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Preface

The goals. To make decisions optimally is a basic human desire. Whenever the situation
and the objectives can be described quantitatively, this desire can be satisfied, to some
extent, by using mathematical tools, specifically those provided by optimization theory and
algorithms. For our purposes, a sufficiently general mathematical setting of an optimization
problem is offered by mathematical programming:

Minimize f0(x)

subject to (s.t.)
fi(x) ≤ bi, i = 1, . . . , m,

x ∈ X ⊂ Rn.

(P)

In this problem, we are given an objective f0(x) and finitely many functional constraints
fi(x), i = 1, . . . , m, which are real-valued functions of n-dimensional design vector x

varying in a given domain X. Our goal is to minimize the objective over the feasible set of
the problem—the set that is cut off the domain X by the system of inequalities fi(x) ≤ bi ,
i = 1, . . . , m.

In typical engineering applications, the design vector specifies a decision to be made
(e.g., the physical sizes of the bars in a trusslike structure), the domain X is the set of
“meaningful” values of the design vector, and the functional constraints represent design
specifications—restrictions (physical, technical, financial) on certain characteristics of the
decision.

The last decade has witnessed major progress in optimization, especially in the area of
convex programming. Powerful modeling languages and database technology extended our
abilities to model large-scale, complex real-life problems; progress in complexity theory
improved our understanding of the advantages of certain algorithms, and the limitations of
others, and resulted in development of efficient interior point algorithms for a large family
of convex programs. Combined with the dramatic improvement of computers, this progress
enables us today to solve problems that were considered out of reach for optimization just
10 years ago.

Regrettably, this promising state of affairs is yet unrealized, and consequently not
utilized, by potential end users (engineers, managers, etc.). This book presents modern
optimization, combining it with applications (mainly from engineering) and thus helping
to bridge the gap between researchers and practitioners. This ultimate goal determines our
approach and dictates specific targets on which we should focus our attention.

xi
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xii Preface

Theoretically, what modern optimization can solve well are convex optimization prob-
lems. In essence, the two-decade-long investigation of complexity issues in optimization
can be summarized as follows:

From the viewpoint of the numerical processing of problem (P), there exists a
“solvable case”—the one of convex optimization problems, those where the
domain X is a closed convex subset of Rn, and the objective f0(x) and the
functional constraints fi(x), i = 1, . . . , m, are convex functions on X.

Under minimal additional computability assumptions (which are satisfied in
basically all applications), a convex optimization problem is computationally
tractable—the computational effort required to solve the problem to a given
accuracy grows moderately with the dimensions of the problem and the required
number of accuracy digits.

In contrast to this, general-type nonconvex problems are too difficult for numer-
ical solution; the computational effort required to solve such a problem, by the
best numerical methods known, grows prohibitively fast with the dimensions of
the problem and the number of accuracy digits. Moreover, there are serious
theoretical reasons to conjecture that this is an intrinsic feature of nonconvex
problems rather than a drawback of the existing optimization techniques.

As an example, consider the pair of optimization problems (A) and (B). The first is
the nonconvex problem

maximize
n∑

i=1

xi

subject to
x2
i − xi = 0, i = 1, . . . , n;
xixj = 0 ∀(i, j) ∈ 
,

(A)

where 
 is a given set of pairs (i, j) of indices i, j . This is a fundamental combinatorial
problem of computing the stability number of a graph. It arises, e.g., in the following
channel communication problem:

There is an alphabet of n letters ai , i = 1, 2, . . . , n, say, the 256 usual bytes. A letter
ai can be sent through a communication channel; when passing through it, it either remains
unchanged or can be converted to another letter aj due to transmission errors. The errors
are assumed to be “symmetric” (if ai can be converted into aj , then aj can be converted into
ai as well), and 
 is the set of (indices of) those pairs of letters that can be converted from
one into another. Assume that we are interested in a “nonconfusing” communication, where
the addressee either gets a correct letter or is able to conclude that a transmission error has
occurred but never misreads the input letter. In this case we should restrict the subalphabet
S to be independent, meaning that no two distinct letters from S can be converted from
one to another by the channel. To get the most from the channel, we would like to use an
independent subalphabet of maximal cardinality. It turns out that the optimal value in (A)
is exactly the cardinality of such a maximal independent subalphabet.
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The second problem is the convex program

minimize x0

subject to

λmin


x1 x�1

. . .
...

xm x�m
x�1 · · · x�m x0

 ≥ 0, � = 1, . . . , k,

m∑
j=1

ajx
�
j = b�, � = 1, . . . , k,

m∑
j=1

xj = 1,

(B)

where λmin(A) denotes the minimum eigenvalue of a symmetric matrix A. This problem
originates from design of a truss (a mechanical construction built from thin elastic bars,
like an electric mast, a bridge, or the Eiffel Tower) able to withstand k nonsimultaneous
loads.

Looking at the analytical forms of problems (A) and (B), it seems that the first problem
is easier than the second: the constraints in (A) are simple explicit quadratic equations, while
the constraints in (B) involve much more complicated functions of the design variables—
the eigenvalues of certain matrices depending on the design vector. The truth, however,
is that the first problem is in a sense as difficult as an optimization problem can be, and
the worst-case computational effort to solve it within absolute inaccuracy 0.5 is about 2n

operations for all known optimization methods. For n = 256 (“alphabet of bytes”), the
complexity 2n ≈ 1077 is, for all practical purposes, the same as +∞. In contrast to this,
the second problem is quite computationally tractable. For example, for k = 6 (six loading
scenarios) and m = 100 (a 100-bar construction), the problem has 701 variables (2.7 times
the number of variables in the byte version of (A)); however, it can be reliably solved within
six accuracy digits in a couple of minutes. The dramatic difference in the computational
effort required to solve (A) and (B) is due to the fact that (A) is a nonconvex optimization
problem, while (B) is convex.

The above discussion explains the words Convex Programming in the title of our book.
We now explain the word modern. The emphasis in the book is on well-structured con-
vex problems such as linear programming (LP), conic quadratic programming (CQP), and
semidefinite programming (SDP). These are the areas most affected by the recent progress
in optimization, areas where we possess well-developed techniques for building large-scale
models, analyzing them theoretically (“on paper”) and processing them numerically. Ex-
cept for LP, these areas did not exist 10 years ago; thus most users who could potentially
benefit from recent developments are not aware of their existence, let alone their useful-
ness. In enlarging the scope of classical optimization (LP, general nonlinear programming)
by introduction of CQP and SDP, new application areas were created. Examples include
semidefinite relaxations of difficult combinatorial problems, linear matrix inequality–based
techniques in control, and mathematical programming with uncertain data. These new ap-
plications create synergies between optimization, computer science, and engineering, with
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potentially far-reaching consequences for our ability to solve complex real-life decision
problems.

At this point, we want to address experts in optimization rather than general readers.
The history of convex programming, as far as applied aspects are concerned, started with
the invention of LP (Dantzig, circa 1948). LPs possess the simplest possible and transpar-
ent analytical structure, which from the beginning was heavily exploited both theoretically
(the completely algorithmic LP duality theory) and computationally (the simplex method).
With subsequent nonlinear extensions, the focus was shifted, in one giant step, from the
simplest possible linear structure to the most general one, where all we know about the
entities occurring in (P) is that they are called fi , i = 0, 1, . . . , m, and X, that they are con-
vex, and that fi are 0/1/2/ . . . times continuously differentiable. At the theoretical level,
the focus on this general setting yielded very deep results in convex analysis (Lagrange
duality, Karush–Kuhn–Tucker (KKT) optimality conditions, etc.); however, the price paid
for these fundamental achievements was a lack of an algorithmic content of the subject.
For example, the Lagrange dual of a general-type convex program (P) is something that
exists and possesses very nice properties; this “something,” however, normally cannot be
written explicitly (in sharp contrast with the “fully algorithmic” LP duality). At the compu-
tational level, the emphasis on generality resulted in general-purpose “near-sighted” (and
thus slow, as compared to LP algorithms) optimization methods, those utilizing purely local
information on the problem.

To some extent, recent trends (the last decade or so) in convex optimization stem
from the realization that there is something between the relatively narrow LP and the com-
pletely unstructured universe of convex programming; what is between are well-structured
generic convex optimization problems like CQP and SDP. Needless to say, interest in special
cases is not a complete novelty for our area (recall linearly constrained convex quadratic
and geometric programming); what is a novelty is the recent emphasis on well-structured
generic problems, along with outstanding achievements resulting from this emphasis. The
most remarkable of these achievements is, of course, the interior point revolution, which
has extended dramatically our abilities to process convex programs numerically, while cre-
ating a completely new, challenging, and attractive area of theoretical research. The em-
phasis on well-structured special cases has, however, another, less-evident (perhaps not
less-important) consequence, which can be summarized as follows:

• When restricted to “nice” generic convex programs, like LP, CQP, and SDP, convex
analysis becomes an algorithmic calculus—as algorithmic as in the LP case. For example,
the SDP duality is as explicit and symmetric as the LP one. In fact, the same can be said about
all other basic operations of convex analysis, from the simplest (like taking intersections
and affine images of convex sets, or sums of convex functions) to the more sophisticated
ones (like passing from a convex set to its polar or from a convex function to its Legendre
transformation). Whenever the operands of such a construction can be represented, in a
properly defined precise sense, via, say, SDP, the same is true for the resulting entity, and
the SDP representation of the result is readily given by those of the operands.

As a result,
• An instance of a nice generic convex problem can be processed, up to a certain

point, on paper (and in a routine fashion). In many cases this allows one to obtain important
qualitative information on the problem or to convert it into an equivalent one, better suited
for subsequent numerical processing. For example, applying SDP duality, one can reduce
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dramatically the design dimension of the truss topology design (TTD) problem and, as a
result, increase by orders of magnitude the sizes of the TTD problems that can be processed
numerically in practice.

Moreover,
• nice generic convex problems, like CQP and especially SDP, possess vast expres-

sive abilities, which allow one to utilize the above advantages in a very wide spectrum of
applications, much wider than the one covered by LP.

When writing this book, our major concern was to emphasize the issues just raised,
and this emphasis is perhaps the most characteristic (and, hopefully, to some extent novel)
feature of the book.

Restricting ourselves to well-structured convex optimization problems, it becomes
logical to skip a significant part of what is traditionally thought of as the theory and algorithms
of mathematical programming. Readers interested in the gradient descent, quasi-Newton
methods, and even sequential quadratic programming, are kindly advised to use the excellent
existing textbooks on these important subjects; our book should be thought of as a self-
contained complement to, and not as an extended version of, these textbooks. We even
have dared to omit the KKT optimality conditions in their standard form, since they are too
general to be algorithmic; the role of the KKT conditions in our exposition is played by their
particular (and truly algorithmic) case, expressed by the so-called conic duality theorem.

The book is addressed primarily to potential users (mainly engineers). Consequently,
our emphasis is on building and processing instructive engineering models rather than on
describing the details of optimization algorithms. The underlying motivation is twofold.
First, we wish to convince engineers that optimization indeed has something to do with their
professional interests. Second, we believe that a crucial necessary condition for successful
practical applications of optimization is understanding what is desirable and what should
be avoided at the modeling stage. Thus, important questions to be addressed are (a) What
optimization models can be efficiently processed (to a certain point on paper and then on
a computer)? and (b) How one can convert (provided that it is possible) a seemingly bad
initial description of a problem into a tractable and well-structured optimization model?

We believe that the best way to provide relevant insight for potential users of opti-
mization is to present, along with general concepts and techniques, many applications of
these concepts and techniques. We believe that the presentation of optimization algorithms
in a user-oriented book should be as nontechnical as possible (to drive a car, no knowledge
of engines is necessary). The section devoted to algorithms presents the ellipsoid method
(due to its simplicity, combined with its capability to answer affirmatively the fundamental
question of whether convex programming is computationally tractable) and an overview of
polynomial-time interior-point methods for LP, CQP, and SDP.

Although the book is user oriented, it is a mathematical book. Our goal is to demon-
strate that when processing “meaningful” mathematical models by rigorous mathematical
methods (not by their engineering surrogates), one can obtain results that have meaningful
and instructive engineering interpretation. Whether we have reached this goal, is another
story; this judgment rests upon the reader.

Last, but not least, a reader should keep in mind that what follows are lecture notes;
our intention is to highlight those issues that we find most interesting and instructive, rather
than to present a complete overview of convex optimization. Consequently, we are ready to
take the blame for being boring or unclear or for focusing on issues of minor importance,
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xvi Preface

in any material in the book. However, we do not accept “money back” requests based on
claims that something (however important) is not included. Along with immunity with
regard to what is absent, a lecture notes–type book provides us with some other privileges,
like a style which is a bit more vivid compared to the academic standards, and a rather short
list of bibliography references (embedded as footnotes in the body of the text). In this latter
respect, a reader should be aware that if a statement appears in the text without a reference,
this does not mean that we are claiming authorship; it merely reflects that our focus is on
the state of convex optimization rather than on its history.

Audience and prerequisites. Formally, readers should know basic facts from linear al-
gebra and analysis—those presented in standard undergraduate mathematical courses for
engineers. For optimization-related areas, readers are assumed to know not much more than
the definitions of a convex set and a convex function and to have heard (no more than that!)
about mathematical programming problems. Informally, it is highly desirable that a reader
is in possession of the basic elements of mathematical culture.

The exercises. Exercises accompanying each lecture form a significant part of the book.
They are organized in small groups, each devoted to a specific topic related to the corre-
sponding lecture. Typically, the task in an exercise is to prove something. Most of the
exercises are not easy. The results stated by the exercises are used in the subsequent parts
of the book in the same way as the statements presented and proved in the main body of
the book; consequently, a reader is kindly asked to at least read all exercises carefully. The
order of exercises is of primary importance: in many cases preceding exercises contain
information and hints necessary to succeed in subsequent ones.

Acknowledgments. A significant part of the applications discussed in our book is taken
from the papers of Prof. Stephen Boyd of Stanford University and his colleagues. We
are greatly indebted to Prof. Boyd for providing us with access to this material and for
stimulating discussions. Applications related to structural design were developed in tight
collaboration with Prof. Jochem Zowe and Dr. Michael Kočvara of Erlangen University.
Parts of the book were written when the authors were visiting the Statistics and Operations
Research Department of the Technical University of Delft, and we are thankful to our hosts,
Prof. Kees Roos and Prof. Tamas Terlaky.

Aharon Ben-Tal and Arkadi Nemirovski

August 2000, Haifa, Israel
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Lecture 1

Linear Programming

In this chapter our primary goal is to present the basic results on the linear programming
(LP) duality in a form that makes it easy to extend these results to the nonlinear case.

1.1 Linear programming: Basic notions
An LP program is an optimization program of the form

min

{
cT x

∣∣∣∣Ax ≥ b

}
, (LP)

where

• x ∈ Rn is the design vector,

• c ∈ Rn is a given vector of coefficients of the objective function cT x,

• A is a given m × n constraint matrix, and

• b ∈ Rm is a given right-hand side of the constraints.

(LP) is called

—feasible if its feasible set

F = {x | Ax − b ≥ 0}
is nonempty; a point x ∈ F is called a feasible solution to (LP);

—bounded below if it is infeasible or if its objective cT x is bounded below on F .

For a feasible bounded-below problem (LP), the quantity

c∗ ≡ inf
x:Ax−b≥0

cT x

1
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2 Lecture 1. Linear Programming

is called the optimal value of the problem. For an infeasible problem, we set c∗ = +∞,
while for a feasible unbounded-below problem we set c∗ = −∞.

Linear programming is called solvable if it is feasible and bounded below and the
optimal value is attained, i.e., there exists x ∈ F with cT x = c∗. An x of this type is called
an optimal solution to LP.

A priori it is unclear whether a feasible and bounded-below LP program is solvable:
why should the infimum be achieved? It turns out, however, that a feasible and bounded-
below program (LP) always is solvable. This nice fact (we shall establish it later) is specific
for LP. Indeed, a very simple nonlinear optimization program

min

{
1

x

∣∣∣∣ x ≥ 1

}
is feasible and bounded below, but it is not solvable.

1.2 Example: Tschebyshev approximation and
its applications

In most textbooks known to us, examples of LP programs have to do with economics,
production planning, etc., and indeed the major applications of LP are in these areas. In this
book, however, we prefer to use, as a basic example, a problem related to engineering. Let
us start with the mathematical formulation.

1.2.1 Best uniform approximation

Problem 1.2.1. Tschebyshev approximation. Given an M × N matrix

A =


aT1
aT2· · ·
aTM


and a vector b ∈ RM , solve the problem

min
x∈RN

‖Ax − b‖∞, where ‖Ax − b‖∞ ≡ max
i=1,...,M

|aTi x − bi |. (1.2.1)

As stated, problem (1.2.1) is not an LP program—its objective is nonlinear. We can,
however, immediately convert (1.2.1) to an equivalent LP program

min
x∈Rn,t∈R

{
t

∣∣∣∣ − t ≤ aTi x − bi ≤ t, i = 1, . . . ,M

}
, (1.2.2)

where t is an additional design variable. Thus, (1.2.1) is equivalent to an LP program.
A typical situation giving rise to the Tschebyshev problem is as follows. We want

to approximate a given target function β(t) on, say, the unit interval [0, 1] by a linear
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1.2. Example: Tschebyshev approximation and its applications 3

combination
∑N

j=1 xjαi(t) of N given functions αj (t). The quality of approximation is
measured by its uniform distance from β, i.e., by the quantity

‖β −
N∑
j=1

xjαj‖∞ ≡ sup
0≤t≤1

|β(t) −
N∑
j=1

xj (t)αj (t)|, (1.2.3)

so that the best approximation is solution of the problem

min
x∈RN

‖β −
N∑
j=1

xjαj‖∞. (1.2.4)

As we shall see, problem (1.2.4) is important for several engineering applications. From the
computational viewpoint, the drawback of the problem is that its objective is implicit—it
involves maximization with respect to a continuously varying variable. As a result, already
the related analysis problem (to evaluate the quality of the approximation corresponding to
a given x) can be quite difficult numerically. The simplest way to overcome this drawback
is to approximate in (1.2.3) the interval [0, 1] by a “fine finite grid,” e.g., the grid

TM =
{
ti = i

M
| i = 1, . . . ,M

}
.

With this approximation, the objective in the problem (1.2.4) becomes

max
i=1,...,M

|β(ti) −
N∑
j=1

xjαj (ti)| ≡ ‖Ax − b‖∞,

where the columns of A are the restrictions of the functions αj (·) on the grid TM , and b is
the restriction of β(·) on this grid. Consequently, the optimization problem (1.2.1) can be
viewed as a discrete version of problem (1.2.4).

1.2.2 Application: Synthesis of filters

An interesting engineering problem corresponding to (1.2.4) is the problem of synthesizing
a linear time-invariant (LTI) dynamic system (a “filter”) with a given impulse response.1

A (continuous-time) time-invariant linear dynamic systemS is, mathematically,
a transformation from the space of signals—functions on the axis—to the same
space, given by the convolution with certain fixed function:

u(t) �→ y(t) =
∫ ∞

−∞
u(s)h(t − s)ds,

where u(·) is an input and y(·) is the corresponding output. The convolu-
tion kernel h(·) is a characteristic function of the system S called the impulse
response.

1The filter synthesis and the subsequent antenna array examples are taken from M.S. Lobo, L. Vanderbeghe,
S. Boyd, and H. Lebret, Second-order cone programming, Linear Algebra Appl., 284 (1998), pp. 193–228.
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4 Lecture 1. Linear Programming

u(t)

S1

S2

SN

y1(t)

y2(t)

yN(t)

z1(t)

z2(t)

zN(t)

+

x1

x2

xN

y(t)

u(t)

u(t)

u(t)

yj (t) = ∫ ∞
−∞ u(s)hj (t − s)ds,

zj (t) = xjyj (t),

y(t) = z1(t) + z2(t) + · · · + zN(t).

Figure 1.1. Parallel structure with amplifiers.

Consider the simplest synthesis problem, as follows.

Problem 1.2.2. Filter synthesis, I. Given a desired impulse response h∗(t) along with
N building blocks—standard systems Sj with impulse responses hj (·), j = 1, . . . , N—
assemble these building blocks as shown in Fig. 1.1 into a system S in such a way that the
impulse response of the assembled system will be as close as possible to the desired impulse
response h∗(·).

Note that the structure of S is given, and all we can play with are the amplification
coefficients xj , j = 1, . . . , N .

The impulse response of the structure in Fig. 1.1 is clearly

h(t) =
N∑
j=1

xjhj (t).

Assuming further that h∗ and all hj vanish outside [0, 1]2 and that we are interested in
the best possible uniform approximation of the desired impulse response h∗ on [0, 1], we
can pose our synthesis problem as (1.2.4) and further approximate it by (1.2.1). As we
remember, the latter problem is equivalent to the LP program (1.2.2) and can therefore be
solved by LP tools.

2Assumptions of this type have a natural interpretation. That impulse response vanishes to the left of the origin
means that the corresponding system is casual—its output until any time t depends solely on the input until t and
is independent of what happens with the input after time t . The fact that impulse response vanishes after certain
T > 0 means that the memory of the corresponding system is at most T : output at a time t depends on what is the
input starting with time t − T and is independent of what the input was before time t − T .
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1.2. Example: Tschebyshev approximation and its applications 5

1.2.3 Filter synthesis revisited

In the filter synthesis problem we wanted to combine given building blocks Si to get a system
with an impulse response as close as possible to the target one. A somewhat more typical
design requirement is to get a system with a desired transfer function: the Fourier transform
of the impulse response. The role of the transfer function becomes clear when we represent
the action of an LTI system S in the frequency domain—the space of the Fourier transforms
of inputs and outputs. In the frequency domain the transformation carried out by the system
becomes

U(ω) �→ Y (ω) = U(ω)H(ω),−∞ < ω < ∞, (1.2.5)

where uppercase letters denote the Fourier transforms of their lowercase counterparts (e.g.,
H(ω) stands for the Fourier transform of the impulse response h(t)). Relation (1.2.5)
demonstrates that the action of an LTI system in the frequency domain is very simple—it
is just multiplication by the transfer function; this is why the analysis of an LTI system is
carried out usually in the frequency domain, and thus typical design requirements on LTI
systems are formulated in terms of their transfer functions.

The frequency domain version of the filter synthesis problem is as follows.

Problem 1.2.3. Filter synthesis, II. Given a target transfer function H∗(t) along with
N building blocks—standard systems Sj with transfer function Hj(·), j = 1, . . . , N—
assemble these building blocks (as shown in Fig. 1.1) into a system S in such a way that the
transfer function of the latter system will be as close as possible to the target function H∗(·).

Again, we measure the quality of approximating the target transfer function on a given
segment [ωmin, ωmax] in the frequency domain by the uniform norm of the approximation
error. Thus, the problem of interest is

min
x∈Rn

sup
ωmin≤ω≤ωmax

|H∗(ω) −
N∑
j=1

xjHj (ω)|,

and its computationally tractable approximation is

min
x∈Rn

max
i=1,...,M

|H∗(ωi) −
N∑
j=1

xjHj (ωi)|, (1.2.6)

where {ω1, ω2, . . . , ωM} is a grid in [ωmin, ωmax]. Mathematically, the latter problem looks
exactly as (1.2.1), and one could think that it can be immediately converted to an LP program.
We should, however, take into account an important consideration:

In contrast to impulse response, a transfer function is, generally, complex-
valued. Consequently, the absolute values in (1.2.6) are absolute values of
complex numbers. As a result, the conversion of (1.2.1) to an LP program now
fails—the possibility to represent the nonlinear inequality |a| ≤ t by two linear
inequalities a ≤ t and a ≥ −t exists in the case of real data only!
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6 Lecture 1. Linear Programming

The difficulty we have met can be overcome in two ways:
1. The inequality |a| ≤ t with complex-valued a can be represented as the inequality√�2(a) + �2(a) ≤ t with real data (�(a) is the real and �(a) the imaginary part of a). As

a result, problem (1.2.6) can be posed as a conic quadratic problem. Such problems will be
our subject in Lecture 3.

2. The inequality |a| ≤ t with complex-valued a can be easily approximated by a
number of linear inequalities on �(a) and �(a). Indeed, let us inscribe into the unit circle
D on the complex plane C = R2 a (2k)-vertex perfect polygon Pk:

Pk = {(u, v) ∈ R2 : |u cos(�φ) + v sin(�φ)| ≤ cos(φ/2), � = 1, . . . , k},
[
φ = π

k

]
.

For z = u + iv, denote

pk(z) = max
l=1,...,k

|u cos(lφ) + v sin(lφ)|.

We claim that for every z = (u, v) ∈ R2 one has

|z| ≥ pk(z) ≥ cos(φ/2)|z|. (1.2.7)

The left inequality in (1.2.7) follows from the Cauchy inequality: for z = u+ iv one
has

|u cos(�φ) + v sin(�φ)| ≤ |z|
√

cos2(�φ) + sin2(�φ) = |z|,
hence pk(z) ≤ |z|. The right inequality follows from the fact that Pk is inside D:

|z| = 1 ⇒ z �∈ intPk ⇒ pk(z) ≥ cos(φ/2).

Since both |z| and pk(z) are positive homogeneous of degree 1, i.e.,

pk(λz) = λpk(z), |λz| = λ|z| ∀λ ≥ 0,

the validity of the inequality pk(z) ≥ cos(φ/2)|z| for |z| = 1 implies the validity of the
inequality for all z.

We see that the absolute value |z| of a complex number can be approximated, within
relative accuracy 1 − cos(φ/2) = 1 − cos(π/(2k)), by the polyhedral norm pk(z)—the
maximum of absolute values of k linear forms of �(z) and �(z). As an illustration, for k = 4
we approximate |z| within the 7.7% margin; see Fig. 1.2. For most engineering applications,
it is basically the same: approximate H∗ in the uniform norm on a grid / = {ω1, . . . , ωM}
or in the polyhedral norm

max
i=1,...,M

p4

H∗(ωi) −
N∑
j=1

xjHj (ωi)

 ;

the corresponding measures of the quality of an approximation differ by less than 8%.
Consequently, one can pass from problem (1.2.6) to its approximation,

min
x

max
i=1,...,M

p4

H∗(ωi) −
N∑
j=1

xjHj (ωi)

 . (1.2.8)D
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1.2. Example: Tschebyshev approximation and its applications 7

Figure 1.2. The contours |z| = 1 (circle) and p4(z) = 1 (polygon).

Problem (1.2.8) is equivalent to the program

min
x,t

t

∣∣∣∣p4

H∗(ωi) −
N∑
j=1

xjHj (ωi)

 ≤ t, i = 1, . . . ,M

 ,

which (due to the structure of p4(·)) is equivalent to the LP program

min
x,t

t

∣∣∣∣ − t ≤ cos(�φ)�
H∗(ωi) −

N∑
j=1

xjHj (ωi)


+ sin(�φ)�

H∗(ωi) −
N∑
j=1

xjHj (ωi)

 ≤ t,
i = 1, . . . ,M
� = 1, . . . , 4

 . (1.2.9)

1.2.4 Synthesis of arrays of antennae

An important engineering application of the Tschebyshev approximation problem is the
synthesis of arrays of antennae. An antenna is an electromagnetic device that can generate
(or receive) electromagnetic waves. The main characteristic of a monochromatic antenna is
its diagram Z(δ), which is a complex-valued function of a three-dimensional (3D) direction
δ. The absolute value |Z(δ)| of the diagram is responsible for the directional density of
the energy sent by the antenna in a direction δ; this density is proportional to |Z(δ)|2. The
argument argZ(δ) of the diagram corresponds to the initial phase of the wave propagating
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8 Lecture 1. Linear Programming

in the direction δ, so that the electric field generated by the antenna at a point P = rδ (we
assume that the antenna is placed at the origin) is proportional to

E(rδ, t) = |Z(δ)|r−1 cos(argZ(δ) + tω − 2πr/λ), (1.2.10)

where t stands for time, ω is the frequency of the wave, and λ is the wavelength.3 For
a complex antenna comprising N antenna elements with diagrams Z1(δ), . . . , ZN(δ), the
diagram Z(·) is

Z(δ) =
N∑
j=1

Zj(δ).

When designing an array of antennae comprising several antenna elements, an engineer starts
with N given building blocks with diagrams Z1, . . . , ZN . For each block, the engineer can
amplify the signal sent by a block by a factor ρj and shift the initial phase φj (·) by a constant
ψj . In other words, the engineer can modify the original diagrams of the blocks according
to

Zj(δ) ≡ aj (δ)[cos(φj (δ)) + i sin(φj (δ))]
�→ Z+

j (δ) = ρjaj (δ)[cos(φj (δ) + ψj) + i sin(φj (δ) + ψj)].
Thus, it is possible to multiply the initial diagram of every block by an arbitrary complex
constant (“weight”)

zj = ρj (cosψj + i sinψj) ≡ uj + ivj .

The diagram of the resulting complex antenna will be

Z(δ) =
N∑
j=1

zjZj (δ). (1.2.11)

A typical design problem associated with the above description is to choose the design
parameters zj , j = 1, . . . , N , in order to get a diagram (1.2.11) as close as possible to a
given target diagram Z∗(δ). In many cases a relevant measure of closeness is in terms of
the uniform norm, and the corresponding synthesis problem becomes

min
z1,...,zN∈Cn

max
δ:‖δ‖2=1

|Z∗(δ) −
N∑
j=1

zjZj (δ)|,

where the design variables are N complex numbers z1, . . . , zN , or, which is the same, 2N
real numbers �(zj ), �(zj ). Mathematically, the resulting problem is completely similar to
the one discussed in the previous section, up to the fact that now the inner maximum in
the objective is taken over the unit sphere in R3 rather than an interval on the axis. Even
this difference disappears when we approximate the maximum over continuously varying
direction by the maximum over a finite grid on the sphere (this in any case is necessary
to get an efficiently solvable optimization program). Thus, the problem of synthesis of an

3Relation (1.2.10) works when the distance r between P and the antenna is much larger than the linear sizes of
the antenna. Mathematically, the difference between the left and the right sides in (1.2.10) is o(r−1) as r → ∞.
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1.2. Example: Tschebyshev approximation and its applications 9

(a) (b) (c)

Figure 1.3. Synthesis of antennae array. (a): 10 array elements of equal areas
in the XY -plane the outer radius of the largest ring is 1m, the wavelength is 50cm. (b):
“building blocks” – the diagrams of the rings as functions of the altitude angle θ . (c): the
target diagram (dashed) and the synthesied diagram (solid).

array of antennae is, mathematically, identical to the problem of synthesis of an LTI system
with a desired transfer function; in particular, we can approximate the problem by an LP
program.

Example. Let a planar antenna array comprise a central circle and nine concentric rings
of the same area as the circle (Fig. 1.3(a)). The array is placed in the XY -plane (Earth’s
surface), and the outer radius of the outer ring is 1 m.

One can easily see that the diagram of a ring {a ≤ r ≤ b} in the plane XY (r is the
distance from a point to the origin) as a function of a 3D direction δ depends on the altitude
(the angle θ between the direction and the plane) only. The resulting function of θ turns out
to be real-valued, and its analytic expression is

Za,b(θ) = 1

2

∫ b

a

[∫ 2π

0
r cos

(
2πrλ−1 cos(θ) cos(φ)

)
dφ

]
dr,

where λ is the wavelength. Figure 1.3(b) represents the diagrams of our 10 rings for
λ = 50 cm.

Assume that our goal is to design an array with a real-valued diagram that should
be axial symmetric with respect to the Z-axis and should be concentrated in the cone
π/2 ≥ θ ≥ π/2 − π/12. In other words, our target diagram is a real-valued function Z∗ of
the altitude θ with Z∗(θ) = 0 for 0 ≤ θ ≤ π/2 − π/12 and Z∗(θ) somehow approaching 1
as θ approaches π/2. The target diagram Z∗(θ) used in this example is given in Fig. 1.3(c)
(the dashed curve).

Our design problem is simplified considerably by the fact that the diagrams of our
building blocks and the target diagram are real valued; thus, we need no complex numbers,
and the problem we should finally solve is

min
x∈R10

max
θ∈T

|Z∗(θ) −
10∑
j=1

xjZrj−1,rj (θ)|
 ,D
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10 Lecture 1. Linear Programming

Table 1.1. Optimal weights (rounded to five significant digits).

element 1 2 3 4 5 6 7 8 9 10
coefficient 1624.4 −14700 55383 −107247 95468 19221 −138620 144870 −69303 13311

where T is a finite grid on the segment [0, π/2]. In the design represented in Fig. 1.3(c),
the 120-point equidistant grid is used. Both the data and the design variables in the
problem are real, so that we can immediately convert the problem into an equivalent LP
program.

The solid line in Fig. 1.3(c) represents the optimal diagram of the array of antennae
given by the synthesis. The uniform distance between the actual and the target diagram is
≈ 0.0621 (recall that the target diagram varies from 0 to 1). Table 1.1 displays the optimal
weights (i.e., the coordinates xj of the optimal solution).

Why the uniform approximation? The antenna array example raises a natural question:
Why is the distance between the target diagramZ∗(·) and the synthesized oneZ(·)measured
by the uniform norm of the residual ‖Z∗ − Z‖∞ = maxθ |Z∗(θ) − Z(θ)| and not by, say,
the 2-norm ‖Z∗ − Z‖2 = √∑

θ |Z∗(θ) − Z(θ)|2? With this latter norm—i.e., with the
standard least squares approximation—the (squared) objective to be minimized would be
a sum of squares of affine forms of the design variables, i.e., a convex quadratic form
1
2x

T Ax +bT x + c, and we could immediately write the optimal solution x∗ = −A−1b, thus
avoiding any need for numerical optimization.

Note, however, that the only advantage of the ‖·‖2-accuracy measure is that it leads to a
computationally cheap approximation routine. From the modeling viewpoint, least squares
are not attractive in many cases. Indeed, consider the case when the target function is nearly
singular—it is close to one constant, say, to 0, in the major part A0 of its domain and is close
to another constant, say, to 1, in another relatively small part A1 of the domain. This is the
case in our antenna synthesis example: we are trying to concentrate the signal in a small
cone, and what is of interest is exactly the nearly singular behavior of the signal. Now, with
an integral-type norm of the residual, like ‖ · ‖2, the typical squared deviation between an
approximation and the target in A0 is taken with relatively large weight (proportional to the
cardinality of A0), while the typical squared deviation between the functions in A1 is taken
with relatively small weight. It follows that in order to get a good ‖·‖2-approximation, it pays
to concentrate on a good approximation of the background behavior of the target (the one
in A0), even at the price of poor reproduction of the singular behavior of the target (the one
in A1). As a result, least squares designs usually result in oversmoothed approximations
that badly capture the near singularity of the target—a feature of the target we are most
interested in. In contrast, ‖ · ‖∞ design pays the same attention to how well we reproduce
the background behavior of the target and to how well we reproduce its singularities; this
feature of the uniform norm makes it a better candidate than the ‖ · ‖2-norm to be used in
approximation problems with singularities. To illustrate this point, let us look at what the
least squares yield in our example (Fig. 1.4). We see that the least squares approximation
indeed pays more attention to the background than to the singularity. The uniform distanceD
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1.3. Duality in linear programming 11

Figure 1.4. Top: Best uniform approximation (left) versus the least squares ap-
proximation (right). Bottom: Errors of the least squares (dashed) and the best uniform
(solid) approximations.

between the target and the least squares approximation is 0.1240—more than twice the
distance corresponding to the best uniform approximation!

1.3 Duality in linear programming
The most important and interesting feature of LP as a mathematical entity (other than
computations and applications) is the wonderful LP duality theory we are about to consider.
We motivate this topic by first addressing the following question:

Given an LP program

c∗ = min
x

{
cT x

∣∣∣∣Ax − b ≥ 0

}
, (LP)

how do we find a systematic way to bound from below its optimal value c∗?

Why this is an important question, and how the answer helps us deal with LP, will be seen
later. For the time being, let us accept that the question is worthy of the effort.D

ow
nl

oa
de

d 
01

/0
4/

21
 to

 1
43

.2
15

.3
3.

45
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



job
2001/6/18
page 12

✐

✐

✐

✐

✐

✐

✐

✐

12 Lecture 1. Linear Programming

A trivial answer to the posed question is to solve (LP) and see what is the optimal
value. There is, however, a smarter and much more instructive way to answer our question.
Let us look at the following example:

min

x1 + x2 + · · · + x1999

∣∣∣∣ x1 + 2x2 + · · · + 1998x1998 + 1999x1999 − 1 ≥ 0,
1999x1 + 1998x2 + · · · + 2x1998 + x1999 − 100 ≥ 0,

. . . . . . . . .

 .

We claim that the optimal value in the problem is ≥ 101
2000 . How could one certify this bound?

This is immediate: add the first two constraints to get the inequality

2000(x1 + x2 + · · · + x1998 + x1999) − 101 ≥ 0

and divide the resulting inequality by 2000. LP duality is nothing but a straightforward
generalization of this simple trick.

1.3.1 Certificates for solvability and insolvability

Consider a (finite) system of scalar inequalities with n unknowns. To be as general as
possible, we do not assume for now that the inequalities are linear, and we allow for both
nonstrict and strict inequalities in the system, as well as for equalities. Since an equality
can be represented by a pair of nonstrict inequalities, our system can always be written as

fi(x) /i 0, i = 1, . . . , m, (S)
where every /i is either the relation > or the relation ≥.

The basic question about (S) is whether (S) has a solution. When we can answer
this question, we can answer many other questions. For example, verifying whether a given
real a is a lower bound on the optimal value c∗ of (LP) is the same as verifying whether the
system { −cT x + a > 0,

Ax − b ≥ 0

has no solutions.
The general question above is too difficult, and it makes sense to pass from it to a

seemingly simpler one: How do we certify that (S) has, or does not have, a solution?
Imagine that you are very smart and know the correct answer to the first question; how
could you convince somebody that your answer is correct? What would certify the validity
of your answer for everybody?

If your claim is that (S) is solvable, certification could come from pointing out a
solution x∗ to (S). Then one can substitute x∗ into the system and check whether x∗ indeed
is a solution.

Assume now that your claim is that (S) has no solutions. What could be a simple
certificate of this claim? How one could certify a negative statement? This is a highly
nontrivial problem and not just for mathematics; for example, in criminal law, how should
someone accused in a murder prove his innocence? The real-life answer to how to certify
a negative statement is discouraging: such a statement normally cannot be certified. In
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1.3. Duality in linear programming 13

mathematics, however, the situation is different: in some cases there exist simple certificates
of negative statements. For example, to certify that (S) has no solutions, it suffices to
demonstrate that a consequence of (S) is a contradictory inequality, such as

−1 ≥ 0.

For example, assume that λi , i = 1, . . . , m, are nonnegative weights. Combining inequali-
ties from (S) with these weights, we come to the inequality

m∑
i=1

λifi(x) / 0, (Cons(λ))

where / is either > (this is the case when the weight of at least one strict inequality from
(S) is positive) or ≥ (otherwise). Since the resulting inequality, due to its origin, is a
consequence of the system (S) (i.e., it is satisfied by every solution to (S)), it follows that
if (Cons(λ)) has no solutions at all, we can be sure that (S) has no solution. Whenever this
is the case, we may treat the corresponding vector λ as a simple certificate of the fact that
(S) is infeasible.

Let us look at what the outlined approach means when (S) is made up of linear
inequalities:

(S) : {αT
i x /i bi, i = 1, . . . , m},

[
/i =

{>
≥

]
.

Here the combined inequality is linear as well:

(Cons(λ)) :
(

m∑
i=1

λai

)T

x /

m∑
i=1

λbi

(/ is > whenever λi > 0 for at least one i with /i =>, and / is ≥ otherwise). Now, when
can a linear inequality

dT x / e

be contradictory? Of course, it can happen only when the left-hand side is identically zero,
i.e., only when d = 0. Whether in this latter case the inequality is contradictory depends on
the relation /: if / is >, then the inequality is contradictory if and only if e ≥ 0, and if /
is ≥, the inequality is contradictory if and only if e > 0. We have established the following
simple result.

Proposition 1.3.1. Consider a system of linear inequalities

(S) :
{

aTi x > bi, i = 1, . . . , ms,

aTi x ≥ bi, i = ms + 1, . . . , m,D
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14 Lecture 1. Linear Programming

with n-dimensional vector of unknown x. Let us associate with (S) two systems of linear
inequalities and equations with m-dimensional vector of unknown λ:

TI :



(a) λ ≥ 0,

(b)

m∑
i=1

λiai = 0,

(cI)

m∑
i=1

λibi ≥ 0,

(dI)

ms∑
i=1

λi > 0,

TII :



(a) λ ≥ 0,

(b)

m∑
i=1

λiai = 0,

(cII)

m∑
i=1

λibi > 0.

Assume that at least one of the systems TI, TII is solvable. Then the system (S) is infeasible.

Proposition 1.3.1 says that in some cases it is easy to certify infeasibility of a linear
system of inequalities: a simple certificate is a solution to another system of linear inequal-
ities. Note, however, that the existence of a certificate of this latter type is to the moment
only a sufficient, but not a necessary, condition for the infeasibility of (S). A fundamental
result in the theory of linear inequalities is that the sufficient condition in question is in fact
also necessary.

Theorem 1.3.1. General theorem on the alternative. In the notation from Proposi-
tion 1.3.1, system (S) has no solution if and only if either TI or TII, or both systems, is
solvable.

The proof of the theorem on the alternative, as well as a number of useful particular
cases of it, is an exercise topic of Lecture 1. We explicitly formulate here two very useful
principles following from the theorem:

1. A system of linear inequalities

aTi x /i bi, i = 1, . . . , m,

has no solutions if and only if one can combine the inequalities of the system in a linear
fashion (i.e., multiplying the inequalities by nonnegative weights, adding the results, and
passing, if necessary, from an inequality aT x > b to the inequality aT x ≥ b) to get a
contradictory inequality, namely, either the inequality 0T x ≥ 1 or the inequality 0T x > 0.D
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1.3. Duality in linear programming 15

2. A linear inequality

aT0 x /0 b0

is a consequence of a solvable system of linear inequalities

aTi x /i bi, i = 1, . . . , m,

if and only if it can be obtained by combining, in a linear fashion, the inequalities of the
system and the trivial inequality 0 > −1.

It should be stressed that the above principles are highly nontrivial and very deep.
Consider, e.g., the following system of four linear inequalities with two variables u, v:

−1 ≤ u ≤ 1,
−1 ≤ v ≤ 1.

From these inequalities it follows that

u2 + v2 ≤ 2, (i)

which in turn implies, by the Cauchy inequality, the linear inequality u + v ≤ 2:

u + v = 1 × u + 1 × v ≤
√

12 + 12
√
u2 + v2 ≤ (

√
2)2 = 2. (ii)

The concluding inequality is linear and is a consequence of the original system, but in the
demonstration of this fact both steps (i) and (ii) are highly nonlinear. It is absolutely unclear
a priori why the same consequence can, as stated by principle 1, be derived from the system
in a linear manner as well. (Of course it can—just add two inequalities u ≤ 1 and v ≤ 1.)

Note that the theorem on the alternative and its corollaries 1 and 2 heavily exploit the
fact that we are speaking about linear inequalities. For example, consider two quadratic
and two linear inequalities with two variables,

(a) u2 ≥ 1,
(b) v2 ≥ 1,
(c) u ≥ 0,
(d) v ≥ 0,

along with the quadratic inequality

(e) uv ≥ 1.

The inequality (e) is clearly a consequence of (a)–(d). However, if we extend the system
of inequalities (a)–(b) by all “trivial” (i.e., identically true) linear and quadratic inequalities
with two variables, like 0 > −1, u2 + v2 ≥ 0, u2 + 2uv + v2 ≥ 0, u2 − uv + v2 ≥ 0, etc.,
and ask whether (e) can be derived in a linear fashion from the inequalities of the extended
system, the answer will be negative. Thus, principle 1 fails to be true already for quadratic
inequalities (which is a great sorrow—otherwise there were no difficult problems at all!).

We are about to use the theorem on the alternative to obtain the basic results of the
LP duality theory.
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16 Lecture 1. Linear Programming

1.3.2 Dual to a linear programming program: Origin

As mentioned, the motivation for constructing the problem dual to an LP program

c∗ = min
x

{
cT x

∣∣∣∣Ax − b ≥ 0

}
, A =


aT1
aT2
. . .

aTm

 ∈ Rm×n (LP)

is the desire to generate, in a systematic way, lower bounds on the optimal value c∗ of (LP).
As previously explained, a ∈ R is such a lower bound if and only if cT x ≥ a whenever
Ax ≥ b or, which is the same, if and only if the system of linear inequalities

(Sa) : −cT x > −a,Ax ≥ b

has no solution. We know by the theorem on the alternative that the latter fact means that
some other system of linear equalities (specifically, at least one of a certain pair of systems)
does have a solution. More precisely,

(∗) (Sa) has no solutions if and only if at least one of the following two systems
with m + 1 unknowns has a solution:

TI :



(a) λ = (λ0, λ1, . . . , λm) ≥ 0,

(b) −λ0c +
m∑
i=1

λiai = 0,

(cI) −λ0a +
m∑
i=1

λibi ≥ 0,

(dI) λ0 > 0,

or

TII :



(a) λ = (λ0, λ1, . . . , λm) ≥ 0,

(b) −λ0c −
m∑
i=1

λiai = 0,

(cII) −λ0a −
m∑
i=1

λibi > 0.

Now assume that (LP) is feasible. We claim that under this assumption (Sa) has no
solutions if and only if TI has a solution.

The implication “TI has a solution ⇒ Sa has no solution” is readily given by the above
remarks. To verify the inverse implication, assume that (Sa) has no solutions and the system
Ax ≥ b has a solution, and let us prove then that TI has a solution. If TI has no solution, then
by (*) TII has a solution and, moreover, λ0 = 0 for (every) solution to TII (since a solution
to the latter system with λ0 > 0 solves TI as well). But the fact that TII has a solution λ

with λ0 = 0 is independent of the values of a and c; if this fact would take place, it would
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1.3. Duality in linear programming 17

mean, by the same theorem on the alternative, that, e.g., the following instance of (Sa) has
no solution:

0T x ≥ −1, Ax ≥ b.

The latter means that the system Ax ≥ b has no solutions—a contradiction with the as-
sumption that (LP) is feasible.

Now, if TI has a solution, this system has a solution with λ0 = 1 as well. (To see
this, pass from a solution λ to the one λ/λ0; this construction is well defined, since λ0 > 0
for every solution to TI.) Now, an (m + 1)-dimensional vector λ = (1, y) is a solution to
TI if and only if the m-dimensional vector y solves the system of linear inequalities and
equations

y ≥ 0,

AT y ≡
m∑
i=1

yiai = c,

bT y ≥ a.

(D)

Summarizing our observations, we come to the following result.

Proposition 1.3.2. Assume that system (D) associated with the LP program (LP) has a
solution (y, a). Then a is a lower bound on the optimal value in (LP). Likewise, if (LP) is
feasible and a is a lower bound on the optimal value of (LP), then a can be extended by a
properly chosen m-dimensional vector y to a solution to (D).

We see that the entity responsible for lower bounds on the optimal value of (LP) is
the system (D): every solution to the latter system induces a bound of this type, and when
(LP) is feasible, all lower bounds can be obtained from solutions to (D). Now note that if
(y, a) is a solution to (D), then the pair (y, bT y) also is a solution to the same system, and
the lower bound bT y on c∗ is not worse than the lower bound a yielded by the former one.
Thus, as far as lower bounds on c∗ are concerned, we lose nothing by restricting ourselves
to the solutions (y, a) of (D) with a = bT y; the best lower bound on c∗ given by (D) is
therefore the optimal value of the problem

max
y

{
bT y

∣∣∣∣AT y = c, y ≥ 0

}
, (LP∗)

which we call the problem dual to the primal problem (LP). Note that (LP∗) is also an LP
program.

All we know about the dual problem at the moment is the following.

Proposition 1.3.3. Whenever y is a feasible solution to (LP∗), the corresponding value of
the dual objective bT y is a lower bound on the optimal value c∗ in (LP). If (LP) is feasible,
then for every a ≤ c∗ there exists a feasible solution y of (LP∗) with bT y ≥ a.

1.3.3 Linear programming duality theorem

Proposition 1.3.3 is in fact equivalent to the following theorem.
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18 Lecture 1. Linear Programming

Theorem 1.3.2. Duality theorem in linear programming. Consider an LP program

min
x

{
cT x

∣∣∣∣Ax ≥ b

}
(LP)

along with its dual

max
y

{
bT y

∣∣∣∣AT y = c, y ≥ 0

}
. (LP∗)

Then
1. the duality is symmetric: the problem dual to dual is equivalent to the primal;
2. the value of the dual objective at every dual feasible solution is ≤ the value of the

primal objective at every primal feasible solution;
3. the following properties are equivalent to each other:

(i) the primal is feasible and bounded below,
(ii) the dual is feasible and bounded above,
(iii) the primal is solvable,
(iv) the dual is solvable,
(v) both primal and dual are feasible.

Whenever (i) ≡ (ii) ≡ (iii) ≡ (iv) ≡ (v) is the case, the optimal values of the primal and
the dual problems are equal to each other.

Proof. Item 1 is quite straightforward: writing the dual problem (LP∗) in our standard form,
we get

min
y

−bT y

∣∣∣∣
 Im

AT

−AT

 y −
( 0

c

−c

)
≥ 0

 ,

where Im is the m-dimensional unit matrix. Applying the duality transformation to the latter
problem, we come to the problem

max
ξ,η,ζ

0T ξ + cT η + (−c)T ζ

∣∣∣∣
ξ ≥ 0
η ≥ 0
ζ ≥ 0

ξ − Aη + Aζ = −b

 ,

which is clearly equivalent to (LP) (set x = η − ζ ).
Point 2 is readily given by Proposition 1.3.3. The proof of point 3 is as follows:
(i)⇒(iv): If the primal is feasible and bounded below, its optimal value c∗ (which

of course is a lower bound on itself) can, by Proposition 1.3.3, be (non-strictly) majorized
by a quantity bT y∗, where y∗ is a feasible solution to (LP∗). In the situation in question,
of course, bT y∗ = c∗ (by already proved item 2)); on the other hand, in view of the same
Proposition 1.3.3, the optimal value in the dual is ≤ c∗. We conclude that the optimal value
in the dual is attained and is equal to the optimal value in the primal.

(iv)⇒(ii): This is evident.
(ii)⇒(iii): This implication, in view of the primal-dual symmetry, follows from the

implication (i)⇒(iv).
(iii)⇒(i): This is evident.
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1.3. Duality in linear programming 19

We have seen that (i) ≡ (ii) ≡ (iii) ≡ (iv) and that the first (and consequently each) of
these four equivalent properties implies that the optimal value in the primal problem is equal
to the optimal value in the dual one. All that remains is to prove the equivalence between
(i)–(iv), on one hand, and (v), on the other hand. This is immediate: (i)–(iv), of course,
imply (v); conversely, in the case of (v) the primal not only is feasible but also is bounded
below (this is an immediate consequence of the feasibility of the dual problem; see point
2), and (i) follows.

An immediate corollary of the LP duality theorem is the following necessary and
sufficient optimality condition in LP.

Theorem1.3.3. Necessary and sufficient optimality conditions in linear programming.
Consider an LP program (LP) along with its dual (LP∗). A pair (x, y) of primal and dual
feasible solutions is made up of optimal solutions to the respective problems if and only if

yi[Ax − b]i = 0, i = 1, . . . , m, [complementary slackness]

likewise as if and only if

cT x − bT y = 0 [zero duality gap].

Indeed, the zero duality gap optimality condition is an immediate consequence of the
fact that the value of primal objective at every primal feasible solution is greater than or equal
to the value of the dual objective at every dual feasible solution, while the optimal values in
the primal and the dual are equal to each other; see Theorem 1.3.2. The equivalence between
the zero duality gap and the complementary slackness optimality conditions is given by the
following computation: whenever x is primal feasible and y is dual feasible, the products
yi[Ax − b]i , i = 1, . . . , m, are nonnegative, while the sum of these products is precisely
the duality gap:

yT [Ax − b] = (AT y)T x − bT y = cT x − bT y.

Thus, the duality gap can vanish at a primal-dual feasible pair (x, y) if and only if all products
yi[Ax − b]i for this pair are zeros.

1.3.4 Illustration: Problem dual to the Tschebyshev
approximation problem

Let us look at the program dual to the (LP form of) the Tschebyshev approximation problem.
Our primal LP program is

min
t,x

{
t

∣∣∣∣ t − [bi − aTi x] ≥ 0, t − [−bi + aTi x] ≥ 0, i = 1, . . . ,M

}
. (P)
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20 Lecture 1. Linear Programming

Consequently, the dual problem is the LP program

max
η,ζ


M∑
i=1

bi[ηi − ζi]
∣∣∣∣

ηi, ζi ≥ 0, i = 1, . . . ,M,

M∑
i=1

[ηi + ζi] = 1,

N∑
i=1

[ηi − ζi]ai = 0.


.

To simplify the dual problem, let us pass from the variablesηi, ζi to the variablespi = ηi+ζi ,
qi = ηi − ζi . With respect to the new variables the problem becomes

max
p,q


M∑
i=1

biqi

∣∣∣∣
pi ± qi ≥ 0, i = 1, . . . ,M,

M∑
i=1

pi = 1,

M∑
i=1

qiai = 0.


.

In the resulting problem one can easily eliminate thep-variables, thus coming to the problem

max
q


M∑
i=1

biqi

∣∣∣∣
M∑
i=1

qiai = 0,

M∑
i=1

|qi | ≤ 1.


. (D)

The primal-dual pair (P)–(D) admits a nice geometric interpretation. Geometrically, the
primal problem (P) is as follows:

Given a vector b ∈ RM and a linear subspace L in RM spanned by the columns
of the matrix  aT1· · ·

aTM

 ,

find an element of L closest to b in the uniform norm

‖z‖∞ = max
i=1,...,M

|z|i

on RM .

Observing that the equality constraints
∑M

i=1 qiai = 0 in (D) say exactly that the M-
dimensional vector q must be orthogonal to the columns of the matrix aT1· · ·

aTM

D
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1.3. Duality in linear programming 21

or, which is the same, that the linear functional z �→ qT z vanishes on L, we see that the
dual problem (D) is as follows:

Given the same data as in (P), find a linear functional z �→ qT z on RM of the
‖ · ‖1-norm

‖q‖1 =
M∑
i=1

|qi |

not exceeding 1, which separates best of all the point b and the linear subspace
L, i.e., which is identically 0 on L and is as large as possible at b.

The duality theorem says, in particular, that the optimal values in (P) and in (D) are
equal to each other; in other words,

The ‖ · ‖∞-distance from a point b ∈ RM to a linear subspace L ⊂ RM is
equal to the maximum quantity by which b can be separated from L by a linear
functional of ‖ · ‖1-norm 1.

This is the simplest case of a very general and useful statement (a version of the Hahn–
Banach theorem):

The distance from a point b in a linear normed space (E, ‖ · ‖) to a linear
subspace L ⊂ E is equal to the supremum of quantities by which b can be
separated from L by a linear functional q(b) of the conjugate to ‖ · ‖ norm at
most 1:

inf{‖b − x‖ | x ∈ L} = sup{q(b) | q(·) : E → R is linear, ‖q‖∗ ≤ 1},[‖q‖∗ = sup{q(x) | x ∈ E, ‖x‖ ≤ 1}] .
1.3.5 Application: Truss topology design

Surprisingly, LP in general, and the Tschebyshev approximation problem in particular,
may serve to solve seemingly highly nonlinear optimization problems. One of the most
interesting examples of this type is the truss topology design (TTD) problem.

Truss topology design

A truss is a mechanical construction comprising thin elastic bars linked to each other, such as
an electric mast, a railroad bridge, or the Eiffel Tower. The points at which the bars are linked
are called nodes. A truss can be subjected to an external load—a collection of simultaneous
forces acting at the nodes, as shown on Fig. 1.5. Under a load, the construction deforms
a bit, until the tensions caused by the deformation compensate the external forces. When
deformed, the truss stores certain potential energy; this energy is called the compliance of
the truss with respect to the load. The less the compliance, the more rigid the truss with
respect to the load in question.
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22 Lecture 1. Linear Programming

A

A’

B

C

C’

D

D’

E

nodes: A,A′,B,C,C′,D,D′,E
bars: AC,A′C′,BC,BC′,CD,CD′,C′D′,C′D,CE,C′E,DE,D′E
forces: arrows

Figure 1.5. A simple planar truss and a load.

In the simplest TTD problem, we are given

• a nodal set, which is a finite set of points on the plane or in the space where the bars
of the truss to be designed can be linked,

• boundary conditions specifying the nodes that are supported and cannot move (like
nodes A,B,A′ on the wall AA′ in Fig. 1.5),

• a load, which is a collection of external forces acting at the nodes.

The goal is to design a truss of a given total weight best able to withstand the given load,
i.e., to link some pairs of the nodes by bars of appropriate sizes, not exceeding a given total
weight, in such a way that the compliance of the resulting truss with respect to the load of
interest will be as small as possible.

An attractive feature of the TTD problem is that although it seems to deal with the
size (weights) of the bars only, it finds the geometric shape (layout) of the truss as well.
Indeed, we may start with a dense nodal grid and allow all pairs of nodes to be connected by
bars. In the optimal truss, yielded by the optimization process, some of the bars (typically
the majority of them) will get zero weights. In other words, the optimization problem will
by itself decide which nodes to use and how to link them, i.e., it will find both the optimal
pattern (topology) of the construction and the optimal sizing.

Derivation of the model

To pose the TTD problem as an optimization program, let us look in more detail at what
happens with a truss under a load. Consider a particular bar AB in the unloaded truss
(Fig. 1.6); after the load is applied, the nodes A and B move a little bit, as shown on Fig. 1.6.
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dA

dB

A

B

Figure 1.6. A bar before (solid) and after (dashed) load is applied.

Assuming the nodal displacements dA and dB to be small and neglecting the second order
terms, the elongation dl of the bar under the load is the projection of the vector dB − dA

on the direction of the bar:

dl = (dB − dA)T (B − A)/‖B − A‖.
The tension (the magnitude of the reaction force) caused by this elongation, by Hooke’s
law, is

κ
dl × SAB

‖B − A‖ = κ
dl × tAB

‖B − A‖2
,

where κ is a characteristic of the material (Young’s modulus), SAB is the cross-sectional
area of the bar AB, and tAB is the volume of the bar. Thus, the tension is

τ = κtAB(dB − dA)T (B − A)‖B − A‖−3.

The reaction force at point B associated with the tension is the vector

−τ(B − A)‖B − A‖−1 = κtAB[(dB − dA)T (B − A)](B − A)‖B − A‖−4

= −tAB[(dB − dA)T βAB]βAB,

βAB = √
κ(B − A)‖B − A‖−2.

(1.3.12)
Note that the vector βAB depends on the positions of the nodes linked by the bar and is
independent of the load and of the design.

Now let us look at the potential energy stored by our bar as a result of its elongation.
Mechanics says that this energy is the half-product of the tension and the elongation, i.e., it
is

tension × elongation

2
= τdl

2
= [κtAB(dB − dA)T (B − A)‖B − A‖−3][(dB − dA)T (B − A)‖B − A‖−1]

2

= 1

2
tAB

[
(dB − dA)T βAB

]2
.

(1.3.13)

Now it is easy to build the relevant model. Let M be the number of nodes in the nodal
grid and Mf be the number of the “free” nodes—those that are not fixed by the boundary
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24 Lecture 1. Linear Programming

conditions.4 We define the space Rm of virtual displacements of the construction as the
direct sum of the spaces of displacements of the free nodes; thus, m is either 2Mf or 3Mf ,
depending on whether we are speaking about planar or spatial trusses. A vector v from Rm

represents a displacement of the nodal grid: a free node ν corresponds to a pair (planar case)
or a triple (spatial case) of (indices of) the coordinates of v, and the corresponding subvector
v[ν] of v represents the “physical” two-dimensional (2D) or 3D displacement of the node ν.
It is convenient to define the subvectors v[ν] for fixed nodes ν as well; by definition, these
subvectors are zeros.

A load—a collection of external forces acting at the free nodes5—can be represented
by a vector f ∈ Rm; for every free node ν, the corresponding subvector f [ν] of f is the
external force acting at ν.

Let n be the number of tentative bars (i.e., pair connections between distinct nodes
from the grid, at least one node in the pair being free). Let us somehow order all our n
tentative bars and consider the ith of them. This bar links two nodes ν ′(i), ν ′′(i), i.e., two
points Ai and Bi from our physical space (which is the 2D plane in the planar case and
the 3D space in the spatial case). Let us associate with tentative bar i a vector bi ∈ Rm as
follows (cf. (1.3.12)):

bi[ν] =
βAiBi

, ν = ν ′′(i) and ν is free,
−βAiBi

, ν = ν ′(i) and ν is free,
0 in all remaining cases.

(1.3.14)

A particular truss can be identified with a nonnegative vector t = (t1, . . . , tn), where ti is the
volume of bar i in the truss. Consider a truss t , and let us look at the reaction forces caused
by a displacement v of the nodes of the truss. From (1.3.12) and (1.3.14) it follows that for
every free node ν, the component of the reaction force caused, under the displacement v,
by the ith bar at the node ν is −ti(b

T
i v)bi[ν]. Consequently, the total reaction force at the

node ν is

−
n∑

i=1

ti(b
T
i v)bi[ν],

and the collection of the reaction forces at the nodes is

−
n∑

i=1

ti(b
T
i v)bi = −

[
n∑

i=1

tibib
T
i

]
v.

We see that the m-dimensional vector representing the reaction forces caused by a displace-
ment v depends on v linearly:

fr = −A(t)v,

4We assume for simplicity that a node is either completely fixed or completely free. In some TTD problems it
makes sense to speak also of partially fixed nodes, which can move along a given line (or along a given 2D plane
in the 3D space in the case of spatial trusses). It turns out that the presence of partially fixed nodes does not change
the mathematical structure of the resulting optimization problem.

5It makes no sense to speak about external force acting at a fixed node. Such a force will be compensated by
the physical support that makes the node fixed.
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1.3. Duality in linear programming 25

where

A(t) =
n∑

i=1

tibib
T
i (1.3.15)

is the so called bar-stiffness matrix of the truss. This is an m×m symmetric matrix, which
depends linearly on the design variables—the volumes of tentative bars.

Now, at equilibrium the reaction forces must compensate the external ones, which
gives us a system of linear equations determining the displacement of the truss under an
external load f :

A(t)v = f. (1.3.16)

To complete the model, we should also write an expression for the compliance—the potential
energy stored by the truss at equilibrium. According to (1.3.13)–(1.3.14), this energy is

1
2

n∑
i=1

ti
[
(v[ν ′′(i)] − v[ν ′(i)])T βAiBi

]2 = 1
2

n∑
i=1

ti(v
T bi)

2

= 1
2v

T

[
n∑

i=1

tibib
T
i

]
v

= 1
2v

T A(t)v

= 1
2f

T v,

the concluding equality being given by (1.3.16). Thus, the compliance of a truss t under a
load f is

Complf (t) = 1

2
f T v, (1.3.17)

where v is the corresponding displacement; see (1.3.16).
The expression for the compliance possesses a transparent mechanical meaning:

The compliance is just one half of the mechanical work performed by the ex-
ternal load on the displacement of the truss until equilibrium.

Remark 1.3.1. Mathematically speaking, there is a gap in the above considerations: the
linear system (1.3.16) can have more than one solution v (or no solution at all). Why do
we know that in the former case the value of the right-hand side of (1.3.17) is independent
of the particular choice of the solution to the equilibrium equation? And what do we do if
(1.3.16) has no solution?

The answers to these questions are as follows. If (1.3.16) has no solution, that means
that the truss t cannot carry the load f : it is crushed by this load. In this case it makes sense
to define Complf (t) as +∞. If (1.3.16) is solvable, then the quantity f T v does not depend
on a particular choice of a solution to the equation. Indeed, if v solves (1.3.16), then

f =
n∑

i=1

tibi(b
T
i v) ⇒ f T v =

n∑
i=1

ti(b
T
i v)
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26 Lecture 1. Linear Programming

The resulting quantity is independent of a particular choice of v due to the following obser-
vation:

If t ≥ 0, then for every i for which ti > 0, the quantity bTi v does not depend on
a particular choice of a solution to (1.3.16).

Indeed, if v, v′ are solutions to (1.3.16), then

n∑
i=1

tibi(b
T
i [v − v′]) = 0 ⇒

[v − v′]T
n∑

i=1

tibi(b
T
i [v − v′]) = 0 ⇒∑

i:ti>0

ti
(
bTi [v − v′])2 = 0.

Now we can formulate the problem of designing the stiffest truss (with respect to a
given load) of a given weight as the following optimization problem.

Problem 1.3.1. The simplest TTD problem. Given a ground structure6

m; n; {bi ∈ Rm}ni=1,

a load f ∈ Rm, and a total bar volume w > 0, find a truss t = (t1, . . . , tn) with nonnegative
ti satisfying the resource constraint

n∑
i=1

ti ≤ w (1.3.18)

with the minimum possible compliance Complf (t) with respect to the load f .

When speaking about the TTD problem, we always make the following assumption.

Assumption 1.3.1. The vectors {bi}ni=1 span the entire Rm.

This assumption has a very transparent mechanical interpretation. Let us look at a full
truss—one where all tentative bars are of positive weights. Assumption 1.3.1 says that there
should be no nonzero displacement v orthogonal to all bi , or, which is the same, an arbitrary
nonzero displacement should cause nonzero tensions in some bars of our full truss. In other

6From the engineering viewpoint, a ground structure is the data of a particular TTD problem, i.e., a particular
nodal set along with its partition into fixed and free nodes, the Young modulus of the material, etc. The engineering
data define, as explained above, the mathematical data of the TTD problem.
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1.3. Duality in linear programming 27

words, the assumption says that our boundary conditions forbid rigid body motions of the
nodal set.

Linear programming form of the truss topology design problem

As stated above, the TTD problem, Problem 1.3.1, does not resemble an LP program at all:
although the constraints

t ≥ 0,
n∑

i=1

ti ≤ w

are linear, the objective Complf (t) given by (1.3.15)–(1.3.17) is highly nonlinear.
Surprisingly, the TTD problem can be converted into an LP program. The corre-

sponding transformation is as follows.
For a loaded truss, a stress in a bar is the absolute value of the corresponding tension

(i.e., the magnitude of the reaction force caused by bar’s deformation) divided by the cross-
sectional area of the bar; the larger this quantity, the worse the conditions the material is
working in. According to (1.3.12), (1.3.14), the stress in bar i is (up to the constant factor√
κ) a simple function of the displacement vector v:

si = |bTi v|. (1.3.19)

Now let us formulate the following intermediate problem.

Problem 1.3.2. Given a ground structure m, n, {bi}ni=1 and a load f , find a displacement
v that maximizes the work f T v of the load under the constraint that all stresses are ≤ 1:

min
v

{
f T v | |bTi v| ≤ 1, i = 1, . . . , n

}
. (1.3.20)

A derivation completely similar to the one in section 1.3.4 demonstrates that the
problem dual to (1.3.20) is (equivalent to) the program

min
q1,...,qn

{
n∑

i=1

|qi | |
n∑

i=1

qibi = f

}
. (1.3.21)

Note that both the primal and the dual are feasible (for the primal it is evident; the feasibility
of the dual follows from Assumption 1.3.1). By the LP duality theorem, both problems are
solvable with common optimal value w∗. Let v∗ be an optimal solution to (1.3.20) and let
q∗ be an optimal solution to (1.3.21). It is easy to see that the complementary slackness
optimality condition results in

|q∗
i | = q∗

i (b
T
i v

∗), i = 1, . . . , n. (1.3.22)

Assuming f �= 0 (this is the only case of interest in the TTD problem), we ensure that
w∗ = ∑n

i=1 |q∗
i | > 0, so that the vector

t∗ : t∗
i = w

w∗
|q∗

i |, i = 1, . . . , n, (1.3.23)
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28 Lecture 1. Linear Programming

(w is the material resource in the TTD problem) is well defined and is a feasible truss (i.e.,
t∗ is nonnegative and satisfies the resource constraint). We claim that

(∗) The vector t∗ is an optimal solution to the TTD problem, and v+ = w∗
w
v∗

is the corresponding displacement.

Indeed, we have

n∑
i=1

t∗
i bib

T
i v

+ =
n∑

i=1

|q∗
i |bi(bTi v∗) [by construction of t∗, v+],

=
n∑

i=1

q∗
i bi [by (1.3.22)],

= f [see (1.3.21)]

so that v+ is the displacement of the truss t∗ under the loadf . The corresponding compliance
is

Complf (t
∗) = 1

2
f T v+

= 1

2

n∑
i=1

q∗
i b

T
i v

+
[

since f =
∑
i

q∗
i bi

]

= 1

2

w∗
w

n∑
i=1

q∗
i b

T
i v

∗ (1.3.24)

= w∗
2w

n∑
i=1

|q∗
i | [see (1.3.22)]

= w2∗
2w

.

Thus, t∗ is a feasible solution to the TTD problem with the value of the objective w2∗
2w . To

prove that the solution is optimal, it suffices to demonstrate that the latter quantity is a lower
bound on the optimal value in the TTD problem. To see this, let t be a feasible solution to
the TTD problem and let v be the corresponding displacement. Let also

qi = ti(b
T
i v).

We have

n∑
i=1

qibi =
n∑

i=1

ti(b
T
i v)bi = f (1.3.25)

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 29

✐

✐

✐

✐

✐

✐

✐

✐

1.3. Duality in linear programming 29

(the equilibrium equation; see (1.3.15)–(1.3.16)). Thus, q is a feasible solution to (1.3.21),
and

Complf (t) = 1
2f

T v

= 1
2

n∑
i=1

ti(b
T
i v)

2 [see (1.3.25)]

= 1
2

∑
i:ti �=0

q2
i

ti

≥ 1
2

∑
i:ti �=0

|qi |
2 ∑

i:ti �=0

ti

−1

since by the Cauchy inequality∑
i:ti �=0

|qi |
2

=
∑

i:ti �=0

[t−1/2
i |qi |]t1/2

i

2

≤
∑

i:ti �=0

q2
i /ti

(∑
i

ti

)

≥ 1
2
w2∗
w
,

Note that (*) not only provides us with a possibility to compute an optimal solution
to the TTD problem via LP techniques but also establishes a very important fact:

(∗∗) In an optimal truss t∗ the stresses, caused by load f , in all bars of nonzero
weight are equal to each other, so that the material in all bars is under the same
working conditions.

As stated by (*), the displacement of t∗ under the load f is v+, i.e., it is proportional
to v∗, and it remains to look at (1.3.22) and (1.3.23).

Strictly speaking, the above reasoning is incomplete. First, v+ is a solution to the
equilibrium equation associated with t∗; how do we know that (**) holds true for other
solutions to this equation? The answer: the stresses in those bars that are actually present
in a truss are uniquely defined by the truss and the load; see Remark 1.3.1. Second, (**) is
established for an optimal solution t∗ to the TTD problem, one which can be obtained, in
the aforementioned fashion, from an optimal solution to (1.3.25). A priori it may happen
that the TTD problem has other optimal solutions. However, it can be shown that every
optimal solution to the TTD problem can be obtained from an optimal solution to (1.3.25).

Remark 1.3.2. Note that problem (1.3.21) is, basically, the Tschebyshev approximation
problem. Indeed, instead of asking what is the largest possible value of f T v under the
constraints |bTi v| ≤ 1, i = 1, . . . , n, we might ask what is the minimum value of maxi |bTi v|
under the constraint thatf T v = 1. The optimal solutions to these two problems can be easily
obtained from each other. The second problem is equivalent to a Tschebyshev approximation
problem: we can use the equation f T v = 1 to eliminate one of the design variables, thus
coming to a Tschebyshev problem in the remaining variables.
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30 Lecture 1. Linear Programming

1.4 Exercises to Lecture 1
1.4.1 Uniform approximation

We have seen that the Tschebyshev approximation problem normally arises as a discrete
version of the best uniform approximation problem:

Given a segment D = [a, b], N basic functions f1, . . . , fN , and a target func-
tion f0 on D, find the best uniform approximation of f0 by a linear combination
of f1, . . . , fN :

min
x∈Rn


∥∥∥∥∥∥f0 −

N∑
j=1

xjfj

∥∥∥∥∥∥∞
≡ sup

t∈D

∣∣∣∣∣∣f0(t) −
N∑
j=1

xjfj (t)

∣∣∣∣∣∣
 . (Appr(D))

The discrete version of this problem is obtained by replacingDwith a finite setT ⊂ D:

min
x∈Rn


∥∥∥∥∥∥f0 −

N∑
j=1

xjfj

∥∥∥∥∥∥
T ,∞

= sup
t∈T

∣∣∣∣∣∣f0(t) −
N∑
j=1

xjfj (t)

∣∣∣∣∣∣
 . (Appr(T ))

The following questions related to the above problems are of primary interest:
1. What is the quality of approximation of (Appr(D)) by (Appr(T ))? Specifically,

can we write down an inequality∥∥∥∥∥∥f0 −
N∑
j=1

xifi

∥∥∥∥∥∥∞
≤ κ

∥∥∥∥∥∥f0 −
N∑
j=1

xifi

∥∥∥∥∥∥
T ,∞

∀x (1.4.26)

with appropriately chosen κ? If it is the case, then κ can be viewed as a natural measure of
the quality of approximating the original problem by its discrete version—the closer κ is to
1, the better the quality.

2. Given the total number M of points in the finite set T , how should we choose these
points to get the best possible quality of approximation?

The goal of the subsequent series of problems is to provide some answers to these
two questions. The answers will be given in terms of properties of the functions from the
linear space L spanned by f0, f1, . . . , fN :

L =
f =

N∑
j=0

ξjfj


ξ∈RN+1

.

Given a finite set T ⊂ D, let us say that T is L-dense, if there exists κ < ∞ such that

‖f ‖∞ ≤ κ‖f ‖T ,∞ ∀f ∈ L;
the smallest κ with the latter property is denoted by κL(T ). If T is not L-dense, we
set κL(T ) = ∞. Note that κL(T ) majorates the quality of approximating the problem
(Appr(D)) by (Appr(T )), and this is the quantity we shall focus on.
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1.4. Exercises to Lecture 1 31

Exercise 1.1. Let L be a finite-dimensional space comprising continuous functions on a
segment D, and let T be a finite subset in D. Prove that T is L-dense if and only if the only
function from L that vanishes on T is ≡ 0.

Exercise 1.2. Let α < ∞, and assume L is α-regular, i.e., the functions from L are
continuously differentiable and

‖f ′‖∞ ≤ α‖f ‖∞ ∀f ∈ L.

Assume that T ⊂ D is such that the distance from every point in D to the closest point of T
does not exceed β < α−1. Prove that under these assumptions

κL(T ) ≤ 1

1 − αβ
.

Exercise 1.3. Let L be a k-dimensional linear space comprising continuously differen-
tiable functions on a segment D. Prove that L is α-regular for some α; consequently, by
choosing a fine-enough finite grid T ⊂ D, we can ensure a given quality of approximating
(Appr(D)) by (Appr(T )).

To use the simple result stated in Exercise 1.2, we should know something about
regular linear spaces L of functions. The most useful result of this type is the following
fundamental fact.

Theorem 1.4.1. Bernshtein’s theorem on trigonometric polynomials. Let D = [0, 2π ]
and let f be a trigonometric polynomial of degree ≤ k on D:

f (t) = a0 +
k∑

l=1

[a0 cos(lt) + b0 sin(lt)]

with real or complex coefficients. Then

‖f ′‖∞ ≤ k‖f ‖∞.

Note that the inequality stated in the Bernshtein theorem is tight. Indeed, for the
trigonometric polynomial f (t) = cos(kt) the inequality becomes equality.

We see that the space of trigonometric polynomials of degree ≤ k on [0, 2π ] is k-
regular. What about the space of algebraic polynomials of degree ≤ k on the segment,
say, [−1, 1]? Specifically, let us look at the Tschebyshev polynomial of degree k given on
D = [−1, 1] by the relation

Tk(t) = cos(k acos(t)), −1 ≤ t ≤ 1.

(Check that this indeed is a polynomial in t of degree k.) This polynomial possesses the
following property:

(A) ‖Tk‖∞ = 1, and there are k+1 points of alternance t� = cos( π(k−�)

k
) ∈ D,

� = 0, . . . , k, where |Tk(t�)| = 1 and the signs of the values Tk(t�) alternate
(see Fig. 1.7).
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32 Lecture 1. Linear Programming

Figure 1.7. The Tschebyshev polynomial T4 and its five points of alternance.

The derivative of Tk at the point t = 1 is k2; thus, the factor α in an inequality

‖T ′
k‖∞ ≤ α‖Tk‖∞

is at least k2. We conclude that the space Lk of real algebraic polynomials of degree ≤ k

on the segment [−1, 1] is not α-regular for α < k2. Is our space k2-regular? We guess that
the answer is positive, but we were too lazy to find out if this is true. What we intend to
demonstrate here is that Lk is 2k2-regular.

Exercise 1.4. Prove that if f ∈ Lk and ‖f ‖∞ = 1, then

|f ′(1)| ≤ k2 = T ′
k(1). (∗)

Hint. Assuming that f ′(1) > T ′
k(1), look at the polynomial

p(t) = Tk(t) − T ′
k(1)

f ′(1)
f (t).

Verify that the values of this polynomial at the points of alternance of Tk are of
the same alternating signs as those of the values of Tk , so that p has at least k
distinct zeros on (−1, 1). Taking into account the latter fact and the equality
p′(1) = 0, count the number of zeros of p′(t).

Derive from (*) that

|f ′(t)| ≤ 2k2

for all t ∈ [−1, 1] and conclude that Lk is 2k2-regular.

Now let us apply the information collected so far to investigating questions 1 and 2 in
the two simplest cases, where L comprises the trigonometric and the algebraic polynomials,
respectively.D
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1.4. Exercises to Lecture 1 33

Exercise 1.5. Assume that D = [0, 2π ], and let L be a linear space of functions on D

comprising all trigonometric polynomials of degree ≤ k. Let T be an equidistant M-point
grid on D:

T =
{
(2� + 1)π

M

}M−1

�=0

.

1. Prove that if M > kπ , then T is L-dense, with

κL(T ) ≤ M

M − kπ
.

2. Prove that the above inequality remains valid if we replace T with its arbitrary
shift modulo 2π , i.e., treat D as the unit circumference and rotate T by an angle.

3. Prove that if T is an arbitrary M-point subset of D with M ≤ k, then κL(T ) = ∞.

Exercise 1.6. Let D = [−1, 1] and let L be the space of all algebraic polynomials of
degree ≤ k.

1. Assume that 2M > πk and T is the M-point set on D as follows:

T =
{
tl = cos

(
(2� + 1)π

2M

)}M−1

�=0

.

Then T is L-dense, with

κL(T ) ≤ 2M

2M − πk
.

2. Let T be an M-point set on D with M ≤ k. Then κL(T ) = ∞.

Exercise 1.7. The result stated in Exercise 1.6 says that when Lk is made up of all real
algebraic polynomials of degree ≤ k on [−1, 1] and we want to ensure κL(T ) = O(1), then
it suffices to take M ≡ card(T ) = O(k) point grid. Note that the corresponding grid is
nonuniform. Is it possible to achieve similar results with a uniform grid? The answer is no:

Prove that for the equidistant M-point grid T = {−1 + 2�
M

}M
�=0 on D = [−1, 1] one

has

κLk
(T ) ≥ c1M

−1 exp{−c2k/
√
M}

for some positive absolute constants c1, c2. Thus, in order to get κLk
(T ) = O(1) for an

equidistant grid T , the cardinality of the grid should be nearly quadratic in k.

Hint. Let t1 = −1, t2 = −1 + 2
M
, . . . , tM = +1 be the points of T . Reduce

the question to the following:

Given a polynomial f (t) of degree k which is ≤ 1 in absolute value
on [−1, tM−1] and is equal to 0 at the point 1, how large could the
polynomial be at the point 0.5(tM−1 + 1)?

To answer this, look how the Tschebyshev polynomial Tk grows outside the
segment [−1, 1]. (Note that for t ≥ 1 the polynomial is given by Tk(t) =
cosh(k acosh(t)).)D
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34 Lecture 1. Linear Programming

1.4.2 Theorem on the alternative

The goal of the subsequent exercises is to prove the general theorem on the alternative
(Theorem 1.3.1).

From the homogeneous Farkas lemma to the theorem on the alternative

Consider the very particular case of the theorem on the alternative. We want to verify
whether the system of homogeneous linear inequalities in Rn of the form

aT x < 0,
aTi x ≥ 0, i = 1, . . . , m,

(F)

has no solutions. The answer is given by the following.

Lemma 1.4.1. The homogeneous Farkas lemma.

{(F) is infeasible} ⇔
{

∃λ ≥ 0 : a =
m∑
i=1

λiai

}
.

Exercise 1.8. Prove that Lemma 1.4.1 is exactly what is said by the theorem on the
alternative as applied to the particular system (F).

Our plan of attack is as follows. We shall demonstrate that the general theorem on the
alternative can be easily obtained from the homogeneous Farkas lemma, and in section
1.4.3 we shall present a direct proof of the lemma. Thus, for the time being you may take
Lemma 1.4.1 for granted.

Exercise 1.9. Consider the same system of linear inequalities as in the theorem on the
alternative:

(S) :
{

aTi x > bi, i = 1, . . . , ms,

aTi x ≥ bi, i = ms + 1, . . . , m.

Prove that this system has no solution if and only if this is the case for the following
homogeneous system:

(S∗) :


−s < 0,

t − s ≥ 0,
aTi x − bit − s ≥ 0, i = 1, . . . , ms,

aTi x − bit ≥ 0, i = ms + 1, . . . , m,

where the unknowns are x and two additional real variables s, t .
Derive from the above observation and the homogeneous Farkas lemma the general

theorem on the alternative.

The next exercise presents several useful consequences of the general theorem on the
alternative.
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1.4. Exercises to Lecture 1 35

Exercise 1.10. Prove the following statements.
1. (Gordan’s theorem on the alternative.) One of the inequality systems

Ax < 0, x ∈ Rn, [A : m × n]

AT y = 0, 0 �= y ≥ 0, y ∈ Rm,

has a solution if and only if the other one has no solution.
2. (Inhomogeneous Farkas lemma.) A linear inequality

aT x ≤ p (1.4.27)

is a consequence of a solvable system of inequalities

Ax ≤ b [A : m × n]
if and only if

a = AT ν

for some nonnegative vector ν such that

νT b ≤ p.

3. (Motzkin’s theorem on the alternative.) The system

Sx < 0, Nx ≤ 0 [S : p × n, N : q × n]
has no solution if and only if the system

ST σ + NT ν = 0, σ ≥ 0, ν ≥ 0, σ �= 0,

has a solution.

1.4.3 Proof of the homogeneous Farkas lemma

Here we present a series of exercises aimed at proving the homogeneous Farkas lemma.
In fact we present two proofs: a quick and dirty one based on separation arguments, and
a more intelligent proof based on the Helley theorem. Note that the homogeneous Farkas
lemma states that the system (F) has no solution if and only if a is a linear combination,
with nonnegative coefficients, of a1, . . . , am. The only nontrivial here is the “only if” part:
if the system has no solutions, then a = ∑

i λiai , λi ≥ 0, and later we focus on this “only
if” part.

From the separation theorem to the Farkas lemma

Exercise 1.11. Let K be a nonempty closed convex set in Rn and let x ∈ Rn be a point
not belonging to K .
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36 Lecture 1. Linear Programming

1. Prove that the distance from x to K is achieved: there exists x∗ ∈ K such that

‖x − x∗‖2 = min
y∈K ‖x − y‖2.

Moreover, x∗ is unique.
2. Prove that e = x − x∗ strictly separates x and K , namely,

eT (x − y) ≥ ‖e‖2
2 > 0 ∀y ∈ K.

3. Assume in addition that K is a cone, i.e.,

y ∈ K, λ ≥ 0 ⇒ λy ∈ K.

Prove that in this case e = x − x∗ satisfies the relations

eT x > 0 & eT y ≤ 0 ∀y ∈ K.

Exercise 1.12. Let a1, . . . , am ∈ Rn. Consider the conic hull of these vectors, i.e., the set
K of all their linear combinations with nonnegative coefficients:

K =
{
p =

m∑
i=1

λiai | λ ≥ 0

}
.

1. Prove that the set K is a convex cone.
2. Prove that the set K is closed.

Hint. Letpj = ∑m
i=1 λij ai withλij ≥ 0, and let the sequence {pj } converge to a

pointp; we should prove thatp can also be represented as a linear combination,
with nonnegative coefficients, of a1, . . . , am.

A. Assume that p �= 0 (this is the only nontrivial case). For every j with
pj �= 0 consider a minimal representation of pj as a nonnegative linear com-
bination of a1, . . . , am, i.e., a representation pj = ∑

i λij ai , λij ≥ 0, with the
least number of positive weights λij ’s. Prove that the ai’s participating in (any)
minimal representation of pj with positive weights are linearly independent.

B. Derive from A that the weight vectors (λ1j , λ2j , . . . , λmj ) associated
with minimal representations of pj ’s form a bounded sequence.

C. Derive from B that p ∈ K .

3. Given 1, 2, and the results of the previous exercise, demonstrate that for any vector
a �∈ K there exists a vector x such that

aT x < 0, aTi x ≥ 0, i = 1, . . . , m,

and derive from this fact the homogeneous Farkas lemma.

Hint. Use as x the negation of the vector that separates a from K .
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1.4. Exercises to Lecture 1 37

An intelligent proof

We start with the following basic fact.

Theorem 1.4.2. Helley theorem. Let A1, . . . , AM be a collection of convex sets in Rn.
Assume that the intersection of every k ≤ n + 1 sets from the collection is nonempty. Then
the intersection of all M sets A1, . . . , AM is nonempty.

Let us derive the homogeneous Farkas lemma from the Helley theorem. Leta, a1, . . . , am
be vectors in Rn such that the system of inequalities

aT x < 0,
aTi x ≥ 0, i = 1, . . . , m,

(F)

has no solution. We should prove that under this assumption a can be represented as a linear
combination, with nonnegative coefficients, of a1, . . . , am; this is exactly what is said by
the homogeneous Farkas lemma. The statement is evident when a = 0, so that from now
on we assume a �= 0.

Set

H = {x | aT x = −1},
Ai = {x ∈ H | aTi x ≥ 0}

= {x | aT x = −1, aTi x ≥ 0}.
Let us call a nonempty subcollection of the collection {a1, . . . , am} a contradiction if the
sets Ai corresponding to the vectors from the subcollection have no common point.

Exercise 1.13. 1. Prove that the entire collection {a1, . . . , am} is a contradiction.
According to 1, contradictions exist. Consequently, there exists a minimal contra-

diction (one with the smallest number of vectors). By reordering the vectors ai , we may
assume that {a1, . . . , ak} is a minimal contradiction.

2. Prove that the vector a belongs to the linear span of the vectors a1, . . . , ak .

Hint. Assuming that a does not belong to the linear span of a1, . . . , ak , prove
that there exists a vector x that is orthogonal to a1, . . . , ak and is not orthogonal
to a, and conclude that {a1, . . . , ak} is not a contradiction.

3. Prove that the vectors a1, . . . , ak are linearly independent.

Hint. Assuming that a1, . . . , ak are linearly dependent, consider the linear
space L spanned by a1, . . . , ak along with its subsets

H′ = {x ∈ L : aT x = −1},
A′

i = {x ∈ H′ : aTi x ≥ 0}, i = 1, . . . , k.

3.1. Consider a subcollection of the collectionA′
1, . . . , A

′
k . Prove that the

sets of this subcollection have a point in common if and only if the corresponding
sets of the collection A1, . . . Ak have a point in common.
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38 Lecture 1. Linear Programming

3.2. Taking into account that {a1, . . . , ak} is a minimal contradiction,
verify that every k − 1 sets from the collection A′

1, . . . , A
′
k have a point in

common.
Applying the Helley theorem to the sets A′

1, . . . , A
′
k (they are convex

subsets of H′, i.e., essentially, of a (dim (L) − 1)-dimensional linear space),
prove that under the assumption dim (L) < k the sets A′

1, . . . , A
′
k have a point

in common, which is impossible (since {a1, . . . , ak} is a contradiction).

4. Derive from 2, 3, and the fact that {a1, . . . , ak} is a contradiction that a is a linear
combination of a1, . . . , ak , and all coefficients in this combination are nonnegative, thus
concluding the proof of the homogeneous Farkas lemma.

It is time to explain why the proof of the homogeneous Farkas lemma sketched in Ex-
ercise 1.13 is more intelligent than the proof coming from the separation scheme (Exercises
1.11, 1.12). The reason is that the Helley theorem itself, as well as the reasoning outlined
in Exercise 1.13, are purely algebraic facts: they do not use compactness or other topo-
logical arguments, as does the reasoning in Exercise 1.11. As a result, the proof sketched
in Exercise 1.13 remains valid also in the case when we replace our universe Rn, with,
say, the linear space Qn of all n-dimensional vectors with rational coefficients.7 From this
observation we conclude that the theorem on the alternative remains valid when we speak
about rational solutions to systems of linear inequalities with rational coefficients. This is a
nontrivial and useful observation. (It implies, e.g., that a solvable LP program with rational
data has a rational solution.)

Note that the proof via the separation heavily exploits the compactness and does not
work at all in the case of a percolated space such as Qn. Consider, e.g., the rational plane
Q2 along with the convex cone

K = {(u, v) ∈ Q2 | u + √
2v ≤ 0}.

A point x from Q2 not belonging to K cannot be separated from K by a legitimate linear
functional on Q2—there is no rational vector e such that eT x > eT y ∀y ∈ K . Consequently,
in the case of the rational universe an attempt to prove the Farkas lemma via a separation-type
reasoning fails at the very first step.

1.4.4 Helley theorem

The goal of the subsequent exercises is to establish the Helley theorem and to illustrate some
of its applications.

Exercise 1.14. Prove the following.

Theorem 1.4.3. Radon. Let a1, . . . , am be a collection of m ≥ n+ 2 vectors in Rn. There
exists a partitioning of the index set {1, . . . , m} into two nonempty disjoint subsets I and J

such that the convex hull of the points {ai}i∈I intersects the convex hull of the points {ai}i∈J .

7Qn should be treated as a linear space over the field Q of rationals, i.e., we allow multiplying the vectors from
Qn by rational scalars only, not by arbitrary reals.
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1.4. Exercises to Lecture 1 39

Hint. Note that the system of n + 1 < m homogeneous linear equations

m∑
i=1

λiai = 0,

m∑
i=1

λi = 0

has a nontrivial solution λ∗ and set I = {i : λ∗
i ≥ 0}, J = {i : λ∗

i < 0}.

Exercise 1.15. Derive the Helley theorem from the Radon theorem.

Hint. Apply induction on the number M of the sets A1, . . . , AM . To justify
the inductive step, it suffices to demonstrate that if the Helley theorem is valid
for every collection of M ≥ n+ 1 sets, then it is valid for a collection of M + 1
sets A1, . . . , AM+1. To verify this implication, consider the M + 1 nonempty
(by the inductive hypothesis) sets

B1 = A2 ∩ A3 ∩ · · · ∩ AM+1;B2 = A1 ∩ A3 ∩ A4 ∩ · · · ∩ AM+1;
· · · ;BM+1 = A1 ∩ A2 ∩ · · · ∩ AM.

For every i, choose a point ai ∈ Bi , apply to the resulting collection ofM+1 ≥
n + 2 points the Radon theorem, and demonstrate that every point from the
intersection of the corresponding convex hulls is a common point of the sets
A1, . . . , AM+1.

Exercise 1.16. Consider the Tschebyshev approximation problem,

σ ∗ = min
x

{
max

i=1,...,M
|aTi x − bi |

}
, (T )

and let k be the rank of the system a1, . . . , aM . Prove that one can choose a subset J ⊂
{1, . . . ,M}, containing no more than k + 1 indices, in such a way that the optimal value in
the relaxed problem

min
x

{
max
i∈J

|aTi x − bi |
}

(TJ )

is equal to σ ∗.

Hint. Look at the convex sets Xi = {x | |aTi x − bi | < σ ∗}.
Prove that if every k of the vectors a1, . . . , aM are linearly independent and σ ∗ > 0,

then for every optimal solution x∗ to (T ) there exist k+1 indices of alternance—there exists
a subset J ⊂ {1, . . . ,M} of the cardinality k + 1 such that

|aTi x∗ − bi | = σ ∗ ∀i ∈ J.
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40 Lecture 1. Linear Programming

Integration formulas and Gauss points

An integration formula is a formula of the type∫
D

f (t)dt ≈
N∑
i=1

αif (ti)

with nonnegative weights αi . Given an integration formula (i.e., a finite set of grid points
t1, . . . , tN and nonnegative weights α1, . . . , αN ), one may ask how rich is the set of functions
for which the formula is exact. For example, the equidistant two-point formula∫ 1

−1
f (t)dt ≈ f (−1/2) + f (1/2)

is exact for linear functions but is not exact for quadratic polynomials. In contrast to this,
the Gauss formula ∫ 1

−1
f (t)dt ≈ f (−1/

√
3) + f (1/

√
3)

is exact on all polynomials of degree ≤ 3.
It turns out that the Helley theorem and the Farkas lemma allow one to get the following

very general result:

(∗) LetD be a subset of Rk , letL be an n-dimensional linear space comprising
continuous real-valued functions on D, and let I (f ) : L → R be an integral—
a linear functional on L that is nonnegative at every f ∈ L such that f (t) ≥ 0
everywhere on D. Assume also that if a function f ∈ L is nonnegative on
D and is not identically 0, then I (f ) > 0. Then there exists an exact n-point
cubature formula for I , i.e., there are n points t1, . . . , tn ∈ D and n nonnegative
weights α1, . . . , αn such that

I (f ) =
n∑

i=1

αif (ti) ∀f ∈ L.

Exercise 1.17. 1. Prove (∗) for the case of finite D.

Hint. Assuming that I is not identically zero, associate with points t ∈ D the
convex sets At = {f ∈ L | f (t) ≤ 0, I (f ) = 1} and prove that there exist n
sets At1 , . . . , Atn of this type with empty intersection. Apply the homogeneous
Farkas lemma to the linear forms f (t1), . . . , f (tn), I (f ) of f ∈ L.

2. Prove (∗) for the general case.

1.4.5 How many bars are needed in an optimal truss?

Let us look at the ground structure shown on Fig. 1.8. We see that the optimal bar uses just
24 of the 3204 tentative bars. Is this phenomenon typical or not? As you shall see in a while,
the answer is positive: there exists an optimal truss with no more than m + 1 bars, where
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1.4. Exercises to Lecture 1 41

9 × 9 planar nodal grid and the load (left); 3204 tentative bars (right).
(The most left nodes are fixed; the dimension of the space of

displacements is m = 2 × 8 × 9 = 144.)
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Figure 1.8. Ground structure and optimal truss (24 bars).

m is the dimension of the space displacements. Thus, with the above ground structure we
know in advance that there exists an optimal truss with at most 145 bars; this is more than
the 24 bars in the optimal truss we have found but still is by an order of magnitude less than
the number of tentative bars.

Exercise 1.18. Consider an LP problem

min

{
cT x

∣∣∣∣Ax = b, x ≥ 0

}
with k×n matrix A of rank r . Assuming that the program is solvable, prove that there exists
an optimal solution x∗ to the problem with at most r nonzero coordinates.

Hint. Look at an optimal solution with the minimum possible number of pos-
itive coordinates.
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42 Lecture 1. Linear Programming

Exercise 1.19. Consider a TTD problem with M-dimensional space of virtual displace-
ments. Prove that there exists an optimal solution to this problem with no more than m + 1
bars of positive weight.

Hint. Given an optimal truss t∗ along with the associated displacement v∗,
demonstrate that every solution t to the system

n∑
i=1

ti(b
T
i v

∗)bi = f,

n∑
i=1

ti = w,

t ≥ 0,

is also an optimal truss.
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Lecture 2

From Linear Programming
to Conic Programming

Linear programming models cover numerous applications. Whenever applicable, LP allows
one to obtain useful quantitative and qualitative information on the problem at hand. The
specific analytic structure of LP programs gives rise to a number of general results (e.g.,
those of the LP duality theory) that provide us in many cases with valuable insight and
understanding (see, e.g., Exercise 1.19). At the same time, this analytic structure underlies
some specific computational techniques for LP; these techniques, which by now are perfectly
well developed, allow one to solve routinely quite large (tens or hundreds of thousands of
variables and constraints) LP programs. Nevertheless, there are real-life situations that
cannot be covered by LP models. To handle these essentially nonlinear cases, one needs to
extend the basic theoretical results and computational techniques known for LP beyond the
bounds of LP.

For the time being, the widest class of optimization problems to which the basic
results of LP were extended is the class of convex optimization programs. There are several
equivalent ways to define a general convex optimization problem; the one we are about to
use is not the traditional one, but it is well suited to encompass the range of applications
covered in this book.

When passing from a generic LP problem

min
x

{
cT x

∣∣∣∣Ax ≥ b

}
, [A : m × n], (LP)

to its nonlinear extensions, we should expect to encounter some nonlinear components in the
problem. The traditional way here is to say, “Well, in (LP) there are a linear objective function
f0(x) = cT x and inequality constraints fi(x) ≥ bi with linear functions fi(x) = aTi x,
i = 1, . . . , m. Let us allow some or all of these functions f0, f1, . . . , m to be nonlinear.”
In contrast to this traditional way, we intend to keep the objective and the constraints linear,
but introduce nonlinearity in the inequality sign ≥.

43
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44 Lecture 2. From Linear Programming to Conic Programming

2.1 Orderings of Rm and convex cones
The constraint inequality Ax ≥ b in (LP) is an inequality between vectors; as such, it
requires a definition, and the definition is well known: given two vectors a, b ∈ Rm, we
write a ≥ b if the coordinates of a majorate the corresponding coordinates of b:

a ≥ b ⇔ {ai ≥ bi, i = 1, . . . , m}. (≥)

In the latter relation, we again meet with the inequality sign ≥, but now it stands for the
“arithmetic ≥”—a well known relation between real numbers. The above coordinatewise
partial ordering of vectors in Rm satisfies a number of basic properties of the standard
ordering of reals; namely, for all vectors a, b, c, d, . . . ∈ Rm one has

1. reflexivity: a ≥ a;

2. antisymmetry: if both a ≥ b and b ≥ a, then a = b;

3. transitivity: if both a ≥ b and b ≥ c, then a ≥ c;

4. compatibility with linear operations:

(a) homogeneity: if a ≥ b and λ is a nonnegative real, then λa ≥ λb

(“one can multiply both sides of an inequality by a nonnegative real”);

(b) additivity: if both a ≥ b and c ≥ d, then a + c ≥ b + d

(“one can add two inequalities of the same sign”).

It turns out that

• A significant part of the nice features of LP programs comes from the fact that the
vector inequality ≥ in the constraint of (LP) satisfies the properties 1–4.

• The definition (≥) is neither the only possible nor the only interesting way to define
the notion of a vector inequality fitting the axioms 1–4.

As a result,

a generic optimization problem that looks exactly the same as (LP), up to the
fact that the inequality ≥ in (LP) is now replaced by a vector inequality different
from the componentwise ordering, inherits a significant part of the properties of
LP problems. Specifying properly the ordering of vectors, one can obtain from
(LP) generic optimization problems covering many important applications that
cannot be treated by the standard LP.

To the moment what is said is just a declaration. Let us see how this declaration comes
to life.

We start by clarifying the geometry of a vector inequality satisfying the axioms 1–4.
Thus, we consider vectors from Rm and assume that Rm is equipped with a partial ordering,
denoted by �; in other words, we say what are the pairs of vectors a, b from Rm linked by
the inequality a � b. We call the ordering good if it obeys the axioms 1–4, and we want to
understand what these good orderings are.
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2.1. Orderings of Rm and convex cones 45

Our first observation follows:

A good inequality � is completely identified by the set K of �-nonnegative
vectors:

K = {a ∈ Rm | a � 0}.
Namely,

a � b ⇔ a − b � 0, [⇔ a − b ∈ K].

Indeed, let a � b. By 1 we have −b � −b, and by 4(b) we may add the latter
inequality to the former one to get a − b � 0. Conversely, if a − b � 0, then, adding to this
inequality the one b � b, we get a � b.

The set K in the observation cannot be arbitrary. It is easy to verify (do it!) that it
must be a pointed convex cone, i.e., it must satisfy the following conditions:

1. K is nonempty and closed under addition:

a, a′ ∈ K ⇒ a + a′ ∈ K.

2. K is a conic set:

a ∈ K, λ ≥ 0 ⇒ λa ∈ K.

3. K is pointed:

a ∈ K and − a ∈ K ⇒ a = 0.

Geometrically, K does not contain straight lines passing through the origin.
Thus, every nonempty pointed convex cone K in Rm induces a partial ordering on

Rm, which satisfies the axioms 1–4. We denote this ordering by ≥K:

a ≥K b ⇔ a − b ≥K 0 ⇔ a − b ∈ K.

Which cone is responsible for the standard coordinatewise ordering ≥ we have started with?
The answer is clear: this is the cone made up of vectors with nonnegative entries—the
nonnegative orthant

Rm
+ = {x = (x1, . . . , xm)

T ∈ Rm : xi ≥ 0, i = 1, . . . , m}.
(Thus, to express that a vector a is greater than or equal to, in the componentwise sense,
a vector b, we were supposed to write a ≥Rm+ b. However, we will not be that formal and
shall use the standard shorthand notation a ≥ b.)

The nonnegative orthant Rm+ is not just a pointed convex cone; it possesses two useful
additional properties:

1. The cone is closed: if a sequence of vectors ai from the cone has a limit, the latter
also belongs to the cone.

2. The cone possesses a nonempty interior: there exists a vector such that a ball of
positive radius centered at the vector is contained in the cone.
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46 Lecture 2. From Linear Programming to Conic Programming

These additional properties are very important. For example, property 1 is responsible
for the possibility to pass to the termwise limit in an inequality:

ai ≥ bi ∀i, ai → a, bi → b as i → ∞ ⇒ a ≥ b.

It makes sense to restrict ourselves to good partial orderings coming from cones K sharing
properties 1 and 2. Thus,

From now on, speaking about good partial orderings ≥K, we always assume
that the underlying set K is a pointed and closed convex cone with a nonempty
interior.

Note that the closedness of K makes it possible to pass to limits in ≥K-inequalities:

ai ≥K bi, ai → a, bi → b as i → ∞ ⇒ a ≥K b.

The nonemptiness of the interior of K allows us to define, along with the nonstrict inequality
a ≥K b, the strict inequality according to the rule

a >K b ⇔ a − b ∈ intK,

where int K is the interior of the cone K. For example, the strict coordinatewise inequality
a >Rm+ b (shorthand: a > b) simply says that the coordinates of a are strictly greater, in the
usual arithmetic sense, than the corresponding coordinates of b.

Examples. The partial orderings we are especially interested in are given by the following
cones:

• the nonnegative orthant Rm+;

• the Lorentz (or the second order, or the ice cream) cone

Lm =
x = (x1, . . . , xm−1, xm)

T ∈ Rm : xm ≥
√√√√m−1∑

i=1

x2
i

 ;

• The positive semidefinite cone Sm+. This cone lives in the space Sm ofm×m symmetric
matrices and consists of all m × m matrices A which are positive semidefinite, i.e.,

A = AT , xT Ax ≥ 0 ∀x ∈ Rm.

2.2 What is conic programming?
Let K be a cone in Rm (convex, pointed, closed, and with a nonempty interior). Given an
objective c ∈ Rn, an m× n constraint matrix A, and a right-hand side b ∈ Rm, consider the
optimization problem

min
x

{
cT x

∣∣∣∣Ax − b ≥K 0

}
. (CP)
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2.2. What is conic programming? 47

We shall refer to conic programming (CP) as a conic problem associated with the cone K.
Note that the only difference between this program and an LP problem is that the latter deals
with the particular choice K = Rm+. With the formulation (CP), we can cover a much wider
spectrum of applications that cannot be captured by LP. To get an idea, let us look at the
following two examples:

Example 2.2.1. Synthesis of arrays of antennae (see section 1.2.4). Given N building
blocks—antennae S1, . . . , SN with diagramsZ1(δ), . . . , ZN(δ), a target diagramZ∗(δ), and
a finite grid T in the space of directions—find (complex-valued) weights z� = u� + iv�
minimizing the quantity

‖Z∗ −
N∑
�=1

z�Z�‖T ,∞ = max
δ∈T

|Z∗(δ) −
N∑
�=1

z�Z�(δ)|.

In Lecture 1 we dealt with a particular case of this problem—the one whereZ∗ and allZi were
real valued. There it was sufficient to consider real design variables z�, and consequently the
problem could be posed as an LP problem. In the general case, some or all of the functions
Z∗, Z� are complex valued; as a result, the conversion of the problem to an LP problem fails.
However, we can pose the problem as (CP). Indeed, let w = (u1, v1, . . . , uN, vN)

T ∈ R2N

be a collection of our design variables—the real and the imaginary parts of the complex-
valued weights z1, . . . , zN . For a particular direction δ, the complex number

Z∗(δ) −
N∑
�=1

z�Z�(δ)

treated as a 2D real vector, is an affine function of w:

Z∗(δ) −
N∑
�=1

z�Z�(δ) = αδw + βδ [αδ is 2 × 2N matrix, βδ ∈ R2].

Consequently, the problem of interest can be posed as

min
w,t

{
t

∣∣∣∣ ‖αδw + βδ‖2 ≤ t ∀δ ∈ T

}
. (An)

Now, a constraint

‖αδw + βδ‖2 ≤ t

means that the 3D vector (
αδw + βδ

t

)
,

affinely depending on the design vector x = (w, t) of (An),(
αδw + βδ

t

)
≡ Aδx − bδ,
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48 Lecture 2. From Linear Programming to Conic Programming

belongs to the 3D Lorentz cone L3. Consequently, (An) can be posed as

min
x=(w,t)

{
cT x ≡ t

∣∣∣∣Aδx + bδ ∈ L3 ∀δ ∈ T

}
.

Introducing the cone

K =
∏
δ∈T

L3

along with the affine mapping

Ax − b = {Aδx + bδ}δ∈T ,

we finally express our problem as the conic problem

min
x

{
cT x

∣∣∣∣Ax − b ≥K 0

}
.

The problem we end up with is a conic quadratic program—a conic program associated
with a cone K which is a direct product of (finitely many) ice cream cones.

We remark that the same reduction to a conic quadratic problem can be obtained for
the problem of synthesis of filters in the frequency domain (see Lecture 1).

Example 2.2.2. Stability analysis for an uncertain linear time-varying dynamic sys-
tem. Consider a linear time-varying system

d

dt
v(t) = Q(t)v(t) (S)

with m × m time-varying matrix Q(t). Assume that all we know about the matrix Q(t) is
that the matrix, at every time instant t , belongs to a given polytope:

Q(t) ∈ Conv(Q1, . . . ,Qk).

Imagine, e.g., that all entries of Q but one are constant, while, say, the entry Q11 varies
within known bounds Qmin

11 and Qmax
11 . This is exactly the same as saying that Q(t) belongs

to the polytope spanned by two matrices Q1 and Q2, the (1,1)-entry of the matrices being
Qmin

11 and Qmax
11 , respectively, and the remaining entries being the same as in Q(·).

For the system (S), the question of primary interest is whether the system is stable,
i.e., whether all trajectories of the system tend to 0 as t → ∞. A simple sufficient condition
for stability is the existence of a quadratic Lyapunov function—a function

L(v) = vT Xv,

where X is a symmetric positive definite matrix, such that

d

dt
L(v(t)) ≤ −αL(v(t)) (Ly)
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2.2. What is conic programming? 49

for every trajectory of the system; here α > 0 is the decay rate. Condition (Ly) clearly
implies that

L(v(t)) ≡ vT (t)Xv(t) ≤ exp{−αt}L(v(0)),
and since X is positive definite, the latter inequality, in turn, implies that v(t) → 0, t → ∞.
Thus, whenever (Ly) can be satisfied by a pair (X, α) with positive definite X and positive
α, the pair can be treated as a stability certificate for (S).

Now, the left-hand side in (Ly) can be easily computed: it is simply

vT (t)[QT (t)X + XQ(t)]v(t).
Consequently, (Ly) requires that

vT (t)[QT (t)X+XQ(t)]v(t) ≤ −αvT (t)Xv(t) ⇔ −vT (t)[QT (t)X+XQ(t)+αX]v(t) ≥ 0.

For t given, the matrixQ(t) can be an arbitrary matrix from the polytope Conv(Q1, . . . ,Qk),
and v(t) can be an arbitrary vector. Thus, (Ly) requires the matrix [−QTX−XQ−αX] to
be positive semidefinite whenever Q ∈ Conv(Q1, . . . ,Qk) or, which is the same (why?),
requires the validity of the inequalities

−QT
i X − XQi − αX ≥Sm+ 0, i = 1, . . . , k.

Now, a positive definite matrixX can be extended, by a positive α, to a pair (X, α) satisfying
the indicated inequalities, if and only if the matrices

−QT
i X − XQi, i = 1, . . . , k,

are positive definite (why?). We conclude that

In order to certify the stability of (S) by a quadratic Lyapunov function, it
suffices to find a symmetric matrix X satisfying the following system of strict
Sm+-inequalities:

X >Sm+ 0; −QT
i X − XQi >Sm+ 0. (2.2.1)

Now, a symmetric matrix A is positive definite if and only if the matrix A − τI , where I is
the unit matrix of the same size as A, is positive semidefinite for some positive τ (see the
exercises in Lecture 2). Consequently, to verify whether (2.2.1) is solvable is the same as
verifying whether the optimal value of the program

min
t∈R,X∈Sm

t

∣∣∣∣

X + tI

−QT
1 X − XQ1 + tI

. . .

−QT
k X − XQk + tI

 ≥Sm(k+1)
+

0


(2.2.2)

with the design variables t and the m(m+1)
2 free entries of the symmetric matrix X is or is

not negative. If the optimal value in the problem is negative, then (2.2.1) is solvable, and
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50 Lecture 2. From Linear Programming to Conic Programming

one can use as a solution to (2.2.1) the X-component of an arbitrary feasible solution (X, t)

to (2.2.2) with negative t . Whenever this is the case, (S) is stable, and the stability can be
certified by a quadratic Lyapunov function. On the other hand, if the optimal value in (2.2.2)
is nonnegative, then (2.2.1) is infeasible. Whether, in the latter case, (S) is or is not stable
remains unclear; all that can be said is that the stability cannot be certified by a quadratic
Lyapunov function.

Note that (2.2.2) is a conic problem associated with the positive semidefinite cone
Sm(k+1)

+ . Indeed, the left-hand side in the constraint inequality in (2.2.2) depends affinely
on the design variables, as required in the definition of a conic program.

2.3 Conic duality
Aside from algorithmic issues, the most important theoretical result in LP is the LP duality
theorem. Can this theorem be extended to conic problems? What is the extension?

The source of the LP duality theorem was the desire to get in a systematic way a lower
bound on the optimal value c∗ in an LP program

c∗ = min
x

{
cT x

∣∣∣∣Ax ≥ b

}
. (LP)

The bound was obtained by looking at the inequalities of the type

λT Ax ≥ λT b (Cons(λ))

with weight vectors λ ≥ 0. By its origin, an inequality of this type is a consequence
of the system of constraints Ax ≥ b of (LP), i.e., it is satisfied at every solution to the
system. Consequently, whenever we are lucky to get, as the left-hand side of (Cons(λ)),
the expression cT x, i.e., whenever a nonnegative weight vector λ satisfies the relation

AT λ = c,

the inequality (Cons(λ)) yields a lower bound bT λ on the optimal value in (LP). And the
dual problem

max
{
bT λ | λ ≥ 0, AT λ = c

}
was nothing but the problem of finding the best lower bound one can get in this fashion.

The same scheme can be used to develop the dual to a conic problem

min
{
cT x | Ax ≥K b

}
. (CP)

Here the only step that needs clarification is the following one:

What are the admissible weight vectors λ, that is, the vectors such that the
scalar inequality

λT Ax ≥ λT b

is a consequence of the vector inequality AT x ≥K b?
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2.3. Conic duality 51

In the particular case of the coordinatewise partial ordering, i.e., in the case of K = Rm+,
the admissible vectors were those with nonnegative coordinates. These vectors, however,
are not necessarily admissible for an ordering ≥K when K is different from the nonnegative
orthant.

Example 2.3.1. Consider the ordering ≥L3 on R3 given by the 3D ice cream cone:(
a1

a2

a3

)
≥L3

( 0
0
0

)
⇔ a3 ≥

√
a2

1 + a2
2 .

The inequality (−1
−1
2

)
≥L3

( 0
0
0

)

is valid; however, aggregating this inequality with the aid of a positive weight vector

λ =
( 1

1
0.1

)
,

we get the false inequality

−1.8 ≥ 0.

Thus, not every nonnegative weight vector is admissible for the partial ordering ≥L3 .

Answering the question is the same as naming the weight vectors λ such that

∀a ≥K 0 : λT a ≥ 0. (2.3.3)

Whenever λ possesses the property (2.3.3), the scalar inequality

λT a ≥ λT b

is a consequence of the vector inequality a ≥K b:

a ≥K b,

⇔ a − b ≥K 0 (additivity of ≥K),
⇒ λT (a − b) ≥ 0 (by (2.3.3)),
⇔ λT a ≥ λT b.

Conversely, if λ is an admissible weight vector for the partial ordering ≥K,

∀(a, b : a ≥K b) : λT a ≥ λT b,

then, of course, λ satisfies (2.3.3).
Thus the weight vectors λ that are admissible for a partial ordering ≥K are exactly the

vectors satisfying (2.3.3) or, which is the same, the vectors from the set

K∗ = {λ ∈ Rm : λT a ≥ 0 ∀a ∈ K}.
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The set K∗ comprises vectors whose inner products with all vectors from K are nonnegative.
K∗ is called the cone dual to K. The name is correct because of the following.

Theorem 2.3.1. Properties of the dual cone. Let K ⊂ Rm be a nonempty set. Then
(i) The set

K∗ = {λ ∈ Rm : λT a ≥ 0 ∀a ∈ K}
is a closed convex cone.

(ii) If intK �= ∅, then K∗ is pointed.
(iii) If K is a closed convex pointed cone, then intK∗ �= ∅.
(iv) If K is a closed convex cone, then so is K∗, and the cone dual to K∗ is K itself:

(K∗)∗ = K.

The proof of the theorem is the subject of Exercise 2.1. An immediate corollary of
the Theorem is as follows.

Corollary 2.3.1. A setK ⊂ Rm is a closed convex pointed cone with a nonempty interior
if and only if the set K∗ is so.

From the dual cone to the problem dual to (CP). Now we are ready to derive the dual
problem of a conic problem (CP). As in the case of LP, we start from the observation that
whenever x is a feasible solution to (CP) and λ is an admissible weight vector, i.e., λ ∈ K∗,
then x satisfies the scalar inequality

λT Ax ≥ λT b.

This observation is an immediate consequence of the definition of K∗. It follows that
whenever λ∗ is an admissible weight vector satisfying the relation

AT λ = c,

one has

cT x = (AT λ)T x = λT Ax ≥ λT b = bT λ

for all x feasible for (CP), so that the quantity bT λ is a lower bound on the optimal value of
(CP). The best bound one can get in this fashion is the optimal value in the problem

max
{
bT λ | AT λ = c, λ ≥K∗ 0

}
(D)

and this program is called the program dual to (CP).
So far, what we know about the duality just introduced is the following.

Proposition 2.3.1. Weak duality theorem. The optimal value of (D) is a lower bound
on the optimal value of (CP).
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2.3.1 Geometry of the primal and dual problems

The structure of problem (D) looks quite different from the one of (CP). However, a more
careful analysis demonstrates that the difference in structures comes just from the way we
represent the data: geometrically, the problems are completely similar. Indeed, in (D)
we are asked to maximize a linear objective bT λ over the intersection of an affine plane
L∗ = {λ | AT λ = c} with the cone K∗. And what about (CP)? Let us pass in this problem
from the true design variables x to their images y = Ax − b. When x runs through Rn, y
runs through the affine planeL = {y = Ax−b | x ∈ Rn}. x is feasible if the corresponding
y = Ax − b belongs to the cone K. Thus, in (CP) we also deal with the intersection of an
affine plane, namely, L, and a cone, namely, K. Now assume that our objective cT x can be
expressed in terms of y = Ax − b:

cT x = dT (Ax − b) + const.

This assumption is clearly equivalent to the inclusion

c ∈ ImAT . (2.3.4)

Indeed, in the latter case we have c = AT d for some d, whence

cT x = dT Ax = dT (Ax − b) + dT b ∀x. (2.3.5)

In the case of (2.3.4) the primal problem (CP) can be posed equivalently as the following
problem:

min
y

{
dT y | y ∈ L, y ≥K 0

}
,

where L = ImA − b and d is (any) vector satisfying the relation AT d = c. Thus,

in the case of (2.3.4) the primal problem is, geometrically, the problem to
minimize a linear form over the intersection of the affine plane L with the cone
K, and the dual problem, similarly, is to maximize another linear form over the
intersection of the affine plane L∗ with the dual cone K∗.

Now, what happens if the condition (2.3.4) is not satisfied? The answer is simple: in this
case (CP) makes no sense—it is either unbounded below or infeasible.

Indeed, assume that (2.3.4) is not satisfied. Then, by linear algebra, the vector c is
not orthogonal to the null space of A, so that there exists e such that Ae = 0 and cT e > 0.
Now let x be a feasible solution of (CP); note that all points x −µ, µ ≥ 0, are feasible, and
cT (x −µe) → ∞ as µ → ∞. Thus, when (2.3.4) is not satisfied, problem (CP), whenever
feasible, is unbounded below.

From the above observation we see that if (2.3.4) is not satisfied, then we may reject
(CP) from the very beginning. Thus, from now on we assume that (2.3.4) is satisfied. In
fact in what follows (until the end of the book!) we make a stronger assumption:

Assumption A. When speaking about a CP

min
x

{
cT x | Ax − b ≥K 0

}
, (CP)

we always assume (if the opposite is not explicitly stated) that the matrix A is
of full column rank (i.e., its columns are linearly independent).
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54 Lecture 2. From Linear Programming to Conic Programming

In other words, we assume that the mapping x �→ Ax has the trivial null space.
(We have eliminated from the very beginning the redundant degrees of freedom—those not
affecting the value of Ax.) Under this assumption, the equation

AT d = q

is solvable for every right-hand side vector q.
Note that an arbitrary conic program (CP) can be easily converted to a program

satisfying Assumption A. Indeed, this statement is evident in the case when the columns of
A are linearly independent, same as in the case when A is the zero matrix. Now assume
that our m × n matrix A has rank k, 1 ≤ k < n. Without loss of generality, we can assume
that the first k columns of A are linearly independent, and let Ā be the m × k submatrix of
A comprising these columns. Note that there exists (and can be easily built via the standard
linear algebra) a k × n matrix B of rank k such that

ĀBx = Ax ∀x ∈ Rn. [A = ĀB]
Since B is of rank k, the k × k matrix BBT is nonsingular, so that the vector

f = (BBT )−1Bc ∈ Rk

is well defined. Now consider the CP

min
y∈Rk

{
f T y | Āy − b ≥K 0

}
. (CP′)

This program by construction satisfies Assumption A and represents equivalently the original
problem (CP) in the following sense:

1. A candidate solution x ∈ Rn is feasible for (CP) if and only if y[x] = Bx is
feasible for (CP′).

2. If c ∈ Im(AT ) (so that c = AT d for certain d), then the values cT x and f T y[x]
of the objectives of (CP) and (CP′) on the candidate solutions x, y[x] of the respective
problems are equal to each other:

f T y[x] = f T Bx = [(BBT )−1Bc]T Bx = [(BBT )−1BAT d]T Bx

= [(BBT )−1BAT d]T Bx = [(BBT )−1BBT ĀT d]T Bx

= [ĀT d]T Bx = dT ĀBx = dT Ax

= cT x.

3. If c �∈ Im(AT ), then (CP) is either infeasible (if (CP′) is so), or is unbounded below
(if (CP′) is feasible).

We see that the feasibility–solvability status of (CP) is explicitly given by that of
(CP′), and the feasible–optimal solutions of (CP), if any, can be easily obtained from the
feasible–optimal solutions of (CP′).

Another way to ensure Assumption A is to represent x as the difference of two non-
negative vectors and to rewrite (CP) equivalently as

min
u,v

{
cT (u − v) | A(u − v) − b ≥K 0, u ≥ 0, v ≥ 0

} ;D
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the constraints of the resulting problem form the vector inequality A −A

I

I


︸ ︷︷ ︸

Ã

(
u

v

)
−

(
b

0
0

)
≥K̃ 0, K̃ = K × Rdim x

+ × Rdim x
+ ,

and the matrix Ã is of full column rank.
As we have seen, in the case of c ∈ ImAT , problem (CP) can be reformulated as a

problem (P) of minimizing a linear objective dT y over the intersection of an affine plane L
and a cone K. Conversely, a problem (P) of this latter type can be posed in the form of (CP).
To this end it suffices to represent the planeL as the image of an affine mapping x �→ Ax−b

(i.e., to parameterize somehow the feasible plane) and to “translate” the objective dT y to
the space of x-variables—to set c = AT d, which yields

y = Ax − b ⇒ dT y = cT x + const.

Thus, when dealing with a conic problem, we may pass from its analytic form (CP) to the
geometric form (P) and vice versa.

What are the relations between the geometric data of the primal and the dual problems?
We already know that the cone K+ associated with the dual problem is dual of the cone K
associated with the primal one. What about the feasible planes L and L∗? The answer is
simple: they are orthogonal to each other! More exactly, the affine planeL is the translation,
by vector −b, of the linear subspace

L = ImA ≡ {y = Ax | x ∈ Rn}.
And L∗ is the translation, by any solution λ0 of the system AT λ = c, e.g., by the solution
d to the system, of the linear subspace

L∗ = Null(AT ) ≡ {λ | AT λ = 0}.
A well known fact of linear algebra is that the linear subspaces L and L∗ are orthogonal
complements of each other:

L = {y | yT λ = 0 ∀λ ∈ L∗}; L∗ = {λ | yT λ = 0 ∀y ∈ L}.
Thus, we come to a nice geometrical conclusion:

A conic problem (CP) with c ∈ ImA (in particular, a problem satisfying
Assumption A) is the problem

min
y

{
dT y | y ∈ L − b, y ≥K 0

}
(P)

of minimizing a linear objective dT y over the intersection of a cone K with
an affine plane L = L − b given as a translation, by vector −b, of a linear
subspace L.
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K L

L*

d

b

K

*

Figure 2.1. Primal-dual pair of conic problems. Bold lines: primal (vertical
segment) and dual (horizontal ray) feasible sets.

The dual problem is the problem

max
λ

{
bT λ | λ ∈ L⊥ + d, λ ≥K∗ 0

}
(D)

of maximizing the linear objective bT λ over the intersection of the dual cone
K∗ with an affine plane L∗ = L⊥ + d given as a translation, by the vector d,
of the orthogonal complement L⊥ of L.

What we get is an extremely transparent geometric description of the primal-dual pair
of conic problems (P), (D). Note that the duality is completely symmetric: the problem
dual to (D) is (P)! Indeed, we know from Theorem 2.3.1 that (K∗)∗ = K, and of course
(L⊥)⊥ = L. Switch from maximization to minimization corresponds to the fact that the
shifting vector in (P) is (−b), while the shifting vector in (D) is d. The geometry of the
primal-dual pair (P), (D) is illustrated in Fig. 2.1. Finally, note that in the case when (CP) is
an LP program (i.e., in the case when K is the nonnegative orthant), the conic dual problem
(D) is exactly the usual LP dual; this fact immediately follows from the observation that the
cone dual to Rm+ is Rm+ itself.

We have explored the geometry of a primal-dual pair of conic problems: the geometric
data of such a pair are given by a pair of dual-to-each-other cones K, K∗ in Rm and a pair
of affine planes L = L − b, L∗ = L⊥ + d, where L is a linear subspace in Rm and L⊥ is its
orthogonal complement. The first problem from the pair—let it be called (P)—is to minimize
bT y over y ∈ K ∩ L, and the second (D) is to maximize dT λ over λ ∈ K∗ ∩ L∗. Note that
the geometric data (K,K∗, L, L∗) of the pair do not specify completely the problems of the
pair: given L,L∗, we can uniquely define L but not the shift vectors (−b) and d: b is known
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up to shift by a vector from L, and d is known up to shift by a vector from L⊥. However, this
nonuniqueness is of absolutely no importance; replacing a chosen vector d ∈ L∗ by another
vector d ′ ∈ L∗, we pass from (P) to a new problem (P′), which is completely equivalent to
(P). Indeed, both (P) and (P′) have the same feasible set, and on the (common) feasible plane
L of the problems their objectives dT y and (d ′)T y differ from each other by a constant:

y ∈ L = L−b, d−d ′ ∈ L⊥ ⇒ (d−d ′)T (y+b) = 0 ⇒ (d−d ′)T y = −(d−d ′)T b ∀y ∈ L.

Similarly, shifting b along L, we modify the objective in (D), but in a trivial way—on the
feasible plane L∗ of the problem the new objective differs from the old one by a constant.

2.4 Conic duality theorem
The weak duality (Proposition 2.3.1) we have established so far for conic problems is much
weaker than the LP duality theorem. Is it possible to get results similar to those of the LP
duality theorem in the general conic case as well? The answer is affirmative, provided that
the primal problem (CP) is strictly feasible, i.e., that there exists x such that Ax − b >K 0,
or, geometrically, L ∩ intK �= ∅.

The advantage of the geometrical definition of strict feasibility is that it is independent
of the particular way in which the feasible plane is defined. Hence, with this definition it is
clear what it means when the dual problem (D) is strictly feasible.

Our main result is the following.

Theorem 2.4.1. Conic duality theorem. Consider a conic problem

c∗ = min
x

{
cT x | Ax ≥K b

}
(CP)

along with its conic dual

b∗ = max
{
bT λ | AT λ = c, λ ≥K∗ 0

}
. (D)

1. The duality is symmetric: the dual problem is conic, and the problem dual to dual
is (equivalent to) the primal.

2. The value of the dual objective at every dual feasible solution λ is ≤ the value of
the primal objective at every primal feasible solution x, so that the duality gap

cT x − bT λ

is nonnegative at every primal-dual feasible pair (x, λ).
3.a. If the primal (CP) is bounded below and strictly feasible (i.e., Ax >K b for some

x), then the dual (D) is solvable and the optimal values in the problems are equal to each
other: c+ = b∗.

3.b. If the dual (D) is bounded above and strictly feasible (i.e., exists λ >K∗ 0 such
that AT λ = c), then the primal (CP) is solvable and c∗ = b∗.

4. Assume that at least one of the problems (CP), (D) is bounded and strictly feasible.
Then a primal-dual feasible pair (x, λ) is a pair of optimal solutions to the respective
problems
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4.a. if and only if

bT λ = cT x [zero duality gap]

and
4.b. if and only if

λT [Ax − b] = 0 [complementary slackness].

Proof. 1. The result was obtained in the discussion of the geometry of the primal and the
dual problems.

2. This is the weak duality theorem.
3. Assume that (CP) is strictly feasible and bounded below, and let c∗ be the optimal

value of the problem. We should prove that the dual is solvable with the same optimal value.
Since we already know that the optimal value of the dual is ≤ c∗ (see 2), all we need is to
point out a dual feasible solution λ∗ with bT λ∗ ≥ c∗.

Consider the convex set

M = {y = Ax − b | x ∈ Rn, cT x ≤ c∗}.
Let us start with the case of c �= 0. We claim that in this case

(i) the set M is nonempty;
(ii) the plane M does not intersect the interior K of the cone K: M ∩ intK = ∅;
Claim (i) is evident (why?). To verify claim (ii), assume, on the contrary, that there

exists a point x̄, cT x̄ ≤ c∗, such that ȳ ≡ Ax̄ − b >K 0. Then, of course, Ax − b >K 0 ∀x
close enough to x̄, i.e., all points x in a small-enough neighborhood of x̄ are also feasible
for (CP). Since c �= 0, there are points x in this neighborhood with cT x < cT x̄ ≤ c∗, which
is impossible, since c∗ is the optimal value of (CP).

Now let us make use of the following basic fact.

Theorem 2.4.2. Separation theorem for convex sets. Let S, T be nonempty, noninter-
secting convex subsets of Rm. Then S and T can be separated by a linear functional: there
exists a nonzero vector λ ∈ Rm such that

sup
u∈S

λT u ≤ inf
u∈T λ

T u.

Applying the separation theorem to S = M and T = K , we conclude that there exists
λ ∈ Rm such that

sup
y∈M

λT y ≤ inf
y∈intK

λT y. (2.4.6)

From the inequality it follows that the linear form λT y is bounded below on K = intK.
Since this interior is a conic set,

y ∈ K,µ > 0 ⇒ µy ∈ K

(why?), this boundedness implies that λT y ≥ 0 ∀y ∈ K . Consequently, λT y ≥ 0 ∀y from
the closure of K , i.e., ∀y ∈ K. We conclude that λ ≥K∗ 0, so that the inf in (2.4.6) is
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nonnegative. On the other hand, the infimum of a linear form over a conic set clearly cannot
be positive; we conclude that the inf in (2.4.6) is 0, so that the inequality reads

sup
u∈M

λT u ≤ 0.

Recalling the definition of M , we get

[AT λ]T x ≤ λT b (2.4.7)

for all x from the half-space cT x ≤ c∗. But the linear form [AT λ]T x can be bounded
above on the half-space if and only if the vector AT λ is proportional, with a nonnegative
coefficient, to the vector c,

AT λ = µc

for some µ ≥ 0. We claim that µ > 0. Indeed, assuming µ = 0, we get AT λ = 0,
whence λT b ≥ 0 in view of (2.4.7). It is time now to recall that (CP) is strictly feasible, i.e.,
Ax̄ − b >K 0 for some x̄. Since λ ≥K∗ 0 and λ �= 0, the product λT [Ax̄ − b] should be
strictly positive (why?), while in fact we know that the product is −λT b ≤ 0 (sinceAT λ = 0
and, as we have seen, λT b ≥ 0).

Thus, µ > 0. Setting λ∗ = µ−1λ, we get

λ∗ ≥K∗ 0 [since λ ≥K∗ 0 and µ > 0],
AT λ∗ = c [since AT λ = µc],
cT x ≤ λT∗ b ∀x : cT x ≤ c∗ [see (2.4.7)].

We see that λ∗ is feasible for (D), the value of the dual objective at λ∗ being at least c∗, as
required.

It remains to consider the case c = 0. Here, of course, c∗ = 0, and the existence of
the dual feasible solution with the value of the objective ≥ c∗ = 0 is evident: the required
solution is λ = 0. Thus 3.a is proved.

3.b: the result follows from 3.a in view of the primal-dual symmetry.
4: Let x be primal feasible and λ be dual feasible. Then

cT x − bT λ = (AT λ)T x − bT λ = [Ax − b]T λ.
We get a useful identity, as follows.

Proposition 2.4.1. For every primal-dual feasible pair (x, λ) of solutions to (CP), (D), the
duality gap cT x − bT λ is equal to the inner product of the primal slack vector y = Ax − b

and the dual vector λ.

Note that the conclusion in Proposition 2.4.1 in fact does not require full primal-dual
feasibility: x may be arbitrary (i.e., y should belong to the primal feasible plane ImA − b),
and λ should belong to the dual feasible plane AT λ = c, but y and λ should not necessarily
belong to the respective cones.

In view of Proposition 2.4.1, the complementary slackness holds if and only if the
duality gap is zero; thus, all we need is to prove 4.a.
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The primal residual cT x−c∗ and the dual residual b∗ −bT λ are nonnegative, provided
that x is primal feasible and λ is dual feasible. It follows that the duality gap

cT x − bT λ = [cT x − c∗] + [b∗ − bT λ] + [c∗ − b∗]
is nonnegative (recall that c∗ ≥ b∗ by 2), and it is zero if and only if c∗ = b∗ and both
primal and dual residuals are zero (i.e., x is primal optimal, and λ is dual optimal). All these
arguments hold without any assumptions of strict feasibility. We see that the condition
“the duality gap at a primal-dual feasible pair is zero” is always sufficient for primal-dual
optimality of the pair. If c∗ = b∗, this sufficient condition is also necessary. Since in the
case of 4 we indeed have c∗ = b∗ (this is stated by 3), 4.a follows.

A useful consequence of the conic duality theorem is the following.

Corollary 2.4.1. Assume that both (CP) and (D) are strictly feasible. Then both problems
are solvable, the optimal values are equal to each other, and each one of the conditions 4.a,
4.b is necessary and sufficient for optimality of a primal-dual feasible pair.

Indeed, by the weak duality theorem, if one of the problems is feasible, the other is
bounded, and it remains to use the items 3 and 4 of the conic duality theorem.

2.4.1 Is something wrong with conic duality?

The statement of the conic duality theorem is weaker than that of the LP duality theorem. In
the LP case, feasibility (even nonstrict) and boundedness of either primal or dual problem
implies solvability of both the primal and the dual and equality between their optimal values.
In the general conic case, something nontrivial is stated only in the case of strict feasibility
(and boundedness) of one of the problems. It can be demonstrated by examples that this
phenomenon reflects the nature of things and is not due to our ability to analyze it. The case
of nonpolyhedral cone K is truly more complicated than the one of the nonnegative orthant
K; as a result, a word-by-word extension of the LP duality theorem to the conic case is false.

Example 2.4.1. Consider the following conic problem with two variables x = (x1, x2)
T

and the 3D ice cream cone K:

min

x1 | Ax − b ≡
 x1 − x2

1
x1 + x2

 ≥L3 0

 .

Recalling the definition of L3, we can write the problem equivalently as

min
{
x1 |

√
(x1 − x2)2 + 1 ≤ x1 + x2

}
,

i.e., as the problem

min {x1 | 4x1x2 ≥ 1, x1 + x2 > 0} .
Geometrically the problem is to minimize x1 over the intersection of the 3D ice cream cone
with a 2D plane; the inverse image of this intersection in the design plane of variables x1, x2
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is part of the 2D nonnegative orthant bounded by the hyperbola x1x2 ≥ 1/4. The problem is
clearly strictly feasible (a strictly feasible solution is, e.g., x = (1, 1)T ) and bounded below,
with the optimal value 0. This optimal value, however, is not achieved—the problem is
unsolvable!

Example 2.4.2. Consider the following conic problem with two variables x = (x1, x2)
T

and the 3D ice cream cone K:

min

x2 | Ax − b =
 x1

x2

x1

 ≥L3 0

 .

The problem is equivalent to the problem{
x2 |

√
x2

1 + x2
2 ≤ x1

}
,

i.e., to the problem

min {x2 | x2 = 0, x1 ≥ 0} .
The problem is clearly solvable, and its optimal set is the ray {x1 ≥ 0, x2 = 0}.

Now let us build the conic dual to our (solvable!) primal. The cone dual to an ice
cream cone is this ice cream cone itself (see Exercise 2.7). Thus, the dual problem is

max
λ

{
0 |

[
λ1 + λ3

λ2

]
=

[
0
1

]
, λ ≥L3 0

}
.

Although the primal is solvable, the dual is infeasible. Indeed, assuming that λ is dual

feasible, we have λ ≥L3 0, which means that λ3 ≥
√
λ2

1 + λ2
2; since also λ1 + λ3 = 0, we

come to λ2 = 0, which contradicts the equality λ2 = 1.
We see that the weakness of the conic duality theorem as compared to the LP duality

reflects pathologies that indeed may happen in the general conic case.

2.4.2 Consequences of the conic duality theorem

Sufficient condition for infeasibility. Recall that a necessary and sufficient condition
for infeasibility of a (finite) system of scalar linear inequalities (i.e., for a vector inequality
with respect to the partial ordering ≥) is the possibility to combine these inequalities in a
linear fashion so that the resulting scalar linear inequality is contradictory. In the case of
cone-generated vector inequalities, a slightly weaker result can be obtained.

Proposition 2.4.2. Consider a linear vector inequality

Ax − b ≥K 0. (I)

(i) If there exists λ satisfying

λ ≥K∗ 0, AT λ = 0, λT b > 0, (II)

then (I) has no solutions.
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(ii) If (II) has no solutions, then (I) is almost solvable—for every positive ε there exists
b′ such that ‖b′ − b‖2 < ε and the perturbed system

Ax − b′ ≥K 0

is solvable.
Moreover,
(iii) (II) is solvable if and only if (I) is not almost solvable.

Note the difference between the simple case when ≥K is the usual partial ordering ≥
and the general case. In the former, one can replace “nearly solvable” in (ii) with “solvable”;
however, in the general conic case “almost” is unavoidable.

Example 2.4.3. Let system (I) be given by

Ax − b ≡
 x + 1

x − 1√
2x

 ≥L3 0.

Recalling the definition of the ice cream cone L3, we can write the inequality equivalently
as

√
2x ≥

√
(x + 1)2 + (x − 1)2 ≡

√
2x2 + 2, (i)

which of course is unsolvable. The corresponding system (II) is

λ3 ≥
√
λ2

1 + λ2
2

[⇔ λ ≥L3∗ 0
]
,

λ1 + λ2 + √
2λ3 = 0

[⇔ AT λ = 0
]
,

λ2 − λ1 > 0
[⇔ bT λ > 0

]
.

(ii)

From the second of these relations, λ3 = − 1√
2
(λ1 +λ2), so that from the first inequality we

get 0 ≤ (λ1 − λ2)
2, whence λ1 = λ2. But then the third inequality in (ii) is impossible! We

see that here both (i) and (ii) have no solutions.
The geometry of the example is as follows. Point (i) asks us to find a point in the

intersection of the 3D ice cream cone and a line. This line is an asymptote of the cone (it
belongs to a 2D plane that crosses the cone in such way that the boundary of the cross section
is a branch of a hyperbola, and the line is one of two asymptotes of the hyperbola). Although
the intersection is empty ((i) is unsolvable), small shifts of the line make the intersection
nonempty (i.e., (i) is unsolvable and almost solvable at the same time). And it turns out that
one cannot certify that (i) itself is unsolvable by providing a solution to (ii).

Proof of the Proposition. Point (i) is evident (why?).
Let us prove (ii). To this end it suffices to verify that if (I) is not almost solvable, then

(II) is solvable. Let us fix a vector σ >K 0 and look at the conic problem

min
x,t

{t | Ax + tσ − b ≥K 0} (CP)
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in variables (x, t). Clearly, the problem is strictly feasible (why?). Now, if (I) is not almost
solvable, then, first, the matrix of the problem [A; σ ] satisfies the full column rank condition
A. (Otherwise the image of the mapping (x, t) �→ Ax+tσ−bwould coincide with the image
of the mapping x �→ Ax − b, which is not the case—the first of these images intersects K,
while the second does not.) Second, the optimal value in (CP) is strictly positive (otherwise
the problem would admit feasible solutions with t close to 0, and this would mean that (I) is
almost solvable). From the conic duality theorem it follows that the dual problem of (CP)

max
λ

{
bT λ | AT λ = 0, σ T λ = 1, λ ≥K∗ 0

}
has a feasible solution with positive bT λ, i.e., (II) is solvable.

It remains to prove (iii). Assume first that (I) is not almost solvable; then (II) must be
solvable by (ii). Conversely, assume that (II) is solvable, and let λ be a solution to (II). Then
λ also solves all systems of the type (II) associated with small-enough perturbations of b
instead of b itself; by (i), it implies that all inequalities obtained from (I) by small-enough
perturbation of b are unsolvable.

When is a scalar linear inequality a consequence of a given linear vector inequality?
The question we are interested in is as follows. Given a linear vector inequality

Ax ≥K b (V)

and a scalar inequality

cT x ≥ d, (S)

we want to check whether (S) is a consequence of (V). If K is the nonnegative orthant, the
answer is given by the Farkas lemma:

Inequality (S) is a consequence of a feasible system of linear inequalities Ax ≥
b if and only if (S) can be obtained from (V) and the trivial inequality 1 ≥ 0 in
a linear fashion (by taking weighted sum with nonnegative weights).

In the general conic case we can get a slightly weaker result, as follows.

Proposition 2.4.3. (i) If (S) can be obtained from (V) and from the trivial inequality 1 ≥ 0
by admissible aggregation, i.e., there exist weight vector λ ≥K∗ 0 such that

AT λ = c, λT b ≥ d,

then (S) is a consequence of (V).
(ii) If (S) is a consequence of a strictly feasible linear vector inequality (V), then (S)

can be obtained from (V) by an admissible aggregation.

The difference between the case of the partial ordering ≥ and a general partial ordering
≥K is in the word “strictly” in (ii).
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Proof of the Proposition. Point (i) is evident (why?). To prove point (ii), assume that
(V) is strictly feasible and (S) is a consequence of (V), and consider the conic problem

min
x,t

{
t | Ā

(
x

t

)
− b̄ ≡

[
Ax − b

d − cT x + t

]
≥K̄ 0

}
,

K̄ = {(x, t) | x ∈ K, t ≥ 0}.
The problem is clearly strictly feasible (choose x to be a strictly feasible solution to (V) and
then choose t to be large enough). The fact that (S) is a consequence of (V) says exactly
that the optimal value in the problem is nonnegative. By the conic duality theorem, the dual
problem

max
λ,µ

{
bT λ − dµ | AT λ − c = 0, µ = 1,

(
λ

µ

)
≥K̄∗ 0

}
has a feasible solution with the value of the objective ≥ 0. Since, as it is easily seen,
K̄∗ = {(λ, µ) | λ ∈ K∗, µ ≥ 0}, the indicated solution satisfies the requirements

λ ≥K∗ 0, AT λ = c, bT λ ≥ d;
i.e., (S) can be obtained from (V) by an admissible aggregation.

Remark 2.4.1. Although the conic duality theorem and its consequences listed in section
2.4.2 were obtained under Assumption A (by our convention, this assumption acts by default,
unless the opposite is explicitly stated), it is seen from the proofs that the results in question
are valid under a weaker assumption, namely, that c ∈ ImA in (CP).

2.4.3 Robust solvability status

Examples 2.4.2–2.4.3 make clear that in the general conic case we may meet pathologies
that do not occur in LP. For example, a feasible and bounded problem may be unsolvable,
and the dual to a solvable conic problem may be infeasible. Where do the pathologies come
from? Looking at our pathological examples, we arrive at the following guess. The source
of the pathologies is that in these examples, the solvability status of the primal problem is
nonrobust—it can be changed by small perturbations of the data. This issue of robustness
is very important in modeling, and it deserves a careful investigation.

Data of a conic problem. When asked, “What are the data of an LP program min{cT x |
Ax−b ≥ 0}?” everybody will give the same answer: “The objective c, the constraint matrix
A, and the right-hand side vector b.” Similarly, for a conic problem

min
{
cT x | Ax − b ≥K 0

}
, (CP)

its data, by definition, are the triple (c, A, b), while the sizes of the problem—the dimension
n of x and the dimension m of K, same as the underlying cone K itself—are considered the
structure of (CP).
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Robustness. A question of primary importance is whether the properties of the program
(CP) (feasibility, solvability, etc.) are stable with respect to perturbations of the data. This
question is important for these reasons:

• In actual applications, especially those arising in engineering, the data are normally
inexact: their true values, even when they exist in the nature, are not known exactly when
the problem is processed. Consequently, the results of the processing say something definite
about the true problem only if these results are robust with respect to small data perturbations,
i.e., the properties of (CP) we have discovered are shared not only by the particular (nominal)
problem we were processing but also by all problems with nearby data.

• Even when the exact data are available, we should take into account that in pro-
cessing them computationally we unavoidably add noise like rounding errors (you simply
cannot load something like 1

7 to the standard computer). As a result, a real-life computa-
tional routine can recognize only those properties of the input problem that are stable with
respect to small perturbations of the data.

Due to the above reasons, we should study not only whether a given problem (CP) is
feasible, bounded, solvable, etc., but also whether these properties are robust—they remain
unchanged under small data perturbations. As it turns out, the conic duality theorem allows
us to recognize robust feasibility, boundedness, solvability. . . .

Let us start with introducing the relevant concepts. We say that (CP) is

• robust feasible if all sufficiently close problems (i.e., those of the same structure
(n,m,K) and with data close enough to those of (CP)) are feasible;

• robust infeasible if all sufficiently close problems are infeasible;

• robust bounded below if all sufficiently close problems are bounded below (i.e., their
objectives are bounded below on their feasible sets);

• robust unbounded if all sufficiently close problems are not bounded;

• robust solvable if all sufficiently close problems are solvable.

Note that a problem that is not robust feasible is not necessarily robust infeasible, since
among close problems there may be both feasible and infeasible problems. (Look at Example
2.4.2; slightly shifting and rotating the plane Im A − b, we may get whatever we want—a
feasible bounded problem, a feasible unbounded problem, an infeasible problem…). This
is why we need two kinds of definitions, one of robust presence of a property and one of
robust absence of the same property.

Now let us look at necessary and sufficient conditions for the most important robust
forms of the solvability status.

Proposition 2.4.4. Robust feasibility. (CP) is robust feasible if and only if it is strictly
feasible, in which case the dual problem (D) is robust bounded above.

Proof. The statement is nearly tautological. Let us fix δ >K 0. If (CP) is robust feasible,
then for small enough t > 0 the perturbed problem min{cT x | Ax−b− tδ ≥K 0} should be
feasible; a feasible solution to the perturbed problem clearly is a strictly feasible solution to
(CP). The inverse implication is evident (a strictly feasible solution to (CP) remains feasible
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for all problems with close enough data). It remains to note that if all problems sufficiently
close to (CP) are feasible, then their duals, by the weak duality theorem, are bounded above,
so that (D) is robust bounded above.

Proposition 2.4.5. Robust infeasibility. (CP) is robust infeasible if and only if the system

bT λ = 1, AT λ = 0, λ ≥K∗ 0

is robust feasible or, which is the same (by Proposition 2.4.4), if and only if the system

bT λ = 1, AT λ = 0, λ >K∗ 0 (2.4.8)

has a solution.

Proof. First assume that (2.4.8) is solvable, and let us prove that all problems sufficiently
close to (CP) are infeasible. Let us fix a solution λ̄ to (2.4.8). Since A is of full column rank,
simple linear algebra says that the systems [A′]T λ = 0 are solvable for all matrices A′ from
a small-enough neighborhood U of A; moreover, the corresponding solution λ(A′) can be
chosen to satisfy λ(A) = λ̄ and to be continuous in A′ ∈ U . Since λ(A′) is continuous and
λ(A) >K∗ 0, we have λ(A′) >K∗ 0 in a neighborhood of A; shrinking U appropriately, we
may assume that λ(A′) >K∗ 0 ∀A′ ∈ U . Now, bT λ̄ = 1. By continuity reasons, there exists
a neighborhood V of b and a neighborhood U ′ of A such that b′ ∈ V and all A′ ∈ U ′ one
has (b′)T λ(A′) > 0.

Thus, we have seen that there exist a neighborhood U ′ of A and a neighborhood V of
b, along with a function λ(A′), A′ ∈ U ′, such that

(b′)T λ(A′) > 0, [A′]T λ(A′) = 0, λ(A′) ≥K∗ 0

∀b′ ∈ V and A′ ∈ U . By Proposition 2.4.2.(i), all the problems

min
{[c′]T x | A′x − b′ ≥K 0

}
with b′ ∈ V and A′ ∈ U ′ are infeasible, so that (CP) is robust infeasible.

Now let us assume that (CP) is robust infeasible, and let us prove that then (2.4.8) is
solvable. Indeed, by the definition of robust infeasibility, there exist neighborhoods U of A
and V of b such that all vector inequalities

A′x − b′ ≥K 0

with A′ ∈ U and b′ ∈ V are unsolvable. It follows that whenever A′ ∈ U and b′ ∈ V , the
vector inequality

A′x − b′ ≥K 0

is not almost solvable (see Proposition 2.4.2). We conclude from Proposition 2.4.2.(ii) that
for every A′ ∈ U and b′ ∈ V there exists λ = λ(A′, b′) such that

[b′]T λ(A′, b′) > 0, [A′]T λ(A′, b′) = 0, λ(A′, b′) ≥K∗ 0.
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Now let us choose λ0 >K∗ 0. For all small-enough positive ε we have Aε = A +
εb[AT λ0]T ∈ U . Let us choose an ε with the latter property so small that εbT λ0 > −1 and
set A′ = Aε , b′ = b. According to the previous observation, there exists λ = λ(A′, b) such
that

bT λ > 0, [A′]T λ ≡ AT [λ + ελ0(b
T λ)] = 0, λ ≥K∗ 0.

Setting λ̄ = λ + ελ0(b
T λ), we get λ̄ >K∗ 0 (since λ ≥K∗ 0, λ0 >K∗ 0 and bT λ > 0), while

Aλ̄ = 0 and bT λ̄ = (bT λ)(1 + εbT λ0) > 0. Multiplying λ̄ by an appropriate positive factor
(namely, by 1/(bT λ̄)), we get a solution to (2.4.8).

Now we are able to formulate our main result on robust solvability.

Proposition 2.4.6. For a conic problem (CP) the following conditions are equivalent to
each other:

(i) (CP) is robust feasible and robust bounded (below).
(ii) (CP) is robust solvable.
(iii) (D) is robust solvable.
(iv) (D) is robust feasible and robust bounded (above).
(v) Both (CP) and (D) are strictly feasible.
In particular, under every one of these equivalent assumptions, both (CP) and (D) are

solvable with equal optimal values.

Proof. (i) ⇒ (v): If (CP) is robust feasible, it also is strictly feasible (Proposition 2.4.4).
If, in addition, (CP) is robust bounded below, then (D) is robust solvable (by the conic
duality theorem); in particular, (D) is robust feasible and therefore strictly feasible (again,
Proposition 2.4.4).

(v) ⇒ (ii): The implication is given by the conic duality theorem.
(ii) ⇒ (i): The proof is trivial.
We have proved that (i) ≡ (ii) ≡ (v). Due to the primal-dual symmetry, we also have

proved that (iii) ≡ (iv) ≡ (v).

2.5 Conic duality revisited
To understand our concern now, consider a simple example, an optimization program with
just two variables and four constraints:

max x1 + 2x2,

x1 + x2 = 4,
x1 − x2 ≤ 3,

x1 ≥ 0,
x2 ≥ 0.

We immediately recognize it as an LP program, although it is not a problem of minimizing
a linear form over the intersection of an affine plane and the nonnegative orthant, as an LP
program should formally be. What is meant when we say that our toy problem is a linear
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program is that it can be routinely converted to a “true” LP program—the one that is to
minimize a linear form on the intersection of a plane and the orthant. In principle, there are
two conversion policies.

First, we can use the equality constraint(s) to express in an affine fashion part of the
variables via the remaining free variables. What we end up with will be a pure inequality
constrained problem of optimizing a linear objective of the free variables. Of course, the
resulting problem is a true LP program—a conic program associated with the nonnegative
orthant Rn+. (In LP the latter form is called canonical.)

Second, we can add to our original design variables a number of artificial variables,
“slacks,” and convert all nontrivial inequality constraints—those saying more than that a
particular variable should be nonnegative—into equality constraints. In our example this
manipulation results in the following:

max x1 + 2x2,

x1 + x2 = 4,
x1 − x2 + s = 3,

x1 ≥ 0,
x2 ≥ 0,
s ≥ 0,

which is again a true LP program, now in the dual form (D). (In LP, this form is called
standard.)

To process the problem analytically (e.g., to build its dual), the second option is
incomparably better—it does not require messy computations.

What is said about LP is valid in the general conic case as well. That we can convert
an optimization program to a conic form does not mean normally that the original form of
the problem reads “minimize a linear form over the intersection of an affine plane and a
cone.” A typical original form is something like

min cT x,

Px = p,

Aix − bi ≥Ki 0, i = 1, . . . , m,

(Ini)

where Ki are different cones.
Let us show how to convert (Ini) to a formal conic program, like (CP) or (D), and how

to build the dual problem
If (Ini) has no equality constraints, it already is a conic problem in the form (CP).

Indeed, it suffices to define a new cone K as the direct product of the cones Ki , i = 1, . . . , m:

K = {(y1, . . . , ym) | yi ∈ Ki , i = 1, . . . , m}
and to write the problem

min

cT x | Ax − b ≡


A1x − b1

A2x − b2

. . .

Amx − bm

 ≥K 0
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Exercise 2.4 states that the direct product of cones Ki is a cone (and its dual is the direct
product of the dual cones K∗

i ), so that what we get is a conic problem.
Now, what to do if (Ini) does have equality constraints? Then we may act as in our

LP example. By the same reasons as above, we prefer adding slack variables rather than
eliminating variables; thus, our final target is a conic program of the form (D).

It is clear that our target is achievable. A trivial way to reach it is as follows.
1. Pass from (Ini) to an equivalent problem where the design vector is restricted

to belong to some cone K0. This is exactly what is done in LP when representing free
variables—those without restrictions on their signs—as differences of two nonnegative
variables. Let us do the same, and let us also switch from minimization to maximization:

(Ini) �→


max cT (v − u),

Pu − Pv = p,

Ai(u − v) − bi ≥Ki 0, i = 1, . . . , m,

u ≥ 0,
v ≥ 0.

(Med)

(The optimal value in (Med) is the negation of the one in (Ini).)
2. It remains to add to (Med) slack variables. These variables should correspond to

the vector inequality constraints Ai(u − v) − bi ≥Ki
0 and should therefore be vectors of

the same dimensions as bi . Denoting these slack vectors by si , we transform (Med) to

(Med) �→



max cT (v − u),

Pu − Pv = p,

Ai(u − v) − si = bi, i = 1, . . . , m,

u ≥ 0,
v ≥ 0,
si ≥Ki 0, i = 1, . . . , m.

(Fin)

We end up with problem (Fin), which is equivalent to (Ini) and clearly is a conic
problem in the form of (D).

Of course, in many cases we can act smarter than in the above formal scheme. Some-
times one can extract from the original inequality constraints Aix − bi ≥Ki

0 a subset I
of constraints saying that x belongs to some cone K0. (Look at the inequality constraints
x1, x2 ≥ 0 in our LP example.) If this is the case, there is no need to update (Ini) ⇒ (Med),
just as there is no need to introduce slacks for the constraints from I . Sometimes there is
no subset of constraints saying that x belongs to a cone, but there is a subset I saying that
certain subvector x ′ of x belongs to a certain cone; whenever this is the case, we can modify
the first step of the above scheme—to represent as u − v the complement of x ′ in x, not
the entire x—so that there is no need to introduce slacks for the constraints from I at the
second step, etc.

Now, what is the conic dual to (Fin)? The cone associated with (Fin) is

K∗ = Rn
+ × Rn

+ × K1 × K2 × · · · × Km,
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the objective (to be maximized!) in (Fin) is
−c

c

0
0
. . .

0



T 
u

v

s1

s2

. . .

sm

 ,

and the equality constraints are
P −P

A1 −A1 −I1

A2 −A2 −I2
...

...
. . .

Am −Am −Im




u

v

s1

s2

. . .

sm

 =


p

b1

b2

. . .

bm

 ,

where Ii are unit matrices of appropriate sizes. Taking into account that the cone K∗ is dual
to the cone

K = Rn
+ × Rn

+ × K1
∗ × K2

∗ × · · · × Km
∗ ,

we conclude that (Fin) is dual to the following conic problem of the form (CP):

min pT µ +
m∑
i=1

bTi ξi,

P T µ +
m∑
i=1

AT
i ξi + c ≥ 0,

−PT µ −
m∑
i=1

AT
i ξi − c ≥ 0,

−ξi ≥Ki∗ 0, i = 1, . . . , m,

in the variables µ (a vector of the same dimension as p) and ξi , i = 1, . . . , m, of the
same dimensions as b1, . . . , bm. The first two ≥-constraints in the resulting problem are
equivalent to the vector equation

Pµ +
m∑
i=1

AT
i ξi = −c.

It also makes sense to pass from variables ξi to their negatives ηi = −ξi , to pass from µ to
its negative ν = −µ, and to switch from minimization to maximization, thus coming to the
problem

max pT ν +
m∑
i=1

bTi ηi,

P T ν +
m∑
i=1

AT
i ηi = c,

ηi ≥Ki∗ 0, i = 1, . . . , m,

(Dl)
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in design variables ν, η1, . . . , ηm. The resulting problem will be called the problem dual
to the primal problem (Ini). Note that we have extended somehow our duality scheme—
previously it required the primal problem to be purely conic—not to have linear equality
constraints. From now on this restriction is eliminated.

Summary on building the dual

Following the traditions of LP textbooks, we summarize here the recipes for building the
dual.

Consider a primal problem—an optimization problem with linear objective and
linear vector equality and inequality constraints

minimize cT x

s.t.
Px = p [dimp scalar linear equations],

A1x − b1 ≥K1 0 [linear vector inequality no. 1],
. . .

Amx − bm ≥Km 0 [linear vector inequality no. m].

(Pr)

The problem dual to (Pr) is

maximize pT ν +
m∑
i=1

bTi ηi

s.t.

PT ν +
m∑
i=1

AT
i ηi = c [dim x scalar equations],

η1 ≥K1∗ 0 [linear vector inequality no. 1],
. . .

ηm ≥Km∗ 0 [linear vector inequality no. m].

(Dl)

Note the following:
1. Dual variables correspond to the constraints of the primal problem. The dual design

vector comprises a vector variable ν of the same dimension as the right-hand side p of the
system of primal equalities and of m vector variables ηi , i = 1, . . . , m, each of the same
dimensions as those of the primal vector inequalities

2. There is a natural one-to-one correspondence between the vector inequalities of
the primal problem and those of the dual problem, and the cones underlying corresponding
vector inequalities of (Pr) and (Dl) are dual to each other.

3. The problem dual to (Dl) is (equivalent to) the primal problem (Pr).
Indeed, (Dl) is of the same structure as (Pr), so that we can apply the outlined con-

struction to (Dl). The (vector) variables of the resulting problem are as follows:
• The first of them, let it be called x ′, is responsible for the system of equations in

(Dl). The dimension of this variable is dim c, i.e., it is equal to the design dimension of (Pr).
• The remaining m vector variables, let them be called wi , i = 1, . . . , m, are each

responsible for its own linear vector inequality of (Dl).
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Applying the outlined scheme to (Dl) (please do it and do not forget to pass first from the
maximization problem (Dl) to an equivalent minimization problem; this is preassumed by
our scheme), we come to the problem

maximize cT x ′
s.t.

Px ′ = −p,

Aix
′ + wi = −bi, i = 1, . . . , m,

wi ≥Ki 0, i = 1, . . . , m.

The resulting problem is equivalent to (Pr). (To see it, set x = −x ′.)

Summary on conic duality

The results on conic duality we have developed so far deal with a formal primal-dual pair
(Fin)–(Dl) of problems, not with the pair of problems (Pr)–(Dl). These results, however,
can be easily expressed directly in terms of (Pr) and (Dl). Here is the translation:

1. The role of Assumption A from page 53 is now played by the pair of requirements
as follows:

A.1. the rows of the matrix P in (Pr) are linearly independent;
A.2. there is no nonzero vector x such that Px = 0, Aix = 0, i = 1, . . . , m.

From now on, speaking about problem (Pr), we always assume A.1 and A.2.
Note that A.1 and A.2 imply that both (Fin) and (Dl) satisfy Assumption A (why?).

2. Strict feasibility. A problem of the form (Pr) is called strictly feasible if there exist
a feasible solution x̄ such that Aix̄ − bi >Ki

0, i = 1, . . . , m. Note that (Pr) is strictly
feasible if and only if (Fin) is.

3. Weak duality. The optimal value in (Dl) is less than or equal to the optimal value
in (Pr).

4. Strong duality. If one of the problems (Pr), (Dl) is strictly feasible and bounded,
then the other problem is solvable, and the optimal values in the problems are equal to
each other. If both problems are strictly feasible, then both are solvable with equal optimal
values.

5. Optimality conditions. Let x be a feasible solution to (Pr) and λ = (ν, {ηi}mi=1) be
a feasible solution to (Dl). The duality gap at the pair (x, λ)—the quantity

D(x, λ) = cT x −
[
pT ν +

m∑
i=1

bTi ηi

]
—is nonnegative and is equal to

m∑
i=1

ηTi [Aix − bi].

The duality gap is zero if and only if the complementary slackness holds:

ηTi [Aix − bi] = 0, i = 1, . . . , m.

If the duality gap D(x, λ) is zero, then x is an optimal solution to (Pr) and λ is an optimal
solution to (Dl). If x is an optimal solution to (Pr) and λ is an optimal solution to (Dl) and
the optimal values in the problems are equal, then the duality gap D(x, λ) is zero.
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2.6 Exercises to Lecture 2
2.6.1 Cones

In this section, cone always means a pointed closed convex cone with a nonempty interior
in Rn.

Theorem 2.3.1

Exercise 2.1. 1. Prove the following statement:

Let S be a nonempty closed convex set in Rn and x be a point in Rn outside of
S. Then the problem

min{(x − y)T (x − y) | y ∈ S}
has a unique solution x∗, and e ≡ x − x∗ strictly separates x and S, i.e.,

eT x ≥ eT e + sup
y∈S

eT y > sup
y∈S

eT y.

2. Derive Theorem 2.3.1 from item 1 above.
3. Derive from Theorem 2.3.1 that whenever 0 �= x ≥K 0, there exists λ ≥K∗ 0 such

that λT x > 0.

Interior of a cone

Exercise 2.2. Let K be a cone, and let x̄ >K 0. Prove that x >K 0 if and only if there
exists positive real t such that x ≥K t x̄.

Exercise 2.3. 1. Prove that if 0 �= x ≥K 0 and λ >K∗ 0, then λT x > 0.

Hint. Use the results of Exercises 2.1 and 2.2.

2. Prove that if λ >K∗ 0, then for every real a the set

{x ≥K 0 | λT x ≤ a}
is bounded.

Calculus of cones

Exercise 2.4. Prove the following statements.
1. (Stability with respect to direct multiplication.) Let Ki ⊂ Rni be cones, i =

1, . . . , k. Prove that the direct product of the cones

K = K1 × · · · × Kk = {(x1, . . . , xk) | xi ∈ Ki , i = 1, . . . , k}
is a cone in Rn1+···+nk = Rn1 × · · · × Rnk .
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Prove that the cone dual to K is the direct product of the cones dual to Ki , i = 1, . . . , k.
2. (Stability with respect to taking inverse image.) Let K be a cone in Rn andu �→ Au

be a linear mapping from certain Rk to Rn with trivial null space (Null(A) = {0}) and such
that ImA ∩ intK �= ∅. Prove that the inverse image of K under the mapping

A−1(K) = {u | Au ∈ K}

is a cone in Rk .
Prove that the cone dual to A−1(K) is AT K∗, i.e.,

(A−1(K))∗ = {AT λ | λ ∈ K∗}.

3. (Stability with respect to taking linear image.) Let K be a cone in Rn and y = Ax

be a linear mapping from Rn onto RN (i.e., the image of A is the entire RN ). Assume
Null(A) ∩ K = {0}.

Prove then that the set

AK = {Ax | x ∈ K}

is a cone in RN .
Prove that the cone dual to AK is

(AK)∗ = {λ ∈ RN | AT λ ∈ K∗}.

Demonstrate by example that if in the above statement the assumption Null(A) ∩ K = {0}
is weakened to Null(A) ∩ intK = ∅, then the set A(K) may happen to be nonclosed.

Hint. Look what happens when the 3D ice cream cone is projected onto its
tangent plane.

Primal-dual pairs of cones and orthogonal pairs of subspaces

Exercise 2.5. Let A be an m × n matrix of full column rank and K be a cone in Rm.
1. Prove that at least one of the following facts always takes place:

(i) There exists a nonzero x ∈ Im A which is ≥K 0.
(ii) There exists a nonzero λ ∈ Null(AT ) which is ≥K∗ 0.

Geometrically: Given a primal-dual pair of cones K, K∗ and a pair L,L⊥ of linear
subspaces that are orthogonal complements of each other, we can find a nontrivial ray in
the intersection L ∩ K or in the intersection L⊥ ∩ K∗ or both.

2. Prove that there exists λ ∈ Null(AT ) which is >K∗ 0 (this is the strict version of
(ii)) if and only if (i) is false. Prove that, similarly, there exists x ∈ ImA which is >K 0 (this
is the strict version of (i)) if and only if (ii) is false.

Geometrically: If K,K∗ is a primal-dual pair of cones and L,L⊥ are linear sub-
spaces that are orthogonal complements of each other, then the intersection L∩ K is trivial
(i.e., is the singleton {0}) if and only if the intersection L⊥ ∩ intK∗ is nonempty.
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Several interesting cones

Given a cone K along with its dual K∗, let us call a complementary pair every pair x ∈ K,
λ ∈ K∗ such that

λT x = 0.

Recall that in good cases (e.g., under the premise of item 4 of the conic duality theorem) a
pair of feasible solutions (x, λ) of a primal-dual pair of conic problems

min
{
cT x | Ax − b ≥K 0

}
,

max
{
bT λ | AT λ = c, λ ≥K∗ 0

}
is primal-dual optimal if and only if the primal slack y = Ax − b and λ are complementary.

Exercise 2.6. Nonnegative orthant. Prove that the n-dimensional nonnegative orthant
Rn+ is a cone and that it is self-dual:

(Rn
+)∗ = Rn

+.

What are complementary pairs?

Exercise 2.7. Ice cream cone. Let Ln be the n-dimensional ice cream cone:

Ln =
{
x ∈ Rn | xn ≥

√
x2

1 + · · · + x2
n−1

}
.

1. Prove that Ln is a cone.
2. Prove that the ice cream cone is self-dual:

(Ln)∗ = Ln.

3. Characterize the complementary pairs.

Exercise 2.8. Positive semidefinite cone. Let Sn+ be the cone of n×n positive semidefinite
matrices in the space Sn of symmetric n × n matrices. Assume that Sn is equipped with the
Frobenius inner product

〈X, Y 〉 = Tr(XY) =
n∑

i,j=1

XijYij .

1. Prove that Sn+ indeed is a cone.
2. Prove that the semidefinite cone is self-dual:

(Sn
+)∗ = Sn

+.

That is, prove the Frobenius inner products of a symmetric matrix N with all positive
semidefinite matrices X of the same size are nonnegative if and only if the matrix N itself is
positive semidefinite.
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3. Prove the following characterization of the complementary pairs:

Two matrices X ∈ Sn+, N ∈ (Sn+)∗ ≡ Sn+ are complementary (i.e., 〈N,X〉 = 0)
if and only if their matrix product is zero: NX = XN = 0. In particular,
matrices from a complementary pair commute and therefore share a common
orthonormal eigenbasis.

2.6.2 Conic problems

Several primal-dual pairs

Exercise 2.9. The min-max Steiner problem. Consider the following problem.

Given N points b1, . . . , bN in Rn, find a point x ∈ Rn that minimizes the
maximum (Euclidean) distance from itself to the points b1, . . . , bN ; i.e., solve
the problem

min
x

max
i=1,...,N

‖x − bi‖2.

Imagine, e.g., that n = 2, b1, . . . , bN are locations of villages and you want
to locate a fire station for which the worst-case distance to a possible fire is as
small as possible.

1. Pose the problem as a conic quadratic one—a conic problem associated with a
direct product of ice cream cones.

2. Build the dual problem.
3. What is the geometric interpretation of the dual? Are the primal and the dual

strictly feasible? solvable? with equal optimal values? What is the meaning of the com-
plementary slackness?

Exercise 2.10. The weighted Steiner problem. Consider the following problem:

GivenN points b1, . . . , bN in Rn along with positive weightsωi , i = 1, . . . , N ,
find a point x ∈ Rn that minimizes the weighted sum of its (Euclidean) distances
to the points b1, . . . , bN ; i.e., solve the problem

min
x

N∑
i=1

ωi‖x − bi‖2.

Imagine, e.g., that n = 2, b1, . . . , bN are locations of N villages and you want
to place a telephone station for which the total cost of cables linking the station
and the villages is as small as possible. The weights can be interpreted as the
per-mile cost of the cables. (They may vary from village to village due to
differences in populations and, consequently, in the required capacities of the
cables.)D
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1. Pose the problem as a conic quadratic one.
2. Build the dual problem.
3. What is the geometric interpretation of the dual? Are the primal and the dual

strictly feasible? solvable? with equal optimal values? What is the meaning of the com-
plementary slackness?

2.6.3 Feasible and level sets of conic problems

Consider a feasible conic problem

min
{
cT x | Ax − b ≥K 0

}
. (CP)

In many cases it is important to know whether the problem has
1. bounded feasible set {x | Ax − b ≥K 0},
2. bounded level sets

{x | Ax − b ≥K 0, cT x ≤ a}
for all real a.

Exercise 2.11. Let (CP) be feasible. Then the following four properties are equivalent:
(i) The feasible set of the problem is bounded.
(ii) The set of primal slacks Y = {y | y ≥K 0, y = Ax − b} is bounded.8

(iii) Im A ∩ K = {0}.
(iv) The system of vector (in)equalities

AT λ = 0, λ >K∗ 0

is solvable.
Corollary. The property of (CP) to have a bounded feasible set is independent of the

particular value of b, provided that with this b (CP) is feasible!

Exercise 2.12. Let problem (CP) be feasible. Prove that the following two conditions are
equivalent:

(i) (CP) has bounded level sets.
(ii) The dual problem

max
{
bT λ | AT λ = c, λ ≥K∗ 0

}
is strictly feasible.

Corollary. The property of (CP) to have bounded level sets is independent of the
particular value of b, provided that with this b (CP) is feasible!

8Recall that we always assume that A holds!
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Lecture 3

Conic Quadratic
Programming

Several generic families of conic problems are of special interest, from the viewpoint of both
theory and applications. The cones underlying these problems are simple enough, so that
one can describe explicitly the dual cone. As a result, the general duality machinery we have
developed becomes algorithmic, as in the LP case. Moreover, in many cases this algorithmic
duality machinery allows us to understand more deeply the original model, to convert it into
equivalent forms better suited for numerical processing, etc. The relative simplicity of
the underlying cones also enables one to develop efficient computational methods for the
corresponding conic problems. The most famous example of a “nice” generic conic problem
is, doubtless, LP; however, it is not the only problem of this sort. Two other nice generic
conic problems of extreme importance are conic quadratic and semidefinite programs. We
are about to consider the first of these two problems.

3.1 Conic quadratic problems: Preliminaries
Recall the definition of the m-dimensional ice cream (≡ second-order ≡ Lorentz) cone Lm:

Lm = {x = (x1, . . . , xm) ∈ Rm | xm ≥
√
x2

1 + · · · + x2
m−1}, m ≥ 2.

A conic quadratic problem is a conic problem

min
x

{
cT x | Ax − b ≥K 0

}
(CP)

for which the cone K is a direct product of several ice cream cones:

K = Lm1 × Lm2 × · · · × Lmk

=

y =


y[1]
y[2]
. . .

y[k]

 | y[i] ∈ Lmi , i = 1, . . . , k

 .
(3.1.1)
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80 Lecture 3. Conic Quadratic Programming

In other words, a conic quadratic problem is an optimization problem with linear objective
and finitely many ice cream constraints

Aix − bi ≥Lmi 0, i = 1, . . . , k,

where

[A; b] =


[A1; b1]
[A2; b2]

. . .

[Ak; bk]


is the partition of the data matrix [A; b] corresponding to the partition of y in (3.1.1). Thus,
a conic quadratic program can be written as

min
x

{
cT x | Aix − bi ≥Lmi 0, i = 1, . . . , k

}
. (3.1.2)

Let us recall that for a vector z ∈ Rm, the inequality z ≥Lm 0 means that the last entry in z

is ≥ the Euclidean norm ‖ · ‖2 of the subvector of z comprising the first m − 1 entries of z.
Consequently, the ≥Lmi 0-inequalities in (3.1.2) can be written as

‖Dix − di‖2 ≤ pT
i x − qi,

where

[Ai; bi] =
[

Di di
pT
i qi

]
is the partitioning of the data matrix [Ai, bi] into the submatrix [Di; di] consisting of the
first mi − 1 rows and the last row [pT

i ; qi]. Hence, a conic quadratic problem can be written
as

min
x

{
cT x | ‖Dix − di‖2 ≤ pT

i x − qi, i = 1, . . . , k
}
, (QP)

and this most explicit form is the one we prefer to use. In this form, Di are matrices of the
same row dimension as x, di are vectors of the same dimensions as the column dimensions
of the matrices Di , pi are vectors of the same dimension as x and qi are reals.

We know from Exercises 2.7 and 2.4 that (3.1.1) is indeed a cone, in fact a self-dual
one: K∗ = K. Consequently, the problem dual to (CP) is

max
λ

{
bT λ | AT λ = c, λ ≥K 0

}
.

Denoting

λ =


λ1

λ2

. . .

λk

D
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3.2. Examples of conic quadratic problems 81

with mi-dimensional blocks λi (cf. (3.1.1)), we can write the dual problem as

max
λ1,...,λm

{
k∑

i=1

bTi λi |
k∑

i=1

AT
i λi = c, λi ≥Lmi 0, i = 1, . . . , k

}
.

Recalling the meaning of ≥Lmi 0 and representing λi = (
µi

νi
) with scalar component νi , we

finally come to the following form of the problem dual to (QP):

max
µi,νi

{
k∑

i=1

[µT
i di + νiqi] |

k∑
i=1

[DT
i µi + νipi] = c, | ‖µi‖ ≤ νi, i = 1, . . . , k

}
. (QD)

The design variables in (QD) are vectors µi of the same dimensions as the vectors di and
reals νi , i = 1, . . . , k.

Since from now on we will treat (QP) and (QD) as the standard forms of a conic
quadratic problem and its dual, we now interpret for these two problems our basic As-
sumption A from Lecture 2 and notions like feasibility, strict feasibility, and boundedness.
Assumption A now reads as follows (why?):

There is no nonzero x that is orthogonal to all rows of all matrices Di and to
all vectors pi , i = 1, . . . , k.

We always make this assumption by default. Now, among notions like feasibility and
solvability, the only notion that does need an interpretation is strict feasibility, which now
reads as follows (why?):

Strict feasibility of (QP) means that there exists x̄ such that ‖Dix̄ − di‖2 <

pT
i x̄ − qi ∀i.

Strict feasibility of (QD) means that there exists a feasible solution {µ̄i , ν̄i}ki=1
to the problem such that ‖µi‖2 < ν̄i ∀i = 1, . . . , k.

3.2 Examples of conic quadratic problems
3.2.1 Best linear approximation of complex-valued functions

Recall the Tschebyshev approximation problem from Lecture 1, which we now formulate
as follows:

Given a finite set T , a target function f∗ on T set, and n building blocks—
functionsf1, . . . , fn onT —find a linear combination of the functionsf1, . . . , fn
that is closest, in the uniform norm on T , to the target function f∗, i.e., solve
the problem

min
x

max
t∈T

|f∗(t) −
n∑

j=1

xjfj (t)|
 . (T)D
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82 Lecture 3. Conic Quadratic Programming

O
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p

v

i
i

i

f

Figure 3.1. Geometry of ith contact. pi is the contact point; f i is the contact
force; vi is the inward normal to the surface.

We have seen that in the case of real-valued functions f∗, f1, . . . , fn the problem can be
posed as an LP program. We have also seen that in some applications the functions in
question are complex-valued, e.g., in the general antenna synthesis problem (section 1.2.4)
and in the filter synthesis problem when the design specifications have to do with the transfer
function (section 1.2.3). In these situations, our approach in Lecture 1 was to approximate the
modulus of a complex number (i.e., the Euclidean norm of a real 2D vector) by a polyhedral
norm—the maximum of several linear functions of the vector. With this approximation, (T)
indeed becomes an LP program. If we prefer to avoid approximation, we may easily pose
the complex-valued Tschebyshev problem as a conic quadratic program

min
τ,x

τ | ‖f∗(t) −
n∑

j=1

xjfj (t)‖2 ≤ τ, t ∈ T

 . (3.2.3)

In (3.2.3), we treat the complex numbers f∗(t), fj (t) as real 2D vectors.

3.2.2 Contact problems with static friction

Consider a rigid body in R3 and a robot with N fingers.9 When can the robot hold the
body? To pose the question mathematically, let us see what happens at the point pi of the
body, which is in contact with the ith finger of the robot (Fig. 3.1). Let f i be the contact
force exerted by the ith finger, vi be the unit inward normal to the surface of the body at the
point pi , and F i be the friction force caused by the contact. Physics says that this force is
tangential to the surface of the body,

(F i)T vi = 0, (3.2.4)

and its magnitude cannot exceed µ times the magnitude of the normal component of the
contact force, where µ is the friction coefficient:

‖F i‖2 ≤ µ(f i)T vi . (3.2.5)

9The examples to here, along with their analyses, are taken from M.S. Lobo, L. Vanderbeghe, S. Boyd, and
H. Lebret, Second-order cone programming, Linear Algebra Appl., 284 (1998), pp. 193–228.
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3.2. Examples of conic quadratic problems 83

Assume that the body is subject to additional external forces (e.g., gravity). As far
as their mechanical consequences are concerned, all these forces can be represented by a
single force, their sum F ext, along with the torque T ext, the sum of vector products of the
external forces and the points where they are applied.

In order for the body to be in static equilibrium, the total force acting at the body and
the total torque should be zero:

N∑
i=1

(f i + F i) + F ext = 0,

N∑
i=1

pi × (f i + F i) + T ext = 0,

(3.2.6)

where p × q stands for the vector product10 of two 3D vectors p and q.

Stable grasp analysis problem. The question of whether the robot is able to hold the
body can be interpreted as follows. Assume that f i, F ext, T ext are given. If the friction
forces F i can adjust themselves to satisfy the friction constraints (3.2.4) and (3.2.5) and the
equilibrium equations (3.2.6), i.e., if the system of constraints (3.2.4), (3.2.5), (3.2.6) with
respect to unknowns F i is solvable, then, and only then, the robot holds the body (the body
is in a stable grasp).

Thus, the question of stable grasp is the question of solvability of the system of
constraints

S = (3.2.4) & (3.2.5) & (3.2.6)

with unknowns F i ∈ R3. This question in fact is nothing but a conic quadratic feasibility
problem—a conic quadratic problem with a trivial (identically zero) objective. We say “in
fact” since the problem, as it arises, is not in our canonical form. This is typical: nice
problems normally do not arise in catalogue forms, and one should know how to recognize
what one is dealing with. In our case this recognition problem is easy. One way to see
that S is a conic quadratic problem is to use the system of linear equations (3.2.4), (3.2.6)
to express part of the unknowns via the remaining ones, letting the latter be denoted by x.
With this parameterization, every F i becomes an affine vector-valued function Dix − di of

10Here is the definition: if

p =
(
p1
p2
p3

)
, q =

(
q1
q2
q3

)

are two 3D vectors, then

[p, q] =


Det

(
p2 p3
q2 q3

)
Det

(
p3 p1
q3 q1

)
Det

(
p1 p2
q1 q2

)
 .

The vector [p, q] is orthogonal to both p and q, and ‖[p, q]‖2 = ‖p‖2‖q‖2 sin(p̂q).
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84 Lecture 3. Conic Quadratic Programming

the free design vector x, and the question we are interested in becomes whether the primal
conic quadratic problem

min
x

{
0T x | ‖Dix − di‖2 ≤ µ(f i)T vi, i = 1, . . . , N

}
is or is not feasible.

Stable grasp synthesis problems. To the moment we treated the contact forces f i as
given. Sometimes this is not the case, i.e., the robot can, to some extent, control tensions
in its fingers. As a simple example, assume that the directions ui of the contact forces—
directions of fingers—are fixed, but the magnitudes of these forces can be controlled:

f i = νiu
i,

where the real νi are allowed to vary in a given segment [0, Fmax]. We may ask now whether
the robot can choose admissible magnitudes of the contact forces to ensure a stable grasp.
Mathematically, the question is whether the system

N∑
i=1

(νiu
i + F i) + F ext = 0,

N∑
i=1

pi × (νiu
i + F i) + T ext = 0,

(F i)T vi = 0,
‖F i‖2 ≤ [µ(ui)T vi]νi, i = 1, . . . , N,

0 ≤ νi ≤ Fmax, i = 1, . . . , N,

(3.2.7)

in variables νi , F i is solvable. We again come to a conic quadratic feasibility problem. As
before, we may eliminate the linear equations to end up with a system of conic quadratic and
linear (i.e., also conic quadratic) constraints of the form “the Euclidean norm of something
affinely depending on the design variables should be less than or equal to something else,
also affinely depending on the design variables.”

We could also add to our feasibility problem a meaningful objective function. For
example, we may think of the quantity

∑N
i=1 νi as a measure of dissipation of power of a

robot’s actuators and pose the problem of minimizing this objective under the constraints

(3.2.7). Another, and perhaps more adequate, measure of dissipation of power is
√∑N

i=1 ν
2
i .

With this objective, we again end up with a conic quadratic problem

min {t | (3.2.7) & ‖ν‖2 ≤ t} , ν = (ν1, . . . , νN)
T

in the design variables t, {νi}Ni=1, {F i}Ni=1.
As a concluding example of this series, consider the following situation: the robot

should hold a cylinder by four fingers, all acting in the vertical direction. The external
forces and torques acting at the cylinder are the gravity Fg and an externally applied torque
T along the cylinder axis, as shown in Fig. 3.2. The magnitude of the contact forces may
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3.3. What can be expressed via conic quadratic constraints? 85

Figure 3.2. Perspective, front and side views.

vary in a given segment [0, Fmax]. The question is, What is the largest magnitude τ of the
external torque T such that a stable grasp is still possible? Mathematically, the problem is

maximize τ

s.t.
4∑

i=1

(νiu
i + F i) + Fg = 0,

4∑
i=1

pi × (νiu
i + F i) + τu = 0 [u is the direction of the cylinder axis],

(vi)T F i = 0, i = 1, . . . , 4,
‖F i‖2 ≤ [µ[ui]T vi]νi, i = 1, . . . , 4,
0 ≤ νi ≤ Fmax, i = 1, . . . , 4,

(G)

where the design variables are τ, νi, Fi , i = 1, . . . , 4.

3.3 What can be expressed via conic quadratic
constraints?

As mentioned, optimization problems arising in applications are not normally in their cat-
alogue forms, and thus an important skill required of anyone interested in applications
of optimization is the ability to recognize the fundamental structure beneath the original
formulation. The latter is frequently in the form

min
x

{f (x) | x ∈ X}, (3.3.8)

where f is a loss function and the set X of admissible design vectors is typically given as

X =
m⋂
i=1

Xi, (3.3.9)

where every Xi is the set of vectors admissible for a particular design restriction, which in
many cases is given by

Xi = {x ∈ Rn | gi(x) ≤ 0}, (3.3.10)
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86 Lecture 3. Conic Quadratic Programming

where gi(x) is the ith constraint function.11 One may interpret gi(x) as the amount of ith
resource required for a design x, so that the constraint gi(x) ≤ const says that the resource
should not exceed a given level; shifting gi appropriately, we may make this level 0, thus
coming to the representation (3.3.10).

The objective f in (3.3.8)–(3.3.9) may be nonlinear, and one might think that in these
cases the problem cannot be posed in conic form. This conclusion is wrong: we can always
pass from an optimization problem to an equivalent one with a linear objective. To this end
it suffices to add a new design variable, say, t , and rewrite the problem equivalently as

min
t,x

{
t | (x, t) ∈ X̂ ≡ {(x, t) | f (x) − t ≤ 0} ∩ {(x, t) | x ∈ X1} ∩ · · · ∩ {(x, t) | x ∈ Xm}} .

Note that our new objective is linear in the new design variables (x, t), and the resulting
problem is in the form of (3.3.8)–(3.3.9).

Let us assume that the indicated transformation was done from the very beginning, so
that (3.3.8)–(3.3.9) is of the form

min
x

{
cT x | x ∈ X =

m⋂
i=1

Xi

}
. (P)

In order to recognize that X is in one of our catalogue forms, one needs a kind of dictionary,
where different forms of the same structure are listed. We shall build such a dictionary for
the conic quadratic programs. Thus, our goal is to understand when a given set X can be
represented by conic quadratic inequalities (CQIs), i.e., one or several constraints of the
type ‖Dx − d‖2 ≤ pT x − q. The word “represented” needs clarification, and here it is:

We say that a setX ⊂ Rn can be represented via CQI (it is CQr—conic quadratic
representable) if there exists a system S of finitely many vector inequalities of
the form Aj(

x

u
) − bj ≥Lmj 0 (x ∈ Rn) in variables x ∈ Rn and additional

variables u such that X is the projection of the solution set of S onto the x-
space, i.e., x ∈ X if and only if one can extend x to a solution (x, u) of the
system S:

x ∈ X ⇔ ∃u : Aj

(
x

u

)
− bj ≥Lmj 0, j = 1, . . . , N.

Every such system S is called a conic quadratic representation (CQR) of the
set X.12

The idea behind this definition is clarified by the following observation:

Consider an optimization problem

min
x

{
cT x | x ∈ X

}
11Speaking about a real-valued function on Rn, we assume that the function is allowed to take real values and

the value +∞ and is defined on the entire space. The set of those x where the function is finite is called the domain
of the function, denoted by Domf .

12Note that here we do not impose on the representing system of conic quadratic inequalities S the requirement
to satisfy Assumption A; e.g., the entire space is CQr—it is a solution set of the system |0T x| ≤ 1 comprising a
single CQI.
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and assume that X is CQr. Then the problem is equivalent to a conic quadratic
program. The latter program can be written explicitly, provided that we are
given a CQR of X.

Indeed, let S be a CQR ofX, and let u be the corresponding vector of additional
variables. The problem

min
x,u

{
cT x | (x, u) satisfy S

}
with design variables x, u is equivalent to the original problem (P), on one
hand and is a conic quadratic program on the other hand.

Let us call a problem of the form (P) with CQr X a good problem.
How do we recognize good problems, i.e., how do we recognize CQr sets? Well,

how do we recognize continuity of a given function, like f (x, y) = exp{sin(x + exp{y})}?
Normally it is done not by a straightforward verification of the definition of continuity but
by using two kinds of tools:

A. We know a number of simple functions—a constant, f (x) = x, f (x) = sin(x),
f (x) = exp{x}, etc.—that indeed are continuous: “once for the entire life” we have verified
it directly, by demonstrating that the functions fit the definition of continuity.

B. We know a number of basic continuity-preserving operations, like taking products,
sums, superpositions, etc.

When we see that a function is obtained from simple functions—those of type A—by
operations of type B (as is the case in the above example), we immediately infer that the
function is continuous.

This approach, which is common in mathematics, is the one we are about to follow.
In fact, we need to answer two questions:

(i) What are CQr sets?
(ii) What are CQr functions g(x), i.e., functions that possess CQr epigraphs

Epi{g} = {(x, t) ∈ Rn × R | g(x) ≤ t}?

Our interest in the second question is motivated by the following observation.

If a function g is CQr, then so are all its level sets {x | g(x) ≤ a}, and every
CQR of (the epigraph of) g explicitly induces CQRs of the level sets.

Indeed, assume that we have a CQR of the epigraph of g:

g(x) ≤ t ⇔ ∃u : ‖αj (x, t, u)‖2 ≤ βj (x, t, u), j = 1, . . . , N,

where αj and βj are, respectively, vector-valued and scalar affine functions of their argu-
ments. To get from this representation a CQR of a level set {x | g(x) ≤ a}, it suffices to fix
in the conic quadratic inequalities ‖αj (x, t, u)‖2 ≤ βj (x, t, u) the variable t at the value a.D
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88 Lecture 3. Conic Quadratic Programming

We list below our raw materials—simple functions and sets admitting CQRs.

Elementary conic quadratic-representable functions and sets

1. A constant function g(x) ≡ a. Indeed, the epigraph of the function {(x, t) | a ≤ t}
is given by a linear inequality, and a linear inequality 0 ≤ pT z− q is at the same time conic
quadratic inequality ‖0‖2 ≤ pT z − q.

2. An affine function g(x) = aT x + b. Indeed, the epigraph of an affine function is
given by a linear inequality.

3. The Euclidean norm g(x) = ‖x‖2. Indeed, the epigraph of g is given by the conic
quadratic inequality ‖x‖2 ≤ t in variables x, t .

4. The squared Euclidean norm g(x) = xT x. Indeed, t = (t+1)2

4 − (t−1)2

4 , so that

xT x ≤ t ⇔ xT x + (t − 1)2

4
≤ (t + 1)2

4
⇔

∣∣∣∣∣∣∣∣( x
t−1

2

)∣∣∣∣∣∣∣∣
2

≤ t + 1

2

(check the second ⇔!), and the last relation is a CQI.
5. The fractional-quadratic function

g(x, s) =


xT x
s
, s > 0

0, s = 0, x = 0
+∞ otherwise

(x vector, s scalar). Indeed, with the convention that (xT x)/0 is 0 or +∞, depending on
whether x = 0, and taking into account that ts = (t+s)2

4 − (t−s)2

4 , we have

{ xT x
s

≤ t, s ≥ 0} ⇔ {xT x ≤ ts, t ≥ 0, s ≥ 0} ⇔ {xT x + (t−s)2

4 ≤ (t+s)2

4 , t ≥ 0, s ≥ 0}
⇔

∣∣∣∣∣∣∣∣( x
t−s

2

)∣∣∣∣∣∣∣∣
2

≤ t+s
2

(check the third ⇔!), and the last relation is a CQI.

The level sets of the CQr functions 1–5 provide us with a spectrum of elementary CQr
sets. We add to this spectrum one more set:

6. (A branch of) hyperbola {(t, s) ∈ R2 | ts ≥ 1, t > 0}. Indeed,

{ts ≥ 1, t > 0} ⇔ { (t+s)2

4 ≥ 1 + (t−s)2

4 & t > 0} ⇔
{∣∣∣∣∣∣∣∣( t−s

2
1

)∣∣∣∣∣∣∣∣2

2

≤ (t+s)2

4

}
⇔

{∣∣∣∣∣∣∣∣( t−s
2
1

)∣∣∣∣∣∣∣∣
2

≤ t+s
2

}
(check the last ⇔!), and the latter relation is a CQI.

Operations preserving conic quadratic representability of sets

Next we study simple operations preserving CQ-representability of functions and sets.
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3.3. What can be expressed via conic quadratic constraints? 89

A. Intersection. If sets Xi ⊂ Rn, i = 1, . . . , N , are CQr, so is their intersection
X = ⋂N

i=1 Xi .
Indeed, let Si be a CQR of Xi and ui be the corresponding vector of additional

variables. Then the system S of constraints of the variables (x, u1, . . . , uN),

{(x, ui) satisfies Si}, i = 1, . . . , N,

is a system of CQIs, and this system clearly is a CQR of X.

Corollary 3.3.1. A polyhedral set—a set in Rn given by finitely many linear inequalities
aTi x ≤ bi, i = 1, . . . , m—is CQr.

Indeed, a polyhedral set is the intersection of finitely many level sets of affine
functions, and all these functions (and thus their level sets) are CQr.

Corollary 3.3.2. If every one of the sets Xi in problem (P) is CQr, then the problem is
good—it can be rewritten in the form of a conic quadratic problem, and such a transformation
is readily given by CQRs of the sets Xi , i = 1, . . . , m.

Corollary 3.3.3. Adding to a good problem finitely many CQr constraints x ∈ Xi , (e.g.,
finitely many scalar linear inequalities), we again get a good problem.

B. Direct product. If sets Xi ⊂ Rni , i = 1, . . . , k, are CQr, then so is their direct
product X1 × · · · × Xk .

Indeed, if Si = {‖αi
j (xi, ui)‖2 ≤ βi

j (xi, ui)}Nj

j=1, i = 1, . . . , k, are CQRs of the sets
Xi , then the union over i of this system of inequalities, regarded as a system with design
variables x = (x1, . . . , xk) and additional variables u = (u1, . . . , uk), is a CQR for the
direct product of X1, . . . , Xk .

C. Affine image (projection). If a set X ⊂ Rn is CQr and x �→ y = �(x) = Ax + b

is an affine mapping of Rn to Rk , then the image �(X) of the set X under the mapping is
CQr.

Indeed, passing to an appropriate basis in Rn and Rk , we may assume that the null
space of A is made up of the last n−p vectors of the basis of Rn and that the image of A is
spanned by the firstp vectors of the basis in Rk . In other words, we may assume that a vector
x ∈ Rn can be partitioned as x = (

x ′
x ′′ ) (x ′ is p-dimensional and x ′′ is (n−p)-dimensional)

and that a vector y ∈ Rk can be partitioned as y = (
y ′
y ′′ ) (y ′ is p-dimensional and y ′′ is

(k − p)-dimensional) in such a way that A( x
′

x ′′ ) = (
Qx ′

0 ) with a nonsingular p × p matrix
Q. Thus,{(

y ′
y ′′

)
= A

(
x ′
x ′′

)
+ b

}
⇔

{
x =

(
Q−1(y ′ − b′)

w

)
for some w & y ′′ = b′′

}
.

Now let S = {‖αj (x, u)‖2 ≤ βj (x, u)}Nj=1 be a CQR of X, where u is the corresponding
vector of additional variables and αj , βj are affine in (x, u). Then the system of CQIs in
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90 Lecture 3. Conic Quadratic Programming

the design variables y = (
y ′
y ′′ ) ∈ Rk and additional variables w ∈ Rn−p, u,

S+ =
{

‖αj

((
Q−1(y ′ − b′)

w

)
, u

)
‖2 ≤ βj

((
Q−1(y ′ − b′)

w

)
, u

)}N

j=1

and {‖y ′′ − b′′‖2 ≤ 0},
is a CQR of �(X). Indeed, y = (

y ′
y ′′ ) ∈ �(X) if and only if y ′′ = b′′ and there exists

w ∈ Rn−p such that the point

x =
(
Q−1(y ′ − b′)

w

)
belongs to X, and the latter happens if and only if there exist u such that the point

(x, u) =
((

Q−1(y ′ − b′)
w

)
, u

)
solves S.

Corollary 3.3.4. A nonempty set X is CQr if and only if its characteristic function

χ(x) =
{ 0, x ∈ X,

+∞ otherwise

is CQr.

Indeed, Epi{χ} is the direct product of X and the nonnegative ray; therefore if X is
CQr, so is χ(·) (see B and Corollary 3.3.1). Conversely, if χ is CQr, then X is CQr by C,
since X is the projection of the Epi{χ} on the space of x-variables.

D. Inverse affine image. Let X ⊂ Rn be a CQr set, and let �(y) = Ay + b be an
affine mapping from Rk to Rn. Then the inverse image �−1(X) = {y ∈ Rk | Ay + b ∈ X}
is also CQr.

Indeed, let S = {‖αj (x, u)‖2 ≤ βj (x, u)}Ni=1 be a CQR for X. Then the system of
CQIs

S = {‖αj (Ay + b, u)‖2 ≤ βj (Ay + b, u)}Ni=1

with variables y, u clearly is a CQR for �−1(X).

Corollary 3.3.5. Consider a good problem (P) and assume that we restrict its design
variables to be given affine functions of a new design vector y. Then the induced problem
with the design vector y is also good.

In particular, adding to a good problem arbitrarily many linear equality constraints,
we end up with a good problem. (Indeed, we may use the linear equations to express affinely
the original design variables via part of them; let this part be y. The problem with added
linear constraints can now be posed as a problem with design vector y.)
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3.3. What can be expressed via conic quadratic constraints? 91

It should be stressed that the above statements are not just existence theorems—they
are algorithmic: given CQRs of the operands (say, m sets X1, . . . , Xm), we may build
completely mechanically a CQR for the result of the operation (e.g., for the intersection⋂m

i=1 Xi).
Note that we have already used nearly all our corollaries in the grasp problem. To see

that (G) is a conic quadratic problem, we carried out the following reasoning:
1. The problem

min
{
τ | ‖F i‖2 ≤ si, i = 1, . . . , N

}
(P0)

in the design variables τ , (F i, si) ∈ R3 × R, νi ∈ R is perhaps odd (part of the variables
does not appear at all, the objective and the constraints are not related to each other, etc.),
but clearly it is good.

2. Adding to the good problem (P0) the linear equality constraints

N∑
i=1

(νiu
i + F i) = −Fg,

N∑
i=1

pi × (νiui + F i) + τu = 0,

(vi)T F i = 0, i = 1, . . . , N,

si − [µ(ui)T vi]νi = 0, i = 1, . . . , N,

where ui, u, Fg are given vectors, we get a good problem (P1) (Corollary 3.3.5).
3. The original problem (G) is obtained from the good problem (P1) by adding scalar

linear inequalities

0 ≤ νi ≤ Fmax, i = 1, . . . , N,

so that (G) itself is good (Corollary 3.3.3).

Operations preserving conic quadratic-representability of functions

Recall that a function g(x) is called CQr if its epigraph Epi{g} = {(x, t) | g(x) ≤ t} is a
CQr set; a CQR of the epigraph of g is called CQR of g. Recall also that a level set of a CQr
function is CQr. Here are transformations preserving CQ-representability of functions.

E. Taking maximum. If functions gi(x), i = 1, . . . , m, are CQr, then so is their
maximum g(x) = maxi=1,...,m gi(x).

Indeed, Epi{g} = ⋂
i Epi{gi} and the intersection of finitely many CQr sets again is

CQr.

F. Summation with nonnegative weights. If functions gi(x), x ∈ Rn, are CQr, i =
1, . . . , m, and αi are nonnegative weights, then the function g(x) = ∑m

i=1 αigi(x) is also
CQr.
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92 Lecture 3. Conic Quadratic Programming

Indeed, consider the set

H =
{
(x1, t1; x2, t2; . . . ; xm, tm; t) | xi ∈ Rn, ti ∈ R, t ∈ R, gi(xi)

≤ ti , i = 1, . . . , m;
m∑
i=1

αiti ≤ t

}
.

The set is CQr. Indeed, the set is the direct product of the epigraphs of gi intersected with
the half-space given by the linear inequality

∑m
i=1 αiti ≤ t . Now, a direct product of CQr

sets is also CQr, a half-space is CQr (it is a level set of an affine function, and such a function
is CQr), and the intersection of CQr sets is also CQr. Since H is CQr, so is its projection on
subspace of variables x1, x2, . . . , xm, t , i.e., the set{

(x1, . . . , xm, t) : ∃t1, . . . , tm : gi(xi) ≤ ti , i = 1, . . . , m,

m∑
i=1

αiti ≤ t

}

=
{
(x1, . . . , xm, t) :

m∑
i=1

αigi(xi) ≤ t

}
.

Since the latter set is CQr, so is its inverse image under the mapping

(x, t) �→ (x, x, . . . x, t),

and this inverse image is exactly the epigraph of g.

G. Direct summation. If functions gi(xi), xi ∈ Rni , i = 1, . . . , m, are CQr, so is their
direct sum

g(x1, . . . , xm) = g1(x1) + · · · + gm(xm).

Indeed, the functions ĝi (x1, . . . , xm) = gi(xi) are clearly CQr—their epigraphs are
inverse images of the epigraphs of gi under the affine mappings (x1, . . . , xm, t) �→ (xi, t).
It remains to note that g = ∑

i ĝi .

H. Affine substitution of argument. If a function g(x), x ∈ Rn, is CQr and y �→
Ay + b is an affine mapping from Rk to Rn, then the superposition g→(y) = g(Ay + b) is
CQr.

Indeed, the epigraph of g→ is the inverse image of the epigraph of g under the affine
mapping (y, t) �→ (Ay + b, t).

I. Partial minimization. Let g(x) be CQr. Assume that x is partitioned into two
subvectors: x = (v,w), let ĝ be obtained from g by partial minimization in w,

ĝ(v) = inf
w

g(v,w),

and assume that for every v the minimum in w is achieved. Then ĝ is CQr.
Indeed, under the assumption that the minimum in w always is achieved, Epi{ĝ} is

the image of Epi{g} under the projection (v,w, t) �→ (v, t).
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3.3. What can be expressed via conic quadratic constraints? 93

More operations preserving conic quadratic-representability

Let us list a number of more advanced operations with sets and functions that preserve
CQ-representability.

J. Arithmetic summation of sets. Let Xi, i = 1, . . . , k, be nonempty convex sets in
Rn, and let X1 + X2 + · · · + Xk be the arithmetic sum of these sets:

X1 + · · · + Xk = {x = x1 + · · · + xk | xi ∈ Xi, i = 1, . . . , k}.
We claim that if all Xi are CQr, so is their sum.

Indeed, the direct product

X = X1 × X2 × · · · × Xk ⊂ Rnk

is CQr by B; it remains to note that X1 +· · ·+Xk is the image of X under the linear mapping

(x1, . . . , xk) �→ x1 + · · · + xk : Rnk → Rn,

and by C the image of a CQr set under an affine mapping is also CQr (see C)

J.1. inf-convolution. The operation with functions related to the arithmetic summa-
tion of sets is the inf-convolution defined as follows. Let fi : Rn → R∪{∞}, i = 1, . . . , n,
be functions. Their inf-convolution is the function

f (x) = inf{f1(x
1) + · · · + fk(x

k) | x1 + · · · + xk = x}. (∗)
We claim that

if all fi are CQr, their inf-convolution is > −∞ everywhere and for every x

for which the inf in the right-hand side of (∗) is finite, this infimum is achieved,
then f is CQr.

Indeed, under the assumption in question the epigraph Epi{f } = Epi{f1} + · · · +
Epi{fk}.

K. Taking conic hull of a closed convex set. Let X ∈ Rn be a nonempty convex set.
Its conic hull is the set

X+ = {(x, t) ∈ Rn × R : t > 0, t−1x ∈ X} ∪ {0}.
Geometrically, we add to the coordinates of vectors from Rn a new coordinate equal to 1,

(x1, . . . , xn)
T �→ (x1, . . . , xn, 1)T ,

thus getting an affine embedding of Rn in Rn+1. We take the image of X under this
mapping—lift X by one along the (n + 1)st axis—and then form the set X+ by taking all
rays emanating from the origin and crossing the lifted X.
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94 Lecture 3. Conic Quadratic Programming

The conic hull of a closed convex set X is not necessarily closed; to maintain closed-
ness, X has to be both closed and bounded. The closed convex hull of X is the closure of
its conic hull:

X̂+ = clX+ =
{
(x, t) ∈ Rn × R : ∃{(xi, ti)}∞

i=1 : ti > 0, t−1
i xi ∈ X, t = lim

i
ti , x = lim

i
xi

}
.

Note that if X is a closed convex set, then the parts of the conic hull X+ of X and the closed
convex hull X̂+ belonging to the open half-space {t > 0} are equal to each other (check!).
Note also that if X is a closed convex set, you can obtain it from its (closed) convex hull by
taking intersection with the hyperplane {t = 1}:

x ∈ X ⇔ (x, 1) ∈ X̂+ ⇔ (x, 1) ∈ X+.

Proposition 3.3.1. (i) If X is nonempty and X is CQr,

X = {x | ∃u : Ax + Bu + b ≥K 0} , (3.3.11)

where K is a direct product of the ice cream cones, then the CQr set

X̃+ = {(x, t) | ∃u : Ax + Bu + tb ≥K 0}
⋂

{(x, t) | t ≥ 0} (3.3.12)

is between the conic hull X+ and the closed conic hull X̂+ of X:

X+ ⊂ X̃+ ⊂ X̂+.

In particular, if X is a closed and bounded CQr set (so that X+ = X̂+), then the conic hull
of X is CQr.

(ii) If the CQR (3.3.11) is such that Bu ∈ K implies that Bu = 0, then X̃+ = X̂+,
so that X̂+ is CQr.

Proof. (i): We should prove that the set X̃+ (which by construction is CQr) is between X+
and X̂+. First, 0 ∈ X̃+, and if (x, t) ∈ X+\{0}, i.e., t > 0, z = t−1x ∈ X, then there exists
u such that

Az + Bu + b ≥K 0 ⇒ Ax + B(tu) + tb ≥K 0 ⇒ (x, t) ∈ X̃+.

Thus, X+ ⊂ X̃+.
Next, let us prove that X̃+ ⊂ X̂+. Let us choose a point x̄ ∈ X, so that for a properly

chosen ū,

Ax̄ + Bū + b ≥K 0

holds, i.e., (x̄, 1) ∈ X̃+. From the description of X̃+ it is clear that whenever (x, t) belongs
to X̃+, so does every pair (xε = x + εx̄, tε = t + ε) with ε > 0:

∃u = uε : Axε + Buε + tεb ≥K 0.

It follows that t−1
ε xε ∈ X, whence (xε, tε) ∈ X+ ⊂ X̂+. As ε → +0, we have (xε, tε) →

(x, t), and since X̂+ is closed, we get (x, t) ∈ X̂+. Thus, X̃+ ⊂ X̂+.
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(ii): Assume that Bu ∈ K only if Bu = 0, and let us show that X̃+ = X̂+.
We just have to prove that X̃+ is closed, which indeed is the case due to the following
lemma.

Lemma 3.3.1. Let Y be a CQr set with CQR

Y = {y | ∃v : Py + Qv + r ≥K 0}
such that Qv ∈ K only when Qv = 0. Then

(i) there exists a constant C < ∞ such that

Py + Qv + r ∈ K ⇒ ‖Qv‖2 ≤ C(1 + ‖Py + r‖2); (3.3.13)

(ii) Y is closed.

Proof. (i): Assume, on the contrary to what should be proved, that there exists a
sequence {yi, vi} such that

Pyi + Qvi + r ∈ K, ‖Qvi‖2 ≥ αi(1 + ‖Pyi + r‖2), αi → ∞ as i → ∞. (3.3.14)

By linear algebra, for every b such that the linear system Qv = b is solvable, it admits a
solution v such that ‖v‖2 ≤ C1‖b‖2 with C1 < ∞ depending on Q only; therefore we can
assume, in addition to (3.3.14), that

‖vi‖2 ≤ C1‖Qvi‖2 (3.3.15)

for all i. Now, from (3.3.14) it clearly follows that

‖Qvi‖2 → ∞ as i → ∞; (3.3.16)

setting

v̂i = 1

‖Qvi‖2
vi,

we have

(a) ‖Qv̂i‖2 = 1 ∀i,
(b) ‖̂vi‖ ≤ C1 ∀i [by (3.3.15)],
(c) Qv̂i + ‖Qvi‖−1

2 (Pyi + r) ∈ K ∀i,
(d) ‖Qvi‖−1

2 ‖Pyi + r‖2 ≤ α−1
i → 0 as i → ∞ [by (3.3.14)].

Taking into account (b) and passing to a subsequence, we can assume that v̂i → v̂ as
i → ∞; by (c), (d) Qv̂ ∈ K, while by (a) ‖Qv̂‖2 = 1, i.e., Qv̂ �= 0, which is the desired
contradiction.

(ii) To prove that Y is closed, assume that yi ∈ Y and yi → y as i → ∞, and let us
verify that y ∈ Y . Indeed, since yi ∈ Y , there exist vi such that Pyi + Qvi + r ∈ K. Same
as above, we can assume that (3.3.15) holds. Since yi → y, the sequence {Qvi} is bounded
by (3.3.13), so that the sequence {vi} is bounded by (3.3.15). Passing to a subsequence,

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 96

✐

✐

✐

✐

✐

✐

✐

✐

96 Lecture 3. Conic Quadratic Programming

we can assume that vi → v as i → ∞; passing to the limit, as i → ∞, in the inclusion
Pyi + Qvi + r ∈ K, we get Py + Qv + r ∈ K, i.e., y ∈ Y .

K.1. Projective transformation of a CQr function. The operation with functions
related to taking conic hull of a convex set is the projective transformation, which converts
a function f (x) : Rn → R ∪ {∞} into the function

f +(x, s) = sf (x/s) : {s > 0} × Rn → R ∪ {∞}.
The epigraph of f + is the conic hull of the epigraph of f with the origin excluded:{

(x, s, t) | s > 0, t ≥ f +(x, s)
} = {

(x, s, t) | s > 0, s−1t ≥ f (s−1x)
}

= {
(x, s, t) | s > 0, s−1(x, t) ∈ Epi{f }} .

The closure clEpi{f +} is the epigraph of a certain function, let it be denoted f̂ +(x, s);
this function is called the projective transformation of f . The fractional-quadratic function
from example 5 is the projective transformation of the function f (x) = xT x. Note that the
function f̂ +(x, s) does not necessarily coincide with f +(x, s) even in the open half-space
s > 0. This is the case if and only if the epigraph of f is closed (or, which is the same, f is
lower semicontinuous: whenever xi → x andf (xi) → a, we havef (x) ≤ a). We are about
to demonstrate that the projective transformation nearly preserves CQ-representability.

Proposition 3.3.2. Let f : Rn → R ∪ {∞} be a lower semicontinuous function that is
CQr:

Epi{f } ≡ {(x, t) | t ≥ f (x)} = {(t, x) | ∃u : Ax + tp + Bu + b ≥K 0} , (3.3.17)

where K is a direct product of ice cream cones. Assume that the CQR is such that Bu ≥K 0
implies that Bu = 0. Then the projective transformation f̂ + of f is CQr, namely,

Epi{f̂ +} = {(x, t, s) | s ≥ 0, ∃u : Ax + tp + Bu + sb ≥K 0} .
Indeed, let us set

G = {(x, t, s) | ∃u : s ≥ 0, Ax + tp + Bu + sb ≥K 0} .
As we remember from the previous combination rule, G is exactly the closed conic hull of
the epigraph of f , i.e., G = Epi{f̂ +}.

L. The polar of a convex set. Let X ⊂ Rn be a convex set containing the origin. The
polar of X is the set

X∗ = {
y ∈ Rn | yT x ≤ 1 ∀x ∈ X

}
.

In particular,

• the polar of the singleton {0} is the entire space;

• the polar of the entire space is the singleton {0};
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• the polar of a linear subspace is its orthogonal complement (why?);

• the polar of a closed convex pointed cone K with a nonempty interior is −K∗, minus
the dual cone (why?).

Polarity is symmetric: if X is a closed convex set containing the origin, then so is X∗, and
twice taken polar is the original set—(X∗)∗ = X.

We are about to prove that the polarity X �→ X∗ nearly preserves CQ-representability.

Proposition 3.3.3. Let X ⊂ Rn, 0 ∈ X, be a CQr set,

X = {x | ∃u : Ax + Bu + b ≥K 0} , (3.3.18)

where K is a direct product of ice cream cones. Assume that the above CQR is strictly
feasible, i.e., that there exists x̄, ū such that

Ax̄ + Bū + b >K 0.

Then the polar of X is the CQr set

X∗ = {
y | ∃ξ : AT ξ + y = 0, BT ξ = 0, bT ξ ≤ 1, ξ ≥K 0

}
. (3.3.19)

Indeed, consider the following conic quadratic problem:

min
x,u

{−yT x | Ax + Bu + b ≥K 0
}
. (Py)

A vector y belongs to X∗ if and only if (Py) is bounded below and its optimal value is at
least −1. Since (Py) is strictly feasible, from the conic duality theorem it follows that these
properties of (Py) hold if and only if the dual problem

max
ξ

{−bT ξ | AT ξ = −y, BT ξ = 0, ξ ≥K 0
}

(recall that K is self-dual) has a feasible solution with the value of the dual objective at least
−1. Thus,

X∗ = {
y | ∃ξ : AT ξ + y = 0, BT ξ = 0, bT ξ ≤ 1, ξ ≥K 0

}
,

as claimed in (3.3.19). It remains to note thatX∗ is obtained from the CQr set K by operations
preserving CQ-representability: intersection with the CQr set {ξ | BT ξ = 0, bT ξ ≤ 1} and
subsequent affine mapping ξ �→ −AT ξ .

L.1. The Legendre transformation of a CQr function. The operation with functions
related to taking polar of a convex set is the Legendre (or conjugate) transformation. The
Legendre transformation (≡ the conjugate) of a function f (x) : Rn → R ∪ {∞} is the
function

f∗(y) = sup
x

[
yT x − f (x)

]
.
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98 Lecture 3. Conic Quadratic Programming

In particular,

• the conjugate of a constant f (x) ≡ c is the function

f∗(y) =
{−c, y = 0,

+∞, y �= 0;

• the conjugate of an affine function f (x) ≡ aT x + b is the function

f∗(y) =
{−b, y = a,

+∞, y �= a;

• the conjugate of a convex quadratic form f (x) ≡ 1
2x

TDTDx + bT x + c with rectan-
gular D such that Null(DT ) = {0} is the function

f∗(y) =
{

1
2 (y − b)T DT (DDT )−2D(y − b) − c, y − b ∈ ImDT ,
+∞ otherwise.

It is worth mentioning that the Legendre transformation is symmetric: if f is a proper convex
lower semicontinuous function (i.e., Epi{f } is nonempty, convex and closed), then so is f∗.
Taken twice, the Legendre transformation recovers the original function: (f∗)∗ = f .

We are about to prove that the Legendre transformation nearly preserves CQ-
representability.

Proposition 3.3.4. Let f : Rn → R ∪ {∞} be CQr:

{(x, t) | t ≥ f (x)} = {(t, x) | ∃u : Ax + tp + Bu + b ≥K 0} ,
where K is a direct product of ice cream cones. Assume that the above CQR is strictly
feasible:

∃x̄, t̄ , ū : Ax̄ + t̄p + Bū + b >K 0.

Then the Legendre transformation of f is CQr:

Epi{f∗} = {
(y, s) | ∃ξ : AT ξ = −y, BT ξ = 0, pT ξ = 1, s ≥ bT ξ, ξ ≥K 0

}
. (3.3.20)

Indeed, we have

Epi{f∗} = {
(y, s) | yT x − f (x) ≤ s ∀x} = {

(y, s) | yT x − t ≤ s ∀(x, t) ∈ Epi{f }} .
(3.3.21)

Consider the conic quadratic program

min
x,t,u

{−yT x + t | Ax + tp + Bu + b ≥ K0
}
. (Py)

By (3.3.21), a pair (y, s) belongs to Epi{f∗} if and only if (Py) is bounded below with
optimal value ≥ −s. Since (Py) is strictly feasible, this is the case if and only if the dual
problem

max
ξ

{−bT ξ | AT ξ = −y, BT ξ = 0, pT ξ = 1, ξ ≥K 0
}D
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has a feasible solution with the value of the dual objective ≥ −s. Thus,

Epi{f∗} = {
(y, s) | ∃ξ : AT ξ = −y, BT ξ = 0, pT ξ = 1, s ≥ bT ξ, ξ ≥K 0

}
as claimed in (3.3.20). It remains to note that the right-hand side set in (3.3.20) is CQr (as
a set obtained from the CQr set K × Rs by operations preserving CQ-representability—
intersection with the set {ξ | BT ξ = 0, pT ξ = 1, bT ξ ≤ s} and subsequent affine mapping
ξ �→ −AT ξ ).

Corollary 3.3.6. Let X be a CQr set with a strictly feasible CQR:

X = {x | ∃u : Ax + Bu + b ≥K 0}, ∃x̄, ū : Ax̄ + Bū + b >K 0,

where K is a direct product of ice cream cones. Then the support function

SuppX(x) = sup
y∈X

xT y

of X with a strictly feasible CQR is CQr.

Indeed, SuppX(·) is the conjugate of the characteristic function χX(·) of X, and the
latter, under the premise of the corollary, admits a strictly feasible CQR, namely

Epi{χX} = {(x, t) | ∃u : Ax + Bu + b ≥K 0, t ≥ 0}.
M. Taking convex hull of several sets. The convex hull of a set Y ⊂ Rn is the smallest

convex set that contains Y :

Conv(Y ) =
{
x =

kx∑
i=1

αixi | xi ∈ Y, αi ≥ 0,
∑
i

αi = 1

}
.

The closed convex hull Conv(Y ) = clConv(Y ) of Y is the smallest closed convex set
containing Y .

Following Nesterov, let us prove that taking the convex hull nearly preserves CQ-
representability.

Proposition 3.3.5. Let X1, . . . , Xk ⊂ Rn be nonempty convex CQr sets:

Xi = {x | Aix + Biui + bi ≥Ki
0, i = 1, . . . , k}, (3.3.22)

where Ki is a direct product of ice cream cones.
Then the CQr set

Y = {
x | ∃ξ 1, . . . , ξ k, t1, . . . , tk, η

1, . . . , ηk :
A1ξ

1 + B1η
1 + t1b1

A2ξ
2 + B2η

2 + t2b2

. . .

Akξ
k + Bkη

k + tkbk

 ≥K 0,

t1, . . . , tk ≥ 0,
ξ 1 + · · · + ξk = x

t1 + · · · + tk = 1
}
,

K = K1 × · · · × Kk,

(3.3.23)
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100 Lecture 3. Conic Quadratic Programming

is between the convex hull and the closed convex hull of the set X1 ∪ · · · ∪ Xk:

Conv

(
k⋃

i=1

Xi

)
⊂ Y ⊂ Conv

(
k⋃

i=1

Xi

)
.

If, in addition to CQ-representability,
(i) all Xi are closed and bounded,

or
(ii) Xi = Zi + W , where Zi are closed and bounded sets and W is a convex closed

set,
then

Conv

(
k⋃

i=1

Xi

)
= Y = Conv

(
k⋃

i=1

Xi

)

is CQr.

First, the set Y clearly contains Conv(
⋃k

i=1 Xi). Indeed, since the sets Xi are convex,
the convex hull of their union is{

x =
k∑

i=1

tix
i | xi ∈ Xi, ti ≥ 0,

k∑
i=1

ti = 1

}

(why?); for a point

x =
k∑

i=1

tix
i,

[
xi ∈ Xi, ti ≥ 0,

k∑
i=1

ti = 1

]
,

there exist ui , i = 1, . . . , k, such that

Aix
i + Biu

i + bi ≥Ki
0.

We get

x = (t1x
1) + · · · + (tkx

k)

= ξ 1 + · · · + ξk,

[ξ i = tix
i];

t1, . . . , tk ≥ 0;
t1 + · · · + tk = 1;

Aiξ
i + Biη

i + tibi ≥Ki
0, i = 1, . . . , k,
[ηi = tiu

i],

(3.3.24)

so that x ∈ Y (see the definition of Y ).
To complete the proof that Y is between the convex hull and the closed convex hull

of
⋃k

i=1 Xi , it remains to verify that if x ∈ Y , then x is contained in the closed convex hull
of

⋃k
i=1 Xi . Let us somehow choose x̄i ∈ Xi ; for properly chosen ūi we have

Aix̄
i + Biū

i + bi ≥Ki
0, i = 1, . . . , k. (3.3.25)
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Since x ∈ Y , there exist ti , ξ i, ηi satisfying the relations

x = ξ 1 + · · · + ξk,

t1, . . . , tk ≥ 0,
t1 + · · · + tk = 1,

Aiξ
i + Biη

i + tibi ≥Ki
0, i = 1, . . . , k.

(3.3.26)

In view of the latter relations and (3.3.25), we have for 0 < ε < 1:

Ai[(1 − ε)ξ i + εk−1x̄i] + Bi[(1 − ε)ηi + εk−1ūi] + [(1 − ε)ti + εk−1]bi ≥Ki
0;

setting

ti,ε = (1 − ε)ti + εk−1,

xiε = t−1
i,ε

[
(1 − ε)ξ i + εk−1x̄i

]
,

uiε = t−1
i,ε

[
(1 − ε)ηi + εk−1ūi

]
,

we get

Aix
i
ε + Biu

i
ε + bi ≥Ki

0 ⇒
xiε ∈ Xi,

t1,ε, . . . , tk,ε ≥ 0,
t1,ε + · · · + tk,ε = 1

⇒
xε ≡

k∑
i=1

ti,εx
i
ε

∈ Conv

(
k⋃

i=1

Xi

)
.

On the other hand, we have by construction

xε =
k∑

i=1

[
(1 − ε)ξ i + εk−1x̄i

] → x =
k∑

i=1

ξ i as ε → +0,

so that x belongs to the closed convex hull of
⋃k

i=1 Xi , as claimed.
It remains to verify that in the cases (i) and (ii) the convex hull of

⋃k
i=1 Xi is the same

as the closed convex hull of this union. Case (i) is a particular case of (ii) corresponding to
W = {0}, so that it suffices to prove (ii). Assume that

xt =
k∑

i=1

µti[zti + pti] → x as i → ∞,[
zti ∈ Zi, pti ∈ W,µti ≥ 0,

∑
i

µti = 1

]
and let us prove that x belongs to the convex hull of the union of Xi . Indeed, since Zi are
closed and bounded, passing to a subsequence, we may assume that

zti → zi ∈ Zi and µti → µi as t → ∞.
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It follows that the vectors

pt =
m∑
i=1

µtipti = xt −
k∑

i=1

µtizti

converge as t → ∞ to some vector p, and since W is closed and convex, p ∈ W . We now
have

x = lim
i→∞

[
k∑

i=1

µtizti + pt

]
=

k∑
i=1

µizi + p =
k∑

i=1

µi[zi + p]

so that x belongs to the convex hull of the union of Xi (as a convex combination of points
zi + p ∈ Xi).

N. The recessive cone of a CQr set. Let X be a closed convex set. The recessive cone
Rec(X) of X is the set

Rec(X) = {h : x + th ∈ X ∀(x ∈ X, t ≥ 0)}.
It can be easily verified that Rec(X) is a closed convex cone and that

Rec(X) = {h | x̄ + th ∈ X ∀t ≥ 0} ∀x̄ ∈ X,

i.e., that Rec(X) is the set of all directions h such that the ray emanating from a point of X
and directed by h is contained in X.

Proposition 3.3.6. Let X be a nonempty CQr set with CQR

X = {x ∈ Rn | ∃u : Ax + Bu + b ≥K 0},
where K is a direct product of ice cream cones, and let the CQR be such that Bu ∈ K only
if Bu = 0. Then X is closed, and the recessive cone of X is CQr:

Rec(X) = {h | ∃v : Ah + Bv ≥K 0}. (3.3.27)

Proof. The fact that X is closed is given by Lemma 3.3.1. In order to prove (3.3.27), let us
temporarily denote by R the set in the left-hand side of this relation; we should prove that
R = Rec(X). The inclusion R ⊂ Rec(X) is evident. To prove the inverse inclusion, let
x̄ ∈ X and h ∈ Rec(X) so that for every i = 1, 2, . . . there exists ui such that

A(x̄ + ih) + Bui + b ∈ K. (3.3.28)

By Lemma 3.3.1,

‖Bui‖2 ≤ C(1 + ‖A(x̄ + ih) + b‖2) (3.3.29)

for certainC < ∞ and all i. Besides this, we can assume without loss of generality (w.l.o.g.)
that

‖ui‖2 ≤ C1‖Bui‖2 (3.3.30)
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(cf. the proof of Lemma 3.3.1). By (3.3.29)–(3.3.30), the sequence {vi = i−1ui} is bounded;
passing to a subsequence, we can assume that vi → v as i → ∞. By (3.3.28), we have for
all i

i−1A(x̄ + ih) + Bvi + i−1b ∈ K,

whence, passing to limit as i → ∞, Ah + Bv ∈ K. Thus, h ∈ R.

O. Theorem on superposition. Let f� : Rm → R ∪ {+∞}, � = 1, . . . , m be CQr
functions,

t ≥ f�(x) ⇔ ∃u� | A�(x, t, u
�) ≥K�

0,

where K� is a direct product of ice cream cones, and let

f : Rm → R ∪ {+∞}

be CQr,

t ≥ f (y) ⇔ ∃v : A(y, t, v) ≥K 0,

where K is a direct product of ice cream cones.
Assume that f is monotone with respect to the usual partial ordering of Rm:

y ′ ≥ y ′′ ⇒ f (y ′) ≥ f (y ′′),

and consider the superposition

g(x) =
{
f (f1(x), . . . , fm(x)), f�(x) < ∞, � = 1, . . . , m,

+∞ otherwise.

Theorem 3.3.1. Under the above setting, the superposition g(·) is CQr with CQR

t ≥ g(x) ⇔ ∃t1, . . . , tm, u1, . . . , um, v :
{

A�(x, t�, u
�) ≥K�

0, � = 1, . . . , m,

A(t1, . . . , tm, t, v) ≥K 0.
(3.3.31)

Proof. The proof of this simple statement is left to the reader.

Remark 3.3.1. If part of the inner functions, say, f1, . . . , fk , is affine, it suffices to require
the monotonicity of the outer function f with respect to the variables yk+1, . . . , ym only. A
CQR for the superposition in this case becomes

t ≥ g(x) ⇔ ∃tk+1, . . . , tm, u
k+1, . . . , um, v :{

A�(x, t�, u
�) ≥K�

0, � = k + 1, . . . , m,

A(f1(x), f2(x), . . . , fk(x), tk+1, tk+2, . . . , tm, t, v) ≥K 0
(3.3.32)D
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3.3.1 More examples of conic quadratic-representable functions
and sets

We are sufficiently equipped to build the dictionary of CQr functions and sets. Having built
already the elementary part of the dictionary, we can add now a more advanced part.

7. Convex quadratic form. g(x) = xTQx + qT x + r (Q is a positive semidefinite
symmetric matrix) is CQr.

Indeed, Q is positive semidefinite symmetric and therefore can be decomposed as
Q = DTD, so that g(x) = ‖Dx‖2

2 + qT x + r . We see that g is obtained from our raw
materials—the squared Euclidean norm and an affine function—by affine substitution of
argument and addition.

Here is an explicit CQR of g:

{(x, t) | xTDTDx+qT x+r ≤ t} =
{
(x, t) |

∣∣∣∣∣∣∣∣ Dx
t+qT x+r

2

∣∣∣∣∣∣∣∣
2

≤ t − qT x − r

2

}
. (3.3.33)

8. The cone K = {(x, σ1, σ2) ∈ Rn × R × R | σ1, σ2 ≥ 0, σ1σ2 ≥ xT x} is CQr.
Indeed, the set is just the epigraph of the fractional-quadratic function xT x/s (see

Example 5); we simply write σ1 instead of s and σ2 instead of t .
Here is an explicit CQR for the set:

K =
{
(x, σ1, σ2) |

∣∣∣∣∣∣∣∣( x
σ1−σ2

2

)∣∣∣∣∣∣∣∣
2

≤ σ1 + σ2

2

}
. (3.3.34)

Surprisingly, our set is just the ice cream cone, more precisely, its inverse image under the
one-to-one linear mapping (

x

σ1

σ2

)
�→

 x
σ1−σ2

2
σ1+σ2

2

 .

9. The half-cone K2+ = {(x1, x2, t) ∈ R3 | x1, x2 ≥ 0, 0 ≤ t ≤ √
x1x2} is CQr.

Indeed, our set is the intersection of the cone {t2 ≤ x1x2, x1, x2 ≥ 0} from the previous
example and the half-space t ≥ 0.

Here is the explicit CQR of K+:

K+ =
{
(x1, x2, t) | t ≥ 0,

∣∣∣∣∣∣∣∣( t
x1−x2

2

)∣∣∣∣∣∣∣∣
2

≤ x1 + x2

2

}
. (3.3.35)

10. The hypograph of the geometric mean—the setK2 = {(x1, x2, t) ∈ R3 | x1, x2 ≥
0, t ≤ √

x1x2}—is CQr.
Note the difference with the previous example—here t is not required to be nonneg-

ative!
Here is the explicit CQR for K2 (see Example 9):

K2 =
{
(x1, x2, t) | ∃τ : t ≤ τ,

∣∣∣∣∣∣∣∣( τ
x1−x2

2

)∣∣∣∣∣∣∣∣
2

≤ x1 + x2

2

}
.
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11. The hypograph of the geometric mean of 2l variables—the set K2l =
{(x1, . . . , x2l , t) ∈ R2l+1 | xi ≥ 0, i = 1, . . . , 2l , t ≤ (x1x2 . . . x2l )

1/2l }—is CQr. To
see it and to get its CQR, it suffices to iterate the construction of Example 10. Indeed, let
us add to our initial variables a number of additional x-variables:

1. Let us call our 2l original x-variables the variables of level 0 and write x0,i instead
of xi . Let us add one new variable of level 1 per every two variables of level 0. Thus, we
add 2l−1 variables x1,i of level 1.

2. Similarly, let us add one new variable of level 2 per every two variables of level
1, thus adding 2l−2 variables x2,i ; then we add one new variable of level 3 per every two
variables of level 2, and so on, until level l with a single variable xl,1 is built.

Now let us look at the following system S of constraints:

layer 1: x1,i ≤ √
x0,2i−1x0,2i , x1,i , x0,2i−1, x0,2i ≥ 0, i = 1, . . . , 2l−1,

layer 2: x2,i ≤ √
x1,2i−1x1,2i , x2,i , x1,2i−1, x1,2i ≥ 0, i = 1, . . . , 2l−2,

. . .

layer l: xl,1 ≤ √
xl−1,1xl−1,2, xl,1, xl−1,1, xl−1,2 ≥ 0

(∗) t ≤ xl,1
.

The inequalities of the first layer say that the variables of the zero and the first level should
be nonnegative and every one of the variables of the first level should be less than or equal to
the geometric mean of the corresponding pair of our original x-variables. The inequalities
of the second layer add the requirement that the variables of the second level should be
nonnegative, and every one of them should be less than or equal to the geometric mean of
the corresponding pair of the first-level variables, etc. It is clear that if all these inequalities
and (*) are satisfied, then t is less than or equal to the geometric mean of x1, . . . , x2l .
Conversely, given nonnegative x1, . . . , x2l and a real t which is less than or equal to the
geometric mean of x1, . . . , x2l , we always can extend these data to a solution of S. In other
words, K2l is the projection of the solution set of S onto the plane of our original variables
x1, . . . , x2l , t . It remains to note that the set of solutions of S is CQr (as the intersection
of CQr sets {(v, p, q, r) ∈ RN × R3+ | r ≤ √

qp}; see example 9) so that its projection is
also CQr. To get a CQR of K2l , it suffices to replace the inequalities in S with their conic
quadratic equivalents, explicitly given in example 9.

What about functions that look very different from a quadratic function, e.g., what
about the function g(x) = x7/3 on the real line? Is it CQr? If the question is to be interpreted
literally, the answer is a definite “no”—the function is nonconvex! An absolutely evident
observation is as follows:

A CQr set X is always convex (as the projection of the set of solutions of
a system of convex inequalities ‖αj (x, u)‖2 − βj (x, y) ≤ 0 in the space of
(x, u)-variables onto the space of x-variables).

Consequently, a CQr function is necessarily convex—since its epigraph must
be a CQr and therefore a convex set.

Our question about the function x7/3 admits, however, a meaningful modification. Namely,
the function x7/3 (as every power function xp with p ≥ 1) is convex on the nonnegative
ray; extending the function by the value 0 onto the negative ray, we get a convex function
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106 Lecture 3. Conic Quadratic Programming

x
p
+ (x+ ≡ max{x, 0}), and we may ask whether this function is CQr. In particular, is the

function x
7/3
+ CQr? The answer is affirmative, and here is the construction:

We know from example 11 that the set

K8 = {(y1, . . . , y8, s) ∈ R9
+ | s ≤ (y1y2 . . . y8)

1/8}
is CQr. Now let us make all our nine variables y1, . . . , y8, s affine functions of just two
variables ξ, t as follows:

• The variable s and the first of the variables yi are identically equal to ξ .

• The next three of the variables yi are identically equal to t .

• The rest of the variables (i.e., the last four variables yi) are identically equal to 1.

We have defined certain affine mapping from R2 to R9. The inverse image of K8 under this
mapping is the set

K = {(ξ, t) ∈ R2+ | ξ ≤ ξ 1/8t3/8}
= {(ξ, t) ∈ R2+ | t ≥ ξ 7/3}.

Thus, the set K is CQr (as an inverse image of the CQr set K8), and we can easily get an
explicit CQR of K from the one of K8 (see Example 11). On the other hand, the set K is
almost the epigraph of ξ 7/3

+ —it is the part of this epigraph in the first quadrant. And it is
easy to get the complete epigraph from this part: it suffices to note that the epigraph E of
x

7/3
+ is the projection of the 3D set

K ′ = {(x, ξ, t) | ξ ≥ 0, x ≤ ξ, ξ 7/3 ≤ t}
onto the (x, t)-plane and that the set K ′ clearly is CQr along with K . Indeed, to obtain K ′
from K one should first pass from K to its direct product with the x-axis—to the set

K+ = {(x, ξ, t) | (ξ, t) ∈ K}
—and then to intersect K+ with the half-space given by the inequality x ≤ ξ . Thus, to
obtain the epigraph E of x3/7

+ from the CQr set K , one should successively

• pass from K to its direct product with the real axis R (note that the second factor
trivially is CQr!),

• intersect the result with a half-space, and

• project the result onto 2D plane of the variables (x, t).

All these operations preserve the CQ-representability and yield an explicit CQr for E:

{t ≥ x
7/3
+ } ⇔ ∃(ξ, u) : {x ≤ ξ} & S(ξ, t, t, t, 1, 1, 1, 1, ξ ; u),
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where S(y1, . . . , y8, s; u) denotes the system of CQIs from the CQR of the set K8,13 where
u is the vector of additional variables for the latter CQR.

The construction we have just described might look too sophisticated, but with a little
experience the derivations of this type become much easier and much more transparent than,
say, arithmetic solving a 3 × 3 system of linear equations.

Of course, the particular values 7 and 3 in our x7/3
+ -exercise play no significant role,

and we arrive at the following.

12. The convex increasing power function x
p/q
+ of rational degree p/q ≥ 1 is CQr.

Indeed, given positive integers p, q, p > q, let us choose the smallest integer l such
that p ≤ 2l and consider the CQr set

K2l = {(y1, . . . , y2l , s) ∈ R2l+1
+ | s ≤ (y1y2 . . . y2l )

1/2l }. (3.3.36)

Setting r = 2l − p, consider the following affine parameterization of the variables from
R2l+1 by two variables ξ, t :

• s and r first variables yi are all equal to ξ (note that we still have 2l − r = p ≥ q

unused variables yi).

• q next variables yi are all equal to t .

• The remaining yi’s, if any, are all equal to 1.

The inverse image of K2l under this mapping is CQr and it is the set

K = {(ξ, t) ∈ R2
+ | ξ 1−r/2l ≤ tq/2l } = {(ξ, t) ∈ R2

+ | t ≥ ξp/q}.

The epigraph of xp/q+ can be obtained from the CQr set K , as in the case of p/q = 3/7, by
operations preserving CQ-representability.

13. The decreasing power function

g(x) =
{
x−p/q, x > 0,
+∞, x ≤ 0,

(p, q are positive integers) is CQr.
As in Example 12, we choose the smallest integer l such that 2l ≥ p + q, consider

the CQr set (3.3.36), and parameterize affinely the variables yi, s by two variables (x, t) as
follows:

• s and the first (2l − p − q) yi’s are all equal to one.

• p of the remaining yi’s are all equal to x, and the q last of yi’s are all equal to t .

13That is, S(y, t; u) is a Boolean function taking values true of false depending on whether the (y, t, u)

satisfy or do not satisfy the CQIs in question
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108 Lecture 3. Conic Quadratic Programming

It is immediately seen that the inverse image of K2l under the indicated affine mapping is
the epigraph of g.

14. The even power function g(x) = x2p on the axis (p positive integer) is CQr.
Indeed, we already know that the sets P = {(x, ξ, t) ∈ R3 | x2 ≤ ξ} and K ′ =

{(x, ξ, t) ∈ R3 | 0 ≤ ξ, ξp ≤ t} are CQr. (Both sets are direct products of R and the sets
with already known to us CQRs.) It remains to note that the epigraph of g is the projection
of P ∩ Q onto the (x, t)-plane.

Example 14 along with our combination rules allow us to build a CQR for a polynomial
p(x) of the form

p(x) =
L∑
l=1

plx
2l , x ∈ R,

with nonnegative coefficients.

15. The hypograph of a concave monomial xπ1
1 . . . xπn

n . Let π1 = p1

p
, . . . , πn = pn

p

be positive rational numbers with π1 + · · · + πn ≤ 1. The function

f (x) = −x
π1
1 . . . xπn

n : Rn
+ → R

is CQr.
The construction is similar to the one of Example 12. Let l be such that 2l ≥ p. We

recall that the set

Y = {(y1, . . . , y2l , s) | y1, . . . , y2l ≥ 0, 0 ≤ s ≤ (y1 . . . , y2l )
1/2l }

is CQr, and therefore so is its inverse image under the affine mapping

(x1, . . . , xn, s) �→ (x1, . . . , x1︸ ︷︷ ︸
p1

, x2, . . . , x2︸ ︷︷ ︸
p2

, . . . , xn, . . . , xn︸ ︷︷ ︸
pn

, s, . . . , s︸ ︷︷ ︸
2l−p

, 1, . . . , 1︸ ︷︷ ︸
p−p1−···−pn

, s),

i.e., the set

Z = {(x1, . . . , xn, s) | x1, . . . , xn ≥ 0, 0 ≤ s ≤ (x
p1
1 . . . x

pn
n s2l−p)1/2l }

= {(x1, . . . , xn, s) | x1, . . . , xn ≥ 0, 0 ≤ s ≤ x
p1/p

1 . . . x
pn/p
n }.

Since the set Z is CQr, so is the set

Z′ = {(x1, . . . , xn, t, s) | x1, . . . , xn ≥ 0, s ≥ 0, 0 ≤ s − t ≤ x
π1
1 . . . xπn

n },
which is the intersection of the half-space {s ≥ 0} and the inverse image of Z under the
affine mapping (x1, . . . , xn, t, s) �→ (x1, . . . , xn, s − t). It remains to note that the epigraph
of f is the projection of Z′ onto the plane of the variables x1, . . . , xn, t .

16. The convex monomial x−π1
1 . . . x−πn

n . Letπ1, . . . , πn be positive rational numbers.
The function

f (x) = x
−π1
1 . . . x−πn

n : {x ∈ Rn : x > 0} → R

is CQr.
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See Exercise 3.2.

17. The p-norm ‖x‖p = (
∑n

i=1 |xi |p)1/p : Rn → R (p ≥ 1 is a rational number).
We claim that the function ‖x‖p is CQr.

It is immediately seen that

‖x‖p ≤ t ⇔ t ≥ 0 & ∃v1, . . . , vn ≥ 0 : |xi | ≤ t (p−1)/pv
1/p
i , i = 1, . . . , n,

n∑
i=1

vi ≤ t.

(3.3.37)

Indeed, if the indicated vi exist, then
∑n

i=1 |xi |p ≤ tp−1 ∑n
i=1 vi ≤ tp, i.e., ‖x‖p ≤ t .

Conversely, assume that ‖x‖p ≤ t . If t = 0, then x = 0, and the right-hand side relations
in (3.3.37) are satisfied for vi = 0, i = 1, . . . , n. If t > 0, we can satisfy these relations by
setting vi = |xi |pt1−p.

Equation (3.3.37) says that the epigraph of ‖x‖p is the projection onto the (x, t)-plane
of the set of solutions to the system of inequalities

t ≥ 0,
vi ≥ 0, i = 1, . . . , n,

xi ≤ t (p−1)/pv
1/p
i , i = 1, . . . , n,

−xi ≤ t (p−1)/pv
1/p
i , i = 1, . . . , n,

v1 + · · · + vn ≤ t.

Each of these inequalities defines a CQr set (in particular, for the nonlinear inequalities
this is due to Example 15). Thus, the solution set of the system is CQr (as an intersection
of finitely many CQr sets), whence its projection on the (x, t)-plane—i.e., the epigraph of
‖x‖p—is CQr.

17.a. The function ‖x+‖p = (
∑n

i=1 maxp[xi, 0])1/p : Rn → R (p ≥ 1 a rational
number) is CQr.

Indeed,

t ≥ ‖x+‖p ⇔ ∃y1, . . . , yn : 0 ≤ yi, xi ≤ yi, i = 1, . . . , n, ‖y‖p ≤ t.

Thus, the epigraph of ‖x+‖p is a projection of the CQr set (see Example 17) given by the
system of inequalities in the right-hand side.

From the above examples it is seen that the expressive abilities of CQIs are indeed
strong: they allow us to handle a wide variety of very different functions and sets.

3.4 More applications
Equipped with abilities to treat a wide variety of CQr functions and sets, we can consider
now more applications of CQP.

3.4.1 Tschebyshev approximation in relative scale

In the Tschebyshev approximation problem we are looking for a linear combination of
given basis functions fi(t) that is as close as possible to a certain target function f∗(t) on a
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110 Lecture 3. Conic Quadratic Programming

given finite set T .14 In the original version of the problem, the quality of an approximation∑
i xifi(t) is measured by the maximal, over t ∈ T , absolute deviation of the approximation

from the target function. In a number of applications where the target function is positive
and so should be its approximation, a more appropriate deviation is the relative one. A
natural way to measure the relative deviation between two positive reals a, b is to look at
the smallest τ ≡ τ(a, b) such that

1

1 + τ
≤ a

b
≤ 1 + τ.

With this approach, the relative Tschebyshev problem becomes

min
x

max
t∈T

τ

(
f∗(t),

∑
i

xifi(t)

)
,

where we should add the constraints
∑

i xifi(t) > 0, t ∈ T , to guarantee positivity of the
approximation. The resulting problem can be written equivalently as

min
x,τ

{
τ |

∑
i

xifi(t) ≤ (1 + τ)f∗(t), f∗(t) ≤ (1 + τ)
∑
i

xifi(t) ∀t ∈ T

}
.

The nonlinear constraints we get are hyperbolic constraints “the product of two nonnegative
affine forms of the design variables must be greater than or equal to a positive constant,” and
the sets given by these constraints are CQr (see Example 6). Thus, the problem is equivalent
to a conic quadratic program, specifically, to the problem

min
x,τ

τ | ∀(t ∈ T ) :



∑
i

xifi(t) ≤ (1 + τ)f∗(t),

∣∣∣∣∣
∣∣∣∣∣
( 2

√
f∗(τ )

1 + τ −
∑
i

xifi(t)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ 1 + τ +
∑
i

xifi(t)

 .

3.4.2 Robust linear programming

Consider an LP program

min
x

{
cT x | Ax − b ≥ 0

}
. (LP)

In real-world applications, the data c,A, b of (LP) is not always known exactly; what is
typically known is a domain U in the space of data—an uncertainty set—which for sure
contains the actual (unknown) data. There are cases in reality where, in spite of this data
uncertainty, our decision x must satisfy the actual constraints, whether we know them or not.
Assume, e.g., that (LP) is a model of a technological process in the chemical industry, so that
entries of x represent the amounts of different kinds of materials participating in the process.

14The material in this section originates from M.S. Lobo, L. Vanderbeghe, S. Boyd, and H. Lebret, Second-order
cone programming, Linear Algebra Appl., 284 (1998), pp. 193–228.
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3.4. More applications 111

Typically the process includes a number of decomposition-recombination stages. A model
of this problem must take care of natural balance restrictions: the amount of every material
to be used at a particular stage cannot exceed the amount of the same material yielded by
the preceding stages. In a meaningful production plan, these balance inequalities must be
satisfied although they involve coefficients affected by unavoidable uncertainty of the exact
contents of the raw materials, of time-varying parameters of the technological devices, etc.

If indeed all we know about the data is that they belong to a given set U , but we still
have to satisfy the actual constraints, the only way to meet the requirements is to restrict
ourselves to robust feasible candidate solutions—those satisfying all possible realizations
of the uncertain constraints, i.e., vectors x such that

Ax − b ≥ 0 ∀[A; b] such that ∃c : (c, A, b) ∈ U . (3.4.38)

In order to make the best possible choice from these robust feasible solutions, we should
decide how to aggregate the various realizations of the objective into a single quality char-
acteristic. To be methodologically consistent, we use the same worst-case approach and
take as an objective function f (x) the maximum, over all possible realizations of c, of the
quantity cT x:

f (x) = sup{cT x | c : ∃[A; b] : (c, A, b) ∈ U}.
With this methodology, we can associate with our uncertain LP program, i.e., with the family

LP(U) =
{

min
x:Ax≥b

cT x
∣∣(c, A, b) ∈ U

}
of all usual (certain) LP programs with the data belonging to U , its robust counterpart. In
the latter problem we are seeking for a robust feasible solution with the smallest possible
value of the guaranteed objective f (x). In other words, the robust counterpart of LP(U) is
the optimization problem

min
t,x

{
t | cT x ≤ t, Ax − b ≥ 0 ∀(c, A, b) ∈ U}

. (R)

Note that (R) is a usual—certain—optimization problem, but typically it is not an LP pro-
gram: the structure of (R) depends on the geometry of the uncertainty set U and can be very
complicated.

In many cases it is reasonable to specify the uncertainty set U as an ellipsoid—the
image of the unit Euclidean ball under an affine mapping—or, more generally, as a CQr set.
As we shall see in a while, in this case the robust counterpart of an uncertain LP problem is
(equivalent to) an explicit conic quadratic program. Thus, robust linear programming with
CQr uncertainty sets can be viewed as a generic source of conic quadratic problems.

Let us look at the robust counterpart of an uncertain LP program{
min
x

{
cT x : aTi x − bi ≥ 0, i = 1, . . . , m

} ∣∣(c, A, b) ∈ U
}

in the case of a simple ellipsoidal uncertainty—one where the data (ai, bi) of ith inequality
constraint

aTi x − bi ≥ 0
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112 Lecture 3. Conic Quadratic Programming

and the objective c are allowed to run independently of each other through respective ellip-
soids Ei , E. Thus, we assume that the uncertainty set is

U =

(a1, b1; . . . ; am, bm; c) | ∃({ui, uTi ui ≤ 1}mi=0) :
c = c∗ + P0u0,(

ai
bi

)
=

(
a∗
i

b∗
i

)
+ Piu

i,

i = 1, . . . , m

 ,

where c∗, a∗
i , b

∗
i are the nominal data and Piui , i = 0, 1, . . . , m, represent the data pertur-

bations; the restrictions uTi ui ≤ 1 enforce these perturbations to vary in ellipsoids.
To understand that the robust counterpart of our uncertain LP problem is a conic

quadratic program, note that x is robust feasible if and only if for every i = 1, . . . , m we
have

0 ≤ min
ui :uTi ui≤1

[
aTi [ui]x − bi[ui] |

(
ai[u]
bi[u]

)
=

(
a∗
i

b∗
i

)
+ Piui

]
= (a∗

i x)
T x − b∗

i + min
ui :uTi ui≤1

uTi P
T
i

(
x

−1

)
= (a∗

i )
T x − b∗

i −
∣∣∣∣∣∣∣∣PT

i

(
x

−1

)∣∣∣∣∣∣∣∣
2

.

Thus, x is robust feasible if and only if it satisfies the system of CQIs∣∣∣∣∣∣∣∣PT
i

(
x

−1

)∣∣∣∣∣∣∣∣
2

≤ [a∗
i ]T x − b∗

i , i = 1, . . . , m.

Similarly, a pair (x, t) satisfies all realizations of the inequality cT x ≤ t allowed by our
ellipsoidal uncertainty set U if and only if

cT∗ x + ‖PT
0 x‖2 ≤ t.

Thus, the robust counterpart (R) becomes the conic quadratic program

min
x,t

{
t | ‖PT

0 x‖2 ≤ −cT∗ x + t;
∣∣∣∣∣∣∣∣PT

i

(
x

−1

)∣∣∣∣∣∣∣∣
2

≤ [a∗
i ]T x − b∗

i , i = 1, . . . , m

}
. (RLP)

Example. Robust synthesis of antenna array. Consider the antenna synthesis example
of section 1.2.4. Mathematically, this was an LP program with 11 variables,

min
x,t

t | −t ≤ Z∗(θi) −
10∑
j=1

xjZj (θi) ≤ t, i = 1, . . . , N

 , (Nom)

with given diagramsZj(·) of 10 building blocks and a given target diagramZ∗(θ). Let x∗
j be

the optimal values of the design variables. Recall that our design variables are amplification
coefficients, i.e., characteristics of certain physical devices. In reality, of course, we cannot
tune the devices to have precisely the optimal characteristics x∗

j ; the best we may hope for
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Figure 3.3. Dream and reality: the nominal (left, solid line) and an actual (right,
solid line) diagram (dashed line: the target diagram).

is that the actual characteristics xfct
j of the amplifiers will coincide with the desired values

x∗
j within a small margin, say, 0.1% (this is a fairly high accuracy for a physical device):

xfct
j = pjx

∗
j , 0.999 ≤ pj ≤ 1.001.

It is natural to assume that the factors pj are random with the mean value equal to 1; it is
perhaps not a great sin to assume that these factors are independent of each other.

Since the actual amplification coefficients differ from their desired values x∗
j , the

actual (random) diagram of our array of antennae will differ from the nominal one we found
in section 1.2.4. How large could the difference be? Look at Fig. 3.3. The right-hand
diagram in Fig. 3.3 is not even the worst case: we just have taken as pj a sample of 10
independent numbers distributed uniformly in [0.999, 1.001] and have plotted the diagram
corresponding to xj = pjx

∗
j . Pay attention not only to the shape (completely opposite

to what we need) but also to the scale: the target diagram varies from 0 to 1, and the
nominal diagram (the one corresponding to the exact optimal xj ) differs from the target by
no more than by 0.0621 (this is the optimal value in the nominal problem (Nom)). The actual
diagram varies from ≈ −8 to ≈ 8, and its uniform distance from the target is 7.79 (125
times the nominal optimal value!). We see that our nominal optimal design is completely
meaningless. It looks as if we were trying to get the worse possible result, not the best
possible one.

How could we get something better? Let us try to apply the robust counterpart
approach. To this end we take into account from the very beginning that if we want the
amplification coefficients to be certain xj , then the actual amplification coefficients will be
xfct
j = pjxj , 0.999 ≤ pj ≤ 1.001, and the actual discrepancies will be

δi(x) = Z∗(θi) −
10∑
j=1

pjxjZj (θi).D
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114 Lecture 3. Conic Quadratic Programming

Thus, we are in fact solving an uncertain LP problem where the uncertainty affects the coef-
ficients of the constraint matrix (those corresponding to the variables xj ). These coefficients
may vary within a 0.1% margin of their nominal values.

To apply the robust counterpart approach to our uncertain LP program, we should
specify the uncertainty set U . The most straightforward way is to say that our uncertainty
is an interval one—every uncertain coefficient in a given inequality constraint may (inde-
pendently of all other coefficients) run through its own uncertainty segment “nominal value
±0.1%”. This approach, however, is too conservative. We have completely ignored the fact
that our pj ’s are of stochastic nature and are independent of each other, so that it is highly
improbable that all of them will simultaneously fluctuate in dangerous directions. To utilize
the statistical independence of perturbations, let us look what happens with a particular
inequality

−t ≤ δi(x) ≡ Z∗(θi) −
10∑
j=1

pjxjZj (θi) ≤ t (3.4.39)

when pj ’s are random. For a fixed x, the quantity δi(x) is a random variable with mean

δ∗
i (x) = Z∗(θi) −

10∑
j=1

xjZj (θi)

and standard deviation

σi(x) = √
E{(δi(x) − δ∗

i (x))
2} =

√√√√ 10∑
j=1

x2
j Z

2
j (θi)E{(pj − 1)2} ≤ κνi(x),

νi(x) =
√√√√ 10∑

j=1

x2
j Z

2
j (θi), κ = 0.001.

Thus, a typical value of δi(x) differs from δ∗
i (x) by a quantity of order of σi(x). Now let

us act as an engineer who believes that a random variable differs from its mean by at most
three times its standard deviation. Since we are not obliged to be that concrete, let us choose
a safety parameter ω and ignore all events that result in |δi(x) − δ∗

i (x)| > ωνi(x).15 As
for the remaining events—those with |δi(x) − δ∗

i (x)| ≤ ωνi(x)—we take upon ourselves
full responsibility. With this approach, a reliable deterministic version of the uncertain
constraint (3.4.39) becomes the pair of inequalities

−t ≤ δ∗
i (x) − ωνi(x),

δ∗
i (x) + ωνi(x) ≤ t.

15It would be better to use σi here instead of νi . However, we did not assume that we know the distribution of
pj , and this is why we replace unknown σi with its known upper bound νi .
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Replacing all uncertain inequalities in (Nom) with their reliable deterministic versions and
recalling the definition of δ∗

i (x) and νi(x), we end up with the optimization problem

minimize t

s.t.

‖Qix‖2 ≤
Z∗(θi) −

10∑
j=1

xjZj (θi)

 + t, i = 1, . . . , N,

‖Qix‖2 ≤ −
Z∗(θi) −

10∑
j=1

xjZj (θi)

 + t, i = 1, . . . , N,

Qi = ωκDiag(Z1(θi), Z2(θi), . . . , Z10(θi)).

(Rob)

It is immediately seen that (Rob) is nothing but the robust counterpart of (Nom) correspond-
ing to a simple ellipsoidal uncertainty, namely, the one as follows:

The only data of a constraint

10∑
j=1

Aijxj
≥
≤ pit + qi

(all constraints in (Nom) are of this form) affected by the uncertainty are the coefficients Aij

of the left-hand side. The difference dA[i] between the vector of these coefficients and the
nominal value (Z1(θi), . . . , Z10(θi)) of the vector of coefficients belongs to the ellipsoid

{dA[i] = ωκQiu | u ∈ R10, uT u ≤ 1}.
Thus, the above engineering reasoning leading to (Rob) is nothing but a reasonable way to
specify uncertainty ellipsoids!

Now let us look at what diagrams are yielded by the robust counterpart approach, i.e.,
those given by the robust optimal solution. These diagrams are also random (neither the
nominal nor the robust solution cannot be implemented exactly!). However, it turns out that
they are incomparably closer to the target (and to each other) than the diagrams associated
with the optimal solution to the nominal problem. (Look at a typical robust diagram shown
on Fig. 3.4.) With the safety parameterω = 1, the robust optimal value is 0.0817; although it
is 30% larger than the nominal optimal value 0.0621, the robust optimal value has a definite
advantage in that it says something reliable about the quality of actual diagrams that we can
obtain when implementing the robust optimal solution. In a sample of 40 realizations of
the diagrams corresponding to the robust optimal solution, the uniform distances from the
target varied from 0.0814 to 0.0830.

We have built the robust optimal solution under the assumption that the implementation
errors do not exceed 0.1%. What happens if in reality the errors are larger—say, 1%? It
turns out that nothing dramatic happens. Now in a sample of 40 diagrams given by the
old robust optimal solution (now affected 1% implementation errors) the uniform distances
from the target varied from 0.0834 to 0.116. Imagine what will happen with the nominal
solution under the same circumstances.

The last issue to be addressed here is, Why is the nominal solution so unstable? And
why with the robust counterpart approach were we able to get a solution that is incomparably
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Figure 3.4. A robust diagram. Uniform distance from the target is 0.0822.
(The safety parameter for the uncertainty ellipsoids is ω = 1.)

better, as far as actual implementation is concerned? The answer becomes clear when we
look at the nominal and the robust optimal amplification coefficients:

j 1 2 3 4 5 6 7 8 9 10
xnom
j 1624.4 −14701 55383 −107247 95468 19221 −138622 144870 −69303 13311
xrob
j −0.3010 4.9638 −3.4252 −5.1488 6.8653 5.5140 5.3119 −7.4584 −8.9140 13.237

It turns out that the nominal problem is ill-posed. Although its optimal solution is far away
from the origin, there is a massive set of nearly optimal solutions, and among the latter
ones we can choose solutions of quite moderate magnitude. Indeed, here are the optimal
values obtained when we add to the constraints of (Nom) the box constraints |xj | ≤ L,
j = 1, . . . , 10:

L 1 10 102 103 104 105 106 107

Opt_Val 0.09449 0.07994 0.07358 0.06955 0.06588 0.06272 0.06215 0.06215

Since the implementation inaccuracies for a solution are larger the larger it is, there is no
surprise that our huge nominal solution results in a very unstable actual design. In contrast
to this, the robust counterpart penalizes the (properly measured) magnitude of x (look at
the terms ‖Qix‖2 in the constraints of (Rob)) and therefore yields a much more stable
design. Note that this situation is typical for many applications: the nominal solution is on
the boundary of the nominal feasible domain, and there are nearly optimal solutions to the
nominal problem that are in the deep interior of this domain. When solving the nominal
problem, we do not care if there is a reasonable tradeoff between the depth of feasibility
and the optimality: any improvement in the objective is sufficient to make the solution just
marginally feasible for the nominal problem. And a solution that is only marginally feasible
in the nominal problem can easily become very infeasible when the data are perturbed. This
would not be the case for a deeply interior solution. With the robust counterpart approach,
we do use certain tradeoffs between the depth of feasibility and the optimality—we are
trying to find something like the deepest feasible nearly optimal solution. As a result, we
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normally gain a lot in stability; and if, as in our example, there are deeply interior nearly
optimal solutions, we do not lose that much in optimality.

Robust counterpart to uncertain linear programming with a conic quadratic repre-
sentable uncertainty set. We have seen that the robust counterpart of uncertain LP with
simple constraintwise ellipsoidal uncertainty is a conic quadratic problem. This fact is a
special case of the following proposition.

Proposition 3.4.1. Consider an uncertain LP

LP(U) =
{

min
x:Ax≥b

cT x
∣∣(c, A, b) ∈ U

}
and assume that the uncertainty set U is CQr:

U = {
ζ = (c, A,B) ∈ Rn × Rm×n × Rm

∣∣∃u : A(ζ, u) ≡ Pζ + Qu + r ≥K 0
}
,

where A(ζ, u) is an affine mapping and K is a direct product of ice cream cones. Assume,
further, that the above CQR of U is strictly feasible:

∃(ζ̄ , ū) : A(ζ̄ , ū) >K 0.

Then the robust counterpart of LP(U) is equivalent to an explicit conic quadratic problem.

Proof. Introducing an additional variable t and denoting by z = (t, x) the extended vector
of design variables, we can write down the instances of our uncertain LP in the form

min
z

{
dT z | αT

i (ζ )z − βi(ζ ) ≥ 0, i = 1, . . . , m + 1
}

(LP[ζ ])

with an appropriate vector d . Here the functions

αi(ζ ) = Aiζ + ai, βi(ζ ) = bTi ζ + ci

are affine in the data vector ζ . The robust counterpart of our uncertain LP is the optimization
program

min
z

{
dT z → min | αT

i (ζ )z − βi(ζ ) ≥ 0 ∀ζ ∈ U ∀i = 1, . . . , m + 1
}
. (RCini)

Let us fix i and ask ourselves what it means that a vector z satisfies the infinite system of
linear inequalities

αT
i (ζ )z − βi(ζ ) ≥ 0 ∀ζ ∈ U . (Ci)

Clearly, a given vector z possesses this property if and only if the optimal value in the
optimization program

min
τ,ζ

{
τ | τ ≥ αT

i (ζ )z − βi(ζ ), ζ ∈ U}D
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118 Lecture 3. Conic Quadratic Programming

is nonnegative. Recalling the definition of U , we see that the latter problem is equivalent to
the conic quadratic program

min
τ,ζ,u

τ | τ ≥ αT
i (ζ )z − βi(ζ ) ≡ [Aiζ + ai︸ ︷︷ ︸

αi (ζ )

]T z − [bTi ζ + ci︸ ︷︷ ︸
βi (ζ )

], A(ζ, u) ≡ Pζ + Qu + r ≥K 0


(CQi[z])

in variables τ, ζ, u. Thus, z satisfies (Ci) if and only if the optimal value in (CQi[z]) is
nonnegative.

Since by assumption the system of conic quadratic inequalities A(ζ, u) ≥K 0 is strictly
feasible, the conic quadratic program (CQi[z]) is strictly feasible. By the conic duality
theorem, if (a) the optimal value in (CQi[z]) is nonnegative, then (b) the dual to (CQi[z])
problem admits a feasible solution with a nonnegative value of the dual objective. By weak
duality, (b) implies (a). Thus, the fact that the optimal value in (CQi[z]) is nonnegative is
equivalent to the fact that the dual problem admits a feasible solution with a nonnegative
value of the dual objective:

z satisfies (Ci)
,

Opt(CQi[z]) ≥ 0
,

∃λ ∈ R, ξ ∈ RN (N is the dimension of K):
λ[aTi z − ci] − ξT r ≥ 0,

λ = 1,
−λAT

i z + bi + PT ξ = 0,
QT ξ = 0,
λ ≥ 0,
ξ ≥K 0.

,
∃ξ ∈ RN :
aTi z − ci − ξT r ≥ 0

−AT
i z + bi + PT ξ = 0,

QT ξ = 0,
ξ ≥K 0.

We see that the set of vectors z satisfying (Ci) is CQr:

z satisfies (Ci)
,

∃ξ ∈ RN :
aTi z − ci − ξT r ≥ 0,

−AT
i z + bi + PT ξ = 0,

QT ξ = 0,
ξ ≥K 0.

Consequently, the set of robust feasible z—those satisfying (Ci) ∀i = 1, . . . , m+1—
is CQr (as the intersection of finitely many CQr sets), whence the robust counterpart of
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our uncertain LP, being the problem of minimizing a linear objective over a CQr set, is
equivalent to a conic quadratic problem. Here is this problem:

minimize dT z,
aTi z − ci − ξTi r ≥ 0,

−AT
i z + bi + PT ξi = 0,

QT ξi = 0,
ξi ≥K 0

i = 1, . . . , m + 1,

with design variables z, ξ1, . . . , ξm+1. Here Ai, ai, ci, bi come from the affine functions
αi(ζ ) = Aiζ + ai and βi(ζ ) = bTi ζ + ci , while P,Q, r come from the description of U :

U = {ζ | ∃u : Pζ + Qu + r ≥K 0}.

Conic quadratic representability of the optimal value in a conic quadratic program
as a function of the data. Consider a conic quadratic program

min
x

{
cT x | Ax − b ≥K 0

}
, (3.4.40)

where K is a direct product of ice cream cones. The optimal value of the problem clearly is
a function of the data (c, A, b) of the problem. What can be said about CQ-representability
of this function? In general, not much: the function is not even convex. There are, however,
two modifications of our question that admit good answers. Namely, under mild regularity
assumptions,

(a) with c,A fixed, the optimal value is a CQr function of the right-hand side vector b;
(b) with A, b fixed, the minus optimal value is a CQr function of c.

Here are the exact forms of our claims:

Proposition 3.4.2. Let c,A be fixed and such that the system

AT y = c, y >K 0,

is solvable. Then the optimal value of the problem is a CQr function of b.

The statement is quite evident. Our assumption on c,Ameans that the problem dual to
(3.4.40) is strictly feasible. Thus, if b is such that (3.4.40) is feasible, then the optimal value
Opt(b) in the problem is achieved (by conic duality theorem); otherwise Opt(b) = +∞.
Thus,

Opt(b) ≤ t ⇔ ∃x :
{

cT x ≤ t,

Ax − b ≥K 0,

which is, essentially, a CQR for Opt(b). In this CQR, b, t are the variables of interest, and
x plays the role of the additional variable.

The claim (b) is essentially a corollary of (a)—via duality, the optimal value in (3.4.40)
is, up to pathological cases, the same as the optimal value in the dual problem, in which c

becomes the right-hand-side vector. Here is the exact formulation.
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120 Lecture 3. Conic Quadratic Programming

Proposition 3.4.3. Let A, b be such that (3.4.40) is strictly feasible. Then the minus
optimal value −Opt(c) of the problem is a CQr function of c, with CQR induced by the
equivalence

Opt(c) ≥ t ⇔ ∃y :


bT y ≥ t,

AT y = c,

y ≥K 0.

A careful reader will have realized that Proposition 3.4.1 is nothing but a straightfor-
ward application of Proposition 3.4.3.

Remark 3.4.1. Looking at the proof of Proposition 3.4.1, we see that the assumption that
uncertainty set U is CQr plays no crucial role. What is important is that U is the projection
on the ζ -space of the solution set of a strictly feasible conic inequality associated with a
certain cone K. Whenever this is the case, the above construction demonstrates that the
robust counterpart of LP(U) is a conic problem associated with the cone which is a direct
product of several cones dual to K. When the uncertainty set is polyhedral (i.e., it is given
by finitely many scalar linear inequalities: K = Rm+), the robust counterpart of LP(U) is an
explicit LP program. (In this case we can eliminate the assumption that the conic inequality
defining U is strictly feasible (why?).)

Similarly, Propositions 3.4.2 and 3.4.3 remain valid for an arbitrary conic program, up
to the fact that in this general case we should speak about the representability of the epigraphs
of Opt(b) and −Opt(c) via conic inequalities associated with direct products of cones K,
and their duals, rather than about CQ-representability. In particular, Propositions 3.4.1,
3.4.2, and 3.4.3 remain valid in the case of semidefinite representability, to be discussed in
Lecture 4.

3.4.3 Truss topology design

We dealt with the TTD problem in Lecture 1, where we managed to pose it as an LP
program. However, this was the simplest case of the problem, with only a single external
load operating on the structure. What if we control the compliances with respect to several
nonsimultaneous external forces? or if we have restrictions, like upper and lower bounds on
bar volumes? Besides this, we do not understand the miracle that happened in section 1.3.5,
where a highly nonlinear TTD problem became an LP program. Miracles are not as useful
as one would think—they do not yield understanding (once understood, a miracle is not
a miracle anymore) and therefore cannot be reproduced when necessary. We are about to
improve our understanding of the TTD problem and, in particular, to study its more general
settings.

Recalling Lecture 1, the mathematical description of the TTD problem is as follows:

Given m × m dyadic matrices bibTi , i = 1, . . . , n, an n-dimensional vector t
with nonnegative entries (a truss), and an m-dimensional vector f (a load), we
define the compliance Complf (t) of the truss t with respect to the load f as the
quantity 1

2f
T v, where v (the equilibrium displacement) solves the equilibrium

equation

A(t)v = f,
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and

A(t) =
n∑

i=1

tibib
T
i

is the bar-stiffness matrix. If the equilibrium equation has no solutions, the
compliance, by definition, is +∞.

The TTD problem is as follows. Given a ground structure (n,m, {bi}ni=1), a
load f , and a resource w, find a truss satisfying the resource restriction

n∑
i=1

ti ≤ w

(and, of course, the constraints t ≥ 0) with the minimum possible compliance
Complf (t).

There are two parts in the story just recalled:
(a) an excursion to mechanics—the definition of compliance, and
(b) formulation of a particular compliance-related optimization problem.
Instead of the particular problem (b), we could pose other quite meaningful problems

(and we shall). In order to develop a unified approach to all these problems, we should better
understand what, mathematically, is the compliance. Our main result will be as follows:

For a given ground structure, the compliance Complf (t), regarded as a function
of variables (t, f ), is CQr.

Our goal is to justify this claim and to get an explicit CQR for the compliance. Equipped
with this result, we can process routinely numerous versions of the TTD problems via the
machinery of CQP.

The analysis to follow does not depend on the fact that the components bibTi of the
bar-stiffness matrix are dyadic; the essence of the matter is that they are positive semidefinite
symmetric matrices. So, from now on, we assume that the bar-stiffness matrix A(t) is of
the form

A(t) =
n∑

i=1

tiBiB
T
i , (3.4.41)

where Bi are m×ki matrices (ki = 1 for the original TTD problem). The compliance of the
resulting generalized truss Complf (t) is defined exactly as before: it is the quantity 1

2f
T v,

where v is a solution to the equilibrium equation

A(t)v = f, (3.4.42)

with the same convention as above: Complf (t) = +∞ when the equilibrium equation has
no solutions.
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122 Lecture 3. Conic Quadratic Programming

Variational principle

Our first observation is as follows.

Proposition 3.4.4. Variational description of compliance. Consider a ground structure
(n,m,B1, . . . , Bn) along with a load f ∈ Rm, and let t ∈ Rn+ be a truss. Let us associate
with these data the quadratic form (the potential energy of the loaded system)

Ct,f (v) = 1

2
vT A(t)v − f T v, v ∈ Rm. (3.4.43)

Then, the compliance Complf (t) is finite if and only if this quadratic form is bounded below
on Rm, and in this case one has

−Complf (t) = min
v

Ct,f (v). (3.4.44)

Proof. Since t ≥ 0, the matrix A(t) is positive semidefinite. Now let us use the following
general and well-known fact.

Lemma 3.4.1. Let

A(v) = 1

2
vT Av − bT v

be a quadratic form on Rm with symmetric positive semidefinite matrix A. Then
(i) A(v) is bounded below if and only if it attains its minimum;
(ii) A(v) attains its minimum if and only if the equation

Av = b (∗)
is solvable, in which case the set of minimizers of A(v) is exactly the set of solutions to the
equation;

(iii) the minimum value of the quadratic form, if it exists, is equal to − 1
2b

T v, where
v is (any) solution to (*).

Proof. (i): There are two possibilities:
(a) b is orthogonal to Null(A),
(b) b has a nonzero projection b′ onto Null(A).

In case of (b) the form is clearly unbounded below (look what happens when v = tb′
and t → ∞). In case of (a) the equation Av = b is solvable16; at every solution to this
equation, the gradient of A vanishes, so that such a solution is a minimizer of the convex (A
is positive semidefinite!) function A(·). Thus, if the form is bounded below, then it attains
its minimum, and, of course, vice versa.

(ii): Since the form is convex and smooth, its minimizers are exactly the same as its
critical points—those where the gradient vanishes. The gradient of A(v) is Av − b, so that
it vanishes exactly at the solutions to (*).

16Linear algebra says that a linear system Px = q is solvable if and only if q is orthogonal to Null(P T ). We
use this fact for the particular case of P = PT .
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(iii): Let v be a solution to (*) or, which is the same, a minimizer of A(·). From (*)
we get vT Av = bT v, so that A(v) = 1

2b
T v − bT v = − 1

2b
T v.

In view of Lemma 3.4.1, the energy (3.4.43) is bounded below if and only if the
equilibrium equation (3.4.42) is solvable, and if it is the case, the minimum of the energy is
− 1

2f
T v, where v is a solution to the equilibrium equation (3.4.42). Recalling the definition

of the compliance, we come to the desired result.

As a byproduct, we have obtained the following.

Variational Principle. The equilibrium displacement of a truss t under an
external load f is a minimizer of the quadratic form

1

2
vT A(t)v − f T v

of a displacement vector v; if this quadratic form is unbounded below, there is
no equilibrium at all.

This is a typical variational principle in mechanics and physics. These principles
state that equilibria in certain physical systems occur at critical points (in good cases—even
minimizers) of certain energy functionals. Variational principles are extremely powerful,
and in mechanical, electrical, and other applications an issue of primary importance is to
identify a tractable variational principle governing the model.

From variational principle to conic quadratic-representation of compliance

Step 1. Let us look at the epigraph

C = {(t, f ; τ) | t ≥ 0, τ ≥ Complf (t)}
of the compliance in the domain t ≥ 0. Our goal is to find an explicit CQR of this set. To
this end let us start with a slightly smaller set

C ′ = {(t, f, τ ) | t ≥ 0, τ > Complf (t)}.
Proposition 3.4.4 provides us with the following description of C and C ′:

(C): The set C comprises all triples (t ≥ 0, f, τ ) such that the quadratic form

Q(v) = 1

2
vT A(t)v − f T v + τ

of v ∈ Rm is nonnegative everywhere.

(C ′): The set C comprises all triples (t ≥ 0, f, τ ) such that the form Q(v) is
positive everywhere.

(C ′) says that the convex quadratic inequality

Q(v) ≤ 0 (3.4.45)
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124 Lecture 3. Conic Quadratic Programming

has no solutions. Recall that a convex quadratic inequality can be represented via a conic
quadratic inequality; what is the latter inequality in the case of (3.4.45)? To answer, set

B(t) = √
2


√
t1B

T
1√

t2B
T
2

. . .√
tnB

T
n

 (3.4.46)

and express the bar-stiffness matrix as

A(t) =
n∑

i=1

tiBiB
T
i = 1

2
BT (t)B(t).

The quadratic form Q(v) now can be written as

Q(v) = 1

4
vT BT (t)B(t)v−f T v+τ = 1

4

[‖B(t)v‖2
2 + (1 − f T v + τ)2 − (1 + f T v − τ)2

]
.

(3.4.47)
We obtain the following observation.

(O): Inequality (3.4.45) has no solutions if and only if the conic quadratic
inequality in variables v∣∣∣∣∣∣∣∣( B(t)v

1 − f T v + τ

)∣∣∣∣∣∣∣∣
2

≤ 1 + f T v − τ (3.4.48)

has no solution.

Indeed, the relation between the inequalities (3.4.45) and (3.4.48)
is as follows: The former, in view of (3.4.47), is the inequality
1
4P

2(v) ≤ 1
4p

2(v), while the latter is P(v) ≤ p(v); here P(v) is
the Euclidean norm of a certain vector depending on v. Taking into
account thatP(·) is always nonnegative, and thatp(v) = 1+f T v−τ

must be nonnegative at every solution of (3.4.45), we conclude that
both inequalities have the same set of solutions.

Step 2. As we have seen, C ′ is exactly the set of values of the parameter (t, f, τ )
for which the CQI (3.4.48) is not solvable. In fact, one can say more:

(!) When the triple (t, f, τ ) is in C ′, the CQI (3.4.48) is not even almost solvable
(see Proposition 2.4.2).

Indeed, (3.4.48) is of the form

Av − b ≡
(
B(t)v

−f T v

+f T v

)
−

( 0
−1 − τ

−1 + τ

)
≥Lk 0 (3.4.49)D
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with certain k. Assume that (t, f, τ ) ∈ C ′. What we should prove is that then all CQIs of
the form (

B(t)v

−f T v

+f T v

)
−

(
ε

−1 − τ + ε1

−1 + τ + ε2

)
≥Lk 0 (3.4.50)

with small enough perturbation vector ε and scalars ε1, ε2 are not solvable. Assume, to
the contrary, that (3.4.50) with some fixed perturbations ε, ε1, ε2 has a solution. Then the
quadratic inequality in variables v

1

4
‖B(t)v − ε‖2

2 + 1

4
(1 + τ − f T v − ε1)

2 ≤ 1

4
(1 − τ + f T v − ε2)

2

has a solution. The inequality is of the form

1
2v

T A(t)v − FT (ε, ε1, ε2)v + T (ε, ε1, ε2)

≡ 1
2v

T A(t)v − [
1
2B

T (t)ε + (
1 − ε1+ε2

2

)
f
]T

v

+ (2τ − ε1 + ε2)(2 − ε1 − ε2)

4
≤ 0.

(3.4.51)

Now, since (3.4.45) has no solutions, we have f = A(t)e, where e is a minimizer of
the unperturbed quadratic form Q(v) (see Lemma 3.4.1). Now, since A(t) = BT (t)B(t),
the image of A(t) is exactly the same as the image of BT (t), and A(t) is invertible on its
image. In other words, there exists a matrix R such that BT (t)z = A(t)RBT (t)z for every
z, and, in particular, BT (t)ε = A(t)RBT (t)ε. We see that the vector

v(ε, ε1, ε2) =
(

1 − ε1 + ε2

2

)
e + 1

2
RBT (t)ε

is a minimizer, over v, of the left-hand side in (3.4.51); obviously, this minimizer depends
continuously on the perturbation (ε, ε1, ε2). The coefficients of the quadratic form of v
in the left-hand side of (3.4.51) are also continuous in the perturbation; consequently, the
minimum value of the form depends continuously on the perturbation. This is all we need.
Assuming that the conclusion in (!) fails to be true for a fixed triple (t, f, τ ) ∈ C ′, we would
conclude that there exist arbitrarily small perturbations such that (3.4.51) has a solution,
so that the minimum over v of the left-hand side in (3.4.51) for these perturbations is
nonpositive. By continuity, it follows that the minimum value of the quadratic form in the
left-hand side of (3.4.51) is nonpositive when the perturbation is 0, i.e., the minimum value
of the quadratic formQ(v) is nonpositive. But then (3.4.45) has a solution (recall that below
bounded quadratic form achieves its minimum), which is a contradiction—the parameter
(t, f, τ ) belongs to C ′ !

Step 3. In fact, (!) can be easily replaced by the following stronger claim:

(!!) A triple (t, f, τ ) with t ≥ 0 belongs to C ′ if and only if (3.4.48) is not
almost solvable.

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 126

✐

✐

✐

✐

✐

✐

✐

✐

126 Lecture 3. Conic Quadratic Programming

Indeed, the (relatively difficult) “only if” part is given by (!). And the “if” part
is immediate: we should prove that if t ≥ 0 and (t, f, τ ) does not belong to C ′ (i.e., if
infv Q(v) ≤ 0; see (C ′)), then (3.4.48) is almost solvable. But in the case in question, the
CQI (3.4.48) is simply solvable, even without “almost.” Indeed, we remember from (O) that
(3.4.48) is solvable if and only if (3.4.45) is solvable. Now, if the form Q is bounded below,
its minimum is attained, so that under the assumption infv Q(v) ≤ 0 (3.4.45) is solvable.
Finally, in the case when Q is not bounded below, (3.4.45) is solvable by evident reasons!

Step 4. Combining (!!) with Proposition 2.4.2(iii), we come to the following result.

Lemma 3.4.2. A triple (t, f, τ ) with t ≥ 0 belongs to the set C ′, i.e., Complf (t) < τ , if and
only if there exists a vector λ satisfying the relations (cf. (3.4.49))

AT λ = 0, bT λ > 0, λ ≥Lk 0. (3.4.52)

To understand the meaning of (3.4.52), observe that by the definition of B(t) and in
view of (3.4.49) one has

AT = [√2t1B1; √
2t2B2; . . . ; √

2tnBn; −f ; f ],
bT = [0; . . . ; 0; −1 − τ ; −1 + τ ].

Partitioning λ accordingly: λT = [w1; . . . , ;wn;p; q], we can rewrite (3.4.52) equivalently
as

(a)
n∑

i=1

(2ti)
1/2Biwi = (p − q)f ;

(b) p(−1 − τ) + q(−1 + τ) > 0;

(c)

√√√√[
n∑

i=1

wT
i wi

]
+ p2 ≤ q.

(3.4.53)

In every solution ({wi}, p, q) to (3.4.53) necessarily p �= q (and, therefore, p < q by
(c)). Indeed, otherwise (b) would imply −2q > 0, which is impossible in view of (c).
Consequently, we can define the vectors

si = −(q − p)−1
√

2tiwi,

and with respect to these vectors (3.4.53) becomes

n∑
i=1

Bisi = f,

n∑
i=1

sTi si

2ti
≤ q+p

q−p
,

< τ.

(3.4.54)

(The concluding inequality is given by (3.4.53)(b).)
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We have covered 99% of the way to our target, namely, we have basically proved the
following.

Lemma 3.4.3. A triple (t ≥ 0, f, τ ) is such that Complf (t) < τ if and only if there exist
vectors si , i = 1, . . . , n, satisfying the relations

n∑
i=1

Bisi = f,

n∑
i=1

sTi si

2ti
< τ.

(3.4.55)

(From now on, by definition, 0/0 = 0 and a/0 = +∞ when a > 0.)

Proof. Lemma 3.4.2 says that if Complf (t) < τ , then (3.4.52) is solvable; and as we just
have seen, a solution to (3.4.52) can be converted to a solution to (3.4.55). Conversely,
given a solution {si}ni=1 to (3.4.55), we can find q > 1/2 satisfying the relations

n∑
i=1

sTi si

2ti
< 2q − 1 < τ ;

setting p = q − 1, wi = −(2ti)−1/2si (wi = 0 when ti = 0), it is immediately seen that
we get a solution to (3.4.53) or, which is the same, to (3.4.52). Again, from Lemma 3.4.2
it follows that Complf (t) < τ .

Step 5. We cover the remaining 1% of the way to the target in the following.

Proposition 3.4.5. A triple (t, f, τ ) belongs to the epigraph of the function Complf (t)
(extended by the value +∞ to the set of those t’s that are not nonnegative), i.e., Complf (t) ≤
τ , if and only if there exist vectors si , i = 1, . . . , n, such that the following relations are
satisfied:

(a)
n∑

i=1

Bisi = f,

(b)
n∑

i=1

sTi si

2ti
≤ τ,

(c) t ≥ 0.

(3.4.56)

In particular, the function Complf (t) is CQr.

Proof. If we can extend a given triple (t, f, τ ), by properly chosen si’s, to a solution of
(3.4.56), then, by Lemma 3.4.3, Complf (t) < τ ′ for every τ ′ > τ , whence Complf (t) ≤ τ .
Conversely, assume that Complf (t) ≤ τ . Then for sure Complf (t) < τ +1, and by Lemma
3.4.3 the optimization problem

min
s1,...,sn

{
n∑

i=1

sTi si

2ti
|

n∑
i=1

Bisi = f

}
(P)D
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is feasible. But this is, essentially, a problem of minimizing a convex quadratic nonneg-
ative objective over an affine plane (for those i with ti = 0, si should be zeros, and we
may simply ignore the corresponding terms). Therefore the problem is solvable. Let
s∗
i form an optimal solution, and τ ∗ be the optimal value in (P). By Lemma 3.4.3, if
τ > Complf (t), then

∑n
i=1(2ti)

−1(s∗
i )

T s∗
i = τ ∗ < τ . Consequently, if τ ≥ Complf (t),

then
∑n

i=1(2ti)
−1(s∗

i )
T s∗

i ≤ τ , so that s∗
i form the required solution to (3.4.56).

It remains to prove that the compliance, regarded as a function of t, f , is CQr. But this
is clear—the function

∑
i (2ti)

−1sTi si is CQr (as a sum of fractional-quadratic functions),
so that the second inequality in (3.4.56) defines a CQr set. All remaining relations in
(3.4.56) are linear inequalities and equations, and from our calculus of CQr sets we know
that constraints of this type do not spoil CQ-representability.

Remark 3.4.2. Note that after the CQr description (3.4.56) of the epigraph of compliance
is guessed, it can be justified directly by a more or less simple reasoning. (This, is, basically,
how we handled the TTD problem in Lecture 1.) The goal of our exposition was not merely
to justify (3.4.56), but to demonstrate that one can derive this representation quite routinely
from the variational principle (which is the only methodologically correct definition of
compliance) and from the rule, “When looking at a convex quadratic inequality, do not trust
your eyes: what you really see is a conic quadratic inequality.”

Remarks and conclusions

Mechanical interpretation of Proposition 3.4.5. Consider the case of a true truss—the
one where Bi = bi are just vectors. Here si are reals, and from the mechanical viewpoint,
the quantity sibi represents the reaction force in bar i (so that the constraint

∑m
i=1 Bisi = f

in (3.4.56) says that the sum of the reaction forces should compensate the external load).
Now, recall that the magnitude of the reaction force caused by elongation Di of bar i is, up
to constant factor, Diσi

�i
, where σi, �i are bar’s cross-sectional area and length, respectively,

while ‖bi‖2 is inverse proportional to �i . Comparing two expressions for the reaction force in
bar i, namely, sibi and const Diσi

�i

bi
‖bi‖2

, we conclude that si = constDiσi . Thus, si , essentially,
are the elongations of the bars multiplied by the cross-sectional areas of the bars. Note that

then s2
i

ti
= const D

2
i σ

2
i

σi�i
= const D

2
i σi

�i
, and the latter expression is, up to a constant factor, the

energy stored in bar i as a result of its elongation Di . Thus, the objective in (3.4.56) is
proportional to the energy stored in the truss as a result of its deformation. Proposition 3.4.5
says that the compliance of a given truss under a given load is the minimum of the quantities∑n

i=1
s2
i

2ti
over all collections {si} satisfying the equation (3.4.56)(a). In other words, we get

another variational principle:

The reaction forces in a loaded truss minimize the total energy stored by the
bars under the constraint that the sum of the reaction forces compensates the
external load.

Multiload truss topology design problem. The result of Proposition 3.4.5—the fact that
the compliance admits explicit CQR—allows us to process numerous versions of the TTD
problem via the machinery of CQP. Consider, e.g., the multiload TTD problem.
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Problem 3.4.1. Multiload TTD problem. Given a ground structure (n,m, b1, . . . , bn),
a finite set of loading scenarios f1, . . . , fk ∈ Rm, and a material resource w > 0, find
a truss t of total bar volume not exceeding w that is stiffest, in the worst-case sense,
with respect to the loads f1, . . . , fm; i.e., find t that minimizes the worst-case compliance
maxj=1,...,k Complfj (t).

The origin of the problem is clear: in reality, a truss should withstand not merely a
single load of interest but numerous (nonsimultaneous) loads. For example, an engineer
designing a bridge should consider rush hour traffic, night traffic, earthquake, side wind,
etc.

Equipped with Proposition 3.4.5, we can immediately pose the multiload TTD prob-
lem as the following conic quadratic program:

minimize τ

s.t.
(a) s2

ij ≤ 2tiσij , i = 1, . . . , n, j = 1, . . . , k;
(b)

n∑
i=1

σij ≤ τ, j = 1, . . . , k;
(c) ti , σij ≥ 0, i = 1, . . . , n, j = 1, . . . , k;
(d)

n∑
i=1

ti ≤ w;

(e)
n∑

i=1

sij bi = fj , j = 1, . . . , k,

(3.4.57)

with design variables τ, ti , sij , σij .
The structure of the constraints is clear. For every fixed j = 1, . . . , k, the correspond-

ing equations (e), (a), (b) and the inequalities σij ≥ 0 taken together express the fact that∑n
i=1 sij bi = fj and

∑n
i=1(2ti)

−1s2
ij ≤ τ , i.e., that the compliance of truss t with respect

to load fj is ≤ τ (Proposition 3.4.5). The remaining inequalities ti ≥ 0,
∑n

i=1 ti ≤ w say
that t is an admissible truss. Note that the problem is indeed conic quadratic—every one
of the relations (a) says that the triple (sij , ti , σij ) should belong to the 3D ice cream cone
(more exactly, to the image of this cone under a one-to-one linear transformation of R3; see
Example 8 in our catalogue of CQr sets). A nice feature of our approach is that it allows
us to handle additional design constraints, e.g., various linear inequalities on t , like upper
and lower bounds on the bar volumes ti . Indeed, adding to (3.4.57) finitely many linear
constraints, we still get a conic quadratic problem.

Another advantage is that we can—completely routinely—apply to (3.4.57) the duality
machinery (see the exercises to Lecture 3), thus coming to a basically equivalent form of the
problem. As we shall see later, the dual problem is incomparably better suited for numerical
processing.

Where does the linear programming form of the truss topology design problem come
from? We now can explain the miracle we met with in Lecture 1–the ability to pose the
simplest case of the TTD problem (which is still highly nonlinear!) as an LP program.
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130 Lecture 3. Conic Quadratic Programming

The case in question was the single-load TTD problem (a problem of the form (3.4.57)
with k = 1):

min
s,t,τ

{
τ
∣∣ n∑
i=1

s2
i

2ti
≤ τ,

n∑
i=1

sibi = f,

n∑
i=1

ti ≤ w, t ≥ 0

}
.

By eliminating the variable τ , the problem is reduced to

min
s,t

{
n∑

i=1

s2
i

2ti

∣∣ n∑
i=1

sibi = f,

n∑
i=1

ti ≤ w, t ≥ 0

}
.

In the latter problem, we can explicitly carry out partial optimization with respect to t by
solving, for a given {si}, the problem

min
t

{
n∑

i=1

s2
i

2ti

∣∣t ≥ 0,
∑
i

ti ≤ w

}
.

It is clear that at the optimal solution the resource constraint
∑

i ti ≤ w is active, and the
Lagrange multiplier rule yields that for some λ > 0 and all i we have

ti = argmin
r>0

[
s2
i

2r
− λr

]
= (2λ)−1/2|si |.

The sum of all ti’s should be w, which leads to

2λ =


n∑

l=1

|sl|

w


2

,

whence

ti = w|si |
n∑

l=1

|sl|
, i = 1, . . . , n.

Substituting the resulting ti’s into the objective, we get

n∑
i=1

s2
i

2ti
= 1

2w

(
n∑

i=1

|si |
)2

.

The remaining problem, in the s-variables only, becomes

min
s

 1

2w

(
n∑

i=1

|si |
)2

:
n∑

i=1

sibi = f

 .D
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The latter problem is, of course, equivalent to the LP program

min
s

{∑
i

|si | |
∑
i

sibi = f

}
.

The technique of eliminating the variables τ, t we just used can also be employed for the
multiload case, but the resulting problem will not be an LP. Even the simple single-load
case, but one with additional linear constraints on t (e.g., upper and lower bounds on ti), is
not reducible to LP.

3.5 Exercises to Lecture 3
3.5.1 Optimal control in discrete time linear dynamic system

Consider a discrete time linear dynamic system

x(t) = A(t)x(t − 1) + B(t)u(t), t = 1, 2, . . . , T ,
x(0) = x0.

(S)

Here,

• t is the (discrete) time.

• x(t) ∈ Rl is the state vector: its value at instant t identifies the state of the controlled
plant.

• u(t) ∈ Rk is the exogeneous input at time instant t ; {u(t)}Tt=1 is the control.

• For every t = 1, . . . , T , A(t) and B(t) are given l× l and l×k matrices, respectively.

A typical problem of optimal control associated with (S) is to minimize a given functional
of the trajectory x(·) under given restrictions on the control. As a simple example of this
type, consider the optimization model

min
u(·)

{
cT x(T ) | 1

2

T∑
t=1

uT (t)Q(t)u(t) ≤ w

}
, (OC)

where Q(t) are given positive definite symmetric matrices.
(OC) can be interpreted, e.g., as follows: x(t) represents the position and the velocity

of a rocket, −cT x is the height of the rocket at a state x (so that our goal is to maximize the
height of the rocket at the final time T ), the equations in (S) represent the dynamics of the
rocket, the control is responsible for the profile of the flight, and the left-hand side of the
constraint in (OC) is the dissipated energy.

Exercise 3.1. 1. Use (S) to express x(T ) via the control and convert (OC) into a quadrat-
ically constrained problem with linear objective in the u-variables.

2. Convert the resulting problem to a conic quadratic program.
3. Pass from the resulting problem to its dual and find the dual optimal solution.
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132 Lecture 3. Conic Quadratic Programming

4. Assumingw > 0, prove that both the primal and the dual are strictly feasible. What
are the consequences for the solvability status of the problems? Assuming, in addition, that
x0 = 0, what is the optimal value?

5. Assume that (S), (OC) form a finite-difference approximation to the continuous
time optimal control problem

minimize cT x(1)
s.t.

d
dτ
x(τ ) = α(τ)x(τ ) + β(τ)u(τ), 0 ≤ τ ≤ 1, x(0) = 0,∫ 1

0
uT (τ )γ (τ )u(τ)dτ ≤ w,

where γ (τ), for every τ ∈ [0, 1], is a positive definite symmetric matrix.
Guess what should be the optimal value.

3.5.2 Conic quadratic representations

Exercise 3.2. Let π1, . . . , πn be positive rational numbers. Demonstrate that the set

{(t, s1, . . . , sn) ∈ R × Rn
++ | t ≥ g(s) ≡ s

−π1
1 s

−π2
2 . . . s−πn

n }

is CQr. What is the conclusion on convexity of the function g(s) with the domain Domg =
Rn++?

Hint. Modify properly the construction from Example 15, Lecture 3.

Among important (convex) elementary functions, it appears that the only two that are
not CQr are the exponent exp{x} and the minus logarithm − ln x. In a sense, these are not
two functions but only one: CQ-representability deals with the geometry of the epigraph of
a function, and the epigraphs of − ln x and exp{x}, geometrically, are the same—we merely
are looking at the same set from two different directions. Now, why is the exponent not
CQr? The answer is intuitively clear: How could we represent a set given by a transcendental
inequality by algebraic inequalities? A rigorous proof, however, requires highly nontrivial
tools, namely, the Zaidenberg–Tarski theorem:

Let B be a semialgebraic set in Rn × Rm, i.e., a set given by a finite system of
polynomial inequalities (strict as well as nonstrict). Then the projection of B
onto Rn also is semialgebraic.

Now, by definition, a set Q ⊂ Rn is CQr if and only if it is the projection onto Rn of a
specific semialgebraic set Q′ of larger dimension—one given by a system of inequalities
of the form {‖Aix − bi‖2

2 ≤ (pT
i x − qi)

2, pT
i x − qi ≥ 0}Ni=1. Therefore, assuming that the

epigraph of the exponent is CQr, we would conclude that it is a semialgebraic set, which in
fact is not the case.D
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Thus, the exponent, the minus logarithm (same as convex power functions with irra-
tional exponentials, like xπ+), are not captured by CQP. Let us, however, look at the funny
construction as follows. As everybody knows,

exp{x} = lim
k→∞

(
1 + 1

k
x

)k

.

Let us specify here k as an integral power of 2:

exp{x} = lim
l→∞ fl(x), fl(x) = (1 + 2−lx)(2

l ).

Note that every one of the functions f (l) is CQr.
On the other hand, what is the exponent from the computational viewpoint? Something

that does not exist! For a computer, the exponent is a function that is well defined on a quite
moderate segment—something like −746 < x < 710. (SUN does not understand numbers
larger than 1.0e + 309 and less than 1.0e − 344; MATLAB knows that exp{709.7} =
1.6550e + 308 and exp{−745} = 4.9407e − 324 but believes that exp{709.8} = Inf and
exp{−746} = 0). And in this very limited range of values of x the computer exponent, of
course, differs from the actual one—the former reproduces the latter with relative accuracy
like 10−16. Now, the question:

Exercise 3.3. How large should l be in order for fl(·) to be a valid substitution of the
exponent in the computer, i.e., to approximate the latter in the segment −746 < x < 710
within relative inaccuracy 10−16? What is the length of the CQR for such an fl—how many
additional variables and simple constraints of the type s2 ≤ t do you need to get the CQR?

Note that we can implement our idea in a smarter way. The approximation fl of the
exponent comes from the formula

exp{x} = (
exp{2−lx})(2l ) ≈ (

1 + 2−lx
)(2l )

,

and the quality of this approximation, for given l and the range −a ≤ x ≤ b of values of
x, depends on how well the exponent is approximated by its linearization in the segment
−2−la < x < 2−lb. What will happen when the linearization is replaced with a polynomial
approximation of a higher order, i.e., when we use approximations

exp{x} ≈ gl(x) =
(

1 + 2−lx + 1

2
(2−lx)2

)(2l )

or

exp{x} ≈ hl(x) =
(

1 + 2−lx + 1

2
(2−lx)2 + 1

6
(2−lx)3 + 1

24
(2−lx)4

)(2l )

,
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and so on? Of course, to make these approximation useful in our context, we should be sure
that the approximations are CQr.

Exercise 3.4. 1. Assume that s(·) is a nonnegative CQr function and you know its CQR
(S). Prove that for every rational α ≥ 1 the function sα(·) is CQr, the corresponding
representation being readily given by (S).

2. Prove that the polynomial 1 + t + t2/2 on the axis is nonnegative and is CQr. Find
a CQR for the polynomial.

Conclude that the approximations gl(·) are CQr. How large is a sufficient l (the
one reproducing the exponent with the same quality as in the previous exercise) for these
approximations? How many additional variables and constraints are needed?

3. Answer the same questions as in 2, but for the polynomial 1+t+t2/2+t3/6+t4/24
and the approximations hl(·).

The following table shows the best numerical results we were able to obtain with the
outlined scheme.

x exp{x} Rel. error of f40 Rel. error of g27 Rel. error of h18

− 512 4.337e − 223 4.e − 6 5.e − 9 5.e − 11
− 256 6.616e − 112 2.e − 6 3.e − 9 8.e − 12
− 128 2.572e − 56 1.e − 6 1.e − 9 1.e − 11
− 64 1.603e − 28 5.e − 7 6.e − 10 9.e − 12
− 32 1.266e − 14 2.e − 7 1.e − 10 1.e − 11
− 16 1.125e − 07 1.e − 7 2.e − 10 1.e − 11
− 1 3.678e − 01 7.e − 9 7.e − 9 1.e − 11

1 2.718e + 00 7.e − 9 7.e − 9 1.e − 11
16 8.886e + 06 1.e − 7 2.e − 10 2.e − 11
32 7.896e + 13 2.e − 7 3.e − 10 2.e − 11
64 6.235e + 27 5.e − 7 6.e − 10 2.e − 11

128 3.888e + 55 1.e − 6 1.e − 9 2.e − 11
256 1.511e + 111 2.e − 6 2.e − 9 3.e − 11
512 2.284e + 222 4.e − 6 5.e − 9 7.e − 11

And now, the most difficult question.

Exercise 3.5. Why does the outlined scheme not work on a computer, or at least does not
work as well as predicted by the previous analysis?

Stable grasp

Recall the stable grasp analysis problem from section 3.2.2: to check whether the system
of constraints

‖F i‖2 ≤ µ(f i)T vi, i = 1, . . . , N,

(vi)T F i = 0, i = 1, . . . , N,

N∑
i=1

(f i + F i) + F ext = 0,

N∑
i=1

pi × (f i + F i) + T ext = 0

(SG)
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F ext

extT

Figure 3.5. Data of a stable grasp problem.

in the 3D variables F i is or is not solvable. Here the data are given by a number of 3D
vectors, namely,

• vectors vi—unit inward normals to the surface of the body at the contact points;

• contact points pi ;

• vectors f i—contact forces;

• vectors F ext and T ext of the external force and torque, respectively.

Further, µ > 0 is a given friction coefficient, and we assume that (f i)T vi > 0 ∀i.

Exercise 3.6. 1. Regarding (SG) as the system of constraints of a maximization program
with trivial objective and applying the technique from section 2.5, build the dual problem.

2. Prove that the dual problem is strictly feasible. Derive from this observation
that stable grasp is possible if and only if the dual objective is nonnegative on the dual
feasible set.

3. Assume that
∑N

i=1 µ[(f i)T vi] < ‖∑N
i=1 f

i + F ext‖2. Is a stable grasp possible?
4. Let T = ∑N

i=1 p
i ×f i +T ext, and let T i be the orthogonal projection of the vector

pi × T onto the plane orthogonal to vi . Assume that

N∑
i=1

µ[(f i)T vi]‖T i‖2 < ‖T ‖2
2.

Is a stable grasp possible?
5. The data of the stable grasp problem are shown in Fig. 3.5 (the “fingers” look at the

center of the circle; the contact points are the vertices of the inscribed equilateral triangle).
Magnitudes of all three contact forces are equal to each other, the friction coefficient is
equal to 1, magnitudes of the external force and the external torque are equal to a, and theD
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136 Lecture 3. Conic Quadratic Programming

torque is orthogonal to the plane of the picture. What is the smallest magnitude of contact
forces that makes a stable grasp possible?

Trusses

We are about to process the multiload TTD problem 3.4.1, which we write as (see (3.4.57))

minimize τ

s.t. s2
ij ≤ 4tirij , i = 1, . . . , n, j = 1, . . . , k,
n∑

i=1

rij ≤ 1
2τ, j = 1, . . . , k,

n∑
i=1

ti ≤ w,

n∑
i=1

sij bi = fj , j = 1, . . . , k,

ti , rij ≥ 0, i = 1, . . . , n, j = 1, . . . , k.

(Pr)

Here the design variables are sij , rij , ti , τ ; the variables σij from (3.4.57) are twice the new
variables rij .

Throughout this section we make the following two assumptions:

• The ground structure (n,m, b1, . . . , bn) is such that the matrix
∑n

i=1 bib
T
i is positive

definite.

• The loads of interest f1, . . . , fk are nonzero, and the material resource w is positive.

Exercise 3.7. 1. Applying the technique from section 2.5, build the problem (Dl) dual to
(Pr).

Check that both (Pr) and (Dl) are strictly feasible. What are the consequences for the
solvability status of the problems and their optimal values?

What is the design dimension of (Pr)? of (Dl)?
2. Convert problem (Dl) into an equivalent problem of the design dimension mk +

k + 1.

Exercise 3.8. Let us fix a ground structure (n,m, b1, . . . , bn) and a material resource w,
and let F be a finite set of loads.

1. Assume that Fj ∈ F , j = 1, . . . , k, are subsets of F with
⋃k

j=1 Fj = F . Let
µj be the optimal value in the multiload TTD problem with the set of loads Fj and µ be
the optimal value in the multiload TTD problem with the set of loads F . Is it possible that
µ >

∑k
j=1 µj?

2. Assume that the ground structure includes n = 1998 tentative bars and that you
are given a set F of N = 1998 loads. It is known that for every subset F ′ of F made up of
no more than 999 loads, the optimal value in the multiload TTD problem, the set of loading
scenarios being F ′, does not exceed 1. What can be said about the optimal value in the
multiload TTD problem with the set of scenarios F?

Answer a similar question in the case when F comprises N ′ = 19980 loads.
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3.5. Exercises to Lecture 3 137

3.5.3 Does conic quadratic programming exist?

Of course it does. What is meant is:

(?) Can a conic quadratic problem be efficiently approximated by an LP one?

To pose the question formally, let us say that a system of linear inequalities

Py + tp + Qu ≥ 0 (LP)

approximates the CQI

‖y‖2 ≤ t (CQI)

within accuracy ε (or, which is the same, is an ε-approximation of (CQI)), if
(i) whenever (y, t) satisfies (CQI), there exists u such that (y, t, u) satisfies (LP);
(ii) whenever (y, t, u) satisfies (LP), (y, t) nearly satisfies (CQI), namely,

‖y‖2 ≤ (1 + ε)t.

Note that given a conic quadratic program

min
x

{
cT x : ‖Aix − bi‖2 ≤ cTi x − di, i = 1, . . . , m

}
(CQP)

with mi × n-matrices Ai and ε-approximations

P iyi + tip
i + Qiui ≥ 0

of CQIs

‖yi‖2 ≤ ti [dim yi = mi],
one can approximate (CQP) by the LP program

min
x,u

{
cT x : P i(Aix − bi) + (cTi x − di)p

i + Qiui ≥ 0, i = 1, . . . , m
} ;

if ε is small enough, this program, for every practical purpose, is the same as (CQP).
Now, in principle, any closed convex cone of the form

{(y, t) | t ≥ φ(y)}
can be approximated, in the aforementioned sense, by a system of linear inequalities within
any accuracy ε > 0. The question of crucial importance, however, is how large should the
approximating system be—how many linear constraints and additional variables it requires.
Surprisingly, for the second-order cone these quantities are not that large:

Theorem (Ben-Tal and Nemirovski, 1998). Let n be the dimension of y in
(CQI), and let 0 < ε < 1/2. There exists (and can be explicitly written) a
system of no more than O(1)n ln 1

ε
linear inequalities of the form (LP) with

dim u ≤ O(1)n ln 1
ε

which is an ε-approximation of (CQI). Here O(1)’s are
appropriate absolute constants.
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138 Lecture 3. Conic Quadratic Programming

To get an impression of the constant factors in the theorem, look at the numbers I (n, ε)
of linear inequalities and V (n, ε) of additional variables u in an ε-approximation (LP) of
the conic quadratic inequality (CQI) with dim x = n:

n ε = 10−1 ε = 10−6 ε = 10−14

I (n, ε) V (N, ε) I (n, ε) V (n, ε) I (n, ε) V (n, ε)

4 6 17 31 69 70 148
16 30 83 159 345 361 745
64 133 363 677 1458 1520 3153
256 543 1486 2711 5916 6169 12710
1024 2203 6006 10899 23758 24773 51050

You can see that I (n, ε) ≈ 0.7n ln 1
ε
, V (n, ε) ≈ 2n ln 1

ε
.

Exercise 3.9. Prove the theorem. Specifically,
1. Build an ε-approximation of the 3D Lorentz cone, i.e., of the set

{(x, y, t) | t ≥
√
x2 + y2}

with O(1) ln 1
ε

linear inequalities and additional variables.
2. Pass from the case of n = 2 (i.e., from the 3D Lorentz cone) to the case of arbi-

trary n.
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Lecture 4

Semidefinite Programming

In this lecture we study semidefinite programming (SDP), a generic conic program with a
vast area of applications.

4.1 Semidefinite cone and semidefinite programs
4.1.1 Preliminaries

Let Sm be the space of symmetric m × m matrices and Mm,n be the space of rectangular
m × n matrices with real entries. From the viewpoint of their linear structure (i.e., the
operations of addition and multiplication by reals), Sm is just the arithmetic linear space
Rm(m+1)/2 of dimension m(m+1)

2 : by arranging the elements of a symmetric m × m matrix
X in a single column, say, in row-by-row order, you get a usual m2-dimensional column
vector; multiplication of a matrix by a real and addition of matrices correspond to the same
operations with the representing vector(s). WhenX runs through Sm, the vector representing
X runs through m(m + 1)/2-dimensional subspace of Rm2

consisting of vectors satisfying
the symmetry condition—the coordinates coming from symmetric to each other pairs of
entries in X are equal to each other. Similarly, Mm,n as a linear space is just Rmn, and it
is natural to equip Mm,n with the inner product defined as the usual inner product of the
vectors representing the matrices:

〈X, Y 〉 =
m∑
i=1

n∑
j=1

XijYij = Tr(XT Y ).

Here Tr stands for the trace—the sum of diagonal elements of a (square) matrix. With this
inner product (called the Frobenius inner product), Mm,n becomes a legitimate Euclidean
space, and we may use in connection with this space all notions based on the Euclidean
structure, e.g., the (Frobenius) norm of a matrix

‖X‖2 = √〈X,X〉 =
√√√√ m∑

i=1

n∑
j=1

X2
ij =

√
Tr(XTX)

139
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140 Lecture 4. Semidefinite Programming

and likewise the notions of orthogonality, orthogonal complement of a linear subspace, etc.
The same applies to the space Sm equipped with the Frobenius inner product. Of course,
the Frobenius inner product of symmetric matrices can be written without the transposition
sign:

〈X, Y 〉 = Tr(XY), X, Y ∈ Sm.

Let us focus on the space Sm. After it is equipped with the Frobenius inner product, we may
speak about a cone dual to a given cone K ⊂ Sm:

K∗ = {Y ∈ Sm | 〈Y,X〉 ≥ 0 ∀X ∈ K}.
Among the cones in Sm, the one of special interest is the semidefinite cone Sm+, the

cone of all symmetric positive semidefinite matrices.17 It is easily seen (see Exercise 2.8)
that Sm+ indeed is a cone, and moreover it is self-dual:

(Sm
+)∗ = Sm

+.

Another simple fact is that the interior Sm++ of the semidefinite cone Sm+ is exactly the set
of all positive definite symmetric m × m matrices, i.e., symmetric matrices A for which
xT Ax > 0 for all nonzero vectors x, or, which is the same, symmetric matrices with positive
eigenvalues.

The semidefinite cone gives rise to a family of conic programs “minimize a linear
objective over the intersection of the semidefinite cone and an affine plane”; these are the
semidefinite programs we are about to study.

Before writing a generic semidefinite program, we should resolve a small difficulty
with notation. Normally we use lowercase Latin and Greek letters to denote vectors and the
uppercase letters to denote matrices; e.g., our usual notation for a conic problem is

min
x

{
cT x : Ax − b ≥K 0

}
. (CP)

In the case of semidefinite programs, where K = Sm+, the usual notation leads to a conflict
with the notation related to the space where Sm+ lives. Look at (CP): without additional
remarks it is unclear what A is—is it an m × m matrix from the space Sm or is it a linear
mapping acting from the space of the design vectors—some Rn—to the space Sm? When
speaking about a conic problem on the cone Sm+, we should have in mind the second inter-
pretation of A, while the standard notation in (CP) suggests the first (wrong!) interpretation.
In other words, we meet with the necessity to distinguish between linear mappings acting
to or from Sm and elements of Sm (which themselves are linear mappings from Rm to Rm).
To resolve this difficulty, we introduce the following notational conventions.

Notational convention. To denote a linear mapping acting from a linear space to a space
of matrices (or from a space of matrices to a linear space), we use uppercase script letters
like A, B. Elements of usual vector spaces Rn are, as always, denoted by lowercase Latin

17Recall that a symmetric n × n matrix A is called positive semidefinite if xT Ax ≥ 0 ∀x ∈ Rm. An equivalent
definition is that all eigenvalues of A are nonnegative.
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4.1. Semidefinite cone and semidefinite programs 141

and Greek letters a, b, . . . , z, α, . . . , ζ , while elements of a space of matrices usually are de-
noted by uppercase Latin letters A,B, . . . , Z. According to this convention, a semidefinite
program of the form (CP) should be written as

min
x

{
cT x : Ax − B ≥Sm+ 0

}
. (∗)

We also simplify the sign ≥Sm+ to � and the sign >Sm+ to . (same as we write ≥ instead of
≥Rm+ and > instead of >Rm+ ). Thus, A � B (⇔ B / A) means that A and B are symmetric
matrices of the same size and A − B is positive semidefinite, while A . B (⇔ B ≺ A)
means that A, B are symmetric matrices of the same size with positive definite A − B.

We further need a special notation for the conjugate (transpose) of a linear mapping
A acting from or to a space of matrices. Recall that the conjugate of a linear mapping
W : E → F acting from a Euclidean space (E, (·, ·)E) to a Euclidean space (F, (·, ·)F ) is
the mapping W′ : F → E satisfying the identity

(We, f )F = (e,W′f )E ∀e ∈ E, f ∈ F.

When E and F are the usual coordinate spaces Rk and Rl equipped with the standard inner
product (x, y) = xT y, so that W and W′ can be naturally identified with k × l and l × k

matrices, respectively, these matrices are transposed to each other, and we can write WT

instead of W′. In the case when among the spaces E,F there is a space of matrices, the
notation WT for W′ conflicts with the notation for the transpose of an element from E or F .
This is why, when speaking about a linear mapping A acting to or from a space of matrices,
we denote its conjugate by A∗.

Our last convention addresses how to write expressions of the type AAxB (A is a
linear mapping from some Rn to Sm, x ∈ Rn A,B ∈ Sm). What we are trying to denote
is the result of the following operation: we first take the value Ax of the mapping A at a
vector x, thus getting an m × m matrix Ax, and then multiply this matrix from the left and
from the right by the matrices A,B. To avoid misunderstandings, we write expressions of
this type as

A[Ax]B
or as AA(x)B or as AA[x]B.

How to specify a mapping A : Rn → Sm. Natural data specifying a linear mapping
A : Rn → Rm consists of a collection of n elements of the destination space—n vectors
a1, a2, . . . , an ∈ Rm—such that

Ax =
n∑

j=1

xjaj , x = (x1, . . . , xn)
T ∈ Rn.

Similarly, a natural data specifying a linear mapping A : Rn → Sm is a collection
A1, . . . , An of n matrices from Sm such that

Ax =
n∑

j=1

xjAj , x = (x1, . . . , xn)
T ∈ Rn.D
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142 Lecture 4. Semidefinite Programming

In terms of these data, the semidefinite program (*) can be written as

min
x

{
cT x : x1A1 + x2A2 + · · · + xnAn − B � 0

}
. (SDPr)

Linear matrix inequality constraints and semidefinite programs. In the case of conic
quadratic problems, we started with the simplest program of this type—the one with a single
conic quadratic constraint Ax − b ≥Lm 0—and then defined a conic quadratic program as
a program with finitely many constraints of this type, i.e., as a conic program on a direct
product of the ice cream cones. In contrast to this, when defining a semidefinite program,
we impose on the design vector just one linear matrix inequality (LMI) Ax − B � 0. Now
we should not bother about more than a single LMI, due to the following simple fact:

A system of finitely many LMIs

Aix − Bi � 0, i = 1, . . . , k,

is equivalent to the single LMI

Ax − B � 0

with

Ax = Diag (A1x,A2x, . . . ,Akx) , B = Diag(B1, . . . , Bk);
here for a collection of symmetric matrices Q1, . . . ,Qk

Diag(Q1, . . . ,Qk) =
Q1

. . .

Qk


is the block-diagonal matrix with the diagonal blocks Q1, . . . ,Qk .

Indeed, a block-diagonal symmetric matrix is positive (semi-)definite
if and only if all its diagonal blocks are so.

Dual to a semidefinite program. As we know, the dual to conic problem (CP) is the
problem

max
λ

{
bT λ : AT λ = c, λ ≥K∗ 0

} ;

the matrix AT defines the linear mapping conjugate to the mapping A from the primal
problem. When writing the problem dual to (SDPr), we should

– replace bT λ by the Frobenius inner product,
– follow our notational convention and write A∗ instead of AT , and
– take into account that the semidefinite cone is self-dual.
Consequently, the problem dual to (SDPr) is the semidefinite program

max
N

{
Tr(BN) : A∗N = c, N � 0

}
.
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Now, let A1, . . . , An be the data specifying A; how does A∗ act? The answer is immediate:

A∗N = (Tr(A1N),Tr(A2N), . . . ,Tr(AnN))T .

Indeed, we should verify that with the above definition we have

[Tr([Ax]N) =] 〈Ax,N〉 = (A∗N)T x ∀N ∈ Sm, x ∈ Rn,

which is immediate:

Tr([Ax]N) = Tr

 n∑
j=1

xjAj

N


=

n∑
i=1

xjTr(AjN)

= (Tr(A1N), . . . ,Tr(AnN))

(
x1

. . .

xn

)
.

We see that the explicit—given in terms of the original data—form of the problem dual to
(SDPr) is the semidefinite program

max
N

{
Tr(BN) : Tr(AjN) = cj , j = 1, . . . , n;N � 0

}
. (SDDl)

Conic duality in the case of semidefinite programming. Let us see what we get from
the conic duality theorem in the case of semidefinite programs. First note that our default
Assumption A on a conic program in the form of (CP) (Lecture 2) as applied to (SDPr) says
that no nontrivial linear combination of the matrices A1, . . . , An is 0. Strict feasibility of
(SDPr) means that there exists x such that Ax − B is positive definite, and strict feasibility
of (SDDl) means that there exists a positive definite N satisfying A∗N = c. According to
the conic duality theorem, if both primal and dual are strictly feasible, both are solvable,
the optimal values are equal to each other, and the complementary slackness condition

[Tr(N[Ax − B]) ≡] 〈N,Ax − B〉 = 0

is necessary and sufficient for a pair of a primal feasible solution x and a dual feasible
solution N to be optimal for the corresponding problems.

It is easily seen (see Exercise 2.8) that for a pair X, Y of positive semidefinite sym-
metric matrices one has

Tr(XY) = 0 ⇔ XY = YX = 0;
in particular, in the case of strictly feasible primal and dual problems, the primal slack
S∗ = Ax∗ − B corresponding to a primal optimal solution commutes with (any) dual
optimal solution N∗, and the product of these two matrices is 0. Besides this, S∗ and N∗,
as a pair of commuting symmetric matrices, share a common eigenbasis, and the fact that
S∗N∗ = 0 means that the eigenvalues of the matrices in this basis are complementary: for
every common eigenvector, either the eigenvalue of S∗ or the one of N∗, or both, are equal
to 0 (cf. complementary slackness in the LP case).
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144 Lecture 4. Semidefinite Programming

4.2 What can be expressed via linear matrix inequalities?
As in the previous lecture, the first thing to realize when speaking about the SDP universe
is how to recognize that a convex optimization program

min
x

{
cT x : x ∈ X =

m⋂
i=1

Xi

}
(P)

can be cast as a semidefinite program. Just as in the previous lecture, this question actu-
ally asks whether a given convex set or function is semidefinite representable (SDr). The
definition of the latter notion is completely similar to the one of a CQr set or function:

We say that a convex set X ⊂ Rn is SDr if there exists an affine mapping
(x, u) → A(

x

u
) − B : Rn

x × Rk
u → Sm such that

x ∈ X ⇔ ∃u : A
(
x

u

)
− B � 0;

in other words, X is SDr if there exists LMI

A
(
x

u

)
− B � 0

in the original design vector x and a vector u of additional design variables
such that X is a projection of the solution set of the LMI onto the x-space. An
LMI with this property is called semidefinite representation (SDR) of the set
X.

A convex function f : Rn → R ∪ {+∞} is called SDr if its epigraph

{(x, t) | t ≥ f (x)}
is an SDr set. An SDR of the epigraph of f is called an SDR of f .

By exactly the same reasons as in the case of conic quadratic problems, one has the following:
1. If f is an SDr function, then all its level sets {x | f (x) ≤ a} are SDr; the SDR of

the level sets are explicitly given by (any) SDR of f .
2. If all the sets Xi in problem (P) are SDr with known SDRs, then the problem can

explicitly be converted to a semidefinite program.
To understand which functions or sets are SDr, we may use the same approach as in

Lecture 3. The calculus, i.e., the list of basic operations preserving SD-representability, is
exactly the same as in the case of conic quadratic problems; we just may repeat word by
word the relevant reasoning from Lecture 3, each time replacing CQr with SDr. Thus, the
only issue to be addressed is the derivation of a catalogue of simple SDr functions or sets.
Our first observation in this direction is as follows.

1–17. We refer to Examples 1–17 of CQr functions and sets in section 3.3.
If a function or set is CQr, it is also SDr, and any CQR of the function or set can be

explicitly converted to its SDR.
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Indeed, the notion of a CQr or an SDr function is a derivative of the notion of a CQr
or an SDr set: by definition, a function is CQr or SDr if and only if its epigraph is so. Now,
CQr sets are exactly those sets that can be obtained as projections of the solution sets of
systems of conic quadratic inequalities, i.e., as projections of inverse images, under affine
mappings, of direct products of ice cream cones. Similarly, SDr sets are projections of the
inverse images, under affine mappings, of positive semidefinite cones. Consequently,

(i) To verify that a CQr set is SDr as well, it suffices to show that an inverse image,
under an affine mapping, of a direct product of ice cream cones, a set of the form

Z =
{
z | Az − b ∈ K =

l∏
i=1

Lki

}
,

is the inverse image of a semidefinite cone under an affine mapping. To this end, in turn, it
suffices to demonstrate that

(ii) A direct product K = ∏l
i=1 Lki of ice cream cones is an inverse image of a

semidefinite cone under an affine mapping.
Indeed, representing K as {y | Ay − b ∈ Sm+}, we get

Z = {z | Az − b ∈ K} = {z | Âz − B̂ ∈ Sm
+},

where Âz − B̂ = A(Az − b) − B is affine.
In turn, to prove (ii) it suffices to show that

(iii) Every ice cream cone Lk is an inverse image of a semidefinite cone under an
affine mapping.

In fact, the implication (iii) ⇒ (ii) is given by our calculus, since a direct product of
SDr sets is again SDr.18

We have reached the point where no more reductions are necessary, and here is the
demonstration of (iii). The case of k = 1 is trivial: the one-dimensional (1D) ice cream
cone is exactly the same as the 1D semidefinite cone—both are the same nonnegative ray
on the axis! In the case of k > 1 it suffices to observe that(

x

t

)
∈ Lk ⇔ A(x, t) =

(
tIk−1 x

xT t

)
� 0 (4.2.1)

(x is (k−1)-dimensional, t is scalar, Ik−1 is the (k−1)×(k−1) unit matrix). Equation (4.2.1)
indeed resolves the problem, since the matrix A(x, t) is linear in (x, t)! It remains to verify
(4.2.1), which is immediate. If (x, t) ∈ Lk , i.e., if ‖x‖2 ≤ t , then for every y = (

ξ

τ
) ∈ Rk

(ξ is (k − 1)-dimensional, τ is scalar) we have

yT A(x, t)y = τ 2t + 2τxT ξ + tξ T ξ ≥ τ 2t − 2|τ |‖x‖2‖ξ‖2 + t‖ξ‖2
2≥ tτ 2 − 2t |τ |‖ξ‖2 + t‖ξ‖2

2≥ t (|τ | − ‖ξ‖2)
2 ≥ 0,

18Just to recall where the calculus comes from, here is a direct verification. Given a direct product K = ∏l
i=1 Lki

of ice cream cones and given that every factor in the product is the inverse image of a semidefinite cone under an
affine mapping,

Lki = {xi ∈ Rki | Aixi − Bi � 0},
we can represent K as the inverse image of a semidefinite cone under an affine mapping, namely, as

K = {x = (x1, . . . , xl) ∈ Rk1 × · · · × Rkl | Diag(A1xi − B1, . . . ,Alxl − Bl) � 0}.
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so that A(x, t) � 0. Vice versa, if A(t, x) � 0, then of course t ≥ 0. Assuming t = 0, we
immediately obtain x = 0 (since otherwise for y = (

x

0 ) we would have 0 ≤ yT A(x, t)y =
−2‖x‖2

2). Thus, A(x, t) � 0 implies ‖x‖2 ≤ t in the case of t = 0. To see that the same
implication is valid for t > 0, let us set y = (

−x

t
) to get

0 ≤ yT A(x, t)y = txT x − 2txT x + t3 = t (t2 − xT x),

whence ‖x‖2 ≤ t , as claimed.

We see that the expressive abilities of SDP are even richer than those of CQP. In fact
the gap is quite significant. The first new possibility is the ability to handle eigenvalues, and
the importance of this possibility can hardly be overestimated.

Semidefinite-representability of functions of eigenvalues of symmetric matrices.
Our first eigenvalue-related observation is as follows:

18. The largest eigenvalue λmax(X) regarded as a function ofm×m symmetric matrix
X is SDr. Indeed, the epigraph of this function

{(X, t) ∈ Sm × R | λmax(X) ≤ t}
is given by the LMI

tIm − X � 0,

where Im is the unit m × m matrix.
Indeed, the eigenvalues of tIm − X are t minus the eigenvalues of X, so that the

matrix tIm −X is positive semidefinite—all its eigenvalues are nonnegative—if and only if
t majorates all eigenvalues of X.

The latter example admits a natural generalization. LetM,A be two symmetricm×m

matrices, and letM be positive definite. A real λ and a nonzero vector e are called eigenvalue
and eigenvector of the pencil [M,A] if Ae = λMe. (In particular, the usual eigenvalues
and eigenvectors of A are exactly the eigenvalues and eigenvectors of the pencil [Im,A].)
Clearly, λ is an eigenvalue of [M,A] if and only if the matrixλM−A is singular, and nonzero
vectors from the kernel of the latter matrix are exactly the eigenvectors of [M,A] associated
with the eigenvalue λ. The eigenvalues of the pencil [M,A] are the usual eigenvalues of
the matrix M−1/2AM−1/2, as can be concluded from

Det(λM − A) = 0 ⇔ Det(M1/2(λIm − M−1/2AM−1/2)M1/2)

= 0 ⇔ Det(λIm − M−1/2AM−1/2) = 0.

The announced extension of example 18 is as follows.

18.a. The maximum eigenvalue of a pencil. Let M be a positive definite symmetric
m × m matrix, and let λmax(X : M) be the largest eigenvalue of the pencil [M,X], where
X is a symmetric m × m matrix. The inequality

λmax(X : M) ≤ t
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is equivalent to the matrix inequality

tM − X � 0.

In particular, λmax(X : M), regarded as a function of X, is SDr.

18.b. The spectral norm |X| of a symmetric m × m matrix X, i.e., the maximum of
absolute values of the eigenvalues of X, is SDr. Indeed, an SDR of the epigraph

{(X, t) | |X| ≤ t} = {(X, t) | λmax(X) ≤ t, λmax(−X) ≤ t}
of |X| is given by the pair of LMIs

tIm − X � 0, tIm + X � 0.

Despite their simplicity, the indicated results are extremely useful. As a more compli-
cated example, let us build an SDr for the sum of the k-largest eigenvalues of a symmetric
matrix.

From now on, speaking about m × m symmetric matrix X, we denote by λi(X), i =
1, . . . , m, its eigenvalues counted with their multiplicities and arranged in a nonascending
order:

λ1(X) ≥ λ2(X) ≥ · · · ≥ λm(X).

The vector of the eigenvalues (in the indicated order) will be denoted λ(X):

λ(X) = (λ1(X), . . . , λm(X))T ∈ Rm.

The question we are about to address is which functions of the eigenvalues are SDr. We
already know that this is the case for the largest eigenvalue λ1(X). Other eigenvalues cannot
be SDr since they are not convex functions of X. And convexity, of course, is a necessary
condition for SD-representability (cf. Lecture 3). It turns out, however, that the m functions

Sk(X) =
k∑

i=1

λi(X), k = 1, . . . , m,

are convex and, moreover, are SDr:

18.c. Sums of largest eigenvalues of a symmetric matrix. Let X be m×m symmetric
matrix, and let k ≤ m. Then the function Sk(X) is SDr. Specifically, the epigraph

{(X, t) | Sk(x) ≤ t}
of the function admits the SDR

(a) t − ks − Tr(Z) ≥ 0,
(b) Z � 0,
(c) Z − X + sIm � 0,

(4.2.2)

where Z ∈ Sm and s ∈ R are additional variables.
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148 Lecture 4. Semidefinite Programming

We should prove that
(i) If a given pair X, t can be extended, by properly chosen s, Z, to a solution of the

system of LMIs (4.2.2), then Sk(X) ≤ t .
(ii) Conversely, if Sk(X) ≤ t , then the pair X, t can be extended, by properly chosen

s, Z, to a solution of (4.2.2).
To prove (i), we use the following basic fact (see Exercise 4.5(i)):

(A) The vector λ(X) is a �-monotone function of X ∈ Sm:

X � X′ ⇒ λ(X) ≥ λ(X′).

Assuming that (X, t, s, Z) is a solution to (4.2.2), we get X / Z + sIm, so that

λ(X) ≤ λ(Z + sIm) = λ(Z) + s

 1
...

1

 ,

whence

Sk(X) ≤ Sk(Z) + sk.

Since Z � 0 (see (4.2.2)(b)), we have Sk(Z) ≤ Tr(Z), and combining these inequalities we
get

Sk(X) ≤ Tr(Z) + sk.

The latter inequality, in view of (4.2.2)(a)), implies Sk(X) ≤ t , and (i) is proved.
To prove (ii), assume that we are given X, t with Sk(X) ≤ t , and let us set s = λk(X).

Then the k-largest eigenvalues of the matrix X−sIm are nonnegative, and the remaining are
nonpositive. Let Z be a symmetric matrix with the same eigenbasis as X and such that the
k-largest eigenvalues of Z are the same as those of X − sIm and the remaining eigenvalues
are zeros. The matrices Z and Z − X + sIm are clearly positive semidefinite (the first by
construction and the second since in the eigenbasis of X this matrix is diagonal with the first
k diagonal entries being 0 and the remaining being the same as those of the matrix sIm −X,
i.e., nonnegative). Thus, the matrix Z and the real s we have built satisfy (4.2.2)(b) and (c).
To see that (4.2.2)(a) is satisfied as well, note that by construction Tr(Z) = Sk(X) − sk,
whence t − sk − Tr(Z) = t − Sk(X) ≥ 0.

To proceed, we need the following highly useful technical result.

Lemma 4.2.1. Lemma on the Schur complement. Let

A =
(
B CT

C D

)
be a symmetric matrix with k × k block B and l × l block D. Assume that B is positive
definite. Then A is positive (semi-) definite if and only if the matrix

D − CB−1CT

is positive (semi-) definite. (This matrix is called the Schur complement of B in A.)
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Proof. The positive semidefiniteness of A is equivalent to the fact that

0 ≤ (xT , yT )

(
B CT

C D

)(
x

y

)
= xT Bx + 2xT CT y + yTDy ∀x ∈ Rk, y ∈ Rl ,

or, which is the same, to the fact that

inf
x∈Rk

[
xT Bx + 2xT CT y + yTDy

] ≥ 0 ∀y ∈ Rl .

Since B is positive definite by assumption, the infimum in x can be computed explicitly for
every fixed y: the optimal x is −B−1CT y, and the optimal value is

yTDy − yT CB−1CT y = yT [D − CB−1CT ]y.
The positive definiteness or semidefiniteness of A is equivalent to the fact that the latter
expression is, respectively, positive or nonnegative for every y �= 0, i.e., to the positive
definiteness or semidefiniteness of the Schur complement of B in A.

18.d. Determinant of a symmetric positive semidefinite matrix. Let X be a symmetric
positive semidefinite m × m matrix. Although its determinant

Det(X) =
m∏
i=1

λi(X)

is neither a convex nor a concave function of X (if m ≥ 2), it turns out that the function
Detq(X) is concave in X whenever 0 ≤ q ≤ 1

m
. Functions of this type are important in

many volume-related problems (see below). We are about to prove that

if q is a rational number„ 0 ≤ q ≤ 1
m

, then the function

fq(X) =
{−Detq(X), X � 0,

+∞ otherwise

is SDr.

Consider the LMI (
X D

DT D(D)

)
� 0, (D)

where D is m × m lower triangular matrix comprised of additional variables and D(D) is
the diagonal matrix with the same diagonal entries as those of D. Let Dg(D) denote the
vector of the diagonal entries of the square matrix D.

As we know from Lecture 3 (see example 15), the set

{(δ, t) ∈ Rm
+ × R | t ≤ (δ1 . . . δm)

q}
admits an explicit CQR. Consequently, this set admits an explicit SDR as well. The latter
SDR is given by certain LMI S(δ, t; u) � 0, where u is the vector of additional variables of
the SDR and S(δ, t, u) is a matrix affinely depending on the arguments. We claim that
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150 Lecture 4. Semidefinite Programming

(!) The system of LMIs (D) & S(Dg(D), t; u) � 0 is an SDR for the set

{(X, t) | X � 0, t ≤ Detq(X)},

which is basically the epigraph of the function fq (the latter is obtained from our set by
reflection with respect to the plane t = 0).
To support our claim, recall that by linear algebra a matrix X is positive semidefinite if and
only if it can be factorized asX = D̂D̂T with a lower triangular D̂, Dg(D̂) ≥ 0; the resulting
matrix D̂ is called the Choleski factor of X. Now note that if X � 0 and t ≤ Detq(X), then

1. We can extend X by appropriately chosen lower triangular matrix D to a solution
of (D) in such a way that if δ = Dg(D), then

∏m
i=1 δi = Det(X).

Indeed, let D̂ be the Choleski factor of X. Let D̂ be the diagonal matrix with the
same diagonal entries as those of D̂, and let D = D̂D̂, so that the diagonal entries δi of
D are squares of the diagonal entries δ̂i of the matrix D̂: D(D) = D̂2. It follows that for
every ε > 0 one has D[D(D) + εI ]−1DT = D̂D̂[D̂2 + εI ]−1D̂D̂T / D̂D̂T = X. We see
that by the Schur complement lemma all matrices of the form (

X

DT

D

D(D)+εI
) with ε > 0 are

positive semidefinite, whence ( X

DT

D

D(D)
) � 0. Thus, (D) is indeed satisfied by (X,D). And

of course X = D̂D̂T ⇒ Det(X) = Det2(D̂) = ∏m
i=1 δ̂

2
i = ∏m

i=1 δi .
2. Since δ = Dg(D) ≥ 0 and

∏m
i=1 δi = Det(X), we get t ≤ Detq(X) = (

∏m
i=1 δi)

q ,
so that we can extend (t, δ) by a properly chosen u to a solution of the LMI S(Dg(D), t; u) �
0.

We conclude that if X � 0 and t ≤ Detq(X), then one can extend the pair X, t by
properly chosen D and u to a solution of the system of LMIs (D) & S(Dg(D), t; u) � 0,
which is the first part of the proof of (!).

To complete the proof of (!), it suffices to demonstrate that if for a given pair X, t

there exist D and u such that (D) and the LMI S(Dg(D), t; u) � 0 are satisfied, then X

is positive semidefinite and t ≤ Detq(X). This is immediate: denoting δ = Dg(D) [≥ 0]
and applying the Schur complement lemma, we conclude that X � D[D(D) + εI ]−1DT

for every ε > 0. Applying (A), we get λ(X) ≥ λ(D[D(D) + εI ]−1DT ), whence of course
Det(X) ≥ Det(D[D(D) + εI ]−1DT ) = ∏m

i=1 δ
2
i /(δi + ε). Passing to limit as ε → 0, we

get
∏m

i=1 δi ≤ Det(X). On the other hand, the LMI S(δ, t; u) � 0 takes place, which means
that t ≤ (

∏m
i=1 δi)

q . Combining the resulting inequalities, we come to t ≤ Detq(X), as
required.

18.e. Negative powers of the determinant. Let q be a positive rational. Then the
function

f (X) =
{

Det−q(X), X . 0,
+∞ otherwise

of symmetric m × m matrix X is SDr.
The construction is completely similar to the one used in example 18d. As we re-

member from Lecture 3, example 16, the function g(δ) = (δ1 . . . δm)
−q of positive vector

δ = (δ1, . . . , δm)
T is CQr and is therefore SDr as well. Let an SDR of the function be given

by LMI R(δ, t, u) � 0. The same arguments as in example 18d demonstrate that the pair
of LMIs (D) & R(Dg(D), t, u) � 0 is an SDR for f .

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 151

✐

✐

✐

✐

✐

✐

✐

✐

4.2. What can be expressed via linear matrix inequalities? 151

In examples 18, 18.b–18.e we discussed SD-representability of particular functions
of eigenvalues of a symmetric matrix. Here is a general statement of this type.

Proposition 4.2.1. Let g(x1, . . . , xm) : Rm → R ∪ {+∞} be a symmetric (i.e., invariant
with respect to permutations of the coordinates x1, . . . , xm) SDr function:

t ≥ g(x) ⇔ ∃u : S(x, t, u) � 0,

with S affinely depending on x, t, u. Then the function

f (X) = g(λ(X))

of symmetric m × m matrix X is SDr with SDR given by the relation

(a) t ≥ f (X)

,
∃x1, . . . , xm, u :

(b)


S(x1, . . . , xm, t, u) � 0,
x1 ≥ x2 ≥ · · · ≥ xm,

Sj (X) ≤ x1 + · · · + xj , j = 1, . . . , m − 1,
Tr(X) = x1 + · · · + xm

(4.2.3)

(recall that the functions Sj (X) = ∑k
i=1 λi(X) are SDr; see example 18.c). Thus, the

solution set of (b) is SDr (as an intersection of SDr sets), which implies SD-representability
of the projection of this set onto the (X, t)-plane. By (4.2.3) the latter projection is exactly
the epigraph of f ).

The proof of Proposition 4.2.1 is based on an extremely useful result known as
Birkhoff’s theorem; see the exercises to Lecture 4.

As a corollary of Proposition 4.2.1, we see that the following functions of a symmetric
m × m matrix X are SDr:

• f (X) = −Detq(X), X � 0, q ≤ 1
m

, is a positive rational; this fact was already
established directly. (Here g(x1, . . . , xm) = −(x1 . . . xm)

q : Rn+ → R; a CQR (and thus an
SDR) of g is presented in example 15 of Lecture 3.)

• f (x) = Det−q(X), X . 0, q is a positive rational (cf. example 18.e). (Here
g(x1, . . . , xm) = (x1, . . . , xm)

−q : Rm++ → R; a CQR of g is presented in example 16 of
Lecture 3.)

• ‖X‖p = (
∑m

i=1 |λi(X)|p)1/p, p ≥ 1 is rational. (g(x) = ‖x‖p ≡ (
∑m

i=1 |xi |p)1/p;
see Lecture 3, example 17.a.)

• ‖X+‖p = (
∑m

i=1 maxp[λi(X), 0])1/p, p ≥ 1 is rational. (Here g(x) = ‖x+‖p ≡
(
∑m

i=1 maxp[xi, 0])1/p; see Lecture 3, example 17.b.)

Semidefinite representability of functions of singular values. Consider the space Mk,l

of k × l rectangular matrices and assume that k ≤ l. Given a matrix A ∈ Mk,l , consider the
symmetric positive semidefinite k × k matrix (AAT )1/2; its eigenvalues are called singular
values of A and are denoted by σ1(A), . . . σk(A): σi(A) = λi((AA

T )1/2). According to the
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convention on how we enumerate eigenvalues of a symmetric matrix, the singular values
form a nonascending sequence:

σ1(A) ≥ σ2(A) ≥ · · · ≥ σk(A).

The importance of the singular values comes from the singular value decomposition theorem,
which states that a k × l matrix A (k ≤ l) can be represented as

A =
k∑

i=1

σi(A)eif
T
i ,

where {ei}ki=1 and {fi}ki=1 are orthonormal sequences in Rk and Rl , respectively. This is a
surrogate of the eigenvalue decomposition of a symmetric k × k matrix

A =
k∑

i=1

λi(A)eie
T
i ,

where {ei}ki=1 form an orthonormal eigenbasis of A.
Among the singular values of a rectangular matrix, the most important is the largest

σ1(A). This is nothing but the operator (or spectral) norm of A:

|A| = max{‖Ax‖2 | ‖x‖2 ≤ 1}.
For a symmetric matrix, the singular values are exactly the modulae of the eigenvalues, and
our new definition of the norm coincides with the one given in example 18.b.

It turns out that the sum of a given number of the largest singular values of A

Xp(A) =
p∑

i=1

σi(A)

is a convex and, moreover, an SDr function of A. In particular, the operator norm of A is
SDr:

19. The sum Xp(X) of p largest singular values of a rectangular matrix X ∈ Mk,l is
SDr. In particular, the operator norm of a rectangular matrix is SDr:

|X| ≤ t ⇔
(

tIl −XT

−X tIk

)
� 0.

Indeed, the result in question follows from the fact that the sums of p largest eigen-
values of a symmetric matrix are SDr (example 18.c) due to the following observation:

The singular values σi(X) of a rectangular k × l matrix X (k ≤ l) for i ≤ k

are equal to the eigenvalues λi(X̄) of the (k + l) × (k + l) symmetric matrix

X̄ =
(

0 XT

X 0

)
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Since X̄ linearly depends on X, SDRs of the functions Sp(·) induce SDRs of the functions
Xp(X) = Sp(X̄). (This is the rule on affine substitution, Lecture 3. Recall that all calculus
rules established in Lecture 3 for CQRs are valid for SDRs as well.)

Let us justify our observation. Let X = ∑k
i=1 σi(X)eif

T
i be the singular value

decomposition of X. We claim that the 2k (k + l)-dimensional vectors g+
i = (

fi
ei
) and

g−
i = (

fi
−ei

) are orthogonal to each other, and they are eigenvectors of X̄ with the eigenvalues

σi(X) and −σi(X), respectively. Moreover, X̄ vanishes on the orthogonal complement of
the linear span of these vectors. In other words, we claim that the eigenvalues of X̄, arranged
in the nonascending order, are as follows:

σ1(X), σ2(X), . . . , σk(X), 0, . . . , 0︸ ︷︷ ︸
2(l−k)

,−σk(X),−σk−1(X), . . . ,−σ1(X);

this, of course, proves our observation.
Now, the fact that the 2k vectors g±

i , i = 1, . . . , k, are mutually orthogonal and
nonzero is evident. Furthermore (we write σi instead of σi(X)),

(
0 XT

X 0

)(
fi
ei

)
=


0

k∑
j=1

σjfj e
T
j

k∑
j=1

σjejf
T
j 0


(
fi
ei

)

=


k∑

j=1

σjfj (e
T
j ei)

k∑
j=1

σjej (f
T
j fi)


= σi

(
fi
ei

)
.

(We have used that both {fj } and {ej } are orthonormal systems.) Thus, g+
i is an eigenvector

of X̄ with the eigenvalue σi(X). Similar computation shows that g−
i is an eigenvector of X̄

with the eigenvalue −σi(X).
It remains to verify that if h = (

f

e
) is orthogonal to all g±

i (f is l-dimensional, e is k-
dimensional), then X̄h = 0. Indeed, the orthogonality assumption means thatf T fi±eT ei =
0 ∀i, whence eT ei=0 and f T fi = 0 ∀i. Consequently,

(
0 XT

X 0

)(
f

e

)
=


k∑

i=1
σjfj (e

T
j e)

k∑
i=1

σjej (f
T
j f )

 = 0.

Looking at Proposition 4.2.1, we see that the fact that specific functions of eigenvalues
of a symmetric matrix X, namely, the sums Sk(X) of k largest eigenvalues of X, are SDr
underlies the possibility to build SDRs for a wide class of functions of the eigenvalues. The
role of the sums of k largest singular values of a rectangular matrix X is equally important.
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154 Lecture 4. Semidefinite Programming

Proposition 4.2.2. Let g(x1, . . . , xk) : Rk+ → R ∪ {+∞} be a symmetric monotone
function:

0 ≤ y ≤ x ∈ Domf ⇒ f (y) ≤ f (x).

Assume that g is SDr:

t ≥ g(x) ⇔ ∃u : S(x, t, u) � 0

with S affinely depending on x, t, u. Then the function

f (X) = g(σ (X))

of k × l (k ≤ l) rectangular matrix X is SDr, with SDR given by the relation

(a) t ≥ f (X)

,
∃x1, . . . , xk, u :

(b)


S(x1, . . . , xk, t, u) � 0,
x1 ≥ x2 ≥ · · · ≥ xk,

Xj (X) ≤ x1 + · · · + xj , j = 1, . . . , m.

(4.2.4)

Note the difference between the symmetric (Proposition 4.2.1) and the nonsymmetric
(Proposition 4.2.2) situations. In the former the function g(x) was assumed to be SDr and
symmetric only, while in the latter the monotonicity requirement is added.

The proof of Proposition 4.2.2 is outlined in the exercises to Lecture 4.

Nonlinear matrix inequalities. There are several cases when matrix inequalitiesF(x) �
0, where F is a nonlinear function of x taking values in the space of symmetric m × m

matrices, can be linearized—expressed via LMIs.

20.a. General quadratic matrix inequality. Let X be a rectangular k × l matrix and

F(X) = (AXB)(AXB)T + CXD + (CXD)T + E

be a quadratic matrix-valued function of X; here A,B,C,D,E = ET are rectangular
matrices of appropriate sizes. Let m be the row size of the values of F . Consider the
�-epigraph of the (matrix-valued!) function F—the set

{(X, Y ) ∈ Mk,l × Sm | F(X) / Y }.
We claim that this set is SDr with the SDR(

Ir (AXB)T

AXB Y − E − CXD − (CXD)T

)
� 0 (B : l × r).

Indeed, by the Schur complement lemma, our LMI is satisfied if and only if the Schur
complement of the northwestern block is positive semidefinite, which is exactly our original
quadratic matrix inequality.
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20.b. General fractional-quadratic matrix inequality. Let X be a rectangular k × l

matrix and V be a positive definite symmetric l × l matrix. Then we can define the matrix-
valued function

F(X, V ) = XV −1XT ,

taking values in the space of k × k symmetric matrices. We claim that the closure of the
�-epigraph of this (matrix-valued!) function, i.e., the set

E = cl{(X, V ;Y ) ∈ Mk,l × Sl
++ × Sk | F(X, V ) ≡ XV −1XT / Y }

is SDr, and an SDR of this set is given by the LMI(
V XT

X Y

)
� 0. (R)

Indeed, by the Schur complement lemma, a triple (X, V, Y ) with positive definite V

belongs to the epigraph of F—satisfies the relation F(X, V ) / Y—if and only if it satisfies
(R). Now, if a triple (X, V, Y ) belongs to E, i.e., it is the limit of a sequence of triples from
the epigraph of F , then it satisfies (R) (as a limit of triples satisfying (R)). Conversely, if
a triple (X, V, Y ) satisfies (R), then V is positive semidefinite (as a diagonal block in a
positive semidefinite matrix). The regularized triples (X, Vε = V + εIl, Y ) associated with
ε > 0 satisfy (R) along with the triple (X, V,R); since, as we just have seen, V � 0, we
have Vε . 0, for ε > 0. Consequently, the triples (X, Vε, Y ) belong to E (this was our very
first observation). Since the triple (X, V, Y ) is the limit of the regularized triples that, as
we have seen, all belong to the epigraph of F , the triple (X, Y, V ) belongs to the closure E
of this epigraph.

20.c. Matrix inequality Y / (CT X−1C)−1. In the case of scalars x, y the inequality
y ≤ (cx−1c)−1 in variables x, y is just an awkward way to write the linear inequality
y ≤ c−2x, but it leads naturally to the matrix analogy of the original inequality, namely,
Y / (CT X−1C)−1, with rectangular m × n matrix C, variable symmetric n × n matrix Y ,
and m × m matrix X. For the matrix inequality to make sense, we should assume that the
rank of C equals n (and thus m ≥ n). Under this assumption, the matrix (CT X−1C)−1

makes sense at least for a positive definite X. We claim that the closure of the solution set
of the resulting inequality, the set

X = cl{(X, Y ) ∈ Sm × Sn | X . 0, Y / (CT X−1C)−1},
is SDr:

X = {(X, Y ) | ∃Z : Y / Z,Z � 0, X � CZCT }.
Indeed, let us denote by X ′ the set in the right-hand side of the latter relation; we

should prove that X ′ = X . By definition, X is the closure of its intersection with the
domain X . 0. It is clear that X ′ also is the closure of its intersection with the domain
X . 0. Thus, all we need to prove is that a pair (Y,X) with X . 0 belongs to X if and
only if it belongs to X ′.
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156 Lecture 4. Semidefinite Programming

“If” part. Assume that X . 0 and (Y,X) ∈ X ′. Then there exists Z such that
Z � 0, Z � Y , and X � CZCT . Let us choose a sequence Zi . Z such that Zi → Z,
i → ∞. Since CZiC

T → CZCT / X as i → ∞, we can find a sequence of matrices
Xi such that Xi → X, i → ∞, and Xi . CZiC

T ∀i. By the Schur complement lemma,
the matrices (

Xi

CT

C

Z−1
i

) are positive definite; applying this lemma again, we conclude that

Z−1
i � CTX−1

i C. Note that the left-hand and right-hand matrices in the latter inequality
are positive definite. Now let us use the following simple fact.

Lemma 4.2.2. Let U,V be positive definite matrices of the same size. Then

U / V ⇔ U−1 � V −1.

Proof. Note that we can multiply an inequality A / B by a matrix Q from the left and QT

from the right:

A / B ⇒ QAQT / QBQT [A,B ∈ Sm,Q ∈ Mk,m]
(why?). Thus, if 0 ≺ U / V , then V −1/2UV −1/2 / V −1/2VV −1/2 = I (note that V −1/2 =
[V −1/2]T ), whence clearly V 1/2U−1V 1/2 = [V −1/2UV −1/2]−1 � I . Thus, V 1/2U−1V 1/2 �
I . Multiplying this inequality from the left and from the right by V −1/2 = [V −1/2]T , we
get U−1 � V −1.

Applying Lemma 4.2.2 to the inequality Z−1
i � CTX−1

i C[. 0], we get Zi /
(CT X−1

i C)−1. As i → ∞, the left-hand side in this inequality converges to Z, and the
right-hand side converges to (CT X−1C)−1. Hence Z / (CT X−1C)−1, and since Y / Z,
we get Y / (CT X−1C)−1, as claimed.

“Only if” part. Let X . 0 and Y / (CT X−1C)−1; we should prove that there exists
Z � 0 such that Z � Y and X � CZCT . We claim that the required relations are satisfied
by Z = (CT X−1C)−1. The only nontrivial part of the claim is that X � CZCT , and here
is the required justification: by its origin Z . 0 and by the Schur complement lemma the
matrix (Z

−1

C

CT

X
) is positive semidefinite, whence, by the same lemma, X � C(Z−1)−1CT =

CZCT .

Nonnegative polynomials. Consider the problem of the best polynomial approximation—
given a function f on certain interval, we want to find its best uniform (or least squares,
etc.) approximation by a polynomial of a given degree. This problem arises typically as a
subproblem in all kinds of signal processing problems. In some situations the approximat-
ing polynomial is required to be nonnegative (think, e.g., of the case where the resulting
polynomial is an estimate of an unknown probability density). How do we express the
nonnegativity restriction? As shown by Nesterov,19 it can be done via SDP:

For every k, the set of all nonnegative (on the entire axis, or on a given ray, or
on a given segment) polynomials of degrees ≤ k is SDr.

19Y. Nesterov, Squared functional systems and optimization problems, in High Performance Optimization, H.
Frenk, K. Roos, T. Terlaky, S. Zhang, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, 2000,
pp. 405–440.

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 157

✐

✐

✐

✐

✐

✐

✐

✐

4.2. What can be expressed via linear matrix inequalities? 157

In this statement (and everywhere below) we identify a polynomial p(t) = ∑k
i=0 pit

i of
degree (not exceeding) k with the (k+ 1)-dimensional vector Coef(p) = (p0, p1, . . . , pk)

T

of the coefficients of p. Consequently, a set of polynomials of degrees ≤ k becomes a set
in Rk+1, and we may ask whether this set is or is not SDr.

Let us look at the SDRs of different sets of nonnegative polynomials. The key here is
to get an SDR for the set P+

2k(R) of polynomials of (at most) a given degree 2k which are
nonnegative on the entire axis.20

21.a. Polynomials nonnegative on the entire axis. The set P+
2k(R) is SDr—it is the

image of the semidefinite cone Sk+1
+ under the affine mapping

X �→ Coef(eT (t)Xe(t)) : Sk+1 → R2k+1, e(t) =


1
t

t2

. . .

tk

 . (C)

First note that the fact that P+ ≡ P+
2k(R) is an affine image of the semidefinite cone

indeed implies the SD-representability of P+; see the calculus of conic representations in
Lecture 3. Thus, all we need is to show that P+ is exactly the same as the image, let it be
called P , of Sk+1

+ under the mapping (C).
1. The fact thatP is contained inP+ is immediate. Indeed, letX be a (k+1)×(k+1)

positive semidefinite matrix. Then X is a sum of dyadic matrices:

X =
k+1∑
i=1

pi(pi)T , pi = (pi0, pi1, . . . , pik)
T ∈ Rk+1

(why?). But then

eT (t)Xe(t) =
k+1∑
i=1

eT (t)pi[pi]T e(t) =
k+1∑
i=1

 k∑
j=0

pij t
j

2

is the sum of squares of other polynomials and therefore is nonnegative on the axis. Thus,
the image of X under the mapping (C) belongs to P+.

Note that by reversing our reasoning, we get the following result:

(!) If a polynomial p(t) of degree ≤ 2k can be represented as a sum of squares
of other polynomials, then the vector Coef(p) of the coefficients of p belongs
to the image of Sk+1

+ under the mapping (C).

With (!), the remaining part of the proof—the demonstration that the image of Sk+1
+

contains P+—is readily given by the following well-known algebraic fact:

(!!) A polynomial is nonnegative on the axis if and only if it is a sum of squares
of polynomials.

20It is clear why we have restricted the degree to be even: a polynomial of an odd degree cannot be nonnegative
on the entire axis!
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The proof of (!!) is so nice that we cannot resist the temptation to present it here. The
“if” part is evident. To prove the “only if” part, assume that p(t) is nonnegative on the axis,
and let the degree of p (it must be even) be 2k. Now let us look at the roots of p. The
real roots λ1, . . . , λr must be of even multiplicities 2m1, 2m2, . . . , 2mr each (otherwise p

would alter its sign in a neighborhood of a root, which contradicts the nonnegativity). The
complex roots of p can be arranged in conjugate pairs (µ1, µ

∗
1), (µ2, µ

∗
2), . . . , (µs, µ

∗
s ),

and the factor of p

(t − µi)(t − µ∗
i ) = (t − �µi)

2 + (�µi)
2

corresponding to such a pair is a sum of two squares. Finally, the leading coefficient of p
is positive. Consequently, we have

p(t) = ω2[(t − λ1)
2]m1 . . . [(t − λr)

2]mr [(t − µ1)(t − µ∗
1)] . . . [(t − µs)(t − µ∗

s )]
is a product of sums of squares. But such a product is itself a sum of squares (open the
parentheses)!

In fact, we can say more: a nonnegative polynomial p is a sum of just two squares!
To see this, note that, as we have seen, p is a product of sums of two squares and take into
account the following fact (Louville):

The product of sums of two squares is again a sum of two squares:

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2

(Compare with “The modulus of a product of two complex numbers is the product of their
modulae”.)

Equipped with the SDR of the set P+
2k(R) of polynomials nonnegative on the entire

axis, we can immediately obtain SDRs for the polynomials nonnegative on a given ray or
segment:

21.b. Polynomials nonnegative on a ray or segment.
1. The set P+

k (R+) of (coefficients of) polynomials of degree ≤ k which are nonneg-
ative on the nonnegative ray is SDr.

Indeed, this set is the inverse image of the SDr set P+
2k(R) under the linear mapping

of the spaces of (coefficients of) polynomials given by the mapping

p(t) �→ p+(t) ≡ p(t2).

(Recall that the inverse image of an SDr set is SDr.)
2. The set P+

k ([0, 1]) of (coefficients of) polynomials of degree ≤ k which are non-
negative on the segment [0, 1] is SDr.

Indeed, a polynomial p(t) of degree ≤ k is nonnegative on [0, 1] if and only if the
rational function

g(t) = p

(
t2

1 + t2

)
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is nonnegative on the entire axis, or, which is the same, if and only if the polynomial

p+(t) = (1 + t2)kg(t)

of degree ≤ 2k is nonnegative on the entire axis. The coefficients of p+ depend linearly on
the coefficients of p, and we conclude that P+

k ([0, 1]) is the inverse image of the SDr set
P+

2k(R) under certain linear mapping.
Our last example in this series deals with trigonometric polynomials

p(φ) = a0 +
k∑

l=1

[al cos(lφ) + bl sin(lφ)].

Identifying such a polynomial with its vector of coefficients Coef(p) ∈ R2k+1, we
may ask how to express the set S+

k (D) of those trigonometric polynomials of degree ≤ k

which are nonnegative on a segment D ⊂ [−π, π ].

21.c. Trigonometric polynomials nonnegative on a segment. The set S+
k (D) is SDr.

Indeed, sin(lφ) and cos(lφ) are polynomials of sin(φ) and cos(φ), and the latter
functions, in turn, are rational functions of ζ = tan(φ/2):

cos(φ) = 1 − ζ 2

1 + ζ 2
, sin(φ) = 2ζ

1 + ζ 2
[ζ = tan(φ/2)].

Consequently, a trigonometric polynomial p(φ) of degree ≤ k can be represented as a
rational function of ζ = tan(φ/2):

p(φ) = p+(ζ )
(1 + ζ 2)k

[ζ = tan(φ/2)],

where the coefficients of the algebraic polynomial p+ of degree ≤ 2k are linear functions
of the coefficients of p. Now, the requirement for p to be nonnegative on a given segment
D ⊂ [−π, π ] is equivalent to the requirement for p+ to be nonnegative on a segment D+
(which, depending on D, may be the usual finite segment or a ray or the entire axis). We
see that S+

k (D) is an inverse image, under certain linear mapping, of the SDr set P+
2k(D

+),
so that S+

k (D) itself is SDr.
Finally, we may ask which part of the above results can be saved when we pass from

nonnegative polynomials of one variable to those of two or more variables. Unfortunately,
not too much. Among nonnegative polynomials of a given degree with r > 1 variables,
exactly those that are sums of squares can be obtained as the image of a positive semidefinite
cone under certain linear mapping similar to (D). The difficulty is that in the multidimen-
sional case the nonnegativity of a polynomial is not equivalent to its representability as a
sum of squares; thus, the positive semidefinite cone gives only part of the polynomials we
want to describe.

4.3 Applications I: Combinatorics
Due to its tremendous expressive abilities, SDP has an extremely wide spectrum of appli-
cations. We shall overview the most important of these applications. We start with brief
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presentation of what comes from inside mathematics and then continue with engineering
applications. The most important mathematical applications of SDP deal with relaxations
of combinatorial problems.

Combinatorial problems and their relaxations. Numerous problems of planning,
scheduling, routing, etc., can be posed as combinatorial optimization problems, i.e., op-
timization programs with discrete design variables (integer or zero-one). There are several
universal forms of combinatorial problems, among them LP with integer variables and LP
with 0-1 variables. A problem given in one of these forms can always be converted to any
other universal form, so that in principle it does not matter which form is used. Now, the
majority of combinatorial problems are difficult—we do not know theoretically efficient
(in a certain precise meaning of the notion) algorithms for solving these problems. What
we do know is that nearly all these difficult problems are, in a sense, equivalent to each
other and are NP-complete. The exact meaning of the latter notion will be explained in
Lecture 5; for the time being it suffices to say that NP-completeness of a problem P means
that the problem is as difficult as a combinatorial problem can be—if we knew an efficient
algorithm for P , we would be able to convert it to an efficient algorithm for any other com-
binatorial problem. NP-complete problems may look extremely simple, as demonstrated
by the following example:

Given n stones of positive integer weights (i.e., given n positive integers a1,

. . . , an), check whether you can partition these stones into two groups of equal
weight, i.e., check whether a linear equation

n∑
i=1

aixi = 0

has a solution with xi = ±1.

Theoretically difficult combinatorial problems happen to be difficult to solve in prac-
tice as well. An important ingredient in virtually all algorithms for combinatorial opti-
mization is a technique for building bounds for the unknown optimal value of a given
(sub)problem. A typical way to estimate the optimal value of an optimization program

f ∗ = min
x

{f (x) : x ∈ X}

from above is to present a feasible solution x̄; then clearly f ∗ ≤ f (x̄). And a typical way
to bound the optimal value from below is to pass from the problem to its relaxation,

f∗ = min
x

{f (x) : x ∈ X′},

increasing the feasible set: X ⊂ X′. Clearly, f∗ ≤ f ∗, so, whenever the relaxation is
efficiently solvable (to ensure this, we should take care in choosing X′), it provides us with
a computable lower bound on the actual optimal value.

When building a relaxation, one should take care of two issues. On one hand, we
want the relaxation to be efficiently solvable. On the other hand, we want the relaxation to
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4.3. Applications I: Combinatorics 161

be tight. Otherwise the lower bound we get may be by far too optimistic and therefore not
useful. For a long time, the only practical relaxations were the LP ones, since these were the
only problems one could solve efficiently. With recent progress in optimization techniques,
nonlinear relaxations become more practical. As a result, we are witnessing a growing
theoretical and computational activity in the area of nonlinear relaxations of combinatorial
problems. In these developments, most, if not all, deal with semidefinite relaxations. Let
us look how they emerge.

4.3.1 Shor’s semidefinite relaxation scheme

As mentioned, there are numerous universal forms of combinatorial problems. For example,
a combinatorial problem can be posed as minimizing a quadratic objective under quadratic
equality constraints:

minimize in x ∈ Rn f0(x) = xT A0x + 2bT0 x + c0

s.t.
fi(x) = xT Aix + 2bTi x + ci = 0, i = 1, . . . , m.

(4.3.5)

To see that this form is universal, note that it covers the classical universal combinatorial
problem—a generic LP program with Boolean (0-1) variables:

min
x

{
cT x : aTi x − bi ≥ 0, i = 1, . . . , m; xj ∈ {0, 1}, j = 1, . . . , n

}
. (B)

Indeed, the fact that a variable xj must be Boolean can be expressed by the quadratic equality

x2
j − xj = 0,

and a linear inequality aTi x − bi ≥ 0 can be expressed by the quadratic equality aTi x − bi −
s2
i = 0, where si is an additional variable. Thus, (B) is equivalent to the problem

min
x,s

{
cT x : aTi x − bi − s2

i = 0, i = 1, . . . , m; x2
j − xj = 0, j = 1, . . . , n

}
,

and this problem is of the form (4.3.5).
To bound from below the optimal value in (4.3.5), we may use the same technique

we used for building the dual problem. We choose somehow weights λi , i = 1, . . . , m, of
arbitrary signs and add the constraints of (4.3.5) with these weights to the objective, thus
coming to the function

fλ(x) = f0(x) +
m∑
i=1

λifi(x)

= xT A(λ)x + 2bT (λ)x + c(λ),

(4.3.6)D
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162 Lecture 4. Semidefinite Programming

where

A(λ) = A0 +
m∑
i=1

λiAi,

b(λ) = b0 +
m∑
i=1

λibi,

c(λ) = c0 +
m∑
i=1

λici .

By construction, the function fλ(x) is equal to the actual objective f0(x) on the feasible set
of the problem (4.3.5). Consequently, the unconstrained infimum of this function

a(λ) = inf
x∈Rn

fλ(x)

is a lower bound for the optimal value in (4.3.5). We come to the following simple result
(cf. the weak duality theorem):

(∗) Assume that λ ∈ Rm and ζ ∈ R are such that

fλ(x) − ζ ≥ 0 ∀x ∈ Rn (4.3.7)

(i.e., that ζ ≤ a(λ)). Then ζ is a lower bound for the optimal value in (4.3.5).

It remains to clarify what is meant that (4.3.7) holds. Recalling the structure of fλ, we see
that it means that the inhomogeneous quadratic form

gλ(x) = xT A(λ)x + 2bT (λ)x + c(λ) − ζ

is nonnegative on the entire space. Now, an inhomogeneous quadratic form

g(x) = xT Ax + 2bT x + c

is nonnegative everywhere if and only if a certain associated homogeneous quadratic form
is nonnegative everywhere. Indeed, given t �= 0 and x ∈ Rn, the fact that g(t−1x) ≥ 0
means exactly the nonnegativity of the homogeneous quadratic form G(x, t)

G(x, t) = xT Ax + 2tbT x + ct2

with (n+ 1) variables x, t . We see that if g is nonnegative, then G is nonnegative whenever
t �= 0; by continuity, G then is nonnegative everywhere. Thus, if g is nonnegative, then
G is, and of course vice versa (since g(x) = G(x, 1)). Now, to say that G is nonnegative
everywhere is literally the same as to say that the matrix(

c bT

b A

)
(4.3.8)

is positive semidefinite.
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It is worthwhile to catalogue our simple observation:

Simple lemma. A quadratic inequality with a (symmetric) n × n matrix A

xTAx + 2bT x + c ≥ 0

is identically true—is valid for all x ∈ Rn—if and only if the matrix (4.3.8) is
positive semidefinite.

Applying this observation to gλ(x), we get the following equivalent reformulation of
(*):

If (λ, ζ ) ∈ Rm × R satisfy the LMI
m∑
i=1

λici − ζ, bT0 +
m∑
i=1

λib
T
i

b0 +
m∑
i=1

λibi, A0 +
m∑
i=1

λiAi

 � 0,

then ζ is a lower bound for the optimal value in (4.3.5).

Now, what is the best lower bound we can get with this scheme? Of course, it is the optimal
value of the semidefinite program

max
ζ,λ

ζ :


c0 +

m∑
i=1

λici − ζ, bT0 +
m∑
i=1

λib
T
i

b0 +
m∑
i=1

λibi, A0 +
m∑
i=1

λiAi

 � 0

 . (4.3.9)

We have proved the following simple proposition.

Proposition 4.3.1. The optimal value in (4.3.9) is a lower bound for the optimal value in
(4.3.5).

The outlined scheme is extremely transparent, but it looks different from a relaxation
scheme as explained above—where is the extension of the feasible set of the original prob-
lem? In fact the scheme is of this type. To see it, note that the value of a quadratic form
at a point x ∈ Rn can be written as the Frobenius inner product of a matrix defined by the
problem data and the dyadic matrix X(x) = (

1
x
)(

1
x
)T :

xT Ax + 2bT x + c =
(

1
x

)T (
c bT

b A

)(
1
x

)
= Tr

((
c bT

b A

)
X(x)

)
.

Consequently, (4.3.5) can be written as

min
x

{
Tr

((
c0 bT0
b0 A0

)
X(x)

)
: Tr

((
ci bTi
bi Ai

)
X(x)

)
= 0, i = 1, . . . , m

}
. (4.3.10)
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B

C

D

E

A

Figure 4.1. Graph C5.

Thus, we may think of (4.3.6) as a problem with linear objective and linear equality con-
straints and with the design vector X that is a symmetric (n + 1) × (n + 1) matrix running
through the nonlinear manifold X of dyadic matrices X(x), x ∈ Rn. Obviously, all points
of X are positive semidefinite matrices with northwestern entry 1. Now let X̄ be the set of
all such matrices. Replacing X by X̄ , we get a relaxation of (4.3.10), which is essentially
our original problem (4.3.5). This relaxation is the semidefinite program

min
X

{
Tr(Ā0X) : Tr(ĀiX) = 0, i = 1, . . . , m;X � 0;X11 = 1

}
,[

Ai =
(
ci bTi
bi Ai

)
, i = 1, . . . , m

]
.

(4.3.11)

We get the following proposition.

Proposition 4.3.2. The optimal value of the semidefinite program (4.3.11) is a lower
bound for the optimal value in (4.3.5).

One can easily verify that problem (4.3.9) is just the semidefinite dual of (4.3.11);
thus, when deriving (4.3.9), we were in fact implementing the idea of relaxation. This is
why in the sequel we call both (4.3.11) and (4.3.9) semidefinite relaxations of (4.3.5). Let
us look at several interesting examples.

4.3.2 Stability number, Shannon capacity, and Lovasz capacity of
a graph

Stability number of a graph. Consider a (nonoriented) graph—a finite set of nodes linked
by arcs,21 like the simple five-node graph C5 shown in Fig. 4.1. One of the fundamental
characteristics of a graph 
 is its stability number α(
), defined as the maximum cardinality
of an independent subset of nodes—a subset such that no two nodes from it are linked by
an arc. The stability number for the graph C5 is, e.g., 2, and a maximal independent set is,
e.g., {A; C}.

21One of the formal definitions of a (nonoriented) graph is as follows. An n-node graph is just an n×n symmetric
matrix A with entries 0, 1 and zero diagonal. The rows (and the columns) of the matrix are identified with the
nodes 1, 2, . . . , n of the graph, and the nodes i, j are adjacent (i.e., linked by an arc) exactly for those i, j with
Aij = 1.
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The problem of computing the stability number of a given graph is NP-complete. This
is why it is important to know how to bound this number.

Shannon capacity of a graph. An upper bound on the stability number of a graph which
is interesting by its own right is the Shannon capacity ϑ(
), defined as follows.

Let us treat the nodes of 
 as letters of a certain alphabet and the arcs as possible
errors in a certain communication channel: you can send through the channel one letter per
unit time, and what arrives on the other end of the channel can be either the letter you have
sent or any letter adjacent to it. Now assume that you are planning to communicate with an
addressee through the channel by sending n-letter words (n is fixed). You fix in advance a
dictionary Dn of words to be used and make this dictionary known to the addressee. What
you are interested in when building the dictionary is to get a good one, meaning that no
word from it could be transformed by the channel into another word from the dictionary.
If your dictionary satisfies this requirement, you may be sure that the addressee will never
misunderstand you: whatever word from the dictionary you send and whatever possible
transmission errors occur, the addressee is able either to get the correct message or to realize
that the message was corrupted during transmission, but there is no risk that your “yes”
will be read as “no”! Now, to utilize the channel at full capacity, you want to get as large
a dictionary as possible. How many words can it include? The answer is clear: this is
precisely the stability number of the graph 
n as follows. The nodes of 
n are ordered
n-element collections of the nodes of 
—all possible n-letter words in your alphabet; two
distinct nodes (i1, . . . , in), (j1, . . . , jn) are adjacent in 
n if and only if for every l the lth
letters il and jl in the two words either coincide or are adjacent in
 (i.e., two distinct n-letter
words are adjacent, if the transmission can convert one of them into the other one). Let us
denote the maximum number of words in a good dictionary Dn (i.e., the stability number
of 
n) by f (n), The function f (n) possesses the following nice property:

f (k)f (l) ≤ f (k + l), k, l = 1, 2, . . . . (∗)
Indeed, given the best (of the cardinality f (k)) good dictionary Dk and the best good

dictionary Dl , let us build a dictionary made up of all (k + l)-letter words as follows: the
initial k-letter fragment of a word belongs toDk , and the remaining l-letter fragment belongs
toDl . The resulting dictionary is clearly good and contains f (k)f (l)words, and (*) follows.

Now, this is a simple exercise in analysis to see that for a nonnegative function f with
property (*) one has

lim
k→∞(f (k))1/k = sup

k≥1
(f (k))1/k ∈ [0,+∞].

In our situation supk≥1(f (k))
1/k < ∞, since clearly f (k) ≤ nk , n being the number of

letters (the number of nodes in 
). Consequently, the quantity

ϑ(
) = lim
k→∞(f (k))1/k

is well defined. Moreover, for every k the quantity (f (k))1/k is a lower bound for ϑ(
).
The number ϑ(
) is called the Shannon capacity of 
. Our immediate observation is as
follows.
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AA

AB
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BD
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EB

EC

ED

EE

Figure 4.2. Graph (C5)
2.

(B) The Shannon capacity ϑ(
) majorates the stability number of 
:

α(
) ≤ ϑ(
).

Indeed, as we remember, (f (k))1/k is a lower bound for ϑ(
) for every k = 1, 2, . . .;
setting k = 1 and taking into account that f (1) = α(
), we get the desired result.

We see that the Shannon capacity number is an upper bound on the stability number,
and this bound has a nice interpretation in terms of the information theory. The bad news is
that we do not know how to compute the Shannon capacity. For example, what is it for the
toy graph C5?

The stability number of C5 clearly is 2, so our first observation is that

ϑ(C5) ≥ α(C5) = 2.

To get a better estimate, let us look the graph (C5)
2 (as we remember, ϑ(
) ≥ (f (k))1/k =

(α(
k))1/k for every k). The graph (C5)
2 has 25 nodes and 124 arcs and is shown in Fig. 4.2.

With some effort, you can check that the stability number of (C5)
2 is 5; a good five-element

dictionary (≡ a five-node independent set in (C5)
2) is, e.g., AA,BC,CE,DB,ED. Thus,

we get

ϑ(C5) ≥
√
α((C5)2) = √

5.

Attempts to compute the subsequent lower bounds (f (k))1/k , as long as they are imple-
mentable (think how many vertices there are in (C5)

8!), do not yield any improvements, and
for more than 20 years it remained unknown whether ϑ(C5) = √

5 or is >
√

5. And this is
for a toy graph! The breakthrough in the area of upper bounds for the stability number is
due to Lovasz, who in the early 1970s found a new—computable!—bound of this type.
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Lovasz capacity number. Given an n-node graph 
, let us associate with it an affine
matrix-valued function L(x) taking values in the space of n×n symmetric matrices, namely,
as follows:

• For every pair i, j of indices (1 ≤ i, j ≤ n) such that the nodes i and j are not linked
by an arc, the ij th entry of L is equal to 1.

• For a pair i < j of indices such that the nodes i, j are linked by an arc, the ij th and
the jith entries in L are equal to xij—to the variable associated with the arc (i, j).

Thus, L(x) is indeed an affine function of N design variables xij , where N is the
number of arcs in the graph. For example, for graph C5 the function L is as follows:

L =


1 xAB 1 1 xEA

xAB 1 xBC 1 1
1 xBC 1 xCD 1
1 1 xCD 1 xDE

xEA 1 1 xDE 1

 .

Now, the Lovasz capacity number Z(
) is defined as the optimal value of the optimization
program

min
x

{λmax(L(x))} ,

i.e., as the optimal value in the semidefinite program

min
λ,x

{λ : λIn − L(x) � 0} . (L)

Proposition 4.3.3. The Lovasz capacity number is an upper bound for the Shannon
capacity,

Z(
) ≥ ϑ(
),

and, consequently, for the stability number:

Z(
) ≥ ϑ(
) ≥ α(
).

For the graph C5, the Lovasz capacity can be easily computed analytically and turns
out to be exactly

√
5. Thus, a small byproduct of Lovasz’s result is a solution of the problem

that remained open for two decades.
Let us see how the Lovasz bound on the stability number can be obtained from the

general relaxation scheme. To this end note that the stability number of an n-node graph 


is the optimal value of the following optimization problem with 0-1 variables:

max
x

{
eT x : xixj = 0 whenever i, j are adjacent nodes, xi ∈ {0, 1}, i = 1, . . . , n

}
,

e = (1, . . . , 1)T ∈ Rn.

Indeed, 0-1 n-dimensional vectors can be identified with sets of nodes of 
: the coordinates
xi of the vector x representing a set A of nodes are ones for i ∈ A and zeros otherwise. The
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quadratic equality constraints xixj = 0 for such a vector express equivalently the fact that
the corresponding set of nodes is independent, and the objective eT x counts the cardinality
of this set.

As we remember, the 0-1 restrictions on the variables can be represented equivalently
by quadratic equality constraints, so that the stability number of 
 is the optimal value
of the following problem with quadratic (in fact, linear) objective and quadratic equality
constraints:

maximize eT x

s.t.
xixj = 0, (i, j) is an arc,

x2
i − xi = 0, i = 1, . . . , n.

(4.3.12)

The latter problem is in the form of (4.3.5); the only difference is that the objective should be
maximized rather than minimized. Switching from maximization of eT x to minimization
of (−e)T x and passing to (4.3.9), we get the problem

max
ζ,µ

{
ζ :

( −ζ − 1
2 (e + µ)T

− 1
2 (e + µ) A(µ, λ)

)
� 0

}
,

where µ is n-dimensional and A(µ, λ) is as follows:

• The diagonal entries of A(µ, λ) are µ1, . . . , µn.

• The off-diagonal cells ij corresponding to nonadjacent nodes i, j (empty cells) are
zeros.

• The off-diagonal cells ij , i < j , and the symmetric cells ji corresponding to adjacent
nodes i, j (arc cells) are filled with free variables λij .

Note that the optimal value in the resulting problem is a lower bound for minus the optimal
value of (4.3.12), i.e., for minus the stability number of 
.

Passing in the resulting problem from the variable ζ to a new variable ξ = −ζ and
again switching from maximization of ζ = −ξ to minimization of ξ , we end up with the
semidefinite program

min
ξ,λ,µ

{
ξ :

(
ξ, − 1

2 (e + µ)T

− 1
2 (e + µ), A(µ, λ)

)
� 0

}
. (4.3.13)

The optimal value in this problem is the minus optimal value in the previous one, which, in
turn, is a lower bound on the minus stability number of 
; consequently, the optimal value
in (4.3.13) is an upper bound on the stability number of 
.

We have built a semidefinite relaxation (4.3.13) of the problem of computing the
stability number of 
; the optimal value in the relaxation is an upper bound on the stability
number. To get the Lovasz relaxation, let us further fix the µ-variables at level 1. (This may
only increase the optimal value in the problem, so that it still will be an upper bound for the
stability number.)22 With this modification, we come to the problem

min
ξ,λ

{
ξ :

(
ξ −eT

−e A(e, λ)

)
� 0

}
.

22In fact, setting µi = 1, we do not vary the optimal value at all. See Exercise 4.32.
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In every feasible solution to the problem, ξ should be ≥ 1 (it is an upper bound forα(
) ≥ 1).
When ξ ≥ 1, the LMI (

ξ −eT

e A(e, λ)

)
� 0

by the Schur complement lemma is equivalent to the LMI

A(e, λ) � (−e)ξ−1(−e)T

or, which is the same, to the LMI

ξA(e, λ) − eeT � 0.

The left-hand-side matrix in the latter LMI is equal to ξIn − B(ξ, λ), where the matrix
B(ξ, λ) is as follows:

• The diagonal cells of B(ξ, λ) and the off-diagonal empty cells are filled with ones.

• The entries in arc cells ij , ji (i < j ) are equal to 1 − ξλij . (i < j ) are filled with
ξλij .

Passing from the design variables λ to the new ones xij = 1 − ξλij , we conclude that
problem (4.3.13) with µ’s set to ones is equivalent to the problem

min
ξ,x

{ξ → min | ξIn − L(x) � 0} ,

whose optimal value is exactly the Lovasz capacity number of 
.
As a byproduct of our derivation, we get the easy part of the Lovasz Theorem—the

inequality Z(
) ≥ α(
). This inequality, however, could be easily obtained directly from
the definition of Z(
). The advantage of our derivation is that it demonstrates the origin of
Z(
).

How good is the Lovasz capacity number? The Lovasz capacity number plays a crucial
role in numerous graph-related problems. There is an important subfamily of graphs—
perfect graphs—for which this number coincides with the stability number. However, for a
general-type graph 
, Z(
) may be a fairly poor bound for α(
). Lovasz has proved that
for any graph 
 with n nodes, Z(
)Z(
̂) ≥ n, where 
̂ is the complement to 
 (i.e., two
distinct nodes are adjacent in 
̂ if and only if they are not adjacent in 
). It follows that for
n-node graph 
 one always has max[Z(
),Z(
̂)] ≥ √

n. On the other hand, it turns out
that for a random n-node graph 
 (the arcs are drawn at random and independently of each
other, with probability 0.5 to draw an arc linking two given distinct nodes) max[α(
), α(
̂)]
is typically (with probability approaching 1 as n grows) of order of ln n. It follows that for
randomn-node graphs a typical value of the ratioZ(
)/α(
) is at least of order ofn1/2/ ln n;
as n grows, this ratio blows up to ∞.

A natural question arises: Are there difficult (NP-complete) combinatorial problems
admitting good semidefinite relaxations—those with the quality of approximation not de-
teriorating as the sizes of instances grow? Let us look at two recent breakthrough results in
this direction.
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4.3.3 MAXCUT problem

The MAXCUT (maximum cut) problem is as follows.

Problem 4.3.1. Let
 be an n-node graph, and let the arcs (i, j) of the graph be associated
with nonnegative weights aij . The problem is to find a cut of the largest possible weight,
i.e., to partition the set of nodes into two parts S, S ′ in such a way that the total weight of all
arcs linking S and S ′ (i.e., with one incident node in S and the other one in S ′) is as large
as possible.

In the MAXCUT problem, we may assume that the weights aij = aji ≥ 0 are defined for
every pair i, j of indices; it suffices to set aij = 0 for pairs i, j of nonadjacent nodes.

In contrast to the minimum cut problem (where we should minimize the weight of
a cut instead of maximizing it), which is, basically, a nice LP program of finding the
maximum flow in a net and is therefore efficiently solvable, the MAXCUT problem is as
difficult as a combinatorial problem can be—it is NP-complete. However, it is easy to build
a semidefinite relaxation of MAXCUT. To this end let us pose MAXCUT as a quadratic
problem with quadratic equality constraints. Let 
 be an n-node graph. A cut (S, S ′)—
a partitioning of the set of nodes in two disjoint parts S, S ′—can be identified with an
n-dimensional vector x with coordinates ±1 – xi = 1 for i ∈ S, xi = −1 for i ∈ S ′. The
quantity 1

2

∑n
i,j=1 aij xixj is the total weight of arcs with both ends either in S or in S ′ minus

the weight of the cut (S, S ′). Consequently, the quantity

1

2

1

2

n∑
i,j=1

aij − 1

2

n∑
i,j=1

aij xixj

 = 1

4

n∑
i,j=1

aij (1 − xixj )

is exactly the weight of the cut (S, S ′).
We conclude that the MAXCUT problem can be posed as the following quadratic

problem with quadratic equality constraints:

max
x

1

4

n∑
i,j=1

aij (1 − xixj ) : x2
i = 1, i = 1, . . . , n

 . (4.3.14)

For this problem, the semidefinite relaxation (4.3.11) after evident simplifications becomes
the semidefinite program

maximize 1
4

n∑
i,j=1

aij (1 − Xij )

s.t.
X = [Xij ]ni,j=1 = XT � 0,

Xii = 1, i = 1, . . . , n.

(4.3.15)

The optimal value in the latter problem is an upper bound for the optimal value of MAXCUT.
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The fact that (4.3.15) is a relaxation of (4.3.14) can be established directly, indepen-
dently of any general theory: (4.3.14) is the problem of maximizing the objective

1

4

n∑
i,j=1

aij − 1

2

n∑
i,j=1

aij xixj ≡ 1

4

n∑
i,j=1

aij − 1

4
Tr(AX(x)), X(x) = xxT ,

over all rank-1 matrices X(x) = xxT given by n-dimensional vectors x with entries ±1.
All these matrices are symmetric positive semidefinite with unit entries on the diagonal, i.e.,
they belong to the feasible set of (4.3.15). Thus, (4.3.15) indeed is a relaxation of (4.3.14).

The quality of the semidefinite relaxation (4.3.15) is given by the following brilliant
result of Goemans and Williamson.23

Theorem 4.3.1. Let OPT be the optimal value of the MAXCUT problem (4.3.14) and SDP
be the optimal value of the semidefinite relaxation (4.3.15). Then

1 ≥ OPT

SDP
≥ 0.87856 . . . . (4.3.16)

The reasoning used by Goemans and Williamson is so beautiful that it is impossible
not to reproduce it here:

The left inequality in (4.3.16) is what we already know—it simply says that semidef-
inite program (4.3.15) is a relaxation of MAXCUT. To get the right inequality, Goemans
and Williamson act as follows. Let X = [Xij ] be a feasible solution to the semidefinite
relaxation. SinceX is positive semidefinite, it is the Gram matrix of a collection of n vectors
v1, . . . , vn:

Xij = vTi vj .

And since all Xii are equal to 1, the vectors vi are of the unit Euclidean norm. Given X,
we can easily find vi’s (e.g., via the Choleski decomposition of X). Now let us look at
the following procedure for generating random cuts of the graph. We choose at random,
according to the uniform distribution on the unit sphere in Rn, a unit vector v and build the
cut

S = {i | vT vi ≥ 0}.
What is the expected value of the weight of this random cut? The expected contribution
of a particular pair i, j to the expected weight of our random cut is 1

4aij times twice the
probability of the event that the nodes i and j will be separated by v, i.e., that the products
vT vi and vT vj will have opposite signs. By elementary arguments, the probability of this
event is just twice the ratio of the angle between the vectors vi and vj to 2π , as is seen in
Fig. 4.3. Thus, the expected contribution of a pair i, j to the expected weight of our random

cut is 1
2aij

acos(vTi vj )
π

, and the expected weight of the random cut is

W [X] = 1

2

n∑
i,j=1

aij
acos(Xij )

π
.

23M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115—1145.
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A

B

A’

B’

O
φ

φ

φ

v1

v2

Figure 4.3. Computing the expected weight of random cut. w is the projection
of v on the 2D plane spanned by v1 and v2. The direction of w is uniformly distributed in
[0, 2π ], and v separates v1 and v2 exactly when w belongs to one of the angles AOB, A′OB′.

Comparing the right-hand side term by term with the value

f (X) = 1

4

n∑
i,j=1

aij (1 − Xij )

of the objective in the relaxed problem (4.3.15) at X and taking into account that aij ≥ 0
and that for x ∈ [−1, 1] one has

acos(x)

π
≥ α

1

2
(1 − x), α = 0.87856 . . . ,

we come to

W [X] ≥ αf (X).

This inequality is valid for every feasible solution X of the semidefinite relaxation, in
particular, for the optimal solution X∗. We conclude that already the expectation of the
weight of random cut generated from X∗ is at least α SDP; the maximum possible weight
OPT of a cut may be only larger than this expectation, so that OPT/SDP ≥ α = 0.87856.

Note that the above construction not only provides a proof of Theorem 4.3.1 but offers
a randomized algorithm for constructing a random cut that, on average, has weight at least
0.87856 of OPT . Indeed, it suffices to solve the semidefinite relaxation (4.3.15). (This can
be done efficiently, if we will be satisfied with an ε-solution—a feasible X such that the
value of the objective of (4.3.15) at X is at least (1 − ε) · SDP—with a once forever fixed
ε > 0, say, with ε =1.e-6.) After a (nearly) optimal solution X to (4.3.15) is found, we
use it to generate random cuts, as explained in the above construction.

4.3.4 Extensions

In the MAXCUT problem, we are in fact maximizing the homogeneous quadratic form

xT Ax ≡
n∑

i=1

 n∑
j=1

aij

 x2
i −

n∑
i,j=1

aij xixjD
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over the set Sn of n-dimensional vectors x with coordinates ±1. The matrix A of this form
is positive semidefinite (Exercise 4.2) and possesses a specific feature that the off-diagonal
entries are nonpositive, while the sum of the entries in every row is 0. What happens
when we maximize over Sn a quadratic form xT Ax with a general-type (symmetric) matrix
A? An extremely nice result in this direction was recently obtained by Nesterov. The
cornerstone of Nesterov’s construction relates to the case when A is positive semidefinite,
and this is the case we shall focus on. Note that the problem of maximizing a quadratic form
xT Ax with positive semidefinite (and, say, integer) matrix A over Sn, same as MAXCUT,
is NP-complete.

The semidefinite relaxation of the problem

max
x

{
xT Ax : x ∈ Sn [⇔ xi ∈ {−1, 1}, i = 1, . . . , n]} (4.3.17)

can be built in exactly the same way as (4.3.15) and turns out to be the semidefinite program

maximize Tr(AX)

s.t.
X = XT = [Xij ]ni,j=1 � 0

Xii = 1, i = 1, . . . , n.

(4.3.18)

The optimal value in this problem, let it again be called SDP, is ≥ the optimal value OPT
in the original problem (4.3.17). The ratio OPT/SDP, however, cannot be too large.

Theorem 4.3.2. Nesterov’s theorem. Let A be positive semidefinite. Then

SDP ≥ OPT ≥ 2

π
SDP [2/π = 0.6366 . . .].

The proof utilizes the central idea of Goemans and Williamson in the following bril-
liant reasoning.

The inequality SDP ≥ OPT is valid since (4.3.18) is a relaxation of (4.3.17). Let X
be a feasible solution to the relaxed problem; then Xij = vTi vj for a system of unit vectors
v1, . . . , vn. Similar to the MAXCUT construction, we associate with this representation
of X a random generator of vectors from Sn: choosing a direction v uniformly on the unit
sphere, we build vector x with the ±1-coordinates

xi = sign(vT vi),

where sign(a) is +1 for a ≥ 0 and is −1 for a < 0. The expected value of the objective
xT Ax of (4.3.17) over the generated points x is

V =
n∑

i,j=1

aijEv{sign(vT vi)sign(vT vj )},

where Ev denotes the expectation taken with respect to v uniformly distributed over the
unit sphere. The expectation Ev{sign(vT vi)sign(vT vj )} can be easily computed: when
projecting v on the 2D plane spanned by vi, vj , we get a vector w with the direction
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uniformly distributed in [0, 2π ], and the expectation in question is the probability for w to
have inner products with vi and vj of the same sign (i.e., to belong to the union of angles
AOA′ and BOB′ in Fig. 4.3) minus probability to have inner products with vi and vj of
opposite signs (i.e., to belong to the union of the angles AOB and A′OB′). The indicated
difference is

1

2π

[
2π − 4acos(vTi vj )

] = 2

π
asin(vTi vj ) = 2

π
asin(Xij ).

Thus,

V = 2

π

n∑
i,j=1

aijasin(Xij ).

Recalling thatV is the expected value of the objective in (4.3.17) with respect to certain prob-
ability distribution on the feasible set Sn of the problem, we get V ≤ OPT . Summarizing,
we have proved the following lemma.

Lemma 4.3.1. Let X be a feasible solution to (4.3.18). Then the optimal value OPT in
(4.3.17) satisfies the relation

OPT ≥ 2

π

n∑
i,j=1

aijasin(Xij ).

Consequently,

OPT ≥ 2

π
max {Tr(Aasin[X]) | X � 0, Xii = 1, i = 1, . . . , n} , (4.3.19)

where asin[X] is the matrix with the elements asin(Xij ).

Nesterov completes the proof by the following unexpected, although simple, obser-
vation.

For a positive semidefinite symmetric matrix X with diagonal entries ±1 (in
fact, for any positive semidefinite X with |Xij | ≤ 1), one has

asin[X] � X.

The proof of the observation is immediate. Denoting by [X]k the matrix with the
entries Xk

ij and making use of the Taylor series for the asin (this series converges uniformly
on [−1, 1]), for a matrix X with all entries belonging to [−1, 1], we get

asin[X] − X =
∞∑
k=1

1 · 3 · 5 · · · · · (2k − 1)

2kk!(2k + 1)
[X]2k+1,D
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and all we need is to note is that all matrices in the left-hand side are � 0 along with X.24

The above observation, in view of the fact that A is positive semidefinite, implies that

n∑
i,j=1

aijasin(Xij ) = Tr(Aasin[X]) ≥ Tr(AX)

for every feasible solution X of the semidefinite relaxation (4.3.18). Hence, the expression
in the right-hand side of (4.3.19) is at least 2

π
SDP.

Note that in fact the inequality in (4.3.19) is equality (see Exercise 4.39).

4.3.5 S-lemma

Let us look again at the Lagrange relaxation of a quadratically constrained quadratic problem,
but in the very special case when all the forms involved are homogeneous and the right-hand
sides of the inequality constraints are zero:

minimize xT Bx

s.t. xT Aix ≥ 0, i = 1, . . . , m
(4.3.20)

(B,A1, . . . , Am are given symmetric m×m matrices). Assume that the problem is feasible.
In this case (4.3.20) is, at a first glance, a trivial problem: due to homogeneity, its optimal
value is either +∞ or 0, depending on whether there exists or does not exist a feasible vector
x such that xT Bx < 0. The challenge here is to detect which one of these two alternatives
takes place, i.e., to understand whether or not a homogeneous quadratic inequalityxT Bx ≥ 0
is a consequence of the system of homogeneous quadratic inequalities xT Aix ≥ 0 or, which
is the same, to understand when the implication

(a) xT Aix ≥ 0, i = 1, . . . , m
⇓

(b) xT Bx ≥ 0
(4.3.21)

holds true.
In the case of homogeneous linear inequalities it is easy to recognize when an in-

equality xT b ≥ 0 is a consequence of the system of inequalities xT ai ≥ 0, i = 1, . . . , m:
by the Farkas lemma, it is the case if and only if the inequality is a linear consequence of
the system, i.e., if b is representable as a linear combination, with nonnegative coefficients,
of the vectors ai . Now we are asking a similar question about homogeneous quadratic
inequalities: When is (b) a consequence of (a)?

In general, there is no analogy of the Farkas lemma for homogeneous quadratic in-
equalities. Note, however, that the easy “if” part of the lemma can be extended to the

24That the entrywise product of two positive semidefinite matrices is positive semidefinite is a standard fact from
linear algebra. The easiest way to understand it is to note that if P,Q are positive semidefinite symmetric matrices
of the same size, then they are Gram matrices: Pij = pT

i pj for certain system of vectors pi from certain (no matter
from which exactly) RN and Qij = qTi qj for a system of vectors qi from certain RM . But then the entrywise
product of P and Q—the matrix with the entries PijQij = (pT

i pj )(q
T
i qj )—also is a Gram matrix, namely, the

Gram matrix of the matrices piq
T
i ∈ MN,M = RNM . Since every Gram matrix is positive semidefinite, the

entrywise product of P and Q is positive semidefinite.
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quadratic case: if the target inequality (b) can be obtained by linear aggregation of the
inequalities (a) and a trivial—identically true—inequality, then the implication in question
is true. Indeed, a linear aggregation of the inequalities (a) is an inequality of the type

xT

(
m∑
i=1

λiAi

)
x ≥ 0

with nonnegative weights λi , and a trivial—identically true—homogeneous quadratic in-
equality is of the form

xTQx ≥ 0

with Q � 0. The fact that (b) can be obtained from (a) and a trivial inequality by linear
aggregation means that B can be represented as B = ∑m

i=1 λiAi + Q with λi ≥ 0, Q � 0,
or, which is the same, if B � ∑m

i=1 λiAi for certain nonnegative λi . If this is the case, then
(4.3.21) is trivially true. We have arrived at the following simple proposition.

Proposition 4.3.4. Assume that there exist nonnegative λi such that B � ∑
i λiAi . Then

the implication (4.3.21) is true.

Proposition 4.3.4 is no more than a sufficient condition for the implication (4.3.21)
to be true, and in general this condition is not necessary. There is, however, an extremely
fruitful particular case when the condition is both necessary and sufficient—this is the case
of m = 1, i.e., a single quadratic inequality in the premise of (4.3.21).

Theorem 4.3.3. S-lemma. Let A,B be symmetric n × n matrices, and assume that the
quadratic inequality

xT Ax ≥ 0 (A)

is strictly feasible: there exists x̄ such that x̄T Ax̄ > 0. Then the quadratic inequality

xT Bx ≥ 0 (B)

is a consequence of (A) if and only if it is a linear consequence of (A), i.e., if and only if
there exists a nonnegative λ such that

B � λA.

We are about to present an intelligent proof of the S-lemma based on the ideas of
semidefinite relaxation. (For a straightforward proof, see the exercises to Lecture 4.)

In view of Proposition 4.3.4, all we need is to prove the “only if” part of the S-lemma,
i.e., to demonstrate that if the optimization problem

min
x

{
xT Bx : xT Ax ≥ 0

}
is strictly feasible and its optimal value is ≥ 0, then B � λA for certain λ ≥ 0. By
homogeneity reasons, it suffices to prove exactly the same statement for the optimization
problem

min
x

{
xT Bx : xT Ax ≥ 0, xT x = n

}
. (P)
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The standard semidefinite relaxation of (P) is the problem

min
X

{Tr(BX) : Tr(AX) ≥ 0,Tr(X) = n,X � 0} . (P′)

If we could show that when passing from the original problem (P) to the relaxed problem
(P′) the optimal value (which was nonnegative for (P)) remains nonnegative, we would be
done. Indeed, observe that (P′) is clearly bounded below (its feasible set is compact!) and is
strictly feasible (which is an immediate consequence of the strict feasibility of (A)). Thus,
by the conic duality theorem the problem dual to (P′) is solvable with the same optimal
value (let it be called nθ∗) as the one in (P′). The dual problem is

max
µ,λ

{nµ : λA + µI / B, λ ≥ 0} ,

and the fact that its optimal value is nθ∗ means that there exists a nonnegative λ such that

B � λA + nθ∗I.

If we knew that the optimal value nθ∗ in (P′) is nonnegative, we would conclude thatB � λA

for certain nonnegative λ, which is exactly what we are aiming at. Thus, all we need is to
prove that under the premise of the S-lemma the optimal value in (P′) is nonnegative, and
here is the proof.

Proof. Observe first that problem (P′) is feasible with a compact feasible set and thus is
solvable. Let X∗ be an optimal solution to the problem. Since X∗ � 0, there exists a matrix
D such that X∗ = DDT . Note that we have

0 ≤ Tr(AX∗) = Tr(ADDT ) = Tr(DT AD),

nθ∗ = Tr(BX∗) = Tr(BDDT ) = Tr(DT BD),

n = Tr(X∗) = Tr(DDT ) = Tr(DTD).

(*)

It remains to use the following observation:

(!) LetP,Q be symmetric matrices such that Tr(P ) ≥ 0 and Tr(Q) < 0. Then
there exists a vector e such that eT P e ≥ 0 and eTQe < 0.

Indeed, let us believe that (!) is valid, and let us prove that θ∗ ≥ 0. Assume, on the contrary,
that θ∗ < 0. Setting P = DTBD and Q = DTAD and taking into account (*), we see that
the matrices P,Q satisfy the premise in (!), whence, by (!), there exists a vector e such that
0 ≤ eT P e = [De]T A[De] and 0 > eTQe = [De]T B[De]; but this contradicts the premise
of the S-lemma.

It remains to prove (!). Given P and Q as in (!), note that Q, as every symmetric
matrix, admits a representation

Q = UTNU

with an orthonormal U and a diagonal N. Note that θ ≡ Tr(N) = Tr(Q) < 0. Now let ξ be
a random n-dimensional vector with independent entries taking values ±1 with probabilities
1/2. We have

[UT ξ ]TQ[UT ξ ] = [UT ξ ]T UTNU [UT ξ ] = ξT Nξ = Tr(N) = θ ∀ξ,
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while

[UT ξ ]T P [UT ξ ] = ξT [UPUT ]ξ,
and the expectation of the latter quantity over ξ is clearly Tr(UPUT ) = Tr(P ) ≥ 0. Since
the expectation is nonnegative, there is at least one realization ξ̄ of our random vector ξ
such that

0 ≤ [UT ξ̄ ]T P [UT ξ̄ ].
We see that the vector e = UT ξ̄ is a required one: eTQe = θ < 0 and eT P e ≥ 0.

4.4 Applications II: Stability analysis
Semidefinite programming is a natural language with which to pose and process numerous
engineering problems associated with stability. Let us look at several examples.

4.4.1 Dynamic stability in mechanics

Free motions of many linearly elastic mechanical systems, i.e., their behavior in absence of
external loads, are governed by systems of differential equations of the type

M
d2

dt2
x(t) = −Ax(t), (N)

where x(t) ∈ Rn is the state vector of the system at time t , M is the (generalized) mass
matrix, and A is the stiffness matrix of the system. Basically, (N) is the Newton law for a
system with the potential energy 1

2x
T Ax.

As a simple example, consider a system of k points of masses µ1, . . . , µk linked by
springs with given elasticity coefficients. Here x is the vector of the displacements xi ∈ Rd

of the points from their equilibrium positions ei (d = 1/2/3 is the dimension of the model).
The Newton equations become

µi

d2

dt2
xi(t) = −

∑
j �=i

νij (ei − ej )(ei − ej )
T (xi − xj ), i = 1, . . . , k,

where νij are given by

νij = κij

‖ei − ej‖3
2

,

where κij > 0 are the elasticity coefficients of the springs. The resulting system is of the
form (N) with a diagonal matrix M and a positive semidefinite symmetric matrix A. The
well-known simplest system of this type is a pendulum (a single point able to slide along a
given axis and linked by a spring to a fixed point on the axis), shown in Fig. 4.4.

Another example is given by a truss (see section 1.3.5). Here A is the bar-stiffness
matrix

∑
i tibib

T
i , and the mass matrix is

M =
∑
i

tiβiβ
T
i , βi =

√
µ

κ
libi,

where µ is the material density, κ is the Young modulus, and li is the length of bar i.
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l x
d2

dt2 x(t) = −νx(t), ν = κ
l
.

Figure 4.4. A pendulum.

Note that in the above examples both the mass matrix M and the stiffness matrix A are
symmetric positive semidefinite; in nondegenerate cases they are even positive definite, and
this is what we assume from now on. Under this assumption, we can pass in (N) from the
variables x(t) to the variables y(t) = M1/2x(t); with respect to these variables the system
becomes

d2

dt2
y(t) = −Ây(t), Â = M−1/2AM−1/2. (N′)

It is well known that the space of solutions of system (N′) (where Â is symmetric posi-
tive definite) is spanned by fundamental (perhaps complex-valued) solutions of the form
exp{µt}f . A nontrivial (with f �= 0) function of this type is a solution to (N′) if and only if

(µ2I + Â)f = 0,

so that the allowed values of µ2 are the minus eigenvalues of the matrix Â, and f ’s are the
corresponding eigenvectors of Â. Since the matrix Â is symmetric positive definite, the only

allowed values of µ are purely imaginary, with the imaginary parts ±
√
λj (Â). Recalling

that the eigenvalues and eigenvectors of Â are exactly the eigenvalues and eigenvectors of
the pencil [M,A], we come to the following result:

(C) In the case of positive definite symmetric M,A, the solutions to (N)—the
free motions of the corresponding mechanical system S—are of the form

x(t) =
n∑

j=1

[aj cos(ωj t) + bj sin(ωj t)]ej ,

where aj , bj are free real parameters, ej are the eigenvectors of the pencil
[M,A],

(λjM − A)ej = 0,

andωj = √
λj . Thus, the free motions of the system S are mixtures of harmonic

oscillations along the eigenvectors of the pencil [M,A], and the frequencies of
the oscillations (the eigenfrequencies of the system) are the square roots of the
corresponding eigenvalues of the pencil.

From the engineering viewpoint, the dynamic behavior of mechanical constructions
such as buildings, electricity masts, and bridges is the better the larger the eigenfrequencies
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ω = 1.274 ω = 0.957 ω = 0.699

Figure 4.5. Nontrivial modes of a spring triangle (three unit masses linked by
springs). Shown are three eigenmotions (modes) of a spring triangle with nonzero frequen-
cies. Three instant positions of the oscillating triangle are depicted. There are three more
eigenmotions with zero frequency, corresponding to shifts and rotation of the triangle.

of the system.25 This is why a typical design requirement in mechanical engineering is a
lower bound

λmin(A : M) ≥ λ∗ [λ∗ > 0] (4.4.22)

on the smallest eigenvalue λmin(A : M) of the pencil [M,A] made up of the mass and the
stiffness matrices of the would-be system. In the case of positive definite symmetric mass
matrices, (4.4.22) is equivalent to the matrix inequality

A − λ∗M � 0 (4.4.23)

(why?). If M and A are affine functions of the design variables (as is the case in, e.g., truss
design), the matrix inequality (4.4.23) is a linear matrix inequality in the design variables, and
therefore it can be processed via the machinery of semidefinite programming. For example,
when adding to the TTD problem (Lecture 3) a lower bound on the minimum eigenfrequency
of the truss to be designed, we end up with a semidefinite program. Moreover, in the cases
when A is affine in the design variables, and M is constant, (4.4.23) is an LMI on the design
variables and λ∗, and we may play with λ∗, e.g., solve a problem of the type “given the
mass matrix of the system to be designed and a number of (SDr) constraints on the design
variables, build a system with the largest possible minimum eigenfrequency.”

4.4.2 Lyapunov stability analysis and synthesis

The next topic, Lyapunov stability analysis, was touched on in Lecture 2, where it served as
an important example of a nonpolyhedral conic problem. Consider a time-varying uncertain
linear dynamic system

d

dt
x(t) = A(t)x(t), x(0) = x0. (ULS)

25Think about a building and an earthquake or about sea waves and a light house: in this case the external load
acting at the system is time-varying and can be represented as a sum of harmonic oscillations of different (and
low) frequencies. If some of these frequencies are close to the eigenfrequencies of the system, the system can be
crushed by resonance. To avoid this risk, one wants to move the eigenfrequencies of the system away from 0 as
far as possible.
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Here x(t) ∈ Rn represents the state of a plant at time t , the initial state is x0, and A(t) is a
time-varying n×n matrix. We assume that the system is uncertain in the sense that we have
no idea of what is x0, and all we know about A(t) is that this matrix, at any time t , belongs to
a given uncertainty set U . Thus, (ULS) represents a wide family of linear dynamic systems
rather than a single system. It makes sense to call a trajectory of the uncertain linear system
(ULS) every function x(t) that is an actual trajectory of a system from the family, i.e., is
such that

d

dt
x(t) = A(t)x(t)

∀t ≥ 0 and certain matrix-valued function A(t) taking all its values in U .
Note that we can model a nonlinear dynamic system

d

dt
x(t) = f (t, x(t)) [x ∈ Rn] (NLS)

with a given right-hand side f (t, x) and a given equilibrium x(t) ≡ 0 (i.e., f (t, 0) = 0, t ≥
0) as an uncertain linear system. Indeed, let us define the set Uf as the closed convex hull
of the set of n × n matrices

{
∂
∂x
f (t, x) | t ≥ 0, x ∈ Rn

}
. Then for every point x ∈ Rn we

have

f (t, x) = f (t, 0) +
∫ 1

0

[
∂
∂x
f (t, sx)

]
xds = Ax(t)x,

Ax(t) =
∫ 1

0

∂
∂x
f (t, sx)ds ∈ U .

We see that every trajectory of the original nonlinear system (NLS) is also a trajectory of
the uncertain linear system (ULS) associated with the uncertainty set U = Uf (this trick is
called global linearization). Of course, the set of trajectories of the resulting uncertain linear
system can be much wider than the set of trajectories of (NLS); however, all good news
about the uncertain system (like “all trajectories of (ULS) share such and such property”)
are automatically valid for the trajectories of the nonlinear system of interest (NLS), and
only bad news about (ULS) (“such and such property is not shared by some trajectories of
(ULS)”) may say nothing about the system of interest (NLS).

The basic question about a dynamic system is the one of its stability. For (ULS), this
question is as follows:

(?) Is it true that (ULS) is stable, i.e., that

x(t) → 0 as t → ∞,

for every trajectory of the system?

A sufficient condition for the stability of (ULS) is the existence of a quadratic Lyapunov
function, i.e., a quadratic form L(x) = xT Xx with symmetric positive definite matrix X

such that

d

dt
L(x(t)) ≤ −αL(x(t)) (4.4.24)

for certain α > 0 and all trajectories of (ULS).
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Lemma4.4.1. Quadratic stability certificate. Assume (ULS) admits a quadratic Lyapunov
function L. Then (ULS) is stable.

Proof. If (4.4.24) is valid with some α > 0 for all trajectories of (ULS), then, by integrating
this differential inequality, we get

L(x(t)) ≤ exp{−αL(x(0))} → 0 as t → ∞.

Since L(·) is a positive definite quadratic form, L(x(t)) → 0 implies that x(t) →
0.

Of course, the statement of Lemma 4.4.1 also holds for nonquadratic Lyapunov func-
tions. All we need is (4.4.24) plus the assumption that L(x) is smooth and nonnegative
and is bounded away from 0 outside every neighborhood of the origin. The advantage of a
quadratic Lyapunov function is that we more or less know how to find such a function, if it
exists.

Proposition 4.4.1. Existence of quadratic stability certificate. Let U be the uncertainty
set associated with uncertain linear system (ULS). The system admits quadratic Lyapunov
function if and only if the optimal value of the semi-infinite26 semidefinite program

minimize s

s.t.
sIn − ATX − XA � 0, ∀A ∈ U,

X � In,

(Ly)

with the design variables s ∈ R and X ∈ Sn, is negative. Moreover, every feasible solution
to the problem with negative value of the objective provides a quadratic Lyapunov stability
certificate for (ULS).

Proof. The derivative d
dt

[
xT (t)Xx(t)

]
of the quadratic function xT Xx along a trajectory

of (ULS) is equal to[
d

dt
x(t)

]T

Xx(t) + xT (t)X

[
d

dt
x(t)

]
= xT (t)[AT (t)X + XA(t)]x(t).

If xT Xx is a Lyapunov function, then the resulting quantity must be at most −αxT (t)Xx(t),
i.e., we should have

xT (t)
[−αX − AT (t)X − XA(t)

]
x(t) ≥ 0

for every possible value of A(t) at any time t and for every possible value x(t) of a trajectory
of the system at this time. Since possible values of x(t) fill the entire Rn and possible values
of A(t) fill the entire U , we conclude that

−αX − ATX − XA � 0 ∀A ∈ U .

26That is, with infinitely many LMI constraints.
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By definition of a quadratic Lyapunov function, X . 0 and α > 0; by normalization
(dividing both X and α by the smallest eigenvalue of X), we get a pair ŝ > 0, X̂ ≥ In such
that

−ŝX̂ − AT X̂ − X̂A � 0 ∀A ∈ U .

Since X̂ � In, we conclude that

−ŝIn − AT X̂ − X̂A � −ŝX̂ − AT X̂ − X̂A � 0 ∀A ∈ U;
thus, (s = −ŝ, X̂) is a feasible solution to (Ly) with negative value of the objective. We have
demonstrated that if (ULS) admits a quadratic Lyapunov function, then (Ly) has a feasible
solution with negative value of the objective. Reversing the reasoning, we can verify the
inverse implication.

Lyapunov stability analysis

We have just seen that to certify the stability of an uncertain linear system it suffices to
provide a feasible solution to (Ly) with a negative value of the objective. It should be
stressed that the existence of such a solution is only a sufficient condition for stability, and
if the condition is not satisfied (i.e., if the optimal value in (Ly) is nonnegative), then all we
can say is that the stability of (ULS) cannot be certified by a quadratic Lyapunov function,
although (ULS) still may be stable.27 In this sense, the stability analysis based on quadratic
Lyapunov functions is conservative. This drawback, however, is in a sense compensated
by the fact that this kind of stability analysis is implementable: in many cases we can
efficiently solve (Ly), thus getting a quadratic stability certificate, provided that it exists, in
a constructive way. Let us look at two such cases.

Polytopic uncertainty set. The first tractable case of (Ly) is when U is a polytope given
as a convex hull of finitely many points:

U = Conv{A1, . . . , AN }.
In this case (Ly) is equivalent to the semidefinite program

min
s,X

{
s : sIn − AT

i X − XAi � 0, i = 1, . . . , N;X � In
}
. (4.4.25)

(Why?)
The assumption that U is a polytope given as a convex hull of a finite set is crucial

for a possibility to get a computationally tractable equivalent reformulation of (Ly). If U
is, say, a polytope given by a list of linear inequalities (e.g., all we know about the entries

27The only case in which the existence of a quadratic Lyapunov function is a criterion (i.e., a necessary and
sufficient condition) for stability is the simplest case of a certain time-invariant linear system d

dt
x(t) = Ax(t)

(U = {A}). This is the case that led Lyapunov to the general concept of what is now called a Lyapunov function and
what is the basic approach to establishing convergence of different time-dependent processes to their equilibria.
Note also that in the case of time-invariant linear system there exists a straightforward stability criterion—all
eigenvalues of A should have negative real parts. The advantage of the Lyapunov approach is that it can be
extended to more general situations, which is not the case for the eigenvalue criterion.
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y(t) = Cx(t)

x(t)

u(t) = K y(t)

x’(t) = Ax(t) + Bu(t)

x(t)

y(t) = Cx(t)x’(t) = Ax(t) + Bu(t)

y(t)u(t)u(t) y(t)

Figure 4.6. Open-loop (left) and closed-loop (right) controlled systems.

of A(t) is that they reside in certain intervals; this case is called interval uncertainty), (Ly)
may become as hard as a problem can be: it may happen that just to check whether a given
pair (s,X) is feasible for (Ly) is already a computationally intractable problem. The same
difficulties may occur when U is a general-type ellipsoid in the space of n × n matrices.
There exists, however, a specific type of uncertainty ellipsoids U for which (Ly) is easy. Let
us look at this case.

Norm-bounded perturbations. In numerous applications the n× n matrices A forming
the uncertainty set U are obtained from a fixed nominal matrixA∗ by adding perturbations of
the form BDC, where B ∈ Mn,k and C ∈ Ml,n are given rectangular matrices and D ∈ Mk,l

is the perturbation varying in a simple set D:

U = {A = A∗ + BDC | D ∈ D ⊂ Mk,l} [
B ∈ Mn,k, 0 �= C ∈ Ml,n

]
. (4.4.26)

As an instructive example, consider a controlled linear time-invariant dynamic system

d
dt
x(t) = Ax(t) + Bu(t),

y(t) = Cx(t)
(4.4.27)

(x is the state, u is the control, and y is the output we can observe) closed by a feedback

u(t) = Ky(t);
see Figure 4.6. The resulting closed-loop system is given by

d

dt
x(t) = Âx(t), Â = A + BKC. (4.4.28)

Now assume that A, B, and C are constant and known, but the feedback K is drifting around
certain nominal feedback K∗: K = K∗ + D. As a result, the matrix Â of the closed-loop
system also drifts around its nominal value A∗ = A + BK∗C, and the perturbations in Â

are exactly of the form BDC.
Note that we could get essentially the same kind of drift in Â assuming, instead of

perturbations in the feedback matrix K , perturbations C = C∗ + D in the observer (or
similar disturbances in the actuator B).

Now assume that the input perturbations D are of spectral norm |D| not exceeding a
given ρ (norm-bounded perturbations):

D = {D ∈ Mk,l | |D| ≤ ρ}. (4.4.29)
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Proposition 4.4.2.28 In the case of uncertainty set (4.4.26), (4.4.29), the semi-infinite
semidefinite program (Ly) is equivalent to the usual semidefinite program

minimize s

s.t.

(
sIn − AT∗ X − XA∗ − λCT C −ρXB

−ρBTX λIk

)
� 0,

X � In

(4.4.30)

in the design variables s, λ,X.
When shrinking the set of perturbations (4.4.29) to the ellipsoid29

E = {D ∈ Mk,l | ‖D‖2 ≡
√√√√ k∑

i=1

l∑
j=1

D2
ij ≤ ρ}, (4.4.31)

we do not vary (Ly): in the case of the uncertainty set (4.4.26), (Ly) is still equivalent to
(4.4.30).

Proof. It suffices to verify the following general statement.

Lemma 4.4.2. Consider the matrix inequality

Y − QTDT P T ZT R − RTZPDQ � 0, (4.4.32)

where Y is symmetric n × n matrix, D is a k × l matrix, and P , Q, Z, R are rectangular
matrices of appropriate sizes (i.e., q × k, l × n, p × q, and p × n, respectively). Given
Y, P,Q,Z,R withQ �= 0 (this is the only nontrivial case), this matrix inequality is satisfied
for all D with |D| ≤ ρ if and only if it is satisfied for all D with ‖D‖2 ≤ ρ, and this is the
case if and only if (

Y − λQTQ −ρRT ZP

−ρP T ZT R λIk

)
� 0

for a properly chosen real λ.

The statement of Proposition 4.3.17 is just a particular case of Lemma 4.4.2. For
example, in the case of uncertainty set (4.4.26), (4.4.29), a pair (s,X) is a feasible solution
to (Ly) if and only if X � In and (4.4.32) is valid, whenever |D| ≤ ρ, for Y = sIn −
AT∗ X − XA∗, P = B, Q = C, Z = X, R = In. Lemma 4.4.2 provides us with an LMI
reformulation of the latter property, and this LMI is exactly what we see in the statement of
Proposition 4.3.17.

Proof of Lemma 4.4.2. The inequality (4.4.32) is valid for all D with |D| ≤ ρ (let us
call this property of (Y, P,Q,Z,R) “Property 1”) if and only if

2[ξT RT ZP ]D[Qξ ] ≤ ξT Y ξ ∀ξ ∈ Rn ∀(D : |D| ≤ ρ)

28 S. Boyd et al., Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994.
29This indeed is a “shrinkage”: |D| ≤ ‖D‖2 for every matrix D (prove it!).
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or, which is the same, if and only if

max
D:|D|≤ρ

2
[[PT ZT Rξ ]T D[Qξ ]] ≤ ξT Y ξ ∀ξ ∈ Rn. (Property 2)

The maximum overD, |D| ≤ ρ, of the quantity ηTDζ , clearly is equal to ρ times the product
of the Euclidean norms of the vectors η and ζ (why?). Thus, Property 2 is equivalent to

ξT Y ξ − 2ρ‖Qξ‖2‖PT ZT Rξ‖2 ≥ 0 ∀ξ ∈ Rn. (Property 3)

Now the trick: Property 3 is clearly equivalent to the following.

Property 4. Every pair ζ = (ξ, η) ∈ Rn × Rk that satisfies the quadratic
inequality

ξTQTQξ − ηT η ≥ 0 (I)

satisfies also the quadratic inequality

ξT Y ξ − 2ρηT P T ZT Rξ ≥ 0. (II)

Indeed, for a fixed ξ the minimum over η satisfying (I) of the left-hand side in (II) is
nothing but the left-hand side in Property 3.

It remains to use the S-lemma. Property 4 says that the quadratic inequality (II) with
variables ξ, η is a consequence of (I). By the S-lemma (recall that Q �= 0, so that (I) is
strictly feasible!), this is equivalent to the existence of a nonnegative λ such that(

Y −ρRT ZP

−ρP T ZT R

)
− λ

(
QTQ

−Ik

)
� 0,

which is exactly the statement of Lemma 4.4.2 for the case of |D| ≤ ρ. The case of
perturbations with ‖D‖2 ≤ ρ is completely similar, since the equivalence between Properties
2 and 3 is valid independent of which norm of D – | · | or ‖ · ‖2 – is used.

Lyapunov stability synthesis

We have seen that under reasonable assumptions on the underlying uncertainty set the
question of whether a given uncertain linear system (ULS) admits a quadratic Lyapunov
function can be reduced to a semidefinite program. Now let us switch from the analysis
question, whether a stability of an uncertain linear system may be certified by a quadratic
Lyapunov function, to the synthesis question, which is as follows. Assume that we are given
an uncertain open loop controlled system

d
dt
x(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t).
(UOS)

All we know about the collection (A(t), B(t), C(t)) of time-varying n × n matrix A(t),
n × k matrix B(t), and l × n matrix C(t) is that this collection, at every time t , belongs to
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a given uncertainty set U . The question is whether we can equip our uncertain open-loop
system (UOS) with a linear feedback

u(t) = Ky(t)

in such a way that the resulting uncertain closed-loop system

d

dt
x(t) = [A(t) + B(t)KC(t)] x(t) (UCS)

will be stable and, moreover, such that its stability can be certified by a quadratic Lyapunov
function. In other words, now we are simultaneously looking for a stabilizing controller
and a quadratic Lyapunov certificate of its stabilizing ability.

With the global linearization trick we may use the results on uncertain controlled
linear systems to build stabilizing linear controllers for nonlinear controlled systems

d
dt
x(t) = f (t, x(t), u(t)),

y(t) = g(t, x(t)).

Assuming f (t, 0, 0) = 0, g(t, 0) = 0 and denoting by U the closed convex hull of the set{(
∂

∂x
f (t, x, u),

∂

∂u
f (t, x, u),

∂

∂x
g(t, x)

) ∣∣∣∣t ≥ 0, x ∈ Rn, u ∈ Rk

}
,

we see that every trajectory of the original nonlinear system is a trajectory of the uncertain
linear system (UOS) associated with the set U . Consequently, if we are able to find a
stabilizing controller for (UOS) and certify its stabilizing property by a quadratic Lyapunov
function, then the resulting controller Lyapunov function will stabilize the nonlinear system
and will certify the stability of the closed-loop system, respectively.

Exactly the same reasoning as in the previous section leads us to the following.

Proposition 4.4.3. Let U be the uncertainty set associated with an uncertain open-loop
controlled system (UOS). The system admits a stabilizing controller along with a quadratic
Lyapunov stability certificate for the resulting closed-loop system if and only if the optimal
value in the optimization problem

minimize s

s.t.
[A + BKC]T X + X[A + BCK] / sIn ∀(A,B,C) ∈ U,

X � In,

(LyS)

in design variables s,X,K , is negative. Moreover, every feasible solution to the problem
with negative value of the objective provides a stabilizing controller along with a quadratic
Lyapunov stability certificate for the resulting closed-loop system.

Bad news about (LyS) is that it is much more difficult to rewrite this problem as a
semidefinite program than in the analysis case (i.e., the case of K = 0), since (LyS) is
a semi-infinite system of nonlinear matrix inequalities. There is, however, an important
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188 Lecture 4. Semidefinite Programming

particular case where this difficulty can be overcome. This is the case of a feedback via
the full state vector—the case when y(t) = x(t) (i.e., C(t) is the unit matrix). In this case,
all we need to get a stabilizing controller along with a quadratic Lyapunov certificate of its
stabilizing ability is to solve a system of strict matrix inequalities

[A + BK]T X + X[A + BK] / Z ≺ 0 ∀(A,B) ∈ U,

X . 0.
. (∗)

Indeed, given a solution (X,K,Z) to this system, we always can convert it by normalization
of X to a solution of (LyS). Now let us make the change of variables

Y = X−1, L = KX−1,W = X−1ZX−1
[⇔ X = Y−1,K = LY−1, Z = Y−1WY−1

]
.

With respect to the new variables Y,L,K , system (*) becomes{ [A + BLY−1]T Y−1 + Y−1[A + BLY−1] / Y−1WY−1 ≺ 0,
Y−1 . 0

,{
LT BT + YAT + BL + AY / W ≺ 0 ∀(A,B) ∈ U,

Y . 0.

(We have multiplied all original matrix inequalities from the left and from the right by Y .)
What we end up with is a system of strict linear matrix inequalities with respect to our new
design variables L, Y,W ; the question of whether this system is solvable can be converted
to the question of whether the optimal value in a problem of the type (LyS) is negative, and
we come to the following.

Proposition 4.4.4. Consider an uncertain controlled linear system with a full observer:

d
dt
x(t) = A(t)x(t) + B(t)u(t),

y(t) = x(t),

and letU be the corresponding uncertainty set (which now comprises pairs (A,B)of possible
values of (A(t), B(t)), since C(t) ≡ In is certain).

The system can be stabilized by a linear controller

u(t) = Ky(t) [≡ Kx(t)]
in such a way that the resulting uncertain closed-loop system

d

dt
x(t) = [A(t) + B(t)K]x(t)

admits a quadratic Lyapunov stability certificate if and only if the optimal value in the
optimization problem

minimize s

s.t.
BL + AY + LT BT + YAT / sIn ∀(A,B) ∈ U,

Y � I,

(Ly∗)D
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in the design variables s ∈ R, Y ∈ Sn, L ∈ Mk,n, is negative. Moreover, every feasible
solution to (Ly∗) with negative value of the objective provides a stabilizing linear controller
along with a related quadratic Lyapunov stability certificate.

In particular, in the polytopic case,

U = Conv{(A1, B1), . . . , (AN, BN)},
the quadratic Lyapunov stability synthesis reduces to solving the semidefinite program

min
s,Y,L

{
s : BiL + AiY + YAT

i + LT BT
i / sIn, i = 1, . . . , N;Y � In

}
.

4.4.3 Interval stability analysis and synthesis

Consider the problem of Lyapunov stability analysis in the case of interval uncertainty:

U = Uρ = {A ∈ Mn,n | |Aij − A∗
ij | ≤ ρDij , i, j = 1, . . . , n}, (4.4.33)

where A∗ is the nominal matrix, D �= 0 is a matrix with nonnegative entries specifying
the scale for perturbations of different entries, and ρ ≥ 0 is the level of perturbations.
How can we certify the stability of the corresponding uncertain dynamic system via a
quadratic Lyapunov function? Well, we are speaking about polytopic uncertainty, so that
finding a quadratic Lyapunov stability certificate is the same as finding a feasible solution
of the semidefinite program (4.4.25) with a negative value of the objective. The difficulty,
however, is that the number N of LMI constraints in this problem is the number of vertices
of the polytope (4.4.33), i.e., N = 2m, where m is the number of uncertain entries in our
interval matrix (≡ the number of positive entries in D). For 5 × 5 interval matrices with
full uncertainty, m = 25, i.e., N = 225 = 33, 554, 432, which is a bit too many; for fully
uncertain 10 × 10 matrices, N = 2100 > 1.2 × 1030. Thus, the brute force approach fails
already for small matrices affected by interval uncertainty.

In fact, the difficulty we encounter lies in the NP-hardness of the following problem:

Given a candidate Lyapunov stability certificate X . 0 and ρ > 0, check
whether X indeed certifies stability of all instances of Uρ , i.e., whether X

solves the semi-infinite system of LMIs

ATX + XA / −I ∀A ∈ Uρ. (4.4.34)

(In fact, we are interested in the system ATX + XA ≺ 0 ∀A ∈ Uρ , but this is
a minor difference—the system of interest is homogeneous in X, and therefore
every feasible solution of it can be converted to a solution of (4.4.34) just by
scaling X �→ tX.)

The above problem, in turn, is a particular case of the following problem.

Matrix Cube. Given matrices A0, A1, . . . , Am ∈ Sn with A0 � 0, find the
largest ρ = R[A1, . . . , Am : A0] such that the set

Aρ =
{
A = A0 +

m∑
i=1

ziAi | ‖z‖∞ ≤ ρ

}
(4.4.35)D
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—the image of the m-dimensional cube {z ∈ Rm | ‖z‖∞ ≤ ρ} under the affine
mapping z �→ A0 + ∑m

i=1 ziAi—is contained in the semidefinite cone Sn+.

This is the problem we will focus on.

The main result. The problem Matrix Cube (MC for short) is NP-hard; this is true also
for the feasibility version MCρ of MC, where, given a ρ ≥ 0, we want to verify the inclusion
Aρ ⊂ Sn+. However, we can point out a simple sufficient condition for the validity of the
inclusion Aρ ⊂ Sn+, as follows.

Proposition 4.4.5. Assume that the system of LMIs

(a) Xi � ρAi, Xi � −ρAi, i = 1, . . . , m,

(b)
m∑
i=1

Xi / A0
(Sρ)

in matrix variables X1, . . . , Xm ∈ Sn is solvable. Then Aρ ⊂ Sn+.

Proof. Let X1, . . . , Xm be a solution of (Sρ). From (a) it follows that whenever ‖z‖∞ ≤ ρ,
we have Xi � ziAi for all i, whence by (b)

A0 +
m∑
i=1

ziAi � A0 −
∑
i

Xi � 0.

Our main result is that the sufficient condition for the inclusion Aρ ⊂ Sn+ stated by
Proposition 4.4.5 is not too conservative.

Theorem 4.4.1. If the system of LMIs (Sρ) is not solvable, then

Aθ(µ)ρ �⊂ Sn
+. (4.4.36)

Here

µ = max
1≤i≤m

Rank(Ai)

(note i ≥ 1 in the max!), and

θ(k) ≤ π
√
k

2
, k ≥ 1, θ(2) = π

2
. (4.4.37)

Proof. Below ζ ∼ N (0, In) means that ζ is a random Gaussian n-dimensional vector
with zero mean and the unit covariance matrix, and pn(·) stands for the density of the
corresponding probability distribution:

pn(u) = (2π)−n/2 exp

{
−uT u

2

}
, u ∈ Rn.
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Let us set

θ(k) = 1

min

{∫
|αiu

2
1 + · · · + αku

2
k|pk(u)du

∣∣α ∈ Rk, ‖α‖1 = 1

} . (4.4.38)

Observe that θ(k) is nondecreasing. It suffices to verify that

(i) With the just-defined θ(·), unsolvability of (Sρ) does imply (4.4.36).

(ii) θ(·) satisfies (4.4.37).

Let us prove (i).
1. Assume that (Sρ) has no solutions. This means that the optimal value of the

semidefinite problem

min
t,{Xi }

t

∣∣∣∣
Xi � ρAi, Xi � −ρAi, i = 1, . . . , m,

m∑
i=1

Xi / A0 + tI

 (4.4.39)

is positive. Since the problem is strictly feasible, its optimal value is positive if and only if
the optimal value of the dual problem

max
W,{Ui,V i }

ρ

m∑
i=1

Tr([Ui − V i]Ai) − Tr(WA0)

∣∣∣∣ Ui + V i = W, i = 1, . . . , m,

Tr(W) = 1,
Ui, V i,W � 0


is positive. Thus, there exist matrices Ui, V i,W such that

(a) Ui, V i,W � 0,
(b) Ui + V i = W, i = 1, 2, . . . m,

(c) ρ

m∑
i=1

Tr([Ui − V i]Ai) > Tr(WA0).

(4.4.40)

2. Now let us use the following simple lemma.

Lemma 4.4.3. Let W,A ∈ Sn, W � 0. Then

max
U,V�0,U+V=W

Tr([U − V ]A) = max
X=XT :‖λ(X)‖∞≤1

Tr(XW 1/2AW 1/2) = ‖λ(W 1/2AW 1/2)‖1.

(4.4.41)

Proof. We clearly have

U,V � 0, U + V = W ⇔ U = W 1/2PW 1/2, V = W 1/2QW 1/2, P ,Q � 0, P + Q = I,

whence

max
U,V :U,V�0,U+V=W

Tr([U − V ]A) = max
P,Q:P,Q�0,P+Q=I

Tr([P − Q]W 1/2AW 1/2).
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When P,Q are linked by the relation P + Q = I and vary in {P � 0,Q � 0}, the matrix
X = P − Q runs through the entire interval {−I / X / I } (why?); we have proved the
first equality in (4.4.41). When proving the second equality, we may assume w.l.o.g. that
the matrix W 1/2AW 1/2 is diagonal, so that Tr(XW 1/2AW 1/2) = λT (W 1/2AW 1/2)Dg(X),
where Dg(X) is the diagonal of X. When X runs through the interval {−I / X / I }, the
diagonal of X runs through the entire unit cube {‖x‖∞ ≤ 1}, which immediately yields the
second equality in (4.4.41).

By Lemma 4.4.3, from (4.4.40) it follows that there exists W � 0 such that

ρ

m∑
i=1

‖λ(W 1/2AiW
1/2)‖1 > Tr(W 1/2A0W

1/2). (4.4.42)

3. Now let us use the following observation.

Lemma 4.4.4. With ξ ∼ N (0, In), for every symmetric n × n matrix A one has

(a) E
{
ξT Aξ

} = Tr(A),

(b) E
{|ξT Aξ |} ≥ 1

θ(Rank(A))‖λ(A)‖1.
(4.4.43)

Here E stands for the expectation with respect to the distribution of ξ .

Proof. (4.4.43)(a) is evident:

E
{
ξT Aξ

} =
m∑

i,j=1

AijE
{
ξiξj

} = Tr(A).

To prove (4.4.43)(b), by homogeneity it suffices to consider the case when ‖λ(A)‖1 = 1.
Further, by rotational invariance of the distribution of ξ we may consider the case when
A is diagonal and the first Rank(A) of diagonal entries of A are the nonzero eigenvalues
of the matrix. With this normalization, the required relation immediately follows from the
definition of θ(·).

4. Now we are ready to prove (i). Let ξ ∼ N (0, In). We have

E

{
ρθ(µ)

k∑
i=1

|ξTW 1/2AiW
1/2ξ |

}
=

m∑
i=1

ρθ(µ)E
{|ξTW 1/2AiW

1/2ξ |}
≥ ρ

m∑
i=1

‖λ(W 1/2AiW
1/2)‖1 by (4.4.43)(b) due to Rank(W 1/2AiW

1/2)

≤ Rank(Ai) ≤ µ, i ≥ 1, and since θ(·)
is nondecreasing


> Tr(W 1/2A0W

1/2) (by (4.4.42))
= Tr(ξTW 1/2A0W

1/2ξ), (by (4.4.43)(a))],

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 193

✐

✐

✐

✐

✐

✐

✐

✐

4.4. Applications II: Stability analysis 193

whence

E

{
ρθ(µ)

k∑
i=1

|ξTW 1/2AiW
1/2ξ | − ξTW 1/2A0W

1/2ξ

}
> 0.

It follows that there exists r ∈ Rn such that

θ(µ)ρ

m∑
i=1

|rTW 1/2AiW
1/2r| > rTW 1/2A0W

1/2r,

so that setting zi = −θ(µ)ρsign(rTW 1/2AiW
1/2r), we get

rTW 1/2

(
A0 +

m∑
i=1

ziAi

)
W 1/2r < 0.

We see that the matrix A0 + ∑m
i=1 ziAi is not positive semidefinite, while by construction

‖z‖∞ ≤ θ(µ)ρ. Thus, (4.4.36) holds true. Point (i) is proved.

To prove (ii), let α ∈ Rk be such that ‖α‖1 = 1, and let

J =
∫

|α1u
2
1 + · · · + αku

2
k|pk(u)du.

Let β = [ α

−α
], and let ξ ∼ N (0, I2k). We have

E

{∣∣∣∣∣
2k∑
i=1

βiξ
2
i

∣∣∣∣∣
}

≤ E

{∣∣∣∣∣
k∑

i=1

βiξ
2
i

∣∣∣∣∣
}

+ E

{∣∣∣∣∣
k∑

i=1

βi+kξ
2
i+k

∣∣∣∣∣
}

= 2J. (4.4.44)

On the other hand, let ηi = 1√
2
(ξi − ξk+i ), ζi = 1√

2
(ξi + ξk+i ), i = 1, . . . , k, and let

ω =
α1η1

...

αkηk

 , ω̃ =
 |α1η1|

...

|αkηk|

 , ζ =
 ζ1

...

ζk

 .

Observe that ζ and ω are independent and ζ ∼ N (0, Ik). We have

E

{∣∣∣∣∣
2k∑
i=1

βiξ
2
i

∣∣∣∣∣
}

= 2E

{∣∣∣∣∣
k∑

i=1

αiηiζi

∣∣∣∣∣
}

= 2E
{|ωT ζ |} = 2E {‖ω‖2} E {|ζ1|} ,

where the concluding equality follows from the fact that ζ ∼ N (0, Ik) is independent of ω.
We further have

E {|ζ1|} =
∫

|t |p1(t)dt =
√

2

π

and

E {‖ω‖2} = E {‖ω̃‖2} ≥ ‖E {ω̃} ‖2 =
[∫

|t |p1(t)dt

]√√√√ m∑
i=1

α2
i =

√
2

π

√√√√ m∑
i=1

α2
i .
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Combining our observations, we come to

E

{∣∣∣∣∣
2k∑
i=1

βiξ
2
i

∣∣∣∣∣
}

≥ 4

π
‖α‖2 ≥ 4

π
√
k

‖α‖1 = 4

π
√
k
.

This relation combines with (4.4.44) to yield J ≥ 2
π

√
k
. Recalling the definition of θ(k), we

come to θ(k) ≤ π
√
k

2 , as required in (4.4.37).
It remains to prove that θ(2) = π

2 . From the definition of θ(·) it follows that

θ−1(2) = min
0≤θ≤1

∫
|θu2

1 − (1 − θ)u2
2|p2(u)du ≡ min

0≤θ≤1
f (θ).

The function f (θ) is clearly convex and satisfies the identity f (θ) = f (1 − θ), 0 ≤ θ ≤
1, so that its minimum is attained at θ = 1

2 . A direct computation says that f ( 1
2 ) =

2
π

.

Corollary 4.4.1. Let the ranks of all matrices A1, . . . , Am in MC be ≤ µ. Then the
optimal value in the semidefinite problem

ρ[A1, . . . , Am : A0] = max
ρ,Xi

ρ |
Xi � ρAi, Xi � −ρAi, i = 1, . . . , m,

m∑
i=1

Xi / A0

 (4.4.45)

is a lower bound on R[A1, . . . , Am : A0], and the true quantity is at most θ(µ) times (see
(4.4.38), (4.4.37)) larger than the bound:

ρ[A1, . . . , Am : A0] ≤ R[A1, . . . , Am : A0] ≤ θ(µ)ρ[A1, . . . , Am : A0]. (4.4.46)

Application: Lyapunov stability analysis for an interval matrix. Now we are equipped
to attack the problem of certifying the stability of uncertain linear dynamic system with
interval uncertainty. The problem we are interested in is as follows:

Interval Lyapunov. Given a stable n × n matrix A∗30 and an n × n matrix
D �= 0 with nonnegative entries, find the supremum R[A∗,D] of those ρ ≥ 0
for which all instances of the interval matrix

Uρ = {A ∈ Mn,n : |Aij − A∗
ij | ≤ ρDij , i, j = 1, . . . , n}

share a common quadratic Lyapunov function, i.e., the semi-infinite system of
LMIs

X � I ; ATX + XA / −I ∀A ∈ Uρ (Ly[ρ])

in matrix variable X ∈ Sn is solvable.
30That is, with all eigenvalues from the open left half-plane or, which is the same, such that [A∗]T X+XA∗ ≺ 0

for certain X . 0.
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4.4. Applications II: Stability analysis 195

Observe that X � I solves (Lyρ) if and only if the matrix cube

Aρ[X] =
{
B = [−I − [A∗]T X − XA∗]︸ ︷︷ ︸

A0[X]

+
∑

(i,j)∈D
zij

[[DijE
ij ]T X + X[DijE

ij ]]︸ ︷︷ ︸
Aij [X]

∣∣∣∣ |zij | ≤ ρ, (i, j) ∈ D
}

D = {(i, j) : Dij > 0}

is contained in Sn+; here Eij are the basic n × n matrices. (ij th entry of Eij is 1; all other
entries are zero.) Note that the ranks of the matrices Aij [X], (i, j) ∈ D, are at most 2.
Therefore from Proposition 4.4.5 and Theorem 4.4.1 we get the following result.

Proposition 4.4.6. Let ρ ≥ 0. Then
(i) If the system of LMIs

X � I,

Xij � −ρDij

[[Eij ]T X + XEij
]
, Xij � ρDij

[[Eij ]T X + XEij
]
, (i, j) ∈ D,

n∑
(i,j)∈D

Xij / −I − [A∗]T X − XA∗
(A[ρ])

in matrix variables X,Xij , (i, j) ∈ D, is solvable, then so is the system (Ly[ρ]), and the
X-component of a solution of the former system solves the latter system. (ii) If the system
of LMIs (A[ρ]) is not solvable, then so is the system (Ly[πρ2 ]).

In particular, the supremum ρ[A∗,D] of those ρ for which (A[ρ]) is solvable is a
lower bound for R[A∗,D], and the true quantity is at most π

2 times larger than the bound:

ρ[A∗,D] ≤ R[A∗,D] ≤ π

2
ρ[A∗,D].

Computing ρ[A∗, D]. The quantity ρ[A∗,D], in contrast to R[A∗,D], is effi-
ciently computable: applying dichotomy in ρ, we can find a high-accuracy approximation
of ρ[A∗,D] via solving a small series of semidefinite feasibility problems (A[ρ]). Note,
however, that problem (A[ρ]), although computationally tractable, is not that simple: in the
case of full uncertainty (Dij > 0 ∀i, j ) it has n2 +n matrix variables of the size n×n each.
Our local goal is to demonstrate that one can use duality to reduce dramatically the design
dimension of the problem.

It makes sense to focus on the problem slightly more general than the one of finding
ρ[A∗,D], namely, on the problem as follows:

(P) We are given m + 1 n × n symmetric matrices A0[x], A1[x], . . . , Am[x]
affinely depending on vector x of design variables, with Ai[x], i ≥ 1, of the
form

Ai[x] = ai[x]bTi + bia
T
i [x],

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 196

✐

✐

✐

✐

✐

✐

✐

✐

196 Lecture 4. Semidefinite Programming

where the vectors ai[x] are affine in x. Besides this, we are given an SDr set

X = {x | Px + Qu + r � 0}
in the space of design variables. We want to find the supremum ρ∗ of those ρ

for which there exist x ∈ X and matrices X1, . . . , Xm such that

Xi � ρAi[x], Xi � −ρAi[x], i = 1, . . . , m,
m∑
i=1

Xi ≺ A0[x]. (4.4.47)

Note that the problem of computing ρ[A∗,D] is exactly of this type, with a symmetric
n × n matrix X playing the role of x.

From now on, we make the following assumptions:

I.1. The system of LMIs

Px + Qu + r � 0, A0[x] . 0,

is feasible.

I.2. For every i we have bi �= 0 and ai[x] �= 0 ∀x ∈ X .

I.3. ρ∗ < +∞.

Note that in the problem of computing ρ[A∗,D] I.2 is trivially true, I.1 means that
there exists X � I such that [A∗]T X + XA∗ ≺ −I , i.e., that A∗ is stable (which we have
assumed from the very beginning), and I.3 requires ρ[A∗,D] < +∞, which is indeed
natural to assume.

Step 1. Given x such that A0[x] . 0, consider the following semidefinite problem:

ρ(x) = sup
ρ,X1,...,Xm

ρ
∣∣ Xi � ρAi[x], Xi � −ρAi[x], i = 1, . . . , m,

m∑
i=1

Xi / A0[x]

 . (P[x])

Note that

ρ∗ = sup
x∈X ,A0[x].0

ρ(x). (4.4.48)

Since A0[x] . 0, problem (P[x]) is strictly feasible with a positive optimal value, and since
ρ∗ < +∞, the problem is bounded above. By the conic duality theorem, ρ(x) is the optimal
value in the problem

min
W,U 1,...,Um,V 1,...,V m

Tr(WA0[x])∣∣
m∑
i=1

Tr([Ui − V i]Ai[x]) = 1,

Ui + V i = W, i = 1, . . . , m,

W � 0, Ui � 0, V i � 0

D
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4.4. Applications II: Stability analysis 197

dual to (P[x]). Since the optimal value ρ(x) in the problem is positive, by homogeneity
reasons we have

1

ρ(x)
= max

W,U 1,...,Um,V 1,...,V m


m∑
i=1

Tr([Ui − V i]Ai[x])
∣∣∣∣ Tr(WA0[x]) = 1,

Ui + V i = W,

W � 0, Ui � 0, V i � 0

 .

Invoking Lemma 4.4.3, we can carry out partial maximization in Ui, V i , thus coming to

1

ρ(x)
= max

W

{
m∑
i=1

‖λ(W 1/2Ai[x]W 1/2)‖1

∣∣ Tr(WA0[x]) = 1,W � 0

}
. (4.4.49)

Now let us make the following observation.

Lemma 4.4.5. Let A = fgT + gf T . Then ‖λ(A)‖1 = 2‖f ‖2‖g‖2.

Proof. Without loss of generality, we may assume that f = (u, 0 . . . , 0)T , g =
(v,w, 0, . . . , 0)T . Then the eigenvalues of fgT + gf T are, up to a number of zeros,
the same as the eigenvalues of the 2 × 2 matrix [ 2uv

uw

uw

0 ]. The eigenvalues of the latter ma-

trix are −uv ± √
u2v2 + u2w2, and the sum of their absolute values is 2

√
u2v2 + u2w2 =

2‖f ‖2‖g‖2.

Taking into account that for i ≥ 1 we have

W 1/2Ai[x]W 1/2 = (W 1/2ai[x])(W 1/2bi)
T + (W 1/2bi)(W

1/2ai[x])T

and using Lemma 4.4.5, we can rewrite (4.4.49) as

1

ρ(x)
= 2 max

W

{∑
i

√
aTi [x]Wai[x]√biWbi

∣∣Tr(WA0[x]) = 1, W � 0

}

or, which is the same,

1

ρ(x)
= max

W,τi

{
2
∑
i

τi

∣∣∣Tr(WA0[x]) = 1, W � 0,

(
ai[x]TWai[x] τi

τi bTi Wbi

)
� 0, i = 1, . . . , m

}
.︸ ︷︷ ︸

(D[x])

(4.4.50)

Now we can look at the results of our effort. By definition, ρ(x) is the optimal value
in the semidefinite program (P[x]), which has a single scalar variable and m symmetric
matrix variables (i.e., totally mn(n+1)

2 + 1 scalar decision variables) and 2m + 1 large (of
the size n × n each) LMIs. Equation (4.4.49) offers an alternative description of ρ(x),
which requires solving a much smaller semidefinite program—one with just m + n(n+1)

2
scalar decision variables, a single large LMI W � 0, and m small (2 × 2) LMIs! And this
(dramatic for large n,m) simplification was achieved in a completely mechanical fashion,
by a straightforward use of conic duality. Note that the problem of computing ρ(x) is
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198 Lecture 4. Semidefinite Programming

important by its own right; for example, in the context of the interval Lyapunov stability
analysis this problem provides a bound (accurate within the factor π

2 ) on the largest ρ such
that a given quadratic function is a stability certificate for all instances of Uρ .

Note that our final goal is to maximize ρ(x) in x ∈ X , and in this respect (4.4.50) is
not that useful—the problem (D[x]) is not a semidefinite program inW, x. To overcome this
drawback, we intend to pass from (D[x]) (this problem is, basically, the dual of our original
problem (P[x])) to its dual. At the first glance, this intention seems to be senseless: the dual
of the dual is the original problem! The essence of the matter is in the word “basically.”
(D[x]) is not exactly the dual of (P[x]); it was obtained from this dual by eliminating part of
the variables. Therefore we have no a priori understanding what will be the dual of (D[x]).
Well, let us look what it is.

Step 2. From A0[x] . 0 combined with I.2 it follows that the problem (D[x]) is strictly
feasible, and of course it is bounded above (since ρ(x) > 0). Therefore the quantity in the
right-hand side of (4.4.50) is equal to the optimal value in the problem dual to (D[x]):

1

ρ(x)
= min

λ,Z,{ξi ,ηi ,ζi }


λ

∣∣∣∣
m∑
i=1

[
ξiai[x]aTi [x] + ηibib

T
i

] + Z = λA0[x],(
ξi ζi
ζi ηi

)
� 0, i = 1, . . . , m,

Z � 0,
ζi = 1, i = 1, . . . , m.


or, which is the same,

1

ρ(x)
= min

λ,{ηi }

{
λ

∣∣∣∣ m∑
i=1

[
1

ηi
ai[x]aTi [x] + ηibib

T
i

]
/ λA0[x], ηi ≥ 0, i = 1, . . . , m

}
.

(4.4.51)

Observing that when ηi are positive, the relation

m∑
i=1

[
1

ηi
ai[x]aTi [x] + ηibib

T
i

]
/ Y,

by the Schur complement lemma, takes place if and only if Y −
m∑
i=1

ηibib
T
i [a1[x]; a2[x]; . . . ; am[x]]

[a1[x]; a2[x]; . . . ; am[x]]T Diag(η1, . . . , ηm)

 � 0,

we can rewrite (4.4.51) equivalently as

1

ρ(x)
= min

λ,{ηi },Y

λ

∣∣∣∣
 Y −

m∑
i=1

ηibib
T
i [a1[x]; a2[x]; . . . ; am[x]]

[a1[x]; a2[x]; . . . ; am[x]]T Diag(η1, . . . , ηm)

 � 0,

Y / λA0[x]

 .

(4.4.52)
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According to (4.4.48), we have

1

ρ∗
= inf

λ,Y,x,u,{ηi }


λ

∣∣∣∣
Px + Qu + r � 0, Y −

m∑
i=1

ηibib
T
i [a1[x]; a2[x]; . . . ; am[x]]

[a1[x]; a2[x]; . . . ; am[x]]T Diag(η1, . . . , ηm)

 � 0,

A0[x] . 0,
Y / λA0[x]


.

(4.4.53)

The optimization problem in the left-hand side of the resulting representation of ρ∗ is not
exactly a semidefinite problem (due to the bilinear term λA0[x] in the right-hand side of one
of the constraints). This is what is called a generalized eigenvalue problem. Note, however,
that the problem can be easily reduced to a small series of semidefinite programs. Indeed,
let λ∗ be the (unknown) optimal value in the problem. Given a candidate value of λ, to
verify that λ > λ∗ is the same as to verify that the optimal value in the semidefinite program

max
s,Y,x,u,{ηi }


s

∣∣∣∣
(a) Px + Qu + r � 0,

(b)

 Y −
m∑
i=1

ηibib
T
i [a1[x]; a2[x]; . . . ; am[x]]

[a1[x]; a2[x]; . . . ; am[x]]T Diag(η1, . . . , ηm)

 � 0,

(c) sI / A0[x],
(d) Y + sI / λA0[x]


(Pλ)

is positive. With this observation in mind, we can find λ∗ applying bisection in λ. At every
step of this process, we solve problem (Pλ) corresponding to the current value of λ in order to
check whether this value is or is not > λ∗. This approach allows us to build a high-accuracy
approximation of λ∗ = 1

ρ∗ at the cost of solving a small series of problems (Pλ).
Let us look how the outlined approach works in the problem of computing ρ[A∗,D].

Here x = X is a symmetric n× n matrix, Px +Qu+ r ≡ X − I , and m = Card(D) is the
total number of uncertain entries in our uncertain interval matrix. Consequently, problem
(Pλ) has two symmetric matrix variables X, Y , a single scalar variable s, and m ≤ n2 scalar
variables ηi , i.e., totally at most 2n2 + n + 2 scalar design variables. As about LMIs, (Pλ)
has three large (n × n) LMIs (a), (c), (d) and one very large ((n + m) × (n + m)) LMI (b);
note, however, that this very large LMI is of a very simple structure. Thus, (Pλ) seems to
be much better suited for numerical processing than our original system (A[ρ]), where we
have totally (m+1)n(n+1)

2 scalar design variables and m + 1 LMIs of size n × n each.

Remark 4.4.1. Note that our results on the Matrix Cube problem can be applied to the
interval version of the Lyapunov stability synthesis problem, where we want to find the
supremum R of those ρ for which an uncertain controllable system

d

dt
x(t) = A(t)x(t) + B(t)u(t)

with interval uncertainty

(A(t), B(t)) ∈ Uρ = {
(A,B) : |Aij − A∗

ij | ≤ ρDij , |Bi� − B∗
i�| ≤ ρCi� ∀i, j, �}D
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admits a linear feedback

u(t) = Kx(t)

such that all instances A(t) + B(t)K of the resulting closed-loop system share a common
quadratic Lyapunov function. Here our constructions should be applied to the semi-infinite
system of LMIs

Y � I, BL + AY + LT BT + YAT / −I ∀(A,B) ∈ Uρ

in variables L, Y (see Proposition 4.4.4) and then yield an efficiently computable lower
bound on R which is at most π

2 times less than R.

Nesterov’s theorem revisited. Our results on the Matrix Cube problem give an alternative
proof of the Nesterov theorem (Theorem 4.3.2). Recall that in this theorem we compare the
true maximum

OPT = max
d

{dT Ad | ‖d‖∞ ≤ 1}

of a positive semidefinite (A � 0) quadratic form on the unit n-dimensional cube and the
semidefinite upper bound

SDP = max
X

{Tr(AX) | X � 0, Xii ≤ 1, i = 1, . . . , n} (4.4.54)

on OPT ; the theorem says that

OPT ≤ SDP ≤ π

2
OPT . (4.4.55)

To derive (4.4.55) from the Matrix Cube–related considerations, assume that A . 0 rather
than A � 0 (by continuity reasons, to prove (4.4.55) for the case of A . 0 is the same as to
prove the relation for all A � 0) and let us start with the following simple observation.

Lemma 4.4.6. Let A . 0 and

OPT = max
d

{
dT Ad | ‖d‖∞ ≤ 1

}
.

Then

1

OPT
= max

{
ρ :

(
1 dT

d A−1

)
� 0 ∀(d : ‖d‖∞ ≤ ρ1/2)

}
(4.4.56)

and

1

OPT
= max

{
ρ : A−1 � X ∀(X ∈ Sn : |Xij | ≤ ρ ∀i, j)} . (4.4.57)
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Proof. To get (4.4.56), note that by the lemma on the Schur complement, all matrices of
the form (

1
d

dT

A−1 ) with ‖d‖∞ ≤ ρ1/2 are � 0 if and only if dT (A−1)−1d = dT Ad ≤ 1 ∀d,
‖d‖∞ ≤ ρ1/2, i.e., if and only if ρ · OPT ≤ 1; we have derived (4.4.56). We now have

(a) 1
OPT ≥ ρ

, [by (4.4.56)](
1 dT

d A−1

)
� 0 ∀(d : ‖d‖∞ ≤ ρ1/2)

, [the Schur complement lemma]
A−1 � ρddT ∀(d, ‖d‖∞ ≤ 1)

,
xT A−1x ≥ ρ(dT x)2 ∀x ∀(d : ‖d‖∞ ≤ 1)

,
xT A−1x ≥ ρ‖x‖2

1 ∀x
,

(b) A−1 � ρY ∀(Y = YT : |Yij | ≤ 1 ∀i, j),

where the concluding , is given by the evident relation

‖x‖2
1 = max

Y

{
xT Yx : Y = YT , |Yij | ≤ 1 ∀i, j} .

The equivalence (a) ⇔ (b) is exactly (4.4.57).

By (4.4.57), 1
OPT is exactly the maximum R of those ρ for which the matrix cube

Cρ =
A−1 +

∑
1≤i≤j≤n

zij S
ij
∣∣ max

i,j
|zij | ≤ ρ


is contained in Sn+. Here Sij are the basic symmetric matrices. (Sii has a single nonzero
entry, equal to 1, in the cell ii, and Sij , i < j , has exactly two nonzero entries, equal to 1, in
the cells ij and ji.) Since the ranks of the matrices Sij do not exceed 2, Proposition 4.4.5
and Theorem 4.4.1 say that the optimal value in the semidefinite program

ρ(A) = max
ρ,Xij

ρ

∣∣∣∣ Xij � ρSij , Xij � −ρSij , 1 ≤ i ≤ j ≤ n,∑
i≤j

Xij / A−1

 (S)

is a lower bound for R, and this bound coincides with R up to the factor π
2 . Consequently,

1
ρ(A)

is an upper bound on OPT , and this bound is at most π
2 times larger than OPT . It

remains to note that a direct computation (completely similar to the one that led us from
(P[x]) to (4.4.50)) demonstrates that 1

ρ(A)
is exactly the quantity SDP given by (4.4.54).D
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202 Lecture 4. Semidefinite Programming

4.5 Applications III: Robust quadratic programming
The concept of a robust counterpart of an optimization problem with uncertain data (see
section 3.4.2) is in no sense restricted to LP. Whenever we have an optimization problem
depending on certain data, we may ask what happens when the data are uncertain and all we
know is an uncertainty set the data belong to. Given such an uncertainty set, we may require
candidate solutions to be robust feasible—to satisfy the realizations of the constraints for all
data belonging through the uncertainty set. The robust counterpart of an uncertain problem
is the problem of minimizing the objective31 over the set of robust feasible solutions.

Now, we have seen in section 3.4.2 that the robust form of an uncertain linear inequality
with the coefficients varying in an ellipsoid is a conic quadratic inequality; as a result,
the robust counterpart of an uncertain LP problem with ellipsoidal uncertainty is a conic
quadratic problem. What is the robust form of an uncertain CQI

‖Ax + b‖2 ≤ cT x + d
[
A ∈ Mm,n, b ∈ Rm, c ∈ Rn, d ∈ R

]
(4.5.58)

with uncertain data (A, b, c, d) ∈ U? We want to know how to describe the set of all robust
feasible solutions of this inequality, i.e., the set of x’s such that

‖Ax + b‖2 ≤ cT x + d ∀(A, b, c, d) ∈ U . (4.5.59)

We are about to demonstrate that in the case when the data (P, p) of the left-hand
side and the data (q, r) of the right-hand side of the inequality (4.5.58) independently of
each other run through respective ellipsoids, i.e., the uncertainty set is of the form

U =
{
(A, b, c, d) | ∃(u ∈ Rl , uT u ≤ 1, v ∈ Rr , vT v ≤ 1) :

[A; b] = [A0; b0] +
l∑

i=1

ui[Ai; bi], (c, d) = (c0, d0) +
r∑

i=1

vi(c
i, di)

}
,

(4.5.60)

then the robust version (4.5.59) of the uncertain inequality (4.5.58) can be expressed via
LMIs.

Proposition 4.5.1. Robust counterpart of a conic quadratic inequality with simple
ellipsoidal uncertainty. In the case of uncertain conic inequality with uncertainty (4.5.60),
the set of robust feasible solutions of the inequality (4.5.59) is SDr with the following SDR:

31Without loss of generality, we may assume that the objective is certain—is not affected by the data uncertainty.
Indeed, we always may ensure this situation by passing to an equivalent problem with linear (and standard) objective:

min
x

{f (x) : x ∈ X} �→ min
t,x

{t : f (x) − t ≤ 0, x ∈ X} .D
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x satisfies (4.5.59) if and only if there exist real s, µ such that the triple (x, s, µ) satisfies
the following LMIs:

(a)
(c0)T x + d0 − s (c1)T x + d1 (c2)T x + d2 · · · (cr)T x + dr

(c1)T x + d1 (c0)T x + d0 − s

(c2)T x + d2 (c0)T x + d0 − s
...

. . .

(cr )T x + dr (c0)T x + d0 − s

 � 0,

(b) 
sIm A0x + b0 A1x + b1 · · · Alx + bl

[A0x + b0]T s − µ

[A1x + b1]T µ
...

. . .

[Alx + bl]T µ

 � 0.

(4.5.61)

Proof. Since the uncertain data of the left and the right sides in (4.5.58) run independently
through their respective ellipsoids, x satisfies (4.5.59) (let us call this Property 0) if and only
if the following holds.

(Property 1) There exists s ∈ R such that

(a) s ≤
[
c0 +

r∑
i=1

vic
i

]T

x + d0 +
r∑

i=1

vid
i ∀v : vT v ≤ 1,

(b) s ≥
∣∣∣∣∣
∣∣∣∣∣
[
A0 +

l∑
i=1

uiA
i

]
x + b0 +

l∑
i=1

uib
i

∣∣∣∣∣
∣∣∣∣∣
2

∀u : uT u ≤ 1.

(4.5.62)

Now, the relation (4.5.62)(a) is equivalent to the conic quadratic inequality

[c0]T x + d0 −

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣


[c1]T x + d1

[c2]T x + d2

. . .

[cr ]T x + dr


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≥ s

(why?) or, which is the same (see (4.2.1)), to the LMI (4.5.61)(a).
Now let us set

p(x) = A0x + b0 ∈ Rm;
P(x) = [A1x + b1;A2x + b2; . . . ;Alx + bl] ∈ Mm,l.

The relation (4.5.62)(b) is nothing but

s ≥ ‖P(x)u + p(x)‖2 ∀u : uT u ≤ 1;
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thus, it is equivalent to the fact that s ≥ 0 and the quadratic form of u

s2 − pT (x)p(x) − 2pT (x)P (x)u − uT P T (x)P (x)u

is nonnegative whenever uT u ≤ 1. This, in turn, is equivalent to the fact that the homoge-
neous quadratic form

(s2 − pT (x)p(x))t2 − 2tpT (x)P (x)u − uT P T (x)P (x)u

of u, t (t ∈ R) is nonnegative whenever uT u ≤ t2. Applying the S-lemma, we conclude
that

(!) Relation (4.5.62)(b) is equivalent to the facts that s ≥ 0 and that there
exists ν ≥ 0 such that

(s2 − pT (x)p(x))t2 − 2tpT (x)P (x)u − uT P T (x)P (x)u − ν[t2 − uT u] ≥ 0

∀(u, t) ∈ Rl × R. (4.5.63)

We now claim that the quantity ν in (!) can be represented asµs with some nonnegative
µ. There is nothing to prove when s > 0. Now assume that s = 0 and that (4.5.63) is
satisfied by some ν ≥ 0. Then ν = 0 (look what happens when t = 1, u = 0), and so it can
be represented as µs with, say, µ = 0. Thus, we have demonstrated that

(!!) Relation (4.5.62)(b) is equivalent to the facts that s ≥ 0 and that there
exists µ ≥ 0 such that

s
[
(s − µ)t2 + µuT u

]
− [

pT (x)p(x)t2 + 2tpT (x)P (x)u + uT P T (x)P (x)u
] ≥ 0 ∀(u, t)

or, which is the same, such that

s

(
s − µ

µIl

)
− ([p(x);P(x)]]T [p(x);P(x)] � 0. (4.5.64)

Now note that when s > 0, (4.5.64) says exactly that the Schur complement to the north-
western block in the matrix sIm [p(x);P(x)]

[p(x);P(x)]T s − µ

µIl

 (∗)

is positive semidefinite. By the Schur complement lemma, this is exactly the same as to say
that s > 0 and the matrix (*) is positive semidefinite. Thus, in the case of s > 0, relation
(4.5.62) says precisely that there exists µ such that (*) is positive semidefinite. In the case of
s = 0, relation (4.5.62) can be satisfied if and only ifp(x) = 0 andP(x) = 0 (see (!!)). This
again is exactly the case when there exists a µ such that (*) is positive semidefinite. Since
(*) can be positive semidefinite only when s ≥ 0, we come to the following conclusion:

Relation (4.5.62)(b) is satisfied if and only if there exists µ such that the matrix
(∗) is positive semidefinite.

It remains to notice that (*) is exactly the matrix in (4.5.61)(b).
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Remark 4.5.1. We have built an explicit semidefinite representation of the robust version
of a conic quadratic inequality in the case of simple ellipsoidal uncertainty. In more compli-
cated cases (e.g., when b, c, d in (4.5.58) are not affected by uncertainty and the matrix A

is affected by interval uncertainty: all its entries, independently of each other, run through
given intervals), it may be computationally intractable already to check whether a given x

is robust feasible.

Example: Robust synthesis of antenna array. We have already considered the problem
of antenna array synthesis in the Tschebyshev setting, i.e., when the discrepancy between
the target diagram and the designed one is measured in the uniform norm (section 1.2.4). We
have also seen that the solution to the resulting LP problem may be extremely unstable with
respect to small implementation errors, and furthermore we have shown how to overcome
this difficulty by switching from the nominal design to the one given by the robust counterpart
methodology (section 3.4.2). Now, what happens if we replace the uniform norm of the
discrepancy with the ‖ · ‖2-norm, i.e., define the optimal design as the optimal solution x∗

j

to the usual least squares problem

min
x

‖Z∗ −
∑
j

xjZj‖2 ≡
√√√√ 1

N

∑
θ∈T

(Z∗(θ) −
∑
j

xjZj (θ))2

 , (LS)

where N is the cardinality of the grid T ?
Note that the factor 1

N
under the square root does not influence the least squares

solution. The only purpose of it is to make the figures comparable with those related to the
case of the best uniform approximation: with our normalization, we have

‖Z∗ −
∑
j

xjZj‖2 ≤ ‖Z∗ −
∑
j

xjZj‖∞

for every x.
(LS) is just a linear algebra problem; assuming Z∗(·), Zj (·) real, its optimal solution

x∗ is exactly the solution to the normal system of equations

(AT A)x = AT b,

where b = 1√
N
(Z∗(θ1), . . . Z∗(θN))T and A is the matrix with the columns 1√

N
(Zj (θ1), . . . ,

Zj (θN))
T .

Now let us check the stability properties of the least squares solution. Consider exactly
the same design data as in sections 1.2.4 and 3.4.2 and assume that the actual amplification
coefficients xj are obtained from their nominal values x∗

j by random perturbations x∗
j �→

xj = pjx
∗
j , where pj are independent random factors with expectations 1 taking values

in the segment [0.999, 1.001]. Based on our previous experience (see section 3.4.2), we
should not be too surprised by the fact that these stability properties are extremely poor, as
seen in Fig. 4.7. The reason for instability of the nominal least squares solution is, basically,
the same as in the case of the nominal Tschebyshev solution. The system of basic functions
Zj is nearly linearly dependent. (This unpleasant phenomenon is met in the majority of
approximation problems arising in applications.) As a result, the normal system of equations
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Figure 4.7. Dream and reality: the nominal diagram (left, solid line) and an
actual diagram (right, solid line). Dashed lines are the target diagram. The target diagram
varies from 0 to 1, and the nominal diagram (the one corresponding to xj = x∗

j ) is at the
‖ · ‖2-distance 0.0178 from the target diagram. An actual diagram varies from ≈ −30 to
≈ 30 and is at the ‖ · ‖2-distance 20.0 (1124 times larger!) from the target.

becomes ill conditioned, and its solution has large entries. And of course even small relative
perturbations of very large nominal amplification coefficients may cause and do cause huge
perturbations in the actual diagram.

To resolve the difficulty, let us use the robust counterpart methodology. What we are
solving now is a conic quadratic inequality, so that we may use the results of this section.
The question, however, is how to define a reasonable uncertainty set. Let us look at this
question for a general CQI

‖Ax + b‖2 ≤ cT x + d (CQI)

with m × n matrix A, assuming, as is the case in our antenna example, that the uncertainty
comes from the fact that the entries xj of a candidate solution are affected by noise:

xj �→ xj (1 + κj εj ), (4.5.65)

where ε1, . . . , εn are independent random variables with zero means and unit standard
deviations, and κj ≥ 0 are (deterministic) relative implementation errors.

What is a reliable version of the inequality (CQI) in the case of random perturbations
(4.5.65) in x? Note that it is the same—to view the data A, b, c, d in (CQI) as fixed and to
consider perturbations in x, and to think that there are no perturbations in x, but the data
in (CQI) are perturbed equivalently. With this latter viewpoint, how could we define an
uncertainty set U so that the robust counterpart of the uncertain conic inequality

‖A′x + b′‖2 ≤ (c′)T x + d ′ ∀(A′, b′, c′, d ′) ∈ U
would be a reliable version of (CQI)?

The question we have posed is not a purely mathematical question. It has to do with
modeling, and modeling—description of a real-world situation in mathematical terms—is
always beyond the scope of the mathematics itself. It follows that in our current situation we
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are free to use whatever arguments we want—detailed (and time-consuming) mathematical
analysis of the random variables we are dealing with common sense, spiritualism, and so
forth. Proof of our pudding will be in the eating—testing the quality of the resulting robust
solution.

Since we do not have much experience with spiritualism, and a detailed mathematical
analysis of the situation does not seem to be simple, we prefer to rely on common sense,
namely, to choose somehow a safety parameter ω of order of 1 and to utilize the following
principle:

A nonnegative random variable is never larger than ω times its expected value.

Put more mildly, we intend to ignore rare events—those where the above principle is violated,
and to take on ourselves full responsibility for the remaining events.

Equipped with our principle, let us build a reliable version of (CQI) as follows. First,
we separate the influence of the perturbations on the left and right sides of our inequality.
Namely, the value of the right-hand side cT y + d at a randomly perturbed x—i.e., at a
random vector y with the coordinates

yj = xj + κjxj εj

—is a random variable of the form

cT x + d + η,

η being a zero mean random variable with standard deviation V 1/2(x), where

V (x) =
n∑

j=1

c2
j κ

2
j x

2
j . (4.5.66)

According to our principle, the value of the right-hand side in (CQI) is never less than the
quantity

R(x) = cT x + d − ωV 1/2(x). (4.5.67)

It follows that if we ensure that the value of the left-hand side in (CQI) is never larger than
R(x), then the perturbations in x never result in violating of (CQI). This scheme is a bit
conservative (it may happen that a perturbation that increases the left-hand side of (CQI)
increases the right-hand side as well), but this is life—we want to get something tractable
and thus can afford to be conservative. Recall that at the moment we are not obliged to be
rigorous!

Now we came to the following situation. We would like R(x) to be a reliable upper
bound on the values of the left-hand side in (CQI), and this requirement on x will be the
reliable version of (CQI). Now, what are typical values of the left-hand side of (CQI)? These
are the Euclidean norms of the random vector

z ≡ z(x) + ζ = Ax + b + ζ,

where

ζ =
n∑

j=1

κjxj εjAj
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(Aj are the columns of A). Note that the vector ζ is a random vector with zero mean. For
a given x, let e be the unit vector collinear to the vector Ax + b. We have

‖z‖2
2 = l2x + ‖ζx‖2

2,

where lx is the length of the projection of z on the line spanned by e and ζx is the projection
of z (or, which is the same, of ζ ) onto the orthogonal complement to this line.

We have ‖ζx‖2
2 ≤ ‖ζ‖2

2, and the expected value of ‖ζ‖2
2 is

S(x) =
n∑

j=1

Sjjx
2
j , Sjj = κ2

j A
T
j Aj . (4.5.68)

According to our principle, ‖ζx‖2 is never greater than ωS1/2(x).
Now let us find a never-type upper bound for lx—for the length of the projection of

z onto the line spanned by the vector Ax + b (or, which is the same, by the unit vector e).
We have, of course,

|lx | ≤ ‖Ax + b‖2 + |eT ζ |.
Now, eT ζ is the random variable

eT ζ =
m∑
i=1

n∑
j=1

aij eiκjxj εj =
n∑

j=1

[
m∑
i=1

aij ei

]
κjxj εj

with zero mean and the variance

v =
n∑

j=1

[
κj

m∑
i=1

aij ei

]2

x2
j . (4.5.69)

To end up with tractable formulae, it is desirable to bound from above the latter quantity by
a simple function of x. (This is not the case for the quantity itself, since e depends on x in
a not that pleasant way!) A natural bound of this type is

v ≤ σ 2‖x‖2
∞,

where

σ = |ADiag(κ1, . . . , κn)| (4.5.70)

and | · | is the operator norm. Indeed, the coefficients of x2
j in (4.5.69) are the squared entries

of the vector Diag(κ1, . . . , κn)A
T e, and since e is unit, the sum of these squared entries does

not exceed σ 2.
According to our principle, the absolute value of eT ζ never exceeds the quantity

ωσ‖x‖∞.

Combining all our observations, we conclude that ‖z‖2 never exceeds the quantity

L(x) =
√

[‖Ax + b‖2 + ωσ‖x‖∞]2 + ω2S(x).
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Consequently, the reliable version of (CQI) is the inequalityL(x) ≤ R(x), i.e., the inequality

ωV 1/2(x) +
√

[‖Ax + b‖2 + ωσ‖x‖∞]2 + ω2S(x) ≤ cT x + d,

σ = |ADiag(κ1, . . . , κn)|,
S(x) =

n∑
j=1

[κ2
j A

T
j Aj ]x2

j ,

V (x) =
n∑

j=1

κ2
j c

2
j x

2
j

 .
(4.5.71)

The resulting inequality is indeed tractable—it can be represented by the following system
of linear and CQIs:

t1 + t2 ≤ cT x + d;
ω‖Wx‖2 ≤ t1,

W = Diag(κ1c1, κ2c2, . . . , κncn);
‖Ax + b‖2 ≤ s1;

|xi | ≤ s2, i = 1, . . . , n;∣∣∣∣∣∣∣∣( s1 + ωσs2

ωDx

)∣∣∣∣∣∣∣∣
2

≤ t2,

D = Diag(|κ1|‖A1‖2, |κ2|‖A2‖2, . . . , |κn|‖An‖2),

(4.5.72)

where t1, t2, s1, s2 are additional design variables.
It is worth mentioning—just for fun!—that problem (4.5.72) is, in a sense, the robust

counterpart of (CQI) associated with a specific ellipsoidal uncertainty.
Indeed, we can rewrite (CQI) equivalently as the following crazy system of inequalities

with respect to x and additional variables t1, t2, s1, s2:

t1 + t2 ≤ cT x + d;
‖Diag(α1, . . . , αn)x‖2 ≤ t1,

α1 = 0, α2 = 0, . . . , αn = 0;
‖Ax + b‖2 ≤ s1;

|xi | ≤ s2, i = 1, . . . , n;∣∣∣∣∣∣∣∣( s1 + β0s2

Diag(β1, β2, . . . , βn)x

)∣∣∣∣∣∣∣∣
2

≤ t2,

β0 = 0, β1 = 0, . . . , βn = 0.

(4.5.73)

Now assume that the data αi , βi in this system are uncertain, namely, linearly depend on
perturbation u varying in the segment [−1, 1] (ellipsoidal uncertainty!):

αi = [ωκici]u, i = 1, . . . , n,
β0 = [ωσ ]u,
βi = [ω|κi |‖Ai‖2]u, i = 1, . . . , n.

It is easily seen that the robust counterpart of (4.5.73)—which is, basically, our original
conic inequality (CQI)—is exactly (4.5.72). Thus, (4.5.72) is the robust counterpart of
(CQI) corresponding to an ellipsoidal uncertainty, and this uncertainty affects the data that
are not present in (CQI) at all!
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Figure 4.8. Dream and reality: the nominal least squares diagram (left, solid line)
and an actual diagram yielded by robust least squares (right, solid line). Dashed lines are
the target diagram.

What about the pudding we have cooked? Is this approach working for our antenna
synthesis problem? It works fine! Look at Fig. 4.8 (safety parameter ω = 1). The robust
optimal value in our uncertain least squares problem is 0.0236 (approximately 30% larger
than the nominal optimal value 0.0178—the one corresponding to the usual least squares
with no implementation errors). The ‖ · ‖2-distance between the target diagram and the
actual diagram shown on the picture is the same 0.0236. When generating a sample of
random diagrams yielded by our robust least squares design, this distance varies only in
the fourth digit after the dot. In a sample of 40 diagrams, the distances to the target varied
from 0.0236 to 0.0237. And what happens when in the course of our design we thought that
the implementation errors would be 0.1%, while in reality they are 1% (10 times larger)?
Nothing bad: now the ‖ · ‖2-distances from the target in a sample of 40 diagrams vary from
0.0239 to 0.0384.

4.6 Applications IV: Synthesis of filters and antennae
arrays

Consider a discrete time linear time invariant SISO (single input–single output) dynamic
system (cf. section 1.2.3).32 Such a system H takes as input a two-sided sequence of reals
u(·) = {u(k)}∞

k=−∞ and converts it into an output sequence Hu(·) according to

Hu(k) =
∞∑

l=−∞
u(l)h(k − l),

where h = {h(k)}∞
k=−∞ is a real sequence characteristic for H—the impulse response of H.

Let us focus on the case of a filter—a causal system with finite memory. Causality means

32The models to be presented in this section originate from S.-P. Wu, S. Boyd, and L. Vandenberghe, FIR filter
design via spectral factorization and convex optimization, Biswa Datta, ed., in Applied and Computational Control,
Signal and Circuits, Birkhauser, Basel, 1997, pp. 51–81.
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4.6. Applications IV: Synthesis of filters and antennae arrays 211

that h(k) = 0 for k < 0, so that the output Hu at every time k is independent of the input
after this time, while the property to have memory n means that h(k) = 0 for k ≥ n, so
that Hu(k), for every k, depends on the n inputs u(k), u(k − 1), . . . , u(k − n + 1) only.
Thus, a filter of order n is just a sequence h = {h(k)}∞

k=−∞ with h(k) = 0 for all negative
k and all k ≥ n. Of course, a filter {h(k)}∞

k=−∞ of order n can be identified with the vector
h = (h(0), . . . , h(n − 1))T ∈ Rn.

A natural way to look at a filter h(·) of order n is to associate with it the polynomial

ĥ(z) =
n−1∑
l=0

h(l)zl.

As any other polynomial on the complex plane, ĥ is completely determined by its restriction
on the unit circumference |z| = 1. This restriction, regarded as 2π -periodic function of real
variable ω,

H(ω) = ĥ(exp{iω}) =
n−1∑
l=0

h(l) exp{ilω}

is called the frequency response of the filter h(·). The frequency response is just a trigono-
metric polynomial (with complex coefficients) of ω of degree ≤ n − 1.

The meaning of the frequency response is quite transparent: if the input to the filter
is a harmonic oscillation

u(k) = �(a exp{iωk}) = |a| cos(ωk + arg(a)) [a ∈ C is the complex amplitude],
then the output is

Hu(k) =
∞∑

l=−∞
u(l)h(k − l) =

n−1∑
l=0

h(l)u(k − l)

= �
(

n−1∑
l=0

h(l)a exp{iω(k − l)}
)

= � (H(−ω)a exp{iωk}) .

Thus, the output is a harmonic oscillation of the same frequency as the input, and the
complex amplitude of the output is H(−ω) times the complex amplitude of the input.
Thus, the frequency response says how the filter affects a harmonic oscillation of certain
frequency ω: the filter multiplies the real amplitude of the oscillation by |H(−ω)| and
shifts the initial phase of the oscillation by arg(H(−ω)). Since typical inputs of interest
can be decomposed into sums of harmonic oscillations, typical design specifications in filter
synthesis problems have to do with the frequency response—they prescribe its behavior on
a segment D ∈ [−π, π ]. Note that the coefficients h(l) of the filter are real, so that the
frequency response possesses an evident symmetry:

H(−ω) = H ∗(ω),

where z∗ denotes the complex conjugate of a complex number z. Consequently, it suffices
to specify the behavior of a frequency response on the segment [0, π ] only.
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212 Lecture 4. Semidefinite Programming

The simplest type of design specifications would be to fix a target function F(ω),
0 ≤ ω ≤ π , and to require H to be as close as possible (e.g., in the uniform metric) to the
target. This would result in a Tschebyshev-type problem

min
h

{
max

0≤ω≤π
|F(ω) −

n−1∑
l=0

h(l) exp{ilω}|
}

in the (real) design variables h(0), . . . , h(n − 1). After discretization in ω, we end up with
a simple conic quadratic (or even an LP) program.

The outlined design specifications are aimed at prescribing both what a filter does
with the real amplitudes of harmonic oscillations and their initial phases. However, in
most applications the only issue of interest is how the filter affects the real amplitudes of
harmonic oscillations of different frequencies, not how it shifts the phases. Consequently,
typical design specifications prescribe the behavior of |H(ω)| only, e.g., require from this
function to be between two given bounds:

L(ω) ≤ |H(ω)| ≤ U(ω), 0 ≤ ω ≤ π. (B)

For example, when designing a low-pass filter, we wish to reproduce exactly the amplitudes
of oscillations with frequencies below a certain level and to suppress oscillations with
frequencies higher than another prescribed level, i.e., the specifications are like

1 − ε ≤ |H(ω)| ≤ 1 + ε, 0 ≤ ω ≤ ω, |H(ω)| ≤ ε, ω ≤ ω ≤ π.

When trying to process the constraint of the latter type, we meet with a severe difficulty:
|H(ω)| is not a convex function of our natural design parameters h(0), . . . , h(n− 1). There
is, however, a way to overcome the difficulty. It turns out that the function |H(ω)|2 can
be linearly parameterized by properly chosen new design parameters, so that lower and
upper bounds on |H(ω)|2 become linear (and thus tractable) constraints on the new design
parameters. And of course it is the same to impose bounds on |H(ω)| or on |H(ω)|2.

A proper parameterization of the function R(ω) ≡ |H(ω)|2 is very simple. We have

H(ω) =
n−1∑
l=0

h(l) exp{ilω}
⇓

R(ω) =
n−1∑

p=0

h(p) exp{ipω}
n−1∑

q=0

h(q) exp{−iqω}
 =

n−1∑
l=−(n−1)

r(l) exp{ilω},

r(l) =
∑
q

h(l + q)h(q).

The reals {r(l)}n−1
l=−(n−1) (they are called the autocorrelation coefficients of the filter h) are

exactly the parameters we need. Note that

r(−l) =
∑
q

h(−l + q︸ ︷︷ ︸
p

)h(q) =
∑
p

h(p)h(p + l) = r(l),D
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so that

R(ω) =
n−1∑

l=−(n−1)

r(l) exp{ilω)} = r(0) + 2
n−1∑
l=1

r(l) cos(lω).

Thus, R(·) is just an even trigonometric polynomial of degree ≤ n−1 with real coefficients,
and r(·) are, essentially, the coefficients of this trigonometric polynomial.

The function R(ω) = |H(ω)|2 is linearly parameterized by the coefficients r(·),
which is fine. These coefficients, however, cannot be arbitrary: not every even trigono-
metric polynomial of a degree ≤ n − 1 can be represented as |H(ω)|2 for certain H(ω) =∑n−1

l=0 h(l) exp{ilω}! The coefficients r = (r(0), 2r(1), 2r(2), . . . , 2r(n − 1))T of proper
even trigonometric polynomials R(·)—those that are squares of modulae of frequency
responses—form a proper subset R in Rn, and to handle constraints of the type (B), we
need a tractable representation of R. Such a representation does exist, due to the following
fundamental fact.

Proposition 4.6.1. Spectral factorization theorem. A trigonometric polynomial

R(ω) = a0 +
n−1∑
l=1

(al cos(lω) + bl sin(lω))

with real coefficients a0, . . . , an−1, b1, . . . , bn−1 can be represented as∣∣∣∣∣
n−1∑
l=0

h(l) exp{ilω}
∣∣∣∣∣
2

(∗)

for properly chosen complex h(0), h(1), . . . , h(n − 1) if and only if R(ω) is nonnegative
on [−π, π ]. An even trigonometric polynomial R(ω) of degree ≤ n− 1 can be represented
in the form (*) with real h(0), . . . , h(n − 1) if and only if it is nonnegative on [−π, π ] (or,
which is the same, on [0, π ]).

Postponing the proof of Proposition 4.6.1 until the end of this section, let us look first
at the consequences. The proposition says that the set R ∈ Rn of the coefficients of those
even trigonometric polynomials of degree ≤ n− 1 that are squares of modulae of frequency
responses of filters of order n is exactly the set of coefficients of those even trigonometric
polynomials of degree ≤ n − 1 that are nonnegative on [−π, π ]. Consequently, this set is
SDr with an explicit semidefinite representation (example 21c, section 4.2). Thus, passing
from our original design variables h(0), . . . , h(n−1) to the new design variables r ∈ R, we
make the design specifications of the form (B) a (semi-infinite) system of linear constraints
on the design variables varying in a SDr set. As a result, we get a possibility to handle
numerous filter synthesis problems with design specifications of the type (B) via SDP. Let
us look at a couple of examples.

Example 1: Low-pass filter. Assume we are given a number of (possibly overlapping)
segments Dk ⊂ [0, π ], k = 1, . . . , K , along with nonnegative continuous functions Sk(ω),
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Tk(ω) (Sk(ω) ≤ Tk(ω)) defined on these segments, and our goal is to design a filter of
a given order n with |H(ω)|2 being at every segment Dk as close as possible to the strip
between Sk and Tk . Since a natural measure of closeness in filter synthesis problems is the
relative closeness, we can pose the problem as

min
ε,H(·)

{
ε : 1

(1 + ε)
Sk(ω) ≤ |H(ω)|2 ≤ (1 + ε)Tk(ω) ∀ω ∈ Dk ∀k = 1, . . . , K

}
. (P)

For example, when dealing with two nonoverlapping segments D1 = [0, ω] and D2 =
[ω, π ] and setting S1 ≡ T1 ≡ 1, S2 ≡ 0, T2 ≡ β, with small positive β, we come to the
problem of designing a low-pass filter: |H(ω)| should be as close to 1 as possible in D1 and
should be small in D2.

In terms of the autocorrelation coefficients, problem (P) reads

minimize ε

s.t.

(a) δSk(ω) ≤ R(ω) ≡ r(0) + 2
n−1∑
l=1

r(l) cos(lω) ≤ (1 + ε)Tk(ω) ∀ω ∈ Dk,

k = 1, . . . , K;
(b) δ(1 + ε) ≥ 1,
(c) δ, ε ≥ 0,
(d) r ∈ R.

(P′)
Indeed, (a)–(c) say that

1

1 + ε
Sk(ω) ≤ R(ω) ≤ (1 + ε)Tk(ω), ω ∈ Dk, k = 1, . . . , K,

while the role of the constraint (d) is to express the fact that R(·) comes from certain filter
of order n.

Problem (P′) is not exactly a semidefinite program—the obstacle is that the constraints
(a) are semi-infinite. To overcome this difficulty, we can use discretization in ω (i.e., can
replace each segment Dk by a dense finite set of its points), thus approximating (P) by a
semidefinite program. In many cases we can even avoid approximation. One such case is
when all Sk and Tk are trigonometric polynomials. As we know from example 21c, section
4.2, the restriction that a trigonometric polynomial R(ω) majorates (or is majorated by)
another trigonometric polynomial is an SDr constraint on the coefficients of the polynomials,
so that in the case in question the constraints (a) are SDr restrictions on r, δ, ε.

Another formulation of the low-pass filter problem is obtained when instead of min-
imizing the relative uniform distance between |H(ω)|2 and given targets we minimize the
relative ‖ · ‖2-distance. A natural form of the latter problem is

minimize ε

s.t.
1

1+εk(ω)
Sk(ω) ≤ |H(ω)|2 ≤ (1 + εk(ω))Tk(ω), ω ∈ Dk,

k = 1, . . . , K;√
1

|Dk |
∫
Dk

ε2
k (ω)dω ≤ ε, k = 1, . . . , K.
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d

θ

Figure 4.9. Linear array of equidistant harmonic oscillators.

After discretization in ω—replacing Dk by a finite set /k ⊂ Dk—we can pose the problem
as the semidefinite program

minimize ε

s.t.

δk(ω)Sk(ω) ≤ R(ω) ≡ r(0) + 2
n−1∑
l=1

r(l) cos(lω) ≤ (1 + εk(ω))Tk(ω) ∀ω ∈ /k,

k = 1, . . . , K;
δk(ω)(1 + εk(ω)) ≥ 1, ∀ω ∈ /k,

k = 1, . . . , K;
δk(ω), (1 + εk(ω)) ≥ 0, ∀ω ∈ /k,

k = 1, . . . , K;√
1

Card(/k)

∑
ω∈/k

ε2
k (ω) ≤ ε, k = 1, . . . , K;

r ∈ R.

Example 2. Synthesis of array of antennae. Consider a linear array of antennae (see
section 1.2.4) made up of n equidistantly placed harmonic oscillators in the plane XY

(Fig. 4.9). We can easily see that the diagram of the array depends on the angle θ between
the direction in question and the line where the oscillators are placed and is given by

Z(θ) =
n−1∑
l=0

zl exp{−il/(θ)}, /(θ) = −2πd

λ
cos θ,

where z0, z1, . . . , zn−1 are the (complex) amplification coefficients of the oscillators and λ

is the wavelength.
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In our previous antenna synthesis considerations, we were interested in the case when
the design specifications were aimed to get a diagram as close as possible to a given target
diagram Z∗(θ). In fact, what is of interest in many antenna synthesis problems is only
the modulus |Z(θ)| of the resulting diagram (|Z(θ)|2 is responsible for the energy sent by
antenna in a direction θ ). In these situations we are interested in a prescribed behavior of
the function |Z(θ)|. Here again Proposition 4.6.1 is the key for handling the problem via
convex optimization. Indeed, defining the function

H(ω) =
n−1∑
l=0

zl exp{ilω},

we get a frequency response of a complex filter h = {h(l) = zl}n−1
l=0 such that

Z(θ) = H(/(θ)).

It follows that to impose restrictions, like upper and lower bounds, on the function |Z(θ)|,
0 ≤ θ ≤ π , is the same as to impose bounds of the same type on the function |H(ω)| in the
segment D of values taken by /(θ) when θ varies from 0 to π . Assuming (this is normally
the case) that λ > 2d , we observe that the mapping θ �→ /(θ) is a one-to-one from the
segment [0, π ] to a certain segment D ⊂ [−π, π ], so that design specifications on |Z(θ)|
can be easily converted to design specifications on |H(θ)|. For example, building a diagram
with |Z(θ)| as close as possible to given stripes can be formulated as the problem

min
ε,r(·)

{
ε : 1

1+ε
Sk(ω) ≤ R(ω) ≤ (1 + ε)Tk(ω) ∀ω ∈ Dk, k = 1, . . . , K

}
,

R(ω) = |H(ω)|2 =
n−1∑

l=−(n−1)

r(l) exp{ilω}.
(PC)

The only differences between (PC) and problem (P) we investigated in Example 1 is that
now the autocorrelation coefficients correspond to complex amplification coefficients zl—
the actual design variables—through the relation

r(k) =
n−1∑
l=0

z∗
l zl+k

and are therefore complex; clearly, these complex coefficients possess the symmetry

r(−k) = r∗(k), |k| ≤ n − 1,

reflecting the fact that the function R(ω) is real-valued. This function, as it is immediately
seen, is just a real trigonometric polynomial (now not necessarily even) of degree ≤ n − 1:

R(ω) = ρ(0) +
n−1∑
l=1

(ρ(2l − 1) cos(lω) + ρ(2l) sin(lω))
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with real vector of coefficients ρ = (ρ(0), . . . , ρ(2n − 2))T ∈ R2n−1. The vector of these
coefficients can be treated as our new design vector. Invoking again Proposition 4.6.1, we
see that such a vector gives rise to a function R(ω) which indeed is of the form |H(ω)|2,
H(ω) = ∑n−1

l=0 rl exp{ilω), if and only if the trigonometric polynomial R(·) is nonnegative
on [−π, π ]. As we remember from example 21c, section 4.2, the set C of the vectors of
coefficients ρ of this type is SDr.

In view of the outlined observations, problem (PC) can be posed as a semi-infinite
semidefinite program in exactly the same way as problem (P), and this semi-infinite program
can be approximated by (or sometimes is equivalent to) a usual semidefinite program.
For example, approximating segments Dk by finite grids /k , we approximate (PC) by the
semidefinite program

minimize ε

s.t.

δSk(ω) ≤ R(ω) ≡ ρ(0) +
n−1∑
l=1

(ρ(2l − 1) cos(lω) + ρ(2l) sin(lω)) ≤ (1 + ε)Tk(ω)

∀ω ∈ /k, k = 1, . . . , K;
δ(1 + ε) ≥ 1,
δ, ε ≥ 0,
ρ ∈ C,

in the design variables δ, ε and ρ = (ρ(0), . . . , ρ(2n − 2))T ∈ R2n−1.

Proof of Proposition 4.6.1. Let us first prove that a real trigonometric polynomial

R(ω) = c0 +
n−1∑
l=1

(al cos(lω) + bl sin(lω))

can be represented as |∑n−1
l=0 h(l) exp{ilω}|2 with some complex coefficients h(l) if and

only if R(·) is nonnegative on [−π, π ]. The necessity is evident, so let us focus on the
sufficiency. Thus, assume that R is nonnegative, and let us prove that R admits the required
decomposition.

1. It suffices to prove the announced statement in the case when R(ω) is strictly
positive on [−π, π ] rather than merely nonnegative. Indeed, assume that our decomposition
is possible for positive trigonometric polynomials. Given a nonnegative polynomial R, let
us apply our assumption to the positive trigonometric polynomial R(ω) + ε, ε > 0:

R(ω) + ε =
∣∣∣∣∣
n−1∑
l=0

hε(l) exp{ilω)
∣∣∣∣∣
2

.

From this representation it follows that

c0 + ε =
n−1∑
l=0

|hε(l)|2,D
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218 Lecture 4. Semidefinite Programming

whence the coefficients hε(l) remain bounded as ε → +0. Taking as h an accumulation
point of the vectors hε as ε → +0, we get

R(ω) =
∣∣∣∣∣
n−1∑
l=0

h(l) exp{ilω}
∣∣∣∣∣
2

,

as required.
2. Thus, it suffices to consider the case whenR is a positive trigonometric polynomial.

And of course we may assume that the degree ofR is exactly n−1, i.e., that a2
n−1 +b2

n−1 > 0.
We can rewrite R in the form

R(ω) =
n−1∑

l=−(n−1)

r(l) exp{ilω}; (4.6.74)

since R is real-valued, we have

r(l) = r∗(−l), |l| ≤ n − 1. (4.6.75)

Now consider the polynomial

P(z) = z(n−1)

 n−1∑
l=−(n−1)

r(l)zl

 .

This polynomial is of degree 2(n − 1), is nonzero at z = 0, and has no zeros on the
unit circumference (since |P(exp{iω})| = R(ω)). Moreover, from (4.6.75) it immediately
follows that if λ is a root of P(z), then also (λ∗)−1 is a root of the polynomial of exactly the
same multiplicity as λ. It follows that the roots of the polynomial P can be separated into
two nonintersecting groups: (n − 1) roots λl , l = 1, . . . , n − 1, inside the unit circle and
(n − 1) roots 1/λ∗

l outside the circle. Thus,

P(z) = α

[
n−1∏
l=1

(z − λl)

][
n−1∏
l=1

(z − 1/λ∗
l )

]
.

Moreover, we have

R(0) = P(1) = α

n−1∏
l=1

[
(1 − λl)(1 − 1/λ∗

l )
] = α(−1)n−1

[
n−1∏
l=1

|1 − λl|2
][

n−1∏
l=1

λ∗
l

]−1

,

and since R(0) > 0, the number

α(−1)n−1

[
n−1∏
l=1

λ∗
l

]−1

is positive. Denoting this number by β2, let us set

H(ω) = β

n−1∏
l=1

(exp{iω} − λl) ≡
n−1∑
l=0

h(l) exp{ilω}.D
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O O

A B

VOA

σ

σ

C

AB

OA

BO

O

CAO

Figure 4.10. A simple circuit. Element OA: outer supply of voltage VOA and
resistor with conductance σOA. Element AO: capacitor with capacitance CAO . Element
AB: resistor with conductance σAB . Element BO: capacitor with capacitance CBO .

Then

|H(ω)|2

= β2

∣∣∣∣∣
n−1∏
l=1

(exp(iω) − λl)(exp{−iω} − λ∗
l )

∣∣∣∣∣
= β2

∣∣∣∣∣exp{−i(n − 1)ω}(−1)n−1

[
n−1∏
l=1

λ∗
l

][
n−1∏
l=1

[
(exp{iω} − λl)(exp{iω} − 1/λ∗

l )
]]∣∣∣∣∣

= β2

∣∣∣∣∣exp{−i(n − 1)ω}(−1)n−1α−1

[
n−1∏
l=1

λ∗
l

]
P(exp{iω})

∣∣∣∣∣
= |exp{−i(n − 1)ω}P(exp{iω})|
= R(ω),

as required.
3. To complete the proof of Proposition 4.6.1, it suffices to verify that if R(ω) is an

even nonnegative trigonometric polynomial, then the coefficients h(l) in the representation
R(ω) = |∑n−1

l=1 h(l) exp{ilω}|2 can be chosen real. But this is immediate: if R(·) is even,
the coefficients ρ(l) in (4.6.74) are real, so that P(z) is a polynomial with real coefficients.
Consequently, the complex numbers met among the roots λ1, . . . , λn−1 are met only in
conjugate pairs, both members of a pair being roots of the same multiplicity. Consequently,
the function H(ω) is ĥ(exp{iω}), where ĥ(·) is a real polynomial, as claimed.

4.7 Applications V: Design of chips
Consider an RC-electric circuit, i.e., a circuit comprising three types of elements: resis-
tors, capacitors, and resistors in a series combination with outer sources of voltage (see
Fig. 4.10).33 For example, a chip is, electrically, a complicated circuit comprising elements
of the indicated type. When designing chips, the following characteristics are of primary
importance:

33The model presented in this section originates from L. Vanderberghe, S. Boyd, and A. El Gamal, Optimizing
dominant time constant in RC circuits, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
17 (1998), pp. 110–125.
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220 Lecture 4. Semidefinite Programming

• Speed. In a chip, the outer voltages are switching at a certain frequency from one
constant value to another. Every switch is accompanied by a transition period. During this
period, the potentials and currents in the elements are moving from their previous values
(corresponding to the static steady state for the old outer voltages) to the values corresponding
to the new static steady state. Since there are elements with inertia—capacitors—this
transition period takes some time.34 To ensure stable performance of the chip, the transition
period should be much less than the time between subsequent switches in the outer voltages.
Thus, the duration of the transition period is responsible for the speed at which the chip can
perform.

• Dissipated heat. Resistors in the chip dissipate heat that should be eliminated;
otherwise the chip will not function. This requirement is very serious for modern high-
density chips. Thus, a characteristic of vital importance is the dissipated heat power.

The two objectives—high speed (i.e., a small transition period) and small dissipated
heat—usually are conflicting. As a result, a chip designer faces the tradeoff problem of
how to get a chip with a given speed and with the minimal dissipated heat. We are about to
demonstrate that the ensuing optimization problem belongs to the semidefinite universe.

4.7.1 Building the model

A circuit

Mathematically, a circuit can be represented as a graph; the nodes of the graph correspond
to the points where elements of the circuit are linked to each other, and the arcs correspond
to the elements themselves. We may assume that the nodes are enumerated, 1, 2, . . . , N ,
and that the arcs are (somehow) oriented, so that every arc γ links its origin node s(γ ) with
its destination node d(γ ). Note that we do not forbid parallel arcs—distinct arcs linking
the same pairs of nodes. For example, for the circuit depicted in Fig. 4.10 we could orient
both arcs linking the ground O with the point A (one with resistor and one with capacitor)
in the same way, thus creating two parallel arcs. Let us denote by 
 the set of all arcs of
our graph (all elements of our circuit), and let us equip an arc γ ∈ 
 with three parameters
vγ , cγ , σγ (outer voltage, capacitance, conductance) as follows:

• For an arc γ representing a resistor, σγ is the conductance of the resistor, cγ = vγ = 0.

• For an arc γ representing a capacitor, cγ is the capacitance of the capacitor, vγ =
σγ = 0.

• For an arc γ of the type “outer source of voltage—resistor,” σγ is the conductance of
the resistor, vγ is the outer voltage, and cγ = 0.

Transition period

Let us build a model for the duration of a transition period. The question we are addressing
is, Assume that before instant 0 the outer voltages were certain constants and the circuit was

34From a purely mathematical viewpoint, the transition period takes infinite time—the currents or voltages
approach asymptotically the new steady state but never actually reach it. From the engineering viewpoint, however,
we may think that the transition period is over when the currents or voltages become close enough to the new static
steady state.
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4.7. Applications V: Design of chips 221

in the corresponding static steady state. At instant t = 0 the outer voltages jump to new
values vγ and remain at these values. What will happen with the circuit? The answer is
given by the Kirchoff laws and is as follows. Let ui(t), t ≥ 0, be the potentials at the nodes
i = 1, . . . , N , and let Iγ (t) be the currents in arcs γ ∈ 
 at time t .

The first law of Kirchoff says that

Iγ (t) = σγ [us(γ )(t) − ud(γ )(t)] if γ is a resistor;
Iγ (t) = cγ

d
dt

[us(γ )(t) − ud(γ )(t)] if γ is a capacitor;
Iγ (t) = σγ [us(γ )(t) − ud(γ )(t) − vγ ] if γ is an outer voltage followed by a resistor.

With our rule for assigning parameters to the arcs, we can write these relations in the unified
form

Iγ (t) = σγ [us(γ )(t) − ud(γ )(t) − vγ ] − cγ
d

dt
[us(γ )(t) − ud(γ )(t)]. (4.7.76)

The second law of Kirchoff says that for every node i, the sum of currents in the
arcs entering the node should be equal to the sum of currents in the arcs leaving the node.
To represent this law conveniently, we introduce the incidence matrix P of our circuit as
follows:

Incidence matrix. The columns of the matrix P are indexed by the nodes
1, . . . , N , and the rows are indexed by the arcs γ ∈ 
. The row Pγ corre-
sponding to an arc γ is filled with zeros, except for two entries: the one in
column s(γ ) (+1) and the one in column d(γ ) (−1).

With this formalism, the second law of Kirchoff is

PT I (t) = 0, (4.7.77)

where I (t) is the vector with the entries Iγ (t), γ ∈ 
. With the same formalism, (4.7.76)
can be written as

I (t) = WPu(t) + ϑP
d

dt
u(t) − Wv, (4.7.78)

where

• u(t) is the N -dimensional vector comprising the potentials of the nodes ui(t), i =
1, . . . , N ;

• W is the diagonal M × M matrix (M is the number of arcs) with diagonal entries σγ ,
γ ∈ 
;

• v is the M-dimensional vector comprised of outer voltages vγ , γ ∈ 
; and

• ϑ is the diagonal M × M matrix with the diagonal entries cγ , γ ∈ 
.

Multiplying (4.7.78) by PT and taking into account (4.7.77), we get[
PT ϑP

] d

dt
u(t) = −PTWPu(t) + PTWv. (4.7.79)
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222 Lecture 4. Semidefinite Programming

Now, potentials are quantities defined up to a common additive constant. What makes
physical sense are not the potentials themselves but their differences. To avoid the resulting
nonuniqueness of our solutions, we may enforce one of the potentials, say, uN(t), to be
identically zero (node N is the ground). Let

C = ([PT ϑP ]ij )i,j≤N−1,

S = ([PTWP ]ij )i,j≤N−1,

R = ([PTW])iγ )i≤N−1,γ∈


(4.7.80)

be the corresponding submatrices of the matrices participating in (4.7.79). Denoting by
w(t) the (N − 1)-dimensional vector comprising the first N − 1 entries of the vector of
potentials u(t) (recall that the latter vector is normalized by uN(t) ≡ 0), we can rewrite
(4.7.80) as

C
d

dt
w(t) = −Sw(t) + Rv. (4.7.81)

Note that due to their origin, the matricesW and ϑ are diagonal with nonnegative diag-
onal entries, i.e., they are symmetric positive semidefinite. Consequently, the matrices C, S
also are symmetric positive semidefinite. In the sequel, we make the following assumption:

Assumption (W). The matrices C and S are positive definite.

The assumption in fact is a reasonable restriction on the topology of the circuit: when
deleting all capacitors, the resulting net made up of resistors should be connected, and sim-
ilarly for the net of capacitors obtained after the resistors are deleted. With this assumption,
(4.7.81) is equivalent to a system of linear ordinary differential equations with constant
coefficients and a constant right-hand side:

d

dt
w(t) = −C−1Sw(t) + C−1Rv. (4.7.82)

Now, the matrix of the system is similar to the negative definite matrix:

−C−1S = C−1/2[−C−1/2SC−1/2]C1/2.

Consequently, the eigenvalues (−λi), i = 1, . . . , N − 1, of the matrix C−1S of the system
(4.7.82) are negative, there exists a system e1, . . . , eN−1 of linearly independent eigenvectors
associated with these eigenvalues, and the solution to (4.7.82) is of the form

w(t) = w∗(v) +
N−1∑
i=1

κi exp{−λit}ei,

where

w∗(v) = S−1Rv (4.7.83)

is the vector comprising the static steady-state potentials associated with the outer voltages
v, and κi are certain constants coming from the initial state w(0) of (4.7.82). From (4.7.78)
we get a representation of the same structure also for the currents,

I (t) = I∗(v) +
N−1∑
i=1

χi exp{−λi}fi, (4.7.84)

with certain M-dimensional vectors fi .
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We see that during the transition period, the potentials and the currents approach the
steady state exponentially fast, the rate of convergence being governed by the quantities λi .
The most unfavorable rate of convergence to the steady state is given by the smallest of the
λi’s:

λ̂ = min
i

λi(C
−1/2SC−1/2) (4.7.85)

The quantity λ̂ can be treated as a (perhaps rough) measure of the speed of the circuit. The
larger the quantity, the shorter the transition period. For reasonable initial conditions, the
potentials and the currents in the circuit will become very close to their steady-state values
after a period which is a moderate constant times the quantity 1/λ̂. It was proposed by
Boyd to treat 1/λ̂ as the characteristic time constant of the underlying circuit and to model
restrictions such as “the duration of a transition period in a circuit should be at most certain
bound” as “the time constant of the circuit should be at most certain bound.”35 Now, it
is easy to understand what is, mathematically, λ̂—it is nothing but the smallest eigenvalue
λmin(S : C) of the pencil [C, S] (cf. section 4.4.1). Consequently, in Boyd’s methodology
the requirement “the speed of the circuit to be designed should be not less than. . .” is
modeled as the restriction 1/λmin(S : C) ≤ T or, equivalently, as the matrix inequality

S − κC � 0 [κ = T −1]. (4.7.86)

As we shall see in a while, in typical chip design problems S and C are affine functions of
the design variables, so that a design requirement on the speed of the chip can be expressed
by an LMI.

Dissipated heat. Concerning issues related to dissipated heat, one could be interested in
the heat power dissipated in the steady state corresponding to given outer voltages and the
heat dissipated during a transition.

We shall see that imposing restrictions on the steady-state dissipated heat power
leads to an intractable computational problems, while restrictions on the heat dissipated
in a transition period in some meaningful cases (although not always) lead to semidefinite
programs.

Bad news on steady-state dissipated heat power. Physics says that the dissipated heat
power in the steady state corresponding to outer voltages v is

H =
∑
γ∈


(I∗(v))γ [(u∗(v))s(γ ) − (u∗(v))d(γ ) − vγ ] = [I∗(v)]T (Pu∗(v) − v),

where I∗(v) and u∗(v) are the steady-state currents and potentials associated with v.36 The
formula expresses the very well known rule: The heat power dissipated by a resistor is the
product of the current and the voltage applied to the resistor.

35For many years, engineers were (and they still are) using a more precise measure of speed—the Elmore
constant. A disadvantage of the Elmore constant is that it can be efficiently computed only for a restricted family
of circuits. In contrast to this, Boyd’s time constant is computationally tractable.

36We assume that the potential of the ground (node N ) is 0; with this convention, the notion of steady-state
potentials becomes well defined.
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In fact H can be derived from the following variational principle.

Given a circuit satisfying Assumption (W) and a vector of outer voltages v,
consider the quadratic form

G(u) = (Pu − v)T W(Pu − v)

of N -dimensional vector u. The heat power dissipated by the circuit at the
static steady state associated with v is the minimum value of this quadratic
form over u ∈ RN .

Indeed, G depends on the differences of coordinates of u only, so that its minimum
over all u is the same as its minimum over u of the form u = (

w

0 ). Regarded as a function
of (N − 1)-dimensional vector w rather than of u, the quadratic form becomes

Ĝ(w) = wT Sw − 2wTRv + vT Wv.

The minimizer of Ĝ(·) is given by w∗ = S−1Rv, which is exactly the vector of steady-state
potentials at the nodes (cf. (4.7.83)). Thus, the vector of steady-state potentials u∗(v) is a
minimizer of G(·). The value of G at this minimizer is [W(Pu∗(v) − v)]T (Pu∗(v) − v),
and the vector W(Pu∗(v) − v) is exactly the vector of steady-state currents; see (4.7.76).
Thus, the optimal value of G is I T∗ (v)(Pu∗(v) − v), which is precisely H .

The variational principle says that an upper bound restriction H ≤ h on the steady-
state dissipated heat power is

H(S, v) ≡ min
u
(Pu − v)T S(Pu − v) ≤ h.

The left-hand side in this inequality is a concave function of S (as a minimum of linear
functions of S). Therefore the above restriction defines a nonconvex set Fv of feasible
matrices S. If S depends affinely on free design parameters, as is normally the case, the
nonconvexity of Fv implies the nonconvexity of the feasible set in the space of design
parameters and hence leads to an intractable optimization problem.

Note that if we were designing a heater rather than a chip (i.e., were interested to
get at least a prescribed heat power dissipation), the restriction would fall into the realm of
convex (specifically, semidefinite) programming (cf. simple lemma).

Good news on heat dissipated in transition period. The heat dissipated during a tran-
sition from the old steady state associated with outer voltages v− to the new steady state
associated with outer voltages v+ is, in general, a senseless notion. Indeed, the transition
period, rigorously speaking, is infinite. If the new steady state is active (i.e., not all of the
corresponding steady-state currents are zero), then the heat dissipation power during the
transition will approach a positive quantity (the steady-state dissipated heat power for the
new steady state), and the entire power energy dissipated during the (infinite!) transition
period will be +∞. There is, however, a case where this difficulty does not occur and we
may speak about the heat energy dissipated during the transition—this is the case when
the new steady-state currents are zero. In this case, the dissipated heat power decays to 0
exponentially fast, the decay rate being (bounded by) Boyd’s time constant, and so it makes
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Figure 4.11. A simple RC-circuit.

sense to speak about the heat dissipated during the transition. Now, there is a particular (but
quite important) class of simple RC-circuits in which the currents at a static steady state
indeed are zero—circuits of the type shown in Fig. 4.11. In such a circuit, there is a single
source of outer voltage, the resistors form a connected net that starts at one of the poles of
the source and does not reach the other pole of the source (the ground), and each capacitor
either links a node incident to a resistor and the ground (capacitor of type I) or links two
nodes incident to resistors (capacitor of type II). Here the steady-state currents are clearly
zero, whence also

Pu∗(v) = v ∀v. (4.7.87)

Moreover, the steady-state potentials at all nodes incident to resistors are equal to the mag-
nitude of the outer voltage, and the voltage at a capacitor either equals to the magnitude of
the outer voltage (for capacitors of type I) or equals zero (for capacitors of type II).

For a simple circuit, the heat energy dissipated during a transition can be found as
follows. Assume that the outer voltage switches from its old value v− of a magnitude µ− to
its new value v+ of magnitudeµ+.37 Let us compute the heat dissipated during the transition
period starting at time 0. Denoting by u(t), I (t),H(t) the potentials, the currents, and the
dissipated heat, respectively, at time t ≥ 0, and applying (4.7.76), we get

H(t) = (Pu(t) − v+)T W(Pu(t) − v+)T
= [P(u(t) − u∗(v+))]T W[P(u(t) − u∗(v+)︸ ︷︷ ︸

D(t)

)]

(see (4.7.87))
= DT (t)P T WPD(t).

Recalling that D(t) = (
δ(t)

0 ) (all our potentials are normalized by the requirement that the
potential of the N th node is zero), we can rewrite the expression for H(t) as

H(t) = δT (t)Sδ(t).

By its origin, δ(t) satisfies the homogeneous version of (4.7.82), whence

1

2

d

dt

[
δT (t)Cδ(t)

] = −δT (t)Sδ(t),

37Although we now are speaking about a single-source circuit, it would be bad to identify the magnitude of the
outer voltage and the voltage itself. According to our formalism, an outer voltage is a vector with the coordinates
indexed by arcs of the circuit. A coordinate of this vector is the physical magnitude of the outer source inside an
arc. Thus, µ− is a number and v− is a vector with all but one zero coordinates; the only nonzero coordinate is
equal to µ− and corresponds to the arc containing the outer source.
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Figure 4.12. Wires (left) and the equivalent RC-structure (right). (a) a pair of two
neighboring wires; (b) a wire and the substrate.

so that

H(t) = −1

2

d

dt

[
δT (t)Cδ(t)

] ;

therefore the heat H dissipated during the transition is

H = −1

2

∫ ∞

0

1

2

d

dt

[
δT (t)Cδ(t)

]
dt = 1

2
δT (0)Cδ(0).

From the definition of δ(·) it is clear that δ(0) = (µ− − µ+)e, where e is the (N − 1)-
dimensional vector of ones. Thus, in the case of a simple circuit the heat dissipated during
the transition is

H = (µ− − µ+)2

2
eT Ce, e = (1, . . . , 1)T ∈ RN−1, (4.7.88)

which is a linear function of C.

4.7.2 Wire sizing

Modern submicron chips can be modeled as RC-circuits. In these circuits, the resistors,
physically, are the interconnecting wires (and the transistors), and the capacitors model the
capacitances between pairs of wires or a wire and the substrate. After the topology of a
chip and the placement of its elements on a substrate are designed, engineers start to define
the widths of the wires, and this is the stage where the outlined models could be used. To
pose the wire sizing problem as an optimization program, one may think of a wire as being
partitioned into rectangular segments of a prescribed length and then treat the widths of
these segments as design variables. A pair of two neighboring wires (or a wire and the
substrate) can be modeled by an RC-structure, as shown in Fig. 4.12. A nice feature of this
model is that both the conductances of the resulting resistors and the capacitances of the
resulting capacitors turn out to be linear functions of our design parameters—the widths of

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 227

✐

✐

✐

✐

✐

✐

✐

✐

4.8. Applications VI: Structural design 227

the segments or, which is the same, of the areas of the segments (the lengths of the segments
are fixed!). For example, for the RC-structure depicted in Fig. 4.12(a) one has

cAB = κA,B(sA + sB),

σA = κAsA,

where sA, sB are the areas of the corresponding segments. The coefficients κA,B, κA depend
on several parameters (e.g., on distances between the wires), but all these parameters are
already set at the stage of design we are speaking about. Thus, in the wire sizing problem
the matrices W and ϑ , and therefore the matrices S,C,R as well, are affine functions of the
design vector x comprising the areas

C = C(x), S = S(x), R = R(x).

As a result, we may pose numerous sizing-related problems as semidefinite programs. Here
are some examples:

• We can minimize the total area occupied by the wires under the restriction that the
speed (i.e., the time constant) of the circuit should be above a certain bound. The ensuing
semidefinite program is

minimize
∑
i

xi

s.t.
S(x) − κC(x) � 0,

x ≥ 0

(κ > 0 is fixed).
• In the case of a simple circuit (which in fact is a common case in chip design), we

can minimize the heat dissipated during a transition, under the restriction that the speed is
above a certain bound. The ensuing semidefinite program is

minimize eT [C(x)]e
s.t.

S(x) − κC(x) � 0,
x ≥ 0.

• We can add to the above programs upper and lower bounds on the areas of segments,
as well as other linear constraints on the design variables, etc.

4.8 Applications VI: Structural design
Structural design is an engineering area dealing with mechanical constructions like trusses
and plates. We already know what a truss is—a construction made up of thin elastic bars
linked to each other. A plate is a construction made up of a material occupying a given
domain, the mechanical properties of the material varying continuously from point to point.
In engineering, design of plates is called shape design; in what follows we call these objects
of our interest shapes instead of plates.
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228 Lecture 4. Semidefinite Programming

A typical structural design problem is, “Given the type of material to be used, a
resource (an upper bound on the amount of material to be used) and a set of loading
scenarios—external loads operating on the construction—find an optimal truss or shape,
one able to withstand best of all the loads in question.” It turns out that numerous prob-
lems of this type can be cast as semidefinite programs, which offers a natural way to model
and process them analytically and numerically. The purpose of this section is to develop a
unified semidefinite-programming-based approach to these structural design problems.

4.8.1 Building a model

The mechanical constructions we are considering (the so-called constructions with linear
elasticity) can be described as follows.

I. A construction C can be characterized by

I.1. A linear space V = Rm of virtual displacements of C.

I.2. A positive semidefinite quadratic form

EC(v) = 1

2
vT ACv

on the space of displacements. The value of this form at a displacement v is the potential
energy stored by the construction as a result of the displacement. The (positive semidefinite
symmetric) m × m matrix AC of this form is called the stiffness matrix of C.

Example. A truss fits I.1–I.2; see sections 1.3.5 and 3.4.3.

I.3. A closed convex subset V ⊂ Rm of kinematically admissible displacements.

Example, continued. In our previous discussions of trusses, there was no
specific set of kinematically admissible displacements—we assumed that in
principle every virtual displacement v ∈ Rm may become an actual dis-
placement, provided that an external load is chosen accordingly. However,
sometimes the tentative displacements of the nodes are restricted by external
obstacles, like the one in Fig. 4.13.

II. An external load applied to the construction C can be represented by a vector f ∈ Rm.
The static equilibrium of C loaded by f is given by the following variational principle.

A construction C is able to carry an external load f if and only if the quadratic
form

E
f

C(v) = 1

2
vT ACv − f T v (4.8.89)

of displacements v attains its minimum on the set V of kinematically admissible
displacements, and a displacement yielding (static) equilibrium is a minimizer
of Ef

C(·) on V .
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hA A

Figure 4.13. An obstacle. What we see is a nine-node planar ground structure
with 33 tentative bars and a rigid obstacle AA. This obstacle does not allow the southeastern
node to move down more than by h and thus induces a linear inequality constraint on the
vector of virtual displacements of the nodes.

The minus minimum value of Ef

C on V is called the compliance of the construction
C with respect to the load f :

Complf (C) = sup
v∈V

[
f T v − 1

2
vT ACv

]
.

Example, continued.38 We saw in section 3.4.3 that the variational principle
does work for a truss. At that moment, however, we dealt with the particular
obstacle-free case: V = V. What happens when there are obstacles? Assume
that the obstacles are absolutely rigid and frictionless. When in the course
of truss deformation a moving node meets an obstacle, a contact force occurs
and comes into play—it becomes a part of the external load. As a result, the
equilibrium displacement is given by the equations

Av = f +
∑
l

fl, (∗)

where Av, as we remember, is the vector of reaction forces caused by the defor-
mation of the truss and fl’s represent the contact forces coming from obstacles.
Nature is free to choose these forces, with only the restriction that a contact
force should be normal to the boundary of the corresponding obstacle (there is
no friction!) and should point toward the truss. With these remarks in mind,
one can easily recognize in (*) the usual KKT conditions for constrained mini-
mum of Ef

C , the constraints being given by the obstacles. Thus, an equilibrium
displacement is a KKT point of the problem of minimizing E

f

C over V . Since
the problem is convex, its KKT points are the same as the minimizers of Ef

C

over V .

The part of the story we have told so far relates to a particular system and does not
address the question of what is affected by the design: May we play with the space of virtual

38A reader not acquainted with the KKT optimality conditions may skip this paragraph.
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230 Lecture 4. Semidefinite Programming

displacements? or with V? or with the stiffness matrix? We shall focus on the case when
the only element affected by the design is the stiffness matrix. Specifically, we assume the
following.

III. The stiffness matrix AC depends on mechanical characteristics t1, . . . , tn of elements
E1, . . . , En making up the construction, and these characteristics ti are positive semidefinite
symmetric d × d matrices, with d given by the type of the construction. Specifically,

AC =
n∑

i=1

S∑
s=1

bis tib
T
is, (4.8.90)

where bis are given m × d matrices.

At first glance, III looks very strange: where are the positive semidefinite matrices ti
coming from? Well, this is what mechanics says on both trusses and shapes.

Indeed, we know from section 1.3.5 that the stiffness matrix of a truss is

A(t) =
n∑

i=1

tibib
T
i ,

where ti ≥ 0 are bar volumes and bi are certain vectors given by the geometry of the nodal
set and where nonnegative reals ti may be viewed as positive semidefinite 1 × 1 matrices.

Now, what about shapes? To see that III holds in this case as well, it requires an
additional excursion to mechanics. (This can be omitted by noninterested readers.)

As mentioned, a shape is made up of material occupying a given 2D or 3D domain /,
the mechanical properties of the material varying from point to point. Such a construction
is infinite dimensional: its virtual displacements are vector fields on / and, taken together,
form certain linear space V of vector fields on /. (V should not necessarily comprise all
vector fields; e.g., some parts of the boundary of / may be fixed, so that the displacement
fields must vanish at these parts of the boundary.)

The elasticity properties of the material at a point P ∈ / are represented by the
rigidity tensor E(P ), which, mathematically, is a symmetric positive semidefinite d × d

matrix, where d = 3 for planar and d = 6 for spatial shapes. Mechanics says that the density,
at a point P , of the potential energy stored by a shape as a reaction on a displacement v(·),
is

1

2
sTP [v]E(P )sP [v], (4.8.91)

so that the total potential energy stored in a deformated shape is

1

2

∫
/

sTP [v]E(P )sP [v]dP.

Here for a 2D shape

sP [v] =


∂vx(P )

∂x
∂vy(P )

∂y

1√
2

[
∂vx(P )

∂y
+ ∂vy(P )

∂x

]
 ,D
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where vx and vy are the x- and the y-components of the 2D vector field v(·). Note that sP [v]
can be obtained as follows. We first build the Jacobian of the vector field v at P , the matrix

J (P ) =
( ∂vx(P )

∂x

∂vx(P )

∂y
∂vy(P )

∂x

∂vy(P )

∂y

)
,

and then symmeterize the matrix—build the symmetric 2 × 2 matrix

J s(P ) = 1

2
[J (P ) + J T (P )].

sP [v] is nothing but the vector of the coordinates of J s(P ) ∈ S2 in the natural orthonormal
basis ( 1

0
0
0 ), (

0
0

0
1 ), (

0
2−1/2

2−1/2

0 ) of the 3D space S2.
For a 3D shape, sP [v] is given by a completely similar construction. We build the

3 × 3 Jacobian of the 3D vector fields v(·) at the point P , symmeterize it, and then pass
from this 3 × 3 symmetric matrix to the vector of coordinates of this matrix in the natural
basis of the six-dimensional space S3. We skip the corresponding explicit formulas.

An external load acting on a shape can be represented by a linear formf [v] on the space
of displacements. This form measures the work carried out by the load at a displacement.
In typical cases, this functional looks like

∫
∂/

f T (P )v(P )dS(P ), f (P ) being the field of
external forces acting at the boundary. Mechanics says that the equilibrium displacement
field in the loaded shape minimizes the energy functional

1

2

∫
/

sTP [v]E(P )sP [v]dP − f [v]

over the set of kinematically admissible vector fields v(·). The minus minimum value of
this functional is called the compliance of the shape with respect to the load in question.

As we see, the true model of a shape is infinite dimensional. To get a computationally
tractable model, a finite element approximation is used, namely,

1. The domain / is partitioned into finitely many nonoverlapping cells /1, . . . , /n,
and the properties of the material are assumed to be constant within the cells:

E(P ) = Ei for P ∈ /i.

2. The infinite dimensional space V of vector fields on / is approximated by its
finite dimensional subspace Vm spanned by m basic continuously differentiable displace-
ment fields w1(·), . . . , wm(·). With this approximation, the set of kinematically admissible
displacement fields shrinks to a set in Vm.

With this approximation, the finite element model of a shape becomes as follows:
• A virtual displacement v becomes a vector from Rm (the actual displacement field

corresponding to a vector v = (v1, . . . , vm)
T is, of course,

∑m
i=1 viwi(·)).

• The potential energy stored by the shape, the displacement being v, is

1

2

n∑
i=1

∫
/i

vT [s(P )Eis
T (P )]vdP, sT (P ) = [sP [w1]; sP [w2]; . . . ; sP [wm]] ∈ Md,m.

• The linear functional f [·] representing a load becomes a usual linear form f T v on
Rm (so that we can treat the vector f of the coefficients of this form as the load itself).
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• The equilibrium displacement of the shape under a load f is the minimizer of the
quadratic form

1

2
vT

[
n∑

i=1

∫
/i

s(P )Eis
T (P )dP

]
v − f T v

on a given set V ⊂ Rm of kinematically admissible displacements, and the compliance is
minus the minimum value of this form on V .

It remains to note that, as stated in Exercise 1.17, there exist a positive integer S and
cubature formulas such that∫

/i

sTP [wp]EsP [wq]dP =
S∑

s=1

αiss
T
Pis

[wp]EsPis
[wq] ∀E ∈ Sd ∀p, q = 1, . . . , m

with nonnegative weights αis . Denoting by ωi the measures of the cells /i and setting

ti = ωiEi, bis = α
1/2
is ω

−1/2
i s(Pis),

we get ∫
/i

s(P )Eis
T (P )dP =

S∑
s=1

bis tibis .

Thus, we have represented a shape by a collection t1, . . . , tn of positive semidefinite d × d

matrices, and the potential energy of a deformated shape now becomes

1

2
vT

[
n∑

i=1

∫
/i

s(P )Eis
T (P )

]
v = 1

2
vT

[
n∑

i=1

S∑
s=1

bis tib
T
is

]
v,

where v is the displacement. We see that a shape, after finite element discretization, fits the
requirement III.

The concluding chapter of our story outlines the way we measure the amount of
material used to build the construction.

IV. The amount of material consumed by a construction C is completely characterized by
the vector (Tr(t1), . . . ,Tr(tn)) of the traces of the matrices t1, . . . , tn mentioned in III.

For a truss, the indicated traces are exactly the same as ti’s themselves and are the
volumes of the bars constituting the truss, so that IV is quite reasonable. For a shape,
Tr(E(P )) is a natural measure of the material density of the shape at a point P ∈ /, so that
IV again is quite reasonable.

Now we can formulate the general structural design problem we are interested in.

Problem 4.8.1. Static structural design. Given

1. a ground structure, i.e.,

• the space Rm of virtual displacements along with its closed convex subset V of
kinematically admissible displacements,

• a collection {bis} i=1,...,n
s=1,...,S

of m × d matrices;
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2. a set T = {(t1, . . . , tn) | ti ∈ Sd+ ∀i} of admissible designs; and

3. a set F ⊂ Rm of loading scenarios,

find an admissible construction that is stiffest, with respect to F; i.e., find a collection t ∈ T

that minimizes the worst, over f ∈ F , compliance of the construction with respect to f :

min
t∈T

{
ComplF (t) ≡ sup

f∈F
sup
v∈V

[
f T v − 1

2
vT

[
n∑

i=1

S∑
s=1

bis tib
T
is

]
v

]
: t ∈ T

}
.

4.8.2 Standard case

The static structural design Problem 4.8.1 in its general form is a little bit diffuse—we did
not name the geometries of the set V of kinematically admissible displacements, or the set
T of admissible designs, or the set F of loading scenarios. For all applications known to us
these geometries can be specialized as follows.

S.1. The set V of kinematically admissible displacements is a polyhedral set,

V = {v ∈ Rm | Rv ≤ r} [R ∈ Mq,m], (4.8.92)

and the system of linear inequalities Rv ≤ r satisfies the Slater condition: there exists v̄

such that Rv̄ < r .

S.2. The set T of admissible designs is given by simple linear constraints on the traces of
the positive semidefinite rigidity matrices ti , namely, upper and lower bounds on Tr(ti) and
an upper bound on the total material resource

∑n
i=1 Tr(ti):

T = {t = (t1, . . . , tn) | ti ∈ Sd
+, ρi

≤ Tr(ti) ≤ ρi,

n∑
i=1

Tr(ti) ≤ w} (4.8.93)

with given parameters

0 ≤ ρ
i
< ρi < ∞,

n∑
i=1

ρ
i
< w.

S.3. The set F of loading scenarios is either a finite set,

F = {f1, . . . , fk} (4.8.94)

(multiload structural design), or an ellipsoid,

F = {f = Qu | uT u ≤ 1} [Q ∈ Mm,k] (4.8.95)

(robust structural design).
The interpretation of the multiload setting is quite clear: the construction is supposed

to work under different nonsimultaneous loading scenarios, and we intend to control its
stiffness with regard to these scenarios. To motivate the robust setting, consider the following
example.
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Figure 4.14. 9 × 9 ground structure and the load of interest.
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Figure 4.15. Optimal cantilever (single-load design); the compliance is 1.000.

Example. Assume we are designing a planar truss—a cantilever. The 9 × 9
nodal structure and the only load of interest f ∗ are as shown in Fig. 4.14.
The optimal single-load design yields a nice truss shown in Fig. 4.15. The
compliance of the optimal truss with respect to the load of interest is 1.000.

Now, what happens if, instead of the load f ∗, the truss is affected by a small
occasional load f shown in Fig. 4.15, the magnitude (≡ the Euclidean length)
of f being just 0.5% of the magnitude of f ∗? The results are disastrous: the
compliance is increased by factor 8.4 (!) In fact, our optimal cantilever is highly
unstable: it may collapse when a bird tries to build a nest in a badly placed
node of the construction.

To ensure stability of our design, we should control the compliance not only
with respect to a restricted set of loads of interest, but also with respect to all
relatively small occasional loads somehow distributed along the nodes. The
simplest way to do it is to add to the original finite set of loads of interest the
ball comprising all occasional loads of magnitude not exceeding some level.
There are, however, two difficulties in this approach:

• From the viewpoint of mathematics, it is not that easy to deal with the set of
loading scenarios of the form “the union of a ball and a finite set.” It would be
easier to handle either a finite set or an ellipsoid.
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Figure 4.16. “Robust” cantilever.

• From the engineering viewpoint, the difficulty is to decide where the occa-
sional loads should be applied. If we allow them to be distributed along all
9 × 9 nodes of the original ground structure, the resulting design will incorpo-
rate all these nodes (otherwise its compliance with respect to some occasional
loads will be infinite), which makes no sense. What we actually are concerned
with are occasional loads distributed along the nodes that will be used by the
resulting construction, but how could we know these nodes in advance?

Regarding the first difficulty, a natural way to overcome it is to take, as F , the
ellipsoidal envelope of the original—finite—set of loads and a small ball, i.e.,
to choose as F the ellipsoid of the smallest volume centered at the origin which
contains the original loading scenarios and the ball.

To overcome, to some extent, the second difficulty, we could use a two-stage
scheme. At the first stage, we take into consideration the loads of interest only
and solve the corresponding single- or multiload problem, thus getting a certain
preliminary truss. At the second stage, we treat the set of nodes actually used
by the preliminary truss as our new nodal set and take as F the ellipsoidal
envelope of the loads of interest and the ball comprising all small occasional
loads distributed along this reduced nodal set.

Let us look at what this approach yields in our cantilever example. The can-
tilever depicted in Fig. 4.15 uses 12 nodes from the original 81-node grid; two of
these 12 nodes are fixed. Taking the resulting 12 nodes as our new nodal set, and
allowing all pair-connections of these nodes, we get a new—reduced—ground
structure with 20 degrees of freedom. Now let us define F as the ellipsoidal
envelope of f ∗ and the ball comprising all loads with the Euclidean norm not
exceeding 10% of the norm of f ∗. This 20-dimensional ellipsoid F is very
simple: one of its principal half-axes is f ∗, and the remaining 19 half-axes are
of the length 0.1‖f ∗‖2 each, the directions of these half-axes forming a basis
in the orthogonal complement to f ∗ in the 20-dimensional space of virtual
displacements of our 12 nodes. Minimizing the worst, with respect to the el-
lipsoid of loads F , compliance under the original design constraints, we come
to a new cantilever depicted in Fig. 4.16. The maximum, over the ellipsoid of
loads F , compliance of the robust cantilever is 1.03, and its compliance with
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respect to the load of interest f ∗ is 1.0024—only 0.24% larger than the optimal
compliance given by the single-load design! We see that when passing from
the nominal single-load design to the robust one we lose basically nothing in
optimality and at the same time get dramatic improvement in the stability. (For
the nominal design, the compliance with respect to a badly chosen occasional
load of magnitude 0.1‖f ∗‖2 may be as large as 32,000!)

The above example is a good argument for considering ellipsoidal sets of loads.

We shall refer to the static structural design problem with the data satisfying S.1—S.3
as to the standard SSD problem. We always assume that the data of the standard SSD
problem satisfies the following assumption:

S.4.
∑n

i=1

∑S
s=1 bis tib

T
is . 0 whenever ti . 0, i = 1, . . . , n.

This is a physically meaningful assumption that excludes rigid body motions of the
ground structure: if all rigidities are positive definite, then the potential energy stored by
the construction under any nontrivial displacement is strictly positive.

4.8.3 Semidefinite reformulation of the standard SSD problem

To get a semidefinite reformulation of the standard SSD problem, we start with building
semidefinite representation of the compliance. Thus, our goal is to get an SDR for the set

C =
{
(t, f, τ ) ∈ (

Sd
+
)n × Rm × R | Complf (t)

≡ sup
v∈Rm:Rv≤r

[
f T v − 1

2
vT

[
n∑

i=1

S∑
s=1

bis tib
T
is

]
v

]
≤ τ

}
.

The required SDR is given by the following proposition.

Proposition 4.8.1. Let t = (t1, . . . , tn) ∈ (
Sd+

)n
and f ∈ Rm. Then the inequality

Complf (t) ≤ τ

is satisfied if and only if there exists a nonnegative vector µ of the dimension q equal to the
number of linear inequalities defining the set of virtual displacements (see (4.8.92)) such
that the matrix

A(t, f, τ, µ) =
 2τ − 2rT µ −f T + µTR

−f + RTµ

n∑
i=1

S∑
s=1

bis tib
T
is


is positive semidefinite. Thus, the epigraph of Complf (t) (regarded as a function of t ∈(
Sd+

)n
and f ∈ Rm) admits the SDR 2τ − 2rT µ −f T + µTR

−f + RTµ

n∑
i=1

S∑
s=1

bis tib
T
is

 � 0,

ti � 0, i = 1, . . . , n,
µ ≥ 0.

(4.8.96)
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Proof. First let us explain where the result comes from. By definition, Complf (t) ≤ τ if

sup
v:Rv≤r

[
f T v − 1

2
vT A(t)v

]
≤ τ

[
A(t) =

n∑
i=1

S∑
s=1

bis tib
T
is

]
.

The supremum in the left-hand side is taken over v varying in a set given by linear constraints
Rv ≤ r . If we add penalized constraints µT (r−Rv) to the objective, µ being a nonnegative
weight vector, and then remove the constraints, passing to the supremum of the penalized
objective over the entire space, i.e., to the quantity

φf (t, µ) ≡ sup
v∈Rm

[
f T v − 1

2
vT A(t)v + µT (r − Rv)

]
,

then we end up with something that is ≥ Complf (t). Consequently, if there exists µ ≥ 0
such that

f T v − 1

2
vT A(t)v + µT (r − Rv) ≤ τ ∀v ∈ Rm,

then we have τ ≥ Complf (t). On the other hand, the Lagrange duality says that under the
Slater condition (see assumption S.1) the quantity φf (t, µ) for properly chosen µ ≥ 0 is
exactly the supremum of f T v − 1

2v
T A(t)v over v satisfying Rv ≤ r: if τ ≥ Complf (t),

then τ ≥ φf (t, µ) for some µ ≥ 0. Thus, believing in the Lagrange duality, we come to
the following observation:

(!) The inequality Complf (t) ≤ τ is equivalent to the existence of a µ ≥ 0
such that φf (t, µ) ≤ τ .

It remains to note that the inequality φf (t, µ) ≤ τ says that the unconstrained minimum of
the quadratic form

Q(v) = [τ − rT µ] + 1

2
vT A(t)v + (−f + RTµ)T v

is nonnegative. By the simple lemma (see section 4.3.1), the latter fact is equivalent to the
positive semidefiniteness of the matrix A(t, f, τ, µ).

To be self-sufficient, let us derive (!) from conic duality.
Our first observation is as follows:

(∗) Let t1, . . . , tn ∈ Sd+, f ∈ Rm, and τ ∈ R be fixed. Consider the following
system of inequalities with variables v ∈ Rm, σ ∈ R:

1
2v

T A(t)v + σ − f T v ≤ 0

[
A(t) =

n∑
i=1

S∑
s=1

bis tib
T
is

]
,

RT v ≤ r.

(S(t, f ))

Then (t, f, τ ) ∈ C if and only if τ ≥ σ for all solutions to (S(t, f )), i.e., if and
only if the linear inequality τ ≥ σ is a consequence of the system (S(t, f )).
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Indeed, the σ -components of the solutions to (S(t, f )) are exactly those σ ’s that do
not exceed the value of the quadratic form

E
f
t (v) = f T v − 1

2
vT A(t)v

at a certain point of the set V = {v | Rv ≤ r}. Consequently, to say that a given τ is ≥
all such σ ’s is exactly the same as to say that τ is ≥ the supremum of the form E

f
t (v) over

v ∈ V , or equivalently that τ ≥ Complf (t).
Now, (S(t, f )) is nothing but a linear vector inequality. Indeed, the quadratic inequal-

ity in (S(t, f )) is a conic quadratic inequality:

1
2v

T A(t)v + σ − f T v ≤ 0,
,

vT A(t)v + 2σ − 2f T v ≤ 0,
,

‖BT (t)v‖2
2 − 2f T v + 2σ ≤ 0,

where

B(t) = [b11t
1/2
1 , b12t

1/2
1 , . . . , b1St

1/2
1 ; . . . ; bn1t

1/2
n , . . . , bnSt

1/2
n ] [A(t) = B(t)BT (t)]

, BT (t)v
1
2 + σ − f T v
1
2 − σ + f T v

 ≥L 0

so that (S(t, f )) is the linear vector inequality in variables v, σ, τ ,

Q

(
v

σ

)
− q ≡


BT (t)v

1
2 + σ − f T v
1
2 − σ + f T v

r − Rv

 ≥K 0,

where K is the direct product of the ice cream cone and the nonnegative orthant of appropriate
dimensions.

Note that the resulting linear vector inequality is strictly feasible. Indeed, due to the
Slater assumption in S.1, we may choose v such that r − Rv > 0. After v is chosen, we
may choose σ to be negative enough to make strict also the conic quadratic part BT (t)v

1
2 + σ − f T v
1
2 − σ + f T v

 ≥L 0

of our vector inequality.
Now let us use the necessary and sufficient conditions for a linear inequality to be a

consequence of a strictly feasible linear vector inequality (see Proposition 2.4.3). Here these
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conditions are equivalent to the existence of a nonnegative vector µ, of the same dimension
q as the vector r , and a vector ζ ∈ L such that

[vT ; σ ]QT

(
ζ

µ

)
= −σ ∀(v, σ ) ∈ Rm × R,

[ζ T ;µT ]q ≥ −τ.

Recalling the origin of Q and q, we come to the following conclusion:

(∗∗) Let t ∈ (
Sd+

)n
, f ∈ Rm, and τ ∈ R. Then Complf (t) ≤ τ if and only if

there exist d-dimensional vectors ξis , reals α, β and a vector µ such that

(a) (β − α)f − RTµ +
n∑

i=1

s∑
s=1

bis t
1/2
i ξis = 0,

(b) α − β = −1,
(c) 1

2 (α + β) + rT µ ≤ τ,

(d) µ ≥ 0,

(e) β ≥
√√√√α2 +

n∑
i=1

S∑
s=1

ξTis ξis .

(4.8.97)

Now consider the CQI BT (t)v
1
2 − rT µ + σ + [−f + RTµ]T v
1
2 + rT µ − σ − [−f + RTµ]T v

 ≥L 0, (4.8.98)

where v, σ are the variables and µ ≥ 0 is a vector of parameters, and let us ask ourselves
when the inequality σ ≤ τ is a consequence of this (clearly strictly feasible) vector inequal-
ity. According to Proposition 2.4.3 this is the case if and only if there exist vectors ξis ∈ Rd

and reals α, β such that

(a) (α − β)[−f + RTµ] +
n∑

i=1

S∑
s=1

bis t
1/2
i ξis = 0,

(b) α − β = −1,
(c) 1

2 (α + β) + (β − α)rT µ ≤ τ,

(d) β ≥
√√√√α2 +

n∑
i=1

S∑
s=1

ξTis ξis .

(4.8.99)

Comparing (4.8.97) and (4.8.99), we come to the following conclusion:

(∗ ∗ ∗) Let t ∈ (
Sd+

)n
, f ∈ Rm, and τ ∈ R. Then Complf (t) ≤ τ if and only if

there exists µ ≥ 0 such that the inequality σ ≤ τ is a consequence of the CQI
(4.8.98).
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It remains to note that the CQI (4.8.98) is equivalent to the scalar quadratic inequality

vT A(t)v − 2rT µ + 2σ + 2[−f + RTµ]v ≤ 0.

Consequently, (***) says that Complf (t) ≤ τ if and only if there exists µ ≥ 0 such that the
following implication holds true:

∀(v, σ ) : σ ≤ [f − RTµ]T v − 1

2
vT A(t)v + rT µ ⇒ σ ≤ τ.

But the latter implication clearly holds true if and only if

τ ≥ max
v∈Rm

[
[f − RTµ]T v − 1

2
vT Av + rT µ

]
. (4.8.100)

Thus, τ ≥ Complf (t) if and only if there exists µ ≥ 0 such that (4.8.100) holds, which is
exactly the statement (!) we need.

An SDR of the epigraph of the compliance immediately implies a semidefinite refor-
mulation of the multiload standard SSD problem with k loading scenarios f1, . . . , fk:

minimize τ

s.t.

(a)

 2τ − 2rT µl −f T
l + µT

l R

−fl + RTµl

n∑
i=1

S∑
s=1

bis tib
T
is

 � 0, l = 1, . . . , k,

(b) ti � 0, i = 1, . . . , n,

(c)
n∑

i=1

Tr(ti) ≤ w,

(d) ρ
i

≤ Tr(ti) ≤ ρi, i = 1, . . . , n,
(e) µl ≥ 0, l = 1, . . . , k,

(4.8.101)

where the design variables are ti ∈ Sd , i = 1, . . . , n, µl (vectors of the dimension q equal
to the number of linear inequalities in (4.8.92)), l = 1, . . . , k, and τ ∈ R. Indeed, the
LMIs (a) along with nonnegativity constraints (e) express the fact that the worst, over the
loads f1, . . . , fk , compliance of the construction yielded by the rigidities t1, . . . , tn does not
exceed τ (see Proposition 4.8.1), while the remaining constraints (b), (c), (d) express the
fact that t = (t1, . . . , tn) is an admissible design.

Consider next the robust standard SSD problem, where F is an ellipsoid:

F = {f = Qu | uT u ≤ 1}.
Here we meet with a difficulty not present in the case of finite F : our objective now is

ComplF (t) = sup
f∈F

Complf (t),

i.e., it is the supremum of infinitely many SDr functions. Our calculus does not offer tools
to build an SDR for such an aggregate. This difficulty reflects the essence of the matter:
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for an SSD problem with obstacles, the robust version of the SSD problem is extremely
difficult (at least as difficult as an NP-complete combinatorial problem). Fortunately, in the
obstacle-free case it is easy to get an SDR for ComplF (t), provided that F is an ellipsoid.

Proposition 4.8.2. Let the set of kinematically admissible displacements coincide with
the space Rm of all virtual displacements: V = Rm, and let F be an ellipsoid:

F = {f = Qu | uT u ≤ 1} [Q ∈ Mm,k].

Then the function ComplF (t), regarded as a function of t = (t1, . . . , tn) ∈ (
Sd+

)n
, is SDr:

for t ∈ (
Sd+

)n
,

ComplF (t) ≤ τ ⇔
 2τIk QT

Q

n∑
i=1

S∑
s=1

bis tib
T
is

 � 0. (4.8.102)

Consequently, the robust obstacle-free standard SSD problem can be posed as the following
semidefinite program:

minimize τ

s.t.  2τIk QT

Q

n∑
i=1

S∑
s=1

bis tib
T
is

 � 0;

ti � 0, i = 1, . . . , n,
n∑

i=1

Tr(ti) ≤ w,

ρ
i

≤ Tr(ti) ≤ ρi, i = 1, . . . , n.

(4.8.103)

Proof. Let, as always, A(t) = ∑n
i=1

∑S
s=1 bis tib

T
is . We have

ComplF (t) ≤ τ ⇔
(Qu)T v − 1

2v
T A(t)v ≤ τ ∀v ∀(u : uT u ≤ 1) ⇔

(Qu)T v − 1
2v

T A(t)v ≤ τ ∀v ∀(u : uT u = 1) ⇔
(Q‖w‖−1

2 w)T v − 1
2v

T A(t)v ≤ τ ∀v∀(w �= 0) ⇔
(Qw)T (‖w‖2v)︸ ︷︷ ︸

−y

− 1
2 (‖w‖2v)

T A(t)(‖w‖2v) ≤ τwT w ∀v ∀(w �= 0) ⇔

2τwT w + 2wTQT y + yT A(t)y ≥ 0 ∀y∀(w �= 0) ⇔
2τwT w + 2wTQT y + yT A(t)y ≥ 0 ∀y ∈ Rm,w ∈ Rk ⇔(

2τIk QT

Q A(t)

)
� 0.
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242 Lecture 4. Semidefinite Programming

Universal semidefinite form of the standard SSD problem. Both the multiload stan-
dard SSD problem (4.8.101) and the robust obstacle-free problem (4.8.103) are particular
cases of the following generic semidefinite program:

minimize τ

s.t.

(a)

 2τIp + Dlz + Dl [Elz + El]T

[Elz + El]
n∑

i=1

S∑
s=1

bis tib
T
is

 � 0, l = 1, . . . , K,

(b) ti � 0, i = 1, . . . , n,

(c)
n∑

i=1

Tr(ti) ≤ w,

(d) ρ
i

≤ Tr(ti) ≤ ρi, i = 1, . . . , n,
(e) z ≥ 0,

(Pr)

where

• the design variables are ti ∈ Sd , i = 1, . . . , n, z ∈ RN , τ ∈ R, and

• the data are given by the m × d matrices bis , affine mappings

z �→ Dlz + Dl : RN → Sd , z �→ Elz + El : RN → Mm,p, l = 1, . . . , K,

and the reals ρ
i
, ρi , i = 1, . . . , n, w > 0.

Indeed,
• The multiload problem (4.8.101) corresponds to the case of p = 1, K = k (the

number of loading scenarios),

z = (µ1, . . . , µk) ∈ Rq × · · · × Rq,Dlz + Dl = −2rT µl, Elz + El = −fl + RTµl.

• The robust problem (4.8.103) corresponds to the case of K = 1, p = k (the
dimension of the loading ellipsoid). In fact, in the robust problem there should be no
z-variable at all; however, to avoid extra comments, we introduce a 1D redundant variable
z and set

E1 = 0, E1 = Q; D1z + D1 = −2zIk.

It is immediately seen that problem (Pr) reduces for this case to the problem

min
τ,z,t

τ :
 2(τ − z)Ik QT

Q

n∑
i=1

S∑
s=1

bis tib
T
is

 � 0 & (Pr.b − e)

 ,

which is equivalent to (4.8.103).
Note that when converting the problems of our actual interest (4.8.101) and (4.8.103)

to the generic form (Pr), we ensure the following property of the resulting problem.
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S.5. For every l = 1, . . . , K , there exists αl ∈ Sp
++ and Vl ∈ Mm,p such that

K∑
l=1

[D∗
l αl + 2E∗

l Vl

]
< 0.

Indeed, in the case when the original problem is the multiload problem (4.8.101), we
have Sp = R, Mm,p = Rm, and

K∑
l=1

[D∗
l αl + 2E∗

l Vl

] =


−2α1r + 2RV1

−2α2r + 2RV2

· · ·
−2αKr + 2RVK

 ;

the latter vector is negative when all αl are equal to 1 and all Vl are equal to a strictly feasible
solution of the system Rv ≤ r . Such a solution exists by S.1.

In the case when the original problem is the obstacle-free robust problem (4.8.103),
we have

D∗
1α1 + 2E∗

1V1 = −2Tr(α1),

and to guarantee the validity of S.5, it suffices to set α1 = Ip.
From now on we assume that the data of (Pr) satisfy S.3, S.4, and S.5.

Remark 4.8.1. Problem (Pr) is strictly feasible.

Indeed, let us choose somehow z > 0. By S.3, we can choose ti . 0, i =
1, . . . , n, to satisfy the strict versions of the inequalities (Pr)(b), (c), (d). By S.4 the matrix∑n

i=1

∑S
s=1 bis tib

T
is is positive definite. But then, by the Schur complement lemma, LMIs

(Pr)(a) are satisfied strictly for all large-enough values of τ .

4.8.4 From primal to dual

From the viewpoint of numerical processing, a disadvantage of the problem (Pr) is its
huge design dimension. Consider, e.g., the case of a multiload design of an obstacle-free
truss with M-node ground structure. In this case (Pr) is a semidefinite program of design
dimension n + 1, n = O(M2) being the number of tentative bars. The program includes k
(k is the number of loading scenarios) big LMIs (each of the row size m+ 1, where m is the
number of degrees of freedom of the nodal set; m ≈ 2M for planar and m ≈ 3M for spatial
constructions) and a number of scalar linear inequality constraints. For a 15 × 15 planar
nodal grid with the leftmost nodes fixed, we get M = 225, n+ 1 = 25096, m = 420. Even
an LP program with 25,000 variables should not be treated as a small one; a semidefinite
program of such a design dimension is definitely not accessible for existing software. The
situation, however, is not hopeless, and the way to overcome the difficulty is offered by
duality; we shall show that the problem dual to (Pr) can be greatly simplified by analytical
elimination of most of the variables. For example, the dual to the outlined multiload truss
problem can be converted to a semidefinite program with nearly mk design variables; for
the above 15 × 15 ground structure and three scenarios, its design dimension is about 1300,
which is within the range of applicability of the existing solvers.

We are about to build the problem dual to (Pr) and to process it analytically.
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244 Lecture 4. Semidefinite Programming

Step 0. Building the dual. Applying to (Pr) our formalism for passing from a semidefinite
program to its dual, we obtain the following semidefinite program:

maximize − φ ≡ −
K∑
l=1

Tr(Dlαl + 2ET
l Vl) −

n∑
i=1

[ρiσ
+
i − ρ

i
σ−
i ] − wγ

s.t. (
αl V T

l

Vl βl

)
� 0, l = 1, . . . , K

[αl ∈ Sp, βl ∈ Sm, Vl ∈ Mm,p],
τi � 0, i = 1, . . . , n

[τl ∈ SDl ],
σ+
i , σ−

i ≥ 0, i = 1, . . . , n
[σ+

i , σ−
i ∈ R],

γ ≥ 0
[γ ∈ R],

η ≥ 0
[η ∈ RN ],

2
K∑
l=1

Tr(αl) = 1,

K∑
l=1

[D∗
l αl + 2E∗

l Vl] + η = 0,

K∑
l=1

S∑
s=1

bTisβlbis + τi + [σ−
i − σ+

i − γ ]Id = 0, i = 1, . . . , n,

(Dini)

with design variables {αl, βl, Vl}Kl=1, {σ+
i .σ−

i , τi}ni=1, γ, η.

Step 1. Eliminating η and {τi}ni=1. (Dini) clearly is equivalent to the problem

minimize φ ≡
K∑
l=1

Tr(Dlαl + 2ET
l Vl) +

n∑
i=1

[ρiσ
+
i − ρ

i
σ−
i ] + wγ

s.t.

(a)

(
αl V T

l

Vl βl

)
� 0, l = 1, . . . , K,

(b) σ+
i , σ−

i ≥ 0, l = 1, . . . , n,
(c) γ ≥ 0,

(d) 2
K∑
l=1

Tr(αl) = 1,

(e)
K∑
l=1

[D∗
l αl + 2E∗

l Vl] ≤ 0,

(f)
K∑
l=1

S∑
s=1

bTisβlbis / [γ + σ+
i − σ−

i ]Id, i = 1, . . . , n,

(D′)
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in variables {αl, βl, Vl}Kl=1, {σ+
i .σ−

i }ni=1, γ . Note that passing from (Dini) to (D′), we have
switched from maximization of −φ to minimization of φ, so that the optimal value in (D′)
is minus the one of (Dini).

Step 2. Eliminating {βl}Kl=1. We start with observing that (D′) is strictly feasible. Indeed,
let us set, say, σ±

i = 1. By S.5 there exist positive definite matrices αl and rectangular
matrices Vl of appropriate sizes satisfying the strict version of (D′)(e); by normalization,
we may enforce these matrices to satisfy (D′)(d). Given indicated αl, Vl and choosing
large-enough βl , we enforce validity of the strict versions of (D′)(a). Finally, choosing
large-enough γ > 0, we enforce strict versions of (D′)(c) and (D′)(f).

Note that the same arguments demonstrate the following remark.

Remark 4.8.2. Problem (Dini) is strictly feasible.

Since (D′) is strictly feasible, its optimal value is the same as in problem (D′′) obtained
from (D′) by adding the constraints

(g) αl . 0, l = 1, . . . , K.

Now note that if a collection

(α = {αl}Kl=1, V = {Vl}Kl=1, β = {βl}Kl=1, σ = {σ±
i }ni=1, γ )

is a feasible solution to (D′′), then the collection

(α, V, β(α, V ) = {βl(α, V ) = Vlα
−1
l V T

l }Kl=1, σ, γ )

is also a feasible solution to (D′′)with the same value of the objective. Indeed, from the LMI
(D′)(a) by the Schur complement lemma it follows that βl(α, V ) / βl , so that replacing βl

with βl(α, V ) we preserve validity of the LMIs (D′)(f) as well as (D′)(a). Consequently,
(D′′) is equivalent to the problem

minimize φ ≡
K∑
l=1

Tr(Dlαl + 2ET
l Vl) +

n∑
i=1

[ρiσ
+
i − ρ

i
σ−
i ] + wγ

s.t.
(b) σ+

i , σ−
i ≥ 0, i = 1, . . . , n,

(c) γ ≥ 0,

(d) 2
K∑
l=1

Tr(αl) = 1,

(e)
K∑
l=1

[D∗
l αl + 2E∗

l Vl] ≤ 0,

(f ′)
K∑
l=1

S∑
s=1

bTisVlα
−1
l V T

l bis / [γ + σ+
i − σ−

i ]Id, i = 1, . . . , n,

(g) αl . 0, l = 1, . . . , K,

(D′′′)

in variables α = {αl}Kl=1, V = {Vl}Kl=1, σ = {σ±
i }ni=1, γ .
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246 Lecture 4. Semidefinite Programming

Now note that the system of LMIs (D′′′)(g)–(D′′′)(f′) is equivalent to the system of
LMIs

(a)

(
A(α), BT

i (V )

Bi(V ), (γ + σ+
i − σ−

i )Id

)
� 0, i = 1, . . . , n,

(b) A(α) . 0,

(4.8.104)

where

α = {αl ∈ Sp}Kl=1,

V = {Vl ∈ Mp,m}Kl=1,

A(α) = Diag(
S times︷ ︸︸ ︷

α1, . . . , α1,

S times︷ ︸︸ ︷
α2, . . . , α2, . . . ,

S times︷ ︸︸ ︷
αK, . . . , αK),

Bi(V ) = [bTi1V1, b
T
i2V1, . . . , b

T
iSV1; bTi1V2, b

T
i2V2, . . . , b

T
iSV2; . . . ; bTi1VK, b

T
i2VK, . . . , b

T
iSVK ].

(4.8.105)

Indeed, the difference of the right- and left-hand sides of (D′′′)(f′) is the Schur complement
of the angular block of the left-hand-side matrix in (4.8.104)(a), and it remains to apply the
lemma on the Schur complement. Consequently, (D′′′) is equivalent to the problem

minimize φ ≡
K∑
l=1

Tr(Dlαl + 2ET
l Vl) +

n∑
i=1

[ρiσ
+
i − ρ

i
σ−
i ] + wγ

s.t.

(a)

(
A(α), BT

i (V )

Bi(V ), (γ + σ+
i − σ−

i )Id

)
� 0, i = 1, . . . , n,

(b) σ+
i , σ−

i ≥ 0, i = 1, . . . , n,

(c) γ ≥ 0,

(d) 2
K∑
l=1

Tr(αl) = 1,

(e) αl . 0, l = 1, . . . , K,

(f)
K∑
l=1

[D∗
l αl + 2E∗

l Vl] ≤ 0

in variables α, V, σ, γ .
The resulting problem is strictly feasible along with (D′), so that its optimal value

remains unchanged when we replace the strict LMIs (e) with their nonstrict counterparts
αl � 0; the latter nonstrict LMIs are already implied by (a). Eliminating the LMIs (e), we
come to the final form of the problem dual to (Pr):D
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minimize φ ≡
K∑
l=1

Tr(Dlαl + 2ET
l Vl) +

n∑
i=1

[ρiσ
+
i − ρ

i
σ−
i ] + wγ

s.t. (
A(α), BT

i (V )

Bi(V ), (γ + σ+
i − σ−

i )Id

)
� 0, l = 1, . . . , N,

σ+
i , σ−

i ≥ 0, i = 1, . . . , n,

γ ≥ 0,

2
K∑
l=1

Tr(αl) = 1,

K∑
l=1

[D∗
l αl + 2E∗

l Vl] ≤ 0,

(Dl)

in design variables

α = {αl ∈ Sp}Kl=1, V = {Vi ∈ Mm,p}Kl=1, σ = {σ±
i ∈ R}ni=1, γ ∈ R.

As we have seen, both the primal problem (Pr) and its dual (Dini) are strictly feasible
(Remarks 4.8.1, 4.8.2). Consequently, both (Pr) and (Dini) are solvable with equal optimal
values (the conic duality theorem) and with bounded level sets (see Exercise 2.12). By its
origin, the optimal value in the problem (Dl) is minus the optimal value in (Dini), and of
course (Dl) inherits from (Dini) the property to have bounded level sets and is therefore
solvable. Thus, we get the following proposition.

Proposition 4.8.3. Both problems (Pr), (Dl) are strictly feasible and solvable and possess
bounded level sets. The optimal values in these problems are negations of each other.

Case of simple bounds. In the case when there are no actual bounds on Tr(ti) (formally it
means that ρ

i
= 0, ρi = w ∀i), the dual problem (Dl) can be further simplified, namely, we

can eliminate the σ -variables. Indeed, consider a feasible solution to (Dl). When replacing
all σ±

i with zeros, simultaneously increasing γ by δ = max[0,maxi (σ
+
i −σ−

i )], we clearly
preserve feasibility and add to the objective the quantity

wδ −
n∑

i=1

[
ρiσ

+
i − ρ

i
σ−
i

]
= wδ −

n∑
i=1

ρiσ
+
i [since ρ

i
= 0]

≤ wδ − w

n∑
i=1

σ+
i [since ρi ≥ w]

≤ w max
i

σ+
i − w

n∑
i=1

σ+
i [since δ ≤ max

i
σ+
i due to σ±

i ≥ 0]

≤ 0 [since σ+
i ≥ 0],
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248 Lecture 4. Semidefinite Programming

i.e., we gain in the objective value. Thus, we loose nothing when setting in (Dl) σ±
i = 0,

thus coming to the problem

minimize φ =
K∑
l=1

Tr(Dlαl + 2ET
l Vl) + wγ

s.t. (
A(α) BT

i (V )

Bi(V ) γ Id

)
� 0, i = 1, . . . , n,

K∑
l=1

[D∗
l αl + 2E∗

l Vl] ≤ 0,

2
K∑
l=1

Tr(αl) = 1,

γ ≥ 0,

(Dlsb)

in design variables α = {αl ∈ Sp}Kl=1, V = {Vl ∈ Mp,m}Kl=1, γ ∈ R.
To understand how fruitful our effort was, let us compare the sizes of the problem (Dlsb)

with those of the original problem (Pr) in the simplest case of a planar k-load obstacle-free
truss design problem with M nodes and simple bounds. Note that in this case n ≈ 0.5M2

and m ≈ 2M . Assuming k << M , here are the sizes of (Pr) and (Dlsb):

Size (Pr) (Dlsb)

Design dimension n + 1 ≈ 0.5M2 mk + k + 1 ≈ 2kM
# and sizes of LMIs k of (2m + 1) × (2m + 1) LMIs n ≈ 0.5M2 of (k + 1) × (k + 1) LMIs
# of linear constraints n + 1 ≈ 0.5M2 k + 1

We see that if the number of loading scenarios k is a small integer (which normally is the
case), the design dimension of the dual problem is by orders of magnitude less than the
design dimension of the primal problem (Pr). As a kind of penalization, the dual problem
involves a lot (≈ 0.5M2) of nonscalar LMIs instead of just k nonscalar LMIs in (Pr), but
all LMIs in (Dl) are small—of row size k + 1 each—while the nonscalar LMIs in (Pr) are
large—of row size ≈ 2M each. As a result, when solving (Pr) and (Dlsb) by the best-known
numerical techniques so far (the interior-point algorithms), the computational effort for (Pr)
turns out to be O(M6), while for (Dlsb) it is only O(k3M3). For large M and small k, this
does make a difference!

Of course, there is an immediate concern about the dual problem: The actual design
variables are not seen in it at all. How do we recover a (nearly) optimal construction from
a (nearly) optimal solution to the dual problem? In fact, however, there is no reason to be
concerned: the required recovering routines exist and are cheap computationally.

4.8.5 Back to primal

Problem (Dl) is not exactly the dual of (Pr)—it is obtained from this dual by eliminating
part of the variables. What happens when we pass from (Dl) to its dual? It turns out that
we end up with a nontrivial (and instructive) equivalent reformulation of (Pr), namely, with
the problem
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minimize τ

s.t.

(a)



2τIp + Dlz + Dl [ql
11]T · · · [ql

1S]T · · · [ql
n1]T · · · [ql

nS]T
ql

11 t1
...

. . .

ql
1S t1
...

. . .

ql
n1 tn
...

. . .

ql
nS tn


� 0,

l = 1, . . . , K,

(b) ρ
i

≤ Tr(ti) ≤ ρi, i = 1, . . . , n,

(c)
n∑

i=1

Tr(ti) ≤ w,

(d)
n∑

i=1

S∑
s=1

bisq
l
is = Elz + El, l = 1, . . . , k,

(e) z ≥ 0,
(Pr+)

in the design variables which are symmetric d ×d matrices ti , i = 1, . . . , n, d ×p matrices
ql
is , l = 1, . . . , K, i = 1, . . . , n, s = 1, . . . , S, real τ , and z ∈ RN . Problem (Pr+) is not

the straightforward dual of (Dl); it is obtained from this dual by eliminating part of the
variables. Instead of boring derivation of (Pr+) via duality, we prefer to give a direct proof
of equivalence between (Pr) and (Pr+).

Proposition 4.8.4. A collection ({ti}ni=1, z, τ ) is a feasible solution to (Pr) if and only if it
can be extended by properly chosen {ql

is | l = 1, . . . , K, i = 1, . . . , n, s = 1, . . . , S} to a
feasible solution to (Pr+).

Proof. “If” part. Let a collection

({ti}ni=1, z, τ, {ql
is | l = 1, . . . , K, i = 1, . . . , n, s = 1, . . . , S})

be a feasible solution to (Pr+); all we should prove is the validity of the LMIs (Pr.a). Let us
fix l ≤ K . We should prove that for every pair (x, y) of vectors of appropriate dimensions
we have

xT [2τIp + Dlz + Dl]x + 2xT [Ei + Elz]T y + yT

[
n∑

i=1

S∑
s=1

bTis tib
T
is

]
y ≥ 0. (4.8.106)
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Indeed, in view of (Pr+.d), the left-hand side of (4.8.106) is equal to

xT [2τIp + Dlz + Dl]x

+2xT
[

n∑
i=1

S∑
s=1

bisq
l
is

]T

y + yT

[
n∑

i=1

S∑
s=1

bis tib
T
is

]
y = xT [2τIp + Dlz + Dl]x

+ 2
n∑

i=1

S∑
s=1

xT [ql
is]T yis

+
n∑

i=1

S∑
s=1

yTis tiyis,

yis = bTisy.

The resulting expression is nothing but the value of the quadratic form with the matrix from
the left-hand side of the corresponding LMI (Pr+)(a) at the vector comprising x and {yis}i,s ,
and therefore it is nonnegative, as claimed.

“Only if” part. Let

({ti}ni=1, z, τ )

be a feasible solution to (Pr). Let us fix l, 1 ≤ l ≤ K , and let us set

fl = Elz + El.

For every x ∈ Rp the quadratic form of y ∈ RM :

xT [2τIp + Dlz + dl] + 2xT f T
l y + yT A(t)y

[
A(t) =

n∑
i=1

S∑
s=1

bis tib
T
is

]

is nonnegative, i.e., the equation

A(t)y = flx

is solvable for every x. Of course, we can choose its solution to be linear in x:

y = Ylx.

Note that then

A(t)Ylx = flx ∀x,
i.e.,

A(t)Yl = fl.

Let us now set

[ql
is]T = YT

l bis ti . (4.8.107)
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Then
n∑

i=1

S∑
s=1

bisq
l
is =

n∑
i=1

S∑
s=1

bis tib
T
isYl = A(t)Yl = fl.

Recalling the definition of fl , we see that extending ({ti}, z, τ ) by {ql
is} we ensure the validity

of (Pr+)(d). It remains to verify that the indicated extensions ensure the validity of LMIs
(Pr+)(a) as well. What we should verify is that for every collection {yis} of vectors of
appropriate dimension and for every x ∈ Rp we have

F(x, {yis}) ≡ xT [2τIp + Dlz + Dl]x + 2xT
n∑

i=1

S∑
s=1

[ql
is]T yis +

n∑
i=1

S∑
s=1

yTis tiyis ≥ 0.

(4.8.108)

Given x, let us set

y∗
is = −bTisYlx,

and let us prove that the collection {y∗
is} minimizes F(x, ·), which is immediate: F(x, ·) is

convex quadratic form, and its partial derivative with respect to yis at the point {y∗
is} is equal

to (see (4.8.107))

2ql
isx + 2tiy

∗
is = 2[tibTisYlx − tib

T
isYlx] = 0

∀i, s. It remains to note that

F(x, {y∗
is}) = xT [2τIp + Dlz + Dl]x − 2xT

n∑
i=1

S∑
s=1

[ql
is]T bTisYlx

+
n∑

i=1

S∑
s=1

xT Y T
l bis tib

T
isYlx

= xT [2τIp + Dlz + Dl]x − 2xT
[

n∑
i=1

S∑
s=1

bisq
l
is

]T

Ylx

+ xT Y T
l A(t)Ylx

= xT [2τIp + Dlz + Dl]x − 2xT [Elz + El]T Ylx + xT Y T
l A(t)Ylx

[due to already proved (Pr+)(d)]

= (xT ; −xT Y T
l )

(
τIp + Dl z + Dl [El z + El ]T

El z + El A(t)

)(
x

−Ylx

)
≥ 0

[since ({ti}, z, τ ) is feasible for (Pr)].

Thus, the minimum of F(x, {yis}) in {yis} is nonnegative, and therefore (4.8.108) indeed is
valid.
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252 Lecture 4. Semidefinite Programming

4.8.6 Explicit forms of the standard truss and shape problems

Let us list the explicit forms of problems (Pr), (Dl), (Pr+) for the standard cases of the
multiload and robust static truss and shape design.

Multiload static truss design. Here

V = {v ∈ Rm | Rv ≤ r} [dim (r) = q]; F = {f1, . . . , fk}.
The settings are

• (Pr):

minimize τ

s.t.  2τ − 2rT µl −f T
l + µT

l R

−fl + RTµl

n∑
i=1

bib
T
i ti

 � 0, l = 1, . . . , k,

ρ
i

≤ ti ≤ ρi, i = 1, . . . , n,

n∑
i=1

ti ≤ w,

µl ≥ 0, l = 1, . . . , k;
[τ, ti , µl ∈ Rq];

• (Dl):

minimize − 2
k∑

l=1

f T
l vl +

n∑
i=1

[ρiσ
+
i − ρ

i
σ−
i ] + wγ

s.t. 
α1 bTi v1

. . .
...

αk bTi vk
bTi v1 · · · bTi vk γ + σ+

i − σ−
i

 � 0, i = 1, . . . , n,

σ±
i ≥ 0, i = 1, . . . , n,

γ ≥ 0,

Rvl ≤ αlr, l = 1, . . . , k,

2
k∑

l=1

αl = 1

[αl, σ
±
i , γ ∈ R, vl ∈ Rm];D
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• (Pr+):

minimize τ

s.t. 
2τ − 2rT µl ql

1 · · · ql
n

ql
1 t1
...

. . .

ql
n tn

 � 0, l = 1, . . . , k,

ρ
i

≤ ti ≤ ρi, i = 1, . . . , n,
n∑

i=1

ti ≤ w,

n∑
i=1

ql
i bi = fl − RTµl, l = 1, . . . , k,

µl ≥ 0, l = 1, . . . , k

[τ, ti , ql
i ∈ R, µl ∈ Rq].

Robust obstacle-free static truss design. Here

V = Rm; F = {f = Qu | uT u ≤ 1} [Q ∈ Mm,k].
The settings are

• (Pr):

minimize τ

s.t.  2τIk QT

Q

n∑
i=1

bib
T
i ti

 � 0,

ρ
i

≤ ti ≤ ρi, i = 1, . . . , n,
n∑

i=1

ti ≤ w

[τ, ti ∈ R];
• (Dl):

minimize 2Tr(QT V ) +
n∑

i=1

[ρiσ
+
i − ρ

i
σ−
i ] + wγ

s.t. (
α V T bi

bTi V γ + σ+
i − σ−

i

)
� 0, i = 1, . . . , n,

σ±
i ≥ 0, i = 1, . . . , n,

γ ≥ 0,

2Tr(α) = 1

[α ∈ Sk, σ±
i , γ ∈ R, V ∈ Mm,k];
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• (Pr+):

minimize τ

s.t. 
2τIk qT

1 · · · qT
n

q1 t1
...

. . .

qn tn

 � 0,

ρ
i

≤ ti ≤ ρi, i = 1, . . . , n,

n∑
i=1

ti ≤ w,

N∑
i=1

biqi = Q

[ti ∈ R, qT
i ∈ Rk].

Multiload static shape design. Here

ti ∈ Sd , d =
{

3, planar shape,
6, spatial shape,

F = {f1, . . . , fk},
V = {v ∈ Rm | Rv ≤ r} [dim (r) = q].

The settings are
• (Pr):

minimize τ

s.t.  2τ − 2rT µl −f T
l + µT

l R

−fl + RTµl

n∑
i=1

S∑
s=1

bis tib
T
is

 � 0, l = 1, . . . , k,

ti � 0, i = 1, . . . , n,

ρ
i

≤ Tr(ti) ≤ ρi, i = 1, . . . , n,

n∑
i=1

Tr(ti) ≤ w,

µl ≥ 0, l = 1, . . . , k

[τ ∈ R, ti ∈ Sd , µl ∈ Rq];D
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• (Dl):

minimize − 2
k∑

l=1

f T
l vl +

n∑
i=1

[ρiσ
+
i − ρ

i
σ−
i ] + wγ

s.t.

α1 vT1 bi1

. . .
.
.
.

α1 vT1 biS

. . .
.
.
.

αk vTk bi1

. . .
.
.
.

αk vTk biS

bTi1v1 · · · bTiSv1 · · · bTi1vk · · · bTiSvk (γ + σ+
i − σ−

i )Id


� 0, i = 1, . . . , n;

σ±
i ≥ 0, i = 1, . . . , n,

γ ≥ 0,

Rvl ≤ αlr, l = 1, . . . , k,

2
k∑

l=1

αl = 1

[αl, σ
±
i , γ ∈ R, vl ∈ Rm];

• (Pr+):

minimize τ

s.t.

2τ − 2rT µl [ql11]T · · · [ql1S ]T · · · [qln1]T · · · [qlnS ]T
ql11 t1
.
.
.

. . .

ql1S t1
.
.
.

. . .

qln1 tn
.
.
.

. . .

qlnS tn


� 0, l = 1, . . . , k,

ρ
i

≤ Tr(ti) ≤ ρi, i = 1, . . . , n,
n∑

i=1

Tr(ti) ≤ w,

n∑
i=1

S∑
s=1

bisq
l
is = fl − RTµl, l = 1, . . . , k,

µl ≥ 0, l = 1, . . . , k

[τ ∈ R, ti ∈ Sd , ql
is ∈ Rd , µl ∈ Rq].D
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Robust obstacle-free static shape design. Here

ti ∈ Sd , d =
{

3, planar shape,
6, spatial shape,

F = {f = Qu | uT u ≤ 1} [Q ∈ Mm,k],
V = Rm.

The settings are
• (Pr):

minimize τ

s.t. 
2τIk QT

Q

n∑
i=1

S∑
s=1

bis tib
T
is

 � 0,

ti � 0, i = 1, . . . , n,

ρ
i

≤ Tr(ti) ≤ ρi, i = 1, . . . , n,

n∑
i=1

Tr(ti) ≤ w

[τ ∈ R, ti ∈ Sd ];

• (Dl):

minimize 2Tr(QT V ) +
n∑

i=1

[ρiσ
+
i − ρ

i
σ−
i ] + wγ

s.t. 
α V T bi1

. . .
.
.
.

α V T biS

bTi1V · · · bTiSV (γ + σ+
i − σ−

i )Id

 � 0, i = 1, . . . , n,

σ±
i ≥ 0, i = 1, . . . , n,

γ ≥ 0,

2Tr(α) = 1

[α ∈ Sk, σ±
i , γ ∈ R, V ∈ Mm,k];
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• (Pr+):

minimize τ

s.t. 

2τIk [q11]T · · · [q1S ]T · · · [qn1]T · · · [qnS ]T
q11 t1
.
.
.

. . .

q1S t1
.
.
.

. . .

qn1 tn
.
.
.

. . .

qnS tn


� 0,

ρ
i

≤ Tr(ti) ≤ ρi, i = 1, . . . , n,
n∑

i=1

Tr(ti) ≤ w,

n∑
i=1

S∑
s=1

bisqis = Q

[τ ∈ R, ti ∈ Sd , qis ∈ Md,k].

4.9 Applications VII: Extremal ellipsoids
We already have met, on different occasions, with the notion of an ellipsoid—a set E in Rn

that can be represented as the image of the unit Euclidean ball under an affine mapping:

E = {x = Au + c | uT u ≤ 1} [A ∈ Mn,q]. (Ell)

Ellipsoids are very convenient mathematical entities:
• It is easy to specify an ellipsoid—just indicate the corresponding matrix A and

vector c.
• The family of ellipsoids is closed with respect to affine transformations: the image

of an ellipsoid under an affine mapping again is an ellipsoid.
• There are many operations, like minimization of a linear form and computation of

volume that are easy to carry out when the set in question is an ellipsoid and are difficult to
carry out for more general convex sets.

By the indicated reasons, ellipsoids play an important role in different areas of applied
mathematics. In particular, ellipsoids are used to approximate more complicated sets. As a
simple motivating example, consider a discrete time linear time invariant controlled system:

x(t + 1) = Ax(t) + Bu(t), t = 0, 1, . . . ,
x(0) = 0

and assume that the control is norm-bounded:

‖u(t)‖2 ≤ 1 ∀t.
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The question is, What is the set XT of all states reachable in a given time T , i.e., the set of
all possible values of x(T )? We can easily write down the answer:

XT = {x = BuT−1+ABuT−2+A2BuT−3+· · ·+AT−1Bu0 | ‖ut‖2 ≤ 1, t = 0, . . . , T−1},
but this answer is not explicit. To check whether a given vector x belongs to XT requires
solving a nontrivial conic quadratic problem; the larger T , the greater the complexity of the
problem. In fact, the geometry ofXT may be very complicated, so that there is no possibility
to get a tractable explicit description of the set. This is why in many applications it makes
sense to use simple—ellipsoidal—approximations of XT . As we shall see, approximations
of this type can be computed in a recurrent and computationally efficient fashion.

It turns out that the natural framework for different problems of the best possible
approximation of convex sets by ellipsoids is given by semidefinite programming. In this
section we consider a number of basic problems of this type.

Preliminaries on ellipsoids. According to our definition, an ellipsoid in Rn is the image
of the unit Euclidean ball in certain Rq under an affine mapping; e.g., for us a segment in
R100 is an ellipsoid. Indeed, it is the image of a 1D Euclidean ball under affine mapping.
In contrast to this, in geometry an ellipsoid in Rn is usually defined as the image of the
n-dimensional unit Euclidean ball under an invertible affine mapping, i.e., as the set of the
form (Ell) with additional requirements that q = n, i.e., that the matrix A is square, and
that it is nonsingular. To avoid confusion, let us call these true ellipsoids full-dimensional.
Note that a full-dimensional ellipsoid E admits two nice representations:

• First, E can be represented in the form (Ell) with positive definite symmetric A:

E = {x = Au + c | uT u ≤ 1} [A ∈ Sn
++]. (4.9.109)

It is clear that if a matrix A represents, via (Ell), a given ellipsoid E, the matrix AU , U
being an orthogonal n×n matrix, represents E as well. It is known from linear algebra that
by multiplying a nonsingular square matrix from the right by a properly chosen orthogonal
matrix, we get a positive definite symmetric matrix, so that we always can parameterize a
full-dimensional ellipsoid by a positive definite symmetric A.

• Second, E can be given by a strictly convex quadratic inequality:

E = {x | (x − c)T D(x − c) ≤ 1} [D ∈ Sn
++]. (4.9.110)

One may take D = A−2, where A is the matrix from the representation (4.9.109).
Note that the set (4.9.110) makes sense and is convex when the matrix D is positive

semidefinite rather than positive definite. When D � 0 is not positive definite, the set
(4.9.109) is, geometrically, an elliptic cylinder—a shift of the direct product of a full-
dimensional ellipsoid in the range space of D and the complementary to this range linear
subspace—the kernel of D.

In the sequel we deal a lot with volumes of full-dimensional ellipsoids. Since an
invertible affine transformation x �→ Ax + b : Rn → Rn multiplies the volumes of n-
dimensional domains by |DetA|, the volume of a full-dimensional ellipsoid E given by
(4.9.109) is κnDetA, where κn is the volume of the n-dimensional unit Euclidean ball. To
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4.9. Applications VII: Extremal ellipsoids 259

avoid meaningless constant factors, it makes sense to pass from the usual n-dimensional
volume mesn(G) of a domain G to its normalized volume

Vol(G) = κ−1
n mesn(G),

i.e., to choose, as the unit of volume, the volume of the unit ball rather than the one of the
cube with unit edges. From now on, speaking about volumes of n-dimensional domains, we
always mean their normalized volume (and omit the word normalized). With this convention,
the volume of a full-dimensional ellipsoid E given by (4.9.109) is just

Vol(E) = DetA,

while for an ellipsoid given by (4.9.109) the volume is

Vol(E) = [DetD]−1/2 .

Outer and inner ellipsoidal approximations. It already has been mentioned that our
current goal is to realize how to solve basic problems of the best ellipsoidal approximation
E of a given set S. There are two types of these problems:

• outer approximation, where we look for the smallest ellipsoid E containing the set
S, and

• inner approximation, where we look for the largest ellipsoid E contained in the set S.

In both these problems, a natural way to say when one ellipsoid is smaller than another is to
compare the volumes of the ellipsoids. The main advantage of this viewpoint is that it results
in affine-invariant constructions: an invertible affine transformation multiplies volumes of
all domains by the same constant and therefore preserves ratios of volumes of the domains.

Thus, we are interested in the largest volume ellipsoid(s) contained in a given set S and
the smallest volume ellipsoid(s) containing a given set S. In fact, these extremal ellipsoids
are unique, provided that S is a solid—a closed and bounded convex set with a nonempty
interior, and are not too bad approximations of the set.

Theorem 4.9.1. Löwner–Fritz John theorem. Let S ⊂ Rn be a solid. Then
(i) there exists and is uniquely defined the largest volume full-dimensional ellipsoid

Ein contained in S. The concentric toEin n times larger (in linear sizes) ellipsoid contains S.
If S is central-symmetric, then already

√
n times larger than Ein concentric to Ein ellipsoid

contains S.
(ii) there exists and is uniquely defined the smallest volume full-dimensional ellipsoid

Eout containing S. The concentric to Eout n times smaller (in linear sizes) ellipsoid is
contained inS. IfS is central-symmetric, then already

√
n times smaller thanEout concentric

to Eout ellipsoid is contained in S.

The proof is the subject of Exercise 4.71.
The existence of extremal ellipsoids is, of course, good news. But how do we compute

these ellipsoids? The possibility to compute efficiently (nearly) extremal ellipsoids heavily
depends on the description of S. Let us start with two simple examples.
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260 Lecture 4. Semidefinite Programming

Example: Inner ellipsoidal approximation of a polytope. Let S be a polyhedral set
given by a number of linear equalities:

S = {x ∈ Rn | aTi x ≤ bi, i = 1, . . . , m}.

Proposition 4.9.1. Assume that S is a full-dimensional polytope (i.e., is bounded and
possesses a nonempty interior). Then the largest-volume ellipsoid contained in S is

E = {x = Z∗u + z∗ | uT u ≤ 1},
where Z∗, z∗ are given by an optimal solution to the following semidefinite program:

maximize t

s.t.
(a) t ≤ (DetZ)1/n,

(b) Z � 0,
(c) ‖Zai‖2 ≤ bi − aTi z, i = 1, . . . , m,

(In)

with the design variables Z ∈ Sn, z ∈ Rn, t ∈ R.
Note that (In) indeed is a semidefinite program: both (In)(a) and (In)(c) can be

represented by LMIs; see examples 18d and 1-17 in section 4.2.

Proof. Indeed, an ellipsoid (4.9.109) is contained in S if and only if

aTi (Au + c) ≤ bi ∀u : uT u ≤ 1

or, which is the same, if and only if

‖Aai‖2 + aTi c = max
u:uT u≤1

[aTi Au + aTi c] ≤ bi.

Thus, (In)(b)–(c) just express the fact that the ellipsoid {x = Zu+z | uT u ≤ 1} is contained
in S, so that (In) is nothing but the problem of maximizing (a positive power of) the volume
of an ellipsoid over ellipsoids contained in S.

We see that if S is a polytope given by a set of linear inequalities, then the problem
of the best inner ellipsoidal approximation of S is an explicit semidefinite program and as
such can be efficiently solved. In contrast to this, if S is a polytope given as a convex hull
of finite set,

S = Conv{x1, . . . , xm},
then the problem of the best inner ellipsoidal approximation of S is computationally intract-
able—in this case, it is difficult just to check whether a given candidate ellipsoid is contained
in S.

Example: Outer ellipsoidal approximation of a finite set. Let S be a polyhedral set
given as a convex hull of a finite set of points:

S = Conv{x1, . . . , xm}.
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Proposition4.9.2. Assume thatS is a full-dimensional polytope (i.e., possesses a nonempty
interior). Then the smallest volume ellipsoid containing S is

E = {x | (x − c∗)T D∗(x − c∗) ≤ 1},
where c∗,D∗ are given by an optimal solution (t∗, Z∗, z∗, s∗) to the semidefinite program

maximize t

s.t.
(a) t ≤ (DetZ)1/n,

(b) Z � 0,

(c)

(
s zT

z Z

)
� 0,

(d) xTi Zxi − 2xTi z + s ≤ 1, i = 1, . . . , m,

(Out)

with the design variables Z ∈ Sn, z ∈ Rn, t, s ∈ R via the relations

D∗ = Z∗; c∗ = Z−1
∗ z∗.

Note that (Out) indeed is a semidefinite program; cf. Proposition 4.9.1.

Proof. Let us pass in the description (4.9.110) from the parameters D, c to the parameters
Z = D, z = Dc, thus coming to the representation

E = {x | xT Zx − 2xT z + zT Z−1z ≤ 1}. (!)
The ellipsoid of the latter type contains the points x1, . . . , xm if and only if

xTi Zxi − 2xTi z + zT Z−1z ≤ 1, i = 1, . . . , m,

or, which is the same, if and only if there exists s ≥ zT Z−1z such that

xTi Zxi − 2xTi z + s ≤ 1, i = 1, . . . , m.

Recalling the lemma on the Schur complement, we see that the constraints (Out)(b)–(d)
say exactly that the ellipsoid (!) contains the points x1, . . . , xm. Since the volume of such
an ellipsoid is (DetZ)−1/2, (Out) is the problem of maximizing a negative power of the
volume of an ellipsoid containing the finite set {x1, . . . , xm}, i.e., the problem of finding the
smallest-volume ellipsoid containing this finite set. It remains to note that an ellipsoid is
convex, so that it is exactly the same—to say that it contains a finite set {x1, . . . , xm} and to
say that it contains the convex hull of this finite set.

We see that if S is a polytope given as a convex hull of a finite set, then the problem
of the best outer ellipsoidal approximation of S is an explicit semidefinite program and
as such can be efficiently solved. In contrast to this, if S is a polytope given by a list of
inequality constraints, then the problem of the best outer ellipsoidal approximation of S
is computationally intractable—in this case, it is difficult just to check whether a given
candidate ellipsoid contains S.
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262 Lecture 4. Semidefinite Programming

4.9.1 Ellipsoidal approximations of unions and intersections of
ellipsoids

Speaking informally, Proposition 4.9.1 deals with inner ellipsoidal approximation of the
intersection of degenerate ellipsoids, namely, half-spaces. (A half-space is just a very large
Euclidean ball!) Similarly, Proposition 4.9.2 deals with the outer ellipsoidal approximation
of the union of degenerate ellipsoids, namely, points. (A point is just a ball of zero radius!)
We are about to demonstrate that when passing from degenerate ellipsoids to the normal
ones, we still have a possibility to reduce the corresponding approximation problems to
explicit semidefinite programs. The key observation here is as follows.

Proposition 4.9.3. 39 An ellipsoid

E = E(Z, z) ≡ {x = Zu + z | uT u ≤ 1} [Z ∈ Mn,q]
is contained in the full-dimensional ellipsoid

W = W(Y, y) ≡ {x | (x − y)T Y T Y (x − y) ≤ 1} [Y ∈ Mn,n,DetY �= 0]
if and only if there exists λ such that(

In, Y (z − y), YZ

(z − y)T Y T , 1 − λ,

ZT Y T , λIq

)
� 0 (4.9.111)

as well as if and only if there exists λ such that(
Y−1(Y−1)T , z − y, Z

(z − y)T , 1 − λ,

ZT , λIq

)
� 0. (4.9.112)

Proof. We clearly have

E ⊂ W

,
uT u ≤ 1 ⇒ (Zu + z − y)T Y T Y (Zu + z − y) ≤ 1

,
uT u ≤ t2 ⇒ (Zu + t (z − y))T Y T Y (Zu + t (z − y)) ≤ t2

, S-lemma
∃λ ≥ 0 : [t2 − (Zu + t (z − y))T Y T Y (Zu + t (z − y))] − λ[t2 − uT u] ≥ 0 ∀(u, t)

,
∃λ ≥ 0 :

(
1 − λ − (z − y)T Y T Y (z − y), −(z − y)T Y T YZ

−ZT Y T Y (z − y), λIq − ZT Y T YZ

)
� 0

,
∃λ ≥ 0 :

(
1 − λ

λIq

)
−

(
(z − y)T Y T

ZT Y T

)
( Y (z − y) YZ ) � 0.

39S. Boyd et al., Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994.
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Now note that in view of the lemma on the Schur complement the matrix(
1 − λ

λIq

)
−

(
(z − y)T Y T

ZT Y T

)
( Y (z − y), YZ )

is positive semidefinite if and only if the matrix in (4.9.111) is so. Thus, E ⊂ W if and
only if there exists a nonnegative λ such that the matrix in (4.9.111), let it be called P(λ), is
positive semidefinite. Since the latter matrix can be positive semidefinite only when λ ≥ 0,
we have proved the first statement of the proposition. To prove the second statement, note
that the matrix in (4.9.112), let it be called Q(λ), is closely related to P(λ):

Q(λ) = SP (λ)ST , S =
(
Y−1,

1,
Iq

)
. 0,

so that Q(λ) is positive semidefinite if and only if P(λ) is so.

Here are some consequences of Proposition 4.9.3.

Inner ellipsoidal approximation of the intersection of full-dimensional ellipsoids.
Let

Wi = {x | (x − ci)
T B2

i (x − ci) ≤ 1} [Bi ∈ Sn
++],

i = 1, . . . , m, be given full-dimensional ellipsoids in Rn; assume that the intersection W of
these ellipsoids possesses a nonempty interior. Then the problem of the best inner ellipsoidal
approximation of W is the explicit semidefinite program

maximize t

s.t.
t ≤ (DetZ)1/n,(

In, Bi(z − ci), BiZ

(z − ci)
T Bi, 1 − λi,

ZBi, λiIn

)
� 0, i = 1, . . . , m,

Z � 0

(InEll)

with the design variables Z ∈ Sn, z ∈ Rn, λi, t ∈ R. The largest ellipsoid contained in
W = ⋂m

i=1 Wi is given by an optimal solution Z∗, z∗, t∗, {λ∗
i }) of (InEll) via the relation

E = {x = Z∗u + z∗ | uT u ≤ 1}.
Indeed, by Proposition 4.9.3 the LMIs(

In, Bi(z − ci), BiZ

(z − ci)
T Bi, 1 − λi,

ZBi, λiIn

)
� 0, i = 1, . . . , m,

express the fact that the ellipsoid {x = Zu + z | uT u ≤ 1} with Z � 0 is con-
tained in every one of the ellipsoids Wi , i.e., is contained in the intersection W

of these ellipsoids. Consequently, (InEll) is exactly the problem of maximizing
(a positive power of) the volume of an ellipsoid over the ellipsoids contained
in W .
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Outer ellipsoidal approximation of the union of ellipsoids. Let

Wi = {x = Aiu + ci | uT u ≤ 1} [Ai ∈ Mn,ki ],
i = 1, . . . , m, be given ellipsoids in Rn; assume that the convex hull W of the union of
these ellipsoids possesses a nonempty interior. Then the problem of the best outer ellipsoidal
approximation of W is the explicit semidefinite program

maximize t

s.t.
t ≤ (DetY )1/n,(

In, Y ci − z, YAi

(Y ci − z)T , 1 − λi,

AT
i Y, λiIki

)
� 0, i = 1, . . . , m,

Y � 0

(OutEll)

with the design variables Y ∈ Sn, z ∈ Rn, λi, t ∈ R. The smallest ellipsoid containing
W = Conv(

⋃m
i=1 Wi) is given by an optimal solution (Y∗, z∗, t∗, {λ∗

i }) of (OutEll) via the
relation

E = {x | (x − y∗)Y 2
∗ (x − y∗) ≤ 1}, y∗ = Y−1

∗ z∗.

Indeed, by Proposition 4.9.3 for Y . 0 the LMIs(
In, Y ci − z, YAi

(Y ci − z)T , 1 − λi,

AT
i Y, λiIki

)
� 0, i = 1, . . . , m,

express the fact that the ellipsoid E = {x | (x −Y−1z)T Y 2(x −Y−1y) ≤ 1} contains every
one of the ellipsoids Wi , i.e., contains the convex hull W of the union of these ellipsoids.
The volume of the ellipsoid E is (DetY )−1. Consequently, (OutEll) is exactly the problem
of maximizing a negative power (i.e., of minimizing a positive power) of the volume of an
ellipsoid over the ellipsoids containing W .

4.9.2 Approximating sums of ellipsoids

Let us come back to our motivating example, where we wanted to build ellipsoidal ap-
proximation of the set XT of all states x(T ) where a given discrete time invariant linear
system

x(t + 1) = Ax(t) + Bu(t), t = 0, . . . , T − 1,
x(0) = 0

can be driven in time T by a control u(·) satisfying the norm bound

‖u(t)‖2 ≤ 1, t = 0, . . . , T − 1.

How could we build such an approximation recursively? Let Xt be the set of all states where
the system can be driven in time t ≤ T , and assume that we have already built inner and
outer ellipsoidal approximations Et

in and Et
out of the set Xt :

Et
in ⊂ Xt ⊂ Et

out.
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Let also

E = {x = Bu | uT u ≤ 1}.
Then the set

F t+1
in = AEt

in + E ≡ {x = Ay + z | y ∈ Et
in, z ∈ E}

clearly is contained in Xt+1, so that a natural recurrent way to define an inner ellipsoidal
approximation of Xt+1 is to take as Et+1

in the largest-volume ellipsoid contained in F t+1
in .

Similarly, the set

F t+1
out = AEt

out + E ≡ {x = Ay + z | y ∈ Et
out, z ∈ E}

clearly covers Xt+1, and the natural recurrent way to define an outer ellipsoidal approxima-
tion of Xt+1 is to take as Et+1

out the smallest-volume ellipsoid containing F t+1
out .

Note that the sets F t+1
in and F t+1

out are of the same structure: each of them is the
arithmetic sum {x = v+w | v ∈ V,w ∈ W } of two ellipsoids V and W . Thus, we come to
the problem as follows: Given two ellipsoids W,V , find the best inner and outer ellipsoidal
approximations of their arithmetic sum W + V . In fact, it makes sense to consider a more
general problem:

Given m ellipsoids W1, . . . ,Wm in Rn, find the best inner and outer ellipsoidal
approximations of the arithmetic sum

W = {x = w1 + w1 + · · · + wm | wi ∈ Wi, i = 1, . . . , m}
of the ellipsoids W1, . . . ,Wm.

We have posed two different problems: the one of inner approximation of W (let this
problem be called (I)) and the other one (let it be called (O)) of outer approximation. It
seems that in general both these problems are difficult (at least when m is not once for ever
fixed). There exist, however, computationally tractable approximations of both (I) and (O)
we are about to consider.

In the considerations to follow, we assume, for the sake of simplicity, that the ellipsoids
W1, . . . ,Wm are full-dimensional (which is not a severe restriction—a flat ellipsoid can be
easily approximated by a nearly flat full-dimensional ellipsoid). Besides this, we may
assume w.l.o.g. that all our ellipsoids Wi are centered at the origin. Indeed, we have Wi =
ci +Vi , where ci is the center ofWi andVi = Wi −ci is centered at the origin. Consequently,

W1 + · · · + Wm = (c1 + · · · + cm) + (V1 + · · · + Vm),

so that the problems (I) and (O) for the ellipsoids W1, . . . ,Wm can be straightforwardly
reduced to similar problems for the centered at the origin ellipsoids V1, . . . , Vm.

Problem (O). Let the ellipsoids W1, . . . ,Wm be represented as

Wi = {x ∈ Rn | xT Bix ≤ 1} [Bi . 0].
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Our strategy to approximate (O) is very natural: we intend to build a parametric family of
ellipsoids in such a way that, first, every ellipsoid from the family contains the arithmetic
sum W1 + · · · + Wm of given ellipsoids, and, second, the problem of finding the smallest
volume ellipsoid within the family is a computationally tractable problem (specifically, is
an explicit semidefinite program).40 The seemingly simplest way to build the desired family
was proposed in Boyd et al. (1994) and is based on the idea of semidefinite relaxation. Let
us start with the observation that an ellipsoid

W [Z] = {x | xT Zx ≤ 1} [Z . 0]
contains W1 + · · · + Wm if and only if the following implication holds:{{xi ∈ Rn}mi=1, [xi]T Bix

i ≤ 1, i = 1, . . . , m
} ⇒ (x1 + · · · + xm)T Z(x1 + · · · + xm) ≤ 1.

(∗)
Now let Bi be (nm)× (nm) block-diagonal matrix with m diagonal blocks of the size n×n

each, such that all diagonal blocks, except the ith one, are zero, and the ith block is the
n × n matrix Bi . Let also M[Z] denote (mn) × (mn) block matrix with m2 blocks of the
size n× n each, every block being the matrix Z. This is how Bi and M[Z] look in the case
of m = 2:

B1 =
[

B1
]
, B2 =

[
B2

]
, M[Z] =

[
Z Z

Z Z

]
.

Validity of implication (∗) clearly is equivalent to the following fact:

(∗.1) For every (mn)-dimensional vector x such that

xT Bix ≡ Tr(Bi xxT︸︷︷︸
X[x]

) ≤ 1, i = 1, . . . , m,

one has

xTM[Z]x ≡ Tr(M[Z]X[x]) ≤ 1.

Now we can use the standard trick: the rank one matrix X[x] is positive semidefinite,
so that we for sure enforce the validity of the above fact when enforcing the following
stronger fact:

(∗.2) For every (mn) × (mn) symmetric positive semidefinite matrix X such
that

Tr(BiX) ≤ 1, i = 1, . . . , m,

one has

Tr(M[Z]X) ≤ 1.

40Note that we, in general, do not pretend that our parametric family includes all ellipsoids containing W1 +
· · · + Wm, so that the ellipsoid we end with should be treated as nothing more than a computable surrogate of the
smallest-volume ellipsoid containing the sum of Wi ’s.
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We have arrived at the following result.

(D) Let a positive definite n×n matrix Z be such that the optimal value in the
semidefinite program

max
X

{
Tr(M[Z]X)

∣∣Tr(BiX) ≤ 1, i = 1, . . . , m, X � 0
}

(SDP)

is ≤ 1. Then the ellipsoid

W [Z] = {x | xT Zx ≤ 1}

contains the arithmetic sum W1 + · · · + Wm of the ellipsoids Wi = {x |xTBix ≤ 1}.

We are basically done. The set of those symmetric matrices Z for which the optimal
value in (SDP) is ≤ 1 is SDr; indeed, the problem is clearly strictly feasible, and Z affects,
in a linear fashion, the objective of the problem only. On the other hand, the optimal value
in a strictly feasible semidefinite maximization program is an SDr function of the objective
(semidefinite version of Proposition 3.4.3). Consequently, the set of those Z for which the
optimal value in (SDP) is ≤ 1 is SDr (as the inverse image, under affine mapping, of the
level set of an SDr function). Thus, the parameterZ of those ellipsoidsW [Z] that satisfy the
premise in (D) and thus contain W1 + · · · + Wm varies in an SDr set Z . Consequently, the
problem of finding the smallest-volume ellipsoid in the family {W [Z]}Z∈Z is equivalent to
the problem of maximizing a positive power of Det(Z) over the SDr set Z , i.e., is equivalent
to a semidefinite program.

It remains to build the aforementioned semidefinite program. By the conic duality
theorem the optimal value in the (clearly strictly feasible) maximization program (SDP) is
≤ 1 if and only if the dual problem

min
λ

{
m∑
i=1

λi
∣∣∑

i

λiB
i � M[Z], λi ≥ 0, i = 1, . . . , m

}

admits a feasible solution with the value of the objective ≤ 1 or, which is clearly the same
(why?), admits a feasible solution with the value of the objective equal 1. In other words,
whenever Z � 0 is such that M[Z] is / a convex combination of the matrices Bi , the set

W [Z] = {x | xT Zx ≤ 1}

(which is an ellipsoid when Z . 0) contains the set W1 + · · · +Wm. We have arrived at the
following result (see footnote 23, section 3.7.4).

Proposition 4.9.4. Given m centered at the origin full-dimensional ellipsoids

Wi = {x ∈ Rn | xT Bix ≤ 1} [Bi . 0],
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i = 1, . . . , m, in Rn, let us associate with these ellipsoids the semidefinite program

max
t,Z,λ


t

∣∣∣∣
t ≤ Det1/n(Z)
m∑
i=1

λiB
i � M[Z]

λi ≥ 0, i = 1, . . . , m
Z � 0

m∑
i=1

λi = 1


, (Õ)

where Bi is the (mn) × (mn) block-diagonal matrix with blocks of the size n × n and the
only nonzero diagonal block (the ith one) equal to Bi , and M[Z] is the (mn)× (mn) matrix
partitioned into m2 blocks, every one of them being Z. Every feasible solution (Z, . . .) to
this program with positive value of the objective produces ellipsoid

W [Z] = {x | xT Zx ≤ 1},
which contains W1 + · · · + Wm, and the volume of this ellipsoid is at most t−n/2. The
smallest-volume ellipsoid that can be obtained in this way is given by (any) optimal solution
of (Õ).

How conservative is (Õ)? The ellipsoid W [Z∗] given by the optimal solution of (Õ)
contains the arithmetic sum W of the ellipsoids Wi but is not necessarily the smallest-
volume ellipsoid containing W . All we know is that this ellipsoid is the smallest-volume
one in a certain subfamily of the family of all ellipsoids containing W . In nature there exists
the true smallest-volume ellipsoid W [Z∗∗] = {x | xT Z∗∗x ≤ 1}, Z∗∗ . 0, containing W .
It is natural to ask how large the ratio

ϑ = Vol(W [Z∗])
Vol(W [Z∗∗])

could be. The answer is as follows.

Proposition 4.9.5. One has ϑ ≤ (
π
2

)n/2
.

Note that the bound stated by Proposition 4.9.5 is not as bad as it looks. The natural
way to compare the sizes of two n-dimensional bodies E′, E′′ is to look at the ratio of their

average linear sizes
(

Vol(E′)
Vol(E′′)

)1/n
. (It is natural to assume that by shrinking a body by a

certain factor, say, 2, we reduce the size of the body exactly by this factor, and not by 2n.)
With this approach, the level of nonoptimality of W [Z∗] is no more than

√
π/2 = 1.253 . . .,

i.e., is within a 25% margin.
Proof of Proposition 4.9.5. Since Z∗∗ contains W , the implication (*.1) holds true,

i.e., one has

max
x∈Rmn

{xTM[Z∗∗]x | xT Bix ≤ 1, i = 1, . . . , m} ≤ 1.
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Since the matrices Bi , i = 1, . . . , m, commute and M[Z∗∗] � 0, we can apply Proposition
4.10.5 (see section 4.10.5) to conclude that there exist nonnegative µi , i = 1, . . . , m, such
that

M[Z∗∗] /
m∑
i=1

µiB
i,

∑
i

µi ≤ π

2
.

It follows that setting

λi =
∑

j

µj

−1

µi, Z =
∑

j

µj

−1

Z∗∗, t = Det1/n(Z),

we get a feasible solution of (Õ). Recalling the origin of Z∗, we come to

Vol(W [Z∗]) ≤ Vol(W [Z]) =
∑

j

µj

n/2

Vol(W [Z∗∗]) ≤ (π/2)n/2Vol(W [Z∗∗]),

as claimed.

Problem (O), the case of coaxial ellipsoids. Consider the coaxial case—the one in
which there exist coordinates (not necessarily orthogonal) such that all m quadratic forms
defining the ellipsoidsWi are diagonal in these coordinates, or, which is the same, there exists
a nonsingular matrix C such that all the matrices CT BiC, i = 1, . . . , m, are diagonal. Note
that the case of m = 2 always is coaxial—linear algebra says that every two homogeneous
quadratic forms, at least one of the forms being positive outside of the origin, become
diagonal in a properly chosen coordinates.

We are about to prove that

(E) In the coaxial case, (Õ) yields the smallest-volume ellipsoid containing
W1 + · · · + Wm.

Consider the coaxial case. Since we are interested in volume-related issues, and the
ratio of volumes remains unchanged under affine transformations, we can assume w.l.o.g.
that the matrices Bi defining the ellipsoids Wi = {x | xT Bix ≤ 1} are positive definite and
diagonal; let bi� be the �th diagonal entry of Bi , � = 1, . . . , n. By the Fritz John theorem, in
nature there exists a unique smallest-volume ellipsoid W∗ which contains W1 + · · · + Wm.
From uniqueness combined with the fact that the sum of our ellipsoids is symmetric with
respect to the origin, it follows that this optimal ellipsoid W∗ is centered at the origin:

W∗ = {x | xT Z∗x ≤ 1}
with certain positive definite matrix Z∗.

Our next observation is that the matrix Z∗ is diagonal. Indeed, let E be a diagonal
matrix with diagonal entries ±1. Since allBi’s are diagonal, the sumW1 +· · ·+Wm remains
invariant under multiplication by E:

x ∈ W1 + · · · + Wm ⇔ Ex ∈ W1 + · · · + Wm.
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It follows that the ellipsoid E(W∗) = {x | xT (ET Z∗E)x ≤ 1} covers W1 + · · · +Wm along
with W∗ and of course has the same volume as W∗. From the uniqueness of the optimal
ellipsoid it follows that E(W∗) = W∗, whence ETZ∗E = Z∗ (why?). Since the concluding
relation should be valid for all diagonal matrices E with diagonal entries ±1, Z∗ must be
diagonal.

Now assume that the set

W(z) = {x | xT Diag(z)x ≤ 1} (4.9.113)

given by a nonnegative vector z contains W1 + · · · + Wm. Then the following implication
holds true:

∀{xi�} i=1,...,m
�=1,...,n

:
n∑

�=1

bi�(x
i
�)

2 ≤ 1, i = 1, . . . , m ⇒
n∑

�=1

z�(x
1
� + x2

� + . . . + xm� )
2 ≤ 1.

(4.9.114)

Denoting yi� = (xi�)
2 and taking into account that z� ≥ 0, we see that the validity of (4.9.114)

implies the validity of the implication

∀{yi� ≥ 0} i=1,...,m
�=1,...,n

:
n∑

�=1

bi�y
i
� ≤ 1, i = 1, . . . , m ⇒

n∑
�=1

z�

 m∑
i=1

yi� + 2
∑

1≤i<j≤m

√
yi�y

j

�

 ≤ 1.

(4.9.115)

Now let Y be an (mn) × (mn) symmetric matrix satisfying the relations

Y � 0; Tr(YBi) ≤ 1, i = 1, . . . , m. (4.9.116)

Let us partition Y into m2 square blocks, and let Y ij

� be the �th diagonal entry of the ij th

block of Y . For all i, j with 1 ≤ i < j ≤ m and all �, 1 ≤ � ≤ n, the 2 × 2 matrix (
Y ii
�

Y
ij

�

Y
ij

�

Y
jj

�

)

is a principal submatrix of Y and therefore is positive semidefinite along with Y , whence

Y
ij

� ≤
√
Y ii
� Y

jj

� . (4.9.117)

In view of (4.9.116), the numbers yi� ≡ Y ii
� satisfy the premise in the implication (4.9.115),

so that

1 ≥
n∑

�=1

z�

 m∑
i=1

Y ii
� + 2

∑
1≤i<j≤m

√
Y ii
� Y

jj

�

 [by (4.9.115)]

≥
n∑

�=1

z�

 m∑
i=1

Y ii
� + 2

∑
1≤i<j≤m

Y
ij

�

 [since z ≥ 0 and by (4.9.117)]

= Tr(YM[Diag(z)]).
Thus, (4.9.116) implies the inequality Tr(YM[Diag(z)]) ≤ 1, i.e., the implication

Y � 0, Tr(YBi) ≤ 1, i = 1, . . . , m ⇒ Tr(YM[Diag(z)]) ≤ 1
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holds true. Since the premise in this implication is strictly feasible, the validity of the
implication, by semidefinite duality, implies the existence of nonnegative λi ,

∑
i λi ≤ 1,

such that

M[Diag(z)] /
∑
i

λiB
i.

Combining our observations, we come to the conclusion as follows:

In the case of diagonal matrices Bi , if the set (4.9.113), given by a nonnegative
vector z, contains W1 + · · · + Wm, then the matrix Diag(z) can be extended to
a feasible solution of the problem (Õ). Consequently, in the case in question
the approximation scheme given by (Õ) yields the minimum volume ellipsoid
containing W1 + · · · +Wm (since the latter ellipsoid, as we have seen, is of the
form (4.9.113) with z ≥ 0).

It remains to note that the approximation scheme associated with (Õ) is affine invariant, so
that the above conclusion remains valid when we replace in its premise “the case of diagonal
matrices Bi” with “the coaxial case.”

Remark 4.9.1. In fact, (E) is an immediate consequence of the following fact (which,
essentially, is proved in the above reasoning).

Let A1, . . . , Am, B be symmetric matrices such that the off-diagonal entries of all
Ai’s are nonpositive, and the off-diagonal entries of B are nonnegative. Assume also that
the system of inequalities

xT Aix ≤ ai, i = 1, . . . , m, (S)

is strictly feasible. Then the inequality

xT Bx ≤ b

is a consequence of the system (S) if and only if it is a linear consequence of (S), i.e., if and
only if there exist nonnegative weights λi such that

B /
∑
i

λiAi,
∑
i

λiai ≤ b.

In other words, in the case in question the optimization program

max
x

{
xT Bx | xT Aix ≤ ai, i = 1, . . . , m

}
and its standard semidefinite relaxation

max
X

{Tr(BX) | X � 0, Tr(AiX) ≤ ai, i = 1, . . . , m}

share the same optimal value.
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Problem (I). Let us represent the given centered at the origin ellipsoids Wi as

Wi = {x | x = Aiu | uT u ≤ 1} [Det(Ai) �= 0].
We start from the following observation:

(F) An ellipsoid E[Z] = {x = Zu | uT u ≤ 1} ([Det(Z) �= 0]) is contained in
the sum W1 + · · · + Wm of the ellipsoids Wi if and only if one has

∀x : ‖ZT x‖2 ≤
m∑
i=1

‖AT
i x‖2. (4.9.118)

Indeed, assume, first, that there exists a vector x∗ such that the inequality in (4.9.118)
is violated at x = x∗, and let us prove that in this case W [Z] is not contained in the set
W = W1 + · · · + Wm. We have

max
x∈Wi

xT∗ x = max
[
xT∗ Aiu | uT u ≤ 1

] = ‖AT
i x∗‖2, i = 1, . . . , m,

and similarly

max
x∈E[Z]

xT∗ x = ‖ZT x∗‖2,

whence

max
x∈W

xT∗ x = max
xi∈Wi

xT∗ (x1 + · · · + xm) =
m∑
i=1

max
xi∈Wi

xT∗ xi

=
m∑
i=1

‖AT
i x∗‖2 < ‖ZT x∗‖2 = max

x∈E[Z]
xT∗ x,

and we see that E[Z] cannot be contained in W . Conversely, assume that E[Z] is not
contained in W , and let y ∈ E[Z]\W . Since W is a convex compact set and y �∈ W , there
exists a vector x∗ such that xT∗ y > maxx∈W xT∗ x, whence, due to the previous computation,

‖ZT x∗‖2 = max
x∈E[Z]

xT∗ x ≥ xT∗ y > max
x∈W

xT∗ x =
m∑
i=1

‖AT
i x∗‖2,

and we have found a point x = x∗ at which the inequality in (4.9.118) is violated. Thus,
E[Z] is not contained in W if and only if (4.9.118) is not true, which is exactly what should
be proved.

A natural way to generate ellipsoids satisfying (4.9.118) is to note that whenever Xi

are n × n matrices of spectral norms

|Xi | ≡
√
λmax(X

T
i Xi) =

√
λmax(XiX

T
i ) = max

x
{‖Xix‖2 | ‖x‖2 ≤ 1}

not exceeding 1, the matrix

Z = Z(X1, . . . , Xm) = A1X1 + A2X2 + · · · + AmXm
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satisfies (4.9.118):

‖ZT x‖2 = ‖[XT
1 A

T
1 +· · ·+XT

mA
T
m]x‖2 ≤

m∑
i=1

‖XT
i A

T
i x‖2 ≤

m∑
i=1

|XT
i |‖AT

i x‖2 ≤
m∑
i=1

‖AT
i x‖2.

Thus, every collection of square matricesXi with spectral norms not exceeding 1 produces an
ellipsoid satisfying (4.9.118) and thus contained in W , and we could use the largest volume
ellipsoid of this form (i.e., the one corresponding to the largest |Det(A1X1 + · · · +AmXm)|)
as a surrogate of the largest volume ellipsoid contained in W . Recall that we know how to
express a bound on the spectral norm of a matrix via LMI:

|X| ≤ t ⇔
(

tIn −XT

−X tIn

)
� 0 [X ∈ Mn,n]

(item 16 of section 4.2). The difficulty, however, is that the matrix
∑m

i=1 AiXi specifying the
ellipsoidE(X1, . . . , Xm), although being linear in the design variablesXi , is not necessarily
symmetric positive semidefinite, and we do not know how to maximize the determinant
over general-type square matrices. We may, however, use the following fact from linear
algebra.

Lemma 4.9.1. Let Y = S + C be a square matrix represented as the sum of a symmetric
matrix S and a skew-symmetric (i.e.,CT = −C) matrixC. Assume that S is positive definite.
Then

|Det(Y )| ≥ Det(S).

Proof. We have Y = S + C = S1/2(I + X)S1/2, where X = S−1/2CS−1/2 is skew-
symmetric along with C. We have |Det(Y )| = Det(S)|Det(I + X)|; it remains to note that
all eigenvalues of the skew-symmetric matrixX are purely imaginary, so that the eigenvalues
of I + X are ≥ 1 in absolute value, whence |Det(I + X)| ≥ 1.

In view of the lemma, it makes sense to impose on X1, . . . , Xm, in addition to the
requirement that their spectral norms be ≤ 1, also the requirement that the symmetric part

S(X1, . . . , Xm) = 1

2

[
m∑
i=1

AiXi +
m∑
i=1

XT
i Ai

]

of the matrix
∑

i AiXi be positive semidefinite, and to maximize under these constraints the
quantity Det(S(X1, . . . , Xm))—a lower bound on the volume of the ellipsoidE[Z(X1, . . . , Xm)].
With this approach, we come to the following result.

Proposition 4.9.6. Let Wi = {x = Aiu | uT u ≤ 1}, Ai . 0, i = 1, . . . , m. Consider the
semidefinite programD
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maximize t

s.t.

(a) t ≤
(

Det

(
1
2

m∑
i=1

[XT
i Ai + AiXi]

))1/n

,

(b)
m∑
i=1

[XT
i Ai + AiXi] � 0,

(c)

(
In −XT

i−Xi In

)
� 0, i = 1, . . . , m,

(Ĩ)

with design variables X1, . . . , Xm ∈ Mn,n, t ∈ R. Every feasible solution ({Xi}, t) to this
problem produces the ellipsoid

E(X1, . . . , Xm) =
{
x =

(
m∑
i=1

AiXi

)
u | uT u ≤ 1

}
contained in the arithmetic sum W1 + · · · + Wm of the original ellipsoids, and the volume
of this ellipsoid is at least tn. The largest-volume ellipsoid which can be obtained in this
way is associated with (any) optimal solution to (Ĩ).

In fact, problem (I) is equivalent to the problem we started with,∣∣∣∣∣Det

(
m∑
i=1

AiXi

)∣∣∣∣∣ → max | |Xi | ≤ 1, i = 1, . . . , m, (4.9.119)

since the latter problem always has an optimal solution {X∗
i } with positive semidefinite

symmetric matrixG∗ = ∑m
i=1 AiX

∗
i . Indeed, let {X+

i } be an optimal solution of the problem.
The matrix G+ = ∑m

i=1 AiX
+
i , as every n × n square matrix, admits a representation

G+ = G∗U , where G+ is a positive semidefinite symmetric, and U is an orthogonal matrix.
Setting X∗

i = XiU
T , we convert {X+

i } into a new feasible solution of (4.9.119). For this
solution

∑m
i=1 AiX

∗
i = G∗ � 0, and Det(G+) = Det(G∗), so that the new solution is

optimal along with {X+
i }.

Problem (I), the coaxial case. We are about to demonstrate that in the coaxial case, when
in properly chosen coordinates in Rn the ellipsoids Wi can be represented as

Wi = {x = Aiu | uT u ≤ 1}
with positive definite diagonal matrices Ai , the above scheme yields the best (the largest-
volume) ellipsoid among those contained in W = W1 + · · · +Wm. Moreover, this ellipsoid
can be pointed out explicitly—it is exactly the ellipsoid E[Z] with Z = Z(In, . . . , In) =
A1 + · · · + Am!

The announced fact is nearly evident. Assuming that Ai are positive definite and
diagonal, consider the parallelotope

Ŵ =
{
x ∈ Rn | |xj | ≤ �j =

m∑
i=1

[Ai]jj , j = 1, . . . , n

}
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This parallelotope clearly contains W (why?), and the largest-volume ellipsoid contained
in Ŵ clearly is the ellipsoid x |

n∑
j=1

�−2
j x2

j ≤ 1

 ,

i.e., is nothing else but the ellipsoid E[A1 + · · · + Am]. As we know from our previous
considerations, the latter ellipsoid is contained in W , and since it is the largest-volume
ellipsoid among those contained in the set Ŵ ⊃ W , it is the largest-volume ellipsoid
contained in W as well.

Example. In the example to follow we want to understand what domain DT on the 2D
plane which can be reached by a trajectory of the differential equation

d

dt

(
x1(t)

x2(t)

)
=

(−0.8147 −0.4163
0.8167 −0.1853

)
︸ ︷︷ ︸

A

(
x1(t)

x2(t)

)
+
(

u1(t)

0.7071u2(t)

)
,

(
x1(0)
x2(0)

)
=

(
0
0

)

in T seconds under a piecewise-constant control u(t) = (
u1(t)

u2(t)
) which switches from one

constant value to another one every Dt = 0.01 second and is subject to the norm bound

‖u(t)‖2 ≤ 1 ∀t.
The system is stable (the eigenvalues of A are −0.5 ± 0.4909i). To build DT , note that
the states of the system at time instants kDt , k = 0, 1, 2, . . . , are the same as the states
x[k] = (

x1(kDt)

x2(kDt)
) of the discrete time system

x[k + 1] = exp{ADt}︸ ︷︷ ︸
S

x[k] +
[∫ Dt

0
exp{As}

(
1 0
0 0.7071

)
ds

]
︸ ︷︷ ︸

B

u[k], x[0] =
(

0
0

)
,

(4.9.120)

where u[k] is the value of the control on the continuous time interval (kDt, (k + 1)Dt).
We build the inner Ik and the outer Ok ellipsoidal approximations of the domains

Dk = DkDt in a recurrent manner:

• The ellipses I0 and O0 are just the singletons (the origin).

• Ik+1 is the best (the largest in the area) ellipsis contained in the set

SIk + BW, W = {u ∈ R2 | ‖u‖2 ≤ 1},
which is the sum of two ellipses.

• Ok+1 is the best (the smallest in the area) ellipsis containing the set

SOk + BW,

which again is the sum of two ellipses.

The picture we get is shown in Fig. 4.17.
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–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

Figure 4.17. Outer and inner approximations of the reachability domains D10� =
D0.1� sec, � = 1, 2, . . . , 10, for system (4.9.120). Ten pairs of ellipses are the outer and
inner approximations of the domains D1, . . . , D10. (Look how close the ellipses from a pair
are to each other!) Four curves are sample trajectories of the system. (Dots correspond
to time instants 0.1� seconds in continuous time, i.e., time instants 10� in discrete time,
� = 0, 1, . . . , 10.)

4.10 Exercises to Lecture 4
4.10.1 Around positive semidefiniteness, eigenvalues, and

�-ordering

Criteria for positive semidefiniteness

Recall the criterion of positive definiteness of a symmetric matrix:

[Sylvester’s Rule] A symmetricm×mmatrixA = [aij ]mi,j=1 is positive definite
if and only if all angular minors

Det
([aij ]ki,j=1

)
, k = 1, . . . , m,

are positive.

Exercise 4.1. Prove that a symmetric m × m matrix A is positive semidefinite if and only
if all its principal minors (i.e., determinants of square submatrices symmetric with respect
to the diagonal) are nonnegative.

Hint. Look at the angular minors of the matrices A + εIn for small positive ε.
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Demonstrate by an example that nonnegativity of angular minors of a symmetric matrix is
not sufficient for the positive semidefiniteness of the matrix.

Exercise 4.2. Diagonal-dominant matrices. Let a symmetric matrix A = [aij ]mi,j=1
satisfy the relation

aii ≥
∑
j �=i

|aij |, i = 1, . . . , m.

Prove that A is positive semidefinite.

Diagonalization

Exercise 4.3. Prove the following standard facts from linear algebra:
1. If A is a symmetric positive semidefinite m × m matrix and P is an n × m matrix,

then the matrix PAPT is positive semidefinite.
2. A symmetric m × m matrix A is positive semidefinite if and only if it can be

represented as A = QNQT , where Q is orthogonal (QTQ = I ) and N is diagonal with
nonnegative diagonal entries. What are these entries? What are the columns of Q?

3. Let A,B be two symmetric matrices of the same size and let A be positive definite.
Then there exist nonsingular square matrix Q and diagonal matrix N such that

A = QQT ,B = QNQT .

Variational characterization of eigenvalues

The basic fact about eigenvalues of a symmetric matrix is the following.

Variational description of eigenvalues. Let A be a symmetric m × m matrix
and λ(A) = (λ1(A), . . . , λm(A)) be the vector of eigenvalues of A taken with
their multiplicities and arranged in nonascending order:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λm(A).

Then for every i = 1, . . . , m one has

λi(A) = min
E∈Ei

max
v∈E,vT v=1

vT Av,

where Ei is the family of all linear subspaces of Rm of dimension m − i + 1.

Singular values of rectangular matrices also admit variational description:

Variational description of singular values. Let A be an m×n matrix, m ≤ n,
and let σ(A) = λ((AAT )1/2) be the vector of singular values of A. Then for
every i = 1, . . . , m one has

σi(A) = min
E∈Ei

max
v∈E,vT v=1

‖Av‖2,

where Ei is the family of all linear subspaces of Rn of dimension n − i + 1.
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Exercise 4.4. Prove the variational description of eigenvalues and the variational de-
scription of singular values.

Exercise 4.5. Derive from the variational description of eigenvalues the following facts:
1. (monotonicity of the vector of eigenvalues) If A � B, then λ(A) ≥ λ(B).
2. (interlacing of eigenvalues) Let A ∈ Sm, and let E be a linear subspace of Rm of

codimension k < m (i.e., of dimension m − k). Let AE be the restriction of the operator
x �→ Ax onto E, i.e., the operator x �→ PAx : E → E, where P is the orthoprojector
onto E. (In terms of matrices: let e1, . . . , en−k be an orthonormal basis in E; you may
think of AE as of the (n− k)× (n− k) matrix with the entries eTi Aej , i, j = 1, . . . , n− k.)
Then for every i ≤ n − k one has

λi(A) ≥ λi(AE) ≥ λi+k(A).

3. The functions λ1(X), λm(X) of X ∈ Sm are convex and concave, respectively.
4. If D is a convex subset of the real axis, then the set of all matrices X ∈ Sm with

spectrum from D is convex.

Recall now the definition of a function of symmetric matrix. Let A be a symmetric
m × m matrix and

p(t) =
k∑

i=0

pit
i

be a real polynomial on the axis. By definition,

p(A) =
k∑

i=0

piA
i ∈ Sm.

This definition is compatible with the arithmetic of real polynomials: when you add or
multiply polynomials, you add or multiply the values of these polynomials at every fixed
symmetric matrix:

(p + q)(A) = p(A) + q(A); (p · q)(A) = p(A)q(A).

A nice feature of this definition is that

(A) For A ∈ Sm, the matrix p(A) depends only on the restriction of p on the
spectrum (set of eigenvalues) of A: if p and q are two polynomials such that
p(λi(A)) = q(λi(A)) for i = 1, . . . , m, then p(A) = q(A).

Indeed, we can represent a symmetric matrixA asA = UTNU , whereU is orthogonal
and N is diagonal with the eigenvalues of A on its diagonal. Since UUT = I , we have
Ai = UTNiU ; consequently,

p(A) = UT p(N)U,

and since the matrix p(N) depends on the restriction of p on the spectrum of A only, the
result follows.
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As a byproduct of our reasoning, we get an explicit representation of p(A) in terms of
the spectral decomposition A = UTNU (U is orthogonal, N is diagonal with the diagonal
λ(A)):

(B) The matrix p(A) is just UT Diag(p(λ1(A)), . . . , p(λn(A)))U .

(A) allows us to define arbitrary functions of matrices, not necessarily polynomials:

Let A be a symmetric matrix and f be a real-valued function defined at least at
the spectrum of A. By definition, the matrix f (A) is defined as p(A), where p
is a polynomial coinciding with f on the spectrum of A. (The definition makes
sense, since by (A) p(A) depends only on the restriction of p on the spectrum
of A, i.e., every polynomial continuation p(·) of f from the spectrum of A to
the entire axis results in the same p(A)).)

The calculus of functions of a symmetric matrix is fully compatible with the usual arithmetic
of functions, e.g.,

(f + g)(A) = f (A) + g(A); (µf )(A) = µf (A); (f · g)(A)
= f (A)g(A); (f ◦ g)(A) = f (g(A)),

provided that the functions in question are well defined on the spectrum of the corre-
sponding matrix. And of course the spectral decomposition of f (A) is just f (A) =
UT Diag(f (λ1(A)), . . . , f (λm(A)))U , where A = UT Diag(λ1(A), . . . , λm(A))U is the
spectral decomposition of A.

Note that calculus of functions of symmetric matrices becomes very unusual when
we are trying to operate with functions of several (noncommuting) matrices. For example,
it is generally not true that exp{A + B} = exp{A} exp{B} (the right-hand side matrix may
even be nonsymmetric!). It is also generally not true that if f is monotone and A � B, then
f (A) � f (B), etc.

Exercise 4.6. Demonstrate by an example that the relation 0 / A / B does not neces-
sarily imply that A2 / B2.

By the way, the relation 0 / A / B does imply that 0 / A1/2 / B1/2. Sometimes,
however, we can get weak matrix versions of usual arithmetic relations, as in the following
exercise.

Exercise 4.7. Let f be a nondecreasing function on the real line, and let A � B. Prove
that λ(f (A)) ≥ λ(f (B)).

The strongest (and surprising) weak matrix version of a usual (scalar) inequality is as
follows.

Let f (t) be a closed convex function on the real line; by definition, it means that
f is a function on the axis taking real values and the value +∞ such that the set Domf

of the values of argument where f is finite is convex and nonempty, and, if a sequence
{ti ∈ Domf } converges to a point t and the sequence f (ti) has a limit, then t ∈ Domf and
f (t) ≤ limi→∞ f (ti). (This property is called lower semicontinuity.)
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For example, the function

f (x) =
{ 0, 0 ≤ t ≤ 1

+∞ otherwise

is closed. In contrast to this, the functions

g(x) =
{ 0, 0 < t ≤ 1,

1, t = 0,
+∞ for all remaining t

and

h(x) =
{ 0, 0 < t < 1,

+∞ otherwise

are not closed, although they are convex: a closed function cannot jump up at an endpoint
of its domain, as is the case for g, and it cannot take value +∞ at a point, if it takes values
≤ a < ∞ in a neighborhood of the point, as is the case for h.

For a convex function f , its Legendre transformation f∗ (also called the conjugate or
the Fenchel dual of f ) is defined as

f∗(s) = sup
t

[ts − f (t)] .

It turns out that the Legendre transformation of a closed convex function also is closed and
convex, and that the twice-taken Legendre transformation of a closed convex function is
this function.

The Legendre transformation (which, by the way, can be defined for convex functions
on Rn as well) underlies many standard inequalities. Indeed, by definition of f∗ we have

f∗(s) + f (t) ≥ st ∀s, t. (L)

For specific choices of f , we can derive from the general inequality (L) many useful in-
equalities. For example,

• If f (t) = 1
2 t

2, then f∗(s) = 1
2 s

2, and (L) becomes the standard inequality

st ≤ 1

2
t2 + 1

2
s2 ∀s, t ∈ R.

• If 1 < p < ∞ and

f (t) =
{

tp

p
, t ≥ 0

+∞, t < 0
,

then

f∗(s) =
{

sq

q
, s ≥ 0

+∞, s < 0
,

with q given by 1
p

+ 1
q

= 1, and (L) becomes the Young inequality

∀(s, t ≥ 0) : ts ≤ tp

p
+ sq

q
, 1 < p, q < ∞,

1

p
+ 1

q
= 1.D
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Now, what happens with (L) if s, t are symmetric matrices? Of course, both sides of (L) still
make sense and are matrices, but we have no hope to say something reasonable about the
relation between these matrices (e.g., the right-hand side in (L) is not necessarily symmetric).
However, we come to the next exercise.

Exercise 4.8. Let f∗ be a closed convex function with the domain Domf∗ ⊂ R+, and let
f be the Legendre transformation of f∗. Then for every pair of symmetric matrices X, Y of
the same size with the spectrum of X belonging to Domf and the spectrum of Y belonging
to Domf∗ one has41

λ(f (X)) ≥ λ
(
Y 1/2XY 1/2 − f∗(Y )

)
.

Birkhoff’s theorem

Surprisingly enough, one of the most useful facts about eigenvalues of symmetric matrices is
the following, essentially combinatorial, statement (it does not mention the word eigenvalue
at all).

Birkhoff’s theorem. Consider the set Sm of double-stochasticm×mmatrices,
i.e., square matrices [pij ]mi,j=1 satisfying the relations

pij ≥ 0, i, j = 1, . . . , m,
m∑
i=1

pij = 1, j = 1, . . . , m,

m∑
j=1

pij = 1, i = 1, . . . , m.

A matrix P belongs to Sm if and only if it can be represented as a convex
combination of m × m permutation matrices:

P ∈ Sm ⇔ ∃
(
λi ≥ 0,

∑
i

λi = 1

)
: P =

∑
i

λiH
i,

where all Hi are permutation matrices (i.e., with exactly one nonzero element,
equal to 1, in every row and every column).

An immediate corollary of the Birkhoff theorem is the following fact:

(C) Let f : Rm → R ∪ {+∞} be a convex symmetric function (symmetry
means that the value of the function remains unchanged when we permute the
coordinates in an argument), let x ∈ Domf , and let P ∈ Sm. Then

f (Px) ≤ f (x).

41In the scalar case, our inequality reads f (x) ≥ y1/2xy1/2 − f∗(y), which is an equivalent form of (L) when
Domf∗ ⊂ R+.
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The proof is immediate. By Birkhoff’s theorem, Px is a convex combination of a
number of permutations xi of x. Since f is convex, we have

f (Px) ≤ max
i

f (xi) = f (x),

the concluding equality resulting from the symmetry of f .
The role of (C) in numerous questions related to eigenvalues is based on the following

simple observation.

Let A be a symmetric m × m matrix. Then the diagonal Dg(A) of the matrix
A is the image of the vector λ(A) of the eigenvalues of A under multiplication
by a double stochastic matrix:

Dg(A) = Pλ(A) for some P ∈ Sm

Indeed, consider the spectral decomposition of A:

A = UT Diag(λ1(A), . . . , λm(A))U

with orthogonal U = [uij ]. Then

Aii =
m∑

j=1

u2
jiλj (A) ≡ (Pλ(A))i,

where the matrix P = [u2
ji]mi,j=1 is double stochastic.

Combining the observation and (C), we conclude that if f is a convex symmetric
function on Rm, then for every m × m symmetric matrix A one has

f (Dg(A)) ≤ f (λ(A)).

Moreover, let Om be the set of all orthogonal m × m matrices. For every V ∈ Om, the
matrix V TAV has the same eigenvalues as A, so that for a convex symmetric f one has

f (Dg(V T AV )) ≤ f (λ(V T AV )) = f (λ(A)),

whence

f (λ(A)) ≥ max
V∈Om

f (Dg(V T AV )).

In fact, the inequality here is equality, since for properly chosen V ∈ Om we have
Dg(V T AV ) = λ(A). We have arrived at the following result:

(D) Let f be a symmetric convex function on Rm. Then for every symmetric
m × m matrix A one has

f (λ(A)) = max
V∈Om

f (Dg(V T AV )),

where Om is the set of all m × m orthogonal matrices.
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In particular, the function

F(A) = f (λ(A))

is convex in A ∈ Sm (as the maximum of a family of convex in A functions
FV (A) = f (Dg(V T AV )), V ∈ Om).

Exercise 4.9. Let g(t) : R → R ∪ {+∞} be a convex function, and let Fn be the set of all
matrices X ∈ Sn with the spectrum belonging to Domg. Prove that the function Tr(g(X))

is convex on Fn.

Hint. Apply (D) to the function f (x1, . . . , xn) = g(x1) + · · · + g(xn).

Exercise 4.10. Let A = [aij ] be a symmetric m × m matrix. Prove that
1. Whenever p ≥ 1, one has

∑m
i=1 |aii |p ≤ ∑m

i=1 |λi(A)|p.
2. Whenever A is positive semidefinite,

∏m
i=1 aii ≥ Det(A).

3. For x ∈ Rm, let the function Sk(x) be the sum of k largest entries of x (i.e., the
sum of the first k entries in the vector obtained from x by writing the coordinates of x in the
nonascending order). Prove that Sk(x) is a convex symmetric function of x and derive from
this observation that

Sk(Dg(A)) ≤ Sk(λ(A)).

Hint. Note that Sk(x) = max1≤i1<i2<...<ik≤m

∑k
l=1 xil .

4. (Trace inequality.) Whenever A,B ∈ Sm, one has

λT (A)λ(B) ≥ Tr(AB).

Exercise 4.11. Prove that if A ∈ Sm and p, q ∈ [1,∞] are such that 1
p

+ 1
q

= 1, then

max
B∈Sm:‖λ(B)‖q=1

Tr(AB) = ‖λ(A)‖p.

In particular, ‖λ(·)‖p is a norm on Sm, and the conjugate of this norm is ‖λ(·)‖q , 1
p

+ 1
q

= 1.

Exercise 4.12. Let

X =


X11 X12 . . . X1m

XT
12 X22 . . . X2m
...

...
. . . · · ·

XT
1m XT

2m . . . Xmm


be an n × n symmetric matrix that is partitioned into m2 blocks Xij in a symmetric, with
respect to the diagonal, fashion (so that the blocks Xjj are square), and let

X̂ =


X11

X22

. . .

Xmm

 .
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1. Let F : Sn → R ∪ {+∞} be a convex rotation-invariant function: for all Y ∈ Sn

and all orthogonal matrices U one has F(UT YU) = F(Y ). Prove that

F(X̂) ≤ F(X).

Hint. Represent the matrix X̂ as a convex combination of the rotations UTXU ,
UTU = I , of X.

2. Let f : Rn → R ∪ {+∞} be a convex symmetric with respect to permutations of
the entries in the argument function, and let F(Y ) = f (λ(Y )), Y ∈ Sn. Prove that

F(X̂) ≤ F(X).

3. Let g : R → R ∪ {+∞} be a convex function on the real line which is finite on the
set of eigenvalues of X, and let Fn ⊂ Sn be the set of all n × n symmetric matrices with all
eigenvalues belonging to the domain of g. Assume that the mapping

Y �→ g(Y ) : Fn → Sn

is �-convex:

g(λ′Y ′ + λ′′Y ′′) / λ′g(Y ′) + λ′′g(Y ′′) ∀(Y ′, Y ′′ ∈ Fn, λ
′, λ′′ ≥ 0, λ′ + λ′′ = 1).

Prove that

(g(X))ii � g(Xii), i = 1, . . . , m,

where the partition of g(X) into the blocks (g(X))ij is identical to the partition of X into
the blocks Xij .

Exercise 4.12 gives rise to a number of interesting inequalities. Let X, X̂ be the same
as in the exercise, and let [Y ] denote the northwest block, of the same size as X11, of an
n × n matrix Y . Then

1. (
∑m

i=1 ‖λ(Xii)‖pp)1/p ≤ ‖λ(X)‖p, 1 ≤ p < ∞
[Exercise 4.12.2, f (x) = ‖x‖p].

2. If X . 0, then Det(X) ≤ ∏m
i=1 Det(Xii)

[Exercise 4.12.2, f (x) = −(x1 . . . xn)
1/n for x ≥ 0].

3. [X2] � X2
11

[This inequality is nearly evident. It follows also from exercise 4.12.3 with g(t) = t2.
The �-convexity of g(Y ) is stated in Exercise 4.22.1.]

4. If X . 0, then X−1
11 / [X−1]

[Exercise 4.12.3 with g(t) = t−1 for t > 0; the �-convexity of g(Y ) on Sn++ is stated
by Exercise 4.22.2].
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5. For every X � 0, [X1/2] / X
1/2
11

[Exercise 4.12.3 with g(t) = −√
t ; the �-convexity of g(Y ) is stated by Exercise

4.22.4].

Extension: If X � 0, then for every α ∈ (0, 1) one has [Xα] / Xα
11

[Exercise 4.12.3 with g(t) = −tα; the function −Yα of Y � 0 is known to be
�-convex].

6. If X . 0, then [ln(X)] / ln(X11)

[Exercise 4.12.3 with g(t) = − ln t , t > 0; the �-convexity of g(Y ) is stated by
Exercise 4.22.5].

Exercise 4.13. 1. Let A = [aij ]i,j � 0, let α ≥ 0, and let B ≡ [bij ]i,j = Aα . Prove that

bii

{≤ aαii , α ≤ 1,
≥ aαii , α ≥ 1.

2. Let A = [aij ]i,j . 0, and let B ≡ [bij ]i,j = A−1. Prove that bii ≥ a−1
ii .

3. Let [A] denote the northwest 2 × 2 block of a square matrix. Which of the impli-
cations

(a) A � 0 ⇒ [A4] � [A]4,

(b) A � 0 ⇒ [A4]1/4 � [A]
are true?

Semidefinite representations of functions of eigenvalues

The goal of the subsequent series of exercises is to prove Proposition 4.2.1.
We start with a description (important in its own right) of the convex hull of permu-

tations of a given vector. Let x ∈ Rm, and let X[x] be the set of all convex combinations of
m! vectors obtained from x by all permutations of the coordinates.

Claim. (majorization principle)X[x] is exactly the solution set of the following
system of inequalities in variables y ∈ Rm:

Sj (y) ≤ Sj (x), j = 1, . . . , m − 1,
y1 + · · · + ym = x1 + · · · + xm.

(+)

(Recall that Sj (y) is the sum of the largest j entries of a vector y.)

Exercise 4.14. Easy part of the claim. Let Y be the solution set of (+). Prove that
Y ⊃ X[x].

Hint. Use (C) and the convexity of the functions Sj (·).
Exercise 4.15. Difficult part of the claim. Let Y be the solution set of (+). Prove that
Y ⊂ X[x].
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286 Lecture 4. Semidefinite Programming

Sketch of the proof. Let y ∈ Y . We should prove that y ∈ X[x]. By symmetry, we
may assume that the vectors x and y are ordered: x1 ≥ x2 ≥ · · · ≥ xm, y1 ≥ y2 ≥ · · · ≥ ym.
Assume that y �∈ X[x], and let us lead this assumption to a contradiction.

1. Since X[x] clearly is a convex compact set and y �∈ X[x], there exists a linear
functional c(z) = ∑m

i=1 cizi which separates y and X[x]:
c(y) > max

z∈X[x]
c(z).

Prove that such a functional can be chosen to be ordered: c1 ≥ c2 ≥ · · · ≥ cm.
2. Verify that

c(y) ≡
m∑
i=1

ciyi =
m−1∑
i=1

(ci − ci+1)

i∑
j=1

yj + cm

m∑
j=1

yj

(Abel’s formula—a discrete version of integration by parts). Use this observation along
with orderedness of c(·) and the inclusion y ∈ Y to conclude that c(y) ≤ c(x), thus coming
to the desired contradiction.

Exercise 4.16. Use the majorization principle to prove Proposition 4.2.1.

The next pair of exercises is aimed at proving Proposition 4.2.2.

Exercise 4.17. Let x ∈ Rm and let X+[x] be the set of all vectors x ′ dominated by a vector
form X[x]:

X+[x] = {y | ∃z ∈ X[x] : y ≤ z}.
1. Prove that X+[x] is a closed convex set.
2. Prove the following characterization of X+[x]:
X+[x] is exactly the set of solutions of the system of inequalitiesSj (y) ≤ Sj (x),
j = 1, . . . , m, in variables y.

Hint. Modify appropriately the constriction outlined in Exercise 4.15.

Exercise 4.18. Derive Proposition 4.2.2 from the result of Exercise 4.17.2.

Cauchy’s inequality for matrices

The standard Cauchy’s inequality says that∣∣∣∣∣∑
i

xiyi

∣∣∣∣∣ ≤
√∑

i

x2
i

√∑
i

y2
i (4.10.121)

for reals xi, yi , i = 1, . . . , n. This inequality is exact in the sense that for every collection
x1, . . . , xn there exists a collection y1, . . . , yn with

∑
i y

2
i = 1 which makes (4.10.121) an

equality.
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Exercise 4.19. 1. Prove that whenever Xi, Yi ∈ Mp,q , one has

σ

(∑
i

XT
i Yi

)
≤ λ

[∑
i

XT
i Xi

]1/2
 ‖λ

(∑
i

Y T
i Yi

)
‖1/2

∞ , (∗)

where σ(A) = λ([AAT ]1/2) is the vector of singular values of a matrix A arranged in the
nonascending order.

Prove that for every collectionX1, . . . , Xn ∈ Mp,q there exists a collectionY1, . . . , Yn ∈
Mp,q with

∑
i Y

T
i Yi = Iq which makes (∗) an equality.

2. Prove the following matrix version of the Cauchy inequality: whenever Xi, Yi ∈
Mp,q , one has∣∣∣∣∣∑

i

Tr(XT
i Yi)

∣∣∣∣∣ ≤ Tr

[∑
i

XT
i Xi

]1/2
 ‖λ

(∑
i

Y T
i Yi

)
‖1/2

∞ , (∗∗)

and for every collection X1, . . . , Xn ∈ Mp,q there exists a collection Y1, . . . , Yn ∈ Mp,q

with
∑

i Y
T
i Yi = Iq which makes (∗∗) an equality.

Here is another exercise of the same flavor.

Exercise 4.20. For nonnegative reals a1, . . . , am and a real α > 1 one has(
m∑
i=1

aαi

)1/α

≤
m∑
i=1

ai.

Both sides of this inequality make sense when the nonnegative reals ai are replaced with
positive semidefinite n × n matrices Ai . What happens with the inequality in this case?

Consider the following four statements (where α > 1 is a real and m, n > 1):

1. ∀(Ai ∈ Sn+) :
(

m∑
i=1

Aα
i

)1/α

/
m∑
i=1

Ai.

2. ∀(Ai ∈ Sn+) : λmax

(
m∑
i=1

Aα
i

)1/α
 ≤ λmax

(
m∑
i=1

Ai

)
.

3. ∀(Ai ∈ Sn+) : Tr

(
m∑
i=1

Aα
i

)1/α
 ≤ Tr

(
m∑
i=1

Ai

)
.

4. ∀(Ai ∈ Sn+) : Det

(
m∑
i=1

Aα
i

)1/α
 ≤ Det

(
m∑
i=1

Ai

)
.

Of these four statements, exactly two are true. Identify and prove the true statements.
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�-convexity of some matrix-valued functions

Consider a function F(x) defined on a convex set X ⊂ Rn and taking values in Sm. We say
that such a function is �-convex if

F(αx + (1 − α)y) / αF(x) + (1 − α)F (y)

∀x, y ∈ X and ∀α ∈ [0, 1]. F is called �-concave if −F is �-convex.
A function F : DomF → Sm defined on a set DomF ⊂ Sk is called �-monotone if

x, y ∈ DomF, x � y ⇒ F(x) � F(y);
F is called �-antimonotone if −F is �-monotone.

Exercise 4.21. 1. Prove that a function F : X → Sm, X ⊂ Rn, is �-convex if and only
if its epigraph

{(x, Y ) ∈ Rn → Sm | x ∈ X,F(x) / Y }
is a convex set.

2. Prove that a function F : X → Sm with convex domain X ⊂ Rn is �-convex if
and only if for every A ∈ Sm+ the function Tr(AF(x)) is convex on X.

3. Let X ⊂ Rn be a convex set with a nonempty interior and F : X → Sm be a
function continuous on X which is twice differentiable in intX. Prove that F is �-convex if
and only if the second directional derivative of F

D2F(x)[h, h] ≡ d2

dt2

∣∣∣∣
t=0

F(x + th)

is � 0 for every x ∈ intX and every direction h ∈ Rn.
4. LetF : domF → Sm be defined and continuously differentiable on an open convex

subset of Sk . Prove that the necessary and sufficient condition for F to be �-monotone is
the validity of the implication

h ∈ Sk
+, x ∈ DomF ⇒ DF(x)[h] � 0.

5. Let F be �-convex and S ⊂ Sm be a convex set that is �-antimonotone, i.e.,
whenever Y ′ / Y and Y ∈ S, one has Y ′ ∈ S. Prove that the set F−1(S) = {x ∈ X |
F(x) ∈ S} is convex.

6. Let G : DomG → Sk and F : DomF → Sm, let G(DomG) ⊂ DomF , and let
H(x) = F(G(x)) : DomG → Sm.

(a) Prove that if G and F are �-convex and F is �-monotone, then H is �-convex.
(b) Prove that ifG andF are �-concave andF is �-monotone, thenH is �-concave.
7. Let Fi : G → Sm, and assume that for every x ∈ G exists

F(x) = lim
i→∞Fi(x).

Prove that if all functions from the sequence {Fi} are �-convex or �-concave, or �-monotone
or �-antimonotone, then so is F .
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The goal of the next exercise is to establish the �-convexity of several matrix-valued
functions.

Exercise 4.22. Prove that the following functions are �-convex:
1. F(x) = xxT : Mp,q → Sp.
2. F(x) = x−1 : intSm+ → intSm+.
3. F(u, v) = uT v−1u : Mp,q × intSp

+ → Sq .
Prove that the following functions are �-concave and monotone:

4. F(x) = x1/2 : Sm+ → Sm.
5. F(x) = ln x : intSm+ → Sm.

6. F(x) = (
Ax−1AT

)−1 : intSn+ → Sm, provided that A is an m × n matrix of
rank m.

Minors of positive semidefinite matrices

Exercise 4.23. Let A,B be two n × n symmetric positive definite matrices. Prove that

Det1/n(A + B) ≥ Det1/n(A) + Det1/n(B).

Hint. Reduce the general case to the one of A = I .

A well-known fact of linear algebra is that a symmetric m×m matrix (Aij ) is positive
semidefinite if and only if it is a Gram matrix, i.e.,

there exists a system of m vectors fi such that

Aij = f T
i fj

∀i, j .

The goal of the subsequent exercises is to prove the following nice extension of the “if” part
of this result:

(E) Let F1, . . . , Fm be p × q rectangular matrices. Then the m × m matrix
with the entries

Aij = Det(F T
i Fj ), i, j = 1, . . . , m,

is positive semidefinite.

(E) is an immediate consequence of the following fact:

(F) Let B be pm×pm positive semidefinite symmetric matrix partitioned into
m2 blocks Bij of sizes p×p each, as in the following example with m = 3 and
p = 2:

B =



b11 b12 b13 b14 b15 b16

b12 b22 b23 b24 b25 b26

b13 b23 b33 b34 b35 b36

b14 b24 b34 b44 b45 b46

b15 b25 b35 b45 b55 b56

b16 b26 b36 b46 b56 b66

 .
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Then the m × m matrix B(p),det:

B
(p),det
ij = Det(Bij ), i, j = 1, . . . , m,

is positive semidefinite.

Moreover, if 0 / B / C, then

0 / B(p),det / C(p),det.

Exercise 4.24. Prove the implication (F)⇒(E).

The proof of (F) is based on the following construction. Let us fix a positive integer
k. For an integer n ≥ k, let In denote the family of all k-element subsets ī = {i1 < i2 <

· · · < ik} of the index set {1, 2, . . . , n}. Now, given an n × n matrix A (not necessarily
symmetric), let us define ( n

k
)× (

n

k
) matrix A as follows: the rows and the columns of A are

indexed by elements of In, and Aīj̄ is the k × k minor of A formed by elements of the rows
from the set ī and the columns from the set j̄ . A nice property of the mapping A �→ A is
that it preserves multiplication and transposition:

A · B = AB; AT = (A)T . (∗)

Exercise 4.25. 1. Verify (*).
2. Derive (F) from (*).

Hint. Use the result of Exercise 4.3.3.

Recall that if A is an m × m matrix, then its adjoint Aadj is the m × m matrix with
ij th entry A

adj
ij being the algebraic complement (in A) to the cell i, j .

Exercise 4.26. 1. Prove that d
dt

∣∣
t=0

Det(A + tB) = Tr(BT Aadj).
2. Derive from (F) and 1 that if B is symmetric pm×pm positive semidefinite matrix

partitioned into m2 blocks Bij of sizes p × p each, then the pm × pm matrix

B(p),adj =
 (B11)adj · · · (B1m)adj

... · · · ...

(Bm1)adj · · · (Bmm)adj


is symmetric positive semidefinite.

3. Derive 2 directly from (F) and from the following observation:

For a square matrix A, let A+ be the matrix with ij th entry A+
ij being the deter-

minant of the matrix obtained from A by eliminating the row i and the column
j . Then, in the notation of 2, there exists a diagonal matrix D, independent of
B, such that

B(p),adj = DTB(p),+D,
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where

B(p),+ =
 (B11)+ · · · (B1m)+

... · · · ...

(Bm1)+ · · · (Bmm)+

 .

4. Using the same line of argument as in 3, prove that the mappings

B �→ B(p),+,
B �→ B(p),adj.

are �-monotone mappings of Spm
+ into Spm

+ :

0 / B / C ⇒
{

0 / B(p),+ / C(p),+,
0 / B(p),adj / C(p),adj.

Note that the �-monotonicity of the mapping

A �→ Aadj : Sp
+ → Sp

+

(stated in 4 withm = 1) is a rather surprising fact. Indeed, the mappingA �→ A−1 : intSp
+ →

intSp
+ which is very close to the mapping A �→ Aadj (since A−1 = [Det(A)]−1(Aadj)T ) is

�-antimonotone:

0 ≺ A / B ⇒ A−1 � B−1.

4.10.2 Semidefinite representations of epigraphs of convex
polynomials

Mathematically speaking, the central question concerning the expressive abilities of SDP
is how wide is the family of convex sets that are SDr. By definition, an SDr set is the
projection of the inverse image of Sm+ under affine mapping. In other words, every SDr set
is a projection of a convex set given by a number of polynomial inequalities. (Indeed, the
cone Sm+ is a convex set given by polynomial inequalities saying that all principal minors of
matrix are nonnegative.) Consequently, the inverse image of Sm+ under an affine mapping is
also a convex set given by a number of (nonstrict) polynomial inequalities. And it is known
that every projection of such a set is also given by a number of polynomial inequalities (both
strict and nonstrict). We conclude that

An SDr set is always a convex set given by finitely many polynomial inequalities
(strict and nonstrict).

A natural (and seemingly very difficult) question is whether the inverse is true—is a convex
set given by a number of polynomial inequalities always SDr? This question can be simpli-
fied in many ways—we may fix the dimension of the set, we may assume the polynomials
participating in inequalities to be convex, we may fix the degrees of the polynomials, etc.
To the best of our knowledge, all these questions are open.

The goal of the subsequent exercises is to answer affirmatively the simplest question
of the above series:
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292 Lecture 4. Semidefinite Programming

Let π(x) be a convex polynomial of one variable. Then its epigraph

{(t, x) ∈ R2 | t ≥ π(x)}
is SDr.

Let us fix a nonnegative integer k and consider the curve

p(x) = (1, x, x2, . . . , x2k)T ∈ R2k+1.

Let Hk be the closure of the convex hull of values of the curve. How can one describe Hk?
A convenient way to answer this question is to pass to a matrix representation of all

objects involved. Namely, let us associate with a vector ξ = (ξ0, ξ1, . . . , ξ2k) ∈ R2k+1 the
(k + 1) × (k + 1) symmetric matrix

M(ξ) =



ξ0 ξ1 ξ2 ξ3 · · · ξk
ξ1 ξ2 ξ3 ξ4 · · · ξk+1

ξ2 ξ3 ξ4 ξ5 · · · ξk+2

ξ3 ξ4 ξ5 ξ6 · · · ξk+3
...

...
...

...
. . .

...

ξk ξk+1 ξk+2 ξk+3 . . . ξ2k

 ,

so that

[M(ξ)]ij = ξi+j , i, j = 0, . . . , k.

The transformation ξ �→ M(ξ) : R2k+1 → Sk+1 is a linear embedding; the image of Hk

under this embedding is the closure of the convex hull of values of the curve

P(x) = M(p(x)).

It follows that the image Ĥk ofHk under the mapping M possesses the following properties:
(i) Ĥk belongs to the image of M, i.e., to the subspaceHk of S2k+1 comprising Hankel

matrices—matrices with entries depending on the sum of indices only:

Hk = {
X ∈ S2k+1|i + j = i ′ + j ′ ⇒ Xij = Xi ′j ′

}
.

(ii) Ĥk ⊂ Sk+1
+ (indeed, every matrix M(p(x)) is positive semidefinite).

(iii) For every X ∈ Ĥk one has X00 = 1.
It turns out that properties (i)–(iii) characterize Ĥk:

(G) A symmetric (k + 1) × (k + 1) matrix X belongs to Ĥk if and only if it
possesses the properties (i)–(iii): its entries depend on sum of indices only (i.e.,
X ∈ Hk), X is positive semidefinite and X00 = 1.

(G) is a particular case of the classical results related to the so called moment problem.
The goal of the subsequent exercises is to give a simple alternative proof of this statement.

Note that the mapping M∗ : Sk+1 → R2k+1 conjugate to the mapping M is as
follows:

(M∗X)l =
l∑

i=0

Xi,l−i , l = 0, 1, . . . , 2k,

and we know something about this mapping: example 21.a (Lecture 4, p. 157) says that
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(H) The image of the cone Sk+1
+ under the mapping M∗ is exactly the cone of

coefficients of polynomials of degree ≤ 2k which are nonnegative on the entire
real line.

Exercise 4.27. Derive (G) from (H).

(G), among other useful things, implies the result we need:

(I) Let π(x) = π0 + π1x + π2x
2 + · · · + π2kx

2k be a convex polynomial of
degree 2k. Then the epigraph of π is SDr:

{(t, x) ∈ R2 | t ≥ p(x)} = X [π ],
where

X [π ] = {(t, x)|∃x2, . . . , x2k :



1 x x2 x3 . . . xk
x x2 x3 x4 . . . xk+1
x2 x3 x4 x5 . . . xk+2
x3 x4 x5 x6 . . . xk+3

. . . . . . . . . . . .
. . . . . .

xk xk+1 xk+2 xk+3 . . . x2k

 � 0,

π0 + π1x + π2x2 + π3x3 + . . . + π2kx2k ≤ t}
Exercise 4.28. Prove (I).

Note that the set X [π ] makes sense for an arbitrary polynomial π , not necessary
for a convex one. What is the projection of this set onto the (t, x)-plane? The answer is
surprisingly nice: this is the convex hull of the epigraph of the polynomial π !

Exercise 4.29. Let π(x) = π0 + π1x + · · · + π2kx
2k with π2k > 0, and let

G[π ] = Conv{(t, x) ∈ R2 | t ≥ p(x)}
be the convex hull of the epigraph of π (the set of all convex combinations of points from
the epigraph of π ).

1. Prove that G[π ] is a closed convex set.
2. Prove that

G[π ] = X [π ].

4.10.3 Lovasz capacity number and semidefinite relaxations of
combinatorial problems

Recall that the Lovasz capacity number Z(
) of an n-node graph 
 is the optimal value of
the following semidefinite program:

min
λ,x

{λ : λIn − L(x) � 0} , (L)

where the symmetric n × n matrix L(x) is defined as follows:
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294 Lecture 4. Semidefinite Programming

• The dimension of x is equal to the number of arcs in 
, and the coordinates of x are
indexed by these arcs.

• The element of L(x) in an empty cell ij (one for which the nodes i and j are not
linked by an arc in 
) is 1.

• The elements of L(x) in a pair of symmetric nonempty cells ij , ji (those for which
the nodes i and j are linked by an arc) are equal to the coordinate of x indexed by the
corresponding arc.

As we remember, the importance of Z(
) comes from the fact that Z(
) is a com-
putable upper bound on the stability number α(
) of the graph. We have seen also that the
Shor semidefinite relaxation of the problem of finding the stability number of 
 leads to a
seemingly stronger upper bound onα(
), namely, the optimal value σ(
) in the semidefinite
program

min
λ,µ,ν

{
λ :

(
λ − 1

2 (e + µ)T

− 1
2 (e + µ) A(µ, ν)

)
� 0

}
, (Sh)

where e = (1, . . . , 1)T ∈ Rn and A(µ, ν) is the matrix as follows:
• The dimension of ν is equal to the number of arcs in 
, and the coordinates of ν are

indexed by these arcs.
• The diagonal entries of A(µ, ν) are µ1, . . . , µn.
• The off-diagonal entries of A(µ, ν) corresponding to empty cells are zeros.
• The off-diagonal entries of A(µ, ν) in a pair of symmetric nonempty cells ij , ji

are equal to the coordinate of ν indexed by the corresponding arc.
We have seen that (L) can be obtained from (Sh) when the variables µi are set to 1,

so that σ(
) ≤ Z(
). Thus,

α(
) ≤ σ(
) ≤ Z(
). (4.10.122)

Exercise 4.30. 1. Prove that if (λ, µ, ν) is a feasible solution to (Sh), then there exists a
symmetric n×n matrix A such that λIn −A � 0, and at the same time the diagonal entries
of A and the off-diagonal entries in the empty cells are ≥ 1. Derive from this observation
that the optimal value in (Sh) is not less than the optimal value Z′(
) in the following
semidefinite program:

min
λ,x

{
λ : λIn − X � 0, Xij ≥ 1 whenever i, j are not adjacent in 


}
. (Sc)

2. Prove that Z′(
) ≥ α(
).

Hint. Demonstrate that if all entries of a symmetric k × k matrix are ≥ 1,
then the maximum eigenvalue of the matrix is at least k. Derive from this
observation and the interlacing eigenvalues theorem (Exercise 4.5.2) that if a
symmetric matrix contains a principal k × k submatrix with entries ≥ 1, then
the maximum eigenvalue of the matrix is at least k.

The upper bound Z′(
) on the stability number of 
 is called the Schrijver capacity
of graph 
. Note that we have

α(
) ≤ Z′(
) ≤ σ(
) ≤ Z(
).
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Table 4.1.

Graph # # of nodes α Z′ σ Z

1 20 ? 4.373 4.378 4.378
2 20 ? 5.062 5.068 5.068
3 20 ? 4.383 4.389 4.389
4 20 ? 4.216 4.224 4.224
5 13 ? 4.105 4.114 4.114
6 20 ? 5.302 5.312 5.312
7 20 ? 6.105 6.115 6.115
8 20 ? 5.265 5.280 5.280
9 9 3 3.064 3.094 3.094
10 12 4 4.197 4.236 4.236
11 8 3 3.236 3.302 3.302
12 12 4 4.236 4.338 4.338
13 10 3 3.236 3.338 3.338

A natural question is, Which inequalities in this chain may be strict? To answer it, we have
computed the quantities in question for about 2000 random graphs with the number of nodes
varying from 8 to 20. In our experiments, the stability number was computed—by brute
force—for graphs with ≤ 12 nodes. For all these graphs, the integral part of Z(
) was
equal to α(
). Furthermore, Z(
) was noninteger in 156 of our 2000 experiments, and in
27 of these 156 cases the Schrijver capacity number Z′(
) was strictly less than Z(
). The
quantities Z′(·), σ (·),Z(·) for 13 of these 27 cases are listed in Table 4.1.

Exercise 4.31. Compute the stability numbers of graphs 8 and 13—see Fig. 4.18.

Exercise 4.32. Prove that σ(
) = Z(
).

The chromatic number ξ(
) of a graph 
 is the minimal number of colors such that
one can color the nodes of the graph in such a way that no two adjacent (i.e., linked by an
arc) nodes get the same color.42 The complement 
̄ of a graph 
 is the graph with the same
set of nodes, and two distinct nodes in 
̄ are linked by an arc if and only if they are not
linked by an arc in 
.

Lovasz proved that for every graph

Z(
) ≤ ξ(
̄), (∗)
42For example, when coloring a geographic map, it is convenient not to use the same color for a pair of countries

with a common border. It was observed that to meet this requirement for actual maps, four colors are sufficient.
The famous “four-color” conjecture claims that this is so for every geographic map. Mathematically, you can
represent a map by a graph, where the nodes represent the countries, and two nodes are linked by an arc if and
only if the corresponding countries have a common border. A characteristic feature of such a graph is that it is
planar—you may draw it on a 2D plane in such a way that the arcs will not cross each other, meeting only at the
nodes. Thus, the mathematical form of the four-color conjecture is that the chromatic number of any planar graph
is at most 4. This is indeed true, but it took about 100 years to prove the conjecture!
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296 Lecture 4. Semidefinite Programming

Figure 4.18. Graphs 13 (left) and 8 (right); all nodes are on circumferences.

so that

α(
) ≤ Z(
) ≤ ξ(
̄)

(Lovasz’s sandwich theorem).

Exercise 4.33. Prove (*).

Hint. Let us color the vertices of 
 in k = ξ(
̄) colors in such a way that no
two vertices of the same color are adjacent in 
̄, i.e., every two nodes of the
same color are adjacent in 
. Set λ = k, and let x be such that

[L(x)]ij =
{−(k − 1), i �= j, i, j are of the same color,

1 otherwise.

Prove that (λ, x) is a feasible solution to (L).

Now let us switch from the Lovasz capacity number to semidefinite relaxations of
combinatorial problems, specifically to those of maximizing a quadratic form over the
vertices of the unit cube, and over the entire cube:

(a) max
x

{
xT Ax : x ∈ Vrt(Cn) = {x ∈ Rn | xi = ±1 ∀i}} ,

(b) max
x

{
xT Ax : x ∈ Cn = {x ∈ Rn | −1 ≤ xi ≤ 1, ∀i}} . (4.10.123)

The standard semidefinite relaxations of the problems are, respectively, the problems

(a) max
X

{Tr(AX) : X � 0, Xii = 1, i = 1, . . . , n} ,
(b) max

X
{Tr(AX) : X � 0, Xii ≤ 1, i = 1, . . . , n} ; (4.10.124)

the optimal value of a relaxation is an upper bound for the optimal value of the respective
original problem.

Exercise 4.34. Let A ∈ Sn. Prove that

max
x:xi=±1, i=1,...,n

xT Ax ≥ Tr(A).
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Develop an efficient algorithm that, given A, generates a point x with coordinates ±1 such
that xT Ax ≥ Tr(A).

Exercise 4.35. Prove that if the diagonal entries of A are nonnegative, then the optimal
values in (4.10.124)(a) and (4.10.124)(b) are equal to each other. Thus, in the case in
question, the relaxations do not understand whether we are maximizing over the vertices of
the cube or over the entire cube.

Exercise 4.36. Prove that the problems dual to (4.10.124)(a),(b) are, respectively,

(a) min
N

{Tr(N) : N � A,N is diagonal} ,
(b) min

N
{Tr(N) : N � A,N � 0,N is diagonal} . (4.10.125)

The optimal values in these problems are equal to those of the respective problems in
(4.10.124) and are therefore upper bounds on the optimal values of the respective combi-
natorial problems from (4.10.123).

The latter claim is quite transparent, since the problems (4.10.125) can be obtained
as follows:

• To bound from above the optimal value of a quadratic form xT Ax on a given set
S, we look at those quadratic forms xTNx that can be easily maximized over S. For the
case of S = Vrt(Cn) these are quadratic forms with diagonal matrices N, and for the case
of S = Cn these are quadratic forms with diagonal and positive semidefinite matrices N; in
both cases, the respective maxima are merely Tr(N).

• Having specified a family F of quadratic forms xTNx easily optimizable over S,
we then look at those forms from F that majorate everywhere the original quadratic form
xT Ax, and take among these forms the one with the minimal maxx∈S xT Nx, thus coming
to the problem

min
N

{
max
x∈S

xT Nx : N � A,N ∈ F
}
. (!)

It is evident that the optimal value in this problem is an upper bound on maxx∈S xT Ax. It is
also immediately seen that in the case of S = Vrt(Cn) the problem (!), with F specified as
the set D of all diagonal matrices, is equivalent to (4.10.125)(a), while in the case of S = Cn

(!), with F specified as the set D+ of positive semidefinite diagonal matrices, is nothing but
(4.10.125)(b).

Given the direct and quite transparent road leading to (4.10.125)(a),(b), we can try to
move a little bit further along this road. To this end observe that there are trivial upper bounds
on the maximum of an arbitrary quadratic form xTNx over Vrt(Cn) and Cn, specifically:

max
x∈Vrt(Cn)

xT Nx ≤ Tr(N) +
∑
i �=j

|Nij |, max
x∈Cn

xT Nx ≤
∑
i,j

|Nij |.

For the above families D, D+ of matrices N for which xTNx is easily optimizable over
Vrt(Cn), respectively, Cn, the above bounds are equal to the precise values of the respective
maxima. Now let us update (!) as follows: we eliminate the restriction N ∈ F , replacing
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simultaneously the objective maxx∈S xT Nx with its upper bound, thus coming to the pair
of problems

(a) min
N

Tr(N) +
∑
i �=j

|Nij | : N � A

 [S = Vrt(Cn)],

(b) min
N

∑
i,j

|Nij | : N � A

 [S = Cn].
(4.10.126)

From the origin of the problems it is clear that they still yield upper bounds on the optimal
values of the respective problems (4.10.123)(a),(b) and that these bounds are at least as good
as the bounds yielded by the standard relaxations (4.10.124)(a),(b):

(a) Opt(4.10.123.a) ≤ Opt(4.10.126.a) ≤︸︷︷︸
(∗)

Opt(4.10.124.a) = Opt(4.10.125.a),

(b) Opt(4.10.123.b) ≤ Opt(4.10.126.b) ≤︸︷︷︸
(∗∗)

Opt(4.10.124.b) = Opt(4.10.125.b),

(4.10.127)

where Opt(·) means the optimal value of the corresponding problem.
Indeed, consider the problem (4.10.126)(a). Whenever N is a feasible solution of

this problem, the quadratic form xTNx majorates everywhere the form xT Ax, so that
maxx∈Vrt(Cn) x

T Ax ≤ maxx∈Vrt(Cn) x
T Nx; the latter quantity, in turn, is majorated by

Tr(N) + ∑
i �=j |Nij |, whence the value of the objective of the problem (4.10.126)(a) at

every feasible solution of the problem majorates the quantity maxx∈Vrt(Cn) x
T Ax. Thus,

the optimal value in (4.10.126)(a) is an upper bound on the maximum of xT Ax over the
vertices of the cube Cn. At the same time, when passing from the (dual form of the) stan-
dard relaxation (4.10.125)(a) to our new bounding problem (4.10.126)(a), we only extend
the feasible set and do not vary the objective at the old feasible set; as a result of such a
modification, the optimal value may only decrease. Thus, the upper bound on the maximum
of xT Ax over Vrt(Cn) yielded by (4.10.126)(a) is at least as good as those (equal to each
other) bounds yielded by the standard relaxations (4.10.124)(a), (4.10.125)(a), as required
in (4.10.127)(a). Similar reasoning proves (4.10.127)(b).

Note that problems (4.10.126) are equivalent to semidefinite programs and thus are
of the same status of computational tractability as the standard SDP relaxations (4.10.125)
of the combinatorial problems in question. At the same time, our new bounding problems
are more difficult than the standard SDP relaxations. Can we justify this by getting an
improvement in the quality of the bounds?

Exercise 4.37. Find out whether the problems (4.10.126)(a),(b) yield better bounds than
the respective problems (4.10.125)(a),(b), i.e., whether the inequalities (*), (**) in (4.10.127)
can be strict.

Hint. Look at the problems dual to (4.10.126)(a),(b).

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 299

✐

✐

✐

✐

✐

✐

✐

✐

4.10. Exercises to Lecture 4 299

Exercise 4.38. Let D be a given subset of Rn+. Consider the following pair of optimization
problems:

max
x

{
xT Ax : (x2

1 , x
2
2 , . . . , x

2
n)

T ∈ D
}
, (P )

max
X

{Tr(AX) : X � 0,Dg(X) ∈ D} (R)

(Dg(X) is the diagonal of a square matrix X). Note that when D = {(1, . . . , 1)T }, (P )

is the problem of maximizing a quadratic form over the vertices of Cn, while (R) is the
standard semidefinite relaxation of (P ). When D = {x ∈ Rn | 0 ≤ xi ≤ 1 ∀i}, (P )

is the problem of maximizing a quadratic form over the cube Cn, and (R) is the standard
semidefinite relaxation of the latter problem.

1. Prove that if D is SDr, then (R) can be reformulated as a semidefinite program.
2. Prove that (R) is a relaxation of (P ), i.e., that

Opt(P ) ≤ Opt(R).

3. (Nesterov, Ye) Let A � 0. Prove that then

Opt(P ) ≤ Opt(R) ≤ π

2
Opt(P ).

Hint. Use Nesterov’s theorem (Theorem 4.3.2).

Exercise 4.39. Let A ∈ Sm+. Prove that

max{xT Ax | xi = ±1, i = 1, . . . , m}

= max

 2

π

m∑
i,j=1

aijasin(Xij ) | X � 0, Xii = 1, i = 1, . . . , m

 .

4.10.4 Lyapunov stability analysis

A natural mathematical model of a swing is the linear time invariant dynamic system

y ′′(t) = −ω2y(t) − 2µy ′(t) (S)

with positive ω2 and 0 ≤ µ < ω. (The term 2µy ′(t) represents friction.) A general solution
to this equation is

y(t) = a cos(ω′t + φ0) exp{−µt}, ω′ =
√
ω2 − µ2,

with free parameters a and φ0, i.e., this is a decaying oscillation. Note that the equilibrium

y(t) ≡ 0

is stable—every solution to (S) converges to 0, along with its derivative, exponentially fast.
After stability is observed, an immediate question arises: How is it possible to swing

on a swing? Everybody knows from practice that it is possible. On the other hand, since
the equilibrium is stable, it looks as if it was impossible to swing, without somebody’s
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Figure 4.19. A swinging child.

assistance, for a long time. Swinging is possible for a highly nontrivial reason—parametric
resonance. A swinging child does not sit on the swing in a forever-fixed position; what he
does is shown in Fig. 4.19. As a result, the effective length of the swing l—the distance
from the point where the rope is fixed to the center of gravity of the system—is varying
with time: l = l(t). Basic mechanics says that ω2 = g/l, g being the gravity acceleration.
Thus, the actual swing is a time-varying linear dynamic system,

y ′′(t) = −ω2(t)y(t) − 2µy ′(t), (S′)

and it turns out that for properly varied ω(t) the equilibrium y(t) ≡ 0 is not stable. A
swinging child is just varying l(t) in a way that results in an unstable dynamic system (S′),
and this instability is in fact what the child enjoys; see Fig. 4.20.

Exercise 4.40. Assume that you are given parameters l (“nominal length of the swing
rope”), h > 0, and µ > 0, and it is known that a swinging child can vary the effective length
of the rope within the bounds l ± h, i.e., his or her movement is governed by the uncertain
linear time-varying system

y ′′(t) = −a(t)y(t) − 2µy ′(t), a(t) ∈
[

g

l + h
,

g

l − h

]
.

Try to identify the domain in the 3D-space of parameters l, µ, h where the system is stable,
as well as the domain where its stability can be certified by a quadratic Lyapunov function.
What is the difference between these two domains?

4.10.5 S-lemma

The S-lemma is a kind of theorem on the alternative, more specifically, a quadratic analog
of the homogeneous Farkas lemma:

Homogeneous Farkas lemma. A homogeneous linear inequality aT x ≥ 0
is a consequence of a system of homogeneous linear inequalities bTi x ≥ 0,
i = 1, . . . , m, if and only if it is a linear consequence of the system, i.e., if and
only if

∃(λ ≥ 0) : a =
∑
i

λibi .
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y′′(t) = − g
l+h sin(2ωt) y(t) − 2µy′(t), y(0) = 0, y′(0) = 0.1[

l = 1 [m], g = 10 [ m
sec2 ], µ = 0.15[ 1

sec ], ω = √
g/l

]
Figure 4.20. Graph of y(t). Left: h = 0.125; this child is too small; he should

grow up. Right: h = 0.25; this child can already swing.

S-lemma. A homogeneous quadratic inequality xT Ax ≥ 0 is a consequence of
a strictly feasible system of homogeneous quadratic inequalities xT Bix ≥ 0,
i = 1, . . . , m, with m = 1 if and only if it is a linear consequence of the system
and a trivial—identically true—quadratic inequality, i.e., if and only if

∃(λ ≥ 0,D � 0) : A =
∑
i

λiBi + D.

We see that the S-lemma is indeed similar to the Farkas lemma, up to a (severe!)
restriction that now the system in question must contain a single quadratic inequality (and
up to the mild “regularity assumption” of strict feasibility).

The homogeneous Farkas lemma gives rise to the theorem on the alternative for
systems of linear inequalities. As a matter of fact, this lemma is the basis of the entire convex
analysis and the reason why convex programming problems are easy (see Lecture 5). The
fact that a similar statement for quadratic inequalities—i.e., S-lemma—fails to be true for
a multi-inequality system is very unpleasant and finally is the reason for the existence of
simple-looking computationally intractable (NP-complete) optimization problems.

Given the crucial role of different theorems on the alternative in optimization, it is
vitally important to understand the extent to which the linear theorem on the alternative can
be generalized onto the case of nonlinear inequalities. The standard generalization of this
type is as follows:

Lagrange duality theorem (LDT). Let f0 be a convex function and f1, . . . , fm
be concave functions on Rm such that the system of inequalities

fi(x) ≥ 0, i = 1, . . . , m, (S)
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is strictly feasible (i.e., fi(x̄) > 0 for some x̄ and all i = 1, . . . , m). The
inequality

f0(x) ≥ 0

is a consequence of the system (S) if and only if it can be obtained, in a linear
fashion, from (S) and a trivially true—valid on the entire Rn—inequality, i.e.,
if and only if there exist m nonnegative weights λi such that

f0(x) ≥
m∑
i=1

λifi(x) ∀x.

The LDT plays the central role in computationally tractable optimization, i.e., in
convex programming. (For example, the conic duality theorem from Lecture 2 is just a
reformulation of the LDT.) This theorem, however, imposes severe convexity-concavity
restrictions on the inequalities in question. In the case when all the inequalities are ho-
mogeneous quadratic, LDT is empty. Indeed, a homogeneous quadratic function xT Bx is
concave if and only if B / 0 and is convex if and only if B � 0. It follows that in the case
of fi = xT Aix, i = 0, . . . , m, the premise in the LDT is empty (a system of homogeneous
quadratic inequalities xT Aix ≥ 0 with Ai / 0, i = 1, . . . , m, simply cannot be strictly
feasible), and the conclusion in the LDT is trivial (if f0(x) = xT A0x with A0 � 0, then
f0(x) ≥ ∑m

i=1 0 × fi(x), whatever are fi’s). Comparing the S-lemma to the LDT, we see
that the former statement is, in a sense, complementary to the second one: the S-lemma,
when applicable, provides us with information that definitely cannot be extracted from the
LDT. Given this unique role of the S-lemma, it surely deserves the effort to understand the
possibilities and limitations of extending the lemma to the case of a multi-inequality system,
i.e., to address the question as follows:

(SL.?) We are given a homogeneous quadratic inequality

xT Ax ≥ 0 (I)

along with a strictly feasible system of homogeneous quadratic inequalities

xT Bix ≥ 0, i = 1, . . . , m. (S)

Consider the following two statements:

(i) (I) is a consequence of (S), i.e., (I) is satisfied at every solution of (S).

(ii) (I) is a linear consequence of (S) and a trivial—identically true—homogeneous
quadratic inequality:

∃(λ ≥ 0,D � 0) : A =
m∑
i=1

λiBi + D.

What is the gap between (i) and (ii)?
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One obvious fact is expressed in the following exercise.

Exercise 4.41. Inverse S-lemma. Prove the implication (ii)⇒(i).

In what follows, we focus on less trivial results concerning the aforementioned gap.

Exercise 4.42. Prove the following.

Proposition 4.10.1. Inhomogeneous S-lemma. Let

f (x) = xT Ax + 2aT x + α [A = AT ],
g(x) = xT Bx + 2bT x + β [B = BT ] (4.10.128)

be two quadratic forms such that the inequality f (x) ≤ 0 is strictly feasible. Then the
implication

f (x) ≤ 0 ⇒ g(x) ≤ 0

holds true if and only if there exists λ ≥ 0 such that

g(x) ≤ λf (x) ∀x
or, which is the same, if and only if there exists λ ≥ 0 such that(

λα [λa − b]T
λa − b λA − B

)
� 0.

Under the additional assumption that the inequality g(x) ≥ 0 is strictly feasible, the quantity
λ in the above “if and only if” is strictly positive.

Hint. The “if” part is evident. To prove the “only if” part, act as follows.
1. Verify that there exist a sequence {γi > 0} and δ > 0 such that

(i) γi → 0, i → ∞;

(ii) all the matrices Ai ≡ A + γiI are nonsingular; and

(iii) x̄T Aix̄ + 2aT x̄ + α ≤ −δ ∀i.
2. Assuming the validity of the implication f (x) ≤ 0 ⇒ g(x) ≤ 0 and setting

fi(x) = xT Aix + 2aT x + α,

prove that for every i one has

∀y : fi(y − A−1
i a) ≤ 0 ⇒ g(y − A−1

i a) ≤ 0,

i.e., that

∀y : yT Aiy+[α−aT A−1
i a] ≤ 0 ⇒ g(y−A−1

i a) ≡ yT By+2bTi y+βi ≤ 0.
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Derive from the latter fact that

∀(y, t) : yT Aiy + [α − aT A−1
i a]t2 ≤ 0 ⇒ yT By + 2tbTi y + βit

2 ≤ 0,

whence, by the usual S-lemma,

∃λ ≥ 0 : g(x) ≤ λifi(x).

Prove that the sequence {λi} is bounded, and look at limiting points of this
sequence.

In view of Proposition 4.10.1, if f (·), g(·) are as in (4.10.128) and the inequality
f (x) < 0 is solvable, then the inclusion

{x | f (x) ≤ 0} ⊂ {x | g(x) ≤ 0} (4.10.129)

holds true if and only if the system of LMIs

λ ≥ 0, λF − G ≡
(

λα [λa − b]T
λa − b λA − B

)
� 0 (4.10.130)

in a single variable λ is solvable.
Assuming that we can check efficiently whether a system of LMIs is feasible and

we are able to find a solution of this system when the system is feasible,43 we see that
the inclusion (4.10.129) admits an efficient verification. In some cases we meet with the
following situation: we have checked whether the system (4.10.130) is feasible and have
found that it is not the case, i.e., we know that the inclusion (4.10.129) is not valid. How
could we efficiently build an evident certificate of this conclusion, i.e., a point x∗ such that
f (x∗) ≤ 0 and g(x∗) > 0?

Exercise 4.43. Let f, g be as in (4.10.1), let f (x̄) < 0 for certain x̄, and let the system
(4.10.130) be infeasible.

1. Prove that the system of LMIs

X � 0, Tr(XF) ≤ −1, Tr(XG) ≥ 1 (4.10.131)

is feasible.
2. Let X∗ = D∗DT∗ be a solution of (4.10.131). Set

F̂ = DT
∗ FD∗, Ĝ = DT

∗ GD∗

and consider the eigenvalue decomposition of Ĝ

Ĝ = UT G̃U

with diagonal G̃ and orthogonal U . Verify that

Tr(UF̂UT︸ ︷︷ ︸
F̃

) ≤ −1, Tr(G̃) ≥ 1. (4.10.132)

43This assumption nearly fits the reality; see Lecture 5.
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3. Build an algorithm that allows one to find efficiently a vector ξ∗ with coordinates
±1 such that

ξT∗ F̃ ξ∗ ≤ Tr(F̃ ).

Verify that the vector η∗ = D∗UT ξ∗ satisfies the relation

ηT∗ Fη∗ ≤ −1, ηT∗ Gη∗ ≥ 1.

Think how to convert the vector η∗ efficiently to a vector x∗ such that f (x∗) ≤ 0, g(x∗) > 0.

Straightforward proof of the standard S-lemma. The goal of the subsequent exercises
is to work out a straightforward proof of the S-lemma instead of the tricky, although elegant,
proof presented in Lecture 4. The “if” part of the lemma is evident, and we focus on the
“only if” part. Thus, we are given two quadratic forms xT Ax and xT Bx with symmetric
matrices A,B such that x̄T Ax̄ > 0 for some x̄ and the implication

xT Ax ≥ 0 ⇒ xT Bx ≥ 0 (⇒)

is true. Our goal is to prove that

(SL.A) There exists λ ≥ 0 such that B � λA.

The main tool we need is the following theorem.

Theorem 4.10.1. General Helley theorem. Let {Aα}α∈I be a family of closed convex sets
in Rn such that

1. every n + 1 sets from the family have a point in common;

2. there is a finite subfamily of the family such that the intersection of the sets from the
subfamily is bounded.

Then all sets from the family have a point in common.

Exercise 4.44. Prove the general Helley theorem.

Exercise 4.45. Show that (SL.A) is a corollary of the following statement:

(SL.B) Let xT Ax, xT Bx be two quadratic forms such that x̄T Ax̄ > 0 for
certain x̄ and

xT Ax ≥ 0, x �= 0 ⇒ xT Bx > 0. (⇒′)

Then there exists λ ≥ 0 such that B � λA.

Exercise 4.46. Given data A,B satisfying the premise of (SL.B), define the sets

Qx = {λ ≥ 0 : xT Bx ≥ λxT Ax}.
1. Prove that every one of the sets Qx is a closed nonempty convex subset of the

real line.
2. Prove that at least one of the sets Qx is bounded.
3. Prove that every two sets Qx ′ ,Qx ′′ have a point in common.
4. Derive (SL.B) from 1–3, thus concluding the proof of the S-lemma.
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S-lemma with a multi-inequality premise. The goal of the subsequent exercises is to
present a number of cases when, under appropriate additional assumptions on the data (I),
(S), of the question (SL.?), statements (i) and (ii) are equivalent, even if the number m of
homogeneous quadratic inequalities in (S) is > 1.

Our first exercise demonstrates that certain additional assumptions are definitely
necessary.

Exercise 4.47. Demonstrate by example that if xT Ax, xT Bx, xT Cx are three quadratic
forms with symmetric matrices such that

∃x̄ : x̄T Ax̄ > 0, x̄T Bx̄ > 0,
xT Ax ≥ 0, xT Bx ≥ 0 ⇒ xT Cx ≥ 0,

(4.10.133)

then not necessarily there exist λ,µ ≥ 0 such that C � λA + µB.

Hint. Clearly there do not exist nonnegative λ,µ such that C � λA + µB

when

Tr(A) ≥ 0, Tr(B) ≥ 0, Tr(C) < 0. (4.10.134)

Thus, to build the required example it suffices to find A,B,C satisfying both
(4.10.133) and (4.10.134).

Seemingly the simplest way to ensure (4.10.133) is to build 2 × 2 matrices
A,B,C such that the associated quadratic forms fA(x) = xT Ax, fB(x) =
xT Bx, fC(x) = xT Cx are as follows:

• The set XA = {x | fA(x) ≥ 0} is the union of an angle D symmetric with
regard to the x1-axis and the angle −D: fA(x) = λ2x2

1 − x2
2 with λ > 0.

• The set XB = {x | fB(x) ≥ 0} looks like a clockwise rotation of XA by a
small angle: fB(x) = (µx − y)(νx + y) with 0 < µ < λ and ν > λ.

• The set XC = {x | xT Cx ≥ 0} is the intersection of XA and XB : fC(x) =
(µx − y)(νx + y).

Surprisingly, there exists a semiextension of the S-lemma to the case of m = 2 in
(SL.?):

(SL.C) Let n ≥ 3, and let A,B,C be three symmetric n×n matrices such that

(i) a certain linear combination of the matrices A,B,C is positive definite,

and

(ii) the system of inequalities {
xT Ax ≥ 0,
xT Bx ≥ 0

(4.10.135)

is strictly feasible, i.e., ∃x̄: x̄T Ax̄ > 0, x̄T Bx̄ > 0.

Then the inequality

xT Cx ≥ 0
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is a consequence of the system (4.10.135) if and only if there exist nonnegative
λ,µ such that

C � λA + µB.

The proof of (SL.C) uses a nice convexity result that is interesting by its own right:

(SL.D) (B. T. Polyak) Let n ≥ 3, and let fi(x) = xT Aix, i = 1, 2, 3, be
three homogeneous quadratic forms on Rn (here Ai , i = 1, 2, 3, are symmetric
n × n matrices). Assume that a certain linear combination of the matrices Ai

is positive definite. Then the image of Rn under the mapping

F(x) =
(
f1(x)

f2(x)

f3(x)

)

is a closed convex set.

Exercise 4.48. Derive (SL.C) from (SL.D).

Hint. For the only nontrivial “only if” part of (SL.C): By (SL.C)(i) and (SL.D),
the set

Y =
{
y ∈ R3 | ∃x : y =

(
xT Ax

xT Bx

xT Cx

)}

is a closed and convex set in R3. Prove that if xT Bx ≥ 0 for every solution of
(4.10.135), then Y does not intersect the convex set Z = {(y = (y1, y2, y3)

T |
y1, y2 ≥ 0, y3 < 0}. Applying the separation theorem, conclude that there
exist nonnegative weights θ , λ, µ, not all of them zero, such that the matrix
θC − λA − µB is positive definite. Use (SL.C)(ii) to demonstrate that θ > 0.

Now let us prove (SL.D). We start with a number of simple topological facts. Recall
that a metric space X is called connected if there does not exist a pair of nonempty open
sets V,U ⊂ X such that U ∩V = ∅ and U ∪V = X. The simplest facts about connectivity
are as follows:

(C.1) If a metric space Y is linearly connected: for every two points x, y ∈ Y

there exists a continuous curve linking x and y, i.e., a continuous function
γ : [0, 1] → Y such that γ (0) = x and γ (1) = y, then Y is connected. In
particular, a line segment in Rk , same as every other convex subset of Rk is
connected. (From now on, a set Y ⊂ Rk is treated as a metric space, the metric
coming from the standard metric on Rk .)

(C.2) Let F : Y → Z be a continuous mapping from a connected metric space
to a metric space Z. Then the image F(Y ) of the mapping (regarded as a metric
space, the metric coming from Z) is connected.
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We see that the connectivity of a set Y ∈ Rn is a much weaker property than the
convexity. There is, however, a simple case where these properties are equivalent: the
one-dimensional case k = 1.

Exercise 4.49. Prove that a set Y ⊂ R is connected if and only if it is convex.

To proceed, recall the notion of the n-dimensional projective space Pn. A point in
this space is a line in Rn+1 passing through the origin. To define the distance between two
points of this type, i.e., between two lines �, �′ in Rn+1 passing through the origin, we take
the intersections of the lines with the unit Euclidean sphere in Rn+1; let the first intersection
comprise the points ±e and the second the points ±e′. The distance between � and �′ is, by
definition, min{‖e + e′‖2, ‖e − e′‖2}. (It is clear that the resulting quantity is well-defined
and that it is a metric.) Note that there exists a natural mapping \ (the canonical projection)
of the unit sphere Sn ⊂ Rn+1 onto Pn—the mapping that maps a unit vector e ∈ Sn onto the
line spanned by e. It is immediately seen that this mapping is continuous and maps points
±e, e ∈ Sn, onto the same point of Pn. In what follows we will make use of the following
simple facts.

Proposition 4.10.2. Let Y ⊂ Sn be a set with the following property: for every two points
x, x ′ ∈ Y there exists a point y ∈ Y such that both x, x ′ can be linked by continuous curves
in Y with the set {y; −y} (i.e., we can link in Y both x and x ′ with y, or x with y, and x ′
with −y, or both x and x ′ with −y, or x with −y, and x ′ with y). Then the set \(Y) ⊂ Pn

is linearly connected (and thus connected).

Proposition 4.10.3. Let F : Y → Rk be a continuous mapping defined on a central-
symmetric subset (Y = −Y ) of the unit sphere Sn ⊂ Rn+1, and let the mapping be even:
F(y) = F(−y) for every y ∈ Y . LetZ = \(Y) be the image of Y in Pn under the canonical
projection, and let the mapping G : Z → Rk be defined as follows: to specify G(z) for
z ∈ Z, we choose somehow a point y ∈ Y such that \(y) = z and set G(z) = F(y). Then
the mapping G is well defined and continuous on Z.

Exercise 4.50. Prove Proposition 4.10.2.

Exercise 4.51. Prove Proposition 4.10.3.

The key argument in the proof of (SL.D) is the following fact.

Proposition 4.10.4. Let f (x) = xTQx be a homogeneous quadratic form on Rn, n ≥ 3.
Assume that the set Y = {x ∈ Sn−1 : f (x) = 0} is nonempty. Then the set Y is central
symmetric, and its image Z under the canonical projection \ : Sn−1 → Pn−1 is connected.

The goal of the next exercise is to prove Proposition 4.10.4. In what follows f, Y, Z
are as in the proposition. The relation Y = −Y is evident, so that all we need to prove is
the connectedness of Z. Without loss of generality we may assume that

f (x) =
n∑

i=1

λix
2
i , λ1 ≥ λ2 ≥ · · · ≥ λn;
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since Y is nonempty, we have λ1 ≥ 0, λn ≤ 0. Replacing, if necessary, f with −f (which
does not vary Y ), we may further assume that λ1 ≥ |λn|. The case λ1 = λn = 0 is
trivial, since in this case f ≡ 0, whence Y = Sn−1; thus, Y (and therefore Z; see (C.2)) is
connected. Thus, we may assume that λ1 ≥ |λn| and λ1 > 0 ≥ λn. Finally, it is convenient
to set θ1 = λ1, θ2 = −λn. Reordering the coordinates of x, we come to the situation as
follows:

(a) f (x) = θ1x
2
1 − θ2x

2
2 +

n∑
i=3

θix
2
i ,

(b) θ1 ≥ θ2 ≥ 0, θ1 + θ2 > 0,
(c) −θ2 ≤ θi ≤ θ1, i = 3, . . . , n.

(4.10.136)

Exercise 4.52. 1. Let x ∈ Y . Prove that x can be linked in Y by a continuous curve with
a point x ′ such that the coordinates of x ′ with indices 3, 4, . . . , n vanish.

Hint. Setting d = (0, 0, x3, . . . , xn)
T , prove that there exists a continuous

curve µ(t), 0 ≤ t ≤ 1, in Y such that

µ(t) = (x1(t), x2(t), 0, 0, . . . , 0)T + (1 − t)d, 0 ≤ t ≤ 1,

and x1(0) = x1, x2(0) = x2.

2. Prove that there exists a point z+ = (z1, z2, z3, 0, 0, . . . , 0)T ∈ Y such that
(i) z1z2 = 0.
(ii) Given a point u = (u1, u2, 0, 0, . . . , 0)T ∈ Y , you can either (ii)(a) link u by

continuous curves in Y both to z+ and to z̄+ = (z1, z2,−z3, 0, 0, . . . , 0)T ∈ Y , or (ii)(b)
link u both to z− = (−z1,−z2, z3, 0, 0, . . . , 0)T and z̄− = (−z1,−z2,−z3, 0, 0, . . . , 0)T .
(Note that z+ = −z̄−, z̄+ = −z−.)

Hint. Given a point u ∈ Y , u3 = u4 = · · · = un = 0, build a continuous curve
µ(t) ∈ Y of the type

µ(t) = (x1(t), x2(t), t, 0, 0, . . . , 0)T ∈ Y

such that µ(0) = u, and look what can be linked with u by such a curve.

3. Conclude from 1 and 2 that Y satisfies the premise of Proposition 4.10.2, and thus
complete the proof of Proposition 4.10.4.

Now we are ready to prove (SL.D).

Exercise 4.53. Let Ai , i = 1, 2, 3, satisfy the premise of (SL.D).
1. Demonstrate that in order to prove (SL.D), it suffices to prove the statement in the

particular case A1 = I .

Hint. The validity status of the conclusion in (SL.D) remains the same when
we replace our initial quadratic forms fi(x), i = 1, 2, 3, by the forms gi(x) =∑3

j=1 cijfj (x), i = 1, 2, 3, provided that the matrix [cij ] is nonsingular. Taking
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310 Lecture 4. Semidefinite Programming

into account the premise in (SL.D), we can choose such a transformation to
get, as g1, a positive definite quadratic form. Without loss of generality we may
therefore assume from the very beginning that A1 . 0. Now, passing from the
quadratic forms given by the matricesA1, A2, A3 to those given by the matrices
I, A

−1/2
1 A2A

−1/2
1 , A

−1/2
1 A3A

−1/2
1 , we do not vary the set H at all. Thus, we

can restrict ourselves with the case A1 = I .

2. Assuming A1 = I , prove that the set

H1 = {(v1, v2)
T ∈ R2 | ∃x ∈ Sn−1 : v1 = f2(x), v3 = f3(x)}

is convex.

Hint. Prove that the intersection of H1 with every line � ⊂ R2 is the image of a
connected set in Pn−1 under a continuous mapping and is therefore connected
by (C.2). Then apply the result of Exercise 4.49.

3. Assuming A1 = I , let H̃1 = {(1, v1, v2)
T ∈ R3 | (v1, v2)

T ∈ H1}, and let
H = F(Rn), F(x) = (f1(x), f2(x), f3(x))

T . Prove that H is the closed convex hull of H̃1:

H = cl{y | ∃t > 0, u ∈ H̃1 : y = tu}.
Use this fact and the result of 2 to prove that H is closed and convex, thus completing the
proof of (SL.D).

Note that the restriction n ≥ 3 in (SL.D) and (SL.C) is essential.

Exercise 4.54. Demonstrate by example that (SL.C) not necessarily remains valid when
skipping the assumption n ≥ 3 in the premise.

Hint. An example can be obtained via the construction outlined in the hint to
Exercise 4.47.

To extend (SL.C) to the case of 2 × 2 matrices, it suffices to strengthen the premise a
bit:

(SL.E) Let A,B,C be three 2 × 2 symmetric matrices such that

(i) a certain linear combination of the matrices A,B is positive definite,

and

(ii) the system of inequalities (4.10.135) is strictly feasible.

Then the inequality

xT Cx ≥ 0

is a consequence of the system (4.10.135) if and only if there exist nonnegative
λ,µ such that

C � λA + µB.
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Exercise 4.55. Let A,B,C be three 2 × 2 symmetric matrices such that the system
of inequalities xT Ax ≥ 0, xT Bx ≥ 0 is strictly feasible and the inequality xT Cx is a
consequence of the system.

1. Assume that there exists a nonsingular matrixQ such that both the matricesQAQT

and QBQT are diagonal. Prove that then there exist λ,µ ≥ 0 such that C � λA + µB.
2. Prove that if a linear combination of two symmetric matrices A,B (not necessarily

2 × 2 ones) is positive definite, then there exists a system of (not necessarily orthogonal) co-
ordinates where both quadratic forms xT Ax, xT Bx are diagonal or, equivalently, that there
exists a nonsingular matrix Q such that both QAQT and QBQT are diagonal matrices.
Combine this fact with 1 to prove (SL.E).

We have seen that the two-inequality-premise version of the S-lemma is valid (under
an additional mild assumption that a linear combination of the three matrices in question is
positive definite). In contrast, the three-inequality-premise version of the lemma is hopeless.

Exercise 4.56. Consider four matrices

A1 =
( 2 + ε

−1
−1

)
, A2 =

(−1
2 + ε

−1

)
, A3 =

(−1
−1

2 + ε

)
,

B =
( 1 1.1 1.1

1.1 1 1.1
1.1 1.1 1

)
.

1. Prove that if ε > 0 is small enough, then the matrices satisfy the conditions

(a) ∀(x, xT Aix ≥ 0, i = 1, 2, 3) : xT Bx ≥ 0,
(b) ∃x̄ : x̄T Aix̄ > 0.

2. Prove that whenever ε ≥ 0, there do not exist nonnegative λi , i = 1, 2, 3, such
that B � ∑3

i=1 λiAi .

Thus, an attempt to extend the S-lemma to the case of three quadratic inequalities in the
premise fails already when the matrices of these three quadratic forms are diagonal.

Hint. Note that if there exists a collection of nonnegative weights λi ≥ 0,
i = 1, 2, 3, such that B � ∑3

i=1 λiAi , then the same property is shared by
any collection of weights obtained from the original one by a permutation.
Conclude that under the above “if” one should have B � θ

∑3
i=1 Ai with some

θ ≥ 0, which is not the case.

Exercise 4.56 demonstrates that when considering (SL.?) for m = 3, even the as-
sumption that all quadratic forms in (S) are diagonal not necessarily implies an equivalence
between (i) and (ii). Note that under a stronger assumption that all quadratic forms in
question are diagonal, (i) is equivalent to (ii) for all m.

Exercise 4.57. Let A, B1, . . . , Bm be diagonal matrices. Prove that the inequality

xT Ax ≥ 0
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is a consequence of the system of inequalities

xT Bix ≥ 0, i = 1, . . . , m,

if and only if it is a linear consequence of the system and an identically true quadratic
inequality, i.e., if and only if

∃(λ ≥ 0,D � 0) : A =
∑
i

λiBi + D.

Hint. Pass to new variables yi = x2
i and apply the homogeneous Farkas lemma.

Relaxed versions of the S-lemma. In Exercises 4.48–4.57 we wanted to understand
under which additional assumptions on the data of (SL.?)we can be sure that (i) is equivalent
to (ii). In the exercises to follow, we want to understand the gap between (i) and (ii) in general.
An example of such a gap statement is as follows:

(SL.F) Consider the situation of (SL.?) and assume that (i) holds. Then (ii)
is valid on a subspace of codimension ≤ m − 1, i.e., there exist nonnegative
weights λi such that the symmetric matrix

D = A −
m∑
i=1

λiBi

has at most m − 1 negative eigenvalues (counted with their multiplicities).

Note that in the case m = 1 this statement becomes exactly the S-lemma.
The idea of the proof of (SL.F) is very simple. To say that (I) is a consequence of (S)

is basically the same as to say that the optimal value in the optimization problem

min
x

{
f0(x) ≡ xT Ax : fi(x) ≡ xT Bix ≥ ε, i = 1, . . . , m

}
(Pε)

is positive whenever ε > 0. Assume that the problem is solvable with an optimal solution
xε , and let Iε = {i ≥ 1 | fi(xε) = ε}. Assume, in addition, that the gradients {∇fi(xε) |
i ∈ Iε} are linearly independent. Then the second-order necessary optimality conditions
are satisfied at xε , i.e., there exist nonnegative Lagrange multipliers λεi , i ∈ Iε , such that for
the function

Lε(x) = f0(x) −
∑
i∈Iε

λεi fi(x)

one has

∇Lε(xε) = 0,
∀(d ∈ E = {d : dT ∇fi(xε) = 0, i ∈ Iε}) : dT ∇2Lε(xε)d ≥ 0.

In other words, setting D = A − ∑
i∈Iε λ

ε
i Bi , we have

Dxε = 0; dTDd ≥ 0 ∀d ∈ E.
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We conclude that dTDd ≥ 0 ∀d ∈ E+ = E + Rxε , and it is easily seen that the
codimension of E+ is at most m − 1. Consequently, the number of negative eigenvalues of
D, counted with their multiplicities, is at most m − 1.

The outlined proof is, of course, incomplete: we should justify all the assumptions
made along the way. This indeed can be done. (The driving force of the justification is the
Sard theorem: if f : Rn → Rk , n ≥ k, is a C∞ mapping, then the image under f of the set
of points x where the rank of f ′(x) is < k, is of the k-dimensional Lebesque measure 0.)

We should confess that we do not know any useful applications of (SL.F), which is not
the case for other relaxations of the S-lemma we are about to consider. All these relaxations
have to do with inhomogeneous versions of the lemma, like the one that follows.

(SL.??) Consider a system of quadratic inequalities of the form

xT Bix ≤ di, i = 1, . . . , m, (S′)

where all di are ≥ 0, and a homogeneous quadratic form

f (x) = xT Ax.

We want to evaluate the maximum f ∗ of the latter form on the solution set of
(S′).
The standard semidefinite relaxation of the optimization problem

max
x

{
f (x) : xT Bix ≤ di

}
(P)

is the problem

max
X

{
F(X) ≡ Tr(AX) : Tr(BiX) ≤ di, i = 1, . . . , m, X = XT � 0

}
,

(SDP)

and the optimal value F ∗ in this problem is an upper bound on f ∗ (why?).
How large can the difference F ∗ − f ∗ be?

The relation between (SL.??) and (SL.?) is as follows. Assume that the only solution
to the system of inequalities

xT Bix ≤ 0, i = 1, . . . , m,

is x = 0. Then (P) is equivalent to the optimization problem

min
θ,x

{
θ : xT Ax ≤ θt2, xT Bix ≤ dit

2, i = 1, . . . , m
}

(P′)

in the sense that both problems have the same optimal value f ∗ (why?). In other words,

(J) f ∗ is the smallest value of a parameter θ such that the homoge-
neous quadratic inequality[

x

t

]T

Âθ

[
x

t

]
︸ ︷︷ ︸

z

≥ 0, Âθ =
(−A

θ

)
, (C)
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is a consequence of the system of homogeneous quadratic inequal-
ities

zT B̂iz ≥ 0, i = 1, . . . , m, B̂i =
(−Bi

di

)
. (H)

Now let us assume that (P) is strictly feasible, so that (SDP) is also strictly
feasible (why?), and that (SDP) is bounded above. By the conic duality theorem,
the semidefinite dual of (SDP)

min
λ

{
m∑
i=1

λidi :
m∑
i=1

λiBi � A, λ ≥ 0

}
(SDD)

is solvable and has the same optimal value F ∗ as (SDP). On the other hand, it
is immediately seen that the optimal value in (SDD) is the smallest θ such that
there exist nonnegative weights λi satisfying the relation

Âθ �
m∑
i=1

λiB̂i .

Thus,

(K) F ∗ is the smallest value of θ such that Âθ is � a combina-
tion, with nonnegative weights, of B̂i’s, or, which is the same, F ∗
is the smallest value of the parameter θ for which (C) is a linear
consequence of (H).

Comparing (J) and (K), we see that our question (SL.??) is closely related to
the question, What is the gap between (i) and (ii) in (SL.?). In (SL.??), we are
considering a parameterized family zT Âθ z ≥ 0 of quadratic inequalities and
we ask ourselves what the gap is between

(a) the smallest value f ∗ of the parameter θ for which the inequality zT Âθ z ≥ 0
is a consequence of the system (H) of homogeneous quadratic inequalities,

and

(b) the smallest value F ∗ of θ for which the inequality zT Âθ z ≥ 0 is a linear
consequence of (H).

The goal of the subsequent exercises is to establish the following two results related
to (SL.??).

Proposition 4.10.5. (Nesterov, Ye) Consider (SL.??) and assume that

1. The matrices B1, . . . , Bm commute with each other.

2. System (S′) is strictly feasible, and there exists a combination of the matrices Bi with
nonnegative coefficients which is positive definite.

3. A � 0.
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Then f ∗ ≥ 0, (SDD) is solvable with the optimal value F ∗, and

F ∗ ≤ π

2
f ∗. (4.10.137)

Proposition 4.10.6. (Nemirovski, Roos, Telaky) Consider (SL.??) and assume that
Bi � 0, di > 0, i = 1, . . . , m, and

∑
i Bi . 0. Then f ∗ ≥ 0, (SDD) is solvable

with the optimal value F ∗, and

F ∗ ≤ 2 ln

(
2

m∑
i=1

Rank(Bi)

)
f ∗. (4.10.138)

Exercise 4.58. Derive Proposition 4.10.5 from the result of Exercise 4.38.

Hint. Observe that since Bi are commuting symmetric matrices, they share a
common orthogonal eigenbasis, so that w.l.o.g. we can assume that all Bi’s are
diagonal.

The remaining exercises of this section are aimed at proving Proposition 4.10.6. We
start with a simple technical result.

Exercise 4.59. 1. Let b ∈ Rn, and let ξ = (ξ1, . . . , ξn)
T be a random vector with

independent identically distributed coordinates each taking values ±1 with probabilities
0.5. Prove that

∀(t ≥ 0) : Prob{|bT ξ | ≥ t‖b‖2} ≤ 2 exp{−t2/2}.

Hint. By symmetry reasons, it suffices to demonstrate that

∀(t ≥ 0) : Prob{bT ξ ≥ t‖b‖2} ≤ exp{−t2/2}.

To prove the latter inequality, observe that whenever ρ ≥ 0, one has (why?)

Prob{bT ξ ≥ t‖b‖2} ≤ E
{
exp{ρbT ξ}} exp{−ρt‖b‖2},

where E stands for the expectation with respect to the distribution of ξ .

Prove that

E
{
exp{ρbT ξ}} =

n∏
i=1

cosh(ρbi) ≤
n∏

i=1

exp{ρ2b2
i /2},

thus coming to the bound

Prob{bT ξ ≥ t‖b‖2} ≤ exp{ρ2‖b‖2
2/2 − ρt‖b‖2} ∀ρ ≥ 0,

and optimize the resulting bound in ρ.
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Remark. The outlined reasoning is one of the standard ways (going back to Bernshtein)
of bounding the probabilities of large deviations.

2. Derive from 1 that if B is a positive semidefinite matrix and ξ is a random vector
as in 1, then

Prob{ξT Bξ ≥ tTr(B)} ≤ 2Rank(B) exp{−t/2}.
Now we are ready to prove Proposition 4.10.6. Below it is assumed that the data of

(SL.??) satisfy the premise of the Proposition 4.10.6.

Exercise 4.60. Prove that F ∗ ≥ f ∗ ≥ 0, f ∗ = 0 if and only if A / 0, and in the latter
case F ∗ = 0 as well.

In view of Exercise 4.60, the conclusion of Proposition 4.10.6 is valid in the case
f ∗ ≤ 0. In what follows, we assume that f ∗ > 0.

Exercise 4.61. 1. Prove that (SDP) is solvable.
2. Let X∗ be an optimal solution of (SDP), and let

Â ≡ X1/2
∗ AX1/2

∗ = UÃUT ,

where U is orthogonal and Ã is diagonal. Let us set

B̃i = UX1/2
∗ BiX

1/2
∗ UT , i = 1, . . . , m.

2.a. Prove that the optimal value f∗ of the problem

max
x

{
xT Ãx : xT B̃ix ≤ di, i = 1, . . . , m

}
(̂P)

(which is a properly scaled version of (P)) is ≤ f ∗ (and is equal to f ∗, provided that
X∗ . 0).

2.b. Prove that Tr(Ã) = F ∗, B̃i � 0 and Tr(B̃i) ≤ di , i = 1, . . . , m.
2.c. Let ξ be a random vector in Rn (n is the row size of the matrices A,B1, . . . , Bm)

with independent coordinates taking values ±1 with probabilities 1/2. Derive from 2.b that

Prob{ξT Ãξ = F ∗} = 1;
Prob{∃i : ξT B̃iξ > tdi} ≤ 2 exp{−t/2}

m∑
i=1

Rank(Bi).

Hint. Use the result of Exercise 4.59.2.

3. Derive from 2.a, c that F ∗ ≤ 2 ln
(∑m

i=1 Rank(Bi)
)
f ∗, thus completing the proof

of Proposition 4.10.6.

S-lemma, matrix cube, Nesterov’s theorem, Proposition 4.10.6, and more

A careful reader already will have discovered a common denominator of the important
results given in the heading. This common denominator can be outlined as follows:
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• Our goal is to build a computationally tractable upper bound on the optimal value
of a seemingly difficult optimization problem

f ∗ = max
x

{f (x) : x ∈ X} (4.10.139)

and to evaluate the quality of the bound.
• To achieve our goal, we act as follows:
1. Build an approximation. We build somehow an approximation of the problem

of interest—a semidefinite program

max
x

{
cT x : A(x) ≡

∑
i

xiAi � B

}
(4.10.140)

such that the optimal value c∗ in (4.10.140) is an upper bound on f ∗.
2. Write optimality conditions. We write the optimality conditions for an optimal

solution x∗ of the approximation (4.10.140):

A(x∗) � B [primal feasibility],
W∗ � 0, A∗W∗ = c [dual feasibility],
cT x∗ = Tr(BW∗) [zero duality gap].

(4.10.141)

3. Apply stochastic interpretation. We treat the positive semidefinite matrices ap-
pearing in (4.10.141) as the covariance matrices of certain distributions (usually just Gaus-
sian ones), and interpret the optimality conditions (4.10.141) as relations between expecta-
tions of appropriate random variables associated with these distributions. In all examples
we are speaking about, these relations between the expectations say something about the
original problem (4.10.139), and this something straightforwardly yields a feasible solution
of the original problem with the value of the objective of order of c∗, and thus yields a bound
on the quality of our approximation.

Of course, this description is too diffuse to be a recipe (and there hardly could exist a
recipe for getting nontrivial results). But this diffuse recipe allows us to prove the S-lemma,
the matrix cube theorem, Theorem 4.4.1, the Nesterov theorem, Theorem 4.3.2, and others.
In what follows, we give two more applications of the recipe. Both deal with the bounds
proposed and studied (via techniques completely different from ours) by Nesterov.44 In
these applications, we need the following fundamental fact. (We have already mentioned it
on different occasions; now it is time to prove it.)

Theorem 4.10.2. Lagrange duality theorem for convex programming problem with
LMI constraints. Let gi(x) : Rn → R ∪ {∞}, i = 0, 1, . . . , k, be convex functions.
Consider the optimization program

min
x

g0(x) : gi(x) ≤ 0, i = 1, . . . , k,A(x) ≡ A0 +
n∑

j=1

xjAj � 0

 [x ∈ Rn, Aj ∈ Sm].

(4.10.142)
44Y. Nesterov, Semidefinite relaxation and non-convex quadratic optimization, Optim. Methods Software, 12

(1997), pp. 1–20. Y. Nesterov, Nonconvex quadratic optimization via conic relaxation, in Handbook on Semidefinite
Programming, R. Saigal, H. Wolkowicz, and L. Vandenberghe, eds., Kluwer Academic Publishers, Dordrecht, the
Netherlands, 2000, pp. 363–387.
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Assume that the problem is strictly feasible:

∃x̄ : gi(x̄) < 0, i = 1, . . . , k,A(x̄) . 0.

Let x∗ be a feasible solution of (4.10.142) such that all functions gi , i = 0, 1, . . . , k, are
finite in a neighborhood of x∗ and are differentiable at x∗. Then x∗ is an optimal solution of
(4.10.142) if and only if there exist X∗ ∈ Sm+ and λ∗ ∈ Rk+ such that the point (x∗;X∗, λ∗)
is a saddle point of the Lagrange function

L(x;X, λ) = g0(x) +
k∑

i=1

λigi(x) − Tr(XA(x))

on the set Rn × (Sm+ × Rk+), i.e.,

∀(x ∈ Rn,X ∈ Sm
+, λ ∈ Rk

+) : L(x∗;X, λ) ≤ L(x∗;X∗, λ∗) ≤ L(x;X∗, λ∗).

Exercise 4.62. Prove Theorem 4.10.2.

Hint. Prove that under the premise of the theorem x∗ is an optimal solution of
(4.10.142) if and only if x∗ is an optimal solution in the linearized problem

min
x

{
g0(x∗) + (x − x∗)T ∇g0(x∗) : gi(x∗)

+ (x − x∗)T ∇gi(x∗) ≤ 0, i = 1, . . . , k,A(x) / 0
}

and apply the conic duality theorem.

Bounding maximum of a convex quadratic form over ‖ · ‖p-ball. Let 2 < p ≤ ∞,
and let Q . 0, Q ∈ Sm. Consider the problem

ρ(Q) = max
x

{
xTQx : ‖x‖p ≤ 1

}
, (4.10.143)

which is a natural extension of the problem of maximizing a convex quadratic form over
the cube ‖ · ‖∞ ≤ 1. Nesterov proposed the following approximation of (4.10.143):

R(Q) = min
λ,ρ

{
ρ : ρQ−1 � (Diag(λ))−1, λ > 0, ‖λ‖r ≤ 1

}
, r = p

p − 2
. (4.10.144)

Our first goal is to verify that (4.10.144) yields an upper bound on ρ(Q).

Exercise 4.63. 1. Prove the following equivalences:

ρ(Q) ≤ ρ

,(
ρ dT

d Q−1

)
� 0 ∀(d : ‖d‖p ≤ 1)

,
ρQ−1 � ddT ∀(d, ‖d‖p ≤ 1)

,
ρxTQ−1x ≥ ‖x‖2

q ∀x [q = p

p−1 ].

(4.10.145)

Hint. Look at the proof of Lemma 4.4.6.
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2. Verify that if λ > 0, ‖λ‖r ≤ 1, and ρ > 0 are such that ρQ−1 � (Diag(λ))−1,
then

ρxTQ−1x ≥ ‖x‖2
q ∀x.

Derive from 1 and 2 that ρ(Q) ≤ R(Q).

The challenge is to quantify the quality of the bound R(Q), and here is the answer.

Proposition 4.10.7. One has

R(Q) ≤ ω2
pρ(Q), ωp =

(∫ ∞

−∞
|t | p

p−1 G(t)dt
)− p−1

p

, (4.10.146)

where

G(t) = 1√
2π

exp

{
− t2

2

}
is the standard Gaussian density. When p grows from 2 to ∞, the factor ω2

p grows from
ω2

2 = 1 to ω2∞ = π
2 .

To prove Proposition 4.10.7, observe that

Rr(Q) = min
µ

{∑
i

1

µr
i

: µ > 0,Q−1 � Diag(µ)

}

(why?). Thus, it suffices to lead to a contradiction the assumption that

(ω2
pρ(Q))r < min

µ

{∑
i

1

µr
i

: µ > 0,Q−1 � Diag(µ)

}
. (4.10.147)

Exercise 4.64. Assume that (4.10.147) takes place.
1. Prove that there exists X � 0 such that

(ω2
pρ(Q))r < min

µ

{∑
i

[
1
µr
i

+ Xiiµi

]
− Tr(XQ−1) : µ ≥ 0

}
= 2

q
q
2 (2−q)

2−q
2

∑
i

X
q

2
ii − Tr(XQ−1),

q = p

p−1 .

(4.10.148)

Hint. Use Theorem 4.10.2

2. Let X be given by 1, Y = X1/2, and let ξ be a Gaussian random vector with zero
mean and unit covariance matrix. Verify that (4.10.148) says exactly that

(ω2
pρ(Q))r + E

{
ξT YQ−1Yξ

}
<

2

q
q

2 (2 − q)
2−q

2

ωq
pE

{‖Yξ‖qq
}D
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and use the result of Exercise 4.63 to derive from this inequality that

(ω2
pρ(Q))r + ρ−1(Q)E

{‖Yξ‖2
q

} − 2

q
q

2 (2 − q)
2−q

2

ωq
p

∑
i

E
{‖Yξ‖qq

}
< 0.

Conclude from the latter relation that

min
t>0

[
(ω2

pρ(Q))r + ρ−1(Q)t2 − 2

q
q

2 (2 − q)
2−q

2

ωq
pt

q

]
< 0,

which in fact is not the case. Conclude that (4.10.147) is impossible, thus completing the
proof of Proposition 4.10.7.

Bounding maximum of a quadratic form over a central cross section of a ‖ · ‖p-ball.
Let 2 < p ≤ ∞, Q ∈ Sm, and let A be an n × m matrix of rank m. Consider the problem

ρA(Q) = max
x

{
xTQx : ‖Ax‖p ≤ 1

}
. (4.10.149)

Geometrically we are maximizing a quadratic form on the intersection of a ‖ · ‖p-ball in Rn

and an m-dimensional linear subspace (the image space of A), while in (4.10.143) we were
maximizing the form on the entire ball. Note also that now Q can be indefinite. Nesterov
proposed the following approximation of (4.10.149):

RA(Q) = min
λ,ρ

{
ρ : Q / AT Diag(λ)A, λ ≥ 0, ‖λ‖r ≤ ρ

}
, r = p

p − 2
. (4.10.150)

Our first goal is to verify that (4.10.150) yields an upper bound on ρA(Q).

Exercise 4.65. 1. Prove the following equivalences:

ρA(Q) ≤ ρ

,
ρ ≥ xTQx ∀(x : ‖Ax‖p ≤ 1)

,
ρ‖Ax‖2

p ≥ xTQx ∀x.

(4.10.151)

2. Verify that if λ > 0, ‖λ‖r ≤ 1, and ρ ≥ 0 are such that ρQ / Diag(λ), then

ρxTQx ≤ ‖Ax‖2
p ∀x.

Derive from 1 and 2 that ρA(Q) ≤ RA(Q).

The challenge is to quantify the quality of the bound RA(Q), and here is the answer.

Proposition 4.10.8. One has

RA(Q) ≤ σ 2
pρA(Q), σp =

(∫ ∞

−∞
|t |pG(t)dt

) 1
p

. (4.10.152)
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Note that

σ 2
p ≤ 1 + exp{−1}(p − 2), p ≥ 2.

To prove Proposition 4.10.8, observe that

Rr
A(Q) = min

λ

{∑
i

|λi |r : Q / AT Diag(λ)A

}
.

(Why?) Thus, it suffices to lead to a contradiction the assumption that

(σ 2
pρA(Q))r < min

λ

{∑
i

|λi |r : Q / AT Diag(λ)A

}
. (4.10.153)

Exercise 4.66. Assume that (4.10.153) takes place.
1. Prove that there exists X � 0 such that

(σ 2
pρA(Q))r < min

λ

{∑
i

[|λi |r − (AXAT )iiλi
] + Tr(XQ)

}
= −(r − 1)r− r

r−1

∑
i

((AXAT )ii)
p

2 + Tr(XQ).

(4.10.154)

Hint. Use Theorem 4.10.2.

2. Let X be given by 1, Y = X1/2, B = AY , and let ξ be a Gaussian random vector
with zero mean and unit covariance matrix. Verify that (4.10.154) says exactly that

(σ 2
pρA(Q))r + (r − 1)r− r

r−1 σ−p
p E

{‖Bξ‖pp
}
< E

{
ξT YQYξ

}
and use the result of Exercise 4.65 to derive from this inequality that

(σ 2
pρA(Q))r + (r − 1)r− r

r−1 σ−p
p E

{‖Bξ‖pp
}
< ρA(Q)E

{‖Bξ‖2
p

}
.

Conclude from the latter relation that

min
t>0

[
(σ 2

pρA(Q))r + (r − 1)r− r
r−1 σ−p

p tp − ρA(Q)t2
]
< 0,

which in fact is not the case. Conclude that (4.10.153) is impossible, thus completing the
proof of Proposition 4.10.8.

Exercise 4.67. LetQ ∈ Sm be a positive definite matrix, and letL = {x ∈ Rm : eT x = 0},
where e �= 0. Assume that we want to bound from above the quantity

ρe(Q) = max
x

{
xTQx : x ∈ L, ‖x‖∞ ≤ 1

}
.

1. Prove that the optimal value Re(Q) in the optimization problem

Re(Q) = min
λ,f

{∑
i

λi : λ ≥ 0, (I − ef T )Q(I − f eT ) / Diag(λ), f T e = 1

}
is an upper bound on ρe(Q).
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Hint. Observe that whenever λ, f is a feasible solution of the problem, one
has

maxx

{
xTQx : x ∈ L, ‖x‖∞ ≤ 1

}
≤ maxx

{
xT (I − ef T )Q(I − f eT )x : ‖x‖∞ ≤ 1

} ≤
∑
i

λi .

2. Prove that the quantity Re(Q) is at most 2π times larger than ρe(Q).

Hint. Choose as f the vector with coordinates sign(ei)(
∑

i |ei |)−1 and prove
that with this choice of f , the ratio

max
x

{
xT (I − ef T )Q(I − f eT )x : ‖x‖∞ ≤ 1

}
max
x

{
xTQx : x ∈ L, ‖x‖∞ ≤ 1

}
does not exceed 4. Further apply the Nesterov Theorem 4.3.2.

3. Prove that the quantity Re(Q) is computable via SDP, namely,

Re(Q) = min
λ,f

{∑
i

λi :
(

Diag(λ) I − ef T

I − f eT Q−1

)
� 0, f T e = 1

}
.

The exercise to follow deals with a simple combinatorial applications of Exercise
4.67. Consider the following combinatorial problem:

MAXCUT(n, p). You are given an n-node graph and an integer p ≥ n/2. The
arcs of the graph are assigned nonnegative weights. You are allowed to color
the nodes of the graph in two colors, red and green, in such a way that there
will be at most p and at least n/2 red nodes. Under this restriction, you are
want to maximize the total weight of the arcs linking nodes of different colors.

Note that MAXCUT(n, n) is the usual MAXCUT problem.

Exercise 4.68. Build a computable upper bound on the optimal value in MAXCUT(p, n)
that coincides with the true optimal value within the factor 2π . Think how to produce
efficiently a 2π -suboptimal coloring.

Here are the numerical results we have obtained for the equipartition problem
MAXCUT(n/2, n) in a sample of 10 randomly generated 40-node graphs:

# Bound True value ≥ Bound
True value ≤ # Bound True value ≥ Bound

True value ≤

1 60.86 58.52 1.04 6 62.09 59.83 1.04
2 48.70 47.70 1.02 7 58.16 55.15 1.05
3 69.34 65.60 1.06 8 59.49 56.92 1.05
4 57.71 55.24 1.04 9 61.51 59.77 1.03
5 64.82 61.88 1.05 10 60.43 59.00 1.02

Note that the brute force search for the optimal equipartition of a 40-node graph requires us
to look through 1

2 (
40
20 ) ≈ 6.89 × 1010 variants.

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 323

✐

✐

✐

✐

✐

✐

✐

✐

4.10. Exercises to Lecture 4 323

d

θ

Figure 4.21. Linear array of harmonic oscillators.

4.10.6 Antenna synthesis

Consider the antenna synthesis problem from Example 2, section 4.6:

Given an equidistant array of n harmonic oscillators placed along the X-axis
in the XY -plane (Fig. 4.21), choose complex weights zj , j = 1, . . . , n, to get
the modulus |Z(·)| of the corresponding diagram

Z(θ) =
n−1∑
l=0

zl exp{−il/(θ)}, /(θ) = 2πd cos(θ)

λ
,

as close as possible to a given target.

Assume we want to get a diagram that is concentrated in the beam −φ+ ≤ θ ≤ φ+.
The natural design specifications in this case are as follows: we fix a ripple α > 1, require
the diagram to satisfy the inequality

1

α
≤ |Z(θ)| ≤ α, −φ+ ≤ θ ≤ φ+,

and minimize under this restriction the sidelobe attenuation level

max
φ−≤|θ |≤π

|Z(θ)|,

where φ− > φ+ is a given sidelobe angle.D
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To solve the problem, one may use a simplified version of the approach presented in
section 4.6. Specifically, the problem is posed as

minimize ε

s.t.

(a) 0 ≤ R(ω) ≡ r(0) +
n−1∑
l=1

(r(2l − 1) cos(lω) + r(2l) sin(lω)), ω ∈ 
1,

(b) 0 ≤ R(ω) ≤ ε, ω ∈ 
2,

(c) 0 ≤ R(ω), ω ∈ 
3,

(d) α−2 ≤ R(ω) ≤ α2, ω ∈ 
4,

(e) 0 ≤ R(ω), ω ∈ 
5,

where 
j , j = 1, 2, 3, 4, 5, are fine finite grids in the segments

D1 = [−π,ωmin], ωmin = − 2πd
λ
,

D2 = [ωmin, ω−], ω− = 2πd cos(φ−)
λ

,

D3 = [ω−, ω+], ω+ = 2πd cos(φ+)
λ

,

D4 = [ω+, ωmax], ωmax = 2πd
λ
,

D5 = [ωmax, π ].

(∗)

Note that the lower bounds in (a), (b), (c), (e) are aimed at ensuring that R(ω) is nonnegative
on [−π, π ], which is a necessary and sufficient condition for R(/(θ)) to be of the form
|Z(θ)|2 for some Z(θ). Of course, the indicated lower bounds ensure nonnegativity of
R only on the grid 
 = ⋃5

j=1 
j in the segment [−π, π ], not on the segment itself, so
that a solution to (*) sometimes should be modified to yield an actual diagram. Note
that the settings we dealt with in section 4.6 were free of this drawback: there we were
ensuring nonnegativity of R(·) by restricting the coefficient vector r to belong to the SDr
set of coefficients of nonnegative trigonometric polynomials. The approximate setting (*),
however, has a definite advantage—this is just an LP program, not a semidefinite one. To
utilize this advantage, we should know how to modify a solution to (*) in order to make the
corresponding R(·) nonnegative on the entire segment.

Exercise 4.69. Assume that n ≥ 2, 
 is an M-point equidistant grid on [−π, π ],


 =
{

−π + 2πj

M
| j = 1, 2, . . . ,M

}
,

and

M ≥
√
π3(n − 1)3.

Prove that if (ε, r) is a feasible solution to (∗), then r(0) ≥ 0 and the regularized R(·), the
trigonometric polynomial

R(ω) + δ ≡ r(0) + δ +
n−1∑
l=1

(r(2l − 1) cos(lω) + r(2l) sin(lω)),D
ow
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Figure 4.22. The dream.

where the regularization δ is given by

δ = π3(n − 1)3

M2
r(0),

is nonnegative on [−π, π ].

Consider now the particular data as follows:

• The number of oscillators in array is n = 12.

• The interelement distance is d = 0.25λ.

• The (half-) width of the beam φ+ = 30o.

• The sidelobe angle φ− = 45o.

• The ripple α = 1dB = 101/20 ≈ 1.1220.

When solving (*) with 
 chosen as the equidistant 2048-point grid, one obtains the pattern
function |Znom(θ)| shown in Fig. 4.22. The resulting sidelobe attenuation level

√
ε is

−23.42dB = 10−23.42/20 ≈ 0.068. The result, however, is completely unstable with respect
to implementation errors: when the weights znom

j of the resulting diagram Znom(θ) are
perturbed as

znom
j �→ (1 + εj )z

nom
j ,

where εj are independent random (complex-valued) perturbations with zero mean and norm
not exceeding ε

√
2, the pattern function of an actual (random) diagram may look as shown

in Fig. 4.23. The pattern functions in Fig. 4.24 are given by a robust design.

Exercise 4.70. Think how to build a robust setting of the antenna synthesis problem from
Example 2, section 4.6.D
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Figure 4.23. The reality. Left: perturbation level ε = 0.005, sidelobe attenuation
level −15.12dB ≈ 0.18, actual ripple 1.65dB ≈ 1.21. Right: perturbation level ε = 0.025,
sidelobe attenuation level 3.89dB ≈ 1.56, actual ripple 4.45dB ≈ 1.67.
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Figure 4.24. Robust design, actual pattern functions. Left: perturbation level
ε = 0.005, sidelobe attenuation level −14.07dB ≈ 0.20, actual ripple 0.97dB ≈ 1.12.
Right: perturbation level ε = 0.05, sidelobe attenuation level −13.43dB ≈ 0.21, actual
ripple 1.04dB ≈ 1.13.

4.10.7 Ellipsoidal approximations

Exercise 4.71. Prove the Löwner–Fritz John theorem (Theorem 4.9.1).

More on ellipsoidal approximations of sums of ellipsoids. The goal of the two sub-
sequent exercises is to get in an alternative way the problem (Õ) generating a parametric
family of ellipsoids containing the arithmetic sum of m given ellipsoids (section 4.9.2).

Exercise 4.72. Let Pi be nonsingular and Ni be positive definite n × n matrices, i =
1, . . . , m. Prove that for every collection x1, . . . , xm of vectors from Rn one has

[x1 + · · · + xm]T
[

m∑
i=1

[PT
i ]−1N−1

i P−1
i

]−1

[x1 + · · · + xm] ≤
m∑
i=1

[xi]T PiNiP
T
i x

i .

(4.10.155)

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 327

✐

✐

✐

✐

✐

✐

✐

✐

4.10. Exercises to Lecture 4 327

Hint. Consider the (nm + n) × (nm + n) symmetric matrix

A =


P1N1P

T
1 In

. . .
...

PmNmP
T
m In

In · · · In
m∑
i=1

[PT
i ]−1N−1

i P−1
i


and apply twice the Schur complement lemma: the first time to prove that the
matrix is positive semidefinite, and the second time to get from the latter fact
the desired inequality.

Exercise 4.73. Assume you are given m full-dimensional ellipsoids centered at the origin

Wi = {x ∈ Rn | xT Bix ≤ 1}, i = 1, . . . , m, [Bi . 0]
in Rn.

1. Prove that for every collection N of positive definite n × n matrices Ni such that∑
i

λmax(Ni) ≤ 1

the ellipsoid

EN = {x | xT

[
m∑
i=1

B
−1/2
i N−1

i B
−1/2
i

]−1

x ≤ 1}

contains the sum W1 + · · · + Wm of the ellipsoids Wi .
2. Prove that in order to find the smallest-volume ellipsoid in the family {EN}N defined

in 1 it suffices to solve the semidefinite program

maximize t

s.t.
(a) t ≤ Det1/n(Z),

(b)


N1

N2

. . .

Nm

 �


B−1

1 ZB−1
1 B

−1/2
1 ZB

−1/2
2 . . . B

−1/2
1 ZB

−1/2
m

B
−1/2
2 ZB

−1/2
1 B

−1/2
2 ZB

−1/2
2 . . . B

−1/2
2 ZB

−1/2
m

...
...

. . .
...

B
−1/2
m ZB

−1/2
1 B

−1/2
m ZB

−1/2
2 . . . B

−1/2
m ZB

−1/2
m

 ,

(c) Z � 0,
(d) Ni / λiIn, i = 1, . . . , m,

(e)
m∑
i=1

λi ≤ 1

(4.10.156)

in variables Z,Ni ∈ Sn, t, λi ∈ R. The smallest-volume ellipsoid in the family {EN}N is
EN∗ , where N∗ is the N-part of an optimal solution of the problem.

Hint. Use example 20.c from this lecture, page 155.
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3. Demonstrate that the optimal value in (4.10.156) remains unchanged when the
matrices Ni are further restricted to be scalar: Ni = λiIn. Prove that with this additional
constraint problem (4.10.156) becomes equivalent to problem (Õ) from section 4.9.2.

Remark 4.10.1. Exercise 4.73 demonstrates that the approximating scheme for solving
problem (O) presented in Proposition 4.9.4 is equivalent to the following one:

Given m positive reals λi with unit sum, one defines the ellipsoid E(λ) = {x |
xT

[∑m
i=1 λ

−1
i B−1

i

]−1
x ≤ 1}. This ellipsoid contains the arithmetic sum W

of the ellipsoids {x | xT Bix ≤ 1}, and to approximate the smallest volume
ellipsoid containing W , we merely minimize Det(E(λ)) over λ varying in the
standard simplex {λ ≥ 0,

∑
i λi = 1}.

In this form, the approximation scheme in question was proposed by Schweppe (1975).

Exercise 4.74. Let Ai be nonsingular n × n matrices, i = 1, . . . , m, and let Wi = {x =
Aiu | uT u ≤ 1} be the associated ellipsoids in Rn. Let Dm = {λ ∈ Rm+ | ∑

i λi = 1}.
Prove that

1. whenever λ ∈ Dm and A ∈ Mn,n is such that

AAT � F(λ) ≡
m∑
i=1

λ−1
i AiA

T
i ,

the ellipsoid E[A] = {x = Au | uT u ≤ 1} contains W = W1 + · · · + Wm;

Hint. Use the result of Exercise 4.73.1.

2. whenever A ∈ Mn,n is such that

AAT / F(λ) ∀λ ∈ Dm,

the ellipsoid E[A] is contained in W1 + · · · + Wm, and vice versa.

Hint. Note that (
m∑
i=1

|αi |
)2

= min
λ∈Dm

m∑
i=1

α2
i

λi

and use statement (F) from section 4.9.2.

Simple ellipsoidal approximations of sums of ellipsoids. LetWi = {x = Aiu | uT u ≤
1}, i = 1, . . . , m, be full-dimensional ellipsoids in Rn (so that Ai are nonsingular n × n

matrices), and let W = W1 + · · · + Wm be the arithmetic sum of these ellipsoids. Observe
that W is the image of the set

B =

u =
 u[1]

...

u[m]

 ∈ Rnm | uT [i]u[i] ≤ 1, i = 1, . . . , m

D
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under the linear mapping

u �→ Au =
m∑
i=1

Aiu[i] : Rnm → Rn.

It follows that

Whenever an nm-dimensional ellipsoid W contains B, the set A(W), which is
an n-dimensional ellipsoid (why?) contains W , and whenever W is contained
in B, the ellipsoid A(W) is contained in W .

In view of this observation, we can try to approximate W from inside and from outside by
the ellipsoids W− ≡ A(W−) and W+ = A(W+), where W− and W+ are, respectively, the
largest and the smallest volume nm-dimensional ellipsoids contained in or containing B.

Exercise 4.75. 1. Prove that

W− =
{
u ∈ Rnm |

m∑
i=1

uT [i]u[i] ≤ 1

}
,

W+ =
{
u ∈ Rnm |

m∑
i=1

uT [i]u[i] ≤ m

}
,

so that

W ⊃ W− ≡
{
x =

m∑
i=1

Aiu[i] |
m∑
i=1

uT [i]u[i] ≤ 1

}
,

W ⊂ W+ ≡
{
x =

m∑
i=1

Aiu[i] |
m∑
i=1

uT [i]u[i] ≤ m

}
= √

mW−.

2. Prove that W− can be represented as

W− = {x = Bu | u ∈ Rn, uT u ≤ 1}
with matrix B . 0 representable as

B =
m∑
i=1

AiXi

with square matrices Xi of norms |Xi | ≤ 1.
Derive from this observation that the level of conservativeness of the inner ellipsoidal

approximation ofW given by Proposition 4.9.6 is at most
√
m: ifW∗ is this inner ellipsoidal

approximation and W∗∗ is the largest volume ellipsoid contained in W , then(
Vol(W∗∗)
Vol(W∗)

)1/n

≤
(

Vol(W)

Vol(W∗)

)1/n

≤ √
m.D
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330 Lecture 4. Semidefinite Programming

Invariant ellipsoids

Exercise 4.76. Consider a discrete time controlled dynamic system

x(t + 1) = Ax(t) + bu(t), t = 0, 1, 2, . . . ,
x(0) = 0,

where x(t) ∈ Rn is the state vector and u(t) ∈ [−1, 1] is the control at time t . An ellipsoid
centered at the origin

W = {x | xT Zx ≤ 1} [Z . 0]
is called invariant if

x ∈ W ⇒ Ax ± b ∈ W.

Prove the following:
1. If W is an invariant ellipsoid and x(t) ∈ W for some t , then x(t ′) ∈ W ∀t ′ ≥ t .
2. Assume that the vectors b,Ab,A2b, . . . , An−1b are linearly independent. Prove

that an invariant ellipsoid exists if and only if A is stable (the absolute values of all eigen-
values of A are < 1).

3. Assuming that A is stable, prove that an ellipsoid {x | xT Zx ≤ 1} [Z . 0] is
invariant if and only if there exists λ ≥ 0 such that(

1 − bT Zb − λ, −bT ZA

−ATZb, λZ − ATZA

)
� 0.

How could one use this fact to approximate numerically the smallest-volume invariant
ellipsoid?

Greedy infinitesimal ellipsoidal approximations. Consider a linear time-varying con-
trolled system

d

dt
x(t) = A(t)x(t) + B(t)u(t) + v(t) (4.10.157)

with continuous matrix-valued functionsA(t),B(t), continuous vector-valued function v(·),
and norm-bounded control:

‖u(·)‖2 ≤ 1. (4.10.158)

Assume that the initial state of the system belongs to a given ellipsoid:

x(0) ∈ E(0) = {x | (x − x0)T G0(x − x0) ≤ 1} [G0 = [G0]T . 0]. (4.10.159)

Our goal is to build, in an on-line fashion, a system of ellipsoids

E(t) = {x | (x − xt )
T Gt(x − xt ) ≤ 1} [Gt = GT

t . 0] (4.10.160)

in such a way that ifu(·) is a control satisfying (4.10.158) and x(0) is an initial state satisfying
(4.10.159), then for every t ≥ 0 it holds that

x(t) ∈ E(t).

We want to minimize the volumes of the resulting ellipsoids.
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Figure 4.25. Spiral.
d

dt

[
x1(t)

x2(t)

]
=

[
cos(t) − sin(t)
sin(t) cos(t)

] [
x1(t)

x2(t)

]
+ u(t)

[
cos(t)
sin(t)

]
+

[
10
10

]
x(0) = 0, |u(·)| ≤ 1, 0 ≤ t ≤ 30

There is no difficulty with the path xt of centers of the ellipsoids: it obviously should
satisfy the requirements

d

dt
xt = A(t)xt + v(t), t ≥ 0; x0 = x0. (4.10.161)

Let us take this choice for granted and focus on how we should define the positive definite
matrices Gt . Let us look for a continuously differentiable matrix-valued function Gt , taking
values in the set of positive definite symmetric matrices, with the following property:

(L) For every t ≥ 0 and every point xt ∈ E(t) (see (4.10.160)), every trajectory
x(τ), τ ≥ t , of the system

d

dτ
x(τ) = A(τ)x(τ ) + B(τ)u(τ) + v(τ), x(t) = xt ,

with ‖u(·)‖2 ≤ 1 satisfies x(τ) ∈ E(τ) ∀τ ≥ t .

Note that (L) is a sufficient (but in general not necessary) condition for the system of ellipsoids
E(t), t ≥ 0, to cover all trajectories of (4.10.157)–(4.10.158). Indeed, when formulating
(L), we act as if we were sure that the states x(t) of our system run through the entire ellipsoid
E(t), which is not necessarily the case. The advantage of (L) is that this condition can be
converted into an infinitesimal form.
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Figure 4.26. Snake.
d

dt

[
x1(t)

x2(t)

]
=

[
0 − sin(t)

sin(t) 0

] [
x1(t)

x2(t)

]
+ u(t)

[
cos(t)
sin(t)

]
+

[
10
10

]
x(0) = 0, |u(·)| ≤ 1, 0 ≤ t ≤ 30

Exercise 4.77. Prove that if Gt . 0 is continuously differentiable and satisfies (L), then

∀ (
t ≥ 0, x, u : xTGtx = 1, uT u ≤ 1

) :
2uT BT (t)Gtx + xT

[
d

dt
Gt + AT (t)Gt + GtA(t)

]
x ≤ 0.

(4.10.162)

Conversely, if Gt is a continuously differentiable function taking values in the set of positive
definite symmetric matrices and satisfying (4.10.162) and the initial condition G0 = G0,
then the associated system of ellipsoids {E(t)} satisfies (L).

The result of Exercise 4.77 provides us with a kind of description of the families
of ellipsoids {E(t)} we are interested in. Now let us take care of the volumes of these
ellipsoids. The latter can be done via a “greedy” (locally optimal) policy: given E(t), let us
try to minimize, under restriction (4.10.162), the derivative of the volume of the ellipsoid at
time t . Note that this locally optimal policy does not necessary yield the smallest volume
ellipsoids satisfying (L) (achieving “instant reward” is not always the best way to happiness);
nevertheless, this policy makes sense.

We have 2 ln vol(Et ) = − ln Det(Gt), whence

2
d

dt
ln vol(E(t)) = −Tr

(
G−1

t

d

dt
Gt

)
;D
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Figure 4.27. Pendulum.

d

dt

[
x1(t)

x2(t)

]
=

[
0 1

−1 0

] [
x1(t)

x2(t)

]
+ u(t)

[
0

0.05

] [
⇔

{
d2

dt2
x1(t) = −x1(t) + 0.05u(t)
x2(t) = d

dt
x1(t)

]
x1(0) = 0, x2(0) = 1, |u(·)| ≤ 1, 0 ≤ t ≤ 30

thus, our greedy policy requires us to choose Ht ≡ d
dt
Gt as a solution to the optimization

problem

max
H=HT

{
Tr(G−1

t H ) : 2uT BT (t)Gtx + xT [ d
dt
Gt − AT (t)Gt − GtA(t)]x ≤ 0

∀ (
x, u : xTGtx = 1, uT u ≤ 1

) }
.

Exercise 4.78. Prove that the outlined greedy policy results in the solution Gt to the
differential equation

d

dt
Gt = −AT (t)Gt − GtA(t) −

√
n

Tr(GtB(t)B
T (t))

GtB(t)B
T (t)Gt

−
√

Tr(GtB(t)B
T (t))

n
Gt , t ≥ 0;

G0 = G0.

Prove that the solution to this equation is symmetric and positive definite for all t > 0,
provided that G0 = [G0]T . 0.
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334 Lecture 4. Semidefinite Programming

Exercise 4.79. Modify the previous reasoning to demonstrate that the locally optimal
policy for building inner ellipsoidal approximation of the set

X(t) = {
x(t) | ∃x0 ∈ E(0) ≡ {x | (x − x0)T G0(x − x0) ≤ 1}, ∃u(·), ‖u(·)‖2 ≤ 1 :

d
dτ
x(τ ) = A(τ)x(τ ) + B(τ)u(τ) + v(τ), 0 ≤ τ ≤ t, x(0) = x0

}
results in the family of ellipsoids

E(t) = {x | (x − xt )
TWt(x − xt ) ≤ 1},

where xt is given by (4.10.161) and Wt is the solution of the differential equation

d

dt
Wt = −AT (t)Wt−WtA(t)−2W 1/2

t (W
1/2
t B(t)BT (t)W

1/2
t )1/2W

1/2
t , t ≥ 0; W0 = G0.

Illustrations of the results of Exercises 4.78 and 4.79 are given in Figs. 4.25, 4.26, and
4.27. The pictures relate to three distinct 2D systems (dim x = 2). The dotted path is the
path xt of centers of the ellipses E(·) (the larger ones) and E(·) (the smaller ones).
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Lecture 5

Computational Tractability
of Convex Programs

Until now, we did not consider the question of how to solve optimization problems of the
types we have encountered. This is the issue we address in this and in the next lectures.

5.1 Numerical solution of optimization programs—
preliminaries

5.1.1 Mathematical programming programs

All optimization programs we dealt with are covered by the following universal form of a
mathematical programming program:

min
x

{
p0(x) : x ∈ X(p) ⊂ Rn(p)

}
, (p)

where

• n(p) is the design dimension of problem (p),

• X(p) ⊂ Rn(p) is the feasible domain of the problem, and

• p0(x) : Rn(p) → R is the objective of (p).

The mathematical programming form (p) of an optimization program is most conve-
nient for investigating solvability issues in optimization, so at this point we switch to this
form. Note that the optimization programs we dealt with in the previous lectures—the conic
programs

min
x

{
cT x : Ax − b ∈ K

}
,

where K ⊂ Rm is closed convex pointed cone with a nonempty interior—can be easily
written in the MP form with

X(p) = {x | Ax − b ∈ K}, p0(x) = cT x. (5.1.1)
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The MP programs obtained from the conic ones possess a very important characteristic
feature: they are convex.

Definition 5.1.1. A mathematical programming program (p) is called convex if

• the domain X(p) of the program is a convex set: whenever x, x ′ ∈ X(p), the segment
{y = λx + (1 − λ)x ′ | 0 ≤ λ ≤ 1} linking the points x, x ′ is contained in X(p);

• the objective p0(x) is convex on Rn(p):

∀x, x ′ ∀λ ∈ [0, 1] : p0(λx + (1 − λ)x ′) ≤ λp0(x) + (1 − λ)p0(x
′).

One can immediately verify that (5.1.1) indeed defines a convex optimization problem.
Our interest in convex optimization programs, as opposed to other mathematical pro-

gramming programs, comes from the following state of affairs:

(!) Convex optimization programs are computationally tractable: there ex-
ist solution methods that efficiently solve every convex optimization program
satisfying very mild computability restrictions.

(!!) In contrast to this, no efficient universal solution methods for nonconvex
mathematical programming programs are known, and there are strong reasons
to expect that no such methods exist.

Note that even the first—the positive—statement (!) is at the moment just a claim, not a
theorem. We have not yet defined what a solution method is and what efficiency means.
The goal of this lecture is to clarify all these notions and to convert (!) to a theorem.

5.1.2 Solution methods and efficiency

Intuitively, a (numerical) solution method is a computer code. When solving a particular
optimization program, a computer loaded with this code inputs the data of the program,
executes the code, and outputs the result—an array of reals representing the solution, or
the message “no solution exists”. It is natural to measure the efficiency of such a solution
method, for a particular program, by the running time of the code as applied to the data of
the program, i.e., by the number of elementary operations performed by the computer when
executing the code: the shorter the running time, the higher the efficiency.

When formalizing these intuitive considerations, we should specify a number of key
ingredients, namely,

• Model of computations. What can our computer do; in particular, what are its ele-
mentary operations?

• Encoding of program instances. What are the programs we intend to solve, and what
are the data of particular programs the computer works with?

• Quality of solution. What kind of solution do we expect to get? An exactly optimal
or an approximate one? After all, even for simple convex programs, it is unrealistic
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to expect that the data can be converted to an exact optimal solution in finitely many
elementary operations. So, realistically we are content with only an approximate solu-
tion. This requires us to decide how to measure the quality of an approximate solution
and makes it necessary to inform the computer on the quality of an approximation we
wish to obtain.

We shall specify these elements in a way that is most convenient for our subject domain—
optimization programs like linear, conic quadratic, and semidefinite ones.

Model of computations. This is what is known as real arithmetic model of compu-
tations. To avoid tedious formalities, we restrict ourselves with a kind of a semiformal
description. We assume that the computations are carried out by an idealized version of the
usual computer which is able to store countably many reals and can perform with them the
standard exact real arithmetic operations—the four basic arithmetic operations, evaluating
elementary functions, like cos and exp, and making comparisons. Thus, as far as the logical
part of executing a code is concerned, we deal with the usual von Neumann computer, and
the idealization is in the assumption that the data stored in memory are actual reals (not
their floating point approximations) and that the operations with these reals are free of any
rounding.

Families of optimization programs. We want to speak about methods for solving op-
timization programs (p) of a given structure, like linear, conic quadratic, or semidefinite
ones. All programs (p) of a given structure form certain family P , and we assume that every
particular program in this family—every instance (p) of P—is specified by its particular
data Data(p) which is a finite-dimensional real vector. One may think about the entries of
this data vector as about particular values of coefficients of generic (specific for P) analytic
expressions for p0(x) and X(p). This approach is in full accordance with our intuition, as
is seen from the following examples.

1. LP . Here instances (p) are all possible LP programs

min
x

{
pT

0 x : x ∈ X(p) = {x : Ax − b ≥ 0}} .
The data vector specifying a particular LP program (p) can be obtained by writing succes-
sively the dimensions n (number of variables) and m (number of constraints), next the n

entries of the objective p0, next the mn entries of the constraint matrix A (say, row by row),
and finally the m entries of b.

2. CQP . Here instances are all possible conic quadratic programs

min
x

{
pT

0 x : x ∈ X(p) = {x | ‖Dix − di‖2 ≤ eTi x − ci, i = 1, . . . , k}} ,
where Di are mi × dim x matrices. A natural way to encode the data of a particular
instance by a finite-dimensional data vector is to write successively the sizes n = dim x

(design dimension), k (number of conic quadratic inequality constraints), next the integers
m1, . . . , mk (image dimensions of the constraints), next the n entries of p0, and finally the
entries of (Di, di, ei, ci), i = 1, . . . , k.
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338 Lecture 5. Computational Tractability of Convex Programs

3. SDP . Here instances are all possible semidefinite programs

min
x

{
pT

0 x : x ∈ X(p) =
{
x :

n∑
i=1

xiAi − B � 0

}}

with m × m symmetric matrices A1, . . . , An, B. To encode the data of an instance by a
finite-dimensional vector, we write successively n,m, then the n entries of p0, and finally,
row by row, the entries of the matrices A1, . . . , An, B.

We always assume that the first entry in Data(p) is the design dimension n(p) of the
instance. The dimension of the vector Data(p) will be called the size of the instance:

Size(p) = dim Data(p).

Accuracy of approximate solutions. Consider a generic problem P45 and assume that we
have somehow fixed an infeasibility measure of a vector x ∈ Rn(p) as a solution to an instance
(p) ∈ P; let this measure be denoted by InfeasP(x, p). In our general considerations, all
we require from this measure is that

• InfeasP(x, p) ≥ 0, and InfeasP(x, p) = 0 when x is feasible for (p) (i.e., when
x ∈ X(p));

• InfeasP(x, p) is a real-valued convex function of x ∈ Rn(p).

Examples are as follows:
1. LP (continued). A natural way to measure infeasibility of an x ∈ Rn as a candidate

solution to an LP instance

(p) : min
x

{
pT

0 x : Ax − b ≥ 0
}

is to set

InfeasLP(x, p) = min {t ≥ 0 | Ax + te − b ≥ 0} , (5.1.2)

where e is the vector of ones of appropriate dimension. It is immediately seen that

InfeasLP(x, p) = max

[
0, max

i=1,...,m
[bi − (Ax)i]

]
, (5.1.3)

m being the dimension of the right-hand-side vector b. Thus, our infeasibility measure is
just the maximum of violations of the linear constraints of the program at x.

2. CQP (continued). A natural way to measure infeasibility of an x ∈ Rn as a
candidate solution to a CQP instance

(p) : min
x

{
cT x : ‖Dix − di‖2 ≤ eTi x − ci, i = 1, . . . , k

}
45We use the words “generic program” as a synonym of “family of optimization programs.”
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is to set

InfeasCQP(x, p) = min
{
t ≥ 0 : ‖Dix − di‖2 ≤ eTi x − ci + t, i = 1, . . . , k

}
= max

[
0, max

i=1,...,k
[‖Dix − di‖2 − eTi x + ci]

]
.

(5.1.4)
Note that geometrically this definition is very similar to the one we used for LP: to measure
the violation of a vector inequality

Ax − b ≥K 0 (V)

at a given point, we take a central interior point e of K and see what is the smallest nonnegative
coefficient t such that after we add te to the left-hand side of (V), we get a valid vector
inequality. In the case of LP we have K = Rm+, the natural central point of the cone is the
vector of ones, and we come to (5.1.2). In the case of K = Lm1+1 × · · · × Lmk+1 the natural
choice of e is e = (e1, . . . , ek), where ei ∈ Rmi+1 has the first mi coordinates equal to 0
and the last coordinate equal to 1 (i.e., ei is the direction of the axis of symmetry of the
corresponding Lorentz cone), and we come to (5.1.4).

3. SDP (continued). A natural way to measure infeasibility of an x ∈ Rn as a
candidate solution to an instance

(p) : min
x

{
cT x : Ax − B ≡

n∑
i=1

xiAi − B � 0

}

is to set

InfeasSDP(x, p) = min {t ≥ 0 : Ax − B + tI � 0} , (5.1.5)

where I is the unit matrix of appropriate size. (We again have used the above construction,
taking, as the “central interior point” of the semidefinite cone Sm+, the unit matrix of the
corresponding size.)

4. General convex programming problems. Assume that the instances of a generic
problem in question are of the form

(p) : min
x

{
p0(x) : x ∈ X(p) = {x ∈ Rn(p) : pi(x) ≤ 0, i = 1, . . . , m(p)}} ,

where pi(x) : Rn(p) → R, i = 0, . . . , m(p), are convex functions. Here a natural infeasi-
bility measure is the maximum constraint violation

Infeas(x, p) = min {t ≥ 0 : pi(x) ≤ t, i = 1, . . . , m(p)} = max

[
0, max

i=1,...,m(p)
pi(x)

]
;

(5.1.6)

cf. (5.1.2), (5.1.4).
Given an infeasibility measure, we can proceed to define the notion of an ε-solution to

an instance (p) ∈ P , namely, as follows. Let Opt(p) ∈ {−∞} ∪ R ∪ {+∞} be the optimal
value of the instance (i.e., the infimum of the values of the objective on the feasible set, if
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the instance is feasible, and +∞ otherwise). A point x ∈ Rn(p) is called an ε-solution to
(p) if

InfeasP(x, p) ≤ ε and p0(x) − Opt(p) ≤ ε,

i.e., if x is both ε-feasible and ε-optimal for the instance.

Solution methods. We are ready to name a solution method M for a given family P
of optimization programs. By definition, this is a code for our idealized real arithmetic
computer. When solving an instance (p) ∈ P , the computer first inputs the data vector
Data(p) of the instance and a real ε > 0, the accuracy to which the instance should be
solved, and then executes the code M on this input. We assume that the execution, on every
input (Data(p), ε > 0) with (p) ∈ P , takes finitely many elementary operations of the
computer, let this number be denoted by ComplM(p, ε), and results in one of the following
three possible outputs:

• an n(p)-dimensional vector ResM(p, ε) that is an ε-solution to (p),

• a correct message “(p) is infeasible,”

• a correct message “(p) is unbounded below.”

Now let us define the central notion of the complexity of a method M. We have agreed
to measure the efficiency of a method on the basis of the running time ComplM(p, ε)—
the number of elementary operations performed by the method when solving instance (p)

within accuracy ε. This characteristic, however, depends on a particular instance (p) and
on ε. The crucial step in our formalization is to clarify what it means that M is an efficient
(a polynomial time) on P . By definition, it means that there exists a polynomial π(s, τ )
such that

ComplM(p, ε) ≤ π

(
Size(p), ln

(
Size(p) + ‖Data(p)‖1 + ε2

ε

))
∀(p) ∈ P ∀ε > 0;

(5.1.7)

here ‖u‖1 = ∑dim u
i=1 |ui |. This definition is by no means a self-evident way to formalize

the common sense notion of an efficient computational method; however, there are strong
reasons (taking their roots in combinatorial optimization) to use just this notion. Let us
present a transparent common sense interpretation of our definition. The quantity

Digits(p, ε) = ln

(
Size(p) + ‖Data(p)‖1 + ε2

ε

)
(5.1.8)

may be thought of as a number of accuracy digits in an ε-solution; at least this is the case
when (p) is fixed and ε → +0, so that the numerator in the fraction in (5.1.8) becomes
unimportant. With this interpretation, polynomiality of M means a very simple thing:
when we increase the size of an instance and the required number of accuracy digits by
absolute constant factors (say, by factor 2), the running time increases by no more than
another absolute constant factor. Roughly speaking, when M is polynomial time, then
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an improvement, by a constant factor, in the performance of our real arithmetic computer
results in the possibility to increase by another constant factors the sizes of the instances
we can process and the number of accuracy digits we can obtain in a fixed time (say, in 24
hours). In contrast to this, for a nonpolynomial-time method, say, one with complexity

ComplM(p, ε) ≥ O (exp{Size(p)}f (ε)) ,
no such conclusions can be deduced. Say, if our old computer was able to solve in 24 hours
to three accuracy digits every instance of size 100 (or 1000), and now we get a computer
that is 10 times faster, then all we can hope for is to solve in the same 24 hours to the same
three accuracy digits all instances of the size 102 (respectively, 1002). Similarly, if we are
using a method with complexity,

ComplM(p, ε) = O

(
f (Size(p))

1

ε

)
,

and with our old computer were able to get a number of digits in 24 hours on all instances
of size 100, and now we get a computer that is 10 times faster, we achieve, on the same
instances and in the same time, just one accuracy digit more. In both these examples,
constant times progress in computer’s performance improves just by additive constant the
size of the instances we can process, or the number of accuracy digits we can obtain in a
given time.

For typical polynomial time methods the upper bound (5.1.7) is in fact linear in the
number of accuracy digits:

ComplM(p, ε) ≤ π (Size(p))Digits(p, ε) ∀(p) ∈ P ∀ε > 0.

Such a complexity bound admits even more transparent interpretation: the computational
effort in solving problems from P is proportional to the number of accuracy digits we want
to get, the proportionality coefficient (the price of an accuracy digit) being polynomial in
the size of an instance.

The final point in our formalization is the notion of a polynomially solvable family
P of optimization programs: P is called polynomially solvable if it admits a polynomial
time solution method. Polynomial solvability of a generic optimization problem P is a
theoretical synonym of computational tractability of P . As far as computational practice is
concerned, polynomiality of P is neither a necessary nor a sufficient condition for practical
tractability of the instances of P (simply because there cannot exist conditions of this type—
whatever the complexity bounds, the sizes of problems we can solve in practice are limited).
Not every polynomial time method can be used in practice (think about a polynomial time
method for solving LP programs with complexity proportional to Size8(p)). On the other
hand, a theoretically nonpolynomial method is not necessarily bad in practice (the most
famous example of this type is the Simplex method for LP)—the complexity is a worst-
case-oriented notion, and perhaps we should not bother so much about the worst case
in practice. The historical fact, however, is that for those generic optimization problems
(first and foremost for LP) which were for a long time routinely solved by theoretically
bad, although practically efficient, methods, eventually theoretically good and practically
efficient methods were discovered. Thus, theoretical complexity studies finally do have
strong impact on computational practice.
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We are back on the route to our goal: to demonstrate that convex optimization problems
are computationally tractable. At this point we better understand what should be proved.
The proof itself, however, comes from a quite unexpected side—from considerations that
bear no straightforward connection with the above chain of complexity-related definitions.

5.2 Black box–represented convex programs
Consider a convex program

min
x

{
f (x) : x ∈ X ⊂ Rn

}
, (5.2.9)

where f : Rn → R is a convex function and X is a closed and bounded convex set with a
nonempty interior. Moreover, assume that we know in advance that X is neither too large
nor too flat, namely, the following.

A. We are given in advance reals r, R ∈ (0,∞) such that X is contained in the center at
the origin ball {x | ‖x‖2 ≤ R} and contains a Euclidean ball {x | ‖x − x̄‖2 ≤ r}.
(Note that only the radius r of the small ball is known, not the center of the ball!)46

To proceed, we need to recall two important elements of convex analysis.

The separation theorem states that if X is a nonempty convex set in Rn and
x ∈ Rn\X, then x can be separated from X by a hyperplane: there exists a �= 0
such that

aT x ≥ sup
y∈X

aT y. (5.2.10)

A separation oracle Sep(X) for X is a routine (a black box) which, given as
input a point x ∈ Rn, checks whether this point belongs to X. If this is the
case, the oracle reports that x ∈ X, and if x �∈ X, Sep(X) reports that this is
the case and returns a nonzero vector a which separates x and X in the sense
of (5.2.10).

Subgradient. Let f : Rn → R be a convex function. A vector η ∈ Rn is called
a subgradient of f at a point x ∈ Rn if

f (y) ≥ f (x) + ηT (y − x) ∀y ∈ Rn. (5.2.11)

In other words, a subgradient of f at x is the slope of an affine function which
is ≤ f everywhere and is equal to f at x. The set of all subgradients of f at
a point x is denoted by ∂f (x) and is called the subdifferential of f at x. A
fundamental result of convex analysis is that if f : Rn → R is convex, then
∂f (x) �= ∅ ∀x.47 It is easy to verify that if f is differentiable at x, then ∂f (x)

is a singleton comprised of the usual gradient of f at x.

46We could weaken to some extent our a priori knowledge; however, in our further applications the strong
assumption A will be automatically satisfied.

47In fact, if f is an only partially defined convex function, then ∂f (x) is nonempty at every point from the
relative interior of the domain of f , and you can easily prove that statement by applying the separation theorem to
the point (x, f (x)) and the convex set {(x, t) | t > f (x)} in Rn+1. In our context, however, we have no need to
consider the case of a partially defined f .
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A first order oracle O(f ) for f is a routine (a black box) which, given as input a
point x ∈ Rn, returns as output the value f (x) and a subgradient f ′(x) ∈ ∂f (x)

of f at x.

Assume that we want to solve the convex program (5.2.9) and we have an access to a
separation oracle Sep(X) for the feasible domain of (5.2.9) and to a first order oracle O(f )

for the objective of (5.2.9). How could we solve the problem with these tools? An extremely
transparent way is given by the ellipsoid method, which can be viewed as a multidimensional
extension of the usual bisection.

Ellipsoid method: The idea. Assume that we have already found an n-dimensional
ellipsoid

E = {x = c + Bu | uT u ≤ 1} [B ∈ Mn,n,DetB �= 0],
which contains the optimal set X∗ of (5.2.9) (note that X∗ �= ∅, since the feasible set X
of (5.2.9) is assumed to be compact and the objective f to be convex on the entire Rn and
therefore continuous).48 How could we construct a smaller ellipsoid containing X∗ ?

The answer is immediate.
1. Let us call the separation oracle Sep(X), the center c of the current ellipsoid being

the input. There are two possible cases:
1.a. Sep(X) reports that c �∈ X and returns a separator a:

a �= 0, aT c ≥ sup
y∈X

aT y. (5.2.12)

In this case we can replace our current localizer E of the optimal set X∗ by a smaller one,
namely, by the half-ellipsoid

Ê = {x ∈ E | aT x ≤ aT c}.
Indeed, by assumption X∗ ⊂ E; when passing from E to Ê, we cut off all points x of E
where aT x > aT c, and by (5.2.12) all these points are outside of X and therefore outside
of X∗ ⊂ X. Thus, X∗ ⊂ Ê.

1.b. Sep(X) reports that c ∈ X. In this case we call the first order oracle O(f ), c
being the input; the oracle returns the value f (c) and a subgradient a ∈ ∂f (c) of f at c.
Again, two cases are possible:

1.b.1. a = 0. In this case we are done—c is a minimizer of f on X. Indeed, c ∈ X,
and (5.2.11) now reads

f (y) ≥ f (c) + 0T (y − c) = f (c) ∀y ∈ Rn.

Thus, c is a minimizer of f on Rn, and since c ∈ X, c minimizes f on X as well.
1.b.2. a �= 0. In this case (5.2.11) reads

aT (x − c) > 0 ⇒ f (x) > f (c),

48A simple fact (try to prove it) is that a function that is convex in a neighborhood of a point x is continuous in
this neighborhood.
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so that replacing the ellipsoid E with the half-ellipsoid

Ê = {x ∈ E | aT x ≤ aT c}
we ensure the inclusion X∗ ⊂ Ê. Indeed, X∗ ⊂ E by assumption, and when passing from
E to Ê, we cut off all points of E where aT x > aT c and, consequently, where f (x) > f (c);
since c ∈ X, no one of these points can belong to the set X∗ of minimizers of f on X.

2. We have seen that as a result of operations described in 1.a-b we either terminate
with an exact minimizer of f on X or obtain a half-ellipsoid

Ê = {x ∈ E | aT x ≤ aT c} [a �= 0]
containing X∗. It remains to use the following simple geometric fact:

(∗) Let E = {x = c + Bu | uT u ≤ 1} (DetB �= 0) be an n-dimensional
ellipsoid and Ê = {x ∈ E | aT x ≤ aT c} (a �= 0) be a half of E. If n > 1,
then Ê is contained in the ellipsoid

E+ = {x = c+ + B+u | uT u ≤ 1},
c+ = c − 1

n+1Bp,

B+ = B
(

n√
n2−1

(In − ppT ) + n
n+1pp

T
)

= n√
n2−1

B +
(

n
n+1 − n√

n2−1

)
(Bp)pT ,

p = BT a√
aT BBT a

,

(5.2.13)

and if n = 1, then the set Ê is contained in the ellipsoid (which now is just a
segment)

E+ = {x | c+B+u | |u| ≤ 1},
c+ = c − 1

2
Ba

|Ba| ,

B+ = 1
2B.

In all cases, the n-dimensional volume Vol(E+) of the ellipsoid E+ is less than
the one of E:

Vol(E+) =
(

n√
n2 − 1

)n−1
n

n + 1
Vol(E) ≤ exp{−1/(2n)}Vol(E) (5.2.14)

(in the case of n = 1,
(

n√
n2−1

)n−1 = 1).

(*) says that there exists (and can be explicitly specified) an ellipsoid E+ ⊃ Ê with
the volume constant times less than the one of E. Since E+ covers Ê, and the latter set, as
we have seen, covers X∗, E+ covers X∗. Now we can iterate the above construction, thus
obtaining a sequence of ellipsoids E,E+, (E+)+, . . . with volumes going to 0 at a linear
rate (depending on the dimension n only) which collapses to the set X∗ of optimal solutions
of our problem—exactly as in the usual bisection!

Note that (*) is just an exercise in elementary calculus. Indeed, the ellipsoidE is given
as an image of the unit Euclidean ball W = {u | uT u ≤ 1} under the one-to-one affine
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a

⇔
x=c+Bu

p

E, Ê and E+ W , Ŵ and W+

Figure 5.1.

mapping u �→ c + Bu; the half-ellipsoid Ê is then the image, under the same mapping, of
the half-ball

Ŵ = {u ∈ W | pT u ≤ 0},
where p is the unit vector from (5.2.13). Indeed, if x = c + Bu, then aT x ≤ aT c if and
only if aT Bu ≤ 0 or, which is the same, if and only if pT u ≤ 0. Now, instead of covering
Ê by a small-in-volume ellipsoid E+, we may cover by a small ellipsoid W+ the half-ball
Ŵ and then take E+ to be the image of W+ under our affine mapping:

E+ = {x = c + Bu | u ∈ W+}. (5.2.15)

Indeed, if W+ contains Ŵ , then the image of W+ under our affine mapping u �→ c + Bu

contains the image of Ŵ , i.e., contains Ê. And since the ratio of volumes of two bodies
remain invariant under affine mapping (passing from a body to its image under an affine
mapping u �→ c + Bu, we just multiply the volume by |DetB|), we have

Vol(E+)
Vol(E)

= Vol(W+)
Vol(W)

.

Thus, the problem of finding a small ellipsoid E+ containing the half-ellipsoid Ê can be
reduced to the one of finding a small ellipsoid W+ containing the half-ball Ŵ , as shown
in Fig. 5.1. Now, the problem of finding a small ellipsoid containing Ŵ is very simple:
our geometric data are invariant with respect to rotations around the p-axis, so that we
may look for W+ possessing the same rotational symmetry. Such an ellipsoid W+ is given
by just three parameters: its center should belong to our symmetry axis, i.e., should be
−hp for certain h, one of the half-axes of the ellipsoid (let its length be µ) should be
directed along p, and the remaining n − 1 half-axes should be of the same length λ and be
orthogonal to p. For our three parameters h,µ, λ we have two equations expressing the
fact that the boundary of W+ should pass through the South Pole −p of W and through the
equator {u | uT u = 1, pT u = 0}; indeed, W+ should contain Ŵ and thus both the pole
and the equator, and since we are looking for W+ with the smallest possible volume, both
the pole and the equator should be on the boundary of W+. Using our two equations to
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express µ and λ via h, we end up with a single free parameter h, and the volume of W+
(i.e., const(n)µλn−1) becomes an explicit function of h. Minimizing this function in h,
we find the optimal ellipsoid W+, check that it indeed contains Ŵ (i.e., that our geometric
intuition was correct), and then convert W+ into E+ according to (5.2.15), thus coming to
the explicit formulas (5.2.13)–(5.2.14). Implementation of the outlined scheme takes from
10 to 30 minutes, depending on how many miscalculations are made.

It should be mentioned that although the indicated scheme is quite straightforward and
elementary, the fact that it works is not evident a priori: it might happen that the smallest-
volume ellipsoid containing a half-ball is just the original ball! This would be the death of
our idea—instead of a sequence of ellipsoids collapsing to the solution set X∗, we would
get a stationary sequence E,E,E. Fortunately, it is not happening, and this is a great favor
Nature does for convex optimization.

Ellipsoid method: The construction. There is a small problem with implementing our
idea of trapping the optimal setX∗ of (5.2.9) by a collapsing sequence of ellipsoids. The only
thing we can ensure is that all our ellipsoids contain X∗ and that their volumes rapidly (at a
linear rate) converge to 0. However, the linear sizes of the ellipsoids should not necessarily
go to 0—it may happen that the ellipsoids are shrinking in some directions and are not
shrinking (or even become larger) in other directions. (Look what happens if we apply
the construction to minimizing a function of two variables which in fact depends only on
the first coordinate.) Thus, for the moment it is unclear how to build a sequence of points
converging to X∗. This difficulty, however, can be easily resolved: as we shall see, we can
form this sequence from the best feasible solutions generated so far. Another issue that
remains open at the moment is when to terminate the method. As we shall see in a while,
this issue also can be settled satisfactory.

The precise description of the ellipsoid method as applied to (5.2.9) is as follows (in
this description, we assume that n ≥ 2, which of course does not restrict generality):

The Ellipsoid Method

Initialization. Recall that when formulating (5.2.9) it was assumed that the
feasible set X of the problem is contained in the ball E0 = {x | ‖x‖2 ≤ R} of
a given radius R and contains an (unknown) Euclidean ball of a known radius
r > 0. The ball E0 will be our initial ellipsoid. Thus, we set

c0 = 0, B0 = RI, E0 = {x = c0 + B0u | uT u ≤ 1};
note that E0 ⊃ X.

We also set

ρ0 = R, L0 = 0.

The quantities ρt will be the radii of the ellipsoids Et to be built, i.e., the radii
of the Euclidean balls of the same volumes as Et ’s. The quantities Lt will be
our guesses for the variation

VarR(f ) = max
x∈E0

f (x) − min
x∈E0

f (x)
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5.2. Black box–represented convex programs 347

of the objective on the initial ellipsoid E0. We shall use these guesses in the
termination test.

Finally, we input the accuracy ε > 0 to which we want to solve the problem.

Step t , t = 1, 2, . . . . At the beginning of step t , we have the previous ellipsoid

Et−1 = {x = ct−1 + Bt−1u | uT u ≤ 1}
[ct−1 ∈ Rn, Bt−1 ∈ Mn,n,DetBt−1 �= 0]

(i.e., have ct−1, Bt−1) along with the quantities Lt−1 ≥ 0 and

ρt−1 = |DetBt−1|1/n.

At step t , we act as follows (cf. the preliminary description of the method):

1. We call the separation oracle Sep(X), ct−1 the input. It is possible that the
oracle reports that ct−1 �∈ X and provides us with a separator

a �= 0 : aT ct−1 ≥ sup
y∈X

aT y.

In this case we call step t nonproductive; set

at = a, Lt = Lt−1

and go to rule 3 below. Otherwise—i.e., when ct−1 ∈ X—we call step t

productive and go to rule 2.

2. We call the first order oracle O(f ), ct−1 the input, and we get the value
f (ct−1) and a subgradient a ≡ f ′(ct−1) ∈ ∂f (ct−1) of f at the point ct−1. It is
possible that a = 0. In this case we terminate and claim that ct−1 is an optimal
solution to (5.2.9). In the case of a �= 0 we set

at = a,

compute the quantity

�t = max
y∈E0

[aTt y − aTt ct−1] = R‖at‖2 − aTt ct−1,

update L by setting

Lt = max{Lt−1, �t },
and go to rule 3.

3. We set

Êt = {x ∈ Et−1 | aTt x ≤ aTt ct−1}
(cf. the definition of Ê in our preliminary description of the method) and define
the new ellipsoid

Et = {x = ct + Btu | uT u ≤ 1}
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by setting (see (5.2.13))

pt = BT
t−1at√

aTt Bt−1B
T
t−1at

,

ct = ct−1 − 1
n+1Bt−1pt ,

Bt = n√
n2−1

Bt−1 +
(

n
n+1 − n√

n2−1

)
(Bt−1pt)p

T
t .

(5.2.16)

We also set

ρt = |DetBt |1/n =
(

n√
n2 − 1

)(n−1)/n (
n

n + 1

)1/n

ρt−1

(see (5.2.14)) and go to rule 4.

4. (termination test) We check whether the inequality

ρt

r
<

ε

Lt + ε
(5.2.17)

is satisfied. If it is the case, we terminate and output, as the result of the solution
process, the best (i.e., with the smallest value of f ) of the search points cτ−1

associated with productive steps τ ≤ t . (We shall see that these productive
steps indeed exist, so that the result of the solution process is well defined.) If
(5.2.17) is not satisfied, we go to step t + 1.

To get some feeling how the method works, here is a 2D illustration. The problem is

min
−1≤x1,x2≤1

f (x),

f (x) = 1
2 (1.443508244x1 + 0.623233851x2 − 7.957418455)2

+5(−0.350974738x1 + 0.799048618x2 + 2.877831823)4,

the optimal solution is x∗
1 = 1, x∗

2 = −1, and the exact optimal value is 70.030152768.
The values of f at the best (i.e., with the smallest value of the objective) feasible

solutions found in course of first t steps of the method, t = 1, 2, . . . , 256, are shown in the
following table:

t Best value t Best value
1 374.61091739 16 76.838253451
2 216.53084103 … …
3 146.74723394 32 70.901344815
4 112.42945457 … …
5 93.84206347 64 70.031633483
6 82.90928589 … …
7 82.90928589 128 70.030154192
8 82.90928589 … …

… … 256 70.030152768

The initial phase of the process looks as shown in Fig. 5.2.
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c

Figure 5.2. Ellipses Et−1 and search points ct−1, t = 1, 2, 3, 4, 16. Arrows:
gradients of the objective f (x); unmarked segments: tangents to the level lines of f (x).

Ellipsoid method: Complexity analysis. We are about to establish our key result.

Theorem5.2.1. Let the ellipsoid method be applied to convex program (5.2.9) of dimension
n ≥ 2 such that the feasible set X of the problem contains a Euclidean ball of a given radius
r > 0 and is contained in the ball E0 = {‖x‖2 ≤ R} of a given radius R. For every input
accuracy ε > 0, the ellipsoid method terminates after no more than

N(ε) = Ceil

(
2n2

[
ln

(
R

r

)
+ ln

(
ε + VarR(f )

ε

)])
+ 1 (5.2.18)

steps, where

VarR(f ) = max
E0

f − min
E0

f,

and Ceil(a) is the smallest integer ≥ a. Moreover, the result x̂ generated by the method is
a feasible ε-solution to (5.2.9):

x̂ ∈ X and f (x) − min
X

f ≤ ε. (5.2.19)

Proof. We should prove the following pair of statements:
(i) The method terminates in course of the first N(ε) steps.
(ii) The result x̂ is a feasible ε-solution to the problem.
1∗. Comparing the preliminary and the final description of the ellipsoid method and

taking into account the initialization rule, we see that if the method does not terminate before
step t or terminates at this step according to rule 4, then
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(a) E0 ⊃ X;
(b) Eτ ⊃ Êτ = {

x ∈ Eτ−1 | aTτ x ≤ aTτ cτ−1
}
, τ = 1, . . . , t;

(c) Vol(Eτ ) = ρn
τ Vol(E0) =

(
n√
n2−1

)n−1
n

n+1 Vol(Eτ−1)

≤ exp{−1/(2n)}vol(Eτ−1), τ = 1, . . . , t.

(5.2.20)

Note that from (c) it follows that

ρτ ≤ exp{−τ/(2n2)}R, τ = 1, . . . , t. (5.2.21)

2∗. We claim that

If the ellipsoid method terminates at certain step t , then the result x̂ is well
defined and is a feasible ε-solution to (5.2.9).

Indeed, there are only two possible reasons for termination. First, it may happen that
ct−1 ∈ X and f ′(ct−1) = 0 (see rule 2)). From our preliminary considerations we know
that in this case ct−1 is an optimal solution to (5.2.9), which is even more than what we have
claimed. Second, it may happen that at step t relation (5.2.17) is satisfied. Let us prove that
the claim of 2∗ takes place in this case as well.

2∗a. Let us set

ν = ε

ε + Lt

∈ (0, 1].

By (5.2.17), we have ρt/r < ν, so that there exists ν ′ such that

ρt

r
< ν ′ < ν [≤ 1]. (5.2.22)

Let x∗ be an optimal solution to (5.2.9) and let X+ be the ν ′-shrinkage of X to x∗:

X+ = x∗ + ν ′(X − x∗) = {x = (1 − ν ′)x∗ + ν ′z | z ∈ X}. (5.2.23)

We have

Vol(X+) = (ν ′)nVol(X) ≥
(
rν ′

R

)n

Vol(E0) (5.2.24)

(the last inequality is given by the fact that X contains a Euclidean ball of the radius r),
while

Vol(Et ) =
(ρt
R

)n

Vol(E0) (5.2.25)

by definition of ρt . Comparing (5.2.24), (5.2.25) and taking into account that ρt < rν ′ by
(5.2.22), we conclude that Vol(Et ) < Vol(X+) and, consequently, X+ cannot be contained
in Et . Thus, there exists a point y which belongs to X+:

y = (1 − ν ′)x∗ + ν ′z [z ∈ X], (5.2.26)

and does not belong to Et .
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2∗b. Since y does not belong to Et and at the same time belongs to X ⊂ E0 along
with x∗ and z (X is convex!), we see that there exists a τ ≤ t such that y ∈ Eτ−1 and
y �∈ Eτ . By (5.2.20)(b), every point x from the complement of Eτ in Eτ−1 satisfies the
relation aTτ x > aTτ cτ−1. Thus, we have

aTτ y > aTτ cτ−1. (5.2.27)

2∗c. Observe that the step τ is surely productive. Indeed, otherwise, by construction
of the method, at would separate X from cτ−1, and (5.2.27) would be impossible (we know
that y ∈ X !). Notice that in particular we have just proved that if the method terminates at
a step t , then at least one of the steps 1, . . . , t is productive, so that the result is well defined.

Since step τ is productive, aτ is a subgradient of f at cτ−1 (description of the method!),
so that

f (u) ≥ f (cτ−1) + aTτ (u − cτ−1)

∀u ∈ X, and in particular for u = x∗. On the other hand, z ∈ X ⊂ E0, so that by the
definition of �τ and Lτ we have

aTτ (z − cτ−1) ≤ �τ ≤ Lτ .

Thus,

f (x∗) ≥ f (cτ−1) + aTτ (x∗ − cτ−1),

Lτ ≥ aTτ (z − cτ−1).

Multiplying the first inequality by (1 − ν ′), the second – by ν ′, and adding the results, we
get

(1 − ν ′)f (x∗) + ν ′Lτ ≥ (1 − ν ′)f (cτ−1) + aTτ ([(1 − ν ′)x∗ + ν ′z] − cτ−1)

= (1 − ν ′)f (cτ−1) + aTτ (y − cτ−1)

[see (5.2.26)]
≥ (1 − ν ′)f (cτ−1)

[see (5.2.27)]

and we come to

f (cτ−1) ≤ f (x∗) + ν ′Lτ

1−ν ′

≤ f (x∗) + ν ′Lt

1−ν ′
[since Lτ ≤ Lt in view of τ ≤ t]

≤ f (x∗) + ε

[by definition of ν and since ν ′ < ν]
= Opt(C) + ε.

We see that there exists a productive (i.e., with feasible cτ−1) step τ ≤ t such that the
corresponding search point cτ−1 is ε-optimal. Since we are in the situation where the result
x̂ is the best of the feasible search points generated in course of the first t steps, x̂ is also
feasible and ε-optimal, as claimed in 2∗.
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3∗. It remains to verify that the method does terminate in course of the firstN = N(ε)

steps. Assume, on the contrary, that it is not the case, and let us lead this assumption to a
contradiction.

First, observe that for every productive step t we have

ct−1 ∈ X and at = f ′(ct−1),

whence, by the definition of a subgradient and the variation VarR(f ),

u ∈ E0 ⇒ VarR(f ) ≥ f (u) − f (ct−1) ≥ aTt (u − ct−1),

whence

�t ≡ max
u∈E0

aTt (u − ct−1) ≤ VarR(f ).

Looking at the description of the method, we conclude that

Lt ≤ VarR(f ) ∀t. (5.2.28)

Since we have assumed that the method does not terminate in course of the first N steps,
we have

ρN

r
≥ ε

ε + LN

. (5.2.29)

The right-hand side in this inequality is ≥ ε/(ε + VarR(f )) by (5.2.28), while the left-hand
side is ≤ exp{−N/(2n2)}R by (5.2.21). We get

exp{−N/(2n2)}R/r ≥ ε

ε + VarR(f )
⇒ N ≤ 2n2

[
ln

(
R

r

)
+ ln

(
ε + VarR(f )

ε

)]
,

which is the desired contradiction (see the definition of N = N(ε) in (5.2.18)).

5.3 Polynomial solvability of convex programming
Equipped with the ellipsoid method, we are ready to formulate the mild assumptions under
which a family P of convex optimization programs is polynomially solvable. Our assump-
tions are those of polynomial computability, polynomial growth, and polynomial bound-
edness of feasible sets. When formulating these assumptions, we shall associate with P a
number of positive characteristic constants; their particular values are of no importance—the
only thing that counts is their existence. To simplify notation, we denote all these constants
by the same symbol χ , so that this symbol in different places of even the same equation may
have different values (cf. the usual conventions on how one interprets symbols like o(1)).

Polynomial computability. Let P be a family of convex optimization programs, and let
InfeasP(x, p) be the corresponding measure of infeasibility of candidate solutions. We say
that our family is polynomially computable if there exist two codes Cobj, Ccons for the real
arithmetic computer such that
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1. For every instance (p) ∈ P , the computer, when given as input the data vector of
the instance (p) and a point x ∈ Rn(p) and executing the code Cobj, outputs the value p0(x)

and a subgradient e(x) ∈ ∂p0(x) of the objective p0 of the instance at the point x, and the
running time (i.e., total number of operations) of this computation Tobj(x, p) is bounded
from above by a polynomial of the size of the instance

∀ (
(p) ∈ P, x ∈ Rn(p)

) : Tobj(x, p) ≤ χSizeχ (p) [Size(p) = dim Data(p)].
(5.3.30)

2. For every instance (p) ∈ P , the computer, when given as input the data vector
of the instance (p), a point x ∈ Rn(p), and an ε > 0 and executing the code Ccons, reports
as output whether InfeasP(x, p) ≤ ε and, if it is not the case, outputs a linear form a that
separates the point x from all those points y where InfeasP(y, p) ≤ ε:

∀ (y, InfeasP(y, p) ≤ ε) : aT x > aT y, (5.3.31)

and the running time Tcons(x, ε, p) of the computation is bounded by a polynomial of the
size of the instance and of the number of accuracy digits:

∀ (
(p) ∈ P, x ∈ Rn(p), ε > 0

) : Tcons(x, ε, p) ≤ χ (Size(p) + Digits(p, ε))χ .
(5.3.32)

Note that the vector a in (5.3.31) is not supposed to be nonzero; when it is 0, (5.3.31) simply
says that there are no points y with InfeasP(y, p) ≤ ε.

Polynomial growth. We say that a family P of convex programs equipped with an infea-
sibility measure InfeasP(x, p) is a family with polynomial growth if the objectives and the
infeasibility measures, as functions of x, grow polynomially with ‖x‖1, the degree of the
polynomial being a power of Size(p):

∀ (
(p) ∈ P, x ∈ Rn(p)

) :
|p0(x)| + InfeasP(x, p) ≤ (χ [Size(p) + ‖x‖1 + ‖Data(p)‖1])

(
χSizeχ

(p)
)
.

(5.3.33)

Examples. Let us verify that the families of linear, conic quadratic, and semidefinite
programs equipped with the corresponding infeasibility measures (see section 5.1.2) are
polynomially computable with polynomial growth.

1. LP (continued). Polynomial computability means that given the data (n,m, p0, A, b)

of an LP instance

(p) : min
x

{
pT

0 x : Ax − b ≥ 0
} [A : m × n]

and given x ∈ Rn, ε > 0, we are able to compute efficiently, in the aforementioned sense,

(a) the value p0(x) = pT
0 x of the objective at x,

(b) the subgradient of the objective p0(·) at x (which is just p0 !),
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(c) whether

InfeasLP(x, p) = max

[
0, max

i=1,...,m
[bi − (Ax)i]

]
≤ ε,

and, if it is not the case, to compute a vector a such that

aT x > aT y ∀ (y : InfeasLP(y) ≤ ε} . (5.3.34)

The straightforward implementation of (a) and (b) requires χn operations, and, of course,

n ≤ Size(p) = dim Data(P ) = 1 + n + nm + m.

Thus, we have no problems with Cobj.

To build Ccons, let us compute straightforwardly the value of InfeasLP(x, p) according
to the explicit formula for this particular infeasibility measure. This computation requires
just a number of arithmetic operations that is linear in Size(p). If the resulting value of the
infeasibility measure is > ε, so that we should compute a separator a, we also have not that
much to do: we are in a situation in which the residual b̂i − (Ax)̂i of one of our constraints
is > ε, and we can take as a the minus îth row of the constraint matrix. Indeed, with this
choice

aT x = −(Ax)̂i > ε − b̂i ,

while for every candidate solution y with InfeasLP(y, p) ≤ ε we have

aT y = −(Ay)ĵ ≤ ε − b̂i .

Thus, both Cobj and Ccons can be chosen to have running time just χSize(p).
The fact that LP is of polynomial growth is evident.

2. CQP (continued). Here the instances are

(p) : min
x

{
pT

0 x : ‖Dix − di‖2 ≤ eTi x − ci, i = 1, . . . , k
}
,

and the infeasibility measure is

InfeasCQP(x, p) = max

[
0, max

i=1,...,k
[‖Dix − di‖2 − eTi x + ci]

]
= max

[
0, max

i=1,...,k
pi(x)

]
,

pi(x) = ‖Dix − di‖2 − eTi x + ci, i = 1, . . . , k.

(5.3.35)

To verify that the family is polynomially computable, let us denote by mi the number of
rows in Di and by n the dimension of x. Observe that

Size(p) ≥ n +
k∑

i=1

(mi + 1)(n + 1).D
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(The right-hand side is the total number of entries in p0 and all collections (Di, di, ei, ci),
i = 1, . . . , k.) Now we can build Cobj and Ccons as follows. Given x and ε, we can
straightforwardly compute the value p0(x) = pT

0 x of the objective at x, the subgradi-
ent p0 of the objective, and the value of the infeasibility measure InfeasCQP(x) at x in
χSize(p) operations. After InfeasCQP(x, p) is computed, we check whether this quantity
is > ε. If it is the case, we should also build a separator a. To this end let us look at
the largest (at x) of the constraints pi(x) (see (5.3.35)); let î be its index. By (5.3.35),
the relation InfeasCQP(x, p) > ε means exactly that p̂i(x) > ε, while for every y with
InfeasCQP(y, p) ≤ ε we have p̂i(y) ≤ ε. It follows that we can choose as a any subgradient
of p̂i(·) at the point x, since then

InfeasCQP(y, p) ≤ ε ⇒ p̂i(y) < p̂i(x) ⇒ aT y < aT x,

the last ⇒ being given by the definition of a subgradient:

a ∈ ∂f (y) ⇒ f (y) ≥ f (x) + aT (y − x) ∀y ⇔ aT (x − y) ≥ f (x) − f (y) ∀y.
On the other hand, a subgradient of pi(·) is easy to compute. Indeed, we have pi(x) =
‖Dix − di‖2 − eTi x + ci . If x is such that Dix − di �= 0, then pi is differentiable at x, so
that its subgradient at x is the usual gradient

∇pi(x) = −ei + 1

‖Dix − di‖2
DT

i (Dix − di),

and it can be computed in χmin ≤ χSize(p) operations. And if Dix − di = 0, then, as it
is immediately seen, −ei is a subgradient of pi(x) at x.

Thus, CQP is easily polynomially computable—Cobj and Ccons can be built to have
running times χSize(p).

The fact that CQP is a family with polynomial growth is evident.

3. SDP (continued). Here the instances are semidefinite programs

min
x

pT
0 x : x ∈ X(p) = {x | Ax − B ≡

n∑
j=1

xjAj − B � 0}
 ,

and the infeasibility measure is

InfeasSDP(x, p) = min {t ≥ 0 : Ax − B + tI � 0} .
To verify that the family if polynomially computable, observe first that if m is the row size
of the matrices Aj , B, then

Size(p) = dim Data(p) ≥ n + (n + 1)m2. (5.3.36)

(The right-hand side is the total number of entries in p0, A1, . . . , An, B.) As in the previous
cases, given Data(p) and x, we have no problems with computing the value and the subgra-
dient (which is just p0) of our linear objective p0(x) = pT

0 x in χn ≤ χSize(p) operations,
so that there is no problem with Cobj.
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Regarding Ccons, let us start with the observation that there exists a linear algebra
algorithm S that, given on input a symmetric m×m matrix A, checks in O(m3) operations
whether A is positive semidefinite and, if it is not the case, generates a vector ξ such that
ξT Aξ < 0.

As a simple example of such an algorithm S, we may use the Lagrange scheme
(explained in every linear algebra textbook) of representing a quadratic form
ηT Aη as a weighted sum of squares of (linearly independent) linear forms,

ηT Aη =
m∑

j=1

λj (q
T
j η)

2,

with m linearly independent vectors q1, . . . , qm. This scheme is a simple algo-
rithm (with running time O(m3)) that converts A into the collection of weights
λj and vectors qj , j = 1, . . . , m. To check whether a given symmetric m × m

matrix A is positive semidefinite, we may run this Lagrange algorithm on A.
If all resulting λj are nonnegative, A is positive semidefinite. And if one of
λj , say, λ1, turns out to be negative, we can find a vector ξ such that qT

1 ξ = 1,
qT
j ξ = 0, j = 2, . . . , m, to get a certificate of the fact that A is not positive

semidefinite:

ξT Aξ = λ1(q
T
i ξ)

2 = λ1 < 0.

Note that to find ξ is the same as to solve the linear system

qT
j ξ =

{
1, j = 1
0, j = 2, . . . , m

with a nonsingular matrix, i.e., this computation requires justO(m3)operations.

Equipped with S, let us implement Ccons as follows. Given x and ε > 0, we compute
the matrix

A =
n∑

j=1

xjAj − B + εI.

Note that by the definition of our infeasibility measure, InfeasSDP(x, p) ≤ ε if and only
if A is positive semidefinite. To check whether this indeed is the case, we apply to A the
algorithm S. If S reports that A � 0, we conclude that InfeasSDP(x, p) ≤ ε and stop. If
A is not positive semidefinite, S returns a corresponding certificate—a vector ξ such that
ξT Aξ < 0. Let us set

a = (−ξT A1ξ, . . . ,−ξT Anξ)
T ;

we claim thata can be used as the separatorCcons should return in the case of InfeasSDP(x, p) >
ε. Indeed, we have

0 > ξTAξ = ξT

∑
j

xjAj − B + εI

 ξ,D
ow
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i.e.,

aT x > ξT [−B + εI ]ξ.
On the other hand, for every y with InfeasSDP(y, p) ≤ ε the matrix

∑
j yjAj − B + εI is

positive semidefinite, so that

0 ≤ ξT

∑
j

yjAj − B + εI

 ξ,

whence

aT y ≤ ξT [−B + εI ]ξ.
Thus,

InfeasSDP(y, p) ≤ ε ⇒ aT y ≤ ξT [−B + εI ]ξ < aT x,

and a is indeed a required separator.
It remains to note that the running time of the routine Ccons we have built is χnm2

operations to compute A, χm3 operations more to run S, and χnm2 operations to convert
ξ into a. Thus, the running time of Ccons as applied to Data(p), x, ε does not exceed
χ(n + m)m2 ≤ χSize3/2(p) (see (5.3.36)).

We have seen that SDP is polynomially computable. The fact that the family is of
polynomial growth is evident.

4. General convex programming problems (continued). Consider a family P of con-
vex optimization programs with instances of the form

(p) min
x

{p0(x) : x ∈ X(p) = {x | pi(x) ≤ 0, i = 1, .., m(p)}}

(pi(·) : Rn(p) → R are convex, i = 0, . . . , m(p)). The infeasibility measure here (see
(5.1.6)) is

InfeasP(x, p) = min
{
t ≥ 0 : pj (x) − t ≤ 0, j = 1, . . . , m(p)

}
= max

[
0, max

j=1,...,m(p)
pj (x)

]
.

Assume that
I. The vector-function p(x) = (p0(x), . . . , pm(p)(x))

T , (p) ∈ P , is polynomially
computable: there exists a code C that, given as input the data vector Data(p) of an instance
(p) and a point x ∈ Rn(p), returns the values pi(x) and subgradients p′

i (x) of all compo-
nents of the function at x, the running time T (p) of the computation being bounded by a
polynomial of the size of the instance:

∀(p) ∈ P : T (p) ≤ χSizeχ (p).

II. The vector-function p(x) is of polynomial growth:

∀ (
(p) ∈ P, x ∈ Rn(p)

) :
‖p(x)‖1 ≤ (χ [Size(p) + ‖x‖1 + ‖Data(p)‖1])

(
χSizeχ

(p)
)
.
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We claim that under these assumptions P is polynomially computable and is of poly-
nomial growth. The second of these statements is evident. To verify the first, note that
Cobj is readily given by C. The code Ccons can be implemented in the same way as in the
cases of linear and conic quadratic programs, as follows. Given Data(p), x ∈ Rn(p) and
an ε > 0, we first run C on Data(p), x to get p(x) and p′(x) = {p′

i (x)}m(p)

i=0 . Note that
this computation, as a byproduct, gives us the number m(p) of constraints in (p) (since
m(p) + 1 is the number of entries in the vector p(x) we get); besides this, we may be sure
that

max[n(p),m(p)] ≤ χSizeχ (p). (5.3.37)

Indeed, the running time of executing C—which is χSizeχ (p)—cannot be less than the time
required to read the n(p) entries of x and to write the m(p) + 1 entries of p(x).

After p(x) is obtained, we compute the quantity g(x) = maxi=1,...,m(p) pi(x) and
check whether this quantity is ≤ ε. If it is the case, we report that InfeasP(x, p) =
max[0, g(x)] is ≤ ε and stop. In the case of g(x) > ε, we find the largest î ∈ {1, . . . , m(p)}
such that p̂i(x) = g(x) and report, as the required separator a, the vector p ′̂

i
(x). The fact

that it indeed is a separator is immediate: if InfeasP(y, p) ≤ ε, then p̂i(y) ≤ ε < p̂i(x),
whence, by the definition of a subgradient,

aT (y − x) ≤ p̂i(y) − p̂i(x) < 0.

It remains to note that apart from the operations needed to run C, all our additional ma-
nipulations require O(m(p)) operations, and the latter quantity is ≤ χSizeχ (p) in view of
(5.3.37).

The last assumption we need is as follows.

Polynomial boundedness of feasible sets. We say that a family of convex optimization
problems P has polynomially bounded feasible sets if the feasible setX(p) of every instance
(p) ∈ P is bounded and is contained in the Euclidean ball, centered at the origin, of a not-
too-large radius:

∀(p) ∈ P :
X(p) ⊂

{
x ∈ Rn(p) : ‖x‖2 ≤ (χ [Size(p) + ‖Data(p)‖1])χSizeχ

(p)
}
.

(5.3.38)

Note that this assumption is not satisfied for typical families of convex optimization pro-
grams. Given the data of an LP instance, we cannot bound the size of the feasible set by a
function of the norm of the data vector. To see this, look at the subfamily of LP comprising
(1D) instances

min
x

{x : δx ≥ 1}

with δ > 0.
However, we can impose the property of polynomial boundedness of feasible sets by

brute force: just assume that the description of X(p) includes an explicit box constraint

|xj | ≤ R(p)n−1/2(p), j = 1, . . . , n(p),
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where R(p) is an element of the data vector Data(p). Thus, given a family P of convex
programs, we may pass from it to the family P+ described as follows: instances (p+) of
P+ are pairs ((p), R), (p) being an instance of P and R being a positive real; if (p) is the
optimization program

(p) : min
x

{
p0(x) : x ∈ X(p) ⊂ Rn(p)

}
,

then (p+) = ((p), R) is the optimization program

(p+) : min
x

{
p0(x) : x ∈ X(p+) = {x ∈ X(p) | |xj | ≤ Rn−1/2(p), j = 1, . . . , n(p)}} ,

and

Data(p+) = (DataT (p), R)T .

Note that the resulting family P+ has polynomially bounded feasible sets: by construction,
for every (p+) = ((p), R) ∈ P+ we have

X(p+) ⊂ {x ∈ Rn(p) | ‖x‖2 ≤ R ≤ ‖Data(p+)‖1}.
For the families of linear, conic quadratic, and semidefinite programming, the outlined brute
force way to ensure the polynomial boundedness of feasible sets shrinks the family: adding
box constraints to a linear, conic quadratic, or semidefinite program, we again get a program
of the same structure. It follows that if we insist on the property of polynomial boundedness
of feasible sets (which is crucial for polynomial time solvability), we cannot deal with the
entire families LP , CQP , SDP , etc., only with their subfamilies LP+, CQP+, SDP+, . . . ,
thus restricting our universe. Nevertheless, from the viewpoint of practical computations
there is no restriction at all. Indeed, when solving a real-world optimization problem, we
never lose much when adding to the original formulation of the problem box constraints like
|xj | ≤ 10400, or even |xj | ≤ 1012, because in actual computations there is no possibility to
get a solution of such a huge magnitude, and moreover such a huge solution could hardly
make practical sense.

5.3.1 Polynomial solvability of convex programming

We are about to establish our central result (which is the exact form of the claim (!)).

Theorem 5.3.1. Let P be a family of convex optimization programs equipped with in-
feasibility measure InfeasP(·, ·). Assume that the family is polynomially computable, with
polynomial growth and with polynomially bounded feasible sets. Then P is polynomially
solvable.

Proof. We shall show that polynomial time solvability can be achieved by the ellipsoid
method. Our plan is as follows. Assume we are given a positive ε and the data vector of an
instance (p) ∈ P ,

(p) : min
x

{
p0(x) : x ∈ X(p) ⊂ Rn(p)

}
,
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and we wish to compute an ε-solution to the instance or to conclude that the instance is
infeasible.49 Since our instances are with polynomially bounded feasible sets, we can extract
from Data(p) an a priori upper bound R(p) on the Euclidean norms of feasible solutions to
the instance and thus convert (p) into an equivalent program

(p) : min
x

{
p0(x) : x ∈ X̄(p) = {x ∈ X(p) | ‖x‖2 ≤ R(p)}} .

Now, to find an ε-solution to the latter problem, it suffices to find a feasible ε-solution to
the augmented problem

(pε) : min
x

{p0(x) : x ∈ X = {x | InfeasP(x, p) ≤ ε, ‖x‖2 ≤ R(p)}} . (5.3.39)

A feasible ε-solution to the latter problem can be found by the ellipsoid method, provided
that we can equip the problem with a separation oracle for X and a first order oracle for
p0(x) and we can point out r = r(p, ε) > 0 such that X contains an Euclidean ball of the
radius r . As we shall see in a while, our a priori assumptions on the family allow us to
build all these entities so that the resulting ellipsoid-method-based solution routine will be
a polynomial time one.

Let us implement our plan.

Specifying R(p). Since the problems of the family have polynomially bounded feasible
sets, X(p) is contained in the Euclidean ball E0, centered at the origin, of the radius

R(p) = (χ [Size(p) + ‖Data(p)‖1])χSizeχ
(p) , (5.3.40)

where χ > 0 is a certain characteristic constant of P , and therefore is known to us a priori.
Given Data(p), we compute R(p) according to (5.3.40), which requires a number of real
arithmetic operations which is polynomial in Size(p).

Specifying r(p, ε). We now need to find an r(p, ε) > 0 in such a way that the feasible
set X of the augmented problem (5.3.39) contains a ball of the radius r(p, ε). Interpreting
this target literally, we immediately conclude that it is unachievable, since X can be empty.
(This is the case when (p) is heavily infeasible—it does not admit even ε-feasible solutions.)
However, we can define an appropriate r(p, ε) for the case when (p) is feasible, namely, as
follows. To save notation, let us set

g(x) = InfeasP(x, p).

From the polynomial growth property we know that both p0(x) and g(x) are not very large
in E0 = {x | ‖x‖2 ≤ R(p)}, namely,

(a) VarR(p)(p0) ≤ V (p),

(b) g(x) ≤ V (p) ∀(x, ‖x‖2 ≤ R(p)),

(c) V (p) = (χ [Size(p) + max[‖x‖1 | ‖x‖2 ≤ R(p)] + ‖Data(p)‖1])
(
χSizeχ

(p)
)

= (
χ

[
Size(p) + n1/2(p)R(p) + ‖Data(p)‖1

])(χSizeχ
(p)

)
,

(5.3.41)
49Since all our instances are with bounded feasible sets, we should not bother about the possibility of (p) being

unbounded below.
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where χ is a characteristic constant of P and therefore is a priori known. We compute V (p)

according to (5.3.41) (which again takes a number of operations polynomial in Size(p)) and
set

r(p, ε) = ε

V (p) + ε
R(p). (5.3.42)

We claim that

(∗) If (p) is feasible, then the feasible set X of problem (5.3.39) contains a
Euclidean ball of the radius r(p, ε).

Indeed, by definition of an infeasibility measure, g(x) is a convex nonnegative real-
valued function on Rn(p); if (p) is feasible, then g attains value 0 at certain point x̄ ∈ E0 ≡
{x | ‖x‖2 ≤ R(p)}. Consider the shrinkage of E0 to x̄ with coefficient ν = r(p, ε)/R(p)

(note that ν ∈ (0, 1) by (5.3.42)):

Y = (1 − ν)x̄ + νE0 = {x = (1 − ν)x̄ + νz | ‖z‖2 ≤ R(p)}.
On one hand, Y is a Euclidean ball of radius νR(p) = r(p, ε). On the other hand, for every
x = (1 − ν)x̄ + νz ∈ Y (‖z‖2 ≤ R(p)) we have

g(x) ≤ (1 − ν)g(x̄) + νg(z) ≤ νg(z) ≤ νV (p) ≤ ε.

(Recall that g is convex and satisfies (5.3.41)(b).)

Mimicking the oracles. The separation oracle Sep(X) for the feasible set X can be built
as follows. Given x, we first check whether ‖x‖2 ≤ R(p). If this is not the case, then
clearly a = x separates x from E0 (and therefore from X ⊂ E0), and Sep(x) reports
that x �∈ X and is separated from X by a = x. If ‖x‖2 ≤ R(p), the oracle calls Ccons,
forwarding to it Data(p), x, ε. If the result returned to Sep(X) by Ccons is the claim that
g(x) = InfeasP(x, p) is ≤ ε (i.e., if x ∈ X), Sep(X) reports that x ∈ X and stops. If the
result returned to Sep(X) by Ccons is the claim that g(x) > ε along with a vector a such that

g(y) ≤ ε ⇒ aT y < aT x,

Sep(X) reports that x �∈ X and outputs, as the required separator, either a (if a �= 0), or
an arbitrary vector a′ �= 0 (if a = 0). It is clear that Sep(X) works correctly (in particular,
the case of a = 0 can arise only when X is empty, and in this case every nonzero vector
separates x from X). Note that the running time TSep of Sep(X) (per a single call to the
oracle) does not exceed O(n(p)) plus the running time of Ccons, i.e., it does not exceed
Tcons(x, ε, p) + O(n(p)). Since P is polynomially computable, we have

n(p) ≤ χSizeχ (p). (5.3.43)

(Indeed, n(p) ≤ Tobj(x, p), since Cobj should at least read n(p) entries of an input value of
x.) Combining (5.3.43) and (5.3.32), we conclude that

TSep ≤ χ (Size(p) + Digits(p, ε))χ . (5.3.44)
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The first order oracle O(p0) is readily given by Cobj, and its running time TO (per a single
call to the oracle) can be bounded as

TO ≤ χSizeχ (p); (5.3.45)

see (5.3.30).

Running the ellipsoid method. After we have built R(p), r(p, ε), Sep(X), and O(p0),
we can apply to problem (5.3.39) the ellipsoid method as defined above. The only precaution
we should take deals with the case when X does not contain a ball of the radius r(p, ε);
this may happen only in the case when (p) is infeasible (see (*)), but how could we know
whether (p) is or is not feasible? To resolve the difficulty, let us act as follows. If (p) is
feasible, then, by Theorem 5.2.1, the ellipsoid method would terminate after no more than

Ceil

(
2n2(p)

[
ln

(
R(p)

r(p, ε)

)
+ ln

(
ε + VarR(p)(p0)

ε

)])
+ 1

steps and will produce a feasible ε-solution to (5.3.39), i.e., an ε-solution to (p). The
indicated number of steps can be bounded from above by the quantity

N ≡ N(p, ε) = Ceil

(
2n2(p)

[
ln

(
R(p)

r(p, ε)

)
+ ln

(
ε + V (p)

ε

)])
+ 1, (5.3.46)

since VarR(p)(p0) ≤ V (p) by (5.3.41)(a). Let us terminate the ellipsoid method by force if
it intends to perform more than N = N(p, ε) steps. When using this emergency stop, we
define the result generated by the method as the best (with the smallest value of p0(·)) of the
search points ct−1 associated with productive steps t ≤ N , if there were productive steps.
If no productive steps in the course of our run are encountered, the result of the solution
process is the conclusion that (p) is infeasible.

Correctness. We claim that the outlined implementation of the ellipsoid method is
correct—i.e., when the corresponding result is an approximate solution x̂, this is an ε-
solution to (p), and when the result is the conclusion “(p) is infeasible”, this conclusion is
true. Indeed, if (p) is feasible, then the arguments used in the previous paragraph demon-
strate that x̂ is well defined and is an ε-solution of (p). If (p) is infeasible, then the result,
by construction, is either the correct conclusion that (p) is infeasible or a point x̂ such that
InfeasP (̂x, p) ≤ ε. Such a point, in the case of infeasible (p), is an ε-solution of (p), since
in the case in question Opt(p) = +∞ and therefore p0(x) ≤ Opt(p) + ε for every x.

Polynomiality. It remains to verify that our solution method is indeed a polynomial time
one. Observe, first, that all preliminary computations—those needed to specifyR(p), V (p),
r(p, ε), N(p, ε)—require no more than χSizeχ (p) operations (we have already seen that
this is the case for R(p), V (p) and r(p, ε). Given these quantities, it takes just χ operations
to compute N(p, ε)). It remains to show that the running time of the ellipsoid method
admits a polynomial time bound. This is immediate: the method performs no more than
N(p, ε) steps, and the arithmetic cost of a step does not exceed the quantity

T = TSep + TO + χn2(p),
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where the rightmost term represents the arithmetic cost of updating (5.2.16), computing �t
and all other out-of-oracles operations required by the method. Thus, the overall running
time T (p, ε) of our solution method can be bounded as

T (p, ε) ≤ χSizeχ (p) + N(p, ε)
[
TSep + TO + χn2(p)

]
≤ χSizeχ (p) + N(p, ε)

[
χ (Size(p) + Digits(p, ε))χ + χSizeχ (p)

]
[we have used (5.3.44), (5.3.45) and (5.3.43)]

≤ χSizeχ (p)Digitsχ (p, ε)
[see (5.1.8), (5.3.46), (5.3.42), (5.3.41)],

so the method is indeed a polynomial time one.

5.4 Difficult problems and NP-completeness
The fundamental motivation for our convexity-oriented approach to optimization, as was
announced in the preface and as we are well aware by now, is that convex optimization pro-
grams are computationally tractable. On several occasions we also claimed that such-and-
such problems are hard or computationally intractable. What do these words actually mean?
Without answering this question, a lot of our activity would become seemingly senseless:
e.g., why should we bother about semidefinite relaxations of combinatorial problems like
MAXCUT? What is wrong with these problems as they are? If we claim that something—
e.g., convex programming—is good, we should understand what “bad” means: “good,” at
least on Earth, and particularly in science, is a relative notion.

To understand what “computational intractability” means, let us outline briefly the
basic results of combinatorial complexity theory (CCT).

5.4.1 CCT—a quick introduction

A generic combinatorial problem is a special case of the generic optimization problem. It
is a family P of problem instances, where every instance (p) ∈ P is specified by a finite
dimensional data vector Data(p) which now is a Boolean vector, i.e., with entries taking
values 0, 1 only (so that the data vectors are, actually, finite binary words).

The model of computations in CCT is also more restrictive (and, in a sense, more
realistic) than the real arithmetic model we have dealt with. Now our computer is able to
store only integers (i.e., finite binary words), and its operations are bitwise: we are allowed
to multiply, add, and compare integers, but now the cost of a single operation of this type
depends on the bit length of the operands. To add and to compare two �-bit integers takes
O(�) bitwise elementary operations, and to multiply a pair of �-bit integers costs O(�2)

elementary operations.50

In CCT, a solution to an instance (p) of a generic problem P is a finite binary word
y such that the pair (Data(p), y) satisfies certain verifiable condition A(·, ·). Namely, it
is assumed that there exists a code M for the above integer arithmetic computer such that
executing the code on every input pair x, y of finite binary words, the computer terminates

50In fact, two �-bit integers can be multiplied in O(� ln �) bitwise operations, but for us it makes no difference;
the only fact we need is that the bitwise cost of an operation with integers is at least the bit size and at most a fixed
polynomial of the bit size of the operands.
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after finitely many elementary operations and outputs either “yes,” if A(x, y) is satisfied,
or “no,” if A(x, y) is not satisfied. Thus, P is the problem

given x, find y such that

A(x, y) = true, (5.4.47)

or detect that no such y exists.

Two typical examples of generic combinatorial problem are the shortest path problem,

Given a graph with arcs assigned nonnegative integer lengths, two nodes a, b
in the graph, and a positive integer d, find a path from a to b of total length not
exceeding d , or detect that no such path exists

and the stones problem from Lecture 4,

Given n positive integers a1, . . . , an, find a vector x = (x1, . . . , xn)
T with

coordinates ±1 such that
∑

i xiai = 0, or detect that no such vector exists.

Indeed, the data of instances of both problems and candidate solutions to the instances can
be naturally encoded by finite sequences of integers. In turn, finite sequences of integers can
be easily encoded by finite binary words—you just encode binary digit 0 of an integer as
00, binary digit 1 as 11, use 01 to represent the commas separating integers in the sequence
from each other, and use 10 to represent the minus sign:

5,−3, 7 ⇒ 110011︸ ︷︷ ︸
1012=5

01︸︷︷︸
,

10︸︷︷︸
−

1111︸︷︷︸
112=3

01︸︷︷︸
,

111111︸ ︷︷ ︸
1112=7

.

Clearly, for both the shortest path and stones problems you can easily point out a code for
the integer arithmetic computer, which, given on input two binary words, x = Data(p)
encoding the data vector of an instance (p) and y encoding a candidate solution, verifies in
finitely many bit operations whether y represents a solution to (p).

A solution algorithm for a generic problem P is a code S for the integer arithmetic
computer which, given on input the data vector Data(p) of an instance (p) ∈ P , terminates
after finitely many operations and returns either a solution to the instance or a (correct!) claim
that no solution exists. The running time TS(p) of the solution algorithm on instance (p)

is exactly the number of elementary (i.e., bit) operations performed in course of executing
S on Data(p).

A solvability test for a generic problem P is defined similarly to a solution algorithm,
but now all we want from the code is to say (correctly!) whether the input instance is or is
not solvable, i.e., to say just “yes” or “no,” without constructing a solution in the case of the
“yes” answer.

The complexity of a solution algorithm or solvability test S is defined as

ComplS(�) = max{TS(p) | (p) ∈ P, length(Data(p)) ≤ �},
where length(x) is the bit length (i.e., number of bits) of a finite binary word x. The
algorithm or test is called polynomial time if its complexity is bounded from above by a
polynomial of �.

Finally, a generic problem P is said to be polynomially solvable if it admits a poly-
nomial time solution algorithm. If P admits a polynomial time solvability test, we say that
P is polynomially verifiable.

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 365

✐

✐

✐

✐

✐

✐

✐

✐

5.4. Difficult problems and NP-completeness 365

Classes P and NP. A generic problem P is said to belong to the class NP if the corre-
sponding condition A, see (5.4.47), possesses the following two properties:

I. A is polynomially computable, i.e., the running time T (x, y) (measured, of course,
in elementary bit operations) of the associated code M is bounded from above by a poly-
nomial of the binary length of the input:

T (x, y) ≤ χ(length(x) + length(y))χ ∀(x, y).
Thus, the first property of an NP problem states that given data Data(p) of a problem instance
p and a candidate solution y, it is easy to check whether y is an actual solution of (p). To
verify this fact, it suffices to compute A(Data(p), y), and the time of this computation is
polynomial in length(Data(p)) + length(y).

The second property of an NP problem makes its instances even easier:
II. A solution to an instance (p) of a problem cannot be too long as compared to the

data of the instance: there exists χ such that

length(y) > π(length(x)) ≡ χ lengthχ (x) ⇒ A(x, y) = "no".

A generic problem P is said to belong to the class P, if it belongs to the class NP and is
polynomially solvable.

Note that there is no problem in building a brute force solution algorithm for an NP
problem: given Data(p), you just look successively at finite binary words 0,1,00,01,10,11, . . .
and compute A(Data(p), y), y being the current candidate solution, to check whether y is a
solution to (p). If this is the case, you stop; otherwise, pass to the next candidate solution.
After all candidates of length ≤ π(length(x)) are checked and no solution is found, you
conclude that (p) has no solution and terminate. Of course, this brute force algorithm is not
polynomial—its complexity exceeds 2π(�).

As is immediately seen, both the shortest path and the stones problem belong to
NP. There is, however, a dramatic difference between these two problems: the first is
polynomially solvable, but for the second no polynomial time solution algorithms are known.
Moreover, the second problem is as difficult as a problem from NP can be—it is NP-complete.

Definition 5.4.1. (i) Let P , Q be two problems from NP. Problem Q is called polynomially
reducible to P if there exists a polynomial time algorithm M (i.e., a code for the integer
arithmetic computer with the running time bounded by a polynomial of the length of the
input) with the following property. Given on input the data vector Data(q) of an instance
(q) ∈ Q, M converts this data vector to the data vector Data(p[q]) of an instance of P
such that (p[q]) is solvable if and only if (q) is solvable.

(ii) A generic problem P from NP is called NP-complete, if every other problem Q
from NP is polynomially reducible to P .

One of the most basic results of theoretical computer science is that NP-complete
problems do exist (the stones problem is an example).

The importance of the notion of an NP-complete problem comes from the following
fact:

(!!!) If a particular NP-complete problem is polynomially verifiable (i.e., ad-
mits a polynomial time solvability test), then every problem from NP is polyno-
mially solvable: P = NP.

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 366

✐

✐

✐

✐

✐

✐

✐

✐

366 Lecture 5. Computational Tractability of Convex Programs

(!!!) is an immediate consequence of the following two observations:

(A) If there exists an NP-complete problem P that is polynomially verifiable,
then every problem from NP is polynomially verifiable.

Indeed, under the premise of our statement, we can build a polynomial time solv-
ability test for a problem Q from NP as follows: given an instance (q) ∈ Q, we first
apply the corresponding polynomial time reduction algorithm M to convert Data(q) into
Data(p[q]) (see item (i) of Definition 5.4.1). Let θ(·) be a polynomial such that the running
time of algorithm M on input of length l = 1, 2, . . . does not exceed θ(l). The quantity
length(Data(p[q])) is bounded by the running time of M on the input Data(q)—it takes
one bit operation just to write a single output bit. Since M is polynomial, we conclude that
length(Data(p[q])) ≤ θ(�), where � = length(Data(q)). After Data(p[q]) is built, we run
the polynomial time solvability test associated with P (we have assumed that it exists!) to
check whether (p[q]) is solvable, thus detecting solvability or unsolvability of (q). The
running time of this latter computation is bounded by π(length(Data(p[q]))) ≤ π(θ(�)), π
being a polynomial. Thus, the overall running time does not exceed θ(�)+ π(θ(�)), which
is a polynomial in � = length(Data(q)).

(B) If every problem from NP is polynomially verifiable, then every problem
from NP is polynomially solvable.

The idea of the proof (we skip the technical details) is as follows: assume we want
to solve an instance (p) ∈ P (P is in NP) and have a polynomial time solvability test for
the problem. We first check in polynomial time whether (p) is solvable. If the answer is
“no,” this is all we need; if the answer is “yes,” we should find a solution itself. Applying
our solvability test, we can decide in polynomial time whether (p) has a solution with the
first bit 0. Whatever the answer will be, we will get the first bit y1 of (some) solution: if the
answer is “yes,” this bit is 0; otherwise it is 1. Since P is in NP, we can check in polynomial
time whether the single-bit word y = y1 is a solution. If the answer is “no,” we proceed
in the same way: run our solvability test to check whether (p) has a solution with the first
bit y1 and the second bit 0, thus getting the first two bits of a solution, check whether the
resulting two-bit word is a solution, and so on. Since the length of all possible solutions to
(p) is bounded from above by a polynomial of the length of Data(p) (P is in NP!), we shall
build a solution in a polynomial in � = length(Data(p)) number of calls to the solvability
test and the verification test (the latter verifies whether a given y solves (p)), running time
per call being bounded by a polynomial in �, and the overall running time of building a
solution to (p) turns out to be polynomial in �.

As we have mentioned, NP-complete problems do exist. Moreover, a detailed in-
vestigation of combinatorial problems carried out during the last three decades (i.e., after
the notion of an NP-complete problem and existence of these problems were discovered)
demonstrates that

Basically all interesting combinatorial problems are in NP, and nearly all of
those that were thought to be difficult (with no known polynomial time solution
algorithms) are NP-complete. The list of NP-complete problems includes inte-
ger and boolean LP, the traveling salesman problem, MAXCUT, and hundreds
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of other combinatorial problems, including ones which at first glance appear
simple, such as the stones problem.

There are, essentially, just two important generic combinatorial problems from NP that were
not known to be polynomially solvable in 1970 and still are not in the list of NP-complete
problems. The first of them is the graph isomorphism problem—given two graphs, decide
whether they are isomorphic, whether there exist one-to-one correspondences between the
set of nodes and the set of arcs of the graphs which preserve the node-arc incidence. The
complexity status of this problem is still unknown. The second one is LP over rationals
(i.e., LP with rational data). An LP program with rational data, if solvable, admits a rational
solution, so that this family of problems can be treated as a generic combinatorial problem.
In 1978 Khachiyan proved that LP over rationals is polynomially solvable.

It still is unknown whether P = NP, i.e., whether NP-complete problems are poly-
nomially solvable; this question (viewed by many as the most important open problem in
theoretical computer science) has remained open for 30 years.

Although we do not know whether P = NP, i.e., whether there indeed exist difficult
combinatorial problems, at the practical level the answer seems to be clear. Indeed, there
are a lot of NP-complete problems; some of them, like integer and Boolean linear program-
ming programs and their numerous special cases, are of immense practical importance and
therefore for decades have been the subject of intensive studies of thousands of excellent
researchers in academia and in industry. However, no polynomial time algorithm for any
one of these problems was found. With the discovery of the theory of NP-completeness it
became clear that in a sense all research in the area of solution methods for combinatorial
programs deals with a single problem (since polynomial time solvability of a particular
NP-complete problem would automatically imply polynomial time solvability of all such
problems). Given the huge total effort invested in this research, we should conclude that it
is highly unprobable that NP-complete problems are polynomially solvable. Thus, at the
practical level the fact that a certain problem is NP-complete is sufficient to qualify the
problem as computationally intractable, at least at our present level of knowledge.

5.4.2 From the real arithmetic complexity theory to the
CCT and back

We have outlined two complexity theories, one based on the real arithmetic computer and
interested in finding ε-solutions for problems with real data, and the other based on the integer
arithmetic computer and interested in finding exact solutions to problems with binary data.
The theories are similar, but in no sense identical. To stress the difference, consider a simple
computational problem—just one of solving a square system of linear equations

Ax = b (A, b)

with n = n(A, b) unknowns and a nonsingular matrix A. The real arithmetic complexity
theory will qualify the problem as follows:

(R) The family L of instances (A, b)with real entries inA, b and nonsingularA
is polynomially solvable: there exists an algorithm (e.g., the Gauss elimination
method) that, as applied to any instance, finds the exact solution of the instance
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in no more than O(n3(A, b)) operations of exact real arithmetic, which is a
polynomial in the dimension Size(A, b) = n2(A, b)+n(A, b) of the data vector
of the instance.

The CCT first cannot handle systems of linear equations with real data, since in this case
neither the data nor candidate solutions can be encoded by finite binary words. However,
CCT can handle systems with rational data and will qualify these systems as follows:

(C) The family L of instances (A, b) with rational entries in A, b and non-
singular A is polynomially solvable: there exists a solution algorithm (e.g.,
the Gauss elimination method) that, as applied to any instance, finds an exact
solution of the instance in no more than a polynomial in � number π(�) of bit
operations, � being the length of the instance data, i.e., the total number of bits
in binary representations of the numerators and denominators of all entries of
the data.

We see that these two statements say different things about different entities, and neither
is a consequence of the other; a priori it might happen that one of these statements is true
and another is false, or both are false, or both are true (which is indeed the case here). The
essence of the difference comes not from the fact that (R) speaks about all systems, while (C)
addresses only systems with rational data; this is a minor point. The essence of the difference
is that in (C) an elementary operation is a bit operation, while in (R) it is an operation with
reals; thus, (C), as compared to (R), deals with a much more restricted set of elementary
operations and therefore with a much more strict (and more realistic) notion of computational
effort. As a kind of compensation, (C) uses a less-strict notion of a polynomial time method
than (R): for (C) a method is polynomial if its running time (measured in bit operations) is
bounded by a polynomial of the total binary length of the data, while for (R) this running time
(measured in the number of real arithmetic operations) should be bounded by a polynomial
of the number of data entries—a quantity that is definitely less than the binary length of the
data. For example, when (C) says that systems of linear equations are polynomially solvable,
it says nothing definite about the complexity of solving a system of two linear equations
with two variables: the bitwise complexity of this simplest computational problem can
be as large as you wish, provided that the coefficients are rationals with large numerators
and denominators. In contrast to this, when (R) says that systems of linear equations are
polynomially solvable, it says, in particular, that a system of two linear equations with two
unknowns can be solved in O(1) operations of real arithmetic.

Although the two outlined complexity theories deal with different setups, each one
can nevertheless utilize (and in fact does!) some results of its counterpart. Sometimes a real
arithmetic polynomial time method, as restricted to a family of problems with rational data,
can be converted to a CCT-polynomial time algorithm for a combinatorial problem, thus
yielding CCT-polynomial solvability of this problem. Borrowing efficient algorithms in the
opposite direction—from combinatorial problems to those with real data—does not make
much sense; the real arithmetic complexity theory does borrow from CCT the techniques
for recognizing computationally intractable problems. In this book we are at the side of
optimization programs with real data, hence our primary interest is what can be borrowed
from the CCT and not what can be given to it. However, we start with an example of the
latter.
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Combinatorial complexity theory polynomial solvability of linear programming
over rationals

Let us start with some historical remarks. Linear programming in most of its methodolog-
ical and computational aspects was discovered by Dantzig in the late 1940s. He proposed
the simplex method for LP (1948), which for about 40 years was the only practical (and
extremely efficient) tool for solving LP programs. It is still one of the most efficient computa-
tional techniques known for LP, and is the most frequently used. The theoretical justification
of the method is that in the real arithmetic model of computations it finds an exact solution
to any LP program (or detects correctly that no solution exists) in finitely many arithmetic
operations, while its practical justification is that this number of operations is typically quite
moderate. However, it was discovered that the worst-case complexity of the simplex method
is very bad: Klee and Minty (1964) built a subfamily of LP programs {(pn)}∞

n=1 with the
following property: (pn) has rational data, and the size of the instance (pn) is polynomial
in n, whether we measure the size as the number of data entries or as their total bit length.
The number of arithmetic operations performed by the simplex method as applied to (pn)

is more than 2n. Thus, the simplex method is not a polynomial time method in the sense of
real arithmetic complexity theory, same as in the sense of the CCT. For about 15 years, the
question whether LP is polynomially solvable was one of the major challenges in the area
of computational complexity. The CCT-version of this question was answered affirmatively
by Khachiyan in 1978, and the tool he used was borrowed from convex optimization with
real data—it was the ellipsoid method (1976). The sketch of Khachiyan’s construction is
as follows.

Linear feasibility problem. Let us start with the LP feasibility problem:

(FeasLP) Given a system of linear inequalities

Ax ≤ b (S)

with rational coefficients, check whether the system has a solution.

The polynomial time (in the sense of CCT!) algorithm for (FeasLP) proposed by Khachiyan
is as follows.

We may assume without loss of generality that the columns of A are linearly indepen-
dent. (Otherwise we can eliminate the columns that are linear combinations of the remaining
ones, which does not affect the feasibility. This linear algebra operation takes time which is
polynomial in the total bit length L of the data and results in a system of the same structure
and the total bit length of the data which is polynomial in L.) It is also convenient to assume
that the data is integer. (We may multiply all coefficients involved in a particular inequality
by their common denominator. This equivalent transformation results in a problem with the
total bit length of the data being polynomial in the bit length of the original data.) Thus, we
may assume that the data in (S) are integer and the columns in A are linearly independent.
LetL be the total bit length of the data, m be the number of inequalities, and n be the number
of unknowns in (S).

The first step is to get an a priori upper bound on the norm of a solution to (S), assuming
that such a solution exists. This can be done as follows.
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It is a well-known fact of LP and convex analysis that if A has linearly independent
columns and (S) has a solution, then (S) has an extreme point solution x as follows: n

of the m inequalities of (S) at x are equalities, and the rows of A corresponding to these
inequalities are linearly independent. In other words, x is the unique solution of the square
system of linear equations

Âx = b̂,

where Â is a nonsingular n × n submatrix of A and b̂ is the corresponding subvector of b.
From the Cramer rules it follows that every coordinate in x is the ratio D′

D
of two determinants:

D = DetÂ and D′ is the determinant of an n×n submatrix of the matrix [Â; b̂]. Now, D is a
nonzero integer (all entries in A, b are integer!), and D′ is not too large—the absolute value
of a determinant does not exceed the product of Euclidean lengths of its rows.51 Since the
sum of binary lengths of all entries in A, b does not exceed L, the above product cannot be
very large; a simple computation demonstrates that it does not exceed 2O(1)L (all O(1)’s are
absolute constants). We conclude that the absolute values of all entries in x do not exceed
2O(1)L, so that ‖x‖2 ≤ 2O(1)L√

n ≤ 2O(1)L. (We have used the evident fact that both n and
m do not exceed L—it takes at least one bit to represent every one of the mn entries of A.)

The second step is to look at the minimum value g∗ of the residual

g(x) = max

[
0, max

i=1,...,m
[(Ax)i − bi]

]
;

note that this minimum value is 0 if (S) is solvable and is > 0 otherwise. What we are
interested in is to understand whether g∗ can be positive but very small. The answer is “no”:
if g∗ > 0, then g∗ > 2−O(1)L.

Indeed, g∗ is the optimal value of the feasible LP program

min
t,x

{t : t ≥ 0, (Ax)i − bi ≤ t, i = 1, . . . , m} . (S′)

The binary length L′ of the data in this problem is of order L, and the problem for sure is
solvable. From the theory of LP it is well known that if an LP has a solution and the feasible
set of the problem does not contain lines, then the problem has a solution that is an extreme
point of the feasible set. Since the columns ofA are linearly independent and (S′) is solvable,
the feasible set of the problem does not contain lines (why?); consequently, the problem
admits an extreme point solution. The coordinates of the latter solution, in particular,
its t-coordinate (i.e., the optimal value in (S′), i.e., g∗), again are ratios of determinants,
now coming from the matrix [A; b; e], e being the vector of ones. Thus, g∗ is the ratio
of two integers and the absolute values of these integers, same as above, do not exceed
2O(1)L′ = 2O(1)L. It follows that if g∗ > 0, then g∗ ≥ 2−O(1)L—the numerator in the ratio
representing g∗, being a nonzero integer, should be at least one, and the denominator cannot
be larger than 2O(1)L.

The third step—we already know that if (S) is feasible, the minimum of g in the ball
E0 = {x | ‖x‖2 ≤ 2O(1)L} is zero (since then this ball contains a solution to (S)). We know
also that if (S) is infeasible, then the minimum of g in E0 is at least 2ε = 2−O(1)L, since

51Hadamard’s inequality expressing an evident geometric fact: the volume of a parallelotope does not exceed
the product of its edges.
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in this case already the minimum of g on the entire Rn admits the indicated lower bound.
It follows that in order to check feasibility of (S) it suffices to find an ε-solution xε to the
optimization problem

min
x

{g(x) : x ∈ E0} ; (C)

if the value of g at xε is ≤ ε, we are sure that the true minimum value of g is less than ε,
which, in view of the origin of ε, is possible only if the true optimal value in (C) is 0 and
(S) is solvable. And if g(xε) > ε, the optimal value in (C) is > 0 (since xε is an ε-solution
to (C)), and (S) is infeasible.

Now, g clearly is a convex function with easily (in O(1)mn arithmetic operations)
computable value and subgradient. It follows that an ε-solution to (C) can be found by
the ellipsoid method. Let us evaluate the complexity of this process. In the notation from
Theorem 5.2.1 our case is the one of X = E0 (i.e., r = R = 2O(1)L) and, as is easily seen,
VarR(g) ≤ R2L. Theorem 5.2.1 therefore says that the number of steps in the ellipsoid
method is bounded from above by O(1)n2 ln( ε+VarR(g)

ε
) ≤ O(1)n2L (note that both ε−1

and VarR(g) are of order of 2O(1)L). The number of arithmetic operations per step is
O(1)(n2 + mn), where the n2-term represents the operation cost of the method itself and
the mn-term represents the computational expenses of computing g(x), g′(x) at a given x

and mimicking the separation oracle for the Euclidean ball E0. (When proving Theorem
5.3.1, we have built such an oracle and have evaluated its running time—it is just O(1)n.)
Thus, the overall number of arithmetic operations required to find an ε-solution to (C) is
O(1)(n2 + mn)n2L, which is a polynomial in L (recall that mn ≤ L).

We are almost done. The only remaining problem is that the ellipsoid method is
a real arithmetic procedure, so that the polynomial in L complexity bound of checking
feasibility of (S) counts the number of operations of real arithmetic, while what we need is
an integer arithmetic computer routine and a bound on the number of bit operations. Well, a
quite straightforward (although tedious) analysis demonstrates that we can obtain the same
accuracy guarantees when implementing the ellipsoid method on an inexact arithmetic
computer, where every elementary operation +,−, /,×,

√ is applied to O(1)nL-digit
operands and rounds the exact result to the same O(1)nL digits. Now every arithmetic
operation costs a number of bit operations which is polynomial in L, and thus the overall
bit complexity of the computation is also polynomial in L.

From checking feasibility to finding optimal solutions. It remains to explain how a
CCT-polynomial time algorithm for checking feasibility of systems of linear inequalities
with rational data can be converted into a CCT-polynomial time algorithm for solving LP
programs with rational data. Observe, first, that to solve an LP problem is the same as to
solve certain system of linear inequalities (S) (write the constraints of the primal problem
along with those of the dual and the linear equation saying that the duality gap is 0; of
course, a linear equation can be written as a pair of opposite linear inequalities). We already
know how to check in polynomial time the feasibility of (S), so all we need is to figure out
how to find a feasible solution to (S) given that the system is feasible. The simplest way
to do it is as follows. Let us take the first inequality aT x ≤ b in (S), replace it with the
equality aT x = b, and check whether the modified system we obtain is feasible. If not, we
know that the hyperplane aT x = b does not intersect the solution set of (S); since this set
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is nonempty and convex, we conclude that every solution to the system (S1) obtained from
(S) by eliminating the first inequality is a solution to (S) as well. If the modified system
is feasible, let (S1) be this modified system. Note that in both cases (S1) is solvable, and
every solution to (S1) is a solution to (S). Now let us look at (S1); this system can have
both inequalities and equalities. Let us take the first inequality of the system, if it exists,
make it equality, and check whether the modified system is feasible. If it is, this modified
system will be our (S2); otherwise (S2) will be obtained from (S1) by eliminating the first
inequality in (S1). Note that in both cases (S2) is solvable, and every solution to it is a
solution to (S1) and therefore to (S). Note also that the number of inequalities in (S2) is less
than that one in (S) by 2. Proceeding in the same way, we look in turn at all inequalities
of the original system, check feasibility of certain intermediate system of equations and
inequalities, and, as a result, either make the inequality an equality or eliminate it, thus
getting a new intermediate system. By construction, this system is solvable, and all its
solutions are solutions to (S). After m steps of this process (m is the number of inequalities
in (S)) we terminate with a solvable system (Sm) of equations, and every solution to this
system is a solution to (S). Note that all our intermediate systems are of the same total data
length L as (S), so that the overall CCT-complexity of the outlined process is polynomial in
L. It remains to note that we can use the standard linear algebra routines to find a solution
to the solvable system of equations (Sm) in time that is polynomial in L, thus getting in
polynomial time a solution to (S).

Pay attention to the intrinsic mechanics of the outlined construction: its nucleus is a
simple real arithmetic polynomial time routine. This nucleus is spoiled by replacing real
arithmetic operations with their inexact counterparts and is equipped with a completely
exterior termination rules based on the fact that we are dealing with percolated—rational—
data. Note that the more natural version of the question whether LP is polynomially
solvable—namely, the question whether an LP program with rational or real data can be
solved exactly in a number of real arithmetic operations which is polynomial in the size
Size(p) = dim Data(p) of the instance—still remains open.

Difficult convex optimization problems

As mentioned, what real arithmetic complexity theory can borrow from CCT are techniques
for detecting computationally intractable problems. Consider the situation as follows: we
are given a family P of convex optimization programs52 and we want to understand whether
the family is polynomially solvable. Theorem 5.3.1 gives us sufficient conditions for poly-
nomial solvability of P; what to do if one of these conditions is not satisfied? To be more
concrete, let us look at the following family of convex optimization programs:

min
t,x

{
t : x ∈ X =

{
x ∈ Sn | A � x � B,max

u∈Cn

uT xu ≤ t

}}
, (5.4.48)

where Cn = {u ∈ Rn | |ui | ≤ 1, i = 1, . . . , n} is the n-dimensional unit cube and A,B

are symmetric matrices. Note that this problem is of essential interest for the robust conic

52We could speak about other computational problems with real data, in particular, nonconvex optimization
ones, but recall that our subject is convex optimization.
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quadratic optimization we mentioned in Lecture 4. Here we can specify in a natural way
the data vectors of instances and the associated infeasibility measure:

Infeas(x, p) = min

{
τ ≥ 0 : x / A + τI, x � B − τI,max

u∈Cn

uT xu ≤ t + τ

}
,

thus coming to a family of polynomial growth and with polynomially bounded feasible sets.
The difficulty is with polynomial computability: we do not see an easy way to implement
Ccons. Indeed, a direct way—to compute Infeas(x, p) according to the definition of this
function—fails, since no algorithms for computing the maximum of gx(u) = uT xu over
the unit cube with complexity less than 2O(n) operations are known, while Size(p)—the
dimension of the data vector—is only of order n2.

How should we proceed? Perhaps we just do not see a proper way to implement
Ccons and should think more on this subject? For how long? Fortunately (or unfortunately,
depending on viewpoint), we can easily understand that our problem hardly is polynomially
solvable. To explain the reason, let us forget for the moment about our particular family of
convex programs and ask

(?) How could we convince ourselves that a given generic program P is com-
putationally intractable?

One way to answer (?) is as follows. Assume that the objectives of the instances of P are
polynomially computable and that we can point out a generic combinatorial problem Q
known to be NP-complete which can be reduced to P in the following sense:

There exists a CCT-polynomial time algorithm M that, given on input the data
vector Data(q) of an instance (q) ∈ Q, converts it into a triple Data(p[q]),
ε(q), µ(q) comprising the data vector of an instance (p[q]) ∈ P , positive
rational ε(q), and rational µ(q) such that (p[q]) is solvable and

• if (q) is unsolvable, then the value of the objective of (p[q]) at every ε(q)-
solution to this problem is ≤ µ(q) − ε(q);

• if (q) is solvable, then the value of the objective of (p[q]) at every ε(q)-
solution to this problem is ≥ µ(q) + ε(q).

We claim that in the case in question we have all reasons to qualify P as a computationally
intractable problem. Assume, to the contrary, that P admits a polynomial time solution
method S, and let us look what happens if we apply this algorithm to solve (p[q]) within
accuracy ε(q). Since (p[q]) is solvable, the method must produce an ε(q)-solution x̂ to
(p[q]). With additional polynomial time effort we may compute the value of the objective of
(p[q]) at x̂. (Recall that the objectives of instances from P are assumed to be polynomially
computable.) Now we can compare the resulting value of the objective with µ(q). By
the definition of reducibility, if this value is ≤ µ(q), then q is unsolvable; otherwise q is
solvable. Thus, we get a correct real arithmetic solvability test for Q. What is the (real
arithmetic) running time of this test? By definition of a real arithmetic polynomial time
algorithm, it is bounded by a polynomial of s(q) = Size(p[q]) and

d(q) = Digits((p[q]), ε(q)) = ln

(
Size(p[q]) + ‖Data(p[q])‖1 + ε2(q)

ε(q)

)
.
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Now note that if � = length(Data(q)), then the total number of bits in Data(p[q]) and in ε(q)
is bounded by a polynomial of� (since the transformation Data(q) �→ (Data(p[q]), ε(q), µ(q))
takes CCT-polynomial time). It follows that both s(q) and d(q) are bounded by polynomials
in �, so that our real arithmetic solvability test for Q takes a number of arithmetic operations
that is polynomial in length(Data(q)).

Recall that Q was assumed to be an NP-complete generic problem, so that it would
be highly improbable to find a CCT-polynomial time solvability test for this problem, while
we have managed to build such a test, with the only (but important!) difference that our test
is a real arithmetic one—it uses incomparably more powerful elementary operations. Well,
a reasonable real arithmetic algorithm—one that can be used in actual computations—must
be tolerant to small rounding errors (cf. what was said about the ellipsoid algorithm in
the context of LP). Specifically, such an algorithm, as applied to a pair ((p), ε) should be
capable to say to the computer “I need to work with reals with such and such number of
binary digits before and after the dot, and I need all elementary operations with these reals
to be precise within the same number of accuracy digits,” and the algorithm should preserve
its performance and accuracy guarantees, provided that the computer meets the indicated
requirement. Moreover, for a reasonable real arithmetic algorithm the aforementioned
number of digits before and after the dot must be polynomial in Size(p) and Digits(p, ε).53

With these assumptions, our polynomial time real arithmetic solvability test can be easily
converted into a CCT-polynomial time solvability test for Q, which—once again—hardly
could exist. Thus, a real arithmetic polynomial time algorithm for P hardly could exist as
well.

Since we do not know whether NP-complete problems are computationally intractable,
the above reasoning does not prove that if you can reduce a NP-complete combinatorial
problem to a generic program P with real data, the latter program is not polynomially
solvable in the sense of real arithmetic complexity theory; note, however, that (?) asks
about convince, not prove.

As an illustration, let us demonstrate that the NP-complete stones problem can be
reduced to the generic convex program P0 with instances (5.4.48), so that P0 is computa-
tionally intractable. Indeed, let (n, a = (a1, . . . , an)

T ) be the data of an instance (q) of the
stones problem; recall that the instance is solvable if and only if there exist ui = ±1 such
that

∑
i aiui = 0. Given (n, a), let us define the data of the instance (p[q]) ∈ P0 as

A = B = ‖a‖2
2In − aaT

and set

ε(q) = 1

2(n + 2)
, µ(q) = n‖a‖2

2 − 1

2
.

Let us demonstrate that this is indeed a reduction. Observe, first, that the conversion
Data(q) �→ (Data(p[q]), ε(q), µ(q)) is clearly CCT-polynomial time. Now, since A = B,
the feasible set of (p[q]) is

{x = A = B, t ≥ max
u∈Cn

uT xu},
53In fact, this property normally is included into the very definition of a real arithmetic polynomial time algorithm;

we prefer to skip these boring technicalities and to work with a simplified definition.
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and the optimal value in (p[q]) is

Opt(p[q]) = max
u∈Cn

g(u), g(u) = uT Au.

Since A � 0 (check it!), the quadratic form g is convex, and therefore its maximum over
Cn is the same as its maximum over the set of vertices of Cn (why?). If u is a vertex of Cn

(i.e., a vector with coordinates ±1), then the value of g at u is n‖a‖2
2 − (aT u)2. Thus,

Opt(p[q]) = max
{
n‖a‖2

2 − (aT u)2 | ui = ±1, i = 1, . . . , n
}
.

If (q) is unsolvable—i.e., aT u �= 0 ∀u with coordinates ±1—then (aT u)2 ≥ 1 for the
indicated u (since for these u aT u is an integer), and we see that Opt(p[q]) ≤ n‖a‖2

2 − 1 =
µ(q) − 1/2. On the other hand, if (q) is solvable, then the optimal value of the objective
in (p[q]) is equal to n‖a‖2

2 = µ(q) + 1/2. Thus, the exact optimal value of (p[q]) is quite
sensitive to solvability or unsolvability of (q). This is nearly what we need, but not exactly:
we should prove that already the value of the objective of (p[q]) at any ε(q)-solution to the
problem is sensitive to the solvability status of (q). Let (̂x, t̂) be an ε(q)-solution to (p[q]).
In the case of unsolvable (q) we should have

t̂ ≤ Opt(p[q]) + ε(q) ≤ µ(q) − 1/2 + ε(q) ≤ µ(q) − ε(q). (5.4.49)

Now assume that (q) is solvable. By definition of the infeasibility measure we have

x̂ � A − ε(q)In,

t̂ ≥ max
u∈Cn

uT x̂u − ε(q).

Recalling that if (q) is solvable, then

Opt(p[q]) ≡ max
u∈Cn

uT Au = µ(q) + 1/2,

we have
t̂ ≥ max

u∈Cn

uT x̂u − ε(q)

≥ max
u∈Cn

[
uT Au − ε(q)uT u

] − ε(q)

≥ max
u∈Cn

uT Au − nε(q) − ε(q)

= Opt(p[q]) − (n + 1)ε(q)
= µ(q) + 1/2 − (n + 1)ε(q)
≥ µ(q) + ε(q).

Combining the resulting inequality with (5.4.49), we see that the outlined construction
indeed is a reduction of the stones problem to P0.

The generic convex program (5.4.48) illustrates the most typical source of intractable
convex programs—semi-infiniteness. If we write (5.4.48) explicitly, we get the problem

min
t,x

{
t : A � x � B, uT xu ≤ t ∀u ∈ Cn

}
,

which has infinitely many simple convex constraints parameterized by a point u ∈ Cn.
Computational tractability of a problem of this type depends on the geometry of the param-
eter set. For example, if we replace the cube Cn by a simplex or an Euclidean ball, we get
a polynomially computable (and polynomially solvable) generic program.
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Lecture 6

Interior Point Polynomial
Time Methods for Linear
Programming, Conic
Quadratic Programming,
and Semidefinite
Programming

6.1 Motivation
We have seen that generic convex problems, under mild computability and boundedness as-
sumptions, are polynomially solvable, e.g., by the ellipsoid method. This result is extremely
important theoretically; however, from the practical viewpoint it is essentially no more than
an existence theorem. Indeed, the complexity bounds for the ellipsoid method, although
polynomial, are not very attractive. By Theorem 5.2.1, when solving problem (5.2.9) with n

design variables, the price of an accuracy digit (the cost of reducing the current inaccuracy ε

by factor 2) is O(n2) calls to the first order and the separation oracles, plus O(n4) arithmetic
operations to process the answers of the oracles. Thus, even for problems with very simple
objectives and feasible sets, the arithmetic price of an accuracy digit isO(n4). Imagine what
it takes then to solve a problem with, say, 1000 variables (which is still a small size for many
applications). One could hope, of course, that the efficiency estimate stated in Theorem
5.2.1 is no more than a worst-case theoretical upper bound, while the actual behavior of the
ellipsoid method is typically much better than the bound says. A priori this is not entirely
hopeless; for example, the LP simplex method is an extremely powerful computational tool,
despite its disastrously bad (exponential in the size of an instance) worst-case efficiency es-
timate. Unfortunately, practice demonstrates that the ellipsoid method does work according
to its theoretical efficiency estimate, and thus it is unable to solve in reasonable time even
medium-scale (> 102 variables) convex programs.

It turns out that both the strong (universality) and the weak (poor practical perfor-
mance) features of the ellipsoid method have the same origin—the fact that the method
deals with black box–represented problems. When starting the solution process, the method
has no idea what problem it is working with. All it knows is how many design variables
are in the problem and how large and thin its feasible set can be (i.e., knows the radii R
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and r; see the description of the method). All the rest should be learned in the course of
solving the problem via the answers of the separation and the first order oracles, and these
answers provide local information only. Intuitively it seems quite natural that a method
that is restricted in its information sources can hardly be expected to perform well54—it is
a bad idea to always look at the world through a magnifying glass. On the other hand, the
need to solve black box–represented convex problems rarely occurs in practice. In practice,
there are no entities like “a convex objective f ” and “a convex feasible set X ,” with all our
a priori knowledge of f and X being expressed by the word “convex.” Normally we deal
with instances of a known-in-advance generic convex program, like LP, CQP, or SDP, with
known data and therefore we possess from the very beginning complete global information
on the problem to be processed.55 Of course it seems ridiculous to use our complete global
knowledge of the instance just to mimic the local in their nature first order and separation
oracles. What we would like to have is an optimization technique able to utilize efficiently
our global knowledge of the instance and thus able to generate a solution much faster than
a nearly blind algorithm like the ellipsoid method. The major event in the recent history of
convex optimization, called sometimes interior point revolution, was the invention of such
smart techniques.

6.1.1 Interior point methods

The interior point revolution was started by the seminal work of Karmarkar (1984), where
the first interior point method for LP was proposed; 15 years since then, interior point
polynomial time methods have become an extremely deep and rich, theoretically, and highly
promising, computationally, area of convex optimization. A detailed overview of the history
and the current state of area is beyond the scope of our book.56 All we intend to do is to
give an idea of what the interior point methods are, for the sake of those using optimization
techniques (not to those developing them!). In particular, we skip nearly all (sometimes
highly instructive and nontrivial) technicalities.

54And this intuition is valid: it can be proved that when minimizing within accuracy ε, in a black box fashion,
an arbitrary convex function f of n variables over the unit n-dimensional cube, the variation of the function on
the cube being ≤ 1, the number of calls to the first order oracle cannot be less than 0.48n ln 1

ε
when ε ≤ 0.5. In

other words, for every ε < 0.5 and every optimization method using solely the first order oracle, there exists a
function f in the aforementioned class such that the method is unable to find an ε-minimizer of f in less than
0.48n ln 1

ε
computations of f and f ′. This result remains true even when we further restrict our convex objectives

to be C∞-smooth and replace the first order oracle by an oracle that returns the values of the objective and all its
derivatives (the first, the second, etc.) at the point the oracle gets on input.

We see that the performance of the ellipsoid method is not that poor: it is merely O(n) times worse than the
best possible performance of a method dealing with black box–represented convex programs!

55There are, of course, optimization programs for which our complete global knowledge is too complicated
to be useful for something more reasonable than mimicking the local oracles. Imagine, e.g., an unconstrained
optimization program where the objective is the value, at a given point, of a solution to a messy system of differential
equations affected somehow by the design variables. Such a case, however, is perhaps of interest for mathematical
programming in general, but it is of no interest for convex programming in particular: if your objective is as
complicated as if it had no understandable structure, how do you know that it is convex?

56An interested reader is referred to the following books: Y. Nesterov and A. Nemirovskii, Interior-Point
Polynomial Algorithms in Convex Programming, SIAM, Philadelphia, 1994; C. Roos, T. Terlaky, and J.-P. Vial,
Theory and Algorithms for Linear Optimization: An Interior Point Approach, John Wiley, New York, 1997; and
Y. Ye, Interior Point Algorithms: Theory and Analysis, John Wiley, New York, 1997.
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6.2. Newton method and the interior penalty scheme 379

The simplest way to get a proper impression of the (most of) interior point methods is
to start with a quite traditional interior penalty scheme for solving optimization problems.

6.2 Newton method and the interior penalty scheme
6.2.1 Unconstrained minimization and the Newton method

Seemingly the simplest convex optimization problem is the one of unconstrained minimiza-
tion of a smooth strongly convex objective:

min
x

{
f (x) : x ∈ Rn

}
. (UC)

Smooth strongly convex in this context means a three-times continuously differentiable
convex function f such that f (x) → ∞ as ‖x‖2 → ∞ and such that the Hessian matrix
f ′′(x) = [ ∂2f (x)

∂xi∂xj
] of f is positive definite at every point x. Among numerous techniques

for solving (UC), the most promising is the Newton method. In its pure form, the Newton
method is extremely transparent and natural: given a current iterate x, we approximate our
objective f by its second order Taylor expansion at the iterate, i.e., by the quadratic function

fx(y) = f (x) + (y − x)T f ′(x) + 1

2
(y − x)T f ′′(x)(y − x),

and choose as the next iterate x+ the minimizer of this quadratic approximation. Thus, the
Newton method merely iterates the updating

x �→ x+ = x − [f ′′(x)]−1f ′(x). (Nwt)

In the case of a (strongly convex) quadratic objective, the approximation coincides with
the objective itself, and the method reaches the exact solution in one step. It is natural to
guess (and indeed it is true) that if the objective is smooth and strongly convex (although
not necessary quadratic) and the current iterate x is close enough to the minimizer x∗ of f ,
then the next iterate x+, although not being x∗ exactly, will be much closer to x∗ than x.
The precise (and easy) result is that the Newton method converges locally quadratically,
i.e., that

‖x+ − x∗‖2 ≤ C‖x − x∗‖2
2,

provided that ‖x − x∗‖2 ≤ r with a small enough value of r > 0 (both r and C depend on
f ). Quadratic convergence means essentially that, eventually, every new step of the process
increases by a constant factor the number of accuracy digits in the approximate solution.

When started not close enough to the minimizer, the pure Newton method (Nwt) can
demonstrate weird behavior. (Look, e.g., at what happens when the method is applied to
the univariate function f (x) = x2 + x4.) The simplest way to overcome this drawback is
to pass from the pure Newton method to its damped version

x �→ x+ = x − γ (x)[f ′′(x)]−1f ′(x), (NwtD)

where the stepsize γ (x) > 0 is chosen in a way that, on one hand, ensures global convergence
of the method and, on the other hand, enforces γ (x) → 1 as x → x∗, thus ensuring
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fast (essentially the same as for the pure Newton method) asymptotic convergence of the
process.57 Practitioners consider the (properly modified) Newton method as the fastest
routine, in terms of the iteration count, for smooth (not necessarily convex) unconstrained
minimization, although sometimes it is too heavy for practical use. The practical drawbacks
of the method are both the necessity to invert the Hessian matrix at each step, which is
computationally costly in the large-scale case, and especially the necessity to compute this
matrix. (Think how difficult it is to write a code computing 5050 second order derivatives
of a messy function of 100 variables.)

6.2.2 Classical interior penalty scheme: Construction

Now consider a constrained convex optimization program. As we remember, one can w.l.o.g.
make its objective linear, moving, if necessary, the actual objective to the list of constraints.
Thus, let the problem be

min
x

{
cT x : x ∈ X ⊂ Rn

}
, (C)

where X is a closed convex set, which we assume to possess a nonempty interior. How
could we solve the problem?

Traditionally it was thought that the problems of smooth convex unconstrained min-
imization are easy; thus, a quite natural scheme was to reduce the constrained problem
(C) to a series of smooth unconstrained optimization programs. To this end, let us choose
somehow a barrier (also called an interior penalty function) F(x) for the feasible set X —a
function that is well defined, smooth, strongly convex on the interior of X , and that blows
up as a point from intX approaches a boundary point of X :

xi ∈ intX , x ≡ lim
i→∞ xi ∈ ∂X ⇒ lim

i→∞F(xi) = ∞.

We next consider the one-parametric family of functions generated by our objective and the
barrier:

Ft(x) = tcT x + F(x) : intX → R.

Here t is the penalty parameter, which is assumed to be nonnegative.
It is easily seen that under mild regularity assumptions (e.g., in the case of bounded

X , which we assume from now on)

• Every function Ft(·) attains its minimum over the interior of X , the minimizer x∗(t)
being unique.

• The central path x∗(t) is a smooth curve, and all its limiting, t → ∞, points belong
to the set of optimal solutions of (C).

This fact is quite clear intuitively. To minimize Ft(·) for large t is the same as
minimizing the function fρ(x) = f (x) + ρF(x) for small ρ = 1

t
. When ρ is small, the

57There are many ways to provide the required behavior of γ (x); e.g., choose γ (x) by a linesearch in the
direction e(x) = −[f ′′(x)]−1f ′(x) of the Newton step: γ (x) = argmint f (x + te(x)).
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6.2. Newton method and the interior penalty scheme 381

function fρ is very close to f everywhere in X except a narrow stripe along the boundary
of X , the stripe becoming thinner and thinner as ρ → 0. Therefore we have good reasons
to believe that the minimizer of Ft for large t (i.e., the minimizer of fρ for small ρ) must be
close to the set of minimizers of f on X .

We see that the central path x∗(t) is a kind of Ariadne’s thread that leads to the solution
set of (C). On the other hand, given a value t ≥ 0 of the penalty parameter, to reach the point
x∗(t) on this path is the same as minimizing a smooth strongly convex function Ft(·) which
attains its minimum at an interior point of X . The latter problem is nearly unconstrained,
up to the fact that its objective is not everywhere defined. However, we can easily adapt
the methods of unconstrained minimization, including the Newton one, to handle nearly
unconstrained problems. We see that constrained convex optimization in a sense can be
reduced to the easy unconstrained one. The conceptually simplest way to make use of
this observation is to choose a very large value t̄ of the penalty parameter, like t̄ = 106

or t̄ = 1010, and to run an unconstrained minimization routine, say, the Newton method,
on the function Ft̄ , thus getting a good approximate solution to (C) in one shot. This
policy, however, is impractical: since we have no idea where x∗(t̄) is, normally we will start
minimizing Ft̄ very far from the minimizer of this function, and thus for a long time will be
unable to exploit fast local convergence of the unconstrained minimization method we have
chosen. A smarter way to use our Ariadne’s thread is exactly the one used by Theseus: to
follow the thread. Assume, e.g., that we know in advance the minimizer of F0 ≡ F , i.e.,
the point x∗(0).58 Thus, we know where the central path starts. Now let us follow this path:
at ith step, standing at a point xi close enough to some point x∗(ti) of the path, we

• first, increase a bit the current value ti of the penalty parameter, thus getting a new
target point x∗(ti+1) on the path; and

• second, approach our new target point x∗(ti+1) by running, say, the Newton method
on the function Fti+1 and starting the method at our current iterate xi , until a new iterate xi+1

close enough to x∗(ti+1) is generated.
As a result of these steps, we restore the initial situation—we again stand at a point

close to a point on the central path, but this latter point has been moved along the central
path toward the optimal set of (C). Iterating this updating and strengthening appropriately
our closeness requirements as the process goes on, we approach the optimal set along the
central path. A conceptual advantage of this path-following policy as compared to the brute
force attempt to reach a target point x∗(t̄) with large t̄ is that now we have a hope to exploit
all the time the strongest feature of our working horse (the Newton method)—its fast local
convergence. Indeed, assuming that xi is close to x∗(ti) and that we do not increase the
penalty parameter too rapidly, so that x∗(ti+1) is close to x∗(ti) (recall that the central path is
smooth!), we conclude that xi is close to our new target point x∗(ti+1). If all our requirements
of “close enough” and “not too rapidly” are properly controlled, we may ensure xi to be
in the domain of quadratic convergence of the Newton method as applied to Fti+1 , which
means that it will take a quite small number of steps to recover closeness to our new target
point.

58It is not difficult to ensure this assumption: given an arbitrary barrierF and an arbitrary starting point x̄ ∈ intX ,
we can pass from F to a new barrier F̄ = F(x)− (x − x̄)T F ′(x̄) which attains its minimum exactly at x̄, and then
use the new barrier F̄ instead of our original barrier F . For the traditional approach we are following for the time
being, F has absolutely no advantages over F̄ .
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6.2.3 Classical interior penalty scheme: Drawbacks

At a qualitative common sense level, the interior penalty scheme looks quite attractive
and extremely flexible. For the majority of optimization problems treated by the classical
optimization, there are plenty of ways to build a relatively simple barrier meeting all the re-
quirements imposed by the scheme, there is vast room to play with the policies for increasing
the penalty parameter and controlling closeness to the central path, etc. The theory says that
under quite mild and general assumptions on the choice of the numerous free parameters
of our construction, convergence to the optimal set is guaranteed. All looks wonderful,
until we realize that the convergence ensured by the theory is completely unqualified. It
is a purely asymptotical phenomenon: we are promised to reach eventually a solution of a
whatever accuracy we wish, but how long will it take to reach a given accuracy? This is
the question the classical optimization theory with its asymptotic linear or superlinear or
quadratic convergence neither posed nor answered. Unfortunately, our life in this world is
finite (usually more finite than we would like it to be), and so asymptotical promises are
perhaps better than nothing but are definitely not the crux of the matter. What is vitally
important for us in theory (and to some extent also in practice) is the issue of complexity:
given an instance of such-and-such generic optimization problem and a desired accuracy
ε, how large is the computational effort (number of arithmetic operations) needed to get an
ε-solution of the instance? Certainly, we would like the answer to be a kind of a polynomial
time complexity bound and not a quantity depending on unobservable and uncontrollable
properties of the instance, like the level of regularity of the boundary of X at the (unknown!)
optimal solution.

It turns out that the intuitively nice classical theory we have outlined is unable to say
a single word on the complexity issues. What else could we expect—a reasoning in purely
qualitative terms (like “smooth,” “strongly convex,” etc.) surely cannot yield a quantitative
result. Moreover, from the complexity viewpoint the very philosophy of the classical convex
optimization is in fact wrong:

• As far as complexity is concerned, for nearly all black box–represented classes of
unconstrained convex optimization problems (those where all we know is that the objective
is called f (x), it is (strongly) convex, and 2 (3, 4, 5…) times continuously differentiable,
and it can be computed, along with its derivatives up to order 1 (2, 3, 4, . . .) at every given
point), there is no such phenomenon as local quadratic convergence, the Newton method
(which uses the second order derivatives) has no advantages over the methods that use only
first order derivatives, etc.

• The very idea to reduce black box–represented constrained convex problems to
unconstrained ones makes no sense—both classes have the same complexity, and the meth-
ods underlying this complexity can work equally well with constrained and unconstrained
problems.

6.2.4 But. . .

Luckily, the pessimistic analysis of the classical interior penalty scheme is not the final truth.
What prevents this scheme from yielding a polynomial time method is not the structure of
the scheme but the complete freedom it allows for some of its elements. (Too much freedom
is another word for anarchy.) After some order is added, the scheme becomes a polynomial
time one! Specifically, it was found that
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1. there is a (completely nontraditional) class of good (self-concordant59) barriers.
Every barrier F of this type is associated with a self-concordance parameter θ(F ), which
is a real ≥ 1.

2. whenever a barrier F underlying the interior penalty scheme is self-concordant,
one can specify the notion of closeness to the central path and the policy for updating the
penalty parameter in such a way that a single Newton step

xi �→ xi+1 = xi − [∇2Fti+1(xi)]−1∇Fti+1(xi) (6.2.1)

suffices to update an iterate xi close to x∗(ti) into a new iterate xi+1 which is close, in the
same sense, to x∗(ti+1). All these points close to the central path belong to intX , so that the
scheme keeps all the iterates strictly feasible.

3. The penalty updating policy mentioned in the previous item is quite simple:

ti �→ ti+1 =
(

1 + 0.1√
θ(F )

)
ti .

In particular, it does not slow down as ti grows and ensures linear growth of the penalty
with the ratio (1 + 0.1√

θ(F )
). This is vitally important due to the next fact.

4. If x is close to a point x∗(t) of the central path, then the inaccuracy of x as an
approximate solution to (C) is inverse proportional to t :

cT x − min
y∈X

cT y ≤ 2θ(F )

t
.

It follows that

(!) once we managed to get close to the central path, i.e., we got a point x0

which is close to a point x(t0), t0 > 0, on the path, then every O(
√
θ(F )) steps

of the scheme improve the quality of the approximate solutions generated by
the scheme by an absolute constant factor. In particular, it takes no more than

O(1)
√
θ(F ) ln

(
1 + θ(F )

t0ε

)
steps to generate a strictly feasible ε-solution to (C).

Note that with our simple penalty updating policy all that is needed to perform a step of the
interior penalty scheme is to compute the gradient and the Hessian of the underlying barrier
at a single point and to invert the resulting Hessian.

Items 3 and 4 say that essentially all we need to derive a polynomial time method
for a generic convex optimization problem is the ability to equip every instance (p) of
the problem with a good barrier F = F(p) in such a way that both the self-concordance
parameter θ(F ) of F and the arithmetic cost of computing the gradient and the Hessian
of F at a given point are polynomial in the size of the instance.60 It turns out that we can

59We do not intend to explain here what a “self-concordant barrier” is. For our purposes it suffices to say that this
is a three-times continuously differentiable convex barrier F satisfying a pair of specific differential inequalities
linking the first, second, and third directional derivatives of F .

60Another requirement is to be able to initialize the method with a point X0 close to a point x∗(t0) on the central
path, with t0 being not disastrously small. It turns out that such an initialization is a minor problem which can be
resolved via the same path-following technique, provided we are given in advance a strictly feasible solution to
our problem.
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meet the latter requirement for all interesting well-structured generic convex programs, in
particular, for linear, conic quadratic, and semidefinite programming. Moreover, these are
particularly nice application fields for the general theory of interior point polynomial time
methods, since for them the theory can be both simplified and strengthened.

6.3 Interior point methods for linear programming,
conic quadratic programming, and semidefinite
programming: Building blocks

We are about to explain what the interior point methods for LP, CQP, SDP look like.

6.3.1 Canonical cones and canonical barriers

We will be interested in a generic conic problem

min
x

{
cT x : Ax − B ∈ K

}
(CP)

associated with a cone K given as a direct product of m basic cones, each being either a
Lorentz or a semidefinite cone:

K = Sk1+ ×· · ·×Skp
+ ×Lkp+1 ×· · ·×Lkm ⊂ E = Sk1 ×· · ·×Skp ×Rkp+1 ×· · ·×Rkm . (Cone)

Of course, the generic problem in question covers LP (no Lorentz cones in the right-hand
side, and all semidefinite cones are of dimension 1), CQP (no semidefinite cones), and SDP
(no Lorentz cones).

We equip the semidefinite and the Lorentz cones with canonical barriers:
• The canonical barrier for a semidefinite cone Sk+ is

Sk(X) = − ln Det(X) : intSk
+ → R;

the parameter of this barrier, by definition, is θ(Sk) = k.61

• The canonical barrier for a Lorentz cone Lk =
{
x ∈ Rk | xk ≥

√
x2

1 + · · · + x2
k−1

}
is

Lk(x) = − ln(x2
k −x2

1 −· · ·−x2
k−1) = − ln(xT Jkx), Jk =


−1

−1
. . .

−1
1

 ;

the parameter of this barrier is θ(Lk) = 2.

61The barrier Sk , same as the canonical barrier Lk for the Lorentz cone Lk , are self-concordant (whatever it
means), and the parameters they are assigned here by definition are exactly their parameters of self-concordance.
However, we do not use these facts explicitly in our derivations.
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• The canonical barrier K(·) for the cone K given by (Cone), is by definition the
direct sum of the canonical barriers of the factors:

K(X) = Sk1(X1) + · · · + Skp (Xp) + Lkp+1(Xp+1) + · · · + Lkm(Xm),

Xi ∈
{

intSki+, i ≤ p,

intLki , p < i ≤ m.

From now on, we use uppercase Latin letters, like X, Y,Z, to denote elements of the space
E; for such an elementX, Xi denotes the projection ofX onto ith factor in the direct product
representation of E as shown in (Cone).

The parameter of the barrier K(·), again by definition, is the sum of parameters of the
basic barriers involved:

θ(K) = θ(Sk1) + · · · + θ(Skp ) + θ(Lkp+1) + · · · + θ(Lkm) =
p∑

i=1

ki + 2(m − p).

Recall that all direct factors in the direct product representation (Cone) of our universe
E are Euclidean spaces. The matrix factors Ski are endowed with the Frobenius inner
product

〈Xi, Yi〉Sk = Tr(XiYi),

while the arithmetic factors Rki are endowed with the usual inner product

〈Xi, Yi〉Rk = XT
i Yi.

E itself will be regarded as a Euclidean space endowed with the inner product, which is the
direct sum of the inner products on the factors:

〈X, Y 〉E =
p∑

i=1

Tr(XiYi) +
m∑

i=p+1

XT
i Yi.

It is clearly seen that our basic barriers (and therefore their direct sum K(·)) are indeed
barriers for the corresponding cones: they are C∞-smooth on the interiors of their domains,
blow up to ∞ along every sequence of points from these interiors converging to a boundary
point of the corresponding domain, and are strongly convex. To verify the latter property,
it makes sense to compute explicitly the first and second directional derivatives of these
barriers (we need the corresponding formulae in any case); to simplify notation, we write
the derivatives of the basic functions Sk , Lk taken at a point x from their domain along a
direction h (you should remember that in the case of Sk both x and h, despite their lowercase
denotation, are k × k symmetric matrices):D
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DSk(x)[h] ≡ d
dt

∣∣∣∣
t=0

Sk(x + th) = −Tr(x−1h) = −〈x−1, h〉Sk ,

i.e.,
∇Sk(x) = −x−1;

D2Sk(x)[h, h] ≡ d2

dt2

∣∣∣∣
t=0

Sk(x + th) = Tr(x−1hx−1h) = 〈x−1hx−1, h〉Sk ,

i.e.,
[∇2Sk(x)]h = x−1hx−1;

DLk(x)[h] ≡ d
dt

∣∣∣∣
t=0

Lk(x + th) = −2 hT Jkx

xT Jkx
,

i.e.,
∇Lk(x) = − 2

xT Jkx
Jkx;

D2Lk(x)[h, h] ≡ d2

dt2

∣∣∣∣
t=0

Lk(x + th) = 4 [hT Jkx]2

[xT Jkx]2 − 2 hT Jkh

xT Jx
,

i.e.,
∇2Lk(x) = 4

[xT Jkx]2 Jkxx
T Jk − 2

xT Jkx
Jk.

(6.3.2)

Comments on computations for Sk(·): This is a rare case in our adult life when the
best way to compute a derivative is to recall the definition of this notion, not just to blindly
use calculus rules. Here is the computation:

ln Det(x + th) − ln Det(x) = ln Det(x(I + tx−1h)) − ln Det(x)
= ln

(
Det(x)Det(I + tx−1h)

) − ln Det(x)
= ln Det(I + tx−1h)

=︸︷︷︸
(∗)

ln(1 + tTr(x−1h) + O(t2)), t → 0,

= tTr(x−1h) + O(t2), t → 0,
⇒

d
dt

∣∣∣∣
t=0

ln Det(x + th) = Tr(x−1h) = 〈x−1, h〉Sk .

The crucial relation (∗) becomes absolutely clear when you think of the decomposition of
Det(I + tQ), for small t , into the alternated sum of products of entries of I + tQ taken
along all diagonals of the matrix (definition of determinant!): all terms of the zero and the
first order in t come from the product (1 + tQ11)(1 + tQ22) . . . (1 + tQkk), and the sum of
these zero and first order terms is exactly 1 + Tr(Q)t .

We have seen that d
dt
Sk(x+ th) = −Tr((x+ th)−1h). To proceed with differentiation,

we should know how to differentiate the matrix (x + th)−1 with respect to t at t = 0. Here
is the computation:

(x + th)−1 = (x(I + tx−1h))−1 = (I + tx−1h)−1x−1 = (I − tx−1h + O(t2))x−1

= x−1 − tx−1hx−1 + O(t2), t → 0.

From the expression for D2Sk(x)[h, h] we see that

D2Sk(x)[h, h] = Tr(x−1hx−1h) = Tr([x−1/2hx−1/2]2),
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so that D2Sk(x)[h, h] is positive whenever h �= 0. It is not difficult to prove that the same
is true for D2Lk(x)[h, h] (see Exercise 6.1). Thus, the canonical barriers for semidefinite
and Lorentz cones are strongly convex, and so is their direct sum K(·).

In what follows, it makes sense to illustrate the general (K is given by (Cone)) con-
cepts and results by their particular forms corresponding to the SDP case, where K is the
semidefinite cone Sk+. The essence of the matter in our general case is exactly the same as in
this particular one, but straightforward computations that are easy in the SDP case become
nearly impossible in the general case. And we have no chance to explain here how it is
possible (it is!) to get the desired results with the minimum amount of computations.

Due to the role played by the SDP case in our exposition, we use for this case special
notation, along with the just-introduced general one. Specifically, we denote the Frobenius
inner product on E = Sk as 〈·, ·〉F , although feel free, if necessary, to use our general
notation 〈·, ·〉E as well; the associated norm is denoted by ‖ · ‖2, so that ‖X‖2 = √

Tr(X2),
X being a symmetric matrix.

6.3.2 Elementary properties of canonical barriers

Let us establish a number of simple and useful properties of canonical barriers.

Proposition 6.3.1. A canonical barrierF (F can be Sk , Lk , or the direct sumK of several
copies of these elementary barriers) possesses the following properties:

(i) F is logarithmically homogeneous with the parameter of logarithmic homogeneity
equal to −θ(F ), i.e., the following identity holds:

t > 0, x ∈ DomF ⇒ F(tx) = F(x) − θ(F ) ln t.

• In the SDP case, i.e., when F(x) = Sk(x) = − ln Det(x) and x is a k × k

positive definite matrix, (i) claims that

− ln Det(tx) = − ln Det(x) − k ln t,

which of course is true.

(ii) Consequently, the following two equalities hold identically in x ∈ DomF :

(a) 〈∇F(x), x〉 = −θ(F ),

(b) [∇2F(x)]x = −∇F(x).

• In the SDP case, ∇F(x) = ∇Sk(x) = −x−1 and [∇2F(x)]h = ∇2Sk(x)h =
x−1hx−1 (see (6.3.2)), so (a) becomes the identity 〈x−1, x〉F ≡ Tr(x−1x) = k,
and (b) kindly informs us that x−1xx−1 = x−1.

(iii) Consequently, �th differential D�F(x) of F , � ≥ 1, is homogeneous of degree
−� in x ∈ DomF :

∀(x ∈ DomF, t > 0, h1, . . . , h�) :
D�F(tx)[h1, . . . , h�] ≡ ∂�F (tx+s1h1+···+s�h�)

∂s1∂s2···∂s�

∣∣∣∣
s1=···=s�=0

= t−�D�F (x)[h1, . . . , h�].
(6.3.3)
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Proof. (i) it is immediately seen that Sk and Lk are logarithmically homogeneous with the
parameters of logarithmic homogeneity −θ(Sk), −θ(Lk), respectively. And of course the
property of logarithmic homogeneity is stable with respect to taking direct sums of functions:
if Dom\ and Dom] are closed with respect to the operation of multiplying a vector by
a positive scalar, and both \ and ] are logarithmically homogeneous with parameters α,
β, respectively, then the function \(u) + ](v) is logarithmically homogeneous with the
parameter α + β.

(ii) To get (ii)(a), it suffices to differentiate the identity

F(tx) = F(x) − θ(F ) ln t

in t at t = 1,

F(tx) = F(x) − θ(F ) ln t ⇒ 〈∇F(tx), x〉 = d

dt
F (tx) = −θ(F )t−1,

and it remains to set t = 1 in the concluding identity.
Similarly, to get (ii)(b), it suffices to differentiate the identity

〈∇F(x + th), x + th〉 = −θ(F )

(which is just (ii)(a)) in t at t = 0, thus arriving at

〈[∇2F(x)]h, x〉 + 〈∇F(x), h〉 = 0;
since 〈[∇2F(x)]h, x〉 = 〈[∇2F(x)]x, h〉 (symmetry of partial derivatives!) and since the
resulting equality

〈[∇2F(x)]x, h〉 + 〈∇F(x), h〉 = 0

holds true identically in h, we come to [∇2F(x)]x = −∇F(x).

(iii) Differentiating � times the identity

F(tx) = F(x) − θ ln t

in x, we get

t�D�F (tx)[h1, . . . , h�] = D�F(x)[h1, . . . , h�].

An especially nice specific feature of canonical barriers is their self-duality:

Proposition 6.3.2. A canonical barrierF (F can be Sk , Lk , or the direct sumK of several
copies of these elementary barriers) possesses the following property: for every x ∈ DomF ,
−∇F(x) belongs to DomF as well, and the mapping x �→ −∇F(x) : DomF → DomF is
self-inverse,

−∇F(−∇F(x)) = x ∀x ∈ DomF, (6.3.4)

and is homogeneous of degree −1:

t > 0, x ∈ intdomF ⇒ −∇F(tx) = −t−1∇F(x). (6.3.5)
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In the SDP case F = Sk , x is a k×k positive definite matrix, and ∇F(x) = ∇Sk(x) =
−x−1 (see (6.3.2)) so that the above statements merely say that the mapping x �→ x−1 is a
self-inverse one-to-one mapping of the interior of the semidefinite cone onto itself, and that
−(tx)−1 = −t−1x−1, both claims being trivially true.

The proof of this proposition for the general case is the subject of Exercise 6.2.

6.4 Primal-dual pair of problems and the primal-dual
central path

6.4.1 Problem(s)

It is reasonable to consider simultaneously the problem of interest (CP) and its conic dual.
Since K is a direct product of self-dual cones, this dual is a conic problem on the same cone
K. As we remember from Lecture 2, the primal-dual pair associated with (CP) is

min
x

{
cT x : Ax − B ∈ K

}
, (CP)

max
S

{〈B, S〉E : A∗S = c, S ∈ K} . (CD)

Assuming that the linear mapping x �→ Ax is an embedding (i.e., that Null(A) = {0})—this
is Assumption A from Lecture 2—we can write down our primal-dual pair in a symmetric
geometric form (Lecture 2, section 2.3.1):

min
X

{〈C,X〉E : X ∈ (L − B) ∩ K} , (P)

max
S

{〈B, S〉E : S ∈ (L⊥ + C) ∩ K
}
, (D)

where L is a linear subspace in E (the image space of the linear mapping x �→ Ax), L⊥ is
the orthogonal complement to L in E, and C ∈ E satisfies A∗C = c, i.e., 〈C,Ax〉E ≡ cT x.

To simplify things, from now on we assume that both problems (CP) and (CD) are
strictly feasible. In terms of (P) and (D) this assumption means that both the primal feasible
plane L − B and the dual feasible plane L⊥ + C intersect the interior of the cone K.

Remark 6.4.1. By the conic duality theorem (Lecture 2), both (CP) and (D) are solvable
with equal optimal values:

Opt(CP) = Opt(D).

(Recall that we have assumed strict primal-dual feasibility.) Since (P) is equivalent to (CP),
(P) is solvable as well, and the optimal value of (P) differs from the one of (CP) by 〈C,B〉E .62

It follows that the optimal values of (P) and (D) are linked by the relation

Opt(P) − Opt(D) + 〈C,B〉E = 0. (6.4.6)

62Indeed, the values of the respective objectives cT x and 〈C,Ax − B〉E at the feasible solutions x of (CP) and
X = Ax − B of (P) corresponding to each other differ from each other by exactly 〈C,B〉E :

cT x − 〈C,X〉E = cT x − 〈C,Ax − B〉E = cT x − 〈A∗C, x〉E︸ ︷︷ ︸
= 0 due to A∗C = c

+〈C,B〉E.
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6.4.2 Central path(s)

The canonical barrier K of K induces a barrier for the feasible set X = {x | Ax −B ∈ K}
of the problem (CP) written down in the form of (C), i.e., as

min
x

{
cT x : x ∈ X } ;

this barrier is

K̂(x) = K(Ax − B) : intX → R (6.4.7)

and is indeed a barrier. Now we can apply the interior penalty scheme to trace the central path
x∗(t) associated with this barrier. With some effort it can be derived from the primal-dual
strict feasibility that the central path is well defined, i.e., that the minimizer of

K̂t (x) = tcT x + K̂(x)

on intX exists for every t ≥ 0 and is unique.63 What is important for us at the moment is
the central path itself, not how to trace it. Moreover, it is highly instructive to pass from the
central path x∗(t) in the space of design variables to its image

X∗(t) = Ax∗(t) − B

in E. The resulting curve is called the primal central path of the primal-dual pair (P), (D);
by its origin, it is a curve comprising strictly feasible solutions of (P) (since it is the same
to say that x belongs to the (interior of) the set X and to say that X = Ax −B is a (strictly)
feasible solution of (P)). A simple yet very useful observation is that the primal central path
can be defined solely in terms of (P), (D) and thus it is a geometric entity—it is independent
of a particular parameterization of the primal feasible plane L − B by the design vector x:

(∗) A point X∗(t) of the primal central path is the minimizer of the aggregate

Pt(X) = t〈C,X〉E + K(X)

on the set (L − B) ∩ intK of strictly feasible solutions of (P).

This observation is just a tautology: x∗(t) is the minimizer on intX of the aggregate

K̂t (x) ≡ tcT x + K̂(x) = t〈C,Ax〉E + K(Ax − B) = Pt(Ax − B) + t〈C,B〉E;
we see that for x ∈ intX the function P̂t (x) = Pt(Ax −B) differs from the function K̂t (x)

by a constant (depending on t) and has therefore the same minimizer x∗(t) as the function
K̂t (x). Now, when x runs through intX , the point X = Ax − B runs exactly through the
set of strictly feasible solutions of (P), so that the minimizer X∗ of Pt on the latter set and
the minimizer x∗(t) of the function P̂t (x) = Pt(Ax −B) on intX are linked by the relation
X∗ = Ax∗(t) − B.

63In section 6.1, there was no problem with the existence of the central path, since there, X was assumed to be
bounded. In our present context, X is not necessarily bounded.
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The analytic translation of the above observation is as follows:

(∗′) A point X∗(t) of the primal central path is exactly the strictly feasible
solution X to (P) such that the vector tC + ∇K(X) ∈ E is orthogonal to L
(i.e., belongs to L⊥).

Indeed, we know that X∗(t) is the unique minimizer of the smooth convex function
Pt(X) = t〈C,X〉E + K(X) on (L − B) ∩ intK. A necessary and sufficient condition
for a point X of this intersection to minimize Pt over the intersection is that ∇Pt must be
orthogonal to L.

In the SDP case, a point X∗(t), t > 0, of the primal central path is uniquely defined
by the following two requirements: X∗(t) . 0 should be feasible for (P), and the k × k

matrix

tC − X−1
∗ (t) = tC + ∇Sk(X∗(t))

(see (6.3.2)) should belong to L⊥, i.e., should be orthogonal (with respect to the Frobenius
inner product) to every matrix of the form Ax.

The dual problem (D) is in no sense worse than the primal problem (P) and thus also
possesses the central path, now called the dual central path S∗(t), t ≥ 0, of the primal-dual
pair (P), (D). Similar to (*), (*′), the dual central path can be characterized as follows:

(∗∗′) A point S∗(t), t ≥ 0, of the dual central path is the unique minimizer of
the aggregate

Dt(S) = −t〈B, S〉E + K(S)

on the set of strictly feasible solutions of (D).64 S∗(t) is exactly the strictly
feasible solution S to (D) such that the vector −tB + ∇F(S) is orthogonal to
L⊥ (i.e., belongs to L).

In the SDP case, a point S∗(t), t > 0, of the dual central path is uniquely defined by
the following two requirements: S∗(t) . 0 should be feasible for (D), and the k × k matrix

−tB − S−1
∗ (t) = −tB + ∇Sk(S∗(t))

(see (6.3.2)) should belong to L, i.e., should be representable in the form Ax for some x.
From Proposition 6.3.2 we can derive a wonderful connection between the primal and

the dual central paths.

Theorem 6.4.1. For t > 0, the primal and the dual central paths X∗(t), S∗(t) of a (strictly
feasible) primal-dual pair (P), (D) are linked by the relations

S∗(t) = −t−1∇K(X∗(t)),
X∗(t) = −t−1∇K(S∗(t)).

(6.4.8)

64Note the slight asymmetry between the definitions of the primal aggregate Pt and the dual aggregate Dt : in the
former, the linear term is t〈C,X〉E , while in the latter it is −t〈B, S〉E . This asymmetry is in complete accordance
with the fact that we write (P) as a minimization, and (D)—as a maximization problem. To write (D) in exactly
the same form as (P), we were supposed to replace B with −B, thus getting the formula for Dt completely similar
to the one for Pt .
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Proof. By (*′), the vector tC+∇K(X∗(t))belongs toL⊥, so the vectorS = −t−1∇K(X∗(t))
belongs to the dual feasible plane L⊥ + C. On the other hand, by Proposition 6.4.8 the
vector −∇K(X∗(t)) belongs to DomK , i.e., to the interior of K; since K is a cone and
t > 0, the vector S = −t−1∇K(X∗(t)) belongs to the interior of K as well. Thus, S is a
strictly feasible solution of (D). Now let us compute the gradient of the aggregate Dt at the
point S:

∇Dt(S) = −tB + ∇K(−t−1∇K(X∗(t)))
= −tB + t∇K(−∇K(X∗(t)))

[we have used (6.3.5)]
= −tB − tX∗(t)

[we have used (6.3.4)]
= −t (B + X∗(t))
∈ L

[since X∗(t) is primal feasible].

Thus, S is strictly feasible for (D) and ∇Dt(S) ∈ L. But by (**′) these properties charac-
terize S∗(t); thus, S∗(t) = S ≡ −t−1∇K(X∗(t)). In view of Proposition 6.3.2, this implies
that X∗(t) = −t−1∇K(S∗(t)). Another way to get the latter relation from the relation
S∗(t) = −t−1∇K(X∗(t)) is just to refer to the primal-dual symmetry.

In fact, the connection between the primal and the dual central path stated by Theorem
6.4.1 can be used to characterize both the paths.

Theorem 6.4.2. Let (P), (D) be a strictly feasible primal-dual pair.
For every t > 0, there exists a unique strictly feasible solution X of (P) such that

−t−1∇K(X) is a feasible solution to (D), and this solution X is exactly X∗(t).
Similarly, for every t > 0, there exists a unique strictly feasible solution S of (D) such

that −t−1∇K(S) is a feasible solution of (P), and this solution S is exactly S∗(t).

Proof. By primal-dual symmetry, it suffices to prove the first claim. We already know
(Theorem 6.4.1) that X = X∗(t) is a strictly feasible solution of (P) such that −t−1∇K(X)

is feasible for (D). All we need to prove is that X∗(t) is the only point with these properties,
which is immediate: if X is a strictly feasible solution of (P) such that −t−1∇K(X) is dual
feasible, then −t−1∇K(X) ∈ L⊥ + C, whence ∇K(X) ∈ L⊥ − tC, or, which is the same,
∇Pt(X) = tC+∇K(X) ∈ L⊥. We already know from (*′) that the latter property, together
with the strict primal feasibility, is characteristic for X∗(t).

On the central path

As we have seen, the primal and dual central paths are intrinsically linked one to another, and
it makes sense to treat them as a unique entity—the primal-dual central path of the primal-
dual pair (P), (D). The primal-dual central path is just a curve (X∗(t), S∗(t)) in E ×E such
that its projection onto the primal space is the primal central path, and its projection onto
the dual space is the dual central path.

To save words, from now on we refer to the primal-dual central path simply as the
central path.
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The central path possesses a number of extremely nice properties; let us list some
of them.

Characterization of the central path. By Theorem 6.4.2, the points (X∗(t), S∗(t)) of
the central path possess the following properties:

• CP1 (primal feasibility) The point X∗(t) is strictly primal feasible.

• CP2 (dual feasibility) The point S∗(t) is dual feasible.

• CP3 (augmented complementary slackness) The points X∗(t) and S∗(t) are linked by
the relation

S∗(t) = −t−1∇K(X∗(t)) [⇔ X∗(t) = −t−1∇K(S∗(t))].

In the SDP case, ∇K(U) = ∇Sk(U) = −U−1 (see (6.3.2)), and the augmented
complementary slackness relation takes the nice form

X∗(t)S∗(t) = t−1I. (6.4.9)

In fact, properties CP1, CP2, CP3 fully characterize the central path: if two points
X, S possess these properties with respect to some t > 0, then X = X∗(t) and S = S∗(t)
(Theorem 6.4.2).

Duality gap along the central path. Recall that for an arbitrary primal-dual feasible pair
(X, S) of the (strictly feasible!) primal-dual pair of problems (P), (D), the duality gap

DualityGap(X, S) ≡ [〈C,X〉E − Opt(P)] + [Opt(D) − 〈B, S〉E]
= 〈C,X〉E − 〈B, S〉E + 〈C,B〉E

(see (6.4.6)), which measures the total inaccuracy of X, S as approximate solutions of the
respective problems, can be written equivalently as 〈S,X〉E (see Proposition 2.4.1 in section
2.4). Now, what is the duality gap along the central path? The answer is immediate:

DualityGap(X∗(t), S∗(t)) = 〈S∗(t), X∗(t)〉E
= 〈−t−1∇K(X∗(t)), X∗(t)〉E

[see (6.4.8)]
= t−1θ(K)

[see Proposition 6.3.1(ii)]

We have arrived at a wonderful result.65

65Which, among other, much more important consequences, explains the name “augmented complementary
slackness” of the property CP3: at the primal-dual pair of optimal solutions X∗, S∗ the duality gap should be
zero—〈S∗, X∗〉E = 0. Property CP3, as we just have seen, implies that the duality gap at a primal-dual pair
(X∗(t), S∗(t)) on the central path, although nonzero, is controllable (namely, is equal to θ(K)

t
) and becomes small

as t grows.
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Proposition 6.4.1. Under assumption of primal-dual strict feasibility, the duality gap
along the central path is inverse proportional to the penalty parameter, and the proportion-
ality coefficient is the parameter θ(K) of the canonical barrier K:

DualityGap(X∗(t), S∗(t)) = θ(K)

t
.

In particular, bothX∗(t) and S∗(t) are strictly feasible ( θ(K)

t
)-approximate solutions to their

respective problems:

〈C,X∗(t)〉E − Opt(P) ≤ θ(K)

t
,

Opt(D) − 〈B, S∗(t)〉E ≤ θ(K)

t
.

In the SDP case, K = Sk+ and θ(K) = θ(Sk) = k.
We see that

all we need to get quickly good primal and dual approximate solutions is to
trace fast the central path. If we were interested in solving only one of the
problems (P), (D), it would be sufficient to trace fast the associated—primal or
dual—component of this path. The quality guarantees we get in such a process
depend—in a completely universal fashion!—solely on the value t of the penalty
parameter and on the value of the parameter θ(K) of the canonical barrier K
and are completely independent of other elements of the data.

Near the central path

The conclusion we have just made is a bit too optimistic: Well, our life when moving along
the central path would be just fine (at the very least, we would know how good the solutions
we already have are), but how could we move exactly along the path? Among the relations
CP1–CP3 defining the path, the first two are simple—just linear—but the third is in fact
a system of nonlinear equations, and we have no hope to satisfy these equations exactly.
Thus, we arrive at the crucial question, which, a bit informally, is as follows:

How close should we be to the path (and in what sense close) for our life to be
as nice as if we were exactly on the path?

There are several ways to answer this question; we will present the simplest one.

Distance to the central path. Our canonical barrier K(·) is a strongly convex smooth
function on intK; in particular, its Hessian matrix ∇2K(Y), taken at a point Y ∈ intK, is
positive definite. We can use the inverse of this matrix to measure the distances between
points of E, thus arriving at the norm

‖H‖∗
Y =

√
〈[∇2K(Y)]−1H,H 〉E.D
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It turns out that

a good measure of proximity of a strictly feasible primal-dual pair Z = (X, S)

to a point Z∗(t) = (X∗(t), S∗(t)) from the primal-dual central path is the
quantity

dist(Z,Z∗(t)) ≡ ‖tS+∇K(X)‖∗
X ≡

√
〈[∇2K(X)]−1(tS + ∇K(X)), tS + ∇K(X)〉E.

Although written in a form not symmetric with respect to X, S, this quantity is
in fact symmetric in X, S: it turns out that

‖tS + ∇K(X)‖∗
X = ‖tX + ∇K(S)‖∗

S (6.4.10)

∀t > 0 and S,X ∈ intK.

Observe that dist(Z,Z∗(t)) ≥ 0, and dist(Z,Z∗(t)) = 0 if and only if S =
−t−1∇K(X), which, for a strictly primal-dual feasible pair Z = (X, S), means that
Z = Z∗(t) (see the characterization of the primal-dual central path); thus, dist(Z,Z∗(t))
can indeed be viewed as a kind of distance from Z to Z∗(t).

In the SDP case X, S are k × k symmetric matrices, and

dist2(Z,Z∗(t)) = (‖tS + ∇Sk(X)‖∗
X)

2

= 〈[∇2Sk(X)]−1(tS + ∇Sk(X)), tS + ∇Sk(X)〉F
= Tr

(
X(tS − X−1)X(tS − X−1)

)
[see (6.3.2)]

= Tr([tX1/2SX1/2 − I ]2),

so that

dist2(Z,Z∗(t)) = Tr
(
X(tS − X−1)X(tS − X−1)

) = ‖tX1/2SX1/2 − I‖2
2. (6.4.11)

To prove the symmetry claimed in (6.4.10), note that

‖tX1/2SX1/2 − I‖2
2 = Tr

([tX1/2SX1/2 − I ]2
)

= Tr
(
t2X1/2SX1/2X1/2SX1/2 − 2tX1/2SX1/2 + I

)
= Tr(t2X1/2SXSX1/2) − 2tTr(X1/2SX1/2) + Tr(I )
= Tr(t2XSXS − 2tXS + I )

= Tr(t2SXSX − 2tSX + I )

= Tr(t2S1/2XS1/2S1/2XS1/2 − 2tS1/2XS1/2 + I )

= Tr([tS1/2XS1/2 − I ]2) = ‖tS1/2XS1/2 − I‖2
2.

In a moderate dist(·,Z∗(·))-neighborhood of the central path. It turns out that in such
a neighborhood all is essentially as fine as on the central path itself.

Proposition 6.4.2. If Z = (X, S) is a pair of primal-dual strictly feasible solutions to
(P), (D) such that

dist(Z,Z∗(t)) ≤ 1, (Close)
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then Z is essentially as good as Z∗(t), namely, the duality gap at (X, S) is essentially as
small as at the point Z∗(t):

DualityGap(X, S) = 〈S,X〉E ≤ 2 DualityGap(Z∗(t)) = 2θ(K)

t
. (6.4.12)

Let us verify Proposition 6.4.2 in the SDP case. Suppose that (t, X, S) satisfies
(Close). The duality gap at the pair (X, S) of strictly primal-dual feasible solutions is

DualityGap(X, S) = 〈X, S〉F = Tr(XS),

while by (6.4.11) the relation dist((S,X), Z∗(t)) ≤ 1 means that

‖tX1/2SX1/2 − I‖2 ≤ 1,

hence

‖X1/2SX1/2 − t−1I‖2 ≤ 1

t
.

Denoting by δ the vector of eigenvalues of the symmetric matrix X1/2SX1/2, we conclude
that

∑k
i=1(δi − t−1)2 ≤ t−2, whence

DualityGap(X, S) = Tr(XS) = Tr(X1/2SX1/2) =
k∑

i=1

δi

≤ kt−1 +
k∑

i=1

|δi − t−1| ≤ kt−1 + √
k

√√√√ k∑
i=1

(δi − t−1)2

≤ kt−1 + √
kt−1,

and (6.4.12) follows.
It follows from Proposition 6.4.2 that

For our purposes, it is essentially the same—to move along the primal-dual
central path, or to trace this path, staying in its time-space neighborhood

Nκ = {(t, X, S) | X ∈ L − B, S ∈ L⊥ + C, t > 0, dist((X, S), (X∗(t), S∗(t))) ≤ κ}
(6.4.13)

with certain κ ≤ 1.

Most of the interior point methods for LP, CQP, and SDP, including those most powerful in
practice, solve the primal-dual pair (P), (D) by tracing the central path,66 although not all of
them keep the iterates in NO(1); some of the methods work in much wider neighborhoods of
the central path, in order to avoid slowing down when passing highly curved segments of the
path. At the level of ideas, these long-step path following methods do not differ essentially
from the short-step ones (those keeping the iterates in NO(1)). This is why in the analysis
of our forthcoming presentation we restrict ourselves to the short-step methods. It should
be added that as far as the theoretical efficiency estimates are concerned, the short-step
methods yield the best complexity bounds known so far for LP, CQP and SDP, although in
practice the long-step methods usually outperform their short-step counterparts.

66There exist also potential reduction interior point methods that do not take explicit care of tracing the central
path; an example is the very first interior point method for LP—the method of Karmarkar. The potential reduction
IP methods are beyond the scope of our course, which is not a big loss for a practically oriented reader since, as a
practical tool, these methods are considered almost obsolete.
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6.5 Tracing the central path
6.5.1 Path-following scheme

Assume we are solving a strictly feasible primal-dual pair of problems (P), (D) and intend to
trace the associated central path. For this purpose, we just need a mechanism for updating
a current iterate (t̄ , X̄, S̄) such that t̄ > 0, X̄ is strictly primal feasible, S̄ is strictly dual
feasible, and (X̄, S̄) is a good (in certain precise sense) approximation of the point Z∗(t̄) =
(X∗(t̄), S∗(t̄)) on the central path, into a new iterate (t+, X+, S+) with similar properties
and a larger value t+ > t̄ of the penalty parameter. Given such an updating mechanism
and iterating it, we indeed shall trace the central path, with all the benefits (see above)
coming from the latter fact.67 How could we construct the required updating? Recalling
the description of the central path, we rephrase our question as follows:

Given a triple (t̄ , X̄, S̄) that satisfies the relations

X ∈ L − B,

S ∈ L⊥ + C
(6.5.14)

(which is in fact a system of linear equations) and approximately satisfies the
system of nonlinear equations

Gt(X, S) ≡ S + t−1∇K(X) = 0, (6.5.15)

update it into a new triple (t+, X+, S+) with the same properties and such that
t+ > t̄ .

Since the left-hand sideG(·) in our system of nonlinear equations is smooth around (t̄ , X̄, S̄)

(recall that X̄ was assumed to be strictly primal feasible), the most natural way, from the
viewpoint of computational mathematics, to achieve our target is as follows:

1. Choose somehow a desired new value t+ > t̄ of the penalty parameter.
2. Linearize the left-hand-sideGt+(X, S)of the system of nonlinear equations (6.5.15)

at the point (X̄, S̄), and replace (6.5.15) with the linearized system of equations

Gt+(X̄, S̄) + ∂Gt+(X̄, S̄)

∂X
(X − X̄) + ∂Gt+(X̄, S̄)

∂S
(S − S̄) = 0. (6.5.16)

3. Compute the corrections DX, DS from the requirement that the updated pair
X+ = X̄ + DX, S+ = S̄ + DS must satisfy (6.5.14) and (6.5.16) (a linearized version of
(6.5.15)). In other words, the corrections should solve the system

DX ∈ L,
DS ∈ L⊥,

Gt+(X̄, S̄) + ∂Gt+ (X̄,S̄)

∂X
DX + ∂Gt+ (X̄,S̄)

∂S
DS = 0.

(6.5.17)

67Of course, besides knowing how to trace the central path, we should also know how to initialize this process.
There are different techniques to resolve this initialization difficulty, and all of them achieve the goal by using the
same path-tracing technique, now applied to an appropriate auxiliary problem where the initialization difficulty
does not arise at all. Thus, at the level of ideas the initialization techniques do not add something essentially new,
and so we skip in our presentation all initialization-related issues.
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4. Complete updating the current solution by setting

X+ = X̄ + DX,

S+ = S̄ + DS.
(6.5.18)

The primal-dual interior point methods we are describing basically fit the outlined
scheme, up to the following two important points:

• If the current iterate (X̄, S̄) is not close enough to Z∗(t̄), or if the desired improve-
ment t+ − t̄ is too large, the corrections given by the outlined scheme may be too large.
As a result, the updating (6.5.18) may be inappropriate, e.g., X+, or S+, or both, may be
kicked out of the cone K. (After all, the linearized system (6.5.16) approximates well the
true system (6.5.15) only locally, and we have no reasons to trust in corrections coming
from the linearized system, when these corrections are large.)

There is a standard way to overcome the outlined difficulty—to use the corrections in
a damped fashion, namely, to replace the updating (6.5.18) with

X+ = X̄ + αDX,

S+ = S̄ + βDS,
(6.5.19)

and to choose the stepsizesα > 0, β > 0 from additional safety considerations, like ensuring
the updated pair (X+, S+) to reside in the interior of K, or enforcing it to stay in a desired
neighborhood of the central path, etc. In interior point methods, the solution (DX,DS)

of (6.5.17) plays the role of a search direction, and the actual corrections are proportional
to DX,DS rather than equal to these directions. In this sense the situation is completely
similar to the one with the Newton method from section 6.2.1 (which is natural: the latter
method is exactly the linearization method for solving the Fermat equation ∇f (x) = 0).

• The augmented complementary slackness system (6.5.15) can be written in many
different forms that are equivalent to each other in the sense that they share a common solu-
tion set. For example, we have the same reasons to express the augmented complementary
slackness requirement by the nonlinear system (6.5.15) as to express it by the system

Ĝt (X, S) ≡ X + t−1∇K(S) = 0,

not speaking about other possibilities. Note that although all systems of nonlinear equations

Ht(X, S) = 0

expressing the augmented complementary slackness are equivalent in the sense that they
share a common solution set and their linearizations are different and thus lead to different
search directions and finally to different path-following methods. Choosing appropriate
analytic representation of the augmented complementary slackness requirement (perhaps
varying from iteration to iteration), one can gain substantially in the performance of the
resulting path-following method. The interior point machinery indeed facilitates this flexi-
bility (see “SDP case examples” below).

6.5.2 Speed of path-tracing

In the LP-CQP-SDP situation, the speed at which the best, from the theoretical viewpoint,
path-following methods manage to trace the path is inversely proportional to the square root
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of the parameter θ(K) of the underlying canonical barrier. This means that when started
at a point (t0, X0, S0) from the neighborhood N0.1 of the central path, the method after
O(1)

√
θ(K) steps reaches the point (t1 = 2t0, X1, S1) ∈ N0.1, after the same O(1)

√
θ(K)

steps more reaches the point (t2 = 22t0, X2, S2) ∈ N0.1, and so on. Thus, it takes a fixed
number O(1)

√
θ(K) steps to increase the current value of the penalty parameter by factor

2, staying all the time in N0.1. From (6.4.12) it then follows that every O(1)
√
θ(K) steps

of the method reduce the (upper bound on the) inaccuracy of current approximate solutions
by factor 2 or, which is the same, add a fixed number of accuracy digits to these solutions.
Thus, the cost of an accuracy digit for the (best) path-following methods is O(1)

√
θ(K)

steps. To realize what the implications are, we should, of course, know how heavy a step
is—what its arithmetic cost is. The cost of a step in the cheapest among the fastest interior
point methods as applied to (CP) is as if all operations at a step were those required by

1. Assembling, for a given X ∈ intK, the symmetric n × n matrix (n = dim x)

H = A∗[∇2K(X)]A;
2. Subsequent Choleski factorization of the matrix H (which, due to its origin, is

symmetric positive definite and thus admits Choleski decomposition H = DDT with lower
triangular D).

Looking at (Cone), (CP), and (6.3.2), we immediately conclude that the arithmetic
cost of assembling and factorizing H is polynomial in the dimension of the data vector
defining (CP) and that the parameter θ(K) is also polynomial in this size. Thus, the cost
of an accuracy digit for the methods in question is polynomial in the size of the data, as
required from polynomial time methods.68 To get an impression of the power of interior
point methods, let us compare their complexity characteristics with those of the ellipsoid
method. To simplify things, we restrict the comparison to the case when all the basic cones
participating in the decomposition (Cone) are identical. Besides this, we assume that we
multiply and factorize matrices by the standard linear algebra techniques, so that it takes
O(p3) arithmetic operations to multiply two p × p matrices, to factorize a symmetric
positive semidefinite p × p matrix, to check whether a given p × p symmetric matrix is
positive (semi)definite, etc.69

K is a direct product of m semidefinite cones Sk+. In this case, θ(K) = mk. From
(6.3.2) it is easily seen that the cost of assembling H is

Cass = O(1)mnk2(n + k). (6.5.20)

Indeed, writing down Ax as
∑n

i=1 xiAi , we see that the elements of H are

Hij = Tr(AiX
−1AjX

−1). (6.5.21)

Taking into account the block-diagonal structure of the matrices Ai and X (m diagonal
blocks, k × k each), we see that it takes O(mk3) arithmetic operations to compute X−1.

68Strictly speaking, the outlined complexity considerations are applicable to the highway phase of the solution
process, once we have reached the neighborhood N0.1 of the central path. However, the results of our considerations
remain unchanged when the initialization expenses are also taken into account; see section 6.6.

69This indeed is an assumption. There exist, at least in theory, fast linear algebra routines; e.g., two p × p

matrices can be multiplied in less than O(p2.4) operations. These fast routines, however, for the time being are of
no practical use because of large absolute constant factors hidden in O(·)’s
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After we haveX−1, it takesO(mk3) arithmetic operations to compute the matrixX−1AjX
−1

for every particular j . After we have X−1AjX
−1, it takes O(mk2) arithmetic operations

to compute every particular entry in the j th column of H. Thus, the arithmetic cost of a
column in H is O(nmk2 + mk3), and the arithmetic cost of H itself is O(n2mk2 + nmk3).

Finally, the arithmetic cost of factorizing H after it is computed is

Cfctr = O(n3). (6.5.22)

We see that with the interior point methods, the arithmetic cost of an accuracy digit is

CIP = √
θ(K)(Cass + Cfctr) = O(1)

√
mkn(n2 + mnk2 + mk3). (6.5.23)

Warning! You should never blindly trust in (6.5.23)!
The above calculations say that the cost of factorizing H is dominated by the cost

of assembling the matrix (indeed, due to Null(A) = {0} we have n ≤ dimE = mk(k+1)
2 ),

which is not true in reality. The data of an SDP arising in applications normally has a lot of
structure (as it is the case with all SDPs we have considered so far). Exploiting this structure,
we can reduce the cost of assembling H by orders of magnitude (and sometimes manage to
reduce the cost of factorizing H as well). Consider, e.g., the semidefinite program yielding
the Lovasz capacity number of a graph:

min
λ,Y

{λ : λI − Y − B � 0, Y ∈ G} ,

where G is the linear space of all symmetric matrices with a given pattern of zeros (for a
matrix from G, nonzero entries occupy the cells ij indexed by adjacent pairs of nodes i, j
of the graph). The size k of our LMI constraint is the number of nodes in the graph, and the
design dimension n of the problem is the number of free entries in Y (i.e., the number of
pairs of adjacent nodes) plus one (for λ). When assembling H, the major effort is to build
the (n − 1) × (n − 1) principal submatrix H′ of H associated with the design variables
distinct from λ. (Assembling the single column associated with the variable λ is not a big
deal.) It is convenient to denote the design variables distinct from λ by ypq (ypq is the entry
of Y in the cell (p, q)), where the index i = (p, q) runs through the set

J = {(p, q) : 1 ≤ p < q ≤ k, the nodes p, q are adjacent}.
The column Aj , j = (p, q), of the mapping A associated with our problem is the k × k

matrix with just two nonzero entries (both equal to 1) occupying the cells (p, q) and (q, p);
thus, Aj = epe

T
q +eqe

T
p , where ep are the standard basic orths of Rk . According to (6.5.21),

the entries of the j th column of H′ are

H′
ij = Tr(AiZAjZ), Z = X−1,

i.e., Hij are just twice the entries, in the cells from J , of the k × k matrix

ZAjZ = Z(epe
T
q + eqe

T
p )Z = zpz

T
q + zqz

T
p ,

where z1, . . . , zk are the columns of Z. We see that after Z is computed (when assembling
H, this computation should be done just once!), it takes O(1) arithmetic operations to build
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an entry of the j th column in H′, i.e., it takes O(n) arithmetic operations to build the entire
column. Consequently, the cost of computing H′ after Z is computed is O(n2) (as if we
were just writing the matrix!). When taking into account the cost of computing Z, the
computational price of H′ becomes O(k3 + n2), and this is also the cost of computing the
entire matrix H. (The price of the λ-column is dominated by the price of H′.) Thus, in the
case in question Cass = O(k3 + n2), which is far less than stated by (6.5.20). Moreover, for
typical graphs, the number n of nonadjacent pairs of vertices is of order of the total number
of pairs of vertices, i.e., n = O(k2). In this case, Cass = O(k4) (while (6.5.20) yields
O(k6)—quite a difference!), which is negligible compared to the cost O(n3) = O(k6) of
factorizing H.

For the ellipsoid method the cost of an accuracy digit comes fromO(n2) calls to the first
order and the separation oracles, and O(n4) arithmetic operations to process their answers.
A call to the first order oracle is costless—O(n) arithmetic operations (our objective is
linear!), while a call to the separation oracle built in Lecture 5 costsO(mk2(n+k)) arithmetic
operations.

Indeed, to mimic the separation oracle at a point x ∈ Rn, we should compute X =
Ax−B (O(mnk2) arithmetic operations) and then check whether X is positive semidefinite
(O(mk3) arithmetic operations). If the result is positive, x is feasible for (CP); otherwise
our check yields a vector ξ such that ξT Xξ < 0, so that the vector η = A∗[ξξT ] separates x
from the feasible set of (CP). Given ξ , it takes no more than O(mnk2) arithmetic operations
to compute η.

Thus, the arithmetic cost per accuracy digit for the ellipsoid method is

CEll = O(1)n2(n2 + mnk2 + mk3).

We see that
CEll

CIP
= O(1)

n√
mk

; (6.5.24)

whether this ratio is large or small depends on the relations between the sizes of the problem.
In general, all we can say is that the ratio is within the bounds [O(1) 1√

mk
,O(1)k

√
mk]. The

lower bound is trivial, since n ≥ 1. The upper bound comes from the fact that n ≤ dimE =
mk(k+1)

2 (recall our basic assumption Null(A) = {0}).
To get a better insight, let us consider two extreme cases of the structure of K—one

with k = 1 and the other with m = 1.

The case of k = 1. This case is especially interesting—this is LP! Indeed, the direct product
of m one-dimensional semidefinite cones is exactly the nonnegative orthant Rm+. Thus, what
we are speaking about now are LP programs

min
x

{
cT x : Ax ≥ b

}
with n variables and m inequality constraints. In this case,

CIP = O(1)(m3/2n2), CEll = O(1)n3m

(note that n ≤ m = dimE), and the ratio (6.5.24) becomes O(n)√
m

. Thus, the ellipsoid method

is outperformed by the interior point ones whenever m ≤ n2 and beats the interior point
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methods only when m >> n2 (“few variables, plenty of constraints”). In practical LPs, m
and n are of the same order, and the ellipsoid method is outperformed by the interior point
methods by a factor of order of n1/2.

From the viewpoint of LP practice, the ellipsoid method always is outperformed by
the interior point methods. The practical performance of the ellipsoid method is fairly close
to the theoretical bound, which in the LP case is O(n3m) arithmetic operations per accuracy
digit, and the best of the existing IP methods for LP work in practice much better than
it is said by the theoretical complexity analysis. First of all, practice demonstrates that
the iteration count per accuracy digit is not proportional to

√
θ(K) = √

m; it is a quite
moderate constant, so that to get a reasonably high accuracy, it takes just a fixed number of
steps, typically 40–50. Second, recall the Warning above: practical large-scale LPs almost
always are structured, and a part of this structure is inherited by H. As a result, with smart
implementation the cost of assembling and factorizing H for practical LPs is significantly
less than the one given by our theoretical analysis. Thus, our analysis treats properly the
numerator in the fraction CEll

CIP
and overestimates dramatically the denominator.

A practical comparison of the ellipsoid method and the interior point methods as
applied to LP is quite simple: you just cannot use the ellipsoid method for LP, unless when
solving a toy problem with something like 20–40 variables. With interior point methods,
you can solve in a few seconds LPs with thousands of variables, in a few hours LPs with
many tens of thousands of variables, and in still realistic time LPs with few millions of
variables (if, of course, the LPs are well structured, which normally is the case).

The case of m = 1. This case of pure SDP with a single LMI constraint is not too
typical: among the numerous applications of SDP discussed in Lecture 4, we met with
such a situation only in connection with relaxations of combinatorial problems and in the
dynamic stability analysis. However, this is a meaningful case. The ratio (6.5.24) now
becomes

CEll

CIP
= O(1)

n√
k
, (6.5.25)

and the ellipsoid method is beaten by the interior point methods whenever k << n2. We
do not know of a single application of SDP when the latter relation is not satisfied. For
example, in the SDP relaxations of combinatorial problems we have n = O(k2) (computing
Lovasz θ -function for a typical graph, where the numbers of adjacent and nonadjacent pairs
of vertices are of the same order) or, as an extreme, n = k (SDP relaxation of MAXCUT in
its dual form). Thus, in all applications known to us, the ellipsoid method is by far inferior
compared with the interior point ones.

6.5.3 Primal and dual path-following methods

The simplest way to implement the path-following scheme from section 6.5.1 is to linearize
the augmented complementary slackness equations (6.5.15) as they are, ignoring the option
to rewrite these equations equivalently before linearization. Let us look at the resulting
method in more details. Linearizing (6.5.15) at a current iterate X̄, S̄, we get the vector
equation

t+(S̄ + DS) + ∇K(X̄) + [∇2K(X̄)]DX = 0,
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where t+ is the target value of the penalty parameter. The system (6.5.17) now becomes

(a) DX ∈ L
,

(a′) DX = ADx [Dx ∈ Rn],
(b) DS ∈ L⊥

,
(b′) A∗DS = 0,
(c) t+[S̄ + DS] + ∇K(X̄) + [∇2K(X̄)]DX = 0;

(6.5.26)

the unknowns here are DX,DS, and Dx. To process the system, we eliminate DX via (a′)
and multiply both sides of (c) by A∗, thus getting the equation

A∗[∇2K(X̄)]A︸ ︷︷ ︸
H

Dx + [t+A∗[S̄ + DS] + A∗∇K(X̄)] = 0. (6.5.27)

Note that A∗[S̄ + DS] = c is the objective of (CP) (indeed, S̄ ∈ L⊥ + C, i.e., A∗S̄ = c,
while A∗DS = 0 by (b′)). Consequently, (6.5.27) becomes the primal Newton system

HDx = −[t+c + A∗∇K(X̄)]. (6.5.28)

Solving this system (which is possible since, as it is easily seen, the n × n matrix H is
positive definite), we get Dx and then set

DX = ADx,

DS = −t−1
+ [∇K(X̄) + [∇2K(X̄)DX] − S̄,

(6.5.29)

thus getting a solution to (6.5.26). Restricting ourselves with the stepsizes α = β = 1 (see
(6.5.19)), we come to the closed-form description of the method:

(a) t �→ t+ > t,

(b) x �→ x+ = x + (−[A∗(∇2K(X))A]−1[t+c + A∗∇K(X)])︸ ︷︷ ︸
Dx

,

(c) S �→ S+ = −t−1
+ [∇K(X) + [∇2K(X)]ADx],

(6.5.30)

where x is the current iterate in the space Rn of design variables and X = Ax − B is its
image in the space E.

The resulting scheme admits a natural explanation. Consider the function

F(x) = K(Ax − B);
you can immediately verify that this function is a barrier for the feasible set of (CP). Let
also

Ft(x) = tcT x + F(x)

be the associated barrier-generated family of penalized objectives. Relation (6.5.30)(b) says
that the iterates in the space of design variables are updated according to

x �→ x+ = x − [∇2Ft+(x)]−1∇Ft+(x),
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i.e., the process in the space of design variables is exactly the process (6.2.1) from section
6.2.4.

Note that (6.5.30) is, essentially, a purely primal process (this is where the name of
the method comes from). Indeed, the dual iterates S, S+ just do not appear in formulas for
x+, X+, and in fact the dual solutions are no more than shadows of the primal ones.

Remark 6.5.1. When constructing the primal path-following method, we started with
the augmented slackness equations in form (6.5.15). Needless to say, we could start our
developments with the same conditions written in the swapped form

X + t−1∇K(S) = 0,

thus coming to what is called dual path-following method. Of course, as applied to a
given pair (P), (D), the dual path-following method differs from the primal one. However,
the constructions and results related to the dual path-following method require no special
care—they can be obtained from their primal counterparts just by swapping primal and dual
entities.

The complexity analysis of the primal path-following method can be summarized in
the following theorem.

Theorem 6.5.1. Let 0 < χ ≤ κ ≤ 0.1. Assume that we are given a starting point
(t0, x0, S0) such that t0 > 0 and the point

(X0 = Ax0 − B, S0)

is κ-close to Z∗(t0):

dist((X0, S0), Z∗(t0)) ≤ κ.

Starting with (t0, x0, X0, S0), let us iterate process (6.5.30) equipped with the penalty up-
dating policy

t+ =
(

1 + χ√
θ(K)

)
t, (6.5.31)

i.e., let us build the iterates (ti , xi, Xi, Si) according to

ti =
(

1 + χ√
θ(K)

)
ti−1,

xi = xi−1 + (−[A∗(∇2K(Xi−1))A]−1[tic + A∗∇K(Xi−1)]
)︸ ︷︷ ︸

Dxi

,

Xi = Axi − B,

Si = −t−1
i [∇K(Xi−1) + [∇2K(Xi−1)]ADxi].

The resulting process is well defined and generates strictly primal-dual feasible pairs
(Xi, Si) such that (ti , Xi, Si) stay in the neighborhood Nκ of the primal-dual central path.

The theorem says that, with properly chosen κ, χ (e.g., κ = χ = 0.1), after we have
somehow reached the Nκ -neighborhood of the primal-dual central path, we can trace it by
the primal path-following method, keeping the iterates in Nκ and increasing the penalty
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Figure 6.1. Primal path-following method. What you see is the 2D feasible set
of a toy SDP (K = S3+). The continuous curve is the primal central path; dots are iterates
xi of the algorithm. We cannot draw the dual solutions, since they live in four-dimensional
space (dim L⊥ = dim S3 − dim L = 6 − 2 = 4).

parameter by an absolute constant factor in every O(
√
θ(K)) steps—exactly as claimed

in sections 6.2.4 and 6.5.2. This fact is extremely important theoretically; in particular, it
underlies the polynomial time complexity bounds for LP, CQP, and SDP from section 6.6.
As a practical tool, the primal and the dual path-following methods, at least in their short-
step form presented above, are not that attractive. The computational power of the methods
can be improved by passing to appropriate large-step versions of the algorithms, but even
these versions are thought to be inferior to true primal-dual path-following methods (those
that truly work simultaneously with (P) and (D); see below).

To get an impression of how the primal path-following method works, look at Fig. 6.1.
Here are the corresponding numbers:

Itr# Objective Duality gap Itr# Objective Duality gap
1 −0.100000 2.96 7 −1.359870 8.4e−4
2 −0.906963 0.51 8 −1.360259 2.1e−4
3 −1.212689 0.19 9 −1.360374 5.3e−5
4 −1.301082 6.9e-2 10 −1.360397 1.4e−5
5 −1.349584 2.1e-2 11 −1.360404 3.8e−6
6 −1.356463 4.7e-3 12 −1.360406 9.5e−7

6.5.4 Semidefinite programming case

In what follows, we specialize the primal-dual path-following scheme in the SDP case and
carry out its complexity analysis.

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 406

✐

✐

✐

✐

✐

✐

✐

✐

406 Lecture 6. Interior Point Polynomial Time Methods for LP, CQP, and SDP

Path-following scheme in SDP

In the SDP case, the system of nonlinear equations (6.5.15) becomes (see (6.3.2))

Gt(X, S) ≡ S − t−1X−1 = 0, (6.5.32)

where X, S are positive definite k × k symmetric matrices.
Recall that our generic scheme of a path-following interior point method suggests,

given a current triple (t̄ , X̄, S̄) with positive t̄ and strictly primal, respectively, dual feasible
X̄ and S̄, to update the triple into a new triple (t+, X+, S+) of the same type as follows:

(i) We somehow rewrite the system (6.5.32) as an equivalent system

Ḡt (X, S) = 0. (6.5.33)

(ii) We choose somehow a new value t+ > t̄ of the penalty parameter and linearize
the system (6.5.33) (with t set to t+) at the point (X̄, S̄), thus coming to the system of linear
equations

∂Ḡt+(X̄, S̄)

∂X
DX + ∂Ḡt+(X̄, S̄)

∂S
DS = −Ḡt+(X̄, S̄) (6.5.34)

for the search direction (DX,DS).
We add to (6.5.34) the system of linear equations on DX, DS expressing the require-

ment that a shift of (X̄, S̄) in the direction (DX,DS) preserve the validity of the linear
constraints in (P), (D), i.e., the equations saying that DX ∈ L, DS ∈ L⊥:

DX = ADx [⇔ DX ∈ L],
A∗DS = 0 [⇔ DS ∈ L⊥]. (6.5.35)

(iii) We solve the system of linear equations (6.5.34), (6.5.35), thus obtaining a
primal-dual search direction (DX,DS), and update the current iterates:

X+ = X̄ + αDx, S+ = S̄ + βDS,

where the primal and the dual stepsizes α, β are given by certain side requirements.
The major degree of freedom of the scheme comes from (i), i.e., from how we construct

the system (6.5.33). A very popular way to handle (i) which indeed leads to primal-dual
methods, starts from rewriting (6.5.32) in a form which is symmetric with respect to X and
S. To this end we first observe that (6.5.32) is equivalent to each one of the following two
matrix equations:

XS = t−1I ; SX = t−1I.

Adding these equations, we get a symmetric matrix equation

XS + SX = 2t−1I, (6.5.36)

which, by its origin, is a consequence of (6.5.32). A closer inspection reveals that (6.5.36),
regarded as a matrix equation with positive definite symmetric matrices, is equivalent to
(6.5.32). It is possible to use in the role of (6.5.33) the matrix equation (6.5.36) as it is; this
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policy leads to the so-called Alizadeh–Overton–Haeberly (AHO) search direction and the
XS + SX primal-dual path-following method.

It is also possible to use a scaled version of (6.5.36). Namely, let us choose somehow
a positive definite scaling matrix Q and observe that our original matrix equation (6.5.32)
says that S = t−1X−1, which is the same as Q−1SQ−1 = t−1(QXQ)−1. The latter, in turn,
is equivalent to each one of the matrix equations

QXSQ−1 = t−1I, Q−1SXQ = t−1I.

Adding these equations, we get the scaled version of (6.5.36),

QXSQ−1 + Q−1SXQ = 2t−1I, (6.5.37)

which, as before, is equivalent to (6.5.32).
With (6.5.37) playing the role of (6.5.33), we get a quite flexible scheme with complete

freedom for choosing the scaling matrix Q, which in particular can be varied from iteration
to iteration. As we shall see in a while, this freedom reflects the intrinsic (and extremely
important in the interior-point context) symmetries of the semidefinite cone.

Analysis of the path-following methods based on search directions coming from
(6.5.37) (Zhang’s family of search directions) is simplified considerably when the policy
for choosing the scaling matrix at an iteration ensures that the matrices

S̃ = Q−1S̄Q−1, X̂ = QX̄Q

commute (X̄, S̄ are the iterates to be updated). Such a policy is called a commutative scaling.
Popular commutative scalings are

1. Q = S̄1/2 (S̃ = I, X̂ = S̄1/2X̄S̄1/2) (the XS method);

2. Q = X̄−1/2 (S̃ = X̄1/2S̄X̄1/2, X̂ = I ) (the SX method);

3. Q is such that S̃ = X̂ (the Nesterov–Todd method, extremely attractive and deep)

If X̄ and S̄ were just positive reals, the formula forQwould be simplyQ = ( S̄
X̄
)1/4. In

the matrix case this simple formula becomes a bit more complicated (to simplify notation,
below we write X instead of X̄ and S instead of S̄):70

Q = P 1/2, where P = X−1/2(X1/2SX1/2)−1/2X1/2S.

We should verify that (a) P is symmetric positive definite, so that Q is well defined, and
that (b) Q−1SQ−1 = QXQ.

70You should not think that Nesterov and Todd guessed the formula for this scaling matrix. They did much more:
they developed a deep theory (covering the general LP-CQP-SDP case, not just the SDP one!) that, among other
things, guarantees that the desired scaling matrix exists (and even is unique). After the existence is established, it
becomes easier to find an explicit formula for Q.
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(a) Let us first verify that P is symmetric:

P ?=? PT

,
X−1/2(X1/2SX1/2)−1/2X1/2S ?=? SX1/2(X1/2SX1/2)−1/2X−1/2

,(
X−1/2(X1/2SX1/2)−1/2X1/2S

) (
X1/2(X1/2SX1/2)1/2X−1/2S−1

)
?=? I

,
X−1/2(X1/2SX1/2)−1/2(X1/2SX1/2)(X1/2SX1/2)1/2X−1/2S−1 ?=? I

,
X−1/2(X1/2SX1/2)X−1/2S−1 ?=? I

and the last ?=? is indeed =.
To verify thatP is positive definite, recall that the spectrum of the product of two square

matrices (symmetric or not) remains unchanged when swapping the factors. Therefore,
denoting σ(A) the spectrum of A, we have

σ(P ) = σ
(
X−1/2(X1/2SX1/2)−1/2X1/2S

)
= σ

(
(X1/2SX1/2)−1/2X1/2SX−1/2

)
= σ

(
(X1/2SX1/2)−1/2(X1/2SX1/2)X−1

)
= σ

(
(X1/2SX1/2)1/2X−1

)
= σ

(
X−1/2(X1/2SX1/2)1/2X−1/2

)
,

and the argument of the last σ(·) is clearly a positive definite symmetric matrix. Thus, the
spectrum of symmetric matrix P is positive, i.e., P is positive definite.

(b) To verify that QXQ = Q−1SQ−1, i.e., that P 1/2XP 1/2 = P−1/2SP−1/2, is the
same as to verify that PXP = S. The latter equality is given by the following computation:

PXP = (
X−1/2(X1/2SX1/2)−1/2X1/2S

)
X

(
X−1/2(X1/2SX1/2)−1/2X1/2S

)
= X−1/2(X1/2SX1/2)−1/2(X1/2SX1/2)(X1/2SX1/2)−1/2X1/2S

= X−1/2X1/2S

= S.

Complexity analysis

We are about to carry out the complexity analysis of the primal-dual path-following methods
based on commutative Zhang’s scalings. This analysis is more technical than whatever else
is in the book, and an uninterested reader may skip it without much harm.

Scalings. We already have mentioned what a scaling of Sk+ is: this is the linear one-to-one
transformation of Sk given by the formula

H �→ QHQT , (Scl)

where Q is a nonsingular scaling matrix. It is immediately seen that (Scl) is a symmetry of
the semidefinite cone Sk+—it maps the cone onto itself. This family of symmetries is quite
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rich: for every pair of points A,B from the interior of the cone, there exists a scaling that
maps A onto B, e.g., the scaling

H �→ (B1/2A−1/2︸ ︷︷ ︸
Q

)H(A−1/2B1/2︸ ︷︷ ︸
QT

).

In fact, this is the existence of a rich family of symmetries of the underlying cones which
makes SDP (along with LP and CQP, where the cones also are perfectly symmetric) espe-
cially well suited for interior point methods.

In what follows we will be interested in scalings associated with positive definite
scaling matrices. The scaling given by such a matrix Q (X,S,…) will be denoted by Q
(respectively, X ,S,…):

Q[H ] = QHQ.

Given a problem of interest (CP) (where K = Sk+) and a scaling matrix Q . 0, we can scale
the problem, i.e., pass to the equivalent problem

min
x

{
cT x : Q [Ax − B] � 0

} Q(CP)

(recall that Q[H ] is positive semidefinite if and only if H is so). In terms of the geometric
reformulation (P) of (CP), this transformation is nothing but the substitution of variables

QXQ = Y ⇔ X = Q−1YQ−1.

In the Y -variables, (P) is the problem

min
Y

{
Tr(C[Q−1YQ−1]) : Y ∈ Q(L) − Q[B], Y � 0

}
,

i.e., the problem

min
Y

{
Tr(C̃Y ) : Y ∈ L̂ − B̂, Y � 0

}[
C̃ = Q−1CQ−1, B̂ = QBQ, L̂ = Im(QA) = Q(L)] . (̂P)

The problem dual to (̂P) is

max
Z

{
Tr(B̂Z) : Z ∈ L̂⊥ + Ĉ, Z � 0

}
. (D̃)

To realize what is L̂⊥, note that

〈Z,QXQ〉F = Tr(ZQXQ) = Tr(QZQX) = 〈QZQ,X〉F ;
thus, Z is orthogonal to every matrix from L̂, i.e., to every matrix of the form QXQ with
X ∈ L if and only if the matrix QZQ is orthogonal to every matrix from L, i.e., if and only
if QZQ ∈ L⊥. It follows that

L̂⊥ = Q−1(L⊥).

Thus, when acting on the primal-dual pair (P), (D) of SDPs, a scaling, given by a matrix
Q . 0, converts it into another primal-dual pair of problems, and this new pair is as follows:
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• The primal geometric data—the subspace L and the primal shift B (which has a
part-time job to be the dual objective as well)—are replaced by their images under the
mapping Q.

• The dual geometric data—the subspace L⊥ and the dual shift C (it is the primal
objective as well)—are replaced by their images under the mapping Q−1 inverse to Q; this
inverse mapping is the scaling given by the matrix Q−1.

We see that it makes sense to speak about primal-dual scaling which acts on both the
primal and the dual variables and maps a primal variable X onto QXQ, and a dual variable
S onto Q−1SQ−1. Formally speaking, the primal-dual scaling associated with a matrix
Q . 0 is the linear transformation (X, S) �→ (QXQ,Q−1SQ−1) of the direct product of
two copies of Sk (the primal and the dual ones). A primal-dual scaling acts naturally on
different entities associated with a primal-dual pair (P), (S), in particular, at

• the pair (P), (D) itself—it is converted into another primal-dual pair of problems (̂P),
(D̃).

• a primal-dual feasible pair (X, S) of solutions to (P), (D)—it is converted to the
pair (X̂ = QXQ, S̃ = Q−1SQ−1) of feasible solutions to (̂P), (D̃). Note that the
primal-dual scaling preserves strict feasibility and the duality gap:

DualityGapP,D(X, S) = Tr(XS) = Tr(QXSQ−1) = Tr(X̂S̃) = DualityGapP̂,D̃(X̂, S̃).

• the primal-dual central path Z∗(·) = (X∗(·), S∗(·)) of (P), (D)—it is converted into
the curve (X̂∗(t) = QX∗(t)Q, S̃∗(t) = Q−1S∗(t)Q−1), which is nothing but the
primal-dual central path Z∗(t) of the primal-dual pair (̂P), (D̃).

The latter fact can be easily derived from the characterization of the primal-dual
central path. A more instructive derivation is based on the fact that our hero—the
barrier Sk(·)—is semi-invariant with respect to scaling:

Sk(Q(X)) = − ln Det(QXQ) = − ln Det(X) − 2 ln Det(Q) = Sk(X) + const(Q).

Now, a pointY (t) on the primal central path of the problem (̂P) is the unique minimizer
of the aggregate

St
k(Y ) = t〈Q−1CQ−1, Y 〉F + Sk(Y ) ≡ tTr(Q−1CQ−1Y ) + Sk(Y )

over the set of strictly feasible solutions of (̂P). The latter set is exactly the image of
the set of strictly feasible solutions of (P) under the transformation Q, so that Y (t)
is the image, under the same transformation, of the point X(t) which minimizes the
aggregate

St
k(QXQ) = tTr((Q−1CQ−1)(QXQ))+Sk(QXQ) = tTr(CX)+Sk(X)+const(Q)

over the set of strictly feasible solutions to (P). We see that X(t) is exactly the point
X∗(t) on the primal central path associated with problem (P). Thus, the point Y (t)
of the primal central path associated with (̂P) is nothing but X̂∗(t) = QX∗(t)Q.
Similarly, the points of the central path associated with the problem (D̃) are exactly
the points S̃∗(t) = Q−1S∗(t)Q−1.
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• the neighborhood Nκ of the primal-dual central path Z∗(·) associated with the pair
of problems (P), (D) (see (6.4.13)). As you can guess, the image of Nκ is exactly
the neighborhood N κ , given by (6.4.13), of the primal-dual central path Z∗(·) of (̂P),
(D̃).

The latter fact is immediate: for a pair (X, S) of strictly feasible primal and dual
solutions to (P), (D) and a t > 0 we have (see (6.4.11))

dist2((X̂, S̃), Z∗(t))
= Tr

([QXQ](tQ−1SQ−1 − [QXQ]−1)[QXQ](tQ−1SQ−1 − [QXQ]−1)
)

= Tr
(
QX(tS − X−1)X(tS − X−1)Q−1

)
= Tr

(
X(tS − X−1)X(tS − X−1)

)
= dist2((X, S), Z∗(t)).

Primal-dual short-step path-following methods based on commutative scalings.
Path-following methods we are about to consider trace the primal-dual central path of (P),
(D), staying in Nκ -neighborhood of the path; here κ ≤ 0.1 is fixed. The path is traced by
iterating the following updating:

(U) Given a current pair of strictly feasible primal and dual solutions (X̄, S̄)

such that the triple (
t̄ = k

Tr(X̄S̄)
, X̄, S̄

)
(6.5.38)

belongs to Nκ , i.e. (see (6.4.11)),

‖t̄ X̄1/2S̄X̄1/2 − I‖2 ≤ κ, (6.5.39)

we

1. choose the new value t+ of the penalty parameter according to

t+ =
(

1 − χ√
k

)−1

t̄ , (6.5.40)

where χ ∈ (0, 1) is a parameter of the method;

2. choose somehow the scaling matrix Q . 0 such that the matrices X̂ =
QX̄Q and S̃ = Q−1S̄Q−1 commute with each other;

3. linearize the equation

QXSQ−1 + Q−1SXQ = 2

t+
I

at the point (X̄, S̄), thus coming to the equation

Q[DX · S + X · DS]Q−1 + Q−1[DS · X + S · DX]Q
= 2

t+ I − [QX̄S̄Q−1 + Q−1S̄X̄Q]; (6.5.41)D
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4. add to (6.5.41) the linear equations

DX ∈ L,
DS ∈ L⊥; (6.5.42)

5. solve system (6.5.41), (6.5.42), thus getting primal-dual search direction
(DX,DS); and

6. update current primal-dual solution (X̄, S̄) into a new pair (X+, S+)
according to

X+ = X̄ + DX, S+ = S̄ + DS.

We already have explained the ideas underlying (U), up to the fact that in our previ-
ous explanations we dealt with three independent entities: t̄ (current value of the penalty
parameter), X̄, S̄ (current primal and dual solutions), while in (U) t̄ is a function of X̄, S̄:

t̄ = k

Tr(X̄S̄)
. (6.5.43)

The reason for establishing this dependence is very simple: if (t, X, S) were on the primal-
dual central path: XS = t−1I , then, taking traces, we indeed would get t = k

Tr(XS)
. Thus,

(6.5.43) is a reasonable way to reduce the number of independent entities we deal with.
Note also that (U) is a pure Newton scheme—here the primal and the dual stepsizes

are equal to 1 (cf. (6.5.19)).
The major element of the complexity analysis of path-following polynomial time

methods for SDP is as follows.

Theorem 6.5.2. Let the parameters κ, χ of (U) satisfy the relations

0 < χ ≤ κ ≤ 0.1. (6.5.44)

Let, further, (X̄, S̄) be a pair of strictly feasible primal and dual solutions to (P), (D) such
that the triple (6.5.38) satisfies (6.5.39). Then the updated pair (X+, S+) is well defined (i.e.,
system (6.5.41), (6.5.42) is solvable with a unique solution), X+, S+ are strictly feasible
solutions to (P), (D), respectively,

t+ = k

Tr(X+S+)
,

and the triple (t+, X+, S+) belongs to Nκ .

The theorem says that with properly chosen κ, χ (say, κ = χ = 0.1), updating (U)
converts a strictly primal-dual feasible iterate (X̄, S̄) (which is close, in the sense of (6.5.39),
(6.5.38), to the primal-dual central path) into a new strictly primal-dual feasible iterate with
the same closeness-to-the-path property and larger, by factor (1 +O(1)k−1/2), value of the
penalty parameter. Thus, after we once reach N0.1, we are able to trace the primal-dual
central path, staying in N0.1 and increasing the penalty parameter by an absolute constant
factor in O(

√
k) = O(

√
θ(K)) steps, exactly as announced in section 6.5.2.
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Proof of Theorem 6.5.2. 1∗. Observe, first (this observation is crucial!) that it suf-
fices to prove our theorem in the particular case when X̄, S̄ commute with each other and
Q = I . Indeed, it is immediately seen that the updating (U) can be represented as follows:

1. We first scale by Q the input data of (U)—the primal-dual pair of problems (P),
(D) and the strictly feasible pair X̄, S̄ of primal and dual solutions to these problems, as
explained in the section on scaling. Note that the resulting entities—a pair of primal-dual
problems and a strictly feasible pair of primal-dual solutions to these problems—are linked
with each other exactly in the same fashion as the original entities, due to scaling invariance
of the duality gap and the neighborhood Nκ . In addition, the scaled primal and dual solutions
commute.

2. We apply to the scaled input data yielded by the previous step the updating (Û)
completely similar to (U), but using the unit matrix in the role of Q.

3. We scale back the result of the previous step, i.e., subject this result to the scaling
associated with Q−1, thus obtaining the updated iterate (X+, S+).

Given that the second step of this procedure preserves primal-dual strict feasibility
of the updated iterate with respect to the scaled primal-dual pair of problems and keeps
the iterate in the κ-neighborhood Nκ of the corresponding central path, we could use once
again the scaling invariance reasoning to conclude that the result (X+, S+) of (U) is well
defined, is strictly feasible for (P), (D), and is close to the original central path, as claimed
in the theorem. Thus, all we need is to justify the above “given,” which is exactly the
same as to prove the theorem in the particular case of Q = I and commuting X̄, S̄. Thus,
in the rest of the proof we assume that Q = I and that the matrices X̄, S̄ commute with
each other. Due to the latter property, X̄, S̄ are diagonal in a properly chosen orthonormal
basis; representing all matrices from Sk in this basis, we can reduce the situation to the case
when X̄ and S̄ are diagonal. Thus, we may (and do) assume in the sequel that X̄ and S̄ are
diagonal, with diagonal entries xi ,si , i = 1, . . . , k, respectively, and that Q = I . Finally,
to simplify notation, we write t , X, S instead of t̄ , X̄, S̄, respectively.

2∗. Our situation and goals now are as follows. We are given orthogonal to each
other affine planes L − B, L⊥ + C in Sk and two positive definite diagonal matrices X =
Diag({xi}) ∈ L − B, S = Diag({si}) ∈ L⊥ + C. We set

µ = 1

t
= Tr(XS)

k

and know that

‖tX1/2SX1/2 − I‖2 ≤ κ.

We further set

µ+ = 1

t+
= (1 − χk−1/2)µ (6.5.45)

and consider the system of equations with respect to unknown symmetric matricesDX,DS:

(a) DX ∈ L,
(b) DS ∈ L⊥,
(c) DX · S + XD · S + DS · X + S · DX = 2µ+I − 2XS.

(6.5.46)D
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We should prove that the system has a unique solution (DX,DS) and that the matrices

X+ = X + DX, S+ = S + DS

are
(i) positive definite;
(ii) belong to L − B, L⊥ + C, respectively, and satisfy the relation

Tr(X+S+) = µ+k; (6.5.47)

(iii) satisfy the relation

/ ≡ ‖µ−1
+ X

1/2
+ S+X

1/2
+ − I‖2 ≤ κ. (6.5.48)

Observe that the situation can be reduced to the one with µ = 1. Indeed, let us pass from the
matrices X, S,DX,DS,X+, S+ to X, S ′ = µ−1S,DX,DS ′ = µ−1DS,X+, S ′+ = µ−1S+.
Now the “we are given” part of our situation becomes as follows: we are given two diagonal
positive definite matrices X, S ′ such that X ∈ L − B, S ′ ∈ L⊥ + C ′, C ′ = µ−1C,

Tr(XS ′) = k,

and

‖X1/2S ′X1/2 − I‖2 = ‖µ−1X1/2SX1/2 − I‖2 ≤ κ.

The “we should prove” part becomes as follows: to verify that the system of equations with
symmetric unknowns DX, DS ′

(a) DX ∈ L,
(b) DS ′ ∈ L⊥,
(c) DX · S ′ + X · DS ′ + DS ′ · X + S ′ · DX = 2(1 − χk−1/2)I − 2XS ′

has a unique solution and that the matrices X+ = X + DX, S ′+ = S ′ + DS ′ are positive
definite, belong to L − B, L⊥ + C ′, respectively, and satisfy the relations

Tr(X+S ′
+) = µ+

µ
= 1 − χk−1/2

and

‖(1 − χk−1/2)−1X
1/2
+ S ′

+X
1/2
+ − I‖2 ≤ κ.

Thus, the general situation indeed can be reduced to the one with µ = 1, µ+ = 1 −χk−1/2,
and we loose nothing, assuming, in addition to what was already postulated, that

µ ≡ t−1 ≡ Tr(XS)

k
= 1, µ+ = 1 − χk−1/2,

whence

[Tr(XS) =]
k∑

i=1

xisi = k (6.5.49)D
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and

[‖tX1/2SX1/2 − I‖2
2 ≡]

n∑
i=1

(xisi − 1)2 ≤ κ2. (6.5.50)

3∗. We start with proving that (6.5.46), regarded as a system with symmetric un-
knowns DX, DS, has a unique solution. It is convenient to pass in (6.5.46) from the
unknowns DX, DS to the unknowns

δX = X−1/2 · DX · X−1/2 ⇔ DX = X1/2 · δX · X1/2,

δS = X1/2 · DS · X1/2 ⇔ DS = X−1/2 · δS · X−1/2.
(6.5.51)

With respect to the new unknowns, (6.5.46) becomes

(a) X1/2 · δX · X1/2 ∈ L,
(b) X−1/2 · δS · X−1/2 ∈ L⊥,
(c) X1/2 · δX · X1/2S + X1/2 · δS · X−1/2

+X−1/2 · δS · X1/2 + SX1/2 · δX · X1/2 = 2µ+I − 2XS

,
(c′) L(δX, δS) ≡

[√
xixj (si + sj )︸ ︷︷ ︸

φij

(δX)ij

+
(√

xi

xj
+

√
xj

xi︸ ︷︷ ︸
ψij

)
(δS)ij

]k

i,j=1

= 2
[
(µ+ − xisi)δij

]k
i,j=1 ,

(6.5.52)

where

δij =
{

0, i �= j,

1, i = j,

are the Kronecker symbols.
We first claim that (6.5.52), regarded as a system with unknown symmetric matrices

δX, δS, has a unique solution. Observe that (6.5.52) is a system with 2dim Sk ≡ 2N
scalar unknowns and 2N distinct scalar linear equations. Indeed, (6.5.52)(a) is a system of
N ′ ≡ N − dim L linear equations, (6.5.52)(b) is a system of N ′′ = N − dim L⊥ = dim L
linear equations, and (6.5.52)(c) hasN distinct equations, so that the total number of distinct
linear equations in our system is N ′ +N ′′ +N = (N −dim L)+dim L+N = 2N . Now, to
verify that the square system of linear equations (6.5.52) has exactly one solution, it suffices
to prove that the homogeneous system

X1/2 · δX · X1/2 ∈ L, X−1/2 · δS · X−1/2 ∈ L⊥, L(δX, δS) = 0

has only trivial solution. Let (δX, δS) be a solution to the homogeneous system. Relation
L(δX,DS) = 0 means that

(δX)ij = −ψij

φij

(δS)ij , (6.5.53)

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 416

✐

✐

✐

✐

✐

✐

✐

✐

416 Lecture 6. Interior Point Polynomial Time Methods for LP, CQP, and SDP

whence

Tr(δX · δS) = −
∑
i,j

ψij

φij

(DS)2
ij . (6.5.54)

Representing δX, δS via DX,DS according to (6.5.51), we get

Tr(δX·δS) = Tr(X−1/2·DX·X−1/2X1/2·DS·X1/2) = Tr(X−1/2·DX·DS·X1/2) = Tr(DX·DS),

and the latter quantity is 0 due to DX = X1/2 ·δX ·X1/2 ∈ L and DS = X−1/2 ·δS ·X−1/2 ∈
L⊥. Thus, the left-hand side in (6.5.54) is 0; since φij > 0, ψij > 0, (6.5.54) implies that
δS = 0. But then δX = 0 in view of (6.5.53). Thus, the homogeneous version of (6.5.52)
has the trivial solution only, so that (6.5.52) is solvable with a unique solution.

4∗. Let δX, δS be the unique solution to (6.5.52), and let DX, DS be linked to δX, δS

according to (6.5.51). Our local goal is to bound from above the Frobenius norms of δX
and δS.

From (6.5.52)(c) it follows (cf. derivation of (6.5.54)) that

(a) (δX)ij = −ψij

φij
(δS)ij + 2µ+−xi si

φii
δij , i, j = 1, . . . , k,

(b) (δS)ij = − φij

ψij
(δX)ij + 2µ+−xi si

ψii
δij , i, j = 1, . . . , k.

(6.5.55)

Same as in the concluding part of 3∗, relations (6.5.52)(a)–(b) imply that

Tr(DX · DS) = Tr(δX · δS) =
∑
i,j

(δX)ij (δS)ij = 0. (6.5.56)

Multiplying (6.5.55)(a) by (δS)ij and summing over i, j , we get, in view of (6.5.56), the
relation ∑

i,j

ψij

φij

(δS)2
ij = 2

∑
i

µ+ − xisi

φii

(δS)ii; (6.5.57)

by symmetric reasoning, we get∑
i,j

φij

ψij

(δX)2
ij = 2

∑
i

µ+ − xisi

ψii

(δX)ii . (6.5.58)

Now let

θi = xisi, (6.5.59)

so that in view of (6.5.49) and (6.5.50) one has

(a)
∑
i

θi = k,

(b)
∑
i

(θi − 1)2 ≤ κ2.
(6.5.60)

Observe that

φij = √
xixj (si + sj ) = √

xixj

(
θi

xi
+ θj

xj

)
= θj

√
xi

xj
+ θi

√
xj

xi
.
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Thus,

φij = θj

√
xi
xj

+ θi

√
xj
xi
,

ψij =
√

xi
xj

+
√

xj
xi

;
(6.5.61)

since 1 − κ ≤ θi ≤ 1 + κ by (6.5.60)(b), we get

1 − κ ≤ φij

ψij

≤ 1 + κ. (6.5.62)

By the geometric-arithmetic mean inequality we have ψij ≥ 2, whence in view of (6.5.62)

φij ≥ (1 − κ)ψij ≥ 2(1 − κ) ∀i, j. (6.5.63)

We now have

(1 − κ)
∑
i,j

(δX)2
ij ≤

∑
i,j

φij

ψij
(δX)2

ij [see (6.5.62)]

≤ 2
∑
i

µ+−xi si
ψii

(δX)ii [see (6.5.58)]

≤ 2
√∑

i

(µ+ − xisi)2

√∑
i

ψ−2
ii (δX)2

ii

≤
√∑

i

((1 − θi)2 − 2χk−1/2(1 − θi) + χ2k−1)

√∑
i,j

(δX)2
ij

[see (6.5.63)]

≤
√
χ2 +

∑
i

(1 − θi)2

√∑
i,j

(δX)2
ij

[since
∑

i (1 − θi) = 0 by (6.5.60)(a)]

≤ √
χ2 + κ2

√∑
i,j

(δX)2
ij [see (6.5.60)(b)]

and from the resulting inequality it follows that

‖δX‖2 ≤ ρ ≡
√
χ2 + κ2

1 − κ
. (6.5.64)
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Similarly,

(1 + κ)−1
∑
i,j

(δS)2
ij ≤

∑
i,j

ψij

φij
(δS)2

ij [see (6.5.62)]

≤ 2
∑
i

µ+−xi si
φii

(δS)ii [see (6.5.57)]

≤ 2
√∑

i

(µ+ − xisi)2

√∑
i

φ−2
ii (δS)2

ii

≤ (1 − κ)−1

√∑
i

(µ+ − θi)2

√∑
i,j

(δS)2
ij [see (6.5.63)]

≤ (1 − κ)−1
√
χ2 + κ2

√∑
i,j

(δS)2
ij [same as above],

and from the resulting inequality it follows that

‖δS‖2 ≤ (1 + κ)
√
χ2 + κ2

1 − κ
= (1 + κ)ρ. (6.5.65)

5∗. We are ready to prove 2∗(i)–(ii). We have

X+ = X + DX = X1/2(I + δX)X1/2,

and the matrix I + δX is positive definite due to (6.5.64). (Indeed, the right-hand side in
(6.5.64) is ρ ≤ 1, whence the Frobenius norm (and therefore the maximum of modulae of
eigenvalues) of δX is less than 1.) Note that by the just-indicated reasons I+δX / (1+ρ)I ,
whence

X+ / (1 + ρ)X. (6.5.66)

Similarly, the matrix

S+ = S + DS = X−1/2(X1/2SX1/2 + δS)X−1/2

is positive definite. Indeed, the eigenvalues of the matrix X1/2SX1/2 are ≥ min
i

θi ≥ 1 − κ ,

while the modulae of eigenvalues of δS, by (6.5.65), do not exceed
(1+κ)

√
χ2+κ2

1−κ
< 1 − κ .

Thus, the matrix X1/2SX1/2 + δS is positive definite, whence S+ . 0. We have proved
2∗(i).

2∗(ii) is easy to verify. First, by (6.5.52), we have DX ∈ L, DS ∈ L⊥, and since
X ∈ L − B, S ∈ L⊥ + C, we have X+ ∈ L − B, S+ ∈ L⊥ + C. Second, we have

Tr(X+S+) = Tr(XS + X · DS + DX · S + DX · DS)

= Tr(XS + X · DS + DX · S)
[since Tr(DX · DS) = 0 due to DX ∈ L, DS ∈ L⊥]

= µ+k
[take the trace of both sides in (6.5.46)(c)].

2∗(ii) is proved.
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6∗. It remains to verify 2∗(iii). We should bound from above the quantity

/ = ‖µ−1
+ X

1/2
+ S+X

1/2
+ − I‖2 = ‖X1/2

+ (µ−1
+ S+ − X−1

+ )X
1/2
+ ‖2,

and our plan is first to bound from above the closely related quantity

/̂ = ‖X1/2(µ−1
+ S+ − X−1

+ )X1/2‖2 = µ−1
+ ‖Z‖2,

Z = X1/2(S+ − µ+X−1
+ )X1/2,

(6.5.67)

and then to bound / in terms of /̂.
6∗1. Bounding /̂. We have

Z = X1/2(S+ − µ+X−1
+ )X1/2

= X1/2(S + DS)X1/2 − µ+X1/2[X + DX]−1X1/2

= XS + δS − µ+X1/2[X1/2(I + δX)X1/2]−1X1/2

[see (6.5.51)]
= XS + δS − µ+(I + δX)−1

= XS + δS − µ+(I − δX) − µ+[(I + δX)−1 − I + δX]
= XS + δS + δX − µ+I︸ ︷︷ ︸

Z1

+ (µ+ − 1)δX︸ ︷︷ ︸
Z2

+µ+[I − δX − (I + δX)−1]︸ ︷︷ ︸
Z3

,

so that

‖Z‖2 ≤ ‖Z1‖2 + ‖Z2‖2 + ‖Z3‖2. (6.5.68)

We intend to bound separately all three terms in the right-hand side of the latter inequality.
Bounding ‖Z2‖2. We have

‖Z2‖2 = |µ+ − 1|‖δX‖2 ≤ χk−1/2ρ (6.5.69)

(see (6.5.64) and take into account that µ+ − 1 = −χk−1/2).
Bounding ‖Z3‖2. Let λi be the eigenvalues of δX. We have

‖Z3‖2 = ‖µ+[(I + δX)−1 − I + δX]‖2

≤ ‖(I + δX)−1 − I + δX‖2

[since |µ+| ≤ 1]

=
√∑

i

(
1

1+λi
− 1 + λi

)2

[pass to the orthonormal eigenbasis of δX]

=
√∑

i

λ4
i

(1+λi )2

≤
√∑

i

ρ2λ2
i

(1−ρ)2

[see (6.5.64) and note that
∑
i

λ2
i = ‖δX‖2

2 ≤ ρ2]

≤ ρ2

1−ρ
.

(6.5.70)
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Bounding ‖Z1‖2. This is a bit more involved. We have

Z1
ij = (XS)ij + (δS)ij + (δX)ij − µ+δij

= (δX)ij + (δS)ij + (xisi − µ+)δij
= (δX)ij

[
1 − φij

ψij

]
+

[
2µ+−xi si

ψii
+ xisi − µ+

]
δij

[we have used (6.5.55)(b)]

= (δX)ij

[
1 − φij

ψij

]
[since ψii = 2; see (6.5.61)],

whence, in view of (6.5.62),

|Z1
ij | ≤

∣∣∣∣1 − 1

1 − κ

∣∣∣∣ |(δX)ij | = κ

1 − κ
|(δX)ij |,

so that

‖Z1‖2 ≤ κ

1 − κ
‖δX‖2 ≤ κ

1 − κ
ρ (6.5.71)

(the concluding inequality is given by (6.5.64)).
Assembling (6.5.69), (6.5.70), (6.5.71), and (6.5.68), we come to

‖Z‖2 ≤ ρ

[
χ√
k

+ ρ

1 − ρ
+ κ

1 − κ

]
,

whence, by (6.5.67),

/̂ ≤ ρ

1 − χk−1/2

[
χ√
k

+ ρ

1 − ρ
+ κ

1 − κ

]
. (6.5.72)

6∗2. Bounding /. We have

/2 = ‖µ−1
+ X

1/2
+ S+X

1/2
+ − I‖2

2

= ‖X1/2
+ [µ−1

+ S+ − X−1
+ ]︸ ︷︷ ︸

Z=ZT

X
1/2
+ ‖2

2

= Tr
(
X

1/2
+ ZX+ZX

1/2
+

)
≤ (1 + ρ)Tr

(
X

1/2
+ ZXZX

1/2
+

)
[see (6.5.66)]

= (1 + ρ)Tr
(
X

1/2
+ ZX1/2X1/2ZX

1/2
+

)
= (1 + ρ)Tr

(
X1/2ZX

1/2
+ X

1/2
+ ZX1/2

)
= (1 + ρ)Tr

(
X1/2ZX+ZX1/2

)
≤ (1 + ρ)2Tr

(
X1/2ZXZX1/2

)
[again by (6.5.66)]

= (1 + ρ)2‖X1/2ZX1/2‖2
2

= (1 + ρ)2‖X1/2[µ−1
+ S+ − X−1

+ ]X1/2‖2
2

= (1 + ρ)2/̂2

[see (6.5.67)]
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so that

/ ≤ (1 + ρ)/̂ = ρ(1+ρ)

1−χk−1/2

[
χ√
k

+ ρ

1−ρ
+ κ

1−κ

]
,

ρ =
√

χ2+κ2

1−κ

(6.5.73)

(see (6.5.72) and (6.5.64)).
It is immediately seen that if 0 < χ ≤ κ ≤ 0.1, the right-hand side in the resulting

bound for / is ≤ κ , as required in 2∗(iii).

Remark 6.5.2. We have carried out the complexity analysis for a large group of primal-dual
path-following methods for SDP (i.e., for the case of K = Sk+). In fact, the constructions
and the analysis we have presented can be extended word by word to the case when K is
a direct product of semidefinite cones—you should just bear in mind that all symmetric
matrices we deal with, like the primal and the dual solutions X, S, the scaling matrices Q,
the primal-dual search directions DX, DS, etc., are block-diagonal with common block-
diagonal structure. In particular, our constructions and analysis work for the case of LP—this
is the case when K is a direct product of 1D semidefinite cones. Note that in the case of LP,
Zhang’s family of primal-dual search directions reduces to a single direction: since now X,
S, Q are diagonal matrices, the scaling (6.5.36) �→ (6.5.37) does not vary the equations of
augmented complementary slackness.

The recipe for translating all we have presented for the case of SDP to the case of LP is
very simple: in the above, you should assume all matrices like X, S, . . . to be diagonal, and
look at what the operations with these matrices, required by the description of the method,
do with their diagonals.71

6.6 Complexity bounds for linear programming,
conic quadratic programming, and
semidefinite programming

In what follows we list the best complexity bounds for LP, CQP, and SDP known so far.
These bounds are yielded by IP methods and in essence say that the Newton complexity
of finding an ε-solution to an instance, i.e., the total number of steps of a good interior
point algorithm before an ε-solution is found, is O(1)

√
θ(K) ln 1

ε
. This is what should be

expected in view of the discussion in section 6.5.2. Note, however, that the complexity
bounds to follow take into account the need to reach the highway—to come close to the
central path before tracing it—while in section 6.5.2 we focused on how fast we could reduce
the duality gap after the central path (the highway) has been reached.

Along with complexity bounds expressed in terms of the Newton complexity, we
present the bounds on the number of real arithmetic operations required to build an ε-
solution. Note that these latter bounds are typically conservative—when deriving them, we
assume that the data of an instance are completely unstructured, which is usually not the case

71Incidentally, one of the first approaches to the design and the analysis of interior point methods for SDP was
exactly opposite: you take an IP scheme for LP, replace the words “nonnegative vectors” in its description with
“positive semidefinite diagonal matrices,” and then erase the adjective “diagonal.”
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(cf. Warning in section 6.5.2). Exploiting the structure of the data, one can usually reduce
significantly computational effort per step of an interior point method and consequently the
arithmetic cost of an ε-solution.

6.6.1 Complexity of linear programming

Family of problems:

Problem instance: a program

min
x∈Rn

{
cT x : aTi x ≤ bi, i = 1, . . . , m; ‖x‖∞ ≤ R

} ; (p)

Data:

Data(p) = [n;m; c; a1, b1; . . . ; am, bm;R],
Size(p) ≡ dim Data(p) = (m + 1)(n + 1) + 2.

ε-solution: an x ∈ Rn such that

‖x‖∞ ≤ R,

aTi x ≤ bi + ε, i = 1, . . . , m,

cT x ≤ Opt(p) + ε.

(As always, the optimal value of an infeasible problem is +∞.)

Newton complexity of ε-solution:72

ComplNwt(p, ε) = O(1)
√
m + nDigits(p, ε),

where

Digits(p, ε) = ln

(
Size(p) + ‖Data(p)‖1 + ε2

ε

)
is the number of accuracy digits in ε-solution; see Lecture 5.

Arithmetic complexity of ε-solution:

Compl(p, ε) = O(1)(m + n)3/2n2Digits(p, ε).

72In what follows, the precise meaning of a statement “the Newton/arithmetic complexity of finding ε-solution
of an instance (p) does not exceed N” is as follows: as applied to the input (Data(p), ε), the method underlying
our bound terminates in no more than N steps (respectively, N arithmetic operations) and outputs either a vector,
which is an ε-solution to the instance, or the correct conclusion “(p) is infeasible.”D
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6.6.2 Complexity of conic quadratic programming

Family of problems:

Problem instance: a program

min
x∈Rn

{
cT x : ‖Aix + bi‖2 ≤ cTi x + di, i = 1, . . . , m; ‖x‖2 ≤ R

} [
bi ∈ Rki

]
(p)

Data:

Data(P ) = [n;m; k1, . . . , km; c;A1, b1, c1, d1; . . . ;Am, bm, cm, dm;R],
Size(p) ≡ dim Data(p) = (m + ∑m

i=1 ki)(n + 1) + m + n + 3.

ε-solution: an x ∈ Rn such that

‖x‖2 ≤ R,

‖Aix + bi‖2 ≤ cTi x + di + ε, i = 1, . . . , m,

cT x ≤ Opt(p) + ε.

Newton complexity of ε-solution:

ComplNwt(p, ε) = O(1)
√
m + 1Digits(p, ε).

Arithmetic complexity of ε-solution:

Compl(p, ε) = O(1)(m + 1)1/2n

(
n2 + m +

m∑
i=0

k2
i

)
Digits(p, ε).

6.6.3 Semidefinite programming

Family of problems:

Problem instance: a program

min
x∈Rn

cT x : A0 +
n∑

j=1

xjAj � 0, ‖x‖2 ≤ R

 , (p)

where Aj , j = 0, 1, . . . , n, are symmetric block-diagonal matrices with m diagonal blocks
A

(i)
j of sizes ki × ki , i = 1, . . . , m.

Data:

Data(p) = [n;m; k1, . . . km; c;A(1)
0 , . . . , A

(m)
0 ; . . . ;A(1)

n , . . . , A(m)
n ;R],

Size(p) ≡ dim Data(P ) =
(∑m

i=1
ki (ki+1)

2

)
(n + 1) + m + n + 3.D
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ε-solution: an x such that

‖x‖2 ≤ R,

A0 +
n∑

j=1

xjAj � −εI,

cT x ≤ Opt(p) + ε.

Newton complexity of ε-solution:

ComplNwt(p, ε) = O(1)

(
1 +

m∑
i=1

ki

)1/2

Digits(p, ε).

Arithmetic complexity of ε-solution:

Compl(p, ε) = O(1)

(
1 +

m∑
i=1

ki

)1/2

n

(
n2 + n

m∑
i=1

k2
i +

m∑
i=1

k3
i

)
Digits(p, ε).

6.7 Concluding remarks
We have discussed interior point P methods for LP, CQP, and SDP as mathematical creatures
and emphasizing the ideas underlying the algorithms and the complexity bounds ensured
by the methods. Now it is time to address the issues of software implementations of the
interior point algorithms and of practical performance of the resulting codes.

As far as the practical performance of recent interior point software is concerned, the
situation depends on whether we are speaking about codes for LP or those for CQP and
SDP.

• There exists extremely powerful commercial interior point software for LP, able to
handle reliably truly large-scale LPs and quite competitive to the best simplex-type codes
for LP. One of the best modern LP solvers—CPLEX—allows users to choose between a
simplex-type and an interior point mode of execution, and in many cases the second option
reduces the running time by orders of magnitude. With a state-of-the-art computer, CPLEX
is able to solve routinely real-world LPs with tens and hundreds of thousands of variables
and constraints. In the case of favorably structured constraint matrices, the numbers of
variables and constraints can be increased to a few million.

• For the time being, interior point software for CQPs and SDPs is not as advanced,
reliable, and powerful as the LP software. Roughly speaking, the codes available at the
moment can solve SDPs with no more than 1000–2000 design variables. It is difficult to
say something definite about interior point software for CQP: the first codes of this type are
just becoming available.

There are two groups of factors causing the SDP software to be inferior to the interior
point LP software: historical reasons and intrinsic ones. The historical aspect is simple:
development of interior point software for LP started in the mid-eighties, while that for
SDP and CQP started in the mid-nineties. For the time being, this is quite a difference.
Unfortunately, there are intrinsic problems with interior point algorithms for large-scale
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(many thousands of variables) SDPs and CQPs. Recall that for interior point methods the
influence of the size of an SDP or CQP program on the complexity of its solving by an
interior point method is twofold:

1. First, the size affects the Newton complexity of the process. Theoretically, the
number of steps required to reduce the duality gap by a constant factor (say, 10) is propor-
tional to

√
θ(K). (θ(K) is twice the total number of conic quadratic inequalities for CQP

plus the total row size of the LMIs for SDP.) Thus, we could expect an unpleasant growth
of the iteration count with θ(K). Fortunately, the iteration count for good interior point
methods usually is much less than the one given by the worst-case complexity analysis. It
is typically about few tens, independent of θ(K).

2. Second, the larger the instance, the larger the Newton system one should solve to
generate a new primal (or primal-dual) search direction and, consequently, the larger the
computational effort per step (which is dominated by the necessity to assemble and to solve
the Newton system). Now, the system to be solved depends of course on the specific interior
point method employed, but it is never simpler than the system (6.5.27) arising in the primal
path-following method:

A∗[∇2K(X̄)]A︸ ︷︷ ︸
H

Dx = −[t+c + A∗∇K(X̄)]︸ ︷︷ ︸
h

. (Nwt)

The size n of this system is exactly the design dimension of problem (CP).
To process (Nwt), one should assemble the system (compute H and h) and then solve

it. Whatever the cost of assembling, you should be able to store the resulting matrix H
in memory and to factorize the matrix to get the solution. Both these operations—storing
and factorizing H—become prohibitively expensive when H is a large dense73 matrix.
(Imagine how miserable you might be with the need to store 5000×5001

2 = 12, 502, 500
reals representing a dense 5000 × 5000 symmetric matrix H and the need to perform
≈ 50003

6 ≈ 2.08 × 1010 arithmetic operations to find its Choleski factor.)
The need to assemble and solve large-scale systems of linear equations is intrinsic to

interior point methods as applied to large-scale optimization programs, and in this respect
there is no difference between LP, CQP, and SDP. The difference is in how difficult it is
to handle these large-scale linear systems. In real life LPs, CQPs, and SDPs, the structure
of the data allows one to assemble (Nwt) at a cost that is negligibly small compared to the
cost of factorizing H, which is a good news. Other good news is that in a typical real-world
LP H is very well structured, a fact that reduces dramatically the effort of factorizing the
matrix and storing its Choleski factor. All practical interior point solvers for LP utilize these
favorable properties of real-life LPs, and this is where their capability to solve LPs with
tens or hundreds of thousands of variables and constraints comes from. Spoil the structure
of the problem and an interior point method will be unable to solve an LP with just a few
thousands of variables. In contrast to real-life LPs, real-life SDPs typically result in dense
matrices H, and this is where severe limitations on the sizes of tractable in practice SDPs
come from. In this respect, real life CQPs are somewhere between LPs and SDPs.

It should be mentioned that assembling matrices of the Newton systems and solving
these systems by the standard linear algebra techniques is not the only possible way to
implement an interior point method. Another option is to solve the Newton systems by

73That is, with O(n2) nonzero entries.
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iterative linear algebra routines. With this approach, all we need to solve a system like
(Nwt) is a possibility to multiply a given vector by the matrix of the system, and this does
not require assembling and storing in memory the matrix itself. For example, to multiply a
vector Dx by H, we can use the multiplicative representation of H as presented in (Nwt).
Theoretically, the outlined iterative schemes, as applied to real-life SDPs and CQPs, allow
us to reduce the arithmetic cost of building search directions by orders of magnitude and
to avoid the need to assemble and store huge dense matrices. These features look like an
extremely attractive opportunity; the difficulty, however, is that iterative routines are much
more affected by rounding errors than the usual linear algebra techniques. As a result, for
the time being iterative linear algebra–based implementation of interior point methods is no
more than a challenging goal.

Although the sizes of SDPs (and to some extent CQPs) that can be solved with the
existing codes are not as impressive as those of LPs, the possibilities offered to a practitioner
by SDP or CQP interior point methods could hardly be overestimated. Just 10 years ago
we could not even dream of solving an SDP with more than a few tens of variables, while
today we can routinely solve SDPs 20–25 times larger, and we have every reason to expect
a significant progress in this direction.

6.8 Exercises to Lecture 6
6.8.1 Canonical barriers

Exercise 6.1. Prove that the canonical barrier for the Lorentz cone is strongly convex.

Hint. Rewrite the barrier equivalently as

Lk(x) = − ln

(
t − xT x

t

)
− ln t

and use the fact that the function t − xT x
t

is concave in (x, t).

Exercise 6.2. Prove Proposition 6.3.2.

Hint. Note that the property to be proved is stable with respect to taking direct
products, so that it suffices to verify it in the cases of K = Sk+ (which is done
in Lecture 6) and K = Lk . Carry out the latter verification.

Exercise 6.3. Let K be a direct product of Lorentz and semidefinite cones, and let K(·)
be the canonical barrier for K . Prove that whenever X ∈ intK and S = −∇K(X), the
matrices ∇2K(X) and ∇2K(S) are inverses of each other.

Hint. Differentiate the identity

−∇K(−∇K(X)) = X

given by Proposition 6.3.2.
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6.8.2 Scalings of canonical cones

We already know that the semidefinite cone Sk+ is highly symmetric: given two interior points
X,X′ of the cone, there exists a symmetry of Sk+—an affine transformation of the space
where the cone lives—which maps the cone onto itself and maps X onto X′. The Lorentz
cone possesses the same properties, and its symmetries are Lorentz transformations. Writing
vectors from Rk as x = (

u

t
) with u ∈ Rk−1, t ∈ R, we can write a Lorentz transformation

as (
u

t

)
�→ α

(
U

[
u − [µt − (

√
1 + µ2 − 1)eT u]e

]
√

1 + µ2t − µeT u

)
. (LT)

Here α > 0, µ ∈ R, e ∈ Rk−1, eT e = 1, and an orthogonal k × k matrix U are the
parameters of the transformation.

The first question is whether (LT) is indeed a symmetry of Lk . Note that (LT) is the
product of three linear mappings: we first act on vector x = (

u

t
) by the special Lorentz

transformation

Lµ,e :
(
u

t

)
�→

(
u − [µt − (

√
1 + µ2 − 1)eT u]e√

1 + µ2t − µeT u

)
, (∗)

then rotate the result by U around the t-axis, and finally multiply the result by α > 0.
The second and the third transformations clearly map the Lorentz cone onto itself. Thus,
to verify that the transformation (LT) maps Lk onto itself, it suffices to establish the same
property for the transformation (∗).

Exercise 6.4. Prove the following.
1. Whenever e ∈ Rk−1 is a unit vector andµ ∈ R, the linear transformation (∗)maps

the cone Lk onto itself. Moreover, transformation (∗) preserves the space-time interval
xT Jkx ≡ −x2

1 − · · · − x2
k−1 + x2

k :

[Lµ,ex]T Jk[Lµ,ex] = xT Jkx ∀x ∈ Rk [⇔ LT
µ,eJkLµ,e = Jk]

and L−1
µ,e = Lµ,−e.

2. Given a point x̄ ≡ (
ū

t̄
) ∈ intLk and specifying a unit vector e and a realµ according

to

ū = ‖ū‖2e,

µ = ‖ū‖2√
t̄2−ūT ū

,

the resulting special Lorentz transformation Lµ,e maps x̄ onto the point ( 0k−1√
t̄2−ūT ū

) on the

axis {x = (
0k−1

τ
) | τ ≥ 0} of the cone Lk . Consequently, the transformation

√
2

t̄2−ūT ū
Lµ,e

maps x̄ onto the central point e(Lk) = (
0k−1√

2
) of the axis—the point where ∇2Lk(·) is the

unit matrix.

By Exercise 6.4, given two points x ′, x ′′ ∈ intLk , we can find two symmetries L′, L′′
of Lk such that L′x ′ = e(Lk), L′′x ′′ = e(Lk), so that the linear mapping (L′′)−1L′ which
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is a symmetry of L since both L′, L′′ are, maps x ′ onto x ′′. In fact the product (L′′)−1L′ is
again a Lorentz transformation; these transformations form a subgroup in the group of all
linear transformations of Rk .

The importance of Lorentz transformations for us comes from the following fact.

Proposition 6.8.1. The canonical barrier Lk(x) = − ln(xT Jkx) of the Lorentz cone is
semi-invariant with respect to Lorentz transformations: if L is such a transformation, then

Lk(Lx) = Lk(x) + const(L).

Exercise 6.5. Prove Proposition 6.8.1.

As explained in Lecture 6, the semidefinite cone Sk+ also possesses a rich group of
symmetries (which here are of the form X �→ HXHT , DetH �= 0); as in the case of the
Lorentz cone, “richness” means that there are enough symmetries to map any interior point
of Sk+ onto any other interior point of the cone. Recall also that the canonical barrier for the
semidefinite cone is semi-invariant with respect to these symmetries.

Since our basic components Lk and Sk+ possess rich groups of symmetries, so do all
canonical cones—those that are direct products of the Lorentz and the semidefinite ones.
Given such a cone

K = Sk1+ ×· · ·×Skp
+ ×Lkp+1 ×· · ·×Lkm ⊂ E = Sk1 ×· · ·×Skp ×Rkp+1 ×· · ·×Rkm, (Cone)

let us call a scaling of K a linear transformation Q of E such that

Q
(
X1

. . .

Xm

)
=

( Q1X1

. . .

QmXm

)

and every Qi is either a Lorentz transformation, if the corresponding direct factor of K
is a Lorentz cone (in our notation this is the case when i > p), or a semidefinite scaling
QiXi = HiXiH

T
i , DetHi �= 0, if the corresponding direct factor of K is the semidefinite

cone (i.e., if i ≤ p).

Exercise 6.6. Prove the following.
1. If Q is a scaling of the cone K, then Q is a symmetry of K, i.e., it maps K onto

itself, and the canonical barrier K(·) of K is semi-invariant with respect to Q:

K(QX) = K(X) + const(Q).

2. For every pair X′, X′′ of interior point of K, there exists a scaling Q of K which
maps X′ onto X′′. In particular, for every point X ∈ intK there exists a scaling Q which
maps X onto the central point e(K) of K defined as
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e(K) =



Ik1

. . .

Ikp(
0kp+1−1√

2

)
. . .(

0km−1√
2

)


,

where the Hessian of K(·) is the unit matrix:

〈[∇2K(e(K))]X, Y 〉E = 〈X, Y 〉E.
Those readers who passed through section 6.5.4 may guess that scalings play a key

role in the LP-CQP-SDP interior point constructions and proofs. The reason is simple: in
order to realize what happens with canonical barriers and related entities, like central paths,
etc., at certain interior point X of the cone K in question, we apply an appropriate scaling to
convert our point into a simple one, such as the central point e(K) of the cone K, and look
what happens at this simple-to-analyze point. We then use the semi-invariance of canonical
barriers with respect to scalings to transfer our conclusions to the original case of interest.
Let us look at a couple of instructive examples.

6.8.3 Dikin ellipsoid

Let K be a canonical cone, i.e., a direct product of the Lorentz and the semidefinite cones,
E be the space where K lives (see (Cone)), and K(·) be the canonical barrier for K. Given
X ∈ intK, we can define a local Euclidean norm

‖H‖X =
√

〈[∇2K(X)]H,H 〉E
on E.

Exercise 6.7. Prove that ‖ · ‖X conforms with scalings: if X is an interior point of K and
Q is a scaling of K, then

‖QH‖QX = ‖H‖X ∀H ∈ E ∀X ∈ intK.

In other words, if X ∈ intK and Y ∈ E, then the ‖ · ‖X-distance between X and Y equals
to the ‖ · ‖QX-distance between QX and QY .

Hint. Use the semi-invariance of K(·) with respect to Q to show that

DkK(QX)[QH1, . . . ,QHk] = DkK(X)[H1, . . . , Hk].
and then set k = 2, H1 = H2 = H .

Exercise 6.8. For X ∈ intK, the Dikin ellipsoid of the point X is defined as the set

WX = {Y | ‖Y − X‖X ≤ 1};
see Fig. 6.2. Prove that WX ⊂ K.
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Figure 6.2. A 2D cross section of S3+ and cross sections of three Dikin ellipsoids.

Hint. Note that the property to be proved is stable with respect to taking direct
products, so that it suffices to verify it in the cases of K = Lk and K = Sk+.
Further, use the result of Exercise 6.7 to verify that the Dikin ellipsoid conforms
with scalings: the image of WX under a scaling Q is exactly WQX. Use this
observation to reduce the general case to the one where X = e(K) is the central
point of the cone in question, and verify straightforwardly that We(K) ⊂ K.

According to Exercise 6.8, the Dikin ellipsoid of a point X ∈ intK is contained in K;
in other words, the distance from X to the boundary of K, measured in the ‖ · ‖X-norm,
is not too small (it is at least 1). Can this distance be too large? The answer is no—the
θ(K)-enlargement of the Dikin ellipsoid contains a significant part of the boundary of K.
Specifically, given X ∈ intK, let us look at the vector −∇K(X). By Proposition 6.3.2, this
vector belongs to the interior of K, and since K is self-dual, it means that the vector has
positive inner products with all nonzero vectors from K. It follows that the set (called a
conic cap)

KX = {Y ∈ K | 〈−∇K(X),X − Y 〉E ≥ 0}
—the part of K below the affine hyperplane which is tangent to the level surface of K(·)
passing through X—is a convex compact subset of K that contains an intersection of K and
a small ball centered at the origin; see Fig. 6.3.

Exercise 6.9. Let X ∈ intK. Prove the following.
1. The conic cap KX conforms with scalings: if Q is a scaling of K, then

Q(KX) = KQX.
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Figure 6.3. Conic cap of L3 associated with X =
(

0.3
0
1

)
.

Hint. From the semi-invariance of the canonical barrier with respect to scalings
it is clear that the image, under a scaling, of the hyperplane tangent to a level
surface of K is again a hyperplane tangent to (perhaps, another) level surface
of K .

2. Whenever Y ∈ K, one has

〈∇K(X), Y − X〉E ≤ θ(K).

3. X is orthogonal to the hyperplane {H | 〈∇K(X),H 〉E = 0} in the local Euclidean
structure associated with X, i.e.,

〈∇K(X),H 〉E = 0 ⇔ 〈[∇2K(X)]X,H 〉E = 0.

4. The conic cap KX is contained in the ‖ · ‖X-ball, centered at X, with the radius
θ(K):

Y ∈ KX ⇒ ‖Y − X‖X ≤ θ(K).

Hint to 2–4. Use 1 to reduce the situation to the one where X is the central
point of K.

6.8.4 More on canonical barriers

Equipped with scalings, we can establish two additional useful properties of canonical
barriers. Let K be a canonical cone and K(·) be the associated canonical barrier.
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Exercise 6.10. Prove that if X ∈ intK, then

max{〈∇K(X),H 〉E | ‖H‖X ≤ 1} ≤ √
θ(K).

Hint. Verify that the statement to be proved is scaling invariant, so that it
suffices to prove it in the particular case when X is the central point e(K)

of the canonical cone K. To verify the statement in this particular case, use
Proposition 6.3.1.

Exercise 6.11. Prove that if X ∈ intK and H ∈ K, H �= 0, then

〈∇K(X),H 〉E < 0

and

inf
t≥0

K(X + tH) = −∞.

Derive from the second statement the following proposition.

Proposition 6.8.2. If N is an affine plane that intersects the interior of K, then K is
bounded below on the intersection N ∩ K if and only if the intersection is bounded.

Hint. The first statement is an immediate corollary of Proposition 6.3.2. To
prove the second fact, observe first that it is scaling invariant, so that it suffices
to verify it in the case when X is the central point of K and then carry out the
required verification.

6.8.5 Primal path-following method

We have seen that the primal path-following method (section 6.5.3) is a strange entity: it is
a purely primal process for solving the conic problem

min
x

{
cT x : X ≡ Ax − B ∈ K

}
, (CP)

where K is a canonical cone, which iterates the updating

t �→ t+ > t

X �→ X+ = X − A [A∗[∇2K(X)]A]−1[t+c + A∗∇K(X)]︸ ︷︷ ︸
δx

. (U)

Despite its primal nature, the method is able to produce dual approximate solutions; the
corresponding formula is

S+ = −t−1
+ [∇K(X) − [∇2K(X)]Aδx]. (S)

What is the geometric meaning of (S)?
The answer is simple. Given a strictly feasible primal solution Y = Ay − B and a

value τ > 0 of the penalty parameter, let us think how we could extend (τ, Y ) by a strictly
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feasible dual solution S to a triple (τ, Y, S) which is as close as possible, with respect to the
distance dist(·, ·), to the point Z∗(τ ) of the primal-dual central path. Recall that the distance
in question is

dist((Y, S), Z∗(τ )) =
√

〈[∇2K(Y)]−1(τS + ∇K(Y)), τS + ∇K(Y)〉E. (dist)

The simplest way to resolve our question is to choose in the dual feasible plane

L⊥ + C = {S | A∗(C − S) = 0} [C : A∗C = c]
the point S that minimizes the right-hand side of (dist). If we are lucky to get the resulting
point in the interior of K, we get the best possible completion of (τ, Y ) to an admissible
triple (τ, Y, S), the one where S is strictly dual feasible, and the triple is as close as possible
to Z∗(τ ).

Now, there is no difficulty in finding the above S—this is just a least squares problem

min
S

{〈[∇2K(Y)]−1(τS + ∇K(Y)), τS + ∇K(Y)〉E : A∗S = c [≡ A∗C]} .
Exercise 6.12. 1. Let τ > 0 and Y = Ay − B ∈ intK. Prove that the solution to the
above least squares problem is

S∗ = −τ−1
[∇K(Y) − [∇2K(Y)]Aδ

]
,

δ = [A∗[∇2K(Y)]A]−1[τc + A∗∇K(Y)], (∗)

and that the squared optimal value in the problem is

λ2(τ, y) ≡ [∇K(Y)]T A [A∗[∇2K(Y)]A]−1 A∗∇K(Y)

= (‖S∗ + τ−1∇K(Y)‖−τ−1∇K(Y)

)2

= (‖τS∗ + ∇K(Y)‖−∇K(Y)

)2
.

(6.8.74)

2. Derive from 1 and the result of Exercise 6.8 that if the Newton decrement λ(τ, y)
of (τ, y) is < 1, then we are lucky—S∗ is in the interior of K.

3. Derive from 1–2 the following.

Corollary 6.8.1. Let (CP) and its dual be strictly feasible, let Z∗(·) be the primal-dual
central path associated with (CP), and let (τ, Y, S) be a triple comprised of τ > 0, a strictly
feasible primal solution Y = Ay − B, and a strictly feasible dual solution S. Assume that
dist((Y, S), Z∗(τ )) < 1. Then

λ(τ, y) = dist((Y, S∗), Z∗(τ )) ≤ dist((Y, S), Z∗(τ )),

where S∗ is the strictly feasible dual solution given by 1–2.

Hint. When proving the second equality in (6.8.74), use the result of Exercise
6.3.

The result stated in Exercise 6.12 is very instructive. First, we see that S+ in the primal
path-following method is exactly the best possible completion of (t+, X) to an admissible
triple (t+, X, S). Second, we see the following.
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Proposition 6.8.3. If (CP) is strictly feasible and there exists τ > 0 and a strictly feasible
solution y of (CP) such that λ(τ, y) < 1, then the problem is strictly dual feasible.

Indeed, the above scheme, as applied to (τ, y), produces a strictly feasible dual
solution!

In fact, given that (CP) is strictly feasible, the existence of τ > 0 and a strictly feasible
solution y to (CP) such that λ(τ, y) < 1 is a necessary and sufficient condition for (CP) to
be strictly primal-dual feasible.

Indeed, the sufficiency of the condition was already established. To prove
its necessity, note that if (CP) is primal-dual strictly feasible, then the primal
central path is well defined.74 If (τ, Y∗(τ ) = Ay(τ) − B) is on the primal
central path, then, of course, λ(τ, y(τ )) = 0.

Note that the Newton decrement admits a nice and instructive geometric interpretation:

Let K be a canonical cone, K be the associated canonical barrier, Y = Ay−B

be a strictly feasible solution to (CP), and τ > 0. Consider the barrier-
generated family

Bt(x) = tcT x + B(x), B(x) = K(Ax − B).

Then

λ(τ, y) = max{hT ∇Bτ (y) | hT [∇2Bτ (y)]h ≤ 1}
= max{〈τC + ∇K(Y),H 〉E | ‖H‖Y ≤ 1, H ∈ Im A} [Y = Ay − B].

(6.8.75)

Exercise 6.13. Prove (6.8.75).

Exercise 6.14. Let K be a canonical cone, K be the associated canonical barrier, and N
be an affine plane intersecting intK such that the intersection U = N ∩ intK is unbounded.
Prove that for every X ∈ U one has

max{〈∇K(X), Y − X〉E | ‖Y − X‖X ≤ 1, Y ∈ N } ≥ 1.

Hint. Assume that the opposite inequality holds true for some X ∈ U and
use (6.8.75) and Proposition 6.8.3 to conclude that the problem with trivial
objective

min
X

{〈0, X〉E : X ∈ N ∩ K}

and its conic dual are strictly feasible. Then use the result of Exercise 2.12 to
get a contradiction.

The concluding exercise in this series deals with the toy example of application of the
primal path-following method described at the end of section 6.5.3.

74In Lecture 6 we announced this fact but did not prove it. Interested readers can give a proof themselves.
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Exercise 6.15. Looking at the data in the table at the end of section 6.5.3, do you believe
that the corresponding method is exactly the short-step primal path-following method from
Theorem 6.5.1 with the stepsize policy (6.5.31)?

In fact the data at the end of section 6.5.3 are given by a simple modification of
the short-step path-following method: instead of the penalty updating policy (6.5.31), we
increase at each step the value of the penalty in the largest ratio satisfying the requirement
λ(ti+1, xi) ≤ 0.95.

6.8.6 Infeasible start path-following method

In our presentation of the interior point path-following methods, we have ignored completely
the initialization issue—how to come close to the path in order to start its tracing. There
are several techniques for accomplishing this task. We are about to outline one of these
techniques—the infeasible start path-following scheme (originating from Roos and Terlaky
and from Nesterov). Among other attractive properties, a good pedagogical feature of this
technique is that its analysis heavily relies on the results of exercises in sections 6.8.3, 6.8.4,
and 6.8.5, thus illustrating the extreme importance of the facts, which at a first glance look
a bit esoteric.

Situation and goals. Consider the following situation. We want to solve a conic problem

min
x

{
cT x : X ≡ Ax − B ∈ K

}
, (CP)

where K is a canonical cone. The corresponding primal-dual pair, in its geometric form, is

min
X

{〈C,X〉E : X ∈ (L − B) ∩ K} , (P)

max
S

{〈B, S〉E : S ∈ (L⊥ + C) ∩ K
}

(D)[L = Im A,L⊥ = Ker A∗,A∗C = c
]
.

From now on we assume the primal-dual pair (P), (D) to be strictly primal-dual feasible.
To proceed, it is convenient to normalize the data as follows: when we shift B along

the subspace L, (P) remains unchanged, while (D) is replaced with an equivalent problem
(since when shifting B along L, the dual objective, restricted to the dual feasible set, gets a
constant additive term). Similarly, when we shift C along L⊥, the dual problem (D) remains
unchanged, and the primal (P) is replaced with an equivalent problem. Thus, we can shift B
along L and C along L⊥, while not varying the primal-dual pair (P), (D) (or, better to say,
converting it to an equivalent primal-dual pair). With appropriate shift of B along L we can
enforce B ∈ L⊥, and with appropriate shift of C along L⊥ we can enforce C ∈ L. Thus,
we can assume that from the very beginning the data are normalized by the requirements

B ∈ L⊥, C ∈ L, (Nrm)

which, in particular, implies that 〈C,B〉E = 0, so that the duality gap at a pair (X, S) of
primal-dual feasible solutions becomes

DualityGap(X, S) = 〈X, S〉E = 〈C,X〉E − 〈B, S〉E [= 〈C,X〉E − 〈B, S〉E + 〈C,B〉E].
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Our goal is rather ambitious: to develop an interior point method for solving (P), (D)
that requires neither a priori knowledge of a primal-dual strictly feasible pair of solutions,
nor a specific initialization phase.

The scheme. The construction we are about to present achieves the announced goal as
follows.

1. We write down the following system of conic constraints in variables X, S and addi-
tional scalar variables τ , σ :

(a) X + τB − P ∈ L,
(b) S − τC − D ∈ L⊥,
(c) 〈C,X〉E − 〈B, S〉E + σ − d = 0,
(d) X ∈ K,

(e) S ∈ K,

(f) σ ≥ 0,
(g) τ ≥ 0.

(C)

Here P,D, d are certain fixed entities which we choose in such a way that

(i) we can easily point out a strictly feasible solution Ŷ = (X̂, Ŝ, σ̂ , τ̂ = 1) to the
system;

(ii) the solution setY of (C) is unbounded. Moreover, wheneverYi = (Xi, Si, σi, τi) ∈
Y is an unbounded sequence, we have τi → ∞.

2. Imagine that we have a mechanism that allows us to run away to ∞ along Y ,
i.e., to generate a sequence of points Yi = (Xi, Si, σi, τi) ∈ Y such that ‖Yi‖ ≡√

‖Xi‖2
E + ‖Si‖2

E + σ 2
i + τ 2

i → ∞. In this case, by (ii) τi → ∞, i → ∞. Let us
define the normalizations

X̃i = τ−1
i Xi, S̃i = τ−1

i Si

of Xi, Si . Since (Xi, Si, σi, τi) is a solution to (C), these normalizations satisfy the
relations

(a) X̃i ∈ (L − B + τ−1
i P ) ∩ K,

(b) S̃i ∈ (L⊥ + C + τ−1
i D) ∩ K,

(c) 〈C, X̃i〉E − 〈B, S̃i〉E ≤ τ−1
i d.

(C′)

Since τi → ∞, relations (C′) say that as i → ∞, the normalizations X̃i, S̃i simul-
taneously approach primal-dual feasibility for (P), (D) (see (C′)(a), (b)) and primal-
dual optimality (see (C′)(c) and recall that the duality gap, with our normalization
〈C,B〉E = 0, is 〈C,X〉E − 〈B, S〉E).

3. The issue, of course, is how to build a mechanism that allows us to run away to ∞
along Y . The mechanism we intend to use is as follows. (C) can be rewritten in the
generic form
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Y ≡

X

S

σ

τ

 ∈ (M + R) ∩ K̃, (G)

where

K̃ = K × K × S1
+︸︷︷︸

=R+

× S1
+︸︷︷︸

=R+

,

M =



U

V

s

r

∣∣∣∣ U + rB ∈ L,
V − rC ∈ L⊥,

〈C,U〉E − 〈B,V 〉E + s = 0


is a linear subspace in the space Ẽ where the cone K̃ lives, and

R =


P

D

d − 〈C,P 〉E + 〈B,D〉E
0

 ∈ Ẽ.

The cone K̃ is a canonical cone along with K; as such, it is equipped with the
corresponding canonical barrier K̃(·). Let

Ŷ =


X̂

Ŝ

σ̂

τ̂ = 1


be the strictly feasible solution to (G) given by 1(i), and let

C̃ = −∇K̃(Ŷ ).

Consider the auxiliary problem

min
Y

{〈C̃, Y 〉Ẽ : Y ∈ (M + R) ∩ K̃
}
. (Aux)

By the origin of C̃, the point Ŷ lies on the primal central path Ỹ∗(t) of this auxiliary
problem:

Ŷ = Ỹ∗(1).

Let us trace the primal central path Ỹ∗(·), but decrease the value of the penalty instead
of increasing it, thus enforcing the penalty to approach 0. What will happen in this
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process? Recall that the point Ỹ∗(t) of the primal central path of (Aux) minimizes the
aggregate

t〈C̃, Y 〉Ẽ + K̃(Y )

over Y ∈ Y . When t is small, we essentially are trying to minimize just K̃(Y ). But
the canonical barrier, restricted to an unbounded intersection of an affine plane and the
associated canonical cone, is not bounded below on this intersection (see Proposition
6.8.2). Therefore, if we were minimizing the barrier K̃ over Y , the minimum would
be achieved at infinity; it is natural to guess (and this is indeed true) that when
minimizing a slightly perturbed barrier, the minimum will run away to infinity as the
level of perturbations goes to 0. Thus, we may expect (and again it is indeed true)
that ‖Ỹ∗(t)‖ → ∞ as t → +0, so that when tracing the path Ỹ (t) as t → 0, we are
achieving our goal of running away to infinity along Y .

Now let us implement the outlined approach.

Specifying P, D, d. Given the data of (CP), let us choose somehow P >K B, D >K −C,
σ̂ > 0 and set

d = 〈C,P − B〉E − 〈B,D + C〉E + σ̂ .

Exercise 6.16. Prove that with the above setup, the point

Ŷ =

X̂ = P − B

Ŝ = C + D

σ̂

τ̂ = 1


is a strictly feasible solution to (Aux). Thus, our setup ensures 1(i).

Verifying 1(ii). This step is crucial:

Exercise 6.17. Let (Aux′) be the problem dual to (Aux). Prove that (Aux), (Aux′) is a
strictly primal-dual feasible pair of problems.

Hint. By construction, (Aux) is strictly feasible; to prove that (Aux′) is also
strictly feasible, use Proposition 6.8.3.

Exercise 6.18. Prove that with the outlined setup the feasible set Y of (Aux) is unbounded.

Hint. Use the criterion of boundedness of the feasible set of a feasible conic
problem (Exercise 2.11) which as applied to (Aux) reads as follows: the feasible
set of (Aux) is bounded if and only if M⊥ intersects the interior of the cone
dual to K̃. (Since K̃ is a canonical cone, the cone dual to it is K̃ itself.)

The result of Exercise 6.18 establishes the major part of 1(ii). The remaining part of
the latter property is given by the next exercise.
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Exercise 6.19. Let X̄, S̄ be a strictly feasible pair of primal-dual solutions to (P), (D)
(recall that the latter pair of problems was assumed to be strictly primal-dual feasible), so
that there exists γ ∈ (0, 1] such that

γ ‖X‖E ≤ 〈S̄, X〉E ∀X ∈ K,

γ ‖S‖E ≤ 〈X̄, S〉E ∀S ∈ K.

Prove that if

Y =

X

S

σ

τ


is feasible for (Aux), then

‖Y‖Ẽ ≤ ατ + β,

α = γ−1
[〈X̄, C〉E − 〈S̄, B〉E

] + 1,
β = γ−1

[〈X̄ + B,D〉E + 〈S̄ − C,P 〉E + d
]
.

(6.8.76)

Use this result to complete the verification of 1(ii).

Tracing the path Ỹ∗(t) as t → 0. The path Ỹ∗(t) is the primal central path of a certain
strictly primal-dual feasible primal-dual pair of conic problems associated with a canonical
cone (see Exercise 6.17). The only difference with the situation discussed in Lecture 6 is that
now we want to trace the path as t → +0, starting the process from the point Ŷ = Ỹ∗(1)given
by 1(i), rather than to trace the path as t → ∞. It turns out that we have exactly the same
possibilities to trace the path Ỹ∗(t) as the penalty parameter approaches 0 as when tracing the
path as t → ∞; in particular, we can use short-step primal and primal-dual path-following
methods with stepsize policies opposite those mentioned, respectively, in Theorem 6.5.1 and
Theorem 6.5.2. (Opposite means that instead of increasing the penalty at each iteration in
certain ratio, we decrease it in exactly the same ratio.) It can be verified (take it for granted!)
that the results of Theorems 6.5.1 and 6.5.2 remain valid in this new situation as well. Thus,
to generate a triple (t, Y, U) such that t ∈ (0, 1), Y is strictly feasible for (Aux), U is strictly
feasible for the problem (Aux′) dual to (Aux), and dist((Y, U), Z̃∗(t)) ≤ κ ≤ 0.1, it suffices
to carry out

N (t) = O(1)
√
θ(K̃) ln

1

t
= O(1)

√
θ(K) ln

1

t

steps of the path-following method. Here Z̃∗(·) is the primal-dual central path of the primal-
dual pair of problems (Aux), (Aux′), and dist from now on is the distance to this path, as
defined in section 6.4.2. Thus, we understand the cost of arriving at a close-to-the-path
triple (t, Y, U) with a desired value t ∈ (0, 1) of the penalty. Further, our original scheme
explains how to convert the Y -component of such a triple into a pair Xt , St of approximate
solutions to (P), (D),

Xt = 1

τ [Y ]X[Y ], St = 1

τ [Y ]S[Y ],D
ow
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where

Y =

X[Y ]
S[Y ]
σ [Y ]
τ [Y ]

 .

What we do not know for the moment is

(?) What is the quality of the resulting pair (Xt , St ) of approximate solutions
to (P), (D) as a function of t?

Looking at (C′), we see that (?) is, essentially, the question of how rapidly the compo-
nent τ [Y ] of our close-to-the-path triple (t, Y, U) blows up when t approaches 0. In view
of the bound (6.8.76), the latter question, in turn, becomes, How large is ‖Y‖Ẽ when t is
small? The answers to all these questions are given in the following two exercises.

Exercise 6.20. Let (t, Y, U) be a close-to-the-path triple, so that t > 0, Y is strictly
feasible for (Aux), U is strictly feasible for the dual to (Aux) problem (Aux′), and

dist((Y, U), Z̃∗(t)) ≤ κ ≤ 0.1.

Verify that

(a) max{〈−∇K̃(Y ),H 〉E : H ∈ M, ‖H‖Y ≤ 1} ≥ 1,
(b) max{∣∣〈tC̃ + ∇K̃(Y ),H 〉E

∣∣ : H ∈ M, ‖H‖Y ≤ 1} ≤ κ ≤ 0.1.
(6.8.77)

Conclude from these relations that

max{〈−tC̃, H 〉E : H ∈ M, ‖H‖Y ≤ 1} ≥ 0.9. (6.8.78)

Hint. To verify (6.8.77)(a), use the result of Exercise 6.14. To verify (6.8.77)(b),
use Corollary 6.8.1 (with (Aux) playing the role of (CP), t playing the role of
τ , and U playing the role of S) and the result of Exercise 6.13.

Now consider the following geometric construction. Given a triple (t, Y, U) satisfying
the premise of Exercise 6.20, let us denote by W 1 the intersection of the Dikin ellipsoid of
Ŷ with the feasible plane of (Aux) and by Wt the intersection of the Dikin ellipsoid of Y
with the same feasible plane. Let us also extend the line segment [Ŷ , Y ] to the left of Ŷ until
it crosses the boundary of W 1 at a certain point Q. Further, let us choose H ∈ M such that
‖H‖Y = 1 and

〈−tC̃, H 〉Ẽ ≥ 0.9

(such an H exists in view of (6.8.78)) and set

M = Y + H ; N = Ŷ + ωH, ω = ‖Ŷ − P ‖2

‖Y − P ‖2
.

The cross section of the entities involved by the 2D plane passing through Q,Y,M looks
like Fig. 6.4.

Exercise 6.21. 1. Prove that the points Q,M,N belong to the feasible set of (Aux).

Hint. Use Exercise 6.8 to prove that Q,M are feasible for (Aux); note that N
is a convex combination of Q,M .
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6.8. Exercises to Lecture 6 441

Figure 6.4.

2. Prove that

〈∇K̃(Ŷ ), N − Ŷ 〉E = ω

t
〈−tC̃, H 〉Ẽ ≥ 0.9ω

t
.

Hint. Recall that by definition C̃ = −∇K̃(Ŷ )!

3. Derive from 1 and 2 that

ω ≤ θ(K̃)t

0.9
.

Conclude from the resulting bound on ω that

‖Y‖Ẽ ≥ /
t

− /′,

/ = 0.9 min
D

[‖D‖Ẽ
∣∣ ‖D‖Ŷ =1]

θ(K̃)
, /′ = max

D
[‖D‖Ẽ

∣∣ ‖D‖Ŷ = 1]. (6.8.79)

Note that/ and/′ are positive quantities depending on our starting point Ŷ and completely
independent of t!

Hint. To derive the bound on ω, use the result of Exercise 6.9.2.

Exercise 6.22. Derive from the results of Exercises 6.21 and 6.19 that there exists a
positive constant Z (depending on the data of (Aux)) such that

(#) whenever a triple (t, Y, U) is close to the path (see Exercise 6.20) and

Y =

X

S

σ

τ

 ,D
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one has

τ ≥ 1

Zt
− Z.

Consequently, when t ≤ 1
2Z2 , the pair (Xτ = τ−1X, Sτ = τ−1S) satisfies the

relations (cf. (C′))

Xτ ∈ K ∩ (L − B + 2tZP ) [primal O(t)-feasibility],
Sτ ∈ K ∩ (L⊥ + C + 2tZD) [dual O(t)-feasibility],
〈C,Xτ 〉E − 〈B, Sτ 〉E ≤ 2tZd [O(t)-duality gap].

(+)

Statement (#) says that in order to get an ε-primal-dual feasible ε-optimal solution to
(P), (D), it suffices to trace the primal central path of (Aux), starting at the point Ŷ (penalty
parameter equals 1) until a close-to-the-path point with penalty parameter O(ε) is reached,
which requires O(

√
θ(K) ln 1

O(ε)
) iterations. Thus, we arrive at a process with the same

complexity characteristics as for the path-following methods discussed in Lecture 6. Note,
however, that now we have absolutely no troubles with how to start tracing the path.

At this point, a careful reader should protest: relations (+) do say that when t is small,
Xτ is nearly feasible for (P) and Sτ is nearly feasible for (D). But why do we know thatXτ , Sτ
are nearly optimal for the respective problems? What pretends to ensure the latter property
is the O(t)-duality gap relation in (+), and indeed, the left-hand side of this inequality looks
like the duality gap, while the right-hand side is O(t). But in fact the relation75

DualityGap(X, S) ≡ [〈C,X〉E − Opt(P)] + [Opt(D) − 〈B, S〉E] = 〈C,X〉E − 〈B, S〉E
is valid only for primal-dual feasible pairs (X, S), while our Xτ , Sτ are only O(t)-feasible.

Here is the missing element:

Exercise 6.23. Let the primal-dual pair of problems (P), (D) be strictly primal-dual
feasible and be normalized by 〈C,B〉E = 0, let (X∗, S∗) be a primal-dual optimal solution
to the pair, and let X, S ε-satisfy the feasibility and optimality conditions for (P), (D), i.e.,

(a) X ∈ K ∩ (L − B + DX), ‖DX‖E ≤ ε,

(b) S ∈ K ∩ (L⊥ + C + DS), ‖DS‖E ≤ ε,

(c) 〈C,X〉E − 〈B, S〉E ≤ ε.

Prove that

〈C,X〉E − Opt(P) ≤ ε(1 + ‖X∗ + B‖E),
Opt(D) − 〈B, S〉E ≤ ε(1 + ‖S∗ − C‖E).

Exercise 6.24. Implement the infeasible-start path-following method.

75In fact, in the right-hand side there should also be the term 〈C,B〉E . Recall, however, that with our setup this
term is zero.
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Solutions to Selected Exercises

Exercises to Lecture 1
Uniform approximation

Exercise 1.2. Let α < ∞, and assume L is α-regular, i.e., the functions from L are
continuously differentiable and

‖f ′‖∞ ≤ α‖f ‖∞ ∀f ∈ L.

Assume that T ⊂ D is such that the distance from a point in D to the closest point of T
does not exceed β < α−1. Prove that under these assumptions

κL(T ) ≤ 1

1 − αβ
.

Solution. Let f ∈ L, M = ‖f ‖∞, and let a ∈ D be the point where |f (a)| =
M . There exists a point t ∈ T such that |t − a| ≤ β. Since L is regular, we
have |f (a) − f (t)| ≤ Mαβ, whence |f (t)| ≥ M(1 − αβ), and consequently
‖f ‖T ,∞ ≥ |f (t)| ≥ M(1 − αβ).

Exercise 1.5. Assume that D = [0, 2π ], and let L be a linear space of functions on D

comprising all trigonometric polynomials of degree ≤ k. Let T be an equidistant M-point
grid on D:

T =
{
(2l + 1)π

M

}M−1

l=0

.

1. Prove that if M > kπ , then T is L-dense, with

κL(T ) ≤ M

M − kπ
.

2. Prove that the above inequality remains valid if we replace T with its arbitrary
shift modulo 2π , i.e., treat D as the unit circumference and rotate T by an angle.

3. Prove that if T is an arbitrary M-point subset of D with M ≤ k, then κL(T ) = ∞.

Solution. 1. It suffices to apply the result of Exercise 1.2. In the case in question
β = π

M
, and, by the Bernshtein’s Theorem, α = k.
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2. The solution follows from 1 because the space of trigonometric polynomials
is invariant with respect to cyclic shift of the argument by any angle.

3. Let T = {ti}Mi=1. The function

f (t) =
M∏
i=1

sin(t − ti)

is a trigonometric polynomial of degree M ≤ k. This function vanishes on T

(i.e., ‖f ‖T ,∞ = 0), although its uniform norm on D is positive.

Exercise 1.6. Let D = [−1, 1] and let L be the space of all algebraic polynomials of
degree ≤ k.

1. Assume that 2M > πk and T is the M-point set on D as follows:

T =
{
tl = cos

(
(2l + 1)π

2M

)}M−1

l=0

.

Then T is L-dense, with

κL(T ) ≤ 2M

2M − πk
.

2. Let T be an M-point set on D with M ≤ k. Then κL(T ) = ∞.

Solution. 1. Let us pass from the functions f ∈ L to the functions f +(φ) =
f (cos(φ)), φ ∈ [0, 2π ]. Note that f + is a trigonometric polynomial of degree
≤ k. Let

T + =
{
φl = (2l + 1)π

2M

}2M−1

l=0

.

According to the result of Exercise 1.5.1, for every f ∈ L we have

‖f ‖∞ = ‖f +‖∞
≤ 2M

2M−πk
max

l=0,...,2M−1
|f +(φl)|

= 2M
2M−πk

max
l=0,...,2M−1

|f (cos(φl))|
= 2M

2M−πk
max

l=0,...,M−1
|f (tl)|.

(Note that when φ takes values in T +, the quantity cos(φ) takes values in T .)

2. Whenever the cardinality of T is ≤ k, L contains a nontrivial polynomial

f (t) =
∏
t ′∈T

(t − t ′)

which vanishes on T .
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Integration formulas and Gauss points

(∗) LetD be a subset of Rk , letL be an n-dimensional linear space comprising
continuous real-valued functions on D, and let I (f ) : L → R be an integral—
a linear functional such that I (f ) ≥ 0 for every f ∈ L such that f (t) ≥ 0
everywhere on D. Assume also that if a function f ∈ L is nonnegative on D

and is not identically 0, then I (f ) > 0. Then there exists a precise n-point
cubature formula for I , i.e., there are n points t1, . . . , tn ∈ D and n nonnegative
weights α1, . . . , αn such that

I (f ) =
n∑

i=1

αif (ti) ∀f ∈ L.

Exercise 1.17. 1. Prove (*) for the case of finite D.

Solution. We may assume that I is not identically zero—otherwise there is
nothing to prove. The sets At = {f ∈ L | f (t) ≤ 0, I (f ) = 1} are convex
sets belonging to a fixed hyperplane. We claim that there exist n sets of this
type At1 , . . . , Atn with an empty intersection. Indeed, in the opposite case, by
the Helley theorem, there would exist an element f ∈ L belonging to all At ,
t ∈ D, i.e., such that f (t) ≤ 0 everywhere on D and I (f ) = 1, which is
impossible.

The fact that the intersection of At1 , . . . , Atn is empty means that the inequality
I (f ) ≤ 0 is a corollary of the system of linear inequalities f (ti) = 0, i =
1, . . . , n. By the Farkas Lemma, it follows that the linear functional I is a
combination, with nonnegative coefficients, of the n linear functionals f �→
f (ti).

2. Prove (*) for the general case.

Solution. Introducing the same sets At as before, it suffices to prove that there
exists a finite family of these sets with an empty intersection. Indeed, if we
know that At1 , . . . , AtN have no point in common, then, by the Helley theorem,
already a properly chosen n-element subfamily of this family of sets has an
empty intersection, and we may complete the proof in the same way as in
the case of finite D. To prove that there exists a finite family of the sets At

with an empty intersection, assume that it is not the case, and let us lead this
assumption to a contradiction. Let t1, t2, . . . be a sequence of points from D

such that every point of this set belongs to the closure of the sequence, and let
f1, . . . , fn be a basis in L. Under our assumption, for every N there exists a
function f N ∈ L that is nonpositive at the points t1, . . . , tN and I (f N) = 1.
After an appropriate normalization, we can convert f N to a function gN ∈
L such that gN is nonpositive at the points t1, . . . , tN , I (gN) ≥ 0, and the
Euclidean norm of the vector λN of the coefficients of gN in the basis f1, . . . , fn
is 1. Passing to a subsequence {Ni}, we may assume that the vectors λNi

converge to a vector λ (which of course is nonzero). Then the functions gNi
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pointwise converge to the function g(t) = ∑n
j=1 λjfj (t); this function clearly

is nonpositive on the sequence t1, t2, . . ., and since it is continuous on D, it is
nonpositive everywhere. Since 0 ≤ I (gNi ) = ∑n

j=1 λ
Ni

j I (fj ), we conclude
that I (g) = ∑n

j=1 λj I (fj ) ≥ 0. Thus, g is a nonpositive on D function with
nonnegative integral I (g). At the same time g is not identically zero (since its
vector of coefficients in the basis f1, . . . , fn is nonzero). This is the desired
contradiction.

Exercises to Lecture 2
Cones

Exercise 2.4.

2. Let K be a cone in Rn and u �→ Au be a linear mapping from certain Rk to Rn

with trivial null space and such that ImA ∩ intK �= ∅. Prove that the inverse image of K
under the mapping—the set

A−1(K) = {u | Au ∈ K}
—is a cone in Rk . Prove that the cone dual to A−1(K) is the image of K∗ under the mapping
λ �→ AT λ:

(A−1(K))∗ = {AT λ | λ ∈ K∗}.
Solution. The fact thatA−1(K) is a cone is evident. Let us justify the announced
description of the cone dual to A−1(K). If λ ∈ K∗, then AT λ clearly belongs
to (A−1(K))∗:

u ∈ A−1(K) ⇒ Au ∈ K ⇒ λT (Au) = (AT λ)T u ≥ 0.

Now let us prove the inverse implication: if c ∈ (A−1(K))∗, then c = AT λ for
some λ ∈ K∗. To this end consider the conic problem

min
x

{
cT x | Ax ≥K 0

}
.

The problem is strictly feasible and below bounded (why?), so that by the conic
duality theorem the dual problem

max
λ

{
0T λ | AT λ = c, λ ≥K∗ 0

}
is solvable.

3. Let K be a cone in Rn and y = Ax be a linear mapping from Rn onto RN (i.e., the
image of A is the entire RN ). Assume Null(A)

⋂
K = {0}.

Prove then that the image of K under the mapping A—the set

AK = {Ax | x ∈ K}
—is a cone in RN .
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Prove that the cone dual to A(K) is

(AK)∗ = {λ ∈ RN | AT λ ∈ K∗}.
Demonstrate by example that if in the above statement the assumption Null(A) ∩ K = {0}
is weakened to Null(A)∩ intK = ∅, then the image of K under the mapping A may happen
to be nonclosed.

Solution. Let us temporarily set B = AT (note that B has trivial null space,
since A is an onto mapping) and

L = {λ ∈ RN | Bλ ∈ K∗}.
Let us prove that the image of B intersects the interior of K∗. Indeed, otherwise
we could separate the convex set intK∗ from the linear subspace Im B: there
would exist x �= 0 such that

inf
µ∈intK∗

xT µ ≥ sup
µ∈Im B

xT µ,

whence x ∈ (K∗)∗ = K and x ∈ (Im B)⊥ = Null(A), which is impossible.

It remains to apply to the cone K∗ and the mapping B the rule on inverse image
(rule 2). According to this rule, the set L is a cone, and its dual cone is the
image of (K∗)∗ = K under the mapping BT = A. Thus, A(K) indeed is a
cone, namely, the cone dual to L, whence the cone dual to A(K) is L.

“Demonstrate by example…”: When the 3D ice cream cone is projected onto
its tangent plane, the projection is the open half-plane plus a single point on the
boundary of this half-plane, which is not a closed set.

Exercise 2.5. Let A be an m × n matrix of full column rank and K be a cone in Rm.

1. Prove that at least one of the following facts always takes place:

(i) There exists a nonzero x ∈ Im A which is ≥K 0.

(ii) There exists a nonzero λ ∈ Null(AT ) which is ≥K∗ 0.

Geometrically: Given a primal-dual pair of cones K, K∗ and a pair L,L⊥ of linear
subspaces that are orthogonal complements of each other, we can find a nontrivial ray
in the intersection L ∩ K or in the intersection L⊥ ∩ K∗ or both.

2. Prove that the strict version of (ii) takes place (i.e., there exists λ ∈ Null(AT ) which
is >K∗ 0) if and only if (i) does not take place, and vice versa: the strict version of (i)
takes place if and only if (ii) does not take place.

Geometrically: If K,K∗ is a primal-dual pair of cones and L,L⊥ are linear subspaces
that are orthogonal complements of each other, then the intersection L ∩ K is trivial
(is the singleton {0}) if and only if the intersection L⊥ ∩ intK∗ is nonempty.
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Solution. 1. Assuming that (ii) does not take place, note that AT K∗ is a cone
in Rn (Exercise 2.4), and the dual of this latter cone is the inverse image of K
under the mapping A. Since the dual must contain nonzero vectors, (i) takes
place.

2. Let e >K∗ 0. Consider the conic problem

max
λ,t

{
t | AT λ = 0, λ − te ≥K∗ 0

}
.

Note that this problem is strictly feasible, and the strict version of (ii) is equiv-
alent to the fact that the optimal value in the problem is > 0. Thus, (ii) is not
valid if and only if the optimal value in our strictly feasible maximization conic
problem is ≤ 0. By the conic duality theorem this is the case if and only if the
dual problem

min
z,µ

{
0 | Az + µ = 0, µT e = 1, µ ≥K 0

}
is solvable with optimal value equal to 0, which clearly is the case if and only
if the intersection of ImA and K is not the singleton {0}.

Feasible and level sets of conic problems

Exercise 2.11. Let the problem

min
{
cT x | Ax − b ≥K 0

}
(CP)

be feasible (A is of full column rank). Then the following properties are equivalent:
(i) The feasible set of the problem is bounded.
(ii) The set of primal slacks K = {y ≥K 0, y = Ax − b} is bounded.76

(iii) Im A ∩ K = {0}.
(iv) The system of vector inequalities

AT λ = 0, λ >K∗ 0

is solvable.
Corollary. The property of (CP) to have bounded feasible set is independent of the

particular value of b such that (CP) is feasible!

Solution. (i) ⇔ (ii): This is an immediate consequence of A.

(ii) ⇒ (iii). If there exists 0 �= y = Ax ≥K 0, then the set of primal slacks
contains, along with any of its points ȳ, the entire ray {ȳ + ty | t > 0}, so
that the set of primal slacks is unbounded. (Recall that it is nonempty—(CP)
is feasible!) Thus, (iii) follows from (ii) (by contradiction).

(iii) ⇒ (iv). See Exercise 2.5.2.

(iv) ⇒ (ii). Let λ be given by (iv). For all primal slacks y = Ax − b ∈ K one
has λT y = λT [Ax − b] = (AT λ)T x − λT b = λT b, and it remains to use the
result of Exercise 2.3.2.

76Recall that we always assume that A holds!
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Exercise 2.12. Let the problem

min
{
cT x | Ax − b ≥K 0

}
(CP)

be feasible (A is of full column rank). Prove that the following two conditions are equivalent:
(i) (CP) has bounded level sets.
(ii) The dual problem

max
{
bT λ | AT λ = c, λ ≥K∗ 0

}
is strictly feasible.

Corollary. The property of (CP) to have bounded level sets is independent of the
particular value of b such that (CP) is feasible!

Solution. (i) ⇒ (ii). Consider the linear vector inequality

Āx ≡
(

Ax

−cT x

)
≥K̄ 0,

K̄ = {(x, t) | x ≥K 0, t ≥ 0}.
If x̄ is a solution of this inequality and x is a feasible solution to (CP), then
the entire ray {x + t x̄ | t ≥ 0} is contained in the same level set of (CP) as x.
Consequently, in the case of (i) the only solution to the inequality is the trivial
solution x̄ = 0. In other words, the intersection of Im Ā with K̄ is trivial—{0}.
Applying the result of Exercise 2.5.2, we conclude that the system

ĀT

(
λ

µ

)
≡ AT λ − µc = 0,

(
λ

µ

)
>K̄∗ 0

is solvable; if (λ, µ) solves the latter system, then λ >K∗ 0 and µ > 0, so that
µ−1λ is a strictly feasible solution to the dual problem.

(ii) ⇒ (i). If λ >K∗ 0 is feasible for the dual problem and x is feasible for (CP),
then

λT (Ax − b) = (AT λ)T x − λT b = cT x − λT b.

We conclude that if x runs through a given level set L of (CP), the corresponding
slacks y = Ax − b belong to a set of the form {y ≥K 0, λT y ≤ const}. The
sets of the latter type are bounded in view of the result of Exercise 2.3.2 (recall
that λ >K∗ 0). It remains to note that in view of A boundedness of the image
of L under the mapping x �→ Ax − b implies boundedness of L.

Exercises to Lecture 3
Optimal control in discrete time linear dynamic system. Consider a discrete time
linear dynamic system

x(t) = A(t)x(t − 1) + B(t)u(t), t = 1, 2, . . . , T ,
x(0) = x0.

(S)
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Here,

• t is the (discrete) time.

• x(t) ∈ Rl is the state vector: its value at instant t identifies the state of the controlled
plant.

• u(t) ∈ Rk is the exogeneous input at time instant t ; {u(t)}Tt=1 is the control.

• For every t = 1, . . . , T , A(t) is a given l × l, and B(t) – a given l × k matrices.

A typical problem of optimal control associated with (S) is to minimize a given functional
of the trajectory x(·) under given restrictions on the control. As a simple problem of this
type, consider the optimization model

min
x

{
cT x(T ) | 1

2

T∑
t=1

uT (t)Q(t)u(t) ≤ w

}
, (OC)

where Q(t) are given positive definite symmetric matrices.

Exercise 3.1. 1. Use (S) to express x(T ) via the control and convert (OC) in a quadrati-
cally constrained problem with linear objective with respect to the u-variables.

Solution. From (S) it follows that

x(1) = A(1)x0 + B(1)u(1);
x(2) = A(2)x(1) + B(2)u(2)

= A(2)A(1)x0 + B(2)u(2) + A(2)B(1)u(1);
. . .

x(T ) = A(T )A(T − 1) . . . A(1)x0 +
T∑
t=1

A(T )A(T − 1) . . . A(t + 1)B(t)u(t)

≡ A(T )A(T − 1) . . . A(1)x0 +
T∑
t=1

C(t)u(t),

C(t) = A(T )A(T − 1) . . . A(t + 1)B(t).

Consequently, (OC) is equivalent to the problem

min
u(·)

{
T∑
t=1

dT
t u(t) | 1

2

T∑
i=1

uT (t)Q(t)u(t) ≤ w

}
[dt = CT (t)c]. (∗)

2. Convert the resulting problem to a conic quadratic program
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Solution.

minimize
T∑
t=1

dT
t u(t)

s.t. ( 21/2Q1/2(t)u(t)

1 − s(t)

1 + s(t)

)
≥Lk 0, t = 1, . . . , T ,

T∑
t=1

s(t) ≤ w;

the design variables are {u(t) ∈ Rk, s(t) ∈ R}Tt=1.

3. Pass to the resulting problem to its dual and find the optimal solution to the latter
problem.

Solution. The conic dual is

maximize −wω −
T∑
t=1

[µ(t) + ν(t)]
s.t.

21/2Q1/2(t)ξ(t) = dt , t = 1, . . . , T
[⇔ ξ(t) = 2−1/2Q−1/2(t)dt ],

−ω − µ(t) + ν(t) = 0, t = 1, . . . , T
[⇔ µ(t) = ν(t) − ω],√

ξT (t)ξ(t) + µ2(t) ≤ ν(t), t = 1, . . . , T ;

the variables are {ξ(t) ∈ Rk, µ(t), ν(t), ω ∈ R}. Equivalent reformulation of
the dual problem is

minimize wω +
T∑
t=1

[2ν(t) − ω]
s.t. √

a2
t + (ν(t) − ω)2 ≤ ν(t), t = 1, . . . , T

[a2
t = 2−1dT

t Q
−1(t)dt ],

or, which is the same,

minimize wω +
T∑
t=1

[2ν(t) − ω]
s.t.

ω(2ν(t) − ω) ≥ a2
t , t = 1, . . . , T ,D
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or, which is the same,

min
ω

{
wω + ω−1

(
T∑
t=1

a2
t

)
| ω > 0

}
.

It follows that the optimal solution to the dual problem is

ω∗ =
√√√√w−1

(
T∑
i=1

a2
t

)
;

ν∗(t) = 1
2

[
a2
t ω

−1∗ + ω∗
]
, t = 1, . . . , T ;

µ∗(t) = ν∗(t) − ω∗
= 1

2

[
a2
t ω

−1∗ − ω∗
]
, t = 1, . . . , T .

Stable grasp. Recall that the stable grasp analysis problem is to check whether the system
of constraints

‖F i‖2 ≤ µ(f i)T vi, i = 1, . . . , N,

(vi)T F i = 0, i = 1, . . . , N,
N∑
i=1

(f i + F i) + F ext = 0,

N∑
i=1

pi × (f i + F i) + T ext = 0

(SG)

in the 3D vector variables F i is or is not solvable. Here the data are given by a number of
3D vectors, namely,

• vectors vi—unit inward normals to the surface of the body at the contact points;

• contact points pi ;

• vectors f i—contact forces;

• vectors F ext and T ext of the external force and torque, respectively.

µ > 0 is a given friction coefficient; we assume that f T
i vi > 0 ∀i.

Exercise 3.6. 1. Regarding (SG) as the system of constraints of a maximization program
with trivial objective and applying the technique from section 2.5, build the dual problem.
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Solution.

minimize
N∑
i=1

µ[(f i)T vi]φi −
[

N∑
i=1

f i + F ext

]T

\ −
[

N∑
i=1

pi × f i + T ext

]T

]

s.t. \i + σi v
i + \ − pi × ] = 0, i = 1, . . . , N

‖\i‖2 ≤ φi, i = 1, . . . , N,

[\,\i,] ∈ R3, σi, φi ∈ R]

,

min∑
i∈R,],\∈R3

{
N∑
i=1

µ[(f i)T vi]‖pi × ] − \ − σiv
i‖2 − FT\ − T T]

}
,

F =
N∑
i=1

f i + F ext, T =
N∑
i=1

pi × f i + T ext.

Trusses. We are about to process the multiload TTD problem 3.4.1, which we write as
(see (3.4.57))

minimize τ

s.t. s2
ij ≤ 4tirij , i = 1, . . . , n, j = 1, . . . , k,

n∑
i=1

rij ≤ 1
2τ, j = 1, . . . , k,

n∑
i=1

ti ≤ w,

n∑
i=1

sij bi = fj , j = 1, . . . , k,

ti , rij ≥ 0, i = 1, . . . , n, j = 1, . . . , k;

(Pr)

the design variables are sij , rij , ti , τ .
We assume that

• the ground structure (n,m, b1, . . . , bn) is such that the matrix
∑n

i=1 bib
T
i is positive

definite; and

• the loads of interest f1, . . . , fk are nonzero, and the material resource w is positive.

Exercise 3.7. 1. Applying the technique from section 2.5, build the problem (Dl) dual to
the problem (Pr).D
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What is the design dimension of (Pr)? of (Dl)?

Solution.

maximize −wρ −
k∑

j=1

f T
j vj

s.t. αij + bTi vj = 0, i = 1, . . . , n, j = 1, . . . , k;
γij − βij − δj = 0, i = 1, . . . , n, j = 1, . . . , k;

k∑
j=1

[βij + γij ] − ρ = 0, i = 1, . . . , n;

1
2

n∑
j=1

δj = 1,√
α2
ij + β2

ij ≤ γij , i = 1, . . . , n, j = 1, . . . , k;
δj ≥ 0, j = 1, . . . , k;
ρ ≥ 0

[αij , βij , γij , δj , ρ ∈ R, vj ∈ Rm]
,

minimize wρ +
k∑

j=1

f T
j vj

s.t.
k∑

j=1

λ−1
j (bTi vj )

2 ≤ 2ρ, i = 1, . . . , n

[λj = δj /2];
k∑

j=1

λj = 1;
λj ≥ 0, j = 1, . . . , k;
ρ ≥ 0

[ρ, λj ∈ R, vj ∈ Rm].

The design dimension of (Pr) is 2nk + n + 1. The design dimension of (Dl) is
mk + k + 1.

Exercise 3.8. Let us fix a ground structure (n,m, b1, . . . , bn) and a material resource w,
and let F be a finite set of loads.

1. Assume that Fj ∈ F , j = 1, . . . , k, are subsets of F with ∪k
j=1Fj = F . Let

µj be the optimal value in the multiload TTD problem with the set of loads Fj and µ be
the optimal value in the multiload TTD problem with the set of loads F . Is it possible that
µ >

∑k
j=1 µj?D
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Solution. The compliance Complf (t) clearly is nonincreasing in t and
Complf (θt) = θ−1Complf (t) for positive θ . Let t j be an optimal solution
to the multiload TTD problem with the set of loads Fj , and let θj be posi-
tive reals with sum 1. The truss tθ = ∑k

j=1 θj t
j clearly satisfies the resource

constraint, while for every f ∈ Fj one has

Complf (tθ ) ≤ Complf (θj t
j ) = θ−1

j Complf (t
j ) ≤ θ−1

j µj .

Setting θj = µj(
∑k

l=1 µl)
−1, we get Complf (tθ ) ≤ ∑m

j=1 µj ∀f ∈ ∪k
j=1Fj =

F . Thus, µ ≤ ∑k
j=1 µj .

2. Assume that the ground structure includes n = 1998 tentative bars and that you
are given a set F of N = 1998 loads. It is known that for every subset F ′ of F made up of
no more than 999 loads, the optimal value in the multiload TTD problem, the set of loading
scenarios being F ′, does not exceed 1. What can be said about the optimal value in the
multiload TTD problem with the set of scenarios F?

Solution. It does not exceed 2 (by the previous exercise).

Answer a similar question in the case when F comprises N ′ = 19980 loads.

Solution. The optimal value still does not exceed 2. Indeed, let Tf , t ∈ F , be
the set of all trusses of given volume with compliances with respect to f not
exceeding 2. Then Tf is a convex subset in 1997-dimensional affine plane (cut
off the 1998-dimensional space of trusses by the linear equation “volume of the
truss is given”). By the previous answer for every subset of F comprising 1998
loads, there exists a truss of given volume with compliance with respect to the
subset not exceeding 2, i.e., every 1998 convex set from the family {Tf }f∈F
has a point in common. It follows, by the Helley theorem, that all sets from the
family have a point in common, i.e., there exists a truss with compliance with
respect to every load from F not exceeding 2.

Does conic quadratic programming exist? Let ε > 0 and a positive integer n be given.
We intend to build a polyhedral ε-approximation of the Lorentz cone Ln+1. Without loss of
generality we may assume that n is an integer power of 2: n = 2κ , κ ∈ N.

Tower of variables. The first step of our construction is quite straightforward: we intro-
duce extra variables to represent a conic quadratic constraint√

y2
1 + · · · + y2

n ≤ t (CQI)

of dimension n + 1 by a system of conic quadratic constraints of dimension three each.
Namely, let us call our original y-variables variables of generation 0 and let us split them
into pairs (y1, y2), . . . , (yn−1, yn). We associate with every one of these pairs its successor—
an additional variable of generation 1. We split the resulting 2κ−1 variables of generation 1
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into pairs and associate with every pair its successor—an additional variable of generation
2, and so on. After κ−1 steps we end up with two variables of the generation κ−1. Finally,
the only variable of generation κ is the variable t from (CQI).

To introduce convenient notation, let us denote by y�i the ith variable of generation �,
so that y0

1 , . . . , y
0
n are our original y-variables y1, . . . , yn, yκ1 ≡ t is the original t-variable,

and the parents of y�i are the variables y�−1
2i−1, y

�−1
2i .

Note that the total number of all variables in the tower of variables we end up with is
2n − 1.

It is clear that the system of constraints√
[y�−1

2i−1]2 + [y�−1
2i ]2 ≤ y�i , i = 1, . . . , 2κ−�, � = 1, . . . , κ, (1)

is a representation of (CQI) in the sense that a collection (y0
1 ≡ y1, . . . , y

0
n ≡ yn, y

κ
1 ≡

t) can be extended to a solution of (1) if and only if (y, t) solves (CQI). Moreover, let
H�(x1, x2, x3, u

�) be polyhedral ε�-approximations of the cone

L3 =
{
(x1, x2, x3) |

√
x2

1 + x2
2 ≤ x3

}
,

� = 1, . . . , κ . Consider the system of linear constraints in variables y�i , u
�
i :

H�(y
�−1
2i−1, y

�−1
2i , y�i , u

�
i ) ≥ 0, i = 1, . . . , 2κ−�, � = 1, . . . , κ. (2)

Writing this system of linear constraints asH(y, t, u) ≥ 0, whereH is linear in its arguments,
y = (y0

1 , . . . , y
0
n), t = yκ1 , and u is the collection of all u�i , � = 1, . . . , κ , and all y�i ,

� = 1, . . . , κ −1, we immediately conclude that H is a polyhedral ε-approximation of Ln+1

with

1 + ε =
κ∏

�=1

(1 + ε�). (3)

In view of this observation, we may focus on building polyhedral approximations of the
Lorentz cone L3.

Polyhedral approximation of L3. The approximation we intend to use is given by the
system of linear inequalities, as follows (positive integer ν is the parameter of the construc-
tion):

(a)

{
ξ 0 ≥ |x1|,
η0 ≥ |x2|,

(b)

{
ξ j = cos

(
π

2j+1

)
ξ j−1 + sin

(
π

2j+1

)
ηj−1,

ηj ≥ ∣∣− sin
(

π
2j+1

)
ξ j−1 + cos

(
π

2j+1

)
ηj−1

∣∣ , j = 1, . . . , ν,

(c)

{
ξν ≤ x3,

ην ≤ tg
(

π
2ν+1

)
ξν.

(4)
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Note that (4) can be straightforwardly written as a system of linear homogeneous in-
equalities H(ν)(x1, x2, x3, u) ≥ 0, where u is the collection of 2(ν + 1) variables ξ j , ηi ,
j = 0, . . . , ν.

Proposition1. H(ν) is a polyhedral δ(ν)-approximation of L3 = {(x1, x2, x3) |
√
x2

1 + x2
2 ≤

x3} with

δ(ν) = 1

cos
(

π
2ν+1

) − 1. (5)

Proof. We should prove that
(i) If (x1, x2, x3) ∈ L3, then the triple (x1, x2, x3) can be extended to a solution to (4).
(ii) If a triple (x1, x2, x3) can be extended to a solution to (4), then ‖(x1, x2)‖2 ≤

(1 + δ(ν))x3.
(i): Given (x1, x2, x3) ∈ L3, let us set ξ 0 = |x1|, η0 = |x2|, thus ensuring (4)(a).

Note that ‖(ξ 0, η0)‖2 = ‖(x1, x2)‖2 and that the point P 0 = (ξ 0, η0) belongs to the first
quadrant.

Now, for j = 1, . . . , ν let us set

ξ j = cos
(

π
2j+1

)
ξ j−1 + sin

(
π

2j+1

)
ηj−1,

ηj = ∣∣− sin
(

π
2j+1

)
ξ j−1 + cos

(
π

2j+1

)
ηj−1

∣∣ ,
thus ensuring (4)(b), and let P j = (ξ j , ηj ). The point P i is obtained from P j−1 by the
following construction: We rotate clockwise P j−1 by the angle φj = π

2j+1 , thus getting a
point Qj−1. If this point is in the upper half-plane, we set P j = Qj−1; otherwise, P j is the
reflection of Qj−1 with respect to the x-axis. From this description it is clear that

(I) ‖P j‖2 = ‖P j−1‖2, so that all vectors P j are of the same Euclidean norm as P 0,
i.e., of the norm ‖(x1, x2)‖2;

(II) since the point P 0 is in the first quadrant, the point Q0 is in the angle −π
4 ≤

arg(P ) ≤ π
4 , so that P 1 is in the angle 0 ≤ arg(P ) ≤ π

4 . The latter relation, in turn, implies
that Q1 is in the angle −π

8 ≤ arg(P ) ≤ π
8 , whence P 2 is in the angle 0 ≤ arg(P ) ≤ π

8 .
Similarly, P 3 is in the angle 0 ≤ arg(P ) ≤ π

16 , and so on: P j is in the angle 0 ≤ arg(P ) ≤
π

2j+1 .
By (I), ξν ≤ ‖P ν‖2 = ‖(x1, x2)‖2 ≤ x3, so that the first inequality in (4)(c) is satisfied.

By (II), P ν is in the angle 0 ≤ arg(P ) ≤ π
2ν+1 , so that the second inequality in (4)(c) also is

satisfied. We have extended a point from L3 to a solution to (4).
(ii): Let (x1, x2, x3) be extended to a solution (x1, x2, x3, {ξ j , ηj }νj=0) to (4). Let us

set P j = (ξ j , ηj ). From (4)(a), (b) it follows that all vectors P j are nonnegative. We have
‖P 0 ‖2 ≥ ‖(x1, x2)‖2 by (4)(a). Now, (4)(b) says that the coordinates of P j are ≥ absolute
values of the coordinates of P j−1 taken in certain orthonormal system of coordinates, so
that ‖P j‖2 ≥ ‖P j−1‖2. Thus, ‖P ν‖2 ≥ ‖(x1, x2)

T ‖2. On the other hand, by (4)(c) one has
‖P ν‖2 ≤ 1

cos( π

2ν+1 )
ξ ν ≤ 1

cos( π

2ν+1 )
x3, so that ‖(x1, x2)

T ‖2 ≤ δ(ν)x3, as claimed.
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Specifying in (2) the mappings H�(·) as H(ν�)(·), we conclude that for every col-
lection of positive integers ν1, . . . , νκ one can point out a polyhedral β-approximation
Hν1,...,νκ (y, t, u) of Ln, n = 2κ :

(a�,i)

{
ξ 0
�,i ≥ |y�−1

2i−1|,
η0
�,i ≥ |y�−1

2i |,

(b�,i)

 ξ
j

�,i = cos
(

π
2j+1

)
ξ
j−1
�,i + sin

(
π

2j+1

)
η
j−1
�,i ,

η
j

�,i ≥
∣∣∣− sin

(
π

2j+1

)
ξ
j−1
�,i + cos

(
π

2j+1

)
η
j−1
�,i

∣∣∣ , j = 1, . . . , ν�,

(c�,i)

{
ξ
ν�
�,i ≤ y�i ,

η
ν�
�,i ≤ tg

(
π

2ν�+1

)
ξ
ν�
�,i ,

i = 1, . . . , 2κ−�, � = 1, . . . , κ.

(6)

The approximation possesses the following properties:

1. The dimension of the u-vector (comprising all variables in (6) except yi = y0
i and

t = yκ1 ) is

p(n, ν1, . . . , νκ) ≤ n + O(1)
κ∑

�=1

2κ−�ν�.

2. The image dimension of Hν1,...,νκ (·) (i.e., the number of linear inequalities plus twice
the number of linear equations in (6)) is

q(n, ν1, . . . , νκ) ≤ O(1)
κ∑

�=1

2κ−�ν�.

3. The quality β of the approximation is

β = β(n; ν1, . . . , νκ) =
κ∏

�=1

1

cos
(

π

2ν�+1

) − 1.

Back to the general case. Given ε ∈ (0, 1] and setting

ν� =
⌊
O(1)� ln

2

ε

⌋
, � = 1, . . . , κ,

with properly chosen absolute constant O(1), we ensure that

β(ν1, . . . , νκ) ≤ ε,

p(n, ν1, . . . , νκ) ≤ O(1)n ln 2
ε
,

q(n, ν1, . . . , νκ) ≤ O(1)n ln 2
ε
,

as required.
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Exercises to Lecture 4
Positive semidefiniteness, eigenvalues, and �-ordering

Exercise 4.2. Diagonal-dominant matrices. Let A = [aij ]mi,j=1 be a symmetric matrix
satisfying the relation

aii ≥
∑
j �=i

|aij |, i = 1, . . . , m.

Prove that A is positive semidefinite.

Solution. Let e be an eigenvector of A and λ be the corresponding eigenvalue.
We may assume that the largest, in absolute value, of coordinates of e is equal
to 1. Let i be the index of this coordinate; then

λ = aii +
∑
j �=i

aij ej ≥ aii −
∑
j �=i

|aij | ≥ 0.

Thus, all eigenvalues of A are nonnegative, so that A is positive semidefi-
nite.

Variational description of eigenvalues

Exercise 4.8. Let f∗ be a closed convex function with the domain Domf∗ ⊂ R+, and let
f be the Legendre transformation of f∗. Then for every pair of symmetric matrices X, Y of
the same size with the spectrum of X belonging to Domf and the spectrum of Y belonging
to Domf∗ one has

λ(f (X)) ≥ λ
(
Y 1/2XY 1/2 − f∗(Y )

)
. (∗)

Solution. By continuity reasons, it suffices to prove (∗) in the case of Y . 0
(why?). Let m be the size of X, let k ∈ {1, . . . , m}, let Ek be the family of
linear subspaces of Rm of codimension k − 1, and let E ∈ Ek be such that

e ∈ E ⇒ eT Xe ≤ λk(X)eT e.

(Such an E exists by the variational characterization of eigenvalues as applied
to X.) Let also F = Y−1/2E; the codimension of F , same as the one of E, is
k − 1. Finally, let g1, .., gm be an orthonormal system of eigenvectors of Y , so
that Ygj = λj (Y )gj . We have
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h ∈ F, hT h = 1 ⇒
hT [Y 1/2XY 1/2 − f∗(Y )]h = (Y 1/2h︸ ︷︷ ︸

∈E
)T X(Y 1/2h) −

m∑
j=1

f∗(λj (Y ))(gTj h)2

≤ λk(X)(Y 1/2h)T (Y 1/2h) −
m∑

j=1

f∗(λj (Y ))(gTj h)2

[since Y 1/2h ∈ E]

= λk(X)(hT Yh) −
m∑

j=1

f∗(λj (Y ))(gTj h)2

= λk(X)

m∑
j=1

λj (Y )(g
T
j h)

2 −
m∑

j=1

f∗(λj (Y ))(gTj h)2

=
m∑

j=1

[λk(X)λj (Y ) − f∗(λj (Y ))](gTj h)2

≤
m∑

j=1

f (λk(X))(gTj h)
2

[since f = (f∗)∗]

= f (λk(X))

[since
∑
j

(gTj h)
2 = hT h = 1]

= λk(f (X))

[since f (·) is nonincreasing due to Domf∗ ⊂ R+].

We see that there exists F ∈ Ek such that

max
h∈F :hT h=1

hT [Y 1/2XY 1/2 − f∗(Y )]h ≤ λk(f (X)).

From variational characterization of eigenvalues it follows that

λk(Y
1/2XY 1/2 − f∗(Y )) ≤ λk(f (X)).

Exercise 4.10. 4. (trace inequality) Prove that whenever A,B ∈ Sm, one has

λT (A)λ(B) ≥ Tr(AB).

Solution. Denote λ = λ(A), and let A = V T Diag(λ)V be the spectral
decomposition of A. Setting B̂ = VBV T , note that λ(B̂) = λ(B) and
Tr(AB) = Tr(Diag(λ)B̂). Thus, it suffices to prove the trace inequality in
the particular case when A is a diagonal matrix with the diagonal λ = λ(A).
Denoting by µ the diagonal of B and setting

σ 0 = 0; σ k =
k∑

i=1

µi, k = 1, . . . , m,D
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we have

Tr(AB) =
m∑
i=1

λiµi

=
m∑
i=1

λi(σ
i − σ i−1)

= −λ1σ
0 +

m−1∑
i=1

(λi − λi+1)σ
i + λmσ

m

=
m−1∑
i=1

(λi − λi+1)σ
i + λmTr(B)

≤
m−1∑
i=1

(λi − λi+1)

i∑
j=1

λj (B) + λm

m∑
j=1

λj (B)

[since λi ≥ λi+1 and in view of Exercise 4.10.3]

=
m∑
i=1

λiλi(B)

= λT (A)λ(B).

Exercise 4.12. 3. Let X be a symmetric n × n matrix partitioned into blocks in a sym-
metric, with respect to the diagonal, fashion,

X =


X11 X12 . . . X1m

XT
12 X22 . . . X2m
...

...
. . .

...

XT
1m XT

2m · · · Xmm

 ,

so that the blocks Xii are square. Let also g : R → R ∪ {+∞} be convex function on the
real line which is finite on the set of eigenvalues of X, and let Fn ⊂ Sn be the set of all
n × n symmetric matrices with all eigenvalues belonging to the domain of g. Assume that
the mapping

Y �→ g(Y ) : Fn → Sn

is �-convex:

g(λ′Y ′ + λ′′Y ′′) / λ′g(Y ′) + λ′′g(Y ′′) ∀(Y ′, Y ′′ ∈ Fn, λ
′, λ′′ ≥ 0, λ′ + λ′′ = 1).

Prove that

(g(X))ii � g(Xii), i = 1, . . . , m,

where the partition of g(X) into the blocks (g(X))ij is identical to the partition of X into
the blocks Xij .
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Solution. Let ε = (ε1, . . . , εm) with εj = ±1, and let

Uε =


ε1In1

ε2In2

. . .

εmInm

 ,

where ni is the row size ofXii . ThenUε are orthogonal matrices and one clearly
has

D(X) ≡


X11

X22
. . .

Xmm

 = 1

2m

∑
ε:εi=±1, i=1,...,m

UT
ε XUε.

We have

D(X) = 1
2m

∑
ε:εi=±1, i=1,...,m

UT
ε XUε

⇓ [since g is �-convex]

g(D(X)) / 1
2m

∑
ε:εi=±1, i=1,...,m

g(UT
ε XUε)

,
g(D(X)) / 1

2m

∑
ε:εi=±1, i=1,...,m

UT
ε g(X)Uε

⇓
g(D(X)) / D(g(X)).

Cauchy’s inequality for matrices

Exercise 4.19. 1. Denote P = (∑
i X

T
i Xi

)1/2
, Q = ∑

i Y
T
i Yi (Xi, Yi ∈ Mp,q). We

should prove that

σ

(∑
i

XT
i Yi

)
≤ λ(P )‖λ(Q)‖1/2

∞

or, which is the same,

σ

(∑
i

Y T
i Xi

)
≤ λ(P )‖λ(Q)‖1/2

∞ .

By the variational description of singular values, it suffices to prove that for every k =
1, 2, . . . , p there exists a subspace Lk ⊂ Rq of codimension k − 1 such that

∀ξ ∈ Lk : ‖
(∑

i

Y T
i Xi

)
ξ‖2 ≤ ‖ξ‖2λk(P )‖λ(Q)‖1/2

∞ . (∗)D
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Let e1, . . . , eq be the orthonormal eigenbasis of P : Pei = λi(P )ei , and let Lk be the linear
span of ek, ek+1, . . . , eq . For ξ ∈ Lk one has

|ηT
(∑

i

Y T
i Xi

)
ξ | ≤

∑
i

‖Yiη‖2‖Xiξ‖2 ≤
√∑

i

‖Yiη‖2
2

√∑
i

‖Xiξ‖2
2

=
√√√√ηT

(∑
i

Y T
i Yi

)
η

√√√√ξT

(∑
i

XT
i Xi

)
ξ

≤ (‖λ(Q)‖∞‖η‖2
2

)1/2 (
λ2
k(P )‖ξ‖2

2

)1/2 = ‖λ(Q)‖1/2
∞ λk(P )‖η‖2‖ξ‖2,

whence ∥∥∥∥∥
(∑

i

Y T
i Xi

)
ξ

∥∥∥∥∥
2

= max
η:‖η‖2=1

ηT

(∑
i

Y T
i Xi

)
ξ ≤ λk(P )‖λ(Q)‖1/2

∞ ‖ξ‖2,

as required in (*).
To make (*) equality, assume that P . 0 (the case of singular P is left to the reader),

and let Yi = XiP
−1. Then∑

i

Y T
i Yi = P−1

(∑
i

XT
i Xi

)
P−1 = I

and ∑
i

XT
i Yi =

(∑
i

XT
i Xi

)
P−1 = P,

so that (*) becomes equality.
(1)⇒(2): it suffices to prove that if A ∈ Mp,p, then

|Tr(A)| ≤ ‖σ(A)‖1. (∗∗)
Indeed, we haveA = UNV , whereU,V are orthogonal matrices andN is a diagonal matrix
with the diagonal σ(A). Denoting by ei the standard basic orths in Rp, we have

|Tr(A)| = |Tr(UT AU)| = |Tr(N(VU))|

=
∣∣∣∣∣∑

i

eTi N(VU)ei

∣∣∣∣∣ ≤
∑
i

|σi(A)eTi (V U)ei | ≤
∑
i

σi(A),

as required in (**).

Exercise 4.20. The true statements are 2 and 3.
Part 2 is an immediate consequence of the following.

Lemma 1. Let Ai ∈ Sn+, i = 1, . . . , m, and let α > 1. Then

λj

(
m∑
i=1

Aα
i

)1/α
 ≤ λ

1
α

j

(
m∑
i=1

Ai

)
λ

1− 1
α

1

(
m∑
i=1

Ai

)
.D
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(Here, as always, λj (B) are eigenvalues of a symmetric matrixB arranged in the nonascend-
ing order.)

Proof. Let B = ∑m
i=1 A

α
i , A = ∑m

i=1 Ai . Since λj (B
1/α) = (

λj (B)
)1/α

, we should prove
that

λj (B) ≤ λj (A)λ
α−1
1 (A). (7)

By the variational description of eigenvalues, it suffices to verify that for every j ≤ n there
exists a linear subspace Lj in Rn of codimension j − 1 such that

ξT Bξ ≤ λj (A)λ
α−1
1 (A) ∀(ξ ∈ Lj , ‖ξ‖2 = 1). (8)

Let e1, . . . , en be an orthonormal eigenbasis of A (Aej = λj (A)ej ), and let Lj be the linear
span of the vectors ej , ej+1, . . . , en. Let ξ ∈ Lj be a unit vector. We have∑

i

ξ T Aα
i ξ =

∑
i

ξ T Ai [Aα−1
i ξ ]︸ ︷︷ ︸
ηi

≤
∑
i

(ξT Aiξ)
1/2(ηTi Aiηi)

1/2 [since Ai � 0]

≤
(∑

i

ξ T Aiξ

)1/2 (∑
i

ηTi Aiηi

)1/2

[Cauchy’s inequality]

= (
ξT Aξ

)1/2

(∑
i

ξ T A2α−1
i ξ

)1/2

≤ (
ξT Aξ

)1/2

(∑
i

λ2α−2
1 (Ai)ξ

T Aiξ

)1/2

≤
(

max
i

λ1(Ai)

)α−1 ∑
i

ξ T Aiξ

≤ λα−1
1 (A)λj (A) [since ‖ξ‖2 = 1 and ξ ∈ Lj ]

as required in (8).

Part 3 is less trivial than part 2. Let us look at the (nm) × (nm) square matrix

Q =


A

α/2
1

A
α/2
2
...

A
α/2
m

 .

(As always, blank spaces are filled with zeros.) Then

QTQ =
 B ≡

∑
i

Aα
i

D
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so that Tr([QTQ]1/α) = Tr(B1/α). Since the eigenvalues of QTQ are exactly the same as
the eigenvalues of X = QQT , we conclude that

Tr(B1/α) = Tr([QQT ]1/α) = Tr(X1/α),

X =


Aα

1 A
α/2
1 A

α/2
2 · · · A

α/2
1 A

α/2
m

A
α/2
2 A

α/2
1 Aα

2 · · · A
α/2
2 A

α/2
m

...
...

. . .
...

A
α/2
m A

α/2
1 A

α/2
m A

α/2
2 · · · Aα

m

 .

Applying the result of Exercise 4.12.1 with F(Y ) = −Tr(Y 1/α), we get

[Tr(B1/α) =] Tr(X1/α) = −F(X) ≤ −F


 Aα

1
. . .

Aα
m


 =

m∑
i=1

Tr(Ai),

as required.

�-convexity of some matrix-valued functions.

Exercise 4.22.

4. Prove that the function

F(x) = x1/2 : Sm
+ → Sm

+

is �-concave and �-monotone.

Solution. Since the function is continuous on its domain, it suffices to verify
that it is �-monotone and �-concave on intSm+, where the function is smooth.

Differentiating the identity

F(x)F (x) = x (∗)
in a direction h and setting F(x) = y, DF(x)[h] = dy, we get

y dy + dy y = h.

Since y . 0, this Lyapunov equation admits an explicit solution:

dy =
∫ ∞

0
exp{−ty}h exp{−ty}dt,

and we see that dy � 0 whenever h � 0. Applying Exercise 4.21.4, we
conclude that F is �-monotone.D
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Differentiating (*) twice in a direction h and denoting d2y = D2F(x)[h, h],
we get

y d2y + d2y y + 2(dy)2 = 0,

whence, same as above,

d2y = −
∫ ∞

0
exp{−ty}(dy)2 exp{−ty}dt / 0.

Applying Exercise 4.21.3, we conclude that F is �-concave.

5. Prove that the function

F(x) = ln x : intSm
+ → Sm

is �-monotone and �-concave.

Solution. The function x1/2 : Sm+ → Sm+ is �-monotone and �-concave by Ex-
ercise 4.22.4. Applying Exercise 4.21.6, we conclude that so are the functions
x1/2k for all positive integer k. It remains to note that

ln x = lim
k→∞ 2k

[
x1/2k − I

]
and to use Exercise 4.21.7.

6. Prove that the function

F(x) =
(
Ax−1AT

)−1

: intSn
+ → Sm

with matrix A of rank m is �-concave and �-monotone.

Solution. Since A is of rank m, the function F(x) clearly is well defined and
. 0 when x . 0. To prove that F is �-concave, it suffices to verify that the set

{(x, Y ) | x, Y . 0, Y / (Ax−1AT )−1}
is convex, which is nearly evident:

{(x, Y ) | x, Y . 0, Y / (Ax−1AT )−1} = {(x, Y ) | x, Y . 0, Y−1 � Ax−1AT }
= {(x, Y ) | x, Y . 0,

(
Y−1 A

AT x

)
� 0}

= {(x, Y ) | x, Y . 0, x � AT YA}.
To prove thatF is �-monotone, note that if 0 / x / x ′, then 0 ≺ (x ′)−1 / x−1,
whence 0 ≺ A(x ′)−1AT / Ax−1AT , whence, in turn, F(x) = (Ax−1AT )−1 /
(A(x ′)−1AT )−1 = F(x ′).D
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Lovasz capacity number

Exercise 4.33. Let 
 be an n-node graph and σ(
) be the optimal value in the problem

min
λ,µ,ν

{
λ :

(
λ, − 1

2 (e + µ)T

− 1
2 (e + µ), A(µ, ν)

)
� 0

}
, (Sh)

where e = (1, . . . , 1)T ∈ Rn,A(µ, ν) = Diag(µ)+Z(ν), andZ(ν) is the matrix as follows:

• The dimension of ν is equal to the number of arcs in 
, and the coordinates of ν are
indexed by these arcs.

• The diagonal entries of Z, same as the off-diagonal entries of Z corresponding to
empty cells ij (i.e., with i and j nonadjacent) are zeros.

• The off-diagonal entries of Z in a pair of symmetric nonempty cells ij , ji are equal
to the coordinate of ν indexed by the corresponding arc.

Prove that σ(
) is nothing but the Lovasz capacity Z(
) of the graph.

Solution. In view of (4.10.122) all we need is to prove that σ(
) ≥ Z(
).

Let (λ, µ, ν) be a feasible solution to (Sh); we should prove that there exists x
such that (λ, x) is a feasible solution to the Lovasz problem

min
λ,x

{λ : λIn − L(x) � 0} . (L)

Setting y = 1
2 (e + µ), we see that(

λ − 1
2 (e + µ)T

− 1
2 (e + µ) Z(ν) + Diag(µ)

)
=

(
λ −yT

−y Z(ν) + 2Diag(y) − In

)
� 0.

The diagonal entries of Z = Z(ν) are zero, while the diagonal entries of
Z + 2Diag(y) − In must be nonnegative; we conclude that y > 0. Setting
Y = Diag(y), we have(

λ −yT

−y Z + 2Y − In

)
� 0

⇒
(

1
Y−1

)(
λ −yT

−y Z + 2Y − In

)(
1

Y−1

)
� 0,

i.e., (
λ −eT

−e Y−1ZY−1 + 2Y−1 − Y−2

)
� 0,

whence by the Schur complement lemma

λ
[
Y−1ZY−1 + 2Y−1 − Y−2

] − eeT � 0

or, which is the same,

λIn − [
eeT − λY−1ZY−1

] � λ(In − 2Y−1 + Y−2) = λ(In − Y−1)2.

We see that λIn − [
eeT − λY−1ZY−1

] � 0. It remains to note that the matrix
in the brackets clearly is L(x) for certain x.
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S-lemma. (For notation, see section 4.10.5.)

Exercise 4.42. We should prove that if f (x) = xT Ax + 2aT x + α and g(x) = xT Bx +
2bT x + β are two quadratic forms (A = AT , B = BT ) such that the premise in the
implication

f (x) ≤ 0 ⇒ g(x) ≤ 0 (9)

is strictly feasible, then the implication holds true if and only if

∃λ ≥ 0 : g(x) ≤ λf (x) ∀x.
Proof. The “if” part of the statement is evident. Let us prove the “only if” part.
Thus, let us assume that the implication (9) is valid.

1. There clearly exist a sequence {γi > 0} and δ > 0 such that

(i) γi → 0, i → ∞;

(ii) all the matrices Ai ≡ A + γiI are nonsingular; and

(iii) x̄T Aix̄ + 2aT x̄ + α ≤ −δ ∀i.
2. Observe that since γi > 0, one has

xT Aix+ 2aT x+α ≤ 0 ⇒ xT Ax+ 2aT x+α ≤ 0 ⇒ xT Bx+ 2bT x+β ≤ 0,

i.e., one has

fi(x) ≡ xT Aix + 2aT x + α ≤ 0 ⇒ g(x) = xT Bx + 2bT x + β ≤ 0.

Setting

f̂i(y) = fi(y − A−1
i a) = yT Aiy + [α − aT A−1

i a]︸ ︷︷ ︸
αi

,

ĝi(y) = g(y − A−1
i a) = yT By + 2bTi y + βi,

we have

(a) ∀y : yT Aiy + αi ≤ 0 ⇒ yT By + 2bTi y + βi ≤ 0,
(b) ∃ỹ : ỹT Aiỹ + αi < 0.

(10)

3. We claim that

(a) ∀(y, t) : yT Aiy + αit
2 ≤ 0 ⇒ yT By + 2tbTi y + βit

2 ≤ 0,
(b) ∃(ȳ, t̄) : ȳT Aiȳ + αi t̄

2 < 0.
(11)

Indeed, (11)(b) is evident (set ȳ = ỹ, t̄ = 1). Further, the implication (11)(a)
with the premise strengthened by the assumption t �= 0 is an immediate corol-
lary of (10)(a). Thus, all we need in order to verify (11)(a) is to prove the
implication

yT Aiy ≤ 0 ⇒ yT By ≤ 0. (12)
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Assume, on the contrary to what should be proved, that for some y it holds that

yT Aiy ≤ 0, yT By > 0.

Then y �= 0, whence yT Ay < yT Aiy ≤ 0, i.e., yT Ay < 0. It follows that

f (sy − A−1
i a) → −∞, s → ∞ [since yT Ay < 0],

g(sy − A−1
i a) → +∞, s → ∞ [since yT By > 0],

in contradiction to the assumption that f (x) ≤ 0 ⇒ g(x) ≤ 0.

4. By the usual S-lemma, from (11) it follows that

∃λi ≥ 0 : yT By + 2tbTi y + βit
2 ≤ λi[yT Aiy + αit

2] ∀(y, t),
whence (set t = 1) ĝi (y) ≤ λif̂i(y) ∀y or, which is the same,

xT Bx + 2bT x + β ≤ λi[xT Aix + 2aT x + α] ∀x.
Setting in the latter inequality x = x̄ and taking into account (iii), we conclude
that {λi ≥ 0}∞

i=1 is a bounded sequence. Denoting by λ (any) limiting point
of the sequence and taking into account (i), we come to the desired relations
λ ≥ 0, g(x) ≤ λf (x) ∀x.

Exercise 4.46.3. 3. Given data A,B satisfying the premise of (SL)(B), define the sets

Qx = {λ ≥ 0 : xT Bx ≥ λxT Ax}.
Prove that every two sets Qx ′ ,Qx ′′ have a point in common.

Solution. The case when x ′, x ′′ are collinear is trivial. Assuming that x ′, x ′′ are
linearly independent, consider the quadratic forms on the 2D plane:

α(z) = (sx ′+tx ′′)T A(sx ′+tx ′′), β(z) = (sx ′+tx ′′)T B(sx ′+tx ′′), z = (s, t)T .

By their origin, we have

α(z) ≥ 0, z �= 0 ⇒ β(z) > 0. (!)
All we need is to prove that there exists λ ≥ 0 such that β(z) ≥ λα(z) ∀z ∈ R2.
Such a λ clearly is a common point of Qx ′ and Qx ′′ .

As is well known from linear algebra, we can choose a coordinate system in
R2 in such a way that the matrix α of the form α(·) in these coordinates, let
them be called u, v, is diagonal:

α =
(
a 0
0 b

)
;

let also

β =
(
p r

r q

)
be the matrix of the form β(·) in the coordinates u, v. Let us consider all
possible combinations of signs of a, b:
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• a ≥ 0, b ≥ 0. In this case, α(·) is nonnegative everywhere, whence by
(!) β(·) ≥ 0. Consequently, β(·) ≥ λα(·) with λ = 0.

• a < 0, b < 0. In this case the matrix of the quadratic form β(·) − λα(·)
is (

p + λ|a| r

r q + λ|b|
)
.

This matrix clearly is positive definite for all large-enough positive λ, so
that here again β(·) ≥ λα(·) for properly chosen nonnegative λ.

• a = 0, b < 0. In this case α(1, 0) = 0 (the coordinates in question are
u, v), so that by (!) p > 0. The matrix of the form β(·) − λα(·) is(

p r

r q + λ|b|
)
,

and since p > 0 and |b| > 0, this matrix is positive definite for all large-
enough positive λ. Thus, here again β(·) ≥ λα(·) for properly chosen
λ ≥ 0.

• a < 0, b = 0. This case is completely similar to the previous one.

Part 3 is proved.

Exercise 4.47. Demonstrate by example that if xT Ax, xT Bx, xT Cx are three quadratic
forms with symmetric matrices such that

∃x̄ : x̄T Ax̄ > 0, x̄T Bx̄ > 0,
xT Ax ≥ 0, xT Bx ≥ 0 ⇒ xT Cx ≥ 0,

(13)

then not necessarily there exist λ,µ ≥ 0 such that C � λA + µB.

A solution.

A =
(
λ2 0
0 −1

)
, B =

(
µν 0.5(µ − ν)

0.5(µ − ν) −1

)
,

C =
(

λµ 0.5(µ − λ)

0.5(µ − λ) −1

) .

With a proper setup, e.g.,

λ = 1.100, µ = 0.818, ν = 1.344,

the above matrices satisfy both (4.10.133) and (4.10.134).D
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Exercise 4.52. Let n ≥ 3,

f (x) = θ1x
2
1 − θ2x

2
2 +

n∑
i=3

θix
2
i : Rn → R,

θ1 ≥ θ2 ≥ 0, θ1 + θ2 > 0,−θ2 ≤ θi ≤ θ1 ∀i ≥ 3;
Y = {x : ‖x‖2 = 1, f (x) = 0}.

1. Let x ∈ Y . Prove that x can be linked in Y by a continuous curve with a point x ′
such that the coordinates of x ′ with indices 3, 4, . . . , n vanish.

Proof. It suffices to build a continuous curve γ (t) ∈ Y , 0 ≤ t ≤ 1, of the form

γ (t) = (x1(t), x2(t), tx3, tx4, . . . , txn)
T , 0 ≤ t ≤ 1,

which passes through x as t = 1. Setting s = ∑n
i=3 θix

2
i = θ2x

2
2 − θ1x

2
1 and

g2 = dT d = 1 − x2
1 − x2

2 , we should verify that one can define continuous
functions x1(t), x2(t) of t ∈ [0, 1] satisfying the system of equations{

θ1x
2
1 (t) − θ2x

2
2 (t) + t2s = 0,

x2
1 (t) + x2

2 (t) + t2g2 = 1

along with the boundary conditions

x1(1) = x1,

x2(1) = x2.

Substituting v1(t) = x2
1 (t), v2(t) = x2

2 (t) and taking into account that θ1, θ2 ≥
0, θ1 + θ2 > 0, we get

(θ1 + θ2)v1(t) = θ2(1 − t2g2) − t2s

= θ2(1 − t2g2 − t2(θ2x
2
2 − θ1x

2
1 )= θ2(1 − t2[g2 + x2

2 ]) + t2θ1x
2
1= θ2(1 − t2[1 − x2

1 ]) + t2θ1x
2
1 ;

(θ1 + θ2)v2(t) = θ1(1 − t2g2) + t2s

= θ1(1 − t2g2) + t2(θ2x
2
2 − θ1x

2
1 )= θ1(1 − t2[g2 + x2

1 ]) + t2θ2x
2
2= θ1(1 − t2[1 − x2

2 ]) + t2θ2x
2
2 .

We see that v1(t), v2(t) are continuous, nonnegative and equal x2
1 , x

2
2 , respec-

tively, as t = 1. Taking x1(t) = κ1v
1/2
1 , x2(t) = κ2v

1/2
2 (t)with properly chosen

κi = ±1, i = 1, 2, we get the required curve γ (·).

2. Prove that there exists a point z+ = (z1, z2, z3, 0, 0, . . . , 0)T ∈ Y such that
(i) z1z2 = 0.
(ii) given a point u = (u1, u2, 0, 0, . . . , 0)T ∈ Y , you can either (ii)(a) link u by

continuous curves in Y both to z+ and to z̄+ = (z1, z2,−z3, 0, 0, . . . , 0)T ∈ Y , or (ii)(b)
link u both to z− = (−z1,−z2, z3, 0, 0, . . . , 0)T and z̄− = (−z1,−z2,−z3, 0, 0, . . . , 0)T .
(Note that z+ = −z̄−, z̄+ = −z−.)

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 472

✐

✐

✐

✐

✐

✐

✐

✐
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Proof. Recall that θ1 ≥ θ2 ≥ 0 and θ1 + θ2 > 0. Consider two possible cases:
θ2 = 0 and θ2 > 0.

Case of θ2 = 0. In this case it suffices to set z+ = (0, 1, 0, 0, . . . , 0)T . Indeed,
the point clearly belongs to Y and satisfies (i). Further, if u ∈ Y is such that
u3 = · · · = un = 0, then from θ2 = 0 and the definition of Y it immediately
follows that u1 = 0, u2 = ±1. Thus, either u coincides with z+ = z̄+, or u
coincides with z− = z̄−. In both cases, (ii) takes place.

Case of θ2 > 0. Let us set

τ = min
[

θ1
θ1−θ3

; θ2
θ2+θ3

]
[note that τ > 0 due to θ1, θ2 > 0 and −θ2 ≤ θ3 ≤ θ1],
z1 = √

(θ1 + θ2)−1 (θ2 − τ [θ2 + θ3]),
z2 = √

(θ1 + θ2)−1 (θ1 − τ [θ1 − θ3]),
z3 = √

τ ,

z+ = (z1, z2, z3, 0, 0, . . . , 0)T .

It is immediately seen that z+ is well defined and satisfies (i). Now let us verify
that z+ satisfies (ii) as well. Let u = (u1, u2, 0, 0, . . . , 0)T ∈ Y , and let the
vector-function z(t), 0 ≤ t ≤ √

τ , be defined by the relations

z1(t) =
√
(θ1 + θ2)−1

(
θ2 − t2[θ2 + θ3]),

z2(t) =
√
(θ1 + θ2)−1

(
θ1 − t2[θ1 − θ3]),

z3(t) = t,

zi(t) = 0, i = 4, . . . , n.

It is immediately seen that z(·) is well defined, is continuous, takes its values
in Y , and z(

√
τ) = z+. Now, z(0) is the vector

ū ≡
(√

θ2

θ1 + θ2
,

√
θ1

θ1 + θ2
, 0, 0, . . . , 0

)T

.

From u ∈ Y , u3 = · · · = un = 0 it immediately follows that |ui | = |ūi |,
i = 1, 2. Now consider four possible cases:

(++) u1 = ū1, u2 = ū2,

(−−) u1 = −ū1, u2 = −ū2,

(+−) u1 = ū1, u2 = −ū2,

(−+) u1 = −ū1, u2 = ū2.

• In the case of (++) the continuous curve γ (t) ≡ z(t) ∈ Y , 0 ≤ t ≤ √
τ ,

linksuwith z+, while the continuous curve γ̄ (t) = (z1(t), z2(t),−z3(t), 0,
0, . . . , 0)T ∈ Y links u with z̄+, so that (ii)(1) takes place.
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• In the case of (−−) the continuous curve γ (t) ≡ −z(t) ∈ Y , 0 ≤
t ≤ √

τ , links u with z̄− = −z+, while the continuous curve γ̄ (t) =
(−z1(t),−z2(t), z3(t), 0, 0, . . . , 0)T ∈ Y links u with z− = −z̄+, so that
(ii)(2) takes place.

• In the case of (+−) the continuous curves γ (t) ≡ (z1(t),−z2(t), z3(t), 0,
0, . . . , 0)T ∈ Y and γ̄ (t) = (z1(t),−z2(t),−z3(t), 0, 0, . . . , 0)T , 0 ≤
t ≤ √

τ , link u either with both points of the pair (z+, z̄+), or with both
points of the pair (z−, z̄−), depending on whether z1 = 0 or z1 �= 0, z2 =
0. (Note that at least one of these possibilities does take place due to
z1z2 = 0; see (i).) Thus, in the case in question at least (ii)(1) or (ii)(2)
does hold.

• In the case of (−+) the continuous curves γ (t) ≡ (−z1(t), z2(t), z3(t),

0, 0, . . . , 0)T ∈ Y and γ̄ (t) = (z1(t),−z2(t),−z3(t), 0, 0, . . . , 0)T , 0 ≤
t ≤ √

τ , link u either with both points of the pair (z−, z̄−) or with both
points of the pair (z+, z̄+), depending on whether z1 = 0 or z1 �= 0, z2 =
0, so that here again (ii)(1) or (ii)(2) does hold.

3. Conclude from 1 and 2 that Y satisfies the premise of Proposition 4.10.2, and thus
complete the proof of Proposition 4.10.4.

Proof. Let z+ be given by part 2, and let x, x ′ ∈ Y . By part 1, we can link in Y

the point x with a point v = (v1, v2, 0, 0, . . . , 0)T ∈ Y , and the point x ′ with
a point v′ = (v′

1, v
′
2, 0, 0, . . . , 0)T ∈ Y . If for both u = v and u = v′ (ii)(a)

holds, then we can link both v, v′ by continuous curves with z+. Thus, both
x, x ′ can be linked in Y with z+ as well. We see that both x, x ′ can be linked in
Y with the set {z+; −z+}, as required in the premise of Proposition 4.10.2. The
same conclusion is valid if for both u = v, u = v′ (ii)(b) holds. Here both x

and x ′ can be linked in Y with z−, and the premise of Proposition 4.10.2 holds
true.

Now consider the case when for one of the points u = v, u = v′, say, for u = v,
(ii)(a) holds, while for the other one (ii)(b) takes place. Here we can link in Y

the point v (and thus the point x) with the point z+, and we can link in Y the
point v′ (and thus the point x ′) with the point z̄− = −z+. Thus, we can link in
Y both x and x ′ with the set {z+; −z+}, and the premise of Proposition 4.10.2
holds true. Thus, Y satisfies the premise of Proposition 4.10.2.

Exercise 4.53. 2. Let Ai , i = 1, 2, 3, satisfy the premise of (SL)(D). Assuming A1 = I ,
prove that the set

H1 = {(v1, v2)
T ∈ R2 | ∃x ∈ Sn−1 : v1 = f2(x), v3 = f3(x)}

is convex.

Proof. Let � = {(v1, v2)
t ∈ R2 | pv1 +qv2 + r = 0} be a line in the plane. We

should prove that W = X1 ∩ � is a convex or, which is the same, connected set
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(Exercise 4.49). There is nothing to prove when W = ∅. Assuming W �= ∅,
let us set

f (x) = rf1(x) + pf2(x) + qf3(x).

It is immediately seen that f is a homogeneous quadratic form on Rn, and that

W = F(Y ),

where

F(x) =
(
f2(x)

f3(x)

)
,

Y ≡ {x ∈ Sn−1 : f (y) = 0} = −Y.

By Proposition 4.10.4, the image Z of the set Y under the canonical projection
Sn−1 → Pn−1 is connected. Since F is even, W = F(Y ) is the same as G(Z)

for certain continuous mapping G : Z → R2 (Proposition 4.10.3). Thus, W is
connected by (C.2).

We have proved that Z1 is convex; the compactness of Z1 is evident.

Exercise 4.54. Demonstrate by example that (SL)(C) not necessarily remains valid when
skipping the assumption n ≥ 3 in the premise.

A solution. The linear combination

A + 0.005B − 1.15C

of the matrices built in the solution to Exercise 4.47 is positive definite.

Exercise 4.55. Let A,B,C be three 2 × 2 symmetric matrices such that the system
of inequalities xT Ax ≥ 0, xT Bx ≥ 0 is strictly feasible and the inequality xT Cx is a
consequence of the system.

1. Assume that there exists a nonsingular matrixQ such that both the matricesQAQT

and QBQT are diagonal. Prove that then there exist λ,µ ≥ 0 such that C � λA + µB.

Solution. Without loss of generality we may assume that the matrices A,B

themselves are diagonal. The case when at least one of the matrices A,B is
positive semidefinite is trivially reducible to the usual S-lemma, so that we
can assume that both matrices A and B are not positive semidefinite. Since
the system of inequalities xT Ax > 0, xT Bx > 0 is feasible, we conclude
that the determinants of the matrices A, B are negative. Applying appropriate
dilatations of the coordinate axes, swapping, if necessary, the coordinates and
multiplyingA,B by appropriate positive constants we may reduce the situation
to the one where xT Ax = x2

1 − x2
2 and either (a) xT Bx = θ2x2

1 − x2
2 or (b)

xT Bx = −θ2x2
1 + x2

2 with certain θ > 0.
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Exercises to Lecture 6 475

Case of (a). Here the situation is immediately reducible to the one considered
in the S-lemma. Indeed, in this case one of the inequalities in the system
xT Ax ≥ 0, xT Bx ≥ 0 is a consequence of the other inequality of the system.
Thus, a consequence xT Cx of the system is in fact a consequence of a properly
chosen single inequality from the system. Thus, by the S-lemma eitherC � λA

or C � λB with certain λ ≥ 0.

Case of (b). Observe, first, that θ < 1, since otherwise the system xT Ax ≥ 0,
xT Bx ≥ 0 is not strictly feasible. When θ < 1, the solution set of our system
is the union of the following four angles D++,D+−,D−−,D−+:

D++ = {x | x1 ≥ 0, θx1 ≤ x2 ≤ x1},
D+− = reflection of D++ without respect to the x1-axis,
D−− = −D++,
D−+ = reflection of D++ with respect to the x2-axis.

Now, the case when C is positive semidefinite is trivial—here C � 0 × A +
0 × B. Thus, we may assume that one eigenvalue of C is negative; the other
should be nonnegative, since otherwise xT Cx < 0 whenever x �= 0, while we
know that xT Cx ≥ 0 at the (nonempty!) solution set of the system xT Ax >

0, xT Bx > 0. Since one eigenvalue of C is negative, and the other one is
nonnegative, the set XC = {x | xT Cx ≥ 0} is the union of a certain angle D

(which can reduce to a ray) and the angle −D. Since the inequality xT Cx ≥ 0
is a consequence of the system xT Ax ≥ 0, xT Bx ≥ 0, we have D ∪ (−D) ⊃
D++ ∪ D+− ∪ D−− ∪ D−+. Geometry says that the latter inclusion can be
valid only when D contains two neighboring, with respect to the cyclic order,
of the angles D++,D+−,D−−,D−+. But in this case the inequality xT Cx is
a consequence of an appropriate single inequality from the pair xT Ax ≥ 0,
xT Bx ≥ 0. Namely, when D ⊃ D++ ∪ D+− or D ⊃ D−− ∪ D−+, XC

contains the solution set of the inequality xT Bx ≥ 0, while in the cases of
D ⊃ D+− ∪ D−− and of D ⊃ D−+ ∪ D++, XC contains the solution set of
the inequality xT Ax ≥ 0. Applying the usual S-lemma, we conclude that in
the case of (b) there exist λ,µ ≥ 0 (with one of these coefficients equal to 0)
such that C � λA + µB.

Exercises to Lecture 6
Canonical barriers

Exercise 6.2. Prove Proposition 6.3.2.

Solution. As explained in the Hint, it suffices to consider the case of K = Lk .
Let x = (u, t) ∈ intLk , and let s = (v, τ ) = −∇Lk(x). We should prove that
s ∈ intLk and that ∇Lk(s) = −x. By (6.3.2), one has
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476 Solutions to Selected Exercises

v = − 2
t2−uT u

u, τ = 2
t2−uT u

t

⇓
τ ≥ 0 and τ 2 − vT v = 4

t2−xT x
> 0

⇓
s ∈ intLk;

−∇Lk(s) =
(− 2

τ 2−vT v
v

2
τ 2−vT v

τ

)
=

( 2
4

t2−uT u

2
t2−uT u

u

2
4

t2−uT u

2
t2−uT u

t

)
=

(
u

t

)
.

Scalings of canonical cones

Exercise 6.4. Prove the following:
1. Whenever e ∈ Rk−1 is a unit vector and µ ∈ R, the linear transformation

Lµ,e :
(
u

t

)
�→

(
u − [µt − (

√
1 + µ2 − 1)eT u]e√

1 + µ2t − µeT u

)
(∗)

maps the cone Lk onto itself. Besides this, transformation (∗) preserves the space-time
interval xT Jkx ≡ −x2

1 − · · · − x2
k−1 + x2

k :

[Lµ,ex]T Jk[Lµ,ex] = xT Jkx ∀x ∈ Rk [⇔ LT
µ,eJkLµ,e = Jk]

and L−1
µ,e = Lµ,−e.

Solution. Let x =
(
u

t

)
∈ Lk . Denoting s ≡

(
v

τ

)
= Lµ,ex, we have

v = u − [µt − (
√

1 + µ2 − 1)eT u]e, τ = √
1 + µ2t − µeT u

⇓
τ = √

1 + µ2t − µeT u ≥ √
1 + µ2t − µ‖u‖2 ≥ 0

[since t ≥ ‖u‖2, ‖e‖2 = 1]
τ 2 − vT v = (1 + µ2)t2 − 2µ

√
1 + µ2teT u + µ2(eT u)2

−uT u − [µt − (
√

1 + µ2 − 1)eT u]2

+2(eT u)[µt − (
√

1 + µ2 − 1)eT u]
= t2 − uT u [just arithmetic!].

Thus, x ∈ Lk ⇒ Lµ,ex ∈ Lk . To replace here ⇒ with ⇔, it suffices to verify
(a straightforward computation!) that

L−1
µ,e = Lµ,−e,

so that both Lµ,e and its inverse map Lk onto itself.D
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Dikin ellipsoid

Exercise 6.8. Prove that if K is a canonical cone, K is the corresponding canonical barrier,
and X ∈ intK, then the Dikin ellipsoid

WX = {Y | ‖Y − X‖X ≤ 1} [‖H‖X = √〈[∇2K(X)]H,H 〉E]
is contained in K.

Solution. According to the Hint, it suffices to verify the inclusion WX ⊂ K in
the following two particular cases:

A. K = Sk+, X = Ik .

B. K = Lk, X =
(

0k−1√
2

)
.

Note that in both cases ∇2K(X) is the unit matrix, so that all we need to prove
is that the unit ball, centered at our particular X, is contained in our particular
K.

A: We should prove that if ‖H‖F ≤ 1, then I +H � 0, which is evident. The
modulae of eigenvalues of H are ≤ ‖H‖F ≤ 1, so that all these eigenvalues
are ≥ −1.

B: We should prove that if du ∈ Rk−1, dt ∈ R satisfy dt2 + duT du ≤ 1, then
the point

(
0k−1√

2

)
+

(
du

dt

)
=

(
du√

2 + dt

)
belongs to Lk . In other words, we should

verify that
√

2 + dt ≥ 0 (which is evident) and that (
√

2 + dt)2 − duT du ≥ 0.
Here is the verification of the latter statement:

(
√

2 + dt)2 − duT du = 2 + 2
√

2dt + dt2 − duT du

= 1 + 2
√

2dt + 2dt2 + (1 − dt2 − duT du)

≥ 1 + 2
√

2dt + 2dt2

[since dt2 + duT du ≤ 1]
= (1 + √

2dt)2 ≥ 0.

Exercise 6.9. Let K be a canonical cone:

K = Sk1+ ×· · ·×Skp
+ ×Lkp+1 ×· · ·×Lkm ⊂ E = Sk1 ×· · ·×Skp ×Rkp+1 ×· · ·×Rkm (Cone)

and let X ∈ intK. Prove the following:
2. Whenever Y ∈ K, one has

〈∇K(X), Y − X〉E ≤ θ(K).

4. The conic cap KX is contained in the ‖ · ‖X-ball, centered at X, of the radius θ(K):

Y ∈ KX ⇒ ‖Y − X‖X ≤ θ(K).
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Solution to 2 and 4. According to the Hint, it suffices to verify the statement
in the case when X = e(K) is the central point of K. In this case the Hessian
∇2K(X) is just the unit matrix, whence, by Proposition 6.3.1, ∇K(X) = −X.

2. We should prove that if Y ∈ K, then 〈∇K(X), Y − X〉E ≤ θ(K). The
statement clearly is stable with respect to taking direct products, so that it
suffices to prove it in the cases of K = Sk+ and K = Lk .

In the case of K = Sk+ what should be proved is

∀H ∈ Sk
+ : Tr(Ik − H) ≤ k,

which is evident.

In the case of K = Lk what should be proved is

∀
((

u

t

)
: ‖u‖2 ≤ t

) √
2(

√
2 − t) ≤ 2,

which again is evident.

4. We should prove that if X = e(K), 〈−∇K(X),X − Y 〉E ≥ 0, and Y ∈ K,
then ‖Y − X‖E ≤ θ(K).

Let Y ∈ K be such that 〈−∇K(X),X − Y 〉E ≥ 0, i.e., such that 〈X,X −
Y 〉E ≥ 0. We may think of Y as of a collection of a block-diagonal symmetric
positive semidefinite matrix H with diagonal blocks of the sizes k1, . . . , kp

and m − p vectors
(
ui
ti

)
∈ Lki , i = p + 1, . . . , m (see (Cone)); the condition

〈X,X − Y 〉E ≥ 0 now becomes

Tr(I − H︸ ︷︷ ︸
D

) +
m∑

i=p+1

√
2(

√
2 − ti) ≥ 0. (∗)

We now have, denoting by Dj the eigenvalues of D and by n = ∑p

i=1 ki the
row size of D:

‖X − Y‖2
X = ‖X − Y‖2

E = Tr((I − H)2) +
m∑

i=p+1

(
(
√

2 − ti)
2 + uTi ui

)
=

n∑
j=1

D2
j +

m∑
i=p+1

(
2 − 2

√
2ti + t2

i + uTi ui

)
≤

n∑
j=1

D2
j +

m∑
i=p+1

(
2 − 2

√
2ti + 2t2

i

)
[since uTi ui ≤ t2

i ]

=
n∑

j=1

D2
j +

m∑
i=p+1

(
1 + (1 − √

2ti)2
)
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Denoting q = m − p, Dn+i = 1 − √
2tp+i , i = 1, . . . , q, we come to the

relation

‖X − Y‖2
X = q +

n+q∑
j=1

D2
j , (14)

while (∗) and relations H � 0, ti ≥ 0 imply that

Dj ≤ 1, j = 1, . . . , n + q,
n+q∑
j=1

Dj ≥ −q,
(15)

Let A be the maximum of the right-hand side in (14) over Dj ’s satisfying
(15), and let D∗ = (D∗

1 , . . . , D
∗
n+q)

T be the corresponding maximizer (which
clearly exists—(15) defines a compact set!). In the case of n + q = 1 we
clearly have A = 1 + q. Now let n + q > 1. We claim that among n + q

coordinates of D∗, n + q − 1 are equal 1, and the remaining coordinate equals
to −(n + 2q − 1). Indeed, if there were at least two entries in D∗ which are
less than 1, then subtracting from one of them a δ �= 0 small enough in absolute
value and adding the same δ to the other coordinate, we preserve the feasibility
of the perturbed point with respect to (15), and, with properly chosen sign of
δ, increase

∑
j D

2
j , which is impossible. Thus, at least n + q − 1 coordinates

of D∗ are equal to 1. Among the points with this property that satisfy (15),
the one with the largest

∑
j D

2
j clearly has the remaining coordinate equal to

1 − n − 2q, as claimed.

From our analysis it follows that

A =
{
q + 1, n + q = 1,
q + (n + q − 1) + (n + 2q − 1)2 = (n + 2q − 1)(n + 2q), n + q > 1.

Recalling that θ(K) = n + 2q and taking into account (14) and the origin of
A, we get

‖X − Y‖X ≤ θ(K),

as claimed.

More on canonical barriers

Exercise 6.11 Prove that if K is a canonical cone, K is the associated canonical barrier,
X ∈ intK, and H ∈ K, H �= 0, then

inf
t≥0

K(X + tH) = −∞. (∗)

Derive from this fact that

(!!) Whenever N is an affine plane that intersects the interior of K, K is below
bounded on the intersection N ∩ K if and only if the intersection is bounded.
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Solution. As explained in the Hint, it suffices to verify (∗) in the particular case
when X is the central point of K. It is also clear that (∗) is stable with respect
to taking direct products, so that we can restrict ourselves with the cases of
K = Sk+ and K = Lk .

Case of K = Sk+, X = e(Sk+) = Ik . Denoting by Hi ≥ 0 the eigenvalues of H
and noting that at least one of Hi is > 0 due to H �= 0, we have for t > 0

K(X + tH) = − ln Det(Ik + tH) = −
k∑

i=1

ln(1 + tHi) → −∞, t → ∞.

Case of K = Lk , X = e(Lk) =
(

0k−1√
2

)
. Setting H =

(
u

s

)
, we have s ≥ ‖u‖2

and s > 0 due to H �= 0. For t > 0 we have

K(X + tH) = − ln((
√

2 + ts)2 − t2uT u)

= − ln(2 + 2
√

2ts + t2(s2 − uT u))

≤ − ln(2 + 2
√

2ts) → −∞, t → ∞.

To derive (!!), note that if U = N ∩ K is bounded, then K is below bounded on
U just in view of convexity of K . (Moreover, from the fact that K is a barrier
for K it follows that K attains its minimum on U .) It remains to prove that if
U is unbounded, then K is not below bounded on U . If U is unbounded, there
exists a nonzero direction H ∈ K that is parallel to N . (Take as H a limiting
point of the sequence ‖Yi − X‖−1

2 (Yi − X), where Yi ∈ U , ‖Yi‖2 → ∞ as
i → ∞, and X is a once for ever fixed point from U .) By (∗), K is not below
bounded on the ray {X+ tH | t ≥ 0}, and this ray clearly belongs to U . Thus,
K is not below bounded on U .

Primal path-following method

Exercise 6.15. Looking at the data in the table at the end of section 6.5.3, do you believe
that the corresponding method is exactly the short-step primal path-following method from
Theorem 6.5.1 with the stepsize policy (6.5.31)?

Solution. The table cannot correspond to the indicated method. Indeed, we see
from the table that the duality gap along the 12-iteration trajectory is reduced
by factor of about 106. Since the duality gap in a short-step method is nearly
inverse proportional to the value of the penalty, the latter in the process of our
12 iterations should be increased by a factor of order of 105–106. In our case
θ(K) = 3, and the policy (6.5.31) increases the penalty at an iteration by the
factor (1 + 0.1/

√
3) ≈ 1.0577. With this policy, in 12 iterations the penalty

would be increased by 1.057712 < 2, which is very far from 105!

Infeasible start path-following method

Exercise 6.18. Consider the problem

max
X

{〈C̃, Y 〉Ẽ | Y ∈ (M + R) ∩ K̃
}
, (Aux)
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where

K̃ = K × K × S1
+︸︷︷︸

=R+

× S1
+︸︷︷︸

=R+

(K is a canonical cone),

M =



U

V

s

r

∣∣∣∣ U + rB ∈ L,
V − rC ∈ L⊥,

〈C,U〉E − 〈B,V 〉E + s = 0


is a linear subspace in the space Ẽ where the cone K̃ lives, and

C ∈ L, B ∈ L⊥.

It is given that the problem (Aux) is feasible. Prove that the feasible set of (Aux) is
unbounded.

Solution. According to the Hint, we should prove that the linear space M⊥
does not intersect intK̃.

Let us compute M⊥. A collection
ξ

η

s

r

 , ξ, η ∈ E, s, r ∈ S1 = R

is in M⊥ if and only if the linear equation in variables X, S, σ, τ

〈X, ξ〉E + 〈S, η〉E + σs + τr = 0

is a corollary of the system of linear equations

X + τB ∈ L, S − τC ∈ L⊥, 〈X,C〉E − 〈S,B〉E + σ = 0.

By linear algebra, this is the case if and only if there exist U ∈ L⊥, V ∈ L, and
a real λ such that

(a) ξ = U + λC,

(b) η = V − λB,

(c) s = λ,

(d) r = 〈U,B〉E − 〈V,C〉E.
(Pr)

We have obtained a parameterization of M⊥ via the parametersU,V, λ running
through, respectively, L⊥, L, and R. Now assume, contrary to what should be
proved, that the intersection of M⊥ and intK̃ is nonempty. In other words,
assume that there exist U ∈ L⊥, V ∈ L, and λ ∈ R which, being substituted
in (Pr), result in a collection (ξ, η, s, r) such that ξ ∈ intK, η ∈ intK, s > 0,
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r > 0. From (Pr)(c) it follows that λ > 0. Since (Pr) is homogeneous, we may
normalize our U,V, λ to make λ = 1, still keeping ξ ∈ intK, η ∈ intK, s > 0,
r > 0. Assuming λ = 1 and taking into account that U,B ∈ L⊥, V,C ∈ L,
we get from (Pr)(a)–(b)

〈ξ, η〉E = 〈C,V 〉E − 〈B,U〉E.
Adding this equality to (Pr)(d), we get

〈ξ, η〉E + r = 0,

which is impossible, since both r > 0 and 〈ξ, η〉E > 0. (Recall that the cone
K is self-dual and ξ, η ∈ intK.) We have come to the desired contradic-
tion.

Exercise 6.19. Let X̄, S̄ be a strictly feasible pair of primal-dual solutions to the primal-
dual pair of problems

min
X

{〈C,X〉E | X ∈ (L − B) ∩ K} , (P)

max
S

{〈B, S〉E | S ∈ (L⊥ + C) ∩ K
}

(D)

so that there exists γ ∈ (0, 1] such that

γ ‖X‖E ≤ 〈S̄, X〉E ∀X ∈ K,

γ ‖S‖E ≤ 〈X̄, S〉E ∀S ∈ K.

Prove that if

Y =

X

S

σ

τ


is feasible for (Aux), then

‖Y‖Ẽ ≤ ατ + β,

α = γ−1
[〈X̄, C〉E − 〈S̄, B〉E

] + 1,
β = γ−1

[〈X̄ + B,D〉E + 〈S̄ − C,P 〉E + d
]
.

(16)

Solution. We have X̄ = Ū − B, Ū ∈ L, S̄ = V̄ + C, V̄ ∈ L⊥. Taking into
account the constraints of (Aux), we get

〈Ū , S − τC − D〉E = 0 ⇒
〈Ū , S〉E = 〈Ū , τC + D〉E ⇒
〈X̄, S〉E = −〈B, S〉E + 〈Ū , τC + D〉E,

〈V̄ , X + τB − P 〉E = 0 ⇒
〈V̄ , X〉E = 〈V̄ ,−τB + P 〉E ⇒
〈S̄, X〉E = 〈C,X〉E + 〈V̄ ,−τB + P 〉E,

⇒
〈X̄, S〉E + 〈S̄, X〉E = [〈C,X〉E − 〈B, S〉E] + τ

[〈Ū , C〉E − 〈V̄ , B〉E
]

+ [〈Ū ,D〉E + 〈V̄ , P 〉E
]

= d − σ + τ
[〈Ū , C〉E − 〈V̄ , B〉E

]
+ [〈Ū ,D〉E + 〈V̄ , P 〉E
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whence

γ [‖X‖E + ‖S‖E] + σ ≤ τ
[〈Ū , C〉E − 〈V̄ , B〉E

]
+ [〈Ū ,D〉E + 〈V̄ , P 〉E + d

]
,

and (16) follows (recall that 〈C,B〉E = 0).

Exercise 6.23. Let K be a canonical cone, let the primal-dual pair of problems

min
X

{〈C,X〉E | X ∈ (L − B) ∩ K} , (P)

max
S

{〈B, S〉E | S ∈ (L⊥ + C) ∩ K
}

(D)

be strictly primal-dual feasible and be normalized by 〈C,B〉E = 0, let (X∗, S∗) be a
primal-dual optimal solution to the pair, and let X, S ε-satisfy the feasibility and optimality
conditions for (P), (D), i.e.,

(a) X ∈ K ∩ (L − B + DX), ‖DX‖E ≤ ε,

(b) S ∈ K ∩ (L⊥ + C + DS), ‖DS‖E ≤ ε,

(c) 〈C,X〉E − 〈B, S〉E ≤ ε.

Prove that

〈C,X〉E − Opt(P) ≤ ε(1 + ‖X∗ + B‖E),
Opt(D) − 〈B, S〉E ≤ ε(1 + ‖S∗ − C‖E).

Solution. We have S − C − DS ∈ L⊥, X∗ + B ∈ L, whence

0 = 〈S − C − DS,X∗ + B〉E
= 〈S,X∗〉E︸ ︷︷ ︸

≥0:X∗,S∈K=K∗

−Opt(P) + 〈S,B〉E + 〈−DS,X∗ + B〉E

⇒
−Opt(P) ≤ −〈S,B〉E + 〈DS,X∗ + B〉E ≤ −〈S,B〉E + ε‖X∗ + B‖E.

Combining the resulting inequality and (c), we get the first of the inequalities
to be proved. The second is given by symmetric reasoning.
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Exercises to Lecture 1
Uniform approximation

Exercise 1.2. Let α < ∞, and assume L is α-regular, i.e., the functions from L are
continuously differentiable and

‖f ′‖∞ ≤ α‖f ‖∞ ∀f ∈ L.

Assume that T ⊂ D is such that the distance from a point in D to the closest point of T
does not exceed β < α−1. Prove that under these assumptions

κL(T ) ≤ 1

1 − αβ
.

Solution. Let f ∈ L, M = ‖f ‖∞, and let a ∈ D be the point where |f (a)| =
M . There exists a point t ∈ T such that |t − a| ≤ β. Since L is regular, we
have |f (a) − f (t)| ≤ Mαβ, whence |f (t)| ≥ M(1 − αβ), and consequently
‖f ‖T ,∞ ≥ |f (t)| ≥ M(1 − αβ).

Exercise 1.5. Assume that D = [0, 2π ], and let L be a linear space of functions on D

comprising all trigonometric polynomials of degree ≤ k. Let T be an equidistant M-point
grid on D:

T =
{
(2l + 1)π

M

}M−1

l=0

.

1. Prove that if M > kπ , then T is L-dense, with

κL(T ) ≤ M

M − kπ
.

2. Prove that the above inequality remains valid if we replace T with its arbitrary
shift modulo 2π , i.e., treat D as the unit circumference and rotate T by an angle.

3. Prove that if T is an arbitrary M-point subset of D with M ≤ k, then κL(T ) = ∞.

Solution. 1. It suffices to apply the result of Exercise 1.2. In the case in question
β = π

M
, and, by the Bernshtein’s Theorem, α = k.
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2. The solution follows from 1 because the space of trigonometric polynomials
is invariant with respect to cyclic shift of the argument by any angle.

3. Let T = {ti}Mi=1. The function

f (t) =
M∏
i=1

sin(t − ti)

is a trigonometric polynomial of degree M ≤ k. This function vanishes on T

(i.e., ‖f ‖T ,∞ = 0), although its uniform norm on D is positive.

Exercise 1.6. Let D = [−1, 1] and let L be the space of all algebraic polynomials of
degree ≤ k.

1. Assume that 2M > πk and T is the M-point set on D as follows:

T =
{
tl = cos

(
(2l + 1)π

2M

)}M−1

l=0

.

Then T is L-dense, with

κL(T ) ≤ 2M

2M − πk
.

2. Let T be an M-point set on D with M ≤ k. Then κL(T ) = ∞.

Solution. 1. Let us pass from the functions f ∈ L to the functions f +(φ) =
f (cos(φ)), φ ∈ [0, 2π ]. Note that f + is a trigonometric polynomial of degree
≤ k. Let

T + =
{
φl = (2l + 1)π

2M

}2M−1

l=0

.

According to the result of Exercise 1.5.1, for every f ∈ L we have

‖f ‖∞ = ‖f +‖∞
≤ 2M

2M−πk
max

l=0,...,2M−1
|f +(φl)|

= 2M
2M−πk

max
l=0,...,2M−1

|f (cos(φl))|
= 2M

2M−πk
max

l=0,...,M−1
|f (tl)|.

(Note that when φ takes values in T +, the quantity cos(φ) takes values in T .)

2. Whenever the cardinality of T is ≤ k, L contains a nontrivial polynomial

f (t) =
∏
t ′∈T

(t − t ′)

which vanishes on T .
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Integration formulas and Gauss points

(∗) LetD be a subset of Rk , letL be an n-dimensional linear space comprising
continuous real-valued functions on D, and let I (f ) : L → R be an integral—
a linear functional such that I (f ) ≥ 0 for every f ∈ L such that f (t) ≥ 0
everywhere on D. Assume also that if a function f ∈ L is nonnegative on D

and is not identically 0, then I (f ) > 0. Then there exists a precise n-point
cubature formula for I , i.e., there are n points t1, . . . , tn ∈ D and n nonnegative
weights α1, . . . , αn such that

I (f ) =
n∑

i=1

αif (ti) ∀f ∈ L.

Exercise 1.17. 1. Prove (*) for the case of finite D.

Solution. We may assume that I is not identically zero—otherwise there is
nothing to prove. The sets At = {f ∈ L | f (t) ≤ 0, I (f ) = 1} are convex
sets belonging to a fixed hyperplane. We claim that there exist n sets of this
type At1 , . . . , Atn with an empty intersection. Indeed, in the opposite case, by
the Helley theorem, there would exist an element f ∈ L belonging to all At ,
t ∈ D, i.e., such that f (t) ≤ 0 everywhere on D and I (f ) = 1, which is
impossible.

The fact that the intersection of At1 , . . . , Atn is empty means that the inequality
I (f ) ≤ 0 is a corollary of the system of linear inequalities f (ti) = 0, i =
1, . . . , n. By the Farkas Lemma, it follows that the linear functional I is a
combination, with nonnegative coefficients, of the n linear functionals f �→
f (ti).

2. Prove (*) for the general case.

Solution. Introducing the same sets At as before, it suffices to prove that there
exists a finite family of these sets with an empty intersection. Indeed, if we
know that At1 , . . . , AtN have no point in common, then, by the Helley theorem,
already a properly chosen n-element subfamily of this family of sets has an
empty intersection, and we may complete the proof in the same way as in
the case of finite D. To prove that there exists a finite family of the sets At

with an empty intersection, assume that it is not the case, and let us lead this
assumption to a contradiction. Let t1, t2, . . . be a sequence of points from D

such that every point of this set belongs to the closure of the sequence, and let
f1, . . . , fn be a basis in L. Under our assumption, for every N there exists a
function f N ∈ L that is nonpositive at the points t1, . . . , tN and I (f N) = 1.
After an appropriate normalization, we can convert f N to a function gN ∈
L such that gN is nonpositive at the points t1, . . . , tN , I (gN) ≥ 0, and the
Euclidean norm of the vector λN of the coefficients of gN in the basis f1, . . . , fn
is 1. Passing to a subsequence {Ni}, we may assume that the vectors λNi

converge to a vector λ (which of course is nonzero). Then the functions gNi
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pointwise converge to the function g(t) = ∑n
j=1 λjfj (t); this function clearly

is nonpositive on the sequence t1, t2, . . ., and since it is continuous on D, it is
nonpositive everywhere. Since 0 ≤ I (gNi ) = ∑n

j=1 λ
Ni

j I (fj ), we conclude
that I (g) = ∑n

j=1 λj I (fj ) ≥ 0. Thus, g is a nonpositive on D function with
nonnegative integral I (g). At the same time g is not identically zero (since its
vector of coefficients in the basis f1, . . . , fn is nonzero). This is the desired
contradiction.

Exercises to Lecture 2
Cones

Exercise 2.4.

2. Let K be a cone in Rn and u �→ Au be a linear mapping from certain Rk to Rn

with trivial null space and such that ImA ∩ intK �= ∅. Prove that the inverse image of K
under the mapping—the set

A−1(K) = {u | Au ∈ K}
—is a cone in Rk . Prove that the cone dual to A−1(K) is the image of K∗ under the mapping
λ �→ AT λ:

(A−1(K))∗ = {AT λ | λ ∈ K∗}.
Solution. The fact thatA−1(K) is a cone is evident. Let us justify the announced
description of the cone dual to A−1(K). If λ ∈ K∗, then AT λ clearly belongs
to (A−1(K))∗:

u ∈ A−1(K) ⇒ Au ∈ K ⇒ λT (Au) = (AT λ)T u ≥ 0.

Now let us prove the inverse implication: if c ∈ (A−1(K))∗, then c = AT λ for
some λ ∈ K∗. To this end consider the conic problem

min
x

{
cT x | Ax ≥K 0

}
.

The problem is strictly feasible and below bounded (why?), so that by the conic
duality theorem the dual problem

max
λ

{
0T λ | AT λ = c, λ ≥K∗ 0

}
is solvable.

3. Let K be a cone in Rn and y = Ax be a linear mapping from Rn onto RN (i.e., the
image of A is the entire RN ). Assume Null(A)

⋂
K = {0}.

Prove then that the image of K under the mapping A—the set

AK = {Ax | x ∈ K}
—is a cone in RN .
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Prove that the cone dual to A(K) is

(AK)∗ = {λ ∈ RN | AT λ ∈ K∗}.
Demonstrate by example that if in the above statement the assumption Null(A) ∩ K = {0}
is weakened to Null(A)∩ intK = ∅, then the image of K under the mapping A may happen
to be nonclosed.

Solution. Let us temporarily set B = AT (note that B has trivial null space,
since A is an onto mapping) and

L = {λ ∈ RN | Bλ ∈ K∗}.
Let us prove that the image of B intersects the interior of K∗. Indeed, otherwise
we could separate the convex set intK∗ from the linear subspace Im B: there
would exist x �= 0 such that

inf
µ∈intK∗

xT µ ≥ sup
µ∈Im B

xT µ,

whence x ∈ (K∗)∗ = K and x ∈ (Im B)⊥ = Null(A), which is impossible.

It remains to apply to the cone K∗ and the mapping B the rule on inverse image
(rule 2). According to this rule, the set L is a cone, and its dual cone is the
image of (K∗)∗ = K under the mapping BT = A. Thus, A(K) indeed is a
cone, namely, the cone dual to L, whence the cone dual to A(K) is L.

“Demonstrate by example…”: When the 3D ice cream cone is projected onto
its tangent plane, the projection is the open half-plane plus a single point on the
boundary of this half-plane, which is not a closed set.

Exercise 2.5. Let A be an m × n matrix of full column rank and K be a cone in Rm.

1. Prove that at least one of the following facts always takes place:

(i) There exists a nonzero x ∈ Im A which is ≥K 0.

(ii) There exists a nonzero λ ∈ Null(AT ) which is ≥K∗ 0.

Geometrically: Given a primal-dual pair of cones K, K∗ and a pair L,L⊥ of linear
subspaces that are orthogonal complements of each other, we can find a nontrivial ray
in the intersection L ∩ K or in the intersection L⊥ ∩ K∗ or both.

2. Prove that the strict version of (ii) takes place (i.e., there exists λ ∈ Null(AT ) which
is >K∗ 0) if and only if (i) does not take place, and vice versa: the strict version of (i)
takes place if and only if (ii) does not take place.

Geometrically: If K,K∗ is a primal-dual pair of cones and L,L⊥ are linear subspaces
that are orthogonal complements of each other, then the intersection L ∩ K is trivial
(is the singleton {0}) if and only if the intersection L⊥ ∩ intK∗ is nonempty.
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Solution. 1. Assuming that (ii) does not take place, note that AT K∗ is a cone
in Rn (Exercise 2.4), and the dual of this latter cone is the inverse image of K
under the mapping A. Since the dual must contain nonzero vectors, (i) takes
place.

2. Let e >K∗ 0. Consider the conic problem

max
λ,t

{
t | AT λ = 0, λ − te ≥K∗ 0

}
.

Note that this problem is strictly feasible, and the strict version of (ii) is equiv-
alent to the fact that the optimal value in the problem is > 0. Thus, (ii) is not
valid if and only if the optimal value in our strictly feasible maximization conic
problem is ≤ 0. By the conic duality theorem this is the case if and only if the
dual problem

min
z,µ

{
0 | Az + µ = 0, µT e = 1, µ ≥K 0

}
is solvable with optimal value equal to 0, which clearly is the case if and only
if the intersection of ImA and K is not the singleton {0}.

Feasible and level sets of conic problems

Exercise 2.11. Let the problem

min
{
cT x | Ax − b ≥K 0

}
(CP)

be feasible (A is of full column rank). Then the following properties are equivalent:
(i) The feasible set of the problem is bounded.
(ii) The set of primal slacks K = {y ≥K 0, y = Ax − b} is bounded.76

(iii) Im A ∩ K = {0}.
(iv) The system of vector inequalities

AT λ = 0, λ >K∗ 0

is solvable.
Corollary. The property of (CP) to have bounded feasible set is independent of the

particular value of b such that (CP) is feasible!

Solution. (i) ⇔ (ii): This is an immediate consequence of A.

(ii) ⇒ (iii). If there exists 0 �= y = Ax ≥K 0, then the set of primal slacks
contains, along with any of its points ȳ, the entire ray {ȳ + ty | t > 0}, so
that the set of primal slacks is unbounded. (Recall that it is nonempty—(CP)
is feasible!) Thus, (iii) follows from (ii) (by contradiction).

(iii) ⇒ (iv). See Exercise 2.5.2.

(iv) ⇒ (ii). Let λ be given by (iv). For all primal slacks y = Ax − b ∈ K one
has λT y = λT [Ax − b] = (AT λ)T x − λT b = λT b, and it remains to use the
result of Exercise 2.3.2.

76Recall that we always assume that A holds!
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Exercise 2.12. Let the problem

min
{
cT x | Ax − b ≥K 0

}
(CP)

be feasible (A is of full column rank). Prove that the following two conditions are equivalent:
(i) (CP) has bounded level sets.
(ii) The dual problem

max
{
bT λ | AT λ = c, λ ≥K∗ 0

}
is strictly feasible.

Corollary. The property of (CP) to have bounded level sets is independent of the
particular value of b such that (CP) is feasible!

Solution. (i) ⇒ (ii). Consider the linear vector inequality

Āx ≡
(

Ax

−cT x

)
≥K̄ 0,

K̄ = {(x, t) | x ≥K 0, t ≥ 0}.
If x̄ is a solution of this inequality and x is a feasible solution to (CP), then
the entire ray {x + t x̄ | t ≥ 0} is contained in the same level set of (CP) as x.
Consequently, in the case of (i) the only solution to the inequality is the trivial
solution x̄ = 0. In other words, the intersection of Im Ā with K̄ is trivial—{0}.
Applying the result of Exercise 2.5.2, we conclude that the system

ĀT

(
λ

µ

)
≡ AT λ − µc = 0,

(
λ

µ

)
>K̄∗ 0

is solvable; if (λ, µ) solves the latter system, then λ >K∗ 0 and µ > 0, so that
µ−1λ is a strictly feasible solution to the dual problem.

(ii) ⇒ (i). If λ >K∗ 0 is feasible for the dual problem and x is feasible for (CP),
then

λT (Ax − b) = (AT λ)T x − λT b = cT x − λT b.

We conclude that if x runs through a given level set L of (CP), the corresponding
slacks y = Ax − b belong to a set of the form {y ≥K 0, λT y ≤ const}. The
sets of the latter type are bounded in view of the result of Exercise 2.3.2 (recall
that λ >K∗ 0). It remains to note that in view of A boundedness of the image
of L under the mapping x �→ Ax − b implies boundedness of L.

Exercises to Lecture 3
Optimal control in discrete time linear dynamic system. Consider a discrete time
linear dynamic system

x(t) = A(t)x(t − 1) + B(t)u(t), t = 1, 2, . . . , T ,
x(0) = x0.

(S)
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Here,

• t is the (discrete) time.

• x(t) ∈ Rl is the state vector: its value at instant t identifies the state of the controlled
plant.

• u(t) ∈ Rk is the exogeneous input at time instant t ; {u(t)}Tt=1 is the control.

• For every t = 1, . . . , T , A(t) is a given l × l, and B(t) – a given l × k matrices.

A typical problem of optimal control associated with (S) is to minimize a given functional
of the trajectory x(·) under given restrictions on the control. As a simple problem of this
type, consider the optimization model

min
x

{
cT x(T ) | 1

2

T∑
t=1

uT (t)Q(t)u(t) ≤ w

}
, (OC)

where Q(t) are given positive definite symmetric matrices.

Exercise 3.1. 1. Use (S) to express x(T ) via the control and convert (OC) in a quadrati-
cally constrained problem with linear objective with respect to the u-variables.

Solution. From (S) it follows that

x(1) = A(1)x0 + B(1)u(1);
x(2) = A(2)x(1) + B(2)u(2)

= A(2)A(1)x0 + B(2)u(2) + A(2)B(1)u(1);
. . .

x(T ) = A(T )A(T − 1) . . . A(1)x0 +
T∑
t=1

A(T )A(T − 1) . . . A(t + 1)B(t)u(t)

≡ A(T )A(T − 1) . . . A(1)x0 +
T∑
t=1

C(t)u(t),

C(t) = A(T )A(T − 1) . . . A(t + 1)B(t).

Consequently, (OC) is equivalent to the problem

min
u(·)

{
T∑
t=1

dT
t u(t) | 1

2

T∑
i=1

uT (t)Q(t)u(t) ≤ w

}
[dt = CT (t)c]. (∗)

2. Convert the resulting problem to a conic quadratic program
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Solution.

minimize
T∑
t=1

dT
t u(t)

s.t. ( 21/2Q1/2(t)u(t)

1 − s(t)

1 + s(t)

)
≥Lk 0, t = 1, . . . , T ,

T∑
t=1

s(t) ≤ w;

the design variables are {u(t) ∈ Rk, s(t) ∈ R}Tt=1.

3. Pass to the resulting problem to its dual and find the optimal solution to the latter
problem.

Solution. The conic dual is

maximize −wω −
T∑
t=1

[µ(t) + ν(t)]
s.t.

21/2Q1/2(t)ξ(t) = dt , t = 1, . . . , T
[⇔ ξ(t) = 2−1/2Q−1/2(t)dt ],

−ω − µ(t) + ν(t) = 0, t = 1, . . . , T
[⇔ µ(t) = ν(t) − ω],√

ξT (t)ξ(t) + µ2(t) ≤ ν(t), t = 1, . . . , T ;

the variables are {ξ(t) ∈ Rk, µ(t), ν(t), ω ∈ R}. Equivalent reformulation of
the dual problem is

minimize wω +
T∑
t=1

[2ν(t) − ω]
s.t. √

a2
t + (ν(t) − ω)2 ≤ ν(t), t = 1, . . . , T

[a2
t = 2−1dT

t Q
−1(t)dt ],

or, which is the same,

minimize wω +
T∑
t=1

[2ν(t) − ω]
s.t.

ω(2ν(t) − ω) ≥ a2
t , t = 1, . . . , T ,D

ow
nl

oa
de

d 
01

/0
4/

21
 to

 1
43

.2
15

.3
3.

45
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



job
2001/6/18
page 452

✐

✐

✐

✐

✐

✐

✐

✐

452 Solutions to Selected Exercises

or, which is the same,

min
ω

{
wω + ω−1

(
T∑
t=1

a2
t

)
| ω > 0

}
.

It follows that the optimal solution to the dual problem is

ω∗ =
√√√√w−1

(
T∑
i=1

a2
t

)
;

ν∗(t) = 1
2

[
a2
t ω

−1∗ + ω∗
]
, t = 1, . . . , T ;

µ∗(t) = ν∗(t) − ω∗
= 1

2

[
a2
t ω

−1∗ − ω∗
]
, t = 1, . . . , T .

Stable grasp. Recall that the stable grasp analysis problem is to check whether the system
of constraints

‖F i‖2 ≤ µ(f i)T vi, i = 1, . . . , N,

(vi)T F i = 0, i = 1, . . . , N,
N∑
i=1

(f i + F i) + F ext = 0,

N∑
i=1

pi × (f i + F i) + T ext = 0

(SG)

in the 3D vector variables F i is or is not solvable. Here the data are given by a number of
3D vectors, namely,

• vectors vi—unit inward normals to the surface of the body at the contact points;

• contact points pi ;

• vectors f i—contact forces;

• vectors F ext and T ext of the external force and torque, respectively.

µ > 0 is a given friction coefficient; we assume that f T
i vi > 0 ∀i.

Exercise 3.6. 1. Regarding (SG) as the system of constraints of a maximization program
with trivial objective and applying the technique from section 2.5, build the dual problem.
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Solution.

minimize
N∑
i=1

µ[(f i)T vi]φi −
[

N∑
i=1

f i + F ext

]T

\ −
[

N∑
i=1

pi × f i + T ext

]T

]

s.t. \i + σi v
i + \ − pi × ] = 0, i = 1, . . . , N

‖\i‖2 ≤ φi, i = 1, . . . , N,

[\,\i,] ∈ R3, σi, φi ∈ R]

,

min∑
i∈R,],\∈R3

{
N∑
i=1

µ[(f i)T vi]‖pi × ] − \ − σiv
i‖2 − FT\ − T T]

}
,

F =
N∑
i=1

f i + F ext, T =
N∑
i=1

pi × f i + T ext.

Trusses. We are about to process the multiload TTD problem 3.4.1, which we write as
(see (3.4.57))

minimize τ

s.t. s2
ij ≤ 4tirij , i = 1, . . . , n, j = 1, . . . , k,

n∑
i=1

rij ≤ 1
2τ, j = 1, . . . , k,

n∑
i=1

ti ≤ w,

n∑
i=1

sij bi = fj , j = 1, . . . , k,

ti , rij ≥ 0, i = 1, . . . , n, j = 1, . . . , k;

(Pr)

the design variables are sij , rij , ti , τ .
We assume that

• the ground structure (n,m, b1, . . . , bn) is such that the matrix
∑n

i=1 bib
T
i is positive

definite; and

• the loads of interest f1, . . . , fk are nonzero, and the material resource w is positive.

Exercise 3.7. 1. Applying the technique from section 2.5, build the problem (Dl) dual to
the problem (Pr).D
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What is the design dimension of (Pr)? of (Dl)?

Solution.

maximize −wρ −
k∑

j=1

f T
j vj

s.t. αij + bTi vj = 0, i = 1, . . . , n, j = 1, . . . , k;
γij − βij − δj = 0, i = 1, . . . , n, j = 1, . . . , k;

k∑
j=1

[βij + γij ] − ρ = 0, i = 1, . . . , n;

1
2

n∑
j=1

δj = 1,√
α2
ij + β2

ij ≤ γij , i = 1, . . . , n, j = 1, . . . , k;
δj ≥ 0, j = 1, . . . , k;
ρ ≥ 0

[αij , βij , γij , δj , ρ ∈ R, vj ∈ Rm]
,

minimize wρ +
k∑

j=1

f T
j vj

s.t.
k∑

j=1

λ−1
j (bTi vj )

2 ≤ 2ρ, i = 1, . . . , n

[λj = δj /2];
k∑

j=1

λj = 1;
λj ≥ 0, j = 1, . . . , k;
ρ ≥ 0

[ρ, λj ∈ R, vj ∈ Rm].

The design dimension of (Pr) is 2nk + n + 1. The design dimension of (Dl) is
mk + k + 1.

Exercise 3.8. Let us fix a ground structure (n,m, b1, . . . , bn) and a material resource w,
and let F be a finite set of loads.

1. Assume that Fj ∈ F , j = 1, . . . , k, are subsets of F with ∪k
j=1Fj = F . Let

µj be the optimal value in the multiload TTD problem with the set of loads Fj and µ be
the optimal value in the multiload TTD problem with the set of loads F . Is it possible that
µ >

∑k
j=1 µj?D
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Solution. The compliance Complf (t) clearly is nonincreasing in t and
Complf (θt) = θ−1Complf (t) for positive θ . Let t j be an optimal solution
to the multiload TTD problem with the set of loads Fj , and let θj be posi-
tive reals with sum 1. The truss tθ = ∑k

j=1 θj t
j clearly satisfies the resource

constraint, while for every f ∈ Fj one has

Complf (tθ ) ≤ Complf (θj t
j ) = θ−1

j Complf (t
j ) ≤ θ−1

j µj .

Setting θj = µj(
∑k

l=1 µl)
−1, we get Complf (tθ ) ≤ ∑m

j=1 µj ∀f ∈ ∪k
j=1Fj =

F . Thus, µ ≤ ∑k
j=1 µj .

2. Assume that the ground structure includes n = 1998 tentative bars and that you
are given a set F of N = 1998 loads. It is known that for every subset F ′ of F made up of
no more than 999 loads, the optimal value in the multiload TTD problem, the set of loading
scenarios being F ′, does not exceed 1. What can be said about the optimal value in the
multiload TTD problem with the set of scenarios F?

Solution. It does not exceed 2 (by the previous exercise).

Answer a similar question in the case when F comprises N ′ = 19980 loads.

Solution. The optimal value still does not exceed 2. Indeed, let Tf , t ∈ F , be
the set of all trusses of given volume with compliances with respect to f not
exceeding 2. Then Tf is a convex subset in 1997-dimensional affine plane (cut
off the 1998-dimensional space of trusses by the linear equation “volume of the
truss is given”). By the previous answer for every subset of F comprising 1998
loads, there exists a truss of given volume with compliance with respect to the
subset not exceeding 2, i.e., every 1998 convex set from the family {Tf }f∈F
has a point in common. It follows, by the Helley theorem, that all sets from the
family have a point in common, i.e., there exists a truss with compliance with
respect to every load from F not exceeding 2.

Does conic quadratic programming exist? Let ε > 0 and a positive integer n be given.
We intend to build a polyhedral ε-approximation of the Lorentz cone Ln+1. Without loss of
generality we may assume that n is an integer power of 2: n = 2κ , κ ∈ N.

Tower of variables. The first step of our construction is quite straightforward: we intro-
duce extra variables to represent a conic quadratic constraint√

y2
1 + · · · + y2

n ≤ t (CQI)

of dimension n + 1 by a system of conic quadratic constraints of dimension three each.
Namely, let us call our original y-variables variables of generation 0 and let us split them
into pairs (y1, y2), . . . , (yn−1, yn). We associate with every one of these pairs its successor—
an additional variable of generation 1. We split the resulting 2κ−1 variables of generation 1
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into pairs and associate with every pair its successor—an additional variable of generation
2, and so on. After κ−1 steps we end up with two variables of the generation κ−1. Finally,
the only variable of generation κ is the variable t from (CQI).

To introduce convenient notation, let us denote by y�i the ith variable of generation �,
so that y0

1 , . . . , y
0
n are our original y-variables y1, . . . , yn, yκ1 ≡ t is the original t-variable,

and the parents of y�i are the variables y�−1
2i−1, y

�−1
2i .

Note that the total number of all variables in the tower of variables we end up with is
2n − 1.

It is clear that the system of constraints√
[y�−1

2i−1]2 + [y�−1
2i ]2 ≤ y�i , i = 1, . . . , 2κ−�, � = 1, . . . , κ, (1)

is a representation of (CQI) in the sense that a collection (y0
1 ≡ y1, . . . , y

0
n ≡ yn, y

κ
1 ≡

t) can be extended to a solution of (1) if and only if (y, t) solves (CQI). Moreover, let
H�(x1, x2, x3, u

�) be polyhedral ε�-approximations of the cone

L3 =
{
(x1, x2, x3) |

√
x2

1 + x2
2 ≤ x3

}
,

� = 1, . . . , κ . Consider the system of linear constraints in variables y�i , u
�
i :

H�(y
�−1
2i−1, y

�−1
2i , y�i , u

�
i ) ≥ 0, i = 1, . . . , 2κ−�, � = 1, . . . , κ. (2)

Writing this system of linear constraints asH(y, t, u) ≥ 0, whereH is linear in its arguments,
y = (y0

1 , . . . , y
0
n), t = yκ1 , and u is the collection of all u�i , � = 1, . . . , κ , and all y�i ,

� = 1, . . . , κ −1, we immediately conclude that H is a polyhedral ε-approximation of Ln+1

with

1 + ε =
κ∏

�=1

(1 + ε�). (3)

In view of this observation, we may focus on building polyhedral approximations of the
Lorentz cone L3.

Polyhedral approximation of L3. The approximation we intend to use is given by the
system of linear inequalities, as follows (positive integer ν is the parameter of the construc-
tion):

(a)

{
ξ 0 ≥ |x1|,
η0 ≥ |x2|,

(b)

{
ξ j = cos

(
π

2j+1

)
ξ j−1 + sin

(
π

2j+1

)
ηj−1,

ηj ≥ ∣∣− sin
(

π
2j+1

)
ξ j−1 + cos

(
π

2j+1

)
ηj−1

∣∣ , j = 1, . . . , ν,

(c)

{
ξν ≤ x3,

ην ≤ tg
(

π
2ν+1

)
ξν.

(4)
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Note that (4) can be straightforwardly written as a system of linear homogeneous in-
equalities H(ν)(x1, x2, x3, u) ≥ 0, where u is the collection of 2(ν + 1) variables ξ j , ηi ,
j = 0, . . . , ν.

Proposition1. H(ν) is a polyhedral δ(ν)-approximation of L3 = {(x1, x2, x3) |
√
x2

1 + x2
2 ≤

x3} with

δ(ν) = 1

cos
(

π
2ν+1

) − 1. (5)

Proof. We should prove that
(i) If (x1, x2, x3) ∈ L3, then the triple (x1, x2, x3) can be extended to a solution to (4).
(ii) If a triple (x1, x2, x3) can be extended to a solution to (4), then ‖(x1, x2)‖2 ≤

(1 + δ(ν))x3.
(i): Given (x1, x2, x3) ∈ L3, let us set ξ 0 = |x1|, η0 = |x2|, thus ensuring (4)(a).

Note that ‖(ξ 0, η0)‖2 = ‖(x1, x2)‖2 and that the point P 0 = (ξ 0, η0) belongs to the first
quadrant.

Now, for j = 1, . . . , ν let us set

ξ j = cos
(

π
2j+1

)
ξ j−1 + sin

(
π

2j+1

)
ηj−1,

ηj = ∣∣− sin
(

π
2j+1

)
ξ j−1 + cos

(
π

2j+1

)
ηj−1

∣∣ ,
thus ensuring (4)(b), and let P j = (ξ j , ηj ). The point P i is obtained from P j−1 by the
following construction: We rotate clockwise P j−1 by the angle φj = π

2j+1 , thus getting a
point Qj−1. If this point is in the upper half-plane, we set P j = Qj−1; otherwise, P j is the
reflection of Qj−1 with respect to the x-axis. From this description it is clear that

(I) ‖P j‖2 = ‖P j−1‖2, so that all vectors P j are of the same Euclidean norm as P 0,
i.e., of the norm ‖(x1, x2)‖2;

(II) since the point P 0 is in the first quadrant, the point Q0 is in the angle −π
4 ≤

arg(P ) ≤ π
4 , so that P 1 is in the angle 0 ≤ arg(P ) ≤ π

4 . The latter relation, in turn, implies
that Q1 is in the angle −π

8 ≤ arg(P ) ≤ π
8 , whence P 2 is in the angle 0 ≤ arg(P ) ≤ π

8 .
Similarly, P 3 is in the angle 0 ≤ arg(P ) ≤ π

16 , and so on: P j is in the angle 0 ≤ arg(P ) ≤
π

2j+1 .
By (I), ξν ≤ ‖P ν‖2 = ‖(x1, x2)‖2 ≤ x3, so that the first inequality in (4)(c) is satisfied.

By (II), P ν is in the angle 0 ≤ arg(P ) ≤ π
2ν+1 , so that the second inequality in (4)(c) also is

satisfied. We have extended a point from L3 to a solution to (4).
(ii): Let (x1, x2, x3) be extended to a solution (x1, x2, x3, {ξ j , ηj }νj=0) to (4). Let us

set P j = (ξ j , ηj ). From (4)(a), (b) it follows that all vectors P j are nonnegative. We have
‖P 0 ‖2 ≥ ‖(x1, x2)‖2 by (4)(a). Now, (4)(b) says that the coordinates of P j are ≥ absolute
values of the coordinates of P j−1 taken in certain orthonormal system of coordinates, so
that ‖P j‖2 ≥ ‖P j−1‖2. Thus, ‖P ν‖2 ≥ ‖(x1, x2)

T ‖2. On the other hand, by (4)(c) one has
‖P ν‖2 ≤ 1

cos( π

2ν+1 )
ξ ν ≤ 1

cos( π

2ν+1 )
x3, so that ‖(x1, x2)

T ‖2 ≤ δ(ν)x3, as claimed.
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Specifying in (2) the mappings H�(·) as H(ν�)(·), we conclude that for every col-
lection of positive integers ν1, . . . , νκ one can point out a polyhedral β-approximation
Hν1,...,νκ (y, t, u) of Ln, n = 2κ :

(a�,i)

{
ξ 0
�,i ≥ |y�−1

2i−1|,
η0
�,i ≥ |y�−1

2i |,

(b�,i)

 ξ
j

�,i = cos
(

π
2j+1

)
ξ
j−1
�,i + sin

(
π

2j+1

)
η
j−1
�,i ,

η
j

�,i ≥
∣∣∣− sin

(
π

2j+1

)
ξ
j−1
�,i + cos

(
π

2j+1

)
η
j−1
�,i

∣∣∣ , j = 1, . . . , ν�,

(c�,i)

{
ξ
ν�
�,i ≤ y�i ,

η
ν�
�,i ≤ tg

(
π

2ν�+1

)
ξ
ν�
�,i ,

i = 1, . . . , 2κ−�, � = 1, . . . , κ.

(6)

The approximation possesses the following properties:

1. The dimension of the u-vector (comprising all variables in (6) except yi = y0
i and

t = yκ1 ) is

p(n, ν1, . . . , νκ) ≤ n + O(1)
κ∑

�=1

2κ−�ν�.

2. The image dimension of Hν1,...,νκ (·) (i.e., the number of linear inequalities plus twice
the number of linear equations in (6)) is

q(n, ν1, . . . , νκ) ≤ O(1)
κ∑

�=1

2κ−�ν�.

3. The quality β of the approximation is

β = β(n; ν1, . . . , νκ) =
κ∏

�=1

1

cos
(

π

2ν�+1

) − 1.

Back to the general case. Given ε ∈ (0, 1] and setting

ν� =
⌊
O(1)� ln

2

ε

⌋
, � = 1, . . . , κ,

with properly chosen absolute constant O(1), we ensure that

β(ν1, . . . , νκ) ≤ ε,

p(n, ν1, . . . , νκ) ≤ O(1)n ln 2
ε
,

q(n, ν1, . . . , νκ) ≤ O(1)n ln 2
ε
,

as required.
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Exercises to Lecture 4
Positive semidefiniteness, eigenvalues, and �-ordering

Exercise 4.2. Diagonal-dominant matrices. Let A = [aij ]mi,j=1 be a symmetric matrix
satisfying the relation

aii ≥
∑
j �=i

|aij |, i = 1, . . . , m.

Prove that A is positive semidefinite.

Solution. Let e be an eigenvector of A and λ be the corresponding eigenvalue.
We may assume that the largest, in absolute value, of coordinates of e is equal
to 1. Let i be the index of this coordinate; then

λ = aii +
∑
j �=i

aij ej ≥ aii −
∑
j �=i

|aij | ≥ 0.

Thus, all eigenvalues of A are nonnegative, so that A is positive semidefi-
nite.

Variational description of eigenvalues

Exercise 4.8. Let f∗ be a closed convex function with the domain Domf∗ ⊂ R+, and let
f be the Legendre transformation of f∗. Then for every pair of symmetric matrices X, Y of
the same size with the spectrum of X belonging to Domf and the spectrum of Y belonging
to Domf∗ one has

λ(f (X)) ≥ λ
(
Y 1/2XY 1/2 − f∗(Y )

)
. (∗)

Solution. By continuity reasons, it suffices to prove (∗) in the case of Y . 0
(why?). Let m be the size of X, let k ∈ {1, . . . , m}, let Ek be the family of
linear subspaces of Rm of codimension k − 1, and let E ∈ Ek be such that

e ∈ E ⇒ eT Xe ≤ λk(X)eT e.

(Such an E exists by the variational characterization of eigenvalues as applied
to X.) Let also F = Y−1/2E; the codimension of F , same as the one of E, is
k − 1. Finally, let g1, .., gm be an orthonormal system of eigenvectors of Y , so
that Ygj = λj (Y )gj . We have
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460 Solutions to Selected Exercises

h ∈ F, hT h = 1 ⇒
hT [Y 1/2XY 1/2 − f∗(Y )]h = (Y 1/2h︸ ︷︷ ︸

∈E
)T X(Y 1/2h) −

m∑
j=1

f∗(λj (Y ))(gTj h)2

≤ λk(X)(Y 1/2h)T (Y 1/2h) −
m∑

j=1

f∗(λj (Y ))(gTj h)2

[since Y 1/2h ∈ E]

= λk(X)(hT Yh) −
m∑

j=1

f∗(λj (Y ))(gTj h)2

= λk(X)

m∑
j=1

λj (Y )(g
T
j h)

2 −
m∑

j=1

f∗(λj (Y ))(gTj h)2

=
m∑

j=1

[λk(X)λj (Y ) − f∗(λj (Y ))](gTj h)2

≤
m∑

j=1

f (λk(X))(gTj h)
2

[since f = (f∗)∗]

= f (λk(X))

[since
∑
j

(gTj h)
2 = hT h = 1]

= λk(f (X))

[since f (·) is nonincreasing due to Domf∗ ⊂ R+].

We see that there exists F ∈ Ek such that

max
h∈F :hT h=1

hT [Y 1/2XY 1/2 − f∗(Y )]h ≤ λk(f (X)).

From variational characterization of eigenvalues it follows that

λk(Y
1/2XY 1/2 − f∗(Y )) ≤ λk(f (X)).

Exercise 4.10. 4. (trace inequality) Prove that whenever A,B ∈ Sm, one has

λT (A)λ(B) ≥ Tr(AB).

Solution. Denote λ = λ(A), and let A = V T Diag(λ)V be the spectral
decomposition of A. Setting B̂ = VBV T , note that λ(B̂) = λ(B) and
Tr(AB) = Tr(Diag(λ)B̂). Thus, it suffices to prove the trace inequality in
the particular case when A is a diagonal matrix with the diagonal λ = λ(A).
Denoting by µ the diagonal of B and setting

σ 0 = 0; σ k =
k∑

i=1

µi, k = 1, . . . , m,D
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Exercises to Lecture 4 461

we have

Tr(AB) =
m∑
i=1

λiµi

=
m∑
i=1

λi(σ
i − σ i−1)

= −λ1σ
0 +

m−1∑
i=1

(λi − λi+1)σ
i + λmσ

m

=
m−1∑
i=1

(λi − λi+1)σ
i + λmTr(B)

≤
m−1∑
i=1

(λi − λi+1)

i∑
j=1

λj (B) + λm

m∑
j=1

λj (B)

[since λi ≥ λi+1 and in view of Exercise 4.10.3]

=
m∑
i=1

λiλi(B)

= λT (A)λ(B).

Exercise 4.12. 3. Let X be a symmetric n × n matrix partitioned into blocks in a sym-
metric, with respect to the diagonal, fashion,

X =


X11 X12 . . . X1m

XT
12 X22 . . . X2m
...

...
. . .

...

XT
1m XT

2m · · · Xmm

 ,

so that the blocks Xii are square. Let also g : R → R ∪ {+∞} be convex function on the
real line which is finite on the set of eigenvalues of X, and let Fn ⊂ Sn be the set of all
n × n symmetric matrices with all eigenvalues belonging to the domain of g. Assume that
the mapping

Y �→ g(Y ) : Fn → Sn

is �-convex:

g(λ′Y ′ + λ′′Y ′′) / λ′g(Y ′) + λ′′g(Y ′′) ∀(Y ′, Y ′′ ∈ Fn, λ
′, λ′′ ≥ 0, λ′ + λ′′ = 1).

Prove that

(g(X))ii � g(Xii), i = 1, . . . , m,

where the partition of g(X) into the blocks (g(X))ij is identical to the partition of X into
the blocks Xij .
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Solution. Let ε = (ε1, . . . , εm) with εj = ±1, and let

Uε =


ε1In1

ε2In2

. . .

εmInm

 ,

where ni is the row size ofXii . ThenUε are orthogonal matrices and one clearly
has

D(X) ≡


X11

X22
. . .

Xmm

 = 1

2m

∑
ε:εi=±1, i=1,...,m

UT
ε XUε.

We have

D(X) = 1
2m

∑
ε:εi=±1, i=1,...,m

UT
ε XUε

⇓ [since g is �-convex]

g(D(X)) / 1
2m

∑
ε:εi=±1, i=1,...,m

g(UT
ε XUε)

,
g(D(X)) / 1

2m

∑
ε:εi=±1, i=1,...,m

UT
ε g(X)Uε

⇓
g(D(X)) / D(g(X)).

Cauchy’s inequality for matrices

Exercise 4.19. 1. Denote P = (∑
i X

T
i Xi

)1/2
, Q = ∑

i Y
T
i Yi (Xi, Yi ∈ Mp,q). We

should prove that

σ

(∑
i

XT
i Yi

)
≤ λ(P )‖λ(Q)‖1/2

∞

or, which is the same,

σ

(∑
i

Y T
i Xi

)
≤ λ(P )‖λ(Q)‖1/2

∞ .

By the variational description of singular values, it suffices to prove that for every k =
1, 2, . . . , p there exists a subspace Lk ⊂ Rq of codimension k − 1 such that

∀ξ ∈ Lk : ‖
(∑

i

Y T
i Xi

)
ξ‖2 ≤ ‖ξ‖2λk(P )‖λ(Q)‖1/2

∞ . (∗)D
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Let e1, . . . , eq be the orthonormal eigenbasis of P : Pei = λi(P )ei , and let Lk be the linear
span of ek, ek+1, . . . , eq . For ξ ∈ Lk one has

|ηT
(∑

i

Y T
i Xi

)
ξ | ≤

∑
i

‖Yiη‖2‖Xiξ‖2 ≤
√∑

i

‖Yiη‖2
2

√∑
i

‖Xiξ‖2
2

=
√√√√ηT

(∑
i

Y T
i Yi

)
η

√√√√ξT

(∑
i

XT
i Xi

)
ξ

≤ (‖λ(Q)‖∞‖η‖2
2

)1/2 (
λ2
k(P )‖ξ‖2

2

)1/2 = ‖λ(Q)‖1/2
∞ λk(P )‖η‖2‖ξ‖2,

whence ∥∥∥∥∥
(∑

i

Y T
i Xi

)
ξ

∥∥∥∥∥
2

= max
η:‖η‖2=1

ηT

(∑
i

Y T
i Xi

)
ξ ≤ λk(P )‖λ(Q)‖1/2

∞ ‖ξ‖2,

as required in (*).
To make (*) equality, assume that P . 0 (the case of singular P is left to the reader),

and let Yi = XiP
−1. Then∑

i

Y T
i Yi = P−1

(∑
i

XT
i Xi

)
P−1 = I

and ∑
i

XT
i Yi =

(∑
i

XT
i Xi

)
P−1 = P,

so that (*) becomes equality.
(1)⇒(2): it suffices to prove that if A ∈ Mp,p, then

|Tr(A)| ≤ ‖σ(A)‖1. (∗∗)
Indeed, we haveA = UNV , whereU,V are orthogonal matrices andN is a diagonal matrix
with the diagonal σ(A). Denoting by ei the standard basic orths in Rp, we have

|Tr(A)| = |Tr(UT AU)| = |Tr(N(VU))|

=
∣∣∣∣∣∑

i

eTi N(VU)ei

∣∣∣∣∣ ≤
∑
i

|σi(A)eTi (V U)ei | ≤
∑
i

σi(A),

as required in (**).

Exercise 4.20. The true statements are 2 and 3.
Part 2 is an immediate consequence of the following.

Lemma 1. Let Ai ∈ Sn+, i = 1, . . . , m, and let α > 1. Then

λj

(
m∑
i=1

Aα
i

)1/α
 ≤ λ

1
α

j

(
m∑
i=1

Ai

)
λ

1− 1
α

1

(
m∑
i=1

Ai

)
.D
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(Here, as always, λj (B) are eigenvalues of a symmetric matrixB arranged in the nonascend-
ing order.)

Proof. Let B = ∑m
i=1 A

α
i , A = ∑m

i=1 Ai . Since λj (B
1/α) = (

λj (B)
)1/α

, we should prove
that

λj (B) ≤ λj (A)λ
α−1
1 (A). (7)

By the variational description of eigenvalues, it suffices to verify that for every j ≤ n there
exists a linear subspace Lj in Rn of codimension j − 1 such that

ξT Bξ ≤ λj (A)λ
α−1
1 (A) ∀(ξ ∈ Lj , ‖ξ‖2 = 1). (8)

Let e1, . . . , en be an orthonormal eigenbasis of A (Aej = λj (A)ej ), and let Lj be the linear
span of the vectors ej , ej+1, . . . , en. Let ξ ∈ Lj be a unit vector. We have∑

i

ξ T Aα
i ξ =

∑
i

ξ T Ai [Aα−1
i ξ ]︸ ︷︷ ︸
ηi

≤
∑
i

(ξT Aiξ)
1/2(ηTi Aiηi)

1/2 [since Ai � 0]

≤
(∑

i

ξ T Aiξ

)1/2 (∑
i

ηTi Aiηi

)1/2

[Cauchy’s inequality]

= (
ξT Aξ

)1/2

(∑
i

ξ T A2α−1
i ξ

)1/2

≤ (
ξT Aξ

)1/2

(∑
i

λ2α−2
1 (Ai)ξ

T Aiξ

)1/2

≤
(

max
i

λ1(Ai)

)α−1 ∑
i

ξ T Aiξ

≤ λα−1
1 (A)λj (A) [since ‖ξ‖2 = 1 and ξ ∈ Lj ]

as required in (8).

Part 3 is less trivial than part 2. Let us look at the (nm) × (nm) square matrix

Q =


A

α/2
1

A
α/2
2
...

A
α/2
m

 .

(As always, blank spaces are filled with zeros.) Then

QTQ =
 B ≡

∑
i

Aα
i

D
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so that Tr([QTQ]1/α) = Tr(B1/α). Since the eigenvalues of QTQ are exactly the same as
the eigenvalues of X = QQT , we conclude that

Tr(B1/α) = Tr([QQT ]1/α) = Tr(X1/α),

X =


Aα

1 A
α/2
1 A

α/2
2 · · · A

α/2
1 A

α/2
m

A
α/2
2 A

α/2
1 Aα

2 · · · A
α/2
2 A

α/2
m

...
...

. . .
...

A
α/2
m A

α/2
1 A

α/2
m A

α/2
2 · · · Aα

m

 .

Applying the result of Exercise 4.12.1 with F(Y ) = −Tr(Y 1/α), we get

[Tr(B1/α) =] Tr(X1/α) = −F(X) ≤ −F


 Aα

1
. . .

Aα
m


 =

m∑
i=1

Tr(Ai),

as required.

�-convexity of some matrix-valued functions.

Exercise 4.22.

4. Prove that the function

F(x) = x1/2 : Sm
+ → Sm

+

is �-concave and �-monotone.

Solution. Since the function is continuous on its domain, it suffices to verify
that it is �-monotone and �-concave on intSm+, where the function is smooth.

Differentiating the identity

F(x)F (x) = x (∗)
in a direction h and setting F(x) = y, DF(x)[h] = dy, we get

y dy + dy y = h.

Since y . 0, this Lyapunov equation admits an explicit solution:

dy =
∫ ∞

0
exp{−ty}h exp{−ty}dt,

and we see that dy � 0 whenever h � 0. Applying Exercise 4.21.4, we
conclude that F is �-monotone.D
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466 Solutions to Selected Exercises

Differentiating (*) twice in a direction h and denoting d2y = D2F(x)[h, h],
we get

y d2y + d2y y + 2(dy)2 = 0,

whence, same as above,

d2y = −
∫ ∞

0
exp{−ty}(dy)2 exp{−ty}dt / 0.

Applying Exercise 4.21.3, we conclude that F is �-concave.

5. Prove that the function

F(x) = ln x : intSm
+ → Sm

is �-monotone and �-concave.

Solution. The function x1/2 : Sm+ → Sm+ is �-monotone and �-concave by Ex-
ercise 4.22.4. Applying Exercise 4.21.6, we conclude that so are the functions
x1/2k for all positive integer k. It remains to note that

ln x = lim
k→∞ 2k

[
x1/2k − I

]
and to use Exercise 4.21.7.

6. Prove that the function

F(x) =
(
Ax−1AT

)−1

: intSn
+ → Sm

with matrix A of rank m is �-concave and �-monotone.

Solution. Since A is of rank m, the function F(x) clearly is well defined and
. 0 when x . 0. To prove that F is �-concave, it suffices to verify that the set

{(x, Y ) | x, Y . 0, Y / (Ax−1AT )−1}
is convex, which is nearly evident:

{(x, Y ) | x, Y . 0, Y / (Ax−1AT )−1} = {(x, Y ) | x, Y . 0, Y−1 � Ax−1AT }
= {(x, Y ) | x, Y . 0,

(
Y−1 A

AT x

)
� 0}

= {(x, Y ) | x, Y . 0, x � AT YA}.
To prove thatF is �-monotone, note that if 0 / x / x ′, then 0 ≺ (x ′)−1 / x−1,
whence 0 ≺ A(x ′)−1AT / Ax−1AT , whence, in turn, F(x) = (Ax−1AT )−1 /
(A(x ′)−1AT )−1 = F(x ′).D
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Lovasz capacity number

Exercise 4.33. Let 
 be an n-node graph and σ(
) be the optimal value in the problem

min
λ,µ,ν

{
λ :

(
λ, − 1

2 (e + µ)T

− 1
2 (e + µ), A(µ, ν)

)
� 0

}
, (Sh)

where e = (1, . . . , 1)T ∈ Rn,A(µ, ν) = Diag(µ)+Z(ν), andZ(ν) is the matrix as follows:

• The dimension of ν is equal to the number of arcs in 
, and the coordinates of ν are
indexed by these arcs.

• The diagonal entries of Z, same as the off-diagonal entries of Z corresponding to
empty cells ij (i.e., with i and j nonadjacent) are zeros.

• The off-diagonal entries of Z in a pair of symmetric nonempty cells ij , ji are equal
to the coordinate of ν indexed by the corresponding arc.

Prove that σ(
) is nothing but the Lovasz capacity Z(
) of the graph.

Solution. In view of (4.10.122) all we need is to prove that σ(
) ≥ Z(
).

Let (λ, µ, ν) be a feasible solution to (Sh); we should prove that there exists x
such that (λ, x) is a feasible solution to the Lovasz problem

min
λ,x

{λ : λIn − L(x) � 0} . (L)

Setting y = 1
2 (e + µ), we see that(

λ − 1
2 (e + µ)T

− 1
2 (e + µ) Z(ν) + Diag(µ)

)
=

(
λ −yT

−y Z(ν) + 2Diag(y) − In

)
� 0.

The diagonal entries of Z = Z(ν) are zero, while the diagonal entries of
Z + 2Diag(y) − In must be nonnegative; we conclude that y > 0. Setting
Y = Diag(y), we have(

λ −yT

−y Z + 2Y − In

)
� 0

⇒
(

1
Y−1

)(
λ −yT

−y Z + 2Y − In

)(
1

Y−1

)
� 0,

i.e., (
λ −eT

−e Y−1ZY−1 + 2Y−1 − Y−2

)
� 0,

whence by the Schur complement lemma

λ
[
Y−1ZY−1 + 2Y−1 − Y−2

] − eeT � 0

or, which is the same,

λIn − [
eeT − λY−1ZY−1

] � λ(In − 2Y−1 + Y−2) = λ(In − Y−1)2.

We see that λIn − [
eeT − λY−1ZY−1

] � 0. It remains to note that the matrix
in the brackets clearly is L(x) for certain x.
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468 Solutions to Selected Exercises

S-lemma. (For notation, see section 4.10.5.)

Exercise 4.42. We should prove that if f (x) = xT Ax + 2aT x + α and g(x) = xT Bx +
2bT x + β are two quadratic forms (A = AT , B = BT ) such that the premise in the
implication

f (x) ≤ 0 ⇒ g(x) ≤ 0 (9)

is strictly feasible, then the implication holds true if and only if

∃λ ≥ 0 : g(x) ≤ λf (x) ∀x.
Proof. The “if” part of the statement is evident. Let us prove the “only if” part.
Thus, let us assume that the implication (9) is valid.

1. There clearly exist a sequence {γi > 0} and δ > 0 such that

(i) γi → 0, i → ∞;

(ii) all the matrices Ai ≡ A + γiI are nonsingular; and

(iii) x̄T Aix̄ + 2aT x̄ + α ≤ −δ ∀i.
2. Observe that since γi > 0, one has

xT Aix+ 2aT x+α ≤ 0 ⇒ xT Ax+ 2aT x+α ≤ 0 ⇒ xT Bx+ 2bT x+β ≤ 0,

i.e., one has

fi(x) ≡ xT Aix + 2aT x + α ≤ 0 ⇒ g(x) = xT Bx + 2bT x + β ≤ 0.

Setting

f̂i(y) = fi(y − A−1
i a) = yT Aiy + [α − aT A−1

i a]︸ ︷︷ ︸
αi

,

ĝi(y) = g(y − A−1
i a) = yT By + 2bTi y + βi,

we have

(a) ∀y : yT Aiy + αi ≤ 0 ⇒ yT By + 2bTi y + βi ≤ 0,
(b) ∃ỹ : ỹT Aiỹ + αi < 0.

(10)

3. We claim that

(a) ∀(y, t) : yT Aiy + αit
2 ≤ 0 ⇒ yT By + 2tbTi y + βit

2 ≤ 0,
(b) ∃(ȳ, t̄) : ȳT Aiȳ + αi t̄

2 < 0.
(11)

Indeed, (11)(b) is evident (set ȳ = ỹ, t̄ = 1). Further, the implication (11)(a)
with the premise strengthened by the assumption t �= 0 is an immediate corol-
lary of (10)(a). Thus, all we need in order to verify (11)(a) is to prove the
implication

yT Aiy ≤ 0 ⇒ yT By ≤ 0. (12)
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Assume, on the contrary to what should be proved, that for some y it holds that

yT Aiy ≤ 0, yT By > 0.

Then y �= 0, whence yT Ay < yT Aiy ≤ 0, i.e., yT Ay < 0. It follows that

f (sy − A−1
i a) → −∞, s → ∞ [since yT Ay < 0],

g(sy − A−1
i a) → +∞, s → ∞ [since yT By > 0],

in contradiction to the assumption that f (x) ≤ 0 ⇒ g(x) ≤ 0.

4. By the usual S-lemma, from (11) it follows that

∃λi ≥ 0 : yT By + 2tbTi y + βit
2 ≤ λi[yT Aiy + αit

2] ∀(y, t),
whence (set t = 1) ĝi (y) ≤ λif̂i(y) ∀y or, which is the same,

xT Bx + 2bT x + β ≤ λi[xT Aix + 2aT x + α] ∀x.
Setting in the latter inequality x = x̄ and taking into account (iii), we conclude
that {λi ≥ 0}∞

i=1 is a bounded sequence. Denoting by λ (any) limiting point
of the sequence and taking into account (i), we come to the desired relations
λ ≥ 0, g(x) ≤ λf (x) ∀x.

Exercise 4.46.3. 3. Given data A,B satisfying the premise of (SL)(B), define the sets

Qx = {λ ≥ 0 : xT Bx ≥ λxT Ax}.
Prove that every two sets Qx ′ ,Qx ′′ have a point in common.

Solution. The case when x ′, x ′′ are collinear is trivial. Assuming that x ′, x ′′ are
linearly independent, consider the quadratic forms on the 2D plane:

α(z) = (sx ′+tx ′′)T A(sx ′+tx ′′), β(z) = (sx ′+tx ′′)T B(sx ′+tx ′′), z = (s, t)T .

By their origin, we have

α(z) ≥ 0, z �= 0 ⇒ β(z) > 0. (!)
All we need is to prove that there exists λ ≥ 0 such that β(z) ≥ λα(z) ∀z ∈ R2.
Such a λ clearly is a common point of Qx ′ and Qx ′′ .

As is well known from linear algebra, we can choose a coordinate system in
R2 in such a way that the matrix α of the form α(·) in these coordinates, let
them be called u, v, is diagonal:

α =
(
a 0
0 b

)
;

let also

β =
(
p r

r q

)
be the matrix of the form β(·) in the coordinates u, v. Let us consider all
possible combinations of signs of a, b:
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• a ≥ 0, b ≥ 0. In this case, α(·) is nonnegative everywhere, whence by
(!) β(·) ≥ 0. Consequently, β(·) ≥ λα(·) with λ = 0.

• a < 0, b < 0. In this case the matrix of the quadratic form β(·) − λα(·)
is (

p + λ|a| r

r q + λ|b|
)
.

This matrix clearly is positive definite for all large-enough positive λ, so
that here again β(·) ≥ λα(·) for properly chosen nonnegative λ.

• a = 0, b < 0. In this case α(1, 0) = 0 (the coordinates in question are
u, v), so that by (!) p > 0. The matrix of the form β(·) − λα(·) is(

p r

r q + λ|b|
)
,

and since p > 0 and |b| > 0, this matrix is positive definite for all large-
enough positive λ. Thus, here again β(·) ≥ λα(·) for properly chosen
λ ≥ 0.

• a < 0, b = 0. This case is completely similar to the previous one.

Part 3 is proved.

Exercise 4.47. Demonstrate by example that if xT Ax, xT Bx, xT Cx are three quadratic
forms with symmetric matrices such that

∃x̄ : x̄T Ax̄ > 0, x̄T Bx̄ > 0,
xT Ax ≥ 0, xT Bx ≥ 0 ⇒ xT Cx ≥ 0,

(13)

then not necessarily there exist λ,µ ≥ 0 such that C � λA + µB.

A solution.

A =
(
λ2 0
0 −1

)
, B =

(
µν 0.5(µ − ν)

0.5(µ − ν) −1

)
,

C =
(

λµ 0.5(µ − λ)

0.5(µ − λ) −1

) .

With a proper setup, e.g.,

λ = 1.100, µ = 0.818, ν = 1.344,

the above matrices satisfy both (4.10.133) and (4.10.134).D
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Exercise 4.52. Let n ≥ 3,

f (x) = θ1x
2
1 − θ2x

2
2 +

n∑
i=3

θix
2
i : Rn → R,

θ1 ≥ θ2 ≥ 0, θ1 + θ2 > 0,−θ2 ≤ θi ≤ θ1 ∀i ≥ 3;
Y = {x : ‖x‖2 = 1, f (x) = 0}.

1. Let x ∈ Y . Prove that x can be linked in Y by a continuous curve with a point x ′
such that the coordinates of x ′ with indices 3, 4, . . . , n vanish.

Proof. It suffices to build a continuous curve γ (t) ∈ Y , 0 ≤ t ≤ 1, of the form

γ (t) = (x1(t), x2(t), tx3, tx4, . . . , txn)
T , 0 ≤ t ≤ 1,

which passes through x as t = 1. Setting s = ∑n
i=3 θix

2
i = θ2x

2
2 − θ1x

2
1 and

g2 = dT d = 1 − x2
1 − x2

2 , we should verify that one can define continuous
functions x1(t), x2(t) of t ∈ [0, 1] satisfying the system of equations{

θ1x
2
1 (t) − θ2x

2
2 (t) + t2s = 0,

x2
1 (t) + x2

2 (t) + t2g2 = 1

along with the boundary conditions

x1(1) = x1,

x2(1) = x2.

Substituting v1(t) = x2
1 (t), v2(t) = x2

2 (t) and taking into account that θ1, θ2 ≥
0, θ1 + θ2 > 0, we get

(θ1 + θ2)v1(t) = θ2(1 − t2g2) − t2s

= θ2(1 − t2g2 − t2(θ2x
2
2 − θ1x

2
1 )= θ2(1 − t2[g2 + x2

2 ]) + t2θ1x
2
1= θ2(1 − t2[1 − x2

1 ]) + t2θ1x
2
1 ;

(θ1 + θ2)v2(t) = θ1(1 − t2g2) + t2s

= θ1(1 − t2g2) + t2(θ2x
2
2 − θ1x

2
1 )= θ1(1 − t2[g2 + x2

1 ]) + t2θ2x
2
2= θ1(1 − t2[1 − x2

2 ]) + t2θ2x
2
2 .

We see that v1(t), v2(t) are continuous, nonnegative and equal x2
1 , x

2
2 , respec-

tively, as t = 1. Taking x1(t) = κ1v
1/2
1 , x2(t) = κ2v

1/2
2 (t)with properly chosen

κi = ±1, i = 1, 2, we get the required curve γ (·).

2. Prove that there exists a point z+ = (z1, z2, z3, 0, 0, . . . , 0)T ∈ Y such that
(i) z1z2 = 0.
(ii) given a point u = (u1, u2, 0, 0, . . . , 0)T ∈ Y , you can either (ii)(a) link u by

continuous curves in Y both to z+ and to z̄+ = (z1, z2,−z3, 0, 0, . . . , 0)T ∈ Y , or (ii)(b)
link u both to z− = (−z1,−z2, z3, 0, 0, . . . , 0)T and z̄− = (−z1,−z2,−z3, 0, 0, . . . , 0)T .
(Note that z+ = −z̄−, z̄+ = −z−.)
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Proof. Recall that θ1 ≥ θ2 ≥ 0 and θ1 + θ2 > 0. Consider two possible cases:
θ2 = 0 and θ2 > 0.

Case of θ2 = 0. In this case it suffices to set z+ = (0, 1, 0, 0, . . . , 0)T . Indeed,
the point clearly belongs to Y and satisfies (i). Further, if u ∈ Y is such that
u3 = · · · = un = 0, then from θ2 = 0 and the definition of Y it immediately
follows that u1 = 0, u2 = ±1. Thus, either u coincides with z+ = z̄+, or u
coincides with z− = z̄−. In both cases, (ii) takes place.

Case of θ2 > 0. Let us set

τ = min
[

θ1
θ1−θ3

; θ2
θ2+θ3

]
[note that τ > 0 due to θ1, θ2 > 0 and −θ2 ≤ θ3 ≤ θ1],
z1 = √

(θ1 + θ2)−1 (θ2 − τ [θ2 + θ3]),
z2 = √

(θ1 + θ2)−1 (θ1 − τ [θ1 − θ3]),
z3 = √

τ ,

z+ = (z1, z2, z3, 0, 0, . . . , 0)T .

It is immediately seen that z+ is well defined and satisfies (i). Now let us verify
that z+ satisfies (ii) as well. Let u = (u1, u2, 0, 0, . . . , 0)T ∈ Y , and let the
vector-function z(t), 0 ≤ t ≤ √

τ , be defined by the relations

z1(t) =
√
(θ1 + θ2)−1

(
θ2 − t2[θ2 + θ3]),

z2(t) =
√
(θ1 + θ2)−1

(
θ1 − t2[θ1 − θ3]),

z3(t) = t,

zi(t) = 0, i = 4, . . . , n.

It is immediately seen that z(·) is well defined, is continuous, takes its values
in Y , and z(

√
τ) = z+. Now, z(0) is the vector

ū ≡
(√

θ2

θ1 + θ2
,

√
θ1

θ1 + θ2
, 0, 0, . . . , 0

)T

.

From u ∈ Y , u3 = · · · = un = 0 it immediately follows that |ui | = |ūi |,
i = 1, 2. Now consider four possible cases:

(++) u1 = ū1, u2 = ū2,

(−−) u1 = −ū1, u2 = −ū2,

(+−) u1 = ū1, u2 = −ū2,

(−+) u1 = −ū1, u2 = ū2.

• In the case of (++) the continuous curve γ (t) ≡ z(t) ∈ Y , 0 ≤ t ≤ √
τ ,

linksuwith z+, while the continuous curve γ̄ (t) = (z1(t), z2(t),−z3(t), 0,
0, . . . , 0)T ∈ Y links u with z̄+, so that (ii)(1) takes place.
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• In the case of (−−) the continuous curve γ (t) ≡ −z(t) ∈ Y , 0 ≤
t ≤ √

τ , links u with z̄− = −z+, while the continuous curve γ̄ (t) =
(−z1(t),−z2(t), z3(t), 0, 0, . . . , 0)T ∈ Y links u with z− = −z̄+, so that
(ii)(2) takes place.

• In the case of (+−) the continuous curves γ (t) ≡ (z1(t),−z2(t), z3(t), 0,
0, . . . , 0)T ∈ Y and γ̄ (t) = (z1(t),−z2(t),−z3(t), 0, 0, . . . , 0)T , 0 ≤
t ≤ √

τ , link u either with both points of the pair (z+, z̄+), or with both
points of the pair (z−, z̄−), depending on whether z1 = 0 or z1 �= 0, z2 =
0. (Note that at least one of these possibilities does take place due to
z1z2 = 0; see (i).) Thus, in the case in question at least (ii)(1) or (ii)(2)
does hold.

• In the case of (−+) the continuous curves γ (t) ≡ (−z1(t), z2(t), z3(t),

0, 0, . . . , 0)T ∈ Y and γ̄ (t) = (z1(t),−z2(t),−z3(t), 0, 0, . . . , 0)T , 0 ≤
t ≤ √

τ , link u either with both points of the pair (z−, z̄−) or with both
points of the pair (z+, z̄+), depending on whether z1 = 0 or z1 �= 0, z2 =
0, so that here again (ii)(1) or (ii)(2) does hold.

3. Conclude from 1 and 2 that Y satisfies the premise of Proposition 4.10.2, and thus
complete the proof of Proposition 4.10.4.

Proof. Let z+ be given by part 2, and let x, x ′ ∈ Y . By part 1, we can link in Y

the point x with a point v = (v1, v2, 0, 0, . . . , 0)T ∈ Y , and the point x ′ with
a point v′ = (v′

1, v
′
2, 0, 0, . . . , 0)T ∈ Y . If for both u = v and u = v′ (ii)(a)

holds, then we can link both v, v′ by continuous curves with z+. Thus, both
x, x ′ can be linked in Y with z+ as well. We see that both x, x ′ can be linked in
Y with the set {z+; −z+}, as required in the premise of Proposition 4.10.2. The
same conclusion is valid if for both u = v, u = v′ (ii)(b) holds. Here both x

and x ′ can be linked in Y with z−, and the premise of Proposition 4.10.2 holds
true.

Now consider the case when for one of the points u = v, u = v′, say, for u = v,
(ii)(a) holds, while for the other one (ii)(b) takes place. Here we can link in Y

the point v (and thus the point x) with the point z+, and we can link in Y the
point v′ (and thus the point x ′) with the point z̄− = −z+. Thus, we can link in
Y both x and x ′ with the set {z+; −z+}, and the premise of Proposition 4.10.2
holds true. Thus, Y satisfies the premise of Proposition 4.10.2.

Exercise 4.53. 2. Let Ai , i = 1, 2, 3, satisfy the premise of (SL)(D). Assuming A1 = I ,
prove that the set

H1 = {(v1, v2)
T ∈ R2 | ∃x ∈ Sn−1 : v1 = f2(x), v3 = f3(x)}

is convex.

Proof. Let � = {(v1, v2)
t ∈ R2 | pv1 +qv2 + r = 0} be a line in the plane. We

should prove that W = X1 ∩ � is a convex or, which is the same, connected set
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(Exercise 4.49). There is nothing to prove when W = ∅. Assuming W �= ∅,
let us set

f (x) = rf1(x) + pf2(x) + qf3(x).

It is immediately seen that f is a homogeneous quadratic form on Rn, and that

W = F(Y ),

where

F(x) =
(
f2(x)

f3(x)

)
,

Y ≡ {x ∈ Sn−1 : f (y) = 0} = −Y.

By Proposition 4.10.4, the image Z of the set Y under the canonical projection
Sn−1 → Pn−1 is connected. Since F is even, W = F(Y ) is the same as G(Z)

for certain continuous mapping G : Z → R2 (Proposition 4.10.3). Thus, W is
connected by (C.2).

We have proved that Z1 is convex; the compactness of Z1 is evident.

Exercise 4.54. Demonstrate by example that (SL)(C) not necessarily remains valid when
skipping the assumption n ≥ 3 in the premise.

A solution. The linear combination

A + 0.005B − 1.15C

of the matrices built in the solution to Exercise 4.47 is positive definite.

Exercise 4.55. Let A,B,C be three 2 × 2 symmetric matrices such that the system
of inequalities xT Ax ≥ 0, xT Bx ≥ 0 is strictly feasible and the inequality xT Cx is a
consequence of the system.

1. Assume that there exists a nonsingular matrixQ such that both the matricesQAQT

and QBQT are diagonal. Prove that then there exist λ,µ ≥ 0 such that C � λA + µB.

Solution. Without loss of generality we may assume that the matrices A,B

themselves are diagonal. The case when at least one of the matrices A,B is
positive semidefinite is trivially reducible to the usual S-lemma, so that we
can assume that both matrices A and B are not positive semidefinite. Since
the system of inequalities xT Ax > 0, xT Bx > 0 is feasible, we conclude
that the determinants of the matrices A, B are negative. Applying appropriate
dilatations of the coordinate axes, swapping, if necessary, the coordinates and
multiplyingA,B by appropriate positive constants we may reduce the situation
to the one where xT Ax = x2

1 − x2
2 and either (a) xT Bx = θ2x2

1 − x2
2 or (b)

xT Bx = −θ2x2
1 + x2

2 with certain θ > 0.
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Case of (a). Here the situation is immediately reducible to the one considered
in the S-lemma. Indeed, in this case one of the inequalities in the system
xT Ax ≥ 0, xT Bx ≥ 0 is a consequence of the other inequality of the system.
Thus, a consequence xT Cx of the system is in fact a consequence of a properly
chosen single inequality from the system. Thus, by the S-lemma eitherC � λA

or C � λB with certain λ ≥ 0.

Case of (b). Observe, first, that θ < 1, since otherwise the system xT Ax ≥ 0,
xT Bx ≥ 0 is not strictly feasible. When θ < 1, the solution set of our system
is the union of the following four angles D++,D+−,D−−,D−+:

D++ = {x | x1 ≥ 0, θx1 ≤ x2 ≤ x1},
D+− = reflection of D++ without respect to the x1-axis,
D−− = −D++,
D−+ = reflection of D++ with respect to the x2-axis.

Now, the case when C is positive semidefinite is trivial—here C � 0 × A +
0 × B. Thus, we may assume that one eigenvalue of C is negative; the other
should be nonnegative, since otherwise xT Cx < 0 whenever x �= 0, while we
know that xT Cx ≥ 0 at the (nonempty!) solution set of the system xT Ax >

0, xT Bx > 0. Since one eigenvalue of C is negative, and the other one is
nonnegative, the set XC = {x | xT Cx ≥ 0} is the union of a certain angle D

(which can reduce to a ray) and the angle −D. Since the inequality xT Cx ≥ 0
is a consequence of the system xT Ax ≥ 0, xT Bx ≥ 0, we have D ∪ (−D) ⊃
D++ ∪ D+− ∪ D−− ∪ D−+. Geometry says that the latter inclusion can be
valid only when D contains two neighboring, with respect to the cyclic order,
of the angles D++,D+−,D−−,D−+. But in this case the inequality xT Cx is
a consequence of an appropriate single inequality from the pair xT Ax ≥ 0,
xT Bx ≥ 0. Namely, when D ⊃ D++ ∪ D+− or D ⊃ D−− ∪ D−+, XC

contains the solution set of the inequality xT Bx ≥ 0, while in the cases of
D ⊃ D+− ∪ D−− and of D ⊃ D−+ ∪ D++, XC contains the solution set of
the inequality xT Ax ≥ 0. Applying the usual S-lemma, we conclude that in
the case of (b) there exist λ,µ ≥ 0 (with one of these coefficients equal to 0)
such that C � λA + µB.

Exercises to Lecture 6
Canonical barriers

Exercise 6.2. Prove Proposition 6.3.2.

Solution. As explained in the Hint, it suffices to consider the case of K = Lk .
Let x = (u, t) ∈ intLk , and let s = (v, τ ) = −∇Lk(x). We should prove that
s ∈ intLk and that ∇Lk(s) = −x. By (6.3.2), one has
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v = − 2
t2−uT u

u, τ = 2
t2−uT u

t

⇓
τ ≥ 0 and τ 2 − vT v = 4

t2−xT x
> 0

⇓
s ∈ intLk;

−∇Lk(s) =
(− 2

τ 2−vT v
v

2
τ 2−vT v

τ

)
=

( 2
4

t2−uT u

2
t2−uT u

u

2
4

t2−uT u

2
t2−uT u

t

)
=

(
u

t

)
.

Scalings of canonical cones

Exercise 6.4. Prove the following:
1. Whenever e ∈ Rk−1 is a unit vector and µ ∈ R, the linear transformation

Lµ,e :
(
u

t

)
�→

(
u − [µt − (

√
1 + µ2 − 1)eT u]e√

1 + µ2t − µeT u

)
(∗)

maps the cone Lk onto itself. Besides this, transformation (∗) preserves the space-time
interval xT Jkx ≡ −x2

1 − · · · − x2
k−1 + x2

k :

[Lµ,ex]T Jk[Lµ,ex] = xT Jkx ∀x ∈ Rk [⇔ LT
µ,eJkLµ,e = Jk]

and L−1
µ,e = Lµ,−e.

Solution. Let x =
(
u

t

)
∈ Lk . Denoting s ≡

(
v

τ

)
= Lµ,ex, we have

v = u − [µt − (
√

1 + µ2 − 1)eT u]e, τ = √
1 + µ2t − µeT u

⇓
τ = √

1 + µ2t − µeT u ≥ √
1 + µ2t − µ‖u‖2 ≥ 0

[since t ≥ ‖u‖2, ‖e‖2 = 1]
τ 2 − vT v = (1 + µ2)t2 − 2µ

√
1 + µ2teT u + µ2(eT u)2

−uT u − [µt − (
√

1 + µ2 − 1)eT u]2

+2(eT u)[µt − (
√

1 + µ2 − 1)eT u]
= t2 − uT u [just arithmetic!].

Thus, x ∈ Lk ⇒ Lµ,ex ∈ Lk . To replace here ⇒ with ⇔, it suffices to verify
(a straightforward computation!) that

L−1
µ,e = Lµ,−e,

so that both Lµ,e and its inverse map Lk onto itself.D
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Dikin ellipsoid

Exercise 6.8. Prove that if K is a canonical cone, K is the corresponding canonical barrier,
and X ∈ intK, then the Dikin ellipsoid

WX = {Y | ‖Y − X‖X ≤ 1} [‖H‖X = √〈[∇2K(X)]H,H 〉E]
is contained in K.

Solution. According to the Hint, it suffices to verify the inclusion WX ⊂ K in
the following two particular cases:

A. K = Sk+, X = Ik .

B. K = Lk, X =
(

0k−1√
2

)
.

Note that in both cases ∇2K(X) is the unit matrix, so that all we need to prove
is that the unit ball, centered at our particular X, is contained in our particular
K.

A: We should prove that if ‖H‖F ≤ 1, then I +H � 0, which is evident. The
modulae of eigenvalues of H are ≤ ‖H‖F ≤ 1, so that all these eigenvalues
are ≥ −1.

B: We should prove that if du ∈ Rk−1, dt ∈ R satisfy dt2 + duT du ≤ 1, then
the point

(
0k−1√

2

)
+

(
du

dt

)
=

(
du√

2 + dt

)
belongs to Lk . In other words, we should

verify that
√

2 + dt ≥ 0 (which is evident) and that (
√

2 + dt)2 − duT du ≥ 0.
Here is the verification of the latter statement:

(
√

2 + dt)2 − duT du = 2 + 2
√

2dt + dt2 − duT du

= 1 + 2
√

2dt + 2dt2 + (1 − dt2 − duT du)

≥ 1 + 2
√

2dt + 2dt2

[since dt2 + duT du ≤ 1]
= (1 + √

2dt)2 ≥ 0.

Exercise 6.9. Let K be a canonical cone:

K = Sk1+ ×· · ·×Skp
+ ×Lkp+1 ×· · ·×Lkm ⊂ E = Sk1 ×· · ·×Skp ×Rkp+1 ×· · ·×Rkm (Cone)

and let X ∈ intK. Prove the following:
2. Whenever Y ∈ K, one has

〈∇K(X), Y − X〉E ≤ θ(K).

4. The conic cap KX is contained in the ‖ · ‖X-ball, centered at X, of the radius θ(K):

Y ∈ KX ⇒ ‖Y − X‖X ≤ θ(K).
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Solution to 2 and 4. According to the Hint, it suffices to verify the statement
in the case when X = e(K) is the central point of K. In this case the Hessian
∇2K(X) is just the unit matrix, whence, by Proposition 6.3.1, ∇K(X) = −X.

2. We should prove that if Y ∈ K, then 〈∇K(X), Y − X〉E ≤ θ(K). The
statement clearly is stable with respect to taking direct products, so that it
suffices to prove it in the cases of K = Sk+ and K = Lk .

In the case of K = Sk+ what should be proved is

∀H ∈ Sk
+ : Tr(Ik − H) ≤ k,

which is evident.

In the case of K = Lk what should be proved is

∀
((

u

t

)
: ‖u‖2 ≤ t

) √
2(

√
2 − t) ≤ 2,

which again is evident.

4. We should prove that if X = e(K), 〈−∇K(X),X − Y 〉E ≥ 0, and Y ∈ K,
then ‖Y − X‖E ≤ θ(K).

Let Y ∈ K be such that 〈−∇K(X),X − Y 〉E ≥ 0, i.e., such that 〈X,X −
Y 〉E ≥ 0. We may think of Y as of a collection of a block-diagonal symmetric
positive semidefinite matrix H with diagonal blocks of the sizes k1, . . . , kp

and m − p vectors
(
ui
ti

)
∈ Lki , i = p + 1, . . . , m (see (Cone)); the condition

〈X,X − Y 〉E ≥ 0 now becomes

Tr(I − H︸ ︷︷ ︸
D

) +
m∑

i=p+1

√
2(

√
2 − ti) ≥ 0. (∗)

We now have, denoting by Dj the eigenvalues of D and by n = ∑p

i=1 ki the
row size of D:

‖X − Y‖2
X = ‖X − Y‖2

E = Tr((I − H)2) +
m∑

i=p+1

(
(
√

2 − ti)
2 + uTi ui

)
=

n∑
j=1

D2
j +

m∑
i=p+1

(
2 − 2

√
2ti + t2

i + uTi ui

)
≤

n∑
j=1

D2
j +

m∑
i=p+1

(
2 − 2

√
2ti + 2t2

i

)
[since uTi ui ≤ t2

i ]

=
n∑

j=1

D2
j +

m∑
i=p+1

(
1 + (1 − √

2ti)2
)
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Denoting q = m − p, Dn+i = 1 − √
2tp+i , i = 1, . . . , q, we come to the

relation

‖X − Y‖2
X = q +

n+q∑
j=1

D2
j , (14)

while (∗) and relations H � 0, ti ≥ 0 imply that

Dj ≤ 1, j = 1, . . . , n + q,
n+q∑
j=1

Dj ≥ −q,
(15)

Let A be the maximum of the right-hand side in (14) over Dj ’s satisfying
(15), and let D∗ = (D∗

1 , . . . , D
∗
n+q)

T be the corresponding maximizer (which
clearly exists—(15) defines a compact set!). In the case of n + q = 1 we
clearly have A = 1 + q. Now let n + q > 1. We claim that among n + q

coordinates of D∗, n + q − 1 are equal 1, and the remaining coordinate equals
to −(n + 2q − 1). Indeed, if there were at least two entries in D∗ which are
less than 1, then subtracting from one of them a δ �= 0 small enough in absolute
value and adding the same δ to the other coordinate, we preserve the feasibility
of the perturbed point with respect to (15), and, with properly chosen sign of
δ, increase

∑
j D

2
j , which is impossible. Thus, at least n + q − 1 coordinates

of D∗ are equal to 1. Among the points with this property that satisfy (15),
the one with the largest

∑
j D

2
j clearly has the remaining coordinate equal to

1 − n − 2q, as claimed.

From our analysis it follows that

A =
{
q + 1, n + q = 1,
q + (n + q − 1) + (n + 2q − 1)2 = (n + 2q − 1)(n + 2q), n + q > 1.

Recalling that θ(K) = n + 2q and taking into account (14) and the origin of
A, we get

‖X − Y‖X ≤ θ(K),

as claimed.

More on canonical barriers

Exercise 6.11 Prove that if K is a canonical cone, K is the associated canonical barrier,
X ∈ intK, and H ∈ K, H �= 0, then

inf
t≥0

K(X + tH) = −∞. (∗)

Derive from this fact that

(!!) Whenever N is an affine plane that intersects the interior of K, K is below
bounded on the intersection N ∩ K if and only if the intersection is bounded.
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Solution. As explained in the Hint, it suffices to verify (∗) in the particular case
when X is the central point of K. It is also clear that (∗) is stable with respect
to taking direct products, so that we can restrict ourselves with the cases of
K = Sk+ and K = Lk .

Case of K = Sk+, X = e(Sk+) = Ik . Denoting by Hi ≥ 0 the eigenvalues of H
and noting that at least one of Hi is > 0 due to H �= 0, we have for t > 0

K(X + tH) = − ln Det(Ik + tH) = −
k∑

i=1

ln(1 + tHi) → −∞, t → ∞.

Case of K = Lk , X = e(Lk) =
(

0k−1√
2

)
. Setting H =

(
u

s

)
, we have s ≥ ‖u‖2

and s > 0 due to H �= 0. For t > 0 we have

K(X + tH) = − ln((
√

2 + ts)2 − t2uT u)

= − ln(2 + 2
√

2ts + t2(s2 − uT u))

≤ − ln(2 + 2
√

2ts) → −∞, t → ∞.

To derive (!!), note that if U = N ∩ K is bounded, then K is below bounded on
U just in view of convexity of K . (Moreover, from the fact that K is a barrier
for K it follows that K attains its minimum on U .) It remains to prove that if
U is unbounded, then K is not below bounded on U . If U is unbounded, there
exists a nonzero direction H ∈ K that is parallel to N . (Take as H a limiting
point of the sequence ‖Yi − X‖−1

2 (Yi − X), where Yi ∈ U , ‖Yi‖2 → ∞ as
i → ∞, and X is a once for ever fixed point from U .) By (∗), K is not below
bounded on the ray {X+ tH | t ≥ 0}, and this ray clearly belongs to U . Thus,
K is not below bounded on U .

Primal path-following method

Exercise 6.15. Looking at the data in the table at the end of section 6.5.3, do you believe
that the corresponding method is exactly the short-step primal path-following method from
Theorem 6.5.1 with the stepsize policy (6.5.31)?

Solution. The table cannot correspond to the indicated method. Indeed, we see
from the table that the duality gap along the 12-iteration trajectory is reduced
by factor of about 106. Since the duality gap in a short-step method is nearly
inverse proportional to the value of the penalty, the latter in the process of our
12 iterations should be increased by a factor of order of 105–106. In our case
θ(K) = 3, and the policy (6.5.31) increases the penalty at an iteration by the
factor (1 + 0.1/

√
3) ≈ 1.0577. With this policy, in 12 iterations the penalty

would be increased by 1.057712 < 2, which is very far from 105!

Infeasible start path-following method

Exercise 6.18. Consider the problem

max
X

{〈C̃, Y 〉Ẽ | Y ∈ (M + R) ∩ K̃
}
, (Aux)
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where

K̃ = K × K × S1
+︸︷︷︸

=R+

× S1
+︸︷︷︸

=R+

(K is a canonical cone),

M =



U

V

s

r

∣∣∣∣ U + rB ∈ L,
V − rC ∈ L⊥,

〈C,U〉E − 〈B,V 〉E + s = 0


is a linear subspace in the space Ẽ where the cone K̃ lives, and

C ∈ L, B ∈ L⊥.

It is given that the problem (Aux) is feasible. Prove that the feasible set of (Aux) is
unbounded.

Solution. According to the Hint, we should prove that the linear space M⊥
does not intersect intK̃.

Let us compute M⊥. A collection
ξ

η

s

r

 , ξ, η ∈ E, s, r ∈ S1 = R

is in M⊥ if and only if the linear equation in variables X, S, σ, τ

〈X, ξ〉E + 〈S, η〉E + σs + τr = 0

is a corollary of the system of linear equations

X + τB ∈ L, S − τC ∈ L⊥, 〈X,C〉E − 〈S,B〉E + σ = 0.

By linear algebra, this is the case if and only if there exist U ∈ L⊥, V ∈ L, and
a real λ such that

(a) ξ = U + λC,

(b) η = V − λB,

(c) s = λ,

(d) r = 〈U,B〉E − 〈V,C〉E.
(Pr)

We have obtained a parameterization of M⊥ via the parametersU,V, λ running
through, respectively, L⊥, L, and R. Now assume, contrary to what should be
proved, that the intersection of M⊥ and intK̃ is nonempty. In other words,
assume that there exist U ∈ L⊥, V ∈ L, and λ ∈ R which, being substituted
in (Pr), result in a collection (ξ, η, s, r) such that ξ ∈ intK, η ∈ intK, s > 0,

D
ow

nl
oa

de
d 

01
/0

4/
21

 to
 1

43
.2

15
.3

3.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



job
2001/6/18
page 482

✐

✐

✐

✐

✐

✐

✐

✐

482 Solutions to Selected Exercises

r > 0. From (Pr)(c) it follows that λ > 0. Since (Pr) is homogeneous, we may
normalize our U,V, λ to make λ = 1, still keeping ξ ∈ intK, η ∈ intK, s > 0,
r > 0. Assuming λ = 1 and taking into account that U,B ∈ L⊥, V,C ∈ L,
we get from (Pr)(a)–(b)

〈ξ, η〉E = 〈C,V 〉E − 〈B,U〉E.
Adding this equality to (Pr)(d), we get

〈ξ, η〉E + r = 0,

which is impossible, since both r > 0 and 〈ξ, η〉E > 0. (Recall that the cone
K is self-dual and ξ, η ∈ intK.) We have come to the desired contradic-
tion.

Exercise 6.19. Let X̄, S̄ be a strictly feasible pair of primal-dual solutions to the primal-
dual pair of problems

min
X

{〈C,X〉E | X ∈ (L − B) ∩ K} , (P)

max
S

{〈B, S〉E | S ∈ (L⊥ + C) ∩ K
}

(D)

so that there exists γ ∈ (0, 1] such that

γ ‖X‖E ≤ 〈S̄, X〉E ∀X ∈ K,

γ ‖S‖E ≤ 〈X̄, S〉E ∀S ∈ K.

Prove that if

Y =

X

S

σ

τ


is feasible for (Aux), then

‖Y‖Ẽ ≤ ατ + β,

α = γ−1
[〈X̄, C〉E − 〈S̄, B〉E

] + 1,
β = γ−1

[〈X̄ + B,D〉E + 〈S̄ − C,P 〉E + d
]
.

(16)

Solution. We have X̄ = Ū − B, Ū ∈ L, S̄ = V̄ + C, V̄ ∈ L⊥. Taking into
account the constraints of (Aux), we get

〈Ū , S − τC − D〉E = 0 ⇒
〈Ū , S〉E = 〈Ū , τC + D〉E ⇒
〈X̄, S〉E = −〈B, S〉E + 〈Ū , τC + D〉E,

〈V̄ , X + τB − P 〉E = 0 ⇒
〈V̄ , X〉E = 〈V̄ ,−τB + P 〉E ⇒
〈S̄, X〉E = 〈C,X〉E + 〈V̄ ,−τB + P 〉E,

⇒
〈X̄, S〉E + 〈S̄, X〉E = [〈C,X〉E − 〈B, S〉E] + τ

[〈Ū , C〉E − 〈V̄ , B〉E
]

+ [〈Ū ,D〉E + 〈V̄ , P 〉E
]

= d − σ + τ
[〈Ū , C〉E − 〈V̄ , B〉E

]
+ [〈Ū ,D〉E + 〈V̄ , P 〉E
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whence

γ [‖X‖E + ‖S‖E] + σ ≤ τ
[〈Ū , C〉E − 〈V̄ , B〉E

]
+ [〈Ū ,D〉E + 〈V̄ , P 〉E + d

]
,

and (16) follows (recall that 〈C,B〉E = 0).

Exercise 6.23. Let K be a canonical cone, let the primal-dual pair of problems

min
X

{〈C,X〉E | X ∈ (L − B) ∩ K} , (P)

max
S

{〈B, S〉E | S ∈ (L⊥ + C) ∩ K
}

(D)

be strictly primal-dual feasible and be normalized by 〈C,B〉E = 0, let (X∗, S∗) be a
primal-dual optimal solution to the pair, and let X, S ε-satisfy the feasibility and optimality
conditions for (P), (D), i.e.,

(a) X ∈ K ∩ (L − B + DX), ‖DX‖E ≤ ε,

(b) S ∈ K ∩ (L⊥ + C + DS), ‖DS‖E ≤ ε,

(c) 〈C,X〉E − 〈B, S〉E ≤ ε.

Prove that

〈C,X〉E − Opt(P) ≤ ε(1 + ‖X∗ + B‖E),
Opt(D) − 〈B, S〉E ≤ ε(1 + ‖S∗ − C‖E).

Solution. We have S − C − DS ∈ L⊥, X∗ + B ∈ L, whence

0 = 〈S − C − DS,X∗ + B〉E
= 〈S,X∗〉E︸ ︷︷ ︸

≥0:X∗,S∈K=K∗

−Opt(P) + 〈S,B〉E + 〈−DS,X∗ + B〉E

⇒
−Opt(P) ≤ −〈S,B〉E + 〈DS,X∗ + B〉E ≤ −〈S,B〉E + ε‖X∗ + B‖E.

Combining the resulting inequality and (c), we get the first of the inequalities
to be proved. The second is given by symmetric reasoning.
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