
Lecture 5

Adjustable Robust Multistage
Optimization

In this lecture we intend to investigate robust multi-stage linear and conic optimization.

5.1 Adjustable Robust Optimization: Motivation

Consider a general-type uncertain optimization problem — a collection

P =
{

min
x
{f(x, ζ) : F (x, ζ) ∈ K} : ζ ∈ Z

}
(5.1.1)

of instances — optimization problems of the form

min
x
{f(x, ζ) : F (x, ζ) ∈ K} ,

where x ∈ Rn is the decision vector, ζ ∈ RL represents the uncertain data or data perturbation,
the real-valued function f(x, ζ) is the objective, and the vector-valued function F (x, ζ) taking
values in Rm along with a set K ⊂ Rm specify the constraints; finally, Z ⊂ RL is the uncertainty
set where the uncertain data is restricted to reside.

Format (5.1.1) covers all uncertain optimization problems considered so far; more-
over, in these latter problems the objective f and the right hand side F of the
constraints always were bi-affine in x, ζ, (that is, affine in x when ζ is fixed, and
affine in ζ, x being fixed), and K was a “simple” convex cone (a direct product of
nonnegative rays/Lorentz cones/Semidefinite cones, depending on whether we were
speaking about uncertain Linear, Conic Quadratic or Semidefinite Optimization).
We shall come back to this “well-structured” case later; for our immediate purposes
the specific conic structure of instances plays no role, and we can focus on “general”
uncertain problems in the form of (5.1.1).

The Robust Counterpart of uncertain problem (5.1.1) is defined as the semi-infinite optimization
problem

min
x,t

{t : ∀ζ ∈ Z : f(x, ζ) ≤ t, F (x, ζ) ∈ K} ; (5.1.2)

this is exactly what was so far called the RC of an uncertain problem.
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210 LECTURE 5: ADJUSTABLE ROBUST OPTIMIZATION

Recall that our interpretation of the RC (5.1.2) as the natural source of robust/robust optimal
solutions to the uncertain problem (5.1.1) is not self-evident, and its “informal justification”
relies upon the specific assumptions A.1–3 on our “decision environment,” see page 8. We have
already relaxed somehow the last of these assumptions, thus arriving at the notion of Globalized
Robust Counterpart, lecture 4. What is on our agenda now is to revise the first assumption,
which reads

A.1. All decision variables in (5.1.1) represent “here and now” decisions; they should
get specific numerical values as a result of solving the problem before the actual data
“reveals itself” and as such should be independent of the actual values of the data.

We have considered numerous examples of situations where this assumption is valid. At the
same time, there are situations when it is too restrictive, since “in reality” some of the decision
variables can adjust themselves, to some extent, to the actual values of the data. One can point
out at least two sources of such adjustability: presence of analysis variables and wait-and-see
decisions.
Analysis variables. Not always all decision variables xj in (5.1.1) represent actual decisions;
in many cases, some of xj are slack, or analysis, variables introduced in order to convert the
instances into a desired form, e.g., the one of Linear Optimization programs. It is very natural
to allow for the analysis variables to depend on the true values of the data — why not?

Example 5.1 [cf. Example 1.3] Consider an “`1 constraint”

K∑

k=1

|aT
k x− bk| ≤ τ ; (5.1.3)

you may think, e.g., about the Antenna Design problem (Example 1.1) where the “fit” between the
actual diagram of the would-be antenna array and the target diagram is quantified by the ‖ · ‖1 distance.
Assuming that the data and x are real, (5.1.3) can be represented equivalently by the system of linear
inequalities

−yk ≤ aT
k x− bk ≤ yk,

∑

k

yk ≤ τ

in variables x, y, τ . Now, when the data ak, bk are uncertain and the components of x do represent “here
and now” decisions and should be independent of the actual values of the data, there is absolutely no
reason to impose the latter requirement on the slack variables yk as well: they do not represent decisions
at all and just certify the fact that the actual decisions x, τ meet the requirement (5.1.3). While we can,
of course, impose this requirement “by force,” this perhaps will lead to a too conservative model. It
seems to be completely natural to allow for the certificates yk to depend on actual values of the data —
it may well happen that then we shall be able to certify robust feasibility for (5.1.3) for a larger set of
pairs (x, τ).

Wait-and-see decisions. This source of adjustability comes from the fact that some of the
variables xj represent decisions that are not “here and now” decisions, i.e., those that should be
made before the true data “reveals itself.” In multi-stage decision making processes, some xj

can represent “wait and see” decisions, which could be made after the controlled system “starts
to live,” at time instants when part (or all) of the true data is revealed. It is fully legitimate to
allow for these decisions to depend on the part of the data that indeed “reveals itself” before
the decision should be made.
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Example 5.2 Consider a multi-stage inventory system affected by uncertain demand. The most in-
teresting of the associated decisions — the replenishment orders — are made one at a time, and the
replenishment order of “day” t is made when we already know the actual demands in the preceding days.
It is completely natural to allow for the orders of day t to depend on the preceding demands.

5.2 Adjustable Robust Counterpart

A natural way to model adjustability of variables is as follows: for every j ≤ n, we allow for xj

to depend on a prescribed “portion” Pjζ of the true data ζ:

xj = Xj(Pjζ), (5.2.1)

where P1, ..., Pn are given in advance matrices specifying the “information base” of the decisions
xj , and Xj(·) are decision rules to be chosen; these rules can in principle be arbitrary functions
on the corresponding vector spaces. For a given j, specifying Pj as the zero matrix, we force xj

to be completely independent of ζ, that is, to be a “here and now” decision; specifying Pj as the
unit matrix, we allow for xj to depend on the entire data (this is how we would like to describe
the analysis variables). And the “in-between” situations, choosing Pj with 1 ≤ Rank(Pj) < L
enables one to model the situation where xj is allowed to depend on a “proper portion” of the
true data.

We can now replace in the usual RC (5.1.2) of the uncertain problem (5.1.1) the independent
of ζ decision variables xj with functions Xj(Pjζ), thus arriving at the problem

min
t,{Xj(·)}n

j=1

{t : ∀ζ ∈ Z : f(X(ζ), ζ) ≤ t, F (X(ζ), ζ) ∈ K} ,

X(ζ) = [X1(P1ζ); ...; Xn(Pnζ)].
(5.2.2)

The resulting optimization problem is called the Adjustable Robust Counterpart (ARC) of the
uncertain problem (5.1.1), and the (collections of) decision rules X(ζ), which along with certain
t are feasible for the ARC, are called robust feasible decision rules. The ARC is then the problem
of specifying a collection of decision rules with prescribed information base that is feasible for as
small t as possible. The robust optimal decision rules now replace the constant (non-adjustable,
data-independent) robust optimal decisions that are yielded by the usual Robust Counterpart
(5.1.2) of our uncertain problem. Note that the ARC is an extension of the RC; the latter is a
“trivial” particular case of the former corresponding to the case of trivial information base in
which all matrices Pj are zero.

5.2.1 Examples

We are about to present two instructive examples of uncertain optimization problems with
adjustable variables.
Information base induced by time precedences. In many cases, decisions are made sub-
sequently in time; whenever this is the case, a natural information base of the decision to be
made at instant t (t = 1, ..., N) is the part of the true data that becomes known at time t. As
an instructive example, consider a simple Multi-Period Inventory model mentioned in Example
5.2:

Example 5.2 continued. Consider an inventory system where d products share common ware-
house capacity, the time horizon is comprised of N periods, and the goal is to minimize the total inventory
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management cost. Allowing for backlogged demand, the simplest model of such an inventory looks as
follows:

minimize C [inventory management cost]
s.t.
(a) C ≥ ∑N

t=1

[
cT
h,tyt + cT

b,tzt + cT
o,twt

]
[cost description]

(b) xt = xt−1 + wt − ζt, 1 ≤ t ≤ N [state equations]
(c) yt ≥ 0, yt ≥ xt, 1 ≤ t ≤ N
(d) zt ≥ 0, zt ≥ −xt, 1 ≤ t ≤ N
(e) wt ≤ wt ≤ wt, 1 ≤ t ≤ N
(f) qT yt ≤ r

(5.2.3)

The variables in this problem are:

• C ∈ R — (upper bound on) the total inventory management cost;

• xt ∈ Rd, t = 1, ..., N — states. i-th coordinate xi
t of vector xt is the amount of product of type i

that is present in the inventory at the time instant t (end of time interval # t). This amount can
be nonnegative, meaning that the inventory at this time has xi

t units of free product # i; it may
be also negative, meaning that the inventory at the moment in question owes the customers |xi

t|
units of the product i (“backlogged demand”). The initial state x0 of the inventory is part of the
data, and not part of the decision vector;

• yt ∈ Rd are upper bounds on the positive parts of the states xt, that is, (upper bounds on) the
“physical” amounts of products stored in the inventory at time t, and the quantity cT

h,tyt is the
(upper bound on the) holding cost in the period t; here ch,t ∈ Rd

+ is a given vector of the holding
costs per unit of the product. Similarly, the quantity qT yt is (an upper bound on) the warehouse
capacity used by the products that are “physically present” in the inventory at time t, q ∈ Rd

+

being a given vector of the warehouse capacities per units of the products;

• zt ∈ Rd are (upper bounds on) the backlogged demands at time t, and the quantities cT
b,tzt are

(upper bounds on) the penalties for these backlogged demands. Here cb,t ∈ Rd
+ are given vectors

of the penalties per units of the backlogged demands;

• wt ∈ Rd is the vector of replenishment orders executed in period t, and the quantities cT
o,twt are

the costs of executing these orders. Here co,t ∈ Rd
+ are given vectors of per unit ordering costs.

With these explanations, the constraints become self-evident:

• (a) is the “cost description”: it says that the total inventory management cost is comprised of total
holding and ordering costs and of the total penalty for the backlogged demand;

• (b) are state equations: “what will be in the inventory at the end of period t (xt) is what was there
at the end of preceding period (xt−1) plus the replenishment orders of the period (wt) minus the
demand of the period (ζt);

• (c), (d) are self-evident;

• (e) represents the upper and lower bounds on replenishment orders, and (f) expresses the require-
ment that (an upper bound on) the total warehouse capacity qT yt utilized by products that are
“physically present” in the inventory at time t should not be greater than the warehouse capacity
r.

In our simple example, we assume that out of model’s parameters

x0, {ch,t, cb,t, co,t, wt, wt}N
t=1, q, r, {ζt}N

t=1

the only uncertain element is the demand trajectory ζ = [ζ1; ...; ζN ] ∈ RdN , and that this trajectory is
known to belong to a given uncertainty set Z. The resulting uncertain Linear Optimization problem is
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comprised of instances (5.2.3) parameterized by the uncertain data — demand trajectory ζ — running
through a given set Z.

As far as the adjustability is concerned, all variables in our problem, except for the replen-
ishment orders wt, are analysis variables. As for the orders, the simplest assumption is that wt

should get numerical value at time t, and that at this time we already know the past demands
ζt−1 = [ζ1; ...; ζt−1]. Thus, the information base for wt is ζt−1 = Ptζ (with the convention that
ζs = 0 when s < 0). For the remaining analysis variables the information base is the entire
demand trajectory ζ. Note that we can easily adjust this model to the case when there are
lags in demand acquisition, so that wt should depend on a prescribed initial segment ζτ(t)−1,
τ(t) ≤ t, of ζt−1 rather than on the entire ζt−1. We can equally easily account for the possibility,
if any, to observe the demand “on line,” by allowing wt to depend on ζt rather than on ζt−1.
Note that in all these cases the information base of the decisions is readily given by the natural
time precedences between the “actual decisions” augmented by a specific demand acquisition
protocol.

Example 5.3 Project management. Figure 5.1 is a simple PERT diagram — a graph representing a
Project Management problem. This is an acyclic directed graph with nodes corresponding to events, and
arcs corresponding to activities. Among the nodes there is a start node S with no incoming arcs and an
end node F with no outgoing arcs, interpreted as “start of the project” and “completion of the project,”
respectively. The remaining nodes correspond to the events “a specific stage of the project is completed,
and one can pass to another stage”. For example, the diagram could represent creating a factory, with
A, B, C being, respectively, the events “equipment to be installed is acquired and delivered,” “facility
#1 is built and equipped,” “facility # 2 is built and equipped.” The activities are jobs comprising the
project. In our example, these jobs could be as follows:

a: acquiring and delivering the equipment for facilities ## 1,2
b: building facility # 1
c: building facility # 2
d: installing equipment in facility # 1
e: installing equipment in facility # 2
f: training personnel and preparing production at facility # 1
g: training personnel and preparing production at facility # 2

The topology of a PERT diagram represents logical precedences between the activities and events:
a particular activity, say g, can start only after the event C occurs, and the latter event happens when
both activities c and e are completed.

S

B

A

C

F

b

a e

d f

c
g

Figure 5.1: A PERT diagram.

In PERT models it is assumed that activities γ have nonnegative durations τγ (perhaps
depending on control parameters), and are executed without interruptions, with possible idle
periods between the moment when the start of an activity is allowed by the logical precedences
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and the moment when it is actually started. With these assumptions, one can write down
a system of constraints on the time instants tν when events ν can take place. Denoting by
Γ = {γ = (µγ , νγ)} the set of arcs in a PERT diagram (µγ is the start- and νγ is the end-node
of an arc γ), this system reads

tµγ − tνγ ≥ τγ ∀γ ∈ Γ. (5.2.4)

“Normalizing” this system by the requirement

tS = 0,

the values of tF , which can be obtained from feasible solutions to the system, are achievable
durations of the entire project. In a typical Project Management problem, one imposes an
upper bound on tF and minimizes, under this restriction, coupled with the system of constraints
(5.2.4), some objective function.

As an example, consider the situation where the “normal” durations τγ of activities can be
reduced at certain price (“in reality” this can correspond to investing into an activity extra
manpower, machines, etc.). The corresponding model becomes

τγ = ζγ − xγ , cγ = fγ(xγ),

where ζγ is the “normal duration” of the activity, xγ (“crush”) is a nonnegative decision vari-
able, and cγ = fγ(xγ) is the cost of the crush; here fγ(·) is a given function. The associated
optimization model might be, e.g., the problem of minimizing the total cost of the crushes under
a given upper bound T on project’s duration:

min
x={xγ :γ∈Γ}

{tν}

{∑
γ

fγ(xγ) :
tµγ − tνγ ≥ ζγ − xγ

0 ≤ xγ ≤ xγ

}
∀γ ∈ Γ, tS = 0, tF ≤ T

}
, (5.2.5)

where xγ are given upper bounds on crushes. Note that when fγ(·) are convex functions, (5.2.5) is
an explicit convex problem, and when, in addition to convexity, fγ(·) are piecewise linear, (which
is usually the case in reality and which we assume from now on), (5.2.5) can be straightforwardly
converted to a Linear Optimization program.

Usually part of the data of a PERT problem are uncertain. Consider the simplest case when
the only uncertain elements of the data in (5.2.5) are the normal durations ζγ of the activi-
ties (their uncertainty may come from varying weather conditions, inaccuracies in estimating
the forthcoming effort, etc.). Let us assume that these durations are random variables, say,
independent of each other, distributed in given segments ∆γ = [ζ

γ
, ζγ ]. To avoid pathologies,

assume also that ζ
γ
≥ xγ for every γ (“you cannot make the duration negative”). Now (5.2.5)

becomes an uncertain LO program with uncertainties affecting only the right hand sides of the
constraints. A natural way to “immunize” the solutions to the problem against data uncertainty
is to pass to the usual RC of the problem — to think of both tγ and xγ as of variables with values
to be chosen in advance in such a way that the constraints in (5.2.4) are satisfied for all values
of the data ζγ from the uncertainty set. With our model of the latter set the RC is nothing but
the “worst instance” of our uncertain problem, the one where ζγ are set to their maximum pos-
sible values ζγ . For large PERT graphs, such an approach is very conservative: why should we
care about the highly improbable case where all the normal durations — independent random
variables! — are simultaneously at their worst-case values? Note that even taking into account
that the normal durations are random and replacing the uncertain constraints in (5.2.5) by their
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chance constrained versions, we essentially do not reduce the conservatism. Indeed, every one
of randomly perturbed constraints in (5.2.5) contains a single random perturbation, so that we
cannot hope that random perturbations of a constraint will to some extent cancel each other.
As a result, to require the validity of every uncertain constraint with probability 0.9 or 0.99 is
the same as to require its validity “in the worst case” with just slightly reduced maximal normal
durations of the activities.

A much more promising approach is to try to adjust our decisions “on line.” Indeed, we are
speaking about a process that evolves in time, with “actual decisions” represented by variables
xγ and tν ’s being the analysis variables. Assuming that the decision on xγ can be postponed
till the event µγ (the earliest time when the activity γ can be started) takes place, at that time
we already know the actual durations of the activities terminated before the event µγ , we could
then adjust our decision on xγ in accordance with this information. The difficulty is that we
do not know in advance what will be the actual time precedences between the events — these
precedences depend on our decisions and on the actual values of the uncertain data. For example,
in the situation described by figure 5.1, we, in general, cannot know in advance which one of the
events B, C will precede the other one in time. As a result, in our present situation, in sharp
contrast to the situation of Example 5.2, an attempt to fully utilize the possibilities to adjust the
decisions to the actual values of the data results in an extremely complicated problem, where not
only the decisions themselves, but the very information base of the decisions become dependent
on the uncertain data and our policy. However, we could stick to something in-between “no
adjustability at all” and “as much adjustability as possible.” Specifically, we definitely know
that if a pair of activities γ′, γ are linked by a logical precedence, so that there exists an oriented
route in the graph that starts with γ′ and ends with γ, then the actual duration of γ′ will be
known before γ can start. Consequently, we can take, as the information base of an activity γ, the
collection ζγ = {ζγ′ : γ′ ∈ Γ−(γ)}, where Γ−(γ) is the set of all activities that logically precede
the activity γ. In favorable circumstances, such an approach could reduce significantly the price
of robustness as compared to the non-adjustable RC. Indeed, when plugging into the randomly
perturbed constraints of (5.2.5) instead of constants xγ functions Xγ(ζγ), and requiring from
the resulting inequalities to be valid with probability 1− ε, we end up with a system of chance
constraints such that some of them (in good cases, even most of them) involve many independent
random perturbations each. When the functions Xγ(ζγ) are regular enough, (e.g., are affine),
we can hope that the numerous independent perturbations affecting a chance constraint will to
some extent cancel each other, and consequently, the resulting system of chance constraints will
be significantly less conservative than the one corresponding to non-adjustable decisions.

5.2.2 Good News on the ARC

Passing from a trivial information base to a nontrivial one — passing from robust optimal
data-independent decisions to robust optimal data-based decision rules can indeed dramatically
reduce the associated robust optimal value.

Example 5.4 Consider the toy uncertain LO problem


min

x



x1 :

x2 ≥ 1
2ζx1 + 1 (aζ)

x1 ≥ (2− ζ)x2 (bζ)
x1, x2 ≥ 0 (cζ)



 : 0 ≤ ζ ≤ ρ



 ,

where ρ ∈ (0, 1) is a parameter (uncertainty level). Let us compare the optimal value of its non-adjustable
RC (where both x1 and x2 must be independent of ζ) with the optimal value of the ARC where x1 still
is assumed to be independent of ζ (P1ζ ≡ 0) but x2 is allowed to depend on ζ (P2ζ ≡ ζ).
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A feasible solution (x1, x2) of the RC should remain feasible for the constraint (aζ) when
ζ = ρ, meaning that x2 ≥ ρ

2x1 + 1, and should remain feasible for the constraint (bζ) when
ζ = 0, meaning that x1 ≥ 2x2. The two resulting inequalities imply that x1 ≥ ρx1 + 2, whence
x1 ≥ 2

1−ρ . Thus, Opt(RC)≥ 2
1−ρ , whence Opt(RC)→∞ as ρ → 1− 0.

Now let us solve the ARC. Given x1 ≥ 0 and ζ ∈ [0, ρ], it is immediately seen that x1 can be
extended, by properly chosen x2, to a feasible solution of (aζ) through (cζ) if and only if the pair
(x1, x2 = 1

2ζx1 +1) is feasible for (aζ) through (cζ), that is, if and only if x1 ≥ (2−ζ)
[

1
2ζx1 + 1

]
whenever 1 ≤ ζ ≤ ρ. The latter relation holds true when x1 = 4 and ρ ≤ 1 (since (2− ζ)ζ ≤ 1
for 0 ≤ ζ ≤ 2). Thus, Opt(ARC)≤ 4, and the difference between Opt(RC) and Opt(ARC) and
the ratio Opt(RC)/Opt(ARC) go to ∞ as ρ → 1− 0.

5.2.3 Bad News on the ARC

Unfortunately, from the computational viewpoint the ARC of an uncertain problem more often
than not is wishful thinking rather than an actual tool. The reason comes from the fact that the
ARC is typically severely computationally intractable. Indeed, (5.2.2) is an infinite-dimensional
problem, where one wants to optimize over functions — decision rules — rather than vectors,
and these functions, in general, depend on many real variables. It is unclear even how to
represent a general-type candidate decision rule — a general-type multivariate function — in a
computer. Seemingly the only option here is sticking to a chosen in advance parametric family of
decision rules, like piece-wise constant/linear/quadratic functions of Pjζ with simple domains of
the pieces (say, boxes). With this approach, a candidate decision rule is identified by the vector
of values of the associated parameters, and the ARC becomes a finite-dimensional problem,
the parameters being our new decision variables. This approach is indeed possible and in fact
will be the focus of what follows. However, it should be clear from the very beginning that if
the parametric family in question is “rich enough” to allow for good approximation of “truly
optimal” decision rules (think of polynomial splines of high degree as approximations to “not too
rapidly varying” general-type multivariate functions), the number of parameters involved should
be astronomically large, unless the dimension of ζ is really small, like 1 — 3 (think of how many
coefficients there are in a single algebraic polynomial of degree 10 with 20 variables). Thus,
aside of “really low dimensional” cases, “rich” general-purpose parametric families of decision
rules are for all practical purposes as intractable as non-parametric families. In other words,
when the dimension L of ζ is not too small, tractability of parametric families of decision rules
is something opposite to their “approximation abilities,” and sticking to tractable parametric
families, we lose control of how far the optimal value of the “parametric” ARC is away from
the optimal value of the “true” infinite-dimensional ARC. The only exception here seems to
be the case when we are smart enough to utilize our knowledge of the structure of instances
of the uncertain problem in question in order to identify the optimal decision rules up to a
moderate number of parameters. If we indeed are that smart and if the parameters in question
can be further identified numerically in a computationally efficient fashion, we indeed can end
up with an optimal solution to the “true” ARC. Unfortunately, the two “if’s” in the previous
sentence are big if’s indeed — to the best of our knowledge, the only generic situation when these
conditions are satisfied is one treated the Dynamic Programming techniques. It seems that these
techniques form the only component in the existing “optimization toolbox” that could be used
to process the ARC numerically, at least when approximations of a provably high quality are
sought. Unfortunately, the Dynamic Programming techniques are very “fragile” — they require
instances of a very specific structure, suffer from “curse of dimensionality,” etc. The bottom
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line, in our opinion, is that aside of situations where Dynamic Programming is computationally
efficient, (which is an exception rather than a rule), the only hopefully computationally tractable
approach to optimizing over decision rules is to stick to their simple parametric families, even
at the price of giving up full control over the losses in optimality that can be incurred by such
a simplification.

Before moving to an in-depth investigation of (a version of) the just outlined “simple approx-
imation” approach to adjustable robust decision-making, it is worth pointing out two situations
when no simple approximations are necessary, since the situations in question are very simple
from the very beginning.

Simple case I: fixed recourse and scenario-generated uncertainty set

Consider an uncertain conic problem

P =
{

min
x

{
cT
ζ x + dζ : Aζx + bζ ∈ K

}
: ζ ∈ Z

}
(5.2.6)

(Aζ , bζ , cζ , dζ are affine in ζ, K is a computationally tractable convex cone) and assume that

1. Z is a scenario-generated uncertainty set, that is, a set given as a convex hull of finitely
many “scenarios” ζs, 1 ≤ s ≤ S;

2. The information base ensures that every variable xj either is non-adjustable (Pj = 0), or
is fully adjustable (Pj = I);

3. We are in the situation of fixed recourse, that is, for every adjustable variable xj (one with
Pj 6= 0), all its coefficients in the objective and the left hand side of the constraint are
certain, (i.e., are independent of ζ).

W.l.o.g. we can assume that x = [u; v], where the u variables are non-adjustable, and the v
variables are fully adjustable; under fixed recourse, our uncertain problem can be written down
as

P =
{

min
u,v

{
pT

ζ u + qT v + dζ : Pζu + Qv + rζ ∈ K
}

: ζ ∈ Conv{ζ1, ..., ζS}
}

(pζ , dζ , Pζ , rζ are affine in ζ). An immediate observation is that:

Theorem 5.1 Under assumptions 1 – 3, the ARC of the uncertain problem P is equivalent to
the computationally tractable conic problem

Opt = min
t,u,{vs}S

s=1

{
t : pζsu + qT vs + dζs ≤ t, Pζsu + Qvs + rζs ∈ K

}
. (5.2.7)

Specifically, the optimal values in the latter problem and in the ARC of P are equal. Moreover,
if t̄, ū, {v̄s}S

s=1 is a feasible solution to (5.2.7), then the pair t̄, ū augmented by the decision rule
for the adjustable variables:

v = V̄ (ζ) =
S∑

s=1

λs(ζ)v̄s

form a feasible solution to the ARC. Here λ(ζ) is an arbitrary nonnegative vector with the unit
sum of entries such that

ζ =
S∑

s=1

λs(ζ)ζS . (5.2.8)
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Proof. Observe first that λ(ζ) is well-defined for every ζ ∈ Z due to Z = Conv{ζ1, ..., ζS}.
Further, if t̄, ū, {v̄s} is a feasible solution of (5.2.7) and V̄ (ζ) is as defined above, then for every
ζ ∈ Z the following implications hold true:

t̄ ≥ pζs ū + qT v̄s + dζs ∀s ⇒ t̄ ≥ ∑
s λs(ζ)

[
pT

ζs ū + qT v̄s + dζs

]

= pT
ζ ū + qT V̄ (ζ) + dζ ,

K 3 Pζs ū + Qv̄s + rζs ∀s ⇒ K 3 ∑
s λs(ζ) [Pζs ū + Qv̄s + rζs ]

= Pζ ū + QV̄ (ζ) + rζ

(recall that pζ , ..., rζ are affine in ζ). We see that (t̄, ū, V̄ (·)) is indeed a feasible solution to the
ARC

min
t,u,V (·)

{
t : pT

ζ u + qT V (ζ) + dζ ≤ t, Pζu + QV (ζ) + rζ ∈ K∀ζ ∈ Z}

of P. As a result, the optimal value of the latter problem is ≤ Opt. It remains to verify that
the optimal value of the ARC and Opt are equal. We already know that the first quantity is ≤
the second one. To prove the opposite inequality, note that if (t, u, V (·)) is feasible for the ARC,
then clearly (t, u, {vs = V (ζs)}) is feasible for (5.2.7). ¤

The outlined result shares the same shortcoming as Theorem 3.1 from section 3.2.1: scenario-
generated uncertainty sets are usually too “small” to be of much interest, unless the number L
of scenarios is impractically large. It is also worth noticing that the assumption of fixed recourse
is essential: it is easy to show (see [14]) that without it, the ARC may become intractable.

Simple case II: uncertain LO with constraint-wise uncertainty

Consider an uncertain LO problem

P =
{

min
x

{
cT
ζ x + dζ : aT

iζx ≤ biζ , i = 1, ..., m
}

: ζ ∈ Z
}

, (5.2.9)

where, as always, cζ , dζ , aiζ , biζ are affine in ζ. Assume that

1. The uncertainty is constraint-wise: ζ can be split into blocks ζ = [ζ0; ...; ζm] in such a
way that the data of the objective depend solely on ζ0, the data of the i-th constraint
depend solely on ζi, and the uncertainty set Z is the direct product of convex compact
sets Z0,Z1, ...,Zm in the spaces of ζ0, ..., ζm;

2. One can point out a convex compact set X in the space of x variables such that whenever
ζ ∈ Z and x is feasible for the instance of P with the data ζ, one has x ∈ X .
The validity of the latter, purely technical, assumption can be guaranteed, e.g., when the constraints
of the uncertain problem contain (certain) finite upper and lower bounds on every one of the decision
variables. The latter assumption, for all practical purposes, is non-restrictive.

Our goal is to prove the following

Theorem 5.2 Under the just outlined assumptions i) and ii), the ARC of (5.2.9) is equivalent
to its usual RC (no adjustable variables): both ARC and RC have equal optimal values.

Proof. All we need is to prove that the optimal value in the ARC is ≥ the one of the RC. When
achieving this goal, we can assume w.l.o.g. that all decision variables are fully adjustable — are
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allowed to depend on the entire vector ζ. The “fully adjustable” ARC of (5.2.9) reads

Opt(ARC) = min
X(·),t

{
t :

cT
ζ0X(ζ) + dζ0 − t ≤ 0

aT
iζiX(ζ)− biζi ≤ 0, 1 ≤ i ≤ m

∀(ζ ∈ Z0 × ...×Zm)
}

= inf
{

t : ∀(ζ ∈ Z0 × ...×Zm)∃x ∈ X :

αT
i,ζix− βit + γi,ζi ≤ 0, 0 ≤ i ≤ m

}
,

(5.2.10)

(the restriction x ∈ X can be added due to assumption i)), while the RC is the problem

Opt(RC) = inf
{

t : ∃x ∈ X : αT
iζix− βit + γiζi ≤ 0∀(ζ ∈ Z0 × ...×Zm)

}
; (5.2.11)

here αiζi , γiζi are affine in ζi and βi ≥ 0.
In order to prove that Opt(ARC) ≥ Opt(RC), it suffices to consider the case when

Opt(ARC) < ∞ and to show that whenever a real t̄ is > Opt(ARC), we have t̄ ≥ Opt(RC).
Looking at (5.2.11), we see that to this end it suffices to lead to a contradiction the statement
that for some t̄ > Opt(ARC) one has

∀x ∈ X∃(i = ix ∈ {0, 1, ..., m}, ζi = ζix
x ∈ Zix) : αT

ixζix
x

x− βix t̄ + γixζix
x

> 0. (5.2.12)

Assume that t̄ > Opt(ARC) and that (5.2.12) holds. For every x ∈ X , the inequality

αT
ixζix

x
y − βix t̄ + γixζix

x
> 0

is valid when y = x; therefore, for every x ∈ X there exist εx > 0 and a neighborhood Ux of x
such that

∀y ∈ Ux : αT
ixζix

x
y − βix t̄ + γixζix

x
≥ εx.

Since X is a compact set, we can find finitely many points x1, ..., xN such that X ⊂
N⋃

j=1
Uxj .

Setting ε = minj εxj , i[j] = ixj , ζ[j] = ζ
i
xj

xj ∈ Zi[j], and

fj(y) = αT
i[j],ζ[j]y − βi[j]t̄ + γi[j],ζ[j],

we end up with N affine functions of y such that

max
1≤j≤N

fj(y) ≥ ε > 0 ∀y ∈ X .

Since X is a convex compact set and fj(·) are affine (and thus convex and continuous) func-
tions, the latter relation, by well-known facts from Convex Analysis (namely, the von Neumann
Lemma), implies that there exists a collection of nonnegative weights λj with

∑
j λj = 1 such

that

f(y) ≡
N∑

j=1

λjfj(y) ≥ ε∀y ∈ X . (5.2.13)
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Now let
ωi =

∑
j:i[j]=i λj , i = 0, 1, ...,m;

ζ̄i =

{ ∑
j:i[j]=i

λj

ωi
ζ[j], ωi > 0

a point from Zi, ωi = 0
,

ζ̄ = [ζ̄0; ...; ζ̄m].

Due to its origin, every one of the vectors ζ̄i is a convex combination of points from Zi and as
such belongs to Zi, since the latter set is convex. Since the uncertainty is constraint-wise, we
conclude that ζ̄ ∈ Z. Since t̄ > Opt(ARC), we conclude from (5.2.10) that there exists x̄ ∈ X
such that the inequalities

αT
iζ̄i x̄− βit̄ + γiζ̄i ≤ 0

hold true for every i, 0 ≤ i ≤ m. Taking a weighted sum of these inequalities, the weights being
ωi, we get ∑

i:ωi>0

ωi[αT
iζ̄i x̄− βit̄ + γiζ̄i ] ≤ 0. (5.2.14)

At the same time, by construction of ζ̄i and due to the fact that αiζi , γiζi are affine in ζi, for
every i with ωi > 0 we have

[αT
iζ̄i x̄− βit̄ + γiζ̄i ] =

∑

j:i[j]=i

λj

ωi
fj(x̄),

so that (5.2.14) reads
N∑

j=1

λjfj(x̄) ≤ 0,

which is impossible due to (5.2.13) and to x̄ ∈ X . We have arrived at the desired contradiction.
¤

5.3 Affinely Adjustable Robust Counterparts

We are about to investigate in-depth a specific version of the “parametric decision rules” ap-
proach we have outlined previously. At this point, we prefer to come back from general-type
uncertain problem (5.1.1) to affinely perturbed uncertain conic problem

C =
{

min
x∈Rn

{
cT
ζ x + dζ : Aζx + bζ ∈ K

}
: ζ ∈ Z

}
, (5.3.1)

where cζ , dζ , Aζ , bζ are affine in ζ, K is a “nice” cone (direct product of nonnegative rays/Lorentz
cones/semidefinite cones, corresponding to uncertain LP/CQP/SDP, respectively), and Z is a
convex compact uncertainty set given by a strictly feasible SDP representation

Z =
{
ζ ∈ RL : ∃u : P(ζ, u) º 0

}
,

where P is affine in [ζ; u]. Assume that along with the problem, we are given an information
base {Pj}n

j=1 for it; here Pj are mj×n matrices. To save words (and without risk of ambiguity),
we shall call such a pair “uncertain problem C, information base” merely an uncertain conic
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problem. Our course of action is to restrict the ARC of the problem to a specific parametric
family of decision rules, namely, the affine ones:

xj = Xj(Pjζ) = pj + qT
j Pjζ, j = 1, ..., n. (5.3.2)

The resulting restricted version of the ARC of (5.3.1), which we call the Affinely Adjustable
Robust Counterpart (AARC), is the semi-infinite optimization program

min
t,{pj ,qj}n

j=1

{
t :

∑n
j=1 cj

ζ [pj + qT
j Pjζ] + dζ − t ≤ 0∑n

j=1 Aj
ζ [pj + qT

j Pjζ] + bζ ∈ K

}
∀ζ ∈ Z

}
, (5.3.3)

where cj
ζ is j-th entry in cζ , and Aj

ζ is j-th column of Aζ . Note that the variables in this problem
are t and the coefficients pj , qj of the affine decision rules (5.3.2). As such, these variables do not
specify uniquely the actual decisions xj ; these decisions are uniquely defined by these coefficients
and the corresponding portions Pjζ of the true data once the latter become known.

5.3.1 Tractability of the AARC

The rationale for focusing on affine decision rules rather than on other parametric families is
that there exists at least one important case when the AARC of an uncertain conic problem is,
essentially, as tractable as the RC of the problem. The “important case” in question is the one
of fixed recourse and is defined as follows:

Definition 5.1 Consider an uncertain conic problem (5.3.1) augmented by an information base
{Pj}n

j=1. We say that this pair is with fixed recourse, if the coefficients of every adjustable, (i.e.,
with Pj 6= 0), variable xj are certain:

∀(j : Pj 6= 0) : both cj
ζ and Aj

ζ are independent of ζ.

For example, both Examples 5.1 (Inventory) and 5.2 (Project Management) are uncertain prob-
lems with fixed recourse.

An immediate observation is as follows:

(!) In the case of fixed recourse, the AARC, similarly to the RC, is a semi-infinite
conic problem — it is the problem

min
t,y={pj ,qj}

{
t :

ĉT
ζ y + dζ ≤ t

Âζy + bζ ∈ K

}
∀ζ ∈ Z

}
, (5.3.4)

with ĉζ , dζ , Âζ , bζ affine in ζ:

ĉT
ζ y =

∑
j cj

ζ [pj + qT
j Pjζ]

Âζy =
∑

j Aj
ζ [pj + qT

j Pjζ].
[y = {[pj , qj ]}n

j=1]

Note that it is exactly fixed recourse that makes ĉζ , Âζ affine in ζ; without this assumption,
these entities are quadratic in ζ.

As far as the tractability issues are concerned, observation (!) is the main argument in favor
of affine decision rules, provided we are in the situation of fixed recourse. Indeed, in the latter
situation the AARC is a semi-infinite conic problem, and we can apply to it all the results of
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previous lectures related to tractable reformulations/tight safe tractable approximations of semi-
infinite conic problems. Note that many of these results, while imposing certain restrictions on
the geometries of the uncertainty set and the cone K, require from the objective (if it is uncertain)
and the left hand sides of the uncertain constraints nothing more than bi-affinity in the decision
variables and in the uncertain data. Whenever this is the case, the “tractability status” of the
AARC is not worse than the one of the usual RC. In particular, in the case of fixed recourse we
can:

1. Convert the AARC of an uncertain LO problem into an explicit efficiently solvable “well-
structured” convex program (see Theorem 1.1).

2. Process efficiently the AARC of an uncertain conic quadratic problem with (common to
all uncertain constraints) simple ellipsoidal uncertainty (see section 3.2.5).

3. Use a tight safe tractable approximation of an uncertain problem with linear objective and
convex quadratic constraints with (common for all uncertain constraints) ∩-ellipsoidal
uncertainty (see section 3.3.2): whenever Z is the intersection of M ellipsoids centered
at the origin, the problem admits a safe tractable approximation tight within the factor
O(1)

√
ln(M) (see Theorem 3.11).

The reader should be aware, however, that the AARC, in contrast to the usual RC, is not a
constraint-wise construction, since when passing to the coefficients of affine decision rules as our
new decision variables, the portion of the uncertain data affecting a particular constraint can
change when allowing the original decision variables entering the constraint to depend on the
uncertain data not affecting the constraint directly. This is where the words “common” in the
second and the third of the above statements comes from. For example, the RC of an uncertain
conic quadratic problem with the constraints of the form

‖Ai
ζx + bi

ζ‖2 ≤ xT ci
ζ + di

ζ , i = 1, ...,m,

is computationally tractable, provided that the projection Zi of the overall uncertainty set Z
onto the subspace of data perturbations of i-th constraint is an ellipsoid (section 3.2.5). To get a
similar result for the AARC, we need the overall uncertainty set Z itself to be an ellipsoid, since
otherwise the projection of Z on the data of the “AARC counterparts” of original uncertain
constraints can be different from ellipsoids. The bottom line is that the claim that with fixed
recourse, the AARC of an uncertain problem is “as tractable” as its RC should be understood
with some caution. This, however, is not a big deal, since the “recipe” is already here: Under
the assumption of fixed recourse, the AARC is a semi-infinite conic problem, and in order to
process it computationally, we can use all the machinery developed in the previous lectures.
If this machinery allows for tractable reformulation/tight safe tractable approximation of the
problem, fine, otherwise too bad for us.” Recall that there exists at least one really important
case when everything is fine — this is the case of uncertain LO problem with fixed recourse.

It should be added that when processing the AARC in the case of fixed recourse, we can
enjoy all the results on safe tractable approximations of chance constrained affinely perturbed
scalar, conic quadratic and linear matrix inequalities developed in previous lectures. Recall that
these results imposed certain restrictions on the distribution of ζ (like independence of ζ1, ..., ζL),
but never required more than affinity of the bodies of the constraints w.r.t. ζ, so that these
results work equally well in the cases of RC and AARC.

Last, but not least, the concept of an Affinely Adjustable Robust Counterpart can be straight-
forwardly “upgraded” to the one of Affinely Adjustable Globalized Robust Counterpart. We have
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no doubts that a reader can carry out such an “upgrade” on his/her own and understands that
in the case of fixed recourse, the above “recipe” is equally applicable to the AARC and the
AAGRC.

5.3.2 Is Affinity an Actual Restriction?

Passing from arbitrary decision rules to affine ones seems to be a dramatic simplification. On a
closer inspection, the simplification is not as severe as it looks, or, better said, the “dramatics”
is not exactly where it is seen at first glance. Indeed, assume that we would like to use decision
rules that are quadratic in Pjζ rather than linear. Are we supposed to introduce a special notion
of a “Quadratically Adjustable Robust Counterpart“? The answer is negative. All we need is
to augment the data vector ζ = [ζ1; ...; ζL] by extra entries — the pairwise products ζiζj of the
original entries — and to treat the resulting “extended” vector ζ̂ = ζ̂[ζ] as our new uncertain
data. With this, the decision rules that are quadratic in Pjζ become affine in P̂j ζ̂[ζ], where P̂j

is a matrix readily given by Pj . More generally, assume that we want to use decision rules of
the form

Xj(ζ) = pj + qT
j P̂j ζ̂[ζ], (5.3.5)

where pj ∈ R, qj ∈ Rmj are “free parameters,” (which can be restricted to reside in a given
convex set), P̂j are given mj ×D matrices and

ζ 7→ ζ̂[ζ] : RL → RD

is a given, possibly nonlinear, mapping. Here again we can pass from the original data vector
ζ to the data vector ζ̂[ζ], thus making the desired decision rules (5.3.5) merely affine in the
“portions” P̂j ζ̂ of the new data vector. We see that when allowing for a seemingly harmless
redefinition of the data vector, affine decision rules become as powerful as arbitrary affinely
parameterized parametric families of decision rules. This latter class is really huge and, for all
practical purposes, is as rich as the class of all decision rules. Does it mean that the concept
of AARC is basically as flexible as the one of ARC? Unfortunately, the answer is negative,
and the reason for the negative answer comes not from potential difficulties with extremely
complicated nonlinear transformations ζ 7→ ζ̂[ζ] and/or “astronomically large” dimension D of
the transformed data vector. The difficulty arises already when the transformation is pretty
simple, as is the case, e.g., when the coordinates in ζ̂[ζ] are just the entries of ζ and the
pairwise products of these entries. Here is where the difficulty arises. Assume that we are
speaking about a single uncertain affinely perturbed scalar linear constraint, allow for quadratic
dependence of the original decision variables on the data and pass to the associated adjustable
robust counterpart of the constraint. As it was just explained, this counterpart is nothing but
a semi-infinite scalar inequality

∀(ζ̂ ∈ U) : a
0,ζ̂

+
J∑

j=1

a
j,ζ̂

yj ≤ 0

where a
j,ζ̂

are affine in ζ̂, the entries in ζ̂ = ζ̂[ζ] are the entries in ζ and their pairwise products,

U is the image of the “true” uncertainty set Z under the nonlinear mapping ζ → ζ̂[ζ], and yj

are our new decision variables (the coefficients of the quadratic decision rules). While the body
of the constraint in question is bi-affine in y and in ζ̂, this semi-infinite constraint can well be
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intractable, since the uncertainty set U may happen to be intractable, even when Z is tractable.
Indeed, the tractability of a semi-infinite bi-affine scalar constraint

∀(u ∈ U) : f(y, u) ≤ 0

heavily depends on whether the underlying uncertainty set U is convex and computationally
tractable. When it is the case, we can, modulo minor technical assumptions, solve efficiently the
Analysis problem of checking whether a given candidate solution y is feasible for the constraint —
to this end, it suffices to maximize the affine function f(y, ·) over the computationally tractable
convex set U . This, under minor technical assumptions, can be done efficiently. The latter fact,
in turn, implies (again modulo minor technical assumptions) that we can optimize efficiently
linear/convex objectives under the constraints with the above features, and this is basically
all we need. The situation changes dramatically when the uncertainty set U is not a convex
computationally tractable set. By itself, the convexity of U costs nothing: since f is bi-affine, the
feasible set of the semi-infinite constraint in question remains intact when we replace U with its
convex hull Ẑ. The actual difficulty is that the convex hull Ẑ of the set U can be computationally
intractable. In the situation we are interested in — the one where Ẑ = ConvU and U is the image
of a computationally tractable convex set Z under a nonlinear transformation ζ 7→ ζ̂[ζ], Ẑ can
be computationally intractable already for pretty simple Z and nonlinear mappings ζ 7→ ζ̂[ζ]. It
happens, e.g., when Z is the unit box ‖ζ‖∞ ≤ 1 and ζ̂[ζ] is comprised of the entries in ζ and their
pairwise products. In other words, the “Quadratically Adjustable Robust Counterpart” of an
uncertain linear inequality with interval uncertainty is, in general, computationally intractable.

In spite of the just explained fact that “global linearization” of nonlinear decision rules via
nonlinear transformation of the data vector not necessarily leads to tractable adjustable RCs,
one should keep in mind this option, since it is important methodologically. Indeed, “global
linearization” allows one to “split” the problem of processing the ARC, restricted to decision
rules (5.3.5), into two subproblems:

(a) Building a tractable representation (or a tight tractable approximation) of the convex
hull Ẑ of the image U of the original uncertainty set Z under the nonlinear mapping ζ 7→ ζ̂[ζ]
associated with (5.3.5). Note that this problem by itself has nothing to do with adjustable
robust counterparts and the like;

(b) Developing a tractable reformulation (or a tight safe tractable approximation) of the
Affinely Adjustable Robust Counterpart of the uncertain problem in question, with ζ̂ in the role
of the data vector, the tractable convex set, yielded by (a), in the role of the uncertainty set,
and the information base given by the matrices P̂j .
Of course, the resulting two problems are not completely independent: the tractable convex set
Ẑ with which we, upon success, end up when solving (a) should be simple enough to allow for
successful processing of (b). Note, however, that this “coupling of problems (a) and (b)” is of
no importance when the uncertain problem in question is an LO problem with fixed recourse.
Indeed, in this case the AARC of the problem is computationally tractable whatever the un-
certainty set as long as it is tractable, therefore every tractable set Ẑ yielded by processing of
problem (a) will do.

Example 5.5 Assume that we want to process an uncertain LO problem

C =
{

minx

{
cT
ζ x + dζ : Aζx ≥ bζ

}
: ζ ∈ Z

}

[cζ , dζ , Aζ , bζ : affine in ζ]
(5.3.6)

with fixed recourse and a tractable convex compact uncertainty set Z, and consider a number of affinely
parameterized families of decision rules.
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A. “Genuine” affine decision rules: xj is affine in Pjζ. As we have already seen, the associated
ARC — the usual AARC of C — is computationally tractable.
B. Piece-wise linear decision rules with fixed breakpoints. Assume that the mapping ζ 7→ ζ̂[ζ]
augments the entries of ζ with finitely many entries of the form φi(ζ) = max

[
ri, s

T
i ζ

]
, and the

decision rules we intend to use should be affine in P̂j ζ̂, where P̂j are given matrices. In order
to process the associated ARC in a computationally efficient fashion, all we need is to build a
tractable representation of the set Ẑ = Conv{ζ̂[ζ] : ζ ∈ Z}. While this could be difficult in
general, there are useful cases when the problem is easy, e.g., the case where

Z = {ζ ∈ RL : fk(ζ) ≤ 1, 1 ≤ k ≤ K},
ζ̂[ζ] = [ζ; (ζ)+; (ζ)−], with (ζ)− = max[ζ, 0L×1], (ζ)+ = max[−ζ, 0L×1].

Here, for vectors u, v, max[u, v] is taken coordinate-wise, and fk(·) are lower semicontinuous
and absolutely symmetric convex functions on RL, absolute symmetry meaning that fk(ζ) ≡
fk(abs(ζ)) (abs acts coordinate-wise). (Think about the case when fk(ζ) = ‖[αk1ζ1; ...;αkLζL]‖pk

with pk ∈ [1,∞].) It is easily seen that if Z is bounded, then

Ẑ =



ζ̂ = [ζ; ζ+; ζ−] :

(a) fk(ζ+ + ζ−) ≤ 1, 1 ≤ k ≤ K
(b) ζ = ζ+ − ζ−

(c) ζ± ≥ 0



 .

Indeed, (a) through (c) is a system of convex constraints on vector ζ̂ = [ζ; ζ+; ζ−], and since fk are lower
semicontinuous, the feasible set C of this system is convex and closed; besides, for [ζ; ζ+; ζ−] ∈ C we have
ζ+ + ζ− ∈ Z; since the latter set is bounded by assumption, the sum ζ+ + ζ− is bounded uniformly in
ζ̂ ∈ C, whence, by (a) through (c), C is bounded. Thus, C is a closed and bounded convex set. The image
U of the set Z under the mapping ζ 7→ [ζ; (ζ)+; (ζ)−] clearly is contained in C, so that the convex hull Ẑ
of U is contained in C as well. To prove the inverse inclusion, note that since C is a (nonempty) convex
compact set, it is the convex hull of the set of its extreme points, and therefore in order to prove that
Ẑ ⊃ C it suffices to verify that every extreme point [ζ; ζ+, ζ−] of C belongs to U . But this is immediate:
in an extreme point of C we should have min[ζ+

` , ζ−` ] = 0 for every `, since if the opposite were true for
some ` = ¯̀, then C would contain a nontrivial segment centered at the point, namely, points obtained
from the given one by the “3-entry perturbation” ζ+

¯̀ 7→ ζ+
¯̀ + δ, ζ−¯̀ 7→ ζ+

¯̀ − δ, ζ¯̀ 7→ ζ¯̀ + 2δ with small
enough |δ|. Thus, every extreme point of C has min[ζ+, ζ−] = 0, ζ = ζ+ − ζ−, and a point of this type
satisfying (a) clearly belongs to U . ¤
C. Separable decision rules. Assume that Z is a box: Z = {ζ : a ≤ ζ ≤ a}, and we are seeking
for separable decision rules with a prescribed “information base,” that is, for the decision rules
of the form

xj = ξj +
∑

`∈Ij

f j
` (ζ`), j = 1, ..., n, (5.3.7)

where the only restriction on functions f j
` is to belong to given finite-dimensional linear spaces

F` of univariate functions. The sets Ij specify the information base of our decision rules. Some
of these sets may be empty, meaning that the associated xj are non-adjustable decision variables,
in full accordance with the standard convention that a sum over an empty set of indices is 0.
We consider two specific choices of the spaces F`:

C.1: F` is comprised of all piecewise linear functions on the real axis with fixed breakpoints
a`1 < ... < a`m (w.l.o.g., assume that a` < a`1, a`m < a`);

C.2: F` is comprised of all algebraic polynomials on the axis of degree ≤ κ.
Note that what follows works when m in C.1 and κ in C.2 depend on `; in order to simplify

notation, we do not consider this case explicitly.
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C.1: Let us augment every entry ζ` of ζ with the reals ζ`i[ζ`] = max[ζ`, a`i], i = 1, ..., m, and
let us set ζ`0[ζ`] = ζ`. In the case of C.1, decision rules (5.3.7) are exactly the rules where xj

is affine in {ζ`i[ζ] : ` ∈ Ij}; thus, all we need in order to process efficiently the ARC of (5.3.6)
restricted to the decision rules in question is a tractable representation of the convex hull of the
image U of Z under the mapping ζ 7→ {ζ`i[ζ]}`,i. Due to the direct product structure of Z, the
set U is the direct product, over ` = 1, ..., d, of the sets

U` = {[ζ`0[ζ`]; ζ`1[ζ`]; ...; ζ`m[ζ`]] : a` ≤ ζ` ≤ a`},

so that all we need are tractable representations of the convex hulls of the sets U`. The bottom
line is, that all we need is a tractable description of a set C of the form

Cm = ConvSm, Sm = {[s0;max[s0, a1]; ...;max[s0, am]] : a0 ≤ s0 ≤ am+1},

where a0 < a1 < a2 < ... < am < am+1 are given. An explicit polyhedral description of the set
Cm is given by the following

Lemma 5.1 [3, Lemma 14.3.3] The convex hull Cm of the set Sm is

Cm =

{
[s0; s1; ...; sm] :

{
a0 ≤ s0 ≤ am+1

0 ≤ s1−s0
a1−a0

≤ s2−s1
a2−a1

≤ ... ≤ sm+1−sm

am+1−am
≤ 1

}
, (5.3.8)

where sm+1 = am+1.

C.2: Similar to the case of C.1, in the case of C.2 all we need in order to process efficiently
the ARC of (5.3.6), restricted to decision rules (5.3.7), is a tractable representation of the set

C = ConvS, S = {ŝ = [s; s2; ...; sκ] : |s| ≤ 1}.

(We have assumed w.l.o.g. that a` = −1, a` = 1.) Here is the description (originating from
[75]):

Lemma 5.2 The set C = ConvS admits the explicit semidefinite representation

C =
{
ŝ ∈ Rκ : ∃λ = [λ0; ...; λ2κ] ∈ R2κ+1 : [1; ŝ] = QT λ, [λi+j ]κi,j=0 º 0

}
, (5.3.9)

where the (2κ + 1) × (κ + 1) matrix Q is defined as follows: take a polynomial p(t) = p0 +
p1t + ... + pκtκ and convert it into the polynomial p̂(t) = (1 + t2)κp(2t/(1 + t2)). The vector of
coefficients of p̂ clearly depends linearly on the vector of coefficients of p, and Q is exactly the
matrix of this linear transformation.

Proof. 10. Let P ⊂ Rκ+1 be the cone of vectors p of coefficients of polynomials p(t) = p0 + p1t + p2t
2 +

... + pκtκ that are nonnegative on [−1, 1], and P∗ be the cone dual to P . We claim that

C = {ŝ ∈ Rκ : [1; ŝ] ∈ P∗}. (5.3.10)

Indeed, let C ′ be the right hand side set in (5.3.10). If ŝ = [s; s2; ...; sκ] ∈ S, then |s| ≤ 1, so that for every
p ∈ P we have pT [1; ŝ] = p(s) ≥ 0. Thus, [1; ŝ] ∈ P∗ and therefore ŝ ∈ C ′. Since C ′ is convex, we arrive at
C ≡ ConvS ⊂ C ′. To prove the inverse inclusion, assume that there exists ŝ 6∈ C such that z = [1; ŝ] ∈ P∗,
and let us lead this assumption to a contradiction. Since ŝ is not in C and C is a closed convex set and
clearly contains the origin, we can find a vector q ∈ Rκ such that qT ŝ = 1 and maxr∈C qT r ≡ α < 1, or,
which is the same due to C = ConvS, qT [s; s2; ...; sκ] ≤ α < 1 whenever |s| ≤ 1. Setting p = [α;−q],
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we see that p(s) ≥ 0 whenever |s| ≤ 1, so that p ∈ P and therefore α − qT ŝ = pT [1; ŝ] ≥ 0, whence
1 = qT ŝ ≤ α < 1, which is a desired contradiction.

20. It remains to verify that the right hand side in (5.3.10) indeed admits representation (5.3.9). We
start by deriving a semidefinite representation of the cone P+ of (vectors of coefficients of) all polynomials
p(s) of degree not exceeding 2κ that are nonnegative on the entire axis. The representation is as follows.
A (κ + 1)× (κ + 1) symmetric matrix W can be associated with the polynomial of degree ≤ 2κ given by
pW (t) = [1; t; t2; ...; tκ]T W [1; t; t2; ...; tκ], and the mapping A : W 7→ pW clearly is linear:

(A[wij ]κi,j=0

)
ν

=∑
0≤i≤ν wi,ν−i, 0 ≤ ν ≤ 2κ. A dyadic matrix W = eeT “produces” in this way a polynomial that is the

square of another polynomial: AeeT = e2(t) and as such is ≥ 0 on the entire axis. Since every matrix
W º 0 is a sum of dyadic matrices, we conclude that AW ∈ P+ whenever W º 0. Vice versa, it is well
known that every polynomial p ∈ P+ is the sum of squares of polynomials of degrees ≤ κ, meaning that
every p ∈ P+ is AW for certain W that is the sum of dyadic matrices and as such is º 0. Thus,

P+ = {p = AW : W ∈ Sκ+1
+ }.

Now, the mapping t 7→ 2t/(1+ t2) : R→ R maps R onto the segment [−1, 1]. It follows that a polynomial
p of degree ≤ κ is ≥ 0 on [−1, 1] if and only if the polynomial p̂(t) = (1 + t2)κp(2t/(1 + t2)) of degree
≤ 2κ is ≥ 0 on the entire axis, or, which is the same, p ∈ P if and only if Qp ∈ P+. Thus,

P = {p ∈ Rκ+1 : ∃W ∈ Sκ+1 : W º 0,AW = Qp}.

Given this semidefinite representation of P , we can immediately obtain a semidefinite representation of
P∗. Indeed,

q ∈ P∗ ⇔ 0 ≤ minp∈P {qT p} ⇔ 0 ≤ minp∈Rκ{qT p : ∃W º 0 : Qp = AW}
⇔ 0 ≤ minp,W {qT p : Qp−AW = 0, W º 0}
⇔ {q = QT λ : λ ∈ R2κ+1,A∗λ º 0},

where the concluding ⇔ is due to semidefinite duality. Computing A∗λ, we arrive at (5.3.9). ¤

Remark 5.1 Note that C.2 admits a straightforward modification where the spaces F` are com-

prised of trigonometric polynomials
κ∑

i=0
[pi cos(iω`s) + qi sin(iω`s)] rather than of algebraic poly-

nomials
∑κ

i=0 pis
i. Here all we need is a tractable description of the convex hull of the curve

{[s; cos(ω`s); sin(ω`s); ...; cos(κω`s); sin(κω`s)] : −1 ≤ s ≤ 1}

which can be easily extracted from the semidefinite representation of the cone P+.

Discussion. There are items to note on the results stated in C. The bad news is that understood
literally, these results have no direct consequences in our context — when Z is a box, decision
rules (5.3.7) never outperform “genuine” affine decision rules with the same information base
(that is, the decision rules (5.3.7) with the spaces of affine functions on the axis in the role of
F`).

The explanation is as follows. Consider, instead of (5.3.6), a more general problem, specifi-
cally, the uncertain problem

C =
{

minx

{
cT
ζ x + dζ : Aζx− bζ ∈ K

}
: ζ ∈ Z

}

[cζ , dζ , Aζ , bζ : affine in ζ]
(5.3.11)

where K is a convex set. Assume that Z is a direct product of simplexes: Z = ∆1× ...×∆L,
where ∆` is a k`-dimensional simplex (the convex hull of k` + 1 affinely independent points
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in Rk`). Assume we want to process the ARC of this problem restricted to the decision rules
of the form

xj = ξj +
∑

`∈Ij

f j
` (ζ`), (5.3.12)

where ζ` is the projection of ζ ∈ Z on ∆`, and the only restriction on the functions f j
` is

that they belong to given families F` of functions on Rk` . We still assume fixed recourse: the
columns of Aζ and the entries in cζ associated with adjustable, (i.e., with Ij 6= ∅) decision
variables xj are independent of ζ.

The above claim that “genuinely affine” decision rules are not inferior as compared to the
rules (5.3.7) is nothing but the following simple observation:

Lemma 5.3 Whenever certain t ∈ R is an achievable value of the objective in the ARC of
(5.3.11) restricted to the decision rules (5.3.12), that is, there exist decision rules of the latter
form such that

n∑
j=1

[
ξj +

∑
`∈Ij

f j
` (ζ`)

]
(cζ)j + dζ ≤ t

n∑
j=1

[
ξj +

∑
`∈Ij

f j
` (ζ`)

]
Aj

ζ − bζ ∈ K





∀ζ ∈ [ζ1; ...; ζL] ∈ Z
= ∆1 × ...×∆L,

(5.3.13)

t is also an achievable value of the objective in the ARC of the uncertain problem restricted
to affine decision rules with the same information base: there exist affine in ζ` functions
φj

`(ζ`) such that (5.3.13) remains valid with φj
` in the role of f j

` .

Proof is immediate: since every collection of k` + 1 reals can be obtained as the collection
of values of an affine function at the vertices of k`-dimensional simplex, we can find affine
functions φj

`(ζ`) such that φj
`(ζ`) = f j

` (ζ`) whenever ζ` is a vertex of the simplex ∆`. When
plugging into the left hand sides of the constraints in (5.3.13) the functions φj

`(ζ`) instead
of f j

` (ζ`), these left hand sides become affine functions of ζ (recall that we are in the case of
fixed recourse). Due to this affinity and to the fact that Z is a convex compact set, in order
for the resulting constraints to be valid for all ζ ∈ Z, it suffices for them to be valid at every
one of the extreme points of Z. The components ζ1, ..., ζL of such an extreme point ζ are
vertices of ∆1, ..., ∆L, and therefore the validity of “φ constraints” at ζ is readily given by
the validity of the “f constraints” at this point — by construction, at such a point the left
hand sides of the “φ” and the “f” constraints coincide with each other. ¤

Does the bad news mean that our effort in C.1–2 was just wasted? The good news is that
this effort still can be utilized. Consider again the case where ζ` are scalars, assume that Z
is not a box, in which case Lemma 5.3 is not applicable. Thus, we have hope that the ARC
of (5.3.6) restricted to the decision rules (5.3.7) is indeed less conservative (has a strictly less
optimal value) than the ARC restricted to the affine decision rules. What we need in order to
process the former, “more promising,” ARC, is a tractable description of the convex hull Ẑ of
the image U of Z under the mapping

ζ 7→ ζ̂[ζ] = {ζ`i[ζ`]} 0≤i≤m,
1≤`≤L

where ζ`0 = ζ`, ζ`i[ζ`] = fi`(ζ`), 1 ≤ i ≤ m, and the functions fi` ∈ F`, i = 1, ..., m, span F`.
The difficulty is that with F` as those considered in C.1–2 (these families are “rich enough” for
most of applications), we, as a matter of fact, do not know how to get a tractable representation
of Ẑ, unless Z is a box. Thus, Z more complicated than a box seems to be too complex,
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and when Z is a box, we gain nothing from allowing for “complex” F`. Nevertheless, we can
proceed as follows. Let us include Z, (which is not a box), into a box Z+, and let us apply
the outlined approach to Z+ in the role of Z, that is, let us try to build a tractable description
of the convex hull Ẑ+ of the image U+ of Z+ under the mapping ζ 7→ ζ̂[ζ]. With luck, (e.g.,
in situations C.1–2), we will succeed, thus getting a tractable representation of Ẑ+; the latter
set is, of course, larger than the “true” set Ẑ we want to describe. There is another “easy to
describe” set that contains Ẑ, namely, the inverse image Ẑ0 of Z under the natural projection
Π : {ζ`i} 0≤i≤m,

1≤`≤L
7→ {ζ`0}1≤`≤L that recovers ζ from ζ̂[ζ]. And perhaps we are smart enough to

find other easy to describe convex sets Ẑ1,...,Ẑk that contain Ẑ.

Assume, e.g., that Z is the Euclidean ball {‖ζ‖2 ≤ r}, and let us take as Z+ the embedding
box {‖ζ‖∞ ≤ r}.
In the case of C.1 we have for i ≥ 1: ζ`i[ζ`] = max[ζ`, a`i], whence |ζ`i[ζ`]| ≤ max[|ζ`|, |a`i|].
It follows that when ζ ∈ Z, we have

∑
` ζ2

`i[ζ`] ≤
∑

` max[ζ2
` , a2

`i] ≤
∑

`[ζ
2
` + a2

`i] ≤ r2 +∑
` a2

`i, and we can take as Ẑp, p = 1, ..., m, the elliptic cylinders {{ζ`i}`,i :
∑

` ζ2
`p ≤

r2 +
∑

` a2
`p}. In the case of C.2, we have ζ`i[ζ`] = ζi+1

` , 1 ≤ i ≤ κ− 1, so that
∑

` |ζ`i[ζ`]| ≤
maxz∈RL{∑` |z`|i+1 : ‖z‖2 ≤ r} = ri+1. Thus, we can take Ẑp = {{ζ`i}`,i :

∑
` |ζ`p| ≤ rp+1},

1 ≤ p ≤ κ− 1.

Since all the easy to describe convex sets Ẑ+, Ẑ0,...,Ẑk contain Ẑ, the same is true for the easy
to describe convex set

Z̃ = Ẑ+ ∩ Ẑ0 ∩ Ẑ1 ∩ ... ∩ Ẑk,

so that the (tractable along with Z̃) semi-infinite LO problem

min
t,

{Xj(·)∈Xj}n
j=1





t :
d

Π(ζ̂)
+

n∑
j=1

Xj(ζ̂)(c
Π(ζ̂)

)j ≤ t

n∑
j=1

Xj(ζ̂)Aj

Π(ζ̂)
− b

Π(ζ̂)
≥ 0




∀ζ̂ = {ζ`i} ∈ Z̃





[
Π

(
{ζ`i} 0≤i≤m,

1≤`≤L

)
= {ζ`0}1≤`≤L, Xj = {Xj(ζ̂) = ξj +

∑
`∈Ij ,

0≤i≤m

η`iζ`i}
] (S)

is a safe tractable approximation of the ARC of (5.3.6) restricted to decision rules (5.3.7). Note
that this approximation is at least as flexible as the ARC of (5.3.6) restricted to genuine affine
decision rules. Indeed, a rule X(·) = {Xj(·)}n

j=1 of the latter type is “cut off” the family of
all decision rules participating in (S) by the requirement “Xj depend solely on ζ`0, ` ∈ Ij ,”
or, which is the same, by the requirement η`i = 0 whenever i > 0. Since by construction the
projection of Z̃ on the space of variables ζ`0, 1 ≤ ` ≤ L, is exactly Z, a pair (t,X(·)) is feasible
for (S) if and only if it is feasible for the AARC of (5.3.6), the information base being given by
I1, ..., In. The bottom line is, that when Z is not a box, the tractable problem (S), while still
producing robust feasible decisions, is at least as flexible as the AARC. Whether this “at least
as flexible” is or is not “more flexible,” depends on the application in question, and since both
(S) and AARC are tractable, it is easy to figure out what the true answer is.

Here is a toy example. Let L = 2, n = 2, and let (5.3.6) be the uncertain problem




min
x





x2 :

x1 ≥ ζ1

x1 ≥ −ζ1

x2 ≥ x1 + 3ζ1/5 + 4ζ2/5
x2 ≥ x1 − 3ζ1/5− 4ζ2/5





, ‖ζ‖2 ≤ 1





,
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with fully adjustable variable x1 and non-adjustable variable x2. Due to the extreme sim-
plicity of our problem, we can immediately point out an optimal solution to the unrestricted
ARC, namely,

X1(ζ) = |ζ1|, x2 ≡ Opt(ARC) = max
‖ζ‖2≤1

[|ζ1|+ |3ζ1 + 4ζ2|/5] =
4
√

5
5

≈ 1.7889.

Now let us compare Opt(ARC) with the optimal value Opt(AARC) of the AARC and with
the optimal value Opt(RARC) of the restricted ARC where the decision rules are allowed to
be affine in [ζ`]±, ` = 1, 2 (as always, [a]+ = max[a, 0] and [a]− = max[−a, 0]). The situation
fits B, so that we can process the RARC as it is. Noting that a = [a]+ − [a]−, the decision
rules that are affine in [ζ`]±, ` = 1, 2, are exactly the same as the decision rules (5.3.7), where
F`, ` = 1, 2, are the spaces of piecewise linear functions on the axis with the only breakpoint
0. We see that up to the fact that Z is a circle rather than a square, the situation fits C.1 as
well, and we can process RARC via its safe tractable approximation (S). Let us look what
are the optimal values yielded by these 3 schemes.

• The AARC of our toy problem is

Opt(AARC) = min
x2,ξ,η

{
x2 :

X1(ζ)︷ ︸︸ ︷
ξ + ηT ζ ≥ |ζ1| (a)
x2 ≥ X1(ζ) + |3ζ1 + 4ζ2|/5 (b)

∀(ζ : ‖ζ‖2 ≤ 1)
}

This problem can be immediately solved. Indeed, (a) should be valid for ζ = ζ1 ≡ [1; 0]
and for ζ = ζ2 ≡ −ζ1, meaning that X1(±ζ1) ≥ 1, whence ξ ≥ 1. Further, (b) should be
valid for ζ = ζ3 ≡ [3; 4]/5 and for ζ = ζ4 ≡ −ζ3, meaning that x2 ≥ X1(±ζ3) + 1, whence
x2 ≥ ξ + 1 ≥ 2. We see that the optimal value is ≥ 2, and this bound is achievable (we can
take X1(·) ≡ 1 and x2 = 2). As a byproduct, in our toy problem the AARC is as conservative
as the RC.

• The RARC of our problem as given by B is

Opt(RARC) = min
x2,ξ,η,η±

{
x2 :

X1(ζ̂)︷ ︸︸ ︷
ξ + ηT ζ + ηT

+ζ+ + ηT
−ζ− ≥ |ζ1|

x2 ≥ X1(ζ̂) + |3ζ1 + 4ζ2|/5

∀(ζ̂ = [ζ1; ζ2︸ ︷︷ ︸
ζ

; ζ+
1 ; ζ+

2︸ ︷︷ ︸
ζ+

; ζ−1 ; ζ−2︸ ︷︷ ︸
ζ−

] ∈ Ẑ)
}

,

Ẑ =
{

ζ̂ : ζ = ζ+ − ζ−, ζ± ≥ 0, ‖ζ+ + ζ−‖2 ≤ 1
}

.

We can say in advance what are the optimal value and the optimal solution to the RARC
— they should be the same as those of the ARC, since the latter, as a matter of fact, admits
optimal decision rules that are affine in |ζ1|, and thus in [ζ`]±. Nevertheless, we have carried
out numerical optimization which yielded another optimal solution to the RARC (and thus
- to ARC):

Opt(RARC) = x2 = 1.7889,
ξ = 1.0625, η = [0; 0], η+ = η− = [0.0498;−0.4754],

which corresponds to X1(ζ) = 1.0625 + 0.0498|ζ1| − 0.4754|ζ2|.
• The safe tractable approximation of the RARC looks as follows. The mapping ζ 7→ ζ̂[ζ] in
our case is

[ζ1; ζ2] 7→ [ζ1,0 = ζ1; ζ1,1 = max[ζ1, 0]; ζ2,0 = ζ2; ζ2,1 = max[ζ2, 0]],
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the tractable description of Ẑ+ as given by C.1 is

Ẑ+ =
{
{ζ`i} i=0,1

`=1,2
:
−1 ≤ ζ`0 ≤ 1
0 ≤ ζ`1−ζ`0

1 ≤ 1−ζ`1
1 ≤ 1

}
, ` = 1, 2

}

and the sets Ẑ0, Ẑ1 are given by

Ẑi =
{
{ζ`i} i=0,1

`=1,2
: ζ2

1i + ζ2
2i ≤ 1

}
, i = 0, 1.

Consequently, (S) becomes the semi-infinite LO problem

Opt(S) = min
x2,ξ,{η`i}

{
x2 :

X1(ζ̂) ≡ ξ +
∑

`=1,2
i=0,1

η`iζ`i ≥ ζ1,0

X1(ζ̂) ≡ ξ +
∑

`=1,2
i=0,1

η`iζ`i ≥ −ζ1,0

x2 ≥ ξ +
∑

`=1,2
i=0,1

η`iζ`i + [3ζ1,0 + 4ζ2,0]/5
x2 ≥ ξ +

∑
`=1,2
i=0,1

η`iζ`i − [3ζ1,0 + 4ζ2,0]/5

∀ζ̂ = {ζ`i} :
−1 ≤ ζ`0 ≤ 1, ` = 1, 2
0 ≤ ζ`1 − ζ`0 ≤ 1− ζ`1 ≤ 1, ` = 1, 2
ζ2
1i + ζ2

2i ≤ 1, i = 0, 1

}
.

Computation results in

Opt(S) = x2 = 25+
√

8209
60 ≈ 1.9267,

X1(ζ) = 5
12 − 3

5ζ1.0[ζ1] + 6
5ζ1,1[ζ1]+ 7

60ζ2,0[ζ2] = 5
12 + 3

5 |ζ1|+ 7
60ζ2.

As it could be expected, we get 2 = Opt(AARC) > 1.9267 = Opt(S) > 1.7889 =
Opt(RARC) = Opt(ARC). Note that in order to get Opt(S) < Opt(AARC), taking into ac-
count Ẑ1 is a must: in the case of C.1, whatever be Z and a box Z+ ⊃ Z, with Z̃ = Ẑ+∩Ẑ0

we gain nothing as compared to the genuine affine decision rules.

D. Quadratic decision rules, ellipsoidal uncertainty set. In this case,

ζ̂[ζ] =
[

ζT

ζ ζζT

]

is comprised of the entries of ζ and their pairwise products (so that the associated decision rules
(5.3.5) are quadratic in ζ), and Z is the ellipsoid {ζ ∈ RL : ‖Qζ‖2 ≤ 1}, where Q has a trivial
kernel. The convex hull of the image of Z under the quadratic mapping ζ → ζ̂[ζ] is easy to
describe:

Lemma 5.4 In the above notation, the set Ẑ = Conv{ζ̂[ζ] : ‖Qζ‖2 ≤ 1} is a convex compact
set given by the semidefinite representation as follows:

Ẑ =
{

ζ̂ =
[

vT

v W

]
∈ SL+1 : ζ̂ +

[
1

]
º 0, Tr(QWQT ) ≤ 1

}
.

Proof. It is immediately seen that it suffices to prove the statement when Q = I, which we assume

from now on. Besides this, when we add to the mapping ζ̂[ζ] the constant matrix
[

1
]
, the convex

hull of the image of Z is translated by the same matrix. It follows that all we need is to prove that the

convex hull Q of the image of the unit Euclidean ball under the mapping ζ 7→ ζ̃[ζ] =
[

1 ζT

ζ ζζT

]
can be

represented as

Q =
{

ζ̂ =
[

1 vT

v W

]
∈ SL+1 : ζ̂ º 0, Tr(W ) ≤ 1

}
. (5.3.14)
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Denoting the right hand side in (5.3.14) by Q̂, bothQ and Q̂ are nonempty convex compact sets. Therefore
they coincide if and only if their support functions are identical.1 We are in the situation where Q is the

convex hull of the set
{[

1 ζT

ζ ζζT

]
: ζT ζ ≤ 1

}
, so that the support function of Q is

φ(P ) = max
Z

{
Tr(PZ) : Z =

[
1 ζT

ζ ζζT

]
: ζT ζ ≤ 1

} [
P =

[
p qT

q R

]
∈ SL+1

]
.

We have

φ(P ) = max
Z

{
Tr(PZ) : Z =

[
1 ζT

ζ ζζT

]
with ζT ζ ≤ 1

}

= max
ζ

{
ζT Rζ + 2qT ζ + p : ζT ζ ≤ 1

}

= min
τ

{
τ : τ ≥ ζT Rζ + 2qT ζ + p ∀(ζ : ζT ζ ≤ 1)

}

= min
τ

{
τ : (τ − p)t2 − ζT Rζ − 2tqT ζ ≥ 0∀((ζ, t) : ζT ζ ≤ t2)

}

= min
τ

{
τ : ∃λ ≥ 0 : (τ − p)t2 − ζT Rζ − 2tqT ζ − λ(t2 − ζT ζ) ≥ 0∀(ζ, t)

}
[S-Lemma]

= min
τ,λ

{
τ :

[
τ − p− λ −qT

−q λI −R

]
º 0, λ ≥ 0

}

= max
u,v,W,r

{
up + 2vT q + Tr(RW ) : Tr

([
τ − λ

λI

] [
u vT

v W

])
+ rλ

≡ τ∀(τ, λ),
[

u vT

v W

]
º 0, r ≥ 0

}
[semidefinite duality]

= max
v,W

{
p + 2vT q + Tr(RW ) :

[
1 vT

v W

]
º 0, Tr(W ) ≤ 1

}

= max
v,W

{
Tr

(
P

[
1 vT

v W

])
:
[

1 vT

v W

]
∈ Q̂

}
.

Thus, the support function of Q indeed is identical to the one of Q̂. ¤

Corollary 5.1 Consider a fixed recourse uncertain LO problem (5.3.6) with an ellipsoid as an
uncertainty set, where the adjustable decision variables are allowed to be quadratic functions
of prescribed portions Pjζ of the data. The associated ARC of the problem is computationally
tractable and is given by an explicit semidefinite program of the sizes polynomial in those of
instances and in the dimension L of the data vector.

E. Quadratic decision rules and the intersection of concentric ellipsoids as the uncertainty set.
Here the uncertainty set Z is ∩-ellipsoidal:

Z = Zρ ≡ {ζ ∈ RL : ζT Qjζ ≤ ρ2, 1 ≤ j ≤ J}[
Qj º 0,

∑
j Qj Â 0

] (5.3.15)

(cf. section 3.3.2), where ρ > 0 is an uncertainty level, and, as above, ζ̂[ζ] =
[

ζT

ζ ζζT

]
, so

that our intention is to process the ARC of an uncertain problem corresponding to quadratic
decision rules. As above, all we need is to get a tractable representation of the convex hull of

1The support function of a nonempty convex set X ⊂ Rn is the function f(ξ) = supx∈X ξT x : Rn → R∪{+∞}.
The fact that two closed nonempty convex sets in Rn are identical, if and only if their support functions are so,
is readily given by the Separation Theorem.
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the image of Zρ under the nonlinear mapping ζ 7→ ζ̂[ζ]. This is essentially the same as to find
a similar representation of the convex hull Ẑρ of the image of Zρ under the nonlinear mapping

ζ 7→ ζ̂ρ[ζ] =
[

ζT

ζ 1
ρζζT

]
;

indeed, both convex hulls in question can be obtained from each other by simple linear transfor-
mations. The advantage of our normalization is that now Zρ = ρZ1 and Ẑρ = ρẐ1, as it should
be for respectable perturbation sets.

While the set Ẑρ is, in general, computationally intractable, we are about to demonstrate that
this set admits a tight tractable approximation, and that the latter induces a tight tractable
approximation of the “quadratically adjustable” RC of the Linear Optimization problem in
question. The main ingredient we need is as follows:

Lemma 5.5 Consider the semidefinite representable set

Wρ = ρW1, W1 =
{

ζ̂ =
[

vT

v W

]
:
[

1 vT

v W

]
º 0, Tr(WQj) ≤ 1, 1 ≤ j ≤ J

}
. (5.3.16)

Then
∀ρ > 0 : Ẑρ ⊂ Wρ ⊂ Ẑϑρ, (5.3.17)

where ϑ = O(1) ln(J + 1) and J is the number of ellipsoids in the description of Zρ.

Proof. Since both Ẑρ and Ŵρ are nonempty convex compact sets containing the origin and belonging
to the subspace SL+1

0 of SL+1 comprised of matrices with the first diagonal entry being zero, to prove
(5.3.17) is the same as to verify that the corresponding support functions

φWρ(P ) = max
ζ̂∈Wρ

Tr(P ζ̂), φẐρ
(P ) = max

ζ̂∈Ẑρ

Tr(P ζ̂),

considered as functions of P ∈ SL+1
0 , satisfy the relation

φẐρ
(·) ≤ φWρ(·) ≤ φẐθρ

(·).

Taking into account that Ẑs = sẐ1, s > 0, this task reduces to verifying that

φẐρ
(·) ≤ φWρ(·) ≤ ϑφẐρ

(·).

Thus, all we should prove is that whenever P =
[

pT

p R

]
∈ SL+1

0 , one has

max
ζ̂∈Ẑρ

Tr(P ζ̂) ≤ max
ζ̂∈Wρ

Tr(P ζ̂) ≤ ϑ max
ζ̂∈Ẑρ

Tr(P ζ̂).

Recalling the origin of Ẑρ, the latter relation reads

∀P =
[

pT

p R

]
: OptP (ρ) ≡ max

ζ

{
2pT ζ + 1

ρζT Rζ : ζT Qjζ ≤ ρ2, 1 ≤ j ≤ J
}

≤ SDPP (ρ) ≡ max
ζ̂∈Wρ

Tr(P ζ̂) ≤ ϑOptP (ρ) ≡ OptP (ϑρ).
(5.3.18)

Observe that the three quantities in the latter relation are of the same homogeneity degree w.r.t. ρ > 0,
so that it suffices to verify this relation when ρ = 1, which we assume from now on.

We are about to derive (5.3.18) from the Approximate S-Lemma (Theorem A.8). To this end, let us
specify the entities participating in the latter statement as follows:
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• x = [t; ζ] ∈ R1
t × RL

ζ ;

• A = P , that is, xT Ax = 2tpT ζ + ζT Rζ;

• B =
[

1
]
, that is, xT Bx = t2;

• Bj =
[

Qj

]
, 1 ≤ j ≤ J , that is, xT Bjx = ζT Qjζ;

• ρ = 1.

With this setup, the quantity Opt(ρ) from (A.4.12) becomes nothing but OptP (1), while the quantity
SDP(ρ) from (A.4.13) is

SDP(1) = max
X

{Tr(AX) : Tr(BX) ≤ 1, Tr(BjX) ≤ 1, 1 ≤ j ≤ J,X º 0}

= max
X





2pT v + Tr(RW ) :

u ≤ 1
Tr(WQj) ≤ 1, 1 ≤ j ≤ J

X =
[

u vT

v W

]
º 0





= max
v,W



2pT v + Tr(RW ) :

Tr(WQj) ≤ 1, 1 ≤ j ≤ J[
1 vT

v W

]
º 0





= max
ζ̂



Tr(P ζ̂) : ζ̂ =

[
vT

v W

]
:

[
1 vT

v W

]
º 0

Tr(WQj) ≤ 1, 1 ≤ j ≤ J





= SDPP (1).

With these observations, the conclusion (A.4.15) of the Approximate S-Lemma reads

OptP (1) ≤ SDPP (1) ≤ Opt(Ω(J)), Ω(J) = 9.19
√

ln(J + 1) (5.3.19)

where for Ω ≥ 1
Opt(Ω) = max

x

{
xT Ax : xT Bx ≤ 1, xT Bjx ≤ Ω2

}

= max
t,ζ

{
2tpT ζ + ζT Rζ : t2 ≤ 1, ζT Qjζ ≤ Ω2, 1 ≤ j ≤ J

}

= max
ζ

{
2pT ζ + ζT Rζ : ζT Qjζ ≤ Ω2, 1 ≤ j ≤ J

}

= max
η=Ω−1ζ

{
Ω(2pT η) + Ω2ηT Rη : ηT Qjη ≤ 1, 1 ≤ j ≤ J

}

≤ Ω2 max
η

{
2pT η + ηT Rη : ηT Qjη ≤ 1, 1 ≤ j ≤ J

}

= Ω2OptP (1).

Setting ϑ = Ω2(J), we see that (5.3.19) implies (5.3.18). ¤

Corollary 5.2 Consider a fixed recourse uncertain LO problem (5.3.6) with ∩-ellipsoidal un-
certainty set Zρ (see (5.3.15)) where one seeks robust optimal quadratic decision rules:

xj = pj + qT
j P̂j

(
ζ̂ρ[ζ]

)


• ζ̂ρ[ζ] =

[
ζT

ζ 1
ρζζT

]

• P̂j : linear mappings from SL+1 to Rmj

• pj ∈ R, qj ∈ Rmj : parameters to be specified


 .

(5.3.20)

The associated Adjustable Robust Counterpart of the problem admits a safe tractable approxi-
mation that is tight within the factor ϑ given by Lemma 5.5.
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Here is how the safe approximation of the Robust Counterpart mentioned in Corollary 5.2 can
be built:

1. We write down the optimization problem

min
t,x

{
t :

aT
0ζ [t; x] + b0ζ ≡ t− cT

ζ x− dζ ≥ 0
aT

iζ [t; x] + bi,ζ ≡ AT
iζx− biζ ≥ 0, i = 1, ..., m

}
(P )

where AT
iζ is i-th row in Aζ and biζ is i-th entry in bζ ;

2. We plug into the m + 1 constraints of (P ), instead of the original decision variables xj ,

the expressions pj + qT
j P̂j

(
ζ̂ρ[ζ]

)
, thus arriving at the optimization problem of the form

min
[t;y]

{
t : αT

iζ̂
[t; y] + β

iζ̂
≥ 0, 0 ≤ i ≤ m

}
, (P ′)

where y is the collection of coefficients pj , qj of the quadratic decision rules, ζ̂ is our new
uncertain data — a matrix from SL+1

0 (see p. 233), and α
iζ̂

, β
iζ̂

are affine in ζ̂, the affinity
being ensured by the assumption of fixed recourse. The “true” quadratically adjustable
RC of the problem of interest is the semi-infinite problem

min
[t;y]

{
t : ∀ζ̂ ∈ Ẑρ : αT

iζ̂
[t; y] + β

iζ̂
≥ 0, 0 ≤ i ≤ m

}
(R)

obtained from (P ′) by requiring the constraints to remain valid for all ζ̂ ∈ Ẑρ, the latter
set being the convex hull of the image of Zρ under the mapping ζ 7→ ζ̂ρ[ζ]. The semi-
infinite problem (R) in general is intractable, and we replace it with its safe tractable
approximation

min
[t;y]

{
t : ∀ζ̂ ∈ Wρ : αT

iζ̂
[t; y] + β

iζ̂
≥ 0, 0 ≤ i ≤ m

}
, (R′)

where Wρ is the semidefinite representable convex compact set defined in Lemma 5.5. By
Theorem 1.1, (R′) is tractable and can be straightforwardly converted into a semidefinite
program of sizes polynomial in n = dimx, m and L = dim ζ. Here is the conversion:
recalling the structure of ζ̂ and setting z = [t; x], we can rewrite the body of i-th constraint
in (R′) as

αT
iζ̂

z + β
iζ̂
≡ ai[z] + Tr

( [
vT

v W

]

︸ ︷︷ ︸
ζ̂

[
pT

i [z]
pi[z] Pi[z]

] )
,

where ai[z], pi[z] and Pi[z] = P T
i [z] are affine in z. Therefore, invoking the definition of

Wρ = ρW1 (see Lemma 5.5), the RC of the i-th semi-infinite constraint in (R′) is the first
predicate in the following chain of equivalences:

min
v,W

{
ai[z] + 2ρvT pi[z] + ρTr(WPi[z]) :

[
1 vT

v W

]
º 0, Tr(WQj) ≤ 1, 1 ≤ j ≤ J

}
≥ 0 (ai)

m

∃λi = [λi
1; ...; λ

i
J ] :





λi ≥ 0[
ai[z]−∑

j λi
j ρpT

i [z]
ρpi[z] ρPi[z] +

∑
j λi

jQj

]
º 0

(bi)
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where m is given by Semidefinite Duality. Consequently, we can reformulate (R′) equiva-
lently as the semidefinite program

min
z=[t;y]

{λi
j
}



t :

[
ai[z]−∑

j λi
j ρpT

i [z]
ρpi[z] ρPi[z] +

∑
j λi

jQj

]
º 0

λi
j ≥ 0, 0 ≤ i ≤ m, 1 ≤ j ≤ J



 .

The latter SDP is a ϑ-tight safe tractable approximation of the quadratically adjustable
RC with ϑ given by Lemma 5.5.

5.3.3 The AARC of Uncertain Linear Optimization Problem Without Fixed
Recourse

We have seen that the AARC of an uncertain LO problem

C =
{

minx

{
cT
ζ x + dζ : Aζx ≥ bζ

}
: ζ ∈ Z

}

[cζ , dζ , Aζ , bζ : affine in ζ]
(5.3.21)

with computationally tractable convex compact uncertainty set Z and with fixed recourse is
computationally tractable. What happens when the assumption of fixed recourse is removed?
The answer is that in general the AARC can become intractable (see [14]). However, we are
about to demonstrate that for an ellipsoidal uncertainty set Z = Zρ = {ζ : ‖Qζ‖2 ≤ ρ},
KerQ = {0}, the AARC is computationally tractable, and for the ∩-ellipsoidal uncertainty set
Z = Zρ given by (5.3.15), the AARC admits a tight safe tractable approximation. Indeed, for
affine decision rules

xj = Xj(Pjζ) ≡ pj + qT
j Pjζ

the AARC of (5.3.21) is the semi-infinite problem of the form

min
z=[t;y]

{
t : ∀ζ ∈ Zρ : ai[z] + 2bT

i [z]ζ + ζT Ci[z]ζ ≤ 0, 0 ≤ i ≤ m
}

, (5.3.22)

where y = {pj , qj}n
j=1 and ai[z], bi[z], Ci[z] are real/vector/symmetric matrix affinely depending

on z = [t; y]. Consider the case of ∩-ellipsoidal uncertainty:

Zρ = {ζ : ζT Qjζ ≤ ρ2, 1 ≤ j ≤ J} [Qj º 0,
∑

j Qj Â 0].

For a fixed i, 0 ≤ i ≤ m, let us set Ai,z =
[

bT
i [z]

bi[z] Ci[z]

]
, B =

[
1

]
, Bj =

[
Qj

]
,

1 ≤ j ≤ J , and observe that clearly

Opti,z(ρ) := max
η=[τ ;ζ]

{
ηT Ai,zη ≡ 2τbT

i [z]ζ : ηT Bη ≡ τ2 ≤ 1, ηT Bjη ≡ ζT Qjζ ≤ ρ2, 1 ≤ j ≤ J
}

≤ SDPi,z := minλ≥0

{
λ0 + ρ2

∑J
j=1 λj : λ0B +

∑
j λjBj º Ai,z

}
,

so that the explicit system of LMIs

λ0B +
J∑

j=1

λjBj º Ai,z, λ0 + ρ2
∑

j

λj ≤ −ai[z], λ ≥ 0 (5.3.23)
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in variables z, λ is a safe tractable approximation of the i-th semi-infinite constraint

ai[z] + 2bi[z]ζ + ζT C[z]ζ ≤ 0 ∀ζ ∈ Zρ (5.3.24)

appearing in (5.3.22). Let us prove that this approximation is tight within the factor ϑ which is
1 when J = 1 and is 9.19

√
ln(J) otherwise. All we need to prove is that if z cannot be extended

to a feasible solution of (5.3.23), z is infeasible for the semi-infinite constraint in question at the
uncertainty level ϑρ, or, which is clearly the same, that Opti,z(ϑρ) > −ai[z]. When z cannot
be extended to a feasible solution to (5.3.23), we have SDPi,z > −ai[z]. Invoking Approximate
S-Lemma (Theorem A.8) for the data A = Ai,z, B, {Bj}, there exists η̄ = [τ̄ ; ζ̄] such that
τ̄2 = η̄T Bη̄ ≤ 1, ζ̄T Qj ζ̄ = η̄T Bj η̄ ≤ ϑ2ρ2, 1 ≤ j ≤ J , and η̄T Ai,z η̄ ≥ SDPi,z. Since |τ̄ | ≤ 1 and
ζ̄T Qj ζ̄ ≤ ϑ2ρ2, we have

Opti,z(ϑρ) ≥ η̄T Ai,z η̄ ≥ SDPi,z > −ai[z],

as claimed.
We have arrived at the following result:

The AARC of an arbitrary uncertain LO problem, the uncertainty set being the inter-
section of J ellipsoids centered at the origin, is computationally tractable, provided
J = 1, and admits safe tractable approximation, tight within the factor 9.19

√
ln(J)

when J > 1.

In fact the above approach can be extended even slightly beyond just affine decision rules.
Specifically, in the case of an uncertain LO we could allow for the adjustable “fixed recourse”
variables xj — those for which all the coefficients in the objective and the constraints of instances
are certain — to be quadratic in Pjζ, and for the remaining “non-fixed recourse” adjustable
variables to be affine in Pjζ. Indeed, this modification does not alter the structure of (5.3.22).

5.3.4 Illustration: the AARC of Multi-Period Inventory Affected by Uncer-
tain Demand

We are about to illustrate the AARC methodology by its application to the simple multi-product
multi-period inventory model presented in Example 5.1 (see also p. 211).
Building the AARC of (5.2.3). We first decide on the information base of the “actual
decisions” — vectors wt of replenishment orders of instants t = 1, ..., N . Assuming that the part
of the uncertain data, (i.e., of the demand trajectory ζ = ζN = [ζ1; ...; ζN ]) that becomes known
when the decision on wt should be made is the vector ζt−1 = [ζ1; ...; ζt−1] of the demands in
periods preceding time t, we introduce affine decision rules

wt = ωt + Ωtζ
t−1 (5.3.25)

for the orders; here ωt,Ωt form the coefficients of the decision rules we are seeking.
The remaining variables in (5.2.3), with a single exception, are analysis variables, and we

allow them to be arbitrary affine functions of the entire demand trajectory ζN :

xt = ξt + Ξtζ
N , t = 2, ..., N + 1 [states]

yt = ηt + Htζ
N , t = 1, ..., N [upper bounds on [xt]+]

zt = πt + Πtζ
N , t = 1, ..., N [upper bounds on [xt]−].

(5.3.26)
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The only remaining variable C — the upper bound on the inventory management cost we intend
to minimize — is considered as non-adjustable.

We now plug the affine decision rules in the objective and the constraints of (5.2.3), and
require the resulting relations to be satisfied for all realizations of the uncertain data ζN from a
given uncertainty set Z, thus arriving at the AARC of our inventory model:

minimize C
s.t. ∀ζN ∈ Z :
C ≥ ∑N

t=1

[
cT
h,t[ηt + Htζ

N ] + cT
b,t[πt + Πtζ

N ] + cT
o,t[ωt + Ωtζ

t−1
]

ξt + Ξtζ
N =

{
ξt−1 + Ξt−1ζ

N + [ωt + Ωtζ
t−1]− ζt, 2 ≤ t ≤ N

x0 + ω1 − ζ1, t = 1
ηt + Htζ

N ≥ 0, ηt + Htζ
N ≥ ξt + Ξtζ

N , 1 ≤ t ≤ N
πt + Πtζ

N ≥ 0, πt + Πtζ
N ≥ −ξt − Ξtζ

N , 1 ≤ t ≤ N
wt ≤ ωt + Ωtζ

t−1 ≤ wt, 1 ≤ t ≤ N
qT

[
ηt + Htζ

N
] ≤ r

(5.3.27)

the variables being C and the coefficients ωt, Ωt, ..., πt, Πt of the affine decision rules.
We see that the problem in question has fixed recourse (it always is so when the uncertainty

affects just the constant terms in conic constraints) and is nothing but an explicit semi-infinite
LO program. Assuming the uncertainty set Z to be computationally tractable, we can invoke
Theorem 1.1 and reformulate this semi-infinite problem as a computationally tractable one. For
example, with box uncertainty:

Z = {ζN ∈ RN×d
+ : ζ

t
≤ ζt ≤ ζt, 1 ≤ t ≤ N},

the semi-infinite LO program (5.3.27) can be immediately rewritten as an explicit “certain” LO
program. Indeed, after replacing the semi-infinite coordinate-wise vector inequalities/equations
appearing in (5.3.27) by equivalent systems of scalar semi-infinite inequalities/equations and
representing the semi-infinite linear equations by pairs of opposite semi-infinite linear inequal-
ities, we end up with a semi-infinite optimization program with a certain linear objective and
finitely many constraints of the form

∀
(
ζi
t ∈ [ζi

t
, ζ

i
t], t ≤ N, i ≤ d

)
: p`[y] +

∑

i,t

ζi
tp

`
ti[y] ≤ 0

(` is the serial number of the constraint, y is the vector comprised of the decision variables in
(5.3.27), and p`[y], p`

ti[y] are given affine functions of y). The above semi-infinite constraint can
be represented by a system of linear inequalities

ζi
t
p`

ti[y] ≤ u`
ti

ζ
i
tp

`
ti[y] ≤ u`

ti

p`[y] +
∑

t,i u
`
ti ≤ 0,

in variables y and additional variables u`
ti. Putting all these systems of inequalities together

and augmenting the resulting system of linear constraints with our original objective to be
minimized, we end up with an explicit LO program that is equivalent to (5.3.27).

Some remarks are in order:
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1. We could act similarly when building the AARC of any uncertain LO problem with fixed re-
course and “well-structured” uncertainty set, e.g., one given by an explicit polyhedral/conic
quadratic/semidefinite representation. In the latter case, the resulting tractable reformu-
lation of the AARC would be an explicit linear/conic quadratic/semidefinite program of
sizes that are polynomial in the sizes of the instances and in the size of conic description
of the uncertainty set. Moreover, the “tractable reformulation” of the AARC can be built
automatically, by a kind of compilation.

2. Note how flexible the AARC approach is: we could easily incorporate additional con-
straints, (e.g., those forbidding backlogged demand, expressing lags in acquiring informa-
tion on past demands and/or lags in executing the replenishment orders, etc.). Essentially,
the only thing that matters is that we are dealing with an uncertain LO problem with fixed
recourse. This is in sharp contrast with the ARC. As we have already mentioned, there is,
essentially, only one optimization technique — Dynamic Programming — that with luck
can be used to process the (general-type) ARC numerically. To do so, one needs indeed
a lot of luck — to be “computationally tractable,” Dynamic Programming imposes many
highly “fragile” limitations on the structure and the sizes of instances. For example, the
effort to solve the “true” ARC of our toy Inventory problem by Dynamic Programming
blows up exponentially with the number of products d (we can say that d = 4 is already
“too big”); in contrast to this, the AARC does not suffer of “curse of dimensionality” and
scales reasonably well with problem’s sizes.

3. Note that we have no difficulties processing uncertainty-affected equality constraints (such
as state equations above) — this is something that we cannot afford with the usual —
non-adjustable — RC (how could an equation remain valid when the variables are kept
constant, and the coefficients are perturbed?).

4. Above, we “immunized” affine decision rules against uncertainty in the worst-case-oriented
fashion — by requiring the constraints to be satisfied for all realizations of uncertain data
from Z. Assuming ζ to be random, we could replace the worst-case interpretation of
the uncertain constraints with their chance constrained interpretation. To process the
“chance constrained” AARC, we could use all the “chance constraint machinery” we have
developed so far for the RC, exploiting the fact that for fixed recourse there is no essential
difference between the structure of the RC and that of the AARC.

Of course, all the nice properties of the AARC we have just mentioned have their price — in
general, as in our toy inventory example, we have no idea of how much we lose in terms of
optimality when passing from general decision rules to affine rules. At present, we are not aware
of any theoretical tools for evaluating such a loss. Moreover, it is easy to build examples showing
that sticking to affine decision rules can indeed be costly; it even may happen that the AARC
is infeasible, while the ARC is not. Much more surprising is the fact that there are meaningful
situations where the AARC is unexpectedly good. Here we present a single simple example.

Consider our inventory problem in the single-product case with added constraints that no
backlogged demand is allowed and that the amount of product in the inventory should remain
between two given positive bounds. Assuming box uncertainty in the demand, the “true” ARC
of the uncertain problem is well within the grasp of Dynamic Programming, and thus we can
measure the “non-optimality” of affine decision rules experimentally — by comparing the optimal
values of the true ARC with those of the AARC as well as of the non-adjustable RC. To this
end, we generated at random several hundreds of data sets for the problem with time horizon
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N = 10 and filtered out all data sets that led to infeasible ARC (it indeed can be infeasible due
to the presence of upper and lower bounds on the inventory level and the fact that we forbid
backlogged demand). We did our best to get as rich a family of examples as possible — those
with time-independent and with time-dependent costs, various levels of demand uncertainty
(from 10% to 50%), etc. We then solved ARCs, AARCs and RCs of the remaining “well-posed”
problems — the ARCs by Dynamic Programming, the AARCs and RCs — by reduction to
explicit LO programs. The number of “well-posed” problems we processed was 768, and the
results were as follows:

1. To our great surprise, in every one of the 768 cases we have analyzed, the computed optimal
values of the “true” ARC and the AARC were identical. Thus, there is an “experimental
evidence” that in the case of our single-product inventory problem, the affine decision rules
allow one to reach “true optimality.”

Quite recently, D. Bertsimas, D. Iancu and P. Parrilo have demonstrated [30] that the above
“experimental evidence” has solid theoretical reasons, specifically, they have established
the following remarkable and unexpected result:

Consider the multi-stage uncertainty-affected decision making problem


 min

C,x,w



C :

C ≥ ∑N
t=1[ctwt + ht(xt)]

xt = αtxt−1 + βtwt + γtζt, 1 ≤ t ≤ N
wt ≤ wt ≤ wt, 1 ≤ t ≤ N



 : ζN = [ζ1; ...; ζN ] ∈ Z ⊂ RN





with uncertain data ζN = [ζ1; ...; ζN ], the variables in the problem being C (non-
adjustable), wt (allowed to depend on the “past demands” ζt−1), 1 ≤ t ≤ N ,
and xt (fully adjustable – allowed to depend on ζN ); here the functions ht(·) are
convex functions on the axis. Assume, further, that Z is a box, and consider the
ARC and the AARC of the problem, that is, the infinite-dimensional problems

min
C,x(·),w(·),z(·)





C :

C ≥ ∑
t=1 |N [ctwt(ζ

t−1) + zt(ζ
N )]

xt(ζ
N ) = αtxt−1(ζ

N ) + βtwt(ζ
t−1) + γtζt, 1 ≤ t ≤ N

zt(ζ
N ) ≥ ht(xt(ζ

N )), 1 ≤ t ≤ N
wt ≤ wt(ζ

t−1) ≤ wt, 1 ≤ t ≤ N




∀ζN ∈ Z





where the optimization is taken over arbitrary functions xt(ζN ), wt(ζt−1), zt(ζN )
(ARC) and over affine functions xt(ζT , zt(ζt), wt(ζt−1) (AARC); here slacks zt(·)
are upper bounds on costs ht(xt(·)). The the optimal solution to the AARC is
an optimal solution to the ARC as well.

Note that the single product version of our Inventory Management problem satisfies the
premise of the latter result, provided that the uncertainty set is a box (as is the case in the
experiments we have reported), and the corresponding functions ht(·) are not only convex,
but also piecewise linear, the domain of ht being x ≤ r/q; in this case what was called
AARC of the problem, is nothing but our AARC (5.3.26) – (5.3.27) where we further
restrict zt(·) to be identical to yt(·). Thus, in the single product case the AARC of the
Inventory Management problem in question is equivalent to its ARC.

Toe the best of our knowledge, the outlined result of Bertsimas, Iancu and Parrilo yields
the only known for the time being generic example of a meaningful multi-stage uncertainty
affected decision making problem where the affine decision rules are provably optimal. This
remarkable result is very “fragile,” e.g., it cannot be extended on multi-product inventory,
or on the case when aside of bounds on replenishment orders in every period there are
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Range of Opt(RC)
Opt(AARC) 1 (1, 2] (2, 10] (10, 1000] ∞

Frequency in the sample 38% 23% 14% 11% 15%

Table 5.1: Experiments with ARCs, AARCs and RCs of randomly generated single-product
inventory problems affected by uncertain demand.

bounds on cumulative replenishment orders, etc. It should be added that the phenomenon
in question seems to be closely related to our intention to optimize the guaranteed, (i.e., the
worst-case, w.r.t. demand trajectories from the uncertainty set), inventory management
cost. When optimizing the “average” cost, the ARC frequently becomes significantly less
expensive than the AARC.2

2. The (equal to each other) optimal values of the ARC and the AARC in many cases were
much better than the optimal value of the RC, as it is seen from table 5.1. In particular,
in 40% of the cases the RC was at least twice as bad in terms of the (worst-case) inventory
management cost as the ARC/AARC, and in 15% of the cases the RC was in fact infeasible.

The bottom line is twofold. First, we see that in multi-stage decision making there exist meaning-
ful situations where the AARC, while “not less computationally tractable” than the RC, is much
more flexible and much less conservative. Second, the AARC is not necessarily “significantly
inferior” as compared to the ARC.

5.4 Adjustable Robust Optimization and Synthesis of Linear
Controllers

While the usefulness of affine decision rules seems to be heavily underestimated in the “OR-style
multi-stage decision making,” they play one of the central roles in Control. Our next goal is to
demonstrate that the use of AARC can render important Control implications.

5.4.1 Robust Affine Control over Finite Time Horizon

Consider a discrete time linear dynamical system

x0 = z
xt+1 = Atxt + Btut + Rtdt

yt = Ctxt + Dtdt

, t = 0, 1, ... (5.4.1)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny and dt ∈ Rnd are the state, the control, the output and the
exogenous input (disturbance) at time t, and At, Bt, Ct, Dt, Rt are known matrices of appropriate
dimension.

2On this occasion, it is worthy of mention that affine decision rules were proposed many years ago, in the
context of Multi-Stage Stochastic Programming, by A. Charnes. In Stochastic Programming, people are indeed
interested in optimizing the expected value of the objective, and soon it became clear that in this respect, the
affine decision rules can be pretty far from being optimal. As a result, the simple — and extremely useful from
the computational perspective — concept of affine decision rules remained completely forgotten for many years.
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Notational convention. Below, given a sequence of vectors e0, e1, ... and an integer t ≥ 0, we
denote by et the initial fragment of the sequence: et = [e0; ...; et]. When t is negative, et, by
definition, is the zero vector.
Affine control laws. A typical problem of (finite-horizon) Linear Control associated with the
“open loop” system (5.4.1) is to “close” the system by a non-anticipative affine output-based
control law

ut = gt +
∑t

τ=0
Gtτyτ (5.4.2)

(here the vectors gt and matrices Gtτ are the parameters of the control law). The closed loop
system (5.4.1), (5.4.2) is required to meet prescribed design specifications. We assume that these
specifications are represented by a system of linear inequalities

AwN ≤ b (5.4.3)

on the state-control trajectory wN = [x0; ...;xN+1; u0; ...;uN ] over a given finite time horizon
t = 0, 1, ..., N .

An immediate observation is that for a given control law (5.4.2) the dynamics (5.4.1) specifies
the trajectory as an affine function of the initial state z and the sequence of disturbances dN =
(d0, ..., dN ):

wN = wN
0 [γ] + WN [γ]ζ, ζ = (z, dN ),

where γ = {gt, Gtτ , 0 ≤ τ ≤ t ≤ N}, is the “parameter” of the underlying control law (5.4.2).
Substituting this expression for wN into (5.4.3), we get the following system of constraints on
the decision vector γ:

A
[
wN

0 [γ] + WN [γ]ζ
] ≤ b. (5.4.4)

If the disturbances dN and the initial state z are certain, (5.4.4) is “easy” — it is a system
of constraints on γ with certain data. Moreover, in the case in question we lose nothing by
restricting ourselves with “off-line” control laws (5.4.2) — those with Gtτ ≡ 0; when restricted
onto this subspace, let it be called Γ, in the γ space, the function wN

0 [γ] + WN [γ]ζ turns out to
be bi-affine in γ and in ζ, so that (5.4.4) reduces to a system of explicit linear inequalities on
γ ∈ Γ. Now, when the disturbances and/or the initial state are not known in advance, (which
is the only case of interest in Robust Control), (5.4.4) becomes an uncertainty-affected system
of constraints, and we could try to solve the system in a robust fashion, e.g., to seek a solution
γ that makes the constraints feasible for all realizations of ζ = (z, dN ) from a given uncertainty
set ZDN , thus arriving at the system of semi-infinite scalar constraints

A
[
wN

0 [γ] + WN [γ]ζ
] ≤ b ∀ζ ∈ ZDN . (5.4.5)

Unfortunately, the semi-infinite constraints in this system are not bi-affine, since the dependence
of wN

0 , WN on γ is highly nonlinear, unless γ is restricted to vary in Γ. Thus, when seeking
“on-line” control laws (those where Gtτ can be nonzero), (5.4.5) becomes a system of highly
nonlinear semi-infinite constraints and as such seems to be severely computationally intractable
(the feasible set corresponding to (5.4.4) can be in fact nonconvex). One possibility to circumvent
this difficulty would be to switch from control laws that are affine in the outputs yt to those affine
in disturbances and the initial state (cf. approach of [51]). This, however, could be problematic
in the situations when we do not observe z and dt directly. The good news is that we can
overcome this difficulty without requiring dt and z to be observable, the remedy being a suitable
re-parameterization of affine control laws.
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5.4.2 Purified-Output-Based Representation of Affine Control Laws and Ef-
ficient Design of Finite-Horizon Linear Controllers

Imagine that in parallel with controlling (5.4.1) with the aid of a non-anticipating output-based
control law ut = Ut(y0, ..., yt), we run the model of (5.4.1) as follows:

x̂0 = 0
x̂t+1 = Atx̂t + Btut

ŷt = Ctx̂t

vt = yt − ŷt.

(5.4.6)

Since we know past controls, we can run this system in an “on-line” fashion, so that the purified
output vt becomes known when the decision on ut should be made. An immediate observation
is that the purified outputs are completely independent of the control law in question — they
are affine functions of the initial state and the disturbances d0, ..., dt, and these functions are
readily given by the dynamics of (5.4.1).

Indeed, from the descriptions of the open-loop system and the model, it follows that
the differences δt = xt − x̂t evolve with time according to the equations

δ0 = z
δt+1 = At + Rtdt, t = 0, 1, ...

while
vt = Ctδt + Dtdt.

From these relations it follows that

vt = Vd
t dt + Vz

t z (5.4.7)

with matrices Vd
t , Vz

t depending solely on the matrices Aτ , Bτ , ..., 0 ≤ τ ≤ t, and
readily given by these matrices.

Now, it was mentioned that v0, ..., vt are known when the decision on ut should be made, so that
we can consider purified-output-based (POB) affine control laws

ut = ht +
∑t

τ=0
Htτvτ .

The complete description of the dynamical system “closed” by this control is

plant:

(a) :





x0 = z
xt+1 = Atxt + Btut + Rtdt

yt = Ctxt + Dtdt

model:

(b) :





x̂0 = 0
x̂t+1 = Atx̂t + Btut

ŷt = Ctx̂t

purified outputs:
(c) : vt = yt − ŷt

control law:

(d) : ut = ht +
t∑

τ=0
Htτvτ

(5.4.8)

The main result. We are about to prove the following simple and fundamental fact:
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Theorem 5.3
(i) For every affine control law in the form of (5.4.2), there exists a control law in the form

of (5.4.8.d) that, whatever be the initial state and a sequence of inputs, results in exactly the
same state-control trajectories of the closed loop system;

(ii) Vice versa, for every affine control law in the form of (5.4.8.d), there exists a control
law in the form of (5.4.2) that, whatever be the initial state and a sequence of inputs, results in
exactly the same state-control trajectories of the closed loop system;

(iii) [bi-affinity] The state-control trajectory wN of closed loop system (5.4.8) is affine in z,
dN when the parameters η = {ht, Htτ}0≤τ≤t≤N of the underlying control law are fixed, and is
affine in η when z, dN are fixed:

wN = ω[η] + Ωz[η]z + Ωd[η]dN (5.4.9)

for some vectors ω[η] and matrices Ωz[η], Ωd[η] depending affinely on η.

Proof. (i): Let us fix an affine control law in the form of (5.4.2), and let xt = Xt(z, dt−1),
ut = Ut(z, dt), yt = Yt(z, dt), vt = Vt(z, dt) be the corresponding states, controls, outputs, and
purified outputs. To prove (i) it suffices to show that for every t ≥ 0 with properly chosen
vectors qt and matrices Qtτ one has

∀(z, dt) : Yt(z, dt) = qt +
t∑

τ=0

QtτVτ (z, dτ ). (It)

Indeed, given the validity of these relations and taking into account (5.4.2), we would have

Ut(z, dt) ≡ gt +
t∑

τ=0

GtτYτ (z, dτ ) ≡ ht +
t∑

τ=0

HtτV (z, dτ ) (IIt)

with properly chosen ht, Htτ , so that the control law in question can indeed be represented as
a linear control law via purified outputs.

We shall prove (It) by induction in t. The base t = 0 is evident, since by (5.4.8.a–c) we merely
have Y0(z, d0) ≡ V0(z, d0). Now let s ≥ 1 and assume that relations (It) are valid for 0 ≤ t < s.
Let us prove the validity of (Is). From the validity of (It), t < s, it follows that the relations (IIt),
t < s, take place, whence, by the description of the model system, x̂s = X̂s(z, ds−1) is affine in
the purified outputs, and consequently the same is true for the model outputs ŷs = Ŷs(z, ds−1):

Ŷs(z, ds−1) = ps +
s−1∑

τ=0

PsτVτ (z, dτ ).

We conclude that with properly chosen ps, Psτ we have

Ys(z, ds) ≡ Ŷs(z, ds−1) + Vs(z, ds) = ps +
s−1∑

τ=0

PsτVτ (z, dτ ) + Vs(z, ds),

as required in (Is). Induction is completed, and (i) is proved.
(ii): Let us fix a linear control law in the form of (5.4.8.d), and let xt = Xt(z, dt−1),

x̂t = X̂t(z, dt−1), ut = Ut(z, dt), yt = Yt(z, dt), vt = Vt(z, dt) be the corresponding actual



SYNTHESIS OF LINEAR CONTROLLERS 245

and model states, controls, and actual and purified outputs. We should verify that the state-
control dynamics in question can be obtained from an appropriate control law in the form of
(5.4.2). To this end, similarly to the proof of (i), it suffices to show that for every t ≥ 0 one has

Vt(z, dt) ≡ qt +
t∑

τ=0

QtτYτ (z, dτ ) (IIIt)

with properly chosen qt, Qtτ . We again apply induction in t. The base t = 0 is again trivially
true due to V0(z, d0) ≡ Y0(z, d0). Now let s ≥ 1, and assume that relations (IIIt) are valid for
0 ≤ t < s, and let us prove that (IIIs) is valid as well. From the validity of (IIIt), t < s, and
from (5.4.8.d) it follows that

t < s ⇒ Ut(z, dt) = ct +
t∑

τ=0

CtτYτ (z, dτ )

with properly chosen ct and Ctτ . From these relations and the description of the model system
it follows that its state X̂s(z, ds−1) at time s, and therefore the model output Ŷs(z, ds−1), are
affine functions of Y0(z, d0),..., Ys−1(z, ds−1):

Ŷs(z, ds−1) = ps +
s−1∑

τ=0

PsτYτ (z, dτ )

with properly chosen ps, Psτ . It follows that

Vs(z, ds) ≡ Ys(z, ds)− Ŷs(z, ds−1) = Ys(z, ds)− ps −
s−1∑

τ=0

PsτYτ (z, dτ ),

as required in (IIIs). Induction is completed, and (ii) is proved.
(iii): For 0 ≤ s ≤ t let

At
s =





t−1∏
r=s

Ar, s < t

I, s = t

Setting δt = xt − x̂t, we have by (5.4.8.a–b)

δt+1 = Atδt + Rtdt, δ0 = z ⇒ δt = At
0z +

t−1∑

s=0

At
s+1Rsds

(from now on, sums over empty index sets are zero), whence

vτ = Cτδτ + Dτdτ = CτA
τ
0z +

τ−1∑

s=0

CτA
τ
s+1Rsds + Dτdτ . (5.4.10)
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Therefore control law (5.4.8.d) implies that

ut = ht +
t∑

τ=0
Htτvτ = ht︸︷︷︸

νt[η]

+

[
t∑

τ=0

HtτCτA
τ
0

]

︸ ︷︷ ︸
Nt[η]

z

+
t−1∑
s=0

[
HtsDs +

t∑

τ=s+1

HtτCτA
τ
s+1Rs

]

︸ ︷︷ ︸
Nts[η]

ds + HttDt︸ ︷︷ ︸
Ntt[η]

dt

= νt[η] + Nt[η]z +
t∑

s=0
Nts[η]ds,

(5.4.11)

whence, invoking (5.4.8.a),

xt = At
0z +

t−1∑
τ=0

At
τ+1[Bτuτ + Rτdτ ] =

[
t−1∑

τ=0

At
τ+1Bτht

]

︸ ︷︷ ︸
µt[η]

+

[
At

0 +
t−1∑

τ=0

At
τ+1BτNτ [η]

]

︸ ︷︷ ︸
Mt[η]

z

+
t−1∑
s=0

[
t−1∑
τ=s

At
τ+1BτNτs[η] + At

s+1BsRs

]

︸ ︷︷ ︸
Mts[η]

ds

= µt[η] + Mt[η]z +
t−1∑
s=0

Mts[η]ds.

(5.4.12)

We see that the states xt, 0 ≤ t ≤ N + 1, and the controls ut, 0 ≤ t ≤ N , of the closed loop
system (5.4.8) are affine functions of z, dN , and the corresponding “coefficients” µt[η],...,Nts[η]
are affine vector- and matrix-valued functions of the parameters η = {ht,Htτ}0≤τ≤t≤N of the
underlying control law (5.4.8.d). ¤
The consequences. The representation (5.4.8.d) of affine control laws is incomparably better
suited for design purposes than the representation (5.4.2), since, as we know from Theorem
5.3.(iii), with controller (5.4.8.d), the state-control trajectory wN becomes bi-affine in ζ =
(z, dN ) and in the parameters η = {ht,Htτ , 0 ≤ τ ≤ t ≤ N} of the controller:

wN = ωN [η] + ΩN [η]ζ (5.4.13)

with vector- and matrix-valued functions ωN [η], ΩN [η] affinely depending on η and readily
given by the dynamics (5.4.1). Substituting (5.4.13) into (5.4.3), we arrive at the system of
semi-infinite bi-affine scalar inequalities

A
[
ωN [η] + ΩN [η]ζ

] ≤ b (5.4.14)

in variables η, and can use the tractability results from lectures 1, 4 in order to solve efficiently
the RC/GRC of this uncertain system of scalar linear constraints. For example, we can process
efficiently the GRC setting of the semi-infinite constraints (5.4.13)

aT
i

[
ωN [η] + ΩN [η][z; dN ]

]− bi ≤ αz
i dist(z,Z) + αi

ddist(dN ,DN )
∀[z; dN ] ∀i = 1, ..., I

(5.4.15)
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where Z, DN are “good,” (e.g., given by strictly feasible semidefinite representations), closed
convex normal ranges of z, dN , respectively, and the distances are defined via the ‖ · ‖∞ norms
(this setting corresponds to the “structured” GRC, see Definition 4.3). By the results of section
4.3, system (5.4.15) is equivalent to the system of constraints

∀(i, 1 ≤ i ≤ I) :

(a) aT
i

[
ωN [η] + ΩN [η][z; dN ]

]− bi ≤ 0 ∀[z; dN ] ∈ Z ×DN

(b) ‖aT
i ΩN

z [η]‖1 ≤ αi
z (c) ‖aT

i ΩN
d [η]‖1 ≤ αi

d,

(5.4.16)

where ΩN [η] =
[
ΩN

z [η], ΩN
d [η]

]
is the partition of the matrix ΩN [η] corresponding to the partition

ζ = [z; dN ]. Note that in (5.4.16), the semi-infinite constraints (a) admit explicit semidefinite
representations (Theorem 1.1), while constraints (b−c) are, essentially, just linear constraints on
η and on αi

z, α
i
d. As a result, (5.4.16) can be thought of as a computationally tractable system

of convex constraints on η and on the sensitivities αi
z, αi

d, and we can minimize under these
constraints a “nice,” (e.g., convex), function of η and the sensitivities. Thus, after passing to
the POB representation of affine control laws, we can process efficiently specifications expressed
by systems of linear inequalities, to be satisfied in a robust fashion, on the (finite-horizon)
state-control trajectory.

The just summarized nice consequences of passing to the POB control laws are closely
related to the tractability of AARCs of uncertain LO problems with fixed recourse,
specifically, as follows. Let us treat the state equations (5.4.1) coupled with the design
specifications (5.4.3) as a system of uncertainty-affected linear constraints on the
state-control trajectory w, the uncertain data being ζ = [z; dN ]. Relations (5.4.10)
say that the purified outputs vt are known in advance, completely independent of
what the control law in use is, linear functions of ζ. With this interpretation, a POB
control law becomes a collection of affine decision rules that specify the decision
variables ut as affine functions of Ptζ ≡ [v0; v1; ...; vt] and simultaneously, via the
state equations, specify the states xt as affine functions of Pt−1ζ. Thus, when looking
for a POB control law that meets our design specifications in a robust fashion, we are
doing nothing but solving the RC (or the GRC) of an uncertain LO problem in affine
decision rules possessing a prescribed “information base.” On closest inspection, this
uncertain LO problem is with fixed recourse, and therefore its robust counterparts
are computationally tractable.

Remark 5.2 It should be stressed that the re-parameterization of affine control laws underlying
Theorem 5.3 (and via this Theorem — the nice tractability results we have just mentioned) is
nonlinear. As a result, it can be of not much use when we are optimizing over affine control
laws satisfying additional restrictions rather than over all affine control laws.

Assume, e.g., that we are seeking control in the form of a simple output-based linear feedback:

ut = Gtyt.

This requirement is just a system of simple linear constraints on the parameters of the control
law in the form of (5.4.2), which, however, does not help much, since, as we have already
explained, optimization over control laws in this form is by itself difficult. And when passing
to affine control laws in the form of (5.4.8.d), the requirement that our would-be control
should be a linear output-based feedback becomes a system of highly nonlinear constraints
on our new design parameters η, and the synthesis again turns out to be difficult.
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Example: Controlling finite-horizon gains. Natural design specification pertaining to
finite-horizon Robust Linear Control are in the form of bounds on finite-horizon gains z2xN ,
z2uN , d2xN , d2uN defined as follows: with a linear, (i.e., with ht ≡ 0) control law (5.4.8.d), the
states xt and the controls ut are linear functions of z and dN :

xt = Xz
t [η]z + Xd

t [η]dN , ut = U z
t [η]z + Ud

t [η]dN

with matrices Xz
t [η],...,Ud

t [η] affinely depending on the parameters η of the control law. Given t,
we can define the z to xt gains and the finite-horizon z to x gain as z2xt(η) = max

z
{‖Xz

t [η]z‖∞ :

‖z‖∞ ≤ 1} and z2xN (η) = max
0≤t≤N

z2xt(η). The definitions of the z to u gains z2ut(η), z2uN (η) and

the “disturbance to x/u” gains d2xt(η), d2xN (η), d2ut(η), d2uN (η) are completely similar, e.g.,
d2ut(η) = max

dN
{‖Ud

t [η]dN‖∞ : ‖dN‖∞ ≤ 1} and d2uN (η) = max
0≤t≤N

d2ut(η). The finite-horizon

gains clearly are nonincreasing functions of the time horizon N and have a transparent Control
interpretation; e.g., d2xN (η) (“peak to peak d to x gain”) is the largest possible perturbation
in the states xt, t = 0, 1, ..., N caused by a unit perturbation of the sequence of disturbances
dN , both perturbations being measured in the ‖ · ‖∞ norms on the respective spaces. Upper
bounds on N -gains (and on global gains like d2x∞(η) = supN≥0 d2xN (η)) are natural Control
specifications. With our purified-output-based representation of linear control laws, the finite-
horizon specifications of this type result in explicit systems of linear constraints on η and thus
can be processed routinely via LO. For example, an upper bound d2xN (η) ≤ λ on d2xN gain
is equivalent to the requirement

∑
j |(Xd

t [η])ij | ≤ λ for all i and all t ≤ N ; since Xd
t is affine in

η, this is just a system of linear constraints on η and on appropriate slack variables. Note that
imposing bounds on the gains can be interpreted as passing to the GRC (5.4.15) in the case
where the “desired behavior” merely requires wN = 0, and the normal ranges of the initial state
and the disturbances are the origins in the corresponding spaces: Z = {0}, DN = {0}.

Non-affine control laws

So far, we focused on synthesis of finite-horizon affine POB controllers. Acting in the spirit of
section 5.3.2, we can handle also synthesis of quadratic POB control laws — those where every
entry of ut, instead of being affine in the purified outputs vt = [v0; ...; vt], is allowed to be a
quadratic function of vt. Specifically, assume that we want to “close” the open loop system
(5.4.1) by a non-anticipating control law in order to ensure that the state-control trajectory wN

of the closed loop system satisfies a given system S of linear constraints in a robust fashion, that
is, for all realizations of the “uncertain data” ζ = [z; dN ] from a given uncertainty set ZN

ρ = ρZN

(ρ > 0 is, as always, the uncertainty level, and Z 3 0 is a closed convex set of “uncertain data
of magnitude ≤ 1”). Let us use a quadratic POB control law in the form of

ui
t = h0

it + hT
i,tv

t +
1
ρ
[vt]T Hi,tv

t, (5.4.17)

where ui
t is i-th coordinate of the vector of controls at instant t, and h0

it, hit and Hit are,
respectively, real, vector, and matrix parameters of the control law.3 On a finite time horizon
0 ≤ t ≤ N , such a quadratic control law is specified by ρ and the finite-dimensional vector
η = {h0

it, hit,Hit} 1≤i≤dim u
0≤t≤N

. Now note that the purified outputs are well defined for any non-

anticipating control law, not necessary affine, and they are independent of the control law linear

3The specific way in which the uncertainty level ρ affects the controls is convenient technically and is of no
practical importance, since “in reality” the uncertainty level is a known constant.
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functions of ζt ≡ [z; dt]. The coefficients of these linear functions are readily given by the data
Aτ , ..., Dτ , 0 ≤ τ ≤ t (see (5.4.7)). With this in mind, we see that the controls, as given by
(5.4.17), are quadratic functions of the initial state and the disturbances, the coefficients of these
quadratic functions being affine in the vector η of parameters of our quadratic control law:

ui
t = U (0)

it [η] + [z; dt]TU (1)
it [η] +

1
ρ
[z; dt]TU (2)

it [η][z; dt] (5.4.18)

with affine in η reals/vectors/matrices U (κ)
it [η], κ = 0, 1, 2. Plugging these representations of the

controls into the state equations of the open loop system (5.4.1), we conclude that the states
xj

t of the closed loop system obtained by “closing” (5.4.1) by the quadratic control law (5.4.17),
have the same “affine in η, quadratic in [z; dt]” structure as the controls:

xi
t = X (0)

jt [η] + [z; dt−1]TX (1)
jt [η] +

1
ρ
[z; dt−1]TX (2)

jt [η][z; dt−1] (5.4.19)

with affine in η reals/vectors/matrices X (κ)
jt , κ = 0, 1, 2.

Plugging representations (5.4.18), (5.4.19) into the system S of our target constraints, we end
up with a system of semi-infinite constraints on the parameters η of the control law, specifically,
the system

ak[η] + 2ζT pk[η] +
1
ρ
ζT Rk[η]ζ ≤ 0∀ζ = [z; dN ] ∈ ZN

ρ = ρZN , k = 1, ..., K, (5.4.20)

where ak[η], pk[η] and Rk[ζ] are affine in η. Setting Pk[η] =
[

pT
k [η]

pk[η] Rk[η]

]
, ζ̂ρ[ζ] =

[
ζT

ζ ζζT

]

and denoting by ẐN
ρ the convex hull of the image of the set ZN

ρ under the mapping ζ 7→ ζ̂ρ[ζ],
system (5.4.20) can be rewritten equivalently as

ak[η] + Tr(Pk[η]ζ̂) ≤ 0 ∀(ζ̂ ∈ ẐN
ρ ≡ ρẐN

1 , k = 1, ..., K) (5.4.21)

and we end up with a system of semi-infinite bi-affine scalar inequalities. From the results of
section 5.3.2 it follows that this semi-infinite system:

• is computationally tractable, provided that ZN is an ellipsoid {ζ : ζT Qζ ≤ 1}, Q Â 0.
Indeed, here ẐN

1 is the semidefinite representable set

{
[

ωT

ω Ω

]
:
[

1 ωT

ω Ω

]
º 0, Tr(ΩQ) ≤ 1};

• admits a safe tractable approximation tight within the factor ϑ = O(1) ln(J +1), provided
that ZN is the ∩-ellipsoidal uncertainty set {ζ : ζT Qjζ ≤ 1, 1 ≤ j ≤ J}, where Qj º 0
and

∑
j Qj Â 0. This approximation is obtained when replacing the “true” uncertainty

set ẐN
ρ with the semidefinite representable set

Wρ = ρ{
[

ωT

ω Ω

]
:
[

1 ωT

ω Ω

]
º 0, Tr(ΩQj) ≤ 1, 1 ≤ j ≤ J}

(recall that ẐN
ρ ⊂ Wρ ⊂ ẐN

ϑρ).
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5.4.3 Handling Infinite-Horizon Design Specifications

One might think that the outlined reduction of (discrete time) Robust Linear Control problems
to Convex Programming, based on passing to the POB representation of affine control laws
and deriving tractable reformulations of the resulting semi-infinite bi-affine scalar inequalities is
intrinsically restricted to the case of finite-horizon control specifications. In fact our approach
is well suited for handling infinite-horizon specifications — those imposing restrictions on the
asymptotic behavior of the closed loop system. Specifications of the latter type usually have to
do with the time-invariant open loop system (5.4.1):

x0 = z
xt+1 = Axt + But + Rdt

yt = Cxt + Ddt

, t = 0, 1, ... (5.4.22)

From now on we assume that the open loop system (5.4.22) is stable, that is, the spectral radius
of A is < 1 (in fact this restriction can be somehow circumvented, see below). Imagine that we
“close” (5.4.22) by a nearly time-invariant POB control law of order k, that is, a law of the form

ut = ht +
∑k−1

s=0
Ht

svt−s, (5.4.23)

where ht = 0 for t ≥ N∗ and Ht
τ = Hτ for t ≥ N∗ for a certain stabilization time N∗. From now

on, all entities with negative indices are set to 0. While the “time-varying” part {ht,H
t
τ , 0 ≤

t < N∗} of the control law can be used to adjust the finite-horizon behavior of the closed loop
system, its asymptotic behavior is as if the law were time-invariant: ht ≡ 0 and Ht

τ ≡ Hτ for
all t ≥ 0. Setting δt = xt − x̂t, Ht = [Ht

0, ..., H
t
k−1], H = [H0, ..., Hk−1], the dynamics (5.4.22),

(5.4.6), (5.4.23) is given by

ωt+1︷ ︸︸ ︷


xt+1

δt+1

δt

...
δt−k+2




=

A+[Ht]︷ ︸︸ ︷


A BHt
0C BHt

1C . . . BHt
k−1C

A
A

. . .

A




ωt

+

R+[Ht]︷ ︸︸ ︷


R BHt
0D BHt

1D . . . BHt
k−1D

R
R

. . .

R







dt

dt

dt−1

...
dt−k+1




+




Bht

0
...
0


 , t = 0, 1, 2, ...,

ut = ht +
∑k−1

ν=0H
t
ν [Cδt−ν + Ddt−ν ].

(5.4.24)

We see that starting with time N∗, dynamics (5.4.24) is exactly as if the underlying control law
were the time invariant POB law with the parameters ht ≡ 0, Ht ≡ H. Moreover, since A is
stable, we see that system (5.4.24) is stable independently of the parameter H of the control
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law, and the resolvent RH(s) := (sI −A+[H])−1 of A+[H] is the affine in H matrix




RA(s) RA(s)BH0CRA(s) RA(s)BH1CRA(s) ... RA(s)BHk−1CRA(s)

RA(s)

RA(s)

. . .

RA(s)




, (5.4.25)

where RA(s) = (sI −A)−1 is the resolvent of A.
Now imagine that the sequence of disturbances dt is of the form dt = std, where s ∈ C differs

from 0 and from the eigenvalues of A. From the stability of (5.4.24) it follows that as t → ∞,
the solution ωt of the system, independently of the initial state, approaches the “steady-state”
solution ω̂t = stH(s)d, where H(s) is certain matrix. In particular, the state-control vector
wt =

[
xt

ut

]
approaches, as t → ∞, the trajectory ŵt = stHxu(s)d. The associated disturbance-

to-state/control transfer matrix Hxu(s) is easily computable:

Hxu(s) =




Hx(s)︷ ︸︸ ︷
RA(s)

[
R +

∑k−1

ν=0
s−νBHν [D + CRA(s)R]

]

[∑k−1

ν=0
s−νHν

]
[D + CRA(s)R]

︸ ︷︷ ︸
Hu(s)




. (5.4.26)

The crucial fact is that the transfer matrix Hxu(s) is affine in the parameters H = [H0, ...,Hk−1]
of the nearly time invariant control law (5.4.23). As a result, design specifications representable
as explicit convex constraints on the transfer matrix Hxu(s) (these are typical specifications in
infinite-horizon design of linear controllers) are equivalent to explicit convex constraints on the
parameters H of the underlying POB control law and therefore can be processed efficiently via
Convex Optimization.

Example: Discrete time H∞ control. Discrete time H∞ design specifications impose
constraints on the behavior of the transfer matrix along the unit circumference s = exp{ıω},
0 ≤ ω ≤ 2π, that is, on the steady state response of the closed loop system to a disturbance in
the form of a harmonic oscillation.4. A rather general form of these specifications is a system of
constraints

‖Qi(s)−Mi(s)Hxu(s)Ni(s)‖ ≤ τi ∀(s = exp{ıω} : ω ∈ ∆i), (5.4.27)

where Qi(s), Mi(s), Ni(s) are given rational matrix-valued functions with no singularities on
the unit circumference {s : |s| = 1}, ∆i ⊂ [0, 2π] are given segments, and ‖ · ‖ is the standard
matrix norm (the largest singular value).

We are about to demonstrate that constraints (5.4.27) can be represented by an explicit
finite system of LMIs; as a result, specifications (5.4.27) can be efficiently processed numerically.
Here is the derivation. Both “transfer functions” Hx(s), Hu(s) are of the form q−1(s)Q(s,H),

4The entries of Hx(s) and Hu(s), restricted onto the unit circumference s = exp{ıω}, have very transparent
interpretation. Assume that the only nonzero entry in the disturbances is the j-th one, and it varies in time
as a harmonic oscillation of unit amplitude and frequency ω. The steady-state behavior of i-th state then will
be a harmonic oscillation of the same frequency, but with another amplitude, namely, |(Hx(exp{ıω))ij | and
phase shifted by arg((Hx(exp{ıω})ij). Thus, the state-to-input frequency responses (Hx(exp{ıω}))ij explain the
steady-state behavior of states when the input is comprised of harmonic oscillations. The interpretation of the
control-to-input frequency responses (Hu(exp{ıω}))ij is completely similar.
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where q(s) is a scalar polynomial independent of H, and Q(s, H) is a matrix-valued polynomial
of s with coefficients affinely depending on H. With this in mind, we see that the constraints
are of the generic form

‖p−1(s)P (s,H)‖ ≤ τ ∀(s = exp{ıω} : ω ∈ ∆), (5.4.28)

where p(·) is a scalar polynomial independent of H and P (s,H) is a polynomial in s with m×n
matrix coefficients affinely depending on H. Constraint (5.4.28) can be expressed equivalently
by the semi-infinite matrix inequality

[
τIm P (z,H)/p(z)

(P (z,H))∗/(p(z))∗ τIn

]
º 0 ∀(z = exp{ıω} : ω ∈ ∆)

(∗ stands for the Hermitian conjugate, ∆ ⊂ [0, 2π] is a segment) or, which is the same,

SH,τ (ω) ≡
[

τp(exp{ıω})(p(exp{ıω}))∗Im (p(exp{ıω}))∗P (exp{ıω}, H)
p(exp{ıω})(P (exp{ıω}, H))∗ τp(exp{ıω})(p(exp{ıω}))∗In

]

º 0∀ω ∈ ∆.

Observe that SH,τ (ω) is a trigonometric polynomial taking values in the space of Hermitian
matrices of appropriate size, the coefficients of the polynomial being affine in H, τ . It is known
[49] that the cone Pm of (coefficients of) all Hermitian matrix-valued trigonometric polynomials
S(ω) of degree ≤ m, which are º 0 for all ω ∈ ∆, is semidefinite representable, i.e., there exists
an explicit LMI

A(S, u) º 0

in variables S (the coefficients of a polynomial S(·)) and additional variables u such that S(·) ∈
Pm if and only if S can be extended by appropriate u to a solution of the LMI. Consequently,
the relation

A(SH,τ , u) º 0, (∗)
which is an LMI in H, τ, u, is a semidefinite representation of (5.4.28): H, τ solve (5.4.28) if and
only if there exists u such that H, τ, u solve (∗).

5.4.4 Putting Things Together: Infinite- and Finite-Horizon Design Specifi-
cations

For the time being, we have considered optimization over purified-output-based affine control
laws in two different settings, finite- and infinite-horizon design specifications. In fact we can to
some extent combine both settings, thus seeking affine purified-output-based controls ensuring
both a good steady-state behavior of the closed loop system and a “good transition” to this
steady-state behavior. The proposed methodology will become clear from the example that
follows.

Consider the open-loop time-invariant system representing the discretized double-pendulum
depicted on figure 5.2. The dynamics of the continuous time prototype plant is given by

ẋ = Acx + Bcu + Rcd
y = Cx,

where

Ac =




0 1 0 0
−1 0 1 0
0 0 0 1
1 0 −1 0


 , Bc =




0
1
0
0


 , Rc =




0
0
0
−1


 , C =

[
1 0 0 0
0 1 0 0

]
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u d

X ,X
1  2

Figure 5.2: Double pendulum: two masses linked by a spring sliding without friction along a
rod. Position and velocity of the first mass are observed.

(x1, x2 are the position and the velocity of the first mass, and x3, x4 those of the second mass).
The discrete time plant we will actually work with is

xt+1 = A0xt + But + Rdt

yt = Cxt
(5.4.29)

where A0 = exp{∆ · Ac}, B =
∆∫
0

exp{sAc}Bcds, R =
∆∫
0

exp{sAc}Rcds. System (5.4.29) is not

stable (absolute values of all eigenvalues of A0 are equal to 1), which seemingly prevents us from
addressing infinite-horizon design specifications via the techniques developed in section 5.4.3.
The simplest way to circumvent the difficulty is to augment the original plant by a stabilizing
time-invariant linear feedback; upon success, we then apply the purified-output-based synthesis
to the augmented, already stable, plant. Specifically, let us look for a controller of the form

ut = Kyt + wt. (5.4.30)

With such a controller, (5.4.29) becomes

xt+1 = Axt + Bwt + Rdt, A = A0 + BKC
yt = Cxt.

(5.4.31)

If K is chosen in such a way that the matrix A = A0 + BKC is stable, we can apply all our
purified-output-based machinery to the plant (5.4.31), with wt in the role of ut, however keeping
in mind that the “true” controls ut will be Kyt + wt.

For our toy plant, a stabilizing feedback K can be found by “brute force” — by generating a
random sample of matrices of the required size and selecting from this sample a matrix, if any,
which indeed makes (5.4.31) stable. Our search yielded feedback matrix K = [−0.6950,−1.7831],
with the spectral radius of the matrix A = A0 + BKC equal to 0.87. From now on, we focus on
the resulting plant (5.4.31), which we intend to “close” by a control law from C8,0, where Ck,0 is
the family of all time invariant control laws of the form

wt =
t∑

τ=0

Ht−τvτ

[
vt = yt − Cx̂t,

x̂t+1 = Ax̂t + Bwt, x̂0 = 0

]
(5.4.32)

where Hs = 0 when s ≥ k. Our goal is to pick in C8,0 a control law with desired properties (to
be precisely specified below) expressed in terms of the following 6 criteria:

• the four peak to peak gains z2x, z2u, d2x, d2u defined on p. 248;

• the two H∞ gains

H∞,x = max
|s|=1,i,j

|(Hx(s))|ij , H∞,u = max
|s|=1,i,j

|(Hu(s))|ij ,
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Optimized Resulting values of the criteria
criterion z2x40 z2u40 d2x40 d2u40 H∞,x H∞,u

z2x40 25.8 205.8 1.90 3.75 10.52 5.87
z2u40 58.90 161.3 1.90 3.74 39.87 20.50
d2x40 5773.1 13718.2 1.77 6.83 1.72 4.60
d2u40 1211.1 4903.7 1.90 2.46 66.86 33.67
H∞,x 121.1 501.6 1.90 5.21 1.64 5.14
H∞,u 112.8 460.4 1.90 4.14 8.13 1.48

z2x z2u d2x d2u H∞,x H∞,u

(5.4.34) 31.59 197.75 1.91 4.09 1.82 2.04
(5.4.35) 2.58 0.90 1.91 4.17 1.77 1.63

Table 5.2: Gains for time invariant control laws of order 8 yielded by optimizing, one at a time,
the criteria z2x40,...,H∞,u over control laws from F = {η ∈ C8,0 : d2x40[η] ≤ 1.90} (first six
lines), and by solving programs (5.4.34), (5.4.35) (last two lines).

where Hx and Hu are the transfer functions from the disturbances to the states and the
controls, respectively.

Note that while the purified-output-based control wt we are seeking is defined in terms of the
stabilized plant (5.4.31), the criteria z2u,d2u, H∞,u are defined in terms of the original controls
ut = Kyt + wt = KCxt + wt affecting the actual plant (5.4.29).

In the synthesis we are about to describe our primary goal is to minimize the global distur-
bance to state gain d2x, while the secondary goal is to avoid too large values of the remaining
criteria. We achieve this goal as follows.
Step 1: Optimizing d2x. As it was explained on p. 248, the optimization problem

Optd2x(k, 0;N+) = min
η∈Ck,0

max
0≤t≤N+

d2xt[η] (5.4.33)

is an explicit convex program (in fact, just an LO), and its optimal value is a lower bound on
the best possible global gain d2x achievable with control laws from Ck,0. In our experiment, we
solve (5.4.33) for k = 8 and N+ = 40, arriving at Optd2x(8, 0; 40) = 1.773. The global d2x gain
of the resulting time-invariant control law is 1.836 — just 3.5% larger than the outlined lower
bound. We conclude that the control yielded by the solution to (5.4.33) is nearly the best one,
in terms of the global d2x gain, among time-invariant controls of order 8. At the same time,
part of the other gains associated with this control are far from being good, see line “d2x40” in
table 5.2.
Step 2: Improving the remaining gains. To improve the “bad” gains yielded by the nearly
d2x-optimal control law we have built, we act as follows: we look at the family F of all time
invariant control laws of order 8 with the finite-horizon d2x gain d2x40[η] = max

0≤t≤40
d2xt[η] not

exceeding 1.90 (that is, look at the controls from C8,0 that are within 7.1% of the optimum in
terms of their d2x40 gain) and act as follows:

A. We optimize over F , one at a time, every one of the remaining criteria z2x40[η] =
max

0≤t≤40
z2xt[η], z2u40[η] = max

0≤t≤40
z2ut[η], d2u40[η] = max

0≤t≤40
d2ut[η], H∞,x[η], H∞,u[η], thus ob-

taining “reference values” of these criteria; these are lower bounds on the optimal values of the
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corresponding global gains, optimization being carried out over the set F . These lower bounds
are the underlined data in table 5.2.

B. We then minimize over F the “aggregated gain”

z2x40[η]
25.8

+
z2u40[η]
161.3

+
d2u40[η]

2.46
+

H∞,x[η]
1.64

+
H∞,u[η]

1.48
(5.4.34)

(the denominators are exactly the aforementioned reference values of the corresponding gains).
The global gains of the resulting time-invariant control law of order 8 are presented in the
“(5.4.34)” line of table 5.2.
Step 3: Finite-horizon adjustments. Our last step is to improve the z2x and z2u gains by
passing from a time invariant affine control law of order 8 to a nearly time invariant law of order
8 with stabilization time N∗ = 20. To this end, we solve the convex optimization problem

min
η∈C8,20





z2x50[η] + z2u50[η] :

d2x50[η] ≤ 1.90
d2u50[η] ≤ 4.20
H∞,x[η] ≤ 1.87
H∞,u[η] ≤ 2.09





(5.4.35)

(the right hand sides in the constraints for d2u50[·], H∞,x[·], H∞,u[·] are the slightly increased
(by 2.5%) gains of the time invariant control law obtained in Step 2). The global gains of the
resulting control law are presented in the last line of table 5.2, see also figure 5.3. We see that
finite-horizon adjustments allow us to reduce by orders of magnitude the global z2x and z2u
gains and, as an additional bonus, result in a substantial reduction of H∞-gains.

Simple as this control problem may be, it serves well to demonstrate the importance of
purified-output-based representation of affine control laws and the associated possibility to ex-
press various control specifications as explicit convex constraints on the parameters of such laws.

5.5 Exercises

Exercise 5.1 Consider a discrete time linear dynamical system

x0 = z
xt+1 = Atxt + Btut + Rtdt, t = 0, 1, ...

(5.5.1)

where xt ∈ Rn are the states, ut ∈ Rm are the controls, and dt ∈ Rk are the exogenous
disturbances. We are interested in the behavior of the system on the finite time horizon t =
0, 1, ..., N . A “desired behavior” is given by the requirement

‖PwN − q‖∞ ≤ R (5.5.2)

on the state-control trajectory wN = [x0; ...; xN+1; u0; ...; uN ].
Let us treat ζ = [z; d0; ...; dN ] as an uncertain perturbation with perturbation structure

(Z,L, ‖ · ‖r), where
Z = {ζ : ‖ζ − ζ̄‖s ≤ R}, L = RL [L = dim ζ]

and r, s ∈ [1,∞], so that (5.5.1), (5.5.2) become a system of uncertainty-affected linear con-
straints on wN . We want to process the Affinely Adjustable GRC of the system, where ut are
allowed to be affine functions of the initial state z and the vector of disturbances dt = [d0; ...; dt]
up to time t, and the states xt are allowed to be affine functions of z and dt−1. We wish to
minimize the corresponding global sensitivity.
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Figure 5.3: Frequency responses and gains of control law given by solution to (5.4.35).
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In control terms: we want to “close” the open-loop system (5.5.1) with a non-anticipative
affine control law

ut = Uz
t z + Ud

t dt + u0
t (5.5.3)

based on observations of initial states and disturbances up to time t in such a way that
the “closed loop system” (5.5.1), (5.5.3) exhibits the desired behavior in a robust w.r.t. the
initial state and the disturbances fashion.

Write down the AAGRC of our uncertain problem as an explicit convex program with efficiently
computable constraints.

Exercise 5.2 Consider the modification of Exercise 5.1 where the cone L = RL is replaced with

L = {[0; d0; ...; dN ] : dt ≥ 0, 0 ≤ t ≤ N},

and solve the corresponding version of the Exercise.

Exercise 5.3 Consider the simplest version of Exercise 5.1, where (5.5.1) reads

x0 = z ∈ R
xt+1 = xt + ut − dt, t = 0, 1, ..., 15,

(5.5.2) reads
|θxt| = 0, t = 1, 2, ..., 16, |ut| = 0, t = 0, 1, ..., 15

and the perturbation structure is

Z = {[z; d0; ...; d15] = 0} ⊂ R17, L = {[0; d0; d1; ...; d15]}, ‖ζ‖ ≡ ‖ζ‖2.

Assuming the same “adjustability status” of ut and xt as in Exercise 5.1,

1. Represent the AAGRC of (the outlined specializations of) (5.5.1), (5.5.2), where the goal
is to minimize the global sensitivity, as an explicit convex program;

2. Interpret the AAGRC in Control terms;

3. Solve the AAGRC for the values of θ equal to 1.e6, 10, 2, 1.

Exercise 5.4 Consider a communication network — an oriented graph G with the set of nodes
V = {1, ..., n} and the set of arcs Γ. Several ordered pairs of nodes (i, j) are marked as “source-
sink” nodes and are assigned traffic dij — the amount of information to be transmitted from
node i to node j per unit time; the set of all source-sink pairs is denoted by J . Arcs γ ∈ Γ of
a communication network are assigned with capacities — upper bounds on the total amount of
information that can be sent through the arc per unit time. We assume that the arcs already
possess certain capacities pγ , which can be further increased; the cost of a unit increase of the
capacity of arc γ is a given constant cγ .

1) Assuming the demands dij certain, formulate the problem of finding the cheapest extension
of the existing network capable to ensure the required source-sink traffic as an LO program.

2) Now assume that the vector of traffic d = {dij : (i, j) ∈ J } is uncertain and is known
to run through a given semidefinite representable compact uncertainty set Z. Allowing the
amounts xij

γ of information with origin i and destination j traveling through the arc γ to depend
affinely on traffic, build the AARC of the (uncertain version of the) problem from 1). Consider
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two cases: (a) for every (i, j) ∈ J , xij
γ can depend affinely solely on dij , and (b) xij

γ can depend
affinely on the entire vector d. Are the resulting problems computationally tractable?

3) Assume that the vector d is random, and its components are independent random variables
uniformly distributed in given segments ∆ij of positive lengths. Build the chance constrained
versions of the problems from 2).




