opyright; see https://epubs.siam.org/page/terms

Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or ¢

LECTURES ON MODERN
CoNVEX OPTIMIZATION



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

MPS/SIAM Series on Optimization

This series is published jointly by the Mathematical Programming Society and the Society
for Industrial and Applied Mathematics. It includes research monographs, textbooks at all
levels, books on applications, and tutorials. Besides being of high scientific quality, books
in the series must advance the understanding and practice of optimization and be written
clearly, in a manner appropriate to their level.

Editor-in-Chief
John E. Dennis, Jr., Rice University

Continuous Optimization Editor
Stephen J. Wright, Argonne National Laboratory

Discrete Optimization Editor
David B. Shmoys, Cornell University

Editorial Board

Daniel Bienstock, Columbia University

John R. Birge, Northwestern University

Andrew V. Goldberg, InterTrust Technologies Corporation
Matthias Heinkenschloss, Rice University

David S. Johnson, AT&T Labs - Research

Gil Kalai, Hebrew University

Ravi Kannan, Yale University

C. T. Kelley, North Carolina State University

Jan Karel Lenstra, Technische Universiteit Eindhoven
Adrian S. Lewis, University of Waterloo

Daniel Ralph, The Judge Institute of Management Studies
James Renegar, Cornell University

Alexander Schrijver, CWI, The Netherlands

David P. Williamson, IBM T.J. Watson Research Center
Jochem Zowe, University of Erlangen-Nuremberg, Germany

Series Volumes

Ben-Tal, Aharon and Nemirovski, Arkadi, Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications

Conn, Andrew R., Gould, Nicholas I. M., and Toint, Phillippe L., Trust-Region Methods



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

LECTURES ON MODERN
CoNVEX OPTIMIZATION

ANALYSIS, ALGORITHMS, AND
ENGINEERING APPLICATIONS

Aharon Ben-Tal
Arkadi Nemirovski

Technion-Israel Institute of Technology
Haifa, Israel

Siam MPS
Society for Industrial and Applied Mathematics ~ Mathematical Programming Society
Philadelphia Philadelphia



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Copyright ©2001 by the Society for Industrial and Applied Mathematics.
10987654321

All rights reserved. Printed in the United States of America. No part of this book
may be reproduced, stored, or transmitted in any manner without the written
permission of the publisher. For information, write to the Society for Industrial
and Applied Mathematics, 3600 University City Science Center, Philadelphia, PA
19104-2688.

Library of Congress Cataloging-in-Publication Data
Ben-Tal, A.
Lectures on modern convex optimization : analysis, algorithms, and
engineering applications / Aharon Ben-Tal, Arkadi Nemirovski.
p. cm. — (MPS-SIAM series on optimization)
Includes bibliographical references and index.
ISBN 0-89871-491-5
1. Convex programming. 2. Mathematical optimization. I. Nemirovski,
Arkadi Semenovich. II. Title. Ill. Series.

T57.815 .B46 2001
519.7'6—dc21
2001020818

S.LanL is a registered trademark.



This book is dedicated
to our friend and colleague, Jochem Zowe

sw.eyebed/Bio wes'sqnds//sdny 88s ‘1yB1IAdoo 10 8sUSD1| INVIS 01 19[gns uonNqLISIPBY ‘Gi7°'€€'STZ €T 01 TZ/70/T0 PapeojuMoQ



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Contents

Preface

1

Linear Programming

1.1
1.2

1.3

1.4

Linear programming: Basicnotions . . . . . . . ... ...
Example: Tschebyshev approximation and its applications .

1.2.1 Best uniform approximation . . . . . ... ..
1.2.2 Application: Synthesis of filters . . . . . . . .
1.2.3 Filter synthesis revisited . . . . . .. ... ..
1.2.4 Synthesis of arrays of antennae . . . . . . . .
Duality in linear programming . . . . . ... ... .. ..
1.3.1 Certificates for solvability and insolvability . .
1.3.2 Dual to a linear programming program: Origin
1.33 Linear programming duality theorem . . . . .
1.34 Ilustration: Problem dual to the Tschebyshev
approximation problem . . .. ... ... ..
1.3.5 Application: Truss topology design . . . . . .
ExercisestoLecture 1 . . . . .. ... ... ... .....
1.4.1 Uniform approximation . . . . ... ... ..
1.4.2 Theorem on the alternative . . . .. ... ..
1.4.3 Proof of the homogeneous Farkas lemma . . .
144 Helley theorem . . . . . . .. ... ... ...
1.4.5 How many bars are needed in an optimal truss?

From Linear Programming to Conic Programming

2.1
2.2
23

24

2.5
2.6

Orderings of R” and convex cones . . . . . ... ... ..
What is conic programming? . . . .. ... ... ... ..
Conicduality . . . . . ... ... ...

23.1 Geometry of the primal and dual problems . .
Conic duality theorem . . . . . . . ... ... ... ....
24.1 Is something wrong with conic duality? . . . .
24.2 Consequences of the conic duality theorem . .
243 Robust solvability status . . . . . .. ... ..

Conic duality revisited . . . . . .. .. ... ... ...
ExercisestoLecture 2 . . . . . .. ... .. ... .....

Vi

xi

19
21
30
30
34
35
38
40



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

viii

Contents

2.6.1
2.6.2
263

Cones . ... ... ... ...
Conicproblems . . .. ... ... ... ... .....
Feasible and level sets of conic problems . . . . ... ..

3 Conic Quadratic Programming

3.1 Conic quadratic problems: Preliminaries . . . . . . ... ... .. ..

3.2 Examples of conic quadratic problems . . . . . ... .. ... ....
3.2.1 Best linear approximation of complex-valued functions. .
322 Contact problems with static friction . . . . .. ... ..

33 What can be expressed via conic quadratic constraints? . . . . . . ..
3.3.1 More examples of conic quadratic-representable

functionsandsets . ... ... ... . ... ... ....

34 More applications . . . . . . . . ...

34.1 Tschebyshev approximation in relative scale . . . . . . .
342 Robust linear programming . . . . . .. ... ... ...
343 Truss topology design . . . . . .. ... ... ......
3.5 ExercisestoLecture 3 . . . . . . . .. ... L oL
3.5.1 Optimal control in discrete time linear dynamic system .
352 Conic quadratic representations . . . . . . . . ... ...
353 Does conic quadratic programming exist? . . . . . . . . .
4 Semidefinite Programming
4.1 Semidefinite cone and semidefinite programs . . . . . . . . . ... ..
4.1.1 Preliminaries . . . . . . .. ... ... ... ...
4.2 What can be expressed via linear matrix inequalities? . . . . ... ..
4.3 Applications I: Combinatorics . . . . . ... ... ... ... .....
43.1 Shor’s semidefinite relaxation scheme . . . . . . ... ..
432 Stability number, Shannon capacity, and Lovasz
capacityofagraph . . . . . .. ... ...
433 MAXCUT problem . . . . ... ... ... .......
434 Extensions . . . . . ... ... ...
435 S-lemma . . ... ...
4.4 Applications II: Stability analysis . . . . . ... ... ... ......
4.4.1 Dynamic stability in mechanics . . . . .. ... .....
4.4.2 Lyapunov stability analysis and synthesis . . . . . . . ..
443 Interval stability analysis and synthesis . . . . . ... ..

4.5 Applications III: Robust quadratic programming . . . . . ... . ...
4.6 Applications IV: Synthesis of filters and antennae arrays . . . . . . . .
4.7 Applications V: Designof chips . . . . . . ... ... ... .. ....

4.7.1
4.7.2

Buildingthemodel . . . . . . ... ... .........
Wiresizing . . . . . .. ...

4.8 Applications VI: Structural design . . . . . . ... ...

4.8.1
4.8.2
4.8.3
4.8.4

Buildingamodel . . . . . . ... ...
Standardcase . . . ... ... ...
Semidefinite reformulation of the standard SSD problem

From primaltodual . . . . ... ... ..........

79
79
81
81
82
85

104
109
109
110
120
131

. 131

132
137

139
139
139
144
159
161

164
170
172
175
178
178
180
189
202
210
219
220
226
227
228
233
236



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Contents ix
4.8.5 Backtoprimal . . . .. . ... ... 248
4.8.6 Explicit forms of the standard truss and shape problems. . 252
4.9 Applications VII: Extremal ellipsoids . . . . . ... ... ... .... 257
4.9.1 Ellipsoidal approximations of unions and intersections
ofellipsoids . . . . ... ... ... ... . ..., . 262
4.9.2 Approximating sums of ellipsoids . . . . . ... ..... 264
410 ExercisestoLecture4 . . . . .. . ... ... o 276
4.10.1 Around positive semidefiniteness, eigenvalues, and
>-ordering . . . . .. ... .. 276
4.10.2 Semidefinite representations of epigraphs of convex
polynomials . . .. ... ... .. ... ... ..., 291
4.10.3 Lovasz capacity number and semidefinite relaxations of
combinatorial problems . . . ... ... ... ... ... 293
4.104 Lyapunov stability analysis . . . .. ... ... ..... 299
4.10.5 S-lemma . . .. ... 300
4.10.6 Antenna synthesis . . . . . ... ... 323
4.10.7 Ellipsoidal approximations . . . . . . .. ... ..... 326
5 Computational Tractability of Convex Programs 335
5.1 Numerical solution of optimization programs—preliminaries . . . . . 335
5.1.1 Mathematical programming programs . . . . . . . . . . . 335
5.12 Solution methods and efficiency . . . . . . ... ... .. 336
5.2 Black box-represented convex programs . . . . . . . . .. ... ... 342
5.3 Polynomial solvability of convex programming . . . . . .. ... ... 352
5.3.1 Polynomial solvability of convex programming . . . . . . 359
54 Difficult problems and NP-completeness . . . . . ... ... ..... 363
54.1 CCT—a quick introduction . . . . . ... ........ 363
54.2 From the real arithmetic complexity theory to the
CCTandback . ... ... ... ... ... ....... 367
6 Interior Point Polynomial Time Methods for Linear Programming,
Conic Quadratic Programming, and Semidefinite Programming 377
6.1 Motivation . . . . . . . ..o 377
6.1.1 Interior point methods . . . . ... ... .. ....... 378
6.2 Newton method and the interior penalty scheme . . ... .. ... .. 379
6.2.1 Unconstrained minimization and the Newton method . . . 379
6.2.2 Classical interior penalty scheme: Construction . . . . . 380
6.2.3 Classical interior penalty scheme: Drawbacks . . . . . . 382
6.2.4 But... . ... 382
6.3 Interior point methods for linear programming, conic quadratic
programming, and semidefinite programming: Building blocks . . . . 384
6.3.1 Canonical cones and canonical barriers . . . . . ... .. 384
6.3.2 Elementary properties of canonical barriers . . . . . . . . 387
6.4 Primal-dual pair of problems and the primal-dual central path . . . . . 389
6.4.1 Problem(s) . . . .. ... ... ... ... ... .. 389
6.4.2 Centralpath(s) . . . . .. ... ... ... ... ..... 390



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Contents

6.5

6.6

6.7
6.8

Tracing the centralpath . . . . . . ... ... ... ......

6.5.1 Path-following scheme . . . . . . ... ... ...
6.5.2 Speed of path-tracing . . ... ... ... ....
6.5.3 Primal and dual path-following methods . . . . .
6.5.4 Semidefinite programming case . . . . . . . . ..

Complexity bounds for linear programming, conic quadratic

programming, and semidefinite programming . . . . . . . ..

6.6.1 Complexity of linear programming . . . . .. ..
6.6.2 Complexity of conic quadratic programming . . .
6.6.3 Semidefinite programming . . . . ... ... ..

Concluding remarks . . . . . ... ... ... .. .. ... ..
ExercisestoLecture 6 . . . . . ... ... ... ...

6.8.1 Canonical barriers . . . . . ... ... .. ....
6.8.2 Scalings of canonical cones . . . . ... ... ..
6.8.3 Dikinellipsoid . . . . .. ... ... .. .....
6.8.4 More on canonical barriers . . . .. . ... ...
6.8.5 Primal path-following method . . . . . . . .. ..
6.8.6 Infeasible start path-following method . . . . . .

Solutions to Selected Exercises

Index

Exercises to Lecture 1
Exercises to Lecture 2
Exercises to Lecture 3
Exercises to Lecture 4
Exercises to Lecture 6



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Preface

The goals. To make decisions optimally is a basic human desire. Whenever the situation
and the objectives can be described quantitatively, this desire can be satisfied, to some
extent, by using mathematical tools, specifically those provided by optimization theory and
algorithms. For our purposes, a sufficiently general mathematical setting of an optimization
problem is offered by mathematical programming:

Minimize fo(x)
subject to (s.t.)
i) < bi=1,....m, P)

x € XCR.

In this problem, we are given an objective fy(x) and finitely many functional constraints
fix),i = 1,...,m, which are real-valued functions of n-dimensional design vector x
varying in a given domain X. Our goal is to minimize the objective over the feasible set of
the problem—the set that is cut off the domain X by the system of inequalities f;(x) < b;,
i=1,...,m.

In typical engineering applications, the design vector specifies a decision to be made
(e.g., the physical sizes of the bars in a trusslike structure), the domain X is the set of
“meaningful” values of the design vector, and the functional constraints represent design
specifications—restrictions (physical, technical, financial) on certain characteristics of the
decision.

The last decade has witnessed major progress in optimization, especially in the area of
convex programming. Powerful modeling languages and database technology extended our
abilities to model large-scale, complex real-life problems; progress in complexity theory
improved our understanding of the advantages of certain algorithms, and the limitations of
others, and resulted in development of efficient interior point algorithms for a large family
of convex programs. Combined with the dramatic improvement of computers, this progress
enables us today to solve problems that were considered out of reach for optimization just
10 years ago.

Regrettably, this promising state of affairs is yet unrealized, and consequently not
utilized, by potential end users (engineers, managers, etc.). This book presents modern
optimization, combining it with applications (mainly from engineering) and thus helping
to bridge the gap between researchers and practitioners. This ultimate goal determines our
approach and dictates specific targets on which we should focus our attention.

Xi
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Theoretically, what modern optimization can solve well are convex optimization prob-
lems. In essence, the two-decade-long investigation of complexity issues in optimization
can be summarized as follows:

From the viewpoint of the numerical processing of problem (P), there exists a
“solvable case”—the one of convex optimization problems, those where the
domain X is a closed convex subset of R", and the objective fy(x) and the
functional constraints f;(x),i =1, ..., m, are convex functions on X.

Under minimal additional computability assumptions (which are satisfied in
basically all applications), a convex optimization problem is computationally
tractable—the computational effort required to solve the problem to a given
accuracy grows moderately with the dimensions of the problem and the required
number of accuracy digits.

In contrast to this, general-type nonconvex problems are too difficult for numer-
ical solution,; the computational effort required to solve such a problem, by the
best numerical methods known, grows prohibitively fast with the dimensions of
the problem and the number of accuracy digits. Moreover, there are serious
theoretical reasons to conjecture that this is an intrinsic feature of nonconvex
problems rather than a drawback of the existing optimization techniques.

As an example, consider the pair of optimization problems (A) and (B). The first is
the nonconvex problem

n
maximize in
i=1
subject to (A)
xiz—x; = 0,i=1,...,n;
xix; = 0 V(@G j)eTl,

where I' is a given set of pairs (i, j) of indices i, j. This is a fundamental combinatorial
problem of computing the stability number of a graph. It arises, e.g., in the following
channel communication problem:

There is an alphabet of n letters a;, i = 1,2, ..., n, say, the 256 usual bytes. A letter
a; can be sent through a communication channel; when passing through it, it either remains
unchanged or can be converted to another letter a; due to transmission errors. The errors
are assumed to be “symmetric” (if a; can be converted into a;, then a; can be converted into
a; as well), and I is the set of (indices of) those pairs of letters that can be converted from
one into another. Assume that we are interested in a “nonconfusing” communication, where
the addressee either gets a correct letter or is able to conclude that a transmission error has
occurred but never misreads the input letter. In this case we should restrict the subalphabet
S to be independent, meaning that no two distinct letters from S can be converted from
one to another by the channel. To get the most from the channel, we would like to use an
independent subalphabet of maximal cardinality. It turns out that the optimal value in (A)
is exactly the cardinality of such a maximal independent subalphabet.
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The second problem is the convex program

minimize xo

subject to
X1 .Xf
Amin - : > 0,6=1,...,k,
Xim xfn
xl ... x( x
1 m X0 B)
m
Dapxt = b oe=1,.. .k
j=1

m
E X; = 1,
j=1

where Apmin(A) denotes the minimum eigenvalue of a symmetric matrix A. This problem
originates from design of a fruss (a mechanical construction built from thin elastic bars,
like an electric mast, a bridge, or the Eiffel Tower) able to withstand & nonsimultaneous
loads.

Looking at the analytical forms of problems (A) and (B), it seems that the first problem
is easier than the second: the constraints in (A) are simple explicit quadratic equations, while
the constraints in (B) involve much more complicated functions of the design variables—
the eigenvalues of certain matrices depending on the design vector. The truth, however,
is that the first problem is in a sense as difficult as an optimization problem can be, and
the worst-case computational effort to solve it within absolute inaccuracy 0.5 is about 2"
operations for all known optimization methods. For n = 256 (“alphabet of bytes”), the
complexity 2" & 1077 is, for all practical purposes, the same as +oco. In contrast to this,
the second problem is quite computationally tractable. For example, for k = 6 (six loading
scenarios) and m = 100 (a 100-bar construction), the problem has 701 variables (2.7 times
the number of variables in the byte version of (A)); however, it can be reliably solved within
six accuracy digits in a couple of minutes. The dramatic difference in the computational
effort required to solve (A) and (B) is due to the fact that (A) is a nonconvex optimization
problem, while (B) is convex.

The above discussion explains the words Convex Programming in the title of our book.
We now explain the word modern. The emphasis in the book is on well-structured con-
vex problems such as linear programming (LP), conic quadratic programming (CQP), and
semidefinite programming (SDP). These are the areas most affected by the recent progress
in optimization, areas where we possess well-developed techniques for building large-scale
models, analyzing them theoretically (“on paper”) and processing them numerically. Ex-
cept for LP, these areas did not exist 10 years ago; thus most users who could potentially
benefit from recent developments are not aware of their existence, let alone their useful-
ness. In enlarging the scope of classical optimization (LP, general nonlinear programming)
by introduction of CQP and SDP, new application areas were created. Examples include
semidefinite relaxations of difficult combinatorial problems, linear matrix inequality—based
techniques in control, and mathematical programming with uncertain data. These new ap-
plications create synergies between optimization, computer science, and engineering, with



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Xiv Preface

potentially far-reaching consequences for our ability to solve complex real-life decision
problems.

At this point, we want to address experts in optimization rather than general readers.
The history of convex programming, as far as applied aspects are concerned, started with
the invention of LP (Dantzig, circa 1948). LPs possess the simplest possible and transpar-
ent analytical structure, which from the beginning was heavily exploited both theoretically
(the completely algorithmic LP duality theory) and computationally (the simplex method).
With subsequent nonlinear extensions, the focus was shifted, in one giant step, from the
simplest possible linear structure to the most general one, where all we know about the
entities occurring in (P) is that they are called f;,i =0, 1, ..., m, and X, that they are con-
vex, and that f; are 0/1/2/ ... times continuously differentiable. At the theoretical level,
the focus on this general setting yielded very deep results in convex analysis (Lagrange
duality, Karush—Kuhn—Tucker (KKT) optimality conditions, etc.); however, the price paid
for these fundamental achievements was a lack of an algorithmic content of the subject.
For example, the Lagrange dual of a general-type convex program (P) is something that
exists and possesses very nice properties; this “something,” however, normally cannot be
written explicitly (in sharp contrast with the “fully algorithmic” LP duality). At the compu-
tational level, the emphasis on generality resulted in general-purpose “near-sighted” (and
thus slow, as compared to LP algorithms) optimization methods, those utilizing purely local
information on the problem.

To some extent, recent trends (the last decade or so) in convex optimization stem
from the realization that there is something between the relatively narrow LP and the com-
pletely unstructured universe of convex programming; what is between are well-structured
generic convex optimization problems like CQP and SDP. Needless to say, interest in special
cases is not a complete novelty for our area (recall linearly constrained convex quadratic
and geometric programming); what is a novelty is the recent emphasis on well-structured
generic problems, along with outstanding achievements resulting from this emphasis. The
most remarkable of these achievements is, of course, the interior point revolution, which
has extended dramatically our abilities to process convex programs numerically, while cre-
ating a completely new, challenging, and attractive area of theoretical research. The em-
phasis on well-structured special cases has, however, another, less-evident (perhaps not
less-important) consequence, which can be summarized as follows:

o When restricted to “nice” generic convex programs, like LP, CQP, and SDP, convex
analysis becomes an algorithmic calculus—as algorithmic as in the LP case. For example,
the SDP duality is as explicit and symmetric as the LP one. In fact, the same can be said about
all other basic operations of convex analysis, from the simplest (like taking intersections
and affine images of convex sets, or sums of convex functions) to the more sophisticated
ones (like passing from a convex set to its polar or from a convex function to its Legendre
transformation). Whenever the operands of such a construction can be represented, in a
properly defined precise sense, via, say, SDP, the same is true for the resulting entity, and
the SDP representation of the result is readily given by those of the operands.

As a result,

* An instance of a nice generic convex problem can be processed, up to a certain
point, on paper (and in a routine fashion). In many cases this allows one to obtain important
qualitative information on the problem or to convert it into an equivalent one, better suited
for subsequent numerical processing. For example, applying SDP duality, one can reduce
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dramatically the design dimension of the truss topology design (TTD) problem and, as a
result, increase by orders of magnitude the sizes of the TTD problems that can be processed
numerically in practice.

Moreover,

* nice generic convex problems, like COP and especially SDP, possess vast expres-
sive abilities, which allow one to utilize the above advantages in a very wide spectrum of
applications, much wider than the one covered by LP.

When writing this book, our major concern was to emphasize the issues just raised,
and this emphasis is perhaps the most characteristic (and, hopefully, to some extent novel)
feature of the book.

Restricting ourselves to well-structured convex optimization problems, it becomes
logical to skip a significant part of what is traditionally thought of as the theory and algorithms
of mathematical programming. Readers interested in the gradient descent, quasi-Newton
methods, and even sequential quadratic programming, are kindly advised to use the excellent
existing textbooks on these important subjects; our book should be thought of as a self-
contained complement to, and not as an extended version of, these textbooks. We even
have dared to omit the KKT optimality conditions in their standard form, since they are too
general to be algorithmic; the role of the KKT conditions in our exposition is played by their
particular (and truly algorithmic) case, expressed by the so-called conic duality theorem.

The book is addressed primarily to potential users (mainly engineers). Consequently,
our emphasis is on building and processing instructive engineering models rather than on
describing the details of optimization algorithms. The underlying motivation is twofold.
First, we wish to convince engineers that optimization indeed has something to do with their
professional interests. Second, we believe that a crucial necessary condition for successful
practical applications of optimization is understanding what is desirable and what should
be avoided at the modeling stage. Thus, important questions to be addressed are (a) What
optimization models can be efficiently processed (to a certain point on paper and then on
a computer)? and (b) How one can convert (provided that it is possible) a seemingly bad
initial description of a problem into a tractable and well-structured optimization model?

We believe that the best way to provide relevant insight for potential users of opti-
mization is to present, along with general concepts and techniques, many applications of
these concepts and techniques. We believe that the presentation of optimization algorithms
in a user-oriented book should be as nontechnical as possible (to drive a car, no knowledge
of engines is necessary). The section devoted to algorithms presents the ellipsoid method
(due to its simplicity, combined with its capability to answer affirmatively the fundamental
question of whether convex programming is computationally tractable) and an overview of
polynomial-time interior-point methods for LP, CQP, and SDP.

Although the book is user oriented, it is a mathematical book. Our goal is to demon-
strate that when processing “meaningful” mathematical models by rigorous mathematical
methods (not by their engineering surrogates), one can obtain results that have meaningful
and instructive engineering interpretation. Whether we have reached this goal, is another
story; this judgment rests upon the reader.

Last, but not least, a reader should keep in mind that what follows are lecture notes;
our intention is to highlight those issues that we find most interesting and instructive, rather
than to present a complete overview of convex optimization. Consequently, we are ready to
take the blame for being boring or unclear or for focusing on issues of minor importance,
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in any material in the book. However, we do not accept “money back” requests based on
claims that something (however important) is not included. Along with immunity with
regard to what is absent, a lecture notes—type book provides us with some other privileges,
like a style which is a bit more vivid compared to the academic standards, and a rather short
list of bibliography references (embedded as footnotes in the body of the text). In this latter
respect, a reader should be aware that if a statement appears in the text without a reference,
this does not mean that we are claiming authorship; it merely reflects that our focus is on
the state of convex optimization rather than on its history.

Audience and prerequisites. Formally, readers should know basic facts from linear al-
gebra and analysis—those presented in standard undergraduate mathematical courses for
engineers. For optimization-related areas, readers are assumed to know not much more than
the definitions of a convex set and a convex function and to have heard (no more than that!)
about mathematical programming problems. Informally, it is highly desirable that a reader
is in possession of the basic elements of mathematical culture.

The exercises. Exercises accompanying each lecture form a significant part of the book.
They are organized in small groups, each devoted to a specific topic related to the corre-
sponding lecture. Typically, the task in an exercise is to prove something. Most of the
exercises are not easy. The results stated by the exercises are used in the subsequent parts
of the book in the same way as the statements presented and proved in the main body of
the book; consequently, a reader is kindly asked to at least read all exercises carefully. The
order of exercises is of primary importance: in many cases preceding exercises contain
information and hints necessary to succeed in subsequent ones.

Acknowledgments. A significant part of the applications discussed in our book is taken
from the papers of Prof. Stephen Boyd of Stanford University and his colleagues. We
are greatly indebted to Prof. Boyd for providing us with access to this material and for
stimulating discussions. Applications related to structural design were developed in tight
collaboration with Prof. Jochem Zowe and Dr. Michael Kocvara of Erlangen University.
Parts of the book were written when the authors were visiting the Statistics and Operations
Research Department of the Technical University of Delft, and we are thankful to our hosts,
Prof. Kees Roos and Prof. Tamas Terlaky.

Aharon Ben-Tal and Arkadi Nemirovski
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Lecture 1

Linear Programming

In this chapter our primary goal is to present the basic results on the linear programming
(LP) duality in a form that makes it easy to extend these results to the nonlinear case.

1.1 Linear programming: Basic notions

An LP program is an optimization program of the form

min {ch

Ax > b} , (LP)

where

* x € R" is the design vector,
* ¢ € R" is a given vector of coefficients of the objective function ¢’ x,
e Aisagiven m X n constraint matrix, and
* b € R" is a given right-hand side of the constraints.
(LP) is called
—feasible if its feasible set

F={x] Ax —b >0}

is nonempty; a point x € F is called a feasible solution to (LP);
—bounded below if it is infeasible or if its objective ¢’ x is bounded below on F.

For a feasible bounded-below problem (LP), the quantity

c*= inf cTx
x:Ax—b>0

1
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2 Lecture 1. Linear Programming

is called the optimal value of the problem. For an infeasible problem, we set ¢, = +0o0,
while for a feasible unbounded-below problem we set ¢, = —oo.

Linear programming is called solvable if it is feasible and bounded below and the
optimal value is attained, i.e., there exists x € F with ¢ x = ¢*. An x of this type is called
an optimal solution to LP.

A priori it is unclear whether a feasible and bounded-below LP program is solvable:
why should the infimum be achieved? It turns out, however, that a feasible and bounded-
below program (LP) always is solvable. This nice fact (we shall establish it later) is specific
for LP. Indeed, a very simple nonlinear optimization program

nfs]r=1]
min{—|x>1

X
is feasible and bounded below, but it is not solvable.

1.2 Example: Tschebyshev approximation and
its applications

In most textbooks known to us, examples of LP programs have to do with economics,
production planning, etc., and indeed the major applications of LP are in these areas. In this
book, however, we prefer to use, as a basic example, a problem related to engineering. Let
us start with the mathematical formulation.

1.2.1 Best uniform approximation

PrROBLEM 1.2.1. Tschebyshev approximation. Given an M x N matrix

ay
a=| @
ay
and a vector b € R™, solve the problem
min ||Ax — b|ls, where |Ax — b|looc = max |aiTx — b;l. (1.2.1)
xeRN i=l,..., M

As stated, problem (1.2.1) is not an LP program—its objective is nonlinear. We can,
however, immediately convert (1.2.1) to an equivalent LP program

min t
xeR",teR

—tsafx—bisz,izl,...,M}, (1.2.2)
where ¢ is an additional design variable. Thus, (1.2.1) is equivalent to an LP program.

A typical situation giving rise to the Tschebyshev problem is as follows. We want
to approximate a given target function B(¢) on, say, the unit interval [0, 1] by a linear
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combination Z _y Xxjo;(t) of N given functions o (t). The quality of approximation is
measured by its umform distance from B, i.e., by the quantity

1B — Zx,a loo = sup |ﬂ<r>—2x (e (1)l (12.3)

j=1 i<l j=1

so that the best approximation is solution of the problem

mm 1B — Zx]ajﬂoo (1.2.4)

As we shall see, problem (1.2.4) is important for several engineering applications. From the
computational viewpoint, the drawback of the problem is that its objective is implicit—it
involves maximization with respect to a continuously varying variable. As a result, already
the related analysis problem (to evaluate the quality of the approximation corresponding to
a given x) can be quite difficult numerically. The simplest way to overcome this drawback
is to approximate in (1.2.3) the interval [0, 1] by a “fine finite grid,” e.g., the grid

i
TMZ{Z}ZM|I=1,...,M}.

With this approximation, the objective in the problem (1.2.4) becomes

max 1B() = D x| = | Ax = blleo,

Jj=1

where the columns of A are the restrictions of the functions o () on the grid Ty, and b is
the restriction of B(-) on this grid. Consequently, the optimization problem (1.2.1) can be
viewed as a discrete version of problem (1.2.4).

1.2.2 Application: Synthesis of filters

An interesting engineering problem corresponding to (1.2.4) is the problem of synthesizing
a linear time-invariant (LTI) dynamic system (a “filter”’) with a given impulse response.'

A (continuous-time) time-invariant linear dynamic system S is, mathematically,
a transformation from the space of signals—functions on the axis—to the same
space, given by the convolution with certain fixed function:

oo

u(t) — y) = / u(s)h(t — s)ds,
—00
where u(-) is an input and y(-) is the corresponding output. The convolu-
tion kernel i (-) is a characteristic function of the system S called the impulse
response.

IThe filter synthesis and the subsequent antenna array examples are taken from M.S. Lobo, L. Vanderbeghe,
S. Boyd, and H. Lebret, Second-order cone programming, Linear Algebra Appl., 284 (1998), pp. 193-228.
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wy i < > dm |
y2(1) 22(t)
% S : )

u(t) (1)

SN NN\ TN

L [ N
u(t) |
yi(t)y = [ u(s)h; —s)ds,
zj(t) = x;y;(),
y(i) = zi(t) +z220) + -+ (@).

Figure 1.1. Parallel structure with amplifiers.

Consider the simplest synthesis problem, as follows.

PrROBLEM 1.2.2. Filter synthesis, I. Given a desired impulse response h,(t) along with
N building blocks—standard systems S; with impulse responses h;(-), j = 1,..., N—
assemble these building blocks as shown in Fig. 1.1 into a system S in such a way that the
impulse response of the assembled system will be as close as possible to the desired impulse
response hy(-).

Note that the structure of § is given, and all we can play with are the amplification
coefficients x;, j =1,..., N.
The impulse response of the structure in Fig. 1.1 is clearly

N
h(t) =" xhj(®).

j=1

Assuming further that 4, and all &; vanish outside [0, 11? and that we are interested in
the best possible uniform approximation of the desired impulse response %, on [0, 1], we
can pose our synthesis problem as (1.2.4) and further approximate it by (1.2.1). As we
remember, the latter problem is equivalent to the LP program (1.2.2) and can therefore be
solved by LP tools.

2 Assumptions of this type have a natural interpretation. That impulse response vanishes to the left of the origin
means that the corresponding system is casual—its output until any time ¢ depends solely on the input until # and
is independent of what happens with the input after time 7. The fact that impulse response vanishes after certain
T > 0 means that the memory of the corresponding system is at most 7': output at a time # depends on what is the
input starting with time ¢ — 7" and is independent of what the input was before time t — 7.
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1.2.3 Filter synthesis revisited

In the filter synthesis problem we wanted to combine given building blocks S; to get a system
with an impulse response as close as possible to the target one. A somewhat more typical
design requirement is to get a system with a desired transfer function: the Fourier transform
of the impulse response. The role of the transfer function becomes clear when we represent
the action of an LTI system S in the frequency domain—the space of the Fourier transforms
of inputs and outputs. In the frequency domain the transformation carried out by the system
becomes

Uw) — Y () = U()H (), —00 < » < 00, (1.2.5)

where uppercase letters denote the Fourier transforms of their lowercase counterparts (e.g.,
H (w) stands for the Fourier transform of the impulse response A(t)). Relation (1.2.5)
demonstrates that the action of an LTI system in the frequency domain is very simple—it
is just multiplication by the transfer function; this is why the analysis of an LTI system is
carried out usually in the frequency domain, and thus typical design requirements on LTI
systems are formulated in terms of their transfer functions.

The frequency domain version of the filter synthesis problem is as follows.

PrOBLEM 1.2.3. Filter synthesis, II. Given a target transfer function H,(t) along with
N building blocks—standard systems S; with transfer function H;(-), j = 1,..., N—
assemble these building blocks (as shown in Fig. 1.1) into a system S in such a way that the
transfer function of the latter system will be as close as possible to the target function H,(-).

Again, we measure the quality of approximating the target transfer function on a given
segment [Wmin, Wmax] in the frequency domain by the uniform norm of the approximation
error. Thus, the problem of interest is

N

min  sup |Hy(w) — ZX_,' Hj(w)l,

n
XER" i <0< 0mas =

and its computationally tractable approximation is

N
i H. (w;) — Hi(w)], 1.2.6
min max |H.(o;) le] ()] (1.2.6)
j:
where {w), @3, ..., oy} is a grid in [@yin, ®max]- Mathematically, the latter problem looks

exactly as (1.2.1), and one could think that it can be immediately converted to an LP program.
We should, however, take into account an important consideration:

In contrast to impulse response, a transfer function is, generally, complex-
valued. Consequently, the absolute values in (1.2.6) are absolute values of
complex numbers. As a result, the conversion of (1.2.1) to an LP program now
fails—the possibility to represent the nonlinear inequality |a| < ¢ by two linear
inequalities @ < t and a > —t exists in the case of real data only!
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The difficulty we have met can be overcome in two ways:

1. The inequality |a| < t with complex-valued a can be represented as the inequality
VR%(a) + 3%(a) < t with real data (M(a) is the real and I(a) the imaginary part of a). As
aresult, problem (1.2.6) can be posed as a conic quadratic problem. Such problems will be
our subject in Lecture 3.

2. The inequality |a| < r with complex-valued a can be easily approximated by a
number of linear inequalities on N (a) and J(a). Indeed, let us inscribe into the unit circle
D on the complex plane C = R? a (2k)-vertex perfect polygon P;:

P.={(u,v) € R?: |u cos(£p) + vsin(€p)| < cos(¢/2),£ =1,...,k}, [qﬁ =

=]

For z = u + iv, denote

.....

We claim that for every z = (u, v) € R? one has

lz] = pi(z) = cos(p/2)]z]. (1.2.7)

The left inequality in (1.2.7) follows from the Cauchy inequality: for z = u 4 iv one
has

lu cos(€e) + vsin(€g)| < |zly/ cos? () + sin® (€e) = |z,
hence p;(z) < |z|. The right inequality follows from the fact that P is inside D:
Izl =1 =z € intPy = pr(z) > cos(¢p/2).
Since both |z| and pi(z) are positive homogeneous of degree 1, i.e.,
Pre(rz) = Apr(2), [Az] = Alz] VA =0,

the validity of the inequality p;(z) > cos(¢/2)|z| for |z] = 1 implies the validity of the
inequality for all z.

We see that the absolute value |z| of a complex number can be approximated, within
relative accuracy 1 — cos(¢p/2) = 1 — cos(ir/(2k)), by the polyhedral norm p;(z)—the
maximum of absolute values of k linear forms of $1(z) and J(z). As anillustration, fork = 4
we approximate |z| within the 7.7% margin; see Fig. 1.2. For most engineering applications,
it is basically the same: approximate H, in the uniform norm on a grid Q = {w;, ..., wy}
or in the polyhedral norm

the corresponding measures of the quality of an approximation differ by less than 8%.
Consequently, one can pass from problem (1.2.6) to its approximation,

=1,...,

N
min max py H*(wi)—X;xjHj(wi) ) (1.2.8)
j:
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Figure 1.2. The contours |z| = 1 (circle) and p4(z) = 1 (polygon).
Problem (1.2.8) is equivalent to the program

min 4 ¢
x,t

N
pa | Helw) =Y xjHjw) | <t i=1... My,
j=1

which (due to the structure of p4(-)) is equivalent to the LP program

N
—t <cos(UP)N | Hy(w;) — ijHj(wi)
=1

min 1 ¢
x,t

N .
+ sin(£e)I H*(wi)—XI:xjHj(a),-) <1 K;l,'.'...,4 . (1.2.9)
j:

1.2.4 Synthesis of arrays of antennae

An important engineering application of the Tschebyshev approximation problem is the
synthesis of arrays of antennae. An antenna is an electromagnetic device that can generate
(or receive) electromagnetic waves. The main characteristic of a monochromatic antenna is
its diagram Z (8), which is a complex-valued function of a three-dimensional (3D) direction
8. The absolute value |Z(§)| of the diagram is responsible for the directional density of
the energy sent by the antenna in a direction §; this density is proportional to | Z(8)|>. The
argument arg Z (§) of the diagram corresponds to the initial phase of the wave propagating
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in the direction §, so that the electric field generated by the antenna at a point P = r§ (we
assume that the antenna is placed at the origin) is proportional to

E@ré, 1) = |Z(5)|r‘1 cos(arg Z(8) + tw — 2mr/X), (1.2.10)

where ¢ stands for time, w is the frequency of the wave, and A is the wavelength.> For
a complex antenna comprising N antenna elements with diagrams Z;(8), ..., Zy(3), the
diagram Z(-) is

N
Z6) =Y Z;0).
j=1

When designing an array of antennae comprising several antenna elements, an engineer starts
with N given building blocks with diagrams Z, ..., Zy. For each block, the engineer can
amplify the signal sent by a block by a factor p; and shift the initial phase ¢, (-) by a constant
¥ ;. In other words, the engineer can modify the original diagrams of the blocks according
to

Z;(8) = aj(d)[cos(¢;(8)) +isin(¢;(5))]
— ZT(S) = pja;(8)[cos(¢;(8) + ¥;) +isin(¢p;(8) + ;)]

Thus, it is possible to multiply the initial diagram of every block by an arbitrary complex
constant (“weight”)

zj=pjlcosy; +isiny;) =u; +iv;.

The diagram of the resulting complex antenna will be
N
Z@) =Y 2,Z;(®). (1.2.11)
j=1

A typical design problem associated with the above description is to choose the design
parameters z;, j = 1,..., N, in order to get a diagram (1.2.11) as close as possible to a
given target diagram Z,(8). In many cases a relevant measure of closeness is in terms of
the uniform norm, and the corresponding synthesis problem becomes

N
o B, V0 = 2,2,
where the design variables are N complex numbers z1, ..., zZy, or, which is the same, 2N
real numbers R(z;), I(z;). Mathematically, the resulting problem is completely similar to
the one discussed in the previous section, up to the fact that now the inner maximum in
the objective is taken over the unit sphere in R? rather than an interval on the axis. Even
this difference disappears when we approximate the maximum over continuously varying
direction by the maximum over a finite grid on the sphere (this in any case is necessary
to get an efficiently solvable optimization program). Thus, the problem of synthesis of an

3Relation (1.2.10) works when the distance r between P and the antenna is much larger than the linear sizes of
the antenna. Mathematically, the difference between the left and the right sides in (1.2.10) is o(r~Yasr — oco.
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Figure 1.3. Synthesis of antennae array. (a): 10 array elements of equal areas
in the XY -plane the outer radius of the largest ring is Im, the wavelength is 50cm. (b):
“building blocks” — the diagrams of the rings as functions of the altitude angle 0. (c): the
target diagram (dashed) and the synthesied diagram (solid).

array of antennae is, mathematically, identical to the problem of synthesis of an LTI system
with a desired transfer function; in particular, we can approximate the problem by an LP
program.

Example. Let a planar antenna array comprise a central circle and nine concentric rings
of the same area as the circle (Fig. 1.3(a)). The array is placed in the XY -plane (Earth’s
surface), and the outer radius of the outer ring is 1 m.

One can easily see that the diagram of a ring {a < r < b} in the plane XY (r is the
distance from a point to the origin) as a function of a 3D direction § depends on the altitude
(the angle 0 between the direction and the plane) only. The resulting function of 8 turns out
to be real-valued, and its analytic expression is

b 2
Z.p(0) = %/ [/0 r cos (2nr)»’1 cos(0) cos(¢)) d¢i| dr,

where A is the wavelength. Figure 1.3(b) represents the diagrams of our 10 rings for
A =50cm.

Assume that our goal is to design an array with a real-valued diagram that should
be axial symmetric with respect to the Z-axis and should be concentrated in the cone
/2 >0 > x/2—mx/12. In other words, our target diagram is a real-valued function Z, of
the altitude 6 with Z,(0) = 0for0 <0 < /2 — /12 and Z,(0) somehow approaching 1
as 6 approaches /2. The target diagram Z,(0) used in this example is given in Fig. 1.3(c)
(the dashed curve).

Our design problem is simplified considerably by the fact that the diagrams of our
building blocks and the target diagram are real valued; thus, we need no complex numbers,
and the problem we should finally solve is

min 1 max | Z.(6) — Zx, Z, O] Y

xeR10
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Table 1.1. Optimal weights (rounded to five significant digits).

element “ 1 [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 [ 10
coefficient H 1624.4 [ —14700 [ 55383 [ —107247 [ 95468 [ 19221 [ —138620 [ 144870 [ —69303 [ 13311 \

where T is a finite grid on the segment [0, 7/2]. In the design represented in Fig. 1.3(c),
the 120-point equidistant grid is used. Both the data and the design variables in the
problem are real, so that we can immediately convert the problem into an equivalent LP
program.

The solid line in Fig. 1.3(c) represents the optimal diagram of the array of antennae
given by the synthesis. The uniform distance between the actual and the target diagram is
~ 0.0621 (recall that the target diagram varies from O to 1). Table 1.1 displays the optimal
weights (i.e., the coordinates x; of the optimal solution).

Why the uniform approximation? The antenna array example raises a natural question:
Why is the distance between the target diagram Z, (-) and the synthesized one Z(-) measured
by the uniform norm of the residual | Z, — Z||c = maxg |Z4(0) — Z(0)| and not by, say,
the 2-norm ||Z, — Z||, = \/Ze |Z.(0) — Z(0)|*? With this latter norm—i.e., with the
standard least squares approximation—the (squared) objective to be minimized would be
a sum of squares of affine forms of the design variables, i.e., a convex quadratic form
%xTAx +b"x + ¢, and we could immediately write the optimal solution x* = —A~!b, thus
avoiding any need for numerical optimization.

Note, however, that the only advantage of the || - ||,-accuracy measure is thatitleads to a
computationally cheap approximation routine. From the modeling viewpoint, least squares
are not attractive in many cases. Indeed, consider the case when the target function is nearly
singular—it is close to one constant, say, to 0, in the major part Ag of its domain and is close
to another constant, say, to 1, in another relatively small part A; of the domain. This is the
case in our antenna synthesis example: we are trying to concentrate the signal in a small
cone, and what is of interest is exactly the nearly singular behavior of the signal. Now, with
an integral-type norm of the residual, like || - ||», the typical squared deviation between an
approximation and the target in A is taken with relatively large weight (proportional to the
cardinality of Ag), while the typical squared deviation between the functions in A is taken
with relatively small weight. It follows thatin order to get a good || - ||o-approximation, it pays
to concentrate on a good approximation of the background behavior of the target (the one
in Ap), even at the price of poor reproduction of the singular behavior of the target (the one
in Aj). As a result, least squares designs usually result in oversmoothed approximations
that badly capture the near singularity of the target—a feature of the target we are most
interested in. In contrast, || - ||, design pays the same attention to how well we reproduce
the background behavior of the target and to how well we reproduce its singularities; this
feature of the uniform norm makes it a better candidate than the || - ||,-norm to be used in
approximation problems with singularities. To illustrate this point, let us look at what the
least squares yield in our example (Fig. 1.4). We see that the least squares approximation
indeed pays more attention to the background than to the singularity. The uniform distance
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Figure 1.4. Top: Best uniform approximation (left) versus the least squares ap-
proximation (right). Bottom: Errors of the least squares (dashed) and the best uniform
(solid) approximations.

between the target and the least squares approximation is 0.1240—more than twice the
distance corresponding to the best uniform approximation!

1.3 Duality in linear programming

The most important and interesting feature of LP as a mathematical entity (other than
computations and applications) is the wonderful LP duality theory we are about to consider.
We motivate this topic by first addressing the following question:

Given an LP program

¢ = min {ch
X

Ax —b > 0} ; (LP)
how do we find a systematic way to bound from below its optimal value c*?

Why this is an important question, and how the answer helps us deal with LP, will be seen
later. For the time being, let us accept that the question is worthy of the effort.
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A trivial answer to the posed question is to solve (LP) and see what is the optimal
value. There is, however, a smarter and much more instructive way to answer our question.
Let us look at the following example:

X1+ 2xp + -+ + 1998x1998 + 1999x1999 — 1
min § x; + X2 4+ - -+ 4+ X1999 | 1999x; 4+ 1998x; + - - - + 2x1998 + X1999 — 100

07
07

IV IV

We claim that the optimal value in the problem is > %. How could one certify this bound?

This is immediate: add the first two constraints to get the inequality
2000()61 +x2 + -+ X1998 + )C1999) —101 >0

and divide the resulting inequality by 2000. LP duality is nothing but a straightforward
generalization of this simple trick.

1.3.1 Certificates for solvability and insolvability

Consider a (finite) system of scalar inequalities with n unknowns. To be as general as
possible, we do not assume for now that the inequalities are linear, and we allow for both
nonstrict and strict inequalities in the system, as well as for equalities. Since an equality
can be represented by a pair of nonstrict inequalities, our system can always be written as

fix)2;0, i=1,...,m, S)

where every €2; is either the relation > or the relation >.

The basic question about (S) is whether (S) has a solution. When we can answer
this question, we can answer many other questions. For example, verifying whether a given
real a is a lower bound on the optimal value ¢* of (LP) is the same as verifying whether the
system

has no solutions.

The general question above is too difficult, and it makes sense to pass from it to a
seemingly simpler one: How do we certify that (S) has, or does not have, a solution?
Imagine that you are very smart and know the correct answer to the first question; how
could you convince somebody that your answer is correct? What would certify the validity
of your answer for everybody?

If your claim is that (S) is solvable, certification could come from pointing out a
solution x* to (S). Then one can substitute x* into the system and check whether x* indeed
is a solution.

Assume now that your claim is that (S) has no solutions. What could be a simple
certificate of this claim? How one could certify a negative statement? This is a highly
nontrivial problem and not just for mathematics; for example, in criminal law, how should
someone accused in a murder prove his innocence? The real-life answer to how to certify
a negative statement is discouraging: such a statement normally cannot be certified. In
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mathematics, however, the situation is different: in some cases there exist simple certificates
of negative statements. For example, to certify that (S) has no solutions, it suffices to
demonstrate that a consequence of (S) is a contradictory inequality, such as

—-1>0.

For example, assume that A;, i = 1, ..., m, are nonnegative weights. Combining inequali-
ties from (S) with these weights, we come to the inequality

m

> hifilx) QO, (Cons(1))

i=l1

where 2 is either > (this is the case when the weight of at least one strict inequality from
(S) is positive) or > (otherwise). Since the resulting inequality, due to its origin, is a
consequence of the system (S) (i.e., it is satisfied by every solution to (S)), it follows that
if (Cons(1)) has no solutions at all, we can be sure that (S) has no solution. Whenever this
is the case, we may treat the corresponding vector A as a simple certificate of the fact that
(S) is infeasible.

Let us look at what the outlined approach means when (S) is made up of linear
inequalities:

S): (alx b, i=1,....m), [Qi={> ]

=

Here the combined inequality is linear as well:

m T
(Cons(})) : (Z Aai) xQ bei
i=1

(R2is > whenever A; > 0 for at least one i with ; =>, and €2 is > otherwise). Now, when
can a linear inequality

dTx Qe

be contradictory? Of course, it can happen only when the left-hand side is identically zero,
i.e., only when d = 0. Whether in this latter case the inequality is contradictory depends on
the relation €2: if €2 is >, then the inequality is contradictory if and only if e > 0, and if Q2
is >, the inequality is contradictory if and only if ¢ > 0. We have established the following
simple result.

PROPOSITION 1.3.1. Consider a system of linear inequalities

S):

alx > by, i=1,...,my,
= bi,i=m5+l,...,m,
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with n-dimensional vector of unknown x. Let us associate with (S) two systems of linear
inequalities and equations with m-dimensional vector of unknown A:

(@) A= 0,

B Y na = 0,
i=1

Ux (cp) Z)»ibi > 0,
i=1

(dp) i:/\,- > 0,
i—1

(a) A
® D ka = 0,
i=l

(e D kb > 0.

i=l1

v
L

Assume that at least one of the systems Ty, Ty is solvable. Then the system (S) is infeasible.

Proposition 1.3.1 says that in some cases it is easy to certify infeasibility of a linear
system of inequalities: a simple certificate is a solution to another system of linear inequal-
ities. Note, however, that the existence of a certificate of this latter type is to the moment
only a sufficient, but not a necessary, condition for the infeasibility of (S). A fundamental
result in the theory of linear inequalities is that the sufficient condition in question is in fact
also necessary.

THEOREM 1.3.1. General theorem on the alternative. In the notation from Proposi-
tion 1.3.1, system (S) has no solution if and only if either T{ or Ty, or both systems, is
solvable.

The proof of the theorem on the alternative, as well as a number of useful particular
cases of it, is an exercise topic of Lecture 1. We explicitly formulate here two very useful
principles following from the theorem:

1. A system of linear inequalities

T .
a; x Qb i=1,...,m,

has no solutions if and only if one can combine the inequalities of the system in a linear
fashion (i.e., multiplying the inequalities by nonnegative weights, adding the results, and
passing, if necessary, from an inequality a’x > b to the inequality a”x > b) to get a
contradictory inequality, namely, either the inequality 0" x > 1 or the inequality 0" x > 0.
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2. A linear inequality
aOTx QQ b()
is a consequence of a solvable system of linear inequalities
T .
a; x Qib, i=1,...,m,

if and only if it can be obtained by combining, in a linear fashion, the inequalities of the
system and the trivial inequality 0 > —1.

It should be stressed that the above principles are highly nontrivial and very deep.
Consider, e.g., the following system of four linear inequalities with two variables u, v:

—-l1<uc<l
-1<v=1

bl

From these inequalities it follows that
w+v? <2, (i)
which in turn implies, by the Cauchy inequality, the linear inequality u 4+ v < 2:

utv=1xu+1xv<vVI2+12/u2 +v2 < (2?2 =2. (ii)

The concluding inequality is linear and is a consequence of the original system, but in the
demonstration of this fact both steps (i) and (ii) are highly nonlinear. It is absolutely unclear
a priori why the same consequence can, as stated by principle 1, be derived from the system
in a linear manner as well. (Of course it can—just add two inequalities u < 1 and v < 1.)

Note that the theorem on the alternative and its corollaries 1 and 2 heavily exploit the
fact that we are speaking about /inear inequalities. For example, consider two quadratic
and two linear inequalities with two variables,

@ u = 1,

b v = 1,

© u = 0

d v = 0
along with the quadratic inequality

e) uv > 1.

The inequality (e) is clearly a consequence of (a)—(d). However, if we extend the system
of inequalities (a)—(b) by all “trivial” (i.e., identically true) linear and quadratic inequalities
with two variables, like 0 > —1, u? 4+ v2 > 0, u? 4+ 2uv + v* > 0, u? — uv + v? > 0, etc.,
and ask whether (e) can be derived in a linear fashion from the inequalities of the extended
system, the answer will be negative. Thus, principle 1 fails to be true already for quadratic
inequalities (which is a great sorrow—otherwise there were no difficult problems at all!).

We are about to use the theorem on the alternative to obtain the basic results of the
LP duality theory.
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1.3.2 Dual to a linear programming program: Origin
As mentioned, the motivation for constructing the problem dual to an LP program

aj
aT
2 | eR™ (LP)

c*:min{ch Ax—sz}, A=

a,
is the desire to generate, in a systematic way, lower bounds on the optimal value c* of (LP).
As previously explained, @ € R is such a lower bound if and only if ¢/ x > a whenever
Ax > b or, which is the same, if and only if the system of linear inequalities

(S,) : —cTx > —a,Ax > b

has no solution. We know by the theorem on the alternative that the latter fact means that
some other system of linear equalities (specifically, at least one of a certain pair of systems)
does have a solution. More precisely,

(%) (S,) has no solutions if and only if at least one of the following two systems
with m + 1 unknowns has a solution:

(a) )LZ()Lo,)\,l,...,)»m) > 0,
(b) —)\.()C + Z)\iai = 0,
7} . i;l
(c) —hoa+ Y hbi = 0,
i=1
(dp) o > 0,
or
(a) )LZ(Ko,Kl,...,Am) > 0,
(b) —)»()C - Z)\iai = 0,
T : i=1
(cm) —Aoa — Z)\,‘bi > 0.
i=1

Now assume that (LP) is feasible. We claim that under this assumption (S,) has no
solutions if and only if 7; has a solution.

The implication “7y has a solution = S, has no solution” is readily given by the above
remarks. To verify the inverse implication, assume that (S,) has no solutions and the system
Ax > b has a solution, and let us prove then that 7y has a solution. If 71 has no solution, then
by (*) Ty has a solution and, moreover, Ay = 0 for (every) solution to 7y (since a solution
to the latter system with Ag > 0 solves 7 as well). But the fact that 7;; has a solution A
with Ao = 0 is independent of the values of a and c; if this fact would take place, it would
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mean, by the same theorem on the alternative, that, e.g., the following instance of (S,) has
no solution:

0"x > —1, Ax > b.

The latter means that the system Ax > b has no solutions—a contradiction with the as-
sumption that (LP) is feasible.

Now, if 71 has a solution, this system has a solution with 1y = 1 as well. (To see
this, pass from a solution X to the one A /A¢; this construction is well defined, since Ag > 0
for every solution to 71.) Now, an (m + 1)-dimensional vector A = (1, y) is a solution to
T; if and only if the m-dimensional vector y solves the system of linear inequalities and
equations

y = 0,

m

ATy = Z yiai = c, (D)
i=1
bTy > a.

Summarizing our observations, we come to the following result.

PROPOSITION 1.3.2. Assume that system (D) associated with the LP program (LP) has a
solution (y, a). Then a is a lower bound on the optimal value in (LP). Likewise, if (LP) is
feasible and a is a lower bound on the optimal value of (LP), then a can be extended by a
properly chosen m-dimensional vector y to a solution to (D).

We see that the entity responsible for lower bounds on the optimal value of (LP) is
the system (D): every solution to the latter system induces a bound of this type, and when
(LP) is feasible, all lower bounds can be obtained from solutions to (D). Now note that if
(v, a) is a solution to (D), then the pair (y, b7 y) also is a solution to the same system, and
the lower bound b7y on ¢* is not worse than the lower bound a yielded by the former one.
Thus, as far as lower bounds on ¢* are concerned, we lose nothing by restricting ourselves
to the solutions (y, @) of (D) with a = b’ y; the best lower bound on c¢* given by (D) is
therefore the optimal value of the problem

max{bTy‘ATyzc,yEO}, (LP*)
y

which we call the problem dual to the primal problem (LP). Note that (LP*) is also an LP
program.
All we know about the dual problem at the moment is the following.

PROPOSITION 1.3.3. Whenever y is a feasible solution to (LP*), the corresponding value of
the dual objective bT y is a lower bound on the optimal value c* in (LP). If (LP) is feasible,
then for every a < c* there exists a feasible solution y of (LP*) with bTy > a.

1.3.3 Linear programming duality theorem

Proposition 1.3.3 is in fact equivalent to the following theorem.
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THEOREM 1.3.2. Duality theorem in linear programming. Consider an LP program

X

min {ch Ax > b} (LP)

along with its dual

myax{bTy‘ATyzc,yZO}. (LP*)
Then
1. the duality is symmetric: the problem dual to dual is equivalent to the primal;
2. the value of the dual objective at every dual feasible solution is < the value of the
primal objective at every primal feasible solution;
3. the following properties are equivalent to each other:
(i) the primal is feasible and bounded below,
(i1) the dual is feasible and bounded above,
(iii) the primal is solvable,
(iv) the dual is solvable,
(v) both primal and dual are feasible.
Whenever (i) = (ii) = (iii) = (iv) = (v) is the case, the optimal values of the primal and
the dual problems are equal to each other.

Proof. Item 1 is quite straightforward: writing the dual problem (LP*) in our standard form,

we get
I, 0
min —bTy‘ AT y—(c>20 ,

Y —AT —c

where I, is the m-dimensional unit matrix. Applying the duality transformation to the latter
problem, we come to the problem

S O O

max { 07& + ¢y + (—o)l¢ ‘
&8

1V IvIv

§
n
¢
E—An+ A¢ —b

which is clearly equivalent to (LP) (setx = n — ¢).

Point 2 is readily given by Proposition 1.3.3. The proof of point 3 is as follows:

(i)=(@v): If the primal is feasible and bounded below, its optimal value c* (which
of course is a lower bound on itself) can, by Proposition 1.3.3, be (non-strictly) majorized
by a quantity b7 y*, where y* is a feasible solution to (LP*). In the situation in question,
of course, b7 y* = ¢* (by already proved item 2)); on the other hand, in view of the same
Proposition 1.3.3, the optimal value in the dual is < ¢*. We conclude that the optimal value
in the dual is attained and is equal to the optimal value in the primal.

(iv)=-(ii): This is evident.

(ii))=-(iii): This implication, in view of the primal-dual symmetry, follows from the
implication (i)=(iv).

(iii))=-(i): This is evident.
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We have seen that (i) = (ii) = (iii) = (iv) and that the first (and consequently each) of
these four equivalent properties implies that the optimal value in the primal problem is equal
to the optimal value in the dual one. All that remains is to prove the equivalence between
(1)—(@v), on one hand, and (v), on the other hand. This is immediate: (i)—(iv), of course,
imply (v); conversely, in the case of (v) the primal not only is feasible but also is bounded
below (this is an immediate consequence of the feasibility of the dual problem; see point
2), and (i) follows. a

An immediate corollary of the LP duality theorem is the following necessary and
sufficient optimality condition in LP.

THEOREM 1.3.3. Necessary and sufficient optimality conditions in linear programming.
Consider an LP program (LP) along with its dual (LP*). A pair (x, y) of primal and dual
feasible solutions is made up of optimal solutions to the respective problems if and only if

yil[Ax = b]; =0, i=1,...,m, [complementary slackness]

likewise as if and only if
T T, _ :
cx—by=0 [zero duality gap].

Indeed, the zero duality gap optimality condition is an immediate consequence of the
fact that the value of primal objective at every primal feasible solution is greater than or equal
to the value of the dual objective at every dual feasible solution, while the optimal values in
the primal and the dual are equal to each other; see Theorem 1.3.2. The equivalence between
the zero duality gap and the complementary slackness optimality conditions is given by the
following computation: whenever x is primal feasible and y is dual feasible, the products
yil[Ax — bl;, i = 1, ..., m, are nonnegative, while the sum of these products is precisely
the duality gap:

yIAx — b= ATy x —bTy =cTx —bTy.

Thus, the duality gap can vanish at a primal-dual feasible pair (x, y) if and only if all products
vi[Ax — b]; for this pair are zeros.

1.3.4 Illustration: Problem dual to the Tschebyshev
approximation problem

Let us look at the program dual to the (LP form of) the Tschebyshev approximation problem.
Our primal LP program is

nrlin{t t—[b—alx]>0,t —[~b; +a]x] >0, i:l,...,M}. (P)



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

20 Lecture 1. Linear Programming

Consequently, the dual problem is the LP program

A%
=
!
<

ni, i
M

M i +&] = 1,
max Zbi[m‘—@]' ;’7

"¢ i=l1 N
Z[ﬁi—§i]ai = 0.
i=1

To simplify the dual problem, let us pass from the variables 7;, ¢; to the variables p; = n;+¢;,
q; = n; — &;. With respect to the new variables the problem becomes

Pii%‘ Z Ovizlv--~aMa

M
Zpi = 1,

i=1
M

Z giai = 0.
i=1

In the resulting problem one can easily eliminate the p-variables, thus coming to the problem

M
Iy Zqz'ai = 0,

i=1
m(}ax Zbiqi‘ Iy . (D)

= > lail
i=1

The primal-dual pair (P)—(D) admits a nice geometric interpretation. Geometrically, the
primal problem (P) is as follows:

M

max Zbiqi
i=1

p.q

IA

Given avector b € RM and a linear subspace L in RM spanned by the columns
of the matrix
af
ay
find an element of L closest to b in the uniform norm
lzlloo = max |zl
i=1 M

on RM.

Observing that the equality constraints Zf‘i ,gia;i = 0 in (D) say exactly that the M-
dimensional vector ¢ must be orthogonal to the columns of the matrix
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or, which is the same, that the linear functional z — g7z vanishes on L, we see that the
dual problem (D) is as follows:

Given the same data as in (P), find a linear functional z — q”z on R of the
I - li-norm

M
lglh = lg:]
i=1

not exceeding 1, which separates best of all the point b and the linear subspace
L, i.e., which is identically 0 on L and is as large as possible at b.

The duality theorem says, in particular, that the optimal values in (P) and in (D) are
equal to each other; in other words,

The || - ||o-distance from a point b € RM to a linear subspace L C R is
equal to the maximum quantity by which b can be separated from L by a linear
functional of || - ||;-norm 1.

This is the simplest case of a very general and useful statement (a version of the Hahn—
Banach theorem):

The distance from a point b in a linear normed space (E, || - ||) to a linear
subspace L C E is equal to the supremum of quantities by which b can be
separated from L by a linear functional g (b) of the conjugate to || - || norm at
most 1:

inf{|[b — x|l | x € L} = sup{g(b) | ¢(-) : E — Ris linear, |||, < 1},

[lgll =sup{g(x) | x € E, |Ix] = 1}].

1.3.5 Application: Truss topology design

Surprisingly, LP in general, and the Tschebyshev approximation problem in particular,
may serve to solve seemingly highly nonlinear optimization problems. One of the most
interesting examples of this type is the truss topology design (TTD) problem.

Truss topology design

A truss is a mechanical construction comprising thin elastic bars linked to each other, such as
an electric mast, arailroad bridge, or the Eiffel Tower. The points at which the bars are linked
are called nodes. A truss can be subjected to an external load—a collection of simultaneous
forces acting at the nodes, as shown on Fig. 1.5. Under a load, the construction deforms
a bit, until the tensions caused by the deformation compensate the external forces. When
deformed, the truss stores certain potential energy; this energy is called the compliance of
the truss with respect to the load. The less the compliance, the more rigid the truss with
respect to the load in question.
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A?
nodes: A,A' B,C,C',D,D'.E
bars: AC,A'C',BC,BC',CD,CD',C'D',C'D,CE,C'E,DE,D'E
forces: arrows

Figure 1.5. A simple planar truss and a load.

In the simplest TTD problem, we are given

* anodal set, which is a finite set of points on the plane or in the space where the bars
of the truss to be designed can be linked,

* boundary conditions specifying the nodes that are supported and cannot move (like
nodes A,B,A’ on the wall AA’ in Fig. 1.5),

* aload, which is a collection of external forces acting at the nodes.

The goal is to design a truss of a given total weight best able to withstand the given load,
i.e., to link some pairs of the nodes by bars of appropriate sizes, not exceeding a given total
weight, in such a way that the compliance of the resulting truss with respect to the load of
interest will be as small as possible.

An attractive feature of the TTD problem is that although it seems to deal with the
size (weights) of the bars only, it finds the geometric shape (layout) of the truss as well.
Indeed, we may start with a dense nodal grid and allow all pairs of nodes to be connected by
bars. In the optimal truss, yielded by the optimization process, some of the bars (typically
the majority of them) will get zero weights. In other words, the optimization problem will
by itself decide which nodes to use and how to link them, i.e., it will find both the optimal
pattern (topology) of the construction and the optimal sizing.

Derivation of the model

To pose the TTD problem as an optimization program, let us look in more detail at what
happens with a truss under a load. Consider a particular bar AB in the unloaded truss
(Fig. 1.6); after the load is applied, the nodes A and B move a little bit, as shown on Fig. 1.6.
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Figure 1.6. A bar before (solid) and after (dashed) load is applied.

Assuming the nodal displacements d A and d B to be small and neglecting the second order
terms, the elongation d! of the bar under the load is the projection of the vector dB — d A
on the direction of the bar:

dl = (dB —dA)T (B — A)/||B — Al|.

The tension (the magnitude of the reaction force) caused by this elongation, by Hooke’s
law, is
dl x Sap dl X tap

K =K >
1B — Al 1B — Al

where k is a characteristic of the material (Young’s modulus), S4p is the cross-sectional
area of the bar AB, and 4 is the volume of the bar. Thus, the tension is

T =«ktyp(dB —dA)T (B — A)||B — A| .
The reaction force at point B associated with the tension is the vector

—t(B—A)|B—A|lI"" = «tagl(dB—dA)T(B— A)I(B— A)|B—A|™*
—tap[(dB — dA)! BaglBas.
Bas = k(B — A)||B — A2

(1.3.12)
Note that the vector 845 depends on the positions of the nodes linked by the bar and is
independent of the load and of the design.
Now let us look at the potential energy stored by our bar as a result of its elongation.
Mechanics says that this energy is the half-product of the tension and the elongation, i.e., it
is

tension x elongation  tdl _ [«tx5(dB —dA)" (B — A)||B — A||*][(dB —dA)" (B — A)||B — A| ']

2 2 2

1 2
= —tag [dB —dA)T )
5l [( ) Bas] (13.13)

Now it is easy to build the relevant model. Let M be the number of nodes in the nodal
grid and M; be the number of the “free” nodes—those that are not fixed by the boundary
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conditions.* We define the space R™ of virtual displacements of the construction as the
direct sum of the spaces of displacements of the free nodes; thus, m is either 2M; or 3 M,
depending on whether we are speaking about planar or spatial trusses. A vector v from R”
represents a displacement of the nodal grid: a free node v corresponds to a pair (planar case)
or a triple (spatial case) of (indices of) the coordinates of v, and the corresponding subvector
v[v] of v represents the “physical” two-dimensional (2D) or 3D displacement of the node v.
It is convenient to define the subvectors v[v] for fixed nodes v as well; by definition, these
subvectors are zeros.

A load—a collection of external forces acting at the free nodes’—can be represented
by a vector f € R"; for every free node v, the corresponding subvector f[v] of f is the
external force acting at v.

Let n be the number of tentative bars (i.e., pair connections between distinct nodes
from the grid, at least one node in the pair being free). Let us somehow order all our n
tentative bars and consider the ith of them. This bar links two nodes v'(i), v’ (i), i.e., two
points A; and B; from our physical space (which is the 2D plane in the planar case and
the 3D space in the spatial case). Let us associate with tentative bar i a vector b; € R™ as
follows (cf. (1.3.12)):

Ba;B:» v =1"(i) and v is free,
bilvl= 1 —Ba,5, Vv=V'(i)andv is free, (1.3.14)
0 in all remaining cases.
A particular truss can be identified with a nonnegative vector t = (¢, ..., t,), where #; is the

volume of bar i in the truss. Consider a truss ¢, and let us look at the reaction forces caused
by a displacement v of the nodes of the truss. From (1.3.12) and (1.3.14) it follows that for
every free node v, the component of the reaction force caused, under the displacement v,
by the ith bar at the node v is —f; (biT v)b;[v]. Consequently, the total reaction force at the
node v is

=Yt vbilvl,

i=1

and the collection of the reaction forces at the nodes is

—Xn:t,-(biTv)bi =— i:t,-bibf v.

i=l1 i=1

We see that the m-dimensional vector representing the reaction forces caused by a displace-
ment v depends on v linearly:

fr=—A)v,

4We assume for simplicity that a node is either completely fixed or completely free. In some TTD problems it
makes sense to speak also of partially fixed nodes, which can move along a given line (or along a given 2D plane
in the 3D space in the case of spatial trusses). It turns out that the presence of partially fixed nodes does not change
the mathematical structure of the resulting optimization problem.

51t makes no sense to speak about external force acting at a fixed node. Such a force will be compensated by
the physical support that makes the node fixed.
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where

A(t) = 1;bb] (1.3.15)

i=1

is the so called bar-stiffness matrix of the truss. This is an m x m symmetric matrix, which
depends linearly on the design variables—the volumes of tentative bars.

Now, at equilibrium the reaction forces must compensate the external ones, which
gives us a system of linear equations determining the displacement of the truss under an
external load f:

Al = f. (1.3.16)

To complete the model, we should also write an expression for the compliance—the potential
energy stored by the truss at equilibrium. According to (1.3.13)—(1.3.14), this energy is

DN G [ O1 = v OD Ban]” = 1Y 6w b)?
i=1

i=1
= %UT |:Z l‘ib,‘biT:| v
i=1
= TA@w
= %fT‘U’

the concluding equality being given by (1.3.16). Thus, the compliance of a truss # under a
load f is

1
Compl /(1) = EfTv, (1.3.17)

where v is the corresponding displacement; see (1.3.16).
The expression for the compliance possesses a transparent mechanical meaning:

The compliance is just one half of the mechanical work performed by the ex-
ternal load on the displacement of the truss until equilibrium.

REMARK 1.3.1. Mathematically speaking, there is a gap in the above considerations: the
linear system (1.3.16) can have more than one solution v (or no solution at all). Why do
we know that in the former case the value of the right-hand side of (1.3.17) is independent
of the particular choice of the solution to the equilibrium equation? And what do we do if
(1.3.16) has no solution?

The answers to these questions are as follows. If (1.3.16) has no solution, that means
that the truss ¢ cannot carry the load f: it is crushed by this load. In this case it makes sense
to define Compl /() as +oo. If (1.3.16) is solvable, then the quantity f Ty does not depend
on a particular choice of a solution to the equation. Indeed, if v solves (1.3.16), then

f=) tbib[v)= ffo=Y 1,0 v).
i=1

i=1
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The resulting quantity is independent of a particular choice of v due to the following obser-
vation:

Ift > 0, then for every i for which t; > 0, the quantity biTv does not depend on
a particular choice of a solution to (1.3.16).

Indeed, if v, v’ are solutions to (1.3.16), then
D b lv—v1) = 0=
i=1

=" ) tbib[lv—v]) = 0=
i=1
S (pfw -1’ = o

i:t;>0

Now we can formulate the problem of designing the stiffest truss (with respect to a
given load) of a given weight as the following optimization problem.

PROBLEM 1.3.1. The simplest TTD problem. Given a ground structure®

m; n; {b; € R"}!

i=1

aload f € R™, and a total bar volume w > 0, find atrusst = (t1, ..., t,) with nonnegative
t; satisfying the resource constraint

dh<w (1.3.18)
i=1

with the minimum possible compliance Compl ,(t) with respect to the load f.

When speaking about the TTD problem, we always make the following assumption.
ASSUMPTION 1.3.1. The vectors {b;}]_, span the entire R™.
This assumption has a very transparent mechanical interpretation. Let us look at a full
truss—one where all tentative bars are of positive weights. Assumption 1.3.1 says that there

should be no nonzero displacement v orthogonal to all b;, or, which is the same, an arbitrary
nonzero displacement should cause nonzero tensions in some bars of our full truss. In other

®From the engineering viewpoint, a ground structure is the data of a particular TTD problem, i.e., a particular
nodal set along with its partition into fixed and free nodes, the Young modulus of the material, etc. The engineering
data define, as explained above, the mathematical data of the TTD problem.
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words, the assumption says that our boundary conditions forbid rigid body motions of the
nodal set.

Linear programming form of the truss topology design problem

As stated above, the TTD problem, Problem 1.3.1, does not resemble an LP program at all:
although the constraints

n
t>0, > 4i<w
i=1

are linear, the objective Compl ;(7) given by (1.3.15)—(1.3.17) is highly nonlinear.

Surprisingly, the TTD problem can be converted into an LP program. The corre-
sponding transformation is as follows.

For a loaded truss, a stress in a bar is the absolute value of the corresponding tension
(i.e., the magnitude of the reaction force caused by bar’s deformation) divided by the cross-
sectional area of the bar; the larger this quantity, the worse the conditions the material is
working in. According to (1.3.12), (1.3.14), the stress in bar i is (up to the constant factor
J/x) a simple function of the displacement vector v:

s; = |bl vl (1.3.19)
Now let us formulate the following intermediate problem.

PROBLEM 1.3.2. Given a ground structure m, n, {b;}!_, and a load f, find a displacement
v that maximizes the work fTv of the load under the constraint that all stresses are < 1:

min { v | |b/vl <1, i=1,...,n}. (1.3.20)

A derivation completely similar to the one in section 1.3.4 demonstrates that the
problem dual to (1.3.20) is (equivalent to) the program

min {an | Y aibi= 1. (1.3.21)
i=1 i=1

q1s--2qn

Note that both the primal and the dual are feasible (for the primal it is evident; the feasibility
of the dual follows from Assumption 1.3.1). By the LP duality theorem, both problems are
solvable with common optimal value w,. Let v* be an optimal solution to (1.3.20) and let
q* be an optimal solution to (1.3.21). It is easy to see that the complementary slackness
optimality condition results in

lgF| = qF(bv), i=1,...,n. (1.3.22)

Assuming f # O (this is the only case of interest in the TTD problem), we ensure that
we =Y i, IgF| > 0, so that the vector

=g i=1,....n, (1.3.23)
Wi
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(w is the material resource in the TTD problem) is well defined and is a feasible truss (i.e.,
t* is nonnegative and satisfies the resource constraint). We claim that

(%) The vector t* is an optimal solution to the TTD problem, and v+ = %v*
is the corresponding displacement.

Indeed, we have

Z ti*bibiTer = Z lg|bi (biTv*) [by construction of t*, v*],
i=1 i=1
= Y 4 by (1.3.22)],
i=1
= 7 [see (1.3.21)]

sothat vt is the displacement of the truss r* under the load f. The corresponding compliance
is

1
Compl (1) = EfTer

= %Xn:qi*bfv* |:since f= Z‘Ii*bi:|
i=1 i

1 w,
=§w_ qrbT v* (1.3.24)
w

i=1

Wi "
=Y lg|  [see(1.322)]
2w P

Thus, ¢* is a feasible solution to the TTD problem with the value of the objective % To

prove that the solution is optimal, it suffices to demonstrate that the latter quantity is a lower
bound on the optimal value in the TTD problem. To see this, let 7 be a feasible solution to
the TTD problem and let v be the corresponding displacement. Let also

qi = t;(b] v).

We have

D qibi =) (b v)b; = f (1.3.25)
i=1 i=1
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(the equilibrium equation; see (1.3.15)—(1.3.16)). Thus, g is a feasible solution to (1.3.21),
and

Complf(t) — %fTU
= 13 h0fv? [see(1.3.25)]
i=1

AN

5 t;
i1t 0
2 -1
> S D el | | Do
i:t; 70 i:t; 70
since by the Cauchy inequality
2 2
—172 1/2
] = (S man) < (£ an) (24
itt; 0 itt;#0 it #0 i

=

k]

SIS

=

Note that (*) not only provides us with a possibility to compute an optimal solution
to the TTD problem via LP techniques but also establishes a very important fact:

(xx) Inan optimal truss t* the stresses, caused by load f, in all bars of nonzero
weight are equal to each other, so that the material in all bars is under the same
working conditions.

As stated by (*), the displacement of t* under the load f is v, i.e., it is proportional
to v*, and it remains to look at (1.3.22) and (1.3.23).

Strictly speaking, the above reasoning is incomplete. First, v™ is a solution to the
equilibrium equation associated with *; how do we know that (**) holds true for other
solutions to this equation? The answer: the stresses in those bars that are actually present
in a truss are uniquely defined by the truss and the load; see Remark 1.3.1. Second, (**) is
established for an optimal solution #* to the TTD problem, one which can be obtained, in
the aforementioned fashion, from an optimal solution to (1.3.25). A priori it may happen
that the TTD problem has other optimal solutions. However, it can be shown that every
optimal solution to the TTD problem can be obtained from an optimal solution to (1.3.25).

REMARK 1.3.2. Note that problem (1.3.21) is, basically, the Tschebyshev approximation
problem. Indeed, instead of asking what is the largest possible value of f7v under the
constraints |bl.Tv| <1,i =1,...,n, wemightask what is the minimum value of max; |biTv|
under the constraint that f7 v = 1. The optimal solutions to these two problems can be easily
obtained from each other. The second problem is equivalent to a Tschebyshev approximation
problem: we can use the equation f7v = 1 to eliminate one of the design variables, thus
coming to a Tschebyshev problem in the remaining variables.
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1.4 Exercises to Lecture 1

1.4.1 Uniform approximation

We have seen that the Tschebyshev approximation problem normally arises as a discrete
version of the best uniform approximation problem:

Given a segment A = [a, b], N basic functions f, ..., fn, and a target func-
tion fyon A, find the best uniform approximation of fo by a linear combination

of fi,..., fn:

N N
min 4 | fo— Y x;f; = sup fo) = xifid| . (Appr(A))
j=1 o € j=1

The discrete version of this problem is obtained by replacing A with afiniteset T C A:

xeR"

N N
min { | fo— > xif;|  =sup|fo) =Y x;fiO|f.  (Appr(T))
=1 oo teT j=1
The following questions related to the above problems are of primary interest:
1. What is the quality of approximation of (Appr(A)) by (Appr(7))? Specifically,
can we write down an inequality

Jj=1

N N
fo=Y xifi| <«|fo—Y xf; Vx (1.4.26)
j=1 .

T,00

with appropriately chosen « ? If it is the case, then k can be viewed as a natural measure of
the quality of approximating the original problem by its discrete version—the closer « is to
1, the better the quality.

2. Given the total number M of points in the finite set 7', how should we choose these
points to get the best possible quality of approximation?

The goal of the subsequent series of problems is to provide some answers to these
two questions. The answers will be given in terms of properties of the functions from the
linear space L spanned by fy, fi,..., fn:

N
L=1f=) &1
Jj=0 &'ERN“

Given a finite set T C A, let us say that T is L-dense, if there exists ¥ < oo such that

[ fllo = kllfllTco VS €L

the smallest « with the latter property is denoted by «, (7). If T is not L-dense, we
set Kk (T) = oo. Note that k7 (T) majorates the quality of approximating the problem
(Appr(A)) by (Appr(T)), and this is the quantity we shall focus on.
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EXERCISE 1.1. Let L be a finite-dimensional space comprising continuous functions on a
segment A, and let T be a finite subset in A. Prove that T is L-dense if and only if the only
function from L that vanishes on T is = 0.

EXERCISE 1.2. Let @ < 0o, and assume L is «-regular, i.e., the functions from L are
continuously differentiable and

£ lloo <l fllos Yf €L.

Assume that T C A is such that the distance from every point in A to the closest point of T
does not exceed B < a~". Prove that under these assumptions

Kk (T) < T —ap’

EXERCISE 1.3. Let L be a k-dimensional linear space comprising continuously differen-
tiable functions on a segment A. Prove that L is a-regular for some a; consequently, by
choosing a fine-enough finite grid T C A, we can ensure a given quality of approximating
(Appr(A)) by (Appr(T)).

To use the simple result stated in Exercise 1.2, we should know something about
regular linear spaces L of functions. The most useful result of this type is the following
fundamental fact.

THEOREM 1.4.1. Bernshtein’s theorem on trigonometric polynomials. Let A = [0, 27 ]
and let f be a trigonometric polynomial of degree < k on A:

k
f(@) =ao+ Y lagcos(lt) + by sin(l1)]
=1

with real or complex coefficients. Then

I Moo < Kl f lloo-

Note that the inequality stated in the Bernshtein theorem is tight. Indeed, for the
trigonometric polynomial f(#) = cos(kt) the inequality becomes equality.

We see that the space of trigonometric polynomials of degree < k on [0, 27] is k-
regular. What about the space of algebraic polynomials of degree < k on the segment,
say, [—1, 1]? Specifically, let us look at the Tschebyshev polynomial of degree k given on
A = [—1, 1] by the relation

Ty (t) = cos(kacos(t)), —1<tr<1.

(Check that this indeed is a polynomial in ¢ of degree k.) This polynomial possesses the
following property:

(A) Tk lloo = 1, and there are k+ 1 points of alternance t; = cos(@) €A,
£ =0,...,k where |Ti(t;)| = 1 and the signs of the values Ty (t;) alternate
(see Fig. 1.7).
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\/ \/

45 1 05 0 05 1 15

Figure 1.7. The Tschebyshev polynomial Ty and its five points of alternance.

The derivative of T at the point # = 1 is k?; thus, the factor « in an inequality

IT¢Noo < ol Ticlloo

is at least k>. We conclude that the space L, of real algebraic polynomials of degree < k
on the segment [—1, 1] is not a-regular for o < k2. Is our space k>-regular? We guess that
the answer is positive, but we were too lazy to find out if this is true. What we intend to
demonstrate here is that L is 2k>-regular.

EXERCISE 1.4. Prove thatif f € Ly and || f|loo = 1, then
|f'(D] < k= T{(D). ()
Hint. Assuming that f'(1) > T}/(1), look at the polynomial

T (D)
J)

Verify that the values of this polynomial at the points of alternance of 7 are of
the same alternating signs as those of the values of 7}, so that p has at least k
distinct zeros on (—1, 1). Taking into account the latter fact and the equality
p’ (1) = 0, count the number of zeros of p’(t).

p(t) =Ti(r) — f(@).

Derive from (*) that
|f'(0)] < 2k
forallt € [—1, 1] and conclude that Ly is 2k2-regular.
Now let us apply the information collected so far to investigating questions 1 and 2 in

the two simplest cases, where L comprises the trigonometric and the algebraic polynomials,
respectively.
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EXERCISE 1.5. Assume that A = [0, 27], and let L be a linear space of functions on A
comprising all trigonometric polynomials of degree < k. Let T be an equidistant M -point
grid on A:

2¢+ D | M
T = {u} )
M £=0
1. Prove thatif M > kx, then T is L-dense, with
Ty < —.
k(T) = M —kn
2. Prove that the above inequality remains valid if we replace T with its arbitrary

shift modulo 27, i.e., treat A as the unit circumference and rotate T by an angle.
3. Prove that if T is an arbitrary M -point subset of A with M < k, then k. (T) = oo.

EXERCISE 1.6. Let A = [—1, 1] and let L be the space of all algebraic polynomials of
degree < k.
1. Assume that 2M > wk and T is the M-point set on A as follows:

M—1
T:{t;:cos<w>} .
M £=0

(T) < 2M
) =oM —ak
2. Let T be an M-point set on A with M < k. Then k1 (T) = oo.

Then T is L-dense, with

EXERCISE 1.7. The result stated in Exercise 1.6 says that when L; is made up of all real
algebraic polynomials of degree < k on [—1, 1] and we want to ensure k1 (7)) = O(1), then
it suffices to take M = card(T) = O(k) point grid. Note that the corresponding grid is
nonuniform. Is it possible to achieve similar results with a uniform grid? The answer is no:

Prove that for the equidistant M -point grid T = {—1 + %}210 on A =[—1, 1] one
has

kp (T) > aM™! exp{—czk/«/ﬁ}

Sfor some positive absolute constants c1, ¢;. Thus, in order to get k., (T) = O(1) for an
equidistant grid T, the cardinality of the grid should be nearly quadratic in k.

Hint. Lett; = —1,6p = —1 + %, ..., tyy = +1 be the points of T. Reduce
the question to the following:

Given a polynomial f(¢) of degree k which is < 1 in absolute value
on [—1, #)/—1] and is equal to O at the point 1, how large could the
polynomial be at the point 0.5(ty—1 + 1)?

To answer this, look how the Tschebyshev polynomial 7; grows outside the
segment [—1, 1]. (Note that for + > 1 the polynomial is given by T (t) =
cosh(k acosh(t)).)
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1.4.2 Theorem on the alternative

The goal of the subsequent exercises is to prove the general theorem on the alternative
(Theorem 1.3.1).

From the homogeneous Farkas lemma to the theorem on the alternative

Consider the very particular case of the theorem on the alternative. We want to verify
whether the system of homogeneous linear inequalities in R” of the form

alx

aiTx

0,
0,i=1,. ®

.., m,

IV A

has no solutions. The answer is given by the following.

LEMMA 1.4.1. The homogeneous Farkas lemma.

{(F) is infeasible} < :Elk >0:a= Zkiai} .

i=1

EXERCISE 1.8. Prove that Lemma 1.4.1 is exactly what is said by the theorem on the
alternative as applied to the particular system (F).

Our plan of attack is as follows. We shall demonstrate that the general theorem on the
alternative can be easily obtained from the homogeneous Farkas lemma, and in section
1.4.3 we shall present a direct proof of the lemma. Thus, for the time being you may take
Lemma 1.4.1 for granted.

EXERCISE 1.9. Consider the same system of linear inequalities as in the theorem on the
alternative:

(S :

a'x > by, i=1,...,mq,
> b, i=mg+1,...,m.

Prove that this system has no solution if and only if this is the case for the following
homogeneous system:

—s < 0,
t—s > 0
S*) - .
G aiTx—b,-t—s > 0,i=1,...,m;,
aiTx—b,'t > 0, i=mg+1,...,m,

where the unknowns are x and two additional real variables s, t.
Derive from the above observation and the homogeneous Farkas lemma the general
theorem on the alternative.

The next exercise presents several useful consequences of the general theorem on the
alternative.
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EXERCISE 1.10. Prove the following statements.

1. (Gordan’s theorem on the alternative.) One of the inequality systems

Ax <0, x e R", [A:m x n]

ATy=0,0#y>0, yeR",

has a solution if and only if the other one has no solution.
2. (Inhomogeneous Farkas lemma.) A linear inequality

a’x <p

is a consequence of a solvable system of inequalities
Ax <b [A:m x n]

if and only if

a=ATv
for some nonnegative vector v such that

vIb < p.

3. (Motzkin’s theorem on the alternative.) The system
Sx <0, Nx <0 [S:pxn, N:gxn]

has no solution if and only if the system

STe + NTv=0, 0 >0, v>0, 0 #0,

has a solution.

1.4.3 Proof of the homogeneous Farkas lemma

(1.4.27)

Here we present a series of exercises aimed at proving the homogeneous Farkas lemma.
In fact we present two proofs: a quick and dirty one based on separation arguments, and
a more intelligent proof based on the Helley theorem. Note that the homogeneous Farkas
lemma states that the system (F) has no solution if and only if « is a linear combination,
with nonnegative coefficients, of ay, . .., a,. The only nontrivial here is the “only if” part:
if the system has no solutions, then a = Zi Aia;, A; = 0, and later we focus on this “only

if” part.

From the separation theorem to the Farkas lemma

EXERCISE 1.11. Let K be a nonempty closed convex set in R" and let x € R" be a point

not belonging to K.
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1. Prove that the distance from x to K is achieved: there exists x* € K such that

[x — x*||l2 = min [lx — y[.
yek

Moreover, x* is unique.
2. Prove that e = x — x* strictly separates x and K, namely,

e'(x—y)=lel; >0 VyeKk.
3. Assume in addition that K is a cone, i.e.,
yeK,A>0=AyeK.
Prove that in this case e = x — x* satisfies the relations
x>0 & e'y<0 Vyek.

EXERCISE 1.12. Let ay, ..., a, € R". Consider the conic hull of these vectors, i.e., the set
K of all their linear combinations with nonnegative coefficients:

m
K={p=) ha| 1=0

i=1

1. Prove that the set K is a convex cone.
2. Prove that the set K is closed.

Hint. Letp; = Y " | A;ja; withA;; > 0,and letthe sequence {p,} convergetoa
point p; we should prove that p can also be represented as a linear combination,
with nonnegative coefficients, of ay, ..., a,,.

A. Assume that p # 0 (this is the only nontrivial case). For every j with
p;j # 0 consider a minimal representation of p; as a nonnegative linear com-
bination of ay, ..., an, i.e., a representation p; = Zi Aijai, Ajj = 0, with the
least number of positive weights A;;’s. Prove that the g;’s participating in (any)
minimal representation of p; with positive weights are linearly independent.

B. Derive from A that the weight vectors (A1, Ayj, ..., A,j) associated
with minimal representations of p;’s form a bounded sequence.

C. Derive from B that p € K.

3. Given 1, 2, and the results of the previous exercise, demonstrate that for any vector
a ¢ K there exists a vector x such that

aTx<O,al-Tx20, i=1,...,m,

and derive from this fact the homogeneous Farkas lemma.

Hint. Use as x the negation of the vector that separates a from K.
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An intelligent proof

We start with the following basic fact.

THEOREM 1.4.2. Helley theorem. Let Ay, ..., Ay be a collection of convex sets in R".
Assume that the intersection of every k < n 4 1 sets from the collection is nonempty. Then
the intersection of all M sets Ay, ..., Ay is nonempty.

Letus derive the homogeneous Farkas lemma from the Helley theorem. Leta, ay, ..., a,
be vectors in R” such that the system of inequalities

aTx

CliT)C

0,
0 )

,i=1,...,m,

IV A

has no solution. We should prove that under this assumption a can be represented as a linear
combination, with nonnegative coefficients, of ay, ..., a,,; this is exactly what is said by
the homogeneous Farkas lemma. The statement is evident when a = 0, so that from now
on we assume a # 0.

Set
NI = {x]|a'x=-1},
A = {xel'[|airx20}
= {x|aTx=—1,aiTx20}.
Let us call a nonempty subcollection of the collection {ay, ..., a,} a contradiction if the

sets A; corresponding to the vectors from the subcollection have no common point.

EXERCISE 1.13. 1. Prove that the entire collection {ay, . .., a,} is a contradiction.
According to 1, contradictions exist. Consequently, there exists a minimal contra-
diction (one with the smallest number of vectors). By reordering the vectors a;, we may

assume that {ay, ..., a;} is a minimal contradiction.

2. Prove that the vector a belongs to the linear span of the vectors ay, . . ., ax.
Hint. Assuming that a does not belong to the linear span of ay, ..., ai, prove
that there exists a vector x that is orthogonal to ay, . . ., a; and is not orthogonal
to a, and conclude that {a,, ..., a;} is not a contradiction.
3. Prove that the vectors ay, . . ., a; are linearly independent.
Hint. Assuming that ay, ..., a; are linearly dependent, consider the linear
space L spanned by ay, ..., a; along with its subsets

I = {xeL:a"x=-1},

A, = {xe H’:aiTxZO}, i=1,...,k.

3.1. Considerasubcollection of the collection A/, ..., A}. Prove that the
sets of this subcollection have a point in common if and only if the corresponding
sets of the collection Ay, ... A; have a point in common.
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3.2. Taking into account that {aj, ..., a;} is a minimal contradiction,
verify that every k — 1 sets from the collection A}, ..., A} have a point in
common.

Applying the Helley theorem to the sets A, ..., A; (they are convex
subsets of IT, i.e., essentially, of a (dim (L) — 1)-dimensional linear space),
prove that under the assumption dim (L) < k the sets A/, ..., A} have a point
in common, which is impossible (since {ay, ..., ax} is a contradiction).

4. Derive from 2, 3, and the fact that {ay, . . ., ar} is a contradiction that a is a linear
combination of ay, ..., a, and all coefficients in this combination are nonnegative, thus
concluding the proof of the homogeneous Farkas lemma.

It is time to explain why the proof of the homogeneous Farkas lemma sketched in Ex-
ercise 1.13 is more intelligent than the proof coming from the separation scheme (Exercises
1.11, 1.12). The reason is that the Helley theorem itself, as well as the reasoning outlined
in Exercise 1.13, are purely algebraic facts: they do not use compactness or other topo-
logical arguments, as does the reasoning in Exercise 1.11. As a result, the proof sketched
in Exercise 1.13 remains valid also in the case when we replace our universe R”, with,
say, the linear space Q" of all n-dimensional vectors with rational coefficients.” From this
observation we conclude that the theorem on the alternative remains valid when we speak
about rational solutions to systems of linear inequalities with rational coefficients. This is a
nontrivial and useful observation. (It implies, e.g., that a solvable LP program with rational
data has a rational solution.)

Note that the proof via the separation heavily exploits the compactness and does not
work at all in the case of a percolated space such as Q". Consider, e.g., the rational plane
Q? along with the convex cone

K ={(u,v) € Q®| u++2v <0}

A point x from Q? not belonging to K cannot be separated from K by a legitimate linear
functional on Q?>—there is no rational vector e such thate” x > e’y Vy € K. Consequently,
in the case of the rational universe an attempt to prove the Farkas lemma via a separation-type
reasoning fails at the very first step.

1.4.4 Helley theorem
The goal of the subsequent exercises is to establish the Helley theorem and to illustrate some
of its applications.

EXERCISE 1.14. Prove the following.

THEOREM 1.4.3. Radon. Letay, ..., a, be a collection of m > n+ 2 vectors in R". There
exists a partitioning of the index set {1, ..., m} into two nonempty disjoint subsets I and J
such that the convex hull of the points {a;};c; intersects the convex hull of the points {a;}ic;.

7Q" should be treated as a linear space over the field Q of rationals, i.e., we allow multiplying the vectors from
Q" by rational scalars only, not by arbitrary reals.
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Hint. Note that the system of n + 1 < m homogeneous linear equations

m
Zkiai = 0,
i=l

has a nontrivial solution A* and set / = {i : A7 > 0}, J = {i : A} < 0}.
EXERCISE 1.15. Derive the Helley theorem from the Radon theorem.

Hint. Apply induction on the number M of the sets Ay, ..., Ay. To justify
the inductive step, it suffices to demonstrate that if the Helley theorem is valid
for every collection of M > n + 1 sets, then it is valid for a collection of M + 1
sets Aq, ..., Ay+1. To verify this implication, consider the M + 1 nonempty
(by the inductive hypothesis) sets

Bl=A20A3ﬂ~-~ﬂAM+1;Bz=A1QA3ﬂA4ﬂ---mAM+1;
~--;BM+1=A10A20-~-QAM.

For every i, choose a point a; € B;, apply to the resulting collection of M +1 >
n + 2 points the Radon theorem, and demonstrate that every point from the
intersection of the corresponding convex hulls is a common point of the sets
A], ~-~7AM+1-

EXERCISE 1.16. Consider the Tschebyshev approximation problem,
o* = min { max |alx — bi|} , (T)
LM

and let k be the rank of the system ay, ..., ay. Prove that one can choose a subset J C
{1, ..., M}, containing no more than k + 1 indices, in such a way that the optimal value in
the relaxed problem

min {max lal x — b,-|} (Ty)
ieJ

X
is equal to o *.
Hint. Look at the convex sets X; = {x | |aiTx —bi| <o*}.

Prove that if every k of the vectors ay, . . ., ay are linearly independent and o* > 0,
then for every optimal solution x* to (T') there exist k + 1 indices of alternance—there exists
a subset J C {1, ..., M} of the cardinality k + 1 such that

la’ x* —bj| = o0* VielJ.
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Integration formulas and Gauss points

An integration formula is a formula of the type

N
/ fydt =~ e f (1)
A i=1

with nonnegative weights o;. Given an integration formula (i.e., a finite set of grid points
ti, ..., ty and nonnegative weights «y, . . ., o), one may ask how rich is the set of functions
for which the formula is exact. For example, the equidistant two-point formula

1
/1 fdt~ f(=1/2)+ f(1/2)

is exact for linear functions but is not exact for quadratic polynomials. In contrast to this,
the Gauss formula

1
f e~ f1NE + £/

is exact on all polynomials of degree < 3.
It turns out that the Helley theorem and the Farkas lemma allow one to get the following
very general result:

() Let A be a subset of R¥, let L be an n-dimensional linear space comprising
continuous real-valued functions on A, and let I (f) : L — R be an integral—
a linear functional on L that is nonnegative at every f € L such that f(t) > 0
everywhere on A. Assume also that if a function f € L is nonnegative on
A and is not identically 0, then I (f) > 0. Then there exists an exact n-point
cubature formula for 1, i.e., there are n pointsty, ..., t, € A andn nonnegative
weights oy, . . ., a, such that

I(f)=) aift) VfelL.

i=1
EXERCISE 1.17. 1. Prove (x) for the case of finite A.

Hint. Assuming that / is not identically zero, associate with points t € A the
convex sets A, = {f € L | f(t) <0, I(f) = 1} and prove that there exist n
sets Ay, ..., A;, of this type with empty intersection. Apply the homogeneous
Farkas lemma to the linear forms f(¢;), ..., f(t,), [(f) of f € L.

2. Prove (%) for the general case.

1.4.5 How many bars are needed in an optimal truss?

Let us look at the ground structure shown on Fig. 1.8. We see that the optimal bar uses just
24 of the 3204 tentative bars. Is this phenomenon typical or not? As you shall see in a while,
the answer is positive: there exists an optimal truss with no more than m + 1 bars, where
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® [e] [e] [e] [e] [e] [e] [e] [e]
® o o o o o o o o
® o o o o o o o o
® o o o o o o o o
® o o o o o o o T
® o o o o o o o o
® o o o o o o o o
® o o o o o o o o
® o o o o o o o o

9 x 9 planar nodal grid and the load (left); 3204 tentative bars (right).
(The most left nodes are fixed; the dimension of the space of
displacementsism =2 x 8 x 9 = 144))

Figure 1.8. Ground structure and optimal truss (24 bars).

m is the dimension of the space displacements. Thus, with the above ground structure we
know in advance that there exists an optimal truss with at most 145 bars; this is more than
the 24 bars in the optimal truss we have found but still is by an order of magnitude less than
the number of tentative bars.

EXERCISE 1.18. Consider an LP problem

min {ch

Ax =b,x > 0}
with k x n matrix A of rank r. Assuming that the program is solvable, prove that there exists
an optimal solution x* to the problem with at most r nonzero coordinates.

Hint. Look at an optimal solution with the minimum possible number of pos-
itive coordinates.
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EXERCISE 1.19. Consider a TTD problem with M -dimensional space of virtual displace-
ments. Prove that there exists an optimal solution to this problem with no more than m + 1
bars of positive weight.

Hint. Given an optimal truss ¢* along with the associated displacement v*,
demonstrate that every solution 7 to the system

iti(bjTU*)bi = f

i=1
n
E i = w,

i=1

t

v
N

is also an optimal truss.
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Lecture 2

From Linear Programming
to Conic Programming

Linear programming models cover numerous applications. Whenever applicable, LP allows
one to obtain useful quantitative and qualitative information on the problem at hand. The
specific analytic structure of LP programs gives rise to a number of general results (e.g.,
those of the LP duality theory) that provide us in many cases with valuable insight and
understanding (see, e.g., Exercise 1.19). At the same time, this analytic structure underlies
some specific computational techniques for LP; these techniques, which by now are perfectly
well developed, allow one to solve routinely quite large (tens or hundreds of thousands of
variables and constraints) LP programs. Nevertheless, there are real-life situations that
cannot be covered by LP models. To handle these essentially nonlinear cases, one needs to
extend the basic theoretical results and computational techniques known for LP beyond the
bounds of LP.

For the time being, the widest class of optimization problems to which the basic
results of LP were extended is the class of convex optimization programs. There are several
equivalent ways to define a general convex optimization problem; the one we are about to
use is not the traditional one, but it is well suited to encompass the range of applications
covered in this book.

When passing from a generic LP problem

X

min {ch Ax zb}, [A:m xn], (LP)
to its nonlinear extensions, we should expect to encounter some nonlinear components in the
problem. The traditional way here is to say, “Well, in (LP) there are a linear objective function
fo(x) = cTx and inequality constraints f;(x) > b; with linear functions f;(x) = aiTx,
i =1,...,m. Letus allow some or all of these functions fy, fi, ..., m to be nonlinear.”
In contrast to this traditional way, we intend to keep the objective and the constraints linear,
but introduce nonlinearity in the inequality sign >.

43
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2.1 Orderings of R™ and convex cones

The constraint inequality Ax > b in (LP) is an inequality between vectors; as such, it
requires a definition, and the definition is well known: given two vectors a, b € R™, we
write a > b if the coordinates of a majorate the corresponding coordinates of b:

a>bs{a=b;, i=1,...,m}. =)

In the latter relation, we again meet with the inequality sign >, but now it stands for the
“arithmetic >"—a well known relation between real numbers. The above coordinatewise
partial ordering of vectors in R™ satisfies a number of basic properties of the standard
ordering of reals; namely, for all vectors a, b, ¢, d, ... € R™ one has

1. reflexivity: a > a;

2. antisymmetry: if botha > b and b > a, then a = b;
3. transitivity: if botha > b and b > ¢, thena > c;

4. compatibility with linear operations:

(a) homogeneity: if a > b and A is a nonnegative real, then Aa > Ab
(“one can multiply both sides of an inequality by a nonnegative real”);

(b) additivity: ifbotha > bandc > d,thena +c>b+d
(“one can add two inequalities of the same sign”).

It turns out that

* A significant part of the nice features of LP programs comes from the fact that the
vector inequality > in the constraint of (LP) satisfies the properties 1-4.

e The definition (>) is neither the only possible nor the only interesting way to define
the notion of a vector inequality fitting the axioms 1-4.

As aresult,

a generic optimization problem that looks exactly the same as (LP), up to the
fact that the inequality > in (LP) is now replaced by a vector inequality different
from the componentwise ordering, inherits a significant part of the properties of
LP problems. Specifying properly the ordering of vectors, one can obtain from
(LP) generic optimization problems covering many important applications that
cannot be treated by the standard LP.

To the moment what is said is just a declaration. Let us see how this declaration comes
to life.

We start by clarifying the geometry of a vector inequality satisfying the axioms 1-4.
Thus, we consider vectors from R” and assume that R is equipped with a partial ordering,
denoted by >; in other words, we say what are the pairs of vectors a, b from R” linked by
the inequality a > b. We call the ordering good if it obeys the axioms 1-4, and we want to
understand what these good orderings are.
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Our first observation follows:

A good inequality > is completely identified by the set K of >-nonnegative
vectors:

K={aeR"| a>0}.

Namely,

a>bsa—-b>0, [&a-—beK]

Indeed, let a > b. By 1 we have —b > —b, and by 4(b) we may add the latter
inequality to the former one to get @ — b > 0. Conversely, if a — b > 0, then, adding to this
inequality the one b > b, we geta > b.

The set K in the observation cannot be arbitrary. It is easy to verify (do it!) that it
must be a pointed convex cone, i.e., it must satisfy the following conditions:

1. K'is nonempty and closed under addition:

a,ad e K=a+d K.

2. K is a conic set:

acK, A>0= la e K.

3. K s pointed:

aeKand —aeK=a=0.

Geometrically, K does not contain straight lines passing through the origin.
Thus, every nonempty pointed convex cone K in R” induces a partial ordering on
R™, which satisfies the axioms 1-4. We denote this ordering by >g:

a>kbsa—-b>0a—-bek.

Which cone is responsible for the standard coordinatewise ordering > we have started with?
The answer is clear: this is the cone made up of vectors with nonnegative entries—the
nonnegative orthant

R ={x=(x1,....x»)  €R":x; >0, i=1,....,m}.

(Thus, to express that a vector a is greater than or equal to, in the componentwise sense,
a vector b, we were supposed to write a >R b. However, we will not be that formal and
shall use the standard shorthand notation a > b.)

The nonnegative orthant R} is not just a pointed convex cone; it possesses two useful
additional properties:

1. The cone is closed: if a sequence of vectors a' from the cone has a limit, the latter
also belongs to the cone.

2. The cone possesses a nonempty interior: there exists a vector such that a ball of
positive radius centered at the vector is contained in the cone.
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These additional properties are very important. For example, property 1 is responsible
for the possibility to pass to the termwise limit in an inequality:

a">b Vi,a - a, bt - basi > o00o=a>b.

It makes sense to restrict ourselves to good partial orderings coming from cones K sharing
properties 1 and 2. Thus,

From now on, speaking about good partial orderings >x, we always assume
that the underlying set K is a pointed and closed convex cone with a nonempty
interior.

Note that the closedness of K makes it possible to pass to limits in >g-inequalities:
a >k b, ad —>ab —>basi — 00o=a>gb.

The nonemptiness of the interior of K allows us to define, along with the nonstrict inequality
a >x b, the strict inequality according to the rule

a>gk b a—>beintK,

where int K is the interior of the cone K. For example, the strict coordinatewise inequality
a >gr b (shorthand: a > b) simply says that the coordinates of a are strictly greater, in the
usual arithmetic sense, than the corresponding coordinates of b.

Examples. The partial orderings we are especially interested in are given by the following
cones:

* the nonnegative orthant R”};

e the Lorentz (or the second order, or the ice cream) cone

m T m .
L"=3x=0, ..., xm_1,%n) €R" :x, >

* The positive semidefinite cone 8%’ . This cone lives in the space 8" of m x m symmetric
matrices and consists of all m x m matrices A which are positive semidefinite, i.e.,

A=AT, xTAx>0 VxeR".

2.2 What is conic programming?

Let K be a cone in R™ (convex, pointed, closed, and with a nonempty interior). Given an
objective ¢ € R”, an m x n constraint matrix A, and a right-hand side b € R™, consider the
optimization problem

X

min {ch Ax — b >k 0} . (CP)



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

2.2. What is conic programming? 47

We shall refer to conic programming (CP) as a conic problem associated with the cone K.
Note that the only difference between this program and an LP problem is that the latter deals
with the particular choice K = R’!. With the formulation (CP), we can cover a much wider
spectrum of applications that cannot be captured by LP. To get an idea, let us look at the
following two examples:

ExAMPLE 2.2.1. Synthesis of arrays of antennae (see section 1.2.4). Given N building
blocks—antennae Sy, ..., Sy with diagrams Z;(6), ..., Zy(3), atarget diagram Z,(8), and
a finite grid T in the space of directions—find (complex-valued) weights z, = u, + ivg
minimizing the quantity

N N
12 = 32 Zillroo = max|Zu(d) = Y 20 ZeB)]-
(=1 (=1

InLecture 1 we dealt with a particular case of this problem—the one where Z, and all Z; were
real valued. There it was sufficient to consider real design variables z,, and consequently the
problem could be posed as an LP problem. In the general case, some or all of the functions
Z., Z; are complex valued; as a result, the conversion of the problem to an LP problem fails.
However, we can pose the problem as (CP). Indeed, let w = (uy, vy, ..., uy, vy)T e R?Y
be a collection of our design variables—the real and the imaginary parts of the complex-
valued weights zy, ..., zy. For a particular direction §, the complex number

N
ACEDPEFAC)

=1

treated as a 2D real vector, is an affine function of w:

N
Z.(8) = Y 2 Z(8) = asw + By [oes is 2 x 2N matrix, Bs € R].
=1

Consequently, the problem of interest can be posed as

mi?{t loesw + Bsll, <t V8 € T}. (An)
w,
Now, a constraint

lasw + Bsll2 < ¢

asw + Bs
, ,

affinely depending on the design vector x = (w, t) of (An),

aw + Bs = Asx — b
: = As 55

means that the 3D vector
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belongs to the 3D Lorentz cone L. Consequently, (An) can be posed as

min {c'x =1
x=(w,t)

Asx + bs e L? V(SET}.

Introducing the cone

K:HL3

seT

along with the affine mapping
Ax — b = {Asx + bs}ser,

we finally express our problem as the conic problem

min {ch Ax — b >k 0} .
X
The problem we end up with is a conic quadratic program—a conic program associated
with a cone K which is a direct product of (finitely many) ice cream cones.
We remark that the same reduction to a conic quadratic problem can be obtained for

the problem of synthesis of filters in the frequency domain (see Lecture 1).

EXAMPLE 2.2.2. Stability analysis for an uncertain linear time-varying dynamic sys-
tem. Consider a linear time-varying system

d
2700 =20 (S)

with m x m time-varying matrix Q(¢). Assume that all we know about the matrix Q(t) is
that the matrix, at every time instant ¢, belongs to a given polytope:

Q) € Conv(Qyq, ..., Q).

Imagine, e.g., that all entries of Q but one are constant, while, say, the entry Q,; varies

within known bounds Q™" and Q. This is exactly the same as saying that O (¢) belongs

to the polytope spanned by two matrices Q and Q», the (1,1)-entry of the matrices being
‘,“f“ and QT, respectively, and the remaining entries being the same as in Q(-).

For the system (S), the question of primary interest is whether the system is stable,

i.e., whether all trajectories of the system tend to 0 as t — oo. A simple sufficient condition

for stability is the existence of a quadratic Lyapunov function—a function
L) =v" Xv,

where X is a symmetric positive definite matrix, such that

d
EL(v(t)) < —aL(v()) Ly)
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for every trajectory of the system; here « > 0 is the decay rate. Condition (Ly) clearly
implies that

L)) = v" (1) Xv(t) < exp{—at}L(v(0)),

and since X is positive definite, the latter inequality, in turn, implies that v(¢) — 0, — oo.
Thus, whenever (Ly) can be satisfied by a pair (X, o) with positive definite X and positive
o, the pair can be treated as a stability certificate for (S).

Now, the left-hand side in (Ly) can be easily computed: it is simply

v (OIQT (X + X QN)]v(®).
Consequently, (Ly) requires that

VT OIRTX+X0M]v() < —av" () Xv(r) & —v" (OH[QT()X+X Q1) +aX]v(1) > 0.

For ¢ given, the matrix Q(¢) can be an arbitrary matrix from the polytope Conv(Q1, ..., Q),
and v() can be an arbitrary vector. Thus, (Ly) requires the matrix [- QT X — X Q —aX] to
be positive semidefinite whenever Q € Conv((Qy, ..., Q) or, which is the same (why?),

requires the validity of the inequalities
—0/X-XQi—aX >0, i=1,....k

Now, a positive definite matrix X can be extended, by a positive «, to a pair (X, «) satisfying
the indicated inequalities, if and only if the matrices

-0lX-XQ;, i=1,...k
are positive definite (why?). We conclude that

In order to certify the stability of (S) by a quadratic Lyapunov function, it
suffices to find a symmetric matrix X satisfying the following system of strict
S} -inequalities:

X>g 0, —0/X—XQ;>g 0. (2.2.1)

Now, a symmetric matrix A is positive definite if and only if the matrix A — t/, where I is
the unit matrix of the same size as A, is positive semidefinite for some positive t (see the
exercises in Lecture 2). Consequently, to verify whether (2.2.1) is solvable is the same as
verifying whether the optimal value of the program

X +1l

. —-0TX — X0, +11
min t >gnen 0
teR, XeS" . +

—OTX — XQi+11
(2.2.2)

with the design variables ¢ and the w free entries of the symmetric matrix X is or is
not negative. If the optimal value in the problem is negative, then (2.2.1) is solvable, and
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one can use as a solution to (2.2.1) the X-component of an arbitrary feasible solution (X, t)
to (2.2.2) with negative r. Whenever this is the case, (S) is stable, and the stability can be
certified by a quadratic Lyapunov function. On the other hand, if the optimal value in (2.2.2)
is nonnegative, then (2.2.1) is infeasible. Whether, in the latter case, (S) is or is not stable
remains unclear; all that can be said is that the stability cannot be certified by a quadratic
Lyapunov function.

Note that (2.2.2) is a conic problem associated with the positive semidefinite cone
STU‘H) . Indeed, the left-hand side in the constraint inequality in (2.2.2) depends affinely
on the design variables, as required in the definition of a conic program.

2.3 Conic duality

Aside from algorithmic issues, the most important theoretical result in LP is the LP duality
theorem. Can this theorem be extended to conic problems? What is the extension?

The source of the LP duality theorem was the desire to get in a systematic way a lower
bound on the optimal value ¢* in an LP program

¢ = min {ch
X

Ax = b} . (LP)
The bound was obtained by looking at the inequalities of the type

ATAx > ATh (Cons(X))

with weight vectors & > 0. By its origin, an inequality of this type is a consequence
of the system of constraints Ax > b of (LP), i.e., it is satisfied at every solution to the
system. Consequently, whenever we are lucky to get, as the left-hand side of (Cons(1)),
the expression ¢’ x, i.e., whenever a nonnegative weight vector A satisfies the relation

AT = c,

the inequality (Cons()) yields a lower bound b7 A on the optimal value in (LP). And the
dual problem

max {b"% | >0, AT1 =}

was nothing but the problem of finding the best lower bound one can get in this fashion.
The same scheme can be used to develop the dual to a conic problem

min {c’x | Ax >k b}. (CP)
Here the only step that needs clarification is the following one:

What are the admissible weight vectors X, that is, the vectors such that the
scalar inequality

ATAx > ATh

is a consequence of the vector inequality ATx >g b?
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In the particular case of the coordinatewise partial ordering, i.e., in the case of K = R/,
the admissible vectors were those with nonnegative coordinates. These vectors, however,
are not necessarily admissible for an ordering >k when K is different from the nonnegative
orthant.

EXAMPLE 2.3.1. Consider the ordering >y on R? given by the 3D ice cream cone:

a) 0
<a2> >3 (0) & az > ,/a12+a§.

as 0

)~

is valid; however, aggregating this inequality with the aid of a positive weight vector

1
A:( 1 ),
0.1

—-1.8>0.

The inequality

we get the false inequality

Thus, not every nonnegative weight vector is admissible for the partial ordering >y .

Answering the question is the same as naming the weight vectors A such that
Va>x0: Afa=0. (23.3)
Whenever A possesses the property (2.3.3), the scalar inequality
Ala>2"h

is a consequence of the vector inequality a >k b:

a >k b,
> a—b > 0 (additivity of >g),
= M@-b > 0 (by (2.3.3)),
& ‘Ma > ATh.

Conversely, if A is an admissible weight vector for the partial ordering >,
Via,b:a>xb): A'a>r"b,

then, of course, A satisfies (2.3.3).
Thus the weight vectors A that are admissible for a partial ordering >x are exactly the
vectors satisfying (2.3.3) or, which is the same, the vectors from the set

K.={1eR":2Ta>0 VaecK)}.
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The set K, comprises vectors whose inner products with all vectors from K are nonnegative.
K. is called the cone dual to K. The name is correct because of the following.

THEOREM 2.3.1. Properties of the dual cone. Let K C R"™ be a nonempty set. Then
(i) The set

K.,={reR":2Ta>0 VaeKk)

is a closed convex cone.
(i) If intK # 0, then K, is pointed.
(iii) If K is a closed convex pointed cone, then intK, # (.
@iv) If K is a closed convex cone, then so is K, and the cone dual to K is K itself:

(Ki)s = K.

The proof of the theorem is the subject of Exercise 2.1. An immediate corollary of
the Theorem is as follows.

COROLLARY 2.3.1. A set K C R™ is a closed convex pointed cone with a nonempty interior
if and only if the set K, is so.

From the dual cone to the problem dual to (CP). Now we are ready to derive the dual
problem of a conic problem (CP). As in the case of LP, we start from the observation that
whenever x is a feasible solution to (CP) and A is an admissible weight vector, i.e., A € K,,
then x satisfies the scalar inequality

AT Ax > ATh.

This observation is an immediate consequence of the definition of K,. It follows that
whenever X, is an admissible weight vector satisfying the relation

AT =c,
one has
x=A"TNTx=2Ax>ATh=b"1

for all x feasible for (CP), so that the quantity b7 A is a lower bound on the optimal value of
(CP). The best bound one can get in this fashion is the optimal value in the problem

max {b"1 | ATA =c, A >k, 0} (D)

and this program is called the program dual to (CP).
So far, what we know about the duality just introduced is the following.

PROPOSITION 2.3.1. Weak duality theorem. The optimal value of (D) is a lower bound
on the optimal value of (CP).
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2.3.1 Geometry of the primal and dual problems

The structure of problem (D) looks quite different from the one of (CP). However, a more
careful analysis demonstrates that the difference in structures comes just from the way we
represent the data: geometrically, the problems are completely similar. Indeed, in (D)
we are asked to maximize a linear objective b7 A over the intersection of an affine plane
L, ={r| ATA = ¢} with the cone K,. And what about (CP)? Let us pass in this problem
from the true design variables x to their images y = Ax — b. When x runs through R”, y
runs through the affine plane L = {y = Ax —b | x € R"}. x is feasible if the corresponding
y = Ax — b belongs to the cone K. Thus, in (CP) we also deal with the intersection of an

affine plane, namely, L, and a cone, namely, K. Now assume that our objective ¢Tx can be
expressed in terms of y = Ax — b:
c¢Tx =dT (Ax — b) + const.
This assumption is clearly equivalent to the inclusion
c e ImAT. (2.3.4)
Indeed, in the latter case we have ¢ = AT d for some d, whence
c"'x=d"Ax =d" (Ax —b) +d"b Vx. (2.3.5)

In the case of (2.3.4) the primal problem (CP) can be posed equivalently as the following
problem:

min{dTy| yeL, y=>k0},
¥

where L = ImA — b and d is (any) vector satisfying the relation A”d = c¢. Thus,

in the case of (2.3.4) the primal problem is, geometrically, the problem to
minimize a linear form over the intersection of the affine plane L with the cone
K, and the dual problem, similarly, is to maximize another linear form over the
intersection of the affine plane L, with the dual cone K.

Now, what happens if the condition (2.3.4) is not satisfied? The answer is simple: in this
case (CP) makes no sense—it is either unbounded below or infeasible.

Indeed, assume that (2.3.4) is not satisfied. Then, by linear algebra, the vector c is
not orthogonal to the null space of A, so that there exists e such that Ae = 0 and c”e > 0.
Now let x be a feasible solution of (CP); note that all points x — p, i > 0, are feasible, and
¢’ (x — e) — oo as u — oo. Thus, when (2.3.4) is not satisfied, problem (CP), whenever
feasible, is unbounded below.

From the above observation we see that if (2.3.4) is not satisfied, then we may reject
(CP) from the very beginning. Thus, from now on we assume that (2.3.4) is satisfied. In
fact in what follows (until the end of the book!) we make a stronger assumption:

Assumption A. When speaking about a CP
min {c"x | Ax —b > 0}, (CP)

we always assume (if the opposite is not explicitly stated) that the matrix A is
of full column rank (i.e., its columns are linearly independent).
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In other words, we assume that the mapping x — Ax has the trivial null space.
(We have eliminated from the very beginning the redundant degrees of freedom—those not
affecting the value of Ax.) Under this assumption, the equation

ATd =g

is solvable for every right-hand side vector g.

Note that an arbitrary conic program (CP) can be easily converted to a program
satisfying Assumption A. Indeed, this statement is evident in the case when the columns of
A are linearly independent, same as in the case when A is the zero matrix. Now assume
that our m x n matrix A has rank k, 1 < k < n. Without loss of generality, we can assume
that the first k columns of A are linearly independent, and let A be the m x k submatrix of
A comprising these columns. Note that there exists (and can be easily built via the standard
linear algebra) a k x n matrix B of rank k such that

ABx = Ax Vx e R". [A = AB]
Since B is of rank k, the k x k matrix BBT is nonsingular, so that the vector
f=(BBT)'Bc e Rf
is well defined. Now consider the CP

min {7y | Ay —b >¢ 0}. (CP)
yeRK

This program by construction satisfies Assumption A and represents equivalently the original
problem (CP) in the following sense:

1. A candidate solution x € R” is feasible for (CP) if and only if y[x] = Bx is
feasible for (CP’).

2. If c € Im(AT) (so that ¢ = ATd for certain d), then the values ¢”x and f7 y[x]
of the objectives of (CP) and (CP’) on the candidate solutions x, y[x] of the respective
problems are equal to each other:

ffylx] = fT'Bx=[(BBT) 'Bc]"Bx =[(BBT)"'BATd]" Bx
= [(BBT)"'BATd])"Bx = [(BBT)"'BBTATd]" Bx
= [ATd]"Bx =d"ABx =d" Ax
= CTX .

3. Ifc ¢ Im(AT), then (CP) is either infeasible (if (CP") is so), or is unbounded below
(if (CP") is feasible).

We see that the feasibility—solvability status of (CP) is explicitly given by that of
(CP"), and the feasible—optimal solutions of (CP), if any, can be easily obtained from the
feasible—optimal solutions of (CP’).

Another way to ensure Assumption A is to represent x as the difference of two non-
negative vectors and to rewrite (CP) equivalently as

min{cT(u—v)| A(u—v)—szO,uzo,vEO};
u,v
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the constraints of the resulting problem form the vector inequality

A —A b N . .
I (”)—(0) >z 0, K=K x Rdimx , gdim=,
v
I 0
—_—

x

and the matrix A is of full column rank.

As we have seen, in the case of ¢ € ImAT, problem (CP) can be reformulated as a
problem (P) of minimizing a linear objective d” y over the intersection of an affine plane L
and a cone K. Conversely, a problem (P) of this latter type can be posed in the form of (CP).
To this end it suffices to represent the plane L as the image of an affine mapping x +— Ax —b
(i.e., to parameterize somehow the feasible plane) and to “translate” the objective d” y to
the space of x-variables—to set ¢ = A”d, which yields

y=Ax —b=d"'y =clx + const.

Thus, when dealing with a conic problem, we may pass from its analytic form (CP) to the
geometric form (P) and vice versa.

What are the relations between the geometric data of the primal and the dual problems?
We already know that the cone K associated with the dual problem is dual of the cone K
associated with the primal one. What about the feasible planes L and L,? The answer is
simple: they are orthogonal to each other! More exactly, the affine plane L is the translation,
by vector —b, of the linear subspace

L=ImA={y=Ax| x e R"}.

And L, is the translation, by any solution Aq of the system ATA = ¢, e.g., by the solution
d to the system, of the linear subspace

L. =Null(AT)={xr| ATA =0}.

A well known fact of linear algebra is that the linear subspaces £ and L, are orthogonal
complements of each other:

L={y|yAa=0 VaeLl) Li={r]|y'A=0 VyeCL)
Thus, we come to a nice geometrical conclusion:

A conic problem (CP) with ¢ € ImA (in particular, a problem satisfying
Assumption A) is the problem

min{d"y | y e L~b, y=>k0} (P)
¥
of minimizing a linear objective d'y over the intersection of a cone K with

an affine plane L = L — b given as a translation, by vector —b, of a linear
subspace L.
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Figure 2.1. Primal-dual pair of conic problems. Bold lines: primal (vertical
segment) and dual (horizontal ray) feasible sets.

The dual problem is the problem

max {b"x | xe Lt +d, A >k, 0} (D)

of maximizing the linear objective bT ) over the intersection of the dual cone
K., with an affine plane L, = L* + d given as a translation, by the vector d,
of the orthogonal complement L of L.

What we get is an extremely transparent geometric description of the primal-dual pair
of conic problems (P), (D). Note that the duality is completely symmetric: the problem
dual to (D) is (P)! Indeed, we know from Theorem 2.3.1 that (K,), = K, and of course
(LYt = L. Switch from maximization to minimization corresponds to the fact that the
shifting vector in (P) is (—b), while the shifting vector in (D) is d. The geometry of the
primal-dual pair (P), (D) is illustrated in Fig. 2.1. Finally, note that in the case when (CP) is
an LP program (i.e., in the case when K is the nonnegative orthant), the conic dual problem
(D) is exactly the usual LP dual; this fact immediately follows from the observation that the
cone dual to R is RY! itself.

We have explored the geometry of a primal-dual pair of conic problems: the geometric
data of such a pair are given by a pair of dual-to-each-other cones K, K, in R” and a pair
of affine planes L = £ — b, L, = L+ 4 d, where L is a linear subspace in R” and £ is its
orthogonal complement. The first problem from the pair—Ilet it be called (P)—is to minimize
bTy over y e KN L, and the second (D) is to maximize d” A over A € K, N L,.. Note that
the geometric data (K, K, L, L.) of the pair do not specify completely the problems of the
pair: given L, L,, we can uniquely define £ but not the shift vectors (—b) and d: b is known
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up to shift by a vector from £, and d is known up to shift by a vector from £-. However, this
nonuniqueness is of absolutely no importance; replacing a chosen vector d € L, by another
vector d’ € L., we pass from (P) to a new problem (P’), which is completely equivalent to
(P). Indeed, both (P) and (P’) have the same feasible set, and on the (common) feasible plane
L of the problems their objectives d” y and (d’)T y differ from each other by a constant:

yeL=L-b,d—d e Lt = (d—d) (y+b) =0= (d—d) y=—(d—-d)'b VyelL.

Similarly, shifting b along £, we modify the objective in (D), but in a trivial way—on the
feasible plane L, of the problem the new objective differs from the old one by a constant.

2.4 Conic duality theorem

The weak duality (Proposition 2.3.1) we have established so far for conic problems is much
weaker than the LP duality theorem. Is it possible to get results similar to those of the LP
duality theorem in the general conic case as well? The answer is affirmative, provided that
the primal problem (CP) is strictly feasible, i.e., that there exists x such that Ax — b > O,
or, geometrically, L N intK # @.

The advantage of the geometrical definition of strict feasibility is that it is independent
of the particular way in which the feasible plane is defined. Hence, with this definition it is
clear what it means when the dual problem (D) is strictly feasible.

Our main result is the following.

THEOREM 2.4.1. Conic duality theorem. Consider a conic problem

¢* =min{c"x | Ax > b} (CP)

X

along with its conic dual
b* =max {b"1 | ATA=c, 1 >k, 0}. (D)

1. The duality is symmetric: the dual problem is conic, and the problem dual to dual
is (equivalent to) the primal.

2. The value of the dual objective at every dual feasible solution A is < the value of
the primal objective at every primal feasible solution x, so that the duality gap

cTx=bTx

is nonnegative at every primal-dual feasible pair (x, ).

3.a. Ifthe primal (CP) is bounded below and strictly feasible (i.e., Ax >x b for some
x), then the dual (D) is solvable and the optimal values in the problems are equal to each
other: c, = b*.

3.b. If the dual (D) is bounded above and strictly feasible (i.e., exists . >x,_ 0 such
that AT\ = ¢), then the primal (CP) is solvable and c* = b*.

4. Assume that at least one of the problems (CP), (D) is bounded and strictly feasible.
Then a primal-dual feasible pair (x, )) is a pair of optimal solutions to the respective
problems
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4.a. if and only if
bTa=cTx [zero duality gap]

and
4.b. if and only if

AMT[Ax = b] =0 [complementary slackness].

Proof. 1. The result was obtained in the discussion of the geometry of the primal and the
dual problems.

2. This is the weak duality theorem.

3. Assume that (CP) is strictly feasible and bounded below, and let c* be the optimal
value of the problem. We should prove that the dual is solvable with the same optimal value.
Since we already know that the optimal value of the dual is < c¢* (see 2), all we need is to
point out a dual feasible solution A, with b7 A, > c*.

Consider the convex set

M={y=Ax—b| x eR", cTx <c*}.

Let us start with the case of ¢ # 0. We claim that in this case

(i) the set M is nonempty;

(ii) the plane M does not intersect the interior K of the cone K: M N intK = @;

Claim (i) is evident (why?). To verify claim (ii), assume, on the contrary, that there
exists a point x, ¢T'% < ¢*, such that y = AXx — b > 0. Then, of course, Ax —b >k 0 Vx
close enough to x, i.e., all points x in a small-enough neighborhood of x are also feasible
for (CP). Since ¢ # 0, there are points x in this neighborhood with ¢7x < ¢TXx < ¢*, which
is impossible, since c¢* is the optimal value of (CP).

Now let us make use of the following basic fact.

THEOREM 2.4.2. Separation theorem for convex sets. Let S, T be nonempty, noninter-
secting convex subsets of R™. Then S and T can be separated by a linear functional: there
exists a nonzero vector A € R™ such that

supA’u < inf ATu.
ues ueT

Applying the separation theoremto S = M and T = K, we conclude that there exists
A € R™ such that

supr’y < inf ATy, (2.4.6)
yeM yelntK

From the inequality it follows that the linear form A7y is bounded below on K = intK.
Since this interior is a conic set,

yeK,u>0=>uyek

(why?), this boundedness implies that A7y > 0 Vy € K. Consequently, A"y > 0 Vy from
the closure of K, i.e., Vy € K. We conclude that A >k, 0, so that the inf in (2.4.6) is
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nonnegative. On the other hand, the infimum of a linear form over a conic set clearly cannot
be positive; we conclude that the inf in (2.4.6) is 0, so that the inequality reads

sup ATu <.
ueM

Recalling the definition of M, we get
[ATA)Tx <ATh (2.4.7)

for all x from the half-space c’x < c*. But the linear form [ATA]”x can be bounded
above on the half-space if and only if the vector AT A is proportional, with a nonnegative
coefficient, to the vector c,

ATx = uc

for some © > 0. We claim that © > 0. Indeed, assuming © = 0, we get ATr =0,
whence ATh > 0in view of (2.4.7). It is time now to recall that (CP) is strictly feasible, i.e.,
Ax — b >x O for some x. Since A >k, 0 and A # 0, the product AT[AX — b] should be
strictly positive (why?), while in fact we know that the productis —A7bH < 0 (since ATA =0
and, as we have seen, ATH > 0).

Thus, 1 > 0. Setting A, = u~'A, we get

Av 2k, O [since A >k, 0and u > 0],
ATr, = ¢ [since ATA = ucl,
c’'x < AMb Vx:cTx<c* [see (2.4.7)].

We see that A, is feasible for (D), the value of the dual objective at A, being at least c*, as
required.

It remains to consider the case ¢ = 0. Here, of course, ¢* = 0, and the existence of
the dual feasible solution with the value of the objective > ¢* = 0 is evident: the required
solution is A = 0. Thus 3.a is proved.

3.b: the result follows from 3.a in view of the primal-dual symmetry.

4: Let x be primal feasible and X be dual feasible. Then

Tx=b"a=(ATN)'x = b"x =[Ax — b]" 1.
We get a useful identity, as follows.

PROPOSITION 2.4.1. For every primal-dual feasible pair (x, 1) of solutions to (CP), (D), the
duality gap cTx — bT X is equal to the inner product of the primal slack vector y = Ax — b
and the dual vector A.

Note that the conclusion in Proposition 2.4.1 in fact does not require full primal-dual
feasibility: x may be arbitrary (i.e., y should belong to the primal feasible plane ImA — b),
and A should belong to the dual feasible plane AT A = ¢, but y and A should not necessarily
belong to the respective cones.

In view of Proposition 2.4.1, the complementary slackness holds if and only if the
duality gap is zero; thus, all we need is to prove 4.a.
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The primal residual ¢ x — ¢* and the dual residual b* — b” ) are nonnegative, provided
that x is primal feasible and X is dual feasible. It follows that the duality gap

Tx=bTa=[cTx =1+ b —b"A1+ [c* — b*]

is nonnegative (recall that ¢* > b* by 2), and it is zero if and only if ¢* = b* and both
primal and dual residuals are zero (i.e., x is primal optimal, and A is dual optimal). All these
arguments hold without any assumptions of strict feasibility. We see that the condition
“the duality gap at a primal-dual feasible pair is zero” is always sufficient for primal-dual
optimality of the pair. If ¢* = b*, this sufficient condition is also necessary. Since in the
case of 4 we indeed have c* = b* (this is stated by 3), 4.a follows. O

A useful consequence of the conic duality theorem is the following.

COROLLARY 2.4.1. Assume that both (CP) and (D) are strictly feasible. Then both problems
are solvable, the optimal values are equal to each other, and each one of the conditions 4.a,
4.b is necessary and sufficient for optimality of a primal-dual feasible pair.

Indeed, by the weak duality theorem, if one of the problems is feasible, the other is
bounded, and it remains to use the items 3 and 4 of the conic duality theorem.

2.4.1 Is something wrong with conic duality?

The statement of the conic duality theorem is weaker than that of the LP duality theorem. In
the LP case, feasibility (even nonstrict) and boundedness of either primal or dual problem
implies solvability of both the primal and the dual and equality between their optimal values.
In the general conic case, something nontrivial is stated only in the case of strict feasibility
(and boundedness) of one of the problems. It can be demonstrated by examples that this
phenomenon reflects the nature of things and is not due to our ability to analyze it. The case
of nonpolyhedral cone K is truly more complicated than the one of the nonnegative orthant
K as aresult, a word-by-word extension of the LP duality theorem to the conic case is false.

EXAMPLE 2.4.1. Consider the following conic problem with two variables x = (x1, x2)7
and the 3D ice cream cone K:

X1 — X2
min{x; | Ax —b = 1 >3 0
X1+ x2

Recalling the definition of L?, we can write the problem equivalently as

miﬂ{xl | Vi —x)2+1<x +x2},
i.e., as the problem
min {x; | 4x1x, > 1, x1 + xp > 0}.

Geometrically the problem is to minimize x; over the intersection of the 3D ice cream cone
with a 2D plane; the inverse image of this intersection in the design plane of variables x1, x,
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is part of the 2D nonnegative orthant bounded by the hyperbola x;x; > 1/4. The problem is
clearly strictly feasible (a strictly feasible solution is, e.g., x = (1, 1)T) and bounded below,
with the optimal value 0. This optimal value, however, is not achieved—the problem is
unsolvable!

EXAMPLE 2.4.2. Consider the following conic problem with two variables x = (x1, x2)7
and the 3D ice cream cone K:

min{x, | Ax—b=1| x | >30

The problem is equivalent to the problem
{xz | x12+x§ SX1}7

i.e., to the problem
min {x; | x, =0, x; > 0}.
The problem is clearly solvable, and its optimal set is the ray {x; > 0, x, = 0}.

Now let us build the conic dual to our (solvable!) primal. The cone dual to an ice
cream cone is this ice cream cone itself (see Exercise 2.7). Thus, the dual problem is

max{0| [)LI_FM :|=|:Oi|,)»zL30}.
x Ao 1

Although the primal is solvable, the dual is infeasible. Indeed, assuming that A is dual

feasible, we have A >s 0, which means that A5 > , /Af + )»%; since also A; + A3 = 0, we
come to A, = 0, which contradicts the equality A, = 1.

We see that the weakness of the conic duality theorem as compared to the LP duality
reflects pathologies that indeed may happen in the general conic case.

2.4.2 Consequences of the conic duality theorem

Sufficient condition for infeasibility. Recall that a necessary and sufficient condition
for infeasibility of a (finite) system of scalar linear inequalities (i.e., for a vector inequality
with respect to the partial ordering >) is the possibility to combine these inequalities in a
linear fashion so that the resulting scalar linear inequality is contradictory. In the case of
cone-generated vector inequalities, a slightly weaker result can be obtained.

PROPOSITION 2.4.2. Consider a linear vector inequality
Ax —b >k 0. @
(i) If there exists A satisfying
A2k 0,ATA=0,2"b>0, (1)

then (1) has no solutions.
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(i) If (IT) has no solutions, then (1) is almost solvable—for every positive € there exists
b’ such that |b' — b, < € and the perturbed system

Ax—b/zKO

is solvable.
Moreover,
(iii) (I) is solvable if and only if (1) is not almost solvable.

Note the difference between the simple case when > is the usual partial ordering >
and the general case. In the former, one can replace “nearly solvable” in (ii) with “solvable”;
however, in the general conic case “almost” is unavoidable.

EXAMPLE 2.4.3. Let system (I) be given by

x+1
Ax—b=| x—1 | >1:0.
ﬁx

Recalling the definition of the ice cream cone L, we can write the inequality equivalently
as

Vx>V + D2 - 12 = V22 42, @)

which of course is unsolvable. The corresponding system (II) is

hy =\ [AT 425 [¢ * =13 0],

MAAM+V2=0 [& ATL=0], (ii)
Ay — A >0 [« b"A>0].
From the second of these relations, A3 = — \/Li (A1 + A2), so that from the first inequality we

get 0 < (A; — A2)?, whence A; = A,. But then the third inequality in (ii) is impossible! We
see that here both (i) and (ii) have no solutions.

The geometry of the example is as follows. Point (i) asks us to find a point in the
intersection of the 3D ice cream cone and a line. This line is an asymptote of the cone (it
belongs to a 2D plane that crosses the cone in such way that the boundary of the cross section
is a branch of a hyperbola, and the line is one of two asymptotes of the hyperbola). Although
the intersection is empty ((i) is unsolvable), small shifts of the line make the intersection
nonempty (i.e., (i) is unsolvable and almost solvable at the same time). And it turns out that
one cannot certify that (i) itself is unsolvable by providing a solution to (ii).

Proof of the Proposition. Point (i) is evident (why?).
Let us prove (ii). To this end it suffices to verify that if (I) is not almost solvable, then
(IT) is solvable. Let us fix a vector o >k 0 and look at the conic problem

mitn {t| Ax +t0 — b > 0} (CP)
X,
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in variables (x, t). Clearly, the problem is strictly feasible (why?). Now, if (I) is not almost
solvable, then, first, the matrix of the problem [A; o] satisfies the full column rank condition
A. (Otherwise the image of the mapping (x, ) — Ax-+to —b would coincide with the image
of the mapping x — Ax — b, which is not the case—the first of these images intersects K,
while the second does not.) Second, the optimal value in (CP) is strictly positive (otherwise
the problem would admit feasible solutions with ¢ close to 0, and this would mean that (I) is
almost solvable). From the conic duality theorem it follows that the dual problem of (CP)

max {p"A ] ATA=0,0"1=1,1 >k, 0}

has a feasible solution with positive bTx, ie., (D) is solvable.

It remains to prove (iii). Assume first that (I) is not almost solvable; then (IT) must be
solvable by (ii). Conversely, assume that (II) is solvable, and let A be a solution to (I). Then
A also solves all systems of the type (II) associated with small-enough perturbations of b
instead of b itself; by (i), it implies that all inequalities obtained from (I) by small-enough
perturbation of b are unsolvable. a

When is a scalar linear inequality a consequence of a given linear vector inequality?
The question we are interested in is as follows. Given a linear vector inequality

Ax >k b V)
and a scalar inequality
T

c'x>d, )

we want to check whether (S) is a consequence of (V). If K is the nonnegative orthant, the
answer is given by the Farkas lemma:

Inequality (S) is a consequence of a feasible system of linear inequalities Ax >
b if and only if (S) can be obtained from (V) and the trivial inequality 1 > 0 in
a linear fashion (by taking weighted sum with nonnegative weights).

In the general conic case we can get a slightly weaker result, as follows.

PROPOSITION 2.4.3. (1) If (S) can be obtained from (V) and from the trivial inequality 1 > 0
by admissible aggregation, i.e., there exist weight vector A >x_ 0 such that

ATa=c,ATh > d,

then (S) is a consequence of (V).
(i1) If (S) is a consequence of a strictly feasible linear vector inequality (V), then (S)
can be obtained from (V) by an admissible aggregation.

The difference between the case of the partial ordering > and a general partial ordering
>k is in the word “strictly” in (ii).
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Proof of the Proposition. Point (i) is evident (why?). To prove point (ii), assume that
(V) is strictly feasible and (S) is a consequence of (V), and consider the conic problem

. - x - Ax —b .
r?,lzn{” A<t>_b=[d—ch+t}2KO}’

K={(x1]|xeK, >0}

The problem is clearly strictly feasible (choose x to be a strictly feasible solution to (V) and
then choose ¢ to be large enough). The fact that (S) is a consequence of (V) says exactly
that the optimal value in the problem is nonnegative. By the conic duality theorem, the dual
problem

max{bTA—d/L| AT)\—C=0,M=1,()L> ZK 0}
Aot 2 *

llas a feasible solution with the value of the objective > 0. Since, as it is easily seen,
K, ={(, n) | » € Ky, u > 0}, the indicated solution satisfies the requirements

A>k 0,ATA =c,b") > d;

i.e., (S) can be obtained from (V) by an admissible aggregation. a

REMARK 2.4.1. Although the conic duality theorem and its consequences listed in section
2.4.2 were obtained under Assumption A (by our convention, this assumption acts by default,
unless the opposite is explicitly stated), it is seen from the proofs that the results in question
are valid under a weaker assumption, namely, that ¢ € ImA in (CP).

2.4.3 Robust solvability status

Examples 2.4.2-2.4.3 make clear that in the general conic case we may meet pathologies
that do not occur in LP. For example, a feasible and bounded problem may be unsolvable,
and the dual to a solvable conic problem may be infeasible. Where do the pathologies come
from? Looking at our pathological examples, we arrive at the following guess. The source
of the pathologies is that in these examples, the solvability status of the primal problem is
nonrobust—it can be changed by small perturbations of the data. This issue of robustness
is very important in modeling, and it deserves a careful investigation.

Data of a conic problem. When asked, “What are the data of an LP program min{c” x |
Ax —b > 0}?7” everybody will give the same answer: “The objective c, the constraint matrix
A, and the right-hand side vector b.” Similarly, for a conic problem

min {c"x | Ax —b >k 0}, (CP)

its data, by definition, are the triple (c, A, b), while the sizes of the problem—the dimension
n of x and the dimension m of K, same as the underlying cone K itself—are considered the
structure of (CP).
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Robustness. A question of primary importance is whether the properties of the program
(CP) (feasibility, solvability, etc.) are stable with respect to perturbations of the data. This
question is important for these reasons:

* In actual applications, especially those arising in engineering, the data are normally
inexact: their true values, even when they exist in the nature, are not known exactly when
the problem is processed. Consequently, the results of the processing say something definite
about the true problem only if these results are robust with respect to small data perturbations,
i.e., the properties of (CP) we have discovered are shared not only by the particular (nominal)
problem we were processing but also by all problems with nearby data.

* Even when the exact data are available, we should take into account that in pro-
cessing them computationally we unavoidably add noise like rounding errors (you simply
cannot load something like % to the standard computer). As a result, a real-life computa-
tional routine can recognize only those properties of the input problem that are stable with
respect to small perturbations of the data.

Due to the above reasons, we should study not only whether a given problem (CP) is
feasible, bounded, solvable, etc., but also whether these properties are robust—they remain
unchanged under small data perturbations. As it turns out, the conic duality theorem allows
us to recognize robust feasibility, boundedness, solvability. . . .

Let us start with introducing the relevant concepts. We say that (CP) is

* robust feasible if all sufficiently close problems (i.e., those of the same structure
(n, m, K) and with data close enough to those of (CP)) are feasible;

* robust infeasible if all sufficiently close problems are infeasible;

* robust bounded below if all sufficiently close problems are bounded below (i.e., their
objectives are bounded below on their feasible sets);

* robust unbounded if all sufficiently close problems are not bounded;

* robust solvable if all sufficiently close problems are solvable.

Note that a problem that is not robust feasible is not necessarily robust infeasible, since
among close problems there may be both feasible and infeasible problems. (Look at Example
2.4.2; slightly shifting and rotating the plane Im A — b, we may get whatever we want—a
feasible bounded problem, a feasible unbounded problem, an infeasible problem...). This
is why we need two kinds of definitions, one of robust presence of a property and one of
robust absence of the same property.

Now let us look at necessary and sufficient conditions for the most important robust
forms of the solvability status.

PROPOSITION 2.4.4. Robust feasibility. (CP) is robust feasible if and only if it is strictly
feasible, in which case the dual problem (D) is robust bounded above.

Proof. The statement is nearly tautological. Let us fix § >k 0. If (CP) is robust feasible,
then for small enough ¢ > 0 the perturbed problem min{c”x | Ax —b—18 >k 0} should be
feasible; a feasible solution to the perturbed problem clearly is a strictly feasible solution to
(CP). The inverse implication is evident (a strictly feasible solution to (CP) remains feasible
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for all problems with close enough data). It remains to note that if all problems sufficiently
close to (CP) are feasible, then their duals, by the weak duality theorem, are bounded above,
so that (D) is robust bounded above. 0

PROPOSITION 2.4.5. Robust infeasibility. (CP) is robust infeasible if and only if the system
bTA=1,ATA=0,1>k 0

is robust feasible or, which is the same (by Proposition 2.4.4), if and only if the system
b'a=1,ATA=0,1> 0 (2.4.8)

has a solution.

Proof. First assume that (2.4.8) is solvable, and let us prove that all problems sufficiently
close to (CP) are infeasible. Let us fix a solution A to (2.4.8). Since A is of full column rank,
simple linear algebra says that the systems [A’]7 A = 0 are solvable for all matrices A’ from
a small-enough neighborhood U of A; moreover, the corresponding solution A(A’) can be
chosen to satisfy A(A) = A and to be continuous in A’ € U. Since A(A) is continuous and
A(A) >k, 0, we have A(A”) >k, 0 in a neighborhood of A; shrinking U appropriately, we
may assume that A(A’) >g, 0VA’ € U. Now, b” A = 1. By continuity reasons, there exists
a neighborhood V of b and a neighborhood U’ of A such that »" € V and all A’ € U’ one
has (b")TA(A") > 0.

Thus, we have seen that there exist a neighborhood U’ of A and a neighborhood V of
b, along with a function A(A"), A’ € U’, such that

(BN A(A") > 0,[AT"A(A) = 0, 1(A)) =k, O
Vb’ € V and A’ € U. By Proposition 2.4.2.(i), all the problems
min {[¢']"x | A'x —b" >k 0}

with b’ € V and A’ € U’ are infeasible, so that (CP) is robust infeasible.

Now let us assume that (CP) is robust infeasible, and let us prove that then (2.4.8) is
solvable. Indeed, by the definition of robust infeasibility, there exist neighborhoods U of A
and V of b such that all vector inequalities

Ax =b >k 0

with A’ € U and b’ € V are unsolvable. It follows that whenever A’ € U and b’ € V, the
vector inequality

Ax —b >k 0

is not almost solvable (see Proposition 2.4.2). We conclude from Proposition 2.4.2.(ii) that
for every A’ € U and b’ € V there exists A = A(A’, b’) such that

DT AMA b)) > 0,[AT"A(A", b)) = 0, M(A', b)) >k, O.
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Now let us choose Ay >k, 0. For all small-enough positive € we have A, = A +
eb[AT )] € U. Let us choose an € with the latter property so small that eb” 1o > —1 and
set A' = A, b’ = b. According to the previous observation, there exists A = A(A’, b) such
that

b"h > 0,[AT" A= AT[A 4+ ero(d" )] =0, >k, 0.

Setting A = A + eAg(b" 1), we get & >k, 0 (since A >k, 0,49 >k, 0 and b” 1 > 0), while
Ax =0and b" 1 = (b"A)(1 +€b"ip) > 0. Multiplying A by an appropriate positive factor
(namely, by 1/(bT 1)), we get a solution to (2.4.8). 0

Now we are able to formulate our main result on robust solvability.

PROPOSITION 2.4.6. For a conic problem (CP) the following conditions are equivalent to
each other:

(i) (CP) is robust feasible and robust bounded (below).

(ii) (CP) is robust solvable.

(ii1) (D) is robust solvable.

(iv) (D) is robust feasible and robust bounded (above).

(v) Both (CP) and (D) are strictly feasible.

In particular, under every one of these equivalent assumptions, both (CP) and (D) are
solvable with equal optimal values.

Proof. (i) = (v): If (CP) is robust feasible, it also is strictly feasible (Proposition 2.4.4).
If, in addition, (CP) is robust bounded below, then (D) is robust solvable (by the conic
duality theorem); in particular, (D) is robust feasible and therefore strictly feasible (again,
Proposition 2.4.4).

(v) = (i1): The implication is given by the conic duality theorem.

(i1) = (i): The proof is trivial.

We have proved that (i) = (ii) = (v). Due to the primal-dual symmetry, we also have
proved that (iii) = (iv) = (v). a

2.5 Conic duality revisited

To understand our concern now, consider a simple example, an optimization program with
just two variables and four constraints:

max x; + 2x»,,

x1+x2 = 4
X1—xy =< 3
x1 = 0,
x > 0.

We immediately recognize it as an LP program, although it is not a problem of minimizing
a linear form over the intersection of an affine plane and the nonnegative orthant, as an LP
program should formally be. What is meant when we say that our toy problem is a linear
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program is that it can be routinely converted to a “true” LP program—the one that is to
minimize a linear form on the intersection of a plane and the orthant. In principle, there are
two conversion policies.

First, we can use the equality constraint(s) to express in an affine fashion part of the
variables via the remaining free variables. What we end up with will be a pure inequality
constrained problem of optimizing a linear objective of the free variables. Of course, the
resulting problem is a true LP program—a conic program associated with the nonnegative
orthant R’} (In LP the latter form is called canonical.)

Second, we can add to our original design variables a number of artificial variables,
“slacks,” and convert all nontrivial inequality constraints—those saying more than that a
particular variable should be nonnegative—into equality constraints. In our example this
manipulation results in the following:

max x; + 2x»,

X1 +x = 4,
x1—x2+s = 3,
x> 0,

x > 0,

K > 0

)

which is again a true LP program, now in the dual form (D). (In LP, this form is called
standard.)

To process the problem analytically (e.g., to build its dual), the second option is
incomparably better—it does not require messy computations.

What is said about LP is valid in the general conic case as well. That we can convert
an optimization program to a conic form does not mean normally that the original form of
the problem reads “minimize a linear form over the intersection of an affine plane and a
cone.” A typical original form is something like

min  c’x,

Px = p, (Ini)
Aix—b; >xi 0,i=1,...,m,

where K' are different cones.

Let us show how to convert (Ini) to a formal conic program, like (CP) or (D), and how
to build the dual problem

If (Ini) has no equality constraints, it already is a conic problem in the form (CP).
Indeed, it suffices to define a new cone K as the direct product of the cones K,i=1,....,m:

K:{(ylv---aym)| Vi EKia l=l,,m}
and to write the problem

A1X — b]

A2x — bz

min ch|Ax—bE >k 0

Apx — by,
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Exercise 2.4 states that the direct product of cones K; is a cone (and its dual is the direct
product of the dual cones KY), so that what we get is a conic problem.

Now, what to do if (Ini) does have equality constraints? Then we may act as in our
LP example. By the same reasons as above, we prefer adding slack variables rather than
eliminating variables; thus, our final target is a conic program of the form (D).

It is clear that our target is achievable. A trivial way to reach it is as follows.

1. Pass from (Ini) to an equivalent problem where the design vector is restricted
to belong to some cone Ky. This is exactly what is done in LP when representing free
variables—those without restrictions on their signs—as differences of two nonnegative
variables. Let us do the same, and let us also switch from minimization to maximization:

max ¢! (v —u),

Pu—Pv = p,

(Ini) —~ Ailu—v)—b; > 0,i=1,...,m, (Med)
u > 0,
v > 0.

(The optimal value in (Med) is the negation of the one in (Ini).)

2. It remains to add to (Med) slack variables. These variables should correspond to
the vector inequality constraints A; (u — v) — b; >k, 0 and should therefore be vectors of
the same dimensions as b;. Denoting these slack vectors by s;, we transform (Med) to

max ¢’ (v —u),

Pu—Pv = p,
(Med) > A,(u—v)—s; i g,-, i=1,...,m, (Fin)
v > 0,
s; >xi 0,i=1,...,m.

We end up with problem (Fin), which is equivalent to (Ini) and clearly is a conic
problem in the form of (D).

Of course, in many cases we can act smarter than in the above formal scheme. Some-
times one can extract from the original inequality constraints A;x — b; >k, 0 a subset /
of constraints saying that x belongs to some cone Ky. (Look at the inequality constraints
X1, X2 > 01in our LP example.) If this is the case, there is no need to update (Ini) = (Med),
just as there is no need to introduce slacks for the constraints from /. Sometimes there is
no subset of constraints saying that x belongs to a cone, but there is a subset / saying that
certain subvector x’ of x belongs to a certain cone; whenever this is the case, we can modify
the first step of the above scheme—to represent as u — v the complement of x’ in x, not
the entire x—so that there is no need to introduce slacks for the constraints from / at the
second step, etc.

Now, what is the conic dual to (Fin)? The cone associated with (Fin) is

K., =R. xR xK'xK?* x --- x K",
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the objective (to be maximized!) in (Fin) is

—\" /u
c v
0 S1
0 S2 ’
0 Sm
and the equality constraints are
P P . p
A] —A] —11 bl
Ay —A —I St = | by
. . $2 '
Am _Am - Im Sm bm

where [; are unit matrices of appropriate sizes. Taking into account that the cone K, is dual
to the cone

K=R! xR xK| xKI x --- x K",
we conclude that (Fin) is dual to the following conic problem of the form (CP):
min - pTu+ Y bi&,
i=1

PTu+Y Alg+c

i=1

—PTu =Y "Al&—c = 0
i=1

v

0,

=& zx 0, i=1,....m,
in the variables p (a vector of the same dimension as p) and &, i = 1,...,m, of the
same dimensions as by, ..., b,. The first two >-constraints in the resulting problem are

equivalent to the vector equation

Pu+ i Alg = —c.
i=1

It also makes sense to pass from variables &; to their negatives n; = —§&;, to pass from p to
its negative v = —u, and to switch from minimization to maximization, thus coming to the
problem

m
max plv+ ZbiTm,
i=1
m
(DD
PTI) + Z AlTT)l = C,

i—1
m >xi 0, i=1,...,m,
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in design variables v, y, ..., n,. The resulting problem will be called the problem dual
to the primal problem (Ini). Note that we have extended somehow our duality scheme—
previously it required the primal problem to be purely conic—not to have linear equality
constraints. From now on this restriction is eliminated.

Summary on building the dual

Following the traditions of LP textbooks, we summarize here the recipes for building the
dual.

Consider a primal problem—an optimization problem with linear objective and
linear vector equality and inequality constraints

minimize cTx
S.1.
Px = p [dim p scalar linear equations], (Pr)
Aix — by =1 0 [linear vector inequality no. 1],
Apx — by, >=gn 0 [linear vector inequality no. m].
The problem dual to (Pr) is
m
maximize pTv+ Z biT n;
i=1
S.1.
m
Py + Z A,-T ni = c [dim x scalar equations], (DD

i=1
m =k 0 [linear vector inequality no. 1],

Nm ke 0 [linear vector inequality no. m].

Note the following:

1. Dual variables correspond to the constraints of the primal problem. The dual design
vector comprises a vector variable v of the same dimension as the right-hand side p of the
system of primal equalities and of m vector variables n;, i = 1, ..., m, each of the same
dimensions as those of the primal vector inequalities

2. There is a natural one-to-one correspondence between the vector inequalities of
the primal problem and those of the dual problem, and the cones underlying corresponding
vector inequalities of (Pr) and (D) are dual to each other.

3. The problem dual to (D]) is (equivalent to) the primal problem (Pr).

Indeed, (D1) is of the same structure as (Pr), so that we can apply the outlined con-
struction to (DI). The (vector) variables of the resulting problem are as follows:

 The first of them, let it be called x’, is responsible for the system of equations in
(DI). The dimension of this variable is dimc, i.e., it is equal to the design dimension of (Pr).

* The remaining m vector variables, let them be called w;, i = 1, ..., m, are each
responsible for its own linear vector inequality of (D).
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Applying the outlined scheme to (D) (please do it and do not forget to pass first from the
maximization problem (DI) to an equivalent minimization problem; this is preassumed by
our scheme), we come to the problem

maximize Ty
S.t.
Px' = -—p,
Aix/—i—wi = —bi,izl,...,m,
w, >ki 0, i=1,...,m.
The resulting problem is equivalent to (Pr). (To see it, set x = —x'.)

Summary on conic duality

The results on conic duality we have developed so far deal with a formal primal-dual pair
(Fin)—(D1) of problems, not with the pair of problems (Pr)—(Dl). These results, however,
can be easily expressed directly in terms of (Pr) and (DI). Here is the translation:

1. The role of Assumption A from page 53 is now played by the pair of requirements
as follows:

A.1l. the rows of the matrix P in (Pr) are linearly independent;

A.2. there is no nonzero vector x such that Px =0, Aix =0,i =1,...,m.

From now on, speaking about problem (Pr), we always assume A.1 and A.2.
Note that A.1 and A.2 imply that both (Fin) and (DI) satisfy Assumption A (why?).

2. Strict feasibility. A problem of the form (Pr) is called strictly feasible if there exist
a feasible solution x such that A;x — b; >k, 0,7 = 1,..., m. Note that (Pr) is strictly
feasible if and only if (Fin) is.

3. Weak duality. The optimal value in (D]) is less than or equal to the optimal value
in (Pr).

4. Strong duality. If one of the problems (Pr), (DI) is strictly feasible and bounded,
then the other problem is solvable, and the optimal values in the problems are equal to
each other. If both problems are strictly feasible, then both are solvable with equal optimal
values.

5. Optimality conditions. Let x be a feasible solution to (Pr) and A = (v, {n;}{.,) be
a feasible solution to (D1). The duality gap at the pair (x, A)—the quantity

A, A) =cTx — |:pTv + ZbiTﬂi:|
i=1

—is nonnegative and is equal to
m
Z n! [Aix — b;].
i=1

The duality gap is zero if and only if the complementary slackness holds:
i [Ax —b1=0,i=1,...,m.
If the duality gap A(x, A) is zero, then x is an optimal solution to (Pr) and X is an optimal

solution to (DI). If x is an optimal solution to (Pr) and X is an optimal solution to (DI) and
the optimal values in the problems are equal, then the duality gap A(x, X) is zero.
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2.6 Exercises to Lecture 2
2.6.1 Cones

In this section, cone always means a pointed closed convex cone with a nonempty interior
in R".
Theorem 2.3.1

EXERCISE 2.1. 1. Prove the following statement:

Let S be a nonempty closed convex set in R" and x be a point in R" outside of
S. Then the problem

min{(x — )" (x —y) | y € S}
has a unique solution x*, and e = x — x* strictly separates x and S, i.e.,

el'x > ele+ sup eTy > supeTy.

yeS yeS

2. Derive Theorem 2.3.1 from item 1 above.
3. Derive from Theorem 2.3.1 that whenever 0 # x >k 0, there exists . >k, 0 such
that \Tx > 0.

Interior of a cone

EXERCISE 2.2. Let K be a cone, and let x >x 0. Prove that x >k 0 if and only if there
exists positive real t such that x >k tx.

EXERCISE 2.3. 1. Prove that if 0 # x >k 0 and A >x, 0, then ATx > 0.
Hint. Use the results of Exercises 2.1 and 2.2.
2. Prove that if . >k, 0, then for every real a the set
{x>k 0] A"x <a}

is bounded.

Calculus of cones

EXERCISE 2.4. Prove the following statements.
1. (Stability with respect to direct multiplication.) Let K; C R" be cones, i =
1, ..., k. Prove that the direct product of the cones

K:K] X--~XKk={(X],...,xk)|X,‘GKZ‘, i=1,...,k}

is a cone in RM T = R™ x ... x R,
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Prove that the cone dual to K is the direct product of the cones dualtoK;,i =1, ..., k.

2. (Stability with respect to taking inverse image.) Let K be a cone inR" andu +— Au
be a linear mapping from certain R¥ to R" with trivial null space (Null(A) = {0}) and such
that ImA N intK # (. Prove that the inverse image of K under the mapping

ATNYK) = {u| Au € K}

is a cone in R¥.
Prove that the cone dual to A~ (K) is ATK,, i.e.,

(A'K). = {ATA | A e K,).

3. (Stability with respect to taking linear image.) Let K be a cone in R" and y = Ax
be a linear mapping from R" onto RY (i.e., the image of A is the entire RN ). Assume
Null(A) N K = {0}.

Prove then that the set

AK = {Ax | x € K}

is a cone in RV
Prove that the cone dual to AK is

(AK), = {» e R" | ATL e K,}.

Demonstrate by example that if in the above statement the assumption Null(A) N K = {0}
is weakened to Null(A) N intK = @, then the set A(K) may happen to be nonclosed.

Hint. Look what happens when the 3D ice cream cone is projected onto its
tangent plane.

Primal-dual pairs of cones and orthogonal pairs of subspaces

EXERCISE 2.5. Let A be an m x n matrix of full column rank and K be a cone in R™.

1. Prove that at least one of the following facts always takes place:

(i) There exists a nonzero x € Im A which is >k 0.
(ii) There exists a nonzero ) € Null(AT) which is >k, O.

Geometrically: Given a primal-dual pair of cones K, K, and a pair L, L* of linear
subspaces that are orthogonal complements of each other, we can find a nontrivial ray in
the intersection L N\ K or in the intersection L+ N K, or both.

2. Prove that there exists A € Null(AT) which is >, O (this is the strict version of
(i1)) if and only if (i) is false. Prove that, similarly, there exists x € ImA which is > O (this
is the strict version of (1)) if and only if (ii) is false.

Geometrically: If K, K, is a primal-dual pair of cones and L, L* are linear sub-
spaces that are orthogonal complements of each other, then the intersection L NK is trivial
(i.e., is the singleton {0}) if and only if the intersection L+ N intK, is nonempty.
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Several interesting cones

Given a cone K along with its dual K,, let us call a complementary pair every pair x € K,
A € K, such that

ATx =0.

Recall that in good cases (e.g., under the premise of item 4 of the conic duality theorem) a
pair of feasible solutions (x, 1) of a primal-dual pair of conic problems

min {c"x | Ax —b >k 0},

max {b"% | A"x =c, 1 >k, 0}

is primal-dual optimal if and only if the primal slack y = Ax — b and A are complementary.

EXERCISE 2.6. Nonnegative orthant. Prove that the n-dimensional nonnegative orthant
RY is a cone and that it is self-dual:

(R}, =R1L.
What are complementary pairs?

EXERCISE 2.7. Ice cream cone. Let L be the n-dimensional ice cream cone:
L" = {xeR" | x, > x12+.o-+xr%—l}.

1. Prove that L" is a cone.
2. Prove that the ice cream cone is self-dual:

L. =L"
3. Characterize the complementary pairs.
EXERCISE 2.8. Positive semidefinite cone. Let S’ be the cone of n x n positive semidefinite

matrices in the space S" of symmetric n x n matrices. Assume that S" is equipped with the
Frobenius inner product

n
(X,Y) =Tr(XY) = Z X Yij.
ij=1

1. Prove that S', indeed is a cone.
2. Prove that the semidefinite cone is self-dual:

(S1). =S".

That is, prove the Frobenius inner products of a symmetric matrix A with all positive
semidefinite matrices X of the same size are nonnegative if and only if the matrix A itself is
positive semidefinite.
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3. Prove the following characterization of the complementary pairs:

Two matrices X € 8}, A € (§87). = S| are complementary (i.e., (A, X) = 0)
if and only if their matrix product is zero: AX = XA = 0. In particular,
matrices from a complementary pair commute and therefore share a common
orthonormal eigenbasis.

2.6.2 Conic problems

Several primal-dual pairs
EXERCISE 2.9. The min-max Steiner problem. Consider the following problem.

Given N points by, ..., by in R”, find a point x € R” that minimizes the
maximum (Euclidean) distance from itself to the points by, ..., by; i.e., solve
the problem

.....

Imagine, e.g., that n = 2, by, ..., by are locations of villages and you want
to locate a fire station for which the worst-case distance to a possible fire is as
small as possible.

1. Pose the problem as a conic quadratic one—a conic problem associated with a
direct product of ice cream cones.

2. Build the dual problem.

3. What is the geometric interpretation of the dual? Are the primal and the dual
strictly feasible? solvable? with equal optimal values? What is the meaning of the com-
plementary slackness?

EXERCISE 2.10. The weighted Steiner problem. Consider the following problem:

Given N points by, . .., by in R" along with positive weights w;,i = 1,..., N,
findapointx € R” that minimizes the weighted sum of its (Euclidean) distances
to the points by, ..., by; i.e., solve the problem
N
min ) willx = bylla.
i=1
Imagine, e.g., thatn = 2, by, ..., by are locations of N villages and you want

to place a telephone station for which the total cost of cables linking the station
and the villages is as small as possible. The weights can be interpreted as the
per-mile cost of the cables. (They may vary from village to village due to
differences in populations and, consequently, in the required capacities of the
cables.)
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1. Pose the problem as a conic quadratic one.

2. Build the dual problem.

3. What is the geometric interpretation of the dual? Are the primal and the dual
strictly feasible? solvable? with equal optimal values? What is the meaning of the com-
plementary slackness?

2.6.3 Feasible and level sets of conic problems

Consider a feasible conic problem
min {c"x | Ax —b >k 0}. (CP)

In many cases it is important to know whether the problem has
1. bounded feasible set {x | Ax — b >k 0},
2. bounded level sets

(x| Ax =b >k 0,c'x < a}
for all real a.

EXERCISE 2.11. Let (CP) be feasible. Then the following four properties are equivalent:
(1) The feasible set of the problem is bounded.
(ii) The set of primal slacks Y = {y | y >k 0, y = Ax — b} is bounded.®
(iii) Im A NK = {0}.
(iv) The system of vector (in)equalities

ATA=0,1>g 0

is solvable.
Corollary. The property of (CP) to have a bounded feasible set is independent of the
particular value of b, provided that with this b (CP) is feasible!

EXERCISE 2.12. Let problem (CP) be feasible. Prove that the following two conditions are
equivalent:

(1) (CP) has bounded level sets.

(ii) The dual problem

max {bTA | ATx=c, A ZK, 0}

is strictly feasible.
Corollary. The property of (CP) to have bounded level sets is independent of the
particular value of b, provided that with this b (CP) is feasible!

8Recall that we always assume that A holds!
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Lecture 3

Conic Quadratic
Programming

Several generic families of conic problems are of special interest, from the viewpoint of both
theory and applications. The cones underlying these problems are simple enough, so that
one can describe explicitly the dual cone. As aresult, the general duality machinery we have
developed becomes algorithmic, as in the LP case. Moreover, in many cases this algorithmic
duality machinery allows us to understand more deeply the original model, to convert it into
equivalent forms better suited for numerical processing, etc. The relative simplicity of
the underlying cones also enables one to develop efficient computational methods for the
corresponding conic problems. The most famous example of a “nice” generic conic problem
is, doubtless, LP; however, it is not the only problem of this sort. Two other nice generic
conic problems of extreme importance are conic quadratic and semidefinite programs. We
are about to consider the first of these two problems.

3.1 Conic quadratic problems: Preliminaries
Recall the definition of the m-dimensional ice cream (= second-order = Lorentz) cone L”:

L"={x=(x,...,xn) €eR" | x,, > x12+~~+x31_1}, m > 2.
A conic quadratic problem is a conic problem
min {ch | Ax —b >k 0} (CP)

for which the cone K is a direct product of several ice cream cones:

K = L™ xL™x...x L™
y[1]

= L= B e, =k (3.1.D
y[k]

79
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In other words, a conic quadratic problem is an optimization problem with linear objective
and finitely many ice cream constraints

Aix —bj>pm 0, i =1,...,k,

where
[A1; b1l
[A:b] = [Az; by ]
A b
is the partition of the data matrix [A; b] corresponding to the partition of y in (3.1.1). Thus,
a conic quadratic program can be written as

min {c"x | Aix —b; =m0, i =1,...,k}. (3.1.2)

Let us recall that for a vector z € R™, the inequality z >y» 0 means that the last entry in z
is > the Euclidean norm || - ||, of the subvector of z comprising the first m — 1 entries of z.
Consequently, the >p» O-inequalities in (3.1.2) can be written as

IDix — dill» < pl'x — qi,
where

[Ai§bi]=|: Dy di :|

PiT qi
is the partitioning of the data matrix [A;, b;] into the submatrix [D;; d;] consisting of the

first m; — 1 rows and the lastrow [p!; ¢;]. Hence, a conic quadratic problem can be written
as

. T T .
min {c"x | |Dix —dilly < plx —qi. i =1,....k}, QP)
and this most explicit form is the one we prefer to use. In this form, D; are matrices of the
same row dimension as x, d; are vectors of the same dimensions as the column dimensions
of the matrices D;, p; are vectors of the same dimension as x and g; are reals.

We know from Exercises 2.7 and 2.4 that (3.1.1) is indeed a cone, in fact a self-dual
one: K, = K. Consequently, the problem dual to (CP) is

max {b"1 | ATxL=c, 1>k 0}.
A

Denoting
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with m;-dimensional blocks A; (cf. (3.1.1)), we can write the dual problem as

A]max {ZbTA |ZAT)» =c, Az 0,i=1,. k}.

AAAAA i=1 i=1

Recalling the meaning of >y~ 0 and representing A; = (“’ ) with scalar component v;, we
finally come to the following form of the problem dual to (QP):

max{Z[u,d +vigil | ZD wi+vipil=c, | lwill < v, i =17’k} (QD)

i s Vi
o i=1

The design variables in (QD) are vectors u; of the same dimensions as the vectors d; and
realsv;, i =1,...,k.

Since from now on we will treat (QP) and (QD) as the standard forms of a conic
quadratic problem and its dual, we now interpret for these two problems our basic As-
sumption A from Lecture 2 and notions like feasibility, strict feasibility, and boundedness.
Assumption A now reads as follows (why?):

There is no nonzero x that is orthogonal to all rows of all matrices D; and to
all vectors p;, i =1,...,k.

We always make this assumption by default. Now, among notions like feasibility and
solvability, the only notion that does need an interpretation is strict feasibility, which now
reads as follows (why?):

Strict feasibility of (QP) means that there exists x such that |D;x — d;|l, <
pix —qi Vi.

Strict feasibility of (QD) means that there exists a feasible solution {i;, v;}i_,
to the problem such that ||uill, < v; Vi=1, ...,k

3.2 Examples of conic quadratic problems

3.2.1 Best linear approximation of complex-valued functions

Recall the Tschebyshev approximation problem from Lecture 1, which we now formulate
as follows:

Given a finite set T, a target function f, on T set, and n building blocks—

functions f, ..., f, on T—find alinear combination of the functions fi, ..., f,
that is closest, in the uniform norm on T, to the target function f, i.e., solve
the problem

min § max | £.(1) = Y x; f;0] - (M

j=1
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Fi
fi

Figure 3.1. Geometry of ith contact. p' is the contact point; f' is the contact
force; V' is the inward normal to the surface.

We have seen that in the case of real-valued functions f, fi, ..., f, the problem can be
posed as an LP program. We have also seen that in some applications the functions in
question are complex-valued, e.g., in the general antenna synthesis problem (section 1.2.4)
and in the filter synthesis problem when the design specifications have to do with the transfer
function (section 1.2.3). Inthese situations, our approach in Lecture 1 was to approximate the
modulus of a complex number (i.e., the Euclidean norm of a real 2D vector) by a polyhedral
norm—the maximum of several linear functions of the vector. With this approximation, (T)
indeed becomes an LP program. If we prefer to avoid approximation, we may easily pose
the complex-valued Tschebyshev problem as a conic quadratic program

min 17 | 10 =Y xfi0l <7 1eTy. (3.2.3)

j=1

In (3.2.3), we treat the complex numbers f,(¢), f;(¢) as real 2D vectors.

3.2.2 Contact problems with static friction

Consider a rigid body in R? and a robot with N fingers.” When can the robot hold the
body? To pose the question mathematically, let us see what happens at the point p’ of the
body, which is in contact with the ith finger of the robot (Fig. 3.1). Let f' be the contact
force exerted by the ith finger, v’ be the unit inward normal to the surface of the body at the
point p’, and F' be the friction force caused by the contact. Physics says that this force is
tangential to the surface of the body,

(FHTvi =0, (3.2.4)

and its magnitude cannot exceed p times the magnitude of the normal component of the
contact force, where  is the friction coefficient:

IF ]l < u(fHT'. (3.2.5)

9The examples to here, along with their analyses, are taken from M.S. Lobo, L. Vanderbeghe, S. Boyd, and
H. Lebret, Second-order cone programming, Linear Algebra Appl., 284 (1998), pp. 193-228.
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Assume that the body is subject to additional external forces (e.g., gravity). As far
as their mechanical consequences are concerned, all these forces can be represented by a
single force, their sum F**', along with the torque T, the sum of vector products of the
external forces and the points where they are applied.

In order for the body to be in static equilibrium, the total force acting at the body and
the total torque should be zero:

N

Z(fi+Fi)+FeXI — O,
g (3.2.6)
Zplx(ft+Fl)+Tex[ = 0,

i=1

where p x g stands for the vector product'® of two 3D vectors p and q.

Stable grasp analysis problem. The question of whether the robot is able to hold the
body can be interpreted as follows. Assume that f7, FS, T are given. If the friction
forces F' can adjust themselves to satisfy the friction constraints (3.2.4) and (3.2.5) and the
equilibrium equations (3.2.6), i.e., if the system of constraints (3.2.4), (3.2.5), (3.2.6) with
respect to unknowns F’ is solvable, then, and only then, the robot holds the body (the body
is in a stable grasp).

Thus, the question of stable grasp is the question of solvability of the system of
constraints

S = (3.2.4) & (3.2.5) & (3.2.6)

with unknowns F? € R3. This question in fact is nothing but a conic quadratic feasibility
problem—a conic quadratic problem with a trivial (identically zero) objective. We say “in
fact” since the problem, as it arises, is not in our canonical form. This is typical: nice
problems normally do not arise in catalogue forms, and one should know how to recognize
what one is dealing with. In our case this recognition problem is easy. One way to see
that S is a conic quadratic problem is to use the system of linear equations (3.2.4), (3.2.6)
to express part of the unknowns via the remaining ones, letting the latter be denoted by x.
With this parameterization, every F' becomes an affine vector-valued function D;x — d; of

r=(n)-= (=)
pa (12 1)
)|

P3Pl
Det
[p.ql= ( P

Det( PP >
q1 92

The vector [p, ¢] is orthogonal to both p and ¢, and ||[p, glll2 = |l pll2llgll2 sin(pg).

10Here is the definition: if

are two 3D vectors, then
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the free design vector x, and the question we are interested in becomes whether the primal
conic quadratic problem

min {07x | [[Dix = dill2 < u(fH™', i =1,..., N}

is or is not feasible.

Stable grasp synthesis problems. To the moment we treated the contact forces f' as
given. Sometimes this is not the case, i.e., the robot can, to some extent, control tensions
in its fingers. As a simple example, assume that the directions u’ of the contact forces—
directions of fingers—are fixed, but the magnitudes of these forces can be controlled:

fi = Vi”i,

where the real v; are allowed to vary in a given segment [0, Fj,x]. We may ask now whether
the robot can choose admissible magnitudes of the contact forces to ensure a stable grasp.
Mathematically, the question is whether the system

N

Z(viui +Fi)+FeXt — 0,

i=1
N
D opix i + FY+ T = 0, (3.2.7)
i=1

(F)v = 0,
1Fil, < [w@)Tvly, i=1,...,N,
OSUi S FmaXsi:L---’N9

in variables v;, F' is solvable. We again come to a conic quadratic feasibility problem. As
before, we may eliminate the linear equations to end up with a system of conic quadratic and
linear (i.e., also conic quadratic) constraints of the form “the Euclidean norm of something
affinely depending on the design variables should be less than or equal to something else,
also affinely depending on the design variables.”

We could also add to our feasibility problem a meaningful objective function. For
example, we may think of the quantity ZlN=1 v; as a measure of dissipation of power of a
robot’s actuators and pose the problem of minimizing this objective under the constraints

(3.2.7). Another, and perhaps more adequate, measure of dissipation of power is 4/ ZlN: ] viz.
With this objective, we again end up with a conic quadratic problem

min {t | (3.2.7) & [[v[> <}, v=(p,...,on)"

in the design variables ¢, {v; 1N=w (Fi 1N=1~

As a concluding example of this series, consider the following situation: the robot
should hold a cylinder by four fingers, all acting in the vertical direction. The external
forces and torques acting at the cylinder are the gravity F, and an externally applied torque

T along the cylinder axis, as shown in Fig. 3.2. The magnitude of the contact forces may
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12 I !

[

73 74 14

Figure 3.2. Perspective, front and side views.

vary in a given segment [0, Fi.x]. The question is, What is the largest magnitude 7 of the
external torque 7 such that a stable grasp is still possible? Mathematically, the problem is

maximize T
S.t.
4
Z(viu’ +FY4+F, = 0,
i=1
4
Z Pl x (viu' + F')4+1tu = 0 [uis the direction of the cylinder axis],
i=1
WHTF = 0,i=1,...,4,
IFil, < (w1 vy, i=1,...,4,
OSvi E Fmax,i:1,~~74’
(G)
where the design variables are 7, v;, F;,i = 1,...,4.

3.3 What can be expressed via conic quadratic
constraints?

As mentioned, optimization problems arising in applications are not normally in their cat-
alogue forms, and thus an important skill required of anyone interested in applications
of optimization is the ability to recognize the fundamental structure beneath the original
formulation. The latter is frequently in the form

min(f(x) | x € X}, (33.8)

where f is a loss function and the set X of admissible design vectors is typically given as
X =[x (3.3.9)
i=1

where every X; is the set of vectors admissible for a particular design restriction, which in
many cases is given by

X; = {x e R"| gi(x) <0}, (3.3.10)



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

86 Lecture 3. Conic Quadratic Programming

where g; (x) is the ith constraint function.'"! One may interpret g;(x) as the amount of ith
resource required for a design x, so that the constraint g; (x) < const says that the resource
should not exceed a given level; shifting g; appropriately, we may make this level 0, thus
coming to the representation (3.3.10).

The objective f in (3.3.8)—(3.3.9) may be nonlinear, and one might think that in these
cases the problem cannot be posed in conic form. This conclusion is wrong: we can always
pass from an optimization problem to an equivalent one with a linear objective. To this end
it suffices to add a new design variable, say, ¢, and rewrite the problem equivalently as

r?in{z| D eX={x0] fO)—t<0N{Gx, 0] xeX}IN---N{Ex 1) x€Xn}}.

Note that our new objective is linear in the new design variables (x, r), and the resulting
problem is in the form of (3.3.8)—(3.3.9).

Let us assume that the indicated transformation was done from the very beginning, so
that (3.3.8)—(3.3.9) is of the form

m
n&in ch|xeX:ﬂX[ . ()

i=1

In order to recognize that X is in one of our catalogue forms, one needs a kind of dictionary,
where different forms of the same structure are listed. We shall build such a dictionary for
the conic quadratic programs. Thus, our goal is to understand when a given set X can be
represented by conic quadratic inequalities (CQIs), i.e., one or several constraints of the
type |Dx — d|l < pTx — q. The word “represented” needs clarification, and here it is:

We say thata set X C R" can be representedvia CQI (it is CQr—conic quadratic
representable) if there exists a system S of finitely many vector inequalities of
the form Aj(;‘) —bj =17 0 (x € R") in variables x € R" and additional
variables u such that X is the projection of the solution set of S onto the x-
space, i.e., x € X if and only if one can extend x to a solution (x, u) of the
system S:

xeX@EIu:A.,(i)—bj > 0, j=1,...,N.

Every such system S is called a conic quadratic representation (CQR) of the
set X.12
The idea behind this definition is clarified by the following observation:

Consider an optimization problem

T
n}m{cx|xeX}

11Speaking about a real-valued function on R”, we assume that the function is allowed to take real values and
the value +o00 and is defined on the entire space. The set of those x where the function is finite is called the domain
of the function, denoted by Dom f.

12Note that here we do not impose on the representing system of conic quadratic inequalities S the requirement
to satisfy Assumption A; e.g., the entire space is CQr—it is a solution set of the system |07 x| < 1 comprising a
single CQI.
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and assume that X is CQr. Then the problem is equivalent to a conic quadratic
program. The latter program can be written explicitly, provided that we are
given a COR of X.

Indeed, let S be a COR of X, and let u be the corresponding vector of additional
variables. The problem

min {ch | (x,u) satisfy S}
X, U

with design variables x, u is equivalent to the original problem (P), on one
hand and is a conic quadratic program on the other hand.

Let us call a problem of the form (P) with CQr X a good problem.

How do we recognize good problems, i.e., how do we recognize CQr sets? Well,
how do we recognize continuity of a given function, like f(x, y) = exp{sin(x + exp{y})}?
Normally it is done not by a straightforward verification of the definition of continuity but
by using two kinds of tools:

A. We know a number of simple functions—a constant, f(x) = x, f(x) = sin(x),
f(x) = exp{x}, etc.—that indeed are continuous: “once for the entire life” we have verified
it directly, by demonstrating that the functions fit the definition of continuity.

B. We know a number of basic continuity-preserving operations, like taking products,
sums, superpositions, etc.

When we see that a function is obtained from simple functions—those of type A—by
operations of type B (as is the case in the above example), we immediately infer that the
function is continuous.

This approach, which is common in mathematics, is the one we are about to follow.
In fact, we need to answer two questions:

(i) What are CQr sets?

(i) What are CQr functions g(x), i.e., functions that possess CQr epigraphs

Epi{g} = {(x,1) e R" xR | g(x) =1}?
Our interest in the second question is motivated by the following observation.

If a function g is CQr, then so are all its level sets {x | g(x) < a}, and every
COR of (the epigraph of) g explicitly induces CQRs of the level sets.

Indeed, assume that we have a CQR of the epigraph of g:
g) =t & du:llajx,t,u)llr < Bjx,t,u), j=1,...,N,
where «; and §; are, respectively, vector-valued and scalar affine functions of their argu-

ments. To get from this representation a CQR of a level set {x | g(x) < a}, it suffices to fix
in the conic quadratic inequalities [la;(x, t, u)||> < B;(x, ¢, u) the variable ¢ at the value a.
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We list below our raw materials—simple functions and sets admitting CQRs.

Elementary conic quadratic-representable functions and sets

1. A constant function g(x) = a. Indeed, the epigraph of the function {(x, ) | a < ¢}
is given by a linear inequality, and a linear inequality 0 < p”z — ¢ is at the same time conic
quadratic inequality ||0||, < pTz —q.

2. An affine function g(x) = a’ x + b. Indeed, the epigraph of an affine function is
given by a linear inequality.

3. The Euclidean norm g(x) = ||x||». Indeed, the epigraph of g is given by the conic
quadratic inequality ||x|, < ¢ in variables x, .

4. The squared Euclidean norm g(x) = x” x. Indeed, t = % - ﬂ, so that

4

t—1)2 t+ 1)2 t+1

xTx§t©xTx+( ) <(+ : c)”(tfl) <3
2

, 2

4 - 4

(check the second «>!), and the last relation is a CQI.
5. The fractional-quadratic function
%, s>0
g(x,s) =10, s=0,x=0
400 otherwise

(x vector, s scalar). Indeed, with the convention that (x7x) /0 is 0 or 400, depending on

(t+s5)> _ (—s)*
4 4

whether x = 0, and taking into account that ts = , we have

2 2
(E2 <5200 e XTx <150 >0,5 >0} & (xTx+ 50 < 85 1 >0,5 >0}

(check the third <!), and the last relation is a CQI.

The level sets of the CQr functions 1-5 provide us with a spectrum of elementary CQr
sets. We add to this spectrum one more set:

6. (A branch of) hyperbola {(t,s) € R? | ts > 1,t > 0}. Indeed,

t—s
{zszl,t>0}©{<’j—”2zl+%&:>0}@<”( f)

SIS

(check the last <!), and the latter relation is a CQI.

2 2
(t+s)
< .

2

2

Operations preserving conic quadratic representability of sets

Next we study simple operations preserving CQ-representability of functions and sets.
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A. Intersection. If sets X; C R", i = 1,..., N, are CQr, so is their intersection
N
X == Xi.
Indeed, let S; be a CQR of X; and u; be the corresponding vector of additional
variables. Then the system § of constraints of the variables (x, uj, ..., uy),

{(x, u;) satisfies S;}, i =1,..., N,
is a system of CQIs, and this system clearly is a CQR of X.

COROLLARY 3.3.1. A polyhedral set—a set in R" given by finitely many linear inequalities
alx <b;, i=1,...,m—is COr
Indeed, a polyhedral set is the intersection of finitely many level sets of affine
functions, and all these functions (and thus their level sets) are CQr.

COROLLARY 3.3.2. If every one of the sets X; in problem (P) is CQr, then the problem is
good—it can be rewritten in the form of a conic quadratic problem, and such a transformation
is readily given by CQRs of the sets X;,i = 1,...,m.

COROLLARY 3.3.3. Adding to a good problem finitely many CQr constraints x € X;, (e.g.,
finitely many scalar linear inequalities), we again get a good problem.

B. Direct product. If sets X; C R",i =1, ..., k, are CQr, then so is their direct
product X X -+ X Xj.

Indeed, if S; = {||a;(x,-, ui)llr < ﬂ}(xi, u,-)}?];l, i =1,...,k, are CQRs of the sets
X, then the union over i of this system of inequalities, regarded as a system with design
variables x = (xi, ..., x;) and additional variables u = (uy, ..., u;), is a CQR for the
direct product of X1, ..., Xj.

C. Affine image (projection). If aset X C R"is CQrand x — y = £(x) = Ax + D
is an affine mapping of R” to R¥, then the image £(X) of the set X under the mapping is
CQr.

Indeed, passing to an appropriate basis in R” and R¥, we may assume that the null
space of A is made up of the last n — p vectors of the basis of R” and that the image of A is
spanned by the first p vectors of the basis in R¥. In other words, we may assume that a vector
x € R” can be partitioned as x = () (x" is p-dimensional and x” is (n — p)-dimensional)
and that a vector y € R¥ can be partitioned as y = ( ;) (y' is p-dimensional and y” is
(k — p)-dimensional) in such a way that A(;‘,’,) = (Q(;") with a nonsingular p x p matrix
Q. Thus,

{(y:{) ZA(X,/,)+b} & {x: (Q_l(y/—b’)> forsomew&y”:b”}.
y X w

Now let S = {|lo; (x, w2 < B;(x, u)}?’=l be a CQR of X, where u is the corresponding
vector of additional variables and o, 8; are affine in (x, u). Then the system of CQISs in
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the design variables y = ( f,) € RF and additional variables w € R* 7, u,

B o'y —b) 0 'y —b) N
st= Qe ((©7077) = ((27077) )]

and {|ly" — 0"[l> < 0},

is a CQR of ¢(X). Indeed, y = (yy,//) € £(X) if and only if y” = b” and there exists

w € R"77 such that the point
=1y 3
‘o (Q (' —b ))
w
belongs to X, and the latter happens if and only if there exist u such that the point

(x,u) = <<Q_l();:_b/)> ,u)

COROLLARY 3.3.4. A nonempty set X is CQr if and only if its characteristic function

solves S.

0, xeX,
+00 otherwise

) = |
is CQr.

Indeed, Epi{} is the direct product of X and the nonnegative ray; therefore if X is
CQr, so is x (-) (see B and Corollary 3.3.1). Conversely, if x is CQr, then X is CQr by C,
since X is the projection of the Epi{x } on the space of x-variables.

D. Inverse affine image. Let X C R”" be a CQr set, and let £(y) = Ay + b be an
affine mapping from R¥ to R”. Then the inverse image £~'(X) = {y e R | Ay +b € X}
is also CQr.

Indeed, let § = {|la;(x, u)|2 < B;(x, u)}f\’=1 be a CQR for X. Then the system of
CQIs

S = {llaj(Ay + b, w)ll2 < Bj(Ay + b, )},
with variables y, u clearly is a CQR for £~ (X).

COROLLARY 3.3.5. Consider a good problem (P) and assume that we restrict its design
variables to be given affine functions of a new design vector y. Then the induced problem
with the design vector y is also good.

In particular, adding to a good problem arbitrarily many linear equality constraints,
we end up with a good problem. (Indeed, we may use the linear equations to express affinely
the original design variables via part of them; let this part be y. The problem with added
linear constraints can now be posed as a problem with design vector y.)
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It should be stressed that the above statements are not just existence theorems—they

are algorithmic: given CQRs of the operands (say, m sets X, ..., X,;), we may build
completely mechanically a CQR for the result of the operation (e.g., for the intersection
iz Xi).

Note that we have already used nearly all our corollaries in the grasp problem. To see
that (G) is a conic quadratic problem, we carried out the following reasoning:
1. The problem

min {z | |[F']y <s, i =1,...,N} (Py)

in the design variables 7, (F',s;) € R® x R, v; € R is perhaps odd (part of the variables
does not appear at all, the objective and the constraints are not related to each other, etc.),
but clearly it is good.

2. Adding to the good problem (Py) the linear equality constraints

N
Z(Viui-i-Fi) = —F,
i=1
N
Zpix(viui+Fi)+ru = 0,
i=1
WHTF = 0,i=1,...,N,
si—[p@HTvilyy = 0,i=1,...,N,

where u', u, F, are given vectors, we get a good problem (P) (Corollary 3.3.5).
3. The original problem (G) is obtained from the good problem (P;) by adding scalar
linear inequalities

Ofvimeax’ i=15"-7N5

so that (G) itself is good (Corollary 3.3.3).

Operations preserving conic quadratic-representability of functions

Recall that a function g(x) is called CQr if its epigraph Epi{g} = {(x,7) | g(x) < t}isa
CQr set; a CQR of the epigraph of g is called CQR of g. Recall also that a level set of a CQr
function is CQr. Here are transformations preserving CQ-representability of functions.

E. Taking maximum. If functions g;(x), i = 1,...,m, are CQr, then so is their
maximum g(x) = max;—j,_n, & (x).

Indeed, Epi{g} = (); Epi{g;} and the intersection of finitely many CQr sets again is
CQr.

F. Summation with nonnegative weights. If functions g;(x), x € R”, are CQr, i =
1,...,m, and o; are nonnegative weights, then the function g(x) = Z;”Zl a;gi(x) is also

CQr.
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Indeed, consider the set

M=, t5x0, 055X, tas ) | xi € R", 1 e Ryt € R, gi(x;)

m
Sti,izl,...,m;Za,-tift .
i=1

The set is CQr. Indeed, the set is the direct product of the epigraphs of g; intersected with
the half-space given by the linear inequality ) -, ;t; < t. Now, a direct product of CQr
sets is also CQr, a half-space is CQr (it is a level set of an affine function, and such a function
is CQr), and the intersection of CQr sets is also CQr. Since IT is CQr, so is its projection on
subspace of variables xy, x3, ..., X, t, i.e., the set

m
{(xl,...,xm,t):Eltl,...,t,,, i) Sti=1....m. Y ait; gt}
i=1

= {(xl,...,xm,t) : Za,-g;(x;) < t}.

i=1
Since the latter set is CQr, so is its inverse image under the mapping
x,t)—~> (x,x,...x,1),

and this inverse image is exactly the epigraph of g.

G. Direct summation. If functions g; (x;), x; € R",i =1, ..., m, are CQr, so is their
direct sum
g(xla e xm) = gl(xl) + -+ gm(xm)-
Indeed, the functions g; (xy, ..., x,) = g (x;) are clearly CQr—their epigraphs are
inverse images of the epigraphs of g; under the affine mappings (xi, ..., xp, 1) = (x;, t).

It remains to note that g = > . &;.

H. Affine substitution of argument. If a function g(x), x € R",is CQr and y —
Ay + b is an affine mapping from R¥ to R”, then the superposition g~ (y) = g(Ay + b) is
CQr.

Indeed, the epigraph of g™ is the inverse image of the epigraph of g under the affine
mapping (y, t) — (Ay + b, t).

L. Partial minimization. Let g(x) be CQr. Assume that x is partitioned into two
subvectors: x = (v, w), let ¢ be obtained from g by partial minimization in w,
&) =inf gv,w),
w

and assume that for every v the minimum in w is achieved. Then g is CQr.
Indeed, under the assumption that the minimum in w always is achieved, Epi{g} is
the image of Epi{g} under the projection (v, w, t) — (v, t).
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More operations preserving conic quadratic-representability

Let us list a number of more advanced operations with sets and functions that preserve
CQ-representability.

J. Arithmetic summation of sets. Let X;, i = 1, ..., k, be nonempty convex sets in
R", and let X;| + X, + - - - + X be the arithmetic sum of these sets:

X+ +Xp=x=x'+-+x*|x"eX;, i=1,...,k).

We claim that if all X; are CQr, so is their sum.
Indeed, the direct product

X=X1 XXZX"'XXkCR"k
is CQr by B; it remains to note that X| +- - - + Xy, is the image of X under the linear mapping
(.Xl,...,xk)|—)x1+...+xk:Rnk_)Rn’

and by C the image of a CQr set under an affine mapping is also CQr (see C)

J.1. inf-convolution. The operation with functions related to the arithmetic summa-
tion of sets is the inf-convolution defined as follows. Let f; : R" — RU{o0},i =1, ...,n,
be functions. Their inf-convolution is the function

f) =inf{fi") +- + i) | X'+ xF = (*)
‘We claim that

if all f; are CQr, their inf-convolution is > —oo everywhere and for every x
Sfor which the inf in the right-hand side of (x) is finite, this infimum is achieved,
then f is CQr.

Indeed, under the assumption in question the epigraph Epi{ f} = Epi{ fi} + --- +
Epi{ fi}.

K. Taking conic hull of a closed convex set. Let X € R" be a nonempty convex set.
Its conic hull is the set

Xt ={(x,)eR"xR:1>0,r""'x € X}U{0}.
Geometrically, we add to the coordinates of vectors from R” a new coordinate equal to 1,
(xla AR 7~xl‘l)T = (.X], .. '5'xn7 1)T7

thus getting an affine embedding of R” in R"*!. We take the image of X under this
mapping—Ilift X by one along the (n + 1)st axis—and then form the set X by taking all
rays emanating from the origin and crossing the lifted X.
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The conic hull of a closed convex set X is not necessarily closed; to maintain closed-
ness, X has to be both closed and bounded. The closed convex hull of X is the closure of
its conic hull:

Xt =clXxt = {(x,t) eR" x R:H(xi, t))2, 1 t; > 0,47 x; € X, t = limt;, x = limxi} .

Note that if X is a closed convex set, then the parts of the conic hull X* of X and the closed
convex hull X+ belonging to the open half-space {t > 0} are equal to each other (check!).
Note also that if X is a closed convex set, you can obtain it from its (closed) convex hull by
taking intersection with the hyperplane {r = 1}:

reXe@xheXte (x,)eXt.
PROPOSITION 3.3.1. (i) If X is nonempty and X is CQr;
X={x]| 3u:Ax+ Bu+b > 0}, (3.3.11)
where K is a direct product of the ice cream cones, then the CQr set
Xt ={(x.0) | Ju: Ax + Bu+1tb =g O} {((x.1) | t = 0) (3.3.12)

is between the conic hull X+ and the closed conic hull X+ of X:
Xt c Xt cXt

In particular, if X is a closed and bounded CQr set (so that Xt = X+ ), then the conic hull
of X is CQr. _

(ii) If the COR (3.3.11) is such that Bu € K implies that Bu = 0, then X+ = X+,
so that X+ is COr:

Proof: (1): We should prove that the set X+ (which by construction is CQr) is between X
and X . First,0 € X, and if (x,#) € XT\{0},i.e.,t > 0,z = t"'x € X, then there exists
u such that

Az +Bu+b >k 0= Ax + B(tu) + th >k 0 = (x,1) € X*.

Thus, X+ C X+.
Next, let us prove that X+ C X . Let us choose a point X € X, so that for a properly
chosen u,

Ax+Bu+b>k0

holgs, ie., (x,1) € X*. From the description of X itis clear that whenever (x, t) belongs
to X, so does every pair (x, = x + €X,f. =t + €) with e > 0:

du =u. : Ax. + Bu. +t.b >x 0.

It follows that te_l\x6 € X, whence (x, ) € Xj c X+ As € — +0, we have (xc, te) —
(x, 1), and since X is closed, we get (x,¢) € X*. Thus, X* C X™.
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(ii): Assume that Bu € K only if Bu = 0, and let us show that X+t = X+.
We just have to prove that X* is closed, which indeed is the case due to the following
lemma.

LEMMA 3.3.1. Let Y be a CQr set with COR
Y={y|3dv: Py+ Qu+r >k 0}

such that Qv € K only when Qv = 0. Then
(1) there exists a constant C < o0 such that

Py+ Quv+reK=|Quly < CO+[Py+rl); (3.3.13)

(1) Y is closed.

Proof. (i): Assume, on the contrary to what should be proved, that there exists a
sequence {y;, v;} such that

Py, + Qvi+r e K, ||Quilla = o;(1 + ||Py; +7rll2), oy > 00asi — oo. (3.3.14)

By linear algebra, for every b such that the linear system Qv = b is solvable, it admits a
solution v such that ||v|; < Cy||b]l; with C; < oo depending on Q only; therefore we can
assume, in addition to (3.3.14), that

lvill. < Cill Quill2 (3.3.15)

for all i. Now, from (3.3.14) it clearly follows that

| Quill2 > oo asi — oo; (3.3.16)
setting
R 1
= Vi,
[1Qvill2
we have
(a) QUi =1 Vi,
(b) [vill < C1 Vi [by (3.3.15)],
(© v, + 11Qvill, ' (Py; + 1) e K Vi,
@ NQuills 1Py + 7l <o — 0asi — oo [by (3.3.14)].

Taking into account (b) and passing to a subsequence, we can assume that U; — v as
i — o0; by (c), (d) Qv € K, while by (a) | Qv = 1, i.e., Qv # 0, which is the desired
contradiction.

(i) To prove that Y is closed, assume that y; € ¥ and y; — y asi — oo, and let us
verify that y € Y. Indeed, since y; € Y, there exist v; such that Py; + Qu; +r € K. Same
as above, we can assume that (3.3.15) holds. Since y; — y, the sequence {Qv;} is bounded
by (3.3.13), so that the sequence {v;} is bounded by (3.3.15). Passing to a subsequence,
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we can assume that v; — v asi — 00; passing to the limit, as i — 00, in the inclusion
Py;+Qvi+reK,weget Py+ Qu+rekK,ie,ye?. 0

K.1. Projective transformation of a CQr function. The operation with functions
related to taking conic hull of a convex set is the projective transformation, which converts
a function f(x) : R" — R U {oo} into the function

Ffrx,s) =sf(x/s): {s >0} x R" = RU {o0}.
The epigraph of f7 is the conic hull of the epigraph of f with the origin excluded:

{(x,s,t) | s >0,t> f*(x,s)} = {(x,s,0)]s>0,5"t> f(s’lx)}
= {(x,s,1)| s>0,s‘1(x,t)€Epi{f}}.

The closure clEpi{ f*} is the epigraph of a certain function, let it be denoted f* (x,8);
this function is called the projective transformation of f. The fractional-quadratic function
from example 5 is the projective transformation of the function f(x) = x” x. Note that the
function f* (x, s) does not necessarily coincide with f(x, s) even in the open half-space
s > 0. This is the case if and only if the epigraph of f is closed (or, which is the same, f is
lower semicontinuous: whenever x; — x and f (x;) — a,wehave f(x) < a). We are about
to demonstrate that the projective transformation nearly preserves CQ-representability.

PROPOSITION 3.3.2. Let f : R" — R U {00} be a lower semicontinuous function that is
CQOr:

Epi{f}={(x.0) | t > f(x)}={(¢,x)| Ju: Ax +tp+ Bu+b >k 0}, (3.3.17)

where K is a direct product of ice cream cones. Assume that the COR is such that Bu >k 0
implies that Bu = 0. Then the projective transformation f+ of f is CQr, namely,

Epi{f"} = {(x,2,5) | s >0,3u: Ax +tp + Bu + sb >x 0}.
Indeed, let us set
G={(x,t,s)| Ju:5s>0,Ax +1tp+ Bu+ sb >k 0}.

As we remember from the previog\s combination rule, G is exactly the closed conic hull of
the epigraph of f,i.e., G = Epi{f*}.

L. The polar of a convex set. Let X C R”" be a convex set containing the origin. The
polar of X is the set

X*:{yeR”| yTxfl‘v’xeX}.
In particular,
* the polar of the singleton {0} is the entire space;

* the polar of the entire space is the singleton {0};
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¢ the polar of a linear subspace is its orthogonal complement (why?);

* the polar of a closed convex pointed cone K with a nonempty interior is — K, minus
the dual cone (why?).

Polarity is symmetric: if X is a closed convex set containing the origin, then so is X,, and
twice taken polar is the original set—(X,), = X.
We are about to prove that the polarity X — X, nearly preserves CQ-representability.

PROPOSITION 3.3.3. Let X C R", 0 € X, be a CQr set,
X={x| 3u:Ax+ Bu+b > 0}, (3.3.18)

where K is a direct product of ice cream cones. Assume that the above CQR is strictly
feasible, i.e., that there exists X, u such that

Ax+ Bu+b >k 0.
Then the polar of X is the CQr set

X,={yl3%:A"6+y=0,B"6=0,b"E < 1,& >¢ 0}. (3.3.19)

Indeed, consider the following conic quadratic problem:

min {—y"x | Ax + Bu +b >x 0}. P,)

A vector y belongs to X, if and only if (P,) is bounded below and its optimal value is at
least —1. Since (P, ) is strictly feasible, from the conic duality theorem it follows that these
properties of (P,) hold if and only if the dual problem

méax{—bTS | ATe = —y, BT =0, & >k 0}

(recall that K is self-dual) has a feasible solution with the value of the dual objective at least
—1. Thus,

Xo={y|3:AT6+y=0,B"6=0b"¢ < 1,& >¢ 0},

asclaimedin (3.3.19). Itremains to note that X, is obtained from the CQr set K by operations
preserving CQ-representability: intersection with the CQrset {£ | BT& = 0,bT& < 1} and
subsequent affine mapping £ — —ATE.

L.1. The Legendre transformation of a CQr function. The operation with functions
related to taking polar of a convex set is the Legendre (or conjugate) transformation. The
Legendre transformation (= the conjugate) of a function f(x) : R" — R U {oo} is the
function

fe) =sup [yTx — f(0)].
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In particular,
* the conjugate of a constant f(x) = c is the function

—c, y=0,

fo(y) = +00, y #0;

* the conjugate of an affine function f(x) = a’x + b is the function

_ba y=a,
400, Yy #a;

f(y) =

« the conjugate of a convex quadratic form f(x) = 1x” D" Dx +b"x 4 ¢ with rectan-
gular D such that Null(D”) = {0} is the function

fuy) = { Ly —=p)'DT(DDT)2D(y —b) —¢, y—belmDT,
Fo0 otherwise.

It is worth mentioning that the Legendre transformation is symmetric: if f is a proper convex
lower semicontinuous function (i.e., Epi{ f} is nonempty, convex and closed), then so is fi.
Taken twice, the Legendre transformation recovers the original function: (f,). = f.
We are about to prove that the Legendre transformation nearly preserves CQ-
representability.
PROPOSITION 3.3.4. Let f : R" — R U {oo} be CQr:
{x,)| t>fx)}={E,x)| Ju:Ax+1tp+ Bu+b > 0},

where K is a direct product of ice cream cones. Assume that the above CQR is strictly
feasible:

3x,f,u: AX+ip+ Bi+b>k0.
Then the Legendre transformation of f is CQr:
Epi{fs} = {(r.9) | I :AT6 =~y B =0,p"6§ = 1.s 2 b"6.§ 2k 0} . (3.3.20)
Indeed, we have
Epi{ £} = {(v.9) | y7x — f(x) <5 Va} = {(v.9) | y'x —1 <5 V(x, 1) € Epi{f}}.
(3.3.21)
Consider the conic quadratic program

min {—y"x +1| Ax +1p+ Bu+b > Ko}. (Py)

x,tu

By (3.3.21), a pair (y, s) belongs to Epi{ f;} if and only if (P,) is bounded below with
optimal value > —s. Since (P,) is strictly feasible, this is the case if and only if the dual
problem

max {—b"¢ | A& = -y, BTE =0,p"¢ = 1,§ 2k 0}
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has a feasible solution with the value of the dual objective > —s. Thus,

Epi(f} ={(v.9)| 3 :ATé =—y, BT =0,p 6 = 1,5 > b"&, & > 0}
as claimed in (3.3.20). It remains to note that the right-hand side set in (3.3.20) is CQr (as
a set obtained from the CQr set K x R by operations preserving CQ-representability—
intersection with the set {£ | BT& =0, pT& = 1, bT£ < s} and subsequent affine mapping
£ —ATE).
COROLLARY 3.3.6. Let X be a CQr set with a strictly feasible COR:

X={x|3u:Ax+Bu+b>0}, 3Ix,u: Ax+Bu+b >0,

where K is a direct product of ice cream cones. Then the support function

Suppy (x) = sup x"y
yeX

of X with a strictly feasible COR is CQr.

Indeed, Suppy (-) is the conjugate of the characteristic function xx(-) of X, and the
latter, under the premise of the corollary, admits a strictly feasible CQR, namely

Epi{xx}={(x,t) | J3u: Ax + Bu+b >k 0,1 > 0}.

M. Taking convex hull of several sets. The convex hull of aset Y C R” is the smallest
convex set that contains Y:

kx
Conv(Y) = {x = Za,-xi | x; €Y, 20,20([ =1;.
i=1 i

The closed convex hull Conv(Y) = clConv(Y) of Y is the smallest closed convex set
containing Y.

Following Nesterov, let us prove that taking the convex hull nearly preserves CQ-
representability.

PROPOSITION 3.3.5. Let X, ..., X; C R" be nonempty convex CQr sets:

Xi={x| Aix+Biu; +b; >x 0, i =1,...,k}, (3.3.22)

where K; is a direct product of ice cream cones.
Then the CQr set
Yy = {x | EI.§1,...,Ek,tl,...,tk,nl,...,nk:

A€V + Bin' + 11b,
ArE? + Bon? + by

>k 0,
ArER 4+ Bin® + by (3.3.23)
tl7""tk = 07
Elp.. 4 = x
tl+"'+tk = 1}1

K = K| x---xKy,
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is between the convex hull and the closed convex hull of the set X1 U --- U X
k k
Conv (U Xi) c Y c Conv <U X,-) .
i=1 i=1

If, in addition to CQ-representability,
(1) all X; are closed and bounded,

or
(i) X; = Z; + W, where Z; are closed and bounded sets and W is a convex closed
set,
then
k k
Conv (U Xl-) =Y = Conv (U X,~)
i=1 i=1
is COr.

First, the set Y clearly contains ConV(Uf.‘:l X;). Indeed, since the sets X; are convex,
the convex hull of their union is

k k
:x = Zt,'xi | x' e X, t; EO,ZE = 1}
i=1 i=1

(why?); for a point
k k
x:Zt[x’, [XZGX[,I[ZO,ZII':I],
i=1 i=1
there exist u’,i = 1, ..., k, such that

A,-xi + B,-ui + b; ZK, 0.

We get
x = (mx)+-+ @)
= &'+ +E
[ =tix'];
Hy,...,.tp, > 0 (3.3.24)
Chtetn o= L
A" +Bn'+14b; >k, 0,1 1 ook,

0" = tu'l,

so that x € Y (see the definition of Y).
To complete the proof that Y is between the convex hull and the closed convex hull
of Ule X;, it remains to verify that if x € Y, then x is contained in the closed convex hull

of Uf:l X;. Let us somehow choose X' € X;; for properly chosen it' we have

A + B +b; >k, 0, i=1,...,k (3.3.25)
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Since x € Y, there exist t;, £/, n' satisfying the relations

x = g4 4K
tl7""tk = Ov
3.3.26
h+-+n o= 1, ( )

A&+ Bin' + 1;b;

I\
ial
L
Il
-
bl

In view of the latter relations and (3.3.25), we have for 0 < € < 1:

Aill(1 — & + ek %1+ Bi[(1 — )’ + ek ']+ [(1 — €)t; + ek~ '1b; >k, 0;

setting
tie = (1—-e¢ + Ek_l,
o+ s,
ul = ! [(1—em +ektal],
we get
A,-xé + B,vui + b; >K, 0=
Xé (S X,‘,
tl,éa"-atk,e Z Oa
tl,e+"'+tk,e == 1
=
k
Xe = Zti,exé
i=1

k
e Conv (U Xl-).
i=1

On the other hand, we have by construction

k k
xe=) [—ef +ek 5] > x=) &ase— +0,
i=1

i=1

so that x belongs to the closed convex hull of Uf;l X;, as claimed.

It remains to verify that in the cases (i) and (ii) the convex hull of Uf:, X, is the same
as the closed convex hull of this union. Case (i) is a particular case of (ii) corresponding to
W = {0}, so that it suffices to prove (ii). Assume that

k
Xy = Zﬂti[zti + piil > xasi — oo,

i=1

|:Zti €Zi,pi €W, u; =0, Zﬂti = 1:|

1

and let us prove that x belongs to the convex hull of the union of X;. Indeed, since Z; are
closed and bounded, passing to a subsequence, we may assume that

Zi —> z; € Z; and uy;; —> W; ast — oo.
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It follows that the vectors

m k
Pt = Z/’Ltipti =X — Zﬂzizzi
i=1 i=1

converge as t — 0o to some vector p, and since W is closed and convex, p € W. We now
have

k k k
X = llgglo [X;Mtizzi + Pt] = X;Mizi +p= Xl:lii[zt‘ + pl
1= 1= 1=
so that x belongs to the convex hull of the union of X; (as a convex combination of points

zi +p € Xp).
N. The recessive cone of a CQr set. Let X be a closed convex set. The recessive cone
Rec(X) of X is the set
Rec(X)={h:x+the X V(ixelX,t>0)}
It can be easily verified that Rec(X) is a closed convex cone and that
Rec(X)={h| x+the X Vt>0} VxelX,

i.e., that Rec(X) is the set of all directions % such that the ray emanating from a point of X
and directed by 4 is contained in X.

PROPOSITION 3.3.6. Let X be a nonempty CQr set with COR
X={xeR"| Ju:Ax+ Bu+b >k 0},

where K is a direct product of ice cream cones, and let the COR be such that Bu € K only
if Bu =0. Then X is closed, and the recessive cone of X is CQr:

Rec(X) = {h | v : Ah + Bv >k O} (3.3.27)

Proof. The fact that X is closed is given by Lemma 3.3.1. In order to prove (3.3.27), let us
temporarily denote by R the set in the left-hand side of this relation; we should prove that
R = Rec(X). The inclusion R C Rec(X) is evident. To prove the inverse inclusion, let
X € X and h € Rec(X) so that for every i = 1, 2, ... there exists u; such that

A(x +ih)+ Bu; +b € K. (3.3.28)
By Lemma 3.3.1,
[Buillz < C(1 + [|A(X +ih) + Dll2) (3.3.29)

for certain C < oo and alli. Besides this, we can assume without loss of generality (w.l.0.g.)
that

lluill2 < Cil|Bui|l2 (3.3.30)
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(cf. the proof of Lemma 3.3.1). By (3.3.29)—(3.3.30), the sequence {v; = i ~'u;} is bounded;
passing to a subsequence, we can assume that v; — v asi — 0o. By (3.3.28), we have for
all i
i'A(X +ih)+ Bv;+i"'b €K,
whence, passing to limit as i — oo, Ah + Bv € K. Thus, h € R. a
O. Theorem on superposition. Let f; : R" — RU {+o0}, £ = 1,...,m be CQr
functions,
1= folx) & | Agx,1,u") =k, 0,
where K, is a direct product of ice cream cones, and let
f:R" - RU {400}
be CQr,
1> f(y) & v Ay, t,v) >k 0,

where K is a direct product of ice cream cones.
Assume that f is monotone with respect to the usual partial ordering of R™:

Y=y'= f0) = f07),
and consider the superposition

2(x) = [—{(o]:)l(x),...,fm(x)), fo(x) <00, £=1,...,m,

otherwise.

THEOREM 3.3.1. Under the above setting, the superposition g(-) is CQr with COR

Ag(x, tp,ut) >k, 0, £=1,....m
1 m . IACGSRIZ) K, Y s s I,
t>gx) I, ...ty u ..U,V { Atr ot 1. 0) =k O,
(3.3.31)
Proof. The proof of this simple statement is left to the reader.
REMARK 3.3.1. If part of the inner functions, say, fi, ..., f, is affine, it suffices to require
the monotonicity of the outer function f with respect to the variables yz1, ..., ¥, only. A

CQR for the superposition in this case becomes

t>g(x) < Mgt .oty u*T W
AeCx, t,ul) >k, 0, E=k+1,....m, (3.3.32)
A(fi(x), (0, ..oy fi(X), tets teg2s ooy b £, 0) =K O
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3.3.1 More examples of conic quadratic-representable functions
and sets

We are sufficiently equipped to build the dictionary of CQr functions and sets. Having built
already the elementary part of the dictionary, we can add now a more advanced part.

7. Convex quadratic form. g(x) = x” Qx + g7 x + r (Q is a positive semidefinite
symmetric matrix) is CQr.

Indeed, Q is positive semidefinite symmetric and therefore can be decomposed as
Q = D' D, so that g(x) = ||Dx|l5 + g"x + r. We see that g is obtained from our raw
materials—the squared Euclidean norm and an affine function—by affine substitution of
argument and addition.

Here is an explicit CQR of g:

{((x,0) | xTDTDx+q"x+r <t} = {(x, t) |

t—qTx —
raTxtr 5%}. (3.3.33)
2

2
8. Thecone K = {(x,01,02) e R* xR xR | 1,05 > 0,010, > xTx} is CQr.
Indeed, the set is just the epigraph of the fractional-quadratic function x”x/s (see

Example 5); we simply write o} instead of s and o, instead of 7.
Here is an explicit CQR for the set:

K:{oc,al,om ”(L)
2

Surprisingly, our set is just the ice cream cone, more precisely, its inverse image under the
one-to-one linear mapping
X X
a1—0oy
(ol ) = B
o a1ty
2 2

9. The half-cone K2 = {(x1,x2,1) € R* | x1,x, > 0,0 <1 < /xix2} is CQr.
Indeed, our set is the intersection of the cone {t* < x;x,, X1, X, > 0} from the previous
example and the half-space ¢ > 0.
t
X1 —X2
2

Here is the explicit CQR of K :

10. The hypograph of the geometric mean—the set K2 = {(x;, x2,¢) € R? | x1, x; >
0,1 < /x1x2}—is CQr.

Note the difference with the previous example—here ¢ is not required to be nonneg-
ative!

Here is the explicit CQR for K? (see Example 9):

T
X1 =X
2

<ATR ;02 } : (3.3.34)

2

<M ;sz } . (3.3.35)

K, = {(xl,xz,f) | >0,

2

K? = {(xl,xz,t)| dr:t <1,

<x1+xz .
s 2
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11. The hypograph of the geometric mean of 2/ variables—the set K 2 =
(Geryeeyx, ) € R | x> 0,i = 1,...,20, 1 < (x1x2...x2)' /% }—is CQr. To
see it and to get its CQR, it suffices to iterate the construction of Example 10. Indeed, let
us add to our initial variables a number of additional x-variables:

1. Letus call our 2! original x-variables the variables of level 0 and write x(; instead
of x;. Let us add one new variable of level 1 per every two variables of level 0. Thus, we
add 2/~! variables x ; of level 1.

2. Similarly, let us add one new variable of level 2 per every two variables of level
1, thus adding 2!=2 variables x;,;; then we add one new variable of level 3 per every two
variables of level 2, and so on, until level / with a single variable x; ; is built.

Now let us look at the following system S of constraints:

) . -1
layer 1:  xy; < \/%0.2i—1X%0,2i» X1,i» X0,2i—1, X0,2i = 0, i =1,...,2"",
) . -2
layer 2:  xp; < /X12i-1X12i, X2,i, X12i-1, X1, =2 0, i =1,...,2"77,

layer [: X0 S XX 1,2, X1, Xi—1,1, Xi—12 = 0

(%) =< x1,1

The inequalities of the first layer say that the variables of the zero and the first level should
be nonnegative and every one of the variables of the first level should be less than or equal to
the geometric mean of the corresponding pair of our original x-variables. The inequalities
of the second layer add the requirement that the variables of the second level should be
nonnegative, and every one of them should be less than or equal to the geometric mean of
the corresponding pair of the first-level variables, etc. It is clear that if all these inequalities
and (*) are satisfied, then ¢ is less than or equal to the geometric mean of xp, ..., xy.
Conversely, given nonnegative xi, ..., xy and a real ¢+ which is less than or equal to the
geometric mean of xy, ..., xp/, we always can extend these data to a solution of S. In other
words, K2 is the projection of the solution set of S onto the plane of our original variables
X1, ..., Xy, t. It remains to note that the set of solutions of § is CQr (as the intersection
of CQr sets {(v, p,q,7r) € RY x Rfr | r < /qp}; see example 9) so that its projection is
also CQr. To get a CQR of K 2 it suffices to replace the inequalities in S with their conic
quadratic equivalents, explicitly given in example 9.

What about functions that look very different from a quadratic function, e.g., what
about the function g (x) = x”/3 on the real line? Is it CQr? If the question is to be interpreted
literally, the answer is a definite “no”—the function is nonconvex! An absolutely evident
observation is as follows:

A CQr set X is always convex (as the projection of the set of solutions of
a system of convex inequalities ||aj(x,u)|l> — B;(x,y) < 0 in the space of
(x, u)-variables onto the space of x-variables).

Consequently, a CQr function is necessarily convex—since its epigraph must
be a CQr and therefore a convex set.

Our question about the function x”/? admits, however, a meaningful modification. Namely,
the function x’/3 (as every power function x” with p > 1) is convex on the nonnegative
ray; extending the function by the value O onto the negative ray, we get a convex function
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x¥ (x4 = max{x, 0}), and we may ask whether this function is CQr. In particular, is the
function xl/ 3 CQr? The answer is affirmative, and here is the construction:
We know from example 11 that the set

K¥={(n,....y85.8) €RL | s < iy2...y9)"®)

is CQr. Now let us make all our nine variables yy, ..., yg, s affine functions of just two
variables &, ¢ as follows:

* The variable s and the first of the variables y; are identically equal to &.
* The next three of the variables y; are identically equal to ¢.
* The rest of the variables (i.e., the last four variables y;) are identically equal to 1.

We have defined certain affine mapping from R? to R°. The inverse image of K® under this
mapping is the set

K {(6,) e R | £ <&'3P%)

{(€.0) eRL | 1> &)

Thus, the set K is CQr (as an inverse image of the CQr set K®), and we can easily get an
explicit CQR of K from the one of K® (see Example 11). On the other hand, the set K is
almost the epigraph of éz/ it is the part of this epigraph in the first quadrant. And it is

easy to get the complete epigraph from this part: it suffices to note that the epigraph E of

xi/ 3 is the projection of the 3D set

K'={(x,&0]&>0,x<&& <)

onto the (x, #)-plane and that the set K’ clearly is CQr along with K. Indeed, to obtain K’
from K one should first pass from K to its direct product with the x-axis—to the set

K+={(x9%-at)| (S’t) € K}

—and then to intersect K with the half-space given by the inequality x < &. Thus, to
obtain the epigraph E of xi/ 7 from the CQr set K, one should successively

e pass from K to its direct product with the real axis R (note that the second factor
trivially is CQr!),

* intersect the result with a half-space, and
* project the result onto 2D plane of the variables (x, t).

All these operations preserve the CQ-representability and yield an explicit CQr for E:

t=xV o 3AE u) {x <E&SE 1 11,1,1,1,1,& u),
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where S(yi, ..., ys, s; u) denotes the system of CQIs from the CQR of the set K813 where
u is the vector of additional variables for the latter CQR.

The construction we have just described might look too sophisticated, but with a little
experience the derivations of this type become much easier and much more transparent than,
say, arithmetic solving a 3 x 3 system of linear equations.

Of course, the particular values 7 and 3 in our xZL/ 3_exercise play no significant role,
and we arrive at the following.

12. The convex increasing power function xf:/ 7 of rational degree p/g > 1is CQr.

Indeed, given positive integers p, g, p > g, let us choose the smallest integer / such
that p < 2! and consider the CQr set

K¥ = {01, y2,8) € REF s < (iya ooy 2. (3.3.36)

Setting r = 2/ — p, consider the following affine parameterization of the variables from
R2*! by two variables &, :

* s and r first variables y; are all equal to £ (note that we still have 2/ —r = p > ¢
unused variables y;).

* g next variables y; are all equal to 7.
* The remaining y;’s, if any, are all equal to 1.
The inverse image of K 2" under this mapping is CQr and it is the set
K={EDeRL| £ <) ={¢ ) eR, | 128"},

The epigraph of xf:/ ? can be obtained from the CQr set K, as in the case of p/q = 3/7, by

operations preserving CQ-representability.

13. The decreasing power function

x7Pld x>0,
+o0, x =<0,

glx) = {

(p, q are positive integers) is CQr.

As in Example 12, we choose the smallest integer / such that 2l > p + g, consider
the CQr set (3.3.36), and parameterize affinely the variables y;, s by two variables (x, t) as
follows:

+ s and the first (2! — p — ¢) y;’s are all equal to one.

* p of the remaining y;’s are all equal to x, and the ¢ last of y;’s are all equal to ¢.

3That is, S(y, t; u) is a Boolean function taking values true of false depending on whether the (y, ¢, u)
satisfy or do not satisfy the CQIs in question
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It is immediately seen that the inverse image of K 2" under the indicated affine mapping is
the epigraph of g.

14. The even power function g(x) = x2” on the axis (p positive integer) is CQr.

Indeed, we already know that the sets P = {(x,£,¢) € R® | x> < £} and K’ =
{(x,€,1) e R®| 0 < &, &P <t} are CQr. (Both sets are direct products of R and the sets
with already known to us CQRs.) It remains to note that the epigraph of g is the projection
of P N Q onto the (x, #)-plane.

Example 14 along with our combination rules allow us to build a CQR for a polynomial
p(x) of the form

L
px)=>_px*, xeR,
=1

with nonnegative coefficients.
15. The hypograph of a concave monomial x{" ...x. Let 1 = %, e Ty = %
be positive rational numbers with 7 + - - - 4+ 7, < 1. The function
f@x)=—x"...x7" : R} > R

is CQr.
The construction is similar to the one of Example 12. Let / be such that 2! > p. We
recall that the set

!
Y = {01y Y28 | Y1ree s y2 20,0 <5 < (1 ..., y2)""*}

is CQr, and therefore so is its inverse image under the affine mapping

KLy ey Xy S) > (XL e oy X1, X2 oo ey X0y ooy Xy ee ey Xy Sy o e ay S, 1,000, 1,8),
~——— —— —— —— N——
p1 P2 Pn 2—p P—P1——Pn
i.e., the set
l__ I
Z = {1, ees X)) | X1, 20,0 <5 < (x] L. xsZ )Y
= {(xl,...,xn,s)|xl,...,xn20,0§s§xfl/p...xnp”/p}.

Since the set Z is CQr, so is the set
Z' ={(xty.oo  Xny £,8) | X1y Xy = 0,5 >0,0<s—1<x"...x"},

which is the intersection of the half-space {s > 0} and the inverse image of Z under the
affine mapping (x1, ..., x,, ¢, ) — (x1, ..., X,, s —t). It remains to note that the epigraph
of f is the projection of Z’ onto the plane of the variables xi, ..., x,, .

16. The convex monomial x; o .x, ™. Letmy, ..., m, be positive rational numbers.
The function

fO=x"...x™: {xeR":x>0—>R

is CQr.
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See Exercise 3.2.

17. The p-norm x|, = O}, [x;]?)1/? : R — R (p > 1 is a rational number).
We claim that the function ||x||, is CQr.
It is immediately seen that
X, <tet>0&3vy,...,v,>0:|x;| <t@ VPP i1 o0,y <t
P i
1

n
i=

(3.3.37)

Indeed, if the indicated v; exist, then > 1_ |x;|P < P71 3" v <t ie., x|, < 1.
Conversely, assume that ||x||, < t. If # = 0, then x = 0, and the right-hand side relations
in (3.3.37) are satisfied forv; = 0,7 =1, ..., n. If r > 0, we can satisfy these relations by
setting v; = |x;|Pt!~7.

Equation (3.3.37) says that the epigraph of ||x ||, is the projection onto the (x, ¢)-plane
of the set of solutions to the system of inequalities

t >0,
v, >0,i=1,...,n,
X; gt("_l)/pvil/p, i=1,...,n,
—X; ft(f'_”/”vil/p, i=1,...,n

’

vp+---4vu, <t

Each of these inequalities defines a CQr set (in particular, for the nonlinear inequalities
this is due to Example 15). Thus, the solution set of the system is CQr (as an intersection
of finitely many CQr sets), whence its projection on the (x, t)-plane—i.e., the epigraph of
llx]| ,—is CQr.

17.a. The function ||x4|, = (Z?zlmaxl’[xi,O])l/” :R" - R (p > 1 arational
number) is CQr.
Indeed,

tz||x+||p<:>E|YI,~~7)’n5O§YiaxiEyi,l.=1,~',n,||)’”p§f-

Thus, the epigraph of [lx, ||, is a projection of the CQr set (see Example 17) given by the
system of inequalities in the right-hand side.

From the above examples it is seen that the expressive abilities of CQIs are indeed
strong: they allow us to handle a wide variety of very different functions and sets.

3.4 More applications

Equipped with abilities to treat a wide variety of CQr functions and sets, we can consider
now more applications of CQP.

3.4.1 Tschebyshev approximation in relative scale

In the Tschebyshev approximation problem we are looking for a linear combination of
given basis functions f;(¢) that is as close as possible to a certain target function f,(¢) on a
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given finite set 7.'* In the original version of the problem, the quality of an approximation
>; xi f; (1) is measured by the maximal, overr € T, absolute deviation of the approximation
from the target function. In a number of applications where the target function is positive
and so should be its approximation, a more appropriate deviation is the relative one. A
natural way to measure the relative deviation between two positive reals a, b is to look at
the smallest T = 7 (a, b) such that

1
1+1

<-<l1l+4r

SR

With this approach, the relative Tschebyshev problem becomes

min max 7 (f*(t), Zmﬂ(r)) :

where we should add the constraints ), x; f;(r) > 0, € T, to guarantee positivity of the
approximation. The resulting problem can be written equivalently as

min {7 | Y xfi()) < L+ D0, fi) < A +1) Y xifi0) VreT}.

The nonlinear constraints we get are hyperbolic constraints “the product of two nonnegative
affine forms of the design variables must be greater than or equal to a positive constant,” and
the sets given by these constraints are CQr (see Example 6). Thus, the problem is equivalent
to a conic quadratic program, specifically, to the problem

D oxifit) < A+ 1) fu0),

min{ |Vt eT):
X,T ‘

(250 0)

L+1=Y xfio ||| STHT+2 560
i 2 i
3.4.2 Robust linear programming
Consider an LP program
min {c"x | Ax—b>0}. (LP)

In real-world applications, the data ¢, A, b of (LP) is not always known exactly; what is
typically known is a domain U/ in the space of data—an uncertainty set—which for sure
contains the actual (unknown) data. There are cases in reality where, in spite of this data
uncertainty, our decision x must satisfy the actual constraints, whether we know them or not.
Assume, e.g., that (LP) is a model of a technological process in the chemical industry, so that
entries of x represent the amounts of different kinds of materials participating in the process.

14The material in this section originates from M.S. Lobo, L. Vanderbeghe, S. Boyd, and H. Lebret, Second-order
cone programming, Linear Algebra Appl., 284 (1998), pp. 193-228.
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Typically the process includes a number of decomposition-recombination stages. A model
of this problem must take care of natural balance restrictions: the amount of every material
to be used at a particular stage cannot exceed the amount of the same material yielded by
the preceding stages. In a meaningful production plan, these balance inequalities must be
satisfied although they involve coefficients affected by unavoidable uncertainty of the exact
contents of the raw materials, of time-varying parameters of the technological devices, etc.

If indeed all we know about the data is that they belong to a given set U/, but we still
have to satisfy the actual constraints, the only way to meet the requirements is to restrict
ourselves to robust feasible candidate solutions—those satisfying all possible realizations
of the uncertain constraints, i.e., vectors x such that

Ax —b >0 V[A;b]suchthat3c: (c,A,b) eU. (3.4.38)

In order to make the best possible choice from these robust feasible solutions, we should
decide how to aggregate the various realizations of the objective into a single quality char-
acteristic. To be methodologically consistent, we use the same worst-case approach and
take as an objective function f(x) the maximum, over all possible realizations of ¢, of the
quantity ¢’ x:

fx) = sup{ch | ¢ :3[A; D] : (c, A, b) € U}.

With this methodology, we can associate with our uncertain LP program, i.e., with the family
LPU) = { min ¢’ x|(c, A,b) € u}
x:Ax>b

of all usual (certain) LP programs with the data belonging to U, its robust counterpart. In
the latter problem we are seeking for a robust feasible solution with the smallest possible
value of the guaranteed objective f(x). In other words, the robust counterpart of LP (UA) is
the optimization problem

min{r | ¢"x <1, Ax—b>0 V(c, A b)eU}. R)
s X

Note that (R) is a usual—certain—optimization problem, but typically it is not an LP pro-
gram: the structure of (R) depends on the geometry of the uncertainty set/{ and can be very
complicated.

In many cases it is reasonable to specify the uncertainty set U/ as an ellipsoid—the
image of the unit Euclidean ball under an affine mapping—or, more generally, as a CQr set.
As we shall see in a while, in this case the robust counterpart of an uncertain LP problem is
(equivalent to) an explicit conic quadratic program. Thus, robust linear programming with
CQr uncertainty sets can be viewed as a generic source of conic quadratic problems.

Let us look at the robust counterpart of an uncertain LP program

{min{ch:aTx—biZO,i:l,...,m}|(c,A,b)eU}

i
X

in the case of a simple ellipsoidal uncertainty—one where the data (a;, b;) of ith inequality
constraint

aiTx—biz()
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and the objective ¢ are allowed to run independently of each other through respective ellip-
soids E;, E. Thus, we assume that the uncertainty set is

U= (@, bi;...;am bw; o) | Iui, ulu; < 137) (Z‘) = <Z’*) + Pu', ¢,
1 1

where c,, a], bf are the nominal data and Piu;, i =0, 1, ..., m, represent the data pertur-

17
bations; the restrictions u] u; < 1 enforce these perturbations to vary in ellipsoids.
To understand that the robust counterpart of our uncertain LP problem is a conic

quadratic program, note that x is robust feasible if and only if for every i = 1,...,m we

have
in o il — il | (98 = (9 + P
il [ b= bl (b,.[u]) B <b§‘> ! P}

= (a;“x)Tx — b+ min uiTPiT( . )

ui:uiruifl -1

P,-T(_xl)

Thus, x is robust feasible if and only if it satisfies the system of CQIs

77 (2)

Similarly, a pair (x, ) satisfies all realizations of the inequality ¢’ x < ¢ allowed by our
ellipsoidal uncertainty set ¢/ if and only if

o
A

(a)’x —bF — ’

2

<[a1x—bf i=1,....,m.
2

cIx + 1P xl2 <t

Thus, the robust counterpart (R) becomes the conic quadratic program

()

Example. Robust synthesis of antenna array. Consider the antenna synthesis example
of section 1.2.4. Mathematically, this was an LP program with 11 variables,

min {t | 1P x|z < —cfx +1;
x,t

<[a1x—b}, i= lm} (RLP)
2

10
min 1| —t < Z,0) = > x;Zj@)<t.i=1,....Ng, (Nom)
X,t

Jj=1

with given diagrams Z; (-) of 10 building blocks and a given target diagram Z,(6). Letx’ be
the optimal values of the design variables. Recall that our design variables are amplification
coefficients, i.e., characteristics of certain physical devices. In reality, of course, we cannot
tune the devices to have precisely the optimal characteristics x}*; the best we may hope for
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Figure 3.3. Dream and reality: the nominal (left, solid line) and an actual (right,
solid line) diagram (dashed line: the target diagram).

is that the actual characteristics x;:c‘ of the amplifiers will coincide with the desired values
x7 within a small margin, say, 0.1% (this is a fairly high accuracy for a physical device):

xi = pjx¥, 0.999 < p; < 1.00L.
It is natural to assume that the factors p; are random with the mean value equal to 1; it is
perhaps not a great sin to assume that these factors are independent of each other.

Since the actual amplification coefficients differ from their desired values x;.‘, the
actual (random) diagram of our array of antennae will differ from the nominal one we found
in section 1.2.4. How large could the difference be? Look at Fig. 3.3. The right-hand
diagram in Fig. 3.3 is not even the worst case: we just have taken as p; a sample of 10
independent numbers distributed uniformly in [0.999, 1.001] and have plotted the diagram
corresponding to x; = p jx;f. Pay attention not only to the shape (completely opposite
to what we need) but also to the scale: the target diagram varies from O to 1, and the
nominal diagram (the one corresponding to the exact optimal x;) differs from the target by
no more than by 0.0621 (this is the optimal value in the nominal problem (Nom)). The actual
diagram varies from ~ —8 to ~ 8, and its uniform distance from the target is 7.79 (125
times the nominal optimal value!). We see that our nominal optimal design is completely
meaningless. It looks as if we were trying to get the worse possible result, not the best
possible one.

How could we get something better? Let us try to apply the robust counterpart
approach. To this end we take into account from the very beginning that if we want the
amplification coefficients to be certain x, then the actual amplification coefficients will be

fet

x5 = pjxj, 0.999 < p; < 1.001, and the actual discrepancies will be

10

8i(X) = Z.(6) = ) pjx; Z;(6).
j=1



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

114 Lecture 3. Conic Quadratic Programming

Thus, we are in fact solving an uncertain LP problem where the uncertainty affects the coef-
ficients of the constraint matrix (those corresponding to the variables x ;). These coefficients
may vary within a 0.1% margin of their nominal values.

To apply the robust counterpart approach to our uncertain LP program, we should
specify the uncertainty set /. The most straightforward way is to say that our uncertainty
is an interval one—every uncertain coefficient in a given inequality constraint may (inde-
pendently of all other coefficients) run through its own uncertainty segment ‘“nominal value
40.1%”. This approach, however, is too conservative. We have completely ignored the fact
that our p;’s are of stochastic nature and are independent of each other, so that it is highly
improbable that all of them will simultaneously fluctuate in dangerous directions. To utilize
the statistical independence of perturbations, let us look what happens with a particular
inequality

10
—t < 8(X) = Z.(0) = Y pix;Z;(0) <t (3.4.39)

j=1

when p;’s are random. For a fixed x, the quantity §; (x) is a random variable with mean

10
51(x) = Z.(0) — Y _x;Z;(6)
j=1
and standard deviation
10
oi(0) = VE[G,() — ) = | Y2 Z20)E((p; — D) < kvi(x),
j=1

v (x) =

10
fo.zﬁ(e,-), « = 0.001.
j=1

Thus, a typical value of §; (x) differs from §; (x) by a quantity of order of o;(x). Now let
us act as an engineer who believes that a random variable differs from its mean by at most
three times its standard deviation. Since we are not obliged to be that concrete, let us choose
a safety parameter w and ignore all events that result in [§;(x) — 8] (x)| > wv; x).5 As
for the remaining events—those with |§;(x) — §7(x)| < wv;(x)—we take upon ourselves
full responsibility. With this approach, a reliable deterministic version of the uncertain
constraint (3.4.39) becomes the pair of inequalities

—t <87 (x) — wv; (x),
8F(x) +wvi(x) < t.

151t would be better to use o; here instead of v;. However, we did not assume that we know the distribution of
pj» and this is why we replace unknown o; with its known upper bound v;.
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Replacing all uncertain inequalities in (Nom) with their reliable deterministic versions and
recalling the definition of §7(x) and v; (x), we end up with the optimization problem

minimize t
S.t.
10
1Qixlla < | Zo®) =Y %, Z;j0) | +1, i=1,....N,
j=1 (Rob)
10
1Qixlla < = | Zu®) =Y x;Z;0) |+t i=1,...,N,

j=1
Q: = wkDiag(Z1(6:), Z2(6:), - . ., Z10(6;)).
It is immediately seen that (Rob) is nothing but the robust counterpart of (Nom) correspond-

ing to a simple ellipsoidal uncertainty, namely, the one as follows:
The only data of a constraint

10
E Al‘ij
j=1

(all constraints in (Nom) are of this form) affected by the uncertainty are the coefficients A;;
of the left-hand side. The difference d A[i] between the vector of these coefficients and the
nominal value (Z;(6;), ..., Z10(6;)) of the vector of coefficients belongs to the ellipsoid

pit +qi

IN IV

{dA[il= ok Qiu | u e R u"u < 1}.

Thus, the above engineering reasoning leading to (Rob) is nothing but a reasonable way to
specify uncertainty ellipsoids!

Now let us look at what diagrams are yielded by the robust counterpart approach, i.e.,
those given by the robust optimal solution. These diagrams are also random (neither the
nominal nor the robust solution cannot be implemented exactly!). However, it turns out that
they are incomparably closer to the target (and to each other) than the diagrams associated
with the optimal solution to the nominal problem. (Look at a typical robust diagram shown
on Fig. 3.4.) With the safety parameter @ = 1, the robust optimal value is 0.0817; although it
is 30% larger than the nominal optimal value 0.0621, the robust optimal value has a definite
advantage in that it says something reliable about the quality of actual diagrams that we can
obtain when implementing the robust optimal solution. In a sample of 40 realizations of
the diagrams corresponding to the robust optimal solution, the uniform distances from the
target varied from 0.0814 to 0.0830.

We have built the robust optimal solution under the assumption that the implementation
errors do not exceed 0.1%. What happens if in reality the errors are larger—say, 1%? It
turns out that nothing dramatic happens. Now in a sample of 40 diagrams given by the
old robust optimal solution (now affected 1% implementation errors) the uniform distances
from the target varied from 0.0834 to 0.116. Imagine what will happen with the nominal
solution under the same circumstances.

The last issue to be addressed here is, Why is the nominal solution so unstable? And
why with the robust counterpart approach were we able to get a solution that is incomparably
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Figure 3.4. A robust diagram. Uniform distance from the target is 0.0822.
(The safety parameter for the uncertainty ellipsoids is w = 1.)

better, as far as actual implementation is concerned? The answer becomes clear when we
look at the nominal and the robust optimal amplification coefficients:

J 1 2 3 4 5 6 7 8 9 10
x;."’m 1624.4 | —14701 | 55383 | —107247 | 95468 | 19221 | —138622 | 144870 | —69303 | 13311

x;-"b —0.3010 | 4.9638 | —3.4252 | —5.1488 | 6.8653 | 5.5140 | 5.3119 | —7.4584 | —8.9140 | 13.237

It turns out that the nominal problem is ill-posed. Although its optimal solution is far away
from the origin, there is a massive set of nearly optimal solutions, and among the latter
ones we can choose solutions of quite moderate magnitude. Indeed, here are the optimal
values obtained when we add to the constraints of (Nom) the box constraints |x;| < L,
j=1...,10:

L 1 10 102 103 10* 10° 10° 107
Opt_Val || 0.09449 | 0.07994 | 0.07358 | 0.06955 | 0.06588 | 0.06272 | 0.06215 | 0.06215

Since the implementation inaccuracies for a solution are larger the larger it is, there is no
surprise that our huge nominal solution results in a very unstable actual design. In contrast
to this, the robust counterpart penalizes the (properly measured) magnitude of x (look at
the terms ||Q;x||» in the constraints of (Rob)) and therefore yields a much more stable
design. Note that this situation is typical for many applications: the nominal solution is on
the boundary of the nominal feasible domain, and there are nearly optimal solutions to the
nominal problem that are in the deep interior of this domain. When solving the nominal
problem, we do not care if there is a reasonable tradeoff between the depth of feasibility
and the optimality: any improvement in the objective is sufficient to make the solution just
marginally feasible for the nominal problem. And a solution that is only marginally feasible
in the nominal problem can easily become very infeasible when the data are perturbed. This
would not be the case for a deeply interior solution. With the robust counterpart approach,
we do use certain tradeoffs between the depth of feasibility and the optimality—we are
trying to find something like the deepest feasible nearly optimal solution. As a result, we
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normally gain a lot in stability; and if, as in our example, there are deeply interior nearly
optimal solutions, we do not lose that much in optimality.

Robust counterpart to uncertain linear programming with a conic quadratic repre-
sentable uncertainty set. 'We have seen that the robust counterpart of uncertain LP with
simple constraintwise ellipsoidal uncertainty is a conic quadratic problem. This fact is a
special case of the following proposition.

PROPOSITION 3.4.1. Consider an uncertain LP
LPU) = { min c'x[(c, A, b) € u}

and assume that the uncertainty set U is CQr:
U= {C =(c, A, B) e R" x R™*" xR’”Hu A, u) = P+ Qu+r >k 0},

where A(C, u) is an affine mapping and K is a direct product of ice cream cones. Assume,
further, that the above COR of U is strictly feasible:

3¢ @) AQ. @) >x 0.
Then the robust counterpart of LP (U) is equivalent to an explicit conic quadratic problem.

Proof. Introducing an additional variable ¢ and denoting by z = (¢, x) the extended vector
of design variables, we can write down the instances of our uncertain LP in the form

min{d"z | o/ ()2 = () 20, i=1,....m+1] (LPLZ])
with an appropriate vector d. Here the functions
@) =Al +a, BiQ)=bl+c

are affine in the data vector ¢. The robust counterpart of our uncertain LP is the optimization
program

mjn{de—> min | o/ ()z— () =0 VeeUVi=1,...,m+1}. (RCini)

Let us fix i and ask ourselves what it means that a vector z satisfies the infinite system of
linear inequalities

ol ©z=FiQ) =0 Ve el. )

Clearly, a given vector z possesses this property if and only if the optimal value in the
optimization program

rrrlizn{tl t>ol (Dz—Bi©Q), ¢ €U}
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is nonnegative. Recalling the definition of I/, we see that the latter problem is equivalent to
the conic quadratic program

min{t|t>ae ()z—BiQ)=[A¢+al"z—[b]¢ +cl, A, u)=Pi+ Qu+r>g0
——— ——

T,0,u

;i (¢) Bi(©)

(CQilzD)

in variables t, ¢, u. Thus, z satisfies (C;) if and only if the optimal value in (CQ;[z]) is
nonnegative.

Since by assumption the system of conic quadratic inequalities A (¢, u) >k 0is strictly
feasible, the conic quadratic program (CQ;[z]) is strictly feasible. By the conic duality
theorem, if (a) the optimal value in (CQ;[z]) is nonnegative, then (b) the dual to (CQ;[z])
problem admits a feasible solution with a nonnegative value of the dual objective. By weak
duality, (b) implies (a). Thus, the fact that the optimal value in (CQ;[z]) is nonnegative is
equivalent to the fact that the dual problem admits a feasible solution with a nonnegative
value of the dual objective:

z satisfies (C;)
¢
Opt(CQ;[z]) = 0
¢
Jr € R, £ € RY(N is the dimension of K):
Malz—c1—€Tr >0,
A=1,
—rAlz+ b+ PTE =0,
0" =0,
A =0,
& >k 0.
¢
Je e RV :
aiTz—ci —&Tr>0
—Alz+b;+ PTE =0,
Q"¢ =0,
§ >k 0.

We see that the set of vectors z satisfying (C;) is CQr:

z satisfies (C;)

Je e RV :
alz—c¢—€"r >0,
—Alz+b;+ PTE =0,

0'& =0,
§ >k 0.
Consequently, the set of robust feasible z—those satisfying (C;) Vi = 1, ..., m+1—

is CQr (as the intersection of finitely many CQr sets), whence the robust counterpart of
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our uncertain LP, being the problem of minimizing a linear objective over a CQr set, is
equivalent to a conic quadratic problem. Here is this problem:

minimize d” z,
T T
a;z—c —§&'r=>0,

AT . Te —
Ajz+b+ P& =0, i=1,....,m+1,

07g =0,
&>k 0
with design variables z, &y, ..., &,+1. Here A;, a;, ¢;, b; come from the affine functions

;i (¢) =A;¢ +a;and B;(¢) = biTg“ + ¢;, while P, Q, r come from the description of I/:

U={¢|Tu: PZ+ Qu-+r >0} 0

Conic quadratic representability of the optimal value in a conic quadratic program
as a function of the data. Consider a conic quadratic program

min {c’x | Ax — b > 0}, (3.4.40)

where K is a direct product of ice cream cones. The optimal value of the problem clearly is
a function of the data (¢, A, b) of the problem. What can be said about CQ-representability
of this function? In general, not much: the function is not even convex. There are, however,
two modifications of our question that admit good answers. Namely, under mild regularity
assumptions,
(a) with ¢, A fixed, the optimal value is a CQr function of the right-hand side vector b;
(b) with A, b fixed, the minus optimal value is a CQr function of c.
Here are the exact forms of our claims:

PROPOSITION 3.4.2. Let ¢, A be fixed and such that the system
ATy =¢, y>k0,
is solvable. Then the optimal value of the problem is a CQr function of b.

The statement is quite evident. Our assumption on ¢, A means that the problem dual to
(3.4.40) is strictly feasible. Thus, if b is such that (3.4.40) is feasible, then the optimal value
Opt(b) in the problem is achieved (by conic duality theorem); otherwise Opt(b) = +oo0.
Thus,

cTx <t,

Opt(b)§t<:>EIx.{ Ax — b >x 0.
which is, essentially, a CQR for Opt(b). In this CQR, b, ¢ are the variables of interest, and
x plays the role of the additional variable.

The claim (b) is essentially a corollary of (a)—via duality, the optimal value in (3.4.40)
is, up to pathological cases, the same as the optimal value in the dual problem, in which ¢
becomes the right-hand-side vector. Here is the exact formulation.
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PROPOSITION 3.4.3. Let A, b be such that (3.4.40) is strictly feasible. Then the minus
optimal value —Opt(c) of the problem is a CQr function of ¢, with COR induced by the
equivalence
by >1,
Opt(c) >t < Iy : ATy =c,
y 2k 0.

A careful reader will have realized that Proposition 3.4.1 is nothing but a straightfor-
ward application of Proposition 3.4.3.

REMARK 3.4.1. Looking at the proof of Proposition 3.4.1, we see that the assumption that
uncertainty set I/ is CQr plays no crucial role. What is important is that I/ is the projection
on the ¢-space of the solution set of a strictly feasible conic inequality associated with a
certain cone K. Whenever this is the case, the above construction demonstrates that the
robust counterpart of LP(Uf) is a conic problem associated with the cone which is a direct
product of several cones dual to K. When the uncertainty set is polyhedral (i.e., it is given
by finitely many scalar linear inequalities: K = R}'), the robust counterpart of LP (1) is an
explicit LP program. (In this case we can eliminate the assumption that the conic inequality
defining U is strictly feasible (why?).)

Similarly, Propositions 3.4.2 and 3.4.3 remain valid for an arbitrary conic program, up
to the fact that in this general case we should speak about the representability of the epigraphs
of Opt(b) and —Opt(c) via conic inequalities associated with direct products of cones K,
and their duals, rather than about CQ-representability. In particular, Propositions 3.4.1,
3.4.2, and 3.4.3 remain valid in the case of semidefinite representability, to be discussed in
Lecture 4.

3.4.3 Truss topology design

We dealt with the TTD problem in Lecture 1, where we managed to pose it as an LP
program. However, this was the simplest case of the problem, with only a single external
load operating on the structure. What if we control the compliances with respect to several
nonsimultaneous external forces? or if we have restrictions, like upper and lower bounds on
bar volumes? Besides this, we do not understand the miracle that happened in section 1.3.5,
where a highly nonlinear TTD problem became an LP program. Miracles are not as useful
as one would think—they do not yield understanding (once understood, a miracle is not
a miracle anymore) and therefore cannot be reproduced when necessary. We are about to
improve our understanding of the TTD problem and, in particular, to study its more general
settings.

Recalling Lecture 1, the mathematical description of the TTD problem is as follows:

Given m x m dyadic matrices b,-biT ,i =1,...,n, an n-dimensional vector ¢
with nonnegative entries (a truss), and an m-dimensional vector f (a load), we
define the compliance Compl ;(7) of the truss # with respect to the load f as the
quantity % fTv, where v (the equilibrium displacement) solves the equilibrium
equation

A = f,
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and
A(t) =Y tibib]
i=1

is the bar-stiffness matrix. If the equilibrium equation has no solutions, the
compliance, by definition, is 4-oc0.

The TTD problem is as follows. Given a ground structure (n, m, {b;}7_,), a
load f, and a resource w, find a truss satisfying the resource restriction

n
E L <w
i=1

(and, of course, the constraints ¢ > 0) with the minimum possible compliance
Complf (1).

There are two parts in the story just recalled:

(a) an excursion to mechanics—the definition of compliance, and

(b) formulation of a particular compliance-related optimization problem.

Instead of the particular problem (b), we could pose other quite meaningful problems
(and we shall). In order to develop a unified approach to all these problems, we should better
understand what, mathematically, is the compliance. Our main result will be as follows:

For a given ground structure, the compliance Compl (¢), regarded as a function
of variables (t, f), is COr.

Our goal is to justify this claim and to get an explicit CQR for the compliance. Equipped
with this result, we can process routinely numerous versions of the TTD problems via the
machinery of CQP.

The analysis to follow does not depend on the fact that the components b;b! of the
bar-stiffness matrix are dyadic; the essence of the matter is that they are positive semidefinite
symmetric matrices. So, from now on, we assume that the bar-stiffness matrix A(z) is of
the form

A(t) =Y tB:B], (3.4.41)
i=I

where B; are m X k; matrices (k; = 1 for the original TTD problem). The compliance of the
resulting generalized truss Compl /() is defined exactly as before: it is the quantity % flo,
where v is a solution to the equilibrium equation

Al = f, (3.4.42)

with the same convention as above: Compl ;(r) = 400 when the equilibrium equation has
no solutions.
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Variational principle

Our first observation is as follows.

PROPOSITION 3.4.4. Variational description of compliance. Consider a ground structure
(n,m, By, ..., B,) along with a load f € R", and let t € R!| be a truss. Let us associate
with these data the quadratic form (the potential energy of the loaded system)

1
Crr(v) = 5vTA(t)v — fTv, veR™ (3.4.43)

Then, the compliance Compl /(t) is finite if and only if this quadratic form is bounded below
on R™, and in this case one has

—Complf(t) =minC; 5 (v). (3.4.44)

Proof. Since ¢t > 0, the matrix A(¢) is positive semidefinite. Now let us use the following
general and well-known fact.

LEMMA 3.4.1. Let
1
A(v) = EUTAU —bTv

be a quadratic form on R™ with symmetric positive semidefinite matrix A. Then
(i) A(v) is bounded below if and only if it attains its minimum;
(1) A(v) attains its minimum if and only if the equation

Av=">b ()

is solvable, in which case the set of minimizers of A(v) is exactly the set of solutions to the
equation;

(iii) the minimum value of the quadratic form, if it exists, is equal to —%bTv, where
v is (any) solution to (*).

Proof. (i): There are two possibilities:

(a) b is orthogonal to Null(A),

(b) b has a nonzero projection b’ onto Null(A).
In case of (b) the form is clearly unbounded below (look what happens when v = tb’
and t — o0). In case of (a) the equation Av = b is solvable!'®; at every solution to this
equation, the gradient of A vanishes, so that such a solution is a minimizer of the convex (A
is positive semidefinite!) function A(-). Thus, if the form is bounded below, then it attains
its minimum, and, of course, vice versa.

(ii): Since the form is convex and smooth, its minimizers are exactly the same as its

critical points—those where the gradient vanishes. The gradient of A(v) is Av — b, so that
it vanishes exactly at the solutions to (*).

16 inear algebra says that a linear system Px = g is solvable if and only if g is orthogonal to Null(PT). We
use this fact for the particular case of P = PT.
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(iii): Let v be a solution to (*) or, which is the same, a minimizer of A(-). From (*¥)
we get vT Av = bTv, so that A(v) = $b7v — bTv = —1b70. 0

In view of Lemma 3.4.1, the energy (3.4.43) is bounded below if and only if the
equilibrium equation (3.4.42) is solvable, and if it is the case, the minimum of the energy is
—% #Tv, where v is a solution to the equilibrium equation (3.4.42). Recalling the definition
of the compliance, we come to the desired result. O

As a byproduct, we have obtained the following.

Variational Principle. The equilibrium displacement of a truss t under an
external load f is a minimizer of the quadratic form

1
szA(t)v — fTv

of a displacement vector v, if this quadratic form is unbounded below, there is
no equilibrium at all.

This is a typical variational principle in mechanics and physics. These principles
state that equilibria in certain physical systems occur at critical points (in good cases—even
minimizers) of certain energy functionals. Variational principles are extremely powerful,
and in mechanical, electrical, and other applications an issue of primary importance is to
identify a tractable variational principle governing the model.

From variational principle to conic quadratic-representation of compliance

Step 1. Let us look at the epigraph

C={(t f;1) | t = 0,7 = Compl, (1))

of the compliance in the domain ¢ > 0. Our goal is to find an explicit CQR of this set. To
this end let us start with a slightly smaller set

C'={(t f,r)| t>0,7 > Compl, (1)}
Proposition 3.4.4 provides us with the following description of C and C":

(C): The set C comprises all triples (t > 0, f, t) such that the quadratic form

o) = %UTA(I)U — fTov41t

of v € R” is nonnegative everywhere.

(C'): The set C comprises all triples (¢ > 0, f, 7) such that the form Q(v) is
positive everywhere.

(C’) says that the convex quadratic inequality

Q) <0 (3.4.45)
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has no solutions. Recall that a convex quadratic inequality can be represented via a conic
quadratic inequality; what is the latter inequality in the case of (3.4.45)? To answer, set

NG
T

B(t) =2 VB, (3.4.46)
Vi B,

and express the bar-stiffness matrix as

. 1
Aty =Y ;BB = =BT (t)B(1).
() ; ;=3B (OB®)
The quadratic form Q(v) now can be written as
1
F[IBOVIE+ 1= ffo+7)° =+ flo—o7].
(3.4.47)

1
o) = ZUTBT(I)B(t)v—fTv—i—I =
We obtain the following observation.

(0): Inequality (3.4.45) has no solutions if and only if the conic quadratic
inequality in variables v

B(I)U T
H(l—fTv—l—r) <1+ fTo—1 (3.4.48)

2

has no solution.

Indeed, the relation between the inequalities (3.4.45) and (3.4.48)
is as follows: The former, in view of (3.4.47), is the inequality
1P?(v) < 1p*(v), while the latter is P(v) < p(v); here P(v) is
the Euclidean norm of a certain vector depending on v. Taking into
account that P(-) is always nonnegative, and that p(v) = 1+ fTv—1
must be nonnegative at every solution of (3.4.45), we conclude that
both inequalities have the same set of solutions.

Step 2. As we have seen, C' is exactly the set of values of the parameter (¢, f, 7)
for which the CQI (3.4.48) is not solvable. In fact, one can say more:

() Whenthetriple (¢, f, ) isinC’, the CQI (3.4.48) is not even almost solvable
(see Proposition 2.4.2).

Indeed, (3.4.48) is of the form

B(t)v 0
Av—b= (—fTv) - (-1 _ r) > 0 (3.4.49)
+fTv 147
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with certain k. Assume that (¢, f, 7) € C’. What we should prove is that then all CQIs of

the form
B(t)v €
<—fTv>—<—1—r+el)szO (3.4.50)
+fTv 14146

with small enough perturbation vector € and scalars €, €, are not solvable. Assume, to
the contrary, that (3.4.50) with some fixed perturbations ¢, €;, €, has a solution. Then the
quadratic inequality in variables v

1 1 1
FIBOv—eli+ 70+ - flu—e)? < 2(l—t+ flv—e)’

has a solution. The inequality is of the form

%UTA(I)U — FT(e, €1, e)v+T(e, €, )

= o7 A - [1BT0e + (1 - 252) 7] v
Qr—e1+e)2—€ —€) (3.4.51)
+
4
<0.

Now, since (3.4.45) has no solutions, we have f = A(t)e, where e is a minimizer of
the unperturbed quadratic form Q(v) (see Lemma 3.4.1). Now, since A(t) = BT (t)B(¢),
the image of A(¢) is exactly the same as the image of B (¢), and A(¢) is invertible on its
image. In other words, there exists a matrix R such that B (t)z = A(t)RB” (t)z for every
z, and, in particular, BT (t)e = A(t)RBT (t)e. We see that the vector

1
v(e, €1, €) = <1 - #) e+ ERBT(I)G

is a minimizer, over v, of the left-hand side in (3.4.51); obviously, this minimizer depends
continuously on the perturbation (e, €}, €;). The coefficients of the quadratic form of v
in the left-hand side of (3.4.51) are also continuous in the perturbation; consequently, the
minimum value of the form depends continuously on the perturbation. This is all we need.
Assuming that the conclusion in (!) fails to be true for a fixed triple (¢, f, t) € C’, we would
conclude that there exist arbitrarily small perturbations such that (3.4.51) has a solution,
so that the minimum over v of the left-hand side in (3.4.51) for these perturbations is
nonpositive. By continuity, it follows that the minimum value of the quadratic form in the
left-hand side of (3.4.51) is nonpositive when the perturbation is 0, i.e., the minimum value
of the quadratic form Q(v) is nonpositive. But then (3.4.45) has a solution (recall that below
bounded quadratic form achieves its minimum), which is a contradiction—the parameter
(¢, f, v) belongs to C’ !

Step 3. Infact, (!) can be easily replaced by the following stronger claim:

(") A triple (¢, f,t) witht > 0 belongs to C' if and only if (3.4.48) is not
almost solvable.
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Indeed, the (relatively difficult) “only if” part is given by (!). And the “if” part
is immediate: we should prove that if + > 0 and (¢, f, t) does not belong to C’ (i.e., if
inf, Q(v) < 0; see (C')), then (3.4.48) is almost solvable. But in the case in question, the
CQI (3.4.48) is simply solvable, even without “almost.” Indeed, we remember from (O) that
(3.4.48) is solvable if and only if (3.4.45) is solvable. Now, if the form Q is bounded below,
its minimum is attained, so that under the assumption inf, Q(v) < 0 (3.4.45) is solvable.
Finally, in the case when Q is not bounded below, (3.4.45) is solvable by evident reasons!

Step 4. Combining (!!) with Proposition 2.4.2(iii), we come to the following result.

LEMMA 3.4.2. A triple (¢, f, T) witht > 0 belongs to the setC', i.e., Compl ;(¢) < 7, ifand
only if there exists a vector A satisfying the relations (cf. (3.4.49))

ATA=0,b"1> 0,1 > 0. (3.4.52)

To understand the meaning of (3.4.52), observe that by the definition of B(¢) and in
view of (3.4.49) one has

AT = [J2tBi;V206By; ... 2t,B,; —f; f1,
bT = [0;...:0;,—1—1;—147].
Partitioning XA accordingly: AT =[wi; ..., w; P; ql, we can rewrite (3.4.52) equivalently
as
(@) Y @) Bw; = (p-qf;
i=1
® p-l-19)+qg(-1+7) > 0 (3.4.53)

A

(©) [waw,}+p2 < q.
i=1

In every solution ({w;}, p, g) to (3.4.53) necessarily p # ¢ (and, therefore, p < g by
(c)). Indeed, otherwise (b) would imply —2¢ > 0, which is impossible in view of (c).
Consequently, we can define the vectors

si=—(q — p)” V2w,

and with respect to these vectors (3.4.53) becomes

i Bisi = f,
i=1

no 3.4.54
s o gqtp ( )
2 —  q=p’
i=1
< T

(The concluding inequality is given by (3.4.53)(b).)
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We have covered 99% of the way to our target, namely, we have basically proved the
following.

LEMMA 3.4.3. A triple (t > 0, f, ) is such that Compl ;(¢) < t if and only if there exist

vectors s;, i = 1, ..., n, satisfying the relations
n
Z Bisi = f,
i=l (3.4.55)
sls;
= < T

21;
i=1

(From now on, by definition, 0/0 = 0 and a/0 = 400 when a > 0.)
Proof. Lemma 3.4.2 says that if Compl (t) < 1, then (3.4.52) is solvable; and as we just

have seen, a solution to (3.4.52) can be converted to a solution to (3.4.55). Conversely,
given a solution {s;}/_, to (3.4.55), we can find ¢ > 1/2 satisfying the relations

n T
YAE g —1<
q < T
— 2t
i=1
setting p =g — 1, w; = —(2t)7V2s; (w; = 0 when 1; = 0), it is immediately seen that

we get a solution to (3.4.53) or, which is the same, to (3.4.52). Again, from Lemma 3.4.2
it follows that Compl ; (1) < 7. 0

Step 5. We cover the remaining 1% of the way to the target in the following.

PROPOSITION 3.4.5. A triple (t, f, T) belongs to the epigraph of the function Compl ; (1)
(extended by the value +00 to the set of those t s that are not nonnegative), i.e., Compl (1) <
T, if and only if there exist vectors s;, i = 1, ..., n, such that the following relations are
satisfied:

n
ZBiSi = f
i

. (3.4.56)
b ST o< ow
i=1

© t
In particular, the function Complf (t) is CQOr.

v
o

Proof. If we can extend a given triple (¢, f, T), by properly chosen s;’s, to a solution of
(3.4.56), then, by Lemma 3.4.3, Compl ,(7) < t/ forevery v’ > t, whence Compl (1) < 7.
Conversely, assume that Compl 7 (t) < 7. Then for sure Compl ¥ (t) < T+ 1, and by Lemma
3.4.3 the optimization problem

Avf?}i.,‘i,,{zs . ZBSz— } P)
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is feasible. But this is, essentially, a problem of minimizing a convex quadratic nonneg-
ative objective over an affine plane (for those i with #; = 0, s; should be zeros, and we
may simply ignore the corresponding terms). Therefore the problem is solvable. Let
s¥ form an optimal solution, and t* be the optimal value in (P). By Lemma 3.4.3, if
7 > Compl ;(z), then Z?=1(2ti)’1(si*)Ts;‘ = t* < 7. Consequently, if 7 > Compl ;(z),
then 7, (26:) 7 (s/)Ts} < 7, so that s} form the required solution to (3.4.56).

It remains to prove that the compliance regarded as a function of ¢, f, is CQr. But this
is clear—the function ), (2t;)~ s T's; is CQr (as a sum of fractional-quadratic functions),
so that the second inequality in (3.4.56) defines a CQr set. All remaining relations in
(3.4.56) are linear inequalities and equations, and from our calculus of CQr sets we know
that constraints of this type do not spoil CQ-representability. 0

REMARK 3.4.2. Note that after the CQr description (3.4.56) of the epigraph of compliance
is guessed, it can be justified directly by a more or less simple reasoning. (This, is, basically,
how we handled the TTD problem in Lecture 1.) The goal of our exposition was not merely
to justify (3.4.56), but to demonstrate that one can derive this representation quite routinely
from the variational principle (which is the only methodologically correct definition of
compliance) and from the rule, “When looking at a convex quadratic inequality, do not trust
your eyes: what you really see is a conic quadratic inequality.”

Remarks and conclusions

Mechanical interpretation of Proposition 3.4.5. Consider the case of a true truss—the
one where B; = b; are just vectors. Here s; are reals, and from the mechanical viewpoint,
the quantity s;b; represents the reaction force in bar i (so that the constraint Y ;- Bis; = f
in (3.4.56) says that the sum of the reaction forces should compensate the external load).
Now, recall that the magnitude of the reaction force caused by elongation A; of bar i is, up
to constant factor, A;' where o;, £; are bar’s cross-sectional area and length, respectively,
while [|b; [, is inverse proportional to £;. Comparing two expressions for the reaction force in
bari, namely, s; b; and const AZ:TI 0 [i’Hz , we conclude thats; = constA;o;. Thus, s;, essentially,

are the elongations of the bars multiplied by the cross-sectional areas of the bars. Note that
2 2

then = const—! 2 ' = const2i% , and the latter expression is, up to a constant factor, the
energy stored in bar iasa result of its elongation A;. Thus, the objective in (3.4.56) is
proportional to the energy stored in the truss as a result of its deformation. Proposition 3.4.5
says that the compliance of a given truss under a given load is the minimum of the quantities

> 2{ over all collections {s;} satisfying the equation (3.4.56)(a). In other words, we get

another variational principle:

The reaction forces in a loaded truss minimize the total energy stored by the
bars under the constraint that the sum of the reaction forces compensates the
external load.

Multiload truss topology design problem. The result of Proposition 3.4.5—the fact that
the compliance admits explicit CQR—allows us to process numerous versions of the TTD
problem via the machinery of CQP. Consider, e.g., the multiload TTD problem.
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PROBLEM 3.4.1. Multiload TTD problem. Given a ground structure (n, m, by, ..., b,),
a finite set of loading scenarios fi, ..., fr € R™, and a material resource w > 0, find
a truss t of total bar volume not exceeding w that is stiffest, in the worst-case sense,
with respect to the loads f1, ..., fu, i.e., find t that minimizes the worst-case compliance
max;_i, .k Complfj (1).

The origin of the problem is clear: in reality, a truss should withstand not merely a
single load of interest but numerous (nonsimultaneous) loads. For example, an engineer
designing a bridge should consider rush hour traffic, night traffic, earthquake, side wind,
etc.

Equipped with Proposition 3.4.5, we can immediately pose the multiload TTD prob-
lem as the following conic quadratic program:

minimize T
s.t.
(a) si2i§2t,<o,<j,i:l,...,n,j:l,...,k;
[
(b) Yoyt j=1...k
i=1
(© tyoi =0, i=1,....n,j=1,....k (3.4.57)
) Dot <w;
i=1
(C) Zs[jbi:fj, jzl,...,k,
i=1

with design variables t, t;, s5;;, 0j;.

The structure of the constraints is clear. Forevery fixed j = 1, ..., k, the correspond-
ing equations (e), (a), (b) and the inequalities o;; > 0 taken together express the fact that
Y sijbi = f; and Z?zl(Zti)‘ls?j < 1, i.e., that the compliance of truss ¢ with respect
to load f; is < t (Proposition 3.4.5). The remaining inequalities ; > 0, >/, #; < w say
that ¢ is an admissible truss. Note that the problem is indeed conic quadratic—every one
of the relations (a) says that the triple (s;;, #;, 0;;) should belong to the 3D ice cream cone
(more exactly, to the image of this cone under a one-to-one linear transformation of R3; see
Example 8 in our catalogue of CQr sets). A nice feature of our approach is that it allows
us to handle additional design constraints, e.g., various linear inequalities on ¢, like upper
and lower bounds on the bar volumes 7;. Indeed, adding to (3.4.57) finitely many linear
constraints, we still get a conic quadratic problem.

Another advantage is that we can—completely routinely—apply to (3.4.57) the duality
machinery (see the exercises to Lecture 3), thus coming to a basically equivalent form of the
problem. As we shall see later, the dual problem is incomparably better suited for numerical
processing.

Where does the linear programming form of the truss topology design problem come
from? We now can explain the miracle we met with in Lecture 1-the ability to pose the
simplest case of the TTD problem (which is still highly nonlinear!) as an LP program.
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The case in question was the single-load TTD problem (a problem of the form (3.4.57)
with k = 1):

n 2 n n
K¥s
. ; _ '
Erlzllg{r}g 2—ti§t, E sib; = f, E t,fw,tiO}.
i=1 i=1 i=1

By eliminating the variable 7, the problem is reduced to

n 2 n n
mitniz ;_lt| Zs,-b,- = f, Zt,- <w, t> O}.
I (PR i=1

In the latter problem, we can explicitly carry out partial optimization with respect to ¢ by
solving, for a given {s;}, the problem

rntin{zn:gk 20,2& < w}.
i=1 “ i

It is clear that at the optimal solution the resource constraint Zi t; < w is active, and the
Lagrange multiplier rule yields that for some A > 0 and all i we have

£ — aremi st ]2 o,
; = argmin Ar | = (2N | s;].
2r

r>0

The sum of all ¢;’s should be w, which leads to

n 2
> sl
2)\: =1 N
w
whence
wls; .
t; il i=1,...,n.

= n N
> sl
=1

Substituting the resulting #;’s into the objective, we get

n 2 1 n 2
Si _ )
> (Bm)

i=1

The remaining problem, in the s-variables only, becomes

) 1 n 2 n
min 7w <§|s;|> :gsib; =f
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The latter problem is, of course, equivalent to the LP program

msiniDm | D sibi=f1.

The technique of eliminating the variables 7, r we just used can also be employed for the
multiload case, but the resulting problem will not be an LP. Even the simple single-load
case, but one with additional linear constraints on ¢ (e.g., upper and lower bounds on ¢;), is
not reducible to LP.

3.5 Exercises to Lecture 3
3.5.1 Optimal control in discrete time linear dynamic system

Consider a discrete time linear dynamic system

xt) = AWx@t—-D+B@u@), t=1,2,...,T,

x(0) Xo. S)

Here,
e ¢ is the (discrete) time.

« x(t) € R’ is the state vector: its value at instant ¢ identifies the state of the controlled
plant.

T

;1 1s the control.

* u(t) € R¥ is the exogeneous input at time instant ¢; {u()}
e Foreveryt =1,...,T, A(t) and B(¢) are given [ x [ and [ x k matrices, respectively.

A typical problem of optimal control associated with (S) is to minimize a given functional
of the trajectory x(-) under given restrictions on the control. As a simple example of this
type, consider the optimization model

T
min { " x(T) | %ZuT(I)Q(t)u(t) < w}, (0C)

t=1

where Q(¢) are given positive definite symmetric matrices.

(OC) can be interpreted, e.g., as follows: x(¢) represents the position and the velocity
of arocket, —c” x is the height of the rocket at a state x (so that our goal is to maximize the
height of the rocket at the final time T'), the equations in (S) represent the dynamics of the
rocket, the control is responsible for the profile of the flight, and the left-hand side of the
constraint in (OC) is the dissipated energy.

EXERCISE 3.1. 1. Use (S) fo express x(T) via the control and convert (OC) into a quadrat-
ically constrained problem with linear objective in the u-variables.

2. Convert the resulting problem to a conic quadratic program.

3. Pass from the resulting problem to its dual and find the dual optimal solution.
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4. Assuming w > 0, prove that both the primal and the dual are strictly feasible. What
are the consequences for the solvability status of the problems? Assuming, in addition, that
xo = 0, what is the optimal value?

5. Assume that (S), (OC) form a finite-difference approximation to the continuous
time optimal control problem

minimize cTx(1)
S.1.
Lx(r) =a(m)x(r) + B(Du(r),0 < 7 < 1,x(0) =0,

1
/ uT(r)y(t)u(t)dr <w,
0

where y (t), for every t € [0, 1], is a positive definite symmetric matrix.
Guess what should be the optimal value.

3.5.2 Conic quadratic representations
EXERCISE 3.2. Let 7y, ..., m, be positive rational numbers. Demonstrate that the set

{t,s1,....8) ERXRY | 1=g(s)=s,""'5,7...5,"}
is CQr. What is the conclusion on convexity of the function g(s) with the domain Domg =
R, ?
4

Hint. Modify properly the construction from Example 15, Lecture 3.

Among important (convex) elementary functions, it appears that the only two that are
not CQr are the exponent exp{x} and the minus logarithm — In x. In a sense, these are not
two functions but only one: CQ-representability deals with the geometry of the epigraph of
a function, and the epigraphs of — In x and exp{x}, geometrically, are the same—we merely
are looking at the same set from two different directions. Now, why is the exponent not
CQr? The answer is intuitively clear: How could we represent a set given by a transcendental
inequality by algebraic inequalities? A rigorous proof, however, requires highly nontrivial
tools, namely, the Zaidenberg—Tarski theorem:

Let B be a semialgebraic set in R" x R, i.e., a set given by a finite system of
polynomial inequalities (strict as well as nonstrict). Then the projection of B
onto R" also is semialgebraic.

Now, by definition, a set 0 C R” is CQr if and only if it is the projection onto R" of a
specific semialgebraic set Q' of larger dimension—one given by a system of inequalities
of the form {||A;x — b |13 < (pI'x — )%, pI'x — q; > O}Y_,. Therefore, assuming that the
epigraph of the exponent is CQr, we would conclude that it is a semialgebraic set, which in
fact is not the case.
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Thus, the exponent, the minus logarithm (same as convex power functions with irra-
tional exponentials, like x7), are not captured by CQP. Let us, however, look at the funny
construction as follows. As everybody knows,

. 1
exp{x} = klgglo <1 + zx) .
Let us specify here k as an integral power of 2:
explx) = lim fi(x),  fite) = (1 +270)%.
—00

Note that every one of the functions f (/) is CQr.

On the other hand, what is the exponent from the computational viewpoint? Something
that does not exist! For a computer, the exponent is a function that is well defined on a quite
moderate segment—something like —746 < x < 710. (SUN does not understand numbers
larger than 1.0e 4+ 309 and less than 1.0e — 344; MATLAB knows that exp{709.7} =
1.6550e + 308 and exp{—745} = 4.9407e — 324 but believes that exp{709.8} = Inf and
exp{—746} = 0). And in this very limited range of values of x the computer exponent, of
course, differs from the actual one—the former reproduces the latter with relative accuracy
like 10~'®. Now, the question:

EXERCISE 3.3. How large should | be in order for fi(-) to be a valid substitution of the
exponent in the computer; i.e., to approximate the latter in the segment —746 < x < 710
within relative inaccuracy 10712 What is the length of the COR for such an f,—how many
additional variables and simple constraints of the type s> < t do you need to get the COR?

Note that we can implement our idea in a smarter way. The approximation f; of the
exponent comes from the formula

exp{x} = (exp{Z’lx})(zl) ~ (1+ 2’lx)(2l) ,

and the quality of this approximation, for given / and the range —a < x < b of values of
x, depends on how well the exponent is approximated by its linearization in the segment
—27'a < x < 27!b. What will happen when the linearization is replaced with a polynomial
approximation of a higher order, i.e., when we use approximations

1 @
exp{x} ~ g/(x) = (1 +27x + E(Z_Zx)z)

or

1
~ _ -1 1 —1 N2 1 —1_\3 1 —1 _\4 @)
explr) ~ () = (14+27x + 2Q70% + 22707 + 5,271 ,
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and so on? Of course, to make these approximation useful in our context, we should be sure
that the approximations are CQr.

EXERCISE 3.4. 1. Assume that s(-) is a nonnegative CQr function and you know its COR
(S). Prove that for every rational « > 1 the function s*(-) is CQr, the corresponding
representation being readily given by (S).

2. Prove that the polynomial 1 +t + 1% /2 on the axis is nonnegative and is CQr. Find
a COR for the polynomial.

Conclude that the approximations g;(-) are CQr. How large is a sufficient | (the
one reproducing the exponent with the same quality as in the previous exercise) for these
approximations? How many additional variables and constraints are needed?

3. Answer the same questions as in 2, but for the polynomial 1 +t+1% /2413 /6+1* /24
and the approximations h;(-).

The following table shows the best numerical results we were able to obtain with the
outlined scheme.

x exp{x} Rel. error of f49 | Rel. error of go7 | Rel. error of i3
— 512 | 4.337e — 223 4e—6 5—9 S5e—11
— 256 | 6.616e — 112 2e—06 3e—9 8.e—12
— 128 2.572e — 56 le—6 le—9 le — 11
— 64 1.603e — 28 5e—7 6.e — 10 9e—12
—32 1.266e — 14 2e—17 le—10 le—11
— 16 1.125¢ — 07 le —7 2.e—10 le —11

-1 3.678e — 01 Te—9 7e—9 le—11

1 2.718e + 00 7e—9 7e—9 l.e — 11

16 8.886¢ + 06 le—7 2.e— 10 2. —11

32 7.896e + 13 28 —17 3.e—10 2. —11

64 6.235¢ + 27 5e—7 6.e — 10 2. —11

128 3.888e + 55 le—6 le—9 2e—11
256 1.511e + 111 26 —6 2e—9 3e—11
512 2.284e + 222 4e—6 5—9 Te—11

And now, the most difficult question.

EXERCISE 3.5. Why does the outlined scheme not work on a computer, or at least does not
work as well as predicted by the previous analysis?
Stable grasp

Recall the stable grasp analysis problem from section 3.2.2: to check whether the system
of constraints

IFil, < wn(HT, i=1,...,N,
WHTF' = 0,i=1,...,N,
N
D THFYHFN = 0, SG)

i=1
N
Zpix(fi—i-Fi)—}—TeXt = 0

i=1
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Figure 3.5. Data of a stable grasp problem.

in the 3D variables F' is or is not solvable. Here the data are given by a number of 3D
vectors, namely,

* vectors v'—unit inward normals to the surface of the body at the contact points;
* contact points p';

* vectors f i__contact forces;

* vectors F' and T*** of the external force and torque, respectively.

Further, 1 > 0 is a given friction coefficient, and we assume that (f')7 v’ > 0 Vi.

EXERCISE 3.6. 1. Regarding (SG) as the system of constraints of a maximization program
with trivial objective and applying the technique from section 2.5, build the dual problem.
2. Prove that the dual problem is strictly feasible. Derive from this observation
that stable grasp is possible if and only if the dual objective is nonnegative on the dual
feasible set.
3. Assume that ZlN=1 wl(FHTv] < | Z[N:l fi 4 FY\,. Is a stable grasp possible?
4. Let T = ZlNzl pl x fi4+ T, andlet T' be the orthogonal projection of the vector
p' x T onto the plane orthogonal to v'. Assume that

N
D ul(FH VT 2 < IT13-

i=1

Is a stable grasp possible?

5. The data of the stable grasp problem are shown in Fig. 3.5 (the “fingers” look at the
center of the circle; the contact points are the vertices of the inscribed equilateral triangle).
Magnitudes of all three contact forces are equal to each other, the friction coefficient is
equal to 1, magnitudes of the external force and the external torque are equal to a, and the
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torque is orthogonal to the plane of the picture. What is the smallest magnitude of contact
forces that makes a stable grasp possible?

Trusses

We are about to process the multiload TTD problem 3.4.1, which we write as (see (3.4.57))
minimize T
S.L. si2j§4tirij,i=l,. Ln,j=1,...,k,

n

Zl"ﬁf%l’, j:1,...,k,

i=1

n

Sh=<w, )
i=1

Zsijbizfja j:l,...,k,

i=1
li,Vl‘jzo, i=1,....,n,j=1,... k.

Here the design variables are s;;, r;;, t;, T; the variables o;; from (3.4.57) are twice the new
variables r;;.
Throughout this section we make the following two assumptions:

e The ground structure (n, m, by, ..., b,) is such that the matrix Z?:] b; bl.T is positive
definite.
* The loads of interest fi, ..., fy are nonzero, and the material resource w is positive.

EXERCISE 3.7. 1. Applying the technique from section 2.5, build the problem (D1) dual to
(Pr).

Check that both (Pr) and (D) are strictly feasible. What are the consequences for the
solvability status of the problems and their optimal values?

What is the design dimension of (Pr)? of (D1)?

2. Convert problem (D)) into an equivalent problem of the design dimension mk +
k+ 1

EXERCISE 3.8. Let us fix a ground structure (n, m, by, ..., b,) and a material resource w,
and let F be a finite set of loads.

1. Assume that F; € F, j = 1,...,k, are subsets of F with Ul;zl Fi =F. Let
W be the optimal value in the multiload TTD problem with the set of loads F; and v be
the optimal value in the multiload TTD problem with the set of loads F. Is it possible that
n > Z_l;:l wj?

2. Assume that the ground structure includes n = 1998 tentative bars and that you
are given a set F of N = 1998 loads. It is known that for every subset F' of F made up of
no more than 999 loads, the optimal value in the multiload TTD problem, the set of loading
scenarios being F', does not exceed 1. What can be said about the optimal value in the
multiload TTD problem with the set of scenarios F?

Answer a similar question in the case when F comprises N' = 19980 loads.
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3.5.3 Does conic quadratic programming exist?
Of course it does. What is meant is:
(7) Can a conic quadratic problem be efficiently approximated by an LP one?
To pose the question formally, let us say that a system of linear inequalities
Py+tp+ Qu=>0 (LP)
approximates the CQI
Iyl <t (CQD

within accuracy € (or, which is the same, is an e-approximation of (CQI)), if
(i) whenever (y, t) satisfies (CQI), there exists u such that (y, ¢, u) satisfies (LP);
(i) whenever (y, ¢, u) satisfies (LP), (y, ¢) nearly satisfies (CQI), namely,

Iyl = (1 +e).
Note that given a conic quadratic program
mxin{ch:||Aix—bi||2§c[Tx—di, i=1,....,m} (CQP)
with m; x n-matrices A; and e-approximations
Py +tp 4+ Qu; >0
of CQIs
lyillz < [dimy; =m;],
one can approximate (CQP) by the LP program
ri_liun {ch : Pi(A;x —b;) + (cl-Tx —di)pi + Qiu,- >0, i =1, m} ;

if € is small enough, this program, for every practical purpose, is the same as (CQP).
Now, in principle, any closed convex cone of the form

{0 1=6()}

can be approximated, in the aforementioned sense, by a system of linear inequalities within
any accuracy € > 0. The question of crucial importance, however, is how large should the
approximating system be—how many linear constraints and additional variables it requires.
Surprisingly, for the second-order cone these quantities are not that large:

Theorem (Ben-Tal and Nemirovski, 1998). Let n be the dimension of y in
(CQD), and let 0 < € < 1/2. There exists (and can be explicitly written) a
system of no more than O(1)n lné linear inequalities of the form (LP) with
dimu < O(l)nln é which is an e-approximation of (CQI). Here O(1)’s are
appropriate absolute constants.
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To get an impression of the constant factors in the theorem, look at the numbers I (1, €)
of linear inequalities and V (n, €) of additional variables u in an e-approximation (LP) of

the conic quadratic inequality (CQI) with dimx = n:

n e=107"T [ €e=10"° e=10"14
I(n,e) V(N,e€) I(n,e) V(n,e) I(n,e€) Vn,e)
4 6 17 31 69 70 148
16 30 83 159 345 361 745
64 133 363 677 1458 1520 3153
256 543 1486 2711 5916 6169 12710
1024 2203 6006 10899 23758 24773 51050

You can see that I (n, €) ~ 0.7n1n é, V(n,e) ~2nln é

EXERCISE 3.9. Prove the theorem. Specifically,

1. Build an e-approximation of the 3D Lorentz cone, i.e., of the set

trary n.

(G, v, 0) | > /x2+y2}

with O(1) In é linear inequalities and additional variables.
2. Pass from the case of n = 2 (i.e., from the 3D Lorentz cone) to the case of arbi-
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Lecture 4

Semidefinite Programming

In this lecture we study semidefinite programming (SDP), a generic conic program with a
vast area of applications.

4.1 Semidefinite cone and semidefinite programs

4.1.1 Preliminaries

Let S™ be the space of symmetric m x m matrices and M™" be the space of rectangular
m X n matrices with real entries. From the viewpoint of their linear structure (i.e., the
operations of addition and multiplication by reals), S is just the arithmetic linear space
R"0"+D/2 of dimension @: by arranging the elements of a symmetric m X m matrix
X in a single column, say, in row-by-row order, you get a usual m2-dimensional column
vector; multiplication of a matrix by a real and addition of matrices correspond to the same
operations with the representing vector(s). When X runs through S™, the vector representing
X runs through m(m + 1)/2-dimensional subspace of R’ consisting of vectors satisfying
the symmetry condition—the coordinates coming from symmetric to each other pairs of
entries in X are equal to each other. Similarly, M™" as a linear space is just R””, and it
is natural to equip M™ " with the inner product defined as the usual inner product of the
vectors representing the matrices:

m n

(X.¥) =) "> XY =Tr(X"Y).

i=1 j=1

Here Tr stands for the trace—the sum of diagonal elements of a (square) matrix. With this
inner product (called the Frobenius inner product), M™" becomes a legitimate Euclidean
space, and we may use in connection with this space all notions based on the Euclidean
structure, e.g., the (Frobenius) norm of a matrix

Xl = VXX = | Y)Y X2 = VTr(XTX)

i=1 j=I

139
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and likewise the notions of orthogonality, orthogonal complement of a linear subspace, etc.
The same applies to the space S™ equipped with the Frobenius inner product. Of course,
the Frobenius inner product of symmetric matrices can be written without the transposition
sign:

(X,Y) =Tr(XY), X,Y € S".

Let us focus on the space S™. After it is equipped with the Frobenius inner product, we may
speak about a cone dual to a given cone K C S™:

K.={YeS"| (¥,X)>0 VXecK}.

Among the cones in 8", the one of special interest is the semidefinite cone S”', the
cone of all symmetric positive semidefinite matrices.!” It is easily seen (see Exercise 2.8)
that S indeed is a cone, and moreover it is self-dual:

(7). = ST

Another simple fact is that the interior S’} of the semidefinite cone S’} is exactly the set
of all positive definite symmetric m X m matrices, i.e., symmetric matrices A for which
xT Ax > 0for all nonzero vectors x, or, which is the same, symmetric matrices with positive
eigenvalues.

The semidefinite cone gives rise to a family of conic programs “minimize a linear
objective over the intersection of the semidefinite cone and an affine plane”; these are the
semidefinite programs we are about to study.

Before writing a generic semidefinite program, we should resolve a small difficulty
with notation. Normally we use lowercase Latin and Greek letters to denote vectors and the
uppercase letters to denote matrices; e.g., our usual notation for a conic problem is

min {c"x : Ax — b >k 0}. (CP)
X

In the case of semidefinite programs, where K = S”, the usual notation leads to a conflict
with the notation related to the space where S% lives. Look at (CP): without additional
remarks it is unclear what A is—is it an m x m matrix from the space S™ or is it a linear
mapping acting from the space of the design vectors—some R"—to the space S”? When
speaking about a conic problem on the cone S, we should have in mind the second inter-
pretation of A, while the standard notation in (CP) suggests the first (wrong!) interpretation.
In other words, we meet with the necessity to distinguish between linear mappings acting
to or from S and elements of S (which themselves are linear mappings from R™ to R™).
To resolve this difficulty, we introduce the following notational conventions.

Notational convention. To denote a linear mapping acting from a linear space to a space
of matrices (or from a space of matrices to a linear space), we use uppercase script letters
like A, 5. Elements of usual vector spaces R” are, as always, denoted by lowercase Latin

17Recall that a symmetric n x n matrix A is called positive semidefinite if x” Ax > 0 Vx € R™. An equivalent
definition is that all eigenvalues of A are nonnegative.
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and Greek lettersa, b, ..., z, «, ..., ¢, while elements of a space of matrices usually are de-
noted by uppercase Latin letters A, B, ..., Z. According to this convention, a semidefinite
program of the form (CP) should be written as

ngn{ch:Ax—B >¢n 0} . (%)

We also simplify the sign >g» to > and the sign >g» to > (same as we write > instead of
>Ry and > instead of >gr). Thus, A > B (& B < A) means that A and B are symmetric
matrices of the same size and A — B is positive semidefinite, while A > B (<& B < A)
means that A, B are symmetric matrices of the same size with positive definite A — B.

We further need a special notation for the conjugate (transpose) of a linear mapping
A acting from or to a space of matrices. Recall that the conjugate of a linear mapping
E : E — F acting from a Euclidean space (E, (-, -)g) to a Euclidean space (F, (-, -)r) is
the mapping &' : F — E satisfying the identity

(Be, flp=(e, 8 f)p VYeecE, feF.

When E and F are the usual coordinate spaces R¥ and R equipped with the standard inner
product (x,y) = xTy, so that E and E’ can be naturally identified with k x [ and [ x k
matrices, respectively, these matrices are transposed to each other, and we can write o
instead of E’. In the case when among the spaces E, F there is a space of matrices, the
notation E” for &’ conflicts with the notation for the transpose of an element from E or F.
This is why, when speaking about a linear mapping A acting to or from a space of matrices,
we denote its conjugate by A*.

Our last convention addresses how to write expressions of the type AAxB (A is a
linear mapping from some R” to S, x € R" A, B € §™). What we are trying to denote
is the result of the following operation: we first take the value Ax of the mapping A at a
vector x, thus getting an m x m matrix Ax, and then multiply this matrix from the left and
from the right by the matrices A, B. To avoid misunderstandings, we write expressions of
this type as

A[Ax]B
oras AA(x)B or as AA[x]B.
How to specify a mapping .A : R* — S™. Natural data specifying a linear mapping

A : R" — R" consists of a collection of n elements of the destination space—n vectors
a, a, ...,a, € R™"—such that

n
Ax = E xjaj, x =g, ...,x)" € R
j=1

Similarly, a natural data specifying a linear mapping A : R* — S™ is a collection
Ay, ..., A, of n matrices from §” such that

n
Ax = ijAj, x=(x1,...,x,)7 € R".

Jj=1
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In terms of these data, the semidefinite program (*) can be written as

min {ch x1A] +x2A+ -+ x,A, — B > O} . (SDPr)

Linear matrix inequality constraints and semidefinite programs. In the case of conic
quadratic problems, we started with the simplest program of this type—the one with a single
conic quadratic constraint Ax — b >p» 0—and then defined a conic quadratic program as
a program with finitely many constraints of this type, i.e., as a conic program on a direct
product of the ice cream cones. In contrast to this, when defining a semidefinite program,
we impose on the design vector just one linear matrix inequality (LMI) Ax — B > 0. Now
we should not bother about more than a single LMI, due to the following simple fact:

A system of finitely many LMIs
.AiX—Bi >0,i=1,...,k,

is equivalent to the single LMI

Ax —B >0

with
Ax = Diag (Ax, Axx, ..., Ayx), B = Diag(By, ..., By);
here for a collection of symmetric matrices Q1, ..., Qx
0,
Diag(Q1, ..., Q) =
Ok

is the block-diagonal matrix with the diagonal blocks Q1, ..., Q.

Indeed, ablock-diagonal symmetric matrix is positive (semi-)definite
if and only if all its diagonal blocks are so.

Dual to a semidefinite program. As we know, the dual to conic problem (CP) is the
problem

max {ka cATL=c¢, A >k 0} ;
A

the matrix AT defines the linear mapping conjugate to the mapping A from the primal
problem. When writing the problem dual to (SDPr), we should

—replace b7 A by the Frobenius inner product,

— follow our notational convention and write A* instead of AT, and

— take into account that the semidefinite cone is self-dual.

Consequently, the problem dual to (SDPr) is the semidefinite program

max {Tr(BA) : A*A =c¢, A >=0}.
A



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

4.1. Semidefinite cone and semidefinite programs 143

Now, let Ay, ..., A, be the data specifying .4; how does A* act? The answer is immediate:
A*A = (Tr(AA), Tr(AsA), ..., Tr(A, AT
Indeed, we should verify that with the above definition we have
[Tr([Ax]A) =]  (Ax, A) = (A*A)Tx VA € S™, x e R,

which is immediate:

Tr([Ax]A)

n
Tr ijAj A
j=1

= Y xTr(AjA)

i=1

X1
= (Tr(A1A), ..., Tr(A,A)) ( ) .

Xn

We see that the explicit—given in terms of the original data—form of the problem dual to
(SDPr) is the semidefinite program

max {Tr(BA) : Tr(A;A) =¢;j, j=1,....n; A = 0}. (SDDI)

Conic duality in the case of semidefinite programming. Let us see what we get from
the conic duality theorem in the case of semidefinite programs. First note that our default
Assumption A on a conic program in the form of (CP) (Lecture 2) as applied to (SDPr) says
that no nontrivial linear combination of the matrices Ay, ..., A, is 0. Strict feasibility of
(SDPr) means that there exists x such that Ax — B is positive definite, and strict feasibility
of (SDDI) means that there exists a positive definite A satisfying A*A = c. According to
the conic duality theorem, if both primal and dual are strictly feasible, both are solvable,
the optimal values are equal to each other, and the complementary slackness condition

[Tr(A[Ax — B]) =] (A, Ax —B)=0

is necessary and sufficient for a pair of a primal feasible solution x and a dual feasible
solution A to be optimal for the corresponding problems.

It is easily seen (see Exercise 2.8) that for a pair X, Y of positive semidefinite sym-
metric matrices one has

Tr(XY)=0& XY =YX =0;

in particular, in the case of strictly feasible primal and dual problems, the primal slack
S, = Ax* — B corresponding to a primal optimal solution commutes with (any) dual
optimal solution A, and the product of these two matrices is 0. Besides this, S, and A,
as a pair of commuting symmetric matrices, share a common eigenbasis, and the fact that
S« A« = 0 means that the eigenvalues of the matrices in this basis are complementary: for
every common eigenvector, either the eigenvalue of S, or the one of A,, or both, are equal
to O (cf. complementary slackness in the LP case).
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4.2 What can be expressed via linear matrix inequalities?

As in the previous lecture, the first thing to realize when speaking about the SDP universe
is how to recognize that a convex optimization program

min{ch:xeX=mX,-} (P)

i=I

can be cast as a semidefinite program. Just as in the previous lecture, this question actu-
ally asks whether a given convex set or function is semidefinite representable (SDr). The
definition of the latter notion is completely similar to the one of a CQr set or function:

We say that a convex set X C R" is SDr if there exists an affine mapping
(x,u) > A()) — B: R} x R¥ — S™ such that

xeX@Hu:A(i)—BzO;

in other words, X is SDr if there exists LMI

A(x)—B:O
u

in the original design vector x and a vector u of additional design variables
such that X is a projection of the solution set of the LMI onto the x-space. An
LMI with this property is called semidefinite representation (SDR) of the set
X.

A convex function [ : R" — R U {+o00} is called SDr if its epigraph

{x,0) | 1= f(0)}
is an SDr set. An SDR of the epigraph of f is called an SDR of f.

By exactly the same reasons as in the case of conic quadratic problems, one has the following:

1. If f is an SDr function, then all its level sets {x | f(x) < a} are SDr; the SDR of
the level sets are explicitly given by (any) SDR of f.

2. If all the sets X; in problem (P) are SDr with known SDRs, then the problem can
explicitly be converted to a semidefinite program.

To understand which functions or sets are SDr, we may use the same approach as in
Lecture 3. The calculus, i.e., the list of basic operations preserving SD-representability, is
exactly the same as in the case of conic quadratic problems; we just may repeat word by
word the relevant reasoning from Lecture 3, each time replacing CQr with SDr. Thus, the
only issue to be addressed is the derivation of a catalogue of simple SDr functions or sets.
Our first observation in this direction is as follows.

1-17. We refer to Examples 1-17 of CQr functions and sets in section 3.3.
If a function or set is CQr; it is also SDr, and any CQR of the function or set can be
explicitly converted to its SDR.
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Indeed, the notion of a CQr or an SDr function is a derivative of the notion of a CQr
or an SDr set: by definition, a function is CQr or SDr if and only if its epigraph is so. Now,
CQr sets are exactly those sets that can be obtained as projections of the solution sets of
systems of conic quadratic inequalities, i.e., as projections of inverse images, under affine
mappings, of direct products of ice cream cones. Similarly, SDr sets are projections of the
inverse images, under affine mappings, of positive semidefinite cones. Consequently,

(i) To verify that a CQr set is SDr as well, it suffices to show that an inverse image,
under an affine mapping, of a direct product of ice cream cones, a set of the form

I
Z=1z] Az—beKzl_[Lk' ,
i=1

is the inverse image of a semidefinite cone under an affine mapping. To this end, in turn, it
suffices to demonstrate that

(ii) A direct product K = ]_lé=1 L of ice cream cones is an inverse image of a
semidefinite cone under an affine mapping.
Indeed, representing K as {y | Ay — b € 8%}, we get

Z={z| Az—beK}={z]| flz—éeSﬁ},

where Az — B = A(Az — b) — B is affine.
In turn, to prove (ii) it suffices to show that

(iii) Every ice cream cone L¥ is an inverse image of a semidefinite cone under an
affine mapping.

In fact, the implication (iii) = (ii) is given by our calculus, since a direct product of
SDr sets is again SDr.!'

We have reached the point where no more reductions are necessary, and here is the
demonstration of (iii). The case of k = 1 is trivial: the one-dimensional (1D) ice cream
cone is exactly the same as the 1D semidefinite cone—both are the same nonnegative ray
on the axis! In the case of k > 1 it suffices to observe that

L
(’;) eLlfF & A, 1) = (’kal f) =0 4.2.1)

(x is (k—1)-dimensional, t is scalar, I;_; is the (k—1) x (k—1) unit matrix). Equation (4.2.1)
indeed resolves the problem, since the matrix A(x, ¢) is linear in (x, ¢)! It remains to verify
(4.2.1), which is immediate. If (x, ¢) € L, i.e., if ||x||, < ¢, then for every y = (i) e R¥
(€ is (k — 1)-dimensional, T is scalar) we have

YA, Dy = Cr42tx"E 41578 = 7t =20t |x |21l + £ 11§13
> 107 = 210t|[§ ]2 + 111113
> (|t~ lIEl2)* = 0,

18 Just to recall where the calculus comes from, here is a direct verification. Given a direct product K = ]_[f:1 Lki
of ice cream cones and given that every factor in the product is the inverse image of a semidefinite cone under an
affine mapping,

L% = {x e RY | Aix; — B; = 0},
we can represent K as the inverse image of a semidefinite cone under an affine mapping, namely, as

K={x=(x,....,x) € R x ... x R | Diag(A1x; — By,..., Aix — B)) > 0}.



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

146 Lecture 4. Semidefinite Programming

so that A(x, t) > 0. Vice versa, if A(t, x) > 0, then of course > 0. Assuming ¢ = 0, we
immediately obtain x = 0 (since otherwise for y = ((X)) we would have 0 < yT A(x, 1)y =
—2||x||§). Thus, A(x, t) > 0 implies ||x], < ¢ in the case of t+ = 0. To see that the same
implication is valid for # > 0, let us set y = (") to get

0<ylTAx, )y =tx"x = 2txTx + 2 =t (t* — xTx),

whence || x|, < t, as claimed. 0

We see that the expressive abilities of SDP are even richer than those of CQP. In fact
the gap is quite significant. The first new possibility is the ability to handle eigenvalues, and
the importance of this possibility can hardly be overestimated.

Semidefinite-representability of functions of eigenvalues of symmetric matrices.
Our first eigenvalue-related observation is as follows:

18. The largest eigenvalue Anax (X) regarded as a function of m x m symmetric matrix
X is SDr. Indeed, the epigraph of this function

{(X,1) €S" xR | Amax(X) =1}
is given by the LMI
tl, — X >0,

where I, is the unit m x m matrix.

Indeed, the eigenvalues of 71,, — X are ¢t minus the eigenvalues of X, so that the
matrix ¢ 1,, — X is positive semidefinite—all its eigenvalues are nonnegative—if and only if
t majorates all eigenvalues of X.

The latter example admits a natural generalization. Let M, A be two symmetric m X m
matrices, and let M be positive definite. A real A and a nonzero vector e are called eigenvalue
and eigenvector of the pencil [M, A] if Ae = AMe. (In particular, the usual eigenvalues
and eigenvectors of A are exactly the eigenvalues and eigenvectors of the pencil [7,,, A].)
Clearly, A is an eigenvalue of [M, A]if and only if the matrix AM — A is singular, and nonzero
vectors from the kernel of the latter matrix are exactly the eigenvectors of [M, A] associated
with the eigenvalue A. The eigenvalues of the pencil [M, A] are the usual eigenvalues of
the matrix M~"2AM~Y2, as can be concluded from

Det(AM — A) = 0 < Det(M'?(\ 1, — M~'V2AM™Y2) M%)
=0 < Det(Al, — M~ '2AM~1?) = 0.

The announced extension of example 18 is as follows.
18.a. The maximum eigenvalue of a pencil. Let M be a positive definite symmetric

m X m matrix, and let A, (X : M) be the largest eigenvalue of the pencil [M, X], where
X is a symmetric m x m matrix. The inequality

Amax (X : M) <t
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is equivalent to the matrix inequality
tM — X > 0.

In particular, Ay (X : M), regarded as a function of X, is SDr.

18.b. The spectral norm |X| of a symmetric m X m matrix X, i.e., the maximum of
absolute values of the eigenvalues of X, is SDr. Indeed, an SDR of the epigraph

{(X,) | 1X] =t} ={(X, D) | Amax(X) <1, Amax (—=X) < 1}
of | X| is given by the pair of LMIs
tl, — X >0, tl, +X >0.

Despite their simplicity, the indicated results are extremely useful. As a more compli-
cated example, let us build an SDr for the sum of the k-largest eigenvalues of a symmetric
matrix.

From now on, speaking about m x m symmetric matrix X, we denote by A;(X),i =
1,..., m, its eigenvalues counted with their multiplicities and arranged in a nonascending
order:

A(X) = Aa(X) = - = A (X).
The vector of the eigenvalues (in the indicated order) will be denoted A(X):
MX) = (XD, .o, dn(X)T € R

The question we are about to address is which functions of the eigenvalues are SDr. We
already know that this is the case for the largest eigenvalue A; (X). Other eigenvalues cannot
be SDr since they are not convex functions of X. And convexity, of course, is a necessary
condition for SD-representability (cf. Lecture 3). It turns out, however, that the m functions

k
SiX) =) kX, k=1.....m,
i=1
are convex and, moreover, are SDr:

18.c. Sums of largest eigenvalues of a symmetric matrix. Let X be m x m symmetric
matrix, and let k¢ < m. Then the function S;(X) is SDr. Specifically, the epigraph

(X, )| Si(x) =1}

of the function admits the SDR

@ t—ks—Tr(Z) = O,
(b) zZ = 0, (4.2.2)
c Z—-X+sIl, > 0,

where Z € S™ and s € R are additional variables.
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We should prove that

(1) If a given pair X, f can be extended, by properly chosen s, Z, to a solution of the
system of LMIs (4.2.2), then S;(X) < t.

(i) Conversely, if S;(X) < ¢, then the pair X, ¢ can be extended, by properly chosen
s, Z, to a solution of (4.2.2).

To prove (i), we use the following basic fact (see Exercise 4.5(i)):

(A) The vector AM(X) is a =-monotone function of X € S™:

X>X = rX) > rX).

Assuming that (X, ¢, s, Z) is a solution to (4.2.2), we get X < Z + 51, so that

1
AMX)=MZA+shy) =MD +s| |,

whence
Si(X) < Si(Z) + sk.

Since Z > 0 (see (4.2.2)(b)), we have Sy (Z) < Tr(Z), and combining these inequalities we
get

S (X) < Tr(Z) + sk.

The latter inequality, in view of (4.2.2)(a)), implies S;(X) < ¢, and (i) is proved.

To prove (ii), assume that we are given X, ¢ with S;(X) < ¢, and let us set s = A (X).
Then the k-largest eigenvalues of the matrix X — s1,, are nonnegative, and the remaining are
nonpositive. Let Z be a symmetric matrix with the same eigenbasis as X and such that the
k-largest eigenvalues of Z are the same as those of X — 51, and the remaining eigenvalues
are zeros. The matrices Z and Z — X + s1,, are clearly positive semidefinite (the first by
construction and the second since in the eigenbasis of X this matrix is diagonal with the first
k diagonal entries being 0 and the remaining being the same as those of the matrix s,, — X,
i.e., nonnegative). Thus, the matrix Z and the real s we have built satisfy (4.2.2)(b) and (c).
To see that (4.2.2)(a) is satisfied as well, note that by construction Tr(Z) = Sy (X) — sk,
whence t — sk — Tr(Z) =t — S (X) > 0.

To proceed, we need the following highly useful technical result.

LEMMA 4.2.1. Lemma on the Schur complement. Let

B CT
(2 5)
be a symmetric matrix with k x k block B and | x | block D. Assume that B is positive
definite. Then A is positive (semi-) definite if and only if the matrix

D—-CB!cT

is positive (semi-) definite. (This matrix is called the Schur complement of B in A.)
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Proof. The positive semidefiniteness of A is equivalent to the fact that

T
0< T, y") (g CD ) <)yc) =x"Bx+2x"C"y+y"Dy VxeR' yeR,

or, which is the same, to the fact that

in [xTBx+2xTCTy+yTDy] >0 VyeR.

xeRk

Since B is positive definite by assumption, the infimum in x can be computed explicitly for
every fixed y: the optimal x is —B~'C”y, and the optimal value is

yI'Dy —y'cB~'cTy =yT[D - CB~'CTYy.

The positive definiteness or semidefiniteness of A is equivalent to the fact that the latter
expression is, respectively, positive or nonnegative for every y # 0, i.e., to the positive
definiteness or semidefiniteness of the Schur complement of B in A. ]

18.d. Determinant of a symmetric positive semidefinite matrix. Let X be a symmetric
positive semidefinite m x m matrix. Although its determinant

Det(X) = [ [1:(X)
i=1

is neither a convex nor a concave function of X (if m > 2), it turns out that the function
Det?(X) is concave in X whenever 0 < g < % Functions of this type are important in

many volume-related problems (see below). We are about to prove that

. . . 1 .
if q is a rational number,, 0 < g < Pl then the function

—Det?(X), X >0,
X — { 9 pi—
o) 400 otherwise
is SDr.
Consider the LMI
X A

where A is m x m lower triangular matrix comprised of additional variables and D(A) is
the diagonal matrix with the same diagonal entries as those of A. Let Dg(A) denote the
vector of the diagonal entries of the square matrix A.

As we know from Lecture 3 (see example 15), the set

{6,) e R xR |t <(81...8m)7)

admits an explicit CQR. Consequently, this set admits an explicit SDR as well. The latter
SDR is given by certain LMI S(8, t; u) > 0, where u is the vector of additional variables of
the SDR and S(6, ¢, u) is a matrix affinely depending on the arguments. We claim that
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() The system of LMIs (D) & S(Dg(A), t; u) > 0 is an SDR for the set

{(X,0) ] X = 0,1 < Det!(X)},

which is basically the epigraph of the function f, (the latter is obtained from our set by
reflection with respect to the plane ¢ = 0).

To support our claim, recall that by linear algebra a matrix X is positive semidefinite if and
only if it can be factorized as X = AAT with alower triangular A, Dg(z) > (; the resulting
matrix A is called the Choleski factor of X. Now note that if X > 0andt < Det?(X), then

1. We can extend X by appropriately chosen lower triangular matrix A to a solution
of (D) in such a way that if § = Dg(A), then ]_[lm 10 = Det(X)

Indeed, let A be the Choleski factor of X. Let | D be the diagonal matrix with the
same diagonal entries as those of A, and let A = AD, so that the diagonal entries §; of
A are squares of the diagonal entries 3; of the matrix A: D(A) = D2. It follows that for
every € > 0 one has A[D(A) + eI]"'AT = AD[D*+ €I~ 1DAT < AAT = X. We see
that by the Schur complement lemma all matrices of the form (X AT D( A) 4e) Withe > O are
positive semidefinite, whence ( AX, D(AA)) > 0. Thus, (D) is indeed satisfied by (X, A). And
of course X = AA” = Det(X) = Det*(A) = [/, 82 = [T/, &

2. Since § =Dg(A) > 0 and [/, 8; = Det(X), we gett < Det?(X) = ([]/L, 87,
so that we can extend (z, §) by a properly chosen u to a solution of the LMI S(Dg(A), ; u) >
0.

We conclude that if X > 0 and + < Det?(X), then one can extend the pair X, t by
properly chosen A and u to a solution of the system of LMIs (D) & S(Dg(A), t; u) > 0,
which is the first part of the proof of (!).

To complete the proof of (!), it suffices to demonstrate that if for a given pair X, ¢
there exist A and u such that (D) and the LMI S(Dg(A), t; u) > 0 are satisfied, then X
is positive semidefinite and ¢+ < Det?(X). This is immediate: denoting § = Dg(A) [> 0]
and applying the Schur complement lemma, we conclude that X > A[D(A) + eI]"'AT
for every € > 0. Applying (A), we get A(X) > A(A[D(A) + eI]7'AT), whence of course
Det(X) > Det(A[D(A) + eI]7'AT) = [, 82/(8; + €). Passing to limit as € — 0, we
get ]_U":l 8; < Det(X). On the other hand, the LMI S(§, ¢; u) > O takes place, which means
that # < ([]/L, 8;)?. Combining the resulting inequalities, we come to r < Det?(X), as
required. a

18.e. Negative powers of the determinant. Let g be a positive rational. Then the
function

Det™?(X), X =0,
+00 otherwise

f(X):{

of symmetric m x m matrix X is SDr.

The construction is completely similar to the one used in example 18d. As we re-
member from Lecture 3, example 16, the function g(8) = (4; ... 5,) "7 of positive vector
8= (81,...,8,)T is CQr and is therefore SDr as well. Let an SDR of the function be given
by LMI R(8, t, u) > 0. The same arguments as in example 18d demonstrate that the pair
of LMIs (D) & R(Dg(A), t,u) > 0is an SDR for f.



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

4.2. What can be expressed via linear matrix inequalities? 151

In examples 18, 18.b—18.e we discussed SD-representability of particular functions
of eigenvalues of a symmetric matrix. Here is a general statement of this type.

PROPOSITION 4.2.1. Let g(xy, ..., Xp) : R" — R U {+00} be a symmetric (i.e., invariant
with respect to permutations of the coordinates xy, . . ., x,) SDr function:

t>gx)< u:Sk, t,u) =0,
with S affinely depending on x, t, u. Then the function
F(X) =g(X))

of symmetric m x m matrix X is SDr with SDR given by the relation

(a) 1> f(X)
¢
=% IR O /A
Sxp, .o, X, tu) =0, (4.2.3)
(b) X1 = X2 = = Xpy,

SiX)y=xi+-+x;, j=1,...,m—1,
Tr(X) =x1 4+ -+ xp

(recall that the functions S;(X) = Zle X (X) are SDr; see example 18.c). Thus, the
solution set of (b) is SDr (as an intersection of SDr sets), which implies SD-representability
of the projection of this set onto the (X, t)-plane. By (4.2.3) the latter projection is exactly

the epigraph of f ).

The proof of Proposition 4.2.1 is based on an extremely useful result known as
Birkhoft’s theorem; see the exercises to Lecture 4.

As a corollary of Proposition 4.2.1, we see that the following functions of a symmetric
m x m matrix X are SDr:

e f(X) = —Det?(X), X =0,qg < ,in, is a positive rational; this fact was already
established directly. (Here g(xy, ..., x») = —(x1...x,)7 : R} — R; a CQR (and thus an
SDR) of g is presented in example 15 of Lecture 3.)

e f(x) = Det™¥(X), X > 0, g is a positive rational (cf. example 18.e). (Here
gxt, oy xm) = (x1,. ., x) "7 R, — R; a CQR of g is presented in example 16 of
Lecture 3.)

o IXll, = (0, 12(X)I)V7, p = Vs rational. (g(x) = llxll, = (X0, [x7)"/7:
see Lecture 3, example 17.a.)

o I1X4ll, = QL max?[A;(X), 0DY?, p > 1 is rational. (Here g(x) = lx:ll, =
(X", max”[x;, 0])!/7; see Lecture 3, example 17.b.)

Semidefinite representability of functions of singular values. Consider the space M*/
of k x [ rectangular matrices and assume that k < /. Given a matrix A € M*/, consider the
symmetric positive semidefinite k x k matrix (AAT)!/2; its eigenvalues are called singular
values of A and are denoted by o (A), ... 01 (A): 0;(A) = A;((AAT)'/?). According to the
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convention on how we enumerate eigenvalues of a symmetric matrix, the singular values
form a nonascending sequence:

01(A) > 02(A) = --- > oy (A).

The importance of the singular values comes from the singular value decomposition theorem,
which states that a k x / matrix A (k <) can be represented as

k
A=) oi(Aef],
i=1

where {ei}f=1 and {fi}f‘=1 are orthonormal sequences in R* and R/, respectively. This is a
surrogate of the eigenvalue decomposition of a symmetric k X k matrix

k
A=) r(Aee]

i=1

where {ei}f:] form an orthonormal eigenbasis of A.
Among the singular values of a rectangular matrix, the most important is the largest
01(A). This is nothing but the operator (or spectral) norm of A:

|A| = max{[|Ax|l2 | [lx]2 < 1}.

For a symmetric matrix, the singular values are exactly the modulae of the eigenvalues, and
our new definition of the norm coincides with the one given in example 18.b.
It turns out that the sum of a given number of the largest singular values of A

p
Zp(A) =) oi(A)
i=1

is a convex and, moreover, an SDr function of A. In particular, the operator norm of A is
SDr:

19. The sum X ,(X) of p largest singular values of a rectangular matrix X € MK s
SDr. In particular, the operator norm of a rectangular matrix is SDr:

t; —-XxT
|X|§t©<_x " )50.

Indeed, the result in question follows from the fact that the sums of p largest eigen-
values of a symmetric matrix are SDr (example 18.c) due to the following observation:

The singular values 0;(X) of a rectangular k x | matrix X (k < 1) fori <k
are equal to the eigenvalues A;(X) of the (k + 1) x (k + 1) symmetric matrix

- 0o xT
r=(2 %)
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Since X linearly depends on X, SDRs of the functions § »(+) induce SDRs of the functions
X,(X)=S p()_( ). (This is the rule on affine substitution, Lecture 3. Recall that all calculus
rules established in Lecture 3 for CQRs are valid for SDRs as well.)

Let us justify our observation. Let X = Zle 0:(X)e; f; be the singular value
decomposition of X. We claim that the 2k (k + /)-dimensional vectors g;’ = (f’ ) and

g =( _fe ) are orthogonal to each other, and they are eigenvectors of X with the eigenvalues

0:(X) and —o;(X), respectively. Moreover, X vanishes on the orthogonal complement of
the linear span of these vectors. In other words, we claim that the eigenvalues of X, arranged
in the nonascending order, are as follows:

o01(X), 02(X), ..., 0(X),0,...,0, —0x(X), —03—1(X), ..., —01(X);
——
2(1—k)

this, of course, proves our observation.
Now, the fact that the 2k vectors gl.i, i = 1,...,k, are mutually orthogonal and
nonzero is evident. Furthermore (we write o; instead of o; (X)),

k
0 Y oifie]
0 X"\ (f\ _ j=1 i
(x 0)(1) = ()

k
§ T

O'jejfj 0
j=1

k
Y ojfitefe)
j=1

k
Zojej(fj'T.fi)
=1

-e()
€;

(We have used that both { f;} and {e,} are orthonormal systems.) Thus, g;r is an eigenvector
of X with the eigenvalue o;(X). Similar computation shows that g; is an eigenvector of X
with the eigenvalue —o; (X).

It remains to verify thatif 4 = (’; ) is orthogonal to all gii (f is I-dimensional, e is k-
dimensional), then X/ = 0. Indeed, the orthogonality assumption means that 7 fi+e’ ¢; =
0 Vi, whence e”¢;=0 and f7 f; = 0 Vi. Consequently,

k
) (0-(57)-
‘ > 0je;(f] 1)

Looking at Proposition 4.2.1, we see that the fact that specific functions of eigenvalues
of a symmetric matrix X, namely, the sums S;(X) of k largest eigenvalues of X, are SDr
underlies the possibility to build SDRs for a wide class of functions of the eigenvalues. The
role of the sums of k largest singular values of a rectangular matrix X is equally important.



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

154 Lecture 4. Semidefinite Programming

PROPOSITION 4.2.2. Let g(xy,...,Xx;) : Rﬁ — R U {+00} be a symmetric monotone
function:

0<y=xeDomf = f(y) = f(x).
Assume that g is SDr:
t>gx)< u:Sk,t,u) =0
with S affinely depending on x, t, u. Then the function
f(X) = g(a(X))
of k x I (k <) rectangular matrix X is SDr, with SDR given by the relation

(a) t> f(X)
¢
Ixy, .., X, U
S(x1,...,xk, t,u) =0,
(b) X=Xy > > Xy,
YX)=xi+---+x;, j=1,...,m.

“4.2.4)

Note the difference between the symmetric (Proposition 4.2.1) and the nonsymmetric
(Proposition 4.2.2) situations. In the former the function g(x) was assumed to be SDr and
symmetric only, while in the latter the monotonicity requirement is added.

The proof of Proposition 4.2.2 is outlined in the exercises to Lecture 4.

Nonlinear matrix inequalities. There are several cases when matrix inequalities F (x) >
0, where F is a nonlinear function of x taking values in the space of symmetric m x m
matrices, can be linearized—expressed via LMIs.

20.a. General quadratic matrix inequality. Let X be a rectangular k x [ matrix and
F(X)=(AXB)(AXB) + CXD+ (CXD)' + E

be a quadratic matrix-valued function of X; here A, B,C,D,E = E T are rectangular
matrices of appropriate sizes. Let m be the row size of the values of . Consider the
>-epigraph of the (matrix-valued!) function F—the set

(X, Y) e MM x 8" | F(X) <Y)}.
We claim that this set is SDr with the SDR

I | (AXB)T
AXB|Y—-E—-CXD—(CXD)T

)zO (B:1lxr).

Indeed, by the Schur complement lemma, our LMI is satisfied if and only if the Schur
complement of the northwestern block is positive semidefinite, which is exactly our original
quadratic matrix inequality.
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20.b. General fractional-quadratic matrix inequality. Let X be a rectangular k x [
matrix and V be a positive definite symmetric / x / matrix. Then we can define the matrix-
valued function

F(X,V)y=XV'xT,

taking values in the space of k x k symmetric matrices. We claim that the closure of the
>-epigraph of this (matrix-valued!) function, i.e., the set

E=c{X,V;Y)eM" xS xS | F(X,V)=xV X" <y}

is SDr, and an SDR of this set is given by the LMI

T
(; ﬁ)zo. ®)

Indeed, by the Schur complement lemma, a triple (X, V, Y) with positive definite V
belongs to the epigraph of F—satisfies the relation F'(X, V) < Y—if and only if it satisfies
(R). Now, if a triple (X, V, Y) belongs to E, i.e., it is the limit of a sequence of triples from
the epigraph of F, then it satisfies (R) (as a limit of triples satisfying (R)). Conversely, if
a triple (X, V, Y) satisfies (R), then V is positive semidefinite (as a diagonal block in a
positive semidefinite matrix). The regularized triples (X, V. = V + €1}, Y) associated with
€ > 0 satisfy (R) along with the triple (X, V, R); since, as we just have seen, V > 0, we
have V. > 0, for ¢ > 0. Consequently, the triples (X, V¢, Y) belong to E (this was our very
first observation). Since the triple (X, V, Y) is the limit of the regularized triples that, as
we have seen, all belong to the epigraph of F, the triple (X, Y, V) belongs to the closure E
of this epigraph.

20.c. Matrix inequality Y < (CTX~'C)~!. In the case of scalars x, y the inequality
y < (cx"'e)7! in variables x, y is just an awkward way to write the linear inequality
y < ¢~2x, but it leads naturally to the matrix analogy of the original inequality, namely,
Y < (CTX~'C)~!, with rectangular m x n matrix C, variable symmetric n x n matrix Y,
and m x m matrix X. For the matrix inequality to make sense, we should assume that the
rank of C equals n (and thus m > n). Under this assumption, the matrix (CT X~'C)~!
makes sense at least for a positive definite X. We claim that the closure of the solution set
of the resulting inequality, the set

X=c{(X,Y)eS"xS"| X>=0,Y <(CTx'O)7},
is SDr:
X={(X,Y)|3Z:Y=<Z,Z>0,X =CzCT}.

Indeed, let us denote by X” the set in the right-hand side of the latter relation; we
should prove that X’ = X. By definition, X is the closure of its intersection with the
domain X > 0. It is clear that X also is the closure of its intersection with the domain
X > 0. Thus, all we need to prove is that a pair (Y, X) with X > 0 belongs to X if and
only if it belongs to X”.
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“If” part. Assume that X > 0 and (¥, X) € X’. Then there exists Z such that
Z>0,Z>=Y,and X = CZCT. Let us choose a sequence Z; > Z such that Z; — Z,
i — o0. Since CZ;,CT — CZCT < X asi — oo, we can find a sequence of matrices
X; such that X; — X, i — oo, and X; > CZ;CT Vi. By the Schur complement lemma,
the matrices ( g;- Z?l) are positive definite; applying this lemma again, we conclude that

Z > cTx . 'C. Note that the left-hand and right-hand matrices in the latter inequality
are positive definite. Now let us use the following simple fact.

LEMMA 4.2.2. Let U, V be positive definite matrices of the same size. Then
UxVeU'=v

Proof. Note that we can multiply an inequality A < B by a matrix Q from the left and Q7
from the right:

A=< B= QAQ" < QBQ" [A,BeS", QeM"

(why?). Thus, if 0 < U < V, then v-l2yy-12 < y-l2yy-12 — (note that v-12 =
[v-17211, whence clearly vizy-tyl/z — v-12yy-121-1 = [. Thus, VI2U-1v1/2 »

I. Multiplying this inequality from the left and from the right by V~1/2 = [V~1/2]T | we
getU~ ! >V~ O

Applying Lemma 4.2.2 to the inequality Zi_1 > CTXi_lC[> 0], we get Z; <
(CTX; 'C)~'. Asi — oo, the left-hand side in this inequality converges to Z, and the
right-hand side converges to (C” X~'C)~!. Hence Z < (CTX~'C)~!, and since Y < Z,
wegetY < (CTX~'C)7!, as claimed.

“Only if” part. Let X > 0and Y < (CTX~'C)~'; we should prove that there exists
Z > Osuchthat Z > Y and X > CZCT. We claim that the required relations are satisfied
by Z = (CTX~'C)~!. The only nontrivial part of the claim is that X > CZC7, and here
is the required justification: by its origin Z > 0 and by the Schur complement lemma the
matrix (Zg ] CXT ) is positive semidefinite, whence, by the same lemma, X > C(Z~)~!CT =
czcrT.

Nonnegative polynomials. Consider the problem of the best polynomial approximation—
given a function f on certain interval, we want to find its best uniform (or least squares,

etc.) approximation by a polynomial of a given degree. This problem arises typically as a

subproblem in all kinds of signal processing problems. In some situations the approximat-

ing polynomial is required to be nonnegative (think, e.g., of the case where the resulting

polynomial is an estimate of an unknown probability density). How do we express the

nonnegativity restriction? As shown by Nesterov,'” it can be done via SDP:

For every k, the set of all nonnegative (on the entire axis, or on a given ray, or
on a given segment) polynomials of degrees < k is SDr.

19y, Nesterov, Squared functional systems and optimization problems, in High Performance Optimization, H.
Frenk, K. Roos, T. Terlaky, S. Zhang, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, 2000,
pp. 405-440.
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In this statement (and everywhere below) we identify a polynomial p(¢) = Zf:o pit’ of
degree (not exceeding) k with the (k + 1)-dimensional vector Coef(p) = (po, p1 ..., pr)’
of the coefficients of p. Consequently, a set of polynomials of degrees < k becomes a set
in R**!, and we may ask whether this set is or is not SDr.

Let us look at the SDRs of different sets of nonnegative polynomials. The key here is
to get an SDR for the set Pt (R) of polynomials of (at most) a given degree 2k which are
nonnegative on the entire axis.?’

21.a. Polynomials nonnegative on the entire axis. The set P;k (R) is SDr—it is the
image of the semidefinite cone S’fl under the affine mapping

1
t
X — Coef(e” (1) Xe()) : S = R* ey =| 2 |. (©)

.t.k .

First note that the fact that P+ = P;k (R) is an affine image of the semidefinite cone
indeed implies the SD-representability of P*; see the calculus of conic representations in
Lecture 3. Thus, all we need is to show that P is exactly the same as the image, let it be
called P, of S]fﬁl under the mapping (C).

1. The fact that P is contained in P+ is immediate. Indeed, let X be a (k+1) x (k+1)
positive semidefinite matrix. Then X is a sum of dyadic matrices:

k+1
X = Zp[(pi)T, p' = (pios pit, - pix)” € RE!
i=1
(why?). But then
2
kt1 k+1 [k
' Xe@) =) " Op'Ip ety =Y | D pyt’

i=1 i=1 \ j=0

is the sum of squares of other polynomials and therefore is nonnegative on the axis. Thus,
the image of X under the mapping (C) belongs to P™.
Note that by reversing our reasoning, we get the following result:

() Ifapolynomial p(t) of degree < 2k can be represented as a sum of squares

of other polynomials, then the vector Coef(p) of the coefficients of p belongs

to the image of Sl_‘:’l under the mapping (C).

With (!), the remaining part of the proof—the demonstration that the image of S’frl
contains PT—is readily given by the following well-known algebraic fact:

(") A polynomial is nonnegative on the axis if and only if it is a sum of squares
of polynomials.

201t is clear why we have restricted the degree to be even: a polynomial of an odd degree cannot be nonnegative
on the entire axis!
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The proof of (!!) is so nice that we cannot resist the temptation to present it here. The
“if” part is evident. To prove the “only if”” part, assume that p(¢) is nonnegative on the axis,
and let the degree of p (it must be even) be 2k. Now let us look at the roots of p. The
real roots Ay, ..., A, must be of even multiplicities 2m, 2mo, ..., 2m, each (otherwise p
would alter its sign in a neighborhood of a root, which contradicts the nonnegativity). The
complex roots of p can be arranged in conjugate pairs (u1, 1)), (12, 13), ..., (s, 13),
and the factor of p

t— )t — pf) = (¢ — Rp)* + i)’

corresponding to such a pair is a sum of two squares. Finally, the leading coefficient of p
is positive. Consequently, we have

p(t) = @*[(t — 221" [t — AP — ) (¢ — D] [ — )t — 1))

is a product of sums of squares. But such a product is itself a sum of squares (open the
parentheses)!

In fact, we can say more: a nonnegative polynomial p is a sum of just two squares!
To see this, note that, as we have seen, p is a product of sums of two squares and take into
account the following fact (Louville):

The product of sums of two squares is again a sum of two squares:
(@® 4+ b»)(c? + d*) = (ac — bd)* + (ad + bc)?

(Compare with “The modulus of a product of two complex numbers is the product of their
modulae”.)

Equipped with the SDR of the set PZ‘E (R) of polynomials nonnegative on the entire
axis, we can immediately obtain SDRs for the polynomials nonnegative on a given ray or
segment:

21.b. Polynomials nonnegative on a ray or segment.

1. The set P, (Ry) of (coefficients of) polynomials of degree < k which are nonneg-
ative on the nonnegative ray is SDr.

Indeed, this set is the inverse image of the SDr set P;k (R) under the linear mapping
of the spaces of (coefficients of) polynomials given by the mapping

p(t) = pt(t) = p(t?).

(Recall that the inverse image of an SDr set is SDr.)

2. The set P,:“([O, 1]) of (coefficients of) polynomials of degree < k which are non-
negative on the segment [0, 1] is SDr.

Indeed, a polynomial p(¢) of degree < k is nonnegative on [0, 1] if and only if the

rational function
12
HD=p|l——
gt)=p (1 n t2>
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is nonnegative on the entire axis, or, which is the same, if and only if the polynomial
pr0) = A +1)g()

of degree < 2k is nonnegative on the entire axis. The coefficients of p™ depend linearly on
the coefficients of p, and we conclude that P,:’([O, 1]) is the inverse image of the SDr set
P2+k (R) under certain linear mapping.

Our last example in this series deals with trigonometric polynomials

k
p(®) = ao+ Y _laicos($) + by sin($)].

=1

Identifying such a polynomial with its vector of coefficients Coef(p) € R**!, we
may ask how to express the set S; (A) of those trigonometric polynomials of degree < k
which are nonnegative on a segment A C [—m, 7].

21.c. Trigonometric polynomials nonnegative on a segment. The set S ,j (A) is SDr.
Indeed, sin(l/¢) and cos(l¢) are polynomials of sin(¢) and cos(¢), and the latter
functions, in turn, are rational functions of { = tan(¢/2):

-¢? 2¢

1
cos(¢) = sin(¢) = 12

1+¢2

[¢ = tan(¢/2)].

Consequently, a trigonometric polynomial p(¢) of degree < k can be represented as a
rational function of ¢ = tan(¢/2):

__P®
(1+ g2k

where the coefficients of the algebraic polynomial p* of degree < 2k are linear functions
of the coefficients of p. Now, the requirement for p to be nonnegative on a given segment
A C [—m, 7] is equivalent to the requirement for p* to be nonnegative on a segment A
(which, depending on A, may be the usual finite segment or a ray or the entire axis). We
see that S,f(A) is an inverse image, under certain linear mapping, of the SDr set PJ((A’L),
so that S (A) itself is SDr.

Finally, we may ask which part of the above results can be saved when we pass from
nonnegative polynomials of one variable to those of two or more variables. Unfortunately,
not too much. Among nonnegative polynomials of a given degree with r > 1 variables,
exactly those that are sums of squares can be obtained as the image of a positive semidefinite
cone under certain linear mapping similar to (D). The difficulty is that in the multidimen-
sional case the nonnegativity of a polynomial is not equivalent to its representability as a
sum of squares; thus, the positive semidefinite cone gives only part of the polynomials we
want to describe.

p(9) [ = tan(¢/2)],

4.3 Applications I: Combinatorics

Due to its tremendous expressive abilities, SDP has an extremely wide spectrum of appli-
cations. We shall overview the most important of these applications. We start with brief
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presentation of what comes from inside mathematics and then continue with engineering
applications. The most important mathematical applications of SDP deal with relaxations
of combinatorial problems.

Combinatorial problems and their relaxations. Numerous problems of planning,
scheduling, routing, etc., can be posed as combinatorial optimization problems, i.e., op-
timization programs with discrete design variables (integer or zero-one). There are several
universal forms of combinatorial problems, among them LP with integer variables and LP
with 0-1 variables. A problem given in one of these forms can always be converted to any
other universal form, so that in principle it does not matter which form is used. Now, the
majority of combinatorial problems are difficult—we do not know theoretically efficient
(in a certain precise meaning of the notion) algorithms for solving these problems. What
we do know is that nearly all these difficult problems are, in a sense, equivalent to each
other and are NP-complete. The exact meaning of the latter notion will be explained in
Lecture 5; for the time being it suffices to say that NP-completeness of a problem P means
that the problem is as difficult as a combinatorial problem can be—if we knew an efficient
algorithm for P, we would be able to convert it to an efficient algorithm for any other com-
binatorial problem. NP-complete problems may look extremely simple, as demonstrated
by the following example:

Given n stones of positive integer weights (i.e., given n positive integers ay,
..., ), check whether you can partition these stones into two groups of equal
weight, i.e., check whether a linear equation

n
E ax; = 0
i=1

has a solution with x; = 1.

Theoretically difficult combinatorial problems happen to be difficult to solve in prac-
tice as well. An important ingredient in virtually all algorithms for combinatorial opti-
mization is a technique for building bounds for the unknown optimal value of a given
(sub)problem. A typical way to estimate the optimal value of an optimization program

f*:nlxin{f(x):x € X}

from above is to present a feasible solution x; then clearly f* < f(x). And a typical way
to bound the optimal value from below is to pass from the problem to its relaxation,

fe =min{f(x): x € X'},

increasing the feasible set: X C X'. Clearly, f, < f*, so, whenever the relaxation is
efficiently solvable (to ensure this, we should take care in choosing X’), it provides us with
a computable lower bound on the actual optimal value.

When building a relaxation, one should take care of two issues. On one hand, we
want the relaxation to be efficiently solvable. On the other hand, we want the relaxation to
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be tight. Otherwise the lower bound we get may be by far too optimistic and therefore not
useful. For along time, the only practical relaxations were the LP ones, since these were the
only problems one could solve efficiently. With recent progress in optimization techniques,
nonlinear relaxations become more practical. As a result, we are witnessing a growing
theoretical and computational activity in the area of nonlinear relaxations of combinatorial
problems. In these developments, most, if not all, deal with semidefinite relaxations. Let
us look how they emerge.

4.3.1 Shor’s semidefinite relaxation scheme

As mentioned, there are numerous universal forms of combinatorial problems. For example,
a combinatorial problem can be posed as minimizing a quadratic objective under quadratic
equality constraints:

minimize in xeR" fox) = xTApx+ Zng + ¢o
S.t.

filx) = xTAix+2biTx+c,~ =0,i=1,...,m.
4.3.5)

To see that this form is universal, note that it covers the classical universal combinatorial
problem—a generic LP program with Boolean (0-1) variables:

min{ch:aTx—bizo, i=1,...,mx; €{0,1}, j:l,...,n}. B)

Indeed, the fact that a variable x ; must be Boolean can be expressed by the quadratic equality

sz» —x; =0,
and a linear inequality a/ x —b; > 0 can be expressed by the quadratic equality a/ x — b; —
si2 = 0, where s; is an additional variable. Thus, (B) is equivalent to the problem

min{ch:aTx—bi—sizzO, i=1,...,mx?—x; =0, j=1....n},

i
x,S J

and this problem is of the form (4.3.5).

To bound from below the optimal value in (4.3.5), we may use the same technique
we used for building the dual problem. We choose somehow weights A;,i =1, ..., m, of
arbitrary signs and add the constraints of (4.3.5) with these weights to the objective, thus
coming to the function

fo) + ) hifi(x)
i=1

= xTAM)x +2bT(M)x +c()),

Jix) (4.3.6)
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where
A = Ao+ hiAs
i=1
b = bo+ Y hibi,
i=1

c(A) = C0+Z)\ici-
i=1

By construction, the function f; (x) is equal to the actual objective fy(x) on the feasible set
of the problem (4.3.5). Consequently, the unconstrained infimum of this function

a() = inf f,(x)

is a lower bound for the optimal value in (4.3.5). We come to the following simple result
(cf. the weak duality theorem):

(x) Assume that . € R™ and ¢ € R are such that
fix)—¢>0 VxeR" 4.3.7)
(i.e., that £ < a(X)). Then ¢ is a lower bound for the optimal value in (4.3.5).

It remains to clarify what is meant that (4.3.7) holds. Recalling the structure of f;, we see
that it means that the inhomogeneous quadratic form

g () =xTAQ)x + 2T Wx +c(1) — ¢
is nonnegative on the entire space. Now, an inhomogeneous quadratic form
g(x)=xTAx +2b"x + ¢

is nonnegative everywhere if and only if a certain associated homogeneous quadratic form
is nonnegative everywhere. Indeed, given r # 0 and x € R”, the fact that g(t‘lx) >0
means exactly the nonnegativity of the homogeneous quadratic form G (x, ¢)

G(x,t) =xTAx +2tb"x + ct?

with (n + 1) variables x, . We see that if g is nonnegative, then G is nonnegative whenever
t # 0; by continuity, G then is nonnegative everywhere. Thus, if g is nonnegative, then
G is, and of course vice versa (since g(x) = G(x, 1)). Now, to say that G is nonnegative
everywhere is literally the same as to say that the matrix

¢ b7
(b A) (4.3.8)

is positive semidefinite.
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It is worthwhile to catalogue our simple observation:
Simple lemma. A quadratic inequality with a (symmetric) n X n matrix A
xTAx+2bTx+¢>0

is identically true—is valid for all x € R"—if and only if the matrix (4.3.8) is
positive semidefinite.

Applying this observation to g, (x), we get the following equivalent reformulation of

(*):

If (A, ¢) € R™ x R satisfy the LMI
Z)»ici—é“, b§+2/\ibf
i=1 i=1

by + ikibi, Ao+ iAiA,-
i=1 i=I

then ¢ is a lower bound for the optimal value in (4.3.5).

>0,

Now, what is the best lower bound we can get with this scheme? Of course, it is the optimal
value of the semidefinite program

co + Zkici -, bg + Z)\.,‘b[T
i=l i=l =0}. (4.3.9)

by + Zm:,\,-b,-, Ao+ ) A
i=l1 i=l

We have proved the following simple proposition.

max .
e d

PROPOSITION 4.3.1. The optimal value in (4.3.9) is a lower bound for the optimal value in
(4.3.5).

The outlined scheme is extremely transparent, but it looks different from a relaxation
scheme as explained above—where is the extension of the feasible set of the original prob-
lem? In fact the scheme is of this type. To see it, note that the value of a quadratic form
at a point x € R” can be written as the Frobenius inner product of a matrix defined by the
problem data and the dyadic matrix X (x) = ( i )( i )

T
xTAx+2bTx+c=<)lC) <Z i)(i):Tr((Z lj)X(x)>.

Consequently, (4.3.5) can be written as

min{Tr((Zg Zi)mm);n((gf f’é{)xm):o, i:l,...,m}. (4.3.10)
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A B

D

Figure 4.1. Graph Cs.

Thus, we may think of (4.3.6) as a problem with linear objective and linear equality con-
straints and with the design vector X that is a symmetric (n + 1) x (n 4 1) matrix running
through the nonlinear manifold X" of dyadic matrices X (x), x € R". Obviously, all points
of X are positive semidefinite matrices with northwestern entry 1. Now let X be the set of
all such matrices. Replacing X by X, we get a relaxation of (4.3.10), which is essentially
our original problem (4.3.5). This relaxation is the semidefinite program

min [Tr(AoX) : Tr(A; X) = 0,i = 1,...,m; X = 0; X;; = 1},

Ci biT . “4.3.11)
|:Al~_<bi Aj),z_l,...,mi|.

We get the following proposition.

PROPOSITION 4.3.2. The optimal value of the semidefinite program (4.3.11) is a lower
bound for the optimal value in (4.3.5).

One can easily verify that problem (4.3.9) is just the semidefinite dual of (4.3.11);
thus, when deriving (4.3.9), we were in fact implementing the idea of relaxation. This is
why in the sequel we call both (4.3.11) and (4.3.9) semidefinite relaxations of (4.3.5). Let
us look at several interesting examples.

4.3.2 Stability number, Shannon capacity, and Lovasz capacity of
a graph

Stability number of a graph.  Consider a (nonoriented) graph—a finite set of nodes linked
by arcs,?! like the simple five-node graph Cs shown in Fig. 4.1. One of the fundamental
characteristics of a graph I is its stability number a(I"), defined as the maximum cardinality
of an independent subset of nodes—a subset such that no two nodes from it are linked by
an arc. The stability number for the graph Cs is, e.g., 2, and a maximal independent set is,
e.g., {A; C}.

210ne of the formal definitions of a (nonoriented) graph is as follows. An n-node graph is just an n x n symmetric
matrix A with entries 0, 1 and zero diagonal. The rows (and the columns) of the matrix are identified with the
nodes 1,2, ..., n of the graph, and the nodes i, j are adjacent (i.e., linked by an arc) exactly for those i, j with
Ajj =1
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The problem of computing the stability number of a given graph is NP-complete. This
is why it is important to know how to bound this number.

Shannon capacity of a graph. An upper bound on the stability number of a graph which
is interesting by its own right is the Shannon capacity ¥ (I"), defined as follows.

Let us treat the nodes of I" as letters of a certain alphabet and the arcs as possible
errors in a certain communication channel: you can send through the channel one letter per
unit time, and what arrives on the other end of the channel can be either the letter you have
sent or any letter adjacent to it. Now assume that you are planning to communicate with an
addressee through the channel by sending n-letter words (n is fixed). You fix in advance a
dictionary D, of words to be used and make this dictionary known to the addressee. What
you are interested in when building the dictionary is to get a good one, meaning that no
word from it could be transformed by the channel into another word from the dictionary.
If your dictionary satisfies this requirement, you may be sure that the addressee will never
misunderstand you: whatever word from the dictionary you send and whatever possible
transmission errors occur, the addressee is able either to get the correct message or to realize
that the message was corrupted during transmission, but there is no risk that your “yes”
will be read as “no”! Now, to utilize the channel at full capacity, you want to get as large
a dictionary as possible. How many words can it include? The answer is clear: this is
precisely the stability number of the graph I'” as follows. The nodes of I'" are ordered
n-element collections of the nodes of I'—all possible n-letter words in your alphabet; two
distinct nodes (iy, ..., i,), (ji1, ..., ju) are adjacent in ['" if and only if for every [ the /th
letters i; and j; in the two words either coincide or are adjacentin I (i.e., two distinct n-letter
words are adjacent, if the transmission can convert one of them into the other one). Let us
denote the maximum number of words in a good dictionary D,, (i.e., the stability number
of I'") by f(n), The function f(n) possesses the following nice property:

fROfD<fk+D, k,I=1,2,.... ()

Indeed, given the best (of the cardinality f (k)) good dictionary Dy and the best good
dictionary Dy, let us build a dictionary made up of all (k + [)-letter words as follows: the
initial k-letter fragment of a word belongs to Dy, and the remaining /-letter fragment belongs
to D;. The resulting dictionary is clearly good and contains f (k) f (I) words, and (*) follows.

Now, this is a simple exercise in analysis to see that for a nonnegative function f with
property (*) one has

Jim (f (k)7 = sup(f (k)" € [0, +oo].
—>00 kZl

In our situation supkzl(f(k))l/k < 00, since clearly f(k) < n, n being the number of
letters (the number of nodes in I'). Consequently, the quantity

() = lim (f (k))"/*

is well defined. Moreover, for every k the quantity (f(k))!/* is a lower bound for © (I").
The number 9 (I") is called the Shannon capacity of I'. Our immediate observation is as
follows.
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Figure 4.2. Graph (Cs)>.

(B) The Shannon capacity O (I') majorates the stability number of T':
a(l) <o ().

Indeed, as we remember, ( f(k))!/* is a lower bound for 9 (T") forevery k = 1,2, .. ;
setting k = 1 and taking into account that f (1) = «(I"), we get the desired result.

We see that the Shannon capacity number is an upper bound on the stability number,
and this bound has a nice interpretation in terms of the information theory. The bad news is
that we do not know how to compute the Shannon capacity. For example, what is it for the
toy graph Cs?

The stability number of Cs clearly is 2, so our first observation is that

?(Cs) = a(Cs) =2.

To get a better estimate, let us look the graph (Cs)? (as we remember, ¥ (I') > (f (k))"/* =
(a(I'*))/* for every k). The graph (Cs)? has 25 nodes and 124 arcs and is shown in Fig. 4.2.
With some effort, you can check that the stability number of (Cs)? is 5; a good five-element
dictionary (= a five-node independent set in (Cs)?) s, e.g., AA, BC,CE, DB, ED. Thus,
we get

9(Cs) > Va((Cs)?) = V5.

Attempts to compute the subsequent lower bounds (f(k))'/*, as long as they are imple-
mentable (think how many vertices there are in (Cs)3!), do not yield any improvements, and
for more than 20 years it remained unknown whether 9 (Cs) = V5 oris > +/5. And this is
for a toy graph! The breakthrough in the area of upper bounds for the stability number is
due to Lovasz, who in the early 1970s found a new—computable!—bound of this type.

1/k
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Lovasz capacity number. Given an n-node graph I', let us associate with it an affine
matrix-valued function £(x) taking values in the space of n X n symmetric matrices, namely,
as follows:

* For every pair i, j of indices (1 < i, j < n) such that the nodes i and j are not linked
by an arc, the ijth entry of L is equal to 1.

* For a pairi < j of indices such that the nodes i, j are linked by an arc, the ijth and
the jith entries in £ are equal to x;;—to the variable associated with the arc (i, j).

Thus, £(x) is indeed an affine function of N design variables x;;, where N is the
number of arcs in the graph. For example, for graph Cs the function L is as follows:

1 XAB 1 1 XEA

XAB 1 XBC 1 1

L= 1 XBC 1 XcD 1
1 1 XcD 1 XDE

XEA 1 1 XDE 1

Now, the Lovasz capacity number ®(I") is defined as the optimal value of the optimization
program

H;il‘l {Amax (L£(x))},
i.e., as the optimal value in the semidefinite program

Tin {A: AL, — L(x) = 0}. (L)

PROPOSITION 4.3.3. The Lovasz capacity number is an upper bound for the Shannon
capacity,

o) = v(),
and, consequently, for the stability number:
o) = 9(T) = o).

For the graph Cs, the Lovasz capacity can be easily computed analytically and turns
out to be exactly +/5. Thus, a small byproduct of Lovasz’s result is a solution of the problem
that remained open for two decades.

Let us see how the Lovasz bound on the stability number can be obtained from the
general relaxation scheme. To this end note that the stability number of an n-node graph I
is the optimal value of the following optimization problem with 0-1 variables:

max {e”x : x;x; = 0 whenever i, j are adjacent nodes, x; € {0, 1}, i =1,...,n},
X
e=(,....,DT eR",

Indeed, 0-1 n-dimensional vectors can be identified with sets of nodes of I': the coordinates
x; of the vector x representing a set A of nodes are ones for i € A and zeros otherwise. The
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quadratic equality constraints x;x; = O for such a vector express equivalently the fact that
the corresponding set of nodes is independent, and the objective e’ x counts the cardinality
of this set.

As we remember, the 0-1 restrictions on the variables can be represented equivalently
by quadratic equality constraints, so that the stability number of I' is the optimal value
of the following problem with quadratic (in fact, linear) objective and quadratic equality

constraints:

maximize el'x

S.t.
xix; = 0, (i, j)is an arc, (4.3.12)

xiz—xi = 0,i=1,...,n.

The latter problem is in the form of (4.3.5); the only difference is that the objective should be
maximized rather than minimized. Switching from maximization of e? x to minimization
of (—e)T x and passing to (4.3.9), we get the problem

, —¢ —%(6+M)T) }
?ix{§'<—%<e+u) A )70

where u is n-dimensional and A(u, A) is as follows:
* The diagonal entries of A(u, A) are py, ..., Uy.

* The off-diagonal cells ij corresponding to nonadjacent nodes i, j (empty cells) are
Z€eros.

* The off-diagonal cells ij, i < j, and the symmetric cells ji corresponding to adjacent
nodes 7, j (arc cells) are filled with free variables A;;.

Note that the optimal value in the resulting problem is a lower bound for minus the optimal
value of (4.3.12), i.e., for minus the stability number of I".

Passing in the resulting problem from the variable ¢ to a new variable £ = —¢ and
again switching from maximization of { = —& to minimization of &, we end up with the
semidefinite program

. £, e+’ )
min {& : >0¢. 4.3.13
X {S (—%(e+u), Alw, 2 )~ @31

The optimal value in this problem is the minus optimal value in the previous one, which, in
turn, is a lower bound on the minus stability number of I'; consequently, the optimal value
in (4.3.13) is an upper bound on the stability number of I".

We have built a semidefinite relaxation (4.3.13) of the problem of computing the
stability number of I'; the optimal value in the relaxation is an upper bound on the stability
number. To get the Lovasz relaxation, let us further fix the u-variables at level 1. (This may
only increase the optimal value in the problem, so that it still will be an upper bound for the
stability number.)?> With this modification, we come to the problem

. & —eT
I?&“F‘(—e A e,k)) 30}'

221p fact, setting i; = 1, we do not vary the optimal value at all. See Exercise 4.32.
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In every feasible solution to the problem, £ should be > 1 (itis an upper bound for ¢ (I") > 1).
When & > 1, the LMI
T
S —e > 0
e A(e, M)

by the Schur complement lemma is equivalent to the LMI
Ale, V) = (o)~ (—e)'
or, which is the same, to the LMI
EA(e, 1) —ee” > 0.

The left-hand-side matrix in the latter LMI is equal to £1, — B(§, A), where the matrix
B(&, A) is as follows:

* The diagonal cells of B(&, 1) and the off-diagonal empty cells are filled with ones.

* The entries in arc cells ij, ji (i < j)areequalto 1 —&A;;. (i < j) are filled with
Erij.

Passing from the design variables A to the new ones x;; = 1 — £4,;, we conclude that
problem (4.3.13) with w’s set to ones is equivalent to the problem

min {§ — min | £1, — L(x) > 0},

whose optimal value is exactly the Lovasz capacity number of I".

As a byproduct of our derivation, we get the easy part of the Lovasz Theorem—the
inequality ®(I") > «(I'). This inequality, however, could be easily obtained directly from
the definition of ® (I"). The advantage of our derivation is that it demonstrates the origin of
o).

How good is the Lovasz capacity number? The Lovasz capacity number plays a crucial
role in numerous graph-related problems. There is an important subfamily of graphs—
perfect graphs—for which this number coincides with the stability number. However, for a
general-type graph I', ®(I") may be a fairly poor bound for «(I"). Lovasz has proved that
for any graph I with n nodes, O)O(I") > n, where I is the complement to I" (i.e., two
distinct nodes are adjacent in [ if and only if they are not adjacent in I''). It follows that for
n-node graph I' one always has max[®(T"), o] > +/n. On the other hand, it turns out
that for a random n-node graph I" (the arcs are drawn at random and independently of each
other, with probability 0.5 to draw an arc linking two given distinct nodes) max[«/(I"), (f‘)]
is typically (with probability approaching 1 as n grows) of order of In n. It follows that for
random n-node graphs a typical value of the ratio ® (I") /o (I") is at least of order of n'/?/ In n;
as n grows, this ratio blows up to oo.

A natural question arises: Are there difficult (NP-complete) combinatorial problems
admitting good semidefinite relaxations—those with the quality of approximation not de-
teriorating as the sizes of instances grow? Let us look at two recent breakthrough results in
this direction.
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4.3.3 MAXCUT problem

The MAXCUT (maximum cut) problem is as follows.

PROBLEM 4.3.1. Let I be an n-node graph, and let the arcs (i, j) of the graph be associated
with nonnegative weights a;;. The problem is to find a cut of the largest possible weight,
i.e., to partition the set of nodes into two parts S, S’ in such a way that the total weight of all
arcs linking S and S’ (i.e., with one incident node in S and the other one in S') is as large
as possible.

In the MAXCUT problem, we may assume that the weights a;; = aj; > 0 are defined for
every pair i, j of indices; it suffices to set a;; = 0 for pairs 7, j of nonadjacent nodes.

In contrast to the minimum cut problem (where we should minimize the weight of
a cut instead of maximizing it), which is, basically, a nice LP program of finding the
maximum flow in a net and is therefore efficiently solvable, the MAXCUT problem is as
difficult as a combinatorial problem can be—it is NP-complete. However, it is easy to build
a semidefinite relaxation of MAXCUT. To this end let us pose MAXCUT as a quadratic
problem with quadratic equality constraints. Let I' be an n-node graph. A cut (S, §')—
a partitioning of the set of nodes in two disjoint parts S, S’—can be identified with an
n-dimensional vector x with coordinates +1 —x; = 1 fori € S, x; = —1 fori € S’. The
quantity % Z;’ j=1 aijxix; is the total weight of arcs with both ends either in § or in S’ minus
the weight of the cut (S, S’). Consequently, the quantity

11 ¢ 1 ¢ 1
z z Z ajj — E Z ajjxixj | = Z Z Cl,'j(l —.X,'Xj)

ij=1 ij=1 ij=1

is exactly the weight of the cut (S, §’).
We conclude that the MAXCUT problem can be posed as the following quadratic
problem with quadratic equality constraints:

1 n
max Z'Zla,j(l—x,'xj):xiz:l, i=1,....n}. (4.3.14)
i,j=

For this problem, the semidefinite relaxation (4.3.11) after evident simplifications becomes
the semidefinite program

n
. 1
maximize 1 E a;j(1 —X;j)
ij=1

st (4.3.15)
X = [Xij],r‘l,j:1 =X =

05
X,’i 1,i=1,...,n.

The optimal value in the latter problem is an upper bound for the optimal value of MAXCUT.
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The fact that (4.3.15) is a relaxation of (4.3.14) can be established directly, indepen-
dently of any general theory: (4.3.14) is the problem of maximizing the objective

1 < 1 < 1 < 1
Z Z aij — 5 Z ajjxiX; = Z Z ajj — ZTI'(AX(X)), X(x) = xxT,

i,j=1 i,j=1 i,j=1

over all rank-1 matrices X (x) = xx” given by n-dimensional vectors x with entries %1.
All these matrices are symmetric positive semidefinite with unit entries on the diagonal, i.e.,
they belong to the feasible set of (4.3.15). Thus, (4.3.15) indeed is a relaxation of (4.3.14).

The quality of the semidefinite relaxation (4.3.15) is given by the following brilliant
result of Goemans and Williamson.??

THEOREM 4.3.1. Let OPT be the optimal value of the MAXCUT problem (4.3.14) and SDP
be the optimal value of the semidefinite relaxation (4.3.15). Then

OPT
1> ——>0.87856.... (4.3.16)
SDP

The reasoning used by Goemans and Williamson is so beautiful that it is impossible
not to reproduce it here:

The left inequality in (4.3.16) is what we already know—it simply says that semidef-
inite program (4.3.15) is a relaxation of MAXCUT. To get the right inequality, Goemans
and Williamson act as follows. Let X = [X;;] be a feasible solution to the semidefinite
relaxation. Since X is positive semidefinite, it is the Gram matrix of a collection of n vectors
Ulyevny Uyt

— I
Xij—vi Vj.

And since all X;; are equal to 1, the vectors v; are of the unit Euclidean norm. Given X,
we can easily find v;’s (e.g., via the Choleski decomposition of X). Now let us look at
the following procedure for generating random cuts of the graph. We choose at random,
according to the uniform distribution on the unit sphere in R", a unit vector v and build the
cut

S=1{i| vlv >0}

What is the expected value of the weight of this random cut? The expected contribution
of a particular pair i, j to the expected weight of our random cut is %ai ; times twice the
probability of the event that the nodes i and j will be separated by v, i.e., that the products
vTv; and v7v; will have opposite signs. By elementary arguments, the probability of this
event is just twice the ratio of the angle between the vectors v; and v; to 27, as is seen in
Fig. 4.3. Thus, the expected contribution of a pair i, j to the expected weight of our random
cut is %ai i M, and the expected weight of the random cut is

] — acos(X;;)
W[X] = 5 Z a,-jTj.

i,j=1

23M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115—1145.
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Figure 4.3. Computing the expected weight of random cut. w is the projection
of v on the 2D plane spanned by v\ and v,. The direction of w is uniformly distributed in
[0, 27], and v separates vi and v, exactly when w belongs to one of the angles AOB, A’OB'.

Comparing the right-hand side term by term with the value

1 n
FX) = I Z aij(1 — Xij)

i,j=1

of the objective in the relaxed problem (4.3.15) at X and taking into account that a;; > 0
and that for x € [—1, 1] one has

acos(x
) _

1
az(l—x). o=08785. ...

we come to
WIX] = af (X).

This inequality is valid for every feasible solution X of the semidefinite relaxation, in
particular, for the optimal solution X*. We conclude that already the expectation of the
weight of random cut generated from X* is at least @ SDP; the maximum possible weight
OPT of a cut may be only larger than this expectation, so that OPT /SDP > « = 0.87856.

Note that the above construction not only provides a proof of Theorem 4.3.1 but offers
a randomized algorithm for constructing a random cut that, on average, has weight at least
0.87856 of OPT. Indeed, it suffices to solve the semidefinite relaxation (4.3.15). (This can
be done efficiently, if we will be satisfied with an e-solution—a feasible X such that the
value of the objective of (4.3.15) at X is at least (1 — €) - SDP—with a once forever fixed
€ > 0, say, with € =1.e-6.) After a (nearly) optimal solution X to (4.3.15) is found, we
use it to generate random cuts, as explained in the above construction.

4.3.4 Extensions

In the MAXCUT problem, we are in fact maximizing the homogeneous quadratic form

n n n
xTszg E ajj xiz— E ajjxXix;

i=1 \ j=I ij=1
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over the set S,, of n-dimensional vectors x with coordinates £=1. The matrix A of this form
is positive semidefinite (Exercise 4.2) and possesses a specific feature that the off-diagonal
entries are nonpositive, while the sum of the entries in every row is 0. What happens
when we maximize over S, a quadratic form x” Ax with a general-type (symmetric) matrix
A? An extremely nice result in this direction was recently obtained by Nesterov. The
cornerstone of Nesterov’s construction relates to the case when A is positive semidefinite,
and this is the case we shall focus on. Note that the problem of maximizing a quadratic form
xT Ax with positive semidefinite (and, say, integer) matrix A over S,, same as MAXCUT,
is NP-complete.
The semidefinite relaxation of the problem

max {x"Ax:x €S, [&xe{-11},i=1,...,nl]} 4.3.17)

X

can be built in exactly the same way as (4.3.15) and turns out to be the semidefinite program

maximize Tr(AX)
S.t.

n 4.3.18

X=x"= [Xi.i]i,j:l ( )

0
Xi,' 1,i=1,...,n.

Iy

The optimal value in this problem, let it again be called SDP, is > the optimal value OPT
in the original problem (4.3.17). The ratio OPT /SDP, however, cannot be too large.

THEOREM 4.3.2. Nesterov’s theorem. Ler A be positive semidefinite. Then
2
SDP > OPT > —SDP [2/m = 0.6366...].
b

The proof utilizes the central idea of Goemans and Williamson in the following bril-
liant reasoning.

The inequality SDP > OPT is valid since (4.3.18) is a relaxation of (4.3.17). Let X
be a feasible solution to the relaxed problem; then X;; = v/ v; for a system of unit vectors
Vi, ..., U,. Similar to the MAXCUT construction, we associate with this representation
of X a random generator of vectors from S,: choosing a direction v uniformly on the unit
sphere, we build vector x with the 4-1-coordinates

X = sign(vTvi),

where sign(a) is +1 for a > 0 and is —1 for a < 0. The expected value of the objective
xT Ax of (4.3.17) over the generated points x is

V= Z aijEU{sign(vTvi)sign(vij)},

i,j=1

where E, denotes the expectation taken with respect to v uniformly distributed over the
unit sphere. The expectation E,{sign(v”v;)sign(v’v ;)} can be easily computed: when
projecting v on the 2D plane spanned by v;, v;, we get a vector w with the direction
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uniformly distributed in [0, 277], and the expectation in question is the probability for w to
have inner products with v; and v; of the same sign (i.e., to belong to the union of angles
AOA’ and BOB' in Fig. 4.3) minus probability to have inner products with v; and v; of
opposite signs (i.e., to belong to the union of the angles AOB and A’OB’). The indicated
difference is

T 2 .7 2 .
— [271 — 4acos(v; vj)] = —asin(v; v;) = —asin(X;;).
2 b4 /4

Thus,
V=2 aasiney,)
= — a;;asm(X;;).
= = J J

Recalling that V is the expected value of the objective in (4.3.17) with respect to certain prob-
ability distribution on the feasible set S, of the problem, we get V < OPT. Summarizing,
we have proved the following lemma.

LEMMA 4.3.1. Let X be a feasible solution to (4.3.18). Then the optimal value OPT in
(4.3.17) satisfies the relation

7 .
OPT > ; Z aija51n(Xij).

i,j=1

Consequently,
2 . .
OPT > —max {Tr(Aasin[X]) | X =0, X;; =1, i=1,...,n}, 4.3.19)
b4

where asin[ X] is the matrix with the elements asin(X;).

Nesterov completes the proof by the following unexpected, although simple, obser-
vation.

For a positive semidefinite symmetric matrix X with diagonal entries +1 (in
fact, for any positive semidefinite X with | X;;| < 1), one has

asin[ X] > X.

The proof of the observation is immediate. Denoting by [X]* the matrix with the
entries X f‘] and making use of the Taylor series for the asin (this series converges uniformly
on [—1, 1]), for a matrix X with all entries belonging to [—1, 1], we get

[e.¢]
1-3-5----2k—1

asin[X] — X = Z - ( )[X]Zk“,
— 2Kk 2k + 1)




Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

4.3. Applications I: Combinatorics 175

and all we need is to note is that all matrices in the left-hand side are > 0 along with X e
The above observation, in view of the fact that A is positive semidefinite, implies that

Z a;;asin(X;;) = Tr(Aasin[X]) > Tr(AX)
ij=1

for every feasible solution X of the semidefinite relaxation (4.3.18). Hence, the expression
in the right-hand side of (4.3.19) is at least %SDP. 0

Note that in fact the inequality in (4.3.19) is equality (see Exercise 4.39).

4.3.5 S-lemma

Letuslook again at the Lagrange relaxation of a quadratically constrained quadratic problem,
but in the very special case when all the forms involved are homogeneous and the right-hand
sides of the inequality constraints are zero:

. . . T
minimize x' Bx
s.t. xTAx>0,i=1,....,m (4.3.20)
(B, Ay, ..., A, are given symmetric m X m matrices). Assume that the problem is feasible.

In this case (4.3.20) is, at a first glance, a trivial problem: due to homogeneity, its optimal
value is either 400 or 0, depending on whether there exists or does not exist a feasible vector
x such that x” Bx < 0. The challenge here is to detect which one of these two alternatives
takes place, i.e., to understand whether or not a homogeneous quadratic inequality x” Bx > 0
is a consequence of the system of homogeneous quadratic inequalities x” A;x > 0 or, which
is the same, to understand when the implication

(@ xTAx=>0 i=1,....m
[ (4.3.21)
(b) xTBx >0
holds true.
In the case of homogeneous linear inequalities it is easy to recognize when an in-
equality xTh >0isa consequence of the system of inequalities xTa;>0,i=1,...,m:

by the Farkas lemma, it is the case if and only if the inequality is a linear consequence of
the system, i.e., if b is representable as a linear combination, with nonnegative coefficients,
of the vectors a;. Now we are asking a similar question about homogeneous quadratic
inequalities: When is (b) a consequence of (a)?

In general, there is no analogy of the Farkas lemma for homogeneous quadratic in-
equalities. Note, however, that the easy “if” part of the lemma can be extended to the

24That the entrywise product of two positive semidefinite matrices is positive semidefinite is a standard fact from
linear algebra. The easiest way to understand it is to note that if P, Q are positive semidefinite symmetric matrices
of the same size, then they are Gram matrices: P;j = piT p; for certain system of vectors p; from certain (no matter
from which exactly) RY and Q; ;= ql.Tq ; for a system of vectors g; from certain RM. But then the entrywise
product of P and Q—the matrix with the entries P;; Q;; = ( pl.T P j)(ql.Tq j)—also is a Gram matrix, namely, the
Gram matrix of the matrices piqiT e MVM = R¥M Since every Gram matrix is positive semidefinite, the
entrywise product of P and Q is positive semidefinite.
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quadratic case: if the target inequality (b) can be obtained by linear aggregation of the
inequalities (a) and a trivial—identically true—inequality, then the implication in question
is true. Indeed, a linear aggregation of the inequalities (a) is an inequality of the type

)CT (i)\.,A,) x>0
i=1

with nonnegative weights A;, and a trivial—identically true—homogeneous quadratic in-
equality is of the form

xTQx >0

with Q > 0. The fact that (b) can be obtained from (a) and a trivial inequality by linear
aggregation means that B can be represented as B = Y ;- ; ;;A; + Q with 4; > 0, Q > 0,
or, which is the same, if B > Zl'.”:l A; A; for certain nonnegative A;. If this is the case, then
(4.3.21) is trivially true. We have arrived at the following simple proposition.

PROPOSITION 4.3.4. Assume that there exist nonnegative A; such that B > Zi riA;. Then
the implication (4.3.21) is true.

Proposition 4.3.4 is no more than a sufficient condition for the implication (4.3.21)
to be true, and in general this condition is not necessary. There is, however, an extremely
fruitful particular case when the condition is both necessary and sufficient—this is the case
of m = 1, i.e., a single quadratic inequality in the premise of (4.3.21).

THEOREM 4.3.3. S-lemma. Let A, B be symmetric n X n matrices, and assume that the
quadratic inequality

xTAx >0 (A)
is strictly feasible: there exists X such that X' AX > 0. Then the quadratic inequality
xTBx >0 (B)

is a consequence of (A) if and only if it is a linear consequence of (A), i.e., if and only if
there exists a nonnegative A such that

B > M\A.

We are about to present an intelligent proof of the S-lemma based on the ideas of
semidefinite relaxation. (For a straightforward proof, see the exercises to Lecture 4.)

In view of Proposition 4.3.4, all we need is to prove the “only if” part of the S-lemma,
i.e., to demonstrate that if the optimization problem

min {xTBx cxTAx > O}
X

is strictly feasible and its optimal value is > 0, then B > LA for certain A > 0. By
homogeneity reasons, it suffices to prove exactly the same statement for the optimization
problem

IrLin {xTBx xTAx >0,xTx = n} . @P)
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The standard semidefinite relaxation of (P) is the problem

min {Tr(BX) : Tri(AX) = 0, Tr(X) = n, X = 0}, P)

If we could show that when passing from the original problem (P) to the relaxed problem
(P’) the optimal value (which was nonnegative for (P)) remains nonnegative, we would be
done. Indeed, observe that (P') is clearly bounded below (its feasible set is compact!) and is
strictly feasible (which is an immediate consequence of the strict feasibility of (A)). Thus,
by the conic duality theorem the problem dual to (P’) is solvable with the same optimal
value (let it be called n6*) as the one in (P’). The dual problem is

ma/\x{ny,:)LA—i—p,I < B, A >0},
IS

and the fact that its optimal value is n6* means that there exists a nonnegative A such that
B > LA + no*I.

If we knew that the optimal value n6* in (P’) is nonnegative, we would conclude that B > A A
for certain nonnegative A, which is exactly what we are aiming at. Thus, all we need is to
prove that under the premise of the S-lemma the optimal value in (P) is nonnegative, and
here is the proof.

Proof. Observe first that problem (P’) is feasible with a compact feasible set and thus is
solvable. Let X* be an optimal solution to the problem. Since X* > 0, there exists a matrix
D such that X* = DDT. Note that we have

0 <Tr(AX*) = Tr(ADDT) = Tr(DT AD),
n6* = Tr(BX*) = Tr(BDDT) = Tr(DT BD), (*)
n = Tr(X*) = Tr(DDT) = Tr(DT D).

It remains to use the following observation:

(") Let P, Q be symmetric matrices such that Tr(P) > 0and Tr(Q) < 0. Then
there exists a vector e such that e” Pe > 0 and e” Qe < 0.

Indeed, let us believe that (!) is valid, and let us prove that 8* > 0. Assume, on the contrary,
that 8* < 0. Setting P = D" BD and Q = D7 AD and taking into account (*), we see that
the matrices P, Q satisfy the premise in (!), whence, by (!), there exists a vector e such that
0 <e"Pe=[De]" A[De]and 0 > e Qe = [De]” B[ De]; but this contradicts the premise
of the S-lemma.

It remains to prove (!). Given P and Q as in (!), note that Q, as every symmetric
matrix, admits a representation

0=UTAU

with an orthonormal U and a diagonal A. Note that 0 = Tr(A) = Tr(Q) < 0. Now let £ be
arandom n-dimensional vector with independent entries taking values =1 with probabilities
1/2. We have

[UTE]" QU el = [UTE]"UT AUIUTE] = £T AE =Tr(A) =60 V&,
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while
[UTel" PIUTE1 = ET[UPUT I,

and the expectation of the latter quantity over £ is clearly Tr(U PUT) = Tr(P) > 0. Since
the expectation is nonnegative, there is at least one realization £ of our random vector &
such that

0<[UTEI" P[U"E].

We see that the vector e = U £ is a required one: ¢’ Qe =60 < 0 and e’ Pe > 0. O

4.4 Applications Il: Stability analysis

Semidefinite programming is a natural language with which to pose and process numerous
engineering problems associated with stability. Let us look at several examples.

4.4.1 Dynamic stability in mechanics

Free motions of many linearly elastic mechanical systems, i.e., their behavior in absence of
external loads, are governed by systems of differential equations of the type

d2
M—x(t) = —Ax(@), N)

where x(t) € R” is the state vector of the system at time ¢, M is the (generalized) mass
matrix, and A is the stiffness matrix of the system. Basically, (N) is the Newton law for a
system with the potential energy %xTAx.

As a simple example, consider a system of k points of masses ui, ..., i linked by
springs with given elasticity coefficients. Here x is the vector of the displacements x; € R?
of the points from their equilibrium positions e; (d = 1/2/3 is the dimension of the model).
The Newton equations become

d? )
Mimxi(f) =- Z vij(er —e)ei —ep) (xi —x;),i=1,...,k,
J#i
where v;; are given by
Vij = L,
llei —e;ll3

where «;; > 0 are the elasticity coefficients of the springs. The resulting system is of the
form (N) with a diagonal matrix M and a positive semidefinite symmetric matrix A. The
well-known simplest system of this type is a pendulum (a single point able to slide along a
given axis and linked by a spring to a fixed point on the axis), shown in Fig. 4.4.

Another example is given by a truss (see section 1.3.5). Here A is the bar-stiffness
matrix ), ;b; bl.T , and the mass matrix is

n
M=) tpp. Bi= \/;l,-b,-,

where p is the material density, « is the Young modulus, and /; is the length of bar i.
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NAVAYA TR
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l'xI

d2
X)) = —vx(t), v=71.

Figure 4.4. A pendulum.

Note that in the above examples both the mass matrix M and the stiffness matrix A are
symmetric positive semidefinite; in nondegenerate cases they are even positive definite, and
this is what we assume from now on. Under this assumption, we can pass in (N) from the
variables x(¢) to the variables y(t) = M'/?x(t); with respect to these variables the system
becomes

2
ﬁy(t) =—Ay@), A=M""PAMT2, (N
It is well known that the space of solutions of system (N’) (where A is symmetric posi-
tive definite) is spanned by fundamental (perhaps complex-valued) solutions of the form
exp{ut}f. A nontrivial (with f # 0) function of this type is a solution to (N’) if and only if

W +Af =0,
so that the allowed values of ,LLZA are the minus eigenvalues of the matrix A, and f’s are the
corresponding eigenvectors of A. Since the matrix A is symmetric positive definite, the only
allowed values of p are purely imaginary, with the imaginary parts /1 ; (A). Recalling
that the eigenvalues and eigenvectors of A are exactly the eigenvalues and eigenvectors of

the pencil [M, A], we come to the following result:

(C) In the case of positive definite symmetric M, A, the solutions to (N)—the
free motions of the corresponding mechanical system S—are of the form

n
x(t) =) lajcos(w;t) + b; sin(w;1)]e;.
j=1
where aj, b; are free real parameters, e; are the eigenvectors of the pencil
(M, A],

()»J-M—A)ej =O,

andw; = \/Z . Thus, the free motions of the system S are mixtures of harmonic
oscillations along the eigenvectors of the pencil [M, A), and the frequencies of
the oscillations (the eigenfrequencies of the system) are the square roots of the
corresponding eigenvalues of the pencil.

From the engineering viewpoint, the dynamic behavior of mechanical constructions
such as buildings, electricity masts, and bridges is the better the larger the eigenfrequencies



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

180 Lecture 4. Semidefinite Programming

w=1274 o = 0.957 o = 0.699

Figure 4.5. Nontrivial modes of a spring triangle (three unit masses linked by
springs). Shown are three eigenmotions (modes) of a spring triangle with nonzero frequen-
cies. Three instant positions of the oscillating triangle are depicted. There are three more
eigenmotions with zero frequency, corresponding to shifts and rotation of the triangle.

of the system.? This is why a typical design requirement in mechanical engineering is a
lower bound

Amin(A : M) > Ay [Ae > 0] (4.4.22)

on the smallest eigenvalue A, (A : M) of the pencil [M, A] made up of the mass and the
stiffness matrices of the would-be system. In the case of positive definite symmetric mass
matrices, (4.4.22) is equivalent to the matrix inequality

A—2M >0 (4.4.23)

(why?). If M and A are affine functions of the design variables (as is the case in, e.g., truss
design), the matrix inequality (4.4.23) is a linear matrix inequality in the design variables, and
therefore it can be processed via the machinery of semidefinite programming. For example,
when adding to the TTD problem (Lecture 3) alower bound on the minimum eigenfrequency
of the truss to be designed, we end up with a semidefinite program. Moreover, in the cases
when A is affine in the design variables, and M is constant, (4.4.23) is an LMI on the design
variables and A,, and we may play with X,, e.g., solve a problem of the type “given the
mass matrix of the system to be designed and a number of (SDr) constraints on the design
variables, build a system with the largest possible minimum eigenfrequency.”

4.4.2 Llyapunov stability analysis and synthesis

The next topic, Lyapunov stability analysis, was touched on in Lecture 2, where it served as
an important example of a nonpolyhedral conic problem. Consider a time-varying uncertain
linear dynamic system

%x(r) = A(D)x(t), x(0) = xo. (ULS)

25 Think about a building and an earthquake or about sea waves and a light house: in this case the external load
acting at the system is time-varying and can be represented as a sum of harmonic oscillations of different (and
low) frequencies. If some of these frequencies are close to the eigenfrequencies of the system, the system can be
crushed by resonance. To avoid this risk, one wants to move the eigenfrequencies of the system away from 0 as
far as possible.
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Here x () € R" represents the state of a plant at time ¢, the initial state is xo, and A(¢) is a
time-varying n x n matrix. We assume that the system is uncertain in the sense that we have
no idea of what is x(, and all we know about A () is that this matrix, at any time ¢, belongs to
a given uncertainty set /. Thus, (ULS) represents a wide family of linear dynamic systems
rather than a single system. It makes sense to call a trajectory of the uncertain linear system
(ULS) every function x(¢) that is an actual trajectory of a system from the family, i.e., is
such that

d =A
X0 = AWx(0)

Vt > 0 and certain matrix-valued function A(¢) taking all its values in I/.
Note that we can model a nonlinear dynamic system

%x(t) = f(@t,x()) [xeR"] (NLS)

with a given right-hand side f (¢, x) and a given equilibrium x(¢) = 0 (i.e., f(¢,0) =0, t >
0) as an uncertain linear system. Indeed, let us define the set I/, as the closed convex hull
of the set of n x n matrices {%f(t, x)|t>0,x € R"}. Then for every point x € R" we
have

1
f(t,x)= f(t,0) +f [ f(t,sx)] xds = Ac(t)x,
0

1
A (1) =/ L f(t,sx)ds € U.
0

We see that every trajectory of the original nonlinear system (NLS) is also a trajectory of
the uncertain linear system (ULS) associated with the uncertainty set I/ = U (this trick is
called global linearization). Of course, the set of trajectories of the resulting uncertain linear
system can be much wider than the set of trajectories of (NLS); however, all good news
about the uncertain system (like “all trajectories of (ULS) share such and such property’)
are automatically valid for the trajectories of the nonlinear system of interest (NLS), and
only bad news about (ULS) (“such and such property is not shared by some trajectories of
(ULS)”) may say nothing about the system of interest (NLS).

The basic question about a dynamic system is the one of its stability. For (ULS), this
question is as follows:

(?) Is it true that (ULS) is stable, i.e., that
x(t) —> 0ast - oo,
for every trajectory of the system?

A sufficient condition for the stability of (ULS) is the existence of a quadratic Lyapunov
function, i.e., a quadratic form £(x) = xT Xx with symmetric positive definite matrix X
such that

%E(x(t)) < —aL(x(1)) (4.4.24)

for certain @ > 0 and all trajectories of (ULS).
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LEMMA 4.4.1. Quadratic stability certificate. Assume (ULS) admits a quadratic Lyapunov
function L. Then (ULS) is stable.

Proof. 1f (4.4.24) is valid with some o > 0 for all trajectories of (ULS), then, by integrating
this differential inequality, we get

L(x (1)) <exp{—aL(x(0))} - 0ast — oo.

Since L(-) is a positive definite quadratic form, L£(x(¢)) — O implies that x(r) —
0. a

Of course, the statement of Lemma 4.4.1 also holds for nonquadratic Lyapunov func-
tions. All we need is (4.4.24) plus the assumption that £(x) is smooth and nonnegative
and is bounded away from 0 outside every neighborhood of the origin. The advantage of a
quadratic Lyapunov function is that we more or less know how to find such a function, if it
exists.

PROPOSITION 4.4.1. Existence of quadratic stability certificate. Ler U be the uncertainty
set associated with uncertain linear system (ULS). The system admits quadratic Lyapunov
function if and only if the optimal value of the semi-infinite®® semidefinite program

minimize s

S.1.

s, —ATX — XA > 0, VAel, (Ly)
X = I,

with the design variables s € R and X € S", is negative. Moreover, every feasible solution
to the problem with negative value of the objective provides a quadratic Lyapunov stability
certificate for (ULS).

Proof. The derivative % [xT(t)Xx(t)] of the quadratic function x” Xx along a trajectory
of (ULS) is equal to

d ! T d T T
[Ex(t):| Xx(t) +x" ()X I:Ex(t)] =x"TO[AT ()X + XA@D)]x ().

If x” X x is a Lyapunov function, then the resulting quantity must be at most —ax” (£) Xx (1),
i.e., we should have

xI(t) [—aX —AT()X — XA@®)]x(t) = 0

for every possible value of A(f) at any time ¢ and for every possible value x (¢) of a trajectory
of the system at this time. Since possible values of x (¢) fill the entire R” and possible values
of A(t) fill the entire U, we conclude that

—aX—-ATX—-XA>0 VAel.

26That is, with infinitely many LMI constraints.
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By definition of a quadratic Lyapunov function, X > 0 and « > 0; by normalization
(dividing both X and « by the smallest eigenvalue of X), we get a pair § > 0, X > I, such
that

X —-ATX-—XA>0 VAclU.
Since X > I,,, we conclude that
—§I, —ATX — XA > §X—ATX - XA>0 VAcl;

thus, (s = —§, X ) is a feasible solution to (Ly) with negative value of the objective. We have
demonstrated that if (ULS) admits a quadratic Lyapunov function, then (Ly) has a feasible
solution with negative value of the objective. Reversing the reasoning, we can verify the
inverse implication. a

Lyapunov stability analysis

We have just seen that to certify the stability of an uncertain linear system it suffices to
provide a feasible solution to (Ly) with a negative value of the objective. It should be
stressed that the existence of such a solution is only a sufficient condition for stability, and
if the condition is not satisfied (i.e., if the optimal value in (Ly) is nonnegative), then all we
can say is that the stability of (ULS) cannot be certified by a quadratic Lyapunov function,
although (ULS) still may be stable.?’ In this sense, the stability analysis based on quadratic
Lyapunov functions is conservative. This drawback, however, is in a sense compensated
by the fact that this kind of stability analysis is implementable: in many cases we can
efficiently solve (Ly), thus getting a quadratic stability certificate, provided that it exists, in
a constructive way. Let us look at two such cases.

Polytopic uncertainty set. The first tractable case of (Ly) is when U is a polytope given
as a convex hull of finitely many points:

U =Conv{Ay,..., An}.
In this case (Ly) is equivalent to the semidefinite program

man{s sl — Al X —XA; =0, i=1,....,N; X = I,}. (4.4.25)

(Why?)

The assumption that ¢/ is a polytope given as a convex hull of a finite set is crucial
for a possibility to get a computationally tractable equivalent reformulation of (Ly). If ¢/
is, say, a polytope given by a list of linear inequalities (e.g., all we know about the entries

2The only case in which the existence of a quadratic Lyapunov function is a criterion (i.e., a necessary and
sufficient condition) for stability is the simplest case of a certain time-invariant linear system %x(t) = Ax(t)
(U = {A}). This s the case that led Lyapunov to the general concept of what is now called a Lyapunov function and
what is the basic approach to establishing convergence of different time-dependent processes to their equilibria.
Note also that in the case of time-invariant linear system there exists a straightforward stability criterion—all
eigenvalues of A should have negative real parts. The advantage of the Lyapunov approach is that it can be
extended to more general situations, which is not the case for the eigenvalue criterion.
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9 x(t) 3(1) u(t) x(t) ¥(t)
X'(t) = Ax(t) + Bu(t) Yt)=Cx(t) = x'(t) = Ax(t) + Bu(t) ¥(t) = Cx(t)

=

b

u(t) = Ky(t)

Figure 4.6. Open-loop (left) and closed-loop (right) controlled systems.

of A(r) is that they reside in certain intervals; this case is called interval uncertainty), (Ly)
may become as hard as a problem can be: it may happen that just to check whether a given
pair (s, X) is feasible for (Ly) is already a computationally intractable problem. The same
difficulties may occur when U/ is a general-type ellipsoid in the space of n x n matrices.
There exists, however, a specific type of uncertainty ellipsoids U for which (Ly) is easy. Let
us look at this case.

Norm-bounded perturbations. In numerous applications the n x n matrices A forming
the uncertainty set{ are obtained from a fixed nominal matrix A, by adding perturbations of
the form BAC, where B € M™* and C € M"" are given rectangular matrices and A € M*/
is the perturbation varying in a simple set D:

U={A=A,+BAC| AeDcCM"'} [BeM" 0#CeM"]. (4.4.26)

As an instructive example, consider a controlled linear time-invariant dynamic system

d
X)) = Ax(@)+ Bu(1), 4497
¥ = Cx() (4.27)
(x is the state, u is the control, and y is the output we can observe) closed by a feedback
u(t) = Ky(@);
see Figure 4.6. The resulting closed-loop system is given by
d o N
Ex(t) = Ax(t), A=A+ BKC. (4.4.28)

Now assume that A, B, and C are constant and known, but the feedback K is drifting around
certain nominal feedback K,: K = K, + A. As a result, the matrix A of the closed-loop
system also drifts around its nominal value A, = A 4+ BK,C, and the perturbations in A
are exactly of the form BAC.

Note that we could get essentially the same kind of drift in A assuming, instead of
perturbations in the feedback matrix K, perturbations C = C, + A in the observer (or
similar disturbances in the actuator B).

Now assume that the input perturbations A are of spectral norm |A| not exceeding a
given p (norm-bounded perturbations):

D={AeM||A| <p). (4.4.29)
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PROPOSITION 4.4.2.2% In the case of uncertainty set (4.4.26), (4.4.29), the semi-infinite
semidefinite program (Ly) is equivalent to the usual semidefinite program

minimize Ky
o sly — ATX — XA, —AC"C | —pXB
- —pBTX | AL

> 0, (4.4.30)
X

Y
=

in the design variables s, 1, X.
When shrinking the set of perturbations (4.4.29) to the ellipsoid®®

E={AeM | AL = 4.431)

we do not vary (Ly): in the case of the uncertainty set (4.4.26), (Ly) is still equivalent to
(4.4.30).

Proof. 1t suffices to verify the following general statement.

LEMMA 4.4.2. Consider the matrix inequality
Y — QTATPTZTR—RTZPAQ > 0, (4.4.32)

where Y is symmetric n X n matrix, A is a k x | matrix, and P, Q, Z, R are rectangular
matrices of appropriate sizes (i.e., ¢ X k, |l X n, p X q, and p X n, respectively). Given
Y, P, Q, Z, Rwith Q # 0 (this is the only nontrivial case), this matrix inequality is satisfied
for all A with |A| < p if and only if it is satisfied for all A with ||All, < p, and this is the
case if and only if

Y —,0"Q | —pR"ZP
T5T >0
—pPTZTR| AL

for a properly chosen real A.

The statement of Proposition 4.3.17 is just a particular case of Lemma 4.4.2. For
example, in the case of uncertainty set (4.4.26), (4.4.29), a pair (s, X) is a feasible solution
to (Ly) if and only if X > [, and (4.4.32) is valid, whenever |A| < p, for Y = sI, —
AfX —XA,,P=B,0=C,Z=X,R =1I,. Lemma 4.4.2 provides us with an LMI
reformulation of the latter property, and this LMI is exactly what we see in the statement of
Proposition 4.3.17.

Proof of Lemma 4.4.2. The inequality (4.4.32) is valid for all A with |A] < p (letus
call this property of (Y, P, Q, Z, R) “Property 17) if and only if

208" RTZPIA[QE]l < §TYE VEER" V(A:|Al<p)

28, Boyd et al., Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994.
29This indeed is a “shrinkage”: |A| < ||A]l; for every matrix A (prove it!).
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or, which is the same, if and only if

max 2([[PTZ"REI"A[QE]] <&"YE VE e R™. (Property 2)

AAl=p

The maximum over A, |A| < p, of the quantity n” A¢, clearly is equal to p times the product
of the Euclidean norms of the vectors n and ¢ (why?). Thus, Property 2 is equivalent to

§'YE — 20| QE 12| PTZ"RE(2 20 VE €R". (Property 3)
Now the trick: Property 3 is clearly equivalent to the following.

Property 4. Every pair { = (£,1) € R" x R* that satisfies the quadratic
inequality

§0"08 —n"n=0 M
satisfies also the quadratic inequality

eTye —2on" PTZTRE > 0. (ID)

Indeed, for a fixed & the minimum over 7 satisfying (I) of the left-hand side in (II) is
nothing but the left-hand side in Property 3.

It remains to use the S-lemma. Property 4 says that the quadratic inequality (IT) with
variables &, n is a consequence of (I). By the S-lemma (recall that Q # 0, so that (I) is
strictly feasible!), this is equivalent to the existence of a nonnegative A such that

Y —pR"ZP o"o
<—pPTZTR g )_k< _ ) =0

which is exactly the statement of Lemma 4.4.2 for the case of |A| < p. The case of
perturbations with ||A|l, < piscompletely similar, since the equivalence between Properties
2 and 3 is valid independent of which norm of A —| - | or || - ||» — is used.

Lyapunov stability synthesis

We have seen that under reasonable assumptions on the underlying uncertainty set the
question of whether a given uncertain linear system (ULS) admits a quadratic Lyapunov
function can be reduced to a semidefinite program. Now let us switch from the analysis
question, whether a stability of an uncertain linear system may be certified by a quadratic
Lyapunov function, to the synthesis question, which is as follows. Assume that we are given
an uncertain open loop controlled system

Lyry = A@x@)+ BOu@),

y) = C@x(). (UOS)

All we know about the collection (A(¢), B(t), C(t)) of time-varying n x n matrix A(?),
n X k matrix B(t), and [ x n matrix C(¢) is that this collection, at every time ¢, belongs to
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a given uncertainty set /. The question is whether we can equip our uncertain open-loop
system (UOS) with a linear feedback

u(t) = Ky(r)

in such a way that the resulting uncertain closed-loop system
d
Ex(t) =[A(t) + B(t)KC(t)] x (1) (UCS)

will be stable and, moreover, such that its stability can be certified by a quadratic Lyapunov
function. In other words, now we are simultaneously looking for a stabilizing controller
and a quadratic Lyapunov certificate of its stabilizing ability.

With the global linearization trick we may use the results on uncertain controlled
linear systems to build stabilizing linear controllers for nonlinear controlled systems

f, x@),u)),
g(t, x(1)).

Lx(t)
y(@)

Assuming f(z,0,0) =0, g(z, 0) = 0 and denoting by I/ the closed convex hull of the set

0 ad ad
{(af(th’ M), a_uf(t7xa I/t), a_xg(t’x)>

tzO,xeR",ueRk},

we see that every trajectory of the original nonlinear system is a trajectory of the uncertain
linear system (UOS) associated with the set /. Consequently, if we are able to find a
stabilizing controller for (UOS) and certify its stabilizing property by a quadratic Lyapunov
function, then the resulting controller Lyapunov function will stabilize the nonlinear system
and will certify the stability of the closed-loop system, respectively.

Exactly the same reasoning as in the previous section leads us to the following.

PROPOSITION 4.4.3. Let U be the uncertainty set associated with an uncertain open-loop
controlled system (UOS). The system admits a stabilizing controller along with a quadratic
Lyapunov stability certificate for the resulting closed-loop system if and only if the optimal
value in the optimization problem

minimize s

S.1.

sl, V(A B Cyeu,
I,

[A+ BKCI'X + X[A + BCK]
X

1Y IA

in design variables s, X, K, is negative. Moreover, every feasible solution to the problem
with negative value of the objective provides a stabilizing controller along with a quadratic
Lyapunov stability certificate for the resulting closed-loop system.

Bad news about (LyS) is that it is much more difficult to rewrite this problem as a
semidefinite program than in the analysis case (i.e., the case of K = 0), since (LyS) is
a semi-infinite system of nonlinear matrix inequalities. There is, however, an important
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particular case where this difficulty can be overcome. This is the case of a feedback via
the full state vector—the case when y(¢) = x(¢) (i.e., C(¢) is the unit matrix). In this case,
all we need to get a stabilizing controller along with a quadratic Lyapunov certificate of its
stabilizing ability is to solve a system of strict matrix inequalities

[A+BK]"X +X[A+BK] < Z<0 Y(A,B)el,
X > 0. ’ ()

Indeed, given a solution (X, K, Z) to this system, we always can convert it by normalization
of X to a solution of (LyS). Now let us make the change of variables

Y=X'"L=kx'"'WwW=x"zx" [¢ex=Y" K==Ly Z=Y"'Wr'].

With respect to the new variables Y, L, K, system (¥*) becomes

[A+BLY Yy '+Yy A+ BLY'] < Y 'wy~!'<o,
Y1 = 0
¢
{LTBT+YAT+BL+AY < W=<0 V(A,B)el,
Yy >~ 0.

(We have multiplied all original matrix inequalities from the left and from the right by Y.)
What we end up with is a system of strict linear matrix inequalities with respect to our new
design variables L, Y, W; the question of whether this system is solvable can be converted
to the question of whether the optimal value in a problem of the type (LyS) is negative, and
we come to the following.

PROPOSITION 4.4.4. Consider an uncertain controlled linear system with a full observer:

Fx(@0) = AOx@® + B@u(),
y) = x@),

and letU be the corresponding uncertainty set (which now comprises pairs (A, B) of possible
values of (A(t), B(t)), since C(t) = I, is certain).
The system can be stabilized by a linear controller

ut) = Ky@) [=Kx(1)]

in such a way that the resulting uncertain closed-loop system

%x(;) =[A@®) + BO)K]x(@)

admits a quadratic Lyapunov stability certificate if and only if the optimal value in the
optimization problem

minimize )
S.1.
BL +AY + LTBT + YAT
Y

sI, Y(A,B)el, (Ly™)
17

1Y TA
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in the design variables s € R, Y € §", L € Mk s negative. Moreover, every feasible
solution to (Ly*) with negative value of the objective provides a stabilizing linear controller
along with a related quadratic Lyapunov stability certificate.

In particular, in the polytopic case,

U = Conv{(Ay, By), ..., (An, Bn)},
the quadratic Lyapunov stability synthesis reduces to solving the semidefinite program

min {s : BiL+ A;Y + YA + LTB <sl,, i=1,....N:Y > I,}.

4.4.3 Interval stability analysis and synthesis
Consider the problem of Lyapunov stability analysis in the case of interval uncertainty:
U=U,={AeM"" | |A;; — A5l < pDyj, i,j=1,...,n}, (4.4.33)

where A* is the nominal matrix, D # 0 is a matrix with nonnegative entries specifying
the scale for perturbations of different entries, and p > 0 is the level of perturbations.
How can we certify the stability of the corresponding uncertain dynamic system via a
quadratic Lyapunov function? Well, we are speaking about polytopic uncertainty, so that
finding a quadratic Lyapunov stability certificate is the same as finding a feasible solution
of the semidefinite program (4.4.25) with a negative value of the objective. The difficulty,
however, is that the number N of LMI constraints in this problem is the number of vertices
of the polytope (4.4.33), i.e., N = 2™, where m is the number of uncertain entries in our
interval matrix (= the number of positive entries in D). For 5 x 5 interval matrices with
full uncertainty, m = 25, i.e., N = 2% = 33, 554, 432, which is a bit too many; for fully
uncertain 10 x 10 matrices, N = 2'% > 1.2 x 10%. Thus, the brute force approach fails
already for small matrices affected by interval uncertainty.

In fact, the difficulty we encounter lies in the NP-hardness of the following problem:

Given a candidate Lyapunov stability certificate X > 0 and p > 0, check
whether X indeed certifies stability of all instances of U, i.e., whether X
solves the semi-infinite system of LMIs

ATX +XA<—1 VYAcl,. (4.4.34)

(In fact, we are interested in the system ATX + XA < OVA € U,, but this is
a minor difference—the system of interest is homogeneous in X, and therefore
every feasible solution of it can be converted to a solution of (4.4.34) just by
scaling X — tX.)

The above problem, in turn, is a particular case of the following problem.

Matrix Cube. Given matrices Ag, Ay, ..., A, € S" with Ag > 0, find the
largest p = R[Ay, ..., Ay : Aol such that the set

A= A=A+ zA | Izl < p} (4.435)

i=1
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—the image of the m-dimensional cube {z € R™ | ||z]lco < p} under the affine
mapping z — Ao+ YL, zi Ai—is contained in the semidefinite cone S',..

This is the problem we will focus on.

The main result. The problem Matrix Cube (MC for short) is NP-hard; this is true also
for the feasibility version MC, of MC, where, givena p > 0, we want to verify the inclusion
A, C S,. However, we can point out a simple sufficient condition for the validity of the
inclusion A, C 8", as follows.

PROPOSITION 4.4.5. Assume that the system of LMIs

@) X' =pA;, X'>=—pA;, i=1,...,m,
m

(b) SOX < 4y o)
i=1
in matrix variables X', ..., X™ € S" is solvable. Then A, C St
Proof. Let X', ..., X" be a solution of (S ). From (a) it follows that whenever ||z[lo < p,

we have X' > z; A; for all i, whence by (b)
A0+Zz,-A,-:A0—ZXi:O. O
i=1 i

Our main result is that the sufficient condition for the inclusion A, C §'| stated by
Proposition 4.4.5 is not too conservative.

THEOREM 4.4.1. If the system of LMIs (S,) is not solvable, then
Af?(u)p a Sﬁ-' (4.4.36)

Here

u = max Rank(A;)

1<i<m
(note i > 1 in the max!), and

0(k) < %% k>1, 00Q) = % 4.437)

Proof. Below ¢ ~ N(0, I,) means that ¢ is a random Gaussian n-dimensional vector
with zero mean and the unit covariance matrix, and p,(-) stands for the density of the
corresponding probability distribution:

Tu

pu(u) = )" exp {—MT} , ueR"
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Let us set

1

min {/|a,~u% 4+ +oeku,%|pk(u)du|a e RN, |||, = 1}

0(k) = (4.4.38)

Observe that 6 (k) is nondecreasing. It suffices to verify that
(i) With the just-defined 6(-), unsolvability of (S,) does imply (4.4.36).
(ii) 6(-) satisfies (4.4.37).

Let us prove (i).
1. Assume that (S,) has no solutions. This means that the optimal value of the
semidefinite problem

Xiszi’ Xi E—PAi,i=1,~-~7m7

m

ZX,-jAo-i-tI

i=l1

min { ¢
1{X'}

(4.4.39)

is positive. Since the problem is strictly feasible, its optimal value is positive if and only if
the optimal value of the dual problem

U+Vi=W,i=1,...,m,
Tr(W) = 1,

max {p Y Tr((U' — V']A;) — Tr(W Ag)
i1 UL, Vi,W =0

WU Vi)

is positive. Thus, there exist matrices U’, V¢, W such that

(a) U, Vi, W =0,
(b) U+Vi=Ww,i=12,...m,

m . ' (4.4.40)
(©) ,OZ Tr((U' — Vi]A;) > Tr(W Ay).
i=1

2. Now let us use the following simple lemma.
LEMMA 4.4.3. Let W, A € S", W > 0. Then

max  Tr([U — V]A) = max Te(XW'2AWY?) = |A(WZAW2))),.

U,V=0,U+V=W X=XT:|A(X)|lo<1
(4.4.41)

Proof. We clearly have
UV=0U+V=W&U=W72PW2Vv=w"2oW P 0>0,P+0=1,
whence

max Tr([U — V]A) = max Tr([P — QW2 AW /2.
u,v:U,v=0,U+V=W P,Q:P,0>0,P+Q=I
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When P, Q are linked by the relation P + Q = [ and vary in {P > 0, Q > 0}, the matrix
X = P — Q runs through the entire interval {—/ < X < I} (why?); we have proved the
first equality in (4.4.41). When proving the second equality, we may assume w.l.o.g. that
the matrix W'/2AW /2 is diagonal, so that Tr(XW'/2ZAW!/2) = AT (W!2ZAW'/?)Dg(X),
where Dg(X) is the diagonal of X. When X runs through the interval {—1 < X < I}, the
diagonal of X runs through the entire unit cube {||x||o < 1}, which immediately yields the
second equality in (4.4.41). ad

By Lemma 4.4.3, from (4.4.40) it follows that there exists W > 0 such that

0 Z MW 2A W), > Te(W 2 A, W12, (4.4.42)

i=1

3. Now let us use the following observation.

LEMMA 4.4.4. With &€ ~ N (0, 1,), for every symmetric n x n matrix A one has

(a) E {67 Ag} = Tr(A),

(4.4.43)
(b) E {167 A8} > s 1A (A1

Here E stands for the expectation with respect to the distribution of &.

Proof. (4.4.43)(a) is evident:

E{£74s) = > AE{&E;] = Tr(A).

i.j=1

To prove (4.4.43)(b), by homogeneity it suffices to consider the case when ||L(A)|; = 1.
Further, by rotational invariance of the distribution of £ we may consider the case when
A is diagonal and the first Rank(A) of diagonal entries of A are the nonzero eigenvalues
of the matrix. With this normalization, the required relation immediately follows from the
definition of 6(-). 0

4. Now we are ready to prove (i). Let & ~ A(0, I,,). We have

k m
E{pe(mZ@TW‘/ZAiW‘/Za} = D> POGE{|gT WA, W' 2g|)

i=1 i=1

pY (WA, W),

=
i=1
by (4.4.43)(b) due to Rank(W'/2A; W'/%)
< Rank(A;) < u, i > 1, and since 6(-)
is nondecreasing
> Tr(W/2A,W1/?) (by (4.4.42))

= Te(g"W'PAW'E), (by (4.4.43)(a))],
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whence

k

E {pew Do lETWRA W g — sTWWAost} > 0.

i=1

It follows that there exists r € R” such that
0GP Y IrTW AW P > W AW,
i=1

so that setting z; = —0 () psign(r” W'2A, W'/?r), we get

rTwl’2 (Ao + Zz,A,-) w2 <.

i=1

We see that the matrix Ag + Y i~ z; A; is not positive semidefinite, while by construction
1zlloo < 6(w)p. Thus, (4.4.36) holds true. Point (i) is proved.

To prove (ii), let & € R* be such that ||«||; = 1, and let
J = / |a1u% +--- 4 akuf|pk(u)du.

Let $ =[° ], andlet £ ~ N(0, I;). We have

2k k
> BiE?
i=1
On the other hand, let n; = %(gi — E4i), & = %(a +&.4),i=1,...,k, and let

> oBiE

i=1

k
Z ﬂi-&—k%—ia.k

i=1

} =2J. (4.4.44)

arm o111 | &1
o= : |.@= : o=
Ok Mk lot 1k | Sk
Observe that ¢ and w are independent and ¢ ~ N'(0, I;). We have

“{eel) -

2% k
D BE > i
i=1 i=1

} = 2E {|o ¢1} = 2E (]2} E (a1}

where the concluding equality follows from the fact that ¢ ~ A/ (0, I;) is independent of w.

We further have
2
E{|a|}=/|t|p1(r>dt= =

and

E{lwll2} = E{|ol2} > |E{&} |2 = [/ Itlpu(t)dt]
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Combining our observations, we come to

2k
4 4 4
E il'z > — |l = ——=|0||] = —F—=.
{;ﬁé} } el M/En I —

\

This relation combines with (4.4.44) to yield J > #ﬁ Recalling the definition of 6 (k), we

come to 6 (k) < %’;, as required in (4.4.37).
It remains to prove that 6(2) = 7. From the definition of 6(-) it follows that

B 2 _ 1 _oy,2 I
0 (2)—01;19121/|9u1 ¢! 9)uz|pz(u)du_Orsnelgl f©).

The function f () is clearly convex and satisfies the identity f(0) = f(1 —6),0 <6
1, so that its minimum is attained at # = 1. A direct computation says that f (%)

2
2, O

b

1A

COROLLARY 4.4.1. Let the ranks of all matrices Ay, ..., A,, in MC be < u. Then the
optimal value in the semidefinite problem

XiipAiv Xii—pAh i=1,...,m,
plAL, ..., Ayt Agl Z%’f ol in < A, (4.4.45)
i=1

is a lower bound on R[Aq, ..., A, : Ao), and the true quantity is at most 0(l) times (see
(4.4.38), (4.4.37)) larger than the bound:

OlAL, .o Ap : Aol < R[A1, ..., Ap 2 Aol < O(WP[ATL, ..., A : Aol.  (4.4.46)

Application: Lyapunov stability analysis for an interval matrix. Now we are equipped
to attack the problem of certifying the stability of uncertain linear dynamic system with
interval uncertainty. The problem we are interested in is as follows:

Interval Lyapunov. Given a stable n x n matrix A**® and an n x n matrix
D # 0 with nonnegative entries, find the supremum R[A*, D] of those p > 0
for which all instances of the interval matrix

Uy ={AeM"" :|A;; — Al < pDyj, i,j=1,...,n}

share a common quadratic Lyapunov function, i.e., the semi-infinite system of
LMIs

X>=1I; ATX+XA=<-1 VAel, (Ly[p])

in matrix variable X € S" is solvable.

30That is, with all eigenvalues from the open left half-plane or, which is the same, such that [A*]TX +XA* <0
for certain X > 0.
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Observe that X > [ solves (Ly,) if and only if the matrix cube

A X1 = {B =[-1 - [A*]"X — XA*]
AolX]
+ Z Zij [[DijEi'i]TX + X[DijEij]] lzijl < p, (G, )) € D}
(i.j)eD PR
D = {(G j):D; >0}

is contained in S” ; here E" are the basic n x n matrices. (ijth entry of EV is 1; all other
entries are zero.) Note that the ranks of the matrices A;;[X], (i, j) € D, are at most 2.
Therefore from Proposition 4.4.5 and Theorem 4.4.1 we get the following result.

PROPOSITION 4.4.6. Let p > 0. Then
(1) If the system of LMIs

X =1,
X' = —pDy; [[EV1"X + XEV], XU = pDy;; [[EVY]"X + XEV], (i, )) €D,
noo (Alp])
D XU < —I—[A]TX — XA*
(i,j)eD

in matrix variables X, X'/, (i, j) € D, is solvable, then so is the system (Ly[p]), and the
X-component of a solution of the former system solves the latter system. (ii) If the system
of LMIs (A[p]) is not solvable, then so is the system (Ly[”z—p]).

In particular, the supremum p[A*, D] of those p for which (Alp]) is solvable is a
lower bound for R[A*, D], and the true quantity is at most 5 times larger than the bound:

p[A*, D] < R[A*, D] < %p[A*, D].

Computing p[A*, D]. The quantity p[A*, D], in contrast to R[A*, D], is effi-
ciently computable: applying dichotomy in p, we can find a high-accuracy approximation
of p[A*, D] via solving a small series of semidefinite feasibility problems (A[p]). Note,
however, that problem (A[p]), although computationally tractable, is not that simple: in the
case of full uncertainty (D;; > 0Vi, j)ithas n? + n matrix variables of the size n x n each.
Our local goal is to demonstrate that one can use duality to reduce dramatically the design
dimension of the problem.

It makes sense to focus on the problem slightly more general than the one of finding
p[A*, D], namely, on the problem as follows:

(P) We are given m 4+ 1 n x n symmetric matrices Aolx], Ai[x], ..., Aulx]
affinely depending on vector x of design variables, with A;[x], i > 1, of the
form

Ailx] = a;[x1b] + bia] [x],
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where the vectors a;[x] are affine in x. Besides this, we are given an SDr set
X={x]| Px+Qu+r >0}

in the space of design variables. We want to find the supremum p, of those p
for which there exist x € X and matrices X L ., X™ such that

X' = pAilx], X' = —pAilx], i =1,....m,
X < Aol (4.4.47)

i=1

Note that the problem of computing p[A*, D] is exactly of this type, with a symmetric
n x n matrix X playing the role of x.
From now on, we make the following assumptions:

I.1. The system of LMIs
Px+ Qu+r >0, Aplx]>0,
is feasible.
1.2. For every i we have b; # 0 and aq;[x] #O0Vx € X
1.3. p, < +o0.

Note that in the problem of computing p[A*, D] 1.2 is trivially true, 1.1 means that
there exists X > I such that [A*]T X + XA* < —I, i.e., that A* is stable (which we have
assumed from the very beginning), and 1.3 requires p[A*, D] < 400, which is indeed
natural to assume.

Step 1. Given x such that Ap[x] > 0, consider the following semidefinite problem:

X' = pAilx], X' = —pAilx],i=1,...,m,

— LN . P
p(x) o Pl SO X7 < Aglx] (P[x])
i=1
Note that
Ox = sup  p(x). (4.4.48)
xeX,Ap[x]>=0

Since Ag[x] > 0, problem (P[x]) is strictly feasible with a positive optimal value, and since
Px < 00, the problem is bounded above. By the conic duality theorem, p(x) is the optimal
value in the problem

D T - VXD =1,
min Tr(WAO[x])’ i=1 )
WUl U VLY U'+vi=w,i=1,...,m,
W>=0,U >0,Vi>0
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dual to (P[x]). Since the optimal value p(x) in the problem is positive, by homogeneity
reasons we have

- Tr(W Ao[x]) = 1,
L max > Tr(U - V’]Ai[x])‘ U+Vi=w,
W>=0,U >=0,Vi=0

Invoking Lemma 4.4.3, we can carry out partial maximization in U i Vi thus coming to

p(1 )~ :Z AW 2 A L IW ) || Te(W Aglx]) = 1, W = o} L (4449
X

i=l1

Now let us make the following observation.

LEMMA 4.4.5. Let A = fg7 + ¢f7. Then ||L(A)]ly = 2/ £ 2llgll2-

Proof. Without loss of generality, we may assume that f = (u,0...,0)7, g =
(v,w,0,...,0)7. Then the eigenvalues of fg’ + gf7 are, up to a number of zeros,
2uv uw

the same as the eigenvalues of the 2 x 2 matrix [, """ 1. The eigenvalues of the latter ma-

trix are —uv + vu?v? + u?w?, and the sum of their absolute values is 2+/u2v? + u?w? =
21 fll2llgll2. a

Taking into account that for i > 1 we have
WA W2 = (W Pa W 2b)T + (W 2b) (W20 1x])”

and using Lemma 4.4.5, we can rewrite (4.4.49) as

ﬁ = 2max {Xi:,/af[x]Wai[x],/bini\Tr(WAO[x]) =1, W> 0,

or, which is the same,

[ _ ailx"Wailx] 7 _
M_nv}ii({ZZri‘Tr(WAo[x])_l, wzo,( . prp, ) 20 =Ly

(DIx])
(4.4.50)

Now we can look at the results of our effort. By definition, p(x) is the optimal value
in the semidefinite program (P[x]), which has a single scalar variable and m symmetric
matrix variables (i.e., totally %ﬂ) + 1 scalar decision variables) and 2m + 1 large (of
the size n x n each) LMIs. Equation (4.4.49) offers an alternative description of p(x),
which requires solving a much smaller semidefinite program—one with just m + "D
scalar decision variables, a single large LMI W > 0, and m small (2 x 2) LMIs! And this
(dramatic for large n, m) simplification was achieved in a completely mechanical fashion,
by a straightforward use of conic duality. Note that the problem of computing p(x) is
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important by its own right; for example, in the context of the interval Lyapunov stability
analysis this problem provides a bound (accurate within the factor 7) on the largest p such
that a given quadratic function is a stability certificate for all instances of Uf,,.

Note that our final goal is to maximize p(x) in x € X, and in this respect (4.4.50) is
not that useful—the problem (D[x]) is not a semidefinite program in W, x. To overcome this
drawback, we intend to pass from (D[x]) (this problem is, basically, the dual of our original
problem (P[x])) to its dual. At the first glance, this intention seems to be senseless: the dual
of the dual is the original problem! The essence of the matter is in the word “basically.”
(D[x]) is not exactly the dual of (P[x]); it was obtained from this dual by eliminating part of
the variables. Therefore we have no a priori understanding what will be the dual of (D[x]).
Well, let us look what it is.

Step 2. From Ap[x] > 0 combined with 1.2 it follows that the problem (D[x]) is strictly
feasible, and of course it is bounded above (since p(x) > 0). Therefore the quantity in the
right-hand side of (4.4.50) is equal to the optimal value in the problem dual to (D[x]):

> [Eailxla] x4+ nibib] | + Z = AAolx],

i=1
(5’ C’)io,izl,...,m,
& i
Z >0,

g“[:l,i:l,...,m

1
—— = min )»‘
o(x) MZ A& i G}

or, which is the same,

Z [—a,[x]aT[x + n;b; b; j| < AAolx], n; >0,i=1,...,m

i=1

1
= min
p(x)  rfm} {

(4.4.51)

Observing that when 7; are positive, the relation

[ 1 T T

Y| —ailxla] [x1+ mibib] | < ¥,

— L7
by the Schur complement lemma, takes place if and only if

Y - Znibib? alxl bl canll | o
[ai[x]; aalx]; . . . @ [x])" Diag(n1, ..., M)
we can rewrite (4.4.51) equivalently as
T . .
| _ ' Y = mibib| bl sanlall) o
—— = min A = -
p(x)  atmhy [ar[x]; aslx]; . .5 awlx])” Diag(n1, - - -, 1)
Y < XAolx]
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According to (4.4.48), we have
Px+ Qu+r >0,

T . . .
. ’ Y = nibib| lalel @l sanlal) o
— = inf A i=1 -
Pe AYoxuin [ai[x]; aolx]; .. .5 amx]]” Diag(n1, ..., )
Aolx] = 0,
Y < AAo[x]
(4.4.53)

The optimization problem in the left-hand side of the resulting representation of p, is not
exactly a semidefinite problem (due to the bilinear term A Ag[x] in the right-hand side of one
of the constraints). This is what is called a generalized eigenvalue problem. Note, however,
that the problem can be easily reduced to a small series of semidefinite programs. Indeed,
let A, be the (unknown) optimal value in the problem. Given a candidate value of A, to
verify that 1 > A, is the same as to verify that the optimal value in the semidefinite program

(a) Px+ Qu+r >0,
) Y - Z nibib! lanlxl @lel - sanlel) |
max S i=1 )
s ¥ox.u, (ni} lai[x]; aalx]; .. .5 amlx]]” Diag(ni, ..., Nm)
(© sI < Aglx],
(d Y 4+ 51 < AAplx]
(P*)

is positive. With this observation in mind, we can find A, applying bisection in A. At every
step of this process, we solve problem (P*) corresponding to the current value of A in order to
check whether this value is or is not > A,. This approach allows us to build a high-accuracy
approximation of A, = p—l* at the cost of solving a small series of problems (P*).

Let us look how the outlined approach works in the problem of computing p[A*, D].
Here x = X is a symmetric n x n matrix, Px + Qu +r = X — I, and m = Card(D) is the
total number of uncertain entries in our uncertain interval matrix. Consequently, problem
(P*) has two symmetric matrix variables X, Y, a single scalar variable s, and m < n? scalar
variables 7;, i.e., totally at most 2n? + n + 2 scalar design variables. As about LMIs, (P*)
has three large (n x n) LMISs (a), (c), (d) and one very large ((n + m) x (n + m)) LMI (b);
note, however, that this very large LMI is of a very simple structure. Thus, (P*) seems to
be much better suited for numerical processing than our original system (A[p]), where we
have totally W scalar design variables and m 4 1 LMIs of size n x n each.

REMARK 4.4.1. Note that our results on the Matrix Cube problem can be applied to the
interval version of the Lyapunov stability synthesis problem, where we want to find the
supremum R of those p for which an uncertain controllable system

d
Ex(t) =A()x(@) + B(H)u(t)
with interval uncertainty

(A1), B(1)) €U, = {(A, B) : |Aij — Ajj| < pDyj, |Bie — Byl < pCie Vi, j, £}
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admits a linear feedback
u(t) = Kx(t)

such that all instances A(t) + B(¢)K of the resulting closed-loop system share a common
quadratic Lyapunov function. Here our constructions should be applied to the semi-infinite
system of LMIs

Y>1I1, BL+AY+L"B" +YA" <1 V(A,B)el,

in variables L, Y (see Proposition 4.4.4) and then yield an efficiently computable lower
bound on R which is at most 7 times less than R.

Nesterov’s theorem revisited. Ourresults on the Matrix Cube problem give an alternative
proof of the Nesterov theorem (Theorem 4.3.2). Recall that in this theorem we compare the
true maximum

OPT = rn;lx{dTAd | ldlloo < 1}

of a positive semidefinite (A > 0) quadratic form on the unit n-dimensional cube and the
semidefinite upper bound

SDP = m)?x{Tr(AX) | X>0,X;;<1,i=1,...,n} (4.4.54)
on OPT; the theorem says that
OPT < SDP < %0PT. (4.4.55)

To derive (4.4.55) from the Matrix Cube-related considerations, assume that A > 0 rather
than A > 0 (by continuity reasons, to prove (4.4.55) for the case of A > 0 is the same as to
prove the relation for all A > 0) and let us start with the following simple observation.

LEMMA 4.4.6. Let A > 0 and

OPT = max {dTAd | ldlloo < 1}.

Then
L:max e 1 d >0 VY :|dls < p'? (4.4.56)
OPT . d A_] (- . 00 S
and
1 _ . ..
m:max{p:A '~X v(XeS :|X,~j|§p\7’z,])}. 4.4.57)
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Proof. To get (4.4.56), note that by the lemma on the Schur complement, all matrices of
the form (C'l :j,) with ||d||s < p'/? are > 0 if and only if d"(A~")"'d = d"Ad < 1Vd,
ldlloo < p'/?,i.e.,if and only if p - OPT < 1; we have derived (4.4.56). We now have

(a) b7 = P
¢ [by (4.4.56)]
1 47 12
d Afl > 0 V(d : ”d”oo =p )
¢ [the Schur complement lemma]

A7 > pdd" Y, |ldlls < 1)

¢
xTA x> p(d"x)? VxV(d : ||d|ls < 1)

(>
xTA7'x > pllx|I} Vx

Sl3
(b) AT'>=pY VY =YT Yyl < 1V, ),

where the concluding ¢ is given by the evident relation
x|l = max [xTYx: Y =Y" |y, <1Vi, j}.

The equivalence (a) < (b) is exactly (4.4.57). O

By (4.4.57) is exactly the maximum R of those p for which the matrix cube

’ OPT

CPZ A~ + Z z,,Sf|max|z,]|<p

1<l<j<l’l

is contained in §".. Here SV are the basic symmetric matrices. (S has a single nonzero
entry, equal to 1, in the cell ii, and §",i < j, has exactly two nonzero entries, equal to 1, in
the cells ij and ji.) Since the ranks of the matrices S*/ do not exceed 2, Proposition 4.4.5
and Theorem 4.4.1 say that the optimal value in the semidefinite program

XU = pSU, XU = —pSY, 1 <i<j<n,
p(A) = max { ZXU <A (S

i<j

is a lower bound for R, and this bound coincides with R up to the factor 7. Consequently,
p( 7y is an upper bound on OPT, and this bound is at most 7 times larger than OPT. It
remains to note that a direct computatlon (completely s1m11ar to the one that led us from

(P[x]) to (4.4.50)) demonstrates that — @ A) is exactly the quantity SDP given by (4.4.54).
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4.5 Applications IlI: Robust quadratic programming

The concept of a robust counterpart of an optimization problem with uncertain data (see
section 3.4.2) is in no sense restricted to LP. Whenever we have an optimization problem
depending on certain data, we may ask what happens when the data are uncertain and all we
know is an uncertainty set the data belong to. Given such an uncertainty set, we may require
candidate solutions to be robust feasible—to satisfy the realizations of the constraints for all
data belonging through the uncertainty set. The robust counterpart of an uncertain problem
is the problem of minimizing the objective®' over the set of robust feasible solutions.

Now, we have seen in section 3.4.2 that the robust form of an uncertain linear inequality
with the coefficients varying in an ellipsoid is a conic quadratic inequality; as a result,
the robust counterpart of an uncertain LP problem with ellipsoidal uncertainty is a conic
quadratic problem. What is the robust form of an uncertain CQI

lAx + b, <c"x+d  [AeM™ beR" ceR" deR] (4.5.58)

with uncertain data (A, b, ¢, d) € U? We want to know how to describe the set of all robust
feasible solutions of this inequality, i.e., the set of x’s such that

|Ax + bl <c’x+d V(A,b,c,d) €U. (4.5.59)

We are about to demonstrate that in the case when the data (P, p) of the left-hand
side and the data (g, r) of the right-hand side of the inequality (4.5.58) independently of
each other run through respective ellipsoids, i.e., the uncertainty set is of the form

U={(A,b,c,d)| JueR, uTu<l,veR vv<1):
I , (4.5.60)
[A: 0] = [A% 09+ Y i A B1], (e d) = (%, d%) + ) vi(eld) |

i=l1 i=1

then the robust version (4.5.59) of the uncertain inequality (4.5.58) can be expressed via
LMIs.

PROPOSITION 4.5.1. Robust counterpart of a conic quadratic inequality with simple
ellipsoidal uncertainty. In the case of uncertain conic inequality with uncertainty (4.5.60),
the set of robust feasible solutions of the inequality (4.5.59) is SDr with the following SDR:

3lwithout loss of generality, we may assume that the objective is certain—is not affected by the data uncertainty.
Indeed, we always may ensure this situation by passing to an equivalent problem with linear (and standard) objective:

mxin{f(x):xeX}Hr?ln{t:f(x)—tfo,xeX}.
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x satisfies (4.5.59) if and only if there exist real s, | such that the triple (x, s, i) satisfies
the following LMIs:

(a)
(Tx+d—s ‘ HTx +d! (Tx + d? Tx+d
HTx +d! (Tx+d° —s
(@)7x +d? ()x+d%—s > 0,
) Tx+d (Tx +d—5
(b)
sl, A% +b° | Alx+b' .. Alx 4+ b
[A%% + b017 s — 1
[ATx + 1T u > 0.
[Alx + b7 n

4.5.61)

Proof. Since the uncertain data of the left and the right sides in (4.5.58) run independently
through their respective ellipsoids, x satisfies (4.5.59) (let us call this Property 0) if and only
if the following holds.

(Property 1) There exists s € R such that

r T r
@ s < |:c°~|—2v,-c"i| x+d0+2vidi Yool <1,
i=1 i=1
1 1
b s > ‘|:A0+ZuiAi:|x+b0+Zuibi Yu:uTu < 1.
i=1 i=1 2

(4.5.62)

Now, the relation (4.5.62)(a) is equivalent to the conic quadratic inequality

[e"1"x +d!
29T 2
[CO]Tx+dO [C]X+d > s
[c1Tx+d /|,
(why?) or, which is the same (see (4.2.1)), to the LMI (4.5.61)(a).
Now let us set
p(x) = A% +b°eR™;
P(x) = [A'x+b' A2x +0%...; Alx +b'] e M.

The relation (4.5.62)(b) is nothing but

T

s>PXu+px))a Yu:u u <I;
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thus, it is equivalent to the fact that s > 0 and the quadratic form of u

s?2 = pT()p(x) —2p" () P(x)u — u” PT (x) P(x)u

is nonnegative whenever u”

neous quadratic form

u < 1. This, in turn, is equivalent to the fact that the homoge-

(s = pT @) p)t* = 2tpT (x) P(x)u — u” PT (x) P (x)u

of u,t (¢ € R) is nonnegative whenever u”u < t>. Applying the S-lemma, we conclude
that

(") Relation (4.5.62)(b) is equivalent to the facts that s > 0 and that there
exists v > 0 such that
(2 = pT ) p)Nt* = 2tpT () P(x)u — u” PT(x) P(x)u — v[t* —u"u] >0
V(u,t) e R' x R. (4.5.63)
We now claim that the quantity v in (!) can be represented as p.s with some nonnegative
(. There is nothing to prove when s > 0. Now assume that s = 0 and that (4.5.63) is

satisfied by some v > 0. Then v = 0 (look what happens when r = 1, u = 0), and so it can
be represented as us with, say, u = 0. Thus, we have demonstrated that

(") Relation (4.5.62)(b) is equivalent to the facts that s > 0 and that there
exists (u > 0 such that

s [(s — W+ ,LLMTM]
- [pT(x)p(x)t2 + 2tpT (x) P(x)u + uTPT(x)P(x)u] >0 V(u,t)

or, which is the same, such that
s (‘ - ,]> — (p@): PO [p(0): P12 0. (4564)

Now note that when s > 0, (4.5.64) says exactly that the Schur complement to the north-
western block in the matrix

sl | [p(x); P(x)]

) s—u (%)
[p(x); P(x)]" )

is positive semidefinite. By the Schur complement lemma, this is exactly the same as to say
that s > 0 and the matrix (¥) is positive semidefinite. Thus, in the case of s > 0, relation
(4.5.62) says precisely that there exists u such that (*) is positive semidefinite. In the case of
s = 0, relation (4.5.62) can be satisfied if and only if p(x) = O and P(x) = 0 (see (!!)). This
again is exactly the case when there exists a u such that (*) is positive semidefinite. Since
(*) can be positive semidefinite only when s > 0, we come to the following conclusion:

Relation (4.5.62)(b) is satisfied if and only if there exists |1 such that the matrix
() is positive semidefinite.

It remains to notice that (*) is exactly the matrix in (4.5.61)(b). O
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REMARK 4.5.1. We have built an explicit semidefinite representation of the robust version
of a conic quadratic inequality in the case of simple ellipsoidal uncertainty. In more compli-
cated cases (e.g., when b, c, d in (4.5.58) are not affected by uncertainty and the matrix A
is affected by interval uncertainty: all its entries, independently of each other, run through
given intervals), it may be computationally intractable already to check whether a given x
is robust feasible.

Example: Robust synthesis of antenna array. We have already considered the problem
of antenna array synthesis in the Tschebyshev setting, i.e., when the discrepancy between
the target diagram and the designed one is measured in the uniform norm (section 1.2.4). We
have also seen that the solution to the resulting LP problem may be extremely unstable with
respect to small implementation errors, and furthermore we have shown how to overcome
this difficulty by switching from the nominal design to the one given by the robust counterpart
methodology (section 3.4.2). Now, what happens if we replace the uniform norm of the
discrepancy with the || - |[2-norm, i.e., define the optimal design as the optimal solution x}
to the usual least squares problem

1
min 12, =3 6 Zilh = | 5 2 (Ze0) = 352,00 ¢ (LS)
J

oeT j

where N is the cardinality of the grid 7?
Note that the factor # under the square root does not influence the least squares
solution. The only purpose of it is to make the figures comparable with those related to the

case of the best uniform approximation: with our normalization, we have
1Ze = % Zill < 1Ze = x;Zjlloo
J J

for every x.
(LS) is just a linear algebra problem; assuming Z..(-), Z;(-) real, its optimal solution
x* is exactly the solution to the normal system of equations

(AT A)x = ATb,

where b = JLN(Z* ), ... Z.(Ox))T and A is the matrix with the columns ﬁ(zj ®01), ...,
Z;Ou)".

Now let us check the stability properties of the least squares solution. Consider exactly
the same design data as in sections 1.2.4 and 3.4.2 and assume that the actual amplification
coefficients x; are obtained from their nominal values x7 by random perturbations x7
x;j = pjx;, where p; are independent random factors with expectations 1 taking values
in the segment [0.999, 1.001]. Based on our previous experience (see section 3.4.2), we
should not be too surprised by the fact that these stability properties are extremely poor, as
seen in Fig. 4.7. The reason for instability of the nominal least squares solution is, basically,
the same as in the case of the nominal Tschebyshev solution. The system of basic functions
Z; is nearly linearly dependent. (This unpleasant phenomenon is met in the majority of
approximation problems arising in applications.) As aresult, the normal system of equations
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Figure 4.7. Dream and reality: the nominal diagram (left, solid line) and an
actual diagram (right, solid line). Dashed lines are the target diagram. The target diagram
varies from 0 to 1, and the nominal diagram (the one corresponding to x; = x;'.‘ ) is at the
| - l2-distance 0.0178 from the target diagram. An actual diagram varies from ~ —30 to
~ 30 and is at the || - ||»-distance 20.0 (1124 times larger!) from the target.

becomes ill conditioned, and its solution has large entries. And of course even small relative
perturbations of very large nominal amplification coefficients may cause and do cause huge
perturbations in the actual diagram.

To resolve the difficulty, let us use the robust counterpart methodology. What we are
solving now is a conic quadratic inequality, so that we may use the results of this section.
The question, however, is how to define a reasonable uncertainty set. Let us look at this
question for a general CQI

|Ax + bl <c'x+d (CQDH

with m x n matrix A, assuming, as is the case in our antenna example, that the uncertainty
comes from the fact that the entries x; of a candidate solution are affected by noise:

Xj = )Cj(l +Kj6j), (4565)

where €y, ..., €, are independent random variables with zero means and unit standard
deviations, and x; > 0 are (deterministic) relative implementation errors.

What is a reliable version of the inequality (CQI) in the case of random perturbations
(4.5.65) in x? Note that it is the same—to view the data A, b, ¢, d in (CQI) as fixed and to
consider perturbations in x, and to think that there are no perturbations in x, but the data
in (CQI) are perturbed equivalently. With this latter viewpoint, how could we define an
uncertainty set U so that the robust counterpart of the uncertain conic inequality

lA'x +b 0, < (Tx+d YA, b,c,d)el

would be a reliable version of (CQI)?

The question we have posed is not a purely mathematical question. It has to do with
modeling, and modeling—description of a real-world situation in mathematical terms—is
always beyond the scope of the mathematics itself. It follows that in our current situation we
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are free to use whatever arguments we want—detailed (and time-consuming) mathematical
analysis of the random variables we are dealing with common sense, spiritualism, and so
forth. Proof of our pudding will be in the eating—testing the quality of the resulting robust
solution.

Since we do not have much experience with spiritualism, and a detailed mathematical
analysis of the situation does not seem to be simple, we prefer to rely on common sense,
namely, to choose somehow a safety parameter w of order of 1 and to utilize the following
principle:

A nonnegative random variable is never larger than w times its expected value.

Put more mildly, we intend to ignore rare events—those where the above principle is violated,
and to take on ourselves full responsibility for the remaining events.

Equipped with our principle, let us build a reliable version of (CQI) as follows. First,
we separate the influence of the perturbations on the left and right sides of our inequality.
Namely, the value of the right-hand side ¢’y + d at a randomly perturbed x—i.e., at a
random vector y with the coordinates

Yj =Xj T KjXj€)
—is a random variable of the form
c'x+d+ n,

1 being a zero mean random variable with standard deviation V'!/2(x), where
Vx) = Z rixd. (4.5.66)
j=1

According to our principle, the value of the right-hand side in (CQI) is never less than the
quantity

Rx)=c'x+d—wV'?(). (4.5.67)

It follows that if we ensure that the value of the left-hand side in (CQI) is never larger than
R(x), then the perturbations in x never result in violating of (CQI). This scheme is a bit
conservative (it may happen that a perturbation that increases the left-hand side of (CQI)
increases the right-hand side as well), but this is life—we want to get something tractable
and thus can afford to be conservative. Recall that at the moment we are not obliged to be
rigorous!

Now we came to the following situation. We would like R(x) to be a reliable upper
bound on the values of the left-hand side in (CQI), and this requirement on x will be the
reliable version of (CQI). Now, what are typical values of the left-hand side of (CQI)? These
are the Euclidean norms of the random vector

z=z(x)+¢=Ax+b+¢,

where

n
¢ = E KjXj€jA;
=1
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(A; are the columns of A). Note that the vector ¢ is a random vector with zero mean. For
a given x, let e be the unit vector collinear to the vector Ax + b. We have

2 2 2
lzll3 = I3 + 11l

where [, is the length of the projection of z on the line spanned by e and ¢, is the projection
of z (or, which is the same, of ¢) onto the orthogonal complement to this line.
We have ||, ||§ < ¢ ||%, and the expected value of ||¢ ||§ is

Sy =Y Sjxi. Sj=kiALA;. (4.5.68)
j=1

According to our principle, ||Z, | is never greater than wS'/?(x).

Now let us find a never-type upper bound for /,—for the length of the projection of
z onto the line spanned by the vector Ax 4 b (or, which is the same, by the unit vector e).
‘We have, of course,

L] < lAx + bl + le" ¢].

Now, e ¢ is the random variable

m

n n m
e é‘ = a,'jein.Xjéj = aijei I(ijEj

i=1 j=I j=1 Li=1

with zero mean and the variance

m 2
v = Xn: |:Kj Za,'je,'i| sz-. (4.5.69)

j=1 i=1

To end up with tractable formulae, it is desirable to bound from above the latter quantity by
a simple function of x. (This is not the case for the quantity itself, since e depends on x in
a not that pleasant way!) A natural bound of this type is

201,112
v<o7xll%.

where

o = |ADiag(k1, . . ., k»)| (4.5.70)

and |- | is the operator norm. Indeed, the coefficients of x]z in (4.5.69) are the squared entries

of the vector Diag(k1, ..., k,) AT e, and since e is unit, the sum of these squared entries does
not exceed o2,
According to our principle, the absolute value of e’ ¢ never exceeds the quantity

@0 || x| c-

Combining all our observations, we conclude that ||z||, never exceeds the quantity

L) =\l Ax + blla + 00l + 0?5(x).
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Consequently, the reliable version of (CQI) is the inequality L(x) < R(x),i.e., the inequality

oV'2(x) + VIl Ax + bl + 00 |[x [l + @?S(x) < ¢"x +d,

o = |ADiag(ky, ..., k)|,
S = Y WATA, 4.571)
j=l1 :
Vix) =

2.2..2
Z"jc.ixj
j=1

The resulting inequality is indeed tractable—it can be represented by the following system
of linear and CQIs:

h+t < c'x+d;
o|Wxl, =< 1,
W = Diag(kicy, k2€2, - -+, KnCy);
||Ax+b||2 < s 4.5.72)
lxi|l < s, i=1,...,n o
S1 + wosy
<
250, = -
D = Diag(|1]l|Atll2, [l A2ll2, - - -, l&al [l Anll2),

where ¢, 15, §1, 5> are additional design variables.

It is worth mentioning—just for fun!—that problem (4.5.72) is, in a sense, the robust
counterpart of (CQI) associated with a specific ellipsoidal uncertainty.

Indeed, we can rewrite (CQI) equivalently as the following crazy system of inequalities
with respect to x and additional variables #;, 15, 51, $2:

h+th < x+d;
[Diag(ai, ..., a)xlls < 1t
o =0, =0,...,0, =0;
lAx +Dbll2 < 13
x| < s, i=1,...,m 4.5.73)
H( . 51+ Bosz ) < b
Dlag(ﬂlaﬂ27‘~'aﬂl’l)x 2

Bo=0,=0,....,8,=0.

Now assume that the data «;, §; in this system are uncertain, namely, linearly depend on
perturbation u varying in the segment [—1, 1] (ellipsoidal uncertainty!):

af = lwkclu, i=1,...,n,
Bo = lwolu,
Bi = lolkllAilldu, i =1,...,n.

It is easily seen that the robust counterpart of (4.5.73)—which is, basically, our original
conic inequality (CQI)—is exactly (4.5.72). Thus, (4.5.72) is the robust counterpart of
(CQI) corresponding to an ellipsoidal uncertainty, and this uncertainty affects the data that
are not present in (CQI) at all!
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Figure 4.8. Dream and reality: the nominal least squares diagram (left, solid line)
and an actual diagram yielded by robust least squares (right, solid line). Dashed lines are
the target diagram.

What about the pudding we have cooked? Is this approach working for our antenna
synthesis problem? It works fine! Look at Fig. 4.8 (safety parameter @ = 1). The robust
optimal value in our uncertain least squares problem is 0.0236 (approximately 30% larger
than the nominal optimal value 0.0178—the one corresponding to the usual least squares
with no implementation errors). The || - ||,-distance between the target diagram and the
actual diagram shown on the picture is the same 0.0236. When generating a sample of
random diagrams yielded by our robust least squares design, this distance varies only in
the fourth digit after the dot. In a sample of 40 diagrams, the distances to the target varied
from 0.0236 to 0.0237. And what happens when in the course of our design we thought that
the implementation errors would be 0.1%, while in reality they are 1% (10 times larger)?
Nothing bad: now the || - ||,-distances from the target in a sample of 40 diagrams vary from
0.0239 to 0.0384.

4.6 Applications IV: Synthesis of filters and antennae
arrays
Consider a discrete time linear time invariant SISO (single input-single output) dynamic

system (cf. section 1.2.3).>> Such a system H takes as input a two-sided sequence of reals
u(-) = {u(k)};2 _ ., and converts it into an output sequence Hu(-) according to

oo

Huk) = Y uDhk —1),

I=—00

where h = {h(k)}2_, is areal sequence characteristic for {—the impulse response of H.
Let us focus on the case of a filter—a causal system with finite memory. Causality means

32The models to be presented in this section originate from S.-P. Wu, S. Boyd, and L. Vandenberghe, FIR filter
design via spectral factorization and convex optimization, Biswa Datta, ed., in Applied and Computational Control,
Signal and Circuits, Birkhauser, Basel, 1997, pp. 51-81.
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that i (k) = O for k < 0, so that the output Hu at every time k is independent of the input
after this time, while the property to have memory n means that 4(k) = O for k > n, so
that Hu(k), for every k, depends on the n inputs u(k), u(k — 1), ..., u(k —n + 1) only.
Thus, a filter of order n is just a sequence h = {h(k)}32_., with h(k) = O for all negative
k and all k > n. Of course, a filter {(k)}{2_., of order n can be identified with the vector
h = (h(0),...,h(n —1)T e R".

A natural way to look at a filter /(-) of order n is to associate with it the polynomial

n—1
hz)y =Y h)y7"
=0

As any other polynomial on the complex plane, his completely determined by its restriction
on the unit circumference |z| = 1. This restriction, regarded as 27 -periodic function of real
variable w,
n—1
H(w) = h(explio}) = Z h(l) explilw}
1=0

is called the frequency response of the filter 4(-). The frequency response is just a trigono-
metric polynomial (with complex coefficients) of w of degree < n — 1.

The meaning of the frequency response is quite transparent: if the input to the filter
is a harmonic oscillation

u(k) = RN(aexpliwk}) = |a|cos(wk + arg(a)) [a € C is the complex amplitude],

then the output is

00 n—1
Huk) = Y uht—1) =Y huk—1)
I|=—00 =0
n—1
= %N (Z h(l)a explio(k — z)}> = % (H(—w)a expliok)) .
=0

Thus, the output is a harmonic oscillation of the same frequency as the input, and the
complex amplitude of the output is H(—w) times the complex amplitude of the input.
Thus, the frequency response says how the filter affects a harmonic oscillation of certain
frequency w: the filter multiplies the real amplitude of the oscillation by |H (—w)| and
shifts the initial phase of the oscillation by arg(H (—w)). Since typical inputs of interest
can be decomposed into sums of harmonic oscillations, typical design specifications in filter
synthesis problems have to do with the frequency response—they prescribe its behavior on
a segment A € [—m, w]. Note that the coefficients 4(/) of the filter are real, so that the
frequency response possesses an evident symmetry:

H(-w) = H"(w),

where z* denotes the complex conjugate of a complex number z. Consequently, it suffices
to specify the behavior of a frequency response on the segment [0, ] only.
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The simplest type of design specifications would be to fix a target function F(w),
0 < w < 7, and to require H to be as close as possible (e.g., in the uniform metric) to the
target. This would result in a Tschebyshev-type problem

n—1
min | max |F () —Zh(l)exp{ilwﬂ}

O<w<m
1=0

in the (real) design variables #(0), ..., h(n — 1). After discretization in w, we end up with
a simple conic quadratic (or even an LP) program.

The outlined design specifications are aimed at prescribing both what a filter does
with the real amplitudes of harmonic oscillations and their initial phases. However, in
most applications the only issue of interest is how the filter affects the real amplitudes of
harmonic oscillations of different frequencies, not how it shifts the phases. Consequently,
typical design specifications prescribe the behavior of |H (w)| only, e.g., require from this
function to be between two given bounds:

L) = |H)| =U(), 0 =w=m. (B)

For example, when designing a low-pass filter, we wish to reproduce exactly the amplitudes
of oscillations with frequencies below a certain level and to suppress oscillations with
frequencies higher than another prescribed level, i.e., the specifications are like

l-e<|Hw)| <14+e0<w<w, |Hw|<ew<w<m.

When trying to process the constraint of the latter type, we meet with a severe difficulty:
| H (w)] is not a convex function of our natural design parameters 4(0), ..., h(n — 1). There
is, however, a way to overcome the difficulty. It turns out that the function |H (w)|* can
be linearly parameterized by properly chosen new design parameters, so that lower and
upper bounds on |H (w)|? become linear (and thus tractable) constraints on the new design
parameters. And of course it is the same to impose bounds on |H (w)| or on | H (w)|>.

A proper parameterization of the function R(w) = |H (w)|? is very simple. We have

n—1

H(w) =Y h(l) explilw)
=0

I

n—1 n—1 n—1

R@) = | Y _h(p)explipo} | | D h(@) expl—igo} | = Y rd)explilo},

p=0 g=0 I=—(n-1)

ry =Y _hi +q)h(q).
q

The reals {r(l)}}l;l(nf ) (they are called the autocorrelation coefficients of the filter h) are
exactly the parameters we need. Note that

r(=1) =Y h(=l+q@h(q) =Y h(p)h(p+1) =r),
g T p

p
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so that

n—1 n—1

R)= Y rh)explilw)} =r©0)+2) r()cosw).

I=—(n—1) I=1

Thus, R(-) is just an even trigonometric polynomial of degree < n — 1 with real coefficients,
and r(-) are, essentially, the coefficients of this trigonometric polynomial.

The function R(w) = |H(w)|? is linearly parameterized by the coefficients r(.),
which is fine. These coefficients, however, cannot be arbitrary: not every even trigono-
metric polynomial of a degree < n — 1 can be represented as |H (w)|? for certain H(w) =
27;01 h(l) exp{ilw}! The coefficients r = (r(0), 2r (1), 2r(2), ..., 2r(n — 1))T of proper
even trigonometric polynomials R(-)—those that are squares of modulae of frequency
responses—form a proper subset R in R", and to handle constraints of the type (B), we
need a tractable representation of R. Such a representation does exist, due to the following
fundamental fact.

PROPOSITION 4.6.1. Spectral factorization theorem. A trigonometric polynomial

n—1

R(w) = ap + Z(al cos(lw) + b; sin(lw))
=1

with real coefficients ay, ..., a,_1, b1, ..., b,_1 can be represented as
n—1 2
> h(D) explilow) (%)
1=0

for properly chosen complex h(0), h(1), ..., h(n — 1) if and only if R(w) is nonnegative
on [—m, w]. An even trigonometric polynomial R(w) of degree < n — 1 can be represented
in the form (*) with real h(0), ..., h(n — 1) if and only if it is nonnegative on [—m, 7] (or
which is the same, on [0, 7 ]).

Postponing the proof of Proposition 4.6.1 until the end of this section, let us look first
at the consequences. The proposition says that the set R € R" of the coefficients of those
even trigonometric polynomials of degree < n — 1 that are squares of modulae of frequency
responses of filters of order n is exactly the set of coefficients of those even trigonometric
polynomials of degree < n — 1 that are nonnegative on [—m, ]. Consequently, this set is
SDr with an explicit semidefinite representation (example 21c, section 4.2). Thus, passing
from our original design variables 4 (0), . .., h(n — 1) to the new design variables r € R, we
make the design specifications of the form (B) a (semi-infinite) system of linear constraints
on the design variables varying in a SDr set. As a result, we get a possibility to handle
numerous filter synthesis problems with design specifications of the type (B) via SDP. Let
us look at a couple of examples.

Example 1: Low-pass filter. Assume we are given a number of (possibly overlapping)
segments Ay C [0, 7],k =1, ..., K, along with nonnegative continuous functions Sy (w),
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Ty (@) (Sk(w) < Ty(w)) defined on these segments, and our goal is to design a filter of
a given order n with |H (w)|? being at every segment A; as close as possible to the strip
between Sy and 7;. Since a natural measure of closeness in filter synthesis problems is the
relative closeness, we can pose the problem as

mi {e : Sc) < |H)?< (U +6e)Ti(w) YoeA, VYk=1,..., K} . (P)
€.H() (I1+¢)
For example, when dealing with two nonoverlapping segments A; = [0, ] and A, =
[w, 7] and setting S} = T; = 1, S, = 0, T, = B, with small positive 8, we come to the
problem of designing a low-pass filter: | H (w)| should be as close to 1 as possible in A} and
should be small in A,.

In terms of the autocorrelation coefficients, problem (P) reads

minimize €
s.t.

n—1
(@) 88i(w) < R(w) =r(0)+ 22 r(Dcos(lw) < (1+e6)Ti(w) Yo e Ay,

=1

k=1,...,K;
(b) d1+e) = 1,
(©) d,e = 0,
(d) r € R.
(P)

Indeed, (a)—(c) say that

1+6Sk(w) <Rl =<U+eTi(w), we Ay, k=1,...,K,
while the role of the constraint (d) is to express the fact that R(-) comes from certain filter
of order n.

Problem (P’) is not exactly a semidefinite program—the obstacle is that the constraints
(a) are semi-infinite. To overcome this difficulty, we can use discretization in w (i.e., can
replace each segment A; by a dense finite set of its points), thus approximating (P) by a
semidefinite program. In many cases we can even avoid approximation. One such case is
when all Sy and 7; are trigonometric polynomials. As we know from example 21c, section
4.2, the restriction that a trigonometric polynomial R(w) majorates (or is majorated by)
another trigonometric polynomial is an SDr constraint on the coefficients of the polynomials,
so that in the case in question the constraints (a) are SDr restrictions on r, 8, €.

Another formulation of the low-pass filter problem is obtained when instead of min-
imizing the relative uniform distance between |H (w)|? and given targets we minimize the
relative || - ||,-distance. A natural form of the latter problem is

minimize €
S.t.
Tem Sk @ < H@)P < (1+ea@)Ti(o), e Ay,
k=1,...,K;
ﬁfmf}%(w)da) < € k=1,...,K.
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Figure 4.9. Linear array of equidistant harmonic oscillators.

After discretization in w—replacing A by a finite set 2; C A;—we can pose the problem
as the semidefinite program

minimize €
s.t.
n—1
k(@) Sk(w) < R(w) = r(0) —i—ZZ rihcos(lw) < (1 + (w)Ti(w) Yo € 4,
I=1
k=1,...,K;
Si@)(1 +e(w) > 1, Yo € 4,
k=1,...,K;
Si(w), 1+ e(w) > 0, Yo € 4,
k=1,...,K;
\/Cardl(ﬂk)zelg(w) < € k=1,...,K;
WE
r e R.

Example 2. Synthesis of array of antennae. Consider a linear array of antennae (see
section 1.2.4) made up of n equidistantly placed harmonic oscillators in the plane XY
(Fig. 4.9). We can easily see that the diagram of the array depends on the angle 6 between
the direction in question and the line where the oscillators are placed and is given by

n—1

Z(0) = Zzl exp{—ilQ(0)}, Q@O) = —? cosf,
1=0

where 29, 21, . . ., Zn—1 are the (complex) amplification coefficients of the oscillators and A
is the wavelength.



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

216 Lecture 4. Semidefinite Programming

In our previous antenna synthesis considerations, we were interested in the case when
the design specifications were aimed to get a diagram as close as possible to a given target
diagram Z,(6). In fact, what is of interest in many antenna synthesis problems is only
the modulus | Z ()| of the resulting diagram (| Z(6)|? is responsible for the energy sent by
antenna in a direction ). In these situations we are interested in a prescribed behavior of
the function |Z(0)|. Here again Proposition 4.6.1 is the key for handling the problem via
convex optimization. Indeed, defining the function

n—1
H(w) =) zexplilo},
=0

we get a frequency response of a complex filter 2 = {h(l) = z,};’;ol such that
Z(®) = H(2(0)).

It follows that to impose restrictions, like upper and lower bounds, on the function |Z(0)],
0 < 60 < &, is the same as to impose bounds of the same type on the function |H (w)| in the
segment A of values taken by €2(6) when 6 varies from 0 to 7. Assuming (this is normally
the case) that A > 2d, we observe that the mapping 6 +— 2(0) is a one-to-one from the
segment [0, 7] to a certain segment A C [—m, 7], so that design specifications on |Z(6)|
can be easily converted to design specifications on | H (9)|. For example, building a diagram
with | Z(0)| as close as possible to given stripes can be formulated as the problem

min {e: T=Sk@) < R@) < (1 +)Ti(w) Vo €Ay, k=1,....K},
€,r(-

n-l (Pc)
R(w) = |H)|? = Z r(1) explilw}.

I=—(n—1)

The only differences between (P¢) and problem (P) we investigated in Example 1 is that
now the autocorrelation coefficients correspond to complex amplification coefficients z;—
the actual design variables—through the relation

n—1
rk) = Zz}“sz
1=0

and are therefore complex; clearly, these complex coefficients possess the symmetry
r(=k)y=r*(k), |kl <n—1,

reflecting the fact that the function R(w) is real-valued. This function, as it is immediately
seen, is just a real trigonometric polynomial (now not necessarily even) of degree < n — 1:

n—1

R(@) = p(0) + Y _(p2l — 1) cos(lw) + p(21) sin(lw))
I=1
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with real vector of coefficients p = (0(0), ..., p(2n — 2))T € R¥"~!. The vector of these
coefficients can be treated as our new design vector. Invoking again Proposition 4.6.1, we
see that such a vector gives rise to a function R(w) which indeed is of the form |H (w)|?,
H(w) = 7:01 ryexp{ilw), if and only if the trigonometric polynomial R(-) is nonnegative
on [—m, r]. As we remember from example 21c, section 4.2, the set C of the vectors of
coefficients p of this type is SDr.

In view of the outlined observations, problem (Pc) can be posed as a semi-infinite
semidefinite program in exactly the same way as problem (P), and this semi-infinite program
can be approximated by (or sometimes is equivalent to) a usual semidefinite program.
For example, approximating segments A; by finite grids €2;, we approximate (Pc) by the
semidefinite program

minimize €
S.t.

n—1
38k (@) < R(w) = p(0) + Z (b2l —1)cos(lw) + p2D) sin(lw)) = (1 +€)Tx(w)
=1
Yo e Qi k=1,...,K;
§(1+¢€)>1,
S5, >0,
peC,

in the design variables 8, € and p = (0(0), ..., p(2n —2))T € R\

Proof of Proposition 4.6.1. Let us first prove that a real trigonometric polynomial

n—1
R(w) = co + Z(a; cos(lw) + b; sin(lw))
I=1
can be represented as | Z;:ol h(l) exp{ila)}|2 with some complex coefficients i (/) if and
only if R(-) is nonnegative on [—, w]. The necessity is evident, so let us focus on the
sufficiency. Thus, assume that R is nonnegative, and let us prove that R admits the required
decomposition.

1. It suffices to prove the announced statement in the case when R(w) is strictly
positive on [—r, 7] rather than merely nonnegative. Indeed, assume that our decomposition
is possible for positive trigonometric polynomials. Given a nonnegative polynomial R, let
us apply our assumption to the positive trigonometric polynomial R(w) + €, € > 0:

2

n—1
R(w) +e€ = Z he(l) explilw)| .
1=0
From this representation it follows that
n—1

cote=) lhDP,

1=0
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whence the coefficients i, (/) remain bounded as ¢ — +0. Taking as 4 an accumulation
point of the vectors k. as € — 40, we get

n—1 2

> h(l) explilo)

=0

R(w) =

’

as required.
2. Thus, it suffices to consider the case when R is a positive trigonometric polynomial.
And of course we may assume that the degree of R is exactly n — 1, i.e., that aﬁ_l —i—bﬁ_l > 0.
We can rewrite R in the form

n—1
R = Y r(hexplilo): (4.6.74)
I=—(n—1)
since R is real-valued, we have
r()y =r*(=0, |ll<n-1 (4.6.75)

Now consider the polynomial

n—1

PRy =z""1 > ro

I=—(n—1)

This polynomial is of degree 2(n — 1), is nonzero at z = 0, and has no zeros on the
unit circumference (since | P (exp{iw})| = R(w)). Moreover, from (4.6.75) it immediately
follows that if A is a root of P(z), then also (A*)~! is a root of the polynomial of exactly the
same multiplicity as A. It follows that the roots of the polynomial P can be separated into
two nonintersecting groups: (n — 1) roots A;, [ = 1,...,n — 1, inside the unit circle and
(n — 1) roots 1/A} outside the circle. Thus,

n—1 n—1
P(z) =« |:l_[(z - kz)} [H(z - 1/)»?‘)} .
=1 =1

Moreover, we have

n—1 n—1 n—1 -1
RO) = P =c][[( =21 —1/2)] =a(=1)"" []_[Il—)\zlz] [l‘[k}“} ,
=1

I=1 I=1

and since R(0) > 0, the number

n—1 -1
a(—1)"! [H xj}
=1
is positive. Denoting this number by B2, let us set

n—1 n—1
H(w) = B[] (explio) = 1) = Y h(D) explile).
I=1 =0
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Figure 4.10. A simple circuit. Element OA: outer supply of voltage Voa and
resistor with conductance opa. Element AO: capacitor with capacitance Cao. Element
AB: resistor with conductance oap. Element BO: capacitor with capacitance Cgo.

Then
|H (w)]?

n—1

=B |[ Jexpliw) — n)(expl—iw} — 1))

=1

n—1 n—1
= B2 lexp{—i(n — Dw}(—=1)""! [HA?{| []‘[ [(expliw} — A)(explio) — 1/,\7)]}'

=1 =1

n—1

= B2 lexp{—i(n — Dw}(=1)" ™! |:l_[k}*:| P (exp{iw})

I=1

= |exp{—i(n — Dw} P (exp{iw})|
= R(w),

as required.

3. To complete the proof of Proposition 4.6.1, it suffices to verify that if R(w) is an
even nonnegative trigonometric polynomial, then the coefficients 4 (/) in the representation
R(w) = | Z;’;ll h(l) exp{ilw}|* can be chosen real. But this is immediate: if R(-) is even,
the coefficients p (/) in (4.6.74) are real, so that P(z) is a polynomial with real coefficients.
Consequently, the complex numbers met among the roots Aq, ..., A,_; are met only in
conjugate pairs, both members of a pair being roots of the same multiplicity. Consequently,
the function H (w) is fz(exp{i w}), where fz(-) is a real polynomial, as claimed. 0

4.7 Applications V: Design of chips

Consider an RC-electric circuit, i.e., a circuit comprising three types of elements: resis-
tors, capacitors, and resistors in a series combination with outer sources of voltage (see
Fig. 4.10).3* For example, a chip is, electrically, a complicated circuit comprising elements
of the indicated type. When designing chips, the following characteristics are of primary
importance:

33The model presented in this section originates from L. Vanderberghe, S. Boyd, and A. El Gamal, Optimizing
dominant time constant in RC circuits, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
17 (1998), pp. 110-125.
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* Speed. In a chip, the outer voltages are switching at a certain frequency from one
constant value to another. Every switch is accompanied by a transition period. During this
period, the potentials and currents in the elements are moving from their previous values
(corresponding to the static steady state for the old outer voltages) to the values corresponding
to the new static steady state. Since there are elements with inertia—capacitors—this
transition period takes some time.** To ensure stable performance of the chip, the transition
period should be much less than the time between subsequent switches in the outer voltages.
Thus, the duration of the transition period is responsible for the speed at which the chip can
perform.

* Dissipated heat. Resistors in the chip dissipate heat that should be eliminated;
otherwise the chip will not function. This requirement is very serious for modern high-
density chips. Thus, a characteristic of vital importance is the dissipated heat power.

The two objectives—high speed (i.e., a small transition period) and small dissipated
heat—usually are conflicting. As a result, a chip designer faces the tradeoff problem of
how to get a chip with a given speed and with the minimal dissipated heat. We are about to
demonstrate that the ensuing optimization problem belongs to the semidefinite universe.

4.7.1 Building the model
A circuit

Mathematically, a circuit can be represented as a graph; the nodes of the graph correspond
to the points where elements of the circuit are linked to each other, and the arcs correspond
to the elements themselves. We may assume that the nodes are enumerated, 1,2,..., N,
and that the arcs are (somehow) oriented, so that every arc y links its origin node s (y) with
its destination node d(y). Note that we do not forbid parallel arcs—distinct arcs linking
the same pairs of nodes. For example, for the circuit depicted in Fig. 4.10 we could orient
both arcs linking the ground O with the point A (one with resistor and one with capacitor)
in the same way, thus creating two parallel arcs. Let us denote by I" the set of all arcs of
our graph (all elements of our circuit), and let us equip an arc y € I' with three parameters
vy, ¢y, 0, (outer voltage, capacitance, conductance) as follows:

* Foran arc y representing aresistor, o,, is the conductance of the resistor, ¢, = v, = 0.

* For an arc y representing a capacitor, ¢, is the capacitance of the capacitor, v, =
o, =0.

* For an arc y of the type “outer source of voltage—resistor,” o,, is the conductance of
the resistor, v, is the outer voltage, and ¢, = 0.
Transition period

Let us build a model for the duration of a transition period. The question we are addressing
is, Assume that before instant O the outer voltages were certain constants and the circuit was

3From a purely mathematical viewpoint, the transition period takes infinite time—the currents or voltages
approach asymptotically the new steady state but never actually reach it. From the engineering viewpoint, however,
we may think that the transition period is over when the currents or voltages become close enough to the new static
steady state.
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in the corresponding static steady state. At instant # = 0 the outer voltages jump to new
values v, and remain at these values. What will happen with the circuit? The answer is
given by the Kirchoff laws and is as follows. Let u;(¢), t > 0, be the potentials at the nodes
i=1,...,N,and let I, () be the currents in arcs y € I' at time ¢.

The first law of Kirchoff says that

I,(t) = o,lusq)(t) —uaq) )] if y is a resistor;
I, = ¢ ,%[bts(y)(t) — Ugp) ()] if y is a capacitor;
I,(t) = o,lusq)(t) —uqq)(t) —v,] if y is an outer voltage followed by a resistor.

With our rule for assigning parameters to the arcs, we can write these relations in the unified
form

d
]y (t) = Gy[us(y)(t) - ud(y)(t) - Uy] - Cya[us(y)(t) — Ud(y) (t)] (4776)

The second law of Kirchoff says that for every node i, the sum of currents in the
arcs entering the node should be equal to the sum of currents in the arcs leaving the node.
To represent this law conveniently, we introduce the incidence matrix P of our circuit as
follows:

Incidence matrix. The columns of the matrix P are indexed by the nodes
I,..., N, and the rows are indexed by the arcs y € I'. The row P, corre-
sponding to an arc y is filled with zeros, except for two entries: the one in
column s(y) (4+1) and the one in column d(y) (—1).

With this formalism, the second law of Kirchoff is
PTI(t) =0, (4.7.77)

where I (¢) is the vector with the entries I, (7), y € I. With the same formalism, (4.7.76)
can be written as

d
1(t) = EPu(t) + 9 P—-u(t) — Ev, (4.7.78)

where

* u(t) is the N-dimensional vector comprising the potentials of the nodes u;(¢), i =
1,...,N;

* Eis the diagonal M x M matrix (M is the number of arcs) with diagonal entries o,
yerl,

* v is the M-dimensional vector comprised of outer voltages v,,, y € I'; and
* ¢ is the diagonal M x M matrix with the diagonal entries ¢,,, y € T'.

Multiplying (4.7.78) by P and taking into account (4.7.77), we get

d
[PToP] Eu(:) = —PTEPu(r) + PTBv. 4.7.79)
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Now, potentials are quantities defined up to a common additive constant. What makes
physical sense are not the potentials themselves but their differences. To avoid the resulting
nonuniqueness of our solutions, we may enforce one of the potentials, say, uy(t), to be
identically zero (node N is the ground). Let

C = ([PTOPlij)ij<n-1,
S = (PTEPLjij=n-1, (4.7.80)
R = ([PTEDiy)izn-1,yer

be the corresponding submatrices of the matrices participating in (4.7.79). Denoting by
w(t) the (N — 1)-dimensional vector comprising the first N — 1 entries of the vector of
potentials u(¢) (recall that the latter vector is normalized by uy(t) = 0), we can rewrite
(4.7.80) as

Cj—tw(t) = —Sw(f) + Rv. (4.7.81)

Note that due to their origin, the matrices E and ¢ are diagonal with nonnegative diag-
onal entries, i.e., they are symmetric positive semidefinite. Consequently, the matrices C, S
also are symmetric positive semidefinite. In the sequel, we make the following assumption:

Assumption (W). The matrices C and S are positive definite.

The assumption in fact is a reasonable restriction on the topology of the circuit: when
deleting all capacitors, the resulting net made up of resistors should be connected, and sim-
ilarly for the net of capacitors obtained after the resistors are deleted. With this assumption,
(4.7.81) is equivalent to a system of linear ordinary differential equations with constant
coefficients and a constant right-hand side:

d
Ew(t) =—C'Sw(t)+ C'Ru. (4.7.82)
Now, the matrix of the system is similar to the negative definite matrix:

_C—IS — C_I/Z[—C_I/ZSC_I/Z]CI/Z.

Consequently, the eigenvalues (—24;),i = 1,..., N — 1, of the matrix C —1S of the system
(4.7.82) are negative, there exists asysteme, . . ., ey of linearly independent eigenvectors
associated with these eigenvalues, and the solution to (4.7.82) is of the form

N-1

w(t) = w,(v) + Y ki exp{—hitler,

i=1
where

wy(v) = S~'Rv (4.7.83)
is the vector comprising the static steady-state potentials associated with the outer voltages

v, and k; are certain constants coming from the initial state w(0) of (4.7.82). From (4.7.78)
we get a representation of the same structure also for the currents,

N—-1
1) = L)+ Y xiexpl—hi} fi, (4.7.84)

i=1

with certain M-dimensional vectors f;.
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We see that during the transition period, the potentials and the currents approach the
steady state exponentially fast, the rate of convergence being governed by the quantities A;.
The most unfavorable rate of convergence to the steady state is given by the smallest of the
Ai’s:

A =minx, (C™128C71/2) (4.7.85)

The quantity A can be treated as a (perhaps rough) measure of the speed of the circuit. The
larger the quantity, the shorter the transition period. For reasonable initial conditions, the
potentials and the currents in the circuit will become very close to their steady-state values
after a period which is a moderate constant times the quantity 1/ A. It was proposed by
Boyd to treat 1/ X as the characteristic time constant of the underlying circuit and to model
restrictions such as “the duration of a transition period in a circuit should be at most certain
bound” as “the time constant of the circuit should be at most certain bound.”* Now, it
is easy to understand what is, mathematically, A—it is nothing but the smallest eigenvalue
Amin(S : C) of the pencil [C, S] (cf. section 4.4.1). Consequently, in Boyd’s methodology
the requirement “the speed of the circuit to be designed should be not less than...” is
modeled as the restriction 1/Anin (S : C) < T or, equivalently, as the matrix inequality

S—kC>0 [k=T7"1. (4.7.86)

As we shall see in a while, in typical chip design problems S and C are affine functions of
the design variables, so that a design requirement on the speed of the chip can be expressed
by an LMI.

Dissipated heat. Concerning issues related to dissipated heat, one could be interested in
the heat power dissipated in the steady state corresponding to given outer voltages and the
heat dissipated during a transition.

We shall see that imposing restrictions on the steady-state dissipated heat power
leads to an intractable computational problems, while restrictions on the heat dissipated
in a transition period in some meaningful cases (although not always) lead to semidefinite
programs.

Bad news on steady-state dissipated heat power. Physics says that the dissipated heat
power in the steady state corresponding to outer voltages v is

H= Z(I*(v))y[(u*(v))s(y) - (u*(v))d(y) - Uy] = [I*(v)]T(Pu*(v) —v),

yell

where I, (v) and u,(v) are the steady-state currents and potentials associated with v.>® The
formula expresses the very well known rule: The heat power dissipated by a resistor is the
product of the current and the voltage applied to the resistor.

35For many years, engineers were (and they still are) using a more precise measure of speed—the Elmore
constant. A disadvantage of the Elmore constant is that it can be efficiently computed only for a restricted family
of circuits. In contrast to this, Boyd’s time constant is computationally tractable.

36We assume that the potential of the ground (node N) is 0; with this convention, the notion of steady-state
potentials becomes well defined.



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

224 Lecture 4. Semidefinite Programming

In fact H can be derived from the following variational principle.

Given a circuit satisfying Assumption (W) and a vector of outer voltages v,
consider the quadratic form

Gu) = (Pu—v)TE(Pu—v)

of N-dimensional vector u. The heat power dissipated by the circuit at the
static steady state associated with v is the minimum value of this quadratic
form over u € RV,

Indeed, G depends on the differences of coordinates of u only, so that its minimum
over all u is the same as its minimum over u of the form u = (l(‘))). Regarded as a function
of (N — 1)-dimensional vector w rather than of u, the quadratic form becomes

é(w) =w!Sw—2w" Rv + v’ Ev.

The minimizer of G(-) is given by w,, = S~! Rv, which is exactly the vector of steady-state
potentials at the nodes (cf. (4.7.83)). Thus, the vector of steady-state potentials u,(v) is a
minimizer of G(-). The value of G at this minimizer is [E(Pu,(v) — v)]? (Pus(v) — v),
and the vector E(Pu,(v) — v) is exactly the vector of steady-state currents; see (4.7.76).
Thus, the optimal value of G is I (v)(Pu,(v) — v), which is precisely H.

The variational principle says that an upper bound restriction H < h on the steady-
state dissipated heat power is

H(S, v) = min(Pu — v)T S(Pu —v) < h.

The left-hand side in this inequality is a concave function of S (as a minimum of linear
functions of S). Therefore the above restriction defines a nonconvex set F, of feasible
matrices S. If S depends affinely on free design parameters, as is normally the case, the
nonconvexity of F, implies the nonconvexity of the feasible set in the space of design
parameters and hence leads to an intractable optimization problem.

Note that if we were designing a heater rather than a chip (i.e., were interested to
get at least a prescribed heat power dissipation), the restriction would fall into the realm of
convex (specifically, semidefinite) programming (cf. simple lemma).

Good news on heat dissipated in transition period. The heat dissipated during a tran-
sition from the old steady state associated with outer voltages v_ to the new steady state
associated with outer voltages v, is, in general, a senseless notion. Indeed, the transition
period, rigorously speaking, is infinite. If the new steady state is active (i.e., not all of the
corresponding steady-state currents are zero), then the heat dissipation power during the
transition will approach a positive quantity (the steady-state dissipated heat power for the
new steady state), and the entire power energy dissipated during the (infinite!) transition
period will be +00. There is, however, a case where this difficulty does not occur and we
may speak about the heat energy dissipated during the transition—this is the case when
the new steady-state currents are zero. In this case, the dissipated heat power decays to 0
exponentially fast, the decay rate being (bounded by) Boyd’s time constant, and so it makes
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il
=z D L

Figure 4.11. A simple RC-circuit.

sense to speak about the heat dissipated during the transition. Now, there is a particular (but
quite important) class of simple RC-circuits in which the currents at a static steady state
indeed are zero—circuits of the type shown in Fig. 4.11. In such a circuit, there is a single
source of outer voltage, the resistors form a connected net that starts at one of the poles of
the source and does not reach the other pole of the source (the ground), and each capacitor
either links a node incident to a resistor and the ground (capacitor of type I) or links two
nodes incident to resistors (capacitor of type II). Here the steady-state currents are clearly
zero, whence also

Pu.(v) =v V. (4.7.87)

Moreover, the steady-state potentials at all nodes incident to resistors are equal to the mag-
nitude of the outer voltage, and the voltage at a capacitor either equals to the magnitude of
the outer voltage (for capacitors of type I) or equals zero (for capacitors of type II).

For a simple circuit, the heat energy dissipated during a transition can be found as
follows. Assume that the outer voltage switches from its old value v_ of a magnitude @ _ to
its new value v of magnitude .37 Letus compute the heat dissipated during the transition
period starting at time 0. Denoting by u(¢), I (¢), H(t) the potentials, the currents, and the
dissipated heat, respectively, at time r > 0, and applying (4.7.76), we get

H@) = (Pu(t) —v) E(Pu(t) —vy)"
[P u(t) — us(u))]" BLP (u(r) — us(vy))]
—_— ——

A(r)
(see (4.7.87))

= AT@HPTEPAQ).

Recalling that A(f) = (58)) (all our potentials are normalized by the requirement that the
potential of the Nth node is zero), we can rewrite the expression for H (¢) as

H(t) =87 (t)S5(t).

By its origin, §(¢) satisfies the homogeneous version of (4.7.82), whence

d
37 [8"Cs(1)] = —8" (1)S8(r),

37 Although we now are speaking about a single-source circuit, it would be bad to identify the magnitude of the
outer voltage and the voltage itself. According to our formalism, an outer voltage is a vector with the coordinates
indexed by arcs of the circuit. A coordinate of this vector is the physical magnitude of the outer source inside an
arc. Thus, p_ is a number and v_ is a vector with all but one zero coordinates; the only nonzero coordinate is
equal to p— and corresponds to the arc containing the outer source.
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AN N

Figure 4.12. Wires (left) and the equivalent RC-structure (right). (a) a pair of two
neighboring wires, (b) a wire and the substrate.

so that
. 1d ., )
H(t) = 3 [8T(1)Cs(n)];

therefore the heat H dissipated during the transition is

—_l ooli T _l T
H= /0 ST [8T(1)C8(r)]dr = 25 (0)C5(0).

From the definition of §(-) it is clear that §(0) = (u_ — @y)e, where e is the (N — 1)-
dimensional vector of ones. Thus, in the case of a simple circuit the heat dissipated during
the transition is

(- —p)? 7

H= 5 eTCe, e=(,...,DT e RV, (4.7.88)

which is a linear function of C.

4.7.2 Wire sizing

Modern submicron chips can be modeled as RC-circuits. In these circuits, the resistors,
physically, are the interconnecting wires (and the transistors), and the capacitors model the
capacitances between pairs of wires or a wire and the substrate. After the topology of a
chip and the placement of its elements on a substrate are designed, engineers start to define
the widths of the wires, and this is the stage where the outlined models could be used. To
pose the wire sizing problem as an optimization program, one may think of a wire as being
partitioned into rectangular segments of a prescribed length and then treat the widths of
these segments as design variables. A pair of two neighboring wires (or a wire and the
substrate) can be modeled by an RC-structure, as shown in Fig. 4.12. A nice feature of this
model is that both the conductances of the resulting resistors and the capacitances of the
resulting capacitors turn out to be linear functions of our design parameters—the widths of
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the segments or, which is the same, of the areas of the segments (the lengths of the segments
are fixed!). For example, for the RC-structure depicted in Fig. 4.12(a) one has

CAB ka,B(SA +SB),
oA = KaSa,

where 54, s are the areas of the corresponding segments. The coefficients k4 g, k4 depend
on several parameters (e.g., on distances between the wires), but all these parameters are
already set at the stage of design we are speaking about. Thus, in the wire sizing problem
the matrices E and ¥, and therefore the matrices S, C, R as well, are affine functions of the
design vector x comprising the areas

C=C(x),S=8x),R=Rx).

As aresult, we may pose numerous sizing-related problems as semidefinite programs. Here
are some examples:

* We can minimize the total area occupied by the wires under the restriction that the
speed (i.e., the time constant) of the circuit should be above a certain bound. The ensuing
semidefinite program is

minimize in
i
s.t.
Sx)—«kCx) = O,
x > 0

(« > 0is fixed).

* In the case of a simple circuit (which in fact is a common case in chip design), we
can minimize the heat dissipated during a transition, under the restriction that the speed is
above a certain bound. The ensuing semidefinite program is

minimize eT[C(x)]e
S.t.
S(x)—«C(x) > 0,
x > 0.

* We can add to the above programs upper and lower bounds on the areas of segments,
as well as other linear constraints on the design variables, etc.

4.8 Applications VI: Structural design

Structural design is an engineering area dealing with mechanical constructions like trusses
and plates. We already know what a truss is—a construction made up of thin elastic bars
linked to each other. A plate is a construction made up of a material occupying a given
domain, the mechanical properties of the material varying continuously from point to point.
In engineering, design of plates is called shape design; in what follows we call these objects
of our interest shapes instead of plates.
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A typical structural design problem is, “Given the type of material to be used, a
resource (an upper bound on the amount of material to be used) and a set of loading
scenarios—external loads operating on the construction—find an optimal truss or shape,
one able to withstand best of all the loads in question.” It turns out that numerous prob-
lems of this type can be cast as semidefinite programs, which offers a natural way to model
and process them analytically and numerically. The purpose of this section is to develop a
unified semidefinite-programming-based approach to these structural design problems.

4.8.1 Building a model

The mechanical constructions we are considering (the so-called constructions with linear
elasticity) can be described as follows.

I. A construction C can be characterized by

I.1. A linear space V = R"™ of virtual displacements of C.

1.2. A positive semidefinite quadratic form
17
Ec(v) = EU Acv

on the space of displacements. The value of this form at a displacement v is the potential
energy stored by the construction as a result of the displacement. The (positive semidefinite
symmetric) m X m matrix A¢ of this form is called the stiffness matrix of C.

Example. A truss fits 1.1-1.2; see sections 1.3.5 and 3.4.3.

1.3. A closed convex subset V C R™ of kinematically admissible displacements.

Example, continued. In our previous discussions of trusses, there was no
specific set of kinematically admissible displacements—we assumed that in
principle every virtual displacement v € R™ may become an actual dis-
placement, provided that an external load is chosen accordingly. However,
sometimes the tentative displacements of the nodes are restricted by external
obstacles, like the one in Fig. 4.13.

Il.  Anexternal load applied to the construction C can be represented by a vector f € R™.
The static equilibrium of C loaded by f is given by the following variational principle.

A construction C is able to carry an external load f if and only if the quadratic
form

1
El(v) = EUTACU — T (4.8.89)

of displacements v attains its minimum on the set V of kinematically admissible
displacements, and a displacement yielding (static) equilibrium is a minimizer
of E g ()on V.
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N

a5

A AA h

Figure 4.13. An obstacle. What we see is a nine-node planar ground structure
with 33 tentative bars and a rigid obstacle AA. This obstacle does not allow the southeastern
node to move down more than by h and thus induces a linear inequality constraint on the
vector of virtual displacements of the nodes.

The minus minimum value of E Cf on V is called the compliance of the construction
C with respect to the load f:

T 17
Compl (C) =sup | f'v— v Acv|.
’ veV 2

Example, continued.® We saw in section 3.4.3 that the variational principle
does work for a truss. At that moment, however, we dealt with the particular
obstacle-free case: V = V. What happens when there are obstacles? Assume
that the obstacles are absolutely rigid and frictionless. When in the course
of truss deformation a moving node meets an obstacle, a contact force occurs
and comes into play—it becomes a part of the external load. As a result, the
equilibrium displacement is given by the equations

Av=f+) fi, (%)
1

where Av, as we remember, is the vector of reaction forces caused by the defor-
mation of the truss and f;’s represent the contact forces coming from obstacles.
Nature is free to choose these forces, with only the restriction that a contact
force should be normal to the boundary of the corresponding obstacle (there is
no friction!) and should point toward the truss. With these remarks in mind,
one can easily recognize in (*) the usual KKT conditions for constrained mini-
mum of E, the constraints being given by the obstacles. Thus, an equilibrium
displacement is a KKT point of the problem of minimizing E é over V. Since

the problem is convex, its KKT points are the same as the minimizers of E(’;
over V.

The part of the story we have told so far relates to a particular system and does not
address the question of what is affected by the design: May we play with the space of virtual

38 A reader not acquainted with the KKT optimality conditions may skip this paragraph.
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displacements? or with V? or with the stiffness matrix? We shall focus on the case when
the only element affected by the design is the stiffness matrix. Specifically, we assume the
following.

Ill. The stiffness matrix A¢ depends on mechanical characteristics 71, . . ., f, of elements
E,, ..., E, making up the construction, and these characteristics #; are positive semidefinite
symmetric d x d matrices, with d given by the type of the construction. Specifically,
n N
T
Ac =) bitib],, (4.8.90)

i=1 s=I
where b;; are given m x d matrices.

At first glance, III looks very strange: where are the positive semidefinite matrices t;
coming from? Well, this is what mechanics says on both trusses and shapes.
Indeed, we know from section 1.3.5 that the stiffness matrix of a truss is

At) = 1b;b]
i=1

where #; > 0 are bar volumes and b; are certain vectors given by the geometry of the nodal
set and where nonnegative reals #; may be viewed as positive semidefinite 1 x 1 matrices.

Now, what about shapes? To see that III holds in this case as well, it requires an
additional excursion to mechanics. (This can be omitted by noninterested readers.)

As mentioned, a shape is made up of material occupying a given 2D or 3D domain €2,
the mechanical properties of the material varying from point to point. Such a construction
is infinite dimensional: its virtual displacements are vector fields on €2 and, taken together,
form certain linear space V of vector fields on €2. (V should not necessarily comprise all
vector fields; e.g., some parts of the boundary of 2 may be fixed, so that the displacement
fields must vanish at these parts of the boundary.)

The elasticity properties of the material at a point P € Q are represented by the
rigidity tensor E(P), which, mathematically, is a symmetric positive semidefinite d x d
matrix, where d = 3 for planar and d = 6 for spatial shapes. Mechanics says that the density,
at a point P, of the potential energy stored by a shape as a reaction on a displacement v(-),
is

%s;[v]E(P)sP[v], (4.8.91)

so that the total potential energy stored in a deformated shape is

l/ shIVIE(P)sp[v]ldP.
2 Ja

Here for a 2D shape
3, (P)
ax
vy (P)
splv] = oy ,
1 | v (P) vy (P)
7§ [ ay + ax ]
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where v, and v, are the x- and the y-components of the 2D vector field v(-). Note that sp[v]
can be obtained as follows. We first build the Jacobian of the vector field v at P, the matrix

Ju(P)  Juc(P)
_ dx ay
J(P) = (é)vy(P) 3v,(P) ) ’

dx dy

and then symmeterize the matrix—build the symmetric 2 x 2 matrix
1
JN(P) = SLIP)+ JT(P)].

sp[v] is nothing but the vector of the coordinates of J*(P) € 8? in the natural orthonormal
basis () ), (5 ), (L0 27(;/2) of the 3D space S.

For a 3D shape, sp[v] is given by a completely similar construction. We build the
3 x 3 Jacobian of the 3D vector fields v(-) at the point P, symmeterize it, and then pass
from this 3 x 3 symmetric matrix to the vector of coordinates of this matrix in the natural
basis of the six-dimensional space S°. We skip the corresponding explicit formulas.

An external load acting on a shape can be represented by a linear form f[v] on the space
of displacements. This form measures the work carried out by the load at a displacement.
In typical cases, this functional looks like fasz FfT(P)v(P)dS(P), f(P) being the field of
external forces acting at the boundary. Mechanics says that the equilibrium displacement
field in the loaded shape minimizes the energy functional

% fﬂ spVIE(P)sp[vldP — f[v]
over the set of kinematically admissible vector fields v(-). The minus minimum value of
this functional is called the compliance of the shape with respect to the load in question.
As we see, the true model of a shape is infinite dimensional. To get a computationally
tractable model, a finite element approximation is used, namely,
1. The domain €2 is partitioned into finitely many nonoverlapping cells €21, ..., €2,
and the properties of the material are assumed to be constant within the cells:

E(P)=E; for P € Q;.

2. The infinite dimensional space V of vector fields on €2 is approximated by its
finite dimensional subspace V" spanned by m basic continuously differentiable displace-
ment fields w;(-), ..., wy,(-). With this approximation, the set of kinematically admissible
displacement fields shrinks to a set in V.

With this approximation, the finite element model of a shape becomes as follows:

* A virtual displacement v becomes a vector from R” (the actual displacement field
corresponding to a vector v = (v, ..., v,)T is, of course, Z;"zl viw; (+)).

* The potential energy stored by the shape, the displacement being v, is

%Zf v [s(P)Eis" (P)lvd P, sT(P) = [splwi]; splwal; ...; splw,]] € MO,
i=1 VS

» The linear functional f[-] representing a load becomes a usual linear form f7 v on
R™ (so that we can treat the vector f of the coefficients of this form as the load itself).
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* The equilibrium displacement of the shape under a load f is the minimizer of the
quadratic form

%UT [Z/ s(P)E,-sT(P)dP:| v—fTv
i=1 7%

on a given set YV C R™ of kinematically admissible displacements, and the compliance is
minus the minimum value of this form on V.
It remains to note that, as stated in Exercise 1.17, there exist a positive integer S and
cubature formulas such that
s
/ splwplEsplwgldP =" ajys), [wylEsp,[wy] VE€S! Vp.g=1,....m

i s=1

with nonnegative weights «;;. Denoting by w; the measures of the cells 2; and setting
12 —1/2
i =wE;, b= O!is/ w; Ps(Pyy),

we get
s
/ s(P)E;sT(P)dP = Zbisfibis~
Q; s=1

Thus, we have represented a shape by a collection ¢4, . . ., #, of positive semidefinite d x d
matrices, and the potential energy of a deformated shape now becomes

n

n S
%UT |:Z /;2 s(P)EisT(P)j| v = %UT |:Z Z bist,-biTs:| v,
i=1 ! i=1 s=1
where v is the displacement. We see that a shape, after finite element discretization, fits the
requirement III.
The concluding chapter of our story outlines the way we measure the amount of
material used to build the construction.

IV. The amount of material consumed by a construction C is completely characterized by
the vector (Tr(ty), ..., Tr(¢,)) of the traces of the matrices ¢, ..., t, mentioned in III.

For a truss, the indicated traces are exactly the same as #;’s themselves and are the
volumes of the bars constituting the truss, so that IV is quite reasonable. For a shape,
Tr(E(P)) is a natural measure of the material density of the shape at a point P € €2, so that
IV again is quite reasonable.

Now we can formulate the general structural design problem we are interested in.

PROBLEM 4.8.1. Static structural design. Given

1. a ground structure, i.e.,

* the space R™ of virtual displacements along with its closed convex subset V of
kinematically admissible displacements,

e a collection {b;s}i=1..... of m x d matrices;
s=1,....§
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2. asetT ={(t1,....t,) | t; € Si Vi} of admissible designs; and
3. aset F C R" of loading scenarios,

find an admissible construction that is stiffest, with respect to F, i.e., find a collectiont € T
that minimizes the worst, over f € F, compliance of the construction with respect to f:

mlTn Compl z(t) = sup sup[ v— —v [ZZb,bt, l{| v:| it e T} .

feF veV i=1 s=1

4.8.2 Standard case

The static structural design Problem 4.8.1 in its general form is a little bit diffuse—we did
not name the geometries of the set VV of kinematically admissible displacements, or the set
T of admissible designs, or the set F of loading scenarios. For all applications known to us
these geometries can be specialized as follows.

S.1. The set V of kinematically admissible displacements is a polyhedral set,
={veR"| Rv<r} [R € M?"™], (4.8.92)
and the system of linear inequalities Rv < r satisfies the Slater condition: there exists v

such that Rv < r.

S.2. The set T of admissible designs is given by simple linear constraints on the traces of
the positive semidefinite rigidity matrices t;, namely, upper and lower bounds on Tr(#;) and
an upper bound on the total material resource Y _._, Tr(#;):

T={t=(...t0| i €S p <Te() <71, Y Tt Sw)  (48.93)
i=1

with given parameters

S.3. The set F of loading scenarios is either a finite set,

F={fi,..., fi} (4.8.94)
(multiload structural design), or an ellipsoid,
={f=Qu|lu"u<l) [QeM"] (4.8.95)

(robust structural design).

The interpretation of the multiload setting is quite clear: the construction is supposed
to work under different nonsimultaneous loading scenarios, and we intend to control its
stiffness with regard to these scenarios. To motivate the robust setting, consider the following
example.
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Figure 4.14. 9 x 9 ground structure and the load of interest.

Figure 4.15. Optimal cantilever (single-load design); the compliance is 1.000.

Example. Assume we are designing a planar truss—a cantilever. The 9 x 9
nodal structure and the only load of interest f* are as shown in Fig. 4.14.
The optimal single-load design yields a nice truss shown in Fig. 4.15. The
compliance of the optimal truss with respect to the load of interest is 1.000.

Now, what happens if, instead of the load f*, the truss is affected by a small
occasional load f shown in Fig. 4.15, the magnitude (= the Euclidean length)
of f being just 0.5% of the magnitude of f*? The results are disastrous: the
compliance is increased by factor 8.4 (!) In fact, our optimal cantilever is highly
unstable: it may collapse when a bird tries to build a nest in a badly placed
node of the construction.

To ensure stability of our design, we should control the compliance not only
with respect to a restricted set of loads of interest, but also with respect to all
relatively small occasional loads somehow distributed along the nodes. The
simplest way to do it is to add to the original finite set of loads of interest the
ball comprising all occasional loads of magnitude not exceeding some level.
There are, however, two difficulties in this approach:

* From the viewpoint of mathematics, it is not that easy to deal with the set of
loading scenarios of the form “the union of a ball and a finite set.” It would be
easier to handle either a finite set or an ellipsoid.
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Figure 4.16. “Robust” cantilever.

* From the engineering viewpoint, the difficulty is to decide where the occa-
sional loads should be applied. If we allow them to be distributed along all
9 x 9 nodes of the original ground structure, the resulting design will incorpo-
rate all these nodes (otherwise its compliance with respect to some occasional
loads will be infinite), which makes no sense. What we actually are concerned
with are occasional loads distributed along the nodes that will be used by the
resulting construction, but how could we know these nodes in advance?

Regarding the first difficulty, a natural way to overcome it is to take, as F, the
ellipsoidal envelope of the original—finite—set of loads and a small ball, i.e.,
to choose as F the ellipsoid of the smallest volume centered at the origin which
contains the original loading scenarios and the ball.

To overcome, to some extent, the second difficulty, we could use a two-stage
scheme. At the first stage, we take into consideration the loads of interest only
and solve the corresponding single- or multiload problem, thus getting a certain
preliminary truss. At the second stage, we treat the set of nodes actually used
by the preliminary truss as our new nodal set and take as F the ellipsoidal
envelope of the loads of interest and the ball comprising all small occasional
loads distributed along this reduced nodal set.

Let us look at what this approach yields in our cantilever example. The can-
tilever depicted in Fig. 4.15 uses 12 nodes from the original 8 1-node grid; two of
these 12 nodes are fixed. Taking the resulting 12 nodes as our new nodal set, and
allowing all pair-connections of these nodes, we get a new—reduced—ground
structure with 20 degrees of freedom. Now let us define F as the ellipsoidal
envelope of f* and the ball comprising all loads with the Euclidean norm not
exceeding 10% of the norm of f*. This 20-dimensional ellipsoid F is very
simple: one of its principal half-axes is f*, and the remaining 19 half-axes are
of the length 0.1]| f*||, each, the directions of these half-axes forming a basis
in the orthogonal complement to f* in the 20-dimensional space of virtual
displacements of our 12 nodes. Minimizing the worst, with respect to the el-
lipsoid of loads F, compliance under the original design constraints, we come
to a new cantilever depicted in Fig. 4.16. The maximum, over the ellipsoid of
loads F, compliance of the robust cantilever is 1.03, and its compliance with
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respect to the load of interest f* is 1.0024—only 0.24% larger than the optimal
compliance given by the single-load design! We see that when passing from
the nominal single-load design to the robust one we lose basically nothing in
optimality and at the same time get dramatic improvement in the stability. (For
the nominal design, the compliance with respect to a badly chosen occasional
load of magnitude 0.1|| f*||, may be as large as 32,000!)

The above example is a good argument for considering ellipsoidal sets of loads.
We shall refer to the static structural design problem with the data satisfying S.1—S.3

as to the standard SSD problem. We always assume that the data of the standard SSD
problem satisfies the following assumption:

S4. Y, Zle bist;b!. = 0 whenevert; = 0,i =1,...,n.

This is a physically meaningful assumption that excludes rigid body motions of the
ground structure: if all rigidities are positive definite, then the potential energy stored by
the construction under any nontrivial displacement is strictly positive.

4.8.3 Semidefinite reformulation of the standard SSD problem

To get a semidefinite reformulation of the standard SSD problem, we start with building
semidefinite representation of the compliance. Thus, our goal is to get an SDR for the set

c={@ f,7) € (81)" x R" x R| Compl (1)

n N
sup |:fTv — %vT [Zzbiﬂibzfs} v:| < 7,'] .

veR™:Rv<r i=1 s=1

The required SDR is given by the following proposition.

PROPOSITION 4.8.1. Let t = (1, ..., 1,) € (S%)" and f € R™. Then the inequality
Compl,(1) <7

is satisfied if and only if there exists a nonnegative vector u of the dimension q equal to the
number of linear inequalities defining the set of virtual displacements (see (4.8.92)) such

that the matrix
2t —=2rTp —fT 4+ u™R

A, fot,op) = —f+RTH Xn:XS:bistib-T

i=1 s=1
is positive semidefinite. Thus, the epigraph of Compl ;(t) (regarded as a function of t €
(Si)" and f € R") admits the SDR

2t —2rTp —fT 4+ u™R

no s
—f+R"u Z Zbistib,?; (4.8.96)

i=1 s=1

Y
e

14

=
IV 1Y
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Proof. First let us explain where the result comes from. By definition, Compl ;(#) < 7 if

n N
sup [f v— TA(r)v} <t [A(z)=22b,~srib,§]

v:Rv<r i=1 s=1

The supremum in the left-hand side is taken over v varying in a set given by linear constraints
Rv < r. If we add penalized constraints 17 (r — Rv) to the objective, 1 being a nonnegative
weight vector, and then remove the constraints, passing to the supremum of the penalized
objective over the entire space, i.e., to the quantity

¢s(t, pn) = sup [fTv - %vTA(r)v +ul(r— Rv)} ,

veR™

then we end up with something that is > Compl (7). Consequently, if there exists 41 > 0
such that

fTv—lvTA(t)v—i— Tr—Rv)<t YveR"
3 w(r v) <t v e ,

then we have 7 > Compl /(). On the other hand, the Lagrange duality says that under the
Slater condition (see assumption S.1) the quantity ¢ (¢, ) for properly chosen p > 0 is
exactly the supremum of f7v — 2v" A(#)v over v satisfying Rv < r: if T > Compl (1),
then v > ¢ (¢, n) for some p > 0. Thus, believing in the Lagrange duality, we come to
the following observation:

() The inequality Compl (1) < t is equivalent to the existence of a u > 0
such that ¢p(t, ) < 7.

It remains to note that the inequality ¢ ¢ (¢, 4) < T says that the unconstrained minimum of
the quadratic form

1
QW) =[r —r'ul+ EUTAmv +(—f+R"w)v

is nonnegative. By the simple lemma (see section 4.3.1), the latter fact is equivalent to the
positive semidefiniteness of the matrix A(z, f, T, ).

To be self-sufficient, let us derive (!) from conic duality.

Our first observation is as follows:

(%) Letty,...,t, € Si, f € R™, and t € R be fixed. Consider the following
system of inequalities with variables v € R™, 0 € R:

n S
0 [A(t):ZZb,-stibi], (S, £))

i=1 s=1

%UTA(I)U +o0—fTo

IA

RTv < r

Then (¢, f, t) € Cifand only if T > o for all solutions to (S(t, f)), i.e., if and
only if the linear inequality T > o is a consequence of the system (S(t, f)).
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Indeed, the o-components of the solutions to (S(#, f)) are exactly those o’s that do
not exceed the value of the quadratic form

E/w)=fTv— %UTA(I)U

at a certain point of the set V = {v | Rv < r}. Consequently, to say that a given 7 is >
all such o’s is exactly the same as to say that t is > the supremum of the form E,f (v) over
v € V, or equivalently that T > Compl ; (7).

Now, (S(¢, f)) is nothing but a linear vector inequality. Indeed, the quadratic inequal-
ity in (S(#, f)) is a conic quadratic inequality:

%UTA(Z‘)U +o0— fTv <0,

(4
v A(H)v + 20 — 2fTv <0,

¢
IBT (t)v]2 —2fTv 420 <0,

where
B(t) = [but,”*, biat,, .. bist)? . bata?, L basta”? ] [A(r) = B(t) BT (1)]
¢
BT (t)v

+(r—fTv ZLO
—o+ fTv

B =1|—

so that (S(¢, f)) is the linear vector inequality in variables v, o, 7,

BT (t)v
1 T
v _|3to—f'v -
—qg = 0,
o(y)-a= {150 i)
r— Rv

where K is the direct product of the ice cream cone and the nonnegative orthant of appropriate
dimensions.

Note that the resulting linear vector inequality is strictly feasible. Indeed, due to the
Slater assumption in S.1, we may choose v such that r — Rv > 0. After v is chosen, we
may choose o to be negative enough to make strict also the conic quadratic part

BT (t)v
+o—fTv| >0
—o+ fTv

B—=|—

of our vector inequality.
Now let us use the necessary and sufficient conditions for a linear inequality to be a
consequence of a strictly feasible linear vector inequality (see Proposition 2.4.3). Here these



Downloaded 01/04/21 to 143.215.33.45. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

4.8. Applications VI: Structural design 239

conditions are equivalent to the existence of a nonnegative vector u, of the same dimension
q as the vector r, and a vector ¢ € L such that

;o107 (i) = —0 V(,0) €R" xR,
(¢ ullg > —t.
Recalling the origin of Q and ¢, we come to the following conclusion:
(+x) Lett € (84)", f € R™, and T € R. Then Compl (1) < T if and only if

there exist d-dimensional vectors &, reals o, B and a vector | such that

@ B-0f—RTu+ 3 bt = o0,

i=1 s=1

(b) a—p = -1,
(©) s@+B)+r'n < 1,
(d) nw = 0,
n N
) B = |2+ ) ) &g
i=1 s=1
(4.8.97)
Now consider the CQI
BT (t)v
1—=rTut+o+[—f+R"ul"v | =10, (4.8.98)

1+rTu—o—[—f+R"ul"v

where v, o are the variables and © > 0 is a vector of parameters, and let us ask ourselves
when the inequality o < 7 is a consequence of this (clearly strictly feasible) vector inequal-
ity. According to Proposition 2.4.3 this is the case if and only if there exist vectors &;; € R?
and reals «, 8 such that

n N
@ (@—BI—f+RTul+ DY bt/ &

= 0,
i=1 s=l1
(b) a—p = -1,
© e+ +B-ar'n < (4.8.99)
n N
(d) B = |+ ) ) &

i=1 s=lI
Comparing (4.8.97) and (4.8.99), we come to the following conclusion:

(k%) Lett € (Si)n, f € R" andt € R. Then Compl /(1) < t if and only if
there exists y > 0 such that the inequality o < T is a consequence of the CQI
(4.8.98).
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It remains to note that the CQI (4.8.98) is equivalent to the scalar quadratic inequality
vIAW Y —2rT w420 +2[—f + RTuv < 0.

Consequently, (*#*) says that Compl ,(r) < 7 if and only if there exists 4 > 0 such that the
following implication holds true:

1
Y(v,0): o <[f—R"ul"v- EUTA(I)U +rlu=0<rt.
But the latter implication clearly holds true if and only if
1
T > m%x |:[f — RT[L]TU — EUTAU + I’T/L:| . (4.8.100)
veR™

Thus, T > Compl () if and only if there exists 4 > 0 such that (4.8.100) holds, which is
exactly the statement (!) we need. O

An SDR of the epigraph of the compliance immediately implies a semidefinite refor-

mulation of the multiload standard SSD problem with k loading scenarios fi, ..., fi:
minimize T
S.t.

2t — 2Ty —flT—i—ulTR
n S

a 0,I=1,...,k,
@ frr S bl | T
i=1 s=1
(b) to»= 0.i=1.....n (4.8.101)
(© ZTr(t,-) < w,
i=1

(d) &fTr(t,-) < pi,i=1,...,n,

(e w > 0,1=1,...k,
where the design variables are t; € S i=1,...,n, w (vectors of the dimension q equal
to the number of linear inequalities in (4.8.92)), ] = 1,...,k, and T € R. Indeed, the
LMIs (a) along with nonnegativity constraints (e) express the fact that the worst, over the
loads fi, ..., fr, compliance of the construction yielded by the rigidities #1, . . . , , does not
exceed 7 (see Proposition 4.8.1), while the remaining constraints (b), (c), (d) express the
fact thatr = (¢1, ..., t,) is an admissible design.

Consider next the robust standard SSD problem, where F is an ellipsoid:
F={f=0Qu|ulu<1}.
Here we meet with a difficulty not present in the case of finite F: our objective now is

Compl (¢) = sup Complf(t),
feF ’

i.e., it is the supremum of infinitely many SDr functions. Our calculus does not offer tools
to build an SDR for such an aggregate. This difficulty reflects the essence of the matter:
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for an SSD problem with obstacles, the robust version of the SSD problem is extremely
difficult (at least as difficult as an NP-complete combinatorial problem). Fortunately, in the
obstacle-free case it is easy to get an SDR for Compl (), provided that F is an ellipsoid.

PROPOSITION 4.8.2. Let the set of kinematically admissible displacements coincide with
the space R™ of all virtual displacements: V = R™, and let F be an ellipsoid:

F={f=0u|u"u<1} [QeM" .
Then the function Compl (1), regarded as a function of t = (t,...,1;) € (S‘i)n, is SDr:
fort € (Si)”,
2‘L'Ik QT
Complr() <7 | Xn:ibmnbi > 0. (4.8.102)

i=1 s=1

Consequently, the robust obstacle-free standard SSD problem can be posed as the following
semidefinite program:

minimize T
S.1.
2t or
n S - 0
0 bistib,'Tv -7
;; ’ (4.8.103)
i = 0,i=1,...,n,
D Tr) < w,
i=l
p,=Tr() = pi,i=1....n
Proof. Let, as always, A(t) = Y 1_, S°5_, b;,t;b%.. We have
Complz(t) =< 1 &
(Qu)Tv — %UTA(Z‘)U < 7 Yo Yu:uTu<l) <
QuwTv—2v"TAMv < © Yv Yu:u'u=1 &
(Q||w||;1w)Tv — %vTA(t)v < 1t YoV(w #0) &
Qw)" (lwlv) —3(Iwlv)" A@D(Jwlw) < tw'w Yo Yw#0) &
——
2y
2twlw + 2w QTy +yTA()y = 0 VyV(w #0) &
2twTw 4+ 2w QTy +yTA(t)y > 0 VyeR", weRF &
2t Q7 )
> 0. d
< o AQ@ -
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Universal semidefinite form of the standard SSD problem. Both the multiload stan-
dard SSD problem (4.8.101) and the robust obstacle-free problem (4.8.103) are particular
cases of the following generic semidefinite program:

minimize T
S.t.
2tl,+Diz+ D, [Ez+ET"

n S
a 0,1=1,...,K,
@ [z + Ei] DOy biubl |

i=1 s=1
(b) o= 0, i=1,....n, (Pr)
© D Tr) < w,

i=1
(d) P, <Tew) < Ppi=1,....n,
(e z = 0
where
* the design variables are t; € S?,i = 1,...,n,z € R¥, 7 € R, and

* the data are given by the m x d matrices b;, affine mappings
i Diz+D:RY -8 2> &z+E RV > M [=1,... K,
andtherealsgi,ﬁi, i=1,...,n,w > 0.

Indeed,
* The multiload problem (4.8.101) corresponds to the case of p = 1, K = k (the
number of loading scenarios),

=@ .. g eERI x - xR, Diz4+ D, =-2"Tp!, Ez+E =—fi+R'u

e The robust problem (4.8.103) corresponds to the case of K = 1, p = k (the
dimension of the loading ellipsoid). In fact, in the robust problem there should be no
z-variable at all; however, to avoid extra comments, we introduce a 1D redundant variable
z and set

& =0,E = 0;Diz+ Dy = -2zI;.
It is immediately seen that problem (Pr) reduces for this case to the problem
2t — )1k SQT
rrnzntl T: 0 Zzbiﬂib£ >0& Prb—e)y,

i=1 s=I
which is equivalent to (4.8.103).

Note that when converting the problems of our actual interest (4.8.101) and (4.8.103)
to the generic form (Pr), we ensure the following property of the resulting problem.
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S.5. Foreveryl =1,..., K, there exists o; € Si+ and V; € M™? such that

K
> [Dren +2& V] <.
I=1
Indeed, in the case when the original problem is the multiload problem (4.8.101), we
have S” = R, M"? = R", and

% —2(X1V+2RV1

% * —2 2RV,
D[P 2giv] = | T
= —20[1(1’ +2RVK

the latter vector is negative when all «; are equal to 1 and all V; are equal to a strictly feasible
solution of the system Rv < r. Such a solution exists by S.1.

In the case when the original problem is the obstacle-free robust problem (4.8.103),
we have

DTC(] ~|—2(€TV1 = —ZTI'(Oll),

and to guarantee the validity of S.5, it suffices to set oy = /,,.
From now on we assume that the data of (Pr) satisfy S.3, S.4, and S.5.

REMARK 4.8.1. Problem (Pr) is strictly feasible.

Indeed, let us choose somehow z > 0. By S.3, we can choose t; > 0, i =
1,..., n, to satisfy the strict versions of the inequalities (Pr)(b), (c), (d). By S.4 the matrix
Yo Zf:l bist;bl is positive definite. But then, by the Schur complement lemma, LMIs
(Pr)(a) are satisfied strictly for all large-enough values of .

4.8.4 From primal to dual

From the viewpoint of numerical processing, a disadvantage of the problem (Pr) is its
huge design dimension. Consider, e.g., the case of a multiload design of an obstacle-free
truss with M-node ground structure. In this case (Pr) is a semidefinite program of design
dimension n + 1, n = O(M?) being the number of tentative bars. The program includes k
(k is the number of loading scenarios) big LMIs (each of the row size m + 1, where m is the
number of degrees of freedom of the nodal set; m =~ 2M for planar and m = 3 M for spatial
constructions) and a number of scalar linear inequality constraints. For a 15 x 15 planar
nodal grid with the leftmost nodes fixed, we get M = 225, n + 1 = 25096, m = 420. Even
an LP program with 25,000 variables should not be treated as a small one; a semidefinite
program of such a design dimension is definitely not accessible for existing software. The
situation, however, is not hopeless, and the way to overcome the difficulty is offered by
duality; we shall show that the problem dual to (Pr) can be greatly simplified by analytical
elimination of most of the variables. For example, the dual to the outlined multiload truss
problem can be converted to a semidefinite program with nearly mk design variables; for
the above 15 x 15 ground structure and three scenarios, its design dimension is about 1300,
which is within the range of applicability of the existing solvers.
We are about to build the problem dual to (Pr) and to process it analytically.
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Step 0. Building the dual. Applying to (Pr) our formalism for passing from a semidefinite
program to its dual, we obtain the following semidefinite program:

K n
maximize —¢ = —Z Tr(Dya; + 2EITV;) — Z [ﬁ,-oi+ — Biof] —wy
=1 i=1

o VZT >
0,l1=1,...,K
(V/ ﬂl) -

[ €SP, B €8™, V, e M™7P],

S.t.

. > 0,i=1,...,n
[v € SP1],
of,of > 0,i=1,...,n
[ai+, o, €R],
y = 0
[y € R],
n = 0
[n € R"],

K
22 Tr(e) = 1,
=1

K
Y [Dfey + 26 Vil+n = 0.
=1

K S
Zzbz;ﬂlbls—i_tl+[O-li_o'l+_y]ld = 03 i=13"'sn1
I=1 s=1

(Dini)
with design variables {«;, 8, V/}szp {ai+.ai_, T, Ve 1.
Step 1. Eliminating n and {7;}*_,. (D) clearly is equivalent to the problem
K n
minimize ¢ = ZTr(Dlal +2EI'V) + Z [p;o;t — p,oi 1+wy
I=1 i=l
s.t.
o VZT
a - 0,/l=1,...,K,
@ (5 ) .
(b) oo > 0,1=1,...,n,
C > 0, /
(© . Yy = D)
(d) 2y Tr(e) = 1,
I=1

K
© Y [Dfe+25Vil < 0
=

1
K S

(f) DY blBibis

=1 s=1

IA
<
+
9
+
|
S
_
<
|
:—‘
=
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in variables {«;, £, V;}IK= 15 {a;r.af}l’.’:l, y. Note that passing from (Djyy;) to (D’), we have
switched from maximization of —¢ to minimization of ¢, so that the optimal value in (D’)
is minus the one of (Dj,;).

Step 2. Eliminating { ﬂ,}lK= ;- We start with observing that (D’) is strictly feasible. Indeed,
let us set, say, ol.i = 1. By S.5 there exist positive definite matrices o; and rectangular
matrices V; of appropriate sizes satisfying the strict version of (D)(e); by normalization,
we may enforce these matrices to satisfy (D')(d). Given indicated ¢;, V; and choosing
large-enough B;, we enforce validity of the strict versions of (D’)(a). Finally, choosing
large-enough y > 0, we enforce strict versions of (D')(c) and (D')(f).

Note that the same arguments demonstrate the following remark.

REMARK 4.8.2. Problem (Dyy;) is strictly feasible.

Since (D') is strictly feasible, its optimal value is the same as in problem (D”) obtained
from (D’) by adding the constraints

(@ a=>=01=1,....K
Now note that if a collection

(Ol = {al}lel» V= {‘/l}lkzl’ ﬂ = {IBI}]K=1’ o = {oii}?zl» J/)

is a feasible solution to (D”), then the collection

(e, V,B(a, V) = {Bi(a, V) = Vi, ' VI Lo, )

is also a feasible solution to (D) with the same value of the objective. Indeed, from the LMI
(D')(a) by the Schur complement lemma it follows that 8;(«, V) < f;, so that replacing §;
with B;(a, V) we preserve validity of the LMIs (D')(f) as well as (D’)(a). Consequently,
(D) is equivalent to the problem

K n
minimize o= ZTr(Dlal +2E'V) + Z [p;o;" — p.o; 1+ wy

S.t.
(b) 0i+,0i_ > 0,i=1,...,n,
(©) y = 0,
K
(d) 2;%(@1) = 1, ")
. =
) > [Djer +28:Vil < 0,
ks
(") ZZ Vi Vb = [y 4ot —o e i=1.....n,
l: =
(g) a > 0,1=1,...,K,

in variables & = {a/}X |, V = {V)}K |, 0 = (o]}, ¥
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Now note that the system of LMIs (D”')(g)—(D"”")(f") is equivalent to the system of
LMIs

A@), Bl (V) .
@ (Bi(v), ()/+O'l-+—o’i_)]d) > 0,i=1,...,n,

(b) Al@) > O,

(4.8.104)

where
a={a; € SPYE,

V={VieM""}E,,

S times S times S times
. | ——— N
A(o) =Diag(oy, ..., 00,00, ..., 00, ccc, O, ..., 0K),

B,(V) = [blTl V], big‘/], ey bi]:gVH thl VQ, biZVQ, ey bi]:gVQ; ey thl V](, biTZV[(, ey b,]:gvl(]
(4.8.105)

Indeed, the difference of the right- and left-hand sides of (D”)(f") is the Schur complement
of the angular block of the left-hand-side matrix in (4.8.104)(a), and it remains to apply the
lemma on the Schur complement. Consequently, (D”) is equivalent to the problem

K n
minimize ¢ = ZTr(D,al + 2EZTV1) + Z [ﬁia;r - Biaf] + wy
I=1 i=1

S.t.
A@), BI' (V) o
(a) (B,(V), ()/ + O';L . U,-)Id) > O, 1= 1, , n,
(b) 0i+,0i_ > 0,i=1,...,n,
© y = 0,
K
(d) 2Y “Tr() = 1,
=1
(e) o > 0,1=1,...,K,
K
(f) Y [Dfoy +285Vil < 0

=1

in variables o, V, o, y.

The resulting problem is strictly feasible along with (D), so that its optimal value
remains unchanged when we replace the strict LMIs (e) with their nonstrict counterparts
a; > 0; the latter nonstrict LMIs are already implied by (a). Eliminating the LMIs (e), we
come to the final form of the problem dual to (Pr):
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K n
minimize o= ZTr(D;a, +2E/'V) + Z [pio;" — p,0; 1+ wy
=1 i=1

A(a), Bl (V)
Bi(V), (y+o =0 )l

S.t.

+ —
o; ,0;

14

v

O,i:l,...,n, (Dl)

v

K
22 Tr(ey) = 1,

K
> [Djer + 267V
=1

A
L

in design variables
a={aq eSS, V={VieM" )£ o ={cF R}y €R.

As we have seen, both the primal problem (Pr) and its dual (D) are strictly feasible
(Remarks 4.8.1, 4.8.2). Consequently, both (Pr) and (Djy;) are solvable with equal optimal
values (the conic duality theorem) and with bounded level sets (see Exercise 2.12). By its
origin, the optimal value in the problem (DI) is minus the optimal value in (Djy;), and of
course (DI) inherits from (Dy,;) the property to have bounded level sets and is therefore
solvable. Thus, we get the following proposition.

PROPOSITION 4.8.3. Both problems (Pr), (D) are strictly feasible and solvable and possess
bounded level sets. The optimal values in these problems are negations of each other.

Case of simple bounds. In the case when there are no actual bounds on Tr(#;) (formally it
means that P, = = 0, p; = w Vi), the dual problem (DI) can be further simplified, namely, we
can ehmlnate the o -variables. Indeed, consider a feasible solution to (DI). When replacing
all ‘71 with zeros, simultaneously increasing y by 6 = max[0, max; (a, —o; )], we clearly
preserve feasibility and add to the objective the quantity

wé — Z [ﬁiaﬁ' — B,'Ui_] =wdé — Zﬁiaﬁ' [since p, = 0]

i=1

[since p; > w]

A
[>2
|
L
=~
A
+

IA

w max al.+ —w E of [since § < max O';L due to al.i > 0]
1 l
i=1

<0 [since oﬁ“ > 0],
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i.e., we gain in the objective value. Thus, we loose nothing when setting in (DI) aii =0,
thus coming to the problem

K
minimize ¢ = ZTr(Dlaz +2E'V) + wy
=1

S.t.
A@) BT (V) L
<Bl~(V) ” > 0,i=1,...,n,
K (Dlsb)
Y [Djer +26;Vi) < 0.
=1
K
22 Tr(e) = 1,
=1
y = 0,

in design variables o = {o; € SP}IKZI, V={Ve MP”"},KZI, y € R.

To understand how fruitful our effort was, let us compare the sizes of the problem (Dly)
with those of the original problem (Pr) in the simplest case of a planar k-load obstacle-free
truss design problem with M nodes and simple bounds. Note that in this case n ~ 0.5M?>
and m ~ 2M. Assuming k << M, here are the sizes of (Pr) and (Dlg):

Size (Pr) (Dlgp)
Design dimension n+1~0.5M? mk+k+1~2kM
# and sizes of LMIs kof 2m +1) x 2m + 1) LMIs | n ~ 0.5M? of (k + 1) x (k + 1) LMIs
# of linear constraints n+1~0.5M? k+1

We see that if the number of loading scenarios & is a small integer (which normally is the
case), the design dimension of the dual problem is by orders of magnitude less than the
design dimension of the primal problem (Pr). As a kind of penalization, the dual problem
involves a lot (& 0.5M?) of nonscalar LMIs instead of just k nonscalar LMIs in (Pr), but
all LMIs in (DI1) are small—of row size k 4+ 1 each—while the nonscalar LMIs in (Pr) are
large—of row size & 2M each. As aresult, when solving (Pr) and (Dlg,) by the best-known
numerical techniques so far (the interior-point algorithms), the computational effort for (Pr)
turns out to be O (M®), while for (Dlg,) it is only O (kK*M?3). For large M and small &, this
does make a difference!

Of course, there is an immediate concern about the dual problem: The actual design
variables are not seen in it at all. How do we recover a (nearly) optimal construction from
a (nearly) optimal solution to the dual problem? In fact, however, there is no reason to be
concerned: the required recovering routines exist and are cheap computationally.

4.8.5 Back to primal

Problem (D) is not exactly the dual of (Pr)—it is obtained from this dual by eliminating
part of the variables. What happens when we pass from (D) to its dual? It turns out that
we end up with a nontrivial (and instructive) equivalent reformulation of (Pr), namely, with
the problem
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minimize T
S.t.
21, + Dz + Dy | (g 1" - lgisl” |- [ lgm]” -+ lghs)”
CI{1 1]
I
q 1
@) . > 0,
qfl] Iy
q,lls Iy
l - 15 ’ Ka
(b) p, =Tr() =p;, i=1,....n,
n
©) > Tr() < w,
n S
(d) YN bugl =&z + En I=1,... .k
i=1 s=1
(e) 7>0,
(Prt)
in the design variables which are symmetric d x d matrices t;,i = 1, ..., n,d X p matrices
qils,l =1,....,K,i=1,...,n,s =1,..., 8, real 7, and z € RY. Problem (Pr?") is not

the straightforward dual of (Dl); it is obtained from this dual by eliminating part of the
variables. Instead of boring derivation of (Prt) via duality, we prefer to give a direct proof
of equivalence between (Pr) and (Pr™).

PROPOSITION 4.8.4. A collection ({t;}!_,, 2, T) is afeavible solution to (Pr) if and only if it
can be extended by properly chosen {qlgs |l =1, =1, ,s=1,...,8}toa

feasible solution to (Pr™).

Proof. “If” part. Let a collection
)yt g 1 l=1,...,K,i=1,....,n,s=1,..., 8}
be a feasible solution to (Pr"); all we should prove is the validity of the LMIs (Pr.a). Let us

fix I < K. We should prove that for every pair (x, y) of vectors of appropriate dimensions
we have

n S
x"2tl, + Diz + Dilx +2xT[Ei + &2y + [Z Zb,.ir,-b,?;} y>0. (4.8.106)
=1
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Indeed, in view of (Prt.d), the left-hand side of (4.8.106) is equal to

xT[2t1, + Diz + Dylx
s r no S
+2xT |:Z Zbisqfsi| y+yT |:Z Zbistibl?;j| y = x"[2tl,+ Diz+ D/lx
i=1 s=1 i=1 s=1
n N
+2> 03 Il ) i

i=1 s=1

n N
+ )Y Vi,

i=1 s=1

yis = bl y.

=

The resulting expression is nothing but the value of the quadratic form with the matrix from
the left-hand side of the corresponding LMI (Pr*)(a) at the vector comprising x and {y;s}; s,
and therefore it is nonnegative, as claimed.

“Only if” part. Let

iz 2,0
be a feasible solution to (Pr). Let us fix [, 1 <[ < K, and let us set
fi=&z+ E.
For every x € R? the quadratic form of y € R¥:
n S
XT2tl, + Dz +d]+2x7 Ty + yT Ay [Aa%=§:§:hwﬂﬁ
i=1 s=I
is nonnegative, i.e., the equation
Ay = fix
is solvable for every x. Of course, we can choose its solution to be linear in x:
y =Yx.
Note that then
A)Yix = fix Vx,
ie.,
ADY: = fi.
Let us now set

lq;,]" = Y bit;. (4.8.107)
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Then

n n

N S
Y bisgly =) Y bitib Y, = ADY, = fi.

i=1 s=1 i=1 s=1

Recalling the definition of f;, we see that extending ({#;}, z, ) by {qfs} we ensure the validity
of (Pr*)(d). It remains to verify that the indicated extensions ensure the validity of LMIs
(Pr*)(a) as well. What we should verify is that for every collection {y;;} of vectors of
appropriate dimension and for every x € R” we have

n N n S
F(x, (yish) =x"1211, + Diz+ Dilx +2x7 Y " gl yis + > Y yitivis = 0.

i=1 s=1 i=1 s=1
(4.8.108)
Given x, let us set
v = —biYx,
and let us prove that the collection {y}} minimizes F(x, -), which is immediate: F(x, -) is

convex quadratic form, and its partial derivative with respect to y;, at the point {y}} is equal
to (see (4.8.107))

2q! x4+ 2t;y7 = 2[4:b] Vix — ;b1 Y,x] = 0
Vi, s. It remains to note that

n N
X221, + Diz + Dyx — 2x7Y Y " [gl 17 Yix

i=1 s=1

F(x, {yiiH

n S
~|—Z ZXTYlTbislin;le

i=1 s=1

n

s T
= xT[2t1, + Diz+ Djlx — 2xT |:Z Zbisqfs:| Yix
i=1 s=1
+xTYTA()Yx

= xT[ZrI,, + Dz + Di]x — ZXT[(‘:]Z + E[]TYZX + xTY,TA(I)sz
[due to already proved (Pr*)(d)]

_ r. _ TyT\(tp+Diz+ D [5/Z+E/]T> X
= ()C ,—X Yl )( Ez+ E A(t) _le

v

0
[since ({t;}, z, T) is feasible for (Pr)].

Thus, the minimum of F(x, {y;,}) in {y;s} is nonnegative, and therefore (4.8.108) indeed is
valid. O
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4.8.6 Explicit forms of the standard truss and shape problems

Let us list the explicit forms of problems (Pr), (DI), (Pr*) for the standard cases of the
multiload and robust static truss and shape design.

Multiload static truss design. Here
V={weR"| Rv<r} [dim(r)=ql; F={fi,..., fu}-

The settings are

e (Pr):
minimize T
S.t.
2t — 27Ty —flT + ,ulTR
n
> 0, 1=1,...k,
—fi+RTw Y biblt =
i=1
BiStl < piyi—l’ , 1,
n
Zh‘ < w,
i=1
127 2 05 l = ]1 skv
[z, %, € RY];
e (DI):
k n
. . . — + —
minimize — ZZ flTvl + Z [p;0; — £,0; 1+ wy
=1 i=1
S.t.
o b,'TUI
5 = 0,i=1,...,n,
(077 blTUk
bl-TU] b[Tvk ‘ )/—}—O'i+—0'i_
of > 0,i=1,...,n,
y > 0,
Rv < or,l=1,...,k,

|
-

22 o

=1

[ar, 07,y € R, v € R™];
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o (Prt):
minimize T
S.t.
2T —2rT;L1 q{ q,ll
6]{ h
q, tn
p, =i

- n
P
i=1

n

> aib
i=1

122
[z, 9 € R, iy € RY].

Robust obstacle-free static truss design. Here

V=R"; F={f=0u| u'u

The settings are

e (Pr):
minimize T
S.t.
2t oT
0 E:bﬁfn
i=1
p, =1
Dt
i=1
[T» ti € R]»
e (DD):

> 0,1=1,...,k,
S ﬁivizla , 1,
S w’

= fi—R"w, 1=1,
> 0,1=1,...,k
<1} [QeM™.

> 0,

< pi,i=1,...,n,
< w

minimize 2Tr(QTV) + Z [p;o;f — p.0; 1+ wy

i=1
S.t.

o VTp,
bIV y+ot -0

)

+

i

14

2Tr ()
[o € SF, al-i, yeR, Ve MK,

Y

IV 1V
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o (Prt):
minimize T
S.t.
2t qlT an
q1 3] -
qn ty
St P i=1.n,
< w,

]
i=1
N
Y bigi = Q
i=1

[t € R, g € RF].

Multiload static shape design. Here

3, planar shape,

A d g
o€ 8, d= {6, spatial shape,

F o= {fi,..-. fih,
YV = {veR"| Rv<r} [dim(r)=gq].
The settings are
e (Pr):
minimize T
S.t.

2t —2rTyy —flT—i—,u[TR
n S
> 0,1=1,...,k,
—fi+ R DY biabl | T

i=1 s=1

i = 0,i=1,...,n,
p, =Tr(t) =< pii=1....n
D T < w,
i=1
mo = 0, 1=1,...k

[t eR,t; €S9 e RY;
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« (DI):
k n
. . . T — + —
minimize - 22 fru+ Z [pio;" —p,0; 1+ wy
=1 i=1
S.t.
[+3] UlTbil
aj v bs
. i 07 1= 17 » 15
[£73 UZbil
oy vab,-g
b?}vl biTSUI b?} Uk h,«TSUk (v +U,'+ —0; )
of = 0,i=1,....n,
y = 0,
Ry < or,l=1,...,k,
k
2> oy = 1
I=1
[w,0;", 7 € R, v € R"];
o (Prt):
minimize T
S.t.
2e — 2"y | g})1" lgis1" g, 1" lghs1"
‘1{1 1
i
d1s 1
} =0, 1=1,...,k,
q;lﬂ tn
qf,s th

£i STr(li)Sﬁis i=11"'sn1

n
D Tr() < w,
i=I

no S
SN gl = fi —RT, 1=1,....k,

i=1 s=1

w>0,1=1,....k

[t eR,;; €89 ¢/ € R p € RYI
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Robust obstacle-free static shape design. Here

3, planar shape,
d g _
o€ 8. d= {6, spatial shape,
F = {(f=0Qulu"u<l} [QeM™]
Y = R™
The settings are
e (Pr):
minimize T
S.t.
2‘[Ik QT
n S O,
QD butib]
i=1 s=1
i = 0,i=1...,n,
p, =Tr) =< pni=1....n,
ZTr(t,-) < w
i=1
[t eR,t; € §9];
* (DI):

minimize 2Tr(Q7TV) + Z [pio;" — po; 1+wy

i=1

S.t.
o Vb
: z 09 l= 19 , n,
o VTb,'S
IV o bV [ (v +o —0 )y
oii > 0,i=1, N,
y = 0,
2Tr() = 1

[« € SF, O’l-i, yeR, Ve Y GESR
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o (Prt):

minimize T
S.t.

2 N R i R N U R '
q11 13

qis 1

Y
L

qnl ty

qnS In

p; = Tr(n)
> Tvte)
i=1

n S
Z Zbisqm = 0

i=1 s=I
[t eR,t; €89, qiy € M4H].

A
>

Il

—_
=

A
S

4.9 Applications VII: Extremal ellipsoids

We already have met, on different occasions, with the notion of an ellipsoid—a set E in R”
that can be represented as the image of the unit Euclidean ball under an affine mapping:

E={x=Au+c|u'u<l1} [AeM"]. (Ell)

Ellipsoids are very convenient mathematical entities:

* It is easy to specify an ellipsoid—just indicate the corresponding matrix A and
vector c.

» The family of ellipsoids is closed with respect to affine transformations: the image
of an ellipsoid under an affine mapping again is an ellipsoid.

* There are many operations, like minimization of a linear form and computation of
volume that are easy to carry out when the set in question is an ellipsoid and are difficult to
carry out for more general convex sets.

By the indicated reasons, ellipsoids play an important role in different areas of applied
mathematics. In particular, ellipsoids are used to approximate more complicated sets. As a
simple motivating example, consider a discrete time linear time invariant controlled system:

x(t+1)
x(0)

Ax(t) + Bu(t), t =0,1, ...,
0

and assume that the control is norm-bounded:

lu@®l. <1 Vvt
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The question is, What is the set X7 of all states reachable in a given time T, i.e., the set of
all possible values of x(7')? We can easily write down the answer:

X7 = {x = Bur_1+ABur_»+A*Bug_s+ - -+AT"Bug | u»<1,t=0,...,T—1},

but this answer is not explicit. To check whether a given vector x belongs to X7 requires
solving a nontrivial conic quadratic problem; the larger 7', the greater the complexity of the
problem. In fact, the geometry of X may be very complicated, so that there is no possibility
to get a tractable explicit description of the set. This is why in many applications it makes
sense to use simple—ellipsoidal—approximations of X7. As we shall see, approximations
of this type can be computed in a recurrent and computationally efficient fashion.

It turns out that the natural framework for different problems of the best possible
approximation of convex sets by ellipsoids is given by semidefinite programming. In this
section we consider a number of basic problems of this type.

Preliminaries on ellipsoids. According to our definition, an ellipsoid in R" is the image
of the unit Euclidean ball in certain R? under an affine mapping; e.g., for us a segment in
R!% is an ellipsoid. Indeed, it is the image of a 1D Euclidean ball under affine mapping.
In contrast to this, in geometry an ellipsoid in R” is usually defined as the image of the
n-dimensional unit Euclidean ball under an invertible affine mapping, i.e., as the set of the
form (Ell) with additional requirements that ¢ = n, i.e., that the matrix A is square, and
that it is nonsingular. To avoid confusion, let us call these true ellipsoids full-dimensional.
Note that a full-dimensional ellipsoid £ admits two nice representations:
* First, E can be represented in the form (Ell) with positive definite symmetric A:

E={x=Au+c|u'u<1} [AeS|,] (4.9.109)

It is clear that if a matrix A represents, via (Ell), a given ellipsoid E, the matrix AU, U
being an orthogonal n x n matrix, represents E as well. It is known from linear algebra that
by multiplying a nonsingular square matrix from the right by a properly chosen orthogonal
matrix, we get a positive definite symmetric matrix, so that we always can parameterize a
full-dimensional ellipsoid by a positive definite symmetric A.

* Second, E can be given by a strictly convex quadratic inequality:

E={x| x—o"Dx—c)<1} [DeS,] (4.9.110)

One may take D = A2, where A is the matrix from the representation (4.9.109).

Note that the set (4.9.110) makes sense and is convex when the matrix D is positive
semidefinite rather than positive definite. When D > 0 is not positive definite, the set
(4.9.109) is, geometrically, an elliptic cylinder—a shift of the direct product of a full-
dimensional ellipsoid in the range space of D and the complementary to this range linear
subspace—the kernel of D.

In the sequel we deal a lot with volumes of full-dimensional ellipsoids. Since an
invertible affine transformation x +— Ax + b : R" — R" multiplies the volumes of n-
dimensional domains by |DetA|, the volume of a full-dimensional ellipsoid E given by
(4.9.109) is «,DetA, where k, is the volume of the n-dimensional unit Euclidean ball. To
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avoid meaningless constant factors, it makes sense to pass from the usual n-dimensional
volume mes, (G) of a domain G to its normalized volume

Vol(G) = k; 'mes, (G),

i.e.,