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1 Introduction

In this paper we focus on the problem of recovering unknown signal x given
noisy observation ω ∈ Rm,

ω = Ax+ ξ, (1)

of the linear image Ax of x; here ξ ∈ Rm is observation noise. Our objec-
tive is to estimate the linear image w = Bx ∈ Rν of x known to belong to
given convex and compact subset X of Rn. The estimation problem above
is a classical linear inverse problem. When statistically analysed, popular ap-
proaches to solving (1) (cf., e.g., [40,21,22,37,52,30,17,45]) usually assume a
special structure of the problem, when matrix A and set X “fit each other,”
e.g., there exists a sparse approximation of the set X in a given basis/pair
of bases, in which matrix A is “almost diagonal” (see, e.g. [7,5] for detail).
Under these assumptions, traditional results focus on estimation algorithms
which are both numerically straightforward and statistically (asymptotically)
optimal with closed form analytical description of estimates and corresponding
risks. In this paper, A and B are “general” matrices of appropriate dimensions,
and X is a rather general convex and compact set. Instead of deriving closed
form expressions for estimates and risks (which under the circumstances seems
to be impossible), we adopt an “operational” approach initiated in [6] and fur-
ther developed in [24,26,27,28], within which both the estimate and its risk
are yielded by efficient computation, rather than by an explicit analytical de-
scription.

In particular, two classes of estimates were analyzed in [26,27,28] in the
operational framework.

– Linear estimates. Since their introduction in [31,32], linear estimates are a
standard part of the theoretical statistical toolkit. There is an extensive lit-
erature dealing with the design and performance analysis of linear estimates
(see, e.g., [44,8,11,9,20,50,53]). When applied in the estimation problem
we consider here, linear estimate ŵH

lin(ω) is of the form ŵH(ω) = HTω and
is specified by a contrast matrix H ∈ Rm×ν .

– Polyhedral estimates. The idea of a polyhedral estimate goes back to [43]
where it was shown (see also [41, Chapter 2]) that such estimate is near-
optimal when recovering smooth multivariate regression function known to
belong to a given Sobolev ball from noisy observations taken along a regular
grid. It has been recently reintroduced in [14] and [45] and extended to the
setting to follow in [27]. In this setting, a polyhedral estimate ω 7→ ŵH

poly(ω)

is specified by a contrast matrix H ∈ Rm×M according to

ω 7→ x̂H(ω) ∈ Argmin
x∈X

∥HT (ω −Ax)∥∞ 7→ ŵH
poly(ω) := Bx̂H(ω).

Our interest in these estimates stems from the results of [25,27,28] where it
is shown that in the Gaussian case (ξ ∼ N (0, σ2Im)), linear and polyhedral
estimates with properly designed efficiently computable contrast matrices are
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near-minimax optimal in terms of their risks over a rather general class of loss
functions and signal sets—ellitopes and spectratopes. 1

In this paper we consider an estimation problem which is a generalization
of that mentioned above in which observation matrix A ∈ Rm×n is subjected
to random uncertainty. Specifically, we assume that

ω = A[η]x+ ξ, (2)

where ξ ∈ Rm is zero mean random noise and

A[η] = A+
∑q

α=1
ηαAα ∈ Rm×n, (3)

where A,A1, ..., Aq are given matrices and η ∈ Rq is unknown random per-
turbation (“random uncertainty”). Observation model (2) with random un-
certainty is related to the linear regression problem with random errors in
regressors [1,2,12,13,33,48,51] which is usually addressed through total least
squares. It can also be seen as alternative modeling of the statistical inverse
problem in which sensing matrix is recovered with stochastic error (see, e.g.,
[3,4,10,16,17,38]).

In what follows, our goal is to extend the estimation constructions from [28]
to the case of uncertain sensing matrix. Our strategy consists in constructing a
tight efficiently computable convex inH upper bound on the risk of a candidate
estimate, and then building a “presumably good” estimate by minimizing this
bound in the estimate parameter H. Throughout the paper, we assume that
the signal set X is an ellitope, and the norm ∥·∥ quantifying the recovery error
is the maximum of a finite collection of Euclidean norms.
Our contributions can be summarized as follows.

– The ϵ-risk (the maximum, over signals from X , of the radii of (1 − ϵ)-
confidence ∥ · ∥-balls) is analyzed in Section 2. This leads to novel compu-
tationally efficient techniques of design of presumably good, in terms of this
risk, linear estimates under random perturbation of observation matrix.

– Analysis problem for polyhedral estimate
Given contrast matrix H, find a provably tight efficiently com-
putable upper bound on ϵ-risk of the associated estimate

is the subject of Section 3.3, where it is solved “in the full range” of our
assumptions (ellitopic X , sub-Gaussian zero mean η and ξ). In contrast, the
Synthesis problem in which we want to minimize the above bound w.r.t.
H turns out to be more involving—the bound to be optimized happens
to be nonconvex in H. When uncertainty in sensing matrix is present, the
strategy to circumvent this difficulty developed in [28, Section 5.1] happens
to work only when X is an ellipsoid rather than a general-type ellitope.
The corresponding developments are the subject of Sections 3.4–3.6.

1 Exact definitions of these sets are reproduced in the main body of the paper. For the
time being, it suffices to point out two instructive examples: the bounded intersections of
finitely many sets of the form {x : ∥Px∥p ≤ 1}, p ≥ 2, is an ellitope (and a spectratope as
well), and the unit ball of the spectral norm in the space of m×n matrices is a spectratope.
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Notation and assumptions. We denote with ∥ · ∥ the norm on Rν used to
measure the estimation error. In what follows, ∥ ·∥ is a maximum of Euclidean
norms

∥u∥ = max
ℓ≤L

√
uTRℓu,

where Rℓ ∈ Sν
+, ℓ = 1, ..., L, are given matrices with

∑
ℓRℓ ≻ 0.

Throughout the paper, unless otherwise is explicitly stated, we assume
that observation noise ξ and uncertainty η are zero-mean sub-Gaussian: ξ ∼
SG(0, σ2I) and η ∼ SG(0, I), i.e.,

E
{
et

T ξ
}
≤ exp

(
σ2

2 ∥t∥22
)

∀t ∈ Rm, (4)

E
{
et

T η
}
≤ exp

(
1
2∥t∥

2
2

)
∀t ∈ Rq. (5)

Given ϵ ∈ (0, 1), we quantify the quality of recovery ŵ(·) of w = Bx by its
maximal over x ∈ X ϵ-risk

Riskϵ[ŵ|X ] := sup
x∈X

inf {ρ : Probξ,η{∥Bx− ŵ(A[η]x+ ξ)∥ > ρ} ≤ ϵ} (6)

(the radius of the smallest ∥ · ∥-ball centered at ŵ(ω) which covers Bx with
probability ≥ 1− ϵ, uniformly over x ∈ X ).

2 Design of Presumably Good Linear Estimate

2.1 Preliminaries: Ellitopes

Throughout this section, we assume that the signal set X is a basic ellitope.
Recall that, by definition [25,28], a basic ellitope in Rn is a set of the form

X = {x ∈ Rn : ∃t ∈ T : xTTkx ≤ tk, k ≤ K}, (7)

where Tk ∈ Sn
+, Tk ⪰ 0,

∑
kTk ≻ 0, and T ⊂ RK

+ is a convex compact set
with a nonempty interior which is monotone: whenever 0 ≤ t′ ≤ t ∈ T one has
t′ ∈ T .

Clearly, every basic ellitope is a convex compact set with nonempty interior
which is symmetric w.r.t. the origin. For instance,
A. Bounded intersection X of K centered at the origin ellipsoids/elliptic cylin-
ders {x ∈ Rn : xTTkx ≤ 1} [Tk ⪰ 0] is a basic ellitope:

X = {x ∈ Rn : ∃t ∈ T := [0, 1]K : xTTkx ≤ tk, k ≤ K}

In particular, the unit box {x ∈ Rn : ∥x∥∞ ≤ 1} is a basic ellitope.
B. A ∥ · ∥p-ball in Rn with p ∈ [2,∞] is a basic ellitope:

{x ∈ Rn : ∥x∥p ≤ 1} =
{
x : ∃t ∈ T = {t ∈ Rn

+, ∥t∥p/2 ≤ 1} : x2
k ≤ tk, k ≤ K

}
.
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In the present context, our interest for ellitopes is motivated by their special
relationship with the optimization problem

Opt∗(C) = max
x∈X

xTCx, C ∈ Sn (8)

of maximizing a homogeneous quadratic form over X . As it is shown in [28],
when X is an ellitope, (8) admits “reasonably tight” efficiently computable
upper bound. Specifically,

Theorem 2.1 [28, Proposition 4.6] Given ellitope (7) and matrix C, consider
the quadratic maximization problem (8) along with its relaxation

Opt(C) = min
λ

{
ϕT (λ) : λ ≥ 0,

∑
k
λkTk − C ⪰ 0

}
(here and in what follows, ϕS(t) = sups∈S tT s stands for the support function
of nonempty set S ⊂ RN ). The problem is computationally tractable and solv-
able, and Opt(C) is an efficiently computable upper bound on Opt∗(C). This
upper bound is tight:

Opt∗(C) ≤ Opt(C) ≤ 3 ln(
√
3K)Opt∗(C).

2.2 Tight Upper Bounding the Risk of Linear Estimate

Consider a linear estimate

ŵH(ω) = HTω [H ∈ Rm×ν ]

Proposition 2.1 In the setting of this section, synthesis of a presumably good
linear estimate reduces to solving the convex optimization problem

min
H∈Rm×ν

R[H] (9)

where

R[H] = min
λℓ,µ

ℓ,κℓ,

κℓ,ρ,ϱ

{[
1 +

√
2 ln(2L/ϵ)

] [
σmax

ℓ≤L
∥HR

1/2
ℓ ∥Fro + ρ

]
+ ϱ : (10)

µℓ ≥ 0,κℓ ≥ 0, λℓ + ϕT (µℓ) ≤ ρ, κℓ + ϕT (κℓ) ≤ ϱ, ℓ ≤ L λℓIνq
1
2

[
R

1/2
ℓ HTA1; ...;R

1/2
ℓ HTAq

]
1
2

[
AT

1 HR
1/2
ℓ , ..., AT

q HR
1/2
ℓ

] ∑
kµ

ℓ
kTk

 ⪰ 0, ℓ ≤ L[
κℓIν

1
2R

1/2
ℓ [B − HTA]

1
2 [B − HTA]TR

1/2
ℓ

∑
kκ

ℓ
kTk

]
⪰ 0, ℓ ≤ L

 .

For a candidate contrast matrix H, the ϵ-risk of the linear estimate ŵH
lin(ω) =

HTω is upper-bounded by R[H].
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When the ellitope X—as simple as possible—is the unit ∥ · ∥2-ball, the right
hand side of (10) can be computed in closed analytic form, resulting in

R[H] =
[
1 +

√
2 ln(2L/ϵ)

] [
σmax

ℓ≤L
∥HR

1/2
ℓ ∥Fro +max

ℓ≤L

∥∥∥∥∥∥
R

1/2
ℓ HTA1

· · ·
R

1/2
ℓ HTAq

∥∥∥∥∥∥
2,2

]
+max

ℓ≤L
∥R1/2

ℓ [B −HTA]∥2,2,

where ∥ · ∥2,2 stands for the spectral norm of a matrix.

2.3 A Modification

Let us assume that an Υ -repeated version of observation (2) is available, i.e.,
we observe

ωΥ = {ωk = A[ηk]x+ ξk, k = 1, ..., Υ} (11)

with independent across k pairs (ξk, ηk). In this situation, we can relax the
assumption of sub-Gaussianity of ξ and η to the second moment boundedness
condition

E{ξξT } ⪯ σ2Im, E
{
ηηT

}
⪯ Iq. (12)

Let us consider the following construction. For each ℓ ≤ L, given H ∈ Rm×ν

we denote

R̃ℓ[H] = min
λ,µ,κ,κ

{
σ∥HR

1/2
ℓ ∥Fro + λ+ ϕT (µ) + κ+ ϕT (κ) : (13)

µ ≥ 0,κ ≥ 0,

[
κIν

1
2R

1/2
ℓ [B −HTA]

1
2 [B −HTA]TR

1/2
ℓ

∑
kκkTk

]
⪰ 0 λIνq

1
2

[
R

1/2
ℓ HTA1; ...;R

1/2
ℓ HTAq

]
1
2

[
AT

1 HR
1/2
ℓ , ..., AT

q HR
1/2
ℓ

] ∑
kµkTk

 ⪰ 0


and consider the convex optimization problem

H̃ℓ ∈ Argmin
H

R̃ℓ[H].

We define the “reliable estimate” ŵ(r)(ωΥ ) of w = Bx as follows.

1. Given H̃ℓ ∈ Rm×ν and observations ωk we compute linear estimates wℓ(ωk) =

H̃ℓωk, ℓ = 1, ..., L, k = 1, ..., Υ ;
2. We define vectors zℓ ∈ Rν as geometric medians of wℓ(ωk):

zℓ(ω
Υ ) ∈ Argmin

z

Υ∑
k=1

∥R1/2
ℓ (wℓ(ωk)− z)∥2, ℓ = 1, ..., L.
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3. Finally, we select as ŵ(r)(ωΥ ) any point of the set

W(ωΥ ) =

L⋂
ℓ=1

{
w ∈ Rν : ∥R1/2

ℓ (zℓ(ω
Υ )− w)∥2 ≤ 4R̃ℓ[H̃ℓ]

}
.

or set ŵ(r)(ωΥ ) = 0 if W(ωΥ ) = ∅.

We have the following analog of Proposition 2.1.

Proposition 2.2 In the situation of this section, it holds

sup
x∈X

Eηk,ξk

{
∥R1/2

ℓ (wℓ(ωk)−Bx)∥22
}
≤ R̃2

ℓ [H̃ℓ], ℓ ≤ L (14)

and

Prob
{
∥R1/2

ℓ (zℓ(ω
Υ )−Bx)∥2 ≥ 4R̃ℓ[H̃ℓ]

}
≤ e−0.1070Υ , ℓ ≤ L. (15)

As a consequence, whenever Υ ≥ ln[L/ϵ]/0.1070, the ϵ-risk of the aggregated
estimate ŵ(r)(ωΥ ) satisfies

Riskϵ[ŵ
(r)(ωΥ )|X ] ≤ R, R = 8max

ℓ≤L
R̃ℓ[H̃ℓ].

Remark. Proposition 2.2 is motivated by the desire to capture situations in
which sub-Gaussian assumption on η and ξ does not hold or is too restrictive.
Consider, e.g., the case where the uncertainty in the sensing matrix reduces to
zeroing out some randomly selected columns in the nominal matrix A (think
of taking picture through the window with frost patterns). Denoting by γ the
probability to zero out a particular column and assuming that columns are
zeroed out independently, model (2) in this situation reads

ω = A[η]x+ ξ, A[η] = (1− γ)A+
∑n

α=1
ηαAα

where η1, ..., ηn are i.i.d. zero mean random variables taking values (γ − 1)ρ
and γρ with probabilities γ and 1 − γ, and Aα, 1 ≤ α ≤ n, is an m × n
matrix with all but the α-th column being zero and Colα[Aα] = ρ−1Colα[A].
Scaling factor ρ is selected to yield the unit sub-Gaussianity parameter of η or
E{η2α} = 1 depending on whether Proposition 2.1 or Proposition 2.2 is used.
For small γ, the scaling factor ρ is essentially smaller in the first case, resulting
in larger “disturbance matrices” Aα and therefore—in stricter constraints in
the optimization problem (9), (10) responsible for the design of the linear
estimate.
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Fig. 1 Distributions of ℓ2-recovery errors and upper bounds of the robust and “nominal”
estimates for different values of γ parameter.

2.4 Numerical Illustration

In Figure 1 we present results of a toy experiment in which

– n = 32,m = 32, and ν = 16, Ax ∈ Rm is the discrete time convolution of
x ∈ Rn with a simple kernel κ of length 9 restricted onto the “time hori-
zon” {1, ..., n}, and Bx cuts off x the first ν entries. We consider Gaussian
perturbation η ∼ N (0, γ2Iq), q = 9, and A[η]x = [A+

∑q
α=1 ηαAα]x which

is the convolution of x with the kernel κη restricted onto the time horizon
{1, ..., n}, γ being the control parameter.

– L = 1 and ∥ · ∥ = ∥ · ∥2,
– X is the ellipsoid {x :

∑
i i

2[Dx]2i ≤ 1}, where D is the matrix of inverse
Discrete Cosine Transform of size n× n.

– ξ ∼ N (0, σ2Im), σ = 10−4.

In each cell of the plot we represent error distributions and upper risk bounds
(horizontal bar) of four estimates (from left to right) for different uncertainty
levels γ: (1) robust estimate by Proposition 2.1 and upper bound R on its
0.05-risk, (2) single-observation estimate w1(ω1) = H1ω1 yielded by the mini-

mizer H1 of R̃1[H] over H, see (13), and upper bound R̃1[H1] on its expected
error risk,2 (3) “nominal” estimate—estimate by Proposition 2.1 as applied to
the “no uncertainty” case where all Aα in (3) are set to 0 and upper bound R
from (10) on its 0.05-risk computed using actual uncertainty level, (4) “nom-

inal” estimate w̃1(ω1) = H̃1ω1 yielded by the minimizer H̃1 of R̃1[H] over H

2 We define expected error risk of a Υ -observation estimate x̂(ωΥ ) of Bx as
supx∈X EωΥ∼PΥ

x
{∥x̂(ωΥ )−Bx∥}, where PΥx is the distribution of ωΥ stemming from x.
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in the “no uncertainty” case and upper bound R̃1[H̃1] on its “actual”—with
uncertainty present—expected error risk.

3 Design of Presumably Good Polyhedral Estimate

3.1 Preliminaries on Polyhedral Estimates

Consider a slightly more general than (2), (3) observation scheme

ω = Ax+ ζ,

where A ∈ Rm×n is given, unknown signal x is known to belong to a given
signal set X given by (7), and ζ is observation noise with probability distribu-
tion Px which can depend on x. For example, when observation ω is given by
(2), (3), we have

ζ =
∑q

α=1
ηαAαx+ ξ

with zero mean sub-Gaussian η and ξ.
When building polyhedral estimate in the situation in question, one, given

tolerance ϵ ∈ (0, 1) and a positive integer M , specifies a computationally
tractable convex set H, the larger the better, of vectors h ∈ Rm such that

Probζ∼Px
{|hT ζ| > 1} ≤ ϵ/M ∀x ∈ X . (16)

A polyhedral estimate ŵH(·) is specified by contrast matrix H ∈ Rm×M re-
stricted to have all columns in H according to

ω 7→ x̂H(ω) ∈ Argmin
u∈X

{
∥HT [Au− ω]∥∞

}
, ŵH

poly(ω) = Bx̂H(ω). (17)

It is easily seen (cf. [28, Proposition 5.1.1]) that the ϵ-risk (6) of the above
estimate is upper-bounded by the quantity

p[H] = sup
y

{
∥By∥ : y ∈ 2X , ∥HTAy∥∞ ≤ 2

}
. (18)

Indeed, let h1, ..., hM be the columns of H. For x ∈ X fixed, the in-
clusions hj ∈ H imply that the Px-probability of the event Zx = {ζ :
|ζThj | ≤ 1 ∀j ≤ M} is at least 1 − ϵ. When this event takes place,
we have ∥HT [ω − Ax]∥∞ ≤ 1, which combines with x ∈ X to im-
ply that ∥HT [ω − Ax̂H(ω)]∥∞ ≤ 1, so that ∥HTA[x − x̂H(ω)]∥∞ ≤ 2,
and besides this, x − x̂H(ω) ∈ 2X , whence ∥Bx − ŵH

poly(ω)∥ ≤ p[H]
by definition of p[H]. The bottom line is that whenever x ∈ X and
ζ = ω−Ax ∈ Zx, which happens with Px-probability at least 1− ϵ, we
have ∥Bx − ŵH

poly(ω)∥ ≤ p[H], whence the ϵ-risk of the estimate ŵH
poly

indeed is upper-bounded by p[H].
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To get a presumably good polyhedral estimate, one minimizes p[H] over M×ν
matrices H with columns from H. Precise minimization is problematic, be-
cause p[·], while being convex, is usually difficult to compute. Thus, the design
routine proposed in [27] goes via minimizing an efficiently computable upper
bound on p[H]. It is shown in [28, Section 5.1.5] that when X is ellitope (7)
and ∥u∥ = ∥Ru∥2, a reasonably tight upper bound on p[H] is given by the
efficiently computable function

p+[H] = 2 min
λ,µ,υ

{
λ+ ϕT (µ) +

∑
i
υi : µ ≥ 0, υ ≥ 0[

λIν
1
2RB

1
2B

TRT ATHDiag{υ}HTA+
∑

kµkTk

]
⪰ 0

}
.

Synthesis of a presumably good polyhedral estimate reduces to minimizing the
latter function in H under the restriction Colj [H] ∈ H. Note that the latter
problem still is nontrivial because p+ is nonconvex in H.

Our objective here is to implement the outlined strategy in the case of
observation ω is given by (2), (3).

3.2 Specifying H

Our first goal is to specify, given tolerance δ ∈ (0, 1), a set Hδ ⊂ Rm, the
larger the better, such that

h ∈ Hδ, x ∈ X ⇒ Probζ∼Px{|hT ζ| > 1} ≤ δ. (19)

Note that a “tight” sufficient condition for the validity of (19) is

Probξ{|hT ξ| > 1/2} ≤ δ/2, (20a)

Probη

{∣∣∣∑q

α=1
[hTAαx]ηα

∣∣∣ > 1/2
}
≤ δ/2, ∀x ∈ X . (20b)

Note that under the sub-Gaussian assumption (4), hT ξ is itself sub-Gaussian,
hT ξ ∼ SG(0, σ2∥h∥22); thus, a tight sufficient condition for (20a) is

∥h∥2 ≤ [σχ(δ)]−1, χ(δ) = 2
√
2 ln(2/δ). (21)

Furthermore, by (5), r.v.
∑q

α=1[h
TAαx]ηα = hT [A1x, ..., Aqx]η is sub-Gaussian

with parameters 0 and ∥[hTA1x; ...;h
TAqx]∥22, implying the validity of (20b)

for a given x whenever

∥[hTA1x; ...;h
TAqx]∥2 ≤ χ−1(δ).

We want this relation to hold true for every x ∈ X , that is, we want the
operator norm ∥ · ∥X ,2 of the mapping

x 7→ A[h]x, A[h] = [hTA1;h
TA2; ...;h

TAq]
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induced by the norm ∥ · ∥X on the argument and the norm ∥ · ∥2 on the image
space to be upper-bounded by χ−1(δ):

∥A[h]∥χ,2 ≤ χ−1(δ). (22)

Invoking [23, Theorem 3.1] (cf. also the derivation in the proof of Proposition
2.1 in Section A.1.2), a tight sufficient condition for the latter relation is

Opt[h] := minλ,µ

λ+ ϕT (µ) :
µ ≥ 0,[

λIq
1
2A[h]

1
2A

T [h]
∑

kµkTk

]
≻ 0

 ≤ χ−1(δ), (23)

tightness meaning that Opt[h] is within factor O(1)
√

ln(K + 1) of ∥A[h]∥X ,2.
∥A[h]∥X ,2 ≤ χ(δ).

The bottom line is that with Hδ specified by constraints (21) and (22) (or
by the latter replaced with its tight relaxation (23)) we do ensure (19).

3.3 Bounding the Risk of the Polyhedral Estimate ŵH

Proposition 3.1 In the situation of this section, let ϵ ∈ (0, 1), and let H =
[H1, ...,HL] be m×ML matrix with L blocks Hℓ ∈ Rm×M such that Colj [H] ∈
Hδ for all j ≤ ML and δ = ϵ/ML. Consider optimization problem

p+[H] = 2 min
λℓ,µℓ,υℓ,ρ

{
ρ : µℓ ≥ 0, υℓ ≥ 0, λℓ + ϕT (µ

ℓ) +
∑M

j=1
υℓ
j ≤ ρ, ℓ ≤ L[

λℓIν
1
2R

1/2
ℓ B

1
2B

TR
1/2
ℓ ATHℓDiag{υℓ}HT

ℓ A+
∑

kµ
ℓ
kTk

]
⪰ 0, ℓ ≤ L

}
. (24)

Then Riskϵ[ŵ
H |X ] ≤ p+[H].

3.4 Optimizing p+[H]—the Strategy

Proposition 3.1 resolves the analysis problem—it allows to efficiently upper-
bound the ϵ-risk of a given polyhedral estimate ŵH

poly. At the same time,
“as is,” it does not allow to build the estimate itself (solve the “estimate
synthesis” problem—compute a presumably good contrast matrix) because
straightforward minimization of p+[H] (that is, adding H to decision variables
of the right hand side of (24) results in a nonconvex problem. A remedy, as
proposed in [28, Section 5.1], stems from the concept of a cone compatible
with a convex compact set H ⊂ Rm which is defined as follows:

Given positive integer J and real κ ≥ 1 we say that a closed convex cone
K ⊂ Sm

+ ×R+ is (J,κ)-compatible with H if

(i) whenever h1, ..., hJ ∈ H and υ ∈ RJ
+, the pair

(∑J
j=1υjhjh

T
j ,

∑
jυj

)
belongs to K, and “nearly vice versa”:
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(ii) given (Θ, ϱ) ∈ K and κ ≥ 1, we can efficiently build collections of vectors

hj ∈ H, and reals υj ≥ 0, j ≤ J , such that Θ =
∑J

j=1υjhjh
T
j and

∑
jυj ≤

κϱ.

Example. Let H be a centered at the origin Euclidean ball of radius R > 0
in RJ . When setting

K = {(Θ, ϱ) : Θ ⪰ 0,Tr(Θ) ≤ R2ϱ},

we obtain a cone (M, 1)-compatible with H. Indeed, for hj ∈ H and υj ≥ 0
we have

Tr
(∑

j
υjhjh

T
j

)
≤ R2

∑
j
υj ,

that is
(
Θ :=

∑
jυjhjh

T
j , ϱ :=

∑
jυj

)
∈ K. Vice versa, given (Θ, ϱ) ∈ K, i.e.,

Θ ⪰ 0 and ϱ ≥ Tr(Θ)/R2 and specifying f1, ..., fm as the orthonormal system
of eigenvectors of Θ, and λj as the corresponding eigenvalues and setting hj =
Rfj , υj = R−2λj), we get hj ∈ H, Θ =

∑
jυjhjh

T
j and

∑
jυj = Tr(Θ)/R2 ≤ ϱ.

Coming back to the problem of minimizing p+[H] in H, assume that we
have at our disposal a cone K which is (M,κ)-compatible with Hδ. In this
situation, we can replace the nonconvex problem

min
H=[H1,...,HL]

{p+[H] : Colj [H
ℓ]j ∈ Hδ} (25)

with the problem

min
λ̄ℓ,µ̄

ℓ,
Θℓ,ϱℓ,ρ̄

{
ρ̄ : (Θℓ, ϱℓ) ∈ K, µ̄ℓ ≥ 0, λ̄ℓ + ϕT (µ̄

ℓ) + ϱℓ ≤ ρ̄, ℓ ≤ L,

[
λ̄ℓIν

1
2R

1/2
ℓ B

1
2B

TR
1/2
ℓ ATΘℓA+

∑
kµ̄

ℓ
kTk

]
⪰ 0, ℓ ≤ L

}
. (26)

Unlike (25), the latter problem is convex and efficiently solvable provided that
K is computationally tractable, and can be considered as “tractable

√
κ-tight”

relaxation of the problem of interest (25). Namely,

– Given a feasible solution Hℓ, λℓ, µ
ℓ, υℓ, ρ to the problem of interest (25), we

can set

Θℓ =
∑M

j=1
υℓ
jColj [Hℓ]Col

T
j [Hℓ], ϱℓ =

∑
j
υℓ
j ,

thus getting (Θℓ, ϱℓ) ∈ K. By (i) in the definition of compatibility,Θℓ, ϱℓ, λ̄ℓ =
λℓ, µ̄

ℓ = µℓ, ρ̄ = ρ is a feasible solution to (26), and this transformation
preserves the value of the objective

– Vice versa, given a feasible solution Θℓ, ϱℓ, λ̄ℓ, µ̄
ℓ, ρ̄ to (26) and invoking

(ii) of the definition of compatibility, we can convert, in a computationally
efficient way, the pairs (Θℓ, ρℓ) ∈ K into the pairs Hℓ ∈ Rm×M , ῡℓ ∈ Rm

+

in such a way that the columns of Hℓ belong to Hδ, Θℓ = HℓDiag{ῡℓ}HT
ℓ ,
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j ῡ

ℓ
j ≤ κϱℓ. Assuming w.l.o.g. that all matrices R

1/2
ℓ B are nonzero, we

obtain ϕT (µ̄
ℓ) + ϱℓ > 0 and λ̄ℓ > 0 for all ℓ. We claim that setting

γℓ =
√
[ϕT (µ̄ℓ) + κϱℓ]/λ̄ℓ, λℓ = γℓλ̄ℓ, µℓ = γ−1

ℓ µ̄ℓ, υ
ℓ = γ−1

ℓ ῡℓ, ρ =
√
κρ̄

we get a feasible solution to (25). Indeed, all we need is to verify that
this solution satisfies, for every ℓ ≤ L, constraints of (24). To check the
semidefinite constraint, note that[

λℓIν
1
2R

1/2
ℓ B

1
2B

TR
1/2
ℓ ATHℓDiag{υℓ}HT

ℓ A+
∑

kµ
ℓ
kTk

]

=

[
γℓλ̄ℓIν

1
2R

1/2
ℓ B

1
2B

TR
1/2
ℓ γ−1

ℓ

[
ATHℓDiag{ῡℓ}HT

ℓ A+
∑

kµ̄
ℓ
kTk

] ] ,

and the matrix in the right-hand side is ⪰ 0 by the semidefinite constraint
of (26) combined with Θℓ =

∑
j ῡ

ℓ
jColj [Hℓ]Col

T
j [Hℓ]. Furthermore, note

that by construction
∑

j ῡ
ℓ
j ≤ κϱℓ, whence

λℓ + ϕT (µ
ℓ) +

∑
j
υℓ
j = γℓλ̄ℓ + γ−1

ℓ [ϕT (µ̄
ℓ) + κϱℓ] = 2

√
λ̄ℓ[ϕT (µ̄ℓ) + κϱℓ]

≤ 2
√
κ
√

λ̄ℓ[ϕT (µ̄ℓ) + ϱℓ] ≤
√
κ
[
λ̄ℓ + ϕT (µ̄

ℓ) + ϱℓ
]
≤

√
κρ̄ = ρ

(we have taken into account that κ ≥ 1).

We conclude that the (efficiently computable) optimal solution to the relaxed
problem (26) can be efficiently converted to a feasible solution to problem
(25) which is within the factor at most

√
κ from optimality in terms of the

objective. Thus,

(!) Given a κ-compatible with Hδ cone K, we can find, in a computa-
tionally efficient fashion, a feasible solution to the problem of interest
(25) with the value of the objective by at most the factor

√
κ greater

than the optimal value of the problem.

What we propose is to build a presumably good polyhedral estimate by
applying the just outlined strategy to the instance of (25) associated with
H = Hδ given by (21) and (23). The still missing—and crucial—element in this
strategy is a computationally tractable cone K which is (M,κ)-compatible, for
some “moderate” κ, with our Hδ. For the time being, we have at our disposal
such a cone only for the “no uncertainty in sensing matrix” case (that is, in the
case where all Aα are zero matrices), and it is shown in [28, Chapter 5] that
in this case the polyhedral estimate stemming from the just outlined strategy
is near minimax-optimal, provided that ξ ∼ N (0, σ2Im).

When “tight compatibility”—with κ logarithmic in the dimension of H—
is sought, the task of building a cone (M,κ)-compatible with a given convex
compact set H reveals to be highly nontrivial. To the best of our knowledge,
for the time being, the widest family of sets H for which tight compatibility
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has been achieved is the family of ellitopes [29]. Unfortunately, this family
seems to be too narrow to capture the sets Hδ we are interested in now. At
present, the only known to us “tractable case” here is the ball case K = 1, and
even handling this case requires extending compatibility results of [29] from
ellitopes to spectratopes.

3.5 Estimate Synthesis Utilizing Cones Compatible with Spectratopes

Let for Sij ∈ Sdi , 1 ≤ i ≤ I, 1 ≤ j ≤ N , and let for g ∈ RN , Si[g] =∑N
j=1gjS

ij . A basic spectratope in RN is a set H ⊂ RN represented as

H = {g ∈ RN : ∃r ∈ R : S2
i [g] ⪯ riIdi

, i ≤ I}; (27)

here R is a compact convex monotone subset of RI
+ with nonempty interior,

and
∑

iS
2
i [g] ≻ 0 for all g ̸= 0. A spectratope, by definition, is a linear image

of a basic spectratope.
As shown in [28], where the notion of a spectratope was introduced, spec-

tratopes are convex compact sets symmetric w.r.t. the origin, and basic spec-
tratopes have nonempty interiors. The family of spectratopes is rather rich—
finite intersections, direct products, linear images, and arithmetic sums of spec-
tratopes, same as inverse images of spectratopes under linear embeddings, are
spectratopes, with spectratopic representations of the results readily given by
spectratopic representations of the operands.

Every ellitope is a spectratope. An example of spectratope which is impor-
tant to us is the set Hδ given by (21) and (22) in the “ball case” where X is an
ellipsoid (case of K = 1). In this case, by one-to-one linear parameterization
of signals x, accompanied for the corresponding updates in A,Aα, and B, we
can assume that T1 = In in (7), so that X is the unit Euclidean ball,

X = {x ∈ Rn : xTx ≤ 1}.

In this situation, denoting by ∥·∥2,2 the spectral norm of a matrix, constraints
(21) and (22) specify the set

Hδ =
{
h ∈ Rm : ∥h∥2 ≤ (σχ(δ))−1, ∥A[h]∥2,2 ≤ χ−1(δ)

}
=

{
h ∈ Rm : ∃r ∈ R : S2

j [h] ⪯ rjIdj
, j ≤ 2

}
,

(28)

where R = {[r1; r2] : 0 ≤ r1, r2 ≤ 1},

S1[h] = σχ(δ)

[
h

hT

]
∈ Sm+1, S2[h] = χ(δ)

[
A[h]

A[h]T

]
∈ Sm+q

with d1 = m + 1, d2 = m + q. We see that in the ball case Hδ is a basic
spectratope.

We associate with a spectratope H, as defined in (27), linear mappings

Si[G] =
∑

p,q
GpqS

ipSiq : SN → Sdi .
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Note that

Si

[∑
j
gjg

T
j

]
=

∑
j
S2
i [gj ], gj ∈ RN ,

and

G ⪯ G′ ⇒ Si[G] ⪯ Si[G
′], (29a)

{G ⪰ 0 & Si[G] = 0∀ℓ} ⇒ G = 0. (29b)

A cone “tightly compatible” with a basic spectratope is given by the following

Proposition 3.2 Let H ⊂ RN be a basic spectratope

H = {g ∈ RN : ∃r ∈ R : S2
i [g] ⪯ riIdi

, i ≤ I}

with “spectratopic data” R and Si[·], i ≤ I, satisfying the requirements in the
above definition.

Let us specify the closed convex cone K ⊂ SN
+ ×R+ as

K =
{
(Σ, ρ) ∈ SN

+ ×R+ : ∃r ∈ R : Si[Σ] ⪯ ρriIdi , i ≤ I
}
.

Then
(i) whenever Σ =

∑
jλjgjg

T
j with λj ≥ 0 and gj ∈ H ∀j, we have(

Σ,
∑

j
λj

)
∈ K,

(ii) and “nearly” vice versa: when (Σ, ρ) ∈ K, there exist (and can be found
efficiently by a randomized algorithm) λj ≥ 0 and gj, j ≤ N , such that

Σ =
∑

j
λjgjg

T
j with

∑
j
λj ≤ κρ and gj ∈ H, j ≤ N.

where

κ = 4 ln(4DN), D =
∑

i
di.

For the proof and for the sketch of the randomized algorithm mentioned in
(ii), see Section A.2.2 of the appendix.

3.6 Implementing the Strategy

We may now summarize our approach to the design of a presumably good
polyhedral estimate. By reasons outlined at the end of Section 3.4, the only
case where the components we have developed so far admit “smooth assem-
bling” is the one where X is ellipsoid which in our context w.l.o.g. can be
assumed to be the unit Euclidean ball. Thus, in the rest of this Section it is
assumed that X is the unit Euclidean ball in Rn. Under this assumption the
recipe, suggested by the preceding analysis, for designing presumably good
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polyhedral estimate is as follows. Given ϵ ∈ (0, 1), we
• set δ = ϵ/Lm and solve the convex optimization problem

Opt = min
Θℓ∈Sm,

ϱℓ,λ̄ℓ,µ̄ℓ

{
ρ̄ : µ̄ℓ ≥ 0, λ̄ℓ + µ̄ℓ + ϱℓ ≤ ρ̄, Θℓ ⪰ 0, ℓ ≤ L, (30)

[
Tr(AT

αΘℓAβ)
]q
α,β=1 ∑

α,β

AT
αΘℓAβ

 ⪯ χ−2(δ)ϱℓIq+n, ℓ ≤ L,[
λ̄ℓIν

1
2R

1/2
ℓ B

1
2B

TR
1/2
ℓ ATΘℓA+ µ̄ℓIn

]
⪰ 0, σ2χ2(δ)Tr(Θℓ) ≤ ϱℓ, ℓ ≤ L


—this is what under the circumstances becomes problem (26) with the cone
K given by Proposition 3.2 as applied to the spectratope Hδ given by (28).
Note that by Proposition 3.2, K is κ-compatible with Hδ, with

κ = 4 ln(4m(m+ n+ q + 1)).

For instance, in the case of rank 1 matrices Aα = fαg
T
α and ∥ · ∥ = ∥ · ∥2 (30)

becomes

Opt = min
Θ∈Sm,
ϱ,λ̄,µ̄

{
ρ̄ : µ̄ ≥ 0, Θ ⪰ 0, σ2χ2(δ)Tr(Θ) ≤ ϱ, λ̄+ µ̄+ ϱ ≤ ρ̄

[ [
(fT

α Θfβ)g
T
α gβ

]q
α,β=1 [∑q

α,β=1[f
T
α Θfβ

]
gαg

T
β

]
⪯ χ−2(δ)ϱIq+n[

λ̄ℓIν
1
2B

1
2B

T ATΘA+ µ̄In

]
⪰ 0

 (31)

• use the randomized algorithm described in the proof of Proposition 3.2 to
convert the Θℓ-components of the optimal solution to (30) into a contrast
matrix. Specifically,

1. for ℓ = 1, 2, ..., L we generate matrices Gk
ς = Θ

1/2
ℓ Diag{ςk}O, k =

1, ...,K, where O is the orthonormal matrix of m×m Discrete Cosine Trans-
form, and ςk are i.i.d. realizations of m-dimensional Rademacher random vec-
tor;

2. for every k ≤ K, we compute the maximum θ(Gk
ℓ ) of values of the

Minkowski function of Hδ as evaluated at the columns of Gk
ℓ , with Hδ given

by (21), (22), and select among Gk
ℓ matrix Gℓ with the smallest value of θ(Gk

ℓ ).
Then the ℓ-th block of the contrast matrix we are generating isHℓ = Gℓθ

−1(Gℓ).
With reliability 1−2−KL the resulting contrast matrix H (which definitely

has all columns in Hδ) is, by (!), near-optimal, within factor
√
κ in terms of

the objective, solution to (25), and the ϵ-risk of the associated polyhedral
estimate is upper-bounded by 2

√
κOpt with Opt given by (30). In Figure

2 we present error distributions and upper risk bounds (horizontal bar) of
linear and polyhedral estimates in the numerical experiment with the model
described in Section 2.3. In the plot cells, from left to right: (1) robust linear
estimate by Proposition 2.1 and upper bound R on its 0.05-risk, (2) robust
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Fig. 2 Distributions of ℓ2-recovery errors and upper bounds of the robust linear and robust
polyhedral estimates for different values of γ parameter.

linear estimate w1(ω1) yielded by Proposition 2.2 and upper bound R̃1 on
its expected error risk, (3) robust polyhedral estimate by Proposition 3.2 and
upper bound on its 0.05-risk.

3.7 A Modification

So far, our considerations related to polyhedral estimates were restricted to
the case of sub-Gaussian η and ξ. Similarly to what was done in Section 2.3,
we are about to show that passing from observation (2) to its K-repeated,
with “moderate” K, version (cf. (11))

ωK = {ωk = A[ηk]x+ ξk, k = 1, ...,K}

with pairs (ηk, ξk) independent across k, we can relax the sub-Gaussianity
assumption replacing it with moment condition (12). Specifically, let us set

H =
{
h ∈ Rm : σ∥h∥2 ≤ 1

8 , ∥A[h]∥X ,2 ≤ 1
8

}
, A[h]x = [hTA1; ...h

TAq]

(cf. (21) and (22)).
Given tolerance an m ×M contrast matrix H with columns hj ∈ H, and

observation (11), we build the polyhedral estimate as follows.3

1. For j = 1, ...,M we compute empirical medians yj of the data hT
j ωk, k =

1, ...,K,
yj = median{hT

j ωk, 1 ≤ k ≤ K}.
3 Readers acquainted with the literature on robust estimation will immediately recognize

that the proposed construction is nothing but a reformulation of the “median-of-means”
estimate [42] (see also [36,19,39,35]) for our purposes.
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2. We specify x̂H(ωK) as a point from Argminu∈X ∥y−HTAu∥∞ and use, as
the estimate of Bx, the vector ŵH

poly(ω
K) = Bx̂H(ωK).

Lemma 3.1 In the situation of this section, let ξk and ηk satisfy moment
constraint of (12), and let K ≥ κ = 2.5 ln[M/ϵ]. Then estimate ŵH

poly(ω
K)

satisfies (cf. (18))
Riskϵ[ŵ

H
poly(ω

K)|X ] ≤ p[H].

As an immediate consequence of the result of Lemma 3.1, the constructions
and results of Sections 3.3–3.6 apply, with χ(δ) = 8 and H in the role of Hδ,
to our present situation in which the sub-Gaussianity of ξ, η is relaxed to the
second moment condition (12) and instead of single observation ω, we have
access to a “short”—with K logarithmic in M/ϵ—sample of K independent
realizations of ω.

4 Conclusions

In this paper, we develop an approach to the design and performance analysis
of two classes of statistical techniques—linear and polyhedral estimates—for
recovering signal x from noisy observations of its linear image Ax. We assume
that a priori information about the signal localizes it in a known in advance
and “well-structured” convex set belonging to a family rich enough to cover a
wide spectrum of potential applications—the ellitopes and the spectratopes.
We focus on the situation where the sensing matrix A is affected by ran-
dom perturbations. Assuming that these perturbations and observation noises
are sub-Gaussian, we develop computationally efficient routines of design of
“presumably good” linear and polyhedral estimates and evaluating their per-
formance.

A natural alternative to the model of observation subject to “stochastic
uncertainty” in the sensing matrix is the model in which perturbations of A
are uncertain-but-bounded; this alternative is the subject of our forthcoming
paper.

Acknowledgements This work was supported by Multidisciplinary Institute in Artificial
intelligence MIAI @ Grenoble Alpes (ANR-19-P3IA-0003). Data sets generated during the
current study are available from the corresponding author on reasonable request.

A Proofs

A.1 Proofs for Section 2

A.1.1 Preliminaries: Concentration of Quadratic Forms of Sub-Gaussian
Vectors

For the reader’s convenience, we recall in this section some essentially known bounds for
deviations of quadratic forms of sub-Gaussian random vectors (cf., e.g., [18,46,47]).
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1o. Let ξ be a d-dimensional normal vector, ξ ∼ N (µ,Σ). For all h ∈ Rd and G ∈ Sd such
that G ≺ Σ−1 we have the well known relationship:

ln
(
Eξ

{
eh

T ξ+ 1
2
ξTGξ

})
= − 1

2
lnDet(I −Σ1/2GΣ1/2)

+ hTµ+ 1
2
µTGµ+ 1

2
[Gµ+ h]TΣ1/2(I −Σ1/2GΣ1/2)−1Σ1/2[Gµ− h].

Now, suppose that η ∼ SG(0, Σ) where Σ ∈ Sd+, let also h ∈ Rd and S ∈ Rd×d such that

SΣST ≺ I. Then for ξ ∼ N (h, STS) one has

Eη
{
eh

T η+ 1
2
ηT ST Sη

}
= Eη

{
Eξ

{
eη

T ξ
}}

= Eξ

{
Eη

{
eη

T ξ
}}

≤ Eξ

{
e

1
2
ξTΣξ

}
,

so that

ln
(
Eη

{
eh

T η+ 1
2
ηT ST Sη

})
≤ ln

(
Eξ

{
e

1
2
ξTΣξ

})
= − 1

2
lnDet(I − SΣST ) + 1

2
hTΣh+ 1

2
hTΣST (I − SΣST )−1SΣh

= − 1
2
lnDet(I − SΣST ) + 1

2
hTΣ1/2(I − SΣST )−1Σ1/2h.

In particular, when ζ ∼ SG(0, I), one has

ln
(
Eζ

{
eh

T ζ+ 1
2
ζTGζ

})
≤ − 1

2
lnDet(I −G) + 1

2
hT (I −G)−1h =: Φ(h,G).

Observe that Φ(h,G) is convex and continuous in h ∈ Rd and 0 ⪯ G ≺ I on its domain.
Using the inequality (cf. [34, Lemma 1])

∀v ∈ [0, 1[ − ln(1− v) ≤ v +
v2

2(1− v)
,

we get Φ(h,G) ≤ 1
2
Tr[G] + 1

4
Tr[G(I −G)−1G] + 1

2
hT (I −G)−1h =: Φ̃(h,G).Finally, using

Tr[G(I −G)−1G] ≤ (1− λmax(G))−1Tr[G2], hT (I −G)−1h ≤ (1− λmax(G))−1hT h,

we arrive at Φ̃(h,G) ≤ 1
2
Tr[G] + 1

4
(1− λmax(G))−1(Tr[G2] + 2∥h∥22) =: Φ(h,G).

2o. In the above setting, let Q ∈ Sd+, α > 2λmax(Q), G = 2Q/α, and let h = 0. By the
Cramer argument we conclude that

Prob
{
ζTQζ ≥ α[Φ(2Q/α) + ln ϵ−1]

}
≤ ϵ

where Φ(·) = Φ(0, ·). In particular,

Prob

{
ζTQζ ≥ min

α>2λmax(Q)
α[Φ(2Q/α) + ln ϵ−1]

}
≤ ϵ

Clearly, similar bounds hold with Φ replaced with Φ̃ and Φ. For instance,

Prob
{
ζTQζ ≥ α[Φ(2Q/α) + ln ϵ−1]

}
≤ ϵ,

so, when choosing α = 2λmax(Q) +

√
Tr(Q2)

ln ϵ−1 we arrive at the “standard bound”

Prob
{
ζTQζ ≥ Tr(Q) + 2∥Q∥Fro

√
ln ϵ−1 + 2λmax(Q) ln ϵ−1

}
≤ ϵ. (32)
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Corollary A.1 Let ϵ ∈ (0, 1), W1, ...,WL be matrices from Sd+, and let υ ∼ SG(0, V ) be a
d-dimensional sub-Gaussian random vector. Then

Prob

{
max
ℓ≤L

υTWℓυ ≥
[
1 +

√
2 ln(L/ϵ)

]2
max
ℓ≤L

Tr(WℓV )

}
≤ ϵ.

Proof. Let R2 = max
ℓ≤L

Tr(WℓV ). W.l.o.g. we may assume that υ = V 1/2ζ where ζ ∼

SG(0, I). Let us fix ℓ ≤ L. Applying (32) with Q = V 1/2WℓV
1/2 and ϵ replaced with ϵ/L,

when taking into account that υTWℓυ = ζTQζ with

λmax(Q) ≤ ∥Q∥Fro ≤ Tr(Q) ≤ R2,

we get

Prob

{
υTWℓυ ≥

[
1 +

√
2 ln(L/ϵ)

]2
R2

}
≤

ϵ

L
,

and the claim of the corollary follows. □

A.1.2 Proof of Proposition 2.1

Let H be a candidate contrast matrix.
1o. Observe that

∥ŵH(ω)−Bx∥ ≤ ∥HT ξ∥+
∥∥∥HT

∑q

α=1
ηαAαx

∥∥∥+ ∥[B −HTA]x∥. (33)

Clearly,

∥[B −HTA]x∥ ≤ max
ℓ≤L

{
max
x∈X

xT [B −HTA]TRℓ[B −HTA]x

}1/2

,

so that by Theorem 2.1,

∀x ∈ X ∥[B −HTA]x∥ ≤ max
ℓ≤L

rℓ(H) (34)

where

r2ℓ (H) = min
υ

{
ϕT (υ) : υ ≥ 0,

[
Iν R

1/2
ℓ [B −HTA]

[B −HTA]TR
1/2
ℓ

∑
kυkTk

]
⪰ 0

}
.

Taking into account that
√
u = minλ≥0{ u

4λ
+ λ} for u > 0, we get

rℓ(H) = min
υ,λ

{
λ+

ϕT (υ)

4λ
: υ ≥ 0, λ ≥ 0,

[
Iν R

1/2
ℓ [B −HTA]

[B −HTA]TR
1/2
ℓ

∑
kυkTk

]
⪰ 0

}
.

Setting µ = υ/(4λ), by the homogeneity of ϕT (·) we obtain

rℓ(H) = min
µ,λ

{
λ+ ϕT (µ) : µ ≥ 0,

[
λIν

1
2
R

1/2
ℓ [B −HTA]

1
2
[B −HTA]TR

1/2
ℓ

∑
kµkTk

]
⪰ 0

}
. (35)

2o. Next, by Corollary A.1 of the appendix,

Prob

{
∥HT ξ∥ ≥ [1 +

√
2 ln(2L/ϵ)]σmax

ℓ≤L

√
Tr(HRℓHT )

}
≤ ϵ/2. (36)

Similarly, because∥∥∥HT
∑q

α=1
ηαAαx

∥∥∥ = max
ℓ≤L

∥∥∥R1/2
ℓ HT [A1x, ..., Aqx]η

∥∥∥
2
,
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we conclude that for any x ∈ X

Prob

{∥∥∥HT
∑q

α=1
ηαAαx

∥∥∥ ≥ [1 +
√

2 ln(2L/ϵ)]max
ℓ≤L

sℓ(H)

}
≤ ϵ/2

where sℓ(H) =
{
maxx∈X xT

[∑
αA

T
αHRℓH

TAα
]
x
}1/2

. Again, by Theorem 2.1, sℓ(H) may
be tightly upper-bounded by the quantity sℓ(H) such that

s2ℓ (H) = min
υ

{ϕT (υ) : υ ≥ 0,[
Iνq [R

1/2
ℓ HTA1; ...;R

1/2
ℓ HTAq ]

[AT1 HR
1/2
ℓ , ..., ATq HR

1/2
ℓ ]

∑
kυkTk

]
⪰ 0

}
.

Now, repeating the steps which led to (35) above, we conclude that

sℓ(H) = min
µ′,λ′

{
λ′ + ϕT (µ′) : µ′ ≥ 0,[

λ′Iνq
1
2
[R

1/2
ℓ HTA1; ...;R

1/2
ℓ HTAq ]

1
2
[AT1 HR

1/2
ℓ , ..., ATq HR

1/2
ℓ ]

∑
kµ

′
kTk

]
⪰ 0

}
.

3o. When substituting the above bounds into (33), we conclude that for every feasible
solution λℓ, µ

ℓ, κℓ,κℓ, ρ, ϱ to problem (10) associated withH, the ϵ-risk of the linear estimate
ŵHlin(·) may be upper-bounded by the quantity

[1 +
√

2 ln(2L/ϵ)]

[
σmax
ℓ≤L

∥HR1/2
ℓ ∥Fro + ρ

]
+ ϱ. □

A.1.3 Proof of Proposition 2.2

1o. Let ℓ ≤ L and k ≤ K be fixed, let H = Hℓ ∈ Rm×ν be a candidate contrast matrix,
and let λ, µ, κ,κ be a feasible solution to (13). One has

Eξk

{
∥R1/2

ℓ HT ξk∥22
}

= Tr
(
Eξk

{
R

1/2
ℓ HT ξkξ

T
k HR

1/2
ℓ

})
≤ σ2Tr(HRℓH

T ) = σ2∥HR1/2
ℓ ∥2Fro. (37)

Next, for any x ∈ X fixed we have

Eηk

{∥∥∥R1/2
ℓ HT [

∑
α
[ηk]αAα]x

∥∥∥2
2

}
= Eηk

{∥∥∥R1/2
ℓ HT [A1x, ..., Aqx]ηk

∥∥∥2
2

}
= xT

[∑
α
ATαHRℓH

TAα
]
x = ∥[R1/2

ℓ HTA1; ...;R
1/2
ℓ HTAq ]x∥22 ≤ (λ+ ϕT (µ))2, (38)

where the concluding inequality follows from the constraints in (13) (cf. item 2o of the proof
of Proposition 2.1). Next, similarly to item 1o of the proof of Proposition 2.1 we have

∥R1/2
ℓ (B −HTA)x∥22 ≤ (κ+ ϕT (κ))2.

Put together, the latter bound along with (37) and (38) imply (14).
2o. By the Chebyshev inequality,

∀ℓ, k Prob
{
∥R1/2

ℓ (wℓ(ωk)−Bx)∥2 ≥ 2R̃ℓ[Hℓ]
}

≤ 1
4
;

applying [39, Theorem 3.1] we conclude that

∀ℓ Prob
{
∥R1/2

ℓ (zℓ(ω
K)−Bx)∥2 ≥ 2CαR̃ℓ[Hℓ]

}
≤ e−Kψ(α, 1

4
),
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where

ψ(α, β) = (1− α) ln
1− α

1− β
+ α ln

α

β

and Cα = 1−α√
1−2α

. When choosing α =
√
3

2+
√
3

which corresponds to Cα = 2 we obtain

ψ(α, 1
4
) = 0.1070... so that for ℓ ≤ L

Prob
{
∥R1/2

ℓ (zℓ(ω
K)−Bx)∥2 ≥ 4R̃ℓ[Hℓ]

}
≤ e−0.1070K ,

what is (15).

3o. Now, let K ≥ ln(L/ϵ)/0.1070. In this case, for all ℓ ≤ L

Prob
{
∥R1/2

ℓ (zℓ(ω
K)−Bx)∥2 ≥ 4R̃ℓ[Hℓ]

}
≤ ϵ/L,

so that with probability ≥ 1 − ϵ the set W(ωK) is not empty (it contains Bx), and for all
v ∈ W(ωK) one has

∥R1/2
ℓ (v −Bx)∥2 ≤ ∥R1/2

ℓ (zℓ(ω
K)− v)∥2 + ∥R1/2

ℓ (zℓ(ω
K)−Bx)∥2 ≥ 8R̃ℓ[Hℓ]. □

A.2 Proofs for Section 3

A.2.1 Proof of Proposition 3.1

All we need to prove is that if λℓ, µ
ℓ, υℓ, ρ is a feasible solution to the optimization problem

(24), then the inequality

Riskϵ[ŵ
H
poly|X ] ≤ 2ρ

holds. Indeed, let us fix x ∈ X . Since the columns of H belong to Hδ, the Px-probability of
the event

Zc = {ζ : ∥HT ζ∥∞ > 1} [ζ =
∑
αηαAαx+ ξ]

is at most MLδ = ϵ. Let us fix observation ω = Ax+ ζ with ζ belonging to the complement
Z of Zc. Then

∥HT [ω −Ax]∥∞ = ∥HT ζ∥∞ ≤ 1,

implying that the optimal value in the optimization problem minu∈X ∥HT [Au− ω∥∞ is at
most 1. Consequently, setting x̂ = x̂H(ω), we have x̂ ∈ X and ∥HT [Ax̂ − ω]∥∞ ≤ 1, see
(17). We conclude that setting z = 1

2
[x− x], we have

∥HT
ℓ Az∥∞ ≤ 1, ℓ ≤ L

with z ∈ X , implying that zTTkz ≤ tk, k ≤ K, for some t ∈ T . Now let u ∈ Rν with
∥u∥2 ≤ 1. Semidefinite constraints in (24) imply that

uTR
1/2
ℓ Bz ≤ uTλℓIνu+ zT

[
ATHℓDiag{υℓ}HT

ℓ A+
∑

k
µℓkTk

]
z

≤ λℓu
Tu+

∑
j
υℓj [H

TAz]2j +
∑

k
µℓktk ≤ λℓ +

∑
j
υℓj + ϕT (µℓ) ≤ ρ

(recall that ∥u∥2 ≤ 1, λℓ ≥ 0, µℓ ≥ 0, υℓ ≥ 0, t ∈ T , and ∥HT
ℓ Az∥∞ ≤ 1). We conclude that

uTR
1/2
ℓ Bz ≤ ρ, ℓ ≤ L, whenever ∥u∥2 ≤ 1, i.e., ∥R1/2

ℓ [Bz]∥2 ≤ ρ2. The latter relation holds
true for all ℓ ≤ L, implying that ∥Bz∥ ≤ ρ, that is, ∥Bx − x̂(ω)∥ = 2∥Bz∥ ≤ 2ρ whenever
ζ ∈ Z. □
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A.2.2 Proof of Proposition 3.2

0o. We need the following technical result (Noncommutative Khintchine Inequality).

Theorem A.1 [49, Theorem 4.6.1] Let Qi ∈ Sn, 1 ≤ i ≤ I, and let ξi, i = 1, ..., I, be
independent Rademacher (±1 with probabilities 1/2) or N (0, 1) random variables. Then
for all t ≥ 0 one has

Prob

{∥∥∥∥∑I

i=1
ξiQi

∥∥∥∥ ≥ t

}
≤ 2n exp

{
−

t2

2vQ

}
,

where ∥ · ∥ is the spectral norm, and vQ =
∥∥∥∑I

i=1Q
2
i

∥∥∥ .
1o. Proof of (i). Let λj ≥ 0, gj ∈ H, j ≤ M , and Σ =

∑
jλjgjg

T
j . Then for every j

there exists rj ∈ R such that S2
i [gj ] ⪯ [rj ]iIdi , i ≤ I. Assuming

∑
jλj > 0 and setting

κj = [
∑
jλj ]

−1λj and r =
∑
jκjr

j ∈ R, we have

Si
[∑

j
λjgjg

T
j

]
=

∑
j
λjS

2
i [gj ] ⪯

∑
j
λj [r

j ]iIdi =

[∑
j
λj

]
riIdi ,

implying that (Σ,
∑
jλj) ∈ K. The latter inclusion is true as well when λ = 0.

2o. Proof of (ii). Let (Σ, ρ) ∈ M, and let us prove that Σ =
∑N
j=1λjgjg

T
j with gj ∈ H,

λj ≥ 0, and
∑
jλj ≤ κρ. There is nothing to prove when ρ = 0, since in this case Σ = 0

due to (Σ, 0) ∈ K combined with (29b). Now let ρ > 0, so that for some r ∈ R we have

Si[Σ] ⪯ ρriIdi , i ≤ I, (39)

let Z = Σ1/2, and let O be the orthonormal N × N matrix of N -point Discrete Cosine
Transform, so that all entries in O are in magnitude ≤

√
2/N . For a Rademacher random

vector ς = [ς1; ...; ςM ] (i.e., with entries ςi which are independent Rademacher random
variables), let

Zς = ZDiag{ς}O.

In this case, one has Zς [Zς ]T ≡ Σ, that is,

∑N

p=1
Colp[Z

ς ]ColTp [Z
ς ] ≡ Σ.

Recall that

Colj [Z
ς ] =

∑
p
ςpOpjColp[Z],

and thus

Si[Colj [Z
ς ]] =

∑
p
ςpOpjSi[Colp[Z]].

Now observe that∑
p

(
OpjSi[Colp[Z]]

)2
=

∑
p
O2
pjS

2
i [Colp[Z]] =

∑
p
O2
pjSi[Colp[Z]ColTp [Z]]

[see (29a)] ⪯
2

N

∑
p
Si[Colp[Z]ColTp [Z]]

=
2

N
Si[

∑
p
Colp[Z]ColTp [Z]] =

2

N
Si[Σ] ⪯

2

N
ρsiIdi

due to (39). By the Noncommutative Khintchine Inequality we have

∀γ > 0 : Prob

{
S2
i [Colj [Z

ς ]] ⪯ γ
2

N
ρsiIdi

}
≥ 1− 2di exp{−γ/2}
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Setting

γ = 2 ln(4DN), D =
∑

i
di, gςj =

√
N

2γρ
Colj [Z

ς ], λj =
2γρ

N
, 1 ≤ j ≤ N,

we conclude that event

Ξ =
{
ς : S2

i [g
ς
j ] ⪯ siIdi , i ≤ I, j ≤ N

}
⊂

{
gςj ∈ H, j ≤ N

}
satisfies Prob(Ξ) ≥ 1

2
, while∑

j
λjg

ς
j [g

ς
j ]
T =

∑
j
Colj [Z

ς ]ColTj [Z
ς ] ≡ Σ and

∑
j
λj = γκρ = 2γρ = κρ.

Thus, with probability ≥ 1/2 (whenever ς ∈ Ξ), vectors gj = gςj and λj meet the require-

ments in (ii). □

Note that the proof of the proposition suggests an efficient randomized algorithm for
generating the required gj and λj : we generate realizations of ς of a Rademacher random
vector, compute the corresponding vectors gςj , and terminate when all of them happen to
belong to H. The corresponding probability not to terminate in course of the first k rounds
of randomization is then ≤ 2−k.

A.2.3 Proof of Lemma 3.1

The proof of the lemma is given by the standard argument underlying median-of-means
construction (cf. [42, Section 6.5.3.4]). For the sake of completeness, we reproduce it here.
1o. Observe that when (12) holds, h ∈ H, x ∈ X and ζ = ξ +

∑
α ηαAαx, the probability

of the event
{|hT ζ| > 1}

is at most 1/8. Indeed, when |hT ζ| > 1 implies that either |hT ξ| > 1/2 or |ηTA[h]x| >
1/2. By the Chebyshev inequality, the probability of the first of these events is at most
4E{(hT ξ)2} ≤ 4σ2∥h∥22 ≤ 1

16
(we have used the first relation in (12) and took into ac-

count that h ∈ H). By similar argument, the probability of the second event is at most
4E{(ηTA[h]x)2} ≤ 4∥A[h]x∥22 ≤ 1

16
.

2o. Let ζk = ωk −Ax. By construction, zj = yj − hTj Ax is the median of the i.i.d. sequence

hTj ζk, k = 1, ...,K. When |zj | > 1, at least K/2 of the events {|hTj ζk| > 1}, k ≤ K, take

place. Because the probability of each of K independent events is ≤ 1/8, it is easily seen4

that the probability that at least K/2 of them happen is bounded with

π(K) :=
∑

k≥K/2

(K
k

)
(1/8)k(7/8)K−k ≤

∑
k≥K/2

(K
k

)
2−K [(1/4)k(7/4)K−k]

≤ (
√
7/4)K ≤ e−0.4K .

In other words, the probability of each event Ej = {ωK : |yj − hTj Ax| > 1}, j = 1, ...,M , is

bounded with π(K). Thus, none of the events E1, ..., EM takes place with probability at least
1−Mπ(K), and in such case we have ∥y−HTAx∥∞ ≤ 1, and so ∥y−HTAx̂H(ωK)∥∞ ≤ 1
as well. We conclude that for every x ∈ X , the probability of the event{

x− x̂H(ωK) ∈ 2X , ∥HTA[x− x̂H(ωK)]∥∞ ≤ 2
}

is at least 1 − Mπ(K) ≥ 1 − ϵ when K ≥ 2.5 ln[M/ϵ], and when it happens, one has
∥Bx− ŵHpoly(ω

K)∥ ≤ p[H]. □

4 We refer to, e.g., [15, Section 2.3.2] for the precise justification of this obvious claim.
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