).

• From (S′) to (S′′). The next step is given by the following simple

Lemma 7.4.1 The answer in (S′) is “yes” if and only if it is “yes” in the following
problem

(S′′) detect whether minz:0≤zi≤2L2 , i=1,...,N f(z) ≤ 0

L2 being the bit length of the data in (S).

Proof. If the answer in (S′′) is “yes”, then, of course, the answer in (S′) also is “yes”.
It remains to prove, therefore, that if the answer in (S′) is “yes” (or, which is the same,
if (S) is solvable), then the answer in (S′′) also is “yes”. This is easy. The solution
set of (S), being nonempty, is a nonempty closed convex polyhedral set (here and in what
follows I use the standard terminology of Convex Analysis; this terminology, along with all
required facts, was presented in the course Optimization I); since (S) involves nonnegativity

4the latter property comes from the fact that the common denominator of the entries in (7.4.3) is an integer
of bit size at most L1 ≤ 10L; therefore when passing from (7.4.3) to (7.4.4), we increase the bit size of each entry
by at most 10L. Since even the total bit size of the entries in (7.4.3) is at most 10L, the bit size of an entry in
(7.4.4) is at most 20L; and there are at most 10L entries. All our estimates are extremely rough, but it does not
matter – all we are interested in is to ensure polynomiality of the bit size of the transformed problem in the bit
size of the initial one
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constraints, this set does not contain lines, and therefore, due to the well-known fact of
Convex Analysis, possesses an extreme point z̄. From the standard facts on the structure of
extreme points of a polyhedral set given by (7.4.4) it is known that the vector z∗ comprised
of nonzero entries of z̄, if such entries exist, satisfy nonsingular system of linear equations
of the form

R̄z∗ = r̄,

where

– R̄ is a k × k nonsingular submatrix in R (k is the # of nonzero entries in z̄)

– r̄ is certain fragment of the right hand side vector r

(R and r are given by (7.4.4)).

It follows that the entries in z∗ are given by the Cramer rules – they are ratios of certain
k × k determinants taken from the k × (k + 1) matrix [R̄|r̄]:

z∗i =
∆i

∆0
.

All entries in this matrix are integers, and the total bit size of the entries does not exceed
L2. It follows that all the determinants are, in absolute value, at most 2L2 5). Thus, the
numerators in the Cramer formulae are ≤ L2 in absolute values, while the denominator
(being a nonzero integer) is in absolute value ≥ 1. Consequently, |z∗i | ≤ 2L2 .

Thus, all nonzero entries in z̄ are ≤ 2L2 in absolute values. Since z̄ is a solution to (S),
this is a point where f is nonnegative. We conclude that if the answer in (S) is “yes”, then
f attains nonpositive value in the box 0 ≤ zi ≤ 2L2 , 1 ≤ i ≤ N , so that the answer in (S′′)
also is “yes”.

• (S′′) as a convex program. To solve problem (S′′) is exactly the same as to check
whether the optimal value in the optimization program

f(z)→ min | z ∈ G = {z ∈ Rn | 0 ≤ zi ≤ 2L2 , i = 1, ..., N} (7.4.5)

is or is not positive. The objective in the problem is easily computable convex function
(since it is maximum of M linear forms), and the domain G of the problem is a simple
solid - a box. Remark 7.1.1 explains how to imitate the First order and the Separation
oracles for the problem; we can immediately point out the initial ellipsoid which contains
G (simply the Euclidean ball circumscribed around the cube G). Thus, we are able to solve
the problem by the Ellipsoid method. From Theorem 7.2.1 (where one should estimate the
quantities V and maxG f −minG f via L2; this is quite straightforward) it follows that in

5This is a consequence of the Hadamard inequality: the absolute value of a determinant (≡ the volume of the
parallelotope spanned by the rows of the determinant) does not exceed the product of the Euclidean lengths of
the rows of the determinant (product of the edges of the parallelotope). Consequently, log2|∆i| does not exceed
the sum of binary logs of the Euclidean lengths of the rows of [R̄|r̄]. It remains to note that the binary logarithm
of the Euclidean length of an integer vector clearly does not exceed the total bit length of the vector:

1

2
log2(a2

1 + ...+ a2
k) ≤ 1

2
log2[(1 + a2

1)(1 + a2)2...(1 + a2
k)] =

k∑
i=1

1

2
log2[1 + a2

i ] ≤
k∑
i=1

log2[1 + |ai|]

and the latter expression clearly is ≤ the total # of binary digits in integers a1, ..., ak.
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order to approximate the optimal value f∗ in (7.4.5) within a prescribed absolute accuracy
ν > 0, it suffices to perform

Nν = O(1)N2[L2 + ln
1
ν

]

steps with at most O(1)(M +N)N arithmetic operations per step, which gives totally

M(ν) = O(1)N3(M +N)[L2 + ln
1
ν

] (7.4.6)

arithmetic operations (O(1) here and in what follows are positive absolute constants).

All this looks fine, but in order to detect whether the optimal value f∗ in (7.4.5) is or is
not nonpositive (i.e., whether (S) is or is not solvable), we should distinguish between two
“infinitesimaly close to each other” hypotheses f∗ ≤ 0 and f∗ > 0, which seems to require
the exact value of f∗; and all we can do is to approximate “quickly” f∗ to a prescribed
accuracy ν > 0, not to find f∗ exactly.

Fortunately, our two hypotheses are not infinitesimaly close to each other – there is a
“gap” between them. Namely, it can be proved that

if the optimal value f∗ in (7.4.5) is positive, it is not too small, namely f∗ ≥ 2−π(L2) with
certain polynomial π(·) 6).

The latter remark says that to distinguish between the cases f∗ ≤ 0 and f∗ > 0 means
in fact to distinguish between f∗ ≤ 0 and f∗ ≥ 2−π(L2); and to this end it suffices to
restore f∗ within absolute accuracy like ν = 2−π(L2)−2. According to (7.4.6), this requires
O(1)N3(N +M)[L2 + π(L2)] arithmetic operations, which is not more than a polynomial
of L2 and, consequently, of L (since L2 is bounded from above by a polynomial of L).

Thus, we indeed can decide whether f∗ is or is not nonpositive or, which is the same,
whether (S) is or is not solvable, in polynomial in L number of arithmetic operations.

This is not exactly what we need: our complexity model counts not arithmetic, but bit-
wise operations. It turns out, anyhow (the verification is straightforward, although very
dull), that one can apply the Ellipsoid method with inexact arithmetic instead of the
exact one, rounding the intermediate results to a polynomial in L number of accuracy
digits, and it still allows to restore f∗ within required accuracy. With the resulting inexact
computations, the bit-wise overall effort becomes polynomial in L, and the method becomes
polynomial.

Thus, (S) is polynomially solvable.

6The proof (I skip the details) is completely similar to that one of Lemma 7.4.1: we again exploit the fact that
f∗ is the optimal value in certain LP program with integer data of the polynomial in L2 total bit size, namely, in
the program

t→ min | t ≥ (Pz)i − pi, i = 1, ..., N, 0 ≤ zi ≤ 2L2 .

The optimal value in this problem is achieved at an extreme point, and this point, same as in Lemma 7.4.1, is
rational with not too large numerators and denominators of the entries. Consequently, the optimal value of t is
rational with not too large numerator and denominator, and such a fraction, if positive, of course, is not too close
to 0.
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From Solvability back to Feasibility

It remains to explain how, given possibility to solve in polynomial time the Solvability problem
(S), one could solve in polynomial time the Feasibility problem (7.4.4) and thus – the original
problem (7.4.1).

First of all, we solve (S) – we already know how to do it in polynomial time. If the answer
in (S) is “no”, then (7.4.4) is unsolvable, and we are done. It remains to consider the case when
the answer in (S) is “yes”; here we should point out explicitly the solution to the system

(*0): Pz ≤ p, z ≥ 0.

Let us act as follows. Take the first inequality P T1 z ≤ p1 in the system Pz ≤ p and make it
equality. This will give us a new system (*+

1 ) of, basically, the same bit size. as the one of (*0).
Let us check in polynomial time whether this new system is solvable. If it is so, let (*1) be
the system obtained from (*0) by replacing the first inequality with the equality; note that this
system is solvable, and all solutions to it are solutions to (*0). If (*+

0 ) is unsolvable, it means
that the hyperplane Π = {P T1 z = p1} does not intersect the solution set of (*0). Since the latter
set is nonempty and convex, the only possibility for the hyperplane Π not to intersect this set
is when the inequality P T1 z ≤ p1 is redundant in system (*0) – when eliminating this inequality
from the system, we do not vary the solution set. If it is the case, let us define (*1) as the system
obtained from (*0) by eliminating the first inequality.

Let us look what we get. Solving in polynomial time problem (S) associated with the system
(*+

1 ) with basically the same bit size as the one of (7.4.4), we have updated the initial system
of inequalities (*0) into a new system (*1); this new system is solvable, and every solution to it
is a solution to (*0) as well, and the new system has one inequality less than the initial system.

Now let us apply the same trick to system (*1), trying to make the equality the second
inequality P T2 z ≤ p2 of the initial system; as a result, we will “kill” this second inequality –
either make it the equality, or eliminate it at all – and all solutions to the resulting system (*2)
(which for sure will be solvable) will be solutions to (*1) and, consequently, to the initial system
(*0).

Proceeding in this manner, we in M steps (M is the row size of P ) will “kill” all the
inequalities Pz ≤ p - some of them will be eliminated, and some - transformed into equalities.
Now let us kill in in the same fashion the inequalities zi ≥ 0, i = 1, ..., N . As a result, in N
more steps we shall “kill” all inequalities in the original system (*0), including the nonnegativity
ones, and shall end up with a system of linear equations. According to our construction, the
resulting system (*M+N ) will be solvable and every solution to it will be a solution to (*0).

It follows that to get a solution to (*0) it remains to solve the resulting solvable system
(*M+N ) of linear equations by any standard Linear Algebra routine (all these routines are
polynomial).

Note that the overall process requires to solve N +M Solvability problems of, basically, the
same bit size as (7.4.4) and to solve a system of linear equations, again of the same bit size as
(7.4.4); thus, the overall complexity is polynomial in the size of (7.4.4).

The proof of polynomial time solvability of LP over Rationals – which might look long and
dull – in fact uses absolutely simple and standard arguments; the only nonstandard – and the
key one – argument is the Ellipsoid method.
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7.4.3 More History

Although the Ellipsoid method as applied to LP turns out to be polynomial – and therefore,
theoretically, much more efficient than the non-polynomial Simplex method – in practical compu-
tations the Simplex (which – it is a kind of mystery why – never works according to its disastrous
theoretical worst case efficiency bound) is incredibly better than the Ellipsoid method, so that it
makes absolutely no sense to think that the Ellipsoid method can be competitive with Simplex
as a practical LP tool. Nevertheless, the “complexity approach” to LP proved itself to be fruitful
not only in theory. In 1984, N. Karmarkar developed a new polynomial time algorithm for LP –
the first of the interior point methods which are in great fashion now – and this method turned
out to be quite competitive with the Simplex method in practical computations, not speaking
about great theoretical advantage of polynomiality shared by the method of Karmarkar.
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Lecture 8

Constrained Minimization: Elements
of Theory

We start investigating numerical methods for constrained optimization, and this lecture will be
mainly devoted to the summary of notation, terminology and optimality conditions. Those of
you who passed through the course “Optimization I” should be familiar with the material, even
in a little bit more general form; therefore in what follows I skip part of the proofs. I think,
anyhow, that it makes sense to summarize our expected knowledge.

8.1 Nonlinear Programming problems

A general Nonlinear Programming program is the problem

(P) :
minimize f(x)
subject to

[equality constraints:] h(x) ≡




h1(x)
h2(x)
· · ·

hm(x)


 = 0,

[inequality constraints:] g(x) ≡




g1(x)
g2(x)
· · ·
gk(x)


 ≤ 0.

Here

• the design vector x varies over certain Rn;

• the objective f(x), the equality constraints hi(x), i = 1, ...,m, and the inequality constraints
gj(x), j = 1, ..., k, are smooth (at least twice continuously differentiable) functions on Rn.

The standard terminology related to problem (P) is as follows:

• a feasible solution to (P) is any point x ∈ Rn which satisfies all the equality and inequality
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constraints of the problem1). (P) is called feasible, is it has at least one feasible solution;
the set of all these feasible solutions is called the feasible set of the problem.

• For a feasible solution x, some of the inequality constraints can be satisfied at x as strict in-
equalities (i.e., gj(x) < 0), and some – as equalities: gj(x) = 0. The inequality constraints
of this latter type are called active at x∗, and those of the former type – nonactive. The
reason for this terminology is clear: for a nonactive at x inequality constraint we have
gj(x) < 0; from continuity of gj it follows that the constraint is satisfied in a neighbour-
hood of x as well; in other words, such an inequality locally does not participate in the
problem: it makes no influence on feasibility/infeasibility of candidate solutions close to
x (of course, “far” from x such an inequality can also come into the play). In contrast to
this, an active at x inequality cannot be neglected even in a small neighbourhood of the
point: normally, it influences feasibility/infeasibility of close to x candidate solutions.

• If among feasible solutions of (P) there exists (at least) one x∗ with the smallest value of
the objective:

f(x∗) ≤ f(x) for every x feasible for (P),

then (P) is called solvable, and any (feasible!) x∗ with the indicated property is called a
(globally) optimal solution to (P);

• If a feasible solution x∗ is “the best” – with the smallest value of the objective – among
all feasible solutions close enough to x∗:

∃r > 0 : f(x∗) ≤ f(x) for every x feasible for (P) and such that |x− x∗| < r,

then x∗ is called locally optimal solution to (P).

Among general Nonlinear Programming problems (P), the following two particular cases
should be mentioned:

• equality constrained problems (only equality constraints hi(x) = 0 and no inequality con-
straints gj(x) ≤ 0 are present),

and

• inequality constrained problems (vice versa, only inequality constraints gj(x) ≤ 0 and no
equality constraints hi(x) = 0 are present).

Note that there are various possibilities to convert a general problem (P) into an equivalent
equality constrained problem; e.g., you can associate with every inequality constraint

gj(x) ≤ 0

additional slack variable sj and replace this inequality with the equality

hm+j(x, s) = gj(x) + s2
j = 0;

1note that we use the same word “constraints” for functions hi and gj and for relations like hi(x) = 0, gj(x) ≤ 0
involving these functions. This saves words and never causes misunderstandings; e.g., it is absolutely clear that
when saying “the gradients of the constraints”, we speak about the functions (only a function, not a relation, may
have a gradient!), while saying “such and such x satisfies such and such constraint”, we speak about relations,
not functions.
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adding these equalities to the list of equality constraints of the original problem, you come to a
new problem

f(x)→ min | hi(x) = 0, i = 1, ...,m, hi(x, s) = 0, i = m+ 1, ...,m+ k

with m + k equality constraints and extended vector of design variables (x, s1, ..., sk) ∈ Rn+k.
This equality constrained problem (P′) clearly is equivalent to the original problem (P), namely:

• a point x is feasible for (P) if and only if it can be extended, by a properly chosen s =
(s1, ..., sk) to a feasible solution (x, s) for (P′);

• a point x∗ is globally/locally optimal solution of (P) if and only if it can be extended,
by properly chosen s∗ = (s∗1, ..., s∗k), to a globally, respectively, locally optimal solution to
(P′).

It follows that in principle we could restrict our considerations with equality constrained prob-
lems only. This, anyhow, makes no sense, since when passing from (P) to (P′), we extend the
dimension of the design vector which not always is desirable. There are also cases when the
transformation (P) 7→ (P′) “kills” nice structure of the original problem. The most evident
example here is Convex Programming known to us from the previous lecture. In our current
format, (P) is a convex program if it is inequality constrained and all the objective and the
constraints are convex functions; we also could allow equality constraints, but only linear one,
since a nonlinear equality constraint, generally speaking, defines a “curved” surface, so that
the feasible set of the problem more ore less inavoidable becomes nonconvex, in contrast to
what should be the case in Convex Programming. When passing from a convex program (P)
to an equivalent equality constrained program, we loose convexity – as it was just explained, a
problem with nonlinear equality constraints (and these are exactly the constraints we get after
conversion) normally is nonconvex; as a result, in the case in question we loose possibility to
solve the problem by efficient Convex Programming methods.

Thus, although possible theoretically, it makes no sense to restrict ourselves once for ever
with the equality constrained problems only. At the same time, it would be too complicated to
speak all the time about the most general case where both inequality and equality constraints
are present. What people normally do (and what we shall do as well) is a kind of compromise:
usually we shall consider separately the equality and the inequality constrained cases. As about
the general “mixed” case, you should remember that all said about the equality constrained case
can be extended, via the aforementioned transformation (P)7→(P′), onto this mixed case.

8.2 Geometry of Constraints and Optimality Conditions

A good way to imagine an optimization problem is to think of it as of the problem of minimizing
the objective over the feasible set, let it be called S. Let us look what is this feasible set
geometrically, and what are the conditions for a point from this set to be a locally optimal
solution. This latter issue is of great importance for us, since these are the optimality conditions
which govern many of the algorithms to be described. These algorithms check whether at the
current iterate the optimality condition is satisfied, and if it is violated, update the iterate,
guided by the “residuals” in the conditions. This is exactly as in unconstrained minimization:
the necessary optimality condition is given by vanishing of the gradient of the objective at a
point (the Fermat rule); the “residual” in this condition is the gradient itself. And the gradient
is exactly the quantity which governed all our actions in unconstrained minimization.
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8.2.1 Equality constrained case

Surfaces and tangent planes

Consider the case of an equality constrained problem (P); here the feasible set is given by a
number of smooth scalar equalities:

S = {x ∈ Rn | hi(x) = 0, i = 1, ...,m}; (8.2.1)

of course, we can replace this system of scalar equations by a single vector equation:

S = {x ∈ Rn | h(x) ≡




h1(x)
h2(x)
. . .

hm(x)


 = 0}. (8.2.2)

Geometrically, a system of scalar equations defines a surface in Rn, so that an equality con-
strained program is to minimize a given objective over a given surface. The word “surface”
in the above sentence, anyhow, has no precise mathematical meaning, and the sentence itself
appeals to geometric intuition, not to detailed understanding. Indeed, consider the equation

h(x) ≡ x2
1 + x2

2 − 1 = 0 (8.2.3)

in 2D plane; everybody knows that this equation defines the unit circumference centered at
the origin; this doubtless is quite respectable “surface”, better to say curve. Now consider the
equation

h(x) ≡ x2
2 − x2

1 = 0 (8.2.4)

which looks as good as the previous one. But noticing that

h(x) = (x2 − x1)(x2 + x1),

we discover that the equation h(x) = 0 defines the set comprised of two straight lines:

l1 = {x | x2 = x1} and l2 = {x | x2 = −x1}.
In a neighbourhood of the origin, which is the intersection point of the lines, is this pair of lines
“one surface” or “two of them”? Geometrically, of course, two! Let me add that an arbitrary
closed subset in Rn can be represented as the set of zeros of smooth (infinitely many times
continuously differentiable) scalar function, so that it makes no geometric sense at all to think
that “a smooth equality constraint defines a surface” – a general type closed subset in Rn – and
even on the one-dimensional axis – may be absolutely pathologic from the geometric viewpoint,
and in fact no geometric intuition can be applied to such a set.

We see that in order to get a “geometrically tractable” feasible sets and to avoid singularities
which, generally speaking, make it impossible to say something reasonable about the set and,
consequently, about the optimization problem associated with the set, we should impose on the
constraints some additional, compared to smoothness, regularity assumptions. The most evident
geometrical property of a “respectable” surface is that it should admit, at every point from it,
a “tangent plane” – be well-approximated by a plane.

The natural candidate onto the role of the tangent plane to the surface S at a point x ∈ S is
the set Hx of those points y which satisfy the system of linear equations obtained by linearization
at x of the smooth equations defining S. These linearizations are

h̄i[y] = hi(x) + (y − x)T∇hi(x) = (y − x)T∇hi(x)
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(the second equality comes from hi(x) = 0; recall that x ∈ S). Consequently,

Tx = {y | (y − x)∇hi(x) = 0, i = 1, ...,m} = {y | ∇h(x)(y − x) = 0}, (8.2.5)

∇h(x) =




[∇h1(x)]T

. . .
[∇hm(x)]T




being the m× n derivative of the vector-valued mapping h(·) at x.
Whether this candidate indeed is good, it depends on the situation. E.g., for the circumfer-

ence S given by (8.2.3) the indicated equation defines, for x = (1, 0)T ,

Tx = {y | y1 = 1};
this indeed is the equation of the geometric tangent line to the circumference at the point in
question.

For the pair of lines S given by equation (8.2.4) relation (8.2.5) applied at the point x′ =
(1, 1)T results in

Tx′ = {y | y1 = y2};
since in a small enough neighbourhood of x′ S coincides with the line x1 = x2, this is fine tangent
line – locally it even not approximates, but reproduces exactly the surface! But at the point
x′′ = (0, 0)T , which also belongs to S, relation (8.2.5) results in

Tx′′ = R2,

which makes no geometrical sense2).
Thus, there should be certain regularity assumptions which imply that (8.2.5) indeed is,

geometrically, a tangent plane to S at x; and since the existence of the tangent plane is, ge-
ometrically, the most basic property of a “respectable surface”, these assumptions imply, as a
byproduct, that S itself “is a surface”. The indicated assumptions are given by one of the most
general and important theorems of Analysis – the Implicit Function Theorem; they simply say
that the set of gradients of the constraints at x should be linearly independent.

Definition 8.2.1 Let

h(x) ≡




h1(x)
h2(x)
. . .

hm(x)


 = 0 (8.2.6)

be a system of equality constraints, and let x̄ be a solution to the system. This solution is called
regular for the system, if the vectors

∇hi(x̄), i = 1, ...,m,

are linearly independent, or, which is the same, if the m× n matrix ∇h(x̄) with the rows being
the gradients of the constraints h1, ..., hm at x̄ has full row rank m.

2You may think that in the latter case everything also is ok: in a neighbourhood of the origin, which is the
intersection of the two straight lines comprising S, S is not a “respectable” geometrical surface, so that there is
nothing strange that (8.2.5) fails to represent the tangent line to S at the point – no such a line exists at all!
Unfortunately, even a quite respectable surface can be defined by a badly chosen system of equality constraints,
and in this case (8.2.5) fails to represent a geometrically well-defined object. Look what happens if we represent
circumference S by the equation

h(x) ≡ (x2
1 + x2

2 − 1)2 = 0;

applying (8.2.5), you will get a crazy answer Tx = R2 for every x ∈ S!
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The next statement says that if x is a regular solution for system (8.2.6), then (8.2.5) indeed
defines the tangent plane to S at the point (and also explains what the words “tangent plane”
mean).

Theorem 8.2.1 [Theorem on Tangent Plane] Let S be given by (8.2.6), and let x ∈ S be a
regular solution of the corresponding system of equations with twice continuously differentiable
constraints hi, i = 1, ...,m. Then the plane Tx given by (8.2.5) is the tangent plane to S at x,
namely, there exists constant C such that

• the distance from an arbitrary point x′ ∈ S of the surface to Tx is of the second order of
magnitude as compared to the distance from x′ to x:

∀(x′ ∈ S) ∃(y′ ∈ Tx) : |x′ − y′| ≤ C|x′ − x|2;

• vice versa, the distance from an arbitrary point y′ ∈ Tx of the tangent plane to the surface
is of the second order of magnitude as compared to the distance from y′ to x:

∀(y′ ∈ Tx) ∃(x′ ∈ S) : |x′ − y′| ≤ C|y′ − x|2.

The Theorem provides us, among other, with exact translation to rigorous language of the
geometric notion of a “plane tangent to a surface at a point x of the surface” – roughly speaking,
the plane should approximate the surface locally within accuracy which is “infinitesimal of
highest order” as compared to the distance to x.

First order optimality condition

Now let us ask ourselves the following crucial question:

(?) given an equality constrained problem

(P) f(x)→ min | h(x) ≡


h1(x)
. . .

hm(x)


 = 0 (8.2.7)

– the problem of minimizing smooth objective f over the surface S given by equality constraints,
and given a feasible solution x∗ to the problem, what are the conditions – necessary, sufficient,
or both – for x∗ to be locally optimal?

The first idea which comes to our mind is as follows. Assume that x∗ is a regular point of the
system of constraints in question, so that the plane T tangent to the surface S at the point x∗ is
well-defined. This plane is a “tight” approximation of the surface around x∗, and it is natural to
conjecture that x∗ should be optimal solution to the “approximate problem” where S is replaced
with T , and the actual objective is replaced with its linearization at the point x∗ – with the
linear form f̄(x) = f(x∗) + (x − x∗)T∇f(x∗). Let us believe in this conjecture and look what
are the consequences. If x∗ is local minimizer of the linear form f̄ in the plane T – this plane,
geometrically, is certain Rk – then, by the usual Fermat rule, the derivative of f̄ taken at x∗ in
every direction along the plane T should be zero:

eT∇f(x∗) = 0 ∀e : x∗ + e ∈ T.
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We know what is the tangent plane T : according to (8.2.5), it is given by the system of linear
equations

(y − x∗)T∇hi(x∗) = 0, i = 1, ...,m,

or, which is the same, by the system

∇h(x∗)(y − x∗) = 0.

In particular, a direction e looks along T (i.e., x∗ + e ∈ T ) if and only if

eT∇hi(x∗) = 0, i = 1, ...,m [⇔ ∇h(x∗)e = 0].

Thus, our conjecture is as follows:

if x∗ is locally optimal in (P), then ∇f(x∗) should be orthogonal to the linear subspace

L = T − x∗ = {e | ∇h(x∗)e = 0}.
Now, from Linear Algebra it is known that a vector p (in our case – ∇f(x∗)) is orthogonal to
the linear subspace given by the system

Ae = 0

(in our case A = ∇h(x∗)) if and only if the vector belongs to the image space of the matrix AT :
p+ATλ = 0 for certain vector λ, or, which is the same, that p is linear combination of the rows
of A, the entries of −λ being the coefficients of the combination. It follows that our conjecture
is equivalent to the following assertion:

If x∗ is locally optimal for (P), then there exist m-dimensional vector λ∗ (the vector of Lagrange
multipliers) such that

∇f(x∗) + [∇h(x∗)]Tλ∗ ≡ ∇f(x∗) +
m∑

i=1

λ∗i∇hi(x∗) = 0 (8.2.8)

(note that the rows of ∇h(x∗) are exactly the gradients of hi).

Note that relation (8.2.8) can be equivalently written down as the equation

∇xL(x∗;λ∗) = 0,

where

L(x;λ) = f(x) +
m∑

i=1

λihi(x)

is the Lagrange function of problem (P).

All our conclusions were based upon our initial conjecture: if x∗ is locally optimal in (P),
then it is also locally optimal in the approximate problem where the feasible surface S is replaced
with the tangent plane T , and the objective f – with its linearization f̄ . This conjecture, and
consequently, all its conclusions turn out to be true:

Theorem 8.2.2 [First Order Necessary Optimality conditions for Equality Constrained Prob-
lem – the Lagrange rule]
Let x∗ be a locally optimal solution of the equality constrained problem (8.2.7), and let it be
a regular point for the system of equality constraints of the problem. Then the following two
equivalent to each other properties take place:
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• The directional derivative of f taken at x∗ in every direction along the plane

T = {y | ∇h(x∗)(y − x∗) = 0}

tangent to the surface at x∗ is zero:

∇h(x∗)e = 0⇒ eT∇f(x∗) = 0; (8.2.9)

• there exists uniquely defined by x∗ vector of Lagrange multipliers λ∗i , i = 1, ...,m, such that

∇f(x∗) +
m∑

i=1

λ∗i∇hi(x∗) = 0,

or, which is the same,
∇xL(x∗;λ∗) = 0,

L(x;λ) = f(x) +
m∑

i=1

λihi(x) ≡ f(x) + λTh(x)

being the Lagrange function of the problem.

Proof will be outlined only.
What we should prove is the implication (8.2.9), i.e., the first of the two equivalent for-

mulations of the necessary optimality conditions, since the second of them is obtained from
the first one by the standard Linear Algebra arguments (in particular, uniqueness of λ∗ comes
from regularity of x∗, i.e., from linear independence of ∇hi(x∗): since these vectors are linearly
independent, the gradient of the objective may have at most one representation as a linear
combination of the gradient of the constraints).

Let us prove (8.2.9) by contradiction. Namely, assume that there exists a direction e parallel
to the tangent plane:

∇h(x∗)e = 0

and non-orthogonal to ∇f(x∗). By replacing e, if necessary, with −e we can assume that e is a
descent direction of the objective:

eT∇f(x∗) < 0.

Now consider the ray
yt = x∗ + te;

since e is parallel to T , this ray belongs to the tangent plane. We have

d

dt
|t=0f(yt) = eT∇f(x∗) ≡ −α < 0,

whence for all small enough nonnegative t, say, 0 ≤ t ≤ δ,

f(yt) ≤ f(x∗)− α

2
t. (8.2.10)

Since x∗ is regular for the system of constraints of the problem, by Theorem 8.2.1 there exists,
for every t, a point xt ∈ S such that

|yt − xt| ≤ C|yt − x∗|2 = C1t
2, C1 = C|e|2;
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from this inequality, xt (and, of course, yt) converge to x∗ as t → +0. Since f is continuously
differentiable, it is Lipschitz continuous in a neighbourhood of x∗, so that for small enough
positive t we have

|f(xt)− f(yt)| ≤ C2|xt − yt| ≤ C1C2t
2.

Combining this inequality with (8.2.10), we obtain

f(xt) ≤ f(x∗)− α

2
t+ C1C2t

2

for all small enough positive t. The right hand side of the latter inequality is strictly less than
f(x∗), provided that t is positive and small enough; we see that for indicated t xt is a feasible
solution of the problem (recall that xt ∈ S by construction) with better than that one of x∗

value of the objective. As t→ +0, these better solutions converge to x∗; consequently, x∗ is not
locally optimal, and this is the desired contradiction.

The main advantage of the First Order Necessary Optimality Condition is that it allows to reduce
the problem of identifying all candidates to the role of regular for the system of constraints locally
optimal solutions to (8.2.7) to solving a square system of (nonlinear) equations. Indeed, such
a solution should, for certain λ = λ∗, satisfy the system of n equations ∇xL(x;λ) = 0, and,
besides this, satisfy the m equations hi(x) = 0, i = 1, ...,m – the equality constraints of the
problem. Noticing that hi(x) = ∂

∂λi
L(x, λ), we can write down this system of n + m equations

with n+m unknowns x and λ in very nice symmetric form:

∇xL(x;λ) = 0, (8.2.11)

∇λL(x;λ) = 0. (8.2.12)

Second Order Optimality conditions

Same as in the unconstrained case with the Fermat rule, the First Order Optimality conditions
for equality constrained problems given by the Lagrange rule are not quite satisfactory. Namely,
these are only necessary and not sufficient conditions for local optimality (and how could they
be sufficient? They do not distinguish between (constrained) local minima and local maxima of
f !). In the unconstrained case, the Fermat rule is accompanied by the Second Order Optimality
condition:

• [necessary part] if a critical point x∗ of f (i.e., satisfying the Fermat rule ∇f(x∗) = 0) is
local minimum of f , then the Hessian of f at x∗ is positive semidefinite:

eT∇2f(x∗)e ≥ 0 ∀e ∈ Rn.

• [sufficient part] if a critical point x∗ of f is such that the Hessian of f at x∗ is positive
definite:

eT∇2f(x∗)e > 0 ∀0 6= e ∈ Rn,

then x∗ is local minimizer of f .

One could think that the extension of these second order conditions onto the equality constrained
case if as follows: at a locally optimal solution, the Hessian of the objective should be positive
semidefinite along the tangent plane, and if it is positive definite along this plane and the first
order optimality conditions are satisfied, then the point is locally optimal; this idea comes from
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considering the approximate version of the problem where the actual feasible surface is replaced
with its tangent plane at the point in question. The indicated conjecture is not true at all, and
it is clear why: the second order optimality conditions come from analyzing the second-order
approximation of the objective on the feasible set. When this set is “curved”, as it is the case
in equality constrained problems with nonlinear equality constraints, the “curvature” of the
feasible surface influences the second-order behaviour of the objective on the surface, and we
are unable to get correct conclusions looking at the behaviour of the objective on the tangent
plane (the latter plane is only first-order approximation of the feasible surface). The correct
statement deals not with the objective, but with the Lagrange function, and is as follows:

Theorem 8.2.3 [Second Order Optimality Conditions for Equality Constrained problems]
Let x∗ be a feasible solution for the equality constrained problem (8.2.7), let x∗ be regular for the
system of constraints of the problem, and let

L(x;λ) = f(x) +
m∑

i=1

λihi(x) = f(x) + λTh(x)

be the Lagrange function of the problem. Then

• [Second Order Necessary Optimality condition]

Let x∗ be locally optimal solution of the problem. Then x∗ satisfies the First Order Opti-
mality condition:

∃λ∗ : ∇xL(x∗;λ∗) = 0; ∇λL(x∗;λ∗) = 0 (8.2.13)

and, besides this, the Hessian of the Lagrangian with respect to x, reduced to the tangent
plane, is positive semidefinite:

∇h(x∗)e = 0⇒ eT [∇2
xL(x∗;λ∗)]e ≥ 0. (8.2.14)

• [Second Order Sufficient Optimality condition]

Let x∗ satisfy the First Order Optimality condition

∃λ∗ : ∇xL(x∗;λ∗) = 0; ∇λL(x∗;λ∗) = 0 (8.2.15)

and let, besides this, the Hessian of the Lagrangian with respect to x, reduced to the tangent
plane, be positive definite:

∇h(x∗)e = 0, e 6= 0⇒ eT [∇2
xL(x∗;λ∗)]e > 0. (8.2.16)

Then x∗ is locally optimal solution to the problem.

Please remember that

The “second order part” of the Second Order Optimality condition deals only with the restriction
of the Hessian of the Lagrangian onto the tangent plane, not with the entire Hessian; there could
be “directions of negative curvature” for the Hessian at x∗, but only transversal (not tangent)
to the feasible set ones.

Proof of the Theorem is skipped.
It is worthy to introduce a special name for “good” locally optimal solutions to (8.2.7):
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Definition 8.2.2 A feasible solution x∗ to problem (8.2.7) which is

• regular for the constraints of the problem

and

• satisfies the Second Order Sufficient Optimality conditions (8.2.15) - (8.2.16)

is called nondegenerate solution to the problem.

Note that the Second Order Sufficient Optimality conditions (8.2.15) - (8.2.16) involve not only
x∗, but also the Lagrange multipliers λ∗, so that it is unclear in advance whether the above
definition is “correct”, i.e., whether it indeed represents certain property of x∗ alone, not one
of the pair (x∗, λ∗). Luckily, since x∗ is regular for the constraints, the vector of Lagrange
multipliers λ∗ satisfying (8.2.15), if exists, is uniquely defined by x∗, so that the definition
indeed is correct. Note also that, by Theorem 8.2.3, a nondegenerate solution of (8.2.7) is
locally optimal.

Lagrange Multipliers and Sensitivity Analysis

The Lagrange multipliers λ∗ associated with the equality constrained problem (8.2.7) have very
natural interpretation: they are responsible for variations of the optimal value with respect to
violations of the constraints. Namely, let us embed problem (8.2.7) into the family of problems

(Pb) f(x)→ min | h(x) ≡


h1(x)
. . .

hm(x)


 = b, (8.2.17)

b being the m-dimensional “parameter vector” (the original problem corresponds to b = 0),
and let us look what happens with a (nondegenerate) local solution to the problem when the
parameter vector varies; this is called sensitivity analysis, and this is a very important phase of
processing real-world optimization problems. The answer is given by the following

Theorem 8.2.4 Consider parameterized family of problems (8.2.17), let x∗ be a nondegenerate
solution to problem (P0), and let λ∗ be the corresponding vector of Lagrange multipliers from the
First Order Optimality condition. Then there exist

• small enough neighbourhood U of the point x∗ in the space Rn of the design vectors,

• small enough neighbourhood V of the point b = 0 in the space Rm of the parameters,

• continuously differentiable functions

x∗(b) : V → U ⊂ Rn; λ∗(b) : V → Rm [x∗(0) = x∗, λ∗(0) = λ∗]

such that

• whenever b is close enough to 0, namely, whenever b ∈ V , x∗(b) ∈ U is a nondegenerate
locally optimal solution to the “perturbed” problem (Pb), λ∗(b) being the corresponding
vector of Lagrange multipliers; x∗(b) is the only point in U which satisfies the First Order
Necessary Optimality condition in perturbed problem;
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• for b ∈ V , −λ∗i (b) are the derivatives of the “local optimal value”

f∗(b) ≡ f(x∗(b))

with respect to b:
∇bf∗(b) = −λ∗(b). (8.2.18)

Proof is given by the more or less straightforward application of the Implicit Function Theorem;
I skip it here (it is outlined in the optional exercise to the lecture).

8.2.2 General case

Now consider the case when the problem includes both equality and inequality constraints, so
that it is of the form

f(x)→ min | x ∈ F ⊂ Rn, (8.2.19)

and the feasible set is given by

F = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}, h(x) =



h1(x)
. . .

hm(x)


 , g(x) =



g1(x)
. . .
gk(x)


 . (8.2.20)

Geometrically, the feasible set is the intersection of the already known to us surface S given
by the equality constraints and the domain G given by the inequalities (normally, a system
of smooth inequalities defines a domain – a set with a nonempty interior; on this interior the
inequalities are satisfied as strict – < instead of ≤, and the boundary is characterized by the
fact that at least one of the inequalities becomes equality). As in the equality constrained case,
in order for the feasible set to be “respectable” – to fit geometric intuition and to enable us
to characterize solutions to the problem – it should satisfy reasonable regularity assumptions.
The most convenient for us assumption of this type is given by the following modification of
Definition 8.2.1:

Definition 8.2.3 [Regular point of a general system of constraints] Let x be a point satisfying
system (8.2.20) of equality and inequality constraints, and let

I(x) = {j : gj(x) = 0}

be the set of indices of the inequality constraints active at x. x is called regular for the system
of constraints in question, if the set comprised of

• the gradients ∇hi(x), i = 1, ..., n, of all the equality constraints

• the gradients ∇gj(x), j ∈ I(x), of the inequality constraints active at x,

all the gradients being taken at x, is linearly independent.

The natural conjecture is that in a neighbourhood of a regular feasible solution x, the feasible
set F given by (8.2.20) can be well-approximated by the polyhedral set which we get when
linearizing all the constraints at x. The latter set is

{y ∈ Rn | hi(x) + (y − x)T∇hi(x) = 0, i = 1, ...,m, gj(x) + (y − x)T∇gj(x) ≤ 0, j = 1, ..., k}.
(8.2.21)
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In this representation we may skip the terms hi(x) – they are equal to 0, since x is feasible.
Moreover, we may drop the linear (in y) inequality constraints coming from the nonactive at x∗

original inequality constraints; this, of course, may vary the resulting set, but for sure remains it
unchanged in a small enough neighbourhood of x (in such a neighbourhood both the nonactive
inequality constraints and their linearizations are satisfied automatically). And since we think
only about local structure of the feasible set, we may forget about the nonactive constraints
at all. After the non-active inequality constraints are dropped, we may forget about the terms
gj(x) – for active constraints these terms are zeros.

Thus, we may conjecture that in a neighbourhood of a regular feasible solution x the feasible
set F should be well-approximated by the set

T̄x = {y ∈ Rn | ∇h(x∗)(y − x) = 0; (y − x)T∇gj(x) ≤ 0, j ∈ I(x)} (8.2.22)

where, as always, I(x) is the set of indices of the inequality constraints active at x. Geometrically,
(8.2.22) is a convex cone with the vertex at x; of course, this cone is contained in the tangent
plane to the surface S given by the equality constraints3.

The indicated conjecture indeed is true: from the Implicit Function Theorem one can derive
the following

Theorem 8.2.5 Let x be a regular solution of the system (8.2.20) of equality and inequality
constraints. Then the solution set F of the system is, locally at x, well-approximated by the cone
(8.2.22), namely, there exists constant C such that

• the distance from a point y′ ∈ T̄x to F is of second order of magnitude as compared to the
distance from y′ to x:

∀(y′ ∈ T̄x) ∃(x′ ∈ F ) : |y′ − x′| ≤ C|y′ − x|2;

• the distance from a point x′ ∈ F to T̄x is of second order of magnitude as compared to the
distance from x′ to x:

∀(x′ ∈ F ) ∃(y′ ∈ T̄x) : |x′ − y′| ≤ C|x′ − x|2.

First Order Optimality condition

The origin of the Lagrange rule (Theorem 8.2.2) – the first order Optimality condition for equality
constrained problems – was simple: this was the optimality condition for the “approximate”
problem which we get from the original one when replacing the objective and constraints by
their linearizations at a point in question. Similarly, the most natural way to conjecture what
should be the first order optimality conditions for a feasible solution x∗ in the general problem
(8.2.19) - (8.2.20) is to replace the problem with the Linear Programming problem obtained by
linearlization of the objective and all the constraints at x∗ (i.e., by replacing the actual feasible
set by the cone T̄x∗ , and replacing the actual objective by its linearization at x∗). Looking
at the resulting Linear Programming program and applying the Linear Programming Duality
Theorem, we come to the condition as follows:

The necessary and sufficient condition for x∗ to be optimal solution to the linearized problem

f(x∗) + (x− x∗)∇f(x∗)→ min | x ∈ T̄x∗
3note that the cone should not necessary be pointed, i.e., it may contain straight lines; in particular, it can be

an affine set, e.g., the entire tangent plane to S, as it is the case when no inequality constraints are active at x
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is existence of Lagrange multipliers λ∗i for the equality constraints and nonnegative Lagrange
multipliers µ∗j for the active at x∗ inequality constraints, such that

∇f(x∗) +
m∑

i=1

λ∗i∇hi(x∗) +
∑

j∈I(x∗)
µ∗j∇gj(x∗) = 0.

Same as in the equality constrained case, the conjecture which led us the these conclusions,
turns out to be true (provided that x∗ is regular for the constraints):

Theorem 8.2.6 [Karush-Kuhn-Tucker Necessary Optimality Conditions]
Let x∗ be a locally optimal solution to problem (8.2.19) - (8.2.20), and assume that x∗ is regular
for the constraints (8.2.20) of the problem. Then there exist uniquely defined

• Lagrange multipliers λ∗i , i = 1, ..., n, for the equality constraints

• nonnegative Lagrange multipliers µ∗j for the active at x∗ inequality constraints [j ∈ I(x∗) =
{j ≤ k : gj(x∗) = 0}]

such that

∇f(x∗) +
m∑

i=1

λ∗i∇hi(x∗) +
∑

j∈I(x∗)
µ∗j∇gj(x∗) = 0. (8.2.23)

Proof of the Theorem is skipped.
In the latter theorem, the Lagrange multipliers µ∗j were associated only with the active

inequality constraints. We loose nothing when associating these multipliers also with non-active
inequality constraints and setting for these constraints µ∗j = 0. With this convention, the latter
Theorem can be reformulated in terms of the Lagrange function

L(x;λ, µ) = f(x) +
m∑

i=1

λihi(x) +
k∑

j=1

µjgj(x)

of the problem as follows (cf. (8.2.11) - (8.2.12)):

Corollary 8.2.1 Assume that feasible solution x∗ to the constrained problem (8.2.19) - (8.2.20)
is regular for the constraints (8.2.20). If x∗ is locally optimal, then there exists uniquely defined
vector (λ∗, µ∗) of Lagrange multipliers such that (x∗, λ∗, µ∗) is the solution to the corresponding
KKT (Karush-Kuhn-Tucker) system of equalities and inequalities with unknowns x, λ, µ:

equations:
∇xL(x;λ, µ) = 0 [KKT equation;

n scalar equations]
∇λL(x;λ, µ) = 0 [primal feasibility hj(x) = 0;

m scalar equations]
µjgj(x) = 0 [complementary slackness;

k scalar equations]
inequalities:

gj(x) ≤ 0 [primal feasibility]
µj ≥ 0, j = 1, ..., k [nonnegativity of Lagrange multipliers

for inequalities]
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Note that the number of unknowns (n + m + k) in the KKT system equals to the number of
equality constraints in it; thus, we may expect that the system has finitely many solutions. If
we were clever enough to find all these solutions analytically, we could select among them the
one with the smallest value of the objective; according to the Corollary, it would be the globally
optimal solution to the problem, provided that the latter exists and is a regular point of the
system of constraints. Unfortunately, we normally are unable to find explicitly even a particular
KKT point of the problem (i.e., a particular solutions to the KKT system).

Second Order Optimality condition: General case

Extension of Theorem 8.2.5 onto the case of problems with both equality and inequality con-
straints is as follows:

Theorem 8.2.7 [Second Order Optimality conditions for problem (8.2.19) - (8.2.20)]
Let x∗ be a feasible solution to problem (8.2.19) - (8.2.20) which is a regular point of the system
of constraints (8.2.20), and let I(x∗) = {j | gj(x∗) = 0} be the set of indices of the active at x∗

inequality constraints. Then

• [Second Order Necessary Optimality condition]

If x∗ is locally optimal solution to the problem, then there exist uniquely defined by x∗

Lagrange multipliers λ∗, µ∗ such that (x∗, λ∗, µ∗) is a KKT point of the problem, i.e., a
solution to the KKT system presented in Corollary 8.2.1. Moreover, the Hessian of the
Lagrangian with respect to x ∇2

xL(x∗;λ∗, µ∗) is positive semidefinite on the plane tangent
to the surface given by equality and active inequality constraints of the problem:

∇hi(x∗)e = 0, i = 1, ...,m, ∇gj(x∗)e = 0, j ∈ I(x∗)⇒ eT [∇2
xL(x∗;λ∗, µ∗)e ≥ 0.

• Second Order Sufficient Optimality condition]

Assume that there exist Lagrange multipliers λ∗, µ∗ such that (x∗;λ∗, µ∗) is a KKT point
of the problem, and assume that the Hessian of the Lagrangian with respect to x

∇2
xL(x∗;λ∗, µ∗)

is positive definite on the plane tangent to the surface, the surface being given by equality
and those active inequality constraints for which µ∗j > 0

e 6= 0,∇hi(x∗)e = 0, i = 1, ...,m, ∇gj(x∗)e = 0, j ∈ I∗(x∗) ≡ j ∈ I(x∗) | mj > 0⇒

⇒ eT [∇2
xL(x∗;λ∗, µ∗)]e > 0.

Then x∗ is locally optimal solution to the problem.

Proof of the Theorem is skipped.
It makes sense to introduce a special name for “good” locally optimal solutions to (8.2.19) -

(8.2.20):

Definition 8.2.4 A feasible solution x∗ to (8.2.19) - (8.2.20) which

• is regular for the constraints of the problem,
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• satisfies the Sufficient Second Order Optimality condition from Theorem 8.2.7,

and

• is such that all given by the Second Order Optimality condition Lagrange multipliers µ∗j for
the active at x∗ inequality constraints are strictly positive rather than simply nonnegative,

is called a nondegenerate locally optimal solution to the problem.

The third requirement imposed in the definition might look strange – what for is it? Already
the first two of the requirements enforce x∗ to be locally optimal! In fact, all three requirements
make sense – all of them are needed by

Sensitivity Analysis

Given problem (8.2.19) - (8.2.20), let it be called (P), we can embed it into the m+k-parameter
family of problems

(Pb,d) f(x)→ min | h(x) ≡


h1(x)
. . .

hm(x)


 = b, g(x) ≡



g1(x)
. . .
gk(x)


 ≤ d; (8.2.24)

in this notation, (P) itself is the problem (P0,0).
It turns out that, same as in the case of equality constrained problems (see Section 8.2.1),

the Lagrange multipliers are responsible for the derivatives of the “local optimal value” with
respect to the parameters b and d of the family (8.2.24):

Theorem 8.2.8 Consider parameterized family of problems (8.2.24), let x∗ be a nondegenerate
solution to problem (P0,0), and let λ∗, µ∗ be the corresponding vector of Lagrange multipliers, so
that (x∗;λ∗, µ∗) is a KKT point of the problem (P0,1). Then there exist

• small enough neighbourhood X of the point x∗ in the space Rn of the design vectors,

• small enough neighbourhood V of the point (b, d) = (0, 0) in the space Rm × Rk of the
parameters,

• continuously differentiable functions

x∗(b, d) : V → X ⊂ Rn; quadλ∗(b, d) : V → Rm, µ∗(b, d) : V → Rk

[x∗(0, 0) = x∗, λ∗(0, 0) = λ∗, µ∗(0, 0) = µ∗]

such that

• whenever (b, d) is close enough to (0, 0), namely, whenever (b, d) ∈ V , x∗(b, d) ∈ X is a
nondegenerate locally optimal solution to the “perturbed” problem (Pb,d), λ∗(b, d), µ∗(b, d)
being the corresponding vectors of Lagrange multipliers; (x∗(b, d), λ∗(b, d), µ∗(b, d)) is the
only KKT point of problem (Pb,d) in the set of points (x, λ, µ) with x ∈ X.

• for (b, d) ∈ V , −λ∗i (b, d) and −µ∗j (b, d) are the derivatives of the “local optimal value”

f∗(b, d) ≡ f(x∗(b, d))

with respect to bi, dj, respectively:

∇bf∗(b, d) = −λ∗(b, d); ∇df∗(b, d) = −µ∗(b, d). (8.2.25)
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Assignment # 8 (Lecture 8)

Obligatory problems

Exercise 8.2.1 A curve in the 2D plane is given by the equation

h(x) ≡ x3
1 − x2

2 = 0.

Which points of the curve are regular with respect to this equality?

Exercise 8.2.2 Find the edges of the 3D box of a given surface area possessing, under this
restriction, the maximum possible volume.

Exercise 8.2.3 Prove that in a inequality constrained problem with convex objective and all the
inequality constraints the KKT Optimality Condition (Corollary 8.2.1) is sufficient condition
for a feasible solution x∗ to be globally optimal.
Hint: Take into account that from convexity of the objective and the constraints

f(x) ≥ f(x∗) + (x− x∗)T∇f(x∗)
gj(x) ≥ gj(x∗) + (x− x∗)T∇f(x∗)

for all x.

Exercise 8.2.4 Apply the Largange rule (Theorem 8.2.2) to the equality constrained problem

f(x) ≡ x1x2 + x2x3 + x3x1 → min | x1 + x2 + x3 = 3.

How many solutions to the Lagrange system (8.2.11) - (8.2.12) you have got? Which of them,
you think, are locally optimal solutions? To answer the latter question, you may use the Second
Order Optimality condition.

Optional problems

The goal of the below exercise is to prove the Sensitivity Analysis Theorem 8.2.8. To this end
let us start with the formulation of one of the most fundamental theorems of Calculus:

The Implicit Function Theorem. Let U ′ be a neighbourhood of a point u∗ ∈ RN , V ′ be a
neighbourhood of a point v∗ ∈ RM , and let

Φ(u, v) : U ′ × V ′ → RN

be s ≥ 1 times continuously differentiable vector-valued function of u ∈ U ′ and v ∈ V ′ such that

Φ(u∗, v∗) = 0

and the N ×N matrix

Φ′u(u∗, v∗) ≡ ∂

∂u
|u=u∗,v=v∗Φ(u, v)

is nonsingular.
Then there exist

• a neighbourhood U ⊂ U ′ of u∗ in RN and a neighbourhood V ⊂ V ′ of v∗ in RM ,
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• s times continuously differentiable function

u∗(v) : V → U

– the implicit function) given by the system of equations

Φ(u, v) = 0

such that

• Φ(u∗(v), v) ≡ 0, v ∈ V ;

• for every v ∈ V , the point u∗(v) ∈ U is the unique in U solution of the equality system
Φ(u, v) = 0, u being the unknown in the system.

Exercise 8.2.5 Derive Theorem 8.2.8 from the Implicit Function Theorem.
Hint: Here is the sketch of the proof.

10. Notation. Let x∗ be the nondegenerate locally optimal solution to (P0,0) in question, and
let λ∗ and µ∗ be the corresponding Lagrange multipliers. Without loss of generality, we may
assume that all inequality constraints of the problem are active at x∗ – the nonactive constraints
locally do not influence the problem, and we can drop theme.

20. Let us set
N = n+m+ k; M = m+ k.

We partition vectors u ∈ RN into parts

u = (x, λ, µ)

of the sizes n, m, k, respectively, and set

u∗ = (x∗, λ∗, µ∗).

Similarly, we partition vectors v ∈ RM into parts

v = (b, d)

of the sizes m and k, respectively, and set

v∗ = (0, 0).

Now let us define the mapping

Φ(u, v) =



∇f(x) +

∑m
i=1 λihi(x) +

∑k
j=1 µj∇gj(x)

h(x)− b
µ× (g(x)− d)




where µ× q is the dot product of k-dimensional vectors µ and q, i.e., the k-dimensional vector
given by [µ× q]j = µjqj .

Note that the system of N equations

Φ(u, v) = 0
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is nothing but the equation part of the KKT system corresponding to the problem (Pb,d).
30. Let us verify that the introduced data satisfy the premise of the Implicit Function

Theorem (where one can set U ′ = RN , V ′ = RM ). Indeed,

Φ(u∗, v∗) = 0

since x∗ is nondegenerate solution of (Pv∗)=(P0,0), and λ∗, µ∗ are the corresponding Lagrange
multipliers. All we should prove is that the matrix Φ′u(u∗, v∗) is nondegenerate. To this end it
suffices to verify that

φ′u(u∗, v∗)



dx
dλ
dµ


 = 0

only for zero dx, dλ, dµ.
Direct computation demonstrates that the latter equality is nothing but the system of linear

equalities

(α) [∇2f(x∗) +
∑m
i=1 λ

∗
i∇2hi(x∗)+∑k

j=1 µ
∗
j∇2gj(x∗)]dx+

∑m
i=1 dλi∇hi(x∗) + +

∑k
j=1 dµj∇gj(x∗) = 0

(β) (dx)T∇hi(x∗) = 0, i = 1, ...,m
(γ) µj(dx)T∇gj(x∗) = 0, j = 1, ...,m

(when computing last k rows in the matrix Φ′u(u∗, v∗), you should take into account that, by
virtue of our convention from 10, gj(x∗) = 0 for all j, so that the terms dµjgj(x∗) which occur
when differentiating Φ in fact vanish).

From (β) and (γ) it follows that dx is orthogonal to the gradients of all equality constraints
and to the gradients of those inequality constraints for which µ∗j > 0, all the gradients being
taken at x∗. With this in mind, let us take the inner product of both sides of (α) (this is an
n-dimensional vector equality) and the vector dx; we will get

(dx)T∇2
xL(x∗;λ∗, µ∗)dx = 0,

which, by definition of a nondegenerate solution and due to the already established orthogo-
nality of dx and the gradients of the equality constraints and the gradients of those inequality
constraints with µ∗j > 0, implies that dx = 0. Since dx = 0, (α) results in

m∑

i=1

dλi∇hi(x∗) +
k∑

j=1

dµj∇gj(x∗),

whence dλ = 0 and dµ = 0 (x∗ is regular for the constraints, so that the set comprised of
gradients of all the constraints is linearly independent; here again we use our convention that
all the inequality constraints are active at x∗). Thus, dx = 0, dλ = 0, dµ = 0, as claimed.

40. Since, by 30, the premise of the Implicit Function Theorem is satisfied at (u∗, v∗) with
s = 1, the theorem implies that there exists a neighbourhood V of the point v∗ = (0, 0) in the
plane of parameters identifying problems (Pv) from our family, a neighbourhood U of the point
u∗ and once continuously differentiable function

u∗(v) ≡: (x∗(b, d), λ∗(b, d), µ∗(b, d)) : V → U [v = (b, d)]

such that
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A:
Φ(u∗(v), v) ≡ 0, v ∈ V,

and for v ∈ V the point u∗(v) is the unique in U solution to the system of equations

Φ(u, v) = 0.

Since x∗ is nondegenerate, µ∗ > 0; since u∗(·) is continuous, passing, if necessary, to smaller
U and V , we may assume that

B: µ∗(v) > 0 when v ∈ V .
Now let X ′ be a neighbourhood of x∗ such that the gradients of the functions hi(x), gj(x),

i = 1, ...,m, j = 1, ..., k are linearly independent for x ∈ X ′; since these gradients are linearly
independent at x = x∗ (x∗ is a regular point of the constraints!), such a neighbourhood exists.
Some points x from X ′ can be extended by properly chosen Lagrange multipliers to triples
(x, λ, µ) satisfying the KKT equation, and some, perhaps, cannot; let X ′′ be the set of those
x ∈ X ′ where these multipliers exist. Since the gradients of all the constraints at the points
from X ′ are linearly independent, the Lagrange multipliers for x ∈ X ′′ are uniquely defined and
continuous on X ′′; when x = x∗, these multipliers are λ∗, µ∗. Consequently, there exists small
enough neighbourhood, let it be called X, of x∗ such that

C: the set of gradients of all the constraints at any point x ∈ X is linearly independent, and
if x ∈ X can be extended by Lagrange multipliers λ, µ to a triple (x, λ, µ) satisfying the KKT
equation, then (x, λ, µ) ∈ U .
Shrinking, if necessary, V , we can ensure that

D: x∗(v) ∈ X when v ∈ V .
Now note that the matrix ∇2

xL(x;λ, µ) is continuous in x, λ, µ, and the plane

T̄ (x) = {e | eT∇hi(x) = 0, eT∇gj(x) = 0, i = 1, ...,m, j = 1, ..., n}

is, in the natural sense, continuous in x ∈ X ′. When x = x∗, λ = λ∗, µ = µ∗, the matrix
∇2
xL(x;λ, µ) is positive definite on the plane T̄ (x∗); by continuity reasons, it follows that the

matrix ∇2
xL(x∗(v);λ∗(v), µ∗(v)) is positive definite on T̄ (x∗(v)), whenever v is close enough to

v∗. Again shrinking V , we may assume that the latter property is satisfied when v ∈ V :
E: the matrix ∇2

xL(x∗(v);λ∗(v), µ∗(v)) is positive definite on the linear subspace T̄ (x∗(v))
when v ∈ V .

Now we are basically done. By construction, when v = (b, d) ∈ V , the point x∗(v) along
with Lagrange multipliers λ∗(v), µ∗(v) satisfies the equations of the KKT system (by A) and
µ∗(v) > 0 (by B); the latter two properties clearly imply that x∗(v) is the KKT point for
the problem (Pv). By C and E this point is nondegenerate locally optimal solution to (Pv).
Besides this, when v ∈ V , x∗(v) is the only point in X which satisfies the necessary First Order
Optimality condition for (Pv). Indeed, let x ∈ X admit extension, by Lagrange multipliers λ, µ,
to a triple satisfying the KKT equation associated with (Pv). By C we have u = (x, λ, µ) ∈ U ,
so that u is a belonging to U solution to the system of equations

Φ(·, v) = 0.

By A such a solution is uniquely defined and is (x∗(v), λ∗(v), µ∗(v)), as claimed.
Thus, we have proved all required statements excluding (8.2.25). The proof of the latter

relation is immediate: we know from the Implicit Function Theorem that x∗(v) is differentiable
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in v ∈ V ; let x′ be the derivative of this mapping, taken at certain point v̄ ∈ V along certain
direction δv = (δb, δd). Taking inner product of both sides of the equality

∇xf(x∗(v̄)) +
m∑

i=1

λ∗i (v̄)∇xhi(x∗(v̄)) +
k∑

j=1

µ∗(v̄)∇xgj(x∗(v̄)) = 0

and x′ and taking into account that

(x′)T∇xf(x∗(v̄)) =
d

dt
|t=0f

∗(v̄ + tδv)

(“chain rule”), we get

d

dt
|t=0f

∗(v̄ + tδv) = −
m∑

i=1

λ∗i (v̄)(x′)T∇xhi(x∗(v̄))−
k∑

j=1

µ∗j (v̄)(x′)T∇xgj(x∗(v̄)). (8.2.26)

We have, identically in v = (b, d) ∈ V ,

hi(x∗(v)) = bi, i = 1, ...,m; gj(x∗(v)) = dj , j = 1, ..., k

(the fact that all gj are active at x∗(v) comes from the KKT system due to µ∗j (v) > 0, j = 1, ..., k,
see B. Differentiating these equalities at the point v̄ in the direction δv, we observe that the
right hand side in (8.2.26) is equal to

−
k∑

i=1

λ∗i (v̄)δbi −
k∑

j=1

µ∗j (v̄)δdj ,

and (8.2.26) results in (8.2.25).
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Lecture 9

Primal Methods

The traditional methods for general type constrained minimization

(P)
f(x) → min

s.t.
hi(x) = 0, i = 1, ...,m,
gj(x) < 0, j = 1, ..., k

(when saying “general type problems”, I mean not necessarily convex ones; Convex Programming
is another and much nicer story) can be, roughly speaking, separated into the following groups:

• primal methods, where we, roughly speaking, try to act similarly to what we did in the
unconstrained case – i.e., to move along the feasible set in a way which ensures, at each
step, progress in the objective;

• barrier and penalty methods, where we reduce (P) to a series of “approximating” the
problem unconstrained programs;

• Lagrange multipliers methods, where we focus on the dual problem associated with (P);
this dual problem is either unconstrained one (when (P) is equality constrained), or has
simple nonnegativity constraints (when (P) includes inequalities) and is therefore simpler
than (P). When solving the dual problem, we get, as a byproduct, approximate solu-
tions to (P) itself. Note that a posteriori the Lagrange multiplier methods, same as the
penalty/barrier ones, reduce (P) to a sequence of unconstrained problems, but in a “smart”
manner quite different from the straightforward penalty/barrier scheme;

• SQP (Sequential Quadratic Programming) methods. The SQP methods, in contrast to
all previous ones, neither try to improve the objective staying within the feasible set, nor
approximate the constrained problem by unconstrained ones, but directly solve the KKT
system of (nonlinear) equations associated with (P) by a kind of the Newton method.

Today we shall speak about Primal methods. As it will become clear later, their actual
field of applications are linearly constrained problems – when all the equality and inequality
constraints of the problem are linear. It make, anyhow, sense not to restrict ourselves from the
very beginning with the linearly constrained case – theoretically, linearity of constraints is not
that crucial.

Before passing to the main body of the lecture, let me make an important comment.

175
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When solving an unconstrained minimization problem, we were aimed to find the
optimal solution; but the best we indeed were able to do was to ensure convergence
to the set of critical points of the objective, the set of points where the First Order
Necessary Optimality condition – the Fermat rule – is satisfied. Similarly, the best
we can do in constrained optimization is to ensure convergence to the set of KKT
points of the problem – those points where the First Order Necessary Optimality
condition is satisfied. Whether it fits our actual goal or not – this is another story,
sometimes with happy end (e.g., in the case of convex problem a KKT point is for
sure globally optimal solution), sometimes – not, but this is all we can achieve.

During all this lecture, we make the following assumption on problem (P) in question:

Regularity: The problem is regular, i.e., it is feasible and every feasible solution is a regular
point (see Definition 8.2.3, Lecture 8) for the system of constraints.

9.1 Method of Feasible Directions

Just to start our considerations, let me briefly outline the idea of the oldest primal method – the
Feasible Directions one. Those who have passed through the course Optimization I, already know
what the method is – we used it to demonstrate the immediate applications of the Optimality
conditions.

The Feasible Directions method can be applied only to a problem without nonlinear equality
constraints. To simplify considerations, assume that all our constraints are linear inequalities,
so that the problem is

(LIP) f(x)→ min | gj(x) ≡ aTj x− bj ≤ 0, j = 1, ..., k. [x ∈ Rn] (9.1.1)

The idea of the method is as follows: the First Order Necessary Optimality conditions (the KKT
conditions) are “constructive”: if they are not satisfied at a given feasible solution x, then we
can explicitly point out a better – with a smaller value of the objective – feasible solution x+.

Indeed, we remember from the previous lecture that the KKT conditions were obtained from
the following construction: given feasible solution x, we associate with it linearization of (LIP)
at x – the auxiliary Linear Programming program

(LIPx) f̄(y) ≡ f(x) + (y − x)T∇f(x)→ min

subject to
(y − x)Taj ≡ (y − x)T∇gj ≤ 0, j ∈ I(x) = {j | gj(x) = 0};

x is a KKT point of (9.1.1) if and only if x is optimal solution to (Px) (this was exactly the
conjecture which led us to the KKT condition).

From this “if and only if” statement we conclude that if x is not a KKT point of (9.1.1),
then x is not optimal solution to (Px). In other words (pass in (Px) from variable y to d = y−x
and note that aTi x = bi, i ∈ I(x)), there exists a descent direction d – direction satisfying

dT∇f(x) < 0, dT∇gj ≤ 0, j ∈ I(x).

When performing a small enough step in this direction, we improve the objective (by the same
reasons as in the Gradient Descent) and do not violate the constraints which are active at x.
Since small enough step for sure does not violate the remaining – nonactive at x – constraints,
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we indeed improve the objective and do not loose feasibility. Now we can iterate the construction
at the new point, an so on.

Normally, at a non-KKT point there exist many descent directions. In the Feasible Directions
method we choose the one which is “most perspective” – along which the objective decreases
at the highest possible rate. Of course, to choose the most perspective direction, we should
normalize somehow the candidates (multiplying a given descent direction by large scalar factor,
we multiply by the same factor the rate of progress in the objective, clearly not improving the
direction itself). The standard normalization here is given by the restriction

|di| ≤ 1, i = 1, ..., n, (9.1.2)

so that the direction in question is the solution to the following LP program:

dT∇f(x)→ min | dT∇gj ≤ 0, j ∈ I(x), |di| ≤ 1, i = 1, ..., n. (9.1.3)

Normalization (9.1.2) instead of more natural normalization like |d| ≤ 1 is motivated by the
desire for the direction to be determined via an LP, and thus effectively solvable, program.

After the “most perspective” direction d is found, we define the largest stepsize γ, let it be
called γ̄, among the stepsizes which keep the point x + γd feasible, and define the next iterate
x+ via the linesearch applied to f on the segment [0, γ̄]:

x+ ∈ Argmin{f(y) | y = x+ γd, 0 ≤ γ ≤ γ̄}.

Then we replace x with x+ and loop.
The outlined idea can be naturally extended onto inequality constrained problems with

nonlinear constraints (i.e. where gj are not necessarily linear; in this case, of course, ∇gj arising
in (9.1.3) should be replaced with ∇gj(x)). The extension is not quite straightforward:

• extending “literally” the construction of the search direction onto nonlinear case, we meet
with unpleasant possibility that the direction d given by (9.1.3) may result in dT∇gj(x) = 0
for certain j ∈ I(x); if it is the case, it well may happen that the maximal allowed by the
constraints stepsize ᾱ from x along the direction d is zero – the linearization of gj at x is
constant along the direction d, so that the (nonlinear!) constraint gj may become positive
after even a small step in the direction. It follows that we should use in (9.1.3) strict
inequalities like dT∇gj(x) ≤ −α|d|, with reasonably chosen α > 0 rather than nonstrict
inequalities dT∇gj(x) ≤ 0, at least for the nonlinear gj ;

• a weak point of the above “naive” version of the Feasible Direction method (which is seen
also in linearly constrained case) is that choosing the search direction we do not even look
at the nonactive constraints. This for sure makes no sense: a constraint which is nonactive
at a point, but is “almost active” – with very small in absolute value negative gj(x) (when
choosing the direction, we did not look at this constraint at all) well can rapidly increase
in the chosen direction and become active very close to the point, thus resulting in a very
small stepsize; and it may happen very far from the KKT set! In fact everybody who at
least once worked with computer understands in advance that, numerically, it makes no
sense to partition the constraints into “active” and “nonactive” – in actual computations,
we may speak only about “essentially satisfied” and “essentially violated” constraints.

As a result of the indicated drawbacks, the above “naive” version of the Feasible Directions
method as applied to nonlinear problems may be bad even in good (convex) situations: it may
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converge to a “false” point (not a KKT one). The intrinsic mathematical explanation of this
phenomenon is that the corresponding algorithmic mapping is not closed even outside the KKT
set (see Lecture 1). There are several ways to modify the Feasible Directions method in order
to make the corresponding mapping closed and thus to ensure its convergence to the KKT set;
one of this versions was presented in Lecture 9 of the course Optimization I. I am not going
to go in more details here – my goal was mainly to indicate how careful should you be when
implementing natural constructions!

9.2 Active Set Methods

In order to motivate two typical primal methods to be considered – the Gradient Projection and
the Reduced Gradient ones – let us start with equality constrained problems.

9.2.1 Equality constrained case: Gradient Projection scheme

Assume that we are solving a regular equality constrained problem

f(x)→ min | h(x) =



h1(x)
. . .

hm(x)


 = 0, (9.2.1)

and let S be the feasible surface of the problem.
What we could do in order to solve the problem, it depends on the nature of constraints.

In the equality constrained case – where h is linear – we, basically, can use all machinery
for unconstrained minimization we have developed so far. Indeed, geometrically our problem
is an unconstrained one: we should minimize the objective over a plane, the affine set given
by a number of linear equality constraints. We can use this system of constraints to represent
part of the design variables as linear functions of another part of the variables, thus partitioning
the variables into “dependent” and “independent” ones. Substituting these expressions into
the objective, we reduce our problem to an unconstrained one with smaller number of design
variables (the independent ones), and it remains to solve the resulting unconstrained problem.

Of course, in actual computations we should not necessarily carry this scheme out explicitly.
We can work with the problem in its original format, reproducing in the initial variables this
or that optimization method for the equivalent unconstrained problem, thus coming to “linear
equality constrained versions” of unconstrained minimization methods. These versions are, of
course, more complicated from the algorithmic viewpoint, they may be less numerically stable,
due to complications in Linear Algebra routines, etc.; apart of these implementation issues, all
convergence properties of the original methods are inherited by their modifications capable to
handle linear equality constraints.

The case of nonlinear equality constraints is much more complicated. Let us look at one of
the schemes which can be used in this difficult case – at the Gradient Projection scheme.

Assume that we have formed current iterate xt ∈ S, and let

Tt = x+ Lt, Lt = {e | ∇h(xt)e = 0}

be the plane tangent to S at xt.
It is possible that the gradient of the objective at xt is orthogonal to the surface (i.e., to

the linear subspace Lt). Then xt satisfies the conjecture from which we derived the First Order
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Necessary Optimality conditions (see Section 8.2.1, Lecture 8), so that xt is the KKT point of
the problem. If it is the case, we terminate. Now let ∇f(xt) be non-orthogonal to the surface.
Then minus projection of the gradient onto Lt is a descent direction of the objective. It can be
easily seen that the direction is given by

dt+1 = −Pt∇f(xt),

Pt = I − [∇h(xt)]T
(
∇h(xt)[∇h(xt)]T

)−1∇h(xt) (9.2.2)

being the matrix of the orthogonal projection onto Lt.
Performing a step

xt 7→ x+
t = xt + γt+1dt+1

from xt in the direction dt+1 with a small stepsize γt > 0, we get progress in the objective
which is, up to the highest order terms, proportional to the stepsize with positive proportionality
coefficient, while the distance from the shifted point to the feasible surface is at most proportional
to the squared stepsize (Tangent Plane Theorem 8.2.1, Lecture 8). It follows that if we were able
to pass from the shifted point to a close point of the feasible surface, we would, for small stepsizes,
get a new feasible point xt+1 with better value of the objective (we gain something proportional
to the stepsize when shifting the point along the tangent plane and then loose something at most
proportional to the squared stepsize when projecting the shifted point back to the surface; for
small stepsizes, the balance is in our favour). Now we could apply similar updating to xt+1, and
so on. All this is very similar to the Gradient Descent scheme in unconstrained minimization;
in this latter case, our “feasible surface” is the entire space, and we need no projection.

In the general case, of course, the projection may cause severe difficulties: to project a point
onto a “curved” surface, this is nontrivial computational problem which, normally, cannot be
solved with finite computational effort. What we indeed can do with finite computational effort
is to come close to the surface, within a prescribed small tolerance. If the point to be projected
is close enough to the surface, the latter problem can be easily solved even when the required
tolerance is small. Indeed, to project the point onto the surface is, basically, the same as to
solve certain system of nonlinear equations, and when our point is close to the surface, it means
that we have a good approximate solution to this system; in order to transform this “good”
approximate solution to an “excellent” one (that one fitting the tolerance), we could apply to
the system a Newton-type method with good local rate of convergence (I am speaking about
the Newton method for solving systems of equations, not the one for minimization). In more
detailed description, this looks as follows. Given x+

t , let us try to find a displacement orthogonal
to Lt such that x+

t plus the displacement is in S. The directions orthogonal to Lt, i.e., to the
kernel of the m × n matrix ∇h(xt), belong to the image of the transposed matrix, i.e., are of
the form [∇h(xt)]Tα for some α ∈ Rm. Thus, our problem is to find α∗ ∈ Rm such that

h(x+
t + [∇h(xt)]Tα∗) = 0.

This is a particular case of a system
η(α) = 0

with m nonlinear equations and m unknowns; the standard way to solve the system is to use
the Newton method for solving systems of equations (not the optimization one!):

αi+1 = αi − [η′(αi)]−1η(αi)



180 LECTURE 9. PRIMAL METHODS

(we find the new approximation as the solution to the linearized equation η(αi) + η′(αi)[αi+1 −
αi = 0; the known to us Newton minimization method for unconstrained problem φ(x) → min
is exactly the above recurrence applied to the Fermat equation ∇φ(x) = 0).

For the particular system we are interested in the Newton recurrence becomes

αi+1 = αi −
(
[∇h(yi)][∇h(x+

t )]T
)−1

h(yi), yi = x+
t + [∇h(x+

t )]Tαi;

The computational disadvantage of this recurrence is that we should at each step compute and
invert certain m×m matrix. Since we intend to apply the reccurence in the situation when the
starting point x+

t is close enough to xt and is “very close” to S, we expect that all the points
yi will be close to xt and may therefore pass from the Newton reccurence to a “frozen Newton”
one (compare with Section 6.1, Lecture 6):

αi+1 = αi −
[
∇h(x+

t )][∇h(x+
t )]T

)−1
h(yi), yi = x+

t + [∇h(x+
t )]Tαi.

The induced recurrence for yi is simply

yi+1 = yi − [∇h(xt)]T
(
[∇h(xt)][∇h(xt)]T

)−1
h(yi) ≡ yi − (I − Pt)h(yi), y1 = x+

t . (9.2.3)

It can be proved that this recurrence converges linearly, provided that hi are three times contin-
uously differentiable and the stepsize γt+1 is small enough; the less is the stepsize, the faster is
the convergence – the closer to 0 is the convergence ratio. Thus, we indeed can quickly reduce
the distance from the shifted point x+

t to the surface S – to get a new point xt+1 “belonging to
the surface S within given small tolerance”, say, within machine accuracy, and then iterate the
outlined “predictor-corrector” transformation xt 7→ xt+1.

Not coming in further details here, let us assume (this is a reasonable idealization of our
demonstrated actual abilities) that after shifting point along the tangent plane we indeed can
move the shifted point to the closest point of the feasible surface. Note that there is at least one
case when our assumption indeed is reasonable – and even is not an idealization: this is the case
of linear equality constraints in the original problem. In this case the feasible surface coincides
with the tangent plane, and the “projection difficulty” does not occur at all.

9.2.2 Inequality Constrained case: Active Set scheme

Now let us look how the outlined idea can be modified in order to handle general type constrained
problems. For the sake of convenience, consider the inequality constrained case (it will become
clear in a while that the extensions of what we are about to do onto the mixed case are obvious).
Thus, let our problem be

f(x)→ min | gj(x) ≤ 0, j = 1, ..., k. [x ∈ Rn] (9.2.4)

If we could guess what is the active set of the problem – what are the constraints which are
active at the solution – we could reduce the situation to the previous one – to the case of equality
constraints, simply by eliminating the inequality constraints which are not in the active set and
making the remaining inequality constraints the equality ones. The difficulty is, of course, how
to identify the correct active set. The idea of the active set methods is

• to use, at every phase of the process, certain current guess for the true active set – this
guess is called working set;
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• at a phase of the process associated with a given working set, to convert the problem to
an equality constrained one by eliminating the inequalities which are not in the working
set and making the remaining inequalities equalities, and to solve the resulting equality
constrained problem by some method, e.g., of the type outlined in the previous subsection;

• when running the method for the equality constrained problem, to control whether current
information is consistent with the conjecture that the current working set indeed is active;
when inconsistency is detected, we correct our guess for the true active set and proceed
with the updated working set.

There are two components in the outlined general active set scheme –
(1) how to detect that the current working set should be updated and how to update it when

inconsistency is detected;
(2) how to solve the equality constrained problem associated with the current working set.
We will consider these two components separately. For the sake of simplicity, in what follows

we assume that the feasible set of our (regular) problem is bounded.

Extending working set

Assume that when processing the current working set W , i.e., when optimizing the objective
over the corresponding working surface

SW = {x | gj(x) = 0, j ∈W}

by a method of the type indicated in Section 9.2.1, we are about to pass from an iterate xt
satisfying all inequality constraints not included into the working set to an iterate xt+1 which
violates some of these constraints. Then it makes sense not to pass from xt to xt+1, but to
extend the current working set with the indices of the constraints we are about to violate (thus
reducing the dimension of the current working surface) and to proceed with these new working
set and working surface.

Of course, it is easy to say “to proceed with the new working set”, but how to do it? To deal
with the new working surface, we should “stand at it”; and what we do have are two points xt
and xt+1 which are “at opposite sides” of the new working surface; no one of them, generally
speaking, is exactly at the latter surface.

Our abilities to reach the new working surface depend on whether the problem in question
has only linear or also nonlinear constraints.

In the case of nonlinear constraints we should apply to xt, or to xt+1, or to a reasonable
“mixture” of these points, the “projection” routine similar to the one described in Section 9.2.1.
If xt is close to xt+1 (as it is normally the case when travelling along a curved surface), then
both the points are close to the new working surface, and we are in a good position to project
on it.

in the equality constrained case the situation is much better. Indeed, in basically all known
to us unconstrained optimization methods which we could use to minimize the objective at
the current working surface (let us better call it working plane – it indeed is a plane), xt+1 is
obtained from xt by a kind of linesearch in certain search direction dt+1 parallel to the working
plane. Before performing linesearch, we could easily compute the largest of those stepsizes γ
from xt along the direction dt+1 which keep the shifted point xt +γdt+1 feasible. If this “largest
admissible by the constraints stepsize”, let it be called γ̄, is finite, then at the point xt + γ̄dt+1

one or several inequality constraints which are not in the current working set become active.
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Now let us replace the usual linesearch from xt in the direction dt+1 with its “restricted” version,
where we do not allow the stepsize to be greater than γ̄, and let this linesearch result in the new
iterate xt+1 = xt + γt+1dt+1. If γt+1 < γ̄, then no “new” (those not in the previous working set)
inequality constraints become active at xt+1, and we can proceed with the previous working set
and working plane. Otherwise γt+1 = γ̄, so that one or more new inequality constraints become
active at xt+1. In this latter case we add indices of all these constraints to the current working
set, thus extending it and shrinking the working plane, and proceed with this new working plane;
note that xt+1 belongs to the latter plane, and no necessity in “projection” occurs.

Shrinking working set

After certain number of sequential extensions of the working set mentioned in the previous
subsection, we will travel along certain fixed surface S′ – indeed, in the process in question the
working set is only increased, and it cannot become larger than the set of indices of all constraints
we have. According to our policy of extending the working set – it is extended each time when
the current iterate violates one of the constraints not in the working set – all out iterates at this
phase will be feasible. Assume, for the sake of definiteness, that we trace our working surfaces
by the Gradient Projection method presented in Section 9.2.1. Then – by the same reasons as
in the case of unconstrained minimization by the Gradient Descent – our process will converge
to the critical set of the objective at S′, i.e., to the set of points of S′ where the gradient of the
objective is orthogonal to the surface. Indeed, while the gradient of the objective is not “almost
orthogonal” to S′ (i.e., the projection of the gradient onto the tangent plane remains greater
than certain positive δ), the progress in the objective per step remains at least certain ε(δ) > 0,
and since the objective is below bounded on the feasible set (the latter is compact!), the number
of these steps cannot be too large1. With a reasonable idealization, therefore, we may assume
that at certain moment we will arrive at a critical point of the objective at S′, let the point be
called x. At this point, as it was explained in the beginning of Section 9.2.1, we will have

∇f(x) +
∑

j∈W
λj∇gj(x) = 0,

with properly chosen λj . If all these Lagrange multipliers are nonnegative, we are done – we
have found a KKT point of the original problem. Now assume that certain multiplier λj is
negative. I claim that then it makes sense to eliminate j from the current working set – the
projection of ∇f(x) on the tangent plane to the new surface S′′ (corresponding to the reduced
working set) will have positive inner product with ∇gj(x). Let us for a moment believe in this
fact; what are the consequences? They are immediate. The first step of our “surface-following”
method as applied to the reduced working set will, basically, be a step along the projection
of −∇f(x) onto the tangent plane to S′′ (plus “second-order” corrector step aimed to put the
shifted point onto S′′). The direction of the step, as was announced, has negative inner product
with ∇gj(x), so that the step will reduce the constraint gj in the first order with respect to
the stepsize terms. The second order effects caused by the corrector step and nonlinearity of
the constraint gj will be unable to compensate this effect, provided that the stepsize is small
enough. It follows that our step will keep the point feasible; and, as a step of our “surface

1of course, this reasoning requires certain restrictions on the policy for choosing stepsizes. In the unconstrained
case, these restrictions could be given by the Armijo rule or something like this. Similar restrictions should be
imposed also in the constrained case; we, anyhow, are not going to go in too deep details here in order not to
overload our course with “second-order” complications of purely theoretical origin, basically irrelevant to practical
computations
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tracing” method from a point where the projection of ∇f onto the (new) working surface is
nonzero, it will reduce the objective. Thus, we will generate a better approximate solution –
still feasible and with improved value of the objective. Now we can continue tracing surface S′′.

It is time now to justify the announced claim about inner product. Our situation is as follows:
we are given certain linearly independent set of vectors φj , j ∈W (these are the gradients of the
constraints with the indices from the working set W ; they are linearly independent, since we
have assumed that the problem is regular) and vector φ (the gradient of the objective) which is
linear combination of φj . Without loss of generality we may assume that W = {1, ..., l}, so that

φ =
l∑

j=1

λjφj .

We know also that at least one of the coefficients λj is negative, let it be the coefficient λ1. And
what we should prove is that the projection ψ of the vector φ on the linear subspace

L = {e | φTj e = 0, j = 2, ..., l}

(the tangent plane to the surface associated with the reduced working set {2, ..., l}) has positive
inner product with φ1. This is immediate: by definition of the projection, ψ belongs to L,
whence

ψTφj = 0, j = 2, ..., l;

taking weighted sum of these equalities with coefficients λj , we get

0 = ψT (
l∑

j=2

λjφj) =

[since by assumption
∑l
j=1 λjφj = −φ, whence

∑i
j=2 λjφj = −φ− λ1φ1]

= ψT (−φ− λ1φ1),

or
ψTφ = −λ1ψ

Tφ1 = |λ1|ψTφ1 (9.2.5)

(recall that λ1 is negative). The left hand side in this relation is nonnegative (as inner product
of a vector and its orthogonal projection onto a linear subspace), and it is zero if and only if
ψ = 0, i.e., if and only if φ itself is orthogonal to L. But if φ is orthogonal to L (which is given
as the solution set to the system of linear homogeneous equations φTi e = 0, i = 2, ..., l), then the
vector φ should be linear combination of the vectors involved into the system:

φ =
m∑

j=2

λ′jφj .

Thus, we have two different representations of φ as a linear combination of φ1, ..., φl – one with
negative coefficient λ1 at φ1 and another with zero coefficient at the vector; this is impossible,
since the vectors φ1, ..., φl were assumed to be linearly independent.

Thus, ψTφ > 0, and we conclude from (9.2.5) that ψTφ1 > 0, as claimed.
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Active Set methods

In an active set method we combine the two aforementioned tactics – minimize the objective
over the working surface associated with the current working set, until one of the following three
possibilities is met:

• we are about to leave the feasible set, i.e., to crosse at least one of the hyper-surfaces
{x | gj(x) = 0} with j not in the current working set; when it happens, we add j to the
current working set and proceed with the updated working set;

• we have met a feasible point which (within a given small tolerance) is a critical point of the
objective at the current working surface: the gradient of the objective “almost” is linear
combination of the gradients of the constraints associated with the current working set.
When it happens, we look at the signs of the coefficients λj in this linear combination and

– terminate, if all the coefficients are “essentially nonnegative” (are nonnegative within
another small tolerance); we are at an (approximate) KKT point of the problem;

– eliminate from the working set the index of one of the constraints which corresponds
to “essentially negative” coefficient λj and proceed with the new working set.

Remark 9.2.1 To the moment, we spoke about inequality constrained problems only. Now it is
absolutely clear that the equality constraints do not bring any troubles: we simply should always
keep them in the working set, and that is it!

An immediate question is – what can be said about the outlined procedure? May we expect
certain reasonable behaviour of it – e.g., termination with a KKT point (approximate, within
the tolerances we use to distinguish between “essentially nonnegative” and “essentially negative”
Lagrange multipliers), or we can stay all the time far from the KKT set of the problem, switching
from one working surface to another?

It turns out that under not too restrictive assumptions the things are not bad. Indeed, let us
speak about the idealized active set method, where we move along the current working surface
decreasing the objective and update the working set whenever crossing the surface {x | gj(x) =
0} of an inequality constraint not in the current working set (when it happens, we extend the
working set) or until a critical point of the objective at the current working surface is found
(in the latter case, we either terminate, or shrink the working set, as explained above). The
idealization is that we, first, are able to move along the surface rather than along its “tight”
neighbourhood, and, second, that when staying at the current working surface for a long enough
time, we reach the critical set of the objective at the surface. As it was explained, this is quite
reasonable idealization.

Theorem 9.2.1 [Active Set Theorem] Assume that problem (P) is regular (all feasible points
are regular for the constraints) and with nonempty bounded feasible set. Assume also that there
is exactly one critical point of the objective at each tentative working surface (a nonempty set
obtained by eliminating some of inequalities of (P) and replacing the remaining inequalities with
equalities). Then the idealized active set method terminates with KKT point of the problem.

Proof. The only possibility for the method to terminate is to find a KKT point of the problem,
so that all we need is to prove that the method terminates. Assume that it is not the case. The
trajectory of the method can be partitioned into stages between sequential shrinkages of the



9.3. GRADIENT PROJECTION AND REDUCED GRADIENT METHODS 185

working set, and every stage, in turn – into phases where the working set remains unchanged.
According to our idealization, each of the phases is finite. The number of phases at a given
stage also is finite (since from phase to phase within a given stage the working set increases,
and it cannot become larger than the set of indices of all the constraints). Thus, all we need is
to prove that the number of stages is finite. To this end let us look at the working surfaces we
deal with at the concluding phases of the stages. We shrink the working set only when a critical
point of the objective at the current working surface is met. On a given working surface, by
assumption, there is unique critical point. It follows that to meet twice the same working surface
as concluding a stage means to visit twice the same point, which is impossible: the objective in
our routine monotonically decreases until termination!

Since different stages are concluded by different working surfaces, and there are finitely many
working surfaces, there are finitely many stages.

Now we turn to the main ingredient of an active set method – to the method for minimizing
the objective over the current working surface, and to the resulting routines.

9.3 Gradient Projection and Reduced Gradient methods

9.3.1 The Gradient Projection method

The Gradient Projection method is the Active Set method where minimization of the objective
over the current working surface is carried out via the Gradient Projection scheme presented in
Section 9.2.1. As far as the case of a general – nonlinear – problem is concerned, there is nothing
to add to this sentence. It makes, anyhow, sense to look at the method in more details in the
linearly constrained case – when all the equality and inequality constraints of the problem are
linear:

hi(x) = aTi x− bi, i = 1, ...,m; gj(x) = aTm+jx− bm+j .

In this nice and important case the procedure simplifies significantly.

• First of all, we have no troubles with corrections – the point xt on the current working
surface S (which now is just a plane), shifted in the projected onto S antigradient direction
of the objective, i.e., the point

x+
t = xt + γt+1dt+1, dt+1 = −Pt∇f(xt),

Pt being the current projection matrix, remains in S independently of the stepsize γt+1,
so that this point is the same as xt+1;

• Second, it is easy to choose the stepsize γt+1. To this end as we remember from Section
9.2.2 it suffices to identify the largest stepsize γ̄ which ensures feasibility of the shifted
point:

γ̄ = sup{γ > 0 | aTi (xt + γdt+1) ≤ bi, i 6∈W},
where W is the current working set (recall that it all the time includes the indices of all
equality constraints). Of course, it is immediate to compute this γ̄:

γ̄ = min{bi − a
T
i x

aTi dt+1
| i 6∈W, aTi dt+1 > 0}.
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After γ̄ is found, it is easy to choose a good stepsize γt+1, e.g., by the “restricted linesearch”:

γt+1 ∈ Argmin{f(xt + γdt+1) | 0 ≤ γ ≤ γ̄}.

If it turns out that γt+1 = γ̄, the iterated point will make active at least one of previously
non-working linear inequality constraints; according to our general tactics, we should add
the indices of all these constraints to the working set. Note that in the case in question
we simply find ourselves on the new working plane.

• Third, it is easy to update the projection matrix Pt from step to step. Indeed, when both
steps in question deal with the same working set, the matrix simply remains the same.
And if the steps relate to different working sets, then the corresponding planes are given by
the systems of linear equations which, normally, differ by one inequality (either eliminated
from the earlier system, or added to it). With this modification of the working plane, the
projector to it can be updated in O(n2) operations by a kind of Sherman-Morrison formula
(Exercise 6.6.2).

9.3.2 The Reduced Gradient method

The idea of the Reduced Gradient method is very close to the one of the Gradient Projection
method: Reduced Gradient method also implements the Active Set scheme, and the only differ-
ence is how we minimize objective over the current working surface S. In the Reduced Gradient
method, we use certain parameterization of S, namely, use the equations defining the surface to
express some of our design variables (“the dependent variables”) via the rest of the variables (the
“independent” ones). The resulting parameterization of the working surface allows to express
the objective on this surface via the independent variables. We minimize the resulting function
of “independent” variables by the unconstrained Gradient Descent, thus minimizing the actual
objective over the working surface. Of course, all the time we take care of the inequality con-
straints not included into the current working set and use the Active Set strategy to update the
working set and working surface; with each updating of this type, we renew our partitioning of
the variables into “dependent” and “independent”.

I am not going to present the detailed description of the Reduced Gradient method in the
nonlinear case; let us focus on the linearly constrained one.

Same as in Linear Programming, introducing slack variables we can rewrite a linearly con-
strained problem (P) in the following standard form:

f(x)→ min | Ax = b, x ≥ 0 [x ∈ Rn] (9.3.1)

where A is m × n matrix. To simplify things, let us assume that every m columns of A are
linearly independent, and any basic feasible solution (a vertex of the feasible polyhedron –
feasible point with at most m positive coordinates) has exactly m positive coordinates (the
same nondegeneracy assumption often is used in LP). It immediately follows that the number
of positive entries at any feasible solution is at least m.

Given a feasible solution x̄, we always can partition the vector of variables as

x = (y, z)

with m “dependent” variables y which are positive at x̄ and remaining n − m “independent
variables” z (they are nonnegative at x̄. Let B and C be the submatrices of A corresponding to
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this partitioning of the design vector; then the problem can be rewritten as

f(y, z)→ min | By + Cz = b, y, z ≥ 0. (9.3.2)

Since B is an m×m submatrix of the matrix A and thus, due to the nondegeneracy assumption,
is nondegenerate, we can solve the system of linear equations with respect to the dependent
variables:

y = y(z) ≡ B−1(b− Cz),
thus expressing our objective on the feasible set via the independent variables; expressed in
terms of these variables, the objective becomes

φ(z) = f(B−1(b− Cz), z).

With the resulting parameterization of the feasible plane and the objective in terms of the
independent variables, we can move along the plane of independent variables in order to reduce
the value of the objective. The gradient of φ – the reduced gradient of f – is

r = ∇zf(y, z) + CT (B−1)T∇yf(y, z).

The KKT condition for the original problem, as it is easily seen, can be expressed in terms of
the reduced gradient as follows:

zi > 0⇒ ri = 0; zi = 0⇒ ri ≥ 0. (9.3.3)

In the Reduced Gradient method as applied to linearly constrained problem (9.3.1), we at each
phase deal with certain partition of the vector of design variables x into the “dependent” part
y (which should be positive at the iterates of the phase) and “independent part” z and with
certain working sets W comprised of part of the indices of the independent variables; at the
current iterate, the independent variables with the indices from the working set are zero, and
the remaining independent variables are positive. The working surface corresponding to the
current working set is, of course, the plane

S = {x = (y, z) | By + Cz = b, zi = 0, i ∈W (z)},

where B and C are the submatrices of A corresponding to the partitioning of the variables into
dependent and independent ones.

At a step of the method, given current iterate x = (y, z) and current working set W such
that

(α) Ax = b
(β) y > 0
(γ) zi > 0, i ∈W
(δ) zi = 0, i 6∈W

we act as follows.

1) we compute the reduced gradient r and check whether the KKT condition
(9.3.3) is satisfied. If it is the case, we terminate – x is a KKT point of the problem.

If (9.3.2) is not satisfied, two possibilities may occur:
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• (I) among the components ri of the reduced gradient with indices i 6∈ W there
are nonzeros. If it is the case, we form the search direction d in the space of
independent variables according to

di =
{−ri, i 6∈W

0, i ∈W (9.3.4)

do not vary the working set and go to 2)

• (II) all components ri of the reduced gradient with indices i 6∈W are zeros. Since
we are in the situation where (9.3.3) is not satisfied, there exist an index i ∈W
such that ri < 0. We eliminate this index from the working set, thus updating
this set (this is exactly the case when our Active Set strategy requires to shrink
the working set), define the search direction d in the space of independent
variables according to (9.3.4) applied to shrinked working set and go to 2)

2) When we arrive at 2), we have a nonzero direction d in the plane of independent
variables with the following properties:

• d is descent direction for φ at the point z: rTd < 0 (this is clear from (9.3.4));

• all components of di with entries from the current working set W ′ are zeros (I
write W ′ instead of W , since we might update the working set if case (II) was
met);

• if zi = 0 for some i 6∈ W ′, then di > 0 (indeed, all entries of z with indices not
in W are positive by (γ), so that the only possibility to encounter i 6∈W ′ with
zi = 0 is to meet with case (II); in this situation i is the eliminated index, and
di = −ri is positive by construction.

Now we can perform a step from z in the direction d, thus passing to the new iterate

z+ = z + γ∗d, y+ = y − γ∗B−1Cd.

The stepsize should, of course, be chosen to minimize the objective φ along the
search direction; we, anyhow, should impose on the stepsize certain upper bound
to maintain feasibility of the updated pair (y+, z+). By construction, this pair,
independently of the stepsize, will satisfy the linear equations of the problem, so
that all we need is to ensure nonnegativity of y+ and z+. The corresponding upper
bound γ̄ on the stepsize is given by

γ̄ = sup{γ | z + γd ≥ 0, y − γ∗B−1Cd ≥ 0}.

We can easily compute this bound (compare with the Gradient Projection method
for the case of linear constraints); the important observation is that this bound is
positive. Indeed, y > 0 by (β), so that the requirement that y+ should be nonnegative
is compatible with small enough positive stepsizes. Similarly, the entries of z with
indices 6∈ W are positive, and the requirement that the corresponding entries in
z+ should be nonzero also is compatible with small enough positive stepsizes. The
entries of zi with i 6∈W ′ are zero, same as the corresponding entries of di, so here all
positive stepsizes are admissible. If there are independent variables zi which do not
fall into the two considered categories (i.e., those with i ∈W and i 6∈W ′), it means
that W ′ 6= W , which may happen only when the case (II) was met. It this case,
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the only index in W\W ′ is the one eliminated in (II); for this index by construction
zi = 0 and di > 0, so that here again all positive stepsizes are admissible.

Now we can choose γ∗, e.g., by “restricted minimization” of the objective along
the direction d:

γ∗ ∈ Argmin{φ(z + γd) | 0 ≤ γ ≤ γ̄},
and the corresponding step will for sure improve the value of the objective.

3) After the step x = (y, z) 7→ x+ = (z+, y+) is performed, we update, if neces-
sary, our structures – the partitioning of the variables into dependent and indepen-
dent ones and the working set. Namely,

• It may happen that some entries in y+ are zero. If it is the case, we update
the partition in order to make the new dependent variables of x+ positive (as
we know, it is possible due to the nondegeneracy assumption). With this new
partition, we declare the new working set W+ to be comprised of the indices of
zero entries of the independent components of x+ (we do not exclude W+ = ∅).

• It may happen that all entries of y+ are positive, but some entries of z+ with
indices not in W ′ become zero. If it happens, we preserve the partition and
extend the working set W ′ by adding to it the indices of the zero entries of z+.

• Last, it may happen that all entries of y+, same as all entries of z+ with indices
not in W ′ are positive (it means that γ∗ < γ̄). Here we preserve the partition,
and our new working set is W ′.

It is easily seen that the new iterate, along with the new partition and new working
set, satisfies requirements (α) - (γ), and we can iterate the process.

9.3.3 Geometry of Gradient Projection and Reduced Gradient methods in
linearly constrained case

The geometry of our actions in the linearly constrained case, for both the Gradient Projection
and Reduced Gradient methods, is quite clear. In both the methods, we travel along the feasible
polyhedron of our problem. At each step, we are at a point of the relative interior of certain
facet of the polyhedron (this facet is the feasible part of our current working plane) and are
trying to improve the objective by moving along certain descent direction of it in the facet.
The only difference between the methods is how this descent direction is determined. In the
Gradient Projection method, the direction is simply the projection of the antigradient of f onto
the working plane. In the Reduced Gradient method, we parameterize somehow the points of
the working plane and take the gradient of the objective with respect to the parameters. It
can be easily seen that this is the same as to compute the “full-dimensional” gradient of the
objective with respect to certain new Euclidean metric on Rn and to project the resulting vector
on the plane, of course, to project in the same new Euclidean metric. After the descent direction
is formed, we can meet with several possibilities:

• the direction in fact is not descent – it is zero. If it happens, we are at the KKT point of the
objective on the working plane – the antigradient of the objective is linear combination of
the linear forms defining the plane. If the coefficients in this combination are of proper signs
(i.e., the coefficients corresponding to the linear forms coming from inequality constraints
are nonnegative), the point in question is a KKT point of the problem, and we terminate.
If it is not the case, then we replace our current working facet with larger one (which
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is obtained when eliminating the linear equality associated with negative coefficient); the
descent direction we get in this larger facet turns out to be nonzero, i.e., indeed descent,
and we proceed with this larger facet. Note that in the case in question the new search
direction “looks inwards the new facet” – we can perform certain positive step in this
direction, not leaving this facet.

Thus, we either terminate with a KKT point of the problem, or find ourselves in the
situation when the search direction is descent for the objective and certain nontrivial step
in this direction keeps us in the facet (which now is not necessary the one with which we
started the iteration – the facet might have been enlarged!).

• If we are in the just mentioned “good” situation – either from the very beginning of the
iteration, or after “bad” constraint is eliminated and the initial facet is replaced with a
larger one – we perform linesearch along the descent direction we have. In this linesearch
we impose on the stepsize the restriction not to push the point out of the facet we now
have. After the stepsize if found and the point is shifted, we either find ourselves on the
“facet of the facet” – several new linear constraints which were not previously involved
into the description of the working plane now have become active – or no new constraints
are met. In the first case, we replace the facet with the smaller one given by all constraints
of the problem active at the new iterate, in the second – proceed with the facet we have.

Linear Programming case

In the case of linear objective and constraints – i.e., in the Linear Programming case – what we
do in both methods are just the simplex iterations. More exactly, it becomes so after several
initial steps – we should not necessarily start with the working set resulting in a vertex of the
feasible polyhedron! Our behaviour at the beginning of the process is as follows. Assume that
we start in the relative interior of the feasible set – no inequality constraints are active at the
starting point x, and let, for the sake of simplicity, the feasible set be bounded. Our first
step is to choose somehow descent direction of the objective in the plane given by the equality
constraints. Then we minimize the objective along this direction within the feasible set. Since
the objective is linear, the result x′ of this minimization will belong to the relative boundary of
the feasible set – to certain facet of it. Now we repeat the same construction in the facet and,
as a result, come to a facet of smaller dimension and improve the objective value, and so on. In
no more than k steps, k being the number of inequalities in the problem, we arrive at a vertex
of the feasible polytope2. Starting with this moment, we indeed perform simplex iterations:
our working plane is a point, so that we for sure are at the KKT point of the objective in this
working plane. If the vertex where we are is not optimal, then our Active Set strategy enforces
us to replace the point by a one dimension larger facet; this enlarged facet will be of dimension
1, i.e., it will be an edge of the feasible polytope. When minimizing the objective over this edge,
as it is predicted by our Active Set strategy, we move to another vertex with better value of
the objective, and so on, until the optimal vertex is reached; this is exactly what the Simplex
Method does.

The “preliminary phase” of the Gradient Projection method in the LP case – the one before
the pure simplex iterations are started – is called purification. This is an important algorithm – it

2we ignore the “degenerate case” when our current facet is a non-vertex one, but the gradient of the objective
is orthogonal to the plane of the facet. We could easily handle this case as well by saying that if it happens, then
the search direction we currently use is an arbitrary direction along the plane of the facet



9.4. LINEARLY CONSTRAINED QUADRATIC PROGRAMMING PROGRAM 191

allows to transform efficiently an arbitrary feasible solution to an LP program into a basic feasible
solution with better (or at least the same) value of the objective. (When saying “efficient”, I
mean that the updating takes at most k Gradient Projection steps, and each step requires
at most quadratic in m + n + k number of arithmetic operations.) The necessity in such a
transformation occurs when we solve linear programs by interior point methods where all the
iterates strictly satisfy all the inequality constraints. After an approximate solution of this type
is found, we may use purification to improve it; if solution is good enough, then purification will
transform this approximate solution into the exact one.

9.4 Linearly Constrained Quadratic Programming program

We already know that in the Linear Programming case the Active Set methods become the
Simplex Method – one of the most frequently used and most powerful methods for LP. There
is another favourable situation for the Active Set strategy – the one when the constraints are
linear and the objective is quadratic (Linearly Constrained Quadratic Programming program –
LCQP). This is a particular case, of course, but it is of great importance by its own right and also
due to the fact that LCQP programs arise, as auxiliary subproblems, in one of the most powerful
practical methods for constrained minimization – in Sequential Quadratic Programming (SQP)
which we will consider in the mean time.

Assume that the constraints are linear and the objective is quadratic

f(x) =
1
2
xTHx− dTx

with positive definite Hessian H.
At a step t of the method, given current working set W , the corresponding working plane

SW and a belonging to the plane feasible for the original problem solution xt, we can explicitly
point out the optimum xW of the objective over SW . Indeed, the plane can be represented by
a system of linear equations

AWx = bW ,

with AW being mW × n matrix of full row rank; this system comes from the original system of
linear equality and inequality constraints by eliminating some of the inequalities and replacing
the remaining inequalities (those with indices in W ) by equalities.

The KKT system for the problem

(PW ) f(x)→ min | AWx = bW

is the square linear system
Hx+ATWλ = d
AWx = bW

From the fact that H is positive definite and AW is of full row rank (recall that all problems
we consider are assumed to be regular!) it immediately follows that the system is nonsingular.
The x-component of the solution to the system is the unique global minimizer xW of f on the
working plane (we deal with regular convex program, so that the KKT conditions are necessary
and sufficient for optimality), while the λ-component of the solution λW is the corresponding
vector of Lagrange multipliers.

If (case 1) xW is feasible for the original problem and the entries of λW associated with
the inequality constraints of the original system are nonnegative, then xW is KKT point of the
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original problem, and λW is, essentially, the vector of Lagrange multipliers for this problem (all
we need is to set to 0 the Lagrange multipliers associated with inequality constraints not in the
working set).

Now, if (case 2) xW is feasible for the original problem, but some of the entries in λW

associated with the inequality constraints of the original problem are negative, we may eliminate
from the the working set the index of any one of these constraints. As we know from our general
considerations, there will be a feasible for the original problem point on the new (extended by
one dimension) working plane with the value of the objective less than at xW ; consequently, the
optimal value of the objective on the feasible (for the original problem) part of the new working
plane also will be less than the optimal value of the objective at the current working plane. Our
new iterate in case 2 will be xt+1 = xW .

Last, it is possible (case 3) that xW is not feasible for the original problem. Looking at the
constraints, we can immediately identify the last point x+

t of the segment [xt, xW ] (note that
this segment belongs to the current working plane; it starts within and ends outside the feasible
set of the original problem) which is still feasible for the original problem. At this point, some
of the inequality constraints with indices not in the current working set are active; as always, we
add their indices to the working set, thus updating it, and define the new iterate as xt+1 = x+

t .
Thus, at the step in question we either terminate with a KKT point of the problem, i.e.,

with a globally optimal solution to it (we deal with convex program, so that the KKT condition
is sufficient for optimality), or update somehow the working set and the iterate (cases 2 and 3).
Having updated the working set and the iterate, we loop – apply the same actions to the new
working set and iterate, etc.

An extremely good news about the presented Active Set method is that it finds the global
solution to the problem in question in finite number of steps; thus, we are in the situation when
all the idealizations of the Working Set Theorem are realities! The proof of indicated statement
goes along the lines of the one of the Working Set Theorem, and it is part of the assignment
accompanying this lecture.

Concluding comments. As we are used to do, let us summarize the advantages and disad-
vantages of the Primal methods, specifically the Projected Gradient and the Reduced Gradient
ones. The advantages of the methods are in their generality and especially in the fact that they
generate feasible solutions with improving from step to step values of the objective; there are
cases when these properties are of great importance for the end-user.

The main disadvantage of the Projected Gradient and Reduced Gradient methods is that in
practice they are very slow as applied to nonlinearly constrained problems. The reason for this is
clear: when there are nonlinear inequality constraints, the methods are enforced to travel along
“curved” surfaces; consequently, we are unable to avoid projections – iterative returns to a tight
neighbourhood of the current working surface. In order to ensure reasonable complexity of the
projections in the Gradient Projection method, we are enforced to perform relatively short steps
along the tangent plane to the current working surface – this is basically the only possibility
to get a good starting point for the projection subroutine; as a result of these short steps,
the method may too slowly approach the KKT set. Similar difficulties occur in the Reduced
Gradient method as applied to a nonlinearly constrained problem.

In contrast to this, the linearly constrained case is much better suited for the methods in
question, and the Gradient Projection and Reduced Gradient routines are quite reasonable and
frequently used algorithms for practical minimization under linear constraints. We have also
have seen that in two important particular cases of linearly constrained problems – those with
linear and convex quadratic objectives – there exist specific versions of the Active Set methods
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which solve the problems in question in finitely many steps; the Active Set methods definitely are
the best traditional routines for LP and convex Linearly Constrained Quadratic Programming.

Last, in the linearly constrained case there is no necessity to minimize the objective over the
current working plane by the Gradient Descent, as it is done in the Gradient Projection and,
in fact, also in the Reduced Gradient method (with the only difference that here the Gradient
Descent deals with certain parameterization of the feasible plane, or, which is the same, with
certain specific Euclidean structure in the plane). As we know, there are much more efficient
methods for unconstrained minimization, e.g., the Newton and the quasi-Newton ones. It is clear
from the discussion in the beginning of Section 9.2.1 that all these methods can be used, without
conceptual difficulties, for minimization under linear equality constraints and, consequently, may
be used as “working horses” in Active Set methods, thus giving rise to efficient algorithms of
this latter type.
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Assignment # 9 (Lecture 9)

Exercise 9.4.1 Convert the problem (cf. (9.1.3)

cTd→ min | Ad ≤ 0, max
i
|di| ≤ 1 [d ∈ Rn]

into an LP program.
Are you able to perform similar conversion when the constraint

max
i
|di| ≤ 1

is replaced with ∑

i

|di| ≤ 1 ?

Exercise 9.4.2 Let L be a linear subspace in Rn given by the system of linear homogeneous
equations

Ax = 0

(A is m× n matrix of full row rank). Prove that the matrices

P = I −AT [AAT ]−1A, Q = AT [AAT ]−1A

are the matrices of orthogonal projectors of Rn onto L and onto the orthogonal complement L⊥

of L, respectively (i.e., that Px ∈ L for every x with Px − x being orthogonal to L, and that
Px = x for x ∈ L; the same for Q, with L replaced with L⊥). [compare with (9.2.2)]

Exercise 9.4.3 Prove that the Active Set method from Section 9.4 as applied to a regular linearly
constrained Quadratic Programming program with strongly convex objective indeed finds the exact
solution to the problem in finitely many steps.
Hint. 1) Since the objective is strictly convex, all the minimizers of the objective over the
working planes are well-defined; consequently, the method also is well-defined.

2) The only possibility for the method to terminate is to find a KKT point (thus, global
optimal solution) of the problem. Therefore all you need is to demonstrate that the method
is finite. Assume that it is not the case and lead this assumption to contradiction, using the
following arguments:

• there could not be too long sequences of steps where only case (3) takes place; thus, case
(2) should occur infinitely many times

• the values of the objective along the sequence of iterates x1, x2,... never increase

• if at a step t case (2) takes place, then the objective will be strictly increased at step t+ 1

Derive from these observations that it is impossible to meet twice case (2) with the same working
set.



Lecture 10

Penalty and Barrier Methods

This lecture is devoted to the penalty and the barrier methods; as far as the underlying ideas
are concerned, these methods implement the simplest approach to constrained optimization –
approximate a constrained problem by unconstrained ones. Let us look how it is done.

10.1 The idea

10.1.1 Penalty methods: equality constrained case

To get the idea of the construction, consider an equality constrained problem

(ECP) f(x)→ min | hi(x) = 0, i = 1, ...,m [x ∈ Rn].

In order to approximate this constrained problem by an unconstrained one, let us add to our
objective a term which “penalizes” violation of constraints; the simplest term of this type is

1
2
ρ
m∑

i=1

h2
i (x),

where ρ > 0 is “penalty parameter”. This term is zero on the feasible set and is positive outside
this set; if ρ is large, then the penalizing term is large everywhere except tight neighbourhood
of the feasible set.

Now let us add the penalty term to the objective. From the above discussion it follows that
the resulting “combined objective”

fρ(x) = f(x) +
1
2
ρ
m∑

i=1

h2
i (x) (10.1.1)

possesses the following properties:

• at the feasible set, it coincides with the actual objective;

• for large ρ, is is large outside tight neighbourhood of the feasible set (indeed, outside such
a neighbourhood the penalty term becomes larger and larger as the penalty parameter
grows, while the objective remains as it was).

195
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From these properties it immediately follows that

lim
ρ→∞ fρ(x) =

{
f(x), x feasible
+∞, otherwise

;

Thus, we could say that the limit of fρ as ρ→∞ is the function taking values in the extended
real axis (with +∞ added) which coincides with f on the feasible set and is +∞ otherwise this
set; it is clear that unconstrained local/global minimizers of this limit are exactly the constrained
local, respectively, global minimizers of f . This exact coincidence takes place only in the limit;
we could, anyhow, expect that “close to the limit”, for large enough values of the penalty
parameter, the unconstrained minimizers of the penalized objective are close to the constrained
minimizers of the actual objective. Thus, solving the unconstrained problem

fρ(x)→ min

for large enough value of ρ, we may hope to get good approximations to the solutions of (ECP).
As we shall see in the mean time, under mild regularity assumptions all these “could expect”
and “may hope” indeed take place.

10.1.2 Penalty methods: general constrained case

The idea of penalization can be easily carried out in the case when there are inequality constraints
as well. Given a general type constrained problem

(GCP) f(x)→ min | hi(x) = 0, i = 1, ...,m, gj ≤ 0, j = 1, ..., k,

we could penalize the inequality constraints by the term

1
2
ρ

k∑

j=1

(g+
j (x))2,

where
a+ = max[a, 0] =

{
a, a ≥ 0
0, a < 0

is the “positive part” of a real a. The resulting penalty term is zero at any point where all the
inequality constraints are satisfied and is positive (and proportional to ρ) at any point where at
least one of the inequalities is violated.

Adding to the objective penalty terms for both equality and inequality constraints, we come
to the penalized objective

fρ(x) = f(x) +
1
2
ρ
m∑

i=1

h2
i (x) +

1
2
ρ

k∑

j=1

(g+
j (x))2; (10.1.2)

same as above, we can expect that the unconstrained minimizers of the penalized objective
approach the constrained minimizers of the actual objective as the penalty parameter goes to
infinity. Thus, solutions of the unconstrained problem

fρ(x)→ min,

for large ρ, are good approximations to the solutions of (GCP).
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10.1.3 Barrier methods

The idea of the barrier methods is similar; the only difference is that instead of allowing vi-
olations of the constraints and punishing these violations, we now prevent the constraints to
be violated by a kind of interior penalty which blows up to infinity as a constraint is about
to be violated. This “interior penalty” approach can be normally used in the case of inequal-
ity constrained problems with “full-dimensional” feasible set. Namely, consider an inequality
constrained problem

(ICP) f(x)→ min | gj(x) ≤ 0, j = 1, ..., k,

and assume that the feasible domain G of the problem is such that

• the interior int G of the domain G is nonempty, and every gj is strictly negative in int G

• every point from G can be represented as the limit of a sequence of points from the interior
of G

Assume also, just for the sake of simplicity, that G is bounded.
Given problem with the indicated properties, one can in many ways define an interior penalty

function (also called a barrier) for the feasible domain G, i.e., a function F defined on the interior
of G and such that

• F is continuously differentiable on int G

• F (xi)→∞ for any sequence of points xi ∈ int G converging to a boundary point x of G

E.g., one can set

F (x) =
k∑

j=1

1
−gj(x)

(the Carrol barrier), or

F (x) = −
k∑

j=1

ln(−gj(x))

(the logarithmic barrier), or something else.
Now consider the following “aggergate”:

Fρ(x) = f(x) +
1
ρ
F (x),

where ρ > 0 is penalty parameter. The function Fρ is well-defined and smooth on int G and goes
to ∞ along every sequence of points from int G converging to a boundary point of G (indeed,
along such a sequence F possesses the required behaviour, while f remains bounded due to
continuity of the objective). In particular, the level sets of Fρ – the sets of the type

{x ∈ int G | Fρ(x) ≤ a}
are closed1). Since they are also bounded (recall that G is assumed to bounded), they are
compact sets, and Fρ, being continuous on such a compact set, attains its minimum on it; the

1indeed, to prove closedness of a level set, let it be called L, is the same as to prove that if fρ(xi) ≤ a < ∞
for certain sequence of points {xi} converging to a point x, then Fρ(x) ≤ a (a closed set is by definition, the one
which contains the limits of all converging sequences comprised of elements of the set). A priori x might be either
an interior, or a boundary point of G. The second possibility should be excluded, since if it is the case, then, due
to already indicated properties of Fρ, it would be Fρ(xi) → ∞ as i → ∞, which is impossible, since Fρ is above
bounded on every level set. Thus, x ∈ int G; but then Fρ is continuous at x, and since Fρ(xi) ≤ a and xi → x,
i→∞, we get Fρ(x) ≤ a, as required.
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corresponding minimizer clearly is a minimizer of Fρ on int G as well.
Thus, for every positive ρ the function Fρ attains its minimum on int G. At the same time,

when the penalty parameter ρ is large, Fρ “almost everywhere in int G” is “almost equal” to f
– indeed, due to the factor 1

ρ at F in Fρ, the contribution of the interior penalty term for large ρ
is not negligible only in a thin, the smaller the larger is ρ, neighbourhood of the boundary. From
this observation it is natural to guess (and it turns out to be indeed true) that the minimizers
of Fρ on int G are, for large ρ, close to the optimal set of (ICP) and could therefore be treated
as good approximate solutions to (ICP).

Now, the problem
Fρ(x)→ min

is, formally, a constrained problem – since the domain of the objective is int G rather than
entire Rn. Nevertheless, we have basically the same possibilities to solve the problem as if it
was unconstrained. Indeed, any descent (i.e., forming a sequence of iterates along which the
objective never increases) method for unconstrained minimization, as applied to Fρ and started
at an interior point of G, never will come too close to the boundary of G (since, as we know,
close to the boundary Fρ is large, and along the trajectory of the method Fρ is not greater
than at the starting point). It means that the behaviour of the method as applied to Fρ will,
basically, be the same as if Fρ was defined everywhere – the method simply will not feel that
the objective is only partially defined. Thus, the barrier scheme in fact reduces the constrained
minimization problem to an unconstrained one (or, better to say, allows to approximate the
constrained problem by “essentially unconstrained” problem).

After the ideas of penalty and barrier schemes are outlined, let us come to more detailed
investigation of the schemes.

10.2 Penalty methods

Let us investigate the penalty scheme in more details. The main questions we should focus on
are

• Whether indeed unconstrained minimizers of the penalized objective fρ converge, as ρ→
∞, to the solutions of the constrained problem?

• What are our possibilities to minimize the penalized objective?

For the sake of definiteness, let us focus on the case of equality constrained problem (ECP) (the
results for tthe general case are similar).

10.2.1 Convergence of the penalty scheme

The first – and very simple – statement is as follows:

Theorem 10.2.1 Let the objective f in problem (ECP) possess bounded level sets:

f(x)→∞, |x| → ∞,

and let (ECP) be feasible. Then, for any positive ρ, the set of global minimizers X∗(ρ) of the
penalized objective fρ is nonempty. Moreover, if X∗ is the set of globally optimal solutions to
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(ECP), then, for large ρ, the set X∗ρ is “close” to X∗: for any ε > 0 there exists ρ = ρ(ε) such
that the set X∗(ρ), for all ρ ≥ ρ(ε), is contained in ε-neighbourhood

X∗ε = {x | ∃x∗ ∈ X∗ : |x− x∗| < ε}

of the optimal set of (ECP).

Proof. First of all, (ECP) is solvable. Indeed, let x0 be a feasible solution to the problem, and
let U be the corresponding level set of the objective:

U = {x | f(x) ≤ f(x0)}.

By assumption, this set is bounded and, due to continuity of f , is closed; therefore it is compact.
Further, the feasible set S of the problem also is closed (since the constraints are continuous);
consequently, the set

Uf = U ∩ S
– the set of all feasible solutions not worse, in terms of the values of f , then the feasible solution
x0 – is bounded and closed, therefore is compact (and nonempty – it contains x0). It is clear
that the original problem is equivalent to the one of minimizing the objective over Uf , and the
latter problem, being a problem of minimizing a continuous function on compact set, is solvable.

By similar reasons, every unconstrained problem

(Pρ) fρ(x)→ min

also is solvable. I claim that

• the optimal value f∗ρ of (Pρ) is not greater than the optimal value f∗ in (ECP);

• if x∗ρ is an optimal solution to (Pρ), then

f(x∗ρ) ≤ f∗; (10.2.1)

• the optimal set X∗(ρ) of (Pρ) is contained in U .

Indeed, if x∗ is an optimal solution to (ECP), then

fρ(x∗) = f(x∗) = f∗,

so that the optimal value in (Pρ) can be only ≤ the one in (ECP), which justifies the first claim.
Further, due to nonnegativity of the penalty term we have

f(x∗ρ) ≤ fρ(x∗ρ) = min
x
fρ(x) ≤ fρ(x∗) = f∗,

which justifies the second claim. And this second claim immediately implies that x∗ρ ∈ U by
construction of U .

Our observations immediately result in the desired conclusions. Indeed, we already have
proved that X∗(ρ) is nonempty, and all we need is to verify that, for large ρ, the set X∗(ρ) is
contained in tight neighbourhood of X∗. Assume that it is not the case: there exist positive
ε and a sequence ρi → ∞ such that X∗(ρi) is not contained in X∗ε , so that one can choose
x∗i ∈ X∗(ρi) in such a way that x∗i is outside X∗ε . According to the third claim, the points x∗i
belong to U and form therefore a bounded sequence. Passing to a subsequence, we may assume
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that x∗i converge to certain point x as i → ∞. I claim that x is an optimal solution to (ECP)
(this will give us the desired contradiction: since x∗i → x ∈ X∗, the points x∗i for all large enough
i must be in X∗ε – look at the definition of the latter set – and we have chosen xi not to be in
X∗ε ). To prove that x is an optimal solution to (ECP), we should prove that f(x) ≤ f∗ and
that x is feasible. The first inequality is readily given by (10.2.1) – it should be satisfied for
x∗ρ = x∗i , and the latter points converge to x; recall that f is continuous. Feasibility of x is
evident: otherwise h(x) 6= 0 and, since x∗i → x and h is continuous, for all large enough i one
has

|h(x∗i )| ≥ a =
1
2
|h(x)| > 0,

whence for these i

f∗ρi = fρi(x
∗
i ) =

1
2
ρi|h(x∗i )|2 + f(x∗i ) ≥

a

2
ρi + f(x∗i )→∞, i→∞

(note that ρi →∞, while f(x∗i )→ f(x)), which contradicts our first claim.

The formulated theorem is not that useful: we could conclude something reasonable from its
statement, if we were able to approximate the global solutions to (Pρ), which is the case only
when fρ is convex (as it, e.g., happens when f is convex and the equality constraints are linear).
What we indeed need is a local version of the theorem. This version is as follows:

Theorem 10.2.2 Let x∗ be a nondegenerate locally optimal solution to (ECP) (see Definition
8.2.2). Then there exists a neighbourhood V of x∗ (an open set containing x∗) and ρ̄ > 0 such
that for every ρ ≥ ρ̄ the penalized objective fρ possesses in V exactly one critical point x∗(ρ).
This point is a nondegenerate local minimizer of fρ and a minimizer of fρ in V , and x∗(ρ)→ x∗

as ρ→∞.

Proof [non-obligatory]. The simplest way to prove the theorem is to reduce the situation to the
case when the constraints are linear. This can be done as follows: since x∗ is nondegenerate,
the gradients of the constraints at x∗ are linearly independent. From the appropriate version
of the Implicit Function Theorem (we again use this magic Calculus tool) it follows that you
can choose locally new coordinates y (nonlinearly related to the original ones!) in which our m
constraints will be simply the first coordinate functions. Namely, there exist

• a neighbourhood V ′ of the point x∗

• a neighbourhood W ′ of the origin in Rn

• a one-to-one mapping x = X(y) from W ′ onto V ′ with inverse y = Y (x)

such that

• X(·) and Y (·) are continuously differentiable as many times as the constraints h (i.e., at
least twice; recall that we once for ever restricted our considerations to problems with
twice continuously differentiable data)

• x∗ = X(0) (“x∗ in the coordinates y becomes the origin”)

• hi(X(y)) ≡ yi, i = 1, ...,m (“in y-coordinates the constraints become the first m coordinate
functions”).
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Now let us pass in (ECP) from coordinates x to coordinates y, which results in the problem

(ECP′) φ(y) ≡ f(X(y))→ min | yi ≡ hi(X(y)) = 0, i = 1, ...,m;

this, of course, makes sense only in the neighbourhood W ′ of the origin in y-variables.
10. I claim that y∗ = 0 is nondegenerate solution to the problem (ECP′). Indeed, we should

prove that this is a regular point for the constraints in the problem (which is evident) and that
the Second Order Sufficient Optimality condition takes place at the point, i.e, there exist λ∗

such that the Lagrange function

L′(y, λ) = φ(y) +
m∑

i=1

λiyi

satisfies
∇yL′(y∗, λ∗) = 0

and
dT∇2

yL
′(y∗, λ∗)d > 0

for every nonzero vector d which is orthogonal to the gradients of the constraints of (ECP′). And
what we know is that there exists λ∗ which ensures similar properties of the Lagrange function

L(x, λ) = f(x) +
m∑

i=1

λihi(x)

of the original problem at x = x∗. What we shall prove is that the latter λ∗ satisfies all our
needs in (ECP′) as well. Indeed, we clearly have

L′(y, λ∗) = L(X(y), λ∗),

whence, denoting by X ′(y) the n× n matrix of derivative of the mapping X(·) at y,

∇yL′(y∗, λ∗) = [X ′(0)]T∇xL(x∗, λ∗) = [X ′(0)]T 0 = 0

– y∗ = 0 satisfies the first order part of the Optimality condition.
Further, dT∇y[h(X(y))] = dT [X ′(y)]T∇xh(X(y)), so that d is orthogonal to the gradients of

yi ≡ hi(X(y)), i = 1, ...,m, if and only if d̄ = X ′(0)d is orthogonal to ∇hi(x∗), i = 1, ...,m. Note
also that X ′(0) is nonsingular (differentiate the identity Y (X(y)) ≡ y to get [X ′(0)]−1 = Y ′(x∗)),
so that d is nonzero if and only if X ′(0)d is.

Now let d be a nonzero vector which is orthogonal to the gradients of the constraints of
(ECP′). As it was just explained, d̄ = X ′(0)d is a nonzero vector orthogonal to the gradients of
hi at x∗, and we have

dT∇2
yL
′(y∗, λ∗)d = dT [∇2

y|y=y∗L(X(y), λ∗)]d =

[differentiating twice the superposition in direction d]

dT [X ′(0)]T∇2
xL(x, λ∗)X ′(0)d+ [∇xL(x∗, λ∗)]T

d2

dt2
|t=0X(td) =

[the second term is zero due to the origin of λ∗]

= d̄T∇2
xL(x∗, λ∗)d̄ > 0
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[again due to the origin of λ∗], and we see that the second order part of the required conditions
also is satisfied.

20. Now note that (ECP′) is a problem with linear constraints, so that the Hessian with
respect to y of the Lagrangian of the problem, independently of the values of the Lagrange multi-
pliers, is ∇2

yφ(y). In particular, the “second-order part” of the fact that y∗ = 0 is nondegenerate
solution to (ECP′) simply says that H = ∇2

yφ(y∗) is positive definite on the plane

L = {d | di = 0, i = 1, ...,m}

(this the tangent plane at y∗ to the feasible surface of the problem). This is the key argument
in the proof of the following crucial fact:

(*) function

φρ(y) = φ(y) +
1
2
ρ
m∑

i=1

y2
i

– the penalized objective of (ECP′) – is, for large enough ρ, strictly convex in a properly chosen
convex neighbourhood W of y∗ = 0, i.e., there exists small enough convex neighbourhood
W ⊂ W ′ of y∗ = 0 (simply an open ball of certain small enough positive radius) and ρ∗ > 0
such that

∇2
yφρ(y)

is positive definite whenever y ∈W and ρ ≥ ρ∗.
The proof of (*) goes through the following simple

Lemma 10.2.1 Let A be a symmetric n× n matrix and L be a linear subspace in Rn, and let
P be the orthoprojector on L. Assume that matrix A is positive definite on L:

dTAd ≥ α|d|2 ∀d ∈ L

with certain α > 0. Then there exists ρ∗ such that the matrix

A+ ρ(I − P )

is positive definite whenever ρ ≥ ρ∗ and is such that

dT (A+ ρ(I − P ))d ≥ α

2
|d′|2 +

ρ

2
|d′′|2 ∀d ∈ Rn,

d′ = Pd and d′′ = (I−P )d being the projections of d onto L and onto the orthogonal complement
of L, respectively.

Moreover, ρ∗ can be chosen depending only on α and on an upper bound β for the norm

|A| = max
d:|d|≤1

|Ad|

of the matrix A.

Proof. Let β ≥ |A| and γ > 0. We have

dT (A+ ρ(I − P ))d = dTAd+ ρ|d′′|2 = (d′ + d′′)TA(d′ + d′′) + ρ|d′′|2 =

= (d′)TAd′ + 2(d′)TAd′′ + (d′′)TAd′′ + ρ|d′′|2 ≥
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[since (d′)TAd′ ≥ α|d′|2 and, by Cauchy’s inequality,

|2(d′)TAd′′| = 2|d′||Ad′′| ≤ 2|A||d′||d′′| ≤ 2β|d′||d′′| ≤ β

γ
|d′|2 + βγ|d′′|2

(note that |2uv| ≤ γ−1u2 + γv2 – this is nothing but the inequality between the
arithmetic and the geometric mean)]

≥ α|d′|2 − β

γ
|d′|2 − βγ|d′′|2 + ρ|d′′|2.

Setting here γ = 2β
α , we get

dT (A+ ρ(I − P ))d ≥ α

2
|d′|2 + [ρ− 2β2

α
]|d′′|2;

choosing finally ρ∗ = 4β2

α and assuming ρ ≥ ρ∗, so that ρ− 2β2

α ≥ ρ
2 , we come to

dT (A+ ρ(I − P )d ≥ α

2
|d′|2 +

ρ

2
|d′′|2

for all ρ ≥ ρ∗.
Now we are ready to prove (*). Indeed, since ∇2φ(y) is continuous in y and ∇2φ(y∗) is

positive definite on
L = {d | di = 0, i = 1, ...,m},

we could choose

• small enough ball W centered at y∗ = 0 and contained in W ′

• small enough positive α

• large enough positive β

such that
dT [∇2φ(y)]d ≥ α|d|2, y ∈W,d ∈ L,

P being the orthoprojector on L, and

|∇2φ(y)| ≤ β, y ∈W.

Now note that

∇2
yφρ(y) ≡ ∇2

y

[
φ(y) +

ρ

2

m∑

i=1

y2
i

]
= ∇2φ(y) + ρ(I − P ),

P being the orthoprojector onto L. According to Lemma 10.2.1, there exists ρ∗ > 0 such that
all the matrices

∇2φρ(y)

corresponding to y ∈W and ρ ≥ ρ∗ are positive definite, moreover, satisfy

dT [∇2φρ(y)]d ≥ α

2
|d′|2 +

ρ

2
|d′′|2, d′ = Pd, d′′ = (I − P )d. (10.2.2)

Thus, whenever ρ ≥ ρ∗, the Hessian of the function φρ is positive definite in W , so that φρ is
convex in W .
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40. Let ρ ≥ ρ∗. From (10.2.2) it immediately follows that

φρ(y) ≥ φρ(0) + yT∇yφ(0) +
α

4
|y′|2 +

ρ

4
|y′′|2, y′ = Py, y′′ = (I − P )y′′. (10.2.3)

The gradient of φρ at y∗ = 0 is, first, independent of ρ (it is simply the gradient of φ at the
point) and, second, is orthogonal to L, as it is given by the “first order part” of the fact that
y∗ = 0 is a nondegenerate solution to (ECP′). Consequently, (10.2.3) can be rewritten as

φρ(y) ≥ φρ(0) + (y′′)T g +
α

4
|y′|2 +

ρ

4
|y′′|2, (10.2.4)

g = ∇yφ(y∗) being a once for ever fixed vector. From this relation it easily follows2)

(**) there exists ρ̄ ≥ ρ∗ such that φρ(y) > φρ(0) whenever ρ ≥ ρ̄ and y is a boundary point of
the ball W .

Now let ρ ≥ ρ̄. The function φρ, being continuous on the closure of W (which is a closed ball,
i.e., a compact set), attains its minimum on clW , and, due to strong convexity of the function,
the minimizer, let it be called y∗(ρ), is unique. By (**), this minimizer cannot be a boundary
point of clW – on the boundary φρ is greater than at y∗ = 0, i.e., it is a point from W . Since φρ
is smooth and y∗(ρ) ∈W , y∗(ρ) is a critical point of φρ. There is no other critical point of φρ in
W , since φρ is convex and therefore a critical point of the function is its minimizer on clW , and
we know that such a minimizer is unique. Note that y∗(ρ) is a nondegenerate local minimizer of
φρ, since φρ is with positive definite Hessian. Last, y∗(ρ)→ y∗ = 0 as ρ→∞. Indeed, we have

φρ(y∗(ρ)) ≤ φρ(0),

whence, denoting yL(ρ) = Py∗(ρ), yL⊥(ρ) = (I − P )y∗(ρ) and applying (10.2.4),

gT yL⊥(ρ) +
α

4
|yL(ρ)|2 +

ρ

4
|yL⊥(ρ)|2 ≤ 0,

or, with the Cauchy inequality,

|g||yL⊥(ρ)| ≥ α

4
|yL(ρ)|2 +

ρ

4
|yL⊥(ρ)|2.

From this inequality it immediately follows that |yL⊥(ρ)| → 0 as ρ→∞ (why?), and with this
observation the same inequality results also in |yL(ρ)| → 0, ρ→∞, so that indeed y∗(ρ)→ y∗ =
0, ρ→∞.

2here is the derivation: we should prove that

(y′′)T g +
α

4
|y′|2 +

ρ

4
|y′′|2 > 0

whenever y is on the boundary of W and ρ is large enough; recall that W is centered at the origin ball of certain
raduis r > 0. Denoting s = |y′′|2 and taking into account that |y′|2 = r2 − s and (y′′)T g ≥ −cs1/2 by Cauchy’s
inequality, we reduce the problem in question to the following one: prove that

(!) min
0≤s≤r2

θρ(s), θρ(s) =
[
α

4
r2 +

ρ− α
4

s− c√s
]

is positive, provided that ρ is large enough. This is evident (split the entire segment [0, r2] where s varies into
the segment ∆ where cs1/2 ≤ α

8
r2 – in this segment θρ(s) is positive whenever ρ > α – and the complementary

segment ∆′, and note that in this complementary segment s is bounded away from zero and therefore θρ for sure
is positive for all large enough values of ρ.
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50. Thus, we have established the statement we are going to prove – but for the “locally
equivalent to (ECP)” problem (ECP′) rather than for the actual problem of interest: we have
pointed out a neighbourhood W of the point y∗ such that the penalized objective φρ of (ECP′),
for all large enough ρ, has in this neighbourhood exactly one critical point, which is a nondegen-
erate minimizer of φρ in the neighbourhood; and as ρ → ∞, this critical point y∗(ρ) converges
to y∗ = 0. Now let us take the image V of W under our substitution of variables mapping
y 7→ X(y). We will get a neighbourhood of x∗, and in this neighbourhood we clearly have

fρ(x) = φρ(Y (x)).

Now, Y is one-to-one differentiable mapping of V onto W with differentiable inverse X; it
immediately follows that a point x is a critical point (or a minimizer) of fρ in V if and only if
Y (x) is a critical point, respectively, a minimizer of φρ in W ; in particular, for ρ ≥ ρ̄ fρ indeed
possesses unique critical point x∗(ρ) = X(y∗(ρ)) in V , and this is the minimizer of fρ in V . As
ρ → ∞, we have y∗(ρ) → y∗ = 0, whence x∗(ρ) → X(0) = x∗. The only property of x∗(ρ) we
did not verify so far is that it is nondegenerate local minimizer of fρ, i.e., that ∇2

xfρ(x
∗(ρ)) is

positive definite; we know that it is the case for φρ and y∗(ρ), but our substitution of variables is
nonlinear and therefore, generally speaking, does not preserve positive definiteness of Hessians.
Fortunately, it does preserve positive definiteness of the Hessians taken at critical points: if
Y (x) is twice continuously differentiable mapping with differentiable inverse and ψ is such that
∇yψ(ȳ) = 0, ȳ = Y (x̄), then, as it is immediately seen, the Hessian of the composite function
g(x) = ψ(Y (x)) at the point x̄ is given by

∇2
xg(x̄) = [Y ′(x̄)]T∇2

yψ(ȳ)Y ′(x̄)

(in the general case, there are also terms coming from the first order derivative of ψ at ȳ and
second order derivatives of Y (·), but in our case, when ȳ is a critical point of ψ, these terms are
zero), so that ∇2

xg(x̄) is positive definite if and only if ∇2
yψ(ȳ) is so. Applying this observation

to ψ = φρ and ȳ = y∗(ρ), we obtain the last fact we need – nondegeneracy of x∗(ρ) as an
unconstrained local minimizer of fρ.

10.2.2 Interesting properties of the path x∗(ρ)

In this subsection we assume that we are in situation of Theorem 10.2.2; our goal is to establish
several useful properties of the given by the Theorem path of unconstrained minimizers x∗(ρ), ρ ≥
ρ̄ of the penalized objective in the neighbourhood V of x∗. The properties are as follows

• Let
X+(ρ) = {x ∈ V | |h(x)| ≤ |h(x∗(ρ))|}.

Then
x∗(ρ) ∈ Argmin

x∈X+(ρ)
f(x) (10.2.5)

(“x∗(ρ) minimizes f on the set of all those points from V where the constraints are violated
at most as they are violated at x∗(ρ)”).

Indeed, x∗(ρ) evidently belongs to X+(ρ); if there were a point x in X+(ρ) with f(x) < f(x∗(ρ)),
we would have

fρ(x) = f(x) +
ρ

2
|h(x)|2 <
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[since f(x) < f(x∗(ρ)) and |h(x)| ≤ |h(x∗(ρ))| due to x ∈ X+(ρ)]

< f(x∗(ρ)) +
ρ

2
|h(x∗(ρ))|2 = fρ(x∗(ρ)).

The resulting inequality is impossible, since x∗(ρ) minimizes fρ in V .

• [Monotonicity of the optimal value of the penalized objective] The optimal (in V ) values
fρ(x∗(ρ)) of the penalized objectives do not decrease with ρ.

Indeed, if ρ ≤ ρ′, then clearly fρ(x) ≤ fρ′(x) everywhere in V , and consequently the same
inequality holds for the minimal values of the functions.

• [Monotonicity of violations of the constraints] The quantities

v(ρ) = |h(x∗(ρ))|
do not increase with ρ (“the larger is the penalty parameter, the less are violations of the
constraints at the solution to the penalized problem”)

Indeed, assume that ρ′ > ρ′′, and let x′ = x∗(ρ′), x′′ = x∗(ρ′′). We have

[fρ′(x′′) ≡] f(x′′) +
ρ′

2
|h(x′′)|2 ≥ f(x′) +

ρ′

2
|h(x′)|2 [≡ fρ′(x′)]

and, similarly,

f(x′) +
ρ′′

2
|h(x′)|2 ≥ f(x′′) +

ρ′′

2
|h(x′′)|2.

Taking sum of these inequalities, we get

ρ′ − ρ′′
2
|h(x′′)|2 ≥ ρ′ − ρ′′

2
|h(x′)|2

whence, due to ρ′ > ρ′′, v(ρ′′) = |h(x′′)| ≥ |h(x′)| = v(ρ′), as required.

• [Monotonicity of the actual objective] The values of the actual objective f along the path
x∗(ρ) do not decrease with ρ.

Indeed, we already know that

f(x∗(ρ)) = min
x:x∈V,|h(x)|≤v(ρ)

f(x).

According to the previous statement, the sets in the right hand side over which the minimum
is taken do not increase with ρ, and, consequently, the minimal value of f over these sets does
not decrease with ρ.

The indicated properties demonstrate the following nice behaviour of the path x∗(ρ): as
the penalty parameter grows, the path approaches the constrained minimizer x∗ of (ECP); the
values of the objective along the path are always better (more exactly, not worse) than at x∗ and
increase (actually, do not decrease) with ρ, approaching the optimal value of the constrained
problem from the left. Similarly, the violation of constraints becomes smaller and smaller as
ρ grows and approaches zero. In other words, for every finite value of the penalty parameter
it turns out to be profitable to violate constraints, getting, as a result, certain progress in the
actual objective; and as the penalty parameter grows, this violation, same as progress in the
objective, monotonically goes to zero.

An additional important property of the path is as follows:
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• [Lagrange multipliers and the path] The quantities

λi(ρ) = ρhi(x∗(ρ))

tend, as ρ→∞, to the optimal Lagrange multipliers λ∗ associated with x∗.

Indeed, x∗(ρ) is a critical point of fρ, whence

∇xfρ(x∗(ρ)) = ∇xf(x∗(ρ)) +
m∑

i=1

λi(ρ)∇xh(x∗(ρ)) = 0.

Thus, λi(ρ) are the coefficients in the representation of the vector ψ(ρ) ≡ −∇xf(x∗(ρ)) as a
linear combination of the vectors ψi(ρ) = ∇xhi(x∗(ρ)). As we know, x∗(ρ) → x∗ as ρ → ∞, so
that ψ(ρ)→ ψ ≡ ∇xf(x∗) and ψi(ρ)→ ψi ≡ ∇xhi(x∗). Since the vectors ψ1, ..., ψm are linearly
independent, from the indicated convergencies it follows (why?) that λi(ρ)→ λ∗i , ρ→∞, where
λ∗i are the (uniquely defined) coefficients in the representation of −ψ as a linear combination of
ψi, i.e., are the Lagrange multipliers.

Remark 10.2.1 Similar results and properties take place also for the penalty method as applied
to the general type constrained problem (GCP).

Remark 10.2.2 The quadratic penalty term we used is not, of course, the only option; for
(ECP), we could use penalty term of the form

ρΦ(h(x))

as well, with smooth function Φ which is zero at the origin and positive outside the origin (in our
considerations, Φ was set to 1

2 |u|2); similar generalizations are possible for (GCP). The results
for these more general penalties, under reasonable assumptions on Φ, would be similar to those
as for the particular case we have considered.

10.2.3 Penalty method: advantages and drawbacks

Now it is time to look what are our abilities to solve the unconstrained problems

(Pρ) fρ(x)→ min

which, as we already know, for large ρ are good approximations of the constrained problem in
question. In principle we can solve these problems by any one of unconstrained minimization
methods we know, and this is definitely a great advantage of the approach.

There is, anyhow, a severe weak point of the construction – to approximate well the con-
strained problem by unconstrained one, we must deal with large values of the penalty param-
eter, and this, as we shall see in a while, unavoidably makes the unconstrained problem (Pρ)
ill-conditioned and thus – very difficult for any unconstrained minimization methods sensitive
to the conditioning of the problem. And all the methods for unconstrained minimization we
know, except, possibly, the Newton method, are “sensitive” to conditioning (e.g., in the Gra-
dient Descent the number of steps required to achieve an ε-solution is, asymptotically, inverse
proportional to the condition number of the Hessian of objective at the optimal point). Even the
Newton method, which does not react on the conditioning explicitly – it is “self-scaled” – suffers
a lot as applied to an ill-conditioned problem, since here we are enforced to invert ill-conditioned
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Hessian matrices, and this, in actual computations with their rounding errors, causes a lot of
troubles. The indicated drawback – ill-conditioness of auxiliary unconstrained problems – is
the main disadvantage of the “straightforward” penalty scheme, and because of it the scheme is
not that widely used now and is in many cases replaced with more smart modified Lagrangian
scheme (in the mean time, we shall look at the latter scheme).

It is time now to justify the above claim that problem (Pρ) is, for large ρ, ill-conditioned.
Indeed, assume that we are in the situation of Theorem 10.2.2, and let us compute the Hessian
Hρ of fρ at the point x = x∗(ρ). The computation yields

Hρ =

[
∇2
xf(x) +

m∑

i=1

[ρhi(x)]∇2
xhi(x)

]
+ ρ[∇xh(x)]T [∇xh(x)].

We see that Hρ is comprised of two terms: the matrix in the brackets, let it be called Lρ,
and the proportional to ρ matrix ρMρ ≡ [∇xh(x)]T [∇xh(x)]. When ρ→∞, then, as we know,
x = x∗(ρ) converges to x∗ and ρhi(x∗) converge to the Lagrange multipliers λ∗i of (ECP), so that
Lρ possesses quite respectable limit L, namely, the Hessian of the Lagrange function∇2

xL(x∗, λ∗).
The matrix Mρ also possesses limit, namely,

M = [∇xh(x∗)]T [∇xh(x∗)];

this limit, as it is clearly seen, is a matrix which vanishes on the tangent at x∗ plane T to the
feasible surface of the problem and is nondegenerate on the orthogonal complement T⊥ to this
tangent plane. Since Mρ is symmetric, both T and T⊥ are invariant for M , and M possesses
n − m eigenvectors with zero eigenvalues – these vectors span T – and m eigenvectors with
positive eigenvalues – these latter vectors span T⊥. Since

Hρ = Lρ + ρMρ,

we conclude that the spectrum of Hρ, for large ρ, is as follows: there are n − m eigenvectors
“almost in T” with the eigenvalues “almost equal” to those of the reduction of L onto T ; since L
is positive definite on T , these eigenvalues are positive reals. Now, Hρ possesses m eigenvectors
“almost orthogonal” to T with eigenvalues “almost equal” to ρ times the nonzero eigenvalues
of M . Thus, excluding trivial cases m = 0 (no constraints at all) and m = n (locally unique
feasible solution x∗), the eigenvalues of Hρ form two groups – group of n −m asymptotically
constant positive reals and group of m reals asymptotically proportional to ρ. We conclude that
the condition number of Hρ is of order of ρ, as it was claimed.

10.3 Barrier methods

10.3.1 “Classical” barrier scheme

The situation with the barrier (interior penalty) methods in their “classical” from outlined in
Section 10.1.3 is very similar to the one with penalty methods. It indeed is true (and is easily
verified) that the solutions to the modified problem

(Pρ) Fρ(x) ≡ f(x) +
1
ρ
F (x)→ min,

F being the interior penalty for the feasible domain of (ICP), converge to the optimal set of the
problem:
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Theorem 10.3.1 Let F be an interior penalty function for the feasible domain G of (ICP),
and assume that the feasible domain is bounded and is the closure of its interior int G. Then
the set X∗(ρ) of minimizers of Fρ on int G is nonempty, and these sets converge, as ρ → ∞,
to the optimal set X∗ of (ICP): for every ε > 0 there exists ρ̄ such that X∗(ρ), for all ρ ≥ ρ̄, is
contained in the ε-neighbourhood

X∗ε = {x ∈ G | ∃x∗ ∈ X∗ : |x− x∗| < ε}

of the optimal set of (ICP).

Proof is completely similar to that one of Theorem 10.2.1. First of all, X∗ is nonempty (since
f is continuous and the feasible domain is bounded and closed and is therefore a compact set).
The fact that X∗(ρ) are nonempty for all positive ρ was proved in Section 10.1.3. To prove that
X∗(ρ) is contained, for large ρ, in a tight neighbourhood of X∗, let us act as follows. Same as
in the proof of Theorem 10.2.1, it suffices to lead to a contradiction the assumption that there
exists a sequence {xi ∈ X∗(ρi)} with ρi → ∞ which converges to a point x ∈ G\X∗. Assume
that it is the case; then f(x) > minG f + δ with certain positive δ. Let x∗ be a global minimizer
of f on G. Since G is the closure of int G, x∗ can be approximated, within an arbitrarily high
accuracy, by points from int G, and since f is continuous, we can find a point x′ ∈ int G such
that

f(x′) ≤ f(x∗) +
δ

2
.

We have
Fρi(xi) = min

x∈int G
Fρi(x) ≤ Fρi(x′), (10.3.1)

whence
f(xi) +

1
ρi
F (xi) ≤ f(x′) +

1
ρi
F (x′).

Since F is a barrier for bounded domain G, F is below bounded on int G (since it attains
its minimum on int G – use the reasoning from Section 10.1.3 for the case of f ≡ 0). Thus,
F (x) ≥ a > −∞ for all x ∈ int G, and therefore (10.3.1) implies that

f(xi) ≤ f(x′) +
1
ρi
F (x′)− 1

ρi
a.

As i → ∞, the right hand side in this inequality tends to f(x′) ≤ f(x∗) + δ
2 , and the left hand

side tends to f(x) ≥ f(x∗) + δ; since δ > 0, we get the desired contradiction.

If I were writing this lecture 5-8 years ago, I would proceed with the statements similar to
the one of Theorem 10.2.2 and those on behaviour of the path of minimizers of Fρ and conclude
with the same laments “all this is fine, but the problems of minimization of Fρ normally (when
the solution to the original problem is on the boundary of G; otherwise the problem actually is
unconstrained) become the more ill-conditioned the larger is ρ, so that the difficulties of their
numerical solution grow with the penalty parameter”. When indeed writing this lecture, I would
say something quite opposite: there exists important situations when the difficulties in numerical
minimization of Fρ do not increase with the penalty parameter, and the overall scheme turns
out to be theoretically efficient and, moreover, the best known so far. This change in evaluation
of the scheme is the result of recent “interior point revolution” in Optimization which I have
already mentioned in Lecture 4. Let us look what is the revolution and what is the progress
caused by the revolution.
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10.3.2 Self-concordant barriers and path-following scheme

Assume from now on that our problem (ICP) is convex (the revolution we are speaking about
deals, at least directly, with Convex Programming only). It is well-known that convex program
(ICP) can be easily rewritten as a program with linear objective; indeed, it suffices to extend
the vector of design variables by one variable, let it be called t, more and to rewrite (ICP) as
the problem

t→ min | gj(x) ≤ 0, j = 1, ..., k, f(x)− t ≤ 0.

The resulting problem still is convex and has linear objective.
To save notation, assume that the outlined conversion is carried out in advance, so that

already the original problem has linear objective and is therefore of the form

(P) f(x) ≡ cTx→ min | x ∈ G ⊂ Rn.

Here the feasible set G of the problem is convex (we are speaking about convex programs!); we
also assume that it is closed, bounded and possesses a nonempty interior.

Our abilities to solve (P) efficiently by an interior point method depend on our abilities to
point out a “good” interior penalty F for the feasible domain. What we are interested in is a
ϑ-self-concordant barrier F ; the meaning of these words is given by the following

Definition 10.3.1 [Self-concordant barrier] Let ϑ ≥ 1. We say that a function F is ϑ-self-
concordant barrier for the feasible domain D of problem (P), if

• F is self-concordant function on int G (Section 4.3.2, Lecture 4), i.e., three times con-
tinuously differentiable convex function on int G possessing the barrier property (i.e.,
F (xi) → ∞ along every sequence of points xi ∈ int G converging to a boundary point
of G) and satisfying the differential inequality

| d
3

dt3
|t=0F (x+ th)| ≤ 2

[
hTF ′′(x)h

]3/2 ∀x ∈ int G ∀h ∈ Rn;

• F satisfies the differential inequality

|hTF ′(x)| ≤
√
ϑ
√
hTF ′′(x)h ∀x ∈ int G ∀h ∈ Rn. (10.3.2)

An immediate example is as follows (cf. “Raw materials” in Section 4.3.4, Lecture 4):

Example 10.3.1 [Logarithmic barrier for a polytope] Let

G = {x ∈ Rn | aTj x ≤ bj , j = 1, ...,m}
be a polytope given by a list of linear inequalities satisfying the Slater condition (i.e., there exists
x̄ such that aTj x̄ < bj, j = 1, ...,m). Then the function

F (x) = −
m∑

j=1

ln(bj − aTj x)

is an m-self-concordant barrier for G.

In the mean time, we shall justify this example (same as shall consider the crucial issue of how
to find a self-concordant barrier for a given feasible domain). For the time being, let us focus
on another issue: how to solve (P), given a ϑ-self-concordant barrier for the feasible domain of
the problem.

What we intend to do is to use the path-following scheme associated with the barrier –
certain very natural implementation of the barrier method.
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Path-following scheme

When speaking about the barrier scheme, we simply claimed that the minimizers of the aggregate
Fρ approach, as ρ → ∞, the optimal set of (P). The immediate recommendation coming from
this claim could be: choose “large enough” value of the penalty and solve, for the chosen ρ, the
problem (Pρ) of minimizing Fρ, thus coming to a good approximate solution to (P). It makes,
anyhow, sense to come to the solution of (Pρ) gradually, by solving sequentially problems (Pρi)
along an increasing sequence of values of the penalty parameter. Namely, assume that the
barrier F we use is nondegenerate, i.e., F ′′(x) is positive definite at every point x ∈ int G (note
that this indeed is the case when F is self-concordant barrier for a bounded feasible domain,
see Proposition 4.3.1.(i)). Then the optimal set of Fρ for every positive ρ is a singleton (we
already know that it is nonempty, and the uniqueness of the minimizer follows from convexity
and nondegeneracy of Fρ). Thus, we have a path

x∗(ρ) = argmin
int G

Fρ(·);

as we know from Theorem 10.3.1, this path converges to the optimal set of (P) as ρ → ∞;
besides this, it can be easily seen that the path is continuous (even continuously differentiable)
in ρ. In order to approximate x∗(ρ) with large values of ρ via the path-following scheme, we
trace the path x∗(ρ), namely, generate sequentially approximations x(ρi) to the points x∗(ρt)
along certain diverging to infinity sequence ρ0 < ρ1 < ... of values of the parameter. This is
done as follows:

given “tight” approximation x(ρt) to x∗(ρt), we update it into “tight” approximation x(ρt+1)
to x∗(ρt+1) as follows:

• first, choose somehow a new value ρt+1 > ρt of the penalty parameter

• second, apply to the function Fρt+1(·) a method for unconstrained minimization started
at x(ρt), and run the method until closeness to the new target point x∗(ρt+1) is restored,
thus coming to the new iterate x(ρt+1) close to the new target point of the path.

All this is very close to what we did when tracing feasible surface with the Gradient Projection
scheme; our hope is that since x∗(ρ) is continuous in ρ and x(ρt) is “close” to x∗(ρt), for “not
too large” ρt+1 − ρt the point x(ρt) will be “not too far” from the new target point x∗(ρt+1),
so that the unconstrained minimization method we use will quickly restore closeness to the new
target point. With this “gradual” movement, we may hope to arrive near x∗(ρ) with large ρ
faster than by attacking the problem (Pρ) directly.

All this was known for many years; and the progress during last decade was in transforming
these qualitative ideas into exact quantitive recommendations.

Namely, it turned out that

• A. The best possibilities to carry this scheme out are when the barrier F is ϑ-self-
concordant; the less is the value of ϑ, the better;

• B. The natural measure of “closeness” of a point x ∈ int G to the point x∗(ρ) of the path
is the Newton decrement of the self-concordant function

Φρ(x) = ρFρ(x) ≡ ρcTx+ F (x)
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at the point x, i.e., the quantity

λ(Φρ, x) =
√

[∇xΦρ(x)]T [∇2
xΦρ(x)]−1∇xΦρ(x)

(cf. Proposition 4.3.1.(iii)). More specifically, the notion “x is close to x∗(ρ)” is convenient
to define as the relation

λ(Φρ, x) ≤ 0.05 (10.3.3)

(in fact, 0.05 in the right hand side could be replaced with arbitrary absolute constant
< 1, with slight modification of subsequent statements; I choose this particular value for
the sake of simplicity)

Now, what do all these words “the best possibility” and “natural measure” actually mean? It
is said by the following two statements.

• C. Assume that x is close, in the sense of (10.3.3), to a point x∗(ρ) of the path x∗(·)
associated with a ϑ-self-concordant barrier for the feasible domain G of problem (P). Let
us increase the parameter ρ to the larger value

ρ+ =
(

1 +
0.08√
ϑ

)
ρ (10.3.4)

and replace x by its damped Newton iterate (cf. (4.3.4), Lecture 4)

x+ = x− 1
1 + λ(Φρ+ , x)

[∇2
xΦρ+(x)]−1∇xΦρ+(x). (10.3.5)

Then x+ is close, in the sense of (10.3.3), to the new target point x∗(ρ+) of the path.

C. says that we are able to trace the path (all the time staying close to it in the sense of B.)
increasing the penalty parameter linearly in the ratio (1 + 0.08ϑ−1/2) and accompanying each
step in the penalty parameter by a single Newton step in x. And why we should be happy with
this, it is said by

• D. If x is close, in the sense of (10.3.3), to a point x∗(ρ) of the path, then the inaccuracy,
in terms of the objective, of the point x as of an approximate solution to (P) is bounded
from above by 2ϑρ−1:

f(x)−min
x∈G

f(x) ≤ 2ϑ
ρ
. (10.3.6)

D. says that the inaccuracy of the iterates x(ρi) formed in the above path-following procedure
goes to 0 as 1/ρi, while C. says that we are able increase ρi linearly, at the cost of a single Newton
step per each updating of ρ. Thus, we come to the following

Theorem 10.3.2 Assume that we are given

• (i) ϑ-self-concordant barrier F for the feasible domain G of problem (P)

• (ii) starting pair (x0, ρ0) with ρ0 > 0 and x0 being close, in the sense of (10.3.3), to the
point x∗(ρ0).
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Consider the path-following method (cf. (10.3.4) - (10.3.5))

ρt+1 =
(

1 +
0.08√
ϑ

)
ρt; xt+1 = xt − 1

1 + λ(Φρt+1 , xt)
[∇2

xΦρt+1(xt)]−1∇xΦρt+1(xt). (10.3.7)

Then the iterates of the method are well-defined, belong to the interior of G and the method
possesses linear global rate of convergence:

f(xt)−min
G
f ≤ 2ϑ

ρ0

(
1 +

0.08√
ϑ

)−t
. (10.3.8)

In particular, to make the residual in f less than a given ε > 0, it suffices to perform no more
that

N(ε) ≤c20
√
ϑ ln

(
1 +

20ϑ
ρ0ε

)
b (10.3.9)

Newton steps.

We see that the parameter ϑ of the self-concordant barrier underlying the method is responsible
for the Newton complexity of the method – the factor at the log-term in the complexity bound
(10.3.9).

Remark 10.3.1 The presented result does not explain how to start tracing the path – how
to get initial pair (x0, ρ0) close to the path. This turns out to be a minor difficulty: given
in advance a strictly feasible solution x̄ to (P), we could use the same path-following scheme
(applied to certain artificial objective) to come close to the path x∗(·), thus arriving at a position
from which we can start tracing the path. In our very brief outline of the topic, it makes no
sense to go in these “ details of initialization”; it suffices to say that the necessity to start from
approaching x∗(·) basically does not violate the overall complexity of the method.

It makes sense if not to prove the aforementioned statements – the complete proofs, although
rather simple, go beyond the scope of our today lecture – but at least to motivate them – to
explain what is the role of self-concordance and “magic inequality” (10.3.2) in ensuring properties
C. and D. (this is all we need – the Theorem, of course, is an immediate consequence of these
two properties).

Let us start with C. – this property is much more important. Thus, assume we are at a
point x close, in the sense of (10.3.3), to x∗(ρ). What this inequality actually says?

Let us denote by
‖ h ‖H−1= (hTH−1h)1/2

the scaled Euclidean norm given by the inverse to the Hessian matrix

H ≡ ∇2
xΦρ(x) = ∇2

xF (x)

(the equality comes from the fact that Φρ and F differ by a linear function ρf(x) ≡ ρcTx). Note
that by definition of λ(·, ·) one has

λ(Φs, x) =‖ ∇xΦs(x) ‖H−1≡‖ sc+ F ′(x) ‖H−1 .

Due to the last formula, the closeness of x to x∗(ρ) (see (10.3.3)) means exactly that

‖ ∇xΦρ(x) ‖H−1≡‖ ρc+ F ′(x) ‖H−1≤ 0.05,
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whence, by the triangle inequality,

‖ ρc ‖H−1≤ 0.05+ ‖ F ′(x) ‖H−1≤ 0.05 +
√
ϑ (10.3.10)

(the concluding inequality here is given by (10.3.2) 3), and this is the main point where this
component of the definition of a self-concordant barrier comes into the play).

From the indicated relations

λ(Φρ+ , x) =‖ ρ+c+ F ′(x) ‖H−1≤‖ (ρ+ − ρ)c ‖H−1 + ‖ ρc+ F ′(x) ‖H−1=

=
|ρ+ − ρ

ρ
‖ ρc ‖H−1 +λ(Φρ, x) ≤

[see (10.3.4), (10.3.10)]

≤ 0.08√
ϑ

(0.05 +
√
ϑ) + 0.05 ≤ 0.134

(note that ϑ ≥ 1 by Definition 10.3.1). According to Proposition 4.3.1.(iii.3), Lecture 4, the
indicated inequality says that we are in the domain of quadratic convergence of the damped
Newton method as applied to self-concordant function Φρ+ ; namely, the indicated Proposition
says that

λ(Φρ+ , x+) ≤ 2(0.134)2

1− 0.134
< 0.05.

as claimed in C.. Note that this reasoning heavily exploits self-concordance of F
To establish property D., it requires to analyze in more details the notion of a self-concordant

barrier, and I am not going to do it here. Just to demonstrate where ϑ comes from, let us prove
an estimate similar to (10.3.6) for the particular case when, first, the barrier in question is the
standard logarithmic barrier given by Example 10.3.1 and, second, the point x is exactly the
point x∗(ρ) rather than is close to the latter point. Under the outlined assumptions we have

x = x∗(ρ)⇒ ∇xΦρ(x) = 0⇒
[substitute expressions for Φρ and F ]

ρc+
m∑

j=1

aj
bj − aTj x

= 0⇒

[take inner product with x− x∗, x∗ being an optimal solution to (P)]

ρcT (x− x∗) =
m∑

j=1

aTj (x∗ − x)
bj − aTj x

≤

[take into account that aTj (x∗ − x) = aTj x
∗ − aTj x ≤ bj − aTj x due to x∗ ∈ G]

≤ m,
whence

cT (x− x∗) ≤ m

ρ
≡ ϑ

ρ

(for the case in question ϑ = m). This estimate is twice better than (10.3.6) – this is because
we have considered the case of x = x∗(ρ) rather than the one of x close to x∗(ρ).

3indeed, for a positive definite symmetric matrix H it clearly is the same (why?) to say that |g|H−1 ≤ α and
to say that |gTh| ≤ α|h|H for all h
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Applications

Linear Programming. The most famous (although, I believe, not the most important) appli-
cation of Theorem 10.3.2 deals with Linear Programming, when G is a polytope and F is the
standard logarithmic barrier for this polytope (see Example 10.3.1). For this case, the Newton
complexity of the method4) is O(

√
m), m being the # of linear inequalities involved into the

description of G. Each Newton step costs, as it is easily seen, O(mn2) arithmetic operations, so
that the arithmetic cost per accuracy digit – number of arithmetic operations required to reduce
current inaccuracy by absolute constant factor – turns out to be O(m1.5n2). Thus, we get a
polynomial time solution method for LP, with complexity characteristics typically (for m and n
of the same order) better than those for the Ellipsoid method (Lecture 7). Note also that with
certain “smart” implementation of Linear Algebra, the above arithmetic cost can be reduced to
O(mn2); this is the best known so far cubic in the size of the problem upper complexity bound
for Linear Programming.

To increase list of application examples, note that our abilities to solve in the outlined style a
convex program of a given structure are limited only by our abilities to point out self-concordant
barrier for the corresponding feasible domain. In principle, there are no limits at all – it can be
proved that every closed convex domain in Rn admits a self-concordant barrier with the value
of parameter at most O(n). This “universal barrier” is given by certain multivariate integral
and is too complicated for actual computations; recall that we should form and solve Newton
systems associated with our barrier, so that we need it to be “explicitly computable”.

Thus, we come to the following important question:

How to construct “explicit” self-concordant barriers. There are many cases when we are
clever enough to point out “explicitly computable self-concordant barriers” for convex domains
we are interested in. We already know one example of this type – Linear Programming (although
we do not know to the moment why the standard logarithmic barrier for a polytope given by m
linear constraints is m-self-concordant; why it is so, it will become clear in a moment). What
helps us to construct self-concordant barriers and to evaluate their parameters are the following
extremely simple combination rules, completely similar to those for self-concordant functions
(see Section 4.3.4, Lecture 4):

• [Linear combination with coefficients ≥ 1] Let Fi, i = 1, ...m, be ϑi-self-concordant bar-
riers for the closed convex domains Gi, let the intersection G of these domains possess a
nonempty interior Q, and let αi ≥ 1, i = 1, ...,m, be given reals. Then the function

F (x) =
m∑

i=1

αiFi(x)

is (
∑m
i=1 αiϑi)-self-concordant barrier for G.

• [Affine substitution] Let F (x) be ϑ-self-concordant barrier for the closed convex domain
G ⊂ Rn, and let x = Aξ + b be an affine mapping from Rk into Rn with the image
intersecting int G. Then the composite function

F+(ξ) = F (Aξ + b)
4recall that it is the factor at the logarithmic term in (10.3.9), i.e., the # of Newton steps sufficient to reduce

current inaccuracy by an absolute constant factor, say, by factor 2; cf. with the stories about polynomial time
methods from Lecture 7
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is ϑ-self-concordant barrier for the closed convex domain

G+ = {ξ | Aξ + b ∈ G}

which is the inverse image of G under the affine mapping in question.

The indicated combination rules can be applied to the “raw materials” as follows:

• [Logarithm] The function
− ln(x)

is 1-self-concordant barrier for the nonnegative ray R+ = {x ∈ R | x > 0};

[the indicated property of logarithm is given by 1-line computation]

• [Extension of the previous example: Logarithmic barrier, linear/quadratic case] Let

G = cl{x ∈ Rn | φj(x) < 0, j = 1, ...,m}

be a nonempty set in Rn given by m convex quadratic (e.g., linear) inequalities satisfying
the Slater condition. Then the function

f(x) = −
m∑

i=1

ln(−φi(x))

is m-self-concordant barrier for G.

[for the case when all the functions fi are linear, the conclusion immediately follows from the
Combination rules (a polyhedral set given by m linear inequalities is intersection of m half-
spaces, and a half-space is inverse image of the nonnegative axis under affine mapping; applying
the combination rules to the barrier − lnx for the nonnegative ray, we get, without any compu-
tations, that the standard logarithmic barrier is for a polyhedral set is m-self-concordant). For
the case when there are also quadratic forms among fi, you need a 1-2 lines of computations.
Note that the case of linear fi covers the entire Linear Programming, while the case of convex
quadratic fi covers much wider family of quadratically constrained convex quadratic problems.]

• The function
F (t, x) = − ln(t2 − xTx)

is 2-self-concordant barrier for the “ice-cream cone”

Kn
+ = {(t, x) ∈ R×Rn | t ≥ |x|};

the function
F (X) = − ln Det X

is n-self-concordant barrier for the cone Sn+ of positive definite symmetric n× n matrices.

One hardly could imagine how wide is the class of applications – from Combinatorial optimization
to Structural Design and Stability Analysis/Synthesis in Control – of the latter two barriers,
especially of the ln Det -one.
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10.3.3 Concluding remarks

The path-following scheme results in the most efficient, in terms of the worst-case complexity
analysis, interior point methods for Linear and Convex Programming. From the practical view-
point, anyhow, this scheme, in its aforementioned form, looks bad. The severe practical draw-
back of the scheme is its “short-step nature” – according to the scheme, the penalty parameter
should be updated by the “programmed” rule (10.3.4), and this makes the actual performance
of the method more or less close to the one given by (10.3.9). Thus, in the straightforward
implementation of the scheme the complexity estimate (10.3.9) will be not just the theoretical
upper bound on the worst-case complexity of the method, but the indication of the “typical”
performance of the algorithm. And a method actually working according to the complexity
estimate (10.3.9) could be fine theoretically, but it definitely will be of very restricted practical
interest in the large-scale case. E.g., in LP program with m ≈ 105 inequality constraints and
n ≈ 104 variables (these are respectable, but in no sense “outstanding” sizes for a practical
LP program) estimate (10.3.9) predicts something like hundreds of Newton steps with Newton
systems of the size 104 × 104; even in the case of good sparsity structure of the systems, such a
computation would be much more time consuming than the one given by the Simplex Method.

In order to get “practical” path-following methods, we need a long-step tactics – rules for
on-line adjusting the stepsizes in the penalty parameter to, let me say, local curvature of the
path, rules which allow to update parameter as fast as possible – possible from the viewpoint of
the actual “numerical circumstances” the method is in rather than from the viewpoint of very
conservative theoretical worst-case complexity analysis.

Today there are efficient “long-step” policies of tracing the paths, policies which are both
fine theoretically (i.e., satisfy complexity bound (10.3.9)) and very efficient computationally.
Extremely surprising phenomenon here is that for “good” long-step path-following methods as
applied to convex problems of the most important classes (Linear Programming, Quadratically
Constrained Convex Quadratic Programming and some other) it turns out that

the actually observed number of Newton iterations required to solve the problem
within reasonable accuracy is basically independent of the sizes of the problem and
is within 30-50.

This “empirical fact” (which can be only partly supported by theoretical considerations, not
proved completely) is extremely important for applications; it makes polynomial time interior
point methods the most attractive (and sometimes - the only appropriate) optimization tool in
many important large-scale applications.

I should add that the efficient “long-step” implementations of the path-following scheme are
relatively new, and for a long time5) the only interior point methods which demonstrated the
outlined “data- and size-independent” convergence rate were the so called potential reduction
interior point methods. In fact, the very first interior point method – the method of Karmarkar
for LP – which initialized the entire interior point revolution, was a potential reduction algorithm,
and what indeed caused the revolution was outstanding practical performance of this method.
The method of Karmarkar possesses a very nice (and in fact very simple) geometry and is closely
related to the interior penalty scheme; anyhow, time limitations enforce me to skip description
of this wonderful, although now a little bit old-fashioned, algorithm.

The concluding remark I would like to do is as follows: all polynomial time implementations
of the penalty/barrier scheme known so far are those of the barrier scheme (which is reflected

5if I could qualify as “long” a part of the story which – the entire story – started in 1984
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in the name of these implementations: “interior point methods”); numerous attempts to do
something similar with the penalty approach failed to be successful. It is a pity, due to some
attractive properties of the scheme (e.g., here you do not meet with the problem of finding a
feasible starting point, which, of course, is needed to start the barrier scheme).



Lecture 11

Augmented Lagrangians

Penalty methods studied in the previous lecture are very natural and general; unfortunately,
they suffer from a serious drawback: to approximate well the solution to constrained problem,
you have to work with large penalty parameters, and this inevitably makes the problem of
unconstrained minimization of the penalized objective very ill-posed. The main advantage of
the augmented Lagrangian methods is that they allow to approximate well the solution to a
constrained problem by solutions of unconstrained (and penalized) auxiliary problems without
pushing the penalty parameter to infinity; as a result, the auxiliary problems remain reasonably
conditioned even when we are seeking for high-accuracy solutions. Let us look how all this
works. We shall mainly focus on the case of equality constrained problem

(ECP) f(x)→ min | h(x) =



h1(x)
. . .

hm(x)


 = 0 [x ∈ Rn];

in the mean time I shall explain how the results for this case can be straightforwardly extended
onto the general one.

11.1 Main ingredients

11.1.1 Local Lagrange Duality

Let x∗ be a nondegenerate local solution to (ECP) (see Definition 8.2.2), let

L(x, λ) = f(x) + λTh(x) ≡ f(x) +
m∑

i=1

λihi(x)

be the Lagrange function of the problem, and let λ∗ be the vector of Lagrange multipliers
corresponding to the solution x∗, so that

∇xL(x∗, λ∗) = 0, (11.1.1)

and the matrix ∇2
xL(x∗, λ∗) is positive definite along the plane tangent at x∗ to the feasible

surface of the problem:

∇h(x∗)d = 0⇒ dT∇2
xL(x∗, λ∗)d ≥ α|d|2 (11.1.2)

with certain positive α > 0.

219



220 LECTURE 11. AUGMENTED LAGRANGIANS

Assume for a moment that instead of (11.1.2) a stronger condition is satisfied:

(!) the matrix ∇2
xL(x∗, λ∗) is positive definite on the entire space

What would be the consequences of this stronger assumption?
The consequences are immediate: (11.1.1) together with (!) mean that x∗ is a nondegenerate

local minimizer of the Lagrange function L(·, λ∗). It follows that if

A. We are clever enough to guess the vector λ∗ of Lagrange multipliers,

and
B. We are lucky enough to be in the case (!),

then we are be able to find x∗ via unconstrained minimization applied to the function L(·, λ∗).
Note that this is a fine smooth function which contains no penalty parameters and therefore is
convenient for unconstrained minimization.

It remains to be clever and lucky to ensure A and B. Let us start with becoming clever,
provided that we already are lucky, i.e., that (!) indeed takes place.

Those who have passed through the course Optimization I already know what is Lagrange
duality: this is a machinery which allows to associate with constrained optimization problem
(called primal) certain other optimization problem – the dual one; the solutions to the problems
are closely related to each other. To enjoy all the advantages of this machinery, we should deal
with convex primal problem, but something can be obtained also in the “locally convex case”
(!).

Namely, one can prove the following

Theorem 11.1.1 Under assumption (!) there exist

• convex neighbourhood V of the point x∗ in Rn,

• convex neighbourhood Λ of the point λ∗ in Rm,

such that
(i) The function

Lλ(x) = L(x, λ)

for every λ ∈ Λ is strongly convex in V and possesses uniquely defined critical point x∗(λ) in
V , the point being the nondegenerate minimizer of Lλ in V ; the mapping x∗(λ) is at least once
continuously differentiable in Λ.

(ii) The optimal value
L(λ) = Lλ(x∗(λ))

of the function Lλ(x) in V is concave twice continuously differentiable function in Λ with the
gradient

∇λL(λ) = h(x∗(λ)). (11.1.3)

The function L attains its maximum over λ ∈ Λ at the point λ∗, the maximizer being unique
and nondegenerate1).

1of course, for maximization problem nondegeneracy of local solution means that the Hessian of the objective
at the solution is negative definite
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The proof of the theorem is skipped.
Note that the Theorem says that under assumption (!) (x∗, λ∗) is local saddle point of the

Lagrange function: there exists a neighobouthood of this point (namely, V × Λ) such that L,
being restricted onto the neighbourhood, attains at (x∗, λ∗) its minimum in x and its maximum
in λ.

Let us look at the consequences of the Theorem; they are extremely encouraging. Indeed,
we already know that if we were clever enough to guess what is λ∗, we could solve (ECP) by
unconstrained minimization of Lλ∗(x) – x∗ is a nondegenerate unconstrained local minimizer of
this function. And the Theorem says that there exists something which allows us to identify λ∗

– this is the “locally dual” to (ECP) problem

(D) L(λ)→ max;

this is fine problem of maximizing a smooth concave function, and λ∗ is the unique (and non-
degenerate) unconstrained maximizer of the function.

Of course, in order to solve (D), we should be able to compute the values and at least the
first order derivatives of L. Here again the above Theorem gives us all necessary tools: in
order to compute the value of L(λ), we should minimize Lλ(x) over V ; according to item (i) of
the Theorem, this latter problem is well-posed and basically unconstrained: the Theorem says
that for λ close enough to λ∗ Lλ possesses unique critical point x∗(λ) in V , and this point is
nondegenerate local minimizer. Thus, we can approximate x∗(λ) by unconstrained minimization
tools. And from (11.1.3) it follows that x∗(λ) gives us not only the value of L(λ) of the dual
objective, but also its gradient – this gradient is simply the vector h(·) of constraints at x∗(λ).

With these observations, we see that it is possible to approximate λ∗ applying to L(·) an
unconstrained optimization method (Gradient Descent, Quasi-Newton or whatever else); in
order to provide the method by the required first-order information at the current dual iterate
λ, it suffices to find, again by unconstrained minimization, the minimizer x∗(λ) of the function
Lλ(x). And what is nice in this picture, is that there are no “large parameters” – both the dual
problem of maximizing L(λ) and the auxiliary primal problems of minimizing Lλ(x) possess, at
least in neighborhoods of their solutions, nice smoothness and nondegeneracy properties, and
the values of the parameters responsible for these latter properties are not spoiled from iteration
to iteration.

11.1.2 “Penalty convexification”

The considerations of the previous subsection were conditional – “if we are lucky to be in
situation (!), then...”. What to do if we are not lucky to be in this situation? Well, what follows
demonstrates that in order to become lucky it suffices to be smart – we always can enforce (!) to
be the case, and what helps us to reach this goal, is the idea of penalization we know from the
previous lecture. Namely, let us add to the actual objective f of (ECP) the quadratic penalty
term, thus coming to the penalized objective

fρ(x) = f(x) +
1
2
ρ
m∑

i=1

h2
i (x),

but in contrast to what we did in the pure penalty method, let us keep the constraints as they
were, thus coming to the problem

(ECPρ) fρ(x)→ min | h(x) = 0.
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Since the penalty term is zero on the feasible surface, the new problem is equivalent to the initial
one, and you can ask what is the goal of this strange manipulation. The answer is as follows:

(+) if x∗ is a nondegenerate solution to the original problem (ECP), then it is nondegenerate
local solution to (ECPρ) as well [which by itself is not that important] and, moreover, for all
large enough ρ this nondegenerate solution to (ECPρ) satisfies the crucial property (!).

The immediate consequence of (+) is as follows: passing from (ECP) to equivalent problem
(ECPρ), we may ensure (!) and thus get all nice possibilities of solving (ECPρ) (or, which is the
same, (ECP)) outlined in the previous section.

Even if you believe in (+), you may ask: all this is fine, but we again meet with “large enough”
ρ; this large ρ will finally occur in the objectives Lλ(·) of the auxiliary primal problems given
by the scheme of the previous section, and we know from our discussion of the penalty methods
that it would make these auxiliary problems very difficult for numerical solution. This could be a
quite reasonable objection, if there were no crucial difference between the situation with penalty
methods and our now situation. In the penalty scheme, the value of the penalty parameter is
directly linked with the accuracy ε to which we are going to solve the problem: as we remember,
violations of the constraints at the unconstrained minimizer of penalized objective are of order
of 1/ρ, and to make these violations ≤ ε we must work with penalty parameter of order of 1/ε.
The role of penalization now is quite different: it should enforce (!), i.e., positive definiteness
(on the entire space) of the Hessian of the Lagrangian Lρ(x, λ) of the penalized problem, and
(+) says that all large enough values of ρ are appropriate for this purpose. Whenever a given ρ
results in positive definite ∇2

xL
ρ(x∗, λ∗), we may use this value of the penalty in the scheme of

the previous section to solve problem (ECPρ) (or, which is the same, our original problem – they
are equivalent!) to arbitrarily high accuracy ε. Thus, in our now situation we are not enforced
to push the penalty parameter to infinity and will be satisfied by fixed value of it; whether
this value indeed must be large and will cause numerical difficulties when solving auxiliary
primal problems, or it is quite moderate and no problems of this type occur, it depends on local
properties of the data, but not on the accuracy to which the problem should be solved. The
simplest way to see the indicated difference is to look what happens in the convex case (linear
constraints, convex objective). It can be easily seen that here each positive value of ρ makes
∇2Lρ(x∗, λ∗) positive definite, so that each value of ρ is “large enough”; note that in the penalty
scheme we should work with indeed large penalties independently of whether the problem is
convex or not.

It is time now to support our claim (+). To see that (+) indeed is valid, let us denote by
λ∗ the vector of Lagrange multipliers associated with x∗ in the original problem (ECP); as we
know, this vector is uniquely defined by the KKT condition

∇xf(x∗) +
m∑

i=1

λ∗i∇hi(x∗) = 0.

Now, the gradient of the penalized objective is

∇xfρ(x) = ∇xf(x) + ρ
m∑

i=1

hi(x)∇hi(x),

and we see that at the feasible surface (and, in particular, at the point x∗), where h(x) = 0, the
gradients of the actual and the penalized objectives coincide with each other; thus, λ∗ serves as
the vector of Lagrange multipliers associated with x∗ in problem (ECPρ) as well.
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Now let us compute the Hessian with respect to x of the Lagrange function

Lρ(x, λ) = fρ(x) +
m∑

i=1

λihi(x) ≡ f(x) +
m∑

i=1

λihi(x) +
1
2
ρ
m∑

i=1

h2
i (x) ≡

≡ L(x, λ) +
1
2
ρ
m∑

i=1

h2
i (x) (11.1.4)

of the modified problem (ECPρ) (from now on, L(x, λ) means the Lagrangian of the original
problem). We have

∇xLρ(x, λ) = ∇xL(x, λ) + ρ
m∑

i=1

hi(x)∇xhi(x),

whence

∇2
xL

ρ(x, λ) = ∇2
xL(x, λ) + ρ

m∑

i=1

∇xhi(x)[∇xhi(x)]T + ρ
m∑

i=1

hi(x)∇2
xhi(x).

Introducing notation

H(x, λ) = ∇2
xL(x, λ), A(x) = ∇xh(x) ≡




[∇h1(x)]T

. . .
[∇hm(x)]T


 , R(x) =

m∑

i=1

hi(x)∇2
xhi(x),

we can rewrite the resulting equality as

∇2
xL

ρ(x, λ) = H(x, λ) + ρAT (x)A(x) + ρB(x). (11.1.5)

We would like to prove that the left hand side in this relation at the point (x = x∗, λ = λ∗)
is positive definite, provided that ρ is large enough. Now let us make the following useful
observations:

• H(x∗, λ∗) is positive definite at the subspace T of directions tangent to the feasible surface
at the point x∗; this is the second order part of the Second Order Sufficient Optimality
condition which is assumed to be satisfied at x∗ (recall that we all the time are speaking
about the case when x∗ is a nondegenerate solution to (ECP)). As we know, T is exactly
the kernel of the matrix ∇h(x∗) = A(x∗):

T = {d | A(x∗)d = 0};

• the matrix AT (x∗)A(x∗) is positive semidefinite (as any matrix of the form BTB: in-
deed, dTBTBd = |Bd|2); its kernel, as it is immediately seen from the computation in
parentheses, is exactly the kernel of A(x∗), i.e., T ;

• The matrix R(·) simply vanishes at x∗, due to presence of factors hi(x) in the expression
for the matrix; at the point x∗ – this point is feasible for (ECP) – these factors become
zero, so that R(x∗) = 0.

We conclude that
∇2
xL

ρ(x∗, λ∗) = H(x∗, λ∗) + ρAT (x∗)A(x∗),

and the fact that the right hand side is positive definite for large enough ρ is an immediate
consequence of the following
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Lemma 11.1.1 Let D be positive semidefinite matrix and C be a symmetric matrix which is
positive definite on the kernel of D. Then the matrix C + ρD is positive definite for all large
enough values of ρ.

The Lemma is very close to Lemma 10.2.1; you may treat its proof as an optional home task.
To derive (+) from above observations, it suffices to apply the Lemma to D = AT (x∗)A(x∗)

and C = H(x∗, λ).

11.2 Putting things together: Augmented Lagrangian Scheme

The algorithmic scheme implementing the above ideas is called the Augmented Lagrangian
method, or the Multipliers method; the first name comes from the fact that the Lagrange function
(11.1.4) of the problem (ECPρ) can be treated as certain “augmentation” of the Lagrange
function of the original problem (ECP); the second name stresses the leading role of the Lagrange
multipliers in the method.

The generic Augmented Lagrangian scheme is as follows. Assume that we already have
chosen somehow value of the penalty parameter ρ and thus deal with problem

(ECPρ) f(x) +
ρ

2
|h(x)|2 → min | h(x) = 0

equivalent to the original problem (ECP), and let ρ be large enough to ensure (!) – let the
Hessian ∇2

xL
ρ(x, λ) of the Lagrange function

Lρ(x, λ) = f(x) +
ρ

2

m∑

i=1

h2
i (x) +

m∑

i=1

λihi(x)

taken at the point (x∗, λ∗) be positive definite on the entire space; here x∗ is the nondegenerate
solution of (ECP) to be approximated and λ∗ is the corresponding vector of Lagrange multipliers.
To make further considerations clear, let us summarize what is said about the situation by the
discussion of Section 11.1.1.

We know that

• to find x∗ is the same as to solve the dual problem

(Dρ) Lρ(λ) ≡ min
x
Lρ(x, λ)→ max

(minx here should be taken locally, as was explained in Section 11.1.1);

• the objective in the dual problem is everywhere concave and twice continuously differen-
tiable in a neighbourhood of λ∗, and λ∗ is nondegenerate solution to the dual problem;
thus, the dual problem is well-suited for numerical solution, provided that we are able to
compute the value and the gradient of the dual objective at a point

• we do have a possibility to compute the value and the gradient of the dual objective at a
point, at least at a point close to λ∗: to this end it suffices to find the solution xρ(λ) of
the auxiliary unconstrained problem

(Pρλ) min
x
Lρ(x, λ)

(where minx again should be taken locally) and to set

Lρ(λ) = Lρ(xρ(λ), λ), ∇λLρ(λ) = h(xρ(λ)). (11.2.1)
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Now we may run any method for unconstrained maximization of the dual objective Lρ (“outer
iterations” generating sequence λ0, λ1, ... of iterates converging to λ∗), accompanying every step
t of the method by solving the auxiliary problem (Pρλt−1

) in order to find

xt−1 = xρ(λt−1)

and thus to get the first order information on the dual objective which is required to update
λt−1 into λt.

Implementations of the scheme differ from each other mainly by methods we use to maximize
the dual objective and to solve the auxiliary primal problems.

11.2.1 Solving auxiliary primal problems (Pρ
λ)

The best choice here is, of course, the Newton method with linesearches or the modified Newton
method, when the second order information on the objective and the constraints is available. If
it is not the case, we could use Quasi-Newton methods, Conjugate Gradient, etc. When solving
the auxiliary problems, we should use reasonable safeguard policy in order to ensure that our
minimization is indeed local. Since we do not know in advance what is the neighbourhood V
introduced in Section 11.1.1, this is not an easy task. The simplest policy here is to use the
solution to the previous auxiliary problem as the starting point when solving the current one
and to take specific care of linesearches (e.g., to move until the closest minimum of the current
auxiliary objective on the current search line). With reasonable tactics of this type we indeed
may ensure that if the starting point in the very first auxiliary problem is close enough to x∗

and the initial guess for λ∗ is close enough to λ∗, then at all steps of the method we shall indeed
approximate xρ(·) and not other tentative local solutions to the auxiliary primal problems. And
of course to use the previous primal iterate as the starting point in the new auxiliary primal
problem saves a lot of computational effort.

11.2.2 Solving the dual problem

When solving the dual problem (Dρ) – this is the upper-level process in our two-level scheme
– we are less flexible when choosing the optimization method: since the information on the
dual objective is “implicit” – to get its value and gradient, we should solve an auxiliary primal
optimization problem, it normally is computationally expensive, and things like line search
become very costly. The simplest algorithm we could use in the outer iterates is the following
scheme:

λt = λt−1 + ρh(xt−1). (11.2.2)

Relation (11.2.2) has a very simple motivation: since xt−1 is unconstrained minimizer of Lρ(·, λt−1),
we have

0 = ∇xLρ(xt−1, λt−1) = ∇xf(x) +
m∑

i=1

ρhi(x)∇xhi(x) +
m∑

i=1

(λt−1)i∇hi(x) =

= ∇xf(xt−1) +
m∑

i=1

[(λt−1)i + ρhi(xt−1)]∇hi(x).

Comparing this equality with the one

0 = ∇xf(x∗) +
m∑

i=1

λ∗i∇xhi(x∗)
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defining the Lagrange multipliers λ∗, we see that the right hand side in (11.2.2) can be viewed
as a natural approximation to λ∗, the better the closer is xt−1 to x∗.

This is only motivation, of course; now let us look what indeed can be said about recurrence
(11.2.2). From (11.2.1) we observe that h(xt−1) is exactly the gradient of the dual objective
at λt−1, so that (11.2.2) is in fact Gradient Ascent method for the dual problem with constant
stepsize ρ (recall that the dual problem is the maximization one, so that a gradient-type method
here should perform steps along the gradient rather than along the antigradient, as it is in the
minimization case; this is why we are speaking about Gradient Ascent).

Dual rate of convergence

To understand whether the stepsize ρ in Gradient Ascent is or is not good for us, let us look at the
eigenvalue structure of the Hessian of the dual objective at λ∗ – we know from our investigation
of the Gradient method that this structure is exactly what governs the asymptotical rate of
convergence of the method.

The Hessian of the dual objective can be found as follows (to save notation, I write x(λ)
instead of xρ(λ)): we already know that

∇λLρ(λ) = h(x(λ))

and x(·) is continuously differentiable in a neighbourhood of λ = λ∗ by Theorem 11.1.1. Differ-
entiating both sides in λ, we get

∇2
λL

ρ(λ) = ∇xh(x(λ))∇λx(λ). (11.2.3)

To find ∇λx(λ), let us differentiate in λ the relation

∇xLρ(x(λ), λ) = 0,

which defines x(λ). We get

∇2
xL

ρ(x(λ), λ)∇λx(λ) +
∂2

∂λ∂x
Lρ(x(λ), λ) = 0;

as it is immediately seen from the expression for Lρ, the second term in the left hand side of
the latter equation is [∇xh(x(λ))]T , and we get

∇λx(λ) = −[Φρ(λ)]−1[∇xh(x(λ)]T ,

Φρ being the Hessian of the augmented Lagrangian Lρ with respect to x taken at the point
(x(λ), λ). Substituting this expression into (11.2.3), we get

∇2
λL

ρ(λ) = −[∇xh(x(λ))][Φρ(λ)]−1[∇xh(x(λ)]T , (11.2.4)

Substituting expression for the Hessian of the augmented Lagrangian Lρ in x (see (11.1.5), we
get the following important conclusion:

The Hessian Ψρ of the dual objective Lρ(·) at the point λ∗ is given by

Ψρ = −A[H + ρATA]−1AT , (11.2.5)
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A = ∇xh(x∗) and

H = ∇2
xf(x∗) +

m∑

i=1

λi∇2
xhi(x

∗)

is the Hessian with respect to x of the Lagrange function of the original problem (ECP), the
Hessian being taken at the point (x∗, λ∗).

Relation (11.2.5) allows to make the following crucial observation:

Proposition 11.2.1 The matrix −ρΦρ tends to the unit matrix I as ρ→∞.

Proof. Assuming, for the sake of simplicity, that the matrices H and AH−1AT are nonsingu-
lar (this assumption can be easily eliminated by a little bit more complicated reasoning) and
applying Sherman-Morrison formula (Exercise 6.6.2), we get

[H + ρATA]−1 = H−1 −H−1AT [ρ−1Im +AH−1AT ]−1AH−1;

denoting Q = AH−1AT and taking into account (11.2.5), we get

−Ψρ = Q−Q[ρ−1Im +Q]−1Q.

Applying the formula2)

[Q+ ρ−1Im]−1 =
[
Q(Im + ρ−1Q−1)

]−1
= [Im + ρ−1Q−1]−1Q−1 =

= [Im − ρ−1Q−1 + o(ρ−1)]Q−1 = Q−1 − ρ−1Q−2 + o(ρ−1),

we come to
−Ψρ = Q−Q[Q−1 − ρ−1Q−2 + o(ρ−1)]Q = ρ−1Im + o(ρ−1),

and the conclusion follows.
The result stated in the Proposition is indeed crucial for us, due to the following

Corollary 11.2.1 [Dual convergence rate] Let ρ be large enough, and let the starting point λ0

in recurrence (11.2.2) be close enough to λ∗. Then recurrence (11.2.2) converges to λ∗ linearly
with the convergence ratio κ(ρ) which tends to 0 as ρ→∞.

The statement given by the corollary is indeed very important: it establishes (local) linear
convergence of simple and easily implementable recurrence (11.2.2), provided that ρ is large
enough; moreover, the convergence can be done arbitrarily fast, if ρ is large enough. Of course,
this observation does not say that in actual computations you should set ρ to a huge value and
get the solution in one step: this “one step” is one step of outer iteration in λ, and to perform
this step, you should solve the auxiliary primal problem with huge value of penalty, which, as
we already know, is very difficult (note also that we know without any dual considerations that
solving the auxiliary primal problem with huge ρ we get good approximate solution to (ECP)
– this is the penalty method). The actual meaning of the statement is, of course, that we
may hope to deal with “large enough” value of the penalty which will ensure reasonable rate

2coming from the standard expansion

(Im + εS)−1 = Im − εS + ε2S2 − ε3S3 + ...

which is valid, for all small in absolute value ε, also in the matrix case
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of convergence of (11.2.2) and at the same time will be not “too large” to make the auxiliary
primal problems very difficult.

It is time now to prove the Corollary. I shall give the model of the proof only. Namely, let
us believe that the behaviour of recurrence (11.2.2) started close enough to λ∗ is basically the
same as if the dual objective was the quadratic function

ψ(λ) =
1
2

(λ− λ∗)TΨρ(λ− λ∗);

it indeed is so, but let us skip the required dull (although simple) justification. With our
quadratic model of the dual objective, the result can be obtained in one line. Recall that
(11.2.2) is Gradient Ascent with stepsize ρ, so that

λt − λ∗ = λt−1 − λ∗ + ρ∇λψ(λt−1) = (Im + ρΨρ)(λt−1 − λ∗);

thus, the residual vector λt − λ∗ is multiplied at each step by the matrix Im + ρΨρ, and this
matrix tends to 0 as ρ→∞ by Proposition 11.2.1 and therefore is close to 0 for large ρ.

One may ask whether indeed simple recurrence (11.2.2) is the best we can use. The question
is quite reasonable: for fixed ρ – and our main motivation of the entire method was the desire
to deal with perhaps large, but fixed value of the penalty parameter – the rate of convergence
of this recurrence is linear. It is easily seen that the distance between xt and the exact solution
x∗ is of order of distance between λt and λ∗, so that with recurrence (11.2.2) we get only linear
convergence of both primal and dual variables. Could we get something better? Of course
we could: relation (11.2.4) expresses the Hessian of the dual objective via the data which are
available after x(λ) = xρ(λ) is found from the solution of the auxiliary primal problem; thus,
we could solve the dual problem by the Newton method, thus ensuring quadratic rate of local
convergence of the scheme.

11.2.3 Adjusting penalty parameter

There is one more important issue to be discussed: how to choose ρ? For the time being, we
simply have assumed that the penalty parameter is chosen in a way which ensures (!). What
we know is that all large enough values of the penalty fit this requirement, but how to choose
an appropriate ρ in practice? Advice like “set ρ to something huge” definitely is of no interest:
with this approach, we convert the method into the penalty one and loose all computational
advantages associated with possibility to deal with moderate values of the penalty.

The simplest way to tune the penalty is as follows. As we know from the previous analysis,
when ρ is “appropriately large” to ensure linear rate of convergence of (11.2.2) with reasonable
convergence ratio, then the norm of the gradient of the dual objective also should decrease
linearly with reasonable convergence ratio. We know what is this gradient – this is the vector of
constraints at the solution to the corresponding auxiliary primal problem; thus, for appropriately
large ρ the quantities |h(xt)| decrease with t in geometric progression with the ratio which, in
principle, can be done arbitrarily close to 0, provided that ρ is large enough. Let us use this
observation as the driving force in our policy for adjusting the penalty. Namely, let us start
the procedure with certain ad hoc value of ρ and look whether the residuals |h(xt)| indeed
reasonably decrease with t, say, at least by factor 0.25 each time. Until it is so, we keep the
penalty constant; and if at certain step t the current value of |h(xt)| is too large – exceeds
0.25|h(xt−1| – we interpret this as a signal to increase the penalty by certain factor, say, 10.
Then we resolve the auxiliary primal problem with this new value of the penalty and the same
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as before value of λ, again look whether we got required progress in constraint violation, and if
not – again increase the penalty, and so on.

Of course, we could use another “driving forces” in penalty updating policy, but the progress
in constraint violation is the most natural one: all we are interested in is in fact to make the
constraint violation small. Indeed, at the solution xt to the auxiliary primal problem the gradient
of the objective for sure is linear combination of the gradients of constraints (write down the
Fermat rule for the auxiliary problem), so that the violations of the constraints form the only
obstacle for xt to be KKT point of (ECP); thus, it is very natural to update the penalty on the
basis of progress in diminishing this obstacle.

Let me also note that the indicated policy in fact incorporates both the penalty and the
Lagrange Multiplier technique. Indeed, this policy increases the penalty until the solution
to the current auxiliary primal problem results in prescribed progress in constraint violation;
independently of what we do with the Lagrange multipliers and how high is the rate of dual
convergence, we will achieve eventually this goal via the penalty mechanism.

11.3 Incorporating Inequality Constraints

For the moment, we know only how to apply the Augmented Lagrangian Scheme to an equality
constrained problem. In fact there is no difficulty to incorporate into the Augmented Lagrangian
Scheme inequality constraints, and to this end it suffices to use the reduction of a general
constrained problem to an equality constrained one (Lecture 8). Namely, given a constrained
problem

(GCP) f(x)→ min | hi = 0, i = 1, ...,m, gj(x) ≤ 0, j = 1, ..., k,

we can transform it equivalently into the equality constrained problem

(ECP∗) f(x)→ min | hi(x) = 0, i = 1, ...,m, gj(x) + s2
j = 0, j = 1, ..., k

with extended list of variables. Applying the Augmented Lagrangian Scheme to the resulting
problem, we come to the necessity to work with the augmented Lagrangian

Lρ(x, s;λ, µ) = f(x) +
m∑

i=1

λihi(x) +
k∑

j=1

µj [gj(x) + s2
j ] +

ρ

2



m∑

i=1

h2
i (x) +

k∑

j=1

[gj(x) + s2
j ]

2


 ;

what we should do with this Lagrangian is to find its (local) saddle point, and to this end the
scheme in question suggests to maximize with respect to the dual variables λ, µ the function

Lρ(λ, µ) = min
x,s

Lρ(x, s;µ, λ).

In fact we have no problems with minimization with respect to sj in the right hand side of the
latter relation. Indeed, explicit computation results in

Lρ(x, s;λ, µ) = f(x) +
ρ

2

k∑

j=1

[
gj(x) + s2

j +
µj
ρ

]2

+
m∑

i=1

λihi(x) +
ρ

2

m∑

i=1

h2
i (x)−

k∑

j=1

µ2
j

2ρ
.

It follows, consequently, that minimization of the Lagrange function with respect to the part s of
primal variables results in setting s2

j equal to the quantity −(gj(x) + µj/ρ), when this quantity
is nonnegative, or to zero, when this quantity is negative. Consequently,

Lρ(λ, µ) = min
x
{f(x) +

ρ

2

k∑

j=1

(
gj(x) +

µj
ρ

)2

+

+ +
m∑

i=1

λihi(x) +
ρ

2

m∑

i=1

hi(x)2} −
k∑

j=1

µ2
j

2ρ
, (11.3.1)
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where, as in the previous Lecture, (a)+ is the positive part of real a (a itself, if it is positive,
and 0 otherwise).

Thus, the auxiliary primal problems arising in the Augmented Lagrangian Scheme in fact
are problems in the initial design variables.

From theoretical viewpoint, the following question is important. Validity of the Augmented
Lagrangian Scheme for equality constrained problem (i.e., the theoretical local convergence
results of the previous sections) required nondegeneracy of the solution x∗ to be approximated.
Thus, we should understand when a locally optimal solution x∗ to (GCP), extended in the
evident way (by setting s∗j =

√
−gj(x∗)) to solution (x∗, s∗) of (ECP∗), results in a nondegenerate

solution to the latter problem.
The answer is as it should be:

Proposition 11.3.1 If x∗ is a nondegenerate solution to (GCP) 3), then (x∗, s∗) is nondegen-
erate solution to (ECP∗).

Proof of the Proposition is part of the assignment to the lecture.

11.4 Convex case: Augmented Lagrangians; Decomposition

All results of Section 11.1.1 were local; this is quite natural, since there we dealt with general-
type nonconvex program. In the case of convex program all results can be globalized; let us
briefly outline the good things happening in this case. Thus, consider a convex optimization
program

(CnvP) f(x)→ min | gj(x) ≤ 0, j = 1, ..., k,

where f and gj are convex and twice continuously differentiable functions on Rn. From now on,
let us assume that the problem is solvable and satisfies the Slater condition: there exists x̄ such
that all constraints are strictly negative at x̄.

Those who have passed through the course “Optimization I” know, and other should believe
that under the indicated assumptions one can define the problem dual to (CnvP), namely, the
problem

(CnvD) φ∗(µ)→ max | µ ≥ 0,

where µ = (µ1, ..., µk) are the dual variables and

φ∗(µ) = inf
x∈Rn

L(x, µ),

with

L(x, µ) = f(x) +
k∑

j=1

µjgj(x)

being the classical Lagrange function of problem (CnvP). From the construction of the dual
problem it follows that the dual objective is concave function taking values in the extended by
−∞ real axis. Due to the concavity of the dual objective, (CnvD) is in fact convex optimization
problem (this is the same – to maximize a concave function φ∗ or to minimize its negation −φ∗,
which is a convex function).

3Definition 8.2.4: x∗ is regular for the constraints, satisfies the Second Order Sufficient Optimality conditions
and, besides this, Lagrange multipliers related to all inequality constraints active at x∗ are strictly positive – this
is called strict complementary slackness
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The links between the primal problem (CnvP) and its dual (CnvD) are given by the Convex
Programming Duality Theorem which states that

If (CnvP) is solvable and satisfies the Slater condition, then (CnvD) also is solvable, and the
optimal values in the problems are equal to each other. In this case a feasible solution x∗ to
(CnvP) and a feasible solution µ∗ to (CnvD) are optimal for the corresponding problems if and
only if (x∗, µ∗) is a saddle point of the Lagrange function L(x, µ) on Rn × Rk

+ (i.e., L(x, µ∗)
attains its minimum over x ∈ Rn at x = x∗, while L(x∗, µ) attains its maximum over µ ≥ 0 at
µ = µ∗).

In particular, all optimal solutions to (CnvP) are among unconstrained minimizers of the
function L(x, µ∗), µ∗ being any optimal solution of the dual problem.
Note that Theorem 11.1.1 is a local version of this Duality Theorem.

The Duality Theorem has a lot of applications, both of theoretical and of computational
type. From the computational viewpoint, there are two ways to exploit the theorem:

• There are cases when the structure of the data in (CnvP) allows to compute the dual
objective analytically (this is the case in Linear, Linearly Constrained Quadratic and
Geometric Programming). Whenever this is the case, we may gain a lot solving (CnvD)
instead of (CnvP) and then recovering the primal solutions from the dual ones (which
sometimes is easy and sometimes is not, see below).

Computational consequences of this type clearly are restricted by our abilities to compute the
dual objective analytically; in our today lecture we are not interested in these (in fact very
important) “particular cases”.

• In the general case we can implement the Lagrange Multipliers scheme, namely, to solve
(CnvD) numerically by a first-order method for convex optimization under linear inequality
constraints (note that the only explicit inequalities in (CnvD) are µj ≥ 0); thus, we
may switch from nonlinearly constrained primal problem to a problem with simple linear
inequalities. Of course, to solve the dual problem, we need possibility to compute its
objective and its gradient at a given point; same as in the Augmented Lagrangian Scheme
for general-type problems, to this end we can solve numerically the problem of minimizing
the Lagrangian in x with µ ≥ 0 being fixed. In our now situation, this “auxiliary primal
problem” is fine - with smooth convex objective, so that we have good possibilities to
approximate the global solution to the auxiliary problem.

11.4.1 Augmented Lagrangians

In this section we focus on the second of the aforementioned issues, on possibility to reduce a
general type primal convex program to a linearly constrained dual one.

The outlined scheme is “globalization” of the one developed in the previous sections, but,
for the time being, without “augmenting” the Lagrangian. What is fine is that now we are
in convex situation, so that all “local minimizations” from Section 11.1.1 can be replaced by
global ones, we should not bother much about “good enough” primal and dual starting points,
safeguards, etc.

There is, anyhow, a weak point in the classical Lagrange function. Namely, it may happen
that

• the dual objective φ∗ may be nonsmooth and even infinite at some points; whenever it is
the case, it is unclear how to solve the dual problem numerically
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The indicated difficulty is not something rare: this is exactly what happens in the Linear
Programming case. Here the dual objective turns out to be linear in certain polytope and to be
−∞ outside this polytope, and (CnvD) (the usual LP dual program) normally is as difficult as
the primal problem.

• it may happen that the auxiliary primal problem associated with the optimal vector µ∗

of Lagrange multipliers, the one being the optimal solution to (CnvD), has many optimal
solutions. The Convex Programming Duality Theorem says that all optimal solutions to
(CnvP) for sure are optimal for the auxiliary primal problem in question, but the Theorem
does not say that the latter problem has no other optimal solutions. Whenever it has
“extra” optimal solutions, we meet with nontrivial problem how to select the solutions we
actually are interested in, i.e, those optimal for (CnvP), from the minimizers of L(·, µ∗).

This second difficulty also is not something rare: in the case of Linear Programming the function
L(x, µ∗), µ∗ being optimal solution to (CnvD), is constant, so that its optimal set – the entire
Rn – says nothing about the actual optimal set of (CnvP).

In fact both indicated difficulties have the same origin: possible non-existence or non-
uniqueness of optimal solution to the auxiliary problem

min
x
L(x, µ) (11.4.1)

If we somehow assure existence and uniqueness of the solution x∗(λ) in the latter problem and
its continuity in µ, then we, first, will get continuously differentiable dual objective. Indeed, it
can be proved (cf. Section 11.1.1) that in the case in question

∇µφ∗(µ) = g(x∗(µ)), (11.4.2)

which is the continuous function of µ, provided that x∗(µ) is continuous. Second, in the case
under consideration we clearly shall be able to restore the optimal solution to the primal problem
via the optimal solution to the dual.

There is one evident case when problem (11.4.1) has exactly one solution: this is the case
when the sum

r(x) = f(x) +
k∑

j=1

gj(x)

of the objective and the constraints is strongly convex (with positive definite Hessian at every
point) and grows faster than |x| as |x| → ∞:

r(x)/|x| → ∞, |x| → ∞.

Indeed, in this case it is easily seen that the objective in (11.4.1) for every µ > 0 also is strongly
convex and goes to infinity as |x| → ∞; consequently, (11.4.1) has unique solution (which, as it
is easily seen, is continuous in µ > 0). Consequently, in the case under consideration application
of the Lagrange Multipliers Scheme causes no conceptual difficulties.

What to do if the just mentioned sufficient condition of “well-posedness” of (11.4.1) is not
satisfied? A good idea is to pass to augmented Lagrange function – basically the same idea we
used in the general case of nonconvex problems. Namely, let θj be increasing strongly convex
functions on the axis normalized by the conditions

θj(0) = 0, θ′j(0) = 1.
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The problem
(CnvP∗) f(x)→ min | θj(gj(x)) ≤ 0, j = 1, ..., k

clearly is equivalent to (CnvP) and, as it is easily seen, also is convex. One can straightforwardly
verify that, due to the normalization conditions on θj , the vector of optimal Lagrange multipliers
for the new problem is the same as for the old one (the new dual objective is, anyhow, different
from the old one). Under mild regularity assumptions one can prove that the modified problem
satisfies the aforementioned sufficient condition for well-posedness of problems (11.4.1); e.g., if
all gj are linear, this sufficient condition is satisfied whenever the feasible domain of (CnvP) is
bounded. Thus, by passing from (CnvP) to equivalent problem (CnvP∗), or, which is the same,
passing from the classical Lagrange function L(x, µ) of problem (CnvP) the the augmented
Lagrange function

L(x, µ) = f(x) +
k∑

j=1

µjθj(gj(x))

(which is the classical Lagrange function of the equivalent problem), we normally get possibil-
ity to solve the constrained problem (CnvP) by the Lagrange Multipliers Scheme (which now
becomes augmented).

All this is completely similar to the Augmented Lagrangian Scheme we used in the gen-
eral case, including possibility to introduce penalty parameter into our augmented scheme for
(ConvP); the “penalized” augmented Lagrangian for (CnvP) is

Lρ(x, µ) = f(x) +
k∑

j=1

µjρ
−1θj(ρgj(x));

this corresponds to replacing θj(·) by the rescaled functions θ̄j(s) = ρ−1θj(ρs), which also satisfy
the normalization conditions. In the general (nonconvex) case the role of the penalty parameter
is to ensure the crucial property (!); besides this, large penalty, as we remember, enforces the
Hessian of the dual objective at λ∗ to be almost proportional to the unit matrix and thus
assures fast local convergence of simple gradient-type methods for solving the dual problem.
In our now case, we are not interested in the first of these two issues – due to the convexity
of the original problem, (!) is ensured even with small values of ρ; the second advantage of
penalization, anyhow, still is important: the larger is ρ, the better is conditioning of the dual
objective associated with the augmented Lagrange function Lρ and the better are our abilities
for fast maximization of this objective.

I should stress that the presented brief outline of the Augmented Lagrangian Multipliers
Scheme in Convex Programming is far from being complete; e.g., we did not speak in details
on how to solve the dual problem associated with the augmented Lagrangian (now this problem
is constrained, although with simple constraints, and simple gradient projection routines are
possible, but in no sense best possible options). More detailed considerations of these issues are
beyond the scope of this course.

11.4.2 Lagrange Duality and Decomposition

Although the below considerations are not related to Augmented Lagrange Multipliers Scheme,
I cannot avoid them when speaking on Lagrange Duality and its computational consequences.
Thus, let us speak about advantages of the classical Lagrange Multipliers Scheme in the case
of separable problems. In many real-world situations objective and constraints of a Convex
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Programming program (ConvP) are separable: one can partition the vector of design variables
x into non-overlapping sub-vectors x1, ..., xl in such a way that

f(x) =
l∑

i=1

fi(xi), gj(x) =
l∑

i=1

gji(xi).

Whenever it is the case, the Lagrange scheme becomes especially attractive due to the following
evident property: computation of the dual objective

φ∗(µ) = min
x


f(x) +

k∑

j=1

µjgj(x)




clearly reduces to solving l independent problems

(Pi) min
xi


f(xi) +

k∑

j=1

µjgji(xi)


 .

i = 1, ..., k. Note that the computational complexity of an optimization problem normally is
superadditive function of the design dimension: it is easier, and usually - much easier, to solve
l independent convex problems (Pi) of a given total design dimension n than to solve a single
convex program of dimension n. Therefore separability simplifies a lot implementation of the
classical Lagrange scheme (note that the main computational effort in this scheme is the one to
solve auxiliary primal problems). In any words, Lagrange scheme, in contrast to other Convex
Programming techniques, is capable to exploit separability of the objective and the constraints:
it allows to decompose the original problem into a collection of independent problems which
“interact” with each other only via the “coordinating” dual problem (CnvD).

In fact similar decomposition approach can be carried out also in the case when (CnvP)
contains, besides separable objective and constraints, a number of constraints depending each
of its own part xi of the variables. Such a problem can be written down as

(CnvPS)
l∑

i=1

fi(xi)→ min |
l∑

i=1

gji(x) ≤ 0, j = 1, ..., k, xi ∈ Xi,

where Xi are the convex sets given by those inequalities which depend on xi solely.
The corresponding version of Lagrange Duality says that the natural dual problem is

(CnvDS)
l∑

i=1

φ∗i (µ)→ max, µ ≥ 0,

where

φ∗i (µ) = min
xi∈Xi


fi(xi) +

k∑

j=1

µjgji(xi)


 ;

the difference with the standard duality is that now minimization over xi in the formulae for
dual objective is taken over the set Xi given by the constraints depending on xi solely, not over
the entire space.

The meaning of the words “(CnvDS) is natural dual to (CnvPS)” is given by the correspond-
ing version of the Duality Theorem:
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(*) If (CnvPS) is solvable and satisfies the Slater condition, then (CnvDS) (which always is a
Convex Programming problem) also is solvable, the optimal values in the problems are equal to
each other, and the pair (x∗, µ∗) of feasible primal and dual solutions to the problems is comprised
of optimal solutions if and only if (x∗, λ∗) is saddle point of the classical Lagrange function L(x, µ)
of (CnvPS) on the set X ≡ X1 × ... × Xl of values of x and the set Rk

+ = {µ ∈ Rk | µ ≥ 0}
of values of µ, i.e., if L(x, µ∗) attains its minimum over x ∈ X at x = x∗, while the function
L(x∗, µ) attains its maximum over µ ≥ 0 at µ = µ∗.

As a corollary, we get that if µ∗ is optimal solution to (CnvDS), then the components x∗i of
(any) optimal solution to (CnvPS) are among the minimizers of the Lagrange functions

Li(xi, µ∗) = fi(x) +
k∑

j=1

µ∗jgji(xi)

over xi ∈ Xi. Under assumptions of strong convexity similar to those indicated in the previous
subsection, this information is sufficient to restore, given µ∗, the components of optimal primal
solution x∗. In the general case we again might meet with the difficulty that there are many
minimizers of Li(xi, µ∗) over xi ∈ Xi, and only some of these minimizers can be combined
into optimal solution to (CnvPS). How to overcome this difficulty, this is another story which
goes beyond the bounds of this lecture; what should be stressed, anyhow, is that the outlined
decomposition scheme allows to obtain important, and sometimes complete information on the
optimal solution to (CnvPS).

The Decomposition approach is especially attractive when l and the total number of con-
straints participating in the description of the sets Xi are large, and there is relatively small
number of separable “linking constraints” gj(x) ≤ 0. Indeed, in this case the dual problem (Cn-
vDS) is of small dimension, which simplifies it computationally. At the same time, to compute
the objective of (CnvDS) at a given µ, one has to solve l independent problems of minimizing
Li(xi, µ) over xi ∈ Xi. This latter task can be achieved by parallel computations, and even
with serial computations it is, as I have already mentioned, much easier to solve many “small”
independent problems than a single “large” one.

The outlined Decomposition scheme has very nice economical interpretation. Imagine that
certain company is comprised of basically independent units; the only interconnections between
the units are that all the units consume a number of resources like money, energy, etc., which
are controlled by the company. Let us interpret xi as the action of i-th unit, Xi as the set of
actions allowed for the unit by its own technological constraints. Let, further, gji(xi) be the
amount of resource j which is required by unit i to implement action xi, and let −fi(xi) be
the profit the unit will get carrying out this action. The company is interested to maximize the
total profit of the units

−f(x) ≡
l∑

i=1

(−fi(xi))

under the constraints
l∑

i=1

gji(xi) ≤ bj , j = 1, ...,m,

on the total amount of the resources consumed by the units, and, of course, the constraints

xi ∈ Xi, i = 1, ..., l.
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This is certain optimization problem, and a straightforward way to solve it would be: to
“lift” to the level of the company all the data (sets Xi, functions gji, fi), to solve at this level
the resulting problem and to enforce somehow the units to carry out the resulting directives x∗i .
This completely centralized approach is very unreliable, due to the necessity in sending back and
forth huge amounts of information, and is very costly computationally. A good alternative could
be decentralized approach, where the company declares some “internal prices” on the common
resources and says to the units:
“I can sell to you as many resources as you wish at such and such prices. Please order the
resources and say what will be your profit”.

The units will try to maximize, given prices of the resources, their profit

−fi(xi)−
k∑

j=1

µjgji(xi)

over xi ∈ Xi, i.e., minimize their losses Li(xi, µ); their orders will allow the company to compute
the objective of the dual problem (CnvDS), which for the case of nonzero right hand sides in
the resource inequality constraints clearly is

φ∗(µ) =
k∑

j=1

Li(x∗i (µ), µ)−
m∑

j=1

µjbj .

In fact the vectors of the resources ordered by the units allow the company to compute the
gradient of the dual objective at the current µ (or a supergradient, if the dual objective is
nonsmooth). With this information, the company can update the prices on the resources,
applying certain method for concave minimization of the dual objective on the nonnegative
orthant, ask the units to update accordingly their desicions, and to repeat this procedure until
the dual objective will be maximized, thus solving – in parallel and distributed fashion – the
problem of maximizing total profit under given constraints on the common resources. This is
exactly what is Decomposition does.

It is time now to explain why in the Decomposition scheme we deal with the classical La-
grange function, not an augmented one. The reason is that the “augmenting” gj 7→ θj(gj) of a
separable constraint gj(x) ≤ 0 destroys separability. The price for using the classical Lagrangian
is typical nonsmoothness of the dual objective, and in fact Decomposition is the main source of
nonsmooth convex optimization programs.
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Assignment # 11 (Lecture 11)

Obligatory problems

Exercise 11.4.1 Prove Proposition 11.3.1.

Exercise 11.4.2 Consider the following simple separable optimization problem:

f(x) =
n∑

i=1

fi(xi)→ min | g(x) =
n∑

i=1

gi(xi) ≤ 0, xi ∈ Xi = [ai, bi], i = 1, ..., n.

Here xi are real variables, fi and gi are smooth convex functions, assumed, for the sake of
simplicity, strongly convex, −∞ < ai < bi < +∞ for all i.

Assume also that the Slater condition holds: g(x) < 0 for some feasible x.
1) Write down optimality condition for the problem based on Theorem (*), Section 11.4.2
2) Explain how would you solve the problem via the Decomposition scheme

Optional problems

Exercise 11.4.3 Prove that the statement mentioned in Section 11.4.1:
If the sum r(x) of the objective and the constraints in (CnvP) is strongly convex (i.e., with
positive definite at every point Hessian) and grows at infinity faster than |x|, then the auxiliary
primal problem

min
x
{f(x) +

k∑

j=1

µjgj(x)}

has, for every µ > 0, exactly one solution, and this solution is continuous function of µ > 0.
Prove that if the objective itself is strongly convex and grows at infinity faster than |x|, then

“µ > 0” in the statement can be replaced with “µ ≥ 0”.
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Lecture 12

Sequential Quadratic Programming

This last lecture of the course is devoted to the Sequential Quadratic Programming methods –
the methods which are now thought to be the most efficient for practical solution of general-type
(i.e., nonconvex) constrained optimization problems.

The idea underlying the methods is to solve directly the KKT system of the problem under
consideration by a Newton-type iterative process. In order to get the idea, let us start with the
equality constrained case.

12.1 SQP methods: Equality Constrained case

Consider an equality constrained optimization problem

(ECP) f(x)→ min | h(x) =



h1(x)
...

hm(x)


 = 0 [x ∈ Rn]

and let us write down the corresponding Karush-Kuhn-Tucker system:

(KKT)
∇xL(x, λ) ≡ ∇f(x) + [∇h(x)]Tλ = 0
∇λL(x, λ) ≡ h(x) = 0,

,

where

L(x, λ) = f(x) + λTh(x) ≡ f(x) +
m∑

i=1

λihi(x)

is the Lagrangian of (ECP). As we remember from Lecture 8, any locally optimal solution x∗

of (ECP) which is a regular point of the system of constraints (i.e., is such that the gradients
of constraints taken at this point are linearly independent) can be extended by properly chosen
λ = λ∗ to a solution of (KKT).

Now, (KKT) is a system of n + m equations with n + m unknowns x, λ, and we can try
to solve this system with the Newton method. To the moment we know what is the Newton
minimization method, not the Newton method for solving systems of equations; let us look what
is this latter routine.

239
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12.1.1 Newton method for systems of equations

The method

Given a system of N nonlinear scalar equations with N unknowns

(E) P (u) ≡


p1(u)
...

pN (u)


 = 0,

with continuously differentiable real-valued functions pi, one can try to solve this system as
follows. Given current approximate solution ū, let us linearize the system at this point, i.e.,
replace the actual nonlinear system by the linear one

[P (u) ≈] P (ū) + P ′(ū)(u− ū) ≡


p1(ū) + [∇p1(ū)]T (u− ū)

...
pN (ū) + [∇pN (ū)]T (u− ū)


 = 0.

Assuming the N×N matrix P ′(ū) nonsingular, we can write down the solution to the linearized
system:

ū+ = ū− [P ′(ū)]−1P (ū).

The vector
ū+ − ū ≡ −[P ′(ū)]−1P (ū)

is called the Newton displacement.
Now we can look at ū+ as at our new approximate solution and iterate the indicated updating,

thus coming to the Newton method for solving (E) – to the recurrence

ut = ut−1 − [P ′(ut−1)]−1P (ut−1). (12.1.1)

Note that the basic Newton method for unconstrained minimization of a smooth function f
(Lecture 4) is nothing but the above recurrence applied to the Fermat equation1)

(F) P (x) ≡ ∇f(x) = 0.

Local quadratic convergence

Same as in the particular case of equation (F), in the case of general equation (E) the Newton
method possesses fast local convergence:

Proposition 12.1.1 [Local superlinear/quadratic convergence of the Newton method for solv-
ing systems of equations]
Let u∗ be a solution to (E), and assume that this solution is nondegenerate, i.e., that the matrix
P ′(u∗) is nonsingular. Then the Newton method (12.1.1) locally superlinearly converges to u∗:
there exists a neighbourhood U of u∗ such that the recurrence (12.1.1), being started at a point
u0 ∈ U , is well defined (i.e., the required inverse matrices do exist), keeps the iterates in U and
ensures that

|ut − u∗| ≤ Cκκt, t = 0, 1, ...

1to save words, I shall use the word “equation” also for systems of scalar equations, interpreting such a system
as a single vector equation. It always will be clear which equation – a vector or a scalar one – is meant.
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for every κ > 0.
If, in addition, P is twice continuously differentiable in a neighbourhood of u∗, then the

indicated convergence is quadratic:

|ut − u∗| ≤ C|ut−1 − u∗|2

for all t and some C <∞.

The proof of this proposition repeats word by word the one of the similar statement from
Lecture 4, and you are welcome to prove the statement by yourself.

Now let us look how all this works when (E) is the Karush-Kuhn-Tucker system of the
equality constrained problem (ECP).

12.1.2 Solving (KKT) by the Newton method

When applying the Newton method to (KKT), we should answer the following crucial question:

• When a KKT point (x∗, λ∗) of problem (ECP) is a nondegenerate solution to the system
(KKT)?

[when it is so, we may hope to get at least locally converging routine; on the other hand,
when the corresponding matrix P ′ is singular at (x∗, λ∗), we have small hope on conver-
gence, not speaking of the unpleasant possibility to meet with singular P ′ also at a point
close to (x∗, λ∗): if this latter point will be our iterate, how could we define the Newton
displacement?]

Our local goal is to answer the above question and to present important interpretation of the
Newton displacement in terms of certain auxiliary quadratic optimization problem with linear
equality constraints. This interpretation will allow us to extend the approach from the case of
equality constrained problem (ECP) to the general constrained case.

To get convenient notation, we set

P (x, λ) = ∇x,λL(x, λ) =
(∇xL(x, λ) ≡ ∇f(x) + [∇h(x)]Tλ

∇λL(x, λ) ≡ h(x)

)
; (12.1.2)

in this notation, system (KKT) is exactly (E). Note that

P ′(x, λ) =
(∇2

xL(x, λ) [∇h(x)]T

∇h(x) 0

)
(12.1.3)

Nonsingularity of KKT points

We start with the following important observation:

Proposition 12.1.2 Let x∗ be a nondegenerate solution to (ECP) (Definition 8.2.2), and let λ∗

be the corresponding vector of Lagrange multipliers. Then the matrix P ′(x∗, λ∗) is nonsingular.

Proof. Denoting, as usual, H = ∇2
xL(x∗, λ∗), A = ∇h(x∗), we have

P ′ =
(
H AT

A 0

)
;
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we should prove that P ′h = 0, h being (n+m)-dimensional vector, implies h = 0. Partitioning
h into n-dimensional fragment v and m-dimensional fragment w, we get

0 = P ′
(
v
w

)
≡
(
Hv +ATw

Av

)
,

whence
Hv +ATw = 0; Av = 0.

The second equation says that v is in the kernel of A = ∇h(x∗), i.e., is in the plane T tangent
to the feasible surface at the point x∗. Multiplying the first equation from the left by vT and
taking into account that vTATw = (Av)Tw = 0 by the second equation, we get vTHv = 0.
Since x∗ is a nondegenerate local solution to (ECP), H = ∇2

xL(x∗, λ∗) is positive definite on T ;
consequently, v ∈ T and vTHv = 0 imply that v = 0.

Since v = 0, the first of our two equations implies that ATw = 0; but x∗ is regular for
the constraints of (ECP), i.e., the columns of the matrix AT = [∇h(x∗)]T – these columns are
exactly the gradients of the constraints at the point x∗ – are linearly independent; since the
columns of AT are linearly independent, their combination ATw can be zero only if the vector
w of coefficients in the combination is zero. Thus, both v and w are zero.

Structure and interpretation of the Newton displacement

Let us look what is the Newton system

P ′(u)d = −P (u)

– the system defining the Newton displacement – for the particular case when the system (E) of
nonlinear equations is the Karush-Kuhn-Tucker system (KKT) of (ECP). In the case in question
P is given by (12.1.2), while P ′ is given by (12.1.3). Partitioning the vector of unknowns d of
the Newton system into x-part dx and λ-part dλ, we can rewrite the Newton system as

[∇2
xL(x̄, λ̄)]dx+ [∇h(x̄)]Tdλ = −∇f(x̄)− [∇h(x̄)]Tλ

[∇h(x̄)]dλ = −h(x̄)
,

(x̄, λ̄) being the current iterate to be updated by the Newton step.
It is convenient to pass from the unknowns dx and dλ to dx and λ+ = λ̄+ dλ (note that λ+

is the λ-component of the Newton iterate of (x̄, λ̄)). The new unknowns are given by the system

[∇2
xL(x̄, λ̄)]dx+ [∇h(x̄)]Tλ+ = −∇f(x̄)

[∇h(x̄)]dx = −h(x̄)
(12.1.4)

The resulting form of the Newton system is very instructive. To see this, let us for the time
being forget about the Newton method for solving the KKT system of problem (ECP) and look
at the situation from a little bit different viewpoint. Let x∗ be a nondegenerate solution to
(ECP) and λ∗ be the corresponding vector of Lagrange multipliers. Then

∇xL(x∗, λ∗) = 0

and the Hessian ∇2
xL(x∗, λ∗) of the Lagrange function is positive definite on the plane T tangent

to the feasible surface of (ECP) at the point x∗. In other words, the Lagrange function regarded



12.1. SQP METHODS: EQUALITY CONSTRAINED CASE 243

as function of x (with λ being set to λ∗) attains at x = x∗ its nondegenerate local minimum on
the plane T . If we knew the tangent plane T (and λ∗) in advance, we could find x∗ by applying
to L(x, λ∗) any method of unconstrained minimization, not in the entire space, of course, but
in the plane T . Let us look what would happen if we would use in this scheme the Newton
minimization method. How we should act? We should replace our current objective – the
function L(·, λ∗) – by its quadratic expansion at the current iterate x̄, i.e., by the function

L(x̄, λ∗) + (dx)T∇xL(x̄, λ∗) +
1
2

(dx)T∇2
xL(x̄, λ∗)dx (12.1.5)

and to minimize this quadratic approximation over displacements dx such that x̄+ dx ∈ T ; the
new iterate would be then x̄+ dx, where dx is given by the aforementioned minimization.

Now, actually we do not know T and λ∗; all we have is the current approximation (x̄, λ̄) of
(x∗, λ∗). With this approximation, we can imitate the latter construction as follows:

• use, instead of λ∗, its current approximate λ̄;

• use, instead of T , the plane T̄ given by linearization of the constraints h(x) = 0 at the
current iterate x̄:

T̄ = {y = x̄+ dx | [∇h(x̄)]dx+ h(x̄) = 0}.

Thus, the above idea – to improve current iterate x̄ by applying a single step of the Newton
minimization of the Lagrange function over the plane T – could be implemented as follows: we
define dx as the solution to the quadratic minimization problem with linear equality constraints:

(∗)
L(x̄, λ̄) + (dx)T∇xL(x̄, λ̄) + 1

2(dx)T∇2
xL(x̄, λ̄)dx → min

s.t.
[∇h(x̄)]dx = −h(x̄)

and define the new x-iterate as
x+ = x̄+ dx.

Note that the problem can be a little bit simplified: recalling the definition of the Lagrange
function, we see that the linear part

L(x̄, λ̄) + (dx)T∇xL(x̄, λ̄)

of the objective in the problem is equal to

f(x̄) + (dx)T∇f(x̄) +
[
λ̄Th(x̄) + λ̄T [∇h(x̄)]dx

]
;

the quantity in the brackets is constant on the feasible plane of the problem and therefore can
be eliminated from the objective without varying the solution. Thus, problem (*) is equivalent
to

(QP(x̄,λ̄))
f(x̄) + (dx)T∇f(x̄) + +1

2(dx)T∇2
xL(x̄, λ̄)dx → min

s.t.
[∇h(x̄)]dx = −h(x̄).

Problem (QP(x̄,λ̄)) is quite respectable optimization problem, and its solution, if exists, is
achieved at a KKT point. Moreover, the solution to the problem does exist, if (x̄, λ̄) is close
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enough to (x∗, λ∗). Indeed, if x̄ = x∗, λ̄ = λ∗, then the objective of the problem is a quadratic
form which is strongly convex at the feasible plane T of the problem (recall that x∗ is a nondegen-
erate solution to (ECP)). By continuity reasons, for (x̄, λ̄) close enough to (x∗, λ∗) the objective
in (QP(x̄,λ̄)) also is strongly convex quadratic form on the feasible plane T̄ of the problem and
therefore attains its minimum on the plane.

Now let us make the following crucial observation (for the sake of brevity, I write (QP)
instead of (QP(x̄,λ̄))):

Let the Newton system (12.1.4) be a system with nonsingular matrix (we know
that it indeed is the case when (x̄, λ̄) is close enough to (x∗, λ∗)). Then the Newton
displacement dx given by the Newton system is the unique KKT point of the problem
(QP), and the vector λ+ given by the Newton system is the vector of Lagrange
multipliers associated with the KKT point dx in the problem (QP).

Indeed, let z be a KKT point of (QP) and µ be the corresponding vector of Lagrange multipliers.
The KKT equations for (QP) are (check it!)

∇f(x̄) +∇2
xL(x̄, λ̄)z + [∇h(x̄)]Tµ = 0,

[∇h(x̄)]z = −h(x̄);

but this is exactly the Newton system (12.1.4).
Now we understand what the Newton method from the previous section does in the opti-

mization terms. The optimal solution is the minimizer of the Lagrange function on the tangent
plane T to the feasible surface of the problem, the Lagrange multipliers being set to their optimal
values. The method, at each step, replaces this the tangent plane with the plane T̄ given by
linearizations of the constraints at the current iterate, replaces “exact” multipliers in the La-
grange function with their current estimate and performs a single Newton step of minimization
of the resulting function over x ∈ T̄ , thus generating the new x-iterate. As a byproduct of this
Newton minimization step (this step solves quadratic minimization problem (QP) with linear
equality constraints) we get the vector of Lagrange multipliers for (QP), and this vector is our
new estimate of the vector λ∗ of Lagrange multipliers of the original problem.

The presented interpretation of the method explains why it is called “Sequential Quadratic
Programming”; the name comes from the fact that at each step of the method we in fact solve
certain Quadratic Programming problem with linear equality constraints. There is another name
of the method – the Projected Lagrangian Scheme, and this second name reflects the origin of
our Quadratic Programming problems.

What should be stressed is that the linear term in the objective of (QP) comes from our
original objective f 2); in contrast to this, the quadratic term in the objective of (QP) comes
from the Lagrange function, not from f . This is quite reasonable: this is the Lagrange function
which attains its nondegenerate local minimum on T at x∗, not the actual objective f . For f
itself, x∗ is nothing but a critical point on T , and it may happen to be the point of maximum,
as it is seen from the following example:

f(x1, x2) = x2 − 0.1x2
1, h(x) = x2 − x2

1, x
∗ = (0, 0).

2note, anyhow, that we may deal with the linear term coming from the Lagrange function as well: recall that
(QP) is equivalent to (*). The only advantage of (QP) is that the vector of Lagrange multipliers in this problem
is exactly the new estimate λ+ of λ∗, while the vector of Lagrange multipliers in (*) is λ+ − λ̄
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In this example, x∗ indeed is a nondegenerate local solution with λ∗ = −1 and T = {x ∈
R2 | x2 = 0}. The Lagrange function with “correct” value of the Lagrange multiplier is
L(x, λ∗) = 0.9x2

1, and x∗ is its nondegenerate local (and even global) minimizer on T . In
contrast to this, x∗ is nondegenerate global maximizer of the objective f on T .

12.2 The case of general constrained problems

12.2.1 Basic SQP scheme

Given the above interpretation of the Newton method for solving the KKT system of an equality
constrained problem, we now can easily understand how the method should be extended onto
the case of a general constrained problem

(GCP) f(x)→ min | h(x) =



h1(x)
...

hm(x)


 = 0, g(x) =



gi(x)
...

gk(x)


 ≤ 0.

Our starting observation is that if x∗ is a nondegenerate solution to (GCP) and (λ∗, µ∗) is the
corresponding vector of Lagrange multipliers (λ’s are the multipliers for the equality constraints,
and µ’s - for the inequality ones), then, as it is immediately given by straightforward verification
of Definition 8.2.4, x∗ is a nondegenerate solution, and λ∗, µ∗ are Lagrange multipliers, in the
following linearly constrained quadratic programming program:

(QP∗)
f(x∗) + (x− x∗)T∇f(x∗) + 1

2(x− x∗)T∇2
xL(x∗;λ∗, µ∗)(x− x∗) → min

s.t.
hi(x∗) + (x− x∗)T∇hi(x∗) = 0, i = 1, ...,m,
gj(x∗) + (x− x∗)T∇gj(x∗) ≤ 0, j = 1, ..., k,

where

L(x;λ, µ) = f(x) +
m∑

i=1

λihi(x) +
k∑

j=1

µjgj(x)

is the Lagrange function of (GCP).
This observation motivates the following iterative process: given current approximation

(xt, λt, µt) to (x∗, λ∗, µ∗), we use this approximation to model (QP∗) by the linearly constrained
quadratic program

(QPt)
f(xt) + (dx)T∇f(xt) + 1

2(dx)T [∇2
xL(xt;λt, µt)]dx → min

s.t.
[∇h(xt)]dx = −h(xt),
[∇g(xt)]dx ≤ −g(xt).

Solving this problem, we get the corresponding displacement dx and, besides this, the vectors
λ+ and µ+ of the Lagrange multipliers for (QPt):

∇f(xt) +∇2
xL(xt;λt, µt)dx+

∑m
i=1 λ

+
i ∇hi(xt) +

∑k
j=1 µ

+
j ∇gj(xt) = 0,

µ+
j [gj(xt) + (dx)T∇gj(xt)] = 0, j = 1, ..., k,

µ+
j ≥ 0, j = 1, ..., k;
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after dx, λ+, µ+ are identified, we take as the new iterate the triple

xt+1 = xt + dx, λt+1 = λ+, µt+1 = µ+

and loop.
It can be proved that if x∗ is a nondegenerate solution to (GCP) and the outlined recur-

rence is started close enough to (x∗, λ∗, µ∗), then the recurrence is well-defined and converges
quadratically to (x∗, λ∗, µ∗).

12.2.2 Quasi-Newton Approximations

A disadvantage of the SQP scheme as developed so far is that the auxiliary quadratic problem
(QPt) may be “bad” – e.g., the quadratic objective in this problem may be below unbounded at
the feasible setof (QPt). This bad thing for sure does not happen in the equality constrained case,
provided that xt, λt) is close enough to (x∗, λ∗), since then the matrix ∇2Lx(xt, λt) is positive
definite along the approximate tangent plane T̄ ; this favourable situation, however, is ensured
only in a neighbourhood of the solution. And in the case of general constraints problem (QPt)
can be bad independently of whether the current iterates are or are not close to (x∗λ∗, µ∗). The
situation is very similar to the one we met in the Newton method for unconstrained minimization,
where the Hessian of the objective was not oblidged to be positive definite at every step, and it
caused a lot of troubles.

To overcome the difficulty, in the unconstrained case we simply replaced the current Hessian
with its positive definite correction whenever the Hessian was not “well positive definite”. The
same remedy can be used now: if the objective in (QPt) turns out to be not strongly convex
on the entire space, i.e., if the matrix ∇2

xL(xt;λt, µt) is not positive definite, we replace it with
its positive definite correction Bt. With this correction, the auxiliary quadratic programming
problem which we should solve at a step t of the SQP method becomes

(QP′t)
f(xt) + (dx)T∇f(xt) + 1

2(dx)TBtdx → min
s.t.

[∇h(xt)]dx = −h(xt),

[∇g(xt)]dx ≤ −g(xt);

the x-component of the new iterate is xt+1 = xt + dx, while λt+1 and µt+1 are the vectors of
Lagrange multipliers of (QP′t).

The indicated modification (which, as we shall see in a while, still is converging) possesses
the following attractive properties:

• problem (QP′t) does not depend explicitly on the current approximates λt and µt to the
Lagrange multipliers of (GCP) (all the dependence of λt, µt, if any, is via the choice of the
matrix Bt);

• it ensures global convergence of a reasonable linesearch version of the SQP scheme (see
Section 12.3);

• (QP′t) becomes a problem with strongly convex quadratic objective and linear constraints;
the problem therefore can be efficiently solved in finitely many steps by the active set
method (Section 9.4, Lecture 9).
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It should be also mentioned that if, as it is the case under reasonable regularity assump-
tions, the Lagrange multipliers µt+1 for inequality constraints in the problem (QP′t) con-
verge to the actual Lagrange multipliers µ∗ for the inequality constraints in (GCP), then
for large t the vector µt is close to µt+1. It means that µt allows to predict which inequali-
ties in (QP′t) are active at the solution to this problem: for large t, these active inequalities
are exactly those which correspond to positive entries of µt. It follows that when solving
(QP′t) by the active set method, it makes sense to use this prediction as the initial guess for
the active set of (QP′t). With this policy, eventually (for large enough values of t) (QP′t)
will be solved in one step of the active set method (i.e., at the cost of solving a single
system of linear equations)! And even for initial values of t, when it may take several steps
of the active set method to solve (QP′t), this prediction used as the initial guess for the
actual active set of (QP′t) typically saves a lot of computations.

• using matrix Bt instead of the Hessain of the Lagrangian, we may apply the Quasi-Newton
tactics to approximate this Hessian (more exactly, its positive definite correction) without
explicit usage of the second-order information on the data

12.3 Linesearch, Merit functions, global convergence

The Sequential Quadratic Programming scheme studied so far possesses nice local convergence
properties, at least for the case when Bt = ∇2

xL(xt;λt, µt): if x∗ is a nondegenerate local solution
to (GCP) with Lagrange multipliers λ∗, µ∗, and if SQP is initialized by a triple (x1, λ1, µ1) close
enough to (x∗, λ∗, µ∗), then the routine quadratically converges to the solution of (GCP). The
difficulty, anyhow, is that we have no idea whether the routine possesses global convergence, or,
better to say, we know for sure that it may fail to converge globally. Indeed, in the simplest
case where there is no constraints at all, our routine becomes the Basic Newton method for
unconstained minimization from Lecture 4, and we know from this Lecture that the Newton
method, even applied to a fine convex objective, may diverge, if the starting point is too far
from the optimal solution.

What we did in the unconstrained case in order to overcome this drawback? The remedy
was linesearch. More specifically, what we did in our now situation would look as follows:

given current iterate ut = (xt, λt, µt) and computing dx, λ+, µ+ as a solution to
(QP′t) and the Lagrange multipliers associated with this solution, we treat the triple

dt+1 = (dx, dλ = λ+ − λt, dµ = µ+ − µt) (12.3.1)

not as the actual step we should perform from ut to get the new iterate ut+1, but
as a search direction only; the new iterate ut+1 is obtained from ut by certain – not
necessarily unit – stepsize γt+1 from ut in the direction dt:

ut+1 = ut + γt+1dt+1, (12.3.2)

and the role of linesearch is to choose a reasonable stepsize γt+1.

In the case of unconstrained optimization we measured the quality of a candidate stepsize by
the progress in the objective, so that the linesearch was aimed to minimize the objective along
the search ray {ut + γdt+1 | γ ≥ 0}. In our now situation, it makes no sense to look at the
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objective alone: what we are interested in, is “movement towards the KKT set of (GCP)”, and
the description of this set involves both the objective and the constraints.

Thus, what we need is certain “auxiliary objective”, certain integrated measure of violation
of the relations we would like to ensure (in our case these are the KKT conditions). Choosing
somehow this measure, we could use the associated with this measure linesearch in order to
choose stepsizes which indeed decrease violations of our our target relations and thus move us
towards the solution set.

The general scheme we come to – some policy of choosing sequential search directions plus
tactics of choosing stepsizes in these directions, tactics based on minimization of a reasonable
auxiliary objective over the search rays – is typical for many iterative methods, and the auxiliary
objective in these methods has a special name - it is called the merit function. Good choice of
a merit function is as important for quality of the overall routine as a good policy of choosing
search directions, and in fact both these components of a method should fit each other. The
crucial requirement which should be satisfied by these components is as follows:

(!) if current iterate u is not a solution to the problem in question, then the search direction d
associated with u should be descent for the merit function M(·):

M(u+ γd) < M(u) for all small enough positive γ.

The role of property (!) is clear: if it is violated, then we may arrive at an iterate which is not a
solution to the problem we want to solve and at the same time is such that the merit function
increases along the search ray associated with the iterate. In this case the linesearch will return
zero stepsize, and the next iterate will be the same as the previous one, so that we shall stay at
this “bad” iterate forever. On the other hand, if (!) is satisfied, then the linesearch will ensure
nonzero progress in the value of the merit function at each step where the current iterate is not
an exact solution, and the method will become descent with respect to the merit function. In
this case we have good chances to use the Global Convergence Theorem from Lecture 1 to prove
convergence of the method.

Now let us apply the outlined general considerations to the case we are interested in, i.e.,
to the case when the problem of interest is (GCE) and the policy of choosing search directions
is given by the Sequential Quadratic Programming scheme. What we need is a merit function
which, along with this policy, fits (!).

12.3.1 l1 merit function

It turns out that an appropriate (and the most common) merit function in our case is

M(x) = f(x) + θ



m∑

i=1

|hi(x)|+
k∑

j=1

g+
j (x)


 , (12.3.3)

where θ > 0 is parameter of the function and, as always,

g+
j (x) = max[gj(x), 0]

is the positive part of the constraint gj .
The following lemma justifies the indicated choice of the merit function:
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Lemma 12.3.1 Let xt be current iterate, let Bt be a positive definite matrix used in (QP′t), let
dx be the solution to the latter problem and λ ≡ λt+1, µ ≡ µt+1 be the Lagrange multipliers
associated with (QP′t). Assume that θ is large enough:

θ ≥ max{|λ1|, ..., |λm|, µ1, µ2, ..., µk} (12.3.4)

Then either dx = 0, and then xt is a KKT point of (GCP), or dx 6= 0, and then ds is a descent
direction of the merit function M .

Proof. By the origin of dx, λ and µ we have (values and derivatives of f , h, g are taken at xt,
B = Bt):

∇f +Bdx+ [∇h]Tλ+ [∇g]Tµ = 0, (12.3.5)

h+ [∇h]dx = 0, (12.3.6)

g + [∇g]dx ≤ 0, (12.3.7)

and, finally,
µj ≥ 0, µj [gj + (dx)T∇gj ] = 0, j = 1, ..., k. (12.3.8)

Looking at these relations, we see that if dx = 0, then xt clearly is a KKT point of (GCP). Now
let dx 6= 0. We have

(dx)T∇f =

[see (12.3.5)]

= −(dx)TBdx−
m∑

i=1

λi(dx)T∇hi −
l∑

j=1

µj(dx)T∇gj =

[see (12.3.7) and (12.3.1)]

= −(dx)TBdx+
m∑

i=1

λihi +
k∑

j=1

µjgj ≤

[note that µj ≥ 0]

≤ −(dx)TBdx+
m∑

i=1

|λi||hi|+
k∑

j=1

µjg
+
j ≤

[see (12.3.4)]

≤ −(dx)TBdx+ θ



m∑

i=1

|hi|+
k∑

j=1

g+
j


 . (12.3.9)

Now let γ > 0. We have

M(xt)−M(xt + γdx) = [f(xt)− f(xt + γdx)]+

+θ



m∑

i=1

[|hi(xt)| − |h(xt + γdx)|] +
k∑

j=1

[g+
j (xt)− g+

j (xt + γdx)]


 . (12.3.10)

Denoting by Oi(γ) appropriate functions of γ which tend to 0 as γ → +0, we have

f(xt)− f(xt + γdx) ≥ −(dx)T∇f + γO0(γ). (12.3.11)
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Further,
hi(xt + γdx) = hi + γ(dx)T∇hi + γOi(γ) =

[see (12.3.6)]
= (1− γ)hi + γOi(γ),

whence
|hi(xt + γdx)| ≤ (1− γ)|hi|+ γ|Oi(γ)|, i = 1, ...,m. (12.3.12)

Similarly,
gj(xt + γdx) = gj + γ(dx)T∇gj + γOm+j(γ) ≤

[see (12.3.7)]
≤ (1− γ)gj + γOm+j(γ),

whence
g+
j (xt + γdx) ≤ (1− γ)g+

j + γ|Om+j(γ)|, j = 1, ..., k. (12.3.13)

Substituting (12.3.11) - (12.3.13) into (12.3.10), we get

M(xt)−M(xt + γdx) ≥ γ(dx)T∇f + γθ



m∑

i=1

|hi|+
k∑

j=1

g+
j


+ γθO(γ) ≥

[see (12.3.9)]
≥ γ

[
(dx)TBtdx+ θO(γ)

]
.

Since dx 6= 0 and B is positive definite, we have (dx)TBtdx > 0, and since O(γ)→ 0 as γ → +0,
we have also

(dx)TBtdx+ θO(γ) > 0

for all small enough positive γ; from the above computation, for these γ the quantity M(xt)−
M(xt + γdx) is positive, as required.

12.3.2 SQP Algorithm with Merit Function

Our considerations motivate the following

Algorithm 12.3.1 [Generic SQP Algorithm with l1 Merit Function for (GCP)]
Initialization. Choose θ1 > 0, an arbitrary starting point x1 and set t = 1.
Step t. Given current iterate xt, act as follows:

• Choose somehow positive definite matrix Bt;

• Form linearly constrained quadratic problem (QP′t) given by xt and Bt;

• Solve (QP′t), thus obtaining the solution dx and the vectors of Lagrange multipliers λ =
λt+1 and µ = µt+1. If dx = 0, terminate: xt is a KKT point of (GCP).

• Check whether
θt ≥ θ̄t ≡ max{|λ1|, ..., |λm|, µ1, ..., µk}.

if this inequality is satisfied, set θt+1 = θt, otherwise set

θt+1 = max[θ̄t, 2θt];
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• Find the new iterate
xt+1 = xt + γt+1dx

by linesearch aimed to minimize the merit function

Mt+1(x) = f(x) + θt+1



m∑

i=1

|hi(x)|+
k∑

j=1

g+
j (x)




on the search ray {xt + γdx | γ ≥ 0}. Replace t with t+ 1 and loop.

We can prove the following Main Theorem:

Theorem 12.3.1 [Global Convergence of the SQP Method with l1 Merit Function]
Let problem (GCP) be solved by Algorithm 12.3.1, and assume that

• a) there exists a bounded and closed set Ω ⊂ Rn such that for x ∈ Ω the solution set D(x)
of the system of linear inequality constraints

S(x) : [∇h(x)]dx = −h(x), [∇g(x)]dx ≤ −g(x)

with unknowns dx is nonempty, and each vector dx ∈ D(x) is a regular point of the system
S(x) (Definition 8.2.3);

• b) the trajectory {xt} of the algorithm belongs to Ω and is infinite (i.e., the method does
not terminate with exact KKT point of (GCE));

• c) the matrices Bt used in the method are uniformly bounded and uniformly positive defi-
nite:

cI ≤ Bt ≤ CI
for all t, with some 0 < c ≤ C <∞.

Then all accumulation points of the trajectory of the method are KKT points of (GCP).

Sketch of the Proof.
1) Let (QP(x,B)) denote the auxiliary linearly constrained quadratic problem of the type (QP′t)
associated with an iterate xt = x and a matrix Bt = B, and let B be the set of positive definite
matrices such that

cI ≤ B ≤ CI.
From a) and c) one can extract (this is easy, although dull) that for x ∈ Ω and B ∈ B the
problem (QP(x,B)) has a unique solution dx(x,B) with uniquely defined Lagrange multipliers
λ(x,B), µ(x,B), and the triple (dx(x,B), λ(x,B), µ(x,B)) is continuous in (x,B) ∈ Ω× B.
2) From 1) and b) it follows that the Lagrange multipliers generated in course of running the
method are uniformly bounded; from the description of the method it therefore follows that the
parameter θt of the merit function is updated only finitely many times. Thus, forgetting about
certain finite initial fragment of the trajectory, we may assume that this parameter simply is
constant: θt ≡ θ.
3) To prove the Theorem, we should prove that if x̄ is the limit of certain subsequence {xtp}∞p=1 of
our (bounded) trajectory, then x̄ is a KKT point of (GCE). From c) it follows that the matrices
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Btp belong to the (clearly compact) set B; passing to a subsequence, we therefore may assume
that

xtp → x̄, Btp → B̄ ∈ B as p→∞.

If the solution d+ = dx(x̄, B̄) to problem (QP(x̄, B̄)) is zero, then x̄ is a KKT point of (GCE)
by Lemma 12.3.1, as required. Thus, all we need is to lead to a contradiction the assumption
that d+ 6= 0. Under this assumption from the convergencies xtp → x̄, Btp → B̄, p → ∞, and
from 1) it follows that dp ≡ dx(xtp , Btp) → d+ 6= 0. From the indicated convergencies and the
relation d+ 6= 0 by the arguments completely similar to those used in the proof of Lemma 12.3.1
it follows that the progresses δp ≡M(xtp)−M(xtp+1) in the values of the merit function at the
steps tp, p = 1, 2, ..., are bounded away from zero:

δp ≥ δ > 0, p = 1, 2, ...

This is clearly a contradiction: our process at each step decreases the merit function, and since
this function clearly is below bounded on Q, the sum of progresses in its values over all steps is
finite, and therefore these progresses go to 0 as t→∞.

12.3.3 Concluding remarks

There are several essential comments to the presented method.

• In the presentation of the Generic SQP algorithm with l1 merit function we did not specify
how the matrices Bt are generated; Theorem 12.3.1 also is not that specific in this respect
(all it asks for is uniform boundedness and uniform positive definiteness of the matrices
Bt). Our preceding considerations, however, make it clear that in order to get fast al-
gorithm, one should make Bt “close” to the Hessian of the Lagrange function associated
with the current iterate x and the current (coming from the previous auxiliary quadratic
programming problem) estimates of the Lagrange multipliers. Of course, if this Hessian,
being available, is not “well positive definite”, one should replace it by its positive definite
correction. And if the second order information is not available at all, we can generate Bt
via quasi-Newton approximations similar to those from Lecture 7.

• A weak point of the method in its now form is the possibility for auxiliary problems (QP′t)
to be unfeasible. This indeed may happen, even in the case of feasible problem (GCP).
More exactly, if x∗ is a nondegenerate solution to (GCP), then the quadratic problems
associated with the iterates close enough to x∗ are feasible, but if the current iterate is
too far from x∗, the quadratic problem can be infeasible. What to do, if an unfeasible
auxiliary quadratic problem is met?

A popular way to overcome this difficulty is to pass from the auxiliary problem (QP′t)
to the “trust region SQP problem” which gives us both the search direction and the
stepsize and always is feasible and solvable. Namely, given current iterate xt and positive
definite approximation Bt to the Hessian of the Lagrange function, we find the new iterate
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xt+1 = xt + dx by solving the optimization problem as follows:

[f(xt) + (dx)T∇f(xt) +
1
2

(dx)TBtdx]

+θ[
m∑

i=1

|hi(xt) + (dx)T∇hi(xt)|

+
k∑

j=1

max[0, gj(xt) + (dx)T∇gj(xt)]] → min,

s.t. −δt ≤ (dx)i ≤ δt, i = 1, ..., n.

This problem can be easily rewritten as a linearly constrained problem with convex
quadratic objective. Solving this problem, we take direct care of decreasing the l1 Merit
Function, or, better to say, its analogy obtained when replacing the actual – nonlinear
– constraints in the merit function by their linearizations. The “trust region” bounds
−δt ≤ (dx)i ≤ δt should be tight enough to make the “analogy” sufficiently close to the
actual merit function.

It should also be mentioned that if (GCP) is a (feasible) program with convex constraints
(i.e., the equality constraints hi are linear, and the inequality ones gj are convex), then
auxiliary quadratic problems (QP′t) for sure are feasible. Indeed, if x̄ is an arbitrary point
of Rn and x is a feasible solution to (GCP), then, from linearity of the equality constraints,

h(x̄) + [∇h(x̄)](x− x̄) = h(x) = 0,

and from the Gradient inequality3)

g(x̄) + [∇g(x̄)](x− x̄) ≤ g(x) ≤ 0,

so that x− x̄ is a feasible solution to the quadratic program (QP′) associated with x̄.

• “Maratos effect”. The Merit Function technique ensures global convergence of the SQP
scheme at the cost of “spoiling”, to some extent, local quadratic convergence of the “pure”
SQP scheme from Sections 12.1.2 and 12.2.1. For the sake of definiteness, let us speak about
the case of equality constrained problem (ECP). Moreover, let the matrixH = ∇2

xL(x∗, λ∗)
be the unit matrix (so that H is positive definite on the entire space). Assume that we
use the unit matrix also as Bt at all steps of the SQP method; then, as we know from
Section 12.1.2, the unit stepsizes γt would result in asymptotical quadratic convergence
of the routine, provided that it converges at all. And it is easy to demonstrate that,
vise versa, “essentially non-unit” stepsizes will prevent the superlinear convergence. Now,
what about “asymptotical compatibility” of the unit stepsizes with the linesearch based
on the l1 Merit Function? Is it true that the linesearch will eventually result in nearly unit
stepsizes, or is it at least true that the unit stepsizes do not contradict the Merit Function

3which says that for a differentiable convex function φ(·) one has

φ(u) ≥ φ(v) + (u− v)T∇φ(u)

for all u, v
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philosophy, i.e., that close to the solution they decrease the merit function? The answer on
both these question is negative. There are examples of problems (ECP) where, arbitrarily
close to a nondegenerate solution to the problem, the unit stepsizes in the SQP scheme
increase the l1 Merit Function (and in fact all natural merit functions). This phenomenon
(it was discovered by N. Maratos in ’78 and is called the Maratos effect) demonstrates
that we cannot expect the SQP scheme with merit function based linesearch to possess
superlinear asymptotic rate of convergence. There are some ways to avoid this drawback,
but these details are beyond the scope of the course.


