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Abstract In this paper our focus is on analysis and design of linear and poly-
hedral signal recoveries robust with respect to the deterministic uncertainty in
the observation matrix. This can be seen as a “deterministic counterpart” of
the work [1] where the case of random uncertainty was studied. We investigate
the performance of estimates robust w.r.t. deterministic norm-bounded matrix
uncertainty, derive efficiently computable bounds for the estimation risk and
discuss the construction of “presumably good” estimates.
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1 Introduction

In this paper we consider the estimation problem as follows. We are given an
observation ω ∈ Rm,

ω = A[η]x+ ξ (1)
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where ξ ∈ Rm is zero mean random noise and A[η] ∈ Rm×n is affine in
perturbation η ∈ Rq sensing matrix. We assume that unknown signal x belongs
to a given convex set X ⊂ Rn and that perturbation vector η ∈ Rq in (1)
(“uncertainty”, for short) is deterministic and runs through a given uncertainty
set U ⊂ Rq,

A[η] = A+D[η], D[η] =
∑q

α=1
ηαAα ∈ Rm×n (2)

where A,A1, ..., Aq are given matrices. Our objective is to build an estimate
of the linear image w = Bx of x, B ∈ Rν×n, which is robust with respect to
uncertainty η.

Estimation from observations (1) under uncertain-but-bounded pertur-
bation of observation matrix can be seen as an extension of the problem of
solving systems of equations affected by uncertainty which has received signifi-
cant attention in the literature (cf., e.g., [10,11,15,19,21,22,23] and references
therein). It is also closely related to the problem of system identification in
the case when observations of system’s states are subjected to uncertain-but-
bounded perturbation [6,8,9,12,16,17,18,20,24].

As applied to the estimation problem above, linear estimate ŵH
lin(ω) of w is

of the form ŵH
lin(ω) = HTω where contrast matrix H ∈ Rm×ν is the estimate

parameter. A polyhedral estimate ŵH
poly(ω) is specified by a contrast matrix

H ∈ Rm×M according to

ω 7→ x̂H(ω) ∈ Argmin
x∈X

{
∥HT (ω −Ax)∥∞

}
, ŵH

poly(ω) := Bx̂(ω). (3)

In this paper, our goal is to investigate design of robust linear and polyhedral
estimates under deterministic uncertainty in the sensing matrix. We extend
the approach developed in [1] where robust estimates of both types were an-
alyzed in the case of stochastic uncertainty η to the situation in which η is
uncertain-but-bounded. The approach reduces to deriving a tight efficiently
computable upper bound on the estimate’s risk and then “building” the esti-
mate by minimizing this bound with respect to the estimate parameter H.
Our contributions are as follows.

– We analyse the ϵ-risk (the maximum, over signals from X , of the radii
of (1 − ϵ)-confidence ∥ · ∥-balls) in Section 2 and build presumably good
linear estimates in the case of structured norm-bounded uncertainty (cf.
[2, Chapter 7] and references therein), thus extending the corresponding
results of [12].
In our analysis, similarly to [1], we assume that the signal set X is an
ellitope [13,14],1 and the norm ∥ · ∥ quantifying the recovery error is the
maximum of a finite collection of Euclidean norms.

– In our context, analysis and design of polyhedral estimates under uncertain-
but-bounded perturbations in the sensing matrix appears to be the most
difficult; our very limited results on this subject form the subject of Section
3,

1 Ellitopes are defined in Section 2; an immediate example is a bounded intersection of
centered at the origin elliptic cylinders
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Notation and assumptions. We denote by ∥ · ∥ the norm on Rν used to mea-
sure the estimation error. In what follows, ∥ · ∥ is the maximum of Euclidean
seminorms

∥u∥ = max
ℓ≤L

√
uTRℓu Rℓ ⪰ 0, ℓ = 1, ..., L,

∑
ℓ
Rℓ ≻ 0.

We denote by ϕY (z) = supy∈Y zT y the support function of a set Y ⊂ Rk.
Throughout the paper, we assume that observation noise ξ (its distribution
Px may depend on x) is zero-mean sub-Gaussian, ξ ∼ SG(0, σ2I), i.e., for all
t ∈ Rmm x ∈ X,

Eξ∼Px

{
et

T ξ
}
≤ exp

(
σ2

2 ∥t∥22
)
. (4)

We define the ϵ-risk of an estimate ω 7→ ŵ(ω): we consider uniform over x ∈ X
and η ∈ U ϵ-risk

Riskϵ[ŵ|X ] = sup
x∈X ,η∈U

inf
{
ρ : Probξ∼Px

{∥ŵ(A[η]x+ ξ)−Bx∥ > ρ} ≤ ϵ
}
.

2 Design of presumably good linear estimate

Let us assume that the signal set X is a basic ellitope. By definition [13,14], a
basic ellitope in Rn is a set of the form

X = {x ∈ Rn : ∃t ∈ T : zTTkz ≤ tk, k ≤ K} (5)

where Tk ∈ Sn
+, Tk ⪰ 0,

∑
kTk ≻ 0, and T ⊂ RK

+ is a convex compact set
with a nonempty interior which is monotone: whenever 0 ≤ t′ ≤ t ∈ T one has
t′ ∈ T .

Observe that the error of the linear estimate ŵH(ω) = HTω satisfies

∥ŵ(A[η]x+ ξ)−Bx∥ ≤ ∥HT ξ∥+max
x∈X

∥[B −HTA]x∥

+ max
x∈X ,η∈U

∥∥HTD[η]x
∥∥ (6)

Design of a presumably good linear estimate x̂H(ω) consists in minimizing
over H the sum of tight efficiently computable upper bounds on the terms in
the right-hand side of (6). The bounds on the first and the second term were
already established in [1, Section 2.1]. Namely, we have

Prob

{
∥HT ξ∥ ≥ [1 +

√
2 ln(L/ϵ)]σmax

ℓ≤L

√
Tr(HRℓHT )

}
≤ ϵ ∀ϵ ∈ (0, 1]

and max
x∈X

∥[B −HTA]x∥ ≤ rℓ(H) where

rℓ(H) = min
µ,λ

{λ+ ϕT (µ) : µ ≥ 0,[
λIν

1
2R

1/2
ℓ [B −HTA]

1
2 [B −HTA]TR

1/2
ℓ

∑
kµkTk

]
⪰ 0

}
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(cf. (35) and (36) in the proof of Proposition 2.1 of [1]). What is missing is a
tight upper bound on

s(H) = max
x∈X ,η∈U

∥∥HTD[η]x
∥∥ .

In the rest of this section we focus on building efficiently computable upper
bound on s(H) which is convex in H; the synthesis of the contrast H is then
conducted by minimizing with respect to H the resulting upper bound on the
estimation risk.

We assume from now on that U is a convex compact set in certain Rq. In
this case s(H) is what in [12] was called the robust norm

∥Z[H]∥X = max
Z∈Z[H]

∥Z∥X , ∥Z∥X = max
x∈X

∥Zx∥

of the uncertain ν × n matrix

Z[H] = {Z = HTD[η] : η ∈ U},

i.e., the maximum, over instances Z ∈ Z[H], of operator norms of the linear
mappings x 7→ Zx induced by the norm with the unit ball X on the argument
space and the norm ∥ · ∥ on the image space.

It is well known that aside of a very restricted family of special cases, robust
norms do not allow for efficient computation. We are about to list known to
us generic cases when these norms admit efficiently computable upper bounds
which are tight within logarithmic factors.

2.1 Scenario uncertainty

This is the case where the nuisance set U = Conv{η1, ..., ηS} is given as a con-
vex hull of moderate number of scenarios ηs. In this case, s(H) the maximum
of operator norms:

s(H) = max
s≤S

max
x∈X

∥HTD[ηs]x∥

= max
s≤S,ℓ≤L

∥Msℓ[H]∥X ,2, Msℓ[H] = R
1/2
ℓ HTD[ηs],

where, for Q ∈ Rν×n, ∥Q∥X ,2 = max
x∈X

∥Qx∥2 is the operator norm of the linear

mapping x 7→ Qx : Rn → Rν induced by the norm ∥ · ∥X with the unit
ball X on the argument space, and the Euclidean norm ∥ · ∥2 on the image
space. Note that this norm is efficiently computable in the ellipsoid case where
X = {x ∈ Rn : xTTx ≤ 1} with T ≻ 0 (that is, for K = 1, T1 = T , T = [0, 1]
in (5))—one has ∥Q∥X ,2 = ∥QT−1/2∥2,2. When X is a general ellitope, norm
∥·∥X ,2 is difficult to compute. However, it admits a tight efficiently computable
convex in Q upper bound: it is shown in [12, Theorem 3.1] that function

Opt[Q] = min
λ,µ

{
λ+ ϕT (µ) : µ ≥ 0,

[
λIν

1
2
Q

1
2
QT

∑
kµkTk

]
⪰ 0

}
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satisfies ∥Q∥X ,2 ≤ Opt[Q] ≤ 2.4
√
ln(4K)∥Q∥X ,2. As a result, under the cir-

cumstances,

s(H) = max
s≤S,ℓ≤L

Optsℓ[H],

Optsℓ[H] = min
λℓ,µℓ

{
λℓ + ϕT (µ

ℓ) : µℓ ≥ 0,

[
λℓIν

1
2
R

1/2
ℓ HTD[ηs]

1
2
DT [ηs]HR

1/2
ℓ

∑
kµ

ℓ
kTk

]
⪰ 0

}
,

is a tight within the factor 2.4
√

ln(4K) efficiently computable convex in H
upper bound on s(H).

2.2 Box and structured norm-bounded uncertainty

In the case of structured norm-bounded uncertainty function D[η] in the model
(2) is of the form

D[η] =
∑q

α=1
PT
α ηαQα [Pα ∈ Rpα×m, Qα ∈ Rqα×n],

U = {η = (η1, ..., ηq)} = U1 × ...× Uq, (7)

Uα =


{ηα = δIpα

: |δ| ≤ 1} ⊂ Rpα×pα , qα = pα, α ≤ qs,
[”scalar perturbation blocks”]

{ηα ∈ Rpα×qα : ∥ηα∥2,2 ≤ 1} , qs < α ≤ q.
[”general perturbation blocks”]

The special case of (7) where qs = q, that is,

U = {η ∈ Rq : ∥η∥∞ ≤ 1}& A[η] = A+D[η] = A+
∑q

α=1
ηαAα

is referred to as box uncertainty. In this section we operate with structured
norm-bounded uncertainty (7), assuming w.l.o.g. that all Pα and Qα are
nonzero. The main result here (for underlying rationale and proof, see Sec-
tion A.2) is as follows:

Proposition 2.1 Let X ⊂ Rn be an ellitope: X = PY, where

Y = {y ∈ RN : ∃t ∈ T : yTTky ≤ tk, k ≤ K}

is a basic ellitope. Given the data of structured norm-bounded uncertainty (7),
consider the efficiently computable convex function

s(H) = max
ℓ≤L

Optℓ(H),

Optℓ(H) = min
µ,υ,λ,Us,Vs,Ut,V t

{
1
2 [µ+ ϕT (υ)] : µ ≥ 0, υ ≥ 0, λ ≥ 0[

Us −Asℓ[H]P
−PTAT

sℓ[H] Vs

]
⪰ 0, s ≤ qs[

U t −LT
tℓ[H]

−Ltℓ[H] λtIpqs+t

]
⪰ 0, t ≤ q − qs

V t − λtP
TRT

t RtP ⪰ 0, t ≤ q − qs
µIν −

∑
sUs −

∑
tU

t ⪰ 0,
∑

kυkTk −
∑

sVs −
∑

tV
t ⪰ 0
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where

Asℓ[H] = R
1/2
ℓ HTPT

s Qs, 1 ≤ s ≤ qs

Ltℓ[H] = Pqs+tHR
1/2
ℓ , Rt = Qqs+t, 1 ≤ t ≤ q − qs.

Then
s(H) ≤ s(H) ≤ κ(K)max[ϑ(2κ), π/2]s(H),

where κ = max
α≤qs

min[pα, qα] (κ = 0 when qs = 0),

κ(K) =

{
1, K = 1,
5
2

√
ln(2K), K > 1,

and ϑ(k) is a universal function of integer k ≥ 0 specified in (25) such that

ϑ(0) = 0, ϑ(1) = 1, ϑ(2) = π/2, ϑ(3) = 1.7348..., ϑ(k) ≤ 1
2π

√
k, k ≥ 1.

Note that the “box uncertainty” version of Proposition 2.1 was derived in [12].

2.3 Robust estimation of linear forms

Until now, we imposed no restrictions on the matrix B. We are about to
demonstrate that when we aim at recovering the value of a given linear form
bTx of signal x ∈ X , i.e., when B is a row vector:

Bx = bTx [b ∈ Rn], (8)

we can handle much wider family of uncertainty sets U than those considered
so far. Specifically, assume on the top of (8) that U is a spectratope (as is the
case, e.g., with structured norm-bounded uncertainty) – a set of the form

U = {η = Qv, v ∈ V}, V = {v ∈ RM : ∃s ∈ S : S2
ℓ [v] ⪯ sℓIdℓ

, ℓ ≤ L},
Sℓ[v] =

∑M
i=1viS

iℓ, Siℓ ∈ Sdℓ
(9)

where S ⊂ RL
+ is a convex compact monotone (cf. definition of ellitope) set

with a nonempty interior and Sℓ[v] = 0, ℓ ≤ L, implies v = 0. Let X be a
spectratope as well:

X = {x = Py, y ∈ Y}, Y = {y ∈ RN : ∃t ∈ T : T 2
k [y] ⪯ tkIfk , k ≤ K},

Tk[y] =
∑N

j=1yjT
jk, T jk ∈ Sfk .

(10)

The contrast matrix H underlying a candidate linear estimate becomes a vec-
tor h ∈ Rm, the associated linear estimate being ŵh(ω) = hTω. In our present
situation ν = 1 we lose nothing when setting ∥ · ∥ = | · |. Representing D[η] as∑q

α=1ηαAα, we get

rb(h) = max
x∈X ,η∈U

∣∣∣hT
∑

α
ηαAαx

∣∣∣ = max
η∈U,x∈X

ηTA[h]x, A[h] = [hTA1; ...;h
TAq].
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In other words, rb(h) is the operator norm ∥A[h]∥X ,U∗ of the linear mapping
x 7→ A[h]x induced by the norm ∥ · ∥X with the unit ball X on the argument
space and the norm with the unit ball U∗—the polar of the spectratope U—on
the image space. Denote

λ[Λ] = [Tr(Λ1); ...; Tr(ΛK)], Λk ∈ Sfk ,

λ[Υ ] = [Tr(Υ1); ...; Tr(ΥL)], Υℓ ∈ Sdℓ ,

and for Y ∈ Sdℓ and X ∈ Sfk

R+,∗
ℓ [Y ] =

[
Tr(Y SiℓSjℓ)

]
i,j≤M

, T+,∗
k [X] =

[
Tr(XT ikT jk)

]
i,j≤N

.

Invoking [12, Theorem 7], we arrive at

Proposition 2.2 In the case of (9) and (10), efficiently computable convex
function

rb(h) = min
Λ,Υ

{
1
2 [ϕT (λ[Λ]) + ϕS(λ[Υ ])] : (11)

Λ = {Λk ∈ Sfk
+ , k ≤ K}, Υ = {Υℓ ∈ Sdℓ

+ , ℓ ≤ L}[∑
ℓR

+,∗
ℓ [Υℓ] QTA[h]P

PTAT [h]Q
∑

kT
+,∗
k [Λk]

]
⪰ 0


is a reasonably tight upper bound on rb(h):

rb(h) ≤ rb(h) ≤ ς

(∑K

k=1
fk

)
ς

(∑L

ℓ=1
dℓ

)
rb(h)

where ς(J) =
√
2 ln(5J).

3 Design of the robust polyhedral estimate

On a close inspection, the strategy for designing a presumably good polyhedral
estimate developed in [1, Section 3] for the case of random uncertainty works in

the case of uncertain-but-bounded perturbations A[η] = A+
∑

α
ηαAα︸ ︷︷ ︸

D[η]

, η ∈ U ,

provided that the constraints on the columns h of the contrast matrices are
replaced with the constraint

Probξ{|hT ξ| > 1/2} ≤ δ/2, (12a)∣∣∣∑q

α=1
[hTAαx]ηα

∣∣∣ ≤ 1/2 ∀(x ∈ X , η ∈ U). (12b)

Recalling that hT ξ is sub-Gaussian, hT ξ ∼ SG(0, σ2∥h∥22), and assuming that
U and X are the spectratopes (9), (10), invoking Proposition 2.2, an efficiently
verifiable sufficient condition for h to satisfy the constraints (12) is

∥h∥2 ≤ 2σ
√
2 ln(2/δ) and rb(h) ≤ 1/2 (13)
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(see (11)). It follows that in order to build an efficiently computable upper
bound for the ϵ-risk of a polyhedral estimate associated with a given m×ML
contrast matrix H = [H1, ..,HL], Hℓ ∈ Rm×M , it suffices to check whether the
columns of H satisfy constraints (13) with δ = ϵ/ML. If the answer is positive,
one can upper-bound the risk utilizing the following spectratopic version of [1,
Proposition 2.3]:

Proposition 3.1 In the situation of this section, let ϵ ∈ (0, 1), and let H =
[H1, ...,HL] be m×ML matrix with L blocks Hℓ ∈ Rm×M such that all columns
of H satisfy (13) with δ = ϵ/ML. Consider optimization problem

p+[H] = 2 min
λℓ,Υ ℓ,υℓ,ρ

{
ρ : υℓ ≥ 0, Υ ℓ = {Υ ℓ

k ∈ Sfk
+ , k ≤ K}, ℓ ≤ L (14)

λℓ + ϕT (λ[Υ
ℓ]) +

∑M
j=1υ

ℓ
j ≤ ρ, ℓ ≤ L[

λℓIν
1
2R

1/2
ℓ BP

1
2P

TBTR
1/2
ℓ PTATHℓDiag{υℓ}HT

ℓ AP +
∑

kT
+,∗
k [Υ ℓ

k ]

]
⪰ 0, ℓ ≤ L


where

λ[Υ ℓ] = [Tr(Υ ℓ
1 ); ...; Tr(Υ

ℓ
K)]

and

T+,∗
k [V ] =

[
Tr(V T ikT jk)

]
1≤i,j≤N

for V ∈ Sfk .

Then

Riskϵ[ŵ
H |X ] ≤ p+[H].

Remarks. When taken together, Propositions 2.2 and 3.1 allow to compute
efficiently an upper bound on the ϵ-risk of the polyhedral estimate associated
with a given m×ML contrast matrix H: when the columns of H satisfy (13)
with δ = ϵ/ML, this bound is p+[H], otherwise it is, say, +∞. The outlined
methodology can be applied to any pair of spectratopes X and Y. However,
to design a presumably good polyhedral estimate, we need to optimize the
risk bound obtained in H, and this seems to be difficult because the bound,
same as its “random perturbation” counterpart derived in [1, Proposition 3.1],
is nonconvex in H. At present, we know only one generic situation where the
synthesis problem admits “presumably good” solution—the case where both X
and U are ellipsoids. Applying appropriate one-to-one linear transformations
to perturbation η and signal x, the latter situation can be reduced to that
with

X = {x ∈ Rn : ∥x∥2 ≤ 1}, U = {η ∈ Rq : ∥η∥2 ≤ 1}, (15)

which we assume till the end of this section. In this case (13) reduces to

∥h∥2 ≤ [2σ
√

2 ln(2/δ)]−1 and ∥A[h]∥2,2 ≤ 1/2 (16)

where

A[h] = [hTA1;h
TA2; ...;h

TAq].
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As a result, (12) can be processed in the same fashion as corresponding
constraints in [1, Sections 3.3 and 3.4] to yield a computationally efficient
scheme for building a presumably good, in the case of (15), polyhedral esti-
mate. This scheme is the same as that described at the end of [1, Section 3.6]
with just one difference: the quantity χ(δ) in the first semidefinite constraint
of optimization problems (30) and (31) which define the upper bounds of the
estimation risk should now be replaced with constant 2. For instance, when
denoting by Opt the optimal value of the modified in the just explained way
problem (30) in [1, Section 3.6], the ϵ-risk of the polyhedral estimate yielded
by an optimal solution to the problem is upper-bounded by 2

√
κOpt, with

κ = 4 ln(4m(m+ n+ q + 1)).

Acknowledgements This work was supported by Multidisciplinary Institute in Artificial
intelligence MIAI @ Grenoble Alpes (ANR-19-P3IA-0003).

A Proofs

A.1 Proof of Proposition 3.1

The proof follows that of [1, Proposition 2.3]. All we need to prove is that if H satisfies the
premise of the proposition and λℓ, Υ

ℓ, υℓ, ρ is a feasible solution to (14), then the inequality

Riskϵ[ŵ
H
poly|X ] ≤ 2ρ (17)

holds. Indeed, let us fix x ∈ X and η ∈ U . Since the columns of H satisfy (13), the Px-
probability of the event

Zx,η = {ξ : ∥HT [D[η]x+ ξ∥∞ ≤ 1}

is at least 1−MLδ = 1− ϵ. Let us fix observation ω = Ax+D[η]x+ ξ with ξ ∈ Zx,η . Then

∥HT [ω −Ax]∥∞ = ∥HT [D[η]x+ ξ]∥∞ ≤ 1, (18)

implying that the optimal value in the optimization problem minu∈X ∥HT [Au − ω∥∞ is
at most 1. Consequently, setting x̂ = x̂H(ω), we have x̂ ∈ X and ∥HT [Ax̂ − ω]∥∞ ≤ 1,
see (3). These observations combine with (18) and the inclusion x ∈ X to imply that for
z = 1

2
[x− x̂] we have z ∈ X and ∥HT z∥∞ ≤ 1. Recalling what X is we conclude that z = Py

with T 2
k [y] ⪯ tkIfk , k ≤ K for some t ∈ T and

∥HT
ℓ APy∥∞ = ∥HT

ℓ Az∥∞ ≤ 1, ℓ ≤ L. (19)
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Now let u ∈ Rν with ∥u∥2 ≤ 1. Semidefinite constraints in (14) imply that

uTR
1/2
ℓ Bz = uTR

1/2
ℓ BPy ≤ uTλℓIνu+ yT

[
PATHℓDiag{υℓ}HT

ℓ AP +
∑

k
T+,∗
k [Υ ℓ

k ]
]
y

= λℓu
Tu+

∑
j
υℓ
j [HT

ℓ APy]2j︸ ︷︷ ︸
≤1 by (19)

+
∑

k
yTT+,∗

k [Υ ℓ
k ]y

≤ λℓ +
∑

j
υℓ
j +

∑
k

∑
i,j≤N

yiyjTr(Υ
ℓ
kT

ikT jk)

= λℓ +
∑

j
υℓ
j +

∑
k

Tr(Υ ℓ
kT

2
k [y])

≤ λℓ +
∑

j
υℓ
j +

∑
k

tkTr(Υ
ℓ
k) [due to Υ ℓ ⪰ 0 and T 2

k [y] ⪯ tkIfk ]

≤ λℓ +
∑

j
υℓ
j + ϕT (λ[Υ ℓ]) ≤ ρ (20)

where the concluding inequality follows from the constraints of (14). (20) holds true for all
u with ∥u∥2 ≤ 1, and we conclude that for x ∈ X and η ∈ U and ξ ∈ Zx,η (recall that the
latter inclusion takes place with Px-probability ≥ 1− ϵ) we have

∥R1/2
ℓ B[x̂H(Ax+D[η]x+ ξ)− x]∥2 ≤ 2ρ, ℓ ≤ L.

Recalling what ∥ · ∥ is, we get

∀(x ∈ X , η ∈ U) : Probξ∼Px{∥B[x− x̂H(Ax+D[η]x+ ξ)]∥ > 2ρ∥ ≤ ϵ,

that is, Riskϵ[ŵH
poly|X ] ≤ 2ρ. The latter relation holds true whenever ρ can be extended to

a feasible solution to (14), and (17) follows. □

A.2 Robust norm of uncertain matrix with structured norm-bounded
uncertainty

A.2.1 Situation and goal

Let matrices As ∈ Rm×n, s ≤ S, and Lt ∈ Rpt×m, Rt ∈ Rqt×n, t ≤ T , be given. These
data specify uncertain m× n matrix

A = {A =
∑

s
δsAs +

∑
t
LT
t ∆tRt : |δs| ≤ 1∀s ≤ S, ∥∆t∥2,2 ≤ 1 ∀t ≤ T}. (21)

Given ellitopes

X = {Py : y ∈ Y} ⊂ Rn, Y = {y ∈ RN & ∃t ∈ T : yTTky ≤ tk, k ≤ K},
B∗ = {Qz : z ∈ Z} ⊂ Rm, Z = {z ∈ RM : ∃s ∈ S : zTSℓz ≤ sℓ, ℓ ≤ L}, (22)

we want to upper-bound the robust norm

∥A∥X ,B = max
A∈A

∥A∥X ,B,

of uncertain matrix A induced by the norm ∥ · ∥X with the unit ball X in the argument
space and the norm ∥ · ∥B with the unit ball B which is the polar of B∗ in the image space.
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A.2.2 Main result

Proposition A.1 Given uncertain matrix (21) and ellitopes (22), consider convex opti-
mization problem

Opt = min
µ,υ,λ,

Us,Vs,Ut,V t

1
2
[ϕS(µ) + ϕT (υ)]

subject to

µ ≥ 0, υ ≥ 0, λ ≥ 0[
Us −QTAsP

−PTAT
s Q Vs

]
⪰ 0 (23a)[

Ut −QTLT
t

−LtQ λtIpt

]
⪰ 0, V t − λtP

TRT
t RtP ⪰ 0 (23b)∑

ℓ
µℓSℓ −

∑
s
Us −

∑
t
Ut ⪰ 0 (23c)∑

k
υkTk −

∑
s
Vs −

∑
t
V t ⪰ 0 (23d)

The problem is strictly feasible and solvable, and

∥A∥X ,B ≤ Opt ≤ κ(K)κ(L)max [ϑ(2κ), π/2] ∥A∥X ,B (24)

where

– the function ϑ(k) of nonnegative integer k is given by ϑ(0) = 0 and k ≥ 1,

ϑ(k) =
[
minα

{
(2π)−k/2

∫
|α1u

2
1 + ... + αku

2
k|e

−uT u/2du, α ∈ Rk, ∥α∥1 = 1
}]−1

. (25)

– κ = max
s≤S

Rank(As) when S ≥ 1, otherwise κ = 0;

– κ(·) is given by

κ(J) =
{
1, J = 1,
5
2

√
ln(2J), J > 1.

(26)

Remarks. The rationale behind (23) is as follows. Checking that the X ,B-norm of uncer-
tain m × n matrix (21) is ≤ a ∈ R is the same as to verify that for all δs ∈ [−1, 1], ∆t :
∥∆t∥2,2 ≤ 1∑

s
δsu

TAsv +
∑

t
uTLT

t ∆tRtv ≤ a∥u∥B∗∥v∥X ∀(u ∈ Rm, v ∈ Rn),

or, which is the same due to what B∗ and X are, that for all δs ∈ [−1, 1],∆t : ∥∆t∥2,2 ≤ 1∑
s
δsz

TQTAsPy +
∑

t
zTQTLT

t ∆tRtPy ≤ a∥z∥Z∥y∥Y ∀(z ∈ RM , y ∈ RN ). (27)

A simple certificate for (27) is a collection of positive semidefinite matrices Us, Vs, Ut, V t,
U, V such that for all z ∈ RM , y ∈ RN and all s ≤ S, t ≤ T it holds

2zT [QTAsP ]y ≤ zTUsz + yTVsy, (28a)

2zTQTLT
t ∆tRtPy ≤ zTUtz + yTV ty ∀(∆t : ∥∆t∥2,2 ≤ 1), (28b)∑

s
Us +

∑
t
Ut ⪯ U, (28c)∑

s
Vs +

∑
t
V t ⪯ V, (28d)

max
z∈Z

zTUz +max
y∈Y

yTV y ≤ 2a. (28e)
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Now, (28a) clearly is the same as (23a). It is known (this fact originates from [7]) that
(28b) is the same as existence of λt ≥ 0 such that (23b) holds. Finally, existence of µ ≥ 0
such that

∑
ℓµℓSℓ ⪰ U and υ ≥ 0 such that

∑
kυkTk ⪰ V (see (23c) and (23d)) implies

due to the structure of Z and Y that maxz∈Z zTUz ≤ ϕS(µ) and maxy∈Y yTV y ≤ ϕT (υ).
The bottom line is that a feasible solution to (23) implies the existence of a certificate{

Us, U
t, Vs, V

t, s ≤ S, t ≤ T, U =
∑

ℓ
µℓSℓ, V =

∑
k
υkTk

}
for relation (27) with a = 1

2
[ϕS(µ) + ϕT (υ)].

Proof of Proposition A.1. 1o. Strict feasibility and solvability of the problem are imme-
diate consequences of

∑
ℓSℓ ≻ 0 and

∑
kTk ≻ 0.

Let us prove the first inequality in (24). All we need to show is that if

[a] µ, υ, λ, Us, Vs, Ut, V t is feasible for (23),

[b] x = Py with yTTky ≤ τk, k ≤ K, for some τ ∈ T and u = Qz for some z such that
zTSℓz ≤ ςℓ, ℓ ≤ L, for some ς ∈ S, and
[c] δs, ∆t satisfy |δs| ≤ 1, ∥∆t∥2,2 ≤ 1,

then γ := uT [
∑

sδsAs +
∑

tL
T
t ∆tRt]x ≤ 1

2
[ϕS(µ) + ϕT (υ)]. Assuming [a–c], we have

γ =
∑

s
δsz

TQTAsPy +
∑

t
zTQTLT

t ∆tRtPy︸ ︷︷ ︸
ζt

≤ 1
2
zT

[∑
s
Us

]
z + 1

2
yT

[∑
s
Vs

]
y +

∑
t
∥LtQz∥2∥ζt∥2 [by (23a) and due to |δs| ≤ 1]

≤ 1
2
zT

[∑
s

Us

]
z + 1

2
yT

[∑
s

Vs

]
y +

∑
t

√
(λtzTUtz)(yTPTRT

t RtPy)

[due to (23b) and ∥∆t∥2,2 ≤ 1]

= 1
2
zT

[∑
s
Us

]
z + 1

2
yT

[∑
s
Vs

]
y +

∑
t

√
(zTUtz)(λtyTPTRT

t RtPy).

Thus, by the second inequality of (23b),

γ ≤ 1
2
zT

[∑
s
Us

]
z + 1

2
yT

[∑
s
Vs

]
y +

∑
t

√
(zTUtz)(yTV ty)

≤ 1
2
zT

[∑
s
Us

]
z + 1

2
yT

[∑
s
Vs

]
y + 1

2

∑
t
[zTUtz + yTV ty]

= 1
2

[
zT

[∑
s
Us +

∑
t
Ut

]
z + yT

[∑
s
Vs +

∑
t
V t

]
y
]

≤ 1
2

[∑
ℓ
µℓz

TSℓz +
∑

k
yT υkTky

]
[by (23c) and (23d)]

≤ 1
2

[∑
ℓ
µℓςℓ +

∑
k
υkτk

]
[due to zTSℓz ≤ ςℓ, y

TTky ≤ τk]

≤ 1
2
[ϕS(µ) + ϕT (υ)] [since ς ∈ S, τ ∈ T ] (29)

as claimed.

2o. Now, let us prove the second inequality in (24). Observe that

S = {0} ∪ {[s;σ] : σ > 0, s/σ ∈ S}, T = {0} ∪ {[t; τ ] : τ > 0, t/τ ∈ T },

are regular cones with the duals

S∗ = {[g;σ] : σ ≥ ϕS(−g)}, T∗ = {[h; τ ] : τ ≥ ϕT (−h)},



Title Suppressed Due to Excessive Length 13

and (23) can be rewritten as the conic problem

2Opt = min
α,β,µ,υ,

λ,Us,Vs,Ut,V t

α+ β (P)

subject to

[−µ;α][g, α] ∈ S∗, [−υ;β][h, β] ∈ T∗, µ
µ ≥ 0, υυ ≥ 0, λλ ≥ 0

[
Us −QTAsP

−PTAT
s Q Vs

][ Us As

A
T
s V s

]
⪰ 0, s ≤ S

[
Ut −QTLT

t

−LtQ λtIpt

][U
t
L
T
t

Lt Λt

]
⪰ 0, [V t − λtP

TRT
t RtP ]

V
t

⪰ 0, t ≤ T

[
∑

ℓ
µℓSℓ −

∑
s
Us −

∑
t
Ut]

S
⪰ 0, [

∑
k
υkTk −

∑
s
Vs −

∑
t
V t]

T
⪰ 0 (30)

(superscripts are the Lagrange multipliers for the corresponding constraints). (P ) clearly is
solvable and strictly feasible, so that 2Opt is the optimal value of the (solvable!) conic dual
of (P ):

2Opt = max
α,β,g,h,µ,υ,λ,S,T,

Us,V s,As,Ut,Lt,Λt,V
t

2
∑

s
Tr(QTAsPA

T
s ) + 2

∑
t
Tr(QTLT

t Lt) (D)

subject to

[g;α] ∈ T, [h;β] ∈ S, µ ≥ 0, υ ≥ 0, λ ≥ 0, V
t ⪰ 0, S ⪰ 0, T ⪰ 0[

Us As

A
T
s V s

]
⪰ 0,

[
U

t
L
T
t

Lt Λt

]
⪰ 0

α = 1, [g;α] ∈ S, β = 1, [h;β] ∈ T,

− gℓ +Tr(SSℓ) + µℓ = 0, −hk +Tr(TTk) + υk = 0,

Tr(Λt)− Tr(V tP
TRT

t RtP ) + λt = 0,

Us = S, Ut = S, V s = T , V
t
= T

(here and in what follows the constraints should be satisfied for all values of “free indexes”

s ≤ S, t ≤ T , ℓ ≤ L, k ≤ K). Taking into account that relation

[
X Y

Y T Z

]
⪰ 0 is equivalent

to X ⪰ 0, Z ⪰ 0, and Y = X1/2∆Z1/2 with ∥∆∥2,2 ≤ 1, and that [g; 1] ∈ S, [h; 1] ∈ T is

the same as g ∈ S, h ∈ T , (D) boils down to

Opt = max
g,h,S,T,

∆s,δt,Λt

{∑
s
Tr(QTAsPA

T
s ) +

∑
t
Tr(QTLT

t Lt) :

g ∈ T , h ∈ S, S ⪰ 0, T ⪰ 0, Tr(SSℓ) ≤ gℓ, Tr(TTk) ≤ hk

As = S
1/2

∆sT
1/2

, ∥∆s∥2,2 ≤ 1, L
T
t = S

1/2
δtΛ

1/2
t , ∥δt∥2,2 ≤ 1

Tr(Λt) ≤ Tr(T
1/2

PTRt
TRtPT

1/2
)
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or, which is the same,

Opt = max
g,h,S,T

∆s,δt,Λt,Lt

{∑
s
Tr(S

1/2
QTAsPT

1/2
∆

T
s ) + 2

∑
t
Tr(S

1/2
QTLT

t Λ
1/2
t δ

T
t ) : (D′)

g ∈ T , h ∈ S, S ⪰ 0, T ⪰ 0, Tr(SSℓ) ≤ gℓ, Tr(TTk) ≤ hk

∥∆s∥2,2 ≤ 1, ∥δt∥2,2 ≤ 1

Tr(Λt) ≤ Tr(T
1/2

PTRT
t RtPT

1/2
), Λt ⪰ 0


Note that for ∆ and δ such that ∥∆∥2,2 ≤ 1 and ∥δ∥2,2 ≤ 1 one has

Tr(A∆) ≤ ∥A∥nuc = ∥λ(L[A])∥1, L[A] =

[ 1
2
A

1
2
AT

]
and

Tr(ABT δ) = ⟨A, δTB⟩Fro ≤ ∥A∥Fro∥δTB∥Fro ≤ ∥A∥Fro∥B∥Fro

(here ∥A∥nuc stands for the nuclear norm and λ(A) for the vector of eigenvalues of a sym-
metric matrix A). Consequently, for a feasible solution to (D′) it holds

Tr(S
1/2

QTAsPT
1/2

∆
T
s ) ≤ ∥λ(L[S1/2

QTAsPT
1/2

])∥1,

and

Tr(S
1/2

QTLT
t Λ

1/2
t δ

T
t ) ≤ ∥S1/2

QTLT
t ∥Fro∥Λ

1/2
t ∥Fro.

The latter bound combines with the last constraint in (D′) to imply that

Tr(S
1/2

QTLT
t Λ

1/2
t δ

T
t ) ≤ ∥S1/2

QTLT
t ∥Fro∥T

1/2
PTRT

t ∥Fro,

and we conclude that

Opt ≤ max
S,g,T ,h

{∑
s

∥∥∥λ(L[S1/2
QTAsPT

1/2
])
∥∥∥
1
+

∑
t

∥∥∥S1/2
QTLT

t ∥Fro∥T
1/2

PTRT
t

∥∥∥
Fro

:

S ⪰ 0, g ∈ S, Tr(SSℓ) ≤ gℓ, ℓ ≤ L

T ⪰ 0, h ∈ T , Tr(TTk) ≤ hk, k ≤ K

}
(31)

4o. We need the following result:

Lemma A.1 [4, Lemma 2.3] (cf. also [3, Lemma 3.4.3]) If the ranks of all matrices

As (and thus—matrices S
1/2

QTAsPT
1/2

) do not exceed a given κ ≥ 1, then for ω ∼
N (0, IM+N ) one has

E
{
|ωTL[S1/2

QTAsPT
1/2

]ω|
}

≥ ∥λ(L[S1/2
QTAsPT

1/2
])∥1/ϑ(2κ),

with ϑ(·) as described in Proposition A.1.

Our next result is as follows (cf. [2, Proposition B.4.12])

Lemma A.2 Let ∈ Rp×q, B ∈ Rr×q and ξ ∼ N (Q, Iq). Then

Eξ {∥Aξ∥2∥Bξ∥2} ≥
2

π
∥A∥Fro∥||B∥Fro.
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Proof. Setting ATA = UDiag{λ}UT with orthogonal U and ζ = UT ξ, we have

E {∥Aξ∥2∥Bξ∥2} = E

{√∑q

i=1
λi[UT ξ]2i ∥Bξ∥2

}
.

The right hand side is concave in λ, so that the infimum of this function in λ varying in
the simplex

∑
iλi = Tr(ATA) is attained at an extreme point. In other words, there exists

vector a ∈ Rq with aT a = ∥A∥2Fro such that

E {∥Aξ∥2∥Bξ∥2} ≥ Eξ

{
|aT ξ| ∥Bξ∥2

}
.

Applying the same argument to ∥Bξ∥2-factor, we can now find a vector b ∈ Rq , bT b =
∥B∥2Fro, such that

Eξ

{
|aT ξ| ∥Bξ∥2

}
≥ Eξ

{
|aT ξ| |bT ξ|

}
.

It suffices to prove that the concluding quantity is ≥ 2∥a∥2∥b∥2/π. By homogeneity, this
is the same as to prove that if [s; t] ∼ N (0, I2), then E{|t| | cos(ϕ)t + sin(ϕ)s|} ≥ 2

π
for all

ϕ ∈ [0, 2π), which is straightforward (for the justification, see the proof of Proposition 2.3
of [5]). □

The last building block is the following

Lemma A.3 [12, Lemma 6] Let

V = {v ∈ Rd : ∃r ∈ R : vTRjv ≤ rj , 1 ≤ j ≤ J} ⊂ Rd

be a basic ellitope, W ⪰ 0 be symmetric d× d matrix such that

∃r ∈ R : Tr(WRj) ≤ rj , j ≤ J,

and ω ∼ N (0,W ). Denoting by ρ(·) the norm on Rd with the unit ball V, we have

E{ρ(ω)} ≤ κ(J).

with κ(·) given by (26).

4o Now we can complete the proof of the second inequality in (24). Let κ ≥ 1, and let
g, S, h, T be feasible for the optimization problem in (31). Denoting by ∥ · ∥Q the norm with
the unit ball Q, for all A ∈ Rm×n, u ∈ Rm, and v ∈ Rn we have

uTAv ≤ ∥u∥B∗∥Av∥B ≤ ∥u∥B∗∥A∥X ,B∥v∥X ,

so that for all u ∈ Rm and v ∈ Rn

∥u∥B∗∥v∥X ∥A∥X ,B ≥ max
ϵs,|ϵs|≤1,

δt,∥δt∥2,2≤1

[∑
s
ϵsu

TAsv +
∑

t
uTLT

t δtRtv
]

=
∑

s
|uTAsv|+

∑
t
∥Ltu∥2∥Rtv∥2.

Thus, for all g, S, h, T which are feasible for (31) and ξ ∈ RM , η ∈ RN ,

∥S1/2
ξ∥Z∥T 1/2

η∥Y∥A∥X ,B ≥ ∥QS
1/2

ξ∥B∗∥PT
1/2

η∥X ∥A∥X ,B [due to B∗ = QZ,X = PY]

≥
∑

s
|ξTS

1/2
QTAsPT

1/2
η|+

∑
t
∥LtQS

1/2
ξ∥2∥RtPT

1/2
η∥2

=
∑

s
|[ξ; η]TL[S1/2

QTAsPT
1/2

][ξ; η]|

+
∑

t
∥[LtQS

1/2
, 0pt×N ][ξ; η]∥2∥[0qt×M , RtPT

1/2
][ξ; η]∥2. (32)
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As a result, for [ξ; η] ∼ N (0, IM+N ), applying the bounds of Lemmas A.1 and A.2,

E
{∥∥∥S1/2

ξ
∥∥∥
Z

}
E

{∥∥∥T 1/2
η
∥∥∥
Y

}
∥A∥X ,B = E

{∥∥∥S1/2
ξ
∥∥∥
Z
∥T 1/2

η∥Y∥A∥X ,B
}

≥
∑

s
E
{∣∣∣[ξ; η]TL[S1/2

QTAsPT
1/2

][ξ; η]
∣∣∣}

+
∑

t
E
{∥∥∥[LtQS

1/2
, 0pt×N ][ξ; η]

∥∥∥
2

∥∥∥[0qt×M , RtPT
1/2

][ξ; η]
∥∥∥
2

}
≥ ϑ(2κ)−1

∑
s

∥∥∥λ(
L[S1/2

QTAsPT
1/2

]
)∥∥∥

1
+ 2

π

∑
t

∥LtQS
1/2∥Fro∥RtPT

1/2∥Fro.

Besides this, by Lemma A.3 we have

E
{
∥S1/2

ξ∥Z
}

≤ κ(L), E
{
∥T 1/2

η∥Y
}

≤ κ(K)

due to the fact that g, S, h and T are feasible for (31). This combines with (32) to imply
that the value κ(L)κ(K)∥A∥X ,B is lower bounded with the quantity

max [ϑ(2κ), π/2]−1
[∑

s

∥∥∥λ(
L[S1/2

QTSsPT
1/2

]
)∥∥∥

1

+
∑

t
∥S1/2

QTLT
t ∥Fro∥T

1/2
PTRT

t ∥Fro
]
.

Invoking the inequality in (31), we arrive at the second inequality in (24). The above rea-
soning assumed that κ ≥ 1, with evident simplifications, it is applicable to the case of κ = 0
as well. □

A.2.3 Proof of Proposition 2.1

We put S = qs and T = q − qs. In the situation of Proposition 2.1 we want to tightly
upper-bound quantity

s(H) = max
x∈X ,η∈U

∥∥HTD[η]x
∥∥

= max
ℓ≤L

max
x∈X ,η∈U

{√
[HTD[η]x]TRℓ[HTD[η]x]

}
= max

ℓ≤L
∥Aℓ[H]∥X ,2,

where ∥ · ∥X ,2 is the operator norm induced by ∥ · ∥X on the argument and ∥ · ∥2 on the
image space and the uncertain matrix Aℓ[H] is given by

Aℓ =

{∑S
s=1δs R

1/2
ℓ HTPT

s Qs︸ ︷︷ ︸
=:Asℓ[H]

+
∑T

t=1 R
1/2
ℓ HTPT

S+t︸ ︷︷ ︸
LT

tℓ
[H]

∆s QS+t︸ ︷︷ ︸
=:Rt

:

|δs| ≤ 1 , 1 ≤ s ≤ S
∥∆s∥2,2 ≤ 1 , 1 ≤ t ≤ T

}

It follows that

s(H) = max
ℓ≤L

∥Aℓ[H]∥X ,2,
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and Proposition A.1 provides us with the efficiently computable convex in H upper bound
s(H) on s(H):

s(H) = max
ℓ≤L

Optℓ(H),

Optℓ(H) = min
µ,υ,λ,Us,Vs,Ut,V t

{
1
2
[µ+ ϕT (υ)] : µ ≥ 0, υ ≥ 0, λ ≥ 0[

Us −Asℓ[H]P

−PTAT
sℓ[H] Vs

]
⪰ 0[

Ut −LT
tℓ[H]

−Ltℓ[H] λtIpqs+t

]
⪰ 0

V t − λtPTRT
t RtP ⪰ 0

µIν −
∑

sUs −
∑

tU
t ⪰ 0∑

kυkTk −
∑

sVs −
∑

tV
t ⪰ 0


and tightness factor of this bound does not exceed max[ϑ(2κ), π/2] where κ = max

α≤qs
min[pα, qα].

□

A.3 Spectratopic version of Proposition A.1

Proposition A.1 admits a “spectratopic version,” in which ellitopes X and B∗ given by (22)
are replaced by the pair of spectratopes

X = {Py : y ∈ Y} ⊂ Rn,Y = {y ∈ RN & ∃t ∈ T : Tk[y]
2 ⪯ tkIfk , k ≤ K},

Tk[y] =
∑N

j=1 yjT
jk, T jk ∈ Sfk ,

∑
k T 2

k [y] ≻ 0 ∀y ̸= 0
(33a)

B∗ = {Qz : z ∈ Z} ⊂ Rm, Z = {z ∈ RM : ∃s ∈ S : S2
ℓ [z] ⪯ sℓIdℓ , ℓ ≤ L},

Sℓ[z] =
∑M

j=1 zjS
jkℓ, Sjkℓ ∈ Sdℓ ,

∑
ℓ S

2
ℓ [z] ≻ 0 ∀z ̸= 0

(33b)

The spectratopic version of the statement reads as follows:

Proposition A.2 Given uncertain matrix (21) and spectratopes (33a) and (33b), con-
sider convex optimization problem

Opt = min
µ,υ,λ,Us,Vs,Ut,V t

{
1
2
[ϕS(λ[µ]) + ϕT (λ[υ])] :

subject to

µ = {Mℓ ∈ S
dℓ
+ , ℓ ≤ L}, υ = {Υk ∈ S

fk
+ , k ≤ K}, λ ≥ 0[

Us −QTAsP

−PTAT
s Q Vs

]
⪰ 0 (34a)[

Ut −QTLT
t

−LtQ λtIpt

]
⪰ 0, V t − λtP

TRT
t RtP ⪰ 0 (34b)∑

ℓ

S+,∗
ℓ [Mℓ]−

∑
s

Us −
∑
t

Ut ⪰ 0 (34c)

∑
k

T+,∗
k [Υk]−

∑
s

Vs −
∑
t

V t ⪰ 0 (34d)

where
λ[ζ] = [Tr(Z1); ...; Tr(ZI)] for ζ = {Zi ∈ Ski , i ≤ I}

and

S+,∗
ℓ [V ] =

[
Tr(V SiℓSjℓ)

]
i,j≤M

for V ∈ Sdℓ , T+,∗
k [U ] =

[
Tr(UT ikT jk)

]
i,j≤N

for U ∈ Sfk .
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Problem (34) is strictly feasible and solvable, and

∥A∥X ,B ≤ Opt ≤ ς
(∑

k
fk

)
ς
(∑

ℓ
dℓ

)
max [ϑ(2κ), π/2] ∥A∥X ,B

where ϑ and κ are the same as in Proposition A.1 and

ς(J) = 2
√

2 ln(2J).

Proof. For Y ∈ SM and X ∈ SN let us set

S+
ℓ [Y ] =

M∑
i,j=1

YijS
iℓSjℓ, T+

k [X] =

N∑
i,j=1

XijT
ikT jk,

so that
S+
ℓ [zzT ] = S2

ℓ [z], T
+
k [yyT ] = T 2

k [y] (35)

and
Tr(V S+

ℓ [Y ]) = Tr(S+,∗
ℓ [V ]Y ) for V ∈ Sdℓ , Y ∈ RM ,

Tr(UT+
k [X]) = Tr(T+,∗

k [U ]X) for U ∈ Sfk , X ∈ RN .
(36)

The proof of Proposition A.2 is obtained from that (below referred to as “the proof”) of
Proposition A.1 by the following modifications:
1. All references to (23) should be replaced with references to (34). Item [b] in 1o of the

proof now reads
[b′] x = Py with T 2

k [y] ⪯ τkIfk , k ≤ K, for some τ ∈ T and u = Qz for

some z such that S2
ℓ [z] ⪯ ςℓIdℓ , ℓ ≤ L, for some ς ∈ S.

The last three lines in the chain (29) are replaced with

γ ≤
1

2

[∑
ℓ

Tr([zzT ]S+,∗
ℓ [Mℓ]) +

∑
k

Tr([yyT ]T+,∗
k [Υk])

]
[by (34c) and (34d)]

=
1

2

[∑
ℓ

Tr(S2
ℓ [z]Mℓ) +

∑
k

Tr(T 2
k [y]Υk)

]
[by (35) and (36)]

≤
1

2

[∑
ℓ

ςℓTr(Mℓ) +
∑
k

τkTr(Υk)

]
[due to (b′) and Mℓ ⪰ 0, Υk ⪰ 0]

≤ 1
2
[ϕS(λ[µ]) + ϕT (λ[υ])] [since ς ∈ S, τ ∈ T ].

2. Constraints (30) in (P) now read[∑
ℓ

S+,∗
ℓ [Mℓ]−

∑
s

Us −
∑
t

Ut

]S
⪰ 0,

[∑
k

T+,∗
k [Υk]−

∑
s

Vs −
∑
t

V t

]T
⪰ 0.

As a result, (31) becomes

Opt ≤ max
S,g,T ,h

{∑
s

∥∥∥λ(L[S1/2
QTAsPT

1/2
])
∥∥∥
1
+

∑
t

∥S1/2
QTLT

t ∥Fro∥T
1/2

PTRT
t ∥Fro :

S ⪰ 0, g ∈ S, S+
ℓ [S] ⪯ gℓIdℓ , ℓ ≤ L

T ⪰ 0, h ∈ T , T+
k [T ] ⪯ hkIfk , k ≤ K

}
3. The role of Lemma A.3 in the proof is now played by the following fact.

Lemma A.4 [12, Lemma 8] Let

V = {v ∈ Rd : ∃r ∈ R : R2
j [v] ⪯ rjIνj , 1 ≤ j ≤ J} ⊂ Rd

be a basic spectratope, W ⪰ 0 be symmetric d× d matrix such that

∃r ∈ R : R+
j [W ] ⪯ rjIνj , j ≤ J,

and ω ∼ N (0,W ). Denoting by ρ(·) the norm on Rd with the unit ball V, we have

E{ρ(ω)} ≤ ς

(∑
j
νj

)
, ς(F ) = 2

√
2 ln(2F ).
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